
Yohei Murakami
Donghui Lin (Eds.)

 123

LN
AI

 9
44

2

Second International Workshop, WLSI 2015
Kyoto, Japan, January 22–23, 2015
Revised Selected Papers

Worldwide Language
Service Infrastructure

Lecture Notes in Artificial Intelligence 9442

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Yohei Murakami • Donghui Lin (Eds.)

Worldwide Language
Service Infrastructure
Second International Workshop, WLSI 2015
Kyoto, Japan, January 22–23, 2015
Revised Selected Papers

123

Editors
Yohei Murakami
Unit of Design
Kyoto University
Kyoto
Japan

Donghui Lin
Kyoto University
Kyoto
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-31467-9 ISBN 978-3-319-31468-6 (eBook)
DOI 10.1007/978-3-319-31468-6

Library of Congress Control Number: 2016934198

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Language technologies and tools (hereafter called language resources) increasingly
require sophisticated infrastructures to share, deploy as services, and combine for
supporting research, development, innovation, and collaboration. To meet this need,
several infrastructures have been already established over the past few years, such as
Language Grid, Language Application Grid, META-SHARE, MLi, and PANACEA.
The main theme of the International Workshop on Worldwide Language Service
Infrastructure (WLSI) is technological and institutional challenges that are significant
for constructing a worldwide interoperable language service infrastructure. The first
workshop focused on language service infrastructures in Asian areas, and a related
workshop, Language Technology Service Platforms: Synergies, Standards, Sharing
(LTSP 2014), was held at the ninth edition of the Language Resources and Evaluation
Conference (LREC 2014). The aim of LTSP 2014 was to provide a forum to enhance
international cooperation and sustainable collaboration among worldwide initiatives.
The second workshop was held during January 22–23, 2015, in Kyoto, Japan.

The workshop featured five prominent invited speakers: Toru Ishida from the
Department of Social Informatics, Kyoto University, who introduced intercultural
collaboration activities of the Language Grid; Nancy Ide from the Department of
Computer Science, Vassar College, who presented the Language Application Grid
framework to create custom natural language processing applications; Khalid Choukri
from the Evaluations and Language Resources Distribution Agency, who explained the
MLi Hub Project that aims at compiling the specification of the next generation of
language grids; Núria Bel from the Department of Translation and Language Sciences,
University of Pompeu Fabra, who reported characteristics of users in humanities and
social sciences in the Spanish CLARIN Center; and Nicoletta Calzolari from the
European Language Resource Association, who summarized policy issues related to
language service infrastructures. The first four invited speakers are leaders of each
ongoing project in Asia, the USA and Europe, and the last one is a representative of the
association to promote language resources. The workshop included 11 oral presenta-
tions, and four posters. Participation in the workshop was by invitation only, and there
were 29 professionals from 10 countries: China, France, Greece, Indonesia, Italy,
Japan, Spain, Thailand, the USA, and Vietnam.

This volume includes 14 selected papers presented at the workshop. The papers are
categorized into four parts. The first part introduces metadata and annotations to
describe what kind of functionalities and annotations language services provide, and
how to invoke the language services and convert the output of a language service to the
input of another service. In META-SHARE, Piperidis et al. have focused on processing
language datasets with appropriate linguistic annotation services such as tokenization,
POS tagging, lemmatization, dependency parsing, and so on. On the other hand, in the
Language Application Grid, Ide and Verhagen have addressed the language service
interoperability to combine various services by defining Web Service Exchange

Vocabulary (WS-EV), which specifies a terminology for a core of linguistic objects
exchanged among linguistic annotation services, and LAPPS Interchange Format
(LIF), which represents linguistically annotated data including WS-EV for Web service
invocations.

The second part provides technologies for service platforms that compose atomic
language services across different interfaces, policies, and licenses. Ide et al. have
proposed the Language Application Grid platform that enables language service
composition using Galaxy workflow engine in workflow layer, LIF in messaging layer,
and WS-EV in vocabulary layer. To solve licensing issues, Cieri and DiPersio have
proposed the Language Application Grid license schema by establishing two classes of
enforcement, requirement and notification. Mai et al. have tackled policy-aware lan-
guage service composition by modeling the parallel execution policy of atomic lan-
guage services. Moreover, Otani et al. have introduced Language Mashup to combine
different licensed services, commercial language services, and open-sourced language
services.

