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Preface

Mathematics and formal reasoning are fundamental building blocks of knowledge,
essential for science, technology, policy-making, and risk-management. Mathemati-
cal practice is a rich phenomenon of human activity, with subtle differences between
various cultures. Here, the word “culture” can refer to national cultures, but also
cultural differences in different historical periods, in different strata of a given
society, or in different social settings.

And yet, the public perception of mathematics is that of an apersonal subject with
little or no human interaction, based on a false picture of a science of pure thought
and deduction, with almost no interaction or visible activity.

In a move away from these traditionalist positions, philosophers and social sci-
entists have recently become more interested in studying mathematical and logical
practice, or more accurately, the differences between mathematical and logical
practices. The conference Cultures of Mathematics and Logic held in Guangzhou,
China, was the third in a series of interdisciplinary, international conferences that
strive to bring together researchers from different fields and different backgrounds
for in-depth discussions about the role and impact of culture(s) on the practice of
the formal sciences of mathematics and logic. The community meeting at these
conferences consists of philosophers of mathematics, historians of mathematics,
sociologists of mathematics, anthropologists, cognitive scientists, and researchers
in mathematics education. Previous meetings of this series were Mathematics as
Culture and Practice, held in Bielefeld, Germany (May 2010), and Mathematics
as Culture and Practice II, held in Greifswald, Germany (December 2011). While
members of our community believe that an ambient (non-mathematical) culture
affects mathematical practices, so that there are differences between national styles
of mathematics, these differences can be difficult to observe and isolate, especially
when the ambient cultures are close to each other. It could be expected that
these differences become more pronounced if the ambient cultures differ more
substantially; given the dominance of Western cultural influences on mathematics
and logic, the organisers of this conference felt that it would be appropriate to have
the next meeting in a country with a strong and different ambient cultural tradition
such as China. Naturally, discussions of Chinese mathematics became an important
topic at the conference. Based on the same idea, the follow-up conference Cultures
of Mathematics IV took place on 22–25 March 2015 in New Delhi, India.

v



vi Preface

The Guangzhou conference took place from 9 to 12 November 2012, at the
campus of one of the sponsoring institutions, Sun Yat-Sen University. It was orga-
nized jointly by Shier Ju (Guangzhou), Benedikt Löwe (Amsterdam and Hamburg),
Thomas Müller (then Utrecht, now Konstanz), and Yun Xie (Guangzhou). The
programme committee consisted of Mihir Chakraborty (Kolkata), Shuchun Guo
(Beijing), Joachim Kurtz (Heidelberg), Brendan Larvor (Hatfield), Benedikt Löwe,
Martina Merz (Luzern), Thomas Müller, Dirk Schlimm (Montréal QC), and
Shier Ju.

For the multi-disciplinary community behind these meetings, the notion of
“practices and cultures” is at the same time central and underdetermined, and two
of the papers in this volume can be seen as a discussion of our community and
its aims. The article What are mathematical cultures? by Brendan Larvor serves
as a discussion of what we might mean by cultures in this context; at the same
time, it provides an overview of the activities and publications of our community
during the last decade, which to a large extent happened under the umbrella of the
Philosophy of Mathematical Practice movement. That the discipline of philosophy
plays such an important role for our community can come as a surprise to some; the
scope of our field is explored in Benedikt Löwe’s Philosophy or not? The study of
cultures and practices of mathematics where he argues that our field forms a multi-
disciplinary community and discusses the role of philosophy for this community
as a whole. The reader is invited to start with the papers by Larvor and Löwe to
get an overview of the overall aims and scope of the community that is behind the
Guangzhou conference. The talks at the Guangzhou conference took place within
the framework described in these two papers. The following list documents all talks
invited or accepted for presentation at our conference, including those that had to be
cancelled due to various reasons:

Invited Speakers

Andrea Bender. Numeration systems as cultural tools
Karine Chemla. Practices of abstraction as features of a mathematical culture
Shirong Guo. The reasoning and its logical structure in traditional Chinese

mathematics
Juan Pablo Mejía Ramos. Reading mathematics: Empirical research on ex-

pert mathematical practice
Reviel Netz. Mathematical communities in Greek antiquity
Zhaoshi Zeng and Gang Wang. Study of Chinese logic from the perspective

of the General Argumentation Theory

Contributed talks

Mihir Chakraborty and Smita Sirker. Some aspects of mathematical plu-
ralism

Amita Chatterjee. Logical subcultures in the Classical Indian theoretical
tradition

Karen François. The cultural turn within the research field of mathematics
education
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Yang He and Yanjin Chen. On Gongsun Long’s methods of argumentation
Albrecht Heeffer. From tables to induction in Abbaco mathematical culture
Peter Koepke. Formal mathematics and mathematical practices
Joachim Kurtz. De-modernizing the history of Chinese logic
Brendan Larvor. The Mathematical Cultures research network
Baptiste Mélès. Programming languages for pre-mechanical calculating tools
Thomas Müller. Is there such a thing as philosophical logic?
Ranjit Nair. Philosophies of mathematics, logic and language: East and West
Markus Pantsar. Philosophy of mathematics in different fields
Stig Andur Pedersen. Mathematics in engineering and science
Josipa Petrunic. Revolutions and epistemic cultures: The case of Hamilton’s

quaternions as an epistemic shift and a mathematical revolution
Mario Piazza, Gabriele Pulcini, and Nevia Dolcini. Patterns of mathemati-

cal cognition: The prototypical proof
Dagmar Provijn. Much reasoning, many logics: on dynamics and heuristics

in reasoning
Johannes Wietzke. The desire for knowledge in the Greek exact sciences
Jia-Ming Ying. The style of argumentation in emperor Kangxi’s mathematical

compendium and its influence on Korean mathematics
Yijie Zhang. Liu Hui’s inference in The Nine Chapters on the Mathematical

Procedures: A preliminary inquiry
Dahai Zou. The foundations of the reasoning in the demonstration of

Liu Hui’s principle

The conference was funded jointly by the Institute of Logic and Cognition, Sun
Yat-Sen University, China, the Department of Philosophy at Utrecht University,
The Netherlands, and the Institute for Logic, Language and Computation at the
University of Amsterdam, The Netherlands. We should like to thank especially
the local organizational team at Guangzhou, led by Ju Shier and Yun Xie, who
provided a welcoming atmosphere and an efficient local organization. We are also
grateful for the work of our programme committee and for the diligent work of the
many referees that helped with the time-consuming task of selecting the best among
submitted papers. The editors insisted on the highest standards of journal refereeing
for all papers. They accepted only those that met the criterion of scientific excellence
in order to produce a high-quality volume that reflects the topics discussed at the
conference.

December 2015 S.J., B.L., T.M., Y.X.
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Pyŏng-Gil in Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Jia-Ming Ying

ix



What Are Mathematical Cultures?

Brendan Larvor

Abstract

In this paper, I will argue for two claims. First, there is no commonly agreed,
unproblematic conception of culture for students of mathematical practices to
use. Rather, there are many imperfect candidates. One reason for this diversity is
there is a tension between the material and ideal aspects of culture that different
conceptions manage in different ways. Second, normativity is unavoidable, even
in those studies that attempt to use resolutely descriptive, value-neutral concep-
tions of culture. This is because our interest as researchers into mathematical
practices is in the study of successful mathematical practices (or, in the case of
mathematical education, practices that ought to be successful).

I first distinguish normative conceptions of culture from descriptive or scien-
tific conceptions. Having suggested that this distinction is in general unstable, I
then consider the special case of mathematics. I take a cursory overview of the
field of study of mathematical cultures, and suggest that it is less well developed
than the number of books and conferences with the word ‘culture’ in their titles
might suggest. Finally, I turn to two theorists of culture whose models have
gained some traction in mathematics education: Gert Hofstede and Alan Bishop.
Analysis of these two models corroborates (in so far as two instances can) the
general claims of this paper that there is no escaping normativity in this field,

I am grateful to Paul Ernest, as well as to two anonymous referees and the editor of this collection
for comments on drafts of this paper. I am also grateful to the organisers of Cultures of Mathematics
and Logic (9–12 November 2012, Institute for Logic and Cognition, Sun Yat-Sen University,
Guangzhou, China)

B. Larvor (�)
University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
e-mail: b.p.larvor@herts.ac.uk

© Springer International Publishing Switzerland 2016
S. Ju et al. (eds.), Cultures of Mathematics and Logic, Trends in the History
of Science, DOI 10.1007/978-3-319-31502-7_1
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2 B. Larvor

and that there is no unproblematic conception of culture available for students of
mathematical practices to use.

1 The Normative Senses of ‘Culture’

The word ‘culture’ is semantically rich. Its many meanings divide into two broad
groups: normative/educative and descriptive/scientific. On one side, there are the
normative senses in which culture is a good thing, valuable in its own right and for
the people who have it, both individually and collectively. Thus, a person may be
cultured. Such use of the term ‘culture’ requires a high level of confidence in the
associated evaluations. One must firmly believe that one knows what is valuable in
order to deploy the word in this way, and be confident of culture’s good effects. For
this reason, in Europe, this normative sense of culture finds its clearest expression
in high-minded men of the nineteenth century, such as Matthew Arnold.

According to Arnold, writing in 1869, culture recommends itself as

: : : the great help out of our present difficulties; culture being a pursuit of our total
perfection by means of getting to know, on all the matters which most concern us, the
best which has been thought and said in the world, and, through this knowledge, turning a
stream of fresh and free thought upon our stock notions and habits : : : 1

Among the ‘present difficulties’ that Arnold hoped to resolve with the help of
culture were the uncouth, unruly and sometimes violent behaviour of the recently
formed urban proletariat and the mercantile values of the proprietors of small
businesses who funded the schools that he inspected. For Arnold, culture is an
educational project. Everyone can and should have it; everyone can and should
benefit from it. While his vision retains much of its attraction, his confidence that a
curriculum committee can know what is ‘the best which has been thought and said
in the world’ must strike us as naïve. While a present-day curriculum committee
might be confident that what it lays before students is good, it cannot know that
there is not, somewhere, a better thought, perhaps expressed in a language that none
of the committee members understands. Moreover, Arnold’s confidence that culture
can be ‘the great help out of our present difficulties’ is hard to share now. Most
developed countries have had compulsory universal education for most of the past
century, and this normally includes plenty of culture as Arnold understood it. Four
generations of British children have all had their dose of Shakespeare, for example.
Perhaps this has helped to make Britain less violent and money-grubbing than it
would otherwise have been—counterfactual history on that scale is an uncertain
exercise. What is clear is that the ‘present difficulties’ that troubled Arnold are still
with us in varying degrees.

1Culture and Anarchy, preface (Cambridge University Press 1978 reprint of the second (1875)
edition, p. 6). Also of interest is Schiller (1794), because he attempted to explain in detail how
exposure to high art can do its ennobling work.
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Nevertheless, culture, thus understood, is a good and nurturing thing. It stands in
contrast to nature and ennobles the youth fortunate to be educated in it. Culture in
this sense was usually understood to be what we would now call ‘high culture’—
that is, canonically great works of high art. Even Arnold did not expect folk-tales to
help us with our present difficulties, unless a literary author turns the tales into high
art.

Since Arnold’s day, it has become a truism that highly cultured people can
commit terrible crimes. Nevertheless, some version of Arnold’s view survives in
every educator who insists that exposure to high culture can render the cultured
individual wiser and more virtuous as well as wittier and better informed.

Here then is a question for mathematics educators: do we subscribe to a
mathematical version of Arnold’s view of culture? Given that few people now
need any mathematical knowledge or skill beyond elementary arithmetic, why is
mathematics compulsory for all school pupils? There are, of course, some answers
to this question that do not invoke any version of Arnold’s view of culture.
Citizenship and prudence require some understanding of statistical and actuarial
reasoning, and besides, it may not be possible to know exactly which children will
grow up to be the minority who do use non-elementary mathematics, so it may be
best to apply a sheep-dip approach and train them all. Still, we should consider
the possibility of giving an answer in the style of Matthew Arnold, that is, that (a)
mathematics is good in itself and therefore the person who appreciates it is richer in
spirit and (b) appreciation of mathematics has some general educative effect, beyond
mastery of the knowledge and skills that constitute it.2 This reflection could go either
way: we might decide to work out in detail a view like Arnold’s for mathematics,
or we might decide that it is indefensible and take care to expunge every trace of it
from our doctrine.

For the moment, it almost suffices to distinguish the normative/educative senses
of ‘culture’ from the descriptive/scientific senses, as the latter will occupy most
of the remainder of this essay. Almost, because every distinction establishes a
relation, and echoes of the normative/educative sense are detectable throughout the
descriptive and scientific literature on culture in general and mathematical cultures
in particular. Some cultural approaches to mathematics, such as the Critical Math-
ematics Education movement associated with Ole Skovsmose, show this interplay

2There is, for example, more than a trace of Matthew Arnold in Paul Lockhart’s Mathematician’s
Lament (Bellevue Literary Press, 2009). Paul Ernest makes an Arnold-like argument in ‘Why Teach
Mathematics?’ (in White and Bramall (2000) Why Learn Maths? London: Institute of Education,
2000), including a distinction between capability and appreciation that emphasises the value of
mathematics as cultural achievement. In the closing remarks of his presentation at the third London
conference on mathematical cultures (2014), Ernest advocated inspiring pupils with “the poetry of
mathematics”.
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between the normative and descriptive senses of ‘culture’ explicitly.3 However, we
should expect to see a normative notion of culture implicit in any culturally-focussed
research directed at the question ‘How can we teach mathematics better’, even if that
research makes explicit use of descriptive or scientific concepts of culture.

2 The Descriptive/Scientific Senses of ‘Culture’

On the descriptive, scientific or anthropological sense of the term ‘culture’, a good
place to start is the magisterial literature review in Kroeber, A.L., & Kluckhohn,
C. (1952) Culture: A critical review of concepts and definitions.4 This report
starts with the first recorded scholarly use of the term and tracks its evolution
and differentiation up to their time of writing. This is of some interest, given
the discussion so far, because Kroeber and Kluckhohn explore both sides of the
descriptive/normative distinction, and their historical survey includes those German
thinkers of the nineteenth century who distinguished ‘ought’ from ‘is’ but took care
not to raise this distinction into an absolute separation.5

At the end of their historical journey, they land on this definition of culture, which
they take to be an approximation of the view of “most social scientists”:

Culture consists of patterns, explicit and implicit, of and for behavior acquired and trans-
mitted by symbols, constituting the distinctive achievements of human groups, including
their embodiments in artifacts; the essential core of culture consists of traditional (i.e.,
historically derived and selected) ideas and especially their attached values; culture systems
may, on the one hand, be considered as products of action, and on the other as conditioning
elements of further action.6

In this definition, we see a tension that turns up more widely in the descriptive
senses of culture. The first part of this definition presents culture as patterns of
behaviour, embodied in and transmitted by symbols and artefacts. From a positivist
or behaviourist point of view, that sounds scientifically respectable. Symbols,
artefacts and behaviours are all empirically detectable (setting aside the question of
how a purely empirical consciousness could recognise them as symbols, artefacts
and behaviours). However, they go on to say that the core of (a) culture is “ideas
and especially their attached values”. Ideas and values are not so easy to detect
empirically, except perhaps indirectly through their effects. This mention of values

3See Skovsmose’s principal programmatic work Towards a Philosophy of Critical Mathematics
Education (1994) Dordrecht: Kluwer. For his more recent reflections, see the interview in
Alrø, Ravn and Valero (eds) Critical Mathematics Education: Past, Present and Future pp. 1–
9 (2010), in which he relates his thinking to philosophers associated with critical theory such as
Habermas, Adorno and Foucault. Naturally, his relation to these figures is not uncritical. From such
perspectives, the present argument (that our interests in mathematics and mathematics education
must inevitably erode the is/ought distinction) will appear as a naïve statement of the obvious.
4Harvard University Peabody Museum of American Archeology and Ethnology Papers 47.
5On the is/ought relation, see Hegel (1821) Philosophy of Right.
6Kroeber & Kluckhohn 1952 p. 181.
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is not an afterthought; on the contrary, for Kroeber & Kluckhohn, values are
central to anthropology: “Values provide the only basis for the fully intelligible
comprehension of culture, because the actual organisation of all cultures is primarily
in terms of their values.”7 It is also worth noting their use of the term ‘achievement’.
This is a success-word, and therefore invokes a normative sense of culture, though
presumably the criteria of success are culture-specific.

The conceptions of culture that social anthropologists have developed since
Kroeber & Kluckhohn collectively reflect this tension between empiricism (at-
tending to empirically detectable features such as behaviours and artefacts) and
idealism (focussing on ideas and values) in social science. In an essay published
shortly before Kroeber & Kluckhohn’s review, Talcott Parsons defined culture as
“ : : : those patterns relative to behavior and the products of human action which
may be inherited, that is, passed on from generation to generation independently of
the biological genes”.8 It may be significant, given that students of mathematical
cultures are often researchers in mathematics education, that Parsons makes non-
biological transmission definitive of culture. In any case, he focuses on behaviour
and its products, and in doing so represents one of the main trends of mid-century
social science. In contrast, writing in 1989, Banks, Banks, & McGee claim that,

Most social scientists today view culture as consisting primarily of the symbolic, ideational,
and intangible aspects of human societies. The essence of a culture is not its artifacts, tools,
or other tangible cultural elements but how the members of the group interpret, use, and
perceive them. It is the values, symbols, interpretations, and perspectives that distinguish
one people from another in modernized societies; it is not material objects and other
tangible aspects of human societies. People within a culture usually interpret the meaning
of symbols, artifacts, and behaviors in the same or in similar ways.9

If this is indeed how most social scientists viewed culture in 1989, then it seems
that attention has shifted away from behaviours and material artefacts, towards
the ideas and values that Kroeber & Kluckhohn insisted are the only basis for
understanding cultures.

We should expect to find this taut duality in any study of culture because the two
ends need each other. The behaviours and artefacts do not classify themselves or
explain themselves; the ideas and values must body forth in words, deeds and things
if they are to have any presence at all. We can find this tension in the philosophy of
mathematical practice. Mathematics is obviously concerned with ideas, but studying
mathematical practices directs attention to artefacts (blackboards, notations, dia-
grams, models and computers) and behaviours (gesticulating, writing, sketching,
gathering mathematicians in groups of various sizes, etc.). Note the reference to

7Kroeber & Kluckhohn 1952 p. 340.
8Parsons, Talcott (1949) Essays in Sociological Theory. Glencoe, IL, p. 8. Similarly, Useem &
Useem define culture as, “ : : : the learned and shared behavior of a community of interacting human
beings” (Useem, J., & Useem, R. 1963 p. 169). That is, culture is patterned behaviour rather than
ideas and values, and is reproduced non-biologically.
9Banks, J.A., Banks, & McGee, C. A. (1989). Multicultural education. Needham Heights, MA:
Allyn & Bacon.
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‘modernized societies’. Presumably, the point there is that the material cultures and
outward behaviours of such societies are increasingly homogenous—people all over
the world wear jeans and use smart-phones. In order to study the differences between
such societies, anthropologists have to pass from artefacts and behaviours to ideas
and values. This thought may also have some use in the study of mathematical
cultures.

3 Mathematics

There are two intellectual movements of recent decades that study mathematical
cultures: philosophy of mathematical practice (which, with some clumsiness and
injustice, we take to include corresponding changes in the historiography of
mathematics) and the cultural turn in mathematics education research.

The philosophy of mathematical practice movement arises from a dissatisfaction
among philosophers and historians with abstract models of mathematics that
make a mystery of its growth and fail to explain how finite, embodied, naturally
evolved creatures can understand it. This movement has now acquired a scholarly
literature,10 regular conferences (see Appendix for a partial list) and an international
society, the Association for the Philosophy of Mathematical Practice (APMP).11

So far, the philosophy of mathematical practice movement has not done much
to develop cultural approaches to mathematics. The number of meetings with
the word ‘culture’ in the title is misleading; in many instances, the name of the
meeting represents an aspiration on the part of the organisers rather than an accurate
indication of the eventual contents. For the most part, philosophers and historians
of mathematical practice have tried to study what mathematicians do and how these
activities produce mathematics without invoking culture or related notions such as
society or intersubjectivity. Notably, cultural approaches are largely absent from the
most important book in the field in recent years, The Philosophy of Mathematical
Practice, edited by Paolo Mancosu, and in this respect the papers gathered in
this book are representative of the field.12 Properly cultural questions about the
social embedding and reproduction of practices have not yet had much attention
(for example, we are still waiting for a systematic study of the expressions and
enforcement of status and hierarchy in mathematics seminars).

10See Larvor’s review of The Philosophy of Mathematical Practice Paolo Mancosu (ed.) OUP
2008 in Philosophia Mathematica (2010) 18(3): 350–360 for a representative list.
11http://www.philmathpractice.org/.
12Oxford University Press, 2008.

http://www.philmathpractice.org/
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There have been sporadic and largely programmatic efforts; one of the earliest
was the work of the topologist Raymond L. Wilder.13 Beginning in 1950, Wilder
proposed that mathematics is, essentially, culture. Perhaps because he offered the
cultural approach as an answer to the metaphysical question ‘what is mathematics?’,
Wilder’s work did not directly stimulate a stream of scholars to take up his ideas.
It may also have suffered from his relatively under-theorised notion of culture. The
many insights in Wilder’s main exposition of his view, Mathematics as a Cultural
System,14 seem to originate in his experience as a creative mathematician, rather
than in the deployment of anthropological theory. The cultural approach seems to
have liberated him to express general thoughts about mathematics that he believed
on other grounds. This is valuable, but it is not a programme of research that others
can take up and continue—unless they too are professional mathematicians with
insights grounded in their personal experience of mathematical research. Wilder
may have influenced some others, such as Phillip J. Davis, Reuben Hersh, David
Bloor and perhaps Alvin White, who founded and for many years edited (what is
now called) the Journal of Humanistic Mathematics. Hersh included some cultural
or anthropological approaches in his collection 18 Unconventional Essays on the
Nature of Mathematics (Springer, 2006). One is by Leslie White, who introduced
Wilder to anthropology; others are by Andrew Pickering, Eduard Glas and Hersh
himself. As Hersh notes in his introduction (p. xv), most of the articles in this
collection are on the cognitive aspects of mathematical practice rather than the
cultural or social aspects, and in this it reflects the state of the field.

In recent years, the philosophy of mathematical practice movement has be-
gun to show more interest in cultural approaches to mathematics, in the form
of conferences, including the one that produced this book (Cultures of Logic
and Mathematics, held in Guangzhou, China, November 2012). In Europe, the
PhiMSAMP (Philosophy of Mathematics: Sociological Aspects and Mathematical
Practice) project sought to connect sociologists of mathematics with historians and
philosophers. In 2012–2014, London was the venue for a series of three conferences
on mathematical cultures.15 From the presentations in this series, it is clear that
the concept of culture is still relatively untheorised among writers on mathematical
practice. Only a few of the philosophers and historians at the meetings deployed a
notion of culture explicitly, and these were mostly lacking in conceptual articulation
compared with the concepts of culture developed by Kroeber & Kluckhohn and
the other social scientists mentioned earlier in this essay. One notable exception is
Albrecht Heeffer, whose presentation on the Abbaco mathematical culture made

13Wilder offered this definition of culture: “We use [the term ‘culture’] in the general anthropolog-
ical sense : : : In this sense, a culture is the collection of customs, beliefs, rituals, tools, traditions,
etc., of a group of people : : : It is not the use of the term as in “a cultured person” that we have
in mind.” Introduction to the Foundations of Mathematics (John Wiley; second ed. 1965 (first
published 1952)) p. 282.
14Pergamon Press, 1981.
15For a description of the series, see “The Mathematical Cultures Network Project” 2012 Journal
of Humanistic Mathematics 2 (2): 157–160.
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careful use of some of Alan Bishop’s ideas on mathematical enculturation (on
which more below). The dearth of cultural theory in this area is a serious deficiency,
because practices, including mathematical practices, do not stabilise and reproduce
themselves by magic. They have to be culturally embedded, manifested and valued.
For this observation to motivate meaningful research, we need a notion of culture
with some explanatory potential.

A point of particular interest is the cultural stability and reproduction of proof-
practices, since this is the point where cultural studies meet epistemology. A central
claim of the philosophy of mathematical practice movement is that formal logic
is a poor model of mathematical proof, that ‘real’ mathematical proofs employ
specifically mathematical means of inference rather than the topic-neutral inference-
patterns modelled in formal logic.16 Now, ideally, one would hope that adepts
in any epistemic practice would be able to say why it works. One can think of
mathematical logic as an attempt by mathematicians to achieve this ideal (though
the history of mathematical logic does not entirely bear this out, and current
research in formal logic mostly has other motivations). In any case, one of the
motivations of the philosophy of mathematical practice movement is dissatisfaction
with formal logic as an account of how and why mathematical proofs work. In place
of a universal account—that mathematicians everywhere and at all times employ,
however obscurely and informally, a common, topic-neutral reasoning ability—
scholars in this movement look at local, topic-specific proof-practices. Given the
centrality of ancient Greek mathematics in the history of western mathematics, it is
not surprising that two of the best developed studies are in this tradition: Kenneth
Manders’ (2008) ‘The Euclidean Diagram’17 and Reviel Netz’s The Shaping of
Deduction in Greek Mathematics.18 These studies lay out in detail the norms
governing ancient Greek mathematics and attempt to show how these are grounded
in practices. Netz (who spoke at the Guangzhou conference in 2012) claims that,
“What unites a scientific community need not be a set of beliefs. Shared beliefs are
much less common than shared practices : : : because shared beliefs require shared
practices, but not vice versa.” (1999, p. 2). Since the practices that (on this view)
unite a scientific community are not normally the objects of its enquiries, we should
not expect scientific communities to be able to explain their epistemic practices
all the way down. Moreover, we should expect these practices to change—Netz
is explicit about this, subtitling his book a ‘study in cognitive history’. Rules of
reasoning, he says (p. 6), are strictly historical. In that case, the question of stability
and reproduction is especially acute in the case of mathematics, because some
mathematical norms seem to remain stable over long periods, through dramatic
social, political and religious changes, sometimes with gaps where the practices
lay latent in documents, and in spite of the relevant community being quite

16This claim is argued many times over in the literature; something like a locus classicus is Rav’s
‘Why do we prove theorems?’ Philosophia Mathematica (1999) 7 (1): 5–41.
17In Mancosu 2008
18Cambridge University Press, 1999.
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small.19 (Jody Azzouni develops this point in his (2006) contribution to Hersh’s
18 Unconventional Essays). Netz mentions the Annales historians’ emphasis on
the “conservation of practice in the material domain” (p. 4). (The Annales group
of historians emphasised historical studies of long periods.) Nevertheless, the
contrast between volatile human culture and enduring mathematical achievement
is a standing problem for a cultural approach to mathematics.

A notable feature of the philosophy of mathematical practice movement is the
paucity of contact and overlap with the sociology of mathematics, at least in the
English-speaking world. This may in part have a sociological explanation, in that
the engagement or lack of it between sociologists and members of the mathematical
practice movement is partly conditioned by how these academic formations locate
each other with respect to a constructed mainstream. In Hersh’s 18 Unconventional
Essays, sociologists and practice-oriented philosophers gather as fellow mavericks.
The sociologists Donald MacKenzie and Andrew Pickering sit in the same volume
as the philosophers Jody Azzouni and Andrew Aberdein, all positioned outside
an implied mainstream that writes conventional essays on mathematics. On the
other hand, David Bloor’s ‘Strong Sociological Programme’ was supposed to
oppose and supplant normative philosophy of science. In the ‘science wars’ of
the 1990s, philosophers and sociologists occupied opposing trenches. While we
have to hope that peace is now permanent, there is as yet little trade between the
former combatants. This may be because the origins of the mathematical practice
movement in dissatisfaction with formal logic as logic (that is, as the normative
study of inference) gives its members a different interest from the sociologists.
Certainly, this is how Netz distances himself from sociologists whom he otherwise
respects,

I do not ask just what made science the way it was. I ask what made science successful, and
successful in a real intellectual sense. In particular, I do not see ‘deduction’ as a sociological
construct. I see it as an objectively valid form : : : 20

Similarly, Manders’ analysis in ‘The Euclidean Diagram’21 sets out to explain the
success of ancient Greek geometry. In his preamble, he observes that “Euclid : : :

Apollonius and Archimedes, are virtually without error”.22 In contrast, Claude
Rosental’s Weaving Self-Evidence: A Sociology of Logic tracks the emergence of
a new theorem without making any reference to the validity of its proof. In a broad
sense of ‘logic’, Netz and Manders are logicians, but Rosental is not.

19Netz makes this observation, “ : : : mathematics survived even Christianity, and in the totally
dissimilar culture of Islam the very same mathematics went on.” (p. 237, emphasis added).
201999, p. 3.
21Mancosu 2008, pp. 80–133.
22Mancosu 2008, p. 67.
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While the philosophy of mathematical practice community has been relatively
slow to take up cultural approaches to mathematics, there has been a turn towards
culture in mathematics education research. Karen Francois, in her video presentation
to the cultures of logic and mathematics conference in Guangzhou, offered a brief
history of this development.23 Before this ‘cultural turn’, mathematics education
research was in a similar condition to the state of philosophy of mathematical
practice at the moment of publication of 18 Unconventional Essays, that is,
mostly focused on the psychology of cognition in individuals. Now, following
this ‘cultural turn’, researchers in mathematics education increasingly study the
learning and teaching of mathematics as cultural activities. This is not quite the
same as treating mathematical research as a cultural activity, so it remains to be seen
whether notions drawn from this source could help philosophers of mathematical
practice. Education is a natural context in which to deploy definitions of the
sort we encountered in the anthropological literature, because such definitions
often define culture in terms of non-biological reproduction, and even those
anthropologists that do not mention reproduction in their definitions of culture
regard reproduction as central to their enquiries. Philosophers of mathematical
practice tend to focus more on the production of mathematical knowledge than on
its reproduction.

In the presentations in the London series on mathematical cultures, those
contributors who drew articulations of the notion of culture from mathematics
education mostly reached for one of two theorists: Gert Hofstede and Alan Bishop.24

Bishop gave the keynote address at the second conference in the London series.
The remainder of this essay will sketch some of their ideas and offer some critical
remarks.

4 Hofstede

Hofstede starts from the thought that teacher and student form a ‘role-pair’, and
the effectiveness of this dyad can suffer if they come from different cultures
that engender different expectations about what those roles require. He originally
offered a four-dimensional frame for comparing national cultures (not necessarily

23https://youtu.be/umuKvJFR_7U see also François, Karen & Stathopoulou, Charoula (2012). ‘In-
Between Critical Mathematics Education and Ethnomathematics. A Philosophical Reflection and
an Empirical Case of a Romany Students’ group Mathematics Education.’ Journal for Critical
Education Policy Studies, 10(1), 234–247 ISSN 1740-2743.
24Paul Andrews made extensive reference to Hofstede’s scheme in his international comparison of
school mathematics teaching; Albrecht Heeffer used part of Bishop’s framework in his presentation
of the Abbaco mathematical culture. Slides and video recordings of their talks and Bishop’s
keynote address are available on the Mathematical Cultures project website https://sites.google.
com/site/mathematicalcultures/.

https://youtu.be/umuKvJFR_7U
https://sites.google.com/site/mathematicalcultures/
https://sites.google.com/site/mathematicalcultures/
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in mathematics).25 Since then, he has added two more dimensions26 and extended
the analysis from national cultures to organisational cultures.

The original four dimensions are:

Individualism/collectivism (the extent to which individuals act and think of them-
selves as members of in-groups larger than the immediate family unit)

Power distance (the extent to which the less powerful accept inequality)
Uncertainty-avoidance/-tolerance
Male/Female (the extent to which possible male roles overlap with possible female

roles).

Hofstede presents these as culturally neutral categories. However, it is implau-
sible that cultural theorists should somehow escape the scope of the founding
premise of the cultural approach. Everything humans do is cultural, including
cultural analyses. So, for example, Hofstede articulates the first item on this list
(individualism/collectivism) in a way that treats the tight nuclear family as natural.
In this picture, people who act on behalf of or as representatives of their immediate
nuclear families do not thereby show themselves to be culturally collectivist (that
is, in this model, acting for your sibling or parents counts as acting for yourself, but
acting for your cousin or aunt does not). This is odd when we consider the much
greater importance of the extended family over the nuclear in many, perhaps most
cultures, and the relatively high incidence of parental mortality for most of human
history. It rather looks like a feature of Hofstede’s cultural origin has shaped his
model.

Similarly, the last dimension of the four looks ripe for revision. It locates a
culture on this framework’s male-female scale by measuring the extent to which it
is acceptable for men to undertake activities that are, within that culture, considered
female. This builds in an assumption that either (a) women never do anything
outside their cultural gender-roles, or (b) when they do, it is not interesting for
social science. Hofstede argues that this assumption is in the data rather than in
his approach (p. 308). Nevertheless, it is hard to see why one could not replace
this dimension with a symmetrical notion such as gender-rigidity. That would
capture the same data, without building sexist assumptions into the scientific
apparatus.

25International Journal of Intercultural Relations Vol 10 pp. 301–320, 1986. In an earlier paper,
Hofstede defines culture as “ : : : the collective programming of the mind which distinguishes
the members of one category of people from another.” (p. 51). Hofstede, G. (1984). ‘National
cultures and corporate cultures’. In L.A. Samovar & R.E. Porter (Eds.), Communication Between
Cultures. Belmont, CA: Wadsworth. Note that this definition is about categorising people rather
than reproducing ideas (though the ideas are there, under the computer metaphor).
26He is not inconsistent in this; he prepared for this eventuality when writing the 4-dimensional
model, “There is nothing magic about the number of four dimensions : : : ” (p. 306).
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Since then, Hofstede has added Short-term/long-term and Indulgence/restraint.
The fact that this is an open-ended list deprives it of some of its theoretical

interest and power. Compare the achievement of psychologists in identifying
precisely five dimensions of human personality. Or in philosophy, recall that
when Kant offered 12 fundamental categories in four groups of three, he had a
painstaking explanation why there are just that many in just that order.27 In contrast,
Hofstede could easily add a seventh, eighth and nth item as his curiosity roves,
which leaves us wondering why we should classify societies in just these terms. We
might find it more insightful to analyse a society in terms of a distinction between
action and knowledge,28 or according to the manifestation of ressentiment,29 or
rationalisation/disenchantment.30 In such a case, Hofstede could easily protect
his scheme from refutation just by adding an extra dimension—and so Popper’s
familiar point applies.

