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Preface

The 8th International Conference on the Theory and Application of Cryptographic
Techniques in Africa, Africacrypt 2016, took place April 13–15, 2016, in Fès, Mor-
occo. The conference was organized by Al Akhawayn University in Ifrane, in coop-
eration with the International Association for Cryptologic Research (IACR).

The conference received 65 submissions, all of which were reviewed by the Pro-
gram Committee. Each paper was assigned at least three reviewers, while submissions
co-authored by Program Committee members were reviewed by at least four reviewers.

The Program Committee was helped by reports from 48 external reviewers. After
highly interactive discussions and a careful deliberation, the Program Committee
selected 18 papers for presentation (less than 28 % acceptance rate). The program was
completed with invited talks: “Computing on Encrypted Data” by Vinod Vaikun-
tanathan from MIT and “A New Methodology of Constructing Functional Encryption”
by Tatsuaki Okamoto from NTT. We are very grateful to them for accepting our
invitation.

We would like to thank everyone who contributed to the success of Africacrypt
2016. We are deeply grateful to the Program Committee for their hard work, enthu-
siasm, and conscientious efforts to ensure that each paper received a thorough and fair
review. These thanks are of course extended to the external reviewers, listed on the
following pages, who took the time to help during the evaluation process. We would
also like to thank Thomas Baignères and Matthieu Finiasz for writing the iChair
software and Springer for agreeing to an accelerated schedule for printing the
proceedings.

Our thanks also go to the local Organizing Committee for their commitment and
hard work, in order to make the conference an enjoyable experience. They also go to
Driss Ouaouicha, President of Al Akhawayn University, and Dean Kevin Smith for
their unconditional support. We are deeply grateful to the sponsors Microsoft, Al
Akhawayn University, HPS Morocco, the Région Fès-Meknès, ENS, Paris, France, and
the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud), for
financially supporting the conference.

Last but not least, we wish to thank the participants, submitters, authors, presenters,
and invited speakers, and Program Committees who over the past seven editions have
made Africacrypt a highly recognized forum in which researchers can interact and
share their work and knowledge with others, for the overall growth and development of
cryptology research in the world, and Africa in particular.

April 2016 David Pointcheval
Abderrahmane Nitaj
Tajjeedine Rachidi
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Efficient (Ideal) Lattice Sieving
Using Cross-Polytope LSH

Anja Becker1(B) and Thijs Laarhoven2

1 EPFL, Lausanne, Switzerland
anja.becker@epfl.ch

2 TU/e, Eindhoven, The Netherlands
mail@thijs.com

Abstract. Combining the efficient cross-polytope locality-sensitive hash
family of Terasawa and Tanaka with the heuristic lattice sieve algorithm
of Micciancio and Voulgaris, we show how to obtain heuristic and prac-
tical speedups for solving the shortest vector problem (SVP) on both
arbitrary and ideal lattices. In both cases, the asymptotic time complex-
ity for solving SVP in dimension n is 20.298n+o(n).

For any lattice, hashes can be computed in polynomial time, which
makes our CPSieve algorithm much more practical than the SphereSieve
of Laarhoven and de Weger, while the better asymptotic complexities
imply that this algorithm will outperform the GaussSieve of Micciancio
and Voulgaris and the HashSieve of Laarhoven in moderate dimensions
as well. We performed tests to show this improvement in practice.

For ideal lattices, by observing that the hash of a shifted vector is a
shift of the hash value of the original vector and constructing rerandom-
ization matrices which preserve this property, we obtain not only a linear
decrease in the space complexity, but also a linear speedup of the overall
algorithm. We demonstrate the practicability of our cross-polytope ideal
lattice sieve ICPSieve by applying the algorithm to cyclotomic ideal lat-
tices from the ideal SVP challenge and to lattices which appear in the
cryptanalysis of NTRU.

Keywords: (Ideal) lattices · Shortest vector problem ·
Sieving algorithms · Locality-sensitive hashing

1 Introduction

Lattice-Based Cryptography. Lattices are discrete additive subgroups of R
n.

More concretely, given a basis B = {b1, . . . , bn} ⊂ R
n, the lattice generated by

B, denoted by L = L(B), is defined as the set of all integer linear combinations

The full version of the paper, including appendices, is presented on the ePrint Archive
in [12].
A. Becker—This work was supported by the Swiss National Science Foundation
under grant numbers 200021-126368 and 200020-153113.
T. Laarhoven—Part of this work was done while the second author was visiting
EPFL.

c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 3–23, 2016.
DOI: 10.1007/978-3-319-31517-1 1



4 A. Becker and T. Laarhoven

of the basis vectors: L = {∑n
i=1 μibi : μi ∈ Z}. The security of lattice-based

cryptography relies on the hardness of certain hard lattice problems, such as the
shortest vector problem (SVP): given a basis B of a lattice, find a shortest non-
zero vector v ∈ L, where shortest is defined in terms of the Euclidean norm. The
length of a shortest non-zero vector is denoted by λ1(L). A common relaxation
of SVP is the approximate shortest vector problem (SVPδ): given a basis B of
L and an approximation factor δ > 1, find a non-zero vector v ∈ L whose norm
does not exceed δ · λ1(L).

Although SVP and SVPδ with constant approximation factor δ are well-
known to be NP-hard under randomized reductions [4,31], choosing parame-
ters in lattice cryptography remains a challenge [20,38,53] as e.g. (i) the actual
computational complexity of SVP and SVPδ is still not very well understood;
and (ii) for efficiency, lattice-based cryptographic primitives such as NTRU [26]
commonly use special, structured lattices, for which solving SVP and SVPδ may
potentially be much easier than for arbitrary lattices.

SVP Algorithms. To improve our understanding of these hard lattice prob-
lems, which may ultimately help us strengthen (or lose) our faith in lattice
cryptography, the only solution seems to be to analyze algorithms that solve
these problems. Studies of algorithms for solving SVP already started in the
1980s [18,30,52] when it was shown that a technique called enumeration can
solve SVP in superexponential time (2Ω(n log n)) and polynomial space. In 2001
Ajtai et al. showed that SVP can actually be solved in single exponential time
(2Θ(n)) with a technique called sieving [5], which requires a single exponential
space complexity as well. Even more recently, two new methods were invented
for solving SVP based on using Voronoi cells [45] and on using discrete Gaussian
sampling [2]. These methods also require a single exponential time and space
complexity.

Sieving Algorithms. Out of the latter three methods with a single exponential
time complexity, sieving still seems to be the most practical to date. We give a
summary about sieving in [12, Sect. 2.2]. The provable time exponent for sieving
may be as high as 22.465n+o(n) [25,49,54] (compared to 22n+o(n) for the Voronoi
cell algorithm, and 2n+o(n) for the discrete Gaussian combiner), but various
heuristic improvements to sieving since 2001 [10,46,49,64,65] have shown that
in practice sieving may be able to solve SVP in time and space as little as
20.378n+o(n). Other works on sieving have further shown how to parallelize and
speed up sieving in practice with various polynomial speedups [14,19,29,41–
43,48,56,57], and how sieving can be made even faster on certain structured,
ideal lattices used in lattice cryptography [14,29,57]. Ultimately both Ishiguro
et al. [29] and Bos et al. [14] managed to solve an 128-dimensional ideal SVP
challenge [51] using a modified version of the GaussSieve [46], which is currently
still the highest dimension in which a challenge from the ideal lattice challenge
was successfully solved.
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Sieving and Locality-Sensitive Hashing. Even more recently, a new line of
research was initiated which combines the ideas of sieving with a technique
from the literature of nearest neighbor searching, called locality-sensitive hash-
ing (LSH) as described in [12, Sect. 2.3] and [28]. This led to a practical algo-
rithm with heuristic time and space complexities of only 20.337n+o(n) (the Hash-
Sieve [34,43]), and an algorithm with even better asymptotic complexities of
only 20.298n+o(n) (the SphereSieve [35]). However, for both methods the polyno-
mial speedups that apply to the GaussSieve for ideal lattices [14,29,57] do not
seem to apply, and the latter algorithm may be of limited practical interest due
to large hidden order terms in the LSH technique and the fact that this tech-
nique seems incompatible with the GaussSieve [46] and only works with the less
practical NV-sieve [49]. Understanding the possibilities and limitations of sieving
with LSH, as well as finding new ways to efficiently apply similar techniques to
ideal lattices remains an open problem.

Our Contributions. In this work we show how to obtain practical, exponential
speedups for sieving (in particular for the GaussSieve algorithm [14,29,46]) using
the cross-polytope LSH technique first introduced by Terasawa and Tanaka in
2007 [63] and very recently further analyzed by Andoni et al. [9]. Our results are
two-fold:

Arbitrary lattices. For arbitrary lattices, using polytope LSH leads to a practi-
cal sieve with heuristic time and space complexities of 20.298n+o(n). The exact
trade-off between the time and memory is shown in Fig. 1. The low polyno-
mial cost of computing hashes and the fact that this algorithm is based on
the GaussSieve (rather than the NV-sieve [49]) indicate that this algorithm is
more practical than the SphereSieve [35], while in moderate dimensions this
method will be faster than both the GaussSieve and the HashSieve due to its
better asymptotic time complexity.

Ideal lattices. For ideal lattices commonly used in cryptography, we show how
to obtain similar polynomial speedups and decreases in the space complexity
as in the GaussSieve [14,29,57]. In particular, both the time and space for
solving SVP decrease by a factor Θ(n), and the cost of computing hashes
decreases by a quasi-linear factor Θ(n/ log n) using Fast Fourier Transforms.

These results emphasize the potential of sieving for solving high-dimensional
instances of SVP, which in turn can be used inside lattice basis reduction algo-
rithms like BKZ [59,60] to find short (rather than shortest) vectors in even higher
dimensions. As a consequence, these results will be an important guide for esti-
mating the long-term security of lattice-based cryptography, and in particular
for selecting parameters in lattice-based cryptographic primitives.

Outline. The paper is organized as follows. In Sect. 2 we recall some background
on lattices, sieving, locality-sensitive hashing, and the polytope LSH family of
Terasawa and Tanaka [63]. Section 3 describes how to combine these techniques
to solve SVP on arbitrary lattices, and how this leads to an asymptotic time (and
space) complexity of 20.298n+o(n). Section 4 describes how to make the resulting
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Fig. 1. The heuristic space-time trade-off of various previous heuristic sieving algo-
rithms from the literature (the red points and curves), and the heuristic trade-off
between the space and time complexities obtained with our algorithm (the blue curve).
The referenced papers are: NV’08 [49] (the NV-sieve), MV’10 [46] (the GaussSieve),
WLTB’11 [64] (two-level sieving), ZPH’13 [65] (three-level sieving), BGJ’14 [10] (the
decomposition approach), Laa’15 [34] (the HashSieve), LdW’15 [35] (the SphereSieve).
Note that the trade-off curve for the CPSieve (the blue curve) overlaps with the asymp-
totic trade-off of the SphereSieve of [35](Color figure online).

algorithm even faster for lattices with a specific ideal structure, such as some
of the lattices of the ideal lattice challenge [51] and lattices appearing in the
cryptanalysis of NTRU [26].

2 Preliminaries

2.1 Lattices

Let us first recall some basics on lattices. As mentioned in the introduction, we
let L = L(B) denote the lattice generated by the basis B = {b1, . . . , bn} ⊂ R

n,
and the shortest vector problem asks to find a vector of length λ1(L), i.e. a
shortest non-zero vector in the lattice. Lattices are additive groups, and so if
v,w ∈ L, then also λvv + λww ∈ L for λv, λw ∈ Z.

Within the set of all lattices there is a subset of ideal lattices, which are
defined in terms of ideals of polynomial rings. Given a ring R = Z[X]/(g) where
g ∈ Z[X] is a degree-n monic polynomial, we can represent a polynomial v(X) =∑n

i=1 viX
i−1 in this ring by a vector v = (v1, . . . , vn). Then, given a set of

generators b1, . . . , bk ∈ R, we define the ideal I = 〈b1, . . . , bk〉 by the properties
(i) if a, b ∈ I then also λa+μb ∈ I for scalars λ, μ ∈ Z; and (ii) if a ∈ R and b ∈ I
then a · b ∈ I. Note that when these polynomials are translated to vectors, the
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first property corresponds exactly to the property of a lattice, while the second
property makes this an ideal lattice. In terms of lattices, the second property
can equivalently be written as:

(v1, . . . , vn) ∈ L ⇔ (w1, . . . , wn) ∈ L, where w ≡ X · v mod g in R. (1)

In this paper we will restrict our attention to a few specific choices of g as
follows:

Cyclic lattices: If g(X) = Xn − 1 and v = (v1, . . . , vn), then w ≡ X · v implies
that w = (vn, v1, . . . , vn−1), i.e. multiplying a polynomial in the ring by X
corresponds to a right-shift (with carry) of the corresponding vector, and so
any cyclic shift of a lattice vector is also in the lattice.

Negacyclic lattices: For the case g(X) = Xn +1 we similarly have that multi-
plying a polynomial by X in the ring corresponds to a right-shift with carry,
but in this case an extra minus sign appears with the carry: w ≡ X ·v implies
that w = (−vn, v1, . . . , vn−1).

Whereas the above descriptions of cyclic and negacyclic lattices are quite general,
below we list two instances of these lattices that appear in practice which have
certain additional properties.

NTRU lattices: Cyclic lattices most notably appear in the cryptanalysis of
NTRU [26], where the polynomial ring is R = Zq[x]/(Xp − 1) where p, q are
prime. Due to the modular ring, the corresponding lattice is not quite cyclic
but rather “block-cyclic”. The NTRU lattice is formed by the n = 2p basis
vectors bi = (q · ei‖0) for i = 1, . . . , p and bp+i = (hi‖ei) for i = 1, . . . , p,
where ei corresponds to the ith unit vector, and hi corresponds to the ith
cyclic shift of the public key h generated from the private key f , g (see [26]
for details). In this case, if v = (v1‖v2) ∈ L is a lattice vector, then also
shifting both v1 and v2 to the right or left leads to a lattice vector. Finding a
shortest non-zero vector in this lattice corresponds to finding the secret key
(f‖g) and breaking the underlying cryptosystem.

Power-of-two cyclotomic lattices: Negacyclic lattices commonly appear in
lattice cryptography, where n = 2k is a power of 2 so that, among others, g is
irreducible. The 128-dimensional ideal lattice attacked by Ishiguro et al. [29]
and Bos et al. [14] from the ideal lattice challenge [51] also belongs to this
class of lattices. Lattices of this form previously appeared in the context of
lattice cryptography in e.g. [22,40,62].

2.2 Finding Nearest Neighbors with LSH

The near(est) neighbor problem is the following [28]: Given a long list L of
n-dimensional vectors, i.e., L = {w1,w2, . . . ,wN} ⊂ R

n, preprocess L in such
a way that, when later given a target vector v /∈ L, one can efficiently find an
element w ∈ L which is close(st) to v. While in low (fixed) dimensions n there
are ways to trivially answer these queries in time sub-linear or even logarithmic
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in the list size N , in high dimensions it seems hard to do better than with a
naive brute-force list search of time O(N). This inability to efficiently store and
query lists of high-dimensional objects is sometimes referred to as the “curse
of dimensionality” [28]. Fortunately, if we know that e.g. there is a significant
gap between what is meant by “nearby” and “far away,” then there are ways to
preprocess L such that queries can be answered in time sub-linear in N , using
locality-sensitive hash families.

To use these LSH families to find nearest neighbors, we can use the following
method first described in [28] and outlined in the full version of this paper [12,
Sect. 2.3]. First, we choose t · k random hash functions hi,j ∈ H, and we use
the AND-composition to combine k of them at a time to build t different hash
functions h1, . . . , ht. Then, given the list L, we build t different hash tables
T1, . . . , Tt, where for each hash table Ti we insert w into the bucket labeled
hi(w). Finally, given the vector v, we compute its t images hi(v), gather all the
candidate vectors that collide with v in at least one of these hash tables (an
OR-composition) in a list of candidates, and search this set of candidates for a
nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends
on the quality of the underlying hash family and on the parameters k and t.
Larger values of k and t amplify the gap between the probabilities of finding
‘good’ (nearby) and ‘bad’ (faraway) vectors, which makes the list of candidates
shorter, but larger parameters come at the cost of having to compute many
hashes (during the preprocessing and querying phases) and having to store many
hash tables in memory. The following lemma shows how to balance k and t such
that the overall time complexity is minimized.

Lemma 1. [28] Let H be an (r1, r2, p1, p2)-sensitive hash family. Then, for a
list L of size N , taking

ρ =
log(1/p1)
log(1/p2)

, k =
log(N)

log(1/p2)
, t = O(Nρ), (2)

with high probability we can either (a) find an element w∗ ∈ L with D(v,w∗) ≤
r2, or (b) conclude that with high probability, no elements w ∈ L with D(v,w) >
r1 exist, with the following costs:

1. Time for preprocessing the list: O(N1+ρ log1/p2
N).

2. Space complexity of the preprocessed data: O(N1+ρ).
3. Time for answering a query v: O(Nρ).

– Hash evaluations of the query vector v: O(Nρ).
– List vectors to compare to the query vector v: O(Nρ).

Although Lemma 1 only shows how to choose k and t to minimize the time
complexity, we can also tune k and t so that we use more time and less space.
In a way this algorithm can be seen as a generalization of the naive brute-force
search method, as k = 0 and t = 1 corresponds to checking the whole list for
nearby vectors in linear time and linear space.
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2.3 Cross-Polytope Locality-Sensitive Hashing

Whereas the previous subsections covered techniques previously used in [34] and
[35], we deviate from these papers by the choice of hash function. The hash func-
tion we will use is the one originally described by Terasawa and Tanaka [63] using
simplices and orthoplices (cross polytopes), later analyzed by Andoni et al. [9].
The n-dimensional cross-polytope is defined by the vertices {±ei}, and the cor-
responding hash function based on using the n-dimensional cross-polytope is
defined by finding the vector h ∈ {±ei} which is closest to the target vector v.
Alternatively, the hash function is defined as:

h(x) = ±arg max
i

|xi| ∈ {±1,±2, . . . ,±n}, (3)

where the sign is equal to the sign of the absolute largest coordinate; if v =
(3,−5) then h(v) = −2 and h(−v) = 2. Two vectors then have the same hash
value if (i) the position of the absolute largest coordinate is the same, and (ii) the
sign of this coordinate is the same for both vectors.

As this only defines one hash function rather than an entire hash family, we
need to somehow rerandomize the hash function, which is done as follows. We
denote by A the distribution on the space of n × n real matrices where each
entry is drawn from a standard normal distribution N (0, 1). In other words, the
distribution A outputs matrices A = (ai,j) ∈ R

n×n where ai,j ∼ N (0, 1) for all
i, j. Then, by first multiplying a vector v with a random matrix A ∼ A and then
applying the base hash function h, we obtain a hash family H as

H =
{

hA : hA(x) � h(Ax), A ∼ A
}

. (4)

Using this hash family, we define probabilities by varying the matrix A, e.g.,

P [h(v) = h(w)] � PhA∼H [hA(v) = hA(w)] = PA∼A [hA(v) = hA(w)] . (5)

As suggested by experiments in [63], the above hash function family per-
forms very well in practice for distinguishing between vectors with small and
large angles (note that H is scale-invariant; h(λv) = h(v) for arbitrary λ > 0).
Terasawa and Tanaka already indicated that it seems to perform better than
Charikar’s angular or hyperplane hash family [15]. A recent study of Andoni
et al. [9] shows that indeed it provably performs very well, leading to the follow-
ing result on collision probabilities.

Lemma 2 (Cross-polytope Locality-sensitive Hashing). [9, Theorem 1]
Let θ = θ(v,w) denote the angle between two vectors v and w. Then, for large n,

Ph∼H [h(v) = h(w)] = exp
[

(− ln n) tan2

(
θ

2

)

+ O(log log n)
]

. (6)

For comparison later, we finally recall that for the spherical LSH family S
described in [7] and used in the SphereSieve [35], we have the following result
regarding collision probabilities.
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Lemma 3 (Spherical locality-sensitive hashing). [7, Lemma 3.3] Let θ =
θ(v,w) denote the angle between two vectors v and w. Then, for large n,

Ph∼S [h(v) = h(w)] = exp
[

−
√

n

2
tan2

(
θ

2

)

(1 + o(1))
]

. (7)

Note that the leading-term dependence on θ in both spherical LSH and cross-
polytope LSH is the same while the term in n is decreased from a former

√
n/2

to ln n.

3 CPSieve: Sieving in Arbitrary Lattices

To combine sieving (the GaussSieve of Micciancio and Voulgaris) with locality-
sensitive hashing (the cross-polytope LSH family of Terasawa and Tanaka) we
will make the following changes to the GaussSieve, similar to [34,35]:

– Instead of building a list of pairwise-reduced lattice vectors, we store each
vector in t hash tables T1, . . . , Tt.

– For each hash table Ti, we combine k hash functions hi,1, . . . , hi,k into one
function hi with an AND-composition.

– To reduce a new vector with the vectors which are already in the hash tables,
we only compare it to those vectors that have the same hash value in one or
more of these t hash tables (OR-composition).

– When a vector is removed from the list and added to the stack, it is removed
from all t hash tables before it is modified and added to S.

– When a vector is added to the list, it is inserted in the t hash tables in the
buckets corresponding to its t hash values.

The main difference with previous work [34,35] lies in the choice of the hash
function family, which in this paper is the efficient and asymptotically superior
cross-polytope LSH, rather than the asymptotically worse angular or hyperplane
LSH [15,34] or the less practical spherical LSH [8,35]. This leads to the CPSieve
algorithm for which we provide a pseudocode in [12, Sect. 3].

3.1 Solving SVP in Time and Space 20.298n+O(n)

To analyze the resulting algorithm and to choose suitable parameters k and t,
what matters most is the performance of the underlying locality-sensitive hash
functions; the better these functions are at separating reducible from unreducible
pairs of vectors, the fewer hash functions and hash tables we will need and the
faster the algorithm will be. In particular, as described in various literature on
locality-sensitive hashing, to estimate the performance of the LSH family one
should consider the parameter ρ = log 1/p1

log 1/p2
.

Note that the LSH family H described in Sect. 2.3 has ‘performance para-
meter’ ρ as follows, where the collision probabilities p1,2 correspond to certain
angles θ1,2 between pairs of vectors:

ρH = log(1/p1)/ log(1/p2) = tan2 (θ1/2) / tan2 (θ2/2) (1 + o(1)). (8)
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Comparing this result to Andoni et al.’s spherical hash functions h ∈ S [7,8]
used in the SphereSieve [35], which have a collision probability of

Ph∼S [h(v) = h(w)] = exp
[

−
√

n

2
tan2

(
θ

2

)

(1 + o(1))
]

, (9)

it is clear that also this spherical LSH family S achieves a ρ of

ρS = log(1/p1)/ log(1/p2) = tan2 (θ1/2) / tan2 (θ2/2) (1 + o(1)). (10)

In terms of analyzing the effects of the use of either of these hash families on
sieving, this implies that both families achieve asymptotically equivalent expo-
nents; the analysis from [35] to derive the optimal time and space complexities
of 20.298n+o(n) also applies here, thus leading to the following result.

Theorem 1. The here presented CPSieve heuristically solves SVP in time and
space 20.2972n+o(n) using the following parameters:

k = Θ(n/ log n), t = 20.0896n+o(n). (11)

By varying k and t, we further obtain the trade-off between the time and space
complexities indicated by the solid blue curve in Fig. 1.

Proof. As the dependence on θ in the collision probabilities for H and S is the
same, the analysis from [35, Appendix A] also applies to H. The only impact of
the different factor in the exponent of the collision probability (in terms of n)
is the value of k, which after a similar analysis (where it should hold that the
number of buckets roughly equals the eventual list size, i.e., Θ(nk) ∼ 2Θ(n))
turns out to lead to the given expression for k.

Note that a major difference between the two hash families H and S is
that computing a single hash value (for one hash function, before amplifica-
tion) costs 2Θ(

√
n) time for S and only at most O(n2) time for H (due to the

matrix-vector multiplication by a random Gaussian matrix A). So by replacing S
by H, the cost of computing hashes goes down from subexponential (but super-
polynomial) to only at most quadratic in n. Especially for large n, this means
cross-polytope hashing will be orders of magnitude faster than spherical hashing,
and may be competitive with the angular hashing of Charikar [15] used in the
HashSieve [34,43].

3.2 Practical Aspects of the CPSieve

Although this theoretical result already offers a substantial (albeit subexponen-
tial) improvement over the SphereSieve, and an exponential improvement over
other sieve algorithms, to make the resulting algorithm truly practical we would
like to further reduce the worst-case quadratic cost of computing hashes.

Theoretically, to compute hashes we first multiply a target vector v by a
fully random Gaussian matrix A where each entry ai,j is drawn from the same
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Gaussian distribution, and then look for the largest coordinate of v′ = Av; the
index of the largest coordinate of v′ will be the hash value. Note that finding
this largest coordinate, given v′, can be done in worst-case linear time, and so
the main bottleneck in computing hashes lies in computing the product Av. As
also described in [1,34,37], in practice it may be possible to reduce the amount
of entropy in the hash functions (the “randomness”) without significantly affect-
ing the performance of the scheme. As long as the amount of entropy is high
enough that we can build sufficiently many random, independent hash func-
tions, the algorithm will generally still work fine. Some possibilities to reduce
the complexity of computing hashes in practice are:

– Use low-precision floating-point matrices A.
– Use sparse random projection matrices.
– Use structured matrices that allow for fast matrix-vector multiplication.

Using structured matrices that allow for e.g. the use of Fast Fourier Transforms
for computing matrix-vector multiplications may significantly reduce the cost of
computing a hash value from O(n2) to O(n log n).

Probing. The idea of probing, where various hash buckets in each hash table are
traversed and checked for reductions with v (rather than only the bucket labeled
h(v)), can also be applied to the CPSieve. For a given vector v, the highest-
quality bucket (the bucket most likely to contain vectors for reductions) is the
one labeled h(v), containing other vectors which also have the same index of the
largest coordinate. It is not hard to see that the second-best bucket for reduc-
tions with v is exactly the bucket corresponding to the second-largest absolute
coordinate of v. For instance, if v = (3,−1, 8,−5, 11) then the vectors whose
largest coordinate is the fifth coordinate are most likely to be useful for reduc-
tions, and the next best option to check is those vectors whose largest coordinate
is the third coordinate. By checking multiple buckets in each hash table (rather
than just one bucket), we may reduce the number of hash tables and the overall
space complexity by a polynomial factor at almost no cost. As an example, we
performed tests in dimensions 65, 69 and 72, respectively. We set k = 2 and
test buckets according to four hash values obtained from the two largest coef-
ficients of the two levels. The result is a reduction of the memory to store the
hash tables in comparison to a single hash value: We can decrease the number
of hash tables such that the resulting memory requirement is at 84 %,75 % and
64 %, respectively, for the three dimensions in test. For further details on clever
(multi-)probing techniques for the cross-polytope LSH family H, as well as ways
to use structured matrices to reduce the quadratic cost of hashing, see [9].

3.3 Relation with Angular Hashing and a Practical Trade-Off

To put the hash family H into context, recall that the angular hash family of
Charikar [15] used in the HashSieve [34] is defined as follows: one samples a
random vector r ∈ R

n (its length is irrelevant), and assigns a hash value to a
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vector v based on whether the inner product v · r is positive (h(v) = 1) or not
(h(v) = 0). Equivalently, we apply a suitable random projection to v, and check
whether v1 is positive (h(v) = 1) or not (h(v) = 0).

In this way it is easy to see some similarities with cross-polytope hashing,
where all (instead of only one) entries of v are compared and the index of the
maximum of these entries (and the sign of the maximum entry) is used as the
hash value. This suggests a natural generalization of both angular and cross-
polytope hashing as follows:

h̃m(x) = ± arg max
i∈{1,...,m}

|xi|. (1 ≤ m ≤ n) (12)

Using random Gaussian projection matrices A and setting m = 1 then exactly
corresponds to the angular hashing technique of Charikar, while with rerandom-
izations and m = n we obtain the cross-polytope LSH family. This generalization
with arbitrary m is also equivalent to first applying a random projection onto
a low-dimensional subspace and then using the standard full-dimensional cross-
polytope hash function in this low-dimensional space.

Note that although the CPSieve is asymptotically faster than the HashSieve,
for the HashSieve the practical cost of computing hash values is much lower.
To formalize this potential trade-off, note that for arbitrary m the hash func-
tion h̃m has 2m possible outcomes, and we eventually choose the parameter k to
(asymptotically) satisfy that the total number of hash buckets in each hash table
is roughly the same as the number of vectors in the system, i.e., (2m)k ≈ 20.21n.
For given m, this translates to a condition on k as k ≈ 0.21n

log2 m+1 . For actually
computing hash values (for the moment ignoring the cost of the rerandomiza-
tions) we need to go through m of the vector coordinates to find the largest one
in absolute value, incurring a cost of about m comparisons. In total, this means
that for one hash table (which uses k hash functions) the cost of computing a
vector’s hash bucket is

(Cost of computing the right bucket) ≈ k · m ≈ 0.21n ·
[

m

log2 m + 1

]

. (13)

This suggests that to bring down the polynomial factors of computing hashes,
we should choose m as small as possible, i.e. m = 1; this also explains why
in low dimensions the HashSieve may outperform the CPSieve due to smaller
polynomial terms. On the other hand, as m increases the asymptotic exponent
of the algorithm’s time complexity decreases from 0.337n+o(n) (the HashSieve)
to 0.298n + o(n) (the CPSieve), so for high dimensions it is clear that setting
m = n is best. For moderate dimensions one might find the best option to be
somewhere in between these two extremes. Experimentally we verified this to
be the case for n = 50, where we heuristically found the best choice of m to lie
significantly closer to m = n than to m = 1; for fixed t, it seems we can slightly
reduce the time complexity by less than 20% by choosing m slightly less than
n, e.g. m ≈ 2n/3.
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3.4 Experimental Results

We first show that already in mid-size dimensions (n > 50), we observe that the
costs are similar to the asymptotic estimate for small choices of k. For a given
dimension, we can vary the parameters t and k and observe varying numbers of
vector comparisons, changes of the list size and number of hash computations.
For example, let us fix the number t of hash tables, t ∈ [80; 120]. We can now
choose different values for k in practice that influence the probability that a
candidate is a valid vector for reduction. A smaller k leads to a less restrictive
hash value such that more vectors need to be checked for reduction. Increasing k
produces a more restrictive hash value and we might need to increase the number
t of hash tables to find good collisions; otherwise the list size may increase
drastically, leading to a higher time complexity as well. Varying the parameters
means trading time against memory as illustrated in Figs. 2 and 3.1
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Setting first k = 2, we performed experiments on random lattices in dimen-
sions n = 40 to 80 with varying t ∈ [80; 120] and observed an interpolated time
complexity of around 0.36n+o(n) in logarithmic scale as illustrated by the lower
(green) line in Fig. 2. The advantage of this choice is a reduced list size which
lies close to 0.21n+o(n) as depicted in Fig. 3. If we wish to reduce the number of
computations and to approach the minimal asymptotic time, we need to increase
k (and t) with n which leads to larger list sizes of around 0.24n + o(n) in our
experiments (cf. Fig. 3). For k = 3 we observe a better approximation of the
1 The figures represent the collected data at the time of submission. More fine grained

tests w.r.t. the dimension and the various parameter choices are in progress an will
be included in the final version.
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heuristic running time of 0.298n+ o(n) as shown in Fig. 2 by the upper (orange)
line. The observed cost lies slightly below the asymptotic estimate.

Figure 2 also shows how various algorithms from the literature compare,
including (i) the GaussSieve, which performs an exhaustive search over the list
L; (ii) the HashSieve, which uses hash tables based on angular LSH; and (iii) our
new CPSieve algorithm, with parameters k = 2, 3. As indicated by the theoret-
ical cost, the new CPSieve performs clearly better in terms of the asymptotic
exponent, and this also appears from the experiments: the linear interpolation
for the data based on the CPSieve in Fig. 2 has a significantly smaller slope than
both the GaussSieve and the HashSieve. In dimensions below 60 the polyno-
mial factors for sieving still play an important role in practice, and therefore the
absolute number of operations for CPSieve lies partially above the GaussSieve
and/or the angular HashSieve.

Overall we see that the new algorithm has a distinguished lower increase
in the complexity in practice compared to the traditional GaussSieve and the
angular HashSieve, and the crossover points are already in low dimensions. As the
gap between the CPSieve and other algorithms will only increase as n increases,
this clearly highlights the potential of the CPSieve on arbitrary lattices.

Remark for Sieving Based on Spherical Locality Sensitive Filtering. Recently,
the work [11] presented a new technique for speeding up sieving algorithms,
which presents slightly better asymptotics for solving SVP in high dimensions
compared to the CPSieve presented here (20.293n+o(n) vs. 20.298n+o(n)). Note that
if for simplicity we assume the o(n) terms in the exponents of both algorithms
are the same, then the improvement over the CPSieve would be a factor 2 every
200 dimensions. Experiments with this new algorithm in [44] suggest that this
algorithm actually might not perform as well in practice as originally thought
(it only overtakes the HashSieve in dimension around 90), and clearly this factor
2 speedup every 200 dimensions compared to the CPSieve is not only negligible
in general, but also is more than compensated for on ideal lattices by the speedup
of our algorithm described in the next section.

4 ICPSieve: Sieving in Ideal Lattices

While the CPSieve is very capable of solving the shortest vector problem on
arbitrary lattices, it was already shown in various papers [14,29,57] that for
certain ideal lattices it is possible to obtain substantial polynomial speed-ups
to sieving in practice, which may make sieving even more competitive with e.g.
enumeration-based SVP solvers. As ideal lattices are commonly used in lattice
cryptography, and our main goal is to estimate the complexity of SVP on lattices
that are actually used in lattice cryptography, it is important to know if our
proposed CPSieve can be sped up on ideal lattices as well. We will show that
this is indeed the case, using similar techniques as in [14,29,57] but where we
need to do some extra work to make sure these speed-ups apply here as well.
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4.1 Ideal GaussSieve

For the ideal lattices mentioned in the preliminaries, cyclic shifts of a vec-
tor are also in the lattice (modulo minus signs) and have the same Euclidean
norm. As first described by Schneider [57], this property can be used in the
GaussSieve as follows. First, note that any vector v can be viewed as repre-
senting n vectors, namely its n shifted versions v,v(1),v(2), . . . ,v(n−1), where
we write x(s) = (xn−s+1, . . . , xn, x1, . . . , xn−s) for the sth cyclic right-shift of
x = (x1, . . . , xn). Similarly, another vector w represents n different lattice vec-
tors w,w(1),w(2), . . . ,w(n−1).

Non-ideal GaussSieve: In the standard GaussSieve, we would treat these 2n
shifts of v and w as different vectors, and we would store all of them in the
system, leading to a storage cost of 2n vectors. Furthermore, to make sure that
the list remains pairwise reduced, all

(
2n
2

) ≈ 2n2 pairs of vectors are compared
for reductions, leading to a time cost of approximately 2n2 vector comparisons.

Ideal GaussSieve: To make use of the cyclic structure of certain ideal lattices,
the main idea of the ideal GaussSieve is that comparing v(s) to w(s′) is the
same as comparing v(s−s′) to w for any s, s′: there exist shifts of v and w that
can (cannot) reduce each other if and only if there exists a shift of v that can
reduce (be reduced by) w. So instead of storing all 2n shifts, we only store the
two representative vectors v and w in the system (storage cost of 2 vectors),
and more importantly, to see if any of the shifts of v and w can reduce each
other we only compare all n shifts of v to the single vector w stored in memory
(n comparisons). To make sure that also v (w) and its own cyclic shifts are
pairwise reduced, we further need n/2 (n/2) comparisons to compare v to v(s)

(w to w(s)) for s = 1, . . . , n/2. In total, we therefore need n + n/2 + n/2 = 2n
comparisons to reduce v,w and all their cyclic shifts.

Overall, this shows that in cyclic and negacyclic lattices, the memory cost of
the GaussSieve goes down by a factor n, and the number of inner products that
we compute to make sure the list is pairwise reduced also goes down by a factor
approximately n. Although only polynomial, a factor 100 speedup and using 100
times less memory in dimension 100 can be very useful.

4.2 Hashing Shifted Vectors is Shifting Hashes of Vectors

To see how we can obtain similar improvements for the CPSieve, let us first
look at the basic hash function h(x) = ± arg maxi xi. Suppose we have a cyclic
lattice, and for some lattice vector v we have h(v) = i for some i ∈ {1, . . . , n}.
Due to the choice of the hash function, we know that if we shift the entries of v
to the right by s positions to get v(s), then the hash of this vector will increase
by s as well, modulo n:

h(v(s)) = [h(v) + s] mod n, (14)

where the result of the modular addition is assumed to lie in {1, . . . , n}. As a
result, we know that h(v) = h(w) if and only if h(v(s)) = h(w(s)) for any s.
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For the basic hash function h, this property allows us to use a similar trick as in
the ideal GaussSieve: we only store one representative of w in the hash tables,
and for reducing v we compare all n shifts v(s) to the lattice vectors in their
corresponding buckets h(v(s)). We are then guaranteed that if any pair of vectors
v(s) and w(s′) can be reduced and have the same hash value, we will encounter
this reduction when we compare v(s−s′) and w as they will also have the same
hash values and can reduce each other.

4.3 Ideal Rerandomizations Through Circulant Matrices

While this shows that the basic hash function h has this nice property that allows
us to obtain the linear decreases in the time and space complexity similar to the
ideal GaussSieve, to make this algorithm work we will need many different hash
functions from H for each of the hash tables for the AND- and OR-compositions;
in particular, the number of hash tables t (and therefore also the number of hash
functions) increases exponentially with n. And once we apply a random rotation
to a vector, we may lose the property described in (14):

hA(v(s)) = h(Av(s))
?= [h(Av) + s] mod n = [hA(v) + s] mod n, (15)

The second equality is crucial here, as without preserving the property that the
hash of a shift of a vector equals the shift of the hash of a vector, it might be
that there exists a pair of vectors v(s) and w(s′) that can be reduced and has
the same hash value, while we will not reduce v(s−s′) and w because they have
different hash values. If that happens, then not all 2n shifts of both vectors are
pairwise reduced, which implies that the ‘quality’ of the list goes down, so the
list size goes up, and we lose the factor n speedup again.

To guarantee that the second equality in (15) is always an equality, we would
like to make sure that Av(s) = (Av)(s), i.e., multiplying a shifted vector by A is
the same as shifting the vector which has already been multiplied by A. After
all, in that case we would have

hA(v(s)) = h(Av(s)) = h((Av)(s)) = [h(Av) + s] mod n = [hA(v) + s] mod n,
(16)

where the second equality follows from the condition Av(s) = (Av)(s) and the
third equality follows from the property (14) of the base hash function h. So if we
can guarantee that Av(s) = (Av)(s) for all v and s, then also these rerandomized
hash functions satisfy the property we need to obtain a linear speedup. Now, it
is not hard to see that Av(s) = (Av)(s) for all v and s is equivalent to the fact
that A is circulant; substituting v = e1 and varying s = 1, . . . , n tells us that
ai,j = a1,[j−i+1] mod n for all i and j. In other words, we are free to choose the
first row of A, and the ith row of the matrix is then defined as the (i − 1)th
cyclic shift of A.

So finally, the question becomes: can we simply impose the condition that
A is circulant? While proving that the answer is yes or no seems hard, experi-
mentally the answer seems to be yes: by only generating the first rows of each
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rerandomization matrix A at random from a standard Gaussian distribution,
and then deriving the remaining entries of A from the first row, we obtain cir-
culant matrices which appear to be as suitable for random rotations as fully
random Gaussian matrices. The resulting circulant matrices on average appear
to be as orthogonal as non-circulant ones, thus preserving relative norms and
distances between vectors, and do not seem to perform worse in our experiments
than non-circulant matrices.

Remark 1. The angular/hyperplane hash function of the HashSieve [15,34], as
well as the spherical hash functions in the SphereSieve [7,35] do not have the
properties mentioned above, and so while it may be possible to obtain the trivial
decrease in the space complexity of a factor n, it seems impossible to obtain the
factor n time speedup described above that applies to the GaussSieve and to the
CPSieve.

Remark 2. By using circulant matrices, computing hashes of shifted vectors (to
compare all shifts of a target vector v against the vectors in the hash tables)
can be done by shifting the hash of the original vector. Also, one can compute
the product of a circulant matrix with an arbitrary vector in O(n log n) time
using Fast Fourier Transforms [24] instead of O(n2) time, which for large n may
further reduce the overall time complexity of the algorithm. However, the even
faster random rotations described in [9] which may be useful for the non-ideal
case do not apply here, as we need A to be circulant to obtain the factor n
speedup.

4.4 Power-of-2 Cyclotomic Ideal Lattices (Xn + 1)

For our experiments we will consider two specific classes of ideal lattices, the
first of which is the class of ideal lattices over the ring Z[X]/(Xn + 1) where n
is a power of 2. These are negacyclic lattices, and so for any lattice vector v all
its 2n shifts are in the lattice as well, and v(n) = −v. As for comparisons in the
GaussSieve/CPSieve we usually compare both ±v to candidate vectors w, in this
case this corresponds to going through all 2n shifts of a target vector v (which
all have different hash values) and searching the hash buckets for vectors that
may reduce these vectors. In short, for each new target vector taken from the
stack, the algorithm will proceed as described in [12, Sect. 4.4]. For convenience,
we will assume that negative partial hash values hi,j(v) < 0 are replaced by
h′

i,j(v) = n − hi,j(v), so that the partial hash values always lie in the range
1, . . . , 2n and are consecutive hash values of consecutive shifted vectors.

4.5 NTRU Lattices (Xn − 1)

The lattice basis of an NTRU encryption scheme [26,27] can be described by a
prime power p, the ring R = Zq[X]/(Xp − 1), a small power q of two and two
polynomials f, g ∈ R with small coefficient, for example in {−1, 0, 1}. We require
that f is invertible in R and set h = g/f mod q. The public basis is then given
by p, q and h as the n × n matrix M (where n = 2p) as depicted in Fig. 4.
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Note that not only (f, g) but also all block-wise rotations (fXk, gXk) are
short vectors in the lattice. More generally, we observe that each block of p = n/2
entries of a lattice vector can be shifted (without minus sign) to obtain another
valid lattice vector.

For these lattices we can apply similar techniques as in the previous subsec-
tion, but in this case we only have n/2 shifts of a vector in n dimensions; the
speedups and memory gains are not equal to the dimension, but only to half
the dimension of the lattice we are trying to tackle. The improvement we expect
with respect to the non-ideal case will therefore be less than for the power-of-2
lattices described above.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
q 0

. . .

q

h0 h1 · · · hn−1 1
hn−1 h0 · · · hn−2 1
...

...
. . .

...
. . .

h1 h2 · · · h0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4. Public NTRU lattice basis.
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4.6 Experiments for Ideal Lattices

For testing the performance of SVP algorithms on ideal lattices, we focused on
NTRU lattices where n = 2p and p is prime, and on negacyclic lattices where
n = 2s is a power of 2, which can be generated with the ideal lattice challenge
generator [51]. For the NTRU lattices we considered values n = 38, 46, 58, 62, 74,
while for the cyclotomic lattices we restricted our experiments to only n = 64;
for n = 32 the data will be unreliable as the algorithm terminates very quickly
and the basis reduction sometimes already finds a shortest vector, while n = 128
is out of reach for our single-core proof-of-concept implementation; investigating
the costs of solving the 128-dimensional ideal lattice challenge with the ICP-
Sieve, as done in [14,29], is left for future work. The limited set of experiments
performed as expected, and the results are shown in Fig. 5 in comparison to the
random, non-ideal complexities of the CPSieve. The costs in the ideal case are
decreased by a factor linear in n as we make use of the (block) cyclic structure of
the respective ideal lattices as outlined in the previous subsections. We expect an
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analogue observation for different choices of the parameters. Note that for cyclo-
tomic lattices we get a better exponent as the speedup and memory improvement
are equal to n, rather than n/2 for NTRU lattices.

Acknowledgments. The authors thank Léo Ducas, Nicolas Gama and Benne de
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Abstract. The security of many cryptographic schemes has been based
on special instances of the Learning with Errors (LWE) problem,
e.g., Ring-LWE, LWE with binary secret, or LWE with ternary error.
However, recent results show that some subclasses are weaker than
expected. In this work we show that LWE with binary error, introduced
by Micciancio and Peikert, is one such subclass. We achieve this by apply-
ing the Howgrave-Graham attack on NTRU, which is a combination of
lattice techniques and a Meet-in-the-Middle approach, to this setting. We
show that the attack outperforms all other currently existing algorithms
for several natural parameter sets. For instance, for the parameter set
n = 256, m = 512, q = 256, this attack on LWE with binary error only
requires 285 operations, while the previously best attack requires 2117

operations. We additionally present a complete and improved analysis
of the attack, using analytic techniques. Finally, based on the attack,
we give concrete hardness estimations that can be used to select secure
parameters for schemes based on LWE with binary error.

Keywords: Learning with errors · Lattice-based cryptography ·
Cryptanalysis · NTRU · Hybrid attack

1 Introduction

The Learning with Errors problem (LWE) is one of the most important problems
in lattice-based cryptography. A huge variety of schemes, ranging from basic
primitives like signature [18] and encryption schemes [32] to highly advanced
schemes like group signatures [30] and fully homomorphic encryption [12], base
their security on the LWE assumption. Understanding the concrete hardness of
LWE is therefore important for selecting parameters.

Many cryptographic schemes are based on the hardness of special LWE
instances like Ring-LWE [34], or LWE with ternary error [22]. Understanding the
hardness of subclasses of the LWE problem and identifying those that are easy to
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 24–43, 2016.
DOI: 10.1007/978-3-319-31517-1 2
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solve is therefore an important task. In fact, several recent results [15,19,20,29]
show that some subclasses are easier than expected.

We show that the subclass LWE with binary error, which has been consid-
ered before in several papers [1,35], fits into this category. To show that LWE
with binary error is considerably easier than expected, we modify the hybrid
lattice-reduction and meet-in-the-middle attack by Howgrave-Graham [25] (ref-
ered to as hybrid attack in the following), apply it to this setting, and analyze its
complexity. In order to compare our approach to existing ones, we apply known
attacks on LWE to the binary error setting and analyze their complexities in this
case. Our comparison shows that the hybrid attack is much faster than existing
methods such as the enumeration attack [32,33], or the embedding approach [4]
for several natural parameter sets. Figure 1 illustrates our improvement, by com-
paring the runtime of the best previously known attack with the hybrid attack,
where m = 2n samples from an LWE distribution with binary error are given
and n is the dimension of the secret vector. For example, in the case of n = 256
and q = 256, the hardness of the problem drops from 117 to 85 bits, which is a
significant improvement. A detailed comparison between the hybrid attack and
previous approaches is given in Table 1 in Sect. 4.
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Fig. 1. Hardness of LWE instances with number of samples m = 2n and modulus
q = 256 before and after this work

The hybrid attack can also be seen as an improvement of an idea sketched by
Bai and Galbraith [9]. However, Bai and Galbraith did not provide an analysis
of their suggestion, and the analysis of Howgrave-Graham is partly based on
experiments. A theoretical analysis of the hybrid attack that is not based on
experimental results has been presented by Hirschhorn et al. in [24]. However,
their analysis requires an additional assumption.

In this work we present a complete and improved analysis based on the same
assumptions used in [25] without the additional assumption of [24], that does not
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require experimental support. For this reason, we introduce new analytic tech-
niques. Our new analysis can also be applied to the Howgrave-Graham attack,
as well as to the attack mentioned by Bai and Galbraith (see [9]). In addition,
we show how to use our techniques to analyze the decoding attack on LWE with
binary error.

Related Work. A number of recent works have highlighted the importance of
considering the hardness of variants of LWE. For example, certain choices of
rings lead to weak instances of the Ring-LWE problem [15,19,20]. Additionally,
Laine and Lauter [29] provide a polynomial time attack for LWE instances with
an exponentially large modulus q and a sufficiently narrow Gaussian error. The
existence of such weak instances shows the necessity of studying the hardness of
special instances of the LWE problem separately.

The hardness of LWE with binary error has been considered in some detail.
So far, there are known attacks that require access to superlinearly many samples
(i.e., m > O (n)), and hardness results when the crypanalyst is given a sublinear
number of additional samples (i.e., m = n+O (n/ log(n))), where n is the dimen-
sion of the secret vector. More precisely, the problem can be solved in polynomial
time using the algorithm of Arora and Ge [6], when the number of samples is
m = O (

n2
)

(see, e.g., [1]). Furthermore, Albrecht et al. [1] showed that LWE
with binary error can be solved in subexponential time using an improved ver-
sion of the Arora-Ge attack, if the attacker has access to a quasi-linear number of
samples, e.g., m = O (n log log n). On the other hand, Micciancio and Peikert [35]
proved that LWE with binary error reduces to worst-case lattice problems when
the number of samples is restricted to n + O (n/ log(n)). We close the margin
between these hardness results on the one side and the weakness results on the
other side by presenting an attack that runs with only n additional samples.

The idea of Bai and Galbraith which we build upon is to guess the first r
components of the secret vector and apply a lattice attack on the remaining
problem [9]. As noted in [5], this strategy enables the transformation of any
algorithm for solving LWE into another one whose complexity is bounded by the
cost of exhaustive search. Howgrave-Graham’s algorithm [25], which we apply
here, involves a Meet-in-the-Middle component to speed up this guessing: this
was not considered in either of [5,9]. The existence of a Meet-in-the-Middle
approach for solving LWE (without combining with any another algorithm) was
mentioned in [9] and such an algorithm was presented in [5]. In Sect. 4 we show
that it is much more efficient to combine a Meet-in-the-Middle approach with a
decoding attack than to solve LWE with binary error entirely by a Meet-in-the-
Middle approach.

Structure. In Sect. 2 we give some notation and required preliminaries. In Sect. 3
we describe how to apply the hybrid attack to LWE with binary error and analyze
its complexity. In Sect. 4 we apply other possible attacks on LWE to the binary
error case, analyze their complexities, and compare the results to the hybrid
attack.
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2 Notation and Preliminaries

Notation. In this work vectors are denoted in bold lowercase letters, e.g., a,
and matrices in bold uppercase letters, e.g., A. For a vector v ∈ R

n we write
v mod q for its unique representative modulo q in [−� q

2�, q
2 )n. Logarithms are

base two unless stated otherwise, and ln(x) denotes the natural logarithm of x.

Learning with Errors. The Learning with Errors (LWE) problem, introduced by
Regev [41], is a computational problem, whose presumed hardness is the basis
for several cryptographic constructions, e.g., [39–41]. In this work, we consider
the variant LWE with binary error.

Problem Statement 1 (LWE with binary error). Let n, q be positive inte-

gers, U be the uniform distribution on {0, 1} and s $← Un be a secret vector in
{0, 1}n. We denote by Ls,U the probability distribution on Z

n
q × Zq obtained

by choosing a ∈ Z
n
q uniformly at random, choosing e

$← U and returning
(a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

LWE with binary error is the problem of recovering s from m samples
(ai, 〈ai, si〉 + ei) ∈ Z

n
q × Zq sampled according to Ls,U , with i ∈ {1, . . . , m}.

Note that Regev defined LWE with a secret vector s chosen uniformly at random
from the whole of Z

n
q . However, it is well-known that LWE with arbitrarily

distributed secret can be transformed to LWE with secret distributed according
to the error distribution. Consequently, most cryptographic constructions are
based on LWE where secret and error are identically distributed, and we focus
on this case in this work.

Lattices and Bases. A lattice is a discrete additive subgroup of R
m. A set of

linearly independent vectors B = {b1, . . . ,bn} ⊂ R
m is called a basis of a lattice

Λ, if Λ = Λ(B), where

Λ(B) = {x ∈ R
m | x =

n∑

i=1

αibi for αi ∈ Z}.

The dimension of a lattice Λ is defined as the cardinality of some (equivalently
any) basis of Λ. For the rest of this work we restrict our studies to lattices in
R

m whose dimension is maximal, e.g., m, which are called full-ranked lattices.
The fundamental parallelepiped of a lattice basis B = {b1, . . . ,bm} ⊂ R

m is
given by

P(B) = {x ∈ R
m | x =

m∑

i=1

αibi for − 1/2 ≤ αi < 1/2}.

The determinant of a lattice Λ(B) for a basis B is defined as the m dimen-
sional volume of its fundamental parallelepiped. Note that the determinant of
the lattice is independent of the choice of the basis.
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Every lattice of dimension m ≥ 2 has infinitely many different bases. A mea-
sure for the quality of a basis is provided by the Hermite delta. A lattice basis
B = {b1, . . . ,bm} has Hermite delta δ if ‖b1‖ = δm det(Λ)1/m.

Differing estimates exist in the literature for the number of operations of a
basis reduction necessary to achieve a certain Hermite delta δ (see for example
[5,16,32,33,37]). Throughout this work we will use the estimate given by Lindner
and Peikert [32]. This is that the number of operations needed to achieve a certain
Hermite delta δ is around

opsBKZ(δ) = 21.8/ log2(δ)−110 · 2.3 · 109. (1)

A lattice Λ satisfying q · Zm ⊂ Λ ⊂ R
m is a q-ary lattice. For a matrix

A ∈ Z
m×n
q , we define the q-ary lattice

Λq(A) := {v ∈ Z
m | ∃w ∈ Z

n : Aw = v mod q}.

If m ≥ n and all column vectors A ∈ Z
m×n
q are linearly independent over Zq,

we have det(Λq(A)) = qm−n.
The closest vector problem is the problem of recovering the lattice vector

closest to a given target vector, given also a basis of the lattice. One can consider
a relaxation, namely a close vector problem, where the inputs are the same
(a basis and a target vector), and the task is to recover a lattice vector which is
sufficiently close to the target.

Babai’s Nearest Plane. The hybrid attack uses Babai’s nearest plane algo-
rithm [7] (denoted by NP in the following) as subroutine. It gets a lattice basis
B ⊂ Z

m and a target vector t ∈ R
m as input and outputs a vector e ∈ R

m

such that t − e ∈ Λ(B), which we denote by NPB(t) = e. If the used lattice
basis is clear from the context, we omit it in the notation and simply write
NP(t). A detailed explanation of nearest plane can be found in Babai’s original
work [7] and Lindner and Peikert’s follow up work [32]. The output of nearest
plane plays an important role in the analysis of the hybrid attack and can be
understood without knowing details about the algorithm itself. It depends on the
Gram-Schmidt basis of the input basis B, which is defined as B = {b1, . . . ,bn}
with

bi = bi −
i−1∑

j=1

〈bj ,bi〉
〈bj ,bj〉

bj ,

where b1 = b1. We will use the following result from [8].

Lemma 1. For a lattice basis B with Gram-Schmidt basis B and a target vector
t as input, the nearest plane algorithm returns the unique vector e ∈ P(B) that
satisfies t − e ∈ Λ(B).

Lemma 1 shows that analyzing the output of the nearest plane algorithm
requires to estimate the lengths of the basis vectors of the corresponding Gram-
Schmidt basis. The established way to do this is via the the following heuristic
(see Lindner and Peikert [32] for more details).
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Heuristic 1 (Geometric Series Assumption). Let {b1 . . .bm} ⊂ Z
m be a

reduced basis with Hermite delta δ of an m-dimensional lattice with determinant
D. Also let bi denote the basis vectors of the corresponding Gram-Schmidt basis.
Then the length of bi is approximated by

∥
∥bi

∥
∥ ≈ δ−2(i−1)+mD

1
m .

3 The Attack

In this section we present and analyze the hybrid attack on LWE with binary
error. The attack is described in Algorithm 1 of Sect. 3.1. In Theorem 1 of
Sect. 3.2 we analyze the expected runtime of the hybrid attack. Section 3.3 shows
how to optimize the attack parameters and perform a trade-off between precom-
putation and the actual attack in order to minimize the runtime of the attack.

3.1 The Hybrid Attack

In the following we describe the hybrid attack on LWE with binary error. The
attack is presented in Algorithm 1.

Let m,n, q ∈ N and let

(A,b = As̃ + e mod q) (2)

with A ∈ Z
m×n
q ,b ∈ Z

m
q , s̃ ∈ {0, 1}n and e ∈ {0, 1}m be an LWE instance with

binary error e and binary secret s̃. In order to obtain a smaller error vector we
can subtract the vector (1/2) · 1 consisting of all 1/2 entries from Eq. (2). This
yields a new LWE instance (A,b′ = As̃ + e′ mod q), where b′ = b − (1/2) · 1
and e′ = e − (1/2) · 1. The new error vector e′ now has norm

√
m/4 instead of

the expected norm
√

m/2 of the original error vector e. For r ∈ {1, . . . , n − 1},

we can split the secret s̃ =
(
v
s

)

and the matrix A = (A1|A2) into two parts

and rewrite this LWE instance as

b′ = (A1|A2)
(
v
s

)

+ e′ = A1v + A2s + e′ mod q, (3)

where v ∈ {0, 1}r, s ∈ {0, 1}n−r,A1 ∈ Z
m×r
q ,A2 ∈ Z

m×(n−r)
q ,b′ = b−(1/2)·1 ∈

Q
m, and e′ = e − (1/2) · 1 ∈ {−1/2, 1/2}m.

The main idea of the attack is to guess v and solve the remaining LWE
instance (A2, b̃ = b′ − A1v = A2s + e′ mod q), which has binary secret s and
error e′ ∈ {−1/2, 1/2}m. The new LWE instance obtained in this way turns out
to be considerably easier to solve, since the determinant det(Λq(A2)) = qm−n+r

of the new lattice is significantly bigger than the determinant det(Λq(A)) =
qm−n of the original lattice (see Sect. 6.1 of [9]). The newly obtained LWE
instance is solved by solving a close vector problem in the lattice Λq(A2). In
more detail, b̃ = A2s + qw + e′ for some vector w ∈ Z

m is close to the lattice
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Algorithm 1. The Hybrid Attack
Input : q, r ∈ Z

A = (A1|A2), where A1 ∈ Z
m×r
q ,A2 ∈ Z

m×(n−r)
q

b ∈ Z
m
q

B, a lattice basis of Λq(A2)
1 calculate c = �r/4�;
2 calculate b′ = b − (1/2) · 1;
3 while true do
4 guess a binary vector v1 ∈ {0, 1}r with c ones ;
5 calculate x1 = − NPB(−A1v1) ∈ R

m ;
6 calculate x2 = NPB(b′ − A1v1) ∈ R

m ;

7 store v1 in all the boxes addressed by A(r)
x1 ∪ A(r)

x2 ;

8 for all v2 �= v1 in all the boxes addressed by A(r)
x1 ∪ A(r)

x2 do
9 Set v = v1 + v2 and calculate x = (1/2) · 1 + NPB(b′ − A1v) ∈ R

m;
10 if x ∈ {0, 1}m and ∃s̃ ∈ {0, 1}n : b = As̃ + x mod q then
11 return x;

vector A2s + qw ∈ Λq(A2) since e′ is small. Hence e′ can be found by running
the nearest plane algorithm in combination with a sufficient basis reduction as
a precomputation (see [32]).

The guessing of v is sped up by a Meet-in-the-Middle approach, i.e., guessing
binary vectors v1 ∈ {0, 1}r and v2 ∈ {0, 1}r such that v = v1 + v2. In order
to recognize matching guesses v1 and v2 that sum up to v, one searches for
collisions in (hash) boxes. The addresses of these boxes are determined in the
following way.

Definition 1. Let m ∈ N. For a vector x ∈ R
m the set A(m)

x ⊂ {0, 1}m is
defined as

A(m)
x =

{

z ∈ {0, 1}m

∣
∣
∣
∣
(z)i = 1 for all i ∈ {1, . . . , m} with (x)i > −1/2, and
(z)i = 0 for all i ∈ {1, . . . , m} with (x)i < −1/2

}

.

Intuitively, for x2 obtained during Algorithm 1, the set A(m)
x2 captures all the

possible sign vectors of x2 added up with a vector in {−1/2, 1/2}m (where 1
represents a non-negative and 0 a negative sign). For x1 obtained during Algo-
rithm 1, the set A(m)

x1 consists only of the sign vector of x1. This is due to the fact
that x2 ∈ Z

m + {1/2}m, whereas x1 ∈ Z
m. This leads to the desired collisions,

as can be seen in the upcoming Lemma 3.

3.2 Runtime Analysis

In this section we analyze the runtime and success probability of the attack
presented in Algorithm 1. We start by presenting our main result.

Theorem 1. Let n,m, q, c ∈ N, and 1 ≤ δ ∈ R be fixed. Consider the following
input distribution of (q, r,A,b,B) for Algorithm 1. The modulus q and the attack
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parameter r = 4c are fixed, A = (A1|A2), where A1
$← Z

m×r
q , A2

$← Z
m×(n−r)
q ,

b = A
(
v
s

)

+ e mod q, where v $← {0, 1}r, s $← {0, 1}n−r, e $← {0, 1}m, and

B is some lattice basis of Λq(A2) with Hermite delta δ. Let all notations be as in
the above description of the input distribution. Assume that the approximations
given in Heuristics 2 and 4 are in fact equations and that NPB(b − (1/2) · 1 −
A1v) = e − (1/2) · 1. Then, if Algorithm 1 terminates, it finds a valid binary
error vector of the LWE with binary error instance (A,b). The probability that
Algorithm 1 terminates is at least

p0 = 2−r

(
r
2c

)

.

In case that Algorithm 1 terminates, the expected number of operations is

216
(

r
c

)(

p

(
2c
c

))−1/2

,

with

p =
m∏

i=1

(

1 − 1
riB(m−1

2 , 1
2 )

J(ri,m)
)

,

where B(·, ·) denotes the Euler beta function (see [38]),

J(ri,m) =

⎧
⎪⎨

⎪⎩

∫ ri−1

−ri−1

∫ z+ri

−1
(1 − y2)

m−3
2 dydz

+
∫ −ri

ri−1

∫ z+ri

z−ri
(1 − y2)

m−3
2 dydz for ri < 1

2∫ −ri

−ri−1

∫ z+ri

−1
(1 − y2)

m−3
2 dydz for ri ≥ 1

2 ,

and

ri =
δ−2(i−1)+mq

m−n+r
m

2
√

m/4
.

Remark 1. Algorithm 1 gets some basis B as input. This basis has a certain
quality, given by the Hermite delta δ. In practice, we can improve the attack
by providing a basis with better, i.e., smaller, Hermite delta. We achieve this
by running a basis reduction (e.g., BKZ) on B in a precomputation step (see
Sect. 3.3).

We postpone the proof of Theorem 1 to the end of this subsection, since we
first need to develop some necessary tools. We start by giving a definition of a
notion which is crucial to our analysis. We then give a useful lemma.

Definition 2. Let m ∈ N. A vector x ∈ Z
m is called y-admissible for some

vector y ∈ Z
m if NP(x) = NP(x − y) + y.

Intuitively, x being y-admissible means that running the nearest plane algo-
rithm on x and running it on x−y yields the same lattice vector, since then we
have x − NP(x) = (x − y) − NP(x − y).
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Lemma 2. Let t1 ∈ R
m, t2 ∈ R

m be two arbitrary target vectors. Then the
following are equivalent.

1. NP(t1) + NP(t2) = NP(t1 + t2).
2. t1 is NP(t1 + t2)-admissible.
3. t2 is NP(t1 + t2)-admissible.

A proof of this lemma can be found in the full version [13].
As we will see in our analysis, the expected runtime heavily depends on the

following probability. Let all notations be as in Theorem 1 and e′ = e− (1/2) ·1.
For

W = {w ∈ {0, 1}r : exactly c entries of w are 1} (4)

we define

p :=

{
Pr

v1←W
[−A1v1 is e′-admissible|v − v1 ∈ W ] if Pr

v1←W
[v − v1 ∈ W ] > 0

0 else.
(5)

Note that the hybrid attack requires that nearest plane called on the target
vector b − (1/2) · 1 − A1v returns the correct shifted error vector e − (1/2) · 1.
However, this is not a big restriction in practice, since this probability is bigger
than the probability that the same vector is e′-admissible. To see why, recall
that nearest plane returns the correct error vector if and only if it lies in the
fundamental parallelepiped Λ(B). On the other hand, Heuristic 3 states that
the probability that b − (1/2) · 1 − A1v is e′-admissible is approximately the
probability that the sum of a random point in Λ(B) and the error vector is still
in Λ(B). Consequently, we expect that NPB(b− (1/2) ·1−A1v) = e− (1/2) ·1
holds with high probability for all realistic attack parameters.

Note that the analysis of the attack on the NTRU encryption proposed by
Howgrave-Graham [25] also requires to calculate the probability p. In the original
work, this is done experimentally. Replacing this probability estimation with
the analytic methodology presented in the following removes the dependency on
experimental support in the analysis of the hybrid attack. A first mathematical
calculation of the probability p has already been presented by Hirschhorn et al.
in [24]. However, their analysis requires an additional assumption that we no
longer need.

Success Probability. In this subsection we determine the probability that
Algorithm 1 terminates. We start by giving a sufficient condition for this event.

Lemma 3. Let all notations be as in Theorem 1 and let b′ = b − (1/2) · 1
and e′ = e − (1/2) · 1. Assume that v1 and v2 are guessed in separate loops of
Algorithm 1 and satisfy v1 + v2 = v. Also let t1 = −A1v1 and t2 = b′ − A1v2

and assume NP(t1) + NP(t2) = NP(t1 + t2) = e′ holds. Then v1 and v2 collide
in at least one box chosen during Algorithm 1 and the algorithm outputs the
error vector e of the given LWE instance.
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Proof: According to the notation used in Algorithm 1, let x1 = −NP(t1) corre-
spond to v1 and x2 = NP(t2) correspond to v2. By assumption we have x1 =
x2 −e′. Using the definition it is easy to verify that x1 and x2 share at least one
common address, since e′ ∈ {−1/2, 1/2}m. Therefore v1 and v2 collide in at least
one box. Again by assumption, we obtain x = NP(b′ −A1v) = NP(t1+t2) = e′.
Hence the algorithm outputs the error vector e. �

In the following lemma we give a lower bound on the probability that Algo-
rithm 1 terminates.

Lemma 4. Let all notations be as in Theorem 1 and let b′ = b − (1/2) · 1 and
e′ = e− (1/2) ·1. Assume that if v has exactly 2c one-entries, then p > 0, where
p is as defined in Eq. (5). If NP(b′ − A1v) = e′, then Algorithm 1 terminates
with probability at least

p0 = 2−r

(
r
2c

)

.

Proof: We show that Algorithm 1 terminates if v consists of exactly 2c
one-entries. The probability of this happening is exactly p0, since there are

2r binary vectors of length r, and
(

r
2c

)

of them have exactly 2c one-entries.

Assume that v consists of exactly 2c one-entries. The claim follows directly from
Lemmas 2 and 3. Since p > 0 there exist binary vectors v1,v2 ∈ {0, 1}r, each con-
taining exactly c one-entries, such that v1+v2 = v and −A1v1 is e′-admissible.
These vectors will eventually be guessed during Algorithm 1 if it does not ter-
minate before. By Lemma 2 they satisfy

NP(−A1v1) + NP(b′ − A1v2) = NP(b′ − A1v) = e′.

Lemma 3 now guarantees that Algorithm 1 then outputs the error vector e. �

Estimating the Number of Loops. The next step is to estimate the number
of loops until the attack terminates.

Heuristic 2. Let all notations be as in Theorem1 and let b′ = b − (1/2) · 1
and e′ = e − (1/2) · 1. Assume that NP(b′ − A1v) = e′, and that v consists of
exactly 2c one-entries. Then the expected number of loops of Algorithm 1 is

L ≈
(

r
c

)(

p

(
2c
c

))−1/2

,

and the probability p, as given in Eq. (5), is

p ≈
m∏

i=1

(

1 − 1
riB(m−1

2 , 1
2 )

J(ri,m)
)

,

with B(·, ·), J(·, ·), and ri defined as in Theorem 1.



34 J. Buchmann et al.

In the following, we justify the heuristic. Assume that v consists of exactly
2c one-entries. In addition to W (see Eq. (4)), define the set

V = {v1 ∈ W : v − v1 ∈ W and − A1v1 is e′-admissible}.

Note that W is the set from which Algorithm 1 samples the vectors v1. Lemma 3
shows that the attack succeeds if two vectors v1,v2 ∈ V satisfying v1 + v2 = v
are sampled in different loops of Algorithm 1. Since otherwise the probability
of success is close to zero, for simplicity we assume that the attack is only
successful in this case. Therefore we need to estimate the necessary number of
loops in Algorithm 1 until some v1,v2 ∈ V with v1 + v2 = v are found. Note
that by Lemma 2 if v1 ∈ V , then also v2 = v − v1 ∈ V .

We start by calculating the probability that a vector sampled during Algo-
rithm 1 lies in V . By definition of p, this probability is given by

Pr
v1

$←W

[v1 ∈ V ] = p1p, where p1 := Pr
v1

$←W

[v − v1 ∈ W ].

Therefore we expect to sample a vector v1 ∈ V every 1
p1p loops in Algorithm 1.

The above equation also implies p1p = |V |
|W | , which gives us

|V | = p1p|W | = p1p

(
r
c

)

.

The probability p1 is given by p1 =
(

2c
c

)

/

(
r
c

)

, see the full version [13]. There-

fore by the birthday paradox, the expected number of loops in Algorithm 1 until
some v1,v2 ∈ V with v1 + v2 = v are found can be estimated by

L ≈ 1
p1p

√
|V | =

√(
r
c

)

√
p1p

=
(

r
c

)(

p

(
2c
c

))−1/2

.

It remains to approximate the probability p which we do in the following.
Let v1 ∈ {0, 1}r and B be some basis of Λq(A2). By Lemma 1 there exist
unique u1,u2 ∈ Λq(A2) such that NPB(−A1v1) = −A1v1 − u1 ∈ P(B) and
NPB(−A1v1 − e′) + e′ = −A1v1 − u2 ∈ e′ + P(B). Without loss of generality,
in the following we assume u1 = 0, or equivalently −A1v1 ∈ P(B). Now −A1v1

is e′-admissible if and only if u2 = u1 = 0, which is equivalent to e′ + A1v1 ∈
P(B). Therefore p is equal to the probability that e′ +A1v1 ∈ P(B), which we
determine in the following.

There exists some orthonormal transformation that aligns P(B) along the
standard axes of Rm. By applying this transformation, we may therefore assume
that P(B) is aligned along the standard axes of R

m and that in consequence
e′ is a uniformly random vector of length

√
m/4. Because A1 is uniformly ran-

dom in Z
m×r
q we may further assume that A1v1 is uniformly random in P(B),

since without loss of generality we assume A1v1 ∈ P(B). This gives rise to the
following heuristic.



On the Hardness of LWE with Binary Error 35

Heuristic 3. The probability p as defined in Eq. 5 (with respect to a reduced
basis with Hermite delta δ) is

p ≈ Pr
t

$←R, e′ $←Sm(
√

m/4)

[t + e′ ∈ R],

where
Sm(

√
m/4) = {x ∈ R

m | ‖x‖ =
√

m/4}
is the surface of a sphere with radius

√
m/4 centered around the origin and

R = {x ∈ R
m | ∀i ∈ {1, . . . , m} : −Ri/2 ≤ xi < Ri/2}

is the search rectangle with edge lengths

Ri = δ−2(i−1)+mq
m−n+r

m .

In the heuristic, the edge lengths are implied by the Geometric Series Assump-
tion.

We continue calculating the approximation of p given in Heuristic 3. Let
R and Ri be as defined in Heuristic 3. We can rewrite the approximation given
in Heuristic 3 as

p ≈ Pr
ti

$←[−Ri/2,Ri/2],e′ $←Sm(
√

m/4)

[∀i ∈ {1, . . . , m} : ti + e′
i ∈ [−Ri/2, Ri/2]].

Rescaling everything by a factor of 1/
√

m/4 leads to

p ≈ Pr
ti

$←[−ri,ri],e′ $←Sm(1)

[∀i ∈ {1, . . . , m} : ti + e′
i ∈ [−ri, ri]],

where

ri =
Ri

2
√

m/4
=

δ−2(i−1)+mq
m−n+r

m

2
√

m/4
. (6)

Unfortunately, the distributions of the coordinates of e are not independent,
which makes calculating p extremely complicated. In practice, however, the prob-
ability that ei ∈ [−Ri/2, Ri/2] is big for all but the last few indices i. This is
due to the fact that by the Geometric Series Assumption typically only the last
values Ri are small. Consequently, we expect the dependence of the remaining
entries not to be strong. This assumption was already established by Howgrave-
Graham [25] and appears to hold for all values of Ri appearing in practice.

It is therefore reasonable to assume that

p ≈
m∏

i=1

Pr
ti

$←[−ri,ri],e′
i

$←Dm

[ti + e′
i ∈ [−ri, ri]],
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were Dm denotes the distribution on the interval [−1, 1] obtained by the fol-
lowing experiment: sample a vectorw uniformly at random on the unit sphere and
then output the first (equivalently, any arbitrary but fixed) coordinate of w.

Next we explore the density function of Dm. The probability that e′
i ≤ x for

some −1 < x < 0, where e′
i

$← Dm, is given by the ratio of the surface area
of a hyperspherical cap of the unit sphere in R

m with height h = 1 + x and
the surface area of the unit sphere. This is illustrated in the full version [13] for
m = 2. The surface area of a hyperspherical cap of the unit sphere in R

m with
height h < 1 is given by (see [31])

Am(h) =
1
2
AmI2h−h2

(
m − 1

2
,
1
2

)

,

where Am = 2πm/2/Γ(m/2) is the surface area of the unit sphere and

Ix(a, b) =

∫ x

0
ta−1(1 − t)b−1dt

B(a, b)

is the regularized incomplete beta function (see [38]) and B(a, b) is the Euler
beta function.

Consequently, for −1 < x < 0, we have

Pr
e′
i

$←Dm

[e′
i ≤ x] =

Am(1 + x)
Am

=
1
2
I1−x2

(
m − 1

2
,
1
2

)

=
1

2B(m−1
2 , 1

2 )

∫ 1−x2

0

t
m−3

2 (1 − t)−1/2dt

=
1

B(m−1
2 , 1

2 )

∫ x

−1

(1 − t2)
m−3

2 dt. (7)

Together with

Pr
ti

$←[−ri,ri]

[ti ≤ x] =
∫ x

−ri

1
2ri

dy,

we can use a convolution to obtain

Pr
ti

$←[−ri,ri],e
′
i

$←Dm

[ti + e′
i ≤ x] =

1

2riB( k−1
2

, 1
2
)

∫ x

−r−1

∫ min(1,z+ri)

max(−1,z−ri)

(1 − y2)
m−3

2 dydz.

Since

Pr
ti

$←[−ri,ri],e′
i

$←Dm

[ti + e′
i ∈ [−ri, ri]] = 1 − 2

(

Pr
ti

$←[−ri,ri],e′
i

$←Dm

[ti + e′
i < −ri]

)

,
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it suffices to calculate the integral

J(ri,m) =
∫ −ri

−ri−1

∫ z+ri

max(−1,z−ri)

(1 − y2)
m−3

2 dydz (8)

in order to calculate p. We calculated the integral symbolically using sage [42],
which allows an efficient calculation of p.

Time Spend per Loop Cycle. With the estimation of the number of loops
given, the remaining task is to estimate the time spend per loop cycle. Each
cycle consists of four steps:

1. Guessing a binary vector.
2. Running the nearest plane algorithm (twice).
3. Calculating A(r)

x1 ∪ A(r)
x′
1
.

4. Dealing with collisions in the boxes.

We assume that the runtime of one inner loop of Algorithm 1 is dominated
by the runtime of the nearest plane algorithm, as argued in the following. It is
well known that sampling a binary vector is extremely fast. Furthermore, note
that only very few of the 2n addresses contain a vector, since filling a significant
proportional would take exponential time. Consequently, collisions are extremely
rare, and lines 8–11 of Algorithm 1 do not contribute much to the overall runtime.

An estimation by Howgrave-Graham [25] shows that for typical instances,
the runtime of the nearest plane algorithm exceeds the time spent for storing
the collision. We therefore omit the latter from our considerations.

Lindner and Peikert [32] estimated the time necessary to run the nearest
plane algorithm to be about 2−16 seconds, which amounts to about 215 bit
operations on their machine. This leads to the following heuristic for the runtime
of the attack.

Heuristic 4. The average number of operations per inner loop in Algorithm 1
is N ≈ 216.

Total Runtime. We are now able to prove our main theorem.

Proof (Theorem 1): By definition, every output of Algorithm 1 is a valid
binary error vector of the given LWE with binary error instance. The rest follows
directly from Lemma 4, Heuristics 2 and 4. �

3.3 Minimizing the Expected Runtime

As mentioned in Remark 1, we can perform a basis reduction to obtain a lattice
basis with smaller Hermite delta δ before running the actual attack in order
to speed up the attack. We perform a binary search for the δ such that the
estimated runtimes of both the basis reduction and the actual attack are about
equal. We also need to optimise r, the Meet-in-the-Middle dimension, which we
do numerically, as there are only finitely many r to check. We refer the reader
to the full version [13] for further details on the choice of δ and r.
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4 Comparison

In this section we consider other approaches to solve LWE with binary error and
compare these algorithms to Algorithm 1. In particular we give upper bounds
for the runtimes of the algorithms. A comparison of the most practical attacks,
including the hybrid attack, is given in Table 1.

Much of the analyses below are in a similar spirit to that given in the sur-
vey [5] for methods of solving standard LWE. However we are often able to
specifically adapt the analysis for the binary error case. Note that to solve LWE
with binary error, in addition to algorithms for standard LWE, one may also be
able to apply algorithms for the related Inhomogeneous Short Integer Solution
problem. A discussion of these algorithms is given in [10].

4.1 Number of Samples

Recall that for reducing LWE with binary error to worst-case problems on lat-
tices, one must restrict the number of samples to be m = n (1 + Ω(1/ log n)) [35,
Theorem 1.2]. On the other hand, with slightly more than linear samples, such
as m = O(n log log n), the algorithm given in [1] is subexponential. Therefore if
a scheme bases its security on the hardness of LWE with binary error, it is rea-
sonable to expect that one has only access to at most linearly many samples. We
assume this is the case in our analysis below. For concreteness, we fix m = 2n.

4.2 Algorithms for Solving LWE

There are several approaches one could use to solve LWE or its variants (see the
survey [5]). One may employ combinatorial algorithms such as the BKW [2,11]

Table 1. Comparison of attacks on LWE with binary error using at most m = 2n
samples. log2(Tattack) denotes the bit operations required to perform the algorithm
described in ‘attack’. For algorithms requiring lattice reduction, we choose whichever
is the fewer of m = 2n or the ‘optimal subdimension’ m =

√
n log(q)/ log(δ) [36].

Instance n q log2(THybrid attack) log2(TDecoding) log2(TuSVP) log2

(TDistinguishing)

I 128 256 55 67 82 37

II 160 256 61 77 122 62

III 192 256 68 88 162 85

IV 224 256 76 102 165 109

V 256 256 85 117 203 132

VI 288 256 98 136 254 154

VII 320 256 110 158 327 176

VIII 352 256 123 185 443 198
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algorithm and its variants [3,17,23,27]. However, all these algorithms require
far more samples than are available in the binary error case, and are therefore
ruled out. We also omit a Meet-in-the-Middle attack [5] or attacks based on the
algorithm of Arora and Ge [1,6], as they will be slower than other methods. We
consider them in the full version [13] for completeness.

Distinguishing Attack. One can solve LWE via a distinguishing attack as
described in [32,36]. The idea is to find a short vector ‖v‖ in the scaled dual
lattice of A, i.e. the lattice Λ = {w ∈ Z

m
q | wA ≡ 0 mod q}. Then, if the

problem is to distinguish (A,b) where b is either formed as an LWE instance
b = As + e or is uniformly random, one can use this short vector v as follows.
Consider 〈v,b〉 = 〈v, e〉 if b is from an LWE instance, which as the inner product
of two short vectors, is small mod q. On the other hand, if b is uniform then
〈v,b〉 is uniform on Zq so these cases can be distinguished if v is suitably small.

We determine how small a v which must be found as follows. Recall that our
errors are chosen uniformly at random from {0, 1}. So they follow a Bernoulli
distribution with parameter 1/2, and have expectation 1/2 and variance 1/4.
Consider the distribution of 〈v, e〉. Since the errors ei are chosen independently,
its expectation is 1

2

∑m
i=1 vi and its variance is 1

4

∑m
i=1 v2

i . Since 〈v, e〉 is the
sum of many independent random variables, asymptotically it follows a normal
distribution with those parameters. Since the distinguishing attack success is
determined by the variance and not the mean, and we can account for the mean,
we assume it is zero. Then we can use the result of [32] to say that we can
distinguish a Gaussian from uniform with advantage close to exp(−π(‖v‖·s/q)2),
where s is the width parameter of the Gaussian. In our case s2 = 2π · 1

4 so we
can distinguish with advantage close to ε = exp(−π2 ‖v‖2 /2q2). Therefore to

distinguish with advantage ε we require a vector v of length ‖v‖ = q ·
√

2 ln (1/ε)

π .
We calculate a basis of the scaled dual lattice Λ and find a short vector

v ∈ Λ by lattice basis reduction. With high probability the lattice Λ has rank
m and volume qn [5,36]. By definition of the Hermite delta we therefore have
‖v‖ = δmqn/m. So the Hermite delta we require to achieve for the attack to

succeed with advantage ε is given by δmqn/m = q ·
√

2 ln (1/ε)

π . Assuming that
the number of samples m is large enough to use the ‘optimal subdimension’
m =

√
n log(q)/ log(δ) [36], we rearrange to obtain

log δ =

(

log (q) + log
(√

2 ln (1/ε)

π

))2

4n log (q)
.

To establish the estimates for the runtime of this attack given in Table 1, we
assume one has to run the algorithm about 1/ε times to succeed, and consider
δ as a function of ε. The overall running time is then given by 1/ε multiplied
the estimated time, according to Eq. (1), to achieve δ(ε). We pick the optimal ε
such that this overall running time is minimized.
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It is possible that we do not have enough samples to use the ‘optimal subdi-
mension’, in which case we use m = 2n. For details, see the full version [13].

Reducing to uSVP. One may solve LWE via Kannan’s embedding technique
[26], thus seeing an LWE instance as a unique shortest vector problem instance.
This technique is used in [4,9]. We follow analogously the analysis in [4,5] for
the LWE with binary error case and obtain that we require a Hermite delta of
log(δ) = [log(q)−log(2τ

√
πe)]2

4n log(q) for this attack to succeed. The number of operation
necessary to achieve this Hermite delta is estimated using Eq. (1). A compre-
hensive analysis can be found in the full version [13].

Decoding. The decoding approach for solving LWE was first described in [32]
and is based on Babai’s nearest plane algorithm [7]. The aim is to recover the
error vector (so seeing LWE as a Bounded Distance Decoding instance). Recall
(Lemma 1) that the error vector can be recovered using Babai’s algorithm if it
lies within the fundamental parallelepiped of the Gram-Schmidt basis. The idea
of Lindner and Peikert in [32] is to widen the search parallelepiped to

Pdecoding = {x ∈ Z
m | x =

n∑

i=1

αidibi for − 1/2 ≤ αi < 1/2},

where d1, . . . , dm are integers chosen by the attacker.
Following the analysis of Lindner and Peikert, we estimate that an attack

on a reduced basis with Hermite delta δ requires about 215 · ∏m
i=1 di operations.

However, the analysis of the success probability is more complicated. By defi-
nition of search parallelepiped, the attack succeeds if (and only if) the error e
lies in the search rectangle Pdecoding. Under the same assumption as in Sect. 3.2
(and using the same error transformation), this probability can be estimated via

pdecoding ≈
m∏

i=1

(

Pr
ei

$←Dm

[ei ∈ [−ri, ri]]

)

where

ri = di
δ−2(i−1)+mq

m−n
m

2
√

m/4
.

Together with Eq. (7), this leads to

pdecoding ≈
m∏

i=1

(

1 − 2
B(m−1

2 , 1
2 )

∫ −ri

−1

(1 − t2)
m−3

2 dt

)

A standard way to increase the runtime of the attack is to use basis reduction
(like BKZ2.0) as precomputation. Predicting the runtime of BKZ2.0 according
to Eq. (1) leads to the runtime estimation

Tdecoding ≈ 21.8/ log2(δ)−110 · 2.3 · 109 + 215
∏m

i=1 di

pdecoding
.



On the Hardness of LWE with Binary Error 41

Using the same numeric optimization techniques as presented above to minimize
the expected runtime leads to the complexity estimates given in Table 1.
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Abstract. In view of the expected progress in cryptanalysis it is
important to find alternatives for currently used signature schemes
such as RSA and ECDSA. The most promising lattice-based signature
schemes to replace these schemes are (CRYPTO 2013) and GLP (CHES
2012). Both come with a security reduction from a lattice problem and
have high performance. However, their parameters are not chosen accord-
ing to their provided security reduction, i.e., the instantiation is not
provably secure. In this paper, we present the first lattice-based signa-
ture scheme with good performance when provably secure instantiated.
To this end, we provide a tight security reduction for the new scheme from
the ring learning with errors problem which allows for provably secure
and efficient instantiations. We present experimental results obtained
from a software implementation of our scheme. They show that our
scheme, when provably secure instantiated, performs comparably with
BLISS and the GLP scheme.

Keywords: Lattice-based cryptography · Tightness · Ideal lattices ·
Signatures · Ring learning with errors

1 Introduction

Electronic signatures are essential for cybersecurity. For example, they provide
authenticity proofs for billions of software downloads daily on the Internet. In
recent years, lattice-based signatures such as BLISS [23] or the GLP [28] sig-
nature scheme have become an interesting alternative to the schemes that are
currently being used in practice, like RSA and ECDSA. Providing such alterna-
tives is very important in view of the expected progress in cryptanalysis of RSA
and ECDSA, in particular by quantum computers.

The lattice-based signature schemes BLISS and GLP have two important
properties. They have good performance, i.e., they can compete with RSA and
ECDSA. Also, they are provably secure: they allow for security reductions from
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lattice problems that are expected to be hard even in the presence of quantum
computers.

Provable security is a very strong security argument. In this paper, we go one
step further and present an R-LWE-based signature scheme which has a security
property which we consider to be even stronger: good performance with provably
secure instantiation. By this property we mean that the parameters are chosen
according to the security reduction and at the same time allow for good perfor-
mance. This implies the following: suppose that parameters are constructed for
a certain security level. By virtue of the security reduction these parameters cor-
respond to an instance of the ring learning with errors problem (R-LWE). Since
the parameters were chosen according to the security reduction, this reduction
provably guarantees that our scheme has the selected security level as long as
the corresponding R-LWE instance is intractable. In other words, hardness state-
ments for R-LWE instances have a provable consequence for the security levels
of our scheme. Currently, both BLISS and GLP do not allow for good perfor-
mance and provably secure instantiation at the same time. Choosing parameters
according to the security reductions for these schemes reduces their performance
significantly (see for example [11,17]).

We note that our scheme has another potential advantage over BLISS. BLISS
uses Gaussian sampling, which is generally assumed to be vulnerable to timing
attacks [14,20], while GLP and our scheme use uniform sampling during signa-
ture generation which appears to not have this vulnerability.

Our signature scheme is based on the design of Bai and Galbraith [10] and
its optimizations by Dagdelen et al. [20]. The reason why our scheme allows
for good performance with provably secure instantiation is that we are able to
give a tight security reduction from the R-LWE problem to our scheme. The
proof of this result is an optimized adaption of the tightness proof in [6] to the
R-LWE setting which allows for better tightness bounds. To demonstrate that
our scheme has good performance, we present experimental results which are
based on a software implementation. These results show that our scheme, when
provably secure instantiated, performs comparably with BLISS and the GLP
scheme without provably secure instantiation.

Related Work. The first lattice-based signature scheme with tight security reduc-
tion is the GPV signature scheme [27]. Its instantiations are provably secure,
but not efficient. Most of the recent lattice-based signature schemes [10,20,23,
28,38] come neither with a tight reduction nor with provably secure instan-
tiation. The security of all those schemes was proven by applying the pow-
erful Forking Lemma [41], which inherently results in a non-tight security
reduction.

Abdalla et al. [1] circumvent the Forking Lemma and use an approach
inspired by the proof idea introduced by Katz and Wang [32]. However, their
tight reduction demands an impractically large choice of the modulus. Recently,
Alkim et al. [6] also used the approach by Katz and Wang [32] to provide a tight
security reduction from the learning with errors problem over standard lattices
(LWE) to an improved variant of the Bai-Galbraith signature scheme [10,20].
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Instantiations of their scheme are provably secure, but they yield larger key
sizes and worse run times than the BLISS and GLP signature scheme.

Organization. After stating notations and definitions in Sect. 2, we describe the
signature scheme in Sect. 3. In Sect. 4, we analyze the hardness of R-LWE and we
explain the derivation of the parameter sets. Our implementation is described
in Sect. 5. We give our experimental results and compare them with BLISS and
GLP in Sect. 6.

2 Preliminaries

2.1 Notation

Let k ∈ N. Throughout this paper we define n = 2k ∈ N. Let q ∈ N be a prime
with q = 1 (mod 2n). We denote by Zq the finite field Z/qZ and identify an
element in Zq with its representative in (−�q/2�, �q/2�], and we write (mod q)
to denote the unique representative in Zq. We define the ring R = Z[x]/(xn +1)
and denote the set of its units by R×. Further, we define Rq = Zq[x]/(xn + 1),
Rq,[B] = {∑n−1

i=0 aix
i ∈ Rq | i ∈ [0, n − 1], ai ∈ [−B,B]} for B ∈ [0, q/2], and

Bn,ω =
{
v ∈ {0, 1}n | ||v||2 = ω

}
for ω ∈ [0, n]. We denote polynomials by lower

case letters (e.g., p) and (column) vectors by bold lower case letters (e.g., v).
Without further mentioning, we use the symbol p to denote the coefficient vector
of a polynomial p. We denote matrices by bold upper case letters (e.g., M) and
the transpose of a matrix M by MT . We indicate the Euclidean norm of a vector
v ∈ R

n by ||v||. All logarithms are in base 2.

Rounding Operators. Let d ∈ N and c ∈ Z. We denote by [c]2d the unique repre-
sentative of c modulo 2d in the set (−2d−1, 2d−1] ⊂ Z. Let �·�d be the rounding
operator defined as �·�d : Z → Z, c 	→ (c − [c]2d)/2d. We naturally extend these
definitions to vectors and polynomials by applying �·�d and [·]2d to each com-
ponent of the vector and to each coefficient of the polynomial, respectively. We
abbreviate �v (mod q)�d by �v�d,q.

Algorithms and Distributions. If A is a randomized algorithm we denote by
y ← A(x) the output of A on input x and randomly chosen (internal) coins.
For an oracle O we write AO to indicate that A has access to that oracle. Let
σ ∈ R>0. The centered discrete Gaussian distribution Dσ on Z with standard
deviation σ is defined as follows: for every z ∈ Z the probability of z is given
by ρσ(z)/ρσ(Z), where ρσ(z) = exp(−z2

2σ2 ) and ρσ(Z) = 1 + 2
∑∞

z=1 ρσ(z). We
denote by d ← Dσ the operation of sampling an element d with Gaussian dis-
tribution Dσ. When writing v ← Dn

σ we mean sampling each component of
the vector v with Gaussian distribution. To simplify the notation we indicate
sampling all coefficients of a polynomial a ∈ R with Gaussian distribution by
a ← Dn

σ as well. Similarly, for a finite set S we write s ← U(S), or simply s ←$ S,
to indicate that an element s is sampled uniformly at random from S.
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Lattices and Gaussian Heuristic. Let n ≥ k > 0. A k-dimensional lattice Λ is a
discrete additive subgroup of Rn containing all integer linear combinations of k
linearly independent vectors {b1, . . . ,bk} = B, i.e., Λ = Λ(B) = { Bx | x ∈ Z

k }.
The determinant of a lattice is defined by det(Λ(B)) =

√
det (B�B).

Throughout this paper we are mostly concerned with q-ary lattices. Λ ∈ Z
n

is called a q-ary lattice if qZ ⊂ Λ for some q ∈ Z. Let A ←$ Z
m×n
q . We define

the q-ary lattices Λ⊥
q (A) = {x ∈ Z

n | Ax = 0 (mod q)} and Λq(A) = {x ∈
Z

n | ∃s ∈ Z
m s.t. x = A�s (mod q)}. Furthermore, for u ∈ Z

m
q we define cosets

Λ⊥
u,q(A) = {x ∈ Z

n | Ax = u (mod q)}, i.e., Λ⊥
q (A) = Λ⊥

0,q(A). One can
consider Λ⊥

u,q(A) as a shifted lattice by a vector u, i.e., Λ⊥
u,q(A) = Λ⊥

q (A) + y
where y ∈ Z

m is an integer solution of Ax = u (mod q).
Let S be a measurable set and let Λ ⊂ Z

n be a lattice. The Gaussian heuristic
approximates the number of lattice points in the set S by |S ∩ Λ| = vol(S)

det(Λ) .

2.2 The Learning with Errors Problem Over Rings

Given the isomorphism Φq : Zn → Rq with (a0, ..., an−1) 	→ a0 + a1x + ... +
an−1x

n−1, Rq is isomorphic to Z
n
q as a Z-module. Therefore, we can identify

a polynomial a = a0 + a1x + ... + an−1x
n−1 ∈ Rq with its coefficient vector

a = (a0, . . . , an−1)T . We define the rotation of a vector a = (a0, . . . , an−1)T

to be the coefficient vector of ax ∈ Rq, i.e., rot(a) = (−an−1, a0, . . . , an−2)T .
Furthermore, we define the rotation matrix of a polynomial a as Rot(a) =
(a, rot(a), rot2(a), . . . , rotn−1(a)) ∈ Z

n×n
q . Polynomial multiplication of a, b ∈

Rq is equivalent to the matrix-vector multiplication Rot(a)b in Zq. It can be eas-
ily shown that a ∈ Rq is invertible, i.e., a ∈ R×

q , if and only if rank(Rot(a)) = n.
We define the learning with errors distribution and the ring learning with

errors problem (R-LWE) in the following.

Definition 1 (Learning with Errors Distribution). Let n, q > 0 be inte-
gers, s ∈ Rq, and χ be a distribution over R. We define by Ds,χ the R-LWE
distribution which outputs (a, 〈a, s〉 + e) ∈ Rq × Rq, where a ←$ Rq and e ← χ.

Since our signature scheme is based on the decisional R-LWE problem, we omit
the definition of the search version and state only the decisional learning with
errors problem.

Definition 2 (Ring Learning with Errors Problem). Let n, q > 0 be inte-
gers and q = 2k for some k ∈ N>0 and χ be a distribution over R. More-
over, define Oχ to be an oracle, which upon input polynomial s ∈ Rq returns
samples from the learning with errors distribution Ds,χ. The ring learning with
errors problem R-LWEn,m,q,χ is (t, ε)-hard if for any probabilistic polynomial time
(PPT) algorithm A, running in time t and making at most m queries to its ora-
cle, it holds that

AdvR-LWE
n,q,χ (A) =

∣
∣
∣Pr

[
AOχ(s)(·) = 1

]
− Pr

[
AU(Zn

q ×Zq)(·) = 1
]∣
∣
∣ ≤ ε ,

where the probabilities are taken over the random choices of s ← U(Rq), the
random choice of the distribution Ds,χ, as well as the random coins of A.
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The R-LWE assumption comes with a worst-case to average-case reduction to
problems over ideal lattices [39]. Furthermore, it was shown in [7] that the learn-
ing with errors problem remains hard if one chooses the secret distribution to
be the same as the error distribution. We write R-LWEn,m,q,σ if χ is the discrete
Gaussian distribution with standard deviation σ.

3 Description and Security of the Signature Scheme

In this section, we present our signature scheme and we prove it to be unforge-
able against a chosen-message attack—shortly ufcma-secure (cf. AppendixA,
Fig. 3)—as long as R-LWE is computationally hard. We recall basic definitions
and notations about signatures schemes in AppendixA. We name our scheme
ring-TESLA since it is based on the signature scheme TESLA by Alkim et al. [6].

Our signature scheme is parametrized by the integers n ∈ N>0, ω, d, B, q, U ,
L, κ, and the security parameter λ with n > κ > λ, by the Gaussian distribution
Dσ with standard deviation σ, by the hash function H : {0, 1}∗ → {0, 1}κ, and
by the encoding function F : {0, 1}κ → Bn,ω. The encoding function F takes
the (binary) output of the hash function H and maps it to a vector of length
n and weight ω. For more information about the encoding function see [28].
Furthermore, let a1, a2 ∈ R×

q be two uniformly sampled polynomials which are
publicly known as global constants. They can be shared among arbitrary many
signers.

The secret key sk consists of three small polynomials s, e1, and e2; the public
key pk is given by two polynomials t1 = a1s+e1 and t2 = a2s+e2. To ensure that
signatures are short and verified correctly, we use a procedure checkE similar to
the one introduced by Dagdelen et al. [20]. Let maxk(·) be a function that takes
as input a vector and returns its k-th largest entry. The key polynomials e1, e2
are rejected during checkE if

∑ω
k=1 maxk(ei) is greater then L for at least one

of e1 or e2. Otherwise e1, e2 are accepted. To sign a message μ, first a random
polynomial y ∈ Rq,[B] is chosen. Afterwards, the most significant bits of a1y
and a2y and the message are hashed to a value c. The signature of μ consists
of the hash value c and the polynomial z = sc + y. To hide the secret, rejection
sampling is applied. For verification of the signature (c, z), the size of z and
the equality of c and H(�a1z − t1c�d , �a2z − t2c�d , μ) is checked. The signature
scheme ring-TESLA is depicted in detail in Fig. 1. We present parameter sets in
Table 1 and their derivation in Sect. 4.

In our security reduction we follow an idea introduced by Katz and Wang [32]
that can be summarized at follows: assume there exists an algorithm A that
forges a signature given a valid public key, i.e., an LWE tuple. In contrast, given
a random key A forges a signature only with very small probability. Hence, the
security reduction distinguishes whether its own challenge tuple is an LWE tuple
or not by the different behavior of the algorithm A.

Theorem 1. Let n, ω, d,B, q, U, L, and σ be arbitrary parameters satisfying the
constraints described in Sect. 4. Assume that the Gaussian heuristic holds for
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Fig. 1. Specification of the signature scheme ring-TESLA

lattice instances defined by the parameters above. For every ufcma-adversary A
that runs in time tA, asks at most qs and qh queries to the signing oracle and
the hash oracle, respectively, and forges a valid signature of the signature scheme
ring-TESLA with probability εA, there exists a distinguisher D that runs in time
tD = tA + O(qsκ

2 + qh) and breaks the R-LWEn,2,q,σ problem (in the random
oracle model) with success probability

εD ≥ εA

(

1 − qsqh2(d+1)2n

(2B + 1)nqn

)

− qh2dn(2B − 2U + 1)n + (28σ + 1)3n

q2n
.

Proof sketch. We show how to turn any successful forger A against the sig-
nature scheme ring-TESLA into a distinguisher D for the R-LWE problem.
The distinguisher obtains two R-LWE samples from its sampling oracle Oχ(s)
(cf. Definition 2) and embeds them into a public key pk. Thus, D simulates
the ufcma game (cf. Fig. 3, Appendix A). When A returns a forgery (μ, σ), D
checks whether σ is a valid signature for message μ under key pk: if so, it out-
puts 1 as a guess that Oχ(s) presented two R-LWE tuples, otherwise it outputs 0.
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To derive the explicit relation between D and A’s success probabilities εD and εA
as indicated in the theorem statement, we show that (i) D provides a good sim-
ulation of the ufcma game for A. In particular, we show that the simulated
signatures look like genuine ones. And we prove, (ii) D’s simulation does not
abort too often. Formal proofs of both facts, (i) and (ii), require several tech-
nical lemmas that we state and prove in the full version of this paper [2]. For
proving fact (i), we observe that D simulates signatures σ = (z, c′) by choos-
ing z and c′ uniformly at random from appropriate spaces. By applying rejection
sampling and the fact that c′ is the output of a random oracle, we show that
simulated signatures are statistically indistinguishable from genuine ones. Con-
cerning fact (ii), we first note that D’s signing simulation needs to program the
random oracle H, which may lead to inconsistencies in case one of A’s signa-
ture requests results in programming a hash value H(x) for which x was already
queried. Such an occurrence causes a premature termination of the simulation.
In [2], we prove that the latter happens only with small probability. ��

As described in [24, Sect. 3.3], the probability that a polynomial chosen uniformly
random in Rq is in the subset of multiplicative invertible elements of Rq is given
by Pr

[
a ∈ R×

q

]
= (1 − 1/q)n

, where the probability is taken over random choices
of a ←$ Rq. This probability is overwhelming for our choices of q and n in the
signature scheme presented in this paper. Thus, it is justified to sample the
polynomials a1 and a2 uniformly random in R×

q instead of Rq as defined in the
R-LWE problem.