The third part focuses on the development of language resources and services,
especially low-resource languages. Aili and Wushouer describe how to build Uyghur
language resources such as dependency Treebank and grammatical information dic-
tionary. Martadinata et al. explain how to implement a language identification tool with
Wikipedia corpus and Twitter data. This tool is useful for classifying social media posts
like Twitter into several regional languages in Indonesia, which can contribute to
monolingual corpora creation in those languages.

The fourth part collects reports on language service application. Luong et al. have
developed a Vietnamese multimedia agricultural information retrieval service using a
Vietnamese agricultural thesaurus. Liu and Gao have proposed an approach to mine the
opinion polarity of songs based on song lyrics in a multilingual environment. Gratta
et al. have presented the Cooperative Philology WordNet Platform (CoPhiWordNet)
that connects different WordNets in both modern and classical languages such as the
Ancient Greek WordNet, the Latin WordNet, the Italian WordNet, the Croatian
WordNet, and the Arabic WordNet. Sornlertlamvanich and Kruengkrai have applied a
semantic relation extraction approach based on simple relation templates to the Thai
cultural database for generating knowledge maps and infoboxes.

We hope this book will strongly support and encourage researchers who are willing
to utilize various language services worldwide to create customized language appli-
cations and multilingual environments. We are grateful to all the participants and those
who have supported this workshop.

January 2016 Yohei Murakami
Donghui Lin

VI Preface

Organization

WLSI 2015 was organized by the Language Grid Project, Ishida and Matsubara
Laboratory, Department of Social Informatics, Kyoto University.

Organizing Committee

Workshop Co-chairs

Yohei Murakami Kyoto University, Japan
Donghui Lin Kyoto University, Japan

Program Committee

Mirna Adriani University of Indonesia, Indonesia
Mairehaba Aili Xinjiang University, China
Núria Bel Universitat Pompeu Fabra, Spain
Nicoletta Calzolari CNR-ILC, Italy
Khalid Choukri ELDA, France
Luca Dini Ho2S, France
Riccardo Del Gratta CNR-ILC, Italy
Zhiqiang Gao Southeast University, China
Nancy Ide Vassar College, USA
Hitoshi Isahara Toyohashi University of Technology, Japan
Toru Ishida Kyoto University, Japan
Yoshinobu Kano NII, Japan
Monica Monachini CNR-ILC, Italy
Weinila Mushajiang Xinjiang University, China
Masayuki Otani Kyoto University, Japan
Stelios Piperidis ILSP, Greece
James Pustejovsky Brandeis University, USA
Vu Hai Quan University of Natural Sciences, Vietnam National

University, Vietnam
Virach Sornlertlamvanich SIIT, Thailand

Workshop Secretariat

Terumi Kosugi Kyoto University, Japan
Hiroko Yamaguchi Kyoto University, Japan

Sponsor

Grant-in-Aid for Scientific Research (S) (No. 24220002), JSPS

Contents

Metadata and Annotation for Language Services

Combining and Extending Data Infrastructures with Linguistic Annotation
Services . 3

Stelios Piperidis, Dimitrios Galanis, Juli Bakagianni,
and Sokratis Sofianopoulos

The Language Application Grid Web Service Exchange Vocabulary 18
Nancy Ide, Keith Suderman, Marc Verhagen, and James Pustejovsky

The LAPPS Interchange Format . 33
Marc Verhagen, Keith Suderman, Di Wang, Nancy Ide, Chunqi Shi,
Jonathan Wright, and James Pustejovsky

Service Platform and Service Management

The Language Application Grid . 51
Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg,
Denise DiPersio, Chunqi Shi, Keith Suderman, Marc Verhagen,
Di Wang, and Jonathan Wright

A Policy-Aware Parallel Execution Control Mechanism for Language
Application . 71

Mai Xuan Trang, Yohei Murakami, and Toru Ishida

A License Scheme for a Global Federated Language Service Infrastructure . . . 86
Christopher Cieri and Denise DiPersio

Language Mashup: Personal Grid for Language Resources 99
Masayuki Otani, Takao Nakaguchi, Donghui Lin, Yohei Murakami,
and Toru Ishida

Developing Language Resources and Services

Building Indonesian Local Language Detection Tools Using Wikipedia
Data . 113

Puji Martadinata, Bayu Distiawan Trisedya, Hisar Maruli Manurung,
and Mirna Adriani

Building Uyghur Dependency Treebank: Design Principles, Annotation
Schema and Tools. 124

