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Abstract This chapter investigates recently proposed fault reconstruction methods
by sliding mode observers defined by two different model classes: linear parameter
varying andTakagi–Sugenomodels. Bothmodel classes are used to design the sliding
mode observers. They may be considered as a polytopic extension of the canonical
form restricted to uncertain linear time-invariant systems originally introduced by
Edwards and Spurgeon. This approach is best suited for plants which can be thought
of as predominantly linear in the characteristics or for nonlinear plants which can
be modelled well (at least locally) by linear approximations. For highly nonlinear
plants which are operated in a large operating range, a structure restricted to uncer-
tain linear time-invariant systems is not ideal, as the sliding term would then have to
capture both: the nonlinear plant dynamics and the influence of the faults. The chap-
ter describes the observer design for linear parameter varying and Takagi–Sugeno
models, which are illustrated by the means of the inverted pendulum and the wind
turbine benchmark from the literature. Simulation results are shown to demonstrate
the capability of the designed observers.

1 Introduction

In the last decades there has been an explosion of interest in sliding mode observers
(SMOs) for fault detection and isolation (FDI), reconstruction and fault tolerant
control (FTC). The sliding mode concept based on variable structure control algo-
rithms can be used for controllers and observers. It includes a nonlinear switching
term, which establishes and maintains a motion on a so-called sliding surface, where
reduced-order dynamics compared to the normal system appears [25, 26].

For observers the sliding motion on the error between the output of the observer
and the measured plant output ensures that a SMO produces a set of estimated states,
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which are precisely correspondingwith the current output of the plant. To achieve and
maintain the sliding mode an injection signal has to be applied. The average value of
this signal, the so-called equivalent injection signal, can be evaluated to yield direct
fault estimates, because it contains useful information about the mismatch between
the control-oriented model used to define the observer and the actual plant. The
fault estimates or rather the reconstruction of the faults can be exploited for fault
tolerant control in the sense that sensor and actuator faults are corrected before the
measurements are used for the controller or rather the control signal acts on the plant.

Originally, the sliding mode method is based on linear time-invariant (LTI) sys-
tems with unknown but bounded terms [4]. An important extension to the sliding
mode observer concept is to introduce a convex combination of LTI systems. The
combination can be parameter varying and/or state varying. The parameter varying
conceptwas presented in [1] and is based on a class of linear parameter varying (LPV)
systems. In contrast, the state varying sliding mode concept was first proposed in [9],
where the observer is implemented within a Takagi–Sugeno (TS) model structure
to account for system nonlinearities. Both proposed approaches are extensions of
the LTI scheme of sliding mode observer design to a convex combination of LTI
systems, which is a suitable compromise between a full nonlinear design and the LTI
framework.

In this chapter, first, we introduce TS and LPV model structures and describe
them by means of an inverted pendulum and a wind turbine benchmark from the
literature [14]. Then, the underlying relations between the model classes are exposed
and discussed by comparing the necessary conditions and efficiency of the design
process. Finally, simulation results of two case studies, the inverted pendulum [3]
and a wind turbine benchmark from the literature [17], are presented to illustrate the
influence of the underlying design model on the quality of the fault reconstruction
and thus the quality of fault compensation.

Notation: Throughout this chapter, the notation ‖ · ‖ will be used to represent the
Euclidean vector norm or its induced matrix norm. The identity and zero matrix
of order n are represented by In and 0n . P > 0, (P < 0) means that P is a positive
(negative) definite matrix.

2 Model Structure

2.1 TS Model Structure

Takagi–Sugeno (TS) models provide a uniform framework for controller and ob-
server design of nonlinear systems. Methods based on linear matrix inequalities
(LMIs) using a Lyapunov function allow for a unified design for TS models [24, 27].
Introduced 30 years ago in the context of fuzzy systems [21], TSmodels are weighted
combinations of linear submodels. These can either be derived from measured data
using offline system identification techniques [20, 21] or from analytical models of
nonlinear systems.
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A general TS model structure is given by

ẋ =
Nr∑

i=1

hi (z)
(
Ai x + Bi u

)
,

y =
Nr∑

i=1

hi (z)Ci x,

(1)

where Nr denotes the number of linear state-space submodels, which share the com-
mon state vector x ∈ R

n , the input vector u ∈ R
m , and the output vector y ∈ R

p with
the constant matrices Ai ∈ R

n×n , Bi ∈ R
n×m and Ci ∈ R

p×n . The functions hi (z),
i ∈ {1, . . . , Nr } are normalised to fulfil the convex sum condition

Nr∑

i=1

hi (z) = 1 , 0 ≤ hi (z) ≤ 1 ∀ i ∈ {1, . . . , Nr }. (2)

The vector z ∈ R
Nl of premise variables may comprise state variables xk ∈ R, inputs

uk ∈ R, and external variables χk ∈ R: z = z(x,u,χ). To obtain a Takagi–Sugeno
form and a Takagi–Sugeno (TS) structure of a nonlinear model respectively, and
assuming the mathematical model is given by

ẋ = f(x,u), y = g(x), (3)

there are two different methods to derive (1). The first method is based on an ap-
proximation of (3) by local Taylor linearisation of the nonlinear model around Nr

stationary points and following fuzzy blending of the linear submodels {Ai ,Bi ,Ci }
to a weighted sum according to (1) with the normalisation condition (2). The second
method is the so-called sector nonlinearity approach [16, 23], which can be employed
to obtain an exact Takagi–Sugeno model representation of a given nonlinear model
(3).

In the following, we assume that the sector nonlinearity approach is used to
yield a nonlinear system in Takagi–Sugeno’s form. This has the advantage that the
switching term in the sliding mode observer (presented in Sect. 4) must only account
for the disturbances and faults and not for the approximation error caused by local
linearisations and fuzzy blending.

2.2 LPV Model Structure

Linear parameter varying (LPV) descriptions of dynamic systems have been shown
to be a powerful modelling approach for data-dependent systems, where the depen-
dence might be governed by a nonlinear term, cf. [13]. The idea emerged from the
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analysis of gain scheduling techniques and was presented by Shamma in [19]. In
[13], Shamma describes the LPV modelling as a framework, which results in linear
but non-stationary dynamics shown in (4):

ẋ = A(θ)x + B(θ)u,

y = C(θ)x,
(4)

where x ∈ R
n are the system states, u ∈ R

m the inputs and y ∈ R
p describes the

output of the system. θ denotes the exogenous (i.e. state independent) varying para-
meters of the system leading to the non-stationary behaviour. However, this model of
the system can be exploited for the description of nonlinear dynamic systems, where
the nonlinear behaviour can either be induced by an exogenous or an endogenous
(i.e. state-dependent) signal. Stability analysis and observer/controller synthesis have
been addressed in literature, for example in [1, 2, 13]. To the authors’ knowledge,
however, the obtainment of a LPV model from a nonlinear system description is
poorly described in a large quantity of the literature. For this reason, the next section
will provide an approach for the construction of an LPV model out of an analytic
nonlinear system description.