Relation to Former Security Reductions. The scheme ring-TESLA is based on
the signature scheme by Bai and Galbraith [10] with a tight security reduc-
tion by Alkim et al. [6]. Essentially, we convert the scheme by Bai and Gal-
braith to a scheme over ideal lattices. Our security reduction follows the proof
strategy of [6]. We emphasize that lifting the security statements for the orig-
inal (lattice-based) scheme to our (ideal lattice-based) scheme is not trivial.
For example, it is unclear whether distributions remain the same when lem-
mata are applied on rotation matrices instead of matrices chosen uniformly
random; in some cases even improvements can be made. Indeed, we could
sharpen the bound given in [6, Lemma 2]. Our corresponding result is stated
in the full version of this paper [2]. Moreover, we formulate and prove a sim-
ilar lemma to [10, Lemma 3] for ideal lattices and we state explicitly which
property related to the Gaussian heuristic is necessary to prove the statement.
Likewise, Bai and Galbraith make use of the Gaussian heuristic in their cor-
responding proof. The methods used in our security reduction resemble those
formalized by Abdalla et al. [1]. Abdalla et al. define four properties of iden-
tification schemes for which they give a black-box-transformation to signature
schemes with tight security reduction. Applying their black-box-transformation
to a lattice-based signature scheme led to inefficiently large parameters as stated
by the authors [1]. Hence, we prove unforgeability of ring-TESLA more directly—
without passing through an intermediate identification scheme—by following the
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proof technique introduced by Katz and Wang [32]. This yields practical instan-
tiation as we show in Sect. 4.

4 Selecting Parameters

The reductionist approach to prove security of a given cryptosystem essentially
consists in building an efficient reduction that turns any successful adversary
against the cryptosystem into one that solves some computationally hard prob-
lem. The hardness of breaking the cryptosystem and of solving the underlying
problem are often expressed asymptotically. When a scheme is to be deployed in
the real world, however, for a security analysis to be realistic it is essential that
run times and success probabilities are estimated in a more explicit way. More-
over, given a (concrete and) tight security reduction, the security of the scheme
is about the same as the hardness of the underlying computational assumption
when the scheme is instantiated according to the reduction. In contrast, if only
a non-tight reduction is available, larger security parameters shall be used in
order to achieve a specific level of security. As a consequence, it is often hard
to tell whether a provably secure scheme with a non-tight reduction effectively
provides the claimed level of security and performance.

In this section, we propose our choice of provably secure parameters for differ-
ent levels of bit-security for the signature scheme presented in this paper and we
explain how we estimate the hardness of the ring learning with errors problem.

4.1 Derivation of Parameters for Different Security Levels

The security reduction given in Sect. 3 provides a tight reduction to the hard-
ness of R-LWE and bounds explicitly the forging probability with the success
probability of the reduction. More formally, let εA and tA denote the success
probability and the runtime of a forger A against our signature scheme and let εD
and tD denote analogous quantities for the reduction D presented in the proof of
Theorem 1. We can write the explicit relations εD ≥ c1εA+c2 and tD ≤ c3tA+c4,
where c1, c2, c3, c4 are constants which are fixed for a concrete instantiation of
the signature scheme. We say that R-LWE is n-bit hard if tD/εD ≥ 2n; similarly,
we say that the signature scheme is m-bit secure if tA/εA ≥ 2m.

Given an explicit security reduction and the assumed bit-hardness of
R-LWE, we can compute the bit-security of the signature scheme. In our case,
we instantiate the signature scheme such that the constants c1, c2, and c3 are
less than 2−λ. Thus, the bit-hardness of the R-LWE instance is the same as the
bit-security of our signature instantiated as described below. To ensure both
correctness and security of our signature, the following dependencies must hold.

Let λ be the security parameter. We choose a hash function H : {0, 1}∗ →
{0, 1}κ with κ > λ to ensure that the hash function gives at least a bit-hardness
of λ. We instantiate the hash function for our parameter sets with SHA-256. Fur-
thermore, security relies on the encoding function F : {0, 1}κ → Bn,ω. Following
Bai and Galbraith [10], we require F to be close to an injective function. That
means that the probability of mapping two different values to the same output
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is smaller than or equal to 2−λ. We choose ω such that 2κ ≥ |Bn,ω| = 2ω
(

n
ω

)
.

To use efficient polynomial multiplication, i.e., the number theoretic transform
(NTT) in the ring Rq, we restrict ourselves to a polynomial degree of a power of
2, i.e., n = 2k for k ∈ N. Choosing the Gaussian parameter σ, we can compute
the system parameters to give a concrete instantiation of ring-TESLA with λ-bit
security.

To apply rejection sampling we choose U = 14
√

ωσ and B ≥ 14(n − 1)
√

ωσ.

The rejection probability is given by M =
(

2(B−U)+1
2B+1

)n

. We select the round-
ing value d to be larger than log(B) and such that the acceptance proba-
bility in the first part of Step 17 in Fig. 1 is greater than or equal to 0.4,
i.e., (1 − 2L/2d)m ≥ 0.4. The bound L is important during the key generation
as well as during the sign procedure. We choose L such that we reject only very
few of the possible key pairs in checkE. For example, we achieve an acceptance
probability of almost 100 % in KeyGen and an acceptance probability of 0.34 in
Sign for parameter ring-TESLA-II. At last, the modulus q has to be greater than

or equal to
(

2(d+1)2n+κ

(2B)n

)1/n

and greater than or equal to 4B. The theoretical size
of the secret key is given by 3n�log(14σ)� bits. The public key is represented
by 2n�log(q)� bits and the length of the signature is n�log(2B − 2U)� + κ bits.
Given the concrete instantiations in Table 1, we get a signature size of 1,488
byte, a public key size of 3,328 byte, and a secret key size of 1,920 byte for
parameters chosen such that the signature scheme is 128-bit secure. In Table 1
we also propose instantiations for 80 bit of security. For comparison, we depict
our signature and key sizes together with the corresponding values of BLISS [23]
and the GLP [28] signature scheme in Table 2.

4.2 Hardness Estimation of the R-LWE Problem

Since the introduction of the learning with errors problem over rings [39], it is
an open question whether the R-LWE is as hard as the LWE problem. Recently,

Table 1. Parameter sets for our signature scheme in comparison; the hardness of the
LWE instance is defined by the dimension n, the modulus q, and the Gaussian parameter
σ; derivation of L, ω, B, U, d is explained in Sect. 4.1; pk and sk denote the public and
private key, resp.

Parameter selection

Parameter Set Security (bit) n σ L ω B U d q

ring-TESLA-I 80 512 30 814 11 221 − 1 993 21 8399873

ring-TESLA-II 128 512 52 2766 19 222 − 1 3173 23 39960577

Acceptance prob. pk Size sk Size Signature Size

KeyGen Sign (byte) (byte) (byte)

ring-TESLA-I 80 0.5 0.23 3,072 1,728 1,418

ring-TESLA-II 128 0.99 0.34 3,328 1,920 1,488
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the cyclic structure of ideal lattices has been exploited by Garg et al. [26], by
Campbell et al. [16], by Cramer et al. [19], and by Elias et al. [25]. However, up to
now, these novel results are not known to be directly applicable to most of the
proposed ideal-lattice-based signature schemes. Hence, as the R-LWE problem
can be seen as an instantiation of the LWE problem, we estimate the hardness of
R-LWE via state-of-the-art attacks against LWE. We explain four basic attacks
on LWE: the embedding approach, the decoding attack, the algorithm by Blum,
Kalai, and Wassermann [13], and the Arora-Ge-Algorithm [8]. We briefly describe
the algorithms next. The most efficient practical approaches to solve LWE are
the embedding approach and the decoding attack.

During the decoding attack, an LWE instance (A,As+e) is seen as an instance
of the bounded distance decoding problem (BDD). The idea of the attack is to
reduce the lattice by algorithms such as the BKZ algorithm [18] first, and to
find the closest lattice vector to a target vector via the nearest plane algorithm
by Babai [9] (or improved variants such as by Linder and Peikert [36] or Liu
and Nguyen [37]) afterwards. The closest vector corresponds to As of the LWE
instance, such that the secret can be easily discovered.

The embedding approach is to solve an LWE instance by reducing it to an
instance of the (unique) shortest vector problem. There are different ways to
define a lattice that contains the error term of an LWE instance (e.g., [4,10,12]).
In the end, the short error term is found as a shortest vector of the constructed
lattice via basis reductions such as BKZ [18] and LLL [18,35], or directly via
sieving algorithms [34,40] or enumeration [5]. Recent results [15,31,42] exploit
the cyclic structure of ideal lattices to improve sieving algorithms. However, the
improved sieving algorithms are still slower than the enumeration approach on
instances currently used for signatures.

Further, there are two non-lattice approaches to solve LWE, namely the attack
based on the algorithm by Blum, Kalai, and Wassermann (BKW) [13] and the
algorithm by Arora and Ge [8]. Both algorithms require a (very) large num-
ber of LWE samples to be applied efficiently. Although the number of required
samples was crucially reduced, for both BKW [21,30,33] and the Arora-Ge algo-
rithm [3], our proposed instances give far less LWE samples than required for the
attacks. Hence, we only take the decoding attack and the embedding approach
into account when estimating the bit-security of our instances.

We estimate the hardness of our chosen LWE instances based on [4,10,36].
We propose parameters for two different levels of security: 80-bit security
(ring-TESLA-I) and 128-bit security (ring-TESLA-II). The embedding attack
yields 166 bit of security and the result of the decoding attack is a bit secu-
rity of 139 on the instances in ring-TESLA-II.

5 Software Implementation

The implementation of the proposed scheme targets the Intel Haswell micro
architecture. We perform benchmarks on a machine with an Intel Core i7-5820K
(Haswell) CPU at 3300 MHz and 16 GB of RAM. In our software we use the
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benefits of AVX2 instructions, where multiplication, addition, and subtraction
instructions have one cycle throughput for eight doubles. The software is com-
piled with gcc-4.7 with optimization code. The experimental results are obtained
by using gcc-4.7 with “-Ofast” optimization since it enables all “-O3” opti-
mizations together with turning on “-ffast-math”. This optimization helps us
to reduce the timing results significantly. The performance of our implementa-
tion mainly depends on the number of rejections during Sign and KeyGen and on
the time a single polynomial multiplication takes. The derivation of the number
of rejections is explained in Sect. 4.1. We optimized the time for multiplication
by choosing the most suitable multiplication algorithm for different cases as it
is explained below.

Polynomial Multiplication. In the presented scheme two types of polynomial
multiplication occur: standard and sparse polynomial multiplication. For stan-
dard polynomial multiplication we use the number theoretic transform (NTT)
since NTT performs polynomial multiplication with a quasilinear complexity,
i.e., O(n log n). Thus, the parameter sets are selected in such a way that NTT is
applicable, i.e., q = 1 (mod 2n), where n is a power of 2. In our implementation,
we store the integer in double format in a word. Then, after arithmetic opera-
tions in NTT, it is expected to fit in a double, i.e., log(log(n)q) + log(q) < 54.
To avoid an overflow one needs to make extra reduction operations when using
ring-TESLA-II because log(q) is represented by 26 bits. This, of course, results in
a drawback of the performance. NTT with extra modulo q reduction would need
almost 28383 cycles for n = 512 and ω = 19 as chosen in ring-TESLA-II. Without
extra reductions, the average cycle count of NTT developed for ring-TESLA-I is
10625. Barrett reduction is preferred over reducing the coefficients because of the
modular structure. The hybrid approach of using NTT and sparse polynomial
multiplication requires more inverse NTT operations since sparse polynomial
multiplication is applicable only in the integer domain.

Recall that the weight of c, i.e., the number of 1’s, is ω. Then, the mul-
tiplication operations in the signature generation phase (Step 14, 15, and 16:
sc, e1c, and e2c) and in the signature verification phase (Step 20 and 21: t1c
and t2c) can be considered as sparse polynomial multiplications because of the
number of nonzero elements in c. In order to speed up, we use the sparse poly-
nomial multiplication given in Fig. 2. The complexity of the algorithm in Fig. 2
depends on the nonzero coefficients of b(x). Note that polynomial multiplication
is performed by using only additions if one of the multiplicands is sparse. The
required number of additions and subtractions is (ωn + n). The last for-loop is
designed for polynomial reduction modulo xn + 1. There is only one reduction
modulo q of the coefficients. This improves the runtime and complexity. Sparse
multiplication requires almost 3650 cycles.

We place our implementation of ring-TESLA in public domain. It can be found
under https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel.

https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel
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Fig. 2. Sparse polynomial multiplication

6 Performance Analysis

We performed our benchmarks on a machine with an Intel Core i7-5820K
(Haswell) CPU at 3300 MHz and 16 GB of RAM, while disabling Turbo Boost
and hyper threading. In our measurement we considered two parameter sets:
ring-TESLA-I and ring-TESLA-II with 80 and 128 bits of security, respectively.
Our benchmarks are averaged1 over 10,000 runs of Sign and Verify. We sum-
marize benchmarks for our proposed parameter sets and state-of-the-art ideal-
lattice-based signature schemes in Table 2. We emphasize once more that our
parameter sets are the only ones in Table 2 which are chosen according to the
given security reduction, cf. Sect. 4. Nevertheless, we achieve good performance
with respect to time and space. In the following, we compare sizes and run times
for 80 and 128 bits of security.

For low security of 80-bit, key and signature sizes of GLP-I are smaller
than those of our proposed parameters. Our run time of Sign is a factor of
1.19 faster than GLP. As Table 2 indicates, the software implementations of
ring-TESLA and of the GLP signature scheme are optimized for micro archi-
tectures. For medium security of 128-bit the instantiation of our scheme gives
smallest key sizes. Signature sizes are comparably good. We emphasize that we
report the signature size used in the publicly available software implementa-
tion of BLISS-I and BLISS-II2. Those sizes differ from the theoretical signature
sizes presented in [23], which are 700 and 625 bytes for BLISS-I and BLISS-II,
respectively, because signatures are not compressed in the BLISS software. To
our knowledge, there is no implementation of BLISS available that compresses
the signature sizes. The signature size of ring-TESLA are also obtained from our
implementation.

1 Sometimes benchmarks are given as the median instead of the average value. Due to
the rejection sampling, taking the median value of our experiments would be overly
optimistic for Sign.

2 bliss.di.ens.fr.

http://bliss.di.ens.fr
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Table 2. Comparison of our results with the software implementations of the signature
schemes BLISS [22,23] and GLP [20,28,29]. To indicate the considered platforms Intel
Core i5-3210M (Ivy Bridge), Intel Core i7-5820K (Haswell), and Intel Core 3.4 GHz
we use shortcuts A, B, and C, respectively. Sizes of signatures, signing and verification
keys are indicated in Bytes. We abbreviate ‘Decisional Compact Knapsack problem’
by DCK. In the benchmarks of GLP we include the improvements by Dagdelen et al.
presented in [20]. In the benchmarks of BLISS we include the improvements by Ducas
presented in [22].

The time-optimized implementation of BLISS-I by Ducas [22] is only a factor
of 1.45 faster than our implementation. We note that our signature scheme uses
uniform sampling during Sign. In contrast, BLISS uses Gaussian sampling, which
might be vulnerable to timing attacks [14,20]. Up to now, available implementa-
tions of BLISS do not protect against timing-attacks. It would be very interesting
to compare our implementation with an optimized and timing-attack-protected
implementation of BLISS.

In summary, our signature scheme has good performance compared to state-
of-the-art ideal-lattice-based signature schemes, while it is instantiated provably
secure. Hence, when real world security matters our presented scheme is a very
interesting choice.

Acknowledgment. This work has been cofunded by the DFG as part of project P1
and P2 within the CRC 1119 CROSSING.
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A Extended Definitions and Security Notions

A.1 Syntax, Functionality, and Security of Signature Schemes

A signature scheme with key space K, message space M, and signature space S,
is a tuple Σ = (KeyGen,Sign,Verify) of algorithms defined as follows.

– The (probabilistic) key generation algorithm on input the security parame-
ter 1λ returns a key pair (sk, pk) ∈ K. We write (sk, pk) ← KeyGen(1λ) and
call sk the secret or signing key and pk the public or verification key.

– The (probabilistic) signing algorithm takes as input a signing key sk, a mes-
sage μ ∈ M, and outputs a signature σ ∈ S. We write σ ← Sign(sk, μ).

– The verification algorithm, on input a verification key pk, a message μ ∈ M,
and a signature σ ∈ S, returns a bit b: if b = 1 we say that the algorithm
accepts, otherwise we say that it rejects. We write b ← Verify(pk, μ, σ).

We require (perfect) correctness of the signature scheme: for every security
parameter λ, every choice of the randomness of the probabilistic algorithms,
every key pair (sk, pk) ← KeyGen(1λ), every message μ ∈ M, and every signa-
ture σ ← Sign(sk, μ), Verify(pk, μ, σ) = 1 holds.

We target the standard security requirement for signature schemes, namely
unforgeability under chosen-message attack (ufcma). The corresponding experi-
ment involving an adversary A against a signature scheme Σ is depicted in Fig. 3.
Since we prove security of the scheme presented in Sect. 3 in the random oracle
model, we reproduce a corresponding ufcma experiment which grants A access to
a random oracle H. Given the experiment, we say that a signature scheme Σ is
(t, qs, qh, ε)-unforgeable under chosen-message attack if every adversary A which
runs in time t and poses at most qs queries to the signing oracle and qh queries
to the random oracle has advantage

Advufcma
Σ (A) = Pr

[
Exptufcma

Σ,A = 1
]

≤ ε .

Fig. 3. Security experiment of unforgeability under chosen-message attack for an adver-
sary A against a signature scheme Σ = (KeyGen, Sign,Verify) in the random oracle
model (i.e., all parties including A have access to a public function H with uniformly
distributed output).
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Burak Gövem1, Kimmo Järvinen1, Kris Aerts2, Ingrid Verbauwhede1,
and Nele Mentens1,2(B)

1 KU Leuven ESAT/COSIC and iMinds,
Kasteelpark Arenberg 10 bus 2452, 3001 Leuven-Heverlee, Belgium

{burak.govem,kimmo.jarvinen,ingrid.verbauwhede,
nele.mentens}@esat.kuleuven.be

2 KU Leuven Technology Campus Diepenbeek, ES&S, Diepenbeek, Belgium
kris.aerts@kuleuven.be

Abstract. Elliptic curve cryptography (ECC) provides high security
with shorter keys than other public-key cryptosystems and it has been
successfully used in security critical embedded systems. We present an
FPGA-based coprocessor that communicates with the host processor
via a 32-bit bus. It implements ECC over an elliptic curve that offers
roughly 128-bit security. It is the first hardware implementation that
uses the recently introduced lambda coordinates and the Galbraith-Lin-
Scott (GLS) technique with fast endomorphisms. One scalar multipli-
cation requires 65,000 clock cycles with a maximum clock frequency of
274 MHz on a Xilinx Virtex-5 FPGA, which gives a computation time
of 0.24 ms. The area utilization is 1552 slices and 4 BlockRAMs. Our
coprocessor compares favorably to other published works both in terms
of speed and area, which makes it a good choice for embedded systems
that rety public-key cryptography.

1 Introduction

Many embedded systems are used in applications where security and safety
are of utmost importance. Such security-critical embedded systems include air-
planes, cars, medical devices, home automation systems, military devices, etc.
They require that confidentiality, integrity, and authenticity are ensured by using
strong cryptography. Cryptography is often computationally demanding and effi-
cient implementation of cryptographic computations is a topic that has been an
active research field during the last couple of decades. In particular, public-key
cryptosystems are challenging to implement efficiently and securely in embed-
ded systems because they are computationally more demanding than many other
forms of encryption. Public-key cryptosystems are essential parts of a variety of
cryptosystems because they are required, for example, for computing digital sig-
natures. Therefore, techniques for their fast computation with small amounts of
resources are needed in embedded systems in practice.
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 63–83, 2016.
DOI: 10.1007/978-3-319-31517-1 4
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Elliptic curve cryptography (ECC) is a type of public-key cryptography that
was introduced in the mid-1980s. ECC has many benefits compared to other
forms of public-key cryptography. The main benefit is that high security levels
can be achieved with shorter keys than for other public-key cryptosystems (such
as RSA, Diffie-Hellman, ElGamal, etc.). ECC uses 2n-bit keys for achieving
roughly n bits of security. For example, RSA requires significantly longer keys:
1,024 and 3,072 bits for 80-bit and 128-bit security levels, respectively [34]. ECC
implementations have also proven to be faster than RSA implementations [15].
ECC is also widely included in multiple standards, which is a significant advan-
tage in commercial applications.

Field-programmable gate arrays (FPGA) have been popular implementation
platforms for cryptography and a plethora of ECC implementations for FPGAs
are available in the literature. While many of them target primarily to hardware
acceleration of ECC by optimizing speed with very loose area constraints (see,
e.g., [1,4,11,20,24]), there also exist many implementations that are suitable
for security-critical embedded systems including, e.g., [26,28,41,42]. In them,
the primary optimization target is typically either area or speed-area ratio. A
vast majority of such designs has been introduced for the 80-bit security level,
which should have been used only up to 2010 as recommended by the National
Institute of Standards and Technology (NIST) of the United States [33]. Most
of the publications target the NIST curves specified in [35]. These curves date
back to the 1990s and they cannot utilize certain state-of-the-art optimizations
that have been introduced in the recent years. Several new curves have been
introduced allowing more efficient computations (see, e.g., [7–10,13,14,17,37]).
Although many studies about software performance of these curves are available,
hardware implementations are still largely missing from the literature (for some
exceptions, see, e.g., [2,3,5,6,16,40]). In particular, to the best of our knowledge,
there are no hardware implementations of the new λ-coordinates [37] combined
with the Galbraith-Lin-Scott (GLS) technique for binary curves [17] which was
shown to be very efficient in software [37]. The implementation in [2] uses the
same curve without λ-coordinates, focusing on speed maximization with very
loose area constraints. It is widely known that there is often a difference between
efficiency in software and hardware and some curves that are fast in software
may not be as efficient in hardware, and vice versa. Good examples are prime
and binary curves, of which the former are better in software and the latter
in hardware. Also NIST has shown interest in the new curves and techniques
and there appears to be considerations to standardize new elliptic curves (see,
e.g., the call for papers of the NIST workshop on elliptic curves [36]). Hence,
it is important to shed light on hardware performance of the new curves and
techniques in order to complete the picture about their efficiency.

In this paper, we present an FPGA coprocessor for ECC which is designed
primarily for security-critical embedded systems. Our coprocessor communicates
with a host processor via a 32-bit interface which allows easy integration to var-
ious systems. The coprocessor implements ECC for the 128-bit security level
which matches, e.g., the security offered by the 128-bit version of the Advanced



A Fast and Compact FPGA Implementation of Elliptic Curve Cryptography 65

Encryption Standard (AES) [32]. Most other publications consider the signif-
icantly less secure 80-bit security level as discussed above. The coprocessor is
designed so that it is both fast and compact and, thus, meets the requirements
of various security-critical embedded systems. Our implementation uses the ellip-
tic curve and parameters as well as many of the state-of-the-art optimizations
introduced by Oliveira et al. [37] in 2013. To the best of our knowledge, our imple-
mentation is the first FPGA-based ECC implementation that uses λ-coordinates
from [37] and the GLV/GLS technique from [13,14,17]. We compiled our archi-
tecture for Xilinx Virtex-4, Virtex-5, and Spartan-6 FPGAs and the results show
that our coprocessor compares favorably with the related work available in the
literature although it offers a significantly higher security level. Our results also
show that λ-coordinates and the GLS technique provide good results not only
in software but also in hardware.

The paper is structured as follows. Section 2 presents the preliminaries of
ECC and the algorithms we implement in our coprocessor. Section 3 describes the
architecture of our coprocessor. Section 4 presents the results on Xilinx FPGAs
and compares them to other relevant ECC implementations available in the
literature. We end with conclusions and discussion on certain topics for future
research in Sect. 5.

2 Preliminaries

This section provides background on ECC in general and on GLS curves and
λ-coordinates that we implement in this paper in particular.

2.1 Elliptic Curve Cryptography

The use of elliptic curves for public-key cryptography was independently pro-
posed by Miller [31] and Koblitz [21] in the mid-1980s. ECC achieves high
security levels with significantly shorter key lengths than other public-key cryp-
tosystems such as RSA or ElGamal. Hence, ECC has become a popular choice
for public-key cryptography especially in embedded systems.

Elliptic curves defined over a finite field Fq are used in cryptography. The
points (x, y) that satisfy the equation of an elliptic curve combined with a special
point called the point-at-infinity O form an additive Abelian group E, where O
is the zero element. Let P1, P2 ∈ E. The group operation P1 + P2 is called
point addition if P1 �= ±P2 and point doubling if P1 = P2. The most important
operation of every elliptic curve cryptosystem is the scalar multiplication:

Q = kP = P + P + . . . + P
︸ ︷︷ ︸

k times

(1)

where k is an integer in the interval [1, r−1] where r is the order of P (the smallest
positive integer for which rP = O). The security of ECC is based on the com-
putational difficulty of the elliptic curve discrete logarithm problem (ECDLP),
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which is the problem of finding k when given Q and P . The ECDLP is believed
to be infeasible to solve if the parameters of the system are chosen properly
(similarly as integer factorization in the case of RSA). A secure elliptic curve
over a 2m-bit finite field is believed to offer roughly m bits of security. Hence,
ECC offers roughly 128-bit security with 256-bit keys whereas, for example, RSA
would require approximately 3,072-bit keys [34].

Computing (1) consists of several hierarchical levels, which are depicted in
the ECC pyramid of Fig. 1. The scalar multiplication algorithm is on the top
and it computes (1) with a series of point arithmetic operations (typically, point
additions and point doublings). The algorithms that implement the point oper-
ations with series of finite field operations are in the middle. The algorithms
for computing finite field operations including multiplication, addition (subtrac-
tion), and inversion (division) are in the bottom. In the following, we discuss
the hierarchical levels and provide descriptions of our choices for implementing
them from the bottom to the top.

Fq Operations

Fq2 Operations

Point

kP
2-GLV

Operations
Add,Double,
Double-add

Top FSM

Point Op.
FSM

Quad Op.
FSM

MALU

Fig. 1. ECC hierarchical pyramid. The components in our architecture (see Sect. 3) for
implementing the hierarchical levels of the pyramid are shown on the right.

2.2 Finite Field Arithmetic

Either prime fields, where q is a prime p, or binary extension fields, where q = 2m,
are typically used for ECC. Prime fields are more commonly used in software
implementations. Binary fields allow significantly more efficient implementations
in hardware because they employ carry-free arithmetic operations. The inclusion
of carry-free instructions in modern processors has enabled extremely fast imple-
mentations using binary fields also in software [43]. Elliptic curves defined over
prime and binary fields are called prime and binary curves, respectively.

In this paper, we follow the approach of [37] and use the binary field F2254

which can be constructed as a quadratic extension of the binary extension field
F2127 by using the irreducible polynomial g(u) = u2 + u + 1. That is, we set
F2127 [u] / u2 + u + 1. An element a ∈ F2254 is represented as a = a0 + a1u where
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a0, a1 ∈ F2127 . Arithmetic operations in F2254 can be decomposed into operations
in F2127 and they are computed as follows [37]:

a + b = a0 + b0 + (a1 + b1)u (2)
a × b = (a0b0 + a1b1) + (a0b1 + a1b0 + a1b1)u (3)

a2 = a2
0 + a2

1 + a2
1u (4)

a−1 = (a0 + a1)t−1 + a1t
−1u (5)

where t = a0a1 + a2
0 + a2

1. Let a, m, s, and i denote the costs of addition,
multiplication, squaring, and inversion in F2127 and let A, M, S, and I denote
the costs of the respective operations in F2254 . The above equations give that
A = 2a, M = 4m + 3a, S = 2s + a, and I = i + 3m + 2s + 3a.

We construct F2127 by setting F2[x] / p(x) where p(x) is the irreducible tri-
nomial p(x) = x127 + x63 + 1. Addition in F2127 is a bitwise exclusive-or (xor) of
the bit vectors representing the elements. Multiplication is carried out by com-
puting a multiplication of polynomials in F2[x] followed by a reduction modulo
p(x). Because squaring in F2[x] can be performed by adding zeros between each
bit of the bit vector, squaring in F2127 contains only rewiring followed by the
reduction modulo p(x) when implemented in hardware. Inversion can be com-
puted as an exponentiation consisting of multiplications and squarings in F2127 by
using the Itoh-Tsujii algorithm [19]. We use a variant of the Itoh-Tsujii inversion
from [37] that utilizes the optimal addition chain (1, 2, 3, 6, 12, 24, 48, 96, 120, 126)
and requires 126s + 9m in F2127 .

2.3 Point Representation with λ-Coordinates

Point addition and point doubling are the basic point operations. If the points
are represented in affine coordinates by using two coordinates (x, y), then both
point addition and point doubling require an inversion, which is a very expensive
operation as shown in Sect. 2.2. Hence, projective coordinates, where points are
represented with three coordinates as (X,Y,Z), are commonly used in practical
implementations of ECC. They allow computing point additions and point dou-
blings without inversions (but with an increased number of other operations).
A single inversion is required in the end of computing (1) in order to obtain the
affine coordinates of the result point Q. In the case of binary curves, popular
choices have been standard projective coordinates, where x = X/Z and y = Y/Z,
and López-Dahab (LD) coordinates [27], where x = X/Z and y = Y/Z2.

In 2013, Oliveira et al. [37] proposed a new coordinate system called λ-
coordinates, where points are represented as (x, λ) so that λ = x + y

x . We refer
to this coordinate system as affine λ-coordinates. The projective version of λ-
coordinates represents a point with three coordinates (X,L,Z) so that x = X/Z
and λ = L/Z. They result in the fastest formulae that are currently available for
computing point arithmetic on binary Weierstrass curves. A point addition and
point doubling require (excluding additions) 8M + 2S and 5M + 4S (including
one multiplication by a constant), respectively. One of the main benefits of λ-
coordinates compared to LD coordinates is that they allow efficient combination



68 B. Gövem et al.

Algorithm 1. Double-and-add (left-to-right)
Require: Scalar k =

∑n−1
i=0 ki2

i ∈ [0, r − 1] with kn−1 = 1, base point P
Ensure: Result point Q = kP

Q ← P
for i = n − 2 down to 0 do

Q ← 2Q
if ki = 1 then

Q ← Q + P
end if

end for
return Q

of point doubling and point addition operations. Computing 2P1 + P2 requires
only 11M + 6S (including one multiplication with a constant).

2.4 Scalar Multiplication on the GLS Curves

In this paper, we use the same curve that was used in [37]. It is a Weierstrass
curve over F2254 defined by the following equation:

y2 + xy = x3 + ax2 + b (6)

where a = a0 + a1u, b = b0 + b1u ∈ F2254 such that a0 = b1 = 0, a1 = 1, and b0
is a specific element in F2127 .

Scalar multiplication defined by (1) can be computed with a series of point
additions and point doublings. The simplest option is to use the double-and-add
algorithm given in Algorithm 1. It scans through the bits of k and performs a
point doubling for every bit and an additional point addition if the bit is one.
Let k be an n-bit integer and let h(k) be its Hamming weight (the number of
ones in the binary expansion). Then, one scalar multiplication requires n − 1
point doublings and h(k) − 1 point additions, where h(k) ≈ n/2.

One way of improving the speed of scalar multiplications is to utilize effi-
ciently computable endomorphisms. Menezes and Vanstone [30] showed how
point doublings can be replaced with the Frobenius endomorphisms (x, y) �→
(x2, y2) on certain supersingular elliptic curves over F2m , but these curves were
found to be cryptographically weak [29]. In 1991, Koblitz [22] introduced a secure
class of nonsupersingular elliptic curves over F2m which have the advantage of
the Frobenius endomorphisms after certain conversions are computed for the
scalar k. These curves are commonly known as Koblitz curves and they are
nowadays included in many standards (e.g., in [35]). In 2001, Gallant, Lam-
bert, and Vanstone (GLV) [14] introduced a specific class of elliptic curves over
Fp which allows utilizing efficiently computable endomorphisms also for prime
curves. Galbraith, Lin, and Scott (GLS) [13] generalized the GLV technique to
a broader class of elliptic curves defined over Fp2 . The GLS curves were general-
ized for binary curves over F22m by Hankerson et al. [17]. In this paper, we focus
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on these variants of the GLS curves and, in particular, the curve considered by
Oliveira et al. in [37].

The GLS technique allows splitting the computation of (1) with an n-bit k
into k1P + k2ψ(P ) where k1 and k2 are approximately n/2-bit integers. That is,
instead of the single scalar multiplication, one computes a sum of two smaller
scalar multiplications, which can be computed efficiently with the so called
Shamir’s trick (see below). We skip the mathematical subtleties and merely
state that the efficiently computable endomorphism ψ of the GLS technique is
based on a composition of the Frobenius endomorophism and endomorphisms
between E and its quadratic twist. Interested readers can find details, e.g., from
[13,14,17,37]. We use ψ(P ) as defined in [37] as follows:

ψ : (x, λ) �→ ((x0 + x1) + x1u, (λ0 + λ1) + (λ1 + 1)u) (7)

where x = x0 + x1u and λ = λ0 + λ1u with x0, x1, λ0, λ1 ∈ F2127 . Hence, ψ(P )
requires only three additions (3a) in F2127 .

The integer k needs to be decomposed into n/2-bit k1 and k2 such that
k ≡ k1 + k2δ (mod r) where δ is an integer such that ψ(P ) = δP for all P ∈ E.
Such a decomposition can be found by using techniques for finding the GLV
decomposition given in [14]. The decomposition algorithm can be simplified
for specific curve parameters and we use the decomposition algorithm used by
Oliveira et al. [37] in the C code that is publicly available1. It finds k1 and k2
by computing:

k1 = kl + kh − β�(kβ)/2254	 (8)

k2 = khβ − (2127 − 1)�(kβ)/2254	 (9)

where β is a 64-bit constant specific for the curve and kl and kh are the lowest
and highest 127-bit words of the 254-bit k.

Shamir’s trick (see, e.g., [18]) is a technique that allows evaluating a sum of
two scalar multiplications k1P + k2ψ(P ) simultaneously. We call this operation
double scalar multiplication. Let k1 and k2 be n/2-bit integers. If the double
scalar multiplication is computed with two separate scalar multiplications, then
it requires n−2 point doublings and h(k1)+h(k2)−1 ≈ n/2−1 point additions.
Shamir’s trick arranges k1 and k2 into a 2 × n/2-bit matrix and precomputes
the point P + ψ(P ). The double scalar multiplication is computed by scanning
through the columns of the matrix. A point doubling is computed for every col-
umn and a point addition is computed for all nonzero columns. If the column is 1

0 ,
0
1 or 1

1 , then one adds either P , ψ(P ) or P +ψ(P ), respectively. Hence, Shamir’s
trick requires n/2 − 1 point doublings and, on average, 3

8n point additions for
the double scalar multiplication.

In [37], Oliveira et al. used a parallelization technique that splits the scalar
multiplication in two parallel computations: one based on the double-and-add
and the other on halve-and-add. Halve-and-add computes point halvings Q ←
1
2Q instead of point doublings. They also utilized the window nonadjacent form

1 https://github.com/floodyberry/supercop/tree/master/crypto dh/gls254.

https://github.com/floodyberry/supercop/tree/master/crypto_dh/gls254
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(w-NAF) for representing k1 and k2 in the GLV encoding which leads to a smaller
number of point additions but requires precomputations and extra storage for
the precomputed points. We decided not to use these optimizations in our imple-
mentation because implementing them would lead to a significant growth of the
control logic and the parallelization technique would also require another unit
for field arithmetic (see MALU in Sect. 3.4).

To summarize, we implement the scalar multiplication by using the GLS tech-
nique which splits an n-bit k into n/2-bit k1 and k2 so that both are given in
standard binary representation. We precompute P +ψ(P ). We then use Shamir’s
trick for evaluating the double scalar multiplication by computing point dou-
blings and combined point doublings and additions. The point arithmetic is per-
formed in projective λ-coordinates by using the formulae from [37]. Finite field
arithmetic is computed in F2254 by decomposing the operations into operations
in F2127 as shown in (2)–(5).

3 Architecture

We present a coprocessor architecture for FPGAs that implements (1) using λ-
coordinates and the fast GLS endomorphism. In this architecture, the finite field
processing unit (FFPU) performs operations in F2127 and three control units
(i.e., finite state machines (FSM)) drive the FFPU in a hierarchical manner
according to the ECC hierarchy shown in Fig. 1. This provides a natural way
to decompose the complex control logic required for computing (1) into a set
of smaller FSM, which can be implemented efficiently in FPGAs. Additionally,
smaller processing and control units for integer arithmetic perform the scalar
decomposition. A register file and block RAMs (BRAM) are used for storing
temporary results. The register file stores frequently used temporary variables.
The base point, the result of a scalar multiplication and the curve constant a
are also stored in the BRAM. In the following, we describe the architecture of
the coprocessor in a hierachical manner according to Fig. 1.

3.1 Top Level FSM

Our implementation is designed to be used as an ECC coprocessor. The archi-
tecture of the coprocessor is shown in Fig. 2. The host processor initiates the
coprocessor by sending the base point P and scalar k over a 32-bit bus. The
base point is stored in the BRAM and the scalar is stored in the registers. Next,
the coprocessor starts the precomputation. The scalar multiplication FSM (the
Top FSM in Fig. 2) manages the point operation FSM, shifts the scalar registers
k1 and k2, and determines the next point operation. The scalar multiplication
FSM also organizes precomputations, which are the scalar decomposition, com-
putation of the endomorphism ψ(P ), the point addition for computing P +ψ(P ),
finding the first nonzero column of the scalar matrix, and performing the coor-
dinate transformations. First, ψ(P ) is calculated and stored in the BRAM and,
then, it is added to P . Since the combined point doubling and point addition
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requires the other input point to be given in affine λ coordinates, the point
P + ψ(P ) is converted to affine λ-coordinates and stored in the BRAM. After
that, the scalar decomposition that computes (8) and (9) starts and when it
is ready, the precomputation ends with finding the first nonzero column of the
scalar matrix. Because all points and the scalars are ready, the scalar multipli-
cation starts after this. As discussed in Sect. 2.4, the double scalar multiplica-
tion k1P + k2ψ(P ) is implemented using Shamir’s trick. The accumulator point
Q is initialized with P if the first nonzero column is 1

0 , with ψ(P ) if 0
1 , and

with P + ψ(P ) if 1
1 . After this, either point doublings (for zero columns) or the

combined point doublings and additions (for nonzero columns) are performed
depending on the bits of k1 and k2 and the points to be added are determined
as above. After the scalar multiplication is finished, the result point Q is first
converted to affine λ-coordinates and then to affine coordinates and it is stored
into a specific location in the BRAM, where it is available to the host processor.
The scalar multiplication algorithm implemented by the coprocessor is shown in
Algorithm 2.
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Algorithm 2. Scalar multiplication on a GLS curve, Q = kP

Require: Scalars k1 = (k1,n1−1 . . . k1,0), k2 = (k2,n2−1 . . . k2,0), base point P
Ensure: Result point Q = kP = k1P + k2ψ(P )

P1 ← ψ(P ) // 3a in F2127

P2 ← P + P1 // Algorithm 3
n ← max(n1, n2)
if k1,n−1 = 1 and k2,n−1 = 1 then

Q ← P2

else if k1,n−1 = 0 and k2,n−1 = 1 then
Q ← P1

else if k1,n−1 = 1 and k2,n−1 = 0 then
Q ← P

end if
for i = n − 2 down to 0 do

if k1,i = 1 and k2,i = 1 then
Q ← 2Q + P2 // Algorithm 5

else if k1,i = 0 and k2,i = 1 then
Q ← 2Q + P1 // Algorithm 5

else if k1,i = 1 and k2,i = 0 then
Q ← 2Q + P // Algorithm 5

else
Q ← 2Q // Algorithm 4

end if
end for
Q = (x, y) ← affine(Q) // I + 3M + A in F2254

return Q

3.2 Point Operations FSM

Point operations (point doubling, point addition and combined point doubling
and addition) and coordinate conversion are implemented in the point operation
FSM. Point addition, point doubling and combined point doubling and addition
require 5M+ 2S+ 5A, 5M+ 4S+ 5A, and 11M+ 6S+ 9A operations in F2254 ,
respectively. Affine coordinates to affine λ-coordinates, affine λ-coordinates to
affine coordinates, and projective λ-coordinates to affine λ-coordinates conver-
sions require I+M+A, M+A and I+ 2M, respectively. One of the multipli-
cations in both point doubling and combined point doubling and addition is a
multiplication by a constant (the curve parameter a).

The point operations FSM fetches input operands for an operation in F2254

and writes them into registers of the register file. After the operation in F2254

is finished, the point operation FSM writes the result of the operation to the
BRAM unless the result is required only for the next operation. In that case, the
writing is skipped and the point operation FSM proceeds to the next operation
that will operate directly on the result in the register file. Results are written to
the register file by default. For some cases results are both needed in the next
operation and in later operations. Therefore, the result is stored in the BRAM
to be used in the later operations and the next operation uses the result in the



A Fast and Compact FPGA Implementation of Elliptic Curve Cryptography 73

register file in order to save clock cycles. Temporary variable R3 that is shown
in Algorithms 3, 4 and 5 is a register in the register file and all other temporary
variables are in the BRAM.

Point addition is used only once when P + ψ(P ) is computed during the
precomputation. Two points in affine λ-coordinates are added in this step. The
point addition formula for adding P = (xP , λP ) and Q = (xQ, λQ) is shown in
(10). It returns the point P +Q = (XP+Q, LP+Q, ZP+Q). An operation sequence
for computing (10) is shown in Algorithm 3 in the Appendix.

A = λP + λQ,

B = (xP + xQ)2,
XP+Q = A · xP · xQ · A,

ZP+Q = A · B,

LP+Q = (A · xQ + B)2 + A · B · (λP + 1)

(10)

The point doubling formula for a point in projective λ-coordinates Q =
(XQ, LQ, ZQ) is shown in (11). It returns the point 2Q = (X2Q, L2Q, Z2Q). An
operation sequence for computing (11) is shown in Algorithm 4 in the Appendix.

T = LQ
2 + LQ · ZQ + a · ZQ

2,

X2Q = T 2,

Z2Q = T · ZQ
2,

L2Q = (XQ · ZQ)2 + X2Q + T · (LQ · ZQ) + Z2Q

(11)

The efficiency of combined point doubling and addition is one of the reasons
why λ-coordinates give faster results [37]. Computing them separately takes
13M + 6S in total, whereas the combined point doubling and addition requires
only 11M + 6S. Therefore, combined point doubling and addition saves 2 mul-
tiplications in F2254 . Since the double scalar multiplication with Shamir’s trick
requires significantly more combined point doublings and additions (for 75 %
of the columns, on average) than point doublings (for 25 % of the columns),
this trick significantly reduces the overall execution time. A formula for com-
bined point doubling and addition with the inputs Q = (XQ, LQ, ZQ) and P =
(xP , λP ) is shown in (12). It returns the point 2Q+P = (X2Q+P , L2Q+P , Z2Q+P ).
An operation sequence for computing (12) is shown in Algorithm 5 in the Appen-
dix.

A = XQ
2 · ZQ

2 + T · (LQ
2 + (a + 1 + λP ) · ZQ

2),

B = (xP · ZQ
2 + T )

2
,

X2Q+P = (xP · ZQ
2) · A2,

Z2Q+P = A · B · ZQ
2,

L2Q+P = T · (A + B)2 + (λP + 1) · Z2Q+P

(12)
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3.3 Quadratic Extension FSM

Operations in the quadratic extension field (multiplication, constant multiplica-
tion, squaring, addition and inversion in F2254) and the endomorphism ψ(P ) are
implemented by the quadratic operations FSM. The quadratic operations FSM
drives the MALU and generates the addresses of input operands of the MALU
and generates the output write address for the BRAM. Operation costs of multi-
plication, squaring, addition and inversion are given in Sect. 2.2. In order to save
time, constant multiplication with the curve parameter a is optimized. As dis-
cussed in Sect. 2.4, a = u for this curve (i.e., a0 = 0 and a1 = 1). Therefore, mul-
tiplication c = a·b simplifies to c = u·(b0+b1 ·u) = b0 ·u+b1 ·u2 ≡ b1+(b0+b1)·u
(mod g(u)). Therefore, multiplication by a only requires the swapping of the two
halves followed by an addition in F2127 . I.e., the cost is only a and we save 4m+2a
compared to a general multiplication. The constant multiplication is used once in
every iteration of the double scalar multiplication because it is needed once both
in point doubling and combined point doubling and addition. The endomorphism
ψ is performed as shown in (7) and it takes three modular additions in F2127 .
The Itoh-Tsujii inversion algorithm is implemented for coordinate conversions.
Itoh-Tsujii inversion uses an addition chain of length 9 as given in [37].

3.4 Modular Arithmetic Logic Unit (MALU)

Operations in F2127 (addition, multiplication and squaring) are performed by the
MALU which is imported from [39]. The MALU in [39] supports multiplication
and addition in F2m . The MALU is basically a most-significant digit first digit-
serial modular multiplier over F2m with digit size d. It is adjustable for different
irreducible polynomials and digit sizes, which are fixed at the time of implemen-
tation. The support for additions is added to the multiplier architecture with
a very low cost by utilizing resource sharing. The latency of multiplication is
�m

d �+2 clock cycles, where m is the bit size of the operands which are elements
in F2m . The digit size of the MALU is chosen to be d = 16 for this implementation
as it provides a good tradeoff between area and latency. Therefore, one multipli-
cation in F2127 takes � 127

16 � + 2 = 10 clock cycles. Addition takes 3 clock cycles.
The MALU in [39] does not include a dedicated squaring circuitry and, therefore,
squaring takes the same time as multiplication. Squaring in F2m is a very simple
operation and support for it can be added with a very small overhead. Because
the point operations involve several squarings, adding the support for squaring
provides a significant speedup. Hence, we extended the MALU from [39] with a
dedicated squarer. One squaring takes only 3 clock cycles which makes it as fast
as an addition. For all field operations, one clock cycle is consumed by loading
the inputs and another one goes to a one-stage pipeline for the inputs of the
MALU in order to shorten the critical path. The remaining cycles are the actual
operation time of the MALU.
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3.5 Scalar Decomposition

The scalar decomposition is computed in the scalar-decomposition module which
contains an 8-bit ALU that performs integer addition, subtraction and multi-
plication operations. An FSM splits operations with large operands into 8-bit
operations and another FSM controls the execution of the decomposition equa-
tions given in (8) and (9). Scalar splitting is performed as described in [13]. After
rearranging the equations, maximum operand sizes reduce to 192 bits for addi-
tion and subtraction and 128 bits for multiplication. These large operands are
processed in 8-bit pieces by the ALU. The integer multiplication is implemented
using Algorithm 5.1 given in [38]. Since the decomposition is executed in the
beginning, it uses free space in the BRAM. The integer multiplication uses one
of the dedicated multipliers in the FPGA (one DSP block). The architecture of
the scalar-decomposition module is shown in Fig. 3.
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3.6 Optimizations

Point operations are optimized for minimum execution time and the temporary
variable count is optimized based on this minimum timing constraint. Since the
most complex equations stand for the combined point doubling and addition,
it has the largest temporary variable count, which is 7 in our case. Temporary
variables are stored in the BRAM excluding one of them (R3) which is in the
register file. The base point P , ψ(P ), P + ψ(P ), and curve constants are also
stored in the BRAM. When the MALU is processing, one of the operands is
stored in the register file. Also the output from the MALU is stored into the
registers (two 127-bit registers) so that it can be used for the next operation,
which is usually the case. Another 127-bit register is used for storing temporary
results of multiplication and inversion in F2254 . Therefore, there are in total three
127-bit registers in the register file. The latencies of point operations are given
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Table 1. Point operation latencies (clock cycles)

Operation M S A Estimated Actual

3m + 4a 2s + a 2a cycles cycles

Point doubling and addition 11 6 9 33m + 12s + 68a = 531 565

Point doubling 5 4 5 15m + 8s + 34a = 237 258

Point addition 5 2 5 15m + 4s + 32a = 258 278

in Table 1. The differences between estimated and actual cycle counts arise from
access times to the BRAM between operations.

The control logic is pipelined in order to shorten the critical path and to
ensure that the critical path is in the processing units (i.e., in the MALU or the
8-bit ALU). Output multiplexers of the register file are pipelined before feeding
the data into the MALU. Although this pipeline increases the execution time
of every field operation by one clock cycle, the maximum frequency increases
significantly. The slice count does not increase significantly because the slice
based structure of FPGAs allows to use the flip-flops of a slice essentially for
free if the LUT of the slice is already used. Other pipelined paths are address
and control signals of the quadratic operations FSM that are controlling the
register file and the BRAM. The 8-bit ALU also includes a one-stage pipeline.
We experimented with different word sizes for the ALU and selected 8 bits
because it was the optimal choice considering the critical path and area.

4 Results and Comparison

The architecture of the coprocessor was described in VHDL. This code was com-
piled with the Xilinx ISE 12.2 tool for Virtex-5 XC5VLX85-3FF676, Virtex-4
XC4VLX200-11FF1513 and Spartan-6 XC6SLX45T-3FGG484 FPGAs. Simula-
tions for verifying the functionality of the implementations were performed with
ModelSim software. Detailed area results after placement and routing are given
in Table 2 for Virtex-5 XC5VLX85-3FF676. We compiled the design also for
Virtex-4 and Spartan-6 FPGAs. Virtex-4 was selected in order to provide a fair
comparison with previous works and Spartan-6 shows the performance of our
architecture on a low-cost FPGA, which is commonly used in security-critical
embedded systems.

The maximum clock frequency after synthesis is 274.982 MHz for the Virtex-
5 implementation. This frequency was added as a design constraint for the place
&route and it was able to meet this timing goal. One scalar multiplication takes
on average around 61,300 clock cycles, but the exact latency depends on the
scalar (the length and the number of nonzero columns in the scalar matrix).
Therefore, the total time for an entire scalar multiplication is around 0.223 ms.
Precomputation, scalar decomposition and coordinate transformations are also
included in the given execution time.
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Table 2. Hardware area cost on a Virtex-5 XC5VLX85-3FF676

Module FF LUT BRAM DSP48

MALU 399 1263 - -

Scalar-decomposition 667 1025 - 1

Register File 381 1018 - -

Top FSM 696 911 - -

Point Op. FSM 44 171 - -

Quad Op. FSM 42 142 - -

Bus Controller 10 16 - -

RAM - - 6 -

Total 2239 4546 6 1

There are many FPGA implementations of elliptic curve scalar multipli-
cations over binary fields. However, most of them do not utilize curves with
fast endomorphisms. The most popular curve has been the NIST B-163 curve
from [35]. It provides a lower 80-bit security level, but because finite field arith-
metic in F2163 cannot be decomposed into a smaller field, the complexity of
FFPU is actually larger. However, the latency of computing (1) on curves with
lower security levels is expected to be significantly shorter because fewer oper-
ations are computed. These differences should be considered when the designs
are compared.

A summary of related work and our implementations is shown in Table 3. The
design proposed by Sinha Roy et al. in [41] uses LD coordinates for a binary field
EC implementation. They implemented a Karatsuba hybrid multiplier for F2163 .
The design by Ansari and Hasan in [1] uses a Montgomery multiplier and rep-
resent points in projective coordinates. The work by Liu et al. in [24] is a very
fast implementation for NIST B-163. It computes a scalar multiplication in only
9 μs. However, it occupies a huge area due to the extensive use of parallelism in
the processor. The implementation presented by Lutz and Hasan in [28] com-
putes a scalar multiplication on NIST K-163, which is a Koblitz curve over F2163 ,
and represents points in LD coordinates. A scalable design that implements all
NIST Koblitz curves was proposed by Loi and Ko in [26]. In [42], various NIST
curve implementations were proposed by Sutter et al. Their architecture uses
three multipliers and, therefore, it gives fast results at the expense of area. To
the best of our knowledge, the only other implementation that uses the GLS
technique is an implementation described by Azarderakhsh and Karabina in [2],
but they do not use λ-coordinates. The implementation provides results on the
same security level but it targets high speed at the expense of area which makes
comparisons difficult. However, we expect that also their implementation would
benefit from the use of λ-coordinates through the reduction of the number of
field operations. When our results are compared to the other works in Table 3,
it must be borne in mind that our implementation offers about 128 bits of secu-
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Table 3. Comparison with related works

Design Platform Time (μs) Slice LUT FF Curve Coordinate system

Sinha Roy et al. [41] Virtex 5 9.5 3513 10195 - B-163 LD

Ansari and Hasan [1] Virtex 2 41 - 8300 1100 B-163 Projective

Liu et al. [24] Virtex 4 9 10413 - - B-163 Projective

Lutz and Hasan [28] Virtex 2 446 - 7362 1930 K-163 LD

Loi [26] Virtex 4 603 2431 3815 1219 K-233 Mixed

Sutter et al. [42] Virtex 5 19.89 6487 22340 - B-233 Projective

Chelton and Benaissa [11] Virtex 4 19.55 16209 - - B-163 Projective

Azarderakhsh and Karabina [2] Virtex 4 16.85 12043 - - GLS-254 Projective

This work Virtex 4 317 3985 7112 2247 GLS-254 λ

This work Virtex 5 223 1552 4546 2239 GLS-254 λ

This work Spartan-6 370 1546 4983 2315 GLS-254 λ

rity whereas the ones for B/K-163 and B/K-233 curves offer only about 80 or
112 bits of security, respectively. The security level has significant effects on both
the hardware complexity and the total execution time.

As can be seen from Table 3, our design is faster than some related works,
although it offers more security. Also, the area consumption of our design is very
low compared to other FPGA implementations available in the literature. Hence,
our design is suitable for embedded systems that require fast scalar multiplica-
tions with a small footprint. In such applications, low-cost FPGAs are more fea-
sible implementation platforms than high-end FPGAs such as the Virtex family
FPGAs. Hence, we also give implementation result for a low-cost FPGA from the
Spartan-6 family in Table 3. Our results show that the new technique of using λ-
coordinates with the GLS endomorphism introduced in [37] results in a fast and
compact ECC coprocessor that can be used in various security-critical embedded
systems. Note that a slice consists of several LUTs and FFs. In Table 3, we give
both the number of slices and the number of LUTs and FFs in order to compare
to other implementations that only give one of both.

5 Conclusion

We presented a fast and compact FPGA implementation of ECC with a 128-bit
security level. Our implementation uses many of the optimizations used in the
software implementation presented in [37] by Oliveira et al. To the best of our
knowledge, it is the first FPGA implementation that utilizes λ-coordinates and
the GLS decomposition.

We demonstrated that these techniques do not only offer significant advan-
tages in software implementations but that improvements can be obtained also
for hardware implementations. An especially significant advantage in the case
of hardware is that finite field arithmetic is decomposed so that it can be per-
formed in a small field, where m is of the size of the security level. This results
in small areas and high maximum clock frequencies. In the case of many other
curves (e.g., the NIST curves), field arithmetic is performed in fields with sizes
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of twice the security level. We showed also that the GLS decompositions can be
computed efficiently in hardware, although extra hardware is required for the
integer operations that are not natively supported by field arithmetic units (such
as the MALU that we used in this paper). This extra cost is small compared to
the benefits that can be obtained from the faster scalar multiplication.

The target applications for our implementation are various security-critical
embedded systems that require high-security public-key cryptography. Hence,
primary concerns are small area and good speed-area ratio and not necessarily
the lowest computation time or highest throughput (scalar multiplications per
second). In fact, the highly optimized software implementation reported in [37]
requires only 47,900 clock cycles per scalar multiplication on Intel Sandy Bridge
processors which run at significantly higher clock frequencies (e.g., 3.4 GHz)
compared to our implementation (274 MHz) and, therefore, it outperforms our
FPGA implementation. However, this kind of performance is completely out of
the reach of embedded software implementations. For example, a single scalar
multiplication requires some tens of milliseconds on a 32-bit processor [12] and
more than 0.5 s on an 8-bit microcontroller [23,25]. Thus, our implementation
provides major performance advantages compared to software implementations
typically used in security-critical embedded systems.

We foresee several directions for future research on this topic. A careful para-
meter space exploration for our architecture would allow finding the optimum
parameters (e.g., the digit-size of the MALU) which would allow finding the
optimum speed-area ratio. Countermeasures against side-channel attacks need
to be implemented in order to use our implementation in applications where side-
channel attacks are a threat. In particular, timing and operation patterns need
to be constant in order to thwart timing attacks and simple power analysis or
electromagnetic attacks. Further speedups can be obtained by using precompu-
tations (e.g., w-NAF) and by using the two-core parallelization technique based
on double-and-add and halve-and-add from [37]. Further increase in throughput
can be achieved by instantiating multiple cores in a single FPGA. For instance,
we extrapolated that about 25 parallel cores would fit into the largest Virtex-5
FPGA (filled up to 80 %). Hence, our implementation can be valuable also for
accelerating cryptographic computations.
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A Algorithms for Point Operations

Algorithm 3. Point addition P + Q
1 R3 ← xP + xQ 7 R3 ← R1 + B
2 RLQ ← B = R32 8 R1 ← R32

3 R3, R0 ← A = λP · λQ 9 RZQ ← ZP+Q = R0 · RLQ

4 R3, R1 ← R3 · xQ 10 R3 ← λP + 1
5 R3 ← R3 · xP 11 R3 ← RZQ · R3
6 RXQ ← R3 · R0 12 RLQ ← LP+Q = R1 + R3

Algorithm 4. Point doubling 2Q
1 R0 ← LQ

2 8 R2 ← R32

2 R3, RLQ ← LQ · ZQ 9 RXQ ← X2Q = R02

3 R0 ← R0 + R3 10 RZQ ← Z2Q = R0 · R1
4 R1 ← ZQ

2 11 R3 ← R0 · RLQ

5 R3 ← a · R1 12 R3 ← R3 + R2
6 R0 ← T = R0 + R3 13 R3 ← R3 + RXQ

7 R3 ← XQ · ZQ 14 RLQ ← L2Q = R3 + RZQ

Algorithm 5. Combined point doubling and addition Q = 2Q + P

1 R0 ← LQ
2 14 R0 ← A = R0 + R3

2 R3 ← LQ · ZQ 15 R3, RXQ ← xP · RZQ

3 RLQ ← R0 + R3 16 R3 ← R1 + R3
4 R3, RZQ ← Z2

Q 17 R2 ← B = R32

5 R3 ← a · R3 18 R3 ← R02

6 R1 ← T = RLQ + R3 19 RXQ ← X2Q+P = R3 · RXQ

7 R3, RLQ ← 1 + λP 20 R3 ← R0 · R2
8 R3 ← a + R3 21 R3, RZQ ← Z2Q+P = R3 · RZQ

9 R3 ← R3 · RZQ 22 RLQ ← RLQ · R3
10 R3, R0 ← R0 + R3 23 R3 ← R0 + R2
11 R0 ← R1 · R3 24 R3 ← R32

12 R3 ← X2
Q 25 R3 ← R1 · R3

13 R3 ← R3 · RZQ 26 RLQ ← L2Q+P = R3 · RLQ

The formulas used for deriving the algorithms are available in Explicit-
Formulas Database (https://hyperelliptic.org/EFD/g12o/auto-shortw-lambda.
html). It also includes verification scripts (Sage).
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son, D., López, J.: Software implementation of binary elliptic curves: impact of
the carry-less multiplier on scalar multiplication. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 108–123. Springer, Heidelberg (2011)



Three Dimensional Montgomery Ladder,
Differential Point Tripling on Montgomery

Curves and Point Quintupling on Weierstrass’
and Edwards Curves

Srinivasa Rao Subramanya Rao(B)

Mathematical Sciences Institute (MSI),
The Australian National University (ANU), Canberra, Australia

srinivasa.subramanya.anu@gmail.com

Abstract. Elliptic Curve Cryptography is an important alternative to
traditional public key schemes such as RSA. This paper presents

(i) a simultaneous triple scalar multiplication algorithm to compute the
x-coordinate of kP + lQ + uR on a Montgomery Curve Em defined
over Fp which is about 15 to 22 % faster than the straight forward
method of doing the same. The algorithm, motivated by Bernstein’s
paper on Differential Addition Chains, where the author proposes
various 2-dimensional differential addition chains and asks for 3-
dimensional versions to be constructed, can be generalized to other
elliptic curve forms with differential addition formula,

(ii) a formula for Differential point tripling on Montgomery Curves which
is slightly better than computing 3P as 2P + P and relevant in the
implementation of Montgomery’s PRAC and

(iii) an improvement in Mishra and Dimitrov’s point Quintupling algo-
rithm for Weierstrass’ curves and an efficient Quintupling algorithm
for Edwards Curves.
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1 Introduction

Security in smart devices and mobile networks require an efficient implementa-
tion of cryptographic algorithms owing to the computational, bandwidth, power
and memory constraints experienced in these environments. With its smaller key
sizes, Elliptic curve cryptography (ECC) is increasingly seen as an alternative
to traditional public key algorithms such as RSA, especially in constrained envi-
ronments such as mobile devices. Thus while ECC is attractive for the success of
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lightweight applications including mobile/embedded applications, RFID and in
the context of “Internet for Things”, optimized low-cost ECC implementations
are crucial for the success of light weight cryptography.

The computation of exponentiation in a group is at the core of most dis-
crete log based public key cryptosystems. Further, multi-exponentiation (also
known as simultaneous exponentiation) in an Abelian group is a commonly used
computation in cryptography, for example in signature verification algorithms
and identification schemes. (Chaps. 7 and 9 in [1]). In groups with an additive
notation such as Elliptic curve groups over a finite field Fp, an exponentiation
becomes a multiplication and thus simultaneous exponentiation becomes simul-
taneous scalar multiplication. A straight forward method to compute the double
exponentiation xn1

1 ∗ xn2
2 ∈ G (where G is an Abelian group and x1, x2 ∈ G and

the exponents n1, n2 ∈ Z) is to compute xn1
1 and xn2

2 separately and then mul-
tiply them. The Strauss-Shamir method ([2,3], Algorithm 9.23 in [4]) scans the
bit representations of n1 and n2 simultaneously from left to right and makes use
of precomputed group elements to compute xn1

1 ∗xn2
2 , thus reducing the number

of multiplications required to compute the desired product. The Joint Sparse
Form [5] introduced by Solinas in 2001 makes use of signed representations of
the exponents to improve the Strauss-Shamir method and are useful in groups
where inverses of group elements can be computed efficiently such as Elliptic
curve groups. The problem of minimizing the number of multiplications whilst
computing an exponentiation, such as xn1

1 or xn2
2 , can be reduced to minimizing

the number of additions in an abstraction known as an addition chain. A finite
sequence of integers a0, a1, . . . ar is called an addition chain (Sect. 4.63 in [9]) for
ar if for each element ai, there exists aj and ak in the sequence such that

ai = aj + ak, for some k ≤ j < i (1)

for all i = 1, 2, . . . , r. Addition chains can be used to efficiently compute either a
single exponentiation or multi-exponentiation (by using Strauss’ method). Addi-
tion chains are applicable both in the context of multiplicative groups and addi-
tive groups such as Elliptic curve groups over a finite field.

In 1987, Montgomery proposed a special type of an elliptic curve, now known
as Montgomery form of an Elliptic curve or simply Montgomery curve [6]. The
arithmetic on a Montgomery curve relies on x-coordinate only arithmetic and
also requires the ’difference’ of two group elements (points) to be known prior
to the computation of addition of these two elements. Thus ordinary addition
chains and improvements of these chains cannot be directly utilized for scalar
multiplication on Montgomery curves. A special form of an addition chain called
Lucas chains is useful in this context. A Lucas chain is a restricted variant of
an addition chain where the indices in Eq. (1) above are such that either j = k
or the difference ak − aj is already part of the chain. A special case of Lucas
chains occur when either j = k or ak − aj = a0 = 1 and this is called the binary
chain. The well known Montgomery ladder presented in Sect. 2 is a binary chain.
A Lucas chain is also known as a Differential Addition Chain(DAC) in the lit-
erature [10]. The Strauss-Shamir method for simultaneous scalar multiplication
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cannot be immediately used in the context of DACs. However, this technique
can be adapted to DACs as shown by Schoenmakers, who constructed the first
algorithm to produce two dimensional (double scalar) DACs in 2000. This algo-
rithm was published in [8] by Stam in 2003. Akishitha’s algorithm to construct
two dimensional DACs was published in 2001 [7]. Shoenmakers’ and Akishita’s
algorithm to construct two dimensional DACs produces binary chains. Bernstein
proposed new algorithms to construct two dimensional DACs in 2006 along with
a summary of previously known algorithms [10]. These included binary chain as
well as Euclidean chain algorithms (algorithms using the Euclidean GCD scheme
to construct DACs). In [14], Azarderakhsh et al. propose another DAC.

A natural question to ask is, if one could construct triple scalar multiplica-
tion analogues of the two dimensional DACs listed above. A practical motivation
to construct such multi scalar multiplication algorithms arises in the implemen-
tation of some digital signature and identification schemes and their elliptic
curve analogues. Chapter 11 in [18] covers some of these signature schemes. The
Okamoto Identification scheme (Refer to Sect. 9.3 in [1]) requires a triple scalar
multiplication operation to be performed by the signature verifier. Triple scalar
multiplication can also be utilized in the accelerated verification of ElGamal
like Signatures [19]. The need for higher order analogues can be seen in the
batch verification of multiple signatures [20]. In [21], Karati et al. propose three
methods for randomized batch verification of ECDSA signatures, one of which
is based on Montgomery ladders. Simultaneous scalar multiplication in the con-
text of DAC could be utilized to achieve improved running times in the Mont-
gomery ladder signature verification method. Interest in higher order DACs also
arises from the recent interest in standardizing Montgomery curves [39] such
as Curve25519. Further motivation to construct higher order DACs is found
in [10], where Bernstein presents new double scalar DAC algorithms and pro-
poses further research on 3-dimensional versions of these ideas. This exploration
can be extended to other double scalar multiplication algorithms too, such as
Akishita’s and Schoenmakers’. In 2006, Brown in [11] extended Bernstein’s ideas
to dimensions ≥2 but this method is patented [12]. One may utilize an exten-
sion of Schoenmakers’ algorithm for this purpose, but recently, it was shown by
SubramanyaRao in [17] that while this is feasible, it is not an efficient option.
Thus, there is a need to construct other triple scalar algorithms. In this paper,
we extend Akishita’s algorithm to triple scalar multiplication. Our results in this
paper are independent of Brown’s results in [11].

The construction of Euclidean chain DACs were first proposed by Mont-
gomery via his well known algorithms CFRC and PRAC in [13]. In the imple-
mentation of PRAC, point tripling may be useful. As far as we know, no formulas
have been presented in the literature for differential point tripling. This paper
presents differential point tripling formulae for Montgomery Curves.

Double Base Number Systems (DBNS) was proposed by Dimitrov et al. in [23]
for efficient Elliptic curve scalar multiplication. In this context, efficient point quin-
tupling formulae can be utilized. In this paper, we provide new quintupling for-
mulae for Edwards curves improving upon those proposed by Bernstein in [22].
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We also improve Mishra and Dimitrov’s Quintupling algorithm [25] for Weier-
strass’ curves over a prime field.

In this paper, we denote a field multiplication, field squaring and field inver-
sion by M , S and I respectively. Multiplication is a little more expensive than
squaring. Typically S/M can range from 0.67 to about 0.8 depending on imple-
mentation and field size (Sect. 1.3.6 in [16]). The rest of the paper is structured
as follows: We begin with a brief background on Montgomery Curve Arith-
metic along with brief analysis of the straight forward method of computing
kP + lQ + sR on a Montgomery Curve in Sect. 2. In Sect. 3, we motivate the
construction of a Montgomery ladder for simultaneous triple scalar multiplica-
tion(whilst presenting the ladder algorithm in AppendixD), with comparisons
to the straight forward method. We then present the differential tripling for-
mula for Montgomery curve arithmetic in Sect. 4. In Sect. 5, we present point
quintupling formulae for Edwards curves and then conclude in Sect. 6.

2 Preliminaries

The Montgomery curve defined over a finite field Fp is given by Em : By2 =
x3+Ax2+x. Let P = (x1, y1) be a point on Em. In projective coordinates, P can
be written as P = (X1, Y1, Z1) and further let [n]P = (Xn : Yn : Zn), where the
scalar multiplication by n on Em is denoted by [n] and [n]P = P + P + · · · + P

︸ ︷︷ ︸
n times

.

The set of points on Em form an Abelian group and the identity element in this
group is denoted as O. The sum [n+m]P = [n]P +[m]P can be computed using
the formulae in the table below:

Addition: (n �= m) Doubling: (n = m)

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) X2n = (Xn + Zn)
2(Xn − Zn)

2

+(Xm + Zm)(Xn − Zn))
2 4XnZn = (Xn + Zn)

2 − (Xn − Zn)
2

Zm+n = Xm−n((Xm − Zm)(Xn + Zn) Z2n = 4XnZn((Xn−Zn)
2+((A+2)/4)(4XnZn))

−(Xm + Zm)(Xn − Zn))
2 = 4XnZn((Xn+Zn)

2+((A−2)/4)(4XnZn))

Thus point addition requires 4M + 2S operations and a point doubling requires
3M + 2S operations. If Zm−n = 1, then point addition would require 3M + 2S
operations. The above formulae for Montgomery curves were the first differential
addition formulae published in the literature. The idea of differential addition
has since been extended to other forms of elliptic curves such as

– Lopez and Dahab’s [28] extension to Weierstrass curves over F2m .
– Two independently developed extensions to Weierstrass curves over Fp - one

due to Fisher, Giraud, Knudsen and Seifert [29] and the other due to Brier
and Joye [30].

– Bernstein, Lange and Farashahi’s [31] extension to Binary Edwards Curves.
– Justus &Loebenberger’s [32] extension to Generalized Edwards Curves over
Fq (Characteristic (Fq �= 2)).

– Devigne and Joye’s [33] extension to Binary Huff Curves.
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– Hutter, Joye and Sierra’s [34] extension to Weierstrass curves over Fp in
homogeneous projective coordinates where the points to be added share the
same Z-coordinate.

– Wu, Tang and Feng’s [35] extension to a new model of Binary Edwards curves.
– Farashahi and Joye’s [36] extension to Generalized Binary Hessian Curves.

The well known Montgomery ladder for scalar multiplication that was initially
proposed and utilized for Montgomery curves can be adapted to the examples
listed above. The Left-to-Right Montgomery ladder is:

Algorithm 1. Left-to-Right Binary algorithm for Montgomery’s ladder

INPUT: A point P on Em and a positive integer n = (nt . . . n0)2
OUTPUT: The point [n]P

P1 ← P and P2 ← [2]P

for i = t − 1 down to 0 do

if ni = 0 then

P2 ← P2 + P1 (P); P1 ← 2P1

else

P1 ← P2 + P1 (P); P2 ← 2P2

end if

end for

return P1

In all algorithms in this paper, whenever the difference between two points
is required to compute the sum of those points, the difference is indicated in
brackets immediately after the addition formula. Thus, in Algorithm 1, we have

P1 ← P2 + P1 (P ). (2)

The notation in Eq. (2) means that when P2 is added to P1 and the result
is stored in P1 while the difference required between these two points is P
i.e., P2 − P1 = P . From the above algorithm we can see that, to compute
[n]P , where (nt . . . n1n0)2 is the binary representation of n and (nt = 1), we
hold {miP, (mi + 1)P} for mi = (nt . . . ni)2. If ni = 0,miP = 2mi+1P and
(mi + 1)P = (mi+1 + 1)P + mi+1P else miP = (mi+1 + 1)P + mi+1P and
(mi + 1)P = 2(mi+1 + 1)P . Beginning from {P, 2P}, Algorithm 1 computes
{[n]P, [n + 1]P}.

Closely following the approach in [7] and letting |n| denote the bit length of
n, computation of [n]P on a Montgomery curve Em would require (6|n|−3)M +
(4|n| − 2)S operations. To compute x-coordinate of kP + lQ + uR on Em, using
the straight forward method, we require the following steps:

1. Compute kP using the above Montgomery ladder.
2. Recover Y -coordinate of kP .
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3. Compute lQ using the above Montgomery ladder.
4. Recover Y -coordinate of lQ.
5. Compute uR using the above Montgomery ladder.
6. Recover Y -coordinate of uR.
7. Compute kP + lQ + uR in projective coordinates.
8. Compute x-coordinate(affine) of kP + lQ + uR.

We will assume the bit length of all the three scalars k, l and u to be the same.
The algorithm for recovery of the Y -coordinate is described in [15] and this costs
(12M +S) operations. Then, the computational cost of steps 1, 3 and 5 together
is 3

[
(6|k| − 3)M + (4|k| − 2)S

]
. Steps 2, 4 and 6 together costs 3(12M + S).

Consistent with [7], the cost of projective addition is 10M + 2S, and thus the
total cost of Step 7 is 2(10M + 2S) while step 8 costs M + I where I denotes a
field inversion. Thus the cost of computing the x-coordinate of kP + lQ + sR is
(18|k| + 48)M + (12|k| + 3)S + I.

3 Three-Dimensional Scalar Multiplication
on a Montgomery Curve

In this section, we extend Akishita’s ideas [7] to compute kP + lQ + uR. We
define a set of 8 points

Gi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

miP + niQ + siR

miP + niQ + (si + 1)R
miP + (ni + 1)Q + siR

miP + (ni + 1)Q + (si + 1)R
(mi + 1)P + niQ + siR

(mi + 1)P + niQ + (si + 1)R
(mi + 1)P + (ni + 1)Q + siR

(mi + 1)P + (ni + 1)Q + (si + 1)R

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for mi = (kt . . . ki)2, ni = (lt . . . li)2 and si = (ut . . . ui)2 where (kt . . . k1k0)2,
(lt . . . l1l0)2 and (ut . . . u1u0)2 are binary representations of k, l and u respec-
tively; mi = 2mi+1 or mi = (2mi+1 + 1) depending on whether ki = 0 or
ki = 1. Similar relationships hold for ni and si i.e., if li = 0, ni = 2ni+1 else
ni = (2ni+1 + 1); if ui = 0, si = 2si+1 else si = (2si+1 + 1). Each of the 8 ele-
ments in Gi can be written in terms of the elements in Gi+1. For instance, when
(ki, li, ui) = (0, 1, 0) we can write mi = 2mi+1, ni = (2ni+1 + 1) and si = 2si+1.
In this case, as examples, we show a couple of elements of Gi written in terms
of elements in Gi+1 as follows:

miP + niQ + siR = (mi+1P + ni+1Q + si+1R) + (mi+1P + (ni+1 + 1)Q + si+1R) and

(mi + 1)P + (ni + 1)Q + siR = (mi+1P + (ni+1 + 1)Q + si+1R)+

((mi+1 + 1)P + (ni+1 + 1)Q + si+1R).
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We can write the other six elements of Gi similarly, in terms of elements of Gi+1.
However, whilst computing the elements in Gi, we do not want to be using all
of the eight elements in Gi+1 towards computing (kP + lQ + uR), because this
would be more expensive than the straight forward computation of kP +lQ+uR.
Straight forward computation using the binary ladder would require two such
elements to be processed for each bit in the binary representation of a scalar and
thus a total of six elements need to be processed for every bit in the three scalars
taken at a time. Hence, to make our method more cost effective than the straight
forward method, the number of elements in each Gi+1 should be less than 6. It
turns out that it is enough to have five elements in each of the Gi+1 to achieve
our goal of computing (kP + lQ + uR). For example, if (ki, li, ui) = (0, 0, 0), it
would suffice to have the following five elements in Gi+1:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mi+1P + ni+1Q + si+1R

mi+1P + ni+1Q + (si+1 + 1)R
mi+1P + (ni+1 + 1)Q + si+1R

(mi+1 + 1)P + ni+1Q + si+1R

(mi+1 + 1)P + (ni+1 + 1)Q + si+1R

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
.

(3)

If (ki, li, ui) = (0, 1, 0), the following 5 elements in Gi+1 would suffice:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mi+1P + ni+1Q + si+1R

mi+1P + (ni+1 + 1)Q + si+1R

mi+1P + (ni+1 + 1)Q + (si+1 + 1)R
(mi+1 + 1)P + (ni+1 + 1)Q + si+1R

(mi+1 + 1)P + (ni+1 + 1)Q + (si+1 + 1)R

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
.

(4)

Next, we need to construct rules for computing elements of Gi from Gi+1. For
this, we take into consideration the values of ki−1, li−1 and ui−1 in addition to
ki, li and ui . We show this with an example. Let (ki, li, ui, ki−1, li−1, ui−1) =
(0, 0, 0, 0, 1, 0). Then mi = 2mi+1, ni = 2ni+1, si = 2si+1. The five elements
of Gi+1 are the same as those depicted in Eq. (3) above. The five elements
of Gi are ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

miP + niQ + siR

miP + (ni + 1)Q + siR

miP + (ni + 1)Q + (si + 1)R
(mi + 1)P + (ni + 1)Q + siR

(mi + 1)P + (ni + 1)Q + (si + 1)R

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
.

(5)
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These five elements of Gi can be computed from those of Gi+1 as follows:

miP + niQ + siR = (mi+1P + ni+1Q + si+1R) + (mi+1P + ni+1Q + si+1R),

miP + (ni + 1)Q + siR

= (mi+1P + ni+1Q + si+1R) + (mi+1P + (ni+1 + 1)Q + si+1R),

miP + (ni + 1)Q + (si + 1)R

= (mi+1P + ni+1Q + (si+1 + 1)R) + (mi+1P + (ni+1 + 1)Q + si+1R),

(mi + 1)P + (ni + 1)Q + siR

= (mi+1P + ni+1Q + si+1R) + ((mi+1 + 1)P + (ni+1 + 1)Q + si+1R) and

(mi + 1)P + (ni + 1)Q + (si + 1)R

= (mi+1P + ni+1Q + (si+1 + 1)R) + ((mi+1 + 1)P + (ni+1 + 1)Q + si+1R).

If elements of Gi+1 were to be listed as T0Tmp, T1Tmp, T2Tmp, T3Tmp and
T4Tmp in the same order in Eq. (3) above and the elements of Gi were to be
listed as T0, T1, T2, T3 and T4 in the same order as in Eq. (5) above, then the
following rules would enable us to compute elements of Gi from those of Gi+1:

T0 ← 2T0Tmp,

T1 ← T2Tmp + T0Tmp (Q),
T2 ← T2Tmp + T1Tmp (Q − R),
T3 ← T4Tmp + T0Tmp (P + Q) and
T4 ← T4Tmp + T1Tmp (P + Q − R).

As in the case of the formulae in the Montgomery ladder, the values in the brack-
ets beside the formula above give the difference between points being added as
these differences would be required for differential addition point arithmetic.
We derived the Montgomery ladder rules when (ki, li, ui, ki−1, li−1, ui−1) =
(0, 0, 0, 0, 1, 0). Similarly, rules can be derived for the other 63 possible binary
combinations of (ki, li, ui, ki−1, li−1, ui−1). Whilst we do not explicitly derive
these rules here, we list in AppendixA, the five element set Gi+1 for all com-
binations of (ki, li, ui) that was used in the construction of the 3 dimensional
extension of Akishita’s algorithm, which we present in AppendixD:

Referring to the three dimensional Montgomery ladder algorithm presented
in AppendixD, we now analyze this algorithm when applied to Montgomery
curves. As in the previous section, we will take the bit lengths of all the three
scalars to be the same. Computing P + Q and P − Q in affine coordinates
costs 4M + 2S + I. Similarly points ((P + R), (P − R)), ((Q + R), (Q − R))
and ((P + Q + R), (P + Q − R)) need to be precomputed as well in affine
coordinates. Thus the total cost of the precomputation steps in Algorithm 2
is 4 ∗ (4M +2S + I) = 16M +8S +4I. The cost of a point addition in the above
ladder would be 3M + 2S, as the difference of the points added is in affine form
(i.e., Z = 1). In the For loop of the above algorithm, either point addition for-
mulae are required four times and point doubling once or alternatively, the point
addition formula is required five times per bit of the scalar k. Thus, the cost for
every bit of k is 5 ∗ (3M + 2S) = 15M + 10S and the total cost of the for loop
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in the above algorithm is 15(|k|− 1)M +10(|k|− 1)S. The finalization step after
the for loop costs 3M + 2S. Computation of the x-coordinate by x = X/Z costs
M +I. Thus the total cost of the above algorithm is (15|k|+5)M +10|k|S+5I. If
|k| = 160, S/M = 0.8 and I/M = 30, the cost of the above algorithm is 3835M .

For the same set of parameters, the cost of the straight forward algorithm as
calculated in Sect. 2 is (18|k| + 48)M + (12|k| + 3)S + I = 4496M . Thus simul-
taneous triple scalar multiplication results in approximately 15 % improvement
over the straight forward method. When |k| = 256, the improvement is about
22 % as the three dimensional Montgomery ladder costs 6043M and the straight
forward method costs 7761M .

As in the case of the one dimensional Montgomery ladder (Algorithm 1),
the three dimensional Montgomery ladder (Algorithm 2) can be adapted to
work with differential addition extensions to various other forms of elliptic
curves(examples listed previously in Sect. 2) and not limited to Montgomery
curves alone.

The usage of temporary variables can be improved in the above algorithm
(Algorithm 2). Some operations towards the end of the computation can be elim-
inated. In the last iteration of the for loop in the above algorithm computation of
T2 and T4 can be done away with, thus resulting in a further saving of at least 6M
and 4S operations. Further, the cost of some finite field additions can be done
away with by combining some point additions. For example if one has to com-
pute T3 ← T4Tmp+T0Tmp (P+Q) and T4 ← T4Tmp+T1Tmp (P+Q-R) where
T0Tmp=(X0, Y0, Z0), T1Tmp=(X1, Y1, Z1), P +Q = (X2, Y2, Z2), (P +Q−R) =
(X3, Y3, Z3), T4Tmp=(X4, Y4, Z4), T3=(X5, Y5, Z5) and T4=(X6, Y6, Z6) then

X5 = Z2[(X0 − Z0)(X4 + Z4) + (X0 + Z0)(X4 − Z4)]
2 and

X6 = Z3[(X1 − Z1)(X4 + Z4) + (X1 + Z1)(X4 − Z4)]
2 while

Z5 = X2[(X0 − Z0)(X4 + Z4) − (X0 + Z0)(X4 − Z4)]
2 and

Z6 = X3[(X1 − Z1)(X4 + Z4) − (X1 + Z1)(X4 − Z4)]
2.

Thus one could club the computations of T3 and T4 together, thereby computing
(X4 + Z4) and (X4 − Z4) just once, thus saving 2 field additions. In general the
addition of points T2+T0, T1+T0 can save 2 field additions and can be extended
to saving n field additions whilst computing Tn + T0, Tn−1 + T0, . . . , T1 + T0.
Similar benefits can be obtained when one combines the point addition and
doubling operations together. These enhancements can be utilized to improve
the performance of the algorithm in this paper.

4 Differential Tripling Formulae for Montgomery Curves

Montgomery’s PRAC [13] is an Euclidean chain algorithm that produces differ-
ential addition chains. PRAC can be used both to compute single dimensional
and two dimensional differential addition chains. PRAC permits the exponent
to be either prime or composite. Independent of the exponent being prime or
composite, Montgomery provides a list of transformations that can be applied
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to the exponents in the course of constructing the differential chain. This list
can be found in Table 4 of [13]. We reproduce the 7th and 8th transformations
here for convenience:

Condition Action(s)
d ≡ −e (mod 3) d ← (d − 2e)/3 and T1 ← f(A,B,C) and

(A,B) ← (X3(A)), f(T1, A,B))
d ≡ e (mod 3) d ← (d − e)/3 and (T1, T2) ← (f(A,B,C), f(A,C,B))

and (A,B,C) ← (X3(A), T1, T2)

The above two transformations call for point tripling.

When PRAC is used with a composite exponent, the transformations sug-
gested by Montgomery was employed by Stam in Algorithm 3.33 in [8]. We repro-
duce the first two steps of this algorithm here:

ALGORITHM 3.33 (Montgomery’s PRAC Algorithm)
Given a base v and an exponent n, this algorithm computes vn

1. [Make d odd] Let f2 be the highest power of 2 dividing n. Set d ←
(n/2f2) and A ← δf2(v).

2. [d �= 0 (mod 3)] Let f3 be the highest power of 3 dividing n. Set
d ← (d/3f3) and A ← δf3(A).

...
...

...

As seen in step 2 of the algorithm above, if the exponent is a multiple of three
and if f3 is the highest power of 3 dividing the exponent n, then the algorithm
requires f3 triplings. For instance, if n = 108 = 22 ∗33, doublings are carried out
twice and triplings thrice. The triplings can be achieved by using a doubling and
addition together. However, dedicated differential point tripling can be useful, if
it is more efficient than a differential doubling and addition taken together.

Now we present differential point tripling formulae for Montgomery Curves.
Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) and P3 = (X3, Y3, Z3) be points on a
Montgomery curve Em with P2 = 2P1 and P3 = 3P1. Then,

X3 = X1

((
X2

1 − Z2
1

)2 − (
X2

1 + Z2
1 + AX1Z1

)
(2Z1)

2)2 and

Z3 = Z1

((
X2

1 − Z2
1

)2 − (
X2

1 + Z2
1 + AX1Z1

)
(2X1)

2)2
.

Thus tripling needs 6M + 5S operations. The Algorithm to compute the above
tripling is provided in part-A of the Appendices. If P3 is computed as 2P1 + P1

(i.e.,using a point doubling followed by a point addition) we need (4M + 2S) +
(3M + 2S) = 7M + 4S. Thus the above tripling formulae are efficient as (6M +
5S) < (7M+4S). When Z1 = 1 the above tripling formulae only needs (3M+4S)
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operations whereas, if 3P were to be computed as 2P + P , (that is, a doubling
followed by an addition with Z1 = 1), then (3M +2S)+(3M +2S) = (6M +4S)
operations would be required thus resulting in a saving of 3M .

5 Quintupling Formulae Revisited

The double base number system (DBNS) introduced initially by Dimitrov and
Cooklev in [24] was utilized later in the context of elliptic curves in [23]. With
this system, an integer n is written as

n =
l∑

i=1

si2ai3bi or n =
l∑

i=1

si2ai5bi where si = ±1.

The above idea can be generalized to a triple base number system where an inte-
ger n is represented as n =

∑l
i=1 si2ai3bi5ci where si = ±1. Double and Triple

base number system representations, though very short, are not suitable for use
in scalar multiplication algorithms. But, if by chance, the three exponents are
all simultaneously decreasing, i.e., a1 ≥ a2 ≥ . . . al and b1 ≥ b2 ≥ . . . bl and
c1 ≥ c2 ≥ . . . cl, then Horner’s rule scalar multiplication algorithm can be easily
developed to computed [n]P . The simultaneously decreasing exponents can be
computed using a greedy algorithm such as Algorithm 1 in [25]. From the dou-
ble and triple base representations of a scalar n with simultaneously decreasing
exponents as depicted above, we can see that fast point doubling, tripling and
quintupling algorithms are highly desirable, as this would speed up the compu-
tation of [n]P . Thus, there has been a keen interest in obtaining faster point
doubling, tripling and quintupling algorithms amongst researchers. In [25] the
authors provide a fast quintupling algorithm for Affine coordinates on binary
Weierstrass curves. In the same paper, the authors also propose a fast quintu-
pling algorithm in Affine and Projective Jacobian coordinates for Weierstrass
curves over Fp. In Jacobian coordinates, the cost of the quintupling algorithm
provided in [25] is (15M + 10S). This was improved to (7M + 16S) by Giorgi
et al. in [26]. The authors in [25] take into account the multiplication by the curve
parameter a while computing the cost of their algorithm, whereas the authors in
[26] do not take into account the multiplication by the curve parameter a while
computing the costs of their algorithm. Thus for comparison purposes we can
take the cost of the algorithm in [26] to be (8M + 16S). In [27], Longa et al.
provide quintupling algorithm (Jacobian coordinates, Weierstrass curve over Fp)
with costs equal to (10M + 14S). When the curve parameter a = −3, Mishra’s
algorithm in [25] costs (15M + 8S), Giorgi’s algorithm in [26] costs (7M + 16S)
and Longa’s algorithm in [27] costs (11M +11S). Thus while Longa’s algorithm
in [27] performs better than Mishra’s algorithm in [25], Giorgi’s algorithm in [26]
is the best option. However there are circumstances where the most cost-effective
option is not always the best option for every situation. For example, in [37],
Abarzua and Theriault, while designing side-channel resistant atomic blocks (for
an introduction to atomic blocks, refer to Chap. 29 in [4]) for Weierstrass Elliptic
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Curves in Jacobian Coordinates over prime fields, use a (9M +7S) formulae due
to Dimitirov, Imbert and Mishra [23], as a more economical (7M +7S) formulae
due to Longa and Miri [38] could not fit nicely into their atomic block pattern.
Giorgi’s 8M + 16S algorithm in [26] was derived using an automation imple-
menting a directed acyclic graph structure looking for common subexpressions
in the formulae and executing several arithmetic transformations. Using

2XY = (X + Y )2 − X2 − Y 2 (6)

the complexity of Mishra’s algorithm can be reduced, as shown below. Further
in this section, we provide an improved algorithm for Quintupling on Edwards’
Curves.

5.1 Mishra and Dimitrov’s Algorithm for Quintupling on
Weierstrass’ Curves

A Weierstrass’ curve over a prime field K is given by

Hw(K) : y2 = x3 + ax + b

where a, b ∈ K and 4a3 + 27b2 �= 0. In projective Jacobian coordinates, the
point P = (X : Y : Z) corresponds to the point (X/Z2, Y/Z3) on the above
Weierstrass’ curve Hw(K). Given that P is a point on Hw and if [5]P = [5](X :
Y : Z) = (X5, Y5, Z5), using Division Polynomials, Mishra and Dimitrov provide
the following formulae in [25] to compute X5, Y5 and Z5.

X5 = XV 2 − 2Y UW,

Y5 = Y (E3(12V L2 − V 2 − 16L4) − 64TL5) and
Z5 = ZV

where

T = 8Y 4; (Cost = 2S),

M = 3X2 + aZ4; (Cost = 3S + 1M),

E = 12XY 2 − M2; (Cost = 1S + 1M),
2L = 2ME − 2T ; (Cost = 1M),
U = 4Y L; (Cost = 1M),

V = 4TL − E3; (Cost = 1S + 2M),

N = V − 4L2; (Cost = 1S),
2W = 2EN ; (Cost = 1M),

X5 = 4(X.V 2 − 2Y.U.W ); (Cost = 3M + 1S),

Y5 = 8Y.[E3.(12V.L2 − V 2 − 16(L2)2) − 64(TL.(L2)2)]; (Cost = 4M + 1S)
and Z5 = 2Z.V ; (Cost = 1M).
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Thus the total cost of computing the Quintupling formulae is (15M +10S). Now
using Eq. (6), 12XY 2, 4Y L, 12V.L2, ME and ZV can be computed as

12X.Y 2 = 6[(X + Y 2)2 − X2 − Y 4]; (Cost = 1S traded for 1M),

4Y L = 2[(Y + L)2 − Y 2 − L2]; (Cost = 1S traded for 1M),

12V.L2 = 6[(V + L2) − V 2 − L4]; (Cost = 1S traded for 1M),

2ME = [(M + E)2 − M2 − E2]; (Cost = 1S traded for 1M) and

2ZV = [(Z + V )2 − Z2 − V 2]; (Cost = 1S traded for 1M).

Thus the cost of the Mishra and Dimitrov Quintupling algorithm can be reduced
from 15M + 10S to 10M + 15S. It turns out that one multiplication can further
be eliminated from the Mishra and Dimitrov Algorithm. Indeed, in the compu-
tation of X5, Y UW is computed where U = 4Y L and thus Y UW = 4Y 2LW .
Thus we could alter U to be equal to 4Y 2L instead of 4Y L. Now, we could write
4Y 2L as

U = 4Y 2L = 2[(Y 2 + L)2 − Y 4 − L2]; and thus

X5 = 4(XV 2 − 2UW ); (New Cost = 2M + 1S).

Thus the cost of the modified Mishra and Dimitrov Algorithm can be reduced
to 9M +15S which is just slightly better than the 10M +14S cost of the Longa
and Miri Quintupling Algorithm. Further we could compute N2 as

N2 = (V − 4L2)2 = V 2 + 16L4 − 8V L2.

Now N2 could be computed without using any extra squarings or multiplications,
as V 2, L4 and V L2 are computed for other steps in the algorithm, as shown
above. Thus 2W = 2EN could be computed as

2W = [(E + N)2 − E2 − N2].

Now, E2 is also computed in another step in the algorithm, thus effectively
replacing 1M with a 1S. Thus, we have reduced the cost of the modified Mishra
and Dimitrov algorithm to 8M + 16S mainly using Eq. (6).

5.2 Quintupling Formulae on Edwards Curves

In [22], Bernstein et al., amongst other things, provide with two fast algorithms
for point quintupling on Edwards curves defined over Fp. An Edward’s curve Ed

defined over a field k is given by the equation

x2 + y2 = 1 + dx2y2, where d ∈ k\{0, 1}.

The two quintupling algorithms provided in [22], (we call them Algorithm A
and Algorithm B for convenience) costs (17M + 7S) and (14M + 11S) respec-
tively. The authors in [22] conclude that Algorithm A performs better if the
S/M ratio i.e., S/M > 0.75 while Algorithm B performs better if S/M < 0.75.
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When S/M = 0.75, both algorithms share the same complexity. Here we mod-
ify Algorithm B slightly to provide an alternate algorithm (Algorithm C). If the
affine point (X1/Z1, Y1/Z1) represents the point (X1, Y1, Z1) on the homogenized
equation of Ed, and if (X5, Y5, Z5) = 5(X1, Y1, Z1), the quintupling algorithm is
as below. (We justify the working of Algorithm C in AppendixC).

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = A + B; E = 2C − D; F = A2; G = B2;

H = F +G; I = D2−H; J = E2; K = G−F ; L = K2; M = 2I.J ; N = L+M ;
O = L − M ; P = N.O; Q = (E + K)2 − J − L; R = 2(2JH − L); S = Q.R;
T = 4Q.O.(D−C); U = R.N ; V = U+T ; W = U−T ; X5 = 2X1.(P+B.S).W ;
Y5 = 2Y1.(P − A.S).V ; Z5 = Z1.V.W

Algorithm C above for quintupling costs (15M +9S) and is better than both
the quintupling algorithms provided in [22] (Table 1).

Table 1. Edwards curve quintupling formulae summary

Algorithm Quintupling costs

Bernstein et al. [22] (2007) 17M + 7S

Bernstein et al. [22] (2007) 14M + 11S

This work (2016) 15M + 9S

6 Conclusion

We presented a simultaneous triple scalar multiplication algorithm to compute
the x-coordinate of kP + lQ + uR on the Montgomery form Elliptic curve over
Fp. This method is about 15 to 22 % faster than the straight forward method of
computing kP + lQ+sR. The new algorithm in this paper is ready to be used by
implementers without the overhead of using a patented method such as Brown’s
method. The matrix execution phase required in Brown’s method is not required
in the algorithm presented in this paper and the number of precomputed points
required is 8, whereas Brown’s method, when used for the 3-dimensional case
may require 13 precomputed points. Further, we also presented point tripling
formulae on Montgomery curves and outlined a couple of scenarios where these
formulae may be useful. We also provided an efficient point quintupling algorithm
on Edwards Curves and an improvement of Mishra and Dimitrov’s quintupling
algorithm over Weierstrass’ curves.

Acknowledgments. Many thanks to the anonymous reviewers of Africacrypt 2016
for their valuable feedback.
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Appendices

A Five Element Set Gi+1 for all Combinations
of (ki, li, ui)

Here, we list the five elements in Gi+1 for all eight combinations of (ki, li, ui),
that was used to construct the three dimensional Montgomery Ladder presented
in Sect. 3 of this paper.

