
Chapter 9
Parametric Decomposition

A partly convex problem as formulated in Sect. 8.2 of the preceding chapter can also
be viewed as a convex optimization problem depending upon a parameter x 2 R

n:

The dimension n of the parameter space is referred to as the nonconvexity rank of
the problem. Roughly speaking, this is the number of “nonconvex variables” in the
problem. As we saw in Sect. 8.2, a partly convex problem of rank n can be efficiently
solved by a BB decomposition algorithm with branching performed in R

n: This
chapter discusses decomposition methods for partly convex problems with small
nonconvexity rank n: It turns out that these problems can be solved by streamlined
decomposition methods based on parametric programming.

9.1 Functions Monotonic w.r.t. a Convex Cone

Let X be a convex set in R
n and K a closed convex cone in R

n: A function f W Rn !
R is said to be monotonic on X with respect to K (or K-monotonic on X for short) if

x; x0 2 X; x0 � x 2 K ) f .x0/ � f .x/: (9.1)

In other words, for every x 2 X and u 2 K the univariate function � 7! f .xC �u/
is nondecreasing in the interval .0; ��/ where �� D supf� j x C �u 2 Xg: When
X D R

n we simply say that f .x/ is K-monotonic.
Let L be the lineality space of K; and Q an r � n matrix of rank r such that

L D fxj Qx D 0g: From (9.1) it follows that

x; x0 2 X; Qx D Qx0 ) f .x/ D f .x0/; (9.2)

i.e., f .x/ is constant on every set fx 2 Xj Qx D constg: Denote Q.X/ D fy 2 R
rj

y D Qx; x 2 Xg:
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284 9 Parametric Decomposition

Proposition 9.1 Let K � recX: A function f .x/ is K-monotonic on X if and only if

f .x/ D F.Qx/ 8x 2 X; (9.3)

where F W Q.X/! R satisfies

y; y0 2 Q.X/; y0 � y 2 Q.K/ ) F.y0/ � F.y/: (9.4)

Proof If f .x/ is K-monotonic on X then we can define a function F W Q.X/! R by
setting, for every y 2 Q.X/ W

F.y/ D f .x/ for any x 2 X such that y D Qx: (9.5)

This definition is correct in view of (9.2). Obviously, f .x/ D F.Qx/: For any y; y0 2
Q.X/ such that y0� y 2 Q.K/ we have y D Qx; y0 D Qx0; with Q.x0� x/ D Qu; u 2
K; i.e., Qx0 D Q.xC u/; u 2 K: Here xC u 2 X because u 2 recX; hence by (9.1),
f .x0/ D f .x C u/ � f .x/; i.e., F.y0/ � F.y/: Conversely, if f .x/ D F.Qx/ and
F W Q.X/ ! R satisfies (9.4), then for any x; x0 2 X such that x0 � x 2 K we have
y D Qx; y0 D Qx0; with y0 � y 2 Q.K/; hence F.y0/ � F.y/; i.e., f .x0/ � f .x/: ut

The above representation of K-monotonic functions explains their role in global
optimization. Indeed, using this representation, any optimization problem in R

n of
the form

minf f .x/j x 2 Dg (9.6)

where D � X; and f .x/ is K-monotonic on X; can be rewritten as

minfF.y/j y 2 Q.D/g (9.7)

which is a problem in R
r: Assume further, that f .x/ is quasiconcave on X; i.e.,

by (9.5), F.y/ is quasiconcave on Q.X/:

Proposition 9.2 Let K � recX: A quasiconcave function f W X ! R on X is K-
monotonic on X if and only if for every x0 2 X with f .x0/ D � W

x0 C K � X.�/ WD fx 2 Xj f .x/ � �g:

Proof If f .x/ is K-monotonic on X, then for any x 2 X.�/ and u 2 K we have
xCu 2 X (because K � recX/ and condition (9.1) implies that f .xCu/ � f .x/ � �;
hence xC u 2 X.�/; i.e., u is a recession direction for X.�/: Conversely, if for any
� 2 f .X/;K is contained in the recession cone of X.�/; then for any x0; x 2 X such
that x0 � x 2 K one has, for � D f .x/ W x 2 X.�/; hence x0 2 X.�/; i.e., f .x0/ � f .x/:

ut
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Proposition 9.1 provides the foundation for reducing the dimension of prob-
lem (9.6), whereas Proposition 9.2 suggests methods for restricting the global search
domain. Indeed, since local information is generally insufficient to verify the global
optimality of a solution, the search for a global optimal solution must be carried
out, in principle, over the entire feasible set. If, however, the objective function f .x/
in (9.6) is K-monotonic, then, once a solution x0 2 D is known, one can ignore
the whole set D \ .x0 C K/ � fx 2 Dj f .x/ � f .x0/g; because no better feasible
solution than x0 can be found in this set. Such kind of information is often very
helpful and may drastically simplify the problem by limiting the global search to a
restricted region of the feasible domain. In the next sections, we shall discuss how
efficient algorithms for K-monotonic problems can be developed based on these
observations.

Below are some important classes of quasiconcave monotonic functions encoun-
tered in the applications.

Example 9.1 f .x/ D '.x1; : : : ; xp/C dTx;
with '.y1; : : : ; yp/ a continuous concave function of y D .y1; : : : ; yp/:

Here F.y/ D '.y1; : : : ; yp/C ypC1;Qx D .x1; : : : ; xp; dTx/T : Monotonicity holds
with respect to the cone K D fuj ui D 0.i D 1; : : : ; p/; dTu � 0g: It has long
been recognized that concave minimization problems with objective functions of
this form can be efficiently solved only by taking advantage of the presence of the
linear part in the objective function (Rosen 1983; Tuy 1984).

Example 9.2 f .x/ D �Pp
iD1Œhci; xi�2 C hcpC1; xi:

Here F.y/ D �Pp
iD1 y2i C ypC1;Qx D .hc1; xi; : : : ; hcpC1; xi/T : Monotonicity

holds with respect to K D fuj hci; ui D 0.i D 1; : : : ; p/; hcpC1; ui � 0g: For
p D 1 such a function f .x/ cannot in general be written as a product of two
affine functions and finding its minimum over a polytope is a problem known to
be NP-hard (Pardalos and Vavasis 1991), however, quite practically solvable by a
parametric algorithm (see Sect. 9.5).

Example 9.3 f .x/ DQr
iD1Œhci; xi C di�

˛i with ˛i > 0; i D 1; : : : ; r:
This class includes functions which are products of affine functions. Since

log f .x/ DPr
iD1 ˛i logŒhci; xi C di� for every x such that hci; xi C di > 0; it is easily

seen that f .x/ is quasiconcave on the set X D fxj hci; xi C di � 0; i D 1; : : : ; rg:
Furthermore, f .x/ is monotonic on X with respect to the cone K D fuj hci; ui �
0; i D 1; : : : ; rg:Here f .x/ has the form (9.3) with F.y/ DQr

iD1.yiCdi/
˛i : Problems

of minimizing functions f .x/ of this form (with ˛i D 1; i D 1; : : : ; r/ under linear
constraints are termed linear multiplicative programs and will be discussed later in
this chapter (Sect. 9.5).

Example 9.4 f .x/ D �Pr
iD1 �iehci;xi with �i > 0; i D 1; : : : ; r.

Here F.y/ D �Pr
iD1 �ieyi is concave in y; so f .x/ is concave in x: Monotonicity

holds with respect to the cone K D fxj hci; xi � 0; i D 1; : : : ; rg: Functions of
this type appear when dealing with geometric programs with negative coefficients
(“signomial programs,” cf Example 5.6).
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Example 9.5 f .x/ quasiconcave and differentiable, with

rf .x/ D
rX

iD1
pi.x/c

i; ci 2 R
n; i D 1; : : : ; r:

For every x; x0 2 X satisfying hci; x0 � xi D 0; i D 1; : : : ; r; there is some
� 2 .0; 1/ such that f .x0/ � f .x/ D hrf .x C �.x0 � x//; x0 � xi D Pr

iD1 pi.x C
�.x0 � x//hci; x0 � xi D 0; hence f .x/ is monotonic with respect to the space
L D fxj hci; xi D 0; i D 1; : : : ; rg: If, in addition, pi.x/ � 0 8x .i D 1; : : : ; r/ then
monotonicity holds with respect to the cone K D fuj hci; ui � 0; i D 1; : : : ; rg:
Example 9.6 f .x/ D minfyTQxj y 2 Eg

where E is a convex subset of Rm and Q is an m � n matrix of rank r:
This function appears when transforming rank r bilinear programs into concave

minimization problems (see Sect. 10.4). Here monotonicity holds with respect to
the subspace K D fuj Qu D 0g: If E � R

mC then Qu � 0 implies yTQ.x C u/ �
yTQx; hence f .x C u/ � f .x/; and so f .x/ is monotonic with respect to the cone
K D fuj Qu � 0g:
Example 9.7 f .x/ D supfdTyj AxC By � qg

where A 2 R
p�n with rankA D r; B 2 R

p�m; y 2 R
m and q 2 R

p:

This function appears in bilevel linear programming, for instance, in the max-min
problem (Falk 1973b):

min
x

max
y
fcTxC dTyj AxC By � q; x � 0; y � 0g:

Obviously, Au � 0 implies A.xC u/ � Ax; hence fyj AxC By � qg � fyj A.xC
u/C By � qg; hence f .xC u/ � f .x/: Therefore, monotonicity holds with respect
to the cone K D fuj Au � 0g:

Note that by Corollary 1.15, rankQ D n � dim L D dim Kı: A K- monotonic
function f .x/ on X; with rankQ D r is also said to possess the rank r monotonicity
property.

9.2 Decomposition by Projection

Let D be a compact subset of a closed convex set X in R
n and let f W Rn ! R

be a quasiconcave function, monotonic on X with respect to a polyhedral convex
cone K contained in the recession cone of X: Assume that the lineality space of K is
L D fxj Qx D 0g; where Q is an r � n matrix of rank r: Consider the quasiconcave
monotonic problem

.QCM/ minff .x/j x 2 Dg (9.8)
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In this and the next two sections, we shall discuss decomposition methods for
solving this problem, under the additional assumption that D is a polytope. The
idea of decomposition is to transform the original problem into a sequence of
subproblems involving each a reduced number of nonconvex variables. This can
be done either by projection, or by dualization (polyhedral annexation), or by
parametrization ( for r � 3/:We first present decomposition methods by projection.

As has been previously observed, by setting

F.y/ D f .x/ for any x 2 X satisfying y D Qx; (9.9)

we unambiguously define a quasiconcave function F W Q.X/! R such that problem
.QCM/ is equivalent to

min F.y/ s:t: y D .y1; : : : ; yr/ 2 G (9.10)

where G D Q.D/ is a polytope in R
r: The algorithms presented in Chaps. 5 and 6

can of course be adapted to solve this quasiconcave minimization problem.
We first show how to compute F.y/: Since rankQ D r; by writing Q D ŒQB;QN �;

x D
�

xB

xN

�

; where QB is an r � r nonsingular matrix, the equation Qx D y yields

x D
�

Q�1
B

0

�

yC
��Q�1

B QNxN

xN

�

Setting Z D
�

Q�1
B

0

�

and u D
��Q�1

B QNxN

xN

�

we obtain

x D ZyC u with Qu D �QNxN C QNxN D 0: (9.11)

Since Qx D Q.Zy/ with Zy D x � u 2 X � L D X; it follows that f .x/ D f .Zy/:
Thus, the objective function of (9.10) can be computed by the formula

F.y/ D f .Zy/: (9.12)

We shall assume that f .x/ is continuous on some open set in R
n containing D;

so F.y/ is continuous on some open set in R
r containing the constraint polytope

G D Q.D/ of (9.10). The peculiar form of the latter set (image of a polytope D
under the linear map Q/ is a feature which requires special treatment, but does not
cause any particular difficulty.
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9.2.1 Outer Approximation

To solve (9.10) by outer approximation, the key point is: given a point y 2 Q.Rn/ �
R

r, determine whether y 2 G D Q.D/; and if y … G then construct a linear
inequality (cut) l.y/ � 0 to exclude y without excluding any point of G:

Observe that y … Q.D/ if and only if the linear system Qx D y has no solution
in D; so the existence of l.y/ is ensured by the separation theorem or any of its
equivalent forms (such as the Farkas–Minkowski Lemma). However, since we are
not so much interested in the existence as in the effective construction of l.y/; the
best way is to use the duality theorem of linear programming (which is another form
of the separation theorem). Specifically, assuming D D fxj Ax � b; x � 0g; with
A 2 R

m�n; b 2 R
m; consider the dual pair of linear programs

minfhh; xij Qx D y;Ax � b; x � 0g (9.13)

maxfhy; vi � hb;wij QTv � ATw � h; w � 0g: (9.14)

where h is any vector chosen so that (9.14) is feasible (for example, h D 0/ and can
be solved with least effort.

Proposition 9.3 Solving (9.14) either yields a finite optimal solution or an extreme
direction .v;w/ of the cone QTv � ATw � 0; w � 0; such that hy; vi � hb;wi > 0:
In the former case, y 2 G D Q.D/I in the latter case, the affine function

l.y/ D hy; vi � hb;wi (9.15)

satisfies

l.y/ > 0; l.y/ � 0 8y 2 G: (9.16)

Proof Immediate from the duality theorem of linear programming. ut
On the basis of this proposition a finite OA procedure for solving (9.10) can be
carried out in the standard way, starting from an initial r-simplex P1 � G D Q.D/
with a known or readily computable vertex set. In most cases, one can take this
initial simplex to be

P1 D
(

yj yi � ˛i; .i D 1; : : : ; r/;
rX

iD1
.yi � ˛i/ � ˇ

)

(9.17)

where

˛i D minfyij y D Qx; x 2 Dg; i D 1; : : : ; r; (9.18)

ˇ D max
˚Pr

iD1.yi � ˛i/j y D Qx; x 2 D
�
: (9.19)
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Remark 9.1 A typical case of interest is the concave program with few nonconvex
variables (Example 7.1):

minf'.y/C dzj AyC Bz � b; y � 0; z � 0g (9.20)

where the function ' W Rp ! R is concave and .y; z/ 2 R
p � R

q: By rewriting this
problem in the form (9.10):

minf'.y/C tj dz � t; AyC Bz � b; y � 0; z � 0g

we see that for checking the feasibility of a vector .y; t/ 2 R
p
C � R the best choice

of h in (9.13) is h D d: This leads to the pair of dual linear programs

minfdzj Bz � b � Ay; z � 0g (9.21)

maxfhAy � b; vij � BTv � d; v � 0g: (9.22)

We leave it to the reader to verify that:

1. If v is an optimal solution to (9.22) and hAy � b; vi � t then .y; t/ is feasible;
2. If v is an optimal solution to (9.22) and hAy � b; vi > t then the cut
hAy � b; vi � t excludes .y; t/ without excluding any feasible point;

3. If (9.22) is unbounded, i.e., hAy � b; vi > 0 for some extreme direction v of
the feasible set of (9.22), then the cut hAy � b; vi � 0 excludes .y; t/ without
excluding any feasible point.

Sometimes the matrix B has a favorable structure such that for each fixed
y � 0 the problem (9.20) is solvable by efficient specialized algorithms
(see Sect. 9.8). Since the above decomposition preserves this structure in the
auxiliary problems, the latter problems can be solved by these algorithms.