Nevertheless, this list of ‘dimensions’ is at least a list of questions that we
can ask about mathematical cultures. For example, in 2012 at the first meeting in
London, Slava Gerovitch described the Gelfand Seminar at Moscow University.
Israel Gelfand made a point of scrambling the usual formalities and hierarchies.
Invited Speakers could be interrupted or replaced on the spot and woolly expla-
nations dismissed without mercy, regardless of the status of the speaker. Sessions
always started late, but not always by the same delay—it might be minutes or
hours—and they often went on until the building closed. The participants included
distinguished professors and high-school students. Perhaps this meant that it had
a low power-distance (since participants did not expect distinctions of rank to
influence the discussion) or perhaps it had high power-distance, because a senior
and rather powerful personality dominated. Gelfand usually ended up taking over
the presentation. This example suggests that Hofstede has identified some useful
questions, but perhaps these are not dimensions in any sense analogous to spatial
dimensions or the dimensions of human personality.

5 Bishop

Alan Bishop set out his view in Mathematical Enculturation: A Cultural Per-
spective on Mathematics Education (Kluwer, 1991). Drawing on the work of the
anthropologist Leslie A. White (pp. 60–62), he claims that three elements give

27Critique of Pure Reason (1787) A80/B106ff for the table of categories; A70/B95ff for the ‘clue’
found in logical theory; A95-130/B129-169 for his detailed account.
28See Arnold (1875) Culture and Value chapter iv ‘Hebraism and Hellenism’.
29See Nietzsche, principally the Genealogy of Morals (1887).
30See Max Weber (1930) The Protestant Ethic and the Spirit of Capitalism.
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cultures their distinctive characters: ideology, sentiment and sociology.31 These
terms are themselves vague and shifting, so the best procedure is to see what he
does with them. Bishop quotes Kroeber and Kluckhohn on the centrality of values
for understanding cultures (so he is with the idealists rather than the empiricists
among social scientists). Under each of these three headings, he finds two values
of mathematics. It is not clear from his text whether we should always expect a
culture to have precisely two values under each of these headings. The values he
finds in mathematics do not form dialectical poles (except possibly openness and
mystery, which may oppose each other), nor do they seem to have a conceptual
or genus/species relation with the three headings they stand under. This may mean
that, as with Hofstede’s scheme, we can add sub-categories if necessary (though one
would expect to add new values under one of the existing three top-level categories).
In short, Bishop has not done for the fundamental categories of mathematical value
what Kant attempted to do for the basic categories of experience. Since Kant was
never wholly satisfied with his own effort to found his categories, we might wonder
how far to reproach Bishop for his lack of conceptual system. In any case, here is
Bishop’s scheme of values for mathematics:

Ideology: Rationalism & Objectism
Sentiment: Control & Progress
Sociology: Openness & Mystery

Taking Bishop’s six characteristics of mathematics in turn:

Ideology: Rationalism within mathematics, for Bishop, seems to be the require-
ment of proof in the broad sense of mathematical reason-giving (so this can
include the informal justification of procedures in mathematical traditions directed
at problem-solving rather than theorem-proving). There is an intended contrast with
cultures in which claims are established by appeal to tradition and/or authority. Un-
der this heading, Bishop also discusses the role of mathematics within rationalism
in a much larger sense, akin to rationalisation as described by Max Weber (that is,
a deep historical process of systematisation, intellectualisation, standardisation and
increasingly calculated efficiency in everything from the stacking of food on shelves
to the doctrines and rituals of religion). This second thought bears on the meaning
of mathematics for the rest of society. These two senses of rationalism come apart,
because it is quite possible to be a mathematician and remain indifferent to the role

31This essay focuses on Bishop’s third chapter, ‘The Values of Mathematical Culture’. Heeffer’s
discussion (alluded to above) draws on other parts of Bishop’s book. White’s scheme included
technological values as a separate category; Bishop does not. White’s magnum opus is (1959) The
evolution of culture: the development of civilization to the fall of Rome. New York: McGraw Hill.
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of mathematics in Weberian rationalisation, or even, like Hardy, to make a point of
doing mathematics that has no such role.32

Ideology: ‘Objectism’ is Bishop’s word for mathematics’ preference for fixed
objects over processes and flows, and also over human relations. Bishop may have
the history of the infinitesimal calculus in mind, which illustrates this in some
readings (the early calculus referred to moving points and vanishing quantities,
but these have been replaced by a standard continuum composed of stationary and
ontologically stable points). It is hard to know how hard Bishop would wish to push
this claim. There are mathematical models of processes, flows and human relations,
and the fact that these require more advanced mathematics than counting discrete
and stable objects or measuring definite fixed magnitudes may not be a matter of
‘ideology’ however this word is understood.

Also folded in ‘objectism’ is mathematics’ tendency to reification (think of the
way in which functions, for example, start out as relations between objects but
become objects with properties, relations and mappings of their own).

Under ‘objectism’, Bishop includes a claim that mathematics engages more
easily with the inanimate world, and most especially the world of manufactured
inanimate objects. There are several points run together here: that mathematics deals
most easily with manufactured objects is a different thought from its tendency to
reification. Indeed, having distinguished these two ideas, we might relate them by
suggesting that mathematics relates most easily of all to objects it has manufactured
itself, that is, to reified mathematical objects. Mathematics, says Bishop, requires
people to learn to treat abstract entities “as if they were objects” (p. 80, emphasis
in original), which suggests an unargued philosophical conviction that abstracta are
not, really, objects. Through all this, ‘object’ seems to mean ‘material object’.

Bishop is of course not the first to notice this (nor does he claim to be). Here is
C.S. Peirce:

: : : mathematical reasoning (which is the only deductive reasoning, if not absolutely, at
least eminently) almost entirely turns on the consideration of abstractions as if they were
objects.33

In reading this, we have to remember that Peirce had his own conception of
deductive reasoning. Nevertheless, we have here an explanation-sketch for much
that Bishop records under ‘objectism’. If Peirce is right, then mathematical thinking
is possible only on condition of treating abstractions as if they were objects, and

32Hardy, G.H. A Mathematician’s Apology. (2004) [1940]. Cambridge: University Press. Note the
date! Hardy published his thoughts on the uselessness of mathematics at the outbreak of war.
33Peirce, C.S. ‘The logic of relatives’ The Monist Vol. VII. January, 1897. No. 2. p. 192. I learned
of this passage from Hacking, I. Why is there philosophy of mathematics at all? Cambridge:
Cambridge University Press, 2014, p. 255.
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explains why mathematics models some objects and phenomena more easily than it
does others.

Sentiment: Control Here, Bishop talks more about techno-science than about pure
mathematics, so it is not clear that this is a specifically mathematical feature.
Mathematics may be useful for dominating and controlling but it is not obvious
that this is something that mathematicians or mathematical cultures always value
(recall the example of Hardy). There is a historical story to tell about European
mathematics in this regard, from the conception of mathematics as the most abstract
part of the study of nature (dominant in the eighteenth century) to the view of
pure mathematics as art for art’s sake that emerges at the end of the nineteenth
century.34 This discussion overlaps with some of the ‘ideological’ values gathered
under rationalism in the form of Weberian rationalisation. Perhaps these are the
same value, appearing first as ideology and now as sentiment. This is not the only
overlap between Bishop’s three main categories, and indeed, this is what one would
expect. Members of religious communities, for example, experience their faith as
doctrine, as sentiment and as a social order, and if a faith is coherent, one would
expect to find the same values present in all three of its aspects. Similarly, in
a mathematical culture in good order, we should expect to find the same values
expressed in thought, in feeling and in social organisation—that is, as ideology,
sentiment and sociology.

Sentiment: Progress Bishop’s discussion here seems to mix progress in mathe-
matical research with rising mastery in the student. Students can progress in their
studies of anything, even in a subject that does not value innovation or progress
in research. They can enjoy rising mastery in memorising received content, say in
technical instruction or remembering a closed religious text. On the other hand,
valuing progress in research is certainly part of contemporary research culture, but
this is not distinctive of mathematics. Moreover, the cultures of mathematics in
school classrooms seem to have little connection with progress in mathematical
research (Snezana Lawrence made this claim about British school classrooms
in her presentation to the first London conference on mathematical cultures35).
Research and school-teaching have different interests, and these can set researchers
and educationalists at odds (see Paul Ernest’s useful table and analysis of these
differences in the recent British context36).

Sociology: Openness Mathematics is open to anyone who can understand it. Math-
ematics is not tied to any religion or national culture, and for members of otherwise
marginalised groups, this is can be a benefit. Authority in mathematics resides in

34See, for example, Amir Alexander’s Duel at Dawn. Harvard University Press, 2010.
35https://youtu.be/FE6m-z61VTs, accessible from https://sites.google.com/site/mathematicalcul
tures/.
36Why Learn Maths? London: Institute of Education, 2000, pp. 6–7.

https://youtu.be/FE6m-z61VTs
https://sites.google.com/site/mathematicalcultures/
https://sites.google.com/site/mathematicalcultures/
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logical argument rather than in status, tradition or charisma, and these arguments
are publicly available. In this section (pp. 75–77), Bishop gives mathematics
a value system redolent of Enlightenment, especially the French Enlightenment
(we already saw a little of that under Rationalism). Mathematics is democratic,
open, subversive of arbitrary power, and so on. Of course, mathematicians and
mathematical institutions do not always behave this way; results, methods and
proofs may be hidden, autocratic professors or politically interested committees may
kill lines of research. Bishop may reply that that these closed procedures can never
prevail, other than in the short term. He ends this section by quoting Habermas,
who urges that political power be rationalised (in Weber’s sense) through dialogue.
By this point, we have passed from resolutely value-free social science into a
conception of mathematical culture as an educative example of the value of being
“logical, precise, critical and argumentative” (p. 77). This is just what our earlier
argument predicted about any analysis of mathematical cultures aimed at improving
existing practice. Bishop does not entertain the thought that, for people living in
harsh environments, group cohesion may be essential for survival, and in such
circumstances being sociable, accommodating and respectful of established status
may be more valuable than being “logical, precise, critical and argumentative”.
If Bishop is right that these values are intrinsic to mathematics, then in some
circumstances people may have good reasons for rejecting mathematics, not on
account of its technical content but rather because of the socially corrosive effect
of the very values that Bishop extols.

Sociology: Mystery Bishop articulates this as the mysterious status of mathematics
to the uninitiated, arising from the abstract nature of mathematical entities. It is not
obvious that this esoteric status is something that mathematicians or mathematical
cultures always value. Moreover, it cuts against the Enlightenment-spirit claims
made under Rationalism and Openness (though this may be a dialectical opposition
inherent in mathematical culture rather than a flaw in Bishop’s scheme).

There are various sorts of mysticism internal to mathematics in addition to
the esoteric status of mathematics. There are sophisticated versions of popular
superstitions (lucky 7, unlucky 13, and so on). There are religious mysticisms,
such as the Russian religious practice of name-worshipping, which may have
played a role in some mathematical research.37 In European intellectual culture,
the most pervasive and influential form of mathematical mysticism originates with
Pythagoras and Plato. Mathematical training, according to Plato, was a means
(perhaps the principal means) by which the mind can prepare for communion with
the unchanging intelligible forms that constitute the higher, nobler reality of which
empirical reality is but a crude and shifting copy. Mathematics, in other words, can

37‘Mathematics and Mysticism, Name Worshipping, Then and Now’ Jean-Michel Kantor Theology
and Science Vol. 9, Issue 1, 2011.
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function as a spiritual discipline like meditation, yoga or chanting.38 However, in
Plato’s vision, mathematics can only be a bridge to the intelligible, because it is
tethered to empirical experience.39 Here we see an intellectual version of the esoteric
tendencies in ancient Greek religion. This is quite different from what is called
‘Platonism’ in contemporary philosophy of mathematics. Contemporary Platonism
may make a mystery of mathematical knowledge, but it does not value mystery.40

There may be tendencies towards mysticism among some mathematicians, but it is
not obvious that this says anything about mathematics.

Overall, Bishop’s three-by-two matrix of mathematical values is supposed to
express the universal values of mathematics, and one might wonder whether even
Western mathematics of the last few centuries is quite so stable. Tracking the
emergence of the distinction between pure and applied mathematics, as Ian Hacking
does,41 reveals that ‘mathematics’ has meant quite different things to different
people, even in the relatively narrow pool of professional European mathematicians.

This thought is not new. One of the few early cultural theorists to write about
mathematics was Oswald Spengler, who began his grand jeremiad on western
civilisation with a chapter on mathematics:

There is not, and cannot be, number as such. There are several number-worlds as there are
several Cultures. We find an Indian, an Arabian, a Classical, a Western type of mathematical
thought and, corresponding with each, a type of number—each type fundamentally peculiar
and unique, an expression of a specific world-feeling, : : : 42

In order to sustain this thesis in all its stark simplicity, Spengler immediately
had to insist that apparent continuities between mathematical cultures are really
ruptures. Historians of ancient mathematics will wonder how Indian, Arabian,
Classical etc. mathematicians were able to learn from each other (compare the
reported remarks of Netz and Azzouni, above). Historians of modern mathematics
will marvel at Spengler’s claim that western mathematics was (in 1918) in the
same decedent, eventide condition as the rest of western culture, unable to produce
anything really new, fated to do no more than extend and complete what it already
had. (Spengler died in 1936; it seems unlikely that he spent his final years studying
Van de Waerden’s Moderne Algebra.) In general, Spengler’s book is a model of the
dangers of trumpeting the importance of particulars from a position of stratospheric

38Plato Republic 525 ff. For a useful discussion of this in a contemporary context, see Peter
Huckstep ‘Mathematics as a Vehicle for Mental Training’ in Why Learn Maths? London: Institute
of Education, 2000, pp. 88–91.
39Republic 511a.
40Though see Brian Rotman’s claim that contemporary Platonism is a “theological obfuscation of
number” (Ad Infinitum: the ghost in Turing’s machine. Stanford: Stanford University Press, 1993,
p. xii.
41Hacking, I. Why is there philosophy of mathematics at all? Cambridge: Cambridge University
Press, 2014, chapter five.
42Oswald Spengler The Decline of the West Volume I: Form and Actuality. Tr. C. F. Atkinson.
London: George Allen & Unwin Ltd., 1926, p. 59.
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theoretical generality. This, together with its overall ideological orientation, advises
us to treat it cautiously. However, his insistence on the differences between cultures
(even in something apparently universal such as number) points to something latent
in the definitions of culture that we started with. Cultural aspects of human life
distinguish themselves from natural elements in that they vary in ways that have
nothing to do with DNA. Whatever is universal is taken to be, in some sense, natural.
For example, childbirth is natural and universal, but midwifery is various, changing
and cultural. There is, therefore, a tension in Bishop’s work. In urging a cultural
approach to mathematics, he encourages attention to the variety of mathematical
cultures, even as he sometimes writes as if there is really just one.

These, then, are the two articulations of the concept of culture that some
participants appealed to at a meeting in London in 2012, and which seem to
have some traction in mathematics education research. They are not tidy theories;
Bishop’s in particular seems to mix values held within mathematics with the value
or image of mathematics in the host culture.

6 Final Thoughts

This rather roundabout discussion permits two conclusions.
First, there is no commonly agreed conception of culture that students of

mathematical practices can take down from the shelf and use as an unproblematic
tool. Mathematical practices certainly satisfy the definitions we considered: they
are reproduced non-biologically, they are shared activities mediated by material
artefacts, and they express norms and values. However, this raises questions about
how these elements relate to each other that will affect the objects and the design
of cultural studies. For example, we have to decide how much emphasis to put
on the material traces of mathematics, and what inferences we think such traces
can support.43 There is also the problem, not discussed here, of the individuation
of mathematical cultures (assuming we eschew both Bishop’s mono-cultural view
and Spengler’s use of conventional Eurocentric divisions of human cultures into
Indian, Asian, Classical, etc.). How, for example, would we answer this question:
does theoretical computer science constitute a culture in an anthropologically robust
sense?

Second, normativity is unavoidable. This is obvious in mathematics education
research, aimed as it is at better learning and teaching. Even where we are
not concerned with education, Netz’s point applies. Philosophers are interested
in mathematics as a successful practice, and historians are almost exclusively
interested in successful episodes, individuals and institutions. Even if we ask why

43See, for example, Greiffenhagen, C. (2014), ‘The materiality of mathematics: Presenting
mathematics at the blackboard’. The British Journal of Sociology. The abstract begins “Sociology
has been accused of neglecting the importance of material things in human life and the material
aspects of social practices.” and goes on to describe a ‘material turn’ in sociology.
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some communities do not develop advanced mathematics, or why some institution
did not deliver on its promise, we do so informed by norms of success and failure.
This is hardly surprising. Compare studies of war, for example. These, inevitably,
tend to focus on societies that are or were successful at it. This inevitable presence
of normativity is not something to regret. It relieves philosophers of the duty of
maintaining a fact-value distinction that is unstable, unachievable and possibly non-
existent (depending on how hard one wishes to press the argument).

Appendix: Recent Conferences onMathematical Cultures

24–26 October 2002. Perspectives on Mathematical Practices, Brussels, Belgium.
2006–2010. The PhiMSAMP network funded by the Deutsche Forschungsge-

meinschaft with events and nodes in seven countries:

1. PhiMSAMP-0: Bonn, Germany, 8 May 2005.
2. GAP.6 Workshop: Towards a new epistemology of mathematics (D

PhiMSAMP-1). Berlin, Germany, 14–16 September 2006.
3. PMP 2007. Perspectives on Mathematical Practices II, Brussels, 26–28 March

2007.
4. PhiMSAMP-2. Utrecht, The Netherlands, 19–21 October 2007.
5. 18th Novembertagung.44 Bonn, Germany, 1–4 November 2007.
6. PhiMSAMP-3. Vienna, Austria, 16–18 May 2008.
7. Foundations of the Formal Sciences VII. Brussels, Belgium, 21–24 October

2008.
8. PhiMSAMP-4. Brussels, Belgium, 24–25 October 2008.
9. PhiMSAMP-5. Hatfield, UK, 29–30 June 2009.

10. Two Streams in the Philosophy of Mathematics: Rival Conceptions of Mathe-
matical Proof. Hatfield, UK, 1–3 July 2009.

11. PhiMSAMP-6. Utrecht, The Netherlands, 22–23 April 2010.

27–29 May 2010. Mathematics as Culture and Practice, Bielefeld, Germany.
9–11 December 2010. First International Meeting of the Association for the

Philosophy of Mathematical Practice, Brussels, Belgium
2–3 December 2011. Mathematics as Culture and Practice II, Greifswald,

Germany.
2010–2012. Symposia on mathematical practice and cognition at the conventions

of the Society for the Study of Artificial Intelligence and Simulation of Behaviour.

1. Symposium on Mathematical Practice and Cognition, Leicester, UK, 29–30
March 2010.

44The Novembertagung series of meetings is intended for young historians and philosophers of
mathematics.

http://www.phimsamp.uni-bonn.de/
http://www.dfg.de/
http://www.gap6.de/
http://www.phimsamp.uni-bonn.de/GAP6/
http://www.math.uni-bonn.de/people/fotfs/VII/
http://www.lib.uni-bonn.de/PhiMSAMP/6/
http://www.aisb.org.uk/
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2. Symposium on Mathematical Practice and Cognition II, Birmingham, UK, 2–4
July 2012.

2012–2014. Mathematical Cultures: workshop series funded by the UK Arts and
Humanities Research Council and the London Mathematical Society:

1. Mathematical Cultures 1: Contemporary mathematical cultures, London, UK,
10–12 September 2012.

2. Mathematical Cultures 2: Values in mathematics, London, UK, 17–19 September
2013.

3. Mathematical Cultures 3: Mathematics in public culture, London, UK, 10–12
April 2014.

9–12 November 2012. Cultures of Mathematics and Logic, Guangzhou, China
(the origin of this book).

20–23 September 2013. Foundations of the Formal Sciences VIII: History and
Philosophy of Infinity, Cambridge, UK.

3–4 October 2013. Second International Meeting of the Association for the
Philosophy of Mathematical Practice Urbana-Champaign, USA.

22–25 March 2015. Cultures of Mathematics IV New Delhi, India.
2–4 November 2015. Third International Meeting of the Association for the

Philosophy of Mathematical Practice, Paris, France.

Most of these meetings have associated books of proceedings.

References

Adam, J. (Ed.). (1902). The Republic of Plato. Edited, with critical notes, commentary, and
appendices (2 Vols.). Cambridge: Cambridge University Press.

Alexander, A. (2010). Duel at dawn. Cambridge, MA: Harvard University Press.
Alrø, H., Ravn, O., & Valero, P. (Eds.). (2010). Critical mathematics education: past, present and

future. Rotterdam: Sense Publishers.
Arnold, M. (1978). Culture and anarchy. Cambridge: Cambridge Univ. Press. Reprint of the second

(1875) edition.
Azzouni, J. (2006). How and why mathematics is unique as a social practice. In R. Hersh (Ed.), 18

unconventional essays on the nature of mathematics. New York, NY: Springer.
Banks, J. A., & McGee Banks, C. A. (1989). Multicultural education. Needham Heights, MA:

Allyn & Bacon.
Bishop, A. (1991). Mathematical enculturation: a cultural perspective on mathematics education.

Dordrecht: Kluwer.
Ernest, P. (2000). Why teach mathematics? In J. White & S. Bramall (Eds.), Why learn maths?

London: London University Institute of Education.
François, K., & Stathopoulou, C. (2012). In-between critical mathematics education and ethno-

mathematics. a philosophical reflection and an empirical case of a Romany students’ group
mathematics education. Journal for Critical Education Policy Studies, 10(1), 234–247.

Greiffenhagen, C. (2014). The materiality of mathematics: presenting mathematics at the black-
board. The British Journal of Sociology, 65, 502–528.

http://www.ahrc.ac.uk/
http://www.lms.ac.uk/


What Are Mathematical Cultures? 21

Hacking, I. (2014). Why is there philosophy of mathematics at all? Cambridge: Cambridge Univ.
Press.

Hardy, G. H. (2004). A mathematician’s apology. Cambridge: Cambridge Univ. Press [Original
edition 1940].

Hegel, G. W. F. (1821). Elements of the philosophy of right. (Original German title: Grundlinien
der Philosophie des Rechts).

Hersh, R. (2006). 18 unconventional essays on the nature of mathematics. New York: Springer.
Hofstede, G. (1984). National cultures and corporate cultures. In L. A. Samovar & R. E. Porter

(Eds.), Communication between cultures. Belmont, CA: Wadsworth.
Hofstede, G. (1986). Cultural differences in teaching and learning. International Journal of

Intercultural Relations, 10(3), 301–320.
Huckstep, P. (2000). Mathematics as a vehicle for mental training. In S. Bramall & J. White (Eds.),

Why learn maths? (pp. 88–91). London: Institute of Education.
Kant, I. (1787). Critique of pure reason. (Original German title: Kritik der reinen Vernunft) first

published in 1781, second edition 1787. Riga: Johann Friedrich Hartknoch.
Kantor, J.-M. (2011). Mathematics and mysticism, name worshipping, then and now. Theology and

Science, 9, 1.
Kroeber, A. L., & Kluckhohn, C. (1952). Culture: a critical review of concepts and definitions.

Cambridge, MA: Peabody Museum of American Archeology and Ethnology Harvard Univer-
sity. Papers 47.

Larvor, B. (2010). Review of the philosophy of mathematical practice. In P. Mancosu (Ed.),
Philosophia mathematica (Vol. 18, pp. 350–360). Oxford: Oxford University Press.

Larvor, B. (2012). The mathematical cultures network project. Journal of Humanistic Mathematics,
2(2), 157–160.

Lockhart, P. (2009). Mathematician’s lament. New York, NY: Bellevue Literary Press.
Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University

Press.
Manders, K. (2008). The Euclidean diagram. In P. Mancosu (Ed.), The philosophy of mathematical

practice (pp. 80–133). Oxford: Oxford University Press.
Netz, R. (1999). The shaping of deduction in Greek mathematics. Cambridge: Cambridge Univ.

Press.
Nietzsche, F. (1887). On the genealogy of morality: a polemic. (Original German title: Zur

Genealogie der Moral: Eine Streitschrift). Leipzig: C.G. Naumann.
Parsons, T. (1949). Essays in sociological theory. Glencoe, IL: Free Press.
Peirce, C. S. (1897). The logic of relatives. The Monist, 7(2), 161–217.
Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(1), 5–41.
Brian, R. (1993). Ad infinitum: the ghost in Turing’s machine. Stanford: Stanford University Press.
Rosental, C. (2008). Weaving self-evidence: a sociology of logic. Princeton, NJ: Princeton

University Press. Trans. by Catherine Porter.
Schiller, F. (1794). Letters on the aesthetic education of man. (Original German title: Über die

ästhetische Erziehung des Menschen).
Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht:

Kluwer.
Spengler, O. (1926). The decline of the west, Vol. 1: form and actuality. London: G. Allen. Trans.

C. F. Atkinson.
Useem, J., & Useem, R. (1963). Men in the middle of the third culture: the roles of American and

non-western people in cross-cultural administration. Human Organizations, 22(3).
Weber, M. (1930). The protestant ethic and the spirit of capitalism. (Original German title: Die

protestantische Ethik und der Geist des Kapitalismus). London: Allen & Unwin [Translated by
Talcott Parsons].

White, J., & Bramall, S. (Eds.). (2000). Why learn maths? London: London University Institute of
Education.



22 B. Larvor

White, L. A. (1959). The evolution of culture: the development of civilization to the fall of Rome.
New York: McGraw Hill.

Wilder, R. L. (1965). Introduction to the foundations of mathematics (2nd ed.). New York: John
Wiley (First published 1952).

Wilder, R. L. (1981). Mathematics as a cultural system. Oxford: Pergamon.



Philosophy or Not? The Study of Cultures
and Practices of Mathematics
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Abstract

The most commonly accepted name of our research field is Philosophy of
Mathematical Practice, giving philosophy a prioritized role among the many
disciplines involved in the field. We explore the interplay between philosophy
and other disciplines and its effect on the further development of our field.

1 Introduction

The conference Cultures of Mathematics and Logic in Guangzhou brought together
philosophers, sociologists, historians, cognitive scientists, and researchers in math-
ematics education; it was one event among many in the past decade that studied
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cultures and practices of mathematics. The appendix of (Larvor, 2016) in this
volume lists these events.

A look at this list reveals that many of them have titles that include the word
“philosophy” or philosophical terms such as “epistemology”. The community that
meets at these events is closely linked to the Association for the Philosophy of
Mathematical Practice (APMP) which serves as the institutional backbone of the
field. Many of the researchers in our field refer to it as Philosophy of Mathematical
Practice and self-identify as philosophers. A conference participant who is not a
philosopher might ask: why does philosophy play such an important role in the
field? In contrast, are those events that do not grant philosophy this priority even
events in the same field?

In this paper, we shall explore the tension between the central role of philosophy
in our community and the fact that philosophy is only one among many fields
interested in mathematical cultures and practices. We start in Sect. 2 by exploring
the notions of “research field”, “community”, and “discipline” and argue that,
entirely independently of which name we choose for it, we can talk of “our
community”, even though its members belong to different disciplines and may have
different motivations. In Sect. 3, we turn to the name of our community and propose
that the occurrence of the term “philosophy” in “philosophy of mathematical
practice” indicates a specific goal of research rather than a claim that the study
of mathematical cultures and practices is intrinsically philosophical in nature and
explain that the philosophically motivated research on mathematical practices and
cultures has been a driving force for our community. In the following two sections,
we then discuss the practical consequences of this contingent fact: in Sect. 4, we
discuss a number of important distinctions for empirical approaches to philosophy,
in particular one due to Prinz; in Sect. 5, we then discuss how the overall research
situation in the broader field of studying mathematical practices and cultures has an
effect on which of Prinz’s approaches we can choose. We conclude in Sect. 6 with a
discussion about the consequences of the analysis of our field given in this paper.

2 Our Community

Several factors, both intrinsic and extrinsic to the academic and scientific content,
are relevant for determining whether a field of research can be classified as a
research community or even a discipline.1 Among the intrinsic factors are coherence
in the subject matter of research, the motivation of the research, and the methods of
doing the research; the extrinsic factors include questions such as whether there are

1In the following, we shall not define either of the three terms “field of research”, “research
community”, or “discipline” precisely. We shall be using “field of research” as the most generic
term covering any collection of researchers or research results; the other two terms, “research
community” and “discipline” are more specific, but we remain agnostic about their precise
definition, as the discussion in this section exhibits.



Philosophy or Not? The Study of Cultures and Practices of Mathematics 25

research institutes, departments, research programmes, conference series, journals,
undergraduate and postgraduate teaching programmes for the field. Sometimes, the
status of a field as a discipline is being questioned on some grounds, e.g., that the
field does not have a homogeneous research method or its own publication culture.
In many cases, when publicly raised, these doubts come with a strategic agenda,
either as an attempt to discredit a field or as a rallying cry from inside the field.

In some relevant debates, both the disciplinary nature of a research field and
some of the intrinsic factors for disciplinarity become crucial: for instance, in a
paper that became the starting point for a lively debate, Stokhof and van Lambalgen
(2011) raised the question whether “modern linguistics [is] [. . . ] an example of a
‘failed discipline’ ” (p. 3). Answering such a question presupposes that modern
linguistics is a discipline that shares a common list of goals in comparison to
which the achievements of the field can be seen as “failure”. Maddirala (2014)
discusses the issue raised by Stokhof and van Lambalgen for the more narrow field
of formal semantics by doing an interview study with formal semanticists; his study
shows that discrepancies between the goals and intentions attributed to a field from
the outside, those professed by members of the community in public, and those
implicitly observable from work of the members of the field make it difficult to
determine the precise meaning of questions like the one by van Lambalgen and
Stokhof.

2.1 Subject Matter

Taking philosophical issues seriously, uniformity of the subject matter of the field
is difficult to achieve since agreement about what the subject matter is presupposes
agreement about major questions about the ontology of the field; e.g., saying that
mathematics is the study of properties of mathematical objects is taking a strong
philosophical position about the ontology of mathematics. Even in established
subfields of philosophy such as philosophy of language and philosophy of mind,
it would be difficult to get the practitioners of the field to agree on the ontology
of their area’s subject matter. The only solution to this problem is to suspend the
philosophical commitment to scrutinize fundamental terms and leave the subject
matter deliberately philosophically underdetermined by calling it, e.g., “language”
or “the mind” without giving a definition.

Disciplinary borderlines do not respect the boundaries of metaphysical schools:
mathematicians who believe that mathematical objects exist independently from
human activity and those who believe that mathematics is just a formal game are
equally classified as “mathematicians” and neither of them would refuse to call the
other a mathematician. So, when we talk about “subject matter” in the context of
the definition of disciplines, we are talking about terms that are philosophically
underdetermined.

In our case, we can and do agree that the subject matter is “mathematical
practices and cultures” or “mathematical activity as practised by human beings”.
As soon as we apply philosophical scrutiny to this underdetermined description, the
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consensus of what the subject matter of our field is will break down, but our field
does not differ in this respect from established disciplines such as mathematics,
physics, or others.

2.2 Research Methods

It is primarily the uniformity of the research method or the collection of research
methods that determine a discipline. Etymologically, the word discipline suggests
the body of knowledge or techniques that are taught to the discipuli in a rigourous
teaching environment:

[disciplina] désigne [. . . ] ce qui fait d’objet de l enseignement, la MATIÈRE ENSEIGNÉE,
�������, et spécialement la matière d’un enseignement régulier, systématique, autrement
dit une science, �	��
���. (Marrou, 1934, p. 6)
La notion d’enseignement devient très lontaine; elle finit par s’effacer et disciplina signifie
règle imposée [et] BON ORDRE. (Marrou, 1934, p. 11)

By definition, interdisciplinary endeavours do not have this uniformity of
research methods. Our field, driven by the realisation that one discipline alone
cannot give a multidimensional picture of all facets of mathematical practice, is a
prototype of such an interdisciplinary endeavour. As a consequence, we cannot and
should not expect that the field is defined by methodological coherence. Assuming
the standard usage of the word “discipline”, we observe that our field cannot be a
discipline.

2.3 Motivation

Even established disciplines do not have a commonly shared motivation. Taking
mathematics as an example, representatives of different subfields of mathematics
will strongly disagree on what the motivation for their work is. If you organise a
panel discussion on the topic of ‘What motivates mathematical research?’ with a
set theorist, a differential geometer, a mathematical physicist, and an actuary, you
can expect heated debate and very little agreement. The dispute may even reach the
point where some panelists start to doubt whether mathematics is a single discipline,
given their fundamental dissensus. Yet, these emotional reactions do not become a
serious argument that mathematics is not a discipline; instead, we have to revise our
view that a uniform motivation is important for the disciplinary character of a field.

