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Abstract Fuel cell systems provide a way to produce electric energy in future
decentralized power supply grids. In the case of using high-temperature fuel cells, it
becomes possible to exploit not only the provided electric power but also the process
heat in order to maximize the overall system efficiency. However, the efficiency
maximization goes along with a high flexibility with respect to temporal variations
of the electric power that is demanded by corresponding consumers. Such power
variations impose restrictions on intelligent fuel cell control systems. Such control
strategies do not only have to make sure that the supplied fuel gas (typically hydro-
gen and mixtures with methane or carbon monoxide) is stoichiometrically balanced
with the demanded electric power. It is also inevitable to control the fuel cell itself
from a thermodynamic point of view. This control has to make sure that sufficiently
smooth temperature trajectories can be tracked during the heating phase of the sys-
tem and that a priori unknown but bounded disturbances are robustly compensated
at high-temperature operating points. For this purpose, interval-based sliding mode
control procedures can be implemented. This contribution gives an overview of how
interval methods can be combined with the fundamental sliding mode methodology
in a variable-structure control synthesis. The efficiency of the presented methods is
highlighted for the control of solid oxide fuel cells in various simulations.

1 Introduction

The control of nonlinear dynamic systems is an important topic for many practi-
cal applications. Especially, in cases in which dynamic system models are signif-
icantly influenced by uncertain parameters and bounded (additive) uncertainty, it
is challenging to determine feedback control procedures that reliably stabilize the
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system dynamics and—at the same time—guarantee that specific state constraints
are not violated. As mentioned in the abstract of this contribution, the control of
high-temperature solid oxide fuel cell systems (SOFC systems) belongs to this class
of applications.

As shown in previous work, it is possible to use interval arithmetic techniques
for the implementation of feedback controllers that can be applied in real time
[19–27, 29]. On the one hand, these controllers have to fulfill the requirement of
robustness against bounded uncertainty and disturbances. On the other hand, the
asymptotic stability of the dynamics of the overall closed-loop control structure has
to be shown in a guaranteed way. The basic idea of the chosen control structure is
motivated by the principle of sliding mode control [31, 32, 36, 37].

In classical sliding mode techniques, so-called equivalent control strategies are
determined for the exact tracking of sufficiently smooth reference trajectories. These
equivalent controllers represent the control for states located exactly on the sliding
surface, which serves as a specification of the desired closed-loop system dynamics.
State values which are not (exactly) located on this sliding surface are forced to
converge toward it using a variable-structure control approach. The amplitude of this
variable-structure control component is usually selected as a constant in such a way
that the influence of uncertain parameters is overcompensated. However, the choice
of such constant variable-structure gains may have the drawback of unnecessarily
large chattering phenomena. Such chattering should be reduced as far as possible for
practical applications to avoid the associated non-advantageous actuator wear and
energy consumption [19].

In contrast to classical sliding mode approaches, the fundamental idea of interval-
based sliding mode control is the online adaptation of the variable-structure control
component with respect to both the current uncertain system state and uncertain
parameters, cf. [19, 23, 29]. This computation can be performed in real time using
software libraries for basic interval functionalities. For this purpose, the calculation of
the control signal is implemented in such away that asymptotic stability of the closed-
loop control system can be shown using suitable candidates for Lyapunov functions.
Such candidates were so far investigated for first-order sliding mode control without
and with one-sided barrier functions. These barriers serve as a guaranteed means to
avoid the violation of hard upper bounds for selected state variables. For example,
such upper bounds may represent the maximum admissible temperature of SOFC
stacks. One of the important generalizations presented in this contribution is the
extension of these techniques to an interval-based sliding mode control of second
order as well as a generalization to two-sided barriers.

Section2 gives an overview of fundamental first- and second-order sliding mode
control approaches, their generalization to interval-based implementations, and illus-
trating simulation examples that highlight the properties and advantages of the chosen
options. Thereafter, Sect. 3 describes a brief summary of the control-oriented mod-
eling of the thermal behavior of SOFCs. The control design for these systems is
described in Sect. 4 by the presented interval-based variable-structure methods. Rep-
resentative simulation results are summarized in Sect. 5. Finally, conclusions and an
outlook on future work are given in Sect. 6.
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2 Sliding Mode Control with Guaranteed State Constraints

In this section, a summary is given for fundamental sliding mode control approaches
that can be generalized in two different ways. First, they are generalized in such away
that violations of hard constraints on state variables and deviations of the states from
the sliding surface are penalized in a reliable way. This penalization makes use of
strict inequalities that are represented using a barrier Lyapunov function approach [9,
17, 35]. Second, techniques are introduced that allow for a verified treatment of
uncertainty in the state equations by means of interval arithmetic [11, 14, 16]. These
techniques aim at the online computation of control laws in such a manner that
chattering due to unnecessarily large switching amplitudes is reduced as much as
possible. The usage of these approaches is described for an illustrative example that
is similar to the dynamics of the considered fuel cell system after a suitable coordinate
transformation.

2.1 Fundamental Sliding Mode Control Laws

Both the treatment of strict inequality constraints and bounded interval uncertainty
can be combined with first- and second-order sliding mode techniques. The funda-
mental stages are the definition of appropriate sliding surfaces and the guaranteed
proof of asymptotic stability using suitable candidates for Lyapunov functions.

2.1.1 First-Order Sliding Mode Control

As an illustrative example, the nth-order linear system model

⎡
⎢⎢⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)

...

ẋn−1(t)
ẋn(t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x2(t)
x3(t)

...

xn(t)
u(t)

⎤
⎥⎥⎥⎥⎥⎦

(1)

with the state vector x(t) ∈ R
n and the scalar control input u(t) ∈ R is considered.

The system output is represented by the first state variable according to

y(t) = x1(t). (2)

Obviously, the dynamic system (1) with the output variable (2) has the relative
degree n [12, 15]. This is confirmed by the fact that the nth time derivative x (n)

1 (t) =
u(t) of the system output is the lowest-order derivative that explicitly depends on the
control input u(t). Therefore, the output y(t) corresponds to a (trivial) flat system
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output [5] with which the complete system dynamics and suitable feedforward and
feedback control approaches can be parameterized for sufficiently smooth desired
trajectories x1,d(t).

Using this desired output, the corresponding tracking error (r = 0) and its r th
time derivative are given by

ξ̃
(r)
1 (t) = x (r)

1 (t) − x (r)
1,d(t) (3)

with r ∈ {0, 1, . . . , n}.
Using the definition (3) of the tracking error, the sliding surface

s := s(t) =
n−1∑
r=0

αr ξ̃
(r)
1 (t) (4)

with the normalized coefficient αn−1 = 1 can be defined. To guarantee asymptotic
stability of the system dynamics on this sliding surface, the parameters αr have to
fulfill the necessary and sufficient stability conditions for a Hurwitz polynomial [6]
of linear dynamic systems of the order n − 1.

