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Abstract. In most password-based authentication protocols, the server
owns a value, the so-called verifier, that depends on the registered pass-
word. This verifier is often a one-way function of the password. Despite
this protection, an unauthorized person who gets access to the verifier can
mount a brute-force attack to recover the password. If the entropy of the
password is low, which is often the case in practice, such an attack might
be successful. Motivated by the growing need to face databases compro-
mises, we propose a two-factor password-based authentication protocol
where no information about the password leak from the server’s side nor
from the client’s side, and where the password is not sent to the server
when the user authenticates. During the registration, a user gets a value,
called the token, while the server records the verifier. Our security model
ensures that brute-force attacks are impossible if the server is compro-
mised. Moreover, only on-line attempts are possible if a token is stolen.
The solutions that we describe fit well into scenarios where the token is
stored on a mobile phone. We provide constructions, proven secure in
the random-oracle model, under standard assumptions.

1 Introduction

Password-based authentication (PA) is the most wide-spread way deployed to
authenticate users. A lot of advanced forms of authentications have been devel-
oped by the research community. However, the simplest form of PA, consisting
of a (login, password) pair, widely remains the method in use. Moreover, this
form of authentication takes more and more place in citizen’s life. Each entity
and service, own their websites and information systems, and each of them asks
the user for a password to get accessed.

The server managing the access rights stores the users’ information. Fortu-
nately, most of the time, the password is not directly stored. Instead, a one-way,
hard to invert, function is applied to the password, and the output, aka the
verifier, is stored on the server. This is a first step towards password protection.
Given a verifier, a brute-force recovering of the password consists of computing
the output of the function for all possible values of the password and comparing
the results with the verifier, sometimes with the help of dictionaries. Such an
attack is implicitly assumed to be impossible. However, the password is often
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chosen within a limited set of passwords, which makes the brute-force recovering
possible. A lot of protocols aims at being secure up to dictionary attacks. In
other words, the protocol ensures that the best possible attack is the dictionary
attack. In this paper, we ask whether it would be possible to go beyond this
bound. Ideally, we would like the verifier to leak no information at all about the
password. Thus, the consequences of server compromises would be mitigated.
Our approach. First of all, we would like to enhance the security of the most
common password based authentication, so we do not want to rely on specific
hardware. We rather use a two-factor software-only approach. During the reg-
istration process, a user gets a value, called the token, while the server records
the verifier. The two factors needed for the authentication are the password and
the token. We want the brute-force recovering of the password to be impossible
given only the verifier or the token. If a token is stolen, we want that only on-
line attempts are possible. As usual, a bound on the number of attempts will
protect the password. Such an authentication is well-suited to a mobile scenario,
where the token is stored on the phone. Moreover, we do not want to rely on
advanced cryptographic mechanisms, such as bilinear pairings in group of prime
orders. All operations in our constructions are based on operations in a group
of prime order. We propose two solutions, called pw-com and pw-hom, we now
briefly introduce in this introduction. In the main body of this paper, we prove
them secure in the random oracle model.

High-level view of our solution based on commitments. Our first solu-
tion, pw-com, uses the standard notion of commitments and zero-knowledge
proofs. A commitment scheme enables a user to commit to a value without
revealing it. The commitment binds the user to the committed value, but the
user is ensured that the value is not disclosed. Then, with a zero-knowledge
(ZK) proofs of knowledge (PK) of a committed value, the user proves that he
knows a pair (m, r) such that c = Commit(m; r) without revealing any informa-
tion about (m, r). Let Com be a commitment scheme, P be a set of password
and Hh : P → MC be an injective encoding from the set P to the message space
MC of the commitment scheme. The main idea is to store a statistically hiding
commitment as verifier (on the server), and the random value used to commit
to the password as token (on the client). The global parameters of the scheme
are a commitment key ck. In the registration phase, the user draws a uniform
value t ← RC in the random space of the commitment scheme, stores t as token
and sends c := Commit(Hh(pw); t). The server stores c as verifier. In the authen-
tication phase, the user supplies a ZKPK of (h, t) such that c = Commit(h; t).
From a token t and a verifier c, a brute-force attack can be used to recover a
password pw such that c = Commit(Hh(pw); t). However, the knowledge of t or
c alone does not help to recover the password. On the one hand, the token t
leaks no information about the password (in the information-theoretic sense), so
if the token is disclosed, only guesses on-line may help to recover the password.
On the other hand, the verifier c statistically hides the password, so brute-force
attacks are impossible, even for an unlimited adversary. Last, but not least, an
authentication session does not leak any information about the password, nor
the token, thanks to the zero-knowledge property of the proof of knowledge.
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High-level view of our solution based on a homomorphic encryption

scheme. Updates of the password in the user’s side are not possible in the
pw-com solution. We now ask the question whether it is possible for a user to
update its password without interaction with the server. We introduce a solution,
denoted pw-hom, based on a homomorphic encryption scheme over a prime order
group that achieves this property. The basic idea is the following. Let G be a
group of prime order – in additive notation here by pure convention – and hom-

pke be a public key homomorphic encryption scheme over G as message space.
After an interactive registration, the client got a pair of ciphertexts encrypting
two elements (K, [h] · K) where K ∈ G is a user-specific element and h ∈ Z

∗
p an

encoding of the password. The verifier contains the decryption keys (there is one
key pair per user) and a hash value of K. No information about the password
leak from the verifier. In the authentication step, the client computes a proof
of knowledge of the password over the ciphertexts thanks to the homomorphic
properties of the encryption scheme. In other words, he computes a Schnorr
signature [35] over the ciphertexts. Thanks to the verifier, the server is able to
decrypt the ciphertexts and to check the proof. However the server could retrieve
the password from an authentication, since it could retrieve the pair (K, [h] ·K),
then the password by brute-force recovering. Therefore, the password is first
masked with a fresh random value, then the proof of knowledge is performed. As
a result, no information about the password leaks from the server point of view.
The user-specific element K allows for authentication on behalf of the user. A
crucial point is to use two independent keys to produce the pair of ciphertexts,
to prevent the computation of a ciphertext of [h] · K from a ciphertext of K.