Similarly, we shall observe that members of our field strongly diverge on what
their motivations for their research are, even to the point where some feel that
the disagreement is so fundamental that we are not dealing with one community,
but several. The discussion of our differing motivations for being interested in
“mathematical practices and cultures” is the main focus of Sect.3, so we defer this
discussion to later.
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2.4 Extrinsic Factors

Many of the mentioned extrinsic factors (existence of research institutes, depart-
ments, research programmes, conference series, journals, undergraduate and post-
graduate teaching programmes) are difficult to separate from the institutional set-up
of our academic world; therefore, there is a strong correlation between extrinsic
factors and whether a field is considered a traditional discipline or not. Since the vast
majority of the universities, research institutes and funding agencies is organised
along the lines of the established disciplinary boundaries, there is something that
we could dub the disciplinary barrier: institutions make decisions whether to grant
a degree, whether to accept a postgraduate student, whether to hire a postdoc or
a new faculty member, whether to give tenure or to promote, whether to fund a
research project, whether to award a prize or elect to a position of recognition mostly
according to the standards of the relevant established discipline. This means that the
participants of any interdisciplinary research endeavour will need to play according
the disciplinary rules in order to maintain the chances of a research career. This
makes it very difficult and—if the discussed field is interdisciplinary by design—
possibly undesirable to establish some of the mentioned extrinsic factors that create
community cohesion beyond or between the disciplines.

For instance, typically (but not always) a research journal requires submitted
papers to use a particular research methodology. Of course, there are generalist
journals (such as Science and Nature) or genuinely interdisciplinary journals (such
as the newly founded journal Computability), but there are practical reasons why
such examples are few and far between. Papers that straddle methodological
boundaries are difficult to judge: If a paper uses methods from fields X and Y, does
it have to meet the standards of publication in both X and Y, or do we think that
the joining of techniques creates intrinsic added value going beyond the sum of
its parts? Do we need referees from both X and Y? If they disagree, how do we
aggregate their judgments and how do we deal with conflicting judgment styles
between the disciplines?

Similar practical issues apply to other extrinsic factors such as postgraduate
programmes (does a thesis merit an interdisciplinary degree in X and Y if it
is not sufficient for a degree in either X or Y?) or departments and research
institutes (do we want to hire a person who would not be strong enough to be
hired in a Department of X or in a Department of Y?), and research fields that are
interdisciplinary hit what we called the disciplinary barrier.

On the other hand, our field exhibits most, if not all extrinsic indicators for
being a community that are just below the disciplinary barrier: conferences are
being organised with proceedings volumes that are published as books or special
issues of leading research journals, conference series and research networks, often
with funding from standard funding agencies, are being established, and, not least,
the members of our field decided to form an association, the Association for the
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Philosophy of Mathematical Practice.2 Those of us who have been to several of
the conferences and workshops of the field realize that people they met at one of the
conferences also come to others, allowing discussions to extend beyond the confines
of a single conference. As usual in interdisciplinary fields, every participant thinks
that they are on the fringe of the subject and that everyone else has more sense of
belonging than they do; but meeting the same people in different configurations at
various conferences gives a clear sense of cohesion.

We conclude that we are allowed to talk about a community: a field that coheres
enough that community members collaborate, publish jointly, regularly meet at
conferences and workshops, set up networks, but still remain part of their respective
disciplines each with its own research and publication expectations. It is this
community that we wish to understand better in the remaining sections of this paper.

3 Philosophy

In Sect. 2, we have seen that our field is not a discipline in the traditional sense, but
exhibits many of the extrinsic indicators for being a research community. So far, we
have been using “our field” to refer to it, deliberately avoiding to give it a name. In
this section, we shall now move to the thorny issue of naming our community.

One of the important components of our argument that our field constitutes a
community was the fact that the Association for the Philosophy of Mathematical
Practice forms an institutional backbone for our field. That in turn could be used as
an argument that “Philosophy of Mathematical Practice” is the official and accepted
term for the field. Does that imply that our field is a subfield of philosophy? Many
if not most of the members of our community are philosophers or are at least
philosophically interested. This interesting contingent fact about our community
asks for an explanation: why is it that philosophers are so interested in studying
mathematical cultures and practice?

For many of the philosophers in our community, the reasons for becoming
interested in the empirical study of mathematical practice were negative: the
foundational debates in the philosophy of mathematics in the early twentieth century
had resulted in a foundationalist school of thought dealing with a highly idealised
version of what mathematics is, embedded in the formalism of first-order logic (or
sometimes, second-order logic). Crucial notions of mathematical epistemology such
as the notion of “proof” occurred in their sanitized form of formal derivations in a
particular formal framework. The role of mathematical logic for the understanding
of what mathematics can and cannot do should not be underestimated; but on
the other hand, philosophers in our community felt that it was equally obvious
that the amount of idealisation involved in the transformation from the complex
human activity we call mathematics to the crisp and clean formal world of formal

2Once more, we refer to the appendix of (Larvor, 2016) for a list of these events and activities.
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derivations hides many important and interesting features of what it is to do
mathematics:

[From the early 20th century onwards,] the foundations of mathematics became a central
research interest. This resulted in a widely accepted notion of formal derivation as the
explication of mathematical proof. [. . . ] In mathematical practice, proofs are written down
in a more condensed, semi-formal style. [. . . ] The traditional view would consider these
proofs enthymematic, leaving out technical detail for purely pragmatic reasons. [. . . ]
A closer look at mathematical practice leads to two important observations. First, the
completion of enthymematic, semi-formal proofs to formal derivations almost never
happens and hardly plays any rôle in the justification that mathematicians give for their
theorems; second, also the production of semi-formal proofs [. . . ] is only the final step of
the mathematical research process. This final step, while important for the documentation
of results and crucial for the careers of researchers, is not necessary for the acceptance of
a proof by the mathematical community. For this, different forms of proof are much more
relevant: informal sketches on the blackboard, or scribblings and drawing on napkins [. . . ]
Shouldn’t these forms of proof replace the unrealistic notion of formal derivation in our
epistemology of mathematics? (Buldt et al., 2008, pp. 310–311)

This attitude resulted in a number of publications whose very titles suggest
that the traditional philosophical account does not deal with the core of what
mathematics is about, e.g., What is mathematics, really? (Hersh, 1997) or Towards a
philosophy of real mathematics (Corfield, 2003). The term “mathematical practices”
was used by the Brussels philosophers of mathematics Jean Paul Van Bendegem and
Bart Van Kerkhove when they started their series of meetings in 2002,3 and the term
“philosophy of mathematical practice” was chosen by Paolo Mancosu (2008b) as
the title of a book containing papers by some of the protagonists of our community.
The publication of (Mancosu, 2008b) has to be seen in the context of the formation
of the Association for the Philosophy of Mathematical Practice, founded in the year
2009 with Mancosu as one of the nine founding members (three of the nine founders
contributed to Mancosu, 2008b; three more are cited in Mancosu, 2008a). The
Brussels conferences Perspectives on Mathematical Practices (October 2002 and
March 2007) and their proceedings volumes (Van Kerkhove, 2008; Van Kerkhove
et al., 2010; Van Kerkhove and Van Bendegem, 2007) were important contributing
factors in the pre-history of the Association for the Philosophy of Mathematical
Practice.

In his introduction, Mancosu (2008a) contrasts the philosophy represented in his
volume with traditional philosophy of mathematics, giving an implicit definition of
“philosophy of mathematical practice” in terms of this contrast:

The contributions presented in this book are [. . . ] joined by the shared belief that attention
to mathematical practice is a necessary condition for a renewal of the philosophy of
mathematics. (Mancosu, 2008a, p. 2)

3However, their acronym PMP stands for “Perspectives on Mathematical Practices” rather than
“Philosophy of Mathematical Practice”.
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He then discusses the “foundational tradition” and the “maverick tradition”
representing two movements within philosophy of mathematical practice. The term
“maverick tradition” goes back to Aspray and Kitcher4 and Mancosu characterizes
it by

a. anti-foundationalism, i.e., there is no certain foundation for mathematics; mathematics is
a fallible activity; b. anti-logicism, i.e., mathematical logic cannot provide the tools for
an adequate analysis of mathematics and its development; c. attention to mathematical
practice: only detailed analysis of large and significant parts of mathematical practice can
provide a philosophy of mathematics worth its name. (Mancosu, 2008a, p. 5)

One of the mentioned proponents of the maverick tradition, Jean Paul
Van Bendegem (2014), also one of the founders of the Association, gives another
list of eight approaches of the philosophy of mathematical practice:

(a) the Lakatosian approach, also called the ‘maverick’ tradition; (b) the descriptive
analytical naturalizing approach; (c) the normative analytical naturalizing approach; (d)
the sociology of mathematics approach; (e) the mathematics educationalists approach; (f)
the ethnomathematical approach; (g) the evolutionary biology of mathematics; and (h) the
cognitive psychology of mathematics. (Van Bendegem, 2014, p. 221)

A third founder and the first president of the Association, José Ferreirós, drew a
picture of the simultaneous diversity and unity of the field during a talk given on 11
September 2014 in Pont-á-Mousson:

[Philosophy of Mathematical Practice] has different branches [that share] some very
basic tenets [. . . ] (the need to complement philosophical analyses with new features
emerging from attention to concrete cases, the role for history and present-day studies, the
emphasis on methodological differences between areas of math[ematics], the openness to
interdisciplinary considerations, etc.) but then there are quite different ways of articulating
[these tenets]. The main idea [is] [. . . ] that philosophers have moved away from a static,
monolithic, too idealised and simplified version of what mathematics is, towards what may
be called ‘real math[ematics]’ in the sense of different aspects of the work and activities of
mathematicians. In this [move] [. . . ], some people have remained more cautious, while
others have been more radical in taking into consideration the actual practice of doing
math[ematics] by agents [. . . ] or the social network of mathematicians. (Ferreirós, 2014,
§ 3)

4Kitcher and Aspray (1988, p. 17) describe the maverick tradition in terms very similar to the
other characterisations of our community in this section: “[I]t is pertinent to ask whether there are
[. . . ] tasks for the philosophy of mathematics [. . . ] that arise either from the current practice of
mathematics or from the history of the subject. A small number of philosophers [. . . ] believe that
the answer is yes. Despite large disagreements among the members of this group, proponents of the
minority tradition share the view that philosophy of mathematics ought to concern itself with the
kinds of issues that occupy those who study other brnaches of human knowledge [. . . ]: How does
mathematical knowledge grow? What is mathematical progress? What makes some mathematical
ideas [. . . ] better than others? What is mathematical explanation?”
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In the first chapter of his book Mathematical Knowledge and the Interplay
of Practices, Ferreirós (2015) provides a manifesto of what could be called
“epistemology of mathematical practice” and describes it as an interdisciplinary
endeavour using tools from a plethora of disciplines and applying them to traditional
questions from philosophy:

During the twentieth century, we have seen several different broad currents in this field,
which [. . . ] can be reduced to three main types: foundational approaches [. . . ], analytic
approaches [. . . ], and the so-called “maverick” approaches [. . . ], which have typically been
anti-foundational and focused on history, methodology, and patterns of change. [. . . ] It
seems to be the case that a new generation of philosophers of mathematics has arisen whose
work is superseding those distinctions. [. . . ] These philosophers engage in an analysis of
mathematical practices that incorporates key concerns of the “mavericks”, without adopting
their anti-foundational, anti-logical orientation. [. . . ] Notice that the new orientation in the
philosophy of mathematics is highly interdisciplinary. Some authors emphasize knowledge
of mathematics itself and logic [. . . ]; some others stress the role of cognitive science
[. . . ] or sociological approaches [. . . ]; and the list goes on, with mathematics education,
anthropology, biology, etcetera. (Ferreirós, 2015, pp. 1–2)

The quotes by Mancosu, Van Bendegem, and Ferreirós emphasis that the
philosophy of mathematical practice is not dealing with entirely new philosophical
questions, but is a particular approach to philosophy of mathematics. In this context,
it is interesting to note at the inaugural conference of the Association for the
Philosophy of Mathematical Practice in Brussels there was a critical discussion of
the term “philosophy of mathematical practice”.5 Its syntactic form “philosophy of
X” suggests that there is an object “mathematical practice” whose philosophy it is
studying. In particular, the name suggests that the field is distinct from “philosophy
of mathematics”: whereas the latter studies mathematics with philosophical means,
the name “philosophy of mathematical practice” could suggest that the former
studies the practice of mathematics, rather than mathematics itself.6 This view
was in general rejected by the participants of the inaugural conference; instead,
the consensus was that philosophy of mathematical practice is an approach (or a
collection of approaches) to philosophy of mathematics and this view is reflected in
the definition of the purview of the Association for the Philosophy of Mathematical
Practice on its webpage:

Over the last few years approaches to the philosophy of mathematics that focus on
mathematical practice have been thriving. Such approaches include the study of a wide
variety of issues concerned with the way mathematics is done, evaluated, and applied, and
in addition, or in connection therewith, with historical episodes or traditions, applications,

5The following argument was mentioned during a round table discussion during the inaugural
conference on 10 December 2010.
6Other terms than “philosophy of mathematical practice” have been used that avoid this misinter-
pretation, among them “empirical philosophy of mathematics” (Löwe et al., 2010), “practice-based
philosophy of mathematics” (Dutilh Novaes, 2012), “(socio-)empirically informed philosophy of
mathematics” (Müller-Hill, 2009, 2011), or “philosophy of real mathematics” (Corfield, 2003).
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educational problems, cognitive questions, etc. We suggest using the label “philosophy
of mathematical practice” as a general term for this gamut of approaches, open to
interdisciplinary work.

But are all of the items listed as part of this “gamut of approaches” really
approaches to philosophy of mathematics? In Van Bendegem’s list of approaches
for philosophy of mathematical practice, five of the eight items are

not, strictly speaking, approaches ‘in the philosophy of mathematical practice’ [. . . ] They
are, rather, five non-philosophical perspectives on mathematical practice that are used by
philosophers of mathematical practice or, more prudently, on which some philosophers of
mathematical practice can find relevant to rely. (Jullien and Soler, 2014, p. 228; emphasis
in the original)

In Sect. 2.1, we claimed that the subject matter of our field is “mathematical
practices and cultures”; we now observed that there is consensus that philosophy of
mathematical practice is not to be considered the philosophy of a separate subject
matter, but rather as a particular approach in philosophy of mathematics. How do
we reconcile these two contradictory observations?

The discipline of mathematics, seen as a human activity with its cultural
particularities and achievements as well as various practices, is a “subject matter” in
the philosophically underdetermined sense of Sect. 2.1 and well worthy of study;
there are researchers from many disciplines studying this subject matter from
various angles. For lack of a better term, one could call this research field the study
of mathematical cultures and practices. Different researchers in this field of research
have different motivations for studying mathematical cultures and practices: a
researcher in mathematics education might be motivated by educational questions
or even questions about educational policy; a cognitive scientist would be curious
about understanding the cognitive processes in doing mathematics in contrast to
other cognitive processes; an anthropologist could be fascinated by the difference
between mathematical cultural practices and those of other, closely related, yet
different disciplines; and, of course, the philosopher would be driven by traditional
philosophical questions about epistemology and ontology of mathematics. Every
researcher in the field must decide on the basis of the motivating questions which
occurring phenomena are sufficiently relevant for their work.7

The two mentioned seemingly contradictory observations can be reconciled by
understanding that they are two descriptions of extensionally very similar research
communities: from the point of view of the broader interdisciplinary community
that we dubbed the study of mathematical cultures and practices, our community
is the sub-community motivated by philosophical questions; from the point of
view of the larger philosophy of mathematics community internal to philosophy,
our community is the sub-community that embraces a particular approach, basing

7Cf. (Löwe, 2014) for an example of a meta-argument for the philosophical relevance of a particular
aspect of the practice of mathematics (viz. the use or the rejection of computer technology).
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philosophical claims on actual mathematical practice rather than idealisations. As
discussed in Sect. 2.3, the fact that the diverging motivations sometimes create
feelings of division should not disturb us too much, as this happens in established
disciplines as well.8

4 Three Relevant Distinctions for Empirical Philosophy

Jesse Prinz (2008) introduces a distinction between two approaches of doing
philosophy on the basis of empirical data. He calls these approaches Experimental
Philosophy and Empirical Philosophy:

Some philosophers make use of empirical results that have been acquired by professional
scientists. . . . These results are used to support or refute philosophical theories. We shall
call this approach ‘empirical philosophy’. Other philosophers also conduct their own
psychological experiments, an approach known as ‘experimental philosophy’. (Prinz, 2008,
p. 196)

His distinction is largely based on whether the empirical work is done by
the philosophers themselves or rather by other scientists (“mining the data” vs.
“collecting the data”):

Empirical philosophy works by citation. Philosophers cite relevant empirical research and
use it to argue for philosophical conclusions. (Prinz, 2008, p. 200)

Prinz acknowledges that the distinction is a contingent sociological fact about
philosophy,9 but argues that the two types of philosophers correspond to a natural
division of types of philosophical questions:

I am not trying to suggest that experimental and empirical philosophy must differ along
the lines I suggest; only that they often do, and that there are reasons for these differences.
(Prinz, 2008, p. 197)

We believe that the choice of terms empirical philosophy and experimental
philosophy is infelicitous. There are at least three relevant distinctions with respect
to the use of empirical data that should be considered here: there is a fundamental
methodological question of whether philosophy should take empirical data about
human activities and cognitive states into account; assuming that empirical data

8It is interesting to note the programmatic statements cited in this section implicitly or explicitly
acknowledge these feelings of division: e.g., Kitcher and Aspray (1988) mention “large disagree-
ments among the members of this group” and Ferreirós (2014) emphasizes that “there are quite
different ways of articulating [these tenets]”.
9Cf. also (Prinz, 2008, p. 200): “This distinction between experimental and empirical philosophy
is very rough. . . . [T]here are counter-examples in the literature, and the distinction is likely to blur
even more in the years to come.”
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are taken into account, then there is a second methodological question of which
empirical techniques are being used to collect this empirical data; and finally, there
is the Prinzian question of whether the philosopher who asks the question is doing
this empirical work himself or herself or “works by citation”.

4.1 First Philosophy vs. Second Philosophy

Whether empirical data should be taken into account for philosophical arguments
is the crucial question for the debate not only between experimental philosophers
and their critics, but also between naturalistically-minded philosophers in general
(not all of whom subscribe to the paradigm of experimental philosophy10) and
traditionally-minded philosophers. In the meta-discussion about experimental phi-
losophy, the latter position is called armchair philosophy. The main argument of
armchair philosophers against the use of empirical data is that it is not really dealing
with the philosophical concepts themselves, but rather with general, possibly extra-
philosophical usage of the terms corresponding to the concept:

[Since philosophers generally assume] competence of the speaker, absence of performance
errors, and basis in semantic rather than pragmatic considerations [. . . ], intuition statements
cannot be interpreted as straightforward predictions, and therefore cannot, for reasons
of principle, be tested through the methods of non-participatory social science, without
taking a stance on the concepts involved and engaging in dialogue. For example, when
philosophers claim that according to our intuitions, Gettier cases are not knowledge, they
are not presenting a hypothesis about gut reactions to counterfactual scenarios but, more
narrowly, staking a claim of how competent and careful users of the ordinary concept of
knowledge would pre-theoretically classify the case in suitable conditions. The claim, then,
is not about what I will call surface intuitions but about robust intuitions, which are bound
to remain out of reach of the Survey Model of experimentalists. (Kauppinen, 2007, p. 97)

Maddy (2007) introduces the term “second philosophy” for her position that
she called “naturalism” in earlier work (Maddy, 1997), as she feels that the
term ‘naturalism’ “has come to mark little more than a vague science-friendliness
(p. 1)”11:

[The] Second Philosopher is equally at home in anthropology, astronomy, biology, botany,
chemistry, linguistics, neuroscience, physics, physiology, psychology, sociology, . . . and
even mathematics, once she realizes how central it is to her ongoing effort to understand
the world. [. . . ] She simply begins from commonsense perception and proceeds from there
to systematic observation, active experimentation, theory formation and testing, working all
the while to assess, correct, and improve her methods as she goes. (Maddy, 2007, p. 2)

10Cf. (Papineau, 2015) for an in-depth discussion of different naturalistic positions in philosophy.
11“The Second Philosopher is a development of the naturalist in my (Maddy, 2001) and (Maddy,
2003) [. . . ]; I adopt the name name here largely to avoid irrelevant debates about what ‘naturalism’
should be.” (Maddy, 2007, p. 19, fn. 15)
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As Maddy’s terms suggest, the distinction is chiefly about whether philosophy
or empirical observation have priority in the case of a conflict between the two.
The first philosopher considers it possible that philosophical analysis results in a
concept that, as an idealisation, may be in conflict with direct observations, and yet
more worthy of philosophical study than the (pre-philosophical) everyday concept.
In contrast, the second philosopher starts from the observation and would require
a philosophical theory to explain it; a theory that does not match the observations
would be scrutinised and possibly discarded:

The theory of the real numbers, for example, is a fundamental component of the calculus
and higher analysis, and as such is far more firmly supported than any philosophical theory
of mathematical existence or knowledge. To sacrifice the former to preserve the latter is just
bad methodology. (Maddy, 1990, p. 23)

We believe that the term empirical philosophy (or empirically-based philosophy)
is best reserved for meta-philosophical positions that grant an important role for
empirical data in the analysis of philosophical concepts and that would consider
rejecting a philosophical theory if in clear conflict with empirical data. Note that this
description does not specify the means by which these empirical data are collected.
An empirical philosopher in this sense can espouse the experimental paradigm or
reject it; he or she can consider qualitative methods of the social sciences or consider
them too imprecise, etc.12

4.2 Empirical Methodology

Empirical data can be collected by several methods, ranging from unstructured
observation via structured observation (using various methods) to experiments in
controlled settings; some of the methods are qualitative, others quantitative.13 The
experimental method is so central for our contemporary idea of science that it
requires constant reminders to recall that it is a relatively recent addition to the
toolbox of the scientist and that it is only one among many empirical methods.14 The
relatively new field of “experimental philosophy” has mostly, but not exclusively,
used the method of experiments. In the context of applying empirical findings to
philosophy, a methodological discussion of the acceptable tools for data collection

12Note that in the above citation, Kauppinen (2007) only claims that “intuition statements [. . . ]
cannot [. . . ] be tested through the methods of non-participatory social science”, leaving it open
whether empirical methods from the participatory social sciences might be able to serve as a test
for intuition statements.
13We should like to emphasise that the experimental vs. non-experimental divide does not coincide
with the quantitative vs. qualitative divide: most, but not all experimental work is quantitative and
there are many quantitative non-experimental methods.
14The almost exclusive focus of philosophy of science on the experimental method has been
criticized by some as an uncritical transfer of the method of modern physics to all of science
(Lieberson and Lynn, 2002).
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is very appropriate, especially since many of the philosophical applications involve
empirical data from the social sciences where the choice of methodology is much
more a matter of debate than in the exact sciences. Löwe and Van Kerkhove
(in preparation) argue that a multiplicity of methods is particularly important in
order to allow proper triangulation and that one should avoid relying solely on the
experimental method. Obviously, it makes no sense to propose and change the name
of the field Experimental Philosophy since it is well entrenched and accepted.15

4.3 The Source of Empirical Data

The final distinction is the one highlighted by Prinz: he calls the philosopher
who uses empirical data from the literature an “empirical philosopher” and the
philosopher who does the empirical work herself or himself an “experimental
philosopher”. Using a sartorial analogue, what Prinz calls “empirical philosophy”
is using empirical data like ready-to-wear or off-the-rack clothes, provided in the
shelves and racks of a store with no direct input by the customer expressing his or
her preferences of clothing style or fit; on the other end of the spectrum, one would
have the bespoke experience where the customer can determine every detail of the
garment and the garment is then tailored exactly to the specifications of the customer
and made to fit his or her body perfectly. Those who have the appropriate skills
could even become the tailors themselves, getting rid of any need to communicate
wishes and desires. Bespoke empirical philosophy would be a project in which
the philosopher works very closely with the empirical scientist and designs an
experiment or other observational activity jointly with her or him; the extreme case
of bespoke would be do-it-yourself where the philosopher becomes an empirical
scientist and does the empirical work herself or himself. Of course, the more
extravagant and non-standard your desires and wishes with respect to your clothes
are, the less likely it is that you will find these off the rack and you might have to
move towards bespoke tailoring. Similarly, the empirical philosopher cannot expect
that sociologists, education researchers, cognitive scientists, and historians work
on matters relating to questions of philosophical relevance without being explicitly
prompted to do so.

When Weinberg et al. (2001) started wondering about the culture-independence
of judgments in Gettier-like situations, they became do-it-yourself empirical
philosophers by doing the experiments related on in their paper and interpreting
the empirical results in the epistemological context. However, let us consider the
following alternative history: suppose there was a group of cognitive psychologists
or linguists who were independently interested in the question whether people from
different cultural backgrounds use the word “knowledge” in Gettier-type situations

15It has to be conceded that this more liberal usage of the term “experimental” is not unique
to the field of experimental philosophy: not all of “experimental physics” is strictly speaking
experimental in methodology.
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differently and that this group produced the data from (Weinberg et al., 2001). Then
Weinberg, Nichols and Stich could have published their paper as ready-to-wear
empirical philosophy making the very same philosophical claim.

This Gedankenexperiment shows that whether the philosophical claim was made
as ready-to-wear empirical philosophy or as bespoke empirical philosophy does
not matter in principle for the quality of the philosophical argument. But, as in
the sartorial word, not everything you need for your philosophical argument is
available off the rack, forcing you to go bespoke or accept compromises in terms
of fit between your data and the philosophical argument. The more you compromise
on fit, the more it affects the quality of the philosophical argument; consequently,
ready-to-wear empirical philosophy can only provide good arguments in a field
where empirical data are sufficiently available to give the philosopher the resources
to work with.

As in the case of tailoring, it is not universally the case that bespoke is better
than ready-to-wear: if you find a high-quality garment off the rack that fits you very
well, it may be considerable better than a bespoke garment from a mediocre tailor
or (in the case of most of us with no expertise in tailoring) a garment that you made
yourself. Similarly, in empirical philosophy, there are advantages and disadvantages
to both ready-to-wear and bespoke approaches. In the first instance, philosophers
are not empirical scientists, so do-it-yourself empirical philosophy requires that the
philosopher acquire the skills and learn the techniques of another discipline, wasting
time and energy that could be spent on something that they are more qualified for
(such as doing philosophy) and possibly even leading to sub-standard or flawed
empirical work. So, if the empirical data needed for a philosophical argument exist
in the literature and fit the argument well, then ready-to-wear empirical philosophy
based on these data might be preferable to bespoke or do-it-yourself empirical
philosophy.

An example of an area where adequate and appropriate data are available is
philosophy of mind: a rich literature of empirical research is published by cognitive
scientists, psychologists, and neuroscientists on human cognition and its interaction
with the mind and the brain, allowing philosophers of mind to do ready-to-wear
empirical philosophy of mind without starting collaborative projects with said
cognitive scientists, psychologists and neuroscientists.16

5 The Availability of Data

In Sect. 3, we have emphasized that it is chiefly the intended questions that distin-
guish philosophy of mathematical practice from the wider study of mathematical
cultures and practices. In Sect. 4, we introduced the (re-named) Prinzian distinction

16This is not to say that there is no bespoke empirical philosophy of mind; as examples, let us
mention the collaboration of Newen and Vogeley (e.g., David et al., 2008, 2006; Kockler et al.,
2010) or the collaboration of van Lambalgen with cognitive neuroscientists (e.g., Baggio et al.,
2008; Pijnacker et al., 2011).



38 B. Löwe

of ready-to-wear and bespoke empirical philosophy. In this terminology, ready-
to-wear philosophers of mathematical practice would rely on published data of
people who work on mathematical practices and cultures to do their philosophical
arguments, whereas philosophers of mathematical practice going bespoke would be
more genuinely involved in the wider community studying mathematical practices
and cultures in the form of joint research projects with researchers in mathematics
education, anthropology, sociology, history, cognitive science and other fields.

We emphasised that the main factor in deciding whether you go bespoke or not
is the availability of data in the literature. In light of this, it is very relevant for us
that empirical data on mathematical practices and cultures are scarce, and this has
been lamented by members of our community for the last decade.17

One field where we have a reasonable amount of data on mathematical research
practices is the history of mathematics. In cognitive science, there is a rich literature
on number cognition,18 but as soon as we move to higher cognitive aspects
of mathematical reasoning, there is not much research available. Of course, in
mathematics education, we have a large and thriving literature using empirical
methods, but most of it focuses on primary and secondary school education and
very few researchers in mathematics education deal with tertiary education, research
education or research itself.19 In the case of sociology, Heintz (2000, p. 9) writes:
“[d]ie Soziologie [begegnet] der Mathematik mit einer eigentümlichen Mischung
aus Devotion und Desinteresse”; after Heintz’s seminal book came out, a number of
papers by members of our community have been published,20 but compared to the
sociology of other sciences, the literature is still very scarce.

This forces empirical philosophers of mathematics to do one of two things:
remain ready-to-wear empirical philosophers of mathematics and restrict their
attention to those questions that can be discussed with the scarce data available,

17The lament is already present in Kitcher and Aspray (1988, p. 17) in their introduction of the term
“maverick tradition”: “[B]ecause the [maverick] tradition is so recent, it now consists of a small
number of scattered studies, studies that may not address the problems that are of most concern
to mathematicians and historians.” It can typically be found in the announcements of the events
organised by our community; the following is a published version from (Löwe and Müller, 2010,
p. vii): “[S]ociology of science mostly ignored mathematics presumably under the assumption that
the human component of mathematical research is negligible.”
18There is too much literature here to even give a few exemplary pointers; the two symposia
Mathematical Practice and Cognition (organised by Alan Smaill, Markus Guhe, and Alison Pease)
and Mathematical Practice and Cognition II (organised by Brendan Larvor and Alison Pease) at
the 2010 and 2012 meetings of the Society for the Study of Artificial Intelligence and Simulation of
Behaviour (AISB) in Leicester and Birmingham, respectively, got researchers in number cognition
in touch with our community, and the special issue of the journal Topics in Cognitive Science
(Volume 5, Issue 2, April 2013) containing the post-proceedings of the 2010 symposium shows the
results of this cross-over nicely.
19Notable exceptions are, e.g., Weber and Mejia-Ramos (2011), Inglis and Alcock (2012), Inglis
et al. (2013), and Weber et al. (2014).
20Cf., e.g., MacKenzie (2006), Greiffenhagen (2008), Rosental (2008), Greiffenhagen and Shar-
rock (2011a), Greiffenhagen and Sharrock (2011b), and Greiffenhagen (2014).
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or become bespoke empirical philosophers of mathematics and start collaborative
projects with the appropriate empirical scientists. Concerning the first option,
historical empirical data on mathematical practices is much more available than
empirical data from other neighbouring disciplines (such as sociology). We believe
that this is one important factor in the perceived emphasis on historical studies in
philosophy of mathematical practice.21

If a philosopher decides to do bespoke empirical philosophy of mathematics
and to become actively involved in empirical research, it is important to notice
that there is a large number of different disciplines involved in obtaining a
multi-dimensional picture of mathematical practices and cultures. The number of
involved disciplines is too large to hope that the philosopher could master all of
the techniques from all of these disciplines; as a consequence, interdisciplinary
collaboration with researchers from other fields is a necessary step for bespoke
empirical philosophy of mathematics. This interdisciplinary collaboration in turn
requires that the philosophers convince the researchers from other disciplines to get
involved with their projects.

The following is an example of an effort to join forces with researchers from
other disciplines by finding questions of relevance for everyone: In 2014 and 2015,
the International Union for History and Philosophy of Science and Technology
(IUHPST) ran a project Cultures of Mathematical Research Training funded by
the International Council of Science (ICSU). This project brought researchers from
all of the disciplines involved in our community together with representatives
of funding agencies to produce a list of relevant research questions about the
formation process of mathematical researchers that can be answered using empirical
means. The project used a method for collaboratively identifying research priorities
due to Sutherland et al. (2011). Since philosophy plays an important role in
our community, philosophers were well represented during the two workshops of
the project, guaranteeing that the philosophical legacy of our community does
not get lost. Taking all of the represented disciplines into account, the project
participants discussed which questions about the process of becoming a researcher
in mathematics were the most relevant for the field as a whole. The resulting list
of questions will be published as (Larvor and Löwe, 2016) and gives the result of
this dialogue that required the philosophers to place their motivations into the larger
context; it may serve as a catalyst for more interdisciplinary collaboration in the
future.

21This “perceived emphasis on historical studies” is largely based on anecdotal eevidence and
without a precise definition of what makes a study “historical” it is impossible to substantiate it.
The following may serve as a rough indicator: at the first two APMP conferences (2010 in Brussels
and 2013 in Urbana-Champaign), the percentage of abstracts explicitly mentioning the name of at
least one pre-Second World War mathematician was 60 % (17 out of 28) and 52 % (13 out of 25),
respectively.
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6 Conclusion

We have argued that what we have called our community in Sect. 2 can be seen
as two things: the sub-community of the wider field of the study of mathematical
practices and cultures of those people motivated by philosophical questions and
at the same time the sub-community of philosophy of mathematics that would be
empirical in the sense of Sect. 4. The term “philosophy of mathematical practice”
emphasises the second characterisation. We have also discussed that the number of
researchers actively working on mathematical practices and cultures that would be
of relevance for philosophers of mathematics is small, and therefore, members of our
community cannot expect to do ready-to-wear empirical philosophy of mathematics
and “work by citation”; instead, they have to rely on close collaborations with
cognitive scientists, researchers in mathematics education, sociologists, anthropol-
ogists, psychologists, and representatives of many other disciplines. In practice,
we need to get these people excited about our questions and convince them that
it is worthwhile to collaborate with us on questions. We might wonder whether
the emphasis on questions driven by traditional philosophy of mathematics could
constitute a practical obstacle in this endeavour.
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Abacus as a Programming Language:
Computer Science and History of Mathematics

Baptiste Mélès

Abstract

I show in this paper that programming paradigms, such as imperative or
functional programming, can be put in correspondence with computing styles of
calculating tools. The Chinese abacus actually follows a functional programming
paradigm, while the ancient Chinese counting rods display an imperative pro-
gramming style. More generally, I show that abstract concepts, such as currying
or the semantics of programming languages, can be transposed from theoretical
computer science to the historical description of the practice of computing tools.