9.2.2 Branch and Bound

A general rule in the branch and bound approach to nonconvex optimization
problems is to branch upon the nonconvex variables, except for rare cases where
there are obvious reasons to do otherwise. Following this rule the space to be
partitioned for solving .QCM/ is Q.Rn/ D R

r: Given a partition set M � R
r a

basic operation is to compute a lower bound for F.y/ over the feasible points in M:
To this end, select an appropriate affine minorant lM.y/ of F.y/ over M and solve
the linear program

minflM.y/j Qx D y; x 2 D; y 2 Mg:
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If ˇ.M/ is the optimal value of this linear program then obviously

ˇ.M/ � minfF.y/j y 2 Q.D/ \Mg:
According to condition (6.4) in Sect. 6.2 this can serve as a valid lower bound,
provided, in addition, ˇ.M/ < C1 whenever Q.D/ \ M ¤ ; � which is the
case when M is bounded as, e.g., when using simplicial or rectangular partitioning.

Simplicial Algorithm
If M D Œu1; : : : ; urC1� is an r-simplex in Q.Rn/ then lM.x/ can be taken to be the
affine function that agrees with F.y/ at u1; : : : ; urC1: Since lM.y/ DPrC1

iD1 tiF.ui/ for
y D PrC1

iD1 tiui with t D .t1; : : : ; trC1/ � 0;PrC1
iD1 ti D 1; the above linear program

can also be written as

min

(
rC1X

iD1
tiF.u

i/j x 2 D;Qx D
rC1X

iD1
tiu

i;

rC1X

iD1
ti D 1; t � 0

)

:

Simplicial subdivision is advisable when f .x/ D f0.x/C dx; where f0.x/ is concave
and monotonic with respect to the cone Qx � 0: Although f .x/ is then actually
monotonic with respect to the cone Qx � 0; dx � 0; by writing .QCM/ in the form

minfF0.y/C dxj Qx D y; x 2 Dg
one can see that it can be solved by a simplicial algorithm operating in Q.Rn/ rather
than Q.Rn/ � R: As initial simplex M1 one can take the simplex (9.17).

Rectangular Algorithm
When F.y/ is concave separable, i.e.,

F.y/ D
rX

iD1
Fi.yi/;

where each Fi.�/; i D 1; : : : ; r is a concave univariate function, this structure
can be best exploited by rectangular subdivision. In that case, for any rectangle
M D Œp; q� D fyj p � y � qg; lM.y/ can be taken to be the uniquely defined
affine function which agrees with F.y/ at the corners of M: This function is
lM.y/ DPr

iD1 li;M.yi/ where each li;M.t/ is the affine univariate function that agrees
with Fi.t/ at the endpoints pi; qi of the segment Œpi; qi�: The initial rectangle can be
taken to be M1 D Œ˛1; ˇ1� � : : : � Œ˛r; ˇr�; where ˛i is defined as in (9.18) and

ˇi D supfyij y D Qx; x 2 Dg:

Conical Algorithm
In the general case, since the global minimum of F.y/ is achieved on the boundary
of Q.D/; conical subdivision is most appropriate. Nevertheless, instead of bounding,
we use a selection operation, so that the algorithm is a branch and select rather than
branch and bound procedure.
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The key point in this algorithm is to decide, at each iteration, which cones in
the current partition are ‘non promising’ and which one is the ‘most promising’
(selection rule).

Let y be the current best solution (CBS) at a given iteration and � WD F.y/:
Assume that all the cones are vertexed at 0 and F.0/ > �; so that

0 2 int˝�;

where ˝� D fy 2 ˝j F.y/ � �g: Let lM.y/ D 1 be the equation of the hyperplane
in R

r passing through the intersections of the edges of M with the surface F.y/ D �:
Denote by !.M/ a basic optimal solution and by �.M/ the optimal value of the
linear program

LP.M; �/ maxflM.y/j y 2 Q.D/ \Mg:

Note that if u1; : : : ; ur are the directions of the edges of M and U D .u1; : : : ; ur/ is
the matrix of columns u1; : : : ; ur then M D fyj y D Ut; t D .t1; : : : ; tr/T � 0g; so
LP(M,�/ can also be written as

maxflM.Ut/j Ax � b; Qx D Ut; x � 0; t � 0g:

The deletion and selection rule are based on the following:

Proposition 9.4 If �.M/ � 1 then M cannot contain any feasible point better than
CBS. If �.M/ > 1 and !.M/ lies on an edge of M then !.M/ is a better feasible
solution than CBS.

Proof Clearly D \ M is contained in the simplex Z WD M \ fyj lM.y/ � �.M/g:
If �.M/ � 1; then the vertices of Z other than 0 lie inside ˝�; hence the values
of F.y/ at these vertices are at least equal to �: But by quasiconcavity of F.y/; its
minimum over Z must be achieved at some vertex of Z, hence must be at least equal
to �: This means that F.y/ � � for all y 2 Z; and hence, for all y 2 D\M: To prove
the second assertion, observe that if !.M/ lies on an edge of M and �.M/ > 1, then
!.M/ … ˝�; i.e., F.!.M// < � I furthermore, !.M/ is obviously feasible. ut

The algorithm is initialized from a partition of R
r into r C 1 cones vertexed

at 0 (take, e.g., the partition induced by the r-simplex Œe0; e1; : : : ; er� where ei; for
i D 1; : : : ; r; is the i-th unit vector of Rr and e0 D � 1r .e1 C : : :C er//: On the basis
of Proposition 9.4, at iteration k a cone M will be fathomed if �.M/ � 1; while the
most promising cone Mk (the candidate for further subdivision) is the unfathomed
cone that has largest �.M/: If !k D !.Mk/ lies on any edge of Mk it yields, by
Proposition 9.4, a better feasible solution than CBS and the algorithm can go to the
next iteration with this improved CBS. Otherwise, Mk can be subdivided via the ray
through !k:

As proved in Chap. 7 (Theorem 7.3), the above described conical algorithm
converges, in the sense that any accumulation point of the sequence of CBS that
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it generates is a global optimal solution. Note that no bound is needed in this branch
and select algorithm. Although a bound for F.y/ over the feasible points in M can
be easily derived from the constructions used in Proposition 9.4, it would require
the computation of the values of F.y/ at r additional points (the intersections of the
edges of M with the hyperplane lM.y/ D �.M//; which may entail a nonnegligible
extra cost.

9.3 Decomposition by Polyhedral Annexation

The decomposition method by outer approximation is conceptually simple. How-
ever, a drawback of this method is its inability to be restarted. Furthermore, the
construction of the initial polytope involves solving r C 1 linear programs. An
alternative decomposition method which allows restarts and usually performs better
is by dualization through polyhedral annexation .

Let x be a feasible solution and C WD fx 2 Xj f .x/ � f .x/g: By quasiconcavity
and continuity of f .x/; C is a closed convex set. By translating if necessary, assume
that 0 is a feasible point such that f .0/ > f .x/; so 0 2 D \ intC: The PA method
(Chap. 8, Sect. 8.1) uses as a subroutine Procedure DC* for solving the following
subproblem:

Find a point x 2 D n C (i.e., a better feasible solution than x/ or else prove that
D � C (i.e., x is a global optimal solution).

The essential idea of Procedure DC* is to build up, starting with a polyhedron
P1 � Cı (Lemma 8.1), a nested sequence of polyhedrons P1 � P2 � : : : � Cı that
yields eventually either a polyhedron Pk � Dı (in that case Cı � Dı; hence D � C/
or a point xk 2 D n C: In order to exploit the monotonicity structure, we now try to
choose the initial polyhedron P1 so that P1 � L? (orthogonal complement of L/:
If this can be achieved, then the whole procedure will operate in L?; which allows
much computational saving since dim L? D r < n:

Let c1; : : : ; cr be the rows of Q (so that L? is the subspace generated by these
vectors) and let c0 D �Pr

iD1 ci: Let � W L? ! R
r be the linear map such

that y D Pr
iD1 tici , �.y/ D t: For each i D 0; 1; : : : ; r since 0 2 intC; the

halfline from 0 through ci intersects C: If this halfline meets @C; we define ˛i to
be the positive number such that zi D ˛ici 2 @CI otherwise, we set ˛i D C1:
Let I D fij ˛i < C1g; S1 D convf0; zi; i 2 Ig C conefci; i … Ig:
Lemma 9.1

(i) The polar P1 of S1 C L is an r-simplex in L? defined by

�.P1/ D
(

t 2 R
rj

rX

iD1
tihci; cji � 1

˛j
; j D 0; 1; : : : ; r

)

; (9.23)

(as usual 1
C1 D 0/:
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(ii) Cı � P1 and if V is the vertex set of any polytope P such that Cı � P � P1;
then

maxfhv; xij x 2 Dg � 1 8v 2 V ) Cı � Dı: (9.24)

Proof Clearly S1 � L? and 0 2 riS1; so 0 2 int.S1 C L/; hence P1 is compact.
Since .S1 C L/ı D Sı

1 \ L?; any y 2 P1 belongs to L?; i.e., is of the form
y DPr

iD1 tici for some t D .t1; : : : ; tr/:But by Proposition 1.28, y 2 Sı
1 is equivalent

to hcj; yi � 1
˛j
8j D 0; 1; : : : ; r: Hence P1 is the polyhedron defined by (9.23). We

have 0 < 1
˛j
8j D 0; 1; : : : ; r; so dim P1 D r; (Corollary 1.16) and since P1 is

compact it must be an r-simplex. To prove (ii) observe that S1CL � C\L?CL D C;
so Cı � .S1 C L/ı D P1: If maxfhv; xij x 2 Dg � 1 8v 2 V; then
maxfhy; xij x 2 Dg � 1 8y 2 P; i.e., P � Dı; hence Cı � Dı because Cı � P: ut
Thus Procedure DC* can be applied, starting from P1 as an initial polytope. By
incorporating Procedure DC* (initialized from P1/ into the PA Algorithm for (BCP)
(Sect. 7.1) we obtain the following decomposition algorithm for (QCM):

PA Algorithm for (QCM)
Initialization. Let x be a feasible solution (the best available), C D fx 2 Xj f .x/ �
f .x/g: Choose a feasible point x0 of D such that f .x0/ > f .x/ and set D  D �
x0; C  C � x0: Let QP1 D �.P1/ be the simplex in R

r defined by (9.23) (or
QP1 D �.P1/ with P1 being any polytope in L? such that Cı � P1/. Let V1 be the
vertex set of QP1: Set k D 1:
Step 1. For every new t D .t1; : : : ; tr/ 2 Vk solve the linear program

max

(
rX

iD1
tihci; xij x 2 D

)

(9.25)

to obtain its optimal value �.t/ and a basic optimal solution x.t/:
Step 2. Let tk 2 argmaxf�.t/j t 2 Vkg: If �.tk/ � 1 then terminate: x is an

optimal solution of (QCM).
Step 3. If �.tk/ > 1 and xk D x.tk/ … C, then update the current best feasible

solution and the set C by resetting x D xk:

Step 4. Compute

�k D supf� j f .�xk/ � f .x/g
and define

QPkC1 D QPk \
(

tj
rX

iD1
tihxk; cii � 1

�k

)

:

Step 5. From Vk derive the vertex set VkC1 of QPkC1: Set k kC 1 and go back to
Step 1.
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Remark 9.2 Reported computational experiments (Tuy and Tam 1995) seem to
indicate that the PA method is quite practical for problems with fairly large n
provided r is small (typically r � 6/: For r � 3; however, specialized parametric
methods can be developed which are more efficient. These will be discussed in the
next section.

Case When K D fuj Qu � 0g

A case when the initial simplex P1 can be constructed so that its vertex set is readily
available when K D fuj Qu � 0g; with an r�n matrix Q of rank r: Let c1; : : : ; cr be
the rows of Q:Using formula (9.11) one can compute a point w satisfying Qw D �e;
where e D .1; : : : ; 1/T ; and a value ˛ > 0 such that Ow D ˛w 2 C (for the efficiency
of the algorithm, ˛ should be taken to be as large as possible).

Lemma 9.2 The polar P1 of the set S1 D Ow C K is an r- simplex with vertex set
f0;�c1=˛; : : : ;�cr=˛g and satisfying condition (ii) in Lemma 9.1.

Proof Since K � recC and Ow 2 C it follows that S1 D Ow C K � C; and hence
P1 � Cı: Furthermore, clearly S1 D fxj hci; xi � �˛; i D 1; : : : ; rg because
x 2 S1 if and only if x � Ow 2 K; i.e., hci; x � Owi � 0 i D 1; : : : ; r; i.e., hci; xi �
hci; Owi D �˛; i D 1; : : : ; r: From Proposition 1.28 we then deduce that Sı

1 D
convf0;�c1=˛; : : : ;�cr=˛g: The rest is immediate. ut

Also note that in this case Kı D conef�c1; : : : ;�crg and so �.Kı/ D R
r� while

�.P1/ D ft 2 R
r�j
Pr

iD1 ti � �1=˛g:

9.4 The Parametric Programming Approach

In the previous sections, it was shown how a quasiconcave monotonic problem can
be transformed into an equivalent quasiconcave problem of reduced dimension.
In this section an alternative approach will be presented in which a quasiconcave
monotonic problem is solved through the analysis of an associated linear program
depending on a parameter (of the same dimension as the reduced problem in the
former approach).