First-order sliding mode control approaches can be derived with the help of the
quadratic radially unbounded candidate for a Lyapunov function

V 〈I〉 = 1

2
s2 > 0 for s �= 0. (5)

(Global) Asymptotic stability of the dynamic system corresponds to the (global)
negative definiteness of the corresponding time derivative

V̇ 〈I〉 = s · ṡ =
(

n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·
(

n−1∑
r=0

αr ξ̃
(r+1)
1 (t)

)
< 0 for s �= 0. (6)

During the derivation of the variable-structure sliding mode control approach [21,
27], the right-hand side of the inequality (6) is replaced by the more conservative
formulation

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·
(

n−1∑
r=0

αr ξ̃
(r+1)
1 (t)

)
< −η · |s| = −η ·

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
· sign (s)

(7)

which guarantees global asymptotic stability for arbitrary parameters η > 0. Note
that the actual choice of η significantly influences the dynamics and the maximum
absolute values of the control signal in the so-called reaching phase in which s �= 0
holds. As soon as the sliding surface s = 0 has been reached in a finite time, the
control amplitudes depend on the actual choice of the reference trajectory x1,d(t)
and on the coefficients αr . The latter values have the major influence on the control
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amplitudes as soon as non-modeled errors and disturbances influence the system
dynamics and if the error signals ξ̃

(r)
1 (t) are corrupted by non-negligiblemeasurement

noise or state reconstruction errors.
The derivation of the control law is completed by enforcing that the second factor

in (7) becomes proportional to the sign of the actual value of s according to

(
n−1∑
r=0

αr ξ̃
(r)
1 (t)

)
·
(

n−2∑
r=0

αr ξ̃
(r+1)
1 (t) + u(t) − x (n)

1,d(t) + η · sign (s)

)

︸ ︷︷ ︸
−β·sign(s)

< 0 (8)

with β > 0. The definition of η̃ := η + β > 0 leads to the final control signal

u(t) = u〈I〉(t) = x (n)
1,d(t) −

n−2∑
r=0

αr ξ̃
(r+1)
1 (t) − η̃ · sign (s) . (9)

In principle, the robustness of the closed-loop control system can be improved by
adding the integral of the tracking error with a suitable gain value to the definition
of the sliding surface. Such additional measures are investigated in the following
subsection for the derivation of second-order sliding mode controllers.

2.1.2 Second-Order Sliding Mode Control

A second-order sliding mode is defined in the sense that not only s = s(t) = 0 but
also ṡ = ṡ(t) = 0 are ensured by the designed feedback controller [1, 4, 7]. This can
be achieved by additionally low-pass filtering (first-order lag dynamics) the left-hand
side of

γ1ṡ + γ0s =
n−1∑
r=0

αr ξ̃
(r)
1 (t). (10)

For the sake of asymptotic stability, the coefficients γ0 and γ1 need to be strictly
positive, while the coefficients on the right-hand side of (10) are again chosen as
parameters of aHurwitz polynomial of the order n − 1. As before, this sliding surface
has a PD (proportional, differentiating) characteristic.

To enhance steady-state accuracy, the sliding surface in (10) is extended by an
additional time integral of the tracking error with

γ1ṡ + γ0s = α−1

t∫

0

ξ̃1(τ )dτ +
n−1∑
r=0

αr ξ̃
(r)
1 (t). (11)



58 A. Rauh and L. Senkel

For a short-hand notation, this extension of the sliding surface (11) is abbreviated by

γ1ṡ + γ0s =
n−1∑
r=−1

αr ξ̃
(r)
1 (t) with ξ̃

(−1)
1 (t) :=

t∫

0

ξ̃1(τ )dτ. (12)

The second time derivative of the PID-type sliding variable s, required subse-
quently for the control design, is given by the differentiation of (11), (12) and sub-
sequently solving it for s̈ with

s̈ = −γ0

γ1
ṡ + 1

γ1

n−1∑
r=−1

αr ξ̃
(r+1)
1 (t) = −γ0

γ1
ṡ + 1

γ1

n∑
r=0

αr−1ξ̃
(r)
1 (t). (13)

Here, the special case α−1 ≡ 0 corresponds to the case of a sliding surface of
PD type. In analogy to the previous subsection, an appropriate Lyapunov function
candidate needs to be defined to parameterize a variable-structure controller that
guarantees asymptotic stability of the closed-loop system dynamics. Because ṡ = 0
has to be ensured in addition to s = 0, the definition

V 〈II〉 = 1

2
· (s2 + λṡ2

)
with the scaling factor λ > 0 (14)

is employed. Its time derivative results in

V̇ 〈II〉 = s · ṡ + λ · ṡ · s̈

= s · ṡ + ṡ ·
(

−λγ0

γ1
ṡ + λ

γ1

n∑
r=0

αr−1ξ̃
(r)
1 (t)

)
< 0, (15)

where the special parameterizationλ = γ1 > 0 can be usedwithout loss of generality.
This is due to the fact that scaling of V̇ 〈II〉 in (15) can be performed by a suitable
choice of γ0 and αr .

Using λ = γ1 allows for simplifying the expression (15) under consideration of
the control-dependent term ξ̃ (n)(t) = ẋn(t) − x (n)

1,d(t) = u(t) − x (n)
1,d(t) according to

V̇ 〈II〉 = s · ṡ + ṡ ·
(

−γ0ṡ +
n−1∑
r=0

αr−1ξ̃
(r)
1 (t) + αn−1 ·

(
u(t) − x (n)

1,d(t)
))

< 0.

(16)

As before, a conservative stabilization of the closed-loop system is desired that
allows for a finite-time convergence toward s = 0. This can be achieved by setting

V̇ 〈II〉 < −η1 · |ṡ| − η2 · |s| · |ṡ| = −ṡ · sign (ṡ) · (η1 + η2 · |s|) (17)
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which finally leads to the nonlinear feedback controller [4, generalized form of
Eqs. (22), (23)]

u(t) = u〈II〉(t) = x (n)
1,d(t) + 1

αn−1
·
(

γ0 ṡ − s −
n−1∑
r=0

αr−1ξ̃
(r)
1 (t) − sign (ṡ) · (η̃1 + η̃2 · |s|)

)

(18)
with η̃i ≥ ηi > 0 for both i ∈ {1, 2}.

2.2 Extension by One-Sided Barrier Lyapunov Functions

Both the control laws u〈I〉(t) and u〈II〉(t) can be extended by a one-sided barrier
Lyapunov function approach in such a way that the generally time-varying strict
state (respectively output) constraint

x1(t) < x̄1,max(t) := x1,d(t) + Δx1,max(t) (19)

with Δx1,max(t) > 0 is guaranteed not to be violated for each point of time t > 0.
Note that the initial conditions for the state vector x(t) at the point of time t = 0
have to be compatible with this constraint. Moreover, it is necessary that the sliding
surface s = 0 for x1(t) = x1,d(t) lies within the admissible operating range that is
defined by (19).

Then, the extended Lyapunov function ansatz

V 〈 j,A〉 = V 〈 j〉 + V 〈A〉 > 0 for s �= 0 (20)

with

V 〈A〉 = ρV · ln
(

σV · x̄1,max(t)

x̄1,max(t) − x1(t)

)
and x1(t) < x̄1,max(t) (21)

is introduced for both alternatives j ∈ {I, II}. In (21), the parameter ρV > 0 needs
to be chosen in such a way that the singularity x̄1,max(t) − x1(t) = 0 represents a
repelling potential, where control constraints are not violated for usual operating
conditions, and that the term V 〈 j〉 has dominating influence in the neighborhood
of s = 0. In addition, the parameter σV > 0 can be utilized to adapt the steepness of
the barrier function near its singularity.

The time derivative of (20) can be computed as1

V̇ 〈 j,A〉 = V̇ 〈 j〉 + V̇ 〈A〉 < 0 with

V̇ 〈A〉 :=
(

∂V 〈A〉

∂x

)T

· ẋ(t) = ρV

x̄1,max(t)
·
(−x1(t) · ˙̄x1,max(t) + ẋ1(t) · x̄1,max(t)

x̄1,max(t) − x1(t)

)
. (22)

1Note that the expression V̇ 〈A〉 does not explicitly depend on the system input u in any of the
applications considered in this chapter.
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In analogy to the fundamental first-order sliding mode control law u〈I〉(t) derived
from (8), the inequality

s ·
(

n−2∑
r=0

αr ξ̃
(r+1)
1 (t) + u(t) − x (n)

1,d(t) + η · sign (s) + 1

s
· V̇ 〈A〉

)

︸ ︷︷ ︸
−β·sign(s)

< 0 (23)

has to be fulfilled to prevent overshooting the state constraint (19) and to stabilize
the error dynamics in a reliable way.