Mairehaba Aili, Aziguli Xialifu, Maihefureti, and Saimaiti Maimaitimin

http://dx.doi.org/10.1007/978-3-319-31468-6_1
http://dx.doi.org/10.1007/978-3-319-31468-6_1
http://dx.doi.org/10.1007/978-3-319-31468-6_2
http://dx.doi.org/10.1007/978-3-319-31468-6_3
http://dx.doi.org/10.1007/978-3-319-31468-6_4
http://dx.doi.org/10.1007/978-3-319-31468-6_5
http://dx.doi.org/10.1007/978-3-319-31468-6_5
http://dx.doi.org/10.1007/978-3-319-31468-6_6
http://dx.doi.org/10.1007/978-3-319-31468-6_7
http://dx.doi.org/10.1007/978-3-319-31468-6_8
http://dx.doi.org/10.1007/978-3-319-31468-6_8
http://dx.doi.org/10.1007/978-3-319-31468-6_9
http://dx.doi.org/10.1007/978-3-319-31468-6_9

Building Contemporary Uyghur Grammatical Information Dictionary 137
Jiamila Wushouer, Wayiti Abulizi, Kahaerjiang Abiderexiti,
Tuergen Yibulayin, Maierhaba Aili, and Saimaiti Maimaitimin

Language Service Applications

Vietnamese Multimedia Agricultural Information Retrieval System as an
Info Service . 147

Thi H. Luong, Nhut M. Pham, and Quan H. Vu

Mining Opinion Polarity from Multilingual Song Lyrics 161
Qian Liu and Zhiqiang Gao

Cooperative Philology on the Way to Web Services: The Case of the
CoPhiWordNet Platform . 173

Riccardo Del Gratta, Federico Boschetti, Angelo Del Grosso,
Fahad Khan, and Monica Monachini

Effectiveness of Keyword and Semantic Relation Extraction for Knowledge
Map Generation . 188

Virach Sornlertlamvanich and Canasai Kruengkrai

Author Index . 201

X Contents

http://dx.doi.org/10.1007/978-3-319-31468-6_10
http://dx.doi.org/10.1007/978-3-319-31468-6_11
http://dx.doi.org/10.1007/978-3-319-31468-6_11
http://dx.doi.org/10.1007/978-3-319-31468-6_12
http://dx.doi.org/10.1007/978-3-319-31468-6_13
http://dx.doi.org/10.1007/978-3-319-31468-6_13
http://dx.doi.org/10.1007/978-3-319-31468-6_14
http://dx.doi.org/10.1007/978-3-319-31468-6_14

Metadata and Annotation
for Language Services

Combining and Extending Data Infrastructures
with Linguistic Annotation Services

Stelios Piperidis(✉), Dimitrios Galanis, Juli Bakagianni, and Sokratis Sofianopoulos

Athena RC/ILSP, Athens, Greece
{spip,galanisd,julibak,s_sofian}@ilsp.athena-innovation.gr

Abstract. This paper reports on a first prototype implementation for combining
and extending a data infrastructure with linguistic processing services, bringing
language datasets and basic language processing services together in a unified
platform thus boosting the organic growth of data and facilitating language tech‐
nology research and development. The META-SHARE data infrastructure is
enhanced by providing a language processing mechanism for annotating content
with appropriate NLP services that are documented with the appropriate metadata.
Atomic services are combined into workflows modeled as an acyclic directed
graph where each node corresponds to an NLP processing service (e.g. sentence
splitting, part-of-speech tagging). Services run either locally or remotely.
Currently, the language processing layer implements services and workflows for
processing monolingual and bilingual content/resources in raw text, xces, tmx
formats. From the legal framework point of view, a simple operational model is
adopted by which only openly licensed datasets can be processed by openly
licensed services and workflows.

Keywords: Data infrastructures · Distributed repositories · Metadata standards ·
Language resources licensing · Linguistic processing services · Workflows · Web
services

1 Introduction

Contemporary methods for language technology research and development rely on the
deployment of appropriate resources more than ever before. Despite this strong depend‐
ence on language resources (language datasets, tools and services) the respective landscape
has been scattered, unorganised and highly fragmented. To tackle these issues, a number of
initiatives (FLaReNet [1], CLARIN [2], Language Grid [3], Panacea [4], LAPPS Grid [5])
have been launched aiming at improving accessibility and visibility of resources and tools,
as well as lawful re-use, re-purposing, interlinking and direct deployment in modern
computational environments. Inspired and in most cases collaborating, at different degrees
and stages, with these initiatives, META-SHARE1 was launched in 2012 [6], aiming at
creating a data infrastructure, in the form of a pan-european network of repositories of
language resources, broadly conceived as encompassing datasets and language tools.