1 Introduction

Computing tools, such as abaci, logarithm tables, slide rules and counting on paper,
differ both in physical structure and calculating capability. Computability theory
and computer science may help historians of mathematics shed light on the latter
aspect.

As a matter of fact, every computing tool comes with an implied set of operations
and algorithms, which can be learned one after another by the practitioner: addition
and multiplication on the abacus, exponentiation on the slide rule, resolution of
systems of linear equations with the Chinese counting rods: : : Each of those
tools also seems to have internal limitations: there is apparently no easy way of
performing additions with a slide rule, and no obvious way to compute logarithms
with an abacus. Calculating tools do not all have the same computational power.
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What may be more surprising is that, even in the case of two computing tools
being able to compute the same operation, e.g., addition, they may have different
ways of calculating it, depending on the arithmetical properties they algorithmically
handle, as though they were thereby carrying different “interpretations” of this
operation. Is there a way to describe with full generality how given computing tools
“represent” algorithms?

This is a question both for historians of mathematics and computer scientists.
Indeed, one way to answer this question is to consult the classic works that discuss
the computational in question, such as Fibonacci’s Liber Abaci1 for counting
on paper or Cheng Dawei’s Suanfa Tongzong2 for the abacus. An other way of
answering this question is to consider computing tools as machines, as Turing first
did in his article “On Computable Numbers:”3 the definition of his machines comes
from the description of a working human “computer.” Our aim is to show how
both approaches, history of mathematics and theoretical computer science, can be
fruitfully combined. There is no reason to be afraid: using concepts of computer
science for cultures which had no computers is no more an anachronism than
speaking of “place-value notation” for cultures which certainly had a use, but no
concept, of “place-value notation.”

We show in this paper that programming paradigms, such as imperative or
functional programming, can be put in correspondence with computing styles
of calculating tools. The Chinese abacus actually follows a functional program-
ming paradigm, while the ancient Chinese counting rods display an imperative
programming style. More generally, we intend to show that abstract concepts,
such as currying or the semantics of programming languages, can be transposed
from theoretical computer science to the historical description of the practice of
computing tools.

2 Counting Rods as an Imperative Language

2.1 Data Structure and Variable Assignment

Karine Chemla, in the French edition of the Chinese classical book The Nine
Chapters on Mathematical Procedures,4 effectively used computer science to
describe algorithmic aspects of ancient Chinese mathematics.

The computing tool the Nine Chapters allude to is a board on which rods
denoting digits can be laid out and moved.5 This board may be seen as a two-
dimensional array of digits, in which each dimension, be it vertical or horizontal,

1(Fibonacci, 2002).
2(Cheng Dawei程大位, 1993).
3(Turing, 1936).
4(Chemla and Guo Shuchun, 2004).
5(Chemla, 1996).
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, i.e.,

8 1
6 5 6 1

8 1

Fig. 1 Final step of a multiplication with the counting rods (Sunzi Suanjing, I.16)

, i.e.,

1 2 3
2 3 2
3 1 1

2 6 3 4 3 9

Fig. 2 A system of linear equations (Nine Chapters, VIII.1)

has its usefulness. There is first a use of the horizontal layout, which simply consists
in “writing down” the digits composing the number, such as

, i.e., 1 6 4 2 5

There is secondly a vertical layout of numbers, which can be used in some
algorithms to align numbers, or parts of numbers, e.g., when multiplying numbers
as in the Sunzi Suanjing (Fig. 1).6

There is, lastly, a second kind of horizontal layout of numbers, which allows to
connect somehow correlated numbers, as for systems of linear equations (cf. Fig. 2).

This bi-dimensional array which characterizes the Chinese counting board could
by analogy be called its data structure: in computer science, data structures—such
as registers, queues, stacks and arrays—determine how objects, typically numbers,
are encoded within memory and what elementary relations hold between them.7

But there is more. As Karine Chemla showed, the vocabulary of computer
science can be fruitfully used to describe how the algorithms are performed. In
particular, “variable assignment,” which Knuth calls “the all-important operation,”8

is applied on the counting board, for square roots as well as for divisions.9 For
example, the algorithm for square roots using “borrowed rods” (jie suan 借算),
as described in the Nine Chapters 4.16, requires to put down some intermediary
results “as auxiliaries” (fu副) (cf. Fig. 3).10 During the execution of the algorithm,
one indeed has to assign a value to this “auxiliary” or intermediary variable, which
belongs neither to the operands nor to the result, and is merely dropped when
the algorithm halts. This is why Karine Chemla argues that the algorithms of

6(Sunzi孫子, 1993).
7For detailed examples of data structures, cf. (Knuth, 1997, Chapter 2).
8(Knuth, 1997, p. 3).
9(Chemla and Guo Shuchun, 2004, pp. 25, 110, & 324–327).
10See also the Nine Chapters, 1.6: to simplify parts, one first needs to compute “in auxiliary” (fu
副) the greatest common divisor.
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, i.e.,

2 quotient
1 5 2 2 5 dividend

4 divisor
1 auxiliary

Fig. 3 Variable assignment in the square root algorithm (Nine Chapters, IV.12)

the Nine Chapters can be described in terms of lists of operations using variable
assignment.11

2.2 Imperative Languages

The hypotheses of this argument actually deserve some attention.
Karine Chemla actually relies on Donald Knuth’s classic book The Art of

Computer Programming, in which all algorithms are designed for an abstract
machine called MIX.12 This is a von Neumann machine: it contains registers and
memory addresses which allow us to store, not only input and output numbers,
but also auxiliary numbers, making variable assignment possible.13 Moreover,
Knuth’s programs are written, not as mathematical compositions of functions, but as
sequences of instructions operating on the variables, i.e., ultimately on the registers;
every instruction can be somehow disconnected from the previous and the next ones,
which can manipulate different variables: we must not always use the results of the
previous instruction as input data of the current instruction. This allows Knuth to
formalize every algorithm in his own assembly language,14 which is an imperative
language, i.e., precisely a language which extensively uses variable assignment,
and where algorithms are described as mere sequences of instructions. Thus, the
properties of Knuth’s imperative language, which relies on a von Neumann machine,
fit particularly well the computing style of the counting board described by Karine
Chemla.

Algorithms for counting on paper, by the way, display the same general compu-
tational properties: they are sequences of operations with variable assignments. This
will not be surprising if we consider that this computing tool precisely was Turing’s
model of inspiration,15 and that Turing machines explicitly inspired von Neumann
machines, hence imperative languages.16

This family resemblance between given computing tools and an abstract
machine, and hence between computing tools and a programming paradigm, leads

11(Chemla and Guo Shuchun, 2004, pp. 21–25).
12(Knuth, 1997, p. 124–144).
13(von Neumann, 1993).
14(Knuth, 1997, p. 144–163).
15(Turing, 1936, §1 and 9).
16(Backus, 1978, p. 615–616).



Abacus as a Programming Language: Computer Science and History of Mathematics 47

us naturally to the following question: since there exist a lot of programming
paradigms which are not imperative, are there computing tools corresponding to
some of them?

There actually are functional languages like Lisp and Haskell, declarative
languages like Prolog, object-oriented languages like C++, etc. Although most
available languages are “Turing-equivalent,” i.e., enjoy the same computational
power, they display syntactic differences, which express as many various ways of
representing to oneself what computation and its objets are. As Peter Rechenberg
argued in 1990, programming paradigms express “thought models.”17 Should we
think that all computing tools can be reduced to one and the same model, Knuth’s
imperative style, or are there other styles of calculating tools, corresponding to other
styles of programming languages?

The example of the Chinese abacus will show that there are calculating styles
which are not imperative, and that these stylistic variations can have a direct
influence on the pedagogical styles and strategies.

3 Abacus as a Functional Language

3.1 Data Structure of the Abacus

There are several kinds of abacus. Greek and Roman abaci are boards used with little
stones,18 while the Chinese abacus (suanpan算盤), the Japanese abacus (soroban
算盤) and the Russian abacus (schoty счёты) consist of rods and beads.

Typically, the Chinese abacus bears five unary beads and two quinary beads on
each rod (cf. Fig. 4a); the Japanese abacus, four unary beads and one quinary bead
on each rod (cf. Fig. 4c); the Russian abacus, ten unary beads on most rods, but only
four unary beads on a rod dedicated to quarters of ruble (cf. Fig. 4b). In this paper,
we shall focus on the Chinese abacus. Our illustrations will represent it with 13 rods.
Whilst some of our results can be directly applied to other kinds of abaci than the
suanpan, others can not.

What is the data structure of the Chinese abacus? In the simplest case, the
suanpan can be used to encode one number. This number typically is the first
number of the calculus, say the first term of an addition; but it can also be the final
result of the computation, which is shown by the merchant to the client. Figure 5
shows how to encode the classical number 123 456 789, using unary beads on the
bottom and quinary beads on the top of the central bar.

Some algorithms require one to encode at once two different numbers on the
abacus. For instance, whoever wants to compute the greatest common divisor of 49
and 91 just has to encode each number on one side of the abacus, and to remove the
least one from the greatest, until both are the same (Fig. 6).

17(Rechenberg, 1990).
18(Schärlig, 2001).
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Fig. 4 Various abaci. (a) A Chinese abacus (suanpan). (b) A Russian abacus (schoty). (c) A
Japanese abacus (soroban)

Fig. 5 The number 123 456 789

For some algorithms, one even needs to encode three numbers. This is the case
for the Euclidean algorithm (cf. Fig. 7).

Contrary to the data structure of the Chinese counting board, which consists in a
full array of number, the data structure of a suanpan only amounts to a sequence of a
few numbers, which are the only “objects” encoded on the calculating tool. In most
cases—addition, subtraction, multiplication, division: : :—the algorithms for the
abacus will only require the encoding of one visible number. This may be surprising,
for most of our operations, binary as they are, involve three numbers, namely two
operands and one result. We must therefore understand what transformations binary
operations must be subjected to get implemented on the abacus.
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Fig. 6 How to compute the greatest common divisor of 49 and 91. (a) Encode 49 and 91.
(b) Remove 49 from 91 (91 � 50 C 1). (c) Remove 42 from 49 (49 � 40 � 2). (d) Remove 7
from 42 (42 � 10 C 5 � 2). (e) Remove 7 from 35 (35 � 10 C 3). (f) Remove 7 from 28 (28 � 7).
(g) Remove 7 from 21 (21 � 10 C 3). (h) Remove 7 from 14 (14 � 10 C 5 � 2). (i) Both numbers
are equal: the GCD is 7
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Fig. 7 Euclidean division:
91 D 1 � 49 C 42

3.2 The Representability of Arithmetical Properties

Let us now introduce the concept of “representability” of arithmetical properties
such as commutativity, associativity or distributivity. A given property of an
arithmetical operation will be said to be representable by a given algorithm on a
given computing tool if the invariance of the result with respect to the syntactical
transformations it allows can be put in correspondence with an invariance of the
successive states of the tool during the execution of the algorithm.

For instance, using the commutativity of addition amounts to the syntactical
transformation of a C b into b C a. The representability of the commutativity of
addition by a algorithm on a computing tool will then mean that the places of a and
b can be permuted without provoking any other change in the successive states of
the tool. Commutativity is thus represented by permutability. The representability
of commutativity by an algorithm on a tool does not only mean that this property
is true—which is the least that could have been expected—but that this algorithm
moreover does not even take into account the order of the operands. Representability
in general thus expresses how arithmetical properties are made “visible” by
algorithms on tools.

An easy criterium to define representability is to read arithmetical formulae as
programs. For instance, the formula 11 C 14

2
can be read as the process “take 11,

and then add to it the division of 14 by 2,” while the formula 14
2

C 11 would be
read as the process “divide 14 by 2, and then add 11 to it,” each of those programs
describing the successive steps followed by a practitioner of the computing tool.
Arithmetically speaking, both formulae are obviously equal, i.e., produce the same
result. The question is to know whether both processes also are algorithmically
equal. The arithmetical equality is representable by an algorithm on a computing
tool if the corresponding programs follow the same execution steps.

In this sense, the commutativity of addition is representable by the common
algorithm on paper. Let us actually compare the computation of 14C27 and 27C14

using the same algorithm:
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1 4

+ 2 7

mentally:

1

1 4

+ 2 7

1

mentally:

1

1 4

+ 2 7

4 1

2 7

+ 1 4

mentally:

1

2 7

+ 1 4

1

mentally:

1

2 7

+ 1 4

4 1

Be commutativity present or not in the practitioner’s head, it is for sure invisible on
the very tool.

By contrast, the commutativity of multiplication is not representable on paper by
the common algorithm, for the computations follow different steps:

1 4

� 2 7

�!

1 4

� 2 7

9 8 �!

1 4

� 2 7

9 8

2 8 0
�!

1 4

� 2 7

9 8

2 8 0

3 7 8

2 7

� 1 4

�!

2 7

� 1 4

1 0 8 �!

2 7

� 1 4

1 0 8

2 7 0
�!

2 7

� 1 4

1 0 8

2 7 0

3 7 8

Despite the law of distributivity, the “programs” .7 � 14/ C .20 � 14/ and
.4 � 27/ C .10 � 27/—which obviously produce the same result—do not follow
the same execution steps on paper. By contrast, the illustration of multiplication by
rectangles naturally allows us to represent the commutativity of multiplication19:

That the commutativity of addition, and not of multiplication, is representable
on paper, may be the reason why we are so accustomed to distinguish between
a multiplicand and a multiplier, but not so much between an “addend” and an

19Many other properties could be illustrated using the same diagrams: associativity and commuta-
tivity of addition, associativity and distributivity of multiplication.
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“adder.” The commutativity of operations does not imply that their operands
play symmetrical roles during the computation. More generally, true arithmetical
properties may not be represented on computing tools: such truths are not always
visible. Arithmetical properties are not always converted into algorithmic properties.

3.3 Currying Operations

On the abacus, unlike by counting on paper, even the commutativity of addition is
not representable: the computations of 14 C 27 and 27 C 14 follow different steps
(cf. the details on Fig. 8). Under such circumstances, the distinction between an
addend and an adder seems highly appropriate. How is it possible?

When we count on paper, the operation of addition is somehow external to the
operands. Looking at our addition table, we first have to find the two operands, and
the intersection of their respective line and column in the table does not “come”
from any of the numbers more than from the other: it “comes” from both at once.
When we write 12 C 81, we do not always pay attention to the issue of knowing
whether we have to add 12 to 81, or 81 to 12. Both operands are objects; the act of
operation comes from outside.

The case is very different for the practitioner of the abacus, as a very simple
example will show. Let us indeed compute 12 C 81 on the abacus (Fig. 9). This
very example suffices to show that the two operands of an addition do not play
symmetrical roles. At the very beginning of the execution of our algorithm, when
the abacus is still empty, the first operand of the addition, 12, is used, not really as a
“number,” i.e., as a passive object, but as the part of an act, of a transition operation
from one state of the abacus to another. This number, 12, is then “frozen” as an
object, a static state of the abacus, while the second one, 81, becomes in turn a part
of a new operation, in which 12 is now passive, while 81 is active. Once this addition
has been performed, its result, 93, can become a passive object for new additions,
and so forth. Actually, we do not really compute on the abacus what we could write
in modern notation as “12 C 81:” we apply the operation “C81” to the object “12.”
Unlike the operands of an addition on paper, which are both objects subjected to a
common act, operands here play asymmetrical roles: one is an object, the other is
an act.

This asymmetry between the operands of an operation does not only exist for the
addition, but also for all classical algorithms on the abacus, such as multiplication,
division, square root, etc. This is a fundamental feature of computing with an abacus.

This transformation of a commutative operation into an asymmetrical algorithm
is what logicians and computer scientists call “currying.” Schönfinkel, before Curry,
discovered that every n-ary function could be transformed into a composition of
unary functions, provided that their respective “values” can in turn be functions.20

If one does not curry the operation, 12 C 81 just consists in taking two numbers,

20(Schönfinkel, 1924, § 2).
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Fig. 8 14 C 27 D 27 C 14 (through different computations). (a) Reset the abacus. (b) Encode
14 as operand. (b0) Encode 27 as operand. (c) Add 27 (i.e., C20 C .10 � 3/). (c0) Add 14 (i.e.,
C10 C .10 � 6/). (d) The result is 41
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Fig. 9 How to compute 12C81. (a) The abacus is empty. (b) Encode the first number: 12. (c) Add
80 and 1. (d) The result is 93

Fig. 10 The currying of 12 C 81

and in applying the binary function “C” to its two operands (Fig. 10). But if one
curries this operation, then 12 C 81 means that we take 12 as an object (a proper
operand), transform 81 into an act (such as operations of the hand on the abacus),
which transforms the operand 12 into the result 93. In this latter example, 81 is
no longer an operand—an object—for the addition, but a part of the operation of
addition itself.

This explains the fact that the commutativity of addition is not representable on
the abacus: both operands do not play symmetrical roles, since one is an object while
the other belongs to an act.
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This fact has other direct consequences. In particular, there is no “variable as-
signment” on the abacus. The operand and the result actually do not occupy distinct
places: the final result is nothing but a transformation of the input data themselves,
without creating intermediary nor auxiliary values. Another consequence is that an
algorithm, on the abacus, is not a mere sequence, but a composition of functions:
each step of the algorithm takes the actual state of the abacus and transforms it into
a new state, which will be the starting point of the next step.

Those two properties—the lack of variable assignment, and the limitation of
algorithms to composition of functions—define, following John Backus,21 the
functional style of programming, which characterizes programming languages like
Lisp and Haskell, and logical systems like Church’s �-calculus.22 As a matter of
fact, the currying and execution of 12C81 could be naturally expressed in �-calculus
by the following ˇ-reductions, i.e., computing steps:

.�x�y � y C x/.81/.12/ Ý .�y � y C 81/ .12/

Ý 12 C 81

Ý 93:

Thus, if one were to read formulae as programs, as claimed before, then

.�x � �y � y C x/.81/.12/;

or equivalently

.x 7! .y 7! y C x//.81/.12/;

would be a better candidate than the more misleading notation 12 C 81, which does
not fully reveal the asymmetry of operands during the execution of the algorithm.

The concept of functional style can thus be used to describe algorithms—hence
the computing tools which use them as well.23

21(Backus, 1978).
22See (Church, 1932, p. 352): “Adopting a device due to Schönfinkel [1924], we treat a function
of two variables as a function of one variable whose values are functions of one variable, and a
function of three of more variables similarly.”
23Even in the case of two numbers alternatively acting on each other, as for the greatest common
divisor (Fig. 6), the computing style of the abacus remains functional. Indeed, no other value than
the input data is created: only the input data are used to transform each other. There is in this
algorithm a kind of parallelism, since two processes are executed simultaneously, interacting with
each other; but this parallelism is no less functional, for every number is alternatively an act or an
object for the other.



56 B. Mélès

2 and 2 make 4

2 and 3 make 5 3 and 3 make 6

2 and 4 make 6 3 and 4 make 7 4 and 4 make 8

2 and 5 make 7 3 and 5 make 8 4 and 5 make 9

2 and 9 make 11 3 and 9 make 12 4 and 9 make 13

Fig. 11 Fibonacci’s addition table

4 Pedagogical Strategies and Semantics of Programming
Languages

The discrepancy thus observed between arithmetical and algorithmic properties
may be found puzzling. Light could be shed on it by the distinction between two
kinds of semantics—denotational or operational—for programming languages. Two
programs are said to be denotationally equivalent if they produce the same result,
and operationally equivalent if their respective executions follow the same steps.

This distinction will moreover highlight different strategies for teaching the use
of computing tools. Some pedagogies indeed are result-oriented (or denotational),
others are method-oriented (or operational).

Let us have a look at Fibonacci’s addition algorithm in the Liber Abaci.24 An
addition table is displayed, which is, so to speak, “triangular:” its height decreases
from column to column (Fig. 11). On this table, “2 and 4” is easy to find, but “4
and 2” is missing. One actually does not need to write the latter, when computing
an addition on paper, since the only thing we want to know is the result of those
elementary additions (from 1 C 1 to 9 C 9); as addition is commutative, there is no
need to write twice the same result, and the addition table needs not be square. The
diagonal of the addition table is an axis of symmetry. Being a table of pure results,
Fibonacci’s addition table is denotational: it does not show how to (operationally)
compute those additions, but only what the results are (denotationally). This is why
the addition table (or half the table) has to be learned by heart.

By contrast, the addition method which is described in Cheng Dawei’s Suanfa
Tongzong under the name of Jiujiu bashiyi (九九八十 一)25 does not state as
explicitly as it shows that 4 C 2 D 6 and that 2 C 4 D 6; it just describes how
to get the result when, having 2 on a given rod, one wants to add 4, or when one

24(Fibonacci, 2002, Chapter I, p. 21).
25(Cheng Dawei 程大位, 1993, p. 1231–1232). Jiujiu bashiyi means “9 times 9 makes 81;” the
exercise actually consists of 81 successive operations. The same exercise can be found, under
different names, in other treatises on the abacus: (Xu Xinlu 徐心魯, 1993, p. 1143–1147); (Ke
Shangqian 柯尚遷, 1993, p. 1171–1174); (Huang Longyin 黃龍吟, 1993, p. 1428–1429). Chen
Yifu wrote a detailed analysis of those texts in (Chen Yifu, 2013, Part I).
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Chinese text Instructions Operation

[In order to add] two,

(“two down five [move] down [one] quinary [bead]

remove three”) [and] remove three [unary beads]

[In order to add] four,

(“four down five [move] down [one] quinary [bead]

remove one”) [and] remove one [unary bead]

Fig. 12 Different operations for 4 C 2 and 2 C 4

Chinese text Instructions Operation

[In order to add] four

(“four down five [move] down [one] quinary [bead]

remove one”) [and] remove one [unary bead]

[In order to add] four

(“four down five [move] down [one] quinary [bead]

remove one”) [and] remove one [unary bead]

Fig. 13 The same operation for 2 C 4 and 3 C 4

has 4 and wants to add 2. What is surprising is that, even though 4 C 2 and 2 C 4

are, of course, denotationally equivalent (i.e., they give the same result), there are
two operationally different ways of computing this sum, depending on the order of
the operands, as can be seen on Fig. 12. If those instructions were to be laid out as a
square table, the diagonal would not be an axis of symmetry.

Even more surprisingly, even though 2 C 4 and 3 C 4 are denotationally different
(they give different results, respectively 6 and 7), they are operationally equivalent
on the abacus, for the manual operations and the instructions are the same, as can
be seen on Fig. 13.

Thus, two operations of the abacus can be denotationally equivalent and opera-
tionally different (as 4 C 2 and 2 C 4), or denotationally different and operationally
equivalent (as 2C4 and 3C4). In all cases, Cheng Dawei’s instructions in the Jiujiu
bashiyi follow the operational viewpoint. The pedagogical style of this exercise for
the abacus is therefore not denotational, but operational.

Concepts taken from semantics of programming languages can thus be used to
describe, if not how practitioners represent themselves what computation is, at least
how they teach it.

5 Conclusion

Computer science is much more than the science of computers. Some of its
concepts, such as programming paradigms, denotational and operational semantics,
variable assignment, data structures and currying, can be used as historical tools.



58 B. Mélès

These concepts allow us to describe how various computing tools are really used in
practice, and how they are taught.

Such a method can be extended to other computing tools, such as the Greek
abacus, the logarithm table, the slide rule, etc. A systematical inquiry into the
representability of arithmetical properties on computing tools would lead, if not to a
general classification—as long as we have no natural classification of programming
languages—at least to some local comparison between existing computing tools.

If computer science and computability theory were to find such applications in
the most concrete history of mathematics, their vocabulary would fruitfully integrate
the toolbox of historians and philosophers of mathematics, especially of those
interested in mathematical practices.
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Stig Andur Pedersen

Abstract

Mathematics is an important aspect of natural science and engineering and many
new mathematical concepts and theories have come about when researchers have
been formulating and solving scientific or engineering problems. This interaction
between mathematics and science/engineering took a new form towards the end
of twentieth century in connection with the introduction of digital computers.
In fact, some scientists believe that a new form of doing science has appeared:
computational science. Norman J. Zabusky, e.g., argues that we are in the
midst of a computational revolution that will change science and society as
dramatically as the agricultural and industrial revolutions did (Zabusky, Phys
Today 40(10), 1987). We shall discuss in what sense it is reasonable to talk about
a new style of scientific reasoning and what this will mean for mathematical
practice.

Mathematics is a deductive science, and mathematical results are presented in de-
ductive form. As a rule, you are able to follow the argumentation in a mathematical
paper from basic axioms to the conclusion, but this does not mean that practical
mathematical reasoning follows the same deductive pattern. In real mathematical
reasoning, you will, of course, find all kinds of deviations from basic assumptions.
The deductive form is the important final presentation of a valid mathematical
argument, but it does not reflect the creative process of the mathematician. This
paper will begin with a characterisation of practical mathematical reasoning. It
will continue with some historical examples from applied mathematics that have
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played an important role in the development of scientific computation. Finally, it will
argue that a new style of doing science—computational science, not to be confused
with computer science—has appeared as a fusion of numerical analysis, applied
mathematics and computer science.

1 The Nature of Mathematical Reasoning

Richard P. Feynman maintains that there are two different ways of doing math-
ematics: the Babylonian tradition and the Greek or Euclidian tradition, and he
emphasizes that physicists need the Babylonian one.

The Babylonian style is characterised in the following way:

In Babylonian schools in mathematics the student would learn something by doing a large
number of examples until he caught on to the general rule. Also he would know a large
amount of geometry, a lot of the properties of circles, the theorem of Pythagoras, formulae
for the areas of cubes and triangles; in addition, some degree of argument was available to
go from one thing to another. (Feynman, 1992, p. 46)

and the Euclidian one in this way:

But Euclid discovered that there was a way in which all the theorems of geometry could
be ordered from a set of axioms that were particularly simple. . . . The most modern
mathematics concentrates on axioms and demonstrations within a very definite framework
of conventions of what is acceptable and what is not acceptable as axioms. (Feynman, 1992,
p. 46)

Arguing in favour of the Babylonian style, Feynman refers to the gravitational
field and asks which is the more basic: the fact that “the force is towards the
sun, or � � � that equal areas are swept out in equal times” (Feynman, 1992, p. 47).
From one point of view, the force statement is better, Feynman says, because it is
possible to generalise that statement. If we consider a system of many particles,
it is still possible to make a strong case for the force statement but the orbits are
no longer ellipses. Therefore, it makes sense to have the force law as an axiom
whereas Kepler’s law is too specific and must be generalised in order to hold true
for more general systems. Kepler’s law is a special case of conservation of angular
momentum, and conservation of angular momentum holds quite generally.

The law of conservation of angular momentum is interesting because it can be
derived from a specific case and then extended to virtually all fields of physics, and,
as Feynman says,

We have these wide principles which sweep across the different laws, and if we tie the
derivation too seriously, and feel that one is only valid because another is valid, then we
cannot understand the interconnections of the different branches of physics. (Feynman,
1992, p. 49)
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Only if we reach a point where physics is complete and we know all the laws,
may we be able to start with definite axioms and deduce the rest. However, that is an
unreachable ideal state of affairs and “. . . while we do not know all the laws, we can
use some to make guesses at theorems which extend beyond the proof”. (Feynman,
1992, p. 50)

The situation is similar in mathematics. For instance, we can axiomatise Euclid-
ian geometry by using Hilbert style axioms, that is, incident and congruence axioms
etc. and from these axioms deduce the existence of the three-dimensional symmetry
group. However, invariance with respect to a group is a general phenomenon
which holds in many other cases and the prospect of defining and studying classes
of geometries based on the concept of transformation group leads to many new
possibilities as demonstrated by Felix Klein’s Erlanger Program. If we consider
geometry from the viewpoint of transformation groups, it is possible to build on
methods from algebra, group theory and metric spaces.1

Several researchers have observed similar “Babylonian features” in mathematics.
In the well-known paper The Unreasonable Effectiveness of Mathematics in the
Natural Sciences Eugene Wigner writes:

� � � mathematics is the science of skillful operations with concepts and rules invented just
for this purpose. The principal emphasis is on the invention of concepts. Mathematics would
soon run out of interesting theorems if these had to be formulated in terms of the concepts
which already appear in the axioms. (Wigner, 1967, p. 224)

So, the essence of mathematical reasoning is not deductions from given axioms.
It consists of creating new concepts and rules which may lead to new insights.
Some of these new concepts may then appear in many unexpected situations. For
instance, the idea of group action is important in many areas of mathematics far
removed from geometry. It is, in fact, a main point in Wigner’s paper to show how
local ideas in mathematics often show up in quite unexpected surroundings, and
the strong interplay between different areas of the subject may even be considered
a characteristic feature of modern mathematics. Think, e.g., of the applications of
functional analysis in number theory or the role of Riemann’s �-function in many
different areas of mathematics.2

1Cf., e.g., the elegant presentation by Rees (1988). Rees’s presentation is Babylonian:

� � � I have taken a concrete viewpoint rather than an axiomatic one. The view that I take is
that mathematical objects exist and should be studied, they are not arbitrarily defined as the
axiomatic approach might suggest. This is the view of the vast majority of mathematicians
in their own work and it is a pity that this does not come across in more undergraduate
courses. (Rees, 1988, p. vi)

2Sir Michael Atiyah characterises mathematics in the twentieth century in this way: The first half
of this century is called “the ‘era of specialisation’, the era in which Hilbert’s approach, of trying
to formalise things and define them carefully and then follow through on what you can do in each
field, was very influential” (Atiyah, 2002, p. 13). The second half of the twentieth century is called
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If it were impossible to introduce new concepts that reached far beyond the
scope defined by the concepts introduced by the axioms, it would, according
to Wigner, be impossible to formulate interesting new theorems (Wigner, 1967).
Besides, as Hamming argues in a paper inspired by Wigner, there are many results
in mathematics that are independent of the axioms:

If the Pythagorean theorem were found to not follow from the postulates, we would again
search for a way to alter the postulates until it was true. Euclid’s postulates came from
the Pythagorean theorem, not the other way. For over thirty years I have been making the
remark that if you came into my office and showed me a proof that Cauchy’s theorem was
false I would be very interested, but I believe that in the final analysis we would alter the
assumptions until the theorem was true. (Hammig, 1980, p. 87)

So, new mathematical theorems are not latently lying in the axioms ready to
be deduced. They are, in a sense, constructed by introducing new concepts and
ideas. In many cases, we are inspired to develop new concepts by trying to describe
regularities in nature. Wigner describe this creative process by formulating what he
calls the empirical law of epistemology:

� � � the “laws of nature” being of almost fantastic accuracy but of strictly limited scope.
I propose to refer to the observation which these examples illustrate as the empirical
law of epistemology. Together with the laws of invariance of physical theories, it is an
indispensable foundation of these theories. Without the laws of invariance the physical
theories could have been given no foundation of fact; if the empirical law of epistemology
were not correct, we would lack the encouragement and reassurance which are emotional
necessities, without which the “laws of nature” could not have been successfully explored.
(Wigner, 1967, p. 233)

According to Wigner’s empirical law of epistemology, it is possible to formulate
laws of nature by using mathematics which will hold with “almost fantastic accuracy
but [are] of strictly limited scope”. It is the empirical law of epistemology that
creates the sense of encouragement and reassurance which is a necessary condition
for our successful exploration of nature.

As a physicist Wigner was primarily interested in mathematical descriptions of
nature. However, much modern mathematics is developed internally without any
reference to physics. It has its roots not in descriptions of natural invariances, but in
internal structures within mathematics itself. Set theory is a case in point. Cantor’s
definition of the ordinal numbers was a consequence of his transfinite iteration of
the process of taking limit points of a point set of the real line.3 In fact, Cantor
saw a fruitful way of extending inductive definitions into the transfinite, and he
was able to isolate and study this and other set theoretical features. This is, in
a way, similar to how Kepler’s law could be seen as a special case of angular

“the ‘era of unication’, where borders are crossed over, techniques have been moved from one field
into the other, and things have become hybridised to an enormous extent” (Atiyah, 2002, p. 14).
3Cf. Über unendliche linear Punktmannigfaltigkeiten in (Cantor, 1962).



Mathematics in Engineering and Science 65

momentum conservation. Cantor’s early work on set theory is a good illustration
of how mathematics develops by identifying new patterns and introducing new
concepts that describe these patterns. The final result, in Cantor’s case the ordinal
numbers, is the result of a long process consisting of conjectures, problems, ideas,
etc. V.I. Arnold illustrates this phenomenon with a wonderful metaphor:

When you are collecting mushrooms, you only see the mushroom itself. But if you are a
mycologist, you know that the real mushroom is in the earth. There’s an enormous thing
down there, and you just see the fruit, the body that you eat. In mathematics, the upper part
of the mushroom corresponds to theorems that you see. But you don’t see the things which
are below, namely problems, conjecture, mistakes, ideas, and so on. (Arnold, 2006, p. 19)

It is difficult to identify the driving forces in the development of mathematics,
especially when we bear in mind that mathematical praxis is more Babylonian
than Euclidian and that theorems and deductive structures are only a minor part
of the activity. However, one central driving force is the search for laws and
regularities independently of whether these laws and regularities come from physics,
mathematics itself or from other sources. It is therefore a bad idea to differentiate
radically between pure and applied mathematics, a point made very clearly by Mark
Kac and Stanisław M. Ulam:

It should perhaps be stressed again that the boundaries between mathematics and the many
disciplines to which it is applied are seldom sharply drawn. Nothing but impoverishment
can be expected from the unfortunately rather frequent current efforts to isolate a body of
‘pure’ mathematics from the rest of scientific endeavour and to let it feed only on itself.
(Kac and Ulam, 1979, p. 180)

It should now be clear that practical mathematical reasoning is mainly Baby-
lonian in style whereas the Euclidian style is more dominant when mathematical
results are presented in theoretical papers. We can summarise our view as follows:

1. A final mathematical proof must comply with classical (or intuitionistic) logic.
It is, of course, a fundamental criterion of validity that a mathematical proof
is logically valid, and it is from the proof that it is possible to see the deeper
relationship between the theorem and fundamental mathematical principles.
Thus, logical correctness (consistency) is an essential aspect of mathematical
truth. Without a logical correct proof, a statement remains a hypothesis and not a
theorem.

