
Prover-Efficient Commit-and-Prove
Zero-Knowledge SNARKs

Helger Lipmaa(B)

Institute of Computer Science, University of Tartu, Tartu, Estonia
helger.lipmaa@gmail.com

Abstract. Zk-SNARKs (succinct non-interactive zero-knowledge argu-
ments of knowledge) are needed in many applications. Unfortunately,
all previous zk-SNARKs for interesting languages are either inefficient
for the prover, or are non-adaptive and based on a commitment scheme
that depends both on the prover’s input and on the language, i.e., they
are not commit-and-prove (CaP) SNARKs. We propose a proof-friendly
extractable commitment scheme, and use it to construct prover-efficient
adaptive CaP succinct zk-SNARKs for different languages, that can all
reuse committed data. In new zk-SNARKs, the prover computation is
dominated by a linear number of cryptographic operations. We use batch-
verification to decrease the verifier’s computation; importantly, batch-
verification can be used also in QAP-based zk-SNARKs.

Keywords: Batch verification · Commit-and-prove · CRS · NIZK ·
Numerical NP-complete languages · Range proof · Subset-Sum ·
zk-SNARK

1 Introduction

Recently, there has been a significant surge of activity in studying succinct non-
interactive zero knowledge (NIZK) arguments of knowledge (also known as zk-
SNARKs) [3–6,12,13,17,19,23,24,28]. The prover of a zk-SNARK outputs a
short (ideally, a small number of group elements) argument π that is used to
convince many different verifiers in the truth of the same claim without leaking
any side information. The verifiers can verify independently the correctness of
π, without communicating with the prover. The argument must be efficiently
verifiable. Constructing the argument can be less efficient, since it is only done
once. Still, prover-efficiency is important, e.g., in a situation where a single server
has to create many arguments to different clients or other servers.

Many known zk-SNARKs are non-adaptive, meaning that the common ref-
erence string, CRS, can depend on the concrete instance of the language (e.g.,
the circuit in the case of Circuit-SAT). In an adaptive zk-SNARK, the CRS
is independent on the instance and thus can be reused many times. This dis-
tinction is important, since generation and distribution of the CRS must be
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done securely. The most efficient known non-adaptive zk-SNARKs for NP-
complete languages from [17] are based on either Quadratic Arithmetic Pro-
grams (QAP, for arithmetic Circuit-SAT) or Quadratic Span Programs (QSP,
for Boolean Circuit-SAT). There, the prover computation is dominated by
Θ(n) cryptographic operations (see the full version [26] for a clarification on
cryptographic/non-cryptographic operations), where n is the number of the
gates. QAP, QSP [17,24] and other related approaches like SSP [13] have the
same asymptotic complexity.

QSP-based Circuit-SAT SNARK can be made adaptive by using univer-
sal circuits [33]. Then, the CRS depends on the construction of universal circuit
and not on the concrete input circuit itself. However, since the size of a universal
circuit is Θ(n log n), the prover computation in resulting adaptive zk-SNARKs
is Θ(n log2 n) non-cryptographic operations and Θ(n log n) cryptographic oper-
ations. (In the case of QAP-based arithmetic Circuit-SAT SNARK, one has to
use universal arithmetic circuits [30] that have an even larger size Θ(r4n), where
r is the degree of the polynomial computed by the arithmetic circuit. Thus, we
will mostly give a comparison to the QSP-based approach.)

Since Valiant’s universal circuits incur a large constant c = 19 in the Θ(·)
expression, a common approach [21,31] is to use universal circuits with the over-
head of Θ(log2 n) but with a smaller constant c = 1/2 in Θ(·). The prover com-
putation in the resulting adaptive zk-SNARKs is Θ(n log3 n) non-cryptographic
operations and Θ(n log2 n) cryptographic operations.1

Another important drawback of the QSP/QAP-based SNARKs is that they
use a circuit-dependent commitment scheme. To use the same input data in
multiple sub-SNARKs, one needs to construct a single large circuit that imple-
ments all sub-SNARKs, making the SNARK and the resulting new commitment
scheme more complicated. In particular, these SNARKs are not commit-and-
prove (CaP [9,20]) SNARKs. We recall that in CaP SNARKs, a commitment
scheme C is fixed first, and the statement consists of commitments of the witness
using C; see Sect. 2. Hence, a CaP commitment scheme is instance-independent.
In addition, one would like the commitment scheme to be language-independent,
enabling one to first commit to the data and only then to decide in what appli-
cations (e.g., verifiable computation of a later fixed function) to use it.

See Table 1 for a brief comparison of the efficiency of proposed adaptive
zk-SNARKs for NP-complete languages. Subset-Sum is here brought as an
example of a wider family of languages; it can be replaced everywhere say
with Partition or Knapsack, see the full version [26]. Here, N = r−1

3 (n) =
o(n22

√
2 log2 n), where r3(n) is the density of the largest progression-free set

in {1, . . . , n}. According to the current knowledge, r−1
3 (n) is comparable to

(or only slightly smaller than) n2 for n < 212; this makes all known CaP
SNARKs [15,19,23] arguably impractical unless n is really small. In all cases, the
verifier’s computation is dominated by either Θ(n) cryptographic or Θ(n log n)

1 Recently, [12] proposed an independent methodology to improve the prover’s com-
putational complexity in QAP-based arguments. However, [12] does not spell out
their achieved prover’s computational complexity.
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Table 1. Prover-efficiency of known adaptive zk-SNARKs for NP-complete languages.
Here, n is the number of the gates (in the case of Circuit-SAT) and the number of
the integers (in the case of Subset-Sum). Green background denotes the best known
asymptotic complexity of the concrete NP-complete language w.r.t. to the concrete
parameter. The solutions marked with * use proof bootstrapping from [12]

noitatupmocrevorPegaugnaLrepaP |CRS|
non-crypt. op. crypt. op.

Not CaP-s

QAP, QSP ( [14,19,27] ) Circuit-SAT Θ(n log2 n) Θ(n log n) Θ(n)

CaP-s

Gro10 ( [21]) Circuit-SAT Θ(n2) Θ(n2) Θ(n2)
Lip12 ( [26]) Circuit-SAT Θ(n2) Θ(N) Θ(N)
Lip14 + Lip12 ( [26,28])* Circuit-SAT Θ(N log2 n) Θ(N log n) Θ(N log n)
Lip14 + current paper ( [28])* Circuit-SAT Θ(n log2 n) Θ(n log n) Θ(n log n)
FLZ13 ( [16]) Subset-Sum Θ(N log n) Θ(N) Θ(N)
Current paper Subset-Sum Θ(n log n) Θ(n) Θ(n)

non-cryptographic operations (with the verifier’s online computation usually
being Θ(1)), and the communication consists of a small constant number of
group elements.2 Given all above, it is natural to ask the following question:

The Main Question of This Paper: Is it possible to construct adaptive CaP
zk-SNARKs for NP-complete languages where the prover computation is
dominated by a linear number of cryptographic operations?

We answer the “main question” positively by improving on Groth’s modular
approach [19]. Using the modular approach allows us to modularize the security
analysis, first proving the security of underlying building blocks (the product and
the shift SNARKs), and then composing them to construct master SNARKs for
even NP-complete languages. The security of master SNARKs follows easily from
the security of the basic SNARKs. We also use batch verification to speed up
verification of almost all known SNARKs.

All new SNARKs use the same commitment scheme, the interpolating com-
mitment scheme. Hence, one can reuse their input data to construct CaP zk-
SNARKs for different unrelated languages, chosen only after the commitment
was done. Thus, one can first commit to some data, and only later decide in which
application and to what end to use it. Importantly, by using CaP zk-SNARKs,
one can guarantee that all such applications use exactly the same data.

2 We emphasize that Circuit-SAT is not our focus; the lines corresponding to
Circuit-SAT are provided only for the sake of comparison. One can use proof
boot-strapping [12] to decrease the length of the resulting Circuit-SAT argument
from Θ(log n), as stated in [25], to Θ(1); we omit further discussion.
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The resulting SNARKs are not only commit-and-prove, but also very effi-
cient, and often more efficient than any previously known SNARKs. The new
CaP SNARKs have prover-computation dominated by Θ(n) cryptographic oper-
ations, with the constant in Θ(·) being reasonably small. Importantly, we
propose the most efficient known succinct range SNARK. Since the resulting zk-
SNARKs are sufficiently different from QAP-based zk-SNARKs, we hope that
our methodology by itself is of independent interest. Up to the current paper,
Groth’s modular approach has resulted in significantly less efficient zk-SNARKs
than the QSP/QAP-based approach.

