
Cryptanalysis of PRINCE with Minimal Data

Shahram Rasoolzadeh and H̊avard Raddum(B)

Simula Research Laboratory, Fornebu, Norway
haavardr@simula.no

Abstract. We investigate two attacks on the PRINCE block cipher
in the most realistic scenario, when the attacker only has a minimal
amount of known plaintext available. The first attack is called Accel-
erated Exhaustive Search, and is able to recover the key for up to the
full 12-round PRINCE with a complexity slightly lower than the secu-
rity claim given by the designers. The second attack is a meet-in-the-
middle attack, where we show how to successfully attack 8- and 10-round
PRINCE with only two known plaintext/ciphertext pairs. Both attacks
take advantage of the fact that the two middle rounds in PRINCE are
unkeyed, so guessing the state before the first middle round gives the
state after the second round practically for free. These attacks are the
fastest until now in the known plaintext scenario for the 8 and 10 reduced-
round versions and the full 12-round of PRINCE.

Keywords: PRINCE · Lightweight cipher · Cryptanalysis · Exhaustive
search · Meet-in-the-middle

1 Introduction

Designing ciphers that require only a minimum of resources in implementations is
known as lightweight cryptography. Several lightweight block and stream ciphers
have been proposed, and their design and analysis have been a very active area
of research the last decade. PRINCE is a prominent example of a lightweight
block cipher, and has received much attention since it was proposed in 2012.

One reason for the interest in cryptanalysis of cryptanalytic results in clearly
defined settings. PRINCE’ innovative structure has also attracted cryptanalysts
to investigate this block cipher. This has resulted in a variety of cryptanalysis
in different models, including single key, related key and physical attacks. As
the designers did not claim any security in either related key or physical attack
models, we focus on the normal single key mode.

Previous works on PRINCE in the single key setting include some attacks
on the PRINCEcore [3,4,7,8,11] or attacks with change on the original struc-
ture [5,8] or an attack in the multi-user case [9]. The attacks which investigate
the original structure of PRINCE involves a variety of atttacks, such as integral
[4,13], sieve-in-the-middle (SITM) [6], meet-in-the-middle (MITM) [7,12], dif-
ferential [8,12], and time-memory or time-data-memory trade-off attacks [4,10].
All of these attacks except one exhaustive search-like attack in [4] are chosen
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 109–126, 2016.
DOI: 10.1007/978-3-319-31517-1 6

110 S. Rasoolzadeh and H. Raddum

Table 1. Summary of cryptanalytic results on PRINCE

Mode Rounds Time Data Memory Technique Ref.

CP 4 264 24 24 Integral [4]

4 211 27 24 Integral [13]

4 228 25.58 24 Integral [13]

6 264 216 216 Integral [4]

6 241 218.58 216 Integral [13]

6 232.9 214.9 � 227 Differential/Logic [12]

6 233.7 216 231.9 MITM [12]

8 260 253 230 MITM [7]

8 250.7 * 216 284.9 MITM [12]

8 265.7 * 216 268.9 MITM [12]

10 260.62 257.94 261.52 Multiple Differential [8]

10 268 * 257 241 MITM [12]

KP 4 243 25 ? ? ** [2]

6 2101 26 ? ? ** [2]

8 2124 2 220 SITM [6]

8 2122.74 2 negl. Acc. Exh. Search 3.1

8 2109.34 2 265.03 MITM 4.1

10 2124.06 2 negl. Acc. Exh. Search 3.2

10 2122.15 2 253.3 MITM 4.2

12 2125.47 2 negl. Exh. Search [4]

12 2125.14 2 negl Acc. Exh. Search 3.3

* Online Time
** Attacks reported by Derbez, but not published yet.

plaintext attacks. There is also a known plaintext attack on a reduced-round
version in [2] reported by Patrick Derbez but not published yet. A summary of
these attacks are given in Table 1.

In this paper we investigate attacks where we assume the attacker only has
a minimal amount of known plaintext available, typically only two known plain-
text/ciphertext pairs. This is the most realistic scenario, so the results reported
here should apply to most implementations. When we have so little data, inte-
gral attacks or attacks that rely on statistical biases can not be used, so we are
left with algebraic attacks or guess/verify types of attacks. We will focus on the
last type of attack, and look at two different attacks of the guess/verify kind
that both of them are based on guessing the states right before and after two
middle round of the cipher.

The first we call Accelerated Exhaustive Search, and as the name suggests
in essence it is an exhaustive search for the key. However, we will show how
to exploit certain properties and make several shortcuts when guessing, so the

Cryptanalysis of PRINCE with Minimal Data 111

resulting complexity for this attack becomes significantly lower than in a straight-
forward exhaustive search. For the full 12-round PRINCE Accelerated Exhaus-
tive Search has a complexity that is lower than the security claim given by the
designers (about 1.8 times faster).