On the salting. In both solutions, Hh is just an encoding function without any
security property. Common solutions include a salt in the password hashing, but
there is no need here to include such a salt. A point to be noticed is that, without
salt, the Hh(pw) values are not uniform, because of the distribution of pw. If Hh

were a programmable random oracle, the defect would disappear. However, the
hiding property of the commitment scheme and the semantic security of the
encryption scheme are sufficient to hide the password and to avoid the random
oracle assumption on Hh, a probably too strong and not realistic assumption.
The only property we require is that Hh must be injective.

Related work. The literature about password based authentication is vast. A
lot of protocols are designed to derive a session key, an issue we do not address
here. The seminal work of [3] addresses authentication base on passwords only
(without additional assumptions) and proposes the Encrypted Key-Exchange
protocol (EKE). EKE was followed by several works [4,21,31,38,40]. The IEEE
P1363.2 Password-Based Public-Key Cryptography Working Group [20] con-
tains several of the proposals designed during the nineties. Formal models for
Password-based Authenticated Key Exchange (PAKE) appeared in [2,7]. The
GL’s framework [16] is an abstraction of the construction of [26] (KOY), and
was the first to propose a solution in the standard model. This framework under-
lies a lot of subsequent constructions [15,24,25,27,28]. The GK’s framework [18]
is an abstraction of the construction in [23], also achieves PAKE in the standard
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model, but without trusted setup. A third framework (KV) [29] achieves one-
round PAKE in the standard model. Recent work explicitly includes the verifier
in Authenticated Key Exchange [5,30]. However, they only consider security up
to the brute-force attack, according to the min-entropy of the passwords.

Turning our attention to two-factor password authentication, the construc-
tions of [36] achieve some of the properties we look for. However, they are based
on pairings, a tool we want to avoid in this paper, and they lack a formal analy-
sis. Several commercial solutions exist, such as Google Authenticator [13], Duo
Security [10], HotPin [19], and PhoneFactor [33]. The work of [37] introduces a
framework to analyse these two-factor authentication protocols, then proposes
several efficient constructions, and apply them in different scenarios. The par-
ticipants in the protocols above are, apart from the user, a client (say a web
browser), a server, and a device (say a smartphone). When authenticating, the
user submits a password and some additional information supplied by the device.
Our model is not the one they follow. We only assume a device (say a smart-
phone) authenticating to a server; i.e., we do not split between a client and
a device. Nevertheless, our solutions can be adapted in some of the scenarios
described in [37]. We elaborate on this point in the full version of our paper.

In most existing solutions, including [37], a hashed password is stored on
the server and the password is sent during the authentication protocol. To the
contrary, in our solutions, the password is never sent when the user authenticates.

In anonymous password authentication [39,41], several password-based ses-
sions from the same user cannot be linked. Although, several constructions of
anonymous password authentication use homomorphic encryption, our solutions
do not address the same problem – we protect the passwords against the servers,
without privacy of the identities –, and are more efficient.

Finally, let us mention recent concurrent and independent work which also
aims at mitigating server breaches for diverse authentication tasks. [8] introduces
Virtual Smart Card, a software-only solution for signature generation, in which a
signature is jointly generated by a device and a server while the user owning the
device authenticates to the server with a password. The signing key is distrib-
uted between the device and the server, however the server’s data alone is not
sufficient to produce a signature or to mount a brute-force password-recovery
attack, and the same holds for the device’s data. Another work [22] introduces
Device-Enhanced PAKE, in which the presence of a device in the client’s side is
integrated into the notion of Password-based AKE. Their model is not exactly
the same as ours: the value stored in the device in their model could be the
token in our model, but they also assume computation abilities in the user’s
side, whereas we only consider the user as the owner of a device. Last, [6] also
aims at mitigating server breaches in PAKE, but with a different approach: the
password database is split among several servers.

Organisation of the paper. Section 2 introduces some notations. Section 3
formally defines the two factor authentication we consider in this paper. Section 4
describes our solution based on commitments, and Sect. 5 our solution based on
homomorphic encryption.



Software-Only Two-Factor Authentication Secure Against Active Servers 289

2 Notations

Notations. If x and y are strings over some alphabet, x‖y denotes their con-
catenation. ε denotes the empty string. R denotes the set of real numbers, R+

the set of non-negative real numbers, N the set of non-negative integers, and
Zn the ring Z/nZ of modular integers modulo the integer n. 1n denotes the
unary representation of the integer n. For an integer n ≥ 1, [1, n] denotes the
set {1, . . . , n}. If S is a set and D a distribution, x ←D S means that x is drawn
from S according to D. x ← S means that x is drawn according to the uniform
distribution. D ≈ E denotes that two distributions D and E are indistinguish-
able (in a computational, statistical, or perfect sense depending on the context).
If A is a (probabilistic) algorithm, x ← A(y) means that x is the result of the
execution of A on input y, for some internal random coins. If these random coins
used by A are made explicit, we note x := A(y; r), and A is deterministic. We note
x ∈ A(y) to denote that x belongs to the support of A on input y, i.e., that x
might be an output of A on input y. The assignment phrase a := E means that
the value a receives the result of the evaluation of the (deterministic) expres-
sion E. A function f : N → R

+ is said negligible if it decreases faster than any
polynomial. negl(·) denotes some unspecified negligible function.

