
Marco Kuhrmann · Jürgen Münch
Ita Richardson · Andreas Rausch
He Zhang Editors

Managing
Software
Process
Evolution
Traditional, Agile and Beyond –
How to Handle Process Change

Managing Software Process Evolution

Marco Kuhrmann • Jürgen Münch
Ita Richardson • Andreas Rausch
He Zhang
Editors

Managing
Software
Process
Evolution
Traditional, Agile and Beyond –

How to Handle Process Change

123

Editors
Marco Kuhrmann
University of Southern Denmark
Odense
Denmark

Jürgen Münch
Reutlingen University
Reutlingen
Germany

Ita Richardson
University of Limerick
Limerick
Ireland

Andreas Rausch
Clausthal University of Technology,
Department of Informatics

Clausthal-Zellerfeld
Germany

He Zhang
Nanjing University
Nanjing
China

ISBN 978-3-319-31543-0 ISBN 978-3-319-31545-4 (eBook)
DOI 10.1007/978-3-319-31545-4

Library of Congress Control Number: 2016934950

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

Whether we like it or not, the business software is a fashion industry where new
fads come and go. All of us can name several of them from the past years and share
the war stories about attempting to fix problems with the newest fad at everyone’s
lips. Today some of these fads are called continuous deployment, lean startups,
DevOps, flow and any of the Japanese sounding concepts from the lean vocabulary
such as Kanban for some years now. So, who cares about software processes
anymore?

Back in the days of my software development in the 1990s in a 10-person
software boutique producing production planning software for Nokia factories, I
became worried about the quality of our software and shared my thoughts with the
chief architect. He made me a quality manager for the company and a few weeks
later Nokia performed an ISO 9001 assessment for our boutique and the software. It
turned out that we deviated in all other points but at least we had an appointed
quality manager to worry about the results. Among others, we did not have pro-
cesses in place.

Later I made my Ph.D. in Software Process Improvement, became a certified
BOOTSTRAP and SPICE assessor, and discovered that if there is a way to improve
performance, all sorts of process improvement endeavors are not the way forward.
As much as we’d like, the processes are not tangible artifacts, they do not deliver
software and when improved, we cannot quantify the results in order to determine
whether we are developing better software than yesterday.

The past decade and a half has still been mostly about the processes, methods,
and tools; but in a refreshing way. Agile kicked out process developers and
empowered developers to become concerned about the business of the company,
the actual software development. Agile grew rapidly outside of its origins from
small teams to larger teams, to organizations and to global software development.
Yes, we still agree to disagree what exactly agile is and what it means in different
contexts in precise terms. We have learned that each and every organization must
define it for themselves. This has proven to be painful but necessary when the ideas
of continuous improvement and learning organizations are nurtured.

v

I am glad to say that the industry is moving forward, academics are reforming
the curriculums, practitioners are more involved than ever before, and improve-
ments or even improvement leaps are being made.

This is where the book at your hand becomes very handy. It shows how software
processes evolve and are impacted in various contexts and how this can be man-
aged. In an interesting way the book contributes to the era beyond agile, which will
be welcomed by many. Also, I should note that the book does not attempt to anchor
itself in one particular domain, context or business situation but offers different
perspectives, which will benefit readers with different backgrounds.

The editors have collected 15 chapters from authors that represent both the
academic and the practitioner standpoints. Some of the chapters are refreshingly
controversial and many provide also concrete guidance on how to make a lasting
impact. All of the chapters communicate the same underlying message, which I feel
is very important: “We must keep changing the way the software is being devel-
oped.” I particularly appreciated the sense of urgency to push the industry forward
from a multitude of different viewpoints. While all chapters have their merits, I will
highlight a few that caught my attention:

Anthony I. Wasserman (Chap. 1) presents the ultimate key question that has
puzzled us for a number of years: “How much process is needed by an organization
for a particular project?”. In many ways he sets the stage for the remainder of the
book by arguing that there are only a few places left where high-ceremony (a.k.a.
traditional) processes are needed.

Andreas Rösel (Chap. 5) challenges the reader by presenting an approach to
guarantee a failure when gigantic improvements should be sought but when we do
not dare to take the risk. Many of the anti-tactics he identifies should be an
eye-opener for software managers thinking about their improvement efforts.

Christian Prause and his colleagues’ (Chap. 8) chapter, on the other hand, is an
eye-opener for all those people who think software development is an easy
endeavor. They describe their environment insightfully: “Scientific missions have
no insurance; a second unit is never built. If the mission goal is not reached, for
whatever reason, there is no second chance.” Software that needs to operate for
decades in the outer space requires all the ceremonies invented but a smart way of
executing them.

Kai Petersen’s (Chap. 12) contribution should be an absolute read to all
researchers and practitioners involved in academia–industry collaboration. In a very
practical way, he summarizes the literature on the topic but also adds his personal
advice on how the research done by the academics can deliver the maximum value
for the company.

Yli-Huumo and his colleagues (Chap. 15) demonstrate how changes in the
organization and the way the software is being developed do have a fairly direct
impact on the technical debt that hinders the company to progress and move for-
ward in their development. The readers will particularly enjoy the illustrative quotes
from the interviews in three large companies.

vi Foreword

http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://dx.doi.org/10.1007/978-3-319-31545-4_5
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_12
http://dx.doi.org/10.1007/978-3-319-31545-4_15

Coming back to where I started, it turns out that software processes have become
ever more tangible and concrete actions can be taken that will show a difference in
the bottom line. The editors have put together a book that does a splendid job in
fulfilling an evident gap in the current literature by shaping the state of the art in
software process evolution scene.

Whether you read this book from start to finish, or piecemeal your approach
iteratively, I am sure you will find this book as valuable as I did.

Trondheim, Norway Pekka Abrahamsson
January 2016 Professor of Software Engineering

Norwegian University of Science and Technology

PS: I forgot to conclude the story about the ISO 9001 assessment in the software boutique where I
worked. After surviving the shock of being evaluated by Nokia, my company jumped in the
process wagon, eventually I departed to pursue academic studies, and the company ended up being
recognized by International Quality Crown award in 2008 and Arch of Europe Quality award in
2010. Thus, presenting a happy ending for one process assessment case.

Foreword vii

Preface

Imagine this happens to you: Your manager tells you “Agile is the future! Let’s go
Scrum.” He forces you to replace the existing development process with Scrum.
What would you do? Would you send your developers to a Scrum training course
immediately?

It is true that more companies are embracing agile as part of their development
process in order to increase speed, accelerate learning, and deliver value rapidly.
And many of these companies are applying Scrum. But it is also true that evolution
does not follow the principle: “Progressive dinosaurs are the future! Let’s go bird.”1

Evolving the ways through which software-intensive products and services are
developed is a challenging endeavor that needs to be done carefully. Where do you
start? What do you have to consider?

This book will help you better understand the different aspects and challenges of
evolving development processes. It addresses difficult problems, such as how to
implement processes in highly regulated domains or where to find a suitable
notation for documenting processes. This book emphasizes the need to consider
Software Process Evolution as an important means for catching up with rapid
changes in technical and market environments. It provides insights that might help
you manage process evolution. It gives plenty of tips, e.g., how to cope with the
threat of disruption from a process perspective. In addition, it provides many
examples and cases on how to deal with software evolution in practice.

Why a Book on Managing Process Evolution?

Many organizations need to transform their business to the next level. In order to
benefit from leading-edge technologies, catch up with the digital transformation,
and continuously innovate and renew business models, companies have to quickly

1Quote taken from a tweet from David Evans.

ix

adapt and change the ways they develop products and services. As software is the
key to this transformation, the ways in which modern software is developed need to
change accordingly.

Another important driver for process evolution is the need to mitigate software
risks. Basically, a considerable share of software risk is process-based [3]. For
example, there have been several incidents which could have been avoided with
appropriate coding standards and tools. Although these standards and tools are
widely available, they are either not applied or not appropriately applied in many
situations. Because this is normally caused by the way work and people are
organized and work is carried out it is a software process issue. Companies need to
find ways to ensure that process models are properly defined and, furthermore, are
appropriately applied while not hindering the creativity of, e.g., designers or
developers. To do this effectively, defining and deploying adequate software pro-
cesses usually requires fostering the evolution of existing processes and their
underlying models towards ones that suit better.

Today, there exists a variety of software processes ranging from generic and
domain-specific standards, from agile methods to comprehensive process engi-
neering frameworks. Since software processes may contain up to hundreds or even
thousands of elements, the management of a software process is a demanding task
and, therefore, many companies install whole departments dealing with software
process improvement and management. In practice, especially in large organiza-
tions, we can observe some interesting gaps:

• Development teams tend to apply agile methods while the hosting organization
focuses on “classic” structured development processes [5, 6].

• Implemented development processes in projects differ from what has been
defined [4].

• Evolving software technologies and platforms require a parallel evolution of
software processes to accommodate the rapid changes. However, this
co-evolution does not appropriately take place.

One main reason for these gaps is different mindsets. For instance, program man-
agers and quality assurance people need planned and directed processes for certi-
fication, budgeting, and compliance business. Developers need flexibility and
processes which support creative work. Business managers need processes that
allow for fast results and flexible feature delivery. Moreover, due to technology
evolution, business evolves. This requires that emerging markets must be addres-
sed, new technologies should be adopted, and globally distributed development
becomes more and more important.

Apart from the big “global players,” process evolution is also highly important
for small and medium-sized companies. Such companies typically neither have
comprehensive process models nor process engineering groups, and often have to
trust in a common understanding of principles and applied practices. However,
these principles and practices need to be continuously validated against higher level
goals (such as business strategies) and potentially changed in order to secure and
maintain the company’s position in the market place [2]. One example for such a

x Preface

change is the increasing focus on value-delivery [1]. Regardless of the company
size, a major challenge that companies face is to provide all stakeholders with
flexible processes that:

• Are driven by the needs of the different stakeholders,
• Have clear links to higher level goals of an organization,
• Provide interfaces that are compatible with organizational structures,
• Are supported by tools for modeling, enactment, analyses, and evolution,
• Can be tailored to individual project goals and characteristics,
• Offer adaptability and elasticity to accommodate and support technological and

organizational innovations and evolutions.

This book focuses on the design, development, management, governance, and
application of evolving software processes that are aligned with changing business
objectives, such as expansion to new domains or moving to global production. In
the context of evolving business, it addresses the complete software process life-
cycle, from initial definition of a product to systematic improvement.

Who Should Read This Book?

This book is aimed at anyone interested in understanding and organizing software
development tasks in an organization. The experiences and ideas in this book are
useful for both those who are unfamiliar with software process improvement and
want to get an overview of the different aspects of the topic, and those experts with
many years of experience. In particular, the present book addresses researchers and
Ph.D. students in the area of Software & Systems Engineering and Information
Systems, who study advanced topics of organizing and managing (software
development) projects and process improvements projects. Furthermore, the book
addresses practitioners, consultants, and coaches involved in software-related
change management and software process improvement projects, and who want to
learn about challenges and state-of-the-art techniques and experiences regarding
their application to problems in different application domains.

How is the Book Organized?

This book is organized in three parts (Fig. 1). Part 1 focuses on software business
transformation, its challenges, and addresses the questions about which process(es)
to use and adapt, and how to organize process improvement programs. In Chap. 1,
Tony Wasserman discusses short lifecycle projects and how “low-ceremony pro-
cesses” help shorting project iterations. In this context, in Chap. 2, Diebold and
Zehler discuss the “right” degree of agility in rich software processes—how to find
and how to achieve this. The challenge of implementing agile software

Preface xi

http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://dx.doi.org/10.1007/978-3-319-31545-4_2

development approaches is further discussed by Houston and Rosemergy in Chap.
3, who report an agile transformation of a globally distributed company. As many
companies jump to Agile processes hoping for the benefits promised, determining
value and value creation is crucial. In Chap. 4, Christof Ebert discusses the prin-
ciples of value-driven process management and reports experiences. Another per-
spective is taken by Andreas Rösel, who describes how concepts of design thinking
can be applied to disruptive improvements in Chap. 5. Oisín Cawley discusses the
trials and tribulations of Global Software Engineering processes in the course of
business evolution with a particular focus on regulated software and system
development in Chap. 6. The respective Software Process Improvement challenges,
approaches, and standards for very small entities and small- to medium-sized
companies are presented in Chap. 7 by Mary-Luz Sánchez-Gordón and her col-
leagues. In their systematic literature review, they give a comprehensive overview
of the different improvement approaches and models and show how they find their
way into international standards. Standards and their role are also key to the Space
business, as presented in Chap. 8, where Christian Prause and his colleagues
describe how software processes in the German Space Administration evolve and
how they are tailored to the projects.

Part 2 of the book is focused on process modeling. This part starts with Chap. 9
by Dumas and Pfahl, who discuss the appropriateness of the Business Process
Model and Notation (BPMN) for software processes modeling. In Chap. 10,
Fazal-Baqaie and Engels present an approach to modeling evolving software pro-
cesses by utilizing method engineering principles. The adaptation of case man-
agement techniques for the purpose of improving process model flexibility is
demonstrated by Marian Benner-Wickner as his colleagues in Chap. 11.

Fig. 1 Overview of the book and chapter outline

xii Preface

http://dx.doi.org/10.1007/978-3-319-31545-4_3
http://dx.doi.org/10.1007/978-3-319-31545-4_4
http://dx.doi.org/10.1007/978-3-319-31545-4_5
http://dx.doi.org/10.1007/978-3-319-31545-4_6
http://dx.doi.org/10.1007/978-3-319-31545-4_7
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_9
http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_11

Finally, Part 3 of the book collects approaches, experiences, and recommenda-
tions that help to improve software processes with a particular focus on specific
lifecycle phases. The part starts with Chap. 12 in which Kai Petersen reports his
experiences in industrial Software Process Improvement projects from the per-
spective of a researcher. He reports from projects and provides a collection of
general lessons learned and recommendations to aid researchers and practitioners to
plan and carry out improvement projects in an industry–academia collaboration.
Chapter 13 in which Regina Hebig and her colleagues give insights into two
large-scale industry projects and demonstrate how co-evolution is manifested and
handled in such projects, thus addressing the co-evolution of software processes
and model-driven engineering approaches. In Chap. 14, S.M. Didar Al Alam and
his colleagues present an approach that helps companies to improve the release
readiness of their software products. They show how bottleneck factors that hinder
fast releases can be detected and they apply their concept to different Open-Source
Software projects. Finally, Jesse Yli-Huumo and colleagues take a broader per-
spective in Chap. 15, discussing how process evolution affects technical debt. They
illustrate their findings with three large-scale software projects.

We wish you an interesting and enjoyable reading experience. A collection such
as this book would not be possible without the help of many persons. We would
especially like to thank the authors for their insightful articles and their excellent
collaboration. In addition, we would like to thank Ralf Gerstner from Springer, who
supported us efficiently in completing organizational and contract issues.

Odense, Denmark Marco Kuhrmann
Reutlingen, Germany Jürgen Münch
Limerick, Ireland Ita Richardson
Clausthal-Zellerfeld, Germany Andreas Rausch
Nanjing, China He Zhang
January 2016

References

1. Bosch, J.: Speed, data, and ecosystems: The future of software engineering. IEEE Softw. 33(1),
82–88 (2016)

2. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continuous
experimentation. In: Proceedings of the International Workshop on Rapid Continuous Software
Engineering, RCoSE, pp. 26–35. ACM, New York (2014)

3. Neumann, P.G., et al.: Column: Risks to the Public. ACM SIGSOFT Softw. Eng. Note 40(6),
14–19 (2015)

4. Parnas, D.L., Clements, P.C.: A Rational Design Process: How and Why to fake it. IEEE Trans.
Software Eng. 12(2), 251–257 (1986)

Preface xiii

http://dx.doi.org/10.1007/978-3-319-31545-4_12
http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_14
http://dx.doi.org/10.1007/978-3-319-31545-4_15

5. Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P.: Is Water-Scrum-Fall reality? On the use
of agile and traditional development practices. In: Proceedings of the International Conference
on Product-Focused Software Process Improvement. Lecture Notes in Computer Science, vol.
9459, pp. 149–166. Springer, Heidelberg (2015)

6. Vijayasarathy, L., Butler, C.: Choice of software development methodologies - do project, team
and organizational characteristics matter? IEEE Software (99), 1ff. (2015)

xiv Preface

Contents

1 Low Ceremony Processes for Short Lifecycle Projects 1
Anthony I. Wasserman

2 The Right Degree of Agility in Rich Processes 15
Philipp Diebold and Thomas Zehler

3 Assessing Product Development Agility . 39
Daniel X. Houston and Stephen W. Rosemergy

4 Value-Driven Process Management . 61
Christof Ebert

5 Are We Ready for Disruptive Improvement?. 77
Andreas Rösel

6 Trials and Tribulations of the Global Software Engineering
Process: Evolving with Your Organisation 93
Oisín Cawley

7 The Route to Software Process Improvement
in Small- and Medium-Sized Enterprises . 109
Mary-Luz Sánchez-Gordón, Ricardo Colomo-Palacios,
Antonio de Amescua Seco and Rory V. O’Connor

8 Managing Software Process Evolution for Spacecraft
from a Customer’s Perspective . 137
Christian R. Prause, Markus Bibus, Carsten Dietrich
and Wolfgang Jobi

9 Modeling Software Processes Using BPMN:
When and When Not? . 165
Marlon Dumas and Dietmar Pfahl

xv

http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_3
http://dx.doi.org/10.1007/978-3-319-31545-4_3
http://dx.doi.org/10.1007/978-3-319-31545-4_4
http://dx.doi.org/10.1007/978-3-319-31545-4_4
http://dx.doi.org/10.1007/978-3-319-31545-4_5
http://dx.doi.org/10.1007/978-3-319-31545-4_5
http://dx.doi.org/10.1007/978-3-319-31545-4_6
http://dx.doi.org/10.1007/978-3-319-31545-4_6
http://dx.doi.org/10.1007/978-3-319-31545-4_6
http://dx.doi.org/10.1007/978-3-319-31545-4_7
http://dx.doi.org/10.1007/978-3-319-31545-4_7
http://dx.doi.org/10.1007/978-3-319-31545-4_7
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_9
http://dx.doi.org/10.1007/978-3-319-31545-4_9
http://dx.doi.org/10.1007/978-3-319-31545-4_9

10 Software Processes Management by Method Engineering
with MESP . 185
Masud Fazal-Baqaie and Gregor Engels

11 Adapting Case Management Techniques to Achieve Software
Process Flexibility . 211
Marian Benner-Wickner, Matthias Book and Volker Gruhn

12 A Researcher’s Experiences in Supporting Industrial
Software Process Improvement . 235
Kai Petersen

13 Lessons Learned from Co-Evolution of Software
Process and Model-Driven Engineering . 257
Regina Hebig, Andreas I. Schmied and Ingo Weisemöller

14 Monitoring and Controlling Release Readiness
by Learning Across Projects . 281
S.M. Didar Al Alam, Dietmar Pfahl and Günther Ruhe

15 The Effects of Software Process Evolution to Technical
Debt—Perceptions from Three Large Software Projects. 305
Jesse Yli-Huumo, Andrey Maglyas and Kari Smolander

Index . 329

xvi Contents

http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_11
http://dx.doi.org/10.1007/978-3-319-31545-4_11
http://dx.doi.org/10.1007/978-3-319-31545-4_11
http://dx.doi.org/10.1007/978-3-319-31545-4_12
http://dx.doi.org/10.1007/978-3-319-31545-4_12
http://dx.doi.org/10.1007/978-3-319-31545-4_12
http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_14
http://dx.doi.org/10.1007/978-3-319-31545-4_14
http://dx.doi.org/10.1007/978-3-319-31545-4_14
http://dx.doi.org/10.1007/978-3-319-31545-4_15
http://dx.doi.org/10.1007/978-3-319-31545-4_15
http://dx.doi.org/10.1007/978-3-319-31545-4_15

Contributors

Marian Benner-Wickner is Research Associate at the University of Duisburg-
Essen and a professional IT Staff Trainer at CampusLab. His research interest
includes software support for case management. After completing a vocational
training as an IT specialist (2005), he studied computer engineering at the
University of Applied Sciences in Dortmund. During his course of study, he
worked on a research project at Fraunhofer ISST. After receiving his M.Sc. in 2010,
he started his Ph.D. studies under the guidance of Prof. Volker Gruhn. Contact
Marian at:
paluno—The Ruhr Institute for Software Technology, University of
Duisburg-Essen, Germany.
E-mail: marian.benner-wickner@uni-due.de

Markus Bibus is Product Assurance Manager at DLR Space Administration for
6 years. He is the responsible product assurance manager in several DLR Space
Administration projects such as Laser Communication Terminal, eRosita,
ExoMars PANCAM High Resolution Camera, and CAPTARE with focus on EEE
parts including FPGA programming, materials and processes. His background
includes physics (Diplom, equiv. to M.Sc.), specialized in semiconductor tech-
nology and computer science as minor subject. Prior to his current tasks he worked
as quality manager and technology engineer in semiconductor manufacturing
business, in both research & development and automotive branches. Contact
Markus at:
Deutsches Zentrum für Luft- und Raumfahrt, DLR—Space Administration,
Königswinterer Straße 522-524, Bonn, Germany.
E-mail: markus.bibus@dlr.de

Matthias Book is Associate Professor for Software Engineering at the University
of Iceland. After receiving his doctoral degree from the University of Leipzig, he
worked as Research Manager for the German software company adesso, led the
Mobile Interaction group at the University of Duisburg-Essen’s Ruhr Institute for
Software Technology (paluno), and served as acting head of the Software
Engineering and Information Systems Chair at Chemnitz University of Technology.

xvii

His research focus is on facilitating communication between business and technical
stakeholders in large software projects, and on interacting with software systems
through novel input modalities such as gestures and voice commands. Contact
Matthias at:
Department of Computer Science, University of Iceland.
E-mail: book@hi.is

Oisín Cawley is Lecturer and Researcher in Computing at the Institute of
Technology Carlow, Ireland. He worked for 17 years in software development,
predominantly for multinational companies, and has held several senior positions.
He holds a B.Sc. in Computer Science, an MBA, and a Ph.D. in Software
Engineering. Some of his research interests include software development processes
and methodologies, particularly within regulated environments. He has a keen
interest in improving the learning process for third-level computing students, and
introducing young students to computing. He volunteers in his local primary school
where he teaches programming to the sixth class children. Contact Oisín at:
Department of Computing, Institute of Technology Carlow, Ireland.
E-mail: oisin.cawley@itcarlow.ie

Ricardo Colomo-Palacios is Professor at the Computer Science Department of the
Østfold University College, Norway. Formerly he worked at Universidad Carlos III
de Madrid, Spain. His research interests include applied research in information
systems, software project management, people in software projects, business soft-
ware, and software and services process improvement. He received his Ph.D. in
Computer Science from the Universidad Politécnica of Madrid (2005). He also
holds an MBA from the Instituto de Empresa (2002). He has been working as
software engineer, project manager, and software engineering consultant in several
companies including Spanish IT leader INDRA. Contact Ricardo at:
Østfold University College, Halden, Norway.
E-mail: ricardo.colomo@hiof.no

Antonio de Amescua Seco has Ph.D. in Computer Science and is Full Professor in
the Computer Science Department at Carlos III University of Madrid with more
than 30 years of experience in higher education. His main research areas are
software architect, project management, process improvement, change manage-
ment, MOOC. He was the research project leader for the development of the
standard of Information System Development Methodology for the Spanish
Administration and has participated in projects sponsored by the European Union.
He is member of the Chair of the SPI for Ibero-American Space and also member of
European Certification and Qualification Association (ECQA). Contact Antonio at:
Universidad Carlos III de Madrid, Madrid, Spain.
E-mail: amescua@inf.uc3m.es

S.M. Didar Al Alam is a doctoral candidate in the University of Calgary’s
Software Engineering Decision Support Lab. He is also a Lecturer in Computer
Science Department, Islamic University of Technology. His main research interests

xviii Contributors

are readiness measurement of software release, planning of software release,
decision support, data analytics, and empirical software engineering. Didar received
his Master’s and Bachelor’s degrees in Computer Science and Information
Technology from Islamic University of Technology. He held a doctoral scholarship
from Alberta Innovates of Technology Futures (AITF) for more than 3 years.
Contact Didar at:
University of Calgary, Department of Computer Science, Calgary, AB, Canada.
E-mail: smdalam@ucalgary.ca

Philipp Diebold is working as a researcher in the Process Engineering Department
of the Fraunhofer Institute for Experimental Software Engineering IESE in
Kaiserslautern (Germany) for some years. His technical focus is mainly on improving
software and system development processes with the use of agile development
methods such as Scrum or XP. In addition to his Fraunhofer work, he is doing his Ph.
D. in the University of Kaiserslautern on introducing more elements from agile
development into regulated environments, such as automotive, avionics, healthcare,
by integrating agile practices in existing rich processes. Contact Philipp at:
Fraunhofer Institute for Experimental Software Engineering (IESE), Fraunhofer-
Platz 1, 67663 Kaiserslautern, Germany.
E-mail: philipp.diebold@iese.fraunhofer.de

Carsten Dietrich is a staff member of the German Aerospace Centre (DLR) in
Space Administration. He had set up and implemented the customer-side software
product assurance in space projects. After harmonization of ECSS system between
software quality assurance and engineering, he is now responsible for the support of
software engineering in space projects. Carsten Dietrich holds a diploma in
Information Technology (Computer Science) from the Technical University of
Braunschweig in Germany. Prior to working for DLR, Mr. Dietrich worked in
several other fields, such as project management, system analysis, and quality
assurance in national and international automotive and railway–industry projects.
Contact Carsten at:
Deutsches Zentrum für Luft- und Raumfahrt, DLR—Space Administration,
Königswinterer Straße 522-524, Bonn, Germany.
E-mail: carsten.dietrich@dlr.de

Marlon Dumas is Professor of Software Engineering at the University of Tartu,
Estonia, and Adjunct Professor of Information Systems at Queensland University of
Technology, Australia. His research interests span across the fields of software
engineering, information systems, and business process management. His ongoing
work focuses on combining data mining and formal methods for analysis and
monitoring of business processes. He has published extensively in conferences and
journals across the fields of software engineering and information systems and has
co-authored two textbooks in the field of business process management. Contact
Marlon at:
University of Tartu, Institute of Computer Science, Tartu, Estonia.
E-mail: marlon.dumas@ut.ee

Contributors xix

Christof Ebert is Managing Director at Vector Consulting Services. He supports
clients around the world to sustainably improve product strategy and product
development and to manage organizational changes. Dr. Ebert serves on advisory
and industry bodies and is Professor at the Universities of Stuttgart and Paris.
Contact Christof at:
Vector Consulting Services, Ingersheimer Straße 24, 70499 Stuttgart, Germany.
E-mail: Christof.Ebert@vector.com

Gregor Engels received his Ph.D. in Computer Science in 1986 from the
University of Osnabrück, Germany. Between 1991 and 1997, he held the position
as Chair of Software Engineering and Information Systems at the University of
Leiden, The Netherlands. Since 1997, he has been Professor of Informatics at the
University of Paderborn, Germany. Currently, he is also director of two technology
transfer labs at the University of Paderborn, the C-LAB, a joint venture together
with ATOS, and the s-lab—Software Quality Lab. His research interests are
model-driven software development, software architecture, and software quality
assurance. Contact Gregor at:
University of Paderborn, Database and Information Systems Research Group,
Zukunftsmeile 1, 33102 Paderborn.
E-mail: engels@uni-paderborn.de

Masud Fazal-Baqaie studied Computer Science at the Paderborn University with
stays at the Carleton University in Ottawa, Canada and the lab IBM Research—
Zurich in Switzerland. He is member of the Database and Information Systems
Research Group led by Prof. Dr. Gregor Engels and consultant at the s-lab—
Software Quality Lab. He is also the vice chairman of the special interest group on
process models for business application development at the German Informatics
Society (GI). His research interests are provisioning of organization- and
project-specific software development processes, global software development, and
requirements engineering and management. Contact Masud at:
University of Paderborn, Database and Information Systems Research Group,
Zukunftsmeile 1, 33102 Paderborn.
E-mail: masudf@uni-paderborn.de

Volker Gruhn holds the chair for Software Engineering at the University of
Duisburg-Essen. His research interests are mobile applications and software pro-
cesses. Before that he held the chair for Applied Telematics and e-Business at the
University of Leipzig. He received a diploma degree (1987) and a Ph.D. (1991) both
in Computer Science from the University of Dortmund. Volker Gruhn is author and
co-author of about 270 journal and conference articles. He co-founded the software
company adesso in 1997, currently deploying more than 1700 people. Volker Gruhn
was program chair of the ESEC Conference (in 2001), the German Software
Engineering Conference (in 2006) and program co-chair of the ICSE Conference
2008. Contact Volker at:

xx Contributors

paluno—The Ruhr Institute for Software Technology, University of Duisburg-
Essen, Germany.
E-mail: volker.gruhn@uni-due.de

Regina Hebig is Assistant Professor at Chalmers University of Technology and
the Gothenburg University in Sweden since summer 2015. Her research focusses on
model-driven engineering, software processes, and quantitative measurement of
software size and quality. From 2014 to summer 2015, Regina worked in a French
and a European project as a postdoctoral researcher at the University of Pierre and
Marie Curie in Paris, France. She received her doctoral degree from the University
of Potsdam in 2014 for her research on the evolution of model-driven engineering
in practice. Contact Regina at:
Software Engineering Division, Chalmers University of Technology & University
of Gothenburg, Sweden. E-mail: hebig@chalmers.se

Daniel X. Houston is a Senior Project Leader at The Aerospace Corporation. His
work is applying quantitative methods, particularly using statistics and simulation, to
software engineering. His industrial background includes software development, Six
Sigma Black Belt, and software measurement. He received M.S. and Ph.D. degrees
in Industrial Engineering from Arizona State University. His publications include
works on statistical modeling and simulation of software development processes,
software process improvement, and the management of software projects, particu-
larly the aspects of risk, product quality, and economics. Contact Dan at:
The Aerospace Corporation, Los Angeles, CA 90009-2957.
E-mail: dan.houston@aero.org

Wolfgang Jobi headed the Product Assurance Department of the DLR Space
Administration for over 15 years, and in total has worked there for almost 30 years
since the German space agency’s foundation in the late 1980s. Even before the
ECSS was founded, he drafted the first product assurance standards for use in the
agency’s missions and is the founder of the computer-aided tailoring methodology
for quality and product assurance requirements for space applications. Wolfgang
Jobi is a state-certified technician of electronics and holds a diploma in Electrical
Engineering from the University of Cologne, Germany. Contact Wolfgang at:
Deutsches Zentrum für Luft- und Raumfahrt, DLR—Space Administration,
Königswinterer Straße 522-524, Bonn, Germany, (via Christian Prause).

Andrey Maglyas is a postdoctoral researcher in the Department of Innovation and
Software at Lappeenranta University of Technology, Finland. His research interests
include software product management, process improvements, and management
methodologies. Maglyas has a D.Sc. (Tech) in Software Engineering from
Lappeenranta University of Technology and a M.Sc. (Tech) in Management of
Information Systems and Resources from Saint-Petersburg State Electrotechnical
University, Russia. Contact Andrey at:

Contributors xxi

School of Business and Management, Innovation & Software, Lappeenranta
University of Technology, P.O.Box 20, 53851 Lappeenranta, Finland.
E-mail: Andrey.Maglyas@lut.fi

Rory V. O’Connor is Associate Professor of Computing and the current Head
of the School of Computing at Dublin City University, Ireland where he lectures in
Software Engineering. He is a Senior Researcher with Lero, The Irish Software
Research Centre. He is also Ireland’s Head of Delegation to ISO/IEC JCT1/SC7
and editor of standard ISO/IEC 29110 part 2. In addition, Prof. O’Connor serves as
the Editor in Chief of the Elsevier Journal Computer Standards and Interfaces. His
research interests are centered on the processes where software-intensive systems
are designed, implemented, and managed. His website address is www.
roryoconnor.com, or Contact him at:
Dublin City University, Dublin, Ireland.
E-mail: rory.oconnor@dcu.ie

Kai Petersen is Associate Professor at Blekinge Institute of Technology (BTH).
His research focuses on software processes, software metrics, lean and agile soft-
ware development, quality assurance, and software security in close collaboration
with industry partners. Kai was ranked among the 18 most productive scholars in
lean and agile software development based on publications in journals of a total of
448 researchers by Sun et al.: Assessment of institutions, scholars, and contribu-
tions on agile software development (2001–2012) in Journal of Systems and
Software. Kai has authored over 70 publications in peer-reviewed international
journals, conferences, and books. Contact Kai at:
Blekinge Institute of Technology, Sweden.
E-mail: kai.petersen@bth.se

Dietmar Pfahl is Associate Professor of Software Engineering at the University of
Tartu, Estonia, and Adjunct Professor of Software Engineering at the University of
Calgary, Canada. His research interests include data-driven product and process
analysis, management, and improvement. His work involves the application of data
mining and machine learning techniques to build decision support models. He has
100+ refereed publications in software engineering conferences and journals. He is
a Senior Member of both ACM and IEEE. Contact Dietmar at:
University of Tartu, Institute of Computer Science, Tartu, Estonia.
E-mail: dietmar.pfahl@ut.ee

Christian R. Prause is the head of the software product assurance field in the DLR
Space Administration and is responsible for software product assurance in all major
projects. For advancing the field and its application in projects, he leads dedicated
improvement projects and participates in ECSS standardization committees. Before
joining DLR in 2012, he was a developer, a software quality manager, and a project
manager at Fraunhofer FIT. He graduated (Dipl.-Inform.) from the University of

xxii Contributors

http://www.roryoconnor.com
http://www.roryoconnor.com

Bonn, and received his Ph.D. (Dr. rer. nat.) in Computer Science from RWTH
Aachen University. Contact Christian at:
Deutsches Zentrum für Luft- und Raumfahrt, DLR—Space Administration,
Königswinterer Straße 522-524, Bonn, Germany.
E-mail: christian.prause@dlr.de

Andreas Rösel is Principal Consultant with SAP since 2011, and since 2014 he
has been IT Process Officer. His experience of some 30 years also includes being
Principal Consultant for DNV IT Global Services & Q-Labs, Software Technology
and SEPG Leader at Heidelberg Printing Machines, Department Head of the
Advanced Software Center at ABB and beforehand as SPI consultant, Software
Architect, Software Engineer and Lecturer in Germany and Australia. Andreas
holds an MSc in Software Engineering and an Engineering Degree in Electronics.
He has a keen interest in combining innovation, agility and processes and has
published and presented at conferences including ESEPG, SPICE-Days, Object
World, Comdex, BITKOM. Contact Andreas at:
SAP AG, Walldorf, Germany.
E-mail: andreas.roesel@sap.com

Stephen W. Rosemergy is Software Architect and Software Engineering Practice
Expert at The Aerospace Corporation. Steve has more than two decades of expe-
rience in developing software-intensive systems for both commercial and nonprofit
sectors and has been a practitioner of agile methods since 2005. Steve is a graduate
of both the School of Computer Science and the Heinz School of Information
Systems at Carnegie Mellon University. Contact Steve at:
The Aerospace Corporation, Los Angeles, CA 90009-2957.
E-mail: steven.rosemergy@aero.org

Günther Ruhe is the Industrial Research Chair in Software Engineering at the
University of Calgary. His research focuses on product release planning, software
project management, decision support, data analytics, empirical software engi-
neering, and search-based software engineering. Ruhe received a habilitation in
computer science from the University of Kaiserslautern. Since 2016, he is the
Editor in Chief of the Elsevier journal Information and Software Technology. He is
a Senior Member of IEEE and a member of ACM. Contact Günther at:
University of Calgary, Department of Computer Science, Calgary, AB, Canada.
E-mail: ruhe@ucalgary.ca

Mary-Luz Sánchez-Gordón is a Ph.D. student in Information Science and
Technology at Universidad Carlos III de Madrid, Spain. She holds a Master’s
degree in Information Science and Technology from the same university. She
studied computer engineering at Universidad Central del Ecuador, Quito, Ecuador.
She also got her Master’s degree in Education at this university. She has more than
10 years of experience in the software industry and 5 years in research and teaching
in Ecuador. Her research interests are software process, software process
improvement, and knowledge management. Contact Mary-Luz at:

Contributors xxiii

Universidad Carlos III de Madrid, Madrid, Spain.
E-mail: mary_sanchezg@hotmail.com

Andreas I. Schmied is Managing Solution Architect at Capgemini since 2008. He
has been involved in various IT projects along the development, production, and
sales processes within the automotive industry. His work leads him into various
roles, ranging from consultancy and development to engagement management, with
a special interest in model-driven architectures that resonate with multi-cultural
specifics. Andreas received a Ph.D. in Computer Science from Ulm University,
Germany, for his work on the composition of software transformation processes.
Contact Andreas at:
Capgemini Deutschland GmbH, Löffelstraße 46, 70597 Stuttgart, Germany.
E-mail: andreas.schmied@capgemini.com

Kari Smolander is Professor of Software Engineering in Department of Computer
Science, Aalto University, Finland. His current research interests are software
development practices and include especially the ongoing change in software and
systems development practices and software development organizations related to
digitalization. Smolander has a Ph.D. (2003) in Computer Science from
Lappeenranta University of Technology, Finland. Contact Kari at:
Department of Computer Science, Aalto University, P.O.Box 15400, FI-00076
Aalto, Finland.
E-mail: kari.smolander@aalto.fi

Anthony I. Wasserman is Professor of Software Management Practice at
Carnegie Mellon Silicon Valley, and the Executive Director of its Center for Open
Source Investigation (COSI), focused on evaluation and adoption of open-source
software. Earlier in his career, he was Professor of Medical Information Science at
the University of California, San Francisco. He then started Interactive
Development Environments (IDE), and served as its CEO for 10 years. He sub-
sequently managed software and product development groups for several small
companies before returning to academia in 2005. Tony is a Fellow of the ACM, a
Life Fellow of the IEEE, and a Board member of the Open Source Initiative. He is a
graduate of the University of California, Berkeley, and earned his Ph.D. in
Computer Sciences from the University of Wisconsin, Madison. Contact Tony at:
Integrated Innovation Institute, Carnegie Mellon University, Silicon Valley, Moffett
Field, CA 94035, USA.
E-mail: tonyw@sv.cmu.edu

Ingo Weisemöller worked as a scientific employee at the TU Darmstadt and the
RWTH Aachen from 2006 to 2011, focusing on model-based and generative
software development, domain-specific languages, and model transformations. In
2012 he graduated with his dissertation thesis “Generation of Domain Specific
Transformation Languages.” Since 2012, he is working as Software and Systems
Designer at the Carmeq GmbH, Berlin. His activities at Carmeq include develop-
ment, operation, and maintenance of tools for model-based software engineering,

xxiv Contributors

primarily in the application and development of AUTOSAR, as well as software
architectures, processes, methods, and data formats in automotive software devel-
opment. Contact Ingo at:
Carmeq GmbH, Carnotstr. 4, 10587 Berlin, Germany.
E-mail: ingo.weisemoeller@carmeq.com

Jesse Yli-Huumo is a Ph.D. student in the Department of Innovation and Software
at Lappeenranta University of Technology, Finland. His research interests include
technical debt, process improvements, and software development methodologies.
Yli-Huumo has an M.Sc. (Tech) in Software Engineering from Lappeenranta
University of Technology. Contact Jesse at:
School of Business and Management, Innovation & Software, Lappeenranta
University of Technology, P.O.Box 20, 53851 Lappeenranta, Finland.
E-mail: Jesse.Yli-Huumo@lut.fi

Thomas Zehler is working as a researcher in the Process Engineering Department
of the Fraunhofer Institute for Experimental Software Engineering IESE in
Kaiserslautern (Germany) for several years. His technical focus is mainly on
software and system process improvement of development processes, especially
using common best-practice models, such as CMMI or SPICE. His favorite domain
is automotive, and he is a certified Automotive SPICE Provisional Assessor.
Contact Thomas at:
Fraunhofer Institute for Experimental Software Engineering (IESE), Fraunhofer-
Platz 1, 67663 Kaiserslautern, Germany.
E-mail: thomas.zehler@iese.fraunhofer.de

Contributors xxv

Disclaimer

Any of the trademarks, service marks, collective marks, registered names, or similar
rights that are used or cited in the book are the property of the respective owners.
Their use here does not imply that they can be used for any purpose other than for
the informational use as contemplated in this book.

The following table summarizes the trademarks used in this book. Rather than
indicating every occurrence of a trademarked name as such, this report uses the
names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Automotive SPICE® Verband der Automobilindustrie
e.V. (VDA)

BPMNTM Business Process Model and NotationTM Object Management Group®

CMM® Capability Maturity Model Software Engineering Institute
(SEI)

CMMI® Capability Maturity Model Integration Software Engineering Institute
(SEI)

IDEALSM The IDEALSM Model Software Engineering Institute
(SEI)

MS Office® MS Word®, MS Excel®, and MS
PowerPoint®

Microsoft® Corporation

PSPSM The Personal Software ProcessSM Software Engineering Institute
(SEI)

SAP HANA® SAP SE
SPEMTM Software & Systems Process Engineering

MetamodelTM
Object Management Group®

TSPSM The Team Software ProcessSM Software Engineering Institute
(SEI)

UML® Unified Modeling Language® Object Management Group®

V-Modell® XT Federal Republic of Germany

xxvii

Chapter 1
Low Ceremony Processes for Short
Lifecycle Projects

Anthony I. Wasserman

Abstract Modern software applications, particularly those for mobile devices and
web applications, are fundamentally different from traditional applications. Many of
those applications are developed by startup businesses, which are under time and fi-
nancial pressure to release their applications as quickly as possible. They have chosen
to use agile methods for their development activities, largely because the adminis-
trative overhead for the process is low and the release cycle for the product is short.
In this chapter, we contrast software processes based on the amount of management
overhead (“ceremony”), describing the characteristics of startup businesses and their
use of low-ceremony processes.

1.1 Introduction

Software development processes have long been a central topic of software
engineering, starting with the very first NATO-sponsored workshop that defined the
term Software Engineering [8]. Within the software engineering research commu-
nity, it is widely believed that a well-organized and repeatable process can improve
both the predictability of development schedules and the quality of the resulting
software system. However, the increasingly wide diversity of software projects has
led to ongoing debates over which types of software process are most effective and
over the appropriate degree of rigor in the process itself.

In 1996, this authorwrote [11]: “Having some defined andmanageable process for
software development ismuch better than not having one at all.” That observationwas
made in recognition of the vast differences among applications in project criticality,
modifiability of the deployed software, and project size. The nature of software
for embedded systems avionics and medical devices requires detailed attention to
every step of the process, while the process needs for less critical applications are
less rigorous. This author believes that the observation remains true today, especially

A.I. Wasserman (B)
Integrated Innovation Institute, Carnegie Mellon University – Silicon Valley,
Moffett Field, CA 94035, USA
e-mail: tonyw@sv.cmu.edu

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_1

1

2 A.I. Wasserman

considering the ability of development organizations to update deployed applications
and thewidespread adoption of rapid development processes for smaller applications.

Processes used today for application development range from highly formalized
approaches with extensive management oversight to those with little or no structure
at all.Wemay think of those extremes as “high ceremony” (HC) and “low ceremony”
(LC), recognizing that there is a broad spectrum of development approaches and a
vast middle group between the extremes.

A central question in software engineering is: “How much process is needed by
an organization for a particular project?” Where a large, complex system is being
developed under contract, perhaps as a collection of independent software-intensive
subsystems, those responsible for the system want the development organization to
follow numerous best practices during the development process, with the goal of
gaining management insight into the process and identifying delays or other issues
as early as possible. That approach is HC, almost by definition. By contrast, many
small projects, particularly those being developed by one or two people, are LC
and are focused almost entirely on iterative coding and product release, with very
little attention given to the process beyond what may be embedded in the team’s
development environment.

In general, one can envision a sliding scale for the ideal amount of process used
for a software project. The degree of process needed is dependent on the complexity
of the system, the business risk, and the number of people involved in the project.
Ideally, an organization should avoid a process mismatch, both to avoid too much
organizational overhead for simple projects and to gain enough ongoing insight into
more complex ones.

1.2 Background and Context

For many years, the “waterfall” model prevailed as the preferred process model,
with the process ideally flowing sequentially from specifications through design,
programming, and testing prior to release of the software. Each phase had certain
defined activities and intermediate deliverables.

However, many projects following a waterfall approach ran into trouble. For ap-
plications that were fundamentally different than anything that had previously been
developed by an organization, it was very difficult to estimate the needed effort and
thus the time and budget needed to build it. Changes in requirements at late stages of
the project often led to a large amount of rework. Finally, it was difficult to determine
the quality of the software until very late in the process.

1 Low Ceremony Processes for Short Lifecycle Projects 3

1.2.1 The Software Engineering Institute

The Software Engineering Institute (SEI) was founded in the late 1980s, in part to
address these problems, which arose in numerous complex software and systems
project under development for the US military. The SEI leadership believed that
the quality of an organization’s software development process was at the heart of
addressing the problems. Accordingly, they defined the Capability Maturity Model
(CMM) to define the key process areas that should be followed by a systems devel-
opment organization and to define “maturity levels” for those organizations [6, 7].
One key idea is that organizations with more mature processes were more likely to
succeed in delivering systems that met their requirements on schedule and on budget.

Over the years, the CMM has evolved into the Capability Maturity Model Inte-
gration (CMMI), with three different areas, of which the CMMI for Development
is intended for product and service development. The most recent (1.3) version of
the CMMI includes 22 different process areas [5] covering five different levels of
process maturity. Addressing and attempting to improve performance on all of these
process areas requires a significant organizational effort, which is most appropriate
for large software and system development activities involving many people over a
long period of time, typically years.

The CMMI is an excellent framework for evaluating HC processes, where an
organization’s process addresses all of the areas and activities recommended for
achieving a Level 3 (or higher) Maturity according to the CMMI. These activities
may be summarized and grouped into four categories as follows:

1. Multiple levels of management review of the process and the progress of the
project, often as part of a larger software development program.

2. Submission and review of intermediate non-code deliverables, such as functional
specifications.

3. Required team conformance to organizational or third-party development process
standards or tool use, and

4. Gathering metrics about the process for use by a program management office (or
similar organization).

The high-ceremony process of the CMMI, with its associated management overhead
and training requirements, has increasingly limited it to use in contract software
settings for large software-intensive systems, where the contract manager uses the
CMMI to select the contractor and evaluate the contractor’s performance. Companies
wishing to show thematurity of their software engineering processes can be evaluated
by an Assessor, who conducts an assessment of the company’s capabilities.

Large contract software projects, such as those addressed by the CMMI, are a very
small percentage of all software projects. Other projects normally follow a process
that addresses far fewer of the key process areas described in the CMMI. A week-
long project by a single developer may have very little process overhead. When the
complexity of the software is high, the cost of errors is high, and the ability to update
installed software is low, both its developers and its users are likely to be risk-averse.

4 A.I. Wasserman

In that setting, HC processes are valuable, and the development organization must
adopt (and continually improve) theway that it develops, enhances, tests, and releases
software.

In the past, such applications have been updated infrequently. Many commercial
applications were regularly updated no more than twice a year, and many users
of the applications chose not to update to later versions because of the additional
work needed to replace the software and potentially other applications that would be
affected by the change. The infrequent release schedule placed a lot of pressure on
the creators of the software. The product manager had to decide which new features,
enhancements, and bug fixes would be included in each release, knowing that no
changes could typically be made for six months after the release. Similarly, the QA
organization had to be very thorough in detecting problems and getting them fixed
by the developers prior to freezing the software for release.1

1.2.2 The Emergence of Agile Methods

As a result, software developers looked for amore effective development process. The
spiral model, developed by Boehm [3], addressedmany of these issues by defining an
incremental and iterative process where new features were successively implemented
and tested. The spiral approach has been tremendously influential in modern “agile”
software development practices, which are central to LC processes.

Agile software methods evolved from the 12 principles of the Agile Manifesto
[1]. Agile development processes, such as Scrum [10], have now largely displaced
waterfall methods in commercial software product development organizations, and
thus disrupted software development processes. Even organizations that continue to
adhere to the older approach have sought ways to make their processes more agile.

1.2.3 Outline

In the remaining parts of the chapter, we first review the evolving nature of software
applications in Sect. 1.3, and contrastmodern and traditional applications in Sect. 1.4.
We describe the qualities of startup businesses that lead them to favor low-ceremony
processes in Sect. 1.5, and their use of agile and iterative development processes to
frequently deliver new versions of the application in Sect. 1.6. Finally, we note the
evolution of processes as startups grow into more established businesses, with the
attendance growth in staff and in business risks in Sect. 1.7.

1This problem was more severe when software developers had to incur the expense of sending
physical media to their customers, and has been partly mitigated by the ability to download critical
updates over the Internet.

1 Low Ceremony Processes for Short Lifecycle Projects 5

1.3 Types of Modern Applications

Historically, software was developed to run on servers and on desktop computers
under control of the product’s users, where the end user (or a system administrator)
would use the provided software installation program to set up the software for use.
The application developers would package the software into an installer to enable
customers to perform the installation from physical media, or a downloaded file.
While that approach is still widely used for packaged software, the vast majority
of today’s applications are either hosted in the “cloud,” developed to run on mobile
devices, or embedded in a device. All of these types of applications are developed
and updated differently from traditional packaged software.

1.3.1 Hosted Applications

Hosted applications run in an environment defined by the application developer, per-
haps using their own servers (as with Google, Facebook, and World of Warcraft), or,
alternatively, a cloud computing service (e.g., Amazon Web Services or Rackspace)
that provides computing resources (servers, storage, etc.) on demand.

Hosted applications provide some significant advantages to the application devel-
opment organization. In particular, they are in control of all running instances of their
application, so they are able to avoid the traditional situation where users are slow to
upgrade to newer versions of the application. Application development organizations
can create a collection of hosts for application testing, staging, and production, and
update those hosts as frequently as they wish, even if the update is a trivial change
to the application, such as fixing a typographical error. They can also host different
versions of the application on different hosts, perhaps to analyze user behavior with
slightly different versions of the software (A/B testing). They can also use different
hosts in different geographical areas, not only to reduce network traffic, but also to
manage geographically specific aspects of the software, such as privacy regulations
or native languages.

Many organizations providing hosted services are adopting processes that provide
continuous integration, using a tool such as Hudson or Jenkins [4]. With the appro-
priate toolset and release process, they are able to update their application multiple
times per day if so desired.2

1.3.2 Mobile Applications

Mobile applications (apps) are installed on auser’smobile device, andmay run locally
on the device, or more commonly, as a hybrid app where the software installed on the

2Highly frequent updates can present problems for the development organization, and may indicate
a poor (or absent) process for testing.

6 A.I. Wasserman

device communicates with remote servers for data retrieval, business transactions,
and multi-user coordination. Web browsers, mobile commerce, and chat apps are
representative of such hybrid apps. In this situation, the app developer sets up the
infrastructure for running the app, but then submits it to an app store for review
and approval. All of the mobile operating system providers, as well as some third
parties, provide an app store for apps running on a particular mobile platform. The
app review process encourages (and may force) apps to conform to user interface
guidelines and to avoid specific types of application (e.g., radical politicalmovements
and pornography). The user of a mobile app will be notified of the availability of a
new version of any app installed on their device, and can choose to download and
install the new version.

As a rule, device users almost always install updates when they become available,
and the expectation of the app developer is that users will be running the latest version
of the app. As with hosted software, such an assumption reduces the need for app
developers to support multiple versions of the app, and leaves them free to offer
updates as frequently as they desire. However, each update needs the approval of
the relevant app store(s) before it can be made available to users.3 As a result, the
update frequency for mobile apps is not as rapid as for many hosted apps, but both
are updated far more frequently than traditional packaged apps.

1.3.3 Embedded Applications

Embedded applications are found in a wide variety of electronic devices, including
networking equipment, wearables, telematics for automobiles, and medical devices.
In the past, the software in such devices was not changed throughout the lifetime
use of the device. Now, however, it is possible to do over-the-air (OTA) updates to
the software, and a large share of modern devices include the capability to update
the embedded firmware and/or any associated application. Since many of these em-
bedded applications are used for mission-critical or life-critical purposes, they are
not updated as frequently as are hosted applications and mobile apps. Hence, they
tend to follow a more deliberate development and testing process. However, they
are an important class of modern applications that is likely to become increasingly
important as software becomes an important component inmany types of equipment,
including home appliances and automobiles.

1.4 Modern Applications vs Traditional Applications

Modern applications (and their development processes) differ significantly from tra-
ditional applications. We explore the major differences in this section.

3There are techniques that can be used to bypass the update approval process, but the vast majority
of apps follow the process.

1 Low Ceremony Processes for Short Lifecycle Projects 7

First, modern applications are almost always distributed, going well beyond the
client–server architectures that became popular in the 1980s. The back-end, or server
side, may run on one or more servers, and the front-end, or client side, may allow a
user to access the back-end of the application in many different ways, including web
browsers, mobile devices, and programmatic means. The primary back-end server
may provide little more than a load balancing function, passing the client request to
a server that performs the desired function, often calling upon other services in the
process.

Next, modern applications rely upon multiple technologies and languages, neces-
sitating the use of a diverse team with different skills. Web application development
has long followed a front-end/back-end division, where one team is responsible for
the design of the user interface and experience, and another team is responsible for
the application functionality. In many data-driven web applications, the content of
the user interface, i.e., the displayed HTML output, is produced by the back-end
code, following the user interface model created by front-end designers. Similar is-
sues arise in the development of mobile apps, where it is common for a small native
app running on the device to connect to the main functionality of the application run-
ning on remote servers. In both cases, various members of the team have different
areas of expertise and may write code in multiple languages. Teams may also rely
on additional expertise for database design, application scalability, and testing.

Indeed, testing of modern applications is much harder than with traditional appli-
cations. Not only are there vast differences among the user environments (different
software versions of browsers and devices), but there are often transient errors in
network connections, as well as different types of network communication, e.g., the
telecom network and a WiFi network. As a result, it is often impossible to replicate
problems, since it is infeasible to duplicate in a test environment all of the situations
that may occur in a distributed application running “in the wild.”

Modern applications are often subjected towide variations in load. Publicity about
a website or mobile appmay drive vast amounts of unanticipated traffic and cause the
site or app to fail or to suffer from severe performance degradation.4 This problem
may arise even in situations, such as the Olympics or the World Cup, where the site
developer has tried to anticipate and estimate such traffic. This situation may arise
even when the application is hosted on a cloud computing platform, e.g., Amazon
Web Services or Microsoft Azure, where it is possible to allocate and de-allocate
resources dynamically.

Next, modern applications are typically built upon third-party components that
provide database management, messaging, search, and other essential functions of
the application. Whereas traditional desktop applications made relatively little use
of such components, the development philosophy for modern applications is to write
as little code as possible, relying upon proven software, often open source. Along the
same lines, modern applications also rely heavily on third-party services to provide
essential functionality. Such services provide, for example:

4Distributed denial of service (DDoS) attacks have similar impact.

8 A.I. Wasserman

1. Content caching to reduce latency time for displaying content, e.g., images.
2. Enablement of electronic commerce, such as PayPal and credit card processing.
3. Site traffic analysis, including user tracking.
4. Advertising servers, which deliver customized ads to the client.
5. Support and discussion forums.
6. Connections to social media sites, e.g., Facebook and Twitter, for messaging,

login, email, and more.

In each of these cases, there is a well-defined protocol, typically an application
programming interface (API), bywhich the application can use the third-party service
as part of a business agreement. The quality and robustness of these third-party
services are well-established, and are often provided by a well-known company,
such as Akamai or Zendesk, that supports and updates the service.

Using such services significantly reduces the development effort and required
testing for the application developer, but carries the risk that the third-party service
might fail and disrupt the application.

1.5 Startups and Processes

Many of the developers of hosted and mobile applications are startups, which may
be characterized as young companies with fewer than 50 people, often fewer than 10.
Such companies are looking for a scalable and repeatable business model [2], and
have few processes for any aspect of their business, though their software developers
may have developed a set of best practices in their previous work. While having
organized software development and release processes will be important for these
startups as they grow, that need is overshadowed at the outset by the need to bring
their products to market as quickly and as inexpensively as possible. Product release
and acquisition of users are essential to the initial success of their business, and are
often the critical factors in being able to obtain funding from investors.5

Many startups join accelerators, organizations that aim to improve the startup’s
chances of success by providing mentorship and introductions to potential investors.
These programs, typically lasting three to fourmonths, focus on helping the newcom-
pany develop a “minimum viable product” (MVP) and on crafting a presentation that
will attract an investment to support their future growth. As a result, many startups,
particularly those with just a few people, are completely unsystematic in develop-
ing their MVP, following coding practices most accurately described as “hacking.”
Products developed this way are often poorly architected, lack documentation, and
do not adapt well to creating successive releases following a product roadmap.

However, even with the severe time pressure to build the MVP, obtain funding,
and attract users, startups must include numerous activities as they define, design,

5Some of the largest and best-knownmodern applications such as Facebook,Amazon.com,WeChat,
eBay, Salesforce.com, and Google were initially built by small teams, and have since evolved into
large enterprises that have systematized many aspects of their development processes.

1 Low Ceremony Processes for Short Lifecycle Projects 9

develop, and deliver their software products. These process-related activities include
the following:

1. Addressing key customer needs, which usually requires requirements gathering
through interviews with potential users and customers [2]; this task is typically
handled by a product manager, who prioritizes the requirements and communi-
cates with the developer(s).

2. Delivering functioning code early and often.
3. Using proven software components wherever possible, minimizing the need to

write new code.
4. Focusing on the user experience, which ismuchmore critical in hosted andmobile

applications than in traditional desktop applications.
5. Addressing robustness, scalability, performance, and power consumption for their

application.

One key aspect of the process is to create a development environment that both
supports collaboration among members of the development team and augments the
coding activity. For example, Google provides Android Studio, a software devel-
opment kit (SDK) for Android applications that builds on the Eclipse development
environment. The SDK contains many elements that simplify the creation of the
Android user interface and the connection to runtime libraries.

Programming support such as that provided by Eclipse is complemented by tools
for version control, configuration management, and collaboration, simplifying the
task of building versions of the evolving product. This set of tools encompasses
issue tracking, project management, and build management, and are typically com-
plemented by user interface design tools, testing tools, and more, depending on the
nature of the application.

Here the differences from the CMMI model become apparent. While the CMMI
identifies 22 different process areas, the typical startup may only address four of
them: requirements development, configuration management, product integration,
and product quality assurance. An important shortcoming of the CMMI is its fail-
ure to directly address both the necessary skills for the development team and the
use of automated tools to support the development process. A complete, integrated
development environment, covering the various steps needed to develop and release
a product, can save substantial amounts of time and effort in creating a software
product. In short, the CMMI is “overkill” for a startup from a process perspective,
but also ignores the critical role of team talent and development environments in
creating a productive setting for product development.

1.6 Agile Development Processes

The set of critical activities listed above strongly suggests that startups must use a
very different approach to software development than is typical of waterfall-based
processes. That approach must balance severe time constraints with some fundamen-
tal principles and best practices for software development.

10 A.I. Wasserman

Over the past 15 years, startups (as well as many established companies) have
adopted an “agile” approach to software development, based on the principles set
forth in the Agile Manifesto [1], which can be summarized as follows:

1. Capture requirements at a high level.
2. Keep [eventual] users involved.
3. Allow the team to make decisions.
4. Develop incremental releases, then iterate, with a focus on frequent delivery.
5. Complete each feature before moving on to the next one.
6. Integrate testing throughout the product life cycle.
7. Maintain a cooperative and collaborative approach among all stakeholders.

Note that there is an implied process associated with the principles in the Agile
Manifesto, but that the degree of management is intentionally light. In this sense,
these principles are at the heart of an LC process.

In addition to the process-related concerns addressed by the agile approach, the
character of modern hosted and mobile applications has driven new philosophies
about software development. Among the most notable changes from traditional
approaches are the following:

1. Documentation is sharply reduced.
2. Working code is emphasized.
3. Continuous user involvement is essential.
4. The integrated development environment takes on greater importance.

Of the numerous development methods to have emerged from the transition to ag-
ile methods, Scrum has gained the widest acceptance. In the Scrum approach, a
designated product owner has responsibility for defining features and priorities for
development and represents the customer for the emerging product. The product
owner is also responsible for tracking the features to be implemented, known as the
product backlog, and expressed as a set of user stories. The development team is
coordinated by a ScrumMaster, who serves as a “coach” whose goal is to encourage
the team to improve their practices and performance. The team is self-organizing,
and is responsible for implementing user stories, thus adding new functionality to
the product.

The product development process is a sequence of “sprints,” where the team
implements a set of user stories from the product backlog based on the importance
of the stories from a customer perspective. Each sprint may last a week or two,
allowing the team to view their ongoing progress through brief daily meetings and
other communication. Short sprints assure frequent releases of the product, which can
lead to valuable feedback during the ongoing development process. Such an approach
is the complete opposite of the waterfall approach, where customer feedback is only
gathered at the very end of the development process.6

6Some traditional software product companies are beginning to release alpha and beta versions of
their products, with the goal of obtaining such feedback before the final version of the product is
“frozen.”

1 Low Ceremony Processes for Short Lifecycle Projects 11

Along the same lines, the concept of Lean Software Development aims to reduce
“waste,” i.e., unneeded activities, from the development process [9]. Naturally, there
is some disagreement as to which activities are wasteful, but the overall point remains
that organizations, especially small ones, must focus on a handful of key activities
that are essential to their primary goals of continuous development and release.

1.7 When Startups Grow up

Successful startups grow into larger businesses. While that is a highly desirable
transition for the company’s founders and early-stage employees, the success brings
a set of new challenges. Many of these challenges go beyond software development
processes, but have both a direct and an indirect impact on processes.

First, the people who join an established business are different from those who
start the company or take a risk on the company when its future survival is still highly
uncertain. It takes time for new developers to learn the technology of the existing
product, and to fit into the emerging company culture. More importantly, though,
building a well-functioning development team means increased systematization of
the development and release activities, and often re-architecting of the product to
meet future needs. Second, the company has customers and users, who have wishes
and expectations about product direction and new features. These concerns will
influence the product roadmap, the engineering activities, and the release schedules.
Third, business issues, including issues related to hiring, sales, and funding, all place
time demands on people, with the result that developers spend less time writing
code. Finally, the structure of the company changes, as departments emerge from the
initial core team, with likely changes to company leadership. It is not uncommon for
founders to leave the company or to take on new roles at this stage.

Above all, the product development team becomes more constrained in what they
can do. In the early stages of the company, when there are few, if any, customers, the
product team can pivot from one product idea to another, and can pursue the evolving
vision of the product owner. Once there are users and customers, that freedom is
sharply reduced, and the process for development changes from one driven by the
product owner to a more inclusive approach reflecting the potentially conflicting
needs and wishes of many people.

At the same time, though, the company is likely to retain its agile approach to prod-
uct development. First, that approach is part of the company’s culture and heritage.
Second, the recruiting process for new developers will require previous experience
with agile approaches. Third, the companyhas developed a development environment
and internal procedures that enables them to continue following an agile process.

Finally, most customers welcome the regular delivery of new functionality, as
long as the new features do not “break” existing features and functions. That is
a big change from the historical approach where companies building software for
enterprises (companies, government, universities, etc.) would make one major and
one minor release each year. Minor bug fixes were deferred to a future release and

12 A.I. Wasserman

the development organized hoped that no emergency patches would be needed in the
interim, since they were expensive.

1.8 Conclusion

In summary, high-ceremony processes are increasingly limited to a niche category of
software development, where contractors use a set of key process areas to assess the
qualifications of competing suppliers. Those organizations competing for contracts
in that environment must put extensive (and possibly expensive) processes in place
so that they can win business against their competitors.

Product development businesses do not have the constraints imposed by a supplier
assessment process, as used by the CMMI and similar evaluation approaches. Their
goal is to build a successful andprofitable business bydeliveringhighquality products
to a marketplace. That requirement forces them to build their products as efficiently
as possible, and to have a product development process that addresses market and
customer needs and wishes. These companies have found that agile processes for
development are much more effective than are traditional waterfall-based processes
for today’s applications, as long as they adhere to the principles of agile development
and do not devolve into an uncontrolled set of changes to their applications.

The nature and structure of these modern applications is central to the success of
agile methods. These applications are no longer monolithic, but rather a distributed
system where the development team focuses on core functionality, and integrates
that code with third-party components to build out the complete application.

The low-ceremony processes that emerged from the agile approach to software
development are well-suited to this style of incremental development, since it en-
ables large software products to be developed iteratively as a sequence of short-term
projects. As a result, many existing development organizations are seeking to make
their processes more agile so that they may develop successive versions of their
products more efficiently. For this reason, combined with the smaller size of many
modern applications, low-ceremony processes are likely to prevail for future software
development processes.

References

1. Agile Alliance: Manifesto for Agile software development. http://agilemanifesto.org (2001)
2. Blank, S., Dorf, B.: The Startup Owner’s Manual: The Step-By-Step Guide for Building a

Great Company. K & S Ranch, Pescadero (2012)
3. Boehm, B.: A spiral model of software development and enhancement. Computer 21(5), 61–72

(1988)
4. Burns, E., Prakash, W.H.: Continuous Integration in Practice. McGraw Hill Osborne Media,

New York (2013)

http://agilemanifesto.org

1 Low Ceremony Processes for Short Lifecycle Projects 13

5. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for Development: Guidelines for Process Inte-
gration and Product Improvement, 3rd edn. Addison-Wesley Professional, Reading (2011)

6. Humphrey, W.S.: Characterizing the software process: a maturity framework. IEEE Softw.
5(2), 73–79 (1988)

7. Humphrey, W.S.: Managing the Software Process. Addison-Wesley Professional, Reading
(1989)

8. Naur, P., Randell, B.: Software engineering. Technical report, NATOScienceCommittee (1969)
9. Ries, E.: The Lean Startup. Crown Business, New York (2011)
10. Sutherland, J.: Scrum: The Art of Doing Twice the Work in Half the Time. Crown Business,

New York (2014)
11. Wasserman,A.I.: Toward a discipline of software engineering. IEEESoftw.13(6), 23–31 (1996)

Chapter 2
The Right Degree of Agility in Rich Processes

Philipp Diebold and Thomas Zehler

Abstract Many companies that change their development process to agile later
adapt these methods to their specific needs, take a step back to traditional processes,
or do not continue their agile initiative. Particularly in light of the huge diversity
of domains from information systems to embedded systems, it is necessary to find
the right degree of agility for each context. Our goal is to describe how agility can
be integrated into rich processes. Bringing the advantages of these two organiza-
tional worlds together should result in a useful, pragmatic, and feasible solution.
This integration can be performed using two different approaches: revolutionary and
evolutionary. In the revolutionary approach, an agile method is introduced to replace
the current development process. In the evolutionary approach, the existing process is
enhancedwith appropriate andbeneficial agile aspects.Both of these approaches have
advantages for specific domains or contexts. After comparing the two approaches
and related implementations of the revolutionary approach, this chapter focuses on
the integration of agile practices, a specific evolutionary approach, due to the lack
of existing research. With our comparison on the basis of the advantages and disad-
vantages of these two integration approaches, their detailed description, and some
related implementations, we provide a foundation for further investigation in the field
of combining agile and rich processes to find the right degree of agility.

2.1 Introduction

Modern society and our daily lives are characterized by a rapidly changing, fast
responding world. Particularly in information system domains, with their develop-
ment of apps for smartphones or other devices, time to market is one of the most
important development factors (in addition to customer satisfaction).

P. Diebold (B) · T. Zehler (B)
Process Management, Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
e-mail: philipp.diebold@iese.fraunhofer.de

T. Zehler
e-mail: thomas.zehler@iese.fraunhofer.de

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_2

15

16 P. Diebold and T. Zehler

For this reason, issues such as long development time, customer involvement only
at the beginning of a project, no transparency, and expensive changes have emerged
as problems and, around the turn of the millennium, had a tremendous impact on
how software development is done. A community came up with the idea of agile
software development to solve these development problems [9]. This way of devel-
opment started in certain companies that improved their development process using
agile software development in their specific context [36, 37]. Then other companies
jumped on the bandwagon to get the same improvement. Since that time, the popu-
larity of this way of development has started to grow, companies have tried various
methods in agile software development, and now agile development has become
mainstream [32].

Besides this process-related trend, software development has also become increas-
ingly important for embedded software, embedded systems, cyber-physical systems,
or systems of systems in recent years. This means in effect that the importance
of combining hardware and software as well as that of combining several systems
(including software as part of the systems) from the domains of information and
embedded systems has also increased.

In these different areas of growth, agile software development and its various agile
methods tend to be stretched to their limits because they were originally designed for
information (software) systems [7] and not for embedded systems or the combination
of systems. For example, more or less all agile methods include preconditions such as
small teams ideally located in one common room [48], which is a challenge consider-
ing today’s global and distributed development with outsourcing and subcontracting
[39, 42]. This also complicates collaboration and communication, which cannot be
carried out by exchanging artifacts or documents because these are not in the focus
of agile development. For this reason, embedded domains still use traditional rich
development processes with their particular benefits and have only a minor tendency
to use agile processes in some parts [24].

The usage of different processes is mainly due to the huge diversity between the
various domains or subdomains. Today, almost every domain somehow is involved
with software, e.g., develops or uses it in someway or another. Nonetheless, different
aspects such as domain requirements or various regulations that may also affect the
development process characterize these domains. For example, in the development of
safety-critical embedded systems such as medical devices, compliance with specific
laws or process-related ISO standards, e.g., IEC 62304 [29], is required.

These different aspects (1) agile benefits, (2) agile problems in domains that are
still working in plan-based ways, and (3) the varying characteristics of different
domains led to the idea of making use of the benefits of both areas, rich as well
as agile processes. Since none of them can be seen as a silver bullet for solving
all problems, the two areas need to be integrated somehow because it is common
that development projects need both agility and discipline [13]. For the remainder
of this chapter, we use the term “agility” based on Boehm and Turner’s [13] idea
of flexibility, change, and reaction, as will be further elaborated in Sect. 2.2, where
a detailed definition of agile software development will be given. For integrating
agility into rich processes (which is more common than the other way around), there

2 The Right Degree of Agility in Rich Processes 17

are generally two different types of approaches: the revolutionary approach and the
evolutionary approach. In the revolutionary approach, agile methods are introduced
and afterwards adapted to the specific context needs. In contrast, in the evolutionary
approach, appropriate agile elements, e.g., agile practices, are integrated into the
currently used development process. Even though both of these approaches support
finding the right degree of agility in rich processes, their success depends on the
specific context, such as the company, the specific project, or even the respective
development team. Thus, the exact degree of agility for a process needs to be defined
according to these aspects.

In this chapter,we address the topic of integrating agilemethods and rich processes
and discuss how to find the right degree of agility in rich processes. We will first
present some background information on rich processes as well as agile methods.
Based on this, the different approaches for integrating agile and rich processes will
be described, and advantages and disadvantages will be discussed and extended with
detailed implementations. Since the revolutionary approach is already covered in the
literature and in practice, we present related work from these areas. In contrast, for
the evolutionary approach, which is not covered much in research, we focus on the
detailed implementation idea of agile practices as our integration approach. Finally,
the chapter concludes with some aspects for future work regarding the integration of
the two areas and our specific approach.

2.2 Background and Context

With regard to systematic procedures,which are oneof the characteristics of engineer-
ing [28], software development lifecycles as well as processes feature prominently in
software engineering. Lifecycles describe the general way of software development,
such as development based on a waterfall or iterative lifecycle, or the spiral model by
Boehm [12]. How the different lifecycles are organized in detail is most often defined
in software development processes that are aligned with a specific lifecycle. In 1987,
software processes were first deemed worth mentioning in a separate publication
[37] because they were gaining more and more importance.

This chapter gives an introduction to the current state in the two different areas of
software development processes currently existing, namely rich and agile software
development processes. Besides some necessary definitions for aspects that will be
regarded later on, this chapter contains basic information about the characteristics of
these processes.

2.2.1 Rich Processes

The first of the two areas of software development processes that will be described are
the so-called rich processes. These processes describe the traditional way of devel-

18 P. Diebold and T. Zehler

oping software. Based upon the concepts drawn from other engineering disciplines,
these processes follow a sequence from requirements and design to implementa-
tion and quality assurance (incl. testing). Based on the considerations of Boehm and
Turner [13], we define rich processes as follows:

Definition 2.1 (Rich Process) Rich Processes are systematic approaches that define
how software or systems are developed over their whole lifecycle using the following
engineering principles: focus on repeatability and predictability, permanent improve-
ment processes, extensive documentation, up-front system definitions, and detailed
plans (incl. workflow, roles, responsibilities, and work products).
(Synonyms: Plan-based Processes, Structured Processes)

Some examples in the area of the rich processes are the Rational Unified Process,
most of its existing adapted variations, the German V-Model XT, as well as the
Personal Software Process (PSP; [26]) and the Team Software Process (TSP; [27]),
both created by Watts Humphrey in the 1990s. Still, the majority of rich processes
are context-specific in-house approaches, which are not published at all.

As already mentioned briefly in the above definition, one of the main charac-
teristics of these processes is their focus on a plan that is defined for the overall
project before the actual start. This plan is usually built around some milestones that
focus on documentation to verify the project’s progress. The project is broken down
step-by-step into tasks or activities that are analyzed in terms of concurrencies and
dependencies in order to provide a schedule. The resources are allocated, the project
starts and is then monitored regularly and controlled throughout the development.
From our point of view, the following properties characterize rich processes:

• Fairly detailed planning, e.g., including project planning, resource planning, and
milestones [34].

• A largely complete and detailed requirements specification [34].
• Systematic handling of requirements changes, e.g., changes only by means of
defined change request processes.

• A sophisticated architecture that covers the majority of the requirements.
• Rather little customer involvement, predominantly during requirements elicitation
[34].

• Often a systematic approach to quality assurance (verification and validation) and
ongoing risk management.

• Regular process monitoring, controlling, and educating [34].

Rich processes are preferably used in practice when the majority of the require-
ments of the final product can be specified in the beginning [34]. This assumes that
the project is predictable and it is therefore possible to plan and design the whole
project up-front from beginning to end. The implementation is supported by con-
crete, standardized procedures that increase project transparency, improve project
management, and sustainably increase the probability of success [46].

Summarizing, it can be observed that the majority of development processes
belonging to the area of rich processes are rather “heavyweight” due to the detailed
definition and performance of fine-grained activities, many different roles, and a

2 The Right Degree of Agility in Rich Processes 19

lot of required documentation, e.g., customer requirements specification, functional
specification document, technical architecture, and so forth. The advantage of this up-
front planning is that it is suitable both for tenders and for contracts that need to cover
a specific scope specified before the beginning of the project. Other strengths of rich
processes, which are a consequence of their standardization, are the comparability
and repeatability of stated activities. By defining how specific development activities
are performed and how work products are formatted (e.g., by specifying templates),
it is possible to move personnel quickly between different projects without the need
for retraining [46].

Nonetheless, these different characteristics or at least parts of themare also reasons
for criticism because they cause certain problems or lead to unattractiveness: The
required documentation artifacts in rich processes, for instance, create a feeling of
software bureaucracy [40]. Additionally, the customer involvement predominantly at
the beginning often means limited feedback in later development stages; in the worst
case only when the software has been fully developed [34]. This raises the issue of
how to deal with (requirements) changes in later stages or even at the end of the
project because formal change requests mean rework of all lifecycle phases, which
leads to high costs [6]. This also makes rich processes somewhat sluggish because
of the up-front detailed planning and activities that need to be followed.

Due to these different points of criticism, especially the issue of inflexibility, alter-
natives were needed in the software process world. Thus, agile software development
emerged in the new era of software development processes.

2.2.2 Agile Processes

In contrast to the rich processes described above, the area of agile processes is
relatively new. It became famous around the turn of the millennium when more
and more different agile methods were invented [1]. This is called agile software
development and can be defined as:

Definition 2.2 (Agile Software Development) Agile Software Development is the
way of working in an agile manner, meaning in alignment with the core values and
their refined agile principles of the Agile Manifesto [9], for example by using agile
methods or, more specifically, agile practices.
(Synonyms: Agile Software Engineering)

The mindset of agile software development is completely different from that of
development using rich processes and forms a kind of counterpart. All agile aspects
(e.g., methods, practices, etc.) should focus more on:

1. Individuals and interactions between them.
2. Working software.
3. Strong customer collaboration.
4. Response to change.

20 P. Diebold and T. Zehler

These four core values are the foundation of agile software development and are
defined in the Agile Manifesto [9] as an agile mindset independent of the large and
growing number of agile methods. In addition, the Agile Manifesto also refines these
into so-called agile principles:

Definition 2.3 (Agile Principles) Agile principles are the high-level ideas behind
agile software development as refinements of the core values defined in the Agile
Manifesto [9].

Based on the principles defined in the Agile Manifesto, all commonly known agile
methods can be described as follows:

• Self-organizing teams.
• Evolutionary development with short iterations and release cycles.
• Active involvement of the customer with feedback.
• Simple reactions and quick changes without formal change requests.
• Simple design.
• Testing as a central point in the development.

All these characteristics result in slim and lightweight processes with few roles and
artifacts as well as a minimum workflow. Especially the advantages of higher flex-
ibility in combination with faster working software (elements), easier and efficient
communication, as well as high transparency bring benefits to customers and other
stakeholders.

Besides these characteristics, there are also certain preconditions that are needed
to work with agile software development or to use the benefits of this type of devel-
opment. Ideally, the development is structured into small teams (up to 10 people)
who have the necessary qualifications and are located in one shared room. One of
the main preconditions, which is often ignored and thus often results in problems,
is the acceptance of this development idea and method(s) by the different levels of
management [14].

Besides these management problems, which are often caused by the usage of tra-
ditional lifecycle models and the fear that changing the whole development process
would require high effort, contracting is problematic in agile development [45]. The
reason for this is that contracts are normally made on the basis of a mostly complete
specification, which is often not available in agile projects. On the other hand, cus-
tomers are skeptical regarding payment by working hours [38]. Despite refactoring,
maintenance is an important topic because the less planned and continually evolving
(architectural) structure causes high complexity and hard-to-understand software or
system structures. All in all, the rising number of large projects (with long duration,
high costs, and high risks) with larger teams often working in distributed environ-
ments complicates the use of agile development, e.g., by creating difficulties in
communication [39, 45].

Even though agile software development has not only advantages, but also dis-
advantages, a large number of agile methods have been developed, modified, and
enhanced in the last 15 years. The evolvement and history of the main agile methods
are illustrated in [1]. In general, an agile method is defined as follows:

2 The Right Degree of Agility in Rich Processes 21

Definition 2.4 (Agile Method) Agile Methods are methods that define how software
or systems are developed over the whole lifecycle or major parts of it using a specif-
ically named set of agile practices.
(Synonyms: Agile Processes, Agile Approaches)

The most common examples from the huge list of existing agile methods are Scrum
and eXtreme programming (XP). Nonetheless, as presented in all of the previous
definitions, Scrum as the most frequently used agile method is not the same as agile
development in general, which is a common mistake.

Similar to most software engineering methods, agile methods are defined in more
specific details, building especially upon a set of very detailed and finely granular
practices as defined above. Thus, we define agile practices as follows:

Definition 2.5 (Agile Practice) Agile Practices are established instructions, e.g.,
tasks, activities, technical aspects, or guidelines, with a specific focus or with an
aspect in the development of software that is performed according to address one or
less agile core values and agile principles.
(Synonyms: Agile Techniques)

The most common examples for practice are the 12 core practices of XP, which
initially define a set of practices as the XP method. This is in contrast to most
of the other methods, which define them implicitly. All these definitions and their
connections are summarized in Fig. 2.1. The foundation for agile aspects used in
practice, such as agile methods and agile practices, is the Agile Manifesto [9]. Here
the core values form the basis for the more detailed and refining principles. The

Agile Software Development

Agile Methods
(Scrum, XP, Kanban, Crystal, FDD,)

Agile Practices
(Simple Design, Continuous Integration, Collective

Ownership, Pair Programming, Daily Meetings,
Refactoring, ...)

Agile Manifesto

Agile Principles
(Early and continuous delivery of valuable software, Business

people and developers must work together, Welcome changing
requirements, Self-organization of the team, Working software is

the primary measure of progress,)

Core Values
(Individuals and interactions, Working software,
Customer collaboration, Responding to change)

Fig. 2.1 Agile software development: relationships among different agile aspects

22 P. Diebold and T. Zehler

agile methods as well as the agile practices are both grounded on aspects defined in
the Agile Manifesto. Agile methods, which are often frameworks for a set of agile
practices, can be seen as being aligned more with the idea of agile development
because most often they cover the whole lifecycle. In contrast, agile practices are
meant for certain parts of the lifecycle; therefore, theymight sometimes not be aligned
with all the principles and core values.

2.3 Integration of Agile and Rich Processes

As already mentioned in the introduction and motivation of this chapter, combina-
tions or integrations of agile and rich processes are needed in industry. Even though
most of the companies from information systems domains claim to be using agile
methods [47], most often Scrum, [19] as well as [22] confirm the experience made by
many experts that these methods are adapted to the specific needs of the companies’
and projects’ contexts. Especially in embedded systems domains, which need to deal
more with regulatory requirements than information systems, agility is not in such
widespread use. Regulatory requirements, which are partly also domain-specific,
include laws or standards that companies need to comply with. Since we deal with
software or system development processes, we focus on process-related regulations,
e.g., ISO/IEC 15504-5, CMMI [17], and others. However, there are also other stan-
dards that influence the development process, for example because they prescribe
the use of specific techniques, such as the safety standard ISO 26262 [44] in the
automotive domain. Due to all these different regulations, combining these various
regulations with agility is a complex topic.

However, all the different domains are aware of the general benefits of agile
development from the literature or from other companies that are already using it.
Thus, they also want to use agile software development in their own projects to profit
from these benefits.

To give a better overview, this section starts with a generic description of the two
approaches for integrating agile and rich processes, including their main advantages
and disadvantages. This will be followed by some related work about concrete imple-
mentations of the revolutionary approach and detailed information on how to deal
with the integration of agile practices, due to the lack of existing research regarding
this combination approach.

2.3.1 Approaches to Integrate Agile and Structured Processes

The trend that development projects need both agility and discipline (from rich
processes), which was already noted by Boehm and Turner [13], is still ongoing and

2 The Right Degree of Agility in Rich Processes 23

may not even have reached its climax yet. For this reason, this subsection focuses on
the integration of agile methods and rich processes.

There are the twocompletely opposite approaches for how to technically1 integrate
the different areas,which are presented on a high level in Fig. 2.2, including theirmain
flow: the revolutionary approach (Fig. 2.2, left part) and the evolutionary approach
(Fig. 2.2, right part). To illustrate these two approaches in a graphical representation,
we used colored puzzles because these offer a good way to represent different agile
aspects, such as agilemethods and agile practices. The complete puzzles represent the
full development process or method, whereas the different puzzle pieces represent
parts of them, such as specific techniques, e.g., for requirements engineering or
coding.

Revolutionary
Approach

Evolutionary
Approach

C
ur

re
nt

 P
ro

ce
ss

A

gi
le

 M
et

ho
d

A
gi

le
 P

ra
ct

ic
es

In

te
g

ra
ti

o
n

A
gi

le
 P

ra
ct

ic
es

In

te
g

ra
ti

o
n

C

ur
re

nt

pr
oc

es
s

agile plan-based

Legend

Fig. 2.2 Overview of the revolutionary approach (left) and the evolutionary approach (right) of
the integration of agility into rich processes

1Not focusing on organizational improvement, e.g., by management versus developers.

24 P. Diebold and T. Zehler

In addition to horizontal separation, there is also vertical segmentation, containing
five different layers representing different aspects of the development process (most
of them already introduced in Sect. 2.2). The first and the last layer represent the
current development process. In our figure, it is represented as a rich process because
we aremainly focusing on the idea of bringingmore agility into the current processes
and therefore we start from the worst case: completely plan-based development. The
second layer coverswhole agilemethods. In contrast, the fourth layer contains several
different agile practices. In general, this layer covers all existing agile practices, but
Fig. 2.2 only illustrates some of these, specifically those practices that are used for the
final integration. The middle layer contains the integration of agility (agile methods
in the revolutionary approach and agile practices in the evolutionary approach) into
the current development process.

The figure shows that the revolutionary approach mainly covers layers one to
three with a flow from the top (Fig. 2.2, downward arrows) and only brushes the
fourth layer because of the adaptation of agile methods, which often means omitting
some agile practices. Since the evolutionary approach works the other way around,
it covers layers three to five with a flow beginning at the bottom (Fig. 2.2, upward
arrows). Thus, both approaches end up at the third layer with the integration of both
areas.

The details of how these two approaches for integrating agility into rich processes
work will be explained in the following subchapters, which will focus on the details,
advantages, and disadvantages of each approach.Wewill start with the revolutionary
approach, followed by the evolutionary approach.

2.3.1.1 Revolutionary Approach

Today, many companies are moving to agile software development or have already
switched their development process to use one of the many available agile methods
in order to introduce agility into their development process. From our point of view,
this introduction of an agile method is currently the most frequently used approach
for introducing agility into a company.

This is called the revolutionary approach of integrating agility into the devel-
opment process because a complete agile method (Fig. 2.2, second layer), such as
Scrum, is practically used “out-of-the-box,” meaning as described in the common
literature, and replaces the current development process (Fig. 2.2, first layer) in the
entire organization or department. This means that all processes from e.g., project
management, requirements engineering up to implementation and integration are
covered.

This is done predominantly in a “big-bang” sort of way,meaning that all aspects of
the specific agile method are integrated directly into the company-specific develop-
ment process. This integration approach, which can be seen as replacing the current
process with an agile method, uses the method as given and does not adjust it, e.g.,
in order to address company- or project-specific needs.

2 The Right Degree of Agility in Rich Processes 25

In most cases, this results in various problems or challenges [34] because there
are only few agile methods and even fewer domains or companies whose context is
an exact fit for such a method, e.g., web development with frequent user feedback.
This is why the revolutionary approach is most often followed by a second step
with various adjustments of the agile method [22]. These are necessary to address
company-specific aspects in the development process (Fig. 2.2, third layer). These
adaptations range from changing variables in the agile method (e.g., sprint length)
via replacing various aspects of the method with previously used aspects to merely
removing various aspects (Fig. 2.2, fourth layer), such as daily stand-ups.

There are numerous examples, even from large companies such as SAP [25]
or Yahoo [15], which have introduced agility exactly according to this procedure.
Such concrete examples of the revolutionary approach used by large and well-known
companies will be provided in Sect. 2.3.2. This chapter about revolutionary imple-
mentations will close with another case study with data from method adaptations by
several companies and possible method adaptations that appeared after a revolution-
ary integration.

2.3.1.2 Evolutionary Approach

In contrast to the revolutionary approach, which is themost frequently used approach
for integrating agility into a company, several experts have claimed [13] and empirical
studies [22] have shown that appropriate enhancement for the specific context ismore
beneficial. Thus, the evolutionary approach for integrating agility into rich processes
is used to address this issue.

The approach is called evolutionary because the current development process
(Fig. 2.2, fifth layer) is enriched by a set of (from one to many) agile practices
(Fig. 2.2, fourth layer) that are appropriate for the specific context, including com-
pany, project, and so forth. Therefore it directly ends up being a mixed process, with
elements from the original process (most often rich) and elements from agile software
development (Fig. 2.2, third layer), the appropriate agile practices. For frictionless
performance of this approach, the current development process and the objective
for the transition to agile are analyzed, suitable agile practices are identified, and
those whose introduction represents an added value for the company, department, or
project are integrated incrementally.

This can be compared to a modular system of individual building blocks (in our
case: appropriate agile practices) that are selected according to certain criteria from
a comprehensive pool of building blocks (in our case: the set of all agile practices).
The consideration of company-specific aspects during the selection phase is very
important to avoid rolling out inappropriate agile practices.

Because this approach for integrating agility into rich processes is not the most
frequently used one, not much has been published about the procedure, about any
case study, or even about specific approaches. However, from our point of view,
this is a promising integration approach, especially for domains that are restricted
by some kind of regulations. Therefore, Sect. 2.3.3 will focus on describing how to

26 P. Diebold and T. Zehler

integrate agile practices into rich processes, respectively into their process descrip-
tions/models.

2.3.1.3 Discussion of Advantages and Disadvantages of both Approaches

Based on the detailed descriptions of the two different approaches for integrating
agility into current (most often) rich processes, we identified several advantages and
disadvantages. These were classified into categories and are presented in Table2.1 to
allow easy comparison. In general, the comparison of the advantages and disadvan-
tages in Table2.1 shows that both approaches have their respective advantages and
disadvantages. Therefore, the table shows that the different approaches work best in
different contexts. When looking at the plain numbers of advantages and disadvan-
tages, the evolutionary approach seems to dominate. Nonetheless, there is more to it
than just the numbers because the different aspects also need to be weighted and are
either positive or negative in different domains or contexts. Regarding availability,
both approaches are assessed as positive because various agile methods and practices
are available, although there aremore practices thanmethods. Of these available agile
aspects, documentation for the revolutionary approach is better because only a few of
the many agile practices are documented well. The type of introduction or procedure
for the two approaches varies and each approach performs better in different contexts.
This is because the evolutionary approach is the more context-specific approach (by
default) and can also be introduced step-by-step, unlike the revolutionary “big-bang”
approach. This also makes the evolutionary approach more flexible. Only the docu-
mentation of the procedure is better in the revolutionary approach, which results from
the good documentation of agile methods. A similar result is shown for the different
advantages and disadvantages regarding organizational issues. This is because the
revolutionary approach requires considerably more involvement of different people,
including the management, and calls for major changes within a short time. The
longer time and stepwise introduction of the evolutionary approach also increase the
willingness of people to participate, which is partly due to the regular feedback and
adaptation loops. Some of these organizational issues are strongly connected to man-
agement commitment, which is necessary for introducing agile methods. For agile
practices, this depends on whether the single practice has only local effects or greater
ones, e.g., on the whole development process. Compliance issues are only relevant
for domains that are confronted with different regulations, but even then evolution is
better than revolution because of the integrated customizability of the approach and
the fact that, unlike agile methods, it does not require adaptation. Summarizing the
advantages and disadvantages of the two approaches, the overall impression from the
beginning has been confirmed with respect to better performance of the evolutionary
approach. But the details in the discussion show that the differences are not as great
as the numbers would lead us to expect.

2 The Right Degree of Agility in Rich Processes 27

Table 2.1 Comparison of the advantages (+) and disadvantages (−) of both integration approaches

Categories Revolutionary approach: +/− Evolutionary Approach: +/−
Availability + Various agile methods available + Many various agile practices

available

Documentation + Adequate documentation of
best-known methods

+ Some individual practices are well
documented

− Much of the practices are
documented less or in an
unstructured manner

Type of
introduction

− Introduction of methods is done in
a “big-bang,” with the risk that
aspects may also be used that
individually make no sense for the
company

+ Company-specific adaptation and
stepwise integration of individual
agile practices is possible

− Major change of the complete
development process from rich to
agile is necessary

+ Integration of individual practices
into the existing rich process (only
minor changes required)

+ The procedure for the introduction
is defined by the introduction of
characteristics of the method

− Currently, there is no “blueprint”
for how to select and adapt (tailor)
appropriate agile practices to use
them in a company from scratch

Flexibility of
application

− By default, methods are not
tailored to concrete context needs,
so adaptation is necessary

+ Stepwise selection of appropriate
practices is possible, so it can be
adapted better to specific needs

Organizational
issues

− The predominant part of the
organization has to change towards
agile

+ Need for change is initially
restricted to the persons affected
by the agile practices

− Rapid anchoring of the agile
mindset throughout the
organization is required

+ Organizational change to agility
can proceed much slower because
of stepwise introduction

− Reservations regarding major
changes are more pronounced than
for smaller, incremental changes

+ The willingness to participate in
the change process is higher

+ Small, iterative changes with
regular feedback and adaptation
loops are better suited for a
successful change process

Management
commitment

− Is mandatory to fundamentally
change the development process
from rich to agile

+ Is not necessary if the effects of
single agile practices are local

+ Is necessary for agile practices
with greater impact on the
development process, e.g., if
delivery times are affected

Compliance issues − If compliance is violated by the
introduced agile method,
individual aspects have to be
added, changed, or deleted
afterwards

+ Early consideration of compliance
issues during the selection of the
practices; no subsequent tailoring
is required

28 P. Diebold and T. Zehler

2.3.2 Revolutionary Implementation

In this section, we will present experiences with respect to actual implementations
of the revolutionary approach, which are mainly based on existing related work.
We will present some industrial case studies that show their concrete revolutionary
implementations and discuss some adaptations of Scrum, the most commonly used
agile method.