The second attack we investigate is a MITM attack. In contrast to [12],
but similar to Accelerated Exhaustive Search, our MITM attack by breaking
the whole cipher to two smaller sub-ciphers get a 2-dimensional MITM attack
[16,17]. We show that the two dimensions can be treated in parallel in PRINCE
due to the reflection property, so we can do matching in both sides at the same
time and only need to build one big table of values to match instead of two.
The main result of this part of the paper is that 10-round PRINCE can be
efficiently attacked (with respect to designers’ security claim) using only two
known plaintexts. Moreover, we get a lower time/data trade-off value T ∗D than
the one reported in [12].

This paper is organized as follows. Section 2 presents a brief description of
PRINCE. In Sect. 3 we outline the Accelerated Exhaustive Search attacks and
Sect. 4 presents the MITM attacks. Finally, Sect. 5 concludes the paper.

2 PRINCE Block Cipher

PRINCE [1] is a lightweight block cipher with a block size of 64 bits and two
keys that both have length 64 bits. It has an FX construction where one of the
keys (K0) are used for whitening and the other one (K1) is used as a round key
for the core of the structure (see Fig. 1). We denote the plaintext/ciphertext pair
of PRINCE by P/C, and the corresponding input/output of the PRINCEcore

function by P ′/C ′. These variables are related through the following equations.

P ′ = P ⊕ K0, (1)

C ′ = C ⊕ K ′
0, (2)

where K ′
0 is the following linear mapping of K0

K ′
0 = L(K0) = (K0 ≫ 1) ⊕ (K0 � 63). (3)

For any FX constructed block cipher with a linear mapping between the
whitening keys (K0/K ′

0), having a known pair of P/C gives us some information
about P ′/C ′ of the core structure which is independent from the whitening keys.
This is summarized in the following lemma.

P' PRINCEcore
C'P C

K1
K0 K0'

Fig. 1. PRINCE FX construction

112 S. Rasoolzadeh and H. Raddum

Fig. 2. PRINCE core

Lemma 1. For a P/C pair and its corresponding P ′/C ′ in the FX construction
block cipher which uses a linear mapping L between whitening keys, the following
equation holds:

L(P ′) ⊕ C ′ = L(P) ⊕ C (4)

Proof. We can eliminate K0 from (1) and (2), first by applying the L(.) trans-
formation to (1), an then summing up these two equations, which results in
(4). So for each pair of P/C we can compute the value of L(P ′) ⊕ C ′, which is
independent of K0 and K ′

0. ��

The PRINCEcore is a block cipher of its own and similar to AES. It employs
an involutive 12 rounds structure which, in the beginning, consists of two xors
with the key and a round constant. This is followed by 5 forward rounds, a
middle layer, 5 backward rounds and at the end, two more xors with a round
constant and the key. Figure 2 shows the schematic view of the PRINCEcore.

The state can be defined as a 4 × 4 matrix like for AES, but in PRINCE the
cells contain nibbles and not bytes. Each round of the PRINCEcore consists of 5
operations: S-box, matrix multiplication, shift row, round constant addition and
key addition. These are described as follows.

– S-box (SB): Every nibble in the state is replaced using a 4-bit S-box.
– Matrix Multiplication (MC): The state is multiplied with an involutive

64 × 64 binary matrix. More precisely, this large matrix can be expressed as
four 16× 16 matrices where each of these mixes four nibbles in one column of
the state.

– Shift Row (SR): It is exactly the same as the shift row operation in the AES.
Row i of the state, with row 0 as the top row, is cyclically rotated i positions
to the left.

– Round Constant Addition (RC): A bit-wise xor ing with a round constant
RCi , i = 0, ..., 11.

– Key Addition (AK): A bit-wise xor ing with the key K1.

The middle rounds contain three layers, SB, MC, SB−1 which makes it
an involutive keyless transformation. This transformation can also be separated
into four smaller transformations, one for each column in the state.

Cryptanalysis of PRINCE with Minimal Data 113

Fig. 3. Modified round function for PRINCE

In the backward rounds, the order of the operations are inverse of the forward
rounds, and SB and SR are replaced with SB−1 and SR−1. The round constants
are also different, but related to the round constants in the forward rounds.
The difference RCi ⊕ RC11−i, i = 0, ..., 11 is always equal to the constant value
α = 0xc0ac29b7c97c50dd.

As a result of this involutive structure of PRINCEcore, in implementations
decryption can use the same circuit as encryption. In decryption mode the key
only needs to be xored with α, i.e.

C ′ = PRINCEcore(P ′,K1) ⇐⇒ P ′ = PRINCEcore(C ′,K1 ⊕ α). (5)

This property is called α-reflection.
To ease the analysis in this paper we define an equivalent key for PRINCEcore,

which is equal to
K ′

1 = SR−1(MC(K1)). (6)

As will be shown in the next sections, using K ′
1 allows us to simplify the equations

used. When we use this equivalent key, we position the AK layer between the
SB and MC layers of the round to get an equivalent description of PRINCEcore

(see Fig. 3). Clearly, by recovering K ′
1 we can recover K1.

Finally, as shown in Fig. 2, we denote the internal states exactly before and
after the middle rounds by X and X ′, respectively. Given X, the value of X ′

can be computed directly, since there is no key involved between X and X ′. By
using the modified round function with K ′

1 instead of K1, we can also expand
these keyless rounds by two SR and two MC operations. The X/X ′ states will
be used frequently in the attacks presented in the next sections.