1 www.meta-share.eu/org/net.

© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-31468-6_1

http://www.meta-share.eu/org/net

Following the successful deployment and use of the platform’s software and metadata
model as well as its licensing and operational model [7], we have recently moved on to
enhance the data infrastructure with linguistic processing services, thus bringing language
datasets and basic language processing services together in a unified platform and boosting
the organic growth of both data and language technology research and development. This
paper reports on the first prototype implementation of such combination and extension.
Sect. 2 briefly introduces the basics of META-SHARE as an infrastructure and the
supporting software implementation. Sects. 3 and 4 describe the metadata model and
management aspects, while Sect. 5 briefly introduces the user management aspects. Sect. 6
elaborates on the operations of the new language processing layer and presents its limita‐
tions and the work on our agenda for the future. Finally, Sect. 7 summarizes the main
points of the paper.

2 META-SHARE Platform and Repository Software

META-SHARE is designed as a network of distributed repositories of language data,
tools and web services, documented with high-quality metadata, aggregated in central
inventories allowing for uniform search and access to resources and services. Its repo‐
sitories can have a local or hosting role. Local repositories are being set up by organi‐
sations participating in the META-SHARE network and are used to store and provide
access to their own resources. On the other hand, hosting repositories except from
providing access to own resources they are also used as storage and documentation
facilities for donated or orphan resources and for resources that are developed in organ‐
isations not wishing to set up their own repository. Language resources are described
according to the META-SHARE metadata schema. Actual resources and their metadata
reside in the local or hosting repositories. Each repository undertakes the responsibility
to maintain a local inventory with all the metadata records of its resources, export them
and allow their harvesting. Every resource in META-SHARE has to be primarily
assigned to one of the network’s repositories, implementing the notion of a master copy
of a resource, with the member maintaining that repository undertaking its curation.
Metadata records are harvested and stored in the META-SHARE central servers (also
called Managing Nodes). Central servers share metadata, create, host and maintain a
central inventory including metadata of all resources available in the distributed
network.

Consumers of language resources are able to: register and create a user profile, log-
in to the repository network, browse and search the central inventory using multifaceted
search facilities (simple and advanced search), access the actual resources by visiting
the local (or hosting) repositories, get information about the usage of specific resources,
their relation (e.g. compatibility, suitability, etc.) to other resources, download resources
accompanied by easy-to-use licensing templates, exploit additional language processing
functionality in the form of web services.

Providers of resources are able to: create, store and edit resource descriptions by
using a metadata editor implementing the META-SHARE metadata model, get support
through mapping services from an existing metadata schema into the META-SHARE

4 S. Piperidis et al.

model, upload actual resources to the repository storage, get reports and statistics on
number of views, downloads, types of consumers, etc. of LRs, get support for making
available additional functionality (e.g. web services).

2.1 META-SHARE Repository Software

META-SHARE has opted for platform independent, open source solutions for its imple‐
mentation [8]. Likewise, all software generated by META-SHARE is open source,
released under a BSD licence and available on GitHub repository2. The META-SHARE
platform has been developed using the Django framework3, a Python-based4 web frame‐
work, and it has been tested with lighttpd 1.4.29, while other web servers can be used.
For database software, PostgreSQL5,6 is used. All Python-related dependencies together
with a Linux/Unix/Mac install script are provided with META-SHARE v3.0. The repo‐
sitory software package comes with a pre-configured Apache Solr server, which is used
to index the META-SHARE database for browsing and searching. Extensive documen‐
tation on software dependencies and their versions, local and global configuration
settings, as well as a set of frequently asked questions and answers is included in the
Installation Manual of the package.

Organisations wishing to set up their own repository are invited to use the META-
SHARE repository implementation. Other software solutions are also possible, as long
as basic responsibilities of creating an inventory, exporting and allowing harvesting of
metadata are borne. Recently, repositories of the Language Grid infrastructure7 [3] have
been successfully harvested into META-SHARE, while conversely two META-SHARE
repositories have been successfully harvested and integrated in the CLARIN VLO8.

3 Language Resources Formal Description

The META-SHARE metadata model [9] builds upon previous initiatives [10] so as to
be easily, fully and immediately adopted by the target community. In the design of the
model, central is the principle of a minimal core subset of metadata; the elements that
form this minimal set are considered indispensable in the process of language resource
description and are, thus, obligatory. The minimal level of description is the one at which
interoperability with other schemas and typologies takes place. The META-SHARE
metadata schema includes elements (most are linked to ISOcat Data Categories [11]),

2 https://github.com/metashare/META-SHARE.
3 www.djangoproject.com.
4 http://www.python.org/about/.
5 SQLite can also be used. SQLite comes built-in with Python 2.7. Since SQLite has a number

of limitations, including missing transaction management and access permission management,
the preferred database is PostgreSQL.