Example 1 Our first example of an implementation of the revolutionary approach
is that of SAP, a large German software company developing business information
systems [25]. A few years ago they recognized that their development process was
evolving along with the size, complexity, and scope of their products, but at the same
time, development efficiency was becoming more difficult to attain. The processes
for managing the growing number of projects grew as well, but the results did not
meet the expectations. Thus, SAP decided to change their development model from a
waterfall approach to agile software development, specifically Scrum. To accomplish
this changeover, they restructured the organization from large functional silos to
small, cross-functional, self-organizing teams, split work into small batches, split
development time into fixed iterations, and broke the high-level release backlog up
into detailed backlogs. Still, they faced problems such as getting inferior quality.
For this reason, they adapted Scrum to their specific needs, for example by adding
additional agile skills, e.g., test-driven development or pair programming.

Example 2 Yahoo as a well-known software company provides another example of
this approach to agility integration [15]. Until 2004, their developers had used aman-
aged software product development process very similar to the waterfall approach,
including many (quality) gates and sign-offs, which resulted in huge dissatisfac-
tion and high levels of burnout and turnover. Because of this and ignorance of the
more traditional rich process, after some initial negative experiences and skepticism
regarding agile development in discussions with agile experts, they tried Scrum with
some volunteers in a pilot program launched in 2005, including two different cases,
to see its benefits. One of these two teams failed because they saw agile as a way to
correct deficits, which resulted in many challenges. However, at the end of the initial
pilot period, a positive conclusion was drawn. The feedback from the team that liked
the process and the experience was mostly positive, and the management also saw
positive results [10]. Beyond that, other teams were beginning to express interest
in developing in an agile way. So the program was expanded and a few years later,
when agile development was at its height, many teams in the company reported using
Scrum. However, in part the initial release planning they used was still very much
a waterfall process [16]. Based on this large roll-out of Scrum, Yahoo recognized
that their main problems lay in scaling the success of single agile teams. Therefore,
they tried several adaptations in parallel. During these different adaptations, which
were mainly refinements, they found some other problems, e.g., backlog control-
ling, which they needed to face. Even though they are still doing agile development
and benefit from its advantages, during their top–down integration they adapted the

2 The Right Degree of Agility in Rich Processes 29

methods to their specific needs, e.g., mandatory sprint breaks after five or six sprints,
and partially integrated aspects from previous development processes.

Example 3 Our third example of this kind of revolutionary implementation is again
an introduction of Scrum into the identity management business unit of the BMC
group [41]. Several years ago, certain specific teams started working on their own in
a Scrum fashion. Because this worked quite well for these teams, they transformed
their whole organization (this business unit) into agile, specifically using Scrum as a
method. Nonetheless, they had some problems within their distributed development
environment that they needed to face. After gathering and analyzing all the data, they
came up with some changes and specific adaptations to their Scrum implementation.
They mainly built a regular “Scrum-of-Scrums,” called “Nested Scrum,” and addi-
tionally created a validation team for dealing with planning and integration aspects.
This is a perfect example of our revolutionary approach because during their final
process implementation, they did, for example, reintegrate further planning aspects
from rich processes development that they had used before their process change.

Practitioner Perspective In addition to these detailed descriptions of implemen-
tations of the revolutionary approach in industrial companies, Diebold et al. [22]
performed a multi-case study about how practitioners modify Scrum such that it fits
their respective company or project context. Most of the companies covered in this
case study introduced original Scrum. However, when this was compared with the
current process, several deviations, variations, and adaptations were revealed. Thus,
all of the considered companies introduced agility using a revolutionary approach.

All in all, these different examples of the introduction of an agile method and/or
the final variation compared to the original method or approach found in the literature
show howoften revolutionary approaches for integrating agility into the development
process are employed.

2.3.3 Evolutionary Implementation

As already stated at the beginning of this chapter, not much literature exists about
the evolutionary approach. This is the reason for us to focus on this approach and
to describe the implementation of one evolutionary approach, focusing on agile
practices, their concepts, and their integration. The agile practices are the core concept
of every evolutionary approach. Although agile practices are so important for the
integration of the twoareas,most practitioners and researchers focus on agilemethods
in their publications instead of on agile practices, which is a huge gap in agile
software development. In the academic literature, only very little is being published
and then only about some specific, very commonpractices, such as Pair Programming
[49]. A first systematic review of the (academic) literature specifically focusing on
agile practices was published as a mapping study [19]. In contrast to this academic
literature, the internet provides a little more information about agile practices. For

30 P. Diebold and T. Zehler

example, some lists or collections of agile practices are provided in blogs or on other
websites, e.g., “The Big List of Agile Practices” [3] or “Guide to Agile Practices”
[2].

Nonetheless, almost all of the existing lists of agile practices are either incomplete,
as they just cover a small set of agile practices, unstructured, or without any descrip-
tion. To support evolutionary implementation with agile practices, our approach
needs a repository containing all common agile practices in a structured and unique
description or schema. Therefore, the following paragraphs will present details about
our schema for describing agile practices in a repository to support our evolutionary
implementation: a graphical schema representation, a detailed explanation of the
elements of the schema, and an example.

Our schema for describing and presenting agile practices, presented in Fig. 2.3, is
based on a UML representation [36] in order to allow using inheritance and aggrega-
tions (similar to UML class diagrams). In general, the graphical representation shows
the different elements for describing agile practices in detail. During the development
and piloting of this schema, some of the elements evolved into being mandatory and
others into being optional. This is represented by the UML cardinalities of the differ-
ent elements at the top level. Detailed descriptions of the different schema elements
are provided in Table2.2.

One of themandatory elements in the schema, which is also very important for the
integration of practices into processes, is the lifecycle process. This element can serve
as a classification mechanism for the practices. For this reason, we reused the com-
mon classification from ISO/IEC 12207 [30], which also serves as a foundation for
several other standards and their process classification, such as ISO/IEC 15504 [31]

Fig. 2.3 Agile practices schema

2 The Right Degree of Agility in Rich Processes 31

Table 2.2 Detailed description of the schema elements, including information about whether they
are mandatory (M) or optional (O), their description, and their connection to the common process
modeling language SPEM

Schema
elements

M/O Description SPEM

Name M Information about how the different practices are called ✓

Synonym(s) O Information about possible other names for this agile practice.
This content can be seen as a kind of alternative to the name
element

–

Precondition O Information about aspects that need to be fulfilled before the
described practice can start. The most prominent kinds of
preconditions are specific work products, which are, for
example, used by the practice as its input

(✓)

Postcondition O Information about aspects that need to be fulfilled after the
described practice is finished. Similar to the precondition, work
products that are created or changed by the practice are
examples of the output of this element

(✓)

Purpose M Short description that provides information about the main aim
that is achieved by this practice. Should only be a few (1–2)
sentences long

✓

Description M Detailed description of the agile practice. In addition to the
purpose (short description) that is covered, it describes how the
specific practice works. Thus, the description element could be
refined by a set of tasks. If there is a need to further refine such a
task in more detail, a task can subsume a number of steps

(✓)

Role M Detailed description of specific role(s) needed to perform the
agile practice or some subtasks. For this reason, the schema also
shows a connection to the tasks (sub-elements of the
description). Because sometimes a role is not enough, the role
element is refined by the number of persons performing the
specific role; e.g., Pair Programming needs two developers

✓

Variation
parameter

O The variation parameter describes the possibilities of changing
or adapting the described practice regarding specific aspects.
The most prominent example is the interval length of an
iteration, which is given in the Scrum Guide [43] as 4 weeks
max., but is often changed to other intervals

–

Lifecycle
process

M Information about the different lifecycle processes that are
addressed or covered by the agile practice. We decided to go for
ISO12207 [30], its processes categories, and processes because
it is a common standard that is also used by other regulations

–

Guidance O Sometimes it is possible for a practice to be supported by some
kind of guidance that includes additional information. Examples
of such kinds of guidance are guidelines, templates, checklists,
tool mentors, estimates, supporting materials, reports, concepts,
etc. [35]

✓

Source M Defines the origin where we found the description of the
practice. This may be a literature source, a website, or any other
kind of source. To see how recently this practice was developed,
adapted, or updated, we also consider it beneficial to provide the
year this source was published

✓

32 P. Diebold and T. Zehler

Table 2.3 Example instantiation of the agile practices schema: pair programming

Schema elements Description

Name Pair programming

Synonym Pairing; peer programming

Precondition Available requirements and architecture/design

Postcondition Code with high quality and shared knowledge regarding the written
code

Purpose Pair programming is a dialog between two developers
simultaneously programming and trying to implement better
software [8] with additional knowledge sharing

Description In pair programming, two programmers develop software together
as a pair on one workstation. The driver writes code while the other
person, the observer, reviews each line of code as it is typed in

Role (Two) developers

Variation parameter Experience of the two developers: expert–expert, expert–novice,
novice–novice

Lifecycle process SW implementation processes: software implementation process,
software construction process

Guidance –

Source [8]

or Automotive SPICE [5]. Additionally, such a classification also offers the pos-
sibility to visualize all the practices in the categories, as done, for example, with
landscapes in the German V-Model XT [46].

Based on these different descriptions, Table2.3 presents Pair Programming as an
example of the filled schema because it is one of the best documented and known
agile practices. Even if this common example presented below gives an idea of how
to use theAgile Practices Schema, it is not that easy to fill this schema consistently for
all existing agile practices, e.g., the 40 h week from XP. For example, the description
element cannot always be refined by tasks (Table2.3).

During the development of this schema, it was important for the overall idea of
integrating agile practices into processes, respectively their models or descriptions,
to include an easy connection to common process modeling notations [23]. For this
reason, we chose the Software & Systems Process Engineering Metamodel Spec-
ification (SPEM; [35]) as a connected modeling notation. The direct connections
between elements (Table2.3) are elements on the highest level of the schema that are
also SPEM elements, whereas indirect connections are elements of our schema that
are refined by elements that are also part of SPEM, e.g., work products as refinement
of the pre- and postconditions or tasks as refinements of the description.

This link with a common process modeling language provides the necessary pre-
condition for facilitating the integration of different agile practices into software
development processes. The reason is that agile practices contain their information
in a structured way, using work products as input and output with some kind of tasks

2 The Right Degree of Agility in Rich Processes 33

in between, which can be directly integrated into the process in a number of ways
(addition, replacement, etc.).

At the moment we are building, verifying, and finalizing a list of all existing agile
practices aggregated from the different lists in existence, which will be published
later on. All practices contained in this list should be described step-by-step using our
schema to ensure that they are all described uniformly for the integration approach.
Finally, the last step regarding agile practices that has to be explored is the missing
objective evidence regarding their impact, which would be helpful for guiding the
decision on which agile practice(s) to integrate.

2.4 Conclusion

This chapter dealt with the topic of the degree of agility that can be achieved in rich
processes by integrating both rich and agile software development. This is motivated
by the fact that there is no silver bullet for development processes, by the diversity of
different domains, and by the possible benefit for both areas, meaning it is “necessary
[...] havingmethods available that combine agility and discipline (plan-driven)” [13].
To discuss the idea of possible integration approaches, some termswere defined, such
as agile methods versus agile practices. Regarding the integration of the two areas,
two approaches—the revolutionary and the evolutionary approach—were defined
and illustrated. These two approaches were discussed and compared in terms of their
advantages and disadvantages.

The comparison showed that the evolutionary approach is more appropriate in
various scenarios than the revolutionary approach, which is mainly the case because
it works in a more context-specific way and can thus be adapted to the relevant
needs. This makes introduction easier, allows more flexibility. Corresponding to
that, Boehm and Turner [13] also state that extending a simple method or a rather
small set of practices is better than tailoring an extensive method. This confirms the
overall results of the comparison between the two approaches.

Although the revolutionary approach fits in other scenarios than the evolutionary
one, we presented some related work regarding different revolutionary implemen-
tations from industrial practice. For the evolutionary implementation, we focused
on the approach of integrating single agile practices into the current development
process, presented a schema for describing the practices and easily integrating them
into the process, and demonstrated this with an example.

Regardless of which approach is performed and which agile methods or agile
practices are used in this approach, everything focuses on creating the right process
for a particular context, as proposed in the past by Armbrust and Rombach [4].
At the end of this integration procedure, the final process is often published as a
new specific process or method, e.g., Moonlighting Scrum [21] for specific team
characteristics (distributed teams with part-time developers) or Agile V-Model [33]
for specific domains, e.g.,Medical. This method development confirms the statement
that balanced methods have been successfully used and combined in a variety of

34 P. Diebold and T. Zehler

situations [13]. But one question remains: Dowe needmore “specific” agile methods
or would context-specific tailoring be more fruitful?

There is no single, general answer regarding how to find the right degree of agility
because there is no silver bullet solution; solutions need to be defined for each specific
context. Therefore, the best-suited degree of agility must be found for the respective
context, e.g., by selecting the most appropriate agile practices. The two different
integration approaches presented in this chapter provide support for selecting the
right degree, especially the evolutionary approach, which works with fine-grained
agile practices. Even if these two approaches with their detailed aspects regarding
evolution with the practices are a first step, some work still remains to be done to
improve support for selecting the right degree of agility.

2.5 Further Reading

For some of the aspects discussed in this chapter, further readings provide references,
discussions, and future aspects.

First of all, the naming of the two different approaches—evolutionary and
revolutionary—originates from the area of change management and is very com-
mon in this domain. Nonetheless, we also thought of other names that could be used
interchangeably, see Table2.4.

Even though the agile evangelists2 believe that agile is so flexible that no definition
is necessary or that a definition would not make much sense in this rapidly changing
area, we believe that the different levels of agility (as partially started in [9]) need
to be defined properly. During the elaboration of these different definitions of agile
aspects, we also used [18] and their way of developing their definition as a kind of
guidance for coming up with the different short definitions presented in Sect. 2.2.2.
Furthermore, the definitions of agile practices and agile methods are inspired by [11].

The work regarding the synthesis or consolidation of agile practices started with
a systematic mapping study [19] on a high level of categories for these practices.
This was followed, on the one hand, by a multi-case study specifically for Scrum
[22], which identified and reasoned on which Scrum practices are used or not used.
On the other hand, we are currently building a set of all existing agile practices from
common sources that mention agile practices or their synonyms (mainly websites or
blogs).

Table 2.4 Naming and
synonyms for the two
different approaches

Revolutionary approach Evolutionary approach

Top-Down approach Bottom-Up approach

Big-Bang approach Step-by-Step approach

Up-Front approach

2See Online http://www.arrowsgroup.com/services/agile-evangelist.

http://www.arrowsgroup.com/services/agile-evangelist

2 The Right Degree of Agility in Rich Processes 35

Furthermore, we are currently working on an “Agile Capability Analysis” as part
of our evolutionary implementation to get a methodological foundation for selecting
the most appropriate agile practices for a specific context. This analysis method
should be based on the repository of these practices and the necessary company
context, which could be characterized by several factors such as project size/type,
criticality, or team size, as stated by Boehm and Turner [13]. Their approach also
includes a model for defining the impact of the single agile practices [20] on these
factors. To provide better support for this analysis and even for every evolutionary
approach, knowledge or evidence about the impact of agile practices, e.g., on specific
quality characteristics, costs, and time, would be beneficial. All this will result in a
more detailed refinement of our evolutionary implementation.

Besides this more specific future work regarding our approach, there is still some
open work regarding the alignment of the more technical integration approaches
presented in this chapter and regarding organizational integration, which is often
known as “change management” and can also be performed in a revolutionary as
well as in an evolutionary manner.

Acknowledgments First of all, we would like to thank to Sofia Vidal for her support and help
during the development and piloting of the Agile Practices List and Schema. In addition, we would
like to thank Sonnhild Namingha and Jens Heidrich for their valuable comments and feedback. This
research was conducted partly in the context of a Software Campus project funded by the German
Ministry of Education and Research (BMBF grant no. 01IS12053).

References

1. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile methods: a
comparative analysis. In: Proceedings of the InternationalConference onSoftwareEngineering,
pp. 244–254. IEEE, Washington, DC, USA (2003)

2. Agile Alliance Inc.: Guide to agile practices. http://guide.agilealliance.org (2013)
3. Appelo, J.: The big list of agile practices. http://noop.nl/2009/04/the-big-list-of-agile-

practices.html (2009)
4. Armbrust, O., Rombach, D.: The right process for each context: objective evidence needed. In:

Proceedings of the International Conference on Software and Systems Process, pp. 237–241.
ACM, New York, NY, USA (2011)

5. Automotive SIG: Automotive SPICE process assessment model. In: The Procurement Forum
(2010)

6. Balaji, S., Murugaiyan, M.S.: Waterfall vs. V-Model vs. Agile: a comparative study on SDLC.
Int. J. Inf. Technol. Bus. Manage. 2(1), 26–30 (2012)

7. Baskerville, R., Pries-Heje, J.: Racing the E-Bomb: how the internet is redefining information
systems development methodology. In: Proceedings of the IFIP TC8/WG8.2 Working Confer-
ence on Realigning Research and Practice in Information Systems Development: The Social
and Organizational Perspective, pp. 49–68. Kluwer, B.V., Deventer, The Netherlands (2001)

8. Beck, K., Andres, C.: Extreme Programming Explained, 2nd edn. Addison-Wesley Profes-
sional, Reading (2004)

9. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-
ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile software development. http://
www.agilemanifesto.org (2001). Accessed 29 May 2007

http://guide.agilealliance.org
http://noop.nl/2009/04/the-big-list-of-agile-practices.html
http://noop.nl/2009/04/the-big-list-of-agile-practices.html
http://www.agilemanifesto.org
http://www.agilemanifesto.org

36 P. Diebold and T. Zehler

10. Benefield, G.: Rolling out agile in a large enterprise. In: Hawaii International Conference on
System Sciences, pp. 461–461. IEEE Computer Society, Washington, DC, USA (2008)

11. Bleek, W.G., Wolf, H.: Agile Softwareentwicklung – Werte, Konzepte und Methoden.
dpunkt.verlag (2008)

12. Boehm, B.: A spiral model of software development and enhancement. IEEE Comput. 21(5),
61–72 (1988)

13. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Addison-
Wesley Longman Publishing Co., Inc., Boston (2003)

14. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects. J.
Syst. Softw. 81(6), 961–971 (2008)

15. Chung, M.W., Drummond, B.: Agile at Yahoo! from the trenches. In: Proceedings of the Agile
Conference, pp. 113–118. IEEE, Washington, DC, USA (2009)

16. Chung, M.W., Nugroho, S., Unson, J.: Tidal wave: the games transformation. In: Proceedings
of the Agile Conference, pp. 102–105. IEEE, Washington, DC, USA (2008)

17. CMMI Product Team: CMMI for development, version 1.3. Technical report, CMU/SEI-2010-
TR-033, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA. http://
resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661 (2010)

18. Conboy, K.: Agility from first principles: reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20(3), 329–354 (2009)

19. Diebold, P., Dahlem, M.: Agile practices in practice: a mapping study. In: Proceedings of the
International Conference on Evaluation and Assessment in Software Engineering, pp. 30:1–
30:10. ACM, New York, NY, USA (2014)

20. Diebold, P., Zehler, T.: The agile practices impact model – idea, concept, and application
scenario. In: Proceedings of the International Conference on Software and System Processes,
pp. 92–96. ACM, New York, NY, USA (2015)

21. Diebold, P., Taibi, D., Lampasona, C.: Moonlighting scrum: an agile method for distributed
teams with part-time developers working during non-overlapping hours. In: Proceedings of the
International Conference on Software Engineering and Advances, pp. 318–323. IARIA XPS
Press (2013)

22. Diebold, P., Ostberg, J.P., Wagner, S., Zendler, U.: What do practitioners vary in using Scrum?
Agile Processes, in Software Engineering, and Extreme Programming. Lecture Notes in Busi-
ness Information Processing, vol. 212, pp. 40–51. Springer International Publishing (2015)

23. Garcia-Borgonon, L., Barcelona, M., Garcia-Garcia, J., Alba, M., Escalona, M.: Software
process modeling languages: a systematic literature review. Inf. Softw. Technol. 56(2), 103–
116 (2014)

24. Graaf, B., Lormans,M., Toetenel, H.: Embedded software engineering: the state of the practice.
IEEE Softw. 20(6), 61–69 (2003)

25. Heymann, J., Kampfmann, R.: SAP’s road to agile software development. In: Future Business
Software. Progress in IS, pp. 111–116. Springer International Publishing (2014)

26. Humphrey, W.S.: The personal software process. Technical report CMU/SEI-2000-TR-022,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2000)

27. Humphrey, W.S.: The team software process. Technical report. CMU/SEI-2000-TR-023, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2000)

28. IEEE: IEEE standard glossary of software engineering terminology. IEEE Standard 610.12-
1990, Institute of Electrical and Electronics Engineers (1990)

29. ISO/TC 210: Medical device software – software life cycle processes. International Standard
IEC 62304:2006, International Organization for Standardization (2006)

30. JTC 1/SC 7: Systems and software engineering – software life cycle processes. International
Standard ISO/IEC 12207:2008, International Organization for Standardization (2008)

31. JTC 1 SC 7: Information technology – process assessment – part 5: an exemplar software life
cycle process assessment model. International Standard ISO/IEC 15504-5:2012, International
Organization for Standardization (2012)

32. Maurer, F.,Melnik,G.:Agilemethods:moving towards themainstreamof the software industry.
In: Proceedings of the International Conference on Software Engineering, pp. 1057–1058.
ACM, New York, NY, USA (2006)

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661

2 The Right Degree of Agility in Rich Processes 37

33. McHugh, M., Cawley, O., McCaffcry, F., Richardson, I., Wang, X.: An agile v-model for
medical device software development to overcome the challenges with plan-driven software
development lifecycles. In: International Workshop on Software Engineering in Health Care,
pp. 12–19. IEEE, Washington, DC, USA (2013)

34. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Commun. ACM 48(5), 72–78 (2005)

35. OMG: Software & Systems Process EngineeringMetamodel Specification (SPEM). Omg stan-
dard, Object Management Group (2008)

36. OMG: Unified Modeling Language (UML) ver 2.4.1. Omg standard, Object Management
Group (2011)

37. Osterweil, L.: Software processes are software too. In: Proceedings of the International Con-
ference on Software Engineering, pp. 2–13. IEEE, Los Alamitos, CA, USA (1987)

38. Paetsch, F., Eberlein,A.,Maurer, F.:Requirements engineering and agile software development.
In: Proceedings of the International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 308–313. IEEE, Washington, DC, USA (2003)

39. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Commun. ACM 49(10), 41–46 (2006)

40. Scacchi, W.: Process Models in Software Engineering, pp. 993–1005. Wiley, New York (2002)
41. Smits, H., Pshigoda, G.: Implementing scrum in a distributed software development organi-

zation. In: Proceedings of the Agile Conference, pp. 371–375. IEEE, Washington, DC, USA
(2007)

42. Sureshchandra, K., Shrinivasavadhani, J.: Adopting agile in distributed development. In: Pro-
ceedings of the International Conference on Global Software Engineering, pp. 217–221. IEEE,
Washington, DC, USA (2008)

43. Sutherland, J., Schwaber, K.: The scrum guide. The definitive guide to scrum: The rules of the
game. Scrum.org-October (2013)

44. TC 22/SC 32: Road vehicles – functional safety. International Standard ISO 26262:2011,
International Organization for Standardization (2011)

45. Turk, D., France, R., Rumpe, B.: Limitations of agile software processes. In: Proceedings
of the International Conference on eXtreme Programming and Agile Processes in Software
Engineering, pp. 43–46. Springer (2002)

46. V-Modell XT Team: V-Modell XT. National standard, Federal Ministery of the Interior, Ger-
many, Berlin (2013)

47. Version One Inc.: 9th annual state of agile survey. https://www.versionone.com (2015)
48. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and change. IEEE

Comput. 36(6), 39–43 (2003)
49. Williams, L., Kessler, R., Cunningham, W., Jeffries, R.: Strengthening the case for pair pro-

gramming. IEEE Softw. 17(4), 19–25 (2000)

https://www.versionone.com

Chapter 3
Assessing Product Development Agility

Daniel X. Houston and Stephen W. Rosemergy

Abstract Agile software development grew out of a variety of alternative software
development methods that shared a common set of values and principles. After two
decades with these alternative methods, agile software development remains loosely
defined, but has been widely accepted. This acceptance has gained the attention
of other fields with discussions of applying agile to their work, for example agile
systems engineering and agile programmanagement. However, within the larger field
of product development, agilitywas defined in terms of software development, both in
practice and in principle. This chapter focuses on a set of general agile characteristics
derived from the agile values and principles embraced by many software developers.
This set of characteristics provides a basis for (a) assessing difficulties in software
development projects employing agile practices, (b) applying concepts of agility to
other disciplines beyond software development, and (c)measuring agility. In addition
to deriving general agile characteristics, this chapter relates two stories of agile
methods adoption that illustrate both the need for and the utility of general agile
characteristics.

3.1 Introduction

According to the American Society for Quality, the quality movement can be traced
to the trade groups of medieval Europe in which craftsman organized into guilds
that used strict rules for applications of their crafts. During the industrial revolution,
factories produced more specialized work and, in the late nineteenth century, fac-
tory planning became a discipline for increasing productivity. In the early twentieth
century, process improvement was formalized with time and motion studies and sta-
tistical quality control. In the mid-twentieth century, emphasis shifted to the quality
of both production and produced items in the Toyota Production System, Total Qual-

D.X. Houston (B) · S.W. Rosemergy
The Aerospace Corporation, Los Angeles, CA 90009-2957, USA
e-mail: dan.houston@aero.org

S.W. Rosemergy
e-mail: steven.rosemergy@aero.org

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_3

39

40 D.X. Houston and S.W. Rosemergy

ity Management, ISO 9000 series of quality management standards, Six Sigma, and
Lean Product Development [1].

Viewed in the broadest context of development and production processes, contem-
porary system and software development share the ancestry of the quality movement.
In balancing concerns for product quality, technical features, cost and timely com-
pletion, and productivity, emphasis has varied over the centuries, especially in the
last century. The nascent agile movement that was underway in the early 1990s in
business and manufacturing [13] had a coincident expression in alternative software
development methods that later came to be grouped under the label “agile.” This
movement exhibited another emphasis in product development, one focused on flex-
ibility and leanness [8]. Conboy [8] systematically developed a definition of agility
based on these two concepts of flexibility and leanness. In this chapter, we take an
alternative approach and develop general characteristics of agility based on experi-
ences with the alternative software development methods that were distilled in the
Agile Manifesto of 2001 [3].

3.2 Background and Context

The agile movement in product development has been fueled particularly by the field
of software development. Software development was dubbed “software engineering”
in 1968 and major advances in the ways of producing software took on the charac-
ter of large engineering programs with the specification of requirements, design of
architectures and details, and implementation followed by stages of integration and
testing. The ability for an organization to develop software according to engineering
methods was canonized in standards and in levels of capability maturity. However,
the poorly understood dynamics of product development that challenges most engi-
neering endeavors were especially troublesome in software projects, which—due to
software’s less tangible nature—seem to amplify the effects of “inadequate” pre-
scriptive planning.

During the1990s, some software developers reacted against the generally accepted
engineering approach and tried various alternative practices and techniques.Methods
such as eXtreme Programming, Scrum, Feature Driven Development, and Crystal
Clear arose in this period, each with its own discipline for developing software.
As these methods and their practices were published, software development groups
began to embrace them. The authors of the various alternative methods convened in
2001 to produce the well-known Agile Manifesto, with a set of values and principles
that called for a re-evaluation of software development processes. A later entry was
LeanSoftwareDevelopment,which abstracted principles from theToyota Production
Systems and applied them to software development.

After 2001, the various alternativemethodsbegan tobe referred to as agilemethods
with development groups referring to themselves as “agile.” As the agile movement
gained prominence, less and less attention was given to the disciplines underlying
each of the methods. Thus the agile software development movement has exhibited a

3 Assessing Product Development Agility 41

tendency toward homogenization of the different methods that gave rise to it. Today,
agile software development is amindset with a set of values, principles, and practices,
but does not prescribe a particular process or set of processes.

With increasing acceptance of agile values, principles, and practices, several phe-
nomena have occurred.

• Concept adaptation. In recent years, the idea of agile development has been applied
widely, both within and outside the field of product development. Within product
development, agile concepts have been applied to software requirements, systems
engineering, product architecture, project management, and process improvement.
Outside the field of product development, agile concepts have been applied to
enterprises, business intelligence, supply chains, defense acquisitions, research
methodology, and so forth.

• Agile precedents. Students of agile methods have found software development
programs that preceded the current agile movement, but can now be described as
agile. Duvall [11] provides eight examples of DoD programs that exhibited agile
characteristics well before the agile movement in software development. Reagan
and Rico [23] provide a similar list.

• Research growth. Because agile software development was largely a practitioner-
led movement, it received almost no attention from academic researchers prior
to 2001. Between 2001 and 2005, 36 empirical studies were found [12]. A 2012
study of agile methods research demonstrates growing research attention [10].

These phenomena all affect the meaning of “agile.” Broad application of agile con-
cepts has resulted in semantic inflation: agile development no longer refers clearly
to the software development methods from which it arose. Similarly, searches for
precedents have found agile characteristics in development programs of previous
decades. On the other hand, research counters semantically inflationary effects by
requiring clear definitions for the sake of answering questions such as “What consti-
tutes agility?” “Under what circumstances is agility beneficial?,” and “How does one
become agile?” This chapter is motivated by the first question and seeks to address
that question with derivation of a set of agile characteristics and a proposal for using
the characteristics to answer other research questions.

3.3 Software Development Dynamics and the Need for Agility

The agilemovement in software development arose out of need to harness the dynam-
ics of software development beyond what software engineering had accomplished.
The dynamics that drive product development projects out of control are amplified
in software development because software is less tangible and unconstrained by
physics. Therefore, functional specifications are more likely to over-reach what can
be accomplished realistically with available resources while underestimation is more
likely. Furthermore, functional changes are expected to be easier in software than in
hardware. This section offers a brief explanation of software development dynamics

42 D.X. Houston and S.W. Rosemergy

Requirements Design Implementation
Validation &
Verification Delivery

Fig. 3.1 A plan-driven process

that is intended to demonstrate the need for the agile movement and provide some
hints as to what allows agility to work.

In the engineering or plan-driven approach to developing software-intensive sys-
tems, plans are made for producing a system with specified functional capabilities
and a sequence of steps is followed, at least at a high level (Fig. 3.1). However, Fig. 3.1
does not show the rework cycles, both within and between development phases.

Rework cycles in product development have been studied extensively in the Sys-
tem Dynamics Modeling community. The underlying problem with most product
development plans is that they measure progress based on the plan and are unable
to account for product quality and undiscovered rework in their progress measures.
Consequently, quality shortcomings accrue until the need for rework delays progress.
The product development rework cycle (Fig. 3.2) has come to be recognized as the
central structure for modeling development projects because it is the most important
feature for explaining project behavior.

Consider the rework cycle in a plan-driven process. For rework that is found in-
phase, for example design errors found in the design phase, delays are incurred,
but the cost of rework can be relatively low. For problems found in later phases
(highlighted arrows in Fig. 3.2), the delays are much longer and the rework costs
much higher. For example, a misinterpretation of a requirement that is not discovered
until V&V testingmeans reworking artifacts in all phases from requirements through
V&V. Changes to requirements during development produce rework that propagates
through the development process. To complicate the project, delays put the project
under schedule pressure.Developersworkingunder schedule pressure aremore likely

Fig. 3.2 The product
development rework cycle

Produce

Check

Rework Produce

Check

Rework

3 Assessing Product Development Agility 43

Fig. 3.3 An agile process

Requirements

Design

Implementation
Validation &
Verification

Delivery

to make errors and to skip quality-inducing steps, such as peer reviews of work,
thereby increasing the cycling of rework.

Agile software development, first and foremost, accepts changes as a fact of life
and seeks to incorporate them in an ordinary workflow. Thus, the moniker, “agile.”
To accomplish the goal of an agile development process, the development cycle is
scaled down to produce a smaller working product in a shorter amount of time.
The sequence of phases is visited in every delivery cycle (Fig. 3.3). By approaching
development incrementally and delivering an increment of system capability, say
every fewmonths, the rework cycles are dramatically shortened. Rather than building
up schedule pressure over many months and incurring all its corrosive effects, delays
are absorbed prior to each release by delivering only asmuchworking functionality as
possible. Thus, agile trades off a commitment to a delivery date against a plan-driven
commitment to required functionality.

3.4 Development Challenges and Agile Methods

Since the Agile Manifesto, its proponents argue that the key to building better soft-
ware is to view it not as a destination, but as a journey supported by underlying values
and principles that deemphasize (but do not eliminate) practices and work products
associated with project management best practices [7]. After more than two decades
of discussion, debate, and informative evidence, we continue to debate the merits of
agile software development. Both proponents and opponents agree that agile meth-
ods provide benefits in the forms of improved communication, team coordination,
increased customer focus, less process overhead, and improved predictability [18].

Nonetheless, practitioners report issues (Table3.1) that may be perceived as insur-
mountable challenges to agile software development teams, most notably project
scaling, use of geographically distributed teams, cultural barriers to successful adop-
tion, and applicability of agile principles to other technical domains [4, 8, 18]. Even
though these challenges are reported often, examples of overcoming them success-

44 D.X. Houston and S.W. Rosemergy

Table 3.1 Perceived issues that plague agile teams [17]

Issue Description

Project scaling Increasing team size also increases the amount of interaction required to
coordinate, allocate, and integrate work between team members.
Coordinating change across a large team is difficult [18]

Distributed teams Frequent team interactions are not always possible with geographically
distributed teams; remote teams lack the necessary accessibility to the
product owner and are unable to develop and maintain the level of
contextual expertise required to support the project [8, 18]

Culture change Adoption of agile methods decentralizes day-to-day decision-making.
Decentralized decision-making breaks down functional/hierarchical silos;
organizational hierarchies are large impediments to decentralized
decisions [19]

Technical domain Agile methods are not applicable to non-software development or
multidiscipline projects [8]

fully are available [6]. The following story illustrates the use of agile software devel-
opment principles in addressing one of the most common challenges, geographically
distributed teams.

3.4.1 Project Scaling and Geographic Distribution

Company A was a mid-size (8000 employees) software company that developed
small-business software products. Based out of San Jose, California, they also
employed an offshore team located in Hong Kong. This team provided specialized
expertise in support of product internationalization. The remote team used Scrum
very successfully for integrating application content and layout to support foreign
language usage in U.S. markets. The San Jose team was happy with both the respon-
siveness and quality of the work delivered by the remote team. With the expanded
language support of their products, demand for products tailored to locales outside
the United States increased.

3.4.1.1 Transitioning to Global Product Development

Because Company A architected their system as a product line, whereby core assets
could be quickly applied for new variant products [15], they were confident that their
product was well positioned to address global markets. Having proven their ability
to support Internationalization, Company A expanded the scope of the team in Hong
Kong, to address International markets, starting with Asia (Fig. 3.4).

The two teams met in San Jose, agreed to continue using Scrum for their develop-
ment method, e-mail and Skype for collaboration, and a common infrastructure for

3 Assessing Product Development Agility 45

US Office Hong-Kong Office

-Architects,
-Business Analysts
-PMS

-PM,
-Developers
-Testers

-Developers
-Testers

Product-Line
Developers

Customers

Functional
Requirements

Delivered
Subsystem

Business
Drivers

Technical
Priorities

Technical
Solutions

Core
Assets

Technical
Drivers

Fig. 3.4 Company A globalization

storing source code and documentation, instead of transferring files between sites.
The San Jose team would host daily meetings, and because of time-zone differences,
the Hong Kong team would shift their workweek by one day (Tuesday through Sat-
urday).

3.4.1.2 Global Software Development Challenges and Agile

Although work progressed on schedule for each of the teams, trouble began as the
San Jose team integrated and tested the software developed by the remote team. As
both the frequency and severity of problems rose, tension between the two teams
mounted. Daily standup meetings increased in length from 20min each to 1.5h, with
most of the time devoted to reporting on status.

In trying to understand their problems, the company initially assumed that the
scope of their endeavor (large-scale software development) and geographically dis-
tributed development were a mismatch with their agile method. They called for a
face-to-face meeting of key contributors in San Jose where the two teams gathered at
a local hotel to share their concerns. Their findings, which were consistent with other
software development companies managing geographically distributed projects [19],
did not point to agile development practices as the source of their problems. Rather,
they indicated a failure to adhere to the principles of agile software development as
they expanded their efforts. Specifically, the San Jose team had ignored the impacts
of their locale-specific organizational constructs and delegated responsibility in what
seemed the most expedient manner, not cognizant of the effects on the remote team.
Changes were neither well-coordinated nor welcomed across teams, and interactions
between teams became increasingly transactional, with emphasis placed on status
rather than cooperation and collaboration.

46 D.X. Houston and S.W. Rosemergy

3.4.1.3 Addressing the Challenges

Company A soon realized that in order to be responsive to customer needs, both
locally and internationally, they needed to realign their efforts. In doing so, they eval-
uated their organizational structure, project responsibility partitioning, and project
infrastructure in view of the agile software development principles and values.

They found that by scaling the teams in the most expedient manner, that is divid-
ing responsibility functionally, instead of organizing around motivated individuals,
they had inadvertently formed organizational barriers to communication and collab-
oration. Furthermore, collaboration and tacit knowledge transfer between the remote
team and the customer was no longer practical because they had placed an inter-
mediary between the remote team and the customer. So while both the local and
remote teams embraced the principles of frequent delivery, face-to-face communi-
cations, and measured and constant progress, the remote team became information-
constrained and were trusted only to organize themselves around the functions they
were to deliver to the project. Both teams depended on each other to deliver, but
neither team, particularly the remote team, had the authority or access to evolve the
requirements, architecture, and designs.

After realizing their mistake, Company A revised its organizational structure
(Fig. 3.5). The new organizational model established three distinctly separate devel-
opment teams, one at each locale, and a product-line team, managed by a single
team distributed across the two locales. In addition, Company A co-located archi-
tects, business analysts, and project manager in each locale—with responsibility
partitioned by customer product, rather than by functional responsibility [20].

To anchor implementation efforts across teams, the Product-Line Development
team established a continuous integration environment and collaboration environ-
ment to link communication, configurationmanagement, and testing, anddeployment
of software releases [20]. Scrum Master roles were tailored to facilitate cross-team

US Office Hong-Kong Office

-Architects,
-Business Analysts
-PMS

-Developers
-Testers Product-Line Developers

Customers

Business
Drivers

Technical
Priorities

Technical
Solutions

Core
Assets

Technical
Drivers

-Developers
-Testers

-Architects,
-Business Analysts
-PMS

Technical
Priorities

Technical
Solutions

Technical
Drivers

Business
Drivers

Customers

Business
Drivers

Fig. 3.5 Company A’s revised organizational model

3 Assessing Product Development Agility 47

coordination and collaboration, surface problems during coordination meetings, and
to remove barriers [2].

The preceding story demonstrates that impediments to agility can be difficult to
identify, much less, solve. Had this organization not revisited the principles and val-
ues of agile software development, they might have concluded incorrectly that agile
methods could not work for their business or that globalization was incompatible
with their business objectives. Not all software development is well suited to agile
practices and not all software organizations are disposed to employing agile meth-
ods. Nonetheless, the story suggests that periodically revisiting principles of agile
software development can help a software business using agile practices recognize
ways in which development problems can be addressed. Taking this a step further,
we propose that the values and principles of agile software development can be gen-
eralized so that they can be applied to other disciplines in product development. The
following section pursues the question of the nature of product development agility
in an effort to identify a set of general agile characteristics derived from software
development experience.

3.5 The Nature of Product Development Agility

The task of characterizing product development agility can be pursued in different
ways. Conboy [8] takes a conceptual approach to developing a definition and taxon-
omy of agility by starting with its conceptual underpinnings and progressing through
16 steps. This chapter takes another approach that builds on the distilled experience
of agile software development. The agile software development values and principles
are distillations of the experiences of the practitioners of agile methods. Although
the methods, and the practices that comprise them, are the building blocks of the
agile software development movement, the values and principles have provided the
movement a unifying identity.

3.5.1 Agile Values, Principles, and Practices

The self-dubbed agile alliance defined itself through values and principles. These
were published as fixed lists [3], in contrast with practices often embraced by agile
methods. Although lists of agile practices are available, the lists are not definitive
because agile software development is not limited to any particular practices. In
fact, whatever practices promote agility in a given circumstance may be regarded
as agile practices. Furthermore, some agile practices originated decades earlier in
the history of software development. Therefore, any published list of agile software
development practices remains open-ended, guided by the values and principles as
well as empirical success. For this reason, we focus on the values and principles for
deriving general characteristics of agility.

48 D.X. Houston and S.W. Rosemergy

Table 3.2 Agile software development principles

Issue Description

Continuous value delivery Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software

Welcome change Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage

Frequent delivery Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale

Business-developer
collaboration

Business people and developers must work together daily
throughout the project

Motivation centricity Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done

Face-to-face conversation The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation

Progress measure Working software is the primary measure of progress

Constant pace indefinitely Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely

Technical excellence Continuous attention to technical excellence and good design
enhances agility

Simplicity Simplicity—the art of maximizing the amount of work not
done—is essential

Self-organizing teams The best architectures, requirements, and designs emerge from
self-organizing teams

Reflect and adjust At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly

Table3.2 lists the principles of agile software development, preceded by phrases
used in Table3.3. Table3.3 relates the values and principles, indicating the degree
to which the principles address or explicitly support the values. For example, “con-
tinuous value delivery” strongly supports “working software.” Séguin et al. [25]
performed a similar assessment of correspondence between the principles and val-
ues. In terms of correspondence, Table3.3 agrees with their results in 96% of the
cells.

Table3.3 indicates that the values are not supported equally by the principles.
Not only does each value statement represent a prioritization, but the set of prin-
ciples represents a prioritization of the four values: “individuals and interactions”
and “working software” are more supported by the principles than “responding to
change” and “customer collaboration.”

Agile software development started with practices that sought to improve the pro-
duction of software. Some of the practices, such as pair programming and story point
estimation, were created to satisfy a specific objective. Others, such as iterations and
test-driven development, were refined from ideas used in early computer program-

3 Assessing Product Development Agility 49

Table 3.3 Agile values and principles matrix (�: major, ��: moderate, and �: minor support)

Agile software development values

Agile software
development
principles

Individuals and
interactions over
processes and
tools

Working software
over
comprehensive
documentation

Customer
collaboration over
contract
negotiation

Responding to
change over
following a plan

Continuous value
delivery

� �� ��
Welcome change � �
Frequent delivery � ��
Business-
developer
collaboration

� ��

Motivation
centricity

�
Face-to-face
conversation

� �
Progress measure �
Constant pace
indefinitely

�� ��
Technical
excellence

�
Simplicity � ��
Self-organizing
teams

� ��
Reflect and adjust � ��

ming. Still others, such as coding standards and software configuration management,
were simply included fromaccepted software engineering practice.As practiceswere
created or appropriated, and refined, they were collected and their use integrated into
methods or processes. Agile software development practices continue to evolve,
guided by the values and principles.

With alliance of the “agilists” and identification of the various alternative soft-
ware development approaches as “agile,” the practices formerly identified with each
method have become pooled as agile software development practices. Consequently,
whenmembers of a software development group describe themselves as “agile,” they
must further explain the practices they employ. Referencing a specific agile method
may be helpful also.

50 D.X. Houston and S.W. Rosemergy

3.5.2 Deriving General Agile Characteristics

The matrix of Table3.3 indicates intersections that can be aggregated and abstracted
to produce general characteristics of agility beyond software development. Abstract-
ing these characteristics should also remove overlaps in the values and principles.
The following list of general agile characteristics (GAC) was abstracted from the
agile values and principles.

• Interpersonal interaction
• Working product or service
• Customer/user collaboration
• Responsiveness to change
• Continual delivery of customer value
• Self-organizing, multifunctional collaboration
• Leadership by the motivated
• Technical excellence and simplicity

Table3.4 uses a checkmark (✓) to relate these characteristics to the agile software
development values and principles (a) to demonstrate that the characteristics cover
the values and principles, and (b) to define the meaning of each characteristic in
terms of the values and principles.

3.5.3 Comparison of General Agile Characteristics
with Other Sources

Turner [31] has also produced a list of key characteristics of agile software develop-
ment though he does not provide a derivation for his list.

• Learning attitude
• Focus on customer value
• Short iterations delivering value
• Neutrality to change (design processes and system for change)
• Continuous integration
• Test-driven (demonstrable progress)
• Lean attitude (remove no-value-added activities)
• Team ownership

This list compares well with the preceding list, though the two lists have a few dif-
ferences. Turner’s list does not explicitly include product characteristics of technical
excellence and simplicity, but it does include “learning attitude,” which may refer to
learning about both the product under development and the development processes
employed. Also, Turner’s list does not mention leadership motivation. His list does
introduce lean attitude as a willingness to remove non-value-added activities.

3 Assessing Product Development Agility 51

Ta
bl
e
3.
4

G
en
er
al
ag
ile

ch
ar
ac
te
ri
st
ic
s
de
fin

ed
fr
om

ag
ile

so
ft
w
ar
e
de
ve
lo
pm

en
tv

al
ue
s
an
d
pr
in
ci
pl
es

G
en
er
al
ag
ile

ch
ar
ac
te
ri
st
ic
s

A
gi
le
so
ft
w
ar
e
de
ve
lo
pm

en
t

va
lu
es

an
d
pr
in
ci
pl
es

In
te
rp
er
so
na
l

in
te
ra
ct
io
n

C
us
to
m
er
/u
se
r

co
lla

bo
ra
tio

n
R
es
po
ns
iv
en
es
s

to
ch
an
ge

C
on
tin

ua
l

de
liv

er
y
of

cu
st
om

er
va
lu
e

Se
lf
-o
rg
an
iz
in
g,

m
ul
tif
un

ct
io
na
l

te
am

L
ea
de
rs
hi
p
by

th
e
m
ot
iv
at
ed

Te
ch
ni
ca
l

ex
ce
lle

nc
e
an
d

si
m
pl
ic
ity

In
di
vi
du
al
s
an
d
in
te
ra
ct
io
ns

✓
✓

✓
✓

W
or
ki
ng

so
ft
w
ar
e

✓
✓

C
us
to
m
er

co
lla

bo
ra
tio

n
✓

✓
✓

✓

R
es
po
nd
in
g
to

ch
an
ge

✓
✓

✓

C
on
tin

uo
us

va
lu
e
de
liv

er
y

✓

W
el
co
m
e
ch
an
ge

✓
✓

Fr
eq
ue
nt

de
liv

er
y

✓

B
us
in
es
s-
de
ve
lo
pe
r

co
lla

bo
ra
tio

n
✓

✓
✓

M
ot
iv
at
io
n
ce
nt
ri
ci
ty

✓
✓

Fa
ce
-t
o-
fa
ce

co
nv
er
sa
tio

n
✓

Pr
og
re
ss

m
ea
su
re

✓

C
on

st
an
tp

ac
e
in
de
fin

ite
ly

✓
✓

✓

Te
ch
ni
ca
le
xc
el
le
nc
e

✓
✓

Si
m
pl
ic
ity

✓
✓

Se
lf
-o
rg
an
iz
in
g
te
am

s
✓

✓
✓

R
efl

ec
ta
nd

ad
ju
st

✓
✓

✓
✓

✓

52 D.X. Houston and S.W. Rosemergy

Diebold and Zehler, Chap. 2, also produced a list of characteristics that they claim
describe all known agile methods. They say that these characteristics are based on
principles defined in the Agile Manifesto, but do not offer a derivation.

• Self-organizing teams
• Evolutionary development with short iterations and release cycles
• Active involvement of the customer with feedback
• Simple reactions and quick changes without formal change requests
• Simple design
• Test as central point in the development

This set of characteristics compares well with the derived set of GAC. With the
exception of Interpersonal Interaction and Leadership by the Motivated, a one-to-
one correspondence can be drawn between the derived general characteristics and
Diebold and Zehler’s set.

Conboy’s [8] Taxonomy of Information Systems Development (ISD) agility pro-
vides another example of a set of characteristics of agility.

1. To be agile, an ISD method component must contribute to one or more of the
following:

a. Creation of change
b. Proaction in advance of change
c. Reaction to change
d. Learning from change

2. To be agile, an ISD method component must contribute to one or more of the
following, and must not detract from any:

a. Perceived economy
b. Perceived quality
c. Perceived simplicity

3. To be agile, an ISD method component must be continually ready, i.e., minimal
time and cost to prepare the component for use.

Conboy derived his taxonomy rigorously from definitions of “leanness” and “flexi-
bility” rather than from agile values and principles. Consequently, it has a different
structure than the previous sets of characteristics of agility. Nonetheless, it provides
a useful set of characteristics for comparison.

Comparing the four sets of agility characteristics, several observations can be
made.

• Only the GAC explicitly lists “interpersonal interaction,” a strong motivator in the
agile software development movement for increasing agility by reducing docu-
mentation. Table3.3 illustrates that this value underlies six of the principles, so
the other sets of characteristics likely treat this implicitly as an enabler of other
characteristics.

http://dx.doi.org/10.1007/978-3-319-31545-4_2

3 Assessing Product Development Agility 53

• Turner [31] and Conboy [8] each include similar characteristics that the other
two sets do not include. Turner includes “lean attitude (remove no-value-added
activities)” and Conboy includes “perceived economy.” These do not trace directly
to agile values and principles, but do trace to an agile method, Lean Software
Development, and to one of Conboy’s starting concepts, “leanness.”

• Another characteristic that Turner and Conboy include, but is not included in the
other two sets, is learning: “learning attitude” (Turner) and “learning from change”
(Conboy). In addition to Conboy’s derivation, this characteristic is traced to the
agile principle of “reflect and adjust.”

3.6 Agility and Other Endeavors

A general set of characteristics provides a basis for discriminating between con-
formance and nonconformance to an ideal: a product development program can be
described as agile to the extent to which it exhibits the characteristics. Thus, one can
use such a set of characteristics to assess, at least qualitatively, whether a develop-
ment program is behaving as an agile program is expected to behave. Because the set
of characteristics is generalized, this included not only software development, but
also other types of development programs. Furthermore, the set of characteristics
could serve as a basis for developing a quantitative measure of agility.

To illustrate how we can use these characteristics to evaluate the degree of agility,
we will examine the use of agile methods in the context of another domain: highly
regulated systems development.

3.6.1 Development Process Agility in Highly Regulated
Environments

Company B was a small (200 employees) bio-tech software start-up based in North
America. Their primary product offering was an enterprise medical informatics
diagnosis and digital record keeping software system. In spite of its relative size,
Company B dominated the clinical informatics industry by virtue of its patented
high-performance image streaming and business process automation technology.
Company C was an established international medical device company, with over
100,000 employees worldwide. In addition to medical imaging devices, Company
C sold enterprise business process automation tools, similar to that of Company B.
However, Company C’s product offering was not competitive due to Company B’s
patented streaming technology, which gave Company B a market share advantage of
more than 40% over Company C.

In order to gain market share in the clinical informatics industry, Company C
acquired Company B. Company C had a reputation for delivering high-quality, inno-

54 D.X. Houston and S.W. Rosemergy

vative products to themarketplace.Moreover, because theEuropeanmedical industry
is highly regulated, CompanyC had established corporate-wide engineering policies,
documented practices, and work product standards that ensured both transparency
and compliance with IEC 62304 standards for medical device software development
[14]. In contrast, Company B had used test-driven development (TTD) methods,
with an emphasis on test automation. Having already built a testing infrastructure to
accommodate both regression testing and just-in-time product enhancements, Com-
pany B delivered new capability for customer evaluation every four weeks. Company
C, concerned for the success of their acquisition and the perceived risk of delivering
new capability compliant with IEC and ISO standards, (a) investigated the possibility
of imposing anymandates on the TDD team and (b) sought to learn from the software
development successes of Company B.

Through interviews with Company B’s software development team, and assess-
ments of their product related work products, Company C found the following
strengths:

1. While company B placed less emphasis on developing detailed documented
requirements, they were able to trace driving requirements from user stories,
to test cases, to documented design decisions (through both their feature tracking
tools and the source code), and finally to test results.

2. Architectural decisions and constraints, while discussed only in face-to-face
forums, were well understood by all internal stakeholders (well beyond the soft-
ware engineers).

3. Product implementation followed establishment of requirements mandates and
constraints through the creation and execution of tests, each of which served as a
mechanism for demonstrating technical progress and achievement of both quality
attributes and functional requirements alike.

4. Customers drove feature innovation, based on real-world use and evaluation of
prototypes. Company B’s mechanism for evaluating product features with cus-
tomers, early and often, pruned unimportant features from the product line.

On the other hand, Company C found that although Company B products were not
subject to medical device regulatory standards (ANSI, AAMI, IEC, and ISO) [24],
theywere not compliant with corporate IT safety standards (IEC 60950-1). Also, they
found no mechanisms for demonstrating compliance with regulatory requirements
if they chose to integrate their medical imaging products directly with Company B
products.

3.6.2 Addressing Regulatory Concerns with an Agile Process

Company C’s evaluation of Company B’s practices and work products found that B’s
practices served as a motivating force for innovation, collaboration, and the delivery
of both high-quality and marketplace-relevant products. They also determined that
dismantling B’s approaches could put the company acquisition at risk. The biggest

3 Assessing Product Development Agility 55

Fig. 3.6 Pre-acquisition
company product
development comparison
using general agile
characteristics

challenge they faced was incorporating ISO and IEC medical device safety compli-
ance standards, so they approached B’s development team and asked them how they
could demonstrate compliance with these regulatory standards while maintaining the
general characteristics of agility.

CompanyB’s development team reviewed both the regulatory standards andCom-
pany C’s compliant practices against the general agile characteristics. Next, the team
engaged Company C’s compliance experts and developers to assess all development
practices (of both companies), using the agile general agile characteristics (Fig. 3.6).
Understanding that relative agility was not reflective of product quality, together they
found significant differences with respect to development practices, each of which
either promoted or inhibited the general agile characteristics. Next, the team evalu-
ated the regulatory constraints and requirements to determine the extent towhich they
might inhibit (or possibly promote) development agility. Together they determined
the following points.

1. They could, with careful attention, maintain performance that exhibited all the
general agile characteristics.

2. TDD provided the infrastructure for demonstrating compliance with regulatory
requirements but required some enhancements to be fully compliant.

3. With the help of good coaching and an embedded subjectmatter expert, they could
demonstrate traceability to regulatory and safety standards at each delivery, and
the acquiring organization could adopt agile practices.

4. Integration with external safety critical software/hardware would need to be
decoupled architecturally to ensure that their certification would not impede the
deployment of new products.

56 D.X. Houston and S.W. Rosemergy

Fig. 3.7 Pre-acquisition and
post-acquisition company
product development
comparison using general
agile characteristics

3.6.3 Epilogue: Further Adoption of Agile Approaches

After finalizing the acquisition of Company B, Company C created a new business
unit to house its medical informatics product suite, and then incrementally migrated
its existing customer base to the acquiredproduct suite.Within twoyears, thefinancial
performance of the new business unit eclipsed the combined performance of all
Company C’s other medical business units.

Under stakeholder pressure to improve the financial performance of the other
business units, Company C embarked on a two-year plan to adopt agile methods on
all software-intensive systems. To this end, they created an Agile Center of Excel-
lence (ACE) led by a long-time Company C leader. Because the company was more
than 100 years old, this action met with initial resistance and distrust. After four
years of coaching and mentoring both leaders and individual contributors (more than
5000 employees), the company has strongly embraced agile approaches to product
development, as shown in the results of an assessment against general agile charac-
teristics (Fig. 3.7). In terms of business value, the company attributed its profits to
their “Agile Renewal.”

3.7 Measurement of Agility

The preceding story demonstrates the value of using GAC as a basis for measuring
agility.Measurement of agility has been a topic of discussion in product development
[29] and production research [30] for over a decade. In software development circles,
a number of agility measures have been discussed in various forms and for various
purposes.

3 Assessing Product Development Agility 57

• Datta [9] has proposed an AgileMeasurement Index based on five software project
dimensions, for use in selecting a development methodology.

• Bock [5] suggests Agility Index Measurements for comparing capabilities of soft-
ware development teams using seven scales.

• Seuffert [26] uses an 11-item questionnaire to measure degree of agile adoption.
• Kurian [16] produced a fuzzy model for measuring agility based on seven project
characteristics.

• Lappo and Andrew [17] categorize agile goals and offer an example of collecting
data for assessing a goal.

• Shawky and Ali [27] produced a measure of change rate, or entropy as an indicator
of agility.

• Qumer and Henderson-Sellers [22] developed a four-dimensional framework (4-
DAT) for evaluating the degree of agility in agile methods.

Of these six proposals, the first, the fourth, and the seventh hold the most promise.
They are based on project characteristics, recognize degrees of agility, can produce
leading indicators, and can be extended beyond software development. However,
the first of these three have two shortcomings: (1) neither use characteristics that
have been verified as dominant variables for measuring product development agility;
and (2) the scales and mathematical models employed by each require validation
for their ability to produce meaningful measures. Using the Agile Manifesto as a
starting point, Tables3.3 and 3.4 have sought to address the first shortcoming with
a set of characteristics that are clearly traceable to a widely accepted set of values
and principles that define agile software development. The second aforementioned
shortcoming remains to be addressed.

The seven proposals indicate needs for measuring agility and hint at some of the
potential benefits. One of the benefits would be overcoming the popular misconcep-
tion of a binary approach to agile development: either a development organization is
agile or it is not.Measureable definitions of agilitywould recognize that organizations
demonstrate degrees of agility and would facilitate discussion of those degrees.

Another benefit of measuring agility is technical definition. “Agile” is a word so
broadly used that its meaning has been overly inflated. Ironically, it fails to carry
substantial meaning for people who must manage technical development processes.
Measurement of agility would provide a technical basis for the term and support
clear communication about the merits, shortcomings, and suitability of development
processes. Measurement of agility would lend objectivity to a number of practical
concerns, from guiding and supporting process improvement decisions, to choosing
a development method for a specific project, and to choosing the best group for a
development project.

Each agile software development method is usually recognized by its practices,
but practices may be modified to fit a particular circumstance (a combination of
development organization, customer, software type, product domain, contract, regu-
lations, and so forth). In a multi-case study of Scrum projects, Diebold and Zehler,

58 D.X. Houston and S.W. Rosemergy

Chap. 2, found deviations, variations, and adaptations of Scrum. When such varia-
tions are undertaken, the question may arise as to the ability to perform agilely. As
the preceding story illustrates, measuring agility from a set of characteristics can
produce valuable results.

3.8 Conclusion

Product development always requires balancing concerns for cost, duration, features,
and product quality. Although business and manufacturing had begun developing
agile production concepts, the authors of the agile manifesto took a step forward by
producing a set of values and principles based on a decade of experience using vari-
ous alternative software development practices and methods. From those values and
principles we have distilled a set of general agile characteristics and demonstrated
the usefulness of these characteristics in facilitating software-intensive systems suc-
cess. As general characteristics, they can be applied to other product development
domains.More importantly, they provide a basis for judging the agility of a particular
development process. The stories in this chapter suggest that qualitative assessments
are the usual means of judging process agility, but somework has pursued quantifica-
tion. More work is necessary to develop good measurement scales based on general
agile characteristics.

3.9 Further Reading

Balancing Agility and Discipline: A Guide for the Perplexed, by Barry Boehm and
Richard Turner, shows that agile and disciplined methods lie on a continuum. They
have worked out guidelines for determining where on the continuum a project lies
and how agile or disciplined a method must be.

For readers interested in degrees of agility, we recommend the following works
cited in the References section: Conboy [8], Chow and Cao [6], and Qumer and
Henderson-Sellers [22]. Qumer and Henderson-Sellers [21] provide more back-
ground on the 4-DAT analytical framework for evaluating methods from the per-
spective of agility in their article. Sheffield and Lemétayer [28] discuss factors that
indicate software project agility and project success.

“The Right Degree of Agility in Rich Processes,” by Diebold and Zehler, is the
Chap. 2 in this volume. It discusses two approaches, evolutionary and revolutionary,
to integrating of agile software development practices into a structured process.

http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_2

3 Assessing Product Development Agility 59

References

1. American Society for Quality: ASQ history of quality. Available from http://asq.org/learn-
about-quality/history-of-quality/overview/overview.html

2. Bass, J.: Scrum master activities: process tailoring in large enterprise projects. In: Proceedings
of the International Conference on Global Software Engineering, pp. 6–15. IEEE,Washington,
DC, USA (2014)

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-
ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Development. http://
agilemanifesto.org (2001)

4. Begel, A., Nagappan, N.: Usage and perceptions of agile software development in an industrial
context: an exploratory study. In: Proceedings of the International Symposium on Empirical
Software Engineering and Measurement, pp. 255–264. IEEE Computer Society, Washington,
DC, USA (2007)

5. Book, D.: Improving your processes? Aim high. http://jroller.com/bokmann/entry/improving_
your_processes_aim_high

6. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects. J.
Syst. Softw. 81(6), 961–971 (2008)

7. Chrissis, M., Konrad, M., Shurm, S.: CMMI. Guidelines for Process Integration and Product
Improvement, 2nd edn. Addison Wesley, Boston, MA (2007)

8. Conboy, K.: Agility from first principles: reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20(3), 329–354 (2009)

9. Datta, S.: Agility measurement index: a metric for the crossroads of software development
methodologies. In: Proceedings of the Southeast Regional Conference, pp. 271–273. ACM,
New York, NY, USA (2006)

10. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards
explaining agile software development. J. Syst. Softw. 85(6), 1213–1221 (2012)

11. Duvall, L.: Be quick, be useable, be on time: lessons in agile delivery of defense analytic tools.
21st Century Defense Initiative Policy Paper (2012)

12. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9–10), 833–859 (2008)

13. Goldman, S., Nagel, R., Preiss, K., Dove, R.: Iacocca Institute: 21st Century Manufacturing
Enterprise Strategy: An Industry Led View. Iacocca Institute, Bethlehem (1991)

14. ISO/TC 210: Medical device software – software lifecycle processes. International Standard
IEC 62304:2006, International Standards Organization (2006)

15. Krueger, C.: Software product line reuse in practice. In: Proceddings of the IEEE Symposium
on Application-Specific Systems and Software Engineering Technology, pp. 117–118. IEEE,
Washington, DC, USA (2000)

16. Kurian, T.: A fuzzy based approach for estimating agility of an embedded soft-
ware process. http://www.siliconindia.com/events/siliconindia_events/Global_Embedded_
conf/Globa_Embedded_Conf_PPT_final_tisni.pdf (2011)

17. Lappo, P., Andrew, H.: Assessing agility. Extreme Programming and Agile Processes in Soft-
ware Engineering. Lecture Notes in Computer Science, vol. 3092, pp. 331–338. Springer,
Berlin (2004)

18. Murphy, B., Bird, C., Zimmermann, T., Williams, L., Nagappan, N., Begel, A.: Have agile
techniques been the silver bullet for software development at Microsoft? In: Proceeding of the
International Symposium on Empirical Software Engineering and Measurement, pp. 75–84.
IEEE, Washington, DC, USA (2013)

19. Niazi, M., Mahmood, S., Alshayeb, M., Rehan Riaz, M., Faisal, K., Cerpa, N.: Challenges
of project management in global software development: initial results. In: Proceedings of the
Science and Information Conference, pp. 202–206. IEEE, Washington, DC, USA (2013)

http://asq.org/learn-about-quality/history-of-quality/overview/overview.html
http://asq.org/learn-about-quality/history-of-quality/overview/overview.html
http://agilemanifesto.org
http://agilemanifesto.org
http://jroller.com/bokmann/entry/improving_your_processes_aim_high
http://jroller.com/bokmann/entry/improving_your_processes_aim_high
http://www.siliconindia.com/events/siliconindia_events/Global_Embedded_conf/Globa_Embedded_Conf_PPT_final_tisni.pdf
http://www.siliconindia.com/events/siliconindia_events/Global_Embedded_conf/Globa_Embedded_Conf_PPT_final_tisni.pdf

60 D.X. Houston and S.W. Rosemergy

20. Phalnikar, R., Deshpande, V., Joshi, S.: Applying agile principles for distributed software
development. In: Proceedings of the International Conference on Advanced Computer Control,
pp. 535–539. IEEE, Washington, DC, USA (2009)

21. Qumer, A., Henderson-Sellers, B.: An evaluation of the degree of agility in six agile methods
and its applicability for method engineering. Inf. Softw. Technol. 50(4), 280–295 (2008)

22. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption and
improvement of agile methods in practice. J. Syst. Softw. 81(11), 1899–1919 (2008)

23. Reagan, R., Rico, D.: Lean and agile acquisition and systems engineering, a paradigm whose
time has come. Defense Acquisition University, Defense AT&L (2010)

24. Rottier, P., Rodrigues, V.: Agile development in a medical device company. In: Proceedings of
the Agile Conference, pp. 218–223. IEEE, Washington, DC, USA (2008)

25. Séguin, N., Tremblay, G., Bagane, H.: Agile principles as software engineering principles: an
analysis. Agile Processes in Software Engineering and Extreme Programming. Lecture Notes
in Business Information Processing, vol. 111, pp. 1–15. Springer, Berlin (2012)

26. Seuffert, M.: Agile Karlskrona Test. http://mayberg.se/archive/Agile_Karlskrona_Test.pdf
(2009)

27. Shawky, D., Ali, A.: A practical measure for the agility of software development processes. In:
Proceedings of the International Conference on Computer Technology and Development, pp.
230–234. IEEE, Washington, DC, USA (2010)

28. Sheffield, J., Lemétayer, J.: Factors associated with the software development agility of suc-
cessful projects. Int. J. Proj. Manag. 31(3), 459–472 (2013)

29. Sieger, D.B., Badiru, A.B., Milatovic, M.: A metric for agility measurement in product devel-
opment. IIE Trans. 32(7), 637–645 (2000)

30. Somanath, N., Sabu, K., Krishnanakutty, K.V.: Measuring agility of organizations - a compre-
hensive agility measurement tool (camt). Int. J. Innov. Res. Sci. Eng. Technol. 2(1), 666–670
(2013)

31. Turner, R.: Toward agile systems engineering processes. CROSSTALK the Journal of Defense
Software Engineering, pp. 11–15 (2007)

http://mayberg.se/archive/Agile_Karlskrona_Test.pdf

Chapter 4
Value-Driven Process Management

Christof Ebert

Abstract To survive in a fast-changing environment, almost all companies strive for
continuous efficiency improvement, reducing the cost of non-quality and optimizing
product strategies. Simultaneously, it is thus crucial to improve product strategy and
the product development processes. However, such improvement programs often fail
due to lack of leadership and organizational misalignment. Operational constraints
such as project pressure, client interaction, and strategic dependencies are often
neglected, thus making a proposed change program a mere theoretic exercise—
without much buy-in from the trenches. Despite access to a substantial body of
knowledge of methods such as Capability Maturity Model Integration (CMMI) and
Six Sigma, many organizations still struggle in practice. Most organizations fail
to align necessary transformations with concrete business objectives. This chapter
shows how to set up and drive a value-driven process environment based upon explicit
business objectives and how to deliver sustainable value. It goes beyond theoretical
method frameworks and emphasizes hands-on change management. Value-driven
process evolution underlines the need continuously to manage the transformation
based on business objectives and operational constraints. From these, a specific and
tailored approach toward achieving engineering excellence is derived. A case study
shows how value-driven process management was used over a period of several
years. Improving productivity and efficiency is selected as a hands-on example how
practically to implement value-driven process evolution.

4.1 Introduction

Today’s market for technical products is more competitive than ever. Many enter-
prises compete in a fluctuating and increasingly saturated market for narrow mar-
gins. Especially when the market fluctuation is running into “hard times” such as
the economic crisis a few years ago or today’s brutally competitive struggles, many
companies find themselves in a fight for mere survival—and the urgency to reduce
costs and optimize profits increases. Consequently, product development becomes

C. Ebert (B)
Vector Consulting Services, Ingersheimer Straße 24, 70499 Stuttgart, Germany
e-mail: Christof.Ebert@vector.com

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_4

61

62 C. Ebert

the focus of profit optimization, because many cost drivers of the final product, such
as rework due to poor quality or production costs due to uncontrolled variants, are
defined during development. Cost-reduction programs in product development often
conflict with existing process improvement programs or limit activities of quality
assurance such as peer reviews—but why? In some cases, these decisions are based
on gut feelings, and, in other cases, there are simply no clear objectives or any
convincing evidence on the positive effects of such activities within an organization.

Efficient software development and lifecycle management is a major asset on a
global scale. In industrial and consumer sectors, it is increasingly software that defines
the value of products. Today, value generation in the automotive and medical indus-
tries already depends over 50% on innovative software-driven technologies. Not
surprisingly, engineering investments are heavily spent on software development of
applications and products. In our fast-changingworld, a companywill only succeed if
it continually challenges and optimizes its own engineering performance.At the same
time, engineering of technical products is currently undergoing a dramatic change.
Ever more complex systems with high quality must be developed at decreasing
costs and shortened times to market. Competition is growing, and the entry barriers
to established markets are diminishing. The result is more competitors claiming that
they can achieve better performance than established companies. An increasing num-
ber of companies are aware of these challenges and are proactively looking at ways
to improve the efficiency and productivity of their product strategy and development
processes.

Business processes determine how things are done—end to end. They provide
guidance to thosewhodoand focus onwhat to do.Guidancemeans understanding and
ensures repeatability. Focus means achieving targets both effectively and efficiently,
without overheads, friction, and rework. Good processes are as lean and agile as
possible, while still ensuring visibility, accountability, and commitment to results.
Insufficient processes reduce business opportunities and performance due to not
keeping commitments and delivering below expectations. Processes must be usable
by, and useful to, both practitioners and managers. They must integrate seamlessly,
and they must not disturb or create overheads. Often, processes gradually evolve, but
without a big picture of overall business needs. They organically grow and gradually
morph into a ballast rather than a value-driver.

Improvements must target value! There is no performance gain, if not measured
and traceable to clear value improvement. One can always improve figures by pol-
ishing statistics and number-crunching, but this is lying to yourself and your stake-
holders. We talk here about tangible value improvement in an economic sense.

What exactly is value? We can express value with in the economic perspective
that we use in this chapter. The value of a product is an economic category that
forms the basis for comparing and charging totally different supplies and services
in a particular quantitative relationship to each other [4]. Value is a perception and
exists only in the eyes of the beholder. Therefore, value is always quantifiable and
expressed in monetary terms, i.e., the price, and is determined by the supply and
demand. Business value is the value of a product for a business. It depends on the
customer value, which is the perceived value in a market.

4 Value-Driven Process Management 63

Organizations thus must simultaneously improve product strategy and related
business processes, such as product development. However, such improvement pro-
grams often fail due to lack of leadership and organizational misalignment. Opera-
tional constraints such as project pressure, client interaction, and strategic dependen-
cies are often neglected, thus making a change program a mere theoretic exercise—
without much buy-in from the trenches. Despite access to a substantial body of
knowledge of methods such as Capability Maturity Model Integration (CMMI) and
Six Sigma, many organizations still struggle in practice. Most organizations fail to
align necessary transformations with concrete business objectives.

Process management will fail if companies do not consider changing business
requirements, such as digitalization. By focusing on the essence of the processes,
integrating process elements with each other and providing complete tool solutions,
organizations can tailor processes to meet specific needs and enable localized and
problem- or skill-specific software practices, while still ensuring that the basic objec-
tives of the organization are achieved.

This chapter shows how to set up and drive a change program based upon explicit
business objectives and how to deliver sustainable value. It goes beyond theoretical-
method frameworks and emphasizes hands-on change management. Value-driven
process evolution underlines the need continuously to manage the transformation
based on business objectives and operational constraints. From these, a specific and
tailored approach toward achieving engineering excellence is derived. A case study
shows how value-driven process improvement was used over a period of several
years. Improving productivity and efficiency is selected as a hands-on example of
how practically to implement value-driven process evolution.

Let me close this section with a small side note for further reflection. As with
all economic expressions and sober performance measurements, we should
not overlook the much more relevant humanistic perception, as, for instance,
that expressed by Antoine de Saint-Exupery, who observed “Grown-ups like
numbers. When you tell them about a new friend, they never ask questions
about what really matters. They never ask: ‘What does his voice sound like?’
‘What games does he like best?’ ‘Does he collect butterflies?’ They ask: ‘How
old is he?’ ‘How many brothers does he have?’ ‘How much does he weigh?’
‘How much money does his father make?’ Only then do they think they know
him.” [6].

4.2 Implementing Value-Driven Process Management

Today, software is themajor asset of many companies. In the industrial and consumer
sectors, it is increasingly software that defines the value of products. For instance,
value generation in automotive already depends over 50% on innovative software-
driven technologies. Not surprisingly, engineering investments are heavily spent on

64 C. Ebert

the software development of applications and products. In our fast-changing world,
a company will only succeed if it continually challenges and optimizes its own engi-
neering performance. At the same time, the engineering of technical products is
currently undergoing dramatic changes, such as for digitalization and enhanced ser-
vices. Ever more complex systemswith high quality must be developed at decreasing
costs and shortened times to market. Competition is growing, and the entry barri-
ers to established markets are diminishing. The result is more competitors claiming
that they can achieve better performance than established companies. An increasing
number of companies are aware of these challenges and are proactively looking at
ways to improve the efficiency and productivity of their development processes.

Development processes along the product lifecycle determine how things are
done—end to end. They provide guidance to those who do and focus on what to
do. Guidance aims at understanding and ensures repeatability. Focus means achiev-
ing targets both effectively and efficiently, without overheads, friction, and rework.
Good processes are as lean and agile as possible, while still ensuring visibility,
accountability, and commitment to results. Insufficient processes reduce business
opportunities and performance due to not keeping commitments and delivering below
expectations. Processes must be usable by, and useful to, both practitioners and man-
agers. Usable means that the process must be applicable in its intended purpose and
environment. Useful means that it creates value if executed according to its intended
purpose. Processes must integrate seamlessly, and they must not disturb or create
overheads.

Process improvement will fail if we do not consider these basic requirements. By
focusingon the essenceof the processes, integratingprocess elementswith eachother,
and providing complete tool solutions, organizations can tailor processes to meet
specific needs and enable localized and problem- or skill-specific software practices,
while still ensuring that the basic objectives of the organization are achieved.

To improve continuously and thus stay ahead of the competition, organizations
need to change in a deterministic and results-oriented way. If you do not knowwhere
you are and where you want to go, change will never lead to improvement. Looking
toward improved process maturity will help in setting up an improvement trail.

The concept of processmaturity is not new.Manyof the established qualitymodels
in manufacturing use the same concept. This was summarized by Philip Crosby in
his bestselling book Quality Is Free in 1979 [2]. From his broad experiences as a
senior manager in various industries, he found that business success depends on
quality. With practical insight and many concrete case studies, he could empirically
link process performance to quality. His credo was stated as “Quality is measured
by the cost of quality which is the expense of nonconformance—the cost of doing
things wrong.” Or doing the wrong things—as the author with his strong business
perspective observed in many companies which actually had leading processes and
still failed in business.

4 Value-Driven Process Management 65

Over half of all process improvement programs fail, as the author haveobserved
in many companies over the past two decades [4]. Why is that? It is for two
reasons, namely:

• Lack of systematic change management
• Insufficient leadership

Both observations have one common denominator. Many improvement activities
have insufficient objectives and, for that reason, no motivation to change and no
possibility to complete the implementation of changes. Projects without clear goals
will miss their goals clearly, as TomGilb once stated. Value-driven process evolution
is a goal-oriented improvement approach toward measurable and sustainable perfor-
mance improvement. It has several components that distinguish it from the more
traditional approach with a focus on certification and therefore insufficient buy-in
from stakeholders:

• Align with business needs
• Incrementally deliver tangible progress
• Broaden the scope of the improvement project from engineering to a product and
customer perspective

• Use methods such as Six Sigma as tools and best practices, but not as ends in
themselves

Process improvement frameworks, such as Six Sigma and the Capability Maturity
Model Integration (CMMI), offer the benefit of improving on a determined path,
to benchmark with other companies, and to apply worldwide supplier audits or
comparisons on a standardized scale. Combined with value-driven process improve-
ment, they provide the “tools” to implement changes, whereas value-driven process
improvement ensures staying on track and delivering the right results in due time.

Fig. 4.1 Value-driven
process improvement: seven
steps to success

66 C. Ebert

Figure4.1 shows the basic steps in value-driven process improvement, starting
from business objectives and ending with sustainable results being delivered. There
are seven steps to emphasize:

1. Create Urgency Derive concrete change needs from the orga-
nization’s business goals. The status quo must
appear more dangerous than the journey to the
new state. Employees and management must
feel the pressure resulting from business needs.

2. Ensure Sponsorship Sustainable change starts at the top and then
grows top-down. Change needs to be pushed by
senior management. “You need to be the change
that you want to see in the world.”

3. Establish Vision for Action Establish a compellingvision.The changevision
must energize employees toward being part of
the change. Ensure a sound methodology and
the right actions. You have just one shot.

4. Create Room to Change Changeneeds resources and competences.Orga-
nize change as a project with a small energetic
team. Provide a budget and ensure expert sup-
port. Agree on project targets, responsibilities,
milestones, and deliverables (tuned to business
goals). Manage the change project, rigorously.
Monitor performance, looking to usage and use,
pre- and post-change. Manage risks.

5. Consistently Communicate Mobilize stakeholder support and use differ-
ent communication channels. Vision, content,
progress, and results must be consistently
communicated. Do not confuse leadership and
democracy. Engrain change into management
behaviors. “Walk the talk.”

6. Deliver Tangible Results Fast Change where there is a pressing need. Fast and
sustainable results create trust. Set up the trans-
formation in incremental steps periodically to
deliver tangible value. Monitor the implementa-
tion and institutionalization of the change with
a few measurements, such as use and usage.

7. Capitalize on Changes Success motivates more changes. Show how
new ways of working actually deliver better
results. Anchor new behaviors within your orga-
nizational culture. Consolidate achieved results
by updating organizational templates, such as
budgeting. Ensure that changes are engrained to
culture and periodically re-assessed. Results are
sustainable only when they are delivered with-
out management pressure.

4 Value-Driven Process Management 67

We have introduced the concept of value-driven process improvement in order
to focus processes—and their improvement—on the objectives they must achieve
[4]. Processes are a means to an end and need to be lean, pragmatic, efficient, and
effective—or they will ultimately fail, despite all the push one can imagine. We
show with this chapter how value-driven process evolution is used for continuous
adaptation of engineering and maintenance processes with the underlying goal of
productivity improvement. Specifically, we show how adequate measurement is used
as a precondition to define the right objectives and, later on, systematically follow
through.

4.3 Performance Measurement

Change programs need performance measurement. A successful performance
improvement project always startswith identifying business needs and then translates
those into a transformation of the current state as defined by its products, people, and
processes to a future state with improved performance. Performance improvement
needs to look to value achieved today, and value improvement as is necessary for
staying in business, or getting better. Performance improvement is thus framed by
quantitative objectives. The progress in achieving these quantitative, performance
improvement objectives must be closely monitored with adequate performance
measurements.

We recommend using a goal-oriented, measurement approach, such as the
E4-measurement process (Establish, Extract, Evaluate, Execute) [4]. Figure4.2

Fig. 4.2 Goal-oriented measurement ensures that process improvement is embedded in a closed-
feedback loop

68 C. Ebert

shows the interdependencies between the execution of a process, its definition, and
the improvements. It shows how to apply value-driven performance measurement
starting with business objectives (Establish), through executing the process and mea-
suring results (Extract), evaluating results (Evaluate), and deriving and implement-
ing concrete improvements (Execute). This E4-measurement process is well suited
to implement value-driven process improvement because it starts with a breakdown
of business-oriented objectives.

If the organization does not yet actively use process and performance measure-
ments, some fast ramp-up is necessary in order to determine ameasurement baseline.
Improvements are only feasible if they are quantitatively tracked against such a base-
line, which then serves as a yardstick on progress and a pointer for directions to take.
Processesmust be quantitatively judgedwhether they are goodor bad, orwhether they
are better or worse than before. To make change sustainable, it is based on realistic
improvement objectives. The interaction of objectives and feedback is obvious in
day-to-day decision-making. Different groups typically work toward individually
controlled targets that build up to business division-level goals and corporate goals.

Let us look at a specific example to understand these interdependencies better.
A department or business division-level goal could be to improve maintainability
within legacy systems, as it is strategically important for most software and IT com-
panies. Design managers might break that down further to redesigning exactly those
components that are at the edge of beingmaintainable. Product and project managers,
on the other hand, face a trade-off with time to market and might emphasize incre-
mentally adding functionality instead. Clearly, both need appropriate indicators to
support their selection processes that define the way toward the needed quantitative
targets related to these goals. Obviously, one of the key success criteria for process
improvement is to understand the context and potentially hidden agendas within the
organization, in order to find the right compromises or to weigh alternatives.

Objectives related to individual processes must be unambiguous and agreed upon
by their respective stakeholders. Stakeholders are those who use the process or who
benefit from it. These are not just management, but could comprise engineers and
suppliers, among others. This is obvious for test and design groups. Although the first
are reinforced for finding defects and thus focus on writing and executing effective
test suites, design groups are dedicated to delivering code that can be executedwithout
defects. Defects must be corrected efficiently which enables setting up a quantitative
objective for a design group, that is, the backlog of faults it has to resolve. This may
uncover one of the many inherent conflict situations embedded in an improvement
program. Setting an overall target of reducing defects found by the customer, for
instance, triggers immediate activities in design, such as improved coding rules,
establishing code inspections, and so on. Finding such defects up front means better
input quality to the integration test that, as a result, might not be able to accomplish
efficiency targets, such as a distinct rate of faults per test case. For testers this change,
however, has dramatic consequences, as they will incur higher costs in detecting the
remaining defects. Besides maybe enhancing test coverage, a successfully running

4 Value-Driven Process Management 69

test case has little worth from a cost reduction perspective. Their own performance
measurements have to change in order to achieve better customer quality, combined
with higher efficiency.

4.4 Focus: Productivity Improvement

Productivity improvement is a major goal in industry due to growing global competi-
tion and the need to focus scarce resources on what really matters for value-creation.
Most companies are forced to boost their productivity continuously, but are not sat-
isfied with what they achieve. Admittedly, productivity programs are difficult to set
up and hard to implement. We thus focus in this section on process improvement for
better productivity. Let us work in the four steps that guarantee you will get a grip
on productivity. This stepwise approach to productivity improvement, based on the
E4-measurement process, can be summarized as follows:

1. Agree on objectives. The first step is to set a business-driven objective. This
implies that you understand what you mean by productivity (establish).

2. Determine where you are. The next step is to determine where you are and what
should be improved (extract).

3. Determine how to improve. Then you analyze in detail how you are doing, com-
pare that with competitors, evaluate how specific industry best practices might
help, and agree on concrete actions for productivity improvement (evaluate).

4. Implement improvements. On this basis, you will systematically improve and
subsequently repeat the previous steps (execute).

How can software engineering productivity be effectively improved? Based upon
an understanding of what is productivity (step 1) and where we are (step 2), it is a
simple step to move forward and determine what must be changed. Figure4.3 shows
the different levers to improve productivity.

The first thing we realize is that, in order to improve productivity, it is wrong to
simply talk about cost reductions. Often the one and only mechanism that is trig-
gered, when it comes to R&D or IT productivity, is to reduce costs, which is done
mostly by cutting out what does not matter at present or by outsourcing. Both have
detrimental effects on overall enterprise performance and long-term stability. Reduc-
ing investments in new products will create short-term yields, but will equally reduce
market attractiveness. Productivity improvement means to look to both numerator
and denominator.

Improving productivity starts always on the output side and reflects whether
you are truly delivering value to your customers—inside and outside the com-
pany.

Do you sufficiently manage product content and roadmaps? Are the business case
and needs of your customers understood and considered in the product portfolio? Do

70 C. Ebert

- Effectiveness: Doing the right things (i.e., sales, market share, value, focus)
- Value creation (right products and features, improve customer business case,

nonfunctional requirements, customer satisfaction)
- Innovation (business model, products, services, and support)
- Quality improvement
- Cycle time reduction
- Variant reduction, product-line engineering (PLE), roadmap management
- Product/Service lifecycle management
- Portfolio management

-
- Improve engineering cost structure
- Employee motivation, workspace attractiveness
- Balance of localization and globalization
- Reduce cost of rework, cost of non-quality
- Business process reengineering
- Improve engineering maturity, discipline, management, competences
- Optimize make vs. by vs. reuse strategy
- Master technology, tools, architecture

Productivity =
Output

Input

Fig. 4.3 Levers for productivity improvement

you have too many variants for different markets and waste effort on customization
that is not paid for?Which of your products have the highest market share andmarket
growth? Analyze and manage your portfolio to ensure that scarce resources are spent
on critical portfolio elements (i.e., cash cows for today’s cash flow and stars for new
technologies). Reduce the number of versions and rather spendmore time on strategic
management together with your product managers, marketers, and sales people. Are
you doing the right thing?

Note that cost reduction, along with doing the wrong things, will reduce
expenses but will not improve performance!

We recommend that each product manager maintains for his major products a
roadmap document with the product strategy and the functional and technical fea-
tures and dependencies planned in the releases for the coming years [3]. Managing
and maintaining roadmaps and the portfolio as a mix of resources, projects, and ser-
vices is the focus of each product manager whowants to improve value.Withmoving
targets, the sales department has no guidance on how to influence clients, and engi-
neering will decide on its ownwhich technologies to implement with what resources.

4 Value-Driven Process Management 71

When it comes to his own portfolio, the product manager has to show leadership and
ensure dependable plans and decisions that are effectively executed. Apply adequate
risk management techniques to make your portfolio and commitments dependable.
Projects may need more resources, suppliers could deliver late, or technology will
not work as expected. As mitigation, platform components used by several products
might use resource buffers, whereas application development applies time boxing. If
there is a change in committed milestones or content within your portfolio, it must
be approved first by the core team and secondly, where necessary, by the respective
business unit’s management, and then documented and communicated with ratio-
nales.

After having addressed the output side, look to the input side. It is about efficiency,
but certainly not only about the cost of labor, although this matters most in software
engineering. Evaluate for what you are spending which effort. Embark on a rigorous
activity-based accounting to determine which processes consume effort and how
much they contribute to value-creation. Look to your rework along the entire product
lifecycle. Rework is not only createdwith changing requirements, insufficient variant
management, or defect corrections. Rework also comes from insufficient processes
and lack of automation. Investigate which of your processes need more guidance or
management control. Focus on the cost of non-quality, because it typically is a huge
share in software development and maintenance. If test consumes 40% of resources,
this is the process to look into, because test results in no value-creation. Are there
techniques that could improve quality during design and development and thus reduce
test overheads? How much of your test is redundant? How do you determine what to
test and how much to test? Rarely do companies have rules to find out what is good
enough and then build this notion around a business case.

Starting in the 1980s, several studies have been performed to understand what
impacts on the productivity of a software or IT project. The general finding by
researchers like C. Jones or F. Brooks shows that there are productivity factors that
can be controlled (i.e., process-related and accidental) and factors that cannot be
controlled (i.e., product-related and essential) [1, 5]. Jones found that product-related
and process-related factors account for approximately the same amount—roughly
one-third—of productivity variance.

Often hardware productivity improvement is used as benchmark to raise demands
on the software side. Admittedly hardware productivity had been exploding over sev-
eral decades—but this was above that which any other industry ever experienced. The
anomaly is not that software progress is so slow, but that computer hardware progress
is so fast. No other technology since civilization began has seen a seven orders of
magnitude price–performance gain in just 50 years. In hardly any technology can one
choose to blend the gains from improved performance and reduced costs. We cannot
expect to see two-fold productivity gains every two years in other engineering fields.
But we should strive to improve software productivity continuously. By applying
this basic insight, we identified two basic approaches for improving productivity in
software projects, namely [4]:

72 C. Ebert

• Reduce accidental barriers (e.g., improve engineering andmanagement discipline,
processes and tools; apply standards—fromcradle to grave—languages, templates,
IDEs, and so on; design to quality, change, cost, and so on; introduce lean and agile
concepts such as smaller teams, components, iterations, and so on).

• Control essential barriers (e.g., understand what are the real needs and implement
those in the product; do not implement each single change request; evaluate care-
fully the customer’s business case behind a requested feature and do not implement
where there is no clear business case; improve domain understanding; use suitable
modeling languages to achieve a “unified” understanding; develop self-generating
and self-updating software; reuse components).

4.5 Case Study: Productivity Improvement

To better explicate the basics, we introduce a brief case study on productivity
improvement [4]. Figure4.4 shows how a productivity improvement project was
launched and implemented in a globally leading IT company which we supported in
their process transformation. Our starting point is the business objective to reduce the
cost of engineering by 20%.We do not discuss the story behind it, as it might identify
the client. Needless to say, senior management immediately suggested outsourcing
parts of the development process to India. Our proposal was to first look into what
drives productivity before embarking on a mechanism which in fact might not create
the hoped for benefits. Outsourcing is such an example. It is often demanded because

Fig. 4.4 Case study: Implementing productivity improvement

4 Value-Driven Process Management 73

it looks attractive. However, what is missed in this thinking is the long learning curve
of two years until tangible results are achieved, and the relatively low—compared to
expectations—savings potential of 15–20% if executed well [4].

In that company, we found two major cost drivers, the first of which was an overly
high amount of small customization projects that did not create much value. Somehad
been started simply because sales claimed that theywould otherwise lose thatmarket.
A sound business case and delivering according to the intended value proposition
however wasmissing. A second observationwas a high cost of non-quality created by
finding defects too late. We proposed and evaluated a set of potential improvements,
where we agreed on three concrete actions after careful analysis of cost, impacts,
duration, and feasibility in the specific context of our client. The first was to install
portfolio management with a clear decision-making and execution process. This
meant that all projects and products were screened based on their contribution and
strategic adherence. Within six months, we could remove projects with an effort
contribution of over 20% compared to overall engineering cost, but this was just a
one-time effect. We had to move further in a second step.

We therefore also embarked on early defect removal and a dedicated “first time
right” initiative in engineering. Unexpectedly, this latter initiative got very good buy-
in from engineering because they realized that many changes, and thus rework, were
introduced from outside. Controlling it and having clear criteria regarding which
changes to implement based on portfolio management decision-making was a strong
support to focus on value-creation in engineering, rather than defect corrections.
Some concrete actions show how we achieved early defect removal and first time
right.

A key change was to establish a strong requirements-management process with
reviews of requirements and their changes by a defined expert group of product
managers, systems engineers, testers, and the projectmanager. Requirementswithout
the customer business case and clear internal business forecast were not accepted
and had to pass a monthly steering board under the lead of the business unit vice
president. Test-driven development (TDD) was installed to ensure that requirements
were consistently broken down to the design specifications and final code. We used
TDD specifically to create unit test cases that could be reused with each iteration
where code was changed and redelivered. This caused a significant reduction of
defects found by integration and system test and therefore helped after some 10–12
months to gradually reduce these late testing activities.

Another action was to use automatic, code analysis tools that would be used by
engineers before delivering their code complete milestones in the current increment.
Although it took a while to tailor and adjust the screening rules to the most relevant
defects, it helped to give ownership of defect removal to designers, rather than testers.
These combined changes helped in delivering work products right the first time along
the development process, and thus to improve efficiency.