3 Accelerated Exhaustive Key Search

In this section we will describe how to perform an accelerated exhaustive key
search on PRINCE. Our way of doing this will be faster than a straight-forward
exhaustive key search. By a straight-forward exhaustive key search we mean
the attack where we guess a key, fully encrypt a known plaintext, and checks
if it matches the given ciphertext. Our attack involves guessing the middle
state X and compute the corresponding X ′. Knowing a value for K ′

1 and X
in PRINCEcore we can easily compute P ′ and deduce K0 from (1).

For a plaintext P and the corresponding ciphertext C we will guess the value
of X/X ′ occurring for P and C. For each of the 264 possible X/X ′-values, we will
search for candidates for K ′

1. For each X/X ′-value there will be one value of K ′
1

114 S. Rasoolzadeh and H. Raddum

in average that will produce P ′- and C ′-values that will match the given right-
hand side in (4). The P ′-value computed from this K ′

1 is then computed and used
to deduce K0. So for each X/X ′ guess we can expect one (K0,K1) candidate.
This candidate for the full key can be tried on one other plaintext/ciphertext
pair, and if it matches it should be the correct key.

At the outset this looks like an attack with complexity equal to exhaustive
key search, but we will show below that the number of S-box look-ups needed
to find the (K0,K1) candidates can be significantly smaller than in a straight-
forward exhaustive key search. Similarly to the biclique attack on AES [14] we
count the number of S-box applications we need to use in the attack, and evaluate
how many full encryptions this amounts to by trading one round for 16 S-box
look-ups. It is argued that a large majority of the time spent in an encryption
is used on S-boxes so this trade-off should give rather accurate results.

Our analysis tries to minimise the number of S-box look-ups needed, and
the results show that the full PRINCE can be attacked with complexity equal
to 2125.14 encryptions using 2 known plaintexts. This is a little lower than the
2127−d-claim made by the designers when using 2d texts [1, p. 6].

3.1 Accelerated Exhaustive Search for 8-Round PRINCE

Assuming known X/X ′, the strategy is to guess on the values of the nibbles in K ′
1

in such a way that the total number of S-box look-ups for verifying/rejecting a
guess becomes minimal. Figure 4 shows the guessing strategy, and which S-boxes
that will be computed in the attack. In the following we explain what happens
in Fig. 4, focusing on the P ′ ↔ X part. Because of the reflective property of
PRINCE, the exact same that is done in this part can be done in the X ′ ↔ C ′

part.
Referring to Fig. 4, the nibbles of K ′

1 will be guessed in alphabetical order,
starting with A. When A has been guessed, we have a fixed output of one S-box
in round 3. We use one S-box look-up to find the corresponding input, and store
this input value. Next, we guess on the value of B, and find the input value to the
corresponding third round S-box. To compute these two input values for all the
28 possible values (A,B), we must do 24(1 + 24(1)) = 272 S-box look-ups since
we reuse the stored input for A. This is less than the 512 S-box applications we
would have to do in a straight-forward exhaustive search on these two S-boxes.
We continue with C and D, storing the input of the third round S-box for each
guess.

After D has been guessed we have enough known nibbles between MC and
SR in round 2 to go backwards through MC and find the input. At this point we
have already guessed the A-value of K ′

1, so we can add this to the top left nibble
and compute the input to the top left S-box in round 2. This is indicated with
the state with a single D in this position. The total number of S-box look-ups
needed for finding this nibble for all possible values of A,B,C,D is given by the
expression

24(1 + 24(1 + 24(1 + 24(2)))) (7)

Cryptanalysis of PRINCE with Minimal Data 115

Fig. 4. Order of guessing K′
1-nibbles on 8-round PRINCE.

The 2 in the innermost bracket is because we do S-box look-ups in both round
3 and round 2. We continue in this way, guessing the values of E − P in order,
storing the inputs to S-boxes in rounds 2 and 3 whenever they can be computed.
The letters in the states indicate which nibbles can be computed after which
guess. Note that we do not evaluate all S-box inputs in round 2, only the four
indicated with letters.

The number of S-box look-ups needed for computing all indicated nibbles on
the P ′ ↔ X side when cycling through all possible values of A − P is given by

24(1 + 24(1 + 24(1 + 24(2 + 24(. . . (1 + 24(2)) . . .))))), (8)

where every fourth starting number in the brackets is a 2. This number should
be multiplied with 2 to count all S-box look-ups for both P ′ ↔ X and X ′ ↔ C ′

sides.