2. Proof constructions often require the introduction of new concepts. David
Hilbert, e.g., said that a characteristic part of mathematical reasoning was the
introduction of ideal elements. Typical examples are the introduction of the
complex unit, i, and the introduction of ordinal numbers. Modern examples are
also abundant, such as K-groups, distributions, noncommutative geometries, etc.

3. New important theorems, concepts, and hypotheses often codify and generalise
problems appearing in science and engineering or internally in mathematics
itself. For example, the method of finite elements for numerical solutions of
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partial differential equations was invented by engineers and then taken up by
numerical analysts; Noether’s theorem on the relationship between conservation
laws and symmetries was inspired by issues relating to the mathematical
formulation of energy conservation in general relativity theory; the concepts of
category and functor were introduced in algebraic topology in order to cope with
the interplay between algebraic and topological structures.

2 Some Historical Examples

The interaction between mathematics, physics and engineering has always been
strong. Physics and engineering have always been an important source of new
mathematical ideas, and new mathematical theories and results often find their way
into physical and engineering applications. As Wigner expresses it, “mathematical
concepts turn up in entirely unexpected connections” and “they often permit an
unexpectedly close and accurate description of the phenomena in these connections”
(Wigner, 1967). However, there is a perennial problem involved in the application
of mathematics, namely, that it is usually impossible to solve analytically the
equations that describe the phenomena being studied. In nearly all applications, we
need to settle for approximative solutions, and in many cases our computational
capabilities are too limited. This condition of applied mathematics was felt strongly
in hydrodynamics at the beginning of the last century and was eloquently described
by Theodore von Kármán in his Gibbs lecture from 1939:

Due to this failure of the method we do not get an answer for one of the fundamental
questions of the hydrodynamics of real fluids, that is : What is the flow pattern of a real
fluid around a submerged body in the limiting case � ! 0? As a matter of fact this problem
is still not solved. Consider, for example, two-dimensional flow around a circular cylinder.
We are not able to decide whether the flow pattern for � ! 0 approaches the potential flow
of a nonviscous fluid or a stationary flow pattern consisting of a vortex-free region and a
wake with continuously distributed vorticity, as suggested by Oseen, or a nonstationary
flow pattern with concentrated vortex columns of alternating circulation, a flow pattern
treated by the present author. It seems that we have here an example in which the analytical
methods are not sufficient, at least at the present time, to solve a problem of purely analytical
character. (von Kármán, 1940, p. 664)

Kármán characterises the situation in hydrodynamics during the time just before
the first electronic computers appeared, and, as we shall see, the appearance of elec-
tronic computers would drastically change the condition of applied mathematics.

The understanding that a computer device is able to store and operate on its own
programs appeared in the mid 1930s as the result of the efforts of Kurt Gödel (1931)
and Alan Turing (1937). By introducing Gödel numbers, Gödel made it clear that a
theory or axiom system could be reflexive and therefore able to model itself. By a
similar construction, Turing introduced the universal Turing machine.

At the beginning the idea of a computational system or the concept of what
we should understand by an algorithm was mainly motivated by philosophical
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and mathematical issues of what in principle could be calculated or reached by
constructive methods. Since the end of the nineteenth century mathematicians have
formulated theorems which could be proved by nonconstructive methods—e.g., by
using the axiom of choice or by giving indirect proofs—but where no constructive
proofs were known. For example, one of David Hilbert’s famous problems from the
International Conference of Mathematicians in 1900 was whether or not it would be
possible to find a general algorithm which when given a finite set of Diophantine
equations would either give a solution or say that the system did not have a solution.
The precise definition of algorithm first appeared in the mid 1930s through the
research by Gödel, Turing and many others.4

In addition to the theoretical development in the late 1930s, there was, as shown
by von Kármán’s Gibbs lecture, a definite need for computational methods . This
need intensified further with the advent of World War II. The birth of the first
electronic computers was, in a sense, the result of a fortuitous alliance between
highly theoretical and philosophical advances and the practical needs of especially
military research during and after Wold War II.

There were many researchers involved in the development of the electronic com-
puter. However, John von Neumann stands out particularly as he both contributed
to the theoretical design of the computer and also set an example for using the
computer for scientific calculations.5 Originally von Neumann was a theoretical
mathematician doing work related to Hilbert’s school in Göttingen. However, his
association with The Institute of Advanced Studies at Princeton University and his
acquaintance with military research changed his focus. Von Neumann describes
himself as follows:

It was through him [Robert Kent, a senior official at the Ballistics Research Laboratory,
Maryland] that I was introduced to applied science. Before this I was, apart from some
lesser infidelities, essentially a pure mathematician, or at least a very pure theoretician.
Whatever else may have happened in the meantime, I have certainly succeeded in losing
my purity.6

Besides being involved in the design of computers, he became a leading figure
in the development of numerical methods dedicated to applications on new fast
computers.

We know that Turing and von Neumann met during the mid 1930s and that von
Neumann thought very highly of Turing’s work7 but it is not clear whether von
Neumann got the idea of the program-storing computer from Turing. It was von
Neumann’s description of the von Neumann architecture in First Draft of a Report
on the EDVAC dated 30 June 1945 that became the leading design idea for the
modern electronic computer. However, it is probably more correct to say that von

4For instance, Alonso Church, Steve Kleene, Emil Post, Andrey Markov and many others.
5A study of John von Neumann’s role in this development can be found in Aspray (1990).
6Quoted from Aspray (1990, p. 26).
7Cf. (Aspray, 1990, pp. 176–178).
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Neumann’s report was based on joint ideas developed by the staff at the Moore
School. For instance, J. Presper Eckert and John W. Mauchly wrote

Dr. von Neumann has also written a preliminary report in which most of the results of earlier
discussions are summarized. In his report, the physical structure and devices proposed
by Eckert and Mauchly are replaced by idealized elements to avoid raising engineering
problems which might distract attention from the logical considerations under discussion.8

In any event, through his strong scientific involvement at the Institute of
Advanced Studies and his practical involvement in model-building activities of
military relevance, von Neumann came to set the scene for the development of both
the computer architecture and the application of computers for scientific purposes.

One distinctive area where the new electronic computer came to show its
numerical merits was meteorology. It was a widely held view in the 1940s that
the partial differential equations derived in meteorology were far beyond the reach
of numerical methods. The equations are non-linear and involve several scales. Too
many iterations on different scales would be required and it would be difficult to
control errors. One of the first successes of computer-based numerical calculations
was outlined in the paper by J.G. Charney, R. Fjörtoft and J. von Neumann on the
numerical integration of the barotropic vorticity equation from 1950 (Charney et al.,
1950). It is characteristic that this paper only handled a rather simplified aspect of
the weather forecast problem, namely the phenomenon of vorticity. The equations
treated were the following:

@�

@t
C Nv � r� D 0

� D � C f D absolute vorticity

� D vertical component of the curl of Nv
f D 2� sin � D Coriolis parameter

where Nv was the wind velocity, � the angular frequency of the Earth’s rotation,
and � the latitude. The paper was characterised by the authors themselves in the
following way:

A method is given for the numerical solution of the barotropic vorticity equation over a
limited area of the earth’s surface. The lack of a natural boundary calls for an investigation
of the appropriate boundary conditions. These are determined by a heuristic argument and
are shown to be sufficient in a special case. Approximate conditions necessary to insure the
mathematical stability of the difference equation are derived. (Charney et al., 1950, p. 237)

A typical finite difference grid used in the computation is depicted in Fig. 1.

8Quoted from Aspray (1990, p. 42).
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Fig. 1 Finite difference grid used in the computation

The calculations of the paper were made on the ENIAC computer. They were to
some extent a success. The first forecast for 5 January 1950 was not satisfactory:

The forecast of January 5, in which the principal system was an intense cyclone over the
United States, was uniformly poor. The forecast gave much too small a displacement of the
cyclone and also distorted its shape, and the predictions of the other motions were equally
inaccurate. (Charney et al., 1950, p. 245)

But the next one was much better:

On the other hand, the January 30 forecast contained a number of good features. The
displacement and amplification of the trough over the United States at about 1100 W was
well predicted, as was the large scale shifting of the wind from NW to WSW and the
increase in pressure over eastern Canada. The displacement of the axis of the major trough
over the eastern United States and Canada was correctly predicted, but the strong circulation
that developed at its southern extremity was not. Proceeding eastwards we find that the
amplification of the trough over the North Sea together with the characteristic breakthrough
of the northwesterly winds and the corresponding destruction over France of the eastern
nose of the anticyclone was predicted approximately. This is shown by the agreement of
the predicted with the observed height changes over western Europe. (Charney et al., 1950,
p. 276)

This first successful numerically calculated weather prediction has been redone
on modern computers. During his Starr Lecture in the 1980s, George Platzman
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arranged with IBM to repeat one of the ENIAC forecasts. The result was commented
upon by Peter Lynch in the following way:

The algorithm of CFvN [Charney, Fjörtoft, and von Neumann]was coded on an IBM 5110,
a desktop machine then called a portable computer or “PC” (having a tiny fraction of the
power of a modern PC). The program execution was completed within the hour or so of
Platzman’s lecture. This implies a 24-fold speedup over the best rate achievable for ENIAC.
The program eniac.m was run on a Sony Vaio (model VGN-TX2XP) with MATLAB version
6. The main loop of the 24 h forecast ran in about 30 ms. One may question the precise
significance of the time ratio—about three million to one—but it certainly indicates the
dramatic increase in computing power over the past half-century. (Lynch, 2008, pp. 50–51)

The paper by Charney, Fjörtoft and von Neumann raised the hope that electronic
computers might make numerical weather forecasts possible,9 and as the extract
suggests this hope has increased over the years. These days, computational meteo-
rology is an essential part of the daily weather forecast.

As indicated by von Kármán in his Gibbs lecture, hydrodynamics desperately
needed numerical methods in the 1930s. It still does but the work by Charney,
Fjörtoft and von Neumann together with many others started a new development
based on computer simulation, and, as the quotation from Lynch’s paper illustrates,
current numerical possibilities have increased so radically that it makes sense to talk
about a paradigm shift in applied mathematics.

It was not only hydrodynamics that benefitted from this radical shift. Many other
fields of applied mathematics experienced the same shift. We shall discuss another
example where experiments with computational methods led to new mathematical
discoveries.

In the years after World War II, the Italian physicist Enrico Fermi made frequent
summer visits to Los Alamos. He became interested in the development and
potentialities of electronic computing machines and held many discussions with
the mathematician Stanisław M. Ulam on the kind of future problems which could
be studied using such machines.10 They decided to try a variety of problems for

9Peter Lynch describes the results in the following way

The results were sufficiently encouraging that numerical weather prediction became an
operational reality within about five years. (Lynch, 2008, p. 45)

In a lecture to the National Academy of Science in 1955 Charnet said

The advent of the large-scale electronic computer has given a profound stimulus to the
science of meteorology. For the first time the meteorologist possesses a mathematical
apparatus capable of dealing with the large number of parameters required for determining
the state of the atmosphere and of solving the nonlinear equations governing its motion.
(Charney, 1955, p. 798)

10Cf. Stanisław Ulam’s introduction to the paper Studies of non linear problems by Fermi, Pasta,
and Ulam, (Segré, 1965, p. 977).
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Fig. 2 Non-linear system studied by Fermi, Pasta and Ulam

heuristic work where, in the absence of closed analytic solutions, experimental
work on a computing machine would perhaps contribute to the understanding of
properties of solutions:

This could be particularly fruitful for problems involving the asymptotic long time or “in the
large” behavior of non-linear physical systems. In addition, such experiments on computing
machines would have at least the virtue of having the postulates clearly stated. This is not
always the case in an actual physical object or model where all the assumptions are not
perhaps explicitly recognized.
Fermi expressed often a belief that future fundamental theories in physics may involve
non-linear operators and equations, and that it would be useful to attempt practice in the
mathematics needed for the understanding of non-linear systems.11

One of the first systems they studied was a system of 64 mass points connected
with non-linear strings as shown in Fig. 2. The results were reported in the joint
paper by Fermi, Pasta and Ulam entitled Studies of non linear problems.12

The system is described by one of the equations:

Rxi D .xiC1 C xi�1 C 2xi/ C ˛Œ.xiC1 � xi/
2 C .xi � xi�1/

2�

Rxi D .xiC1 C xi�1 C 2xi/ C ˇŒ.xiC1 � xi/
3 C .xi � xi�1/

3�

where i D 1; 2; : : : ; 64, xi denotes the displacement of the i-th point from its original
position, ˛ denotes the coefficient of the quadratic term in the force between the
neighbouring mass points and ˇ that of the cubic term. (Segré, 1965).

The first equation defines a second order non-linearity and the second equation a
third order non-linearity. The first equation leads to the following expression for the
sum of kinetic and potential energies

Ekin
xi

C Epot
xi

D 1

2
Pxi

2 C .xiC1 � xi/
2 � .xi � xi�1/

2

2

where contributions to potential energy from quadratic or higher terms in the force
are neglected.

The purpose of the study was to see how the string when started in a simple
configuration would “assume more and more complicated shapes, and, for t tending
to infinity, would get into states where all the Fourier modes acquire increasing

11Stanisław Ulam’s introduction to the paper Studies of non linear problems by Fermi, Pasta and
Ulam, (Segré, 1965, p. 977).
12The paper was written in 1954 but first published in (Segré, 1965).
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importance” (Fermi et al., 1965, p. 980). In order to see this, Fermi, Pasta and
Ulam performed a Lagrangian change of variables .xi; Pxi/ ! .ak; Pak/, i D
1; 2; : : : ; 64I k D 1; 2; : : : ; 64, by using the formula

ak D
64X

iD1

xi sin
ik	

64
:

With this transformation we get the following representation of the total energy
with respect to the Fourier modes

Ekin
ak

C Epot
ak

D 1

2
Pak

2 C 2a2
k sin2 	k

128
:

These equations were solved on the MANIAC machine at Los Alamos and the
results surprised Fermi:

The results of the calculations (performed on the old MANIAC machine) were interesting
and quite surprising to Fermi. He expressed to me the opinion that they really constituted
a little discovery in providing intimations that the prevalent beliefs in the universality of
“mixing and thermalization” in non-linear systems may not be always justified.13

Figure 3 is a graphical representation made by Ulam and Fermi of the energies in
the first five modes of the system. The figure is based on 30,000 computation cycles.
The initial form of the string was a single sine wave.

Fermi, Pasta and Ulam comment on the results in the following way:

Instead of a gradual, continuous flow of energy from the first mode to the higher modes,
all of the problems show an entirely different behavior. Starting in one problem with a
quadratic force and a pure sine wave as the initial position of the string, we indeed observe
initially a gradual increase of energy in the higher modes as predicted (e.g., by Rayleigh
in an infinitesimal analysis). Mode 2 starts increasing first, followed by mode 3, and so on.
Later on, however, this gradual sharing of energy among successive modes ceases. Instead,
it is one or the other mode that predominates. For example, mode 2 decides, as it were,
to increase rather rapidly at the cost of all other modes and becomes predominant. At one
time, it has more energy than all the others put together! Then mode 3 undertakes this role.
It is only the first few modes which exchange energy among themselves and they do this in
a rather regular fashion. Fermi et al. (1965, p. 981)

However, this is not the end of the story. At a later time, mode 1 comes back very
close to its initial value and the system seems to be almost periodic. This seemed
to be a common feature of all the systems studied. Fermi expected that the systems
would “thermalise” in the sense that the energy levels would level out. But that did

13Stanisław Ulam’s introduction to (Fermi et al., 1965), (Segré, 1965, p. 977).
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Fig. 3 Energies in the first
five modes. This is the
original figure from (Segré,
1965)

not happen:

Instead of gradual increase of all the higher modes, the energy is exchanged, essentially,
among only a certain few. It is, therefore, very hard to observe the rate of “thermalization”
or mixing in our problem, and this was the initial purpose of the calculation. (Fermi et al.,
1965, p. 981)

In 1961, the problem was recalculated on more modern and relatively faster
computers for still longer periods of time. Jim Tuck and Mary Menzel found that
the system also showed very long periods on top of the smaller ones.

The total energy is concentrated again essentially in the first Fourier mode, but the
remaining one or two percent of the total energy is in higher modes. If one continues the
calculation, at the end of the next great cycle the error (deviation from the original initial
condition) is greater and amounts to perhaps three percent. Continuing again one finds the
deviation increasing—after eight great cycles the deviation amounts to some eight percent;
but from that time on an opposite development takes place! After eight more, i.e., sixteen
great cycles altogether, the system gets very close—better than within one percent to the
original state! This super-cycle constitutes another surprising property of our non-linear
system.14

Fermi, Pasta and Ulam completed their paper in 1954, the year when Fermi died.
Fermi did see and discuss most of the results of the paper, but he did not see the

14Stanisław Ulam’s introduction to (Fermi et al., 1965), (Segré, 1965, p. 978).
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final version which was filed internally at Los Alamos in 1955 as Document LA-
1940. However, the filed version was circulated among mathematical physicists.
Both the problem of lack of mixing and thermalisation as well as the problem
of the appearance of super-cycles were very surprising. This group of problems
is called the FPU problem (Weisset, 1997). The FPU problem became a major
guiding principle for the development of the theory of dynamical systems and the
new method of performing experiments on computers (Zabusky, 2005).

These early computer experiments with non-linear systems led to several im-
portant developments in the study of dynamical systems which each gave rise to
interesting interpretations of the FPU problem. However, as Thomas P. Weissert
pointed out two views eventually came to dominate the understanding of the FPU
problem:

One group of researchers came to believe that FPU was a clear case of Kolmogorov-Arnold-
Moser (KAM) stability, while another saw FPU as an example of Kortweg-deVries (KdV)
solitons. Both of these phenomena are significant developments from dynamical systems
theory that emerged in the years following FPU, and they are both intimately related to the
FPU problem. (Weisset, 1997, pp. 29–30)

Anyhow, both the KAM and the KdV developments were inspired by the new
impetus that the development and exploitation of the new electronic computers
gave to applied mathematics and mathematical physics. They both represent
mathematical research areas that heavily depended on the application of modern
computers and also led to new developments of numerical algorithms.

The development of modern computational methods has influenced our way of
doing mathematics in many other ways. However, this may be the subject of another
article, as our current focus is applied mathematics and numerical methods.15

The two examples provided here illustrate two central points, namely, how new
computational methods have influenced our understanding of non-linear systems
and how it has been possible to cope with data intensive and complex systems as the
circulation of the atmosphere.

3 Computational Science: Emergence of a New Reasoning
Style

The examples in the last section illustrate how numerical analysis achieved new
impetus as electronic computers were introduced. Numerical analysis has always
been an important aspect of applied mathematics and nearly all great mathemati-
cians were excellent numerical analysts—think, e.g., of Newton, Euler, Laplace,
Gauss and Bessel. However, new numerical methods were quite often developed

15Cf. the unpublished paper Implications of Experimental Mathematics for the Philosophy of
Mathematics by Jonathan Borwein (citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.130.5689)
and the papers in Erkenntnis, Vol. 68 (3).
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outside mathematics in disciplines where comprehensive numerical methods were
important, e.g., in astronomy, geodesy and meteorology. Furthermore, numerical
analysis was not considered a separate field of speciality in mathematics before the
middle of the last century. In the years after World War II, numerical institutes and
departments began to appear at universities around the world. Naturally, the main
reason was that the role of mathematical model building in engineering and science
increased dramatically during and after the war. The computer made it possible to
cope with very realistic models in engineering and science and they required more
sophisticated numerical methods.

Computers used to get smaller and faster, but in recent decades the direction changed
towards faster computing using parallel processing, cyber computing, and using dedicated
rather than all-purpose processors. Different platforms will require dedicated algorithms,
which will take full advantage of new computing architectures. As a recent example, we
mention the success of using graphical processing units (GPUs) in running large scale
simulations much faster than multicore systems. At the same time, the resulting increase
in computing power will enable us to simulate more than just nonlinear PDEs at a given
scale; it will enable us to model hierarchies of scales. (Tadmor, 2012, p. 544)

These new developments will make it possible to model the interplay between
global circulation models and highly localised dynamics which are of central
importance in numerical weather prediction:

The main aspect in these approaches goes beyond the numerical solution of a given
model: petaflop computational platforms will enable actual modeling across the hierarchy
of discrete scales. These developments will enable, in the context of numerical weather
prediction, for example, a multiscale simulation of the interplay between the global
circulation numerical model and highly localized dynamics. We shall then get closer to
realizing the full potential behind von Neumann’s vision � � � , where “the entire computing
machine is merely one component of a greater whole, namely, of the unity formed by the
computing machine, the mathematical problems that go with it, and the type of planning
which is called by both.” (Tadmor, 2012, p. 544)

What Eitan Tadmor talks about here is a new style of doing scientific research.
Scientific and engineering calculations are no longer just numerical issues. Scientific
and engineering aspects of computing form a complex symbiosis between computer
architecture, the study of computer languages and algorithms, numerical analysis
and scientific theory. In many fields, such as high energy physics, meteorology,
astronomy and fluid dynamics, progress depends on close interdisciplinary coop-
eration between numerical analysis, computer science and the relevant scientific
field.16

In order to better understand the impact of these changes, it make sense to apply
Ian Hacking’s idea of a reasoning style.17 A reasoning style is similar to a Kuhnean
paradigm but comprises more features of a scientific praxis. So, by a scientific

16Cf. Zabusky (1987).
17Cf. Hacking (1992b).
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reasoning style18 we understand a comprehensive transformation of the way in
which science is being understood and performed. The transformation covers the
following elements:

• The transformation concerns several scientific disciplines.
• New institutions are formed that epitomise the new directions.
• It leads to new social organisations of the scientific practice.
• It leads to fundamental ontological and epistemological changes: new types of

objects, evidence, classifications, laws or modalities, and ways of expressing
scientific facts.

As an example of a new reasoning style, Ian Hacking mentions the probabilistic
reasoning style which emerged during the middle of the nineteenth century.19 It
came about as a consequence of the numerous statistical societies founded in the
1830s. Sam Schweber and Matthias Wächter describe it in the following way:

The avalanche of numbers gave a different feel to the world: it had become quantified and
numbers and statistics ruled it. It was Mr. Gradkin’s world. Concomitantly, the previously
dominant determinist Weltanschauung became replaced by a view of the world in which
probability and chance played an ever increasing role. The result was the emergence of a
new statistical style, constituted by a plethora of abstract statistical entities and governed
by autonomous statistical laws, which are ‘used not only to predict phenomena but also to
explain [them]’. (Schweber and Wächter, 2000, p. 584)

This probabilistic revolution not only gave rise to a new indeterministic Weltan-
schauung. It also gave rise to new institutions where statistical information was
collected, and to new ways of organising scientific research and expressing scientific
facts. Hence, the statistical probabilistic development in the nineteenth century
resulted in a new reasoning style which also required comprehensive numerical
methods.

In a similar way, we may say that the development of digital computation
capability has led to a new reasoning style which we call computational science.20

The development of computational science has transformed all scientific disciplines
that require processing of comprehensive data sets and also disciplines where
complex non-linear models are essential. New institutions in the form of centres for
scientific computation have emerged. Computer experiments and simulations have
provided new ways of obtaining empirical information, and computer simulation
has become a new way of identifying and solving problems in science and
engineering. New kinds of objects and concepts have been introduced due to
numerical and computational analyses of complex non-linear systems. This is true
of both meteorology and the FPU problem. This development was described by

18This is a slight modification of Hacking’s original definition.
19Cf. Hacking (1992a).
20Not to be mixed up with computer science.
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Norman J. Zabusky back in 1987:

We are in the midst of a computational revolution that will change science and society as
dramatically as the agricultural and industrial revolutions did. The discipline of computa-
tional science is significantly affecting the way we do hard and soft science.
� � �
Supercomputers with ultrafast, interactive visualization peripherals have come of age and
provide a mode of working that is coequal with laboratory experiments and observations and
with theory and analysis. We can now grapple with nonlinear and complexly intercoupled
phenomena in a relatively short time and provide insight for quantitative understanding and
better prediction. In the hands of enthusiastic and mature investigators, intractable problems
will recede on a quickened time scale in this computationally synergized environment.
(Zabusky, 1987)

Zabusky’s prediction from 1987 has come true and this development of compu-
tational power has even resulted in new potential methods that could not have been
predicted in the 1980s. A case in point is the success of using graphical processing
units to run large scale simulations, a method which is much faster than multicore
systems and vector processors.21

The reasoning style of computational science has permeated disciplines like
meteorology, high energy physics, aerospace engineering and many other similar
disciplines where non-linear processes and huge data sets are important. It is clear
that this new style has already been very successful and has led to new promising
scientific and engineering research programmes. But computational science is by
nature an interdisciplinary activity and its success requires precise cooperation
between several disciplines. However, the disciplines involved have very diverse
perspectives and use very different methods. For instance, numerical analysis and
computer science are two essential aspects of computational science which have
contributed decisively to its development. All the same, computer science and
numerical analysis have in a sense drifted apart. This was observed by Lenore Blum,
Felipe Cucker, Michael Shub and Steve Smale in their important work Complexity
and real computation:

There is a substantial conflict between theoretical computer science and numerical analysis.
These two subjects with common goals have grown apart. For example, computer scientists
are uneasy with calculus, whereas numerical analysis thrives on it. On the other hand
numerical analysts see no use for the Turing machine.
� � �
A major obstacle to reconciling scientific computation and computer science is the present
view of the machine, that is, the digital computer. As long as the computer is seen simply
as a finite or discrete object, it will be difficult to systematize numerical analysis. We
believe that the Turing machine as a foundation for real number algorithms can only obscure
concepts. (Blum et al., 1998, p. 23)

21Cf. Tadmor (2012).



78 S.A. Pedersen

Our understanding of what scientific computing is or should be is not complete.
There are several diverging developments. We need a better understanding of
what a computation is over more complex structures than the natural number.
In the case of natural numbers we have the Church-Turing Thesis which gives
a precise definition of computation over the natural numbers, but we do not
have a Church-Turing Thesis for computation in higher types or computation
over more complex structures. In this area several new competing conceptions of
computational structures have appeared, but they are very disparate and it is not
clear how relevant they are for numerical analysis.

The work undertaken by Lenore Blum, Felipe Cucker, Michael Shub and Steve
Smale is among the first attempts to develop a concept of computation which reflects
the activities within fields where the new computational style is prevalent. It is
not the final solution. However, we have every reason to expect that the close
interaction between different fields within the new style of computational science
will eventually lead to a new and better understanding of computation over complex
structures.

References

Arnold, V. I. (2006). In V. I. Arnold, A. A. Bolibruch, Y. S. Osipov, L. D. Faddeev, Y. G. Sinai,
V. B. Filippov, Y. I. Manin, V. M. Tikhomirov, & A. M. Vershik (Eds.), Mathematical events of
the twentieth century. Berlin: Springer.

Aspray, W. (1990). John von Neumann and the origins of modern computing. Cambridge, MA:
The MIT Press.

Atiyah, M. (2002). Mathematics in the 20th century. Bulletin of the London Mathematical Society,
37, 1–15.

Blum, L., Cucker, F., Shub, M., & Smale, S. (1998). Complexity and real computation. New York:
Springer. With a foreword by Richard M. Karp.

Cantor, G. (1962). Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit
erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind.
Herausgegeben von Ernst Zermelo. Nebst einem Lebenslauf Cantors von Adolf Fraenkel.
Hildesheim: Georg Olms Verlagsbuchhandlung.

Charney, J. G. (1955). Numerical methods in dynamical meteorology. Proceedings of the National
Academy of Sciences, 41, 798–802.

Charney, J. G., Fjörtoft, R., & von Neumann, J. (1950). Numerical integration of the barotropic
vorticity equation. Tellus, 2, 237–254.

Fermi, E., Pasta, J., & Ulam, S. (1965). Studies of non linear problems. In E. Segré (Ed.), Colected
papers of Enrico Fermi (Vol. 2). Chicago: The University of Chicago Press.

Feynman, R. P. (1992). The character of physical law. London: Penguin Books.
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme, I. Monatshefte für Mathematik und Physik, 38, 173–198.
Hacking, I. (1992a). Statistical language, statistical truth and statistical reason: The self-

authentication of a style of scientific reasoning. In E. McMullin (Ed.), The social dimensions of
science (pp. 130–157). Notre Dame: University of Notre Dame Press.

Hacking, I. (1992b). ‘Style’ for historians and philosophers. Studies in History and Philosophy of
Modern Physics, 23, 1–20.

Hammig, R. W. (1980). The unreasonable effectiveness of mathematics. The American
Mathematical Monthly, 87(2), 81–90.



Mathematics in Engineering and Science 79

Kac, M., & Ulam, S. M. (1979). Mathematics and logic. New York: Penguin Books. Retrospect
and prospects, Abridged reprint of the 1968 edition.

Lynch, P. (2008). The eniac forecast, a re-creation. Bulletin of the American Meteorological Societ,
89(1), 45–55.

Rees, E. G. (1988). Notes on geometry. Berlin: Spinger.
Schweber, S., & Wächter, M. (2000). Complex systems, modelling and simulation. Studies in

History and Philosophy of Modern Physics, 31, 583–609.
Segré, E. (Ed.). (1965). Collected papers of Enrico Fermi (Vol. 2). Chicago: The University of

Chicago Press.
Tadmor, E. (2012). A review of numerical methods for nonlinear partial differential equations.

Bulletin of the American Mathematical Society, 49(4), 507–554.
Turing, A. M. (1937). On computable numbers, with an application to the entscheidungsproblem.

Proceedings of the London Mathematical Society, 42, 230–265.
von Kármán, T. (1940). The engineer grapples with nonlinear problems. Bulletin of the American

Mathematical Society, 46(8), 615–683.
Weisset, T. P. (1997). The genesis of simulation in dynamics. Berlin: Springer.
Wigner, E. P. (1967). The unreasonable effectiveness of mathematics in the natural sciences. In

E. P. Wigner (Ed.), Symmetries and reflections. Bloomington and London: Indiana University
Press.

Zabusky, N. J. (1987). Grappling with complexity. Physics Today, 40(10), 25–27.
Zabusky, N. J. (2005). Fermi-pasta-ulam, solitons and the fabric of nonlinear and computational

science: History, synergetics, and visiometrics. Chaos, 15, 1–16.



A Fashionable Curiosity: Claudius Ptolemy’s
‘Desire for Knowledge’ in Literary Context
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Abstract

This article examines in detail the second-century CE polymath Claudius
Ptolemy’s expression of the ‘desire for knowledge’, situating it against a wider
backdrop of similar expressions in the Greek textual tradition. I argue that
in his expression, Ptolemy creatively alludes to Plato’s Phaedrus, a practice
that, surprisingly, here ties his work more closely to contemporary oratory and
the ‘novel’ than to generic precursors in the exact sciences. The piece thus
demonstrates how an author in the highly formalized genre of mathematics
employs specific textual strategies held in common with his wider, contemporary
literary culture.
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I frankly admit that I am strongly attracted by the simplicity and beauty of the mathematical
schemes with which nature presents us. You must have felt this, too.

—Werner Heisenberg to Albert Einstein1

The ancient Greek exact sciences constituted a literary practice. Therefore, we
may interpret them as we interpret other expressions of Greek literary culture:
through textual analysis sensitive to form and style, along with close readings in
comparison with other literary texts inside and outside of generic limits. Such
is my basic methodological assumption for this paper, and in this I follow a
growing number of scholars who have been making an ever more compelling
case that an appraisal of ancient mathematical and technical texts is essential for
understanding the complexities of Greco-Roman literary culture as a whole.2 In
this paper, I specifically investigate the literary dimensions of how mathematical
authors express their motivations for engaging in the practices of the exact sciences,
focusing on the second-century CE polymath Claudius Ptolemy’s expression of
what we may call the ‘desire for knowledge’.3 My own desire in this paper is
twofold: on the one hand, I wish to use this expression to locate Ptolemy in his
literary context, both synchronically and diachronically, in genres both outside
and inside of the exact sciences. On the other, I hope to show some of the
ways in which the desire for knowledge, however essential it is to human nature,
is expressed through context-dependent forms. Heisenberg’s frank admission of
attraction perhaps reflects a modern scientific culture that values matter-of-fact
expression; in contrast, we shall see how Ptolemy’s desire for knowledge is
expressly charged with an eroticism that animated the literary ambitions of the
second century CE.