Under consideration of the term u〈I〉(t) defined in (9), the modified control law

u(t) = u〈I,A〉(t) = u〈I〉(t) − s

s2 + ε̃
· V̇ 〈A〉 (24)

is obtained, in which the rational term 1
s in (23) has been approximated by the

expression s
s2+ε̃

with the small positive constant ε̃ > 0. The approximation of this
rational term ensures that the control law u〈I,A〉(t) is regular on the sliding surface
s = 0 and that the barrier Lyapunov function becomes inactive as soon as the control
goal has been reached. This is especially true in the case that interval uncertainty
has a non-negligible influence on the system dynamics. This uncertainty leads to the
fact that the sign of s can usually no longer be determined unambiguously in the
close vicinity of s = 0. Hence, a good approximation of the rational term 1

s is only
necessary for |s| � 0, where 1

s ≈ s
s2+ε̃

holds.
For the special case of a time-independent state constraint x̄1,max = const with

˙̄x1,max = 0, the control law (24) simplifies to

u(t) = u〈I,A〉(t) = u〈I〉(t) − s

s2 + ε̃
· ρV ·

(
x2(t)

x̄1,max − x1(t)

)
. (25)

In a similar way, the second-order slidingmode control procedure can be extended
by the barrier function (21). Following the same steps as in Eqs. (22)–(25) yields the
control law

u(t) = u〈II,A〉(t) = u〈II〉(t) − 1

αn−1
· ṡ

ṡ2 + ε̃
· V̇ 〈A〉, (26)

that can again be simplified as in (22) to obtain the control signal

u(t) = u〈II,A〉(t) = u〈II〉(t) − 1

αn−1
· ṡ

ṡ2 + ε̃
· ρV ·

(
x2(t)

x̄1,max − x1(t)

)
(27)

for constant state constraints with ˙̄x1,max = 0.
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2.3 Extension by Two-Sided Barrier Lyapunov Functions

As for the case of one-sided state constraints, also two-sided barrier Lyapunov func-
tions can be combined with the fundamental first- and second-order sliding mode
controllers. For this purpose, the Lyapunov functions V 〈 j〉, j ∈ {I, II}, are extended
by an additive term V 〈B〉 according to

V 〈 j,B〉 = V 〈 j〉 + V 〈B〉 > 0 for s �= 0. (28)

In (28), the additive term V 〈B〉 can either be chosen to avoid state deviations∣∣x1(t) − x1,d(t)
∣∣ ≥ χ̄ or to avoid large tracking errors with |s(t)| ≥ χ̄ . In this con-

tribution, only the second option is considered, where χ̄ is assumed to be constant.
Note that all corresponding equations can be generalized in a straightforwardmanner
to the first option as well and to the case of time-dependent bounds χ̄ (t).

Penalizing errors with respect to the absolute value of s leads to the definition

V 〈B〉 = ρV · ln
(

χ̄2l

χ̄2l − s2l

)
with l ∈ N (29)

and the even powers 2l, enforcing symmetric bounds for the sliding variable s.
Increasing values for l typically lead to the fact that resulting state trajectories come
closer to the edges of the admissible operating range.

The time derivative of (29) is then given by

V̇ 〈B〉 =
(

∂V 〈B〉

∂x

)T

· ẋ = ρV · 2l · s2l−1ṡ

χ̄2l − s2l
. (30)

According to the previous subsections, the requirement V̇ 〈 j,B〉 < 0 for s �= 0 (and
ṡ �= 0, resp.) leads to the control laws

u〈I,B〉(t) = u〈I〉(t) − 1

s
· V̇ 〈B〉 = u〈I〉(t) − ρV · 2l · s2l−2ṡ

χ̄2l − s2l
(31)

in the case of the first-order sliding mode or to

u〈II,B〉(t) = u〈II〉(t) − 1

αn−1
· 1
ṡ

· V̇ 〈B〉 = u〈II〉(t) − 1

αn−1
· ρV · 2l · s2l−1

χ̄2l − s2l
(32)

for the second-order slidingmode. To preserve the additive superposition of a control
u〈I〉(t) with a correction term resulting from the barrier function as in (24) and (25),
the term ṡ is typically estimated by a suitable low-pass filtered differentiation or by
means of an observer for the implementation of (31).
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2.4 Interval Extensions of Sliding Mode Control Strategies

To guarantee asymptotic stability despite bounded uncertainty in system parame-
ters p, it is possible to apply interval techniques in real time for the implementation
of the before-mentioned slidingmode control approaches [21]. The fundamental pre-
requisite for the applicability of interval techniques is that all parameters (and a priori
unknown disturbances as well as measurement and state reconstruction errors) are
bounded by closed interval vectors

[
p
]
that are defined component-wise according

to p ∈ [
p
] =

[
p; p

]
with p

i
≤ pi ≤ pi , i ∈ {1, . . . , np}. Furthermore, it is assumed

that the dynamic systems are given as nth-order sets of ordinary differential equations
(ODEs) ⎡

⎢⎢⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)

...

ẋn−1(t)
ẋn(t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

x2(t)
x3(t)

...

xn(t)
a (x(t),p) + b (x(t),p) · u(t)

⎤
⎥⎥⎥⎥⎥⎦

(33)

in nonlinear controller canonical form. These ODEs are a natural generalization
of the pure integrator chain in Eq. (1). Note that a suitable nonlinear coordinate
transformation of the fuel cell model in Sect. 4 leads exactly to this type of system
structure.

For the control synthesis it is assumed as before that the system output is given
by the first state variable according to

y(t) = x1(t) (34)

and that all state variables are known at each point of time in terms of guaranteed
interval bounds x(t) ∈ [x] (t) = [

x(t); x(t)
]
.

For the sake of controllability (and, therefore, also for the existence of the follow-
ing generalized control laws), it has to be guaranteed that

0 /∈ b
(
[x] (t),

[
p
]) := {

b (x(t),p) |b (x(t),p) for all x(t) ∈ [x] (t),p ∈ [
p
]}
(35)

holds.
These assumptions lead to the possibility to define the output tracking error and

its r th derivative by the interval expression

ξ̃
(r)
1 (t) ∈

[
ξ̃

(r)
1

]
(t) =

[
x (r)
1

]
(t) − x (r)

1,d(t) (36)

for each r ∈ {0, 1, . . . , n}. Furthermore, these tracking errors can be used to gener-
alize the first-order sliding mode control laws according to
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[
u〈I〉] (t) =

−a
(
[x] (t),

[
p
]) + x (n)

1,d(t) −
n−2∑
r=0

αr ·
[
ξ̃

(r+1)
1

]
(t) − η̃ · sign ([s])

b
(
[x] (t),

[
p
]) ,

(37)[
u〈I,A〉] (t) = [

u〈I〉] (t) − 1

b
(
[x] (t),

[
p
]) · [s]

[s]2 + ε̃
· [V̇ 〈A〉] (t), (38)

and [
u〈I,B〉] (t) = [

u〈I〉] (t) − 1

b
(
[x] (t),

[
p
]) · ρV · 2l [s]

2l−2 [ṡ]

χ̄2l − [s]2l
. (39)

Similarly, the interval-based generalization for the second-order sliding mode
approach is given either by

[
u〈II〉] (t) = −a

(
[x] (t),

[
p
]) + x (n)

1,d(t) + 1
αn−1

· [ν̃〈II〉] (t)

b
(
[x] (t),

[
p
]) (40)

with

[
ν̃〈II〉] (t) :=

(
γ0 · [ṡ] − [s] −

n−1∑
r=0

αr−1 ·
[
ξ̃

(r)
1

]
(t) − sign ([ṡ]) · (η̃1 + η̃2 · |[s]|)

)
, (41)

[
u〈II,A〉] (t) = [

u〈II〉] (t) − 1

b
(
[x] (t),

[
p
]) · 1

αn−1
· [ṡ]

[ṡ]2 + ε̃
· [V̇ 〈A〉] (t), (42)

or by

[
u〈II,B〉] (t) = [

u〈II〉] (t) − 1

b
(
[x] (t),

[
p
]) · 1

αn−1
· ρV · 2l [s]2l−1

χ̄2l − [s]2l
. (43)

The choice between these different options is made as before in dependence of the
type of barrier function to be taken into account by the robust control synthesis. Fur-
thermore, the expressions a

(
[x] (t),

[
p
])
, b

(
[x] (t),

[
p
])
,
[
V̇ 〈A〉] (t), [s] := [s] (t),

and [ṡ] := [ṡ](t) denote the interval-dependent evaluations of the corresponding
entries of the state equations, the time derivatives of the barrier function, the sliding
surface, and its time derivative, respectively.