Verifying a Guess: When we have made a full guess for K ′
1 and reached the

bottom state in Fig. 4, we are in a position to verify whether the guess was

116 S. Rasoolzadeh and H. Raddum

correct or not. We first apply two S-box look-ups to find the top left nibble of
P ′ = (p63, . . . , p0) and C ′ = (c63, . . . , c0). The four nibbles we have learned are
(p63, p62, p61, p60) and (c63, c62, c61, c60). From the definition of L, the first nibble
in L(P ′) ⊕ C ′ is (p0 ⊕ c63, p63 ⊕ c62, p62 ⊕ c61, p61 ⊕ c60). Only p0 is unknown, so
we can check the current guess against three bits of the constant L(P) ⊕ C. If
our current guess matches the three bits we evaluate two more S-boxes to learn
(p59, . . . , p56) and (c59, . . . , c56). We can now check (p60 ⊕ c59, . . . , p57 ⊕ c56)
against the constant L(P) ⊕ C, a total of four new bits.

Continuing in this way, we evaluate the next pair of S-boxes only if the current
guess has matched the given part of L(P)⊕C so far. Note that if the check matches
in the first four nibbles, we have to calculate another four nibbles in the bottom
state of Fig. 4 before applying the next pair of S-boxes for verification. In these
cases we therefore have to apply a total of 10 S-box look-ups instead of 2.

With this analysis we can estimate the number of S-box look-ups needed to
verify/reject a guess. This number is given as

2×(1+2−3+2−7+2−11+5×2−15+2−19+2−23+2−27+5×2−31+. . .+2−63) (9)

Exploiting the α-Reflection Property: The fact that PRINCE is a reflection
cipher can be exploited to reduce the amount of guessing. A given value x for
the middle state X and a given value k for K ′

1 will determine particular values
p′ for P ′ and c′ for C ′. Let this be denoted as

(x, k) → (p′, c′).

Because X and X ′ are related through an involution, if we chose x′ for X, we
will get x as a value for X ′. PRINCEcore is a reflection cipher where decryption
is done by encrypting c′ with α ⊕ k. We then know

(x′, k + α) → (c′, p′),

without having to evaluate all the S-boxes over again. So when we compute the
first nibbles of P ′ and C ′ and check the first bits of L(P ′) ⊕ C ′, we can at the
same time check L(C ′)⊕P ′. In other words, we check both (x, k) and (x′, k ⊕α)
at the same time and in this way cut the search space in half.

This can be implemented by enumerating the X-values as xi = i, and do the
guessing of the X-values in the natural order x0, x1, We try all keys k for
each xi. When we reach an xi such that x′

i < xi, we simply skip this xi because
all values k (or rather, k ⊕ α) have been tried when we had x′

i as a value for X.
In this way we only need to try 263 values for the middle state X.

Complexity: When we check nibbles of both L(P ′) ⊕ C ′ and L(C ′) ⊕ P ′ for a
match against L(P) ⊕ C, the probability of getting a match which will invoke
further S-box look-ups doubles. So the final expression for the number of S-box
look-ups needed for verifying a guess becomes

2 × (1 + 2−2 + 2−6 + 2−10 + 5 × 2−14 + 2−18 + . . . + 2−62) = 2 × 1.2669. (10)

Cryptanalysis of PRINCE with Minimal Data 117

This number should be added to the innermost bracket in (8) to give the
final expression for the number of S-box look-ups needed to do the accelerated
exhaustive search for each X/X ′-value:

2 ×
[
24(1 + 24(1 + 24(. . . (1 + 24(2 + 1.2669)) . . .)))

]
= 266.74. (11)

We will repeat this for each of 263 values for X, bringing the grand total of S-
box look-ups to 2129.74. Equating 16 S-box look-ups with one round of PRINCE
and eight rounds for one encryption, this amounts to a complexity of 2122.74

encryptions to find the full key (K0,K1).
One thing we have glossed over so far in our analysis is the number of S-box

look-ups needed to compute X ′ from X. This is 32 for each of the 263 X-values,
so we should add 268 to the total above. The 268 is a negligible addition, so the
complexity remains at 2122.74.

3.2 Accelerated Exhaustive Search for 10-Round PRINCE

The accelerated exhaustive search on 10-round PRINCE is similar to the attack
in the previous section, but there are a few differences. One difference is that we
have to apply another 16 S-boxes on each of the P ′ ↔ X and X ′ ↔ C ′ branches.
Another is that we will guess the nibbles of K ′

1 in a different order than in the
8-round attack. The reason for this is to minimize the value of the expression
similar to (8) that applies to the 10-round version. To minimize this value, we
want the starting numbers in the brackets to be larger in the outer brackets,
and smaller the further into the brackets we get. The order of guessing we have
found that minimizes this value is shown in Fig. 5, where we also can see which
nibbles that can be computed in the states after each guess.

The expression for counting the number of S-box look-ups will have 16 nested
brackets, the first for guessing the A-nibble, the next for B, etc. up to P for the
innermost bracket. The starting number in each bracket is the number of new
S-box look-ups we can do, and store, after each guess. We must compute the full
states at the input to rounds 3 and 4, but only 4 nibbles in the input to round 2,
so these numbers will add up to 36. By counting the number of A,B,C, . . . , P
nibbles in the cipher states in Fig. 5, the sequence of starting numbers in the
brackets are

1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 2, 2, 1, 4, 2, 9.