In Sect. 3, we construct a new natural extractable trapdoor commitment
scheme (the interpolating commitment scheme). Here, commitment to a ∈ Z

n
p ,

where n is a power of 2, is a short garbled and randomized version g
La (χ)
1 (gχn−1

1 )r

of the Lagrange interpolating polynomial La(X) of a , for a random secret key
χ, together with a knowledge component. This commitment scheme is arguably
a very natural one, and in particular its design is not influenced by the desire to
tailor it to one concrete application. Nevertheless, as we will see, using it improves
the efficiency of many constructions while allowing to reuse many existing results.

The new CaP zk-SNARKs are based on the interpolating commitment
scheme and two CaP witness-indistinguishable SNARKs: a product SNARK
(given commitments to vectors a , b, c, it holds that ci = aibi; see [15,19,23]),
and a shift SNARK (given commitments to a , b, it holds that a is a coordinate-
wise shift of b; see [15]). One can construct an adaptive Circuit-SAT CaP
zk-SNARK from Θ(log n) product and shift SNARKs [19,25], or adaptive CaP
zk-SNARKs for NP-complete languages like Subset-Sum (and a similar CaP
range SNARK) by using a constant number of product and shift SNARKs [15].

In Sect. 4, we propose a CaP product SNARK, that is an argument of
knowledge under a computational and a knowledge (needed solely to achieve
extractability of the commitment scheme) assumption. Its prover computation
is dominated by Θ(n log n) non-cryptographic and Θ(n) cryptographic opera-
tions. This can be compared to r−1

3 (n) non-cryptographic operations in [15].
The speed-up is mainly due to the use of the interpolating commitment scheme.

In Sect. 5, we propose a variant of the CaP shift SNARK of [15], secure
when combined with the interpolating commitment scheme. We prove that this
SNARK is an adaptive argument of knowledge under a computational and a
knowledge assumption. It only requires the prover to perform Θ(n) cryptographic
and non-cryptographic operations.

Product and shift SNARKs are already very powerful by itself. E.g., a prover
can commit to her input vector a . Then, after agreeing with the verifier on
a concrete application, she can commit to a different yet related input vector
(that say consists of certain permuted subset of a ’s coefficients), and then use
the basic SNARKs to prove that this was done correctly. Here, she may use the
permutation SNARK [25] that consists of O(log n) product and shift SNARKs.
Finally, she can use another, application-specific, SNARK (e.g., a range SNARK)
to prove that the new committed input vector has been correctly formed.



Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs 189

In Sect. 6, we describe a modular adaptive CaP zk-SNARK, motivated
by [15], for the NP-complete language, Subset-Sum. (Subset-Sum was chosen
by us mainly due to the simplicity of the SNARK; the rest of the paper considers
more applications.) This SNARK consists of three commitments, one application
of the shift SNARK, and three applications of the product SNARK. It is a zk-
SNARK given that the commitment scheme, the shift SNARK, and the product
SNARK are secure. Its prover computation is strongly dominated by Θ(n) cryp-
tographic operations, where n is the instance size, the number of integers. More
precisely, the prover has to perform only nine (≈n)-wide multi-exponentiations,
which makes the SNARK efficient not only asymptotically (to compare, the size
of Valiant’s arithmetic circuit has constant 19, and this constant has to be mul-
tiplied by the overhead of non-adaptive QSP/QAP/SSP-based solutions). Thus,
we answer positively to the stated main question of the current paper. More-
over, the prover computation is highly parallelizable, while the online verifier
computation is dominated by 17 pairings (this number will be decreased later).

In Sect. 7, we propose a new CaP range zk-SNARK that the committed value
belongs to a range [L ..H]. This SNARK looks very similar to the Subset-Sum

SNARK, but with the integer set S of the Subset-Sum language depend-
ing solely on the range length. Since here the prover has a committed input,
the simulation of the range SNARK is slightly more complicated than of the
Subset-Sum SNARK. Its prover-computation is similarly dominated by Θ(n)
cryptographic operations, where this time n := �log2(H − L)�. Differently from
the Subset-Sum SNARK, the verifier computation is dominated only by Θ(1)
cryptographic operations, more precisely, by 19 pairings (also this number will
be decreased later). Importantly, this SNARK is computationally more efficient
than any of the existing succinct range SNARKs either in the standard model
(i.e., random oracle-less) or in the random oracle model. E.g., the prover compu-
tation in [22] is Θ(n2) under the Extended Riemann Hypothesis, and the prover
computation in [15] is Θ(r−3(n) log r−3(n)). It is also significantly simpler than
the range SNARKs of [11,15], mostly since we do not have to consider different
trade-offs between computation and communication.

In the full version [26], we outline how to use the new basic SNARKs
to construct efficient zk-SNARKs for several other NP-complete languages
like Boolean and arithmetic Circuit-SAT, Two-Processor Scheduling,
Subset-Product, Partition, and Knapsack [16]. Table 1 includes the
complexity of Subset-Sum and Circuit-SAT, the complexity of most other
SNARKs is similar to that of Subset-Sum zk-SNARK. It is an interesting open
problem why some NP-complete languages like Subset-Sum have more effi-
cient zk-SNARKs in the modular approach (equivalently, why their verification
can be performed more efficiently in the parallel machine model that consists
of Hadamard product and shift) than languages like Circuit-SAT. We note
that [14] used recently some of the ideas from the current paper to construct an
efficient shuffle argument. However, they did not use product or shift arguments.

In the full version [26], we show that by using batch-verification [2], one can
decrease the verifier’s computation of all presented SNARKs. In particular, one can



190 H. Lipmaa

decrease the verifier’s computation in the new Range SNARK from 19 pairings to 8
pairings, one 4-way multi-exponentiation in G1, two 3-way multi-exponentiations
in G1, one 2-way multi-exponentiation in G1, three exponentiations in G1, and
one 3-way multi-exponentiation in G2. Since one exponentiation is much cheaper
than one pairing [8] and one m-way multi-exponentiation is much cheaper than m
exponentiations [29,32], this results in a significant win for the verifier. A similar
technique can be used to also speed up other SNARKs; a good example here is the
Circuit-SAT argument from [25] that uses Θ(log n) product and shift arguments.
To compare, inPinocchio [28] andGeppetto [12], the verifier has to execute 11 pair-
ings; however, batch-verification can also be used to decrease this to 8 pairings and
a small number of (multi-)exponentiations.

Finally, all resulting SNARKs work on data that has been committed to by
using the interpolating commitment scheme. This means that one can repeatedly
reuse committed data to compose different zk-SNARKs (e.g., to show that we
know a satisfying input to a circuit, where the first coefficient belongs to a certain
range). This is not possible with the known QSP/QAP-based zk-SNARKs where
one would have to construct a single circuit of possibly considerable size, say n′.
Moreover, in the QSP/QAP-based SNARKs, one has to commit to the vector,
the length of which is equal to the total length of the input and witness (e.g.,
n′ is the number of wires in the case of Circuit-SAT). By using a modular
solution, one can instead execute several zk-SNARKs with smaller values of the
input and witness size; this can make the SNARK more prover-efficient since the
number of non-cryptographic operations is superlinear. This emphasizes another
benefit of the modular approach: one can choose the value n, the length of the
vectors, accordingly to the desired tradeoff, so that larger n results in faster
verifier computation, while smaller n results in faster prover computation. We
are not aware of such a tradeoff in the case of the QSP/QAP-based approach.

We provide some additional discussion (about the relation between n and
then input length, and about possible QSP/QAP-based solutions) in the full
version [26]. Due to the lack of space, many proofs and details are only given
in the full version [26]. We note that an early version of this paper, [26], was
published in May 2014 and thus predates [12]. The published version differs
from this early version mainly by exposition, and the use of proof bootstrapping
(from [12]) and batching.