Consider the general problem formulated in Sect. 8.2:

.QCM/ minff .x/j x 2 Dg (9.26)

where D is a compact set in R
n; not necessarily even convex, and f .x/ is a

quasiconcave monotonic function on a closed convex set X � D with respect to
a polyhedral cone K with lineality space L D fxj Qx D 0g: To this problem we
associate the following program where v is an arbitrary vector in Kı W



9.4 The Parametric Programming Approach 295

LP.v/ minfhv; xij x 2 Dg: (9.27)

Denote by Kı
b any compact set such that cone(Kı

b / D Kı:

Theorem 9.1 For every v 2 �Kı; let xv be an arbitrary optimal solution of LP.v/:
Then

minff .x/j x 2 Dg D minff .xv/j v 2 �Kı
b g: (9.28)

Proof Let � D minff .xv/j v 2 �K0
bg: Clearly � D minff .xv/j v 2 �Kı n f0gg:

Denote by E the convex hull of the closure of the set of all xv; v 2 �Kı n f0g:
Since D is compact, so is E and it is easy to see that the convex set G D E C K is
closed. Indeed, for any sequence x� D u� C v� ! x0 with u� 2 E; v� 2 K; one
has, by passing to subsequences if necessary, u� ! u0 2 E; hence v� D x� � u� !
x0 � u0 2 K; which implies that x0 D u0 C .x0 � u0/ 2 E C K D G: Thus, G is a
closed convex set. By K-monotonicity we have f .yCu/ � f .y/ for all y 2 E; u 2 K;
hence f .x/ � � for all x 2 ECK D G: Suppose now that � > minff .x/j x 2 Dg; so
that for some z 2 D we have f .z/ < �; i.e., z 2 D n G: By Proposition 1.15 on the
normals to a convex set there exists x0 2 @G such that v WD x0 � z satisfies

hv; x � x0i � 0 8x 2 G; hv; z � x0i < 0: (9.29)

For every u 2 K; since x0C u 2 GCK D G; we have hv; ui � 0; hence v 2 �Kı n
f0g: But, since z 2 D; it follows from the definition of xv that hv; xvi � hv; zi <
hv; x0i by (9.29), hence hv; xv � x0i < 0; conflicting with the fact xv 2 E � G
and (9.29). ut

The above theorem reduces problem .QCM/ to minimizing the function '.v/ WD
f .xv/ over Kı

b : Though Kı � L?; and dim L? D r may be small, this is still
a difficult problem even when D is convex, because '.v/ is generally highly
nonconvex. The point, however, is that in many important cases the problem (9.28)
is more amenable to computational analysis than the original problem. For instance,
as we saw in the previous section, when D is a polytope the PA Method solves
.QCM/ through solving a suitable sequence of linear programs (9.25) which can be
recognized to be identical to (9.27) with v D �Pr

iD1 tici:

An important consequence of Theorem 9.1 can be drawn when:

ˇ
ˇ
ˇ
ˇ
D is a polyhedronI
K D fxj hci; xi � 0; i D 1; : : : ; pI hci; xi D 0; i D pC 1; : : : ; rg (9.30)
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(c1; : : : ; cr being linearly independent vectors of Rn/: Let

� D f	 2 R
p
Cj 	p D 1g;

W D f˛ D .˛pC1; : : : ; ˛r/j ˛i � ˛i � ˛i; i D pC 1; : : : ; rg;
˛i D inf

x2D
hci; xiI ˛i D sup

x2D
hci; xi i D pC 1; : : : ; r:

Corollary 9.1 For each .	; ˛/ 2 � � W let x	;˛ be an arbitrary basic optimal
solution of the linear program

LP.	; ˛/

ˇ
ˇ
ˇ
ˇ
min

Pp�1
iD1 	ihci; xi C hcp; xi

s:t: x 2 D; hci; xi D ˛i; i D pC 1; : : : ; r:

Then

minff .x/j x 2 Dg D minff .x	;˛/j 	 2 �; ˛ 2 Wg: (9.31)

Proof Clearly

minff .x/j x 2 Dg D min
˛

infff .x/j x 2 D \ H˛g;

where H˛ D fxj hci; xi D ˛i; i D p C 1 : : : ; rg: Let QK D fxj hci; xi � 0;
i D 1; : : : ; pg: Since f .x/ is quasiconcave QK-monotonic on X \ H˛; we have by
Theorem 9.1 :

minff .x/j x 2 D \ H˛g D minff .xv;˛/j v 2 � QKı
b g; (9.32)

where xv;˛ is any basic optimal solution of the linear program

minfhv; xij x 2 D \ H˛g: (9.33)

Noting that QKı D �conefc1; : : : ; cpg we can take QKı
b D �Œc1; : : : ; cp�: Also we can

assume v 2 �ri QKı
b since for any v 2 � QKı

b there exists v0 2 �ri QKı
b such that xv

0;˛

is a basic optimal solution of (9.33). So v D Pp
iD1 tici with tp > 0 and the desired

result follows by setting 	i D ti
tp
: ut

As mentioned above, by Theorem 9.1 one can solve .QCM/ by finding first the
vector v 2 �Kı

b that minimizes f .xv/ over all v 2 Kı
b : In certain methods, as,

for instance, in the PA method when D is polyhedral, an optimal solution x D xv

is immediately known once v has been found. In other cases, however, x must be
sought by solving the associated program minfhv; xij x 2 Dg: The question then
arises as to whether any optimal solution of the latter program will solve .QCM/:
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Theorem 9.2 If, in addition to the already stated assumptions, D � intX; while
the function f .x/ is continuous and strictly quasiconcave on X, then for any optimal
solution x of .QCM/ there exists a v 2 Kı n f0g such that x is an optimal solution of
LP.v/ and any optimal solution to LP.v/ will solve .QCM/.

(A function f .x/ is said to be strictly quasiconcave on X if for any two x; x0 2
X; f .x0/ < f .x/ always implies f .x0/ < f .�xC .1 � �/x0/ 8� 2 .0; 1//
Proof It suffices to consider the case when f .x/ is not constant on D: Let x be an
optimal solution of .QCM/ and X.x/ D fx 2 Xj f .x/ � f .x/g: By quasiconcavity
and continuity of f .x/, this set X.x/ is closed and convex. By optimality of x; D �
X.x/ and again by continuity of f .x/; fx 2 Xj f .x/ > f .x/g � intX.x/: Furthermore,
since f .x/ is not constant on D one can find x0 2 D such that f .x0/ > f .x/; so if
x 2 intX.x/ then for � > 0 small enough, x� D x� �.x0 � x/ 2 X.x/; f .x� / < f .x0/;
hence, by strict quasiconcavity of f .x/; f .x� / < f .x/; conflicting with the definition
of X.x/: Therefore, x lies on the boundary of X.x/: By Theorem 1.5 on supporting
hyperplanes there exists then a vector v ¤ 0 such that

hv; x � xi � 0 8x 2 X.x/: (9.34)

For any u 2 K we have xC u 2 DC K � X.x/; so hv;�ui � 0; and consequently,
v 2 �Kınf0g: If Qx is any optimal solution of LP.v/; then hv; Qx�xi D 0; and in view
of (9.34), Qx cannot be an interior point of X.x/ for then hv; x � xi D 0 8x 2 R

n;

conflicting with v ¤ 0: So Qx is a boundary point of X.x/; and hence f .Qx/ D f .x/;
because fx 2 Xj f .x/ > f .x/g � intX.x/: Thus, any optimal solution Qx to LP.v/ is
optimal to .QCM/. ut
Remark 9.3 If f .x/ is differentiable and pseudoconcave then it is strictly quasicon-
cave (see, e.g., Mangasarian 1969). In that case, since X.x/ D fx 2 Xjf .x/ � f .x/g
one must have hrf .x/; x � xi � 0 8x 2 X.x/ and since one can assume that there is
x 2 X satisfying f .x/ > f .x/ the strict quasiconcavity of f .x/ implies that rf .x/ ¤ 0
(Mangasarian 1969). So rf .x/ satisfies (9.34) and one can take v D rf .x/: This
result was established in Sniedovich (1986) as the foundation of the so-called C-
programming.

Corollary 9.2 Let F W Rq ! R be a continuous, strictly quasiconcave and K-
monotonic function on a closed convex set Y � R

q; where K � R
q is a polyhedral

convex cone contained in the recession cone of Y: Let g W D! R
q be a map defined

on a set D � R
n such that g.D/ � intY: If F.g.x// attains a minimum on D then

there exists t 2 �Kı such that any optimal solution of

minfht; g.x/ij x 2 Dg (9.35)

will solve

minfF.g.x//j x 2 Dg: (9.36)
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Proof If x is a minimizer of F.g.x// over D, then y D g.x/ is a minimizer of F.y/
over G D g.D/; and the result follows from Theorem 9.2. ut

In particular, when K � R
q
C and D is a convex set while gi.x/; i D 1; : : : ; q are

convex functions, problem (9.35) is a parametric convex program (t � 0 because
�Kı � R

q
C/:

Example 9.8 Consider the problem (Tanaka et al. 1991):

min
x

( 
nX

iD1
f1;i.xi/

!

:

 
nX

iD1
f2;i.xi/

!

j xi 2 Xi; i D 1; : : : ; n
)

(9.37)

where Xi � RCC and f1;i; f2;i are positive-valued functions .i D 1 : : : ; n/:
Applying the Corollary for g.x/ D .g1.x/; g2.x//; g1.x/ D Pn

iD1 f1;i.xi/; g2.x/ DPn
iD1 f2;i.xi/; F.y/ D y1y2 for every y D .y1; y2/ 2 R

2CC; we see that if this problem
is solvable then there exists a number t > 0 such that any optimal solution of

min
x

(
nX

iD1
.f1;i.xi/C tf2;i.xi//j xi 2 Xi; i D 1; : : : ; n

)

(9.38)

will solve (9.37). For fixed t > 0 the problem (9.38) splits into n one-dimensional
subproblems

minff1;i.xi/C tf2;i.xi/j xi 2 Xig:
In the particular case of the problem of optimal ordering policy for jointly
replenished products as treated in the mentioned paper of Tanaka et al. f1;i.xi/ D
a=nC ai=xi; f2;i.xi/ D bixi=2 .a; ai; bi > 0/ and Xi is the set of positive integers, so
each of the above subproblems can easily be solved.

9.5 Linear Multiplicative Programming

In this section we discuss parametric methods for solving problem (QCM) under
assumptions (9.30). Let Q be the matrix of rows c1; : : : ; cr: In view of Proposi-
tion 9.1, the problem can be reformulated as

minfF.hc1; xi; : : : ; hcr; xi/j x 2 Dg; (9.39)

where D is a polyhedron in R
n; and F W Rr ! R is a quasiconcave function on a

closed convex set Y � Q.D/; such that for any y; y0 2 Y W

yi � y0
i .i D 1; : : : ; p/

yi D y0
i .i D pC 1; : : : ; r/

�

) F.y/ � F.y0/: (9.40)
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A typical problem of this class is the linear multiplicative program :

.LMP/ min

8
<

:

rY

jD1
hci; xij Ax D b; x � 0

9
=

;
(9.41)

which corresponds to the case F.y/ D Qr
iD1 yi: Aside from (LMP), a wide variety

of other problems can be cast in the form (9.39), as shown by the many examples in
Sect. 7.1. In spite of that, it turns out that solving (9.39) with different functions F.y/
reduces to comparing the objective function values on a finite set of extreme points
of D dependent upon the vectors c1; : : : ; cr but not on the specific form of F.y/.

Due to their relevance to applications in various fields (multiobjective pro-
gramming, bond portfolio optimization, VLSI design, etc. . . ), the above class of
problems, including .LMP/ and its extensions, has been the subject of quite a few
research. Parametric methods for solving .LMP/ date back to Swarup (1966a),
Swarup (1966b), Swarup (1966c), Forgo (1975), and Gabasov and Kirillova (1980).
However intensive development in the framework of global optimization began only
with the works of Konno and Kuno (1990, 1992). The basic idea of the parametric
method can be described as follows. By Corollary 9.1 one can solve .LMP/ by
solving the problem

minff .x	;˛/j 	 2 �;˛ 2 Wg; (9.42)

where, in the notation in Corollary 9.1, x	;˛ is an arbitrary optimal solution of the
linear program

LP.	; ˛/

ˇ
ˇ
ˇ
ˇ
min

Pp
iD1 	ihci; xi

s:t: x 2 D; hcj; xi D ˛j; j D pC 1; : : : ; r:

For solving (9.42) the parametric method exploits the property of LP.	; ˛/ that
the parameter space is partitioned in finitely many polyhedrons over each of which
the minimum of the function '.	; ˛/ D f .x	;˛/ can be computed relatively easily.
Specifically, by writing the constraints in this linear program in the form

Ax D bC S˛; x � 0; (9.43)

where S is a suitable diagonal matrix, denote the collection of all basis matrices of
this system by B:

Lemma 9.3 Each basis B of the system (9.43) determines a set ˘B �
B � ��W
which is a polyhedron whenever nonempty, and an affine map xB W 
B ! R

n; such
that xB.˛/ is a basic optimal solution of LP.	; ˛/ for all .	; ˛/ 2 ˘B � 
B: The
collection of polyhedrons ˘B � 
B corresponding to all bases B 2 B covers all
.	; ˛/ such that LP.	; ˛/ has an optimal solution.
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Proof Let B be any basis of this system. If A D .B;N/; x D
�

xB

xN

�

; so that BxB C
NxN D bC S˛; then

xB D B�1.bC S˛/ � B�1NxN (9.44)

and the associated basic solution of (9.43) is

xB D B�1.bC S˛/; xN D 0: (9.45)

This basic solution is feasible for all ˛ 2 W such that B�1.b C S˛/ � 0 (nonneg-
ativity condition) and is dual feasible for all 	 2 � such that

Pp
iD1 	iŒ.ci

N/
T �

.ci
B/

TB�1N� � 0 (optimality criterion), where ci D
�

ci
B

ci
N

�

: If we denote the

vector (9.45) by xB.˛/ and define the polyhedrons

˘B D
(

	 2 �j
pX

iD1
	i
�
.ci

N/
T � .ci

B/
TB�1N

	 � 0
)


B D f˛ 2 Wj B�1.bC S˛/ � 0g
then whenever both˘B and�B are nonempty the affine map ˛ 2 
B 7! xB.˛/ 2Rn

is such that xB.˛/ is a basic optimal solution of LP.	; ˛/ for all 	 2 ˘B; ˛ 2 
B:

The last assertion of the Lemma is obvious from the fact that if LP.	; ˛/ has a basic
optimal solution, then .	; ˛/ 2 ˘B �
B for the corresponding basis B: ut

Each polyhedron ˘B � 
B is called a cell. Thus, by taking x	;˛ D xB.˛/ for
every .	; ˛/ 2 ˘B � 
B; the function '.	; ˛/ D f .x	;˛/ is constant in 	 2 ˘B

for every fixed ˛ 2 
B and quasiconcave in ˛ 2 
B for every fixed 	 2 ˘B:

Hence its minimum over the cell ˘B � 
B is equal to the minimum of f .xB.˛//

over 
B and is achieved at a vertex of the polytope 
B: Therefore, if the collection
of cells can be effectively computed then the problem (9.42) can be solved through
scanning the vertices of the cells. Unfortunately, however, when r > 3 the cells are
very complicated and there is in general no practical method for computing these
cells, except in rare cases where additional structure (like network constraints, see
Sect. 9.8) may simplify this computation. Below we briefly examine the method for
problems with r � 3: For more detail the reader is referred to the cited papers of
Konno and Kuno.

9.5.1 Parametric Objective Simplex Method

When p D r D 2 the problem (9.39) is

minfF.hc1; xi; hc2; xi/j x 2 Dg (9.46)
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where D is a polyhedron contained in the set fxj hc1; xi � 0; hc2; xi � 0g; and F.y/
is a quasiconcave function on the orthant R2C such that

y; y0 2 R
2C; y � y0 ) F.y/ � F.y0/: (9.47)

As seen earlier, aside from the special case when F.y/ D y1y2 (linear multiplicative
program), the class (9.46) includes problems with quite different objective func-
tions, such as

.hc1; xi/q1 .hc2; xi/q2 I �q1e
hc1;xi � q2e

hc2;xi .q1 > 0; q2 > 0/

corresponding to different choices of F.y/ W

yq1
1 yq2

2 I �q1e
y1 � q2e

y2 :

By Corollary 9.1 (with p D r D 2/ the parametric linear program associated
with (9.46) is

LP.	/ minfhc1 C 	c2; xij x 2 Dg; 	 � 0: (9.48)

Since the parameter domain � is the nonnegative real line, the cells of this
parametric program are intervals and can easily be determined by the standard
parametric objective simplex method (see, e.g., Murty 1983) which consists in the
following.