The basic idea of the LPV approach is to bring a nonlinear function z or an
exogenous signal under the exploitation of the knowledge of the range bounds of
functions values z = sup{z} and z = inf{z} into a certain structure. Consider the
nonlinear function z, which is unknown but bounded, described by

z = c1 + θ c2, (5)

where −1 ≤ θ ≤ 1 holds and c1, c2 are constant values depending on the upper z
and lower z bound of z. By the choice of c1 = z + Δz

2 , c2 = Δz
2 and θ = z−z−Δz/2

Δz/2
with the definition of Δz = z − z the aforementioned conditions are fulfilled and it
can be easily verified that

z + Δz

2︸ ︷︷ ︸
=:c1

+ z − z − Δz/2

Δz/2︸ ︷︷ ︸
=:θ

Δz

2︸︷︷︸
=:c2

= z. (6)

Since −1 ≤ θ ≤ 1 holds, a convex form is achieved. Consider a nonlinear system of
the form

ẋ = A(z)x + Bu,

y = Cx,
(7)

where z can either be an exogenous signal/function or an endogenous nonlinear
function depending on a state of the system. Let A be defined by

A(z) =
[
a11 + z a12

a21 a22

]
.
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Then, according to the scheme described before, the system can be described in the
LPV structure

A(z) =
⎡

⎣
a11 + c1 + θ c2︸ ︷︷ ︸

z

a12

a21 a22

⎤

⎦ =
[
a11 + c1 a12

a21 a22

]
+ θ

[
c2 0
0 0

]

= A0 + θ A1 = A(θ). (8)

If nonlinear functions or exogenous signals appear inB orC, the way for achieving a
LPV description can be applied analogously. Since the formulation leads to a convex
combination of matrices, this can be exploited in the synthesis of controllers or
observers accordingly.

3 Case Studies: Modelling

3.1 Case Study I: Inverted Pendulum

3.1.1 Physical Model

The inverted pendulum benchmark, in particular the cart version illustrated in Fig. 1,
has been considered in many references to solve the problem of designing controllers
around the unstable operating point or as a nonlinear control problem in the full
operating range of Θ ∈ [ 0, π ) [12]. In this chapter, we use the latter case to be able
to use advantageously the LPV and TS sliding mode observer approach.

The cart with inverted pendulum consists of a moveable carriage with one degree
of freedom on which a pendulum is mounted and freely rotatable in driving direction
(Fig. 1). The carriage is driven by a motor that exerts a force F through a belt-drive
transmission. Themain control objective is to swing up the pendulum from the stable
equilibrium to the unstable equilibrium, and then balance the pendulum at the upright
position, and further move the cart to a specified position along the track.

The process can be described by the state-space model

ẋ =

⎛

⎜⎜⎜⎜⎜⎝

Θ̇

g sin(Θ)−m l a Θ̇2 cos(Θ) sin(Θ)− a cos(Θ)

(
u−Ff

)
− dM f Θ̇

m l

2 l −m l a cos2(Θ)

ẋ

2a

(
m l Θ̇2 sin(Θ)− 1

2 m g cos(Θ) sin(Θ)+ u−Ff + 1
2l cos(Θ) dM f Θ̇

)

2−m a cos2(Θ)

⎞

⎟⎟⎟⎟⎟⎠
(9)

with the state vector x = [
Θ Θ̇ x ẋ

]T
, where a = 1/(m + M), Ff denotes the

unknown but bounded friction force between the cart and the track and g denotes the
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Fig. 1 Cart with inverted
pendulum

gravitational acceleration. The external force F is the input u := F and is limited
to |F | ≤ Fmax. The angular position of pendulum Θ , the linear displacement x , and
the speed of the cart ẋ are the outputs of this system. The parameters and variables
of the inverted pendulum on the cart are recorded in Table1.

3.1.2 TS Model

In order to prepare for the observer design, a TS model is derived using the sector
nonlinearity approach [22]. First, we rewrite (9) in the form

Table 1 Variables and parameters of cart with inverted pendulum

Symbol Description Value Unit

Θ Angular position of the pendulum – rad

x Linear displacement of the cart – m

u Input: external force on the cart – N

m Point mass of the pendulum 0.356 kg

M Mass of the cart 4.8 kg

l Distance from the joint to the mass point m 0.56 m

dM f Viscous friction of the joint 0.035 Nms/rad

Fc Coulomb friction coefficient 4.9 N

g Gravitational constant 9.81 m/s2

L Total length of rail 2 m

Fmax Maximum input value (actuator saturation) 120 N



Sliding Mode Observer for Fault Diagnosis … 219

ẋ =

⎡

⎢⎢⎣

0 1 0 0
f1 f2(

g
l − m a f3 f4) − dM f

ml2 f1 0 0
0 0 0 1

m a f1 f2 (2 l f3 − g f4)
a dM f

l f1 f4 0 0

⎤

⎥⎥⎦

︸ ︷︷ ︸
A(x)

x +

⎡

⎢⎢⎣

0
− a

l f1 f4
0

2 a f1

⎤

⎥⎥⎦

︸ ︷︷ ︸
B(x)

(
u − Ff

)
. (10)

The scalar-valued nonlinear functions f j , j ∈ {1, . . . , Nl} in (10) are given by

f1(x1) = 1

2 − m a cos2(x1)
, f2(x1) = sin(x1)

x1
,

f3(x2) = x22 , f4(x1) = cos(x1),
(11)

where Nl = 4 denotes the number of nonlinearities. For the transition to the TSmodel
structure (1), these functions are written in a different form. Let f

j
and f j denote the

minimum and maximum values of each function f j . The following identities hold:

f j (x1) = wj1 (x1) f j + wj2 (x1) f
j
, j ∈ {1, 2, 4}

f3 (x2) = w31 (x2) f 3 + w32 (x2) f
3
, j = 3,

(12)

where the weighting functions wjk , k = 1, 2, are given by

wj1 (x1) :=
f j (x1) − f

j

f j − f
j

, wj2 (x1) := f j − f j (x1)

f j − f
j

, j ∈ {1, 2, 4}

w31 (x2) := f3 (x2) − f
3

f 3 − f
3

, w32 (x2) := f 3 − f3 (x2)

f 3 − f
3

, j = 3,

(13)

which satisfy the property wj1 + wj2 = 1. From this property and by defining the
sum of the membership functions as the product of the convex sums of weighting
functions wjk , we obtain the definition