2 Preliminaries

By default, all vectors have dimension n. Let a ◦ b denote the Hadamard (i.e.,
element-wise) product of two vectors, with (a ◦ b)i = aibi. We say that a is
a shift-right-by-z of b, a = b � z, iff (an, . . . , a1) = (0, . . . , 0, bn, . . . , b1+z).
For a tuple of polynomials F ⊆ Zp[X,Y1, . . . , Ym−1], define YmF = (Ym ·
f(X,Y1, . . . , Ym−1))f∈F ⊆ Zp[X,Y1, . . . , Ym]. For a tuple of polynomials F that
have the same domain, denote hF(a) := (hf(a))f∈F . For a group G, let G

∗ be the
set of its invertible elements. Since the direct product G1 × . . . × Gm of groups
is also a group, we use notation like (g1, g2)c = (gc

1, g
c
2) ∈ G1 × G2 without
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prior definition. Let κ be the security parameter. We denote f(κ) ≈κ g(κ) if
|f(κ) − g(κ)| is negligible in κ.

On input 1κ, a bilinear map generator BP returns gk = (p, G1, G2, GT , ê),
where G1, G2 and GT are three multiplicative cyclic groups of prime order p (with
log p = Ω(κ)), and ê is an efficient bilinear map ê : G1 × G2 → GT that satisfies
in particular the following two properties, where g1 (resp., g2) is an arbitrary
generator of G1 (resp., G2): (i) ê(g1, g2) �= 1, and (ii) ê(ga

1 , gb
2) = ê(g1, g2)ab.

Thus, if ê(ga
1 , gb

2) = ê(gc
1, g

d
2) then ab ≡ cd (mod p). We also give BP another

input, n (intuitively, the input length), and allow p to depend on n. We assume
that all algorithms that handle group elements verify by default that their inputs
belong to corresponding groups and reject if they do not. In the case of many
practically relevant pairings, arithmetic in (say) G1 is considerably cheaper than
in G2; hence, we count separately exponentiations in both groups.

For κ = 128, the current recommendation is to use an optimal (asymmetric)
Ate pairing over Barreto-Naehrig curves [1]. In that case, at security level of κ =
128, an element of G1/G2/GT can be represented in respectively 256/512/3072
bits. To speed up interpolation, we will additionally need the existence of the
n-th, where n is a power of 2, primitive root of unity modulo p (under this
condition, one can interpolate in time Θ(n log n), otherwise, interpolation takes
time Θ(n log2 n)). For this, it suffices that (n + 1) | (p − 1) (recall that p is the
elliptic curve group order). Fortunately, given κ and a practically relevant value
of n, one can easily find a Barreto-Naehrig curve such that (n + 1) | (p − 1)
holds; such an observation was made also in [5]. For example, if κ = 128 and
n = 210, one can use Algorithm 1 of [1] to find an elliptic curve group of prime
order N(x0) over a finite field of prime order P (−x0) for x0 = 1753449050, where
P (x) = 36x4+36x3+24x2+6x+1, T (x) = 6x2+1, and N(x) = P (x)+1−T (x).
One can then use the curve E : y2 = x3 + 6.

In proof bootstrapping [12], one needs an additional elliptic curve group Ẽ
over a finite field of order N(x0) (see [12] for additional details). Such elliptic
curve group can be found by using the Cocks-Pinch method; note that Ẽ has
somewhat less efficient arithmetic than E.

The security of the new commitment scheme and of the new SNARKs
depends on the following q-type assumptions, variants of which have been used in
many previous papers. The assumptions are parameterized but non-interactive
in the sense that q is related to the parameters of the language (most generally,
to the input length) and not to the number of the adversarial queries. All known
(to us) adaptive zk-SNARKs are based on q-type assumptions about BP.

Let d(n) ∈ poly(n) be a function. Then, BP is

– d(n)-PDL (Power Discrete Logarithm) secure if for any n ∈ poly(κ) and any
non-uniform probabilistic polynomial-time (NUPPT) adversary A,Pr[gk ←
BP(1κ, n), (g1, g2, χ) ←r G

∗
1 × G

∗
2 × Zp : A(gk; ((g1, g2)χi

)d(n)
i=0 ) = χ] ≈κ 0.

– n-TSDH (Target Strong Diffie-Hellman) secure if for any n ∈ poly(κ) and
any NUPPT adversary A,Pr[gk ← BP(1κ, n), (g1, g2, χ) ←r G

∗
1 × G

∗
2 × Zp :

A(gk; ((g1, g2)χi

)n
i=0) = (r, ê(g1, g2)1/(χ−r))] ≈κ 0.
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For algorithms A and XA, we write (y; y′) ← (A||XA)(χ) if A on input χ
outputs y, and XA on the same input (including the random tape of A) out-
puts y′. We will need knowledge assumptions w.r.t. several knowledge secrets γi.
Let m be the number of different knowledge secrets in any concrete SNARK.
Let F = (Pi)n

i=0 be a tuple of univariate polynomials, and G1 (resp., G2) be a
tuple of univariate (resp., m-variate) polynomials. Let i ∈ [1 ..m]. Then, BP is
(F ,G1,G2, i)-PKE (Power Knowledge of Exponent) secure if for any NUPPT
adversary A there exists an NUPPT extractor XA, such that

Pr

⎡
⎢⎢⎢⎢⎢⎣

gk ← BP(1κ, n), (g1, g2, χ,γ) ←r G
∗
1 × G

∗
2 × Zp × Z

m
p ,

γ−i ← (γ1, . . . , γi−1, γi+1, . . . , γm), aux ← (gG1(χ)
1 , g

G2(χ,γ−i)

2 ),

(h1, h2; (ai)n
i=0) ← (A||XA)(gk; (g1, g

γi

2 )F(χ), aux) :

ê(h1, g
γi

2 ) = ê(g1, h2) ∧ h1 �= g
∑n

i=0 aiPi(χ)
1

⎤
⎥⎥⎥⎥⎥⎦

≈κ 0.

Here, aux can be seen as the common auxiliary input to A and XA that
is generated by using benign auxiliary input generation. If F = (Xi)d

i=0 for
some d = d(n), then we replace the first argument in (F , . . .)-PKE with d. If
m = 1, then we omit the last argument i in (F , . . . , i)-PKE. While knowledge
assumptions are non-falsifiable, we recall that non-falsifiable assumptions are
needed to design succincts SNARKs for interesting languages [18].

By generalizing [7,19,23], one can show that the TSDH, PDL, and PKE
assumptions hold in the generic bilinear group model.

Within this paper, m ≤ 2, and hence we denote γ1 just by γ, and γ2 by δ.
An extractable trapdoor commitment scheme in the CRS model consists of

two efficient algorithms Gcom (that outputs a CRS ck and a trapdoor) and, (that,
given ck, a message m and a randomizer r, outputs a commitment Cck(m; r)),
and must satisfy the following security properties.

Computational Binding: without access to the trapdoor, it is intractable to
open a commitment to two different messages.

Trapdoor: given access to the original message, the randomizer and the trap-
door, one can open the commitment to any other message.

Perfect Hiding: commitments of any two messages have the same distribution.
Extractability: given access to the CRS, the commitment, and the random coins

of the committer, one can open the commitment to the committed message.

See, e.g., [19] for formal definitions. In the context of the current paper, the
message is a vector from Z

n
p . We denote the randomizer space by R.

Let R = {(u,w)} be an efficiently verifiable relation with |w| = poly(|u|).
Here, u is a statement, and w is a witness. Let L = {u : ∃w, (u,w) ∈ R} be an
NP-language. Let n = |u| be the input length. For fixed n, we have a relation
Rn and a language Ln.

Following [9,20], we will define commit-and-prove (CaP) argument systems.
Intuitively, a CaP non-interactive zero knowledge argument system for R allows
to create a common reference string (CRS) crs, commit to some values wi
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(say, ui = Cck(wi; ri), where ck is a part of crs), and then prove that a sub-
set u := (uij

, wij
, rij

)�m(n)
j=1 (for publicly known indices ij) satisfies that uij

is a
commitment of wij

with randomizer rij
, and that (wij

) ∈ R.
Differently from most of the previous work (but see also [12]), our CaP argu-

ment systems will use computationally binding trapdoor commitment schemes.
This means that without their openings, commitments ui = Cck(ai; ri) them-
selves do not define a valid relation, since ui can be a commitment to any a′

i,
given a suitable r′

i. Rather, we define a new relation Rck := {(u ,w , r) : (∀i, ui =
Cck(wi; ri)) ∧ w ∈ R}, and construct argument systems for Rck.