1 Ptolemy Outside of Literary Context

Despite the perennial interest in revealing the scientific dimensions of Ptolemy’s
writings and their place and influence in the history of science, Ptolemy is still
underserved in studies of ancient science that seek to situate those writings in
their wider literary and social contexts. Partly this seems due to the very form of

1Heisenberg 1971: 69.
2An early example is Fuhrmann 1960, a formalist account of ancient handbooks, but the last decade
and a half, especially, have witnessed an acceleration in shorter scholarly publications on technical
and scientific writing. An important methodological essay is van der Eijk 1997, but there are still
relatively few monographs that account for formal or otherwise literary aspects of ancient scientific
texts, though Netz 1999 and 2009 and Asper 2007 are crucial contributions. See also Fögen 2009
for a linguistic approach to Roman technical writing, and Mattern 2008 on the form and rhetoric
of medical narrative across Galen’s works.
3The discussion here thus complements Matthew Leigh’s 2013 study of curiosity that focuses
on 	��	�����¢���. I hope, too, that this philological investigation of mathematical desire will
dovetail with recent philosophical discussions of one object of that desire, namely, mathematical
beauty; cf. Rota 1997, and Müller-Hill and Spies 2011.
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his mathematical enterprise: a text such as the Mathematical Syntaxis (hereafter,
Syntaxis), replete with geometric proofs, tables, and diagrams, does not lend itself
to easy comparison with works in other genres. Moreover, as Reviel Netz has
argued, original and challenging work in the geometric sciences, exemplified by
the proofs in Ptolemy’s Syntaxis, was a marginal cultural practice even among
elites in antiquity, and evidence suggests that this was especially true in Ptolemy’s
century.4 Other practices with a more secure and obvious standing in ancient society
have naturally garnered more attention from social historians and literary scholars.
Medicine is the case in point, and the magnetic Galen has attracted the attention of
scholars pursuing all manner of research question.5 Partly, however, the general
neglect of Ptolemy as a source on wider social and literary trends must be the
product of his own silence about such trends. Widely recognized is the fact that, for
one who wrote so much (amounting to some 300,000 words extant), Ptolemy writes
surprisingly little that would clearly reveal details about his own life and cultural
context. In the words of Alexander Jones: ‘In [Ptolemy’s writings] there is no
personality, no reference to himself except as an observer, scholar, and theoretician,
no allusion to his environment.’6 Likewise we have no substantial attestations of
his life or works from other sources prior to the commentaries of Pappus, Theon,
and Proclus, which date to the fourth century and afterward.7 Unlike so many
of his contemporaries, Ptolemy appears never to have traveled, either to Rome
or elsewhere, and we know nothing about his non-scientific activity in or around
Alexandria, save for a possible connection to the temple of Serapis at Canopus.8

Nor can we securely imagine his active involvement in the bustling social life of
Alexandria itself, as a tantalizing though late (sixth-century) anecdote situates him
in isolation for 40 years on the outskirts of the city.9 In short, Ptolemy appears to
have put minimal effort into creating a public image for himself; in this he is at the
pole opposite to Galen.

The above merely gestures toward the serious challenges that interfere with our
understanding of Ptolemy, both as a man and as a man of his time. In spite of
Ptolemy’s apparent detachment, however, recent studies have sought to ground him

4Netz 2002. On the apparently low mathematical productivity of the second century CE, see the
tables in Netz 1997: 6–10. The Syntaxis, of course, is entangled to some degree with astrological
practices of much wider popularity, but as Bernard 2010: 513 notes, even when an astrological
theory was supported by geometric models, one did not need to comprehend those models in order
to calculate horoscopes from, say, numerical tables.
5See the recent essays and up-to-date bibliography in Gill et al. 2009. To be sure, what we would
call ‘astrology’ occupied a position arguably comparable to medicine, and Ptolemy’s Tetrabiblos
has been an important source for investigations of it as a social practice (e.g., Barton 1994: 27–94).
6Jones 2010: xi; cf. Toomer 1975.
7See Jones 1990, however, for papyrological evidence of early, perhaps even contemporary,
criticism of Ptolemy’s lunar theory. Toomer 1985: 204 argues that the sole mention of Ptolemy
in Galen’s works is an interpolation from the Arabic tradition.
8Cf. Jones 2005a: 62.
9Olymp. In Phd. 10.4, granted some plausibility by Jones 2005a: 61–64.
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in the wider scientific, philosophical, and social contexts of the second century.
A brief survey: Alexander Jones and Anne Tihon have identified papyrological
evidence of theoretical astronomy, similar in form to (perhaps rivaling?) the
Syntaxis, by Ptolemy’s contemporaries and immediate predecessors.10 Aiming to
more precisely define Ptolemy’s immediate reception, Alain Bernard has recently
argued that the Syntaxis was written for an audience of astrological practitioners,11

while Jacqueline Feke has situated Ptolemy in the midst of Middle-Platonic and
Aristotelian debates on ethics and epistemology.12 Cristian Tolsa has recently
brought to the fore the social context in which these debates occurred.13 Scholarship
thus continues to develop an ever-higher resolution image of Ptolemy participating
in contemporary intellectual practices. Still lacking, however, is a concerted effort
to examine the literary aspects of Ptolemy’s achievements and situate them in a
literary context, according to the interpretive methods I listed at the outset.14 I cannot
achieve that in this short paper, of course, but my hope is that an analysis of one
aspect of Ptolemy’s literary craft, his expression of the ‘desire for knowledge’, will
demonstrate the interest of the larger project.

2 Ptolemy’s ‘Desire for Knowledge’

Let us then turn to Ptolemy’s account of that desire. To begin, we shall examine
a passage from the third and final book of what is probably one of his earliest
works, the Harmonics.15 The passage marks a pivotal moment in the treatise, when
Ptolemy both announces the fulfillment of the study’s primary goal and reflects on
its conclusion, which is that the principles of harmonics that he has determined by
geometric methods conform to what can be determined through auditory perception.
He claims to have demonstrated, in other words, that rationalist and empiricist
methods operate in harmony with one another. Advancing toward the concluding
part of the treatise, he then describes the twofold effect that reflection on the
‘harmonic power’ (ἁρμονι›ὴν δύναμιν)16 induces, stating:

Since it may follow for a person who has theorized on (™����¢��
�) these matters to be
filled with wonder (
�™����›����) immediately—if he wonders also at other things of
exceptional beauty—at the extreme rationality of the harmonic power, and at the fact that

10Jones 2004 and Tihon 2010.
11Bernard 2010.
12Feke 2009 and 2012.
13Tolsa 2013.
14Moving in this direction are Jones 2005b, which patiently maps out several of Ptolemy’s
labyrinthine rhetorical strategies, and Mansfeld 1998: 66–75 and Feke 2012: 89, which consider
some formal aspects of Ptolemy’s prologues. Tolsa 2013: 301–328 situates ‘Ptolemy’s epigram’
(possibly dubious but transmitted in the manuscript tradition of the Syntaxis) in literary context.
15For a plausible sequence of Ptolemy’s authorship, see Feke and Jones 2010: 200–201.
16For different interpretations of what, exactly, the harmonic power is, see Barker 2000: 259–263,
Swerdlow 2004: 151 and Feke 2009: 69–91.
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it finds and creates with perfect precision the differences of its own forms; and, on the
other hand [since it may follow for him], owing to some divine love (�	� 
���� ���
��

™����), to desire (	�™���) to behold, as it were, the nature of [the harmonic power] (
�

����� ��
�� �¢	�� ™��¢�¢™��) and with what other things it is conjoined among the things
comprehended in this world, we shall try, in summary fashion and so far as we are able, to
investigate this remaining part of our theoretical undertaking, to display the magnitude of
this kind of power.17

Untangling Ptolemy’s syntax, we see that the very act of theorizing provokes
two emotional reactions in the individual: wonder and desire. Ptolemy’s feeling
of wonder as it pertains to the activity of theory deserves its own discussion.18

Our present focus, however, centers on his desire, and let me stress the evocative
language with which he expresses it: the theorist of harmonics (whom we may
understand both in a general sense and as Ptolemy and his reader) is in the grip
of a divine love. That word for ‘love’ (ἔρωτος) especially grabs our attention, as
it specifies that this is erotic passion. Moreover, the theorist desires (πο™εῖν) to
behold (™εά¢α¢™αι) both the nature (γένος) of the harmonic power and what it
is conjoined with in this world. In other words, he desires to know both what
the harmonic power is and how to classify it. His desire is thus the desire for
knowledge. Moreover, we find similar sentiments in the Syntaxis. In the preface
to that work, Ptolemy further describes the erotic attraction of the exact sciences,
this time astronomy: therein he claims his intellectual mission as to increase ‘the
love (ἔρωτα) of contemplating (™εωρίας) the eternal and unchanging’,19 which is
to say, the love of contemplating celestial bodies through mathematics. Moreover,
Ptolemy describes those, like himself, who pursue mathematical astronomy as
‘lovers (ἐρα¢τάς) of divine beauty’,20 characterizing them, again, not by simple
affection but by erotic passion. All of these evocative expressions frame Ptolemy’s
attitude toward investigation in the exact sciences as a desire for knowledge.

Moreover, the language that Ptolemy uses to describe that desire is not only
evocative, but also (for Ptolemy, at least) rare: nowhere else in the Harmonics, for
instance, do we find inflections of ἔρως, πο™έω or ™εάομαι. Indeed, the passage cited
above features Ptolemy’s only use of πο™έω in the whole of his corpus. Ptolemy uses
™εάομαι only once more, in the Syntaxis, but in what appears to be an otherwise
lexically uninteresting discussion of epicycles.21 On the other hand, ἔρως and its
cognates occur a total of 13 times throughout Ptolemy’s writings. Most of these,
however, occur in the course of the technical discussion in the Tetrabiblos and
concern the general affections of character variously wrought by the combinations
of celestial bodies; they pertain to the motivation of neither the author nor a general
figure of the astrologer. Thus we arrive at another important point: in addition to

17Ptol. Harm. III.3 [92.1–8 Düring], translation adapted from Barker 1989: 371.
18For a general account of this issue in Greek thought and literature up to (pseudo-)Longinus (not
including Ptolemy), see Nightingale 2004: 253–268.
19Ptol. Syntaxis part 1, p. 7.25–26 Heiberg.
20Ptol. Syntaxis part 1, p. 7.21–22 Heiberg.
21Ptol. Syntaxis part 1, p. 361.11 Heiberg.
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being exceptional in their lexical form, expressions of the desire for knowledge are
also confined to certain parts of Ptolemy’s work. We find them only in extended
‘second-order’ passages, in which Ptolemy reflects self-consciously on methods,
practices and, as we have seen, motivations, and which function as an introduction
to or transition between extended expositions on ‘first-order’ (i.e., technical or
theoretical) material.

3 The Desire for Knowledge in Greek Literature: A Survey

Such expressions of the desire for knowledge are thus rare in Ptolemy’s works, but
is the same true in Greek textual culture leading up to the second century CE? To
gain an impression of how unique Ptolemy is in this regard, I conducted a series
of correlated searches using the online Thesaurus Linguae Graecae (TLG). Here let
me offer a few words in the way of methodology: I began with the key terms that
Ptolemy himself uses that correspond to ‘desire’ and ‘knowledge’, but added as well
cognate nouns and verbs (and one adjective), as well as additional nouns and verbs
that seemed reasonable to include so as to further round out the impression; the full
list is presented below (words in bold are found in Ptolemy’s own combinations)22:

‘Desire’: ����/���¢���/����/������/���	�›
�, �
™�/	
™��, ���™����/���™����,
K������/�����, K�����/������, ����¢ ��/������

‘Knowledge’: ™�
���, ™�����/™�����, ���, ����™���, ���¢ ��/���� ¢›�,
���¢	���, ���™���, ¢!��, ���™�����

Although I have grouped the terms under two general headings, I make no
claims about synonymity within each group. Quite on the contrary, both groups
obviously include terms that signify a range of concepts and activities, and even
individual words may feature different nuances from one author or text to the
next. But this should not matter for our purposes: a combination of any item from
the first set with any item from the second generally conveys or pertains to the
‘desire/desirer/desiring for knowledge/knowing’. Moreover, in this literary study,
again, we are more concerned with the various expressions that signify a general
concept, rather than defining precisely what the signified concept is. Other terms,
too, certainly could have been included to present a more exhaustive picture of that

22To set out my search methodology more precisely: I used the TLG’s ‘Advanced Lemma Search’
function to locate combinations of each of the given terms for desire and knowledge occurring
within one line of each other. For the ‘desire’ group, no formal constraints were set (on case,
number, tense, mood, etc.), so as not to bias the search results to favor certain parts of syntax.
On the other hand, since terms of knowledge are here specifically the objects of desire, certain
constraints were set for this group in all searches: all noun-searches were limited to the singular
genitive and accusative; verb-searches were limited to present and aorist, active infinitives, except
for the cases of � !�, where I targeted the perfect, active infinitive, and the deponent 	��™������,
where I targeted the present and aorist, middle/passive infinitive.
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variety of expression. But this is foremost a study of Ptolemy, not the ‘desire for
knowledge’ itself.23 Thus limiting the scope to Ptolemy’s own combinations and
the combinations built from the other terms in each set should allow us to reach
reasonable conclusions about Ptolemy’s uniqueness of expression, while providing
a good background-impression of other possibilities.

Just as my search aims to produce a representative, rather than exhaustive, pool
of evidence, so does my ensuing discussion of that material consist of an impres-
sionistic account of distributions especially sensitive to genre and chronology. My
findings so far suggest that a more detailed analysis of the ‘desire for knowledge’
may tell us a lot about how culture shapes this apparently natural feature of human
psychology, but to attempt this here would distract from our intended focus on
Ptolemy. The present discussion instead adheres to three principles of discursive
economy: first, only single instances of a particular combination (without regard for
grammatical inflection) are noted for a given author, rather than a list of total counts
per author or work. Tallying frequencies of each combination seems less significant
for developing an impression of the temporal and generic ‘reach’ of an expression;
the more qualitative approach I follow should bring absences and presences into
conspicuous relief along those lines. Second, to frame the discussion with a simple
and intuitive structure, I group the individual species of desire24 into three genera,
whose organizational logic pertains to the species’ temporal and generic presence.
In short, these are the common, the philosophical, and the Platonizing, and we shall
examine each in turn. Third, I will be selective in my description of each genus,
offering explanation only where it will be helpful for the ensuing discussion of
Ptolemy.

There is no question that Greek authors leading up to Ptolemy conceived of a
desire for knowledge; in what forms then did they express it? We proceed with the
‘common genus’. First, a clarifying point: in my usage, ‘common’ indicates a wide
temporal and generic distribution, not a high frequency of occurrence—though it
was the case that some of these searches produced the highest returns.25 This genus
is the largest of the three, in fact the only one which encompasses more than one
species of the desire for knowledge. These are πό™ος/πο™έω, ἐπι™υμία/ἐπι™υμέω,
Kἱμερος/ἱμείρω, and βούλομαι, and they are represented in Athenian tragedy and com-
edy; fourth-century oratory and philosophy; the Classical and Hellenistic historians
and geographers, and various prose works of the Imperial period, including our
passage from Ptolemy’s Harmonics.26 The genus is thus indeed common, but also

23Leigh 2013 develops an intellectual history of ancient curiosity which is naturally sensitive to
form, but whose primary focus is on the valence of 	��	�����¢��� and related concepts.
24I treat cognate nouns, verbs, and adjectives (e.g., 	�™�� and 	�™��) as a single species, locating
the defining features thereof at the linguistic root.
25Expressions based on "������ number in the dozens, whereas I count only seven examples that
feature K#�����/#�����. Uniquely in my searches, "���¢ �� produced zero results.
26The following is a representative, not exhaustive list of citations: $O%O&/$O%E': ™������:
Ph. Jos. 204; Plu. Demetr. 6.5; Ptol. Harm. 3.3. (��™���: Ph. Aet. 2; S.E. M. Pr.6. � !�: S. Tr.
632; E. IT. 542; Pl. Men. 84c; Arist. PA. 644b26; Str. 2.5.18; Luc. Icar. 4. ™�����: Th. 6.24.3.
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textured: as we might expect, certain terms in the ‘knowledge’ set (i.e., ἀλή™εια,
ἐπι¢τήμη) appear exclusively in philosophical or quasi-philosophical discourses. It
is also not all-pervasive: we notice particular absences in poetry other than Athenian
drama, and it does not feature prominently in pre-Imperial medical discourse or
the fragments of Hellenistic philosophy.27 Most glaring for us is the absence of
the expression from the exact sciences. All of these absences may simply be an
effect of the survey’s limited scope, however, and later in this essay I will examine
more closely texts in the exact sciences as we try to understand Ptolemy’s generic
position.

The second genus, the ‘philosophical’, solely entails the desire-complex Kὀρεξις/
ὀρέγω. It appears less frequently overall, and then only in texts of a philosophical
or quasi-philosophical nature (e.g., Nicomachus’ Introductio arithmetica, Theon
of Smyrna’s De utilitate mathematicae, and the Galenic corpus; I count only
one exception in Dionysius of Halicarnassus’ Roman Antiquities).28 An array of

™����� : not found. �	�¢
���: Ph. Op. 77; Plu Adv.Col. 1118b. ��)¢ ��: Str. 13.1.1; Plu. Adv.Col.
1118b. ����*¢›�: Ph. Virt. 215; Plu. De genio 590a; Gal. MM. K vol. 10, p. 714.17. ���™���:
E. Ion 1432; Ph. Fug. 8; D.H. 7.66.1; Max.Tyr. 8.4; S.E. M. 9.75; Luc. Trag. 209. ¢�+��: Ph.
Op. 5; Max.Tyr. 25.1; Luc. Merc.cond. 25. 	��™������: Plu. Quaes.Rom. 266b. E$I%YMIA/
E$I%YME': ™������: Pl. Ti. 19b; Arist. Rh. 1370a26; D.S. 13.9.3; Ael. NA. 16.39; Gal. PHP.
5.7.48. (��™���: Gal. MM. K vol. 10, p. 457.14. � !�: Ar. V. 86; Pl. Grg. 474c; Luc. VH. 2.20.
™�����: not found. ™�����: Pl. Lg. 951a; Epicur. Ep. ad Pythoclem 94. �	�¢
���: Arist. Pol.
1288b17; Gal. Quod animi mores K vol. 4, p. 772.3. ��)¢ ��: D.H. 11.36.1. ����*¢›�: LXX Is.
58.2; D.S. 10.8.3; Gal. Loc.Aff. K vol. 8, p. 144.7. ���™���: Ar. Nu. 656; Pl. Hp.Mi. 369d; X. Cyr.
4.3.15; Arist. Rh. 1371a32; Erot. 29.8; Plu. De Pyth. 395e; App. Pun. 430. ¢�+��: Ar. Nu. 412; Pl.
Phd. 96a; LXX Wi. 6.20; S. 15.1.64; J. Ap. 1.111. 	��™������: Ar. Lys. 486; Is. 3.8; Plu. De comm.
1066d.

IMEPO&/IMEIP': ™������: Ph. Praem. 39; Ael. NA. 11.17. (��™���: S.E. M. 1.42. � !�: not
found. ™�����: not found. ™�����: not found. �	�¢
���: not found. ��)¢ �� : not found. ����*¢›�:
not found. ���™���: S. Fr. 314.134 Radt; Plb. 14.Pr.4; Ph. Cont. 75. ¢�+��: Ph. Spec.leg. 1.50.
	��™������: not found.

BOY,OMAI: ™������: Ar. Th. 234; Pl. R. 327a; Plb. 7.12.1; D.S. 17.116.5; Ael. VH. 14.17;
Plu. Cat.Ma. 17.4; Gal. AA K vol. 2, p. 630.8. (��™���: not found. � !�: Hdt. 1.86; Hp. Aph. 5.59;
E. Alc. 140; Ar. Nu. 250; Th. 1.52.2; Pl. Lg. 629c; X. Cyr. 8.4.11; Isoc. 17.9; D. 19.227; Aesch.
3.199; Arist. EE. 1216b22; Plb. 4.38.12; D.H. Dem. 50; J. AJ. 1.325; D.Chr. 4.67; Gal. Dig.puls.
K vol. 8, p. 955.17. ™�����: not found. ™�����: Th. 5.18.2; Alc. Od. 86; D. Ep. 4.5; Arist. Cael.
300b20; D.S. 19.52.4; Gal. Dig.puls. K vol. 8, p. 944.8. �	�¢
���: not found. ��)¢ ��: not found.
����*¢›�: S. Fr. 1130.3 Radt; Pl. R. 572b; X. Mem. 1.2.42; Arist. De an. 402a14; LXX To. 5.14;
Plb. 1.1.5; D.S. 5.77.3; J. AJ. 12.100; D.Chr. 31.38; Gal. Lib.prop. K vol. 19, p. 9.1; Aesop. 50.6.
���™���: S. Ph. 233; E. El. 229; Ar. Nu. 239; Pl. Sph. 232d; X. HG. 6.5.52; D. 23.2; Agatharch.
14.6; Plb. 21.41.5; Str. 2.5.43; Ph. Jos. 56; D.H. 4.66.1; J. BJ. 7.454; Plu. Crass. 28.4; Ruf. Syn.puls.
3.3; Vett.Val. 8.8; S.E. M. 8.87; Ael. NA. 5.42; Gal. PHP 1.6.4; Luc. VH. 1.5. ¢�+��: not found.
	��™������: Hdt. 6.69; E. Hipp. 910; Ar. Nu. 482; Th. 8.19.1; Pl. La. 191d; X. Oec. 7.2; D. 4.10;
Arist. Top. 161b5; Plb. 11.28.11; Plu. De genio 577e; S.E. P. 2.211; Gal. De semine K vol. 4, p.
527.18.
27I count only two instances of "������ �-!���� in the Hippocratic corpus: Aphor. 5.59 and De
semine 13.23, and one instance of �	�™���� ™������ at Epicur. Ep. ad Pythoclem 94.
28OPE.I&/OPE/': ™������ : not found. (��™���: Pl. R. 485d; Plu. De recta 48c; Ptol. Judic. p. 5
Lammert; Gal. De const. artis K vol. 1, p. 244.16. � !�: Arist. Metaph. 980a21. ™�����: Alcin. Intr.
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Classical and Imperial authors are represented within the relatively small set of
results, but the expression does not seem to have been in high favor. I have found
only one instance in Plato and none in Philo of Alexandria, both of whom are well-
represented in the other genera, and any ‘desire for knowledge’, at least expressed
in the terms of this study or the fragments we have, does not feature in the discourse
of the Hellenistic philosophical schools.

Our last genus, the ‘Platonizing’, is composed only of those expressions of desire
defined by ἔρως and its cognates.29 A seemingly more descriptive label for this
genus might be ‘Imperial’, as in fact most instances occur in a range of prose
works beginning with those of Philo of Alexandria; in addition to Philo’s hybrid
writings, we find a high amount of oratory, medical writing, a Platonic handbook,
one Plutarchian life, and only now, with Ptolemy, texts in the exact sciences. Prior
to Philo we find only four instances of the genus: two from the Platonic corpus and
one each from Sophocles and Euripides.30 What then justifies the Platonizing label?
The tragedians deny Plato any claim to inventing the eroticization of knowledge,31

and Plato was in any case not the first to conceptualize ἔρως in terms abstract from
personal relationships.32 But as is plain from such dialogues as the Phaedrus and
Symposium, developing the philosopher and his pursuit of knowledge in expressly
erotic terms was a defining aspect of Plato’s philosophical project.33 Moreover,
a TLG survey of Plato’s use of ἔρως and its cognates reveals other knowledge-
terms subject to them,34 and further TLG searches confirm that an erotic desire
for these is exclusive to Plato’s dialogues until Philo.35 Hence there does seem
something definitively Platonic about the erotic desire for knowledge. And for now
let me propose that its implementation by Imperial authors was a consequence of

27.4. ™�����: not found. �	�¢
���: Arist. De an. 433a6; Gal. Syn.puls. K vol. 9, p. 431.2. ��)¢ ��:
D.H. 1.1.3; Theon Sm. 1.11. ����*¢›�: Gal. Diff.resp. K vol. 7, p. 889.1. ���™���: Gal. Ars med.
K vol. 1, p. 224.3; Cels. Apud Originem 6.18. ¢�+��: Nicom. Ar. 1.2.3; Alcin. Intr. 1.1; Gal. MM.
K vol. 10, p. 114.18. 	��™������: not found.
29EP'&/EPA&TH&/EPA'/EPAMAI/EP'TIKO&: ™������: Ph. Praem. 38; Ptol. Harm. 3.3 (with
	�™���). (��™���: Pl. R. 501d; Ph. Spec.leg. 1.59; Alcin. Intr. 1.2; Max.Tyr. 16.2; Gal. Nat.fac. K
vol. 2, p. 179.13; Ael. NA. 2.11. � !�: not found. ™�����: Ptol. Synt. 1.7; Gal. Dig.puls. K vol. 8,
p. 860.5. ™�����: not found. �	�¢
���: Pl. Ti. 46d; Ph. Op. 77; Thess. Virt.herb. Pr.5. ��)¢ ��: not
found. ����*¢›�: not found. ���™���: E. Hipp. 173; Max.Tyr. 11.11. ¢�+��: Ph. Op. 5; Plu. Sol.
2.2; D.Chr. 36.40; Max.Tyr. 18.5; Ael. NA. Ep.1. 	��™������: S. OC. 511.
30Another might be found at E. Fr. 889.1 Nauck: 	��!���� !((0E��� ¢�+���, but in context ¢�+���

is better construed quasi-subjectively with 	��!����, rather than as the object of 0E���.
31Could the precedents from tragedy be yet further evidence of Plato’s appropriation of poetic
discourse for his construction of philosophy, as argued by Nightingale 1996?
32���� is widely conceived as a passion for polis and power in fifth-century poetry and prose. For
discussion, see Cornford 1907: 201–220; Arrowsmith 1973; Rothwell 1990: 37–43; Connor 1992:
96–98; Nightingale 1996: 187–188.
33The implications of this are explored in Halperin 1985. Cf. Nightingale 1996: 128–129.
34��™��� (R. 485b), 
� 1� (R. 501d), ��2� (Ti. 46d), +����¢ �� (Phd. 68a), 
� (��™�� (Phlb. 58d).
35The question of why other authors apparently avoid this complex of expressions until the Imperial
period cannot be answered here; more searches are warranted and may of course qualify the result.
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the centrality of Plato’s texts to Greek literary culture and education, as well as to
Plato’s otherwise well-documented influence on individual works by authors such
as Philo, Maximus of Tyre, and Galen (which is not to reduce any of these to being
mere ‘Platonists’).36 Thus Imperial authors who render the desire for knowledge in
erotic terms draw it closer to its presentation in a celebrated, Classical source; they
Platonize it.

4 Ptolemy’s Choice

The foregoing survey displays some of the range and texture that characterize the
expression of the desire for knowledge in the Greek literary tradition through the
second century CE. To refocus the discussion on Ptolemy, the key point is that to
him as an author, that tradition offered a variety from which he could choose.37 By
choosing to cast that desire in consistently Platonizing terms, Ptolemy acts entirely
in keeping with the Platonic philosophical currents that influence his texts,38 as
well as with the literary practice of other writers of his era. Noting the apparent
expectedness of this choice, we might question how interesting it can even be—
is Ptolemy’s desire for knowledge, even in its erotic fervor, nothing more than a
literary topos? Here we turn to literary criticism for guidance. In his study of allusion
and intertextuality in Augustan poetry, Stephen Hinds observes that ‘topos’ hardly
constitutes an ‘inert category’: a Virgil does not simply insert a poetic commonplace
pre-fabricated into his verses, but creatively reconfigures it, varying details and the
manner of expression, thus transforming it into something ‘new and fresh’.39 Could
Ptolemy be doing something similar?

Ptolemy’s expressions of desire in the Syntaxis are perhaps too brief to yield
much interpretive fruit; instead we shall focus on his extended statement in the
Harmonics. Let me offer again the key phrase: ‘It may follow for him who has
theorized on these matters, owing to some divine love (ὑπό τινος ἔρωτος ™είου),
to desire (πο™εῖν) to behold, as it were, the nature of the harmonic power (τὸ
γένος αὐτῆς ὥ¢περ ™εά¢α¢™αι).’ Even if the desire for knowledge expressed

36See De Lacy 1974 and now Hunter 2012 for Plato’s influence on Imperial literary culture,
and Trapp 1990 on the particular prominence of Plato’s Phaedrus, one of the key sources for
Platonic ����. Mansfeld 1994: 58–107 describes the pedagogical context. For Platonic influence
on Philo, Maximus, and Galen, see Dillon 1977: 139–183; Trapp 1997: xxii–xxxii; and De Lacy
1972.
37The fact that he made any positive choice reveals something about the generic history of the
exact sciences: we noted the apparent absence of the desire for knowledge from any Hellenistic
mathematical works. As our survey was admittedly limited, we shall examine these texts in more
detail below.
38See, for example, the editorial notes on Harm. 3.3–5 in Barker 1989: 373–377; Taub 1993,
esp. 31–34; Feke 2009; Feke 2012; Tolsa 2013, esp. chapters 1–3. Like other Imperial writers,
of course, Ptolemy is not swept entirely away by those currents, but demonstrates a notable degree
of eclecticism; Feke 2009: 221 brands his philosophy ‘Platonic empiricism’.
39Hinds 1998: 40.
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here is merely a topos, that consideration requires two qualifications in view of
Hinds. First, Ptolemy is not quoting anyone. The exact form of the statement is
not formulaic nor found elsewhere, but is Ptolemy’s own. Second, Ptolemy re-
configures the key terms ἔρως, πο™έω, and ™εάομαι in a unique manner: a TLG
search produces Philo of Alexandria’s description of an ‘immense desire (ἔρωτι)
to see (™εά¢α¢™αι)’, immediately qualified as a πό™ον, as the only precedent for
those terms in such close composition.40 Unlike Philo, who in effect equates the
two desires, Ptolemy distinguishes ἔρως from the action of πό™ος by rendering the
former as the source of the latter. At least in its expression, then, Ptolemy’s desire for
knowledge is conceptually more developed than that of other authors. If the ‘desire
for knowledge’ is a topos, Ptolemy’s is not typical.

5 Ptolemy’s Platonic Enthusiasm

Indeed, by developing the expression so vividly in the Harmonics, Ptolemy can be
seen to be making a specific, textual allusion to Plato’s Phaedrus. That Ptolemy
should refer to Plato at all is not surprising, given the Athenian philosopher’s
contemporary prominence and, more specifically, his clear influence on Ptolemy.41

Up to now, however, this connection has received little attention from scholars
who have pursued other questions.42 But the passage is significant, for as will be
made clear, the allusion to the Phaedrus situates Ptolemy in an unexpected literary
context, and the nature of the allusion itself suggests something about his authorial
aspirations. Let us then examine how this allusion works.

The allusion operates on two levels: first, there is a lexical correspondence
between key terms from the Harmonics and the Phaedrus (in the absence of any
explicit naming of Plato or the dialogue, this is how we recognize the allusion at
all). The verb πο™έω is used four times in the dialogue: once by Socrates to invite
Phaedrus to ask if he desires anything (Phdr. 234c); twice to describe the mutual
desire of the lover and the beloved to be near each other (Phdr. 255d); and once
to describe a soul ‘full of desire’ (πο™οῦ¢α) that races wherever it hopes to ‘see’
( Kὀψε¢™αι) a beautiful boy (Phdr. 251e). Forms of ™εάομαι occur five times in the
dialogue, denoting the beholding of various objects: true things (Phdr. 247e); the
earthly namesake of beauty (Phdr. 250e); men of certain classes (Phdr. 271d); the
writings of great writers (Phdr. 258c); and, most important for our discussion, the
nature (γένος) of the earthy imitation of the forms of justice, temperance, etc. (Phdr.

40Ph. Praem. 38. The result followed TLG Advanced Lemma Searches for combinations of ����/
���¢
��/����/������/���
�›��, 	�™��/	�™��, ™������ occurring within one line of each other.
After Ptolemy’s Harmonics, the next instance is Ps.-Luc. Am. 53, perhaps from the early fourth
century.
41See nn. 36 and 38 above.
42Tolsa 2013: 84 briefly notes lexical correspondence between the Harmonics passage and the
Phaedrus.
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250b). The various inflections of ἔρως are used too frequently to account for all
instances here, but we may note that Socrates does call it ‘a god or something divine’
(Phdr. 242e: ™εὸς ἤ τι ™εῖον ὁ ῎Eρως).

Here I offer two observations: first, beyond the basic correspondence of in-
dividual words between the two texts, we also find several instances of cor-
respondence between word-groupings: thus, from the passages surveyed above,
compare Socrates’ statement in the dialogue that if not a god, ‘erôs is something
divine’ (τι ™εῖον ὁ ῎Eρως) with Ptolemy’s description of ‘divine erôs’ (ἔρωτος
™είου) in the Harmonics. Moreover, there is a strong correspondence between the
statement in the Phaedrus that souls ‘behold the nature’ (™εῶνται τὸ : : : γένος) of
the earthly imitations of the forms of justice, etc., and that found in the Harmonics
concerning the theorist’s desire to ‘behold the nature’ (τὸ γένος : : : ™εά¢α¢™αι) of
the harmonic power (nor should we overlook the fact that in both the Phaedrus
and the Harmonics, the objects whose nature is being regarded—on the one hand,
the forms of justice, temperance and the like, and on the other hand, the harmonic
power—are objects of pronounced beauty43). Lastly, while there is not the same,
precise lexical correspondence in the verbs of sense-perception, the statement in the
Phaedrus describing the soul ‘full of desire’ (πο™οῦ¢α), racing wherever it hopes to
‘see’ ( Kὀψε¢™αι) a beautiful boy, overlaps semantically with the phrase found in the
Harmonics concerning the theorist “desiring to behold” (πο™εῖν : : : ™εά¢α¢™αι) the
nature of the harmonic power.

The second observation is less obvious but critical for the present analysis: except
for three exceptions,44 all of the terms in the Phaedrus that correspond to those in
the Harmonics occur in Socrates’ second speech to Phaedrus (Phdr. 244a–257b).45

There he vividly describes the philosophical lover whom others think simply mad,
but whose madness is in fact inspired by a divine love (ἔρως). Socrates tells us that
prior to the lover’s present life, his soul had caught a glimpse of true beauty in
the course of its heavenly flight. Now embodied in the lover, it beholds the nature
of beauty and the concepts of justice and temperance, all manifest in young boys
(Phdr. 250b). Recollecting these true forms, the soul of the lover, now full of desire,
races toward wherever it hopes to see them (Phdr. 251e).