74 C. Ebert

4.6 Conclusion

Based on empirical results, this chapter portrayed how to set up and drive a value-
oriented improvement program based on concrete business goals and development
challenges and how to deliver tangible value. We showed that often the reason for
failures in implementing process improvement is that objectives are unclear or overly
abstract (e.g., “Reduce cycle time by 20%”) and as a consequence the entire project
is handled adhoc with no concrete benefits.

The notion of value-driven process improvement has been introduced to underline
the need to start with clear business objectives and from these derive a specific and
tailored approach toward achieving engineering excellence.

With a case study froma global leading IT company,we demonstrated the concrete
impacts on cost and quality over a long timeline. Our starting point is the business
objective to reduce the cost of engineering by 20%. Needless to say, senior manage-
ment immediately suggested outsourcing parts of development to India. Our proposal
was to first look into what drives productivity before embarking on a mechanism that
in fact might not create the hoped-for benefits. Outsourcing is such an example. It is
often demanded because it looks attractive. However, what is missed in this thinking
is the long learning curve of two years until tangible results are achieved, and the
relatively low—compared to expectations—savings potential of 15–20% if executed
well. In that company, we found two major cost drivers, the first of which was an
overly high amount of small customization projects that did not create much value.
Some had been started simply because sales claimed that they would otherwise lose
that market. What was missing, however, was a sound business case and valuation
that could prove this statement. A second observation was a high cost of non-quality
created by finding defects too late. We proposed and evaluated a set of potential
improvements, where we agreed on three concrete actions after careful analysis of
cost, impacts, duration, and feasibility with the specific contact of our client. The
first was to install portfolio management with a clear decision making and execu-
tion process. This meant that all projects and products were screened based on their
contribution and strategic adherence. Within six months, we could remove projects
with an effort contribution of over 20% compared to overall engineering cost. But
this was just a one-time effect.

Improvement programs will fail without strong leadership. Leadership and man-
agement buy-inwill only happen if there is a clear alignmentwith business objectives.
Theoretic improvement paradigms and isolated so-called process improvement pro-
grams driven from somewhere in the middle of the organization fail. Performance
improvement needs continuous effort andmust be professionally implemented. There
is no silver bullet, despite all the promises by tool vendors and framework junkies.
Broad experience in engineering and product lifecycle management helps in select-
ing the right actions with the most value in a certain environment. Clear objectives, a
value-driven process evolution program, and excellent change management are key
to introducing sustainable and tangible performance improvement.

4 Value-Driven Process Management 75

Acknowledgments Some parts of the article appeared first in Ebert and Dumke: Software Mea-
surement [4]. Copyrights: Springer, Heidelberg, New York, 2007/2016. Used with permission. We
recommend reading respective portions of the book as an extension of the quantitative concepts
mentioned in this chapter.

References

1. Brooks, F.: No silver bullet essence and accidents of software engineering. IEEE Comput. 20(4),
10–19 (1987)

2. Crosby, P.B.: Quality Is Free: The Art of Making Quality Certain. Mentor (1980)
3. Ebert, C.: Software product management. CROSSTALK J. Def. Softw. Eng. 22(1), 15–19 (2009)
4. Ebert, C., Dumke, R.: Software Measurement. Springer, New York (2007) (fully revised edition

(2016))
5. Jones, C.: Estimating Software Costs 2nd Edition. McGraw-Hill (2007)
6. Saint-Exupery, A.D.: The little prince. http://www.generationterrorists.com/quotes/the_little_

prince.html (2015)

http://www.generationterrorists.com/quotes/the_little_prince.html
http://www.generationterrorists.com/quotes/the_little_prince.html

Chapter 5
Are We Ready for Disruptive Improvement?

Andreas Rösel

Abstract In the IT industry, the continuous improvement approach as an established
way for process management is doomed to fail at critical points. In particular, we
consider the aspect of dealing with disruptive business changes requiring a disrup-
tive process improvement response. This chapter is based on the experience of a
significant disruption in a large IT company. First, we consider how easy it is to
continue on an improvement path that, in such a context, leads to failure. We then
explore the alternative non-continuous responses required to avoid failure. We look
at elements that can help an organization to be better prepared for disruptive improve-
ments, including experiences with the introduction and impact of Design Thinking
and Agile Development.

5.1 Introduction

The continuous improvement approach is awell-establishedway for processmanage-
ment in the IT industry. We discuss how disruptive change challenges us to leave this
comfort zone or fail. We describe the defining attributes of disruptive changes where
this failure is likely and explain how easy it is to go down that path. Then we focus on
what differentiates an appropriate, disruptive process improvement response that is
required to design, document, and establish the processes within the organizational
units for their new context. In Sect. 5.2, we provide information about the context
of observing disruptive process improvement in a large IT company. In Sect. 5.3, we
consider the definition of disruptive innovation and then contrast our definition of
disruptive process improvement with continuous process improvement. By means
of an example of process improvement metrics, we illustrate the dramatic difference
between a continuous and a disruptive improvement response. In Sect. 5.4, we give
some negative examples in the form of tactics that help to avoid inappropriate dis-
ruptive improvement. In Sect. 5.5, we share experiences from a disruptive innovation
in a large IT company and how non-continuous steps are required to avoid failure.

A. Rösel (B)
SAP SE, Hasso-Plattner-Ring 7, 69190 Walldorf, Germany
e-mail: andreas.roesel@sap.com

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_5

77

78 A. Rösel

In Sects. 5.6 and 5.7, we look at elements that can help an organization to be bet-
ter prepared for disruptive improvements, and we share some experiences with the
introduction and impact of Design Thinking and Agile Development in Sect. 5.8.
In the conclusion in Sect. 5.9, we consider what we learned from reflecting on the
experiences with disruptive process improvements and an outlook on readiness for
disruptions. Finally, in Sect. 5.10, we include pointers to information on Design-
Thinking and on the topic of Intrapreneurship, where companies are encouraging
individuals and groups to adopt an entrepreneurial approach within their company
to improve their readiness for disruption.

5.2 Background and Context

Improvement in a business context is a well-established approach and is necessary
to manage complexity and to increase efficiency and improve performance overall.
Further, there is no doubt that improvement is effective when it is aligned with
the organization’s strategy. When we look at improvement activities as a response
to strategy, then the most dynamic situation will be the improvement response to a
disruption in the strategy.Our consideration of appropriate “disruptive” improvement
responses should be of interest to anyone working in or with a company where
strategic disruptions occur.

In the following, we focus on the process improvement perspective in the context
of disruptive improvements. Processes describe our way of working as a company,
as a department, or as a team. Looking at process improvement in this generic view
means that improving how we are working will or should involve improving our
processes. The particular context of the main experience referred to here is a large
IT company. The example is enhanced by the author’s extensive experience working
as Transformation and Process Consultant with companies developing software as a
vital part of their core business.

5.3 Disruptive Versus Continuous Improvement

First, we consider the definition of disruptive innovation and then contrast our defi-
nition of disruptive process improvement with continuous process improvement.

A disruptive technology or innovation helps create a new market and value net-
work, and thereby eventually disrupts an existingmarket and value network. The term
is used in business and technology literature to describe innovations that improve a
product or service in ways that the market does not expect [6]. Christensen expanded
his earlier model of disruption, which is explained in the book The Innovator’s
Dilemma [5], an acclaimed bestseller, but also critically questioned, for example, by
Dvorak [8] and Cohen [7].

5 Are We Ready for Disruptive Improvement? 79

Table 5.1 Characteristics of
disruptive and continuous
improvement

Disruptive Continuous

Radical Incremental

Breakthrough Sustaining

Risky Lower risk

In the context of this chapter, we use the term “disruptive improvement” to dis-
cuss aspects of process improvement that are not continuous. The differences are
illustrated in Table5.1 in terms of the contrasting attributes of disruptive versus
continuous process improvement. Some quality practitioners distinguish between
continuous and continual improvement as follows [9]. Continual improvement is
a broader term to refer to the general processes of improvement and encompass-
ing “discontinuous” improvements—that is, many different approaches, covering
different areas. Continuous improvement is a subset of continual improvement,
with a more specific focus on linear, incremental improvement within an existing
process.

The introduction of disruptive innovation would be a trigger for such disruptive
process improvement, and, applying the attributes listed above, we can state more
generally that any radical breakthroughor risky change in a company’s strategywould
be a trigger. The difference between responding to a disruptive context change with
either continuous or disruptive process improvement is illustrated in Fig. 5.1. Along
the y-axis we see the amount of change. The strategy disruption curve shows how
the defined IT strategy was disrupted with a very significant change in the middle of
the year. The dotted curve shows the number of improvements released to implement
the process aspects of the defined strategy for that year. Up to the middle of the year,
the curve shows the accumulated actual improvements released; from then on, it
shows the planned releases based on the improvement plan according to the original
strategy. The solid response curve is in line with the dotted one up to the middle of
the year, then it shows how the number of process improvements released changes
dramatically in response to the disruptive change.

The curves illustrate the difference between a disruptive improvement response
and a continuous improvement response. Although it is an illustration, we found
these types of curves as a result of plotting the data of actual process improvement
responses. Note that both improvement responses are continual in that the improve-
ment does not stop. Yet, although the continuous improvement keeps the focus on
linear incremental improvement, it is the disruptive process improvement response
that shows a correlation to the disruptive trigger. Next, we focus on the disruptive
end of the spectrum of change and the associated disruptive process improvement.

80 A. Rösel

Fig. 5.1 Disruptive versus continuous process improvement response

5.4 How to Ignore Strategy Disruption and Ensure
Continuous Improvement Failure

Here we play the devil’s advocate in the scenario where a strategy disruption
has occurred and the process improvement organization and process improvement
experts continue themainwork and efforts along the established continuous improve-
ment path. Our approach is to give some negative guidelines as to how a valid strat-
egy disruption may be ignored from a process improvement perspective. Indeed, this
would avoid the appropriate disruptive improvement response and work against the
company. For general examples of how and why change triggers are being ignored,
see the literature on the topic of change and resistance to change, e.g., those by John
P. Kotter relevant to urgent disruptive change [13, 14].

So let us take a reverse look. Table5.2 summarizes some ways to ignore strategy
disruption, based on my experiences as a process consultant with a number of orga-
nizations. Practitioners should be able to recognize one or the other tactic having
been applied, whether consciously or unwittingly, in a company they know.

For the car manufacturer VW, the original Beetle was a winning model. It was
produced in essentially the same shape for nearly three decades. Continuous improve-
ment was a strong point of VW and appreciated by the buyers. In fact, the continuous
improvementwas so successful that none of the numerous prototypes for a newmodel
to succeed the Beetle made it to production. Finally, the competition of new gener-
ation cars became so oppressive that the very existence of VW was threatened [4].
The strategy disruption of the Golf innovation saved the day, but it is an example
where the switch away from continuous improvement came almost too late.

5 Are We Ready for Disruptive Improvement? 81

Table 5.2 Tactics to avoid appropriate disruptive improvement

Category Tactics

Too slippery to be caught Stick to your long-term continuous improvement plan:

• Use silos and departmental firewalls to avoid direct
involvement in changes of strategy and process.

• Prove the value of continuing step-by-step improvements
using your improvement metrics.

• Don’t change long-term continuous plans and process-release
cycles. Use yearly plans with limited releases.

Too heavy to be moved Cast your processes in concrete:

• Aim for documentation of all process details and variants as
you have always done.

• Ensure you have a fine-grained structure with hundreds of
roles.

• Raise risks to standards and audits as reasons why your
processes must remain as they are.

Too cushioned to be hurt Built-in shock-absorbers:

• Separate the process organization from operations to avoid or
reduce the impact of operational issues and goals.

• Empower people to stop progress if a resource or some input
from a stakeholder is missing.

• Slow down new processes by insisting on iterating the process
flow with all involved to handcraft a fully consistent version
before the first publication.

5.5 Accepting Strategy Disruption and Responding
with Disruptive Process Improvement

Major technology trends in IT include Cloud, Mobile, and Big Data [10, 19]. Cloud,
from an IT perspective, is about savings through virtualization, convenience through
Infrastructure as a Service, and flexibility through a hybrid cloud model. Mobile
includes Mobile Workspaces, Mobile Device Management, and integration of the
mobile access into the core workflows. Big Data, where more and more companies
are looking at volumes in terabytes and petabytes, requires new approaches regard-
ing management, analysis, and distribution. The users and usage of big data are
dramatically increasing and demand processing that is magnitudes faster.

In this context, the strategy disruption of our company was the decision to set up
SAP HANA Enterprise Cloud with the objectives [20]:

• Accelerate the transition to the real-time enterprise through cloud computing.
• Analyze vast amounts of data instantaneously for critical business insights.
• Transform operations to enable real-time business.

In the middle of 2013, a new unit was established to deliver these benefits not only
to external customers, but also, beginning with the early versions, to our own orga-

82 A. Rösel

nization, true to the commitment SAP-runs-SAP. Here we are not looking at the
technology innovation supporting this move (In-Memory Database, Mobile device
integration technology, etc.), rather, we are focusing on the process improvement
response—in particular, by the IT Process Office.

The members of the Global IT Process Office could have applied many of the
tactics listed in Table5.2 to avoid changing to a disruptive improvement mode. For
example, the Process Office itself was not part of the new organization, so the tactics
of the, category “Too cushioned to get hurt” were tempting. Similarly, the tactics
from the category “Stick to your long-term continuous improvement plan” could
have been employed as the process consulting resources were committed for the
remainder of the year to agreed improvement plans and release cycles of process
descriptions. Instead, the disruptive strategy trigger was answered with a disruptive
improvement response. Examples of tactics and associated results are shown in the
following list. The interested reader will find and recognize respective counter-tactics
from Table5.2.

Tactic 1 (Define an improvement plan and process-release cycles in line with
the strategy disruption.) This tactic aims to produce the following results:

• Weekly process deliveries in the hot phase
• Defined and released a first version of the Process Value Chain for the new orga-
nization within six weeks

Tactic 2 (Utilize relevant standards and audits as reasons to drive process def-
inition and adoption.) This tactic aims to produce the following results:

• Close collaboration with the security team and readiness for external audit within
three months

• Passed the Service Organization Control compliance audits (SOC1 & SOC2
Type I) with no exceptions

Tactic 3 (Simplify) This tactic aims to produce the following results:

• A switch to a simpler process documentationwas accelerated so it could be applied
in this fitting context.

• Processes were published at “80% readiness.” This proved useful in early projects
and provided valuable feedback.

• Process, operational, and audit issues were tracked in one tool.

Tactic 4 (Closely work as process consultants and team with the new organiza-
tion.) This tactic aims to produce the following results:

• Ensured that clearly assigned process responsibilities were part of the set-up
• Process consultants worked in tandem with process managers and became recog-
nized go-to people, for example, for integration aspects

The mind-set for change is surely one important factor influencing our readiness
for disruptive improvement. It may be coincidental, but the members of the process
office have been trained, and several have also been very active, in applying Design
Thinking principles as well as Agile development methods. In the following, we
consider why and how these approaches may foster disruptive improvement.

5 Are We Ready for Disruptive Improvement? 83

5.6 Design Thinking

Design Thinking is a method for innovation that brings together the creative aspects
of the brain with the analytical aspects of the brain. There are typically six steps in
a full design-thinking cycle:

1. Understand, where you define the problem by “finding the right question”
2. Observe, where you explore the problem space with a mind as value-free and

neutral as possible and where you try to develop a sense of empathy for the user
in order to understand the personal, organizational, and functional dimensions of
the challenge

3. Define Point of View, where you make a first design decision by condensing all
information down to one topic and one user to focus on

4. Ideate, where you explore the solution space and generate as many ideas as pos-
sible to serve the previously identified needs

5. Prototype, where you develop a prototypical implementation of the idea combin-
ing, expanding, and refining the most powerful ideas

6. Test, where you seek feedback from a diverse group of people, including your
end users, to gain new insights

The process involves more than executing the steps in a linear manner. It requires an
open culture that is focused on the end-user and the flexibility to loop through the
steps as required. One significant contributor to making the connection from design
thinking to IT product development is Hasso Plattner, one of the founders of SAP.
He established a collaboration with the Institute of Design at Stanford and extended
the work on Design Thinking with the HPI (Hasso Plattner Institute) in Potsdam
[11]. He is a strong advocate of the application of Design Thinking in IT and, with
this, had a large impact on the processes in SAP. In its application at this large IT
company, it has been proposed as a unique engagement experience and mind-set of
combining business thinking with design thinking, thus generating ideas that will
lead to value for customers and their stakeholders by:

• Rethinking existing problems to unlock spaces for innovation and creative solu-
tions

• Visualizing the impact of disruptive technology as it relates to the business in focus
• Leveraging a proven approach that has been used with other companies to help
them create game-changing value for their customers

In the activities stated above, we can see the link to disruptive improvement already
in the terms used, including game-changing, innovation space, and disruptive.

The steps of Design Thinking are typically applied in order to explore new angles
and perspectives or tricky problems to unearth underlying desires and needs: pri-
oritize new ideas, create road maps, and build persuasive business cases; create
high-fidelity visualizations as a tangible artifact that represents the generated ideas,
and how they may be implemented. Several tools can be used in the course of a

84 A. Rösel

design-thinking exercise and include customer-journey mapping, graphical facilita-
tion/sketching, art-of-the-possible visualizations, and rapid prototyping. For exam-
ples of using Design Thinking in the IT context, see customer success stories on an
open community Web site [21]. Although SAP is helping their customers in apply-
ing Design Thinking, it is also fostering the Design Thinking culture and applying
this approach in its own IT organization. There are workshops on Design Thinking,
coaches to support design thinking in internal IT projects, and also roomswith equip-
ment to facilitate these activities. How radical the shift away from a linear approach is
may be illustrated by a provocative statement found on the wall of a Design Thinking
room: “Fail early and often!” This goes far beyond the old, but nevertheless most
useful, prototyping advice: “Build one to throw away” [3].

5.6.1 Fail Early

Individuals and teams are challenged to seekways to fail as early as possible. Accord-
ing to the Design Thinking philosophy, the decision on success or failure comes from
the end-customer. Getting feedback from customers on ideas and possible solution
directions extremely early is a must. With such a mind shift, it is possible to get
feedback in less than a day, even hours or minutes—rather than in weeks. So, an idea
that may have looked like a good one could go, without Design Thinking, through
a cycle of design, implement, test, and then, during validation, receive the feedback
from the majority of end-users that it is not acceptable. In this case, significant effort
and weeks, even months, may have been invested. With Design Thinking, the idea
would have received the fail-feedback much earlier, thus avoiding wasting time and
effort on a solution approach leading nowhere.

5.6.2 Fail Often

Individuals and teams are challenged to look for ways to fail multiple times, on pur-
pose. Failing is good, and failing often is even better? This seems to contradict our
striving for efficiency and the high quality of our work. It is success that we seek and
strive for. This provocation to fail on purpose is about helping teams and individu-
als to break out of limiting frameworks that govern and constrict our thinking even
without our being aware of it. Indeed, Design Thinking contributes to the successful
end-result in that the end-customer receives an overall, very satisfying solution and,
for this contribution, Design Thinking needs to open up the solution space to include
more and, it is hoped, more satisfying solutions. This large solution space needs to
be explored with end-user feedback to ensure that valuable opportunities for the cus-
tomer are not missed. Having customer feedback that several or even many solution
options have failed is an indicator that a large solution space is being explored with
the end-user.

5 Are We Ready for Disruptive Improvement? 85

For an example of what “Fail early and fail often” means in practice, we consider
some aspects of a recent Design Thinking activity of Global IT and business for
improving the internal flow of financial information. The Design Thinking team
included a variety of stakeholders with roles such as business end-user, process
manager, user-interface expert, architect, developer, and coach. The focus was on
providing a mobile dashboard solution. In Table5.3, we look at activities during one
of the cycles through the Design Thinking steps.

We consider where the “Fail early and fail often” advice is applied in this example.
In the Observe step, the initial feedback on “what was expected as a solution” failed
the validation check with another set of end-users. This showed that the precon-
ceived solution space for this project was too limited. Additional feedback activities
identified the highly ranked requirement for a broader and more mobile provision
of key information. At the same time, the information needed to be presented in a
more role-relevant manner. In the Ideate step, a number of options were explored
using simple, user-interface prototyping and direct feedback in the design team. Sev-
eral options were rejected in the discussion of the Design Thinking team including
the members representing the end-users. In the Test step, where the early prototype

Table 5.3 Example of one cycle through the Design Thinking steps

Understand Define the problem by
“finding the right question”

What financial dashboard information helps me
to get an overview of financial key figures in
[area] for making decisions in my role as [role
name]?

Observe Explore the problem space
Develop a sense of empathy
for the user

Existing feedback was validated and an
additional pain-point survey was conducted to get
more reliable feedback from potential end-users

Define point
of view

Make a preliminary design
decision focus on one topic
and one user

The team described a persona, Laura,
representing a typical end-user including her
work context, personal preferences, expectations,
and so on

Ideate Explore the solution space
generate many ideas to
serve the identified needs

Solution options for Laura’s needs were
developed using whiteboard and
mini-sticky-notes to simulate key fields and
interaction scenarios, as well as the look and feel
of various mobile device sizes

Prototype Develop a prototypical
implementation of the idea

A cardboard and paper prototype of the financial
dashboard was built showing variants of content
fields and possible interactions by sliding in
various paper “screens” in response to “clicks”

Test Seek feedback from a
diverse group of people,
including your end-users to
gain new insights

The Laura prototype was played through in two
variants with end-users, as well as random
colleagues by a pair of Design Thinking team
members. The user interaction and reactions
were observed regarding value of information
provided, ease of use, and overall fit for purpose

86 A. Rösel

was used to execute the proposed solution options with different types of end-users
as well as other people, an additional need became apparent in that the application
should also support direct initiation of key actions.

It is not unusual that during the phases and iteration cycles of an IT project the
requirements and implementation diverge from the initial envisaged and requested
solution. The contribution of Design Thinking in this case was to achieve a clarifi-
cation in a dramatically shorter timeframe. Here, well-intended solution proposals
were identified, as off-target and previously hidden requirements and unimagined
solution options were identified, early on and very quickly. One can imagine the
much higher impact when Design Thinking is applied to visualize the effects of a
disruptive technology such as HANA and Big Data for a specific business context.

Design Thinking is a technique that can be applied to look systematically for
solutions outside the linear, continuous-improvement approach. It can be used to
identify disruptive ideas or to come upwith ideas for applying a disruptive technology
in a certain business context. In either case, it is a tool to address systematically a
wider scope of possibilities, accelerate improvement, and reach a disruptive impact.
These aspects of Design Thinking clearly fit with the requirements of an accelerated
and disruptive response, as discussed for disruptive process improvement.

5.7 Agile Development

Now let us turn to Agile development, another major influencer. Agile Development
refers here to Agile Software Development as the flexible and light-weight develop-
ment approach in contrast to the more linear and heavy-weight waterfall methods.
The movement for Agile Development has a long history, and its key elements are
summarized in the Agile Manifesto, the 12 principles [2] and Practices [1]. For more
details on the element of Agile Development, see also Chap.2.

How might the exposure to Agile Development and an associated mind-set foster
readiness for disruptive improvement? Let us look where change and disruption
are considered in the fundamental elements of Agile Development. In the Agile
Manifesto, one of the four statements is, “We have come to value responding to
change over following a plan.” In addition, two of the twelve agile principles refer
to change and adaption: “Welcome changing requirements, even late in the project”
and “Regular adaptation to changing circumstances.” This emphasizes how Agile
Development relies on a mind-set to accept and respond to change and, in particular,
significant change. Another aspect of the mind-set for change is customer focus.
Keeping the focus on the customer and customer needs during a disruption increases
the likelihood of recognizing and reacting to changing requirements. Note that, with
a disruptive change, it may mean that “the customer” is also changing to a different
person or organization and the requirements then come from a different source.

In our context of a large IT company, the topic of Agile Development has been
introduced and established over a period of more than 10 years. The development
organization is now working largely in agile teams applying the Scrum approach.

http://dx.doi.org/10.1007/978-3-319-31545-4_2

5 Are We Ready for Disruptive Improvement? 87

Company-wide standard trainings includeAgile development andScrum topics, from
introduction to advanced, and internal coaches in these areas to support ongoing
training and practice. In addition, communities of practice have been established for
topics including Lean and Agile Community and Scrum Master. In the internal IT
department, where we observed the topic of disruptive process improvement, Agile
Development is the standard approach for all Business Analytics projects, and for
other IT projects, Agile Development is applied in accordance with the size and
context of the project.

We established the link betweenAgile Development and disruptive improvements
via the principles of readiness for change and customer focus. In the following
chapter, we now look at overall readiness for disruptive improvement.

5.8 Readiness for Disruptive Improvement

A disruptive innovation is likely to require a disruptive process improvement
response. How ready can we be? Here we consider how the Agile Methods and
Design Thinking relate to our observed case of disruptive process improvement.

Members of the ITprocess teamwere trained inAgileMethods aswell as inDesign
Thinking. In addition, they were exposed to the operational practice of Agile Devel-
opment and Design Thinking in the projects of their organization. Design Thinking
fosters a readiness for innovation, change in scope, and a focus on the customer that
helps to let go of previous solution approaches when needed. Agile Development
also fosters a readiness for change and radical change in alignment with changing
requirements. Let us have a closer look at the tactics in the chapter “Accepting Strat-
egy Disruption and Responding with Disruptive Process Improvement” (Sect. 5.5) to
examine which of the Agile Principles [2] and Design Thinking aspects (Sect. 5.6)
apply.

The tactic, “Define an improvement plan and process-release cycles in line with
the strategy disruption,” employed frequent deliveries, thus followingAgile Principle
1 customer satisfaction by rapid delivery and Agile Principle 3 deliver frequently.
The decision to adopt such a fast-paced delivery schedule in an environment where
a transition is still in progress also fits with the Design Thinking advice to rather
fail early and often, in that an approximate solution with imperfections is deemed
acceptable, and in fact desirable, as its use provides early and repeated feedback
on what is really required. The next tactic, “Utilize relevant standards and audits
as reasons to drive process definition and adoption,” focused on audit readiness as
a high-impact requirement. The very tight engagement with security colleagues as
key stakeholders for this business aspect followed Agile Principle 4 close, daily
cooperation between business people and developers. One can also see a relation to
the Design Thinking aspect of early and close engagement of relevant stakeholder
groups. The tactic “Simplify”, resulting in simplified process representation and
tooling, clearly maps to the Agile Principle 10 simplicity. The final tactic in Sect. 5.5
is “Closely work as process consultants and team with the new organization;” this

88 A. Rösel

again fits with Agile Principle 4 close, daily cooperation between business people
and developers.

From this systematic examination of our sample case of process improvement, we
can conclude that Agile Methods and Design Thinking have the right fit to support
readiness for an appropriate disruptive improvement response to a disruptive change.
Thismatches our experience that the training and exposure to these approaches helped
to increase the overall readiness for a disruptive change response in the individual
members and the IT process team as a whole.

Taking an active part in a disruptive process improvement response means taking
higher risks (seeTable5.1). Fast changes, big changes, newstakeholders, andunstable
requirements have to be dealt with as consequences of such a decision. Taking on
higher risks potentially to achieve higher business value requires an entrepreneurial
attitude. In the context of large organizations, there is a particular challenge to respond
to disruptive change. The size and the number of departments and people affected can
increase the inertia and therefore increase the likelihood of following a continuous
path as a default response. Large organizations recognize the need to have more
people act in an entrepreneurial way, so that the organization is able to respond
appropriately to disruptive change. This is also relevant for SAP,where the concept of
“Intrapreneurs” is fostered in the form of intrapreneur bootcamps and competitions.
In addition, greenhouses for testing new business models are provided, as well as
connections with ventures outside the organization. In the section Further Reading,
we provide some links to additional information on this topic related to readiness for
disruption.

We covered some aspects of readiness for disruptive improvement. We do not
claim, however, that the aspects covered are the most vital ones.We considered Agile
Methods and Design Thinking and touched on Intrapreneurship because, based on
our observation and knowledge of the situation, they were deemed most relevant
in the context of our main example. Let us briefly look at candidates for additional
aspects that could be considered to increase readiness for disruptive improvement.
One candidate could be Elements of Organizational Change Management that help
prepare for disruptive change and how to introduce this preparation into the organi-
zation. Another candidate would be recognizing and managing manageable parts of
disruptions earlier. For this last candidate, one example could be that, for a certain
company, buying and merging with another company was a very significant strategy
disruption requiring an appropriate disruptive improvement response. The buying
company may recognize that this is a type of disruption that, although it was a first
historic event for them, now has a higher likelihood for reoccurrence. So, it may
make sense to build up competences specific to such disruptive triggers that will
increase their readiness.

For our sample case, we found that Agile Methods and Design Thinking have
the right fit to support readiness for an appropriate disruptive improvement response
to a disruptive change. Further, we considered the relation of Intrapreneurship. We
can recommend that readers consider if and how these approaches can help in the

5 Are We Ready for Disruptive Improvement? 89

context of their work to increase the readiness to respond to strategy disruptions
with appropriate disruptive improvement responses. We finished with an outlook on
additional approaches that could be helpful to manage readiness and disruption.

5.9 Conclusion

We conclude with some essential lessons learned and a view to readiness for disrup-
tions. We presented an example of how an appropriate, disruptive process improve-
ment response in a large IT company produced successful results where a continuous
response would have surely led to failure. One lesson for us was not to take this for
granted. To accept the radical change as a challenge and respond this way, required
groups and individuals taking risks and not succumbing to the temptation of staying
in the comfort zone of continuity. Although continually improving is a good thing,
we must not get stuck in the “continuous” trap but must be ready for disruptive
improvement. We also learned that we can foster such readiness individually, but
that, at the company level, more is required. From the example of a large IT organi-
zation, we can see that elements such as Design Thinking and Agile Development
can, and perhaps should, be fostered more consciously also with respect to process
development, to increase the responsiveness to disruptions and the ability to adopt
an appropriate disruptive improvement approach.

5.10 Further Reading

For some of the aspects discussed in this chapter, this section provides additional
references and information.

The distinction between disruptive and continuous process improvement intro-
duced at the beginning focused on the appropriate disruptive-innovative response
required tomatch a disruptive innovative trigger.We referred to [6] for radical change
and disruptive triggers. The aspect of the radicalness of the process-reengineering
activity itself as a topic is discussed in [12]. In his publication, William J. Kettinger
considers the radicalness of the process-change project and provides a framework
for assessing and considering the radicalness. Although techniques and tools have
changed somewhat over the years, this work on business process change provides
guidelines for evaluating the radicalness of change and a framework that could pro-
vide valuable insights for the interested reader. As a further aspect [18] considers
how the processes for software/IT have attributes of software and what should be
learned from this regarding the way we (should) approach the activities of process
definition, process documentation, and process management. It deals with the ques-
tion: “What can we learn from the software process with respect to the process of
(software) process improvement?” Continuing with this thought, the applicability of
Agile Development (see also Sect. 5.7) for the process improvement and disruptive
process improvement, in particular, are conclusions to consider.

90 A. Rösel

To further gather insights on the topic of Design Thinking discussed in Section
six, the interested reader will find in [15] information from original inspirations such
as Bauhaus, the development of d.school at Stanford University, and applications in
multiple contexts. Themajor part of the books is devoted to accounts and experiences
of Design Thinking in research and education, industry, and across the globe.

Additional information on the topic of Intrapreneurship (see Sect. 5.8 Readiness
for disruptive improvement) is found in [16]. Here, Howard W. Oden provides
details on Intrapreneurship in the context of steering a corporate culture towards
increased readiness for innovation. The currency of this topic is apparent in [17],
which looks to answer the very direct question: “What the heck is an ‘intrapre-
neur’?”.

Acknowledgments With great pleasure, I thank all colleagues from the SAP IT Process team that
inspired this chapter by taking up the challenge to respond to a disruptive change with a disruptive
process improvement response. Such a response does not always happen, and, when it happens, it
does not always work. It was great to learn together from this challenge.

References

1. Agile Alliance: Guide to agile practices. http://guide.agilealliance.org (2001)
2. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-

ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile software development. http://
agilemanifesto.org (2001)

3. Brooks, F.P.: The Mythical Man-Month. Addison Wesley, Boston (1975)
4. Cartecc.com: VW-history. http://www.kfz-tech.de/Engl/Hersteller/VW/VW3.htm (2013)
5. Christensen, C.M.: The Innovator’s Dilemma: When New Technologies Cause Great Firms To

Fail. Harvard Business School Press, Boston (1997)
6. Christensen, C.M.: Disruptive innovation. In: Soegaard,M., Dam, R.F. (eds.) The Encyclopedia

of Human-Computer Interaction, 2 edn. The Interaction Design Foundation, Aarhus (2014)
7. Cohen, J.: Not disruptive, and proud of it. http://blog.asmartbear.com/not-disruptive.html

(2010)
8. Dvorak, J.C.: The myth of disruptive technology. http://www.pcmag.com/article2/0,2817,

1628049,00.asp (2004)
9. for AS Quality: Continuous improvement. http://asq.org/learn-about-quality/continuous-

improvement/overview/overview.html (2015)
10. Gartner Inc.: Gartner identifies the top 10 strategic technology trends for 2014. http://www.

gartner.com/newsroom/id/2603623 (2013)
11. Hasso-Plattner-Institut, Universität Potsdam: HPI school of design thinking. http://hpi.de/

school-of-design-thinking.html?L=1 (2014)
12. Kettinger, W.J., Teng, J.T.C., Guha, S.: Business process change: a study of methodologies,

techniques, and tools. MIS Q. 21(1), 55–98 (1997)
13. Kotter, J.P.: Leading Change. Harvard Business Press, Watertown (1996)
14. Kotter, J.P.: A Sense of Urgency. Harvard Business Press, Watertown (2008)
15. Meinel, C., Weinberg, U., Krohn, T.: Design Thinking Live. Murmann Publishers, Hamburg

(2015)
16. Oden, H.W.:Managing Corporate Culture, Innovation, and Intrapreneurship. Praeger,Westport

(1997)

http://guide.agilealliance.org
http://agilemanifesto.org
http://agilemanifesto.org
http://www.kfz-tech.de/Engl/Hersteller/VW/VW3.htm
http://blog.asmartbear.com/not-disruptive.html
http://www.pcmag.com/article2/0,2817,1628049,00.asp
http://www.pcmag.com/article2/0,2817,1628049,00.asp
http://asq.org/learn-about-quality/continuous-improvement/overview/overview.html
http://asq.org/learn-about-quality/continuous-improvement/overview/overview.html
http://www.gartner.com/newsroom/id/2603623
http://www.gartner.com/newsroom/id/2603623
http://hpi.de/school-of-design-thinking.html?L=1
http://hpi.de/school-of-design-thinking.html?L=1

5 Are We Ready for Disruptive Improvement? 91

17. Odenwald, T.: What the heck is an ‘intrapreneur’? http://scn.sap.com/community/business-
trends/blog/2014/06/20/what-the-heck-is-an-intrapreneur (2014)

18. Osterweil, L.J.: Software processes are software too. In: Proceedings of the International Con-
ference on Software Engineering, pp. 2–13. IEEE, Washington, DC, USA (1987)

19. Praxmarer, L.: Die zehn wichtigsten IT-Trends (the ten most important it-trends). http://www.
computerwoche.de/a/die-zehn-wichtigsten-it-trends,2551615 (2014)

20. SAP: SAP HANA Enterprise Cloud – the power of real-time business and simplicity of the
cloud. http://global.sap.com/campaigns/2013_Hana_Enterprise_Cloud (2013)

21. SAP Community Network: Design thinking with SAP. http://scn.sap.com/community/design-
thinking (2014)

http://scn.sap.com/community/business-trends/blog/2014/06/20/what-the-heck-is-an-intrapreneur
http://scn.sap.com/community/business-trends/blog/2014/06/20/what-the-heck-is-an-intrapreneur
http://www.computerwoche.de/a/die-zehn-wichtigsten-it-trends,2551615
http://www.computerwoche.de/a/die-zehn-wichtigsten-it-trends,2551615
http://global.sap.com/campaigns/2013_Hana_Enterprise_Cloud
http://scn.sap.com/community/design-thinking
http://scn.sap.com/community/design-thinking

Chapter 6
Trials and Tribulations of the Global
Software Engineering Process: Evolving
with Your Organisation

Oisín Cawley

Abstract This chapter will provide the reader with a firsthand account of the trials
and tribulations of working in and managing a Global Software Engineering (GSE)
function. By describing the move from a distributed collection of self-sufficient
manufacturing plants with locally managed software engineering resources, to a
GSE function as a shared service, the focus will be on how the management of
that group had to fundamentally change in order to satisfy the complex projects and
customer base which resulted. In parallel it will discuss the effect of regulation on
the software engineering management process. Tracing the introduction of financial
systems regulations, it will discuss the issues this brought to the GSE process and
how they were successfully overcomed. These topics will be augmented by research
that the author has carried out into regulated software development.

6.1 Introduction

The term Global Software Engineering (GSE) is fairly well understood within both
industry and academia, but the devil is in the detail. Companies or Information Tech-
nology (IT) departments do not develop efficient software engineering functions at
a global level overnight. Typically, these companies will be large organisations with
offices in multiple countries and/or geographical regions, and are therefore subject
to the well documented effects of separation (geographical, temporal, and cultural).
However, such companies often come from humble beginnings, and through vari-
ous forms of growth (organically or through mergers and acquisitions), evolve into
organisations which necessarily must function differently. It follows, therefore, that
the business processes which have been in place at the beginning must change or
evolve in tandemwith the organisation’s growth. The Software Engineering function
is one of those key processes, and it is not immune to these changes.

O. Cawley (B)
Department of Computing, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland
e-mail: oisin.cawley@itcarlow.ie

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_6

93

94 O. Cawley

This evolution can cause a lot of organisational pain as the work load increases
and diversifies. The need for additional resources and personnel usually requires a
change to team structures, reporting lines and perhaps job descriptions in order to
support the business on a more global scale. As competition in the market place
increases, cost pressures often make companies look at outsourcing options. This
alone can be a major challenge, but combined with the effect of having to adhere to
newly created regulatory controls raises the bar significantly.

The author’s experiences bears witness to a lot of what has beenmentioned above,
having spent 17 years working on software projects, large and small, in both small
and multi-national companies. In addition, his research into the effects regulatory
controls have on the software engineering function, contributes an expert insight on
the topic.

6.2 Background and Context

Managing a team of highly skilled individuals, who are located in different countries,
often in different time zones, to successfully deliver a software project on time and
within budget can be a difficult task [7]. Table6.1 from [2] provides an overview of
the key software development process difficulties which can be encountered due to
the effects of the different dimensions of “distance.”

Often, such a GSE function exists as a virtual shared service for the entire organ-
isation [16]. This can help to eliminate resource duplication, and maintain some
semblance of development standards. It can however introduce a bottleneck within
the organisation, as each business unit vies for priority on the software develop-
ment queue [12]. This raises an interesting question. Then how should projects be
prioritised? In a global organisation, who really controls the GSE resources?

6.2.1 Positioning the GSE Function

Before looking at the area of control in more detail, let us first draw a distinction,
in broad terms, between two types of organisations who may employ such a GSE
function. Group one are companies whose primary business is to sell software. They
mayproduce the software in a number ofways, in-house, outsourced or a combination
of the two. The in-house approach can also be implemented in two forms; collocated,
where the software engineers sit together in the same place, or global, where they
are geographically spread-out. Such companies may also have some form of support
agreement that they sell with the software, but their focus is/should be on selling high
quality software. The higher the quality, the lower the failure rate and consequent
need for costly maintenance.

6 Trials and Tribulations of the Global Software Engineering Process … 95

Table 6.1 An overview of the framework of issues in Global Software Engineering

Dimension

Process Temporal distance Geographical distance Socio-cultural distance

Communication Reduced opportunities
for synchronous
communications,
introducing delayed
feedback. Improved
record of
communications

Potential for closer
proximity to market, and
utilization of remote
skilled workforces.
Increased cost and
logistics of holding face
to face meetings

Potential for stimulating
innovation and sharing
best practice, but also
for misunderstandings

Coordination With appropriate
division of work,
coordination needs can
be minimized. However,
coordination costs
typically increaser with
distance

Increase in size and
skills of labor pool can
offer more flexible
coordination planning.
Reduced informal
contact can lead to
reduced trust and a lack
of critical task
awareness

Potential for learning
and access to richer
skill set. Inconsistency
in work practices can
impinge on effective
coordination, as can
reduced cooperation
through
misunderstandings

Control Time zone effectiveness
can be utilized for
gaining efficient 24x7
working. Management
of project artifacts may
be subject to delays

Difficult to convey
vision and strategy.
Communication
channels often leave an
audit trail, but can be
threatened at key times

Perceived threat from
training low-cost
‘rivals’. Different
perceptions of
authority/hierarchy can
undermine morale.
Managers must adapt to
local regulations

Group two are those companies where the software they develop is merely a tool
to support the company’s business objectives (whatever they may be). We do not
underestimate the importance of the software, however, for these companies the focus
is on selling something else, and software is a supporting/enabling mechanism. Such
companies may also take an in-house, outsourced or combination approach. This is
an important distinction between the two groupings, as it positions the GSE function
relative to the business objectives. It is also important because the software often plays
a critical role in one or more business processes. For example, delivering inventory
to a manufacturing line in a just-in-time fashion requires the order management,
warehouse management and purchasing management departments to function in a
coherentmanner.Any issues encountered in the supporting systems have the potential
to stop everything.

The two groupings here are sometimes referred to as Packaged versus IS (informa-
tion systems) teams. Packaged teams normally produce an end product. This product
is packaged up and sold commercially. IS teams are generally considered to be work-
ing internally to support corporate objectives. Carmel and Sawyer [8] state that the
differences between IS and Packaged software teams include cost pressures versus
time-to-market pressures, and bureaucratic versus entrepreneurial cultural milieus.

96 O. Cawley

There are, of course, companies who do not fit within either of these broad groups,
such as charities and other not for profit organisations. Such organisations tend to
have different objectives and work ethea, for example, volunteer employees, and so
some aspects of this chapter may not be so relevant in their cases.

6.2.2 The GSE Problem

Managing a GSE process brings new challenges. Let us consider, for example, the
maintenance phase of a typical software development lifecycle (SDLC) of a company
from group two. When a production issue occurs (let’s say the order management
system above loses a customer order, and so that particular order never makes it onto
the production schedule), it must be acted on immediately. It becomes an “all hands
on deck” situation because the business process is suffering. In these situations you
need personnel who are qualified and trained to troubleshoot the issue. Once the issue
is identified, for example, a corrupt index in the database, you need the appropriate
personnel (often different to the people who did the trouble-shooting) to fix the issue.
You may have these resources on site and under your control, and so issues can be
reacted to rapidly. But things are quite different within a global setting. No longer are
your resources local, perhaps not even in your geographical region, and in addition
they more than likely report to a different manager. It is clear that the process to
resolve issues cannot be managed the same in both organisational structures.

6.2.3 Regulation

According to [6], regulations are simply a form of social organisation: “rules, prin-
ciples, or conditions that govern procedure or behaviour” [33]. But why do we have
or need regulations? Fundamentally it is because we want to try and ensure a certain
outcome. They provide a blueprint for how something should be done, and if we
follow the rules we should end up with a good quality product or process. There
are those, however, who argue that there is too much regulation and that not enough
research has been done in assessing the adequacy of regulations in achieving their
intended aims [6]. For example, regulations governing financial institutions, such as
the Basel II Accord [3] and the Sarbanes–Oxley Act [1], did not prevent the global
banking crises of 2007.

Software Regulation In relation to software, regulations are becoming more and
more prevalent due to software becoming so pervasive in society. We have come
to rely on it more and more in our daily lives [18] and consequently, when it fails
or is misused, the effects can be quite devastating. To counteract this risk, various
authorities have introduced regulations which aim to govern how software is devel-
oped, secured and interacts with other systems. For example, the Enron scandal 2001,

6 Trials and Tribulations of the Global Software Engineering Process … 97

which resulted in the loss of over $11 Billion of investors’ and employees stocks and
pensions, was due to fraudulent financial reporting [4]. In Panama, 21 patients died
from overdoses of radiation during cancer treatment as a result of software failure
combined with software misuse [5]. FDA analysis of 3,140 medical device recalls
between 1992 and 1998 found that 242 (over 7%) were attributable to software [20].
Significantly, of the 23 recalls in 2007 of what the FDA classify as life-threatening, 3
of them involved faulty software [23]. Consequently, regulations have been imposed
to help reduce the possibility of such events recurring.

Publicly listed American companies are now subject to the Sarbanes–Oxley Act
(SOX) of 2002 [1] to help ensure the accuracy of the data coming from financial
systems. Medical device manufacturers are subject to a raft of regulations such as
the United States Quality Systems Regulations 21 CFR part 820 [21] or the European
Medical Device Directive [19]. These diverse sources of regulations are increasing
as software continues to push boundaries, be misused and get embedded in ways
which were not envisioned before.

6.2.4 The G-SC Case Study

To examine these aspects in detail we will look at the transformation of G-SC, a
global leader in supply chain business process management. From an IT perspective,
the company moved from a collection of around 30 international self-sufficient facil-
ities, to a centralised, shared services IT model which included a globally distributed
software development team with members located in the United States, Europe and
Asia. This transformation was in fact an evolution of a company which grew organ-
ically initially and then through acquisitions and mergers. We will examine it from
a process evolution perspective where we will also see how external influences, in
particular from regulatory bodies, helped to shape that evolution.

6.3 Process Evolution

The structure of an organisation is crucial to its success. While it is important to
design an appropriate structure in the early days of an organisation, it needs to be
continuously appraised, “A company needs to continuously revisit and challenge its
answers to the who-what-how questions in order to remain flexible and ready to adjust
its strategy…” [30]. However, there is a level of foresight or design beyondwhich you
cannot gowith any certainty. Slack andLewis [29] tell us“…many environmental and
operational variables are unknown in advance (and in some cases, unknowable)”
and therefore it is imperative to periodically review your situation. Thomas Friedman
writes in his book ‘TheWorld Is Flat’ that “the best companies stay healthy by getting
regular chest x-rays” [22].

98 O. Cawley

Fig. 6.1 G-SC initial management structure

Hand in hand with structure goes the way in which an organisation operates. Job
descriptions are specified, roles are assigned, levels of authorisation are conferred,
operating procedures defined and so on. These processes are overlaid on the man-
agement structure and are typically closely adhered to. But the world does not stay
still, and so successful organisations are the ones most able to adapt to the changing
environment in which they find themselves.1

Different environments can sustain totally different management structures and
it is difficult to know precisely what will and will not work well. But experience
shows that change is inevitable. New Chief Executive Officers (CEO) favour dif-
ferent management structures, new Chief Information Officers (CIO) favour certain
technologies or development methodologies. Sometimes change is forced through,
sometimes the status quo is required before introducing change. For example, when
IBM bought Lotus Development in 1995, in the biggest corporate software take over
up to that time, the contrast in work styles, dress codes, management hierarchy, etc.,
was stark, and a large risk to the entire project. IBM was very careful not to march
in and take over, but gradually integrated the workforces and technologies over time
(resistance is futile).

6.3.1 The G-SC Evolution

G-SC focused on high technology industries and as such was heavily invested in
bespoke systems development. Consequently, they had built up a substantial IT
workforce which included a large number of software engineering professionals.
The initial global management structure is depicted in Fig. 6.1 and shows a typical
structure for a disparate collection of self-sufficient solution centres (focus here on
IT resources).

1I borrow the phrase from a quote about the evolution of species often attributed to Charles Darwin.
There is some debate about whether Darwin actually said or wrote these exact words.

6 Trials and Tribulations of the Global Software Engineering Process … 99

The individual General Managers (GM) had a lot of autonomy and full control
over all local IT resources which allowed them build up a strong reputation in the
local market for excellent customer service and rapid response times. Typically each
solution centre had an ITmanagerwith support, business analysis and software devel-
opment expertise. This provided them with everything a good software engineering
function needs.

The software engineering function within G-SC could be classified as residing
somewhere between packaged and IS groups. Carmel and Sawyer [8] believe that
“…packaged software firms function in an environment of intense time-to-market
pressure relative to IS development efforts”. However, G-SC (clearly not a Pack-
aged type organisation) was expected to have new business processes operational
within the timelines governed by the customer (often packaged software firms) who
in turn operated to their own specific market-driven product release schedules or
seasonal consumer activities. Thus, having full control of local resources meant they
could respond to these demands by reassigning resources, reprioritising projects or
a combination of the two.

6.3.2 Sharing the Service

G-SCwent through a merger and a subsequent acquisition which brought large-scale
changes to the organisation. Alongwith a change in the business strategy, for example
building global business teams to service global customers, the company introduced
the role of CIO. The intention was clear, look for ways to gain efficiencies in the IT
systems and personnel. This meant some form of integration from both perspectives,
not a task to be underestimated [14]. From a globalisation perspective, in order
to achieve integration, some level of standardisation is required, but, according to
[8] and as we found out, the effort for standardisation of packaged teams pales in
comparison to the scale of obstacles that a global IS function has to deal with.

By grouping all IT resources under the CIO, the new organisational structure
looked like Fig. 6.2. Beneath the CIO, all IT resources were sub grouped into broad
areas with further sub groupings for more specialised functions like software devel-
opment. The immediate and involuntary effect of this reorganisation is that the new
“Global” software development group becomes a bottleneck to the organisation since
every solution centre vies for the finite resources (as indicated by the direct lines).
But this reorganisation was in response to the new business strategy, to present the
company as a unified, focused and globally serving service organisation.

It is worth noting that aligning the business and ICT strategies is a never ending
cycle. “(IT alignment) is complex, multifaceted and never completely achieved. It
is about continuing to move in the right direction and being better aligned than
competitors. This may not be attainable for many enterprises because enterprise
goals change too quickly, but it is nevertheless a worthwhile ambition because there
is real concern about the value of IT investment” [26]. The CIO in this case has
responsibility for ensuring that alignment.

100 O. Cawley

Fig. 6.2 The new G-SC management structure

6.4 Some Growing Pains

Operating as a shared servicemeans that the groupgets software project requests from
all corners of the organization. In a global context that means that internal customers
can be physically located anywhere and also that different business managers and
indeed regional presidents are vying with each other for development resources.
Many times this led to conflict and internal management escalations in order to
secure resources. Sometimes these conflicts required resources to be sourced through
expensive external consultants. Resourcing a project by thismeans has the benefit of a
quick solution but also tends to incur a large amount of technical debt (see Chap.15).

6.4.1 Project Prioritisation

One of the most problematic areas with this new structure was around the scheduling
and prioritisation of software projects. With a finite number of GSE resources, and
disparate business units needing work done, how do you decide on the order in
which projects will be scheduled? Each manager can equally claim that their project
is critical. To remediate this, a project review board (PRB) was instigated which
consisted of a business representative from each solution centre attending a weekly
conference call and helping set the priorities of development projects for the region.
Key IT personnel who could advise from a technical perspective also attended these
calls (Fig. 6.3). It is important to say that the business representatives had to have
the authority to speak on behalf of their centres, which is why it was crucial that
the respective General Manager appointed them to the PRB. Overall this worked

http://dx.doi.org/10.1007/978-3-319-31545-4_15

6 Trials and Tribulations of the Global Software Engineering Process … 101

Fig. 6.3 The software review board structure

quite well but it still proved difficult to get consensus on prioritisation when multiple
centres were under pressure to deliver projects within the same timelines.

Educating the internal business community was therefore also required and was
performed by means of global email communications and solution centre visits. It is
also worth noting that having management located in Ireland (a “Bridge”) did help
alleviate some of the temporal distance issues, since normalworking days overlapped
between Asia and Ireland and also the US and Ireland [31].

6.4.2 Personnel Management

From a software personnel management point of view, a number of issues arose. As
the manager of a new GSE function, you inherit a lot of resources spread out across
the globe. Personal unfamiliarity, time zone differences, cultural differences, varying
levels of expertise all make for a very dynamic environment. Some people are better
than others at adjusting to such a new working environment. Many people see this
as a threat to their position, status, or very job, and so the management approach
requires some significant adjustment.

The primary objective should be to get the group familiar with each other and
comfortable working together. A key manifestation to overcome in the team is one
of fear [10]. Temporal issues are extremely difficult to eradicate completely, but
implementing processes around working arrangements can assist. For example, at
times European developers worked the equivalent of US times to keep a project on
track. Due to an asymmetry in knowledge and skills it took a long time before a more
“follow the sun” approach could be implemented. Issue resolution was on average
longer when dealing in the distributed environment but specific escalation paths were
introduced in order to expedite special cases.

A source of much frustration for the software developers was getting in touch
with someone at a remote site. This was typically to help with things like clarifying
user requirements, user-testing functionality or carrying out a local installation. The
PRB process, however, ensured that each site had a representative who could help
get such situations resolved swiftly.

102 O. Cawley

Building a team ethos through regular communication, sharing knowledge, cross-
site projects, site visits and perseverance are some of the tools in the manager’s
toolbox formaking thiswork. Building relationshipswith remote groups and aligning
with other functions to deliver a coherent service are also things that need to be
undertaken. For example, within a distributed organisation you will typically find
local technical support personnel who act as the first line of support for local system
issues. These people need to be considered part of the GSE process and should be
an integral part of any system deployment, with knowledge transfer sessions and
supporting documentation made available. Coordinating such handover processes
needs careful consideration [10].

6.4.3 Seeing the Wood Despite the Trees

Following any organisational transformation it is easy to point out the hardships
endured and the failures which occurred. But being part of a multi-national, multi-
cultural, cross-functional team of skilled professionals is a fascinating, educational
and often exhilarating experience. Fundamentally people are the same. They have
similar concerns, ambitions, dependencies, and fears. But once things settle down
and they start seeing global projects, of which they played a part, being deployed
successfully, it generates a sense of satisfaction and belonging to something bigger,
that they otherwise would not have been exposed to.

In this sense, whole teams of people evolve in their roles as the organisation
evolves. People start to think outside their own box. They start to ask questions
about the possible usefulness of a particular local process or project to the wider
organisation. They see opportunities to share what they do but also the potential of
using what other people do. For example, in G-SC a production manager may come
up with an idea on how to better organise a certain manufacturing process but which
requires a specific piece of functionality to be developed. The global software engi-
neer/business analystwho examines this request starts to see how thismight alsowork
in other manufacturing sites around the world. By a slight extension/modification
to the original requirements a globally reusable component is developed and made
available to anyone who wants it.

It is imperative to recognise these successes [28]. People like to see that what they
are doing is contributing to the success of the larger team. It helps to build or simply
maintain employee motivation. It helps build confidence in the new process.

6.4.4 Regulating the Software Process

Software regulations typically expect an organisation to have a published software
development process which clearly shows how the concerns of the regulator are
addressed. In addition, the organisation will have to prove that they are following this

6 Trials and Tribulations of the Global Software Engineering Process … 103

approved process through some form of record keeping and usually an external audit.
Interestingly there is much debate about the suitability of the more modern software
development methodologies such as agile or lean in such regulated domains [13].
For more information on agile and lean approaches to Software Engineering, see
Chap.2 and Chap.3.

Due to differing concerns between domains, different software development reg-
ulations have been created and consequently affect the development processes differ-
ently. The SOX regulations, for example, were designed to ensure accurate financial
reporting. Very different concerns, however, are at the heart of regulations pertaining
to safety-critical domains such as Aviation, Nuclear, or Medical Devices. In such
domains the obvious concern is for human safety, and the regulations are designed
to minimize to an acceptable level any related risk. To be SOX compliant you are
expected to demonstrate that the software has been adequately tested. However,
safety-critical regulations put a much heavier emphasis on this and expect thorough
verification and validation of the software [20]. This level of detail, as required by
the international standards such as IEC 62304 [25] for Medical Devices software
life cycle processes, and ISO 13485 [24] for Medical Devices quality management
systems, is far more onerous, and compliance must be demonstrated right throughout
the entire software development lifecycle.

6.4.4.1 Regulatory Effects on the GSE Function

The SDLC within a regulated area is reflective of a number of key influences. My
prior research [11] categorises these influences into 4 groups (Fig. 6.4). Within the
model, the arrows emanating from the Regulations box are shown leading to the other
three categories, indicating that compliance with the regulations must be addressed
within multiple levels and contexts.

The organisation component influences the software development process by
defining development tasks and delegating roles (such as developers and testers),
responsibilities (such as project management and software validation), and authority
(such as approvals). The regulatory context will influence the organisation’s ethos

Fig. 6.4 Categories of
influences on the software
development lifecycle within
a regulated context

http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_3

104 O. Cawley

in terms of ensuring the quality of the software, the workforce’s attitude to risk
management, and their sense of responsibility.

The software management component (of tasks, resources and schedules) natu-
rally influences the SDLC since it will be within these competencies, capabilities
and situational contexts that the SDLC will need to be framed. For example, the
technical nature of the product will automatically dictate the type of skills required
and the type of development environment needed. The availability or lack or avail-
ability of these resources will shape the resulting SDLC [27]. Different people and
organisations approach project management of software development differently. A
company which sees the software as being strategically important may, therefore,
also be more supportive of pursuing software process improvement initiatives.

The effect of regulatory compliance is very notable at a personnel level as it
is precisely the human activities that are being governed. When moving from an
unregulated into a regulated environment, unless the work processes are already
fulfilling the regulations (experience suggests that this is unlikely), there is a need for
peoples’ daily activities to change. For example, both SOX and the Medical Devices
regulations look for some level of independence in certain key areas. SOX looks for
segregation of dutieswhen it comes to code deployment or even access to a production
system, whileMedical Devices regulations expect independence between developers
and validation engineers. The typical approaches to activities such as communication
and knowledge transfer, where important ad hoc conversations go undocumented, or
an approval is given verbally, are no longer acceptable. When people are accustomed
to operating in an environment where issues can be fixed “on the spot,” these tighter
controls can be very frustrating for both the technical employee as well as for the
person awaiting resolution.

6.4.4.2 G-SC under SOX Regulations

In 2002, the SOX regulations were passed into law in the United States. A critical
element of those regulations refers to the ITGCs (Information Technology General
Controls) which are intended to ensure: that financial data is stored securely, that
only the relevant people have access to certain systems and functionality, and also
that any software/modifications developed which could affect the financial data are
developed within a robust and documented software development process.

It was therefore imperative that, within the G-SC environment, management
were confident that each developer, regardless of location, adhered to the internal
processes which were aligned with the expectations of SOX. A single set of “Global”
processes/controls was rolled out to all developers and support members and proved
instrumental in moving toward a cross-regional function. However, it added an extra
overhead to management, who then spent a substantial amount of time ensuring that
all team members, especially external contractors, were following the processes and
maintaining the necessary documentation.

In addition, the regulatory requirement for segregation of duties is worth noting.
For example, a software developer should not have full access to a live production

6 Trials and Tribulations of the Global Software Engineering Process … 105

system. Prior to being regulated, the G-SC developers were given such access by
default. This was in order for them to perform technical tasks such as code deploy-
ment and resolving production issues. To mitigate the regulatory concerns, the data-
base administrators were trained up in how to perform the deployments and where
necessary supervised by the software expert. For trouble shooting production issues,
the software engineers were given temporary administrator access, a record kept
of when and why it was granted, and access revoked upon issue resolution. These
records would subsequently be reviewed during the annual SOX audit.

6.5 Conclusion

As a company changes over its lifetime, for whatever reason, it must modify its
business processes accordingly. The software engineering function which supports
these processes must therefore be amenable to change also. The larger the company,
the more disruptive the change but perhaps the more necessary it is.

Contemporary businesses are under huge pressure from competitors. In particular
smaller companies must fight hard to win business from larger companies. Large
companies are often looking for ways to reduce their costs in order to remain com-
petitive. From a software engineering perspective, both small and large companies
are looking at having some of their software developed at remote locations. Small
companies are looking to outsource to low cost economies, while large companies
are looking to “virtualise” their distributed software engineers into a globally shared
service. In both cases, this new GSE function cannot work the same way as before.
The process must change to support the business.

In addition, regulatory controls which are becoming more pervasive within the
software engineering function, introduce additional complexities to the smooth deliv-
ery of the GSE service. The effects are felt right throughout the SDLC, and are
magnified when the context is a global organisation.

With change comes challenge andopportunity. The challenges are not insurmount-
able and the opportunities reveal themselves as you evolve. We need to overcome
the first to exploit the second.

6.6 Further Reading

The GSE topic has undergone quite a lot of academic research in the last number
of years. The seminal work by Erran Carmel “Global software teams: collaborating
across borders and time zones” [7], is a must read for those wishing to delve in to
the subject. A research team based in the University of Limerick, Ireland have spent
the last 10 years researching the theme, and have developed a global teaming best
practicemodel. Some useful papers include: [9, 17, 32]. Readers are also encouraged
to peruse their website at http://www.lero.ie/publications.

http://www.lero.ie/publications

106 O. Cawley

As introduced in this chapter, there has been a large growth in the number of
industries which are becoming subject to software regulation, for security, criticality,
safety, or quality reasons. This is still an areawhich requires further examination. The
question remains as to how the current GSE research is relevant in these regulated
contexts. Some introductory readings include: [6, 15].

References

1. 107th Congress: Sarbanes-Oxley Act of 2002. Technical report. Enrolled Bill: H.R. 3763,
Congress of the United State of America (2002)

2. Ågerfalk, P.J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., Conchúir, E.Ó.: A frame-
work for considering opportunities and threats in distributed software development. In: Pro-
ceedings of the International Workshop on Distributed Software Development, pp. 47–61.
Austrian Computer Society (2005)

3. Bank for international settlements: Basel II: international convergence of capital measurement
and capital standards: a revised framework. http://www.bis.org/publ/bcbs107.htm (2004)

4. BBC: enron scandal at a glance. http://news.bbc.co.uk/2/hi/business/1780075.stm (2002)
5. Borrás, C.: Overexposure of radiation therapy patients in panama: problem recognition and

follow-up measures. Pan Am. J. Public Health 20(2–3), 173–187 (2006)
6. Campbell, M.: Regulations. IEEE Potentials 23(2), 14–15 (2004)
7. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones. Prentice

Hall, Upper Saddle River (1999)
8. Carmel, E., Sawyer, S.: Packaged software development teams: what makes them different?

Inf. Technol. People 11(1), 7–19 (1998)
9. Casey, V., Richardson, I.: Practical experience of virtual team software development. In:

Proceedings of the EuroSPI 2004 Industrial Proceedings. Trondheim (2004). http://ulir.ul.ie/
handle/10344/2149

10. Casey, V., Richardson, I.: Virtual teams: understanding the impact of fear. Softw. Process.:
Improv. Pr. 13(6), 511–526 (2008)

11. Cawley, O.: The application of a lean software development methodology within the regulated
domain of medical device software. Ph.D. thesis, University of Limerick (Computer Science
and Information Systems) (2013)

12. Cawley, O., Richardson, I.: Lessons in global software development – local to global transition
within a regulated environment. In: European Systems and Software Process Improvement and
Innovation (2010)

13. Cawley, O., Wang, X., Richardson, I.: Lean/agile software development methodologies in
regulated environments - state of the art. In: Abrahamsson, P., Oza, N. (eds.) Lean Enterprise
Software and Systems. Lecture Notes in Business Information Processing, vol. 65, pp. 31–36.
Springer, Heidelberg (2010)

14. Cawley, O., Wang, X., Richardson, I.: Regulated software development - an onerous trans-
formation. In: Weber, J., Perseil, I. (eds.) Foundations of Health Information Engineering and
Systems. Lecture Notes in Computer Science, vol. 7789, pp. 72–86. Springer, Heidelberg
(2013)

15. Cawley, O., Richardson, I., Wang, X., Kuhrmann, M.: A conceptual framework for lean regu-
lated software development. In: Proceedings of the 2015 International Conference on Software
and System Process, pp. 167–168. ACM, New York, USA (2015)

16. DeLone,W., Espinosa, J., Lee,G., Carmel, E.: Bridging global boundaries for is project success.
In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences,
p. 48 ff. IEEE Computer Society, Washington, DC (2005)

http://www.bis.org/publ/bcbs107.htm
http://news.bbc.co.uk/2/hi/business/1780075.stm
http://ulir.ul.ie/handle/10344/2149
http://ulir.ul.ie/handle/10344/2149

6 Trials and Tribulations of the Global Software Engineering Process … 107

17. Deshpande, S., Beecham, S., Richardson, I.: Global software development coordination strate-
gies - a vendor perspective. In: Kotlarsky, J., Willcocks, L., Oshri, I. (eds.) New Studies in
Global IT and Business Service Outsourcing. Lecture Notes in Business Information Process-
ing, vol. 91, pp. 153–174. Springer, Heidelberg (2011)

18. Duranton,M., Black-Schaffer, D., De Bosschere, K.,Maebe, J.: The hipeac vision for advanced
computing in horizon 2020 (2013)

19. European Union: Medical Device Directive 2007/47/EC of the European Parliament and of the
council. Official Journal of the European Union (2007)

20. FDA: General Principles of Software Validation; Final Guidance for Industry and FDA Staff.
FDA Standard, U.S. Food and Drug Administration – Center for Devices and Radiological
Health (2002)

21. FDA:CodeofFederalRegulations 21CFRPart 820 -QualitySystemRegulation. FDAStandard
Part 820, U.S. Food and Drug Administration (2015)

22. Friedman, T.L.: The World Is Flat: A Brief History of the Twenty-First Century. Holtzbrinck
Publishers (2005)

23. IEEE Reliability Society: Annual technical report 2008. Transactions on Reliability 57(3),
398–425 (2008)

24. ISO: Medical devices – quality management systems – requirements for regulatory purposes.
International Standard ISO 13485:2003, International Organisation for Standardisation (2003)

25. ISO/TC 210: Medical device software – software lifecycle processes. International Standard
IEC 62304:2006, International Standards Organization (2006)

26. IT Governance Institute: Board briefing on it governance. Available from http://www.
isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/Board-Briefing-on-IT-
Governance-2nd-Edition.aspx (2003)

27. Kettunen, P., Laanti, M.: How to steer an embedded software project: Tactics for selecting the
software process model. Information and Software Technology 47(9), 587–608 (2005)

28. Kotter, J.P.: Leading change: why transformation efforts fail. Harvard Business Review 73
(1995)

29. Lewis, M., Slack, N.: Operations Strategy. Prentice Hall, Upper Saddle River (2002)
30. Markides, C.C.: A dynamic view of strategy. Sloan Manag. Rev. 40(3), 55–63 (1999)
31. Richardson, I., Avram, G., Deshpande, S., Casey, V.: Having a foot on each shore - bridging

global software development in the case of smes. In: Proceedings of the International Confer-
ence on Global Software Engineering, pp. 13–22. IEEE, Washington, DC (2008)

32. Richardson, I., Casey, V., Mccaffery, F., Burton, J., Beecham, S.: A process framework for
global software engineering teams. Inf. Softw. Technol. 54(11), 1175–1191 (2012)

33. The Free Dictionary: regulations. http://www.thefreedictionary.com/regulate (2015)

http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/Board-Briefing-on-IT-Governance-2nd-Edition.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/Board-Briefing-on-IT-Governance-2nd-Edition.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/Board-Briefing-on-IT-Governance-2nd-Edition.aspx
http://www.thefreedictionary.com/regulate

Chapter 7
The Route to Software Process Improvement
in Small- and Medium-Sized Enterprises

Mary-Luz Sánchez-Gordón, Ricardo Colomo-Palacios,
Antonio de Amescua Seco and Rory V. O’Connor

Abstract The software development industry is dominated by a myriad of
small- and medium-sized enterprises (SMEs). The main goal of this chapter is to
provide a characterization of SMEs based on previous studies. It also includes an
overview of a number of software process models and software process improvement
(SPI) models, which are aimed at assisting SMEs in improving the way they develop
software. Furthermore, this chapter discusses the extent of SPI approaches published
in the literature as a way to understand the particular context and some of the major
challenges faced. From there, we propose an approach to integrate software process
practices. This proposal is based on the results of our study on this topic carried out in
small software companies. It is focused on what small organizations could actually
do, more than on what they are currently practicing.

7.1 Introduction

In the current global economy more and more based on knowledge, software is key.
Hence, countries need the capacity to adopt, adapt, and develop relevant software
[131]. According to the Organization for Economic Co-operation and Development
(OECD), small- and medium-sized enterprises (SMEs) constitute the dominant form

M.-L. Sánchez-Gordón (B) · A. de Amescua Seco
Universidad Carlos III de Madrid, Av. Universidad 30, Leganés,
CP 28911, Madrid, Spain
e-mail: mary_sanchezg@hotmail.com

A. de Amescua Seco
e-mail: amescua@inf.uc3m.Es

R. Colomo-Palacios
Department of Computer Science,
Østfold University College, BRA Veien 4, 1783, Halden, Norway
e-mail: ricardo.colomo@hiof.No

R.V. O’Connor
Dublin City University, Glasnevin, Dublin 9, Ireland
e-mail: rory.oconnor@dcu.ie

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_7

109

110 M.-L. Sánchez-Gordón et al.

of business organization in all countries worldwide, accounting for over 95% and
up to 99%of the business population depending on the country [91]. Inmost develop-
ing and transition economies, the sector is dominated by small and young enterprises.
Local software expertise is in a stronger position to understand local needs and, as
a consequence, to develop relevant and innovative applications and content [131].
Therefore, it is of particular importance to ensure that this sector can support the
public and private sectors’ local needs [131]. Moreover, this sector is able to gener-
ate skilled jobs and foreign exchange earnings through the export of products and
services produced at a distance [130, 131].

However, the implementation of controls and structures to properly manage their
software development activities is necessary. This constitutes a major challenge. In
this sense, a common way to achieve process management software development is
through the introduction of a software process [88]. Although such management is
recognized as important to business success, some studies (e.g., [9, 23, 26]) suggest
that SMEs do not adopt a proactive and highly prioritized approach to software
process improvement (SPI).

The aim of this chapter is to provide a characterization of SMEs based on previous
studies and to give an overview of existing SPI initiatives. From there, we propose
an approach to integrate software process practices based on the results of our study
about this topic, carried out in very small software companies.

7.2 Background and Context

The term SME refers to a category of company that is essentially not a large orga-
nization. There is no globally accepted uniform definition of SMEs. The term SME
covers a wide range of definitions and measures, varying from country to country
and among the sources reporting SME statistics. Some of the commonly used criteria
are the number of employees, total net assets, sales and investment level. However,
the most common definitional basis used is employment, and here again, there is
variation in defining the upper and lower size limit of an SME. Despite this variance,
a large number of sources define an SME to have a cut-off range of 0–250 employees
[8]. For instance, the European definition of SME [29] states:

The category of micro-, small-, and medium-sized enterprises (SMEs) is made up of enter-
prises which employ fewer than 250 persons and which have an annual turnover not exceed-
ing 50 million euro, and/or an annual balance sheet total not exceeding 43 million euro.

There are two further classifications within the SME category: small and micro
enterprises. A small enterprise is defined as employing:

fewer than 50 persons and whose annual turnover does not exceed 10 million euro […]

and a micro enterprise is defined as employing:

fewer than 10 persons and whose annual turnover does not exceed 2 million euro […]

7 The Route to Software Process Improvement … 111

7.2.1 Software SMEs

Although an international classification exists for computer software and services,
little international official data is available outside Europe and North America. In
Europe, Eurostat uses the General Industrial Classification of Economic Activities
within the European Communities (NACE Rev.2) that identifies computer software
and related computer services as a subcategory:

• Division 62: computer programming, consultancy, and related activities
• Division 63: information service activities

In 2010, according to Eurostat [30], 99.8% of enterprises in this sector weremedium-
sized (<250 employees). Small enterprises (<50 employees) make up at least 98.8%
andmicro (<10 employees) are 94%. In this sector,micro enterprises employedmore
than 30.74% of people and made up 24% of turnover. Similar scenarios occur in
many other countries, especially in Brazil and Canada [52].

Likewise, the definition of “small” and “very small” enterprises is challengingly
ambiguous, as there is no commonly accepted definition of the terms. For instance,
Laryd and Orci [56] have proposed a classification of Very Small Entities (VSEs). In
this classification, three different sizes constitute VSEs: the extra extra small (XXS),
which are companies that had less than 3 employees; the extra small (XS), which are
companies that had between 3 and 16 employees; and small (S), which are companies
that had between 16 and 50 employees. According to Sánchez-Gordón [115], VSE
includes small software development departments and small projects within larger
organizations, which employs less than 25 people. In this study, we used a paper
published by the Centre for Software Process Technologies [68] to help define the
size of small organizations. This last definition has been accepted by the International
Organization for Standardization (ISO) due to the crucial role played by VSEs in
the software industry [44].

Besides the number of employees, McFall et al. [68] realized that the priorities
and concerns for organizations with fewer than 20 employees are different from
those of larger organizations. Not all the software companies are the same and vary
according to factors including size, market sector, time in business, management
style, product range, and geographical location [88]. Richardson and von Wangen-
heim [109] stated that these companies often require different approaches because
of specific business models and goals, resource availability (financial and human),
process and management capability, organizational differences, among other things.
Clarke andO’Connor [24] defined this as the situational context which includes eight
classification factors: personnel, requirements, application, technology, organization,
operation, management, and business.

Although the Software SME sector has been examined by researchers in terms
of the number and proportion of individual organizations that qualify as SMEs, due
to the rich variety of software development settings, the implementation of a set of
practices for software development may be quite different from one setting to another
[43]. One clear example is the startup phenomenon, there is no unique definition in

112 M.-L. Sánchez-Gordón et al.

literature on what constitutes a startup [93]. However, high uncertainty and rapid
evolution are the two key characteristics for startups, which better differentiate them
from more established companies [38].

7.2.2 Software Process in SMEs

The software process involves all the stages and activities that are followed by an
organization to develop a software product [147]. Sommerville [123] states that
a development process should be updated, improved, and maintained in order to
meet current business and customer requirements. Thus, a software process model
is an abstracted description of a software development process [102, 123] and it is
prescriptive [123] since it indicates how software should be developed.

According to Pressman [102], there are three major general categories of soft-
ware processmodels, namely:waterfall, incremental, and evolutionary. Furthermore,
there are also specialized process models such as component-based and test-driven.
Nevertheless, Boehm and Turner [13] outlined that there are two major software
process categories: agile and plan-driven, which have been considered traditionally
as opponents: On one hand, agile methods are based on iterative and incremental
development using short development cycles [13]. The most important priority of
agile methods is to keep the customer satisfied with early and continuous delivery of
software functionality. Although agile software development methods have caught
the attention of software engineers and researchers worldwide, scientific research
still remains quite scarce [1]. On the other hand, the traditional software develop-
ment world, characterized by the engineering and process improvement advocates,
includes plan-driven methods that focus on the quality of the software artifacts and
the predictability of the processes [13].

In practice, software development is beset with many challenges and constraints
[43]. Although there are multiple approaches for organizing the software develop-
ment process and multiple factors influencing the software development process
[24], SMEs can have a low software development process priority [9], since they
are focused on the product quality and delivery time rather than in the process qual-
ity [11]. Software SMEs report that they adopt a mix-and-match philosophy to their
software development process,mixing aspects of different prescribed software devel-
opment approaches in order to fulfill their needs within their constraints [25]. In other
words, these companies do not use a software process model in a “textbook” fashion
[26, 138, 140], preferring instead either to drop elements of their chosen model or,
develop something proprietary best suited to their specific needs. Likewise, software
engineering work practices are chosen opportunistically, adapted and configured to
provide value under the constrains imposed by their context [93, 138]. In fact, orga-
nizations are adopting multiple methodologies on projects and choosing to follow a
hybrid approach to software development [129, 138].

7 The Route to Software Process Improvement … 113

There is evidence that the majority of small, especially very small software orga-
nizations, are not adopting existing standards as they perceive them as being orien-
tated toward large organizations and studies have shown that small firms’ negative
perceptions of process model standards are primarily driven by negative views of
cost, documentation and bureaucracy [52]. Small companies generally need external
assistance in order to adopt and implement standards [54]. As a result, in 2010, the
ISO published the ISO/IEC 29110 standard, which addresses specifically the soft-
ware lifecycle needs of VSEs, and it is still under development. Its adoption has been
sometimes difficult, sometimes easier, but it is still incipient [76] and its impact on
literature is also plain [77]. Therefore, it is an emerging standard and has work to be
done yet.

The existence of a software process does not guarantee that software will be
delivered on time, that it will meet the customer’s needs, or that it will exhibit the
technical characteristics that will lead to long-term quality characteristics [102].
Thus, the process itself can be assessed to ensure that it meets a set of basic process
criteria that have been proved to be essential for a successful software engineering
practice. For this reason, over the past years different approaches to software process
assessment and improvement for the SME context have emerged.

7.2.3 Software Process Improvement in SMEs

While other industries have agreed in sets of best practices, to date, the software
industry does not have universally accepted practices. The low adoption of best
practices, as indicated from several previous surveys (e.g., [20, 26, 54, 68, 84]),
suggests that process improvement should be a high priority formany softwareSMEs.
These surveys have also established thatmany SMEs are interested in improving their
software processes.

There exists a broad variety of Software Process Improvement (SPI) approaches.
The most prominent due to their acceptance rates among large organizations are the
ISO 9000 and ISO/IEC 15504 standards, and the Capability Maturity Model (CMM)
and Capability Maturity Model Integration (CMMI) of the Software Engineering
Institute (SEI). However, they are not being widely adopted and their influence in
the software industry therefore remains more at a theoretical than at a practical level
[26]. Schweigert et al. [121] have also not found a commonly accepted agile maturity
model.

Despite significant investments in SPI that these large organizations have done,
they still face problems in their implementation [81, 82]. Although SMEs adapt and
use these models to initiate their improvement efforts, in many cases the efforts have
not led to the expected improvements and failure rates are high. In spite of their
importance, in general it has been observed that the successful implementation of
these models is not possible in the context of SMEs [44], as they are not capable

114 M.-L. Sánchez-Gordón et al.

of dealing with the requirements and bear with the costs associated to the imple-
mentation of these SPI initiatives [46, 124, 142]. Moreover, there are significant
differences in their awareness of quality issues and in the resources available [39].
Therefore, SPI initiatives in SMEs should be implemented using another approach to
deal with their particular needs. On one hand, Kautz [46] andMishra andMishra [71]
identified that CMM, ISO/IEC 90003:2004, TickIT, Bootstrap, and IDEAL models
were not considered to be necessary or appropriate in SMEs contexts. On the other
hand, Garcia et al. [34] state that SMEs are increasing the use of CMMI in number
year by year but they did not show evidence to support it.

Nevertheless, the Software Engineering community has shown an ever-increasing
interest in tackling SPI in SMEs [96], but it is still a problem scarcely studied in the
world. Notable international initiatives are European Systems and Software (ESSI)
promoted by the EuropeanUnion, which have promoted the SPIRE project (Software
Process Improvement in Regions of Europe), the MoProSoft model in Mexico, the
MPS.BR project in Brazil, the SIMEP-SW in Colombia, the COMPETISOFTmodel
in Latin America and ITMark, among others. However, none of them have been
widely accepted or implemented, this has motivated the academia and the software
industry to work together to study the components needed to improve the quality of
their products and services, as well as the process performance.

Accordingly, many researchers are focusing their attention on adapting and using
SPI approaches and how to guide and prioritize the SPI efforts in SMEs [96]. This
means that often researchers consider small organizations together with medium
enterprises, not differentiating their specific characteristics [109]. Therefore, this can
affect research approaches and results. Due to limited in scale and resources, small
software companies find software process improvement a major challenge [64].

Regarding the most prominent models, novel assessment methods tailored to
the context of SMEs have been developed, such as an adaptation of the IDEAL
model [96], Rapid Assessment for Process Improvement for Software Development
(RAPID), Software Process Improvement Initiation (SPINI), and Método de Avali-
açãodeProcessodeSoftware (MARES).RegardingCMM,MESOPYMEwith objec-
tives similar to those of the IDEALmodel, and forCMMI,EPAwhich is an example of
an ARC class-C compliant method and its expansion ADEPT. Finally, the approach
presented in [128] and the Agile Framework for Small Projects (AFSP; [57]) are
derived from Boehm and Turner’s Agility/Discipline assessment.

In summary, taking into account studies and efforts in the area of SPI for small
organizations [11, 25, 48, 54, 120, 126], it is evident that there is a need to find
mechanisms that allow them to incorporate process improvement into their daily
work, taking into account their business model, situational factors, limited resources,
and cost and time constraints which are specific to their environment.

The systematic review carried out by Valtierra et al. [135] present a list of the
most frequently improved processes: project planning, requirements management,
configuration management process, and risk management. However, some organi-
zations focus on processes such as requirements development, verification, project

7 The Route to Software Process Improvement … 115

monitoring and control, and process and product quality assurance. Additionally,
Pino et al. [96] in their systematic review included the documentation process as one
of these processes.

7.3 Research Methodology

According to [114], in order to achieve an overview of the state of the question, a
researchmust be carried out following the guideline on Systematic LiteratureReviews
(SLRs) by Kitchenham and Charters [47]. An SLR is defined as a methodical way to
synthesize existing work in a manner that is fair and accurate. An SLR is a means of
identifying, evaluating, and interpreting all available research relevant to a definite
topic.

7.3.1 Motivation and Objectives

The literature presents a lack of studies on the whole view about the best known
SPI methods, models and frameworks in SMEs. At the present time, there is limited
documented and published research work regarding SPI in SMEs [54, 96, 135].
Therefore, this study will facilitate the understanding of the current status of research
in this topic and outline further research. Finally, it will assist practitioners in the
realization of the different approaches.

7.3.2 Research Method

This study has been undertaken as a SLR based on the Kitchenham and Charters’
guidelines [47]. This section describes the steps carried out in this SLR.

7.3.2.1 Planning

The goal of this study is to develop an overview of the current status of the more
SPI-identified approaches of the scientific literature on SMEs. After reviewing the
literature on SLR for similar research objectives, it can be identified that there is
no previously published search on the topic. We used a primary set of publications
and manually searched for the SPI approaches and its references. This initial review
reflected 40 SPI approaches to be explored in this study. For this primary search, we
refer to the authors and publications summarized in Table7.1, which later on also
serve as control values.

116 M.-L. Sánchez-Gordón et al.

Table 7.1 Key contributions of primary search

References Title

[54] The Application of International Software Engineering Standards in Very Small
Entities

[71] Software Process Improvement in SMEs: A Comparative View

[96] Software Process Improvement in Small and Medium Software Enterprises: a
systematic review

[125] An Extended Systematic Review of Software Process Improvement in Small and
Medium Web Companies

[135] Characterization of Software Processes Improvement Needs in SMEs

Then, an SLR protocol was adapted to describe the plan for the review. The
protocol includes research background, research questions, search strategy, study
selection criteria and procedures, data extraction, and data synthesis strategies to
ensure that the study is undertaken as planned and reduce the possibility of researcher
bias. Next, the implementation of each step followed is briefly described.

7.3.2.2 Research Questions

The research question is threefold:

1. What is the impact of the SPI approaches in the scientific literature?
2. What has the evolution of the SPI approaches been?
3. Which research trends are revealed from the systematic review of the SPI

approaches?

The keywords used to find an answer to the research questions were the name of
SPI approach (e.g., MoProSoft, IDEAL, CMMI), which were taken from the pre-
defined list (Sect. 7.3.2.1): software process improvement, software
process, sme, and small company. Sometimes, it was necessary to include
the name of the standard onwhich it is based in order to limit the search. For instance,
the resulting search strings were:

• MOPROSOFT, (IDEAL) and (CMMI) and (software process)
• (CMMI) and (software process) and (sme or small company)

The results expected at the end of the systematic review were, among others, to dis-
coverwhat surveys exist aswell as to identify the implications of eachSPI approach in
scientific literature. Authors also expected to see which applied researches had been
carried out on the topic, as well as which trends are revealed from the performance
of the systematic review.

7 The Route to Software Process Improvement … 117

Table 7.2 Inclusion (I) and
exclusion (E) criteria

Kind Criteria

I Studies written in English or Spanish language

I Studies explicitly related to each SPI approach

I Studies in the SME context

E Studies that are not written in the specified languages

E Studies that are not relevant to the topic

E Studies out of the SME context

7.3.2.3 Search Strategy and Search Process

Having the search strings to conduct the review the selected sources were: IEEE
Xplore, ACM Digital Library, ScienceDirect, Wiley Online Library, and Springer
Link. The search process included: first, the search stringwas selected; then a selected
source was chosen and each search string was applied. Once the search results were
obtained, a list of relevant studies was made based on titles, abstracts, conclusions,
references, and keywords. Having the single result sets available, all results were
combined and used as basis for the data analysis.

When there was doubt about its relevance, the reference was included leaving
open the possibility of discarding the paper during the second phase when the full
texts of the papers were studied. Sometimes, further studies were identified and
included due to its relevance. After that, each full article was retrieved, read and
analyzed to verify its inclusion or exclusion (Table7.2) and the reason for that was
properly documented. A test–retest approach and reevaluation of a random sample
of the primary studies was made. Finally, the primary studies were identified.

7.3.2.4 Data Extraction

The data extracted from each paper was documented in a spreadsheet and kept in
a reference manager. In addition, mind maps of the features of each initiative were
made in order to understand the relations between them. After identification of the
papers, the following data was extracted:

1. Source (journal or conference),
2. Title,
3. Authors,
4. Publication Year,
5. Relevance (defined during further analysis),
6. SPI approach features, and
7. Comments of the research, including which questions were solved.

118 M.-L. Sánchez-Gordón et al.

Table 7.3 Inclusion (I) and
exclusion (E) criteria

Source Papers

Wiley Online Library 315

ScienceDirect 474

ACM Digital Library 209

IEEE Digital Library 152

SpringerLink 675

Number of potential papers 1825

Selected by abstract 297

Selected by full text (without duplicates) 90

7.3.3 Data Synthesis and Results

The searches for this SLR were conducted from December 2014 to January 2015.A
total number of 1,825 studies were found from all sources based on the search strings
defined. 90 primary studieswere selected based on the in-/exclusion criteria. Table7.3
presents the results of the search and the source of the documents. The results of the
review are discussed in the following subsections.

7.3.3.1 Impact of the SPI Approaches in the Scientific Literature

Regarding the first research question, the 90 papers studied included one novel stan-
dard, 13 of the most recognized models and methods, five well-known frameworks
and two techniques which were Pisko and its extension, LAPPI (Table7.4). It is
worth mentioning that ASPE/MSC andAdept also have been extended (ASPE/MSC,
ASPEI/MSC and Adept, Automotive/Adept). They are distributed as follows: frame-
works (40%), models/methods (33%), standards (20%) and techniques (7%). In the
light of this, we can see that a lot of effort has been put into developing frameworks
and models/methods. As Table7.5 shows, the frameworks arosed since 2005. In this
segment, it is worth noting that 50% of the publications in 2007 are about MPS.BR.

Table 7.4 Papers by type

Type SPI approaches Papers

%

Standard ISO/IEC 29110* 18 20

Model/Method OWPL, MARES, EPA, Adept**, Impact,
Mesopyme, ASPE/MSC***, iFlap, Processus, SPM,
RAPID, XPMM Model, Agile SPI

30 33

Framework MoProSoft, COMPETISOFT, MPS.BR, ITMark,
Tutelkan

36 40

Technique Pisko – LAPPI 6 7

* Includes UP-VSE model, ** include Automotive/Adept, and *** include ASPEI/MSC

7 The Route to Software Process Improvement … 119

Table 7.5 Papers by year

Type 19
97

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Framework 2 2 7 2 5 7 3 4 1 3
Model/Method 1 1 4 3 2 2 4 2 4 2 1 1 1 2
Standard 1 5 1 2 3 6
Technique 1 1 1 1 1 1

Fig. 7.1 Number of publications per year

In 2010, an important fact to take into account is the emergence of the ISO/IEC 29110
standard reflected in 38% of the papers published on that year.

Figure7.1 shows that 80% of the articles were published from 2006 and the
remainder (20%) was published in the previous seven years. This seems to mean
that there is an increasing interest in this field.

It is also important to remark that we have found scarce publications in some of
the most cited models/methods: Impact (1), Mesopyme (1), Processus (2), SPM (2),
XPMM (2) and RAPID (3). There is no hard evidence of their evolution after 2006.
Adept (2) and ASPE/MSC (2) are in a similar situation after 2009. Likewise, EPA
has 5 publications, but its last one was in 2009. Agile SPI has one paper published
in 2010, which was taken from references found in the COMPETISOFT model. In
consequence, there are 10 SPI approaches that demonstrate actual work in progress
(Table7.6). They make up for the 70% of total.

7.3.3.2 Evolution of the SPI Approaches

The process of gradual, increasing change and development has resulted in a pro-
gression of SPI approaches including techniques, methods/models, frameworks, and
integration of approaches. Thus, the ISO launched the ISO/IEC 29110 in 2010 in
order to benefit the SPI in SMEs. Figures7.2 and 7.3 show the 21 SPI approaches
(Table7.4) and their relations—bearing in mind UP-VSE model is taken as part of

120 M.-L. Sánchez-Gordón et al.

Table 7.6 Current SPI approaches

SPI Approach Type 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total

11krowemarFKRAMTI
211dohteMpalFi
211krowemarFnakletuT

OWPL Method 1 1 1 3
312dohteMSERAM
3111euqinhceTIPPAL-oksiP

MoProSoft Framework 1 1 1 2 1 1 7
COMPETISOFT Framework 1 1 4 3 2 1 12
MPS.BR Framework 2 5 1 2 1 1 12
ISO/IEC 29110 Standard 1 5 1 2 3 6 18

Total 63

Fig. 7.2 Relations between models/methods, techniques, and standards

the ISO/IEC 29110 standard. These relations were identified during this review. The
CMMI, ISO/IEC 15504, ISO/IEC 12207, and ISO 9001 standards have been the
major foundation on which most of the models and methods have been developed.

Figure7.2 shows that EPA, XPMM, MESOPYME, OWPL, PROCESSUS,
IMPACT, andADEPT are based onCMMI. However, some of them are also based on
others standards. Therefore, XPMM and PROCESSUS are based on ISO 9001, and
IMPACT, ADEPT, and OWPL on ISO/IEC 15504. Likewise, RAPID and MARES
are based on ISO/IEC 15504. Furthermore, there are models based on other ones,
like SPM which is based on QFD/SPI model focused on the House of Quality or
ASPE/MSC that is tailored out of existing approaches, these standards are adapted
and simplified either by incorporating a matrix (as in SPM model) or process guides
(as in ASPE-MSC). The same applies to iFlap that is based on the inductive method.

7 The Route to Software Process Improvement … 121

Fig. 7.3 Relations between frameworks and standards

Finally, UP-VSE is a software process model based on the Unified Process, which
implements the requirements engineering practices of ISO/IEC 29110-5-1-1. There-
fore, UP-VSE has been taken as papers of the standard in order to illustrate how
ISO/IEC 29110 arises in this context. Moreover, agile methodologies such as XP or
Scrum also have inspired new approaches, such as the XPMM model or Agile SPI.
The latter is less known but was studied for COMPETISOFT in order to develop its
process improvement model. Finally, LAPPI is an evolution of the PISKO technique.
The LAPPI technique provides an easy to use, lightweight tool for process modeling
and improvement target identification. Therefore, it is useful in the diagnosing phase
of SPI.