Within this subsubsection, we let vectors u , w , and r be of dimension 	m(n)
for some polynomial 	m(n). However, we allow committed messages wi them-
selves to be vectors of dimension n. Thus, 	m(n) is usually very small. In some
argument systems (like the Subset-Sum SNARK in Sect. 6), also the argument
will include some commitments. In such cases, technically speaking, w and r
are of higher dimension than u . To simplify notation, we will ignore this issue.

A commit-and-prove non-interactive zero-knowledge argument system [9,
20] Π for R consists of an (R-independent) trapdoor commitment scheme
Γ = (Gcom,C) and of a non-interactive zero-knowledge argument system
(G,P,V), that are combined as follows: 1. the CRS generator G (that, in par-
ticular, invokes (ck, tdC) ← Gcom(1κ, n)) outputs (crs = (crsp, crsv), td) ←
G(1κ, n), where both crsp and crsv include ck, and td includes tdC. 2. the
prover P produces an argument π, π ← P(crsp;u ;w , r), where presumably
ui = Cck(wi; ri). 3. the verifier V, V(crsv;u , π), outputs either 1 (accept)
or 0 (reject). [(i)] Now, Π is perfectly complete, if for all n = poly(κ),
Pr [(crs, td) ← G(1κ, n), (u ,w , r) ← Rck,n : V(crsv;u ,P(crsp;u ,w , r)) = 1] = 1.

Since Γ is computationally binding and trapdoor (and hence ui can be com-
mitments to any messages), soundness of the CaP argument systems only makes
sense together with the argument of knowledge property.

Let b(X) be a non-negative polynomial. Π is a (b-bounded-auxiliary-input)
argument of knowledge for R, if for all n = poly(κ) and every NUPPT A,
there exists an NUPPT extractor XA, such that for every auxiliary input
aux ∈ {0, 1}b(κ),Pr[(crs, td) ← G(1κ, n), ((u , π);w , r) ← (A||XA)(crs; aux) :
(u,w , r) �∈ Rck,n ∧ V(crsv;u , π) = 1] ≈κ 0. As in the definition of PKE, we can
restrict the definition of an argument of knowledge to benign auxiliary informa-
tion generators, where aux is known to come from; we omit further discussion.

Π is perfectly witness-indistinguishable, if for all n = poly(κ), it holds that
if (crs, td) ∈ G(1κ, n) and ((u ;w , r), (u ;w ′, r ′)) ∈ R2

ck,n with ri, r
′
i ←r R, then

the distributions P(crsp;u ;w , r) and P(crsp;u ;w ′, r ′) are equal. Note that a
witness-indistinguishable argument system does not have to have a trapdoor.

Π is perfectly composable zero-knowledge, if there exists a probabilistic
poly-time simulator S, s.t. for all stateful NUPPT adversaries A and n =
poly(κ),Pr(crs, td) ← G(1κ, n), (u ,w , r) ← A(crs), π ← P(crsp;u ;w , r) :
(u ,w , r) ∈ Rck,n ∧ A(π) = 1] = Pr[(crs, td) ← G(1κ, n), (u ,w , r) ← A(crs), π ←
S(crs;u , td) : (u ,w , r) ∈ Rck,n ∧ A(π) = 1]. Here, the prover and the simulator
use the same CRS, and thus we have same-string zero knowledge. Same-string
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statistical zero knowledge allows to use the same CRS an unbounded number of
times.

An argument system that satisfies above requirements is known as adaptive.
An argument system where the CRS depends on the statement is often called
non-adaptive. It is not surprising that non-adaptive SNARKs can be much more
efficient than adaptive SNARKs.

A non-interactive argument system is succinct if the output length of P and
the running time of V are polylogarithmic in the P’s input length (and polynomial
in the security parameter). A succinct non-interactive argument of knowledge is
usually called SNARK. A zero-knowledge SNARK is abbreviated to zk-SNARK.

3 New Extractable Trapdoor Commitment Scheme

We now define a new extractable trapdoor commitment scheme. It uses the fol-
lowing polynomials. Assume n is a power of two, and let ω be the n-th primitive
root of unity modulo p. Then,

– Z(X) :=
∏n

i=1(X −ωi−1) = Xn −1 is the unique degree n monic polynomial,
such that Z(ωi−1) = 0 for all i ∈ [1 .. n].

– 	i(X) :=
∏

j �=i((X −ωj−1)/(ωi−1−ωj−1)), the ith Lagrange basis polynomial,
is the unique degree n−1 polynomial, such that 	i(ωi−1) = 1 and 	i(ωj−1) = 0
for j �= i.

Clearly, La(X) =
∑n

i=1 ai	i(X) is the interpolating polynomial of a at points
ωi−1, with La(ωi−1) = ai, and can thus be computed by executing an inverse
Fast Fourier Transform. Moreover, (	i(ωj−1))n

j=1 = e i (the ith unit vector) and
(Z(ωj−1))n

j=1 = 0n. Thus, Z(X) and (	i(X))n
i=1 are n + 1 linearly independent

degree ≤ n polynomials, and hence FC := (Z(X), (	i(X))n
i=1) is a basis of such

polynomials. Clearly, Z−1(0) = {j : Z(j) = 0} = {ωi−1}n
i=1.

Definition 1 (Interpolating Commitment Scheme). Let n = poly(κ), n >
0, be a power of two. First, Gcom(1κ, n) sets gk ← BP(1κ, n), picks g1 ←r G

∗
1,

g2 ←r G
∗
2, and then outputs the CRS ck ← (gk; (gf(χ)

1 , g
γf(χ)
2 )f∈FC

) for χ ←r

Zp\Z−1(0) and γ ←r Z
∗
p. The trapdoor is equal to χ.

The commitment of a ∈ Z
n
p , given a randomizer r ←r Zp, is

Cck(a; r) := (gZ(χ)
1 , g

γZ(χ)
2 )r · ∏n

i=1(g
�i(χ)
1 , g

γ�i(χ)
2 )ai ∈ G1 × G2, i.e., Cck(a; r) :=

(g1, g
γ
2 )r(χn−1)+La(χ). The validity of a commitment (A1, A

γ
2) is checked by ver-

ifying that ê(A1, g
γZ(χ)
2 ) = ê(gZ(χ)

1 , Aγ
2). To open a commitment, the committer

sends (a, r) to the verifier.

The condition Z(χ) �= 0 is needed in Theorem 1 to get perfect hiding and the
trapdoor property. The condition γ �= 0 is only needed in Theorem 5 to get
perfect zero knowledge. Also, (a function of) γ is a part of the trapdoor in the
range SNARK of Sect. 7.

Clearly, logg1
A1 = loggγ

2
Aγ

2 = rZ(χ) +
∑n

i=1 ai	i(χ). The second element,
Aγ

2 , of the commitment is known as the knowledge component.
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Theorem 1. The interpolating commitment scheme is perfectly hiding and trap-
door. If BP is n-PDL secure, then it is computationally binding. If BP is (n, ∅, ∅)-
PKE secure, then it is extractable.

Proof. Perfect Hiding: since Z(χ) �= 0, then rZ(χ) (and thus also logg1
A1)

is uniformly random in Zp. Hence, (A1, A
γ
2) is a uniformly random element of

the multiplicative subgroup 〈(g1, gγ
2 )〉 ⊂ G

∗
1 ×G

∗
2 generated by (g1, g

γ
2 ), indepen-

dently of the committed value. Trapdoor: given χ, a , r, a∗, and c = Cck(a ; r),
we compute r∗ s.t. (r∗ − r)Z(χ)+

∑n
i=1(a

∗
i − ai)	i(χ) = 0. This is possible since

Z(χ) �= 0. Clearly, c = Cck(a∗; r∗). Extractability: clear from the statement.
Computational Binding: assume that there exists an adversary AC that

outputs (a , ra) and (b, rb) with (a , ra) �= (b, rb), s.t. the polynomial d(X) :=
(raZ(X) +

∑n
i=1 ai	i(X)) − (rbZ(X) +

∑n
i=1 bi	i(X)) has a root at χ.