3 Security Model

In this section, we formally defined the primitive we consider in this paper and
the security properties it should satisfy. A two-factor password-based authen-
tication TFPA scheme is given by a finite set U ⊆ N of users and a set of
functionalities {Setup, Join, Issue, Prove, Verify} described as follows.

Setup. This algorithm derives global parameters param together with a mas-
ter key mk, according to a security parameter λ. We note: Setup(1λ) →
(param,mk).

Registration: Join↔Issue. During the registration step, the user supplies a pass-
word pw ∈ {0, 1}∗ (possibly with low entropy) and gets a token T . The
token is recorded on the user’s side and the password pw is discarded.
The issuer owns the master key mk, and might additionally use some user-
specific auxiliary information info ∈ {0, 1}∗ as input. The issuer outputs
a user-specific value V , called the verifier, stored on a server. We note:
T ← Join(param, i, pw) ↔ Issue(param,mk, i, info) → V.

Authentication: Prove↔Verify. On input a token T and a fresh password p̃w,
a user authenticates to a server. The latter knows the verifier V recorded
during the registration, and outputs a decision dec ∈ {accept, reject}. We
note: Prove(param, i, p̃w, T )↔ Verify(param, i, V )→ dec.

We assume that the registration protocol is carried out over a secure channel. We
stress that the password is discarded after the registration. If the token is stolen
(for instance on a mobile phone), the UF-pw security property below ensures
that only guesses on-line are possible with the token. The password chosen by



290 J. Bringer et al.

the user might depend on the information used to identify him. For instance, a
4 digits PIN on a mobile phone might be chosen by the user according to its
mobile number (say the last 4 digits), the phone number being precisely the
information used to enrol the user and to index the verifier. Our model takes
into account such dependencies through the auxiliary information info.

Parameters and password entropy. A TFPA scheme is parametrized by
three integers λ, β, τ ∈ N. λ manages the length of the keys, as in standard
cryptographic primitives. β manages the min-entropy of the password. τ is a
bound on the number of attempts to authenticate on behalf of a given user.
An adversary could always try to guess the password on-line and brute-forcing
the password takes 2β attempts on average. In practice, τ is set according to β.
One usually sets τ < β (such that τ 
 2β). For instance, let us assume that a
PIN number is composed of four uniform digits. The server usually aborts after
τ = 3 < β ≈ 13 attempts that failed.

Security properties for TFPA. Intuitively, we address two kinds of prob-
lems. From the authentication point of view, we want that only a registered user
can authenticate to the server, knowing a valid (token, password) pair. We han-
dle this with two unforgeability games UF-token and UF-pw. In each game, the
adversary tries to authenticate knowing a factor among (password, token) and
ignoring the other. From the password protection point of view, we do not want
the password to be guessable, neither from an adaptive external adversary, nor
from corrupted authorities. In the security game, Password-Leakage, the adver-
sary tries to guess the password, knowing the server’s data (including the master
key) but without knowing the client’s data.

Game-based definitions. Properties are expressed by games played between
an adversary A against a scheme Π and a challenger C. The adversary has access
to a set of oracles, described below. The set L records what leaks to A. The tables
pw, client and server record respectively the password, data on the client’s side
(aka the token) and data on the server’s database (aka the verifier).

Password sampling. First of all, each security game is carried out according to a
set P of passwords and a password distribution P with min-entropy β. The
challenger uses them to sample the passwords (if needed).

AddUser. A supplies (i, info, pw) where i is new. If pw �= ⊥, the challenger adds
(i, pw) to L. If pw = ⊥, the challenger picks a random password in pw ←P

P according to the distribution P . In both cases the challenger computes
the token T and the verifier V from pw, info, mk, records client[i] := T ,
server[i] := V and pw[i] := pw.

SendToIssuer. A may interact with the issuer, and potentially deviate from the
protocol during the registration. A supplies (i, info). Values pw[i] and client[i]
stay undefined. The challenger adds (i, pw), (i, client) to L.

UserData. The adversary might ask for the i-th user’s data: pw[i], client[i], or
server[i]. The corresponding pair (i, table) is added to L, where table ∈ {pw,
client, server}.
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IssuerImpersonation: SendToUserissuer. The adversary might impersonate the
issuer in front of a new user i (and deviate from the protocol). The challenger
plays the role of the user i, records the corresponding pw[i] and client[i], and
sets server[i] := ⊥. The pair (i, server) is added to L.

SendToServer. An adversary tries to authenticate on behalf of a user i of her
choice. According to the functionality, the challenger accepts up to τ attempts
per registered user.

The verification procedure enables authentication of registered users only. As
a consequence, the challenger responds only if i has already been enrolled.

ServerImpersonation: SendToUserserver. The adversary might impersonate the
server in front of a registered user i. There is no restriction on the num-
ber of attempts for this oracle.