Figure7.3 depicts the frameworks and their relations with the standards CMMI,
ISO/IEC 15504, ISO/IEC 12207, ISO 9001, and ISO/IEC 29110. CMMI, ISO/IEC
15504, ISO/IEC 12207 have a major influence on MoProSoft, MPS.BR, and COM-
PETISOFT. In turn, the last one is based on the top two. CMMI also provides the
basis for Tutelkan, which incorporates ISO 9001 and ITMARK that in turn encom-
pass EFQM and ISO/IEC 27001. Each framework has its own reference and assess-
ment model, and approaches to their implementation that includes automated tools.
Consequently, almost all of them have mechanisms for their certification. How-
ever, Tutelkan is a framework that does not provide certification. It allows SMEs
to become aware of their level of compliance with international standards, since
each reusable asset contains information about the specific CMMI practices, ISO
9001 clauses and COMPETISOFT activities that it conforms to. On the other hand,
MoProSoft has been selected by the authors of the ISO/IEC 29110 standard in order
to quickly achieve initial products. This standard aims to address the difficulties
of SMEs by developing profiles and by providing guidance for conformance with
ISO/IEC software engineering standards. This framework attempts to ease the use
of ISO/IEC 12207 processes and ISO 9001, and reduce the conformance oblig-
ations by providing VSE profiles. The ISO/IEC 29110 standard has a series of
Deployment Packages (DPs) and Implementation Guides that have been devel-

122 M.-L. Sánchez-Gordón et al.

oped to define guidelines and explain in more detail the processes defined in the
ISO/IEC 29110 profiles. Although a DP is not a process reference model, packages
are designed such that a VSE can implement its content without having to implement
the complete framework. A DP also includes mapping to other standards or models,
such as the CMMI.

Regarding the adoption of the 10 SPI approaches outlined in Table7.6, by the end
of 2013, after 10 years, the MPS-SW of MPS.BR surpassed the 500 assessments
in companies located in Brazil’s five regions, mostly including micro, small, and
medium-sized enterprises. The LAPPI technique has evolved through 42 industrial
cases conducted during 1999–2011 in 31 different companies. The official website of
Itmark1 point out a list of 155 certified companies in 17 countries around the world.
Accordingly to NYCE,2 more than 400 organizations have been assessed under the
standardNMX-I-059/02-NYCE, best known asMoProSoft, and there are 11 certified
companies under basic profile of the ISO/IEC 29110 standard. The selected papers
about COMPETISOFT describe some case studies and 5 certified companies in Peru.

In 2008, OWPL reported an experience concerned to 93 evaluations of 86 different
organizations in 3 countries (Wallonia, Quebec and France). Finally, the selected
papers about MARES, Tutelkan, iFlap show quiet few case studies carried out in
order to validate their proposal.

7.3.3.3 Research Trends

In this section, we describe the main research trends of the SPI in SMEs revealed
from this SLR. In relation to the number of publications, Fig. 7.4 shows that lately
there is an increasing interest on the ISO/IEC 29110 standard which overcomes
the other types of initiatives (models/methods, techniques, and frameworks). Nev-
ertheless, the initiatives have given experience and knowledge in the field of SPI
so its usefulness extends to practitioners and researchers. In fact, the distribution of
publications on SPI initiatives (Fig. 7.5) also shows that MPS.BR, MoProSoft and
COMPETISOFT correspond tomore than 50% of the papers, which is in accordance
with the aforementioned adoption data. The SPI approaches have evolved through
the collaborations among academy and software industry during 1997–2014 in dif-
ferent kinds of SME around the world. However, the SPI initiatives are primarily
located in Europe and America where the strength of local government support for
these initiatives has been in large. It also has been a key factor affecting their dis-
semination. In addition, the development of mechanisms such as automated tools or
deployment packages to facilitate the implementation of the initiatives is important
and necessary to achieve their adoption among SMEs.

1Available from: http://it-mark.eu.
2Available from: http://www.nyce.org.mx/moprosoft.

http://it-mark.eu
http://www.nyce.org.mx/moprosoft

7 The Route to Software Process Improvement … 123

Fig. 7.4 Number of
publications by type per year

Fig. 7.5 Distribution of
publications by software
process improvement
initiative

7.3.3.4 Limitations of Current Research

Regarding the search string, we attempted to collect all the strings that were repre-
sentative of the SPI approaches identified and the three research questions. Based
on the results obtained, the search strings were refined on several occasions in order
to maximize the selection of papers related to the SLR. Then, we ensured that the
studies with which we were familiar were in the results.

124 M.-L. Sánchez-Gordón et al.

Fig. 7.6 Relations between software process improvement initiatives and the standards: CMMI,
ISO/IEC 12207, ISO/IEC 15504, ISO 9001, and ISO/IEC 29110

Another potential weak aspect is that there are very few papers related to this
topic. This aspect is normal in the SME context, where the tendency is to maximize
the product quality as a mean to achieve the best quality in use. Therefore, SPI
approaches are rarely deployed. We argue that this is not the best way to work and
we advocate another way to apply them: first, establish what they actually do or could
potentially do; and later on, ensure the SME stability and address an SPI initiative.

7.4 Conclusions

A main objective of the SLR was to investigate specific SPI initiatives. We have
investigated the current evidence of SPI initiatives in the context of SMEs. Due to our
inclusion/exclusion criteria, the number of relevant studies found was small but the
overall search process was very comprehensive, and following the protocol defined
performed it. As a result, 90 papers were chosen and a total of 21 SPI approaches
were studied from these papers, although only 63 are pertinent for this SLR. The rest
of the papers are about less known and consequently less used initiatives. A full list
of papers is shown in Sect. 7.6.

Regarding the categories in which the SPI approaches can be divided, we found
5 frameworks, 13 models/methods, 2 techniques, and 1 standard (see Fig. 7.6).
Many of the publications are focused on frameworks (40% out of the total) but
the ISO/IEC 29110 has lately received a lot of attention (20%). However, the current
work is revealed by 3 methods/models (iFlap, OWPL and MARES), 5 frameworks

7 The Route to Software Process Improvement … 125

(MoProSoft, COMPETISOFT,MPS.BR, ITMark, Tutelkan) and the ISO/IEC 29110
standard. However, the MoProSoft, COMPETISOFT, and MPS.BR work with their
own reference and assessment models and offer their own certifications. Although
two techniques were found in this topic, they refer only to one approach because
LAPPI extends Pisko.

There is quite few information about the results of the above SPI initiatives in
terms of case studies, lessons learned, and number of certified SMEs. Therefore, it is
difficult to determine the actual scope of such initiatives and their success. Thatmeans
that more dissemination and support is necessary. These factors strongly influence
the number and the period in which the adoption appears: very few contributions
were found before 2006. Consequently, a growing increase appears in the last 10
years. In addition, we have found novel approaches, such as ArSPI model, which by
its nature could become more relevant in the coming years.

It isworthmentioning thatmost of theSPI initiatives are based onCMMI, ISO/IEC
12207, ISO/IEC 15504 and ISO 9001 standards (Fig. 7.6), the relations between them
and the framework are displayed in Fig. 7.3. Additionally, there is a strong tendency
for use of the ISO/IEC 29110 standard for instance UP-VSE model is based on it.

Considering the rich variety of software development settings, the route to SPI
in SMEs depends on the amount of resources, effort, and objectives of each one.
On one hand the ease of use (automated tools), lightweight and low cost are impor-
tant features. On the other hand the support of local governments and international
institutions such as ISO is an important part of the key.

7.5 Further Reading

This paper discusses SPImethods, models and frameworks for SMEs from a compar-
ative perspective. The most related work has been developed by Mishra and Mishra
[70, 71], who reviewed and compared various SPI methodologies on different signif-
icant attributes supported by various studies. Additionally, there are four systematic
literature reviews (SLRs) on this topic: three of them [54, 96, 135] identified the SPI
approaches but did not focus on understand their evolution, and the last one [125] is
focused on web companies.

This book chapter extends previous work in a substantial way because we are con-
sidering a measure of the impact of publications by means of a systematic literature
review of each SPI-identified approach (method, model, and framework) from pre-
vious reviews. Therefore, a rigorous and up-to-date literature review with the latest
related references has been included.

Recommended literature for further information about this topic is available in
the proceedings from conference series such as International Conference on Soft-
ware and System Process (ICSSP; [42]), European System & Software Process
Improvement and Innovation (EuroSPI; [10, 67]) and International SPICE Con-
ference (SPICE; [72, 146]) as valuable information resources for researchers. Fur-
thermore, recommended literature for additional information about ISO/IEC 29110
is available: http://29110.org and there is a Public Site of the ISO Working Group

http://29110.org

126 M.-L. Sánchez-Gordón et al.

Mandated to Develop ISO/IEC 29110 Standards and Guides for Very Small Entities
involved in theDevelopment orMaintenance of Systems and/or SoftwareReferences.
Recommended literature for further information aboutMoProSoft: http://www.nyce.
org.mx/moprosoft and recommended further reading regarding ArSPI is available
from [49, 50].

7.6 List of SLR Papers

This section gives an overview of the reviewed papers and provides a classification.
Furthermore, the acronyms and abbreviations used in this chapter are explained
(Tables7.7 and 7.8).

Table 7.7 Summary and classification of the papers of the systematic literature review

Type Initiative References

Framework COMPETISOFT [27, 28, 60, 61, 90, 92, 97–101, 139]

ITmark [55]

MoProSoft [7, 35–37, 78, 110, 136]

MPS.BR [12, 21, 31, 32, 45, 73–75, 111, 112,
116–118, 143]

Tutelkan [132, 133]

Model/Method Adept [63, 65]

ASPE/MSC [40, 142]

EPA [58, 59, 66, 144, 145]

iFlap [94, 95]

IMPACT [122]

MARES [6, 140, 141, 148]

MESOPYME [16]

OWPL [22, 39, 149]

PROCESSUS [41, 113]

RAPID [17–19]

SPM [107, 108]

XPMM [33, 79, 80]

Standard ISO/IEC 29110 [5, 14, 15, 51–53, 62, 69, 83, 85–87, 89,
104–106, 127, 137]

References LAPPI [103]

PISKO [2–4, 119, 134]

http://www.nyce.org.mx/moprosoft
http://www.nyce.org.mx/moprosoft

7 The Route to Software Process Improvement … 127

Table 7.8 Current SPI approaches

Abbreviation Name

Prosoft Programme for the Development of the Software Industry (Programa para
el Desarrollo de la Industria del Software)

↪→ MoProSoft Process Model for the Software Industry (Modelo de Procesos para la
Industria de Software)

↪→ EvalProSoft Process Assessment Method for Software Industry (Método de
Evaluación de Procesos para la Industria del Software)

MPS.BR Brazilian Software Process Improvement (Melhoria de Processos do
Software Brasileiro)

↪→ MA-MPS MPS Assessment Method (Método de Avaliação para Melhoria de
Processo de Software)

↪→ MN-MPS MPS Business Model (Modelo de Negócio para Melhoria de Processo de
Software)

SIMEP-SW Colombian Software Development Process Improvement System (Sistema
Integral para el Mejoramiento de los procesos de Desarrollo de Software
en Colombia)

COMPETISOFT Process Improvement for Promoting Iberoamerican Software Small and
Medium Enterprises Competitiveness

RAPID Rapid Assessments for Process Improvement for software Development

MARES Methodology for Software Process Assessment (Método de Avaliação de
Processo de Software)

EPA Express Process Appraisal

AFSP Agile Framework for Small Projects

OWPL Walloon Observatory for Software Practices (Observatoire Wallon des
Pratiques Logicielles)

ASPE/MSC Approach for Software Process Establishment in Micro and Small
Companies

ASPEI/MSC Approach for Software Process Establishment and Improvement in Micro
and Small Companies

iFlap Improvement Framework Utilizing Lightweight Assessment and Planning

SPM Software Process Matrix

XPMM eXtreme Programming Maturity Model

Agile SPI Agile Software Process Improvement

Tutelkan

↪→ TIP Tutelkan Implementation Process

↪→ TPF Tutelkan Process Framework

↪→ TRP Tutelkan Reference Process

LAPPI Light-weight Technique to Practical Process Modeling and Improvement
Target Identification

Automotive-adept Lightweight assessment method for the automotive software industry

UP-VSE Unified Process for Very Small Entities

ArSPI Artifact-based Software Process Improvement & Management

128 M.-L. Sánchez-Gordón et al.

References

1. Abrahamsson, P., Oza, N., Siponen, M.T.: Agile software development methods: a compar-
ative review. In: Dingsøyr, T., Dybå, T., Moe, N.B. (eds.) Agile Software Development, pp.
31–59. Springer, Heidelberg (2010)

2. Ahonen, J.J., Forsell, M., Taskinen, S.K.: A modest but practical software process modeling
technique for software process improvement. Softw. Process Improv. Pract. 7(1), 33–44 (2002)

3. Ahonen, J., Junttila, T.: A case study on quality-affecting problems in software engineering
projects. In: Proceedings of the International Conference on Software: Science. Technology
and Engineering, pp. 145–153. IEEE, Washington (2003)

4. Ahonen, J.J., Junttila, T., Sakkinen, M.: Impacts of the organizational model on testing: three
industrial cases. empir. softw. eng. 9(4), 275–296 (2004)

5. Alvarez, J.J., Hurtado, J.A.: Implementing the software requirements engineering practices
of the ISO 29110-5-1-1 standard with the unified process. In: Proceedings of the Computing
Colombian Conference, pp. 175–183. IEEE, Washington (2014)

6. Anacleto,A., VonWangenheim,G., Salviano, C., Savi, R.: Amethod for process assessment in
small software companies. In: Proceedings of the International SPICE Conference on Process
Assessment and Improvement, pp. 69–76. ICSOFT, Portugal (2004)

7. Ariza, P., Pineres, M., Santiago, L., Mercado, N., De la Hoz, A.: Implementation of moprosoft
level I and II in software development companies in the colombian caribbean, a commitment
to the software product quality region. In: Proceedings of the Central America and Panama
Convention, pp. 1–5. IEEE, Washington (2014)

8. Ayyagari, M., Beck, T., Demirgüc, A.: Small and medium enterprises across the globe: a new
database. Policy ResearchWorking Papers. TheWorld Bank,Washington (2003). URL http://
elibrary.worldbank.org/doi/book/10.1596/1813-9450-3127

9. Baddoo, N., Hall, T.: De-motivators for software process improvement: an analysis of prac-
titioners’ views. J. Syst. Softw. 66(1), 23–33 (2003)

10. Barafort, B., O’Connor, R.V., Messnarz, R. (eds.): Systems, Software and Services Process
Improvement. Communications in Computer and Information Science, vol. 425. Springer,
Heidelberg (2014)

11. Basri, S., O’Connor, R.V.: Understanding the perception of very small software companies
towards the adoption of process standards. In: Riel, A., O’Connor, R.V., Tichkiewitch, S.,
Messnarz, R. (eds.) Systems, Software and Services Process Improvement, Communications
in Computer and Information Science, vol. 99, pp. 153–164. Springer, Heidelberg (2010)

12. Boas, G., da Rocha, A., Pecegueiro do Amaral, M.: An approach to implement software
process improvement in small andmid sized organizations. In: Proceedings of the International
Conference on the Quality of Information and Communications Technology, pp. 447–452.
IEEE, Washington (2010)

13. Boehm, B., Turner, R.: BalancingAgility andDiscipline: AGuide for the Perplexed. Addison-
Wesley, Boston (2003)

14. Boucher, Q., Perrouin, G., Deprez, J.C., Heymans, P.: Towards configurable ISO/IEC 29110-
compliant software development processes for very small entities. In: Winkler, D., O’Connor,
R.V., Messnarz, R. (eds.) Systems, Software and Services Process Improvement, Communi-
cations in Computer and Information Science, vol. 301, pp. 169–180. Springer, Heidelberg
(2012)

15. Buchalcevova, A.: Software process improvement in small companies as a path to enterprise
architecture. In: Pooley, R., Coady, J., Schneider, C., Linger, H., Barry, C., Lang, M. (eds.)
Information Systems Development, pp. 243–253. Springer, Heidelberg (2013)

16. Calvo-Manzano Villalón, J.A., Gonzalo Cuevas, A., San Feliu Gilabert, T., de Amescua
Seco, A., García Sánchez, L., Cota, M.P.: Experiences in the application of software process
improvement in SME’s. Softw. Qual J 10(3), 261–273 (2002)

17. Cater-Steel, A.: Process improvement in four small software companies. In: Proceedings of
the Australian Software Engineering Conference, pp. 262–272. IEEE, Washington (2001)

http://elibrary.worldbank.org/doi/book/10.1596/1813-9450-3127
http://elibrary.worldbank.org/doi/book/10.1596/1813-9450-3127

7 The Route to Software Process Improvement … 129

18. Cater-Steel, A.: Low-rigour, rapid software process assessments for small software develop-
ment firms. In: Proceedings of the Australian Software Engineering Conference, pp. 368–377.
IEEE, Washington (2004)

19. Cater-Steel, A., Toleman, M., Rout, T.: Process improvement for small firms: an evaluation
of the RAPID assessment-based method. Inf. Softw. Technol. 48(5), 323–334 (2006)

20. Cater-Steel, A.P.: COTS developers lead best practice adoption. In: Proceedings of the Con-
ference on Software Engineering, pp. 23–30. Los Alamitos (2000)

21. Chaves Weber, K., Ramalho de Araujo, E., Scaler, D., Pereira de Andrade, E., Cavalcanti da
Rocha, A., Montoni, M.: MPS model-based software acquisition process improvement in
brazil. In: Proceedings of the International Conference on the Quality of Information and
Communications Technology, pp. 110–122. IEEE, Washington (2007)

22. Cholez, H., Girard, F.:Maturity assessment and process improvement for information security
management in small andmediumenterprises. J. Softw.Evolut. Process26(5), 496–503 (2013)

23. Clarke, P., O’Connor, R.V.: The influence of SPI on business success in software SMEs: an
empirical study. J. Syst. Softw. 85(10), 2356–2367 (2012)

24. Clarke, P., O’Connor, R.V.: The situational factors that affect the software development
process: towards a comprehensive reference framework. Inf. Softw. Technol. 54(5), 433–447
(2012)

25. Clarke, P., O’Connor, R.V.: An empirical examination of the extent of software process
improvement in software SMEs. J. Softw. Evolut. Process 25(9), 981–998 (2013)

26. Coleman, G., O’Connor, R.: Investigating software process in practice: a grounded theory
perspective. J. Syst. Softw. 81(5), 772–784 (2008)

27. Cruz, P., Villarroel, R., Mancilla, F., Visconti, M.: A software testing process for the refer-
ence model of competisoft. In: Proceedings of the International Conference of the Chilean
Computer Science Society, pp. 51–59. IEEE, Washington (2010)

28. Davila, A., Basurto, C., Flores, L., Arisaca, R., Manrique, R., Sánchez, J., de Paula Pessôa,
M.: The peruvian component of Competisoft project: Lesson learned from academic per-
spective. In: Proceedings of the Conferencia Latinoamericana En Informatica, pp. 1–7. IEEE,
Washington (2012)

29. European Commission: The new SME definition. Enterprise and industry publications. Office
for Official Publications of the European Communities, Luxembourg (2005)

30. Eurostat: Annual enterprise statistics by size class for special aggregates of activities (nace rev.
2). Available from: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php (2014)

31. Ferreira, A., Santos, G., Cerqueira, R., Montoni, M., Barreto, A., Barreto, A., Rocha, A.:
Applying ISO 9001:2000, MPS.BR and CMMI to achieve software process maturity: Bl
informatica’s pathway. In: Proceedings of the International Conference on Software Engi-
neering, pp. 642–651. IEEE, Washington (2007)

32. Ferreira, A.I.F., Santos, G., Cerqueira, R., Montoni, M., Barreto, A., Rocha, A.R., Figueiredo,
S., Barreto, A., Filho, R.C.S., Lupo, P., Cerdeiral, C.: Taba workstation: Supporting soft-
ware process improvement initiatives based on software standards and maturity models. In:
Richardson, I., Runeson, P., Messnarz, R. (eds.) Software Process Improvement, Lecture
Notes in Computer Science, vol. 4257, pp. 207–218. Springer, Heidelberg (2006)

33. Fontana, R.M., Meyer Jr., V., Reinehr, S., Malucelli, A.: Progressive outcomes: a framework
for maturing in agile software development. J. Syst. Softw. 102, 88–108 (2015)

34. Garcia, I., Pacheco, C., A Calvo, J.: Quantitative project management in small and medium-
sized software enterprises. Latin America Trans., IEEE (Revista IEEEAmerica Latina) 12(3),
508–513 (2014)

35. Garcia, I., Pacheco, C., Cruz, D.: Adopting an RIA-based tool for supporting assessment,
implementation and learning in software process improvement under the NMX-I-059/02-
NYCE-2005 standard in small software enterprises. In: Proceedings of the ACIS International
Conference on Software Engineering Research, Management and Applications, pp. 29–35.
IEEE, Washington (2010)

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php

130 M.-L. Sánchez-Gordón et al.

36. Garcia, I., Pacheco, C., Cruz, D., Calvo-Manzano, J.A.: Implementing the modeling-based
approach for supporting the software process assessment in SPI Initiatives Inside a Small Soft-
ware Company. In: Lee., R. (ed.) Software Engineering Research, Management and Applica-
tions, Studies in Computational Intelligence, vol. 377, pp. 1–13. Springer, Heidelberg (2012)

37. Garcia, I.A., Calvo-Manzano, J.A., Pacheco, C.L., Perez, C.A.: Software engineering educa-
tion for a graduate course: a web-based tool for conducting process improvement initiatives
with local industry collaboration. Comput. Appl. Eng. Educ. 23(1), 117–136 (2013)

38. Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., Abrahamsson, P.: What do
we know about software development in startups? IEEE Softw. 31(5), 28–32 (2014)

39. Habra, N., Alexandre, S., Desharnais, J.M., Laporte, C.Y., Renault, A.: Initiating software
process improvement in very small enterprises: experience with a light assessment tool. Inf.
Softw. Technol. 50(7–8), 763–771 (2008)

40. Hauck, J.C.R., Wangenheim, C.G.v., Souza, R.H.d., Thiry, M.: Process reference guides—
support for improving software processes in alignment with reference models and stan-
dards. In: O’Connor, R.V., Baddoo, N., Smolander, K., Messnarz, R. (eds.) Software Process
Improvement, Communications in Computer and Information Science, vol. 16, pp. 70–81.
Springer, Heidelberg (2008)

41. Horvat, R.V., Rozman, I., Györkös, J.: Managing the complexity of SPI in small companies.
Softw. Process Improv. Pract. 5(1), 45–54 (2000)

42. Jeffery, R., Raffo, D., Armbrust, O., Huang, L. (eds.): Proceedings of International Conference
on Software and System Process (ICSSP). IEEE, New Jersey (2012)

43. Jeners, S., Clarke, P., O’Connor, R.V., Buglione, L., Lepmets, M.: Harmonizing software
development processeswith software development settings—a systematic approach. Systems.
Software and Services Process Improvement, pp. 167–178. Springer, Heidelberg (2013)

44. JTC 1, SC 7: Software engineering – lifecycle profiles for very small entities (VSEs) part 5-
1-1: Management and engineering guide: Generic profile group: Basic profile. International
Standard ISO/IEC TR 29110-5-1-2:2011(E), International Organization for Standardization,
Geneva (2011)

45. Kalinowski,M.,Weber, K., Franco, N., Barroso, E., Duarte, V., Zanetti, D., Santos, G.: Results
of 10 years of software process improvement in Brazil based on the MPS-SWmodel. In: Pro-
ceedings of the International Conference on the Quality of Information and Communications
Technology, pp. 28–37. IEEE, Washington (2014)

46. Kautz, K.: Software process improvement in very small enterprises—does it pay? Softw.
Process Improv. Pract. 4(4), 209–226 (1998)

47. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in soft-
ware engineering. Technical report EBSE-2007-01, Keele University, Staffordshire (2007)

48. Kroeger, T.A., Davidson, N.J., Cook, S.C.: Understanding the characteristics of quality for
software engineering processes: a grounded theory investigation. Inf. Softw. Technol. 56(2),
252–271 (2014)

49. Kuhrmann,M., Beecham, S.: Artifact-based software process improvement andmanagement:
a method proposal. In: Proceedings of the International Conference on Software and System
Process, pp. 119–123. ACM, New York (2014)

50. Kuhrmann, M., Méndez Fernández, D.: From pragmatic to systematic software process
improvement: an evaluated approach. IET Softw. 9(6), 157–165 (2015)

51. Laporte, C.,O’Connor, R.: Systems and software engineering standards for very small entities:
implementation and initial results. In: Proceedings of the International Conference on Quality
of Information and Communications Technology, pp. 38–47. IEEE, Washington (2014)

52. Laporte, C.Y., Alexandre, S., O’Connor, R.V.: A software engineering lifecycle standard for
very small enterprises. In: O’Connor, R.V., Baddoo, N., Smolander, K., Messnarz, R. (eds.)
Software Process Improvement, Communications in Computer and Information Science, vol.
16, pp. 129–141. Springer, Heidelberg (2008)

53. Laporte, C.Y., O’Connor, R.V.: A systems process lifecycle standard for very small entities:
Development and pilot trials. In: Barafort, B., O’Connor, R.V., Poth, A., Messnarz, R. (eds.)
Systems, Software and Services Process Improvement, Communications in Computer and
Information Science, vol. 425, pp. 13–24. Springer, Heidelberg (2014)

7 The Route to Software Process Improvement … 131

54. Laporte, C.Y., Renault, A., Alexandre, S.: The application of international software engineer-
ing standards in very small enterprises. In: Oktaba, H., Piattini, M. (eds.) Software Process
Improvement for Small and Medium Enterprises Techniques and Case Studies, pp. 42–70.
Information Science Reference, Hershey, New York (2008)

55. Larrucea, X., Santamaria, I.: An industrial assessment for a multimodel framework. J. Softw.
Evolut. Process 26(9), 837–845 (2014)

56. Laryd, A., Orci, T.: Dynamic CMM for small organizations. In: Proceedings of the Argentine
Symposium on Software Engineering (2000). URL http://www.uml.org.cn/cmm/pdf/1116/
laryd00dynamic.pdf

57. Lee, S., Yong, H.S.: Agile software development framework in a small project environment.
J. Inf. Process. Syst. 9(1), 69–88 (2013)

58. Lester, N., Wilkie, F., McFall, D., Ware, M.: Evaluating the internal consistency of the base
questions in the express process appraisal. In: Proceedings of the EUROMICRO Conference
on Software Engineering andAdvancedApplications, pp. 289–296. IEEE,Washington (2007)

59. Lester, N.G., Wilkie, F.G., McFall, D., Ware, M.P.: Investigating the role of CMMI with
expanding company size for small- to medium-sized enterprises. J. Softw. Maint. Evolut.
Res. Pract. 22(1), 17–31 (2010)

60. Luzuriaga, J.M., Martínez, R., Cechich, A.: Setting SPI practices in Latin America: an
exploratory case study in the justice area. In: Proceedings of the International Conference
on Theory and Practice of Electronic Governance, pp. 172–177. ACM, New York (2008)

61. Martínez-Ruiz, T., Pino, F.J., León-Pavón, E., García, F., Piattini, M.: Supporting the process
assessment through a flexible software environment. In: Cordeiro, J., Shishkov, B., Ranchor-
das, A., Helfert, M. (eds.) Software and Data Technologies,Communications in Computer
and Information Science, vol. 47, pp. 187–199. Springer, Heidelberg (2009)

62. Mas, A., Lluis Mesquida, A.: Software project management in small and very small entities.
In: Proceedings of the Iberian Conference on Information Systems and Technologies, pp. 1–6.
IEEE, Washington (2013)

63. McCaffery, F., Richardson, I.,Moller, P.: Automotive-adept: a lightweight assessmentmethod
for the automotive software industry. Softw. Process Improv. Pract. 13(4), 345–353 (2008)

64. Mc Caffery, F., Taylor, P.S., Coleman, G.: Adept: a unified assessment method for small
software companies. IEEE Softw. 24(1), 24–31 (2007)

65. McCaffery, F., Coleman, G.: Lightweight SPI assessments: what is the real cost? Softw.
Process Improv. Pract. 14(5), 271–278 (2009)

66. McCaffery, F., McFall, D., Wilkie, F.G.: Improving the express process appraisal method. In:
Bomarius, F., Komi-Sirviö, S. (eds.) Proceedings of the International Conference on Product-
Focused Software Process Improvement, Lecture Notes in Computer Science, vol. 3547, pp.
286–298. Springer, Heidelberg (2005)

67. McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.): Systems, Software and Services Process
Improvement, Communications in Computer and Information Science, vol. 364. Springer,
Heidelberg (2013)

68. McFall, D.,Wilkie, F.G.,McCaffery, F., Lester, N., Sterritt, R.: Software processes and process
improvement inNorthern Ireland. In: Proceedings of the International Conference of Software
and Systems Engineering and their Applications, pp. 1–10. Paris (2003)

69. Mesquida, A.L.,Mas, A.: A projectmanagement improvement program according to ISO/IEC
29110 and PMBOK. J. Softw. Evolut. Process 26(9), 846–854 (2014)

70. Mishra, D., Mishra, A.: Software process improvement methodologies for small and medium
enterprises. In: Proceedings of the International Conference on Product-Focused Software
Process Improvement. Lecture Notes in Computer Science, vol. 5089, pp. 273–288. Springer,
Heidelberg (2008)

71. Mishra,D.,Mishra,A.: Software process improvement in SMEs: a comparative view.Comput.
Sci. Inf. Syst. 6(1), 111–140 (2009)

72. Mitasiunas, A., Rout, T., O’Connor, R.V., Dorling, A. (eds.): Software Process Improvement
and Capability Determination, Communications in Computer and Information Science, vol.
477. Springer, Heidelberg (2014)

http://www.uml.org.cn/cmm/pdf/1116/laryd00dynamic.pdf
http://www.uml.org.cn/cmm/pdf/1116/laryd00dynamic.pdf

132 M.-L. Sánchez-Gordón et al.

73. Montoni,M., Santos, G., Rocha,A.,Weber, K., deAraujo, E.:MPSmodel andTABAworksta-
tion: Implementing software process improvement initiatives in small settings. In: Proceedings
of the International Workshop on Software Quality, p. 4 ff. IEEE, Washington (2007)

74. Montoni, M., Santos, G., Rocha, A.R., Figueiredo, S., Cabral, R., Barcellos, R., Barreto, A.,
Soares,A., Cerdeiral, C., Lupo, P.: Tabaworkstation: Supporting software process deployment
based on CMMI and MR-MPS.BR. In: Münch, J., Vierimaa, M. (eds.) Proceedings of the
International Conference on Product-Focused Software Process Improvement. Lecture Notes
in Computer Science, vol. 4034, pp. 249–262. Springer, Heidelberg (2006)

75. Montoni, M.A., Rocha, A.R., Weber, K.C.: MPS.BR: a successful program for software
process improvement in Brazil. Softw. Process Improv. Pract. 14(5), 289–300 (2009)

76. Moreno, E., Sánchez-Gordón, M.L., Colomo-Palacios, R.: ISO/IEC 29110: current overview
of the standard. Revista de Procesos y Métricas (RPM) 10(2), 24–40 (2013)

77. Moreno-Campos, E., Sánchez-Gordón, M.L., Colomo-Palacios, R.: Amescua Seco, A.:
Towards measuring the impact of the ISO/IEC 29110 standard: a systematic review. In: Pro-
ceedings of European System and Software Process Improvement and InnovationConference.
Communications in Computer and Information Science, vol. 425, pp. 1–12. Springer, Hei-
delberg, Luxembourg (2014)

78. Ñaupac, V., Arisaca, R., Dávila, A.: Software process improvement and certification of a
small company using the NTP 291 100 (MoProSoft). In: Dieste, O., Jedlitschka, A., Juristo.,
N. (eds.) Proceedings of the International Conference on Product-Focused Software Process
Improvement, LectureNotes in Computer Science, vol. 7343, pp. 32–43. Springer, Heidelberg
(2012)

79. Nawrocki, J., Walter, B., Wojciechowski, A.: Toward maturity model for extreme program-
ming. In: Proceedings of the Euromicro Conference, pp. 233–239. IEEE, Washington (2001)

80. Nawrocki, J.R., Jasiñski, M., Walter, B., Wojciechowski, A.: Combining extreme program-
mingwith ISO 9000. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002: Information and
Communication Technology. Lecture Notes in Computer Science, vol. 2510, pp. 786–794.
Springer, Heidelberg (2002)

81. Niazi,M.: Software process improvement: a road to success. In:Münch, J., Vierimaa,M. (eds.)
Proceedings of the International Conference on Product-Focused Software Process Improve-
ment. Lecture Notes in Computer Science, vol. 4034, pp. 395–401. Springer, Heidelberg
(2006)

82. Niazi, M.: An exploratory study of software process improvement implementation risks. J.
Softw. Evolut. Process 24(8), 877–894 (2012)

83. O’Connor, R.V.: Early stage adoption of ISO/IEC 29110 software project management prac-
tices: A case study. In: Mitasiunas, A., Rout, T., O’Connor, R.V., Dorling, A. (eds.) Software
Process Improvement andCapabilityDetermination. Communications inComputer and Infor-
mation Science, vol. 477, pp. 226–237. Springer, Heidelberg (2014)

84. O’Connor, R.V., Coleman, G.: An investigation of barriers to the adoption of software process
best practicemodels. In: Proceedings of theAustralasian Conference on Information Systems,
pp. 780–789 (2007)

85. O’Connor, R.V., Laporte, C.Y.: Towards the provision of assistance for very small entities in
deploying software lifecycle standards. In: Proceedings of the International Conference on
Product-Focused Software Process Improvement, pp. 4–7. ACM, New York (2010)

86. O’Connor, R.V., Laporte, C.Y.: Deploying lifecycle profiles for very small entities: An early
stage industry view. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) Soft-
ware Process Improvement and Capability Determination. Communications in Computer and
Information Science, vol. 155, pp. 227–230. Springer, Heidelberg (2011)

87. O’Connor, R.V., Laporte, C.Y.: Software project management in very small entities with
ISO/IEC 29110. In: Winkler, D., O’Connor, R.V., Messnarz, R. (eds.) Systems, Software and
Services Process Improvement. Communications in Computer and Information Science, vol.
301, pp. 330–341. Springer, Heidelberg (2012)

88. O’Connor, R.V., Laporte, C.Y.: An innovative approach to the development of an international
software process lifecycle standard for very small entities. Int. J. Inf. Technol. Syst. Approach
7(1), 1–22 (2014)

7 The Route to Software Process Improvement … 133

89. O’Connor, R.V., Sanders, M.: Lessons from a pilot implementation of ISO/IEC 29110 in a
group of very small irish companies. In: Woronowicz, T., Rout, T., O’Connor, R.V., Dorling,
A. (eds.) Software Process Improvement and Capability Determination, Communications in
Computer and Information Science, vol. 349, pp. 243–246. Springer, Heidelberg (2013)

90. Oktaba, H., Garcia, F., Piattini,M., Ruiz, F., Pino, F., Alquicira, C.: Software process improve-
ment: the competisoft project. Computer 40(10), 21–28 (2007)

91. SME and Entrepreneurship Outlook 2005. OECD Publishing, Paris (2005)
92. OsorioMartinez, Z., Irrazabal, E.,Garzas, J.: Toward improving agilemantema:measurement,

control and evaluation of maintenance projects in SME’s. In: Proceedings of the Iberian
Conference on Information Systems and Technologies, pp. 1–6. IEEE, Washington (2011)

93. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: a systematic mapping study. Inf. Softw. Technol. 56(10),
1200–1218 (2014)

94. Pernstå l, J., Gorschek, T., Feldt, R., Florén, D.: Software process improvement in inter-
departmental development of software-intensive automotive systems—a case study. In: Hei-
drich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) Proceedings of the International
Conference on Product-Focused Software Process Improvement. Lecture Notes in Computer
Science, vol. 7983, pp. 93–107. Springer, Heidelberg (2013)

95. Pettersson, F., Ivarsson, M., Gorschek, T., Öhman, P.: A practitioner’s guide to light weight
software process assessment and improvement planning. J. Syst. Softw. 81(6), 972–995 (2008)

96. Pino, F.J., García, F., Piattini, M.: Software process improvement in small and medium soft-
ware enterprises: a systematic review. Softw. Qual. Control J. 16(2), 237–261 (2008)

97. Pino, F.J., García, F., Piattini, M.: An integrated framework to guide software process
improvement in small organizations. In: O’Connor, R.V., Baddoo, N., Gallego, J.C., Muslera,
R.R., Smolander, K., Messnarz, R. (eds.) Software Process Improvement. Communications
in Computer and Information Science, vol. 42, pp. 213–224. Springer, Heidelberg (2009)

98. Pino, F.J., Garcia, F., Piattini, M.: Key processes to start software process improvement in
small companies. In: Proceedings of the ACM Symposium on Applied Computing, pp. 509–
516. ACM, New York (2009)

99. Pino, F.J., Pardo, C., García, F., Piattini, M.: Assessment methodology for software process
improvement in small organizations. Inf. Softw. Technol. 52(10), 1044–1061 (2010)

100. Pino, F.J., Pedreira, O., García, F., Luaces, M.R., Piattini, M.: Using scrum to guide the
execution of software process improvement in small organizations. J. Syst. Softw. 83(10),
1662–1677 (2010)

101. Pino, F.J., Ruiz, F., García, F., Piattini, M.: A software maintenance methodology for small
organizations: Agile_MANTEMA. J. Softw. Evolut. Process 24(8), 851–876 (2011)

102. Pressman, R.: Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-Hill Sci-
ence, New York (2009)

103. Raninen, A., Ahonen, J.J., Sihvonen, H.M., Savolainen, P., Beecham, S.: LAPPI: a light-
weight technique to practical process modeling and improvement target identification. J.
Softw. Evolut. Process 25(9), 915–933 (2013)

104. Ribaud, V., Saliou, P.: Process assessment issues of the ISO/IEC 29110 emerging standard. In:
Proceedings of the International Conference on Product-Focused Software Process Improve-
ment, pp. 24–27. ACM, New York (2010)

105. Ribaud, V., Saliou, P., Laporte, C.: Experience management for very small entities: Improving
the copy-paste model. In: Proceedings of the International Conference on Software Engineer-
ing Advances, pp. 311–318. IEEE, Washington (2010)

106. Ribaud, V., Saliou, P., O’Connor, R.V., Laporte, C.Y.: Software engineering support activities
for very small entities. In: Riel, A., O’Connor, R., Tichkiewitch, S., Messnarz, R. (eds.)
Systems, Software and Services Process Improvement. Communications in Computer and
Information Science, vol. 99, pp. 165–176. Springer, Heidelberg (2010)

107. Richardson, I.: SPI models: what characteristics are required for small software development
companies? Softw. Qual. J. 10(2), 101–114 (2002)

134 M.-L. Sánchez-Gordón et al.

108. Richardson, I., Ryan, K.: Software process improvements in a very small company. Softw.
Qual. Prof. 3(2), 23–35 (2001)

109. Richardson, I., vonWangenheim, G.C.:Why are small software organizations different? IEEE
Softw. 24(1), 18–22 (2007)

110. Rios, B., Vargas, M., Espinoza, J., Peralta, M.: Experiences on the implementation of
MoProSoft and assessment of processes under the NMX-I-059/02-NYCE-2005 standard in
a small software development enterprise. In: Proceedings of the Mexican International Con-
ference on Computer Science, pp. 323–328. IEEE, Washington (2008)

111. da Rocha, A., Montoni, M., Weber, K., de Araujo, E.: A nationwide program for software
process improvement in Brazil. In: Proceedings of the International Conference on theQuality
of Information and Communications Technology, pp. 167–176. IEEE, Washington (2007)

112. Rocha, A.R., Montoni, M., Santos, G., Mafra, S., Figueiredo, S., Albuquerque, A., Mian, P.:
Reference model for software process improvement: A brazilian experience. In: Richardson,
I., Abrahamsson, P., Messnarz, R. (eds.) Software Process Improvement. Lecture Notes in
Computer Science, vol. 3792, pp. 130–141. Springer, Heidelberg (2005)

113. Rozman, I., Horvat, R.V., Györkös, J., Hericòko,M.: PROCESSUS—integration of SEICMM
and ISO quality models. Softw. Qual. J. 6(1), 37–63 (1997)

114. Sánchez-Gordón, M.L., Colomo-Palacios, R., Amescua, A.: Towards measuring the impact
of the spi manifesto: a systematic review. In: Proceedings of European System and Software
Process Improvement and Innovation Conference, pp. 100–110. DELTA, Dundalk Institute
of Technology, Ireland (2013)

115. Sánchez-Gordón,M.L., O’Connor, R.V., Colomo-Palacios, R.: Evaluating vses viewpoint and
sentiment towards the ISO/IEC29110 standard: a two country grounded theory study. In:Rout,
T., O’Connor, R., Dorling, A. (eds.) Proceedings of the SPICE Conference, Communications
in Computer and Information Science, vol. 526. Springer, Heidelberg (2015)

116. Santos, G., Kalinowski, M., Rocha, A., Travassos, G., Weber, K., Antonioni, J.: MPS.BR:
A tale of software process improvement and performance results in the Brazilian software
industry. In: Proceedings of the International Conference on the Quality of Information and
Communications Technology, pp. 412–417. IEEE, Washington (2010)

117. Santos, G., Kalinowski, M., Rocha, A., Travassos, G., Weber, K., Antonioni, J.: MPS.BR pro-
gram and MPS model: Main results, benefits and beneficiaries of software process improve-
ment in Brazil. In: Proceedings of the International Conference on the Quality of Information
and Communications Technology, pp. 137–142. IEEE, Washington (2012)

118. Santos, G., Montoni, M., Vasconcellos, J., Figueiredo, S., Cabral, R., Cerdeiral, C., Kat-
surayama, A., Lupo, P., Zanetti, D., Rocha, A.: Implementing software process improvement
initiatives in small and medium-size enterprises in brazil. In: Proceedings of the International
Conference on the Quality of Information and Communications Technology, pp. 187–198.
IEEE, Washington (2007)

119. Savolainen, P., Sihvonen, H.M., Ahonen, J.J.: SPI with lightweight software processmodeling
in a small software company. In: Abrahamsson, P., Baddoo, N., Margaria, T., Messnarz, R.
(eds.) Software Process Improvement. Lecture Notes in Computer Science, vol. 4764, pp.
71–81. Springer, Heidelberg (2007)

120. Schoeffel, P., Benitti, F.B.V.: Factors of influence in software process improvement: a com-
parative survey betweenmicro and small enterprises (MSE) andmedium and large enterprises
(MLE). IEEE Latin America Trans. 10(2), 1634–1643 (2012)

121. Schweigert, T., Nevalainen, R., Vohwinkel, D., Korsaa, M., Biro, M.: Agile maturity model:
oxymoron or the next level of understanding. In: Mas, A., Mesquida, A., Rout, T., O’Connor,
R.V., Dorling, A. (eds.) Software Process Improvement and Capability Determination. Com-
munications in Computer and Information Science, vol. 290, pp. 289–294. Springer, Heidel-
berg (2012)

122. Scott, L., Jeffery, R., Carvalho, L., D’Ambra, J., Rutherford, P.: Practical software process
improvement—the IMPACT project. In: Proceedings of the Australian Software Engineering
Conference, pp. 182–189. IEEE, Washington (2001)

123. Sommerville, I.: Software Engineering, 9 edn. Addison-Wesley, Boston (2010)

7 The Route to Software Process Improvement … 135

124. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An exploratory study
of why organizations do not adopt CMMI. J. Syst. Softw. 80(6), 883–895 (2007)

125. Sulayman, M., Mendes, E.: An extended systematic review of software process improvement
in small and medium web companies. In: Proceedings of the Conference on Evaluation and
Assessment in Software Engineering, pp. 134–143. IET, London (2011)

126. Sulayman, M., Urquhart, C., Mendes, E., Seidel, S.: Software process improvement success
factors for small and medium web companies: a qualitative study. Inf. Softw. Technol. 54(5),
479–500 (2012)

127. Takeuchi, M., Kohtake, N., Shirasaka, S., Koishi, Y., Shioya, K.: Report on an assessment
experience based on ISO/IEC 29110. J. Softw. Evolut. Process 26(3), 306–312 (2014)

128. Taylor, P.S., Greer, D., Sage, P., Coleman, G., McDaid, K., Lawthers, I., Corr, R.: Applying
an agility/discipline assessment for a small software organisation. In: Proceedings of the
International Conference on Product-Focused Software Process Improvement. Lecture Notes
in Computer Science, vol. 4034, pp. 290–304. Springer, Heidelberg (2006)

129. Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P.: Is water-scrum-fall reality? on the use
of agile and traditional development practices. In: Proceedings of the International Conference
on Product-Focused Software Process Improvement. Lecture Notes in Computer Science, vol.
9459, pp. 149–166. Springer, Heidelberg (2015)

130. Tigre, P.B., Marques, F.S. (eds.): Desafíos y oportunidades de la industria del software en
América Latina, primera edn. Mayol Ediciones S.A, Colombia (2009)

131. UNCTAD: Information economy report 2012: the software industry and developing countries.
Technical report, United Nations Publications, New York (2012)

132. Valdés, G., Astudillo, H., Visconti, M., López, C.: The tutelkan SPI framework for smallset-
tings: A methodology transfer vehicle. In: Riel, A., O’Connor, R., Tichkiewitch, S. Messnarz,
R. (eds.) Systems, Software and Services Process Improvement. Communications in Com-
puter and Information Science, vol. 99, pp. 142–152. Springer, Heidelberg (2010)

133. Valdés, G., Visconti, M., Astudillo, H.: The tutelkan reference process: A reusable process
model for enabling SPI in small settings. In: O’Connor, R.V., Pries-Heje, J., Messnarz, R.
(eds.) Systems, Software and Service Process Improvement, Communications in Computer
and Information Science, vol. 172, pp. 179–190. Springer, Heidelberg (2011)

134. Valtanen, A., Ahonen, J.J.: Big improvements with small changes: improving the processes of
a small software company. In: Jedlitschka, A., Salo, O. (eds.) Proceedings of the International
Conference on Product-Focused Software Process Improvement, Lecture Notes in Computer
Science, vol. 5089, pp. 258–272. Springer, Heidelberg (2008)

135. Valtierra, C.,Munoz,M.,Mejia, J.: Characterization of software processes improvement needs
in SMEs. In: Proceedings of the International Conference on Mechatronics. Electronics and
Automotive Engineering, pp. 223–228. IEEE, Washington (2013)

136. Vargas, E., Oktaba, H., Guardati, S., Laureano, A.: Agents, case-based reasoning and their
relation to the mexican software process (MoProSoft). In: Proceedings of the International
Computer Software and Applications Conference, vol. 2, pp. 326–334. IEEE, Washington
(2007)

137. Varkoi, T.: Process assessment in very small entities—an ISO/IEC 29110 based method. In:
Proceedings of the International Conference on the Quality of Information and Communica-
tions Technology, pp. 436–440. IEEE, Washington (2010)

138. Vijayasarathy, L., Butler, C.: Choice of software development methodologies—do project,
team and organizational characteristics matter? IEEE Softw. (99), 1ff. (2015)

139. Villarroel, R., Gómez, Y., Gajardo, R., Rodríguez, O.: Implementation of an improvement
cycle using the competisoftmethodological framework and the tutelkan platform. In: Proceed-
ings of the International Conference of the Chilean Computer Science Society, pp. 97–104.
IEEE, Washington (2009)

140. vonWangenheim, C.G., Anacleto, A., Salviano, C.: Helping small companies assess software
processes. IEEE Softw. 23(1), 91–98 (2006)

141. von Wangenheim, C.G., Varkoi, T., Salviano, C.F.: Standard based software process assess-
ments in small companies. Softw. Process Improv. Pract. 11(3), 329–335 (2006)

136 M.-L. Sánchez-Gordón et al.

142. Wangenheim, C.G.v., Weber, S., Hauck, J.C.R., Trentin, G.: Experiences on establishing
software processes in small companies. Inf. Softw. Technol. 48(9), 890–900 (2006)

143. Weber, K.C., Araújo, E.E.R., Rocha, A.R.C.d., Machado, C.A.F., Scalet, D., Salviano, C.F.:
Brazilian software process reference model and assessment method. In: Yolum, P., Güngör,
T., Gürgen, F., Özturan, C. (eds.) Computer and Information Sciences. Lecture Notes in
Computer Science, vol. 3733, pp. 402–411. Springer, Heidelberg (2005)

144. Wilkie, F.G., Mc Caffery, F., McFall, D., Lester, N., Wilkinson, E.: A low-overhead method
for software process appraisal. Softw. Process Improv. Pract. 12(4), 339–349 (2007)

145. Wilkie, F.G., McFall, D., McCaffery, F.: An evaluation of CMMI process areas for small-
to medium-sized software development organisations. Softw. Process Improv. Pract. 10(2),
189–201 (2005)

146. Woronowicz, T., Rout, T., O’Connor, R.V., Dorling, A. (eds.): Software Process Improvement
and Capability Determination, Communications in Computer and Information Science, vol.
349. Springer, Heidelberg (2013)

147. Zahran, S.: Software Process Improvement-Practical Guidelines for Business Success. Addi-
son Wesley, Boston (1998)

148. Zarour, M., Abran, A., Desharnais, J.M.: Evaluation of software process assessment methods
– case study. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) Software Process
Improvement and Capability Determination, Communications in Computer and Information
Science, vol. 155, pp. 42–51. Springer, Heidelberg (2011)

149. Zarour, M., Desharnais, J.M., Alarifi, A., Habra, N., Cassiers, G., Robaeys, A.: Gained experi-
ence bymaking intervention to improve software process in very small organizations. In:Mas,
A.,Mesquida, A., Rout, T., O’Connor, R.V., Dorling, A. (eds.) Software Process Improvement
and Capability Determination, Communications in Computer and Information Science, vol.
290, pp. 51–61. Springer, Heidelberg (2012)

Chapter 8
Managing Software Process Evolution
for Spacecraft from a Customer’s
Perspective

Christian R. Prause, Markus Bibus, Carsten Dietrich and Wolfgang Jobi

Abstract The Space Administration of the German Aerospace Center designs and
implements the German space program. While project management rests with the
agency, suppliers are contracted for building devices and their software. As opposed
to many other domains, a spacecraft is a unique device with uncommon and custom-
built peripherals. Its software is specifically developed for a single mission only
and often controls critical functionality. A small coding error can mean the loss of
the spacecraft and mission failure. For this reason, customer and supplier closely
collaborate on the field of software quality. We report from a customer’s perspective
on how we manage software quality and ensure that suppliers evolve their processes:
We contribute to standards, tailor quality, and process requirements to establish them
in projects, and engage in cross-company product quality collaboration.

8.1 Introduction

The DLR is the national aeronautics and space research center of the Federal Repub-
lic of Germany. In addition to its own research, the DLR’s Space Administration
branch has been given responsibility for the planning and implementation of the
national space program. It acts as customer and project manager during the making
of hardware and software that it needs for executing its missions. The actual work
of making is outsourced to external contractors.

The space sector is peculiar with respect to the fact that many spacecraft are one of
the kind devices with uncommon and custom-built hardware and software. Scientific
missions have no insurance; a second unit is never built. If the mission goal is not

C.R. Prause (B) · M. Bibus · C. Dietrich · W. Jobi
Deutsches Zentrum für Luft- und Raumfahrt, DLR - Space Administration,
Königswinterer Straße, 522-524, 53227 Bonn, Germany
e-mail: christian.prause@dlr.de

M. Bibus
e-mail: markus.bibus@dlr.de

C. Dietrich
e-mail: carsten.dietrich@dlr.de

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_8

137

138 C.R. Prause et al.

reached, for whatever reason, there is no second chance. Preparing a single mission
and subsequent production of the spacecraft can take decades. Additionally, depend-
ability requirements are very high because servicing hardware in flight is impractical
to nearly impossible. Free-flying devices have to stay intact for decades under harsh
environmental conditions. Software can potentially be updated in flight but whoever
worked on 15-year-old software knows the troubles of maintaining aging software
in a fast-paced technology field. Moreover, software often controls critical function-
ality. A single software failure can mean the loss of a spacecraft and its mission, for
example, Ariane Flight 501 [11] or Mars Climate Orbiter [34]. Additionally, due to
limited contact times with ground stations, uploading new software versions can take
days. Therefore, higher efforts in avoiding software problems are justified [26, 28].

Project cost and time are nonetheless key topics: In the early 1990s, the NASA
(United States’ National Aeronautics and Space Administration) started its “Faster,
Better, Cheaper” initiative; capping maximum project cost, reducing bureaucracy,
and therefore enabling more parallel projects. The program put a high cost pres-
sure on projects. Software became more important as a sponge for complexity, as
“band-aid” for hardware design compromises [12, 28] and as a possibility to save on
hardware andmissions costs [36]. However, when several such light-weight missions
failed, it became clear that it was necessary to reconcile speed with quality control
[28]. In Germany, the Space Administration reacted to similar experiences [1] by
significantly increasing its dedication to and efforts in hardware and software quality
assurance activities [33]. Since that time, the product assurance department of the
Space Administration is responsible for quality management in all major national
space projects.

The agency’s view on product assurance is dominated by the need for high qual-
ity and dependable products that result from novel and extreme technical challenges
(Fig. 8.1), and the ever-new organizational contexts with the Space Administration’s
role as a customer without own making responsibilities but with a wide range of
suppliers: Quality has to be—right from the start—built into the products that are
provided by suppliers with highly diverse quality capabilities. Therefore, the sup-
pliers’ processes and their evolution are in the center of attention. Major challenges
are, for example:

• Harmonize development processes at international level and across organizations
• Standardize tailoring to achieve consistent results and reduce subjective effects
• Check that software and software processes conform to applicable requirements
• Deal with suppliers’ resistance to adapt their development processes
• Improve product assurance by exploring and introducing new methods and tools
• Evolve software processes to ultimately assure the quality of procured products.

This chapter describes the work of the Space Administration’s software product
assurance: Sect. 8.2 provides the context and background of this chapter. Section8.3
introduces the ECSS system of standards, which is a joint effort of European space
agencies and industries to harmonize their work. Section8.4 explains how these
standards are turned into a national catalog of quality and process requirements.
Section8.5 details the process of generating project-specific requirements from this

8 Managing Software Process Evolution for Spacecraft … 139

a b c

d e f

Fig. 8.1 a Radar twin satellites TerraSAR-X and TanDEM-X. Source DLR, CC-BY 3.0. b Philae
touching down on Churyumov–Gerasimenko. Source DLR, CC-BY 3.0. c Rocket launch in the
TEXUS Zero-G program in Kiruna. Source DLR, CC-BY 3.0. d Melting of materials without a
container on board the ISS. Source DLR, CC-BY 3.0. e Laser communication terminal for inter-
satellite and ground links. SourceDLR. f TET-1 from FIREBIRDmission for detecting forest fires.
Source DLR, CC-BY 3.0

national catalog through a standardized tailoring process. Section8.6 outlines the
responsibilities assumed by the DLR software product assurance during project exe-
cution including performance records, reviews, and technical visits. Section8.7 gives
an experience report on how a single process improvementwasmade possible against
the initial resistance of suppliers. Finally, Sect. 8.8 concludes this chapter.

8.2 Background and Context

The DLR is Germany’s space agency.1 It consists mainly of distributed institutes
that do research and development in the sectors of transportation, energy, flight,
security, and spaceflight. DLR’s Space Administration branch manages the German
space program in the name of the federal government. It commissions devices (e.g.,
spacecraft) for its missions from a diverse range of suppliers including industrial and
academic partners. It invites tenders, awards contracts for projects, supervises them
afterward, and promotes innovative ideas in research and industry. As opposed to
consumer products, devices are usually custom-built, expensive, and one-of-a-kind
devices with high technical risk. Continuous customer, i.e., DLR, involvement in the
process ofmaking is therefore necessary. The role of theDLRSpaceAdministration’s

1Note ESA—the European Space Agency—is an international organization with currently 22mem-
ber states includingGermany. DLR and ESA collaborate closely, and ESA committees include DLR
representatives. Yet, they are separate organizations, both doing their own missions, having their
own research divisions and mission operations, and procuring externally built devices.

140 C.R. Prause et al.

Product Assurance department is to accompany technical processes in order to ensure
product quality and successful completion of the project.

Product assurance is one of three primary project functions (the others being
project management and engineering). It is a management discipline assuming the
customers’ viewpoint on product quality within the seller’s organization. It supports
project management in steering the product life cycle, and controlling production
according to technical and programmatic requirements, while building on experience
and lessons learned. Software product assurance disciplines include quality assur-
ance with subordinate quality control, safety and dependability assurance, project
planning, (independent) validation and verification, testing and evaluation, configu-
ration management, and software measurement. Its functions are to observe, witness
tests, analyze, and recommend, but not to develop or test, manage people, or set
product requirements. Instead, it has organizational, budgetary, and product devel-
opmental independence meaning that it reports to highest management only, has its
own budget, and does not expend labor to help building a product [6, 10, 32].

Customer product assurance mirrors the sellers’ own product assurance func-
tion, acting as reviewer of contractors and technology providers ranging from large
companies to small enterprises, research institutes, and universities. With respect to
this, the function of product assurance is comparable to NASA’s Software Assurance
Technology Center (SATC; [3]). It assesses organizations and how they perform
development activities in order to obtain software products that are fit for use and
built in accordance with applicable project requirements [22]. For making sure that
improvement (or evolution) of processes happens, enforcement is often necessary.
This chapter makes a cross section through the several pillars of enforcement like
relevant standards, contractual agreements, and active supervision (e.g., milestone
reviews). It describes the managing of supplier software process evolution from a
customer’s perspective and through customer initiative.

Many organizations are usually cooperating in the production of a space device.
They are bound by legal contracts in the roles of customer and suppliers which in turn
act as customers to their lower tier suppliers.While the ECSS standards have no legal
standing by themselves, they are made applicable by invoking them in the business
agreements [15]. They provide a collection of what we call process requirements
here (another term would be software standards). These are not to be confused with
product requirements that describe what the product should do.

8.3 The ECSS Standards

Space technology is an extremely complexworkingfield. InEurope, development and
manufacturing of space systems is influenced by the cooperation of space agencies
and industry since the beginning. One challenge of this work is the coordination of
the use of compatible materials and implementation of compatible interfaces to reach
quality and reliability as needed.

8 Managing Software Process Evolution for Spacecraft … 141

ESA developed PSS (Procedures, Standards and Specifications) standards to
be applied in their projects for this purpose. Their use in projects of national
European space agencies and industry had to be negotiated individually because
national agencies developed standards individually and applied them to their projects.
Rising demands made this approach more and more ineffective. Back in 1988, it was
realized that there was the need of counteracting this trend [24].

In 1993 theEuropeanCooperation for Space Standardization (ECSS)was founded
to harmonize the requirements of existing standards for space projects and to develop
and maintain a single, coherent set of standards for hardware, software, information
management, and activities to be used in European space projects. The purpose of
these standards is to continually improve the quality, reliability, functional integrity,
and compatibility of all project elements.

The ECSS standards documents contain sets of requirements. Each requirement
is verifiable, has a unique identification to allow full traceability and verification of
compliance, and is supported by a minimal description necessary to understand its
context. The documents themselves follow a systematic naming approach [15]:

ECSS-[branch]-[type]-[major][-minor][version]

where

Branch One of the following values: P or S (ECSS system), M (management), E
(engineering), U (sustainability), or Q (product assurance)

Type The type is either ST (standard) or HB (handbook), which provides non-
mandatory background information and reading help for a corresponding
standard

Major A two-digit number to identify the domain of the standard within its
branch, e.g., software engineering (E-40) or risk management (M-80)

Minor An optional two-digit number specifying a specialized substandard of
a main standard, e.g., ASIC and FPGA development of the Electrical,
electronic and electromechanical components domain (Q-60–02)

Version A single letter from ‘A’ onwards for counting the major releases of the
standards system (issue C at the moment)

The ECSS standards first and foremost focus on what has to be accomplished rather
than on how to organize and perform the work. Interpretive help and details can,
instead, often be found in the corresponding handbooks. This approach allows dif-
ferent producers and customers to apply established processes where effective as
long as they remain within the fundamental constraints, and to improve and evolve
processes gradually [15].

8.3.1 ECSS Policy, Members, and Organization

The ECSS policy is to develop and maintain an integrated and coherent set of man-
agement, engineering, product assurance, and space sustainability standards. The

142 C.R. Prause et al.

Fig. 8.2 The ECSS
organizational structure [21] Steering Board

Technical Authority

Network of Experts Working Group

Executive secretariat

objectives of ECSS are to increase quality, reduce risks, improve competitiveness,
enhance safety and reliability, improve collaboration, and to develop and disseminate
fresh knowledge. Principles supporting these objectives are, for instance, to seek har-
monization with international standards by contributing to and ingesting from, e.g.,
ISO, CEN, and to continuously improve on the basis of user feedback. The standards
are made freely available2 to promote their wider usage [38].

The members of the ECSS are from European space sector (industry and space
agencies) and associated organizations. They are differentiated between full mem-
bers, associated members, and observers. Full members are those who actively par-
ticipate in production, maintenance, and use of ECSS standards, like ESA, DLR,
several national agencies (from France, Italy, the Netherlands, Norway, andUK), and
Eurospace as representative of industry. Being an associated member (like Canada)
indicates the desire to participate in production of ECSS standards and their limited
application. Observers are those who desire to be formally informed about changes
and be able to provide input in case of a need for an update or new standard. For
instance, observers are the European Defence Agency or EUMETSAT.

The ECSS is organized in several bodies which also represent working levels
(see Fig. 8.2). The top level is the ECSS Steering Board which defines ECSS objec-
tives, policy, strategy, and endorses the yearly work plan. The Technical Authority
implements the objectives, policy, and strategy defined by the steering board. It is
also responsible for setup, approval, implementation, and monitoring of the work
plan endorsed by the steering board. The elaboration of new and the maintenance of
existing ECSS standards has to be performed by the Working Groups according to
the work plan. Both Technical Authority and Working Groups are supported by the
Executive secretariat, which enforces drafting rules, provides administrative support,
and ensures promotion and interface with other standard development organizations.
The lowest level is a Network of Experts representing document and discipline focal

2Visit http://www.ecss.nl/ for online access to the standards.

http://www.ecss.nl/

8 Managing Software Process Evolution for Spacecraft … 143

points, which give support to the Technical Authority and Executive secretariat in
specific tasks [24].

8.3.2 Production and Maintenance of ECSS Standards

The development and update of ECSS standards are iterative processes (see also
Fig. 8.3). A new standard is initiated by ECSS members sending a document called
NewWork Item Proposal (NWIP) to the Technical Authority, respectively, Executive
secretariat. The proposal describes the envisioned content and scope of the standard,
a justification for it, initial inputs, designated activities and milestones for Working
Groups, necessary resources (e.g., composition of Working Group in terms of mem-
ber organizations, manpower, and required meetings), and what the desired output
is. It is then provided to ECSS members for public review to identify the need of
extensions of the work item, and to recruit volunteer representatives from interested
organizations. After the newwork item is approved, the Technical Authority appoints
the representatives to the Working Group, which then starts its work [21].

When the Working Group has prepared a draft version of the new standard, it
undergoes a public review for comments. It is provided to all member organizations
of the ECSS for this. All comments received are discussed by the Working Group
and a first decision about their implementation is taken. The decisions are then
communicated to the originators of thework item for agreement.Where no consensus
can be reached, a final decision is taken by the Technical Authority. After this, the
new ECSS standard is finalized [21].

If the need for an update of an existing ECSS Standards is identified, a formal
Change Request is submitted to the ECSS secretariat. The next steps then are as

Fig. 8.3 Preparing new
standard: information flow
[14]

Originator

Technical Authority

Steering Board

Users

Working Group

New work item
proposal

Draft
Standard

ECSS
Standard

Comments

Terms of
Reference

WG draft

Comments

144 C.R. Prause et al.

described above, starting with the preparation of a NWIP. If the Change Request
highlighted problems without getting concrete on how to solve them, the Technical
Authority calls for a special Working Group, a Task Force, to generate the NWIPs
[21]. Through this process, European space projects have continuously returned
feedback, corrections, and proposals to the ECSS standards and made the system
extensive, efficient, and stable. The ECSS continues to be evolved and improved,
also including the feedback processes themselves [38].

8.3.3 Software Standards in the ECSS System

Software pervades any space program and its product tree. For a concise overview
of software development based on ECSS, see [29]. Apart from many general ECSS
standards that are relevant to software development in space projects (e.g., configu-
ration and information management [19]), there are several standards and handbooks
specifically addressing software development.

The principles and requirements applicable to space software engineering are
defined in ECSS-E-ST-40 (Space engineering—Software). Its first version appeared
in 1999 as a specific adaptation of ISO/IEC 12207 to replace ESA’s proprietary stan-
dard PSS-05-0 [29]. The current version takes the existing ISO 9000 family of docu-
ments into account and is in line with EN 50128 (railway applications) and DO-178
(airborne systems and equipment). It addresses development and use of software for
manned and unmanned spacecraft, launchers, payloads, experiments and associated
ground equipment and facilities, and services implemented by software. Covered
aspects are software system engineering, requirements and architecture, design and
implementation, validation, verification, delivery and acceptance, operation, main-
tenance and management. It also applies to nondeliverable software which affects
the quality of products and services. The ECSS-E-HB-40A Software Engineering
Handbook was created for daily use by suppliers. It provides advice, interpretations,
elaborations, and best practices for the implementation of the requirements specified
in ECSS-E-ST-40.

The software product assurance standard ECSS-Q-ST-80C [18] complements
ECSS-E-ST-40C from the quality perspective. ECSS-Q-ST-80C interfaces with
space engineering and management branches of the ECSS, and explains how they
relate to product assuranceprocesses. It is supplementedbyfivehandbooks:ECSS-Q-
HB-80-01A addresses the Reuse of Existing Software. The two volumes Framework
and Assessor Instrument of the ECSS-Q-HB-80-02A Software Process Assessment
and Improvement are known as SPiCE for Space, a software process maturity model
derived from the SPiCE (Software Process Capability dEtermination) framework
basedon ISO/IEC15504.Requirements regardingSoftwareDependability andSafety
are further explained in ECSS-Q-HB-80-03A because dependability and safety are
issues of paramount importance in the development and operations of space sys-
tems [20]. Finally, guidelines for Software Metrication Programme Definition and
Implementation are provided through ECSS-Q-HB-80-04A.

8 Managing Software Process Evolution for Spacecraft … 145

Recently, the ECSS started to work on a handbook for agile development to live
up to the growing interest in methodologies like Scrum and Extreme Programming.
A respective standard is not yet planned due to a lack of consensus among partners
regarding potential conflicts with established standards. Exactly this tension between
agile and plan-driven development is further addressed in Chap. 2, where Diebold
and Zehler also treat two approaches (evolutionary and revolutionary) for adding
agility to plan-based processes.

8.4 Pre-Tailoring in the German National Space Program

Fig. 8.4a depicts different levels at which standardization can occur: international,
regional, national, and company. International standards are usually rather specific
in their scope. As opposed to this, the standardization process requires a very long
time until consensus among diverse partners is found. On the other extreme are
company-level standards. These in-house standards are the result of quickly made
decisions among much more homogeneous parties, and they often cover a broader
scope. Ideally, the different levels of standards are complementary, i.e., lower level
standards only add details to a common, shared, higher level standard. In reality,
however, the situation is not perfect. Standards at different levels overlap, and worse,
sometimes contradict one another [24].

The reasons can be found, for example, in history (national space endeavors pre-
date ESA), in corporate and national culture, in the different agencies’ policies, or
in different national interests. Likewise, German space industry differs from other

Company

National

Regional
(Europe)

International

Scope

T
im

e

P
roject P

hase E
xecution

Review: Evidence,
Documentation

Implementation of
Processes

Plans of Process
Implementation

Statement of
Compliance

Tailoring
Requirements

Catalog

a b

Fig. 8.4 a Time/scope relationship for different levels of standardization [24]. b Development
process adaptation in project

http://dx.doi.org/10.1007/978-3-319-31545-4_2

146 C.R. Prause et al.

European countries’ space industry, and DLR differs from ESA. For example, con-
duction of advanced static analysis is a national requirement not found in ECSS.

So-called pre-tailoring is therefore regarded as necessary. It breaks the com-
plex systems of standards down to national needs. These national needs are based on
Germany’s space strategy and cover also general project boundaries like environmen-
tal conditions, functionality, mission lifetime, and experiences from other projects.
The standards considered for the pre-tailoring are national laws and standards, ECSS,
ISO, military and NASA standards as well as requirements raised by the Russian
space agency. The challenge of pre-tailoring is to identify requirements which are
necessary for Germany’s space projects but not contradicting rules and laws of other
nations or organizations, which are partners. As an example, consider a project in
which DLR delivers a payload for a satellite built by ESA: The industry contracted
to manufacture the payload has not only to fulfill the requirements of DLR but also
the ones from ESA. Due to the fact that Germany is no launch authority itself, the
requirements of different launch authorities like Arianespace or NASA have to be
considered, too.

8.4.1 Outline of the Pre-Tailoring Process

With pre-tailoring we denote a process that takes regional standards (ECSS) to turn
them into a lower level but broader national catalog of requirements. The process is
basically analogous to other tailoring processes as the 7-step process described in
ECSS-S-ST-00C [15]. Of course, this tailoring is not yet aimed at a single project
but at the virtual set of projects from the national space program. The steps are

1. Identification of possible types of projects and their characteristics.
2. Analysis of project characteristics with respect to cost, risk, technical drivers,

critical issues, and specific constraints.
3. Selection of applicable ECSS standards as basis for pre-tailoring; standards ref-

erenced as applicable by selected standards become themselves selected.
4. Selection of applicable ECSS requirements from the selected standards bymaking

a decision for each contained requirement.
5. Addition of new requirements specific to the national space programwhere ECSS

is deemed lacking.
6. Harmonization of applicable requirements with respect to coherence and consis-

tency of the overall set of requirements.
7. Documenting ECSS standards and requirements applicability.

On the one hand, by selecting requirements from several applicable standards at
regional level, the scope of the resulting national standard broadens (as described for
Fig. 8.4a). On the other hand, flexibility and time scale improve. For example, the
ECSS is not yet harmonized with space standards from USA, Russia, or China [24].
On national level, however, consensus on integration can be reached easier.

8 Managing Software Process Evolution for Spacecraft … 147

Allocating
Tailoring Keys:

 Levels
 Qi Si Wi

DLR DLR DLR

DLR DLR ECSS

DLR DLR NASA

DLR DLR ISO

Step 1: Identification
(DLR)

Step 2: Analysis (DLR)

Project PA-
Requirements
Project PA-

Requirements
Project PA-

Requirements

Fine Tuning

Tailoring
Keys

Step 5:
Additional Requirements
(DLR)

Step 3:
Relevant Standards

(DLR)

Step 4:
Filtering
(DLR)

Step 6:
Negotiation

(Expert Group)

Step 7:
Finalization

(Expert Group)

Tailoring of Requirements
for Projects

(DLR)

National
Projects

National
Catalog

Signatures

W
 Q

S

S
 W

C
ha

ra
ct

er
is

tic
s

of
 N

at
io

na
l P

ro
je

ct
s

SW

Fig. 8.5 Pre-tailoring, the national catalog, and computer-aided single-source tailoring

8.4.2 Pre-Tailoring Process Details

This section details the outline of the pre-tailoring process for the German national
program (see also Fig. 8.5). Step 1 of pre-tailoring (in analogy to ECSS-S-ST-00C
[15] tailoring) is to extract distinguishing characteristics from projects of the national
space program. Relying on long experience, we selected several characteristics that
distinguish projects in the national program. Such characteristics are, for example, the
Space Flight Type, i.e., what kind of spacecraft, or Utilization, e.g., if the device is a
free-flying satellite or used inside or outside ofmanned platforms like ISS or the space
shuttle. In Step 2, these characteristics are complemented with refinement analyses
regarding cost, risk, technical drivers, etc. Characteristics plus refinements form the
dimensions of a nominal scale vector space. Any project can later be described as
vector p consisting of these basic characterizations:

p ∈ C = C{Sft,Lt,U,O,Mr,Sr,Fa} × R{L,B,C,Tr,Rp} (8.1)

Step 3 of the pre-tailoring is to identify the relevant standards for software qual-
ity. First and foremost, this is the ECSS software product assurance standard [18]
and parts of its complementary software engineering standard [17]. However, also
requirements from other standards are integrated, for instance, configuration man-
agement (from [19]) or nonconformance reporting (from [16]).

In Step 4, every requirement is checked for its applicability to the national space
program. For example, several requirements regarding softwaremaintenance (ECSS-
Q-ST-80C [18]; Sect. 6.3.8) were excluded because operations are out of scope of
the space administration’s product assurance.

Step 5 allows to add additional requirements to the catalog that are not yet con-
sidered by ECSS. For example, NASA and Roskosmos standards are necessary for
ISS missions as these organizations are the safety authorities there. This step also
allows to include novel processes not yet reflected in other standards (Sect. 8.7).

148 C.R. Prause et al.

After the requirements have been gathered, they must be checked for internal
coherence and consistency. Furthermore, it is necessary for later tailoring (Sect. 8.5)
to discriminate more and less demanding process requirements. For this purpose,
one or more requirement level tags are assigned to each requirement. Require-
ments imposed on software-specific processes are classified with one of four levels
w ∈ W? = {W1,W2,W3,W4}. The more rigorous requirement levels always include
the all requirements of more light-weight levels: W1 ⊇ W2 ⊇ W3 ⊇ W4. The lower
the level’s number, the more demanding or expensive the process requirement is. For
example, requiring the conduction of Independent Software Verification and Valida-
tion (ISVV) by a third party is at levelW1. It results in very high cost for the supplier.
As opposed to this, software configuration management (W4) is considered basic
engineering rigor that should always be done.

In addition to software-specific process requirements, the software process is
also influenced by cross-domain requirements from generic quality management
and safety. They are classified analogously according to four Q levels, e.g., having
a nonconformance control system in place is at Q4. For safety, three S levels are
defined, e.g., requiring conduction of software safety analysis is at S3.

This sixth step is very work intensive and requires deep knowledge of the various
requirements in order to assess their benefits, costs, effects, and cross-relations. It is
therefore addressed by a work group of experts (Sect. 8.4.3).

Finally, as Step 7, the results of the requirements work group are documented in
the product assurance requirements catalog [27]. They are additionally stored in a
database used for automated tailoring (see Sect. 8.5).

8.4.3 Details for Step 6: Pre-Tailoring Expert Group

Every fewyears, the pre-tailoring expert group is convened to update the requirements
catalog. It officially consists of one representative of every major stakeholder in
the national program, i.e., from space administration and national industry. These
formal representatives commonly have a Head of Quality-role or equivalent in their
organization, and are supported by their domain/software expert. The expert group’s
input is an initial set of process requirements (partly from the previous version of the
catalog) and its output is the national catalog. It enables

• to cope with the large amount of work associated with updating the catalog,
• to gather the necessary amount of practice and experience in one place, and
• to attain far-reaching justification and prominence for the resulting catalog.

Work starts by assigning so-called field captains to thematic subsets of the require-
ments, e.g., software product assurance, engineering management, or configuration
management. The field captains then write a short review for each of their require-
ments. They see the item’s ID, source, title, descriptive text, and requirement level
tags (W?, S?). Additionally, they take into account aspects like cross-relations (dupli-
cations, contradictions, ...) or practical impact. They can propose a new title or text,

8 Managing Software Process Evolution for Spacecraft … 149

write a review comment, and propose a resolution of accept, reject ormodify (accept
means that the requirement should be included in the catalog, reject the opposite,
and modify that first it should be changed in the specified way).

Next, all experts provide a comment and cast one vote on the proposed resolution,
which can also be accept, reject, or modify. If all experts accept, the resolution
is accepted. If at least one expert rejects the resolution or requests modification,
the field captain has to make a proposal how to proceed. The proposal consists of
an explanatory comment and a revised requirement text. All other experts again
vote on the requirement using accept or reject as answers. If the majority accepts
the modified requirement, it is included in the catalog. Otherwise, the requirement
remains in conflict state until the decision is finally made in a round table discussion.

The expert groupmeets physically oncewhen it constitutes andonce it finishes. For
the weeks in-between, work is supported by a web-based tool specifically developed
for this purpose. It lets contributors view a list of all requirements alongwith key facts
like if there is a controversy about resolution or if it is included in the catalog. The
software furthermore tracks open points, allows contributors to write their reviews,
cast their votes, and view details of the entailing discussions. Finally, it documents
decisions and maintains the database with the catalog of requirements. The catalog
is additionally printed as book and signed off [27] by all representatives to confirm
its symbolic value.

8.4.4 Lessons Learned

Pre-tailoring enables a gradual, smooth, and careful while steady transition from
traditional processes toward the ECSS standards. Over the years, the percentage of
ECSS requirements reflected in the national catalog has constantly risen, reaching
43% in 2008, 57% in 2010, and 63% in 2012. However, it also shows that national
needs still differ from European ones.

The catalog also forms an agreed baseline for the national space industry. As
the major players get their votes in the expert group, where they can veto against
unreasonable process requirements, it gets more difficult for them to argue against
those requirements later in the projects. Interestingly, only very few requirements
are actually rejected through the expert group.

Pre-tailoring provides a consensual, objective, mission-independent balancing of
benefits and costs of requirements because contents of the catalog are discussed
decoupled from actual missions. It ensures that the selection of requirements in the
scope of projects is not based on the personal preferences of the personwho tailors the
process requirements for the project, but is instead based on a systematic, repeatable,
and standardized process. Decisions are made against the specific background and
needs of the German space program.

150 C.R. Prause et al.

In contrast to the ECSS, where DLR is only one partner, influence at national level
as the leading customer is unevenly greater. It is much better possible to position and
later realize software process improvements through requirements. We will come
back to this later in the experience report in Sect. 8.7. The small group of experts
allows faster decision making when meeting every few years, and is more open to
try out not-yet widespread technologies.

The ECSS system is yet to be harmonized with the standards of the traditional
space-faring nations like USA or Russia. But because Germany does not have its own
launch capacities or sites, it needs freedom to choose its partners; and it therefore
needs to implement foreign standards at national level.

Maintaining the catalog is a costly endeavor that should not be underestimated.
Working through several standards eachwith hundreds of requirements takes its time.
And the work needs to be repeated every few years in order to keep up with changes
in the still developing ECSS standards system. Besides the discipline and endurance
that are necessary anyways, the expert group is an important ingredient to dealing
with the efforts. The web-based content management reduces the amount of required
co-location time. It enables several people with densely filled appointment calendars
to still collaborate.

8.5 Tailoring the Requirements for a Project

The ECSS is a system of coherent standards that supports a wide range of diverse
space projects. In its original form, itmight therefore not yet suit the individual project
very much. This can result in reduced project performance in terms of technical
performance, life cycle cost-effectiveness, or timeliness of deliveries [15], and is
therefore considered as a major project risk (cf. [31]). In order to reduce this risk,
tailoring is “the act of adjusting the definition and/or particularizing the terms of a
general description to derive a description applicable to an alternate (less general)
environment” [25]. Tailoringmeans fitting requirements placed on the process to the
specifics of individual projects [15].

The basis for tailoring is the national catalog of product assurance requirements,
as mentioned in Sect. 8.4. Three functions

fW : C → W? (8.2)

fQ : C → Q? (8.3)

fS : C → S? (8.4)

process the project vector p ∈ C in order to obtain the applicable requirement levels.
The requirement levels then select or deselect the individual requirements, resulting in
the set of requirements applicable to the software development process. This tailoring
is, for the most part, automated through the software tool QMExpert Tailoring.

8 Managing Software Process Evolution for Spacecraft … 151

8.5.1 The QMExpert Tailoring Tool

Tailoring the software process requirements for a new project begins with collecting
the basic characteristics and analyses for the vector p ∈ C, where

C = CSft × CLt × CU × CO × CMr × CSr × CFa × RL × RB × RC × RTr × RRp

(8.5)
The basic characteristic dimensions and their values are summarized in Table8.1.

Figure8.6 shows thefirst input screen. The characteristics and their possible values
are further explained at the bottom of the screen to ease the selection of the correct
value: For example, the Lander Spacecraft in the Space Flight Type dimension is
“designed to reach the surface of a planet and survive long enough to telemeter data
back to Earth. ESA’s Rosetta spacecraft [...] comprises a large orbiter, [...] and a small
lander. Each of these carries a large complement of scientific experiments designed
to complete the most detailed study of a comet ever attempted” [27].

The next step is to refine the choice of basic characteristics entered on the first
screen according to analyses regarding the characteristics shown in Table8.2. Here,
for example, the Technology Risk value low means that for “the realisation of the
product proven technology that are state of the art are available and can be applied”
[27]. As shown in Fig. 8.7, the selections made here directly lead to the applicable
requirement levels for W?, Q?, and S?.

Table 8.1 QMExpert tailoring tool dimensions and values

Name Values

CSft Space flight type Robotic Maintenance System, Orbiter Spacecraft, Flyby
Spacecraft, Lander Spacecraft, Rover Spacecraft, Application
Satellite, Manned Flight, Military Spacecraft, Scientific
Observatory Spacecraft

CLt Launcher type Expendable, Manned Reusable, Unmanned Reusable, Unmanned
nonreusable Automated Transfer

CU Utilization Free-Flyer, ISS internal, ISS external, Manned Launch Vehicle

CO Objective Spacecraft, Payload

CMr Maintainability
requirements

Generic, Advanced, Complete

CSr Safety requirements Generic, Advanced, Complete

CFa Flight authority ESA, NASA, Roscosmos

Table 8.2 QMExpert tailoring tool project characteristics

Name Values

RL Lifetime >7 years, 2–7 years, < 2 years

RB Budget >50M EUR, 25–50M EUR, 10–25M EUR, < 10M EUR

RC Complexity High, Low

RTr Technology risk High, Low

RRp Risk policy High, Low

152 C.R. Prause et al.

Fig. 8.6 Starting tailoring: screenshot of the project characteristics input screen

Fig. 8.7 Screenshot of adjusting tailoring parameters and resulting requirement levels W?, Q?,
and S?

After that, the tailoring tool picks the requirements for inclusion in the product
assurance requirements document. As described before, all requirements in the cat-
alog were tagged during pre-tailoring with one or more requirement level tags. For

8 Managing Software Process Evolution for Spacecraft … 153

example, the requirement that a hardware–software interaction analysis should be
conducted is tagged with S2 andW3. It means that the requirement is included if the
safety level is s ≤ 2 or if the software level is w ≤ 3, which is all applications that
are safety critical or which have important software parts.

Next, the user is presented with a preview of the requirements, and an overview
of which ones were selected and deselected. For fine-tuning, he can select additional
requirements, or deselect requirements that hewants to be removed. The tailoring tool
also ensures consistency by making sure that all requirements are included which are
not themselves selected but which are referenced from other requirements. Finally,
the tool exports into a Word document for further processing (e.g., including in
contractual documents). Front matters, table of contents, abbreviation lists, chapters,
and the like are generated automatically.

8.5.2 Lessons Learned

Tailoring is necessary for fitting coherent but generic standards to the specificities of a
project. However, the national catalog contains hundreds of requirements applicable
to software development. Manually tailoring themwould be a huge effort, influenced
subjectively by the tailoring product assurance manager’s perceptions and emotions,
and difficult to validate against corporate rules.

Our semi-automated tailoring process based on the QMExpert Tailoring tool is
without frills but sophisticated. It is straight forward enough to be practicable. A
single person can tailor a complete product assurance requirements document for a
project in a short time. While manual intervention is still needed in several phases of
the process, the tool significantly reduces the efforts for tailoring.Manual adjustments
can be summarized in a report for validation by higher-ups.

Through the years, the tool has aged technically—it relies on dated libraries
and technologies—but the process it supports and its contents have matured. A lot
of tacit knowledge and experience went into the requirement level classifications,
contributing to the quality of the tailoring results. Of course, much effort has been
invested in the catalog data itself.

8.6 Cross-Company Product Quality Management

Unless a customer accepts any project result and quality, customer and supplier will
seek visibility in order to mitigate the high risks of, for instance, untested technolo-
gies, large sums of money, or loss of life. Possible ways to achieve visibility are

• to negotiate contracts with intermediate products and partial payments, and
• to increase customer involvement in the development process [10].

154 C.R. Prause et al.

8.6.1 Customer Product Assurance

Regarding intermediate products, space projects are executed in a series of phases
cf. [29]. Each of the phases includes end milestones in the form of project reviews,
the outcome of which determine payments and readiness of the project to move
forward to the next phase. These reviews are the main interaction points between
customer and supplier. Regarding customer involvement, the three primary project
functions (project management, engineering, and product assurance) are present on
the customer side as interfaces to their supplier counter-parts.

All three functions take their roles in ensuring the desired outcome of the devel-
opment project: Project management is typically interested in getting the project out
the door, thinking that engineers will take care of its quality. Engineers, however,
are too concerned with getting the product to work that they will not see risks and
potential weaknesses. The role of product assurance is that of a devil’s advocate in
a constructive and non-confrontational way. Product assurance benevolently probes
the software product’s contents. It has organizational and budgetary independence,
and helps shaping but not building the product [10].

In the Space Administration, the product assurance department assumes the role
of customer-side quality assurance for the procurement of space devices. It inter-
acts with the supplier-side product quality functions, and primarily with quality
improvement function in order to trigger improvements in the suppliers’ develop-
ment processes where necessary. Yet, the interaction between customer and sup-
plier is not a one-way street: feedback, experiences, and knowledge generated from
project execution is used to improve product quality management on the customer’s
side (Fig. 8.8). The toolbox of processes, methods, and tools for product assurance is
continuously evolved. As a member of the ECSS standardization body, knowledge
generated in the national program is forwarded further upstream and may eventually
find its way into the ECSS standards system.

Quality
Planning

Quality
Control

Quality
Improvement

Quality
Assurance

Quality
Planning

Quality
Control

Quality
Improvement

Quality
Assurance

Product Quality

Customer Supplier

Cross-
company

Product Quality
Management

Fig. 8.8 Cross-company product quality assurance

8 Managing Software Process Evolution for Spacecraft … 155

8.6.2 The Implementation Process

Members of the customer product assurance are involved in project activities from
the beginning. Software process requirements tailored from the national catalog
(Sect. 8.5) are included in the contract as part of the work description. It is the
foundation of product assurance work and defines objectives, policies, and rules for
design, development, procurement, integration, and testing processes.

As part of the contractual negotiations, the supplier states his compliance to the
prescribed development process requirements (see also Fig. 8.4b). The statement
of compliance is a matrix indicating for each requirement the compliance status:
either fully compliant, partially compliant, non-compliant, or not applicable. Unless
a supplier declares full compliance with a requirement, the deviation and its reasons
have to be explained in a commentary column of the matrix, and have to be accepted
by the customer.

During the project, the supplier adapts its processes in order to comply with the
requirements. For example, there is the general requirement of having established
product assurance functions. While project management and engineering are com-
monly present on the suppliers’ side, product assurancemight bemissing. Donaldson
and Siegel [10] recommend to seriously question the maturity of such a supplier and
its capability to ensure product delivery. In the national space program, however,
the diverse small enterprises, universities, and research institutes often miss product
assurance but still have to be involved for various reasons like promoting research
and lack of alternatives. So one of the first process improvements is to establish
product assurance.

As the requirements only prescribe what should be achieved but not how, the
actual implementation is documented in respective plans, e.g., a Software Product
AssurancePlan.Theplans are reviewedatmilestones for the customer to agree to their
implementation. They serve to improve the visibility of the supplier’s work, and are
proofs of the implementation of requested processes. Besides milestone reviews, the
customer’s product assurance attends progress meetings, and looks out for deviations
and defines the actions necessary to reach compliance. While most work is based on
documents, the customer retains the right to visit a supplier’s facilities any time and
to perform inspections of work products.

In case a nonconformance is detected, product assurance participates in a Non-
conformance Review Board, where further measures like root cause analysis, mod-
ification measures, and verifications are discussed and agreed upon. Typically, the
supplier is capable of handling this by applying his quality management processes.
If, however, the deviation’s root cause is found to be in the supplier’s processes, the
deficiency is to be eliminated in the frame of process improvements.

156 C.R. Prause et al.

8.6.3 Lessons Learned

The statement of compliance simplifies communication between customer and
supplier by clearly summarizing the agreed-upon baseline of product assurance mea-
sures. It is part of the contract and often a major point of discussions and negotia-
tions. Originally, suppliers only created plans in reaction to the requirements. This
allowed them to more easily stretch requirement interpretations, and to better hide
non-compliances. Through the statement of compliance, contradictions come up
clearly and early in the project, reducing the risks of discovering them late.

Negotiating a statement of compliance that is accepted by both parties can be
work intensive. Once agreed, however, it restates commitment of supplier project
management to the development requirements. It is particularly valuable if a dispute
arises during the project.

Attention should be paid to the understandability of comments in the statement
of compliance because some projects last for many years. A change in personnel can
mean that comments written too briefly may no longer be understood and cause new,
unnecessary discussions. To reduce interpretive freedom and to avoid comments that
negate a seeming compliance, we decided that comments (even explanatory ones)
are not allowed for “fully compliant” responses.

8.7 Experience Report: Introducing Advanced Static
Analysis

This section provides an experience report of how advanced static analysis was intro-
duced in the German national space program. Static analysis is a widely used tech-
nology for detecting potential problems in software by analyzing human-readable or
binary code without executing it. The ECSS prefers testing over static analysis for
validation. But analysis is still recommended for verifying source code robustness
and finding errors that are difficult to detect at runtime [17, 22]. The capabilities
and complexity of static analysis techniques vary greatly from simple source code
pattern analysis to formal methods including abstract interpretation [8].

In contrast to simpler analysis methods, tools based on abstract interpretation can
prove the absence of several runtime errors (e.g., division by zero, arithmetic under-
and overflows). Such a tool is also called sound [13]. One of the first commercially
available tools capable of analyzing large code bases was Polyspace.3 Compared to
common simpler static analyzers, it is expensive with regard to financial cost and
efforts. Annual license costs are tens of thousands of Euros plus one-time costs and
initial trainings, and even on modern hardware analyses can run for hours.

3Available from: http://de.mathworks.com/products/polyspace/.

http://de.mathworks.com/products/polyspace/

8 Managing Software Process Evolution for Spacecraft … 157

8.7.1 Polyspace Pilot Project

As a first step, a pilot project was set up. The purpose was to try out the capabilities
of Polyspace, test if it will hold its promises, get a feeling for its handling, estimate if
it is worth the cost, and generally build up expertise. The idea was to also try out, if
Polyspace would fit into a toolbox for conducting software inspections as customer;
metaphorically speaking, if it could be the software analogy to a magnifying glass a
hardware customer uses when attending a key inspection point meeting.

For the pilot project, a Polyspace server was set up. One of the space projects
that were just finishing volunteered to make available its satellite’s flight software
source code, which was about 22,000 lines of code. The software had passed all
other validation and verification activities and was ready to be delivered. Next, it was
imported into the Polyspace tool.

Polyspace decides for each line of code if the line is guaranteed to not contain the
specified runtime errors (green), if the line will definitely cause a runtime error (red),
dead code (gray), or if a decision could not bemade (orange). The vendor forecast that
in software of this maturity, Polyspace would still find about one runtime error per
1,000 lines of code. This forecast was met exactly. Consequently, several function-
critical errors in the flight software could be fixed that might otherwise have caused
serious troubles.

Yet, one drop of bitterness are the orange lines and computation time. The number
of orange lines can be traded off against analysis computation time by adjusting the
precision level. In our experience from other projects, rarely more than 20% of lines
are marked orange. This percentage and even lower values are also reported by other
researchers [5]. Still, the undecided orange lines can cause non-negligible additional
effort; in particular, as finding the root cause for a false positive (reported, but actually
no error) located elsewhere in the code may require a thorough analysis.

Making rough estimates from the data provided in Emanuelsson and Nilsson
[13], and Brat and Klemm [5], one can expect in 60,000 lines of fresh code: 40 error
reports from tools likeCoverity orKlocwork (both unsound), 9,000 orange lines from
Polyspace, and 1,200,000 reports from FlexeLint (unsound) tool, which, however,
can be tweaked down to 1,000 reports without thorough analysis. This means two
things: First, unless one is willing to risk false negatives, i.e., missing out on certain
errors, checking all suspect reports means a lot of work. So one better starts early.
Second, a supplier may prefer to use an unsound tool in order to reduce the effort
needed for checking suspects. The liability implications of knowing about potential
errors (orange code) but not acting on them are, at best, unclear. But if the supplier
did not know about the problems because he used an unsound tool, he can still plead
research risks in case of an accident due to a software problem.