Suppose a basis Bk is already available such that the corresponding basic solution
xk is optimal to LP.	/ for all 	 2 ˘k WD Œ	k�1; 	k� but not for 	 outside this
interval. The latter means that if 	 is slightly greater than 	k then at least one of the
inequalities in the optimality criterion

.c1 C 	c2/Nk � .c1 C 	c2/Bk B�1
k Nk � 0

becomes violated. Therefore, by performing a number of simplex pivot steps we
will pass to a new basis BkC1 with a basic solution xkC1 which will be optimal to
LP.	/ for all 	 in a new interval ˘kC1 � Œ	k;C1/: In this way, starting from the
value 	0 D 0 one can determine the interval ˘1 D Œ	0; 	1� then pass to the next
˘2 D Œ	1; 	2�; and so on, until the whole halfline is covered. Note that the optimum
objective value function �.	/ in the linear program LP.	/ is a concave piecewise
affine function of 	 with ˘k as linearity intervals. The points 	0 D 0; 	1; : : : ; 	l are
the breakpoints of �.	/: An optimal solution to (9.46) is then xk� where

k	 2 argminfF.hc1; xki; hc2; xki/j k D 1; 2; : : : ; lg: (9.49)

Remark 9.4 Condition (9.47) is a variant of (9.40) for p D r D 2: Condition (9.40)
with p D 1; r D 2 always holds since it simply means F.y/ D F.y0/ whenever
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y D y0: Therefore, without assuming (9.47), Corollary 9.1 and hence the above
method still applies. However, in this case, � D R; i.e., the linear program LP.	/
should be considered for all 	 2 .�1;C1/:

9.5.2 Parametric Right-Hand Side Method

Consider now problem (9.39) under somewhat weaker assumptions than previously,
namely: F.y/ is not required to be quasiconcave, while condition (9.47) is replaced
by the following weaker one:

y1 � y0
1; y2 D y0

2 ) F.y/ � F.y0/: (9.50)

The latter condition implies that for fixed y2 the univariate function F.:; y2/ is
monotonic on the real line. It is then not hard to verify that Corollary 9.1 still holds
for this case. In fact this is also easy to prove directly.

Lemma 9.4 Let ˛ D minfhc2; xij x 2 Dg; ˛ D maxfhc2; xij x 2 Dg and for every
˛ 2 Œ˛; ˛� let x˛ be a basic optimal solution of the linear program

LP.˛/ minfhc1; xij x 2 D; hc2; xi D ˛g :

Then

minfF.hc1; xi; hc2; xi/j x 2 Dg D minfF.hc1; x˛i; hc2; x˛i/j ˛ � ˛ � ˛g:

Proof For every feasible solution x of LP.˛/ we have hc1; x � x˛i � 0 (because x˛

is optimal to LP(˛// and hc2; x � x˛i D 0 (because x˛ is feasible to LP(˛//: Hence,
from (9.50) F.hc1; xi; hc2; xi/ � F.hc1; x˛i; hc2; x˛i/ and the conclusion follows.

ut
Solving (9.39) thus reduces to solving LP.˛/ parametrically in ˛: This can be

done by the following standard parametric right-hand side method (see, e.g., Murty
1983). Assuming that the constraints in LP.˛/ have been rewritten in the form

Ax D bC ˛b0; x � 0;
let Bk be a basis of this system satisfying the dual feasibility condition

c1Nk
� c1Bk

B�1
k Nk � 0:

Then the basic solution defined by this basis, i.e., the vector xk D uk C ˛vk such
that xk

Bk
D B�1

k .bC ˛b0/; xk
Nk
D 0 [see (9.45)], is dual feasible. This basic solution

xk is optimal to LP.˛/ if and only if it is feasible, i.e., if and only if it satisfies the
nonnegativity condition

B�1
k .bC ˛b0/ � 0:
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Let 
k WD Œ˛k�1; ˛k� be the interval formed by all values ˛ satisfying the above
inequalities. Then xk is optimal to LP.˛/ for all ˛ in this interval, but for any value
˛ slightly greater than ˛k at least one of the above inequalities becomes violated, i.e.,
at least one of the components of xk becomes negative. By performing then a number
of dual simplex pivots, we can pass to a new basis BkC1 with a basic solution xkC1
which will be optimal for all ˛ in some interval 
kC1 D Œ˛k; ˛kC1�: Thus, starting
from the value ˛0 D ˛; one can determine an initial interval 
1 D Œ˛; ˛1�; then
pass to the next interval 
2 D Œ˛1; ˛2�; and so on, until the whole interval Œ˛; ˛� is
covered. The generated points ˛0 D ˛; ˛1; : : : ; ˛h D ˛ are the breakpoints of the
optimum objective value function �.˛/ in LP.˛/ which is a convex piecewise affine
function. By Lemma 9.4 an optimal solution to (9.39) is then xk� where

k� 2 argminfF.hc1; xki; hc2; xki/j k D 1; 2; : : : ; hg: (9.51)

Remark 9.5 In both objective and right-hand side methods the sequence of points
xk on which the objective function values have to be compared depends upon the
vectors c1; c2 but not on the specific function F.y/: Computational experiments
(Konno and Kuno 1992), also (Tuy and Tam 1992) indicate that solving a prob-
lem (9.39) requires no more effort than solving just a few linear programs of the
same size. Two particular problems of this class are worth mentioning:

minfc1x:c2xj x 2 Dg (9.52)

minf�x21 C c0xj x 2 Dg; (9.53)

where D is a polyhedron [contained in the domain c1x > 0; c2x > 0 for (9.52)].
These correspond to functions F.y/ D y1y2 and F.y/ D �y21 C y2, respectively
and have been shown to be NP-hard (Matsui 1996; Pardalos and Vavasis 1991),
although, as we saw above, they are efficiently solved by the parametric method.

9.5.3 Parametric Combined Method

When r D 3 the parametric linear program associated to (9.39) is difficult to handle
because the parameter domain is generally two-dimensional. In some particular
cases, however, a problem (9.39) with r D 3 may be successfully tackled by the
parametric method. As an example consider the problem

minfc0xC c1x:c2xj x 2 Dg (9.54)

which may not belong to the class (QCM) because we cannot prove the quasicon-
cavity of the function F.y/ D y1C y2y3: It is easily seen, however, that this problem
is equivalent to

minfhc0 C ˛c1; xij x 2 D; hc2; xi D ˛; ˛ � ˛ � ˛g (9.55)
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where ˛ D minx2Dhc2; xi; ˛ D maxx2Dhc2; xi: By writing the constraints x 2
D; hc2; xi D ˛ in the form

Ax D bC ˛b0: (9.56)

we can prove the following:

Lemma 9.5 Each basis B of the system (9.56) determines an interval 
B � Œ˛; ˛�
and an affine map xB W 
B ! R

n such that xB.˛/ is a basic optimal solution of the
problem

P.˛/ minfhc0 C ˛c1; xij x 2 D; hc2; xi D ˛g

for all ˛ 2 
B: The collection of all intervals 
B corresponding to all bases B such
that 
B ¤ ; covers all ˛ for which P.˛/ has an optimal solution.

Proof Let B be a basis, A D .B;N/; x D
�

xB

xN

�

; so that the associated basic

solution is

xB D B�1.bC ˛b0/; xN D 0: (9.57)

This basic solution is feasible for all ˛ 2 Œ˛; ˛� satisfying the nonnegativity
condition

B�1.bC ˛b0/ � 0: (9.58)

and is dual feasible for all ˛ satisfying the dual feasibility condition (optimality
criterion)

.c0 C ˛c1/N � .c0 C ˛c1/BB�1N � 0: (9.59)

Conditions (9.58) and (9.59) determine each an interval. If the intersection
B of the
two intervals is nonempty, then the basic solution (9.57) is optimal for all ˛ 2 
B:

The rest is obvious. ut
Based on this Lemma, one can generate all the intervals 
B corresponding to

different bases B by a procedure combining primal simplex pivots with dual simplex
pivots (see, e.g., Murty 1983). Specifically, for any given basis Bk; denote by uk C
˛vk the vector (9.57) which is the basic solution of P(˛/ corresponding to this basis,
and by 
k D Œ˛k�1; ˛k� the interval of optimality of this basic solution. When ˛ is
slightly greater than ˛k either the nonnegativity condition [see (9.58)] or the dual
feasibility condition [see (9.59)] becomes violated. In the latter case we perform a
primal simplex pivot step, in the former case a dual simplex pivot step, and repeat
as long as necessary, until a new basis BkC1 with a new interval 
kC1 is obtained.
Thus, starting from an initial interval 
1 D Œ˛; ˛1� we can pass from one interval to
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the next, until we reach ˛: Let then
k; k D 1; : : : ; l be the collection of all intervals.
For each interval 
k let uk C ˛vk be the associated basic solution which is optimal
to P(˛/ for all ˛ 2 
k and let xk D uk C �kv

k; where �k is a minimizer of the
quadratic function '.˛/ WD hc0C ˛c1; uk C ˛vki over 
k: Then from (9.55) and by
Lemma 9.5, an optimal solution of (9.54) is xk� where

k� 2 argminfc0xk C .c1xk/.c2xk/j k D 1; 2; : : : ; lg:

Note that the problem (9.54) is also NP-hard (Pardalos and Vavasis 1991).

9.6 Convex Constraints

So far we have been mainly concerned with solving quasiconcave monotonic
minimization problems under linear constraints. Consider now the problem

.QCM/ minff .x/j x 2 Dg: (9.60)

formulated in Sect. 9.2 [see (9.8)], where the constraint set D is compact convex
but not necessarily polyhedral. Recall that by Proposition 9.1 where Qx D
.c1x; : : : ; crx/T there exists a continuous quasiconcave function F W Rr ! R on
a closed convex set Y � Q.D/ satisfying condition (9.40) and such that

f .x/ D F.hc1; xi; : : : ; hcr; xi/: (9.61)

It is easy to extend the branch and bound algorithms in Sect. 8.2 and the polyhedral
annexation algorithm in Sect. 8.3 to (QCM) with a compact convex constraint set D;
and in fact, to the following more general problem:

.GQCM/ minfF.g.x//j x 2 Dg (9.62)

where D and F.y/ are as previously (with g.D/ replacing Q.D//; while g D
.g1; : : : ; gr/

T W Rn ! R
r is a map such that gi.x/; i D 1; : : : ; p; are convex on a

closed convex set X � D and gi.x/ D hci; xi C di; i D pC 1; : : : ; r:
For the sake of simplicity we shall focus on the case p D r; i.e., we shall assume

F.y/ � F.y0/ whenever y; y0 2 Y; y � y0: This occurs, for instance, for the convex
multiplicative programming problem

min

(
rY

iD1
gi.x/j x 2 D

)

(9.63)
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where F.y/ D Qr
iD1 yi; D � fxj gi.x/ � 0g: Clearly problem (GQCM) can be

rewritten as

minfF.y/j g.x/ � y; x 2 Dg (9.64)

which is to minimize the quasiconcave R
rC-monotonic function F.y/ on the closed

convex set

E D fyjg.x/ � y; x 2 Dg D g.D/C R
rC: (9.65)

9.6.1 Branch and Bound

If the function F.y/ is concave (and not just quasiconcave) then simplicial subdivi-
sion can be used. In this case, a lower bound for F.y/ over the feasible points y in a
simplex M D Œu1; : : : ; urC1� can be obtained by solving the convex program

minflM.y/j y 2 E \Mg;

where lM.y/ is the affine function that agrees with F.y/ at the vertices of M (this
function satisfies lM.y/ � F.y/ 8y 2 M in view of the concavity of F.y//: Using
this lower bounding rule, a simplicial algorithm for (GQCM) can be formulated
following the standard branch and bound scheme. It is also possible to combine
branch and bound with outer approximation of the convex set E by a sequence of
nested polyhedrons Pk � E:

If the function F.y/ is concave separable, i.e., F.y/ D Pr
jD1 Fj.yj/; where each

Fj.:/ is a concave function of one variable, then rectangular subdivision can be
more convenient. However, in the general case, when F.y/ is quasiconcave but
not concave, an affine minorant of a quasiconcave function over a simplex (or a
rectangle) is in general not easy to compute. In that case, one should use conical
rather than simplicial or rectangular subdivision.

9.6.2 Polyhedral Annexation

Since F.y/ is monotonic with respect to the orthant R
rC; we can apply the PA

Algorithm using Lemma 9.2 for constructing the initial polytope P1:
Let y 2 E be an initial feasible point of (9.64) and C D fyj F.y/ � F.y/g: By

translating, we can assume that 0 2 E and 0 2 intC; i.e., F.0/ > F.y/: Note that
instead of a linear program like (9.25) we now have to solve a convex program of
the form

maxfht; yij y 2 Eg D maxfht; g.x/ij x 2 Dg (9.66)
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where t 2 .RrC/ı D �RrC: Therefore, to construct the initial polytope P1
(see Lemma 9.2) we compute ˛ > 0 such that F.˛w/ D F.y/ (where w D
.�1; : : : ;�1/T 2 R

r/ and take the initial polytope P1 to be the r-simplex in R
r

with vertex set V1 D f0;�e1=˛; : : : ;�er=˛g: We can thus state:

PA Algorithm (for .GQCM/)
Initialization. Let y be a feasible solution (the best available), C D fyj F.y/ � F.y/g:
Choose a point y0 2 E such that F.y0/ > F.y/ and set E  E � y0; C  C � y0:
Let P1 be the simplex in R

r with vertex set V1: Set k D 1:
Step 1. For every new t D .t1; : : : ; tr/T 2 Vknf0g solve the convex program (9.66),

obtaining the optimal value �.t/ and an optimal solution y.t/:
Step 2. Let tk 2 argmaxf�.t/j t 2 Vkg: If �.tk/ � 1, then terminate: y is an

optimal solution of (GQCM).
Step 3. If �.tk/ > 1 and yk WD y.tk/ … C (i.e., F.yk/ < F.y//; then update the

current best feasible solution and the set C by resetting y D yk:

Step 4. Compute

�k D supf� j F.�yk/ � F.y/g (9.67)

and define

PkC1 D Pk \ ftj ht; yki � 1

�k
g:

Step 5. From Vk derive the vertex set VkC1 of PkC1: Set k kC 1 and go back to
Step 1.

To establish the convergence of this algorithm we need two lemmas.

Lemma 9.6 �.tk/& 1 as k!C1:
Proof Observe that �.t/ D maxfht; yij y 2 g.D/g is a convex function and that
yk 2 @�.tk/ because �.t/ � �.tk/ � ht; yki � htk; yki D ht � tk; yki 8t: Denote
lk.t/ D ht; yki�1:We have lk.tk/ D htk; yki�1 D �.tk/�1 > 0; and for t 2 Œg.D/�ı W
lk.t/ D ht; yki � 1 � �.t/� 1 � 0 because yk 2 g.D/CR

rC: Since g.D/ is compact,
there exist t0 2 intŒg.D�ı (Proposition 1.21), i.e., t0 such that l.t0/ D �.t0/ � 1 < 0
and sk 2 Œt0; tk/� n intŒg.D/�ı such that l.sk/ D 0: By Theorem 6.1 applied to the set
Œg.D/�ı; the sequence ftkg and the cuts lk.t/; we conclude that tk � sk ! 0: Hence
every accumulation point t� of ftkg satisfies �.t�/ D 1; i.e., �.tk/& �.t�/ D 1:

ut
Denote by Ck the set C at iteration k:

Lemma 9.7 Cı
k � Pk for every k:
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Proof The inclusion Cı
1 � P1 follows from the construction of P1: Arguing by

induction on k; suppose that Cı
k � Pk for some k � 1: Since �kyk 2 CkC1; for all

t 2 Cı
kC1 we must have ht; �kyki � 1; and since Ck � CkC1; i.e., Cı

kC1 � Cı
k � Pk it

follows that t 2 Pk \ ftj ht; �kyki � 1g D PkC1: ut
Proposition 9.5 Let yk be the incumbent at iteration k: Either the above algorithm
terminates by an optimal solution of (GQCM) or it generates an infinite sequence
fykg every accumulation point of which is an optimal solution.