The cost of verifying/rejecting a guess is exactly the same as in the 8-round
attack. Multiplying with 2 to cover both the P ′ ↔ X and X ′ ↔ C ′ branches,
the total number of S-box look-ups for doing the accelerated exhaustive search
on 10-round PRINCE for one X-value is

2 ×
[
24(1 + 24(1 + 24(1 + . . . + 24(2 + 24(9 + 1.2669)) . . .)))

]
= 268.38 (12)

Repeating this for all 263 values of X, the total S-box look-ups in the whole
attack will be 2131.38 that is equal to 2124.06 10-round PRINCE encryptions.

118 S. Rasoolzadeh and H. Raddum

Fig. 5. Order of guessing K′
1-nibbles on 10-round PRINCE.

3.3 Accelerated Exhaustive Search for Full 12-Round PRINCE

For the full PRINCE we can guess the nibbles of K ′
1 in the same order as for

the 10-round version. The expression for counting the total number of S-box
look-ups for the P ′ ↔ X branch is the same as in (12), except that we must add
16 to the innermost bracket. The total number of S-box look-ups is then

2 ×
[
24(1 + . . . + 24(25 + 1.2669) . . .)

]
= 269.72 (13)

Cryptanalysis of PRINCE with Minimal Data 119

Repeating for 263 X-values amounts to 2132.72 S-box look-ups in the total
attack, which is equal to 2125.14 PRINCE encryptions.

The attack uses only 2 known plaintexts, and the security claim given by the
designers in this case is that the attacker must use an effort equivalent to 2126

PRINCE encryptions to find the secret key. Expecting to find the key half-way
through the search, accelerated exhaustive search breaks this bound with an
average complexity of 2124.14 encryptions for finding the secret key.

4 Meet-in-the-Middle Attack on PRINCE

In this section we will briefly introduce the Meet-in-the-Middle (MITM) attack
and the technique of guessing only non-linearly involved key nibbles and then
we explain the idea of how we do MITM cryptanalysis on PRINCE.

The basic MITM attack is a generic technique presented by Diffie and Hell-
man to cryptanalyse DES [15]. Despite the fact that this technique is arguably
much less common than differential or linear attacks on block ciphers, there are
some extensions and applications of this attack to specific primitives which are
more successful than differential and linear attacks.

Let Ei,j(S,Kf) denote the partial encryption of the state S, beginning from
the start of round i and ending at the start of round j, where Kf is a particular
sequence of subkeys corresponding to these j−i rounds. Similarly, let Dj,i(S,Kb)
denote the partial decryption of S, beginning from the start of round j and
ending at the start of round i, where Kb is the sequence of subkeys corresponding
to these j − i rounds. The main idea of a MITM attack is that the subkeys in
both parts of the cipher can be guessed separately. First, the attacker guesses
Kf and computes E0,r(P,Kf) for a known plaintext P . Next, he guesses Kb and
computes DR,r(C,Kb) for the corresponding ciphertext. If

E0,r(P,Kf) = DR,r(C,Kb), (14)

then the guessed values for Kf and Kb are candidates for representing the correct
secret key.

Linearly Involved Key Bits: In the technique of guessing only non-linearly
involved key bits, we do not guess the key bits which are only xored to the bits
we use for matching. For example, in the MITM attack we can write:

{
E0,r(P,Kf) = E′

0,r(P,K ′
f) ⊕ LfK ′′

f ,

DR,r(C,Kb) = D′
R,r(C,K ′

b) ⊕ LbK
′′
b .

(15)

Here K ′
f and K ′

b are subsets of Kf and Kb such that E0,r(P,Kf) and DR,r(C,Kb)
are non-linearly dependent on them. Lf and Lb are binary matrices, only xor ing
some bits of K ′′

f or K ′′
b to the state bits.

When the key schedule is linear and K ′
f and K ′

b together determine the user-
selected key, we can always find two binary matrices L′

f and L′
b of full rank which

satisfy
L′
f · K ′

f ⊕ L′
b · K ′

b = Lf · K ′′
f ⊕ Lb · K ′′

b . (16)

120 S. Rasoolzadeh and H. Raddum

That is, K ′′
f and K ′′

b can be expressed as linear combinations of K ′
f and K ′

b

bits. Instead of checking equation (14) for the whole Kf and Kb, we can then
check for

E′
0,r(P,K ′

f) ⊕ L′
f · K ′

f = D′
R,r(C,K ′

b) ⊕ L′
b · K ′

b, (17)

where the left and right hand sides can be calculated by K ′
f and K ′

b in the forward
and backward sides of a MITM attack, respectively. This technique enables us
to reduce the number of guessed key bits in each side of a MITM attack.

MITM on PRINCE: For PRINCE, because of the reflection property, know-
ing the value of X, we can break the whole R = 2r + 2-round structure into
two equal sub-ciphers with r rounds and a linearly related key. Assume we know
the values of X/X ′ for a P/C pair. Then we have two equations for the same
sub-ciphers:

{
F (P ⊕ K0,K1) = X,

F (C ⊕ K ′
0,K1 ⊕ α) = X ′,

(18)

where F (S,K) denotes the encryption function of state S under key of K, for r
forward rounds of the PRINCEcore structure.