UF: UnForgeability. In the unforgeability games, the adversary tries to
authenticate to the challenger on behalf of an existing user. The adversary may
attempt an authentication without a token (she might know the password of
the target user, and data from other users) or without knowing a password (she
might know the token of the target user, and data from other users). The first
property prevents an adversary to authenticate itself without being registered.
The second property prevents an adversary to authenticate itself if it stole the
token. We stress that the adversary knows whether an authentication attempt
is successful or not (Fig. 1).

Property UF-token. Given a scheme Π, a probabilistic polynomial adversary
A and security parameters λ, β, τ ∈ N, the probability of success in the
ExperimentUF−token

Π,A game is negligible as a function of λ:

Pr
[
ExperimentUF−token

Π,A (λ, β, τ) ⇒ 1
]

< negl(λ).

Property UF-pw. Given a scheme Π, a probabilistic polynomial adversary
A and security parameters λ, β, τ ∈ N, the probability of success in the
ExperimentUF−pw

Π,A game is negligible as a function of λ, up to on-line guesses:

Pr
[
ExperimentUF−pw

Π,A (λ, β, τ) ⇒ 1
]

< τ/2β + negl(λ).

Remarks. In the UF-pw game, the possibility to query server[i∗] is disallowed,
and it is inherent to the notion: from server[i∗] and client[i∗], an adversary could
brute-force recover pin[i∗]. Moreover, we assume that the registration proto-
col is carried out over a secure channel; so the adversary has no access to a
SendToUserissuer oracle, neither to transcripts of registration sessions.

PL: Password Leakage. We do not want the issuer or the verifier to be able
to recover the password. This point is not addressed by the UF games above. We
formalize a game where the adversary knows the master key and the verifiers,
but is not allowed to know the password nor the token for a target user i (it
might know these data for other users). If it knew the token, it could brute-force
recover the password (Fig. 2).
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Experiment
UF-{token|pw}
Π,A (λ, β, τ):

– L := ∅; table[i] := ⊥, ∀table ∈ {pw, client, server}
– (param,mk) ← Setup(1λ)
– (i∗, state) ← AO(param) where O := {AddUser, UserData, SendToIssuer,

SendToServer, SendToUserserver}
– if ( server[i∗] = ⊥ ): return 0
– C engages an authentication with A (acting as user i∗):

A(state) ↔ Verify(param, i∗, server[i∗]) → dec
– return 1 if ( dec = accept ) and

· in the weak UF-token case: ((i∗, server) L∈	 ) and ((i∗, client) L∈	 )
· in the strong UF-token case: ((i∗, client) L∈	 )
· in the UF-pw case: ((i∗, server) L∈	 ) and ((i∗, pw) L∈	 )

otherwise return 0

Fig. 1. The unforgeability experiment

ExperimentPLΠ,A(λ, β, τ):
– L ← ∅; table[i] := ⊥, ∀table ∈ {pw, client, server}
– (param,mk) ← Setup(1λ)
– O := {UserData, SendToUserissuer, SendToUserserver}
– (i∗, pw∗) ← AO(param,mk, sk)
– return 1 if (pw[i∗] = pw∗) and ({(i∗, pw), (i∗, client)} ∩ L = ∅),

otherwise return 0

Fig. 2. The password leakage experiment

Property Password-Leakage. Given a scheme Π, a probabilistic polynomial
adversary A and security parameters λ, β, τ ∈ N, the probability of success in
the ExperimentPLΠ,A game is negligible as a function of λ, up to a simple guess
of the password:

Pr
[
ExperimentPLΠ,A(λ, β, τ) ⇒ 1

]
< 1/2β + negl(λ).

The non-interactive authentication setting. By non-interactive setting,
we mean that the authentication procedure is the non-interactive signing of a
random message. The message to be signed is fresh for each authentication. It
might be a random challenge chosen by the verifier, or a hash value of a context-
dependent message (time, verifier identity, etc.), determined by the protocol
specification. In this setting, the SendToUserserver oracle becomes a signature
oracle and the SendToServer oracle becomes a verification oracle. According to
the standard existential unforgeability notion for signatures [17], we allow the
adversary to choose the message to be signed in the security experiment.

SendToUserserver. The adversary supplies (i,m), where i is a user, and m a
message; and receives a signature σ on m on behalf of i.
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SendToServer. The adversary supplies (i,m, σ); and receives the decision of the
verifier about the validity of the signature.

At the end of the game, there is no interaction with the challenger. The adversary
eventually outputs a tuple (i∗,m∗, σ∗) and wins if the non-triviality conditions
hold (server[i∗] �= ⊥, etc.), if m∗ has not been queried to the signature oracle,
and if Verify(param, i∗, server[i∗], m∗, σ∗) = accept.

Local updates. We now discuss the possibility of password updates on the
client’s side into our definition. May the user change its password and update
its token accordingly without interaction with the server? In fact, this property
is not contradictory with the notion. However, if such a procedure exists, the
client cannot check if the token is correctly updated. By contradiction, he could
carry out a verification protocol on its own, and therefore the adversary could
try, given a token, to guess the password and check its guess. In practice, one
can imagine that the old token is backed up and an authentication protocol is
done with the new token. If successful, then the old token is removed. If not, the
new token is removed and the old one is kept.

4 A Solution Based on Commitments

In this section, we give a simple solution that uses the standard notions of
commitments and proofs of knowledge of committed values.