(ki, li, ui) = (0, 0, 0): (ki, li, ui) = (0, 0, 1):

mi+1P + ni+1Q + si+1R mi+1P + ni+1Q + si+1R
mi+1P + ni+1Q + (si+1 + 1)R mi+1P + ni+1Q + (si+1 + 1)R
mi+1P + (ni+1 + 1)Q + si+1R mi+1P + (ni+1 + 1)Q + (si+1 + 1)R
(mi+1 + 1)P + ni+1Q + si+1R (mi+1 + 1)P + ni+1Q + (si+1 + 1)R
(mi+1 + 1)P + (ni+1 + 1)Q + si+1R (mi+1+1)P +(ni+1+1)Q+(si+1+1)R

(ki, li, ui) = (0, 1, 0): (ki, li, ui) = (0, 1, 1):

mi+1P + ni+1Q + si+1R mi+1P + ni+1Q + si+1R
mi+1P + (ni+1 + 1)Q + si+1R mi+1P + ni+1Q + (si+1 + 1)R
mi+1P + (ni+1 + 1)Q + (si+1 + 1)R mi+1P + (ni+1 + 1)Q + si+1R
(mi+1 + 1)P + (ni+1 + 1)Q + si+1R mi+1P + (ni+1 + 1)Q + (si+1 + 1)R
(mi+1+1)P +(ni+1+1)Q+(si+1+1)R (mi+1+1)P +(ni+1+1)Q+(si+1+1)R

(ki, li, ui) = (1, 0, 0): (ki, li, ui) = (1, 0, 1):

mi+1P + ni+1Q + si+1R mi+1P + ni+1Q + si+1R
(mi+1 + 1)P + ni+1Q + si+1R mi+1P + ni+1Q + (si+1 + 1)R
(mi+1 + 1)P + ni+1Q + (si+1 + 1)R (mi+1 + 1)P + ni+1Q + si+1R
(mi+1 + 1)P + (ni+1 + 1)Q + si+1R (mi+1 + 1)P + ni+1Q + (si+1 + 1)R
(mi+1+1)P +(ni+1+1)Q+(si+1+1)R (mi+1+1)P +(ni+1+1)Q+(si+1+1)R

(ki, li, ui) = (1, 1, 0): (ki, li, ui) = (1, 1, 1):

mi+1P + ni+1Q + si+1R mi+1P + ni+1Q + (si+1 + 1)R
mi+1P + (ni+1 + 1)Q + si+1R mi+1P + (ni+1 + 1)Q + (si+1 + 1)R
(mi+1 + 1)P + ni+1Q + si+1R (mi+1 + 1)P + ni+1Q + (si+1R + 1)
(mi+1 + 1)P + (ni+1 + 1)Q + si+1R (mi+1 + 1)P + (ni+1 + 1)Q + si+1R
(mi+1+1)P +(ni+1+1)Q+(si+1+1)R (mi+1+1)P +(ni+1+1)Q+(si+1+1)R

B Derivation of Differential Tripling Formula on
Montgomery Curves and an Algorithm for Differential
Tripling

We derive the differential point tripling formulae for Montgomery Curves. Let
P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) and P3 = (X3, Y3, Z3) be points on a
Montgomery curve Em with P2 = 2P1 andP3 = 3P1. We can write P3 = 3P1 =
2P1 + P1 = P2 + P1. Then,

X2 = (X1 + Z1)2(X1 − Z1)2 (7)

Z2 = 4X1Z1((X1 − Z1)2 + ((A + 2)/4)(4X1Z1)) (8)

X3 = Z1[(X1 − Z1)(X2 + Z2) + (X1 + Z1)(X2 − Z2)]2 (9)

Z3 = X1[(X1 − Z1)(X2 + Z2) − (X1 + Z1)(X2 − Z2)]2 (10)
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From Eqs. (7), (8), (9) and (10) we can write

X3 = Z1
[
(X1 − Z1)

{
(X1 + Z1)

2
(X1 − Z1)

2
+ 4X1Z1 (X1 − Z1)

2
+ ((A + 2) /4) (4X1Z1)

2}
+

(X1 + Z1)
{
(X1 + Z1)

2
(X1 − Z1)

2 − 4X1Z1 (X1 − Z1)
2 − ((A + 2) /4) (4X1Z1)

2}]2

= Z1
[(

(X1 + Z1) (X1 − Z1)
)2{

2X1
}− 4X1Z1 (X1 − Z1)

2 {
2Z1
}−

(
(A + 2)/4

)
(4X1Z1)

2{
2Z1
}]2

= 4X
2
1Z1
[(

(X1 + Z1) (X1 − Z1)
)2 − 4Z

2
1 (X1 − Z1)

2 − ((A + 2) /4
) (

16X1Z
3
1

)]2

= 4X
2
1Z1
((

X
2
1 − Z

2
1

)2 −
(
X

2
1 + Z

2
1 + AX1Z1

)
(2Z1)

2)2

Similarly,

Z3 = X1
[
(X1 − Z1)

{
(X1 + Z1)

2
(X1 − Z1)

2
+ 4X1Z1 (X1 − Z1)

2
+ ((A + 2) /4) (4X1Z1)

2} −
(X1 + Z1)

{
(X1 + Z1)

2
(X1 − Z1)

2 − 4X1Z1 (X1 − Z1)
2 − ((A + 2) /4) (4X1Z1)

2}]2

= X1
[(

(X1 + Z1) (X1 − Z1)
)2{−2Z1

}− 4X1Z1 (X1 − Z1)
2 {

2X1
}−

(
(A + 2)/4

)
(4X1Z1)

2{
2X1

}]2

= 4X1Z
2
1

[−((X1 + Z1) (X1 − Z1)
)2

+ 4X
2
1 (X1 − Z1)

2
+
(
(A + 2) /4

) (
16X

3
1Z1

)]2

= 4X1Z
2
1

(−
(
X

2
1 − Z

2
1

)2
+
(
X

2
1 + Z

2
1 + AX1Z1

)
(2X1)

2)2

= 4X1Z
2
1

((
X

2
1 − Z

2
1

)2 −
(
X

2
1 + Z

2
1 + AX1Z1

)
(2X1)

2)2

Dividing both X3 and Z3 by 4X1Z1 we get, when (X1, Y1) �= (0, 0)

X3 = X1

((
X2

1 − Z2
1

)2 − (
X2

1 + Z2
1 + AX1Z1

)
(2Z1)

2)2

Z3 = Z1

((
X2

1 − Z2
1

)2 − (
X2

1 + Z2
1 + AX1Z1

)
(2X1)

2)2

The formulae for X3 and Y3 derived above can be computed using the following
algorithm:

T1 ← X1; T2 ← Z1

T1 ← T
2
1 (= X

2
1 )

T2 ← T
2
2 (= Z

2
1 )

T3 ← (T1 − T2)
2

(= (X
2
1 − Z

2
1 )

2
)

T4 ← X1Z1 (= X1Z1)

T4 ← A.T4 (= AX1Z1)

T5 ← T2 + T2 + T2 + T2 (= 4Z
2
1 )

T6 ← T1 + T1 + T1 + T1 (= 4X
2
1 )

T4 ← T1 + T2 + T4 (= X
2
1 + Z

2
1 + AX1Z1)

T7 ← T4.T5 (= (X
2
1 + Z

2
1 + AX1Z1)(4Z

2
1 ))

T8 ← T4.T6 (= (X
2
1 + Z

2
1 + AX1Z1)(4X

2
1 ))

T1 ← (T3 − T7)
2 (

=
((

X
2
1 − Z

2
1

)2 −
(
X

2
1 + Z

2
1 + AX1Z1

)
(2Z1)

2)2)

T2 ← (T3 − T8)
2 (

=
((

X
2
1 − Z

2
1

)2 −
(
X

2
1 + Z

2
1 + AX1Z1

)
(2X1)

2)2)

X3 ← X1.T1
(
= X1

((
X

2
1 − Z

2
1

)2 −
(
X

2
1 + Z

2
1 + AX1Z1

)
(2Z1)

2)2)

Z3 ← Z1.T2
(
= Z1

((
X

2
1 − Z

2
1

)2 −
(
X

2
1 + Z

2
1 + AX1Z1

)
(2X1)

2)2)
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C Edwards Curve Quintupling Formulae

Algorithms A and B were verified by the authors in [22]. The only difference
between Algorithm C presented in this paper and Algorithm B in [22] is in the
computation of R. It was computed in Algorithm B as

R = ((D + E)2 − J − H − I)2 − 2N

In Algorithm C, we employ R = 2(2JH − L) as we can rewrite R as follows:

R =

{[
(X2

1 + Y 2
1 ) + (2Z2

1 − (X2
1 + Y 2

1 )
]2

− [2Z2
1 − (X2

1 + Y 2
1 )
]2 − [X4

1 + Y 4
1

]− 2X2
1Y

2
1

}2

− 2N

=
[
2(X2

1 + Y 2
1 )(2Z2

1 − (X2
1 + Y 2

1 ))
]2

− 2
[
(Y 4

1 − X4
1 )2 + 4(X2

1Y
2
1 ){2Z2

1 − (X2
1 + Y 2

1 )}2]
= 4
[
2Z2

1 − (X2
1 + Y 2

1 )
]2{

X4
1 + Y 4

1

}− 2
[
(Y 4

1 − X4
1 )2
]

= 4JH − 2L = 2(2JH − L)

D Three Dimensional Montgomery Ladder Algorithm

Algorithm 2. L-R 3-Dimensional Montgomery Ladder

INPUT: Points P, Q, R on Em and positive integers k, l, u;
k = (kt · · · k1, k0)2, l = (lt · · · l1, l0)2,

u = (ut · · ·u1, u0)2; (at least one of kt or lt or ut = 1).
Precompute A ← (P + Q), B ← (P − Q), C ← (P + R), D ← (P − R), E ← (Q + R),
F ← (Q − R), G ← (P + Q + R), H ← (P + Q − R);

OUTPUT: x coordinate of W = kP + lQ + uR.

[Initialize]

if kt, lt, ut = (0, 0, 1)
T0 ← O, T1 ← R, T2 ← E, T3 ← C,
T4 ← G;

else if kt, lt, ut = (0, 1, 0)
T0 ← O, T1 ← Q, T2 ← E, T3 ← A,
T4 ← G;

else if kt, lt, ut = (0, 1, 1)
T0 ← O, T1 ← R, T2 ← Q, T3 ← E,
T4 ← G;

else if kt, lt, ut = (1, 0, 0)
T0 ← O, T1 ← P, T2 ← C, T3 ← A,
T4 ← G;

else if kt, lt, ut = (1, 0, 1)
T0 ← O, T1 ← R, T2 ← P, T3 ← C,
T4 ← G;

else if kt, lt, ut = (1, 1, 0)
T0 ← O, T1 ← Q, T2 ← P, T3 ← A,
T4 ← G;

else if kt, lt, ut = (1, 1, 1)
T0 ← R, T1 ← E, T2 ← C, T3 ← A,
T4 ← G;



Three Dimensional Montgomery Ladder, Differential Point Tripling 101

[Process the three scalar bits simultaneously]
for i from t down to 1
T0Tmp ← T0, T1Tmp ← T1, T2Tmp ← T2, T3Tmp ← T3, T4Tmp ← T4;
if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 0, 0)
T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R), T2 ← T2Tmp+T0Tmp(Q), T3 ← T3Tmp+T0Tmp(P),
T4 ← T4Tmp+T0Tmp(A);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 0, 1)
T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R), T2 ← T2Tmp+T1Tmp(F), T3 ← T3Tmp+T1Tmp(D),
T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 1, 0)
T0 ← 2T0Tmp, T1 ← T2Tmp+T0Tmp(Q), T2 ← T2Tmp+T1Tmp(F), T3 ← T4Tmp+T0Tmp(A),
T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 0, 1, 1)
T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R), T2 ← T2Tmp+T0Tmp(Q), T3 ← T2Tmp+T1Tmp(F),
T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 0, 0)
T0 ← 2T0Tmp, T1 ← T3Tmp+T0Tmp(P), T2 ← T3Tmp+T1Tmp(D), T3 ← T4Tmp+T0Tmp(A),
T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 0, 1)
T0 ← 2T0Tmp, T1 ← T1Tmp+T0Tmp(R), T2 ← T3Tmp+T0Tmp(P), T3 ← T3Tmp+T1Tmp(D),
T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 1, 0)
T0 ← 2T0Tmp, T1 ← T2Tmp+T0Tmp(Q), T2 ← T3Tmp+T0Tmp(P), T3 ← T4Tmp+T0Tmp(A),
T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 0, 1, 1, 1)
T0 ← T1Tmp+T0Tmp(R), T1 ← T2Tmp+T1Tmp(F), T2 ← T3Tmp+T1Tmp(D),
T3 ← T4Tmp+T0Tmp(A), T4 ← T4Tmp+T1Tmp(H);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 0, 0)
T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp , T2 ← T2Tmp+T0Tmp,(E) T3 ← T3Tmp+T0Tmp(C),
T4 ← T4Tmp+T0Tmp(G);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 0, 1)
T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp, T2 ← T2Tmp+T1Tmp(Q), T3 ← T3Tmp+T1Tmp(P),
T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 1, 0)
T0 ← T1Tmp+T0Tmp(R), T1 ← T2Tmp+T0Tmp(E), T2 ← T2Tmp+T1Tmp(Q),
T3 ← T4Tmp+T0Tmp(G), T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 0, 1, 1)
T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp, T2 ← T2Tmp+T0Tmp(E), T3 ← T2Tmp+T1Tmp(Q),
T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 0, 0)
T0 ← T1Tmp+T0Tmp(R), T1 ← T3Tmp+T0Tmp(C), T2 ← T3Tmp+T1Tmp(P),
T3 ← T4Tmp+T0Tmp(G), T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 0, 1)
T0 ← T1Tmp+T0Tmp(R), T1 ← 2T1Tmp, T2 ← T3Tmp+T0Tmp(C), T3 ← T3Tmp+T1Tmp(P),
T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 1, 0)
T0 ← T1Tmp+T0Tmp(R), T1 ← T2Tmp+T0Tmp(E), T2 ← T3Tmp+T0Tmp(C),
T3 ← T4Tmp+T0Tmp(G), T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 0, 1, 1, 1, 1)
T0 ← 2T1Tmp, T1 ← T2Tmp+T1Tmp(Q), T2 ← T3Tmp+T1Tmp(P),
T3 ← T4Tmp+T0Tmp(G), T4 ← T3Tmp+T2Tmp(B);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 0, 0)
T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E), T2 ← 2T1Tmp, T3 ← T3Tmp+T0Tmp(A),
T4 ← T3Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 0, 1)
T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E), T2 ← T2Tmp+T1Tmp(R),
T3 ← T4Tmp+T0Tmp(G), T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 1, 0)
T0 ← T1Tmp+T0Tmp(Q), T1 ← 2T1Tmp, T2 ← T2Tmp+T1Tmp(R) T3 ← T3Tmp+T1Tmp(P),
T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 0, 1, 1)
T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E), T2 ← 2T1Tmp, T3 ← T2Tmp+T1Tmp(R),
T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 0, 0)
T0 ← T1Tmp+T0Tmp(Q), T1 ← T3Tmp+T0Tmp(A), T2 ← T4Tmp+T0Tmp(G),
T3 ← T3Tmp+T1Tmp(P), T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 0, 1)
T0 ← T1Tmp+T0Tmp(Q), T1 ← T2Tmp+T0Tmp(E), T2 ← T3Tmp+T0Tmp(A),
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T3 ← T4Tmp+T0Tmp(G), T4 ← T4Tmp+T1Tmp(C);
else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 1, 0)
T0 ← T1Tmp+T0Tmp(Q), T1 ← 2T1Tmp, T2 ← T3Tmp+T0Tmp(A),
T3 ← T3Tmp+T1Tmp(P), T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 0, 1, 1, 1)
T0 ← T2Tmp+T0Tmp(E), T1 ← T2Tmp+T1Tmp(R), T2 ← T4Tmp+T0Tmp(G),
T3 ← T3Tmp+T1Tmp(P), T4 ← T4Tmp+T1Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 0, 0)
T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q), T2 ← T3Tmp+T2Tmp(R),
T3 ← T4Tmp+T0Tmp(G), T4 ← T4Tmp+T2Tmp(C);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 0, 1)
T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q), T2 ← 2T3Tmp, T3 ← T4Tmp+T1Tmp(A),
T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 1, 0)
T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T2Tmp(R), T2 ← 2T3Tmp, T3 ← T4Tmp+T2Tmp(C),
T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 0, 1, 1)
T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q), T2 ← T3Tmp+T2Tmp(R), T3 ← 2T3Tmp,
T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 0, 0)
T0 ← T3Tmp+T0Tmp(E), T1 ← T4Tmp+T0Tmp(G), T2 ← T4Tmp+T1Tmp(A),
T3 ← T4Tmp+T2Tmp(C), T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 0, 1)
T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T1Tmp(Q), T2 ← T4Tmp+T0Tmp(G),
T3 ← T4Tmp+T1Tmp(A), T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 1, 0)
T0 ← T3Tmp+T0Tmp(E), T1 ← T3Tmp+T2Tmp(R), T2 ← T4Tmp+T0Tmp(G),
T3 ← T4Tmp+T2Tmp(C), T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (0, 1, 1, 1, 1, 1)
T0 ← T3Tmp+T1Tmp(Q), T1 ← 2T3Tmp, T2 ← T4Tmp+T1Tmp(A), T3 ← T4Tmp+T2Tmp(C),
T4 ← T4Tmp+T3Tmp(P);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 0, 0)
T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C), T2 ← T3Tmp+T0Tmp(A), T3 ← 2T1Tmp,
T4 ← T3Tmp+T1Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 0, 1)
T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C), T2 ← T4Tmp+T0Tmp(G),
T3 ← T2Tmp+T1Tmp(R), T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 1, 0)
T0 ← T1Tmp+T0Tmp(P), T1 ← T3Tmp+T0Tmp(A), T2 ← T4Tmp+T0Tmp(G),
T3 ← T3Tmp+T1Tmp(Q), T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 0, 1, 1)
T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C), T2 ← T3Tmp+T0Tmp(A),
T3 ← T4Tmp+T0Tmp(G), T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 0, 0)
T0 ← T1Tmp+T0Tmp(P), T1 ← 2T1Tmp, T2 ← T2Tmp+T1Tmp(R), T3 ← T3Tmp+T1Tmp(Q),
T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 0, 1)
T0 ← T1Tmp+T0Tmp(P), T1 ← T2Tmp+T0Tmp(C), T2 ← 2T1Tmp, T3 ← T2Tmp+T1Tmp(R),
T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 1, 0)
T0 ← T1Tmp+T0Tmp(P), T1 ← T3Tmp+T0Tmp(A), T2 ← 2T1Tmp, T3 ← T3Tmp+T1Tmp(Q),
T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 0, 1, 1, 1)
T0 ← T2Tmp+T0Tmp(C), T1 ← T4Tmp+T0Tmp(G), T2 ← T2Tmp+T1Tmp(R),
T3 ← T3Tmp+T1Tmp(Q), T4 ← T4Tmp+T1Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 0, 0)
T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P), T2 ← T4Tmp+T0Tmp(G),
T3 ← T3Tmp+T2Tmp(R), T4 ← T4Tmp+T2Tmp(E);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 0, 1)
T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P), T2 ← T4Tmp+T1Tmp(A), T3 ← 2T3Tmp,
T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 1, 0)
T0 ← T3Tmp+T0Tmp(C), T1 ← T4Tmp+T0Tmp(G), T2 ← T4Tmp+T1Tmp(A),
T3 ← T4Tmp+T2Tmp(E), T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 0, 1, 1)
T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P), T2 ← T4Tmp+T0Tmp(G),
T3 ← T4Tmp+T1Tmp(A), T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 0, 0)
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T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T2Tmp(R), T2 ← 2T3Tmp, T3 ← T4Tmp+T2Tmp(E),
T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 0, 1)
T0 ← T3Tmp+T0Tmp(C), T1 ← T3Tmp+T1Tmp(P), T2 ← T3Tmp+T2Tmp(R), T3 ← 2T3Tmp,
T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 1, 0)
T0 ← T3Tmp+T0Tmp(C), T1 ← T4Tmp+T0Tmp(G), T2 ← T3Tmp+T2Tmp(R),
T3 ← T4Tmp+T2Tmp(E), T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 0, 1, 1, 1, 1)
T0 ← T3Tmp+T1Tmp(P), T1 ← T4Tmp+T1Tmp(A), T2 ← 2T3Tmp, T3 ← T4Tmp+T2Tmp(E),
T4 ← T4Tmp+T3Tmp(Q);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 0, 0)
T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G), T2 ← T3Tmp+T1Tmp(P),
T3 ← T3Tmp+T2Tmp(Q), T4 ← 2T3Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 0, 1)
T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G), T2 ← T4Tmp+T1Tmp(C),
T3 ← T4Tmp+T2Tmp(E), T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 1, 0)
T0 ← T3Tmp+T0Tmp(A), T1 ← T3Tmp+T1Tmp(P), T2 ← T4Tmp+T1Tmp(C), T3 ← 2T3Tmp,
T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 0, 1, 1)
T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G), T2 ← T3Tmp+T1Tmp(P),
T3 ← T4Tmp+T1Tmp(C), T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 0, 0)
T0 ← T3Tmp+T0Tmp(A), T1 ← T3Tmp+T2Tmp(Q), T2 ← T4Tmp+T2Tmp(E),
T3 ← 2T3Tmp, T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 0, 1)
T0 ← T3Tmp+T0Tmp(A), T1 ← T4Tmp+T0Tmp(G), T2 ← T3Tmp+T2Tmp(Q),
T3 ← T4Tmp+T2Tmp(E), T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 1, 0)
T0 ← T3Tmp+T0Tmp(A), T1 ← T3Tmp+T1Tmp(P), T2 ← T3Tmp+T2Tmp(Q), T3 ← 2T3Tmp,
T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 0, 1, 1, 1)
T0 ← T4Tmp+T0Tmp(G), T1 ← T4Tmp+T1Tmp(C), T2 ← T4Tmp+T2Tmp(E), T3 ← 2T3Tmp,
T4 ← T4Tmp+T3Tmp(R);

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 0, 0)
T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A), T2 ← T3Tmp+T1Tmp(D),
T3 ← T3Tmp+T2Tmp(F), T4 ← T4Tmp+T3Tmp(R)

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 0, 1)
T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A), T2 ← T4Tmp+T1Tmp(P),
T3 ← T4Tmp+T2Tmp(Q), T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 1, 0)
T0 ← T3Tmp+T0Tmp(H), T1 ← T3Tmp+T1Tmp(D), T2 ← T4Tmp+T1Tmp(P),
T3 ← T4Tmp+T3Tmp(R), T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 0, 1, 1)
T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A), T2 ← T3Tmp+T1Tmp(D),
T3 ← T4Tmp+T1Tmp(P), T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 0, 0)
T0 ← T3Tmp+T0Tmp(H), T1 ← T3Tmp+T2Tmp(F), T2 ← T4Tmp+T2Tmp(Q),
T3 ← T4Tmp+T3Tmp(R), T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 0, 1)
T0 ← T3Tmp+T0Tmp(H), T1 ← T4Tmp+T0Tmp(A), T2 ← T3Tmp+T2Tmp(F),
T3 ← T4Tmp+T2Tmp(Q), T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 1, 0)
T0 ← T3Tmp+T0Tmp(H), T1 ← T3Tmp+T1Tmp(D), T2 ← T3Tmp+T2Tmp(F),
T3 ← T4Tmp+T3Tmp(R), T4 ← 2T4Tmp;

else if (ki, li, ui, ki−1, li−1, ui−1) = (1, 1, 1, 1, 1, 1)
T0 ← T4Tmp+T0Tmp(A), T1 ← T4Tmp+T1Tmp(P), T2 ← T4Tmp+T2Tmp(Q),
T3 ← T4Tmp+T3Tmp(R), T4 ← 2T4Tmp;

end for
[Finalize]



104 S.R. Subramanya Rao

if (k0, l0, u0) = (0, 0, 0)
W ← 2T0

else if (k0, l0, u0) = (0, 0, 1)
W ← T1 + T0 (R)

else if (k0, l0, u0) = (0, 1, 0)
W ← T1 + T0 (Q)

else if (k0, l0, u0) = (0, 1, 1)
W ← T3 + T0 (E)

else if (k0, l0, u0) = (1, 0, 0)
W ← T1 + T0 (P)

else if (k0, l0, u0) = (1, 0, 1)
W ← T3 + T0 (C)

else if (k0, l0, u0) = (1, 1, 0)
W ← T3 + T0 (A)

else if (k0, l0, u0) = (1, 1, 1)
W ← T3 + T0 (H)

Return x−coordinate of W by computing x = X/Z
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Abstract. We investigate two attacks on the PRINCE block cipher
in the most realistic scenario, when the attacker only has a minimal
amount of known plaintext available. The first attack is called Accel-
erated Exhaustive Search, and is able to recover the key for up to the
full 12-round PRINCE with a complexity slightly lower than the secu-
rity claim given by the designers. The second attack is a meet-in-the-
middle attack, where we show how to successfully attack 8- and 10-round
PRINCE with only two known plaintext/ciphertext pairs. Both attacks
take advantage of the fact that the two middle rounds in PRINCE are
unkeyed, so guessing the state before the first middle round gives the
state after the second round practically for free. These attacks are the
fastest until now in the known plaintext scenario for the 8 and 10 reduced-
round versions and the full 12-round of PRINCE.

Keywords: PRINCE · Lightweight cipher · Cryptanalysis · Exhaustive
search · Meet-in-the-middle

1 Introduction

Designing ciphers that require only a minimum of resources in implementations is
known as lightweight cryptography. Several lightweight block and stream ciphers
have been proposed, and their design and analysis have been a very active area
of research the last decade. PRINCE is a prominent example of a lightweight
block cipher, and has received much attention since it was proposed in 2012.

One reason for the interest in cryptanalysis of cryptanalytic results in clearly
defined settings. PRINCE’ innovative structure has also attracted cryptanalysts
to investigate this block cipher. This has resulted in a variety of cryptanalysis
in different models, including single key, related key and physical attacks. As
the designers did not claim any security in either related key or physical attack
models, we focus on the normal single key mode.

Previous works on PRINCE in the single key setting include some attacks
on the PRINCEcore [3,4,7,8,11] or attacks with change on the original struc-
ture [5,8] or an attack in the multi-user case [9]. The attacks which investigate
the original structure of PRINCE involves a variety of atttacks, such as integral
[4,13], sieve-in-the-middle (SITM) [6], meet-in-the-middle (MITM) [7,12], dif-
ferential [8,12], and time-memory or time-data-memory trade-off attacks [4,10].
All of these attacks except one exhaustive search-like attack in [4] are chosen
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 109–126, 2016.
DOI: 10.1007/978-3-319-31517-1 6
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Table 1. Summary of cryptanalytic results on PRINCE

Mode Rounds Time Data Memory Technique Ref.

CP 4 264 24 24 Integral [4]

4 211 27 24 Integral [13]

4 228 25.58 24 Integral [13]

6 264 216 216 Integral [4]

6 241 218.58 216 Integral [13]

6 232.9 214.9 � 227 Differential/Logic [12]

6 233.7 216 231.9 MITM [12]

8 260 253 230 MITM [7]

8 250.7 * 216 284.9 MITM [12]

8 265.7 * 216 268.9 MITM [12]

10 260.62 257.94 261.52 Multiple Differential [8]

10 268 * 257 241 MITM [12]

KP 4 243 25 ? ? ** [2]

6 2101 26 ? ? ** [2]

8 2124 2 220 SITM [6]

8 2122.74 2 negl. Acc. Exh. Search 3.1

8 2109.34 2 265.03 MITM 4.1

10 2124.06 2 negl. Acc. Exh. Search 3.2

10 2122.15 2 253.3 MITM 4.2

12 2125.47 2 negl. Exh. Search [4]

12 2125.14 2 negl Acc. Exh. Search 3.3

* Online Time
** Attacks reported by Derbez, but not published yet.

plaintext attacks. There is also a known plaintext attack on a reduced-round
version in [2] reported by Patrick Derbez but not published yet. A summary of
these attacks are given in Table 1.

In this paper we investigate attacks where we assume the attacker only has
a minimal amount of known plaintext available, typically only two known plain-
text/ciphertext pairs. This is the most realistic scenario, so the results reported
here should apply to most implementations. When we have so little data, inte-
gral attacks or attacks that rely on statistical biases can not be used, so we are
left with algebraic attacks or guess/verify types of attacks. We will focus on the
last type of attack, and look at two different attacks of the guess/verify kind
that both of them are based on guessing the states right before and after two
middle round of the cipher.

The first we call Accelerated Exhaustive Search, and as the name suggests
in essence it is an exhaustive search for the key. However, we will show how
to exploit certain properties and make several shortcuts when guessing, so the
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resulting complexity for this attack becomes significantly lower than in a straight-
forward exhaustive search. For the full 12-round PRINCE Accelerated Exhaus-
tive Search has a complexity that is lower than the security claim given by the
designers (about 1.8 times faster).

The second attack we investigate is a MITM attack. In contrast to [12],
but similar to Accelerated Exhaustive Search, our MITM attack by breaking
the whole cipher to two smaller sub-ciphers get a 2-dimensional MITM attack
[16,17]. We show that the two dimensions can be treated in parallel in PRINCE
due to the reflection property, so we can do matching in both sides at the same
time and only need to build one big table of values to match instead of two.
The main result of this part of the paper is that 10-round PRINCE can be
efficiently attacked (with respect to designers’ security claim) using only two
known plaintexts. Moreover, we get a lower time/data trade-off value T ∗D than
the one reported in [12].

This paper is organized as follows. Section 2 presents a brief description of
PRINCE. In Sect. 3 we outline the Accelerated Exhaustive Search attacks and
Sect. 4 presents the MITM attacks. Finally, Sect. 5 concludes the paper.

2 PRINCE Block Cipher

PRINCE [1] is a lightweight block cipher with a block size of 64 bits and two
keys that both have length 64 bits. It has an FX construction where one of the
keys (K0) are used for whitening and the other one (K1) is used as a round key
for the core of the structure (see Fig. 1). We denote the plaintext/ciphertext pair
of PRINCE by P/C, and the corresponding input/output of the PRINCEcore

function by P ′/C ′. These variables are related through the following equations.

P ′ = P ⊕ K0, (1)

C ′ = C ⊕ K ′
0, (2)

where K ′
0 is the following linear mapping of K0

K ′
0 = L(K0) = (K0 ≫ 1) ⊕ (K0 � 63). (3)

For any FX constructed block cipher with a linear mapping between the
whitening keys (K0/K ′

0), having a known pair of P/C gives us some information
about P ′/C ′ of the core structure which is independent from the whitening keys.
This is summarized in the following lemma.

P' PRINCEcore
C'P C

K1
K0 K0'

Fig. 1. PRINCE FX construction
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Fig. 2. PRINCE core

Lemma 1. For a P/C pair and its corresponding P ′/C ′ in the FX construction
block cipher which uses a linear mapping L between whitening keys, the following
equation holds:

L(P ′) ⊕ C ′ = L(P ) ⊕ C (4)

Proof. We can eliminate K0 from (1) and (2), first by applying the L(.) trans-
formation to (1), an then summing up these two equations, which results in
(4). So for each pair of P/C we can compute the value of L(P ′) ⊕ C ′, which is
independent of K0 and K ′

0. ��
The PRINCEcore is a block cipher of its own and similar to AES. It employs

an involutive 12 rounds structure which, in the beginning, consists of two xors
with the key and a round constant. This is followed by 5 forward rounds, a
middle layer, 5 backward rounds and at the end, two more xors with a round
constant and the key. Figure 2 shows the schematic view of the PRINCEcore.

The state can be defined as a 4 × 4 matrix like for AES, but in PRINCE the
cells contain nibbles and not bytes. Each round of the PRINCEcore consists of 5
operations: S-box, matrix multiplication, shift row, round constant addition and
key addition. These are described as follows.

– S-box (SB): Every nibble in the state is replaced using a 4-bit S-box.
– Matrix Multiplication (MC): The state is multiplied with an involutive

64 × 64 binary matrix. More precisely, this large matrix can be expressed as
four 16× 16 matrices where each of these mixes four nibbles in one column of
the state.

– Shift Row (SR): It is exactly the same as the shift row operation in the AES.
Row i of the state, with row 0 as the top row, is cyclically rotated i positions
to the left.

– Round Constant Addition (RC): A bit-wise xor ing with a round constant
RCi , i = 0, ..., 11.

– Key Addition (AK): A bit-wise xor ing with the key K1.

The middle rounds contain three layers, SB, MC, SB−1 which makes it
an involutive keyless transformation. This transformation can also be separated
into four smaller transformations, one for each column in the state.
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Fig. 3. Modified round function for PRINCE

In the backward rounds, the order of the operations are inverse of the forward
rounds, and SB and SR are replaced with SB−1 and SR−1. The round constants
are also different, but related to the round constants in the forward rounds.
The difference RCi ⊕ RC11−i, i = 0, ..., 11 is always equal to the constant value
α = 0xc0ac29b7c97c50dd.

As a result of this involutive structure of PRINCEcore, in implementations
decryption can use the same circuit as encryption. In decryption mode the key
only needs to be xored with α, i.e.

C ′ = PRINCEcore(P ′,K1) ⇐⇒ P ′ = PRINCEcore(C ′,K1 ⊕ α). (5)

This property is called α-reflection.
To ease the analysis in this paper we define an equivalent key for PRINCEcore,

which is equal to
K ′

1 = SR−1(MC(K1)). (6)

As will be shown in the next sections, using K ′
1 allows us to simplify the equations

used. When we use this equivalent key, we position the AK layer between the
SB and MC layers of the round to get an equivalent description of PRINCEcore

(see Fig. 3). Clearly, by recovering K ′
1 we can recover K1.

Finally, as shown in Fig. 2, we denote the internal states exactly before and
after the middle rounds by X and X ′, respectively. Given X, the value of X ′

can be computed directly, since there is no key involved between X and X ′. By
using the modified round function with K ′

1 instead of K1, we can also expand
these keyless rounds by two SR and two MC operations. The X/X ′ states will
be used frequently in the attacks presented in the next sections.

3 Accelerated Exhaustive Key Search

In this section we will describe how to perform an accelerated exhaustive key
search on PRINCE. Our way of doing this will be faster than a straight-forward
exhaustive key search. By a straight-forward exhaustive key search we mean
the attack where we guess a key, fully encrypt a known plaintext, and checks
if it matches the given ciphertext. Our attack involves guessing the middle
state X and compute the corresponding X ′. Knowing a value for K ′

1 and X
in PRINCEcore we can easily compute P ′ and deduce K0 from (1).

For a plaintext P and the corresponding ciphertext C we will guess the value
of X/X ′ occurring for P and C. For each of the 264 possible X/X ′-values, we will
search for candidates for K ′

1. For each X/X ′-value there will be one value of K ′
1
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in average that will produce P ′- and C ′-values that will match the given right-
hand side in (4). The P ′-value computed from this K ′

1 is then computed and used
to deduce K0. So for each X/X ′ guess we can expect one (K0,K1) candidate.
This candidate for the full key can be tried on one other plaintext/ciphertext
pair, and if it matches it should be the correct key.

At the outset this looks like an attack with complexity equal to exhaustive
key search, but we will show below that the number of S-box look-ups needed
to find the (K0,K1) candidates can be significantly smaller than in a straight-
forward exhaustive key search. Similarly to the biclique attack on AES [14] we
count the number of S-box applications we need to use in the attack, and evaluate
how many full encryptions this amounts to by trading one round for 16 S-box
look-ups. It is argued that a large majority of the time spent in an encryption
is used on S-boxes so this trade-off should give rather accurate results.

Our analysis tries to minimise the number of S-box look-ups needed, and
the results show that the full PRINCE can be attacked with complexity equal
to 2125.14 encryptions using 2 known plaintexts. This is a little lower than the
2127−d-claim made by the designers when using 2d texts [1, p. 6].

3.1 Accelerated Exhaustive Search for 8-Round PRINCE

Assuming known X/X ′, the strategy is to guess on the values of the nibbles in K ′
1

in such a way that the total number of S-box look-ups for verifying/rejecting a
guess becomes minimal. Figure 4 shows the guessing strategy, and which S-boxes
that will be computed in the attack. In the following we explain what happens
in Fig. 4, focusing on the P ′ ↔ X part. Because of the reflective property of
PRINCE, the exact same that is done in this part can be done in the X ′ ↔ C ′

part.
Referring to Fig. 4, the nibbles of K ′

1 will be guessed in alphabetical order,
starting with A. When A has been guessed, we have a fixed output of one S-box
in round 3. We use one S-box look-up to find the corresponding input, and store
this input value. Next, we guess on the value of B, and find the input value to the
corresponding third round S-box. To compute these two input values for all the
28 possible values (A,B), we must do 24(1 + 24(1)) = 272 S-box look-ups since
we reuse the stored input for A. This is less than the 512 S-box applications we
would have to do in a straight-forward exhaustive search on these two S-boxes.
We continue with C and D, storing the input of the third round S-box for each
guess.

After D has been guessed we have enough known nibbles between MC and
SR in round 2 to go backwards through MC and find the input. At this point we
have already guessed the A-value of K ′

1, so we can add this to the top left nibble
and compute the input to the top left S-box in round 2. This is indicated with
the state with a single D in this position. The total number of S-box look-ups
needed for finding this nibble for all possible values of A,B,C,D is given by the
expression

24(1 + 24(1 + 24(1 + 24(2)))) (7)
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Fig. 4. Order of guessing K′
1-nibbles on 8-round PRINCE.

The 2 in the innermost bracket is because we do S-box look-ups in both round
3 and round 2. We continue in this way, guessing the values of E − P in order,
storing the inputs to S-boxes in rounds 2 and 3 whenever they can be computed.
The letters in the states indicate which nibbles can be computed after which
guess. Note that we do not evaluate all S-box inputs in round 2, only the four
indicated with letters.

The number of S-box look-ups needed for computing all indicated nibbles on
the P ′ ↔ X side when cycling through all possible values of A − P is given by

24(1 + 24(1 + 24(1 + 24(2 + 24(. . . (1 + 24(2)) . . .))))), (8)

where every fourth starting number in the brackets is a 2. This number should
be multiplied with 2 to count all S-box look-ups for both P ′ ↔ X and X ′ ↔ C ′

sides.

Verifying a Guess: When we have made a full guess for K ′
1 and reached the

bottom state in Fig. 4, we are in a position to verify whether the guess was
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correct or not. We first apply two S-box look-ups to find the top left nibble of
P ′ = (p63, . . . , p0) and C ′ = (c63, . . . , c0). The four nibbles we have learned are
(p63, p62, p61, p60) and (c63, c62, c61, c60). From the definition of L, the first nibble
in L(P ′) ⊕ C ′ is (p0 ⊕ c63, p63 ⊕ c62, p62 ⊕ c61, p61 ⊕ c60). Only p0 is unknown, so
we can check the current guess against three bits of the constant L(P ) ⊕ C. If
our current guess matches the three bits we evaluate two more S-boxes to learn
(p59, . . . , p56) and (c59, . . . , c56). We can now check (p60 ⊕ c59, . . . , p57 ⊕ c56)
against the constant L(P ) ⊕ C, a total of four new bits.

Continuing in this way, we evaluate the next pair of S-boxes only if the current
guess has matched the given part of L(P )⊕C so far. Note that if the check matches
in the first four nibbles, we have to calculate another four nibbles in the bottom
state of Fig. 4 before applying the next pair of S-boxes for verification. In these
cases we therefore have to apply a total of 10 S-box look-ups instead of 2.

With this analysis we can estimate the number of S-box look-ups needed to
verify/reject a guess. This number is given as

2×(1+2−3+2−7+2−11+5×2−15+2−19+2−23+2−27+5×2−31+. . .+2−63) (9)

Exploiting the α-Reflection Property: The fact that PRINCE is a reflection
cipher can be exploited to reduce the amount of guessing. A given value x for
the middle state X and a given value k for K ′

1 will determine particular values
p′ for P ′ and c′ for C ′. Let this be denoted as

(x, k) → (p′, c′).

Because X and X ′ are related through an involution, if we chose x′ for X, we
will get x as a value for X ′. PRINCEcore is a reflection cipher where decryption
is done by encrypting c′ with α ⊕ k. We then know

(x′, k + α) → (c′, p′),

without having to evaluate all the S-boxes over again. So when we compute the
first nibbles of P ′ and C ′ and check the first bits of L(P ′) ⊕ C ′, we can at the
same time check L(C ′)⊕P ′. In other words, we check both (x, k) and (x′, k ⊕α)
at the same time and in this way cut the search space in half.

This can be implemented by enumerating the X-values as xi = i, and do the
guessing of the X-values in the natural order x0, x1, . . .. We try all keys k for
each xi. When we reach an xi such that x′

i < xi, we simply skip this xi because
all values k (or rather, k ⊕ α) have been tried when we had x′

i as a value for X.
In this way we only need to try 263 values for the middle state X.

Complexity: When we check nibbles of both L(P ′) ⊕ C ′ and L(C ′) ⊕ P ′ for a
match against L(P ) ⊕ C, the probability of getting a match which will invoke
further S-box look-ups doubles. So the final expression for the number of S-box
look-ups needed for verifying a guess becomes

2 × (1 + 2−2 + 2−6 + 2−10 + 5 × 2−14 + 2−18 + . . . + 2−62) = 2 × 1.2669. (10)
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This number should be added to the innermost bracket in (8) to give the
final expression for the number of S-box look-ups needed to do the accelerated
exhaustive search for each X/X ′-value:

2 × [
24(1 + 24(1 + 24(. . . (1 + 24(2 + 1.2669)) . . .)))

]
= 266.74. (11)

We will repeat this for each of 263 values for X, bringing the grand total of S-
box look-ups to 2129.74. Equating 16 S-box look-ups with one round of PRINCE
and eight rounds for one encryption, this amounts to a complexity of 2122.74

encryptions to find the full key (K0,K1).
One thing we have glossed over so far in our analysis is the number of S-box

look-ups needed to compute X ′ from X. This is 32 for each of the 263 X-values,
so we should add 268 to the total above. The 268 is a negligible addition, so the
complexity remains at 2122.74.

3.2 Accelerated Exhaustive Search for 10-Round PRINCE

The accelerated exhaustive search on 10-round PRINCE is similar to the attack
in the previous section, but there are a few differences. One difference is that we
have to apply another 16 S-boxes on each of the P ′ ↔ X and X ′ ↔ C ′ branches.
Another is that we will guess the nibbles of K ′

1 in a different order than in the
8-round attack. The reason for this is to minimize the value of the expression
similar to (8) that applies to the 10-round version. To minimize this value, we
want the starting numbers in the brackets to be larger in the outer brackets,
and smaller the further into the brackets we get. The order of guessing we have
found that minimizes this value is shown in Fig. 5, where we also can see which
nibbles that can be computed in the states after each guess.

The expression for counting the number of S-box look-ups will have 16 nested
brackets, the first for guessing the A-nibble, the next for B, etc. up to P for the
innermost bracket. The starting number in each bracket is the number of new
S-box look-ups we can do, and store, after each guess. We must compute the full
states at the input to rounds 3 and 4, but only 4 nibbles in the input to round 2,
so these numbers will add up to 36. By counting the number of A,B,C, . . . , P
nibbles in the cipher states in Fig. 5, the sequence of starting numbers in the
brackets are

1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 2, 2, 1, 4, 2, 9.

The cost of verifying/rejecting a guess is exactly the same as in the 8-round
attack. Multiplying with 2 to cover both the P ′ ↔ X and X ′ ↔ C ′ branches,
the total number of S-box look-ups for doing the accelerated exhaustive search
on 10-round PRINCE for one X-value is

2 × [
24(1 + 24(1 + 24(1 + . . . + 24(2 + 24(9 + 1.2669)) . . .)))

]
= 268.38 (12)

Repeating this for all 263 values of X, the total S-box look-ups in the whole
attack will be 2131.38 that is equal to 2124.06 10-round PRINCE encryptions.
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Fig. 5. Order of guessing K′
1-nibbles on 10-round PRINCE.

3.3 Accelerated Exhaustive Search for Full 12-Round PRINCE

For the full PRINCE we can guess the nibbles of K ′
1 in the same order as for

the 10-round version. The expression for counting the total number of S-box
look-ups for the P ′ ↔ X branch is the same as in (12), except that we must add
16 to the innermost bracket. The total number of S-box look-ups is then

2 × [
24(1 + . . . + 24(25 + 1.2669) . . .)

]
= 269.72 (13)



Cryptanalysis of PRINCE with Minimal Data 119

Repeating for 263 X-values amounts to 2132.72 S-box look-ups in the total
attack, which is equal to 2125.14 PRINCE encryptions.

The attack uses only 2 known plaintexts, and the security claim given by the
designers in this case is that the attacker must use an effort equivalent to 2126

PRINCE encryptions to find the secret key. Expecting to find the key half-way
through the search, accelerated exhaustive search breaks this bound with an
average complexity of 2124.14 encryptions for finding the secret key.

4 Meet-in-the-Middle Attack on PRINCE

In this section we will briefly introduce the Meet-in-the-Middle (MITM) attack
and the technique of guessing only non-linearly involved key nibbles and then
we explain the idea of how we do MITM cryptanalysis on PRINCE.

The basic MITM attack is a generic technique presented by Diffie and Hell-
man to cryptanalyse DES [15]. Despite the fact that this technique is arguably
much less common than differential or linear attacks on block ciphers, there are
some extensions and applications of this attack to specific primitives which are
more successful than differential and linear attacks.

Let Ei,j(S,Kf ) denote the partial encryption of the state S, beginning from
the start of round i and ending at the start of round j, where Kf is a particular
sequence of subkeys corresponding to these j−i rounds. Similarly, let Dj,i(S,Kb)
denote the partial decryption of S, beginning from the start of round j and
ending at the start of round i, where Kb is the sequence of subkeys corresponding
to these j − i rounds. The main idea of a MITM attack is that the subkeys in
both parts of the cipher can be guessed separately. First, the attacker guesses
Kf and computes E0,r(P,Kf ) for a known plaintext P . Next, he guesses Kb and
computes DR,r(C,Kb) for the corresponding ciphertext. If

E0,r(P,Kf ) = DR,r(C,Kb), (14)

then the guessed values for Kf and Kb are candidates for representing the correct
secret key.

Linearly Involved Key Bits: In the technique of guessing only non-linearly
involved key bits, we do not guess the key bits which are only xored to the bits
we use for matching. For example, in the MITM attack we can write:

{
E0,r(P,Kf ) = E′

0,r(P,K ′
f ) ⊕ LfK ′′

f ,

DR,r(C,Kb) = D′
R,r(C,K ′

b) ⊕ LbK
′′
b .

(15)

Here K ′
f and K ′

b are subsets of Kf and Kb such that E0,r(P,Kf ) and DR,r(C,Kb)
are non-linearly dependent on them. Lf and Lb are binary matrices, only xor ing
some bits of K ′′

f or K ′′
b to the state bits.

When the key schedule is linear and K ′
f and K ′

b together determine the user-
selected key, we can always find two binary matrices L′

f and L′
b of full rank which

satisfy
L′
f · K ′

f ⊕ L′
b · K ′

b = Lf · K ′′
f ⊕ Lb · K ′′

b . (16)
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That is, K ′′
f and K ′′

b can be expressed as linear combinations of K ′
f and K ′

b

bits. Instead of checking equation (14) for the whole Kf and Kb, we can then
check for

E′
0,r(P,K ′

f ) ⊕ L′
f · K ′

f = D′
R,r(C,K ′

b) ⊕ L′
b · K ′

b, (17)

where the left and right hand sides can be calculated by K ′
f and K ′

b in the forward
and backward sides of a MITM attack, respectively. This technique enables us
to reduce the number of guessed key bits in each side of a MITM attack.

MITM on PRINCE: For PRINCE, because of the reflection property, know-
ing the value of X, we can break the whole R = 2r + 2-round structure into
two equal sub-ciphers with r rounds and a linearly related key. Assume we know
the values of X/X ′ for a P/C pair. Then we have two equations for the same
sub-ciphers:

{
F (P ⊕ K0,K1) = X,

F (C ⊕ K ′
0,K1 ⊕ α) = X ′,

(18)

where F (S,K) denotes the encryption function of state S under key of K, for r
forward rounds of the PRINCEcore structure.

As finding a MITM matching for r rounds is easier than for 2r+2 rounds, our
idea is that for a known P/C pair we guess a value of X/X ′ and break the cipher
into two smaller sub-ciphers and do a MITM attack on each of the sub-ciphers in
parallel. From the P/C sides, we will guess some bits of K0 (denoted by Kw) and
some nibbles of K1 (denoted by Ks). For a guessed value of Kw and Ks we will
calculate m bits from a state in the middle of each r-round sub-ciphers (2m bits
in total) and save them in a table. From the middle of the whole structure we
will guess values of X/X ′ and some nibbles of K ′

1 (denoted by Km) that allows
us to calculate the same 2m bits in the middle of each r-round sub-cipher. Then
we can check equality of m bits in each sub-cipher as defined by (18).

As both Ks and Km are derived from K1, they may have some common
information bits, which we denote as Kc. Guessing values of Kc before any other
values will help us to reduce the complexity of the attack. The algorithm of the
attack is described in Algorithm 1, where E0,i(., .) and Dr,i(., .) denotes partially
encryption or decryption functions for the r-round sub-cipher defined by F (., .)
in (18).

This extension of the MITM attack may be considered as a multidimensional
(MD) MITM attack [16–18], because we break the whole cipher into two sub-
ciphers by guessing a full state in the middle. On the other hand, here we do
two MITM matchings in parallel with each other, while in a MD MITM attack
matchings happens serially, one after another.

The data complexity of the attack is 2 known plaintexts. The memory com-
plexity of the attack is storing the table T which will cost 2|Kw|+|Ks−Kc| words
of memory.
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Algorithm 1. MITM attack on PRINCE
for kc ∈ Kc do

for kw ∈ Kw do
for ks ∈ (Ks − Kc) do

Compute v1 = E0,i(P, (kw, kc, ks)) and v2 = E0,i(C, (kw, kc, ks));
Store (kw, ks) into a table T indexed by (v1, v2);

end for
end for
for X ∈ F

64
2 do

Compute X ′;
for km ∈ (Km − Kc) do

Compute v′
1 = Dr,i(X, (kc, km)) and v′

2 = Dr,i(X
′, (kc, km));

Find (kw, ks) = T [v′
1, v

′
2] (if it exists);

Verify/reject the candidate (kw, ks, km, kc) against other state bits;
if (kw, ks, km, kc) fits all other state bits then

Check it on another known plaintext/ciphertext pair;
if (kw, ks, km, kc) fits the second plaintext/ciphertext pair then

Return (kw, ks, km, kc) as correct key;
end if

end if
end for

end for
end for

4.1 MITM Attack to 8-Round PRINCE

Guessing the value of X/X ′ will break 8-round PRINCE into two 3-round sub-
ciphers. From the P/C sides, we guess 48 bits in the three leftmost columns
of K0 and K ′

0 (equal to 49 bits of K0) and the three leftmost columns of K1.
From the X/X ′ sides we guess all nibbles of K ′

1 except nibbles on the secondary
diagonal of the state. These 48 bits of Ks and 48 bits of Km have 32 common
information bits denoted by Kc. After guessing the value of the 32 Kc bits, only
16 bits from each set of keys remain for guessing.

Figure 6 shows the procedure of the attack. From the P/C sides we will
be able to calculate 9 nibbles of the states before the MC layer in the second
and seventh rounds (Gray/White squares are related to computed/un-computed
nibbles). From the X/X ′ sides we can calculate 12 nibbles of the state before
the MC layer in the second and seventh rounds, so we can do a matching on
2 × 9 common nibbles of these states.

In the second and seventh rounds the AK layer is not shown in Fig. 6. As
Ks and Km determine all 64 bits of K1, we can include it using the technique
of equation (17).

Attack Procedure: The attack follows Algorithm 1. In the first stage of the
attack we create a table T from the P/C sides. In the table T we should save
the value of 49+16 = 65 bits (kw, ks) indexed by the 72 bits of (v1, v2) from the
two states before the MC layer. Only a fraction of 265−72 = 2−7 indexes in T
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Fig. 6. MITM cryptanalysis of 8-round
PRINCE

Fig. 7. MITM cryptanalysis of 10-round
PRINCE

will then be filled so the storage in the table would be larger than it needs to be.
Instead we save the 65 bits of (kw, ks) and the 7 last bits of (v1, v2) in the cell
indexed by the 65 first bits of (v1, v2). Then we expect each cell in T to contain
one value.

In the second stage of the attack we evaluate 64 bits of (v′
1, v

′
2) for the guessed

values of (X, km, kc) and pick up the content in T for the index of the 65 first bits
of (v′

1, v
′
2). First we check whether the 7 last bits of (v′

1, v
′
2) are equal to the 7 last

bits of (v1, v2) or not. If they match we have a candidate for (kw, ks, km, kc) =
(kw,K1), 113 bits of the key, and the middle values X/X ′.

Using the values of X/X ′ and K1 we calculate the nibbles which we did not
evaluate (white squares in Fig. 6), coming from X/X ′ to plaintext and ciphertext
sides. By evaluating them we can do a matching for equality of 3 nibbles at the
output of the first round and 3 nibbles of the input to the eighth round. If these
24 bits match, we will evaluate P ′ and C ′ which will allow us to find a unique
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value for the 15 un-guessed bits of K0 and also another 32 − 15 = 17 matching
bits. If this matching happens we will have only one candidate for (K0,K1) that
with probability of 2−64 is the correct key. Using another pair of plaintext and
ciphertext will verify whether it is the correct key or not.

Complexity: The time complexity of this attack will be dominated by the
computation time of the second stage. In the second stage, for each guess of 32
bits kc, 16 bits km and 64 bits X, we must calculate X ′ from X (32 S-box calls)
and 12 nibbles in the middle of second and seventh rounds (12 calls for each).
Trading 16 S-box look-ups with one round of PRINCE, this is equal to

232+16+64 × (32 + 2 × 12) × 1
16

× 1
8

= 7 × 2108 (19)

encryptions of 8-round PRINCE.
As X is the last parameter to guess in the second stage, instead of guessing

the whole 64 bits we can guess it one nibble at the time (the same technique
used for accelerated key search in Sect. 3) to reduce the time complexity by a
fraction of about 0.362. So the final complexities of the attack will be 2109.34

encryptions for time and 265 72-bit blocks for memory.

4.2 MITM Attack to 10-Round PRINCE

Guessing the value of X/X ′ will break 10-round PRINCE into two 4-round sub-
ciphers. We guess the same 49 bits of K0 and K ′

0 as for the 8-round attack, and
all nibbles of K1 except the one on top of the rightmost column. From the X/X ′

sides we guess all nibbles of K ′
1 except the one on top of the rightmost column.

These 60 bits of Ks and 60 bits of Km have 56 common information bits denoted
by Kc. After guessing the value of the 56 Kc bits, only 4 bits from each set of
keys remain to be guessed.

As Fig. 7 shows, from the P/C sides we are able to calculate 12 nibbles of
the states before the MC operation in the second and ninth rounds. From the
X/X ′ sides, we can also calculate 12 nibbles of the states on the other side of the
MC layers in the second and ninth rounds. Exactly one nibble in each column
is unknown in each state.

Matching Through MC: We have two partially known states on both sides
of the MC operation, and we can match these in a similar way to what is done
in [19]. Let one column of bits in the input to MC be (x, a, b, c) with output
(y, d, e, f), where only the x and y bits are unknown. As will become clear, the
exact positions of the unknown bits do not matter. The MC operation on this
column gives 4 linear equations in the input and output:

l0(x, a, b, c) + y = 0
l1(x, a, b, c) + d = 0
l2(x, a, b, c) + e = 0
l3(x, a, b, c) + f = 0

(20)
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We can eliminate the unknown x and y variables and get two linear equations
in the known a, . . . , f :

l′0(a, b, c) + l′′0 (d, e, f) = 0
l′1(a, b, c) + l′′1 (d, e, f) = 0 (21)

Also we will have unique equations for x and y:

x = l′2(a, b, c) + l′′2 (d, e, f)
y = l′3(a, b, c) + l′′3 (d, e, f) (22)

Coming from the plaintext side we define the two bits of v1 relating to this
column to be (l′0, l

′
1), and from the X side we define the corresponding two bits

of v′
1 to be (l′′0 , l′′1 ). Besides these two values, from the plaintext side we will save

l′3 to compute the unknown value of y later, after matching. From the X side
we can evaluate the value of y by computing and adding l′′3 to l′3. Repeating for
the other 15 columns gives a total of 32 bits in v1 and v′

1 that can be used for
matching, plus four l′3-values.

The same procedure is done in the ninth round, so all together we get 64-bit
values for (v1, v2) and (v′

1, v
′
2) that can be used for matching as described in

Algorithm 1. In addition we get 32 stored bits for evaluating the unknown values
in the state after the MC layer in both of the second and ninth rounds.
Attack Procedure: The attack follows the same procedure as before, but with
different numbers of guessed bits. In the table T we will save 53 bits of (kw, ks)
and the 11 last bits of (v1, v2), indexed by the 53 first bits of (v1, v2). In the second
stage, we compute (v′

1, v
′
2) from the X/X ′ sides and do the matching with the

corresponding value in T . We then have a candidate value for (kw,K1) of 113
bits and known X/X ′ values. Using the saved l′3-values we can then compute
the rest of K0 and the un-evaluated nibbles of the states and verify the current
guess for correctness.

There will be one (K0,K1) candidate surviving for each X/X ′ guess, which
has to be verified against another plaintext/ciphertext pair.
Complexity: The number of bits to guess in the first stage is 15 bits less than
the number of bits to guess in the second stage, so the time complexity of this
attack will be dominated by the computation time of the second stage. In the
second stage, for each guess of 56 bits kc, 4 bits km and 64 bit X, we must
calculate X ′ from X (32 S-box calls) and 12 nibbles in the middle of second and
ninth rounds (24 calls for each). Trading 16 S-box look-ups with one round of
PRINCE, this is equal to

256+4+64 × (32 + 2 × 24) × 1
16

× 1
10

= 2123 (23)

encryptions of 10-round PRINCE.
Here again, instead of guessing the whole 64 bits of X we can guess it nibble-

wise to reduce time complexity by a fraction of 0.553. The final complexities will
then be 2122.15 for time, and 253 96-bit blocks for memory.
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5 Conclusions

In this paper we have shown that PRINCE can be efficiently attacked with
respect to the security bound 2127−d, even when having only a minimal amount
of known plaintext available. To our knowledge, accelerated exhaustive search
is the first reported attack on the full PRINCE with complexity lower than the
claim given by the designers.

The practice of counting the number of S-box look-ups needed in an attack
and translating this into number-of-encryptions complexity has already been
established. It is clear that evaluating S-boxes takes the majority of the time in
implementations, but it would be good to get more accurate numbers on exactly
how large percentage of the time is spent on S-box look-ups and how much is
spent on the linear layers. We have been in contact with some of the designers
of PRINCE, and know they are working on producing these numbers. This will
give a better scientific foundation for estimating the time complexity, and should
allow to report very accurate numbers for this with confidence.

We have also implemented a new meet-in-the-middle attack to PRINCE
where we can successfully attack 8 and 10 rounds, again with only two known
plaintext/ciphertext pairs. Although meet-in-the-middle attacks have a big mem-
ory complexity, it shows that only having a minimum of known plaintext avail-
able, 8- and 10-round PRINCE can still be attacked efficiently using a meet-in-
the-middle approach. As far as we know, these attacks for the 8 and 10 reduced-
round versions are the fastest until now in the known plaintext scenario.

References

1. Borghoff, J., et al.: PRINCE – A low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

2. The PRINCE Teamd: PRINCE Challenge. https://www.emsec.rub.dde/research/
research startseite/prince-challenge/

3. Abed, F., List, E., Lucks, S.: On the security of the core of PRINCE against
biclique and differential cryptanalysis. IACR Cryptology ePrint Archive, Report
/712, 2012 (2012)
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Abstract. GCM is used in a vast amount of security protocols and is
quickly becoming the de facto mode of operation for block ciphers due
to its exceptional performance. In this paper we analyze the NIST stan-
dardized version (SP 800-38D) of GCM, and in particular the use of short
tag lengths. We show that feedback of successful or unsuccessful forgery
attempt is almost always possible, contradicting the NIST assumptions
for short tags. We also provide a complexity estimation of Ferguson’s
authentication key recovery method on short tags, and suggest several
novel improvements to Fergusons’s attacks that significantly reduce the
security level for short tags. We show that for many truncated tag sizes;
the security levels are far below, not only the current NIST requirement
of 112-bit security, but also the old NIST requirement of 80-bit security.
We therefore strongly recommend NIST to revise SP 800-38D.

Keywords: Secret-key cryptography · Message Authentication Codes ·
Block ciphers ·Cryptanalysis ·Galois/CounterMode ·GCM ·Authentica-
tion key recovery · AES-GCM · Suite B · IPsec · ESP · SRTP · Re-forgery

1 Introduction

Galois/Counter Mode (GCM) [1] is quickly becoming the de facto mode of oper-
ation for block ciphers. GCM is included in the NSA Suite B set of crypto-
graphic algorithms [2], and AES-GCM is the benchmark algorithm for the AEAD
competition CAESAR [3]. Together with Galois Message Authentication Code
(GMAC), GCM is used in a vast amount of security protocols:

– Many protocols such as IPsec [4], TLS [5], SSH [6], JOSE [7], 802.1AE (MAC-
sec) [8], 802.11ad (WiGig) [9], 802.11ac (Wi-Fi) [10], P1619.1 (data storage)
[11], Fibre Channel [12], and SRTP [13,14]1 only allow 128-bit tags.

– The exceptions are IPsec [15] that allows 64, 96, and 128 bit tags, CMS [16]
that allows 96, 104, 112, 120, and 128 bit tags, NFC-SEC [17,18] that only
allows 96 bit tags, and QUIC [19] that only allows 96 bit tags.

1 The Internet Drafts specifying the use of GCM in SRTP did originally allow also 64-
bit and 96-bit tags, but this was removed after the publication of this paper on the
Cryptology ePrint Archive and the discussion of this paper on the IETF AVTCORE
mailing list.

c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 127–143, 2016.
DOI: 10.1007/978-3-319-31517-1 7
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GCM is also used in several cryptography APIs:

– W3C Web Cryptography API [20] and Oracle Java SE [21] allow 32, 64, 96,
104, 112, 120, and 128 bit tags. PKCS #11 [22] allows tags of any length
between 0 and 128 bits, and for Microsoft Cryptography API [23] we could
not find any information on allowed tag lengths.

The popularity is very well deserved, GCM has exceptional performance and
proven security, it is online and fully parallelizable, and it is efficient in both
hardware and software, especially on new processors with dedicated AES-GCM
instructions. Weaknesses of the GCM decryption function were described by
Ferguson [24], which showed that the forgery probability is not 2−t, and that
feedback on successful forgeries allows an attacker to recover the authentication
key H. As a note, the fact that the substitution probability decreases as message
length increases was already known [25]. The results in this paper rely heavily
on Ferguson’s attack [24] and do not violate the provable security given in the
original version of GCM [24]. The version standardized by NIST [1] makes nor-
mative changes to short tag lengths (32 and 64 bits) aimed to improve security,
but NIST does not provide any estimated security levels given by these changes.
The complexity of Ferguson’s authentication key recovery method for the NIST
approved short tags has not previously been analyzed.

Our results:

– In Sect. 3.1 we describe how to extend Fergusons’s method for message forgery
and authentication key recovery method [24] to use associated data, which
is needed to apply the attack to IPv6 Jumbograms. We then describe an
improvement that reduces the effective tag lengths for re-forgeries, derive a
formula for the effective tag lengths, and use this improved method to calculate
the probabilities for multiple message forgeries.

– In Sect. 3.2 we use these probabilities to calculate the complexity for authen-
tication key recovery using Ferguson’s method for the NIST approved short
tag lengths (32 and 64 bits) showing that NIST seems to have chosen the
parameters for 64 bit tags to get 80-bit security against Ferguson’s attack.

– In Sect. 3.3 we suggest several novel improvements to Fergusons’s method that
significantly reduces the security levels for short tags, in one case the already
low complexity is reduced from 281.0 to 270.0. We show that independently of
the encryption key size, the security levels (i.e. the effective key lengths) are
only 62–67 bits for 32-bit tags, and 70–75 bits for 64-bit tags. For these tag
sizes, the security levels are far below, not only the current NIST requirement
of 112-bit security, but also the old NIST requirement of 80-bit security. The
results are applicable to both GCM and GMAC.

– In Sect 3.4 we show that feedback of successful or unsuccessful forgery attempt
is almost always possible, contradicting the NIST assumptions for short tags.
This illustrates that the key recovery attacks are practical and that the NIST
assumption of no feedback is not valid for reasonable protocols and deploy-
ments. This is true especially for SRTP, which NIST claims meet the guidelines
for use of short tags.
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We strongly recommend NIST to revise SP 800-38D [1] so that the security
levels of all allowed options are clearly stated, that short tags are removed, and
that it is explained why any options offering less than 112-bit security against
online attacks are acceptable.

We do however fully recommend GCM for usage with 128-bit tags, especially
with AES-128. In fact we believe that with its excellent performance and proven
security, it should be the first choice for everybody wanting an AEAD algorithm.

2 Preliminaries

2.1 Galois/Counter Mode (GCM)

Galois/Counter Mode (GCM) is an Authenticated Encryption with Associated
Data (AEAD) mode of operation for block ciphers with a block size of 128 bits.
It was designed by McGrew and Viega [26,27] and is standardized in NIST
SP 800-38D [1] and ISO/IEC 19772:2009 [28]. The analysis in this paper is
based on [1]. GCM combines the well-known counter mode of encryption with
the Galois mode of authentication, which is based on universal hashing. The
Galois mode of authentication makes use of the function GHASHH(A,C), which
uses multiplications in GF(2128) that can easily be parallelized. The 128-bit
authentication tag is defined as

Tag = EK(N) ⊕ GHASHH(A,C) , (1)

where K is the encryption key, N is the nonce, H = EK(0128) is the authen-
tication key (the encryption of 128 zero bits), A is the associated data (to be
authenticated but not encrypted), and C is the ciphertext. The output of the
authenticated decryption function is either the plaintext P or the special error
code FAIL. Explicit weaknesses of the GCM functions have been discussed by
Ferguson [24], Joux [29], Handschuh and Preneel [30], Saarinen [31], Procter and
Cid [32], and Abdelraheem et al. [33]. An extensive evaluation of GCM was done
by Rogaway [34].

Galois Message Authentication Code (GMAC) is an authentication-only vari-
ant of GCM. It can be seen as a special case of GCM where the ciphertext C is
the empty string. We refer to [1] for the full specification of GCM and GMAC.

2.2 Authentication Weaknesses in GCM

During the NIST standardization of AES-GCM, Fergusson [24] demonstrated
through a concrete attack that due to the linear behavior of the GCM authentica-
tion function, the forgery probability is not 2−t, and that feedback on successful
forgeries allows an attacker to recover the authentication key H.

Fergusson considers the case when there is no associated data and the
attacker tries to change the ciphertext C without changing the tag. Let Ci be
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block i of C, where the blocks are numbered so that C1 encodes the length of
the ciphertext. The tag can now be written as

Tag = EK(N) ⊕
∑

i≥1

Ci · Hi . (2)

The attacker does not change the number of blocks in C and only changes blocks
in C where i is a power two. Let C ′ be the modified ciphertext and define the
error polynomial E as

E =
∑

i≥0

Di · H2i =
∑

i≥0

(C2i − C ′
2i) · H2i , (3)

where Di = (C2i −C ′
2i). Fergusson shows that the error polynomial E is a linear

function of H and that the attacker can force a number of bits in E to zero. If
the length of C is at least 2l − 1 blocks and not a multiple of 16, the attacker
has 128l free variables and can in the first forgery force e0 = l bits of the error
polynomial E to zero. The effective tag length for the first forgery is therefore
t0 = t − l.

Fergusson then shows that feedback of successful forgery of a message with
effective tag length tn allows recovery of tn additional bits of the authentication
key H. The effective tag length for each succeeding forgery is therefore decreasing
until the attacker has full knowledge of H and can forge all subsequent tags with
probability 1. As the attack is dominated by the complexity of finding the first
forgery, full authentication key recovery requires approximately 2t0 = 2−l · 2t

forgery attempts. As pointed out by McGrew and Viega in [35], Fergusson’s
attack does not break the security guarantees of GCM; it proves that the bounds
in [27] are tight.

2.3 NIST Standardized Version of GCM

The NIST standard SP 800-38D [1] specifies that the 128-bit authentication tag
may be truncated to 96, 104, 112, or 120 bits. For tag lengths of at least 96 bits,
the maximum combined length of A and C is L = 257 blocks and the maximum
number of invocations q of the authenticated decryption function is unlimited.
For certain applications the tag may be truncated to 32 or 64 bits, and for these
tag lengths, L and q are more restricted. In Appendix B of SP 800-38D [1],
NIST summarizes some particulars of the GCM authentication function that
were pointed out by Ferguson [24]:

– For t-bit tags, the forgery probability is not the ideal 2−t but instead 2l · 2−t

where 2l is the length in blocks of the largest message (A and C) processed
by the authenticated encryption function.

– Each successful forgery enables the adversary to recover parts of the authen-
tication key H and increases the probability of subsequent forgeries.
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Table 1. NIST requirements on the usage of GCM with short tags.

NIST then draws the conclusion that the following additional requirement shall
apply to short tags:

1. There should not be feedback of whether a forgery attempt is successful or
unsuccessful.

2. The maximum combined length L of A and C shall be heavily restricted.
3. The maximum number of invocations q of the authenticated decryption func-

tion shall be restricted.

The details of requirement 2 and 3 are listed in Table 1. Unfortunately, NIST
does not give any motivations for the specific choice of parameters, or for that
matter the security levels they were assumed to give. In Sect. 3.4 we show that
requirement 1 on feedback is not realistic and that feedback is almost always
possible when security protocols like IPsec or SRTP are used. In Sect. 3.3 we
show that with our improvements to Fergusson’s attack, requirement 2 and 3
has smaller effect than expected.

3 Our Results

3.1 Use of Associated Data and Lowered Effective Tag Length

As mentioned above, Fergusson [24] demonstrated through a concrete attack
that due to the linear behavior of the GCM authentication function, the forgery
probability for t-bit tags is not 2−t. The tag and message lengths must therefore
be chosen so that the forgery probability L · 2−t is acceptable. We do not find
this overly problematic and our view is that complexity is a better and more
natural measure of forgery resistance. For an ideal MAC, the data complexity
to perform a single forgery is 20 · 2t = 2t. For GCM, the data complexity to
perform a single forgery is 2l · 2t−l = 2t. The fact that each successful forgery
enables the adversary to recover parts of the authentication key H and increases
the probability of subsequent forgeries is more problematic.

Reading [24], it is not trivial to understand or calculate the effective tag
lengths for re-forgeries. In this section we extend Fergusson’s method to use
associated data in addition to ciphertext. This extension is needed to apply
Ferguson’s attack to IPv6 Jumbograms. We then suggest an improvement to
Ferguson’s method, derive a formula for the effective tag lengths, and apply
this formula to the NIST approved tag and message lengths. These effective tag
lengths are then used in Sect. 3.2 to evaluate the data complexity of Ferguson’s
method for authentication key recovery.
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Extension to Use Associated Data. The attacker tries to change the asso-
ciated data A and the ciphertext C without changing the tag. The attacker does
not change the number of blocks in A and C. Let A′ be the modified associated
data, let C ′ be the modified ciphertext, and define B and B′ as

B = A || 0128−v ||C || 0128−u || len(A) || len(C) ,

B′ = A′ || 0128−v ||C ′ || 0128−u || len(A) || len(C) ,
(4)

where v is the bit length of the final block of A and u is the bit length of the
final block of C. Let Bi be block i of B, where we number the blocks in the
same order as Ferguson, i.e. B1 = len(A) || len(C). We can now define the error
polynomial E as

E =
∑

i≥0

Di · H2i =
∑

i≥0

(B2i − B′
2i) · H2i , (5)

where Di = (B2i − B′
2i).

Effective Tag Length. Let tn be the effective tag length after n successful
forgeries (with feedback). Following the procedures in [24] and assuming that:

– The byte length of A or C is not a multiple of 16. This implies that the
attacker can modify the length encoding in D0.

– The combined length of A and C is at least 2l − 1 blocks.

With these assumptions, the attacker has 128l free variables and can in the
first forgery force e0 = l bits of the error polynomial E to zero. The effective
tag length is therefore t0 = t − l. In subsequent forgeries the attacker knows
more bits of the authentication key H and can force even more bits of the error
polynomial E to zero. Feedback of successful forgery of a message with effective
tag length tn allows recovery of tn additional bits of the authentication key H.
After n successful forgeries, the attacker knows hn bits of H and can force en
bits of the error polynomial E to zero where

hn =
n−1∑

j=0

tj and en =
⌊

128l

128 − hn

⌋

. (6)

Following [24], the effective tag length is tn = t− en until the attacker knows all
128 bits of H (hn ≥ 128) or when the attacker can force more then t bits of the
error polynomial to zero (en ≥ t), in which case the effective tag size is zero.

Exhaustive Search Improvement. We notice that when 128 − hn < t − en,
the effective tag length can be reduced by doing exhaustive search on the 128−hn

unknown bits of H instead of doing exhaustive search on the t − en bits of the
tag that could not be forced to zero. With this improvement, the effective tag
size is

tn = max (0, min(t − en, 128 − hn)) . (7)
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Table 2. Effective tag lengths for the NIST approved tag and message lengths.

This improvement significantly reduces some of the effective tag lengths, but has
negligible effect on the authentication key recovery complexities in the coming
sections. The result of applying the improved formula (7) to the NIST approved
tag and maximum message lengths, as well as the maximum message lengths of
212 and 228 blocks imposed by IPv4 and IPv6 is shown in Table 2.

While the values t0 might look short, the complexity of performing a single
forgery is still the expected 2t. If a tag length of t = 128 is used with an encryp-
tion key of length 128 bits, performing a single forgery is as hard as recovering
the encryption key, hardly a weakness.

The effective tag lengths in Table 2 are calculated with the greedy algorithm
used by Ferguson. Using the suggestions we propose in Sect. 3.3, it is possible to
decrease the effective tag length of later forgeries by increasing the effective tag
length of earlier forgeries.

3.2 Complexity of Ferguson’s Authentication Key Recovery
Method

The discussions [35,36] after Ferguson’s paper [24] focused mostly on multiple
forgeries and authentication key recovery after nonce collisions in the encryp-
tion function, i.e. the forbidden attack later discussed by Joux [29]. We think the
most important aspect of Ferguson’s paper is the full recovery of the authentica-
tion key H after successful forgeries to the decryption function. While we agree
with McGrew and Viega that the expected complexity to perform multiple forg-
eries is unclear, the expected complexity against key recovery is very clear. The
complexity of performing full key recovery is expected to be 2k where k is the
stated security level. Unless stated otherwise, k is expected to be equal to the
key length. In e.g. HMAC-SHA-256 the complexity for key recovery is believed
to be 2256, unless the authentication key is derived from a smaller key. In GCM,
the authentication key is always 128 bits, which means that the security level
against authentication key recovery is never more than 128 bits, even if block
ciphers with larger key sizes like AES-192 or AES-256 are used. Other AEAD
schemes like CCM and OCB give a security level equal to the encryption key
size. This shortcoming is not mentioned in [1,27,34].
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An important detail mentioned in [29] but not in [1,24] is that as the authen-
tication tag depends on EK(N) , authentication key recovery in GCM does not
mean that the attacker can independently create new messages. If the length of
N is fixed, knowledge of the authentication key H enables an attacker to modify a
valid message by freely choosing A and C, but not N . Assuming known-plaintext,
an attacker can freely chose A and P , where P is the plaintext. Still, we would
expect a security level of no less than the encryption key length against authen-
tication key recovery attacks. In [33] Abdelraheem et al. show that if a GCM
implementation supports variable nonce lengths and the attacker has knowledge
of H, slide universal forgeries using twisted polynomials enable an attacker to
choose N as well.

Complexity Without Query Restrictions. Assuming a maximum combined
length of L = 2l blocks, the effective tag length is t0 = t − l, and the data
complexity (measured in blocks) of performing the first forgery is 2l ·2t−l = 2t. As
the complexity of Ferguson’s authentication key recovery method is dominated
by the complexity of the first forgery, this is also the data complexity c for full
authentication key recovery

c ≈ 2t . (8)

Hence, without restrictions on q and irrespective of encryption key length, the
security level of GCM against full authentication key recovery is only equal to
the tag length t. This shortcoming is not mentioned in [1,34].

Complexity with Query Restrictions. The complexity of Fergusson’s key
recovery method with restrictions q and L has not previously been analyzed. In
this section we derive the complexities for the NIST approved tag and maximum
message lengths. Let pn be the probability that an attacker succeeds with n
forgeries in q attempts and let l = log2 L. We can now calculate the complexity
c of authentication key recovery with Ferguson’s method as

c ≈ q · 2l/pn , (9)

where n is the number of forgeries needed to recover the full authentication
key. Limiting the maximum number of invocations q of the decryption function
so that 2t0 � q � 2t1 does not increase the complexity of authentication key
recovery. The data complexity is q · 2l and the probability that the attacker
succeeds with one forgery in q attempts is p1 ≈ q · 2−t0 , resulting in the same
total complexity of q · 2l/p1 = 2l/2l−t = 2t.

Restricting q so that 2t1 � q does however increase the complexity of Fer-
guson’s method. Let φi = 2−ti . The probability that the first successful forgery
will occur on forgery attempt f is approximately φ0(1 − φ0)f−1 and the proba-
bility of a second forgery is approximately φ1(q − f). The probability p2 that an
attacker succeeds with two forgeries in q attempts is therefore:

p2 ≈
q∑

f=1

φ0(1 − φ0)f−1 · φ1(q − f) =
φ0φ1

2
q2 + O

(
φ2
0φ1

6
q3

)

. (10)
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We used SageMath to calculate the Taylor series and then collected the leading
terms for the domain φ0, φ1 � q−1. McGrew and Viega prove a formula similar
to (10) in [36], but do not calculate further values. With the above approximation
for p2 we can approximate p3 using that the probability of a second and third
forgery is approximately φ1φ2(q −f)2/2, and with pn we can approximate pn+1,
etc.2

p3 ≈
q∑

f=1

φ0(1 − φ0)f−1 · φ1φ2

2
(q − f)2 =

φ0φ1φ2

6
q3 + O

(
φ2
0φ1φ2

24
q4

)

,

p4 ≈
q∑

f=1

φ0(1 − φ0)f−1 · φ1φ2φ3

6
(q − f)3 =

q4

4!

3∏

j=0

φj + O
⎛

⎝φ0q
5

5!

3∏

j=0

φj

⎞

⎠ ,

p5 ≈
q∑

f=1

φ0(1 − φ0)f−1 · φ1φ2φ3φ4

24
(q − f)4 =

q5

5!

4∏

j=0

φj + O
⎛

⎝φ0q
6

6!

4∏

j=0

φj

⎞

⎠ ,

(11)

Complexity for the NIST Tag and Message Lengths. With the approx-
imations for p1, p2, p3, p4, p5 we can calculate the complexity of authentication
key recovery with Ferguson’s method. Table 3 shows the complexities achieved
by applying (9), (10), and (11) to the NIST approved tag and maximum message
lengths. The grey coloring shows the tn that was used in the calculation In a
few cases the domain assumption does not hold as 2tn ≈ q. In these cases we
have chosen n to overestimate rather than underestimate the complexity. Note
that the complexities for authentication key recovery are independent of the
encryption key length.

Our analysis show that with Ferguson’s method the security levels for 32-bit
tags are below the old NIST requirement of 80-bit security (that was in place in
2007 when [1] was published), while 64-bit tags are just on the border. In fact,
NIST seems to have chosen the parameters for 64 bit tags to get 80-bit security
against Ferguson’s attack.

Only 112, 120, and 128 bit tags fulfill the current NIST requirement of 112-
bit security. Unfortunately, NIST does not give any motivations for the exact
restrictions they put on 32 and 64 bit tags, or for that matter the security levels
they were assumed to give.

3.3 Our Improved Method for Authentication Key Recovery

In this section we propose several novel improvements to Ferguson’s method
for authentication key recovery. These improvements significantly reduce the
security levels for short tags.
2 The calculations below lead us to the hypothesis that pn ≈ qn

n!

∏n−1
j=0 φj +

O
(

φ0qn+1

(n+1)!

∏n−1
j=0 φj

)
. This is however something that we do not use and that we do

not prove, but by dividing q into n intervals, it is easy to prove that pn ≥ qn

n!

∏n−1
j=0 φj .
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Table 3. Data complexity with Ferguson’s method for full authentication key recovery.

– The attacker may choose to modify a message with a message length that is
smaller than the maximum message length L.

– After each successful forgery, the attacker may choose to modify a different
message.

– The attacker may choose to modify messages with different lengths 2l0 , 2l1 ,
2l2 , . . .

Let the length of thefirstmessagebe 2l0 and let l = max(l1, l2, . . . ).Theprobability
that the attacker does not achieve a single successful forgery in q attempts is (1 −
φ0)q in which case the attacker sends q2l0 blocks of data. The probability that the
first successful forgery will occur on forgery attempt f is approximately φ0(1 −
φ0)f−1 in which case the attacker sends at most f2l0 + (q − f)2l blocks of data.
The average number of blocks w sent by the attacker is therefore bounded by:

w ≤ (1 − φ0)q · q2l0 +
q∑

f=1

φ0(1 − φ0)f−1 · (
q2l − f(2l − 2l0)

)

= q2l0 +
1
2
φ0q

2(2l − 2l0) + O(φ2
0q

32l0) .

(12)

We used SageMath to calculate the Taylor series and then collected the lead-
ing terms for the domain φ0 � q−1. Using this improved method, the data
complexity c of authentication key recovery is

c ≈ q · 2l0/pn . (13)

64-Bit Tags. Let l0 = 0 and l = log2 L. For 64-bit tags, the effective tag lengths
are t0 = 64, t1 = 64 − 2l, and the complexity is

c64 ≈ q · 2l0/p2 = 2t0+t1+1/q = 2129/L2q . (14)

By applying (14) to the column (L = 221, q = 217), the already low complexity
is reduced from 281.0 to 270.0. It seems infeasible to increase the security level
to 112 bits, as this would either restrict the message length too much or make
deployments vulnerable to denial-of-service attacks.
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Table 4. Data complexity with our improved method for full authentication key
recovery.

Table 4 shows the complexities achieved by applying our improved method
13(13) with l0 = 0 and l = log2 L to the NIST approved tag and maximum mes-
sage lengths. This significantly reduces the data complexities of authentication
key recovery for short tags. With our improved method, the security levels are
62–67 bits for 32-bit tags and 70–75 bits for 64-bit tags; this is below the old
NIST requirement of 80-bit security and far below the current NIST requirement
of 112-bit security.

3.4 Analysis of the Use of GCM in Security Protocols

We show that neither IPsec nor SRTP fulfills the NIST requirements for short
tags. The specification of the use of GCM with 64 bit tags in IPsec [15] was
published shortly after Fergusson’s paper [24] and does not refer to the NIST
specification [1]. The RFC [13] and Internet Draft [14] specifying the use of GCM
in SRTP do no longer allow the use of truncated tags, but the NIST specification
mentions SRTP as an example of a protocol fulfilling the guidelines for short tags.
Two of these guidelines are:

– There should not be feedback of whether a forgery attempt is successful or
unsuccessful.

– The AAD within packets should be limited to the necessary header informa-
tion.

Analysis of GCM Usage in IPsec ESP. RFC 4106 [15] specifies the use of
GCM with 64, 96, and 128 bit tags. The specification does not discuss the prob-
lems with short tags and does not require implementations to restrict the maxi-
mum message length L or the maximum number of invocations q of the authen-
ticated decryption function. While ESP limits the AAD to necessary header
information and silently discards datagrams that fail the integrity check, ESP
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does not silently discard datagrams that passes the integrity check and informa-
tion leakage regarding the integrity of individual packets is therefore possible in
many deployments.

– If any request-response protocol is sent over an IPsec protected path, an
attacker can attempt forgery by modifying a datagram containing a request
(e.g. HTTP GET). If integrity fails, the IPsec implementation will silently
discard the datagram. If the datagram passes the integrity check, a response
(e.g. 200 OK) will be sent. The datagram containing the response will also
be encrypted, but assuming small amounts of other traffic (the attacker may
e.g. block certain traffic) the attacker can see that a response was sent and
conclude that the forgery was successful.

– If tunnel mode is used, the attacker may modify the inner destination IP
address so that the packet in case of a successful forgery is routed to the
adversary himself/herself.

If multicast is used [37], the attacker may attempt forgery towards several
instances of the GCM decryption function in parallel, and the maximum num-
ber of invocations q of the decryption function would need to be calculated
over all instances of the decryption function. Theoretically this could be done
with synchronization, but in practice the only solution would be to restrict the
number of invocations of each instance to q/r where r is the total number of
receivers. This makes q/r impractically small and makes the system vulnerable
to denial-of-service attacks.

IPsec ESP with GCM and 64-bit tags offers 64 bits of security against online
authentication key recovery and IPsec ESP with GCM and 96-bit tags offers 96
bits of security. A probable attack could be detected by an intrusion detection
system by identifying a large number of messages only differencing in blocks Bi

where i is a power two according to (4).

Analysis of GCM Usage in SRTP. The Real-time Transport Protocol (RTP)
[38] is a network protocol for transmitting real-time data, such as audio, video,
and text. RTP is used in conjunction with the RTP Control Protocol (RTCP) to
specify quality of service feedback and synchronization between media streams.
The Secure Real-time Transport Protocol (SRTP) [39] provides encryption, mes-
sage authenticity, and replay protection to RTP and RTCP. While RTP and
SRTP are standardized in RFC 3550 [38] and RFC 3711 [39], there are numerous
extensions to both protocols. In Appendix C of [1], NIST makes the statement:

“An example of a protocol that meets these guidelines is Secure Real-time
Transport Protocol carrying Voice over Internet Protocol, running over
User Datagram Protocol”.

This is not a correct statement and SRTP does in fact violate both of the guide-
lines mentioned before.
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– The AAD is not at all limited. In RTP, the associated data consists of the RTP
header, which is not limited as e.g. the header in the TLS record layer. The
RTP header is extensible with proprietary header extensions carrying any type
of information. In RTCP, the scope of the AAD depends on the encryption
flag E. If the encryption flag is ‘1’, the AAD data is limited to necessary
header information, but if the encryption flag is ‘0’, the AAD consists of the
entire RTCP packet.

– RTCP receiver reports (RR) provide a wealth of information that can be used
to determine the integrity of individual forged RTP packages, e.g. SSRC of the
source, cumulative number of packets lost, extended highest sequence number
received, last sender report (SR) timestamp, and delay since last SR. The
RTCP extension for port mapping [40] is even worse as it echoes back the
64-bit nonce received in the request.

– RTP Rapid Synchronisation [41] is used; a forged Rapid Resynchronisation
Request results in a RTP header extension with sync information sent from
the sender.

– If the RTP header extension Client-to-Mixer Audio Level Indication [42] is
used, a forged RTP packet with a high audio level will result in the Multipoint
Control Unit (MCU) forwarding the SSRC. As the SSRC is not encrypted,
this is easily detected by the attacker.

Even if encryption of RTCP is mandated and specific RTP header extensions
and RTCP packets types are forbidden, an attacker may still in many cases
determine whether a forgery was successful by looking at the length of packets.
Either by looking at the length of RTCP packets from the sender or by looking
at the length of RTP packets forwarded by an MCU.

A further problem with SRTP and GCM is that SRTP is very often used in
one-to-many scenarios. The maximum number of invocations of each instance of
the authenticated decryption function would have to be restricted to q/r, where
q is the maximum total number of invocations of the authenticated decryption
function, and r is the total number of receivers, including any late joiners.

All in all, SRTP does absolutely not meet the NIST guidelines for usage of
GCM with short tags.

Summary. While many protocols silently discard packets with failed integrity
check, very few are totally silent when the integrity check is valid. Even if the
security protocol itself does not provide feedback, the higher level messages pro-
tected by the security protocol likely do. We believe that feedback of successful
or unsuccessful forgery attempt is almost always possible. The NIST guideline is
therefore unrealistic, and the authentication key recovery attacks practically pos-
sible. Analyzing the possibility of information feedback from successful forgeries
is not trivial and the NIST statement regarding SRTP is obviously incorrect.
We strongly recommend NIST to remove short tags from SP 800-38D [1].
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4 Conclusions

The security levels of GCM and GMAC against authentication key recovery are
for many tag sizes far below, not only the current NIST requirement of 112-bit
security, but also the old NIST requirement of 80-bit security. With our improved
authentication key recovery method, the security levels are 62–67 bits for the
NIST approved usage of 32-bit tags and 70–75 bits for the NIST approved usage
of 64-bit tags. For larger tags the security levels are as previously known t bits
for t-bit tags where t = 96, 104, 112, 120, or 128. It seems infeasible to increase
the low security levels to 112 bits, as this would either restrict the message length
too much or make deployments vulnerable to denial-of-service attacks.

We note that as the authentication key is always 128 bits, the security level
against authentication key recovery is never more than 128 bits, even if block
ciphers with larger key sizes like AES-192 or AES-256 are used. Other AEAD
schemes like CCM and OCB give a security level equal to the encryption key
size.

One might argue that it is acceptable to allow a lower security level against
authentication key recovery than encryption key recovery, especially if authen-
tication key recovery requires online access to the hopefully short-lived GCM
instances. With this arguing, 96-bit tags could be acceptable, even if they only
offer 96 bits of security against online authentication key recovery. We do not
take a stance on this, but note that the current NIST requirements in NIST SP
800-57 Part 3 [43] states that the authentication key strength shall be equal or
greater than 112 bits and that less than 112 bits of security shall not be used.

NIST states that implementations should not provide feedback on the
integrity of individual packets and then nevertheless heavily restricts the number
of invocations of the decryption function. We have illustrated that feedback on
the integrity of individual packets is almost always possible. The NIST guideline
is therefore unrealistic, and the authentication key recovery attacks practically
possible. Analyzing the possibility of information feedback of successful forgeries
is not trivial and the NIST statement regarding SRTP is obviously incorrect. We
therefore strongly recommend NIST to remove short tags from SP 800-38D [1].

Furthermore, we recommend that such analysis is never left to the user, and
we strongly recommend against standardizing any cryptographic algorithms that
relies on the assumption of no information feedback from successful forgeries.

We strongly recommend NIST to make a revise SP 800-38D [1] so that
the security levels of all allowed options are clearly stated, that short tags are
removed, and that it is explained why any options offering less than 112-bit
security against online attacks are acceptable. We do however fully recommend
GCM for usage with 128-bit tags, especially with AES-128. In fact we believe
that with its excellent performance and proven security, it should be the first
choice for everybody wanting an AEAD algorithm. We note that the design
choices causing the security problems with truncated tags are also responsible
for the excellent performance of GCM.
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Abstract. This paper presents a novel framework for the automatic
pipelining of AES S-boxes using composite field representations. The
framework is capable of finding positions to insert flip-flops in an almost
optimal way, resulting in S-boxes with an almost optimal critical path.
Our novel method is using memetic algorithms and is shown to be fast,
reliable and successful. We demonstrate our framework for composite
field S-boxes using a polynomial and a normal basis, respectively. Our
results prove that this method should be consulted when an optimal
solution is of interest. Besides experimental results with the new memetic
algorithms, we also discuss the ideal model of a circuit, which can be used
when assessing the quality of the obtained solutions. We emphasize that
this method can be used for any circuit of interest and not only for AES
S-boxes.
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1 Introduction

Implementations of cryptographic primitives present constant challenges
in today’s security applications. On the one side, embedded security relies on
multiple trade-offs in terms of constraints on area, timing, power and energy
and at the same time requires implementations to be secure against side-channel
adversaries. On the other side, various high-speed implementations in high-
bandwidth servers aim at ever faster versions of algorithms without a substantial
increase in resources.

Considering block ciphers like AES that are commonly used for bulk encryp-
tion applications, a clear preference is often given to the counter mode of oper-
ation as it is parallelizable and hence suitable for high throughput, which is
required by applications such as VPN setup, IPSec, etc. It may appear that
c© Springer International Publishing Switzerland 2016
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pipelining and parallelism are the terms that do not go well with constrained
platforms but it is less certain where one should draw the line defining embedded
security devices. For example, ARM has recently announced its next generation
ARM Cortex-A72 processor to be used for mobile phones that is based on the
64-bit ARM v8-A architecture. ARM claims that the new chip delivers as much
as 50 times the performance compared to processors from just five years ago
and that it is at the same time 75 % more energy efficient than the previous
generation.

The situation is even more unclear with hardware modules. Basically, applica-
tions that require hardware implementations such as RFID tags and smart cards
are often developed for unique purposes and tailored towards a specific scenario.
It may be the case that high speed is of utmost importance even though the
application is embedded. It is fair to say that techniques that boost the per-
formance in hardware such as pipelining and parallelism remain important for
efficient implementations.

In this work we focus on pipelining and more precisely, we look for the optimal
way to put registers (flip-flops) such that we reduce the critical path substan-
tially. Naturally, at the same moment we do not want to pay for it too much with
area or power overhead. Our goal is to develop a novel framework that could
be useful for hardware designers and in general, implementers. To this end, we
use memetic algorithms as a known approach in the Evolutionary Computation
(EC) area. We demonstrate our approach on composite field S-boxes, because
they result in circuits with a high number of gates and a high number of unbal-
anced paths. We elaborate on our ideas and contributions in the remainder of
this paper.

Motivation and Contributions. The goal of this work is to derive a frame-
work that is applicable to real-world scenarios. The authors of [1] give a proof
of concept where they succeed in pipelining an AES S-box with an improved
throughput as a result. However, to come up with a generic and at the same
time optimal strategy, significant improvements in the choice of algorithm and
the optimization function are necessary. Therefore, the main difference with our
work is that we use more powerful search algorithm as well as improved eval-
uation mechanisms. Although maybe at a first glance those differences do not
seem important, they are crucial in the transition from a proof of concept work
that was not able to produce optimal results, to our framework that produces
much better results in a smaller amount of time.

More specifically, our main contributions are:

1. Development of a new optimization algorithm that is able to produce correct
solutions with a high certainty. Since we use heuristics, we cannot guarantee
that all obtained solutions will be correct. Nevertheless, the experimental
results in this paper did not yield any incorrect solution.

2. Improvement of the evaluation process that enables one to obtain results
relatively fast. The evaluation process consists of testing whether all paths
have the same number of flip-flops.

3. Extensive tests showing the suitability of our approach.
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4. Building a whole system that accepts as an input the netlist and outputs a
ready to be simulated netlist with inserted flip-flops.

5. Pipelined S-boxes with an optimized critical path compared to related work.

Besides those main contributions, we have a few more things to report on.
Firstly, we have conducted all necessary experiments with several optimization
techniques to find the best one. Furthermore, we have developed a tool that
enables us to test a circuit in order to a priori determine what kind of results
are expected. For this purpose we experimented with several different represen-
tations of the problem, in order to find the optimal one. Next, we present a
framework that is capable to decompose a network (i.e. a circuit) into several
subnetworks. Finally, we introduce the notion of the Ideal Circuit Model that
helps us to evaluate the quality of our solutions. We give more details on all the
aspects of this work below.

The remainder of this paper is organized as follows. In Sect. 2, we give the
necessary information about AES and the methods for implementing S-boxes in
hardware. Furthermore, we give the basic circuit terminology that we follow in
this work. We continue in Sect. 3, where we present related work from the crypto-
graphic, the design automation and the evolutionary computation perspective.
In Sect. 4, we give an extensive description of our framework. To justify the
model we use, we also present several other options with their advantages and
drawbacks. Here, we also present the Ideal Circuit Model, an abstraction that
helps us to assess the quality of the obtained solutions. Section 5 gives results
of our EC experiments as well as the results of the synthesis process. Further-
more, we give a short discussion on the relevance of those results as well as some
guidelines for future work. Finally, in Sect. 6 we conclude this study.

2 Preliminaries

In this section, we give the necessary background information for following this
work. First, we define the network related terminology we use and then we
shortly describe the AES cipher.

2.1 Circuit Terminology

Retiming represents a technique that transforms the circuit by moving registers
from one location in the circuit to another in such a way that the functional
behavior of the circuit as a whole is preserved [2]. Retiming can optimize several
objectives [3]:

– minperiod - minimizes the clock frequency of a circuit,
– minarea - minimizes the number of registers in a circuit, and
– constrained minarea - minimizes the number of registers in a circuit subject

to a maximum constraint on the clock period.
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Pipelining is a system design technique that increases the performance of a
system by partitioning a complex combinatorial circuit into a number of circuits.
The pipelined circuit has a reduced critical path and could be operated on a
higher working frequency [4]. Pipelining can be regarded as a special case of a
minperiod objective [2].

A piece of hardware that implements the functionality of a Boolean func-
tion is called a logic gate. A circuit (network) is a set of interconnected logic
gates. Networks are commonly described using netlists, which contain informa-
tion about the types of logic gates employed, as well as their interconnections.
Therefore, within a netlist logic gates can be perceived as network nodes.

When an output of a logic gate A, contained within a circuit, is connected to
an input of a logic gate B we say that the gate A drives (the input of) gate B.
Inputs of a circuit are inputs of logic gates within the circuit that are not driven
by any of the logic gates of the circuit. Outputs of a circuit are outputs of logic
gates that do not drive any of the gates of the circuit.

A path is a unique combination of nodes connecting a single input to a single
output. Each node in the path (logic gate) introduces a delay corresponding to
the time required for the signal to propagate from node inputs to node outputs.
The number of paths denotes the number of different possible paths through the
circuit from an input to an output. The delay of a path is equal to the sum of
the delays of all its nodes. The path with the largest delay is called the critical
path; for it limits the rate at which circuit-inputs may be changed (system clock
frequency).

2.2 Standard Cells and Delays

A standard-cell design approach is based on using pre-made logic gates – called
cells – that implement a variety of combinatorial and sequential functions. For
further information about standard cells and delays, we refer the readers to [5].

In an effort to have results that are possible to compare with those from
previous work, we use the same standard cell library, namely the UMC 0.13 µm
low-leakage (LL) standard cell library [6]. For versatility we provide results for
all operating conditions of this library, as well results for the UMC 0.13 µm
high-speed (HS) standard cell library.

2.3 AES Cipher

As already stated, the target for the pipelining in this work is the S-box as
used in the AES cipher. Furthermore, we experiment with both polynomial and
normal basis. In accordance with that, here we give the necessary details about
the AES cipher, and various ways of implementing the S-box. The AES cipher is
a symmetric 128-bit block cipher [7]. To obtain a ciphertext, the plaintext needs
to pass a number of round transformations. The number of rounds depends on
the length of the key and is 10 rounds for a 128-bit key, 12 rounds for a 192-
bit key and 14 rounds for a 256-bit key. Each round has a unique key that
is calculated from the initial key. The operations in the AES cipher are on a
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4×4 byte array, called the state. Those operations are AddRoundKey, SubBytes,
ShiftRows and MixColumns. All the rounds consist of the same set of operations,
except that there is an additional AddRoundKey operation before the first round,
and the last round does not have the MixColumns operation. With regards to the
whole AES cipher, there are a variety of objectives for the implementation. As
a result, there exist approaches that e.g. maximize the throughput [8], minimize
the circuitry [9] or minimize power consumption [10].

The nonlinear layer (SubBytes operation) of the AES cipher is the substitu-
tion layer realized with S-boxes. This SubBytes operation replaces each byte of
the input and involves an inversion in the Galois field GF (28). This calculation
is not easy and therefore there are several approaches to this problem. In the
rest of this paper, we only consider AES that has 10 rounds in order to simplify
the considerations. Since the S-box is a 8-input 8-output lookup table (LUT),
a memory to store the S-box would have a size of 256 bytes. To reduce the
circuitry, Rijmen suggested to calculate the inverse of the Galois field by using
subfield arithmetic [11]. This idea was further extended by work of Satoh et al.
who suggested to use the tower field approach [9]. Works of Canright [12] and
Mentens et al. [13] showed that the most compact solutions rely on composite
field arithmetic. For details about the polynomial and normal bases, we refer the
readers to [12,13]. For details about tower fields, we refer the readers to [14].

3 Related Work

In the next section, we briefly summarize several important works on hardware
implementations and design automation as well as on evolutionary computation
techniques for applications in cryptology. First, we list seminal works dealing
with the retiming problem. Leiserson and Saxe presented the retiming technique
that is able to minimize the area or maximize the clock frequency without chang-
ing the functionality of a circuit as a whole [2]. Furthermore, they showed that
the problem of determining a retimed circuit with a minimum number of registers
is solvable in polynomial time. Maheshwari and Sapatnekar presented an app-
roach for the minarea retiming problem that is able to handle large circuits [15].
Narendra and Rudell discuss implementation issues arising when implementing
retiming algorithms and they give a number of experimental results for circuits
of various sizes [3]. Münzner and Hemme presented an algorithm that converts
combinational circuits into pipelined data paths where the first step is to use
timing requirements to find parts of the circuit where the register placement is
possible. The second step utilizes a modified maxperiod algorithm to position a
minimal number of registers [16]. However, we note that this algorithm does not
guarantee to find the global optimum of flip-flops. For more information about
retiming, we refer the readers to [17].

Next, we present related works that concentrate on cryptographic hardware
implementations where the design choice is similar to ours. The focus is on imple-
mentations that use composite field arithmetic to boost compactness or speed.
Satoh et al. were the first to take advantage of the composite field GF (((22)2)

2
)
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for low area implementations, which results in the most compact S-box at the
time with a gate complexity of 5.4 kgates [9]. This paper has triggered many
related works looking into one or the other tower field approach.

Similarly, Wolkerstorfer et al. use arithmetic in GF ((24)2) to achieve an
implementation with a gate count comparable to the one presented by Satoh
et al. (5.7 kgates) [18]. An additional goal was to make the best out of reusing
hardware area for both encryption and decryption. Mentens et al. experiment
with the choice of polynomials and representations to optimize the S-box on
compactness for polynomial bases [13]. The main result proves that one can
make better choices with different irreducible polynomials and representations
of elements in this special type of tower field. Canright picked up on this work,
applying the ideas to normal bases [12]. Systematically exploring all the pos-
sibilities, he deduced the smallest S-box at the time, a result that held up for
almost a decade. Only recently Moradi et al. have published the most compact
AES implementation of a size of only 2.4 kgates [19]. This result is obtained by
focusing on AES encryption and squeezing the area on all the design layers.

Macchetti and Bertoni [20] describe an ASIC implementation for the same
composite field F((24)2) as Wolkerstorfer et al., but looking into a different rep-
resentation. We mention here just a handful of the most influential papers, but
it is obvious that the plethora of implementation options of AES has contributed
to a huge amount of results that vary from exploiting one or the other design
alternative. Looking into high-speed implementations, Hodjat and Verbauwhede
describe an ASIC implementation for the same composite field GF ((24)2) as
Wolkerstorfer [21]. Their approach was to perform an area-throughput trade-off
by fully pipelining the architecture and also optimizing the key-schedule imple-
mentation. The same authors also consider a pipelined AES implementation on
an FPGA [22]. In [23,24], Boyar and Peralta presented a technique to improve
the implementation of the AES S-Box. Their result provides different tradeoffs
between the implementation area and the logic depth.