Construct now the following adversary Apdl that breaks the PDL assumption.
Given an n-PDL challenge, since FC consists of degree ≤ n polynomials, Apdl

can compute a valid ck from (a distribution that is statistically close to) the
correct distribution. He sends ck to AC. If AC is successful, then d(X) ∈ Zp[X]
is a non-trivial degree-≤ n polynomial. Since the coefficients of d are known,
Apdl can use an efficient polynomial factorization algorithm to compute all roots
ri of d(X). One of these roots has to be equal to χ. Apdl can establish which
one by comparing each (say) g

�1(ri)
1 to the element g

�1(χ)
1 given in the CRS.

Clearly, g
�1(ri)
1 is computed from g1 (which can be computed, given the CRS,

since 1 ∈ span(FC)), the coefficients of 	1(X), and ri. Apdl has the same success
probability as AC, while her running time is dominated by that of AC plus the
time to factor a degree-≤ n polynomial. ��

Theorem 1 also holds when instead of Z(X) and 	i(X) one uses any n + 1
linearly independent low-degree polynomials (say) P0(X) and Pi(X). Given the
statement of Theorem 1, this choice of the concrete polynomials is very natural:
	i(X) interpolate linearly independent vectors (and thus are linearly indepen-
dent; in fact, they constitute a basis), and the choice to interpolate unit vectors
is the conceptually clearest way of choosing Pi(X). Another natural choice of
independent polynomials is to set Pi(X) = Xi as in [19], but that choice has
resulted in much less efficient (CaP) SNARKs.

In the full version [26] we show how to use batch-verification techniques to
speed up simultaneous validity verification of many commitments.

4 New Product SNARK

Assume the use of the interpolating commitment scheme. In a CaP product
SNARK [19], the prover aims to convince the verifier that she knows how to
open three commitments (A,Aγ), (B,Bγ), and (C,Cγ) to vectors a , b and c
(together with the used randomizers), such that a ◦ b = c. Thus,

R×
ck,n :=

⎧
⎪⎨
⎪⎩

(u×, w×, r×) : u× = ((A1, A
γ
2), (B1, B

γ
2 ), (C1, C

γ
2 ))∧

w× = (a , b, c) ∧ r× = (ra, rb, rc) ∧ (A1, A
γ
2) = Cck(a ; ra)∧

(B1, B
γ
2 ) = Cck(b; rb) ∧ (C1, C

γ
2 ) = Cck(c; rc) ∧ a ◦ b = c

⎫
⎪⎬
⎪⎭

.
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Next, we propose an efficient CaP product SNARK. For this, we need Lemma 1.

Lemma 1. Let A(X), B(X) and C(X) be polynomials with A(ωi−1) = ai,
B(ωi−1) = bi and C(ωi−1) = ci, ∀i ∈ [1 .. n]. Let Q(X) = A(X)B(X) − C(X).
Assume that (i) A(X), B(X), C(X) ∈ span{	i(X)}n

i=1, and (ii) there exists a
degree n − 2 polynomial π(X), s.t. π(X) = Q(X)/Z(X). Then a ◦ b = c.

Proof. From (i) it follows that A(X) = La(X), B(X) = Lb(X), and C(X) =
Lc(X), and thus Q(ωi−1) = aibi − ci for all i ∈ [1 .. n]. But (ii) iff Z(X) | Q(X),
which holds iff Q(X) evaluates to 0 at all n values ωi−1. Thus, a ◦b = c. Finally,
if (i) holds then deg Q(X) = 2n − 2 and thus deg π(X) = n − 2. ��

If privacy and succinctness are not needed, one can think of the product argu-
ment being equal to π(X). We achieve privacy by picking ra, rb, rc ←r Zp, and
defining Qwi(X) := (La(X) + raZ(X)) (Lb(X) + rbZ(X))−(Lc(X) + rcZ(X)).
Here, the new addends of type raZ(X) guarantee hiding. On the other hand,
Qwi(X) remains divisible by Z(X) iff c = a ◦ b. Thus, a ◦ b = c iff

(i’) Qwi(X) can be expressed as Qwi(X) = A(X)B(X) − C(X) for some poly-
nomials A(X), B(X) and C(X) that belong to the span of FC, and

(ii’) there exists a polynomial πwi(X), such that

πwi(X) = Qwi(X)/Z(X). (1)

The degree of Qwi(X) is 2n, thus, if πwi(X) exists, then it has degree n.

However, |πwi(X)| is not sublinear in n. To minimize communication, we let
the prover transfer a “garbled” evaluation of πwi(X) at a random secret point χ.
More precisely, the prover computes π× := g

πwi(χ)
1 , using the values gχi

1 (given
in the CRS) and the coefficients πi of πwi(X) =

∑n
i=0 πiX

i, as follows:

π× := g
πwi(χ)
1 ←

n∏
i=0

(gχi

1 )πi . (2)

Similarly, instead of (say) La(X) + raZ(X), the verifier has the succinct inter-
polating commitment Cck(a ; ra) = (g1, g

γ
2 )La (χ)+raZ(χ) of a .

We now give a full description of the new product SNARK Π×, given the
interpolating commitment scheme (Gcom,C) and the following tuple of algo-
rithms, (G×,P×,V×). Note that Cck(1n ; 0) = (g1, g

γ
2 ).

CRS Generation: G×(1κ, n): Let gk ← BP(1κ), (g1, g2, χ, γ) ←r G
∗
1 × G

∗
2 × Z

2
p

with Z(χ) �= 0 and γ �= 0. Let crsp = ck ← (gk; (g1, g
γ
2 )FC(χ)) and crsv ←

(gk; gγZ(χ)
2 ). Output crs× = (crsp, crsv).

Common Input: u× = ((A1, A
γ
2), (B1, B

γ
2 ), (C1, C

γ
2 )).

Proving: P×(crsp;u×;w× = (a , b, c), r× = (ra, rb, rc)): Compute πwi(X) =∑n
i=0 πiX

i as in Eq. (1) and π× as in Eq. (2). Output π×.
Verification: V×(crsv;u×;π×): accept if ê(A1, B

γ
2 ) = ê(g1, C

γ
2 ) · ê(π×, g

γZ(χ)
2 ).
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Since one can recompute it from ck, inclusion of g
γZ(χ)
2 in the CRS is only needed

to speed up the verification. Here as in the shift SNARK of Sect. 5, validity of
the commitments will be verified in the master SNARK. This is since the master
SNARKs use some of the commitments in several sub-SNARKs, while it suffices
to verify the validity of every commitment only once.

To obtain an argument of knowledge, we use knowledge assumptions in all
following proofs. This SNARK is not zero-knowledge since the possible simu-
lator gets three commitments as inputs but not their openings; to create an
accepting argument the simulator must at least know how to open the commit-
ment (A1B1/C1, A

γ
2Bγ

2 /Cγ
2 ) to a ◦b−c. It is witness-indistinguishable, and this

suffices for the Subset-Sum and other master SNARKs to be zero-knowledge.

Theorem 2. Π× is perfectly complete and witness-indistinguishable. If the
input consists of valid commitments, and BP is n-TSDH and (n, ∅, ∅)-PKE
secure, then Π× is an (Θ(n)-bounded-auxiliary-input) adaptive argument of
knowledge.

Proof. Perfect completeness: follows from the discussion in the beginning
of this section. Perfect witness-indistinguishability: since the argument
π× that satisfies the verification equations is unique, all witnesses result in the
same argument, and thus this argument is witness-indistinguishable.

Argument of knowledge: Assume that Aaok is an adversary that, given
crs×, returns (u×, π) such that V×(crsv;u×, π) = 1. Assume that the PKE
assumption holds, and let XA be the extractor that returns openings of the
commitments in u×, i.e., (a , ra), (b, rb), and (c, rc). We now claim that XA is
also the extractor needed to achieve the argument of knowledge property.