Commitments and ZK proofs. A commitment scheme Com is composed of a
message space MC, a random value space RC, a commitment space CC, and a set
of functionalities {Setup, Commit, Open} as follows. On input a security parame-
ter λ ∈ N, the setup procedure Setup outputs a commitment key ck. The (deter-
ministic) commitment procedure Commit takes as input a commitment key ck, a
message m ∈ MC and a random value r ∈ RC, and outputs a committed value
c ∈ CC. Given a commitment key ck and a commitment c, the Open procedure
simply reveals a pair (m, r): everyone can check whether c = Commit(ck,m; r).
A commitment scheme is binding if it is impossible to reveal a distinct pair
(m′, r′) �= (m, r) such that c = Commit(m′; r′). It is hiding if c does not leak any
information about m. Both security notions can be defined in a computational,
statistical or perfect (information-theoretic) sense. In our constructions, we use
standard ZK proofs of knowledge, known as Σ-protocols, and their standard
transformation into signatures of knowledge [9] through the Fiat-Shamir heuris-
tic [12]. A Σ-protocol is proof of knowledge that consists of three messages: a
commitment message R, a random uniform challenge c ← {0, 1}λc for some secu-
rity parameter λc, and a response s. The Fiat-Shamir heuristic makes this ZKPK
non-interactive by generating the random challenge with a hash function. The
resulting signature – denoted SoK – is as secure as the underlying Σ-protocol
in the programmable random oracle model.
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user(ck, pw (reussi) info)

[user]: hash h := Hh(pw); pick t ← RC

[user]: set C := Com.Commit(ck, h; t); store T = t

send C−−−−−−−−−−−−−−−−−−−−−−→
erots:]reussi[ V = C

The pw-com registration protocol

user(ck, T = t, p̃w,m) server(ck, V = C,m)

[user]: h̃ := Hh(p̃w); compute σ ← SoK.Sign(ck, (h̃, t),m)

send σ−−−−−−−−−−−−−−−−−−−−−−→
kcehc:]revres[ SoK.Verify(ck, C, σ,m) = accept

The two factor pw-com authentication protocol

Fig. 3. The two factor pw-com solution

Description of the solution. Let Com be a computationally binding,
statistically hiding commitment scheme, and P be a set of passwords. Let
Hh : P → MC be an injective encoding function from the passwords to the
message space of the Com scheme. The Setup procedure picks a commitment
key ck ← Com.Setup(1λ) and returns ck as global parameter. The registration
and authentication protocols are described Fig. 3.

Security analysis. The pw-com solution is token-unforgeable in the program-
mable random oracle for Hc if the SoK scheme is sound, zero-knowledge, and
if the Com scheme is computationally binding and statistically hiding. It is
password-unforgeable in the programmable random oracle for Hc if the SoK

scheme is sound, zero-knowledge, and if the Com scheme is computationally
binding and statistically hiding. Finally, no information about the password is
available from the issuer’s and server’s point of view, in the random oracle for Hc

under the zero-knowledge property of the SoK scheme and the statistical hiding
property of the Com scheme. For the sake of reading, we use the following nota-
tions in the proofs: S is the signature oracle (instead of SendToUserserver), V the
verification oracle (instead of SendToServer). Moreover we analyse the security
for a single user, the extension to several users being straightforward.

Theorem 1. Let A be an adversary against the UF-token property of the pw-com
scheme with a single user, running in time at most t, making at most qs signature
queries, and at most qv verification queries. Then:

AdvUF-token
pw-com,ck(A) ≤ qs · (qs + qh)

|CC| +
qh

2λc
+

√
qh · Advbind

ck (2 · t).

Proof. Let T = t be the token of the user, pw its password, and V = C its ver-
ifier. Game G0 is the token-unforgeability security experiment. The adversary
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gets pw and V but does not have access to T . In game G1, the S oracle simulates
the signature with the simulator of signature of knowledge, in the random ora-
cle, without knowing the password, nor the token t, but knowing the verifier C.
Games G0 and G1 are identical up to the simulation failure. Game G2(ck, pw,C)
takes as input a commitment key ck, a random password pw ← P, and a ran-
dom commitment C ← CC. During the registration step, G2 sets T = ⊥ and
V = C. The token is not available to the simulation, but is not needed to sim-
ulate the signatures. From the statistical property of the commitment scheme,
we know that for all pw and commitment C, there exists t ∈ RC such that
C = Commit(Hh(pw); t) with overwhelming probability. It remains to show that
the probability of success of A in game G2 is negligible. Let B be the following
reduction. B receives a challenge ck for the computational binding property of
the commitment scheme, picks pw ←D P, C ← CC, and runs A simulating game
G2(ck, pw,C). A eventually outputs a valid signature σ for some message m. If
A is successful, then the soundness of the SoK scheme is broken. ��
Theorem 2. Let A be an adversary against the UF-pw property of the pw-com
scheme with a single user, running in time at most t, making at most qh random
oracle queries, qs signature queries, and qv < τ verification queries. Then:

AdvUF-pw
pw-com,ck(A) ≤ τ

2β
+

(qs · (qs + qh) − qv)
|CC| +

qh

2λc
+

√
qh · Advbind

ck (2 · t).