From the Evolutionary Computation perspective, we can find a number of
papers that explore various applications that could be of interest in cryptol-
ogy, the most prominent ones being the evolution of Boolean functions and S-
boxes [25–27]. However, here we list only a few works that have clear connections
with the problem we describe. Yagain and Vijayakrishna present a framework
for the retiming problem when considering DSP blocks [28]. They experiment
with the multi-objective genetic algorithm and report as a main advantage of
their approach a number of viable solutions instead of one.

Batina et al. conduct the first experiments in trying to evolve the AES S-box
in the form of a combinatorial circuit with the goal of increased throughput [1].
We point to this paper as a proof of concept, which is also our starting point and
we present a complete novel framework that can be used in real-world security
systems. However, we note that the results presented in that paper are worse
than even those obtained by manually inserting flip-flops in the design phase as
given in Sect. 5.1.
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4 The Optimization Framework

In this section, we start by defining an ideal circuit that can be pipelined into
circuits of the same size. In an ideal circuit, each part of the circuit in between
the pipelining stages has an equal delay. Furthermore, it is always possible to
divide the longest path of such a circuit into n+1 partitions of exactly the same
size where n is the number of flip-flop layers one adds.

As an example, consider a circuit that has a critical path equal to 1 000 ns.
After inserting one layer of flip-flops on all necessary positions, the critical path
would equal 500 ns (we disregard the delay of flip-flops). Such ideal model can
help us when evaluating the quality of obtained solutions and guide us towards
the best possible (optimal) solution. Naturally, it is hard to expect that a realistic
circuit can be divided so perfectly. Therefore, we aim that the best possible
solution should be as close to the ideal solution as possible. Next, we define the
maximal number of flip-flops that can be added to a circuit.

Definition 1. The upper bound of the number of flip-flop layers is equal to the
number of cells that can be added to the shortest path connecting the input to the
output of the circuit.

4.1 The Choice of the Optimization Procedure

Similarly to the approach from [1], we regard this as an optimization problem:
pipelining of a combinatorial circuit in a way that minimizes the critical path
of a circuit while retaining its correctness, can be viewed as an optimization
problem.

To be able to run the optimization, we introduce the notion of a correct
solution.

Definition 2. A correct solution is represented by any circuit with flip-flops in
which there is the same number of flip-flops on every path connecting any input
to any output.

It is obvious that, to be able to pipeline the signal, there has to be at least
one flip-flop on each path; but for the solution to be correct, that number must
be the same for each path.

Since we established that we regard pipelining as an optimization problem,
next we discuss which algorithm to use. We regard this problem as a black box
scenario and therefore we assume no specific knowledge about the circuit. If
we start with an initial circuit that has no flip-flops and then randomly add
a certain number of flip-flops, it would be highly unrealistic to expect correct
solutions. Therefore, we decide to use heuristics. Heuristics are algorithms that
find good solutions on a large-size problem instance. Alternatively, heuristics
can be defined as parts of an optimization algorithm. There, heuristics use the
information currently gathered by the algorithm to help decide which solution
candidate should be tested next or how the next solution can be produced [29].
Heuristic algorithms can be divided into specific heuristics and metaheuristics.
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Specific heuristics are methods that are tailor-made to solve a specific problem
and therefore not appropriate here (since we are not aware of any tailor-made
heuristic algorithm for this problem). Metaheuristics are general-purpose algo-
rithms that can be applied to solve almost any optimization problem. To classify
metaheuristics, one can follow many criteria, but we divide it into single-solution
based metaheuristics and population based heuristics [30]. Single-solution based
metaheuristics manipulate and transform a single solution during the search as
in the case of algorithms like local search or simulated annealing. In contrast,
population based metaheuristics work on a population of solutions. On the basis
of the aforementioned classification, we decide to use population based meta-
heuristics, and more precisely evolutionary algorithms (EAs).

We experiment with three different evolutionary algorithms, namely, Genetic
Algorithms (GAs) [31], Evolution Strategy (ES) [32] and Genetic Annealing
(GAn) [33]. First, in order to conduct the experiments we need to define the
representation of the problem as well as the objective function. We use the same
objective function as in [1] for an easier comparison of the results. The goal is
the minimization of the following equation:

fitness = max delay time + (1, 000 ∗ number invalid paths). (1)

In the previous equation, the second term acts as a penalty for solutions that
are not correct. In other words, we allow the incorrect (infeasible) solutions while
searching the solution space, but guide the search towards correct solutions. Here
we presume that the user specifies the target number of flip-flop layers n >= 1
to be inserted. Consequently, the number of invalid paths presents the number of
paths that contain a different number of flip-flops. After a solution is obtained,
we simulate it in the Synopsys tool as described in Sect. 5.4.

Next, we discuss how to encode the solution of the problem. We use the same
representation as in [1] where for a position with no flip-flops, we write 0 and
for a position with an inserted flip-flop, we write 1.

We developed a tool that translates a netlist into a bitstring representation
that can be used in the optimization algorithm. The same tool returns the solu-
tion back into the netlist format after the flip-flops are inserted. The tool itself is
written in the Java programming language, but the implementation details are
of secondary importance so they are not presented here.

However, the question is what is a possible insertion position? The most
general option is to allow an insertion of a flip-flop to every input of every cell in
the circuit, which we denote as input-based encoding. Thus, a potential solution
is represented as a string of bits with a length equal to the product of the number
of cells and their inputs. This length may be denoted with S. Since each bit may
be independently set to either one or zero, the size of the search space is 2S . We
have shown experimentally that in general only a very small fraction of this space
represents correct solutions. Naturally, one can suggest to encode the solution
in a way where each cell represents one possible insertion position. Therefore,
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in this kind of encoding we do not put flip-flops on each input of a cell, but on
the output of a cell (output-based encoding). In this way we are able to reduce
the solution length and size of the search space significantly. However, this also
results in the fact that some correct solutions, which can be obtained with the
first encoding, cannot be represented using the second one.

4.2 Genetic Algorithms

Genetic algorithms (GAs) are probabilistic algorithms whose search meth-
ods model some natural phenomena: genetic inheritance and survival of the
fittest [30,31]. GAs are a subclass of evolutionary algorithms where the elements
of the search space are arrays of elementary types like strings of bits, integers,
floating-point values and permutations [29,31]. Usual variation operators in the
GA are mutation and crossover [31]. In the context of optimization, exploration
(diversification) means finding new points in previously unexplored areas of the
search space, which is achieved by mutation in GAs. Exploitation (intensifica-
tion) represents the process of improving and combining the traits of known
solutions which is why crossover is used [29]. For an optimization algorithm to
be successful, it needs to have a good balance between those two notions to
avoid a too fast convergence to a local optimum from one side, but also a too
long operation time from the other side. For further information about GAs, we
refer to [31]. After the initial round of experiments, the results have shown that
GAs outperform by far the ES and GAn algorithms. Therefore, in the rest of
the paper we consider only GAs in our experiments.

4.3 Design of the Optimization Algorithm

As noted, in our experiments we use GAs in order to find suitable locations for
the insertion of flip-flops. However, it is easy to notice that a GA on itself is often
not enough. Recall our fitness function where we penalize each incorrect path. The
smaller the number of incorrect paths, the better the solution. Consider the sit-
uation where a GA produces a solution that is not correct, but has only a small
number of incorrect paths. Mutation will help to explore new search space areas,
but in general will not help to correct a slightly incorrect solution. We noticed that
often solutions are incorrect, but we need only a small change to make them cor-
rect. To amend this disadvantage of GAs, we add a local search (LS) algorithm
that tries to correct almost-correct paths. Since now we combine GAs and local
search, we deviate from evolutionary algorithms, and instead go to the evolution-
ary computation area. Such a combination of algorithms is called a memetic algo-
rithm (MA). Memetic Algorithms (MAs) represent a synergy between evolution-
ary algorithms (or any other population-based algorithms) and local improvement
algorithms [29]. Most MAs can be interpreted as search strategies in which a pop-
ulation of solutions cooperate and compete [34]. Next, we give the pseudocode for
our optimization algorithm in Algorithms 1, 2, 3 and 4.
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Algorithm 1 represents the main part of our framework and is a somewhat
customized version of a genetic algorithm.

Algorithm 1. Greedy Hibrid SSGA.
P = createInitPopulation(POP SIZE)
evaluate(P)
while not termination do

if LS then
(I1, I2) = getTwoBestFrom(P)
for all individual from (I1, I2) do

I = GreedyLocalSearch(individual)
if fitness(I) better than fitness(bestOf(I1, I2)) then

switch I with worst from P
end if

end for
end if
repeat

randomly add k individuals to the tournament
select the worst one in tournament
(R1, R2) = randomly select two parents from the remaining ones in the tour-
nament
D = randomCrx(R1, R2)
evaluate(D)
replace the worst in P with D

until POP SIZE times
end while

The LS algorithm presented in Algorithm 2 helps us to locate correct solu-
tions that are close to those obtained by the GA.

Algorithm 2. Greedy Local Search.
Require: iteration = 0

repeat
N(I(iteration)) = Neighborhood(I);
I(iteration + 1) = getBestOf(N(I(iteration)))
LocalOp(I(iteration + 1))
iteration = iteration + 1

until MAX ITER times

Next, the Neighborhood algorithm is used to generate a population of solu-
tions that are within Hamming distance of the current solution. Here, by Ham-
ming distance we mean the number of positions (flip-flops) that differ in the two
solutions. The Neighborhood algorithm is given in Algorithm 3.

Finally, the LocalOp algorithm is used to compare the quality of solutions
generated by the local greedy search algorithm and is presented in Algorithm 4.
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Algorithm 3. Neighborhood.
Require: iteration = 0

while N SIZE > iteration do
create individual at Hamming distance d from individual

end while

Algorithm 4. LocalOp.
for all bit postion i in bitsOf(I) do

oldFitness = fitness(I);
flip bit on position i in bitsOf(I);
evaluate(I);
if fitness(I) worse than oldFitness then

flip bit on position i in bitsOf(I);
end if

end for

Common Parameters. To be able to assess the effectiveness of the optimiza-
tion algorithm, and compare the alternatives, we need to define parameter values
for each algorithm variant. Since the observed algorithms are stochastic, their
performance must be evaluated on the basis of repeated runs; therefore, the num-
ber of independent runs for each setting in our experiments is 100. The other
common parameters are selected on the basis of tuning experiments and include
the population size, which is set to 50. The tournament size k in the tournament
selection is equal to 3. The tournament selection works by randomly choosing
3 individuals and then removing the worst one. From the remaining two indi-
viduals, one new solution is created via the crossover operation. The mutation
probability is set to 0.01 per individual where we make a choice on the basis of a
small set of tuning experiments that showed this was the best result on average.
Local search is called every fourth generation, with a maximum of 6 iterations
for local search. The neighborhood size is 35 and the Hamming distance is 10.
Furthermore, we display all common parameters in Table 1.

4.4 Circuit Decomposition

Here, we briefly discuss the additional functionality that our framework incorpo-
rates. It allows to decompose a network on several levels, i.e. subnetworks divided
by flip-flops. Each of those subnetworks realize a part of the functionality of the
complete network and it is possible to pipeline only a subnetwork. We call this
procedure network decomposition. However, it is important to state that it is
not always possible to pipeline a subnetwork (or even a network). Therefore,
with regards to Definition 1, we offer the following definition:

Definition 3. It is possible to add flip-flops only to those subnetworks that do
not contain cells with direct inputs to the network.
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Table 1. Common parameters.

Parameter Parameter Value

Number of runs 100

Tournament size 3

Population size 50

Stopping criterion Stagnation in 10 generations

Mutation rate 0.01

LS rate 4

Max iteration for LS 6

Neighborhood size for LS 35

Hamming distance in LS 10

5 Experimental Results

In this section, we first introduce the results obtained with two different methods
where the focus is on those results obtained with the optimization algorithm.
We perform static timing analysis (STA) on pre-layout netlists synthesized using
Synopsys Design Compiler, which is used to report the area of the designs,
while we use PrimeTime - a golden timing signoff solution and environment by
Synopsys - to perform STA.

In all of our experiments we are using the smallest D-Flip-Flop (DFF) cells
from the appropriate libraries (DFFCLD and DFFCHD) for driving the inputs. Fur-
thermore, we use the load of these cells for all outputs. This models the placement
of the combinatorial network between two registers. The same DFF cells are used
for the pipeline registers.

Lastly, in order to depict the impact of the proposed method on purely com-
binatorial networks, we do not include the setup times of sequential elements in
the presented results.

5.1 Introducing Flip-Flops Manually in the Design Phase

We established that randomly setting flip-flops cannot result in a correct net-
work when working with such complex networks as given here. However, what
about inserting flip-flops in the design phase? In this way, we avoid working
with netlists, but rather with an abstraction of a network that is much easier
to comprehend. Furthermore, this approach is the dominant one when consid-
ering practical applications [4]. As an example, here we take the AES S-box
in polynomial basis and then we insert flip-flops into the inverse8 part. This is
represented in Fig. 1a and b. Flip-flops are depicted as “fd” cells in the latter
figure. We note that the tool itself changes the network when adding the cells in
the design phase.
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(a) Top view of AES S-box in polynomial basis.

(b) Zoom into inverse8 with added FFs.

Fig. 1. Example of inserting FFs in design phase.

5.2 Results for the Optimization Algorithm

In this section, we present the best results we obtained with our memetic algo-
rithm. Alongside, we give basic statistics on the netlists without inserted flip-
flops in Table 2. For an example of full statistics, we point the readers to Appen-
dix A. In order to ease the comparison, we calculated the delays for cells as
in [1] where the values are obtained as averages for all possible combinations for
each element. To model the delay of a flip-flop, we can use any value from the
library as long as it is the same for the whole circuit, and here we work with a
D-FF with a single output and no clear signal that has an average delay time of
320.35 ps.

In Table 3, we give the best obtained results for our algorithm. If written
only Polynomial, it means that the flip-flops are inserted to the input of a cell,

Table 2. Statistics of the preliminary S-box design.

Basis # of cells # of inputs # of paths Critical path (ps)

Polynomial 165 432 8 023 409 3 884.52

Normal 181 497 139 221 044 4 685.724

Table 3. Best solutions.

Basis Layers Critical path (ps) # of added FFs

Polynomial 2 2 065.7435 64

Polynomial, out 2 3 075.6087 11

Normal 2 2 508.8050 73
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Table 4. Obtained number of correct solutions (%).

Basis Layers 1.5 - 2 2 - 2.5 2.5 - 3 3 - 3.5 3.5 - 4 4 - 4.5 4.5 - 5

Polynomial 2 - 13.04 53.26 32.6 1.08 - -

Polynomial, out 2 - - - 80 20 - -

Normal 2 - - 10.52 - 5.26 36.84 47.37

when flip-flops are added to the output of a cell we denote it with Polynomial,
out.

Finally, in Table 4, we give the percentage value of times that each correct
solution reached a certain critical delay time.

5.3 The Performance of the Memetic Algorithm

After discussing the successfulness of our approach in the previous section, here
we discuss its reliability and speed. As already stated, those objectives are what
we believe to be the differentiation of a proof of concept from the real-world
framework. For all results we use PCs with Intel i5-3470 CPU with 3.2 GHz,
6 Gb of RAM and 64-bit Windows 7 OS. To obtain the following statistics, we
run every setup 100 times. We consider the algorithm successful if it generates
at least one correct solution. The rationale behind this is supported by the fact
that every stochastic optimization algorithm is meant to be run at least several
times (in other words, it is meaningless to run a stochastic algorithm on a given
problem only once).

When adding one level of flip-flops to the S-box in polynomial representation
where flip-flops are positioned on the input and with 100 000 evaluations, we
obtain a successfulness of 93 %. When running the same setup, but with flip-
flops positioned on the output of cells (output-based), the successfulness drops
to only 36.8 %. When working with S-boxes in normal basis with flip-flops based
on the inputs of the cells, the successfulness equals 91.6 %. To summarize the
previous results, we can conclude that our algorithm is reliable since it has a
reasonably high success rate. Next, we discuss the speed of our approach based
on the speed of evaluation. Here, an evaluation is the whole process of obtaining
a new individual and examining its fitness. Since it is clear that the evaluation
process depends on the number of paths, it is easy to see that the evaluation
of a solution in polynomial representation will be faster than the one in normal
representation since it has a smaller number of paths as given in Table 2. A single
evaluation of a polynomial representation solution lasts around 100 ms and of
a normal representation solution around 120 ms. However, 10 evaluations last
800 ms, and 100 evaluations last 8 000 ms. We observe that more evaluations are
comparably faster since in Java implementation we have a “warm up” phase due
to the optimizations and JIT compilation. Finally, on average, our algorithm
needs 150 generations to find a solution which amounts to 7 500 evaluations on
average. When accounting for the speed of evaluation, we see that our approach
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needs on average 12.5 min to output a correct solution with an improved critical
path.

5.4 Static Timing Analysis Results

The critical paths of the synthesized netlists are evaluated using the following
design constraints. Firstly, for both libraries that are used we are using the
enG10k wire load model. Secondly, we perform STA for all available operating
conditions in order to take into account the available driving powers of combi-
natorial networks. Thirdly, we assume the combinatorial networks are driven by
the smallest DFFs. Consistently, all outputs are loaded with the same DFFs.
The setting used for STA is depicted in Fig. 2.

In order to depict the impact of the proposed method on purely combinatorial
networks, we do not include the setup times of the sequential elements in the
presented results. Lastly, due to the fact that DFFs typically have a smaller load
of input pins—while providing stronger drives—than the combinatorial elements
used in the initial network, the sum of delays through both networks is smaller
than the delay of the original network.

In Table 5 we give the critical paths of the networks for all observed cases. The
last column gives information on the ratio between two critical paths, including
the rising edge setup times of the DFFs used for the model.

5.5 Discussion and Future Work

The results presented in this work show that our methodology is capable of
finding almost optimal positions for adding flip-flops. However, we must also ask
the question if it is worth while? Although our framework is capable of generating
good results relatively fast, this is still significantly slower than what is the case
when adding flip-flops manually in the design phase. Therefore, the answer to the
previous question depends on the setting. If we have a setting where we require a
critical path that is as small as possible and where we can afford the cost of added
flip-flops, this methodology represents a valuable resource. Otherwise, the total
cost versus the benefit is much less favorable. Furthermore, as main advantage of
our approach compared with the retiming technique is the possibility to divide

Combinatorial
circuits

Combinatorial
circuits
part1

Combinatorial
circuits
part2

Fig. 2. STA setting.
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Table 5. Critical paths of original and pipelined networks.

Basis Library Operating
Conditions

C. Path (ns) Pipeline C.
Path (ns)

Ratio (%) With setup
(%)

Poly UMC0.13LL BCCOM 5.91 2.87 48.89 49.92

Poly UMC0.13LL TCCOM 9.83 4.78 49.03 49.45

Poly UMC0.13LL WCCOM 17.09 8.36 48.84 49.39

Poly UMC0.13HS BCCOM 2.35 1.19 50.64 53.78

Poly UMC0.13HS TCCOM 3.64 1.85 50.82 52.89

Poly UMC0.13HS WCCOM 6.30 3.20 50.79 52.01

Norm UMC0.13LL BCCOM 6.28 3.07 49.61 50.16

Norm UMC0.13LL TCCOM 10.36 5.08 49.38 49.81

Norm UMC0.13LL WCCOM 18.10 8.84 48.92 49.29

Norm UMC0.13HS BCCOM 2.58 1.28 49.61 52.55

Norm UMC0.13HS TCCOM 4.01 1.98 49.38 51.32

Norm UMC0.13HS WCCOM 6.98 3.45 49.43 50.56

the circuit in parts of almost the same critical path size and therefore obtaining
an optimal solution. The same often cannot be said for the retiming technique
due to the optimization towards a minimal number of registers.

We believe our approach can be coupled with the retiming technique to pro-
vide even better results (i.e. our critical path, but with a smaller number of reg-
isters). We emphasize that although we work here on S-boxes realized in tower
fields, there is nothing stopping us to use this method with any other kind
of combinatorial circuit. Naturally, the smaller the critical delay, the smaller
the benefit of pipelining. In any case, pipelining has a big impact on the effi-
ciency of certain modes of operation. For fully exploiting the power of the AES
instructions, one needs a small delay in the mode of operation and that has the
unfortunate side effect that the “better modes of operation” such as CBC are
much less applied and one tends to do counter mode (fully parallelizable). In
our future work we want to extend this research to the whole AES round. The
results showed here suggest our technique should be regarded as a viable option
when looking for optimal pipelining. However, the final verdict must be done
only after a whole cipher round is examined. Besides that, we plan to further
improve the local search part of the algorithm since its efficiency has an extreme
impact on the efficiency of the whole algorithm. On top of that, one interesting
research avenue would be to combine our algorithm with techniques for finding
ASAP (as-soon-as-possible) and ALAP (as-late-as-possible) locations [16] for
flip-flops which could result in a decrease of the search space size for our opti-
mization algorithm. Finally, it is worth mentioning that the results presented in
this paper are pre-layout results. We are aware that the outcome might change
when post-layout results are used, as also mentioned in [35,36].
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6 Conclusion

In this paper we present a framework that is able to pipeline combinatorial
circuits. To show its performance, we experimented with the AES S-box realized
with tower fields in both polynomial and normal representation. The obtained
results show our approach is highly competitive when the goal is to minimize the
critical path. Furthermore, our results can be regarded as the best possible since
they divide the circuit into two equal parts. The method presented in [1], as well
as the method dominantly used today (Sect. 5.1) give worse results. Naturally,
the methodology used in this work can be used in other applications besides
cryptography when the goal is to decrease the critical path as much as possible
and where each nanosecond makes a difference.
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in part by the Research Council KU Leuven (C16/15/058) and IOF project EDA-
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A Appendix

Here, we give an example of the results for our statistical tool for a circuit of
interest.

AES S-box Polynomial Basis

--- Network report [start] ---
File: sbox_poli.txt
Num of paths: 8023409
Max path length: 3848.862013890002
Max possible layers: 4 (3 flip-flops)
Max possible num of flip-flops on max path: 31
Solution (BitString) size: 432
Network path delay statistics:
[0-500>: 2
[500-1000>: 2164
[1000-1500>: 149944
[1500-2000>: 2026442
[2000-2500>: 3580150
[2500-3000>: 1899675
[3000-3500>: 361708
[3500-4000>: 3324
[4000-4500>: 0
[4500-5000>: 0

--- Network report [end] ---

In Fig. 3, we give a graphical representation of the AES S-box in polynomial
basis. Blue lines depict internal nodes and red lines direct inputs.
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Fig. 3. Graphical representation of the S-box in polynomial basis(Color figure online).
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Abstract. In this paper, we study the behavior of the XOR count distri-
butions under different bases of finite field. XOR count of a field element
is a simplified metric to estimate the hardware implementation cost to
compute the finite field multiplication of an element. It is an important
criterion in the design of lightweight cryptographic primitives, typically
to estimate the efficiency of the diffusion layer in a block cipher. Although
several works have been done to find lightweight MDS diffusion matri-
ces, to the best of our knowledge, none has considered finding lightweight
diffusion matrices under other bases of finite field apart from the con-
ventional polynomial basis. The main challenge for considering different
bases for lightweight diffusion matrix is that the number of bases grows
exponentially as the dimension of a finite field increases, causing it to
be infeasible to check all possible bases. Through analyzing the XOR
count distributions and the relationship between the XOR count distri-
butions under different bases, we find that when all possible bases for
a finite field are considered, the collection of the XOR count distribu-
tion is invariant to the choice of the irreducible polynomial of the same
degree. In addition, we can partition the set of bases into equivalence
classes, where the XOR count distribution is invariant in an equivalence
class, thus when changing bases within an equivalence class, the XOR
count of a diffusion matrix will be the same. This significantly reduces
the number of bases to check as we only need to check one representa-
tive from each equivalence class for lightweight diffusion matrices. The
empirical evidence from our investigation says that the bases which are
in the equivalence class of the polynomial basis are the recommended
choices for constructing lightweight MDS diffusion matrices.

Keywords: Lightweight cryptography · Finite field multiplication ·
Basis of finite field · XOR count · MDS matrices · Diffusion layer

1 Introduction

In today’s world Internet of Things (IoT) is a buzzword. The devices that are
involved in IoT are equipped with very limited power and memory. The stan-
dard cryptographic primitives often do not suit in these devices. Thus to cater
c© Springer International Publishing Switzerland 2016
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the security requirement of IoT, the so-called topic lightweight cryptography has
emerged.

Lightweight cryptography is mostly based on symmetric-key cryptography.
Examples of lightweight ciphers include eSTREAM finalists Grain v1 [7], MICKEY
2.0 [1], and Trivium [11]. On the other hand, the block ciphers CLEFIA [9],
PRESENT [2] have already been included in the ISO standardization project of
lightweight cryptography ISO/IEC 29192. The block cipher PRINCE [3] is another
block cipher that is lightweight, and after its arrival in 2012, it has generated a
lot of interest in the community.

There are two important cryptographic criteria of a block cipher, and other
cryptographic primitives such as hash functions that are based on block ciphers—
confusion and diffusion. The confusion layer makes the relation between key and
ciphertext as complex as possible, and on the other hand the diffusion layer
spreads the plaintext statistics through the ciphertext. A popular choice for
constructing the diffusion layer is to use maximum distance separable (MDS)
matrices, for instance AES [4] and LED [6] use MDS matrix to achieve the max-
imum diffusion power. However, having MDS matrix in a lightweight cipher is
a real challenge for the designers as MDS matrices tend to have high imple-
mentation cost. To quantify the hardware cost of the diffusion layer, a metric
to estimate the cost for implementing the coefficients of the diffusion matrix is
required.

Before [8], a common belief was that field elements with low Hamming weight
tends to be lightweight. For instance, one of the rationales for the choice of AES
diffusion matrix coefficients was its simplicity and low Hamming weight. How-
ever, there was no clear implication of how low Hamming weight elements would
result in lightweight implementation. In 2014, the authors of [8] proposed to look
at the number of XORs required to compute the multiplication of a fixed field ele-
ments. As a result, they found MDS diffusion matrices that required lesser XORs
to implement than the AES diffusion matrix and yet with higher total Hamming
weight. In 2015, the authors of [10] extended the search for lightweight diffu-
sion matrices, with special focus on involutory (self-inverse) MDS matrices, over
other finite fields defined by other irreducible polynomials besides the irreducible
polynomial used for AES diffusion matrix. Besides finding new lightweight diffu-
sion matrices, the authors proposed that the choice of irreducible polynomial to
construct lightweight matrices should not be dependent on the Hamming weight
of the polynomial, but the high standard deviation of the XOR count distrib-
ution. Although all possible irreducible polynomials for generating finite fields
have been studied, the choice of the basis has not been considered.

In symmetric-key cryptography, the conventional choice of basis is the poly-
nomial basis. However, there are many other choices of basis, for instance a
normal basis, which is commonly used in elliptic curve cryptography. These new
choices of basis give rise to new sets of XOR count distributions. Hence a natural
question is whether there exist even lighter MDS diffusion matrices when we con-
sider different bases besides the polynomial basis, which is the main motivation
of this work. However, extending the search for lightweight matrices to other
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bases brings about a new challenge—the number of bases grows exponentially
as the dimension of the finite field increases. Perhaps this is one reason that
little work in any aspect of cryptography has looked into the different choices of
bases.

Contributions. In this paper we deeply study the distribution of XOR count
of field elements and characterize how sensitive they are to the change of basis.
Prior to this work, little work has been done on analyzing different finite field
bases in the cryptographical aspect. In Sect. 2, after giving a brief introduction
to finite field and its bases, we describe how to compute the XOR count of a
field element and the XOR count of a diffusion matrix. In Sect. 3.2, we analyze
the distribution of XOR counts and show that the mean of the XOR count
distribution is invariant of the irreducible polynomial and basis. In addition,
we prove that the collection of XOR count distributions is the same for any
irreducible polynomial of the same degree. This implies that we only need to
consider XOR count distributions under one irreducible polynomial. In Sect. 3.3,
we show that there are bases that generate similar XOR count distributions,
which means that there are “redundant bases”, and we can reduce the number
of bases to consider when we search for lightweight diffusion matrices. In Sect. 4,
we formally define the equivalence relation between bases whose XOR count
distributions are invariant, and propose the concept of equivalence classes of
bases. Since it is sufficient to search for lightweight MDS diffusion matrices under
one representative basis from each equivalence class, this significantly reduces
the number of bases to consider. In Sect. 5, we describe the algorithms for finding
all equivalence classes of bases, and searching lightweight MDS and involutory
MDS diffusion matrices under the representative bases. Although we do not find
new lighter (involutory) MDS diffusion matrices, our empirical evidence shows
that the polynomial basis, and its equivalent bases, are the recommended choice
of bases for constructing lightweight MDS diffusion matrices.

2 Preliminary

In this section, first we give a short recap on finite field and its bases. Next, we
describe how the XOR count of a field element and XOR count of a diffusion
matrix under some irreducible polynomial are computed.

2.1 Finite Field

We denote by GF(2n) the finite field with 2n elements, n ≥ 1. The addition +
over GF(2n) will be used in this paper with ambiguity, however implication will
be clear from the context. The exclusive-or (XOR) sign ⊕ will sometimes be
used to mean addition modulo 2.

The extension field GF(2n) of GF(2) is constructed using an irreducible poly-
nomial of degree n. Let GF(2n)/p(X) denote the field having the underlying
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irreducible polynomial p(X) of degree n1. Note that for any other irreducible
polynomial q(X) of degree n, the two fields GF(2n)/p(X) and GF(2n)/q(X) are
isomorphic. Throughout the paper we will be using the notation GF(2n)/p(X)
only when we need to mention p(X) explicitly.

The number of irreducible polynomial of degree n over GF(2), denoted as
Mn(2), is given by the following formula,

Mn(2) =
1
n

∑

d|n
μ(d)2

n
d , (1)

where μ(d) is the Möbius function [5].

2.2 Bases of a Finite Field

Let α denote a primitive element of GF(2n), then any nonzero element in the
finite field can be expressed as αi. Given GF(2n), consider a set of elements in
the field B = {αr0 , αr1 , ..., αrn−1}, where ri’s are non-negative integers. If the
GF(2)-linear combinations of elements of B span the entire field, we call this
as a basis, that is through the basis, we identify GF(2n) with the vector space
GF(2)n. Sometimes we denote the basis as {αri}n−1

i=0 = {αr0 , αr1 , ..., αrn−1}.
The number of bases for a given finite field GF(2n) is given as

1
n!

n−1∏

s=0

(2n − 2s). (2)

Conventionally, we use the polynomial basis {α0, α1, ..., αn−1}, but there
are many other bases such as a normal basis, which is of the form
{αi, α2i, ..., α2n−1i}2, where integer i > 0.

2.3 XOR Count of Finite Field Elements and Diffusion Matrices

MDS matrices are popular choice for building the diffusion layer of a block cipher.
Towards the construction of lightweight diffusion layer, it is required that the
total operations needed to execute the diffusion layer on an input vector (the
product of the matrix and a vector) should also be low. In this paper, we consider
XOR count as the metric for lightweightness of matrices as done in [8,10].

In practice, a finite field element is represented by its corresponding vector
space element by choosing some basis. Then to realize a product of two finite
field elements we need to express the product in terms of the basis elements,
where the coefficients are linear functions of coordinates of the two elements.

1 This notation should not be confused with the finite field notation GF(2)[X]/(P ),
where (P ) is an ideal generated by irreducible polynomial P . Nevertheless, both
notations refer to the same thing. i.e., GF(2n)/p(X) = GF(2)[X]/(P ).

2 This is a necessary condition for a normal basis, not every i forms a basis.
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Definition 1. The XOR count of an element θ in the field GF(2n) is the number
of XORs required to implement the multiplication of θ with an arbitrary element
β. We name the set of XOR counts of all the elements of GF(2n) as the XOR
count distribution.

For example, consider GF(23)/(X3 +X +1) and a basis {1, α, α2}. Consider the
multiplication of α4 = α + α2 with an arbitrary element β = b0 + b1α + b2α

2,
where bi ∈ {0, 1}

(b0 + b1α + b2α
2)(α + α2) = (b1 + b2) + (b0 + b1)α + (b0 + b1 + b2)α2.

In other words, the product of the α4 and β is of the form

(b1 ⊕ b2, b0 ⊕ b1, b0 ⊕ b1 ⊕ b2),

in which there are 4 XORs3. Therefore, the XOR count of the element α4 is
4. It is trivial to check that the zero element will have XOR count 0. Since
the coefficients of MDS diffusion matrices must be nonzero, in the XOR count
distribution we will not mention the XOR count of the zero element. One may
also check that for this basis, identity element also has XOR count 0.

We observe that the XOR count distribution of a field may differ as per
the choice of basis. For example, consider GF(23)/(X3 + X + 1) and enumer-
ate the nonzero field elements as {αi}6i=0. For the basis {1, α, α2}, the XOR
count distribution is {0, 1, 2, 4, 4, 3, 1}. However, if we consider the normal basis
{α3, α6, α12}4, then the XOR count distribution is {0, 3, 3, 2, 3, 2, 2}.

The XOR count of one row of a diffusion matrix can be computed using the
following formula given in [8]:

XOR count of one row =
k∑

i=1

γi + (� − 1) · n,

where γi is the XOR count of the i-th entry in the row of the matrix, k being the
order of the diffusion matrix, � is the number of nonzero coefficients in the row
and n is the dimension of the finite field. For example, the first row of the AES
diffusion matrix being (1, 1, 2, 3) over the field GF(28)/(X8 +X4 +X3 +X +1),
so the XOR count for the first row is (0+0+3+11)+3× 8 = 38. Note that for
MDS matrices, all coefficients are nonzero thus we can assume � = k. Since the
latter term of the formula is dependent of the dimension of the finite field and
order of the MDS matrix, it will be a fixed constant for a given finite field and
order of the MDS matrix. Hence, we are only interested in the sum of the XOR
count of the coefficients.

In this paper, sometime we describe a diffusion matrix with relatively lower
XOR counts as a lightweight matrices.
3 We acknowledge that common terms in the expression could be computed just once

and reused to save some XOR count. However, that would require additional cycle
and extra memory cost which would very likely to outweigh the cost saved for the
XOR count.

4 Note that the element α12 can also be written as α5 as the finite field multiplication
of primitive element has a cycle of length 7.
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3 XOR Count Distribution

In this section, we first give a special property of the XOR count distribution
under normal bases. Next in Sect. 3.2, we analyze the XOR count distribution
and its relation between different irreducible polynomials. We show that any
choice of the irreducible polynomial generates the same collection of XOR count
distributions when all bases are considered. Lastly in Sect. 3.3, we study the sim-
ilarity of the XOR count distribution under different bases. This is the building
block for constructing the equivalence classes of bases in Sect. 4.

3.1 XOR Count Distribution Under Normal Bases

We give an interesting property of the XOR count regarding normal bases. First,
it is known that the binary representation of an element α2i is a shift rotation
of the binary representation for αi under a normal basis. This is a nice feature
in the context of hardware implementation.

Proposition 1. Under a normal basis, αi of GF(2n) has the same XOR count
as α2i.

Proof. Without loss of generality, let the normal basis be {α, α2, ..., α2n−1}, an
element αi can be expressed as a polynomial αi = a0α + a1α

2 + ... + an−1α
2n−1

,
while the square of the element has a shift in the coefficient, α2i = an−1α +
a0α

2 + ... + an−2α
2n−1

.
For any arbitrary element b0α + b1α

2 + ... + bn−1α
2n−1

, the XOR count of
α2i can be computed as

(an−1α + a0α
2 + ... + an−2α

2n−1
)(b0α + b1α

2 + ... + bn−1α
2n−1

)

=
(
(a0α + a1α

2 + ... + an−1α
2n−1

)(b1α + b2α
2 + ... + b0α

2n−1
)
)2

.

Since squaring is simply a shift in the binary representation, the number of XORs

in
(
αi(b1α + b2α

2 + ... + b0α
2n−1

)
)2

is the same as that of α2i(b1α+ b2α
2 + ...+

b0α
2n−1

). Furthermore, the number of XORs in α2i(b1α+ b2α
2 + ...+ b0α

2n−1
) is

the same as that of α2i(b0α + b1α
2 + ... + bn−1α

2n−1
) as {b0, . . . , bn−1} is simply

a permutation of {b1, . . . , b0}. Hence, the XOR count of α2i is the same as the
XOR count of αi. ��

Thus there will be several repetitions in the XOR count distributions when
normal basis is considered. As one can see from the example in the previous
section that the elements α, α2 and α4 have the same XOR count 3 while α3,
α6 and α5 have the same XOR count 2.
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3.2 XOR Count Spectrum

For a field element θ, we can define a matrix such that the XOR count of the
product with an arbitrary element b can be computed directly from that matrix.

Let {1, α} be a basis of GF(22). For a fixed element a0 + a1α of GF(22) the
multiplication with an arbitrary element b0 + b1α will give

(b0 + b1α)(a0 + a1α) = b0a0 + b1a1 + (b0a1 + (a0 + a1)b1)α.

In vector notation, this product is actually (b0a0⊕b1a1, b0a1⊕(a0⊕a1)b1, which
can be written as a matrix product

(
a0 a1

a1 a0 ⊕ a1

)

×
(

b0
b1

)

.

Clearly if there are ki 1’s in the i-th row, then there will be ki − 1 XORs of bi’s
in the i-th coordinate of the product.

In general if {αr1 , . . . , αrn} is a basis of GF(2n)/p(X), the product of a fixed
element θ = a0α

r1 + . . . + an−1α
rn and an arbitrary element b = b0α

r1 + . . . +
bn−1α

rn can be expressed as a multiplication matrix Mθ and (b0, . . . , bn−1),
where

Mθ =

⎡

⎢
⎢
⎢
⎣

L0,0(a0, . . . , an−1) . . . L0,n−1(a0, . . . , an−1)
L1,0(a0, . . . , an−1) . . . L1,n−1(a0, . . . , an−1)

...
. . .

...
Ln−1,0(a0, . . . , an−1) . . . Ln−1,n−1(a0, . . . , an−1)

⎤

⎥
⎥
⎥
⎦

,

note that each Li,j(a0, . . . , an−1) is some GF(2)-linear combination of
{a0, . . . , an−1}. As said before if there are ki 1’s in row i, the total number
of XORs needed is

∑n
i=1(ki − 1).

It is to be noted that the matrix Mθ is invertible, since θ−1θb = b, equiva-
lently M−1

θ Mθ × [b0, . . . , bn−1]T should give [b0, . . . , bn−1]T . This fact is used to
determine the following property of the matrix Mθ.

We call an n-tuple binary vector nonzero if at least one coordinate of it is
nonzero.

Lemma 1. The collection of the row vectors taken from any fixed row of all the
matrices Mθ for all nonzero θ, is in bijection with the set of nonzero n-tuple
binary vectors.

Proof. It is clear that every row of the matrix Mθ of a nonzero element θ is
nonzero n-tuple binary vectors, else Mθ is not invertible. Consequently, for each
row i, row vectors are pairwise distinct for all such matrices. Suppose not, let θ1
and θ2 be distinct elements with the same binary vector in row i. Then θ1 + θ2
is another nonzero element with zeroes in row i which contradicts that nonzero
elements are invertible. ��
Proposition 2. The total XOR count of the elements in GF(2n) is
n

∑n
i=2

(
n
i

)
(i − 1), and it is invariant of the choice of irreducible polynomial

and basis.
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Proof. By Lemma 1, the row i of nonzero multiplication matrices is in bijection
with the set of nonzero n-tuple binary vectors over GF(2). Hence, summing the
number of XORs for the row i of all elements is

∑n
i=2

(
n
i

)
(i − 1). Since there are

n rows, we have n
∑n

i=2

(
n
i

)
(i − 1). ��

This proposition shows that there is no clear advantage in choosing some
particular irreducible polynomial and basis over another.

As the example in Sect. 2.3 shows that XOR count distribution may
change under different basis, therefore, one may think that varying over all
possible bases, the set of XOR count distributions might be different for
GF(2n)/p(X) and GF(2n)/q(X). However, our analysis shows that for a basis B
in GF(2n)/p(X) there will be a basis B′ in GF(2n)/q(X) such that XOR count
distribution of GF(2n)/p(X) under B will be equal to that of GF(2n)/q(X)
under B′. The proof is as follows.

For brevity, we call the set of all XOR count distributions for all possible
bases as the XOR count spectrum.

Lemma 2. Let ψ : GF(2n)/p(X) → GF(2n)/q(X) an isomorphism between
these two finite fields. If {α0, . . . , αn−1} is a basis of GF(2n)/p(X), then the set
{ψ(α0), . . . , ψ(αn−1)} is a basis of GF(2n)/q(X).

Theorem 1. The XOR count spectrum of GF(2n)/p(X) and GF(2n)/q(X) are
the same.

Proof. We show that for a basis of GF(2n)/p(X), there is a basis of
GF(2n)/q(X), where XOR count distribution will be the same. Let α and β
be the primitive elements of GF(2n)/p(X) and GF(2n)/q(X) respectively. Sup-
pose {α0, . . . , αn−1} is a basis of GF(2n)/p(X). Consider an arbitrary element
of GF(2n)/p(X) as b0α0 + . . . + bn−1αn−1 and multiply with the element αi

αi(b0α0 + . . . + bn−1αn−1) = L0α0 + . . . + Ln−1αn−1, (3)

where Li’s are some linear combinations of {b0, . . . , bn−1}. If in the linear combi-
nation Li there are ci XORs, then XOR count is

∑n−1
i=0 ci. Notice that the value

of each Li ∈ {0, 1}.
Apply ψ on both sides of (3), and we get

ψ(α)i(b0ψ(α0) + . . . + bn−1ψ(αn−1)) = L0ψ(α0) + . . . + Ln−1ψ(αn−1).

From Lemma 2, we know that {ψ(α0), . . . , ψ(αn−1)} is a basis of GF(2n)/q(X),
and from the above we get that there is ψ(α)i in GF(2n)/q(X) such that its
XOR count under {ψ(α0), . . . , ψ(αn−1)} is

∑n−1
i=0 ci.

Thus the XOR count spectrum obtained for GF(2n)/p(X) will be the same
for GF(2n)/q(X). ��

Therefore, we see that there is no gain in considering GF(2n) under different
irreducible polynomials, as this will not generate any new XOR count spectrum.
Hence for the rest of the paper, we omit the irreducible polynomial of the cor-
responding field unless necessary.
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3.3 Bases with Similar XOR Count Distributions

Let us now check if there is any similar XOR count distribution within the XOR
count spectrum, more precisely saying that we would like to see if a given finite
field GF(2n)/p(X), there are bases whose corresponding XOR count distribu-
tions are equal (up to a permutation). In the following we present the results.

Lemma 3. If {αr0 , . . . , αrn−1} is a basis of GF(2n), then {αr0+1, . . . , αrn−1+1}
is also a basis of GF(2n).

Proposition 3. Given a finite field GF(2n) and bases B = {αr0 , . . . , αrn−1}
and B+t = {αr0+t, . . . , αrn−1+t}, for integer t > 0, the XOR count distribution
of GF(2n) under these bases are exactly the same.

Proof. For simplicity we prove it for t = 1, the rest follows by induction. For an
arbitrary element b = b0α

r0 + . . .+ bn−1α
rn−1 , we can express the multiplication

with αj under B as

αj(b0αr0 + . . . + bn−1α
rn−1) = L0α

r0 + . . . + Ln−1α
rn−1 ,

where Li’s are some linear combinations of {b0, . . . , bn−1}. Suppose ci is the
number of XORs in Li, then XOR count of αj under B is

∑n−1
i=0 ci.

On the other hand, the multiplication with αj under B+1 can be expressed as

αj(b0αr0+1 + . . . + bn−1α
rn−1+1) = αj(b0αr0 + . . . + bn−1α

rn−1)α
= (L0α

r0 + . . . + Ln−1α
rn−1)α

= L0α
r0+1 + . . . + Ln−1α

rn−1+1.

Clearly the XOR count in this case is
∑n−1

i=0 ci too.
Therefore, the XOR count distribution of GF(2n) under {αr0 , . . . , αrn−1} and

{αr0+1, . . . , αrn−1+1} are exactly the same. ��
Next we find that there is another set of bases where the corresponding XOR

count distributions are the same up to a permutation.

Lemma 4. If {αr0 , . . . , αrn−1} is a basis of GF(2n), then {α2r0 , . . . , α2rn−1} is
also a basis of GF(2n).

Proposition 4. Given a finite field GF(2n), the XOR count distribution under
the bases B = {αr0 , . . . , αrn−1} and B×2s = {α2sr0 , . . . , α2srn−1}, for integer
s > 0, are the same up to a permutation.

Proof. For simplicity, we prove for s = 1, the rest will follow by induction.
For an arbitrary element b = b0α

r0 , . . . , bn−1α
rn−1 , we can express the mul-

tiplication with αj under B as

αj(b0αr0 + . . . + bn−1α
rn−1) = L0α

r0 + . . . + Ln−1α
rn−1 , (4)



176 S. Sarkar and S.M. Sim

where Li’s are linear combinations of {b0, . . . , bn−1}. If ci is the number of XORs
in Li, then the XOR count of αj under B is

∑n−1
i=0 ci.

To compute the XOR count for α2i under B×2, we square (4) to obtain

α2j(b0α2r0 + . . . + bn−1α
2rn−1) = L0α

2r0 + . . . + Ln−1α
2rn−1 . (5)

Clearly the XOR count obtained from (5) is also
∑n−1

i=0 ci. Since gcd(2, 2n −1) =
1, the mapping from αj under B to α2i under B×2 is bijection. Therefore, XOR
count distribution under B and B×2 are just permutation of each other. ��

4 Equivalence Classes of Bases

In the previous section, we have seen the similarities in some of the XOR count
distributions generated by different bases. In this section, we formally introduce
the equivalence relation between bases whose XOR count distributions produce
the lightest MDS matrix with the same XOR count. Using this equivalence
relation, we construct the equivalence classes of bases.

From Proposition 3, it is clear that for any MDS diffusion matrix M =
[βi,j ]k×k has the same XOR count both under B and B+t. As for the other type
of basis B×2s , by Proposition 4, we know that the XOR count of M under B
will match with that of another matrix M ′ = [β2

i,j ]k×k under B×2, however, it is
unclear if M ′ is also an MDS matrix. Thus, we need the following lemma.

Lemma 5. Suppose M = [βi,j ]k×k is an MDS matrix over GF(2n), then M ′ =
[β2

i,j ]k×k is also an MDS matrix.

Proof. It is known that all square submatrices of an MDS matrix have nonzero
determinants. Since GF(2n) has characteristic 2, the determinants of the sub-
matrices of M ′ are square of the determinants of the corresponding submatrices
of M , which are also nonzero. ��

With Lemma 5, it is now clear that M ′ is also MDS. Therefore, we can say
that by Propositions 3 and 4, the XOR count distributions of GF(2n) under B,
B+t and B×2s are invariant for the MDS matrices over finite fields under these
bases. Because for every MDS matrix with some XOR count found under B,
there will be another MDS matrix having the same XOR count under B+t and
B×2s , and vice versa. With that said, we can partition the set of all bases of
GF(2n) into distinct equivalence classes.

Definition 2. The bases B = {αri}n−1
i=0 and B′ = {αui}n−1

i=0 of GF(2n) are equiv-
alent if ui = (2sri + t) mod 2n − 1 for some s ≥ 0 and t ≥ 0. The collection of
these equivalent bases forms an equivalence class of bases.

With these equivalence classes of bases, it is sufficient to consider one basis
representative from each equivalence class in order to find one of the lightest
MDS matrices over all possible bases.
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Next, we analyze the cardinality of the equivalence classes. Interestingly, the
bases are not uniformly partitioned into equivalence classes. For instance, for
GF(23), there are 28 bases and only 2 equivalence classes, where one consists of
21 bases while the other has 7. This complicates the counting of the number of
equivalence classes for a given field dimension. Therefore, instead of finding the
exact cardinality of the equivalence class, we give a bound to it.

Lemma 6. The cardinality of any equivalence classes of bases of GF(2n) is a
multiple of 2n − 1.

Proof. Consider basis of the form B+t = {αri+t}n−1
i=0 , for positive integer t, which

is in the equivalence class of B = {αri}n−1
i=0 . Then the proof is immediate if we

can show that the smallest positive integer t that satisfies B+t = B is t = 2n −1.
Since α2n−1 = 1, it is clear that B+t = B when t = 2n − 1. Suppose there

exists t0 < 2n − 1 such that B+t0 = B, taking the summation of the elements in
the basis, we have

αr0+t0 + . . . + αrn−1+t0 = αr0 + . . . + αrn−1 .

Since {αri}n−1
i=0 is a basis, the summation,

∑n−1
i=0 αri , is nonzero and invertible.

Hence we can simplify the equation and obtain αt0 = 1, which is a contradiction
that α is a primitive element of the finite field. ��
Theorem 2. A lower bound and upper bound of the cardinality of any equiva-
lence classes of bases of GF(2n) is 2n − 1 and n · 2n − 1 respectively.

Proof. From Lemma 6, we know that the lower bound of the cardinality of
equivalence class is 2n − 1. Since α2n = α, it is clear that B×2s = B when s = n.
Therefore, the largest possible cardinality is n ·2n −1, when these n sets of bases,
{B+t}2n−1

t=0 , {(B×2)+t}2n−1
t=0 , {(B×22)+t}2n−1

t=0 ,...,{(B×2n−1
)+t}2n−1

t=0 , belong to the
same equivalence class and are pairwise distinct. ��

Lastly, we show that every equivalence class contains one certain kind of
basis. This allows us to find a representative basis from each equivalence classes
more efficiently.

Proposition 5. Every equivalence class always contains a basis of the form
{1, αu1 . . . , αun−1}.
Proof. Given a basis {αr0 , αr1 . . . , αrn−1} from an equivalence class, consider
t = 2n − 1 − r0, then the equivalent basis {αri+t}n−1

i=0 = {1, . . . , α2n−1−r0+rn−1}
also belongs to the same equivalence class. ��

5 Search Algorithms and Results

In this section, we first present our strategy to find all the equivalence classes of
bases, then it is sufficient for us to apply our search on one representative of each
equivalence classes for lightweight (in terms of low XOR count) MDS diffusion
matrices. Next, we adopt the similar strategy as described in [10, Sect. 5.2] and
extend the search to different bases for lightweight (involutory) MDS Hadamard
matrices of order 4.
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5.1 Enumerating Equivalence Classes

Search Algorithm. By Proposition 5, we know that the representative of an
equivalence class is of the form {1, αu1 , . . . , αun−1}. Therefore, all we need is to
start from {1, αu1 , . . . , αun−1}, if it is a basis then we can generate the equivalence
class by

{1, αu1 , . . . , αun−1} → {1, α2su1+t, . . . , α2sun−1+t}, s ≥ 0, t ≥ 0.

Thiswayweneed to test
(
2n−2
n−1

)
possible basis representatives in theworst case.The

pseudocode for enumerating the equivalence class is presented in Appendix A.

Results. Due to memory issue, we are unable to compute the exact number
of equivalence classes of bases for n ≥ 6. However, by Theorem 2, we are able
to estimate the number of equivalence classes as we know the lower bound and
upper bound of the cardinality of an equivalence class to be 2n −1 and n ·2n −1
respectively.

In Table 1, the second column shows the number of irreducible polynomials
for each dimension which can be computed from (1). By Theorem 1, we only
need to consider one arbitrary irreducible polynomial. The total number of bases
which can be computed using (2) is given in the third column, while the number
of equivalence classes of bases for each dimension is given in the last column.

5.2 Finding Lightweight (involutory) MDS Matrices Under
Different Bases

Search Algorithm. The authors of [10] analyzed the structure of Hadamard
matrices and presented the equivalence classes of Hadamard matrices and a
simplified check for MDS property on Hadamard matrices. In this paper, we
focus on Hadamard matrices of order 4 as 4 × 4 matrices are commonly used
in diffusion layer of a block cipher, for instance in AES. In addition, involutory
MDS Hadamard matrices can be easily constructed, as a Hadamard matrix is

Table 1. Number of equivalence classes of bases

Dimension of
finite field

Number of irreducible
polynomial

Number of bases Number of equivalence
classes

n = 3 2 28 2

n = 4 3 840 16

n = 5 6 83328 540

n = 6 7 224.74 216.18 ∼ 218.76

n = 7 18 234.92 225.12 ∼ 227.93

n = 8 30 246.91 235.92 ∼ 238.92
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involution iff the XOR-sum of the first row is 1. Based on these results, we only
need to choose a set of lightweight coefficients and test for MDS, the arrangement
of the entries is invariant as there is only one equivalence class of Hadamard
matrices for order 4 [10].

From Sect. 4, we see that bases within an equivalence class of bases have the
same (w.r.t. XOR count) collection of MDS matrices. Hence, it is sufficient to
check one representative from each equivalence class. To search for lightweight
MDS matrices over a given basis, we set some threshold value as the upper
bound for the total XOR count of the coefficients. If the sum of the XOR count
of the candidate is lower than the threshold, then we check if it forms an MDS
Hadamard matrix. In order to search for lightweight involutory MDS Hadamard
matrices, an additional condition that the XOR-sum of the candidates equals to
1 is required. For GF(24) and GF(28), we set the threshold value to be the XOR
count of the lightest MDS matrices found in [10]. For other order of finite fields,
we set the threshold value to some arbitrary large value. The threshold value
will be updated whenever we find a new (involutory) MDS Hadamard matrix
with lesser total XOR count. The pseudocode for finding lightweight (involutory)
MDS Hadamard matrices is presented in Appendix B.

Results. For n = 3, 4, 5, we search through all the equivalence classes of bases.
For n = 8, we consider the polynomial and normal bases because these are the
two most commonly used bases. The outcome is that the lightest MDS and
involutory MDS Hadamard matrices are found for the bases that belong to the
equivalence class containing the polynomial basis. And naturally for n = 4, 8,
the XOR count of the lightest MDS and involutory MDS Hadamard matrices
match with the results from [10].

5.3 Recommended Choice of Basis

Although we do not find MDS diffusion matrices with XOR count lesser than
the existing ones, it is interesting to see that the lightest diffusion matrices are
found under the polynomial basis. From Proposition 2, it seems that there is no
clear implication that one basis is strictly better than another, as the mean XOR
count is the same for any basis. However, the XOR count distribution may vary
for different bases, that is quantified by the standard deviation. A high standard
deviation implies that the distribution of XOR count is far apart from the mean,
thus there will be more elements with relatively lower/higher XOR count. As
pointed out in [10], in general the order of the finite field is much larger than
the order of the diffusion matrix, since only a few elements of the finite field are
used, there is a better chance of finding lightweight diffusion matrix under XOR
distributions with higher standard deviation.

To illustrate this concept, consider taking the two XOR count distributions,
D1 = {0, 1, 2, 4, 4, 3, 1} and D2 = {0, 3, 3, 2, 3, 2, 2}, from Sect. 2.3 as an example.
One can observe that the standard deviations of D1 and D2 are 1.57 and 1.07
respectively. Suppose we want to construct an MDS matrix of order 2, we need to
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Table 2. Highest standard deviation of various bases

Dimension of finite field Polynomial basis Other basis

n = 3 1.46 0.99

n = 4 2.68 1.71

n = 5 4.09 3.55

Dimension of finite field Polynomial basis Normal basis

n = 8 7.53 4.48

pick 2 distinct nonzero elements. Under D1, we can pick 2 elements corresponding
to XOR count 0 and 1, which is lower than any choice that we make under D2.
The main reason being that the XOR counts in D2 are much closer to the mean,
while under D1 we are able to pick elements with relatively lower XOR count
and check if they form an MDS matrix. Therefore, we look into the standard
deviation of the XOR count distribution of the bases.

By computing the standard deviation for all representation bases of the equiv-
alence classes of bases, we observe that the standard deviation of the polynomial
bases are significantly larger than the highest standard deviation of the non-
polynomial bases. The results are summarized in Table 2.

For any finite field GF(2n), we conjecture that the XOR distribution under a
polynomial basis tends to have a higher standard deviation as compared to other
bases. Therefore, we think that considering the polynomial basis, or its equivalent
bases, is the preferable choice for finding lightweight diffusion matrices.

5.4 Conclusion

In this paper, we study the behavior of the XOR count distribution under dif-
ferent bases and irreducible polynomials. We show that for all irreducible poly-
nomials, the XOR count spectrum is the same. Hence, we only need to con-
sider one irreducible polynomial when all bases are considered. Under a fixed
irreducible polynomial, the bases can be partitioned into equivalence classes,
where the XOR count distribution is invariant under these bases. In addition,
we provide a search algorithm for finding all the equivalence classes of bases.
Using these equivalence classes of bases, we complete the search for lightweight
MDS and involutory MDS Hadamard matrix of order 4 for finite field dimen-
sion n = 3, 4, 5. Our result suggests that the bases from the equivalence class of
polynomial basis are the recommended choice for constructing lightweight MDS
diffusion matrices.

Acknowledgements. The authors would like to thank Thomas Peyrin for his valuable
comments. The second author is supported by Singapore National Research Foundation
Fellowship 2012 (NRF-NRFF2012-06).
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A Pseudocode for finding equivalent bases of GF(2n)

Algorithm 1. Finding equivalent bases for GF(2n).
INPUT: GF(2n) generated by a primitive element α, S = ∅.
OUTPUT: B the set of basis representatives of distinct equivalence classes of bases.

set B = ∅ and counter = 0
for each set {(0, i1, . . . , in−1) : ij ∈ [1, 2n − 2]} chosen from

(
2n−2
n−1

)
possible combi-

nations do
generate E = {α2si1+t mod 2n−1, . . . , α2sin+t mod 2n−1 : s ∈ [0, n − 1], t ∈

[0, 2n − 2]}
store every member of E in S that has 1 and is new to S, and update counter++
if {1, αi1 , . . . , αin−1} is a basis then

store {1, αi1 , . . . , αin−1} in B
if counter=

(
2n−2
n−1

)
then

return B as the set of bases that are representatives to all distinct
equivalence classes

end if
end if

end for

B Pseudocode for Finding Lightweight (involutory) MDS
Hadamard Matrices over GF(2n)

Algorithm 2 . Finding lightweight (involutory) MDS Hadamard matrices for
GF(2n).
INPUT: MDS threshold, IMDS threshold, nonzero elements of GF (2n), XOR count

of the field elements.
OUTPUT: XOR count of the lightest MDS and involutory MDS Hadamard matrices

of order 4.
sort the elements in ascending order according to their XOR counts
for each set S of 4 elements chosen from

(
2n−1

4

)
possible combinations do

if XOR-sum of elements = 1 then
if sum of XOR count < IMDS threshold then

construct Hadamard matrix H from S
if H is MDS then

update IMDS threshold = sum of XOR count
end if

end if
else if sum of XOR count < MDS threshold then

construct Hadamard matrix H from S
if H is MDS then

update MDS threshold = sum of XOR count
end if

end if
end for
return MDS threshold and IMDS threshold



182 S. Sarkar and S.M. Sim

References

1. Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0 (2006). http://www.
ecrypt.eu.org/stream/mickeypf.html

2. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block
cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 450–466. Springer, Heidelberg (2007)
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Abstract. Zk-SNARKs (succinct non-interactive zero-knowledge argu-
ments of knowledge) are needed in many applications. Unfortunately,
all previous zk-SNARKs for interesting languages are either inefficient
for the prover, or are non-adaptive and based on a commitment scheme
that depends both on the prover’s input and on the language, i.e., they
are not commit-and-prove (CaP) SNARKs. We propose a proof-friendly
extractable commitment scheme, and use it to construct prover-efficient
adaptive CaP succinct zk-SNARKs for different languages, that can all
reuse committed data. In new zk-SNARKs, the prover computation is
dominated by a linear number of cryptographic operations. We use batch-
verification to decrease the verifier’s computation; importantly, batch-
verification can be used also in QAP-based zk-SNARKs.

Keywords: Batch verification · Commit-and-prove · CRS · NIZK ·
Numerical NP-complete languages · Range proof · Subset-Sum ·
zk-SNARK

1 Introduction

Recently, there has been a significant surge of activity in studying succinct non-
interactive zero knowledge (NIZK) arguments of knowledge (also known as zk-
SNARKs) [3–6,12,13,17,19,23,24,28]. The prover of a zk-SNARK outputs a
short (ideally, a small number of group elements) argument π that is used to
convince many different verifiers in the truth of the same claim without leaking
any side information. The verifiers can verify independently the correctness of
π, without communicating with the prover. The argument must be efficiently
verifiable. Constructing the argument can be less efficient, since it is only done
once. Still, prover-efficiency is important, e.g., in a situation where a single server
has to create many arguments to different clients or other servers.

Many known zk-SNARKs are non-adaptive, meaning that the common ref-
erence string, CRS, can depend on the concrete instance of the language (e.g.,
the circuit in the case of Circuit-SAT). In an adaptive zk-SNARK, the CRS
is independent on the instance and thus can be reused many times. This dis-
tinction is important, since generation and distribution of the CRS must be

c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 185–206, 2016.
DOI: 10.1007/978-3-319-31517-1 10
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done securely. The most efficient known non-adaptive zk-SNARKs for NP-
complete languages from [17] are based on either Quadratic Arithmetic Pro-
grams (QAP, for arithmetic Circuit-SAT) or Quadratic Span Programs (QSP,
for Boolean Circuit-SAT). There, the prover computation is dominated by
Θ(n) cryptographic operations (see the full version [26] for a clarification on
cryptographic/non-cryptographic operations), where n is the number of the
gates. QAP, QSP [17,24] and other related approaches like SSP [13] have the
same asymptotic complexity.

QSP-based Circuit-SAT SNARK can be made adaptive by using univer-
sal circuits [33]. Then, the CRS depends on the construction of universal circuit
and not on the concrete input circuit itself. However, since the size of a universal
circuit is Θ(n log n), the prover computation in resulting adaptive zk-SNARKs
is Θ(n log2 n) non-cryptographic operations and Θ(n log n) cryptographic oper-
ations. (In the case of QAP-based arithmetic Circuit-SAT SNARK, one has to
use universal arithmetic circuits [30] that have an even larger size Θ(r4n), where
r is the degree of the polynomial computed by the arithmetic circuit. Thus, we
will mostly give a comparison to the QSP-based approach.)

Since Valiant’s universal circuits incur a large constant c = 19 in the Θ(·)
expression, a common approach [21,31] is to use universal circuits with the over-
head of Θ(log2 n) but with a smaller constant c = 1/2 in Θ(·). The prover com-
putation in the resulting adaptive zk-SNARKs is Θ(n log3 n) non-cryptographic
operations and Θ(n log2 n) cryptographic operations.1

Another important drawback of the QSP/QAP-based SNARKs is that they
use a circuit-dependent commitment scheme. To use the same input data in
multiple sub-SNARKs, one needs to construct a single large circuit that imple-
ments all sub-SNARKs, making the SNARK and the resulting new commitment
scheme more complicated. In particular, these SNARKs are not commit-and-
prove (CaP [9,20]) SNARKs. We recall that in CaP SNARKs, a commitment
scheme C is fixed first, and the statement consists of commitments of the witness
using C; see Sect. 2. Hence, a CaP commitment scheme is instance-independent.
In addition, one would like the commitment scheme to be language-independent,
enabling one to first commit to the data and only then to decide in what appli-
cations (e.g., verifiable computation of a later fixed function) to use it.

See Table 1 for a brief comparison of the efficiency of proposed adaptive
zk-SNARKs for NP-complete languages. Subset-Sum is here brought as an
example of a wider family of languages; it can be replaced everywhere say
with Partition or Knapsack, see the full version [26]. Here, N = r−1

3 (n) =
o(n22

√
2 log2 n), where r3(n) is the density of the largest progression-free set

in {1, . . . , n}. According to the current knowledge, r−1
3 (n) is comparable to

(or only slightly smaller than) n2 for n < 212; this makes all known CaP
SNARKs [15,19,23] arguably impractical unless n is really small. In all cases, the
verifier’s computation is dominated by either Θ(n) cryptographic or Θ(n log n)

1 Recently, [12] proposed an independent methodology to improve the prover’s com-
putational complexity in QAP-based arguments. However, [12] does not spell out
their achieved prover’s computational complexity.
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Table 1. Prover-efficiency of known adaptive zk-SNARKs for NP-complete languages.
Here, n is the number of the gates (in the case of Circuit-SAT) and the number of
the integers (in the case of Subset-Sum). Green background denotes the best known
asymptotic complexity of the concrete NP-complete language w.r.t. to the concrete
parameter. The solutions marked with * use proof bootstrapping from [12]

noitatupmocrevorPegaugnaLrepaP |CRS|
non-crypt. op. crypt. op.

Not CaP-s

QAP, QSP ( [14,19,27] ) Circuit-SAT Θ(n log2 n) Θ(n log n) Θ(n)

CaP-s

Gro10 ( [21]) Circuit-SAT Θ(n2) Θ(n2) Θ(n2)
Lip12 ( [26]) Circuit-SAT Θ(n2) Θ(N) Θ(N)
Lip14 + Lip12 ( [26,28])* Circuit-SAT Θ(N log2 n) Θ(N log n) Θ(N log n)
Lip14 + current paper ( [28])* Circuit-SAT Θ(n log2 n) Θ(n log n) Θ(n log n)
FLZ13 ( [16]) Subset-Sum Θ(N log n) Θ(N) Θ(N)
Current paper Subset-Sum Θ(n log n) Θ(n) Θ(n)

non-cryptographic operations (with the verifier’s online computation usually
being Θ(1)), and the communication consists of a small constant number of
group elements.2 Given all above, it is natural to ask the following question:

The Main Question of This Paper: Is it possible to construct adaptive CaP
zk-SNARKs for NP-complete languages where the prover computation is
dominated by a linear number of cryptographic operations?

We answer the “main question” positively by improving on Groth’s modular
approach [19]. Using the modular approach allows us to modularize the security
analysis, first proving the security of underlying building blocks (the product and
the shift SNARKs), and then composing them to construct master SNARKs for
even NP-complete languages. The security of master SNARKs follows easily from
the security of the basic SNARKs. We also use batch verification to speed up
verification of almost all known SNARKs.

All new SNARKs use the same commitment scheme, the interpolating com-
mitment scheme. Hence, one can reuse their input data to construct CaP zk-
SNARKs for different unrelated languages, chosen only after the commitment
was done. Thus, one can first commit to some data, and only later decide in which
application and to what end to use it. Importantly, by using CaP zk-SNARKs,
one can guarantee that all such applications use exactly the same data.

2 We emphasize that Circuit-SAT is not our focus; the lines corresponding to
Circuit-SAT are provided only for the sake of comparison. One can use proof
boot-strapping [12] to decrease the length of the resulting Circuit-SAT argument
from Θ(log n), as stated in [25], to Θ(1); we omit further discussion.
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The resulting SNARKs are not only commit-and-prove, but also very effi-
cient, and often more efficient than any previously known SNARKs. The new
CaP SNARKs have prover-computation dominated by Θ(n) cryptographic oper-
ations, with the constant in Θ(·) being reasonably small. Importantly, we
propose the most efficient known succinct range SNARK. Since the resulting zk-
SNARKs are sufficiently different from QAP-based zk-SNARKs, we hope that
our methodology by itself is of independent interest. Up to the current paper,
Groth’s modular approach has resulted in significantly less efficient zk-SNARKs
than the QSP/QAP-based approach.

In Sect. 3, we construct a new natural extractable trapdoor commitment
scheme (the interpolating commitment scheme). Here, commitment to a ∈ Z

n
p ,

where n is a power of 2, is a short garbled and randomized version g
La (χ)
1 (gχn−1

1 )r

of the Lagrange interpolating polynomial La(X) of a , for a random secret key
χ, together with a knowledge component. This commitment scheme is arguably
a very natural one, and in particular its design is not influenced by the desire to
tailor it to one concrete application. Nevertheless, as we will see, using it improves
the efficiency of many constructions while allowing to reuse many existing results.

The new CaP zk-SNARKs are based on the interpolating commitment
scheme and two CaP witness-indistinguishable SNARKs: a product SNARK
(given commitments to vectors a , b, c, it holds that ci = aibi; see [15,19,23]),
and a shift SNARK (given commitments to a , b, it holds that a is a coordinate-
wise shift of b; see [15]). One can construct an adaptive Circuit-SAT CaP
zk-SNARK from Θ(log n) product and shift SNARKs [19,25], or adaptive CaP
zk-SNARKs for NP-complete languages like Subset-Sum (and a similar CaP
range SNARK) by using a constant number of product and shift SNARKs [15].

In Sect. 4, we propose a CaP product SNARK, that is an argument of
knowledge under a computational and a knowledge (needed solely to achieve
extractability of the commitment scheme) assumption. Its prover computation
is dominated by Θ(n log n) non-cryptographic and Θ(n) cryptographic opera-
tions. This can be compared to r−1

3 (n) non-cryptographic operations in [15].
The speed-up is mainly due to the use of the interpolating commitment scheme.

In Sect. 5, we propose a variant of the CaP shift SNARK of [15], secure
when combined with the interpolating commitment scheme. We prove that this
SNARK is an adaptive argument of knowledge under a computational and a
knowledge assumption. It only requires the prover to perform Θ(n) cryptographic
and non-cryptographic operations.

Product and shift SNARKs are already very powerful by itself. E.g., a prover
can commit to her input vector a . Then, after agreeing with the verifier on
a concrete application, she can commit to a different yet related input vector
(that say consists of certain permuted subset of a ’s coefficients), and then use
the basic SNARKs to prove that this was done correctly. Here, she may use the
permutation SNARK [25] that consists of O(log n) product and shift SNARKs.
Finally, she can use another, application-specific, SNARK (e.g., a range SNARK)
to prove that the new committed input vector has been correctly formed.
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In Sect. 6, we describe a modular adaptive CaP zk-SNARK, motivated
by [15], for the NP-complete language, Subset-Sum. (Subset-Sum was chosen
by us mainly due to the simplicity of the SNARK; the rest of the paper considers
more applications.) This SNARK consists of three commitments, one application
of the shift SNARK, and three applications of the product SNARK. It is a zk-
SNARK given that the commitment scheme, the shift SNARK, and the product
SNARK are secure. Its prover computation is strongly dominated by Θ(n) cryp-
tographic operations, where n is the instance size, the number of integers. More
precisely, the prover has to perform only nine (≈n)-wide multi-exponentiations,
which makes the SNARK efficient not only asymptotically (to compare, the size
of Valiant’s arithmetic circuit has constant 19, and this constant has to be mul-
tiplied by the overhead of non-adaptive QSP/QAP/SSP-based solutions). Thus,
we answer positively to the stated main question of the current paper. More-
over, the prover computation is highly parallelizable, while the online verifier
computation is dominated by 17 pairings (this number will be decreased later).

In Sect. 7, we propose a new CaP range zk-SNARK that the committed value
belongs to a range [L ..H]. This SNARK looks very similar to the Subset-Sum

SNARK, but with the integer set S of the Subset-Sum language depend-
ing solely on the range length. Since here the prover has a committed input,
the simulation of the range SNARK is slightly more complicated than of the
Subset-Sum SNARK. Its prover-computation is similarly dominated by Θ(n)
cryptographic operations, where this time n := �log2(H − L)�. Differently from
the Subset-Sum SNARK, the verifier computation is dominated only by Θ(1)
cryptographic operations, more precisely, by 19 pairings (also this number will
be decreased later). Importantly, this SNARK is computationally more efficient
than any of the existing succinct range SNARKs either in the standard model
(i.e., random oracle-less) or in the random oracle model. E.g., the prover compu-
tation in [22] is Θ(n2) under the Extended Riemann Hypothesis, and the prover
computation in [15] is Θ(r−3(n) log r−3(n)). It is also significantly simpler than
the range SNARKs of [11,15], mostly since we do not have to consider different
trade-offs between computation and communication.

In the full version [26], we outline how to use the new basic SNARKs
to construct efficient zk-SNARKs for several other NP-complete languages
like Boolean and arithmetic Circuit-SAT, Two-Processor Scheduling,
Subset-Product, Partition, and Knapsack [16]. Table 1 includes the
complexity of Subset-Sum and Circuit-SAT, the complexity of most other
SNARKs is similar to that of Subset-Sum zk-SNARK. It is an interesting open
problem why some NP-complete languages like Subset-Sum have more effi-
cient zk-SNARKs in the modular approach (equivalently, why their verification
can be performed more efficiently in the parallel machine model that consists
of Hadamard product and shift) than languages like Circuit-SAT. We note
that [14] used recently some of the ideas from the current paper to construct an
efficient shuffle argument. However, they did not use product or shift arguments.

In the full version [26], we show that by using batch-verification [2], one can
decrease the verifier’s computation of all presented SNARKs. In particular, one can
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decrease the verifier’s computation in the new Range SNARK from 19 pairings to 8
pairings, one 4-way multi-exponentiation in G1, two 3-way multi-exponentiations
in G1, one 2-way multi-exponentiation in G1, three exponentiations in G1, and
one 3-way multi-exponentiation in G2. Since one exponentiation is much cheaper
than one pairing [8] and one m-way multi-exponentiation is much cheaper than m
exponentiations [29,32], this results in a significant win for the verifier. A similar
technique can be used to also speed up other SNARKs; a good example here is the
Circuit-SAT argument from [25] that uses Θ(log n) product and shift arguments.
To compare, inPinocchio [28] andGeppetto [12], the verifier has to execute 11 pair-
ings; however, batch-verification can also be used to decrease this to 8 pairings and
a small number of (multi-)exponentiations.

Finally, all resulting SNARKs work on data that has been committed to by
using the interpolating commitment scheme. This means that one can repeatedly
reuse committed data to compose different zk-SNARKs (e.g., to show that we
know a satisfying input to a circuit, where the first coefficient belongs to a certain
range). This is not possible with the known QSP/QAP-based zk-SNARKs where
one would have to construct a single circuit of possibly considerable size, say n′.
Moreover, in the QSP/QAP-based SNARKs, one has to commit to the vector,
the length of which is equal to the total length of the input and witness (e.g.,
n′ is the number of wires in the case of Circuit-SAT). By using a modular
solution, one can instead execute several zk-SNARKs with smaller values of the
input and witness size; this can make the SNARK more prover-efficient since the
number of non-cryptographic operations is superlinear. This emphasizes another
benefit of the modular approach: one can choose the value n, the length of the
vectors, accordingly to the desired tradeoff, so that larger n results in faster
verifier computation, while smaller n results in faster prover computation. We
are not aware of such a tradeoff in the case of the QSP/QAP-based approach.

We provide some additional discussion (about the relation between n and
then input length, and about possible QSP/QAP-based solutions) in the full
version [26]. Due to the lack of space, many proofs and details are only given
in the full version [26]. We note that an early version of this paper, [26], was
published in May 2014 and thus predates [12]. The published version differs
from this early version mainly by exposition, and the use of proof bootstrapping
(from [12]) and batching.

2 Preliminaries

By default, all vectors have dimension n. Let a ◦ b denote the Hadamard (i.e.,
element-wise) product of two vectors, with (a ◦ b)i = aibi. We say that a is
a shift-right-by-z of b, a = b � z, iff (an, . . . , a1) = (0, . . . , 0, bn, . . . , b1+z).
For a tuple of polynomials F ⊆ Zp[X,Y1, . . . , Ym−1], define YmF = (Ym ·
f(X,Y1, . . . , Ym−1))f∈F ⊆ Zp[X,Y1, . . . , Ym]. For a tuple of polynomials F that
have the same domain, denote hF(a) := (hf(a))f∈F . For a group G, let G

∗ be the
set of its invertible elements. Since the direct product G1 × . . . × Gm of groups
is also a group, we use notation like (g1, g2)c = (gc

1, g
c
2) ∈ G1 × G2 without
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prior definition. Let κ be the security parameter. We denote f(κ) ≈κ g(κ) if
|f(κ) − g(κ)| is negligible in κ.

On input 1κ, a bilinear map generator BP returns gk = (p, G1, G2, GT , ê),
where G1, G2 and GT are three multiplicative cyclic groups of prime order p (with
log p = Ω(κ)), and ê is an efficient bilinear map ê : G1 × G2 → GT that satisfies
in particular the following two properties, where g1 (resp., g2) is an arbitrary
generator of G1 (resp., G2): (i) ê(g1, g2) �= 1, and (ii) ê(ga

1 , gb
2) = ê(g1, g2)ab.

Thus, if ê(ga
1 , gb

2) = ê(gc
1, g

d
2) then ab ≡ cd (mod p). We also give BP another

input, n (intuitively, the input length), and allow p to depend on n. We assume
that all algorithms that handle group elements verify by default that their inputs
belong to corresponding groups and reject if they do not. In the case of many
practically relevant pairings, arithmetic in (say) G1 is considerably cheaper than
in G2; hence, we count separately exponentiations in both groups.

For κ = 128, the current recommendation is to use an optimal (asymmetric)
Ate pairing over Barreto-Naehrig curves [1]. In that case, at security level of κ =
128, an element of G1/G2/GT can be represented in respectively 256/512/3072
bits. To speed up interpolation, we will additionally need the existence of the
n-th, where n is a power of 2, primitive root of unity modulo p (under this
condition, one can interpolate in time Θ(n log n), otherwise, interpolation takes
time Θ(n log2 n)). For this, it suffices that (n + 1) | (p − 1) (recall that p is the
elliptic curve group order). Fortunately, given κ and a practically relevant value
of n, one can easily find a Barreto-Naehrig curve such that (n + 1) | (p − 1)
holds; such an observation was made also in [5]. For example, if κ = 128 and
n = 210, one can use Algorithm 1 of [1] to find an elliptic curve group of prime
order N(x0) over a finite field of prime order P (−x0) for x0 = 1753449050, where
P (x) = 36x4+36x3+24x2+6x+1, T (x) = 6x2+1, and N(x) = P (x)+1−T (x).
One can then use the curve E : y2 = x3 + 6.

In proof bootstrapping [12], one needs an additional elliptic curve group Ẽ
over a finite field of order N(x0) (see [12] for additional details). Such elliptic
curve group can be found by using the Cocks-Pinch method; note that Ẽ has
somewhat less efficient arithmetic than E.

The security of the new commitment scheme and of the new SNARKs
depends on the following q-type assumptions, variants of which have been used in
many previous papers. The assumptions are parameterized but non-interactive
in the sense that q is related to the parameters of the language (most generally,
to the input length) and not to the number of the adversarial queries. All known
(to us) adaptive zk-SNARKs are based on q-type assumptions about BP.

Let d(n) ∈ poly(n) be a function. Then, BP is

– d(n)-PDL (Power Discrete Logarithm) secure if for any n ∈ poly(κ) and any
non-uniform probabilistic polynomial-time (NUPPT) adversary A,Pr[gk ←
BP(1κ, n), (g1, g2, χ) ←r G

∗
1 × G

∗
2 × Zp : A(gk; ((g1, g2)χi

)d(n)
i=0 ) = χ] ≈κ 0.

– n-TSDH (Target Strong Diffie-Hellman) secure if for any n ∈ poly(κ) and
any NUPPT adversary A,Pr[gk ← BP(1κ, n), (g1, g2, χ) ←r G

∗
1 × G

∗
2 × Zp :

A(gk; ((g1, g2)χi

)n
i=0) = (r, ê(g1, g2)1/(χ−r))] ≈κ 0.
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For algorithms A and XA, we write (y; y′) ← (A||XA)(χ) if A on input χ
outputs y, and XA on the same input (including the random tape of A) out-
puts y′. We will need knowledge assumptions w.r.t. several knowledge secrets γi.
Let m be the number of different knowledge secrets in any concrete SNARK.
Let F = (Pi)n

i=0 be a tuple of univariate polynomials, and G1 (resp., G2) be a
tuple of univariate (resp., m-variate) polynomials. Let i ∈ [1 ..m]. Then, BP is
(F ,G1,G2, i)-PKE (Power Knowledge of Exponent) secure if for any NUPPT
adversary A there exists an NUPPT extractor XA, such that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

gk ← BP(1κ, n), (g1, g2, χ,γ) ←r G
∗
1 × G

∗
2 × Zp × Z

m
p ,

γ−i ← (γ1, . . . , γi−1, γi+1, . . . , γm), aux ← (gG1(χ)
1 , g

G2(χ,γ−i)

2 ),

(h1, h2; (ai)n
i=0) ← (A||XA)(gk; (g1, g

γi

2 )F(χ), aux) :

ê(h1, g
γi

2 ) = ê(g1, h2) ∧ h1 �= g
∑n

i=0 aiPi(χ)
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≈κ 0.

Here, aux can be seen as the common auxiliary input to A and XA that
is generated by using benign auxiliary input generation. If F = (Xi)d

i=0 for
some d = d(n), then we replace the first argument in (F , . . .)-PKE with d. If
m = 1, then we omit the last argument i in (F , . . . , i)-PKE. While knowledge
assumptions are non-falsifiable, we recall that non-falsifiable assumptions are
needed to design succincts SNARKs for interesting languages [18].

By generalizing [7,19,23], one can show that the TSDH, PDL, and PKE
assumptions hold in the generic bilinear group model.

Within this paper, m ≤ 2, and hence we denote γ1 just by γ, and γ2 by δ.
An extractable trapdoor commitment scheme in the CRS model consists of

two efficient algorithms Gcom (that outputs a CRS ck and a trapdoor) and, (that,
given ck, a message m and a randomizer r, outputs a commitment Cck(m; r)),
and must satisfy the following security properties.

Computational Binding: without access to the trapdoor, it is intractable to
open a commitment to two different messages.

Trapdoor: given access to the original message, the randomizer and the trap-
door, one can open the commitment to any other message.

Perfect Hiding: commitments of any two messages have the same distribution.
Extractability: given access to the CRS, the commitment, and the random coins

of the committer, one can open the commitment to the committed message.

See, e.g., [19] for formal definitions. In the context of the current paper, the
message is a vector from Z

n
p . We denote the randomizer space by R.

Let R = {(u,w)} be an efficiently verifiable relation with |w| = poly(|u|).
Here, u is a statement, and w is a witness. Let L = {u : ∃w, (u,w) ∈ R} be an
NP-language. Let n = |u| be the input length. For fixed n, we have a relation
Rn and a language Ln.

Following [9,20], we will define commit-and-prove (CaP) argument systems.
Intuitively, a CaP non-interactive zero knowledge argument system for R allows
to create a common reference string (CRS) crs, commit to some values wi
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(say, ui = Cck(wi; ri), where ck is a part of crs), and then prove that a sub-
set u := (uij

, wij
, rij

)�m(n)
j=1 (for publicly known indices ij) satisfies that uij

is a
commitment of wij

with randomizer rij
, and that (wij

) ∈ R.
Differently from most of the previous work (but see also [12]), our CaP argu-

ment systems will use computationally binding trapdoor commitment schemes.
This means that without their openings, commitments ui = Cck(ai; ri) them-
selves do not define a valid relation, since ui can be a commitment to any a′

i,
given a suitable r′

i. Rather, we define a new relation Rck := {(u ,w , r) : (∀i, ui =
Cck(wi; ri)) ∧ w ∈ R}, and construct argument systems for Rck.

Within this subsubsection, we let vectors u , w , and r be of dimension 	m(n)
for some polynomial 	m(n). However, we allow committed messages wi them-
selves to be vectors of dimension n. Thus, 	m(n) is usually very small. In some
argument systems (like the Subset-Sum SNARK in Sect. 6), also the argument
will include some commitments. In such cases, technically speaking, w and r
are of higher dimension than u . To simplify notation, we will ignore this issue.

A commit-and-prove non-interactive zero-knowledge argument system [9,
20] Π for R consists of an (R-independent) trapdoor commitment scheme
Γ = (Gcom,C) and of a non-interactive zero-knowledge argument system
(G,P,V), that are combined as follows: 1. the CRS generator G (that, in par-
ticular, invokes (ck, tdC) ← Gcom(1κ, n)) outputs (crs = (crsp, crsv), td) ←
G(1κ, n), where both crsp and crsv include ck, and td includes tdC. 2. the
prover P produces an argument π, π ← P(crsp;u ;w , r), where presumably
ui = Cck(wi; ri). 3. the verifier V, V(crsv;u , π), outputs either 1 (accept)
or 0 (reject). [(i)] Now, Π is perfectly complete, if for all n = poly(κ),
Pr [(crs, td) ← G(1κ, n), (u ,w , r) ← Rck,n : V(crsv;u ,P(crsp;u ,w , r)) = 1] = 1.

Since Γ is computationally binding and trapdoor (and hence ui can be com-
mitments to any messages), soundness of the CaP argument systems only makes
sense together with the argument of knowledge property.

Let b(X) be a non-negative polynomial. Π is a (b-bounded-auxiliary-input)
argument of knowledge for R, if for all n = poly(κ) and every NUPPT A,
there exists an NUPPT extractor XA, such that for every auxiliary input
aux ∈ {0, 1}b(κ),Pr[(crs, td) ← G(1κ, n), ((u , π);w , r) ← (A||XA)(crs; aux) :
(u,w , r) �∈ Rck,n ∧ V(crsv;u , π) = 1] ≈κ 0. As in the definition of PKE, we can
restrict the definition of an argument of knowledge to benign auxiliary informa-
tion generators, where aux is known to come from; we omit further discussion.

Π is perfectly witness-indistinguishable, if for all n = poly(κ), it holds that
if (crs, td) ∈ G(1κ, n) and ((u ;w , r), (u ;w ′, r ′)) ∈ R2

ck,n with ri, r
′
i ←r R, then

the distributions P(crsp;u ;w , r) and P(crsp;u ;w ′, r ′) are equal. Note that a
witness-indistinguishable argument system does not have to have a trapdoor.

Π is perfectly composable zero-knowledge, if there exists a probabilistic
poly-time simulator S, s.t. for all stateful NUPPT adversaries A and n =
poly(κ),Pr(crs, td) ← G(1κ, n), (u ,w , r) ← A(crs), π ← P(crsp;u ;w , r) :
(u ,w , r) ∈ Rck,n ∧ A(π) = 1] = Pr[(crs, td) ← G(1κ, n), (u ,w , r) ← A(crs), π ←
S(crs;u , td) : (u ,w , r) ∈ Rck,n ∧ A(π) = 1]. Here, the prover and the simulator
use the same CRS, and thus we have same-string zero knowledge. Same-string
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statistical zero knowledge allows to use the same CRS an unbounded number of
times.

An argument system that satisfies above requirements is known as adaptive.
An argument system where the CRS depends on the statement is often called
non-adaptive. It is not surprising that non-adaptive SNARKs can be much more
efficient than adaptive SNARKs.

A non-interactive argument system is succinct if the output length of P and
the running time of V are polylogarithmic in the P’s input length (and polynomial
in the security parameter). A succinct non-interactive argument of knowledge is
usually called SNARK. A zero-knowledge SNARK is abbreviated to zk-SNARK.

3 New Extractable Trapdoor Commitment Scheme

We now define a new extractable trapdoor commitment scheme. It uses the fol-
lowing polynomials. Assume n is a power of two, and let ω be the n-th primitive
root of unity modulo p. Then,

– Z(X) :=
∏n

i=1(X −ωi−1) = Xn −1 is the unique degree n monic polynomial,
such that Z(ωi−1) = 0 for all i ∈ [1 .. n].

– 	i(X) :=
∏

j �=i((X −ωj−1)/(ωi−1−ωj−1)), the ith Lagrange basis polynomial,
is the unique degree n−1 polynomial, such that 	i(ωi−1) = 1 and 	i(ωj−1) = 0
for j �= i.

Clearly, La(X) =
∑n

i=1 ai	i(X) is the interpolating polynomial of a at points
ωi−1, with La(ωi−1) = ai, and can thus be computed by executing an inverse
Fast Fourier Transform. Moreover, (	i(ωj−1))n

j=1 = e i (the ith unit vector) and
(Z(ωj−1))n

j=1 = 0n. Thus, Z(X) and (	i(X))n
i=1 are n + 1 linearly independent

degree ≤ n polynomials, and hence FC := (Z(X), (	i(X))n
i=1) is a basis of such

polynomials. Clearly, Z−1(0) = {j : Z(j) = 0} = {ωi−1}n
i=1.

Definition 1 (Interpolating Commitment Scheme). Let n = poly(κ), n >
0, be a power of two. First, Gcom(1κ, n) sets gk ← BP(1κ, n), picks g1 ←r G

∗
1,

g2 ←r G
∗
2, and then outputs the CRS ck ← (gk; (gf(χ)

1 , g
γf(χ)
2 )f∈FC

) for χ ←r

Zp\Z−1(0) and γ ←r Z
∗
p. The trapdoor is equal to χ.

The commitment of a ∈ Z
n
p , given a randomizer r ←r Zp, is

Cck(a; r) := (gZ(χ)
1 , g

γZ(χ)
2 )r · ∏n

i=1(g
�i(χ)
1 , g

γ�i(χ)
2 )ai ∈ G1 × G2, i.e., Cck(a; r) :=

(g1, g
γ
2 )r(χn−1)+La(χ). The validity of a commitment (A1, A

γ
2) is checked by ver-

ifying that ê(A1, g
γZ(χ)
2 ) = ê(gZ(χ)

1 , Aγ
2). To open a commitment, the committer

sends (a, r) to the verifier.

The condition Z(χ) �= 0 is needed in Theorem 1 to get perfect hiding and the
trapdoor property. The condition γ �= 0 is only needed in Theorem 5 to get
perfect zero knowledge. Also, (a function of) γ is a part of the trapdoor in the
range SNARK of Sect. 7.

Clearly, logg1
A1 = loggγ

2
Aγ

2 = rZ(χ) +
∑n

i=1 ai	i(χ). The second element,
Aγ

2 , of the commitment is known as the knowledge component.
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Theorem 1. The interpolating commitment scheme is perfectly hiding and trap-
door. If BP is n-PDL secure, then it is computationally binding. If BP is (n, ∅, ∅)-
PKE secure, then it is extractable.

Proof. Perfect Hiding: since Z(χ) �= 0, then rZ(χ) (and thus also logg1
A1)

is uniformly random in Zp. Hence, (A1, A
γ
2) is a uniformly random element of

the multiplicative subgroup 〈(g1, gγ
2 )〉 ⊂ G

∗
1 ×G

∗
2 generated by (g1, g

γ
2 ), indepen-

dently of the committed value. Trapdoor: given χ, a , r, a∗, and c = Cck(a ; r),
we compute r∗ s.t. (r∗ − r)Z(χ)+

∑n
i=1(a

∗
i − ai)	i(χ) = 0. This is possible since

Z(χ) �= 0. Clearly, c = Cck(a∗; r∗). Extractability: clear from the statement.
Computational Binding: assume that there exists an adversary AC that

outputs (a , ra) and (b, rb) with (a , ra) �= (b, rb), s.t. the polynomial d(X) :=
(raZ(X) +

∑n
i=1 ai	i(X)) − (rbZ(X) +

∑n
i=1 bi	i(X)) has a root at χ.

Construct now the following adversary Apdl that breaks the PDL assumption.
Given an n-PDL challenge, since FC consists of degree ≤ n polynomials, Apdl

can compute a valid ck from (a distribution that is statistically close to) the
correct distribution. He sends ck to AC. If AC is successful, then d(X) ∈ Zp[X]
is a non-trivial degree-≤ n polynomial. Since the coefficients of d are known,
Apdl can use an efficient polynomial factorization algorithm to compute all roots
ri of d(X). One of these roots has to be equal to χ. Apdl can establish which
one by comparing each (say) g

�1(ri)
1 to the element g

�1(χ)
1 given in the CRS.

Clearly, g
�1(ri)
1 is computed from g1 (which can be computed, given the CRS,

since 1 ∈ span(FC)), the coefficients of 	1(X), and ri. Apdl has the same success
probability as AC, while her running time is dominated by that of AC plus the
time to factor a degree-≤ n polynomial. ��

Theorem 1 also holds when instead of Z(X) and 	i(X) one uses any n + 1
linearly independent low-degree polynomials (say) P0(X) and Pi(X). Given the
statement of Theorem 1, this choice of the concrete polynomials is very natural:
	i(X) interpolate linearly independent vectors (and thus are linearly indepen-
dent; in fact, they constitute a basis), and the choice to interpolate unit vectors
is the conceptually clearest way of choosing Pi(X). Another natural choice of
independent polynomials is to set Pi(X) = Xi as in [19], but that choice has
resulted in much less efficient (CaP) SNARKs.

In the full version [26] we show how to use batch-verification techniques to
speed up simultaneous validity verification of many commitments.

4 New Product SNARK

Assume the use of the interpolating commitment scheme. In a CaP product
SNARK [19], the prover aims to convince the verifier that she knows how to
open three commitments (A,Aγ), (B,Bγ), and (C,Cγ) to vectors a , b and c
(together with the used randomizers), such that a ◦ b = c. Thus,

R×
ck,n :=

⎧
⎪⎨

⎪⎩

(u×, w×, r×) : u× = ((A1, A
γ
2), (B1, B

γ
2 ), (C1, C

γ
2 ))∧

w× = (a , b, c) ∧ r× = (ra, rb, rc) ∧ (A1, A
γ
2) = Cck(a ; ra)∧

(B1, B
γ
2 ) = Cck(b; rb) ∧ (C1, C

γ
2 ) = Cck(c; rc) ∧ a ◦ b = c

⎫
⎪⎬

⎪⎭
.
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Next, we propose an efficient CaP product SNARK. For this, we need Lemma 1.

Lemma 1. Let A(X), B(X) and C(X) be polynomials with A(ωi−1) = ai,
B(ωi−1) = bi and C(ωi−1) = ci, ∀i ∈ [1 .. n]. Let Q(X) = A(X)B(X) − C(X).
Assume that (i) A(X), B(X), C(X) ∈ span{	i(X)}n

i=1, and (ii) there exists a
degree n − 2 polynomial π(X), s.t. π(X) = Q(X)/Z(X). Then a ◦ b = c.

Proof. From (i) it follows that A(X) = La(X), B(X) = Lb(X), and C(X) =
Lc(X), and thus Q(ωi−1) = aibi − ci for all i ∈ [1 .. n]. But (ii) iff Z(X) | Q(X),
which holds iff Q(X) evaluates to 0 at all n values ωi−1. Thus, a ◦b = c. Finally,
if (i) holds then deg Q(X) = 2n − 2 and thus deg π(X) = n − 2. ��

If privacy and succinctness are not needed, one can think of the product argu-
ment being equal to π(X). We achieve privacy by picking ra, rb, rc ←r Zp, and
defining Qwi(X) := (La(X) + raZ(X)) (Lb(X) + rbZ(X))−(Lc(X) + rcZ(X)).
Here, the new addends of type raZ(X) guarantee hiding. On the other hand,
Qwi(X) remains divisible by Z(X) iff c = a ◦ b. Thus, a ◦ b = c iff

(i’) Qwi(X) can be expressed as Qwi(X) = A(X)B(X) − C(X) for some poly-
nomials A(X), B(X) and C(X) that belong to the span of FC, and

(ii’) there exists a polynomial πwi(X), such that

πwi(X) = Qwi(X)/Z(X). (1)

The degree of Qwi(X) is 2n, thus, if πwi(X) exists, then it has degree n.

However, |πwi(X)| is not sublinear in n. To minimize communication, we let
the prover transfer a “garbled” evaluation of πwi(X) at a random secret point χ.
More precisely, the prover computes π× := g

πwi(χ)
1 , using the values gχi

1 (given
in the CRS) and the coefficients πi of πwi(X) =

∑n
i=0 πiX

i, as follows:

π× := g
πwi(χ)
1 ←

n∏

i=0

(gχi

1 )πi . (2)

Similarly, instead of (say) La(X) + raZ(X), the verifier has the succinct inter-
polating commitment Cck(a ; ra) = (g1, g

γ
2 )La (χ)+raZ(χ) of a .

We now give a full description of the new product SNARK Π×, given the
interpolating commitment scheme (Gcom,C) and the following tuple of algo-
rithms, (G×,P×,V×). Note that Cck(1n ; 0) = (g1, g

γ
2 ).

CRS Generation: G×(1κ, n): Let gk ← BP(1κ), (g1, g2, χ, γ) ←r G
∗
1 × G

∗
2 × Z

2
p

with Z(χ) �= 0 and γ �= 0. Let crsp = ck ← (gk; (g1, g
γ
2 )FC(χ)) and crsv ←

(gk; gγZ(χ)
2 ). Output crs× = (crsp, crsv).

Common Input: u× = ((A1, A
γ
2), (B1, B

γ
2 ), (C1, C

γ
2 )).

Proving: P×(crsp;u×;w× = (a , b, c), r× = (ra, rb, rc)): Compute πwi(X) =∑n
i=0 πiX

i as in Eq. (1) and π× as in Eq. (2). Output π×.
Verification: V×(crsv;u×;π×): accept if ê(A1, B

γ
2 ) = ê(g1, C

γ
2 ) · ê(π×, g

γZ(χ)
2 ).
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Since one can recompute it from ck, inclusion of g
γZ(χ)
2 in the CRS is only needed

to speed up the verification. Here as in the shift SNARK of Sect. 5, validity of
the commitments will be verified in the master SNARK. This is since the master
SNARKs use some of the commitments in several sub-SNARKs, while it suffices
to verify the validity of every commitment only once.

To obtain an argument of knowledge, we use knowledge assumptions in all
following proofs. This SNARK is not zero-knowledge since the possible simu-
lator gets three commitments as inputs but not their openings; to create an
accepting argument the simulator must at least know how to open the commit-
ment (A1B1/C1, A

γ
2Bγ

2 /Cγ
2 ) to a ◦b−c. It is witness-indistinguishable, and this

suffices for the Subset-Sum and other master SNARKs to be zero-knowledge.

Theorem 2. Π× is perfectly complete and witness-indistinguishable. If the
input consists of valid commitments, and BP is n-TSDH and (n, ∅, ∅)-PKE
secure, then Π× is an (Θ(n)-bounded-auxiliary-input) adaptive argument of
knowledge.

Proof. Perfect completeness: follows from the discussion in the beginning
of this section. Perfect witness-indistinguishability: since the argument
π× that satisfies the verification equations is unique, all witnesses result in the
same argument, and thus this argument is witness-indistinguishable.

Argument of knowledge: Assume that Aaok is an adversary that, given
crs×, returns (u×, π) such that V×(crsv;u×, π) = 1. Assume that the PKE
assumption holds, and let XA be the extractor that returns openings of the
commitments in u×, i.e., (a , ra), (b, rb), and (c, rc). We now claim that XA is
also the extractor needed to achieve the argument of knowledge property.

Assume that this is not the case. We construct an adversary Atsdh against
n-TSDH. Given an n-TSDH challenge ch = (gk, ((g1, g2)χi

)n
i=0), Atsdh first gen-

erates γ ←r Z
∗
p, and then computes (this is possible since FC consists of degree

≤ n polynomials) and sends crs× to Aaok. Assume (Aaok||XA)(crs×) returns
((u× = ((A1, A

γ
2), (B1, B

γ
2 ), (C1, C

γ
2 )), π), (w× = (a , b, c), r× = (ra, rb, rC))),

s.t. ui = Cck(wi; ri) but (u×, w×, r×) �∈ R×
ck,n. Since the openings are correct,

a ◦ b �= c but π is accepting. According to Lemma 1, thus Z(X) � Qwi(X).
Since Z(X) � Qwi(X), then for some i ∈ [1 .. n], (X − ωi−1) �

Qwi(X). Write Qwi(X) = q(X)(X − ωi−1) + r for r ∈ Z
∗
p. Clearly,

deg q(X) ≤ 2n − 1. Moreover, we write q(X) = q1(X)Z(X) +
q2(X) with deg qi(X) ≤ n − 1. Since the verification succeeds,
ê(g1, g

γ
2 )Qwi(χ) = ê(π×, g

γZ(χ)
2 ), or ê(g1, g

γ
2 )q(χ)(χ−ωi−1)+r = ê(π×, g

γZ(χ)
2 ),

or ê(g1, g
γ
2 )q(χ)+r/(χ−ωi−1) = ê(π×, g

γZ(χ)/(χ−ωi−1)
2 ), or ê(g1, g

γ
2 )1/(χ−ωi−1) =

(ê(π×, g
γZ(χ)/(χ−ωi−1)
2 )/ê(gq(χ)

1 , gγ
2 ))r−1

.
Now, ê(gq(χ)

1 , gγ
2 ) = ê(gq1(χ)

1 , g
γZ(χ)
2 )ê(gq2(χ)

1 , gγ
2 ), and thus it can be efficiently

computed from ((gχi

1 )n−1
i=0 , gγ

2 , g
γZ(χ)
2 ) ⊂ crs. Moreover, Z(X)/(X − ωi−1) =

	i(X) · ∏
j �=i(ω

i−1 − ωj−1), and thus g
γZ(χ)/(χ−ωi−1)
2 can be computed from

g
γ�i(χ)
2 by using generic group operations. Hence, ê(g1, g

γ
2 )1/(χ−ωi−1) can be
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computed from ((gχi

1 )n−1
i=0 , gγ

2 , g
γZ(χ)
2 , (gγ�i(χ)

2 )n
i=1) (that can be computed from

ch), by using generic group operations. Thus, the adversary has computed
(r = ωi−1, ê(g1, g

γ
2 )1/(χ−r)), for r �= χ. Since Atsdh knows γ �= 0, he can finally

compute (r, ê(g1, g2)1/(χ−r)), and thus break the n-TSDH assumption.
Hence, the argument of knowledge property follows. ��
We remark that the product SNARK (but not the shift SNARK of Sect. 5)

can be seen as a QAP-based SNARK [17], namely for the relation a ◦ b −
c. (Constructing a QAP-based shift SNARK is possible, but results in using
different polynomials and thus in a different commitment scheme.)