Proof Let y� be any accumulation point of the sequence fykg: Since by Lemma 9.6
maxf�.t/j t 2 Pkg & 1 it follows from Lemma 9.7 that maxf�.t/j t 2 \1

kD1Cı
k g �

1: This implies that \1
kD1Cı

k � Eı; and hence E � [1
kD1Ck: Thus, for any y 2 E

there is k such that y 2 Ck; i.e., F.y/ � F.yk/ � F.y/; proving the optimality of y:
ut

Incidentally, the above PA Algorithm shows that

minfF.y/j y 2 Eg D minfF.g.x.t///j t 2 R
r�g; (9.68)

where x.t/ is an arbitrary optimal solution of (9.66), i.e., of the convex program

minfh�t; g.x/ij x 2 Dg:

This result could also be derived from Theorem 9.1.

Remark 9.6 All the convex programs (9.66) have the same constraints. This fact
should be exploited for an efficient implementation of the above algorithm. Also,
in practice, these programs are usually solved approximately, so �.t/ is only an
"-optimal value, i.e., �.t/ � maxfht; yij y 2 Eg � " for some tolerance " > 0:

9.6.3 Reduction to Quasiconcave Minimization

An important class of problems (GQCM) is constituted by problems of the form:

minimize
pX

iD1

qiY

jD1
gij.x/ s:t x 2 D; (9.69)

where D is a compact convex set and gij W D! RCC; i D 1; : : : ; p; j D 1; : : : ; qi; are
continuous convex positive-valued functions on D: This class includes generalized
convex multiplicative programming problems (Konno and Kuno 1995; Konno et al.
1994) which can be formulated as:
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min

8
<

:
g.x/C

qY

jD1
gj.x/j x 2 D

9
=

;
: (9.70)

or, alternatively as

min

(

g.x/C
pX

iD1
gi.x/hi.x/j x 2 D

)

; (9.71)

where all functions g.x/; gi.x/; hi.x/ are convex positive-valued on D: Another
special case worth mentioning is the problem of minimizing the scalar product of
two vectors:

min

(
nX

iD1
xiyij .x; y/ 2 D � R

nCC

)

: (9.72)

Let us show that any problem (9.69) can be reduced to concave minimization under
convex constraints. For this we rewrite (9.69) as

minimize
Pp

iD1.
Qqi

jD1 yij/
1=qi

s:t: Œgij.x/�qi � yij; i D 1; : : : ; pI j D 1; : : : ; qi

yij � 0; x 2 D:

(9.73)

Since 'j.y/ D yij; j D 1; : : : ; qi are linear, it follows from Proposition 2.7 that each
term .

Qqi
jD1 yij/

1=qi ; i D 1; : : : ; p; is a concave function of y D .yij/ 2 R
q1C:::;qp ;

hence their sum, i.e., the objective function F.y/ in (9.73), is also a concave function
of y: Furthermore, y � y0 obviously implies F.y/ � F.y0/; so F.y/ is monotonic
with respect to the cone fyjy � 0g: Finally, since every function gij.x/ is convex,
so is Œgij.x/�qi : Consequently, (9.73) is a concave programming problem. If q D
q1 C : : : C qp is relatively small this problem can be solved by methods discussed
in Chaps. 5 and 6.

An alternative way to convert (9.69) into a concave program is to use the
following relation already established in the proof of Proposition 2.7 [see (2.6)]:

qiY

jD1
gij.x/ D 1

qi
min
� i2Ti

qiX

jD1
�ijg

qi
ij .x/;

with � i D .�i1; : : : ; �iqi/;Ti D f� i W Qqi
jD1 �ij � 1g: Hence, setting 'i.�

i; x/ D
1

qi

qiX

jD1
�ijg

qi
ij .x/; the problem (9.69) is equivalent to
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min
x2D

pX

iD1
min
� i2Ti

'i.�
i; x/

D min
x2D

minf
pX

iD1
'i.�

i; x/ W � i 2 Ti; i D 1; : : : ; pg

D minfmin
x2D

pX

iD1
'i.�

i; x/ W � i 2 Ti; i D 1; : : : ; pg

D minf'.�1; : : : ; �p/j � i 2 Ti; i D 1; : : : ; pg (9.74)

where

'.�1; : : : ; �p/ D min
x2D

pX

iD1
'i.�

i; x/ D min

8
<

:

pX

iD1

qiX

jD1

1

qi
�ijg

qi
ij .x/j x 2 D

9
=

;
:

Since each function gqi
ij .x/ is convex, '.�1; : : : ; �p/ is the optimal value of a convex

program. Furthermore, the objective function of this convex program is a linear
function of .�1; : : : ; �p/ for fixed x: Therefore, '.�1; : : : ; �p/ is a concave function
(pointwise minimum of a family of linear functions). Finally, each Ti; i D 1; : : : ; p;
is a closed convex set in R

qi because

Ti D
8
<

:
� ij

qiX

jD1
log �ij � 0

9
=

;
:

Thus, problem (9.69) is equivalent to (9.74) which seeks to minimize the concave
function '.�1; : : : ; �p/ over the convex set

Qp
iD1 Ti:

Example 9.9 As an illustration, consider the problem of determining a rectangle of
minimal area enclosing the projection of a given compact convex set D � R

n.n > 2/
onto the plane R

2: This problem arises from applications in packing and optimal
layout (Gale 1981; Haims and Freeman 1970; Maling et al. 1982), especially when
two-dimensional layouts are restricted by n � 2 factors. When the vertices of D
are known, there exists an efficient algorithm based on computational geometry
(Bentley and Shamos 1978; Graham 1972; Toussaint 1978). In the general case,
however, the problem is more complicated.

Assume that D has full dimension in R
n D R

2 �R
n�2: The projection of D onto

R
2 is the compact convex set prD D fy 2 R

2j 9z 2 R
n�2; .y; z/ 2 Dg: For any

vector x 2 R
2 such that kxk D 1 define

g1.x/ D maxfhx; yij .y; z/ 2 Dg
g2.x/ D minfhx; yij .y; z/ 2 Dg:
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Then the width of prD in the direction x is

g.x/ D g1.x/ � g2.x/:

On the other hand, since Hx D .�x2; x1/T is the vector orthogonal to x such that
kH.x/k D 1 if kxk D 1; the width of prD in the direction orthogonal to x is
g.Hx/ D g.�x2; x1/:Hence the product g.x/:g.Hx/measures the area of the smallest
rectangle containing prD and having a side parallel to x: The problem can then be
formulated as

minfg.x/:g.Hx/j x 2 R
2C; kxk D 1g: (9.75)

Lemma 9.8 The function g.x/ is convex and satisfies g.˛x/ D ˛g.x/ for any
˛ � 0:
Proof Clearly g1.x/ is convex as the pointwise maximum of a family of affine
functions, while g2.x/ is concave as the pointwise minimum of a family of affine
functions. It is also obvious that gi.˛x/ D ˛gi.x/; i D 1; 2: Hence, the conclusion.

ut
Since H W R2 ! R

2 is a linear map, it follows that g.Hx/ is also convex
and that g.H.˛x// D ˛g.Hx/ for every ˛ � 0: Exploiting this property, a
successive underestimation method for solving problem (9.75) has been proposed in
Kuno (1993). In view of the above established property, problem (9.75) is actually
equivalent to the convex multiplicative program

minfg.x/ � g.Hx/j x 2 R
2C; kxk � 1g; (9.76)

and so can be transformed into the concave minimization problem

min
p

t1t2
s:t: g.x/ � t1; g.Hx/ � t2

x 2 R
2C; kxk � 1;

or, alternatively,

minf'.�1; �2/j �1�2 � 1; � 2 R
2Cg: (9.77)

where

'.�1; �2/ D minf�1g.x/C �2g.Hx/j x � 0; kxk � 1g: (9.78)

In the special case when D is a polytope given by a system of linear inequalities
Ay C Bz � b the problem can be solved by an efficient parametric method (Kuno
1993). For any point x 2 R

2C with kxk D 1; let .x/ D .	; 1 � 	/ be the point
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where the halfline from 0 through x intersects the line segment joining .1; 0/ and
.0; 1/: Since obviously, k.x/k2 D 	2C .1�	/2; using Lemma 9.8 problem (9.76)
becomes

minfF.	/j 	 2 Œ0; 1�g; (9.79)

where

F.	/ D g.	; 1 � 	/:g.	 � 1; 	/
	2 C .1 � 	/2 :

Furthermore, g.	; 1 � 	/ D g1.	; 1 � 	/ � g2.	; 1 � 	/ with

g1.	; 1 � 	/ D maxf	y1 C .1 � 	/y2j AyC Bz � bg
g2.	; 1 � 	/ D minf	y1 C .1 � 	/y2j AyC Bz � bg:

So each gi.	; 1 � 	/; i D 1; 2 is the optimal value of a linear parametric program.
Let 0; 	1i

1 ; : : : ; 	
1i
p1i
; 1 be the sequence of breakpoints of gi.	; 1 � 	/; i D 1; 2:

Analogously, let 0; 	2i
1 ; : : : ; 	

2i
p2i
; 1 be the sequence of breakpoints of gi.	 � 1; 	/:

Finally let

0 D 	0; 	1; 	2; : : : ; 	N�1; 1 D 	N (9.80)

be the union of all these four sequences rearranged in the increasing order.

Proposition 9.6 A global minimum of the function F.	/ over Œ0; 1� exists among
the points 	s; s D 0; : : : ;N:
Proof For any interval Œ	s; 	sC1�; there exist two vectors u D x1 � x2; v D x3 � v4;
where xi; i D 1; : : : ; 4 are vertices of D; such that for every x 2 R

2C of length kxk D
1; with .x/ D .	; 1�	/; 	 2 .	s; 	sC1/; we have g.x/ D hx; ui; g.Hx/ D hHx; vi:
Then

F.	/ D .kuk cos˛/ � .kvk cosˇ/;

where ˛ D angle.x; u/ (angle between the vectors x and u/ and ˇ D angle.Hx; v/:
Noting that angle.x; u/C angle.u; v/C angle.v; y/ D angle.x; y/; we deduce

ˇ D ˛ C ! � �=2; (9.81)

where ! D angle.u; v/: Thus, for all 	 2 .	s; 	sC1/:

F.	/ D .kuk cos˛/.kvk sin.˛ C !//:

Setting G.˛/ D cos˛ sin.˛ C !/; we have G0.˛/ D � sin˛ sin.˛ C !/ C
cos˛ cos.˛ C !/ D cos.2˛ C !/: If F.:/ attains a minimum at 	; i.e., G.:/ attains
a minimum at ˛; then one must have
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cos.2˛ C !/ D 0; hence 2˛ C ! D �=2˙ �: (9.82)

But from (9.81) it follows that ˛ C ! D ˇ C �=2; hence 2˛ C ! D ˛ C ˇ C �=2:
In view of (9.82) this in turn implies that

˛ C ˇ D ˙�;

contradicting the fact that 0 < j˛j < �=2; 0 < jˇj < �=2 (because hx; ui >
0; hHx; vi > 0/: Therefore, the minimum of F.	/ over an interval Œ	s; 	sC1� cannot
be attained at any 	 such that 	s < 	 < 	sC1; but must be attained at either 	s or
	sC1: Hence the global minimum over the entire segment Œ0; 1� is attained at one
point of the sequence 	0; 	1; : : : ; 	N : ut
Corollary 9.3 An optimal solution of (9.79) is

x� D .	�; 1 � 	�/
p
	2� C .1 � 	�/2

; 	� 2 argminfF.	s/ W s D 0; 1; : : : ;Ng:

Proof Indeed, x� D .x�/=k.x�/k and .x�/ D .	�; 1 � 	�/:

9.7 Reverse Convex Constraints

In the previous sections we were concerned with low rank nonconvex problems
with nonconvex variables in the objective function. We now turn to low rank
nonconvex problems with nonconvex variables in the constraints. Consider the
following monotonic reverse convex problem

.MRP/ minfhc; xij x 2 D; h.x/ � 0g;

where c 2 R
n;D is a closed convex set in R

n; and the function h W X ! R is
quasiconcave and K-monotonic on a closed convex set X � D: In this section we
shall present decomposition methods for (MRP) by specializing the algorithms for
reverse convex programs studied in Chaps. 6 and 7.

As in Sect. 9.2 assume that K � recX; with lineality L D fxj Qx D 0g; where Q
is an r� n matrix with r linearly independent rows c1; : : : ; cr: By quasiconcavity of
h.x/ the set C D fx 2 Xj h.x/ � 0g is convex and by Proposition 9.2 K � recC:
Assume further that D D fxj Ax � b; x � 0g is a polytope with a vertex at 0 and
that:

(a) minfhc; xij x 2 D; h.x/ � 0g > 0; so that h.0/ > 0I
(b) The problem is regular, i.e.,

D n intC D cl.D n C/:
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9.7.1 Decomposition by Projection

By writing, as in Sect. 7.2 [see formulas (9.11) and (9.12)], Q D ŒQB;QN �;

x D
�

xB

xN

�

; where QB is an r � r nonsingular matrix, and setting

Z D
�

Q�1
B

0

�

; '.y/ D h.Zy/

we define a function '.y/ such that '.y/ D h.x/ for all x 2 X satisfying y D Qx:
The latter also implies that '.y/ is quasiconcave on Q.X/:

Denote by  .y/ the optimal value of the linear program

minfhc; xij x 2 D; Qx D yg:

Then .MRP/ can be rewritten as a problem in y W

minf .y/j y 2 Q.D/; '.y/ � 0g: (9.83)

Since it is well known that  .y/ is a convex piecewise affine function, (9.83) is a
reverse convex program in the r-dimensional space Q.Rn/: If r is not too large this
program can be solved in reasonable time by outer approximation or branch and
bound.

9.7.2 Outer Approximation

Following the OA Algorithm for .CDC/ (Sect. 6.3), we construct a sequence of
polytopes P1 � P2 � : : : outer approximating the convex set

˝ D fy 2 Q.D/j  .y/ � Q�g;

where Q� is the optimal value of .MRP/: Also we construct a sequence C1 � �1 �
�2 � : : : such that

�k < C1 ) 9yk 2 Q.D/; '.yk/ � 0;  .yk/ D �k I
fy 2 Q.D/j  .y/ � �kg � Pk:

At iteration k we select (by vertex enumeration)

yk 2 argminf'.y/j y 2 Pkg
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(note that this requires '.y/ to be defined on P1/: If '.yk/ � 0 then .MRP/ is
infeasible when �k D C1; or yk is optimal when �k < C1: If '.yk/ < 0; then
yk … ˝ and we construct an affine inequality strictly separating yk from ˝: The
polytope PkC1 is defined by appending this inequality to Pk:

The key issue in this OA scheme is, given a point yk such that '.yk/ < 0; to
construct an affine function l.y/ satisfying

l.yk/ > 0; l.y/ � 0 8y 2 ˝: (9.84)

Note that we assume (a) and 0 2 D; so

'.0/ > 0;  .0/ < minf .y/j y 2 Q.D/; '.y/ � 0g: (9.85)

Now, since '.yk/ < 0 < '.0/ and �k �  .yk/ � 0 < �k �  .0/; one can compute
zk 2 Œ0; yk� satisfying minf'.zk/; �k �  .zk/g D 0: Consider the linear program

.SP.zk// maxfhzk; vi � hb;wijQTv � ATw � c; v � 0g:

Proposition 9.7

(i) If SP(zk) has a (finite) optimal solution .vk;wk/ then zk 2 Q.D/ and (9.84) is
satisfied by the affine function

l.y/ WD hvk; y � zki: (9.86)

(ii) If SP(zk/ has no finite optimal solution, so that the cone QTv�ATw � d; w � 0
has an extreme direction .vk;wk/ such that hzk; vki � hb;wki > 0; then zk …
Q.D/ and (9.84) is satisfied by the affine function

l.y/ WD hy; vki � hb;wki: (9.87)

Proof If SP.zk/ has an optimal solution .vk;wk/ then its dual

.SP�.zk// minfhc; xij Ax � b; Qx D zk; x � 0g

is feasible, hence zk 2 Q.D/: It is easy to see that vk 2 @ .zk/: Indeed, for any
y; since  .y/ is the optimal value in SP�.y/; it must also be the optimal value in
SP.y/I i.e.,  .y/ � hy; vki � hb;wki; hence  .y/ �  .zk/ � hy; vki � hb;wki �
hzk; vki C hb;wki D hvk; y � zki; proving the claim. For every y 2 ˝ we have
 .y/ � Q� �  .zk/; so l.y/ WD hvk; y� zki �  .y/�  .zk/ � 0: On the other hand,
yk D �zk D �zkC .1� �/0 for some � � 1; hence l.yk/ D � l.zk/C .1� �/l.0/ > 0
because l.0/ �  .0/ �  .zk/ < 0; while l.zk/ D 0:

To prove (ii), observe that if SP.zk/ is unbounded, then SP�.zk/ is infeasible,
i.e., zk … Q.D/: Since the recession cone of the feasible set of SP.zk/ is the cone
QTv � ATw � 0; v � 0; SP.zk/ may be unbounded only if an extreme direction
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.vk;wk/ of this cone satisfies hzk; vki � hb;wki > 0: Then the affine function (9.87)
satisfies l.zk/ > 0 while for any y 2 Q.D/; SP�.y/ (hence SP.y// must have a finite
optimal value, and consequently, hy; vki � hb;wki � 0; i.e., l.y/ � 0: ut

The convergence of an OA method for .MRP/ based on the above proposition
follows from general theorems established in Sect. 6.3.