As finding a MITM matching for r rounds is easier than for 2r+2 rounds, our
idea is that for a known P/C pair we guess a value of X/X ′ and break the cipher
into two smaller sub-ciphers and do a MITM attack on each of the sub-ciphers in
parallel. From the P/C sides, we will guess some bits of K0 (denoted by Kw) and
some nibbles of K1 (denoted by Ks). For a guessed value of Kw and Ks we will
calculate m bits from a state in the middle of each r-round sub-ciphers (2m bits
in total) and save them in a table. From the middle of the whole structure we
will guess values of X/X ′ and some nibbles of K ′

1 (denoted by Km) that allows
us to calculate the same 2m bits in the middle of each r-round sub-cipher. Then
we can check equality of m bits in each sub-cipher as defined by (18).

As both Ks and Km are derived from K1, they may have some common
information bits, which we denote as Kc. Guessing values of Kc before any other
values will help us to reduce the complexity of the attack. The algorithm of the
attack is described in Algorithm 1, where E0,i(., .) and Dr,i(., .) denotes partially
encryption or decryption functions for the r-round sub-cipher defined by F (., .)
in (18).

This extension of the MITM attack may be considered as a multidimensional
(MD) MITM attack [16–18], because we break the whole cipher into two sub-
ciphers by guessing a full state in the middle. On the other hand, here we do
two MITM matchings in parallel with each other, while in a MD MITM attack
matchings happens serially, one after another.

The data complexity of the attack is 2 known plaintexts. The memory com-
plexity of the attack is storing the table T which will cost 2|Kw|+|Ks−Kc| words
of memory.

Cryptanalysis of PRINCE with Minimal Data 121

Algorithm 1. MITM attack on PRINCE
for kc ∈ Kc do

for kw ∈ Kw do
for ks ∈ (Ks − Kc) do

Compute v1 = E0,i(P, (kw, kc, ks)) and v2 = E0,i(C, (kw, kc, ks));
Store (kw, ks) into a table T indexed by (v1, v2);

end for
end for
for X ∈ F

64
2 do

Compute X ′;
for km ∈ (Km − Kc) do

Compute v′
1 = Dr,i(X, (kc, km)) and v′

2 = Dr,i(X
′, (kc, km));

Find (kw, ks) = T [v′
1, v

′
2] (if it exists);

Verify/reject the candidate (kw, ks, km, kc) against other state bits;
if (kw, ks, km, kc) fits all other state bits then

Check it on another known plaintext/ciphertext pair;
if (kw, ks, km, kc) fits the second plaintext/ciphertext pair then

Return (kw, ks, km, kc) as correct key;
end if

end if
end for

end for
end for

4.1 MITM Attack to 8-Round PRINCE

Guessing the value of X/X ′ will break 8-round PRINCE into two 3-round sub-
ciphers. From the P/C sides, we guess 48 bits in the three leftmost columns
of K0 and K ′

0 (equal to 49 bits of K0) and the three leftmost columns of K1.
From the X/X ′ sides we guess all nibbles of K ′

1 except nibbles on the secondary
diagonal of the state. These 48 bits of Ks and 48 bits of Km have 32 common
information bits denoted by Kc. After guessing the value of the 32 Kc bits, only
16 bits from each set of keys remain for guessing.

Figure 6 shows the procedure of the attack. From the P/C sides we will
be able to calculate 9 nibbles of the states before the MC layer in the second
and seventh rounds (Gray/White squares are related to computed/un-computed
nibbles). From the X/X ′ sides we can calculate 12 nibbles of the state before
the MC layer in the second and seventh rounds, so we can do a matching on
2 × 9 common nibbles of these states.

In the second and seventh rounds the AK layer is not shown in Fig. 6. As
Ks and Km determine all 64 bits of K1, we can include it using the technique
of equation (17).

Attack Procedure: The attack follows Algorithm 1. In the first stage of the
attack we create a table T from the P/C sides. In the table T we should save
the value of 49+16 = 65 bits (kw, ks) indexed by the 72 bits of (v1, v2) from the
two states before the MC layer. Only a fraction of 265−72 = 2−7 indexes in T

122 S. Rasoolzadeh and H. Raddum

Fig. 6. MITM cryptanalysis of 8-round
PRINCE

Fig. 7. MITM cryptanalysis of 10-round
PRINCE

will then be filled so the storage in the table would be larger than it needs to be.
Instead we save the 65 bits of (kw, ks) and the 7 last bits of (v1, v2) in the cell
indexed by the 65 first bits of (v1, v2). Then we expect each cell in T to contain
one value.

In the second stage of the attack we evaluate 64 bits of (v′
1, v

′
2) for the guessed

values of (X, km, kc) and pick up the content in T for the index of the 65 first bits
of (v′

1, v
′
2). First we check whether the 7 last bits of (v′

1, v
′
2) are equal to the 7 last

bits of (v1, v2) or not. If they match we have a candidate for (kw, ks, km, kc) =
(kw,K1), 113 bits of the key, and the middle values X/X ′.