The prover computation is dominated by the following: (i) one (n + 1)-wide
multi-exponentiation in G1. By using the Pippenger’s multi-exponentiation algo-
rithm for large n this means approximately n+1 bilinear-group multiplications,
see [29]. For small values of n, one can use the algorithm by Straus [32]; then one
has to execute Θ(n/ log n) bilinear-group exponentiations. (ii) three polynomial
interpolations, one polynomial multiplication, and one polynomial division to
compute the coefficients of the polynomial πwi(X). Since polynomial division
can be implemented as 2 polynomial multiplications (by using pre-computation
and storing some extra information in the CRS, [24]), this part is dominated by
two inverse FFT-s and three polynomial multiplications.

The verifier computation is dominated by 3 pairings. (We will count the cost
of validity verifications separately in the master SNARKs.) In the special case
C1 = A1 (e.g., in the Boolean SNARK, where we need to prove that a ◦a = a , or
in the restriction SNARK [19], where we need to prove that a ◦b = a for a public
Boolean vector b), the verification equation can be simplified to ê(A1, B

γ
2 /gγ

2 ) =
ê(π×, g

γZ(χ)
2 ), which saves one more pairing. In the full version [26], we will

describe a batch-verification technique that allows to speed up simultaneous
verification of several product SNARKs.

Excluding gk, the prover CRS together with ck consists of 2(n + 1) group
elements, while the verifier CRS consists of 1 group element. The CRS can be
computed in time Θ(n), by using an algorithm from [3].

5 New Shift SNARK

In a shift-right-by-z SNARK [15] (shift SNARK, for short), the prover aims to
convince the verifier that for 2 commitments (A,Aγ) and (B,Bγ), he knows how
to open them as (A,Aγ) = Cck(a ; ra) and (B,Bγ) = Cck(b; rb), s.t. a = b � z.
I.e., ai = bi+z for i ∈ [1 .. n − z] and ai = 0 for i ∈ [n − z + 1 .. n]. Thus,

Rrsft
ck,n :=

⎧
⎪⎨

⎪⎩

(u×, w×, r×) : u× = ((A1, A
γ
2), (B1, B

γ
2 )) ∧ w× = (a , b)∧

r× = (ra, rb) ∧ (A1, A
γ
2) = Cck(a ; ra)∧

(B1, B
γ
2 ) = Cck(b; rb) ∧ (a = b � z)

⎫
⎪⎬

⎪⎭
.

An efficient shift SNARK was described in [15]. We now reconstruct this
SNARK so that it can be used together with the interpolating commitment
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scheme. We can do it since the shift SNARK of [15] is almost independent of
the commitment scheme. We also slightly optimize the resulting SNARK; in
particular, the verifier has to execute one less pairing compared to [15].

Our strategy of constructing a shift SNARK follows the strategy of [19,23].
We start with a concrete verification equation that also contains the argument,
that we denote by π1. We write the discrete logarithm of π1 (that follows from
this equation) as Fπ(χ) + Fcon(χ), where χ is a secret key, and Fπ(X) and
Fcon(X) are two polynomials. The first polynomial, Fπ(X), is identically zero
iff the prover is honest. Since the spans of certain two polynomial sets do not
intersect, this results in an efficient adaptive shift SNARK that is an argument
of knowledge under (two) PKE assumptions.

Now, for a non-zero polynomial Z∗(X) to be defined later, consider the verifi-
cation equation ê(A1, g

γZ∗(χ)
2 )/ê(B1π1, g

γ
2 ) = 1 (due to the properties of pairing,

this is equivalent to verifying that π1 = A
Z∗(χ)
1 /B1), with (A1, A

γ
2) and (B1, B

γ
2 )

being interpolating commitments to a and b, and π1 = g
π(χ)
1 for some polynomial

π(X). Denote r(X) := (raZ∗(X) − rb)Z(X). Taking a discrete logarithm of the
verification equation, we get that π(X) = (raZ(X) +

∑n
i=1 ai	i(X)) Z∗(X) −

(rbZ(X) +
∑n

i=1 bi	i(X)) = Z∗(X)
∑n

i=1 ai	i(X) − ∑n
i=1 bi	i(X) + r(X) =(∑n−z

i=1 ai	i(X) +
∑n

i=n−z+1 ai	i(X)
)

Z∗(X) + r(X) − ∑n−z
i=1 bi+z	i+z(X) −

∑z
i=1 bi	i(X). Hence, π(X) = Fπ(X) + Fcon(X), where

Fπ(X) =
(∑n−z

i=1 (ai − bi+z)	i(X) +
∑n

i=n−z+1 ai	i(X)
)

· Z∗(X),

Fcon(X) =
(∑n

i=z+1 bi(	i−z(X)Z∗(X) − 	i(X)) − ∑z
i=1 bi	i(X)

)
+ r(X).

Clearly, the prover is honest iff Fπ(X) = 0, which holds iff π(X) =
Fcon(X), i.e., π(X) belongs to the span of Fz−rsft := (	i−z(X)Z∗(X) −
	i(X))n

i=z+1, (	i(X))z
i=1, Z(X)Z∗(X), Z(X)). For the shift SNARK to be an

argument of knowledge, we need that

(i) (	i(X)Z∗(X))n
i=1 is linearly independent, and

(ii) Fπ(X) ∩ span(Fz−rsft) = ∅.

Together, (i) and (ii) guarantee that from π(X) ∈ span(Fz−rsft) it follows that
a is a shift of b.

We guarantee that π(X) ∈ span(Fz−rsft) by a knowledge assumption
(w.r.t. another knowledge secret δ); for this we will also show that Fz−rsft

is linearly independent. As in the case of the product SNARK, we also need
that (A1, A

γ
2) and (B1, B

γ
2 ) are actually commitments of n-dimensional vectors

(w.r.t. γ), i.e., we rely on two PKE assumptions.
Denote Fπ := {	i(X)Z∗(X)}n

i=1. For a certain choice of Z∗(X), both (i) and
(ii) follow from the next lemma.

Lemma 2. Let Z∗(X) = Z(X)2. Then Fπ ∪ Fz−rsft is linearly independent.

Proof. Assume that there exist a ∈ Z
n
p , b ∈ Z

n
p , c ∈ Zp, and d ∈

Zp, s.t. f(X) :=
∑n

i=1 ai	i(X)Z∗(X) +
∑n

i=z+1 bi (	i−z(X)Z∗(X) − 	i(X)) −
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∑z
i=1 bi	i(X) + cZ(X)Z∗(X) + dZ(X) = 0. But then also f(ωj−1) = 0, for

j ∈ [1 .. n]. Thus, due to the definition of 	i(X) and Z(X),
∑n

i=1 bie i = 0n which
is only possible if bi = 0 for all i ∈ [1 .. n]. Thus also f ′(X) := f(X)/Z(X) =∑n

i=1 ai	i(X)Z∗(X)/Z(X) + cZ∗(X) + d = 0. But then also f ′(ωj−1) = 0 for
j ∈ [1 .. n]. Hence, cZ∗(ωj−1) + d = d = 0. Finally, f ′′(X) := f(X)/Z∗(X) =∑n

i=1 ai	i(X) + cZ(X) = 0, and from f ′′(ωj−1) = 0 for j ∈ [1 .. n], we get
a = 0n. Thus also c = 0. This finishes the proof. ��

Since the argument of knowledge property of the new shift SNARK relies on
π(X) belonging to a certain span, similarly to [15], we will use an additional
knowledge assumption. That is, it is necessary that there exists an extractor
that outputs a witness that π(X) = Fcon(X) belongs to the span of Fz−rsft.

Similarly to the product SNARK, the shift SNARK does not contain π(X) =
Fcon(X), but the value πrsft = (g1, gδ

2)
π(χ) for random χ and δ (necessary due to

the use of the second PKE assumption), computed as

πrsft ←(π1, π
δ
2) = (g1, gδ

2)
π(χ)

=
∏n

i=z+1((g1, g
δ
2)

�i−z(χ)Z∗(χ)−�i(χ))bi · ∏z
i=1((g1, g

δ
2)

�i(χ))−bi · (3)

((g1, gδ
2)

Z(χ)Z∗(χ))ra · ((g1, gδ
2)

Z(χ))−rb .

We are now ready to state the new shift-right-by-z SNARK Πrsft. It consists
of the interpolating commitment scheme and of the following three algorithms:

CRS Generation: Grsft(1κ, n): Let Z∗(X) = Z(X)2. Let gk ←
BP(1κ), (g1, g2, χ, γ, δ) ← G

∗
1 × G

∗
2 × Z

3
p, s.t. Z(χ) �= 0, γ �= 0.

Set ck ← (gk; (g1, g
γ
2 )FC(χ)), crsp ← (gk; (g1, gδ

2)
Fz−rsft(χ)), crsv ←

(gk; (g1, gδ
2)

Z(χ), g
δZ(χ)Z∗(χ)
2 ). Return crsrsft = (ck, crsp, crsv).

Common Input: ursft = ((A1, A
γ
2), (B1, B

γ
2 )).

Proving: Prsft(crsp;ursft;wrsft = (a , b), rrsft = (ra, rb)): return πrsft ← (π1, π
δ
2)

from Eq. (3).
Verification: Vrsft(crsv;ursft;πrsft = (π1, π

δ
2)): accept if ê(π1, g

δZ(χ)
2 ) =

ê(gZ(χ)
1 , πδ

2) and ê(B1π1, g
δZ(χ)
2 ) = ê(A1, g

δZ(χ)Z∗(χ)
2 ).

Since crsv can be recomputed from ck∪ crsp, then clearly it suffices to take CRS
to be crsrsft = (gk; gFC(χ)∪Fz−rsft(χ)

1 , g
γFC(χ)∪δFz−rsft(χ)
2 ).

Theorem 3. Let Z∗(X) = Z(X)2, y = deg(Z(X)Z∗(X)) = 3n. Πrsft

is perfectly complete and witness-indistinguishable. If the input consists of
valid commitments, and BP is y-PDL, (n,Fz−rsft, Y2Fz−rsft, 1)-PKE, and
(Fz−rsft,FC, Y1FC, 2)-PKE secure, then Πrsft is an (Θ(n)-bounded-auxiliary-
input) adaptive argument of knowledge.

The prover computation is dominated by two (n+2)-wide multi-exponentiations
(one in G1 and one in G2); there is no need for polynomial interpolation, mul-
tiplication or division. The communication is 2 group elements. The verifier
computation is dominated by 4 pairings. In the full version [26], we describe a
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batch-verification technique that allows to speed up simultaneous verification of
several shift SNARKs. Apart from gk, the prover CRS and ck together contain
4n + 6 group elements, and the verifier CRS contains 3 group elements.

A shift-left-by-z (necessary in [25] to construct a permutation SNARK)
SNARK can be constructed similarly. A rotation-left/right-by-z SNARK (one
committed vector is a rotation of another committed vector) requires only small
modifications, see [15].

6 New Subset-Sum SNARK

For fixed n and p = nω(1), the NP-complete language Subset-Sum over Zp

is defined as the language LSubset-Sum

n of tuples (S = (S1, . . . , Sn), s), with
Si, s ∈ Zp, such that there exists a vector b ∈ {0, 1}n with

∑n
i=1 Sibi = s

in Zp. Subset-Sum can be solved in pseudo-polynomial time O(pn) by using
dynamic programming. In the current paper, since n = κo(1) and p = 2O(κ), pn
is not polynomial in the input size n log2 p.

In a Subset-Sum SNARK, the prover aims to convince the verifier that he
knows how to open commitment (B1, B

γ
2 ) to a vector b ∈ {0, 1}n, such that∑n

i=1 Sibi = s. We show that by using the new product and shift SNARKs,
one can design a prover-efficient adaptive Subset-Sum zk-SNARK Πssum. We
emphasize that Subset-Sum is just one of the languages for which we can con-
struct an efficient zk-SNARK; Sect. 7 and the full version [26] have more exam-
ples.

First, we use the interpolating commitment scheme. The CRS generation
Gssum invokes CRS generations of the commitment scheme, the product SNARK
and the shift SNARK, sharing the same gk, g1, g2, γ, and trapdoor td = χ
between the different invocations. (Since here the argument must be zero knowl-
edge, it needs a trapdoor.) Thus, crsssum = crsrsft for z = 1.

Let e i be the ith unit vector. The prover’s actions are depicted by Fig. 1
(a precise explanation of this SNARK will be given in the completeness proof
in Theorem 4). This SNARK, even without taking into account the differences
in the product and shift SNARKs, is both simpler and moth efficient than the

Let b ∈ {0, 1}n be such that
∑n

i=1 Sibi = s.
Let (B1, B

γ
2 ) be a commitment to b.

Construct a product argument π1 to show that b ◦ b = b.
Let (C1, C

γ
2 ) be a commitment to c ← S ◦ b.

Construct a product argument π2 to show that c = S ◦ b.
Let (D1, D

γ
2 ) be a commitment to d, where di =

∑
j≥i cj .

Construct a shift-right-by-1 argument (π31, π
δ
32) to show that d = (d − c) � 1.

Construct a product argument π4 to show that e1 ◦ (d − se1) = 0n.
Output πssum = (B1, B

γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Fig. 1. The new Subset-Sum SNARK Πssum (prover’s operations)
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Subset-Sum SNARK presented in [15] where one needed an additional step of
proving that b �= 0n.

We remark that the vector d , with di =
∑

j≥i cj , is called either a vector
scan, an all-prefix-sums, or a prefix-sum of c, and (π31, π

δ
32) can be thought of

as a scan SNARK [15] that d is a correct scan of c.
After receiving πssum, the verifier computes S′

1 ← ∏
i(g

�i(χ)
1 )Si as the first

half of a commitment to S , and then performs the following verifications: (i)
Three commitment validations: ê(B1, g

γ
2 ) = ê(g1, B

γ
2 ), ê(C1, g

γ
2 ) = ê(g1, C

γ
2 ),

ê(D1, g
γ
2 ) = ê(g1,D

γ
2 ). (ii) Three product argument verifications: ê(B1/g1, B

γ
2 ) =

ê(π1, g
γZ(χ)
2 ), ê(S′

1, B
γ
2 ) = ê(g1, C

γ
2 ) · ê(π2, g

γZ(χ)
2 ), ê(g�1(χ)

1 ,Dγ
2/(gγ�1(χ)

2 )s) =
ê(π4, g

γZ(χ)
2 ). (iii) One shift argument verification, consisting of two equality

tests: ê(π31, g
δZ(χ)
2 ) = ê(gZ(χ)

1 , πδ
32), ê(D1/C1π31, g

δZ(χ)
2 ) = ê(D1, g

δZ(χ)Z∗(χ)
2 ).

Theorem 4. Πssum is perfectly complete and perfectly composable zero-
knowledge. It is an (Θ(n)-bounded-auxiliary-input) adaptive argument of knowl-
edge if BP satisfies n-TSDH and the same assumptions as in Theorem 3 (for
z = 1).

The prover computation is dominated by three commitments and the application
of 3 product SNARKs and 1 shift SNARK, i.e., by Θ(n log n) non-cryptographic
operations and Θ(n) cryptographic operations. The latter is dominated by nine
(≈n)-wide multi-exponentiations (2 in commitments to c and d and in the shift
argument, and 1 in each product argument), 7 in G1 and 4 in G2. The argument
size is constant (11 group elements), and the verifier computation is dominated
by offline computation of two (n+1)-wide multi-exponentiations (needed to once
commit to S) and online computation of 17 pairings (3 pairings to verify π2, 2
pairings to verify each of the other product arguments, 4 pairings to verify the
shift argument, and 6 pairings to verify the validity of 3 commitments). In the
full version [26], we will describe a batch-verification technique that allows to
speed up on-line part of the verification of the Subset-Sum SNARK.

As always, multi-exponentiation can be sped up by using algorithms from [29,
32]; it can also be highly parallelized, potentially resulting in very fast parallel
implementations of the zk-SNARK.

7 New Range SNARK

In a range SNARK, given public range [L ..H], the prover aims to convince the
verifier that he knows how to open commitment (A1, A

γ
2) to a value a ∈ [L ..H].

That is, that the common input (A1, A
γ
2) is a commitment to vector a with

a1 = a and ai = 0 for i > 1.
We first remark that instead of the range [L ..H], one can consider the range

[0 ..H−L], and then use the homomorphic properties of the commitment scheme
to add L to the committed value. Hence, we will just assume that the range is
equal to [0 ..H] for some H ≥ 1. Moreover, the efficiency of the following SNARK
depends on the range length.
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The new range SNARK Πrng is very similar to Πssum, except that one has
to additionally commit to a value a ∈ [0 ..H], use a specific sparse S with
Si =

⌊
(H + 2i−1)/2i

⌋
[10,27], and prove that a =

∑n
i=1 Sibi for the committed

a. Since S = (Si)n
i=1 does not depend on the instance (i.e., on a), the verifier

computation is Θ(1). On the other hand, since the commitment to a is given as
an input to the prover (and not created by prover as part of the argument), Πrng

has a more complex simulation strategy, with one more element in the trapdoor.
Let n = �log2 H� + 1. Define Si =

⌊
(H + 2i−1)/2i

⌋
for i ∈ [1 .. n] and S =

(Si). We again use the interpolating commitment scheme. To prove that a ∈
[0 ..H], we do the following.

The CRS generation Grng invokes the CRS generations of the commitment
scheme, the product SNARK and the shift SNARK, sharing the same gk and
trapdoor td = (χ, δ/γ) between the different invocations. In this case, the trap-
door has to include δ/γ (which is well defined, since γ �= 0) since the simulator
does not know how to open (A1, A

γ
2); see the proof of Theorem 5 for more details.

We note that the trapdoor only has to contain δ/γ, and not γ and δ separately.
The CRS also contains the first half of a commitment S′

1 ← ∏
(g�i(χ)

1 )Si to S ,
needed for a later efficient verification of the argument π2. Clearly, the CRS can
be computed efficiently from crsrsft (for z = 1).

1 Let a =
∑n

i=1 Sibi for bi ∈ {0, 1}.
Let (B1, B

γ
2 ) be a commitment to b.

Construct a product argument π1 to show that b = b ◦ b.
Let (C1, C

γ
2 ) be a commitment to c ← S ◦ b.

Construct a product argument π2 to show that c = S ◦ b.
Let (D1, D

γ
2 ) be a commitment to d, where di =

∑
j≥i ci.

Construct a shift argument (π31, π
δ
32) to show that d = (d − c) � 1.

2 Construct a product argument π4 to show that e1 ◦ (d − a) = 0n.

Output πrng = (B1, B
γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Fig. 2. The new range argument Πrng

The prover’s actions on input (A1, A
γ
2) are depicted by Fig. 2 (further expla-

nations are given in the concise completeness proof in Theorem5). The only
differences, compared to the prover computation of Πssum, are the computation
of bi on step 1, and of π4 on step 2. After receiving πrng, the verifier performs
the following checks: (i) Four commitment validations: ê(A1, g

γ
2 ) = ê(g1, A

γ
2),

ê(B1, g
γ
2 ) = ê(g1, B

γ
2 ), ê(C1, g

γ
2 ) = ê(g1, C

γ
2 ), ê(D1, g

γ
2 ) = ê(g1,D

γ
2 ). (ii) Three

product argument verifications: ê(B1/g1, B
γ
2 ) = ê(π1, g

γZ(χ)
2 ), ê(S′

1, B
γ
2 ) =

ê(g1, C
γ
2 ) · ê(π2, g

γZ(χ)
2 ), ê(g�1(χ)

1 ,Dγ
2/Aγ

2) = ê(π4, g
γZ(χ)
2 ). (iii) One shift argu-

ment verification, consisting of two equality tests: ê(π31, g
δZ(χ)
2 ) = ê(gZ(χ)

1 , πδ
32),

ê(D1/C1π31, g
δZ(χ)
2 ) = ê(D1, g

δZ(χ)Z∗(χ)
2 ).
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Theorem 5. Πrng is perfectly complete and composable zero-knowledge. If BP
satisfies n-TSDH and the assumptions of Theorem3, then Πrng is an adaptive
(Θ(n)-bounded-auxiliary-input) argument of knowledge.

The prover computation is dominated by three commitments and the appli-
cation of three product arguments and one shift argument, that is, by Θ(n log n)
non-cryptographic operations and Θ(n) cryptographic operations. The latter is
dominated by nine (≈n)-wide multi-exponentiations (2 in commitments to c and
d and in the shift argument, and 1 in each product argument), seven in G1 and
four in G2. The argument size is constant (11 group elements), and the verifier
computation is dominated by 19 pairings (3 pairings to verify π2, 2 pairings to
verify each of the other product arguments, 4 pairings to verify the shift argu-
ment, and 8 pairings to verify the validity of 4 commitments). In this case, since
the verifier does not have to commit to S , the verifier computation is dominated
by Θ(1) cryptographic operations.

The new range SNARK is significantly more computation-efficient for the
prover than the previous range SNARKs [11,15] that have prover computation
Θ(r−1

3 (n) log n). Πrng has better communication (11 versus 31 group elements
in [15]), and verification complexity (19 versus 65 pairings in [15]). Moreover,
Πrng is also simpler: since the prover computation is quasi-linear, we do not have
to consider various trade-offs (though they are still available) between computa-
tion and communication as in [11,15]. In the full version [26], we will use batch
verification to further speed up the verification of the Range SNARK.
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T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 438–455.
Springer, Heidelberg (2014)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494–503 (2002)

10. Chaabouni, R., Lipmaa, H., Shelat, A.: Additive combinatorics and discrete log-
arithm based range protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)

11. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199.
Springer, Heidelberg (2012)

12. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: IEEE SP, pp.
253–270 (2015)

13. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014)

14. Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument without
random oracles. CT-RSA 2016. LNCS, vol. 9610. Springer, switzerland (2016)

15. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient modular NIZK arguments from shift and
product. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS,
vol. 8257, pp. 92–121. Springer, Heidelberg (2013)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Series of Books in the Mathematical Sciences. W.H. Freeman,
New York (1979)

17. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

18. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108 (2011)

19. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

20. Kilian, J.: Uses of randomness in algorithms and protocols. Ph.D. thesis, Massa-
chusetts Institute of Technology, USA (1989)

21. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008)

22. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003)

23. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012)



206 H. Lipmaa

24. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013)

25. Lipmaa, H.: Efficient NIZK arguments via parallel verification of benes networks.
In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 416–434.
Springer, Heidelberg (2014)

26. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. TR
2014/396, IACR (2014). http://eprint.iacr.org/2014/396

27. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold
trust. FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2002)

28. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: IEEE SP, pp. 238–252 (2013)

29. Pippenger, N.: On the evaluation of powers and monomials. SIAM J. Comput.
9(2), 230–250 (1980)

30. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. Theor. Com-
put. 6(1), 135–177 (2010)

31. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 336–353. Springer, Heidelberg (2009)

32. Straus, E.G.: Addition chains of vectors. Amer. Math. Mon. 70, 806–808 (1964)
33. Valiant, L.G.: Universal circuits (Preliminary report). In: STOC, pp. 196–203

(1976)

http://eprint.iacr.org/2014/396


On the Security of the (F)HMQV Protocol

Augustin P. Sarr1(B) and Philippe Elbaz–Vincent2

1 Laboratoire ACCA, Université Gaston Berger de Saint–Louis,
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Abstract. The HMQV protocol is under consideration for IEEE P1363
standardization. We provide a complementary analysis of the HMQV
protocol. Namely, we point a Key Compromise Impersonation (KCI)
attack showing that the two and three pass HMQV protocols cannot
achieve their security goals. Next, we revisit the FHMQV building blocks,
design and security arguments; we clarify the security and efficiency sepa-
ration between HMQV and FHMQV, showing the advantages of FHMQV
over HMQV.
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1 Introduction

Designing authenticated key agreement protocols is a notoriously subtle task.
Bellare and Rogaway proposed a new approach for the analysis of key agreement
protocols [3], which was later refined in many security models, including, and
among others the CK [6], eCK [19] and seCK [28] models.

The HMQV protocol [16], inspired by the famous MQV [20] protocol, was
shown secure in a variant of the CK model, termed here CKHMQV. HMQV was
designed to resist a variety of attacks and was shown to provably achieve its secu-
rity attributes. Among others, Krawczyk was able to show that HMQV remains
secure even if public keys are not tested to be of correct order (G–tests). As the
computational cost of these tests may be significant, avoiding them may induce
a significant efficiency improvement. With this efficiency improvement, HMQV
was proposed for standardization in P1363 [17]. The HMQV P1363 submission
states that the tests to ensure ephemeral keys to be of correct order “are required
only in settings where ephemeral exponents are more vulnerable to attack than
long–term secrets. In all other cases, i.e., where ephemeral and long–term secrets
are equally protected, HMQV can safely skip these tests, thus providing superior
performance especially when the cofactor is large” [17, p. 2].
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In [22,23], some attacks against HMQV are proposed to recover the vic-
tim’s static private key; the attacks can be launched in the case the static and
ephemeral keys are not tested to be of correct order. Even if the attack against
the one–pass HMQV is realistic, the attacks proposed against the two and three
pass variants seem less realistic, as the attacker needs to learn some ephemeral
private keys from the target victim. The work [24] delves further in the effects of
omitting public key validation in HMQV, and some new attacks are presented in
the cases static public keys only or ephemeral public keys only are tested to be
of correct order; however the attacks are proposed in groups which are not used
in practice. In [7], Chalkias, et al. explore KCI against the One Pass (H)MQV
protocols and show that these protocols are vulnerable to KCI attacks. In [26,27]
Sarr et al. explore the consequences of secret exponent leakage in a HMQV ses-
sion. They show that (partial) leakage on ephemeral secret exponents lead to
impersonation and man–in–the–middle attacks. Basing on theses findings they
propose the FHMQV protocol they show to confine the effects of such leakages.

In this paper, we investigate the effects of omitting ephemeral key validation
in the HMQV protocol. We show that the (two and three pass) HMQV pro-
tocol(s) are vulnerable to KCI, unless further restrictions are considered in the
underlying group. Namely, in the case the group keys are supposed to belong is
a subgroup of a DSA group GF (q), with (q−1) divisible by a sufficiently “large”
integer, without G–tests, HMQV is vulnerable to a KCI; our attack invalidates
the HMQV resistance to KCI, stated in [16, Theorem 18 and Lemma 21]. A
main feature of the KCI attack we present is that it requires the entity to be
impersonated to omit ephemeral key validation only once.

Besides, we re–examine the FHMQV building blocks, showing that contrary
to what is suggested in [21] changing the interaction order has no effect on the
building blocks security. We clarify also the separation between FHMQV and
HMQV, showing the security and efficiency improvements in FHMQV.

This paper is organized as follows. In Sect. 2, we revisit the HMQV protocol,
pointing a KCI attack. In Sect. 3 we revisit the FXCR scheme, showing that its
security is not dependent to interaction order. The FDCR scheme is revised in
Sect. 4. In Sect. 5 we clarify the separation between FHMQV and HMQV.

The following notations are used in this paper H is λ bit hash function,
where λ is the security parameter; H̄ is a l = λ/2 bits hash function. G is a
multiplicatively written group, G∗ is the set of non–identity elements in G. If n
is an integer, |n| denotes its bit–length; we refer to the length of a list L by |L|.
The symbol ∈R stands for “chosen uniformly at random in”. For two bit strings
m1 and m2, m1||m2 denotes the concatenation of m1 and m2. If x1, x2, · · · , xk are
objects belonging to different structures (group, bit–string, etc.) (x1, x2, · · · , xk)
denotes a representation such that each element can be univocally parsed.

2 Key Compromise Impersonation Against HMQV

A protocol is said to be vulnerable to KCI impersonation, if an attacker who learns
the long term secret of a party, say Â, is able to impersonate another party, say B̂,
to Â. When a protocol is vulnerable to such attacks, a static key leakage may lead
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to harms that go far beyond the sole ability to impersonate the static key’s owner.
For instance, in the case Â is a bank client and B̂ a bank server, the attacker may
impersonate the server to the client to collect more sensitive information (such as
a credit card number or a security code, for instance). As another example, B̂ may
be a trusted software update server, in this case, the attacker may impersonate the
server to Â to make him/her install a malicious software (spyware, worm, virus,
etc.), and gain much more sensitive information, such as passwords, credit card
numbers, etc. KCI resilience is then an important security attribute, particularly
for protocols intended to be standardized, such as HMQV.

In this section, we present a KCI against the three–pass HMQV protocol.
About prime–order tests, we show that without these tests HMQV is vulnerable
to KCI, unless further restrictions are specified about the underlying group. This
shows also that the HMQV KCI resilience stated in [16, Theorem 18 on p. 40
and Lemma 21 on p. 41] does not hold.

Let q be a prime, p a prime dividing (q − 1), and G an element of GF (q) of
order p. Let Â and B̂ be two parties with respective static key pairs (a,A = Ga),
(b,B = Gb) with a, b ∈ {1, · · · , p − 1}. An execution of the three–pass HMQV
between Â and B̂ is as in Protocol 1; if any verification fails the execution aborts.

Protocol 1. Three Pass HMQV Key Exchange
I) The initiator Â does the following:

a) Choose x ∈R {1, · · · , p − 1} and compute X = Gx.
b) Send (Â, B̂, X) to B̂.

II) At receipt of (Â, B̂, X), B̂ does the following:
a) Verify that X ∈ GF (q) \ {0, 1}.
b) Choose y ∈R {1, · · · , p − 1} and compute Y = Gy.
c) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
d) Compute sB = y + eb mod p, σB = (XAd)sB , K = H(σB , 1) and

Km = H(σB , 0).

e) Send
(
B̂, Â, Y, MACKm(”1”)

)
to Â.

III) At receipt of
(
B̂, Â, Y, MACKm(“1”)

)
, Â does the following:

a) Verify that Y ∈ GF (q) \ {0, 1}.
b) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
c) Compute sA = x + da mod p, σA = (Y Be)sA , K = H(σB , 1) and

Km = H(σB , 0).
d) Validate MACKm(“1”).

e) Send
(
Â, B̂, X, Y, MACKm(“0”)

)
to B̂.

IV) At receipt of
(
Â, B̂, X, Y, MACKm(“0”)

)
, B̂ validates MACKm(“0”).

V) The shared session key is K.

The HMQV protocol is shown secure in a variant of the CK model, the CKHMQV

model [16] (see [8] for a comparison between the CK, CKHMQV, and eCK models).
Suppose that q and p are primes such that p | (q − 1). Let G′ be a primi-

tive element in GF (q); the element G = G′(q−1)/p has order p, and generates
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a group G of order p. For concreteness, suppose in addition that (|q|, |p|) ∈
{(1024, 160), (2048, 224), (3072, 256)}. The complexity of the Number Field Sieve
for prime field discrete logarithm1 [13,29,30] is

Lq[1/3, 3
√

64/9 + o(1)] ≈ exp
((

3
√

64/9 + o(1)
)

(ln (q))1/3 (ln ln (q))2/3
)

.

Hence, omitting the term o(1) we have, Lq[1/3, 3
√

64/9] � 287 when |q| = 1024
and Lq[1/3, 3

√
64/9] � 2117 when |q| = 2048 and Lq[1/3, 3

√
64/9] � 2139 when

|q| = 3072. So, we have Lq[1/3, 3
√

64/9] � p1/2; the complexity of the DLP on G
reduces then to that of the generic attacks.

Let λ = |p|, t = λ/3 and suppose in addition, that 2t|(q−1). Primes satisfying
these conditions can be efficiently found using the following process2: (i) choose
a prime p such that |p| = λ, and (ii) set α = 2t · p; then (iii) try to find an integer
s with bit–length (|q| − |α|), such that q = s · α + 1 is prime. By the theorem of
Dirichlet on primes in arithmetic progression [11], we know that an infinity of
primes in the form s ·α+1 exist; moreover the interval

[
2|q|, 1.048 · 2|q|] contains

at least one prime from the progression [10]. Hence the interval
[
2|q|, 2|q|+1

]

contains at least 14 of such primes (which is very pessimistic).
An example of such primes for (|q|, |p|) = (3072, 256) is

q3072 = 291 · 37 · 57 · 118 · 173 · 376 · 672 · 1314 · 2574 · 5214 · 10315 · 2053·
40997 · 82094 · 164115 · 327714 · 655374 · 131101 · 2621475 · 5243097·
10485835 · 20971695 · 41943192 · 8388617 · 167772594 · 335544676·
671088792 · 1342177575 · 2684354593 · 5368709238 · 10737418275·
21474836596 · 42949673115 · 85899346094 · 171798692097 · p256 + 1, with

p256 = 578960446186580977117854925043439539266349923328202820197287\
92003956564820063.

Following the KCI scenario considered in [16, pp. 40–42], suppose that Â and
B̂ are two honest parties, and A an attacker which knows Â’s static key a, and
aims to impersonate B̂ to Â. Suppose that B̂ chooses his/her ephemeral keys
in G∗ as prescribed.

The attacker can proceed as follows: (i) using an invalid ephemeral public
key, he/she learns the ephemeral secret exponent sB at B̂ in a three pass HMQV3

session, as described, in Attack 2, and (ii) using sB , the attacker impersonates
indefinitely B̂ to Â.

Attack 2. Online stage of an Ephemeral Secret Exponent Recovering

1) Compute X = G′(q−1)/2t .
2) Send (Â, B̂, X) to B̂ to initiate a three–pass HMQV session.
3) Intercept B̂’s response to Â, (B̂, Â, Y, tagB̂ = MACKm(“1”)) and halt.

1 This is to date the best sieving algorithm for discrete logarithm over a prime field.
2 It takes few seconds on a i7–4790K to find such primes.
3 To launch this phase in the two–pass HMQV, the attacker has simply to wait, for

instance, that B̂ uses the key to authenticate some value he/she knows.
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In a three–pass HMQV session, the key used at the responder for MACing
is Km = H(σ, 0) with σ =

(
XAd

)sB wherein sB = y + eb mod p, with
d = H̄(X, B̂) and e = H̄(Y, Â). As

σ =
(
XAd

)sB = XsB (Y Be)da
,

the attacker computes σ0 = (Y Be)da and σ1i = Xi and K ′
i = H(σ1iσ0, 0),

for i = 1, 2, 3, · · · , 2t until MACK′
i
(“1”) = tagB̂ . By this exhaustive search, the

attacker finds the t least significant bits of sB . Then, using the relation

σ0 = (Y Be)da = (Ad)sB ,

the attacker recovers the remaining bits of sB (recall that t = λ/3) using
O (

2(λ−t)/2
)

= O (2t) operations [12, §B]. And then, the whole offline stage
requires O (2t) operations. The rough computational cost of the attack for dif-
ferent values of λ, in the case t = λ/3, are given hereunder.

Value of λ Rough computational cost

160 254

224 275

256 286

As a concrete example, for λ = 224 (recall that λ = |p|) we have t = 75, then
recovering sB requires roughly 275 operations, which is far from the 2112 oper-
ations required for the discrete logarithm problem, and not out of reach of our
computational capabilities [14,18].

From a knowledge of sB and the ephemeral public key Y generated by B̂,
the attacker can indefinitely impersonate B̂ to Â, in both the two and three
pass HMQV variants [26]. We stress that the attacker cannot recover B̂’s static
private key from sB; this shows that for any primes p and q such that p divides
(q −1), 2t divides (q −1) and max{2(|p|−t)/2, 2t} operations are not out of reach,
omitting ephemeral key validation only once is sufficient for an effective KCI
attack. As the attacker never learns an ephemeral private key, this invalidates
the claim that public key validation is required in the HMQV protocol “only in
settings where ephemeral exponents are more vulnerable to attack than long–
term secrets” [17]. Also, the “minimal requirement for a secure key–exchange ...
that the attacker, not knowing the private key of a party B̂, should not be able
to impersonate B̂” [16, p. 18] is not achieved.

About the Factorization of q – 1. We presented our attack in the case a
sufficiently large power of 2 divides (q − 1), however the attack can be launched
as long as (q − 1) divisible by a “sufficiently large” integer. We stress that in
real word settings, to avoid “sieving” attacks [25], q is chosen to be much larger
than p; for instance the NIST recommends [1] the following pairs for (|q|, |p|) :
(1024,160), (2048,224), and (3072,256). Hence for real word domain parameters,
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it is likely that q has a factor of bit–length ≈ |p|/3. If M is a divisor of q−1 with
bit–length λ/3 (recall that λ = |p|), the element X = G′(q−1)/M has order M ,
and can be used as outgoing ephemeral key in the online stage (Attack 2). By
exhaustive search, β1 = sB mod M can be found using M operations. Then, as
sB = y + eb mod p = β2M + β1 mod p, with |β2| � 2λ/3, from the relation
σ0 = (Y Be)da = (Ad)sB = (Ad)β2M+β1 , one obtains σ0A

−dβ1 = (AdM )β2 ; the
remaining part β2 can then be recovered using O(2λ/3) operations [12]. The
attack can then be launched for any divisor M of q − 1 of bit–length t such that
O(max{2(λ−t)/2, 2t}) operations are not out of reach.

2.1 On the HMQV Security Reduction

The KCI attack is totally well grounded in the CKHMQV model; a natural ques-
tion is then how can it co–exist with the HMQV security reduction.

The attack is rooted in the interpretation of the XCR security reduction in
the analysis of the DCR scheme. In fact, a DCR signature is an XCR signature
by B̂ (resp. Â) with the challenge XAd (resp. Y Be). As the DCR reduction
uses the XCR reduction [16, pp. 20–25], wherein challenges are supposed to
belong to G∗, it becomes a requirement that both XAd and Y Be belong to G∗.
Hence, when KCI is considered, namely, when a is known to the attacker, the
security reduction leads to CDH(X,B). Unfortunately, when X �∈ G∗, there is
no guarantee that computing CDH(X,B) is hard. As the core of the HMQV
protocol is the DCR scheme, it then becomes also a requirement that ephemeral
keys be tested for membership in G∗. This point was missed in the analysis of
the HMQV protocol and explains the co–existence of the attack and the security
reduction in [16].

We stress that contrary to the DCR and XCR schemes, the FDCR signa-
ture of Â and B̂ on messages m1,m2 and challenges X and Y is not a FXCR
signature of Â (resp. B̂) on the message m2 (resp. m1) and challenge Y Be

(resp. XAd) [27]. Also, the attack does not apply to protocols that mandate
ephemeral key validation, such as MQV [20] and FHMQV [27].

Nonetheless, in the case of MQV, when ephemeral keys are not validated,
the attack can be launched. In this case, as the ephemeral secret exponents
sA = x + (X̃ mod 2l)a and sB = y + (Ỹ mod 2l)b, where X̃ is the integer
representation of X, are not tied to the peer’s identity, the attacker can not
only impersonate B̂ to Â, but to any party. Moreover, there is no need for the
attacker to learn an honest party’s static key, the attacker can use his/her own
static key together with an invalid ephemeral key.

In the case of FHMQV, which is resilient to ephemeral secret exponent leak-
age, we do not know how the attack can be launched. However, if ephemeral
keys are not validated and ephemeral private key leakage is considered at the
victim B̂, the attacker can disclose the victim’s static private key, in both MQV,
HMQV and FHMQV.
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3 FXCR Security in the Reversed Interaction Order

In this section, we revisit the FXCR scheme [26], clarifying its advantages over
the XCR scheme. We show also that the recent critics from [21] about the FXCR
security reduction (which is the main ingredient in FHMQV security arguments)
are erroneous. As already reported in [26], even if the ephemeral keys are tested
for membership in G∗, the HMQV protocol is sensitive to partial leakage of
the ephemeral exponents sA and sB. This observation lead to the design of the
FXCR scheme.

Definition 1 (FXCR Scheme). Let B̂ be an entity with public key B ∈ G∗.
B̂’s signature on a challenge X provided by a verifier Â together with a mes-
sage m is FSigB̂ = (Y,Xy+H̄(Y,X,m)b). The verifier accepts a pair (Y, σ) as a

valid signature if
(
Y BH̄(Y,X,m)

)x

= σ.

From [26], it is shown that no efficient attacker, even if given the secret exponent sB

at each signature generation can forge a valid FXCR signature, unless with negligi-
ble probability. The authors of [21]4 consider a reversed interaction order between
the signer and the verifier and claim that the FXCR security reduction is flawed,
as the simulation becomes invalid in this case. Namely, if the challenge is provided
to the signer after it generates Y , the security reduction does not hold.

Strictly speaking changing the interaction order defines another signature
scheme; and the security reduction may become inapplicable for the new scheme.
Furthermore, even if the interaction order is changed, all the security attributes
claimed in [26] about the FXCR scheme remain valid; and contrary to what is
suggested in [21], no additional Gap DH assumption is required. We still denote
the variant of the signature scheme obtained by changing the interaction order by
FXCR and consider a signer B̂ and a verifier Â interacting as described in Figure 3.

Figure 3. FXCR Interactions for Signature Generation
1) At signature request with a message m, B̂ generates Y ∈ G∗ and provides Â

with (m, Y, B).
2) Â chooses x ∈R {1, · · · , p − 1} and provides B̂ with (m, X = Gx, Y, B).
3) B̂ verifies that X ∈ G∗. If the verification succeeds, it provides Â with

(m, X, Y, B, σ, sB) wherein σ = XsB and sB = y + H̄(Y, X, m)b.

4) The verifier accepts B̂’s signature as valid if
(
Y BH̄(Y,X,m)

)x
= σ.

We stress that the verifier is provided also with the secret exponent sB ; this
models total secret exponent leakage in each signature generation.

Definition 2 (FXCR Security). The FXCR scheme is said to be secure, if no
efficient attacker can succeed in the game inFigure 4with non–negligible probability.

4 Their abstract starts with “HMQV is one of the most efficient (provably secure)
authenticated key–exchange protocols based on public–key cryptography, and is
widely standardized.” To date, we are not aware of any standardization body which
has already adopted the HMQV protocol.
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Figure 4. The FXCR Security Game
1) The attacker A is given a public key B, a challenge X0, together with a signing

oracle as described in Figure 7, and also a hashing oracle.
2) The attacker halts with output (0, 0, 0, 0, 0) to indicate a failure, or a quintuple

(m0, X0, Y0, B, σ0) such that
a) (Y0, σ0) is a valid signature with respect to the public key B and message–

challenge pair (m0, X0), and
b) (Y0, σ0) is a fresh signature, i. e., (Y0, σ0) was never generated by B̂ on

signature request on (m0, X0).

Notice that contrary to [16, Sect. 4.1], which requires that “the pair (Y0,m0) did
not appear in any of the responses of B̂”, we use the minimal requirement that
(Y0, σ0) was not generated by the signer on the message–challenge pair (m0,X0).

Theorem 1. Under the Computational Diffie–Hellman (CDH) assumption in G
and the Random Oracle (RO) model, the FXCR scheme is secure in the sense
of Definition 2.

Proof. As the attacker is supposed to be polynomial in |p|, let P be a polynomial
and T = P (|p|) an upper bound on the number of digest queries on messages with
format (Y,Z,m) with Y,Z ∈ G∗, the attacker issues after it receives (m,Y,B)
from the signing oracle (step 1 of Figure 3) and before it provides the signing
oracle with its challenge (m,X, Y,B) (step 2 of Figure 3). Also, we suppose
that the number of signature queries the attacker issues is upper bounded by
L = Q(|p|) for some polynomial Q.

To lighten the presentation, we suppose that the attacker behaves as follows.
First, for each signature generation, the attacker issues exactly T = P (|p|) digest
queries on messages with format (Y,Z,m), with Z ∈ G∗, after he/she receives
(m,Y,B) from the signing oracle, and before he/she provides the signing oracle
with the challenge (m,X, Y,B). The attacker may discard digest values with no
interest. Second, among the digest queries the attacker issues, one query is on
(Y,X,m), where X is the challenge to be submitted to the signing oracle. Third,
the attacker never submits to the hashing oracle the same message twice (the
attacker can keep track of his/her previous digest queries).

We stress that the attacker we consider remains polynomial in |p| and from
any efficient attacker A′ one can derive an efficient attacker A which behaves
as described and succeeds with the same probability than A′. The attacker A
behaves exactly as A′ except that for signature generation, after he/she receives
(m,Y,B) from the signing oracle and before he/she provides B̂ with the chal-
lenge X, he/she ensures that T digest queries on messages with format (Y,Z,m),
including one query on (Y,X,m), are issued. A ignores the digest values A′

does not issue; he/she remains polynomial and has the same success probability
than A′.

The attacker’s interactions with the signing and hashing oracles are summa-
rized in Figure 5; without loss of generality, we omit digest queries of other kinds
the attacker may issue between consecutive steps of Figure 5.
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Figure 5. Modified queries for Signature Generation
1) For the j–the signature query, activate the signing oracle with a message mj to

obtain (mj , Yj , B).
2) Generate a challenge Xj ∈ G∗ and issue T digest queries on messages with

format (Yj , Zj,i, mj)i∈{1,··· ,T} with one of the Zj,i’s being the challenge Xj to
be submitted to the signing oracle.

3) Provide the signing oracle with (mj , Xj , Yj , B).
4) And receive the signature (mj , Xj , Yj , B, σj , sj,B) from the signing oracle.

Let Pr(SuccA) denote the probability that A succeeds in the FXCR security
game, and V = {1, · · · , T}L be the set of L–uples of elements of {1, · · · , T}. We
denote by V the random variable that takes values in V and describes the digest
queries at step 2 of Figure 5 wherein the attacker provides the hashing oracle
with the message (Yj ,Xj ,mj) (Xj being the challenge to be submitted to the
signing oracle). Namely, for v = (v1, · · · , vL) ∈ V, we denote by Pr(V = v) the
probability that for all j ∈ {1, · · · , L}, the vj–th digest query at step 2 in the
j–th signature generation, Zj,vj

equals the challenge Xj ; i. e. Pr(V = v) denotes
the probability that the attacker provides the signing oracle with challenge Z1,v1

in the first signature query, and Z2,v2 as a challenge in the second signature
query, and so forth. For v ∈ V, we say that v is possible if Pr(V = v) is non–zero
and denote by Poss(V) the subset of V consisting of possible v’s.
The probability of success of the adversary A is

Pr(SuccA) =
∑

v∈Poss(V)

Pr(SuccA ∩ V = v)

=
∑

v∈Poss(V)

Pr(SuccA | V = v) Pr(V = v)

�
∑

v∈Poss(V)

(

max
v∈Poss(V)

Pr(SuccA | V = v)
)

Pr(V = v)

� max
v∈Poss(V)

Pr(SuccA | V = v). (1)

It then suffices to show that for all v ∈ Poss(V), Pr(SuccA | V = v) is negligible.
Suppose there is v such that Pr(SuccA | V = v) is non–negligible. Using A,
we show the existence of an efficient CDH solver S which succeeds with non–
negligible probability. The solver works as in Figure 6.
The simulator is efficient, moreover it provides a consistent simulation; and
under the RO model, this simulated environment is indistinguishable from a
real one. The probability that the attacker provides a valid forgery without issu-
ing H̄(Y0,X0,m0) is 2−l. Hence, in this simulation, the attacker succeeds with
non–negligible probability. From the General Forking Lemma [2], the probability
the attacker succeeds in the simulation and in the repeat experiment is

Pr(Succ2) � Pr(SuccA | V = v)
(

Pr(SuccA | V = v)
q

− 2−l

)

,
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Figure 6. A CDH solver S from A
Run of A:
1) When S is activated with a message mj , it does as follows:

a) Choose sj,B ∈R {1, · · · , p − 1}, ej ∈R {0, 1}l, set Yj = Gsj,BBe−1
j .

b) Create an empty list Lej ,Yj ,sj,B ,mj .
c) Provide the attacker with (mj , Yj , B).

2) At digest query on a message which does not have format (Y, Z, m), the simulator
S responds with e ∈R {0, 1}l.

3) At digest query on a message with format (Y, Z, m), S does as follows:
a) If A was provided with (mj , Yj , B) (Step 2 of Figure 3) such that mj = m

and Yj = Y and if |Lej ,Yj ,mj | = vj − 1, S provides the attacker with ej , and
appends Z to Lej ,Yj ,sj,B ,mj .

b) Otherwise, S responds with e ∈R {0, 1}l, and if mj = m and Yj = Y , it
appends Z to Lej ,Yj ,mj .

4) When A provides S with (mj , Xj , Yj , B), S responds with
(mj , Xj , Yj , B, Gsj,B , sj,B). Notice that this is consistent with the digest
simulation at steps 2 and 3.

5) At A’s halt, S verifies that A’s output is different from (0, 0, 0, 0, 0) and satisfies
the following conditions; if not S aborts.

– Y0 ∈ G∗ and H̄(Y0, X0, m0) was issued from H̄.
– The signature (Y0, σ0) was not returned by B̂ on query (m0, X0).

Repeat: S executes a new run of A, using the same input and coins; and answering
to all digest queries before H̄(Y0, X0, m0) with the same values as in the previous
run. The new query of H̄(Y0, X0, m0) and subsequent queries to H̄ are answered
with new random values.

Output: If A outputs a second signature (m0, X0, Y0, B, σ′
0) satisfying conditions

of step 5, with a hash value H̄(Y0, X0, m0)2 = e′
0 �= e0 = H̄(Y0, X0, m0)1 then S

outputs
(
σ0/σ′

0

)(e0−e′
0)

−1

as a guess for CDH(B, X0).

where q is the number of digest queries the attacker issues, which is non–
negligible, unless Pr(SuccA | V = v) is negligible. Moreover, if the repeat exper-
iment succeeds, the digest values e0 and e′

0 are different with probability 1−2−l,

and then the computation
(
σ0/σ′

0

)(e0−e′
0)

−1

, leads to CDH(X0, B) with non–
negligible probability, contradicting then the CDH assumption. Hence, under
the RO model and the CDH assumption, for all v ∈ V, Pr(SuccA | V = v) is
negligible; using (1), we conclude that Pr(SuccA) is negligible. ��

This shows that the FXCR CDH–based security reduction holds not only
in what the authors of [21] calls a “regular interaction order”, but also if the
interaction order is reversed.
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4 FDCR Security in the Reversed Interaction Order

As for the FXCR scheme, we show here that the security of the FDCR scheme
totally holds, in the reversed interaction order, wherein the signer provides
his/her ephemeral public key before receiving a challenge from the verifier.

Definition 3 (FDCR Scheme). Let Â and B̂ be entities with respective public
keys A and B in G∗. The FDCR signature of Â and B̂ on challenge–message
pairs (X,m1) and (Y,m2) provided respectively by Â and B̂, with X,Y ∈ G∗ is

FDSigÂ,B̂(m1,m2,X, Y ) = (XAd)y+eb = (Y Be)x+da,

where d = H̄(X,Y,m1,m2) and e = H̄(Y,X,m1,m2).

To show the FDCR security in the reversed interaction order, we consider a
verifier interacting with a signer B̂ as described in Figure 7, and the game in
Figure 8.

Figure 7. FDCR interactions for Signature Generation
1) The verifier Â provides B̂ with (m1, A).
2) The signer B̂ responds with (m1, m2, Y, A, B), with Y ∈ G∗.
3) The verifier chooses x ∈ {1, · · · , p − 1} and provides B̂ with

(m1, m2, X = Gx, Y, A, B).
4) The signer verifies that X ∈ G∗, and provides Â with (m1, m2, X, Y, A, B, σ)

wherein σ = (XAd)y+eb with d = H̄(X, Y, m1, m2) and e = H̄(Y, X, m1, m2).
5) The verifier accepts B̂’s signature as valid if (Y Be)x+da = σ.

Figure 8. The FDCR Security Game
1) The attacker A is given a key pair (A, a) and a message–challenge pair (X0, m10);

A is also given access to a hashing oracle, and is allowed to interact with a signing
oracle as described in Figure 7.

2) The attacker halts with output (0, 0, 0, 0, 0, 0, 0) to indicate a failure, or a sep-
tuple (m10 , m20 , X0, Y0, A, B, σ0) such that
a) σ0 is a valid FDCR signature on messages m10 , m20 and challenges X0, Y0

with respect to the public keys A and B.
b) σ0 is a fresh, i. e., it was not generated as a signature on message–challenge

pairs (m′
1, X0), (m′

2, Y0) such that m′
1||m′

2 = m10 ||m20 .

Definition 4 (FDCR Security). The FDCR scheme is said to be secure if
no efficient attacker can succeed in the game in Figure 8 with non–negligible
probability.

Theorem 2. Under the RO model and the CDH assumption, the FDCR scheme
is secure in the sense of Definition 4.
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Proof. To lighten the presentation, as in Theorem 1, we suppose that the attacker
issues L = Q(|p|) signature queries and T = P (|p|) digest queries on mes-
sages with format (Z1, Z2,m1,m2), with Z1, Z2 ∈ G, between the steps 2 and
3 of Figure 7. We suppose also that the attacker issues a digest query on
(Y,X,m1,m2), before providing its challenge X to the signer; and also that
he/she does not issue the same digest query twice. We stress that the attacker
remains polynomial, and may discard the digest values of no interest. We sum-
marize the queries for a signature generation in Figure 9.

Figure 9. Attacker’s queries for FDCR Signature Generation
1) For the j–the signature query, A activates the signing oracle with (m1j , A).
2) The signer provides the attacker with (m1j , m2jYj , A, B) with Yj ∈ G∗.
3) A generates Xj ∈ G∗ and issues T digest queries on messages with format

(Yj , Zj,i, m1j , m2,j)i∈{1,··· ,T} with one query on (Yj , Xj , m1j , m2,j).
4) The attacker provides the signing oracle with (m1j , m2j , Xj , Yj , A, B).
5) And receives (m1j , m2j , Xj , Yj , A, B, σj) from the signing oracle.

We still denote {1, · · · , T}L by V, for v = (v1, · · · , vL) ∈ V, we denote by
Pr(V = v) the probability that for all j ∈ {1, · · · , L}, for the j–th signature
generation, the attacker issues a digest query on (Yj ,Xj ,m1j ,m2,j) at the vj–th
digest query in step 2. The notations Poss(V) from the proof of Theorem 1 is
used again. Conditioning on V , we still obtain

Pr(SuccA) � max
v∈Poss(V)

Pr(SuccA | V = v).

Suppose that there is v ∈ Poss(V) such that Pr(SuccA | V = v) is non–negligible.
Using A, we build an efficient FXCR forger S such that Pr(SuccS | V = v) is
non–negligible. The forger S works as described in Figure 10.

Under the random oracle model, the simulation in Figure 10 is perfect,
except with negligible probability; a deviation occurs when the same message–
challenge pair (m2j , Yj) is chosen twice in two signature queries on the same
pair (m1j ,Xj). As the simulator chooses its challenges uniformly at random in
G∗, this occurs with probability L/(p − 1) which is negligible. Also, the proba-
bility the attacker provides a valid forgery without issuing H̄(X0, Y0,m10 ,m20)
and H̄(Y0,X0,m10 ,m20) is smaller than 2−l, which is negligible. Hence, if A
succeeds with non–negligible probability in a real environment, it succeeds also
with non–negligible probability under this simulation. Furthermore S succeeds
with probability

Pr(SuccS | V = v) � Pr(SuccA | V = v) − L

(p − 1)
− 2−l,

which is non–negligible if Pr(SuccA | V = v) is non–negligible. As already shown
in Theorem 1, this is impossible under the RO model and the CDH assumption.
Hence, for all v ∈ Poss(V), Pr(SuccA | V = v) is negligible, and then Pr(SuccA)
is negligible. ��
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Figure 10. A FXCR Forger S from A
Run of A:
1) When S is activated with (m1j , A), it does the following:

a) Choose sj,B ∈R {1, · · · , p − 1}, ej ∈R {0, 1}l, m2j ∈ {0, 1}F (|p|) for some

positive polynomial F , set Yj = Gsj,BBe−1
j .

b) Create an empty list Lej ,Yj ,sj,B ,m1j ,m2j
.

c) Provides the attacker with (m1j , m2j , Yj , B).
2) At A’s digest query on a message which does not have format (Y, Z, m1, m2),

the simulator S responds with e ∈R {0, 1}l.
3) At digest query on messages with format (Y, Z, m1, m2), S does as follows:

a) If it provided the attacker with (m1j , m2j , Yj , A, B) such that m1j ||m2j =
m1||m2, Y = Yj and if |Lej ,Yj ,sj,B ,m1j ,m2j

| = vj −1, it provides the attacker
with ej and appends Z to Lej ,Yj ,sj,B ,m1j ,m2j

.

b) Otherwise, it responds with e ∈R {0, 1}l, and if m1j ||m2j = m1||m2 and
Yj = Y then it appends Z to Lej ,Yj ,sj,B ,m1j ,m2j

.

4) When A provides (m1j , m2j , Xj , Yj , A, B), if no value is already assigned

to d = Ĥ(Xj , Yj , m1j , m1j ) S chooses d ∈R {0, 1}l, and responds with

(m1j , m2j , Xj , Yj , A, B, (XjA
d)sj,B ).

5) At A’s halt with a non–null output (m10 , m20 , X0, Y0, A, B, σ0) S verifies that
the following conditions are satisfied; if not it aborts.

– Y0 ∈ G∗ and d0 = H̄(Y0, X0, m10 , m20) and e0 = H̄(X0, Y0, m10 , m20) were
issued from the hashing oracle.

– S never issued a signature (m′
1, m

′
2, X0, Y0, A, B, σ0) such that m′

1||m′
2 =

m10 ||m20 .
Output: If all the conditions at step 5 are satisfied, S outputs

σ0(Y0B
e0)−d0a = (Y0B

e0)x0 as a FXCR forgery on m10 ||m20 .

This shows that all the FDCR security attributes remain intact in the inter-
action order considered in [21].

5 Separation Between FHMQV and HMQV

Security Separation

The sensitivity of the HMQV protocol to partial leakages on intermediate expo-
nents sA and sB [26], exploited again with KCI attack in Sect. 2, motivated the
FHMQV design which is resilient to such leakages. FHMQV was shown secure in
a mixture of two security definitions (termed ck and eck in [26]), which was latter
refined into the seCK model [28]. In the CKFHMQV model (ck model in [26]),
it is assumed that at all parties the ephemeral keys are as protected as the
static ones. This assumption matches some common implementations; such as
(EC)DSA signature generation (where a leakage of an ephemeral private key
leads to a disclosure of the signer’s static private key). However, it does not
seem reasonable to assume implementations performed in the same way at all
parties, and then consider the same leakages at all parties. We point out that
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Fig. 1. (F)HMQV implementation approaches in the seCK model

the CK, CKHMQV, eCK and CKFHMQV models define the information that can
be leaked in the same way for all parties. While in real word settings, implemen-
tations may be different, depending on environments specificities (presence of a
desktop computer (DC) only, of a power limited smart–card and a DC, etc.).
This observation is one of the motivations of seCK model and corresponds to
real–world vulnerabilities [15,31–34].

Broadly, in the seCK model, it is assumed for DH protocols that at each party,
implementation is performed using one of the two following approaches5 (Fig. 1).

Approach 1. It is assumed that the ephemeral keys are generated in an
untrusted area, and the session keys are used also in this area. All the other
intermediate results are computed in the trusted area. At a party using this
approach, the attacker is allowed the following queries:
– EphemeralKeyReveal(session) to learn a session’s ephemeral private key;
– SessionKeyReveal(session) to learn a session key;
– CorruptSC(party) to model an attacker which bypasses the tamper protec-

tion mechanisms and learns the party’s static key;
– EstablishParty(party, key) to register a static key on behalf of the party; a

party against which this query is not issued is said to be honest.

Approach 2. In this approach, it is supposed that both the static and ephemeral
keys are computed and used in the trusted area, and all other computations
are performed in the untrusted area. So, the attacker is provided with
– SessionKeyReveal(session) and EstablishParty(party, key) queries, and
– a reveal query to learn any intermediate result that is computed or used

in the untrusted area.

Matching sessions. A session at a party P̂i is identified with a quintuple
(P̂i, P̂j , out, in, role) wherein P̂j is the peer, out is the list of the messages sent
to the peer, in is the list of the messages received, and role is P̂i’s role, initiator

5 These implementation approaches are not the only possible, however they seem to be
common enough in real word to be considered in the model.
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I or responder R. Two sessions (P̂i, P̂j , out, in, role) and (P̂ ′
i , P̂

′
j , out’, in’, role’)

are said to be matching if P̂i = P̂ ′
j , P̂j = P̂ ′

i , out = in’, in = out’, and
role �= role’.

Session freshness. A session at an honest party following the implementation
approach 1 is said to be locally exposed if it were issued a SessionKeyReveal
query, or if it were issued an EphemeralKeyReveal query and its owner were
issued a CorruptSC query. At an honest party following the second approach,
a session is said to be locally exposed, if it were issued a SessionKeyReveal
query or an intermediate result query. A session is said to be exposed if it
is locally exposed or if its matching session (if any) is locally exposed. A
non–exposed session is said to be seCK–fresh.

seCK Security. A protocol is said to be secure if (i) when two honest parties
complete matching session, then they both derive the same session key; and
(ii) an efficient attacker in total control of communication links cannot dis-
tinguish a fresh session key from a random value chosen uniformly from the
distribution of session keys with probability significantly greater than 1/2.

As already reported in [28], seCK security implies eCK security6; seCK secu-
rity is also strictly stronger than CKFHMQV security. The seCK model and the
CKHMQV security models are formally incomparable, as the seCK model con-
siders only role–asymmetric protocols while the CKHMQV model considers only
role–symmetric protocols [8]7. Nevertheless, as shown in [28], there are attacks
which are captured in the seCK model but not captured in the eCK and CKHMQV

models. While any real word attack that is captured in the CKHMQV and eCK
models is also captured in the seCK model.

We stress that even when G–tests are performed, HMQV is insecure in the
seCK model, for two reasons. First, HMQV is known to be vulnerable to a KCI
impersonation attack when leakages on the shared secret σ are considered [16,
pp. 17–18]. Second, in the case of a (“sufficient” partial) leakage on ephemeral
secret exponents sA or sB in a session, an attacker can indefinitely impersonate
the session owner; the HMQV protocol cannot then, meet a security definition
which allows total leakages on both the shared secret σ and the ephemeral secret
exponents sA and sB .

Theorem 3. Under the RO model and the Gap Diffie–Hellman Assumption
in G, the FHMQV protocol is seCK–secure.

Although we already analyzed the main ingredients of the proof of Theorem 3
(the FXCR and FDCR schemes), for lack of space, we do not provide the proof
here. We defer the security reduction to the extended version of this paper.
6 There is no dynamic key registration query in the eCK model [19]; the adversary

is only allowed to select dishonest parties before starting its game. Dynamic key
registration permits the adversary to select the parties it sets as dishonest after
having seen their behaviour; this is an advantage for the adversary, and does not
affect the comparability between the seCK and the eCK models.

7 Given the work [8], the Claim 1 from [21] about the formal incomparability between
CKFHMQV and the CKHMQV models is trivial.
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Protocol 11. The FHMQV Key Exchange
I) The initiator Â does the following:

a) Choose x ∈R {1, · · · p − 1} and compute X = Gx.
b) Send (Â, B̂, X) to B̂.

II) At receipt of (Â, B̂, X), B̂ does the following:
a) Verify that X ∈ G∗.
b) Choose y ∈R {1, · · · p − 1} and compute Y = Gy.
c) Send (B̂, Â, Y ) to Â.
d) Compute d = H̄(X, Y, Â, B̂), e = H̄(Y, X, Â, B̂) and sB = y + eb mod p.
e) Compute σB = (XAd)sB and K = H(σB , Â, B̂, X, Y ).

III) At receipt of (B̂, Â, Y ), Â does the following:
a) Verify that Y ∈ G∗.
b) Compute d = H̄(X, Y, Â, B̂), e = H̄(Y, X, Â, B̂) and sA = x + da mod p.
c) Compute σA = (Y Be)sA and K = H(σA, Â, B̂, X, Y ).

IV) The shared session key is K.

Efficiency Separation. Without a proper validation of ephemeral keys, the
HMQV protocol cannot achieve its security goals. When ephemeral keys are
validated in HMQV, the FHMQV protocol is as efficient as HMQV in the imple-
mentation approach 1. Moreover, for FHMQV, in approach 2, if ephemeral keys
are computed in idle–time, only one digest computation, one modular integer
addition and one modular integer multiplication has to be performed in the
trusted area in non–idle-time; no exponentiation is performed in the trusted area
(usually a smart–card or a hardware security module) in non–idle time. As nei-
ther HMQV, nor MQV can confine the effects of a secret exponent (sA or sB)
leakage to the leaked session, none of these protocols can achieve such a perfor-
mance.

6 Concluding Remarks

We revisited the FXCR and the FDCR signature schemes which are the building
blocks of the FHMQV protocol, clarifying their strengths, independence to inter-
action order, and security advantages compared to the XCR and DCR schemes.
We clarified also both the security and efficiency separation between HMQV
and FHMQV, showing that even if ephemeral keys are validated in HMQV, the
FHMQV protocol is strictly stronger than HMQV both in security and efficiency.
In settings wherein a trusted device is used to store static and ephemeral keys,
a FHMQV implementation can achieve performances which cannot be achieved
by MQV or HMQV.

We pointed out a Key Compromise Impersonation attack against HMQV.
Namely we showed that omitting ephemeral key validation only once is sufficient
for a Key Compromise Impersonation. Besides, we revisited the motivations of
the seCK model, showing that it is formally stronger than the eCK model, and
from a real word perspective, stronger than the CKHMQV model.
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In a future work we will be interested in generalizing the compiler from [9]
to security models allowing dynamic key registration and intermediate results
leakage in the multiple CAs setting [4,5].

References

1. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: NIST Special Publication
800–57 Recommendation for Key Management - Part 1: General (Revision 3), (see
also the draft of Revision 4 at http://tinyurl.com/qdluuqj)

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 390–399. ACM (2006)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.:
ASICS: authenticated key exchange security incorporating certification systems.
In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134,
pp. 381–399. Springer, Heidelberg (2013)

5. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.:
ASICS: authenticated key exchange security incorporating certification systems.
Cryptology ePrint Archive: Report 2013/398 (2013)

6. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

7. Chalkias, K., Baldimtsi, F., Hristu-Varsakelis, D., Stephanides, G.: Two types of
key-compromise impersonation attacks against one-pass key establishment proto-
cols. In: Filipe, J., Obaidat, M.S. (eds.) E-business and Telecommunications. Com-
munications in Computer and Information Science, vol. 23, pp. 227–238. Springer,
Heidelberg (2009)

8. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security,
pp. 80–91. ACM (2011)

9. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor compro-
mise and ephemeral-key reveal. Des. Codes Crypt. 74(1), 183–218 (2013). Springer

10. Cullinan, J., Hajir, F.: Primes of prescribed congruence class in short intervals.
Integers 12, A56 (2012). De Gruyter

11. Ellison, W., Ellison, F.: Prime Numbers. Wiley and Hermann Editions, New York
(1985)

12. Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving discrete logarithms from
partial knowledge of the key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007)

13. Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve. SIAM
J. Discrete Math. 6(1), 124–138 (1993). SIAM
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Abstract. We propose a computationally secure and non-interactive ver-
ifiable secret sharing scheme that can be efficiently constructed from any
monotone Boolean circuit. By non-interactive we mean that the dealer
needs to be active only once, where he posts a public message as well as
a private message to each shareholder. In the random oracle model, we can
even avoid interaction between shareholders. By efficient, we mean that
we avoid generic zero-knowledge techniques. Such efficient constructions
were previously only known from linear secret sharing schemes (LSSS). It
is believed that the class of access structures that can be handled with poly-
nomial size LSSS is incomparable to the class that can be recognized by
polynomial size monotone circuits, so in this sense we extend the class of
access structures with efficient and non-interactive VSS.

1 Introduction

Secret-Sharing. Secret sharing schemes are fundamentally important tools in
many areas of cryptography, because they allow us to strike a balance between
confidentiality and security against loss of data, by storing shares of the data in
separate locations. This is useful, e.g., when storing cryptographic keys.

A secret sharing scheme is defined by two algorithms: a probabilistic shar-
ing algorithm which takes a secret message m as input and produces n shares
s1, ..., sn; and a reconstruction algorithm that takes a subset of shares {si|i ∈ I}
as input and outputs m, provided I is a qualified set. The family of qualified
sets is called the access structure of the scheme. An access structure A is always
monotone: if I ∈ A and I ⊂ J then J ∈ A. We also require that if a set J is
not qualified, then the subset of shares {si|i ∈ J} gives no information on m.
More precisely, in a perfect scheme, such a subset has distribution independent
of m. Or in case of computational secret sharing, an unqualified set of shares
has a distribution that can be simulated with computationally indistinguishable
distribution without knowing m. In a perfect scheme, shares must be at least
as large as the secret, while in computational secret sharing they can be much
smaller, which is a main motivation for considering computational schemes.
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Naturally, we want the total size of the shares to be minimal, and certainly
polynomial in n, and also we would like the sharing algorithm to run in time
polynomial in n.1

Access Structures. In the following, we will speak of the access structure
characterised by (for instance) a monotone Boolean circuit with n input bits:
we think of the input bits as being in 1-1 correspondence with n players, and
a player subset I can then be translated to a bit string by setting the bits
corresponding to members of I to 1 and the rest to 0. The access structure
characterised by the formula now consists of those subsets whose corresponding
bit string causes the formula to output 1. This notion generalises naturally to
any other computational model that computes monotone functions of bit strings.

Verifiable Secret-Sharing. One well-known and natural extension of secret
sharing is verifiable secret sharing (VSS), where the party generating the shares
(called the dealer in the following), and in addition some unqualified subset of
the players (or shareholders) may be corrupted by a malicious adversary. We
now execute a protocol in which the dealer sends shares to the players and some
verification is performed. If the sharing phase is successful, all honest players
must output a share, and otherwise they all reject. Later, any qualified player
subset can go together and reconstruct the secret.

We now want the following properties: if the dealer is corrupt and the sharing
phase is successful, the secret is well defined in the sense that any qualified subset
will later reconstruct the same secret. If the dealer is honest, the sharing is always
successful, and the secret is what the dealer intended; furthermore no unqualified
player subset has any information on the secret (information theoretically or
computationally). A VSS can be seen as a distributed commitment scheme that
allows to open the committed information even if the dealer is not present.

This is an important property and can prevent different attacks depending on
the scenario: one can imagine using a VSS as a distributed commitment scheme
where we want the commitment to be binding. Think of a powerful cheating
dealer who can “shut down” players arbitrarily; VSS guarantees that such a
dealer cannot change its mind and control the output of the reconstruction by
shutting down selected players. A perhaps more practically oriented application
is in multiparty computation: consider a client with some secret input that he
wants to supply to a multiparty computation run by a set of servers. A natural
solution that will handle malicious attacks is to VSS the input among the servers.
However, if this takes place in an asynchronous environment like the Internet,
we clearly need a scheme with as little interaction as possible, ideally a client
should be able to just post some information and then leave.

Non-Interactive VSS. The amount of interaction needed for the sharing phase
of a VSS depends on the model for communication that is assumed. In this
paper, we focus on the model where players have public encryption keys and

1 However, since there are doubly exponentially many (families of) access structures,
an easy counting argument shows that we cannot hope to handle all access structures
with polynomial time sharing algorithms.
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hold corresponding secret keys, and where no secure channels are assumed to be
given “for free”. But we assume that the dealer can publish information that all
honest players will agree on (using, e.g., a bulletin-board or a broadcast channel).
In this model, we clearly cannot get security without making computational
assumptions. Moreover, the best we can hope for in terms of interaction is that
the dealer publishes a single message, and each player then computes his output
from this message and his secret key. We call such a scheme non-interactive. A
slightly stronger property that many non-interactive schemes are born to satisfy
is public verifiability. Namely, anyone, even outside the scheme, but with access
to the public information, can perform the verification. One may also aim for
a weaker property called non-interactive with complaints, where the scheme is
only non-interactive if corrupt players behave honestly – but (motivated by the
Internet scenario explained above) we require that even if interaction is needed,
the dealer does not need to take part in this.

Our Contributions. In this paper, we present two VSS protocols with compu-
tational security, the first is non-interactive with complaints, while the second
is non-interactive and publicly verifiable in the random oracle model (used for
the Fiat-Shamir heuristic). Both schemes are built on top of the same locally
verifiable scheme, which is our main technical contribution and is based on the
standard RSA assumption.

The complexity of the scheme is polynomial in the size of a monotone Boolean
circuit characterising the access structure. It is the first scheme with this prop-
erty and it allows us to efficiently handle access structures that cannot be done
efficiently with linear schemes. We emphasise that although we assume that
some set-up information is available, we do not use generic non-interactive zero-
knowledge (which could be used to solve the problem in a rather trivial way). In
particular the communication complexity of our scheme does not depend on the
circuit complexity of the dealer’s computation when he generates shares, only on
the security parameter and the number of fan-outs in the circuit characterising
the access structure.

Related Work. The notion of information theoretic secret sharing was inde-
pendently discovered by Blakley [Bla79] and by Shamir [Sha79], who con-
structed efficient schemes for simple threshold access structures. The introduc-
tion of general secret sharing is due to Ito, Saito and Nishiziki [ISN89]. Later,
Benaloh and Leichter [BL90] constructed schemes that are efficient in the size
of a Boolean formula characterising the target access structure. Karchmer and
Wigderson [KW93] introduced the notion of a monotone linear span program
(MSP) and showed that any MSP induces a linear secret sharing scheme (with
complexity polynomial in the size of the MSP) for the access structure charac-
terised by the MSP. In fact, any linear secret sharing scheme can be seen as being
derived from an MSP, including the schemes by Shamir and Benaloh-Leichter.

This gives us efficient secret sharing schemes for any access structure that
can be characterized by an MSP of size polynomial in the number of players. If
one now wants to extend the class of access structures we can handle efficiently,
it is natural to consider those characterized by polyomial size Boolean circuits
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(rather than formulas as considered in [BL90]). The reason for this is that the
classes of access structures characterised by polynomial size MSPs, respectively
monotone Boolean circuits are incomparable as far as we know, and hence being
able to construct secret sharing schemes efficiently from monotone circuits would
indeed give us something new. However, we know no such construction resulting
in a perfect scheme. On the other hand, Vinod et al. [VNS+03] proposed a
construction yielding computational security (based on an unpublished idea by
Yao [Yao89]).

As for construction of verifiable secret sharing schemes, all constructions we
know of are schemes that start from a regular secret sharing scheme and add
verifiability on top. In a model where there are secure point-to-point channels
between all pairs of players, this can be done with perfect security for any lin-
ear scheme, under certain conditions on the access structure [CDM00]. One can
even convert any secret sharing in a black-box fashion to VSS with statistical
security [CDD00] but the construction uses a lot of interaction and generic zero-
knowledge techniques to some extent. In the communication model we consider in
this paper, any linear scheme cane made verifiable under computational assump-
tions. The basic idea was first proposed by Pedersen [Ped92] based on Shamir’s
scheme, but the principle easily extends to any linear scheme. The resulting VSS
is “almost” non-interactive with complaints, i.e., the dealer needs to help resolve
conflicts if there are complaints. This problem was resolved in [DT07]. The notion
of publicly verifiable secret sharing is introduced by Stadler in [Sta96].

Technical Overview. Our main result is to extend the class of access structures
we can handle efficiently and verifiably, in the same way that [VNS+03] extended
what we can do with regular secret sharing. We do so by constructing a verifiable
version of the scheme from [VNS+03]2. Prior to our work, no such construction
was known.

The idea is that the dealer runs (a version of) the sharing scheme from
[VNS+03], resulting in each player receiving his share. But in addition he also
makes public a “tag” for each share (which is constructed in such a way as to
preserve computational privacy). Every shareholder can check the share they
received against the public tag. Furthermore, it is now possible (very simplisti-
cally speaking) to run the reconstruction algorithm on the set of all tags and
make checks under way such that if the “homomorphic reconstruction” does not
abort, then the set of actual shares is indeed a consistent sharing of a well defined
secret.

We obtain this by constructing a symmetric encryption scheme (as required
in the secret sharing scheme from [VNS+03]) and a tagging scheme that “lives”
in the same RSA group and has certain convenient homomorphic properties.

This does not yet ensure that everything will always be fine: the dealer could
make a good set of tags, but send an incorrect share to one or more of the
players. A player P can detect that he has been sent a bad share, but this will

2 On the way to our result, as a secondary contribution, we also prove that the con-
struction of [VNS+03] satisfies a strong, simulation based notion of privacy, while
the original paper only argues for a weaker, “one-way” definition of privacy.
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not be clear to the other players: they have only seen a ciphertext meant for P
and cannot tell if the dealer is corrupt or P is complaining for no good reason.

We can resolve this in two different ways, in both cases by using a specific
encryption scheme for sending shares to players. The first approach is to use
an encryption scheme that has so-called verifiable opening, allowing P to reveal
his share along with a proof that this was indeed what the dealer sent him
in encrypted form. This technique was introduced in [DT07] and formalized in
[DHKT08]. This gives a scheme that is non-interactive with complaints. The
second approach is to use an encryption scheme we suggest that is designed to
allow the dealer to give an efficient proof (in the random oracle model) that
the shares he encrypts indeed correspond to the tags he publishes. This gives a
non-interactive scheme with only a small computational overhead compared to
the work needed to compute shares in a non-verified way.

Roadmap. Section 2 introduces the notation and some preliminaries which will
be used in the rest of the paper. Section 3 briefly reviews the computational
secret sharing scheme of Vinod et al. Section 4 introduces the notion of locally
verifiable secret sharing and presents our novel construction. Finally in Sect. 5
we discuss how to combine the locally verifiable scheme with different kind of
encryption schemes to achieve a non-interactive publicly verifiable scheme and a
non-interactive scheme with complaints.

2 Notation and Preliminaries

Basic Notation. We use the shorthand [m,n] for {m,m + 1, . . . , n − 1, n} and
[n] for [1, n]. If S is a set x ← S is a random element from S, if A is an algorithm
y ← A(x) is the output of A run on input x on an uniformly random tape. If
S ⊆ [n], then s = set2bits(S) is an n-bit string where the i-th bit of s is 1 iff
i ∈ S. We call a function f : N → R negligible if for all c, for all big enough
κ, f(κ) < κ−c. We use negl(κ) for a generic negligible function. We say two
families of distributions U0 = {U0,κ}κ∈N, U1 = {U1,κ}κ∈N are computationally
indistinguishable if for all probabilistic polynomial time (PPT) distinguisher D,
|Pr[D(Ub,κ) = b] − 1

2 | = negl(κ) and we write U0 ≈c U1 for short.

Access Structure. An access structure A of [n] is a monotone subset A ⊆ 2[n].
Given a set I ⊆ [n] we say that I is a qualified set if I ∈ A or that I is an
unqualified set if I �∈ A. We say that a Boolean circuit C : {0, 1}n → {0, 1}
describesA if C(set2bits(I)) = 1 ⇔ I ∈ A.

Circuits. We use the following notation for circuits: a circuit C : {0, 1}n →
{0, 1} is described by � > n wires {w1, . . . , w�}i∈[�] and λ gates {gi}i∈[λ]. We
call {wi}[1,n] the input wires, {wi}[n+1,�−1] the internal wires and we call w�

the output wire. Every internal wire connects exactly two gates, while the input
wires and the output wire are only connected to one gate (therefore, there are
exactly λ = (2� + n + 1)/3 gates). Wires carry values: at the beginning all wires
are initialized to ⊥, and we say a wire is assigned if wi �= ⊥.
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Each gate gi is described by a tuple from [�]3 (representing pointers to their
input/output wires) and a type typei ∈ {and, or, fanout}, which determines the
semantic of the wires: if gi has type typei ∈ {and, or}, then gi has two input wires
(wiLI

, wiRI
) (for left input and right input) and one output wire wiO

. Finally, if
gi has type typei = fanout, then gi has one input wire wiI

and two output wires
(wiLO

, wiRO
). We assume (without loss of generality) that the output wire w� is

not the output of a fan-out gate.
We say that a gate is ready to be evaluated if: both wiLI

�= ⊥ and wiRI
�= ⊥

when typei = and; either wiLI
�= ⊥ or wiRI

�= ⊥ when typei = or; wiI
�= ⊥ when

typei = fanout. Finally, we say that a gate is assigned if all its output wires have
been assigned.

The type of a gate determines how a circuit is evaluated. To exemplify our
notation, we describe how to evaluate a simple Boolean circuit C : {0, 1}n →
{0, 1} on input x ∈ {0, 1}n.

1. Parse the input x = (x1, . . . , xn) ∈ {0, 1}n and assign wi = xi for all i ∈ [n];
2. While w� = ⊥, find the first gate gi which is ready to be evaluated :

– If typei = and: Assign wiO
= wiLI

∧ wiRI
;

– If typei = or: Assign wiO
= wiLI

∨ wiRI
;

– If typei = fanout: Assign wiLO
= wI and wiRO

= wI ;
3. Output w�;

Finally, we call (�and, �or, �fanout) respectively the number of (and, or, fanout)
gates in the circuit.

3 Computational Secret Sharing

In this section we review the basic definitions of a computational secret-sharing
scheme and present the construction of Vinod et al. [VNS+03] in our nota-
tion. A computational secret-sharing scheme (CS3) is a tuple of algorithms
π = (Setup,Share,Rec) which are defined and used as follows:

Setup: The randomized setup algorithm pp ← Setup(1κ) (run once and for
all) outputs some public system parameters pp for the secret sharing scheme
(which contains, among other things, some message space M from which the
secret can be chosen)3.

Share: A dealer can share a secret message m ∈ M with n parties P1, . . . , Pn

according to an access structure described by a circuit C : {0, 1}n → {0, 1}
by running the randomized algorithm (s0, s1, . . . , sn) ← Sharepp(C,m) which
outputs n + 1 shares s0, s1, . . . , sn. The dealer sends to each party Pi the
shares (s0, si). Sometimes we refer to s0 as the public share and to the si’s,
i ∈ [n] as the private shares.

3 In case where no trusted party exists to run this setup, a secure computation protocol
can be used instead. We note that our setup algorithm will output an RSA modulus,
and that several efficient protocols for this task exist, depending on the desired
security guarantees and threshold.
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Reconstruct: A set of parties {Pi}i∈I such that C(set2bits(I)) = 1 can recon-
struct the secret message m by running m ← Recpp(s0, {si}i∈I).

Intuitively, we want such a scheme to be correct (any qualified set of parties
can reconstruct the secret m) and private (any unqualified set of parties does
not learn any information about m). This can be formalized as follows:

Definition 1 (Correctness). A CS3 π is correct if for all m ∈ M, for all
circuits C describing an access structure A, and for all I ∈ A,

Pr[m �= Recpp(s0, {si}i∈I)] ≤ negl(κ)

where (s0, s1, . . . , sn) ← Sharepp(C,m), pp ← Setup(1κ) and the probabilities are
taken over the choices of all algorithms.

In the following definition we ask for privacy in a strong, simulation based
sense, while in the original work [VNS+03] only a weaker “one-way” version of
privacy is considered.

Definition 2 (Privacy). A CS3 π is private if for all circuits C describing
an access structure A, and for all I �∈ A, there exist a PPT simulator Sim such
that for all m ∈ M:

Sim(pp,C, I) ≈c (s0, {si}i∈I)

where pp ← Setup(1κ), (s0, s1, . . . , sn) ← Sharepp(C,m)

Remarks on the Model. Note that at this point we make the assumption
that there are secure point-to-point channels between the dealer and the parties.
This assumption will be removed in Sect. 5 where we will show two techniques
for distributing the shares which make the overall scheme verifiable against a
malicious dealer.

Constructing CS3s. Vinod et al. [VNS+03] proposed a CS3 with the following
communication complexity: |s0| = O(|C|+κ·�fanout) and si = O(κ) for all i ∈ [n].
Their scheme uses a symmetric encryption scheme (G,E,D), where the key space
and message space of the encryption scheme are the group used by the secret
sharing scheme (for instance, the group of κ-bit strings with bitwise XOR of
strings as the group operation).

Setup: The setup algorithm outputs a cyclic group G (which we write here in
multiplicative notation) which is used both as the message space M and as
the working group for the scheme, as well as an IND-CPA secure symmetric
encryption scheme (G,E,D) where the key space and the message space is G.

Share: To share a secret m ∈ G with an access structure described by a circuit
C among n parties, the dealer runs the following algorithm:
1. Assign w� = m and let s0 = C;
2. While wj = ⊥ for some j ∈ [n] (the input wires), find the first assigned

gate gi and:
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– If typei = and: Secret share the value of the output wire between
the two input wires i.e., pick a random wiLI

← G and assign wiRI
=

wiO
· (wiLI

)−1;
– If typei = or: Copy the value of the output wire to both input wires

i.e., assign wiLI
= wiO

and wiRI
= wiO

;
– If typei = fanout: Assign a fresh key to the input wire, and append

encryptions of the output wires to the public share i.e., compute k ←
G(1κ), ciLO

= E(k,wiLO
) and ciRO

= E(k,wiRO
); finally, assign wiI

=
k and let s0 = s0||(i, ciLO

, ciRO
);

3. Let si = wi for all i ∈ [n], and output (s0, s1, . . . , sn);
Reconstruct: To reconstruct a secret m given a set of shares (s0, {si}i∈I) from

some qualified set I run the following algorithm:
1. Assign wi = si for all i ∈ I and recover C from s0.
2. While w� = ⊥, find the first gate gi which is ready to be evaluated and:

– If typei = and: Assign wiO
= wiLI

· wiRI
;

– If typei = or: Assign wiO
= wiLI

if wiLI
�= ⊥ or wiO

= wiRI
otherwise;

– If typei = fanout: Recover (i, ciLO
, ciRO

) from s0 and assign

wiLO
← D(wiI

, ciLO
) and wiRO

← D(wiI
, ciRO

)

3. Output w�;

The scheme is correct by inspection. Privacy can be proven by constructing
a simulator Sim who runs the sharing scheme for a random secret m′, and then
arguing that any distinguisher can be used to break the IND-CPA security of
the underlying encryption scheme. We will prove this in detail for the locally
verifiable variant of this scheme construction (see proof of Theorem1).

4 Locally Verifiable Secret-Sharing Scheme

In this section we show how to make the CS3 of Vinod et al. [VNS+03] verifiable
i.e., even if the dealer is corrupt, we want to make sure that the secret message
is well defined. In particular, we need to make sure that the output of the recon-
struction phase does not depend on which of the possibly many set of qualified
parties reconstructs the secret. Thus we define a locally verifiable computational
secret-sharing scheme (VCS3) by adding an algorithm as follows:

Verification: The randomized algorithm f ← Verpp(s0, si) outputs a flag bit f ∈
{true, false} which indicates whether (s0, si) is a valid share for party Pi.

We now ask the following property:

Definition 3 (Local Verifiability). We say a CS3 scheme is locally verifiable
if for all n ∈ Z, for all circuits C describing an access structure, and for all PPT
algorithms D∗ the following holds: Let pp ← Setup(1κ) and (s0, s1, . . . , sn) ←
D∗(pp). If ∀i ∈ [n],Verpp(s0, si) = true, then with a overwhelming probability
there exists a value m ∈ M such that Recpp(s0, {si}i∈I) = m for all qualified
sets I ∈ A (where A is defined in s0).
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Remarks on the Model. It is clear that without some degree of interaction
between the parties, it is impossible to achieve even a locally verifiable scheme.
Think of a setting with two parties P1, P2 and a simple access structure A =
{{P1}, {P2}}. Now the dealer can simply send s1 �= s2 to the two parties, which
will therefore reconstruct to two different secrets. Therefore in this section we
make the assumption that there is a broadcast channel from the dealer to the
parties, which ensures that all parties Pi receive the same public share s0. The
private shares si’s are still sent over private channels from the dealer to the
parties. Note that local verifiability does not say anything about what to do
when one of the parties rejects her share. We deal with complaints later in
Sect. 5.

Feasibility of Locally Verifiable CS3. Note that it would be possible to
enhance any CS3 scheme (such as the one presented in Sect. 3) with the local
verifiability property described above by sending to each party, together with si,
a non-interactive zero-knowledge proof (NIZK) that si was computed correctly
(this could be achieved by generating the crs for the NIZK during the setup
phase, and letting the dealer append a commitment to m and the randomness
used in Share, and then the Ver algorithm simply checks the NIZK). However the
communication of the resulting verifiable scheme would depend on the dealer’s
local computation (i.e., the circuit complexity of the original Share algorithm)
and thus add a very significant overhead. In the following, we look for a solution
which avoids this problem and essentially preserves both the communication and
computational complexity of the original scheme by Vinod et al.

Locally Verifiable CS3. We present here our locally verifiable CS3. The
scheme is based on the standard RSA assumption. Intuitively, we make the
scheme locally verifiable by having the dealer publish some “tags” of all the
private shares in the public share, using some function ti = Tag(si). Now, since
Tag is deterministic, every party can check that their private share is consistent
with the public tag. In addition, the Tag function and the Recpp function are
designed so that they “commute”, meaning that (from a very high level point of
view) it is possible to compute the reconstruction function on the tags (instead
of the actual values) and verify if the obtained tag is equal to the published one
i.e.,

Tag(m) = Recpp(s0,Tag(s1), . . . ,Tag(sn))

4.1 Building Blocks

The Group. The scheme works in an RSA group Z
∗
N where the RSA modulus

is generated during the setup phase (hence its factorization is unknown to both
the dealer and the parties) (see footnote 3). All operations are carried out in the
group Z

∗
N , hence if x ∈ Z

∗
N and e ∈ Z we write “y = xe” instead of “y = xe

mod N”.
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The Tags. The scheme uses a “tag” function Tag(x) = xτ where τ is a prime
number larger than N which is generated by the dealer – it is easy to see that
Tag is multiplicatively homomorphic i.e., Tag(x) · Tag(y) = Tag(x · y).

The Encryption Scheme. We also use a symmetric encryption scheme (G,E,D)
where G outputs a random k ← Z

∗
N ; The encryption function c ← E(k,m)

chooses a random prime ρ > n and outputs it together with σ = kρ · m; The
decryption function m ← D(k, c) outputs m = σ ·k−ρ. We note a useful property
of our encryption scheme and the Tag function, namely that they commute
nicely: if D(k, (ρ, σ)) = m then D(Tag(k), ρ,Tag(σ)) = Tag(m) since

D(Tag(k), ρ,Tag(σ)) = Tag(σ) · Tag(k)−ρ = στ · (kτ )−ρ = (σ · k−ρ)τ

= Tag(m) (1)

Later in the proof we will need the following property from this scheme
(intuitively, the Lemma says that the scheme is one-way secure under single-
query chosen plaintext attack):

Lemma 1. Consider the following game: (1) a challenger runs k ← G(1κ) (2)
the adversary picks a value m ∈ Z

∗
N ; (3) the challenger picks a random r ∈ Z

∗
N

and sends (E(k,m),E(k, r)) to the adversary; (4) the adversary outputs r′; For
all PPT adversary, r′ �= r except with negligible probability if the RSA problem
is hard.

Proof. In step (3) the adversary receives a 4-tuple from Z
∗
N composed of

(ρ0, σ0 = kρ0 · m, ρ1, σ1 = kρ1 · r)

We first claim that an adversary who computes r′ = r can be used to compute k
efficiently in the following way: let a, b be the values such that a · ρ0 + b · ρ1 = 1
(which are guaranteed to exist since ρ0, ρ1 are different primes). Then

(σ0 · m−1)a · (σ1 · r−1)b = ka·ρ0+b·ρ1 = k

Now the reduction solves the RSA instance (e, y = xe) by setting ρ0 = e, σ0 =
m · y, sampling a random prime ρ1 and a random element σ1 from Z

∗
N . Note

that this is the exact distribution that the adversary was expecting since this is
equivalent to the choice of a random r = y−1 ·σ1 in the game, and r is uniformly
distributed in Z

∗
N (unless some of the random choices are not invertible mod N ,

but in that case the reduction can trivially factor N).4

The Extractor. Finally, Ext : Z∗
N → {0, 1}μ is an extractor which extracts the

μ = log(κ) hard-core bits of the RSA function from some value in Z
∗
N (the least

significant log(κ) bits will do [ACGS88]).

4 (Note that the scheme would not be secure if the adversary could make 2 CPA
queries, since in that case it could recover k in the same way as the reduction does.).
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4.2 The Construction

We are now ready to give the details of our construction:

Setup: Generate an RSA modulus N and a random prime number τ > N which
defines the function Tag(x) = xτ and output pp = (N, τ);

Share: To share a secret m ∈ {0, 1}μ with an access structure described by a
circuit C among n parties, the dealer runs the following algorithm.
1. Assign w� ← Z

∗
N

2. Compute u = Ext(w�) ⊕ m;
3. Compute t� = Tag(w�);
4. Let s0 = (C, u, τ, t�);
5. While wj = ⊥ for some j ∈ [n] (the input wires), find the first assigned

gate gi and:
– If typei = and: Share the value of the output wire between the two input

wires i.e., pick a random wiLI
← Z

∗
N and assign wiRI

= wiO
· (wiLI

)−1;
In addition, compute the tags for two input wires tiLI

= Tag(wiLI
) and

tiRI
= Tag(wiRI

);
– If typei = or: Copy the value of the output wire to both input wires

i.e., assign wiLI
= wiO

and wiRI
= wiO

; In addition, copy tiLI
= tiO

and tiRI
= tiO

;
– If typei = fanout: Assign a fresh key to the input wire, and append

encryptions of the output wires to the public share i.e., compute k ←
G(1κ), ciLO

← E(k,wiLO
) and ciRO

← E(k,wiRO
); finally, assign wiI

=
k, compute tiI

= Tag(wiI
) and let s0 = s0||(ciLO

, ciRO
, tiLO

, tiRO
);

6. Let si = wi for all i ∈ [n], append s0 = s0||(t1, . . . , tn);
Verification: Upon receiving (s0, si) party Pi runs the algorithm Verpp(s0, si)

described here:
1. From s0, recover (C, u, τ, t�), ti for every i ∈ [n], and ciLO

, ciRO
, tiLO

, tiRO

for every fanout gate gi;
2. If ti �= Tag(si) stop and output false; else:
3. Assign wi = ti for all i ∈ [n].
4. While w� = ⊥, find the first gate gi whose input wires are all assigned

and:
– If typei = and: Assign wiO

= wiLI
· wiRI

;
– If typei = or: If wiLI

�= wiRI
stop and output false; else assign wiO

=
wiLI

;
– If typei = fanout: Parse (ciLO

, ciRO
) = (ρiLO

, σiLO
, ρiRO

, σiRO
). If

D(wiI
, (ρiLO

,Tag(σiLO
)) �= tiLO

or D(wiI
, (ρiRO

,Tag(σiRO
)) �= tiRO

stop and output false; else assign wiLO
= tiLO

and wiRO
= tiRO

.
5. Stop and output false if w� �= t�;
6. Else output true;

Reconstruct: To reconstruct a secret m given a set of shares (s0, {si}i∈I) from
some qualified set I run the following algorithm.
1. Assign wi = si for all i ∈ I and recover C from s0.
2. While w� = ⊥, find the first gate gi which is ready to be evaluated and:
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– If typei = and: Assign wiO
= wiLI

· wiRI
;

– If typei = or: If wiLI
�= ⊥, assign wiO

= wiLI
, else wiO

= wiRI
.

– If typei = fanout: Recover (ciLO
, ciRO

) from s0 and assign

(wiLO
, wiRO

) ← (D(wiO
, ciLO

),D(wiI
, ciRO

))

3. Output m = u ⊕ Ext(w�);

The scheme satisfies correctness by inspection. We here state the theorems
about the privacy and local verifiability, as well as giving a brief high-level
overview of the proofs. The full proofs are presented in the following two sub-
sections.

Theorem 1. This construction is private according to Definition 2 under the
assumption that the RSA problem is hard.

The proof of this theorem proceeds in the following steps: it can be seen that
the scheme is secure if the circuit contains no fanout gates, since in this case
(roughly speaking) the adversary is given (xτ ,Ext(x)⊕m) and is asked to output
some information about m. Any such adversary can be used to break the RSA
function xτ since Ext extracts the hard-core bits. To deal with the fanout gates
we construct a series of hybrids where at each step we decompose the circuit
C into a circuit C∗ which does not contain any fanout gate and a circuit C ′

which takes two extra inputs (both set to be the output of C∗ and one fanout
gate less than the original circuit C. It is possible to argue that an adversary
which succeeds in breaking the security for the original circuit C can be used to
break the security of the scheme run on the circuit C ′ with one less fanout gate,
roughly thanks to the security of the encryption scheme used in the construction
of the fanout gates and the fact that the rest of the circuit C∗ does not contain
any fanout gate.

Theorem 2. This construction is locally verifiable according to Definition 3.

The proof of this theorem proceeds by first noting that the tag function is
a permutation and hence the set of tags uniquely defines a set of numbers mod
N that are supposed to act as the “wire values” wi in the circuit C. One then
checks that the verification ensures that the values on wires going into a gate
correctly correspond to the value on the output wire. For fanout gates this check
crucially relies on the observation above (1), that the tag function commutes
with the encryption scheme. Hence, if everything checks out, the public data
must correspond to a correct execution of the sharing algorithm, and therefore
by the correctness property all qualified sets will reconstruct the same secret.

4.3 Proof of Privacy (Theorem1)

Proof. We construct the simulator Sim as following:

1. Sim samples r ← {0, 1}μ;
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2. Sim runs (s0, s1, . . . , sn) ← Sharepp(C, r)
3. Sim outputs (s0, {si}i∈I).

We now prove that the output of Sim is computationally indistinguishable from
the distribution of the real output.

From Decision to Search. Since τ is a prime number larger than N the
function Tag is a one-way permutation. The only difference between a the real
view and the simulated view is that in the real view u = Ext(w�) ⊕ m whereas
in the simulated view u is a uniformly random value. Since Ext extracts the
hard core bits of the RSA function Tag, any distinguisher D that distinguishes
between the real view and the simulated view can be turned into an algorithm
D′ that outputs w�. We now prove that computing w� is impossible without
breaking the RSA assumption.

Without Fanout Gates. We start by noting that if the circuit C had no fanout
gates, then it is computationally hard to find the value w�: Without fanout gates
the value corresponding to the output wire w� is simply the product of a subset
of the input wires wi i.e., w� =

∏
i∈S si for some set S (note the set may not

be unique, in which case we consider the first such set in lexicographical order).
In the privacy game the adversary only sees shares for an unqualified set i.e.,
the adversary receives {si}i∈I for some I such that C(set2bits(I)) = 0, meaning
that T = S \ I �= ∅. Now an adversary who computes w� can be turned into an
adversary who computes y =

∏
i∈T si, which is equivalent to breaking the one-

way property of the permutation Tag. In particular, since Tag is homomorphic,
given such an adversary a reduction can solve an RSA instance (τ, y = xτ ) by
choosing |T | − 1 random si’s, defining the last si such that y =

∏
i∈T si and

computing the respective tags. Note that the same argument can be made for
any internal wire: let Ci(x) be the circuit which outputs the same value as gate
gi in C, then if Ci(set2bits(I)) = 0 then no adversary can output the value wiO

.