The pilot project showed that sound analysis is worth it because several criti-
cal errors were found in thoroughly tested code. However, it is not suitable for a
quick inspection because major efforts are associated with importing the code into
Polyspace, running the analyses, and checking orange code.

158 C.R. Prause et al.

8.7.2 Toward Wider Adoption

The implication of the pilot project is that in order to reap the rewards of sound
analysis,major efforts have to be invested in executing it. These efforts are beyond the
capacity of customer software product assurance. Instead, industry should perform
the analyses themselves. Only the reports were to be delivered for review. They serve
as evidence that the analysis was executed, and allow to detect irregularities.

However, use of verification tools to demonstrate software quality is not explicitly
specified in ECSS standards. Further, depending on the supplier, different tools are
used. At the timewewanted to field Polyspace analysis processes, three projects were
moving to their next phase. This meant that contracts (including software process
requirements) were re-negotiated. Although the times were favorable, it turned out
that introducing Polyspace was not simple. Separate and tiring negotiations for each
project were necessary to place sound analysis. The space sector is conservative and
dismissive toward changes to established processes. A common saying is “Only fly
what has flown before!” The need for changing established processes and the costs
associated with Polyspace (monetary license prices, and in terms of effort and legal
risks) made it no surprise that industry would not easily agree. This holds true, in
particular, if a process requirement is seemingly only imposed on a single project.
But implementing a change from top-down through the ECSS standards seemed
infeasible because consensus on multinational level would take many years and was
further improbable to pass the respective committees without success stories.

In this situation, the convening of the pre-tailoring expert group offered the oppor-
tunity to implant the change on national scope. The invited top-level qualitymanagers
could be convinced of the net benefits of the sound static analysis, and without a con-
crete project in the background, the associated costs were too far away. In the end,
the national catalog was extended correspondingly with a requirement regarding
the proof of absence of several types of runtime errors. From there it gets tailored
into requirements whenever a project moves to the next phase, and has nation-wide
legitimation.

Meanwhile, sound static analysis is rather widely employed by suppliers. Even
without being forced by a requirement, major suppliers have started procuring it
for their other projects. However, every now and then, discussions still arise about
sound static analysis during project execution. For example, if a supplier or one of
its divisions are for their first time confronted with the need to provide the required
report for a review. A supplier can then be pointed to the statement of compliance
they signed (Sect. 8.6.2). If represented in the expert group, they can additionally be
referred to the signing of the catalog by their head of quality (Sect. 8.4.3).

8.7.3 Lessons Learned

Conducting a pilot project first was important to learn that static analysis is a valuable
addition to testing but also that it is not suitable as a tool for on-site inspections by the

8 Managing Software Process Evolution for Spacecraft … 159

customer. Instead, the verification itself has to be executed by the supplier according
to contractual requirements. Evidence is provided in form of a report.

Strong rejection was a real problem initially. It was not practically feasible to
overcome this rejection. This achievement was made possible only by establishing
and exploiting the right management tools (pre-tailoring, expert group, and statement
of compliance). Today, sound static analysis is broadly accepted by suppliers who
worked with it. Only every now and then there is a new supplier or branch that has
not worked with it. For these cases, the right management tools are in place.

The experience report provided here is only one example of a software process
improvement. Further technologies are continuously researched and evaluated, and,
if considered fitting, introduced into the national program.

8.8 Conclusion

In this chapter we presented software process evolution from the viewpoint of a
customer. Our goal is to assure the quality of a product that is developed for a single
purpose: to assume critical functions in a spaceflight mission. To reach our goal,
we set the frame for development: We manage software process evolution through
requirements from a strategic perspective, not how evolution is actually implemented
by the providers organizationally. At that strategic level, we

• seek harmonization with ECSS and other standards,
• ensure implementation of process requirements at suppliers, and
• generate and disseminate knowledge to continuously advance processes.

However, it is difficult to harmonize and improve the processes in a sector with
unequal histories and objectives, and diverse players. We revisited several levels at
which the strategic frames for process evolution are defined, starting at the level of

• international and regional standards, moving on to the
• national catalog of the German space program, and further to the
• tailoring of process requirements at project-level, and the
• quality improvement efforts through cross-company quality management.

Taking the example of advanced static analysis, we described typical problems that
can be encountered. It shows how the management tools at different implementation
levels can be used to trigger process evolutions.

Many (if not all) organizations try to improve their processes by themselves. This,
of course, is very important. However, they might have a different focus on what is
important to optimize with priority. In a small market where products cannot be
bought off-the-shelf but where products are unique specimen specifically developed
for the customer, close collaboration between customer and supplier is necessary.
Given visibility and trust, both sides profit from cross-company quality management.

160 C.R. Prause et al.

8.9 Further Reading

Quality, software processes, and their improvement are an all-pervading topic in
the knowledge areas of software engineering [4]. Our work4 is distinguished from
others through the fact that we describe how we address the evolution of software
development processes toward higher quality from a customer’s point of view. On
the one hand, countless publications focus on organizations’ work on improving their
own software processes, e.g., [23, 26]. Doing so, indeed, is very important. On the
other hand, much effort has been put into standards and maturity levels as a means
of giving customers ways to assess the capability of suppliers. For instance, see
ISO/IEC 15504 or CMMI [7, 30]. Furthermore, Rosenberg and Gallo [37] describe
software product assurance at the NASA. However, not much has been published
on the daily work of product assurance as a customer, and how software, tools, and
methods improve this work.

In the space domain, tailoring of requirements to software development processes
is omnipresent for aligning customer quality expectations with development effec-
tiveness and efficiency [38]. Most ECSS standards already include a tailoring
notice that explicitly encourages tailoring the standard. The ECSS-S-ST-00C further
explains a formal tailoring approach based on the ECSS Applicable Requirements
Matrix. It advocates putting all requirements with their identifiers in a table, and
marking them as either applicable without change, applicable with modification, not
applicable, and newly generated [15]. An adaptation of this approach is to include all
requirements in their original form, and then record any changes or deletions after
the original text, which, of course, can lead to very long documents. Currently, the
ECSS is working on a more complex standard for the tailoring of ECSS standards.

ECSS-E-ST-40C and ECSS-Q-ST-80C are “self-tailoring.” It means that both
standards’ annexes provide a table that lists for each requirement if it should be
included in software with a certain criticality from A (most critical) to D (least
critical). To determine the criticality category of each software item, a safety and
dependability analysis and a hardware–software interaction analysis are conducted.
The severity of the consequences of possible failures determine the criticality level.

A software tool for tailoring the ECSS-E-ST-40 Issue B is provided by the ESA.
The wizard-style tool first takes the user through a questionnaire containing single-
choice questions in several areas, e.g., project characteristics (novelty, complexity,
expected lifetime, use of commercial off-the-shelf items, ...), stakeholders (who is
the customer, supplier, maintainer, user, ...), risks (e.g., long-term use, tricky design),
verification, and so on. It then outputs a table that proposes for each requirement in the
standard whether it should be included or not. Döler et al. [9] presented a web-based
tool capable of tailoring several standards including ECSS-E-ST-40B, ECSS-Q-ST-
80B, DIN EN 50128 (railway applications), internal standards, and RTCA/DO-178B
(airborne systems). Again characteristics like technical domain, software type, and
operational complexity are queried using 17 nonredundant single-choice questions.
The tailoring rules are based on comparisons with other standards and long-term

4An earlier version of this chapter was published as [35].

8 Managing Software Process Evolution for Spacecraft … 161

experience fromworking in space projects. However, both tools seem to be no longer
actively maintained. Rumor has it that the tedious maintenance of the requirements
and rule database might have been too costly.

Armbrust et al. [2] address product quality through scoping, i.e., what to include
in a process and what not. Their approach is similar in that it characterizes space
projects using criteria like mission type, complexity, or criticality that then result
in adapted processes. Their view complements ours as it is technical and supplier-
oriented: For example, cooperation with ESA triggered process evolution on their
side.

Kalus and Kuhrmann [31] present a systematic literature review of criteria for
software process tailoring. They identified 49 tailoring criteria, such as team size,
project budget, project duration, the degree of technology knowledge, the availability
of commercial off-the-shelf products, tool infrastructure, legal aspects, or the domain.

In Chap.10, the authors describe an assembly-based method of process evolution.
A focus of their work is the enactability and assurance of the enactment of activities
imposed through regulatory needs or our requirements. With the same goal, Chap. 11
explains how to adapt case management techniques to deal with problems that stem
from trying to achieve flexibility and compliance at the same time.

Chapter13 addresses the co-evolution of development processes andmodel-driven
engineering. They research the implied consequences for costs and success of process
tailoring. This happens against the background of the importance of customization
and optimization for staying efficient and dealing with arising new challenges.

References

1. Abbott, A.: Battery fault ends X-ray satellite mission. Nature 399, 93ff (1999)
2. Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., Ocampo, A.: Scoping soft-

ware process models—initial concepts and experience from defining space standards. Making
Globally Distributed Software Development a Success Story. Lecture Notes in Computer Sci-
ence, pp. 160–172. Springer, Berlin (2008)

3. Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons learned from 25 years
of process improvement: the rise and fall of the nasa software engineering laboratory. In:
Proceedings of the International Conference on Software Engineering, pp. 69–79. ACM, New
York, NY (2002)

4. Bourque, P., Fairley, R.E. (eds.): SWEBOK V3.0—Guide to the Software Engineering Body
of Knowledge. IEEE Computer Society, Washington (2014)

5. Brat, G., Klemm, R.: Static analysis of the mars exploration rover flight software. In: Pro-
ceedings of the First International Space Mission Challenges for Information Technology, pp.
321–326 (2003)

6. Card, D.N.: Software product assurance: measurement and control. Inf. Softw. Technol. 30(6),
322–330 (1988)

7. CMMI Product Team: CMMI for development, version 1.3 (2010)
8. Cousot, P., Cousot, R.: Abstract interpretation: A unified latticemodel for static analysis of pro-

grams by construction or approximation of fixpoints. In: Proceedings of the ACM Symposium
on Principles of Programming Languages, pp. 238–252. ACM, New York (1977)

http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_11
http://dx.doi.org/10.1007/978-3-319-31545-4_13

162 C.R. Prause et al.

9. Döler, N., Herrmann, A., Tapper, U., Hempel, R.: Ecss application in dlr space projects—
experiences and suggestions for enhancement. Presentation slides from the ECSS Developer
Day at ESTEC (Noordwijk) (2005)

10. Donaldson, S.E., Siegel, S.G.: Successful Software Development, 2nd edn. Prentice-Hall,
Upper Saddle River (2001)

11. Dowson,M.: The ariane 5 software failure. ACMSIGSOFTSoftw. Eng. Notes 22(2), 84 (1997)
12. Dvorak, D.L.: Nasa study on flight software complexity: Final report. NASA (2007)
13. Emanuelsson, P., Nielsson, U.: A comparative study of industrial static analysis tools. Electron.

Notes Theor. Comput. Sci. 217, 5–21 (2008)
14. ECSS Secretariat (publ.): ECSS—standardization objectives, policies and organization. ECSS

Standard ECSS-P-00A, European Cooperation for Space Standardization (2000)
15. ECSS Secretariat (publ.): ECSS system—description, implementation and general require-

ments. ECSS Standard ECSS-S-ST-00C, European Cooperation for Space Standardization
(2008)

16. ECSS Secretariat (publ.): Space product assurance—product assurance management. ECSS
Standard ECSS-Q-ST-10C, European Cooperation for Space Standardization (2008)

17. ECSS Secretariat (publ.): Space engineering—software. ECSS Standard ECSS-E-ST-40C,
European Cooperation for Space Standardization (2009)

18. ECSS Secretariat (publ.): Space product assurance—software product assurance. ECSS Stan-
dard ECSS-Q-ST-80C, European Cooperation for Space Standardization (2009)

19. ECSS Secretariat (publ.): Space project management—configuration and information man-
agement. ECSS Standard ECSS-M-ST-40C, European Cooperation for Space Standardization
(2009)

20. ECSS Secretariat (publ.): Space product assurance—software dependability and safety. ECSS
Standard ECSS-Q-HB-80-03A, European Cooperation for Space Standardization (2012)

21. ECSS Secretariat (publ.): ECSS—standardization objectives, policies and organization. ECSS
Standard ECSS-P-00C, European Cooperation for Space Standardization (2013)

22. ECSSSecretariat (publ.): Space engineering—software engineering handbook. ECSSStandard
ECSS-E-HB-40A, European Cooperation for Space Standardization (2013)

23. Falessi, D., Shaw, M., Mullen, K.: Achieving and maintaining CMMI maturity level 5 in a
small organization. IEEE Softw. 31(5), 80–86 (2014)

24. Gammal, Y.E., Kriedte, W.: ECSS—an initiative to develop a single set of european space
standards. In: Proceedings of Product Assurance Symposium and Software Product Assurance
Workshop, pp. 43–50. ESA (1996)

25. Ginsberg,M.P.,Quinn, L.: Process tailoring and the software capabilitymaturitymodel. Techni-
cal Report CMU/SEI-94-TR-024, Carnegie Mellon University, Software Engineering Institute
(1995)

26. Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)
27. Jobi, W.: Tailoring catalogue: product assurance & safety requirements for dlr space projects.

Technical report, Deutsches Zentrum für Luft- und Raumfahrt (2012)
28. Johnson, C.W.: The natural history of bugs: Using formal methods to analyse software related

failures in space missions. FM 2005: Formal Methods. Lecture Notes in Computer Science,
pp. 9–25. Springer, Berlin (2005)

29. Jones, M., Gomez, E., Matineo, A., Mortensen, U.K.: Introducing ECSS software-engineering
standards within ESA. ESA Bull. 111, 132–139 (2002)

30. JTC 1 SC 7: Information technology—process assessment—part 1: Concepts and vocabulary.
International Standard ISO/IEC 15504-1:2012, International Organization for Standardization
(2012)

31. Kalus, G., Kuhrmann, M.: Criteria for software process tailoring: A systematic review. In:
Proceedings of the International Conference on Software and System Process, pp. 171–180.
ACM, New York (2013)

32. Ley, W.: Management von Raumfahrtprojekten. Handbuch der Raumfahrttechnik, 4th edn, pp.
715–764. Carl Hanser Verlag, Germany (2011)

33. Marsiske, H.A.: Wendepunkt Mars. http://www.heise.de/tp/artikel/6/6775/1.html (2000)

http://www.heise.de/tp/artikel/6/6775/1.html

8 Managing Software Process Evolution for Spacecraft … 163

34. Oberg, J.: Why the mars probe went off course. IEEE Spec. 36(12), 34–39 (1999)
35. Prause, C., Bibus, M., Dietrich, C., Jobi, W.: Tailoring process requirements for software

product assurance. In: Proceedings of the International Conference on Software and System
Process, pp. 67–71. ACM, New York (2015)

36. Rechtin,E.:Remarks on reducing space sciencemission costs. In: Proceedings of theWorkshop:
Reducing the Costs of Space Science Research Missions, p. 23ff. National Academy Press,
Washington (1997)

37. Rosenberg, L.H., Albert M. Gallo, J.: Software quality assurance engineering at nasa. In:
Proceedings of the IEEE Aerospace Conference, vol. 5, pp. 5:2569–5:2575. IEEE,Washington
(2002)

38. Schiller, D., Heinemann, J.: ECSS—20 years of collaboration for european spaceflight. DLR
Newsl. Countdown 24, 32–35 (2014)

Chapter 9
Modeling Software Processes Using BPMN:
When and When Not?

Marlon Dumas and Dietmar Pfahl

Abstract Software process models capture structural and behavioral properties of
software development activities, supporting the elicitation, analysis, simulation, and
improvement of software development processes. Various approaches for the mod-
eling and model-driven analysis of software development processes have been pro-
posed but little progress has been made regarding standardization. With increasing
demands regarding flexibility and adaptability of development processes, the con-
stant evolution of development methods and tools, and the trend toward continuous
product deployment, better support for process engineers in terms of universally
applicable modeling notations as well as simulation and enactment mechanisms has
become more desirable than ever. In contrast to software process modeling, the dis-
cipline of business process modeling has attained a greater level of consensus and
standardization, leading most notably to the Business Process Model and Notation
(BPMN). The success of BPMN as a standard business process modeling notation
has made scholars ponder whether BPMN could also be used for modeling software
development processes. This chapter analyzes this question by eliciting fundamental
assumptions made in BPMN about the nature of business process models, which
ultimately determine which aspects of the process are included in the model and
which aspects are either left out or treated as ancillary.

9.1 Introduction

Software process models capture structural and behavioral properties of software
development activities within dedicated organizations as well as in open source
development settings. Such models support the elicitation, analysis, simulation, and
improvement of software development processes. Various approaches for model-

M. Dumas · D. Pfahl (B)
Institute of Computer Science, University of Tartu,
J Liivi 2, 50409 Tartu, Estonia
e-mail: marlon.dumas@ut.ee

D. Pfahl
e-mail: dietmar.pfahl@ut.ee

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_9

165

166 M. Dumas and D. Pfahl

ing software development processes have been proposed in the past three decades
[1, 8, 17] but little progress has beenmade regarding standardization to the extent that
universally accepted software process modeling paradigms and associated notations
remain elusive [20]. With increasing demands regarding flexibility and adaptability
of development processes, the constant evolution of development methods and tools,
and the trend towards continuous product deployment, better support for process
engineers in terms of universally applicable modeling notations as well as simula-
tion and enactment mechanisms has become more desirable than ever.

In contrast to software development processes, the discipline of business process
modeling has attained a greater level of consensus and standardization, leading most
notably to the Business Process Model and Notation (BPMN; [21]), a standard sup-
ported by dozens of commercial tools and used by thousands of practitioners across a
wide range of industry verticals [14]. Empirical studies have shown that this success
is due to the perception by adopters that BPMN strikes a suitable tradeoff between
instrumentality (usefulness and performance of BPMN for process modeling) and
ease-of-use (complexity of creating BPMN models) [24, 25].

The success of BPMN as a standard business process modeling notation has
made scholars ponder whether BPMN could also be used for modeling software
processes [5, 23]. This chapter analyzes this question by eliciting fundamental
assumptions made in BPMN about the nature of business process models, which
ultimately determine which aspects of the process are included in the model and
which aspects are either left out or treated as ancillary. We highlight in particular that
BPMN relies on three fundamental assumptions that affect its scope of applicability

1. A process consists of a set of isolated process instances (also called cases) that
interact with each other in very limited ways.

2. A case is a sequence of activities that transform objects associated to the case,
along the way from a start state to an end state (possibly among multiple possible
end states).

3. Each atomic activity (also called a task) is an atomic unit of work performed by
a single actor.

These assumptions fit well with certain classes of processes, including common
business processes such as lead-to-quote, order-to-cash, or claim-to-resolution; but
the same does not necessarily hold for software development processes.

Based on the identified assumptions, this chapter attempts to answer the question
of when can BPMN be suitable for software process modeling and when not. The
chapter starts by introducing the BPMN notation and basic concepts of software
process modeling in Sect. 9.2. Using illustrative examples, this chapter then presents
classes of processes that can be conveniently represented with BPMN, as well as
classes of processes that cannot be conveniently or fully represented with BPMN in
Sect. 9.3. These observations are followed by a brief discussion on the applicability
of BPMN tomodel common software development processes in Sect. 9.4 and, finally,
suggestions for further reading Sect. 9.5.

9 Modeling Software Processes Using BPMN: When and When Not? 167

9.2 Background and Context

This section provides a brief introduction to BPMNand presents some basic concepts
of software process modeling, as embodied in the Multi-View Process modeling
Language (MVP-L). The section also introduces a working example that is used in
the rest of the chapter to illustrate the scope and limitations of BPMN.

9.2.1 Business Process Modeling in BPMN

A BPMN process model is a graph consisting of three types of nodes: events (repre-
sented as circles), activities (represented as rectangles) and gateways (represented as
diamonds). Events denote things that happen at a particular point in time. Activities
denote work that needs to be performed. Gateways serve to route the flow of control
along the branches of the process model. Nodes are connected by means of directed
edges called sequence flows. A sequence flow basically says that the flow of control
can pass from the source node to the target node. An illustrative example of a lending
process—specifically the “loan application handling” portion thereof—is shown in
Fig. 9.1. This model contains a single start event (leftmost element), an intermediate
event where a revised loan application is received, and two end events (rightmost
elements). These two end events correspond to two different ways of completing the
process. The remaining elements are activities and gateways.

There are three basic types of gateways in BPMN:

1. XOR gateways (represented by an ‘X’),
2. AND gateways (represented by a ‘+’), and
3. OR gateways (represented by an ‘O’).

A gateway is said to be a split gateway if it has multiple outgoing flows, or a join
gateway if it has multiple incoming flows. It may happen that a gateway is both a
split and a join gateway. If we put together the distinction between the three types of
gateways (XOR, AND, and OR) and the distinction between split and join gateways,

Fig. 9.1 Loan application process model

168 M. Dumas and D. Pfahl

we obtain six different types of basic gateways1: XOR-split, XOR-join, AND-split,
AND-join, OR-split, and OR-join.

• An XOR-split is a decision point where the flow of control is passed to exactly
one of the outgoing flows of the XOR-split. The choice between outgoing flows
is based on the evaluation of conditions attached to the gateway and/or to its
flows. For example, Fig. 9.1 has two XOR-split gateways: one after task “Check
completeness” and another after task “Assess application.” In the case of the first of
these XOR-split gateways, one of the outgoing flows is labeled with the condition
“application incomplete,”while the other outgoing flow is the default flow, denoted
by a stripe through the flow. The default flow is taken if the condition(s) attached to
the other conditional flow(s) is/are not fulfilled—in this example the default flow
is taken if the application is complete. An XOR-join on the other hand merges two
incoming branches into a single one. Figure9.1 features an XOR-join just before
task “Check completeness” which merges two incoming paths.

• An AND-split forks out one thread of execution into two or more parallel threads.
For example, Fig. 9.1 has an AND-split that starts two threads in parallel corre-
sponding to a credit check and an income source check. These two threads join in
an AND-join just before task “Assess application.” The AND-join is a synchroniza-
tion point—it waits for both threads to complete.

• The OR-split (which we do not exemplify) is a hybrid between the XOR-split
and the AND-split, allowing a split into any number of outgoing flows instead of
one (XOR-split) or all (AND-split). Similarly, the OR-join is a hybrid between an
XOR-join and an AND-join, synchronizing all active flows (but not those that are
“inactive”).

Another type of split gateway in BPMN is the event-based exclusive gateway. This
latter gateway is similar to the XOR-split (which is also called data-based exclu-
sive gateway in BPMN). However, instead of the choice between outgoing flows
being determined by conditions (which are evaluated based on data), the choice is
determined by the occurrence of one of multiple events. An event-based exclusive
gateway is designated using a star symbol. Figure9.2 features an event-based exclu-
sive gateway. When the execution of the process arrives at this point (in other words,
when a token arrives to this gateway), the execution of the thread stops until either
the message event or the timer event occur. Whichever occurs first will determine
which way the execution will proceed. If the timer event occurs first, the loan offer
is canceled. If the message signaling the acceptance of the offer is received first, the
execution flow proceeds.

1The BPMN specification uses alternative terms [21]: XOR-splits are exclusive decision gateways,
XOR-joins are exclusive merge gateways, OR-splits are inclusive decision gateways, OR-joins are
inclusive merge gateways, AND-splits are parallel forking gateways and AND-joins are parallel
joining gateways. Here, we adopt a simpler and more uniform terminology covering those aspects
required to understand the chapter easily, even for readers without in-depth knowledge of the BPMN
specification.

9 Modeling Software Processes Using BPMN: When and When Not? 169

Fig. 9.2 Loan offer process
model

The above examples illustrate that BPMN supports several types of events, with
different types of triggers. In particular, Fig. 9.2 includes plain events (the start event
and the end events, which have no triggers) as well as an event with a message trigger
and an event with a timer trigger. Other types of events in BPMN include conditional
events, triggered when their associated conditions become true, and error events,
triggered when an associated error type occurs. The latter type of events can also
be used to capture exception handling in the style of “try-catch” blocks in modern
programming languages. The range of event types in BPMN is very rich. There are
more than 60 types of events, classified according to their position in the process
model (start, end, intermediate, interrupting and non-interrupting boundary events)
and their triggers (13 different types of triggers).

The process models shown above are “flat,” meaning that all the activities in the
model correspond to atomic units of work—also called atomic tasks in BPMN.
BPMN also supports activities that correspond to the execution of entire sub-
processes. Figure9.3 shows a top-level BPMN model of the lending process. It
consists of three subprocesses: the first two correspond to the processes shown in
Figs. 9.1 and 9.2. Subprocesses are visually distinguishable from atomic tasks thanks
to the ‘+’ marker.

In addition to the ‘+’ marker to denote a subprocess, BPMN offers other markers
to capture repetition of a given activity (be it an atomic task or a subprocess). Specif-
ically, two markers are provided for this purposes: the sequential repetition marker
and the parallel multi-instance repetition marker. The sequential repetition marker
indicates that multiple instances of a given task or subprocess need to be executed,
one time after another. It is an alternative to capturing sequential repetition via a
cycle in the process model as in Fig. 9.1. Meanwhile, the multi-instance repetition
marker indicates that a given task or subprocess needs to be executed multiple times
and that these executions occur in parallel. For example, Fig. 9.4 shows a subprocess
“Perform disbursement” with a multi-instance marker, indicating that the various
loan disbursements are executed in parallel. The annotation attached to this sub-

Fig. 9.3 Top-level transportation process model (with subprocesses)

170 M. Dumas and D. Pfahl

Fig. 9.4 Loan disbursement subprocess model

process tells us that the disbursement is made once for each account nominated by
the customer.

The BPMN constructs introduced above allow us to capture tasks, events and
their ordering. This aspect of business process modeling is generally known as the
control-flowmodeling perspective [16]. BPMN also allows us to capture data objects
consumed and produced by tasks and events in a process (the so-called data perspec-
tive), as well as resource classes (e.g., roles) responsible for the execution of tasks
in the process (the organizational or resource perspective). For example, Fig. 9.5
shows the same loan application process as in Fig. 9.1, now with input and output
data objects as well as roles, represented as lanes that divide the tasks of the process
according to the role of their performer. This latter process model contains two lanes
corresponding to the “Loan applications handler” responsible for the initial process-
ing of the loan application, and “Credit officer” responsible for the later parts of the

Fig. 9.5 Loan application subprocess with data objects and lanes

9 Modeling Software Processes Using BPMN: When and When Not? 171

process. The process model also shows which tasks or events read from or modify
the “loan application” data object—represented by a rectangle with a folded corner.

9.2.2 Software Process Modeling with MVP-L

In the following, we describe a typical work-test-rework-retest cycle with the help
of a rigorous software process modeling language: Multi-View Process modeling
Language (MVP-L). MVP-L was developed in the 1980s at the University of Mary-
land [28]. Subsequent development was conducted at the University of Kaiser-
slautern, Germany. The main focus of MVP-L is on modeling “in-the-large”. It is
assumed that the ability to understand, guide, and support the interaction between
processes is more beneficial than the complete automation of low-level process steps
[3]. In addition to the textual representation of MVP-L, a graphical representation is
defined for MVP-L in order to facilitate understanding [4]. The main elements that
are used in MVP-L for the description of process models are processes, products,
resources, and quality attributes, as well as their instantiation in project plans [3]. A
process model is actually a type description that captures the properties common to a
class of processes. For easy adaptation of processmodels to different project contexts,
the process models are structured using the concepts of a process model-interface
and a process model-body.

MVP-L by Example As an example, a process model “Coding” (Fig. 9.6) could
describe a class of processes that require an input of the product type User_Story
which must produce an output of the product type Code and which must be exe-
cuted by a resource of the type Programmers. These product and resource model
declarations are part of the interface of the process model Coding. The actual
implementation of the process model is “hidden” in the body of the process model.

Processes, products, and resources can be used for modeling the basic elements
of a software project. Attributes can be used for defining specific properties of these
three basic elements. More detailed descriptions and examples of these constructs
can be found in the MVP-L language report [3] and in [20]. The instantiation of
a process model allows operationalizing the process model and creating a concrete
project plan, which can then be used for project analysis or execution. The notion of
a project state is the basis for the enactment model in MVP-L [3]. A project state is
defined as the set of all attribute values, i.e., all attributes of all objects instantiated

Fig. 9.6 Example of process
model “Coding”

172 M. Dumas and D. Pfahl

Fig. 9.7 State transition models for processes (left) and products (right), adapted from [20]

within a project plan. Thus, the project state provides valuable information about the
status of the projects at any given time. The project state has two dimensions which
are synchronized, i.e., process state and product state. The values of attributes of the
different states of a process can be represented in a state transition model (left hand
side of Fig. 9.7). Starting in the disabled state, processes may only get enabled
when the entry criteria are true. An enabled process may get active when it is
triggered by a user with the start invocation. As long as the exit criteria are not
fulfilled and the user does not trigger the user invocation complete, the process
will remain in the active state. When the exit criteria are fulfilled and the user
invocation complete is triggered, then the process gets disabled. Additionally,
for each project state, the state of the associated work products is represented as
non_existent, incomplete, or complete (right hand side of Fig. 9.7). At
the beginning, the product does not exist. When the producing process starts, the
product state changes to incomplete. Finally, when the producing process terminates,

Fig. 9.8 Exemplary process in MVP-L graphical representation

9 Modeling Software Processes Using BPMN: When and When Not? 173

the product state turns to complete.When rework is needed, several iterations between
the product states complete and incomplete are possible.

Modeling a Project in MVP-L Figure9.8 shows a simple example of a project
illustrating the notion of the project state as well as the capabilities of MVP-L in
implementing a constraint-oriented control-flow using entry and exit criteria. The
exemplary process consists of three process instances, namely, coding, testing,
and deploying. In this example, the process is not strictly sequential but allows
for rework loops. There are four work products that constitute the product flow
within this process. An arrow from a product to a process indicates that a product is
consumed by this process. An arrow pointing from a process to a product indicates
that a product is produced by this process. A bidirectional arrow indicates that a
product is produced and consumed, i.e., a product can be modified (or enhanced).
Control of the process flow is realized implicitly via pre- and post-conditions of
the process. Since the process is not strictly sequential, all subprocesses consume
more than one work product and two subprocesses produce (or modify) more than
one work product, the entry and exit conditions can become complex. In the right
column of Fig. 9.8, entry and exit criteria for our example process are specified. For
subprocess Coding the entry and exit conditions are defined as follows:

Entry Criterion 1: The input work product us (of type User_Story, US) is com-
plete AND the output work product cd (of type Code, CD) is
non-existent.

Entry Criterion 2: The input work product cd is incomplete AND the input work
product tr (of type Test_Report, TR) is complete

Exit Criterion 1: (corresponding to entry criterion 1) The output work product
cd is complete.

Exit Criterion 2: (corresponding to entry criterion 2) The output work product
cd is complete AND the output work product tr is incomplete
(i.e., the code has to undergo another round of testing)

For subprocess Testing the entry and exit conditions are defined as follows:

Entry Criterion: The input work product cd is complete AND the input work
product tr is either non-existent OR incomplete.

Exit Criterion 1: The output work products cd and tr are both complete (i.e., all
tests passed and no further rework needed).

Exit Criterion 2: The output work product tr is complete and the output work
product cd is incomplete (i.e., rework of the code is required,
due to bug fixing)

For subprocess Deploying the entry and exit conditions are defined as follows:

Entry Criterion: The input work products cd and tr are both complete AND the
output work product dr (of type Deployment_Report, DR)
is non-existent.

Exit Criterion: The output work product dr is complete.

174 M. Dumas and D. Pfahl

Fig. 9.9 Example state table for a coding-testing-(re)coding-(re)testing cycle with subsequent
deployment

Finally, between the columns Products and Processes in Fig. 9.8, project states are
represented that correspond to the enactment scenario provided in the state (transi-
tion) table (Fig. 9.9). The state table provides a sequence of project plan execution
states:

• Starting in project state S0, we assume that the user story us is already com-
plete and other products are non-existent. Since the user story is complete, the
process instancecoding can be enabled (entry criterion 1 is fulfilled). The process
instance is initiatedwith the invocation start(coding) and state S1 is reached.

• In state S1, the coding process instance is active and the code document cd is
being produced and is therefore in the state incomplete. Upon completion of
cd, complete(coding) triggers another project state change.

• In state S2, the code document is complete, and thus exit criterion 1 for coding
is fulfilled and the coding process instance gets disabled.

• Now, the entry conditions for the testing process are fulfilled, state S3 can
be achieved (start(testing)), and the testing process instance becomes
active. The active testing process instance creates the test report and there-
fore the test report is incomplete. All other process instances are disabled.
Upon completion of the test report and the specification of the status of the tested
code (i.e., either all tests passed and its state is unchanged complete, or defects
were detected and its state is reset to incomplete), either exit criterion 1 or 2
is fulfilled, and complete(testing) is triggered.

• We assume that defects were detected, i.e., the code status is reset to incom-
plete, and state S4 is reached.

• Now entry criterion 2 for the coding process is fulfilled, process instance coding
is enabled and state S5 can be entered (start(coding)).

• Upon completion (rework) of the code (complete(coding)), the test report
status is set to incomplete as a new round of testing is required to check the
correctness of the reworked code, and S6 is reached.

9 Modeling Software Processes Using BPMN: When and When Not? 175

• In S6, the process instance coding is disabled and the testing is enabled. Invoking
start(testing) brings us to state S7 in which process instance testing is in
state active.

• At completion of the (enhanced) test report we notice that no issues were
found and therefore a change of the code status is not required. By invoking
complete(testing) we reach state S8. Now process instance testing is dis-
abled and since its entry criterion is fulfilled, process instance deploying is enabled.
Invokingstart(deploying) changes its state toactive and the state of out-
put product deployment report changes from non-existent to incomplete.

9.3 BPMN for Software Process Modeling

In this section,we sketch a line between software processes or aspects thereof that can
be captured straightforwardly using BPMN (the “good” aspects), those that cannot
be captured due to inherent limitations of BPMN (the “bad”), and those that can be
captured with a workaround and under some circumstances (the “ugly”).

9.3.1 The Good

BPMN is in general suitable when it comes to capturing sequential relations between
activities,whereby the completion of an activity enables other activities. For example,
it is rather straightforward to capture in BPMN the control-flow relations shown in
Fig. 9.9. The corresponding BPMN process model is given in Fig. 9.10.

More generally, it has been shown that BPMN-like languages are comparable in
terms of control-flow expressiveness to a well-known class of Petri nets known as
free-choice workflow nets [10, 13]. At the same time, BPMN is armed with special
types of gateways that allow one to capture complex synchronization conditions. In
particular, the OR-join (inclusive) synchronization gateway alluded to in Sect. 9.2.1,

Fig. 9.10 Simple BPMN process model of code-test cycle with subsequent deployment

176 M. Dumas and D. Pfahl

Fig. 9.11 Process for integration testing in software product lines (according to [27])

allows us to capture points in a process where the execution must wait for all “active”
incoming threads to complete before proceeding.

9.3.1.1 Modeling Control Flows

Figure9.11 shows a fragment of a process for integration testing in software product
lines introduced in [27]. This process proceeds as follows. When the AND-split at the
start of this process fires, both tasks Identify variability and Specify
integrated subsystems are enabled. These tasks may be performed in any
order. At this stage, the OR-join will wait for both tasks to complete before putting
a token in its outgoing flow. Subsequently, tasks Generate significant
paths and Generate optimal path combinations are performed (in
this order). Assuming that the condition more subsystems holds true (i.e.,
more subsystems need to be integrated), the flow of control will come back to
task Specify integrated subsystems. Eventually, this task will be per-
formed, leading to a token being placed in one of the incoming flows of the
OR-join. Note that in this second iteration, task Identify variability has
not been enabled, i.e., this latter task is executed only once per execution of the
process. Hence, at this point in the execution, the OR-join has a token coming
fromSpecify integrated subsystemswhile no token is expected to arrive
from Identify variability. Under these conditions, the OR-join will fire
and enable task Generate significant paths. In other words, the OR-join
does not “block” the execution unnecessarily: If a token arrives to one of its incoming
flows, and no tokens are expected to arrive to its other flows, the OR-join immediately
fires. This is in contrast with theAND-join, whichwill alwayswait for a token to arrive
to every one of its incoming flows before firing. Without the OR-join construct, cap-
turing the above process models would require detours such as duplicating fragments
of the process model. The OR-join and other gateway types in BPMN (event-based

9 Modeling Software Processes Using BPMN: When and When Not? 177

gateway, complex gateways) are arguably a distinguishing feature of BPMN when
compared to software process modeling notations.

9.3.1.2 Modeling Events and Messages

Another distinguishing feature of BPMN is its richness of event types, which range
from the timer and message events exemplified in Sect. 9.2.1, to conditional events,
escalation events, compensation events and error events as mentioned in Sect. 9.2.1.
Given the wide range of events produced, and consumed by modern software devel-
opment environments, the richness of the event type spectrum supported by BPMN
is an attractive feature vis-a-vis of software process modeling.

9.3.1.3 Modeling Executable Processes

Last but not least, one of the strengths of BPMN is its ability to modeling processes
for different purposes and at different levels of detail. We have focused above on cap-
turing processes for the purpose of documentation and analysis. However, BPMN is
designed to also support the enactment of business processes via so-called executable
BPMN models. The executable subset of BPMN defines a number of properties that
can be associated to processes, tasks, events and flows in order to specify the exe-
cution behavior to the level of detail required by a Business Process Management
System (BPMS). For example, in executable BPMN, one can associate rules to the
flows coming out of XOR-split or OR-split gateways, which can be interpreted by a
BPMS. It is also possible to bind a task in a process to an external (Web) service
(so-called service tasks) or to a script in a programming language (so-called script
tasks). Finally, it is possible to define the schema of objects manipulated by a process
as well as mapping rules to link the data objects manipulated by the process to the
data required as input or provided as output by each individual task in the process. A
range of BPMSs nowadays support the enactment of BPMN process models, ranging
from sophisticated commercial solutions such as IBM Business Process Manager,
Oracle Business Process Management Suite, or Bizagi BPM Studio, to Open Source
alternatives such as Bonita BPM and Camunda BPM Platform. The sophistication
of executable BPMN and of its supporting BPMSs is one of its strengths, especially
when compared to the lesser support for process enactment found in the field of
software process modeling.

9.3.2 The Bad

BPMN has some inherent limitations that hinder capturing software processes. This
section describes the limitations.

178 M. Dumas and D. Pfahl

9.3.2.1 Modeling Resources

While being relatively rich along the control-flow perspective, BPMN is rather lim-
ited along the resource perspective. As shown in Fig. 9.5, it is possible in BPMN to
allocate tasks to roles via lanes. It is also possible to capture business processes that
involve multiple independent entities, such as for example multiple companies in a
business-to-business processes (e.g., a contractor and a sub-contractor) via so-called
pools that communicate via message flows. However, one clear limitation of BPMN
along the resource perspective is its inability to capture the fact that a given task
is performed jointly by multiple resources (e.g., human actors) with different roles,
e.g., an analyst and a developer. Indeed, a task in BPMN must belong to exactly one
lane.

9.3.2.2 Modeling Data

Similarly, BPMN is rather limited along the data perspective. Along this latter per-
spective, BPMNprimarily relies on the concept of data object (cf. Figs. 9.5 and 9.10),
meaning a logical unit of data that can be read by or created or modified by a task
or an event. It also supports a concept of data store that can be used to capture for
example a database or document management system that is read by or modified by
a task or event. However, data objects in BPMN do not have a notion of state. It is
thus not possible to state that object cd in Fig. 9.10 should be in state complete
when task Test is started as indicated in Fig. 9.9.

In comparison, Unified Modeling Language (UML) activity diagrams—a lan-
guage that otherwise shares several features with BPMN at a semantic level—does
provide the ability to designate the state in which a data object should be when it
is consumed or produced by an activity in a process [12]. It also supports the abil-
ity to designate that a given activity in a process involves multiple performers with
different roles.

9.3.2.3 Modeling “The Whole”

A third and perhaps more fundamental limitation of BPMN that may hamper its use
for software process modeling is its inherent focus on business processes consist-
ing of isolated cases. As many other process modeling notations, a BPMN model
captures a process that consists of instances or cases. For example, a case of the
loan application process in Fig. 9.1 is created every time a new loan application is
received. Meanwhile, a case of the code-test process in Fig. 9.10 is created for every
object us in a completed state. These cases are executed independently without any
interaction between them besides the fact that they may share the same resources,
e.g., multiple cases of the loan application process share the same loan applications
handler or the same credit officer.

9 Modeling Software Processes Using BPMN: When and When Not? 179

The isolated case assumption is generally a convenient abstraction. The modeler
can focus on describing one case of the process in isolation, without worrying about
possible interactions. On the other hand, this assumption hampers the inability for
modelers to capture inter-case dependencies, which occur in software processes.
Consider example the business process given in Fig. 9.10 but in a situation where
a system consists of two types of components A and B, and the testing phase of a
component of type B needs to wait for all components of type A to have reached the
state CD complete before proceeding with testing. The latter scenario cannot be
captured in BPMN. It is possible in BPMN to model the fact that a process spawns
multiple instances of a subprocess and waits for some or all of them to complete (as
shown in Fig. 9.4), but it is not possible to model the fact that a case of a process must
wait for a collection of cases of the same process (or of another process) to reach a
certain state before continuing.

The isolated case assumption is lifted by a family of process definition languages
known as object-centric or artifact-centric process models, such as FlexConnect [26]
and Guard-Stage Milestone (GSM; [15]). In these languages, a process consists of
a collection of object types or artifact types, each with its own lifecycle. These life-
cycles may be inter-connected in different ways. In the case of GSM, the lifecyle of
a given artifact goes through a set of stages, during which one or multiple tasks may
be performed. A stage is opened when a given guard becomes true and is closed
when a given milestone becomes true. Both guards and milestones may refer to the
currently opened stage(s) of the same artifact, but also to stages of other artifacts
(of the same type) or even to stages of artifacts of different types. In this way, we
can model a system consisting of components with stages coding, testing, and
deploying with a data attribute type (of A or B). We can then model that the
testing phase of a component of type B must wait for all components of type A
to complete their coding stage, before it can enter the testing stage.

9.3.3 The Ugly

BPMN does not provide a mechanism that would allow one to link the completion of
one task to a condition on the data objects manipulated by the process. For example,
coming back to the example in Fig. 9.10, it is not possible to capture in BPMN that
the normal completion of task Test occurs whenever a condition on the Test Report
(TR) object becomes true, such as TR.status=complete as captured inMVP-L
in Fig. 9.8.

It is possible to attach events, and in particular conditional events to a task in
BPMN in order to capture the fact that the task in question is interrupted when
the condition becomes true. For example, Fig. 9.12 provides an alternative BPMN
process model of the code-test cycle where interrupting conditional events are used
to capture the fact that completion of the tasks in the process is dependent on the
data objects cd, tr, and dr reaching the status complete. Interrupting events are

180 M. Dumas and D. Pfahl

Fig. 9.12 An alternative BPMN process model of the code-test cycle with interrupting conditional
events

attached to the boundaries of an activity to indicate that the occurrence of the event
interrupts the task, and control is transferred to the outgoing flow of the boundary
event.

While the process model in Fig. 9.12 does capture the fact that control should
be transferred out of each task when the corresponding data object reaches the
complete status, the tasks in this process complete abnormally. It is not possi-
ble to express in BPMN that the normal completion of a task is determined by a
given condition becoming true. In other words, completion of a task in a BPMN
process has to be explicitly signaled by the resource performing the task, and cannot
be automatically determined based on the current state of the data objects in the
process. We note that the latter assumption is also lifted by artifact-centric process
modeling notations such as GSM, where completion of a stage in an artifact can be
bound to a condition on the data attributes of the artifact.

9.4 Conclusion

We have illustrated that BPMN offers a rather rich spectrum of constructs to capture
control-flow aspects of processes, which are applicable to software process mod-
eling in particular. The richness of constructs in BPMN and its ability to support
the specification of process models at different level of abstraction (from conceptual
models down to executable ones), makes it attractive for the purpose of capturing
software processes in the context of their automation. However, we have also iden-
tified weaknesses in BPMN along the data perspective and the resource perspective
that affect its suitability for software process modeling. In particular, we have noted
that the following inherent assumptions of BPMNhamper its use for software process
modeling:

9 Modeling Software Processes Using BPMN: When and When Not? 181

• The isolated case assumption of BPMN, which hinders on the ability to capture
processes where there are complex dependencies between the lifecycle of different
objects.

• The explicit completion assumption, meaning that completion of a task cannot
be automatically determined based on the state of data objects in the process but
instead is always explicitly determined by the resource performing the task.

Broadly speaking, these limitations hamper the use of BPMN for highly collab-
orative software processes, where for example different components of a system
are developed—possibly in a distributed manner—by different teams, with complex
synchronization inter-dependencies between the different types of components. We
have suggested that artifact-centric process modeling languages such as GSM [15]
lift the above two assumptions and, thus, could potentially be suitable in the con-
text of software process modeling. Conducting a detailed suitability assessment of
artifact-centric process modeling languages for software process modeling is thus an
avenue for future work.

One area where the disciplines of business process modeling and software process
modeling overlap and could potentially learn more from each other is that of process
variability modeling. This latter problem has been widely studied in the field of soft-
ware product lines, where it is necessary tomodel entire families of processes in order
to produce, test, deploy, evolve, and manage multiple variants of a software product.
A range of approaches to capture variability of software products and processes have
been proposed and evaluated in the literature [2, 6, 19]. Separately, the business
process modeling community has investigated the problem of modeling families of
business processes via configurable or customizable process model, e.g., modeling
an order-to-cash process in such a way that the resulting model can be customized
for different types of products or services. This latter body of research has led to
a range of extensions of BPMN and related process modeling languages aimed at
capturing customizable process models and to support their customization [18, 29].
The potential synergies between these two bodies of research are evident and warrant
closer attention [11].

9.5 Further Reading

There exists a wide range of literature describing software process modeling
approaches and their application to software development processes as well as liter-
ature describing business process modeling approaches and their application to busi-
ness processes. It is much harder to find literature on process modeling approaches
that could be—or actually are—applied to both software development and business
processes.

One such example is the work by Gruhn and colleagues. For example, in “Process
Management in Practice Applying the FUNSOFT Net Approach to Large-Scale
Processes” [9], Gruhn and Deiters present an approach to process management that

182 M. Dumas and D. Pfahl

has been applied to business and software processes. To enable cross-fertilization
between both areas and the authors discuss lessons learned from the application of
FUNSOFT Nets, a special version of colored Petri nets. While Gruhn et al.’s work
is based on the well-known formalism of colored Petri-Nets, Lee Osterweil and
his collaborators developed a completely new modeling approach, LittleJIL [22],
originally used for modeling and analyzing software development processes, which
has recently also been applied to modeling and analyzing business processes, for
example medical processes such as chemotherapy processes [7].

Other chapters in this bookdescribe and address the challenges of software process
evolution (Chap.13 in this volume), software process management (Chap.10 in this
volume), and software process evolutionmanagement (Chap. 8 in this volume). Once
suitable ways have been found to apply enhanced business process notations to
the context of software process modeling, we have hopes that the rich experience
available in business process evolution, management, and especially enactment using
BPMN could be transferred to the world of software process modeling.

Acknowledgments This work is supported by the institutional research grant IUT20-55 of the
Estonian Research Council.

References

1. Bendraou, R., Jézéquel, J.M., Gervais, M.P., Blanc, X.: A comparison of six UML-based
languages for software process modeling. IEEE Trans. Softw. Eng. 36(5), 662–675 (2010)

2. Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K.: A study of variability models
and languages in the systems software domain. IEEE Trans. Softw. Eng. 39(12), 1611–1640
(2013)

3. Böckers, A., Lott, C.M., Rombach, H.D., Verlage, M.: MVP-L language report version 2.
Technical report Nr. 265/95, University of Kaiserslautern, Department of Computer Science
(1995)

4. Bröckers, A., Differding, C., Hoisl, B., Kollnischko, F., Lott, C.M., Münch, J., Verlage, M.,
Vorwieger, S.: A graphical representation schema for the software process modeling language
mvp-l. Technical report, University of Kaiserslautern (1995)

5. Campos, A.L.N., Oliveira, T.C.: Software processes with bpmn: an empirical analysis. In: Pro-
ceedings of the International Conference on Product-Focused Software Process Improvement.
Lecture Notes in Computer Science, vol. 7983, pp. 338–341. Springer, Berlin, Heidelberg
(2013)

6. Chen, L., Babar, M.: A systematic review of evaluation of variability management approaches
in software product lines. Inf. Softw. Technol. 53(4), 344–362 (2011)

7. Christov, S., Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J., Brown, D., Cassells, L.,
Mertens, W.: Formally defining medical processes. Methods Inf. Med. 47(5), 392–398 (2008)

8. Curtis, B., Kellner, M., Over, J.: Process modeling. Commun. ACM 35(9), 75–90 (1992)
9. Deiters, W., Gruhn, V.: Process management in practice applying the funsoft net approach to

large-scale processes. Autom. Softw. Eng. 5(1), 7–25 (1998)
10. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models

in bpmn. Inf. Softw. Technol. 50(12), 1281–1294 (2008)
11. dos Santos Rocha, R., Fantinato, M.: The use of software product lines for business process

management: a systematic literature review. Inf. Softw. Technol. 55(8), 1355–1373 (2013)

http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_8

9 Modeling Software Processes Using BPMN: When and When Not? 183

12. Engels, G., Förster, A.F., Heckel, R., Thöne, S.: Process modeling using uml. In: Dumas, M.,
der Aalst, W.M.P.V., ter Hofstede, A. (eds.) Process-Aware Information Systems. Wiley, New
York (2005)

13. Favre, C., Fahland, D., Völzer, H.: The relationship between workflow graphs and free-choice
workflow nets. Inf. Syst. 47, 197–219 (2015)

14. Harmon, P., Wolf, C.: Business Process Modeling Survey. BPTrends Associates (2011)
15. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath, F.T., Hobson, S.,

Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculín, R.: Business artifacts with
guard-stage-milestone lifecycles: managing artifact interactions with conditions and events. In:
Proceedings of the International Conference on Distributed Event-based System, pp. 51–62.
ACM, New York, NY (2011)

16. Jablonski, S.,Bussler,C.:WorkflowManagement:ModelingConcepts,Architecture and Imple-
mentation. International Thomson Computer Press, London (1996)

17. Kellner,M.,Madachy, R., Raffo, D.: Software process simulationmodeling:Why?what? how?
J. Syst. Softw. 46(2/3), 91–105 (1999)

18. La Rosa, M., van der Aalst, W.M.P., Dumas, M., Milani, F.: Business process variability mod-
eling: A survey. BPM Center Report BPM-13-16, BPMcenter.org (2013)

19. Martínez-Ruiz, T., García, F., Piattini, M., Münch, J.: Modelling software process variability:
an empirical study. IET Softw. 5(2), 172–187 (2011)

20. Münch, J., Armbrust, O., Kowalczyk, M., Soto, M.: Software Process Definition and Manage-
ment. Springer, Berlin, Heidelberg (2012)

21. OMG: Business process model and notation. OMG Standard BPMN 2.0, Object Management
Group. http://www.omg.org/spec/BPMN/2.0/ (2011)

22. Osterweil, L.J.: Formalisms to support the definition of processes. J. Comput. Sci. Technol.
24(2), 198–211 (2009)

23. Pillat, R.M., Oliveira, T.C., Fonseca, F.L.: Introducing software process tailoring to bpmn:
Bpmnt. In: Proceedings of the International Conference on Software and System Process, pp.
58–62. IEEE Press, Piscataway, NJ (2012)

24. Recker, J.: Continued use of process modeling grammars: the impact of individual difference
factors. Eur. J. Inf. Syst. 19(1), 76–92 (2010)

25. Recker, J.: Opportunities and constraints: the current struggle with bpmn. Bus. Process Manag.
J. 16(1), 181–201 (2010)

26. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible, object-centric
approach for business process modelling. Serv. Oriented Comput. Appl. 4(3), 191–201 (2010)

27. Reis, S.,Metzger,A., Pohl,K.: Integration testing in software product line engineering: amodel-
based technique. In: Proceedings of the International Conference on Fundamental Approaches
to Software Engineering. LectureNotes inComputer Science, vol. 4422, pp. 321–335. Springer,
Berlin Heidelberg (2007)

28. Rombach,H.:MVP-L:ALanguage for ProcessModeling in-the-large. University ofMaryland,
College Park, MD (1991)

29. Valenca, G., Alves, C., Alves, V., Niu, N.: A systematic mapping study on business process
variability. Int. J. Comput. Sci. Inf. Technol. 5(1), 1–21 (2013)

http://www.omg.org/spec/BPMN/2.0/

Chapter 10
Software Processes Management by Method
Engineering with MESP

Masud Fazal-Baqaie and Gregor Engels

Abstract Software process management (SPM) is seen as a key factor for the result-
ing quality of software. Based on our experience in industrial process improvement
projects, we see twomajor challenges to apply SPMeffectively. Thereby, in ourwork,
we focus on the method aspect of software development processes. First, methods
have to be tailored consistently to projects by composing agile as well as plan-driven
method building blocks. Second, methods have to be enactable to ensure that they are
put into practice as intended. In this chapter, we present our assembly-based method
engineering approach calledMethod Engineering withMethod Services andMethod
Patterns (MESP) and explain how it tackles common SPM challenges. MESP fol-
lows the service-oriented paradigm to create formally defined composition-based
methods. The methods are created specifically for individual projects based on their
characteristics. They are composed based on an extensible repository of formally
defined method building blocks extracted from agile and plan-driven methods. With
our novel notion of method patterns, we allow to restrict the solution space of method
compositions to the desired ones. In addition, we provide tooling to define building
blocks and to compose them to methods consistently and we support the correct
enactment of methods with a workflow engine.

10.1 Introduction

As software systems become more widespread and more important, there is the ris-
ing need to use mature development processes to create software systems. They are
seen as a key factor for the resulting product or service quality. To acknowledge
this trend, it is important for every organization to manage and evolve the use of
the right software development processes. We thereby understand software devel-

M. Fazal-Baqaie (B) · G. Engels
Database and Information Systems Research Group,
University of Paderborn, Zukunftsmeile 1, 33102 Paderborn, Germany
e-mail: masudf@uni-paderborn.de

G. Engels
e-mail: engels@uni-paderborn.de

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_10

185

186 M. Fazal-Baqaie and G. Engels

opment processes to comprise project management aspects, organizational aspects,
and methodological aspects. In our work, we focus on the method aspect of software
development processes, that is what activities are carried out by which roles in what
order using which input to produce which output.

Based on our experience in method improvement projects at companies of differ-
ent scale,1 we identified major challenges to effective software process management.
Software developmentmethods need to reflect project characteristics in order to avoid
the drawbacks of one-size-fits-all approaches that are too unspecific and not effec-
tive enough [8]. This means that they should incorporate agile as well as plan-driven
aspects [4], lessons learned, and best practices based on the project context [20].
They should be properly defined to avoid confusion and uncertainty and they should
be enactable so that they can be carried out accordingly [18].

We developed the Method Engineering with Method Services and Method Pat-
terns (MESP) approach that systematically supports software process management
tomitigate thementioned challenges [13]. In our approach, for each project a tailored
software development method is created based on the project goal and the project
characteristics. Methods are created by composing suitable method building blocks
from a repository. Method building blocks are defined and stored in the repository
upfront based on agile as well as plan-driven methods, lessons learned and best prac-
tices. Furthermore, MESP methods can be checked for consistency automatically
based on their formal definition and they are enactable with tool support.

In this chapter, we first describe common SPM challenges and then explain the
MESP approach and how it addresses these challenges. The chapter is structured as
follows: we first provide background about common SPM challenges in Sect. 10.1.
In Sect. 10.2, we provide an overview of MESP and introduce several roles that carry
out tasks as part ofMESP, where each role addresses specific SPM challenges. Based
on this overview, we revisit each MESP role in the subsequent sections. Section10.3
illustrates the tasks of the senior method engineer, who defines method building
blocks. Section10.4 investigates the tasks of the project method engineer, who com-
poses methods. Section10.5 then explains the enactment of MESP methods by the
project team. Section10.6 describes our tool support. Thereafter, we summarize the
benefits of MESP for SPM in Sect. 10.7. We draw the conclusions in Sect. 10.8 and
present further readings and the bibliography thereafter. In several method improve-
ment projects carried out with industry, we observed that project-specific methods
are required. One-size-fits-all approaches are too unspecific and to rigid, as described
also by other authors [4, 7, 34], e.g., by not allowing to mix agile and plan-driven
aspects. However, many organizations still struggle with creating their own situation-
specific methods consistently and with following them properly.

The research field Situational Method Engineering (SME; [20]) explicitly
addresses the creation of situation-specific software development methods, so-called
situational methods. Based on the basic assumption that there is no one-size-fits-all
method, SME is dedicated to engineering situation-specific software development

1Carried out within s-lab (Software Quality Lab of the University of Paderborn): http://s-lab.uni-
paderborn.de.

http://s-lab.uni-paderborn.de
http://s-lab.uni-paderborn.de

10 Software Processes Management by Method Engineering with MESP 187

methods from scratch or by adapting existing ones. Situation-specific here is under-
stood as specific to the context of a certain project or organization, ensuring that
the method is fitting to the business goals and that it is up-to-date. One field of
SME is formed by so-called assembly-based approaches [5], which provide methods
that are more specialized compared to the adaption of existing methods and which
enable better reuse compared to the creation of methods from scratch. In assembly-
based approaches, methods are composed based on a repository of reusable method
building blocks.

Even though the first approaches have been proposed two decades ago, situational
method engineering has still not received industrial acceptance andwidespread adop-
tion. The reason is, that existing approaches fail in providing adequate solutions for
the fundamental requirements as stated in [34] and recently reconfirmed in [23].
A number of approaches address assembly-based method creation [5, 30, 33] or
method enactment [3, 9], but apart from [6], not both. As [6] does not address the
situation-specific creation of methods and their quality assurance explicitly, apart
from MESP, no SME approach has been proposed that sufficiently addresses all
aspects necessary to create situation-specific, consistent, and enactable methods.
Thus, organizations still struggle with creating their own situation-specific methods
consistently and with following them properly. Specifically, they face the following
challenges that we focus on in this chapter:

Challenge 1—Defining method content based on new trends, best practices, and
lessons learned. A major need of many organizations is to incorporate new trends,
best practices and lessons learned by maintaining and updating the content of their
methods, e.g., the used tasks, created and consumed work products, roles and the
order of tasks. For example, theyneed to redefine a task in order to react to experienced
challenges or they need to update the order of tasks used in all their methods due to
regulatory needs. Often it is difficult to update the content of methods incrementally,
as it is difficult to clearly scope the area to improve and to assess the implications for
the unchanged parts [35]. As one example for the need of updated method content,
in Chap.1 in this volume, the authors explain that modern applications have evolved
such that traditional methods are mostly unsuitable and need to be replaced.

Challenge 2—Creating hybrid methods that integrate plan-driven and agile meth-
ods. As agile methods become more and more popular, many organizations face the
challenge to integrate agile principles into their rather plan-driven organizational
methods [36], as fully adopting agile methods is not possible, because the context
of the project or organization makes the use of plan-driven aspects necessary or at
least beneficial [4]. Organizations struggle explicitly with the definition of hybrid
methods that integrate content of these two seemingly incompatible directions. This
challenge is explicitly addressed in Chap.2 in this volume, where advantages and
drawbacks of different ways to create a method with agile and plan-driven aspects
are discussed.

Challenge 3—Creating software development methods tailored to individual project
goals and characteristics. Many researchers and practitioners are convinced that

http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://dx.doi.org/10.1007/978-3-319-31545-4_2

188 M. Fazal-Baqaie and G. Engels

there is no one-size-fits-all method and that the utility of methods depends on the
context of their use. Cockburn, for example, calls aiming for an one-size-fits-all
approach a common (method engineering) mistake [8]. While different researchers
have proposed characteristics to be considered for method engineering, e.g., [2, 17],
it remains a challenge to use them properly, as it is often unclear what characteristics
allow the use of certain practices. It is also difficult for less-experienced people to
derive a method systematically based on project goals and characteristics [22]. In
Chap.8, this challenge is illustrated by showing how it is addressed in the spaceflight
domain.

Challenge 4—Creating consistent software development methods. Especially in
small and medium-sized companies, the experience and expertize for software
process management is often not broadly available. This is especially true when
it comes to consistently defining software development methods with their activi-
ties, information flows and roles [24]. This leads sometimes to the use of ill-fitted
methods or to an ad hoc management of the software development without a defined
method. It also means that less-experienced process owners struggle with defining
consistent software development methods [18]. In Chap.13, this challenge is inves-
tigated based on the co-evolution of Model-driven Engineering (MDE) and the used
methods. Here, changes in modeling languages and tool support of MDE require
changes in the software development method and vice versa.

Challenge 5—Enacting methods properly according to their definition. One of the
challenges of software process management is to ensure that how the work is actu-
ally carried out corresponds to the defined method [18]. If deviations are left unde-
tected, software process management becomes ineffective. For example, gathering
the lessons learned and tuning the method becomes very difficult, if it is not clear to
everybody what the method is. Especially, in global software development projects
it is challenging to maintain sufficient overview and to coordinate the tasks accord-
ing to the defined method [25]. Another challenge then is to provide team members
with guidance, especially, if the methods have evolved. Addressing this challenge,
in Chap.9, the authors investigate the suitability of the enactable workflow language
BPMN as a notation for software development methods.

Our SME approach Method Engineering with Method Services and Method
Patterns (MESP) tackles the described challenges by following the assembly-
based method engineering idea [5]. It is designed to fill the gaps of other Situ-
ational Method Engineering approaches, by addressing the situation-specific,
consistent composition of methods and their enactment.

http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_9

10 Software Processes Management by Method Engineering with MESP 189

10.2 Overview of MESP Roles and MESP Tasks

We provide an overview of our assembly-based method engineering approach that
addresses the challenges presented in the previous section. In MESP, following the
idea of “define once, use many times,” methods are composed based on two types of
preexisting method building blocks:

• Method Services reflect tasks with their associated work products and roles, while
• Method Patterns reflect meaningful patterns for the usage and order of method
services.

MESP differentiates three different roles, where each role has different responsibili-
ties and requires a different level of knowledge and experience. Senior method engi-
neers are responsible for defining method building blocks, based on their own expe-
rience or information sources like method descriptions from literature and address
Challenge 1. Instead of defining a project-specific method from scratch, project
method engineers then can choose suitablemethod services andmethod patterns from
these building blocks and compose them to a situational method for their respective
project. With their tasks, they address Challenges 2–4. The project team follows the
situational method to create the software in their project. They enact the composed
method in a workflow engine that coordinates their activities and provides them with
guidance on the pending tasks and thus ensures that they follow the method as pre-
scribed. They thereby address Challenge 5. Figure10.1 provides an overview of the
roles, their tasks, and the SPM challenges they address.

In this chapter, we will use the terms MESP roles, MESP tasks, and MESP work
productswhenwe refer to the tasks, roles, and created outputs of theMESP approach

Fig. 10.1 Overview of the MESP approach

190 M. Fazal-Baqaie and G. Engels

itself. In contrast, the “simple” terms roles, tasks, and work products are used to
refer to the content of a method created with the MESP approach (i.e., a MESP work
product).

10.2.1 Senior Method Engineer

The senior method engineer is responsible for defining and maintaining reusable and
composable method building blocks (➊) for the method composition. Therefore, he
derives these building blocks based on his experience and literature reflecting trends,
best practices, and lessons learned, including agile and plan-driven methods.

The senior method engineer characterizes each building block such that less-
experienced project method engineers can easily identify suitable method building
blocks for their situational methods. The characterization includes the roles andwork
products referred to by method building blocks and so-called situational factors
that express the suitability for certain project characteristics, for example, “small
development team” or “low stakeholder participation.” Beside method services and
method patterns themselves, the senior method engineer also maintains the set of
available situational factors, roles, and work products in a method repository.

The MESP role of the senior method engineer should be staffed by experienced
practitioners and experts that are familiar with a wide range of methods and best
practices.

10.2.2 Project Method Engineer

The project method engineer is responsible for composing a situational method with
respect to a specific project (➋) based on the available method building blocks in the
method repository. By using the available method building blocks, he does not have
to create the situational method for the project from scratch and he can make use of
the expertise of senior method engineers who created the building blocks. In order
to compose a method that is suitable for the project, the project method engineer
characterizes a project based on the sets of available situational factors and work
products in the method repository. He then uses this characterization to identify
suitable method services and method patterns. Doing that, he composes methods
that comprise and combine both plan-driven and agile building blocks, based on the
needs.

The project method engineer is also responsible for the quality assurance of the
method (➌) and appliesmultiple automated checks that were realizedwith theObject
Constraint Language (OCL; [28]). The tooling checks that methods are consistent,
e.g., that nomethod service ismissing and that there are no contradictions in the order
ofmethod services. In addition, it checks that the usedmethod services and their order
do not violate the method patterns used in the method. TheMESP tasks of the project

10 Software Processes Management by Method Engineering with MESP 191

method engineer are carried out iteratively to allow for stepwise composition and
quality assurance.

When the method assembly is finished, the project method engineer prepares the
enactment of the method. He invokes a transformation into a BPEL4People [26]
process model and the automatic deployment of the process model to the workflow
engine (➍). In the workflow engine, he assigns individual project members to the
roles used in the method and process model based on the staffing decisions of the
project manager.

The MESP role of the project method engineer should be staffed by the person
that is responsible for the course of actions and management of the resources in a
project, e.g., the project manager himself.

10.2.3 Project Team

The project team has to enact the composed method (➎) and is supported by the
workflow engine that enacts the process model transformed from the method. It
ensures that the method is followed appropriately by assigning tasks to individuals
according to their roles, by coordinating the order of these task assignments, and by
displaying information about the current tasks to the project team. The MESP role
of the project team is staffed by the project members.

10.3 The MESP Task of the Senior Method Engineer

In the previous section, we provided an overview of the different MESP roles and
their tasks. In this section, we go into more detail and discuss how the senior method
engineer creates method building blocks that are then used by project method engi-
neers to compose methods. We first present the task characteristics by explaining
the requirements and how they are implemented and then illustrate the task with
examples thereafter.

10.3.1 Task Characteristics

The senior method engineer is responsible for defining reusable, maintainable build-
ing blocks that can be composed to methods and enacted later on. In order to enable
him to accomplish his task,MESPhas to fulfill several requirements. In the following,
we present these requirements and briefly state how they are realized.

Requirement 1 Human-readable task descriptions have to be captured in order to
give project members guidance on how to carry out tasks later during enactment.
This is done by embedding task descriptions in method services.

192 M. Fazal-Baqaie and G. Engels

Requirement 2 Structured meta information about these method services needs to
be captured. This allows to abstract from the human-readable task description and
thus eases finding method services to compose or update them. This is done by
giving method services formal interface descriptions. The formal interfaces increase
the maintainability of the method repository, because the identification of method
services that should be updated or method services that are effected by updates
becomes much easier.

Requirement 3 It has to be possible to break up big tasks into a composition of
smaller method services so that method services are maintainable and easier to com-
pose. MESP supports this by composite method services that instead of a textual
description contain a formal process of composed method services.

Requirement 4 Methodological knowledge does not only comprise descriptions of
tasks, but also more abstract patterns that for example describe that tasks of certain
kind shall be carried out after tasks of another kind. These abstract structures cannot
be captured in method services so other means are required. Thus, method patterns
were introduced to MESP as a novel notion that is not supported by other SME
approaches.

10.3.2 Define and Maintain Method Building Blocks

The MESP task of the senior method engineer is to define and maintain method
building blocks. Based on methods that are growing in popularity, best practices,
and lessons learned, a senior method engineer derives method services and method
patterns that are composable with other existing services and patterns. We exemplify
this by explaining how he derives method building blocks from agile and plan-driven
methods described in literature. First, we illustrate the definition of method services.
Thereafter, we explain what method patterns are and how they are derived. The
composition of method services and method patterns by the project method engineer
is then explained in the following Sect. 10.4.

10.3.2.1 Defining Method Services

Asmentioned, we illustrate the case where method services shall be defined based on
existing method descriptions. Table10.1 exemplifies a method service derived from
the task Refine the Architecture from the publicly available, plan-driven OpenUP
method.2 The information shown is required in order to allow the composition of
situation-specific, consistent, and enactable methods. The upper part shows its name
and description while the lower part shows the interface information of the method
service.

2Available from: http://epf.eclipse.org/wikis/openup.

http://epf.eclipse.org/wikis/openup

10 Software Processes Management by Method Engineering with MESP 193

Table 10.1 Illustration of a method service derived from a task description of OpenUp

Method service

Name Refine the architecture

Content description “This task builds upon the outlined architecture and makes concrete
and unambiguous architectural decisions to support development. It
takes into account any design and implementation work products that
have been developed so far. In other words, the architecture evolves
as the solution is designed and implemented, and the architecture
documentation is updated to …”

Method service interface

Role Architect

Input work products Architecture Notebook

Output work products Architecture Notebook

Situational factors Agility: Medium;
System Criticality: Medium - High

Categories Plan-Driven; Development; Design

The Name and Content Description of the method service were directly
taken over from the textual description of the task in OpenUP. As part of the
Method Service Interfacemeta information the responsible Role “Archi-
tect” and Input Work Products as well as Output Work Products are
referenced, here in both cases “Architecture Notebook.” This information is usually
easily determined, if not even stated explicitly in the information source.

Situational Factors, here “Agility: Medium” and “System Criticality:
Medium–High,” are used to define under which project characteristics the use of a
method service is advisable. They are used later by the project method engineer to
relate project characteristics to suitable building blocks.

Situational factors are often not stated in the information sources so that the senior
method engineer has to derive them from the context and based on his knowledge
and experience. For example, here the method service Refine the Architecture should
be used in projects that are rather critical (“System Criticality: Medium–High”),
but its use is advisable neither in projects that are very agile, where architectural
decisions need to be updated frequently, nor in projects that are carried out com-
pletely sequentially without iterations or increments, where architectural decisions
are taken upfront (“Agility: Medium”). Similarly, Categories are used to catego-
rize method services based on origin, discipline, or typical phase. This information
is often explicitly given or obvious.

Table10.2 visualizes another method service that was defined based on the Daily
Scrum of the agile Scrum method.3 As shown it is described in a similar manner.
However, the senior method engineer adjusted name, roles, and work products to

3Available from: http://www.scrumguides.org/scrum-guide.html.

http://www.scrumguides.org/scrum-guide.html

194 M. Fazal-Baqaie and G. Engels

Table 10.2 Illustration of a method service derived from the agile method Scrum

Method service

Name Hold standup meeting

Content description “The Standup Meeting is a 15-min time-boxed event for the
Development Team to synchronize activities and create a plan for the
next 24h. This is done by inspecting the work since the last Standup
Meeting and forecasting the work that could be done before the next
one. The Standup Meeting is held at the same time and place each
day to reduce complexity. During the meeting, the Development
Team members explain: …”

Method service interface

Role Team lead

Input work products Task List

Output work products Task List

Situational factors Agility: Medium - High;
System Criticality: Low - High

Categories Agile; Planning; Management

keep the method service generic and compatible with other method services (from
potentially other methods) in the method repository. Originally, the activity is called
Daily Scrum, the whole “Development Team” is responsible to perform it, and the
defined input and output artifacts are the “Work” done and remaining.

Beside defining atomic method services, the senior method engineer can also
define composite method services. In this case, instead of a textual description, the
method service contains a process that describes formally what method services are
carried out in what order, similarly to how methods are described in MESP (see
Sect. 10.4.2). In this case, the meta information can be mostly automatically derived
from the referenced method services in the process, however, the senior method
engineer needs to refine the situational factors manually.

10.3.2.2 Defining Method Patterns

Beside method services, the senior method engineer creates and maintains method
patterns, for example, for the agile Sprint Loop. A Sprint Loop basically prescribes
a repetitive process of fixed length, where planning activities are followed by imple-
mentation activities, which in turn are followed by reviewing activities.

Figure10.2 shows a method pattern that describes an agile Sprint Loop. A method
pattern consists of several so-called constrained scopes,where each constrained scope
describes a constraint that needs to be fulfilled. Constraints are formulated with a
small, specialized language that is part of the MESP metamodel. Constrained scopes
in Fig. 10.2 are Sprint Planning, Agile Construction, and Sprint Review. Constrained
scopes are connected by control flow, e.g., parallel or sequential flows, here an iter-
ation loop.

10 Software Processes Management by Method Engineering with MESP 195

Iteration

Sprint Planning Agile Construction Sprint Review

And

Exists
a MS That Is [Hold Stand Up Meeting]

All
MS Or

Has Output

Of Category

[Task List]

[Development]

All
MS Or

Has Output

Of Category

[Task List]

[Reviewing]
All
MS Or

Has Output

Of Category

[Task List]

[Planning]

Constraint Scope

Control Flow
Constraint

Fig. 10.2 A method pattern based on the Sprint loop from the Scrum method

The middle constrained scope Agile Construction requires that all method ser-
vices placed inside are of Category “Development” or produce a “Task List” as
an Output. Additionally, at least one method service has to beHold Standup Meet-
ing. The method services presented in Tables10.1 and 10.2 would fulfill all these
requirements and thus the constraint, if placed in this constrained scope.

Figure10.3 shows a simplified pattern that was derived from the plan-driven
OpenUp method in a similar manner. So again, like method services the method
patterns form agile and plan-driven methods are modeled similarly.

The senior method engineer creates and stores method patterns alongside method
service in the method repository. Method patterns can be combined and help the
project method engineer later to create methods for his project that fulfill the chosen
patterns. MESP supports a built-in language to describe constraints and automated
means to check whether they are fulfilled during method composition.

Similar to method services, the method patterns possess interfaces with situa-
tional factors to ease the identification of useful patterns for specific project char-
acteristics. For the presented patterns, the Sprint Loop has for example Agility:
Medium-High assigned to it and theOpenUp phases Agility: Low-Medium.
Patterns are often only implicitly described in methods. So the senior method engi-
neer has to identify, extract, and model them explicitly.

Sequence

Inception Phase

OpenUp Phases

Elaboration Phase Construction Phase Transition Phase

And

Exists
a MS

Of
Category

[Develop-
ment]

Exists
a MS

Of
Category

[Docu-
mentation]

And

Exists
a MS

Of
Category

[Deploy-
ment]

Exists
a MS

Of
Category

[Docu-
mentation]

Exists
a MS Of Category [Develop-

ment]
Exists
a MS Of Category [Project

Initiation]

Fig. 10.3 A method pattern based on the phases of the OpenUp method

196 M. Fazal-Baqaie and G. Engels

Fig. 10.4 The simplified metamodel of MESP

10.3.3 Metamodel Classes for the Senior Method Engineer

Figure10.4 shows the simplified version of the implemented metamodel of MESP
[13]. On the left, it shows the metamodel classes used by the senior method engineer.
As shown, method services and method patterns reference work products, roles,
situational factors, and categories. These elements are also created and maintained
centrally by the senior method engineer. All elements in the method repository are
part of the same interconnected model. This eases the maintenance of the method
repository, as for example, changing a work product will be reflected in the interfaces
of all referencing method services. Thus, the additional effort to model the interfaces
of method services and method patterns pays of during maintenance of method
building blocks. Also, algorithms to search for suitable method building blocks and
to ensure the consistency of the method are also based on this shared model and the
interface information of method building blocks and methods.

10.4 The MESP Tasks of the Project Method Engineer

In this section, we describe the MESP tasks of the project method engineer in more
detail. He is responsible for composing methods that are then enacted later by the
project team. We first present the task characteristics by explaining the requirements
and how they are implemented and then illustrate the task with examples thereafter.

10 Software Processes Management by Method Engineering with MESP 197

10.4.1 Task Characteristics

The project method engineer is responsible for defining consistent, enactable meth-
ods that are tailored to his project and that contains agile and plan-driven building
blocks. In order to enable him to accomplish his tasks, MESP has to fulfill several
requirements. In the following, we present these requirements and briefly state how
they are realized.

Requirement 1 A method for a project needs to be derived based on its goals and
characteristics, so that the method is tailored to the particular project. This is done by
using the characterization of building blocks and methods stated in their interfaces.

Requirement 2 It has to be possible to integrate method patterns into the method,
so that possible method compositions are restricted to the ones that implement the
pattern correctly. This is implemented as part of our metamodel and our modeling
and analysis tooling.

Requirement 3 Amethod has to formally describe the control flow (order of activ-
ities) as well as the data flow (data exchange between activities), so that it is unam-
biguous and can be enactedwith aworkflow engine later on. This is also implemented
as part of our metamodel and our tooling.

Requirement 4 It has to be possible to invoke an automatic consistency check of
the composed method, even for partial models, so that the project method engineer
is supported in specifying correct methods and problems later during enactment are
avoided. This is implemented as part of our tooling.

Requirement 5 It has to be possible to derive a processmodel for aworkflow engine
automatically from the method composition so that the enactment can be supported
sufficiently. This is implemented as a transformation in our tooling.

10.4.2 Compose Project-Specific Method

The first MESP task of the senior method engineer is to compose a project-specific
method. Based on the set of situational factors and work products defined in the
method repository the project method engineer characterizes his project. He then
identifies suitable method services and method patterns and composes them to a
situational method.

The first step to compose a method suitable for a specific project is to characterize
the project in terms of the project goal and the project situation. The project method
engineer determines the project goal by defining which work products defined in
the method repository have to be available at project start and which work prod-
ucts are to be delivered at the end of the project. For example, the project might
start with an available “Requirements Specification” and might require the devel-
oped “Implementation” and “Integration Test Results” as resulting Output Work

198 M. Fazal-Baqaie and G. Engels

Table 10.3 A project characterization as part of the interface of a situational method

Situational method interface

Input work products Requirements Specification

Output work products Implementation; Integration Test Results

Situational factors Agility: Medium;
Criticality: Medium

Products. Beside this, the project method engineer determines the project situa-
tion in terms of situational factors, e.g., regarding “Agility” or “System Criticality.”
The project characterization is added to the Interface of the situational method to
be created, as illustrated in Table10.3 and is used to select suitable method services
and method patterns in the following MESP tasks.

Next, the project method engineer can identify and compose suitable method
services and method patterns based on the interface of the situational method. Com-
posing the method solely using method services would not offer sufficient guidance
to allow less-experienced project method engineers to compose a suitable method.
Therefore, method patterns are used to restrict the potentially composable methods
to meaningful ones. First, suitable method patterns are selected and combined, based
on the situational method interface. For example, themethod patterns that were intro-
duced in Figs. 10.2 and 10.3 fit to the project situation depicted in Table10.3. Suitable
patterns can be combined to provide even more detailed guidance by restricting the
number of composable methods even further. Figure10.5 shows how the OpenUp-
Phases pattern was combined with the Sprint-Loop pattern. Because of space con-
straints, the figure shows only the Elaboration Phase constrained scope.

Iteration
Sprint Planning Agile Construction Sprint Review

And

Exists
a MS That Is [Hold Stand Up Meeting]

All
MS Or

Has Output

Of Category

[Task List]

[Development]

All
MS Or

Has Output

Of Category

[Task List]

[Reviewing]
All
MS Or

Has Output

Of Category

[Task List]

[Planning]

Sprint Loop

Hold Stand Up
Meeting

Refine the
Architecture

Sequence

Elaboration Phase

Envision the
Architecture

Exists
a MS Of Category [Development]

Fig. 10.5 A situational MESP method under composition

10 Software Processes Management by Method Engineering with MESP 199

Third, after method patterns were selected and combined, suitable method ser-
vices are identified based on the situational factors and now also the pattern con-
straints. For example, in the constrained scope Agile Construction, the constraint
states that method services of Category “Development” and a “Hold Standup
Meeting” method service are required. The method services Refine the Architecture
(Table10.1) and Hold Standup Meeting (Table10.2) fit to the project characteriza-
tion (Table10.3) as well as the pattern constraints of the combined pattern and can
therefore be added to the situational method, as depicted in Fig. 10.5.

By adding further method patterns and method services, the project method engi-
neer composes the method step by step. To ensure the unambiguity and enactability,
the specification of control and data flow is required. Therefore, in addition tomethod
patterns and method services, the method is enhanced with structured activity ele-
ments to indicate the control flow, e.g., sequences, loops and (parallel) flows. To
specify the flow of data of the method, each method service denotes, from where
in the method it gets its input data. For example, the input mapping of the Refine
the Architecture method service specifies that the input comes from a Envision the
Architecture method service descriptor (outside the Elaboration Phase).

10.4.3 Assure Quality of Method

As the next MESP task, at any time during the composition the project method
engineer can use the tooling to analyze the method for consistency as inconsistency
threatens the enactability of the method later during the project. Our tooling detects
metamodel-based inconsistencies, for example missing or removed method services
that are referenced by the method. It also detects further inconsistencies based on
consistency rules we formally modeled with the Object Constraint Language (OCL;
[28]), for example, if a work product would be used as input of a method service,
before it were produced. Additionally, the fulfillment of method pattern constraints
is checked, so that for example the missing planning activity in the Sprint Planning
constrained scope would be detected and reported to the user as denoted by the
marks in Fig. 10.5.

10.4.4 Transform and Deploy Method

As his last MESP task, the project method engineer prepares the method such that
it can be enacted with a workflow engine. He uses a transformation to automatically
derive a process model from his consistently composed MESP method. The trans-
formation creates equivalent control flow structures according to the MESP method.
Every method service is transformed such that later during enactment proper work-
flow tasks are created and assigned to project team members. These tasks show the
description, role, and work products from the method. After the transformation, the

200 M. Fazal-Baqaie and G. Engels

process model is deployed to a workflow server by the transformation component.
Here, the project method engineer associates the members of his team with the roles
used in the process model according to the resource planning of the project. Doing
this, he ensures that later the right people are assigned the correct workflow tasks by
the workflow engine.

10.4.5 Metamodel Classes for the Project Method Engineer

On the right of Fig. 10.4, the metamodel classes used by the project method engi-
neer are shown. In a method, instead of using copies of method services from the
repository, the used method services are referenced with so-called method service
descriptors. Similarly, method pattern descriptors are used to reference the used
method patterns. The data flow is specified with activity input mappings that indi-
cate the sourcemethod service descriptors for requiredwork products. Control flow is
specified with specific sub meta classes of the depicted meta class structured activity,
e.g., sequence, parallel flow, and iteration.

10.5 The MESP Tasks of the Project Team

In this section, we describe how the project team enacts the situational method that
was composedby the projectmethod engineer.Wefirst present the task characteristics
by explaining the requirements and how they are implemented and then illustrate the
task with examples thereafter.

10.5.1 Task Characteristics

The project team is responsible for enacting the method as prescribed by the project
method engineer using the workflow engine. In order to enable it to accomplish its
task, MESP has to fulfill several requirements. In the following, we present these
requirements and briefly state how they are realized.

Requirement 1 Workflow tasks need to be created in the order defined in themethod
and at the right point in time, which is when all the preceding workflow tasks are
finished. This ensures that the team members know when they have to perform a
certain activity. Especially composite method services need to be resolved properly,
e.g., into a sequence of consecutive workflow tasks. This is taken care of by our
transformation.

10 Software Processes Management by Method Engineering with MESP 201

Requirement 2 The workflow tasks need to be assigned to people according to the
roles assigned in the method. This is taken care of by the project method engineer
and the human task interface of the workflow engine.

Requirement 3 The workflow tasks need to show the textual descriptions of the
tasks from the method services so that the team members get guidance on what to
do. Again, this is taken care of by our transformation.

Requirement 4 Input and output work products of workflow tasks need to be
resolved and referenced correctly based on the method so that the assigned team
member does not only see the type of work products, but the created workflow tasks
themselves. This is also implemented as part of our transformation.

Requirement 5 The team should be shown information about the current state of
enactment of the method and about the enactment history so that the team is provided
with context for its actions. This is provided as part of our transformation and partly
build in into the used workflow engine.

10.5.2 Enact Method

Using the workflow engine, the project team carries out its activities according to the
underlying method. The workflow enactment support actually consists of two com-
ponents: the workflow engine component itself hosts the deployed process model,
while the human task management component manages the created workflow tasks
and the interaction with team members. Thereby, workflows tasks basically repre-
sent runtime instances of method service descriptors in a method as they represent
activities that a certain team member has to carry out in correspondence to what is
defined by the situational method. Workflow tasks are created in the right order and
at the right time, because for each method service descriptor in the MESP method
a command to create and assign a workflow task (HumanTask Invocation) is
created in the process model by the transformation from the method. This creates
a workflow task when it is executed. For method service descriptors that reference
composite method services the contained process is transformed. For example, a
sequence of method service descriptors is transformed to a sequence of HumanTask
Invocations.

Figure10.6 shows a workflow task in the way it is presented to the team member.
This particular workflow task is based on the method service Refine the Architecture.

Workflow tasks need to be assigned to the right people so that it is clear who
should carry them out. Therefore, each workflow task contains a responsible role
that is derived from the method service descriptor in the composed MESP method.
The human task interface then shows this workflow task to all users logged in with
the appropriate role. For example, the workflow task in Fig. 10.6 is assigned to team
members with the role “Architect” according to the method service description in
Table10.1.

202 M. Fazal-Baqaie and G. Engels

Fig. 10.6 A workflow task based on the method service “Refine the Architecture”

Especially important is that the description of the method service is shown to the
team member as part of the workflow task in order to guide him in his activity. As
shown inFig. 10.6 the description is part of theworkflow task description, because our
transformation adds the descriptions as parameters to the HumanTask Invocations.

In order to be able to perform the workflow task, the team member needs to know
which work products were created and should serve as an input. The team member
also needs to give information on where the results of his work can be found. Our
transformation ensures this and in our prototype this is handled by providing theURIs
of the work products, e.g., from a ticket system or repository. Figure10.6 illustrates
this. Under the section “Inputs” it shows the URI of the input work product of this
task and in the “Response” section the team member needs to give the location of
his created (or updated) output work product.

Beside information about the actual workflow task itself our transformation
ensures that workflow tasks also carry information on the execution state of the
process model. Figure10.6 shows for example that the workflow task is part of the
Elaboration Phase and the second run of the iteration loop called “Monthly Itera-
tion.” In addition to this information, the workflow engine itself logs the execution
events and offers means to investigate them.

10.6 Tool Support for MESP

Applying MESP would be infeasible without proper tool support. Thus, we imple-
mented tooling that supports the presented MESP tasks. Figure10.7 illustrates the
components of our tool support. We created Eclipse-based tooling to carry out the

10 Software Processes Management by Method Engineering with MESP 203

Fig. 10.7 An overview of the components of the MESP tool suite

MESP tasks ➊–➍ and use the WSO2 Business Process Server to enact the method
within MESP task ➎ (cf. Fig. 10.1). Based on the formal metamodel described
in Fig. 10.4, we offer an editor to model method building blocks (Method Build-
ing Blocks Editor) and to assemble MESP methods (Method Composer). We also
implemented first algorithms into the method composer to relate suitable building
blocks to project characteristics in order to support the search for suitable method
building blocks. All model elements are stored in theMethod Repository. On top of
themetamodel,we implemented additional automated quality assurancemechanisms
that uncover inconsistencies, e.g., contradictions or method pattern violations, in our
Consistency Checker. In contrast to many other assembly-based method engineer-
ing approaches, e.g., [5, 30, 33], MESP provides workflow support. We created an
automated transformation that transforms a MESP method into a standard BPEL4-
People process model (MESP2BPEL Transformer; [26]) which is then executed
with a workflow engine. We use the WSO2 Business Process Server as the basis for
our workflow support. The BPEL4People process model derived from the MESP
method is enacted within the Workflow Engine. This component creates workflow
tasks according to the method service descriptors of the method (cf. Fig. 10.4) and
protocols the process enactment. The Human Task Interface manages the workflow
tasks by assigning them to team members and by transferring the results back to the
BPEL4People process model. The results of performing workflow tasks are modeled
as URIs to created or altered work products in an external Project Repository.

10.7 Benefits for Process Management

In this section, we revisit the described challenges for software process management
of Sect. 10.1 and describe how they are addressed by MESP (Fig. 10.1):

Challenge 1: The senior method engineer addresses Challenge 1 by modifying the
services and patterns that are offered for method creation (➊). Outdated practices
are reflected, e.g., in removed method services and method patterns. Lessons learned
are incorporated, e.g., by updating building blocks with that new insight. Trends and

204 M. Fazal-Baqaie and G. Engels

new best practices are reflected, e.g., in completely new building blocks. The formal
definition of building blocks helps in maintaining the consistency when updating
the method repository, for example, to identify composed methods with dangling
references to removed method services and method patterns.

Challenge 2: In MESP, methods are composed based on building blocks. Hybrid
methods that integrate content from structured, plan-driven methods and agile meth-
ods (Challenge 2) can be created by using building blocks from the repository that
originate from both plan-driven as well as agile methods (➋). This is a particular
strength of MESP as an assembly-based method engineering approach and with its
notion of method patterns a particular strength of MESP alone [14].

Challenge 3: In MESP, software development methods are tailored to individual
project goals and characteristics (➋). Projects are characterized among two dimen-
sions: the project goal is characterized by the work products to be produced as the
final result and the ones that are already available at project start. The project situa-
tion is based on situational factors determined by the project method engineer. Both
directly influence what is denoted suitable by comparing the interfaces of method
services and method patterns, as these are also characterized based on processed
work products and/or situational factors.

Challenge 4: MESP knows two mechanisms to create consistent software develop-
ment methods (➌). On the one hand, method building blocks and method compo-
sitions are formally defined with a metamodel. The formal description helps senior
method engineers to create proper method services and method patterns and project
method engineers to create proper methods. On the other hand, based on the meta-
model, the consistency of software development methods is further formalized using
the object constraint language (OCL). The formalization also includes the constraints
imposed bymethod patterns. TheMESP tooling can apply various automated checks
at design time to notify about consistency violations. In addition, the tooling provides
feedback that helps to mitigate consistency issues.

Challenge 5: MESP supports a project team in enacting the method properly as it
is transformed into a BPEL4People process model (➍) and enacted with a workflow
engine. The workflow engine then creates tasks for the project members according
to the method and coordinates their activities, thus helping them to enact the method
(➎) and reducing manual coordination effort. It also provides team members with
the description and guidance on their tasks and shows them runtime information,
e.g., the current iteration or the location, where input work products for their task
are stored [15].

10.8 Conclusions

In this chapter, we explained how our approach Method Engineering with Method
Services and Method Patterns (MESP) can help to overcome five typical challenges

10 Software Processes Management by Method Engineering with MESP 205

in the management of software development methods. We briefly introduced the
challenges of (1) defining method content based on new trends, best practices, and
lessons learned, (2) creating hybrid methods that integrate plan-driven and agile
aspects, (3) tailoring methods to projects, (4) creating consistent methods, and (5)
enactingmethods.We then introduced theMESPapproach,where experienced senior
method engineers define a repository of reusable method building blocks called
method services and method patterns. Project method engineers then select from the
repository building blocks to assemble (potentially hybrid) methods specific to their
projects. They use the provided tooling to check the consistency of these methods
and deploy them to a workflow engine such that their project teams are supported in
the enactment and coordination of the method.

We explained how the different aspects of the MESP approach help in overcom-
ing specific challenges. New trends, best practices, and lessons learned (1) can be
incorporated by updating the repository of building blocks. Hybrid methods can be
created (2), because method services are described based on the same formal defin-
ition, irrespective of their plan-driven or agile origin. Additionally, method patterns
support the project method engineer in mixing methodological ideas of different
methods by restraining the solution space to desired combinations using method pat-
terns. We explained that methods are tailored towards individual project goals and
characteristics (3), because methods are assembled systematically based on a project
characterization. The consistency ofMESPmethods (4) is ensured by the formal def-
inition of building blocks andmethods that reduces the risks to define faultymethods.
In addition, the tooling offers formal analysis capabilities that detect inconsistencies
and helps to mitigate them. The correct enactment of a method according to its defin-
ition (5) is supported by the workflow support of MESP that creates tasks for project
members based on the current state of the method instance.