For the actual control implementation in a real-time environment, the inter-
val expressions mentioned above are evaluated by means of the C++ toolbox C-
XSC [13]. To guarantee asymptotic stability for all possible operating conditions,
the corresponding interval variables have to be chosen in such a way that they include
the state and parameter uncertainties in a rigorous way. Assuming a quasi-continuous
implementation, in which the effect of time discretization errors is negligibly small,
the final control signal u(t) needs to be chosen from the previous intervals in such
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a way that it guarantees asymptotic stability regardless of the sign of b(x(t),p),
0 /∈ b([x] (t),

[
p
]
).

For this reason, the set of possible control variables, guaranteeing a minimum
signal amplitude, consists of the infima and the suprema of the before-mentioned
interval-valued control strategies. These values are given as u := inf{[u]} and u :=
sup{[u]}, respectively, where [u] is either of the control laws (37)–(40), (42), or (43).
To account for roundoff and representation errors, the infima and suprema are inflated
by a small positive value ε > 0 to obtain the final set of control candidates

U := {
u − ε, u + ε, u − ε, u + ε

}
. (44)

From this set, the control (with minimum absolute value) is chosen, which guar-
antees to satisfy the inequality V̇ < 0 (or its generalization for the barrier Lyapunov
function approach) despite the considered interval uncertainty.

2.5 Illustrative Simulation Examples

In this section, an illustrative benchmark example is used to visualize the effectiveness
of the before-mentioned fundamental sliding mode control approaches and their
interval-based extensions. The considered system model with n = 3 is given as

⎡
⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣

x2(t)
x3(t)

p1x1 + p2x2 + p3x3 + p4u(t)

⎤
⎦ (45)

with

(a) the nominal parameters p1 = p2 = p3 = 0 and p4 = 1 as well as
(b) the uncertain parameters pi ∈ [−0.1; 0.1], i ∈ {1, 2, 3}, and p4 = 1.

This system model corresponds to the dynamics of a point mass (position x1(t),
velocity x2(t)) and a normalized input force x3(t), where the underlying actuator
dynamics with the control input u(t) are characterized by both the nominal and
uncertain parameters p j , j ∈ {1, . . . , 4}.

In all simulations, the desired reference trajectory is given by

x1,d(t) = 1 − e−t , t ≥ 0, (46)

with the initial system states x(0) = 0. Note that these initial states do not satisfy
the sliding condition s = 0 at the initial point of time t = 0. Hence, even without
uncertainty, there exists a transition between the reaching and sliding phase.

A summary of the selected system parameters as well as of the parameterization of
the Lyapunov function candidates and the corresponding barrier functions is given for
all considered simulation scenarios in Table1. For the sake of simplicity, it is assumed
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in the non-interval implementations (Cases 1 and 2 for the first-order sliding mode)
that all states x(t) can be measured accurately for the quasi-continuous sliding mode
implementation. This simplifying assumption is removed in the simulation Case 3
and in the further course of this contribution for the application of sliding mode
techniques to the temperature control of a high-temperature SOFC system.

For both the first- and second-order sliding mode controllers u〈I〉(t) and u〈II〉(t),
the parameters of the sliding surface are chosen purposefully in such a way that the
roots of the associated characteristic polynomial, corresponding to

n−1∑
r=0

αrζ
r = α0 + α1ζ + ζ 2 = 0 (47)

in the first-order case, are conjugate complex. In such a way, the straightforward
sliding mode implementation without state barriers leads to an oscillatory behavior
in the reaching phase with overshooting the reference trajectory x1,d(t), see the
Cases 1 and 4 as well as Figs. 1 and 2.
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Fig. 1 Simulation results for the benchmark application with first-order sliding mode techniques.
a System output (Case 1). b Tracking error (Case 1). c State x3 (Case 1). d System output (Case 2).
e Tracking error (Case 2). f State x3 (Case 2). g System output (Case 3). h Tracking error (Case 3).
i State x3 (Case 3)
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Fig. 2 Simulation results for the benchmark application with second-order sliding mode (part 1).
a System output (Case 4). b Tracking error (Case 4). c State x3 (Case 4). d System output (Case 5).
e Tracking error (Case 5). f State x3 (Case 5). g System output (Case 6). h Tracking error (Case 6).
i State x3 (Case 6). j Variation of s(t) (Case 4). k Variation of s(t) (Case 6)

Introducing a strict time-varying barrier for the state x1(t) according to (19) in the
Cases 2 and 5 helps to reliably avoid the overshoot. This holds for both the first- and
second-order sliding mode controllers with u(t) = u〈I,A〉(t) and u(t) = u〈II,A〉(t).

In addition to using the state barrier according to (19), the two-sided constraint (29)
is employed in the Case 6 with u(t) = u〈II,B〉(t). Generally, the results for the first-
and second-order cases show the same behavior. Subsequently, only the second-
order result is depicted because it highlights the advantage of the extension V 〈B〉
more clearly for the considered application scenario: Although the two-sided barrier
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extension V 〈B〉 according to (28) does not allow for limiting the range of state vari-
ables explicitly, it allows for limiting the deviations of states from the sliding surface s
in a reliable way. This limits the variable-structure control amplitudes for the Case 6,
where fixed gains η̃1 and η̃2 are coupled with the absolute value of s in a multi-
plicative way. It has to be pointed out that the maximum admissible deviation χ̄ as
well as the necessary order l in the barrier term V 〈B〉 have to be chosen carefully to
make sure that the admissible operating range is not violated. This may happen for
specifying too tight operating ranges that inevitably lead to large control amplitudes.
Such large amplitudes may, on the one hand, not be compatible with actuator con-
straints in a real-life application. On the other hand, they may also lead to violations
of the admissible operating range if too large integration step sizes (resp. sampling
times) are specified for the numerical evaluation of the system ODEs in a quasi-
continuous control implementation. Especially due to the latter issue, future work
will deal with the direct consideration of time discretization phenomena within the
sliding mode design for continuous-time dynamic systems. Note that violations of
barrier terms—due to time discretization effects in a regularized control implemen-
tation that ensures finite control values in the second-order case (the same holds for
the one-sided barrier functions)—lead to nonlinear integrator wind-up phenomena
in the computation of s(t) and ξ̃ (−1)(t). These wind-up effects have to be avoided
by suitable parameterizations since their presence inevitably deteriorates the control
quality.

The robustness of the interval-based control extensions presented in Sect. 2.4 is
confirmed in the extended simulations in Case 3. It can be seen that the application of
the fundamental interval-based control approach (37) guarantees asymptotic stability
of the closed-loop dynamics after a careful setting of the controller’s parameters.
Here, uncertainties in the system parameters p j as well as additive bounded errors
in the measured state x1(t) were considered.