The proof is very similar to the proof of Theorem1. However, we must take
care of the password distribution, which is not assumed to induce a uniform
distribution over the message space of the commitment scheme.
Proof. Let T = t be the token of the user, pw its password, and V = C its veri-
fier. Game G0 is the password-unforgeability security experiment. The adversary
gets t but does not have access to pw nor to C. The only difference between G0

and G1 lies in the responses from the verification oracle for ‘fresh’ queries, i.e.,
message/signature pairs that do not correspond to a previous query/response
pair from the signature oracle. When a valid fresh verification query is supplied,
G1 stops and returns 1. G0 and G1 returns 1 with the same probability, but by
doing this we ensure that all fresh verification queries returns reject before the
forgery. In game G2, the signatures are simulated in the random oracle for Hc

with the simulator of the signature of knowledge. Game G3(ck, t, C) is a tran-
sition step. It takes as input a commitment key ck, a random value t ← RC,
a commitment C := Commit(Hh(pw); t) for some password pw ←D P, and sets
T = t and V = C. The password pw is not given, but is not needed for the
simulation. Game G4(ck, t, C) is as game G3, except that C ← CC. If 2β 
 |CC|,
it is unlikely that (event E): there exists pw such that C = Commit(Hh(pw); t).
The probability of E is at most 2β/|CC|, given that the encoding Hh is injec-
tive. However, the commitment key, the token and the simulated signatures are
identical in both games. The S oracle can still simulate signatures since the
SoK simulator can simulate signatures even for false statements. A gets infor-
mation about C only through the verification oracle. If E does not happen,
a potential bias of 1/2β is introduced per verification query from A’s point of
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view. This is because a negative response from the verification oracle reveals
at most one bit of information about the password (recall that all responses
from V are negative). So we bound the difference between G3 and G4 as follows:
Pr

[
AG3 ⇒ 1

]−Pr
[
AG4 ⇒ 1

] ≤ qv/2β ·(1 − 2β/|CC|). It remains to show that the
probability of success of A in game G4 is negligible. This is shown by reduction
to the soundness of the SoK signature, as in Theorem 1. ��
Theorem 3. Let A be an adversary against the PL property of the pw-com
scheme making at most qh queries to the random oracle and qs queries to the
signature oracle. Then:

AdvPL
pw-com,N (A) ≤ 1

2β
+

qs · (qs + qh)
|CC| .

Proof. Game G0 is the PL security game. A eventually outputs (i∗, pw∗) and wins
if it correctly guesses the password. In game G1, signatures are simulated as in
Theorem 1. In game G2, in the registration protocol, a random commitment
C ← CC is drawn, instead of computing C according to the user’s password.
Thanks to the mask value t, the simulated C is statistically close from a real
one, under the hiding property of the Com scheme. Finally, in game G2, no
password is used. The probability to win is then bound by the probability to
guess a password. ��
A DL instantiation. Let (p,G, G) be a group of prime order. During the
registration step, the client takes a password hash h := Hh(pw), picks t ← Zp,
and sets C := [h] ·G+[t] ·H. It stores t as token and sends C to the server which
stores it as verifier. During the authentication step, the client takes a password
hash h̃ := Hh(p̃w), picks rh, rt ← Zp, sets R := [rh] · G + [rt] · H;, c := Hc(R,m),
sh := rh + c · h̃ mod p, and st := rt + c · t mod p. It sends (c, sh, st) to the
server, which computes R̃ := [sh] ·G+[st] ·H − [c] ·C, c̃ := Hc(R̃,m);, and checks
c = c̃. For 128 bits of security, the user’s response (c, sh, st) takes 640 bits.

5 A Solution Based on Homomorphic Encryption

In this section, we give a construction based on a homomorphic encryption
scheme over group of prime order, which includes local updates of the password.

Hash functions. A hash function H is given by two procedures {KeyGen, Eval}
as follows. On input a security parameter λ, the KeyGen procedure outputs some
public parameters. In case of keyed hash function, the procedure also outputs a
random uniform evaluation key ek ← {0, 1}λ. On input a message m ∈ {0, 1}�(λ)

for some polynomial 	, the evaluation function Eval outputs a hash value in
some space H. We need collision-resistant (unkeyed) hash functions and pseudo-
random keyed hash functions. The collision-resistance requires that it should
impossible to exhibit two distinct messages that share the same hash value. A
keyed hash function is pseudo-random if a polynomial adversary cannot distin-
guish whether it interacts with a pseudo-random function or a truly random one.
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Homomorphic Encryption. Our constructions make use of an encryption
scheme that supports some homomorphic operation and its efficient iteration.
By pure convention we use here the additive symbol. A homomorphic public key
encryption scheme hom-pke is composed of a message space ME supporting
some operation +, a ciphertext space CE, and a set of functionalities {KeyGen,
Enc, Dec, Add, SMul} as follows.

On input a security parameter λ ∈ N and the particular message space
ME, the key generation procedure KeyGen outputs a pair of public/private keys
(pk, sk). The (probabilistic) encryption procedure Enc takes as input a public
key pk and a message m ∈ ME, and outputs a ciphertext c. The (determin-
istic) decryption procedure takes as input a secret key sk and a ciphertext c,
and outputs a message m. The homomorphic procedure takes as input a pub-
lic key pk and two ciphertexts c1, c2, and outputs a ciphertext c′. The homo-
morphic operation Add is extended to an efficient scalar multiplication SMul
which takes as input a public key pk, a ciphertext c and a scalar n ∈ N,
n > 1, and outputs a ciphertext c′ such that for all m ∈ ME we have:
n×m ← Dec(sk, SMul(pk, Enc(pk,m), n)). Sometimes we note c1 ⊕ c2 as a short-
cut for Add(pk, c1, c2), and [n] · c for SMul(pk, c, n), the public key being clear
from the context.