Remark 9.7 In the above approach we only used the constancy of h.x/ on every
manifold fxj Qx D yg: In fact, since '.y0/ � '.y/ for all y0 � y; problem .MRP/
can also be written as

minf .y/j x 2 D; Qx � y; '.y/ � 0g: (9.88)

Therefore, SP.zk/ could be replaced by

maxfhzk; vi � hb;wij QTv � ATw � 0; v � 0; w � 0g:

9.7.3 Branch and Bound

We describe a conical branch and bound procedure. A simplicial and a rectangular
algorithm for the case when '.y/ is separable can be developed similarly.

From assumptions (a), (b) we have that

ˇ
ˇ
ˇ
ˇ
0 2 Q.D/; '.0/ > 0;

 .0/ < minf .y/j y 2 Q.D/; '.y/ � 0g: (9.89)

A conical algorithm for solving (9.83) starts with an initial cone M0 contained in
Q.X/ and containing the feasible set Q.D/ \ fyj '.y/ � 0g.

Given any cone M � Q.Rn/ of base Œu1; : : : ; uk� let �iui be the point where the
i-th edge of M intersects the surface '.y/ D 0: If U denotes the matrix of columns
u1; : : : ; uk then M D ft 2 R

kj Ut � 0; t � 0g and
Pk

iD1 ti=�i D 1 is the equation of
the hyperplane passing through the intersections of the edges of M with the surface
'.y/ D 0: Denote by ˇ.M/ and t.M/ the optimal value and a basic optimal solution
of the linear program

LP.M/ min

(

hc; xij x 2 D; Qx D
kX

iD1
tiu

i;

kX

iD1

ti
�i
� 1; t � 0

)

:

Proposition 9.8 ˇ.M/ gives a lower bound for  .y/ over the set of feasible points
in M: If !.M/ D Ut.M/ lies on an edge of M then

ˇ.M/ D minf .y/j y 2 Q.D/ \M; '.y/ � 0g: (9.90)
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Proof The first part of the proposition follows from the inclusion fy 2 Q.D/ \
Mj '.y/ � 0g � fy 2 Q.D/ \Mj Pk

iD1 ti=�i � 1g and the fact that minf .y/j y 2
Q.D/\M; '.y/ � 0g D minfhc; xij x 2 D;Qx D y; y 2 M; '.y/ � 0g: On the other
hand, if !.M/ lies on an edge of M it must lie on the portion of this edge outside the
convex set '.y/ � 0; hence '.!.M// � 0: Consequently, !.M/ is feasible to the
minimization problem in (9.90) and hence is an optimal solution of it. ut

It can be proved that a conical branch and bound procedure using !-subdivision
or !-bisection (see Sect. 7.1) with the above bounding is guaranteed to converge.

Example 9.10

min 2x1 C x2 C 0:5x3
s.t. �2x1 C x3 � x4 � 2:5

x1 � 3x2 C x4 � 2

x1 C x2 � 2
x1; x2; x3; x4 � 0
h.x/ WD �.3x1 C 6x2 C 8x3/2 � .4x1 C 5x2 C x4/2 C 154 � 0:

Here the function h.x/ is concave and monotonic with respect to the cone K D
fyj c1y D 0; c2y D 0g; where c1 D .3; 6; 8; 0/; c2 D .4; 5; 0; 1/ (cf Example 7.2).
So Q is the matrix of two rows c1; c2 and Q.D/ D fy D Qx; x 2 Dg is contained in
the cone M0 D fyjy � 0g (D denotes the feasible set). Since the optimal solution
0 2 R

4 of the underlying linear program satisfies h.0/ > 0; conditions (9.89) hold,
and M0 D conefe1; e2g can be chosen as an initial cone. The conical algorithm
terminates after 4 iterations, yielding an optimal solution of .0; 0; 1:54; 2:0/ and the
optimal value 0:76: Note that branching is performed in R

2 (t-space) rather than in
the original space R

4:

9.7.4 Decomposition by Polyhedral Annexation

From L D fxj Qx D 0g � K � C we have

Cı � Kı � L?; (9.91)

where L? (the orthogonal complement of L/ is the space generated by the rows
c1; : : : ; cr of Q (assuming rankQ D r/: For every � 2 R [ Cf1g let D� D fx 2
Dj hc; xi � �g: By Theorem 7.6 the value � is optimal if and only if

D� n intC ¤ ;; D� � C: (9.92)

Following the PA Method for .LRC/ (Sect. 8.1), to solve .MRP/ we construct a
nested sequence of polyhedrons P1 � P2 � : : : together with a nonincreasing
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sequence of real numbers �1 � �2 � : : : such that D�k n intC ¤ ;; Cı � Pk �
L? 8k; and eventually Pl � ŒD�l �

ı for some l W then D�l � Pı
l � C; hence �l is

optimal by the criterion (9.92).
To exploit monotonicity [which implies (9.91)], the initial polytope P1 is taken

to be the r-simplex constructed as in Lemma 9.1 (note that 0 2 intC by assumption
(a), so this construction is possible). Let � W L? ! R

r be the linear map
y D Pr

iD1 tici 7! �.y/ D t: For any set E � R
r denote QE D �.E/ � R

r: Then
by Lemma 9.1 QP1 is the simplex in R

r defined by the inequalities

rX

iD1
tihci; cji � 1

˛j
j D 0; 1; : : : ; r

where c0 D �Pr
iD1 ci; ˛j D supf˛j ˛cj 2 Cg: In the algorithm below, when a better

feasible solution xk than the incumbent has been found, we can compute a feasible
point Oxk at least as good as xk and lying on an edge of D (see Sect. 5.7). This can be
done by carrying out a few steps of the simplex algorithm. We shall refer to Oxk as a
point obtained by local improvement from xk:

PA Algorithm for .MRP/
Initialization. Choose a vertex x0 of D such that h.x0/ > 0 and set D D�x0; C 
C� x0: Let x1 D best feasible solution available, �1 D hc; x1i .x1 D ;; �k D C1 if
no feasible solution is available). Let P1 be the simplex constructed as in Lemma 9.1,
V1 the vertex set of QP1: Set k D 1:
Step 1. For every t D .t1; : : : ; tr/T 2 Vk solve the linear program

max

(
rX

iD1
tihci; xij x 2 D; hc; xi � �k

)

to obtain its optimal value�.t/: (Only the new t 2 Vk should be considered
if this step is entered from Step 3). If �.t/ � 1 8t 2 Vk, then terminate: if
�k <1; xk is an optimal solution; otherwise (MRP) is infeasible.

Step 2. If �.tk/ > 1 for some tk 2 Vk, then let xk be a basic optimal solution of
the corresponding linear program. If xk … C, then let Oxk be the solution
obtained by local improvement from xk; reset xk D Oxk; �k D hc; Oxki; and
return to Step 1.

Step 3. If xk 2 C then set xkC1 D xk; �kC1 D �k; compute �k D supf� j �xk 2 Cg
and define

QPkC1 D QPk \
(

tj
rX

iD1
tihxk; cii � 1

�k

)

:

From Vk derive the vertex set VkC1 of QPkC1: Set k  k C 1 and return to
Step 1.
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Proposition 9.9 The above PA Algorithm for .MRP/ is finite.

Proof Immediate, since this is a mere specialization of the PA Algorithm for
.LRCP/ in Sect. 6.4 to .MRP/. ut
Remark 9.8 If K D fxjQx � 0g then P1 can be constructed as in Lemma 9.2.
The above algorithm assumes regularity of the problem (assumption (b)). Without
this assumption, we can replace C by C" D fx 2 Xj h.x/ � "g: Applying the
above algorithm with C  C" will yield an "-approximate optimal solution (cf
Sect. 7.3), i.e., a point x" satisfying x" 2 D; h.x"/ � "; and hc; x"i � minfhc; xij
x 2 D; h.x/ � 0g.

9.8 Network Constraints

Consider a special concave programming problem of the form:

.SCP/ min g.y1; : : : ; yr/C hc; xi
s.t. y 2 Y (9.93)

Qx D y; Bx D d; x � 0: (9.94)

where g W R
rC ! R

C is a concave function, Y a polytope in R
rC, c; x 2

R
n; d 2 R

m;Q an r � n matrix of rank r; and B an m � n matrix. In an economic
interpretation, y D .y1; : : : ; yr/

T may denote a production program to be chosen
from a set Y of technologically feasible production programs, x a distribution–
transportation program to be determined so as to meet the requirements (9.94). The
problem is then to find a production–distribution–transportation program, satisfying
conditions (9.94), with a minimum cost. A variant of this problem is the classical
concave production–transportation problem

.PTP/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min g.y/C
rX

iD1

mX

jD1
cijxij

s.t.
mX

jD1
xij D yi i D 1; : : : ; r

rX

iD1
xij D dj j D 1; : : : ;m

xij � 0; i D 1; : : : ; r; j D 1; : : : ;m

where yi is the production level to be determined for factory i and xij the amount
to be sent from factory i to warehouse j in order to meet the demands d1; : : : ; dm of
the warehouses. Another variant of SCP is the minimum concave cost network flow
problem which can be formulated as
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.MCCNFP/

ˇ
ˇ
ˇ
ˇ
min

Pr
iD1 gi.xi/CPn

iDrC1 cixi

s:t: Ax D d; x � 0:

where A is the node-arc incidence matrix of a given directed graph with n arcs, d
the vector of node demands (with supplies interpreted as negative demands), and
xi the flow value on arc i: Node j with dj > 0 are the sinks, nodes j with dj < 0

are the sources, and it is assumed that
P

j dj D 0 (balance condition). The cost of
shipping t units along arc i is a nonnegative concave nondecreasing function gi.t/
for i D 1; : : : ; r; and a linear function cit (with ci � 0/ for i D rC 1; : : : ; n: To cast
.MCCNFP/ into the form .SCP/ it suffices to rewrite it as

ˇ
ˇ
ˇ
ˇ
min

Pr
iD1 gi.yi/CPn

iDrC1 cixi

s:t: xi D yi .i D 1; : : : ; r/; Ax D d; x � 0: (9.95)

Obviously, Problem .SCP/ is equivalent to

min g.y/C t

s.t. hc; xi � t; Qx D y; Bx D d; x � 0; y 2 Y: (9.96)

Since this is a concave minimization problem with few nonconvex variables, it
can be handled by the decomposition methods discussed in the previous Sects. 7.2
and 7.3.

Note that in both .PTP/ and .MCCNFP/ the constraints (9.94) have a nice
structure such that when y is fixed the problem reduces to a special linear
transportation problem (for .PTP/) or a linear cost flow problem (for .MCCNFP/),
which can be solved by very efficient specialized algorithms. Therefore, to take full
advantage of the structure of (9.94) it is important to preserve this structure under
the decomposition.

9.8.1 Outer Approximation

This method is initialized from a polytope P1 D Y � Œ˛; ˇ�,where ˛; ˇ are,
respectively, a lower bound and an upper bound of hc; xi over the polytope Bx D
d; x � 0: At iteration k; we have a polytope Pk � P1 containing all .y; t/ for which
there exists x � 0 satisfying (9.96). Let

.yk; tk/ 2 argminftC g.y/j .y; t/ 2 Pkg:

Following Remark 7.1 to check whether .yk; tk/ is feasible to (9.96) we solve the
pair of dual programs

minfhc; xij Qx D yk; Bx D d; x � 0g (9.97)
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maxfhyk; ui C hd; vij QTuC BTv � cg (9.98)

obtaining an optimal solution xk of (9.97) and an optimal solution .uk; vk/ of the
dual (9.98). If hc; xki � tk then .xk; yk/ solves .SCP/: Otherwise, we define

PkC1 D Pk \ f.y; t/j hy; uki C hd; vki � tg (9.99)

and repeat the procedure with k kC 1:
In the particular case of .PTP/ the subproblem (9.97) is a linear transportation

problem obtained from .PTP/ by fixing y D yk; while in the case of .MCCNFP/
the subproblem (9.97) is a linear min-cost network flow problem obtained from
.MCCNFP/ by fixing xi D yk

i for i D 1; : : : ; r (or equivalently, by deleting the arcs
i D 1; : : : ; r and accordingly modifying the demands of the nodes which are their
endpoints).

9.8.2 Branch and Bound Method

Assume that in problem .SCP/ the function g.y/ is concave separable, i.e., g.y/ DPr
iD1 gi.yi/: For each rectangle M D Œa; b� let

lM.y/ D
RX

iD1
li;M.yi/

where li;M.t/ is the affine function that agrees with gi.t/ at the endpoints ai; bi of the
segment Œai; bi�; i.e.,

li;M.t/ D gi.ai/C gi.bi/ � gi.ai/

bi � ai
.t � ai/: (9.100)

(see Proposition 7.4). Then a lower bound ˇ.M/ for the objective function in .SCP/
over M is provided by the optimal value in the linear program

.LP.M// min

(
rX

iD1
li;M.yi/C hc; xij Qx D y;Ax D d; x � 0

)

:

Using this lower bound and a rectangular !-subdivision rule, a convergent rectan-
gular algorithm has been developed in Horst and Tuy (1996) which is a refined
version of an earlier algorithm by Soland (1974) and should be able to handle
even large scale .PTP/ provided r is relatively small. Also note that if the data
are all integral, then it is well known that a basic optimal solution of the linear
transportation problem LP.M/ always exists with integral values. Consequently, in
this case, starting from an initial rectangle with integral vertices the algorithm will
generate only subrectangles with integral vertices, and so it will necessarily be finite.
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In practice, aside from production and transportation costs there may also be
shortage/holding costs due to a failure to meet the demands exactly. Then we
have the following problem (cf Example 5.1) which includes a formulation of the
stochastic transportation–location problem as a special case:

.GPTP/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min hc; xi CPr
iD1 gi.yi/CPm

jD1 hj.zj/

s:t:
mX

jD1
xij D yi .i D 1; : : : ; r/

rX

iD1
xij D zj .j D 1; : : : ;m/

0 � yi � si 8i;
xij � 0 8i; j:

where gi.yi/ is the cost of producing yi units at factory i and hj.zj/ is the
shortage/holding cost to be incurred if the warehouse j receives zj ¤ dj (demand
of warehouse j/: It is assumed that gi is a concave nondecreasing function satisfying
gi.0/ D 0 � gi.0C/ (so possibly gi.0C/ > 0 as, e.g., for a fixed charge), while
hj W Œ0; s� ! RC is a convex function (s D Pr

iD1 si/; such that hj.dj/ D 0; and
the right derivative of hj at 0 has a finite absolute value �j: The objective function is
then a d.c. function, which is a new source of difficulty. However, since the problem
becomes convex when y is fixed, it can be handled by a branch and bound algorithm
in which branching is performed upon y (Holmberg and Tuy 1995).