6 PostgreSQL 9.0.5.
7 http://langrid.org/en/index.html.
8 http://www.clarin.eu/content/virtual-language-observatory.

Combining and Extending Data Infrastructures 5

https://github.com/metashare/META-SHARE
http://www.djangoproject.com
http://www.python.org/about/
http://langrid.org/en/index.html
http://www.clarin.eu/content/virtual-language-observatory

as well as relations used to link together resources that are both included in the META-
SHARE repository (e.g. original and derived, raw and annotated resources, a language
resource and the tool that has been used to create it etc). The schema comprises all
elements and relations required for the description of language resources, including
related tools and services; it refers to any kind of information, including identification
parameters, administration information (creation, distribution, licensing), technical
information required for their manipulation, information as to the production and usage
(intended and actual), etc.

The elements of the schema belong to two basic levels of description: (a) an initial
level providing the basic elements for the description of a resource (minimal schema),
and (b) a second level with a higher degree of granularity (maximal schema), providing
more detailed information on each resource. These two levels contain four classes of
elements: (1) the first level contains Mandatory and Condition-dependent Mandatory
elements (i.e. they have to be filled in when specific conditions are met), while, (2) the

Fig. 1. The resourceInfo and corpusTextInfo components

6 S. Piperidis et al.

second level includes Recommended (i.e. LRs producers are advised to include infor‐
mation on these elements) and Optional elements. Following the ISOcat DCR model,
elements are grouped together into semantically coherent “components” which, in turn,
can include other components.

The core of the model is the resourceInfo component (Fig. 1 on the top), which
contains all the information relevant for the description of a LR. It subsumes components
and elements that combine together to provide this description.

Obviously, certain components (e.g. the identification, contact and the rights compo‐
nent) are common to all types of language resources, as the elements they contain can
be used to describe a resource regardless of type. The content component, e.g. the
corpusTextInfo component (Fig. 1, bottom), the annotation component (Fig. 2) etc.,
being modality dependent, differ across types. The modality of each type determines the
description component, which is used not only for resources but also for resource parts,
and is critical for extending the data infrastructure with processing services.

4 Managing Metadata in META-SHARE

There are three ways to enter metadata in META-SHARE. Registered providers with
appropriate rights (cf. Sect. 5) can use the metadata editor and by following the steps
indicated document their resources using the META-SHARE metadata schema. A
second way of importing metadata is provided by the “Upload” functionality of the
editor, using which users can provide schema compliant individual XML files or zip
files (containing XML files). Last, META-SHARE comes with a command line tool9 to
import XML metadata files into the platform. Likewise, providers with appropriate

9 import_xml.py.

Fig. 2. The AnnotationInfo component

Combining and Extending Data Infrastructures 7

rights can export metadata of a LR to XML format either through the “export” action
or through the metadata editing page. Last, providers with appropriate rights can delete,
ingest, publish and unpublish their LRs, as needed.

4.1 Referencing Other Entities

Editor users have a choice of creating other, satellite, entities as well. The point of
creating these types of metadata (namely Person, Organization, Project, Document)
independently from a resource, is that they can be reused in many LR descriptions. So,
if for example a provider creates a project description first, then all (s)he has to do, when
creating a LR description, is to select the project from the list of existing projects, instead
of creating it from scratch. In this way, a sort of authority lists or reference vocabularies
are built inside the platform. At the moment referencing such entities from other repo‐
sitories, external to META-SHARE, is not possible; this functionality is being worked
on at the moment.

4.2 Documenting Rights of Use

Central to META-SHARE is the precise documentation of the rights of use of a dataset,
tool or service, using one of the options offered by its licensing scheme. The licensing
scheme is organised on the axes of Creative Commons licenses and variations of them
(META-SHARE Commons and No Redistribution licences) for datasets, and existing
standard open source software (FOSS) licences for tools and services. Details about the
concepts, implementation and use of these licences is presented in [6] and at the respec‐
tive META-SHARE page10.