Note that the choice ofΔx1,max must bemade in such away that the sliding surface
is reachable despite the above-mentioned measurement errors for x1(t). Due to the
fact that the state barrier x̄1,max(t) is only considered explicitly in the Cases 2, 3,
and 5, the violation of this constraint is obvious in all remaining scenarios.

Simulation results for V 〈II,A〉 are not presented due to an identical behavior as
in Case 3. Note that the use of the second-order sliding mode is not advantageous
for the case of interval uncertainty with large diameters that are directly included in
the expression (11). Then, a definite statement about the signs of s and ṡ may no
longer be possible. Although the second-order sliding mode control approach leads
to more smooth control signals than the first-order one for the non-interval case, this
advantageous filtering property is lost as soon as ambiguities in the signs of s and
ṡ arise. Therefore and due to the fact that the uncertain parameters in the following
sections have a large influence, interval-based implementations currently focus on
first-order sliding mode techniques. Extensions to higher-order cases and toward
an improved systematic parameterization of interval-based control approaches are
subjects of ongoing work.
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Fig. 3 Simulation results for the benchmark application with second-order sliding mode (part 2).
a System output (Case 7). b Tracking error (Case 7). c State x3 (Case 7). d System output (Case 8).
e Tracking error (Case 8). f State x3 (Case 8). g System output (Case 9). h Tracking error (Case 9).
i State x3 (Case 9)

A detailed investigation of the influence of the parameters of the sliding surface
with andwithout variable-structure control parts can be found in Fig. 3 (Cases 7–9). In
general, increased gain values α0 lead to smaller tracking errors. However, accurate
trajectory tracking is only possible when the variable-structure part is active. The
same also holds in an analogous manner for the first-order sliding mode.

3 Control-Oriented SOFC Modeling

As described, for example, in [3, 10, 18, 33], SOFCs are characterized by a nonlin-
ear dynamic behavior if large domains are considered for the temperature operating
point as well as for the electric load of the system. Focusing on the temperature
distribution in the interior of high-temperature fuel cell stack modules, the corre-
sponding dynamics can be described by sets of partial differential equations. The
goal of control design for SOFC systems is to prevent local over-temperatures in the
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interior of the fuel cell stack module by a suitable actuation of the gas preheaters.
This helps to reduce mechanical strain of the SOFC components due to different
thermal expansion properties and thus avoids accelerated aging or in the worst case
the destruction of the SOFC. The control task consists in varying the enthalpy flow
provided to the fuel cell stack by changes in the temperature of the preheated gases
and by variations of the gas mass flows. Typically, only the enthalpy flow of the
cathode gas is used for this purpose, while the anode gas mass flow is employed to
specify the electric power that can be produced by the system.

However, system models given by partial differential equations are often too
complex to design controllers and state estimators that can be implemented in real
time. Therefore, a control-oriented modeling procedure is used in the following to
approximate the system dynamics by a finite-dimensional set of ODEs. For such
systems of ODEs, the design of feedforward as well as feedback controllers can
be performed by state-of-the-art approaches. Classically, this is done in the frame
of SOFC systems by (gain-scheduled) PI (proportional, integral) controllers as well
as by linear model-predictive control techniques [10, 34]. Since the applicability
of these techniques requires that the operating temperature of the SOFC stack does
not deviate too far from the point at which the nonlinear system model is linearized
for design purposes, they may not be well suited if larger operating domains are
considered in a flexible future power supply grid. Moreover, the use of classical
linear control approaches requires an accurate knowledge of the parameters of the
describing sets of ODEs. However, parameters such as heat conductivities of the fuel
cell material and specific heat capacities of the fuel gases are uncertain and cannot be
identified experimentally with absolute accuracy. Hence, robust control procedures
have to handle such uncertainties in a reliable way. For this reason, interval-based
sliding mode procedures [21, 27] are extended in this contribution to implement
robust control strategies under state, input, and input rate constraints.

The prerequisite for this type of control design is the derivation of control-oriented
system models. These models are derived from a spatial semi-discretization of the
SOFC stack which consists of a finite number of planar fuel cells in electric series
connection. The fuel cell stack is constructed in such a way that the electric current
through the individual cells is orthogonal to the gas mass flow. The control-oriented
model, described in detail in [27], assumes that all dynamic variables are spatially
homogeneous over finitely large domains. This homogeneity assumption holds for
the stack module temperatures, the electric currents as well as the corresponding
internal gas mass flows. In such a way, thermodynamic quantities such as heat con-
ductivities and specific heat capacities represent effective quantities holding in an
integral balance for each of the finite volume elements.

After setting up a parameterizable set of ODEs for the thermal behavior of the
SOFCstack, the parameterswere identified experimentally in previouswork either by
local or global optimization procedures. Note that the semi-discretization procedure
is based on integral heat flow and energy balances for each of the finite volume
elements I in the stack that is depicted in Fig. 4.
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Fig. 4 Spatial semi-discretization of the SOFC stack

These integral heat flow balances lead to the ODEs

ϑ̇I(t) =
Q̇I

HT(t) + ∑
G Q̇I

G,I−
j
(t) + Q̇I

EL(t) + Q̇I
R(t)

cImI
(48)

for the temperature ϑI(t) in each volume element I, where the index G ∈ {AG,CG}
denotes the anode gas (AG) and the cathode gas (CG). For the test rig, available at the
Chair of Mechatronics at the University of Rostock, the AG consists of a mixture of
hydrogen (H2), nitrogen (N2), and water vapor (H2O) which are jointly heated in the
electric AG preheater. The CG is further given as a preheated flow of air. Additional
parameters in (48) are the heat capacity cI of the volume element I and its local
mass parameter mI .

The heat flow term

Q̇I
HT(t) = Q̇I

HT,I−
i
(t) + Q̇I

HT,I+
i
(t) + Q̇I

HT,I−
j
(t)

+ Q̇I
HT,I+

j
(t) + Q̇I

HT,I−
k
(t) + Q̇I

HT,I+
k
(t) (49)

in (48) consists of heat transport between directly neighboring volume elements as
well as heat transfer to the ambiance. In (49), the heat flows

Q̇I
HT,J (t) = βI

J · (ϑJ (t) − ϑI(t)) (50)

are assumed to be directed from the volume elementsJ ∈ {I−
i , I+

i , I−
j , I+

j , I−
k , I+

k }
into the element I. Here, the coefficient βI

J is either the effective parameter for heat
conduction in the interior of the fuel cell or the convective heat transfer coeffi-
cient (containing radiation effects in a locally linearized form) between the ambient
medium and the elements at the stack boundary.
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In detail, the index set J consists of the following entries: I−
i := (i − 1, j, k),

I+
i := (i + 1, j, k), I−

j := (i, j − 1, k), I+
j := (i, j + 1, k), I−

k := (i, j, k − 1),
and I+

k := (i, j, k + 1). The temperatures ϑI−
i
(t) and ϑI+

i
(t) denote stack temper-

atures for i ≥ 2 and i ≤ L − 1. The same holds for ϑI−
j
(t) and ϑI+

j
(t) with j ≥ 2

and j ≤ M − 1 and for ϑI−
k
(t) and ϑI+

k
(t) with k ≥ 2 and k ≤ N − 1. In all other

cases, the values ϑJ (t) are set to the ambient temperature ϑA(t) = const.
In addition to these internal effects, the total enthalpy flow

∑
G

Q̇I
G,I−

j
(t) , G ∈ {AG,CG}, (51)

of AG and CG is included in the ODEs, where the mass flow ṁCG and its desired
temperature ϑCG,d are used to design a guaranteed stabilizing control strategy. Ohmic
heat production Q̇I

EL(t) and heat flows Q̇
I
R(t) due to an exothermic reaction between

AG and CG conclude the energy balance. Detailed models for the local variations
of the reacting gas mass flows and their temperature-dependent parameterizations as
well as explicit expressions for the reaction enthalpies are given in [27].