Removing Fanout Gates. The core of the proof is to show how we can “get
rid of” the fanout gates by decomposing C into circuits without any fanout
gates. We proceed as follows: C∗

�fanout
is a circuit which takes an input of length

n∗
�fanout

= n+2�fanout wires (the input wires plus all the output wires of the fanout
gates) and contains all gates that can be reached from the output wire without
traversing any fanout gate. As the next step, we take the input wire of the first
fanout gate encountered in the previous process, and we define C∗

�fanout−1 as the
circuit which takes an input of length n∗

�fanout−1 = n + 2(�fanout − 1) and contains
all gates that can be reached from this wire without traversing any fanout gate.
The process stop with C∗

0 which is guaranteed to take an input of length at most
n∗
0 = n, that is its input is the same as the original circuit C and in particular

none of its inputs come from the output of any fanout gates.
We now define the values xn+1 = xn+2 = C∗

0 (x1, . . . , xn), xn+3 = xn+4 =
C∗

1 (x1, . . . , xn∗
1
) up to xn+2�fanout−1 = xn+2�fanout = C∗

�fanout−1(x1, . . . , xn∗
�fanout−1

). It
is convenient to define, given a set I such that x = set2bits(I), a set I∗ such that
set2bits(I∗) = (x1, . . . , xn+2�fanout). It is now clear by inspection that

C(x) = C∗
�fanout

(x1, . . . , xn∗
�fanout

) ∀x
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Crucially all the circuits (C∗
0 , . . . , C∗

�fanout
) do not contain any fanout gates. We

construct also circuits (C ′
0, . . . , C

′
�fanout

), where C ′
j takes an input of size at most

n′
j = n + 2j and has exactly �fanout − j fanout gates. We define C ′

�fanout
= C∗

�fanout
and C ′

j−1 to be equal to

C ′
j(x1, . . . , xn′

j−1
, C∗

j (x1, . . . , xn′
j−1

), C∗
j (x1, . . . , xn′

j−1
))

It is clear by inspection that C = C ′
0.

After the heavy but necessary notation, we are ready for showing our reduc-
tion. We construct a series of adversaries Dj who get as input

(s0, s1, . . . , sn+2j) ← Sharepp(C ′
j , r)

We have already argued that no adversary can output the value correspond-
ing to the output wire (which is necessary to distinguish between the real and
simulated execution) if the circuit does not contain any fanout gates, which
implies that D�fanout cannot either without breaking the RSA assumption. We
then show that if Dj−1 succeeds in outputting the value of the output wire for
C ′

j−1 with noticeable probability then we can construct Dj who outputs the
value of the output wire for C ′

j as well. Using standard hybrid arguments we
can therefore conclude that the adversary D = D0 can only succeed in breaking
privacy by breaking the RSA assumption.

The reduction goes as follows: Dj gets as input all the shares s′
i for all

i ∈ I∗ ∩ [n + 2j], where (s′
0, s

′
1, . . . , s

′
n+2·j) ← Sharepp(C ′

j , r). Remember that
C(set2bits(I)) = 0.

Now the Dj needs to construct a sharing for the circuit C ′
j−1 which is of

the format expected by Dj−1. Intuitively this is done by adding a single fanout
gate to the circuit and running the share procedure for the circuit C∗

j . The
complication here is that the shares (s∗

0, s
∗
1, . . . , s

∗
n+2j−2) for the circuit C∗

j must
be consistent with the existing shares for all known shares i.e., it must be that
s∗

i = s′
i i ∈ I∗ ∩ [n + 2j].

Case 1: (the output of C∗
j is 1)

The easier case is when C∗
j (set2bits(I∗ ∩ [n + 2j − 2])) = 1 since in this

case no values associated with the fanout gate we are introducing are sup-
posed to stay hidden from Dj−1 – in this case Dj runs the reconstruc-
tion procedure for C∗

j using the known shares and, since C∗ does not
contain any fanout gate, the reconstruction boils down to multiplying the
shares for any qualified set Sj for C∗

j i.e., kj =
∏

i∈Sj
s′

i and compute
encryptions ciLO

← E(kj , s
′
n+2j−1), ciRO

← E(kj , s
′
n+2j). Finally Dj sets

s∗
0 = s′

0||(ciLO
, ciRO

) and s∗
i = s′

i and gives these values as input to Dj−1.
Now Dj simply outputs whatever Dj−1 outputs and wins the game: In this
case the values received by Dj−1 are distributed exactly as in the real exper-
iment, and therefore the probability with which Dj−1 will output the value
for the output wire is exactly the same.
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Case 2: (the output of C∗
j is 0, but s′

n+2j−1 and s′
n+2j are known anyway)

This case happens if, for example, both outputs of the fanout gate are input
to OR gates which evaluate to 1. Since in the construction we set both input
values of an OR gate to be equal to its output, this means that both Dj

and Dj−1 know these values. In this case Dj will simply choose a random k
and encrypt those shares as above. Since C∗

j (set2bits(I∗ ∩ [n + 2j − 2])) = 0
and C∗

j does not contain any fanout gate, this implies that Dj cannot tell
the difference without breaking the RSA assumption. Note that in this case
we are not relying on the security of the encryption scheme – having access
to both encrypted output Dj can actually recover k. The point here is that
since k =

∏
i∈Sj

s′
i and the adversary does not know at least one of these

s′
i’s, we can conclude that an adversary which distinguishes successfully can

be used to break the one-wayness of of Tag.
Case 3: (the output of C∗

j is0 and at least one betweens′
n+2j−1 ands′

n+2j is not
known)
The case where C∗

j (set2bits(I∗ ∩ [n + 2j − 2])) = 1 and at least one between
s′

n+2j−1 and s′
n+2j is not known is the most interesting, since in this case

we rely on the security of the encryption scheme. Wlog say that Dj−1 knows
s′

n+2j−1 but not s′
n+2j (the case where both are unknown follow in a straight-

forward way): now Dj−1 invokes the one-query CPA oracle for the encryption
scheme with s′

n+2j−1 and receives ciLO
← E(k, s′

n+2j−1) and ciRO
← E(k, r),

and if Dj outputs the value of the output wire Dj−1 can reconstruct r and
therefore break the security of the encryption scheme.

4.4 Proof of Verifiability (Theorem2)

Proof. To prove local verifiability we first observe that since Tag is a permuta-
tion, given any y there exist a single x such that Tag(y) = x.

Given any qualified set I ⊆ [n] such that C(set2bits(I)) = 1 we define a set
I ′ ⊆ [�] such that i ∈ I ′ if wi = 1 during the (plain, Boolean) evaluation of
C(set2bits(I)). Let wV

i the values assigned to the wires during the verification
phase, and wR

i the values assigned to the wires during the reconstruction phase
using the (qualified) set I. We prove that if Verpp(s0, si) = true for all i ∈ [n],
then for all i ∈ I ′ it holds that Tag(wR

i ) = wV
i .

We prove this by induction. Thanks to Step 2 in Ver, it holds that

Tag(wR
i ) = wV

i for alli ∈ I ⊂ I ′

Now take the next wire i ∈ I ′ \ I and wlog assume that i is the output of a gate
gj that only takes inputs from wires with index in [n + i] ∩ I ′ (one can always
reorder the wires to make sure that this happens). We can now argue that:

– If gj is an AND gate, then the value on wire i = jO is a function of the values
on wires jLI and jRI , and since i ∈ I ′ it must also be the case that jLI and jRI

are in I ′ ∩ [n + i] (the output of the AND gate is set only if both input wires
are set), which allows to use the induction hypothesis. By induction it holds
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that Tag(wR
jLI

) = wV
jLI

and Tag(wR
jRI

) = wV
jRI

. Now since wR
jO

= wR
jLI

· wR
jRI

and also wV
jO

= wV
jLI

· wV
jRI

and, since the Tag function is homomorphic this
implies that:

Tag(wR
jO

) = Tag(wR
jLI

· wR
jRI

) = wV
jLI

· wV
jRI

= wV
jO

– If gj is an OR gate, then the value on wire i = jO is a function of the values
on wires jLI and jRI , and since i ∈ I ′ it must also be the case that at least one
between jLI and jRI are in I ′ ∩ [n + i] (the output of the OR gate is set only
if at least one of the input wires are set), which allows to use the induction
hypothesis: by induction it holds that at least one between Tag(wR

jLI
) = wV

jLI

and Tag(wR
jRI

) = wV
jRI

holds. During the verification phase wV
jO

= wV
jLI

only
if wV

jLI
= wV

jRI
, instead during the construction phase wR

jO
might be set to

wR
jLI

or wR
jLI

depending on which qualified set is being used. But since Tag is
a permutation, Tag(a) = Tag(b) implies that a = b, and therefore during the
reconstruction we have that if wR

jLI
�= ⊥ and wR

jRI
�= ⊥ then wR

jLI
= wR

jRI
and

therefore
Tag(wR

jO
) = Tag(wR

jLI
) = wV

jLI
= wV

jO

– If gj is a fanout gate, then the value on the wire i = jLO (the case where
i = jRO can be argued exactly in the same way) is a function of the value on
the wire jI and in the public share s0. During the verification phase wV

jLO
=

tjLO
only if tjLO

= D(wV
jI

, ρjLO
,Tag(σjLO

)) while in the reconstruction phase
wR

jLO
= D(wR

jI
, cjLO

). By induction it holds that Tag(wR
jI

) = wV
jI

. Using the
fact that the encryption scheme and the Tag function commute we show that:

Tag(wR
jLO

) = D(wR
jI

, cjLO
)τ = D((wR

jI
)τ , ρjLO

, στ
jLO

)

= D(wV
jI

, ρjLO
,Tag(σjLO)) = wV

jLO

Since � ∈ I ′ (the set is qualified), this finally implies that Tag(wR
� ) = wV

� , and
thanks to Step 5 in the Ver algorithm we can conclude that wV

� = t� and therefore
the value wR

� is the same for all qualified sets. Finally, since m = u ⊕ Ext(wR
� )

is a deterministic function of u and wR
� , we can conclude that all qualified sets

reconstruct the same secret m.

5 Globally Verifiable Secret Sharing Schemes

In the previous section we have presented a scheme where each player can check
whether the private share received from the dealer is consistent with the public
share. In this section we present two possible ways of implementing private
channels from the dealer to the players, which also allow to deal with the case
where the dealer is cheating and the honest players need to reach an agreement.

In both extensions, we let the setup algorithm output some additional para-
meters and decryption keys for all players. Now the dealer, instead of sending
shares privately to each player, appends encryptions of the shares to the tags
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of the shares which are sent over the broadcast channel, and each player can
recover her own share.

In the first proposal, we use an encryption scheme with the property that it is
possible to verify, given an encryption and a tag, whether they contain the same
value. This is done using efficient non-interactive zero-knowledge proofs by com-
piling efficient sigma-protocols for the statement using the Fiat-Shamir heuristic.
Doing so makes the scheme non-interactive and publicly-verifiable, since every-
one can check that the dealer sent correct shares to all players. In the second
proposal, we let the dealer encrypt the shares using an encryption scheme which
has a special property, namely it allows the receiver to prove to a third party
what has been received: this scheme gets rid of the random oracle model, but
requires each (complaining) party to send a single message to all other parties
using a broadcast channel.

Notation. We need to redefine the syntax and the functioning of the setup
phase and the sharing phase (the reconstruction phase is unchanged and the
syntax of the verification phase differs for the two schemes). The scheme uses a
public key encryption scheme (Gen,Enc,Dec).

Setup: The setup algorithm for the globally-verifiable CS3 outputs

(pp, {di}i∈[n]) ← gvSetup(1κ)

where di is the decryption key for Pi (the corresponding encryption key
for Pi can be derived from (pp, i)). The decryption keys are sent to the
owner using private channels, where the public parameters are made public;
The algorithm gvSetup(1κ) simply runs pp′ ← Setup(1κ) to generate the
public parameters for our underlying locally verifiable scheme and n copies of
Genpp(1κ) to generate n encryption/decryption key pairs (ei, di), and finally
outputs pp = (pp′, e1, . . . , en).

Share: The share algorithm for the globally-verifiable CS3 outputs

s ← gvSharepp(C,m)

and the dealer broadcasts s; The algorithm gvSharepp(C,m) simply runs
Sharepp(C,m) to generate (s0, s1, . . . , sn), generates zi ← Encpp(ei, si) for
all i ∈ [n] and outputs s = (s0, z1, . . . , zn).

We need also to redefine correctness and privacy as follows:

Definition 4 (Correctness). A globally verifiable CS3 π is correct if for all
m ∈ M, for all circuits C describing an access structure A, and for all I ∈ A,

Pr[m �= Recpp(s, {di}i∈I)] ≤ negl(κ)

where s ← gvSharepp(C,m), (pp, {di}i∈[n]) ← gvSetup(1κ) and the probabilities
are taken over the choices of all algorithms.

It is trivial to see that combining a correct locally verifiable CS3 with an
encryption scheme with a correct decryption leads to a correct globally verifiable
CS3.
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Definition 5 (Privacy). A globally verifiable CS3 π is private if for all cir-
cuits C describing an access structure A, and for all I �∈ A, there exist a PPT
simulator Sim such that for all m ∈ M,

Sim(pp,C, I) ≈c (s, {di}i∈I)

where (pp, {di}i∈[n]) ← gvSetup(1κ), s ← gvSharepp(C,m).

It is trivial to see that combining a private locally verifiable CS3 with a seman-
tically secure encryption scheme leads to a private globally verifiable CS3.

5.1 Non-Interactive and Publicly-Verifiable Scheme

Our first proposal is a non-interactive and publicly-verifiable VCS3. The syntax
of the verification scheme here is:

Verification: The verification algorithm f ← niVerpp(s) outputs a bit f ∈
{true, false} which indicates whether s is a valid sharing or not. Note that
anyone can run the verification phase i.e., one does not need to know any of
the decryption keys di to run this algorithm.

The scheme should satisfy the following property:

Definition 6 (Public-Verifiability). We say a CS3 scheme is publicly veri-
fiable if for all n ∈ Z, for all circuits C describing an access structure, and for
all PPT algorithms D∗ the following holds: Let (pp, d1, . . . , dn) ← Setup(1κ) and
s ← D∗(pp). If niVerpp(s) = true, then with a overwhelming probability there
exists a value m ∈ M such that Recpp(s, {di}i∈I) = m for all qualified sets I ∈ A
(where A is defined in s).

We construct the verification algorithm for this scheme, niVer, by replacing
Step 2 in Ver (defined in Sect. 4.2) with the following:

3. If ∃i ∈ [n]s.t.,Tag(Decpp(di, ei)) �= ti stop and output false; else:

This condition can be checked efficiently using the NIZKs. Soundness of the
NIZKs together with the local verifiability of the underlying scheme implies public
verifiability.

We finally describe how we construct the encryption scheme (Gen,Enc,Dec)
and the NIZKs πi. The scheme is essentially ElGamal encryption in the RSA
group. We choose N = pq where p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′. This
ensures that the subgroup G of numbers with Jacobi symbol 1 mod N is cyclic
of order 2p′q′, and we let g be a generator of G. The encryption scheme we will
construct is secure when applied to messages in G. We therefore need to slightly
change the VSS constructed above so that wire values and tags are chosen from
G and not from all of Z∗

N . Since Jacobi symbols can be computed efficiently, one
can always check that the dealer chooses his values correctly. The encryption
scheme now works as follows:
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Generation: In the set-up we sample a random decryption key di ∈ ZN and
output the corresponding encryption key ei = gdi ;

Encryption: sample a random r ∈ ZN and output zi = (αi, βi) = (gr, ei
r · si);

Decryption: output si = βi · α−di
i ;

We now need to construct a NIZK that allows a prover with witness di to per-
suade a verifier who knows (τ, ei, ti, αi, βi) that

(g, ei, α
τ
i , βτ

i · t−1
i )

is a DDH tuple: note that when the dealer is honest this is indeed the case,
i.e., the tuple in question is:

(g, gdi , gr·τ , gdi·r·τ · (sτ
i /sτ

i )) = (g, gdi , gr·τ , g(r·τ)·di)

Very efficient sigma-protocols for this language are well-known (see e.g. [HL10]),
which can be made non-interactive in the random oracle model using the Fiat-
Shamir Heuristic.

5.2 Non-Interactive Scheme (with Complaints)

The main disadvantage of the previous solution is that it requires the random
oracle model for the NIZKs. Our second proposal instead uses one-round com-
plaints to ensure verifiability. The idea here is that every player retrieves her
share from the public encryptions, and if the share does not match the public
tag, the player can complain by broadcasting some information that allows all
other parties to check that the dealer cheated. In particular we do not wish to
allow a corrupt player to unfairly accuse an honest dealer, and the “proof of
cheating” should not disclose any other information. Both these properties can
be achieved using a technique introduced in [DT07] and formalized in [DHKT08].
We refer to [DHKT08] for the details of this method, and we only sketch the
high-level idea here: The idea is to let the dealer encrypt the shares using an
identity-based encryption scheme with verifiable secret keys (IBE-VSK): in this
setting the decryption key of each player is the master secret key for the IBE
scheme (and the encryption key is the corresponding public key). When the
dealer encrypts the shares for all the parties, he does so using a unique id as the
identity in the IBE scheme. Each player can decrypt by generating the secret key
skid corresponding to this id and then perform the IBE decryption. To complain,
the player can broadcast the secret key skid, and all other parties are now able to
retrieve the share and check whether it is consistent with the tag. The security
of the IBE scheme implies that revealing skid does not disclose any information
about the encrypted shares in other sessions. In addition, the VSK property
allows all other players to verify that skid is indeed the secret key corresponding
to the id for the public key of that player, and was not maliciously generated
to accuse an honest dealer. We note that VSK is a mild assumption, and every
proposed efficient IBE satisfies the VSK property [DT07,DHKT08].
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Abstract. We present actively secure multi-party computation of the
Advanced Encryption Standard (AES). To the best of our knowledge
it is the fastest of its kind to date. We start from an efficient actively
secure evaluation of general binary circuits that was implemented by the
authors of [DLT14]. They presented an optimized implementation of the
so-called MiniMac protocol [DZ13] that runs in the pre-processing model,
and applied this to a binary AES circuit. In this paper we describe how to
dedicate the pre-processing to the structure of AES, which improves sig-
nificantly the throughput and latency of previous actively secure imple-
mentations. We get a latency of about 6 ms and amortised time about
0.4 ms per AES block, which seems completely adequate for practical
applications such as verification of 1-time passwords.

Keywords: Multiparty computation · Arithmetic black box · Arith-
metic circuit · Binary circuit · AES

1 Introduction

Secure Multi-party computation (MPC) allows a set of players (or comput-
ers) with private inputs to evaluate a function on these inputs. Security means
that all players learns the output of the function and essentially nothing else.
More precisely the problem of MPC for n players is to compute a function
f(x1, ..., xn) = (y1, ..., yn) such that Player, Pi, learns only yi after evaluating f
and xi is the private input held by Pi. This problem was first proposed by Yao
in [Yao82,Yao86] and has been an active area of research since.

The description of the function f can take different forms. In this work we
consider descriptions of f as a circuit over the (AND,XOR) or (MUL,ADD)
basis for binary and arithmetic circuits respectively. Protocols for evaluating
such function typically implement an ideal functionality sometimes called an
Arithmetic black-box [DN03]. The Arithmetic black-box is depicted in Fig. 1.
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Fig. 1. The Arithmetic Black Box.

Intuitively, the players agree on a circuit over the actions Open, Input,
Xor/Add and And/Mul. Players provide input values using the Input command,
and then work their way through the circuit invoking the appropriate command
for each gate. Finally the Open command is used to obtain the result.

MPC for the case where a majority of the players are corrupt requires public-
key machinery and was therefore for a long time thought to be impractical,
especially for the case of active security. To resolve this, the so-called pre-
processing-model was proposed, where the heavy computations are pushed to a
pre-processing phase. Using precomputed material one can evaluate the function
securely much faster in the on-line phase. With recent result [NNOB12,DKL+13,
DLT14,FJN14] in particular, practicality is within our reach, see [IKM+13] for
an in depth discussion on the power of correlated randomness. We consider here
the particular protocol nick-named MiniMac from [DZ13]. This is an arithmetic
black-box protocol in the pre-processing-model, which was designed to handle
arithmetic circuits over small fields efficiently. To do this, it computes on vectors
of field elements instead of single values.

Benchmarking. Oblivious AES is a much used example of how practical MPC
is becoming, see [PSSW09] and [NNOB12,DKL+12,GHS12,DLT14,HKS+10,
HEKM11]. Oblivious AES distinguishes itself from the classical AES encryption
by being distributed between two or more parties. All players know the plain-
text and everybody learns the cipher-text. The key, however, is additively shared
meaning that the key k is not known to any player.

Performance wise, previous state of the art for Oblivious AES with malicious
security is the implementation using a binary circuit in [DLT14] where they report
on amortized running times of less than 4 milliseconds per AES-block and 3–4
seconds of latency on ordinary consumer hardware1. In [KSS13] a different imple-
mentation was reported that uses the algebraic description of AES over F28 . They
achieve about 1 ms amortized time per AES block and a latency of 100 ms.

Our contributions. We show that both amortized time and latency can be
improved significantly: in the fastest configuration, we obtain about 0.4 ms
amortized time and a latency of about 6 ms. We present three constructions
which are variations on the idea that if we exploit the special structure of AES,
rather that seeing it as a general binary or arithmetic circuit, we can tailor the
1 The concrete specifications of our experimental setup can be found in Appendix A.



Fast Oblivious AES A Dedicated Application of the MiniMac Protocol 247

No AES blocks Time/AES ms Latency ms Prep. size MB/player

MiniMac [DLT14]

680 4 9962 130, 0.2/AES

Protocol 1 incl. Key Expansion

5 3 15 270, 54/AES

Protocol 1 without Key Expansion

5 1.2 6 220, 44/AES

Estimated time, Protocol 2 (no on-line multiplications)

15 0.4 6 650, 44/AES

Estimated time, Protocol 3 (minimized pre-processing)

15 0.8 12 10.5, 0.7/AES

Fig. 2. Execution times of our AES protocol.

pre-processing such that we save on the number of rounds and also on local
computation. We try out these ideas in practice using the implementation of
MiniMac from [DLT14]2 as our starting point.

The basic approach in our first protocol is to pre-process a number of tables,
each of which implement an AES S-box followed by the Mix-Column and Shift-
Row operations applied to the bits output from the S-box in question. We first
describe what the correlated randomness should look like to implement the
tables, and then we present a slightly modified version of the MiniMac proto-
col using this material to perform AES. This solution computes 5 simultaneous
AES blocks in only 10 rounds of online communication. In comparison [DLT14]
required at least 6800 rounds.

For second protocol, we observe that after we introduce the tables, we no
longer need to do secure multiplication in the on-line phase. This allows us to
change the internal representation used in MiniMac to allow more parallelism at
no extra cost. This immediately saves us a factor of about 3 in amortized time
per AES instance.

For the third protocol we give a new construction that shows how to obtain
much smaller pre-processing material. We save a factor of at least 60 in the size of
pre-processed data at the cost of doing 1 extra round of communication and more
local computation in the final protocol. Some explanation of the idea behind this
optimization is in order as the idea may be of interest beyond oblivious AES:
the efficiency of MiniMac is based on the idea of computing on vectors of values
in a SIMD fashion, i.e. we add and multiply vectors coordinate-wise. Concretely,
the implementation of MiniMac we started from uses vectors containing 85 data
bytes. Now, the reason why it makes sense to compute the AES S-Box by table
look-up is that the input is only 1 byte, so we need only 256 entries in the table.
However, the result we get will be just one byte, and this result needs to go to
the right place in the vector representing the state after the table look-up, of
course without revealing what was output from the table. The simplest solution

2 Available at http://tinyurl.com/q2dmcuw.

http://tinyurl.com/q2dmcuw
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is to make the table entry be an entire MiniMac word containing data that only
depends on the single byte that is output from that table entry. This will work,
as we explain in more detail later, but of course means that tables get very large.
What we do for protocol 3 is to show that with an appropriate combination of
masking by random values and unconditional MACs, we can have table entries
that only consist of a single data byte and some authentication information.
This idea can be applied to computation of any function with small input and
output, possibly followed by some linear function.

We implemented the Protocol 1 and based on this we calculated the size
of pre-processed data for the other results and conservatively estimated their
running times, as detailed in the following sections. A summary of this can be
seen in Fig. 2.

The demands we have to the pre-processed data are quite specialized and it
may not be clear how we can do the required pre-processing reasonably efficiently.
In particular, the pre-processing assumed by the original MiniMac protocol does
not produce data of the form we need. In principle, the problem can be solved
by writing down an arithmetic circuit that takes some random bits as input and
outputs the data players need; and then evaluate that circuit using the original
MiniMac protocol. This would be an extremely large circuit, and therefore, in the
final section, we give a recipe for how pre-processed material may be constructed
more efficiently from a generic MiniMac instance.

A main take-home message from our paper is that the only structure we
need from AES to speed up the computation is that its non-linear parts consist
only of S-Boxes with small inputs, this is what allows us to use table look-up
with tables of feasible size. In future work, it will therefore be interesting to
investigate if secure computation of other ciphers or hash functions can be made
practical using a similar approach.

The MiniMac protocol

This protocol is in a nutshell a SIMD Arithmetic black-box. That is, the protocol
operates on a so called representation consisting of a vector of field elements.
The actions of the Arithmetic black-box operates in parallel on all elements of
the vector simultaneously. The details and proof of security can be found in
[DZ13] while the extension for operating efficiently on binary fields was discov-
ered in [DLT14]. For our purposes here we will think of MiniMac simply as an
implementation of a SIMD Arithmetic Black-box and hence describe MiniMac’s
representation of data as containing an l-vector over a finite field3.

[[a]] = [[(a1, ..., al)]]

The operations Input, Add, Mul and Open for the Arithmetic black-box operate
on such vectors. E.g. adding two elements in the box with MiniMac yields the
computation:

[[a]] + [[b]] = [[(a1 + b1, ..., al + bl)]] = [[a + b]]
3 Actually, the players in MiniMac have additive shares of the vectors and a special

type of MACs are used to prevent cheating, but these details are not important here.
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In a similar way Input requires the secret values to be loaded into the box to be
l-vectors and Open gives the parties an l-vector back.

Advanced Encryption Standard

AES is described in [DR00]. Here we consider only 128-bit 10 round encryption
with AES. We give a different description of AES in terms of matrix operations
rather then the algorithmic approach in [DR00]. We do this for two reasons.
Firstly, our implementation framework is geared towards matrix operations thus
should the reader be interested in looking at our C code this section is extremely
useful for understanding our code design choices. Secondly, this interpretation
makes it completely natural and straight-forward to describe AES concisely as
a series of matrix products interleaved with table lookups. In particular this
make the description of our results in Sects. 2, 3, 4 and 5 easier to describe. The
algorithm can be considered to have two distinct phases: The Key Expansion and
the 10 Rounds. The Key Expansion operates on a 16 byte state of key material
and the 10 rounds operate on a 16 byte state of plain/cipher-text.

The key expansion in more details operates on a 16 byte state of key material
initially containing the encryption key. This state is updated in each round to
contain the corresponding round-key.

In [DR00] the key expansion algorithm is explained in an algorithmic way
over bytes. Our framework of implementation is geared for matrix operations
thus we here give an alternative characterization of the key schedule in terms
of matrices. Here we abstract the S-Box operations to merely a table lookup
and explain later how such lookups can be done securely with MiniMac. Let
K0 = (k0, ..., k15) be the initial 16 bytes of encryption key. The key is divided
in to 4 so called words w0 through w3 in the natural increasing order of indices.

Fig. 3. The AES key schedule
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Word w3 = (k12, ..., k15) is passed through the key schedule core, denoted g in
Fig. 3, which rotates the word one position left rot(w3) = (k13, k14, k15, k12) and
then forms the result T3 = (sb[k13], sb[k14], sb[k15], sb[k12]). Here sb[k] refers to
the S-Box at index k, k ∈ F28 . We have the four word state T = (T0, T1, T2, T3) =
(k0, ..., k11, sb[k13], sb[k14], sb[k15], sb[k12]). From T the remaining of the key
schedule is (almost) a linear transformation, KS, over F28

16 depicted below:

KS × T ⊕ w3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
0
0
0

k12

k13

k14

k15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

When expanding the key from round i to round i + 1 we denote w0, ..., w3 the
four words of the current key and denote the new key w4, ..., w7.

To see how the computation above resembles the operations depicted in Fig. 3
we consider each word of the result in turn. The first word in the new key is
w4. We see from the figure that it should be w0 ⊕ T3 = (k0 ⊕ t12, k1 ⊕ t13, k2 ⊕
t14, k3 ⊕ t15). Doing the inner product with the first four rows of KS and T
yields this. Similar observations can be made progressing to rows 4 though 7
and rows 8 through 11 for words w5 and w6 respectively. For w7 the operation is
slightly different as it according to Fig. 3 should be w3⊕w4⊕w5⊕w6 where only
w4, w5 and w6 are present in our T vector. To complete the operation depicted
in Fig. 3 we additionally XOR w3 onto KS × T obtaining the same operation as
in Fig. 3. The reason for laying out the computation as above will become clear
later. Finally we add the round constant to obtain the new key.

The 10 rounds are the main encryption loop of AES. Algorithm 1 describes the
algorithm. Add Round Key covers the operation of XORing the current round
key with the current AES state obtaining a new AES state. The KeyExpansion
step updates the current round key into the one needed for the following round. If
the key expansion is computed beforehand as suggested above the KeyExpansion
step can be ignored.
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Algorithm 1. AES Encryption
Data: S = (s0, ..., s15) - /* the AES state */

Data: K = (k0, ..., k15) - /* the AES key */

/* Prepare the 11 round keys */

/* Xor the 0th round key to the state */

1 AddRoundRey(K,S,0);
2 for round ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} do
3 KeyExpansion(K,round);
4 SubByte(S);
5 ShiftRows(S);

/* Considered as polynomials over F28 the columns of the state

are multiplied with the fixed polynomial 3x3 + x2 + x + 2
mod x4 + 1. */

6 MixColumns(S);
/* Xor the [round]th key to the state */

7 AddRoundKey(K,S,round);

8 KeyExpansion(K,10);
9 SubByte(S);

10 ShiftRows(S);
11 AddRoundKey(K,S,10);

After the final step the 16 bytes AES state in S contains the cipher-text. Our
results rely on a mathematical interpretation of the steps in AES which we will
give in the following. We consider each step in Algorithm 1.

The Sub-Byte step is the operation of replacing each byte in the AES state
with the S-Box lookup for that byte. More precisely, if the AES state is S =
(s0, ..., s15) after applying Sub-bytes the AES state is S′ = (sb[s0], ..., sb[s15]).
Another interpretation of the S-Box can be found in [DK10]. Here the S-Box is
considered a degree 254 polynomial over F28 . In our case, we will use a lookup
table however a low-depth binary circuit for the S-Box can be found in [BP11].

In the Shift-rows step we consider the 16 bytes AES state as a 4 × 4 matrix
as in Fig. 4a. Then the shiftrows cycles the second row one element, the third
row two elements and the fourth row three elements as depicted in Fig. 4b. This
operation corresponds to the 16 × 16 linear transformation performed by the

S =

⎡
⎢⎢⎣

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎤
⎥⎥⎦

(a) 16 bytes of AES state laid out in a 4×4-
matrix.

S =

⎡
⎢⎢⎣

s0 s4 s8 s12
s5 s9 s13 s1
s10 s14 s2 s6
s15 s3 s7 s11

⎤
⎥⎥⎦

(b) 16 bytes of AES state with Shift-rows
applied.

Fig. 4. Illustration of Shift-rows.
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matrix on the 16-vector holding the AES state, S = (s0, ..., s15)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0
s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0
s5
s10
s15
s4
s9
s14
s3
s8
s13
s2
s7
s12
s1
s6
s11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The Mix-columns step can also be described as a linear transformation, see
Eq. 3. We are going to apply these matrices in the pre-processing phase and in the
on-line phases of our protocol using a trick which will be explained later. In all
of our application of Shift-rows and Mix-columns we compute on many AES
blocks in parallel. For this we introduce one additional bit of notation. Let SR
and MC be the Shift-rows and Mix-columns matrices as above respectively.
To apply e.g. SR to a vector holding n AES states we write SRn × S where
SRn is the 16n × 16n-matrix having n SR on the diagonal and zero everywhere
else. We denote SRMC the matrix that applies Shift-rows followed by Mix-
columns to S. That is SRMC × S = MC × SR × S. Likewise we also denote
SRMCn the 16n × 16n matrix having n SRMC on its diagonal.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 3 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 2 3 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 2 3 0 0 0 0 0 0 0 0
0 0 0 0 3 1 1 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 3 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 2 3 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 3 0 0 0 0
0 0 0 0 0 0 0 0 3 1 1 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3
0 0 0 0 0 0 0 0 0 0 0 0 3 1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0
s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13
s14
s15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2s0 + 3s1 + s2 + s3
s0 + 2s1 + 3s2 + s3
s0 + s1 + 2s2 + 3s3
3s0 + s1 + s2 + 2s3
2s4 + 3s5 + s6 + s7
s4 + 2s5 + 3s6 + s7
s4 + s5 + 2s6 + 3s7
3s5 + s5 + s6 + 2s7

2s8 + 3s9 + s10 + s11
s8 + 2s9 + 3s10 + s11
s8 + s9 + 2s10 + 3s11
3s8 + s9 + s10 + 2s11

2s12 + 3s13 + s14 + s15
s12 + 2s13 + 3s14 + s15
s12 + s13 + 2s14 + 3s15
3s12 + s13 + s14 + 2s15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The organization of this paper is as follows. In Sect. 2 we present how to com-
pute Oblivious AES as a multi-party computation with dedicated pre-processing.
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We actually implemented this work as code and report on running times as low
as 5 ms for 5 simultaneous AES instances in Fig. 2. Our work can be repro-
duced following our instructions in Appendix A. Then in Sect. 3 we discuss an
optimization of the protocol from the fact that with dedicated pre-processing
the online computation is all linear. In Sect. 4 we discuss another improvement
reducing the size of our pre-processing material required. Finally in Sect. 5 we
show how to efficiently get dedicated pre-processing from a general MiniMac
instance evaluating arithmetic circuits over F28 .

2 Fast AES Using Dedicated Pre-processing

In this Section we show how dedicated pre-processing can be used to efficiently
compute Oblivious AES. We list demands for the pre-processing material needed
and describe an online protocol using the material to compute Oblivious AES.
Also we present an implementation and performance numbers on consumer grade
hardware.

We employ the fastest version of MiniMac implementation from [DLT14]
which allows us to compute on vectors containing 85 bytes. In such a vector we
can pack 5 full AES states taking up 80 bytes. In this way we run a small number
of AES circuits in parallel. However notice here that we are running “different”
operations on individual bytes in the representation as we are not performing
the same operations to all bytes in the AES state. This is not supported directly
by MiniMac and hence we need help from the pre-processing.

The pre-processing will generate tables of correlated randomness corresponding
to handling the entire AES round (except add round key). Loosely put, we pre-
process random values with the AES round operation applied to them. Then, we
correct these at runtime to yield the AES round operation on the actual input
values.

We start by describing how we pre-process the S-Box. The S-Box can be
thought of as a table with 256 entries. To apply the S-Box to a single byte in the
AES state we look up the entry corresponding to that byte (e.i. the state byte has
a numeric base 10 value between 0 and 255 which we use as index into the S-box).
Lets consider how to do this for a single sj in our representation with 5 AES
states consisting of 80 bytes S = (s0, ..., s79). To ensure sj remains secret inside
the box we disguise sj with a uniformly random value Rj and open Rj +sj to all
the parties. Now we will construct a pre-processed table sb+Rj

[·] that contains
256 MiniMac representations of S-Box values. However, the indexing into the
table is permuted by adding the random Rj . More precisely, we want that

∀s ∈ F28 , j = 0 . . . 79 : sb+Rj
[s + Rj ] = [[(0, . . . , sb[s], 0, . . . , 0)]]

where the value sb[s] is placed in position j4.
4 Note that when we say an entry in the table is a MiniMac representation of some

vector this actually means that players have additive shares of that vector as well as
some MACs and corresponding keys, however, the details of this are not important
here.
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We will require the pre-processing to also output [[(R0, . . . , R79)]] and when
the time comes to do the S-boxes, we add this to the current state and open
(s0+R0, . . . , s79+R79). Then we do the 80 table look-ups and add all the outputs
effective applying the S-Box to all 80 bytes.

This trick can be extended so that we can make the table look-up implic-
itly compute also the linear transformation constituted by Shift-rows and Mix-
columns. Let the matrix SRMC denote the Shift-rows matrix multiplied with
the Mix-columns matrix from Sect. 2. Note that if taken directly from Sect. 2
this matrix would only operate on one AES state, but it can be extended in a
natural way to operate on a vector containing 5 states.

Now, using the same random values Rj , we replace the S-box tables defined
above by 80 tables denoted AESBoxj , j = 0, . . . , 79, such that

∀s ∈ F28 , j = 0 . . . 79 : AESBoxj [s + Rj ] = [[SRMC × (0, .., 0, sb[s], 0, ..., 0)]]

where again the non-zero value is placed at position j. Because the multiplication
by SRMC is a linear operation, it follows that if we do the 80 table look-ups
using (s0 + R0, . . . , s79 + R79) as indices and add the results, this time we will
obtain

79∑

i=0

[[SRMC × (0, .., 0, sb[sj ], 0, ..., 0)]] = [[SRMC × (sb[s0], ..., sb[s79])]]

and these are exactly the 5 new AES states we wanted. The protocol depicted
in Fig. 5 describes how one AES round is handled using this approach.

AES Round: The AES round proceeds as follows:

1. Take a fresh AESBox = {AESBoxj}j=0,...,79 from the available ones and
the corresponding [[R]] = [[(R0, ..., R79)]].

2. Let the current state be [[S]] = [[(s0, ..., s79)]]. The parties compute [[δ]] =
[[R + S]].

3. δ = (δ0, ..., δ79) is opened
4. As δ is known in plain by all parties, they can look up S′

j =
AESBox[δj ], j = 0, ..., 79 a.

5. The parties form the state S′ after SubBytes,ShiftRows and MixColumns
by computing S′ =

∑79
i=0 S′

i.
6. Finally (a MiniMac representation of) the round key is added to the state

and the next round follows.

a For the 10th round we have a pre-processed AESBox which is the same except
we only apply the Shift-Row matrix to the values in the tables.

Fig. 5. Online phase, ΠAES−round
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2.1 Experiments with the Implementation

We have implemented the MiniMac on-line phase and a program for creating
the pre-processing material for all parties running on one machine. In Fig. 2 we
list timings of our experiments.

Execution time of out experiments are recorded as follows:
We have three test machines, two peers who will carry out the MPC and a

third monitor who will record execution time. When the Peer processes have
loaded pre-processing material from Disk and otherwise ready to commence
computation they report “Ready” to the monitor. When both have done so,
the monitor will record a time stamp and send “Start” to the Peers. Each Peer
report to the monitor “Done” when it has reached completion of the MPC cir-
cuit. When all Peers have reported “Done” the monitor records the time and
execution time is taken to the difference between our two time stamps. More
precisely, for Peer 0 and Peer 1 the following happens:

– Peer 0 starts, connects to the Monitor and listens for Peer 1 to connect.
– Peer 1 starts, connects to the Monitor and connects to Peer 0
– Then both peers loads pre-processing material and perform input-gates

obtaining the initial shared AES state and reports “Ready” to the Monitor.
Then they wait for the Monitor to signal start.

– When All peers has arrived at an initial AES-state the Monitor signals “Start”
and the MPC begins.

– Upon completing the AES circuit each peer reports “Done” to the monitor.
– The Monitor records the time before the first “Start”-signal is issued until the

last Peer reports back its computation has completed. The difference between
these two time stamps is the computation time we report.

When to include the KeyExpansion requires a bit of discussion. When
encrypting many blocks of data the key expansion can be computed once and
reused. This requires that the round-keys are computed beforehand and stored.
Thus using 11 representations, one for each round key, we can compute the
key expansion once and reuse it for encrypting any number of blocks after-
wards. Therefore, a good approximation of amortized execution time per block
of encryption with large bodies of plain-text can be achieved with one round
of encryption omitting the key expansion entirely and multiplying up. However,
when measuring the latency (with a fresh key not pre-loaded) from when start-
ing the encryption until the first block of cipher-text is ready, the key expansion
does count and as we will see, it plays a significant role. In summary we care
about two types of measurements: Latency from scratch and amortized execu-
tion time per block over many blocks . See the result in Fig. 2. Here, xxx/AES
is the number of pre-processed Megabytes required per computed AES block.

3 Exploiting the Absence of On-Line Multiplications

The representation of data used in MiniMac is carefully designed to support secure
coordinate-wise multiplication of vectors. However, using the techniques we have
seen in the previous section, we do not need such multiplication operations.



256 I. Damg̊ard and R. Zakarias

In this section we describe how we can exploit this fact to change the data
representation so that we can compute on more data at smaller cost.

One important step in representing a vector in MiniMac format (and the
only one we need to worry about here) is to encode it in a linear code. In order
to support multiplications, one needs two properties from this code: first, the
encoding must be in systematic form, that is, the encoded vector appears in the
first positions of the resulting codeword. Second, the so-called Schur transform
of the code must have large enough minimum distance. To obtain the Schur
transform of a code C is the linear span of all vectors in {a∗b| a, b ∈ C}, where
a ∗ b is the coordinate-wise (or Schur) product of a and b.

The implementation from [DLT14] obtains these properties by encoding vec-
tors of length 85 into a Reed-Solomon code of length 255. Actually, one could
use a larger value than 85 and still satisfy the two properties, but since the
underlying field contains a root of unity of order 255 and 85 divides 255, these
choices allow us to use the FFT algorithm to encode and decode and this speeds
up the computations we need quite dramatically.

However, if we do not need to do multiplications, it turns out that the only
demand we need to satisfy is that the code itself has large enough minimum
distance, more precisely, it just has to be at least the security parameter divided
by 8 (since each field element is 8 bits long). Furthermore we no longer need the
code to be in systematic form.

With these relaxations, we can choose a Reed-Solomon code of length 255
and encode vectors of length 239. Because the codeword length is still 255, we
can use FFT to encode and decode (the requirement for the data length to
divide 255 was only necessary to have systematic encoding and still be able to
use FFT).

This change will speed up our AES implementation in two ways: first we
can pack 14 AES states into one vector instead of 5, immediately yielding a fac-
tor of 3 in computational capacity. Secondly, the encoding is faster than before
because we no longer need systematic encoding. The reason for this is as follows:
a Reed-Solomon codeword is computed by taking a polynomial of at most a
certain degree and evaluating it in a set of fixed input points (255 in our case).
For systematic encoding the polynomial must take the values specified by our
input in the first points, so to encode one must first interpolate to get the right
polynomial and then evaluate it in the other points to get the rest of the code-
word. For non-systematic encoding one just thinks of the input as coefficients of
a polynomial and then we just evaluate.

We did no do the resulting AES implementation, but since the number of
rounds will be the same and local computation is simpler, we can safely assume
that the total time for the protocol will not be larger than before. But we now
compute 14 AES instances instead of 5, and in fact we can put 15 AES instances
if we settle 120 bits of security in the authentication of data values which is more
than enough in practice. So we can expect an amortized time of 0.4ms per AES
block and the same latency of 6ms.
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The size of the pre-processing grows significantly as we now have 240 working
bytes we need 240 S-Boxes and we store a 256 entry table for each. The estimated
size of the pre-processing material is ≈ 650 Mb per player per AES block we will
try to improve on this in the following.

4 Minimizing Size of the Pre-processing Material

The ideas we described so far require a rather large amount of pre-processed
material. Each of the S-Box tables we have been using so far has 256 entries
where each entry is an entire MiniMac codeword which requires 1056 bytes of
storage for each player. This translates to approximately 21MB of pre-processed
data per player per AES round using the first method we presented. We suggest
in the following a different way to represent the tables that saves a factor of about
60 in the pre-processing size. The price we pay for this optimization is one extra
round of communication per AES round and some extra local computation.

The Idea. We first describe our idea for organizing tables in a generic fashion
because we believe it can be interesting in other contexts than secure AES. So
assume that we are working with an arithmetic black-box, we have computed
[[x]] and would like to compute [[f(x)]]. We assume for concreteness that x ∈ F28 ,
but this is not necessary in general. If f is rather complicated to compute via a
circuit, as is the case for the AES S-Box, we can do better using a precomputed
table. The first step towards this is similar to what we already did above: we
will pre-process a random value [[R]] and also pre-process a table f+R defined as

f+R[z + R] = f(z), for z = 0, . . . 255.

Now we can compute and open [[x + R]] = [[x]] + [[R]] and look up in the table.
This will hide x because we add R but is of course insecure because f(x) will
become public.

A slightly better idea is to pre-process a random [[v]] and re-define the table
as

f+R[z + R] = f(z) + v, for z = 0, . . . 255.

Now the table look-up will produce f(x) + v and we can add this to [[v]] to get
[[f(x)]]. This is still not secure, however: we use the same mask v for all entries
and so different table entries are not independent and we may reveal information
on how the table was permuted and hence indirectly information on x.

So the final idea is to not store the table in the clear but instead secret
share the entries additively between the players. We will only open the entry we
actually look up, and now it is secure to use the same mask v for all entries.
To prevent players from lying about their shares, we add standard message
authentication codes (MACs) to the shares.

More concretely, this means that for each table entry w = f(z)+v, we choose
in the pre-processing random r1, r2 such that r1 + r2 = w, and in addition we
choose random vectors a1, b1,a2, b2, these will serve as MAC keys. Then we
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compute MACs, m1 = a2 ∗ (r1, . . . , r1) + b2 and m2 = a1 ∗ (r2, . . . , r2) + b1
and give r1,m1,a1, b1 to the first player and r2,m2,a2, b2 to the other. Here,
∗ denotes the coordinate-wise (or Schur) product of vectors.

We will use (|w|) to denote all this data in the following. The reader should
think of this as a randomized representation of w that can be reliably opened:
the players would exchange shares and MACs and then use their keys to check
the MACs. It is well known and easy to prove that having, say, the first player
accept an incorrect value requires that you guess a1. So if we choose the length
of ai and bi to be 8 bytes, for instance, we get 64 bits of (unconditional) security
which should be more than enough in most cases.

So the final table is of form

f+R[z + R] = (|f(z) + v |), for z = 0, . . . 255.

We will need one representation (|·|) for each table entry, but the values a1

and a2 can be the same for all entries without affecting security. So in this case,
a table entry requires essentially 1 + 8 + 8 = 17 bytes for each player. This is a
factor more than 60 less than the 1056 bytes we needed before.

A final observation is that if what we really want to compute is not [[f(x)]]
but [[L(f(x))]] where L is a linear function, then we can precompute [[L(v)]].
When players have computed f(x) + v they can locally compute L(f(x) + v) =
L(f(x)) + L(v) and add this into [[L(v)]] to get [[L(f(x))]].

Using the Idea for AES. In the following we describe our observation above
using plain codewords with 240 working bytes in each representation. We start
by designing the content of the pre-processed S-Boxes differently as follows. We
have a random [[R]] = [[R0, ..., R239]] and 240 tables in mind namely one table
for each byte in our 15 AES states. Let [[S]] = [[S0, ..., S239]] denote the MiniMac
representation holding our 15 AES states. For Sj the jth state byte we consider
the table with S-Box values rotated by Rj and masked with a single vj from
a random v ∈ F

240
28 , see Fig. 6a. Now our idea is to additively share this table

between the players with MACs. Thus each player m gets a table rm,j such that
the entries rm,j

k in rm,j add up to Sb[(Rj + k) mod 256] + vj =
∑n−1

m=0 rm,j
k for

fixed k, j summing over m adding each of the shares held by the players. This is
illustrated in Fig. 6b for two players, e.g. m ∈ {0, 1}. Each table rm,j is MACed
towards the other player(s). Thus in addition player m has a table M(rl,j) for
l ∈ {i|0 ≤ i < n ∧ i 	= m}. For two players the situation is depicted in Fig. 7.
Thus we define an AESBox in this new set up as a triple of three things: A
random representation [[R]], a random representation v with the SRMC-linear
transformation applied to it [[SRMC×v]] and a set of 240 tables with 256 entries
constructed as described above.

AESBox = {[[R]], [[SRMC15 × v]], {(|rj
k |)}j∈[239],k∈[255]}

Here we used (|rj
k |) to denote the set of values shared with MACs as described

in Fig. 7 for all the players constituting table j.



Fast Oblivious AES A Dedicated Application of the MiniMac Protocol 259

Rj Sb[0] + vj

Sb[1] + vj

...

...
Sb[255] + vj

(a) Table with 256 S-Box entries
rotated by a random value Rj

and masked by vj . Each entry is
one byte.

Rj Sb[0] + vj

Sb[1] + vj

...

...
Sb[255] + vj

= ⊕
r0,jk r1,jk

... ...

... ...

= v

= RRj

vj

The Box r0,j r1,j

(b) The Box intended for state position j now additively
shared in r0,j and r1,j . Player i gets table ri,j = (ri,j

0 , ..., ri,j
255).

Each players also gets his shared state for [[v]] and [[R]].

Fig. 6. The new layout

r1,jk

...

...

r1,j

Ψ1,j
k ⊕ r1,jk Ψ0,j

k

κ bits

Mac M(r0,j)Mac Key Ψ1,j

Player 0 Player 1

Mac M(r0,j) Mac Key Ψ0,j

r0,jk

...

...

r0,j

Ψ1,j
k Ψ0,j

k ⊕ r0,jk

κ bits

Fig. 7. Above we depict the (|x|) = {{x0 ∈ F28 , M(x0) ∈ F28
κ/8, Ψ1 ∈ F28

κ/8}, {x1 ∈
F28 , M(x1) ∈ F28

κ/8, Ψ0 ∈ F28
κ/8}} representation. Player 0 hold from left to right a

MAC key table, a Mac table and a table of values. The Key table allows Player 0 to
check the table of values held by Player 1. The MAC table allows player 0 to convince
Player 1 his table of values is authentic.

The on-line phase is summarized in Fig. 5. Similar to our previous solution
we start by taking an AESBox = ([[R]], [[SRMC ×v]], {(|rj

k |)}j∈[239],k∈[255]}) and
“blind” the the current states in S by adding our random R to it obtaining [[Δ]] =
[[S ⊕ R]]. Then we open [[Δ]] to everyone. Now since our rm,j tables are shares of
the S-Box masked by vj and rotated by Rj we can lookup (|sb[Sj ] ⊕ vj |) by letting
each player m take rm,j

Δj
to be his share of (|Tj |) = (|sb[Sj ] ⊕ vj |). As v is randomly

chosen it blinds the actual value looked up in the S-Box thus we can safely open
(|Tj |). To open (|Tj |) the parties exchange the Values and MACs describe above in
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ΦAESRound

1 Take an available AESBox = ([[R]], [[SRMC × v)]], {(|rj
k |)}j∈[239],k∈[255])

2 All parties compute [[Δ]] = [[S]] ⊕ [[R]] = [[S ⊕ R]]
3 [[Δ]] is opened to each player.
4 Each player uses Δj to lookup rm,j

Δj
, obtaining (|Tj |) = (|sb[Sj ] ⊕ vj |)a as a (|·|)-

representation between them.
5 Tj is opened to everyone for j ∈ [239].
6 The players compute T =

∑239
j=0 Tj = sb[S] ⊕ v

7 The players computes SRMC × T = SRMC × sb[S] ⊕ SRMC × v
8 The players take S′ = SRMC × T ⊕ [[SRMC × v]] = [[SRMC × sb[S]]] as the

AES state after SubBytes, Shift-rows and Mix-columns.
9 Finally the AES round key [[Kround]] is added obtaining the next state Sround+1 =

S′ ⊕ Kround.

a rm,j
Δj

is the particular share each player can lookup. Here we use (|Tj |) when

referring to these shares as a combined shared value Tj mutually authenticated
with MACs.

Fig. 8. ΦAESRound

Fig. 7 and the receiving parties checks that the MACs are correct. If no one aborts
everybody know Tj = sb[Sj ]⊕vj . Knowing all Tj ,∀j ∈ [239] the players compute
T =

⊕
j∈[239] Tj . Now the parties take the linear transformation SRMC15 and

apply it to T obtaining SRMC15 × T = SRMC15 × S ⊕ SRMC15 × v. Then
the new state S′ after SubBytes, Shift-rows and Mix-columns is computed as
SRMC15 × T ⊕ [[SRMC15 × v]] = [[SRMC15 × sb[S]]]. Finally the round key is
added to the S′ and the following AES round follows.

For the 10th round SRMC15 is replaced by the linear transformation SR15

which is the 240 × 240 matrix having 15 SR matrices on its diagonal. Note this
influences [[SR15 × v]] requiring a bit of book keeping taking a special AESBox
for the last round.

This protocol requires two rounds of communication instead of one for the
first two protocols we presented. Also, it requires players to compute the linear
mapping SRMC locally. This, however, can be done in a simple way by a table
look-up for each byte position in the input. Therefore we conservatively estimate
that this protocol will require twice the time needed for protocol 1 (Fig. 8).

5 Pre-processing from the Original MiniMac Protocol

Our solutions above put some quite specialized requirements on the pre-
processing material. In this section we show how one may generate such data by
first running the pre-processing phase of the original MiniMac protocol and then
using this to run the original MiniMac online phase. We set this up such that
the function we compute will output the pre-processing material we need for
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· · ·

· · ·

· · ·

...
...

...

256

256

S0,1S0,0 S0,255

S1,0

S255,0 S255,255S255,1

S1,1 S1,255

Fig. 9. 256 × 256 table for entry j in [[R]] with entry Si,s = SRMC5 × Ψ for Ψ having
sb[i + s] in position j.

our construction. We will describe how to generate the AESBoxes as required
by our protocol in Sect. 2. Generating pre-processing material for the proto-
col in Sects. 3 and 4 is a matter of applying appropriate linear transformations
to the result presented here. Our goal is to generate AESBox tables from a
random representation [[(R1, ..., R85)]]: Getting such a random value is directly
supported by MiniMac. Now for each position j in [[(R1, ..., R85)]] we take 2562

as depicted in Fig. 9. Each entry Si,s is a public MiniMac representation with
value SRMC5 × (0, . . . , sb[i + s], . . . , 0), i, s ∈ F28 .

Recall that our protocol in Sect. 2 requires an AESBox to have the form:

s ∈ F28 , AESBoxj [Rj + s] = [[SRMC5 × (0, ..., sb[s], ..., 0)]]

This is exactly the values stored in row Rj of our 2562 table above. The chal-
lenge is to lookup this row. To this end we start by computing the vector
[[(0, . . . , Rj , . . . , 0)]] = (0, . . . , 1, . . . , 0) × [[R]]. Recall that the original MiniMac
protocol in [DZ13] allows its pre-processing to generate values of the form:

[[R]], [[L × R]]

for linear transformations L. The particular transformation we are after here is
the one replicating Rj onto every position obtaining [[(Rj , . . . , Rj)]]. Then we
compute Φi = (1 − [[(Rj , . . . , Rj) − i]]255) for i ∈ F28 where i is the 85 vector
with i in all entries. The resulting table for all s ∈ F28 is AESBoxj [Rj + s] =
∑255

i=0 Φi × Si,s.
To see why this is actually what we wanted consider Φi. Because the subgroup

of units in F28 has order 255 [[(Rj , ..., Rj) − i]]255 is all ones when Rj 	= i and
zero only when Rj = i. As we want ones when they are equal we compute
(1 − ([[(Rj , ..., Rj) − i]]255)) = Φi which is all ones only when Rj = i and all
zero otherwise. In this way Φi selects the row of Si,s where i = Rj forming our
AESBoxj for each possible value of s. Now the steps above are repeated for all
entries in [[R]] forming the full AESBox = {AESBoxj}j=0,...,84.
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We note that the Si,j tables do not all have to exist in memory at the same
time; it is enough to generate the columns as needed on the fly.

6 Conclusion

We have seen that for dishonest majority protocols in the preprocessing model,
the efficiency and in particular the latency of oblivious AES can be dramatically
improved by tailoring the preprocessed data to the structure of AES. And that
in particular that the only structure that matters is the fact that AES makes
use of Sboxes with small input, so that we can use table look-up to circumvent
the use of circuits to compute the non-linear parts.

Our study shows that we need only about 0.4 ms amortised time and 6 ms
latency to do AES, which seems completely adequate for real life applications
such as verifying 1-time passwords.

In future work, it would be interesting to see if other block ciphers or hash
functions can be done securely and practically with a similar approach.

A Reproducing our results with the implementation

Getting the code

The implementation of our work can be found on GitHub at http://tinyurl.com/
qbx99jv

Requirements

– AutoMake 1.15
– Bash 3.2 or later
– Reasonable GCC compiler supporting C99 (or Windows SDK Visual Studio

2013 or later).

Building on Windows IA64

Install Visual Studio 2013 and open the solution file in miniapps/
dedicatedaes/winx64/daestest.sln. Press F7 in the x64-release build con-
figuration to build the code. We have experienced problems with many small
allocations on Windows making the malloc and free implementation on this
system degenerate in performance.

Building on Linux and OSX

To build the code type ./build.sh release or ./build.sh debug depend-
ing on which configuration you want. To reproduce the performance numbers
reported in the paper please build in the release configuration.

http://tinyurl.com/qbx99jv
http://tinyurl.com/qbx99jv
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Generating pre-processing material for testing

Running the program with command line arguments -prep will generate the
default set of preprocessing material needed to compute one block of cipher-
text. ./miniapps/dedicatedaes/linux/src/cheetah -prep or on windows
setting the command-line arguments and pressing F5. Alternatively the windows
.exe file can be located in miniapps/dedicatedaes/winx64/daestest/Debug/
daestest.exe.

Running the protocol

Running the program with -mpc -prepfile <filename> will make the process
given aes preprocessing material file for player zero listen and wait for the other
players to connect.

E.g. for two players
cheetah -mpc -prepfile ./aes prep 4 player 0.rep will start the listen-

ing peer listening on all interfaces port 2020. While cheetah -mpc -prepfile
./aes prep 4 player 1.rep -ip xxx.yyy.zzz.www -port 2020 will connect
to a peer at ip-address xxx.yyy.zzz.www on port 2020.

Our experimental setup

The lab computers used for our experiments are interconnected by a 1 Gigabit
LAN with the specifications below.

CPU: i7-3770K CPU @ 3.50GHz with 8 cores
Mem: 8Gb of Ram
Net: Gigabit LAN
OS: 3.13.0-59-generic #98-Ubuntu SMP Fri Jul 24

21:05:26 UTC 2015 x86_64 x86_64 x86_64 GNU/Linux

We emphasize that our implementation carries out the computational steps of
the protocol single threaded.

The implementation does use additional threads for receiving and sending
network messages. In this way the computational thread is as independent of
network delays as the protocol allows. More precisely, the concrete interleaving
of sending and receiving messages does not effect computational progress unless
data from other parties are strictly required for the protocol to continue.
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Abstract. For many applications of secure multiparty computation it
is natural to demand that the output of the protocol is verifiable. Verifi-
ability should ensure that incorrect outputs are always rejected, even if
all parties executing the secure computation collude. Since the inputs to
a secure computation are private, and potentially the outputs are private
as well, adding verifiability is in general hard and costly.

In this paper we focus on privacy-preserving linear programming as a
typical and practically relevant case for verifiable secure multiparty com-
putation. We introduce certificate validation as an effective technique for
achieving verifiable linear programming. Rather than verifying the com-
putation proper, which involves many iterations of the simplex algorithm,
we extend the output of the secure computation with a certificate. The
certificate allows for efficient and direct validation of the correctness of
the output. The overhead incurred by the computation of the certificate
is marginal. For the validation of a certificate we design particularly effi-
cient distributed-prover zero-knowledge proofs, fully exploiting the fact
that we can use ElGamal encryption for this purpose, hence avoiding the
use of more elaborate cryptosystems such as Paillier encryption.

We also formulate appropriate security definitions for our approach,
and prove security for our protocols in this model, paying special atten-
tion to ensuring properties such as input independence. By means of sev-
eral experiments performed in a real multi-cloud-provider environment,
we show that the overall performance for verifiable linear programming
is very competitive, incurring minimal overhead compared to protocols
providing no correctness guarantees at all.

1 Introduction

When outsourcing a computation to the cloud, we want to be sure that the result
is correct. But if the computation involves confidential inputs, e.g., of multiple
mutually distrusting inputters, we also want to guarantee the privacy of the
inputs. For instance, solving linear programs is useful for optimising global profits
in supply chains [CdH10] or financial benchmarking [DDN+15]; confidentiality is
important because the inputs are sensitive information from multiple companies
but correctness is important because the outcome represents financial value.

Separately, privacy and correctness can each be achieved. Correctness can be
achieved by replicating a computation and comparing the results (but this only
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 265–284, 2016.
DOI: 10.1007/978-3-319-31517-1 14
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protects against uncorrelated failure); or by relying on the use of trusted hard-
ware by the worker. Alternatively, correctness can be achieved without assuming
uncorrelated failure or trusted hardware, by instead producing cryptographic
proofs of correctness (e.g., [PHGR13]).

Achieving privacy is hard when outsourcing to a single cloud worker, but
feasible if the computation is distributed between several workers. Indeed, having
a single worker perform arbitrary computations on encryptions requires fully
homomorphic encryption, a cryptographic primitive that is still impractical for
realistic applications. But distributing computations between multiple workers
in a privacy-preserving way is possible, and getting more and more practical,
using multiparty computation protocols (e.g., [BD09,DKL+13]). Such protocols
guarantee privacy and correctness up to a certain threshold of corrupted workers.
The inputters can pick workers run at different cloud providers, thereby reducing
the risk that too many of them collude or are compromised.

Unfortunately, using such techniques has a major drawback: apart from
inputters having to trust the choice of workers for privacy, also recipients have
to trust the choice of workers for correctness of their result. However, requiring
this trust by the recipients is undesirable: it means recipients (potentially any-
body, if the computation result is public) need to be involved in assessing the
trustworthiness of workers; and the result may simply have too much value to
allow the possibility of incorrectness.

In theory, privacy and correctness can be achieved by producing crypto-
graphic proofs of correctness in a multi-party way. Indeed, this is the basic idea
behind recent universally verifiable [SV15] (or publicly auditable [BDO14]) mul-
tiparty computation protocols. (Correctness holds regardless of the workers, but
privacy only holds up to a certain maximum of corruptions: we cannot hope to
circumvent this in outsourcing scenarios without resorting to fully homomorphic
encryption.) However, the fact that cryptographic work (e.g., Paillier [SV15] or
somewhat homomorphic [BDO14] encryption) needs to be performed for each
gate in the computation, makes this expensive. Moreover, secure distributed
set-up of these threshold cryptosystem is needed, which is hard in practice.

1.1 Our Contribution

In this paper, we present certificate validation as a general technique for achiev-
ing verifiable secure computation, and we demonstrate this in detail for verifiable
linear programming. While solving a linear program, e.g., by means of the sim-
plex algorithm, is complex and time-consuming, we make the critical observation
that the so-called “dual solution” of a linear program allows one to efficiently
verify the optimality of the result without redoing the full computation. Thus,
we show how to use fast multiparty computation techniques for the computation
itself, while limiting the use of slower verifiable techniques to prove the optimal-
ity of the result. We achieve further speedup by enabling the use of the ElGamal
cryptosystem (implemented using elliptic curves) instead of the more expensive
Paillier cryptosystem by combining the computation stage and the validation



Certificate Validation in Secure Computation 267

stage in a new way. We show how to enforce inputters to choose their inputs
independently, and we prove security in a rigorous security model.

Concretely, our instantiation is with n = 3 workers (but can be easily gener-
alised to n = 2t + 1 workers). We distribute the computation between all three
workers using protocols that guarantee privacy if they do not collude or act
maliciously (i.e., deviate from the protocol). Then, two (in general, t + 1) of the
workers perform certificate validation to guarantee to anybody that the found
solution is correct. Hence, we reach a compromise between passive and active
security. One the one hand, we provide more security than passively secure mul-
tiparty computation because we guarantee correctness (in the sense that the
solution is valid with respect to the certificate) regardless of corruptions. On the
other hand, we provide less security than actively secure multiparty computation
because we do not guarantee privacy if workers collude or act maliciously.

With our new protocol we demonstrate, for the first time, that certificate val-
idation enables practical privacy-preserving outsourcing with correctness guar-
antees. We have implemented our protocol for linear programming and tested
its performance in a real multi-cloud-provider environment. As mentioned, our
security is in between passive and active; our experiments show that our per-
formance is in fact much closer to passive, adding only little overhead in cases
where using active security would be much slower.

1.2 Related Work

Verifiable computation, i.e., the question of how to verify correctness of computa-
tions performed by untrusted parties (without privacy) has a long history in the
literature (e.g., [DFK+92,AS98,GKR08]). Recently, major practical improve-
ments in efficiency (e.g., [PHGR13]) have allowed, in some cases, for computa-
tions to be verified faster than computed in practice.

Combining verifiability with privacy has traditionally only been considered for
particular applications such as e-voting [CF85,SK95], but recent works [dH12,
BDO14,SV15] have also started studying the problem of verifiability for general
multiparty computation. In essence (like in our work) the correctness proofs of
theseworks rely on zero-knowledge proofs of correctmultiplication anddecryption:
ofPaillier encryptions in [dH12,SV15], andof somewhathomomorphic encryptions
in [BDO14]. Compared to these works, this work proposes a private multiplier app-
roach that enables the use of the much more efficient ElGamal encryption scheme
(besides introducing the approach of certificate validation).

Another recent line of work has combined verifiability and privacy when out-
sourcing computations to a single worker. However, known constructions in this
line of work are unfortunately inpractical due to their use of costly primitives,
e.g., fully homomorphic encryption and verifiable computation [LTV12,FGP14];
or functional encryption and garbled circuits [GKP+13]. Indeed, because such
constructions require a single party to compute on encrypted data, even without
offering verifiability they are inherently much heavier than our approach.

A final line of work on outsourcing computation combines privacy with “par-
tial” verifiability in the sense that also correctness is only guaranteed if not all
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I/P/R inputters/workers/recipients
party/ies P do S party/ies P concurrently perform S
Encpk(x; r) ElGamal encryption of x with public key pk, randomness r
Decsk(x) ElGamal decryption with key (share) sk
p prime order for ElGamal
⊕, ⊗ ElGamal homomorphic addition/scalar multiplication
send(v; P); recv(P) send/receive v over secure, private channel (no P means P1/P2)
bcast(v) share v on bulletin board
ZkVer(Σ; v; π; a) Fiat-Shamir proof verification (p. 6)
a ∈R S sample a uniformly random from S
[x], [x ] own/other party’s additive share of x (for two workers)
H cryptographic hash function

Fig. 1. Notation in algorithms and protocols

workers collude. This is the case for normal multiparty computation protocols
applied in an outsourcing setting [JNO14,DDN+15] as well as specialised out-
sourcing protocols [KMR11,ACG+14]. Compared to these works, we do offer
correctness if all workers collude.

Finally, using short certificates to prove correctness of a larger operation
has been proposed before. For instance, this idea was used to prove the correct
execution of graph algorithms [ZPK14]; cf. [TT10] and references. As far as
we know, we are the first to propose the use of certificates for verifiability of
multiparty computation. Although we focus on linear programming, using our
approach with the certificates from these works should be possible.

Outline. We first present a protocol for proving that encryptions satisfy certain
polynomial relations (Sect. 2). We then combine this protocol with fast, non-
verifiable multiparty computation (Sect. 3). We show with experiments that this
gives practical verifiable secure linear programming (Sect. 4). We finally discuss
related and future work (Sect. 5). Figure 1 shows our notation.

2 Proving Relations on ElGamal Encryptions

The main idea of our approach is to compute a function using multiparty com-
putation, and then prove correctness of the result by proving that the input
and result satisfy a number of polynomial relations. For this, we use a private
multiplier-based protocol on ElGamal encryptions. Suppose that in the compu-
tation, ElGamal encryptions X1, . . . , Xn have been produced representing the
inputs and outputs of the computation, whose correctness we now want to prove.
Say these ElGamal encryptions are encrypted under a private key s that is addi-
tively shared with threshold t (usually, t = 1), i.e., t + 1 workers have shares
[s]1, . . . , [s]t+1 such that s = [s]1 + . . . + [s]t+1. Suppose the t + 1 workers have
also additively shared the plain texts and randomness of these encryptions. Then
the workers will together prove in zero knowledge that the encryptions satisfy
certain relations, without learning any information about the encrypted values.
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The overall approach for producing this proof is the following. For each poly-
nomial relation r(x1, . . . , xn) = 0 in values x1, . . . , xn, the workers produce an
encryption R of the left-hand side value. This requires additions, multiplications
by a constant, and multiplications of two encryptions. The first two can be com-
puted locally using homomorphic properties of ElGamal. Multiplications of an
encryption Y by an encryption Xi of a shared plaintext xi can be performed
verifiably by letting the workers verifiably multiply their shares, and combining
correctness proofs on the shares into an overall correctness proof using the mul-
tiparty Fiat-Shamir transform [SV15]. Finally, a proof that R decrypts to zero
is made by homomorphically combining decryption proofs using shares [s]i.

In the remainder of this section, we review the threshold homomorphic ElGa-
mal cryptosystem and associated proofs of correct multiplication and decryption,
and the multiparty variants from [SV15]. We then discuss how to use these mul-
tiplication and decryption proofs to obtain an overall proof that the polynomial
relations hold. In [dHSV15], we give an explicit two-party protocol.

2.1 Threshold ElGamal and Zero-Knowledge Proofs

Recall the additively homomorphic ElGamal cryptosystem [El85]. Consider a
discrete logarithm group of prime order p with generator g (e.g., points on an
elliptic curve [Nat99]). Public keys are group elements h such that s = logg h
is unknown; the private key is s; encryption of m ∈ Zp with randomness r ∈
Zp is (gr, gmhr); and decryption of (a, b) is gm = ba−s. This cryptosystem is
indeed additively homomorphic: if (a, b) encrypts m and (a′, b′) encrypts m′,
then (a · a′, b · b′), denoted (a, b) ⊕ (a′, b′), encrypts m + m′. Moreover, if (a, b)
encrypts m, then (aα, bα), denoted (a, b)⊗α, encrypts mα; and (aαgr, bαhr) is a
random encryption of mα. Because ElGamal decrypts to gm and not to m, only
small values can be decrypted for which the discrete logarithm problem with
respect to g is feasible. In the threshold variant of ElGamal [Ped91], two parties
together can perform decryption by sharing the private key s as s = s1+s2: they
publish decryptions D1 = ba−s1 , D2 = ba−s2 from which the overall decryption is
computed as gm = b(b−1D1)(b−1D2).1 Public key shares hi = gsi are published
that are used to prove correctness of decryption shares.

Correctness of decryption shares and multiplications can be proven using
Σ-protocols [CDS94]. A Σ-protocol for a binary relation R is a three-move pro-
tocol in which a potentially malicious prover convinces a honest verifier that
he knows a witness w for statement v such that (v, w) ∈ R. The prover sends
an announcement to the verifier; the verifier responds with a uniformly ran-
dom challenge; the prover sends his response, which the verifier verifies. We use
three standard proofs: plaintext knowledge ΣPK, correct multiplication ΣCM,
and correct decryption ΣCD. ΣPK proves knowledge of plaintext y and random-
ness r used in the statement (a, b) = (gr, hrgy). ΣCM proves the following: given
a statement consisting of encryptions (a1, b1), (a2, b2), and (a3, b3), the prover

1 Of course, parties can alternatively share a−s1 , a−s2 ; we prefer our description
because it treats decryption and decryption shares uniformly.
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knows (y, r, s) such that a2 = gr and b2 = hrgy (i.e., (a2, b2) encrypts plaintext
y with randomness r); and a3 = ay

1g
s and b3 = by

1h
s (i.e., (a3, b3) encrypts the

product encryption, randomised with s). For ΣCD, recall that the decryption of
plaintext (a, b) with private key (share) s is D = ba−s. Correctness of D with
respect to public key (share) h is proven by proving knowledge of the value s
such that h = gs and D−1b = as using a standard equality proof.

Σ-protocols are turned into non-interactive zero-knowledge proofs with the
Fiat-Shamir heuristic [FS86]. Namely, a party proves knowledge of a witness for
statement v by generating announcement a; setting challenge c = H(v||a||aux)
with some auxiliary information aux; and using this to computing response r.
The proof (a, c, r) can be verified by checking that (a, c, r) is a valid Σ-protocl
transcript and H(v||a||aux) = c. If a can be computed from c and r, then the
proof can be shortened to (c, r) and verification consists of computing a and
checking H(v||a||aux) = c, denoted ZkVer(Σ; v; c, r; aux). Security is in the
random oracle model, an idealised model of hash functions. Multiple proofs can
use a combined challenge c = H(v1||a1||v2||a2|| . . . ||aux).

For our Σ-protocols ΣPK, ΣCD and ΣCM, homomorphisms [SV15] exist that
allow provers to combine proofs for different statements into one single proof.
Suppose we have an encryption X and a series of encryptions Yi, Zi such that
Zi is an encryption of the product of the plaintexts of X and Yi. Then separate
instances of ΣCM can be used to prove that the Zi are indeed product encryp-
tions. If the transcripts (ai, c, ri) of these proofs all share the same challenge,
then these transcript can be “homomorphically combined” into one transcript
that proves that ⊕Zi is the product encryption of X and ⊕Yi. (This combi-
nation is the pointwise product of the announcements and the pointwise sum
of the responses.) If a verifier is just interested in X, ⊕Yi and ⊕Zi, he can
verify this combined proof instead of the individual proofs. Similarly, a homo-
morphism for ΣPK combines proofs of plaintext knowledge for (ai, bi) into a
proof of knowledge for (

∏
ai,

∏
bi). That is, it combines proofs of knowledge of

the plaintexts of Xi into one proof of (collective) knowledge of the plaintext of
⊕Xi. A homomorphism for ΣCD combines proofs of correctness of decryption
shares Di for ciphertext (a, b) and public keys hi into a proof of correctness of
decryption b

∏
i(b

−1di) for ciphertext (a, b) and public key h =
∏

i hi. As above,
these homomorphisms are by pointwise products and sums.

The above homomorphisms also give non-interactive zero-knowledge proofs
of combined statements. Suppose parties with statements v1, . . . , vt want to pro-
duce a proof for combined statement v. They exchange announcements a1, . . . , at

for their shares v1, . . . , vt; compute combined announcement a; take challenge
h = H(v||a||aux); and exchange responses r1, . . . , rt. The combined r with the
challenge h proves collective knowledge of the witness corresponding to state-
ment v. For security reasons, no party should be able to choose its ai based those
of others. To ensure this, before exchanging ai the parties should first exchange
commitments to these values. As above, it is possible to use the same challenge
for multiple combined proofs. [SV15] proves the desirable notions of soundness
and zero knowledge.
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2.2 Proving and Verifying Polynomial Relations

We now present an overview of our PolyProve protocol that produces a proof
that ElGamal encryptions X1, . . . , Xn satisfy a given set of polynomial relations.
PolyProveE,G(pk; [pk]; [sk];X1, . . . , Xn; [x1], . . . , [xn]; [r1], . . . , [rn]) has two sets
of inputs. First, the ElGamal public key pk and secret-shares [pk], [sk] of this key
and the corresponding private key. Second, encryptions X1, . . . , Xn, and secret-
shares of the respective plaintexts [xi] and randomness [ri]. The set of relations
to be proven is formalised by structures E and G. E is a set of equations xj = 0
(1 ≤ j ≤ N for some N ≥ n). G is an arithmetic circuit to compute values xj

for j > n. Specifically, G consists of gates xk = v, xk = xi + xj , xk = xi · v,
and xk = xi · xj (v any constant). For multiplication xk = xi · xj , we require
1 ≤ j ≤ n: then the workers have shared the plaintext and randomness for Xj ,
which we need to produce the proof. (Clearly, any set of polynomial relations
can be described by such E and G.) The protocol proceeds in the following steps:

– The first step of the protocol is to evaluate the circuit to obtain encryptions
Xn+1, . . . , XN . All gates except xk = xi · xj can be evaluated locally; for
xk = xi · xj , the parties use their additive shares of the plaintext of Xj to
obtain freshly randomized shares of Xk. The parties exchange these shares so
that, at the end of this step, they know all encryptions X1, . . . , XN .

– Then, the parties use the multiparty Fiat-Shamir transform to produce com-
bined proofs of correctness of the multiplications in the arithmetic circuit G
for Xn+1, . . . , XN .

– After verifying the correctness of all multiplication proofs, the parties can now
safely decrypt encryptions Xj for all equations xj = 0: first, they produce
decryption shares with associated proofs of correctness, and then they use the
multiparty Fiat-Shamir transform to produce a proof that the combination of
the decryption shares produces zero. (Note that it is not necessary to exchange
the decryption shares since the result is zero by assumption.)

The proof consists of the product encryptions Xk and the proofs of correct
multiplication and decryption.

We remark that in the case of two parties, a slight optimization to the mul-
tiparty Fiat-Shamir transform is possible. Namely, instead of each party having
to commit to each announcement before opening it, it is sufficient for the first
worker to commit to its announcement; the second party to provide its announce-
ment; and the first party to open its commitment. In [dHSV15] we explicitly give
the above PolyProve algorithm which includes this optimization.

The corresponding algorithm PolyVerE,G(pk;X1, . . . , Xn;π) checks if the
proof π produced by PolyProve is correct. The algorithm takes as arguments
the public key pk, encryptions X1, . . . , Xn, and proof π as above. First, it com-
putes missing encryptions in {Xn+1, . . . , XN}, i.e., of gates that are not inputs
or multiplication results, using the homomorphic properties of ElGamal. Then,
it verifies all multiplication and decryption proofs (as described in Sect. 2.1: by
recomputing and hashing the announcements of the Σ-protocols). Details appear
in [dHSV15].
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3 Combining Computation and Validation

We now present our main protocol for privacy-preserving outsourcing with cor-
rectness guarantees. We compute a solution and a so-called “certificate” using
normal multiparty computation, and then produce a proof that the solution is
valid with respect to the certificate using the above ElGamal-based proofs.

3.1 Certificates and Validating Functions

To efficiently validate a computation result, we use certificates. In complexity
theory, a certificate is a proof that a value lies in a certain set, that can be
verified in polynomial time (see [Hro01]):

Definition 1. Let S1,S2 be sets and X ⊆ S1. A polynomial time computable
predicate φ ⊆ S1×S2 is called a validating function for X if X = {w ∈ S1 | ∃c ∈
S2 : φ(w, c)}. If φ(w, c), then c is a certificate of the fact that w ∈ X .

E.g., let X = {x ∈ N | ∃y ∈ Z : y2 = x} be the squares, then φ(x, y) := x
?= y2

is a validating function, and, ±2 are certificates of the fact that 4 ∈ X .
In our case, a computation is given by a computation function (a ,y) = f(x )

and a validating function φ(x ,a ,y). Here, on input x , function f computes
function output y and certificate a ; validating function φ checks that y is a
valid output with respect to x and a . We require that if (a ,y) = f(x ), then
φ(x ,a ,y), but we do not demand the converse: the outcome of the computation
might not be unique, and φ might merely check that some correct solution was
found, not that it was produced according to algorithm f . (For instance, a square
root finder may return the positive square root while negative square root is also
valid.) In our case study, we use a certificate to prove correctness of the solution
to a linear program, but certificates have other applications as well, e.g., see
[TT10,ZPK14] and references therein.

3.2 Security Properties

We consider the following setting. Say m inputters I1, . . . , Im want to perform
a computation on their respective inputs x = x1, . . . , xm. The computation is
given by a function (a ,y) = f(x ) and validating function φ(x ,a ,y), where y
is the outcome of the computation and a is the certificate. The computation is
distributed among n workers P1, . . . ,Pn, and there is a privacy threshold t < n.
One single recipient R obtains the result (we later discuss changes when multiple
parties need to get the result).

We guarantee different security properties in different situations. We guar-
antee correctness of the computation result, in the sense that it satisfies φ,
regardless of which parties are corrupted. Privacy means that nobody learns
information about the honest parties’ inputs (apart from the recipient learn-
ing the function result); we guarantee it if the workers are non-malicious (i.e.,
they do not deviate from the protocol) and at most t collude with each other
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Table 1. Security properties and conditions on workers

Property Satisfied if...

Correctness Always

Input independence Always

Privacy No malicious and ≤ t colluding workers

Independence of robustness No malicious and ≤ t colluding workers

(they may collude with inputters or the recipient). Input independence means
that corrupted inputters cannot choose their input depending on honest inputs
(note that this is not implied by privacy as we also want to prevent corrupted
inputters from copying honest inputs); we guarantee this property regardless of
which parties are corrupted. A final property often considered in this setting is
robustness, i.e., the guarantee that parties cannot stop the computation from
reaching a result; we do not aim for this property, and in fact, any inputter
can make the computation break down by providing incorrect inputs. However,
we do guarantee independence of robustness in the sense that parties cannot
decide to make the computation break down depending on the inputs of honest
inputters, if the workers are non-malicious or at most t collude.

Our security guarantees indeed (as discussed before) lie strictly between
active and passive security for multiparty computation. Indeed, passively secure
protocols do not guarantee correctness or input independence if there are mali-
cious workers (which we do); but actively secure protocols guarantee correctness,
privacy, and independence of robustness also with malicious workers (which we
do not). We summarise our security properties, and the conditions on the work-
ers under which they are satisfied, in Table 1. In Sect. 3.4, we will formalise these
properties and state a security theorem for our protocol.

3.3 The VerMPC Protocol

We now present our VerMPC protocol providing the above security guarantees
with privacy threshold n = 2t+1. To compute (a ,y) = f(x ), we use multiparty
computation protocols based on (t, n)-Shamir sharing. In (t, n)-Shamir sharing,
values are information-theoretically shared between the n workers such that
t + 1 workers are needed to recover the value. In this setting, protocols exist
for, e.g., multiplication, bit-decomposition, and comparison (see [dH12] for an
overview); these protocols are secure against up to t passively corrupted workers.
For PolyProve, we use additive sharing between t + 1 of the n workers, which
also guarantees privacy as long as at most t workers collude. It is easy to switch
between additive and Shamir sharing: t + 1 parties holding additive shares can
Shamir-share them among all n; and t+1 of the n parties holding Shamir shares
can locally convert them to additive shares by Lagrange interpolation.

Given a multiparty computation protocol to compute ([a1], . . . , [y1], . . . ,
[yl]) ← f([x1], . . . , [xm]) and the protocol PolyProveEφ,Gφ(X1, . . . ; [x1], . . . ;
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Fig. 2.VerMPC protocol with three workers (dotted lines are private, secure channels)

[rx,1], . . .) to prove that this result is correct, the question is how to combine
them in a secure way. Figures 2, 3 show our VerMPC protocol, for concreteness
instantiated with three workers (t = 1, n = 3). It consists of the following steps:
Step 1. First, the inputters announce their inputs. Each inputter encrypts its
input (line 3), and makes a proof of knowledge πx,i of the corresponding plaintext
(lines 4). (Here, ΣPK.ann and ΣPK.res denote the announcement and response
function of the Σ-protocol for proving knowledge of the plaintext; see [dHSV15];
for here, it suffices that πx,i is the resulting proof of knowledge.)

These encryptions and proofs are posted on a bulletin board. To prevent
corrupted inputters from adaptively choosing their input based on the inputs of
others, this happens in two rounds: first, each inputter provides a hash as com-
mitment to its input; having received the commitments of the other inputters,
it then reveals the actual encrypted input and proof (line 6).

If anybody gives an incorrect input/proof, the protocol is terminated (line 7).
Step 2. Next, the inputters provide additive secret shares of the plaintext xi

and randomness rx,i of the encryption to the t+1 workers who will later perform
the PolyProve protocol (line 8).
Step 3. The t+1 workers check if the provided sharing of the input is consistent
with the encryptions that were posted in step 1. (Without this check, the recip-
ient could learn information of the function output both on the encrypted and
the secret-shared inputs, which should not be possible.) They do this by sim-
ply encrypting their shares of the inputs using their shares of the randomness;
exchanging the result; and checking correctness using the homomorphic property
of the cryptosystem (lines 11–12). (Note that this works because ElGamal is not
only homomorphic in the plaintext but also in the randomness.)
Step 4. Then, the actual computation takes place (line 13). This is the only
step that involves the additional workers. In this computation, the t + 1 work-
ers holding additive shares of the input first Shamir-share them between all n



Certificate Validation in Secure Computation 275

Require: pk/sk ElGamal public/private keys shared by P1, P2; x = x1, . . . , xm inputs
Ensure: Recipient R returns either y with φ(x,a,y) for some a, or ⊥

1: protocol VerMPCf,φ(pk; [pk]; [sk]; {xi}i∈I)
2: parties I1, . . . , Im do � step 1
3: rx,i ∈R Zp; Xi ← Encpk(xi; rx,i)
4: (ui, vi) ← ΣPK.ann(Xi; xi, rx,i); ci ← H(Xi||ui||i)
5: wi ← ΣPK.res(Xi; xi, rx,i; ui; vi; ci); πx,i ← (ci, wi)
6: hi ← H(i||Xi||πx,i); bcast(hi); bcast(Xi, πx,i)
7: if ∃j : hj 	= H(j||Xj ||πx,j) ∨ ¬ZkVer(ΣPK; Xj ; πx,j ; j) then return ⊥
8: x′

i ∈R Zp; r′
x,i ∈R Zp; send(x′

i, r
′
x,i; P1); send(xi − x′

i, rx,i − r′
x,i; P2) � st 2

9: parties {P1, P2} do
10: for all 1 ≤ i ≤ m do
11: [xi], [rx,i] ← recv(Ii); [Xi] ← Encpk([xi]; [rx,i]); send([Xi]) � step 3
12: [X ′

i] ← recv(); if Xi 	= [Xi] ⊕ [X ′
i] then return ⊥

13: parties {P1, P2, P3} do ([a1], . . . , [ak], [y1], . . . , [yl]) ← f([x1], . . . , [xm]) � st 4
14: parties {P1, P2} do � step 5
15: for all 1 ≤ i ≤ k do
16: [ra,i]∈RZp;[Ai]←Encpk([ai]; [ra,i]);send([Ai]);[A

′
i]←recv();Ai←[Ai]⊕[A′

i]

17: for all 1 ≤ i ≤ l do
18: [ry,i]∈RZp;[Yi]←Encpk([yi]; [ry,i]);send([Yi]);[Y

′
i ]←recv();Yi←[Yi] ⊕ [Y ′

i ]

19: π ← PolyProveEφ,Gφ(pk; [pk]; [sk]; X1, . . . , Yl; [x1], . . . ; [rx,1], . . .)
20: send({[yi], [ry,i]}i=1,...,l; R) � step 6

21: party P1 do send(A1, . . . , Ak, π; R) � step 7
22: party R do
23: {[yi]

(1), [ry,i]
(1)}i=1,...,l ← recv(P1); {[yi]

(2), [ry,i]
(2)}i=1,...,l ← recv(P2)

24: (A1, . . . , Ak, π) ← recv(P1)
25: for all 1 ≤ i ≤ m do if ¬ZkVer(ΣPK; Xi; πx,i; j) then return ⊥
26: for all 1 ≤ i ≤ l do Yi ← Encpk([yi]

(1) + [yi]
(2); [ry,i]

(1) + [ry,i]
(2))

27: if ¬PolyVerEφ,Gφ(pk; X1, . . . , Yl; π) then ret (y1, . . . , yl) else ret ⊥

Fig. 3. VerMPC protocol with three workers

workers; then the computation is performed between the n workers; and finally,
P1, . . . ,Pt+1 locally convert their Shamir shares to additive shares [ai], [yi].
Step 5. The t+1 workers produce the encrypted result and prove its correctness:
They exchange encryptions of their respective additive shares of the certificate
and result (lines 15–18). They run the PolyProve protocol from Sect. 2.2 to
obtain a proof that φ(X,A, Y ) = 1 (line 19). The arithmetic circuit for φ should
be such that each certificate value Ai and result value Yi occurs at least once as
right-hand side of a multiplication: because the workers prove knowledge of these
right-hand sides, this guarantees that they know the corresponding plaintexts.
Circuits usually satisfy this; otherwise dummy equations 1·Yi = Yi can be added.
Step 6. The workers send their additive shares of the result and the randomness
of their encryption shares [Yi] to the recipient (line 20).
Step 7. One worker sends the encrypted and proof of correctness (line 21). The
recipient checks the proofs of knowledge provided by the inputters (read from
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1: function IVerMPCf,φ

2: for all honest inputters Ii do get xi from party Ii input phase
3: for all corrupted inputters Ii do get xi from adversary S
4: if ≤ t passively corrupted workers then computation phase
5: compute certificate, result a;y ← f(x)
6: else if > t passively corrupted workers then
7: send honest inputs {xi}i∈I\C to adversary S
8: compute certificate, resut a;y ← f(x)
9: if ≥ 1 actively corrupted inputter ∧ S sends ⊥ then y ← ⊥, . . . , ⊥

10: else actively corrupted workers
11: send honest inputs {xi}i∈I\C to adversary S
12: get certificate, result a;y from adversary S
13: if any xi is ⊥ or φ(x;a; r) does not hold then set result r ← ⊥, . . . , ⊥
14: send result r to recipient R result phase

Fig. 4. Ideal-world trusted party capturing security guarantees for privacy threshold t

the bulletin board) (line 25); computes the encrypted result Y1, . . . , Yl from its
shares (line 26); and calls PolyVer to verify correctness (line 27): if the proof
verifies, plaintext y1, . . . , yl is the computation outcome.

3.4 Formal Security Model and Theorem

To formally state and prove the security of our protocol, we use the standard for-
malism used for multiparty computation: the ideal/real world paradigm [Can98].
We demand that the outputs of the recipient and the adversary in a protocol
execution are distributed similarly to those outputs in an ideal world where the
function is computed by an incorruptible trusted party. Because we provide dif-
ferent security guarantees under different conditions (Table 1), the trusted party
gives the adversary the chance to learn inputs or manipulate outputs depending
on the number and type of corruptions (cf. [SV15,BDO14]). In the ideal world,
the adversary has no chances to break privacy or correctness apart from those
explicitly given to it by the trusted party. If for every real-world adversary A
there is an ideal-world adversary SA such that the real-world outputs are dis-
tributed the same as in the ideal world, then also real-world adversaries cannot
learn or influence more than allowed by the ideal-world trusted party.

Figure 4 shows the algorithm IVerMPCf,φ of the ideal-world trusted party
that captures the privacy and correctness guarantees discussed in Sect. 3.2. In
the input phase, the trusted party obtains the inputs from the honest inputters
(line 2) and then asks the adversary to provide the inputs on behalf of the
corrupted inputters (line 3). In particular, regardless of corruptions, corrupted
inputters cannot choose their inputs depending on those of honest inputters: this
captures input independence. (However, they can provide ⊥ in which case the
whole computation will fail, capturing that we do not guarantee robustness.)

In the computation phase, we distinguish three different cases. The first,
simplest case is when there are at most t passively corrupted workers: in this
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case, the trusted party simply evaluates the function f (line 5). In the second
case, if there are more than t corrupted workers but they are all passive, we can no
longer guarantee privacy. So the trusted party sends the inputs to the adversary
(line 7), but still correctly computes f (line 8). If there are any actively corrupted
inputters, then we do not guarantee independence of robustness. Namely, the > t
corrupted workers learn the honest inputs before the corrupted inputters provide
their input shares, so the corrupted inputters can stop participating (but not
change their inputs) depending on the honest inputs. We capture this by letting
the trusted party ask S whether it wants to send ⊥, in which case it sets all inputs
to ⊥ (line 9). In the third case, i.e., there are actively corrupted workers, then
the passively secure protocols we use guarantee neither privacy nor correctness,
so the trusted party provides the inputs to the adversary (line 11) and asks it to
provide the computation result (line 12). Finally, in the result phase, the trusted
party checks if the computation result satisfies φ, and otherwise sets the result
to ⊥, capturing correctness (line 13). The result is then sent to R (line 14).

We now precisely define the real-world and ideal-world execution models. Let
C be a set of corrupted parties, of which A are actively corrupted. Let k be a
security parameter. Let adversary A be a probabilistic polynomial time Turing
machine. Define real-world execution

RealC,A
VerMPCf,φ,A(k;x1, . . . , xm)

as the distribution consisting of the output of the recipient R and the adversary
A in a protocol run. This run starts with a trusted set-up of the threshold ElGa-
mal cryptosystem, i.e., secure paramters are chosen, everybody learns public key
pk and its shares [pk]; and P1,P2 learn secret key shares [sk]. Next is an exe-
cution of the protocol VerMPCf,φ(pk; [pk]; [sk]; {xi}i∈I) with adversary A. We
assume the communication model of [Can98], i.e., a fully connected, synchronous
network with rushing; parties can use private channels and a bulletin board, and
all communication is ideally authenticated (see [Can98,SV15] for details).

Similarly, the ideal-world execution given set C of corrupted parties of which
A active, adversary S, security parameter k, and inputs x1, . . . , xm is called

IdealC,A
IVerMPCf,φ,S(k;x1, . . . , xm);

it is defined as the distribution consisting of the outputs of the recipient R
and the adversary S in an ideal-world protocol execution. In this execution, all
parties communicate securely with an incorruptible trusted party T executing
algorithm IVerMPCf,φ (Fig. 4). Honest inputters send their inputs to T ; a
honest recipient gets its output from T ; and the adversary S can send arbitrary
messages to T and return an arbitrary value.

Definition 2. Protocol Π is a t-passively secure multiparty computation proto-
col with certificate validation if, for all probabilistic polynomial time adversaries
corrupting set C of parties and actively corrupting A ⊆ C, there exists a proba-
bilistic polynomial time adversary S such that for all possible inputs x:

RealC,A
Π,A(k;x) ≈ IdealC,A

IVerMPCf,φ,S(k;x),
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where ≈ denotes computational indistinguishability in security parameter k.

Theorem 1. Protocol VerMPC is a 1-passively secure multiparty computation
protocol with certificate validation in the random oracle model assuming the deci-
sional Diffie-Hellman problem in the ElGamal encryption group is hard.

We prove this theorem in [dHSV15].
Because we use the Fiat-Shamir heuristic for non-interactive zero-knowledge

proofs, our construction is only secure in the random oracle model. In this model,
evaluations of the hash function H are modelled as queries to a “random oracle”
O that evaluates a perfectly random function. Although security in the random
oracle model does not generally imply security in the standard model, the model
is commonly used to devise simple and efficient protocols, and no security prob-
lems due to its use are known. In particular, our variant of the model [SV15]
assumes that the random oracle has not been used before the protocol starts:
in practice, it should be instantiated with a keyed hash function, with every
computation using a fresh random key.

3.5 Extensions

Input Range Checking. Some multiparty computation protocols for comput-
ing f only work if their inputs x are bounded, e.g., −2k ≤ x ≤ 2k. To guarantee
this, input parties can use range proofs, this they can be avoided if inputs are
smaller than 2k−1 by a statistical security parameter. In this case, input parties
use statistically secure additive shares over the integers in line 8 of the protocol,
i.e., they choose x′

i at random from [−2k−1, . . . , 2k−1]. The workers check if the
shares they receive in line 11 lie in this range.

Multiple Recipients and Universal Verifiability. In our model, only one
party learns the result. If multiple parties need to learn the result, then the
encrypted outputs Y1, . . . , Yl should be posted on a bulletin board to ensure
consistency. Note that we cannot guarantee fairness as the workers can always
choose to send their shares of the result to some recipients but not others.

At the end of the protocol, the recipient obtains not only the result; but also a
non-interactive zero-knowledge proof that this result is correct. In particular, the
recipient can also convince third parties that the encrypted outputs Y1, . . . , Yl are
correct. In effect, this protocol achieves what is known as “universal” verifiability
[dH12,SV15], although some small changes are needed to obtain security in the
[SV15] model.

Basing it on Commitments. Our protocols could be based on Pedersen com-
mitments instead of ElGamal encryptions. This requires a few changes; in par-
ticular, to prove that a commitments is zero, one needs to know the randomness,
hence the randomness of product commitments needs to be computed in a mul-
tiparty way. Using Pedersen commitments likely leads to smaller proofs and
quicker verification. Also, it is no longer needed to distribute decryption keys
to the workers, hence a computation can be outsourced to anybody without
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preparation. On the other hand, when using Pedersen commitments, whoever
knows the trapdoor logg h used to set up the commitment scheme, can produce
correctness proofs of incorrect computation results. (In the present construction,
knowing the trapdoor breaks privacy but not correctness.)

Load Balancing of the 2PC. In the present protocol, two of the three workers
produce the proof in line 19 while the third worker does nothing. If it is important
to balance the computation load, then it is possible to let the three pairs of
workers each produce one third of this proof.

Reducing Memory Load with Less Batching. In the present setup, all mul-
tiplication proofs and all decryption proofs share the same challenge. Although
this gives the smallest proofs and fastest computation, it also means that the
announcements for all those proofs need to be in memory at the same time.
Memory usage can be reduced at the expense of a slight increase in proof and
computation time by splitting the set of all equations into “blocks” and executing
PolyProve and PolyVer for each block.

4 Secure and Verifiable Linear Programming

To demonstrate the feasibility of our approach, we apply it to linear program-
ming. Linear programming is a broad class of optimisation problems occurring
in many applications; for instance, it can be used for optimising global profits in
supply chains [CdH10] or balancing risks in financial portfolios. A linear program
(LP) it is given by a matrix A and vectors b and c. The problem is to minimize
the linear function c · x = c1 · x1 + . . . + cn · xn in variables x = (x1, . . . , xn),
subject to constraints A · x ≤ b (where A is a m-by-n matrix). In addition to
these constraints, we require xi ≥ 0. For instance, the LP

A =
(

1 2 1
1 −1 2

)

, b =
(

2
1

)

, c =

⎛

⎝
−10
3

−4

⎞

⎠

represents the problem to find x1, x2, x3 satisfying x1 + 2x2 + x3 ≤ 2, x1 − x2 +
2x3 ≤ 1, and x1, x2, x3 ≥ 0, such that −10x1 + 3x2 − 4x3 is minimal.

To find the optimal solution of a linear program, typically an iterative algo-
rithm called the simplex algorithm is used. Each iteration involves several com-
parisons and a Gaussian elimination step, making it quite heavy for multiparty
computation. For relatively small instances, passively secure linear programming
is feasible [BD09,CdH10]; but actively secure MPC much less so when includ-
ing preprocessing (as we discuss later). Fortunately, given a solution x to an LP,
there is an easy way to prove that it is optimal using the optimal solution p of the
so-called dual LP “maximise b ·p such that A ·p ≤ c,p ≤ 0”. Namely, it is well
known that solutions (x1

q , . . . , xn

q ) and (p1
q , . . . , pm

q ) (x ∈ Z
n,p ∈ Z

m, q ∈ N
+)

are both optimal if the following conditions hold: (1) q ≥ 1; (2) p · b = c · x ;
(3) A · x ≤ q · b; (4) x ≥ 0; (5) AT · p ≤ q · c; (6) p ≤ 0. Also, the simplex
algorithm for finding x turns out to also directly give p. To turn conditions
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(1)–(6) into a set of polynomial equations, we use a certificate consisting of bit
decompositions of (q · b −A · x )i, x i, (q · c −AT · p)i, and −pi, and prove that
each bit decomposition b0, b1, . . . sums up to the correct value v (with equation
v = b0 + 2 · b1 + . . .) and contains only bits (with equations bi · (1 − bi) = 0).

4.1 Cloud Experiments

To assess the performance of our solution, we have performed experiments in a
realistic cloud outsourcing setting. Our experiments used a specially developed
prototype implementation of our protocols. We took the simplex implementa-
tion from the TUeVIFF distribution of VIFF2, and modified it to produce the
certificate of correctness, i.e., the dual solution and required bit decompositions.
We implemented the VerMPC protocol from Sect. 3.3 using SCAPI (http://
crypto.biu.ac.il/about-scapi), a high-level cryptographic library that supports
ElGamal encryption, Σ-protocols ΣPK and ΣCD, and the Fiat-Shamir heuris-
tic. To implement VerMPC, we added threshold decryption, ΣCM, and the
PolyProve and PolyVer protocols from Sect. 2.2. For ElGamal we use the
NIST P-224 elliptic curve using the MIRACL library.