Using the values of X/X ′ and K1 we calculate the nibbles which we did not
evaluate (white squares in Fig. 6), coming from X/X ′ to plaintext and ciphertext
sides. By evaluating them we can do a matching for equality of 3 nibbles at the
output of the first round and 3 nibbles of the input to the eighth round. If these
24 bits match, we will evaluate P ′ and C ′ which will allow us to find a unique

Cryptanalysis of PRINCE with Minimal Data 123

value for the 15 un-guessed bits of K0 and also another 32 − 15 = 17 matching
bits. If this matching happens we will have only one candidate for (K0,K1) that
with probability of 2−64 is the correct key. Using another pair of plaintext and
ciphertext will verify whether it is the correct key or not.

Complexity: The time complexity of this attack will be dominated by the
computation time of the second stage. In the second stage, for each guess of 32
bits kc, 16 bits km and 64 bits X, we must calculate X ′ from X (32 S-box calls)
and 12 nibbles in the middle of second and seventh rounds (12 calls for each).
Trading 16 S-box look-ups with one round of PRINCE, this is equal to

232+16+64 × (32 + 2 × 12) × 1
16

× 1
8

= 7 × 2108 (19)

encryptions of 8-round PRINCE.
As X is the last parameter to guess in the second stage, instead of guessing

the whole 64 bits we can guess it one nibble at the time (the same technique
used for accelerated key search in Sect. 3) to reduce the time complexity by a
fraction of about 0.362. So the final complexities of the attack will be 2109.34

encryptions for time and 265 72-bit blocks for memory.

4.2 MITM Attack to 10-Round PRINCE

Guessing the value of X/X ′ will break 10-round PRINCE into two 4-round sub-
ciphers. We guess the same 49 bits of K0 and K ′

0 as for the 8-round attack, and
all nibbles of K1 except the one on top of the rightmost column. From the X/X ′

sides we guess all nibbles of K ′
1 except the one on top of the rightmost column.

These 60 bits of Ks and 60 bits of Km have 56 common information bits denoted
by Kc. After guessing the value of the 56 Kc bits, only 4 bits from each set of
keys remain to be guessed.

As Fig. 7 shows, from the P/C sides we are able to calculate 12 nibbles of
the states before the MC operation in the second and ninth rounds. From the
X/X ′ sides, we can also calculate 12 nibbles of the states on the other side of the
MC layers in the second and ninth rounds. Exactly one nibble in each column
is unknown in each state.

Matching Through MC: We have two partially known states on both sides
of the MC operation, and we can match these in a similar way to what is done
in [19]. Let one column of bits in the input to MC be (x, a, b, c) with output
(y, d, e, f), where only the x and y bits are unknown. As will become clear, the
exact positions of the unknown bits do not matter. The MC operation on this
column gives 4 linear equations in the input and output:

l0(x, a, b, c) + y = 0
l1(x, a, b, c) + d = 0
l2(x, a, b, c) + e = 0
l3(x, a, b, c) + f = 0

(20)

124 S. Rasoolzadeh and H. Raddum

We can eliminate the unknown x and y variables and get two linear equations
in the known a, . . . , f :

l′0(a, b, c) + l′′0 (d, e, f) = 0
l′1(a, b, c) + l′′1 (d, e, f) = 0 (21)

Also we will have unique equations for x and y:

x = l′2(a, b, c) + l′′2 (d, e, f)
y = l′3(a, b, c) + l′′3 (d, e, f) (22)

Coming from the plaintext side we define the two bits of v1 relating to this
column to be (l′0, l

′
1), and from the X side we define the corresponding two bits

of v′
1 to be (l′′0 , l′′1). Besides these two values, from the plaintext side we will save

l′3 to compute the unknown value of y later, after matching. From the X side
we can evaluate the value of y by computing and adding l′′3 to l′3. Repeating for
the other 15 columns gives a total of 32 bits in v1 and v′

1 that can be used for
matching, plus four l′3-values.

The same procedure is done in the ninth round, so all together we get 64-bit
values for (v1, v2) and (v′

1, v
′
2) that can be used for matching as described in

Algorithm 1. In addition we get 32 stored bits for evaluating the unknown values
in the state after the MC layer in both of the second and ninth rounds.
Attack Procedure: The attack follows the same procedure as before, but with
different numbers of guessed bits. In the table T we will save 53 bits of (kw, ks)
and the 11 last bits of (v1, v2), indexed by the 53 first bits of (v1, v2). In the second
stage, we compute (v′

1, v
′
2) from the X/X ′ sides and do the matching with the

corresponding value in T . We then have a candidate value for (kw,K1) of 113
bits and known X/X ′ values. Using the saved l′3-values we can then compute
the rest of K0 and the un-evaluated nibbles of the states and verify the current
guess for correctness.