We are constantly improving our approach based on our industrial experience.
We just upgraded the UI with an editor that is easier to use. In addition, we are
continuously extending our method repository with method services and method
patterns extracted from different sources.

10.9 Further Reading

MESP is a method engineering approach that follows a situational, assembly-based
methodology and that supports the enactment of modeled methods. Further informa-
tion about theMESP approach in particular and our research in the field of situational
method engineering in general is available here4 and here,5 and on the websites of
the authors.

Several other chapters in this book provide insight into topics that where dis-
cussed in this chapter. In Chap.1 in this volume, the author explains that modern

4Available from: http://s-lab.uni-paderborn.de/ and [12].
5Available from: http://is.uni-paderborn.de/ and [11].

http://dx.doi.org/10.1007/978-3-319-31545-4_1
http://s-lab.uni-paderborn.de/
http://is.uni-paderborn.de/

206 M. Fazal-Baqaie and G. Engels

mobile and web applications have evolved in different ways such that traditional
“high ceremony processes” are mostly unsuitable. This case illustrates an example
for what we discussed as Challenge 1 in this chapter. In Chap.2, the authors discuss
the integration of agility into plan-based methods, a challenge that we discussed as
Challenge 2 in this chapter. They discuss the advantages and drawbacks of different
ways to achieve the integration. In Chap.8, the authors share their experience of
software development and software process management for spaceflight missions.
They present an industrial example for the Challenge 3 that we discussed in this
chapter, namely, assessing the project context and deriving process requirements
that consequently need to be incorporated into the process of the software develop-
ment method. In Chap.13, the authors investigate the co-evolution of Model-driven
Engineering (MDE) and the used software development processes. They identified
that changes in the used languages and the provided tool support of MDE require
changes in the software development process and vice versa, thus showing one exam-
ple for Challenge 4, that is creating consistent software development processes. In
Chap.9 in this volume, the authors discuss the suitability of BPMN as a notation for
software development methods. BPMN has the advantage that is widespread in the
area of business process modeling and that it is enactable with a workflow engine
(Challenge 5), but that is not known to be used for software development methods.

Related work comprises approaches to create methods that are designed to fulfill
their purpose in the context of a specific situation (situational method engineering)
and modeling languages for software development methods (formal modeling of
software development methods).

As an introduction and to get a concise overview about the first research field
situational method engineering, we recommend the paper [19] by Henderson-Sellers
and Ralyté. For deeper understanding, we recommend the recently published book
of Henderson-Sellers et al. [20] that provides a state-of-the art summery of the field
published for example in the IFIP WG8.1 Working Conference Series [31, 32].
One field in situational method engineering are assembly-based approaches like
MESP to create methods based on a repository of building blocks first proposed
by Brinkkemper [5]. While several approaches were proposed in the past, e.g., [5,
30, 33] only few approaches address the challenges of SPM explicitly, such as [2,
37]. Especially, enactment support is offered only in very few cases, however mostly
outdated and only one approach that was proposed recently by Cervera et al. [6]. This
approach supports the creation of methods based on a method repository of method
fragments and specifically focuses on deriving a suitable CASE environment for the
method

Regarding the formal modeling of software development methods, we recommend
as a general introduction to the topic the book [16] by González-Pérez and specif-
ically the OMG standard Software and Systems Process Engineering Metamodel
Specification (SPEM; [27]), that has his drawbacks [9], but is the most widespread
metamodel to model software development methods. Still, current developments
are mostly situated in academia, and it remains unclear whether and how proposals
will be considered in the further development of SPEM [21]. One group of mod-
eling approaches focuses on for later enactment. Here, Osterweil with his process

http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_8
http://dx.doi.org/10.1007/978-3-319-31545-4_13
http://dx.doi.org/10.1007/978-3-319-31545-4_9

10 Software Processes Management by Method Engineering with MESP 207

programs is seen as one of the fathers of this idea [29]. His research lead to the Little-
JIL language [38] that focuses on the coordination of tasks, while providing detailed
descriptions of tasks is not in the scope of the language. In addition, the creation of
situational methods is not explicitly supported. Bendraou et al. [3] and Ellner et al. [9,
10] propose extensions to SPEM, a language to model software development meth-
ods, to address its lack of executability. Both approaches offer a language to model
methods from scratch, but no explicit support for situational method engineering is
provided, which is one of our main goals. As part of the service-oriented integration
framework ModelBus, Aldazabal et al. [1] developed components for the orchestra-
tion of arbitrary (web) services using BPEL. Their approach offers a component that
transforms process models defined in SPEM into plain BPEL process models. As no
further details are given, the focus seems to be on deriving the process flow from a
SPEM model, so no guidance for the team members is directly derived. In addition,
the creation of situational methods is not addressed.

References

1. Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Esser, M., Ritter, T.: Automated
model driven development processes. In: Proceedings of the ECMDA Workshop on Model
Driven Tool and Process Integration, pp. 43–54. IRB, Stuttgart (2008)

2. Bekkers,W., van deWeerd, I., Brinkkemper, S.,Mahieu, A.: The influence of situational factors
in software product management: an empirical study. In: Proceedings of the International
Workshop on Software Product Management, pp. 41–48. IEEE, Washington, DC, USA (2008)

3. Bendraou, R., Combemale, B., Cregut, X., Gervais, M.P.: Definition of an executable SPEM
2.0. In: Proceedings of the Asia-Pacific Software Engineering Conference, pp. 390–397. IEEE,
Los Alamitos, CA (2007)

4. Boehm, B.W., Turner, R.: Observations on balancing discipline and agility. In: Proceedings of
the Conference on Agile Development, pp. 32–39. IEEE, Los Alamitos, CA (2003)

5. Brinkkemper, S.: Method engineering: engineering of information systems development meth-
ods and tools. Inf. Softw. Technol. 38(4), 275–280 (1996)

6. Cervera, M., Albert, M., Torres, V., Pelechano, V.: Turning method engineering support into
reality. In: EngineeringMethods in theService-OrientedContext. IFIPAdvances in Information
and Communication Technology, vol. 351, pp. 138–152. Springer, Berlin (2011)

7. Cockburn, A.: Selecting a project’s methodology. IEEE Softw. 17(4), 64–71 (2000)
8. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston (2002)
9. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: eSPEM – A SPEM

extension for enactable behavior modeling. In: Modelling Foundations and Applications. Lec-
ture Notes in Computer Science, vol. 6138, pp. 116–131. Springer, Berlin (2010)

10. Ellner, R., Al-Hilank, S., Jung, M., Kips, D., Philippsen, M.: An integrated tool chain for
software process modeling and execution. In: Proceedings of the European Conference on
Modelling Foundations and Applications, pp. 73–82. Technical University of Denmark (DTU),
Copenhagen, Denmark (2011)

11. Engels, G.: TASQ project page. http://s-lab.uni-paderborn.de/s-lab-software-quality-lab/
unsere-innovativen-projekte/aktuell/tasq.html (2011)

12. Fazal-Baqaie, M.: Situational method engineering research group. http://is.uni-paderborn.de/
en/research-group/fg-engels/research/themen/situational-method-engineering.html (2015)

13. Fazal-Baqaie, M.: Project-specific software engineering methods: modularization, composi-
tion, enactment, and quality assurance. Ph.D. thesis, PaderbornUniversity, Paderborn,Germany
(to appear)

http://s-lab.uni-paderborn.de/s-lab-software-quality-lab/unsere-innovativen-projekte/aktuell/tasq.html
http://s-lab.uni-paderborn.de/s-lab-software-quality-lab/unsere-innovativen-projekte/aktuell/tasq.html
http://is.uni-paderborn.de/en/research-group/fg-engels/research/themen/situational-method-engineering.html
http://is.uni-paderborn.de/en/research-group/fg-engels/research/themen/situational-method-engineering.html

208 M. Fazal-Baqaie and G. Engels

14. Fazal-Baqaie, M., Luckey, M., Engels, G.: Assembly-based method engineering with method
patterns. In: Proceedings of the German Software Engineering Conference. Lecture Notes in
Informatics, vol. 215, pp. 435–444. German Computer Society (GI e.V.) (2013)

15. Fazal-Baqaie, M., Gerth, C., Engels, G.: Breathing life into situational software engineering
methods. In: Proceedings of the International Conference of Product Focused Software Devel-
opment and Process Improvement. LectureNotes inComputer Science, vol. 8892, pp. 281–284.
Springer, Berlin (2014)

16. González-Pérez, C., Henderson-Sellers, B.: Metamodelling for Software Engineering. Wiley,
Chichester (2008)

17. Harmsen, A.F.: Situational method engineering. Ph.D. thesis, University of Twente, Twente,
Netherlands (1997)

18. Heijstek, W., Chaudron, M.R.V., Libing Qiu, Schouten, C.C.: A comparison of industrial
process descriptions for global custom software development. In: Proceedings of the Inter-
national Conference on Global Software Engineering, pp. 277–284. IEEE, Washington, DC,
USA (2010)

19. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art review. J.
Univers. Comput.Sci. 16(3), 424–478 (2010)

20. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P.J., Rossi, M.: Situational Method Engineering.
Springer, Berlin (2014)

21. Kuhrmann, M., Fernández, D.M., Steenweg, R.: Systematic software process development:
where do we stand today? In: Proceedings of the International Conference on Software and
System Process, pp. 166–170. ACM, New York, NY, USA (2013)

22. Kuhrmann, M., Linssen, O.: Vorgehensmodelle in Deutschland: Nutzung von 2006–2013 im
überblick. GI WI-MAW Rundbrief 2015(39), 32–47 (2015)

23. Kuhrmann, M., Méndez Fernández, D., Tiessler, M.: A mapping study on the feasibility of
method engineering. J. Softw.: Evol. Process 26(12), 1053–1073 (2014)

24. Martínez-Ruiz, T., Münch, J., García, F., Piattini, M.: Requirements and constructors for tailor-
ing software processes: a systematic literature review. Softw. Qual. J. 20(1), 229–260 (2012)

25. Nguyen-Duc, A., Cruzes, D.S.: Coordination of software development teams across organi-
zational boundary – an exploratory study. In: Proceedings of the International Conference on
Global Software Engineering, pp. 216–225. IEEE, Washington, DC, USA (2013)

26. OASIS:Web Services – Human Task (WS-HumanTask) Specification Version 1.1 - Committee
Draft 10 / Public Review Draft 04. http://www.oasis-open.org/committees/documents.php?
wg_abbrev=bpel4people (2010)

27. OMG: Software and systems process engineering metamodel specification (SPEM) 2.0. Omg
standard, Object Management Group (2008)

28. OMG: Object Constraint Language 2.4. Technical report, Object Management Group (2014)
29. Osterweil, L.J.: Software processes are software too. In: Proceedings of the International Con-

ference on Software Engineering, pp. 2–13. IEEE, Washington, DC, USA (1987)
30. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In: Proceedings of

the International Conference on Advanced Information Systems Engineering. Lecture Notes
in Computer Science, vol. 2068, pp. 267–283. Springer, Berlin (2001)

31. Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.): Situational method engineering:
fundamentals and experiences. In: Proceedings of the IFIP WG 8.1 Working Conference. IFIP
Advances in Information and Communication Technology, vol. 244. Springer, Boston (2007)

32. Ralyté, J., Mirbel, I., Deneckère, R. (eds.): Engineeringmethods in the service-oriented context
– 4th IFIPWG8.1Working Conference onMethod Engineering. IFIPAdvances in Information
and Communication Technology, vol. 351. Springer, Berlin (2011)

33. Rolland, C.: Method engineering: towards methods as services. Softw. Process: Improv. Pract.
14(3), 143–164 (2009)

34. ter Hofstede, A.H.M., Verhoef, T.F.: On the feasibility of situational method engineering. Inf.
Syst. 22(6–7), 401–422 (1997)

35. van de Weerd, I., Brinkkemper, S., Versendaal, J.: Concepts for incremental method evolution:
empirical exploration and validation in requirements management. In: Advanced Information

http://www.oasis-open.org/committees/documents.php?wg_abbrev=bpel4people
http://www.oasis-open.org/committees/documents.php?wg_abbrev=bpel4people

10 Software Processes Management by Method Engineering with MESP 209

Systems Engineering. Lecture Notes in Computer Science, vol. 4495, pp. 469–484. Springer,
Berlin (2007)

36. Vijayasarathy, L., Butler, C.: Choice of software development methodologies - do project, team
and organizational characteristics matter? IEEE Softw. 99, 1ff (2015)

37. Vlaanderen, K., van de Weerd, I., Brinkkemper, S.: The online method engine: from process
assessment to method execution. In: Engineering Methods in the Service-Oriented Con-
text. IFIP Advances in Information and Communication Technology, vol. 351, pp. 108–122.
Springer, Berlin (2011)

38. Wise, A., Cass, A.G., Lerner, B.S.,McCall, E.K., Osterweil, L.J., Sutton, S.M.: Using Little-JIL
to coordinate agents in software engineering. In: Proceedings of the International Conference
on Automated Software Engineering, pp. 155–163. IEEE, Washington, DC, USA (2000)

Chapter 11
Adapting Case Management Techniques
to Achieve Software Process Flexibility

Marian Benner-Wickner, Matthias Book and Volker Gruhn

Abstract Software processes have to be flexible in order to handle a wide range of
software project types and complexities. Large companies that depend on custom-
built software may therefore define different software processes in order to adapt to
different recurring project contexts (e.g., hot-fix versus migration projects). How-
ever, the stakeholders do not always follow the intended “happy path”—not the least
because any software project typically has to deal with a considerable amount of
uncertainty. Following an agile process may not be possible due to a company’s
culture or policy restrictions (e.g., in the healthcare or financial domain) though.
In this chapter, we present an approach to introduce more flexibility into software
process models by adapting case management techniques to the domain of flexible
software process management, in order to cope with key issues that come with soft-
ware process evolution. Key functionalities of the approach have been implemented
in a prototype and showcased to developers and architects via a live experiment.
The feedback is promising as it shows that the approach helps to quickly identify
context-specific actions and artifacts. This in turn reduces effort in structuring the
daily work of software process stakeholders in an environment of evolving process
elements specific to different kinds of projects, roles, and technologies.

11.1 Introduction

Most companies today rely on information systems for the execution of a wide range
of mission-critical business processes. Digital enterprises whose core business enti-
ties are intangible data (e.g., in the finance sector), as well as traditional enterprises

M. Benner-Wickner (B) · V. Gruhn
paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Schützenbahn 70, 45127 Essen, Germany
e-mail: marian.benner-wickner@uni-due.de

V. Gruhn
e-mail: volker.gruhn@uni-due.de

M. Book
Deptartment of Computer Science, University of Iceland, Tæknigarður 208, Dunhagi 5,
107 Reykjavík, Iceland
e-mail: book@hi.is

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_11

211

212 M. Benner-Wickner et al.

who are operating with physical goods (e.g., in logistics or production), rely on
complex information systems to manage their assets, to control processes, to make
business decisions, to communicate with internal and external actors, and even to
explore new business opportunities.

Information systems development, maintenance, and evolution in this context is
shaped by amultitude of forces and conditions business strategies, existing infrastruc-
tures, available technologies, market influences, legal and regulatory frameworks,
and so forth. These forces do not just shape what software is being developed, but
also how it is developed: Software processes are influenced by and need to adapt to
the business environment as much as the software systems do.

Many companies struggle with the adoption, implementation and evolution of
a software process that is suitable for their particular systems in their particular
business environment (see also Chap.15 in this volume). At one end of the spectrum,
heavy-weight, document-centric process models promise a clearly structured path
to the intended project results that prescribes detailed procedures and artifacts that
capture all aspects of the business domain—however, this completeness comes at the
cost of high effort and low flexibility in the face of changing forces in the business
environment. At the other end of the spectrum, agile processmodels promise ultimate
flexibility, but at the expense of the predictability, guidance, and accountability that
more structured models provide.

In addition, even within one organization, there will typically be different types
of projects that require different approaches (see also Chap.3 in this volume) [10].
Developing a mobile app for online banking from scratch, and customizing an SAP-
based back-end component for credit transfers, pose quite different challenges that
can neither be satisfactorily addressed by the same heavy-weight or the same agile
software process.Yet, some frameconditionswill be the same—whether developing a
mobile app or a back-end component, bankswill have to implement riskmanagement
and compliance regulations set forth by financial supervision authorities.

While several heavy-weight process models offer ways of tailoring their pro-
cedures, and agile process models are supposed to be adaptive by design, neither
provides guidance on how to adapt a process to the specific business, technology and
lifecycle contexts of a particular project in a particular domain, while ensuring that
the relevant regulatory requirements are being adhered to [5].

In this chapter, we present an approach to resolve this dilemma, drawing on
solutions for similar challenges that can be found in the business process manage-
ment field. To be exact, we will adapt case management principles and techniques
(Sect. 11.2.2) into the domain of flexible software processes. Since case manage-
ment is a wide field of research with several techniques, we will focus on adapting
the agenda-driven case management approach (adCM; [1]) in Sect. 11.3.

http://dx.doi.org/10.1007/978-3-319-31545-4_15
http://dx.doi.org/10.1007/978-3-319-31545-4_3

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 213

11.2 Background and Context

In business process management field, the concept of case management has gained
prominence in recent years [9, 11]. While classical business process management
approaches assume that business processes can be described precisely in all their
inputs and outputs, actions and conditions, and that they can be executed exactly as
specified, the case management approach recognizes that there are certain business
activities that cannot be shoehorned into a precise process model: Even though such
activities also have a core set of typical actions, there is no fixed execution sequence
and no precise description of the produced and consumed information. Instead, such
activities are characterized by a context in which they typically occur, the outcome
they are expected to produce, and the steps that are recommended to be undertaken
to achieve this. The concrete actions involved in executing each instance of such an
activity (i.e., resolving a case) are then highly dependent on the characteristics of
each individual case.

11.2.1 Drawing an Analogy

We consider software processes to be more similar to case management activities
than to “strict” business processes of the traditional kind, and therefore propose to
employ a similar approach to shaping them. This similarity can be observed in three
characteristics of case management and software processes.

First of all, a high level of interaction: Resolving a case typically involves a num-
ber of stakeholders from different backgrounds, who all provide bits of information
on different aspects of the case. Rather than fitting together like complementary
pieces of a jigsaw puzzle, the information provided by these stakeholders may be
contradictory, redundant, imprecise, or have gaps, requiring the case manager to
interact with stakeholders in order to clarify, negotiate, resolve, and adapt the rel-
evant information. A considerable amount of that information typically is expert
knowledge, which needs to be understood both by the case manager and the stake-
holders. The same is true in software engineering, where product owners, software
architects, and developers need to work with a team of business experts and end users
to elicit requirements, design the software, and resolve conflicting architecture and
implementation decisions, etc.

Second, both successful case management and successful software development
requires procedural flexibility: Case management is predicated on the observation
that no two cases are alike, so the best way to resolve a case may differ depending
on the circumstances, the availability of information, the behavior of stakeholders,
unforeseen events, and so on. This is true for software engineering as well rarely
are two projects exactly the same, even if they are in the same application domain:
Existing system landscapes, legacy data structures and technologies, different busi-
ness goals and strategies, and changing requirements all require flexibility in how

214 M. Benner-Wickner et al.

to run a software project, and how to deal with changes along the way. This means
that software development processes need to resemble flexible case management
processes much more than fixed production processes.

Finally, both case management and software engineering require initiative, cre-
ativity and innovation: In an environment where no fixed paths can simply be fol-
lowed to success, the stakeholders’ ability to come up with individual solutions to a
wide range of problems is key. Some of these solutions will be unique to a particular
case or project situation, but some might turn into best practices if they are found to
apply to more projects. For these cases, both case management and software engi-
neering should provide mechanisms to recognize such best practices and establish
recommendations based on them.

11.2.2 Case Management Principles

To understand the transfer of case management techniques to software process man-
agement,wewill first introduce somebasic concepts of techniques like agenda-driven
case management.

McCauley et al. [9] describe case management as activities where “the path of
execution cannot be predefined. Human judgment is required in determining how to
proceed, and the state of a case can be affected by external events”. Casemanagement
techniques reflect the need for high flexibility in both the control-flow perspective
as well as the data perspective. To achieve this, they make a paradigm switch from
juggling a comprehensive process model to working with manageable pieces of
process knowledge. These pieces are templates of activities and artifacts known to
be useful when organizing the actor’s work towards achieving a very specific project
goal. Another main principle is the shift from a process-centric point of view to an
artifact-centric perspective. It is vital to support the actor in every task related to
artifacts, e.g., exploring, organizing, and evaluating data.

When adapting the principle of manageable pieces of knowledge to the domain
of flexible software processes, we assume that there will be no imperative software
model that can be applied to every software project (and no one would stick to
it, anyway). So, in preparation of a project, only vital actions or artifacts should
be defined as pieces of process knowledge, e.g., compliance-relevant milestones and
respective checklists. During the project, these pieces should be hot-plugged to adapt
to each very specific project situation, e.g., integrating a review cycle for software
components that have been identified as risky by the architect. Conversely, it is also
possible to remove design tasks and replace them with the review of a design that
has already been done in a previous design project.

In the domain of flexible software processes, changing the focus to an artifact-
centric perspective has one main implication: Driving a process by just “fueling” a
strict core process model with input artifacts (e.g., requirements specifications) does
not work. At the beginning of a process, most of the information is neither complete
nor mature. There are far too many variables that can sidetrack the plan which are

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 215

Fig. 11.1 Process- versus
artifact-centric perspective
(based on [11])

Process

Data

Data

Process

not specified, yet. So the software engineering artifacts cannot be seen as fuel of
a process. Instead, the artifacts are in the focal position and the process has to be
justified towards the production of the artifacts (Fig. 11.1). While the output artifacts
usually remain stable, all actions are replaceable, which facilitates flexible software
process management.

In the rest of this chapter, we will show in more detail how case management
principles and techniques can be adapted for flexible software process models.

11.3 Agenda-Driven Software Process Management
by Example

As introduced above, the main contribution of this chapter is the adaptation of case
management principles for the domain of flexible software processes, resulting in an
agenda-driven software process management (adSPM) approach.

In order to illustrate how the adapted approach works amid the real-world prob-
lems of flexible software process management, we will first introduce a genuine
software process of a German bank. It reflects many issues of an evolving flexible
software process, as it is quite new (i.e., not yet established throughout the company)
and many activities are only relevant in a specific context. In the next step, we then
discuss how such flexible software processes benefit from the pivotal case manage-
ment principles in general. Inspired by these ideas, we will go into details of the
agenda-driven software process management approach.

11.3.1 Example Process

Due to a future risk management compliance audit, the process described below was
introduced into the bank’s software development department. It explicitly aims at
software process industrialization. Besides some generic high-level actions, it con-
tains a sophisticated set of artifacts aswell as distinct quality gates and corresponding

216 M. Benner-Wickner et al.

Project
Initialization

Architectural
Design

Work Package
Assignment

Detailed
Design

Implementation
& Unit Testing

Integration
Testing

Quality
Gate 1

Quality
Gate 2

Quality
Gate 3

Quality
Gate 4

Quality
Gate 5

Quality
Gate 6

Fig. 11.2 High-level overview of the case study process model

checklists that satisfy the compliance policies. A high-level overview of the process
is shown in Fig. 11.2. Each quality gate requires the delivery of up to eight different
artifacts.

The process documentation is dispersed among three manuals and several tech-
nology-specific directions for action. One manual explains all artifacts; the other
two manuals describe all process element definitions for design and implementation
activities. All manuals are accessible via the bank’s intranet.

In order to cope with flexibility due to project-specific peculiarities, six different
project types are defined within the manuals. The process tailoring according to these
project types is described by decision tables (see Table11.1). They define which
quality gate has to be passed in which project type: When realizing less risky project
types like change requests, fewer quality gates have to be passed than in full-fledged
implementation projects.

However, there are not only project-specific, but also technology-specific pecu-
liarities. Hence all these definitions are further refined by technology-specific instruc-
tions, which introduce specific document templates. Examples are document tem-
plates for a design specification of enterprise resource planning (ERP) customizations
or for test documentation of Java 2 Enterprise Edition (J2EE) web applications.

Overall, this process model seems to be both compliant and flexible. It reflects
project-specific as well as technology-specific needs. However, in practice it turns
out very difficult for the actors to obtain the latest and right task definitions for a
given project. This is because the definitions are spread over multiple documents and

Table 11.1 Matrix for quality gate tailoring

Project type

Quality
Gate #

Big Medium Maintenance Conception Infrastructure Small

1 ✓ ✓ ✓ ✓

2 ✓ ✓

3 ✓

4 ✓

5 ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 217

cannot be transformed into one process model fitting a given project context. The
capability to present all necessary tasks for the current project type, technology and
role is missing. As a result, the compliance is actually at risk, because important
artifacts and tasks like code reviews for risky components may be left out.

11.3.2 Introducing Agenda-Driven Software Process
Management

Agenda-driven case management, even though originally introduced for the insur-
ance and medical domain, addresses most of the issues that the example process
exhibits. It is a lightweight methodwith three basic concepts: an agenda, agenda tem-
plates and artifacts. In this section, we will explain how flexible software processes
can benefit from adapting these concepts in general, and how they can be used in the
example process.

In order to keep track of his project responsibilities, an actor needs an overview
of different important process elements like quality gates, activities and artifacts.
Due to the need for flexibility, the elements may have to be reorganized at any
time. These requirements are covered by the pivotal element of agenda-driven case
management: the agenda. It is a hierarchically structured list containing all entities
that an actor considers important for the completion of his project responsibilities.
It is ideally derived from a guideline for a certain project type, but the actor is free
to (re-)organize the agenda according to the particularities of each project, and may
even start with a blank agenda. Of course, with respect to the compliance policies in
the example process, the agenda concept should also consider restrictive elements.
For example, the process owner should be able to prescribe actions that are read-only,
strictly in order and mandatory to pass. Using the agenda, the actor however still has
the necessary flexibility to align his actions around the focal artifacts and quality
gates.

Ensuring compliance by defining mandatory items is a need that can be covered
by the adaptation of the second concept: the agenda template. Agenda templates are
context-specific and originally designed to make best practices available to the actor.
When adapting this concept to the management of flexible software processes, such
best practices can be extended by obligatory agenda templates. They contain quality
gates with corresponding actions, checklists and artifacts. They can be connected
with business rules so that projects can only be closed if these items are marked as
finished (in the given sequence).

When defining agenda templates, the degree of specificity can be chosen arbitrar-
ily. Agenda templates may contain quality gates for a certain project type and omit
technology-specific items. But they may also contain technology-specific artifacts
by attaching appropriate document templates (not to be confused with the agenda
templates introduced above) and notes containing tailoring information. Consider,
for example, the design documentation of standard ERP software. Describing archi-

218 M. Benner-Wickner et al.

tectural decisions is feasible when dealing with custom software. However, since
standard software usually has a predefined architecture, a chapter on architectural
decisions may not be necessary in that case.

The need for attaching artifacts to agendas and agenda templates calls for the
third key concept: the workspace. It is designed to hold almost any data that is nec-
essary for carrying out the process, including regular files, web links and notes. Its
structure is defined by the agenda, so the relationship between artifacts and agenda
items is always clear. For the purpose of clarification and traceability, artifacts in the
workspace can be associatedwith each other usingwell-defined semantics. For exam-
ple, the overall architecture of an application can be associated with more detailed
specifications using the binary relation “refined by.”Moreover, the workspace allows
n-ary relations for artifacts belonging together like a bag of detailed specifications
for a given system.

After introducing the three main concepts individually, we will next illustrate
how agendas, agenda templates and artifacts work together using the example of a
software developer who is designated to perform a small change in one of the bank’s
J2EE applications, and has to carry out the process activities scheduled for this kind
of project type:

The first step is instantiating one of the many existing agenda templates origi-
nally developed by the process owner (at template design-time). As described above,
agenda templates are context-specific, so the right template can be chosen by the
developer according to context parameters. In the example process, these parameters
are the project type, the actor’s role and the technology (see Fig. 11.3). In this exam-
ple, the project type is a small project. This has been predefined by management
before the developer had been assigned to his task. The technology (J2EE) was also
predetermined by an architect at the time the software project was launched.

The software developer’s second step is to fill the workspace with input artifacts
(see Fig. 11.4 for an example workspace). Most of the contents originate from the
agenda template, others are added or instantiated by the developer. Consider, for
example, the root item of the agenda, which is the main task “Adding a read-access
timestamp to ABC app.” It is the instantiated root node of the template and has
been named by the developer according to his task. It already contains a link to the

Fig. 11.3 Identifying
project context parameters

de
si

gn
-t

im
e

ru
n

-t
im

e

templates

project type
classification by
the management

choice of the
technology by
the architect

project type

te
ch

no
lo

gy

ro
le

each role starts the
process by choosing

its template

template
definition by the
process owner

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 219

Adding a read-
access timestamp

to ABC app
PM tool weblink

has artifact

has artifact
Requirement Spec

Implementation
and testing

has artifact
Detailed Design

Requirements

added

Integration
testing

has subitem

QG 5: Unit meets
quality

has subitem

has artifact
JUnit Test Report Sheet

has artifact Quality Gate 5
Checklist

has artifact
Integration Test Concept

QG 6: Ready for
User Testing

has subitem has artifact J2EE Integration Test
Report Sheet

has artifact Quality Gate
6 Checklist

Artifact

Agenda
root

Agenda item

has subitem

has subitem

added

added

project type: small project role: developer technology: Custom

Fig. 11.4 Instantiated agenda template containing items specific to the context (small custom
technology project, developer perspective)

project management tool as well as the two subordinate items “implementation &
unit testing” and “integration testing.” These items are the activities of the overall
process that are relevant for the given context. The agenda item “requirements”
and its artifact, however, have been added by the developer as he found they were
important input artifacts for this task. The developer also added the detailed design
specification supplemented by the new functionality to the “implementation and
testing” agenda item. Initially, the item only contains a mandatory quality gate with
an empty technology-specific test report sheet and a checklist that helps the developer
to keep track of compliance policies associated with the task. With respect to these
policies, it is necessary to fill the test report sheet with confirmations that all tests
have been passed, in order to fulfill the quality gate.

After completing his task, the developer finishes the agenda items, closes the
project and forwards the new status using the corporate project management tool.
Since the templates contained agenda items relevant for compliance, the system
checks compliance using business rules. For example, any quality gates in a closed
project that have not been denoted as finished are detected and reported.

220 M. Benner-Wickner et al.

Given the discussion above, it is clear that agenda templates are the key support
capability of adSPM. As a result, we will provide more details about how adSPM
facilitates agenda template management in the following sections.

11.4 Template Management

In the original case management approach, agenda templates are mined automati-
cally out of common agenda items in order to gain and improve knowledge of the
treatment process. However, they can of course also be defined manually. Since min-
ing of process knowledge is not a crucial use case in the domain of flexible software
processes, supporting the manual definition of agenda templates is more important,
especially when enforcing compliance policies through templates. In this section,
we will first supplement the example agenda template introduced above with some
further templates in order to give an idea of the necessity of intelligent template
management within adSPM. Then, we will discuss challenges and opportunities of
such management functions, using the example of the bank case study.

11.4.1 Example Templates

The case study only contains one example agenda template yet. To apply the case
management approach to a broader range of situations, we need to introduce more
templates for different situations. Since describing all combinations of the three
possible template context dimensions (project type, role, and technology) would go
far beyond the scope of this chapter, we will simplify the context by selecting the
most distinct combinations. To do this, we first classify similar project types and then
justify the selection of three distinct roles and two sample technologies.

Looking at the different project types in Table1, big projects (PB) are notice-
ably different from the other project types as they include every single quality gate.
We should therefore develop at least one example agenda template with that type.
However, there are only few differences between mid-size, maintenance and small
projects, so we will combine them into the class of small projects (PS). Integration
projects are similar to conception projects as well, since there is no development
effort. So we include them with the conception projects (PC).

In the original process, there are at least six roles more or less directly involved in
the project. However, the main tasks are apportioned between the architect (RA) and
the developer (RD). There is no distinct tester role necessary as unit and integration
testing is done by “any other” developer, according to the process manuals.

When choosing the example technology, we use our experience from numer-
ous discussions with the bank’s actors to identify two types of technologies which

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 221

Fig. 11.5 Decision tree containing all combinations of the simplified context characteristics

Table 11.2 Decision table with the remaining combinations

Project type PB PS PC

Role RA RD RA RD RA RD

Technology TS TC TS TC TS TC TS TC TS TC TS TC

Template 1 5 3 6 4 7 2

have proven to be very different from each other, including a considerable need for
distinct ways of documentation. These are standard software (TS), which is often
closed source, and custom software (TC). Figure11.5 shows the initial decision tree
containing all 12 combinations of the project context characteristics.

We can now reduce these combinations further by excluding ineligible branches.
For example, conception projects by definition do not include development tasks.
Moreover, such projects do not yet contain technology-specific artifacts. As a result,
we can strike out concept project combinations that involve developers and do not
need to take care of the technology. Also, small projects do not have an architect
since the design is already done or its change is negligible. Table11.2 shows the
remaining combinations using a decision table.

In collaboration with the example process owner, we elaborated the elements of
the agenda templates for these variants, as depicted in Fig. 11.6. The templates seem
to have many redundant elements at a first glance; especially the PM tool weblink is
present in every template. Also, process phases and quality gates do not change with
technology. However, most of the artifacts used in the late phases are connected to
either Java (custom software) or SAP (standard software).

In collaboration with the example process owner, we elaborated the elements of
the agenda templates for these variants, as depicted in Fig. 11.6. The templates seem
to have many redundant elements at a first glance; especially the PM tool weblink is
present in every template. Also, process phases and quality gates do not change with
technology. However, most of the artifacts used in the late phases are connected to
either Java (custom software) or SAP (standard software).

222 M. Benner-Wickner et al.

Fig. 11.6 Tree structure of selected agenda templates according to the given context (project type,
role and technology)

Even though we already reduced the complexity twice by simplifying the context
characteristics and selecting only the most distinct combinations, it is obvious that
the management of these agenda templates is tedious and error-prone. To ease this,
we will next introduce the adSPM template management functions.

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 223

11.4.2 Template Management Functions

The downside of allowing process flexibility is the effort required to manage a set of
agenda templates. To alleviate this, support for template management is necessary.
In this section, we discuss four main challenges for agenda template management we
identified using the example of the process above: redundancy, integrity, compliance
and change.

The previous section showed that the process owner has to manage several differ-
ent agenda templates with partially overlapping content. When policies change, he
needs to keep all of them consistent and up to date. Doing this by hand is error-prone
because there are many technology-specific templates which differ just in a few arti-
facts, and quite a few project-specific templates only differing in the presence of one
or two quality gates. In the traditional adCM approach, templates are just managed
individually, without regard for any dependencies and redundancies between them.

But in the domain of flexible software processes and especially in the given case
study,we claim that there are fewer variants andmore compliance policies; so, agenda
templates have much more artifacts and agenda items in common. So it is necessary
to manage redundancy within a set of templates. To achieve this, we introduce a
central template management tool using a graph model that is aware of common
items within the templates. It serves as a single process model containing all quality
gates, activities and artifacts necessary to drive the process considering each and any
context characteristic. This way, the approach is capable of reducing technical debts
due to process evolution (see Chap. 15 for detailed information about the connection
between process evolution and technical debt).

Figure11.7 shows the implementation of such a tool based on the example process.
Its persistence layer manages a single graph structure joining all agenda templates
introduced in Sect. 11.4.1. The graph nodes of context-specific elements are tagged
using the three context parameters. Of course, such a joined graph is not human
readable.We therefore implemented a filter mechanism facilitating a context-specific
perspective in the style of an intuitive faceted search. If, for example, the process
owner wants to review the current agenda template for J2EE conception projects, he
adjusts both context filter parameters. The tool then shows a subgraph containing all
template elements relevant for this context, without regard to the role. Since context
parametersmay be subject to change, they are customizable in anXML configuration
file including all of their possible options.

However, template management is not all about managing redundancies. Accord-
ing to the example process, compliance policies require the integrity of the prescribed
agenda and its artifacts. In this case there shall be no opportunity to change the
intended agenda (besides ignoring the template and following one’s own agenda).
The implementation of this requirement is straightforward as it just requires a read-
only flag in the agenda template data model, together with simple role/authorization
management functions.

In addition, the process owner may sometimes not only want to ensure integrity,
but also compliance. This means it needs to be ensured that agenda templates and

http://dx.doi.org/10.1007/978-3-319-31545-4_15

224 M. Benner-Wickner et al.

Fig. 11.7 The adSPM template management tool (overall template and PB_RD_TS perspective)

their elements are not ignored or bypassed, so template elements should be denotable
as mandatory. Also, some agenda items may have to be executed and some artifacts
may be required to be produced. As a result, the course of activities has to be checked
for these mandatory elements. (However, the actor should still be free to supplement
the template with his own items, in order to sustain creativity or incorporate actors’
experience.)

A similar function is already provided in the adCM approach as it monitors the
execution history in an event log and stores the final state of closed cases in a graph
database. In the domain of flexible software processes, both the log and the final
agenda state can be analyzed to measure compliance with the prescribed agenda
template, e.g., using business rules. Therefore, an adSPM tool needs to provide an
additional business rule management function. Our example implementation of the
business rule management is designed as a web application following a responsive

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 225

Fig. 11.8 Example of the business rule generator

web design [7]. Rules defined this way (see Fig. 11.8) are transcoded into a Resource
Description Framework Schema (RDFS) and stored within the graph database using
a RESTAPI. In the graph database, the rules can be regularly checked against all case
instances by a built-in reasoner. Consider, for example, the rule depicted in Fig. 11.8.
It applies whenever the agenda contains the given pattern. That is, the agenda holds
three quality gates denoted as “finished”, each containing the corresponding check-
lists.

Of course, the example implementation also contains a rule dashboard that gives
an overview whether or not the cases are compliant to all rules defined by the man-
agement interface.

Obviously, a key aspect of process flexibility is change. Keeping actors compli-
ant therefore also means keeping them compliant according to changing policies.
However, ongoing projects are usually not subject to policy changes. As a result, the
agenda template management needs to be aware of different template versions. Since
we propose to store templates using a graph database, changes in a template graph
can be tagged with a version number. Whenever a finished agenda has to be checked
against a template, its version number is considered. The traceability of template
versions can be provided by the adSPM tool or a version control tool, depending on
organizational preferences.

226 M. Benner-Wickner et al.

11.4.3 System Architecture

The overall system architecture of the adSPM reference implementation depicted in
Fig. 11.9 has a 3-tier design. It is a composition of the agenda template and business
rule management functions discussed above, integrated with execution support for
the case management concepts introduced in [2].

Using the agenda and workspace UI, actors carrying out the software process
can instantiate agenda templates stored in the graph database and customize their
agenda according to the tasks defined within the chosen template. To find and link
important artifacts into the workspace, we integrated an enterprise search component
indexing the organization’s repositories. The monitoring component is responsible
for logging the actors’ course of activities. It is used to measure whether or not
compliance-relevant activities have been executed in the prescribed order. Both the
current and finished agendas are stored within the graph database. The reasoner
component can then check whether the structure of the agendas fits preconfigured
business rules. These rules are defined by the process owner using the dedicated
editor interface. To facilitate agenda template instantiation, the process owner also
defines templates via the template editor. For convenience, a context filter component
provides a manageable view of the templates according to preconfigured context
parameters.

To conclude, adapting case management concepts to the management of flexi-
ble software processes using the adSPM approach seems to be promising, because it
promises a good trade-off between flexibility and control. On the one side, the agenda
provides maximum flexibility to the actor; on the other side, agenda templates can
integrate best practices, agreements on common procedures and compliance policies.
However, it is challenging to manage templates that are subject to ongoing change,
need to assure compliance policies, are free of redundancy, and cannot be manip-
ulated. Whether or not the template management functions introduced above solve
these problems in practice is subject to evaluation.

Enterprise Search Monitoring
Template

Instantiation

Agenda & Workspace

Artifact Repository Event Log

Reasoner Context Filter

Business Rule
Editor

Template
Editor

Context
Config.

Graph Database
(Agenda & Template Storage)

Actor (Architect,
Developer, Maintenance)

Process
Owner

User
Interface

Logic

Persistence

Fig. 11.9 Overview of adSPM system architecture

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 227

11.5 Case Study

The features of the adSPM tool have been evaluated in a demonstration experiment
with several participants executing the bank’s example process. In this section, we
will first outline the design of the evaluation, followed by details of the results.

11.5.1 Experiment Design

Eleven stakeholders (five architects, five developers and one process owner who
manages the processes and assesses the compliance of each project in the whole
bank) were asked to answer a survey and execute a specific task in the adSPM
problem domain.

Since the experience of a stakeholder will affect the need for support when
driving/managing a process, we first asked the participants how they would describe
their experience in their process role, in order to detect the expected bias when
evaluating the approach’s utility. In addition to this appraisal, we also asked the
stakeholders to quantify the experience in terms of how many projects they work on
each year.

In the next interview topic, we wanted to learn more about how the participants
currently address compliance. We therefore asked the developers and architects how
they organize their work in order to be compliant with the process manuals and use
the latest technology-specific document templates. In addition, we asked the process
owner about how he conducts the compliance audits.

In order to find out how developers and architects assess the effort they need to
invest to be compliant, we asked them to roughly estimate the amount of time they
spend to check the next process steps, for example. We also asked the process owner
to estimate his efforts in managing the manuals and checking the compliance of each
project. In order to estimate the overall impact, we also asked for the frequency of
all these efforts (i.e., how often they occur per project).

After assessing the status quo, we proceeded to the experiment examining the
utility of the adSPM template management tool. The experiment simulates a project
situation where developers and architects have to figure out all process steps and
artifacts relevant for their respective role in a randomly selected project type and
technology. After a brief introduction on how to interact with the tool, the developers
and architects had ten minutes to answer the following questions:

1. Which quality gates have to be passed?
2. Which questions have to be checked to pass each quality gate?
3. Which document templates have to be applied and filled out?

The evaluation of the business rule and the agenda template editor by the process
owner was performed differently. Since managing and checking the process is a
much more complicated step than just identifying relevant tasks, we only presented

228 M. Benner-Wickner et al.

the user interface to him without conducting a simulation. However, we closed all
interviews by requesting that participants judge the utility of the presented methods
and tools compared to the status quo.

11.5.2 Evaluation Results

We will discuss the results starting with the answers from the developers and archi-
tects. Each year, these participants work on about three projects on average, but not
more than six. Since the current process version is about one year old, this is also
the absolute number of projects that are subject to the current manuals. Most of
the architects and developers therefore are already somewhat experienced with the
process, though they do not know it by heart yet. Considering this, we would expect
that there is a need for process support.

When asked how they make sure that they always use the current document
template version, 9 out of 10 participants referred to a custom document template
menu in the word processor. They consistently reported that they are very content
with that kind of support, though it is only relevant for creating new documents.
However, the adSPM approach does not include a solution for keeping the form
up to date in case document templates evolve.

When asked which actions they take or which kinds of resources they rely on in
order to be compliant, most of the participants mentioned the project tracking tool
(7 out of 10) and a process model handout (6 out of 10). But also workmates and
handouts containing consolidated information about process specificities are impor-
tant resources (5 each out of 10). 4 of 10 participants consider the intranet (wiki).
However, most interestingly, only one participant considered the official process
manuals to ensure being compliant with the process. Independent of the cause, we
can conclude that keeping only these manuals up to date will immediately lead to
compliance issues.

In the next question, we asked about the time spent on the actions discussed
above, and how frequently this effort has to be invested for each project. Due to the
fact that one half of the participants is mostly assigned to many small projects and
the other half is mostly assigned to a few big projects, the estimated efforts ranged
quite widely. Also, the participants may have different conceptions of which kind of
actions have to be aggregated into the effort estimation. We therefore have to be very
careful in interpreting the results, which vary from a recurring effort of 5min to half
of a day, resulting in 30 to 840min of total effort for each project (see Table11.3).

After asking about the effort of the status quo method, we proceeded to the exper-
iment in which the participants had to identify all tasks and artifacts necessary for
their role in a random project type with a random technology within 10min. Seven
participants answered the questions perfectly, however, one made a small mistake
and two left out one of the three questions. Only half of the participants needed the
full time to complete the experiment; on average, each experiment took less than
7min.

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 229

Table 11.3 Time spent (in minutes) on identifying actions relevant to compliance and comparison
of the efforts in the status quo versus in the experiment (#NV: the participant was unable to estimate,
#NP: The participant did not pass the experiment)

Participants

1 2 3 4 5 6 7 8 9 10 �
Effort (status quo) 15 30 150 240 #NV 10 #NV 5 120 240 101.3

Frequency (status quo) 50 1 1 3.5 1 4 #NV 10 1 3.5 8.3

Total 750 30 150 840 #NV 40 #NV 50 120 840 352.5

Effort (experiment) 6.17 4.17 9.80 10.0 9.75 9.75 2.17 3.00 10.0 4.75 6.95

Total (1st calculation) 308.30 4.17 9.80 35.00 #NP 39.00 #NV 30.00 10.00 #NP 62.32

Total (2nd calculation) 308.30 4.17 – – – 39.00 – 30.00 – – 95.37

To compare these results with the estimated efforts carefully, we excluded the
two participants who did not complete the task (almost) correctly. We also decided
to make two different calculations. The first ignores the differences between the very
different effort estimations. The second calculation only considers the low efforts
(5–30min) as we believe these have been estimated using a conceptual basis that is
closer to our definition. Table11.3 shows the results using both calculations.

If we compare the status quo with the efforts during the experiment using the first
total effort, it is reduced from 352.5min on average to 62.32min, which is less than
a fifth. The second, probably less biased calculation is also promising as the effort
is reduced to 95.37min, which is less than a third.

In the last step of the interview, we asked the participants to evaluate the utility of
the tool for finding compliance-relevant tasks and artifacts. On a rating scale from
1 (very high) to 5 (very low), two participants estimated a very high utility and the
other eight participants estimated a high utility (i.e., 1.8 on average).

We also interviewed the process owner by asking similar questions concerning
his role. Asked about both constructive and analytic actions he uses to ensure com-
pliance, the process owner mentioned the process manuals first, despite the fact that
they played no role for the vast majority of developers and architects. In contrast,
the process owner did not mention the process model handouts as a compliance-
supporting tool, even though they were used by several developers and architects.
And although the process owner does use the project tracking tool to randomly check
the project’s compliance, he was not aware that this tool is an important resource
for developers and architects. In summary, the resources prominently managed and
updated by the process owner are not the same as those used by developers and
architects.

We also asked the process owner to evaluate his effort for managing the process
and analyzing the compliance. To him, managing the process does not seem to be a
very time-consuming task, although he has to manage different redundant resources.
Instead, analyzing the compliance is more expensive, since a few steps between

230 M. Benner-Wickner et al.

exporting the data from the project tracking tool and importing it into the reporting
application are not fully automated yet. According to the process owner, coaching
the other roles in driving the process is one of themost time-consuming activities.We
then showed the process owner our adSPM tool containing the agenda template editor
for process management and the business rule management interface for compliance
checking. Compared to his current approach and the corresponding efforts, he found
it beneficial that irrelevant process elements can be filtered out. Moreover, he expects
that the central definition of process elements will reduce redundancy. On the other
side, he claims that such a tool has to be integrated well into the project management
tool.

Just as with the developers and architects, we closed the interview by asking the
process owner to estimate the utility of the new approach compared to the status quo
on a rating scale. He judged that the business rule interface has the same utility as
the status quo, arguing that it depends a lot on the data quality whether or not the
business rules can decide on a given situation. However, he is convinced that it is
much easier to define business rules than handling the current business intelligence
application. Concerning themanagement of the process elements, this process owner
estimates the utility of the status quo approach to be higher than the agenda template
editor, since his current approach is straightforward and not too expensive.

Given the divergence between the expected and actual use of the compliance
instruments in the status quo, we foresee compliance issues and would therefore
argue for a central resource that is accessible by all roles.

11.6 Conclusion

Due to emerging technologies, regulatory frameworks and several other forces, not
only information systems but also software processes need to adapt to business
environment changes. Despitemature research efforts in both heavy-weight and agile
software processes, companies today struggle with the adoption of these process
models. This is because neither agile nor heavy-weight approaches can combine
flexibility and compliance adequately. Especially in companies where the software
process model depends on several project context parameters such as project type
and technology, compliant development becomes a challenging task as each role has
to be constantly up to date with its very specific rights and duties.

In this chapter, we presented an approach addressing this dilemma by adapting
case management techniques to the domain of flexible software process manage-
ment. Based on the foundation of case management principles such as an artifact-
centric perspective, we have shown how the corresponding concepts (i.e., agenda
templates, agendas and their workspaces) can help software process stakeholders in
their daily work. For example, dedicated agenda template management components
are designed to maintain and visualize the process. They address the vital challenges
that stakeholders cope with in a real process: redundancy, integrity, compliance and
change.

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 231

After conducting interviews with several different stakeholders we can conclude
that the approach seems to be promising especially for stakeholders that carry out
the process, like the software developers or architects. Results from a short exper-
iment show that the effort spent by these roles on identifying compliance-related
tasks and artifacts can be reduced by the presented approach. The participants stated
that the main contribution of the adSPM approach is to enable any stakeholder to
obtain a quick and current overview of his tasks with respect to compliance policies,
best practices and state-of-the-art process steps. According to the approach, these
elements are always kept up to date using a common overall agenda template defin-
ition managed by the process owner. However, beside this very specific perspective,
each role also has the opportunity to broaden their view of the process steadily from
flanking roles to the comprehensive big picture. We believe this is important since
understanding areas of accountability is vital to proper interaction.

The support for managing flexible software processes can be enhanced by incor-
porating a distributed agenda template improvement capability into the adSPM
approach. Since we suggest using a graph structure to store agendas and templates,
it is very easy to compare agendas initialized from a template with their final state
after the project is closed. Given this information from the history of several projects,
parts of templates that are subject to frequent changes can be identified. They point
to important issues in process management like concept drift [14] and enable mea-
suring the process model fitness [3] compared to the real process carried out in the
field.

11.7 Further Reading

The approach we presented here is inspired by work in two fields: agile software
development and case management.

Münch et al. [10] give a comprehensive overview of software process definition
and management in large-scale projects. While agile techniques such as Scrum,
Extreme Programming (XP) or Kanban (as for instance discussed in [4]) at first
glance seem to suitably answer the need for flexible software processes, they may be
too “radical” for some application domains that are subject to compliance regulations
mandating documented requirements, specifications and design decisions, but in
which projects are too unique to justify the use of one tailored version of, e.g.,
the Rational Unified Process (RUP), the V-Model XT or other document-centric
approaches.While approaches to support the enactment of suchheavy-weight process
models exist (such as the Process Enactment Tool Framework by Kuhrmann et al.
[6]), implementing a heavy-weight process model is not just a matter of producing
the appropriate documents, but also of ingraining the process in the organization’s
culture.

The challenges inherent in software process tailoring have been the subject of
considerable discussion: In a survey spanning almost 20years of process tailoring
literature, Martínez-Ruiz et al. [8] found that “tailoring notations are not as mature as
the industry requires.” In another systematic literature review, Kalus and Kuhrmann

232 M. Benner-Wickner et al.

confirmed in [5] that “the factors influencing the tailoring are well understood, how-
ever, the consequences of the criteria remain abstract and need to be interpreted on
a project-per-project basis.” The work of Xu and Ramesh [15], meanwhile, is an
example for an attempt at suggesting some guidelines for process tailoring, based on
empirical experience.

Meanwhile, case management techniques (as for instance described in [11]) seem
to provide a suitable approach not just for the knowledge-intensive and clinical
settings (e.g., in healthcare [8]) that they were originally intended for. While origi-
nally conceived in the business process management community [12] to deal with a
level of process flexibility that traditional process mining tools could not cope with
[13], it seems that case management’s pragmatic combination of process guidance,
expert knowledge, and artifact focus also makes it an interesting model for software
development enabling a philosophy of “tamed agility” that retains the flexibility of
agile approaches, but reconciles it with the compliance and planning requirements
of large-scale software projects.

References

1. Benner,M., Book,M., Brückmann, T., Gruhn, V., Richter, T., Seyhan, S.:Managing and tracing
the traversal of process clouds with templates, agendas and artifacts. In: Business Process
Management, Lecture Notes in Computer Science, vol. 7481, pp. 188–193. Springer, Berlin
(2012)

2. Benner-Wickner,M.,Book,M.,Brückmann,T.,Gruhn,V.:Execution support for agenda-driven
case management. In: ACM Symposium on Applied Computing, pp. 1371–1377. ACM, New
York (2014)

3. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: On the Move to Meaningful Internet
Systems: OTM 2012, Lecture Notes in Computer Science, vol. 7565, pp. 305–322. Springer,
Heidelberg (2012)

4. Dingsøyr, T., Dybå, T., Moe, N.B.: Agile software development: current research and future
directions. Springer, Berlin (2010)

5. Kalus, G., Kuhrmann, M.: Criteria for software process tailoring: a systematic review. In:
Proceedings of the International Conference on Software and System Process, pp. 171–180.
ACM, New York, (2013)

6. Kuhrmann, M., Kalus, G., Then, M.: The process enactment tool framework–transformation
of software process models to prepare enactment. Sci. Comput. Program. 79, 172–188 (2014)

7. Marcotte, E.: Responsive web design. In: Keith J., Cederholm D., Kissane, E., Marcotte, E.,
Walter, A., Wroblewski, L., Monteiro, M., McGrane, K. (eds.) A Book Apart. Book Apart,
New York (2010–2012)

8. Martínez-Ruiz, T., Münch, J., García, F., Piattini, M.: Requirements and constructors for tailor-
ing software processes: a systematic literature review. Softw. Qualit. J. 20(1), 229–260 (2012)

9. McCauley, D.: Achieving Agility. In: Swenson, K.D. (ed.) Mastering the unpredictable, pp.
257–276. Meghan-Kiffer Press, Tampa (2010)

10. Münch, J., Armbrust, O., Kowalczyk, M., Soto, M.: Software process definition and manage-
ment. In: The Fraunhofer IESE Series on Software and Systems Engineering. Springer, Berlin
(2012) ISBN: 978-3-642-24290-8

11. Swenson, K.D. (ed.): Mastering the Unpredictable: How Adaptive Case Management will
Revolutionize theWay thatKnowledgeWorkersGetThingsDone.Meghan-Kiffer Press, Tampa
(2010)

11 Adapting Case Management Techniques to Achieve Software Process Flexibility 233

12. van der Aalst, W.M.P.: Process Mining. Springer, Berlin (2011). ISBN: 978-3-642-19344-6
13. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business

process support. Data Knowl. Eng. 53(2), 129–162 (2005)
14. van der Aalst, W.M.P., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T.,

Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos,
M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de Leoni, M., Delias, P., van
Dongen, B.F., Dumas, M., Dustdar, S., Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen,
F., Goel, S., Günther, C., Guzzo, A., Harmon, P., ter Hofstede, A., Hoogland, J., Ingvaldsen,
J.E., Kato, K., Kuhn, R., Kumar, A., Rosa, M.L., Maggi, F., Malerba, D., Mans, R.S., Manuel,
A., McCreesh, M., Mello, P., Mendling, J., Montali, M., Motahari-Nezhad, H.R., zur Muehlen,
M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Rozinat, A., Pérez, H.S., Pérez, R.S., Sepúlveda,
M., Sinur, J., Soffer, P., Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K., Talamo,
M., Tan, W., Turner, C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R.,
Wang, J., Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M.: Process
mining manifesto. In: Business Process Management Workshops, Lecture Notes in Business
Information Processing, vol. 99, pp. 169–194. Springer, Berlin Heidelberg (2012)

15. Xu, P., Ramesh, B.: Using process tailoring to manage software development challenges. IT
Prof. 10(4), 39–45 (2008)

Chapter 12
A Researcher’s Experiences in Supporting
Industrial Software Process Improvement

Kai Petersen

Abstract Industry–academia collaboration in software engineering is essential for
the relevance of research, as research may make important contributions to the
improvement of software engineering. Thus, software engineering researchers are
an asset in software process improvement. In this chapter, I present different experi-
ences of being an embedded researcher in industry contributing to software process
improvement. The process improvement works were focused on helping organiza-
tions to move from plan-driven processes to agile and lean processes. We will elab-
orate on the challenges, essential practices, and related benefits that were observed
when working closely with industry in the role of embedded researchers. Supporting
examples from different published cases form the basis for this experience report.

12.1 Introduction

Industry and academia have different interests. At the same time, industrial applica-
tions of research results are considered as highly important from an academic point
of view to evaluate solutions to software engineering problems under realistic con-
ditions. Multiple factors are important to consider to achieve realistic experiments
[50], namely:

Tasks The tasks should be realistic, for example in terms of scale.
People People should represent practitioners well in terms of skills and

experience.
Environments The environment should be realistic.

Similarly, Ivarsson and Gorschek [16] highlighted the importance of relevance in
software engineering research, raising the need to conduct research in a realistic
environment, thus challenging solutions with regard to their scalability. Furthermore,
they highlighted the need to have subjects representative for the industry to perform
tasks. Consequently, looking at software processes and the improvement thereof, it is

K. Petersen (B)
Blekinge Institute of Technology, Valhallavägen, 37141 Karlskrona, Sweden
e-mail: kai.petersen@bth.se

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_12

235

236 K. Petersen

essential to look at industrial processes. That is, it would be challenging to replicate
industrial processes with a very high number of people involved, though tasks on
team level (small agile team) are more likely to be replicated. As pointed out by
Sjøberg, students in such a context may work in a company besides their studies,
or have worked in a company before. Overall, the conclusion is that it is important
to study software engineering processes and solutions in a realistic and industrial
context. A large number of studies highlights the need for relevance of research for
practice (see, for example, [14, 16, 36, 45]).

As researchers we would like to achieve this industrial relevance, thus we need
collaborations the industry. As Runeson points out “it takes two to tango” [45]. That
is, there is a need for industry to see the value in the collaboration with academia.
Without seeing the value companies are not willing to invest time and money in the
collaboration with academia. This may be the reason for the observation made by
Lionel Briand in his key note at the International Conference on Software Mainte-
nance, where he states that

Though in essence an engineering discipline, software engineering research has always been
struggling to demonstrate impact. This is reflected in part by the funding challenges that the
discipline faces in many countries, the difficulties we have to attract industrial participants
to our conferences, and the scarcity of papers reporting industrial case studies.1

The goal of this chapter is to explore the challenges, benefits, and practices that
help in industry and academia collaboration to facilitate process improvement. In
particular, the benefits in relation to the investments made by the companies are
highlighted. As this chapter is an experience report, it reflects the author’s view of
what is important. Three types of support are discussed:

1. Helping the companies to assess their processes. A company could hire a consul-
tant to asses their processes, or they could solely do this themselves, for example
through a department responsible for process assessment and improvement. We
argue that researchers canmake a unique and valuable contribution in this activity
(Sect. 12.3).

2. Supporting the company with “scientific knowledge” from research papers. Prac-
titioners are often not aware of scientific publications (e.g., many will not be
aware of scientific journals that also require a subscription to access their con-
tents). Though, as relevant evidence is provided in these publication forums,
researchers may serve as the “bridge” between academic literature and industry
practice, making the findings accessible to industry (Sect. 12.4). This may simply
be in the form of a report or presentation, or may contain more active involvement
as well (see Point 3).

3. As a researcher, actively inducing a change to the company to help improving the
processes. This type of support requires the researcher to actively induce changes
to processes within the company, aiming to improve the situation at the company
and at the same time scientifically capturing the lessons learned (Sect. 12.5).

1Available from: http://apsec2013.eng.chula.ac.th/keynotes/.

http://apsec2013.eng.chula.ac.th/keynotes/

12 A Researcher’s Experiences in Supporting Industrial … 237

12.2 Background and Context

In recent years, the interest in systematically analyzing and improving the col-
laboration between industry and academia in software engineering has increased.
This section discusses challenges and best practices as well as models of industry–
academia collaboration.

12.2.1 Challenges and Best Practices

When working with industry a wide range of challenges occur. In a recent systematic
review, we identified a total of 63 challenges that were reported in the literature
[11], which were categorized into ten groups. Examples of frequently mentioned
challenges were the differences in time horizons, the lack of relevance of research
results hindering industry adoption, addressing validity concerns when working in a
realistic environment, and the mismatch between industry and academia with respect
to different time horizons as well as interests and objectives. Table12.1 provides an
overview of the most common challenges reported in the literature.

In order to address such challenges, a variety of best practices and success factors
were presented in the literature [11]. Table12.2 provides an overview of the suc-
cess factors. Wohlin et al. [54] prioritized success factors with the help of industry
practitioners. An actual prioritization is a valuable complement to the frequency of
mentions in the literature, as these frequencies indicate the commonality of best prac-
tices used, but not their importance. Thus, Table12.2 shows the rank of the common
practices as reported by Wohlin et al. [54] for two countries (Sweden and Australia)
based on prioritizations done by experts from industry and academia. The literature
and the ranking show that management support, champions, and social skills as well
as the ability to show benefits are essential. The practices relate to activities to take

Table 12.1 Frequently mentioned challenges in the literature (most common of those identified by
Garousi et al. [11])

Challenge References

C1 Differences in time horizons [2, 3, 13, 18, 19, 45, 47, 48, 51]

C2 Lack of industrial relevance [5, 10, 14, 24, 27, 36, 39, 49]

C3 Lack of resources from industrial and academia side [3, 9, 13, 19, 25, 30, 42, 48]

C4 Privacy concerns and limited access to data [3, 7, 9, 15, 18, 25]

C5 Different goals and interests [13, 26, 45, 49, 51, 54]

C6 Different perceptions of what are valuable solutions
and technologies

[4, 15, 19, 26, 41, 53]

C7 Different terminology and vocabulary [10, 18, 19, 25, 31]

238 K. Petersen

Table 12.2 Frequently mentioned success factors in the literature (cf. [11]).

Success factors References Rank [54]

S1 Provide workshops and seminars on a
regular basis

[9, 14, 15, 24–27, 30, 45, 47–49, 51,
52, 54, 54]

S2 Ensure management commitment [2, 7, 13, 15, 25, 25, 27, 27, 43, 45,
48, 49, 51, 52, 54]

1S, A

S3 Understand the real-world problems [4, 9, 13–15, 18, 20, 24–27, 31, 49,
51, 52, 54]

S4 Work in an agile and incremental way [2, 14, 15, 20, 24, 25, 27, 30, 36, 45,
47–49, 51, 54]

S5 As a researcher be co-located on-site [7, 14, 15, 25, 30, 36, 41, 42, 45, 47,
52, 54]

S6 Assure the support of the right
champion

[15, 18, 25, 26, 41, 43, 45, 48, 51,
52, 54]

2S, A

S7 Make benefits of research solutions
explicit (impact)

[2, 3, 7, 9, 10, 14, 20, 41, 48, 49] 3A

S8 Assure the quality of the solution
(scalable, sustainable, adaptable,
simple, customizable)

[4, 10, 13, 20, 25, 25, 27, 39, 43]

S9 Improve communication and
presentation skills

[9, 13, 18, 19, 24, 25, 43, 45, 47]

S10 Be willing to make long-term
commitments

[9, 15, 19, 24, 30, 36, 48, 53]

S11 Make an effort to establish trust [15, 20, 42, 43, 48, 51, 54]

S12 Improve university and research
communities

[3, 19, 26, 30, 53, 54]

S13 Improve social skills [15, 45, 49, 51, 52] 3S

S14 Work as a team between both partners [9, 19, 20, 36, 51]

S: Sweden, A: Australia

place in industry–academia collaboration. In order to achieve a successful collabo-
ration, it is important to structure the process of collaboration and make informed
decisions.

12.2.2 Industry and Academia Collaboration Processes

In the literature, we can find proposals for processes and activities to facilitate the
collaboration between industry and academia in joint research projects. The technol-
ogy transfer model [14] distinguishes the two perspectives of academia and industry,
and emphasizes which activities are strongly tied to either perspective (Fig. 12.1). In
the beginning of the collaboration, it is important to understand the problem to be
solved (mapping to success factor S3). The problem provides input to the solutions
we should be looking for in the literature (state of the art). This provides input to

12 A Researcher’s Experiences in Supporting Industrial … 239

Fig. 12.1 Technology transfer model (according to [14])

jointly formulate a candidate solution solving the problem. It is recommended to test
the solution before utilizing it in industry. That is, validation in academia (e.g., in
the form of a controlled experiment or a case study in a student project) should be
conducted before investing industry resources in testing the solution. This allows to
learn and improve the candidate solution before trying it in the industry setting.

In the industrial context, two types of validationwere recommended, namely static
and dynamic validation. During static validation, the practitioners provide feedback
on the solution, e.g., after a presentation, walk through, or trying out the solution on
a small-scale example. During the dynamic validation, the solution is used in the live
environment. The process is iterative in nature and lessons learned are incorporated
in the candidate solution.When the solution is stable and deemed useful it is released.
At that stage, the company ought to be able to use the solution without the support
of the researcher.

Action research has been proposed as ameans to collaborate between industry and
academia [36]. Action research shares many similarities to the technology transfer
model. Both approaches highlight the diagnosing (problem understanding) activity,
and are iterative in nature. Another aspect that is crucial in action research is the
participatory nature, where the researchers should be embedded in the organization
sharing their experience and knowledge and introducing a change (e.g., a solution to
improve the software processes).

The following sections provide the experiences of participating in the three types
of support in process improvement highlighted in the introduction, namely (1)
help the company to understand their context, processes, challenges, and where to
improve, (2) support the company with “scientific knowledge” from research papers,
and (3) as a researcher, actively inducing a change to the company.

240 K. Petersen

12.3 Helping the Company to Assess Their Processes

Helping companies to assess their processes relates to the problem and issue iden-
tification step in Fig. 12.1. Large organizations are complex in terms of the number
of systems, the number of people involved in the development of software, and the
processes followed. It is a challenge to gain a common understanding of what is
working or not working well, and what the effects of process improvement activities
are. In this context researcher participation is of value. This section reports experi-
ences of participating in the a research activity to support a large-scale organization
in understanding the effects of their shifts to an incremental process with agile prac-
tices from an originally plan-driven process. Table12.3 summarizes the context of
the experience reported.

12.3.1 Challenges

In general, the challenges reported in Table12.1 seem to be relevant to any industry–
academia collaboration.

In the reported case, the biggest challengewas to understand the context and needs.
In the company the employees often refered to concepts in the form of abbreviations,
which have to be mapped to general concepts (e.g., Last System Version (LSV) test
was an integration test). In particular, as PhD student, one has beenmostly exposed to
terminology used in literature and often this terminology does notmap to the practice.
For example, the term “unit test” may not map at all to its use in the literature [44].
Another challenge was to find acceptance of the findings if they are contradicting
with the conclusions drawn by the practitioners.

Table 12.3 Helping the company to assess their processes—case overview

Case attribute Description

Company Provider of solutions to enable large-scale Telecom operations

Goal of the company Gain an understanding of the effect that their change to incremental
and agile development had on their development performance

Research methods used Industrial case study using triangulation (interviews, study of
measurements, document analysis)

Researcher role Industrial PhD student with full employee access (access card, PC,
access to databases), parts of the salary paid by the company and the
university

Related publications The case study designs and results are reported in [32, 33, 35]

12 A Researcher’s Experiences in Supporting Industrial … 241

In the literature, another common threat was that resources were not available
and there were concerns with regard to access to data. These challenges are relevant,
though theywere not hindering the research during the initial phase of the PhD studies
(helping the company to analyze their processes and finding improvement areas),
which can be explained by the best practices and the history of the collaboration
with the company, which are reflected on in the next section.

12.3.2 Best Practices and Related Benefits

The following best-practices have been observed as beneficial:

• Strive and establish a long-term partnership
• Employment, co-location and access
• Consider an industrial PhD student as researcher
• Having champions and contact persons
• Communicate results
• Agree on privacy handling

Strive for and establish a long-term partnership A key prerequisite for the col-
laboration and the access to people is an interest and commitment from the company.
Given the complex nature of the recent shift to agile was interesting for the com-
pany to investigate as the effects were not well understood. Thus, the company was
interested and made interviewees available in a timely fashion. A reason for the
interest was also the long-term collaboration ongoing between the university and
the company. Hence, trust has already been established. Thus, one ought to strive
for long-term collaboration with companies as this eases collaboration and reduces
many challenges commonly observed. In particular, a strategic partnership between
companies and a research institution should be the goal.

Benefits In total 33 interviews were conducted in the end. If the company would not
have been interested in the investigation it would have been challenging to conduct
a high number of interviews. In different cases where companies were not strongly
interested, only a low number of interviewees or none could be obtained.With regard
to the reported case, the resources provided by the company were beneficial from
the academic perspective as a rich set of data and insights could be obtained, and at
the same time the research was also interesting from an academic perspective. From
the industrial perspective, this could be considered as a training and introduction to
the company, as without being introduced and understanding the context the collab-
oration with the researcher becomes less useful. As the PhD funding was available
for 5 years, it was important to efficiently introduce the researcher to the company;
such a case study was a very good way of doing that. In particular, as a researcher
one gets a good insight into the terminology used as well as a contact network.

242 K. Petersen

Employment, co-location and access Being an industrial PhD student with access
and an office at the company was perceived as extremely useful. Early on I shared an
officewith three other PhD students, but very soon the company realized that it would
be more beneficial to locate us in the departments and units where our work becomes
most relevant. As my work was focused on process improvement, I was co-located
in the office of the unit responsible for that (referred to as “Operational Improvement
Unit”). During the whole PhD, I was spending three to four days of the week in the
unit. This also involved regular discussions with colleagues, shared coffee breaks,
and also social events held by the company (e.g., Christmas celebrations).

Benefits The co-location and employment comes with several benefits. As a
researcher, the understanding of the context is greatly improved; in particular, due to
the co-location and ongoing discussions between members in the unit where I was
located. Also, help was immediately available, e.g., in order to understand abbre-
viations, documentation, and so forth. The employment was beneficial during the
interviews as the researcher is not perceived as external. For example, it was visible
on the access cards whether one is an employee or a guest/consultant. Consequently,
interviewees appeared very open to questions as they trusted the interviewer. The co-
location also meant that one may pick up interesting discussions and needs from the
company. This aids in understanding their challenges and thus facilitates the ability
of the researchers to increase the practical relevance of their research. Access to the
company’s systems and documentation was also essential to understand terminology,
access and prepare an analysis of measurements, etc. For example, in the study [33],
we analyzed the fault-slip through measure [6] and the effect of the change from
plan-driven to agile. The measure is powerful in determining the effectiveness of
tests, defining where defects should have been found, and where they were actually
found.

Consider an industrial PhD student as researcher When being embedded in the
company, there is a risk that the company may ask the researcher to act as a regular
employee. Thus, it is essential that the company does not consider an industrial PhD
student as an employee who does a PhD. Rather, the company benefits more if it
considers the student a researcher. In the regulations for PhD students in Sweden, it
is emphasized that the student shall spend 80% of the PhD time on research and PhD
courses, and 20% on other activities (either teaching at the university or operational
work in the industry). This assured that enough time was available for conducting the
actual research, which includes time not immediately visible as productive time, such
as studying research methodologies and designing the research, and the analysis of
data. In particular, the analysis of the qualitative data in this casewas time consuming.

Benefits In order for companies to accept the researcher role the unique benefits a
researcher may provide were as follows:

• Providing an outsider’s perspective: The researcher is not involved in the day-to-
day activities of the operations at the company. Thus, similar to a consultant the
researcher is less influenced and biased by the current processes and views present
in the company.

12 A Researcher’s Experiences in Supporting Industrial … 243

• In-depth analysis and high rigor: The researcher will follow a research methodol-
ogy in order to assess the processes of the company. For example, this includes an
emphasis on triangulation. In the case studies, we thus utilizedmultiple sources for
information, and covered multiple roles in the process when interviewing. Rigor
is of particular importance also for companies as the research is used as input for
decision making.

• Incorporation of insights from the scientific literature into the analysis: Practition-
ers often do not have access to scientific publishers and libraries, thus limiting their
ability to make use of the literature. Overall, the case study conclusions and the
insights become richer and more valid when comparing and complementing them
withfindings from literature. From the point of viewof understanding the processes
retrospectively this aspect is important. For example,when investigating the advan-
tages of agile development observed in the case (see case study results reported in
[32]), it could be interesting to understand why some advantages reported in the
literature are not observed, pointing to further potential for improvements. When
looking for solutions, the scientific literature becomes even more important to not
reinvent the wheel, and utilize the knowledge already obtained.

• High quality of reporting: Researchers are trained to package information in a
readable format, e.g., writing different types of papers (short papers, experience
reports, research studies in different forums such as journals and conferences).
This training becomes useful when summarizing and presenting information in
a concise manner, as was highlighted and appreciated in several occasions at the
company.

• Awareness of validity concerns (e.g., with respect to measurement data): As
researchersweanalyze the limitations of ourfindingswith regard to validity threats.
At the same time this analysis helps improve the collection of data. Furthermore,
an awareness of the validity of measurements is important when giving recom-
mendations to the companies. Overall, the consideration of validity with regard to
scientific guidelines (e.g., byRuneson andHöst [46]) contributes to the correctness
of the findings.

Having champions and contact persons As a new researcher in the organization
one would not know who to interview. This requires a good understanding of the
processes and roles in the organization. Thus, the champion plays an essential role.
The champion formulated which roles were available throughout the process, and
the researcher articulated the need to have a good coverage of the roles to achieve
an end-to-end understanding. Another role of the champion was to provide access to
the people company, helping to communicate with interviewees in order to convince
them to participate in the research activities. In particular, the e-mail to invite the
practitioners for an interview was most likely to be accepted when the champion
wrote the mail.

Benefits In the context of process assessment, the champion was a prerequisite to be
able to conduct the study with a high number of interviewees, who otherwise would
have been unlikely to participate.

244 K. Petersen

Communicate results As a means to communicate the results presentations were
given (e.g., at development unit meetings). Furthermore, an internal Wiki page was
created where all the results were summarized and links to research papers were
provided.

Benefits In particular, persons working with process improvement looked at the
summaries and full papers, and thus makes the progress of the research project and
value added to the company explicit for the organization. In one example, a member
of the process improvement group could utilize the information available to reflect
on how the organization has changed 2 years after the studies have been conducted,
indicating how the company has progressed further.

Agree on privacy handling Privacy concerns were handled on the project level
(i.e., what we were allowed to publish) and the individual level (handling of the
information collected from each individual).

• Project level: On the project level, a key agreement was that a paper needed to be
approved by a responsible from the company. Thus, a contact person was provided
by the company to check papers written for approval. In order to get the paper
approved, a number of rules were formulated which allowed to report the findings
in sufficient depth to make a valuable scientific contribution, but at the same
time were acceptable to the companies. The main rules were to not mention any
product names or organizational units. Furthermore, no absolute values ought to
be reported, but rather only relative values. For example, when reporting different
types of defects, not the absolute number of defects were stated, but the percentage
of the total defects associated with different defect types.

• Individual level: Each individual interviewee was informed that they do not have
to answer any questions they do not want to answer. Furthermore, data would only
be presented in aggregated form, not being associated with an individual.

Benefits From a researcher’s perspective, there was no hindrance in publishing the
results of research studies. In most cases, it was also approved that we could name
the company when following the above rules. In particular, when investigating and
reporting on process improvements, it was also positive for the company to report
that they are investigating and continuously working on improving their processes.

12.4 Support with Scientific Knowledge (“State of the Art”)

This activity is reflected in the step of studying the state of the art as input for a
candidate solution (Fig. 12.1). A wide range of results are available in the litera-
ture to support and conduct processes. This ranges from how to plan, conduct, and
assess/measure improvements. The literature is published in scientific journals and
conferences and thus often not easily accessible to practitioners. To make use of
what is published in the literature in process improvement, it is helpful to involve a
researcher to make the knowledge accessible in companies. The case related to the
experiences reported in this section is summarized in Table12.4.

12 A Researcher’s Experiences in Supporting Industrial … 245

Table 12.4 Support with scientific knowledge—case overview

Case attribute Description

Company Automotive company

Goal of the company Gain input for analysis of their testing process with regard to
improvement potentials to become more agile

Research methods used Industrial case study to understand the problems and systematic
literature review [23]

Researcher role M.Sc. student embedded in the company in collaboration with
senior researcher (supervisor)

Related publications The study results are reported in [21]

12.4.1 Challenges

A vast amount of literature (such as empirical studies) exist on different topics of
process improvement. The challenge is how to scope the literature study to decide
what is most relevant for the company.

In particular, one has to decide to what degree do the findings match to the context
of the company. Fromprevious experience in the cases it was apparent that companies
are less likely to accept results that do not share similarities with their contexts.
For example, the automotive company (Table12.4) was most interested in studies
conducted in the automotive context, or at least in the context of embedded systems
development.

Furthermore, a problem found at the companywas often not isolated and covered a
variety of areaswhen looking at process improvement. In the example of the company
case, the challenges were not isolated to one activity of the test process. That is, from
a problem perspective the company needed to focus on challenges in test planning,
test design, test implementation, and assessment of testing outcomes. Challenges
occurred even outside the testing process which are, for example, dependent on the
requirements process. This makes the published literature reviews less useful as they
may not have the specific problem focus required by industry; for example, they
investigated a single solution (e.g., test-driven development [29]) or a very specific
problem (e.g., how to choose regression test cases [8]).

12.4.2 Best Practices and Related Benefits

The following best-practices have been observed as beneficial:

• Focusing the literature search on the domain and problem perspective
• Utilizing value stream mapping to map the literature findings to the processes

Focusing the literature search on the domain and problem perspective Recently,
as part of evidence-based software engineering, a more systematic way of finding

246 K. Petersen

and synthesizing findings from existing studies has been recommended (i.e., system-
atic literature reviews and mapping studies). Important activities in such studies are
search, study inclusion and exclusion, data extraction, and synthesis. When working
with a concrete problem from industry, we propose to scope the search for relevant
research results from two perspectives, the domain perspective and the problem per-
spective. With regard to the domain perspective, we searched for automotive as well
as embedded in combination with software. With regard to the problem perspective,
we looked into solutions for test processes, hence focusing on the key words test,
verification, and validation. In addition, we searched for requirements as this was an
area largely affecting the testing in the company. As the company wanted to have an
agile testing process, we also searched for embedded and automotive studies focus-
ing on agile, Scrum, Extreme Programming, and Lean Software Development. In
addition, it was important that the paper comprises an empirical evaluation in an
industrial context.

Benefits The key benefit of focusing the search was to reduce the effort of analyzing
the literature in order to provide timely feedback to the company. Conducting a full
literature review on all problem areas would not have been feasible. In addition, the
solutions are more trustworthy from the point of view of the practitioners when they
were obtained from their domain. That is, a practitioner in the telecommunication
domain would, for example, not consider the evidence from a different context as rel-
evant. For example, one’s experience at the company results from the Banking sector
were presented, which was not considered as relevant by the practitioners. Having a
background as a researcher plays a key role in designing such a literature study, as
the researcher was aware of different approaches to conduct literature studies, such
as how to search, select, and synthesize literature in a systematic way.

Utilizing value stream mapping to map the literature findings to the processes
In many projects focused on process assessment, we utilized value stream mapping
as a tool for process assessment and improvement. Value stream mapping comprises
of activities to assess a current process with regard to wastes, and provides a guide of
how to identify and document improvements. The value stream mapping activities
were complemented by utilizing the evidence obtained from the literature. Value
stream mapping consists of the following steps [22]:

1. Identify the current state process: In this step, the current process is drawn high-
lighting activities and waiting times between activities. Waiting times are an
indicator for inefficiencies, as are activities taking very long time. It is important
to capture the end-to-end process to understand the whole, and thus avoiding
suboptimization when seeking improvements.

2. Waste identification and root-cause analysis: The main wastes (i.e., everything
that does not contribute value to the customer) are identified, such wastes include
waiting times, extra processes, rework, and technical debt, etc. Thereafter, the
most significant wastes are prioritized and the root causes for them are inves-
tigated. As far as possible, this should be complemented by measurements and
documentation, which allow to triangulate information from what is said during
the waste identification and root cause analysis.

12 A Researcher’s Experiences in Supporting Industrial … 247

3. Creation of a future state process: Basedon the identifiedproblems, potential solu-
tions are identified and a new process is documented incorporating the solutions.
Multiple ways are possible to do this, such as using the value stream notation,
or using quantitative assessment of the impact of changes, such as using simu-
lations [1]. In order to identify the potential changes, we found it useful to first
locate where the root cause for a problem is in the process, which solution and
literature source addresses the problem, and then where the problem is addressed
in the future state process. Figure12.2 (an outcome of the research conducted in
[21]) shows a future state process with the improvements mapped to the activities
(solution proposal SP1 to SP7), where solution proposals are mapped to process
activities where they should be implemented. For example, the solution SP2 is
suggested in [40] and mapped to a concrete activity. As is evident, the solution
was from the area of automotive embedded systems, given the focusing of the
investigation of the state of the art [40].

Fig. 12.2 Future state map example from [21] that provides solution proposals (SP) to improve-
ments for specific activities

248 K. Petersen

Benefits The existing evidence and its mapping to the root-causes helped to achieve
traceability from problems to solutions. Furthermore, given the existing evaluations,
a rational could be given for why an improvement may be considered a viable option.
Value stream mapping helps in providing a framework to structure the assessment
activity, making the focus on customer value explicit, and allowing to focus on the
most significant wastes. Details on the use of value stream mapping can be found in
[1, 22, 28], and are further discussed in the following section (Sect. 12.5).

12.5 Actively Induce a Change to the Company

Introducing a change in the company requires multiple activities presented in
Fig. 12.1, namely proposing a candidate solution and conducting various validations
of it, such as static validation (getting feedback) and dynamic validation (trying a
solution in a live environment). I worked over a time period of over 5 years with sup-
porting an organization using lean and agile principles and approaches, this included
the proposal of lean measurements and visualizations as well as using value stream
mapping, described in Sect. 12.4 (see Table12.5).

12.5.1 Challenges

One key challenge was to get acceptance for the research solutions, a prerequisite
for the people to start using the solution. This is generally referred to as resistance of
change. Thus, in order for practitioners to invest their effort in learning and using new
methods, they have to be convinced about the benefit. We experienced a resistance
to change early on with respect to accepting and being willing to provide data in
order to conduct visualizations of the process flow. The challenge was addressed and
overcome by using multiple best practices as will be discussed later.

Table 12.5 Actively induce a change to the company—case overview

Case attribute Description

Company Telecom company

Goal of the company Improve the organization to become lean in terms of their
development process, including different lean processes and
measurements

Research methods used Multiple in industrial case studies and action research [36]

Researcher role Industrial PostDoc (part-time) and thereafter senior researcher with
access to the company, but no employment

Related publications The study results are reported in [1, 17, 22, 34, 37]

12 A Researcher’s Experiences in Supporting Industrial … 249

Another challenge we faced was the risk of loosing a champion. The company
was going through reorganizations, which also led to changes in the organizational
unit where I as a researcher was located. Consequently, this also was connected to a
change in champions when people were leaving the unit. Key champions also left the
company, which makes it more challenging to follow up and reenter the organization
with continuation-projects.

12.5.2 Best Practices and Related Benefits

The following best-practices have been observed as beneficial:

• Employment, co-location, and access
• Get involved in the regular work
• Educate and train people about research solutions
• Work in a team
• Work iteratively and incrementally
• Establish a steering group

Employment, co-location, and access We highlighted earlier that co-location is
a benefit when helping the company to assess their processes. When being actively
involved in improvement activities this becomes even more important, as improve-
ment activities require a continuous dialog and understanding of the situation. Fur-
thermore, choices for specific improvements may also be affected by political con-
siderations, which could only be understood when being more closely involved and
present in the environment.

Benefit The co-location was very beneficial and we believe was a key for improve-
ment suggestions to be adopted, as the co-location allowed to connect to a network
of people, gain champions (i.e., contributing to getting involved, see the next prac-
tice). An additional benefit of being co-located during the design and implementation
of improvements was to learn about other challenges of the company, not directly
related to the current research project. That is, the awareness of other challenges
allows for the identification of further collaboration opportunities, which facilitates
long-term collaboration.

Get involved in the regular work During process improvement activities, the
company had several tasks for the researcher to contribute. In particular, input and
analysis of data related to process measurements (in particular measuring the flow
of software development) was given on a monthly basis. The analysis was based
on the methods developed earlier in collaboration with the company [17, 34, 37]
to drive lean improvements. Given the regular interactions and preparations much
communication was needed, in particular, with data providers and participants of
meetings where the analyses conducted were reviewed. This allowed to become a
part of the team that was responsible for the analysis, and also creating a network
of people in different positions, including management. As mentioned earlier, it is

250 K. Petersen

important that the researcher still mainly stays in the role of a researcher, while active
involvement in the company’s activity is also important.

Benefit Given the good network and also the knowledge about the research spread
in the network, the risk of a loosing a champion is reduced. For example, when a new
person was taking the responsibility of the team analyzing the results, the person was
already familiar with the researcher given the active involvement in the company.
Furthermore, the contact network allowed to ask for help (e.g., in finding people that
could provide input in interviews or focus groups).

Educate and train people about research solutions Training and educating peo-
ple in the improvements proposedwas important. As an example, slides and examples
were created to show people how to interpret the process flow analysis proposed in
[34]. We also provided lectures to the stakeholders presenting the training material.
Furthermore, we utilized the train-the-trainer concepts. For example, in the studies
related to value stream activities, the researchers took part in moderating and con-
ducting the activity, and company representatives could observe to later on drive the
activities themselves.

Benefit One key goal of research is to achieve mutual knowledge exchange. As
researchers, we received very valuable feedback during training sessions. This
includes feedback on the improvement solution itself, but also about how to commu-
nicate the solution in a better way. The practitioners may only adopt an approach that
they find intuitive and simple to use (e.g., [20]), and training helped in facilitating a
good understanding.

Work in a team Besides training and education, the work in a team is important.
Working in a team refers to designing a solution together with the practitioners,
continuously seeking input and also having design meetings for solutions was very
valuable. Furthermore, practitionerswere also present during trainings and facilitated
workshops together with the researchers (e.g., in the context of the value stream
mapping activity).

Benefit When both sides, industry and academia, influence how the solution should
look like the commitment and engagement to implement the solution is increased.
That is, the practitioners are also more willing to champion the solution itself within
the company. We found this commitment essential for the solution to spread and
become part of the practices used. For example, for the flow and bottleneck visual-
izations practitioners were strongly involved, and were over time driving for such
visualizations to become part of the corporate dashboard. Or, value stream mapping
has been used across multiple development sites with the help of a champion at the
company. Another benefit of working in a team is that researchers and practitioners
may complement each otherwell. Earlier, the researchers havemore knowledge about
the solution which they transfer though they will lack knowledge of the domain and
also may not know people’s interests and motivations in the company. This knowl-
edge is available from the practitioners’ side. Both, the knowledge about the solution
and the knowledge about the company’s context and people were important for a
successful implementation of improvement solutions.

12 A Researcher’s Experiences in Supporting Industrial … 251

Overall, working in a team aswell as being co-located and putting effort in training
and education were important to address the challenge of accepting a solution as well
as reducing the dependence on one particular champion.

Work iteratively and incrementally Aswith software development, getting it right
the very first time is not likely. Finding solutions is an iterative process, and each itera-
tion provides important lessons learned. In one case, we proposed a solution we were
convinced about, and the solution failed. The solution was an elicitation instrument
for measurement program planning, with one measurement program being related
to lean and agile transformation. Directly after the sessions in which we recognized
the failure, we analyzed the reason for the failure which led to a completely different
approach to elicitation (see details in [38]). That is, in order to successfully utilize
research solutions in industrial processes, we have to be willing to change and adapt.
Thus, I utilized action research as a method, experiences on using action research
can be found in [36].

Benefits In action research it is important to report the results of each iteration,
as the reasoning for making changes in iterations provides an important learning
from a research perspective, as it answers why a solution has been designed the way
it was. Furthermore, working in iterations, starting small and then expanding and
trying a solution for process improvement in different contexts facilitates generaliz-
ability. Though, this may not be possible in small organizations, while in the large
organizations it was possible to study multiple teams and systems.

Establish a steering group Generally management support is important, and keep-
ing them in the loop was essential. A good way of doing this is to establish a steering
group where the researchers could present the results they achieved at the company
on a regular basis (monthly or bi-monthly). As part of the steering group, senior
management as well as champions should participate. Furthermore, depending on
the need, people interested in the results were invited.

Benefits Having a steering group makes the progress and results transparent, which
positively affects the long-term buy in from the company. The steering group is an
additional opportunity to get feedback on an improvement solution and supports to
plan the continuation of the research.

12.6 Conclusion

Industrial processes are complex and are hard to simulate in academic environments,
e.g., student projects. Large organizations often develop products with hundreds of
people involved. Thus, when conducting process improvement research it is impor-
tant to conduct the research in realistic environments. In this chapter, experiences of
collaborating with the industry to achieve success in software process improvement
are presented. The experiences cover the different activities of industry–academia

252 K. Petersen

collaboration from problem analysis, how to utilize academic literature to analyze
processes, and the development of improvement solutions.

Overall, it was helpful to have a long-term partnership with the company. Further-
more, employment and co-location was beneficial as it allowed to build a network
and learn about the context of the company. As co-location is so effective in pro-
ducing valuable results, I encourage companies to hire industrial PhD students. The
researchers need to be supported by champions, and this chapter provides sugges-
tions how to assure commitment from the company and champions, in particular
communication of results, training, working in a team, and building a network was
key.

Researchers are also encouraged to conduct investigations of how industry and
academia can collaborate in a good way in the context of software engineering.

12.7 Further Reading

A comprehensive and synthesized list of challenges, best practices, and anti-patterns
can be found in Garousi et al. [12]. The report by Garousi et al. is based on a system-
atic literature reviewaggregating existingworks on industry–academia collaboration.
Different concrete processes and guidelines have been proposed. The process pro-
posed by Gorschek et al. [14] describes the process presented in Sect. 12.2 in further
detail, and complements it by key lessons learned.

Other chapters in this book complement the findings presented in this chapter. As
we propose to work iteratively, and also in an action researchway, the work presented
in Chap. 5 providing further experiences in disruptive process improvement. In order
to find and suggest improvements as a researcher, engineering approaches presented
in Chap. 10 are of value and may prove useful in value stream mapping activities
suggested here.