The finite volume model from (48)–(51) is coupled with the dynamics of the
AG and CG preheaters according to Fig. 5. As shown in [27, 28], it is essential
to account for the preheater dynamics during the control design for non-stationary
operating conditions to avoid unnecessary chattering of the system inputs.

According to [28], each preheater is described by two sets of first-order ODEs
(G ∈ {AG,CG}, χ ∈ {H2,N2,H2O,CG})

TG · v̇χ (t) + vχ (t) + d̃χ (t) = vχ,d(t) = ϑχ,d(t) · ṁχ,d(t) (52)

Fig. 5 Semi-discretization of the fuel cell stack module with gas preheaters
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and

TSL,G · v̇χ,in(t)

L · N + vχ,in(t)

L · N = vχ (t)

L · N = ϑχ(t) · ṁχ (t)

L · N (53)

with
vχ,in(t) := ϑχ,in(t) · ṁχ,in(t) and ṁχ,d = ṁχ = ṁχ,in (54)

as well as the time constants TG for the subsidiary temperature control and TSL,G for
the lag behavior due to transport phenomena in the gas supply lines (SL) between
the preheaters and the SOFC stack.

In (52) and (53), the desired preheater temperatures (index d, serving as control
inputs in addition to the desired mass flows ṁG,d), are given by

ϑχ,d(t) =
{

ϑAG,d(t) for χ ∈ {H2,N2,H2O}
ϑCG,d(t) for χ = CG.

(55)

Because the AG components H2,N2,H2O are mixed before entering the preheater,
all components of the AG have one temperature in the interior of the preheater and
one in the AG supply line. Analogously, the temperatures at the preheater outlets are
denoted by ϑχ(t), while the temperatures at the inlet gas manifold of the SOFC stack
are given by ϑχ,in(t). In good accuracy, it can be assumed during modeling that the
AG and CG mass flows can be changed instantaneously. This leads to the definition

of virtual control signals vχ,d(t) in (52). Integrator disturbance models ˙̃dχ (t) = 0 are
finally included in the description of the preheaters to account for non-modeled heat
losses, thermal storage effects, and imperfect behavior of the underlying temperature
control of the AG and CG preheaters.

According to [27], this control-oriented modeling approach leads to a set of input-
affine ODEs with the input vector

vd(t) = [
vH2,d(t) vN2,d(t) vH2O,d(t) vCG,d(t)

]T
(56)

of the AG and CG preheaters and the complete state vector

z(t) =
[
vH2(t) vH2,in(t) d̃H2(t) vN2(t) vN2,in(t) d̃N2(t)

vH2O(t) vH2O,in(t) d̃H2O(t) vCG(t) vCG,in(t) d̃CG(t)

ϑ(1,1,1)(t) . . . ϑ(L ,M,N )(t)
]T ∈ R

N , N = 12 + L · M · N . (57)

If it is assumed that the AG properties are predefined by a subsidiary controller,
the ODEs (48) which are extended by the preheater dynamics in (52)–(55) turn into
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ż(t) = φ1 (z(t),p) + Φ2,AG (z(t),p) ·
⎡
⎣
vH2,d(t)
vN2,d(t)
vH2O,d(t)

⎤
⎦

︸ ︷︷ ︸
=: f1

(
z(t),p, vH2,d(t), vN2,d(t), vH2O,d(t)

)

+φ2,CG (z(t),p) · vCG,d(t)︸ ︷︷ ︸
=: f2

(
z(t),p, vCG,d(t)

)

= f (z(t),p, vd(t)) . (58)

Here, φ1 (z(t),p) is input-independent, whereas the expression f1 (z(t),p, . . .) fur-
ther contains information about the (desired) AG preheater actuation. The control
input vCG,d(t) is related to the CG enthalpy flow which is coupled with the system
dynamics by the vector

φ2,CG (z(t),p) = [
01×9

1
TCG

0 0 01×nx

]T
, nx = L · M · N , (59)

where 0i× j is a zero matrix of dimension i × j (nx = L · M · N : number of volume
elements in the SOFC stack).

If the simplifying assumptions described in [27] are exploited, the equality

∂f1 (z(t),p)

∂vCG,d
= 0 (60)

holds for all operating points. Moreover, choosing vCG,d(t) as the input justifies the

use of d
dt

[
vH2,d(t) vN2,d(t) vH2O,d(t)

]T ≈ 0 during control synthesis. Errors that are
caused by this simplification can be taken into consideration by an additive interval-
bounded disturbance variable in the state-space transformation that is introduced
in the following section. This transformation replaces the ODEs (58) by a nonlin-
ear controller canonical form in analogy to (33). Here, the Lie derivatives that are
necessary for the definition of the coordinate transformation are computed using
techniques for algorithmic differentiation of a corresponding C++ source code of the
state equations (58). For details concerning this state-space transformation, see [2,
8, 27].

4 Interval-Based Sliding Mode Control with State
and Actuator Constraints for the Thermal Behavior
of SOFCs

In this section, the interval-based sliding mode procedures derived in Sect. 2.4 are
employed for the robust control of the non-stationary heating phase of the SOFC and
for the compensation of disturbances at high-temperature operating points.
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4.1 Interval-Based Robust Variable-Structure Control

As shown in Sect. 2.4 and [21, 27], the interval-based variable-structure control
approachesmake use of systemmodels that are given in a nonlinear controller canon-
ical form.2 To transform the ODEs (58) into this type of system representation, it is
necessary to define the output variable

y(t) = h(z(t)) = ϑI∗ (61)

as a function of the state vector z(t) ∈ R
N . Throughout the remainder of this chapter,

the output is defined for each point of time as the maximum segment temperature

y(t) = ϑI∗(t) with I∗ = arg max
I

{ϑI(t)}. (62)

The corresponding segment index I∗, the temperature value y(t), and a suffi-
cient number of its time derivatives are estimated in real time by a suitable state
observer [24]. The goals of the following control approaches are the accurate track-
ing of sufficiently smooth desired temperature trajectories during the non-stationary
heating phase and the guaranteed prevention of violations of state constraints. For
the latter goal it is necessary that the maximum stack temperature does not exceed a
predefined upper bound in the high-temperature operating phase despite variations
of the electric power demand, variations of the AG properties, and uncertainties in
the temperature estimation as well as in the system parameters.

Using this output definition, the system model is transformed into the nonlinear
controller canonical form. For this purpose, the Lie derivatives

dr y(t)

dtr
= y(r)(t) = Lr

f h(z(t)) = L f
(
Lr−1
f h(z(t))

)
, (63)

r = 1, . . . , δ, are computed using techniques for algorithmic differentiation up to the
relative degree δ. The relative degree is defined as

∂Lr
fh(z(t))
∂vCG,d

≡ 0 for all r = 0, . . . , δ − 1 with
∂Lδ

fh(z(t))
∂vCG,d

�= 0. (64)

Here, y(δ)(t) is the smallest-order time derivative of y(t) that explicitly depends on
the control variable u(t) = vCG,d(t).