There will be one (K0,K1) candidate surviving for each X/X ′ guess, which
has to be verified against another plaintext/ciphertext pair.
Complexity: The number of bits to guess in the first stage is 15 bits less than
the number of bits to guess in the second stage, so the time complexity of this
attack will be dominated by the computation time of the second stage. In the
second stage, for each guess of 56 bits kc, 4 bits km and 64 bit X, we must
calculate X ′ from X (32 S-box calls) and 12 nibbles in the middle of second and
ninth rounds (24 calls for each). Trading 16 S-box look-ups with one round of
PRINCE, this is equal to

256+4+64 × (32 + 2 × 24) × 1
16

× 1
10

= 2123 (23)

encryptions of 10-round PRINCE.
Here again, instead of guessing the whole 64 bits of X we can guess it nibble-

wise to reduce time complexity by a fraction of 0.553. The final complexities will
then be 2122.15 for time, and 253 96-bit blocks for memory.

Cryptanalysis of PRINCE with Minimal Data 125

5 Conclusions

In this paper we have shown that PRINCE can be efficiently attacked with
respect to the security bound 2127−d, even when having only a minimal amount
of known plaintext available. To our knowledge, accelerated exhaustive search
is the first reported attack on the full PRINCE with complexity lower than the
claim given by the designers.

The practice of counting the number of S-box look-ups needed in an attack
and translating this into number-of-encryptions complexity has already been
established. It is clear that evaluating S-boxes takes the majority of the time in
implementations, but it would be good to get more accurate numbers on exactly
how large percentage of the time is spent on S-box look-ups and how much is
spent on the linear layers. We have been in contact with some of the designers
of PRINCE, and know they are working on producing these numbers. This will
give a better scientific foundation for estimating the time complexity, and should
allow to report very accurate numbers for this with confidence.

We have also implemented a new meet-in-the-middle attack to PRINCE
where we can successfully attack 8 and 10 rounds, again with only two known
plaintext/ciphertext pairs. Although meet-in-the-middle attacks have a big mem-
ory complexity, it shows that only having a minimum of known plaintext avail-
able, 8- and 10-round PRINCE can still be attacked efficiently using a meet-in-
the-middle approach. As far as we know, these attacks for the 8 and 10 reduced-
round versions are the fastest until now in the known plaintext scenario.

References

1. Borghoff, J., et al.: PRINCE – A low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

2. The PRINCE Teamd: PRINCE Challenge. https://www.emsec.rub.dde/research/
research startseite/prince-challenge/

3. Abed, F., List, E., Lucks, S.: On the security of the core of PRINCE against
biclique and differential cryptanalysis. IACR Cryptology ePrint Archive, Report
/712, 2012 (2012)

4. Jean, J., Nikolić, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 92–111. Springer, Heidelberg
(2014)

5. Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L.,
Wang, Y.: Reflection cryptanalysis of PRINCE-like ciphers. In: Moriai, S. (ed.)
FSE 2013. LNCS, vol. 8424, pp. 71–91. Springer, Heidelberg (2014)

6. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: Improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

7. Li, L., Jia, K., Wang, X.: Improved meet-in-the-middle attacks on AES-192 and
PRINCE, IACR Cryptology ePrint Archive, Report /573, 2013 (2013)

8. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.-R.: Multiple
differential cryptanalysis of round-reduced PRINCE. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 591–610. Springer, Heidelberg (2015)

https://www.emsec.rub.dde/research/research_startseite/prince-challenge/
https://www.emsec.rub.dde/research/research_startseite/prince-challenge/

126 S. Rasoolzadeh and H. Raddum

9. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: Applications to
discrete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014)

10. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with
applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015)

11. Zhao, G., Sun, B., Li, C., Su, J.: Truncated differential cryptanalysis of PRINCE.
Secur. Commun. Netw. 8, 2875–2887 (2015). Wiley

12. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015)

13. Morawiecki, P.: Practical attacks on the round-reduced PRINCE. IACR Cryptol-
ogy ePrint Archive, Report /245, 2015 (2015)

14. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the Full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

15. Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the NBS data encryption
standard. IEEE Comput. Soc. Press 10(6), 74–84 (1977)

16. Zhu, B., Gong, G.: Multidimensional meet-in-the-middle attack and its applica-
tions to KATAN32/48/64. Cryptography and Communications 6, 313–333 (2014).
Springer

17. Boztaş, Ö., Karakoç, F., Çoban, M.: Multidimensional meet-in-the-middle attacks
on reduced-round TWINE-128. In: Avoine, G., Kara, O. (eds.) LightSec 2013.
LNCS, vol. 8162, pp. 55–67. Springer, Heidelberg (2013)

18. Rasoolzadeh, S., Raddum, H.: Multidimensional meet in the middle cryptanalysis
of KATAN. IACR Cryptology ePrint Archive, Report /077, 2016 (2016)

19. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011)

	Cryptanalysis of PRINCE with Minimal Data
	1 Introduction
	2 PRINCE Block Cipher
	3 Accelerated Exhaustive Key Search
	3.1 Accelerated Exhaustive Search for 8-Round PRINCE
	3.2 Accelerated Exhaustive Search for 10-Round PRINCE
	3.3 Accelerated Exhaustive Search for Full 12-Round PRINCE

	4 Meet-in-the-Middle Attack on PRINCE
	4.1 MITM Attack to 8-Round PRINCE
	4.2 MITM Attack to 10-Round PRINCE

	5 Conclusions
	References