Nr∑

i=1

hi (z) :=
Nl=4∏

j=1

(
wj1 + wj2

)
, (14)

where it directly follows that
∑Nr

i=1 hi (z) = 1, i.e. the convex sumcondition (2) holds.
In order to replace the nonlinear functions f j in (10) by (12) these are multiplied
first by an appropriate choice of the convex sum

f j (x2) = (
wj1 f j + wj2 f

j

)∏

i �= j

(
wi1 + wi2︸ ︷︷ ︸

=1

)
, i ∈ {1, 2, 3, 4}. (15)
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Using this formulation of f j , the nonlinearities have been shifted to the membership
functions, which are described in this case study by

h1(x1, x2) = w11(x1) w21(x1) w31(x2) w41(x1)

h2(x1, x2) = w12(x1) w21(x1) w31(x2) w41(x1)

h3(x1, x2) = w11(x1) w22(x1) w31(x2) w41(x1)

h4(x1, x2) = w12(x1) w22(x1) w31(x2) w41(x1)

...
...

h16(x1, x2) = w12(x1) w22(x1) w32(x2) w42(x1).

(16)

All other constant matrix entries of (10) are multiplied by
∑Nr

i=1 hi (z) = 1, such that
A(x) and B(x) can be written as a weighted sum of Nr = 16 matrices with constant
coefficients according to

A(x) =
Nr∑

i=1

hi (z)Ai , B(x) =
Nr∑

i=1

hi (z)Bi , (17)

where z = [
x1, x2

]T
. Thus, the matrices of the first submodel i = 1 are

A1 =

⎡

⎢⎢⎣

0 1 0 0
f 1 f 2(

g
l − m a f 3 f 4) − dM f

ml2 f 1 0 0
0 0 0 1

m a f 1 f 2 (2 l f 3 − g f 4)
a dM f

l f 1 f 4 0 0

⎤

⎥⎥⎦ , B1 =

⎡

⎢⎢⎣

0
− a

l f 1 f 4
0

2 a f 1

⎤

⎥⎥⎦ .

The state-space model (9) can thus be transformed into the TS form (1)

ẋ =
Nr=16∑

i=1

hi (z)
(
Ai x + Bi ( u − Ff )

)
,

y = Cx.

(18)

Note that the friction force Ff is here considered as an additional unknown input.

3.1.3 LPV Model

Consider the nonlinear model of the inverted pendulum presented in Sect. 3.1.1. The
nonlinear model can be described by
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ẋ =

⎡

⎢⎢⎣

0 1 0 0
g
l z1 − m a z2 − dM f

ml2 z3 0 0
0 0 0 1

2mlaz5 − magz6
adM f

l z4 0 0

⎤

⎥⎥⎦ x +

⎡

⎢⎢⎣

0
− a

l z4
0

2az3

⎤

⎥⎥⎦ (u − Ff ), (19)

where the nonlinear functions of the model are substitutions using (11) z1 = f1 f2,
z2 = f1 f2 f3 f4, z3 = f1, z4 = f1 f4, z5 = f1 f2 f3, and z6 = f1 f2 f4. Based on the
knowledge of the individual bounds of the nonlinear functions fi , the individual
bounds of the nonlinear functions zi = c1i + θi c2i can be obtained, cf. Table2. Using
the pattern described in Sect. 2.2 and especially the separation of constant matrices
and parameter varying components as shown in (8), the LPV model of the inverted
pendulum can be described in the form

ẋ =
(
A0 +

6∑
i=1

θiAi

)
x +

(
B0 +

4∑
i=3

θiBi

)
u, (20)

with, for example,

A0 =

⎡

⎢⎢⎣

0 1 0 0
g
l c11 − mac12 − dM f

ml2 c13 0 0
0 0 0 1

2mlac15 − magc16
adM f

l c14 0 0

⎤

⎥⎥⎦ and A1(θ1) = θ1

⎡

⎢⎢⎣

0
g
l c21 04×3

0
0

⎤

⎥⎥⎦ .

The sliding mode observer design for the inverted pendulum based on the LPV
problem description—contrary to the TS model—requires a model approximation
because of the structure of the fault distribution matrix F(θ), which is introduced
later in Sect. 4. As proposed by Alwi and Edwards in [1], the distribution matrix can
be factorised into

Table 2 Lower and upper bounds of the inverted pendulum

Function Calculation Upper bound f i , zi Lower bound f
i
, zi

f1 1/(2 − ma cos(Θ)2) 1/(2 − ma) 1/2

f2 sin(Θ)/Θ 1 −0.22

f3 Θ̇2 36π 0

f4 cos(Θ) 1 −1

z1 f1 f2 f 1 f 2 f 1 f 2

z2 f1 f2 f3 f4 f 1 f 2 f 3 f 4 f 1 f 2 f 3 f 4

z3 f1 f 1 f
1

z4 f1 f4 f 1 f 4 f 1 f 4

z5 f1 f2 f3 f 1 f 2 f 3 f 1 f 2 f 3

z6 f1 f2 f4 f 1 f 2 f 4 f 1 f 2 f 4
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F(θ) = HE(θ), (21)

where H ∈ R
n×q is fixed and a virtual fault is introduced by fv = E(θ)f . E ∈ R

q×q

varies dependent on the nonlinear terms and is assumed to be invertible. Thus, from
the knowledge of fv, f can be calculated by f = E(θ)−1fv. Anyhow, in case of the
inverted pendulum the distribution matrix F(z3, z4) = [

0 a
l z4 0 −2az3

]T = F(θ)

cannot be factorised due to the fact that two nonlinear functions are included in one
vector. A possible solution to this problem is the allocation of the distribution vector
into a matrix

F̃(z3, z4) =

⎡

⎢⎢⎣

0 0
0 a

l z4
0 0

−2az3 0

⎤

⎥⎥⎦ , (22)

where the presented factorisation can be accomplished by the matrix E(z3, z4) =[
z3 0
0 z4

]
, leading to a new distributionmatrix H̃ for the virtual fault fv = E(z3, z4)

[
fF
fF

]

H̃ =

⎡

⎢⎢⎣

0 0
0 a

l
0 0

−2a 0

⎤

⎥⎥⎦ . (23)

This factorisation violates the necessary assumption from Sect. 4 rank(H̃) = q =
rank(C H̃) in the design process. For this reason, a model approximation has to be
deployed to the LPV model of the inverted pendulum. The new distribution matrix
is set to F(z3)ap. =

[
0 0 0 −2az3

]T = F(θ3). Then, the factorisation can be applied
using E(θ3) = E(z3) = z3, the virtual fault fv = E(z3) fF and the distribution matrix
for the virtual fault

Hap. =

⎡

⎢⎢⎣

0
0
0

−2a

⎤

⎥⎥⎦ , (24)

which is used during the observer design. The observer reconstructs the virtual fault
f̂v. From this reconstruction, the estimated occurring fault f̂ = E(z3)−1 f̂v can be
calculated.