To obtain a realistic outsourcing setting, we have deployed the three workers
on three different cloud instances from different providers on different continents.
See Table 2 for their specifications. In this setup, the inputters and recipient do
not have to rely on any single cloud provider or jurisdiction for their privacy: they
simply have to assume that the different instances do not collude. All machines
ran Ubuntu 14.04.2 LTS. The recipient ran Windows 7 on an Intel i5-5300 (2.30
GHz). The VIFF part of the computation (i.e., step 4) requires authenticated
and private channels; these were implemented using SSL. We did not implement
steps 1–3 as they contribute minimally to the overall performance of the protocol.

We ran our experiments on several LPs: randomly-generated small LPs and
larger LPs based on Netlib test programs3. We measured the time for VIFF to
solve the LP and to compute the certificate (this depends on the LP size, number
of iterations needed, and the bit length for internal computations); the time for
PolyProve to produce a proof; and for PolyVer to verify it (this depends
on the LP size and bit length for the proof).4 Figure 5 shows the performance

Table 2. Specifications of the workers used in our cloud experiments

# Location Provider Instance Processor Memory e/hour

1 Ireland Amazon EC2 m3.medium Xeon @ 2.50 GHz 3.75 GB e0.067

2 Virginia MS Azure Standard D1 Xeon @ 2.20 GHz 3.5 GB e0.070

3 Taiwan Google GCE n1-standard-1 Xeon @ 2.50 GHz 3.75 GB e0.050

2 Available at http://www.win.tue.nl/∼berry/TUeVIFF/.
3 http://www.netlib.org/lp/data/; coefficients rounded for performance.
4 We took the minimal bitlengths needed for correctness. In practice, these are not

known in advance: for VIFF, one takes a safe margin; for the proof, one can reveal
and use the maximal bit length of all bit decompositions in the certificate.

http://crypto.biu.ac.il/about-scapi
http://crypto.biu.ac.il/about-scapi
http://www.win.tue.nl/~berry/TUeVIFF/
http://www.netlib.org/lp/data/
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Fig. 5. Computation times of VerMPC on various LPs (the x-axis shows the LP size,
bit length for VIFF, bit length for the certificate, and number of iterations)

numbers of our experiments. For the LPs in our experiments, we find that pro-
ducing a proof adds little overhead to computing the solution, and that verifying
the proof is much faster than participating in the computation. As a consequence,
for the recipient, outsourcing both adds correctness and saves time compared
to participating in the computation. Already in a setting with three input-
ters/recipients, privacy-preserving outsourcing makes sense; with more input-
ters/recipients, this performance effect is even bigger because computation scales
linearly in the number of parties involved.

In general, one expects the difference between computing the solution and
proving its correctness to be more pronounced for larger problems: indeed, both
the computation and the correctness verification scale in the size of the LP; but
computation additionally scales in the number of iterations needed to reach the
optimal solution. This number of iterations typically grows with the LP size.
However, we only found this for the biggest linear program, where proving is
over four times faster than computing; for the other programs, this factor was
around two. An explanation for this is that also the bitlength of solutions (which
influences proving time) typically grows with the number of iterations.

4.2 Certificate Validation Versus Active Security

As discussed, the security guarantees of our model lie in between passive security
(that does not guarantee correctness in case of active attacks) and active security
(that guarantees privacy in this case). Above we showed that the overhead of our
approach compared to passive security is small; we now compare our performance
to that of active security. To get an idea of the performance difference between our
approach and active security, we have solved several of our LP instances with an LP
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solver based on state-of-the-art protocols [DKL+13]. [DKL+13] combines a slow
preprocessing phase, in which many random values are shared between workers,
with a fast on-line phase with complexity comparable to passively secure protocols.
Hence, after preprocessing has been performed, [DKL+13] can perform a compu-
tation with full privacy and correctness guarantees in about the same time as VIFF
(in fact, the tested implementation is even a bit faster).

However, preprocessing is slow. No public implementation of the preprocess-
ing phase is available, but it is possible to estimate the time it takes by measur-
ing the amount of randomness needed for the on-line phase and combining this
with available preprocessing performance figures [DKL+13]. Even with estimates
that are very generous to [DKL+13], one finds that the preprocessing time is at
least 15 times more than the VIFF computation time. For instance, for the first
48-by-70 linear program, we estimate that preprocessing for an actively secure
computation takes at least 13 h; conversely, for out implementation, computa-
tion and proving time is close to 35 min and verification time is 3.7 min. Also,
note that the timings from [DKL+13] were on a local network whereas our work-
ers are spread over the world; and that the timings were for two parties while
preprocessing scales linearly with the number of parties involved, including all
inputters and recipients (whereas our performance does not depend on the num-
ber of inputters and recipients). These numbers suggest that outsourcing with
certificate validation has favourable performance.

5 Concluding Remarks

In this paper, we have shown how to use certificate validation to obtain cor-
rectness guarantees for privacy-preserving outsourcing. In particular, we effi-
ciently instantiate this idea by combining passively secure three-party computa-
tion with ElGamal-based proofs. For linear programming, verifying results takes
much less time than participating in an actively secure computation; in fact, it
even takes less time than participating in a passively secure computation with-
out any correctness guarantees. Hence, for computations on inputs of mutually
distrusting parties, privacy-preserving outsourcing with correctness guarantees
provides a compelling combination of correctness (always) and privacy (against
semi-honest, non-collaborating cloud workers).

We see several directions for improvement of our work. We have used pas-
sively secure protocols for computation; using protocols that guarantee privacy
(but not correctness) also against active attacks would offer stronger protection,
possibly at a low performance cost. Our implementation can be optimised, and
our alternative construction using Pedersen commitment should have smaller
proofs and faster verification. Much bigger speed-ups, however, (especially for
linear programming) would come from using efficient zero-knowledge proofs for
specific tasks, e.g., for showing that certain values are positive. In particular,
range proofs are much faster to verify than our bit-wise proofs; the work of Keller
et al. [KMR12] suggests ways of distributing these proofs that could be adapted
to our setting. Alternatively, as we show in a recent pre-print [SVdV15], it may
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be possible to achieve even faster certificate validation by combining verifiable
outsourcing techniques with the privacy guarantees of multiparty computation.
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Abstract. In most password-based authentication protocols, the server
owns a value, the so-called verifier, that depends on the registered pass-
word. This verifier is often a one-way function of the password. Despite
this protection, an unauthorized person who gets access to the verifier can
mount a brute-force attack to recover the password. If the entropy of the
password is low, which is often the case in practice, such an attack might
be successful. Motivated by the growing need to face databases compro-
mises, we propose a two-factor password-based authentication protocol
where no information about the password leak from the server’s side nor
from the client’s side, and where the password is not sent to the server
when the user authenticates. During the registration, a user gets a value,
called the token, while the server records the verifier. Our security model
ensures that brute-force attacks are impossible if the server is compro-
mised. Moreover, only on-line attempts are possible if a token is stolen.
The solutions that we describe fit well into scenarios where the token is
stored on a mobile phone. We provide constructions, proven secure in
the random-oracle model, under standard assumptions.

1 Introduction

Password-based authentication (PA) is the most wide-spread way deployed to
authenticate users. A lot of advanced forms of authentications have been devel-
oped by the research community. However, the simplest form of PA, consisting
of a (login, password) pair, widely remains the method in use. Moreover, this
form of authentication takes more and more place in citizen’s life. Each entity
and service, own their websites and information systems, and each of them asks
the user for a password to get accessed.

The server managing the access rights stores the users’ information. Fortu-
nately, most of the time, the password is not directly stored. Instead, a one-way,
hard to invert, function is applied to the password, and the output, aka the
verifier, is stored on the server. This is a first step towards password protection.
Given a verifier, a brute-force recovering of the password consists of computing
the output of the function for all possible values of the password and comparing
the results with the verifier, sometimes with the help of dictionaries. Such an
attack is implicitly assumed to be impossible. However, the password is often
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 285–303, 2016.
DOI: 10.1007/978-3-319-31517-1 15
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chosen within a limited set of passwords, which makes the brute-force recovering
possible. A lot of protocols aims at being secure up to dictionary attacks. In
other words, the protocol ensures that the best possible attack is the dictionary
attack. In this paper, we ask whether it would be possible to go beyond this
bound. Ideally, we would like the verifier to leak no information at all about the
password. Thus, the consequences of server compromises would be mitigated.
Our approach. First of all, we would like to enhance the security of the most
common password based authentication, so we do not want to rely on specific
hardware. We rather use a two-factor software-only approach. During the reg-
istration process, a user gets a value, called the token, while the server records
the verifier. The two factors needed for the authentication are the password and
the token. We want the brute-force recovering of the password to be impossible
given only the verifier or the token. If a token is stolen, we want that only on-
line attempts are possible. As usual, a bound on the number of attempts will
protect the password. Such an authentication is well-suited to a mobile scenario,
where the token is stored on the phone. Moreover, we do not want to rely on
advanced cryptographic mechanisms, such as bilinear pairings in group of prime
orders. All operations in our constructions are based on operations in a group
of prime order. We propose two solutions, called pw-com and pw-hom, we now
briefly introduce in this introduction. In the main body of this paper, we prove
them secure in the random oracle model.

High-level view of our solution based on commitments. Our first solu-
tion, pw-com, uses the standard notion of commitments and zero-knowledge
proofs. A commitment scheme enables a user to commit to a value without
revealing it. The commitment binds the user to the committed value, but the
user is ensured that the value is not disclosed. Then, with a zero-knowledge
(ZK) proofs of knowledge (PK) of a committed value, the user proves that he
knows a pair (m, r) such that c = Commit(m; r) without revealing any informa-
tion about (m, r). Let Com be a commitment scheme, P be a set of password
and Hh : P → MC be an injective encoding from the set P to the message space
MC of the commitment scheme. The main idea is to store a statistically hiding
commitment as verifier (on the server), and the random value used to commit
to the password as token (on the client). The global parameters of the scheme
are a commitment key ck. In the registration phase, the user draws a uniform
value t ← RC in the random space of the commitment scheme, stores t as token
and sends c := Commit(Hh(pw); t). The server stores c as verifier. In the authen-
tication phase, the user supplies a ZKPK of (h, t) such that c = Commit(h; t).
From a token t and a verifier c, a brute-force attack can be used to recover a
password pw such that c = Commit(Hh(pw); t). However, the knowledge of t or
c alone does not help to recover the password. On the one hand, the token t
leaks no information about the password (in the information-theoretic sense), so
if the token is disclosed, only guesses on-line may help to recover the password.
On the other hand, the verifier c statistically hides the password, so brute-force
attacks are impossible, even for an unlimited adversary. Last, but not least, an
authentication session does not leak any information about the password, nor
the token, thanks to the zero-knowledge property of the proof of knowledge.
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High-level view of our solution based on a homomorphic encryption

scheme. Updates of the password in the user’s side are not possible in the
pw-com solution. We now ask the question whether it is possible for a user to
update its password without interaction with the server. We introduce a solution,
denoted pw-hom, based on a homomorphic encryption scheme over a prime order
group that achieves this property. The basic idea is the following. Let G be a
group of prime order – in additive notation here by pure convention – and hom-

pke be a public key homomorphic encryption scheme over G as message space.
After an interactive registration, the client got a pair of ciphertexts encrypting
two elements (K, [h] · K) where K ∈ G is a user-specific element and h ∈ Z

∗
p an

encoding of the password. The verifier contains the decryption keys (there is one
key pair per user) and a hash value of K. No information about the password
leak from the verifier. In the authentication step, the client computes a proof
of knowledge of the password over the ciphertexts thanks to the homomorphic
properties of the encryption scheme. In other words, he computes a Schnorr
signature [35] over the ciphertexts. Thanks to the verifier, the server is able to
decrypt the ciphertexts and to check the proof. However the server could retrieve
the password from an authentication, since it could retrieve the pair (K, [h] ·K),
then the password by brute-force recovering. Therefore, the password is first
masked with a fresh random value, then the proof of knowledge is performed. As
a result, no information about the password leaks from the server point of view.
The user-specific element K allows for authentication on behalf of the user. A
crucial point is to use two independent keys to produce the pair of ciphertexts,
to prevent the computation of a ciphertext of [h] · K from a ciphertext of K.

On the salting. In both solutions, Hh is just an encoding function without any
security property. Common solutions include a salt in the password hashing, but
there is no need here to include such a salt. A point to be noticed is that, without
salt, the Hh(pw) values are not uniform, because of the distribution of pw. If Hh

were a programmable random oracle, the defect would disappear. However, the
hiding property of the commitment scheme and the semantic security of the
encryption scheme are sufficient to hide the password and to avoid the random
oracle assumption on Hh, a probably too strong and not realistic assumption.
The only property we require is that Hh must be injective.

Related work. The literature about password based authentication is vast. A
lot of protocols are designed to derive a session key, an issue we do not address
here. The seminal work of [3] addresses authentication base on passwords only
(without additional assumptions) and proposes the Encrypted Key-Exchange
protocol (EKE). EKE was followed by several works [4,21,31,38,40]. The IEEE
P1363.2 Password-Based Public-Key Cryptography Working Group [20] con-
tains several of the proposals designed during the nineties. Formal models for
Password-based Authenticated Key Exchange (PAKE) appeared in [2,7]. The
GL’s framework [16] is an abstraction of the construction of [26] (KOY), and
was the first to propose a solution in the standard model. This framework under-
lies a lot of subsequent constructions [15,24,25,27,28]. The GK’s framework [18]
is an abstraction of the construction in [23], also achieves PAKE in the standard
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model, but without trusted setup. A third framework (KV) [29] achieves one-
round PAKE in the standard model. Recent work explicitly includes the verifier
in Authenticated Key Exchange [5,30]. However, they only consider security up
to the brute-force attack, according to the min-entropy of the passwords.

Turning our attention to two-factor password authentication, the construc-
tions of [36] achieve some of the properties we look for. However, they are based
on pairings, a tool we want to avoid in this paper, and they lack a formal analy-
sis. Several commercial solutions exist, such as Google Authenticator [13], Duo
Security [10], HotPin [19], and PhoneFactor [33]. The work of [37] introduces a
framework to analyse these two-factor authentication protocols, then proposes
several efficient constructions, and apply them in different scenarios. The par-
ticipants in the protocols above are, apart from the user, a client (say a web
browser), a server, and a device (say a smartphone). When authenticating, the
user submits a password and some additional information supplied by the device.
Our model is not the one they follow. We only assume a device (say a smart-
phone) authenticating to a server; i.e., we do not split between a client and
a device. Nevertheless, our solutions can be adapted in some of the scenarios
described in [37]. We elaborate on this point in the full version of our paper.

In most existing solutions, including [37], a hashed password is stored on
the server and the password is sent during the authentication protocol. To the
contrary, in our solutions, the password is never sent when the user authenticates.

In anonymous password authentication [39,41], several password-based ses-
sions from the same user cannot be linked. Although, several constructions of
anonymous password authentication use homomorphic encryption, our solutions
do not address the same problem – we protect the passwords against the servers,
without privacy of the identities –, and are more efficient.

Finally, let us mention recent concurrent and independent work which also
aims at mitigating server breaches for diverse authentication tasks. [8] introduces
Virtual Smart Card, a software-only solution for signature generation, in which a
signature is jointly generated by a device and a server while the user owning the
device authenticates to the server with a password. The signing key is distrib-
uted between the device and the server, however the server’s data alone is not
sufficient to produce a signature or to mount a brute-force password-recovery
attack, and the same holds for the device’s data. Another work [22] introduces
Device-Enhanced PAKE, in which the presence of a device in the client’s side is
integrated into the notion of Password-based AKE. Their model is not exactly
the same as ours: the value stored in the device in their model could be the
token in our model, but they also assume computation abilities in the user’s
side, whereas we only consider the user as the owner of a device. Last, [6] also
aims at mitigating server breaches in PAKE, but with a different approach: the
password database is split among several servers.

Organisation of the paper. Section 2 introduces some notations. Section 3
formally defines the two factor authentication we consider in this paper. Section 4
describes our solution based on commitments, and Sect. 5 our solution based on
homomorphic encryption.
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2 Notations

Notations. If x and y are strings over some alphabet, x‖y denotes their con-
catenation. ε denotes the empty string. R denotes the set of real numbers, R+

the set of non-negative real numbers, N the set of non-negative integers, and
Zn the ring Z/nZ of modular integers modulo the integer n. 1n denotes the
unary representation of the integer n. For an integer n ≥ 1, [1, n] denotes the
set {1, . . . , n}. If S is a set and D a distribution, x ←D S means that x is drawn
from S according to D. x ← S means that x is drawn according to the uniform
distribution. D ≈ E denotes that two distributions D and E are indistinguish-
able (in a computational, statistical, or perfect sense depending on the context).
If A is a (probabilistic) algorithm, x ← A(y) means that x is the result of the
execution of A on input y, for some internal random coins. If these random coins
used by A are made explicit, we note x := A(y; r), and A is deterministic. We note
x ∈ A(y) to denote that x belongs to the support of A on input y, i.e., that x
might be an output of A on input y. The assignment phrase a := E means that
the value a receives the result of the evaluation of the (deterministic) expres-
sion E. A function f : N → R

+ is said negligible if it decreases faster than any
polynomial. negl(·) denotes some unspecified negligible function.

3 Security Model

In this section, we formally defined the primitive we consider in this paper and
the security properties it should satisfy. A two-factor password-based authen-
tication TFPA scheme is given by a finite set U ⊆ N of users and a set of
functionalities {Setup, Join, Issue, Prove, Verify} described as follows.

Setup. This algorithm derives global parameters param together with a mas-
ter key mk, according to a security parameter λ. We note: Setup(1λ) →
(param,mk).

Registration: Join↔Issue. During the registration step, the user supplies a pass-
word pw ∈ {0, 1}∗ (possibly with low entropy) and gets a token T . The
token is recorded on the user’s side and the password pw is discarded.
The issuer owns the master key mk, and might additionally use some user-
specific auxiliary information info ∈ {0, 1}∗ as input. The issuer outputs
a user-specific value V , called the verifier, stored on a server. We note:
T ← Join(param, i, pw) ↔ Issue(param,mk, i, info) → V.

Authentication: Prove↔Verify. On input a token T and a fresh password p̃w,
a user authenticates to a server. The latter knows the verifier V recorded
during the registration, and outputs a decision dec ∈ {accept, reject}. We
note: Prove(param, i, p̃w, T )↔ Verify(param, i, V )→ dec.

We assume that the registration protocol is carried out over a secure channel. We
stress that the password is discarded after the registration. If the token is stolen
(for instance on a mobile phone), the UF-pw security property below ensures
that only guesses on-line are possible with the token. The password chosen by
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the user might depend on the information used to identify him. For instance, a
4 digits PIN on a mobile phone might be chosen by the user according to its
mobile number (say the last 4 digits), the phone number being precisely the
information used to enrol the user and to index the verifier. Our model takes
into account such dependencies through the auxiliary information info.

Parameters and password entropy. A TFPA scheme is parametrized by
three integers λ, β, τ ∈ N. λ manages the length of the keys, as in standard
cryptographic primitives. β manages the min-entropy of the password. τ is a
bound on the number of attempts to authenticate on behalf of a given user.
An adversary could always try to guess the password on-line and brute-forcing
the password takes 2β attempts on average. In practice, τ is set according to β.
One usually sets τ < β (such that τ 
 2β). For instance, let us assume that a
PIN number is composed of four uniform digits. The server usually aborts after
τ = 3 < β ≈ 13 attempts that failed.

Security properties for TFPA. Intuitively, we address two kinds of prob-
lems. From the authentication point of view, we want that only a registered user
can authenticate to the server, knowing a valid (token, password) pair. We han-
dle this with two unforgeability games UF-token and UF-pw. In each game, the
adversary tries to authenticate knowing a factor among (password, token) and
ignoring the other. From the password protection point of view, we do not want
the password to be guessable, neither from an adaptive external adversary, nor
from corrupted authorities. In the security game, Password-Leakage, the adver-
sary tries to guess the password, knowing the server’s data (including the master
key) but without knowing the client’s data.

Game-based definitions. Properties are expressed by games played between
an adversary A against a scheme Π and a challenger C. The adversary has access
to a set of oracles, described below. The set L records what leaks to A. The tables
pw, client and server record respectively the password, data on the client’s side
(aka the token) and data on the server’s database (aka the verifier).

Password sampling. First of all, each security game is carried out according to a
set P of passwords and a password distribution P with min-entropy β. The
challenger uses them to sample the passwords (if needed).

AddUser. A supplies (i, info, pw) where i is new. If pw �= ⊥, the challenger adds
(i, pw) to L. If pw = ⊥, the challenger picks a random password in pw ←P

P according to the distribution P . In both cases the challenger computes
the token T and the verifier V from pw, info, mk, records client[i] := T ,
server[i] := V and pw[i] := pw.

SendToIssuer. A may interact with the issuer, and potentially deviate from the
protocol during the registration. A supplies (i, info). Values pw[i] and client[i]
stay undefined. The challenger adds (i, pw), (i, client) to L.

UserData. The adversary might ask for the i-th user’s data: pw[i], client[i], or
server[i]. The corresponding pair (i, table) is added to L, where table ∈ {pw,
client, server}.
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IssuerImpersonation: SendToUserissuer. The adversary might impersonate the
issuer in front of a new user i (and deviate from the protocol). The challenger
plays the role of the user i, records the corresponding pw[i] and client[i], and
sets server[i] := ⊥. The pair (i, server) is added to L.

SendToServer. An adversary tries to authenticate on behalf of a user i of her
choice. According to the functionality, the challenger accepts up to τ attempts
per registered user.

The verification procedure enables authentication of registered users only. As
a consequence, the challenger responds only if i has already been enrolled.

ServerImpersonation: SendToUserserver. The adversary might impersonate the
server in front of a registered user i. There is no restriction on the num-
ber of attempts for this oracle.

UF: UnForgeability. In the unforgeability games, the adversary tries to
authenticate to the challenger on behalf of an existing user. The adversary may
attempt an authentication without a token (she might know the password of
the target user, and data from other users) or without knowing a password (she
might know the token of the target user, and data from other users). The first
property prevents an adversary to authenticate itself without being registered.
The second property prevents an adversary to authenticate itself if it stole the
token. We stress that the adversary knows whether an authentication attempt
is successful or not (Fig. 1).

Property UF-token. Given a scheme Π, a probabilistic polynomial adversary
A and security parameters λ, β, τ ∈ N, the probability of success in the
ExperimentUF−token

Π,A game is negligible as a function of λ:

Pr
[
ExperimentUF−token

Π,A (λ, β, τ) ⇒ 1
]

< negl(λ).

Property UF-pw. Given a scheme Π, a probabilistic polynomial adversary
A and security parameters λ, β, τ ∈ N, the probability of success in the
ExperimentUF−pw

Π,A game is negligible as a function of λ, up to on-line guesses:

Pr
[
ExperimentUF−pw

Π,A (λ, β, τ) ⇒ 1
]

< τ/2β + negl(λ).

Remarks. In the UF-pw game, the possibility to query server[i∗] is disallowed,
and it is inherent to the notion: from server[i∗] and client[i∗], an adversary could
brute-force recover pin[i∗]. Moreover, we assume that the registration proto-
col is carried out over a secure channel; so the adversary has no access to a
SendToUserissuer oracle, neither to transcripts of registration sessions.

PL: Password Leakage. We do not want the issuer or the verifier to be able
to recover the password. This point is not addressed by the UF games above. We
formalize a game where the adversary knows the master key and the verifiers,
but is not allowed to know the password nor the token for a target user i (it
might know these data for other users). If it knew the token, it could brute-force
recover the password (Fig. 2).
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Experiment
UF-{token|pw}
Π,A (λ, β, τ):

– L := ∅; table[i] := ⊥, ∀table ∈ {pw, client, server}
– (param,mk) ← Setup(1λ)
– (i∗, state) ← AO(param) where O := {AddUser, UserData, SendToIssuer,

SendToServer, SendToUserserver}
– if ( server[i∗] = ⊥ ): return 0
– C engages an authentication with A (acting as user i∗):

A(state) ↔ Verify(param, i∗, server[i∗]) → dec
– return 1 if ( dec = accept ) and

· in the weak UF-token case: ((i∗, server) L∈	 ) and ((i∗, client) L∈	 )
· in the strong UF-token case: ((i∗, client) L∈	 )
· in the UF-pw case: ((i∗, server) L∈	 ) and ((i∗, pw) L∈	 )

otherwise return 0

Fig. 1. The unforgeability experiment

ExperimentPLΠ,A(λ, β, τ):
– L ← ∅; table[i] := ⊥, ∀table ∈ {pw, client, server}
– (param,mk) ← Setup(1λ)
– O := {UserData, SendToUserissuer, SendToUserserver}
– (i∗, pw∗) ← AO(param,mk, sk)
– return 1 if (pw[i∗] = pw∗) and ({(i∗, pw), (i∗, client)} ∩ L = ∅),

otherwise return 0

Fig. 2. The password leakage experiment

Property Password-Leakage. Given a scheme Π, a probabilistic polynomial
adversary A and security parameters λ, β, τ ∈ N, the probability of success in
the ExperimentPLΠ,A game is negligible as a function of λ, up to a simple guess
of the password:

Pr
[
ExperimentPLΠ,A(λ, β, τ) ⇒ 1

]
< 1/2β + negl(λ).

The non-interactive authentication setting. By non-interactive setting,
we mean that the authentication procedure is the non-interactive signing of a
random message. The message to be signed is fresh for each authentication. It
might be a random challenge chosen by the verifier, or a hash value of a context-
dependent message (time, verifier identity, etc.), determined by the protocol
specification. In this setting, the SendToUserserver oracle becomes a signature
oracle and the SendToServer oracle becomes a verification oracle. According to
the standard existential unforgeability notion for signatures [17], we allow the
adversary to choose the message to be signed in the security experiment.

SendToUserserver. The adversary supplies (i,m), where i is a user, and m a
message; and receives a signature σ on m on behalf of i.
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SendToServer. The adversary supplies (i,m, σ); and receives the decision of the
verifier about the validity of the signature.

At the end of the game, there is no interaction with the challenger. The adversary
eventually outputs a tuple (i∗,m∗, σ∗) and wins if the non-triviality conditions
hold (server[i∗] �= ⊥, etc.), if m∗ has not been queried to the signature oracle,
and if Verify(param, i∗, server[i∗], m∗, σ∗) = accept.

Local updates. We now discuss the possibility of password updates on the
client’s side into our definition. May the user change its password and update
its token accordingly without interaction with the server? In fact, this property
is not contradictory with the notion. However, if such a procedure exists, the
client cannot check if the token is correctly updated. By contradiction, he could
carry out a verification protocol on its own, and therefore the adversary could
try, given a token, to guess the password and check its guess. In practice, one
can imagine that the old token is backed up and an authentication protocol is
done with the new token. If successful, then the old token is removed. If not, the
new token is removed and the old one is kept.

4 A Solution Based on Commitments

In this section, we give a simple solution that uses the standard notions of
commitments and proofs of knowledge of committed values.

Commitments and ZK proofs. A commitment scheme Com is composed of a
message space MC, a random value space RC, a commitment space CC, and a set
of functionalities {Setup, Commit, Open} as follows. On input a security parame-
ter λ ∈ N, the setup procedure Setup outputs a commitment key ck. The (deter-
ministic) commitment procedure Commit takes as input a commitment key ck, a
message m ∈ MC and a random value r ∈ RC, and outputs a committed value
c ∈ CC. Given a commitment key ck and a commitment c, the Open procedure
simply reveals a pair (m, r): everyone can check whether c = Commit(ck,m; r).
A commitment scheme is binding if it is impossible to reveal a distinct pair
(m′, r′) �= (m, r) such that c = Commit(m′; r′). It is hiding if c does not leak any
information about m. Both security notions can be defined in a computational,
statistical or perfect (information-theoretic) sense. In our constructions, we use
standard ZK proofs of knowledge, known as Σ-protocols, and their standard
transformation into signatures of knowledge [9] through the Fiat-Shamir heuris-
tic [12]. A Σ-protocol is proof of knowledge that consists of three messages: a
commitment message R, a random uniform challenge c ← {0, 1}λc for some secu-
rity parameter λc, and a response s. The Fiat-Shamir heuristic makes this ZKPK
non-interactive by generating the random challenge with a hash function. The
resulting signature – denoted SoK – is as secure as the underlying Σ-protocol
in the programmable random oracle model.
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user(ck, pw (reussi) info)

[user]: hash h := Hh(pw); pick t ← RC

[user]: set C := Com.Commit(ck, h; t); store T = t

send C−−−−−−−−−−−−−−−−−−−−−−→
erots:]reussi[ V = C

The pw-com registration protocol

user(ck, T = t, p̃w,m) server(ck, V = C,m)

[user]: h̃ := Hh(p̃w); compute σ ← SoK.Sign(ck, (h̃, t),m)

send σ−−−−−−−−−−−−−−−−−−−−−−→
kcehc:]revres[ SoK.Verify(ck, C, σ,m) = accept

The two factor pw-com authentication protocol

Fig. 3. The two factor pw-com solution

Description of the solution. Let Com be a computationally binding,
statistically hiding commitment scheme, and P be a set of passwords. Let
Hh : P → MC be an injective encoding function from the passwords to the
message space of the Com scheme. The Setup procedure picks a commitment
key ck ← Com.Setup(1λ) and returns ck as global parameter. The registration
and authentication protocols are described Fig. 3.

Security analysis. The pw-com solution is token-unforgeable in the program-
mable random oracle for Hc if the SoK scheme is sound, zero-knowledge, and
if the Com scheme is computationally binding and statistically hiding. It is
password-unforgeable in the programmable random oracle for Hc if the SoK

scheme is sound, zero-knowledge, and if the Com scheme is computationally
binding and statistically hiding. Finally, no information about the password is
available from the issuer’s and server’s point of view, in the random oracle for Hc

under the zero-knowledge property of the SoK scheme and the statistical hiding
property of the Com scheme. For the sake of reading, we use the following nota-
tions in the proofs: S is the signature oracle (instead of SendToUserserver), V the
verification oracle (instead of SendToServer). Moreover we analyse the security
for a single user, the extension to several users being straightforward.

Theorem 1. Let A be an adversary against the UF-token property of the pw-com
scheme with a single user, running in time at most t, making at most qs signature
queries, and at most qv verification queries. Then:

AdvUF-token
pw-com,ck(A) ≤ qs · (qs + qh)

|CC| +
qh

2λc
+

√

qh · Advbind
ck (2 · t).

Proof. Let T = t be the token of the user, pw its password, and V = C its ver-
ifier. Game G0 is the token-unforgeability security experiment. The adversary
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gets pw and V but does not have access to T . In game G1, the S oracle simulates
the signature with the simulator of signature of knowledge, in the random ora-
cle, without knowing the password, nor the token t, but knowing the verifier C.
Games G0 and G1 are identical up to the simulation failure. Game G2(ck, pw,C)
takes as input a commitment key ck, a random password pw ← P, and a ran-
dom commitment C ← CC. During the registration step, G2 sets T = ⊥ and
V = C. The token is not available to the simulation, but is not needed to sim-
ulate the signatures. From the statistical property of the commitment scheme,
we know that for all pw and commitment C, there exists t ∈ RC such that
C = Commit(Hh(pw); t) with overwhelming probability. It remains to show that
the probability of success of A in game G2 is negligible. Let B be the following
reduction. B receives a challenge ck for the computational binding property of
the commitment scheme, picks pw ←D P, C ← CC, and runs A simulating game
G2(ck, pw,C). A eventually outputs a valid signature σ for some message m. If
A is successful, then the soundness of the SoK scheme is broken. ��
Theorem 2. Let A be an adversary against the UF-pw property of the pw-com
scheme with a single user, running in time at most t, making at most qh random
oracle queries, qs signature queries, and qv < τ verification queries. Then:

AdvUF-pw
pw-com,ck(A) ≤ τ

2β
+

(qs · (qs + qh) − qv)
|CC| +

qh

2λc
+

√

qh · Advbind
ck (2 · t).

The proof is very similar to the proof of Theorem1. However, we must take
care of the password distribution, which is not assumed to induce a uniform
distribution over the message space of the commitment scheme.
Proof. Let T = t be the token of the user, pw its password, and V = C its veri-
fier. Game G0 is the password-unforgeability security experiment. The adversary
gets t but does not have access to pw nor to C. The only difference between G0

and G1 lies in the responses from the verification oracle for ‘fresh’ queries, i.e.,
message/signature pairs that do not correspond to a previous query/response
pair from the signature oracle. When a valid fresh verification query is supplied,
G1 stops and returns 1. G0 and G1 returns 1 with the same probability, but by
doing this we ensure that all fresh verification queries returns reject before the
forgery. In game G2, the signatures are simulated in the random oracle for Hc

with the simulator of the signature of knowledge. Game G3(ck, t, C) is a tran-
sition step. It takes as input a commitment key ck, a random value t ← RC,
a commitment C := Commit(Hh(pw); t) for some password pw ←D P, and sets
T = t and V = C. The password pw is not given, but is not needed for the
simulation. Game G4(ck, t, C) is as game G3, except that C ← CC. If 2β 
 |CC|,
it is unlikely that (event E): there exists pw such that C = Commit(Hh(pw); t).
The probability of E is at most 2β/|CC|, given that the encoding Hh is injec-
tive. However, the commitment key, the token and the simulated signatures are
identical in both games. The S oracle can still simulate signatures since the
SoK simulator can simulate signatures even for false statements. A gets infor-
mation about C only through the verification oracle. If E does not happen,
a potential bias of 1/2β is introduced per verification query from A’s point of
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view. This is because a negative response from the verification oracle reveals
at most one bit of information about the password (recall that all responses
from V are negative). So we bound the difference between G3 and G4 as follows:
Pr

[
AG3 ⇒ 1

]−Pr
[
AG4 ⇒ 1

] ≤ qv/2β ·(1 − 2β/|CC|). It remains to show that the
probability of success of A in game G4 is negligible. This is shown by reduction
to the soundness of the SoK signature, as in Theorem 1. ��
Theorem 3. Let A be an adversary against the PL property of the pw-com
scheme making at most qh queries to the random oracle and qs queries to the
signature oracle. Then:

AdvPL
pw-com,N (A) ≤ 1

2β
+

qs · (qs + qh)
|CC| .

Proof. Game G0 is the PL security game. A eventually outputs (i∗, pw∗) and wins
if it correctly guesses the password. In game G1, signatures are simulated as in
Theorem 1. In game G2, in the registration protocol, a random commitment
C ← CC is drawn, instead of computing C according to the user’s password.
Thanks to the mask value t, the simulated C is statistically close from a real
one, under the hiding property of the Com scheme. Finally, in game G2, no
password is used. The probability to win is then bound by the probability to
guess a password. ��
A DL instantiation. Let (p,G, G) be a group of prime order. During the
registration step, the client takes a password hash h := Hh(pw), picks t ← Zp,
and sets C := [h] ·G+[t] ·H. It stores t as token and sends C to the server which
stores it as verifier. During the authentication step, the client takes a password
hash h̃ := Hh(p̃w), picks rh, rt ← Zp, sets R := [rh] · G + [rt] · H;, c := Hc(R,m),
sh := rh + c · h̃ mod p, and st := rt + c · t mod p. It sends (c, sh, st) to the
server, which computes R̃ := [sh] ·G+[st] ·H − [c] ·C, c̃ := Hc(R̃,m);, and checks
c = c̃. For 128 bits of security, the user’s response (c, sh, st) takes 640 bits.

5 A Solution Based on Homomorphic Encryption

In this section, we give a construction based on a homomorphic encryption
scheme over group of prime order, which includes local updates of the password.

Hash functions. A hash function H is given by two procedures {KeyGen, Eval}
as follows. On input a security parameter λ, the KeyGen procedure outputs some
public parameters. In case of keyed hash function, the procedure also outputs a
random uniform evaluation key ek ← {0, 1}λ. On input a message m ∈ {0, 1}�(λ)

for some polynomial 	, the evaluation function Eval outputs a hash value in
some space H. We need collision-resistant (unkeyed) hash functions and pseudo-
random keyed hash functions. The collision-resistance requires that it should
impossible to exhibit two distinct messages that share the same hash value. A
keyed hash function is pseudo-random if a polynomial adversary cannot distin-
guish whether it interacts with a pseudo-random function or a truly random one.
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Homomorphic Encryption. Our constructions make use of an encryption
scheme that supports some homomorphic operation and its efficient iteration.
By pure convention we use here the additive symbol. A homomorphic public key
encryption scheme hom-pke is composed of a message space ME supporting
some operation +, a ciphertext space CE, and a set of functionalities {KeyGen,
Enc, Dec, Add, SMul} as follows.

On input a security parameter λ ∈ N and the particular message space
ME, the key generation procedure KeyGen outputs a pair of public/private keys
(pk, sk). The (probabilistic) encryption procedure Enc takes as input a public
key pk and a message m ∈ ME, and outputs a ciphertext c. The (determin-
istic) decryption procedure takes as input a secret key sk and a ciphertext c,
and outputs a message m. The homomorphic procedure takes as input a pub-
lic key pk and two ciphertexts c1, c2, and outputs a ciphertext c′. The homo-
morphic operation Add is extended to an efficient scalar multiplication SMul
which takes as input a public key pk, a ciphertext c and a scalar n ∈ N,
n > 1, and outputs a ciphertext c′ such that for all m ∈ ME we have:
n×m ← Dec(sk, SMul(pk, Enc(pk,m), n)). Sometimes we note c1 ⊕ c2 as a short-
cut for Add(pk, c1, c2), and [n] · c for SMul(pk, c, n), the public key being clear
from the context.

The one-wayness OW property states that it is impossible given a ciphertext
to recover the underlying plaintext. The semantic security, or indistinguishability
against chosen plaintext attacks IND-CPA, state that no information about the
plaintext leak from the ciphertext. We also assume that ciphertexts produced by
the homomorphic procedures are indistinguishable from those directly produced
by the encryption procedure.

Description of the solution. The Setup procedure picks a prime order group
(p,G, G) in additive notation, with null element 0, and a master key mk ←
{0, 1}λ. Let hom-pke := {KeyGen, Enc, Dec, Add, SMul} be an additively homo-
morphic encryption scheme over ME := (p,G, G). Let Hu : {0, 1}λ×{0, 1}∗ → Zp

be a pseudo-random hash function, Hc : {0, 1}λ × CE
2 × {0, 1}� → {0, 1}λ a hash

function (for a message length 	), Hv : CE → {0, 1}λ another hash function, and
Hh : P → Z

∗
p an injective encoding function of the passwords.

The Setup procedure returns the global parameters param := (p,G, G). The
registration and authentication protocols are described Fig. 4. In the registration
step, the user has got a password pw, the server knows the master key mk
and some user information info, and both know the parameters (p,G, G). In
the authentication step, the user supplies a fresh p̃w value and owns a token
(pk1, pk2, B,C), the server knows the verifier (H, sk1, sk2), and both formerly
agreed on a message m to be signed.

Local updates. Local updates on the client’s side are possible in the pw-hom
construction: (i) ask the user for pwold, pwnew; set hold := Hh(pwold), hnew :=
Hh(pwnew); (ii) given T := (pk1, pk2, B,C), update C ← SMul(pk2, C, hnew ·
(hold)−1 mod p).
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user(pw) parameters λ, (p,G, G) issuer(mk, info)

[user]: compute h := Hh(pw); pick a ← Z
∗
p; set Y := [a · h] · G

send Y−−−−−−−−−−−−−−−−−−−−−−→
[issuer]: compute k := Hu(mk, info)

[issuer]: pick (pk1, sk1), (pk2, sk2) ← KeyGen(1λ, (p,G, G))

[issuer]: set C̃ ← Enc(pk2, [k] · Y ) B ← Enc(pk1, [k] · G); H := Hv([k] · G)

[issuer]: store (H, sk1, sk2)

send pk1, pk2, B, C̃←−−−−−−−−−−−−−−−−−−−−−−
[user]: set C ← SMul(pk2, C̃, a−1 mod p))

[user]: store (pk1, pk2, B, C)

The pw-hom registration protocol

user(T = (pk1, pk2, B, C), p̃w,m) server(V = (H, sk1, sk2),m)

[user]: set h̃ := Hh(p̃w); pick a, r ← Z
∗
p

[user]: E ← SMul(pk1, B, r); F ← SMul(pk2, C, a)

[user]: c := Hc(E, F,m); s := r + c · a · h̃ mod p

send E, F, s−−−−−−−−−−−−−−−−−−−−−−→
[server]: c̃ := Hc(E, F,m); R := Dec(sk1, E); A := Dec(sk2, F )

[server]: check A 	= 0; K := [s−1 mod p] · (R + [c̃] · A); check Hv(K) = H

The pw-hom two factor authentication protocol

Fig. 4. The pw-hom two factor solution

Security analysis. The pw-hom scheme is UF-pw secure under the semantic
security of hom-pke, the pseudo-randomness of Hu and the collision-resistance
of Hv in the random oracle for Hc. It is (weakly) UF-token secure under the one-
wayness of hom-pke, the pseudo-randomness of Hu and the collision-resistance
of Hv in the random oracle for Hc. It is PL resistant in the random oracle for Hc.

Theorem 4. Let A be an adversary against the UF-pw property of the pw-hom
scheme with a single user, running in time at most t, making at most qh random
oracle queries, qs signature queries and qv < τ verification queries. Then:

AdvUF-pw
pw-hom,G(A) ≤ τ2

2β
+

(qs(qs + qh) − τ2)
p

+ AdvPRF
Hu

(t)+

τ · (
AdvIND-CPA

hom-pke,G(t) +
qh

2λc
+

√
qh · (

AdvOW
hom-pke,G(2 · t) + AdvCR

Hv
(2 · t)

))
.

Note on the bound. We are not able to prove that the bound is negligible beyond
τ/2β , but only beyond τ2/2β . This means that one should set τ2 < β rather than
τ < β in practice. If the encryption scheme is one-way under a computational
problem, this bound could be taken back to τ/2β at the cost of an interactive
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Gap assumption [32], according to which the adversary has access to an oracle
for the corresponding decision problem.

Proof. Let T = (pk1, pk2, B,C) be the token of the user, pw its password,
and V = (H, sk1, sk2) its verifier. Game G0 is the UF-pw security experiment.
The adversary gets T but does not have access to pw nor to V . In game G1,
the S oracle simulates the signatures, in the random oracle, without know-
ing the password, nor the ciphertext C, but knowing the ciphertext B and
the public encryption keys. During the n-th query, on input a message mn,
game G1 generates the signature as follows: pick sn ← Zp; cn ← {0, 1}λ;
Ln ← G, set Fn ← Enc(pk2, Ln); En ← Enc(pk1, [−cn] · Ln) ⊕ SMul(pk1, B, sn),
if Hc(En, Fn,mn) �= ⊥, abort, otherwise program Hc(En, Fn,mn) := cn, return
σ := (En, Fn, sn). Game G2 is game G1, except that the master key mk is dropped
and G2 has an oracle access to Hu(mk, ·). In game G3, the oracle access to Hu is
replaced by an oracle which draws random values in Z

∗
p. The success probabil-

ity of a distinguisher between G2 and G3 is bound by the advantage to break
the PRF property of Hu within the same time. In game G3, A supplies qv + 1
message/signature pairs, either to the verification oracle, or at the end of the
game. Game G4 guesses the first query j ∈ [1, qv + 1] where A gives a valid
‘fresh’ message/signature pair. For all j < j, the verification oracle returns 0.
At the j-th query (or at the end of the game if j = qv + 1), game G4 returns 1
and stops. The oracle V no longer needs the secret keys, at the price of a secu-
rity loss linear in the number of verification queries. Game G5(pk1, B, pk2, C)
is a transition step. It takes as input two public keys pk1, pk2, a ciphertext B
of a group element [k] · G under pk1, and a ciphertext C of a group element
[Hh(pw) · k] · G under pk2 for some pw ←P P and k ← Zp. The password
pw is not given, but the simulation of signatures is not affected. Likewise, the
secret keys are not given, but they are not needed in the simulation of the ver-
ification oracle. In game G6, a random exponent h ← Z

∗
p is taken instead of

computing h from the password. With probability at most 2β/p, there exists
pw ∈ P such that h = Hh(pw). Otherwise, the distribution of C is not as in
the real protocol. Under the semantic security of hom-pke, C does not leak
information about the password. However the verification queries might leak
information about the password. We bound the difference between G5 and G6 as
follows: Pr

[
AG5 ⇒ 1

]−Pr
[
AG6 ⇒ 1

] ≤
(
qv/2β + AdvIND-CPA

hom-pke,G(t)
)

· (1 − 2β/p
)
.

It remains to bound the probability of success of A is game G6. We adapt the
standard forking lemma techniques [1,34] to our case, which do not involve
difficulties. For the sake of place, we postpone it to the full version of our
paper. ��
Theorem 5. Let A be an adversary against the UF-token property of the pw-hom
scheme with a single user, running in time at most t, making at most qh random
oracle queries, qs signature queries and qv verification queries. Then:
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AdvUF-token
pw-hom,G(A) ≤ (qs · (qs + qh) + qv · qh)

p
+ AdvPRF

Hu
(t)+

(qv + 1) ·
√

qh · (
AdvOW

hom-pke,G(2 · t) + AdvCR
Hv

(2 · t)
)
.

Proof. Let T = (pk1, pk2, B,C) be the token of the user, pw its password, and
V = (H, sk1, sk2) its verifier. Game G0 is the token-unforgeability security exper-
iment. The adversary gets pw but does not have access to T nor V . Games G1

to G4 are as in Theorem 4. Game G5(pk,B) takes as input a public key pk, and
the ciphertext B of [k] · G for some uniform k ← Zp. G4 sets pk1 := pk and
B := B. The distributions of B in G4 and G5 are identical. The ciphertext C
is not computed and is never used. It remains to show that the probability of
success of A in game G5 is negligible. This is done as in Theorem 4, under the
one-wayness of hom-pke and the collision-resistance of Hv. ��
Theorem 6. Given an adversary A making at most qh requests to the random
oracle and qs requests to the signature oracle, we have:

AdvPL
pw-hom,G(A) ≤ 1

2β
+

qs · (qs + qh)
p

.

Proof. The proof is fairly straightforward, as in the pw-com scheme. ��
Security in presence of local updates. We add an oracle to the security
game, to catch the possibility of local updates. The adversary supplies (i, pw′),
for i such that pw[i] and client[i] are well-defined. If pw′ = ⊥, C picks a new
password pw′ ←P P at random, according to the password distribution P . In
both cases, C updates the tables. If UserData has already been called on pw[i]
(or client[i]), C sends the corresponding updated value to A. This oracle has an
effect during the game G6 in the UF-pw proof. The ciphertext C is replaced by
another ciphertext C = SMul(pk2, C, t) for some uniform t ← Z

∗
p. The value t is

not distributed as in the real protocol, but the simulation remain correct under
the semantic security of the encryption scheme.

A concrete instantiation with ElGamal. The black-box construction
above might be instantiated with the ElGamal encryption scheme [14]. Let ElG
be the following scheme. The key generation procedure takes as input a prime
order group (p,G, G), picks a secret key sk ← Z

∗
p, computes the public key

pk := [sk] · G, and returns the key pair (pk, sk) ∈ G × Z
∗
p. Then encryption pro-

cedure takes as input an element M ∈ G and a public key pk, picks r ← Zp and
outputs a ciphertext C([r] · G,M + [r] · pk) ∈ G

2. The decryption step takes as
input a ciphertext (C1, C2) and a secret key sk, and outputs M = C2 − [sk] · C1.
The one-wayness of the ElG scheme is equivalent to the CDH problem and its
semantic security is equivalent to the DDH problem. When instantiated with the
ElG scheme, a token is given by 6 group elements, a verifier by two scalars and
a hash, and a signature by 4 elements plus a scalar. According to the state of
the art (see for instance [11]), for 100 bits of security, the ElG scheme might be
instantiated with an elliptic curve over a prime field Fq with a 200-bits prime q.
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As a result, for 128 bits of security, a token needs ≈3k bits to be stored without
compression (and half this value with compression), a verifier takes ≈640 bits,
and a signature ≈2300 bits without compression (≈1300 with compression).
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Abstract. The only known way to achieve Attribute-based Fully
Homomorphic Encryption (ABFHE) is through indistinguishability
obfuscation. The best we can do at the moment without obfuscation
is Attribute-Based Leveled FHE which allows circuits of an a priori
bounded depth to be evaluated. This has been achieved from the Learn-
ing with Errors (LWE) assumption. However we know of no other way
without obfuscation of constructing a scheme that can evaluate circuits
of unbounded depth. In this paper, we present an ABFHE scheme that
can evaluate circuits of unbounded depth but with one limitation: there
is a bound N on the number of inputs that can be used in a circuit eval-
uation. The bound N could be thought of as a bound on the number of
independent senders. Our scheme allows N to be exponentially large so
we can set the parameters so that there is no limitation on the number of
inputs in practice. Our construction relies on multi-key FHE and leveled
ABFHE, both of which have been realized from LWE, and therefore we
obtain a concrete scheme that is secure under LWE.

1 Introduction

Attribute Based Encryption (ABE) is a cryptographic primitive that realizes the
notion of cryptographic access control. ABE owes its roots to a simpler primitive
called Identity Based Encryption (IBE), proposed in 1985 by Shamir [1] and first
realized in 2001 by Boneh and Franklin [2] and Cocks [3]. IBE is centered around
the notion that a user’s public key can be efficiently derived from an identity
string and a system-wide public parameters.

The identity string may be a person’s email address, IP address or staff
number, depending on the application. The public parameters along with a secret
trapdoor (master secret key) are generated by a trusted third party referred to
as the Trusted Authority (TA). The primary purpose of the TA is to issue a
secret key to a user that corresponds to her identity string (we abbreviate this
to identity) over a secure channel. The means by which the users authenticate
to the TA or establish a secure channel are outside the scope of IBE. The TA
uses the master secret key to derive the secret keys for identities. It is assumed
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that all parties have a priori access to the public parameters. For instance, the
public parameters may be hard-coded in the software used by the participants,
or made available on a public website.

ABE was proposed in 2005 by Sahai and Waters [4]. ABE can be viewed as
a generalization of IBE. In ABE, the TA generates secret keys instead for access
policies (an access policy prescribes the types of data a user is authorized to
access). An encryptor Alice can use the public parameters to encrypt data, and
embed within the ciphertext a descriptor of her choice that suitably describes
her data. The descriptor is referred to as an attribute. We caution the reader that
although the term attribute is used here in its singular form, it may in fact incor-
porate a collection of descriptive elements (which we call “subattributes”). To
illustrate this, an example of an attribute is {“CS”, “CRYPTO”}; it consists of
the subattributes “CS” and “CRYPTO”. Let us assume that this is the attribute
chosen by Alice. Suppose the TA has issued a user Bob a secret key for his access
policy. Keeping with the above example, suppose his access policy “accepts” an
attribute if it contains both the subattributes “CS” and “CRYPTO”. It follows
that Alice’s chosen attribute satisfies Bob’s access policy. As such, Bob can use
his secret key to decrypt Alice’s ciphertext. Notice that IBE is a special case of
ABE. One way of looking at an IBE scheme is that each attribute corresponds
to a unique identity string such as an email address or phone number. In IBE,
there is a one-to-one mapping between attributes and access policies, so Alice is
given a secret key for a policy that is singularly satisfied by her identity string.

We will return to identity/attribute-based encryption momentarily. First we
need to introduce the notion of fully homomorphic encryption (FHE). An FHE
scheme can evaluate all polynomial-time computable functions. Strikingly, it
achieves this without expanding the ciphertext size. For many applications, we
need only the capability to evaluate circuits of some limited depth. Leveled FHE
is a relaxation of FHE that can evaluate circuits of depth at most some positive
integer d.

FHE was first constructed in 2009 in a breakthrough work by Gentry [5]. Most
work on FHE has focused on the public-key setting but there has been some work
in recent years in achieving FHE in the identity/attribute-based setting. Gentry
et al. [6] constructed the first leveled Identity-Based Fully Homomorphic Encryp-
tion (IBFHE) scheme and the first leveled Attribute-Based Fully Homomorphic
Encryption (ABFHE) scheme from the Learning with Errors (LWE) problem.
Clear and McGoldrick [7] extended the former to achieve “multi-identity” lev-
eled IBFHE where evaluation can be performed on ciphertexts associated with
different identities. These schemes are leveled; that is, they are not “pure” FHE
schemes insofar as all circuits cannot be evaluated, only those of limited depth.

The only known way to achieve “pure” ABFHE (i.e. where all circuits can be
evaluated) is through indistinguishability obfuscation [8], namely the construc-
tion in [9]. The best we can do at the moment without obfuscation is Attribute-
Based Leveled FHE which allows circuits of an a priori bounded depth to be
evaluated. However we know of no other way in the identity/attribute-based set-
ting (without obfuscation) of constructing a scheme that can evaluate circuits of
unbounded depth. This has particular significance in the attribute-based setting
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because the public parameters are generated once and the chosen bound on the
circuit may not cater for all applications where deeper circuits are needed, and
it would be unwieldy to generate new public parameteres.

The technique of bootstrapping is currently the only known way to evaluate
circuits of unbounded depth. Obtaining ABFHE for circuits of unbounded depth
has been impeded by the fact that employing bootstrapping in the attribute-
based setting (non-interactively) is particularly challenging since bootstrapping
requires encryptions of the secret key bits to be available as part of the public key.
Even in the identity-based setting this is a difficult challenge because one has to
non-interactively derive encryptions of the secret key bits for any identity string
from the public parameters alone. The only known way of doing bootstrapping is
via indistinguishability obfuscation [9]. Without obfuscation, we have not been
able to achieve “pure” ABFHE.

In this work we construct an almost “pure” ABFHE with one catch, namely,
there is a pre-established bound N on the number of inputs to the circuits that
can be evaluated where each input is a bitstring of arbitrary size. Another way of
looking at it is that there is a limit on the number of independent senders who can
contribute inputs to the circuit. Our construction allows N to be exponentially
large because the parameter sizes grow logarithmically in N so it can be set large
enough to accomodate most reasonable applications. For example by setting
N = 232, the parameter sizes do not grow much and over 4 billion inputs can be
accomodated, which is more than one would expect in reasonable applications,
since each input (contributed by an independent sender) can be of arbitrary size.

1.1 Our Construction

Our construction relies on multi-key FHE and leveled ABFHE. Our use of multi-
key FHE is similar to that of [10] which uses it to a achieve a non-compact form
of ABFHE. If we have a leveled ABFHE with a class of access policies F, then we
get a (“pure”) ABFHE for the class of policies F with a bound N on the number
of inputs. The main idea behind our approach is that an encryptor generates a
key-pair (pk, sk) for the multi-key FHE scheme and it encrypts the secret key
sk with the leveled ABFHE scheme to obtain ciphertext ψ. Then the encryptor
encrypts every bit of plaintext (say w bits) with the multi-key FHE scheme using
pk to obtain ciphertext c1, . . . , cw. It sends the ciphertext CT := (ψ, c1, . . . , cw).
The evaluator evaluates the circuit on the multi-key FHE ciphertexts and obtains
an encrypted result c′. Then it evaluates with the leveled ABFHE scheme the
decryption circuit of the multi-key FHE scheme on c′ together with the encrypted
secret keys (the ψ ciphertexts). We obtain a ciphertext in the leveled ABFHE
scheme that encrypts the result of the computation (i.e. what c′ encrypts). The
size of the resulting ciphertext is independent of N and the size of the circuit.
By using the multi-key FHE scheme of Clear and McGoldrick [7], we only need
the leveled ABFHE scheme to have L = O(log N) levels where N is the bound
on the number of inputs.

We say a scheme is single-attribute if it only allows homomorphic evaluation
on ciphertexts with the same attribute. Otherwise, if it allows evaluation on
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ciphertexts with different attributes, we refer to the scheme as multi-attribute.
Whether our construction is single-attribute or multi-attribute depends on the
underlying leveled ABFHE scheme that is used. Single-attribute leveled ABFHE
has been achieved from LWE as has multi-identity leveled IBFHE. However
multi-attribute leveled ABFHE is an open problem. Hence we cannot obtain
“pure” multi-attribute ABFHE with a bounded number of inputs because there
are no multi-attribute leveled schemes. The closest we have is multi-identity
leveled IBFHE. The only known way of achieving “pure” multi-attribute ABFHE
is via indistinguishability obfuscation.

1.2 Organization

This paper is organized as follows. In Sect. 2, we introduce definitions that we
use throughout the paper including a definition of Attribute-Based Homomor-
phic Encryption. In Sect. 3, we provide security definitions and introduce a new
security notion which we call EVAL-SIM security. In Sect. 4, we present our con-
struction of ABFHE with a bounded number of inputs. We prove security of the
construction in Sect. 5. We review our main result and its corollaries in Sect. 6.

2 Definitions

Let us briefly recall the definition of key-policy attribute based encryption (KP-
ABE). A trusted authority (TA) generates public parameters and a master secret
key. It uses its master secret key to generate secret keys for access policies.
Alice encrypts her data, using the public parameters, under an “attribute” of
her choice in some designated set of “attributes”. An “attribute” serves as a
descriptor for the data she is encrypting. Suppose the TA issues a secret key
for some access policy to Bob. This access policy essentially describes which
attributes he is authorized to access. Bob can decrypt Alice’s ciphertext if its
associated “attribute” satisfies his access policy.

We refer to the result of an evaluation on a set of ciphertexts as an evaluated
ciphertext.

2.1 Models of Access Control for Decryption

A model of access control for decryption specifies how decryption of an evaluated
ciphertext is to be performed. Consider an evaluated ciphertext c′ associated
with d attributes a1, . . . , ad ∈ A. There are two primary models of decryption,
each with different strengths and weaknesses. Both models will be considered
in turn.

Atomic Access. The intended semantics of this model is that a user should
only be able to decrypt an evaluated ciphertext c′ if she has a secret key for
a policy f that satisfies all d attributes a1, . . . , ad . In other words, policies are



Attribute-Based Fully Homomorphic Encryption 311

enforced in an “all or nothing” manner. So in order to decrypt a ciphertext c′,
the decryptor needs a secret key for a policy f with f(a1) = · · · = f(ad ) = 1.
Furthermore, it captures the natural requirement that a decryptor be authorized
completely to access data associated with a particular attribute.

Non-atomic Access - Collaborative Decryption. The interpretation in this
model is that a group of users can pool together their secret keys to decrypt a
ciphertext c′. In other words, there may not be a single f ∈ F that satisfies all
d attributes (or no user holds a secret key for such an f), but the users may
share secret keys for a set of policies that “covers all” d attributes. In other
words, suppose the group of users have (between them) secret keys for policies
f1, . . . , fk ∈ F. In this model, they can decrypt c′ if and only if for every i ∈ [d ],
there exists a j ∈ [k ] such that fj(ai) = 1.

How is decryption performed? There are a few possible approaches:

1. Every user in the group shares their secret keys with each other, and all
users can decrypt. However, this violates the principle of least privilege and
gives users in the group access to data they might not have been explicitly
authorized to access.

2. Perform decryption collaboratively using a multi-party computation (MPC)
protocol. This approach has been suggested in other works including [11].
The advantage of this approach is that it does not leak any party’s secret key
to the other parties.

3. It is possible that a user has been issued secret keys for several policies.
For example: ABE for disjunctive policies can be achieved with an IBE
scheme where the TA issues secret keys for different identities (treated as
“attributes”) to the same user.

4. Collaborative decryption subsumes the functionality of the atomic model i.e.
a user with a single policy f satisfying all d attributes can still decrypt on
her own.

Our syntax for attribute based homomorphic encryption (ABHE) presented
in the next section generalizes both models. We do this by parameterizing an
ABHE scheme with an integer K ∈ [D], which specifies the maximum number of
keys that can be passed to the decryption algorithm. The setting K = 1 specifies
the atomic model whereas the setting K = D specifies the collaborative model.
Note that this is only a syntactic rule, it does not pertain to enforcing the secu-
rity property of either model. Our “default” model, assumed implicitly without
further qualification, is the collaborative model. This is for several reasons, which
we will enumerate now:

• In the identity-based setting, collaborative decryption is necessary. In this
context, a single f is satisfied by only one attribute (i.e. identity). Suppose
an evaluation is performed on ciphertexts with different identities to yield
an evaluated ciphertext c′. Clearly, there is no single secret key that is suffi-
cient to decrypt c′, since each secret key corresponds to exactly one identity.
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Because IBE is a special case of ABE, and very important in its own right,
we want to ensure we allow multi-identity evaluation.

• As noted above, the collaborative model subsumes the functionality of the
atomic model. The greater flexibility of permitting multiple users to collabo-
ratively decrypt (such as via MPC) invites more applications.

2.2 Definition of Attribute-Based Homomorphic Encryption

Recall the definition of ABE from the introduction. An ABE scheme
with message space M, attribute space A and class of supported access
policies F is a tuple of probabilistic polynomial time (PPT) algorithms
(Setup,KeyGen,Encrypt,Decrypt).

Definition 1 (Degree of Composition). Let c1, . . . , c� be input ciphertexts
to an evaluation. Each ciphertext ci is associated with an attribute ai ∈ A. The
degree of composition of the evaluation is the number of distinct attributes
among the ai; that is, the cardinality of the set |{a1, . . . , a�}|.
We use the symbol d to denote the degree of composition. When the context is
unambiguous, the term is abbreviated to degree. We use the symbol D to denote
the maximum degree of composition supported by a particular system.

Definition 2. A (Key-Policy) Attribute-Based Homomorphic Encryption
(ABHE) scheme E(D,K ) for an integer D > 0 and an integer K ∈ [D] is defined
with respect to a message space M, an attribute space A, a class of access policies
F ⊆ A → {0, 1}, and a class of circuits C ⊆ M∗ → M. An ABHE scheme is
a tuple of PPT algorithms (Setup,KeyGen,Encrypt,Decrypt,Eval) where Setup,
KeyGen, Encrypt are defined equivalently to KP-ABE. We denote by C the cipher-
text space. The decryption algorithm Decrypt and evaluation algorithm Eval are
defined as follows:

• Decrypt(skf1 , . . . , skfk , c): On input a sequence of k ≤ K secret keys for policies
f1, . . . , fk ∈ F and a ciphertext c, output a plaintext μ′ ∈ M iff every attribute
associated with c is satisfied by at least one of the fi; output ⊥ otherwise.

• Eval(PP, C, c1, . . . , c�): On input public parameters PP, a circuit C ∈ C and
ciphertexts c1, . . . , c� ∈ C, output an evaluated ciphertext c′ ∈ C.

More precisely, Eval is required to satisfy the following properties:

• Over all choices of (PP,MSK) ← Setup(1λ), C : M� → M ∈ C, every d ≤ D,
a1, . . . , a� ∈ A s.t |{a1, . . . , a�}| = d , μ1, . . . , μ� ∈ M, ci ← Encrypt(PP, ai, μi)
for i ∈ [�], and c′ ← Eval(PP, C, c1, . . . , c�):
• Correctness

Decrypt(skf1 , . . . , skfk , c′) = C(μ1, . . . , μ�) iff ∀i ∈ [d ] ∃j ∈ [k ] fj(ai) = 1
(2.1)

for any k ∈ [K ], any f1, . . . , fk ∈ F, and any skfj
← KeyGen(MSK, fj) for

j ∈ [k ].
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• Compactness There exists a fixed polynomial s(·, ·) for the scheme such
that

|c′| ≤ s(λ, d ). (2.2)

The complexity of all algorithms may depend on D. Furthermore, the size of
freshly encrypted ciphertexts, the size of the public parameters and the size of
secret keys may depend on D. On the other hand, the size of the evaluated
ciphertext c′ must remain independent of D (along with the size of the circuit
C), but it may depend on the actual number of distinct attributes, d , used in
the evaluation. Note that single-attribute ABHE is the special case where D = 1
i.e. evaluation is correct only for ciphertexts associated with the same attribute.
As mentioned earlier, K = 1 represents the atomic model of decryption whereas
K = D represents the collaborative model. When the parameter K is omitted, it
can be assumed that K = D; that is, the notation E(D) is shorthand for E(D,D).

Definition 3. Multi-Attribute ABHE (MA-ABHE) is a primitive with the same
syntax as ABHE except that its Setup algorithm takes an additional input D > 0,
which is the maximum degree of composition to support. An instance of MA-
ABHE can be viewed as a family of ABHE schemes {E(D) = (Setup,KeyGen,
Encrypt,Decrypt,Eval)}D>0.

Remark 1. In the constructions considered in this work, A consists of attributes
of fixed length. However the above definition is easily generalized to capture
variable-length attributes, by letting |c′| grow with the total length of the d
distinct attributes.

A concrete ABHE scheme is characterized by three facets: (1). its supported
computations (i.e. the class of circuits C); (2). its supported access policies (the
class of access policies F); and (3). its supported composition defined by its
maximum degree of composition, D.

3 Security Definitions

3.1 Semantic Security

The semantic security definition for ABHE is the same as that for ABE, except
that the adversary has access to the Eval algorithm as well. There are two def-
initions of semantic security for ABE: selective and adaptive security. In the
selective security game, the adversary chooses the attribute to attack before
receiving the public parameters whereas in the adaptive game, the adversary
chooses its target attribute after receiving the public parameters. We denote the
selective definition by IND-sel-CPA and the adaptive definition by IND-AD-CPA.

3.2 Simulation Model of Evaluation

Let D and K ≤ D be fixed parameters denoting the maximum degree of com-
position and the maximum number of keys passed to the decryption algorithm
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respectively. Consider ciphertexts c1, . . . , c� encrypted under attributes a1, . . . , a�

respectively. We expect that a ciphertext c′ resulting from an evaluation on
c1, . . . , c� be decryptable by a set of policies {fi}i∈[k ] with k ∈ [K ] if the fol-
lowing two conditions are satisfied: (1). the degree of composition d is less than
D (i.e. d := |{a1, . . . , a�}| ≤ D) - for convenience we re-label the d distinct
attributes as a1, . . . , ad ; and (2). for every i ∈ [d ], there exists a j ∈ [k ] with
fj(ai) = 1.

Ideally a user who does not have keys for such a set of policies {fi}i∈[k ]

should not learn anything about c′ except that it is associated with the attributes
a1, . . . , ad . This implies that such a user should not be able to efficiently decide
whether c′ was produced from c1, . . . , c� or an alternative sequence of ciphertexts
d1, . . . , d�′ with the same collection of distinct attributes a1, . . . , ad . We now give
a definition of security that captures the fact that an adversary learns nothing
from an evaluated ciphertext other than that it was generated from a particular
circuit and is associated with the attributes a1, . . . , ad .

Definition 4 (EVAL-SIM Security). Let F ⊆ F be a set of policies, and let
A ⊆ A be a set of attributes. For convenience, we define the predicate

compat(F,A) =

{
1 if ∃a ∈ A ∀f ∈ F f(a) = 0
0 otherwise.

Let E be an ABHE scheme with parameters D and K . We define the following
experiments for a pair of PPT adversarial algorithms A = (A1,A2) and a PPT
algorithm S.

• ExpREAL
E,A (λ) (Real World):

1. (PP,MSK) ← E .Setup(1λ).
2. (C, (a1, μ1), . . . , (a�, μ�), st) ← AE.KeyGen(MSK,·)

1 (PP).
3. Let F be the set of policies queried by A1.
4. Let A := {a1, . . . , ad } be the distinct attributes in the collection a1, . . . , a�.
5. Assert d ≤ D and compat(F,A) = 1; otherwise output a random bit and

abort.
6. cj ← E .Encrypt(PP, aj , μj) for j ∈ [�].
7. c′ ← E .Eval(PP, C, c1, . . . , c�).
8. b ← AO(MSK,·)

2 (st, c′, c1, . . . , c�)
9. Output b.

• ExpIDEAL
E,A,S(λ) (Ideal World):

1. (PP,MSK) ← E .Setup(1λ).
2. (C, (a1, μ1), . . . , (a�, μ�), st) ← AE.KeyGen(MSK,·)

1 (PP).
3. Let F be the set of policies queried by A1.
4. Let A := {a1, . . . , ad } be the distinct attributes in the collection a1, . . . , a�.
5. Assert d ≤ D and compat(F,A) = 1; otherwise output a random bit and

abort.
6. cj ← E .Encrypt(PP, aj , μj) for j ∈ [�].
7. c′ ← S(PP, C,A).
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8. b ← AO(MSK,·)
2 (st, c′, c1, . . . , c�)

9. Output b.

where O(MSK, ·) is defined as:

• O(MSK, f) :
1. If compat(F ∪{f}, A) = 1: set F ← F ∪{f} and output E .KeyGen(MSK, f).
2. Else output ⊥.

Then E is said to be EVAL-SIM-secure if there exists a PPT simulator S such
that for every pair of PPT algorithms A := (A1,A2), it holds that

|Pr[ExpREAL
E,A → 1] − Pr[ExpIDEAL

E,A,S → 1]| < negl(λ).

Note that the above definition relates to adaptive security. For selective secu-
rity, the adversary must choose the attributes before receiving the public para-
meters. As a result, in the modified definition, A consists of three PPT algo-
rithms (A1,A2,A3). Furthermore, A1 outputs a set of d ≤ D attributes
A := {a1, . . . , ad }; A2 receives PP and outputs a circuit C along with a sequence
of � pairs (μi, ai) for i ∈ [�] where μi ∈ M and ai ∈ A. Finally, A3 is defined
equivalently to A2 in the above definition. We denote the selective variant by
sel-EVAL-SIM.

4 Construction

4.1 Building Blocks

Multi-key FHE. Multi-Key FHE allows multiple independently-generated
keys to be used together in a homomorphic evaluation. The syntax of multi-
key FHE imposes a limit N on the number of such keys that can be supported.
Furthermore, the size of the evaluated ciphertext does not depend on the size of
the circuit (or number of inputs), but instead on the number of independent keys
N that is supported. In order to decrypt, the parties who have the corresponding
secret keys must collaborate such as in an MPC protocol.

Definition 5 (Based on Definition 2.1 in [11]). A multi-key C-homomorphic
scheme family for a class of circuits C and message space M is a family of PPT
algorithms {E(N) := (Gen,Encrypt,Decrypt,Eval)}N>0 where E(N) is defined as
follows:

• MKFHE.Gen takes as input the security parameter 1λ and outputs a tuple
(pk, sk, vk) where pk is a public key, sk is a secret key and vk is an evalu-
ation key.

• MKFHE.Encrypt takes as input a public key pk and a message m ∈ M, and
outputs an encryption of m under pk.

• MKFHE.Decrypt takes as input 1 ≤ k ≤ N secret keys sk1, . . . , skk and a
ciphertext c, and outputs a message m′ ∈ M.
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• MKFHE.Eval takes as input a circuit C ∈ C, and � pairs (c1, vk1), . . . , (c�, vk�)
and outputs a ciphertext c′.

Informally, evaluation is only required to be correct if at most N keys are used in
MKFHE.Eval; that is, |{vk1, . . . , vk�}| ≤ N . Furthermore, the size of an evaluated
ciphertext c′ must only depend polynomially on the security parameter λ and
the number of keys N , and not on the size of the circuit.

The IND-CPA security game for multi-key homomorphic encryption is the
same as that for standard public-key encryption; note that the adversary is given
the evaluation key vk.

There are two multi-key FHE schemes in the literature: the scheme of
López-Alt et al. [11] based on NTRU and the scheme of Clear and McGoldrick [7]
based on Learning with Errors (LWE). Although our construction can work with
any multi-key FHE, we obtain better efficiency if we use the multi-key FHE
scheme of Clear and McGoldrick, which we call CM. More precisely, the depth
of the decryption circuit of CM is O(log N) (as opposed to O(log2 N) in the
case of the multi-key FHE from [11]) which results in fewer levels needed for the
leveled ABFHE.

For the remainder of the paper, we will denote an instance of a multi-key
FHE by EMKFHE.

Leveled ABFHE. Our approach uses a leveled ABFHE scheme in an essential
way. A leveled ABFHE scheme allows one to evaluate a circuit of bounded depth.
The bound on the depth L is chosen in advance of generating the public para-
meters. Gentry et al. [6] presented the first leveled ABFHE where the class of
access policies consists of bounded-depth circuits. They based security on LWE.
A leveled Identity-Based FHE (IBFHE) scheme from LWE is also presented in
[6]. Furthermore a leveled IBFHE that is multi-identity (supports evaluation on
ciphertexts with different identities) was constructed in [7] from LWE.

Any of the above schemes can be used to instantiate our construction and
its properties are inherited by our construction. Therefore if we use an identity-
based scheme, our resulting construction is identity-based etc.

For the rest of the paper, we will denote a leveled ABFHE scheme by ElABFHE

with message space MElABFHE
, attribute space AElABFHE

and class of predicates
FElABFHE

.

4.2 Overview of Our Approach

The main idea behind our approach is to exploit multi-key FHE and leveled
ABFHE to construct a new ABFHE scheme that can evaluate circuits with
up to N inputs, where N is chosen before generating the public parameters. Let
EMKFHE be a multi-key FHE scheme whose decryption circuit has depth δ(λ,N)
where N is the number of independent keys tolerated and λ is the security
parameter. Let ElABFHE be a leveled ABFHE scheme as described in Sect. 4.1
that can compactly evaluate circuits of depth δ(λ,N).
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Let w be a positive integer. The supported message space of our scheme is
M � {0, 1}w. The supported attribute space is A � AElABFHE

and the supported
class of access policies is F � FElABFHE

. In other words, the attribute space and
class of access policies is the same as the underlying leveled ABFHE scheme.
Finally, the class of supported circuits is C � MN → M.

Roughly speaking, to encrypt a message μ ∈ M under attribute a ∈ A in our
scheme, (1) a key triple (pk, sk, vk) is generated for EMKFHE; (2) μ is encrypted
with EMKFHE under pk; (3) sk is encrypted with ElABFHE under attribute a; (4)
the two previous ciphertexts along with vk constitute the ciphertext that is
produced. Therefore, EMKFHE is used for hiding the message and for homomorphic
computation, whereas ElABFHE enforces access control by appropriately hiding the
secret keys for EMKFHE.

The evaluator performs homomorphic evaluation on the multi-key FHE
ciphertexts and obtains a result c′. It then homomorphically decrypts c′ with
the leveled ABFHE scheme using the encryptions of the secret keys for EMKFHE.
As a result we obtain a ciphertext whose length is independent of N and the
circuit size, which satisfies our compactness condition.

In more concrete terms, we assume without loss of generality that the message
space of EMKFHE is {0, 1}, and we encrypt a w-bit message μ = (μ1, . . . , μw) ∈
{0, 1}w one bit at a time using EMKFHE. Furthermore, let N be the maximum
number of keys supported by EMKFHE. Our construction can therefore support
the class of circuits C = {({0, 1}w)N → {0, 1}w}. We remind the reader that w
can be arbitrarily large, and in practice, the length of plaintexts may be shorter
than w. In practice, each sender’s input may be of arbitrary size. However, there
is a limit, N , on the number of independent senders i.e. the number of inputs to
the circuit where the inputs are taken from the domain {0, 1}w.

4.3 Construction

We now present our construction, which we call bABFHE.

Setup. On input a security parameter λ and a bound N on the number of
inputs to support, the following steps are performed:

1. Choose integer w.
2. Generate (PPElABFHE

,MSKElABFHE
) ← ElABFHE.Setup(1λ, 1L) where L =

O(log λ · N) is the depth of the decryption circuit of ElABFHE for parameters
λ and N .

3. Output (PP := (PPElABFHE
, λ,N,w),MSK := (PP,MSKElABFHE

)).

Secret Key Generation. Given the master secret key MSK := (PP,
MSKElABFHE

) and a policy f ∈ F, a secret key skf for f is generated as
skf ← ElABFHE.KeyGen(MSKElABFHE

, f). The secret key SKf := (PP, skf ) is issued
to the user.
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Encryption. On input public parameters PP := (PPElABFHE
, λ,N,w), a binary

string μ = (μ1, . . . , μw) ∈ {0, 1}w and an attribute a ∈ A: the sender
first generates a key triple for EMKFHE; that is, she computes (pk, sk, vk) ←
EMKFHE.Gen(1λ, 1N ). Then she runs ψ ← ElABFHE.Encrypt(PPElABFHE

, a, sk). Sub-
sequently she uses pk to encrypt each bit μi ∈ {0, 1} in turn using EMKFHE for
i ∈ [w]; that is, she computes ci ← EMKFHE.Encrypt(pk, μi). Finally she outputs
the ciphertext CT := (type := 0, enc := (ψ, vk, (c1, . . . , cw))).

Remark 2. A ciphertext CT in our scheme has two components: the first is
labeled with type and the second is labeled with enc. The former has two valid
values: 0 and 1; 0 indicates that the ciphertext is “fresh” while 1 indicates that
the ciphertext is the result of an evaluation. The value of the type component
specifies how the enc component is to be parsed.

Evaluation. On input public parameters PP := (PPElABFHE
, λ,N,w), a circuit

C ∈ C, and ciphertexts CT1, . . . ,CT� with � ≤ N , the evaluator performs the
following steps. Firstly, the ciphertexts are assumed to be “fresh” ciphertexts
generated with the encryption algorithm. In other words, their type components
are all 0. Otherwise the evaluator outputs ⊥. Consequently, the evaluator can
parse CTi as (type := 0, enc := (ψi, vki, (c

(i)
1 , . . . , c

(i)
w ))) for every i ∈ [�]. We

denote by ai the attribute associated with the ElABFHE ciphertext ψi. The max-
imum degree of composition of our construction is inherited from that of the
underlying leveled ABFHE scheme ElABFHE. We denote this as usual by D. The
evaluator derives the degree of composition as d ← |{a1, . . . , a�}|, and outputs
⊥ and aborts unless d ≤ D.

Next the evaluator computes

c′ ← EMKFHE.Eval(C, (c(1)1 , vk1), . . . , (c(1)w , vk1), . . . , (c
(�)
1 , vk�), . . . , (c(�)w , vk�))

and encrypts this ciphertext with the leveled ABFHE scheme under any arbitrary
ai, say a1; that is, the evaluator computes ψc′ ← ElABFHE.Encrypt(PPElABFHE

, a1, c
′).

The final step is to evaluate using ElABFHE the decryption circuit D〈N,λ〉1 of
EMKFHE:

ψ ← ElABFHE.Eval
(
PPElABFHE

,D〈N,λ〉, ψc′ , ψ1, . . . , ψ�

)
.

The evaluator outputs the evaluated ciphertext CT′ := (type := 1, enc := ψ).

Remark 3. Observe that a “fresh” ciphertext has a different form to an evaluated
ciphertext. Further evaluation with evaluated ciphertexts is not guaranteed by
our construction. Hence it is a 1-hop homomorphic scheme using the terminology
of Gentry et al. [12].

Decryption. To decrypt a ciphertext CT := (type, enc) with a sequence of
secret keys SKf1 := (PP, skf1), . . . ,SKfk := (PP, skfk ) for respective policies
f1, . . . , fk ∈ F, a decryptor performs the following steps.

1 for the specific case of parameters N and λ.
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If CT is a “fresh” ciphertext (i.e. type = 0), then enc is parsed as (ψ, vk,
(c1, . . . , cw)) and the decryptor computes sk ← ElABFHE.Decrypt(sk1, . . . , skk , ψ).
If sk = ⊥, then the decryptor outputs ⊥ and aborts. Otherwise, she computes

μj ← EMKFHE.Decrypt(sk, cj) for every j ∈ [w]

and outputs the plaintext μ := (μ1, . . . , μw) ∈ {0, 1}w.
If CT is an evaluated ciphertext (i.e. type = 1), then the decryptor parses enc

as ψ and computes x ← ElABFHE.Decrypt(sk1, . . . , skk , ψ). If x = ⊥ the decryptor
outputs ⊥ and aborts; otherwise the plaintext μ := x ∈ {0, 1}w is outputted.

4.4 Formal Description

A formal description of the construction bABFHE is given in Fig. 1. As men-
tioned previously, the parameters D (maximum degree of composition) and K
(maximum number of decryption keys passed to Decrypt) are inherited directly
from the underlying leveled ABFHE scheme ElABFHE. Although circuits in the
supported class send a sequence of elements in the message space M := {0, 1}w

to another element in the message space M, we simplify the description here and
assume that each circuit C outputs a single bit. A circuit Ĉ in our supported
class can then be modelled as w such circuits.

4.5 Correctness

In the evaluation algorithm, the desired N -ary circuit C whose N inputs are over
the domain {0, 1}w is evaluated using the multi-key FHE scheme. Observe that C
can be of arbitrary depth since the size of the resultant multi-key FHE ciphertext
only depends on λ and N . We then encrypt this resulting ciphertext with ElABFHE

in order to homomorphically evaluate the decryption circuit of EMKFHE using
ElABFHE. Consequently, we obtain a ciphertext whose size is independent of N as
required by the compactness condition for ABHE.

5 Security

5.1 Semantic Security

Without loss of generality we assume that the message space MElABFHE
of ElABFHE

is big enough to represent secret keys in EMKFHE and binary strings in M.

Lemma 1. If ElABFHE is an IND-X-CPA-secure leveled ABFHE scheme and
EMKFHE is an IND-CPA-secure multi-key FHE scheme, then bABFHE is IND-
X-CPA where X ∈ {sel,AD}.
Proof. We prove the lemma by means of a hybrid argument.

Hybrid 0 IND-X-CPA game for bABFHE.
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Fig. 1. Formal Description of scheme bABFHE.
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Hybrid 1 Same as Hybrid 0 except with one difference. Let a� ∈ A be the
target attribute chosen by the adversary A. The challenger uses a modified
Encrypt algorithm to compute the leveled ABFHE ciphertext corresponding to
a∗ by replacing Step 4 with ψ ← ElABFHE.Encrypt(PPElABFHE

, a∗, 0|sk|) where 0|sk|

is a string of zeros whose length is the same as the multi-key FHE secret key
generated in Step 3 of Encrypt. The algorithm is otherwise unchanged.

We claim that any poly-time A that can distinguish between Hybrid 0 and
Hybrid 1 with a non-negligible advantage can break the IND-X-CPA security of
ElABFHE. An adversary B that uses A proceeds as follows. When A chooses a
target attribute a�, B generates a key-triple for EMKFHE i.e. it computes

(pk, sk, vk) ← EMKFHE.Gen(1λ, 1N ).

Then it gives a∗ to its challenger along with two messages x0 := sk and
x1 := 0|sk|. Note that we assume for simplicity that both messages are in MElABFHE

;
if multiple messages (say k) are required then the usual hybrid argument can be
applied which loses a factor of k. Subsequently, B embeds the challenge leveled
ABFHE ciphertext as the ψ component of its own challenge ciphertext CT∗.
It computes the remaining components of CT∗ as in the Encrypt algorithm.
If ψ encrypts x0, then B perfectly simulates Hybrid 0. Otherwise, B perfectly
simulates Hybrid 1. Note that secret key queries made by A can be perfectly
simulated by B. Thus, if A has a non-negligible advantage distinguishing between
the hybrids, then B has a non-negligible advantage attacking the IND-X-CPA
security of ElABFHE.

For i ∈ [w]:

Hybrid 1 + i Same as Hybrid 1 + (i−1) with the exception that the challenger
does not encrypt message bit μ

(0)
i or μ

(1)
i (using EMKFHE) chosen by A. Instead

it encrypts some fixed message bit β ∈ {0, 1}.
We now show that if A can efficiently distinguish between Hybrid 1 + i and

Hybrid 1 + (i − 1), then there is a PPT algorithm G that can use A to attack
the IND-CPA security of EMKFHE. Let pk and vk be the public key and evaluation
key that G receives from its challenger. When A chooses μ(0) ∈ {0, 1}w and
μ(1) ∈ {0, 1}, G simply gives μ

(b)
i and β to its IND-CPA challenger where b is

the bit it uniformly samples in its simulation of the IND-X-CPA challenger. Let
c� be the challenge ciphertext it receives from the IND-CPA challenger. It sets
ci ← c∗ in the challenge ciphertext CT∗. If c� encrypts μ

(b)
i , then the view of

A is identical to Hybrid 1 + (i − 1). Otherwise, the view of A is identical to
Hybrid 1 + i. Therefore, a non-negligible advantage obtained by A implies a
non-negligible advantage for G in the IND-CPA game, and thus contradicts the
IND-CPA security of EMKFHE.

Finally observe that the adversary has a zero advantage in Hybrid
1 + w because the challenge ciphertext contains no information about the
challenger’s bit. ��
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5.2 EVAL-SIM Security

Recall the simulation-based security definition from Sect. 3.2, which we called
EVAL-SIM security. In the following lemma, we show that bABFHE inherits
EVAL-SIM security from ElABFHE.

Lemma 2. Let EMKFHE be an IND-CPA secure multi-key FHE scheme. Let ElABFHE

be an X-EVAL-SIM secure ABHE scheme with X ∈ {sel,AD}. Then bABFHE is
X-EVAL-SIM secure.

Proof. By the hypothesized X-EVAL-SIM security of ElABFHE, there exists
a PPT simulator SElABFHE

such that for all PPT adversaries AElABFHE
:=

(AElABFHE,1,AElABFHE,2) we have

|Pr[ExpREAL
ElABFHE,AElABFHE

→ 1]−Pr[ExpIDEAL
ElABFHE,AElABFHE

,SElABFHE
→ 1]| < negl(λ). (5.1)

Remark 4. Note that in this proof we use the definition for adaptive EVAL-SIM
security, which is slightly different to that for sel-EVAL-SIM security, but the
argument holds analogously for the latter.

A simulator S can be constructed using SElABFHE
in order to achieve X-

EVAL-SIM security for bABFHE. The simulator S runs as follows:

• S(PP, C, {a1, . . . , ad }) with d ≤ D, a1, . . . , ad ∈ A and C ∈ C:
1. Parse PP as (PPElABFHE

, λ,N,w).
2. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.
3. Output SElABFHE

(PPElABFHE
,D〈N,λ〉, {a1, . . . , ad }).

We claim that if there exists a PPT adversary A := (A1,A2) with a non-
negligible advantage distinguishing the real distribution and ideal distribu-
tion for bABFHE (with respect to S), then there exists a PPT adversary
AElABFHE

:= (AElABFHE,1,AElABFHE,2) with a non-negligible advantage distinguishing
the real distribution and ideal distribution for ElABFHE (with respect to SElABFHE

).
If this claim were to hold it would contradict the hypothesized X-EVAL-SIM
security of ElABFHE, which seals the lemma. To prove the claim, we show how to
construct (AElABFHE,1,AElABFHE,2) from (A1,A2). The algorithm AElABFHE,1 is given as
input the public parameters PPElABFHE

for ElABFHE. We denote its key generation
oracle by O1. It runs as follows.

1. Set PP := (PPElABFHE
, λ,N,w) (the parameters N and w are fixed elsewhere).

2. Run (C, (a1, μ1), . . . , (a�, μ�), st) ← AO1
1 (PP).

3. For i ∈ [�]:
(a) Parse μi as (μ(i)

1 , . . . , μ
(i)
w ) ∈ {0, 1}w.

(b) (pki, ski, vki) ← EMKFHE.Gen(1λ, 1N )
(c) c

(i)
j ← EMKFHE.Encrypt(pk, μ

(i)
j ) for j ∈ [w].

4. Set d ← |{a1, . . . , a�}| (degree of composition).
5. c′ ← EMKFHE.Eval(C, (c(1)1 , vk1), . . . , (c

(1)
w , vk1), . . . , (c

(�)
1 , vk�), . . . , (c

(�)
w , vk�)).

6. Let D〈N,λ〉 be the decryption circuit of EMKFHE for parameters N and λ.
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7. Set state ← (st,PP, (vk1, (c
(1)
1 , . . . , c

(1)
w )), . . . , (vk�, (c

(�)
1 , . . . , c

(�)
w ))).

8. Output (D〈N,λ〉, (a1, c
′), (a1, sk1), . . . , (a�, sk�), state).

The algorithm AElABFHE,2 is given as input the state state (generated in AElABFHE,1),
the evaluated ciphertext ψ′ along with the � + 1 “input ciphertexts” (which
we denote by ψc′ , ψ1, . . . , ψ�) and attributes {a1, . . . , ad }. We denote its key
generation oracle by O2. It runs as follows.

1. Parse state as (st,PP, (vk1, (c
(1)
1 , . . . , c

(1)
w )), . . . , (vk�, (c

(�)
1 , . . . , c

(�)
w ))).

2. Parse PP as (PPElABFHE
, λ,N,w).

3. Generate bABFHE input ciphertext CTi ← (type := 0, enc := (ψi, vki,

(c(i)1 , . . . , c
(i)
w ))) for i ∈ [�].

4. Generate bABFHE evaluated ciphertext CT′ ← (type := 1, enc := ψ′).
5. Run b ← AO2

2 (st,CT′,CT1, . . . ,CT�).
6. Output b.

If ψ′ is generated with ElABFHE.Eval (i.e. the real distribution) then CT′ is dis-
tributed identically to the output of bABFHE.Eval. On the other hand, if ψ′ is
generated with SElABFHE

(i.e. the ideal distribution), then CT′ is distributed iden-
tically to S. Therefore, a non-negligible advantage against bABFHE implies a
non-negligible advantage against ElABFHE. ��

6 Main Result

Theorem 1. Let N be a positive integer. Let w be a positive integer. Let λ be
a security parameter. Suppose there exists an IND-CPA secure multi-key FHE
scheme EMKFHE whose decryption circuit has depth δ(N,λ). Suppose there exists
a leveled ABFHE scheme ElABFHE that can compactly evaluate circuits of depth δ.
Then there exists an ABHE scheme E (whose parameters D and K are the same
as ElABFHE) that can compactly evaluate all Boolean circuits in {({0, 1}w)N →
{0, 1}w} i.e. the class of Boolean circuits of unbounded depth with N inputs over
the domain {0, 1}w, such that

1. E is IND-X-CPA secure if ElABFHE is IND-X-CPA secure.
2. E is X-EVAL-SIM secure if ElABFHE is X-EVAL-SIM secure.

for X ∈ {sel,AD}.
Proof. Instantiating our scheme bABFHE from Sect. 4.3 with the multi-key FHE
scheme EMKFHE and the ABHE scheme ElABFHE, the theorem follows by appealing
to Lemmas 1 (IND-X-CPA security) and 2 (X-EVAL-SIM security). ��
Corollary 1. Let N be a positive integer. Assuming the hardness of LWE, there
exists a IND-sel-CPA secure ABFHE that can compactly evaluate circuits with N
inputs.

Proof. We can instantiate the multi-key FHE scheme in our construction with
the CM multi-key FHE from [7], whose security is based on LWE. Further-
more we can instantiate the leveled ABFHE in our construction with the
leveled ABFHE of Gentry et al. [6], which is shown to be selectively secure
under LWE. ��
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Abstract. Providing an efficient revocation mechanism for attribute-
based encryption (ABE) is of utmost importance since over time a user’s
credentials may be revealed or expired. All previously known revocable
ABE (RABE) constructions (a) essentially utilize the complete subtree
(CS) scheme for revocation purpose, (b) are restricted in the sense that
the size of the public parameters depends linearly on the size of the
attribute universe and logarithmically on the number of users in the sys-
tem, and (c) are either selectively secure, which seems unrealistic in a
dynamic system such as RABE, or fully secure but built in a composite
order bilinear group setting, which results in high computational cost.
This paper presents the first adaptively secure unrestricted RABE using
subset difference (SD) mechanism for revocation which greatly improves
the broadcast efficiency compared to the CS scheme. Our RABE scheme is
built on a prime order bilinear group setting resulting in practical compu-
tation cost, and its security depends on the Decisional Linear assumption.

Keywords: Revocable attribute-based encryption · Subset difference
method · Prime order bilinear groups · Dual pairing vector spaces

1 Introduction

In recent times, the cost effectiveness and greater flexibility of cloud technology
has triggered an emerging trend among individuals and organizations to out-
source potentially sensitive private data to the “cloud”, an external large and
powerful server. Attribute-based encryption (ABE), a noble paradigm for public
key encryption in which ciphertexts are encrypted for entities possessing specific
decryption credentials, has been extensively deployed to realize complex access
control functionalities in cloud environment. Specifically, in a (key-policy) ABE
system, an encrypter may specify a set of attributes directly while encrypting
a certain plaintext. A user in the system possesses a key associated with an
access policy, stating what kind of ciphertext it can decrypt. In such a system,
a user can decrypt a ciphertext if the policy associated with its key satisfies the
attribute set associated with the ciphertext.
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 325–345, 2016.
DOI: 10.1007/978-3-319-31517-1 17
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A crucial requirement in the context of ABE is user revocation, a tool for
changing the users’ decryption rights. Over time many users’ private keys might
get compromised, users might leave or be dismissed due to the revealing of
malicious activities. In the literature several revocation mechanisms have been
proposed in ABE setting [1–3,10,13,15]. The direct revocation technique [1,2,13],
that controls revocation by specifying a revocation list directly during encryp-
tion, does not involve any additional proxy server [15] or key update phase
[1,3,10]. Consequently, the non-revoked users remain unaffected and revocation
can take effect instantly without requiring to wait for the expiration of the cur-
rent time period.

Further the main design principle of the existing revocable ABE (RABE) con-
structions [1–3,10,13] essentially follows that of Boldyreva et al. [3] and employs
the complete subtree (CS) scheme of Naor et al. [11] for user revocation. Replac-
ing the CS technique by the subset difference method (SD) [11] or the layered
subset difference method (LSD) [7] can reduce the size of the ciphertext compo-
nent meant for enforcing revocation from O(r̂ log Nmax

r̂ ) to O(r̂) where Nmax and
r̂ respectively denote the total number of users and number of revoked users.
This can provide significant improvement in the broadcast efficiency particularly
when the number of users present in the system is very large compared to the
number of revoked users.

Recently Lee et al. [9], utilized the SD scheme to manage revocation for
identity-based encryption (IBE) and pointed out that their technique for RIBE
cannot be extended to realize RABE via SD scheme.

Another important feature of an RABE scheme is its independence from the
size of the attribute universe and the total number of users supported by the sys-
tem. In all previous RABE schemes [1–3,10,13], the public parameter size grows
linearly with the number of attributes in the attribute universe and logarithmi-
cally with the number of users. Furthermore, all previous RABE schemes except
[13] provide only selective security which seems unrealistic in a dynamic system
such as RABE. Although [13] achieves full security, it is built on a composite
order bilinear group setting under non-standard assumptions. Note that the bit
length of group elements is very large, as well as, group-operations and pairing
computations are prohibitively slow in composite order bilinear groups than a
comparable prime order group. From the security view point as well, Prime order
bilinear groups are desirable compared to composite order ones [6].

Our Contribution: Our goal in this work is to explore applicability of SD
mechanism in ABE setting to design an unrestricted RABE with reduced com-
munication bandwidth and simultaneously achieve adaptive security. Instead of
designing any new ABE scheme, we take the ABE construction of Okamoto and
Takashima [12] as the starting point of our work. However, integrating SD revoca-
tion with ABE or replacing CS scheme by SD technique to construct a broadcast
efficient RABE seems to be a quite challenging task.

We built the first adaptively secure unrestricted (key-policy) RABE scheme
supporting direct revocation employing subset difference (SD) mechanism.
Towards this end, we develop a rather non-trivial technique in order to
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integrate the SD scheme with the ABE construction of [12]. On a more positive
note, the adaptive security of our RABE scheme is based on standard assump-
tion, namely, the Decisional Linear (DLIN) assumption. Most importantly, due
to the use of prime order bilinear group and subset difference revocation scheme,
the broadcast efficiency of our RABE is much higher compared to the existing
constructions [1,2,10,13] with reasonable computation cost. Furthermore, the
proposed RABE scheme is the first to achieve constant size public parameters
and thus overcomes the bottleneck of accommodating large attribute universe
and an unlimited number of users.

Note that, as opposed to the CS scheme, an assigned key for a subset in SD
scheme depends on the keys of some other subsets. This interdependence of keys
makes the use of SDmethod in attribute-based setting quite challenging. We assign
uniformly and independently chosen secrets to each users and split that secret into
two parts – one for the access structure and the other for revocation. This latter
part is further subdivided into random secrets to solve the complex key assignment
problem of the SD method. We integrate SD with ABE by enforcing the condition
that a user can retrieve the first part of its secret if and only if its access structure
is satisfied by the set of attributes specified in the ciphertext, and all the subdi-
vided components of the other part of its secret can be extracted if and only if its
subscription is valid according to the conditions of SD scheme.

For proving security of our RABE scheme, the main intricacy of this work,
we utilize the (extended) dual system encryption methodology over dual pairing
vector spaces introduced in [12]. However, in order to adopt the technique of
[12], for our RABE scheme, we extend some of the problems and methodology
employed in [12].

Although we use the monotone version of the ABE scheme of [12] to present
our RABE construction for simplicity, we would like to mention that our tech-
nique can also be applied to combine the original non-monotone ABE scheme of
[12] with the SD method.

2 Preliminaries

2.1 Notations

– y
$←− A: y is randomly selected from A according to its distribution, when A

is a random variable, and y is uniformly selected from A, when A is a set.
– G → x: x is the output of the algorithm or experiment G.
– �x: a vector (x1, . . . , xn) ∈ F

n
q of length n for some n ∈ N.

– x : an element of vector space V �= F
n
q .

– span〈b1, . . . , bm〉 ⊆ V: the subspace of V generated by {b1, . . . , bm} ⊆ V.
– span〈�x1, . . . , �xm〉 ⊆ F

n
q : the subspace of F

n
q spanned by {�x1, . . . , �xm} ⊆ F

n
q .

– (x1, . . . , xm)B:
m∑

i=1

xibi that is a linear combination of vectors in B = {b1, . . . ,

bm} ⊆ V with scalars x1, . . . , xm.
– GL(m, Fq): The general linear group of degree m over Fq.
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2.2 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

Definition 1 (Symmetric Bilinear Pairing Groups). A symmetric bilinear
pairing group (q, G, GT , G, e) is a tuple of a prime q, cyclic additive group G

and multiplicative group GT of order q each, G �= 0 ∈ G, and a polynomial time
computable non-degenerate bilinear pairing e : G × G → GT , i.e., e(sG, tG) =
e(G,G)st for all s, t ∈ Fq (bilinearity) and e(G,G) �= 1 (non-degeneracy). Let
Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear
pairing group (q, G, GT , G, e) with security parameter λ.

Definition 2 (Dual Pairing Vector Spaces (DPVS)). As defined in [12], a
dual pairing vector space (DPVS) (q, V, GT , A, E) by a direct product of symmet-
ric pairing groups (q, G, GT , G, e) is a tuple of prime q, n dimensional vector

space V = G
n =

n
︷ ︸︸ ︷
G × . . . × G over Fq, cyclic group GT of order q, canoni-

cal basis A = {a1, . . . ,an} of V, where ai = (
i−1

︷ ︸︸ ︷
0, . . . , 0, G,

n−i
︷ ︸︸ ︷
0, . . . , 0), and pairing

E : V × V → GT . The pairing E is defined by E(x,y) =
n∏

i=1

e(Gi,Hi) ∈ GT

where x = (G1, . . . , Gn) ∈ V and y = (H1, . . . , Hn) ∈ V. The map E is non-
degenerate bilinear, i.e., E(sx, ty) = E(x,y)st for s, t ∈ Fq, and if E(x,y) = 1
for all y ∈ V, then x = 0. For all i and j, E(ai,aj) = e(G,G)δi,j where δi,j = 1
if i = j, and 0 otherwise, and e(G,G) �= 1 ∈ GT . DPVS generation algorithm
Gdpvs takes input 1λ (λ ∈ N), n ∈ N together with param

G
= (q, G, GT , G, e),

and outputs a description of param
V

= (q, V, GT , A, E) with security parameter
λ and n-dimensional V. It can be constructed by using Gbpg as a subroutine.

For a matrix W = (wi,j)i,j=1,...,n ∈ F
n×n
q and element x = (G1, . . . , Gn) in

n-dimensional V, xW denotes

(
n∑

i=1

Giwi,1, . . . ,
n∑

i=1

Giwi,n

)

=

(
n∑

i=1

wi,1Gi, . . . ,

n∑

i=1

wi,nGi

)

by a naturalmultiplication of ann-dimensional row vector and ann×n

matrix. Thus it satisfies an associative law, i.e., (xW1)W2 = x(W1W2).