The one-wayness OW property states that it is impossible given a ciphertext
to recover the underlying plaintext. The semantic security, or indistinguishability
against chosen plaintext attacks IND-CPA, state that no information about the
plaintext leak from the ciphertext. We also assume that ciphertexts produced by
the homomorphic procedures are indistinguishable from those directly produced
by the encryption procedure.

Description of the solution. The Setup procedure picks a prime order group
(p,G, G) in additive notation, with null element 0, and a master key mk ←
{0, 1}λ. Let hom-pke := {KeyGen, Enc, Dec, Add, SMul} be an additively homo-
morphic encryption scheme over ME := (p,G, G). Let Hu : {0, 1}λ×{0, 1}∗ → Zp

be a pseudo-random hash function, Hc : {0, 1}λ × CE
2 × {0, 1}� → {0, 1}λ a hash

function (for a message length 	), Hv : CE → {0, 1}λ another hash function, and
Hh : P → Z

∗
p an injective encoding function of the passwords.

The Setup procedure returns the global parameters param := (p,G, G). The
registration and authentication protocols are described Fig. 4. In the registration
step, the user has got a password pw, the server knows the master key mk
and some user information info, and both know the parameters (p,G, G). In
the authentication step, the user supplies a fresh p̃w value and owns a token
(pk1, pk2, B,C), the server knows the verifier (H, sk1, sk2), and both formerly
agreed on a message m to be signed.

Local updates. Local updates on the client’s side are possible in the pw-hom
construction: (i) ask the user for pwold, pwnew; set hold := Hh(pwold), hnew :=
Hh(pwnew); (ii) given T := (pk1, pk2, B,C), update C ← SMul(pk2, C, hnew ·
(hold)−1 mod p).



298 J. Bringer et al.

user(pw) parameters λ, (p,G, G) issuer(mk, info)

[user]: compute h := Hh(pw); pick a ← Z
∗
p; set Y := [a · h] · G

send Y−−−−−−−−−−−−−−−−−−−−−−→
[issuer]: compute k := Hu(mk, info)

[issuer]: pick (pk1, sk1), (pk2, sk2) ← KeyGen(1λ, (p,G, G))

[issuer]: set C̃ ← Enc(pk2, [k] · Y ) B ← Enc(pk1, [k] · G); H := Hv([k] · G)

[issuer]: store (H, sk1, sk2)

send pk1, pk2, B, C̃←−−−−−−−−−−−−−−−−−−−−−−
[user]: set C ← SMul(pk2, C̃, a−1 mod p))

[user]: store (pk1, pk2, B, C)

The pw-hom registration protocol

user(T = (pk1, pk2, B, C), p̃w,m) server(V = (H, sk1, sk2),m)

[user]: set h̃ := Hh(p̃w); pick a, r ← Z
∗
p

[user]: E ← SMul(pk1, B, r); F ← SMul(pk2, C, a)

[user]: c := Hc(E, F,m); s := r + c · a · h̃ mod p

send E, F, s−−−−−−−−−−−−−−−−−−−−−−→
[server]: c̃ := Hc(E, F,m); R := Dec(sk1, E); A := Dec(sk2, F )

[server]: check A 	= 0; K := [s−1 mod p] · (R + [c̃] · A); check Hv(K) = H

The pw-hom two factor authentication protocol

Fig. 4. The pw-hom two factor solution

Security analysis. The pw-hom scheme is UF-pw secure under the semantic
security of hom-pke, the pseudo-randomness of Hu and the collision-resistance
of Hv in the random oracle for Hc. It is (weakly) UF-token secure under the one-
wayness of hom-pke, the pseudo-randomness of Hu and the collision-resistance
of Hv in the random oracle for Hc. It is PL resistant in the random oracle for Hc.

Theorem 4. Let A be an adversary against the UF-pw property of the pw-hom
scheme with a single user, running in time at most t, making at most qh random
oracle queries, qs signature queries and qv < τ verification queries. Then:

AdvUF-pw
pw-hom,G(A) ≤ τ2

2β
+

(qs(qs + qh) − τ2)
p

+ AdvPRF
Hu

(t)+

τ · (
AdvIND-CPA

hom-pke,G(t) +
qh

2λc
+

√
qh · (

AdvOW
hom-pke,G(2 · t) + AdvCR

Hv
(2 · t)

))
.

Note on the bound. We are not able to prove that the bound is negligible beyond
τ/2β , but only beyond τ2/2β . This means that one should set τ2 < β rather than
τ < β in practice. If the encryption scheme is one-way under a computational
problem, this bound could be taken back to τ/2β at the cost of an interactive
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Gap assumption [32], according to which the adversary has access to an oracle
for the corresponding decision problem.

Proof. Let T = (pk1, pk2, B,C) be the token of the user, pw its password,
and V = (H, sk1, sk2) its verifier. Game G0 is the UF-pw security experiment.
The adversary gets T but does not have access to pw nor to V . In game G1,
the S oracle simulates the signatures, in the random oracle, without know-
ing the password, nor the ciphertext C, but knowing the ciphertext B and
the public encryption keys. During the n-th query, on input a message mn,
game G1 generates the signature as follows: pick sn ← Zp; cn ← {0, 1}λ;
Ln ← G, set Fn ← Enc(pk2, Ln); En ← Enc(pk1, [−cn] · Ln) ⊕ SMul(pk1, B, sn),
if Hc(En, Fn,mn) �= ⊥, abort, otherwise program Hc(En, Fn,mn) := cn, return
σ := (En, Fn, sn). Game G2 is game G1, except that the master key mk is dropped
and G2 has an oracle access to Hu(mk, ·). In game G3, the oracle access to Hu is
replaced by an oracle which draws random values in Z