The account, brief as it is, should strike a familiar chord after the preceding com-
parison between the Phaedrus and Harmonics. The same passages that comprise the
account of Plato’s madman-lover are the same that were analyzed in the discussion
of lexical overlap, and my conclusion is by now obvious: I submit that Ptolemy
has shaped his theorist of harmonics—under the influence of divine love, desiring
to behold the nature of the harmonic power—specifically in the image of Plato’s
inspired lover. This, then, is the second level of Ptolemy’s allusion: the passage in

43See Feke 2009: 91–97 and Barker 2010 on beauty in Ptolemy’s Harmonics.
44Socrates asking whether Phaedrus ‘desires’ anything (Phdr. 234c); ‘beholding’ the writings of
great writers (258c) and men of certain classes (271d).
45Or, in the case of ‘divine erôs’ alone, in Socrates’ recantation, which introduces the speech.
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the Harmonics evokes not only Platonic language, but also a uniquely conceived
character from a particular dialogue.

6 The Phaedrus in Greek Imperial Literature

The choice of dialogue is itself significant in view of Ptolemy’s historical context.
In the second century the Phaedrus exerted an especially powerful influence over
textual culture.46 The text itself was widely read, providing a model for literary
style, and the dialogue inspired explicit engagement on the part of orators, writers
of narrative fiction, and, no less, Galen.47 Thus the impression of Michael Trapp:

It must have been hard for the pepaideumenos to emerge from his education, whether
rhetorical, philosophical, or both, without having been invited to study and admire this
dialogue, and without having come to regard it as a proper model for imitation in his own
literary products.48

The soul and passions of the madman-lover was itself a popular motif for
imitation and allusion.49 What is therefore interesting about its presence in the
Harmonics is that it nudges Ptolemy out of the apparent social isolation of the exact
sciences and into company with sophists, fiction-writers, and learned doctors.50

Ptolemy’s choice to allude to the dialogue’s madman-lover, then, may reveal more
about him as a prose-stylist than as an authority on harmonic theory.

To deepen our understanding of how the literary potential of the Phaedrus was
realized in the second century, let us consider how a contemporary prose-stylist
uses its language of eroticized psychology. Here we turn to Longus, author of the
narrative fiction we know as Daphnis and Chloe.51 The work opens with a narrative
conceit, itself reminiscent of the Phaedrus in its detail and narrative timing: in a
prologue, the narrator describes how inspiration to write the story seized him while

46A culture commonly referred to as the ‘Second Sophistic’, on which see Whitmarsh 2005.
47See De Lacy 1974: 6–8 and especially Trapp 1990, which includes an appendix that registers
allusions to the Phaedrus (including the ‘soul of the lover’) from numerous authors and works;
Ptolemy is not included. Cf. Hunter 1997; Hunter 2012: 151–184; and Rocca 2006 on Galen. Papy-
rological records from the CEDOPAL database (http://www2.ulg.ac.be/facphl/services/cedopal/),
accessed on February 17, 2013, corroborate the dialogue’s popularity in the Imperial period: out
of 105 fragments of Plato, 8 are from the Phaedrus (three of which, moreover, feature text from
Socrates’ second speech). This number is exceeded only by the Republic (13), Phaedo (11) and
Laws (10), but the Phaedrus’ tally is especially impressive given the substantially greater length
(and therefore, the greater odds of survival) of those other works.
48Trapp 1990: 141.
49For a sizeable list of allusions, see Trapp 1990: 172; to this we might add Gal. Nat.fac. K vol. 2,
p. 179.12–15.
50Feke and Jones 2010: 200–201 situate the Harmonics early in Ptolemy’s career; might its author
be Trapp’s young pepaideumenos, eager to demonstrate his rhetorical-philosophical education?
Tolsa 2013: 201–203 contends that Ptolemy frames another early work, On the Criterion, as a
rhetorical exercise.
51On date, author, and title, see Hunter 1983: 1–15.
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hunting in the picturesque, natural setting of a locus amoenus.52 There he happened
upon a richly evocative painting, the details of which he describes to the reader in a
tasting menu of sorts, featuring samples of the narrative delights that follow in the
course of the work:

Women giving birth, others dressing the babies, babies exposed, animals suckling them,
shepherds adopting them, young people pledging love, a pirates’ raid, an enemy attack—
I gazed in wonder (-!��
� �� ›�3 ™����¢��
�) at many other things, all of them erotic
(���
�›�), and a desire (	�™��) took hold of me to write in response to the painting
( (��
����4�� 
5 ���+5).53

Passing over the alluring details of the painting, we focus instead on the
narrator’s professed reaction to them. Like Ptolemy, Longus’ narrator describes
his motivation as desire operating in tandem with vision and erotic love (and
wonder, no less). Their conceptual vocabulary of motivation is thus essentially
the same, essentially Platonic. That Longus presents those concepts in a different
permutation does not undermine this.54 The point, again following Hinds, is that
allusion is not numb imitation, but entails some degree of creative refashioning.
Moreover, in Longus and other second-century authors, this refashioning entails
not only introducing evocatively Platonic language and concepts into new literary
contexts, but sometimes actually redefining what those concepts are, even to the
point of contrasting them directly with the Platonic original. In the above passage,
Longus appears to engage with Plato in a critical manner: Richard Hunter has argued
that the narrator’s ‘writing in response to the painting’ in fact gives voice to the
painting’s silence, thus the act tacitly contends with Socrates’ claim—again, from
the Phaedrus—that all writing and painting must remain forever mute.55 Similar
reconfigurations of Plato can be found in other authors of the period such as Plutarch
and Maximus of Tyre.56

7 Ptolemy’s Literary Ambition

Ptolemy’s choice of the Phaedrus is accompanied by a similar degree of literary
ambition. The allusion is more than an inert, merely imitative reference to Plato’s
madman-lover. It effectively reconfigures not only the expression of the topos of the
desire for knowledge, but also the very conception of the Platonic lover. Note, first,
that Ptolemy signals a figurative turn in the discourse with syntactical and lexical
cues. Although ostensibly making Platonic desire the logical result of theoretical
activity, Ptolemy renders the main verb of the clause in the potential-optative: ‘Since
it may follow (ἀ›όλου™ον ἂν εἴη) for one who has theorized on these matters : : : ’

52On the Platonic aspects of this opening, see Hunter 1997: 24.
53Longus Pr. 2, translation adapted from Reardon 1989: 289.
54In Longus’ account, for instance, vision prompts desire, whereas for Ptolemy the desire is to see.
55Hunter 1997: 28.
56See, respectively, Whitmarsh 2001: 47–57 and Tarrant 2000: 133–135.
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The effect is to situate the discourse in a hypothetical mood. Moreover, the language
of the allusion itself is richly metaphorical, describing both the feeling of desire with
an expression of divine love and the discernment of mental abstractions through the
activity of beholding. Furthermore, Ptolemy explicitly draws the reader’s attention
to that latter metaphor, qualifying the verb ‘to behold’ with an adverbial ‘as it were’
(ὥ¢περ).

This apology for the awkwardness of the visual metaphor is itself important,
because it foregrounds the fact that Ptolemy does not simply adduce the madman-
lover from the Phaedrus, but transforms it. Particularly in Socrates’ second speech
in the Phaedrus, Plato promotes the spectacle of beauty and the Forms, commu-
nicating his epistemology through metaphors of vision rather than other senses,
such as hearing.57 But the object that the theorist desires to behold is the ‘nature
of the harmonic power’—an abstraction perhaps more perceptible to the mind’s ear.
The upshot of Ptolemy’s harmonic theory, then, is to reconcile reason and auditory
perception: together they ascertain harmonic principles and the beauty manifest
in them.58 Through the allusion to the madman-lover of the Phaedrus, Ptolemy
fashions his harmonic theory according to a Platonic model but refashions the model
at the same time: consequent to Ptolemy’s treatment, the beautiful has been made
audible to the madman-lover.

Thus Ptolemy has creatively refashioned a memorable component of the Phae-
drus, but what is most telling about the allusion is what it does not do. Nothing of
Ptolemy’s literary treatment of the madman-lover is necessary for the larger project
of the Harmonics. As I noted at the outset, the allusion occurs in a transitional
section of second-order discourse: it does not present any theoretical or technical
content, nor does it explain such content, but serves only to fashion how the theorist
in general (and Ptolemy and his reader, in particular) may feel about that content.59

The allusion is thus extraneous to the overall presentation of harmonic theory.60

Instead, it draws comparison to literary practices typical of second-century sophistic
culture. Though authorial intentions ultimately lie beyond our grasp, we are left with
a strong impression that in presenting the allusion Ptolemy is trying to be interesting.

57For the general importance of sight and spectacle to Platonic philosophy, especially as they relate
to Plato’s wider cultural context, see Nightingale 2004.
58Ptol. Harm. 1.2.1–31. Cf. Barker 2000: 14–32 and Barker 2010.
59In this the allusion is unique in the Harmonics. It is also true that Ptolemy adduces another, more
general Platonic figure—the ‘philosopher’ (+��¢�+��)—into his discussion at 3.5.70, but this is
to illustrate further the concept of ‘harmonia’ (6������); see Barker 1989: 377n50. In this passage
Ptolemy does not use the philosopher to describe the practice of the theorist.
60In this it functions similarly to the ‘frame tales’ found in later mathematical commentaries
that present famous mathematicians (e.g., Euclid) in moralizing episodes. These ‘deliver not the
[mathematical] knowledge itself, but rather the way a mathematician is supposed to behave when
putting the knowledge to practical use’ (Asper 2011: 96). A fundamental difference, however, is
that Ptolemy is here not morally prescriptive, but emotionally so. He is idealizing the experience,
not the behavior, of the harmonic theorist.



96 J. Wietzke

8 Mathematical Psychologies Prior to Ptolemy?

How comfortably does the expression of the desire for knowledge, Platonizing or
otherwise, fit into the generic history of the exact sciences? The evidence surveyed
thus far suggests that Ptolemy is unique in this regard: texts from harmonics, astron-
omy, and mathematics in general were markedly absent from our TLG surveys.61

That search was restricted to certain defined phrases, of course, thus it will be worth
examining the texts themselves to uncover any other expressions that eluded the
TLG dragnet. However, any conclusions drawn from direct, textual examination
must yet be qualified by the fact that so much evidence is either lost or fragmentary,
but even the extant record reveals significant trends in authorial practice. Certain
of these already suggest that the negative result of the TLG searches will be
further confirmed. Reviel Netz, for instance, has observed an ‘inflation of style’
in Hellenistic mathematical writing, describing a gradual increase over time in the
extent to which mathematical authors position and justify themselves as authors
amidst a growing tradition of texts.62 If Netz is generally correct, then we should not
expect to find expressions of motivating desires among such earlier mathematical
authors as Euclid, Autolycus, and Aristarchus, since such statements are often found
in passages of authorial reflection. The second argument concerns the specifically
Platonic character of Ptolemy’s desire. It has often been observed that Hellenistic
mathematical authors, for instance, focused almost exclusively on mathematics, and
their writings typically betray little interest in other discursive practices.63 When
they do branch out, it tends to be into certain philosophical pursuits complementary
to mathematics, such as astronomy.64 By this account, Plato’s psychology of the
madman-lover might seem too far removed from actual mathematics to be of
interest to mathematical writers. Taking the above into account, we thus offer two
predictions: on the one hand, general claims of a desire for knowledge will only
be found as a later development in exact-scientific writing (i.e., in Archimedes and
after), if they are found at all; on the other hand, if such claims are made, they
will be of a different character than Ptolemy’s. The conclusion we shall arrive at
generally bears out these predictions: especially in comparison with authors from
the Hellenistic period, Ptolemy seems to have done something unique. What, then,
do we find among his predecessors?

We begin not with the work of formal mathematicians, but with Ptolemy’s
early predecessors in harmonics, whom Ptolemy divides into opposing groups: the

61Nicomachus’ Introductio arithmetica did register the expression ¢�+��� K7��8�� (1.2.3), but this
text is more a philosophical account of numbers than a presentation of geometric proofs (D’Ooge
1926: 16).
62Netz 2009: 92–107.
63Netz 1999: 306–311. Cf. Lloyd 1991: 369 and Taub 1993: 152.
64There are exceptions: below I examine Hipparchus’ ‘hybrid’ commentary on Aratus. But we
especially miss the lost works of the polymathic Eratosthenes, whose nonextant Platonicus, for
instance, might have offered interesting counterevidence. On this work see Geus 2002: 141–194.
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rationalist Pythagoreans and the empiricist Aristoxenians.65 The Pythagorean har-
monic tradition, exemplified by such figures as Philolaus of Croton or Archytas of
Tarentum, survives only in fragments. Consequently, any analysis of self-expression
in these authors is impeded by the bias of later writers who were more interested in,
and thus more likely to record, first-order discussions of doctrine than any second-
order statements on motivations. A survey of the fragments bears this out.66 But we
nevertheless do find testimony by Archytas that shows some reflection on harmonic
practice: Archytas deems those concerned with ‘mathematics’ (μα™ήματα, surely
to be understood quite broadly67) to have ‘discerned well’ (›αλῶς : : : διαγνῶναι)
harmonic phenomena.68 Note, however, that here Archytas’ focus is how those
practitioners operate (‘well’), not what motivates them to do so. The motivations
of those practitioners, as best as we can discern from our fragmentary evidence, are
not preserved in the foreground of the text.

The work of Aristoxenus, the foremost proponent and namesake of the empiricist
‘school’ of harmonics, if not exactly a mathematician, has fared substantially better
than that of the early Pythagoreans. Like the rationalists, however, Aristoxenus
only reflects on the theorist insofar as method is concerned.69 Regarding the
psychological effects of the study of harmonics, Aristoxenus does note that some
believe that ‘listening to a discourse on harmonics (ἀ›ού¢αντες τ Jα ἁρμονι›ά) will
make them not only experts in music (μου¢ ι›οί), but better in character (βελτίους
τὸ ἦ™ος).’70 But he is highly critical of this position, claiming that such individuals
have misunderstood (παρα›ού¢αντες) his statements concerning the limited effect
that music itself may have on the hearer.71 While Aristoxenus thus records a
contemporary interest in the psychological effect that even the theory of harmonics
may cause, he does not endorse it, nor does he specify any role that desire (or
something like it) for harmonic theory might play. In any event, he does not promote
an image of the harmonic theorist as one driven by a desire for knowledge. As far as
our limited, fragmentary evidence indicates, earlier discourses on harmonics offered
Ptolemy no positive, formal precedent for his presentation of the theorist.

Let us move on to texts that are more mathematical in form. As predicted above,
numerous works in Hellenistic mathematics and mathematical astronomy offer no
express characterization of the author or his motivations. These include the earliest
of the genre (all those ascribed to Euclid, Autolycus, and Aristarchus), as well
as later texts such as Hypsicles’ Anaphoricus and the astronomical treatises of
Theodosius. Their style is almost wholly impersonal, save for the conventional ‘I say

65Ptol. Harm. 1.2.
66See Barker 1989: 28–52.
67On the connotations of ‘mathematics’ and ‘mathematician’ in antiquity, see Lloyd 2012.
68Reported in Porph. In Harm. 56.5 Düring.
69He is especially interested in defining the proper domain of the science of harmonics: see Aristox.
Harm. 5.4–6.5 da Rios.
70Aristox. Harm. 40.14–16 da Rios, translation lightly adapted from Barker 1989: 148.
71Aristox. Harm. 40.16–41.2 da Rios.1 Cf. Barker 1989: 148n6.
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that’ (λέγω ὅτι), which is perhaps better understood as part of the formal structure
of proof than as the interjection of an authentic, authorial self.72 In all these the text
privileges the presentation of mathematical research over the researcher, and thus
there is little that they contribute to the discussion of expressions of desire.

Turning to Ptolemy’s mathematical predecessors who evince a more personal
style, we find no expression of desire in the terms that Ptolemy uses. Indeed,
there are few explicit remarks about that of which desire is the corollary, namely
beauty, but that beauty is not what we might expect. Consider how Apollonius
of Perga describes certain theorems of the third book of his Conics: ‘the third
[contains] many paradoxical (παράδοξα) theorems : : : of which most and the most
beautiful (›άλλι¢τα) are new’ (vol. 1, p. 4 Heiberg). Apollonius does not make
explicit what exactly defines those theorems as the ‘most beautiful’, and in general,
Hellenistic mathematical texts do not offer much overt reflection on questions of
aesthetics.73 But consider that Apollonius’ superlative, ‘most beautiful’, qualifies
a subset of theorems primarily described as ‘paradoxical’. Apollonius here seems
to imply that the most beautiful theorems are those that are most paradoxical, thus
implying a general aesthetic valuation of the unexpected (and the delight that it may
prompt). Netz’s recent work develops this notion that the Hellenistic mathematical
aesthetic is characterized by surprise and variation, most evident in the narrative
structures of mathematical texts, and which refract the ‘Callimachean’ aesthetic of
contemporary Alexandrian poetics.74 All of this amounts to a conception of beauty
that, at least as expressed on the textual surface, is different from the metaphysical
beauty exemplified by, say, Plato’s Forms, and it is this Platonic conception—and
the Platonic language—which Ptolemy adapts in his writings.

Given a beauty exemplified by a non-Platonic aesthetic of surprise and variation,
it thus makes sense that mathematicians do not profess to react to it like Plato’s
eroticized philosophers. We find instead, simply, Hypsicles being ‘charmed’ (1.12
Stamatis: ἐψυχαγωγή™ην)75 by a problem of Apollonius, with no further comment.
Further TLG searches indicate the term itself is a common feature of prose discourse
from the Classical period onward; it does not evoke a particular author or text
as did Ptolemy’s expression. This leads to a general point about the Hellenistic
mathematician’s attitudes toward his subject: they are sometimes expressed in the
text, but only in a passing, unmarked way. For instance, Archimedes, Eratosthenes,
and Apollonius occasionally indicate their addressees’ or predecessors’ zeal for

72Netz 1999: 256.
73It is telling that a recent historical survey of mathematical aesthetics passes over Hellenistic
mathematics entirely, leaping from Aristotle to Augustine (Sinclair and Pimm 2006: 4–5). On the
beauty of mathematical objects in this context, see Netz 2005, esp. 282–283, and the next note.
74Netz 2009; cf. Netz 2005 and 2010. For similar studies of a similar aesthetic outside Greek
mathematics, see Müller-Hill and Spies 2011: 266–268 and Schattschneider 2006.
75By Hypsicles’ time, as in our own, a term whose semantics had stretched to include more
figurative meanings.
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mathematics using cognates of ¢πουδή, φιλοπονία, and φιλοτιμία.76 They do not
elaborate on these terms, however, nor is the language unique to the mathematical
genre. As with cognates of ψυχαγωγία, TLG searches show that such expressions
of zeal are common in Greek prose from the fourth century onward.77 The key
point is that Hellenistic mathematicians do register psychological motivations and
attitudes in the text, but they only just register them. The motivations are presented
in such a way that they do not stand out relative to other texts. For Hellenistic
mathematicians, then, reactions to mathematics are not in themselves exciting. As
Netz has shown, the excitement is to be unveiled—voilà!—in the mathematics. An
enthusiastic reaction to them almost goes without saying.

Ptolemy is different. But the difference between Ptolemy’s attitude and his
forerunners’ is not simply the expression of desire. This becomes clear upon
examining the one extant work of Hipparchus, the second-century BCE astronomer
whom Ptolemy elevates in the Syntaxis as an important predecessor. Hipparchus’
Commentary on the Phenomena of Aratus and Eudoxus is, of course, several steps
removed from mathematics: it is both a commentary on Aratus’ hexameter poem,
the Phenomena, which was based on Eudoxus’ astronomical treatise of the same
name, and a critique of another commentary on the same poem by one Attalus
of Rhodes.78 But given Hipparchus’ importance to mathematical astronomy and
to Ptolemy, in particular, it is an appropriate inclusion in the survey. And, as it turns
out, an informative one: Hipparchus begins his treatise by addressing one Aischrion
as follows: ‘From your letter I gladly took note of your continuing propensity toward
curiosity (φιλομα™ίαν)’ (Hipparch. 1.1.1). The theme of his addressee’s curiosity or,
more literally, his ‘fondness for learning’, is one that Hipparchus returns to again in
the course of the preface, though he does not develop the idea beyond generalizing
it, in participial form, to designate his wider readership.79 The group of those who
show commitment to astronomical theory is thus defined by the claim of a shared
feeling (‘fondness for learning’). This fondness thus functions in Hipparchus’ text
somewhat differently than zeal did in the mathematical writings surveyed above, in
which the latter was always assigned exclusively to individuals. We may observe,
on the other hand, that Hipparchus’ fondness resembles Ptolemy’s desire in two

76¢	��!�: Archim. Method vol. 2, p. 71, col. 1.33–34 Netz et al.; Apollon.Perg. Con. vol. 1, p. 2
Heiberg. +��	����: Archim. Spir. vol. 2, p. 2.18 Heiberg; Eratosthenes, at Eutoc. In Archim. Sph.
Cyl. 90.4 Heiberg (authenticity defended by Knorr 1989: 131–146). +��
����: Apollon.Perg. Con.
vol. 2, p. 2 Heiberg. In Toomer’s translation of the Arabic copy of On Burning Mirrors, Diocles
affirms that using gnomons requires ‘care’ (Toomer 1976: 42), which may have been ¢	��!� or
something similar in the lost Greek original. The letter-form itself seems a natural vehicle to convey
this attitude, since authors frequently offer their work expressly as the fulfillment of an eager
correspondent’s personal request for more mathematics.
77The same language even expresses the attitudes that euergetic Hellenistic kings and their
subjugated polities show toward one another: see Ma 1999: 191.
78On the hybrid form of this work, see Netz 2009: 168–171.
79Aischrion’s +����™��: Hipparch. 1.1.5; ‘those who are fond of learning’ (
)� +����™���
��):
Hipparch. 1.1.6, 1.10.25.
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ways: first, with respect to the previous point, Ptolemy also described a feeling as
the general condition of theorists in the exact sciences (including, we may infer,
both himself and his reader); second, simply, Hipparchus’ fondness and Ptolemy’s
desire convey the same basic idea.

Still, there is an important qualitative difference between φιλομα™ία and
Ptolemy’s erotic desire. The former and its cognates, while they may have found
their first flowering in the Platonic corpus, are widely found in other philosophical,
rhetorical, geographical, medical, and historical authors from the fourth century
BCE onward.80 Thus φιλομα™ία seems to be better classified as another species of
the ‘common’ genus of the desire for knowledge. On the other hand, I have argued
that Ptolemy’s expression entails specifically Platonizing connotations, but it also
proves an opportunity for reconfiguring a Platonic concept in a manner typical of
second-century literary stylists. Hipparchus’ fondness for learning does not really
compare.

Ptolemy’s desire stands without precedent in the exact sciences through the
Hellenistic period. In the early Imperial period we can only grasp blindly for ev-
idence: interest in mathematics did not vanish entirely,81 but creative mathematical
activity appears to have dried up.82 One important witness survives, however, in
Menelaus, an astronomer-mathematician of the late first century CE, apparently
active in Rome, whose observations Ptolemy cites in the Syntaxis.83

Menelaus no longer speaks for himself, however: what remains of his work only
survives in the Arabic tradition. Thanks to Abū Nas.r Mans.ūr ibn ‘Alı̄ ibn ‘Irāq,
active around the turn of the first millennium,84 we have essentially a complete
translation of Menelaus’ Sphaerica, a three-book treatise on spherical geometry.
In the preface to this work, Menelaus appears to exemplify some of the literary
practices described so far. Here I translate Krause’s German text into English,
referring as well to key phrases transliterated from the Arabic85:

I know what lies in the proofs to make the soul receptive to them, and especially [the part] of
those [proofs] in which there is beauty and to which belongs what the soul loves and desires
(was die Seele liebt und begehrt: wa kāna mimmā tuh. ı̄bbuhū al-nafsu wa-taštahı̄hi). One
can, if he loves learning (wenn er Belehrung liebt: muh. ibban li-t-ta‘lı̄mi), make these things
an instrument and build corollary theorems and problems out of them (117–18 Krause).

80The term appears frequently in the Phaedo and Republic, less so in the Phaedrus, Timaeus, and
the Laws. Other Classical and Hellenistic instances include X. An. 1.9.5; Isoc. 1.18; Arist. EN.
1175a14; Plb. 1.2.8, etc.; Ps.-Scymnus 63; Aristeae.Ep. 1.6; Apollon.Cit. 3.15 Schöne. On its use
especially in scientific texts, see Alexander 1993: 59, 100.
81This is the period of the philosophizing compiler Nicomachus: see n. 61 above. Cf. Cuomo 2000:
9–56 on the public profile of mathematics in the first centuries CE.
82This is the period Netz 1999: 284 describes as ‘a wilderness between two deserts’.
83Syntaxis part 2, pp. 30 and 33 Heiberg; apparently the same Menelaus is present for the dialogue
in Plutarch’s De facie (930a).
84See further Krause 1998: 109–111.
85I am grateful to Alexander Key for his expertise and assistance on points of Arabic philology,
which emerge in the following paragraphs.
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Philological methods can only penetrate so far through layers of translation,
but here I make a few observations. It seems clear that some form of the desire
for knowledge underlies the phrase ‘if he loves learning’, and we can even offer
a plausible reconstruction. The root of the verb muh. ibban, h. bb, typically denotes
a generic, unmarked kind of love, consistent with the Greek root φιλ-; more
emphatic expressions are often built on the root š-h-y, such as we find in the
foregoing description of the soul’s ‘desire’ (wa-taštahı̄hi). It seems a reasonable
conjecture, then, that Menelaus’ original expression featured some cognate of
φιλομα™ία. Indeed, we find that the Arabic translation of Aristotle’s Nicomachean
Ethics 1175a14, roughly contemporary with Abū Nas.r,

86 renders ὁ φιλομα™ής as
al-muh. ibb fı̄ ‘t-ta‘lı̄m, 87 a phrase almost identical to Abū Nas.r’s expression.88

The difference seems due simply to the definite article, present in Aristotle’s text
and plausibly lacking from Menelaus’. For the latter, it is easy to imagine either
a participial or adjectival cognate of φιλομα™ία, perhaps in the dative case as part
of an impersonal construction. It seems clear enough, then, that Menelaus’ theorist
of spherical geometry should feel a desire for knowledge—but was it a Platonizing
desire?

This is harder to ascertain, but some plausibility lies in the expression of ‘[the
part] of those [proofs] in which there is beauty and to which belongs what the
soul loves and desires (was die Seele liebt und begehrt: wa kāna mimmā tuh. ı̄bbuhū
al-nafsu wa-taštahı̄hi)’. Krause noted that the account of beauty and the loving
and desiring soul features Quranic overtones.89 This probably does not indicate
an interpolation by Abū Nas.r, but it could be an instance of an artful and learned
translator seizing an opportunity to draw his source material closer to a work of
high cultural value. But the very same elements, if found in the Greek, would fit
well in a Platonizing expression, and the language calls to mind the Phaedrus.
The first-century CE Menelaus is active within the period when we expect this
to occur, and if the expression ‘loves and desires’ faithfully transmits a duplex
structure in Menelaus’ original, it is again plausible that one of those terms might
have been a cognate of ἔρως (though other Greek terms of ‘desire’ could just
as well have comprised the original). It is at least a possibility, then, that in the
Sphaerica, Menelaus featured a Platonizing expression for the desire for knowledge.
Ptolemy is perhaps then neither the only nor the first author in the exact sciences to
exemplify such passion. Lacking Menelaus’ Greek, we cannot determine whether
he likewise might have anticipated Ptolemy in creatively refashioning his source
material. Even without that final flourish, however, the evidence of Menelaus
encourages us to speculate that in the Imperial period, and in contrast to generic

86The extant manuscript is itself dated 1222 CE, but the translation apparently dates to the ninth or
tenth century: see Akasoy and Fidora 2005: 1–2.
87Akasoy and Fidora 2005: 544n91.
88Does this indicate a convention shared among translators for rendering +����™- into Arabic?
89Krause 1998: 117n5.
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precedents, the mathematical sciences kept pace with contemporary prose genres
by conceptualizing theoretical motivations according to a Platonizing aesthetic.

9 Ptolemy’s Timely Desires

In drawing this paper to a close, let us consider what insights we have gained
through our examination of Ptolemy’s desire for knowledge. That the desire for
knowledge is fundamental to human nature? This much was assumed at the outset.
Heisenberg could have been just as certain that Ptolemy, like Einstein, must have
felt something that moved him toward mathematical investigations, and I can make
no claim to revealing anything new about Ptolemy’s psychology unless I should
first prove or disprove his humanity. But what was the ‘something’ that Ptolemy
felt? There should be no surprise at the basic fact that expressions of the desire
for knowledge are shaped by culture; in this it is a desire like any other. But I
hope to have shown in this essay that the shapes themselves are significant and
invite philological and historical analysis. Heisenberg confesses his ‘attraction’:
this is the expression of desire as an impersonal force at perhaps its utmost
demystification, a mere ‘drawing towards’, even when its object is beauty. Is it a
sign of Heisenberg’s times? He is certainly no second-century Platonizer ‘in the grip
of a divine Eros’. In the expression of psychological motivations, then, we find one
salient difference (among many) between Heisenberg and Ptolemy. I have argued
that similar differences, traced along generic and chronological lines, prevailed in
Greek literary culture from the Classical period through the Imperial, and have
explicated how some of these differences were significant. Focusing on Ptolemy,
I examined the manifestation and significance of the Platonizing expression of the
desire for knowledge in Imperial literary culture, and how the forms and processes
of creative reconfiguration it entails serve as points of continuity between exact-
scientific works and texts in other prose genres. In doing so, I promoted a view
of Ptolemy, in particular, as something of a prose-stylist. This paper began by
considering Ptolemy’s apparent isolation from his wider culture, and now it closes
by qualifying that isolation: Ptolemy’s activity in a specialized genre may have been
directed toward and received by a specialized readership, but the motivations he
expresses for engaging in that activity and the creative manner in which he expresses
them are nevertheless founded in the wider literary culture of his time.
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Pyŏng-Gil in Korea
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Abstract

Transmission and interactions among different types of geometrical argumen-
tations constitute some of the most interesting stories in the history of East
Asian science and mathematics. Since the early years of the seventeenth century,
the Chinese began to learn European science and mathematics introduced by
missionaries and incorporate these into translations and into their own works. At
first, Euclid’s Elements, with its hypothetico-deductive structure, was translated
in early 1600s. However, one of the most influential mathematical treatises in
late imperial China and in contemporary Korea, the Shuli jingyun (Essential
Principles of Mathematics, 1723), was composed as a synthesis of all the Chinese
and European mathematical knowledge that was available to the Qing emperor
Kangxi (r. 1662–1722) himself and his royal mathematicians. A section in this
mathematical compendium is entitled “Jihe yuanben” (Elements of geometry),
which does not refer to the first Chinese translation of Euclid’s Elements bearing
the same Chinese title. It is actually taken from lecture notes written by the
French Jesuits Jean-François Gerbillon and Joachim Bouvet when they taught
mathematics to Kangxi in the 1690s. These notes were in turn based on the
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French geometry textbook Elémens de Géométrie by the Jesuit Ignace-Gaston
Pardies.

The style of argumentation in Pardies’ text is to give quick and easy
explanations that appeal not entirely to the rigour of logic but to the intuition of
the reader, and this pedagogy was used by Gerbillon and Bouvet in their lecture
notes, which was later compiled into the Shuli jingyun. Some cases can be found
to show this style of argumentation. For the volume of pyramids, basically the
argument is that a cube could be cut into three “pointed solids”, so the latter’s
volume was one third of a cube, and then the volumes of all other pyramids and
cones could be calculated by the same procedure, because pointed solids with
equal base areas and equal heights would have equal volumes. For the relation
between the surface area and the volume of the sphere, the reader is asked to
imagine that the sphere is composed of “millions of tiny cones” whose bases are
parts of the surface of the sphere, and whose heights are equal to the radius of
the sphere.

The Shuli jingyun was transmitted to Korea shortly after its publication, and
its influence can be seen on many cases, including the arguments on the volume
of different kinds of pyramids and that of the sphere written in the Korean
commentary for the Jiuzhang suanshu (Nine Chapters of Mathematical Art).
The Korean commentator Nam Pyŏng-Gil intentionally replaced the traditional
Chinese commentary on the two problems with his explanations that appeal
mainly to intuition. This very style and its transmission is an interesting example
of how mathematicians in pre-modern China and Korea chose their ways of
composing texts and arguing mathematical propositions.

1 Introduction

The first Jesuit to enter China, Matteo Ricci (1552–1610), arrived at Macao in
early 1580s. He has come down in history as the “founding father” of the Jesuit
mission in China.1 For the first two centuries of the Jesuits’ presence in China, since
1582, they put their science in the service of the evangelisation: the knowledge and
know-how that they displayed enhanced the prestige of Christianity and served to
attract the patron of some officials and that of the imperial state (Jami 2012, p. 13).
They had first presented science as forming a coherent whole with the Catholic
religion, a whole that was sometimes referred to as “heavenly learning” (tianxue天
學), which included various topics taught in Jesuit colleges as well as the Catholic
religion itself. However, what had been received by Chinese scholars, known as
the “Western leaning” (xixue西學), comprised mainly astronomy and mathematics
(Jami and Han 2003). In the seventeenth and eighteenth centuries, many texts related
to “Western” mathematics written in Chinese or Manchu by Jesuit missionaries or
Chinese scholars, were composed and often published. Those texts had a significant

1See, for instance, Spence (1984).
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impact on the Chinese literati who were versed in the subject. Some of those texts
were also brought to the possessions of scholars in other parts of East Asia.

For some of China’s neighbouring countries, such as Korea, the transmission of
Western learning was mainly based on Chinese sources. Unlike Japan, into which
the Jesuits were allowed to enter in the sixteenth and seventeenth centuries, Korea’s
Chosŏn 朝鮮 Dynasty (1392–1910) before the nineteenth century never willingly
allowed Westerners to enter their country.2 The Chinese sources about Western
learning also shaped the development of Korean mathematics from the seventeenth
to the nineteenth centuries.3 Two interesting questions can be asked in this context.
First, what parts of European mathematics were included in these Chinese texts and
later studied and used by Koreans? And more importantly, what styles of problem
solving and mathematical argumentations can be found in Korean texts after these
Chinese texts containing Western knowledge had been acquired?