Assume that this is not the case. We construct an adversary Atsdh against
n-TSDH. Given an n-TSDH challenge ch = (gk, ((g1, g2)χi

)n
i=0), Atsdh first gen-

erates γ ←r Z
∗
p, and then computes (this is possible since FC consists of degree

≤ n polynomials) and sends crs× to Aaok. Assume (Aaok||XA)(crs×) returns
((u× = ((A1, A

γ
2), (B1, B

γ
2 ), (C1, C

γ
2 )), π), (w× = (a , b, c), r× = (ra, rb, rC))),

s.t. ui = Cck(wi; ri) but (u×, w×, r×) �∈ R×
ck,n. Since the openings are correct,

a ◦ b �= c but π is accepting. According to Lemma 1, thus Z(X) � Qwi(X).
Since Z(X) � Qwi(X), then for some i ∈ [1 .. n], (X − ωi−1) �

Qwi(X). Write Qwi(X) = q(X)(X − ωi−1) + r for r ∈ Z
∗
p. Clearly,

deg q(X) ≤ 2n − 1. Moreover, we write q(X) = q1(X)Z(X) +
q2(X) with deg qi(X) ≤ n − 1. Since the verification succeeds,
ê(g1, g

γ
2 )Qwi(χ) = ê(π×, g

γZ(χ)
2 ), or ê(g1, g

γ
2 )q(χ)(χ−ωi−1)+r = ê(π×, g

γZ(χ)
2 ),

or ê(g1, g
γ
2 )q(χ)+r/(χ−ωi−1) = ê(π×, g

γZ(χ)/(χ−ωi−1)
2 ), or ê(g1, g

γ
2 )1/(χ−ωi−1) =

(ê(π×, g
γZ(χ)/(χ−ωi−1)
2 )/ê(gq(χ)

1 , gγ
2 ))r−1

.
Now, ê(gq(χ)

1 , gγ
2 ) = ê(gq1(χ)

1 , g
γZ(χ)
2 )ê(gq2(χ)

1 , gγ
2 ), and thus it can be efficiently

computed from ((gχi

1 )n−1
i=0 , gγ

2 , g
γZ(χ)
2 ) ⊂ crs. Moreover, Z(X)/(X − ωi−1) =

	i(X) · ∏
j �=i(ω

i−1 − ωj−1), and thus g
γZ(χ)/(χ−ωi−1)
2 can be computed from

g
γ�i(χ)
2 by using generic group operations. Hence, ê(g1, g

γ
2 )1/(χ−ωi−1) can be
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computed from ((gχi

1 )n−1
i=0 , gγ

2 , g
γZ(χ)
2 , (gγ�i(χ)

2 )n
i=1) (that can be computed from

ch), by using generic group operations. Thus, the adversary has computed
(r = ωi−1, ê(g1, g

γ
2 )1/(χ−r)), for r �= χ. Since Atsdh knows γ �= 0, he can finally

compute (r, ê(g1, g2)1/(χ−r)), and thus break the n-TSDH assumption.
Hence, the argument of knowledge property follows. ��
We remark that the product SNARK (but not the shift SNARK of Sect. 5)

can be seen as a QAP-based SNARK [17], namely for the relation a ◦ b −
c. (Constructing a QAP-based shift SNARK is possible, but results in using
different polynomials and thus in a different commitment scheme.)

The prover computation is dominated by the following: (i) one (n + 1)-wide
multi-exponentiation in G1. By using the Pippenger’s multi-exponentiation algo-
rithm for large n this means approximately n+1 bilinear-group multiplications,
see [29]. For small values of n, one can use the algorithm by Straus [32]; then one
has to execute Θ(n/ log n) bilinear-group exponentiations. (ii) three polynomial
interpolations, one polynomial multiplication, and one polynomial division to
compute the coefficients of the polynomial πwi(X). Since polynomial division
can be implemented as 2 polynomial multiplications (by using pre-computation
and storing some extra information in the CRS, [24]), this part is dominated by
two inverse FFT-s and three polynomial multiplications.

The verifier computation is dominated by 3 pairings. (We will count the cost
of validity verifications separately in the master SNARKs.) In the special case
C1 = A1 (e.g., in the Boolean SNARK, where we need to prove that a ◦a = a , or
in the restriction SNARK [19], where we need to prove that a ◦b = a for a public
Boolean vector b), the verification equation can be simplified to ê(A1, B

γ
2 /gγ

2 ) =
ê(π×, g

γZ(χ)
2 ), which saves one more pairing. In the full version [26], we will

describe a batch-verification technique that allows to speed up simultaneous
verification of several product SNARKs.

Excluding gk, the prover CRS together with ck consists of 2(n + 1) group
elements, while the verifier CRS consists of 1 group element. The CRS can be
computed in time Θ(n), by using an algorithm from [3].

5 New Shift SNARK

In a shift-right-by-z SNARK [15] (shift SNARK, for short), the prover aims to
convince the verifier that for 2 commitments (A,Aγ) and (B,Bγ), he knows how
to open them as (A,Aγ) = Cck(a ; ra) and (B,Bγ) = Cck(b; rb), s.t. a = b � z.
I.e., ai = bi+z for i ∈ [1 .. n − z] and ai = 0 for i ∈ [n − z + 1 .. n]. Thus,

Rrsft
ck,n :=

⎧
⎪⎨
⎪⎩

(u×, w×, r×) : u× = ((A1, A
γ
2), (B1, B

γ
2 )) ∧ w× = (a , b)∧

r× = (ra, rb) ∧ (A1, A
γ
2) = Cck(a ; ra)∧

(B1, B
γ
2 ) = Cck(b; rb) ∧ (a = b � z)

⎫
⎪⎬
⎪⎭

.

An efficient shift SNARK was described in [15]. We now reconstruct this
SNARK so that it can be used together with the interpolating commitment
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scheme. We can do it since the shift SNARK of [15] is almost independent of
the commitment scheme. We also slightly optimize the resulting SNARK; in
particular, the verifier has to execute one less pairing compared to [15].

Our strategy of constructing a shift SNARK follows the strategy of [19,23].
We start with a concrete verification equation that also contains the argument,
that we denote by π1. We write the discrete logarithm of π1 (that follows from
this equation) as Fπ(χ) + Fcon(χ), where χ is a secret key, and Fπ(X) and
Fcon(X) are two polynomials. The first polynomial, Fπ(X), is identically zero
iff the prover is honest. Since the spans of certain two polynomial sets do not
intersect, this results in an efficient adaptive shift SNARK that is an argument
of knowledge under (two) PKE assumptions.

Now, for a non-zero polynomial Z∗(X) to be defined later, consider the verifi-
cation equation ê(A1, g

γZ∗(χ)
2 )/ê(B1π1, g

γ
2 ) = 1 (due to the properties of pairing,

this is equivalent to verifying that π1 = A
Z∗(χ)
1 /B1), with (A1, A

γ
2) and (B1, B

γ
2 )

being interpolating commitments to a and b, and π1 = g
π(χ)
1 for some polynomial

π(X). Denote r(X) := (raZ∗(X) − rb)Z(X). Taking a discrete logarithm of the
verification equation, we get that π(X) = (raZ(X) +

∑n
i=1 ai	i(X)) Z∗(X) −

(rbZ(X) +
∑n

i=1 bi	i(X)) = Z∗(X)
∑n

i=1 ai	i(X) − ∑n
i=1 bi	i(X) + r(X) =(∑n−z

i=1 ai	i(X) +
∑n

i=n−z+1 ai	i(X)
)

Z∗(X) + r(X) − ∑n−z
i=1 bi+z	i+z(X) −∑z

i=1 bi	i(X). Hence, π(X) = Fπ(X) + Fcon(X), where

Fπ(X) =
(∑n−z

i=1 (ai − bi+z)	i(X) +
∑n

i=n−z+1 ai	i(X)
)

· Z∗(X),

Fcon(X) =
(∑n

i=z+1 bi(	i−z(X)Z∗(X) − 	i(X)) − ∑z
i=1 bi	i(X)

)
+ r(X).

Clearly, the prover is honest iff Fπ(X) = 0, which holds iff π(X) =
Fcon(X), i.e., π(X) belongs to the span of Fz−rsft := (	i−z(X)Z∗(X) −
	i(X))n

i=z+1, (	i(X))z
i=1, Z(X)Z∗(X), Z(X)). For the shift SNARK to be an

argument of knowledge, we need that

(i) (	i(X)Z∗(X))n
i=1 is linearly independent, and

(ii) Fπ(X) ∩ span(Fz−rsft) = ∅.