For any rectangle Œa; b� � Y WD fy 2 R
rCj 0 � yi � si i D 1; : : : ; rg let as

previously li;M.t/ be defined by (9.100) and lM.y/ D Pr
iD1 li;M.yi/: Then a lower

bound of the objective function over the feasible points in M is given by the optimal
value ˇ.M/ in the convex program

CP.M/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min hc; xi C lM.y/CPm
jD1 hj.zj/

s:t:
mX

jD1
xij D yi .i D 1; : : : ; r/

rX

iD1
xij D zj .j D 1; : : : ;m/

ai � yi � bi 8i;
xij � 0 8i; j:

Note that if an optimal solution .x.M/; y.M/; z.M// of this convex program satisfies
lM.y.M// D g.y.M// then ˇ.M/ equals the minimum of the objective function
over the feasible solutions in M: When y is fixed, .GPTP/ is a convex program
in x; z: If '.y/ denotes the optimal value of this program then the problem amounts
to minimizing '.y/ over all feasible .x; y; z/.
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Fig. 9.1 Consequence of
concavity of g1.t/ g1(t)

τ1bkq1

O
t

BB Algorithm for .GPTP/
Initialization. Start with a rectangle M1 � Y . Let y1 be the best feasible solution
available, INV = '.y1/: Set P1 D S1 D fM1g; k D 1:
Step 1. For each M 2 R1 solve the associated convex program CP(M) obtaining

its optimal value ˇ.M/ and optimal solution .x.M/; y.M/; z.M//:
Step 2. Update INV and yk:

Step 3. Delete all M 2 Sk such that ˇ.M/ � INV � ": Let Rk be the collection of
remaining rectangles.

Step 4. If Rk D ;; then terminate: yk is a global "-optimal solution of .GPTP/:
Step 5. Select Mk 2 argminfˇ.M/jM 2 Rkg: Let yk D y.Mk/;

ik 2 arg max
i
fgi.y

k/ � li;MK .y
k/g: (9.101)

If gik.y
k
ik/ � lik ;Mk.y

k/ D 0; then terminate: yk is a global optimal solution.
Step 6. Divide Mk via .yk; ik/ (see Sect. 5.6). Let PkC1 be the partition of Mk and

SkC1 D Rk n .fMkg/ [PkC1: Set k kC 1 and return to Step 1.

To establish the convergence of this algorithm, recall that yk D y.Mk/: Similarly
denote xk D x.Mk/; zk D z.Mk/; so .xk; yk; zk/ is an optimal solution of CP.Mk/:

Suppose the algorithm is infinite and let y be any accumulation point of fykg, say
y D limq!1 ykq : Without loss of generality we may assume xkq ! x; zkq ! z and
also ikq D 1 8q; so that

1 2 arg max
i
fgi.y

kq/ � li;Mkq
.ykq/g: (9.102)

Clearly if for some q we have y
kq

1 D 0, then gi.ykq/ D l1;Mkq
.ykq/; and the algorithm

terminates in Step 5. Therefore, since the algorithm is infinite, we must have y
kq

1 >

0 8q:

Lemma 9.9 If g1.0C/ > 0 then

y1 D lim
q!1 y

kq

1 > 0: (9.103)

In other words, y1 is always a continuity point of g1.t/:
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Proof Let Mkq;1 D Œaq
1; b

q
1�; so that y

kq

1 2 Œaq
1; b

q
1� and Œaq

1; b
q
1�; q D 1; 2; : : : is a

sequence of nested intervals. If 0 … Œaq0
1 ; b

q0
1 � for some q0, then 0 … Œaq

1; b
q
1� 8q � q0;

and y
kq

1 � aq0
1 > 0 8q � q0; hence y1 � aq0

1 > 0; i.e., (9.103) holds. Thus, it suffices
to consider the case

aq
1 D 0; y

kq

1 > 0 8q: (9.104)

Recall that �j denotes the absolute value of the right derivative of hj.t/ at 0. Let

� D max
j
�j �min

j
c1j: (9.105)

Since
Pn

jD1 x
kq

1j D y
kq

1 > 0; there exists j0 such that x
kq

1j0
> 0: Let .Qxkq ; ykq ; zkq/

be a feasible solution to CP.M/ obtained from .xkq ; ykq ; zkq/ by subtracting a very
small positive amount � < x

kq

1j0
from each of the components x

kq

1j0
; y

kq

1 ; z
kq

j0
; and letting

unchanged all the other components. Then the production cost at factory 1 decreases
by l1;Mkq

.y
kq

1 / � l1;Mkq
.Qykq

1 / D g1.b
kq

1 /�=b
kq

1 > 0; the transportation cost in the arc
.1; j0/ decreases by c1j0�;while the penalty incurred at warehouse j0 either decreases

(if z
kq

j0
> dj/; or increases by hj0 .z

kq

j0
� �/ � hj0 .z

kq

j0
/ � �j0�: Thus the total cost

decreases by at least

ı D
"

g1.b
kq

1 /

b
kq

1

C c1j0 � �j0

#

�: (9.106)

If � � 0 then c1j0 ��j0 � 0; hence ı > 0 and .Qxkq ; Qykq ; Qzkq/ would be a better feasible
solution than .xkq ; ykq ; zkq/; contradicting the optimality of the latter for CP.Mkq/:

Therefore, � > 0: Now suppose g1.0C/ > 0: Since g1.t/=t ! C1 as t ! 0C (in
view of the fact g1.0C/ > 0/; there exists �1 > 0 satisfying

g1.�1/

�1
> �:

Observe that since Mkq;1 D Œ0; bkq

1 � is divided via y
kq

1 ;we must have Œ0; b
k0

q

1 � � Œ0; ykq

1 �

for all q0 > q; while Œ0; y
kq

1 � � Œ0; bkq

1 � for all q: With this in mind we will show that

b
kq

1 � �1 8q: (9.107)

By the above observation this will imply that y
kq

1 � �18q; thereby completing

the proof. Suppose (9.107) does not hold, i.e., b
kq

1 < �1 for some q: Then

y
kq

1 � b
kq

1 < �1; and since g1.t/ is concave it is easily seen by Fig. 9.1 that

g1.b
kq

1 / � b
kq

1 g1.�1/=�1; i.e.,
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g1.b
kq

1 /

b
kq

1

� g1.�1/

�1
:

This, together with (9.106) implies that

ı �
�

g1.�1/

�1
� �

�

x
kq

1j0
> 0

hence .Qxkq ; Qykq ; Qzkq/ is a better feasible solution than .xkq ; ykq ; zkq/: This contradiction
proves (9.107). ut
Theorem 9.3 The above algorithm for .GPTP/ can be infinite only if " D 0 and
in this case it generates an infinite sequence yk D y.Mk/; k D 1; 2; : : : every
accumulation point of which is an optimal solution.

Proof For " D 0 let y D limq!1 ykq be an accumulation point of fykqg with, as
previously, ikq D 1 8q; and Mkq;1 D Œaq

1; b
q
1�: Since faq

1g is nondecreasing, fbq
1g

is nonincreasing, we have aq
1 ! a�

1 ; b
q
1 ! b�

1 : For each q either of the following
situations occurs:

aq
1 < aqC1 < bqC1

1 < y
kq

1 < bq
1 (9.108)

aq
1 < y

kq

1 < aqC1
1 < bqC1

1 < bq
1 (9.109)

If (9.108) occurs for infinitely many q then limq!1 y
kq

1 D limq!1 bq
1 D b�

1 :

If (9.109) occurs for infinitely many q then limq!1 y
kq

1 D limq!1 aq
1 D a�

1 :

Thus, y1 2 fa�
1 ; b

�
1 g: By Lemma 9.9, the concave function g1.t/ is continuous at y1:

Suppose, for instance, that y1 D a�
1 (the other case is similar). Since y

kq

1 ! a�
1 and

aq
1 ! a�

1 ; it follows from the continuity of g1.t/ at a�
1 that g1.y

kq

1 / � l1;Mkq
.y

kq

1 /! 0

and hence, by (9.102),

gi.y
kq

i / � li;Mkq
.y

kq

i /! 0 i D 1; : : : ; r

as q!1: This implies that g.ykq/ � lMkq
.ykq/! 0 and hence, that

ˇ.Mkq/! hc; xi C g.y/C h.z/

as q ! 1: Since ˇ.Mkq/ � � WD optimal value of .GPTP/ it follows that hc; xi C
g.y/C h.z/ is the sought minimum of .GPTP/: ut

Computational experiments have shown that the above algorithm for .GPTP/ can
solve problems with up to r D 100 supply points and n D 500 demand points in
reasonable time on a Sun SPARCstation SLC (Holmberg and Tuy 1995). To apply
this algorithm to the case when hj.zj/ D C1 for zj ¤ dj (e.g., the fixed charge
problem) it suffices to redefine hj.zj/ D �j.jdj� xjj/ where �j is finite but sufficiently
large.
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9.9 Some Polynomial-Time Solvable Problems

As mentioned previously, even quadratic programming with one negative eigenvalue
is NP-hard (Pardalos and Vavasis 1991). There are, nevertheless, genuine concave
programs which are polynomial-time solvable. In this section we discuss this topic,
to illustrate the efficiency of the parametric approach for certain classes of low rank
nonconvex problems.

9.9.1 The Special Concave Program CPL.1/

Consider the special concave program under linear constraints:

.CPL.1//

ˇ
ˇ
ˇ
ˇ
ˇ

min g.y/C hc; xi
s.t.

Pn
jD1 xj D y; 0 � xj � dj 8j:

where g.y/ is a concave function, c 2 R
n and d 2 R

nC: Let s DPn
jD1 dj: To solve this

concave program by the parametric right-hand side method presented in Sect. 8.5,
we first compute the breakpoints y0 D 0 � y1 � : : : � yN D s of the optimal value
function of the associated parametric linear program

.LP.y// minfhc; xij
nX

jD1
xj D y; 0 � xj � dj 8jg; 0 � y � s: :

If xi is a basic optimal solution of LP.yi/ then, by Lemma 9.4, an optimal solution
of CPL(1) is given by .xi� ; yi�/ where

i� 2 arg minfg.yi/C cxij i D 0; 1; : : : ;Ng: (9.110)

Thus, all is reduced to solving LP.y/ parametrically in y 2 Œ0; s�: But this is very
easy because LP.y/ is a continuous knapsack problem. In fact, by reindexing we can
assume that the cj are ordered by increasing values:

c1 � c2 � : : : � cn:

Let k be an index such that
Pk�1

jD1 dj � y �Pk
jD1 dj:

Lemma 9.10 An optimal solution of LP.y/ is x with

ˇ
ˇ
ˇ
ˇ
ˇ

xj D dj 8j D 1; : : : ; k � 1
xk D y �Pk�1

jD1 dj; xj D 0 8j D kC 1; : : : ; n:
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Proof This well-known result (see, e.g., Dantzig 1963) is rather intuitive because
for any feasible solution x of LP.y/, by noting that y DPn

jD1 xj we can write

hc; xi D
k�1X

jD1
cjdj C ck

nX

jD1
xj � ck

k�1X

jD1
dj

D
k�1X

jD1
cjdj � ck

k�1X

jD1
.dj � xj/C ck

nX

jDk

xj

�
k�1X

jD1
cjdj �

k�1X

jD1
cj.dj � xj/C ck

nX

jDk

xj � hc; xi:ut

Proposition 9.10

(i) The breakpoints of the optimal value function of LP.y/; 0 � y � s; are among
the points:

y0 D 0; yk D yk�1 C dk k D 1; : : : ; n

(ii) For every k D 0; 1; : : : ; n a basic optimal solution of TP.yk/ is the vector xk

such that

xk
j D dj; j D 1; : : : ; kI xk

j D 0; j D kC 1; : : : n: (9.111)

Proof From Lemma 9.10, for any y 2 Œyk; ykC1� a basic optimal solution of LP.y/ is

xy D xk C �.xkC1 � xk/ with � D y � yk

dkC1
:

Hence each segment Œyk; ykC1� is a linear piece of the optimal value function '.y/ of
LP.y/; which proves (i). Part (ii) is immediate. ut

As a result, the concave program CPL.1/ can be solved by the following:

Parametric Algorithm for CPL(1)
Initialization. Order the coefficients cj by increasing values:

c1 � c2 � : : : � cn:
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Step 2. For k D 0; 1; : : : ; n compute

fk D g

0

@
kX

jD1
dj

1

AC
kX

jD1
cjdj:

Step 3. Find fk� D minff0; f1; : : : ; fng: Then xk�

is an optimal solution.

Proposition 9.11 The above algorithm requires O.n log2 n/ elementary operations
and n evaluations of g.�/
Proof The complexity dominant part of the algorithm is Step 1 which requires
O.n log2 n/ operations, using, e.g., the procedure Heapsort (Ahuja et al. 1993). Also
an evaluation of g.�/ is needed for each number fk: ut

Thus, assuming the values of the nonlinear function g.�/ provided by an oracle
the above algorithm for CPL.1/ runs in strongly polynomial time.

9.10 Applications

9.10.1 Problem PTP(2)

For convenience we shall refer to problem .PTP/ with r factories as PTP.r/. So
PTP.2/ is the problem

PTP.2/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min g.y/C
2X

iD1

mX

jD1
cijxij

s.t.
mX

jD1
x1j D y

x1j C x2j D dj j D 1; : : : ;m;
0 � xij � dj i D 1; 2; j D 1; : : : ;m

Substituting dj � x1j for x2j and setting xj D x1j; cj D c1j � c2j we can convert this
problem into a CPL.1/:

min g.y/C hc; xi
s.t.

Pm
jD1 xj D y; 0 � xj � dj 8j:

Therefore,

Proposition 9.12 PTP.2/ can be solved by an algorithm requiring O.m log2 m/
elementary operations and m evaluations of g.�/:
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9.10.2 Problem FP(1)

We shall refer to Problem .MCCNFP/ with a single source and r nonlinear arc costs
as FP.r/. So FP.1/ is the problem of finding a feasible flow with minimum cost in
a given network G with m nodes (indexed by j D 1; : : : ;m/; and n arcs (indexed
by i D 1; : : : ; n/; where node j has a demand dj (with dm < 0; dj � 0 for all other
j;
Pm

jD1 dj D 0/; arc 1 has a concave nonlinear cost function g1.t/ while each arc

i D 2; : : : ; n has a linear cost gi.t/ D cit (with ci � 0/: If AC
j and A�

j denote the sets
of arcs entering and leaving node j, respectively, then the problem is

FP.1/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min g1.x1/C
nX

iD2
cixi

s.t.
X

i2AC

j

xi �
X

i2A�

j

xi D dj; j D 1; 2; : : : ;m;

x � 0:

Proposition 9.13 FP.1/ can be reduced to a PTP.2/ by means of O.m log2 mC n/
elementary operations.