References

1. Ali, N.B., Petersen, K., de França, B.B.N.: Evaluation of simulation-assisted value stream
mapping for software product development: two industrial cases. Inf. Softw. Technol. 68, 45–
61 (2015)

2. Baldassarre, M.T., Caivano, D., Visaggio, G.: Empirical studies for innovation dissemination:
ten years of experience. In: Proceedings of the International Conference on Evaluation and
Assessment in Software Engineering, pp. 144–152. ACM, New York (2013)

3. Briand, L.C.: Useful software engineering research - leading a double-agent life. In: Proceed-
ings of the IEEE International Conference on Software Maintenance, p. 2. IEEE, Washington,
DC (2011)

4. Briand, L.C.: Embracing the engineering side of software engineering. IEEE Softw. 29(4), 96
(2012)

http://dx.doi.org/10.1007/978-3-319-31545-4_5
http://dx.doi.org/10.1007/978-3-319-31545-4_10

12 A Researcher’s Experiences in Supporting Industrial … 253

5. Connor, A.M., Buchan, J., Petrova, K.: Bridging the research-practice gap in requirements
engineering through effective teaching and peer learning. In: Proceedings of International
Conference on Information Technology: New Generations, pp. 678–683 (2009)

6. Damm, L., Lundberg, L., Wohlin, C.: Faults-slip-through - a concept for measuring the effi-
ciency of the test process. Softw. Process: Improv. Prac. 11(1), 47–59 (2006)

7. Eldh, S.: Some researcher considerations when conducting empirical studies in industry. In:
Proceedings of the International Workshop on Conducting Empirical Studies in Industry, pp.
69–70. IEEE Press, Piscataway, NJ (2013)

8. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test selection
techniques. Inf. Softw. Technol. 52(1), 14–30 (2010)

9. Enoiu, E.P., Causevic, A.: Enablers and impediments for collaborative research in software
testing: an empirical exploration. In: Proceedings of the International Workshop on Long-term
Industrial Collaboration on Software Engineering, pp. 49–54. ACM, New York (2014)

10. Franch Gutiérrez, J., Ameller, D., Ayala Martínez, C.P., Cabot Sagrera, J.E.A.: Bridging the
gap among academics and practitioners in non-functional requirements management: some
reflections and proposals for the future. Modelling and Quality in Requirements Engineering,
pp. 267–273. Verlagshaus Monsenstein und Vannerdat (2012)

11. Garousi, V., Petersen, K., Özkan, B.: Industry-academia collaborations in software engi-
neering: A systematic literature review. Technical Report, Hacettepe University Soft-
ware Engineering Research Group, HUSE-2015-01. https://drive.google.com/open?id=
0B6dKdxaNjBENSWRwRlNJbExYUWc (2015)

12. Garousi, V., Petersen, K., Özkan, B.: Online slr repository for industry-academia collaborations
in SE. http://goo.gl/gWrGrg (2015)

13. Glass, R.L., Hunt, A.: Software Conflict 2.0: The art and science of software engineering.
developer.* Books (2006)

14. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: A model for technology transfer in practice.
IEEE Softw. 23(6), 88–95 (2006)

15. Grünbacher, P., Rabiser, R.: Success factors for empirical studies in industry-academia collab-
oration: a reflection. In: Proceedings of the International Workshop on Conducting Empirical
Studies in Industry, pp. 27–32. IEEE Press, Piscataway (2013)

16. Ivarsson,M.,Gorschek, T.:Amethod for evaluating rigor and industrial relevance of technology
evaluations. Empir. Softw. Eng. 16(3), 365–395 (2011)

17. Jabangwe, R., Petersen, K., Smite, D.: Visualization of defect inflow and resolution cycles:
Before, during and after transfer. In: Proceedings of the Asia-Pacific Software Engineering
Conference, pp. 289–298. IEEE Computer Society, Washington, DC (2013)

18. Jain, S., Babar, M.A., Fernandez, J.: Conducting empirical studies in industry: balancing rigor
and relevance. In: Proceedings of the InternationalWorkshop on Conducting Empirical Studies
in Industry, pp. 9–14. IEEE Press, Piscataway, NJ (2013)

19. Kaindl, H., Brinkkemper Jr., S., Bubenko, J.A., Farbey, B., Greenspan, S.J., Heitmeyer, C.L.,
do Prado Leite, J.C.S., Mead, N.R., Mylopoulos, J., Siddiqi, J.I.A.: Requirements engineering
and technology transfer: obstacles, incentives and improvement agenda. Requir. Eng. 7(3),
113–123 (2002)

20. Kanso, A., Monette, D.: Foundations for long-term collaborative research. In: Proceedings of
the International Workshop on Long-term Industrial Collaboration on Software Engineering,
pp. 43–48. ACM, New York (2014)

21. Kasoju, A., Petersen, K., Mäntylä, M.: Analyzing an automotive testing process with evidence-
based software engineering. Inf. Softw. Technol. 55(7), 1237–1259 (2013)

22. Khurum, M., Petersen, K., Gorschek, T.: Extending value stream mapping through waste def-
inition beyond customer perspective. J. Softw.: Evol. Process 26(12), 1074–1105 (2014)

23. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in soft-
ware engineering. Joint Technical Report EBSE 2007-001, v. 2.3, KeeleUniversity andDurham
University (2007)

24. Krishnan, P., Ross, K.J., Salas, P.A.P.: Industry academia collaboration: An experience report
at a small university. In: Proceedings of the Conference on Software Engineering Education
and Training, pp. 117–121. IEEE, Washington, DC (2009)

https://drive.google.com/open?id=0B6dKdxaNjBENSWRwRlNJbExYUWc
https://drive.google.com/open?id=0B6dKdxaNjBENSWRwRlNJbExYUWc
http://goo.gl/gWrGrg

254 K. Petersen

25. Martínez-Fernández, S., Marques, H.M.: Practical experiences in designing and conducting
empirical studies in industry-academia collaboration. In: Proceedings of the International
Workshop on Conducting Empirical Studies in Industry, pp. 15–20. ACM, New York (2014)

26. Misirli, A.T., Erdogmus, H., Juzgado, N.J., Dieste, O.: Topic selection in industry experiments.
In: Proceedings of the International Workshop on Conducting Empirical Studies in Industry,
pp. 25–30. ACM, New York (2014)

27. Morris, P., Masera, M., Wilikens, M.: Requirements engineering and industrial uptake. In: Pro-
ceedings of the International Conference on Requirements Engineering (Putting Requirements
Engineering to Practice), pp. 130–137. IEEE, Washington, DC (1998)

28. Mujtaba, S., Feldt, R., Petersen, K.: Waste and lead time reduction in a software product
customization process with value stream maps. In: Proceedings of the Australian Software
Engineering Conference, pp. 139–148. IEEE Computer Society, Washington, DC (2010)

29. Munir, H., Moayyed, M., Petersen, K.: Considering rigor and relevance when evaluating test
driven development: a systematic review. Inf. Softw. Technol. 56(4), 375–394 (2014)

30. Osterweil, L.J., Ghezzi, C., Kramer, J., Wolf, A.L.: Determining the impact of software engi-
neering research on practice. IEEE Comput. 41(3), 39–49 (2008)

31. Petersen, K., Engström, E.: Finding relevant research solutions for practical problems: the serp
taxonomy architecture. In: Proceedings of the International Workshop on Long-term Industrial
Collaboration on Software Engineering, pp. 13–20. ACM, New York (2014)

32. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and incremental
development between state of the art and an industrial case. J. Syst. Softw. 82(9), 1479–1490
(2009)

33. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremental software
development approach with agile practices - an industrial case study. Empir. Softw. Eng. 15(6),
654–693 (2010)

34. Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Softw.: Prac. Exp.
41(9), 975–996 (2011)

35. Petersen, K., Wohlin, C., Baca, D.: The waterfall model in large-scale development. In: Pro-
ceedings of the International Conference on Product-Focused Software Process Improvement.
Lecture Notes in Business Information Processing, vol. 32, pp. 386–400. Springer, Berlin
(2009)

36. Petersen,K.,Gencel,Ç.,Asghari,N.,Baca,D.,Betz, S.:Action research as amodel for industry-
academia collaboration in the software engineering context. In: Proceedings of International
Workshop on Long-term Industrial Collaboration on Software Engineering, pp. 55–62. ACM,
New York (2014)

37. Petersen, K., Roos, P., Nyström, S., Runeson, P.: Early identification of bottlenecks in very
large scale system of systems software development. J. Softw.: Evol. Process 26(12), 1150–
1171 (2014)

38. Petersen, K., Gencel, Ç., Asghari, N., Betz, S.: An elicitation instrument for operationalising
gqm+strategies (GQM+S-EI). Empir. Softw. Eng. 20(4), 968–1005 (2015)

39. Pfleeger, S.L.: Understanding and improving technology transfer in software engineering. J.
Syst. Softw. 47(2–3), 111–124 (1999)

40. Puschnig, A., Kolagari, R.T.: Requirements engineering in the development of innovative auto-
motive embedded software systems. In: Proceedings of the IEEE International Conference on
Requirements Engineering, pp. 328–333. IEEE, Washington, DC (2004)

41. Raschke, W., Zilli, M., Loinig, J., Weiss, R., Steger, C., Kreiner, C.: Embedding research in
the industrial field: a case of a transition to a software product line. In: Proceedings of the
International Workshop on Long-term Industrial Collaboration on Software Engineering, pp.
3–8. ACM, New York (2014)

42. Rombach, H.D., Achatz, R.: Research collaborations between academia and industry. In: Pro-
ceedings of the Workshop on the Future of Software Engineering, pp. 29–36. IEEE Computer
Society Press, Washington, DC (2007)

43. Rombach, H.D., Ciolkowski, M., Jeffery, D.R., Laitenberger, O., McGarry, F.E., Shull, F.:
Impact of research on practice in the field of inspections, reviews and walkthroughs: learning
from successful industrial uses. ACM SIGSOFT Softw. Eng. Notes 33(6), 26–35 (2008)

12 A Researcher’s Experiences in Supporting Industrial … 255

44. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23(4), 22–29 (2006)
45. Runeson, P.: It takes two to tango - an experience report on industry - academia collaboration.

In: Proceedings of the IEEE International Conference on Software Testing, Verification and
Validation, pp. 872–877. IEEE, Washington, DC (2012)

46. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

47. Runeson, P., Minör, S.: The 4+1 view model of industry-academia collaboration. In: Pro-
ceedings of the International Workshop on Long-term Industrial Collaboration on Software
Engineering, pp. 21–24. ACM, New York (2014)

48. Runeson, P., Minör, S., Svenér, J.: Get the cogs in synch: time horizon aspects of industry-
academia collaboration. In: Proceedings of the InternationalWorkshop onLong-term Industrial
Collaboration on Software Engineering, pp. 25–28. ACM, New York (2014)

49. Sandberg, A., Pareto, L., Arts, T.: Agile collaborative research: action principles for industry-
academia collaboration. IEEE Softw. 28(4), 74–83 (2011)

50. Sjøberg, D.I.K., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic, A., Koren,
E.F., Vokác, M.: Conducting realistic experiments in software engineering. In: Proceedings of
the International Symposium on Empirical Software Engineering, pp. 17–26. IEEE, Washing-
ton, DC (2002)

51. Wohlin, C.: Empirical software engineering research with industry: top 10 challenges. In:
Proceedings of the International Workshop on Conducting Empirical Studies in Industry, pp.
43–46. IEEE Press, Piscataway, NJ (2013)

52. Wohlin, C.: Software engineering research under the lamppost. In: Proceedings of the Interna-
tional Joint Conference on Software Technologies, pp. IS–11. ICSOFT (2013)

53. Wohlin, C., Regnell, B.: Strategies for industrial relevance in software engineering education.
J. Syst. Softw. 49(2–3), 125–134 (1999)

54. Wohlin, C., Aurum, A., Angelis, L., Phillips, L., Dittrich, Y., Gorschek, T., Grahn, H., Hen-
ningsson, K., Kågström, S., Low, G., Rovegard, P., Tomaszewski, P., Toorn, C.V., Winter,
J.: The success factors powering industry-academia collaboration. IEEE Softw. 29(2), 67–73
(2012)

Chapter 13
Lessons Learned from Co-Evolution
of Software Process and Model-Driven
Engineering

Regina Hebig, Andreas I. Schmied and Ingo Weisemöller

Abstract Software companies need to cope with permanent changes in market.
To stay competitive it is often inevitable to improve processes and adopt to new
technologies. Indeed, it is well known that software processes and model-driven
engineering (MDE) are subject to evolution. Simultaneously, it is known that MDE
can affect process tailoring, which makes it possible that evolution in MDE triggers
process evolution and vice versa. This can lead to undesired process changes and
additional cost, when process adaptations constitute a need for further investments
in MDE tooling. However, there is little knowledge so far whether this co-evolution
exists and how it looks like. In this chapter, we present two industrial case studies
on co-evolution of MDE and software process. Based on these case studies, we
present an initial list of co-evolution drivers and observations made on co-evolution
of software processes and MDE. Furthermore, we compile our lessons learned to
directly help process managers dealing with co-evolution.

13.1 Introduction

Customization and optimization of software processes is important for companies to
stay efficient and to be able to dealwith arisingnewchallenges.Tailoringof processes,
e.g., by adapting activities, artifacts, and roles [19], is the first step in adjusting a
process to the company’s or project’s needs. Furthermore, process standards evolve,

R. Hebig (B)
Software Engineering Division, Chalmers University
of Technology & University of Gothenburg, Chalmersplatsen 4,
SE-412 96 Gothenburg, Sweden
e-mail: hebig@chalmers.se

A.I. Schmied
Capgemini Deutschland GmbH, Löffelstraße 46, 70597 Stuttgart, Germany
e-mail: andreas.schmied@capgemini.com

I. Weisemöller
Carmeq GmbH, Carnotstr. 4, 10587 Berlin, Germany
e-mail: ingo.weisemoeller@carmeq.com

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_13

257

258 R. Hebig et al.

as for example the V-Modell XT for which by now four major versions have been
released.What the variation amongst several instances of a software process line actu-
ally looks like in practice is approached in [15], where the evolution of V-Modell XT
variants is studied to identify what changes occur most. Thus, evolution of soft-
ware processes is a well-known and desired phenomenon. In fact, the overview in
[12] shows: it can be expected that underlying technologies and platforms have the
potential to cause evolution of software processes, which need to accommodate the
changes. One such technology is model-driven engineering (MDE) that targets at
improving quality and efficiency of software development by introducing modeling
languages in addition to source code. MDE aims to provide a higher level of abstrac-
tion which can be used to support communication and planning, but also for early
quality assurance and code generation [5].

Similar to software processes,MDE is subject to evolution as well. Such evolution
occurs to the used (modeling) language versions, but also to single automated steps,
such as transformations or code generators [29]. As we found in our previous work,
in practice, it is not seldom that MDE evolution goes even further and can affect
the whole structure or combination of used languages, tools, and automated steps
[8]. Hence, when using MDE, evolution needs to be expected. Nevertheless, there
is a general awareness that software processes and MDE are not independent [9].
Those impact can be far reaching—even affecting the structure of phases or sprints
as described in [16], or simply affect the roles [18]. In our previous survey, we
found that—despite the awareness for this topic—there is still a big lack in the
understanding of the interconnection of both, software process and MDE [7].

It attracted our attention that the aspects of software process that are related to
MDE, such as roles, are also known subjects to software process evolution [15, 19].
Taking the points above: if there is (a) evolution in software processes, (b) evolution
inMDE, and (c) amutual influence between software processes (tailoring) andMDE,
it is probable that, when MDE is used, the evolution of software process and MDE
is interrelated, too. Therefore, we formulate the following working hypothesis:

Working Hypothesis (Co-Evolution). There is a co-evolution of an applied soft-
ware process and the used MDE.

So far there is no knowledge how this co-evolution (if existent) looks like. For
example, is the co-evolution working in both directions or is it single directed, i.e.,
propagating evolution only from the software process to the MDE, or only the other
way around? If the process can be affected by co-evolution, what aspects of a process
can be affected by this “tailoring on the fly”?

These questions are relevant, as answers can imply consequences for the cost and
success of process tailoring. Imagine the MDE evolution could trigger unintended
or even unnoticed process evolution. That would lead to the risk that the software
process does not fit the intended tailoring anymore thus risking its success. A possible
consequence is that specifications and standards regarding process quality cannot be
met. Further, if software process evolution could lead to the need of MDE evolution,
this might cause expensive changes on MDE tools, which would become an addi-
tional cost factor. Therefore, we are convinced that gaining more knowledge about

13 Lessons Learned from Co-Evolution of Software … 259

co-evolution of software processes andMDEwill lead to important insights for both,
practitioners and researchers.

In this chapter, we approach the above-mentioned questions by presenting and
investigating two industrial case studies. In the context of our previous work, we
stared to capture evolution histories of the MDE approach of the two studied cases
(together spanning 14 evolution steps). The case studies had been captured using
semi-structured interviews. For this chapter, we re-approached the two case studies
and systemically examined their MDE evolution histories. The goal of this exami-
nation was to identify (a) the evolution steps of the MDEs that had been triggered by
preceding changes in the process, and (b) the evolution steps of the MDEs that had
caused succeeding changes in the process. For each identified pair of MDE change
and process change, we further investigate the situations between preceding and
succeeding change. This way we learn about the “drivers” of co-evolution.

Altogether,we found eight cases of changes that triggered co-evolution: fourMDE
evolution steps that were followed by process changes, and four MDE evolution
steps that had been caused by preceding process changes. This collection confirms
our working hypothesis that co-evolution between software processes and MDE
exists. Moreover, we retrieved three kinds of results: First, we identified co-evolution
drivers, i.e., needs or additional burdens that arise as a result from evolution of
software process or MDE and are absorbed by co-evolution. These drivers can also
be improvement opportunities. Further, we made some observations on co-evolution
of which we assume they will help researchers and practitioners better understand
co-evolution of processes and MDE. Finally, we collected lessons learned that can
directly help process managers.

This chapter is structured as follows: In Sect. 13.2, we give an overview about
background and applied research method. Further, we present the two case studies in
Sect. 13.3 and Sect. 13.4. Afterward we introduce the collected co-evolution drivers,
observations, and lessons learned in Sect. 13.5 and discuss the results in Sect. 13.6.
Finally, we conclude the chapter in Sect. 13.7 and provide a guide to related works
in Sect. 13.8.

13.2 Background and Context

In this section, some background information is given. Further the investigation
method applied to perform the research presented in this chapter is described.

Background Evolution is an inevitable aspect of software development, which
affects processes and MDE as well. Software processes evolution mainly has two
reasons: on the one hand, process standards evolve and, on the other hand, evolution
might be appliedwithin companies for reasons of software process improvement. The
evolution of process standards happens frequently. For example, for the V-Modell
XT1 four major versions were published in the last 8 years.

1Available from: http://www.v-modell-xt.de/ (last accessed Jan. 10, 2016).

http://www.v-modell-xt.de/

260 R. Hebig et al.

ForMDEwe know today that evolution in practice affects the wholeMDE setting,
i.e., the languages, tools, transformation, generators, and artifacts [8]. This evolu-
tion is partially triggered by developers, who aim at easing development, e.g., by
introducing additional generators. Other reasons are changes in the priorities of a
company, such as shifting focus from increasing automation to reducing total cost
of ownership. It is estimated that structural evolution affects more than 25% of all
MDE settings [8].

There are good reasons to assume that the evolution of process and MDE might
be coupled. As for instance discussed by Stahl et al. [26] and Kleppe et al. [14],
model-driven techniquesmight be combinedwith arbitrary processes. ThatMDE and
software processes are not independent can be seen on two symptoms in literature.
First, there exist a multitude of processes or methodologies that have been developed
specifically forMDE [2]. Second, proposals for usingMDE in the context of standard
processes often define changes regarding the process and restrictions to the applied
MDE setting [7]. Based on such examples as well as on several empirical studies, it is
today known that MDE can affect the roles in a process as well as process structure.

Whether this interrelation between the process and MDE also causes a co-
evolution of both is investigated in this chapter.

Applied Investigation Method In the following, we describe how the case studies
have been conducted. The initial collection of the case studies happened in the context
of a previous study on evolution histories of MDE settings [8]. For this particular
study, we used semi-structured interviews. The usual duration of an interview was
one hour. For each case study, we performed an initial interview, followed by two
rounds of feedback in the formof follow-up interviews.Due to the partially structured
character of the interviews,we collected data on the structure of theMDE settings and
their evolution. In doing sowe also createdmodels of theMDE settings. The partially
unstructured character of the interviews enabled us to collect a lot information on
motivations and triggers for changes, but also on opinions about advantages and
improvement potentials of the captured development approaches.

For the extended investigation of the two case studies from AUTOSAR (with
interviewees from Carmeq) and Capgemini, we got together as team of two former
interviewees (one for each of the two case studies) and the former interviewer. This
allowed us to extend the data set, relying on the formerly captured evolution steps
of the MDE settings, with additional details about surrounding process changes.
Further, we extended the Capgemini case study with data on the evolution of an
MDE setting that is used by a second team when working in cooperation with the
team of the initial case study.

As a result of the data collection,wegained a data set of 14 steps ofMDEevolution,
as well as about 18 pages (spanning more than 5000 words) of interview records and
additional notes on process changes.

For the analysis of the data our first step was to identify cases of co-evolution
between process and MDE settings. Therefore, we systematically analyzed all cap-
tured MDE evolution steps and investigated whether they have been triggered by a
change in the process and whether they have been triggering changes in the process.

13 Lessons Learned from Co-Evolution of Software … 261

As a result we identified eight cases of co-evolution: five of them in the Capgemini
case study and three co-evolution steps in the AUTOSAR case study. Of these eight
cases, four represent MDE changes that triggered process changes, while the other
four represent MDE changes that were triggered by process changes.

In order to learn about co-evolution drivers, we further analyzed the identified co-
evolution steps. Therefore, we investigated the situations in between the respective
initial evolution step and the evolution step that was triggered by the initial one. In
fact, in some cases, three years or even more are between these two evolution steps,
while in other cases the co-evolution happened nearly instantly. After capturing these
situations, we systematically searched for commonalities and reasons that lead to the
co-evolution. These reasons we summarized as initial list of co-evolution drivers.

13.3 Co-Evolution at Capgemini

The first case study was conducted in collaboration with Capgemini in Germany.
Capgemini is a worldwide provider of consulting, technology, outsourcing services
and local professional services. Present in over 40 countries with almost 140,000
employees, the Capgemini Group helps its clients transform in order to improve
their performance and competitive positioning. The analyzed project was to build a
novel product data management system for electronics/electrics components in the
automotive industry. It was started from the beginning as an MDD project, to be
future-proof with respect to its methodological basis and flexible to respond at a
rapid pace to changes in the functional and nonfunctional requirements, which were
meant to be generated to a large extent.

13.3.1 Introduction to Case Study

The business requirements were provided by the client’s domain experts team and
were translated by the Capgemini design team into an IT concept. The IT concept
was represented as a UMLmodel and had to be constructed by a well-educated team
having technofunctional expertise. Having extended the UML base language with
UML profiles, a wide range of project-specific metaphors led to a semantically rich
model covering most of the functional and technical aspects necessary for further
automated processing and code generation.

Once the IT concept phase of a release had been completed, the UML model was
exported into a machine-readable XMI having all the tool-specific model features for
being transformed back into valid UML. Using this UML model as its main input,
several stages of generators and text templates produced a considerable amount of
the code and configuration artifacts of the project. Both, server-side and client-side
artifacts were created, ranging from scaffolding code necessary to fulfill architecture
requirements to parametrized business logic fragments. The generated artifacts were
strictly separated from their manually written complements and were coupled by
means of an enhanced generation gap pattern.

262 R. Hebig et al.

A different frequency of “model-generate-code” cycles was applied, depending
on the current phase of a project release. The overall tool chain was heavyweight with
a long sequence of model validation and transformation steps involved. Hence, the
typical length of iterations could vary to occupy several weeks during a specification
phase, with occasional generation events to assure model quality, or only a few days
during a development or bug fixing phase in crunch mode.

Besides the specification team of up to 20 people in a multinational team mix,
a generator operator team with rotating duty was responsible to conduct the heavy-
weight validation and generation process, and to monitor any manual correction by
the specification team. Due to a lack of constraining features in the chosen UML
tool, manual intervention was necessary to assure a minimum cycle time and high
quality of both model input and code output.

13.3.2 Observed Co-Evolution

In the following, we introduce the cases of co-evolution occurred in the Capgemini
case study.

Capgemini MDE Change 1

Initially, the main part of the requirements specification was created within a tra-
ditional requirements engineering tool as a collection of textual requirements. This
document was provided by the requirements provider team to the design team, which
then used a UML modeling tool [23] for the design. In an evolution of the require-
ments provider team’s MDE setting, this modeling tool was used to substitute the
requirements engineering tool. A special detail of this new setting was that the
two teams agreed upon specific “metaphors” to be used within the requirements
(now expressed as UML diagrams) to ensure a clear communication of the intended
semantics.

Resulting Situation This change in the MDE setting had two consequences. First,
the requirements provider team was confronted with a tool and language, they had
not used before. Also the expected degree of detail of the document changed with the
need to follow the metaphors. Thus, complexity of the requirements provider team’s
task increased. Second, both teams now worked with the same tool.

Resulting Changes In consequence, co-evolution of the process happened in two
changes:Capgemini process change 1 andCapgemini process change 2, as illustrated
in Fig. 13.1 (#1).

Capgemini Process Change 1

Immediately after Capgemini MDE change 1, an evolution of the process started:
the team roles changed. Originally, the whole requirements provider team was used
to write and change the document. However, due to the MDE change, most team
members stopped working on the model, while one of the teammembers specialized
and became an expert in the new modeling language and in applying the metaphors.

13 Lessons Learned from Co-Evolution of Software … 263

Fig. 13.1 Evolution steps in the Capgemini case study

The other team members developed the habit to approach the new expert when they
required changes to the document. This way, the roles in the requirements were pro-
viding team split up. Over the years, more team members were trained to participate
in modeling. However, the separation in modeling specialists and (textual) business
requirements authors endured. A smaller change was that, due to the increased level
of detail in the provided document, the communication of the two teams improved
when misunderstandings occurred.

Capgemini Process Change 2

A second process change in response to Capgemini MDE change 1 did not happen
immediately, but developed approximately 3 years later.Over time, both teams started
to work collaboratively on one model of the software specification. The potential
for this change arose when the MDE change made both teams working within the
same development environment. A benefit from this second process change was an
acceleration, since bottlenecks in one team could better be absorbed. In addition, the
design team found opportunities to earlier influence decisions thus reducing risks
during development, which also led to improvements regarding the overall cost.

Resulting Situation In consequence, the effort for model merges increased. Thus, it
became necessary to merge versions of the model that arise from changes made by
both teams. However, model merging is a nontrivial tasks that cannot be automated to

264 R. Hebig et al.

the same degree as for instance merges of source code. Consequently, a huge amount
of manual effort is involved.

Resulting Changes To this end, this process change indeed triggered itself a co-
evolution in the MDE: Capgemini MDE change 2.

Capgemini MDE Change 2

To improve the situation that arose fromCapgemini process change 2, members from
the design team implemented a small “model comparator” for the MDE setting, as
illustrated in Fig. 13.1 (#2). This tool can identify differences between two models
automatically to support the manual task of model merging.

Capgemini MDE Change 3

We identified a second change to the MDE setting of the team providing the require-
ments: the language (document format) used for creation of mock-ups of the user
interface was exchanged, as illustrated in Fig. 13.1 (#3). Originally, these were speci-
fied as a set of drawn sketches using a graphical mock-up tool. This tool was replaced
by the already used UML tool. Changing tool and modeling language were prerequi-
sites for the introduction of a generator that allowed the automated creation of code
for the desired user interface.

Resulting Situation Again, the requirements provider team faced the need for new
skills. Furthermore, the mock-up models now need to be more precise than before
to enable the code generation.

Resulting Changes Capgemini MDE change 3 triggered the two process changes
Capgemini process change 3 and Capgemini process change 4.

Capgemini Process Change 3

As for Capgemini MDE change 1, in consequence of Capgemini MDE change 3,
some team members specialized to be able to create and modify the mock-ups in the
required quality.

Capgemini Process Change 4

As a further consequence to the Capgemini MDE change 3, a member of the design
team permanently joined the requirements provider team in the role of a consultant.
Thus, a mixed team was created.

Capgemini Process Change 5

Another process change that affected the MDE setting was that the design team grew
over time. Furthermore, the teamwas globalized, leading to a distribution of the team
across three countries and two continents.

Resulting Situation Initially, all members of the design team worked on the same
models that were located in a version management system. However, this approach
did not scale for the grown and globalized team.

13 Lessons Learned from Co-Evolution of Software … 265

Resulting Changes In consequence, Capgemini MDE change 4 was triggered, as
illustrated in Fig. 13.1 (#4).

Capgemini MDE Change 4

To cope with the scaling problem resulting from Capgemini process change 5, it was
decided to migrate the model to a database. For each release, a new database was
created. Note that this co-evolution decision was a well-aware trade-off, where it was
accepted that the security of logging and check-in mechanism is lost.

Capgemini Process Change 6

Since the hot phase of development is over and the system became more and more
stable, the team size was reduced. Sometimes new features are developed in small
co-located teams working intensively on the model.

Resulting Situation This occasional change in the team structure, enables the use
of version management systems, such that their advantages could be used, leading
to Capgemini MDE change 5, as illustrated in Fig. 13.1 (#5).

Capgemini MDE Change 5

In response, for some mini-projects, the database was substituted by version man-
agement systems again.

13.4 Co-Evolution at AUTOSAR

The second case study has been performed in collaboration with AUTOSAR, a
worldwide development partnership standardizing software interfaces and data for-
mats for automotive software and systems modeling. Contributors to AUTOSAR are
distributed worldwide and across a variety of companies and organizations.

13.4.1 Introduction to Case Study

The standard, i.e., the product of AUTOSAR, largely consists of informal textual
documents and semiformal models. The documents are informal in that they have no
formally defined syntax or semantics. Semiformal models follow a syntax, in most
cases an XML syntax defined by AUTOSAR itself, but have no formally defined
semantics. The XML language is referred to as AUTOSAR XML or ARXML. Parts
of the documents and most of the semiformally defined models are generated from
UML models. Hence, the case study focuses on modeling, model transformations,
generation, and related activities in the standardizationwork.All activities are embed-
ded into the globally distributed development process of the standard.

266 R. Hebig et al.

AUTOSAR Development and Change Management Approach
The AUTOSAR community develops the standard in a non-agile process.
Changes are agreed on by a change control board. The implementation of
changes is monitored by the AUTOSAR change management. The develop-
ment is subdivided into phases such as concept elaboration, implementation,
and finalization. There is only one phase of each kind between two subsequent
releases, so the process is non-iterative.

The documents are maintained by approximately 100 document owners, who are
technical experts responsible for a single document or a small number of documents.
Most of the documents address a specific subdomain such as communication or OS.

On the contrary, the modeling is performed by a limited number of about 10–
20 modeling experts. These experts model APIs, configuration parameters and the
syntax of ARXML for multiple or all subdomains, and are responsible for the trans-
formation ofmodels to artifacts that are embedded into documents and to the semifor-
mal deliverables of the standard is automated. The transformation tools are operated,
configured, and maintained by about five tool developers in the Technical Office.
Figure13.2 depicts roles, documents, and artifacts in the model-based specification

Fig. 13.2 Roles, documents, and artifacts in the model-based specification of AUTOSAR (source
own work)

13 Lessons Learned from Co-Evolution of Software … 267

of AUTOSAR. The structural AUTOSAR models consist of three parts, all defined
in Sparx Systems’ Enterprise Architect:

• A model of the basic software modules and APIs according to a UML profile for
component and class diagrams (BSW UML model)

• Amodel of configuration containers and parameters for electronic control units as
UML object diagrams (ECU configuration or EcuC model)

• The metamodel of data formats for exchange between two parties that use
AUTOSAR

A change to the standard typically impacts both models and documents. In this case,
technical experts and modeling experts agree on the respective changes. A modeling
expert then implements the agreed changes in the model. The generator (developed
and configured by the tool developers) transforms the changed model to generated
artifacts. In this step, it generates diagrams and tables to be integrated into the
documents, and XML representations of the models, which are delivered as parts of
the standard. The results of the generation process are stored in a repository.

One of the technical experts, the document owner, applies the agreed changes
to the document sources. Also, he uses Word or LATEX macros to update diagrams
and tables in his document. The latest version of the artifacts can be automatically
downloaded from the repository. In case a generated artifact is used in multiple
documents, the high degree of automation of these steps substantially facilitates
keeping contents consistent across document boundaries.

The changes to AUTOSAR documents and models (except for editorial ones) are
performed according to a change documentation process and agreed on by a change
control board. In the implementation phase of anAUTOSAR release, themodelsmay
change daily or even multiple times a day. A new AUTOSAR release or revision is
published approximately twice a year. The latest release contains approximately 800
changes to the standard of which about 200 impact at least one model.

13.4.2 Observed Co-Evolution

The following cases of co-evolution were identified in the AUTOSAR case study.

AUTOSAR MDE Change 1

The first captured change in the AUTOSAR setting was the introduction of model-
ing. The rationale behind this change was to keep redundant information, such as
type structures and operation signatures, consistent across several documents of the
standard.

Resulting Situation Utilizing modeling within the heterogeneous team, where all
team members were allowed to manipulate the models, led to frequent merges of
changes applied by different people. However, as mentioned before, model merging
is nontrivial and leads to considerablemanualmerge efforts. Also, as theUMLprofile

268 R. Hebig et al.

evolved, modeling became unfeasible to be done by the technical experts alongside
their work on the documents.

Resulting Changes In consequence, AUTOSAR MDE change 1 triggered the two
process changes AUTOSAR process change 1 and AUTOSAR process change 2.

AUTOSAR Process Change 1

It took several years, but, eventually, the high efforts of parallel modeling (resulting
from AUTOSAR MDE change 1) led to the decision to reduce the number of persons
that change themodel. Thus, the roles were changed, such that the Technical Office is
responsible for BSW UMLmodel and the AUTOSAR work package “Methodology
and Configuration” that maintains the EcuC Model and the metamodel. This makes
about 20 modelers with clearly defined responsibilities rather than 100 document
owners modifying the models before.

AUTOSAR Process Change 2

To ensure that changes of generated artifacts meet the requirements of the technical
experts, and that only intended changes are delivered, a review activity was added as
a consequence of AUTOSAR MDE change 1. All artifacts provided by the modeling
experts pass a review by the technical experts before they are incorporated into the
documents.

Resulting Situation However, due to the high number of generated artifacts (hun-
dreds of diagrams and even thousands of tables, both in multiple file formats), a full
manual review of the artifacts became unfeasible, soon.

Resulting Changes Thus, AUTOSAR MDE change 2 was triggered.

AUTOSAR MDE Change 2

To bring back feasibility to the review process (introduced in AUTOSAR process
change 2), the modeling experts use diff tools for the generated artifacts.

AUTOSAR MDE Change 3

The tool chain shown in Fig. 13.2 turned out to produce slightly different results in
different environments. In the first step, the personal computer of onemodeling expert
was used as a reference system. For published documents, only artifacts produced
on that machine were used, making the team dependable on the availability of the
modeling expert’s computer. To improve the situation, the reference system was
moved to a permanently available continuous integration (CI) server. Over time,
additional tasks were deployed on this system, e.g., build documents from LATEX
sources or software builds.

Resulting Situation Due to the new importance of the CI server, the need for its
dependability increased and, with that, the need for clearly defined responsibilities.

Resulting Changes In consequence, AUTOSAR process change 3 was triggered.

13 Lessons Learned from Co-Evolution of Software … 269

AUTOSAR Process Change 3

To address the increased need for dependability on the CI server (AUTOSAR MDE
change 3), responsibility for its operation and maintenance were defined changing
roles and responsibilities. The Technical Office was appointed to operate and main-
tain the system.

13.5 Co-Evolution Drivers and Lessons Learned

In the following,we present the results of the systematic analysis of the collected data:
the identified co-evolution drivers, observations on co-evolution, and lessons learned
for process managers. Table13.1 summarizes the identified cases of co-evolution.

13.5.1 Initial List of Co-Evolution Drivers

The case studies show that co-evolution of MDE and processes happen. But why are
changes in an MDE setting followed by changes in the process and vice versa? We
analyzed the case studies to gain an initial list of co-evolution drivers. These drivers
can be needs or additional burdens that arise as result from evolution of the software
process or an MDE setting and are addressed and absorbed by the co-evolution.
Similarly, co-evolution drivers might be potentials for improvement.

Co-evolution drivers are in focus for two reasons: First of all, they help us under-
standing reasons and motivations for co-evolution and—hopefully—predicting co-
evolution in future. A second reason is that co-evolution drivers, in combination with
the knowledge about respective MDE and process changes, can help us learn about
the so far scarcely understood relationship between software processes and MDE
settings.

13.5.1.1 Overview of Co-Evolution Drivers

In this section, we introduce the initial list of co-evolution drivers that we have
identified within the two case studies. Furthermore, we provide a map of aspects in
MDE settings and processes that might be connected by co-evolution drivers.

Driver 1 (High additional manual effort). The first driver we identified is an
increase of manual effort, which can be caused by new tasks or increased effort
for already existing tasks. This driver occurred, for example, in the AUTOSAR case
study and led to the co-evolution of the MDE setting in response to the introduction
of a review activity (AUTOSAR process change 2 & AUTOSAR MDE change 2).

This driver often seems to concern the effort for merging of models, as for the co-
evolution in response to AUTOSAR MDE change 1 and Capgemini process change

270 R. Hebig et al.

Ta
bl
e
13
.1

Su
m
m
ar
y
of

ob
se
rv
ed

ev
ol
ut
io
n
pr
op
ag
at
io
n

C
au
se
s
ch
an
ge

ID
D
es
cr
ip
tio

n
E
ff
ec
ts
ch
an
ge

ID
D
es
cr
ip
tio

n
T
im

e
un

til
re
ac
tio

n
C
o-
E
vo
lu
tio

n
dr
iv
er

A
U
TO

SA
R
M
D
E

ch
an
ge

1
In
tr
od
uc
ti
on

of
M
od
el
in
g

A
U
TO

SA
R
pr
oc
es
s

ch
an
ge

1
In
tr
od

uc
ed

ac
ce
ss

ri
gh

ts
re
st
ri
ct
io
n:

re
du

ct
io
n

of
se
to

f
pe
op

le
pe
rm

itt
ed

to
ch
an
ge

m
od

el
s

A
pp
ro
x.

4–
5
ye
ar
s

D
1
(h
ig
h
ad
di
tio

na
l

m
an
ua
le
ff
or
t)

A
U
TO

SA
R
pr
oc
es
s

ch
an
ge

2
In
tr
od

uc
ed

re
vi
ew

ac
ti
vi
ty
:
fo
r
ge
ne
ra
te
d

do
cu
m
en
ts

A
pp
ro
x.

3
ye
ar
s

D
2
(q
ua
lit
y
of

au
to
m
at
ed

re
su
lts
)

A
U
TO

SA
R
M
D
E

ch
an
ge

3
In
tr
od
uc
ti
on

of
C
on
ti
nu
ou
s
In
te
gr
at
io
n

Sy
st
em

fo
r
G
en
er
at
io
n

A
U
TO

SA
R
pr
oc
es
s

ch
an
ge

3
D
efi
ni
ti
on

of
R
es
po

ns
ib
il
it
ie
s
fo
r
sy
st
em

op
er
at
io
n
an
d
m
ai
nt
en
an
ce

A
pp
ro
x.

1
ye
ar

D
5
(u
nc
er
ta
in

re
sp
on
si
bi
lit
ie
s)

C
ap
ge
m
in
iM

D
E

ch
an
ge

1
E
xc
ha
ng
ed

to
ol

an
d
m
od
el
in
g
la
ng
ua
ge

fo
r
a
di
ag
ra
m

C
ap

ge
m
in
ip

ro
ce
ss

ch
an
ge

1
C
ha

ng
ed

ro
le
s
an

d
do

cu
m
en
ta

cc
es
s:
1
te
am

m
em

be
r
be
ca
m
e
‘e
xp

er
t’
;o

th
er

te
am

m
em

be
rs

st
op
pe
d
w
or
ki
ng

on
th
e
m
od
el

im
m
ed
ia
te

D
3
(s
ki
ll
m
is
m
at
ch
)

C
ap

ge
m
in
ip

ro
ce
ss

ch
an
ge

2
Sh

ar
ed

ar
ti
fa
ct
:
bo

th
te
am

s
(h
et
er
og

en
eo
us

sk
ill
s,
di
ff
er
en
tc
om

pa
ni
es
)
st
ar
te
d
to

w
or
k
on

th
e
sa
m
e
m
od
el

A
pp
ro
x.

3
ye
ar
s

D
7
(a
ri
si
ng

op
tim

iz
at
io
n

po
te
nt
ia
l)

C
ap
ge
m
in
iM

D
E

ch
an
ge

3
E
xc
ha
ng
ed

to
ol

an
d
m
od
el
in
g
la
ng
ua
ge

fo
r
a
di
ag
ra
m
&

In
tr
od
uc
ti
on

of
ge
ne
ra
ti
on

ba
se
d
on

th
e
m
od

el

C
ap

ge
m
in
ip

ro
ce
ss

ch
an
ge

3
C
ha

ng
ed

ro
le
s
an

d
do

cu
m
en
ta

cc
es
s:
si
ng

le
te
am

m
em

be
rs
be
ca
m
e
‘e
xp

er
ts
’;
ot
he
r
te
am

m
em

be
rs
st
op
pe
d
w
or
ki
ng

on
th
e
m
od
el

im
m
ed
ia
te

D
3
(s
ki
ll
m
is
m
at
ch
)

C
ap

ge
m
in
ip

ro
ce
ss

ch
an
ge

4
C
re
at
io
n
of

m
ix
ed

te
am

:
A
m
em

be
r
of

te
am

2
jo
in
ed

te
am

1
pe
rm

an
en
tly

im
m
ed
ia
te

D
3
(s
ki
ll
m
is
m
at
ch
)

A
U
TO

SA
R
pr
oc
es
s

ch
an
ge

2
In
tr
od

uc
ti
on

of
M
od

el
in
g
an

d
A
rt
if
ac
t

R
ev
ie
w
s
co
m
pa
ri
so
n
of

ge
ne
ra
tio

n
re
su
lt
ag
ai
ns
te
xp

ec
te
d
re
su
lts

A
U
TO

SA
R
M
D
E

ch
an
ge

2
In
tr
od
uc
ti
on

of
di
ff
to
ol
s
an
d
au
to
m
at
io
n
to

si
m
pl
if
y
re
vi
ew

A
pp
ro
x.

3–
4
ye
ar
s

D
1
(h
ig
h
ad
di
tio

na
l

m
an
ua
le
ff
or
t)

C
ap

ge
m
in
ip

ro
ce
ss

ch
an
ge

2
Sh

ar
ed

ar
ti
fa
ct

2
te
am

s
(h
et
er
og

en
eo
us

sk
ill
s,
di
ff
er
en
tc
om

pa
ni
es
)
st
ar
te
d
to

w
or
k
on

th
e
sa
m
e
m
od
el

C
ap
ge
m
in
iM

D
E

ch
an
ge

2
In
tr
od

uc
ti
on

of
di
ffe
re
nc
in
g
(m

od
el
w
ea
vi
ng

)
to
ol
s
to

su
pp

or
td

if
fe
re
nc
e
id
en
tifi

ca
tio

n
A
pp
ro
x.

<
1
ye
ar

D
1
(h
ig
h
ad
di
tio

na
l

m
an
ua
le
ff
or
t)

C
ap

ge
m
in
ip

ro
ce
ss

ch
an
ge

5
C
ha

ng
ed

te
am

si
ze
/t
ea
m
gl
ob

al
iz
at
io
n

no
m
or
e
al
la
to

ne
lo
ca
tio

n/
co
un
tr
y

C
ap
ge
m
in
iM

D
E

ch
an
ge

4
C
ha

ng
ed

te
ch
no

lo
gy

fo
r
m
od

el
st
or
ag
e
fr
om

SV
N
to

D
B

A
pp
ro
x.

2
m
on
th
s

D
4
(m

is
m
at
ch

in
sc
al
ab
ili
ty
)

C
ap

ge
m
in
ip

ro
ce
ss

ch
an
ge

6
Te
am

si
ze

an
d
co
op

er
at
io
n
sm

al
l

te
m
po

ra
ry

te
am

s
in

ve
ry

cl
os
e

co
lla

bo
ra
tio

n

C
ap
ge
m
in
iM

D
E

ch
an
ge

5
C
ha

ng
ed

te
ch
no

lo
gy

fo
r
m
od

el
st
or
ag
e
br
in
g

m
od
el
te
m
po
ra
ri
ly

ba
ck

to
SV

N
fr
om

D
B

Im
m
ed
ia
te

(p
re
pl
an
ne
d)

D
6
(s
ol
ut
io
n

en
ab
lin

g)

13 Lessons Learned from Co-Evolution of Software … 271

2. In the first case a change in the used tooling (i.e., introduction of modeling) led to
this additional effort. The situation was solved by changing the roles’ access rights.
Interestingly this driver describes a subjective mismatch, which can even occur and
lead to co-evolution when the overall manual effort is reduced. For example, the
AUTOSAR process change 2 was a response to the added modeling and generation
steps (AUTOSAR MDE change 1), meaning that overall the manual creation of the
documents was substituted by an automated creation and a following manual review
activity. Nonetheless, the additional review activity was judged for its effort.

Driver 2 (Mismatch in expected and actual quality of automated results). We
observed this driver in the AUTOSAR case study, when a generator was introduced
(AUTOSAR MDE change 1). Only during the use it became clear that there is a
mismatch in the expected stability of the generator result and the actual stability. In
consequence, the process was adapted by adding a manual review activity.

Driver 3 (Skill mismatch). Another driver that seems to be very common, is a
mismatch between the skills required for a technology and the skill set of a team.
This can happen when teams are confronted with new technologies. Two example
cases happened in the Capgemini case study, where such changes in the modeling
languages and tooling happened twice to one of the teams (Capgemini MDE change
1 and Capgemini MDE change 3). In response, in both cases, the role structure of
the team changed as well as the interaction to the second team.

Driver 4 (Mismatch in scalability). A less surprising driver is the “mismatch in
scalability” when (modeling) tools do not sufficiently scale with team size and struc-
ture. For example, in the Capgemini case study a change in the team size and also in
the team’s distribution pattern led to this mismatch (Capgemini process change 5).
The mismatch was resolved by changing in the tool setup.

Driver 5 (Uncertain responsibilities). A further driver is the uncertainty concern-
ing responsibilities that can occur if new technical solutions are introduced, especially
when teams are very heterogeneous (as for AUTOSAR MDE change 3).

Driver 6 (Solution enabling). Similar to the mismatch in scalability, also a mis-
match between the required and actual performance of tools can be a reason to change
the tool set up evolution. However, in the Capgemini case study it did not appear as
a co-evolution driver, since the mismatch existed just before the respective evolution
step. In contrast, the process evolution enables a solution of this mismatch (Capgem-
ini process change 6), since after this process change the team size was small enough
to allow the usage of a version management system.

Driver 7 (Arising optimization potential). Finally, a second co-evolution driver
that concerns potentials is the occurrence of new optimization potentials. In the
Capgemini case study this happened when a modeling language used by one of the
teams was changed to the modeling language that was used by the other team too
(Capgemini MDE change 1). This change led to the potential to safe transformation
effort by allowing both teams to work on the same artifact. About 3 years after the
initial change it was decided to use this potential (Capgemini process change 2).

272 R. Hebig et al.

Process MDE Setting

Tools

Modeling
Languages

Activities

Roles

Team
interaction

Team size

Co-Evolution Drivers

Co-evolution driver can trigger this
element to co-evolve

Co-evolution driver can be triggered by evolution
of this element

Co-evolution driver Element of MDE setting or process

D1 High additional manual effort

D2 Mismatch in expected and
actual quality of automated results

D3 Skill mismatch

D4 Mismatch in scalability

D5 Uncertain responsibilities

D6 Solution enabling

D7 Arising optimization potential

Fig. 13.3 Map of identified co-evolution drivers as well as so far found affecting and affected
elements in MDE settings and processes

13.5.1.2 A Map of Co-Evolution Drivers

Figure13.3 illustrates how the different identified co-evolution drivers connect ele-
ments of the process andMDE setting. It can be seen that evolution in tools, activities,
and team interaction trigger co-evolution drivers as well as they are triggered by co-
evolution drivers. Further, for at least one co-evolution driver we found that it can be
triggered from both sides, MDE setting and process. Since this map only illustrates
impacts that happened in the two case studies, it is to be expected that there are further
co-evolution drivers. It is also possible that here the identified co-evolution drivers
can be triggered and can trigger more MDE and process aspects than observed so
far. For example, process documents might be affected by MDE evolution.

13.5.2 Observations on Co-Evolution

We could make some general observations and consider them helpful for researchers
and practitioners to better understand co-evolution of processes and MDE.

Unintended Change Accommodation The first observation we made is that the team
structure and roles can be subject to an “unintended evolution accommodation”when
the MDE setting changes. This happened twice in the Capgemini case study when

13 Lessons Learned from Co-Evolution of Software … 273

the used tool and modeling language changed for one of the teams. Both times, one
or a small number of teammembers became experts in the new language, while other
team members changed their behavior and stopped to change the models directly.
In one of the cases an additional intended change happened to the team structure:
a member of another team joined the affected team as a mentor. In contrast to the
other case, not only one but multiple team members adopted the expert role. This
observation might be taken as a hint that a proactive introduction of mentoring can
help control the unintended impacts to the team and role structure.

In all observed cases, where the MDE setting was co-evolved, these changes
had been subject to developer’s or management’s decisions. This observation points
toward a need to more actively maintaining and protecting an established process
tailoring.

Sensitive Teams Another direct observation is that most process changes involved
in co-evolution concern team structure and roles. Five out of eight observed process
changes concern the team structure and two concern the interaction between teams.
Indeed, only one of the process changes concerns activities in the process. Thus,
a first impression is that the roles and team structure are those process parts most
sensitive toward changes in the MDE setting.

No Reaction by Language Evolution Interestingly, for situations where the MDE
setting is changed in response to process evolution, we could observe manipulations
of the tool set only, while overall both, the sets of modeling languages and tools,
caused co-evolution in the process.

Dominant Negative Drivers We can observe that co-evolution drivers are in most
cases mismatches or experienced disadvantages. Only in two cases the co-evolution
drivers were enablers for solving mismatches or even for optimization.

Cascading Effects Co-evolution can lead to cascading effects: the co-evolution of
process orMDEcan trigger further co-evolution actions.Weobserved such cascading
effects in both case studies. In the AUTOSAR case, introducing a generator for
figures (AUTOSAR MDE change 1) led to a co-evolution of the process, which was
the introduction of a review activity (AUTOSAR process change 2). However, this
caused further co-evolution of the MDE, where a differencing tool was introduced
to support the review activity. Similarly, in the Capgemini case study, a change of
the modeling language and tool (Capgemini MDE change 1) opened the potential
to remove the need to transform information from one artifact to the other. This
opportunity was used by co-evolving the process, such that two teams now work on
the same shared artifact (Capgemini process change 2). This, however, led to another
change to the MDE setting (adding a tool for identification of model differences).
In both cases, the cascading co-evolution was driven when the co-evolution of the
process led to extra manual effort.

Bidirectional Co-Evolution Drivers Furthermore, we observed that the same evolu-
tion driver in even very similar situations can be triggered by different changes. We
found a situation that occurred in both case studies as a consequence of evolution

274 R. Hebig et al.

(of process in the one case (Capgemini process change 2) and of MDE in the other
(AUTOSAR MDE change 1)): a larger group of developers with different skills was
accessing the same model. In consequence, the need for model merging increased,
which resulted in a “high additional manual effort,” compared to the respective sit-
uations before. In the two cases different solutions had been chosen:

• In the AUTOSAR case the process was adapted by regulating the responsibilities
and rights to access the model.

• In the Capgemini case a tool for the identification of model differences was intro-
duced to the MDE setting to reduce manual effort.

13.5.3 Lessons Learned for Process Managers

Finally, based on the identified drivers and made observations we collected three
lessons learned that can directly help process managers.

Lesson 1 (There are always two adjusting screws to choose from: the process
and the MDE). The existence of bidirectional co-evolution drivers shows that
changes in both, MDE and process, can cause drivers, but also relaxed them. Thus,
process managers have the choice when responding to a co-evolution driver. Note,
this also means that, e.g., an MDE change can be answered with another MDE
change (even if we did not systematically cover such situations with our investiga-
tion method).

Lesson 2 (Consider the risk of cascading effects when planning co-evolution).
Due to cascading effects, changes in the MDE might not only lead to changes in the
process, but to follow-up needs for tools, which can cause extra cost. Thus, process
managers should consider the occurrence of cascading effects of co-evolution steps
when triggering evolution of theMDEsetting or process. For example,whenplanning
evolution in the MDE setting, it is not sufficient to only consider potential needs for
a co-evolution of the process. Moreover, it needs to be considered if process changes
trigger other evolution drivers.

Lesson 3 (Lookout for arisingpotentials).Whilemost co-evolution drivers identi-
fied so far concern problems,we found an example showing that co-evolution can also
be performed to gain benefits: in Capgemini MDE change 1 opened the potential to
safemanualmodel transformation effort. This opportunitywas exploited by changing
the process, such that two teams collaboratively work on shared models. The take-
away for process managers is to not only consider co-evolution when disadvantages
arise, but to actively reconsider whether co-evolution can lead to improvements.

13 Lessons Learned from Co-Evolution of Software … 275

13.6 Discussion

In this section, we discuss generalizability and additional implications of our results.

Completeness of Co-evolution Drivers Surely, the choice of the two case studies
impacts the number of evolution steps as well as the number and form of found cases
of co-evolution. Similarly, due to the method of data collection, we cannot exclude
that there are smaller co-evolution impacts to the process orMDEsetting that have not
been captured here. Thismight be the casewhen these effects are so small that they are
only recognized by some teammembers and are not further communicatedwithin the
team and company. With these two points, we cannot expect that the list of identified
co-evolution drivers is complete. However, due to feedback rounds on the interview
notes and our close cooperation with the respective companies, it can be assumed
that we did not find something that did not happen. Thus, the gained data is sufficient
to gain some initial insights on existing forms of co-evolution and to create an initial
list of drivers, as it is the aim of this paper. We hope that the investigation of further
case studies will allow us to complement the list of co-evolution drivers in future.

Generalizability With only two case studies, it is difficult to draw conclusions on
the generalizability of the found insights to companies with other sizes or different
domains. It thus cannot be concluded that the observed co-evolution drivers would
lead to co-evolution in all cases or that the observed co-evolutions are representative.
Already our small set of examples shows that the same co-evolution driver might
lead to different reactions.

Uncovered MDE–Process Relations As discussed in Sect. 13.2, state-of-the-art
research identified already single relations between MDE and processes. Since co-
evolution bases on the interrelation ofMDE and processes, the insights in this chapter
can point to further, so far uncovered, relations. For example, we saw for the first
time a relation between the reliability of automation solutions in MDE and manually
performed quality assurance activities. Furthermore, we could actually observe an
interrelation between the scalability supported by (MDE) tools and the team size.
Finally, we saw that an extra phase or activity can lead to the deployment of a tool to
reduce the effort of this phase. However, within an initial setup of MDE it is seldom
tried to support all tasks with automation immediately. Thus, is there a difference in
the mentality when it is about improving new tasks compared to familiar tasks? It
would be interesting to investigate in future work, whether during evolution changes
happen that would not happen in an initial design.

Offside Process Evolution It can be observed that our findings on triggered process
changes go further than known forms of process evolution, where process tailoring is
often considered rather static to a project or caused by evolution of process standards.
In contrast, the process changes found here happened during the projects. They
had not been triggered by process improvement activities and were no adoptions of
changed process standards. It might be interesting to focus in future more on the
question whether there are more possible causes for process change.

276 R. Hebig et al.

13.7 Conclusions

In this chapter, we presented two industrial case studies on co-evolution. Our first
important finding is that our working hypothesis can be confirmed: co-evolution
between MDE and process actually exists in practice. We could observe that this co-
evolution works in both directions, i.e., can affect both MDE and process. Further,
we could observe eight cases, where evolution of MDE triggered or was triggered
by process changes.

On this basis we extracted an initial list of co-evolution drivers and analyzed
what MDE and process elements had affected or had been affected by these drivers.
Though this list cannot yet show a complete picture, it gives an initial insight into
how co-evolution of MDE and processes looks like.

In addition we summarized some observations on the co-evolution and lessons
learned that can help process managers to better handle co-evolution and even to
recognize arising changes. Finally, we discussed our results in context of existing
findings on the interrelation of MDE and software processes, which showed that
the observed co-evolution indeed uncovers relations between process and MDE that
have so far not been discussed in literature.

13.8 Further Reading

In the following, we provide some hints on related literature about process andMDE
evolution, as well as on the interrelation of software process and MDE.

Process Evolution How process standards evolve was, for example, studied by
Ocampo et al. [22], who investigated the case of ECSS.2 A well-known approach
toward software process improvement is the Capability Maturity Model (CMM),
which describes different levels of maturation of processes. An example case study
how the CMM helped to improve processes at Motorola was described by Diaz et al.
[4]. Other works on process change that are closely related to software process evo-
lution concern process tailoring and software process lines. Process tailoring aims
at adapting processes to the need of a specific company and project, for which it is
typically applied [12, 19]. Software process lines aim at supporting the task of tai-
loring a process [24]. How such software process lines can be realized with the help
of variability operations was presented in [15] by example using different variants
of the V-Modell XT.

Two approaches for modeling and planning process tailoring can be found in this
book. In Chap.11, Benner-Wickner et al. present how case management techniques
can be used to reach process flexibility and in Chap10, Fazal-Baqaie and Engels
present the idea of assembly-based method engineering (MESP).

2European Cooperation for Space Standardization http://www.ecss.nl.

http://dx.doi.org/10.1007/978-3-319-31545-4_11
http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://www.ecss.nl

13 Lessons Learned from Co-Evolution of Software … 277

MDE and MDE Evolution Readers who are interested in Model-Driven Engineer-
ing can find a basic introduction to the concepts of model-driven engineering is given
by Kent [13]. A more detailed introduction can be found in the book “Model-driven
software development: technology, engineering, management” by Völter et al. [26].
Finally, some works on assessing and describing the state of practice had been pub-
lished by Hutchinson et al. [11], Gorschek et al. [6], Liebel et al. [17], and Torchiano
et al. [28].

Evolution in context of MDE has mainly been studied with focus on the evolution
of (design)models during software evolution, as summarized byMens et al. [20]. Van
Deursen et al. [29] summarize different forms of evolution starting with “metamodel
evolution,” which is also often referred to as language evolution. Language evolution
can happen for all kinds of (modeling) languages. For example, the UML changed
around all 2–3 years in the past. Studies in this area focus on the question, what
metamodel elements change, as by Herrmannsdoerfer et al. [10]. Besides metamodel
evolution, Van Deursen et al. describe also “platform evolution” (e.g., when the
version of a used tool changes) and “abstraction evolution,” which refers to the
addition of new modeling languages to an MDE setting.

Multiple elements of anMDEsetting often have to change together to stay compat-
ible (“co-evolution”). Meyers et al. [21] describe different scenarios of co-evolution
between models, metamodels, and transformations. Finally, in our previous work
[8], we studied how the structure of MDE settings changes on several case studies
of MDE settings.

Interrelation of Process and MDE Staron [27] and Whittle et al. [30] found inde-
pendent of each other that there is a possibility that a newly introduced MDE setting
leads to changes on the process or process tailoring. Asadi and Ramsin [2] surveyed
six methodologies that have been specifically designed for the OMG standard MDA
[25]. This is a hint that there is a certain awareness for mutual constraints of MDE
setting and process.

To learnmore about the questionwhether and how standard processes can actually
be used with MDE, in our previous work, we surveyed nine literature proposals
for usage of standard processes with MDE [7]. The found proposals ranged from
complete process reuse, via adaptation of process roles (e.g., Loniewski et al. [18]),
up to adaptations of the process structure. For example, Kulkarni et al. [16] add
a meta-sprint to Scrum to cope with MDE tasks that are more time consuming.
However, there seems to be no systematic knowledge about what process changes
are necessary and how this depends on the concrete combination ofMDE techniques,
chosen. In this chapter, we found for the two case studies that evolution in the MDE
setting can trigger changes in roles, team structure, and fine granular changes in
activities, such as addition of review tasks. However, we could not observe changes
in the process phases. This is a hint that such big process tailoring occurs probably
seldom during evolution, where both, process and MDE setting, are changed rather
incrementally.

278 R. Hebig et al.

Besides explicit proposals and approaches for MDE processes, there are several
qualitative investigations onMDE usage in case studies from practice. Some of them
include insights that concern the used processes:

• In a case studywith an international IT service providerHeijstek et al. [9] identified
14 factors in MDE usage that can impact architectural processes. They found that
required skills and communication changed, e.g., models enabled requirements
engineers to create parts of the system. Furthermore, they observed an increased
need of collective code ownership when MDE was introduced. The authors trace
this back to the fact that (a) less and more complex code is written and (b) devel-
opers often need to touch code from other projects. In this chapter, we saw that
models shared amongst a heterogeneous team can be a pain factor that even leads
to access restrictions for different roles. This seems to be in contrast to a result of
Heijstek et al. Explanations can be that (a) diversity of roles was lower in the case
study investigated by Heijstek et al., (b) the frequency of changes to be expected
per model is lower in Heijstek’s case study, or (c) Heijstek’s insights refer not
only to models, but mainly to code, while the found conflicts in our case concern
models, only. It is indeed possible that both, our and Heijstek’s, findings represent
two independent forces that arise from the MDE setting and counteract each other
when it comes to their impact on the process.

• In an interview study, Aranda et al. [1] found that the introduction of MDE led
to a change in the division of labor at General Motors. This happened since non-
software engineers were now enabled to take over parts of the work of the software
engineers. The observation of Aranda et al. [1] and Heijstek et al. [9] that the
division of labor might change with the introduction of MDE fits to co-evolution
we observed inCapgemini MDE change 3. However, in this case it was not caused
by the introduction of modeling itself, but by a change in the MDE setting, which
caused the same modeling tool and language being applied in two teams (cf.
Sect. 13.3).

• Whittle et al. [31] found that MDE can help to bring development of software
in-house. As a reason they argue that outsourced development often concerns
simple, well-defined tasks. These however, are the first once that are candidate
to automation, too. This insight of Whittle et al. could be confirmed by Burden
et al. [3] in a study with three large companies. Furthermore, Burden et al. found
that MDE enables domain experts to work together with developers. The results
of this chapter show that this might in some cases not just be a new option, but
rather a need, as in Capgemini MDE change 3, were a member of one teammoved
to the partner team, to support them in modeling. However, our results also show
that the introduction of a new modeling language can lead to split up of former
homogeneous roles within a team, as caused by the driver mismatch skills in
Capgemini MDE change 1.

Acknowledgments We would like to thank Frank Altheide for providing additional information
about the history of AUTOSAR.

13 Lessons Learned from Co-Evolution of Software … 279

References

1. Aranda, J., Borici, A., Damian, D.: Transitioning to model-driven development: What is rev-
olutionary, what remains the same. In: Model Driven Engineering Languages and Systems.
Lecture Notes in Computer Science, vol. 7590, pp. 692–708. Springer, Berlin (2012)

2. Asadi, M., Ramsin, R.: Mda-based methodologies: an analytical survey. In: Proccedings of
the European Conference on Model Driven Architecture: Foundations and Applications, pp.
419–431. Springer, Berlin (2008)

3. Burden, H.k., Heldal, R., Whittle, J.: Comparing and contrasting model-driven engineering at
three large companies. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement, pp. 14:1–14:10. ACM, New York, USA (2014)

4. Diaz, M., Sligo, J.: How software process improvement helped motorola. IEEE Softw. 14(5),
75–81 (1997)

5. France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap.
In: Future of Software Engineering, pp. 37–54. IEEE, Washington, DC, USA (2007)

6. Gorschek, T., Tempero, E., Angelis, L.: On the use of software design models in software
development practice: an empirical investigation. J. Syst. Softw. 95, 176–193 (2014)

7. Hebig, R., Bendraou, R.: On the need to study the impact of model driven engineering on
software processes. In: Proceedings of the International Conference on Software and System
Process, pp. 164–168. ACM, New York, USA (2014)

8. Hebig, R., Giese, H.: On the complex nature of mde evolution and its impact on changeability.
Softw. Syst. Model. pp. 1–24 (2015)

9. Heijstek, W., Chaudron, M.R.V.: The impact of model driven development on the software
architecture process. In: Proceedings of the EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, pp. 333–341. IEEE, Washington, DC, USA (2010)

10. Herrmannsdörfer,M.,Benz, S., Jürgens, E.:Automatability of coupled evolution ofmetamodels
and models in practice. In: Model Driven Engineering Languages and Systems. Lecture Notes
in Computer Science, vol. 5301, pp. 645–659. Springer, Berlin (2008)

11. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of mde
in industry. In: Proceedings of the International Conference on Software Engineering, pp.
471–480. ACM, New York, USA (2011)

12. Kalus, G., Kuhrmann, M.: Criteria for software process tailoring: a systematic review. In:
Proceedings of the International Conference on Software and System Process, pp. 171–180.
ACM, New York, USA (2013)

13. Kent, S.:Model driven engineering. In: Integrated FormalMethods. LectureNotes in Computer
Science, vol. 2335, pp. 286–298. Springer, Berlin (2002)

14. Kleppe, A.G.,Warmer, J., Bast, W.: MDAExplained: TheModel Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing Co. Inc., Boston (2003)

15. Kuhrmann, M., Fernández, D.M., Ternité, T.: Realizing software process lines: Insights and
experiences. In: Proceedings of the International Conference on Software and System Process,
pp. 99–108. ACM, New York, USA (2014)

16. Kulkarni, V., Barat, S., Ramteerthkar, U.: Early experience with agile methodology in a model-
driven approach. In: Model Driven Engineering Languages and Systems. Lecture Notes in
Computer Science, vol. 6981, pp. 578–590. Springer, Berlin (2011)

17. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Assessing the state-of-practice
of model-based engineering in the embedded systems domain. In: Model-Driven Engineering
Languages and Systems. LectureNotes in Computer Science, vol. 8767, pp. 166–182. Springer,
Berlin (2014)

18. Loniewski, G., Armesto, A., Insfran, E.: An agile method for model-driven requirements engi-
neering. In: Proceedings of the International Conference on Software Engineering Advances,
pp. 570–575. IARIA Inc. (2011)

19. Martínez-Ruiz, T., Münch, J., García, F., Piattini, M.: Requirements and constructors for tailor-
ing software processes: a systematic literature review. Softw. Qual. J. 20(1), 229–260 (2012)

280 R. Hebig et al.

20. Mens, T., Blanc, X., Mens, K.: Model-driven software evolution: An alternative research
agenda. In: BElgian-NEtherlands software eVOLution workshop (BENEVOL) (2007)

21. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages. Sci. Comput.
Program. 76(12), 1223–1246 (2011)

22. Ocampo, A., Münch, J.: Rationale modeling for software process evolution. Softw. Process:
Improv. Pract. 14(2), 85–105 (2009)

23. OMG: Unified Modeling Language (UML) ver 2.5. OMG Standard Document Number:
ptc/2013-09-05, Object Management Group (2013)

24. Rombach, D.: Integrated software process and product lines. In: Unifying the Software Process
Spectrum. Lecture Notes in Computer Science, vol. 3840, pp. 83–90. Springer, Berlin (2006)

25. Soley, R.: Model driven architecture. OMG White Paper 308, Object Management Group
(2000)

26. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology, Engi-
neering, Management. Wiley, New Jersey (2006)

27. Staron, M.: Adopting model driven software development in industry – a case study at two
companies. In:Model Driven Engineering Languages and Systems. Lecture Notes in Computer
Science, vol. 4199, pp. 57–72. Springer, Berlin (2006)

28. Torchiano,M., Tomassetti, F., Ricca, F., Tiso, A., Reggio, G.: Relevance, benefits, and problems
of software modelling and model driven techniques-a survey in the italian industry. J. Syst.
Softw. 86(8), 2110–2126 (2013)

29. van Deursen, A., Visser, E., Warmer, J., Tamzalit, D.: Model-driven software evolution: a
research agenda. In: Proceedings of the CSMR Workshop on Model-Driven Software Evolu-
tion, pp. 41–49 (2007)

30. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial adoption of
model-driven engineering: are the tools really the problem? In: Model-Driven Engineering
Languages and Systems. Lecture Notes in Computer Science, vol. 8107, pp. 1–17. Springer,
Berlin (2013)

31. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven engineering.
IEEE Softw. 31(3), 79–85 (2014)

Chapter 14
Monitoring and Controlling Release
Readiness by Learning Across Projects

S.M. Didar Al Alam, Dietmar Pfahl and Günther Ruhe

Abstract Releasing software on time, with desired quality while staying within
budget is crucial for success. Therefore, product managers should proactively know
which release readiness attributes are not performing sufficiently well (i.e., bot-
tleneck factors) throughout the development cycle and consequently may limit
readiness of the software release. We present the Cross-project Analysis for Selec-
tion of Release Readiness attributes (CASRR) method to help project managers in
(i) systematically studying and analyzing release readiness attributes across multi-
ple projects, (ii) selection of release readiness attributes for monitoring which have
previously been shown to become bottlenecks in similar projects in the past, and
(iii) learning how bottleneck occurrences are influenced by project characteristics.
We applied CASRR to two Open Source Software projects, and analyzed six release
readiness attributes in 34 similar projects over a period of two years. Continuous
integration rate, feature completion rate, and bug fixing rate are observed as the most
frequent bottleneck factors. Bottleneck occurrences of the monitored release readi-
ness attributes are significantly influenced by the maturity of a release. Furthermore,
the continuous integration rate is found to be significantly influenced by the team
size.

14.1 Introduction

Software Product Management, as defined by Ebert [7] as “the discipline and role,
which governs the software product (or solution or service) from its inception to the
market/customer delivery in order to generate biggest possible value to the business.”

S.M. Didar Al Alam (B) · G. Ruhe
Department of Computer Science, University of Calgary,
2500 University Drive NW, Calgary, AB, Canada
e-mail: smdalam@ucalgary.ca

G. Ruhe
e-mail: ruhe@ucalgary.ca

D. Pfahl
Institute of Computer Science, University of Tartu, J Liivi 2, 50409 Tartu, Estonia
e-mail: dietmar.pfahl@ut.ee
© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_14

281

282 S.M. Didar Al Alam et al.

is a key success factor for companies [17] that facilitates timely production and faster
product acceptance in market [8]. In the competitive commercial software market,
software companies struggle to integrate advanced software product management
techniques to monitor and control their development processes and product releases.
Thus, the ultimate goal is to ensure competitiveness and business success. The key is
to develop high-quality products in time andwithin budget [1], and to release software
the moment it is ready. A software release is commonly defined as the deployment
of the software product to market, or as the process of delivering the product into
the operational environment for the consumers to utilize [15]. Successfully releasing
quality software in-time heavily depends on the underlying development cycle. In
this chapter, we investigate the readiness of a software release. Instead of measuring
release readiness merely for the deployment process, we measure release readiness
throughout the complete development cycle of a release.

A product, or a major version of the product, can only be released when it is
ready. In fact, a slip in the release can cause millions of dollars in lost revenue.
Alternatively, if delivered early, the product might face a lack of proper testing and
low quality. In software product management, a product manager is responsible for
deciding the product release content, time frame, price, and completingbusiness cases
regarding the technical aspects of the product [8]. The dilemma product managers
often face is how “ready” the product is to release, and whether more time needs
to be spent on feature development, testing, re-work, or process improvement. The
problem is commonly known as the “stopping rule” problem [9]. Release decisions
should not be made ad-hoc. Product managers should use information related to the
product’s readiness for release. At any point in time during the development cycle,
the measurement of release readiness helps project managers assess the status of
the product for release and facilitate release decisions. Release readiness is a time-
dependent attribute of a software product release. It aggregates a portfolio of the
release process and product measures to quantify the status of the software product
for release.

It is important to proactively identifywhich release readiness attributes are not per-
forming sufficiently well (so-called bottleneck factors) during the phases of software
development cycle. These attributes are likely to limit release readiness. In a previous
publication [6], evidence for the existence of common patterns in bottleneck fac-
tors were found, which suggested that identifying underlying patterns of bottleneck
occurrences will aid the understanding of such factors. The presented method called
Cross-project Analysis for Selection of Release Readiness attributes (CASRR) sup-
ports the systematic investigation and analysis of release readiness attributes across
multiple projects. CASRR identifies the most frequently occurring bottleneck fac-
tors (BF). Further analysis of bottleneck factors identifies (cluster-specific) patterns
of bottleneck occurrences. The objective of CASRR method is to identify release
readiness attributes, which are more prone to become bottlenecks and limit release
readiness. In addition, CASRR facilitates understanding the influence of project
evolution and project characteristics on the occurrence of bottleneck attributes. We
assume iterative as well as traditional software development with release cycles over
a month period are the primary beneficiary of applying the CASRR method. Agile

14 Monitoring and Controlling Release Readiness … 283

software development techniques (e.g., Scrum) should not apply CASRR method
for short-term one/two-week sprints. Instead, CASRR should be applied for major
client releases spanning several sprints to identify and understand release readiness
and bottleneck factors.

To support our presented method, we comprehensively studied related work and
identified state-of-the-art concepts, such as approaches, metrics, tools, and empirical
evaluation regarding measurement, monitoring, and controlling release readiness.
We also identified the importance of monitoring and controlling release readiness
throughout the development cycle of a release. Previously conducted exploratory
case study research [6] established the importance of systematically studying and
analyzing bottleneck factors across individual projects to reveal their characteristics.

In the absence of proprietary projects for analysis, we applied CASRR method
for two Open Source Software (OSS) projects hosted in GitHub repository. In OSS
projects, applying CASRR creates a sense of higher visibility and better control.
Selected projects GoldenCheetah/GoldenCheetah1 and Mbostock/D32 are, respec-
tively, desktop and web-based software. Furthermore, we selected an extra set of 34
OSS projects for our analysis—equally distributed across desktop and web-based
software domain. We selected six established release readiness attributes applying
theGQMparadigm andmonitored their performance in retrospective over a two-year
period for each project. Our analysis focused on identifyingmost frequent bottleneck
factors and the influence of project characteristics on their occurrence. Continuous
integration rate, feature completion rate, and bug fixing rate are observed as the most
frequent bottleneck factors in both domains. These factors are responsible for more
than 80% of all bottleneck occurrences. In addition, we identified project character-
istics (e.g., project size, team size, and project phase) that significantly influence the
occurrence of bottleneck factors. The results of analysis facilitate continuous moni-
toring of release readiness attributes throughout the development cycle, understand
their nature in different project contexts, and achieve improved software release by
proactively controlling them.

The rest of the chapter is organized as follows: Sect. 14.2 presents the back-
ground and context of this chapter. In Sect. 14.3, we presented the CASRR method.
Section14.4 applied the CASRR method with respect to OSS software hosted on
GitHub. Section14.5 presents summary of the research and our contributions.

14.2 Background and Context

Release readiness is a relatively young area of research in Software Engineering.
We found few articles, which attempt evaluating release readiness of which most
have taken unique approaches and used metrics for evaluating release readiness. To
explore existing approaches and support motivation for our presented method, we

1Available from: https://github.com/GoldenCheetah/GoldenCheetah.
2Available from: https://github.com/mbostock/d3.

https://github.com/GoldenCheetah/GoldenCheetah
https://github.com/mbostock/d3

284 S.M. Didar Al Alam et al.

studied the most relevant articles in release readiness research.We briefly discuss the
state-of-the-art concepts of measuring, monitoring and controlling release readiness
in this section.

Existing approaches in literature and industry focused on different phases of the
development cycle while evaluating release readiness. Due to this difference, these
approaches have chosen a different set of metrics in release readiness evaluation. We
broadly categorized these approaches in four categories (A1–A4). Table14.1 lists all
four categories along with a brief description. The table also lists the percentage of
the articles falling under each category. We collected different metrics used in the
studied approaches and classified them in four dimensions including implementation
status, testing scope and status, source code quality, and documentation scope and
status. In Table14.2, we list these dimensions along with examples of metrics used.

We identified the frequency of articles falling under different categories or apply-
ing different dimensions based on their publication years. The bubble chart in

Table 14.1 Existing release readiness evaluation approaches are categorized in four categories.
Their brief description and percent of studied articles in each category are listed here

Categories Description % of
articles

A1 Checklist-based approach Check a set of RR criteria at the end of release
cycles and extensively rely on subjective
questions [13, 17]

22

A2 Testing metrics-based
approach

Consider testing-related metrics only (e.g., test
passing rate, defect find rate) and build various
RR indicators [12, 14, 21]

43

A3 Defect prediction model-
based approach

Consider remaining defects as a major indicator
of RR. Build prediction model for remaining
defects [16, 22]

22

A4 Multi-dimensional
metrics
aggregation-based
approach

Evaluate a portfolio of product, process-related
metrics, and aggregate them into a single measure
of release readiness [2, 18, 19]

11

Table 14.2 Categorization of release readiness attributes

Dimensions Overview of related release readiness attributes

D1 Implementation status Attributes related to feature implementation, change
request implementation, coding effort, continuous
integration, build trends, etc.

D2 Testing scope and status Attributes related to defect finding, defect fixing, test
coverage, test effort, etc.

D3 Source code quality Attributes related to code review, coding style, code
smells, refactoring, code complexity, etc.

D4 Documentation scope and
status

Attributes related to user manual, design documents, test
specification, test case documentation, etc.

14 Monitoring and Controlling Release Readiness … 285

4

6

2 4

1 3

A
4:

 M
u

lt
i-

d
im

en
si

o
n

al

M
et

ri
cs

 A
g

g
re

g
at

io
n

B

as
ed

 A
p

p
ro

ac
h

A
3:

 D
ef

ec
t

P

re
d

ic
ti

o
n

 M
o

d
el

B

as
ed

 A
p

p
ro

ac
h

A
2:

 T
es

ti
n

g
 M

et
ri

cs

B
as

ed
 A

p
p

ro
ac

h

A
1:

 C
h

ec
kl

is
t

B

as
ed

 A
p

p
ro

ac
h

D
1:

 Im
p

le
m

en
ta

ti
o

n

S
ta

tu
s

D
2:

 T
es

ti
n

g
 S

co
p

e
an

d
 S

ta
tu

s

D
3:

 S
o

u
rc

e
C

o
d

e
Q

u
al

it
y

D
4:

 D
o

cu
m

en
ta

ti
o

n

S
co

p
e

an
d

 S
ta

tu
s

19
95

-1
99

9
20

00
-2

00
4

<1
99

5
20

05
-2

00
9

20
10

-2
01

4
1

8 2 2

2 2

2

2 1 1

1

1 1

1

3

3 3

Fig. 14.1 Publication frequency of articles regarding approaches’ categorization (left) and using
metrics from different dimensions (right)

Fig. 14.1 summarizes the frequency of articles with respect to their publication year.
In the left part, we present the different categories regarding the approaches presented
in Table14.1, and on right side, we present the different dimensions of metrics as
listed in Table14.2.

The checklist criteria and questions in category A1 are useful to assess release
readiness at the end of a release cycle. However, software companies need to establish
their own process and objective measures to use them effectively. Most of the criteria
are subjective and available for evaluation only in the late stages of the release cycle.
Category A2 is focused on the testing phase and to provide support for making confi-
dent release decision at the late stages of the development. These approaches cannot
support productmanagers in continuous evaluation of release readiness. CategoryA3
proactively evaluates release readiness with an exclusive focus on remaining defects.
Release readiness should represent the overall status of the project at any particular
point in time during the release cycle in a quantitative way. The overall status of the
project may depend on additional attributes such as satisfaction of bug fixing, satis-
faction of test coverage, satisfaction of codebase stabilization, satisfaction of feature
implementation, satisfaction of test pass rate etc. Therefore, exclusive consideration
of remaining defects partially measures release readiness. Category A4 provides a
broad overview of release readiness. These approaches depend on objectivemeasures
from various aspect of the software product. However, ad-hoc selection of metrics
and misunderstanding their comparative importance can generate misleading release
readiness evaluation.

286 S.M. Didar Al Alam et al.

Gaps in existing approaches motivated us to develop a comprehensive approach
for continuously monitoring and controlling release readiness. Continuous monitor-
ing and controlling multiple attributes is extremely resource intensive. Therefore,
it is important to identify which release readiness attributes have higher chances to
represent release readiness. In the majority of cases, metrics for evaluating release
readiness were either selected ad-hoc or based on experience or gut-feeling. None
of the reviewed studies emphasized a systematic identification of release readiness
attributes for release readiness evaluation. In this chapter, we emphasize this problem
and present the CASRR method as a proposed solution.

14.3 The CASRR Method

In this section, we present the Cross-project Analysis for Selection of Release Readi-
ness attributes (CASRR)method. Product managers continuouslymeasure andmon-
itor project attributes, to ensure timely release and success of the product.Monitoring
and analyzing multiple attributes continuously is resource intensive. Therefore, it is
important to identify which attributes have greater influence on project success and
therefore worth continuous monitoring. CASRR provides a systematic way to iden-
tify release readiness attributes, which have higher chances to limit release readiness
as bottleneck factors. It helps identify a small subset of available release readiness
attributes for continuous monitoring and save resources. In addition, it demonstrates
how bottleneck occurrences are influenced by project evolution and different project
contexts.Wepresent an overviewof theCASRRmethod in Fig. 14.2 using aflowchart
and discuss details of the method and its phases in subsequent sections.

14.3.1 Preparation

The CASRR method identifies release readiness attributes, which may become a
bottleneck factor and influence product release success. The product manager selects
a project P, which she wants to monitor and control release readiness throughout the
development cycle. We recommend that the product manager will perform some
preparation steps for her project P prior to using CASRR method. In the following,
we briefly discuss the preparation.

First, the product manager characterizes project P. Here, characterizing means
identification of unique project characteristics, which are (i) easy to identify without
an in-depth project analysis, (ii) possible to estimate prior to the development cycle,
and (iii) influence the development cycle. Project size, number of previous releases,
number of developers, duration of the release, maturity of the project, the domain of
the project etc. are few examples of characteristics that can characterize project P.
Characterizing project P helps select similar projects from repositories and learning
across projects.

14 Monitoring and Controlling Release Readiness … 287

Extract former
releases (if available)

of project P
Characterize project P

Extract available
measures in project P

Select a set P* of similar projects to P and available RR attributes

Identify minimum and maximum expected values from experts of
former releases for all selected attributes and calculate RR for selected

projects in set P*

Identify bottleneck factors for all selected projects in set P*
on a weekly basis

Analyze bottleneck factors and their occurrences across all projects in
set P*, identify most frequent bottleneck factors and influence of different

project characteristics over their occurrence

Monitor identified factors
throughout the

development cycle of
project P

Add recent release of
project P to the set of
selected projects P*

Select a project P for
monitoring and controlling

Release Readiness

Pool of project
from code

repositories

Start
P

ha
se

 1
:

S
el

ec
tio

n
P

ha
se

 2
: R

R

C
al

cu
la

tio
n

P
ha

se
 3

:
B

ot
tle

ne
ck

Id

en
tif

ic
at

io
n

P
ha

se
 4

:
A

na
ly

si
s

P
re

pa
ra

tio
n

Fig. 14.2 Overview of the presentedmethodCross-project Analysis for Selection ofReleaseReadi-
ness attributes (CASRR)

Second, the product manager extracts available measures of project P. For exam-
ple, the status of feature implementation, which is measured on a weekly basis
by a metric called feature completion rate (FCR) as defined in Eq.14.1 (see also
Table14.3).

FCR(k) = ImplFeaturesToWeek(k)

RequestFeaturesToWeek(k)
(14.1)

We collect the number of features implemented (ImplFeaturesToWeek) up to week k
and the number of requested features (RequestFeaturesToWeek), respectively, based
on total number of features closed and opened until week k in a given repository.
Feature completion rate refers to the completed features. Therefore, it might not
measure the progress of implementation most accurately. However, it is a good-
enough metric to measure project progress. We assume, for project P we have an

288 S.M. Didar Al Alam et al.

Table 14.3 Details of six selected release readiness attributes (structured according to GQM)

Dimensions Attributes Questions Metric definitions Acronym

Implementation
status

Status of
feature
implementation

To what extent
feature
requests are
completed

ImplFeaturesToWeek(k)
RequestFeaturesToWeek(k) FCR

Status of
continuous
integration

To what extent
continuous
integration (CI)
requests
are completed

ComplCIRequestInWeek(k)
ComplCIRequestToWeek(k) PCR

Status of
improvement
completion

To what extent
improvement
requests
are completed

ImplImproveToWeek(k)
RequestImproveToWeek(k) ICR

Testing status Status of
defect finding

To what extent
the testing
activity reducing
defects

FoundDefectsInWeek(k)
FoundDefectsToWeek(k) DFR

Status of
bug fixing

To what extent
detected
bugs are fixed

SolvedBugsToWeek(k)
IdentBugsToWeek(k) BFR

Status of
source code
stability

To what extent
the source
code is becoming
stable

CodeChurnInWeek(k)
CodeChurnToWeek(k) CCR

available set of metrics (denoted by M). Extracting these metrics helps in selecting
a subset of release readiness attributes that CASRR method can investigate across
similar projects.

14.3.2 Phase 1: Selection

The CASRR method is a systematic approach to foster learning across projects. In
preparation of using CASRR, we characterize project P. Identified characteristics of
P help select a set of similar projects P∗. These projects serve as basis for learning.
We assume similar projects will show similar trends in release readiness attributes
towards the success of a product release. Analyzing previous projects assist in antic-
ipating potential bottlenecks in similar new projects. Along with project selection,
we need to set the observation period. A “longer” observation period is aimed to
result in better analyses but consumes more resources. By default, we use two years
of retrospective analysis as observation period. Based on the availability of projects
and resources, product managers may change this period.

14 Monitoring and Controlling Release Readiness … 289

The product manager can select similar projects from one or multiple code repos-
itories. Previous releases of project P (if available) are considered in P∗. Characteris-
tics of P drive the selection of similar projects. For each selected project, we collect
the required raw data for the selected set of release readiness attributes. We select
release readiness attributes based on the organizational goals and customer expecta-
tions. However, this may vary from project to project. Table14.2 presents four major
dimensions for release readiness. These are different aspects of the software product
described by a set of possible attributes to evaluate release readiness. One or more
metrics quantitatively describe a particular release readiness attribute. The product
manager must choose a set of release readiness attributes that are common among all
the projects in P∗. To help project managers, we suggest applying the Goal Question
Metric (GQM; [3]) paradigm. GQM is effective in designing a measurement pro-
gram that can evaluate release readiness. Release readiness attributes corresponding
to questions of GQM achieve the respective measurement goal. Available data asso-
ciated with each question quantitatively answer them.

As an example of this process, we selected six attributes (Table14.3) using the
GQM paradigm from two major dimensions (i.e., implementation status and testing
scope and status) [6]. The attributes and measures taken in this example are highly
context specific. According to our previous research [6], these attributes represent
60% of attributes known as influential from comprehensive industry guidelines3

available. In case of projects from the same repository (e.g., GitHub), the number
of overlapping attributes is expected to be higher compared to projects from differ-
ent sources. Product managers should consider the trade-off between the number
of similar projects selected and number of overlapping release readiness attributes
available. We suggest selecting the maximum number of projects with most overlap-
ping release readiness attributes. However, the decision depends onmultiple external
factors, such as importance of release readiness attributes or maturity of projects, and
may vary based on expert opinion.

14.3.3 Phase 2: Release Readiness Calculation

In phase 2, we calculate release readiness for all selected projects in P∗. First, we
measure release readiness individually for all selected release readiness attributes in
each project for each week. This is called the Local Release Readiness (LRR) for
individual release readiness attributes. Subsequently, we combine LRRmetrics into a
Global Release Readiness (GRR) metric representing readiness of the entire product
release. Based on expert opinion or previous releases, we identify the, respectively,
expected minimum and maximum values for each release readiness attribute per
project.

3Available from: http://www.softwareconsortium.com/software-release-readiness-criteria.html.

http://www.softwareconsortium.com/software-release-readiness-criteria.html

290 S.M. Didar Al Alam et al.

At any time t, LRRof a release readiness attribute ai,LRR(ai, t) is calculated based
on the actual value achieved at t with respect to the expectedmaximum andminimum
value to be achieved during the development cycle. This is a normalized value from
interval [0, 1], where 0 and 1, respectively, represent the expected minimum and
maximum values. We measure LRR throughout the development cycle and the value
resides somewhere between the two extreme points. We define LRR as follows:

Definition 14.1 (Local Release Readiness) We assume that project P with dura-
tion of release [0,T] at given week t ∈ [0,T] have
• A given set of release readiness attributes A = {a1, a2, . . . , an}
• For each release readiness attribute, a corresponding expected minimum and max-
imum level of values based on previous successful releases or expert opinion are
given by n-dimensional vectors Amin(ai) and Amax(ai)

• Corresponding actual values of release readiness attributes are given by the n-
dimensional vector Aactual(ai, t)

Then, LRR(ai, t) ∈ [0, 1] is the local release readiness of attribute ai at week t. It
is calculated based on the corresponding value in vector Aactual(ai, t) and expected
values of Amin(ai) and Amax(ai) following Eq.14.2.

LRR(ai, t) = Aactual(ai, t) − Amin(ai)

Amax(ai) − Amin(ai)
(14.2)

For any point in time t during the release, the global release readiness GRR(t)metric
is defined as the Weighted Arithmetic Mean (WAM) for all LRR(ai, t) values.

Definition 14.2 (Global Release Readiness) For a given set of release readiness
attributes A = {a1, a2, . . . , an}, the local release readiness of any attribute ai at week
t is represented by LRR(ai, t), where LRR(ai, t) ∈ [0, 1]. If {w1,w2, . . . ,wn} repre-
sents corresponding weights of attributes, the global release readiness is calculated
as follows:

GRR(t) = WAM(LRR(a1, t),LRR(a2, t), . . . , LRR(an, t)) =
n∑

i−1

wi × LRR(ai, t) (14.3)

We demonstrate the proposed release readiness calculation using a hypothetical
example. For T = 20 weeks long release of a DemoProject, we consider two release
readiness attributes: (a) status of bug fixing and (b) status of feature implementation.
Objective metrics for evaluating these release readiness attributes are, respectively,
bug fix rate (BFR) and feature completion rate (FCR). We already defined these
metrics in Table14.3. Figure14.3 demonstrates the LRR value for BFR and FCR for
the first 10weeks using bar charts. The curve presents the actual values for BFR and
FCR. We identified maximum and minimum expected values for both metrics based
on previous releases that are presented using horizontal dotted lines. For each week,
we calculate local feature completion rate using Eq.14.2. For the above example, we
consider both feature completion rate attributes as equally weighted. Therefore, the

14 Monitoring and Controlling Release Readiness … 291

0,11 0,14
0,18

0,23
0,29

0,36
0,43

0,52

0,61

0,71

0,9

0,64

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12

R
at

io
 o

f
ex

p
ec

te
d

 a
n

d
 a

ct
u

al
 v

al
u

es

C
u

m
u

la
ti

ve
 b

u
g

 f
ix

in
g

 r
at

e

Week number

LRR Expected values Actual values

0,05 0,06 0,08 0,09 0,11 0,13 0,16 0,18 0,21 0,25

0,75

0,18

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12

R
at

io
 o

f
ex

p
ec

te
d

 a
n

d
 a

ct
u

al
 v

al
u

es

C
u

m
u

la
ti

ve
 f

ea
tu

re
 c

o
m

p
le

ti
o

n
 r

at
e

Week Number

LRR Expected values Actual values

Fig. 14.3 Local RR evaluation (presented in bars) for Bug fixing rate (left) and Feature completion
rate (right). The solid line curve presents the actual values of BFR and FCR and the horizontal
dotted line presents the expected values, respectively, for BFR and FCR

GRR at any week t (i.e., GRR(t)) is calculated as the arithmetic mean of the LRR
value of BFR (i.e., LRR(BFR, t)) and FCR (i.e., LRR(FCR, t)) at week t.

14.3.4 Phase 3: Bottleneck Identification

Bottleneck factors (BF) are those release readiness attributes responsible for limiting
the readiness of a software product release. Factors which achieved a minimum
LRR value among all considered release readiness attributes will be referred to
as bottleneck factors. Identifying and analyzing bottleneck factors allows product
managers to continuously monitor the development cycle and to proactively take
action toward controlling them. Resource bottlenecks in project management are a
well-understood phenomenon. We transfer this idea from project management to the
study of release readiness. We define bottleneck factors as follows:

Definition 14.3 (Bottleneck Factor) For a given project P and a given week t ∈
[0,T], the bottleneck factor BF(t) is a release readiness attribute ai, which has the
lowest LRR value LRR(ai, t) among all release readiness attributes thus limiting the
global release readiness (Eq.14.3) value GRR(t) at week t.