3.2 Case Study II: Wind Turbine

3.2.1 Physical Model

In the second case study, we use a wind turbine benchmark model presented in
[14], which describes a generic pitch-controlled three-blade horizontal variable-
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speed wind turbine with a rated power of P = 4.8MW. The original purpose of
this benchmark was to provide a model on which researchers, who are working in
the field of fault diagnosis and fault tolerant control, can compare different FDI/FTC
methods to a wind turbine.

The model consists of four submodels: The mechanical submodel, which is re-
duced to the drive train dynamics, the aerodynamics, the pitch actuators and the
generator-converter dynamics. The coupling of these submodels is illustrated in
Fig. 2. The mechanical submodel with two degrees of freedom (rotor and genera-
tor rotation) is described by the motion equation

Jr ω̇r = Tr − Kdt θs − (Bdt + Br )ωr + Bdt

Ng
ωg,

Jg ω̇g = ηdt Kdt

Ng
θs + ηdt Bdt

Ng
ωr −

(ηdt Bdt

N 2
g

+ Bg

)
ωg − Tg,

(25)

where θs denotes the shaft torsion angle with the angular velocity Θ̇s = ωr − 1
Ng

ωg .
For sake of clarity, all parameters and system variables are summarised in Table3.
The aerodynamic submodel comprises the expression for the rotor torque Tr . This
torque depends on the aero map CQ for the torque coefficient [5]

Tr = 1

2
ρ π R3 v2

1

3

3∑

i=1

CQ(λ, βi ), (26)

Fig. 2 Schematic side-view and submodels of the complete wind turbine benchmark model with
the respective inputs and outputs
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Table 3 Variables and parameters of the wind turbine benchmark

Symbol Description Value Unit

Tg Applied generator torque – Nm

Tg,d Demanded generator torque – Nm

Tr Aerodynamic rotor torque – Nm

v Wind speed – m/s

βi Pitch angle of blade i = 1, 2, 3 – rad

βi,d Demanded pitch angle of blade i = 1, 2, 3 – rad

λ Tip speed ratio – –

ωg Generator angular velocity (generator speed) – rad/s

ωr Rotor angular velocity (rotor speed) – rad/s

θg Generator rotational angle – rad

θr Rotor rotational angle – rad

θs Shaft torsion angle – rad

Bdt Torsional damping coefficient of the drive train 775.49 Nms/rad

Bg Viscous friction of the high speed shaft 45.6 Nms/rad

Br Viscous friction of the low speed shaft 7.11 Nms/rad

CQ Aerodynamic rotor torque coefficient – –

Jg Generator inertia 390 kgm2

Jr Rotor inertia 55 × 106 kgm2

Kdt Torsional stiffness of the drive train 2.7 × 109 Nm/rad

Ng Gearbox ratio 95 –

R Rotor radius 57.5 m

ηdt Efficiency of the drive train 0.97 –

ρ Air density 1.225 kg/m3

τg Delay time constant for generator-converter dynamics 0.02 s

ωn Natural frequency parameter for second-order pitch
dynamics

11.11 rad/s

ζ Damping constant for second-order pitch dynamics 0.6 –

whereρ denotes the air density, R is the rotor radius, v is the averagewind speed at the
rotor, βi describes the individual pitch angle of blade i ∈ {1, 2, 3} and λ = ωr R/v
characterises the tip speed ratio.

In pitch-controlled wind turbines, the pitch angles of the blades are altered in
the full load region to keep the wind turbine at the desired nominal rotor speed by
reducing the aerodynamic rotor torque. The blade pitch system with three single
pitch drives is modelled by the second-order delay systems [14]

β̈i + 2 ζ ωn β̇i + ω2
n βi = ω2

n βi,d , (27)
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where βi and βi,d denote the actual and demanded pitch angles of blade i . To take
the generator-converter dynamics into account, and for the purpose of actuator fault
detection, a first-order delay model is used in [14]

Ṫg = − 1

τg
Tg + 1

τg
Tg,d , (28)

where Tg and Tg,d denote the applied and demanded generator torque.

3.2.2 TS Model

As in the first case study (inverted pendulum), a TS model is derived using the sector
nonlinearity approach [22]. Equations (25)–(28) are combined to a state-spacemodel
with the state and input vector

x = [
ωr ωg θs Tg β̇1 β1 β̇2 β2 β̇3 β3

]T
, u = [

Tg,d β1,d β2,d β3,d
]T

and rewritten in the form

ẋ =

⎡

⎢⎢⎣

Ã11(x1, v) 04×2 04×2 04×2

02×4 Ã22 02×2 02×2

02×4 02×2 Ã33 02×2

02×4 02×2 02×2 Ã44

⎤

⎥⎥⎦

︸ ︷︷ ︸
A(x1,v)

x +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×4
1
τg

0 0 0

0 ω2
n 0 0

0 0 0 0
0 0 ω2

n 0
0 0 0 0
0 0 0 ω2

n
0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u, (29)

with

Ã11(x1, v) =

⎡

⎢⎢⎢⎢⎢⎣

f1(x1, v)
Bdt
Ng Jr

− Kdt
Jr

0
ηdt Bdt
Ng Jg

−
(

ηdt Bdt
N2
g Jg

+ Bg
Jg

)
ηdt Kdt
Ng Jg

− 1
Jg

1 − 1
Ng

0 0

0 0 0 − 1
τg

⎤

⎥⎥⎥⎥⎥⎦
, Ã j j =

[−2 ωn ζ −ω2
n

1 0

]

for j ∈ {2, 3, 4}. The scalar-valued nonlinear function f1 is given by

f1(x1, v) = − 1

Jr

(
Bdt + Br

)
+ 1

ωr

1

Jr
Tr
(
λ(x1, v), v

)
, x1 ∈ [ x1 , x1 ], (30)

where x1 > 0 and x1 denote the lower and upper bounds of the rotor speed in the
wind turbine operating range. For the transition to the TS model structure (1) these
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functions are written in a different form. Let f
1
and f 1 denote the minimum and

maximum values of the function f1. The identity

f1 (x1, v) = w11 (x1, v) f 1 + w12 (x1, v) f
1

(31)

holds, where the weighting functions w1k , k ∈ {1, 2}, are given by

w11 (x1, v) := f1 (x1, v) − f
1

f 1 − f
1

, w12 (x1, v) := f 1 − f1 (x1, v)

f 1 − f
1

. (32)