Together, (i) and (ii) guarantee that from π(X) ∈ span(Fz−rsft) it follows that
a is a shift of b.

We guarantee that π(X) ∈ span(Fz−rsft) by a knowledge assumption
(w.r.t. another knowledge secret δ); for this we will also show that Fz−rsft

is linearly independent. As in the case of the product SNARK, we also need
that (A1, A

γ
2) and (B1, B

γ
2 ) are actually commitments of n-dimensional vectors

(w.r.t. γ), i.e., we rely on two PKE assumptions.
Denote Fπ := {	i(X)Z∗(X)}n

i=1. For a certain choice of Z∗(X), both (i) and
(ii) follow from the next lemma.

Lemma 2. Let Z∗(X) = Z(X)2. Then Fπ ∪ Fz−rsft is linearly independent.

Proof. Assume that there exist a ∈ Z
n
p , b ∈ Z

n
p , c ∈ Zp, and d ∈

Zp, s.t. f(X) :=
∑n

i=1 ai	i(X)Z∗(X) +
∑n

i=z+1 bi (	i−z(X)Z∗(X) − 	i(X)) −
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∑z
i=1 bi	i(X) + cZ(X)Z∗(X) + dZ(X) = 0. But then also f(ωj−1) = 0, for

j ∈ [1 .. n]. Thus, due to the definition of 	i(X) and Z(X),
∑n

i=1 bie i = 0n which
is only possible if bi = 0 for all i ∈ [1 .. n]. Thus also f ′(X) := f(X)/Z(X) =∑n

i=1 ai	i(X)Z∗(X)/Z(X) + cZ∗(X) + d = 0. But then also f ′(ωj−1) = 0 for
j ∈ [1 .. n]. Hence, cZ∗(ωj−1) + d = d = 0. Finally, f ′′(X) := f(X)/Z∗(X) =∑n

i=1 ai	i(X) + cZ(X) = 0, and from f ′′(ωj−1) = 0 for j ∈ [1 .. n], we get
a = 0n. Thus also c = 0. This finishes the proof. ��

Since the argument of knowledge property of the new shift SNARK relies on
π(X) belonging to a certain span, similarly to [15], we will use an additional
knowledge assumption. That is, it is necessary that there exists an extractor
that outputs a witness that π(X) = Fcon(X) belongs to the span of Fz−rsft.

Similarly to the product SNARK, the shift SNARK does not contain π(X) =
Fcon(X), but the value πrsft = (g1, gδ

2)
π(χ) for random χ and δ (necessary due to

the use of the second PKE assumption), computed as

πrsft ←(π1, π
δ
2) = (g1, gδ

2)
π(χ)

=
∏n

i=z+1((g1, g
δ
2)

�i−z(χ)Z∗(χ)−�i(χ))bi · ∏z
i=1((g1, g

δ
2)

�i(χ))−bi · (3)

((g1, gδ
2)

Z(χ)Z∗(χ))ra · ((g1, gδ
2)

Z(χ))−rb .

We are now ready to state the new shift-right-by-z SNARK Πrsft. It consists
of the interpolating commitment scheme and of the following three algorithms:

CRS Generation: Grsft(1κ, n): Let Z∗(X) = Z(X)2. Let gk ←
BP(1κ), (g1, g2, χ, γ, δ) ← G

∗
1 × G

∗
2 × Z

3
p, s.t. Z(χ) �= 0, γ �= 0.

Set ck ← (gk; (g1, g
γ
2 )FC(χ)), crsp ← (gk; (g1, gδ

2)
Fz−rsft(χ)), crsv ←

(gk; (g1, gδ
2)

Z(χ), g
δZ(χ)Z∗(χ)
2 ). Return crsrsft = (ck, crsp, crsv).

Common Input: ursft = ((A1, A
γ
2), (B1, B

γ
2 )).

Proving: Prsft(crsp;ursft;wrsft = (a , b), rrsft = (ra, rb)): return πrsft ← (π1, π
δ
2)

from Eq. (3).
Verification: Vrsft(crsv;ursft;πrsft = (π1, π

δ
2)): accept if ê(π1, g

δZ(χ)
2 ) =

ê(gZ(χ)
1 , πδ

2) and ê(B1π1, g
δZ(χ)
2 ) = ê(A1, g

δZ(χ)Z∗(χ)
2 ).

Since crsv can be recomputed from ck∪ crsp, then clearly it suffices to take CRS
to be crsrsft = (gk; gFC(χ)∪Fz−rsft(χ)

1 , g
γFC(χ)∪δFz−rsft(χ)
2 ).

Theorem 3. Let Z∗(X) = Z(X)2, y = deg(Z(X)Z∗(X)) = 3n. Πrsft

is perfectly complete and witness-indistinguishable. If the input consists of
valid commitments, and BP is y-PDL, (n,Fz−rsft, Y2Fz−rsft, 1)-PKE, and
(Fz−rsft,FC, Y1FC, 2)-PKE secure, then Πrsft is an (Θ(n)-bounded-auxiliary-
input) adaptive argument of knowledge.

The prover computation is dominated by two (n+2)-wide multi-exponentiations
(one in G1 and one in G2); there is no need for polynomial interpolation, mul-
tiplication or division. The communication is 2 group elements. The verifier
computation is dominated by 4 pairings. In the full version [26], we describe a
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batch-verification technique that allows to speed up simultaneous verification of
several shift SNARKs. Apart from gk, the prover CRS and ck together contain
4n + 6 group elements, and the verifier CRS contains 3 group elements.

A shift-left-by-z (necessary in [25] to construct a permutation SNARK)
SNARK can be constructed similarly. A rotation-left/right-by-z SNARK (one
committed vector is a rotation of another committed vector) requires only small
modifications, see [15].

6 New Subset-Sum SNARK

For fixed n and p = nω(1), the NP-complete language Subset-Sum over Zp

is defined as the language LSubset-Sum

n of tuples (S = (S1, . . . , Sn), s), with
Si, s ∈ Zp, such that there exists a vector b ∈ {0, 1}n with

∑n
i=1 Sibi = s

in Zp. Subset-Sum can be solved in pseudo-polynomial time O(pn) by using
dynamic programming. In the current paper, since n = κo(1) and p = 2O(κ), pn
is not polynomial in the input size n log2 p.

In a Subset-Sum SNARK, the prover aims to convince the verifier that he
knows how to open commitment (B1, B

γ
2 ) to a vector b ∈ {0, 1}n, such that∑n

i=1 Sibi = s. We show that by using the new product and shift SNARKs,
one can design a prover-efficient adaptive Subset-Sum zk-SNARK Πssum. We
emphasize that Subset-Sum is just one of the languages for which we can con-
struct an efficient zk-SNARK; Sect. 7 and the full version [26] have more exam-
ples.

First, we use the interpolating commitment scheme. The CRS generation
Gssum invokes CRS generations of the commitment scheme, the product SNARK
and the shift SNARK, sharing the same gk, g1, g2, γ, and trapdoor td = χ
between the different invocations. (Since here the argument must be zero knowl-
edge, it needs a trapdoor.) Thus, crsssum = crsrsft for z = 1.

Let e i be the ith unit vector. The prover’s actions are depicted by Fig. 1
(a precise explanation of this SNARK will be given in the completeness proof
in Theorem 4). This SNARK, even without taking into account the differences
in the product and shift SNARKs, is both simpler and moth efficient than the

Let b ∈ {0, 1}n be such that
∑n

i=1 Sibi = s.
Let (B1, B

γ
2 ) be a commitment to b.

Construct a product argument π1 to show that b ◦ b = b.
Let (C1, C

γ
2 ) be a commitment to c ← S ◦ b.

Construct a product argument π2 to show that c = S ◦ b.
Let (D1, D

γ
2 ) be a commitment to d, where di =

∑
j≥i cj .

Construct a shift-right-by-1 argument (π31, π
δ
32) to show that d = (d − c) � 1.

Construct a product argument π4 to show that e1 ◦ (d − se1) = 0n.
Output πssum = (B1, B

γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Fig. 1. The new Subset-Sum SNARK Πssum (prover’s operations)
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Subset-Sum SNARK presented in [15] where one needed an additional step of
proving that b �= 0n.