BF(t) = argmini{LRR(a1, t),LRR(a2, t), . . . ,LRR(an, t)} (14.4)

Equation 14.4 returns the index of the bottleneck factor. Based on Eq.14.4, we
identify bottleneck factors per week and individually for all selected projects in P∗.
We compare the bottleneck frequency for every release readiness attribute in order
to understand (i) which release readiness attribute becomes the bottleneck factor
more or less frequently and (ii) whether there are certain conditions or contexts
which contribute in release readiness attributes becoming bottlenecks. We define the
bottleneck frequency as follows:

292 S.M. Didar Al Alam et al.

Definition 14.4 (Bottleneck Frequency) For a given project P and a given time
interval [0,T], the bottleneck frequency BNF(ai,T) of a release readiness attribute
ai is defined as the weekly frequency of ai becoming a bottleneck in achieving release
readiness within T .

In the previously presented example, we monitored two release readiness attributes
over a 20-week release period. Applying Eq.14.4 we can identify the bottleneck
factor for each week. For example, in Fig. 14.3 FCR represents the bottleneck at
week 10. Here, local release readiness of FCR in week 10 is smaller than local
release readiness ofBFR inweek10.Multiple release readiness attributes can become
bottlenecks in a singleweek aswell.While identifyingbottleneck factors,we consider
equal weights for all attributes. Therefore, the weighted arithmetic mean in Eq.14.3
becomes equivalent to arithmetic average, which allows a more simple bottleneck
factor identification approach using Eq.14.4. This simplification helps avoid bias in
bottleneck factor identification and analysis of bottleneck frequency.

14.3.5 Phase 4: Analysis

In Table14.3, we applied the GQM paradigm to select release readiness attributes
and corresponding metrics. We selected six release readiness attributes from a larger
set of measures extracted from project P. Our selection of release readiness attributes
and subsequent metrics was primarily influenced by their (i) availability in selected
projects, (ii) influence on release readiness, and (iii) ease of calculation. We identi-
fied bottleneck factors within this selected set of metrics using Eq.14.4. To identify
(cluster-specific) patterns of bottleneck occurrence, we conduct a per-domain analy-
sis answering the following questions:

1. What are the most frequently occurring bottleneck attributes (overall and per
cluster)?

2. What project characteristics influence the occurrence of bottleneck attributes
(overall and per cluster)? Example characteristics considered are:

• Project size, i.e., to distinguish between bottleneck attributes occurrence in
large versus small projects,

• Project team, i.e., to distinguish between bottleneck attribute occurrence in
projects with many contributors versus those with few contributors,

• Project phase, i.e., to distinguish between bottleneck attributes occurrence in
early versus late phases of a release development

Once we collected all data and processed them to phase 3, we start the analysis in
order to answer the questions of interest for phase 4.

14 Monitoring and Controlling Release Readiness … 293

Note: So far, we have described the investigation regarding bottleneck fre-
quency of release readiness attributes. We provided an exemplary analysis of
bottleneck factors across projects based on selected project characteristics.
The selection of project characteristics for a particular analysis depends on the
context and the goal of the analysis. Experts may consider completely differ-
ent investigations or project characteristics as more relevant for their analysis
based on underlying context or organization.

Based on our analysis results, we identified the bottleneck attributes, which are
most important for monitoring and counteracting, per cluster, per project type, and
per project phase. This analysis helps with selecting release readiness attributes,
which tend to become bottleneck factors. This analysis also helps with understand-
ing the influence of project evolution and project characteristics on the occurrence of
bottleneck factors. Selected bottleneck factors are applied in continuous monitoring
and controlling of release readiness throughout the release. Monitoring and control-
ling these bottleneck factors falls outside the scope of this chapter and is subject to
future research.

14.4 Proof of Concept

To validate the CASRR method and to demonstrate its applicability, in this section,
we present an empirical evaluation. We applied CASRR to different OSS projects.
In absence of proprietary projects, we selected two OSS projects for example, one
desktop- and one web-based software project for evaluation purpose.

Preparation: We selected two projects from two different software domains as sub-
jects. The selected projects are GoldenCheetah/GoldenCheetah and MboStock/D3,
which are desktop- and, Web-based software projects, respectively. In preparation of
using CASRR, we characterized these projects by the number of commits, number of
releases, number of different contributors, and project duration in calendar days. In
Tables14.4 and 14.5, we present these characteristics collected over the total lifespan
(i.e., from project start to the end of observation time) of the projects. As a second
step, we extract a list of available measures from both projects. Initially, we extract a
set of 14 metrics related to the first three release readiness dimensions as presented in
Table14.2. Due to lack of available documentation, we discard extracting measures
related to the documentation scope and status dimension. After completing both
preparation steps, we move toward applying CASRR to both projects.

294 S.M. Didar Al Alam et al.

14.4.1 Phase 1: Selection

In phase 1, we select a set of similar projects based on the characterization of our
projects. We have chosen a single repository to select our projects for analysis.

Note: It is hard to quantify the number of similar projects required due to (i)
perception of the project manager and (ii) availability of projects. However,
as a default rule one should keep ranges flexible to find a significant number
(minimum 10) of similar projects.

In this study, we selected 32 projects fromGitHub—equally divided into desktop-
based (D) and web-based (W) software development projects. Including previous
releases of GoldenCheetah/GoldenCheetah and Mbostock/D3, we analyzed 34 OSS
projects in total. Tables14.4 and 14.5 summarize all desktop- andweb-based projects,
respectively.

Since all 34 projects are selected from the same GitHub repository, we identified
a large set of common attributes among the projects. We applied GQM to select a
set of six attributes (shown in Table14.3) related to release readiness. As mentioned
before, the selected attributes cover 60% of attributes, which are known as influential

Table 14.4 List of 17 desktop-based projects with their characteristics

Project id and name # Commits # Releases # Different
contributors

Duration
(days)

D1: GoldenCheetah/GoldenCheetah 4016 22 41 1319
D2: Ryanb/Can can 419 29 62 1710

D3: Celluloid/Celluloid 1415 45 74 1169

D4: Clinton-hall/NzbToMedia 1472 0 15 581

D5: Fastly/Epoch 345 14 6 385

D6: Berkshelf/Berkshelf 3609 97 81 812

D7: Grafana/Ggrafana 1541 16 70 188

D8: Intridea/Grape 1802 25 151 1450

D9: Joey711/Phyloseq 581 0 5 1046

D10: Mybb/Mybb 1234 37 24 760

D11: Orientechnologies/Orientdb 7731 21 49 590

D12: Owncloud/Mirall 5865 43 42 681

D13: Python-pillow/Pillow 2336 15 95 729

D14: Resque/Resque 1910 70 229 1723

D15: Scikit-learn/Scikit-learn 16816 58 282 1422

D16: SynoCommunity/Spksrc 1754 0 41 1011

D17: Zfsonlinux/Zfs 1408 30 104 1531

14 Monitoring and Controlling Release Readiness … 295

Table 14.5 List of 17 web-based projects with their characteristics

Project id and name # Commits # Releases # Different
contributors

Duration
(days)

W1: Mbostock/D3 3207 173 78 1393
W2: Att/Rcloud 2842 12 11 712

W3: Automattic/Socket.io 1293 89 68 1589

W4: Locomotivecms/Engine 2209 36 80 1429

W5: FortAwesome/Font-Awesome 573 14 28 869

W6: Gravitystorm/Openstreetmap-carto 595 29 29 598

W7: H5bphtml5/Boilerplate 1340 24 175 1641

W8: Hawtio/Hawtio 5920 51 45 594

W9: Highslide-software/Highcharts.com 4109 71 31 1498

W10: Hypothesis/H 3851 9 18 831

W11: Jashkenas/Backbone 2629 21 228 1379

W12: MayhemYDG/4chan-x 5151 192 35 1017

W13: Adobe/Adobe 13887 53 225 958

W14: Moment/Moment 2050 36 204 1160

W15: Imathis/Octopress 808 1 103 1683

W16: Travis-ci/Travis-ci 3602 232 94 1241

W17: Webbukkit/Dynmap 1738 67 14 1295

for project success. In order to cover both, functional and non-functional aspects of
release readiness, we assess those release readiness attributes that satisfy certain
goals related to the implementation and test status in each project.

14.4.2 Phases 2 and 3: Release Readiness Calculation
and Bottleneck Factor Identification

As previously demonstrated, phases 2 and 3 are meant to calculate the release readi-
ness and to identify the bottleneck factors. After identifying project characteristics,
similar projects, and release readiness attributes, we started collecting the raw data
for each release readiness attribute from the selected projects. We collected data for
all projects over a two-year observation period (with few exceptions). Following
Eq.14.2, we calculate the LRR value on a weekly basis for all release readiness
attributes over all selected projects. To reduce bias in identifying bottleneck factors,
we applied equal relative weights for release readiness attributes across projects.
We consulted two senior developers from local software companies to decide the
expectedminimumandmaximumvalues for each attribute. Furthermore, we selected
the minimum and maximum values individually for each project based on minimum
and maximum values derived from the two-year observation period.

296 S.M. Didar Al Alam et al.

For each project, one or more bottlenecks were identified. We consider release
readiness attribute(s) with lowest LRR (Eq.14.4) value in each week as the bot-
tleneck factor. Following the definition of the bottleneck frequency (BNF) shown
in Sect. 14.3.4, we calculate the BNF of a release readiness attribute occurring as
bottleneck over the whole observation period.

Note: For the purpose of the demonstration, we primarily relied on the bot-
tleneck frequency data and performed multiple analyses across the selected
projects. However, the analysis is not limited to bottleneck frequency. Experts
can perform a CASRR-based analysis with respect to other measurable cri-
teria, e.g., how one bottleneck transfers to another one or how bottlenecks
group together over the observation period.

14.4.3 Phase 4: Analysis

Phase 3 calculates individual LRR values along with identifying bottleneck factors
and the frequency of occurrence. Figure14.4 shows box plots for the bottleneck
frequency of all release readiness attributes across all selected projects. For each
release readiness attribute, the range of bottleneck frequencies is given for both
desktop- (D) and web-based (W) projects. For example, we observed that the mean
value for the release readiness attribute PCR became a bottleneck across all projects
for above 70 time in D-type projects and above 80 times in W-type projects over the
observation period.

Once we collected the information for each project of how often a release readi-
ness attribute occurred as a (potential) bottleneck, we conducted further analyses. By
following the plan presented in Sect. 14.3.5, we first aim to identify common patterns

Fig. 14.4 Bottleneck
frequency of the six release
readiness attributes for D-
and W-type projects

Group
DFRICRCCRBFRFCRPCR

WDWDWDWDWDWD

120

100

80

60

40

20

0

F
re

q
u

e
n

cy
o

f
O

cc
u

rr
e

n
ce

as
B

F

14 Monitoring and Controlling Release Readiness … 297

RR Attributes DFRICRCCRBFRFCRPCR

2500

2000

1500

1000

500

0

100

80

60

40

20

0

F
re

q
u

e
n

cy
o

f
O

cc
u

rr
e

n
ce

a s
B

F

P
e

rc
e

n
t

566078

325
461

1225

RR Attributes DFRCCRICRBFRFCRPCR

2000

1500

1000

500

0

100

80

60

40

20

0

F
re

q
u

e
n

cy
o

f
O

cc
u

r r
e

n
ce

as
B

F

P
e

rc
e

n
t

2581121
272

431

1240

Fig. 14.5 Pareto charts for bottleneck frequencies in desktop-based projects (left) and web-based
projects (right)

of bottleneck frequency, i.e., whether some release readiness attributes occur more
frequently than others, or if there is a difference between the rankings of release readi-
ness attributes in the two considered software domains. Figure14.5 shows the Pareto
charts for both project types. We identified similar bottleneck frequency patterns
and rankings among both domains. In particular, the same three release readiness
attributes (PCR, FCR, and BFR) account for more than 80% of all bottleneck occur-
rences. Furthermore, a ranking of the three most frequently occurring bottleneck
factors is similar in both domains. This implies that product manager can focus on
controlling the top-most release readiness attribute(s) if resources are scarce.

Next,we are interested inwhether the occurrence frequencies of bottleneck factors
differs depending on certain project characteristics. In the presented case, we focused
on the three project characteristics size (measured as number of commits), team
dispersion (measured as number of different contributors), and release development
phase. In order to determine the early and late phase of a release development of
a project, we split each release development into two equal parts—early and late
phase. For example, if 16 releases were observed for a project (see column number
of releases in Table14.4), we will consider 16 early phases and 16 late phases,
respectively, and we can count how often a certain release readiness attribute became
a bottleneck in each of these phases, which also represents the evolution of software
projects to a certain extent.

We applied the Mann–Whitney U Test for non-parametric statistical testing
to check whether occurrence frequency differs significantly per release readiness
attribute for a given project type. Figure14.6 shows the split of occurrence frequen-
cies for all six release readiness attributes regarding size, team dispersion, and release
development phase on a per-project-type analysis.4 In summary, we found three dif-
ferent patterns:

4The symbol ‘**’ next to the release readiness attribute name indicates that the occurrence frequency
of the respective attribute is significantly different at an alpha-level of 5%.

298 S.M. Didar Al Alam et al.

Group
DFRICRCCRBFRFCRPCR

MSMSMSMSMSMS

120

100

80

60

40

20

0

F
re

q
u

e
n

cy
o

f
O

cc
u

re
n

ce
as

B
F

Group
DFRICRCCRBFRFCRPCR

MSMSMSMSMSMS

120

100

80

60

40

20

0

F
re

q
u

e
n

cy
o

f
O

cc
u

re
n

ce
as

B
F

Group
DFRICRCCRBFRFCRPCR

HLHLHLHLHLHL

120

100

80

60

40

20

0

F
re

q
u

e
n

cy
o

f
O

cc
u

re
n

ce
as

B
F

Group
DFRICR**CCRBFRFCRPCR**

HLHLHLHLHLHL

120

100

80

60

40

20

0

F
re

q
u

e
n

cy
o

f
O

cc
u

re
n

ce
as

B
F

Group
DFR**ICR**CCR**BFR**FCR**PCR**

LELELELELELE

60

50

40

30

20

10

0

F
re

q
u

e
n

cy
o

f
O

cc
u

re
n

ce
as

B
F

Group
DFR**ICR**CCR**BFR**FCR**PCR**

LELELELELELE

60

50

40

30

20

10

0

F
re

q
u

e
n

cy
o

f
O

cc
u

re
n

ce
as

B
F

Fig. 14.6 Frequency of occurrence of bottleneck factors by project size (top), project team (middle),
project phase (bottom); grouped by desktop-based (left) and web-based (right) projects

1. Distinguishing projects with regards to size does not show any significant differ-
ence in the occurrence frequency of bottleneck attributes in both domains

2. Distinguishing projects with regards to release phase exhibits significant differ-
ence in the occurrence frequency of bottleneck attributes for all release readiness
attributes in both domains

3. Distinguishing projects with regards to team does not show any significant dif-
ference for desktop-based projects but shows significant difference for release
readiness attribute PCR for web-based projects

Considering release phases as a representation of project evolution, this analysis
demonstrates that bottleneck occurrence for all selected release readiness attributes
changes in accordance with the project’s evolution.

14 Monitoring and Controlling Release Readiness … 299

In our example, all release readiness attributes have presented an almost uniform
behavior depending on project types and characteristics. However, this may not
always be the case. Therefore, it is of certain interest to highlight the release readiness
attribute that in total occurs most frequently as a bottleneck, i.e., PCR. The benefit
of such an analysis is that a company with large project portfolios (and related
repositories) can use the analysis outcomes to focus their effort spent on monitoring
release readiness attributes where it really matters. In other words, it facilitates in
understanding the differences betweenmonitoring the bottleneck factors for different
project types and different project-related criteria.

14.5 Conclusion

The success of a software release depends on complex decisions related to stake-
holders, constraints, features, resources, and many more. Product managers often
need to choose between quality, release time, and functionalities of the product.
Even a slightly early or late release may result in significant loss or even a com-
plete failure. Therefore, ad hoc decisions or those based on gut feeling can put the
project and the organization into risk. Collecting analytical data by continuously
monitoring the development cycle can give product managers better insight into a
project and its current status, whichwill result inmore astuteness in decisionmaking.
However, this process is extensively resource consuming. In order to systematically
identify attributes, which have a higher likelihood to limit the product readiness thus
using limited resource wisely, we proposed and evaluated the CASRRmethod in this
chapter.

This chapter and the CASRR approach are presented to help product managers
in their release decisions by delivering four different contributions: First, we present
a systematic way to learn across similar projects. The presented approach guides
product managers in focusing on monitoring resources where they are more effec-
tive. Second, our approach identifies bottleneck factors early. This will proactively
address possible resource limitations and recommend appropriate actions to manage
them. Third, we validated our presented method using OSS projects. The evaluation
revealed some important conclusions with respect to OSS projects. Finally, we sys-
tematically studied related articles, summarized their key findings, and categorized
them in meaningful groups. This helps to direct future research in this domain.

We applied our presented CASRR method to two different OSS software devel-
opment domains. We selected 17 desktop-based and 17 web-based software projects
for analysis, which resulted in three major conclusions: (i) We analyzed projects in
different groups based on size, project team, and project phase. We found signif-
icant differences in the frequency of bottleneck factors in achieving release readi-
ness among different groups for the selected project types, (ii) we found differences
between the attributes studied in this chapter and the domain we considered to select
our projects, and (iii) project characteristics and project evolution influence bottle-
neck occurrences.

300 S.M. Didar Al Alam et al.

Since these conclusions are context-specific, it is yet not possible to generalize
them for proprietary software. However, the conclusions help with evaluating release
readiness and recommendmeaningful actions. Applying CASRR supports the detec-
tion of the most influential bottleneck factors in a project and the identification of
how project characteristics influence the variation of bottleneck factors. Proactively
using this information helps project teams to better manage their resource allocation.
With the future improvement of this method, we will be able to better monitor and
control releases with effective use of assigned resources.

14.6 Further Reading

In this chapter, we presented the CASRR approach to identify release readiness
attributes, which can better measure release readiness. In different articles, authors
have chosen different attributes to evaluate release readiness. The choice of release
readiness attributes was mostly ad-hoc or based on experience and gut feeling. In
most cases, these articles did not apply a systematic and comprehensive study across
different projects to identify release readiness attributes. In this section, we briefly
discuss some of these related publications (Table. 14.6).

In [20], Staron et al. proposed the time-to-release indicator for agile development.
They identified time-to-release using the Eq.14.5 based on number of defects, defect
removal rate, test execution rate, and test pass rate. The value for all metrics in
Eq.14.5 are based on the past four weeks of a release cycle. However, only a single
release readiness indicator value cannot provide proper insight into the complexities
involved in the decision-making processes of software releases. Assumptions such as
traceability between test cases and requirements, and traceability between test cases
and work packages etc., limits the applicability of this approach to other domains.

Time to Release = # defects

defect removal rate − (test execution rate − test pass rate)

(14.5)

At HP labs, researchers developed amethod to assess release readiness for embedded
systems [14]. They identified and applied four objective metrics code turmoil, test
passing rate, defect find rate and number of open defects. Researchers used Spider
Charts to visualize and compare the metrics of the current project with past projects.
This helps the management understand the risk associated to each metric to deliver
the product on the predefined release date. In another approach, researchers estimate
the remaining defects [16, 22] to evaluate release readiness and considered a set
of source code-related metrics, such as depth of the inheritance tree, responsibility
of a class, number of parents of a class, and so forth. They collected data from
different layers (e.g., data access layer, presentation layer, and business logic layer)
and provided prediction model based on neural networks. Based on the prediction

14 Monitoring and Controlling Release Readiness … 301

Table 14.6 List of former articles and details of their performed case study along with purpose of
the study, research method and applied metrics in these case studies

Reference System under
study

Research method Metric applied Purpose of the
study

[17] DataFinder
(a RDBMS
product)

Case study Open and close
bug rates,
percentage of test
passing, and test
coverage, task
productivity
rates, feature
productivity rates

Reviewing the
actions and
measurements
taken for the
assessment of the
readiness of the
product ship

[16] Warehouse
management
applications and
networked
information
system

Case study Source code
metrics collected
from Warehouse
management
applications

Verify accuracy
of the defect
prediction model
and to quantify
the relative
importance of the
source
code-related
metrics

[10] Electronic design
automation
products

Case study Defect find rate,
severity 1 open
defects, and
weighted defect
density

To validate the
metrics used for
determining RR
of the software
product

[5] 75 product
release in
Motorola

Case study Failure free
testing hours

To validate the
proposed
zero-failure
model for
achieving RR

[14] HP LaserJet
product

Case study As number of
open defects, test
passing rate,
defect find rate,
and code turmoil

To validate the
RR metrics and
approach

[20] Ericsson
products

Action
research

Number of
defects, defect
removal rate, test
execution rate
and test pass rate

Evaluating
time-to-release
as key RR in
indicator

model, they identified the number of remaining defects along with the amount time
required for release.

The majority of the discussed articles does not provide proper tool support—
if at all, some kind of visualization was mentioned. Tool support allows product
managers to evaluate the approach and to judge its usefulness. Apart from that,
we found two companies integrating a release readiness analysis component as a

302 S.M. Didar Al Alam et al.

supplementary feature of their main product. For instance, Borland’s TeamInspector
[4] extracts metrics related to code analysis, test coverage, standard compliance, and
build trends to evaluate release readiness. PTC integrity [11] from MKS software
extracts and visualizes metrics related to functionality, standard compliance, and
budget and schedule to verify release readiness. Some former articles presented case
studies in industry setup. These articles evaluated their approaches in industry and
discussed their experiences. In Table14.6, we summarize the most relevant case
studies on release readiness along with their article citation, the purpose of the study,
the system under study, research method, and metrics applied in the study.

Acknowledgments This work was partially supported by the Natural Sciences and Engineering
Research Council of Canada, NSERC Discovery Grant 250343-12, Alberta Innovates Technology
Futures and by the institutional research grant IUT20-55 of the Estonian Research Council.

References

1. Ashrafi, N.: The impact of software process improvement on quality: in theory and practice.
Inf. Manag. 40(7), 677–690 (2003)

2. Asthana, A., Olivieri, J.: Quantifying software reliability and readiness. In: Proceedings of the
International Workshop Technical Committee on Communications Quality and Reliability, pp.
1–6. IEEE, Washington, DC (2009)

3. Basili, V.R., Caldiera,G., Rombach,H.D.: The goal questionmetric approach. In: Encyclopedia
of Software Engineering. Wiley, New Jersey (1994)

4. Borland: Teaminspector 2008. http://techpubs.borland.com
5. Brettschneider, R.: Is your software ready for release? IEEE Softw 6(4), 100–104 (1989)
6. Didar Al Alam, S.M., Shahnewaz, S.M., Pfahl, D., Ruhe, G.: Monitoring bottlenecks in achiev-

ing release readiness: a retrospective case study across ten oss projects. In: Proceedings of the
International SymposiumonEmpirical SoftwareEngineering andMeasurement, pp. 60:1–60:4.
ACM, New York, NY, USA (2014)

7. Ebert, C.: The impacts of software product management. J. Syst. Softw. 80(6), 850–861 (2007)
8. Ebert, C.: Software product management. IEEE Softw. 31(3), 21–24 (2014)
9. Gokhale, S.: Optimal software release time incorporating fault correction. In: Proceedings of

the Annual NASAGoddard Software EngineeringWorkshop, pp. 175–184. IEEE,Washington,
DC (2003)

10. Johnson, M.A.: A case study of tracking software development using quality metrics. Softw.
Qual. J. 4(1), 15–31 (1995)

11. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley Profes-
sional (2003)

12. McConnell, S.: Gauging software readiness with defect tracking. IEEE Softw. 14(3), 135–136
(1997)

13. Microsoft: Plan the release readiness review meeting. http://technet.microsoft.com/en-us/
library/cc526651.aspx Accessed 2014

14. Pearse, T., Freeman, T., Oman, P.: Using metrics to manage the end-game of a software project.
In: Proceedings of the International Symposium on Software Metrics, pp. 207–215. IEEE,
Washington, DC (1999)

15. Port, D., Wilf, J.: The value of certifying software release readiness: an exploratory study
of certification for a critical system at jpl. In: Proceedings of the International Symposium
on Empirical Software Engineering and Measurement, pp. 373–382. IEEE, Washington, DC
(2013)

http://techpubs.borland.com
http://technet.microsoft.com/en-us/library/cc526651.aspx
http://technet.microsoft.com/en-us/library/cc526651.aspx

14 Monitoring and Controlling Release Readiness … 303

16. Quah, T.S.: Estimating software readiness using predictive models. Inf. Sci. 179(4), 430–445
(2009)

17. Rothman, J.: Measurements to reduce risk in product ship decisions. http://www.
universityalliance.com/info1/whitepapers Accessed 2014

18. Satapathy, P.R.: Evaluation of software release readiness metric [0,1] across the software devel-
opment life cycle. Tech. rep., Department of Computer Science & Engineering, University of
California (2007)

19. Shahnewaz, S.M.: RELREA-an analytical approach supporting continuous release readiness
evaluation. Master’s thesis, University of Calgary (2014)

20. Staron, M., Meding, W., Palm, K.: Release readiness indicator for mature agile and lean soft-
ware development projects. In: Wohlin, C. (ed.) Agile Processes in Software Engineering and
Extreme Programming. Lecture Notes in Business Information Processing, vol. 111, pp. 93–
107. Springer, Heidelberg (2012)

21. Ware, M., Wilkie, F., Shapcott, M.: The use of intra-release product measures in predicting
release readiness. In: Proceedings of the International Conference on Software Testing, Veri-
fication, and Validation, pp. 230–237. IEEE, Washington, DC (2008)

22. Wild, R., Brune, P.: Determining software product release readiness by the change-error corre-
lation function: on the importance of the change-error time lag. In: Proceeding of the Annual
Hawaii International Conference on System Science, pp. 5360–5367. IEEE, Washington, DC
(2012)

http://www.universityalliance.com/info1/whitepapers
http://www.universityalliance.com/info1/whitepapers

Chapter 15
The Effects of Software Process Evolution
to Technical Debt—Perceptions from Three
Large Software Projects

Jesse Yli-Huumo, Andrey Maglyas and Kari Smolander

Abstract This chapter describes a qualitative study with the goal to explore and
understand how software process evolution affects technical debt. We investigated
three large software development projects with a long development history with the
aim to understand how software processes had evolved during the life cycle and how
this evolution affected technical debt. We observed how companies had changed
their software processes as well as the reasons, benefits, and consequences of these
changes on technical debt. The main driving force for the software process evolution
was business pressure from management to increase productivity and become cost-
efficient. However, these changes were also the source of technical debt. The results
show that software process evolution has a clear effect to technical debt. Software
process evolution can be used to decrease technical debt by adopting new methods,
tools, and techniques. However, software process evolution includes several chal-
lenges. These challenges have a possibility to decrease the productivity and quality
of new software processes and technical debt might increase.

15.1 Introduction

The software industry struggles with increasing competition and time-to-market
requirements in delivering new solutions to customers. Companies must be able
to deliver their solutions faster than competitors to receive a share of the market [6].
In order to be fast, companies should enhance their software development processes
and practices to achieve the best ways to produce quality software on time, within

J. Yli-Huumo (B) · A. Maglyas
School of Business and Management, Innovation & Software, Lappeenranta University
of Technology, P.O. Box 20, 53851 Lappeenranta, Finland
e-mail: Jesse.Yli-Huumo@lut.fi

A. Maglyas
e-mail: Andrey.Maglyas@lut.fi

K. Smolander
Department of Computer Science, Aalto University, P.O. Box 15400, 00076 Aalto, Finland
e-mail: kari.smolander@aalto.fi

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_15

305

306 J. Yli-Huumo et al.

budget, and for the right market [27]. However, software development processes are
not easy to change [4] or manage (see also Chap.10 and Chap.9 in this volume). If
the new processes do not align to the organization and its way of working, serious
consequences may follow. Decreasing quality and productivity can be the result of
new software development processes if they do not align with the company’s way
of working. When omitted quality and productivity issues start to have effect on a
software development project, it can be a sign of “technical debt.”

The technical debt metaphor is related to shortcuts and workarounds in meeting
urgent demands [35]. Implementing shortcuts to the system architecture incur “debt”
that must be eventually paid back. If this debt is not properly managed, it might
accumulate as “interest,” affecting the overall quality of the developed software
systems [42, 43]. Although technical debt has negative consequences in a long term,
it can be used as a competitive advantage in a short term [26]. Time-to-market and
constant customer feedback through releasing software faster than competitors allow
companies to gain a bigger market share [26].

This chapter describes a qualitative study that had a purpose to explore and under-
stand how software process evolution affects technical debt. We investigated three
large software development projects with a long development history with the aim
to understand how software processes had evolved during the life cycle and how
this evolution affected technical debt. We observed how companies had changed
their software processes as well as the reasons, benefits, and consequences of these
changes on the technical debt.

The rest of the chapter is organized as follows. Section15.2 provides the back-
ground and the research process related to this research. Section15.3 introduces the
results analyzed from the gathered data. In Sect. 15.4, we discuss about the results.
Section15.5 concludes the paper, and Sect. 15.6 provides further reading related to
the chapter’s topic.

15.2 Background and Context

The term “technical debt” was first introduced in 1992 by Ward Cunningham as a
situationwhere a long-termcodequality is traded for a short-termgain [13]. Technical
debt can be compared to finance debt [1]. Similar to finance debt, technical debt incurs
interest, which come in the form of the extra effort that we have to pay back in the
future [1]. Often technical debt is related to the source code of the software, where a
shortcut or aworkaround is taken in order to save time. However, taking shortcuts and
workarounds can happen in multiple stages of software development life cycle [38].
In the requirements phase, lack of documentation or lack of requirements can cause
requirements debt [29, 44]. Architectural flaws in the design phase can also increase
design debt [5, 38] and structural debt [44]. In a testing environment workarounds in
running and writing test cases can also incur test debt [44] and automation debt [9].

In addition, technical debt is not always caused by intentional decisions to gain
short-term advantages. Technical debt can be divided into two main categories:

http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_9

15 The Effects of Software Process Evolution to Technical Debt … 307

intentional and unintentional technical debt [28]. Intentional technical debt incurs
when company makes a strategic decision to cut down; for example, the feature
quality in order to be able to release the product on time to customer. Unintentional
technical debt forms unknowingly, when for example, a junior coder writes lower
quality code that needs to be refactored later.

Companies change and evolve their software processes to improve software qual-
ity and reliability, employee and customer satisfaction, return on investment and
time-to-market [12, 27]. Software process improvement (SPI) is used to improve
productivity, quality, schedule, customer satisfaction, and return on investment [2,
17, 18, 23]. Overall, the current research on software process evolution consists
of studies about the benefits and consequences of software process improvement.
However, their relationship to technical debt has not been studied. In this study,
we focus on contributing to the research of technical debt by studying the reasons,
benefits, and consequences of software process evolution and their relationship on
taking shortcuts and workarounds and provide empirical results by studying three
real software projects.

Case study was selected as the research method for the study. Case study is a way
to investigate an empirical topic by following a set of pre-specified procedures [41].
According to Verner et al. [40], case studies provide “a systematic way of looking at
events, collecting data, analysing information, and reporting the results.” Case study
method involves an in-depth examination of a single case or a multiple number of
cases [40]. According to Yin, it “investigates a contemporary phenomenon within ins
real-life context, especially when the boundaries between phenomenon and context
are not clearly evident [41].” We followed the guidelines of Yin [41] to conduct the
case study process in this research. The process consists five different stages [41]:

1. Designing the case study
2. Preparing for data collection
3. Collecting the evidence
4. Analysing the case study evidence
5. Reporting the case study

The first stage of the case study process was to design and identify the research
strategy for the case study. In this study, our focus was on the software process
evolution and technical debt. The goal was to understand how software processes
had evolved during the life cycle and how this affected to technical debt. We decided
to use the exploratory case studymethodwith semi-structured interviews [31] that are
frequently used as a data collection technique in software engineering studies [20].

The second stage for the case study process was to prepare the data collection.
In this stage, we designed the procedures to conduct interviews and contacted the
key persons in the chosen cases. The interviews were designed to investigate the
reasons, benefits, and consequences of software process evolution to technical debt,
rather than what are the qualities of technical debt in the source code. Therefore, we
arranged interviews with people from multiple different backgrounds (business and
technical). Since this study was a part of a bigger research program, the selection
of the companies was primarily dictated by the list of partners. The selected cases

308 J. Yli-Huumo et al.

for this study were three large companies in the data communications industry. The
primary reason for the selection of these three specific cases was their long product
history. We believed that a product with long development history would include
more software process changes and it would provide us with more empirical data
about the research topic.

Case A is a software development project that develops a self-service channel for
customers and automated processes for the company employees. The company is a
large telecommunications company and employs currently about 4,200 people and
has about 2.3 million customers. The company expects to make significant economic
savings with the project. The project was challenging because the company had
multiple background systems in use and the goal was to combine these all in a
single system. The project started in the beginning of 2007 with developers from a
middle-sized software company and other external consultants related to the system
integration. The system has been developed since then and the project is still running
today. The system is being further developed with additional features and it currently
has around 1 million lines of code and integration to over 70 background systems.

Case B is a software product developed for controlling and monitoring telecom-
munication systems. A large data networking and telecommunications equipment
company have conducted the project. The company has around 58,000 employees
and the organization size for the studied project is around 1,500 people. More than
320 customers are using the product. The project was started in 1992 and is still
running today with multiple yearly releases. The product has currently around 50
million lines of code and it has faced several technology and operational system
transitions during its life cycle.

Case C is a software development project conducted by a large company that provides
communication technology and services. The companyhas currently around1,15,000
employees and customers in over 180 countries. Thegoal of the projectwas to develop
a product that connects different networks together. The development of the product
started in the beginning of 2000 and since then it has been developed further with
new features brought or requested by customers. However, at themoment the product
is facing the end of its life cycle and includes currently mainly maintenance work.

Table15.1 shows the overview of the cases. Even though all of the case companies
are working in the same industry area, the CaseA, as a smaller company, is somewhat
different compared to the other two cases. Also the development of Case A started
several years later compared to the Cases B and C.

The third stage of the case study process was to collect the evidence from the
selected case companies.We conducted 17 semi-structured interviewswith the snow-
balling technique [7] during March–October 2014. The interviews started from our
key contacts from each of the selected cases and the next interviewees were referrals
from the previous ones. We were able to interview people from various organiza-
tional positions and investigate the research topic from the viewpoint of software
developers to managers. The interviews lasted from 31 to 105min with an average
of about 50min. Table15.2 presents the roles of the interviewees in this study.

15 The Effects of Software Process Evolution to Technical Debt … 309

Table 15.1 Overview of the selected cases

Case A Case B Case C

Industry sector Telecommunications Telecommunications
equipment

Telecommunications
equipment

Company profile Retail and wholesale
fixed-line and mobile
telecommunications
services, internet
services

Mobile broadband,
consultancy and
managed services,
multimedia
technology

Mobile and fixed
broadband networks,
consultancy and managed
services, TV and
multimedia technology

Company size Large Large Large

Employees 4,200 58,000 115,000

Case project Self-service system
for customers

Network monitoring
and controlling system

System for connecting
networks

Project start 2007 1992 2000

Project end Still continuing Still continuing Still continuing

Lines of code Approx. 1 Million Approx. 50 Million –

Table 15.2 The roles of
interviewees

ID Case Role

A1 A Software architect

A2 A Project owner

A3 A Project owner

A4 A Senior software consultant

A5 A Software architect

B1 B Technical project manager

B2 B Software architect

B3 B Software architect

B4 B Manager of R&D department

B5 B Project manager

C1 C Line manager

C2 C Manager of release verification department

C3 C Software testing

C4 C Manager of maintenance department

C5 C Software developer/technical coach

C6 C Innovation and business architect

C7 C Software developer

The fourth stage of the case study process was to analyse the collected data.
The total amount of transcribed qualitative data for analysis was over 150 pages.
After the data collection, data was analysed with a special tool for qualitative data

310 J. Yli-Huumo et al.

analysis (Atlas.ti1). In the analysis process, we used similar procedure to open coding
in grounded theory [11]. First, we read and examined through all of the transcribed
interviews and related content.During the analysis,we categorized the parts related to
software process evolution and technical debt into labelled concepts. Then, these data
labels were grouped and linked together andwe formed categories and subcategories.
We used these categories to analyse the results.

15.3 Identified Scenarios of Software Process Evolution
and Technical Debt

The last stage of the case study process was to report the gathered and analysed
results. During the interviews our focus was to gather information about the history
of the software process evolution in the case companies. Our goal was to identify
situations during the interviews where companies had to change the software process
for some specific reason and learn the reasons and effects behind it. We were able
to identify scenarios of software process evolution in the studied cases. The inter-
viewees described us real situations from the cases that had happened in the past or
very recently. In this section, we present five scenarios and explain the context and
environment in which the software process change happened and how it affected to
the technical debt.

15.3.1 Scenario 1: A Need for More Frequent Releases

In Case C, the company made a decision to adopt agile methods after developing
the product for several years with the waterfall model. The management of company
felt that waterfall development model was not suitable to have frequent releases to
customers. The customers required releasesmonthly, but the companywas not able to
accomplish that. Thewaterfallmodelwas too rigid for inter-departmental cooperation
and caused delays. The company could not organize the process of switching to
agile methodologies on their own, so the decision was to hire a consultant team
from another company to train people in agile software development processes and
practices. The software process change was challenging during the first year and the
project encountered several problems. The agile methodologies included a set of new
practices and it was challenging for teams in the project to learn them. The change of
methodology also encountered some resistance in the beginning and everyone in the
project was not excited about the new ways of working. This resulted in a situation
where some of the project members were using the waterfall model, while others
were using agile methods.

1Available from: http://atlasti.com/.

http://atlasti.com/

15 The Effects of Software Process Evolution to Technical Debt … 311

Statement (C4). People reacted differently, some people thought it is good and some
were resisting. So at that point also you have to respect the people who are resisting.
The most important thing is that there is need for everyone’s contribution. So the
thing that you cannot force every person in to the same mold. Some people require
more time for change. There have been cases where some people stayed in their
offices and did systematic work even though other people were in different room
working together.

In the beginning of the adoption, the productivity of development teams dropped.
Previously, with the waterfall model people were assigned to certain jobs based on
their competences. The change to agile methods created teams that were focusing on
bigger components of the product and people needed to educate themselves to these
new components they had never worked before.

Statement (C7). The productivity dropped for a while during the change. Before the
change there was more focus on certain sections that there was competence gathered
to certain section and it was really specific. So at the same time when this change
was done to this agile way of working, there was a request or actually a demand
that teams could focus on bigger sections instead of specific ones. So the effect here
was that we needed to learn new things and sections we had not learned or touched
before. So this took a lot of time.

The change also started to have an effect on the quality of the product. The line
manager in the project explained a situation where the change of the development
methodology started to have a negative effect to the architectural design of the prod-
uct.

Statement (C1). We used Scrum discipline and moved to this sprints style, so the
architecture went to totally wrong direction at the beginning. Consultants said that
the architecture will create itself with the new methodology. So the architecture
started to create itself with a method where teams are doing little pieces and it keeps
evolving by itself. However, it did not become this sustainable architecture.

The scalability problems with the architecture resulted to the situation where further
development was not anymore possible and the company had to refactor and redesign
thewhole architecture from the beginning after a year. This also resulted to significant
extra costs.

Statement (C1). We had to take a timeout and stop for a while and start to do the
architecture with small team from the beginning. This is how we created a new core
for the architecture and we have continued to build around that. The technical debt
that formed in the beginning was that we started to develop it wrong, or with wrong
methodology. Everybody knew how it should be, but it never became like that. We
lost almost a year because of technical debt. 20 people and one year, 60 Euros an
hour, so you can calculate from that. I think that we also lost many years in other
parts of the product because of this.

312 J. Yli-Huumo et al.

The reason for the bad architecture was that the teams formed at the beginning were
not built according to project members’ competence and it started to show as low
quality solutions. In addition, the new process was still challenging to the people in
the project to use.

Statement (C1). It was that you could choose your own teams pretty much and
friends were searching for their friends. There was not a knowledge that what a
team should consist, but like I said that the architecture demands people with high
knowledge about networks and everything. So they have to be strongly included to
the architecture and after that it is possible to expand to other features. But this was
not the case and there were like five teams doing pieces of the architecture and there
is this collaboration of technical debt.

However, around one year after the change, the benefits ofmaking the process change
started to show. The project teams started to learn the use of newmethodology, which
resulted to increased productivity and quality.

Statement (C1). Now you can say that there are clear signs that defects have
dropped and productivity has gone up. These are hard to measure, but still there
are clear indications to it. We can make several releases in a year that was impos-
sible in the past. However, you can’t deny that our productivity dropped during the
change of the methodology at the beginning.

In this scenario, the need for software process change was caused by a need to answer
to the requirements coming from the markets and customer. The company would not
be able to keep the customer satisfaction and competitiveness in acceptable level with
existing software processes. Therefore, the company was forced to change its soft-
ware development process from waterfall to agile to increase the release cycles and
provide faster product development. However, the adaptation to the new software
development methodology was challenging and caused a large amount of techni-
cal debt to the product architecture during the first year, mainly because of lack of
competence regarding the new processes. The company had to rewrite the whole
architecture, which caused significant economic consequences. When the compe-
tence in agile methodologies increased after several months, the company was able
to increase the number of yearly releases. The use of new software processes also
started to show as increased productivity and decreased number of defects.

15.3.2 Scenario 2: A Problem with Installation Time

In Case B, the company also decided to switch their software development methodol-
ogy from waterfall to agile. The reason for the switch was the growth of the product.
Before the change, the company was able to do one release each year. It was not
an option anymore in the current market. The company needed to be faster in their
development in order to meet the business needs of the customers and therefore it
decided to try another development methodology.

15 The Effects of Software Process Evolution to Technical Debt … 313

Statement (B4). When the product started to grow, like networks and systems to
grow, so this meant that different data elements that product was supporting started
to grow exponentially. So previously we worked like that we release once a year that
includes every supporting items and then we just wait again a year. So the world
changed and network technology changed, so instead of ten we could talk about fifty
different versions. So this meant that releasing schedules for different versions to
customers had to be changed.

The biggest problems with waterfall model were the slowness and unwieldiness,
because the development was layered to so many different places. One of the prob-
lems mentioned by the interviewees was that with the waterfall model it took one
month for teams to get newest releases in use.

Statement (B2). Whenever team B released a new version, it took one month for
team A to take the new version to use. There were lots of manual things in the process
on how you install the new versions. Things changed and then the team A guys
complained that “you haven’t uploaded the documentation” and team B of course
was like “What are you talking about, we have not changed anything.” So there was
a lot of bad build communication between those sides. They were taken sides and
defending their own positions. I guess they were not playing in to the same goal.

The company did not have any experience previously in using agile methodologies
except some small web development projects in the past. The decision was there-
fore made to acquire a consultant company to train and conduct the needed software
process change. The change was started slowly by organizing workshops with teams
in multiple sites. The adoption of agile methodologies took a long time and it was
difficult for the consultant company to cause a change the culture of the organi-
zation. However, after three years the company was able to use agile development
methodology for the project without singe help from the consultant company.

The process change had a significant effect to the installation time of the product.
Before the adaptation of the agile methodology, the installation time of the product to
the customer was estimated to take around ten hours. The reason for the installation
time was that previously the processes for the installation required a lot of manual
activities and the process was not automated that well.When the consultant company
was able to add agile methodology practices and processes and co-operation between
teams after three years, the installation time was dropped to around two hours, which
started to benefit the company economically.

Statement (B2). So suddenly when we had this really fast cycle time, fast continuous
integration, that was neutral, it was shared by every team on these levels. They could
see logs on every system, automated test runs took from half hour to maybe four
hours. Everyone could see the reports in the same way, so there was no one to blame.
Actually it kind of switched the operation model from where people were in their
own cycles to “now we have to fix these together.” It was fun to see that there was
no coaching or like trying to push people that you should now talk to these guys.

314 J. Yli-Huumo et al.

But instead they were like calling each other’s instead of sending emails. So to get
whole organization into continuous delivery and manage to get whole organization
into sync, which was really nice to see.

In this scenario the company needed to change the software development method-
ology to answer to the growth of the product. The growth of the product meant that
the company had to provide to customers more frequent releases instead of just one
or two a year. The size of the organization was extremely large and the adoption
of a new software development method was challenging. It took three years for the
company to implement the processes and practices. When the company was able to
implement the new software processes, the productivity and yearly releases increased
and technical debt started to decrease.

15.3.3 Scenario 3: Problem with Organizational Architecture

In Case A the project encountered organizational architecture problems that started
to have an effect on the project and product. The company that ordered the project
did not have own software development unit and the product development was com-
missioned from two subcontractor companies. The first subcontractor company had
participated in the previous projects with the company and had vital information
about the background systems related to the product. The subcontractor company
took care of the back-end coding and automation of business processes. The second
subcontractor was a well-known software development company and it was acquired
to take care of the front-end coding and the user interface. However, this separation
of the teams started to generate problems for the project from the beginning.

Statement (A4). So there were people doing this web user interface and people
doing this process automation. There were different teams working for these two,
people from different companies with little bit different management processes. We
had own repository and they had own repository. So even if you have full access to
other team repository, it is still different thing to code something there. So the main
thing was that the architecture was really off at some points because of this.

The separation of the project teams started to affect the quality of the product. There
were cases where the other team started to develop low-level features for their own
use, instead of waiting for a better solution from the other team. Because of this,
the company that ordered the project started to use these low-level features in their
business processes. This resulted to the situation where same solutions had been
made to different locations with multiple different styles.

Statement (A4). When they were doing the user interface for their own usage, it
was taken in use everywhere. Because there was integration between these, it enabled
features that clearly had business benefits. So the company started to use this, instead
of waiting that it will be made version suitable for customers. So this was done really
roughly, but it was enough for internal use. This resulted to situation where the other

15 The Effects of Software Process Evolution to Technical Debt … 315

team started to serve themselves. Well we were not really competitors between these
teams, because they were not doing anything for this web user interface, but they
were doing their own. Also if they made some API here, we started to use it also and
that API did not fit as well as possible to here. But this is basically the Conveys law
that results to situations where the best possible solution is not used.

The communication and processes between the two teams were unsynchronized and
the separation of the two teams started to affect the quality of the product. The two
teams were not using the same processes and the management of the teams did not
work with each other. One team was, for example, focusing a lot on quality of the
code, while other team was trying to implement solutions as fast as possible. This
resulted in situations where one team had to wait for the releases of the other team for
the use. After realizing the issues with the architecture of the product and project, the
company that ordered the product decided to make changes to software processes.
The decision was made to break down the separation of the teams by creating new
teams that included people from both of the previous teams.

Statement (A5). In 2009 there was an attempt to get rid of this separation, so the
answer for this was feature teams that still is a really good idea. So basically we had
teams that included people from both teams. So the purpose was that when we have
this line from back-end to front-end and teams should be able to everything related
to that.

The process change had a positive effect on the productivity of the project. The
removal of the separation of the development teams started to make the software
processes between teams unified. The change also started to effect to the quality of
the product, since now all teams started to be included to the development of both
front-end and back-end, when developers from two companies started to work in
same teams. This increased, for example, the knowledge of single developers who
had worked previously only for the front-end, because now they had to also develop
the back-end.

Statement (A5). The idea to remove this separation, I think that this was really
good step that was taken. This helped a lot and after this we moved that every team
was in their own Scrum cycles and we had long time that we had demos and this
connected people and this was really good thing.

In this scenario the company started to incur technical debt at the beginning of
the project by implementing challenging organizational architecture for the project
teams. The built organizational architecture started to effect the project, which
resulted to a lack of productivity that transferred to bad quality solutions in the code
base. The reason was that the development teams were not synchronized under same
software processes and it made the product architecture complex. However, when the
companies noticed that the amount of technical debt started to increase, they decided
to change the organizational architecture. Improvement in the organizational archi-
tecture started to show as increased productivity, when all the development teams
used a same software development process. This software process change started to
reduce the amount of technical debt.

316 J. Yli-Huumo et al.

15.3.4 Scenario 4: Addition of a New Development
Team to Another Country

In Case A the company needed to cut down development costs of the project. In
order to do that, the company decreased the number of teams and replaced them
by recruiting one new team to another country, where the development costs were
cheaper. Another reason for the change was that the top management of the company
thought that the product had reached a certain level of completion during first four
years of development and the project needed less resources to continue. The subcon-
tractor company that had developed the product from the beginning expressed their
concerns to the top management of the company that the process change would bring
challenges and problems with the addition of a new team without any experience
with the project.

Statement (A4). The pattern here is that some people in the management think that
the system is ready. Even though there is active coding being made all the time with
same amount of people. Actually it is also challenging to do changes in the current
system, because when you are writing new code, you cannot change the old that much.
So even though the system is already completed, even though it is being improved,
the management thinks that this can be done with less resources. So it is kind of sad
that this thing has been going on few years, and we thought that this process change
was ludicrous and it is not going to work at all.

Adding a new team to another location required many changes to the processes and
existing teams needed to adapt to the new ways of working. The company improved
their communication structure by adding video conferencing possibilities between
the teams working in different locations. The company sent senior developers with a
wide knowledge of the product to educate the new team about the development and
software processes used previously. Also at the beginning, the company assigned the
development of easier features to the new team instead of complex and challenging
ones. These kind of activities helped the new team to be able to adapt to the existing
processes that the project had been used before the addition of the new team.

However, the software process change also created many problems that had an
effect to the project. When the new team was added to the project, it started to
decrease the productivity.

Statement (A5). The project suffered a lot because suddenly there was this bigger
team coming from another country and they joined the project without knowing
anything and their competence was variable. So basically we had good thing going
in the current agile method and suddenly how would this kind of a big change fit
in to this process. Here our productivity went basically to zero. So basically from a
technical debt point of view, it went to that there were components that did not know
anything. So how to integrate this and there was a huge code base already consisting
technical debt and just randomly take people to code this.

15 The Effects of Software Process Evolution to Technical Debt … 317

The reason for the lack of productivity was that the time of senior developers who
went to educate the new team instead of developing or improving something in the
product. The new team did not have previous knowledge about the project or the
code base and it started to show as additional requests to senior developers.

Statement (A2). The problem has been that when there are those support request
coming and it is showing here as a decrease in productivity. There were some esti-
mation that in some point 25% of the senior coders’ time went to helping because
there are lots of questions coming and there has been some single cases where the
quality of the code has been terrible and we had to rewrite or revert.

Another effect of the process change was the decreasing quality of the code base.
The quality started to go down since the people had limited knowledge about the
code base and its history, which made the development harder. A consultant in the
project felt that the overall quality of the code base started to go down.

Statement (A4). This leads to situation that the base is being destroyed little by
little. The code will change to more complex and hard to understand and harder to
maintain. Quality starts to go down slowly. So in that sense the technical debt starts
to grow. There are these easy technical debt like for example that one thing is in
wrong place or something is done with wrong framework and so on. But then there
is this general level of code that goes down all the time.

In this scenario, the companyhad to add anewdevelopment team to another country to
cut down the development costs of the project.When the older development teamwas
replaced with a new development team, it started to increase the amount of technical
debt. The reason was that the new development team did not have competences of
working with the project. It started to show as lack of productivity and quality. This
way the technical debt started to increase and older teams had to fix and educate the
new development team that also decreased their own productivity.

15.3.5 Scenario 5: Switching from Scrum to Kanban

In Case A, the project had been using Scrum since the beginning of the project.
However, the company needed a change and Scrum software development method-
ology was switched to another agile methodology called Kanban. The reason for
the process change was that the company encountered problems with the project
teams’ cooperation when using Scrum. The work in the project was divided into two
teams with two backlogs that caused problems and confusion to the development
in the project. Another reason for the change was that in Scrum the company was
using, the development was based on 2-week sprints. The company felt that having
deadlines every 2 weeks increased the amount of unfinished work and technical debt.

Statement (A4). Sprint is being planned and one of the driven forces is that team
must engage to it. Sprints are 2-weeks long, so what do we do if things are not being

318 J. Yli-Huumo et al.

ready? There is something unexpected, something was planned wrong, and this thing
is not capable to be divided into 2 week job. So we just force it through to be ready.
So when there is this deadline every two weeks and the sprint model combined
with version management that includes unfinished work. These things might occur
technical debt, because there is no time. Also you can’t do any fixing stories to next
sprint, because you might look bad if you have to fix something.

The software developmentmethodology change toKanban had a positive effect to the
project and technical debt. The teams focusing only on certain parts of the product
were removed and the project became a common goal for everyone. The process
change also increased the knowledge of project members, since they were now able
to take part inmultiple development tasks, instead than focusing only on some certain
area.

Statement (A3). We do not have separate teams anymore and everyone is doing
what just happens to be in work line. Basically like whoever just finishes work just
takes the next story from the backlog and it gets planned and groomed. So this thing
removed the fighting and teams were not blaming each other anymore and there are
no team silos. Everyone knows something about the project now even if it is different
side of the project you are not working.

The effect of the process changes was that the amount of unfinished work started
to decrease. The project teams were able to create better solutions and do more
refactoring when the sprints and deadlines used previously in Scrum were not that
tight anymore. Kanban also gave the project more flexibility to change the backlog
that was difficult previously.

Statement (A2). Also one good thing in Kanban is that when in Scrum there are
these sprints that are really closed and it is really hard to add stuff in there. In Kanban
it is possible to change after every story if that thing was not good. You might notice
that some feature is much more valuable to customer that something done at the
moment.

In this scenario, the company had a problemwith the agile developmentmethodology
theywere using. The problemwas that the frequency of deadlineswas too high,which
started to increase the amount of not-so-good solutions, because there was not always
enough development time. The change of agile methodology removed the concept
of hard deadlines and the development time for features was increased. This started
to reduce the amount of technical debt and the company was able to pay back the
technical debt more efficiently.

15.3.6 Summary of Scenarios

In Table15.3, we summarize the scenarios observed in the studied cases. We identi-
fied and developed categories for types, reasons, challenges, issuesk and benefits of

15 The Effects of Software Process Evolution to Technical Debt … 319

Table 15.3 Summary of scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Type of
process
change

Software
development
methodology

Software
development
methodology

Organizational
structure

Organizational
structure

Software
development
methodology

Reason for
process
change

Lack of
frequent
releases,
time-to-market

Lack of
frequent
releases,
time-to-market

Project teams Too high
development
costs

Project teams,
technical debt

Challenges for
process
change

Lack of
competence,
team
resistance

Lack of
competence,
needed time
for change,
size of
organization,
cultural
change

Other
companies and
teams

Multi-
location, other
companies and
teams

Lack of
competence

Issues during
process
change

Architectural
quality,
scalability,
decreased
productivity

Decreased
productivity

– Decreased
productivity
and quality

–

Benefits of
process
change

Increased
productivity,
quality,
competence

Increased
productivity,
quality

Increased
productivity,
quality,
competence

– Increased
productivity,
quality,
competence

Effect to
technical debt

Increased at
the beginning.
Decreased at
the end

Increased at
the beginning.
Decreased at
the end

At the
beginning
technical debt
was high.
Decreased at
the end

At the
beginning
technical debt
was low.
Increased at
the end

At the
beginning
technical debt
was high.
Decreased at
the end

software process change and how they affected to technical debt. Types of software
process changes in studied cases can be divided into two groups: software devel-
opment methodology (Scenario 1, 2, and 5) and organizational structure (Scenario
3 and 4). Software development methodology changes included situations that were
done to change the processes, techniques, and tools in the project. Organizational
structure changes were situations done to change the structure of the organizational
units in the project, such as addition of a new team, changing the structure of current
teams, and outsourcing/offshoring the software development to another company or
country.

The main reason for companies to conduct software process changes in Scenarios
1 and 2 was the lack of frequent releases and time-to-market that forced companies
to change their software development methodologies to provide more releases to
customers and adapt to changing markets and technologies. In Scenarios 3 and 5,

320 J. Yli-Huumo et al.

the issues with technical debt and project teams’ structure and co-operation made
companies to change their organizational structure or software development method-
ology to increase the productivity and quality. In scenario 4, too high development
cost forced the company to make changes to current organizational structure by
replacing current development teams with new and cheaper teams.

The biggest challenge for conducting the process change was usually lack of
competence (Scenario 1, 2, and 5). Companies did not have information or knowledge
regarding the new process that made the adaptation difficult and often companies had
to hire consultants from another company to educate and administrate the process
change. The process changes also encountered sometimes team resistance (Scenario
1) and not everyone was willing to learn new ways of working. In addition, all
case companies were large size, which meant that size of organization (Scenario 2),
needed time for the change (Scenario 2), cultural change (Scenario 2), and other
companies and teams (Scenario 3 and 4) created more challenges on adapting new
software processes than in SMEs.

The adaptation time to the new software process created issues and problems to the
project. The biggest issues during the adaptation time were decreased productivity
and quality (Scenario 1, 2, and 4). The decreased productivity and quality then led
to the architectural quality and scalability issues (Scenario 1), because it forced the
development team to take technical debt to keep the release windows the same.

However, after the adaptation time the companies started to have benefits of the
new processes. In Scenarios 1, 2, 3, and 5, the software process change started to
show as increased productivity, quality, and competence. Companies were able to
make releases more frequently and the amount of defects started to decrease. Also,
the level of knowledge of project team started to increase regarding new processes
and it increased the level of competence.

The software process change had also significant effect to the technical debt. At
the beginning technical debt was low in Scenario 4, but the business reality forced
company to change its current processes. The process change was not the most
optimal and caused decreased productivity and quality. This was the reason why
technical debt increased at the end. Sometimes (Scenarios 3 and 5) already at the
beginning technical debt was high, because the current processes were lacking in
productivity and quality and company was in a need for improvement. Companies
conducted a successful process change and the level of productivity and quality
increased and technical debt got decreased at the end.

Challenging period of the software process change regarding technical debt was
the adaptation time. In this period technical debt was increased at the beginning
(Scenarios 1 and 2). The more time adaptation took, more technical debt the project
incurred. Low competence regarding the new software process during the adaptation
time caused decreased productivity and quality.Omitted productivity and quality then
transferred to the practices and methods. This led to situations where decreased pro-
ductivity was compensated with workarounds and shortcuts to keep releases cycles
same as before. However, when the competence level regarding the new processes
started to increase, the technical debt decrease at the end.

15 The Effects of Software Process Evolution to Technical Debt … 321

15.4 The Relationship Between Software Process Evolution
and Technical Debt

In this section, we discuss the results gathered from the three studied software
projects. The discussion focuses on understanding the relationship between software
process evolution and technical debt based on our findings.

15.4.1 Common Causes for Software Process Evolution
and Technical Debt

Both software process evolution and technical debt were caused by business reasons
and decreased productivity. The business needs often force companies to change their
software development processes, even though the level of productivity and quality in
the current processes might been satisfying [10]. The quality of the software process
is connected to the quality of the software process [8]. Because the technology,
business environment, and company circumstances are chancing all the time, there is
a need for improving also software processes [8]. In our study, we observed situations
where time-to-market, customer demand or technology change forced companies to
make a change in the current software processes to be more efficient (Scenarios
1 and 2).

Business needs also increase technical debt. Multiple other studies [21, 26] have
shown that when companies were acquiring time-to-market benefits by delivering
faster the product to the customer, it required shortcuts and workarounds to the
product. Shortcuts and workarounds were not necessarily dangerous to take in short-
term, because they could advance the product release and therefore increase the
time-to-market and customer satisfaction. However, if companies never fix these
shortcuts and workarounds, it can lead to extra costs, productivity issues and omitted
quality, because the code base turns overcomplicated [42].

Another reason for software process evolution and technical debt to happen was
decreased productivity. Often when companies were experiencing that current soft-
ware processes were not producing enough results and the quality of the product
started to go down, there was a need to make a process change. Decreasing produc-
tivity forces companies to take shortcuts to keep up the release window that increases
technical debt.

15.4.2 Relationship of Competence and Motivation
to Software Process Evolution and Technical Debt

Changing and improving software processes requires resources, motivation and com-
petence [3]. The top management of the company does not necessarily understand

322 J. Yli-Huumo et al.

challenges and resources required to conduct a successful software process change
that would benefit the project and product [27]. Instead, they might just think that
changing one experienced team in the project to a cheaper team from another country
will lead to the same productivity and quality (Scenario 4) or that changing release
cycles from once a year to once a month is easy to implement (Scenario 1). The
study conducted byMorten Korsaa [22] shows that over 70% of the software process
improvement projects fails because of poor understanding of the process. The rea-
son is that companies have to educate employees to the new software processes and
learning is an important prerequisite to improve software development practices [39].

Learning and education time for the new software processes takes time and the
results are not showing instantly to the management. Changing the whole organiza-
tional structure of software delivery or adaptation to software development method-
ology with new techniques and practices is not easy to conduct and requires a lot of
time to show the actual results [37]. The resistance of project members to change
practices is also a challenge with software process improvement [25]. We identi-
fied these same issues, when changing from waterfall model to agile methodology
or adding a new development teams from another country. It meant that suddenly
project members had to start work with different methods and tools and learn new
ways to communicate, which had a huge effect to motivation and productivity that
in some cases led to technical debt (Scenarios 1, 2, and 4).

In Scenario 4, the lack of competence of new development caused motivation
issues to existing development teams and led to significant decrease in productivity,
when technical debt needed to be paid back constantly. It would have been interesting
to know, if the company would had stayed with the old development teams, instead
of recruiting new and unexperienced team, if the current extra costs coming from
technical debt could compensate the costs of more expensive development teams that
were removed to cut down the development costs.

15.4.3 Challenge of Adaptation Time in Software Process
Evolution

The big source for technical debt during the software process evolution was the
adaptation time to new processes. During the adaptation time, the productivity often
went down, because company had to go through the learning and education period
(Scenarios 1, 2, and 5). When the productivity dropped during the software process
change it meant that project members had to compensate the decreased productivity
with shortcuts and workarounds in their activities to meet the deadlines coming
from business goals. Taking a shortcut in the code base of the product or leaving
test cases untested to reach the deadline to customer was not dangerous in short-
term. According to Eisenberg [15], the customer and business management is more
interested on the delivery day of the feature than the quality of the code base. This
is the reason why it was accepted sometimes to have lack of productivity in the
processes, as long as the features were going to customers in time. However, when

15 The Effects of Software Process Evolution to Technical Debt … 323

these shortcuts and workarounds started to accumulate during the software process
change, it started to hurt the overall quality of the product (Scenario 1 and 4). New
shortcuts and workarounds had be taken on the top of solutions already consisting
of technical debt, because the release cycle of the product remained the same. This
way it was risky for companies to work with the same deadlines during the process
change. This was the reason why the management of technical debt was important
during and after the adaptation of software process change. This way companies
had a possibility to reduce technical debt long-term effects to the product and create
sustainable and healthy products.

15.4.4 Successful Software Process Improvement
and Technical Debt

One study has shown that software process improvement can be used to improve time-
to-market and advantage over competition, while increasing the productivity and
quality [24]. We found similar results and the case companies used multiple different
ways to improve their software processes to increase the efficiency. The companies
acquired new teams, changed the existing teams, tried new software development
methods, techniques, and tools to change the software delivery process and were able
deliver the product quicker and with more quality to the customer.

The studied companies were able to use these new processes to increase the
productivity and quality in the project. Increased productivity gives companies more
time to focus on refactoring and improving the existing code base, because now the
new software processes might take technical debt more in consideration (Scenario
5). Also, the increase in quality and the code base made development easier and
the amount of defects will drop during the development. We observed situations
(Scenario 5) where the successful change to new software development methodology
made technical debt more visible to the company and theywere able to reduce it more
efficiently.

15.5 Conclusion

In this study, we explored how software process evolution affects technical debt.
We used qualitative case study approach recommended by Yin [41] to understand
how software processes have evolved in the selected three large case companies.
We conducted 17 interviews with professionals from both technical and business
background to see the reasons, benefits and consequences of software process evolu-
tion to technical debt. We found that often the reason for software process evolution
can be business related, where the company has to improve their current software
processes in order to gain more advantage over competition and time-to-market.
Overall, software process evolution is often considered as a positive thing toward

324 J. Yli-Huumo et al.

better development processes. However, companies rarely think of its negative con-
sequences and resistance to change. Our inquiry into the practice of three large
development organizations revealed that the evolution of software processes affects
technical debt accumulated in the code base and can decrease the software quality
in short-term. However, if the company takes no steps to manage the technical debt,
it may finally have a dramatic effect to the software development and maintenance
processes.

15.6 Further Reading

Everett andMcLeod [16] define software development life cycle as a “series of stages
within the methodology that are followed in the process of developing and revising
an information system.” The classical software development model is the waterfall
[33]. The model typically consists of five stages: (1) requirements; (2) design; (3)
implementation; (4) testing; and (5) maintenance [33]. Other software development
models such as the spiral model, V-model, incremental model, prototyping model
have been developed after waterfall model [30]. Also the use of agile development
methodologies that emphasize iterative and incremental way of software develop-
ment has spread throughout the software industry [32, 34]. In addition, using building
blocks from both agile as well as other classical methods is popular, see also Chap.9.
Therefore, software development processes have been evolved for a long time but
companies are still interested in finding better models, practices, techniques, and
tools for their software development.

The benefits of software process improvement are the reason why companies
change and evolve software processes. However, improving, changing and man-
aging software processes include also a lot of challenges [36] (see also Chaps. 10
and 9 in this volume). Beecham et al. conducted an empirical study with twelve
software companies that shows that companies aiming at improving their software
processes are experience challenges especially in organizational, project and soft-
ware development processes [4]. According toDybå [14] successful software process
improvement depends on (1) business orientation as the extent to which SPI goals
and actions are aligned with explicit and implicit business goals and strategies, (2)
involved leadership as the extent to which leaders at all levels in the organization are
genuinely committed to and actively participate in SPI, (3) employee participation
as the extent to which employees use their knowledge and experience to decide, act,
and take responsibility for SPI, (4) concern for measurement as the extent to which
the software organization collects and utilizes quality data to guide and assess the
effects of SPI activities, and (5) learning strategy as the extent to which a software
organization is engaged in the exploitation of existing knowledge and in the explo-
ration of new knowledge [14]. An unsuccessful software process improvement starts
to affect the quality and productivity of the software development project [19]. The
lack of productivity and quality can be seen as a source for “technical debt” [42].

http://dx.doi.org/10.1007/978-3-319-31545-4_9
http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_9

15 The Effects of Software Process Evolution to Technical Debt … 325

Acknowledgments Wewould like to thank the companies that took part in this research and all the
interviewees who shared valuable information related to the studied cases. This research has been
carried out in Digile Need for Speed program, and funded by Tekes (the Finnish Funding Agency
for Technology and Innovation).

References

1. Allman, E.: Managing technical debt. Commun. ACM 55(5), 50–55 (2012)
2. Ashrafi, N.: The impact of software process improvement on quality: in theory and practice.

Inf. Manage. 40(7), 677–690 (2003)
3. Baddoo, N., Hall, T.: Motivators of software process improvement: an analysis of practitioners’

views. J. Syst. Softw. 62(2), 85–96 (2002)
4. Beecham, S., Hall, T., Rainer, A.: Software process improvement problems in twelve software

companies: an empirical analysis. Empir. Softw. Eng. 8(1), 7–42 (2003)
5. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack, A.,

Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N.:Managing technical
debt in software-reliant systems. In: Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research, pp. 47–52. ACM, New York, NY, USA (2010)

6. Carpenter, G.S., Nakamoto, K.: Consumer preference formation and pioneering advantage. J.
Mark. Res. 26(3), 285–298 (1989)

7. Charmaz, K.: Constructing Grounded Theory, 2nd edn. Sage Publications, London (2014)
8. Clarke, P., O’Connor, R.V.: An approach to evaluating software process adaptation. In:

O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) Software Process Improvement
and Capability Determination. Communications in Computer and Information Science, pp.
28–41. Springer, Berlin (2011)

9. Codabux, Z., Williams, B.: Managing technical debt: an industrial case study. In: Proceedings
of the International Workshop on Managing Technical Debt, pp. 8–15. IEEE, Washington, DC
(2013)

10. Coleman, G., O’Connor, R.: Investigating software process in practice: a grounded theory
perspective. J. Syst. Softw. 81(5), 772–784 (2008)

11. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for Devel-
oping Grounded Theory, 3rd edn. Sage Publications, Thousand Oaks (2007)

12. Cugola, G., Ghezzi, C.: Software processes: a retrospective and a path to the future. Softw.
Process: Improv. Pract. 4(3), 101–123 (1998)

13. Cunningham, W.: The WyCash portfolio management system. In: Addendum to the Proceed-
ings onObject-oriented Programming Systems, Languages, andApplications, pp. 29–30. ACM
(1992)

14. Dybå, T.: An empirical investigation of the key factors for success in software process improve-
ment. Trans. Softw. Eng. 31(5), 410–424 (2005)

15. Eisenberg, R.J.: A threshold based approach to technical debt. ACM SIGSOFT Softw. Eng.
Notes 37(2), 1–6 (2012)

16. Everett, G.D., McLeod, R.: Software Testing: Testing Across the Entire Software Development
Life Cycle. Wiley, New York (2007)

17. Gibson, D., Goldenson, D., Kost, K.: Performance results of CMMI-based process improve-
ment. Research Report CMU/SEI-2006-TR-004, Software Engineering Institute, Carnegie
Mellon University (2006)

18. Harter, D.E., Krishnan, M.S., Slaughter, S.A.: Effects of process maturity on quality, cycle
time, and effort in software product development. Manage. Sci. 46(4), 451–466 (2000)

19. Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., Paulk, M.: Software quality and the
capability maturity model. Commun. ACM 40(6), 30–40 (1997)

326 J. Yli-Huumo et al.

20. Hove, S.E., Anda, B.: Experiences from conducting semi-structured interviews in empirical
software engineering research. In: Proceedings of the International Software Metrics Sympo-
sium, pp. 10–23. IEEE, Washington, DC, USA (2005)

21. Klinger, T., Tarr, P., Wagstrom, P., Williams, C.: An enterprise perspective on technical debt.
In: Proceedings of the Workshop on Managing Technical Debt, pp. 35–38. ACM, New York,
NY, USA (2011)

22. Korsaa, M., Biro, M., Messnarz, R., Johansen, J., Vohwinkel, D., Nevalainen, R., Schweigert,
T.: The SPImanifesto and the ECQASPImanager certification scheme. J. Softw.: Evol. Process
24(5), 525–540 (2012)

23. Krishnan, M., Kellner, M.: Measuring process consistency: implications for reducing software
defects. Trans. Softw. Eng. 25(6), 800–815 (1999)

24. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional methods
at nokia: a survey of opinions on agile transformation. Inf. Softw. Technol. 53(3), 276–290
(2011)

25. Lepmets, M., Ras, E.: Motivation and empowerment in process improvement. Systems. Soft-
ware and Service Process Improvement, Communications in Computer and Information Sci-
ence, vol. 172, pp. 109–120. Springer, Berlin Heidelberg (2011)

26. Lim, E., Taksande, N., Seaman, C.: A balancing act: what software practitioners have to say
about technical debt. IEEE Softw. 29(6), 22–27 (2012)

27. Mathiassen, L., Ngwenyama, O.K., Aaen, I.: Managing change in software process improve-
ment. IEEE Softw. 22(6), 84–91 (2005)

28. McConnell, S.: Technical debt-10x software development. http://www.construx.com/10x_
Software_Development/Technical_Debt (2014)

29. Ojameruaye, B., Bahsoon, R.: Systematic elaboration of compliance requirements using com-
pliance debt and portfolio theory. In: Salinesi, C., van de Weerd, I. (eds.) Requirements Engi-
neering: Foundation for Software Quality. Lecture Notes in Computer Science, vol. 8396, pp.
152–167. Springer International Publishing (2014)

30. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill, New York
(2005)

31. Robson, C.: RealWorldResearch:AResource forUsers of Social ResearchMethods inApplied
Settings. Wiley, New York (2011)

32. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in finnish
software industry. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement, pp. 139–148. ACM, New York, NY, USA (2012)

33. Royce, W.W.: Managing the development of large software systems: concepts and techniques.
In: Proceedings of the International Conference on Software Engineering, pp. 328–338. IEEE,
Washington, DC (1987)

34. Salo, O., Abrahamsson, P.: Agile methods in european embedded software development organ-
isations: a survey on the actual use and usefulness of extreme programming and scrum. IET
Softw. 2(1), 58–64 (2008)

35. Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., Vetro, A.: Using technical
debt data in decisionmaking: potential decision approaches. In: Proceedings of the International
Workshop on Managing Technical Debt, pp. 45–48. IEEE, Washington, DC, USA (2012)

36. Shaikh, A., Ahmed, A., Memon, N., Memon, M.: Strengths and weaknesses of maturity driven
process improvement effort. In: Proceedings of the International Conference on Complex.
Intelligent and Software Intensive Systems, pp. 481–486. IEEE,Washington, DC, USA (2009)

37. Sureshchandra, K., Shrinivasavadhani, J.: Moving from waterfall to agile. In: Proceedings of
the Agile Conference, pp. 97–101. IEEE, Washington, DC, USA (2008)

38. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. J. Syst. Softw. 86(6), 1498–
1516 (2013)

39. van Solingen, R., Berghout, E., Kusters, R., Trienekens, J.: From process improvement to
people improvement: enabling learning in software development. Inf. Softw. Technol. 42(14),
965–971 (2000)

http://www.construx.com/10x_Software_Development/Technical_Debt
http://www.construx.com/10x_Software_Development/Technical_Debt

15 The Effects of Software Process Evolution to Technical Debt … 327

40. Verner, J., Sampson, J., Tosic, V., Bakar, N., Kitchenham, B.: Guidelines for industrially-based
multiple case studies in software engineering. In: Proceedings of the International Conference
on Research Challenges in Information Science, pp. 313–324. IEEE, Washington, DC, USA
(2009)

41. Yin, R.K.: Case study research: design andmethods. Sage Publications, Thousand Oaks (2003)
42. Yli-Huumo, J., Maglyas, A., Smolander, K.: The sources and approaches to management of

technical debt: A case study of two product lines in a middle-size finnish software company.
In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., MännistÖ, T., Münch, J., Raatikainen, M. (eds.)
Product-Focused Software Process Improvement, Lecture Notes in Computer Science, vol.
8892, pp. 93–107. Springer International Publishing (2014)

43. Zazworka, N., Shaw, M.A., Shull, F., Seaman, C.: Investigating the impact of design debt on
software quality. In: Proceedings of the Workshop on Managing Technical Debt, pp. 17–23.
ACM, New York, NY, USA (2011)

44. Zazworka, N., Spínola, R.O., Vetró, A., Shull, F., Seaman, C.: A case study on effectively
identifying technical debt. In: Proceedings of the International Conference on Evaluation and
Assessment in Software Engineering, pp. 42–47. ACM, New York, NY, USA (2013)

Index

A
adSPM, see agenda-driven software process

management
Agenda-driven case management, 214
Agenda-driven software process manage-

ment, 215
Agile characteristics, 20, 41, 50
Agile Manifesto, 4, 10, 20, 40
Agile method, 21

crystal, see crystal clear
FDD, see feature driven development
Scrum, see Scrum
TDD, see test driven development
XP, see extreme programming

Agile practice, 9, 21, 41, 193
pair programming, 29, 32, 48
standup meeting, 195
story point estimation, 48

Agile principles, 9, 20, 41, 48, 49, 87
Agile software development, 4, 16, 19, 39,

78, 86, 310
approach, see agile method
method, see agile method
process, see agile method
technique, see agile practice

Agile software engineering, see agile soft-
ware development

Agile values, 10, 49
Agility measurement, 56
Application

embedded, see embedded system
hosted application, 5
mobile application, 5
modern application, 5, 7

Artifact-centric process, 214
ASD, see agile software development

Assembly-based method engineering, see
method engineering

AUTOSAR, 260, 265

B
Basel II Accord, 96
BPMN, see business process model and

notation
Business objectives, 8, 63
Business process, 62, 93, 166
Business process execution, see enactment
Business process management, 97, 213
Business process model and notation, 166,

188
Business process modeling, 166
Business strategy, 63, 77, 99
Business success, 64, 110

C
Capability maturity model, 3, 113, 276
Capability maturity model integration, 3, 22,

65, 113
Case management, 213
Case management principles, 214
CASRR, see cross-project analysis for selec-

tion of release readiness attributes
Challenges

communication, 66, 95
control, 95, 314
coordination, 95, 314
culture, 44
distance, 94, 316
global software engineering, 16, 44, 94,
316

process mismatch, 2
product development dynamics, 40

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4

329

330 Index

reduce waste, 11, 246
resistance, 98, 273, 310
rework, 11, 42
scaling projects, 44
software process improvement, 66, 114,
212, 317

startup grow, 11
CMM, see capability maturity model
CMMI, see capability maturity model inte-

gration
Co-evolution, 258
Co-evolution driver, 259, 269
Collaboration, 9, 19, 44, 235
Compliance, 16, 54, 104, 155, 214, 223, 302
Continuous improvement, 77
Continuous integration, 5, 46, 268, 283
Controlling, 73, 140, 281
Cross-project analysis for selection of

release readiness attributes, 282
Crystal clear, 40

D
Design thinking, 78, 83
Development method, seemethod engineer-

ing
Disruptive change, 80, 105
Disruptive improvement, 77
Disruptive improvement tactics, 82
Disruptive innovation, 77
Disruptive technology, 83

E
E4 measurement process, 67
Efficiency, 69, 78, 160, 258, 323
Embedded system, 6, 16
Enactment, 177, 188, 201
European Cooperation for Space Standard-

ization, 141
Extreme programming, 21, 40

F
Feature driven development, 40

G
Global software engineering, 44, 93
Goal question metric, 283, 289
Goal-oriented measurement, 67
Governance, 99
GQM, see goal question metric
GSE, see global software engineering

H
High-ceremony processes, 2

I
Industrial relevance, 236
Information systems, 15, 95, 212
Intrapreneurship, 78
IS, see information systems

K
Kanban, 231, 317

L
Lean, see lean product development
Lean product development, 8, 11, 40
Life cycle management, 62
Low-ceremony processes, 1, 10

M
MDE, see model-driven engineering
Measurement, 56, 67, 292
Medical devices, 16, 54, 97, 103
MESP, seemethod engineering with method

services and method patterns
Method, see method engineering
Method building block, 190
Method engineer, see method engineering
Method engineering, 186
Method engineering with method services

and method patterns, 186
Method pattern, 189
Method repository, 190
Method service, 189
Minimum viable product, 8
Model-driven engineering, 258
Multi-view process modeling language, 171
MVP-L, see multi-view process modeling

language

O
Object constraint language, 190
OCL, see object constraint language
Open source software, 283
Organizational change management, 88
Organizational evolution, 11, 88, 102, 319
Organizational structure, 46, 96, 319
Organizational transformation, 11, 46, 63,

102
OSS, see open source software

Index 331

Outsourcing, 72, 94, 316

P
Performance, 9, 55, 67, 78, 150, 261
Performance measurement, 67
Personnel management, 101
Process change, see process evolution
Process evolution, 62, 94, 97, 223, 258, 321
Process maturity, 3, 64, 144
Process requirements, 22, 63, 140
Process simulation, 165, 247
Process-centric process, 214
Productivity, 69, 306

Q
Quality, 40, 138, 306

assurance, see quality assurance
management, see quality management

Quality assurance, 138, 140, 154
Quality management, 40, 138

R
Regulation, 54, 96, 212
Regulatory requirements, see process

requirements
Release, 8, 282, 310
Release readiness, 282
Release readiness attribute, 282
Release readiness bottleneck, 291
Release readiness evaluation, 283
Reorganization, see organizational transfor-

mation

S
Safety-critical system, 16, 103, 137
Sarbanes–Oxley Act, 97, 103
Scrum, 4, 10, 21, 40, 86, 193, 317

daily scrum, 193
product owner, 10
scrum master, 10, 46
sprint, 10, 194
sprint planning, 194
sprint review, 194

SDLC, see software development lifecycle
Situational factors, see tailoring
Situational method engineering, see method

engineering
Small- andmedium-sized enterprises, 8, 109
SME, see small- and medium-sized enter-

prises

Software & systems process engineering
metamodel specification, 32

Software development lifecycle, 17, 62, 96
Software development method, see software

process
Software development process, see software

process
Software process, 64, 110, 165

agile, see agile method
hybrid approach, 112, 187
mixed process, 25, 112
plan-based process, 18, 42, 187
rich process, 16, 18
structured process, 18

Software process deployment, see software
process integration strategy

Software process enactment, see enactment
Software process improvement, 64, 77, 109,

165, 235, 307, 324
Software process improvement failure, 64
Software process improvement model, 65,

113, 126
Software process integration strategy, 23, 34
Software process management, 63, 77, 185,

215
Software process metamodel, 32, 196
Software process model, 112, 165
Software product management, 281
Software release, see release
SOX, see Sarbanes–Oxley Act
SPEM, 32
SPI, see software process improvement
SPM, see software process management
Standard

AUTOSAR, see AUTOSAR
DO-178, 144
ECSS, see European Cooperation for
Space Standardization

EN 50128, 144
IEC 60950, 54
IEC 62304, 16, 54, 103
ISO 13485, 103
ISO 26262, 22
ISO 9000, 40, 113, 144
ISO/IEC 12207, 120, 144
ISO/IEC 15504, 22, 113, 120, 144
ISO/IEC 27001, 121
ISO/IEC 29110, 113, 121
SPiCE for Space, 144
V-Modell XT, 18, 32, 258

Standardization, 19, 99, 111, 141, 166, 265
Startup, 8, 111
Strategy distruption, 80

332 Index

T
Tailoring, 114, 146, 150, 187, 190, 216, 257

pre-tailoring, 146
Tailoring context, 190, 218
TDD, see test driven development
Team

agile, 43, 86
co-located, 94
distributed, 44
packaged, 95
product-line team, 46
self-organizing, 10, 20, 48

Technical debt, 100, 223, 246, 305
Template management, 217, 220
Test driven development, 54, 73
Time-to-release, 8, 300

Total quality management, 40

U
UML, see unified modeling language
Unified modeling language, 178, 261

V
Value, 48, 62, 78, 112, 236
Value improvement, 62
Value stream mapping, 245
Value-driven process improvement, 63
Value-driven process management, 63
Very small entity, 111
VSE, see very small entity

	Foreword
	Preface
	Why a Book on Managing Process Evolution?
	Who Should Read This Book?
	How is the Book Organized?
	References

	Contents
	Contributors
	Disclaimer
	1 Low Ceremony Processes for Short Lifecycle Projects
	1.1 Introduction
	1.2 Background and Context
	1.2.1 The Software Engineering Institute
	1.2.2 The Emergence of Agile Methods
	1.2.3 Outline

	1.3 Types of Modern Applications
	1.3.1 Hosted Applications
	1.3.2 Mobile Applications
	1.3.3 Embedded Applications

	1.4 Modern Applications vs Traditional Applications
	1.5 Startups and Processes
	1.6 Agile Development Processes
	1.7 When Startups Grow up
	1.8 Conclusion
	References

	2 The Right Degree of Agility in Rich Processes
	2.1 Introduction
	2.2 Background and Context
	2.2.1 Rich Processes
	2.2.2 Agile Processes

	2.3 Integration of Agile and Rich Processes
	2.3.1 Approaches to Integrate Agile and Structured Processes
	2.3.2 Revolutionary Implementation
	2.3.3 Evolutionary Implementation

	2.4 Conclusion
	2.5 Further Reading
	References

	3 Assessing Product Development Agility
	3.1 Introduction
	3.2 Background and Context
	3.3 Software Development Dynamics and the Need for Agility
	3.4 Development Challenges and Agile Methods
	3.4.1 Project Scaling and Geographic Distribution

	3.5 The Nature of Product Development Agility
	3.5.1 Agile Values, Principles, and Practices
	3.5.2 Deriving General Agile Characteristics
	3.5.3 Comparison of General Agile Characteristics with Other Sources

	3.6 Agility and Other Endeavors
	3.6.1 Development Process Agility in Highly Regulated Environments
	3.6.2 Addressing Regulatory Concerns with an Agile Process
	3.6.3 Epilogue: Further Adoption of Agile Approaches

	3.7 Measurement of Agility
	3.8 Conclusion
	3.9 Further Reading
	References

	4 Value-Driven Process Management
	4.1 Introduction
	4.2 Implementing Value-Driven Process Management
	4.3 Performance Measurement
	4.4 Focus: Productivity Improvement
	4.5 Case Study: Productivity Improvement
	4.6 Conclusion
	References

	5 Are We Ready for Disruptive Improvement?
	5.1 Introduction
	5.2 Background and Context
	5.3 Disruptive Versus Continuous Improvement
	5.4 How to Ignore Strategy Disruption and Ensure Continuous Improvement Failure
	5.5 Accepting Strategy Disruption and Responding with Disruptive Process Improvement
	5.6 Design Thinking
	5.6.1 Fail Early
	5.6.2 Fail Often

	5.7 Agile Development
	5.8 Readiness for Disruptive Improvement
	5.9 Conclusion
	5.10 Further Reading
	References

	6 Trials and Tribulations of the Global Software Engineering Process: Evolving with Your Organisation
	6.1 Introduction
	6.2 Background and Context
	6.2.1 Positioning the GSE Function
	6.2.2 The GSE Problem
	6.2.3 Regulation
	6.2.4 The G-SC Case Study

	6.3 Process Evolution
	6.3.1 The G-SC Evolution
	6.3.2 Sharing the Service

	6.4 Some Growing Pains
	6.4.1 Project Prioritisation
	6.4.2 Personnel Management
	6.4.3 Seeing the Wood Despite the Trees
	6.4.4 Regulating the Software Process

	6.5 Conclusion
	6.6 Further Reading
	References

	7 The Route to Software Process Improvement in Small- and Medium-Sized Enterprises
	7.1 Introduction
	7.2 Background and Context
	7.2.1 Software SMEs
	7.2.2 Software Process in SMEs
	7.2.3 Software Process Improvement in SMEs

	7.3 Research Methodology
	7.3.1 Motivation and Objectives
	7.3.2 Research Method
	7.3.3 Data Synthesis and Results

	7.4 Conclusions
	7.5 Further Reading
	7.6 List of SLR Papers
	References

	8 Managing Software Process Evolution for Spacecraft from a Customer's Perspective
	8.1 Introduction
	8.2 Background and Context
	8.3 The ECSS Standards
	8.3.1 ECSS Policy, Members, and Organization
	8.3.2 Production and Maintenance of ECSS Standards
	8.3.3 Software Standards in the ECSS System

	8.4 Pre-Tailoring in the German National Space Program
	8.4.1 Outline of the Pre-Tailoring Process
	8.4.2 Pre-Tailoring Process Details
	8.4.3 Details for Step 6: Pre-Tailoring Expert Group
	8.4.4 Lessons Learned

	8.5 Tailoring the Requirements for a Project
	8.5.1 The QMExpert Tailoring Tool
	8.5.2 Lessons Learned

	8.6 Cross-Company Product Quality Management
	8.6.1 Customer Product Assurance
	8.6.2 The Implementation Process
	8.6.3 Lessons Learned

	8.7 Experience Report: Introducing Advanced Static Analysis
	8.7.1 Polyspace Pilot Project
	8.7.2 Toward Wider Adoption
	8.7.3 Lessons Learned

	8.8 Conclusion
	8.9 Further Reading
	References

	9 Modeling Software Processes Using BPMN: When and When Not?
	9.1 Introduction
	9.2 Background and Context
	9.2.1 Business Process Modeling in BPMN
	9.2.2 Software Process Modeling with MVP-L

	9.3 BPMN for Software Process Modeling
	9.3.1 The Good
	9.3.2 The Bad
	9.3.3 The Ugly

	9.4 Conclusion
	9.5 Further Reading
	References

	10 Software Processes Management by Method Engineering with MESP
	10.1 Introduction
	10.2 Overview of MESP Roles and MESP Tasks
	10.2.1 Senior Method Engineer
	10.2.2 Project Method Engineer
	10.2.3 Project Team

	10.3 The MESP Task of the Senior Method Engineer
	10.3.1 Task Characteristics
	10.3.2 Define and Maintain Method Building Blocks
	10.3.3 Metamodel Classes for the Senior Method Engineer

	10.4 The MESP Tasks of the Project Method Engineer
	10.4.1 Task Characteristics
	10.4.2 Compose Project-Specific Method
	10.4.3 Assure Quality of Method
	10.4.4 Transform and Deploy Method
	10.4.5 Metamodel Classes for the Project Method Engineer

	10.5 The MESP Tasks of the Project Team
	10.5.1 Task Characteristics
	10.5.2 Enact Method

	10.6 Tool Support for MESP
	10.7 Benefits for Process Management
	10.8 Conclusions
	10.9 Further Reading
	References

	11 Adapting Case Management Techniques to Achieve Software Process Flexibility
	11.1 Introduction
	11.2 Background and Context
	11.2.1 Drawing an Analogy
	11.2.2 Case Management Principles

	11.3 Agenda-Driven Software Process Management by Example
	11.3.1 Example Process
	11.3.2 Introducing Agenda-Driven Software Process Management

	11.4 Template Management
	11.4.1 Example Templates
	11.4.2 Template Management Functions
	11.4.3 System Architecture

	11.5 Case Study
	11.5.1 Experiment Design
	11.5.2 Evaluation Results

	11.6 Conclusion
	11.7 Further Reading
	References

	12 A Researcher's Experiences in Supporting Industrial Software Process Improvement
	12.1 Introduction
	12.2 Background and Context
	12.2.1 Challenges and Best Practices
	12.2.2 Industry and Academia Collaboration Processes

	12.3 Helping the Company to Assess Their Processes
	12.3.1 Challenges
	12.3.2 Best Practices and Related Benefits

	12.4 Support with Scientific Knowledge (``State of the Art'')
	12.4.1 Challenges
	12.4.2 Best Practices and Related Benefits

	12.5 Actively Induce a Change to the Company
	12.5.1 Challenges
	12.5.2 Best Practices and Related Benefits

	12.6 Conclusion
	12.7 Further Reading
	References

	13 Lessons Learned from Co-Evolution of Software Process and Model-Driven Engineering
	13.1 Introduction
	13.2 Background and Context
	13.3 Co-Evolution at Capgemini
	13.3.1 Introduction to Case Study
	13.3.2 Observed Co-Evolution

	13.4 Co-Evolution at AUTOSAR
	13.4.1 Introduction to Case Study
	13.4.2 Observed Co-Evolution

	13.5 Co-Evolution Drivers and Lessons Learned
	13.5.1 Initial List of Co-Evolution Drivers
	13.5.2 Observations on Co-Evolution
	13.5.3 Lessons Learned for Process Managers

	13.6 Discussion
	13.7 Conclusions
	13.8 Further Reading
	References

	14 Monitoring and Controlling Release Readiness by Learning Across Projects
	14.1 Introduction
	14.2 Background and Context
	14.3 The CASRR Method
	14.3.1 Preparation
	14.3.2 Phase 1: Selection
	14.3.3 Phase 2: Release Readiness Calculation
	14.3.4 Phase 3: Bottleneck Identification
	14.3.5 Phase 4: Analysis

	14.4 Proof of Concept
	14.4.1 Phase 1: Selection
	14.4.2 Phases 2 and 3: Release Readiness Calculation and Bottleneck Factor Identification
	14.4.3 Phase 4: Analysis

	14.5 Conclusion
	14.6 Further Reading
	References

	15 The Effects of Software Process Evolution to Technical Debt---Perceptions from Three Large Software Projects
	15.1 Introduction
	15.2 Background and Context
	15.3 Identified Scenarios of Software Process Evolution and Technical Debt
	15.3.1 Scenario 1: A Need for More Frequent Releases
	15.3.2 Scenario 2: A Problem with Installation Time
	15.3.3 Scenario 3: Problem with Organizational Architecture
	15.3.4 Scenario 4: Addition of a New Development Team to Another Country
	15.3.5 Scenario 5: Switching from Scrum to Kanban
	15.3.6 Summary of Scenarios

	15.4 The Relationship Between Software Process Evolution and Technical Debt
	15.4.1 Common Causes for Software Process Evolution and Technical Debt
	15.4.2 Relationship of Competence and Motivation to Software Process Evolution and Technical Debt
	15.4.3 Challenge of Adaptation Time in Software Process Evolution
	15.4.4 Successful Software Process Improvement and Technical Debt

	15.5 Conclusion
	15.6 Further Reading
	References

	Index