Using the state vector in transformed coordinates

x(t) = [
h(z(t)) L fh(z(t)) . . . Lδ−1

f h(z(t))
]T ∈ R

δ (65)

2Generalized sliding mode-type control procedures, which do not necessarily rely on a transforma-
tion into nonlinear controller canonical form, are, for example, described in [29, 30].
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with the transformed output variable x1(t) := h(z(t)), Eq. (58) is rewritten as

[
ẋ(t)
˙̃x(t)

]
=
⎡
⎣
[
L fh(z) . . . Lδ−1

f h(z) Lδ
f h(z)

]T
[
Lδ+1
f h(z) . . . LN

f h(z)
]T

⎤
⎦

=
[[

x2(t) . . . xδ(t) a(z(t),p, d(t))
]T

a♦(z(t),p, d(t))

]

+
[ [

0 . . . 0 b(z(t),p) · vCG,d(t)
]T

b♦(z(t),p, d(t), vCG,d(t), v̇CG,d(t), . . . , v
N−δ
CG,d (t))

]
(66)

with the constant but uncertain parameters p ∈ [
p
]
and the additive disturbance

d(t) ∈ [d] = [
d; d

]
. Both of these quantities are assumed to be bounded by closed

intervals for the robust sliding mode design.
In (66), the term a(z(t),p, d(t)) is defined by splitting up the Lie derivative

Lδ
f h(z(t)) into a purely state-dependent and an input-affine term [27] according to

Lδ
f h(z(t)) = a(z(t),p, d(t)) + b(z(t),p) · vCG,d(t). (67)

Here, the disturbance variable d(t) that is included in a(z(t),p, d(t)) is observed
in real time. The corresponding estimate d̂(t) is inflated—in analogy to the values[
ξ̃ (r)

]
(t)—to the interval [d] := d̂(t) + Δd · [−1; 1] with Δd > 0.

Now, all robust sliding mode techniques from Sect. 2.4 can be employed for the
SOFC system after setting the output y(t) equal to the state variable x1(t) = ϑI∗(t).
Note that variations of the location at which the maximum stack temperature is
expected lead to changes in the actual system output. In such a way, it is possible that
non-controllable internal dynamics with the corresponding states x̃(t), dim{x̃} > 0,
exist. These state variables are guaranteed to be bounded due to physical conservation
properties. This is described in detail in [21, 27]. Since these state variables can be
estimated in real time together with the controllable states, they can be treated like
time-varying disturbances or parameters during the control design.

During the application of this variable-structure control strategy, the input sig-
nal u(t) = vCG,d(t), determined according to Sect. 2.4 with (37)–(40), (42), or (43),
is decomposed into the desired preheater temperature and into the CG mass flow,
respectively. Both are optimal in the following sense: Unnecessarily large temporal
variations are prevented by soft penalty terms in an online-minimized cost function,
while bounds on the admissible minimum and maximum absolute values are treated
as hard actuator constraints. A suitable optimality criterion was introduced in [24]. If
the CGmass flow is predetermined by an underlying operating strategy of the test rig,
the virtual input vCG,d(t) is converted directly into the desired preheater temperature.
An overview of the complete control structure can be found in Fig. 6.
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Fig. 6 Structure diagram of the complete variable-structure control law

4.2 Handling of Input and Input Rate Constraints

To make sure that the control strategies derived above can be used on a real test
rig, input range as well as rate constraints have to be taken into consideration. On
the one hand, this requires—according to the previous subsection—that the control
variable vCG,d(t) is decomposed into a product of admissible gas mass flows and
desired preheater temperatures. On the other hand, compatibility of the system input
with actuator constraints has to be guaranteed by a suitable control parameterization.

In the offline control design of reasonable operating points, a nominal trajectory
x1,d(t) is determined for a fixed output segment I∗ with a predefined composition
and temperature of the AG. This time-dependent trajectory is selected in such a way
that control saturations are not reached for s = 0. In the following, this is explained
in detail for the case of the first-order sliding mode.

If the nominal state trajectory is compatible with the given constraints, the interval
control signal

[
vCG,d

]
(t) is split up into a continuous and variable-structure part

according to

[
vCG,d

]
(t) = [

v′
CG,d

]
(t) + η̃ · [v′′

CG,d

]
(t) ⊆ [

vCG,max
]
. (68)

For a suitable set of asymptotically stable eigenvalues for the dynamics on the slid-

ing surface s = 0 and intervals 0 ∈
[
ξ̃ (r)

]
(t) for the operating range, both inter-

vals [v′
CG,d](t) and

[
vCG,d

]
(t) have to be true subsets [v′

CG,d](t) ⊂ [
vCG,max

]
and[

vCG,d
]
(t) ⊂ [

vCG,max
]
of the maximum possible input range

[
vCG,max

]
. Besides an

offline adaptation of the variable-structure gain η̃ (or the gains η̃1, η̃2 in the second-
order case), also a real-time gain scheduling is possible. Both of them lead to adap-
tations of the parameters η̃ and αr according to the structure diagram in Fig. 7 [22].
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Fig. 7 Trajectory planning and gain scheduling procedure

A simultaneous treatment of hard input range and input rate constraints becomes
possible if the first-order lag element

Tr · v̇CG,d(t) + vCG,d(t) = v̌CG,d(t) with the time constant Tr > 0 (69)

and the new system input v̌CG,d(t), is appended to the input of the ODE system (58).
Equation (69) guarantees that the hard rate constraints

∣∣v̇CG,d(t)
∣∣ ≤ Tr

−1 · (sup {[vCG,max
]} − inf

{[
vCG,max

]})
(70)
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are automatically satisfied for

inf
{[
vCG,max

]} ≡ inf
{[
v̌CG,max

]}
and sup

{[
vCG,max

]} ≡ sup
{[
v̌CG,max

]}
.

(71)

5 Simulation Results

In this section, different simulation scenarios are compared for the use of interval-
based sliding mode controllers for the thermal behavior of SOFCs. In all scenarios, it
is assumed that the desired temperature profile for the heatingphaseof theSOFCstack
is given by a sufficiently smooth trajectory ϑd(t) with t ∈ [0; t∗]. This trajectory
remains constant at ϑd(t) = ϑd(t∗) for t > t∗, t∗ = 14,000 s.

Throughout the complete heating phase as well as while keeping the station-
ary high-temperature operating point, the AG mass flows and the AG temperature
correspond to those used in [27]. Up to the point t = t∗, the AG consists only of
preheated nitrogen, while hydrogen is included for the high-temperature phase with
ṁH2(t) �= 0 and d

dt ṁH2(t) �= 0 for t > t∗. This hydrogen mass flow enables the elec-
trochemical reaction with non-constant electric currents and leads to disturbance
heat flows Q̇I

EL(t) and Q̇I
R(t) that need to be counteracted by the temperature control

approach.
To account for the fact that the SOFC model is only an approximation of the real

system dynamics, the additive interval uncertainty [d] is included in the simulation
according to

[d](t) := [−0.1; 0.1] · (Lδ
f h(z(t)) − b(z(t),p) · vCG,d(t)

)
. (72)

Here, the term in round brackets is evaluated at each point of time t = tk with a sam-
pling time of 0.5 s. Additionally, it is assumed for all interval-based implementations
that the temperature values in the individual finite volume elements I are not per-
fectly measurable (or cannot be estimated with absolute accuracy). The correspond-
ing errors are included in the interval [−15; 15] K that is added to all temperature
values that are involved in the computation of the Lie derivatives in (63)–(66).

Although the two-sided barrier approach included in u〈I,B〉(t) and u〈II,B〉(t) can
generally be applied to the SOFC system with interval uncertainty, this approach
does not allow for a guaranteed handling of hard state constraints. Therefore, only
the following options for control parameterizations are considered in this section:

Case (a) u(t) = u〈I〉(t) with αr , η̃ = const and ϑd = 880K = const,
Case (b) u(t) = u〈I,A〉(t) with αr , η̃ = const and ϑd = 880K = const,
Case (c) u(t) = u〈I,A〉(t) with αr , η̃ = const and a time-varying reference signal,
Case (d) u(t) = u〈I,A〉(t) with online adaptation of the control parameters and a

time-varying reference signal.
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In the Cases (a)–(c), it is assumed that all coefficients αr and the variable-structure
gain η̃ (respectively η̃1 and η̃2) are constant for the complete simulation horizon. The
Cases (a) and (b) coincide with scenarios that were already investigated in [21].
In Case (d), an online gain scheduling approach is implemented according to the
structure diagram in Fig. 7.