Using this formulation (31), the nonlinearity has been shifted to the membership
functions, which in this second case study are described by

h1(x1, v) = w11(x1, v), h2(x1, v) = w12(x1, v). (33)

All other constant matrix entries of (29) are multiplied by
∑Nr

i=1 hi (x1, v) = 1, such
that A(x1, v) = A(z) can be written as a weighted sum of Nr = 2 matrices with
constant coefficient:

A(z) =
Nr=2∑

i=1

hi (z)Ai ,

where z = f1(x1, v). The state-space model (29) can thus be transformed into the
TS form (1)

ẋ =
Nr=2∑

i=1

hi (z)
(
Ai x + Bu

)
. (34)

3.2.3 LPV Model

Consider the nonlinear system of the wind turbine benchmark, where the nonlinear
function z = Tr/x1 is integrated into the system matrix A as follows:

A(x1, Tr ) =
[− Bdt+Br

Jr
+ Tr

x1 Jr
a12 a13 01×7

A(n-1)×n

]
, (35)

where a12, a13 andA(n-1)×n, n = 10 can be found in the descriptions in Sect. 3.2.2. Just
as described inSect. 2.2, the nonlinear function Tr

x1
can be represented by an affine term

θ and two constants resulting in a linear function by the use of its bounds. Note that
thismodel is valid for the operation range of thewind turbine, where it is assumed that
x1 > 0. The bounds of the nonlinear function Tr

x1
are z = sup{z} = 1.5458 × 1010 Nms

rad

and z = inf{z} = −3.8538 × 1011 Nms
rad , which are obtained from the information of
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the operating range of the wind turbine and the knowledge of the specific torque
coefficients of the benchmark model presented in [15]. Based on these bounds, the
description of the dynamics of the wind turbine can be altered to a LPV model of
the form

ẋ =
([− Bdt+Br

Jr
+ c1

Jr
a12 a13 01×7

A(n-1)×n

]
+ θ

[ c2
Jr

01×9

0(n-1)×n

])

︸ ︷︷ ︸
A(θ)

x + Bu

= A(θ)x + Bu, y = Cx, (36)

where the coefficients are again defined as c1 = z + Δz
2 , c2 = Δz

2 and θ = z−z−Δz/2
Δz/2 .

4 Fault Reconstruction by Sliding Mode Observation

4.1 System Description and Canonical Form

We consider two different norm-bounded uncertain model structures: The first is
based on the previously introduced TS model (1)

ẋ =
Nr∑

i=1

hi (z)
(
Ai x + Bi u + Fi fa

)
,

y = Cx,

(37)

where Fi ∈ R
n×a denotes the fault distribution matrix and the faults are presented by

fa ∈ R
a . The common C in (37) is only a small restriction, since many applications

[7, 12, 18] comprise outputs that are linear in the system states. The second exploits
the LPV modelling techniques based on the introduced structure (4)

ẋ = A(θ) x + B(θ)u + F(θ)fa︸ ︷︷ ︸
H E(θ)fa

,

y = Cx,

(38)

where fv = E(θ)fa denotes the virtual fault vector with the special form of the dis-
tribution matrix (cf. Sect. 3.1.3). Note that the special form of the distribution matrix
and the virtual fault is only needed if the original distribution matrix depends on an
affine term θi . This is due to the transformations discussed in the following part of
this discourse. Otherwise, this allocation can be ignored.
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For the observer design, three existence conditions have to be fulfilled [4, 9, 10]:

• Condition 1: The faults presented in (37) and (38) are unknown but norm bounded
by known positive constants Ξ fa ∈ R

q which satisfy ‖fa(t)‖ ≤ Ξ fa . Moreover,
the system states and inputs are assumed to be bounded.

• Condition 2:

– TS (37): Let qi = q ∀i be defined as the number of columns of Fi . Then the
condition q = rank(CFi ) = rank(Fi ) must be fulfilled and it must hold that
p > q, where p is the number of measurable system states.

– LPV (38): Let q be defined as the number of columns ofH. Then the condition
q = rank(CH) = rank(H) must be fulfilled and it must hold that p > q, where
p is the number of measurable system states.

• Condition 3:

– TS (37): All invariant zeros of (Ai ,Fi ,C) must lie in C−, which denotes the
open left half of the complex plane.

– LPV (38): All invariant zeros of (A(θ),H,C) must lie in C−.

The design of a sliding mode observer for fault reconstruction that is applicable
for the classes of TS systems (37) or LPV systems (38) is carried out in a special
canonical form. With a series of transformations Ti for each TS submodel

Ti = TL ,i Tb,i Tc, (39)

or for the LPV model with the common distribution matrix H

T = TL Tb Tc, (40)

the TS respectively LPV system is brought into a structure where, first, the last p
states of the systems are the outputs y and, second, the faults fa only act on the mea-
surable system states (for further details such as the description of the transformation
matrices (39) and (40) and proofs see [4, 6, 9]).

The TS model in canonical form is described by

ẋ1 =
Nr∑

i=1

hi (z)
(
AAA 11,i x1 + AAA 12,i y +BBB1,i u

)
,

ẏ =
Nr∑

i=1

hi (z)(AAA 21,ix1 +AAA 22,iy +BBB2,i u +FFF 2,i fa),

(41)

with the non-measurable states x1 ∈ R
(n−p) and the measurable states y ∈ R

p. The
transformed system matrices in (41) have the following block structures:
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AAA i = Ti Ai T−1
i =

[
AAA 11,i AAA 12,i

AAA 21,i AAA 22,i

]
, BBBi = Ti Bi = [

BBBT
1,i BBBT

2,i

]T
,

FFF i = Ti Fi = [
0T FFF T

2,i

]T
.

The LPV model in canonical form is described by

ẋ1 = AAA 11(θ) x1 + AAA 12(θ) y +BBB1(θ) u,

ẏ = AAA 21(θ) x1 +AAA 22(θ) y +BBB2(θ)u +HHH 2fv,
(42)

with the non-measurable x1 ∈ R
(n−p) and the measurable states y ∈ R

p. The trans-
formed system matrices in (41) have the following block structures:

AAA (θ) = TA(θ)T−1 =
[
AAA 11(θ) AAA 12(θ)

AAA 21(θ) AAA 22(θ)

]
, BBB(θ) = TB(θ) =

[
BBBT

1 (θ) BBBT
2 (θ)

]T
,

HHH = TH =
[
0T HHH T

2

]T
.