Below we describe random dual orthogonal basis generator Gob, which is used
as a subroutine in our RABE scheme.

Gob(1λ, (nt)t=0,1): This algorithm performs the following operations:

– Generate (param
G

= (q, G, GT , G, e) $←− Gbpg(1λ), ψ
$←− F

×
q , where F

×
q =

Fq\{0}.
– For t = 0, 1 execute the following:

• Obtain param
Vt

= (q, Vt, GT , At, E) $←− Gdpvs(1λ, nt, paramG
) such that

Vt =

nt︷ ︸︸ ︷
G × . . . × G and At = {a t,1, . . . ,a t,nt

} is the canonical basis of Vt.

• Choose Xt = (χt,i,j)i,j=1,...,nt

$←− GL(nt, Fq).
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• Compute X∗
t = (ϑt,i,j)i,j=1,...,nt

= ψ(Xᵀ
t )−1, where Y ᵀ denotes trans-

pose of the matrix Y . Hereafter, �χt,i and �ϑt,i represent the i-th rows of
Xt and X∗

t respectively, for i = 1, . . . , nt. Note that, for i, i′ = 1, . . . , nt,

�χt,i · �ϑt,i′ =
nt∑

j=1

χt,i,jϑt,i′,j = ψ, if i = i′, and 0, otherwise.

• Set bt,i = (�χt,i)At
=

nt∑

j=1

χt,i,ja t,j = (χt,i,1G, . . . , χt,i,nt
G), b∗

t,i = (�ϑt,i)At

=
nt∑

j=1

ϑt,i,ja t,j = (ϑt,i,1G, . . . , ϑt,i,nt
G) for i = 1, . . . nt, and define Bt =

{bt,1, . . . , bt,nt
}, B

∗
t = {b∗

t,1, . . . , b
∗
t,nt

}.
– Compute gT = e(G,G)ψ and set param = ({param

Vt
}t=0,1, gT ).

– Return (param, {Bt, B
∗
t }t=0,1).

Note that, E(bt,i, b
∗
t,i′) =E((�χt,i)At

, (�ϑt,i′)At
)

=
nt∏

j=1

e(G,G)χt,i,jϑt,i′,j = e(G,G)�χt,i·�ϑt,i′

=gT if i= i′, and 0 otherwise for t = 0, 1; i, i′ = 1, . . . , nt

Henceforth, for simplicity, we denote n = n1, V = V1, A = A1, B = B1 =
{b1, . . . , b16} and B

∗ = B
∗
1 = {b∗

1, . . . , b
∗
16} for variables with t = 1.

2.3 Complexity Assumptions Derived from the Decisional Linear
(DLIN) Assumption

Definition 3 (DLIN: Decisional Linear Assumption). To guess β ∈ {0, 1}
given 	 = (param

G
, G, ξG, κG, δξG, σκG, Yβ) $←− GDLIN

β (1λ), where GDLIN
β (1λ) is

defined in Fig. 1. For a probabilistic machine F , we define advantage of F for
DLIN problem as:

AdvDLIN
F (λ) =

∣
∣
∣Pr

[
F(1λ, 	) → 1|	 $←− GDLIN

0 (1λ)
]

− Pr
[
F(1λ, 	) → 1|	 $←− GDLIN

1 (1λ)
] ∣
∣
∣.

The DLIN assumption states that for any probabilistic polynomial-time adversary
F , the advantage AdvDLIN

F (λ) is negligible in λ.

We now introduce two new assumptions derived from the DLIN assumption that
are used in proving the full security of our RABE scheme.

Definition 4 (Problem 1). To guess β ∈ {0, 1} given 	 = (param, B̂0, B̂
∗
0, B̂, B̂∗,

eβ,0, {eβ,t,i}t=1,...,d;i=1,2, {eβ,d+υ,
,i}υ=1,2,
=1,...,r̂max,i=1,2)
$←− GP1

β (1λ, d, r̂max),
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Fig. 1. GDLIN
β (1λ)

Fig. 2. GP1
β (1λ, d, r̂max)

where GP1
β (1λ, d, r̂max) is defined in Fig. 2. For a probabilistic adversary B the

advantage of B for Problem 1 is given by

AdvP1
B (λ) =

∣
∣
∣Pr

[
B(1λ, 	) → 1|	 $←− GP1

0 (1λ, d, r̂max)
]

− Pr
[
B(1λ, 	) → 1|	 $←− GP1

1 (1λ, d, r̂max)
] ∣
∣
∣.

Lemma 1. Problem 1 is computationally intractable under the DLIN assump-
tion. Formally, for any probabilistic polynomial-time adversary B there exist
probabilistic machines F1, F2, F3, whose running times are essentially the same
as that of B, such that for any security parameter λ,

AdvP1
B (λ) ≤ AdvDLIN

F1
(λ)+

d∑

p=1

2∑

j=1

AdvDLIN
F2-p-j

(λ)+
2∑

υ=1

r̂max∑


=1

2∑

j=1

AdvDLIN
F3-(d+υ)-
-j(λ)+ε,

where F2-p-j(·) = F2(p, j, ·), F3-(d+υ)-
-j(·) = F3(d+υ,�, j, ·) and ε = [5+10d+
20r̂max]/q.

Definition 5 (Problem 2). To guess β ∈ {0, 1} given (param, B̂0, B̂
∗
0, B̂, B̂∗,

h∗
β,0, e0, {h∗

β,t,i, et,i}t=1,...,d;i=1,2, {h∗
β,d+υ,
,i, ed+υ,
,i}υ=1,2;
=1,...,ℵ;i=1,2)

$←−
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Fig. 3. GP2
β (1λ, d, Nmax, r̂max)

GP2
β (1λ, d,Nmax, r̂max), where GP2

β (1λ, d,Nmax, r̂max) is defined in Fig. 3. For a
probabilistic adversary B, the advantage of B for Problem 2 is given by

AdvP2
B (λ) =

∣
∣
∣Pr

[
B(1λ, 	) → 1|	 $←− GP2

0 (1λ, d,Nmax, r̂max)
]

− Pr
[
B(1λ, 	) → 1|	 $←− GP2

1 (1λ, d,Nmax, r̂max)
] ∣
∣
∣.

Lemma 2. Problem 2 is computationally intractable under the DLIN assump-
tion. More formally, for any probabilistic polynomial-time adversary B, there
exist probabilistic machines F1,F2-1, . . . ,F2-11, whose running times are essen-
tially the same as that of B, such that for any security parameter λ,

AdvP2
B (λ) ≤ AdvDLIN

F1 (λ) +
2∑

j=1

[
d∑

p=1

{
AdvDLIN

F2-p-1-j (λ) + AdvDLIN
F2-p-2-j (λ)+

d+2∑
l=1
l�=p

(
AdvDLIN

F2-p-3-j-l(λ) + AdvDLIN
F2-p-4-j-l(λ)

)
+ AdvDLIN

F2-p-5-j (λ)

}
+

2∑
υ=1

ℵ∑
�=1

{
AdvDLIN

F2-(d+υ)-�-6-j
(λ) + AdvDLIN

F2-(d+υ)-�-7-j
(λ) +

d+2∑
l=1

l�=d+υ

(
AdvDLIN

F2-(d+υ)-�-8-j-l
(λ)

+ AdvDLIN
F2-(d+υ)-�-9-j-l

(λ)
)

+
ℵ∑

ι=1
ι �=�

AdvDLIN
F2-(d+υ)-�-10-j-ι

(λ) + AdvDLIN
F2-(d+υ)-�-11-j

(λ)

}]
+ ε,
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where F2-p-1-j(·) = F2-1(p, j, ·),F2-p-2-j(·) = F2-2(p, j, ·),
F2-p-3-j-l(·) = F2-3(p, j, l, ·),F2-p-4-j-l(·) = F2-4(p, j, l, ·),
F2-p-5-j(·) = F2-5(p, j, ·),F2-(d+υ)-
-6-j(·) = F2-6(d + υ,�, j, ·) etc.,

ℵ = log2 Nmax + r̂max and ε =
[
5 + 40d + 10d2 + 2ℵ(30 + 10d + 10ℵ)

]
/q.

Problems 1 and 2 are extended from Problems 1-ABE and 2-ABE in [12] respec-
tively. The proofs of Lemmas 1 and 2 can be found in the full version.

2.4 The Notion of Revocable Attribute-Based Encryption

We assume familiarity with monotone access structures and secret-sharing
schemes.

• Syntax of Revocable Attribute-Based Encryption: As described in [1,
13], a (key-policy) revocable attribute-based encryption (RABE) scheme that
is associated with the attribute universe U of size d, each element of which is
expressed by a pair of attribute id and value of attribute, i.e., U = {(t, At)|t ∈
{1, . . . , d} ∧ At ∈ Fq}; a collection S of admissible monotone access structures
S = (M , ρ), consisting of some matrix M over Fq together with a function ρ
labeling the rows of M by attributes in U; and message space M, consists of the
following algorithms:

RABE.Setup(1λ, Nmax): Taking as input a security parameter 1λ and the maxi-
mum number of users Nmax, the key generation center publishes public para-
meters PP and a state ST, while generates a master secret key MK for itself.

RABE.GenKey(PP,MK,ST, ID, S): The key generation center takes as input the
public parameters PP, the master secret key MK, the state ST, a user identity
ID and the access structure S = (M , ρ) ∈ S of that user. It provides a private
key SKS,ID to that user and publishes an updated state ST.

RABE.Encrypt(PP,ST, Γ,RL,M): On input the public parameters PP, the state
ST, an attribute set Γ ⊆ U, a set of revoked user identities RL and a message
M ∈ M, the encrypter outputs a ciphertext CTΓ,RL.

RABE.Decrypt(CTΓ,RL,SKS,ID, S, ID,PP,ST): A user takes as input a ciphertext
CTΓ,RL, its private key SKS,ID, its access structure S, user identity ID, the
public parameters PP and the state ST. It obtains an encrypted message M
or the distinguished symbol ⊥.

• Correctness: The correctness of RABE is defined as follows: For all PP,ST,
MK generated by RABE.Setup(1λ, Nmax), SKS,ID generated by RABE.GenKey
(PP,MK,ST, ID, S) for any S, ID, CTΓ,RL generated by RABE.Encrypt(PP,ST, Γ,
RL,M) for any Γ,RL and M , it is required that (a) if S accepts Γ and ID /∈ RL,
then RABE.Decrypt(CTΓ,RL,SKS,ID, S, ID,PP,ST) = M , and (b) if S does not
accept Γ or ID ∈ RL, then RABE.Decrypt(CTΓ,RL,SKS,ID, S, ID,PP,ST) = ⊥
with all but negligible probability.
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• Security Model: The adaptive security of RABE under chosen plaintext
attacks (CPA) is defined in terms of the following experiment between a chal-
lenger B and a probabilistic polynomial-time adversary A:
Setup: B obtains a master secret key MK, a state ST, together with public
parameters PP by running RABE.Setup(1λ, Nmax); keeps MK to itself; and gives
PP,ST to A.
Phase 1: A adaptively requests a polynomial number of private keys for access
structure-user identity pairs (S1, ID1), . . . , (Sq̂1 , IDq̂1), and B gives the corre-
sponding private keys SKS1,ID1 , . . . ,SKSq̂1 ,IDq̂1

along with the updated state ST
to A by executing RABE.Genkey(PP,MK,ST, IDı, Sı) for ı = 1, . . . , q̂1.
Challenge: A submits a challenge attribute set Γ ∗, a revocation list RL∗, and
two challenge messages M∗

0 ,M∗
1 with equal length satisfying the following restric-

tion: If a private key query for an access structure-user identity pair (Sı, IDı)
such that Sı accepts Γ ∗ was requested, then IDı must belong to RL∗. B flips a
random coin b ∈ {0, 1} and gives the challenge ciphertext CT∗ to A by perform-
ing RABE.Encrypt(PP,ST, Γ ∗,RL∗,M∗

b ).
Phase 2: A may continue to make a polynomial number of additional private
key queries for access structure-user identity pairs (Sq̂1+1, IDq̂1+1), . . . , (Sq̂, IDq̂)
subject to the same restriction as before, and B gives corresponding keys to A.
Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of A is defined as AdvRABE,IND-CPA
A (λ) = |Pr[b = b′]−1/2| where

the probability is taken over all the randomness of the experiment. An RABE
scheme is adaptively secure under chosen plaintext attacks if for all probabilistic
polynomial-time adversary A, the advantage of A in the above experiment is
negligible in the security parameter λ.

2.5 The Subset Difference Revocation Scheme

• Notations Related to Full Binary Tree: A full binary tree T is a tree data
structure where each node except the leaf nodes has two child nodes. We define
some notations concerning a full binary tree used in subsequent discussions:

– Nmax: The number of leaf nodes in T . The number of all nodes in T is
2Nmax − 1.

– νi: A node in T for any i, 1 ≤ i ≤ 2Nmax − 1.
– Di: The depth of a node νi, i.e., the length of the path from the root node to

the node νi. The root node is at depth zero. The depth of T is the length of
the path from the root node to a leaf node.

– Ti: A subtree of T that is rooted at νi for any node νi in T .
– Ti,j : The subtree Ti\Tj for any two nodes νi, νj in T such that νj is a descen-

dant of νi, i.e., all nodes that are descendants of νi but not of νj .
– Si: The set of leaf nodes in Ti.
– Si,j : The set of leaf nodes in Ti,j , i.e., Si,j = Si\Sj .
– Li: An identifier for a node νi in T , that is a fixed and unique string. The

identifier of each node in T is assigned as follows: Each edge in T is assigned
with 0 or 1 depending on whether the edge connects a node to its left or right
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child node. The identifier Li of a node νi is the bit string obtained by reading
all the labels of edges in the path from the root to the node νi.

– (Li‖Dj): The integer representation of the string formed by concatenating the
binary representation of Dj , depth of the node νj , with Li, identifier of νi for
any subset Si,j of leaf nodes defined by the nodes νi and νj .

– (Li‖Lj): The integer representation of the string obtained by concatenating
Lj with Li for any subset Si,j of leaf nodes defined by the nodes νi and νj .

– ST (T , R) (or simply ST (R)): The Steiner Tree induced by a subset R of leaf
nodes and the root node of the full binary tree T , i.e., the minimal subtree of
T that connects all the leaf nodes in R and the root node.

• Subset Difference Method: The subset difference (SD) revocation method
is a special instance of a general methodology for revocation schemes proposed
by Naor et al. known as the subset cover (SC) framework [11]. The well-known
complete subtree (CS) scheme used in all the previous RABE schemes [1,3,13]
is another instance of the subset cover framework. The original subset cover
framework consists of a subset assignment part and a key assignment part. As
in [9], in this paper, we define the subset cover framework by using the subset
assignment part only. The formal definition of subset cover framework is given
as follows:

Definition 6 (Subset Cover Framework). A subset cover (SC) scheme for
the set N = {1, . . . , Nmax} of users consists of following probabilistic polynomial-
time algorithms:

SC.Setup(Nmax): The trusted authority takes in the maximum number Nmax of
users and publishes a collection S of subsets S1, . . . , Sw where Si ⊆ N .

SC.Assign(S, u): On input the collection S and a user serial number u ∈ N , the
trusted authority provides a private set PVu = {Sj1 , . . . , Sjv

} to the user with
serial number u.

SC.Cover(S, R): Taking as input the collection S and a revoked set R ⊂ N of
users, a cover generator outputs a covering set CVR = {Si1 , . . . , Siz

}, that is
a partition of the non-revoked users N\R into disjoined subsets Si1 , . . . , Siz

such that N\R = ∪z
l=1Sil

.
SC.Match(CVR,PVu): A user takes as input a covering set CVR = {Si1 , . . . , Siz

}
together with its private set PVu = {Sj1 , . . . , Sjv

} and obtains (Sil
, Sjl′ ) such

that Sil
∈ CVR, u ∈ Sil

, and Sjl′ ∈ PVu, or obtains ⊥.

• Correctness: The correctness of subset cover framework is defined as follows:
For all S generated by SC.Setup, all PVu generated by SC.Assign, and any R, it is
required that: (a) if u /∈ R, then SC.Match(CVR,PVu) = (Sil

, Sjl′ ) such that Sil
∈

CVR, u ∈ Sil
and Sjl′ ∈ PVu, and (b) if u ∈ R, then SC.Match(CVR,PVu) = ⊥.

As mentioned earlier, the SD scheme is a particular instance of the SC scheme
and it was proposed by Naor et al. [11] as an improvement on the CS scheme.
Below we describe the version of SD scheme almost verbatim from [9]:
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SD.Setup(Nmax): The trusted authority takes in the maximum number Nmax of
users. Let Nmax = 2nmax for simplicity. It first sets a full binary tree T of
depth nmax. Each user is assigned to a different leaf node in T . The collection
S of SD scheme is the set of all subsets Sj,k = Sj\Sk where νj , νk are nodes
in T , νk is a descendant of νj ; where Sj (resp. Sk) is the set of leaf nodes of
the subtree rooted at νj (resp. νk). It publishes the full binary tree T .

SD.Assign(T , u): Taking as input the tree T and a user serial number u ∈ N , the
trusted authority computes the private set PVu for the user u as follows: Let
ν(u) be the leaf node of T that is assigned to the user u. Let (νl0 , . . . , νlnmax

)
be the path from the root node νl0 to the leaf node νlnmax

= ν(u). It first
sets PVu = ∅. For all j, k ∈ {l0, . . . , lnmax} such that νk is a descendant of
νj , it adds into PVu the subset Sj,k defined by nodes νj and νk.

SD.Cover(T , R): On input the tree T and a revoked set R of users, a cover
generator proceeds as follows: It first sets a subtree T as ST (R), and then it
outputs a covering set CVR built iteratively by removing nodes from T until
T consists of just a single node as described below:
1. It finds two leaf nodes νj and νk in T such that the least-common-ancestor

ν of νj and νk does not contain any other leaf nodes of T in its subtree.
Note that such a pair (νj , νk) can always be found. Let νl and νm be
the two child nodes of ν such that νj is a descendant of νl and νk is a
descendant of νm. If there is only one leaf node left, it makes νj = νk to
be that leaf node, ν to be the root of T and νl = νm = ν.

2. If νl �= νj , then it adds the subset Sl,j to CVR; likewise, if νm �= νk, then
it adds the subset Sm,k to CVR.

3. It removes from T all the descendants of ν and makes ν a leaf node.
SD.Match(CVR,PVu): A user takes as input a covering set CVR and its private set

PVu. If it finds two subsets Sj,k and Sj′,k′ such that Sj,k ∈ CVR, Sj′,k′ ∈ PVu,
and (j = j′) ∧ (Dk = Dk′) ∧ (k �= k′), then it outputs (Sj,k, Sj′,k′).
Otherwise, it obtains ⊥.

The correctness property of SD scheme is formally stated by the following lemma:

Lemma 3. If u /∈ R, then there exists a unique pair of subsets (Sj,k, Sj′,k′) such
that Sj,k ∈ CVR, Sj′,k′ ∈ PVu and (j = j′) ∧ (Dk = Dk′) ∧ (k �= k′) holds.
Otherwise, such a pair of subsets cannot be found.

Observation: Note that for any fixed pair (νj ,D) of node and depth value,
there is at most one subset Sj,k ∈ CVR and at most one subset Sj,k′ ∈ PVu

such that Dk = Dk′ = D. Moreover, the defining nodes νj , νk of the subsets
Sj,k ∈ CVR are all distinct. This observation is very important in our RABE
construction.

Lemma 4 ([11]). Let Nmax be the number of leaf nodes in a full binary tree
and r̂ be the size of a revoked set. In the SD scheme, the size of a private set is
O(log2 Nmax) and the size of a covering set is at most 2r̂ − 1.

Note that the layered subset difference scheme (LSD) was proposed by Halevy
and Shamir [7] to reduce the size of a private set in the SD scheme. The SD
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scheme in a cryptosystem generally can be replaced by the LSD scheme since
the LSD scheme is a special case of the SD scheme.

Lemma 5 ([7]). Let Nmax be the number of leaf nodes in a full binary tree and
r̂ be the size of a revoked set. In the LSD scheme, which is a variant of the SD
mechanism, the size of a private set is O(log1.5 Nmax) and the size of a covering
set is at most 4r̂ − 2.

3 Our RABE Scheme

Let N = {1, . . . , Nmax = 2nmax} be the universe of user key serial numbers. Let
d be the total number of attributes in the attribute universe U = {(t, At)|t ∈
{1, . . . , d} ∧ At ∈ Fq}. Further, assume that r̂max be the maximum of �CVRI,
the cardinality of the covering set CVRI, for all revoked set RI ⊂ N used in the
system. Our RABE scheme supports monotone access structures S = (M , ρ), the
collection of which is denoted by S. In the proposed RABE scheme, we assume
that ρ is injective for S = (M , ρ) ∈ S. The message space in our RABE scheme
is M = GT . Our RABE scheme is described as follows:

RABE.Setup(1λ, Nmax): The key generation center takes as input a security para-
meter 1λ and the maximum number Nmax of users and proceeds as follows:

1. It first runs Gob(1λ, (n0 = 5, n = 16)) to get (param = (param
V0

, param
V
, gT ),

{B0, B
∗
0}, {B, B∗}). It sets B̂0 = {b0,1, b0,3, b0,5}, B̂ = {b1, . . . , b4, b13, b14},

B̂
∗
0 = {b∗

0,1, b
∗
0,3, b

∗
0,4}, B̂

∗ = {b∗
1, . . . , b

∗
4, b

∗
11, b

∗
12}.

2. It obtains T by running SD.Setup(Nmax). Let S be the collection of all subsets
Sj,k of T . It initializes the user list UL = ∅.

3. It publishes the public parameters PP = (param, B̂0, B̂), and a state ST =
(T ,UL), while it keeps the master secret key MK = (B̂∗

0, B̂
∗).

RABE.GenKey(PP,MK,ST, S, ID): Taking as input the public parameters PP,
the master secret key MK, the state ST = (T ,UL), an access structure S =
(M , ρ) ∈ S such that M is an �× r matrix and ρ is a labeling of the rows of M
by attributes in U, and a user identity ID, the key generation center provides a
private key to the corresponding user as follows:

1. It first chooses �f
$←− F

r
q, computes �sᵀ = (s1, . . . , s�)ᵀ = M · �fᵀ, s′

0 = �1 · �fᵀ,

selects η0, s
′′
0

$←− Fq, and sets s0 = s′
0 + s′′

0 . Note that, s1, . . . , s� are shares of
s′
0. Next, it computes

k∗
0 = (−s0, 1, η0)B̂∗

0
= −s0b

∗
0,1 + b∗

0,3 + η0b
∗
0,4 = (−s0, 0, 1, η0, 0)B∗

0
.

For i = 1, . . . , �, if ρ(i) = (t, At), it chooses μi, θi, ηi,1, ηi,2
$←− Fq and computes

k∗
i =(μi(t,−1), si + θiAt,−θi, ηi,1, ηi,2)B̂∗

=μitb
∗
1 − μib

∗
2 + (si + θiAt)b∗

3 − θib
∗
4 + ηi,1b

∗
11 + ηi,2b

∗
12

=(μi(t,−1), si + θiAt,−θi, 06, ηi,1, ηi,2, 02, 02)B∗ .
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We mention that, k∗
0 and k∗

i are actually some linear combinations of vec-
tors in B̂

∗
0 and B̂

∗ respectively, where B̂
∗
0 and B̂

∗ are extractable from MK.
However, for ease of discussion, we have represented k∗

0 and k∗
i as linear com-

binations of vectors in B
∗
0 and B

∗ respectively taking the coefficients of vectors
in B

∗
0\B̂

∗
0 and B

∗\B̂
∗ as zeros. Hereafter, a similar notation will be followed

for representing linear combinations in V0 and V.
2. It assigns the user identity ID to a leaf node ν(u) in T that is not yet assigned,

where u ∈ N is a serial number that is assigned to ID. It saves (ID, u) to
UL. Next it obtains PVu by running SD.Assign(T , u).

3. For each Sj,k ∈ PVu, it performs the following operations: It first selects

sj,k,1, sj,k,2
$←− Fq such that s′′

0 = sj,k,1 + sj,k,2, i.e., it breaks s′′
0 into

two random parts. It further chooses μj,k,1, μj,k,2, θj,k, ηj,k,1,1, ηj,k,1,2, ηj,k,2,1,

ηj,k,2,2,
$←− Fq and computes

k∗
j,k,1 = (μj,k,1(d + 1,−1), sj,k,1 + θj,k(Lj‖Dk),−θj,k, 06,

ηj,k,1,1, ηj,k,1,2, 02, 02)B∗

k∗
j,k,2 = (μj,k,2(d + 2,−1), sj,k,2((Lj‖Lk),−1),06, ηj,k,2,1, ηj,k,2,2, 02, 02)B∗

4. Finally, it publishes the updated state ST = (T ,UL) and provides a private
key SKS,ID = (PVu, k∗

0, {k∗
i }i=1,...,�, {k∗

j,k,1, k
∗
j,k,2}Sj,k∈PVu

) to the user.

RABE.Encrypt(PP,ST, Γ,RL,M): On input the public parameters PP, the state
ST = (T ,UL), an attribute set Γ ⊆ U, a revocation list RL of user identities and
a message M ∈ GT , the encrypter executes the following steps:

1. It first extracts gT from PP, chooses ω, ζ, ϕ0
$←− Fq and computes

c0 = (ω, 0, ζ, 0, ϕ0)B0 , and c = gζ
T M.

2. For all (t, At) ∈ Γ , it selects σt, ϕt,1, ϕt,2
$←− Fq, and computes

ct = (σt(1, t), ω(1, At), 06, 02, ϕt,1, ϕt,2, 02)B.

3. Then it defines the revoked user serial number set RI ⊆ N from RL by using
UL. Next it obtains the covering set CVRI by executing SD.Cover(T ,RI).

4. For each Sj,k ∈ CVRI, it performs the following steps: It chooses σj,k,1, σj,k,2,

ϕj,k,1,1, ϕj,k,1,2, ϕj,k,2,1, ϕj,k,2,2
$←− Fq and computes

cj,k,1 = (σj,k,1(1, d + 1), ω(1, (Lj‖Dk)), 06, 02, ϕj,k,1,1, ϕj,k,1,2, 02)B,

cj,k,2 = (σj,k,2(1, d + 2), ω(1, (Lj‖Lk)), 06, 02, ϕj,k,2,1, ϕj,k,2,2, 02)B.

5. The encrypter outputs the ciphertext as CTΓ,RL = (CVRI, c, c0, {ct}(t,At)∈Γ ,
{cj,k,1, cj,k,2}Sj,k∈CVRI

).

RABE.Decrypt(CTΓ,RL,SKS,ID, S, ID,PP,ST): A user takes as input a cipher-
text CTΓ,RL = (CVRI, c, c0, {ct}(t,At)∈Γ , {cj,k,1, cj,k,2}Sj,k∈CVRI

), its private key
SKS,ID = (PVu, k∗

0, {k∗
i }i=1,...,�, {k∗

j,k,1, k
∗
j,k,2}Sj,k∈PVu

), its access structure S =
(M , ρ), identity ID, public parameters PP and state ST. It proceeds as follows:
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1. If the access structure S accepts Γ , then it computes I and {αi}i∈I such that
�1 =

∑

i∈I

αiM i and hence s′
0 =

∑

i∈I

αisi, where M i is the i-th row of M and

I ⊆ {i ∈ {1, . . . , �}|ρ(i) = (t, At) ∈ Γ}. Otherwise, it obtains ⊥.
2. If ID /∈ RL for (ID, u) ∈ UL, then it obtains (Sj,k, Sj′,k′) by running

SD.Match(CVRI,PVu) such that Sj,k ∈ CVRI, Sj′,k′ ∈ PVu and (j = j′)∧(Dk =
Dk′) ∧ (k �= k′). Otherwise, it outputs ⊥.

3. It computes

π′ =
∏

i∈I
ρ(i)=(t,At)

E(ct, k
∗
i )

αi ,

π′′ = E(cj,k,1, k
∗
j′,k′,1)E(cj,k,2, k

∗
j′,k′,2)

1
(L

j′ ‖L
k′ )−(Lj‖Lk) and π = E(c0, k

∗
0)π

′π′′

4. It retrieves the message as M = c/π.

• Correctness: Let SKS,ID = (PVu, k∗
0, {k∗

i }i=1,...,�, {k∗
j,k,1, k

∗
j,k,2}Sj,k∈PVu

) be
a private key for a user with identity ID together with an access structure
S = (M , ρ), and CTΓ,RL = (CVRI, c, c0, {ct}(t,At)∈Γ , {cj,k,1, cj,k,2}Sj,k∈CVRI

) be
a ciphertext for an attribute set Γ together with a revocation list RL of user
identities. If ID /∈ RL, then a pair of subsets (Sj,k, Sj′,k′) such that Sj,k ∈ CVRI,
Sj′,k′ ∈ PVu and (j = j′) ∧ (Dk = Dk′) ∧ (k �= k′), i.e., (Lj‖Dk) = (Lj′‖Dk′)
and (Lj‖Lk) �= (Lj′‖Lk′), can be found from correctness of SD (Lemma 3). Now,

π′ =
∏

i∈I
ρ(i)=(t,At)

E(ct, k
∗
i )

αi =
∏

i∈I
ρ(i)=(t,At)

gωαisi

T = g
ωs′

0
T , as

∑

i∈I
ρ(i)=(t,At)

αisi = s′
0,

since S = (M , ρ) accepts Γ .

Also, π′′ = g
ωsj′,k′,1
T g

ωsj′,k′,2

(L
j′ ‖L

k′ )−(Lj‖Lk)

(L
j′ ‖L

k′ )−(Lj‖Lk)

T = g
ωs′′

0
T , as sj′,k′,1 + sj′,k′,2 = s′′

0 ,
since Sj′,k′ ∈ PVu.

Thus, π = g
[−ωs0+ζ+ωs′

0+ωs′′
0 ]

T = g
[ω(−s0+s′

0+s′′
0 )+ζ]

T = gζ
T .

So, c/π = gζ
T M/gζ = M .

4 Security Analysis

Theorem 1. The RABE scheme, introduced in Sect. 3, is adaptively secure
against chosen plaintext attacks (CPA) under the DLIN assumption, formally
defined in Sect. 2.3. More precisely, for any probabilistic polynomial-time adver-
sary A, there exists probabilistic machines F1-1, . . . ,F1-3, F2-1-1, . . . ,F2-1-12,
F2-2-1, . . . ,F2-2-12 whose running times are essentially the same as that of A,
such that for any security parameter λ,



Adaptively Secure Unrestricted Revocable Attribute-Based Encryption 339

AdvRABE,IND-CPA
A (λ) ≤ AdvDLIN

F1-1
(λ) +

d∑

p=1

2∑

j=1

AdvDLIN
F1-2-p-j

(λ)+

2∑

υ=1

r̂max∑


=1

2∑

j=1

AdvDLIN
F1-3-(d+υ)-�-j

(λ) +
q̂∑

h=1

2∑

i=1

[

AdvDLIN
F2-h-i-1

(λ)+

2∑

j=1

[
d∑

p=1

{

AdvDLIN
F2-h-i-p-2-j

(λ) + AdvDLIN
F2-h-i-p-3-j

(λ)+
d+2∑

l=1
l �=p

(
AdvDLIN

F2-h-i-p-4-j-l
(λ)+

AdvDLIN
F2-h-i-p-5-j-l

(λ)
)

+ AdvDLIN
F2-h-i-p-6-j

(λ)

}

+
2∑

υ=1

ℵ∑


=1

{

AdvDLIN
F2-h-i-(d+υ)-�-7-j

(λ)+

AdvDLIN
F2-h-i-(d+υ)-�-8-j

(λ)+
d+2∑

l=1
l �=d+υ

(
AdvDLIN

F2-h-i-(d+υ)-�-9-j-l
(λ) + AdvDLIN

F2-h-i-(d+υ)-�-10-j-l
(λ)

)

+
ℵ∑

ι=1
ι �=


AdvDLIN
F2-h-i-(d+υ)-�-11-j-ι

(λ) + AdvDLIN
F2-h-i-(d+υ)-�-12-j

(λ)

}]]

+ ε,

where F1-2-p-j(·) = F1-2(p, j, ·), F1-3-(d+υ)-
-j(·) = F1-3(d + υ,�, j, ·), and, for
i = 1, 2,

F2-h-i-1(·) = F2-i-1(h, ·), F2-h-i-p-2-j(·) = F2-i-2(h, p, j, ·),
F2-h-i-p-3-j(·) = F2-i-3(h, p, j, ·), F2-h-i-p-4-j-l(·) = F2-i-4(h, p, j, l, ·),
F2-h-i-p-5-j-l(·) = F2-i-5(h, p, j, l, ·), F2-h-i-p-6-j(·) = F2-i-6(h, p, j, ·),
F2-h-i-(d+υ)-
-7-j(·) = F2-i-7(h, d + υ,�, j, ·) etc.,

q̂ is the maximum number of A’s private key queries, d is the size of the attribute
universe used in the system, Nmax is the upper bound of user key serial numbers,
r̂max is the maximum size of a covering set of non-revoked users used in the
system, ℵ = log2 Nmax + r̂max, and ε =

[
6+10d+20r̂max +14q̂ +80dq̂ +20d2q̂ +

4q̂ℵ(30 + 10d + 10ℵ)
]
/q.

Proof. At the top level of strategy of the security proof, we follow the dual system
encryption methodology over dual pairing vector space (DPVS) described in [12].
To prove the security of our RABE scheme, we use Problem 1 and 2 defined in
Sect. 2.3.

To prove Theorem 1, we consider the following games. In Game 0, a part
framed by a box indicates positions of coefficients to be changed in a subsequent
game. In the other games, a part framed by a box indicates coefficients which
were changed in a transition from the previous game. Games proceed as follows:

Game 0 =⇒ Game 1 =⇒
{Game 2-h-1 =⇒ Game 2-h-2 =⇒ Game 2-h-3}h=1,...,q̂ =⇒ Game 3
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Game 0: Game 0 is the original security game, i.e., the reply to a key query for
an access structure-user identity pair (Sı = (Mı, ρı), IDı) is given by SKSı,IDı

=
(PVu, k∗

0, {k∗
i }i=1,...,�, {k∗

j,k,1, k
∗
j,k,2}Sj,k∈PVu

), where

k∗
0 = (−s0, 0 , 1, η0, 0)B∗

0
, (1)

for i = 1, . . . , � such that ρı(i) = (t, At),

k∗
i = (μi(t,−1), si + θiAt,−θi, 04, 02 , ηi,1, ηi,2, 02, 02)B∗ , (2)

in which νi, θi, η0, ηi,1, ηi,2
$←− Fq, s0 = s′

0 + s′′
0 , s′

0 = �1 · �fᵀ, �sᵀ = (s1, . . . , s�)ᵀ

= Mı · �fᵀ, s′′
0

$←− Fq, �f
$←− F

r
q, Mı being an � × r matrix, and for all Sj,k ∈ PVu,

such that ν(u) is the leaf node of T assigned to IDı,

k∗
j,k,1 = (μj,k,1(d + 1,−1), sj,k,1 + θj,k(Lj‖Dk),−θj,k, 04, 02 ,

ηj,k,1,1, ηj,k,1,2, 02, 02)B∗ , (3)

k∗
j,k,2 = (μj,k,2(d + 2,−1), sj,k,2((Lj‖Lk),−1),04, 02 ,

ηj,k,2,1, ηj,k,2,2, 02, 02)B∗ , (4)

such that sj,k,1, sj,k,2, μj,k,1, μj,k,2, θj,k, ηj,k,1,1, ηj,k,1,2, ηj,k,2,1, ηj,k,2,2
$←− Fq so

that s′′
0 = sj,k,1 + sj,k,2.

The challenge ciphertext corresponding to challenge plaintext(M∗
0 ,M∗

1 ),
attribute set Γ ∗ = {(t, At)|1 ≤ t ≤ d} and the revocation list RL∗ is expressed
as CT∗ = (CVRI, c, c0, {ct}(t,At∈Γ ∗ , {cj,k,1, cj,k,2}Sj,k∈CVRI

) where

c = gζ
T M∗

b , b
$←− {0, 1}, (5)

c0 = (ω, 0 , ζ , 0, ϕ0)B0 , (6)

for (t, At) ∈ Γ ∗,

ct = (σt(1, t), ω(1, At), 02 , 02, 02 , 02, ϕt,1, ϕt,2, 02)B, (7)

such that ω, ζ, ϕ0, σt, ϕt,1, ϕt,2
$←− Fq, and for all Sj,k ∈ CVRI, RI being the set of

revoked user serial numbers obtained from RL∗,

cj,k,1 = (σj,k,1(1, d + 1), ω(1, (Lj‖Dk)), 02 , 02, 02 , 02, ϕj,k,1,1, ϕj,k,1,2, 0
2)B, (8)

cj,k,2 = (σj,k,2(1, d + 2), ω(1, (Lj‖Lk)), 02 , 02, 02 , 02, ϕj,k,2,1, ϕj,k,2,2, 0
2)B, (9)

such that σj,k,1, σj,k,2, ϕj,k,1,1, ϕj,k,1,2, ϕj,k,2,1, ϕj,k,2,2
$←− Fq. Note that there is

at most one Sj,k in CVRI for any j and any k, as mentioned in Sect. 2.5.
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Game 1: This game is identical to Game 0 except that the components of the
challenge ciphertext CT∗ is computed as follows:

c = gζ
T M∗

b , b
$←− {0, 1}, (10)

c0 = (ω, τ , ζ, 0, ϕ0)B0 , (11)
for (t, At) ∈ Γ ∗,

ct = (σt(1, t), ω(1, At), τ(1, At) , 02, τ(1, At) · Zt , 02, ϕt,1, ϕt,2, 02)B, (12)

where τ
$←− F

×
q , Zt

$←− GL(2, Fq). For all Sj,k ∈ CVRI,

cj,k,1 = (σj,k,1(1, d + 1), ω(1, (Lj‖Dk)), τ(1, (Lj‖Dk)) , 02,

τ(1, (Lj‖Dk)) · Zd+1,j,k , 02, ϕj,k,1,1, ϕj,k,1,2, 02)B, (13)

cj,k,2 = (σj,k,2(1, d + 2), ω(1, (Lj‖Lk)), τ(1, (Lj‖Lk)) , 02,

τ(1, (Lj‖Lk)) · Zd+2,j,k , 02, ϕj,k,2,1, ϕj,k,2,2, 02)B, (14)

where Zd+1,j,k,Zd+2,j,k
$←− GL(2, Fq). All other variables are generated as in

Game 0.

Game 2-h-1 (h = 1, . . . , q̂): We denote Game 1 as Game 2-0-3. Game 2-h-1 is
the same as Game 2-(h−1)-3 other than the components of the h-th queried key
for access structure-user identity pair (Sh = (Mh, ρh), IDh) are constructed as
follows:

k∗
0 = (−s0, −a0 , 1, η0, 0)B∗

0
(15)

for i = 1, . . . , � such that ρh(i) = (t, At),

k∗
i = (μi(t, −1), si + θiAt, −θi, 0

4, (ai + πiAt, −πi) · Ut , ηi,1, ηi,2, 0
2, 02)B∗ , (16)

where �g
$←− F

r
q, a0 = a′

0 + a′′
0 , a′

0 = �1 · �gᵀ, (a1, . . . , a�)ᵀ = Mh · �gᵀ, a′′
0

$←− Fq,

Ut = (Z−1
t )ᵀ for Zt

$←− GL(2, Fq), πi
$←− Fq for i = 1, . . . , �, Mh being an � × r

matrix. For all Sj,k ∈ PVu,

k∗
j,k,1 = (μj,k,1(d + 1, −1), sj,k,1 + θj,k(Lj‖Dk), −θj,k, 04,

(aj,k,1 + πj,k(Lj‖Dk), −πj,k) · Ud+1,j,k , ηj,k,1,1, ηj,k,1,2, 0
2, 02)B∗ , (17)

k∗
j,k,2 = (μj,k,2(d + 2, −1), sj,k,2((Lj‖Lk), −1), 04,

(aj,k,2((Lj‖Lk), −1) · Ud+2,j,k , ηj,k,2,1, ηj,k,2,2, 0
2, 02)B∗ , (18)
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where aj,k,1, aj,k,2, πj,k
$←− Fq such that aj,k,1 + aj,k,2 = a′′

0 , Ud+1,j,k =

(Z−1
d+1,j,k)ᵀ,Ud+2,j,k = (Z−1

d+2,j,k)ᵀ for Zd+1,j,k,Zd+2,j,k
$←− GL(2, Fq). All the

other variables are constructed as in Game 2-(h − 1)-3.

Game 2-h-2 (h = 1, . . . , q̂): This game is similar to Game 2-h-1 with the excep-
tion that the component k∗

0 of the h-th queried key for an access structure-user
identity pair (Sh = (Mh, ρh), IDh) is computed as follows:

k∗
0 = (−s0, r0 , 1, η0, 0)B∗

0
, (19)

where r0
$←− Fq, and all the other variables are as in Game 2-h-1.

Game 2-h-3 (h = 1, . . . , q̂): This game is almost identical to Game 2-h-2 except
that the components of the h-th queried key for an access structure-user identity
pair (Sh = (Mh, ρh), IDh) is constructed as follows:

k∗
0 = (−s0, r0, 1, η0, 0)B∗

0
(20)

for i = 1, . . . , �,

k∗
i = (μi(t,−1), si + θiAt,−θi, 04, 02 , ηi,1, ηi,2, 02, 02)B∗ , (21)

and for all Sj,k ∈ PVu,

k∗
j,k,1 = (μj,k,1(d + 1,−1), sj,k,1 + θj,k(Lj‖Dk),−θj,k, 04, 02 ,

ηj,k,1,1, ηj,k,1,2, 02, 02)B∗ , (22)

k∗
j,k,2 = (μj,k,2(d + 2,−1), sj,k,2((Lj‖Lk), − 1), 04, 02 ,

ηj,k,2,1, ηj,k,2,2, 02, 02)B∗ , (23)

where r0
$←− Fq, and all the other variables are generated as in Game 2-h-2.

Game 3: This game is similar to Game 2-q̂-3 with the only exception that the
components c0 and c of the challenge ciphertext CT∗ are computed as follows:

c0 = (ω, τ, ζ ′ , 0, ϕ0)B0 , (24)

c = gζ
T M∗

b , (25)

where ζ ′ $←− Fq (i.e., independent from ζ
$←− Fq), and all other variables are

generated as in Game 2-q̂-3.
Let Adv

(0)
A (λ), Adv

(1)
A (λ), Adv

(2-h-j)
A (λ) (h = 1, . . . , q̂; j = 1, 2, 3) and

Adv
(3)
A (λ) be the advantage of A in Game 0, 1, 2-h-j and 3 respectively. Clearly,

Adv
(0)
A (λ) is equivalent to AdvRABE,IND-CPA

A (λ) and Adv
(3)
A (λ) = 0.

We have evaluated the differences between the pairs of Adv(0)A (λ),Adv(1)A (λ),
{Adv(2-h-1)A (λ), . . . ,Adv(2-h-3)A (λ)}h=1,...,q̂, and Adv

(3)
A (λ) in a sequence of lemmas

which are presented in the full version. From those lemmas we obtain,
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Table 1. Communication and storage comparison

RABE �PP �SKS,ID �CTΓ,RL �param
G

Security Complexity

assumptions

[1] d+log Nmax+1

in G, 1 in GT

2(� + 1) log Nmax

in G

�Γ + �RI log Nmax
�RI

in G, 1 in GT

q

(prime)

Selective DBDH

[13] d+log Nmax+1

in G, 1 in GT

2� + 2 log Nmax

in G

1 + �Γ +

�RI log Nmax
�RI in G,

1 in GT

n

(comp.)

Full SD, GSD,

Comp. DH

Ours 111 in G,

1 in GT

5 + 16� +

16[log2 Nmax+

log Nmax] in G

16�Γ + 64�RI − 27

in G, 1 in GT

q

(prime)

Full DLIN

Here, DBDH, SD, GSD and Comp. DH respectively stand for the Decisional Bilinear Diffie-Hellman,

Subgroup Decision, Generalized Subgroup Decision and Composite Diffie-Hellman assumptions.

Table 2. Computation comparison

RABE RABE.Setup RABE.GenKey RABE.Encrypt RABE.Decrypt

[1] 1 in GT ; 1 (log Nmax + 1)[�(d + 4)+

log Nmax + 4] in G

1 + (d + 4)�Γ+

�RI log Nmax
�RI

(log Nmax + 2)

in G, 1 in GT

2� + 2 in G,

1 in GT ; 2� +2

[13] d + log Nmax
in G, 1 in GT ; 1

3� + log2 Nmax+

4 log Nmax + 4 in G

1 + �Γ+

�RI log Nmax
�RI

(log Nmax + 2)

in G, 1 in GT

2� in G;

2� + 2

Ours 111 in G,

1 in GT ; 1

10 + 96�+

96(log2 Nmax + log Nmax) in G

80�Γ + 160�RI − 49 in G,

1 in GT

16� + 16 in G;

16� + 37

Here, ‘x; y’ denotes ‘x many exponentiations and y many pairings’.

AdvRABE,IND-CPA
A (λ) = Adv

(0)
A (λ)

≤
∣
∣
∣Adv

(0)
A (λ) − Adv

(1)
A (λ)

∣
∣
∣ +

q̂∑

h=1

[
∣
∣
∣Adv

(2-(h−1)-3)
A (λ) − Adv

(2-h-1)
A (λ)

∣
∣
∣ +

2∑

j=1

∣
∣
∣Adv

(2-h-j)
A (λ) − Adv

(2-h-(j+1))
A (λ)

∣
∣
∣

]

+
∣
∣
∣Adv

(2-q̂-3)
A (λ) − Adv

(3)
A (λ)

∣
∣
∣ +Adv

(3)
A (λ)

≤ AdvP1
B1

(λ) +
q̂∑

h=1

[

AdvP2
B2-h-1

(λ) + AdvP2
B2-h-2

(λ)

]

+ (4q̂ + 1)/q.

Therefore, from Lemmas 1 and 2, of Sect. 2.3 we obtain the upper bound of
AdvRABE,IND-CPA

A (λ). This completes the proof of Theorem1. ��

5 Efficiency

Tables 1 and 2 compare our RABE scheme with the fully secure RABE scheme [13]
and the selectively secure construction [1] which are currently the best known
results for RABE (in the key-policy category). We note the following facts:
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• Our RABE protocol is the first to achieve constant public parameter size
and thus, unlike [1,13], can accommodate large attribute universe and an
unbounded number of users.

• Our scheme provides adaptive security instead of selective security achieved
in [1] at the expense of some amount of efficiency loss. Note that it is usual
to compromise in efficiency in order to achieve better security [4,14].

• Our scheme uses prime order bilinear group as opposed to composite order
bilinear group used in the fully secure RABE construction of [13]. As noted
by Freeman [6] and several other researchers, the only known instantiation of
composite order bilinear group uses elliptic curves (or more generally, abelian
varieties) over finite fields. Since the elliptic curve group order must be infea-
sible to factor, it must be at least 1024 bits. On the other hand, the size of a
prime order elliptic curve group that provides an equivalent level of security
is only 160 bits which is almost 7 times smaller. This difference in the group
order results in great reduction of the ciphertext size when compared in terms
of bit length.

• On a more positive note, we employ the subset difference (SD) method, which
always provides a smaller covering set compared to the complete subtree (CS)
scheme [9], while all previous RABE constructions use CS scheme. Conse-
quently, we could achieve a much smaller ciphertext size, particularly when
dealing with large number of users in the system, at the expense of a rela-
tively large private key size, which is primarily due to the large size of private
sets of the SD method as opposed to the CS method.

• Regarding computational efficiency of our RABE scheme, note that due to
the excessive bit length of the group order, group-operations and pairing
computations are prohibitively slow on composite order elliptic curves [6]. In
particular, an exponentiation is nearly 25 times slower and a pairing compu-
tation is roughly 50 times slower on a 1024 bit composite order elliptic curve
than the corresponding operations on a comparable prime order curve [6]. In
this light, we can readily see from Table 2 that the computational cost of the
encryption algorithms of our RABE scheme is close to that of [13], the only
existing RABE scheme with full security to the best of our knowledge, and
the decryption algorithm is much faster than that of [13]. However, our key
generation algorithm is slower compared to [13].

6 Conclusion

In this paper, we have developed the first adaptively secure unrestricted (key-
policy) RABE scheme in prime order bilinear groups that realizes user revocation
through the subset difference (SD) scheme – a more efficient variant of the subset
cover (SC) framework of Naor et al. [11] as compared to the complete subtree
(CS) scheme used in all previous RABE constructions. Due to the application
of prime order bilinear groups and the SD scheme, our RABE scheme is highly
broadcast efficient. It would be interesting to investigate the use of the dynamic
version of SD [5] in order to overcome the problem of maintaining a large static
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binary tree within the state. The possibility to apply SD in designing improved
constructions of more advanced primitives such as revocable storage attribute-
based encryption (RSABE) or revocable storage predicate encryption (RSPE) [8]
is another interesting direction of research.
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Abstract. We analyze a new key recovery attack against the Quasi-
Cyclic MDPC McEliece scheme. Retrieving the secret key from the public
data is usually tackled down using exponential time algorithms aiming to
recover minimum weight codewords and thus constructing an equivalent
code. We use here a different approach and give under certain hypothesis
an algorithm that is able to solve a key equation relating the public key
to the private key. We relate this equation to a well known problem
the Rational Reconstruction Problem and therefore propose a natural
solution based on the extended Euclidean algorithm. All private keys
satisfying the hypothesis are declared weak keys. In the same time we give
a precise number of weak keys and extend our analysis by considering all
possible cyclic shifts on the private keys. This task is accomplished using
combinatorial objects like Lyndon words. We improve our approach by
using a generalization of the Frobenius action which enables to increase
the proportion of weak keys. Lastly, we implement the attack and give the
probability to draw a weak key for all the security parameters proposed
by the designers of the scheme.

Keywords: Quasi-cyclic MDPC codes · McEliece scheme · Rational
reconstruction problem · Extended euclidean algorithm

1 Introduction

Moderate Density Parity Check (MDPC) codes were introduced in [MTSB12]
in order to propose a public-key encryption scheme following McEliece’s general
approach [McE78]. These codes can be viewed as Low Density Parity Check
(LDPC) codes where the parity-check matrices defining them have higher den-
sity. LDPC codes are classically constructed from matrices with constant row
weights whereas the codes chosen in [MTSB12] have row weights O(

√
n log n)

assuming n is the length. They can be decoded likewise with Gallager’s bit-
flipping decoding algorithm. Even if using MDPC codes comes at the cost of a
degraded error-correction compared to standard LDPC codes, it is still possi-
ble to obtain a probability of decoding failure below an acceptable threshold.
Furthermore, because of the presence of low-weight codewords, LDPC codes are
vulnerable to key recovery attacks based on Information Set Decoding algorithms
c© Springer International Publishing Switzerland 2016
D. Pointcheval et al. (Eds.): AFRICACRYPT 2016, LNCS 9646, pp. 346–367, 2016.
DOI: 10.1007/978-3-319-31517-1 18
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(see for instance [HS13], while MDPC codes are purposely designed to resist to
such attacks. MDPC codes tend to become a serious choice in cryptography
because they display the interesting feature of being less structured than codes
that are traditionally encountered in code-based cryptography.

In this work we consider the quasi-cyclic variant of MDPC (QC-MDPC)
codes, and instead of searching for relatively small weight codewords, we try to
solve an equation relating the public polynomial (public data) to secret polyno-
mials (private key). This equation is related to a well-known problem called the
rational reconstruction problem, which can be solved for instance by the extended
Euclidean algorithm (EEA). Solving this equation, which would give a trapdoor
to the corresponding scheme, is expected to be hard in general. Nevertheless, in
some cases, the solutions are rather easy to compute. We will call this type of
(secret) configurations weak keys because they can be recovered efficiently from
public data.

The main advantage of our technique is the low complexity of the algo-
rithms that are able to check whether a private key is weak. If the original
extended Euclidean algorithm is used then the time complexity is quadratic
O(p2) if p is the length of the input. The first optimizations were proposed
by Lehmer [Leh38] in 1938 where the constant factor was improved but the
complexity was still quadratic. The first sub-quadratic algorithm was proposed
in 1970 by Knuth [Knu71] with complexity O(p(log p)5 log log p) and shortly
after revisited by Schönhage in 1971 [Sch71] who obtained a better complexity
O(p(log p)2 log log p). The Least-Significant-Bit version of the Knuth-Schönhage
algorithm is due to Stehlé and Zimmermann in 2004 [SZ04]. Even though the
time complexity of this algorithm is not improved the description and the proof
of their algorithm is significantly simpler in this case. The average behaviour
was studied in [LV06,LV08,CCD+09]. Throughout the paper we call weak keys
all pairs of private keys that can be recovered using the EEA algorithm from
public data. We extend the collection of weak keys thanks to a group action
that preserves the key equation. This permits to consider rather a weak orbit
whenever the orbit under the action of the group contains at least one weak key.

The main contribution of this paper is to provide a fine analysis of the prob-
ability of weak keys and weak orbits for the QC-MDPC scheme, under two
different actions. Let p be a prime number and consider a random (2p, p, ω)-QC-
MDPC code over F2 (a precise definition will be given in Sect. 2). Such a code is
given by two vectors from F

p
2 with a total Hamming weight ω. A rough estimate

shows that, when used in a McEliece scheme, the resulting key is vulnerable
to the EEA if the non-zero coefficients are all located at the same block. The
probability of getting this configuration is (p

ω)
(2p

ω ) . In the article we compute the

asymptotic equivalence for the suggested range of parameters in [MTSB12],

ω =
√

2cp log p(1 + O (1)) and p → ∞. (1)

In this case the probability is equivalent to p−c/22−ω.
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In Sect. 4 we compute the exact proportion of weak keys and show that it is
asymptotically ω times the previous estimate for the conditions in (1):

ω
(
p+1
ω

)

(
2p
ω

) − (−1)ω/2
(

p
ω/2

) =
ω

pc/22ω

(

1 + O

(√

log3 p/p

))

. (2)

We remark that the cyclic structure of the code defines a natural group action
of (Zp,+) over the set of public keys. If the coset of a private key contains a
weak key, then it is possible to recover the private key by applying EEA to the
shifted public key.

To count explicitly the number of weak orbits, we link orbits to Lyndon words
and show that counting weak orbits is equivalent to counting Lyndon words with
a fixed longuest run value (see Sect. 5 for precise definitions). In [GR61], Gilbert
and Riordan count Lyndon words of length p and weight ω. We extend their
results and give in Theorem 1 a formula for the number of Lyndon words of
length p, weight ω and longuest run less than or equal to k.

This technique permits to increase the quantity of weak keys by a multiplica-
tive factor equal to ω3 for the conditions in (1), that is to say

ωp2
(

p−1
ω−2

)

(
2p
ω

)
+ (−1)ω/2+1

(
p

ω/2

) =
ω3

pc/22ω

(

1 + O

(√

log3 p/p

))

. (3)

In Sect. 6 we define another action of (Z∗
p,×) over the set of public keys, that

is compatible with the action of (Zp,+). We explain how to apply EEA to every
element of an orbit under both actions, and show that the attack will succeed if
there exists at least one weak key in the orbit of a public key.

We prove that the quantity of keys our algorithm is able to attack is increased
using this technique, by a multiplicative factor that is linear in the block length
for the conditions in (1), that is to say

ωp3
(

p−1
ω−2

)

(
2p
ω

)
+ (−1)ω/2+1

(
p

ω/2

) =
ω3p

pc/22ω

(

1 + O

(√

log3 p/p

))

. (4)

In Sect. 7 we give numerical values for the proportion of weak keys for all the
security parameters suggested by the designers of the cryptosystem. Finaly in
Sect. 8 we give experimental timings for our attack.

Due to space constraints, many proofs are just sketched. The full version of
this paper is available on the arXiv.org preprint server.

2 QC-MDPC Encryption Scheme

We present here the most relevant material for describing the public-key encryp-
tion scheme [MTSB12]. We focus on the quasi-cyclic variant of [MTSB12] which
is defined through circulant matrices. Throughout the paper, the weight of a
vector or a polynomial refers to the Hamming weight and is denoted by ‖ ‖.
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2.1 QC-MDPC Codes and the Algebra of Circulant Matrices

Definition 1 (Moderate Density Parity Check codes). A (n, r, w)-code is
a linear code defined by a r × n parity-check matrix (r < n) where each row has
weight w. A Moderate Density Parity-Check (MDPC) code is a (n, r, w)-code
with w = O

(√
n log n

)
, when n → ∞.

Definition 2. A circulant matrix M of order p is a p × p matrix obtained by
cyclically right shifting its first row m = (m0,m1, . . . , mp−1).

Any circulant matrix is thus completely described by its first row. A circulant
matrix is also obtained by cyclically down shifting its first column. It is well-
known that the matrix operations of addition and multiplication preserve the
circulant structure of matrices.

Proposition 1. [Dav79] The algebra of p × p circulant matrices with entries
in a field K denoted by

(
Cp(K),+,×)

is isomorphic to the polynomial algebra(
K[x]/(xp − 1),+, ·) through the mapping

Cp(K) −→ K[x]/(xp − 1)

M �−→ m(x) =
p−1∑

i=0

mix
i (mod xp − 1).

Corollary 1. A p×p circulant matrix M defined by m is invertible if and only
if m(x) is coprime to xp − 1. In particular, the weight of m is necessarily odd.

The algebra of circulant matrices enables to define the algebra of block matrices
where the blocks are circulant. Any such matrix can be viewed as a matrix with
entries in K[x]/(xp − 1). This will define quasi-cyclic codes which represent the
unique focus of this article.

Definition 3. A Quasi-Cyclic MDPC (QC-MDPC) code is a MDPC code
defined by a block parity-check matrix where each block is a circulant matrix.

We now have defined all objects that permit to fully describe the scheme
[MTSB12]. We will focus however, exclusively on the key generation algorithm
since it is the only compound of the scheme that is of interest in this paper.

2.2 QC-MDPC Public-Key Encryption Scheme

The private key is a parity check matrix H of an (n, r, w) QC-MDPC code where
n = n0p and r = p for some non-negative integer n0. There exist therefore p × p
circulant matrices H1, . . . ,Hn0 such that

H =
(
H1 H2 · · · Hn0

)
. (5)

This private key is obtained by taking at random the first row of H until Hn0

is invertible. The public key is the block parity-check matrix F
def= H−1

n0
H, or

F =
(
H−1

n0
H1 · · · H−1

n0
Hn0−1 Ip

) def=
(
F1 · · · Fn0−1 Ip

)
. (6)
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Using the isomorphism defined in Proposition 1, the private and public keys
are fully described by the sequences h1, . . . , hn0 and f1, . . . , fn0−1 of polynomials
in K[x]/(xp − 1) such that for all i ∈ {1, . . . , n0 − 1},

fi =
hi

hn0

(mod xp − 1). (7)

The secret polynomials are taken so that
n0∑

i=1

‖hi‖ = w.

Hence, the key generation of QC-MDPC scheme can be summarised as follows

– Private key. Pick at random h1, . . . , hn0 from K[x]/(xp − 1) such that∑n0
i=1 ‖hi‖ = w and hn0 is prime with xp − 1.

– Public key. f1, . . . , fn0−1 where fi =
hi

hn0

(mod xp − 1).

2.3 Discussion on the Choice of the Parameters

Since [MTSB12] considers solely binary matrices, we assume from now K = F2.
Furthermore, the weights ‖hi‖ are “smoothly” distributed and p is always a
prime number for security reasons. During the Key Generation step one must
randomly choose the polynomials hi until at least one of them is invertible. So we
might expect, for security reasons, that the designers selected those parameters
for which the set of invertible polynomials in the polynomial algebra K[x]/(xp−1)
is the largest possible. Using a ring isomorphism we give the number of invertible
polynomials and thus show which are the proper parameters to be selected.

Proposition 2. Let p be a prime number and assume (x − 1)
∏d

i=1 gi(x) is the
decomposition of xp − 1 into irreducible polynomials over F2[x] for some d � 1
then deg gi = p−1

d for all i ∈ {1, . . . , d}. In particular, the number of invertible

polynomials in F2[x]/(xp − 1) equals
(
2(p−1)/d − 1

)d
.

For the choice of secure parameters, it is recommended to choose p so that
the Folding attack [Gen01,Loi01,FOP+14] is inefficient. The most favorable sit-
uation is when d is as small as possible, for instance d = O(1) when p tends to
infinity. The designers of the scheme considered this option since all the para-
meters respect this condition. Hence, the number of invertible polynomials in
F2[x]/(xp −1) tends to be 2p−1 which is exactly the number of polynomials with
an odd Hamming weight. So the probability of choosing an invertible polynomial
from the set of polynomials with an odd Hamming weight is

(
1 − 2−(p−1)/d

)d

which tends to 1 when d = O(1). One very interesting case is when d = 1,
since it seems to be the most secure choice for the cryptosystem. In Sect. 4 we
investigate this particular case.

3 Rational Reconstruction Problem

We are interested in a key-recovery under a chosen plaintext attack. When
applied on a (pn0, p, w) QC-MDPC scheme whose public key is the sequence
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of polynomials (f1, . . . , fn0−1), the attack can be reformulated as the problem
of finding (h1, . . . , hn0) satisfying

fi =
hi

hn0

(mod xp − 1) and
n0∑

i=1

‖hi‖ � w. (8)

This problem can be tackled by applying classical techniques based on expo-
nential algorithms seeking low-weight codewords. It can also be recast as the
problem of solving the rational reconstruction problem that is described in full
details in Sect. 3. The extended Euclidean algorithm solves (8) when there exists
an integer t > 0 such that deg hi < t � p and deg hn0 � p − t. Actually, (8) is a
special case of a well-known problem called the Rational Reconstruction problem.
It will be used in Sect. 4 as a general framework within which it is possible to
perform a polynomial time key recovery attack.

Remark 1. Because of the bit-flipping decoding algorithm for MDPC codes, an
attacker does not necessarily have to find the exact same secret polynomials for
decrypting any ciphertext. Indeed, any sequence of polynomials satisfying the
conditions (8) will lead to an efficient decoding of any ciphertext. It also means
that there might exist several equivalent secret keys for a single QC-MDPC
scheme.

Definition 4 (Rational reconstruction). Let g and f be polynomials in K[x]
where K is a field such that 0 < deg f < deg g. For a given integer r satisfying
1 � r � deg g, the rational reconstruction of f modulo g consists in finding ϕ
and ψ in K[x] such that gcd(ϕ, g) = 1, deg ψ < r and deg ϕ � deg g − r and
satisfying

ψ

ϕ
= f (mod g). (RR)

Remark 2. When g = xp then we rather speak of Padé approximation.

Note that if (RR) has a solution (ϕ,ψ) then the quotient ψ/ϕ is unique.
Furthermore if (ϕ,ψ) ∈ K[x]2 is a solution of the problem (RR), then it is also
a solution to the following problem.

Definition 5. Let K be a field, g be a polynomial in K[x] of degree p > 0 and
f be in K[x] of degree < p. For a given r with 1 � r � p, the (SRR) problem
consists in finding ψ and ϕ in K[x] such that (ϕ,ψ) �= (0, 0) and

ϕf = ψ (mod g) with deg ψ < r and deg ϕ � p − r. (SRR)

Clearly, any solution to (SRR) is solution to (RR) if and only if gcd(ϕ, g) = 1.
Moreover, (SRR) always has a non-trivial solution since recovering ϕ and ψ can
be done by solving a linear system of p equations with r + (p − r + 1) = p + 1
unknowns representing the coefficients of ϕ and ψ.
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A very efficient way to solve (RR) is to apply the Extended Euclidean Algo-
rithm (EEA) to (f, g). Recall that if we denote by (ϕi, δi, ψi), with i � 0, the
polynomials obtained at the i-th step of EEA(f, g) then we have ψ0

def= g, ψ1
def= f

and for all i � 0:
⎧
⎨

⎩

ψi = Qi+1ψi+1 + ψi+2 with 0 � deg ψi+2 < deg ψi+1,

ψi = ϕif + δig with (ϕ0, ϕ1)
def= (0, 1) and (δ0, δ1)

def= (1, 0).

We also have the relations ϕi+2 = −Qi+1ϕi+1 + ϕi and δi+2 = −Qi+1δi+1 + δi.
We are now able to prove that this approach provides a non-trivial solution. We
require the following proposition.

Proposition 3. At each step i � 0 of EEA(f, g) it holds that

deg ϕi+1 = p − deg ψi. (9)

The following proposition characterises a solution to (RR) when it exists.

Proposition 4. Let j be the smallest integer such that deg(ψj) < r then
(ϕj , ψj) is a non-trivial solution to (SRR). Furthermore, if (ϕ,ψ) is a solution
to (RR) then there exists λ in K\{0} such that ϕ = λϕj and ψ = λψj.

4 Weak Keys

This section is devoted to the identification of private keys h1, . . . , hn0 that can
be recovered from public key f1, . . . , fn0−1 by means of the extended Euclidean

algorithm. Since fi =
hi

hn0

(mod xp − 1), the idea of our attack is to start

by finding a rational reconstruction of f1 modulo xp − 1. At each step t of
EEA(f1, xp−1), the attacker checks if the ongoing computed polynomials denoted
by (ψ(1)

t , ϕ
(1)
t ) where ψ

(1)
t = f1ϕ

(1)
t satisfy the inequality

‖ϕ
(1)
t ‖ +

n0−1∑

i=1

‖fiϕ
(1)
t ‖ � w. (10)

If such a solution is found then by Proposition 4 we have found (equiva-
lent) secret polynomials. Otherwise, the attacker performs the same attack to f2
instead of f1. If this fails again the attack goes on with the other polynomials
f3, . . . , fn0−1. The main problem is to estimate precisely the number of keys that
can be recovered with this technique.

We restrict the study to the case of two blocks (2p, p, ω) QC-MDPC scheme
that is to say n0 = 2. Nevertheless all our results can be extended to n0 > 2. Let
p be a prime number and ω an even integer with 1 < ω < p. Let (ω1, ω2) ∈ N

2

be odd integers such that ω1 + ω2 = ω. We define the set of private pairs with
fixed weights by

Pω1,ω2 =
{

(h1, h2) ∈ (K[x]/(xp − 1))2 | ‖hi‖ = ωi and ωi odd
}

,
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and the set of all private pairs of a (2p, p, ω) QC-MDPC scheme by Pω =⋃
ω1+ω2=ω Pω1,ω2 .

Private pairs that can be recovered using the extended Euclidiean algorithm
are declared weak pairs.

Definition 6. A pair (h1, h2) ∈ Pω is called a weak pair if

deg h1 + deg h2 < p. (11)

The set of weak pairs is denoted by Wω = {(h1, h2) ∈ Pω | deg h1 +deg h2 < p}.
Similarly, Wω1,ω2 is defined as Wω ∩ Pω1,ω2 .

Remark 3. It is important to notice that true collection of private keys of a
general (2p, p, ω) QC-MDPC scheme is actually the set Pω

∗ =
⋃

ω1+ω2=ω
P∗

ω1,ω2

where
P∗

ω1,ω2
=

{
(h1, h2) ∈ Pω1,ω2 | gcd(h2, x

p − 1) = 1
}

.

But in order to simplify our analysis, we will only count weak pairs (h1, h2) and
not weak keys for a (2p, p, ω) QC-MDPC scheme. This approximation is also
justified by the fact we know from Sect. 2.3 that

lim
p→∞

(
2p∑

ω=2

|Pω
∗|

)/ (
2p∑

ω=2

|Pω|
)

= 1.

Remark also that there is one case where the two sets are equal. Indeed if
xp−1 = (x−1)

∏d
i=1 gi(x) is the factorization of xp−1 into irreducible factors (see

Sect. 2.3 for more details) then when d = 1 we have Pω1,ω2 = P∗
ω1,ω2

and Pω =
Pω

∗. For several reasons we consider this case in the article. The first one
is that this is the strongest possible case for the QC-MDPC scheme since it
avoids folding-type attacks. The second reason is that the number of private
keys reaches its maximum since all todd weight polynomials are invertible.

Proposition 5.

|Wω1,ω2 | =
(

p+1
ω1+ω2

)
and |Wω| =

ω

2

(
p + 1

ω

)

. (12)

|Pω1,ω2 | =
(

p

ω1

)(
p

ω2

)

and |Pω| =
1
2

((
2p

ω

)

− (−1)
ω
2

(
p
ω
2

))

. (13)

The asymptotic expansion when ω2
i

2p = ci + O( 1√
p ) is

|Wω1,ω2 |
|Pω1,ω2 |

=
√

2πα(1 − α)e−2
√

c1c2ω
1
2 2−ωH(α) (1 + O(1/

√
p))
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where α = 1/(1 +
√

c2/c1) and H(α) = −α log2 α − (1 − α) log2(1 − α) is the

entropy function. The asymptotic expansion for ω2
i

2p = ci log p + O(
√

log p/p) is

|Wω1,ω2 |
|Pω1,ω2 |

=
√

2πα(1 − α)p−2
√

c1c2ω
1
2 2−ωH(α)

(

1 + O(
√

log3 p/p)
)

.

|Wω|
|Pω| = ω2−ω ×

⎧
⎨

⎩

e− c
2

(
1 + O( 1√

p )
)

if ω2

2p = c + O( 1√
p ),

p− c
2

(
1 + O(

√
log3 p

p )
)

if ω2

2p = c log p + O(
√

log p
p ).

Proof. Let (h1, h2) ∈ Pω1,ω2 . Then hi has wi non-zero coefficients, and a degree
less than p, hence |Pω1,ω2 | =

(
p

ω1

)(
p

ω2

)
. For (h1, h2) ∈ Wω1,ω2 we have deg(h1) +

deg(h2) < p. If k = deg(h1), then h1 has a leading coefficient xk and ω1 − 1
non-zero coefficients between x0 and xk−1. The number of such polynomials is(

k
ω1−1

)
. Furthermore the number of polynomials h2 with ω2 non-zero coefficients

and deg(h2) < p − k equals
(
p−k
ω2

)
. Using the Gould’s formulae [Gou72], we get

|Wω1,ω2 | =
p−1∑

k=0

(
k

ω1 − 1

)(
p − k

ω − ω1

)

=
(

p + 1
ω

)

,

|Pω| =
∑

ω1+ω2=ω
ωi odd

(
p

ω1

)(
p

ω2

)

=
1
2

[(
2p

ω

)

− (−1)
ω
2

(
p
ω
2

)]

.

As for Wω we obtain:

|Wω| =
∑

ω1+ω2=ω
ωi odd

(
p + 1

ω

)

=
(

p + 1
ω

) ∑

ω1+ω2=ω
ωi odd

1 =
ω

2

(
p + 1

ω

)

.

For the asymptotic expansion use the Stirling formula and obtain the results.

Corollary 2. In particular
∣
∣Wω/2,ω/2

∣
∣

∣
∣Pω/2,ω/2

∣
∣ =

(
p+1
ω

)

(
p

ω/2

)2 ,

with asymptotic equivalence

∣
∣Wω/2,ω/2

∣
∣

∣
∣Pω/2,ω/2

∣
∣ ∼

⎧
⎪⎪⎨

⎪⎪⎩

√
πp

1
4 e−22

1
4−2

√
2p if ω = 2

√
2p,

√
πp

1
4−2 log

1
4 p2

1
4−2

√
2p log p if ω = 2

√
2p log p.

The number of weak pairs can be easily increased by considering all possible
cyclic shifts on the polynomials (h1, h2). We formally define the cyclic shift of a
polynomial in terms of group action and explain how we extend the weak pairs
to weak orbits.
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5 Weak Pairs Derived from the Action of (Zp,+)

Let f ∈ F2[x]/(xp−1) be a public key, and (h1, h2) ∈ F2[x]/(xp−1)×F2[x]/(xp−
1) the corresponding private key. We have f = h1

h2
mod (xp − 1). Now assume

that there exists α1, α2 ∈ Z
2
p such that (xα1h1, x

α2h2) is a weak key, then the
public key xα1−α2f = xα1h1

xα2h2
can be attacked by EEA, which is equivalent to say

that
∃α1, α2 ∈ Z

2
p such that deg(xα1h1) + deg(xα2h2) < p. (14)

Using this idea if our attack does not work on f we repeat it on all p cyclic shifts
of f , namely xf, x2f, . . . , xp−1f. If there is a shift such that the outgoing poly-
nomials satisfy the weight conditions in (10) then we have succesfully recovered
(equivalent) secret polynomials by Proposition 4. As in the previous section we
want to estimate precisely the number of keys that can be recovered with this
technique.

Definition 7. The additive group (Zp,+) acts on the set of polynomials as:

Zp × F2[x]/(xp − 1) −→ F2[x]/(xp − 1)
(α, h) �−→ xαh.

The orbit of h ∈ F2[x]/(xp − 1) under the action of (Zp,+) is denoted by Oh.

Definition 8 (Weak orbit). The set Oh1×Oh2 defined by a private key (h1, h2)
in F2[x]/(xp − 1)2 is called a weak orbit if it contains at least one weak key, i.e.
satisfies (14).

Potentially, we would get p2 |Wω| such keys. But this statement overestimates
the real number of weak pairs since it counts several times the same private keys.
Nevertheless it gives a first intuition on the quantity of weak pairs that can be
recovered using the rational reconstruction.

Lemma 1. Let hi = min Ohi
be the minimum polynomial for the lexicographical

order of hi ∈ F2[x]/(xp − 1). Then the set Oh1 × Oh2 is a weak orbit if and only
if deg h1 + deg h2 < p.

We define the longest run of zeros of a polynomial in F2[x]/(xp − 1) by
the longest sequence of consecutive zero coefficients. We remark that there is a
relation connecting the degree of the minimum polynomial and the longest run
of zeros. If ki denotes the longest run of zeros of hi ∈ F2[x]/(xp − 1) we have
that deg hi = p − ki − 1. Since we have the relation between the degree and the
longest run of zeros for the minimal polynomial in the equivalence class we can
redefine a weak orbit in terms of longest run:

Proposition 6 (Weak orbit). The set Oh1 × Oh2 defined by a private key
(h1, h2) ∈ F2[x]/(xp − 1)2 is a weak orbit if and only if it satisfies the equation:

k1 + k2 � p − 1. (15)
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At this point we have reduced our key recovery attack to a well-known problem.
To count all pairs (h1, h2) with the restriction mentioned above, we have to
solve another problem:What is the distribution of the longest run of zeros for the
equivalence class of all cyclic shifts of a K

p vector with fixed Hamming weight?

Definition 9. [Lot02] A Lyndon word l is a word satisfying the conditions:

– l is a primitive word (i.e. it cannot be written l = uv, where u and v commute
and u, v �= 1)

– l is the smallest element in its conjugacy class for the lexicographical order

Example 1.

1. Let O00011 = {00011, 00110, 01100, 11000, 10001} . The Lyndon word here is
00011 since it is the strictly smallest than all the cyclic shifts.

2. Let O0101 = {0101, 1010, 0101, 1010}. There is no Lyndon word here, since
there is no strictly smallest element in the orbit.

An important property is that when p is prime there is a one-to-one mapping
between the Lyndon words and the orbits if the weight is different from zero or
p. So each equivalence class has p different shifts and the strictly smallest (since
it exists) is the Lyndon word.

Theorem 1. Let p, k, ω be integers, such that 1 � ω � p and k � p − ω. The
number of binary Lyndon words with length p, longest run less than or equal to
k and weight equal to ω is:

∣
∣L�k(p, ω)

∣
∣ =

1
ω

∑

j∈N∗, j|gcd(p,ω)

μ (j)
( ω

j
p
j − ω

j

)

k

, (16)

where μ is the Möbius function, defined by μ(j) = 0 if j has a squared prime
factor, μ(j) = 1 if j is square-free with an even number of prime factors and
μ(j) = −1 otherwise. The standard multinomial coefficient

(
j
i

)
k

is defined as the

coefficient of xi in
(
1 + x + · · · + xk

)j
.

The full proof of Theorem 1 is given in Appendix A and it uses a bijection
between the Lyndon words with some specific properties on two alphabets: the
binary alphabet and an (k + 1)-ary alphabet. Straightforward we obtain:

Corollary 3. The number of Lyndon words of length p and Hamming weight
equal to ω over the binary alphabet (result already found in [GR61] by Gilbert
and Riordan) is:

|L(p, ω)| =
1
p

∑

j| gcd(p,ω)

μ(j)
( p

j
ω
j

)

. (17)

Corollary 4. When p is prime we have

∣
∣L�k(p, ω)

∣
∣ =

1
ω

(
ω

p − ω

)

k

and |L(p, ω)| =
1
p

(
p

ω

)

. (18)
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As we already stated we will consider only the case p prime. Since all the orbits
have the same length (p) and each orbit is defined by the corresponding Lyndon
word, there is a uniform distribution over the set of Lyndon words when p is
prime. So we consider a discrete probability model where the probability space
is the set of Lyndon words with length p and weight ω with cardinal 1

p

(
p
ω

)
and

the probability of choosing a Lyndon word equals p/
(

p
ω

)
. Furthermore we put a

condition on the longest run of each Lyndon word and obtain a different distri-
bution over the same set. In other words we write L(p, ω) =

⋃p−ω

k=� p−1
ω 	 Lk(p, ω)

and denote by Xp,ω a discrete random variable that represents the longest run of
zeros of Lyndon words with length p and weight ω. Using Corollary 4 we define:

Definition 10. The cumulative distribution and mass function for Xp,ω are:

FXp,ω
(k) =

∣
∣L�k(p, ω)

∣
∣

|L(p, ω)| and fXp,ω
(k) =

∣
∣Lk(p, ω)

∣
∣

|L(p, ω)| .

Let Yp,ω1,ω2 = Xp,ω1 + Xp,ω2 a discrete random variable that represents the
sum of two independent random variables Xp,ω1 and Xp,ω2 . So the probability
of a weak orbit is:

P (Yp,ω1,ω2 � p − 1) =
∑

k1+k2�p−1

fXp,ω1
(k1)fXp,ω2

(k2)

As p is prime, using Corollary 4 and Definition 10 we get the exact value:

P (Yp,ω1,ω2 � p− 1) =
∑

k1+k2�p−1

( ω1
p−ω1

)
k1

− ( ω1
p−ω1

)
k1−1( p−1

ω1−1

)

( ω2
p−ω2

)
k2

− ( ω2
p−ω2

)
k2−1( p−1

ω2−1

) (19)

The first case that seems interesting is when each variable has a longest run
greater than or equal to half of the wanted quantity p−1

2 .

Proposition 7. Let ω1 and ω2 � 2, then we have:

P

(

Xp,ω1 � p − 1
2

)

P

(

Xp,ω2 � p − 1
2

)

= ω1ω2 ×
( p−1

2
ω1−1

)( p−1
2

ω2−1

)

(
p−1

ω1−1

)(
p−1

ω2−1

) , (20)

with asymptotic equivalence

ω1ω22−ω ×
{

e− c1+c2
2 if ω2

i = cip + O(
√

p),
p− c1+c2

2 if ω2
i = cip log p + O(

√
p log p).

Proof. We apply the formula for the generalized Pascal-DeMoivre coefficient
from [Lot02,BBK08]:

(
ω

p − ω

)

k

=
� p−ω

k+1 	
∑

j=0

(−1)j

(
ω

j

)(
p − j(k + 1) − 1

ω − 1

)

.

For asymptotic expansion as before use the Stirling approximation for factorials.
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Remark 4. We observe that using the shifts increased the probability of a weak
key with a multiplicative factor equal to ω

3
2 . From Sect. 4 when ω1 = ω2 = ω

2
we have that

P

(

Xp,ω1 � p − 1
2

)2

∼ ω
3
2
|Wω1,ω2 |
|Pω1,ω2 |

.

We step forward and analyze the probability for a weak orbit in the general
case. We remark that if either ω1 or ω2 equals 1 then the probability of a weak
orbit equals 1. But the interesting analysis is when ω1 and ω2 are relatively close
and ω = O

(√
p log p

)
.

Proposition 8. If ω1 � ω2 and ω2
i = 2cip log p + O(

√
p log p) then we have

P (Yp,ω1,ω2 � p − 1) ∼ ω1ω2

(
p−1
ω−2

)

(
p−1

ω1−1

)(
p−1

ω2−1

) when p → ∞, (21)

with asymptotic equivalence

P (Yp,ω1,ω2 � p − 1) ∼ ω2
√

2πα(1 − α)p−2
√

c1c2ω
1
2 2−ωH(α).

where α = 1/(1 +
√

c2/c1) and H(α) = −α log2 α − (1 − α) log2(1 − α)

Proof. See Appendix A page 21.

We can easily check that for ωi =
√

cip log p and c1 > c2 the condition in
Proposition 21 is satisfied. Experiments show that if we release the conditions on
ωi the approximation is still sharp. So a deeper investigation of the generalized
Pascal-DeMoivre triangles might be used to prove this statement but this is no
longer our purpose here.

Corollary 5. We have the asymptotic equivalences

P (Yp,ω/2,ω/2 � p − 1) ∼
( ω

2(
p−1
ω
2 −1

)

)2(
p − 1
ω − 2

)

when p → ∞ and ω = o(p),

P (Yp,ω/2,ω/2 � p − 1) ∼
√

π/2p− 1
4 ω

5
2 2−ω if ω2

i =
p log p

4
+ O(

√
log p/p).

Remark 5. If we recall the results obtained with the first method in Proposition
5 and Corollary 2 we conclude that we gain a multiplicative factor equal to ω2

using the shifts:

P (Yp,ω1,ω2 � p − 1) ∼ ω2 × |Wω1,ω2 |
|Pω1,ω2 |

.

Even though only “smooth” repartition is considered in the original article
[MTSB12], we continue our analysis in the general case for all possible values
ω1 + ω2 = ω:
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Proposition 9. Let Yp,ω =
∑

ω1+ω2=ω
Yp,ω1,ω2 and ω2 = p log p + O(1/

√
p). Then

P (Yp,ω/2,ω/2 � p − 1) � P (Yp,ω � p − 1) � ωp2
(

p−1
ω−2

)

(
2p
ω

)
+ (−1)

ω
2 +1

(
p
ω
2

) . (22)

The upper bound is asymptotically equivalent to p− 1
4 ω32−ω.

Proof. For the upper bound we use Eq. (35) from Appendix A and the formula

P (Yp,ω � p − 1) =
∑

ω1+ω2=ω

P (Yp,ω1,ω2 � p − 1)P (ω1, ω2)

Remark 6. If we recall the result in Sect. 4 we obtain a gain factor that is close
to ω2.

6 Improvements Under the Group Action of (Z∗
p,×)

In this section we define another group action that leaves the code invariant.

Definition 11. We denote by “ ∼=′′ the equivalence relation corresponding to
the cyclic shifts equivalence class. The action of Z∗

p over F2[x]/(xp − 1)/ ∼= can
be defined as follow:

Z
∗
p × (F2[x]/(xp − 1)/ ∼=) −→ (F2[x]/(xp − 1)/ ∼=)

(α , Oh) �−→ α · Oh,

where α · (
p−1∑

i=0

aix
i) =

p−1∑

i=0

aix
αi with

p−1∑

i=0

aix
i ∈ Oh.

So we start our attack by fixing α ∈ Z
∗
p and try to find a rational recon-

struction of α · f modulo xp − 1. If the algorithm finds a solution (ψt, ϕt) where
ψt = α · fϕt satisfy the inequality

‖ϕt‖ + ‖ψt‖ � w. (23)

then we have found as before (equivalent) secret polynomials.
Otherwise, the attacker performs the same attack to all shifts of f , namely

α · xjf . If the attack fails, another α is chosen and the procedure is repeated
until the good combination of α and shifts are founded. As before, we want to
estimate precisely the number of keys that can be recovered with this technique.

Lemma 2. The group action previously defined is a ring morphism.

Proof. We can easily check that α · (xa + xb
)

= α · xa + α · xb and α · (xa+b
)

=
α · xa × α · xb.

We give now the most relevant properties related to the group action defined
above.
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Proposition 10. Let α ∈ Z
∗
p and Oh ∈ F2[x]/(xp − 1)/ ∼=. The following equiv-

alence holds:
α · Oh = Oh ⇔ ∃ h∗ ∈ Oh, α · h∗ = h∗. (24)

Proof. The (⇐) implication comes from the definition of the orbits. For the other
implication, let h be an element of the Oh class so that α · h ∈ Oh. This means
that there exits j < p so that α·h = xjh. Then by setting k = −jα−1(1−α−1)−1

we have α · (xkh) = xkh.

Corollary 6. Let h ∈ F2[x]/(xp − 1) and Oh be the orbit of Oh under the
action of (Z∗

p,×). Let Γh be the subgroup of (Z∗
p,×) which stabilizes Oh. Then

the cardinality of the orbit Oh is

∣
∣Oh

∣
∣ =

p − 1
|Γh| . (25)

Proposition 11. Let α ∈ (Z∗
p,×) and h ∈ F2[x]/(xp − 1) so that ‖h‖ = ω1 < p

and α · Oh = Oh. Then the order of α divides either ω1 or ω1 − 1.

So only group elements that respect the order property given above can
fix elements in the set of polynomials with weight restrictions. Thus a natural
consequence is that we can use the Burnside lemma for counting the number of
orbits in this case, but this is no longer the purpose here.

As before we say that the set Oh1 × Oh2 is a weak orbit if and only if it
contains at least one weak pair and denote by P ([Yp,ω] � p − 1) the probability
of a extended weak orbit. We also denote by Γh1,h2 the subgroup that stabilize
Oh1 × Oh2 . We remark from Proposition 11 that for any pair of polynomials hi

with weight ωi we have that any α ∈ (Z∗
p,×) that stabilizes the orbit Oh1 × Oh2

has to satisfy the condition

(ord(α)|ω1 or ord(α)|ω1 − 1) and (ord(α)|ω − ω1 or ord(α)|ω − ω1 − 1) .

In order to estimate the probability of such weak configurations, two main
factors must be taken into consideration: the length of an orbit Oh1 × Oh2 and
the intersection of two weak orbits.

Proposition 12. If the intersection of any two weak orbits Oh1 × Oh2 ∩ Oh∗
1
×

Oh∗
2

= ∅ and Γh1,h2 = {1,−1} for any orbit then we have:

p − 1
2

( ω
2(

p−1
ω
2 −1

)

)2(
p − 1
ω − 2

)

� P ([Yp,ω] � p − 1) � ωp3

2

(
p−1
ω−2

)

(
2p
ω

)
+ (−1)

ω
2 +1

(
p
ω
2

) . (26)

The asymptotic values for the upper and the lower bound can be computed as in
Propositions 8 and 9.

Remark 7. We observe that with this extra group action we improved our prob-
ability by a multiplicative factor equal to p−1 in the best case. In the worst case
the factor is still linear in the block length (see Proposition 11 and Corrolary 6).



Weak Keys for the Quasi-Cyclic MDPC Public Key Encryption Scheme 361

7 Numerical Results

The parameters chosen for the experimental part are those suggested by the
designers of the scheme [MTSB12]. The security levels correspond to the best
known attacks given in [MTSB12]. The probabilities displayed in Figs. 1 and 2
are computed directly from the formulas given in Corollary 2, Proposition 7,
Corollary 5 and Proposition 5.

In Fig. 1 we compute the exact values directly from Corollary 2 and Propo-
sition 7 for the first and the second probability. In the last column we give the
asymptotic value of the probability of a weak orbit from Corollary 5. The asymp-
totic value approaches very precisely the exact value, at least when the exact
computation is possible. We used the following procedure to obtain our results:

– We generate the list L :=
[( ω

2
p− ω

2

)

k
− ( ω

2
p− ω

2

)

k−1

]

k∈{(p−1)/ ω
2 ,...,p− ω

2 }
.

– We compute the convolution from Eq. 19

P (Yp,ω1,ω2 � p − 1) =
∑

k1+k2�p−1
k1,k2∈{(p−1)/ ω

2 ,...,p− ω
2 }

L[k1]L[k2].

The results are amazingly faithful to the asymptotic value in the sense that for
all the parameters the exponential factor is the same for the two probabilities
up to the last digit. This result is quite amazing since the inequalities used in
Appendix A page 21. for the asymptotic expansion are not very sharp. But one
of the reasons why the two values are so close might come from the compensation
phenomenon when computing the convolution in Eq. 19.

In Fig. 2, we display the probability values for all ω1+ω2 = ω. In the first col-
umn we compute the exact value of the probability from Proposition 5. Whereas
in the next column we compute the asymptotic value of lower bound and the
upper bound. In the last column we give only the asymptotic value for the upper

Security p ω
2

|Wω/2,ω/2|
|Pω/2,ω/2| P (Xp, ω

2
�� p−1

2
)2 P (Yp, ω

2 , ω
2

�� p− 1)

level Corollary 2 Proposition 7 Equation 19 Corollary 5
exact value exact value exact value asympt. value

4801 45 2−87 2−78 2−74.04 2−74.04

80 3593 51 2−99 2−90 2−86.02 2−86.02

3079 55 2−108 2−98 2−94.12 2−94.12

9857 71 2−139 2−128 2−124.52 2−124.52

128 7433 81 2−159 2−149 2−145.58 2−144.58

6803 85 2−167 2−157 2−153.67 2−152.67

32771 132 2−260 2−249 2−244.3

256 22531 155 2−307 2−295 2−290.5

20483 161 2−319 2−307 2−302.7

Fig. 1. Probability of a weak key (orbit) for the QC-MDPC when ω1 = ω2 = ω
2
.
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Security p ω
2

|Wω|
|Pω| P (Yp,ω ��� p− 1) P ([Yp,ω] ��� p− 1)

level Proposition 5 Proposition 9 Proposition 12
exact value bounds Eq. (22) upper bound

4801 45 2−84 [2−74, 2−71] 2−60

80 3593 51 2−96 [2−86, 2−83] 2−72

3079 55 2−105 [2−94, 2−91] 2−80

9857 71 2−136 [2−125, 2−121] 2−109

128 7433 81 2−156 [2−145, 2−141] 2−129

6803 85 2−164 [2−153, 2−149] 2−137

32771 132 2−257 [2−244, 2−241] 2−227

256 22531 155 2−303 [2−291, 2−287] 2−273

20483 161 2−315 [2−303, 2−299] 2−285

Fig. 2. Probability of a weak key, extended weak pairs and improvements on extended
weak pairs for the QC-MDPC for all ω1 + ω2 = ω.

bound. One might think that the upper bound is not very tight and that the
exact value of the probability is way lower than the value of the upper bound.
Even though we share this concern we want to insist on the following fact. In
order to obtain real sharp bounds many unanswered questions concerning the
generalized Pascal-DeMoivre triangles are to deal with and this is clearly not the
purpose here. Nevertheless the experiments show that the probability is quite
close to the upper bound. As p goes to infinity and ω = O

(√
p log p

)
the differ-

ence between the two values tends to zero. We compute the probabilities for the
first cryptographic parameters p = 4801 and ω = 90. The exact value for the
probability equals 2−71.26 whereas the upper bound equals 2−71.12.

8 Complexity and Experimental Timings

The cost of the attack on public key using the two group actions previously
defined, is in theory p − 1 action of (Z∗

p,×) times p action of (Zp,+) times the
cost of the EEA. This is the worst case scenario and also the case where our
attack in applied on a random key (potentially which is not weak).

The first set of parameters that we used were not in the scale of the cryp-
tographic values. More precisely we considered p = 101 and ω1 = ω2 = 9. The
purpose was to confront the theoretical values for the probabilities of a weak keys
and the experimental results. In this sense using MAGMA’s random generator
we computed 105 pair of polynomials for the QC-MDPC scheme and executed
the attack on the shifted keys. In theory the probability of finding a weak orbit
equals 0.0032. Meanwhile in practice we obtained 317 weak orbits and the time
needed to test all the orbits was approximately 6000 s.

In the second part we used the first parameters for the 280 security level which
are p = 4801 and ω = 90 and consider the most frequent case max

i∈{1,2}
ωi = 47.

In the first case we applied the EEA on a weak key. In the second part we
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generated a weak key that we shifted. Therefore we randomly choose an integer
i ∈ (Zp,+) and applied the EEA on the ith shift. We repeated the procedure
until a weak key was found. In the worst case we had to compute all the p shifts,
whereas in average we only needed a small number of trials until the weak key
was discovered. The last column corresponds to the following experience. We
generated a weak key, then we applied the action of (Z∗

p,×) and the we shifted.
In this case the procedure is the same: we randomly pick an element of the group
(Z∗

p,×) and consider the key under the action of this element. Then we apply
the Shifted(EEA) until the proper pair of shift and extension in founded. In the
worst case we compute all the possible combinations of shifts and extensions.

On a 4-core Intel(R) Xeon(R) CPU ES-2690 @ 2.90 GHz, using MAGMA
V2.19-9 we applied two variants of the EEA : the recursive original variant with
complexity O(p2) and the MAGMA implementation using the Knuth–Schönhage
version with complexity O(p log p2 log log p).

EEA Shifted(EEA) Extended(Shifted(EEA))

Best Average Worst Average Worst

Recursive version 0.12 s 4.5 min 9.5 min 5.3 days 1 month

MAGMA version 0.86 ms 2 s 4.1 s 1 h 5 h 30 min

9 Conclusion

The rational reconstruction attack turns out to be a very efficient solution for
the key recovery attack on the QC-MDPC scheme. The main advantages of the
algorithm is its low complexity, that is sub-quadratic in the code length, and the
fact that it can be computed in parallel for several instances of the public key.

We proposed a first technique to estimate the number of private keys that
can be recovered with the extended Euclidean algorithm. Furthermore in order
to increase the success probability, equivalence classes of the public key have
been considered. Formally this operation was defined in terms of two group
actions ((Zp,+) and (Z∗

p,×)) over the set of polynomials in F2[x]/(xp − 1).
Counting equivalence classes turned out to be a combinatorial problem based
the theory of Lyndon words. This technique increased the quantity of weak keys
by a multiplicative factor equal to ω2. The second group action (Z∗

p,×) increased
the number by a multiplicative factor p.

In order to avoid such type of attacks one can easily check if the longest run
of the private keys satisfy the conditions given in (15). The designer has to check
if the group action previously defined increase or not the longest run in order to
insure the security of the key.

We stress out the importance of our counting technique since it can be applied
to other cryptographic schemes, for instance the NTRU cryptosystem.
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A Appendix

Proof of Theorem 1 First of all we define the variables involved in the theorem.
Let p, ω, k be integers, such that 1 � ω � p and k � p − ω. A finite word w is a
Lyndon word if w is strictly smaller for the lexicographical order than all of its
cyclic shifts. We denote by L(A) the set of Lyndon words over an alphabet A.
Let B be a binary alphabet, and L�k(B, p, ω) the set of all Lyndon words with
length p, number of ones equal to ω and the longest run of zeros less or equal
to k over B. Let Ak = {a0, a1, . . . , ak} be an alphabet. Monoids A∗

k and B∗ are
endowed with the lexicographic orders satisfying 0 < 1 and ak < · · · < a0. The
morphism

ϕ : A∗
k → (0∗1)∗ ⊂ B∗

ai → 0i1

is clearly an order preserving isomorphism. We deduce that w ∈ A∗
k is a Lyndon

word if and only if ϕ(w) is a Lyndon word (see [Ric03] for details). Setting

ψ(al0 . . . alj−1) = j +
j−1∑

m=0
lm we obtain ψ(w) = |ϕ(w)|.

If we set Lψ(Ak, ω, p) =
{

l ∈ L(Ak)
∣
∣
∣
∣ |l| = ω and ψ(l) = p

}

then

ϕ (Lψ(Ak, ω, p)) = L�k(B, p, ω).

Hence, it suffices to compute |Lψ(Ak, ω, p)| . We use the fact that the alphabet
Ak is the generating basis for all words in the free monoid A∗

k. In terms of formal
series this means

∑

w∈A�
k

w =
1

1 −
k∑

i=0

ai

. (27)

Then we use the Chen-Fox-Lyndon theorem that states that each word can
be uniquely expressed as a decreasing product of Lyndon words [KTC58,Lot02]

∑

w∈A�
k

w =
↙∏

l∈L(Ak)

1
1 − l

. (28)

Sending each letter alm to zxlm+1 one obtains

1

1 − z
k+1∑

i=1

xi

=
∞∏

1�j�i

(
1

1 − xizj

)|Lψ(Ak,j,i)|
. (29)
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We apply the logarithm in each side of the equality above and develop using
the Taylor expansion. In the resulting formula we compare the coefficient of zωxp

in the left hand side and the right hand side and obtain

∑

j|ω
ω
j |p

j
∣
∣
∣Lψ(Ak, j,

p

ω
j)

∣
∣
∣ =

(
ω

p − ω

)

k

, (30)

where
(
ω
p

)

k
denotes the coefficient of xp in (1 + x + x2 + · · · + xk)ω.

We rewrite the last equation as

∑

j| gcd(ω,p)

ω

j

∣
∣
∣
∣Lψ(Ak,

ω

j
,
p

j
)
∣
∣
∣
∣ =

(
ω

p − ω

)

k

, (31)

and apply the Möbius Inversion [Mob32,Lan09]to find the wanted result.

Proof of Proposition 8 By definition we have:

P (Yp,ω1,ω2 � p − 1) =
∑

ω2−1�k�p−ω1

fXp,ω1
(k)

(
1 − FXp,ω2

(p − k − 1 − 1)
)
.

Lemma 3. Let ω � 2 and p prime. Then for k > �p−ω
2 � we have

fXp,ω
(k) =

ω
(
p−k−2

ω−2

)

(
p−1
ω−1

) , FXp,ω
(k − 1) = 1 − ω

(
p−k−1

ω−1

)

(
p−1
ω−1

) . (32)

For k � �p−ω
2 � the bounds are

ω
(
p−k−2

ω−2

) − (
ω
2

) [(
p−2k−1

ω−1

) − (
p−2k−3

ω−1

)]

(
p−1
ω−1

) � fXp,ω
(k) �

ω
(
p−k−2

ω−2

)

(
p−1
ω−1

) , (33)

ω
(
p−k−1

ω−1

) − (
ω
2

)(
p−2k−1

ω−1

)

(
p−1
ω−1

) � 1 − FXp,ω
(k − 1) �

ω
(
p−k−1

ω−1

)

(
p−1
ω−1

) . (34)

For the upper bound, this gives

P (Yp,ω1,ω2 � p − 1) �
p−ω1∑

k=ω2−1

ω1

(
p−k−2
ω1−2

)

(
p−1

ω1−1

) ω2

(
k

ω2−1

)

(
p−1

ω2−1

) =
ω1ω2

(
p−1

ω1+ω2−2

)

(
p−1

ω1−1

)(
p−1

ω2−1

) . (35)

For the lower bound, we separate our sum into three different sums, for k �
�p−ω1

2 �, �p−ω1
2 � < k < p−1−�p−ω2

2 � = �p+ω2
2 �−1 and �p+ω2

2 �−1 � k � p−ω1
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and use relations (32), (33) and (34):

P (Yp,ω1,ω2 � p − 1) �
p−ω1∑

k=ω2−1

ω1

(
p−k−2
ω1−2

)

(
p−1

ω1−1

) ω2

(
k

ω2−1

)

(
p−1

ω2−1

)

−
� p−ω1

2 	∑

k=ω2−1

(
ω1

2

)(
p−2k−1

ω1−1

) − (
p−2k−3

ω1−1

)

(
p−1

ω1−1

) ω2
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We use the relations
(
p−2k−1

ω1−1

) − (
p−2k−3

ω1−1

)
=

(
p−2k−2
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� 2

(
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)

(as ω1 � 2),
ω1ω2

(
p−1
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)(
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) =
p2

(
p

ω1

)(
p

ω2

) and a change of variable k → p − k − 2

in the last sum to get

(
p
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Now we use the bound
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and the relation from [Gou72]
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)(
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2
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(
p − ω1

ω − 2

)

�
(

p − 1
ω − 2

)

− 3
2
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(
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.

if ω1 = max(ω1, ω2). We finally get the bounds

1 − 3ω1

2

(
p−ω2
ω−2

)

(
p−1
ω−2

) � P (Yp,ω1,ω2 � p − 1)
p2(p−1

ω−2)
( p

ω1
)( p

ω2
)

� 1. (36)

We check that the lower bound tends to 1 when wi = O(
√

p log p).
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