Proof To simplify the language we call the single arc with nonlinear cost the black
arc. All the other arcs are called white, and the unit cost ci attached to a white arc
is called its length. A directed path through white arcs only is called a white path;
its length is then the sum of the lengths of its arcs. A white path from a node j to
a node j0 is called shortest if its length is smallest among all white paths from j
to j0: Denote by Q0j the shortest white path from the source to sink j; by Q1j the
shortest white path from the head of the black arc to sink j; and by P the shortest
white path from the source to the tail of the black arc. Let c0j; c1j; p be the lengths
of these paths, respectively (the length being C1; or an arbitrarily large positive
number, if the path does not exist). Assuming fjjdj > 0g D f1; : : : ;m1g; let s DPm1

jD1 dj: Consider now a problem PTP.2/ defined for two factories F0;F1, and m1

warehouses W1; : : : ;Wm1 with demands d1; : : : ; dm1 ; where the cost of producing
y units at factory F0 and s � y units at factory F1 is g1.y/ C py while the unit
transportation cost from Fi to Wj is cij .i D 0; 1/; i.e.,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min g1.y/C pyCP1
iD0

Pm1
jD1 cijxij

s.t.
Pm1

jD1 x0j D y
x0j C x1j D dj j D 1; : : : ;m1

0 � x0j � dj j D 1; : : : ;m1

(9.112)

(the corresponding reduced network is depicted in Fig. 9.2). Clearly from an optimal
solution Œxij� of (9.112) we can derive an optimal solution of FP.1/ by setting, in
FP.1/;

x1 D
m1X

jD1
x0j
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Fig. 9.2 Reduced network

F2F1

W1 W2 Wm1

Wm

and solving the corresponding linear min-cost network flow problem. Thus, solving
FP.1/ is reduced to solving the just defined PTP.2/: To complete the proof, it
remains to observe that the computation of cij; i D 0; 1; j D 1; : : : ;m1; and p
needed for the above transformation, requires solving two single-source multiple-
sink shortest problems with nonnegative arc costs, hence a time of O.m log2 mC n/
(using Fredman and Tarjan’s (1984) implementation of Dijkstra’ s algorithm).

It follows from Propositions 9.11 and 9.13 that FP.1/ can be solved by a strongly
polynomial algorithm requiring O.m log2 mCm log2 mC n/ D O.m log2 mC n/
elementary operations and m evaluations of the function g1.:/:

Remark 9.9 A polynomial (but not strongly polynomial) algorithm for FP.1/
was first given by Guisewite and Pardalos (1992). Later a strongly polynomial
algorithm based on solving linear min-cost network flow problems with a parametric
objective function was obtained by Klinz and Tuy (1993). The algorithms presented
in this section for PTP.1/ and FP.1/ were developed by Tuy et al. (1993a) and
subsequently extended in a series of papers by Tuy et al. (1993b, 1994a, 1995b,
1996a) to prove the strong polynomial solvability of a class of network flow
problems including PTP.r/ and FP.r/ with fixed r:

9.10.3 Strong Polynomial Solvability of PTP.r/

The problem PTP.r/ as was formulated at the beginning of Sect. 8.8 is

PTP.r/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min g.
mX

jD1
x1j/; : : : ;

mX

jD1
xrj/C

rX

iD1

mX

jD1
cijxij

s.t.
rX

iD1
xij D dj j D 1; : : : ;m

xij � 0; i D 1; : : : ; r; j D 1; : : : ;m
where g.y0/ � g.y/ whenever y0 � y:
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Following the approach in Sect. 8.5 we associate with PTP.r/ the parametric
problem

P.t/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

min
rX

iD1
ti

mX

jD1
xij C

rX

iD1

mX

jD1
cijxij

s.t.
rX

iD1
xij D dj j D 1; : : : ;m

xij � 0; i D 1; : : : ; r; j D 1; : : : ;m

where t 2 R
rC: The parametric domain R

rC is partitioned into a finite collection P
of polyhedrons (“cells”) such that for each cell ˘ 2P there is a basic solution x˘

which is optimal to P.t/ for all t 2 ˘: Then an optimal solution of PTP.r/ is x˘
�

where

˘� 2 argmin

8
<

:
g

0

@
mX

jD1
x˘1j ; : : : ;

mX

jD1
x˘rj

1

AC
X

i;j

cijx
˘
ij j˘ 2P

9
=

;
: (9.113)

Following Tuy (2000b) we now show that the collection P can be constructed and
its cardinality is bounded by a polynomial in m.

Observe that the dual of P.t/ is

P�.t/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

max
mX

jD1
djuj

s.t. uj � ti C cij; i D 1; : : : ; r; j D 1; : : : ;m

Also for any fixed t 2 rrC a basic solution of P.t/ is a vector xt such that for every
j D 1; : : : ;m there is an ij satisfying

xt
ij D



dj i D ij
0 i ¤ ij

(9.114)

By the duality of linear programming xt is a basic optimal solution of P.t/ if and
only if there exists a feasible solution u D .u1; : : : ; um/ of P�.t/ satisfying

uj


 D ti C cij i D ij
� ti C cij i ¤ ij

or, alternatively, if and only if for every j D 1; : : : ;m:

ij 2 argminiD1;:::;rfti C cijg: (9.115)
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Now let I2� be the set of all pairs .i1; i2/ such that i1 < i2 2 f1; : : : ; rg: Define a cell
to be a polyhedron ˘ � R

rC which is the solution set of a linear system formed
by taking, for every pair .i1; i2/ 2 I2� and every j D 1; : : : ;m; one of the following
inequalities:

ti1 C ci1j � ti2 C ci2j; ti1 C ci1j � ti2 C ci2j: (9.116)

Then for every j D 1; : : : ;m the order of magnitude of the sequence

ti C cij; i D 1; : : : ; r

remains unchanged as t varies over a cell ˘: Hence the index ij satisfying PTP.3/
remains the same for all t 2 ˘ I in other words, xt (basic optimal solution of P.t//
equals a constant vector x˘ for all t 2 ˘: Let P be the collection of all cells
defined that way. Since every t 2 R

rC satisfies one of the inequalities (9.116) for
every .i1; i2/ 2 I2� and every j D 1; : : : ;m; the collection P covers all of RrC: Let
us estimate an upper bound of the number of cells in P .

Observe that for any fixed pair .i1; i2/ 2 I2� we have ti1 C ci1j � ti2 C ci2j if and
only if ti1 � ti2 � ci2j � ci1j: Let us sort the numbers ci2j � ci1j; j D 1; : : : ;m; in
increasing order

ci2j1 � ci1j1 � ci2j2 � ci1j2 � : : : � ci2jm � ci1jm : (9.117)

and let �i1;i2 .j/ be the position of ci2j � ci1j in this ordered sequence.

Proposition 9.14 A cell ˘ is characterized by a map k˘ W I2� ! f1; : : : ;m; mC 1g
such that ˘ is the solution set of the linear system

ti1 C ci1j � t2 C ci2j 8.i1; i2/ 2 I2� s:t: �i1;i2 .j/ � k˘.i1; i2/ (9.118)

ti1 C ci1j � t2 C ci2j 8.i1; i2/ 2 I2�; s:t: �i1;i2 .j/ < k˘.i1; i2/ (9.119)

Proof Let ˘ � R
rC be a cell. For every pair .i1; i2/ with i1 < i2 denote by Ji1;i2

˘ the
set of all j D 1; : : : ;m such that the left inequality (9.116) holds for all t 2 ˘ and
define

k˘.i1; i2/ D



minf�i1;i2 .j/j j 2 Ji1;i2
˘ g if Ji1;i2

˘ ¤ ;
mC 1 otherwise

It is easy to see that ˘ is then the solution set of the system (9.118) and (9.119).
Indeed, let t 2 ˘: If �i1;i2 .j/ � k˘.i1; i2/, then k˘.i1; i2/ ¤ m C 1; so k˘.i1;2 / D
�i1;i2 .l/ for some l 2 Ji1;i2

˘ : Then ti1 C ci1l � ti1 C ci2 ; hence ti1 � ti2 � ci2l � ci1l and
since the relation �i1;i2 .j/ � �i1;i2 .l/ means that ci2j � ci1j � ci2l � ci1l it follows that
ti1 � ti2 � ci2j � ci1j; i.e., ti1 C ci1j � ti2 C ci2j: Therefore (9.118) holds. On the other
hand, if �i1;i2 .j/ < k˘.i1; i2/ then by definition of a cell j … Ji1;i2

˘ ; hence (9.119)
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holds, too [since from the definition of a cell, any t 2 ˘ must satisfy one of the
inequalities (9.116)]. Thus every t 2 ˘ is a solution of the system (9.118) and
(9.119). Conversely, if t satisfies (9.118) and (9.119) then for every .i1; i2/ 2 I2�; t
satisfies the left inequality (9.116) for j 2 Ji1;i2

˘ and the right inequality for j … Ji1;i2
˘ ;

hence t 2 ˘: Therefore, each cell˘ is determined by a map k˘ W I2� ! f1; : : : ;mC
1g: Furthermore, it is easy seen that k˘ ¤ k˘ 0 for two different cells˘;˘ 0: Indeed,
if ˘ ¤ ˘ 0 then at least for some .i1; i2/ 2 I2� and some j D 1; : : : ;m; one has
j 2 Ji1;i2

˘ n Ji1;i2
˘ 0 : Then k˘.i1; i2/ � �i1;i2 .j/ but k˘ 0.i1; i2/ > �i1;i2 .j/: ut

Corollary 9.4 The total number of cells is bounded above by .mC 1/r.r�1/=2:
Proof The number of cells does not exceed the number of different maps k W I2� !
f1; : : : ;mC 1g and there are .mC 1/r.r�1/=2 such maps. ut

To sum up, the proposed algorithm for solving PTP.r/ involves the following
steps:

(1) Ordering the sequence ci2j � ci1j; j D 1; : : : ;m for every pair .i1; i2/ 2 I2� so as
to determine �i1;i2 .j/; j D 1; : : : ;m; .i1; i2/ 2 I2�:

(2) Computing the vector x˘ for every cell ˘ 2 P (P is the collection of cells
determinedly the maps k˘ W I2� ! f1; : : : ;mC 1g:

(3) Computing the values f .x˘/ and select ˘� according to (9.113).
Steps (1) and (2) require obviously a number of elementary operations

bounded by a polynomial in m; while step (3) requires mr.r�1/=2 evaluations
of f .x/:

9.11 Exercises

9.1 Show that a differentiable function f .x/ is K-monotonic on an open convex set
X � R

n if and only if �rf .x/ 2 Kı 8x 2 X:

9.2 Consider the problem minff .x/j x 2 Dg where D is a polyhedron in R
n with a

vertex at 0, and f W Rn ! R is a concave function such that for any real number
� � f .0/ the level set C� D fxj f .x/ � �g has a polar contained in the cone
generated by two linearly independent vectors c1; c2 2 R

n: Show that this problem
reduces to minimizing a concave function of two variables on the projection of D
on R

2: Develop an OA method for solving the problem.

9.3 Consider the problem

minfg.t/C hd; yij taC By � c; t � 0; y � 0g

where t 2 R; y 2 R
n; a 2 R

m;B 2 R
m�n; c 2 R

mC: Develop a parametric algorithm
for solving the problem and compare with the polyhedral annexation method.
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9.4 Show that a linearly constrained problem of the form

minfF.l.x//j x 2 Dg

where D is a polyhedron in R
n; l.x/ is an affine function, and F.t/ is an arbitrary

quasiconcave real-valued function on an interval 
 � l.D/ reduces to at most two
linear programs. If F.:/ is monotonic on l.D/ then the problem is in fact equivalent
to even a mere linear program.

9.5 Solve the plant location problem

min
3X

iD1
fi.xi/C

3X

iD1

5X

jD1
dijyij

s:t: x1 C x2 C x3 D 203
y1j C y2j C y3j D bj j D 1; : : : ; 5
yi1 C : : :C yi5 D xi i D 1; 2; 3
xi � 0I yij � 0 i D 1; 2; 3I j D 1; : : : ; 5:

where fi.t/ D 0 if t D 0; fi.t/ D ri C sit if t > 0

r1 D 1; s1 D 1:7I r2 D 88; s2 D 8:4I r3 D 39I s3 D 4:7

b D .62; 65; 51; 10; 15/I d D Œdij� D
2

4
6 66 68 81 4

40 20 34 83 27

90 22 82 17 8

3

5

9.6 Suppose that details of n different kinds must be manufactured. The production
cost of t items of i-th kind is a concave function fi.t/: The number of items of i-th
kind required is ai > 0; but one item of i-th kind can be replaced by one item of any
j-th kind with j > i: Determine the number xi of items of i-th kind, i D 1; : : : ; n;
to be manufactured so as to satisfy the demands with minimum cost. By setting
˛i DPi

jD1 aj; this problem can be formulated as:

min
nX

iD1
fi.xi/ s.t.

x1 � ˛1; x1 C x2 � ˛2; : : : ; x1 C : : :C xn � ˛n

x1; : : : ; xn � 0

(Zukhovitzki et al. 1968). Solve this problem.
(Hint: Any extreme point x of the feasible polyhedron can be characterized by

the condition: for each i D 1; : : : ; n; either xi D 0 or x1 C : : :C xi D ˛i/.
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9.7 Develop an algorithm for solving the problem

minfc0xC .c1x/1=2 � .c2x/1=3j x 2 Dg
where D � R

nC is a polytope, c1; c2 2 R
nC; c0 2 R

n� and cx denotes the inner product
of c and x: Apply the algorithm to a small numerical example with n D 2.

9.8 Solve the numerical Example 9.10 (page 317).

9.9 Solve by polyhedral annexation:

min .0:5x1 C 0:75x2 C 0:75x3 C 1:25x4/ s.t.

0:25x2 C 0:25x3 C 0:75x4 � 2
�0:25x2 � 0:25x3 C 0:25x4 � 0
x1 � 0:5x2 C 0:5x3 C 1:5x4 � 1:5
h.x/C 4x1 � x2 D 0
x D .x1; : : : ; x4/ � 0

where h.x/ is the optimal value of the linear program

min .�4y1 C y2/ s.t.

y1 C y2 � 1:5 � 0:5x2 � 0:5x3 � 1:5x4

y2 � x1 C x2I y1; y2 � 0

(Hint: Exploit the monotonicity property of h.x/)

9.10 Solve the problem

min
nX

iD1

xi

yi C � s.t.

nX

iD1
xi D a;

nX

iD1
yi D b

0 � xi � �; 0 � yi � 1 i D 1; : : : ; n

where 0 < �; 0 < a � n�; 0 < b � n:
Hint: Reduce the problem to the concave minimization problem

min

(

h.x/j
nX

iD1
xi D a; 0 � xi � �

)
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where

h.x/ D min

(
nX

iD1

xi

yi C � j
nX

iD1
yi D b; 0 � yi � 1 i D 1; : : : ; n

)

and use the results on the special concave minimization CPL.1/.

9.11 Solve the problem in Example 5.5 (page 142) where the constraints (5.24) are
replaced by

nX

iD1
xi D a;

nX

iD1
yi D b:
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