4.2 Sliding Mode Observation

TS Sliding Mode Observation

The TS sliding mode (TS SM) observer for the system (41) in transformed form is
given by

˙̂x1 =
Nr∑

i=1

hi (z)
(
AAA 11,i x̂1 +AAA 12,i ŷ +BBB1,i u −AAA 12,iey

)
,

˙̂y =
Nr∑

i=1

hi (z)
(
AAA 21,i x̂1 +AAA 22,i ŷ +BBB2,i u − (

AAA 22,i −AAA s
22

)
ey + ν

)
,

(43)

where ey = ŷ − y denotes the error vector andAAA s
22 is a common stable designmatrix.

An obvious choice forAAA s
22 is a diagonal matrix, where the elements are the desired

eigenvalues of the output error dynamics. Using the inverse transformation T−1
i , the

TS sliding mode observer can be obtained in the coordinates x of the original model
(37)

˙̂x =
Nr∑

i=1

hi (z)
(
Ai x̂ + Bi u − Gl,i ey + Gn,i ν

)
(44)

with the observer gains
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Gl,i = T−1
i

[
AAA 12,i

AAA 22,i −AAA s
22

]
, Gn,i = T−1

i

[
0(n−p)×p

Ip

]
.

LPV Sliding Mode Observation

The LPV sliding mode (LPV SM) observer for the system (42) in transformed form
is given by

˙̂x1 = AAA 11(θ) x̂1 +AAA 12(θ) ŷ +BBB1(θ)u −AAA 12(θ)ey,
˙̂y = AAA 21(θ) x̂1 +AAA 22(θ) ŷ +BBB2(θ)u − (

AAA 22(θ) −AAA s
22

)
ey + ν.

(45)

Using the inverse transformationT−1, theLPVslidingmode observer can be obtained
in the coordinates x of the original model (38)

˙̂x = A(θ) x̂ + B(θ)u − Gl(θ) ey + Gn ν (46)

with the observer gains

Gl(θ) = T−1

[
AAA 12(θ)

AAA 22(θ) −AAA s
22

]
, Gn = T−1

[
0(n−p)×p

Ip

]
.

The discontinuous term ν is necessary for both observer structures in (43), (44) or
(45), (46) to establish and maintain a sliding motion. The sliding motion is given by

ν = −ρ
P2 ey∥∥P2ey

∥∥ , if ey �= 0, (47)

where ρ is a gain factor and P2 is the symmetric, positive definite solution of the
Lyapunov equation

P2AAA
s
22 + AAA s

22
T P2 = −Q2, (48)

whereQ2 is a symmetric positive definite design matrix. Note that the discontinuous
term ν in (47) is undefined in the case of ey = 0 [6]. Once the sliding surface

SSS ={e(t) ∈ R
n := CCC [ eT1 eTy ]T

︸ ︷︷ ︸
e

= 0 } (49)

with CCC = C T−1
c = [

0p×(n−p) Ip
]

(50)

is reached at the time t = tr , the TS SM observer attempts to maintain the sliding
motion on the surfaceSSS .

Actuator Fault Reconstruction by TS SM Observation

For the actuator fault reconstruction we consider first the TS model (41) and the TS
SM observer (43) in canonical form. The derivatives of the error of non-measurable
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and measurable states are ė1 = ˙̂x1 − ẋ1, ėy = ˙̂y − ẏ and substituting (41) and (43) it
can be verified that

ė1 =
Nr∑

i=1

hi (z)AAA 11,i e1 (51)

and

ėy =
Nr∑

i=1

hi (z)
(
AAA 21,i e1 +AAA s

22 ey + ν −FFF 2,i fa
)
. (52)

Assume the TS SM observer has been designed and a sliding motion has been es-
tablished from t ≥ tr . This means that ey = 0, ėy = 0. In this case the error equation
(52) is simplified to

0 =
Nr∑

i=1

hi (z)
(
AAA 21,i e1 + νeq −FFF 2,i fa

)
(53)

and the discontinuous term ν is replaced by the so-called equivalent output injection
signal [4]

νeq = νδ(t ≥ tr ), (54)

where νδ denotes an approximation of (47) by introducing a small positive scalar δ

νδ = −ρ
P2 ey∥∥P2ey

∥∥ + δ
. (55)

It should be noted that the value of δ should be chosen as small as possible, because
it influences the quality of the fault reconstruction [6]. Thus, the equivalent output
injection signal is given by rearranging Eq. (53) according to

νeq =
Nr∑

i=1

hi (z)
(
FFF 2,i fa −AAA 21,i e1

)
. (56)

Substituting the steady-state solution of (51) into (56), we get the relation

fa =
[

Nr∑

i=1

hi (z) FFF 2,i

]+
νeq , (57)
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where (·)+ denotes the pseudo-inverse of the convex combination of the matrices
FFF 2,i . Note that the pseudo-inverse of the convex combination of matrices exists if
the full rank characterization is satisfied by the theorem proposed in [11].

Actuator Fault Reconstruction by LPV SM Observation

Equal to the TS approach, the error equations are defined by ė1 = AAA 11(θ) e1 and
ėy = ˙̂y − ẏ. On the sliding surface it simplifies to

ėy = 0 = AAA 21(θ) e1 + νeq −HHH 2 fv. (58)

Substituting the steady-state solution of ė1 into (58), which is stable by the design of
the transformation matrix TL (cf. Sect. 6), leads to

fv = [
HHH 2

]+
νeq . (59)

5 Simulation Results for the Case Studies

After the canonical form of the observer and the existence conditions have been
shown, the main focus is directed on the degrees of freedom in the design process
having a direct impact on the reachability of the sliding surface. This is a necessary
assumption in the reconstruction of the faults. Furthermore, the quality of the fault
reconstruction directly depends on the chosen parameters. The design process can be
considered as an iterative procedure [8] using the simulation environment including
the nonlinear model and the constructed observer. Note that the simulation itself in-
fluences the quality of the reconstruction through parameters like the chosen solver,
the fundamental sample time and effects like chattering. The following descriptions
of the design process are based on the experiences of the authors and sketch a pos-
sible way of achieving a well-operating observer. Anyhow, there might be different
approaches, which work as well.

The design matrix AAA s
22 (cf. (48)) plays an important role in the design process,

since it governs the output error dynamics. One way to evaluate the influence of
AAA s

22 in the simulation is to operate the designed observer in the form similar to the
Luenberger observer without the switching term

ˆ̇x =
Nr∑

i=1

hi (z)
[
Ai x̂ + Biu − Gl,ieỹ

]
, ŷ = Cx̂, resp.