∗
p. The success probabil-

ity of a distinguisher between G2 and G3 is bound by the advantage to break
the PRF property of Hu within the same time. In game G3, A supplies qv + 1
message/signature pairs, either to the verification oracle, or at the end of the
game. Game G4 guesses the first query j ∈ [1, qv + 1] where A gives a valid
‘fresh’ message/signature pair. For all j < j, the verification oracle returns 0.
At the j-th query (or at the end of the game if j = qv + 1), game G4 returns 1
and stops. The oracle V no longer needs the secret keys, at the price of a secu-
rity loss linear in the number of verification queries. Game G5(pk1, B, pk2, C)
is a transition step. It takes as input two public keys pk1, pk2, a ciphertext B
of a group element [k] · G under pk1, and a ciphertext C of a group element
[Hh(pw) · k] · G under pk2 for some pw ←P P and k ← Zp. The password
pw is not given, but the simulation of signatures is not affected. Likewise, the
secret keys are not given, but they are not needed in the simulation of the ver-
ification oracle. In game G6, a random exponent h ← Z

∗
p is taken instead of

computing h from the password. With probability at most 2β/p, there exists
pw ∈ P such that h = Hh(pw). Otherwise, the distribution of C is not as in
the real protocol. Under the semantic security of hom-pke, C does not leak
information about the password. However the verification queries might leak
information about the password. We bound the difference between G5 and G6 as
follows: Pr

[
AG5 ⇒ 1

]−Pr
[
AG6 ⇒ 1

] ≤
(
qv/2β + AdvIND-CPA

hom-pke,G(t)
)

· (1 − 2β/p
)
.

It remains to bound the probability of success of A is game G6. We adapt the
standard forking lemma techniques [1,34] to our case, which do not involve
difficulties. For the sake of place, we postpone it to the full version of our
paper. ��
Theorem 5. Let A be an adversary against the UF-token property of the pw-hom
scheme with a single user, running in time at most t, making at most qh random
oracle queries, qs signature queries and qv verification queries. Then:
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AdvUF-token
pw-hom,G(A) ≤ (qs · (qs + qh) + qv · qh)

p
+ AdvPRF

Hu
(t)+

(qv + 1) ·
√

qh · (
AdvOW

hom-pke,G(2 · t) + AdvCR
Hv

(2 · t)
)
.

Proof. Let T = (pk1, pk2, B,C) be the token of the user, pw its password, and
V = (H, sk1, sk2) its verifier. Game G0 is the token-unforgeability security exper-
iment. The adversary gets pw but does not have access to T nor V . Games G1

to G4 are as in Theorem 4. Game G5(pk,B) takes as input a public key pk, and
the ciphertext B of [k] · G for some uniform k ← Zp. G4 sets pk1 := pk and
B := B. The distributions of B in G4 and G5 are identical. The ciphertext C
is not computed and is never used. It remains to show that the probability of
success of A in game G5 is negligible. This is done as in Theorem 4, under the
one-wayness of hom-pke and the collision-resistance of Hv. ��
Theorem 6. Given an adversary A making at most qh requests to the random
oracle and qs requests to the signature oracle, we have:

AdvPL
pw-hom,G(A) ≤ 1

2β
+

qs · (qs + qh)
p

.

Proof. The proof is fairly straightforward, as in the pw-com scheme. ��
Security in presence of local updates. We add an oracle to the security
game, to catch the possibility of local updates. The adversary supplies (i, pw′),
for i such that pw[i] and client[i] are well-defined. If pw′ = ⊥, C picks a new
password pw′ ←P P at random, according to the password distribution P . In
both cases, C updates the tables. If UserData has already been called on pw[i]
(or client[i]), C sends the corresponding updated value to A. This oracle has an
effect during the game G6 in the UF-pw proof. The ciphertext C is replaced by
another ciphertext C = SMul(pk2, C, t) for some uniform t ← Z

∗
p. The value t is

not distributed as in the real protocol, but the simulation remain correct under
the semantic security of the encryption scheme.

A concrete instantiation with ElGamal. The black-box construction
above might be instantiated with the ElGamal encryption scheme [14]. Let ElG
be the following scheme. The key generation procedure takes as input a prime
order group (p,G, G), picks a secret key sk ← Z

∗
p, computes the public key

pk := [sk] · G, and returns the key pair (pk, sk) ∈ G × Z
∗
p. Then encryption pro-

cedure takes as input an element M ∈ G and a public key pk, picks r ← Zp and
outputs a ciphertext C([r] · G,M + [r] · pk) ∈ G

2. The decryption step takes as
input a ciphertext (C1, C2) and a secret key sk, and outputs M = C2 − [sk] · C1.
The one-wayness of the ElG scheme is equivalent to the CDH problem and its
semantic security is equivalent to the DDH problem. When instantiated with the
ElG scheme, a token is given by 6 group elements, a verifier by two scalars and
a hash, and a signature by 4 elements plus a scalar. According to the state of
the art (see for instance [11]), for 100 bits of security, the ElG scheme might be
instantiated with an elliptic curve over a prime field Fq with a 200-bits prime q.
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As a result, for 128 bits of security, a token needs ≈3k bits to be stored without
compression (and half this value with compression), a verifier takes ≈640 bits,
and a signature ≈2300 bits without compression (≈1300 with compression).
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