We remark that the vector d , with di =
∑

j≥i cj , is called either a vector
scan, an all-prefix-sums, or a prefix-sum of c, and (π31, π

δ
32) can be thought of

as a scan SNARK [15] that d is a correct scan of c.
After receiving πssum, the verifier computes S′

1 ← ∏
i(g

�i(χ)
1 )Si as the first

half of a commitment to S , and then performs the following verifications: (i)
Three commitment validations: ê(B1, g

γ
2 ) = ê(g1, B

γ
2 ), ê(C1, g

γ
2 ) = ê(g1, C

γ
2 ),

ê(D1, g
γ
2 ) = ê(g1,D

γ
2 ). (ii) Three product argument verifications: ê(B1/g1, B

γ
2 ) =

ê(π1, g
γZ(χ)
2 ), ê(S′

1, B
γ
2 ) = ê(g1, C

γ
2 ) · ê(π2, g

γZ(χ)
2 ), ê(g�1(χ)

1 ,Dγ
2/(gγ�1(χ)

2 )s) =
ê(π4, g

γZ(χ)
2 ). (iii) One shift argument verification, consisting of two equality

tests: ê(π31, g
δZ(χ)
2 ) = ê(gZ(χ)

1 , πδ
32), ê(D1/C1π31, g

δZ(χ)
2 ) = ê(D1, g

δZ(χ)Z∗(χ)
2 ).

Theorem 4. Πssum is perfectly complete and perfectly composable zero-
knowledge. It is an (Θ(n)-bounded-auxiliary-input) adaptive argument of knowl-
edge if BP satisfies n-TSDH and the same assumptions as in Theorem 3 (for
z = 1).

The prover computation is dominated by three commitments and the application
of 3 product SNARKs and 1 shift SNARK, i.e., by Θ(n log n) non-cryptographic
operations and Θ(n) cryptographic operations. The latter is dominated by nine
(≈n)-wide multi-exponentiations (2 in commitments to c and d and in the shift
argument, and 1 in each product argument), 7 in G1 and 4 in G2. The argument
size is constant (11 group elements), and the verifier computation is dominated
by offline computation of two (n+1)-wide multi-exponentiations (needed to once
commit to S) and online computation of 17 pairings (3 pairings to verify π2, 2
pairings to verify each of the other product arguments, 4 pairings to verify the
shift argument, and 6 pairings to verify the validity of 3 commitments). In the
full version [26], we will describe a batch-verification technique that allows to
speed up on-line part of the verification of the Subset-Sum SNARK.

As always, multi-exponentiation can be sped up by using algorithms from [29,
32]; it can also be highly parallelized, potentially resulting in very fast parallel
implementations of the zk-SNARK.

7 New Range SNARK

In a range SNARK, given public range [L ..H], the prover aims to convince the
verifier that he knows how to open commitment (A1, A

γ
2) to a value a ∈ [L ..H].

That is, that the common input (A1, A
γ
2) is a commitment to vector a with

a1 = a and ai = 0 for i > 1.
We first remark that instead of the range [L ..H], one can consider the range

[0 ..H−L], and then use the homomorphic properties of the commitment scheme
to add L to the committed value. Hence, we will just assume that the range is
equal to [0 ..H] for some H ≥ 1. Moreover, the efficiency of the following SNARK
depends on the range length.
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The new range SNARK Πrng is very similar to Πssum, except that one has
to additionally commit to a value a ∈ [0 ..H], use a specific sparse S with
Si =

⌊
(H + 2i−1)/2i

⌋
[10,27], and prove that a =

∑n
i=1 Sibi for the committed

a. Since S = (Si)n
i=1 does not depend on the instance (i.e., on a), the verifier

computation is Θ(1). On the other hand, since the commitment to a is given as
an input to the prover (and not created by prover as part of the argument), Πrng

has a more complex simulation strategy, with one more element in the trapdoor.
Let n = �log2 H� + 1. Define Si =

⌊
(H + 2i−1)/2i

⌋
for i ∈ [1 .. n] and S =

(Si). We again use the interpolating commitment scheme. To prove that a ∈
[0 ..H], we do the following.

The CRS generation Grng invokes the CRS generations of the commitment
scheme, the product SNARK and the shift SNARK, sharing the same gk and
trapdoor td = (χ, δ/γ) between the different invocations. In this case, the trap-
door has to include δ/γ (which is well defined, since γ �= 0) since the simulator
does not know how to open (A1, A

γ
2); see the proof of Theorem 5 for more details.

We note that the trapdoor only has to contain δ/γ, and not γ and δ separately.
The CRS also contains the first half of a commitment S′

1 ← ∏
(g�i(χ)

1 )Si to S ,
needed for a later efficient verification of the argument π2. Clearly, the CRS can
be computed efficiently from crsrsft (for z = 1).

1 Let a =
∑n

i=1 Sibi for bi ∈ {0, 1}.
Let (B1, B

γ
2 ) be a commitment to b.

Construct a product argument π1 to show that b = b ◦ b.
Let (C1, C

γ
2 ) be a commitment to c ← S ◦ b.

Construct a product argument π2 to show that c = S ◦ b.
Let (D1, D

γ
2 ) be a commitment to d, where di =

∑
j≥i ci.

Construct a shift argument (π31, π
δ
32) to show that d = (d − c) � 1.

2 Construct a product argument π4 to show that e1 ◦ (d − a) = 0n.

Output πrng = (B1, B
γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Fig. 2. The new range argument Πrng

The prover’s actions on input (A1, A
γ
2) are depicted by Fig. 2 (further expla-

nations are given in the concise completeness proof in Theorem5). The only
differences, compared to the prover computation of Πssum, are the computation
of bi on step 1, and of π4 on step 2. After receiving πrng, the verifier performs
the following checks: (i) Four commitment validations: ê(A1, g

γ
2 ) = ê(g1, A

γ
2),

ê(B1, g
γ
2 ) = ê(g1, B

γ
2 ), ê(C1, g

γ
2 ) = ê(g1, C

γ
2 ), ê(D1, g

γ
2 ) = ê(g1,D

γ
2 ). (ii) Three

product argument verifications: ê(B1/g1, B
γ
2 ) = ê(π1, g

γZ(χ)
2 ), ê(S′

1, B
γ
2 ) =

ê(g1, C
γ
2 ) · ê(π2, g

γZ(χ)
2 ), ê(g�1(χ)

1 ,Dγ
2/Aγ

2) = ê(π4, g
γZ(χ)
2 ). (iii) One shift argu-

ment verification, consisting of two equality tests: ê(π31, g
δZ(χ)
2 ) = ê(gZ(χ)

1 , πδ
32),

ê(D1/C1π31, g
δZ(χ)
2 ) = ê(D1, g

δZ(χ)Z∗(χ)
2 ).
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Theorem 5. Πrng is perfectly complete and composable zero-knowledge. If BP
satisfies n-TSDH and the assumptions of Theorem3, then Πrng is an adaptive
(Θ(n)-bounded-auxiliary-input) argument of knowledge.

The prover computation is dominated by three commitments and the appli-
cation of three product arguments and one shift argument, that is, by Θ(n log n)
non-cryptographic operations and Θ(n) cryptographic operations. The latter is
dominated by nine (≈n)-wide multi-exponentiations (2 in commitments to c and
d and in the shift argument, and 1 in each product argument), seven in G1 and
four in G2. The argument size is constant (11 group elements), and the verifier
computation is dominated by 19 pairings (3 pairings to verify π2, 2 pairings to
verify each of the other product arguments, 4 pairings to verify the shift argu-
ment, and 8 pairings to verify the validity of 4 commitments). In this case, since
the verifier does not have to commit to S , the verifier computation is dominated
by Θ(1) cryptographic operations.

The new range SNARK is significantly more computation-efficient for the
prover than the previous range SNARKs [11,15] that have prover computation
Θ(r−1

3 (n) log n). Πrng has better communication (11 versus 31 group elements
in [15]), and verification complexity (19 versus 65 pairings in [15]). Moreover,
Πrng is also simpler: since the prover computation is quasi-linear, we do not have
to consider various trade-offs (though they are still available) between computa-
tion and communication as in [11,15]. In the full version [26], we will use batch
verification to further speed up the verification of the Range SNARK.
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