ˆ̇x = A(θ)x̂ + B(θ)u − Gl(θ)eỹ, ŷ = Cx̂

(60)

until the desired behaviour of the downgraded observer is achieved. Based on the
designed Luenberger-like observer and after enabling the switching term again, the
parameters ρ and δ for the equivalent output injection signal can be acquired. As a
first step, δ can be chosen as a small scalar (cf. Tables4 and 5) and creates an area
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Table 4 Design parameters for case study I

Parameter Value TS Value LPV

AAA s
22 −10 diag(1, 1, 1) −10 diag(1, 1, 1)

Q2 diag(1, 1, 1) diag(1, 1, 1)

ρ 1000 1000

δ 10−1.3 10−1.3

Resulting matrices from the design process

P2 0.05 diag(1, 1, 1) 0.05 diag(1, 1, 1)

Gl

⎡

⎢⎢⎢⎣

13.09 0 0

34.44 0 0

0 10 1

1.38 0 9.99

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

20.5 0 0

108.4 0 0

0 10 1

2.8 0 10

⎤

⎥⎥⎥⎦

Gn

⎡

⎢⎢⎢⎣

1 0 0

3.1 0 0

0 1 0

0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 0 0

10.5 0 0

0 1 0

0 0 1

⎤

⎥⎥⎥⎦

around the sliding surface, which reduces effects like chattering. As an indication
of the magnitude of the gain matrix ρ, the proof of the stability of ė through the
Lyapunov function, presented for example in [8] for TS and in [1] for the LPV case,
can be utilised. Therefore, the maximum values of the errors, matrices, faults and
uncertainties have to be estimated. Afterwards, the magnitude of ρ can be altered
iteratively until the desired results are achieved. In case of thewind turbine observer, a
matrix ρ was used instead of a scalar, which takes account of the differentmagnitudes
of the outputs of the wind turbine. Especially for multiple faults to detect, the use of a
matrix can lead to an improvement of the performance. This allows a higher degree of
freedom in the design process, but increases the complexity of finding a combination
of entries in ρ, which leads to a good reconstruction accuracy. The entries in ρ have
to be well matched for a good reconstruction accuracy. To integrate the extended
switching term with ρ as a matrix, a weighting matrix W is introduced into the
switching term. The entries of W contain the reciprocal values of the maximum
estimated faults of the outputs and lead to a normalisation [6]. Note that the iterative
alteration of ρ (or ρ) does not depend on one specific fault, but rather on the accuracy
of the reconstruction over a range of faults is used as a criterion. A well-working
combination of parameters for the case studies is shown in Tables4 and 5. They
represent a possible solution for the fault reconstruction; however, other parameter
sets might lead to a good reconstruction of faults as well. In case study I the ODE3
Simulink® solver with a fixed sample time of 0.001s was used. Case study II was
calculated by an ODE4 Simulink® solver with a fixed sample time of 0.001s.
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Table 5 Design parameters for case study II
Para. Value TS Value LPV

AAA s
22 −100 diag(1, 1, 1, 1, 1, 1) −100 diag(1, 1, 1, 1, 1, 1)

Q2 diag(1, 1, 1, 1, 1, 1) diag(1, 1, 1, 1, 1, 1)

ρ diag(1.2e3, 75e3, 1e7, 1e4, 1e4, 1e4) diag(1.2e3, 75e3, 1e7, 1e4, 1e4, 1e4)

W diag(1/1.4, 1/20, 1/4000, 1/5, 1/5, 1/5) diag(1/1.4, 1/20, 1/4000, 1/5, 1/5, 1/5)

δ 0.005 0.005

Resulting matrices from the design process

P2 0.005 diag(1, 1, 1, 1, 1, 1) 0.005 diag(1, 1, 1, 1, 1, 1)

Gl

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.26e3 −0.0073 0

−10.5 110.4 −0.0026 04×3

0.99 0.0043 0

0 0 50

−123.4 0 0

100 0 0

0 −123.4 0

06×3 0 100 0

0 0 −123.4

0 0 100

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Gl (hi = 1/Nr ∀i)

Gn

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

−0.0001 0.0001 0 04×3

0 0 1

0 0 0

1 0 0

06×3 0 0 0

0 1 0

0 0 0

0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

−0.0001 0.0001 0 04×3

0 0 1

0 0 0

1 0 0

06×3 0 0 0

0 1 0

0 0 0

0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the observer matrix Gl depends on either the membership functions hi
or the affine term θi . The matrices shown in Tables4 and 5 are based on the operating
point, where hi = 1/Nr ∀i and θi = 0 ∀i , and give an idea of the structure of Gl .

5.1 Simulation Results for Case Study I

Figure3 shows the reconstructed fault f̂ F by the LPV sliding mode observer based
on the approximated model compared to the real occurring fault fF . In Fig. 4 the
reconstructed fault f̂ F of the TS slidingmode observer compared to the real occurring
fault fF is plotted. Both designed observers show a good accuracy of reconstruction.
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Fig. 3 Reconstructed fault f̂ F by the LPV SM observer of the inverted pendulum benchmark

Fig. 4 Reconstructed fault f̂ F by the TS SM observer of the inverted pendulum benchmark

5.2 Simulation Results for Case Study II

The benchmark model of the wind turbine by Odgaard et al., presented in [15], was
created for the evaluation of FDI and FTC methods. For this reason, fault scenarios
are implemented in the MATLAB model of the wind turbine. As an example, Fault
8 (cf. [15]), which results in an offset of fa = 100Nm on Tg and is active from
3800 s ≤ t ≤ 3900 s, was chosen to give an impression of the performance of the
designed sliding mode observer. The observers based on the TS and on the LPV
model were simulated in parallel to the nonlinear benchmark model of the wind
turbine with the faults included. From t = 3800 s to t = 3900 s an offset of 100Nm
on the generator torque Tg occurred. The benchmark provides additional noise to
the output of the model, which leads to a fluctuation in the fault-free and fault-
afflicted reconstruction signal, cf. Figs. 5 and 6. The reconstructed signals of the
faults are based on the signals of the noisy benchmark. This is handled by the use
of a filter with a transfer function H(s) = 10−5s2+129.33

s2+14.91s+130.83 , which is applied to the
noisy reconstructed signals. The plots in Figs. 5 and 6 show the filtered reconstructed
signals. Note that, for example in the moment of occurrence of the fault, the fault
to the nominal torque magnitude ratio is approx. fa/Tg = 0.8%. The sensor noise
itself can reachmagnitudes of 30Nm,whichmakes it harder for the used observers to
reconstruct the induced fault. Anyhow, the observers for the LPV and TSmodel show
an identical accuracy of reconstruction of approx. 95%. This result is not surprising,
since the LPV and TSmodels are an exact representation of the nonlinear model and,
as shown in Table5, the design leads to exactly the same sliding mode observer.
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Fig. 5 Reconstructed fault fa by the TS SMO of the wind turbine benchmark