For the Cases (b)–(d), the maximum admissible operating temperature included
in the barrier function V 〈A〉 is defined as the constant value x̄1,max = x1,d(t) +
Δx1,max(t) ≡ 885K with

V 〈A〉 = ρV ·
∑
I

ln

(
σV · x̄1,max

x̄1,max − ϑI(t)

)
. (73)

If actuator constraints are violated in the Cases (a)–(c), the system input u(t) =
vCG,d(t) is set equal to the corresponding violated input constraint. Due to the fact
that the control parameters αr , η̃ (respectively η̃1 and η̃2) are assumed to be constant
in the Cases (a)–(c), the input rate limitation introduced in Eq. (69) has not been
accounted for in the computation of the corresponding control signals. However,
to make sure that rate constraints are not violated at the actual plant, the control
signal is filtered by (69) before applying it at the system input. Ignoring the filter
time constant Tr during the design stage leads to some amount of chattering due to
a model inaccuracy. This inaccuracy is reduced in the scenario (d) by including the
filter (69) as an input rate limiter into the controller design. Moreover, the controller
parameters are adapted online in the Case (d). Together with the direct inclusion
of the input rate limiter (69), this leads to significantly more smooth control inputs
and less chattering in the control errors. Furthermore, it yields less conservative
choices of the system inputs, which becomes visible by reduced steady-state errors
at high-temperature operating points.

Note that all cases in which the barrier functions were active in Figs. 8 and 9 lead
to system outputs in which the maximum stack temperatures are compatible with the
given state constraint.

In summary, the control implementation that was used in Case (d) of Fig. 9 is
advantageous due to the following reasons from a practical point of view: First, the
offline design of the desired reference trajectory helps to avoid input saturations
for a nominal non-disturbed plant model. Second, the smooth desired reference tra-
jectory for the temperature profile is the major reason why the control in Fig. 9 is
generally less aggressive than for a step-like change of the reference signal that was
used in Fig. 8. Finally, the online gain adaptation procedure described below for
the variable-structure controller reduces chattering to a reasonable level and hence
avoids unnecessary actuator wear.

The online parameter adaptation summarized in Fig. 7—which has been applied
in Fig. 9—makes use of the following gain scheduling heuristics.

For the first-order sliding mode in the Cases (d), the gain adaptation is performed
according to the following:
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Fig. 8 Comparison of interval-based sliding mode controllers for L = N = 1, M = 3 without
barrier Lyapunov function approach (Case a) and with barrier Lyapunov function (Case b) for a
constant desired output x1,d = 880K. a Stack temperature (Case a). b Mass flow ṁCG (Case a). c
TemperatureϑCG,in (Case a).dStack temperature (Case b). eMassflow ṁCG (Case b). f Temperature
ϑCG,in (Case b)

Step 1. Define a desired eigenvalue λr of multiplicity δ − 1 on the sliding surface
with corresponding parameters αr

Step 2. Initialize η̃ with the desired value
Step 3. Adapt η̃ in a line-search approach (fixed number of Nη = 5 steps) to ensure

compatibility of u(t) = vCG,d(t) with the control constraints

• Stop, if admissible control is found;
• If no admissible control is found within Nη steps, adapt the eigenvalue λr and
restart with Step 2; Break after at most Nλ = 5 repetitions.3

For the second-order sliding mode, a straightforward extension of the online gain
scheduling is given basically by an extension of the previous Step 2.

Step 1. Define a desired eigenvalue λr of multiplicity δ − 1 on the sliding surface
with corresponding parameters αr

Step 2a. Initialize both parameters η̃1 and η̃2 with the desired values
Step 2b. Perform one adaptation step of η̃2 according to the sensitivities in Fig. 7
Step 3. Adapt η̃1 in a line-search approach (fixed number of Nη = 5 steps) to

ensure compatibility of u(t) = vCG,d(t) with the control constraints

3This limitation is necessary to guarantee real-time applicability of the adaptation procedure.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 9 Comparison of interval-based sliding mode controllers for L = N = 1, M = 3 with barrier
Lyapunov function approach for constant (Case c) and variable controller gains (Case d) for a time-
varying desired output x1,d(t) �= const. a Stack temperature (Case c). b Tracking error (Case c). c
CG control inputs (Case c). d Stack temperature (Case d). e Tracking error (Case d). f CG control
inputs (Case d). g CG stack inlet temperature (Case c). h CG stack inlet temperature (Case d)

• Stop, if admissible control is found;
• Repeat the Steps 2b and 3 for a maximum of Mη = 5 times, where the restart of
Step 3 is performed with the originally desired parameter η̃1;

• If no admissible control is found within Mη · Nη steps, adapt the eigenvalue λr

and restart with Step 2a; Break after at most Nλ = 5 repetitions.

Note that both adaptation procedures ensure stability for �{λr } < 0 and η̃ > 0
as well as η̃1 > 0 and η̃2 > 0. However, simulation case studies have shown that
the control performance may become worse if sign (s) changes its value during the
parameter adaptation. This can be prevented by adding an additional term−ν(t)with
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ν(t)

⎧⎪⎨
⎪⎩

< 0 for inf{− [ϑI∗ ] (t) + x1,d}(t) < 0

> 0 for sup{− [ϑI∗ ] (t) + x1,d}(t) > 0

= 0 else

(74)

onto the numerators of (37) and (40), respectively. Note that the intervals on the
right-hand side of (74) reflect the measurement or state reconstruction tolerances of
the stack module temperatures. In cases in which the adaptation of the parameters
according to Fig. 7 leads to a change of sign (s), the absolute value of ν(t) needs to
be chosen in the followingmanner: If the Steps 1–3 yield no admissible solution with
the same sign of s as the initialization, the term −ν(t) is selected in such a way that
the control is set exactly to the respective bound of the input u(t) = vCG,d(t) that was
originally violated. According to the simulations in Fig. 9, this measure preserves the
desired stability properties and still prevents overshooting the maximum admissible
stack temperature, however, without a formal proof.

6 Conclusions and Outlook

In this chapter, various generalizations of sliding mode controllers were presented
toward interval-based implementations. These implementations focus on a guaran-
teed stabilization of sets of ODEs describing the dynamics of closed-loop control
systems with uncertain parameters and uncertain state variables. Both of these uncer-
tain quantities are assumed to be represented by closed intervals. Despite the aim of
a guaranteed stabilization of the control error dynamics in such uncertain settings,
further generalizations were discussed for a reliable treatment of state and actuator
constraints. Especially, the overshoot prevention of given upper state boundaries and
the treatment of input range and input rate constraints were visualized for the control
of the thermal behavior of a high-temperature fuel cell system.

It has been shown that the presented approaches lead to a guaranteed compatibility
of the closed-loop dynamics with the before-mentioned constraints as well as with
robustness and stability requirements. Moreover, an online parameter adaptation
approach was validated in simulations which allows for a reduction of chattering
if constant control parameters may cause the violation of input range constraints.
Classically, such violations are purely avoided by corresponding saturation elements.

Future work will deal with further generalizations of the controller, e.g., with
parameterizations of the system input by time-dependent polynomials. In such a
way, it is desired to further smoothen the inputs when treating the polynomial coef-
ficients as virtual inputs that are alternatively computed by sliding mode or predic-
tive control techniques. Moreover, generalizations of the presented quasi-continuous
variable-structure control approaches toward a discrete-time implementation may be
investigated in the future.
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