The topic on the styles of argumentations is one of the particularly interesting
issues in East Asian mathematics. In 1607, the first six books of Christopher
Clavius’ edition of Euclid’s Elements, translated by Ricci and Xu Guangqi 徐光
啟 (1562–1633) with the title Jihe yuanben幾何原本 (Elements of Mathematics),
was published in Beijing.4 Ricci and Xu’s translation was highly praised by many
Ming and Qing mathematicians.5 However, there is another mathematical text that
was also influential in the Qing period. In the eighteenth and nineteenth centuries,
one of the most influential mathematical texts in China was the Yuzhi Shuli jingyun
御製數理精蘊 (Essential Principles of Mathematics, Imperially Composed, 1723),
from here on abbreviated as the Shuli jingyun. It also includes a substantial section
whose title, Jihe yuanben, is exactly the same as that of Ricci and Xu’s translation
(Guo 1993). At first glance, this version of the “Elements” also talks about Euclidean
geometry, but its styles of writing and composition are very different from those in
Ricci and Xu’s translation of Euclid’s Elements. Some research questions naturally
arise from this observation: What are the sources for the compilation of this Jihe
yuanben? Logically speaking, how are its styles of argumentation different from that
of Euclid’s Elements? And what are its influences on the styles of argumentation
by Korean mathematicians, who depended on Chinese sources for the study of

2For the transmission of astronomical and mathematical knowledge into Japan by the Jesuits, see,
for instance, Horiuchi (2010), pp. 6–7.
3The reader may refer to, for example, Guo (2009), pp. 38–46, 74–75.
4See Engelfriet (1998). The term “jihe” 幾何 in classical Chinese does not originally mean
“geometry” as the term is meant in modern Mandarin. In classical Chinese the term simply means
“how many/much”. In ancient Chinese mathematical texts, a question usually ends with this term
“jihe”, so Ricci and Xu used it to represent “mathematics”. However, when the French Jesuits
compiled their lecture notes according to Pardies’ Elémens de Géométrie (see below) in late
seventeenth century, they also named it the Jihe yuanben. So for this later text, jihe is indeed
used to mean “geometry”. See Tian (2003), pp. 26–38.
5For the influence of Ricci and Xu’s translation of Euclid’s Elements, refer to, for instance, Mei
et al. (1990), pp. 53–83.
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Western learning? In this article, I will discuss the sources and give some examples
of geometrical propositions to give partial answers to these questions.

2 Sources and the Style of Argumentations of “Elements
of Geometry” in Emperor Kangxi’s Shuli jingyun

As mentioned before, Ricci and Xu’s translation of the first six books of Euclid’s
Elements was published in 1607. Generally speaking, the style of argumentation
in Ricci and Xu’s translation, as in Clavius edition and in the original Greek text,
is to give justifications to the legitimacy of constructions, or observed relations
among components, of a diagram within a system, the conventions and rules of
which have been stated in the definitions, common notions and postulates at the
beginning of each book (Jami 1996, p. 190). However, this text and its styles
of argumentation were not included in emperor Kangxi’s 康熙 (r. 1662–1722)
mathematical compendium.

Kangxi’s mathematical compendium, the Shuli jingyun, is the mathematical
section of the Lüli yuanyuan律曆淵源 (Source of Pitch-pipes and the Calendar),
an even greater compendium of mathematics, astronomy and musical harmony.
The creation of the Lüli yuanyuan was part of Kangxi’s policy of appropriation
of Western knowledge. During the early years of Kangxi’s reign, Yang Gunagxian
楊光先 (1597–1669) lead attacks on the Jesuits who worked in the Astronomical
Bureau (Qintianjian 欽天監) on the grounds of both astronomical calculations
and divination, which took away the Jesuits’ favours among the young emperor’s
Manchu regents, and lead to the 1664 impeachment. This is the famous “Calendar
Case” (Li yu曆獄). The verdicts of this case were later revoked in 1669, partly due
to the erroneous calculations given by Yang and his team after they took over the
Astronomical Bureau, but mainly thanks to the Jesuit Ferdinand Verbiest (1623–
1688) with his correct astronomical observations and predictions. Kangxi himself
was shocked by the incompetence of his Chinese astronomers, who failed to help
the emperor of his imperial duty of granting a correct calendar and of securing the
harmony between the heavens and human life. And that could have vital threats to
the new empire which had ruled China proper for only a few decades.6 The calendar
case was one of the reasons that prompted Kangxi in his own studies of Western
learning, and his wishes to compile that knowledge into a new compendium for the
foundation of his empire (see Han 1996).

In 1713, a group of young scholars versed in mathematics was brought together
in the newly founded Office of Mathematics (Suanxue guan算學館) under the im-
perial patronage of Kangxi. The reason to establish such a place was Kangxi’s desire
to have an institution independent of the Astronomical Bureau in which the Jesuits
worked. On the one hand Kangxi believed that the study of astronomy should not be
mixed with the Europeans’ mission to convert the subject of his empire, and on the

6For this calendar case, the reader may refer to Huang (1991). Or refer to Chu (1997).
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other hand he wanted the empire to have a firm foundation of scientific knowledge
that was not dependent on the skills of foreigners. One major purpose of the Office
of Mathematics was to compile the Lüli yuanyuan.7 The Office was supervised
by Prince Yinzhi 胤祉 (1677–1732), Kangxi’s third son, and the mathematicians
He Guozong 何國宗 (late-17th c–1766) and Mei Juecheng 梅 成 (1681–1763,
a grandson of Mei Wending’s) were the main editors of the whole compendium.8

Eventually the Shuli jingyun was composed as a synthesis of all the European and
Chinese mathematical knowledge that was available to Kangxi himself and to his
court mathematicians.9 Soon after its publication in 1723, the Shuli jingyun became
the most important source for Chinese scholars who were interested in Western
mathematics. As a matter of fact, it remained a compulsory text for mathematical
instruction until the middle of the nineteenth century (Horng 1993).

The Shuli jingyun is divided into First Half (Shang bian上編) and Second Half
(Xia bian下編). The second to the fourth volume (juan卷) of the First Half is the
Jihe yuanben (Guo 1993, pp. 20–141). Many studies have shown that the contents of
this Jihe yuanben mainly came from the lecture notes written by the French Jesuits
Jean-François Gerbillon (1654–1707) and Joachim Bouvet (1656–1730) when they
taught mathematics to Kangxi as his court savants in the 1690s. These notes were
in turn based on the French geometry textbook Elémens de Géométrie by the Jesuit
Ignace-Gaston Pardies (1636–1673).10

If one tries to compare the structures of Pardies’ Elémens, Gerbillon and Bouvet’s
lecture notes, and the Jihe yuanben in the Shuli jingyun, then one would find that
the majority of the mathematical contents are identical. All topics, except for the
progressions and logarithms in Book Eight of the Elémens, were translated into the
Jesuits’ lecture notes and later compiled into Kangxi’s compendium (Liu 1991, pp.
88–96). Pardies’ intention with the text was clear from its full title: “Elements of
Geometry, in which by a short and easy method one can learn all one should know
about Euclid, Archimedes, Apollonius, and the most beautiful inventions of ancient
and new geometers”. And he points out in his preface the difficulties in studying
Euclid:

Maybe, after all, people will think I write things down only in an abbreviated form, & that
this Geometry can serve as a memorandum to those who already know this science, but
not as an instruction for those who want to study it. I say that this is very remote from my
intention, which was never to make an epitome; I always intended to make a Geometry
that could be used to those who begin, and in which even those who have never heard of
Mathematics could learn in very little time not only what is most necessary in Geometry,
but also what is most elevated [ : : : ] For it should be noted that one of the things that make
the reading of Euclid and of ordinary Authors difficult and boring, is that in the rigorous
exactness that they have put to let nothing that can be proved pass without proof, easy
as it may seem otherwise, it often happens that what would have been clear if one had

7Han (1999). Also refer to Han (2008), pp. 967–986.
8Jami and Han (2003). And refer to Han (2003).
9See Han (1995), pp. 87–127. Or refer to Jami (2004), pp. 92–93.
10See, for instance, Han (1993), pp. 1–10; or Jami (1996).
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been content with proposing it to the mind, as it naturally appears, becomes difficult and
embarrassed, when one wants to reduce it to demonstration. 11

Indeed, if one reads this text, one would find that Pardies does not differentiate
definitions from propositions, and most statements were simply given without any
justification, because “they naturally appeared clear” (Pardies 1673).

Pardies’ pedagogy can be categorised as an “intuitive” approach in mathematics
education. The notion “intuition” is usually used in different ways in the philosophy
of mathematics community and by mathematicians or mathematics educators. The
notion of intuition is certainly a topic of debates in the philosophy of mathematics
community. One of the most intriguing and controversial suggestions in philosophy
of mathematics, raised by the famous logician Kurt Gödel, is his realism in the
sense that mathematical objects, such as numbers or objects of set theory, may
exist independently of our constructions, that we have “intuition” (or something
like a “perception”) of these objects, and that the axioms of those objects “force
themselves on us as being true”. Thus for Gödel, our “intuition” of mathematical
objects is the entrenched beliefs about them.12 However, in this article the term
“intuition” is not used in the Gödelian sense, but in the same sense as many
mathematicians and mathematics educators use it. For them the term usually means
a revelation or understanding about a mathematical proposition, achieved through
mental manipulation about certain mathematical objects, or simple observation of
some physical representations of those objects.13 When a person has an “intuition”
about some proposition, it does not guarantee that she know its proof in the strict
sense. It does mean that the person has some idea about why the proposition is
true, or false, in a system. We shall see several examples in this paper about how
an “intuitive” approach of mathematical arguments is done in Pardies’ and some
mathematicians’ works in East Asia.

Pardies’ pedagogy of putting emphasis on intuition over the method of synthesis
was not unique in the seventeenth century. In fact, his Elémens was but one of
dozens of textbooks produced in Europe in that century that employed intuition,
numerical thinking and the analytic method instead of adhering to Euclid’s ways
of organising knowledge in geometry (Karpinski and Kokomoor 1928; Kokomoor
1928).

The French Jesuits Gerbillon and Bouvet made good use in their lecture notes of
that seventeenth-century trend in pedagogy of geometry and criticism on Euclid’s

11The English translation of Pardies’ title and preface is quoted from Jami (1996), pp. 187–188.
12For a general overview of Gödel’s notion of intuition, the reader can refer to Shapiro (2000), pp.
202–211. A noteworthy discussion is in Parsons (1979), pp. 144–168.
13About how mathematicians describe their “intuition”, the reader can refer to Burton (1999).
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Elements.14 In fact, the preface to the Chinese edition of their lecture notes begins
as follows:

幾何原本
數源之謂,利馬竇所著.因文法不明,後先難解,故另譯.15

乃度數萬物之根本[ : : : ]由得圖形而明情理,不求講解而得其詳論也.16

The Elements of Mathematics
[It] means the origins of [the methods of] numbers. It was written by Matteo Ricci. Since

it is unclear in its composition and it is difficult to elucidate what comes later from what
comes first, [we have made] another translation.

is the fundamentals for understanding numbers and a myriad of things. [ : : : ] From the
diagrams [we] have, [we can] elucidate the conditions and reasons. [We] do not seek to
explain in words but [we may] obtain detailed arguments.

Thus the style of argumentation in the lecture notes, and subsequently in the
Shuli jingyun, appeals more to intuition than to rigour. In what follows, two groups
of examples, one about the volumes of pyramids and cones and the other about the
relation between the volume and surface area of a sphere, will be used to discuss
the style of argumentations in the Jesuits’ texts, in the Shuli jingyun, and also in a
Korean source that will be mentioned in the next section.

Articles 32 and 33 in Book Five of Pardies’ Elémens give the following
statements without proof: “Pyramids and cones on equal bases, and contained in
the same parallels, with prisms and cylinders, are one third of such prisms and
cylinders”; “Every sphere is equal to a cone whose perpendicular axis is the radius
of the sphere, and its base a plane, equal to all the convex surface of it” (Pardies
1673, p. 55). For these two propositions, and in fact for most other propositions,
Gerbillon and Bouvet did add some explanations for them in the lecture notes.

Pyramids and cones are summarily called “pointed solids” (jianti 尖體) in the
Chinese mathematical vocabulary in late imperial China. In Gerbillon and Bouvet’s
lecture notes, Article 27 of Volume 5 states:

有各種平行底之平面體,各種平面尖體.此底積與彼平行底之平面體底積若等,其高
數又若等,則此一平行底之平面體與彼平面尖體三形之積等.再有平行底之圓面體,
又有圓面尖體.此底積與彼平行底之圓面體底積若等,其高數又若等,則此一平行底
之圓面體與彼圓面尖體三形之積等. 17

Suppose there are various kinds of planar solids with parallel bases (prisms), and various
kinds of [corresponding] planar pointed solids (pyramids). If the base area of this [pointed
solid] is equal to that of the [corresponding] planar solid with parallel bases, and the measure

14Gerbillon and Bouvet’s lecture notes were written both in Manchu and in Chinese, but according
to Liu (1991), the structure and contents are essentially identical. So in this paper, only the Chinese
version is discussed.
15This is a row of smaller characters, indicating that the authors were self-commentating on the
title Jihe yuanben. Therefore the translation of this row is also written in smaller fonts.
16Rare book MS no. 06399, juan 1, p. 1, National Central Library, Taipei. Classical Chinese was
usually written without punctuations before the twentieth century. All the modern punctuations in
the quotations of classical Chinese in this paper are mine, for the convenience of the reader.
17Rare book MS no. 06399, juan 5, pp. 15–16, National Central Library, Taipei.



114 J.-M. Ying

of [their] heights are also equal, then [the volume of] this planar solid with parallel bases is
equal to the volume of three of that planar pointed solids. Again, suppose there are various
kinds of circular solids with parallel bases (cylinders), and various kinds of [corresponding]
circular pointed solids (cones). If the base area of this [pointed solid] is equal to that of
the [corresponding] circular solid with parallel bases, and the measure of [their] heights are
also equal, then [the volume of] this circular solid with parallel bases is equal to the volume
of three of that circular pointed solids.

Basically, the statements in this lecture note is not very different from it source
in Pardies’ text. After the statements and several examples represented in diagrams,
Gerbillon and Bouvet ask “Why is it the case?” (heze 何則), as in most other
propositions in the text. They gave two justifications for this proposition. The first
reads:

從一角分為三平面尖體.此三平面尖體因其底積高度相等,照前節所云俱為等也. 18

From one angle [we can] divide [a prism] into three planar pointed solids. Because these
three planar pointed solids have equal base and height, according to the previous article, they
are all equal.

The strategy they used is to try to convince the reader that one can divide a prism
into three pyramids with equal base and equal heights, but this is only possible if
the prism is a cube. Thus in this case, Gerbillon and Bouvet are asking the reader to
believe that a procedure for the simplest case is good enough for all cases in general.

The second strategy they used is a more “hands-on” approach:

又將各體照實形做空形,於此空形用水以比例之,其各體之積自然可得而知矣.19

And [we] make empty shapes according to the actual shapes of the solids, and use water
to [measure their] proportions. [Then] the volume of each shape can naturally be known.

The term “empty shapes” (kongxing 空形) refers to vessels. So, the second
method they used is to create vessels and measure their capacity, using real objects to
convince the reader about the relations between pyramids and prisms, and between
cones and cylinders.

The same article in the Shuli jingyun describes the proposition in a virtually
identical wording. However, the strategy of demonstration is somewhat different:

如將上下面平行之各體,以木石為之,分作同底同高之各平底尖體.用權衡以較其份
量,則各體之積分自昭然可見矣 (Guo 1993, p. 59).

If [we] take the various solids with parallel upper and lower bases (prisms), and make
them with wood or stones. [And we] make respective pointed solids with flat bases and with
the same bases and the same heights. Use the scale to measure their weights, and then the
volume of each of the solids is naturally elucidated.

As the reader can see, this is again a “hands-on” approach, but this time it
does not use vessels and water, but wooden or stone models to demonstrate the
proposition to the learner.

18Ibid., p. 17.
19Ibid.
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Fig. 1 The sphere and a cone whose volume is equal to the sphere

As for the second group of examples, about the relation between the volume and
surface area of a sphere, intuitive argumentations are also used in both the lecture
notes and in the compendium.

In Gerbillon and Bouvet’s lecture notes, the proposition is stated in what follows:

有一球體,又一尖圓體.苟尖圓體底面積與球體外面總積若等,而尖圓體高度與球體
半徑又若等,則此一尖圓體之積為與一球體之積等也. 20

There is a sphere, and a pointed circular solid (cone). Suppose the base area of this
pointed circular solid is equal to the surface area of the sphere, and the height of the pointed
circular solid is again equal to the radius of the sphere. Then the volume of this pointed
circular solid is equal to the volume of the sphere.

The statement is followed by descriptions of diagrams of a sphere and a cone.
The reader may refer to Fig. 1 (reproduced by the author from the original

manuscript). In the lecture notes, ABCD is the sphere, with E as its centre; FGH
is the cone with its height FI, and base area equal to the surface area of the sphere.21

After the description of the diagrams, the text starts to demonstrate “why it is the
case”:

將球體從外面至心分為千萬尖體,此所分千萬尖體之底積必與原球外面之總積等.然
既相等,即是與己庚辛尖圓體之底面積相等也.又原尖圓體己壬高度與所分千萬尖體
戊甲高度既等, [ : : : ]其己庚辛一尖圓體之積與所分千萬尖體總積等也.如是其所分千
萬尖體之總積既與原球體積之等,則己庚辛一尖圓體之積必與甲乙丙丁一球體之積
等可知矣.22

Divide the sphere, from the surface to the centre, into tens of thousands of pointed solids.
The [sum of the] bases area of these divided tens of thousands of pointed solids must be
equal to the total area of the surface of the original sphere. Since it is so, it is equal to the
base area of the pointed circular solid (cone) FGH. And since the height FI of the original
pointed circular solid FGH is equal to the height [represented by] EA of the divided tens

20Rare book MS no. 06399, juan 6, p. 81, National Central Library, Taipei.
21From the seventeenth to the nineteenth centuries, ten “heavenly stems” and 12 “earthly branches”
are used systematically to replace letters in the diagrams in Chinese translations of Western texts.
This rule had been practised since Ricci and Xu in their translation of Euclid. See Engelfriet (1998),
p. 145. Here in my English translation, I will use A, B, C, D, E, F, G, H, I, J in the places of甲,
乙,丙,丁,戊,己,庚,辛,壬,癸.
22Rare book MS no. 06399, juan 6, p. 82, National Central Library, Taipei.
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of thousands of pointed solids, [ : : : ] the volume of the pointed circular solid FGH and the
total volume of the divided tens of thousands of pointed solids are equal. In this case, since
the total volume of the divided tens of thousands of pointed solids is equal to the volume of
the original sphere, it can be known that the volume of this one pointed circular solid FGH
and the volume of [this] one sphere ABCD are equal.

So, the strategy of demonstration in this proposition is also an intuitive one,
asking the reader to imagine that one can divide the sphere into tens of thousands of
tiny cones, and then combine them into a big cone whose base area and height are
the surface area and radius of the sphere, respectively.

For the same proposition that was compiled into the Shuli jinyun, its wording and
strategy of demonstration are essentially identical to those in Gerbillon and Bouvet’s
lecture notes. So they are not repeated here.

The discussions above have shown that, from Pardies’ Elémens to Gerbillon and
Bouvet’s lecture notes to the Jihe yuanben in the Shuli jingyun, the hypothetico-
deductive styles of argumentations in Euclid’s Elements to prove propositions in
a system was not chosen by these French Jesuits and Chinese mathematicians.
Instead, a more intuitive approach, together with elementary examples and even
hands-on experiments, are used in writing their works. This intuitive style of
argumentations, embedded in the imperially composed compendium, influenced not
only Chinese mathematicians, but also Korean ones, in the eighteenth and nineteenth
centuries.

3 Influences of the Shuli jingyun in Korea: The Case of Nam
Pyŏng-Gil

Korea’s Chosŏn Dynasty inherited much of the mathematical tradition from the
previous dynasty, the Koryŏ高麗 (918–1392). During the time of Koryŏ, Chinese
mathematical methods of the tenth to the thirteenth centuries were introduced into
Korea through the circulation of new Chinese mathematical texts (Jun 2006). Beside
influences from traditional Chinese mathematics in those centuries, there was also
indirect influence from Europe in the Chosŏn Dynasty. Korean scholars before the
late nineteenth century rarely had the opportunity to study Western learning directly
from European scholars or missionaries. Rather, they learned through the Chinese
sources incorporating Western knowledge (Kim 1998). During the seventeenth
century, several such mathematical treatises were brought to Korea, and most of
them were either written by European missionaries or translated from European
languages into Chinese. However, the most influential mathematical text in the
eighteenth to nineteenth centuries was none other than the Shuli jingyun. The earliest
record of the Shuli jingyun being brought to Korea dates from 1729, only 6 years
after its publication in China. This is a result of the efforts of the Chosŏn government
and individual scholars to try to keep up with the latest scholarly and intellectual
standards (Kim 1998, p. 483).

After its transmission, the Shuli jingyun was regarded as an essential reference for
Korean scholars in mathematics and astronomy, and it became the most influential
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mathematical work in Korea in the eighteenth and nineteenth centuries (Oh 2004).
In 1791, it was listed as one of the required readings for calendrical astronomy
officials (Chosŏn Wangjo Shillok 1955, p. 255). By 1818, it had become one of
the examination subjects for these officials (Sŏng 1986, p. 336). Therefore, it is
not difficult to see that, given the level of importance assigned to it by both the Qing
Emperor and the Chosŏn government, those in Korea who wished to study or needed
to use mathematics would put the Shuli jingyun on their reading list.

The impact of the mathematical compendium from Qing Empire can be exem-
plified by Nam Pyŏng-Gil’s南秉吉 (1820–1869) commentaries on a Chinese text,
the Jiuzhang suanshu九章算術 (Nine Chapters on Mathematical Art, first century
CE).23

Nam Pyŏng-Gil was from a powerful yangban兩班 family. As the ruling class
of Chosŏn Korea, the yangban were exempt from the usual service obligations
to the state, such as corvée labor and military duty. Devoted to the Confucian
doctrine that study and the cultivation of oneself must underlie the governing of
others, the privilege that enabled them to become officials took the place of other
service obligations to the state. Although ideally the sole profession of the yangban
was the holding of public office, they seldom occupied the technical posts that
were also components of the bureaucracy. Positions for medical officers, translator-
interpreters, and specialists who needed to use mathematics—such as accountants
or officers in the astronomy and meteorology offices—were all reserved for the
chungin 中人. Literally “middle people”, with a status between the ruling class
and the commoners, they were the hereditary class of technical specialists living in
the capital (Lee 1984, pp. 172–184, 250–251). Although Nam was from a yangban
family, he nevertheless had great interests in mathematics. He was one of the
most influential mathematicians in his time and wrote at least seven mathematical
treatises, including a commentary on the Jiuzhang suanshu.

For centuries the Jiuzhang suanshu was considered as the most important
mathematical canon in China.24 In Korea, the Jiuzhang suanshu was listed as
one of the textbooks and examination subjects for mathematics students in the
National Academies of different dynasties from the seventh to the fourteenth
century (Kim and Kim 1978, pp. 82, 133, 139). However, the text was lost
in the middle of the Chosŏn Dynasty before the mid-seventeenth century, and
mathematicians stopped discussing the text during China’s Ming Dynasty (1368–
1644) (Jun 2006, p. 480). In China, the Jiuzhang suanshu, along with several other
ancient mathematical texts, was recovered in the late eighteenth century.25 The text
was reintroduced to Korea only much later, in the mid-nineteenth century. Shortly
after this reintroduction, Nam Pyŏng-Gil published his commentary in 1860s (Jun
2006, pp. 498–499).

23For a thorough study of the text, refer to, for instance, Chemla and Guo (2004).
24See, for instance, Martzloff (1997), pp. 127–136.
25On the recovery of the Jiuzhang suanshu in China, see, for example, Li and Du (1987).
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Nam explains his reasons for writing this text in the postface of the commentary:

九章算術,數學之鼻祖也.劉徽注之,李淳風釋之,然俱多未曉處,抑或繡出鴛鴦而藏
其金針之義歟.注釋所以啟來者,而終莫能端倪,故余因原術解之,發明其萬一,未敢
為覺後覺,而使好學者庶其易曉云爾 (Kim 1985, p. 495).

The Jiuzhang suanshu was the first ancestor of mathematics. Liu Hui commentated on
it and Li Chunfeng explained it. However, there are still many places that are not clear.
Perhaps [Liu Hui and Li Chunfeng] provided great methods but hid the key to finding their
rationale. Commentaries and explanations are for [one] to use to open up future readers’
[understanding], but in the end [the previous ones] could not reveal enough clues. Therefore
I have explained it according to the original procedures, to bring to light one ten-thousandth
of its [meaning]. I dare not [say I can] enlighten those who have not yet understood [the
text]. I only hope to make it easier for those who would like to study it.

Nam mentions Liu Hui 劉徽 (fl. c. 263) and Li Chunfeng 李淳風 (602–670)
in this postface. Liu Hui is considered by historians of mathematics as the most
important commentator on the Jiuzhang suanshu, completing his commentary in
263 A.D.; Li Chunfeng was the chief editor of the mathematical canons used as
textbooks in the Imperial Academy of his time (Guo and Liu 2001). Obviously
Nam does not like the explanations provided by the two authors. I believe that one
of the reasons is that mathematicians in his time have been used to the style of
argumentations in the Shuli jingyun.

In what follows, two examples corresponding to those in the previous section
will be provided to show this point.

In the final problem of Chapter 4 of the Jiuzhang suanshu, the volume of a sphere
is given and the question is to find the diameter. In order to do that, one must know
how to calculate the volume of a sphere. Nam does not try to prove the procedure
directly from known results in the Jiuzhang suanshu. Instead, he quotes two other
procedures, which appear in the Shuli jingyun in similar forms:

球體外面積應為球徑平圓面積四倍.
外面積與半徑相乘得數,以三歸之即球積也 (Kim 1985, p. 349).
The surface area of a sphere should be four times the area of the circle [whose diameter]

is the diameter of the sphere.
The surface area and the radius multiply each other; the obtained number divided by

three is the volume of the sphere.

For this problem, Nam seems to assume that his readers have the knowledge from
the Shuli jinyun, and directly uses it.

A more interesting case is in Chapter 5 of the Jiuzhang suanshu. In this
Chapter, two important kinds of solids—the yangma陽馬 and the bienao 臑—are
discussed. These two polyhedra are shown in Fig. 2: A yangma is a pyramid with
rectangular base and one lateral edge perpendicular to the base; a bienao is another
kind of pyramid with right-triangular base and one lateral edge (but not that at the
right-angled vertex of the base) perpendicular to the base (Wagner 1979). Their
respective volumes are one-third and one-sixth of the product of length, width and
height.

Liu Hui’s demonstration for the procedures of the volumes of these two
polyhedra involves an infinite process (Wagner 1979). Nam did not seem to like it



Transmission and Interactions Among Different Types of Geometrical. . . 119

Fig. 2 The yangma and the
bienao

for he never mentioned it at all. The following is Nam’s explanation for the volume
of a yangma:

夫一正方體剖之得二 堵,一 堵體剖之得一陽馬一 臑,而一陽馬剖之又得二 臑.
是陽馬體為 堵體三分之二,即為正方體三分之一.而 臑體為 堵體三分之一,即為
正方體六分之一也.乃合二 臑體成一陽馬體,合三陽馬體成一正方體,故三而一也
(Kim 1985, pp. 362–363).

Now [we have] one cube and cut it open, [and then we] obtain two qiandu.26 [We have]
one qiandu and cut it open, [and then we] obtain one yangma and one bienao. And [we take
this] one yangma and cut it open, [and then] again [we] obtain two bienao. This yangma
solid is two thirds of a qiandu, which is one third of a cube. And a bienao solid is one third
of a qiandu, which is one sixth of a cube. So [we] combine two bienao solids to one yangma
solid, and combine three yangma solids as one cube. Therefore [for every] three [units, we
count] one.

In summary, what Nam says in this piece of commentary is: a cube can be seen
as the combination of two qiandu (triangular prisms), each of which is in turn the
combination of a yangma and a bienao. But a yangma can also be cut into two
bienao, so one cube is equal to six bienao or three yangma. Therefore a yangma is
one third of a cube.

As for the next procedure in the Jiuzhang suanshu for calculating the volume of a
bienao, Nam simply rephrases a part of his argument for the yangma, and concludes
that a bienao is one sixth of a cube.

Mathematically speaking, the yangma and bienao in Nam’s commentary must
have equal length, width and height, for they are cut out from a cube. However,
in the original problems in the Jiuzhang suanshu the length, width and height are
all different.27 Therefore, these two pieces of Nam’s commentary ask of the reader
that she be able to apply the demonstration of a special case—in fact the simplest

26A qiandu 堵 is a triangular prism whose base is an isosceles right-angled triangle.
27Liu Hui used an argument of infinite descent to prove that the ratio between the volumes of a
yangma and a bienao was 2:1 in general situations. A detailed explanation of how Liu Hui proved
the procedures for the volumes of the two polyhedra can be found in Wagner (1979).
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one—to general cases, appealing to her intuition in order to convince herself that the
two original procedures are correct. This method is essentially identical to that for
the same problem in the Jesuit’s lecture notes. Although it is unlikely that Nam had
access to the lecture notes, the idea must have been transmitted through the styles
of the Shuli jingyun. Therefore, we can see that the intuitive approach that is used in
the Shuli jingyun is also employed by Nam in this case, among many others.

Nam Pyŏng-Gil was certainly not the only Korean mathematician who employed
this method of intuitive approach, nor was he the earliest. Several scholars in the
eighteenth and nineteenth centuries, such as Hong Tae-Yong洪大容 (1737–1783)
or Yi Sang-Hyŏk李尚 (1810–late 19th c), also employed a similar approach in
reasoning.28 As far as on what mathematical topics they employed this approach,
and on the variations in their reasoning strategies, further investigations are needed
in the future.

One might ask why Nam and other mathematicians in the eighteenth and
nineteenth centuries would favour such an intuitive approach. As mentioned before,
the influence by the imperial compendium was indeed one major factor. However,
more can be said in the Korean context. Firstly, Like the Chinese, the Koreans
were able to distinguish between the mathematics and the religion which the Jesuits
brought and presented together to the East Asian Confucian cultures. Furthermore,
the scholars in China and Korea could deconstruct the mathematics into two parts:
the “facts”—geometrical propositions and algebraic algorithms—and the reasoning
behind them. Confucian scholars in the Chosŏn Kingdom were not particularly fond
of the abstract and deductive proofs, because the proofs seemed too “static” for the
Neo-Confucian world view. As the Korean Neo-Confucian scholars conceived it,
the cosmos was a dynamic network of appropriate interrelations, and any arguments
about the “patterns” (li理), including those about geometrical relations, should be
addressed with a variety of specific problems and situations. Yi Ik李瀷 (1681–
1763), for instance, was a famous scholar who actually read Ricci and Xu’s version
of the Elements, but declined to imitate the deductive approach when he wrote his
own mathematical arguments. He also gave numerical examples and calculations
when he discussed right-angled triangles.29

Secondly, Nam Pyŏng-Gil himself had a good reason to use this intuitive ap-
proach. As mentioned earlier, mathematics was essentially an art that was practised
by the chungin class in the Chosŏn Kingdom. However, Nam had a different
view, believing that mathematics should have been included in the education of all
Confucian scholars of the ruling class, precisely because it was a necessary tool for
ruling and government administration. He wrote several mathematical works, and
he published many of his and other mathematicians’ works, to try to convince other
people in the ruling class that they should study mathematics. In a sense, he was
trying to write “popular mathematics” in nineteenth-century Korea (Ying 2014). An

28Hong Tae-Yong’s and Yi Sang-Hyŏk’s mathematical works can both be found in Kim (1985).
29A very good discussion about the reactions of the Korean Neo-Confucian scholars to Western
mathematics can be found in Baker (2012).
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intuitive approach for geometrical argumentations was much easier for many people
to understand than a hypothetico-deductive structure.

4 Concluding Remarks

Transmission and interactions among different types of geometrical argumentations
constitute some of the most interesting stories in the history of East Asian
science and mathematics. At first, Euclid’s Elements, with its hypothetico-deductive
structure, was translated in early 1600s. However, as shown in this paper, it was the
intuitive styles of argumentations, easy examples, and even hands-on approaches,
partly taken from the popular French textbook Elémens de Géométrie, and partly
added by Kangxi’s court savants Gerbillon and Bouvet, that found a way to convince
the Manchu emperor and his Chinese scholars that these kinds of styles made
mathematics more intelligible. Therefore, these styles of argumentations were used
to compile the geometrical part of Qing Empire’s mathematical compendium, the
Shuli jingyun.

When this compendium was brought to Korea, not only its mathematical methods
influenced the Chosŏn Kingdom, but also its styles of argumentations. This paper
has presented instances to show that, when the nineteenth-century scholar Nam
Pyŏng-Gil was commentating on the Jiuzhang suanshu, the paradigmatic text of
ancient Chinese mathematics, he also used the methods as well as the styles
of argumentations in the Shuli jingyun, namely easy examples and the intuitive
approach of demonstration.

Scholars in late imperial China and contemporary Korea had access to texts from
different traditions and various kinds of styles of geometrical argumentations. How
they chose one style over the others is a theme that has not been studied thoroughly,
in my opinion, and needs more research in the future so scholars would have better
understanding of this interesting topic.
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