Fig. 6 Reconstructed fault fa by the LPV SMO of the wind turbine benchmark

6 Stability of TS and LPV Systems: A Comparison

Consider the autonomous system in the LPV description as it was introduced in
Sect. 2.2

ẋ = A(θ) x. (61)

As described by Shamma in [13], the system is quadratically stable if there exists a
symmetric, positive definite solution P of

PA(θ) + A(θ)T P < 0 (62)

for all possible trajectories θ . This condition is based on the exploitation of the
characteristics of the Lyapunov function V = xTP x, which ensures quadratic sta-
bility. Since the LPV and TS system descriptions lead to a convex formulation, this
approach can be handled by the use of linear matrix inequalities (LMI). When com-
paring LPV and TSmodels the way they are introduced in this discourse (cf. Sect. 2),
it is possible to show that, with the same nonlinear functions, the LMI constraints
become the same. Consider the system matrix in (61), where the structure can be
arranged to

A(θ) = A0

∣∣
zi+ Δzi

2
+ A1(θ1) + A2(θ2) + · · · + Anl (θnl ). (63)

This model has nl nonlinearities (θ ∈ R
nl ). Note that due to lack of space in the fol-

lowing considerations A0

∣∣
zi+ Δzi

2
defines A0

∣∣
z1+ Δz1

2 , z2+ Δz2
2 ,..., znl

+ Δznl
2
. Since the prob-
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lemwas formulated as in Eq. (5), it holds that θi ∈ [−1, 1] ∀i . Because this is a convex
problem formulation, the LMI constraints are governed by the bounds of each θi .
Therefore, there are Nr = 2nl possible combinations. Setting the matrices according
to the possible combinations leads to

Ã1 = A0

∣∣
zi+ Δzi

2
+ A1(θ1 = 1) + A2(θ2 = 1) + · · · + Anl (θnl = 1)

Ã2 = A0

∣∣
zi+ Δzi

2
+ A1(θ1 = 1) + A2(θ2 = 1) + · · · + Anl (θnl = −1)

...
...

ÃNr = A0

∣∣
zi+ Δzi

2
+ A1(θ1 = −1) + A2(θ2 = −1) + · · · + Anl (θnl = −1).

(64)

From the definition of the LPV model in (6), it is easy to verify that Ai (θi = 1) =
Ai

∣∣
Δzi
2

and Ai (θi = −1) = Ai

∣∣− Δzi
2

holds. Using this knowledge, (64) can be de-

scribed by

A0

∣∣
zi+ Δzi

2
+ A1

∣∣
Δz1
2

+ A2

∣∣
Δz2
2

+ · · · + Anl

∣∣ Δznl
2

= Ã1

∣∣
z1, z2,...,znl

A0

∣∣
zi+ Δzi

2
+ A1

∣∣
Δz1
2

+ A2

∣∣
Δz2
2

+ · · · + Anl

∣∣
− Δznl

2
= Ã2

∣∣
z1, z2,...,znl

...
...

A0

∣∣
zi+ Δzi

2
+ A1

∣∣− Δz1
2

+ A2

∣∣− Δz2
2

+ · · · + Anl

∣∣
− Δznl

2
= ÃNr

∣∣
z1, z2,...,znl

.

(65)

Thus, the LMI constraints to solve equal

Ã1

∣∣T
z1, z2,...,znl

P + PÃ1

∣∣
z1, z2,...,znl

< 0

Ã2

∣∣T
z1, z2,...,znl

P + PÃ2

∣∣
z1, z2,...,znl

< 0

...
...

ÃNr

∣∣T
z1, z2,...,znl

P + PÃNr

∣∣
z1, z2,...,znl

< 0.

(66)

The comparison of the matrices Ãi , i ∈ {1, 2, . . . , Nr } to the individual matrices of
the submodels in the TS formulation

ẋ =
Nr∑

i=1

hi (z)Ai x (67)

leads to the realisation that they are the same. When using the Lyapunov function
approach for the TS model, it is easy to verify that LMI formulation of the TS and
the LPV system result in the same constraints.

As described in [1, 8], the error dynamics for the non-measurable states ė1 =
AAA 11 e1 are ensured to be stable by the use of an LMI problem formulation
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P1 > 0,

Aa,11(θ)P1 + P1Aa,11(θ) + Aa,211(θ)TNT + NAa,211(θ) < 0,

resp.

P1 > 0,

Aa,11,i P1 + P1Aa,11,i + Aa,211,i
TNT

i + NiAa,211,i < 0, for i ∈ {1, . . . , Nr }.
(68)

As outlined, the LMI constraints for the TS and LPVmodel are equal, when based on
the same nonlinear functions. However, there might be a difference in the solution.
This is due to the fact that for the TS observer the solver is allowed to find Nr different
solutions for Ni , since the resulting transformation from the design process can be
applied to each individual subsystem {Ai , Bi , Ci } of the TS system description.
In case of the LPV design process one solution for N is accepted based on the
same constraints. This is due to the fact that no obvious assignment of a solution to
individual matrices results from the design process.

7 Conclusions

In this chapter, a LPV andTakagi–Sugenomodel-based slidingmode observer design
approach was investigated. After a brief introduction of both model structures, the
entire modelling process for the observer design was studied in detail by means of
two case studies using LPV and TS techniques.

As a result, it can be noted that there exist wide similarities between the LPV
and the TS extension of the canonical LTI form of sliding mode observers. Both
approaches of the polytopic extension of uncertain LTI systems are suitable for
the consideration of nonlinearities of the nominal system dynamics. In particular,
there are few differences which can lead to different dynamics of the reconstructed
unknown inputs, respectively, occurring faults:

• In the case of non-factorizable fault distribution matrices F(θ) (inverted pendu-
lum), the use of the LPV approach requires a model approximation. In contrast,
the TS model approach does not require any approximation and it is therefore
straightforward to implement without loss of accuracy.

• TheTSmodel structure is characterised byweighted convex combinations of linear
submodels. This can be exploited in the design process, because the LMI problem
formulation allow for different solutions for Ni from which i ∈ {1, . . . , Nr } ob-
server gains Gl,i and Gn,i follow for each individual subsystem. In contrast, the
individual matrices in the LPV structure cannot be assigned to related submodels.
Based on this fact, the LMI problem formulation caused a common solution N
whereby the sliding mode observer design is also restricted to a common transfor-
mation matrix T.
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However, it must be noted that the performance of the LPV sliding mode observer
can be seen as equivalent to the TS sliding mode observer. In both case studies the
designed observers achieved a high accuracy of the reconstructed fault signals.
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