5 User Management in META-SHARE

Distinct user profiles have been defined, including related authorisations which enable
certain actions and ensure the security of transactions. Users may be registered or
unregistered, where the former may be divided into end users, providers or administra‐
tors of a META-SHARE node. With the exception of unregistered users, every user is
given a specific profile containing the information about their rights and obligations.
META-SHARE knows the following user roles:

• anonymous user: used for non-logged in users; no user account; may browse
published LR descriptions and can download free LRs; can see node statistics.

• registered user: personalized user account tied to an e-mail address; in addition to the
rights of an anonymous user, a registered user may also contact LR maintainers for
obtaining LRs which are not freely downloadable; can apply for editor group member‐
ship and for organization membership; can use the language processing services offered
for annotating his own datasets or datasets residing in the repository up to 5 MB (cf.
Sect. 6)

10 http://www.meta-net.eu/meta-share/licenses.

8 S. Piperidis et al.

http://www.meta-net.eu/meta-share/licenses

• editor group member: a registered user who is a member of one or more editor groups;
may create his/her own LR descriptions and may upload smaller data files for them;
may alter LR entries belonging to his/her editor group; may add owned resources to
the editor groups (s)he is member of; can use the language processing services offered
for annotating his own datasets or datasets residing in the repository up to 35 MB
(cf. Sect. 6)

• editor group manager: a registered user who manages a certain editor group; may
accept or turn down applications for the managed editor group; may ingest, publish,
unpublish and delete LRs belonging to the managed editor group.

• organization member: a registered user who is member of an internally known
organization; gets the rights of the organization.

• organization manager: a registered user who manages an internally known organi‐
zation; may add and remove registered users to/from the managed organization
group.

• superuser: a registered user who has all possible permissions of the META-SHARE
web application; a superuser account is usually created during the installation of a
node; superusers are especially needed for creating editor groups, for making regis‐
tered users editor managers, for creating organizations and for making registered
users organization managers.

• node administrator: the person who administers the META-SHARE node installa‐
tion; not a META-SHARE web application role but the administrator should have a
superuser account; apart from the node installation, a node administrator may be
needed for uploading larger LR data sets.

6 Extending META-SHARE Through a Language
Processing Layer

For the purposes of research projects where META-SHARE was to be used as the
language resource sharing platform, notably the QTLaunchPad project11 and the Greek
CLARIN infrastructure initiative12, its functionalities have been extended, at a prototype
level, by providing an additional language processing mechanism for processing language
datasets with appropriate natural language tools. In what follows, we take as example and
focus on the language processing (LP) layer implementation for the QTLaunchPad
project, for which a dedicated QT21 META-SHARE compliant repository has been
created. Language processing tools are documented with the appropriate metadata in the
QT21 repository13 and are provided as web services through the LP layer (Fig. 4). As the
software/hardware infrastructure necessary for extended use of the LP was not yet in
place, use has been restricted to users with specific rights; therefore, users should be
registered and/or assigned editor group member status (cf. Sect. 5). When such a user
selects to process a dataset, a list of all available annotation services for each relevant

11 http://www.qt21.eu/launchpad/.
12 http://www.clarin.gr.
13 http://qt21.metashare.ilsp.gr/.

Combining and Extending Data Infrastructures 9

http://www.qt21.eu/launchpad/
http://www.clarin.gr
http://qt21.metashare.ilsp.gr/

annotation level (e.g. tokenization and sentence splitting, POS tagging, lemmatization,
dependency parsing, text alignment) are provided for the given language, and resource
type (Fig. 3). As soon as the user selects a service, the server invokes the LP layer that
dispatches the corpus to the specific web service(s) for processing. The system (based on
the messaging service of the platform) informs the user via the META-SHARE web
interface about the progress of the requested job. When the processing has been
completed, the new (annotated) dataset is automatically stored and indexed in the repo‐
sitory, and the user is appropriately informed (on the interface and by an e-mail). Newly
created resources as a result of processing are publicly available to all users of the repo‐
sitory. If the user, for any reason, requests to process a dataset with a specific tool, and
this dataset has already been processed by the specific tool, then the system will just
forward the user to the processed dataset that has been created and stored in the repository.

Fig. 3. Dynamically generating relevant annotation levels and annotation services per level.

Fig. 4. QT21 repository architecture

In view of integrating the language processing layer, the existing data infrastructure
and the supporting software were adapted and extended so that (1) the metadata model
caters for documenting language processing services as well as processing related

10 S. Piperidis et al.

properties of datasets, and (2) mechanisms for automatically creating the metadata
records of the newly generated datasets, as a result of processing using an annotation
service or workflow, are in place. Automatic creation of metadata records for newly-
created datasets consist in automatically naming the annotated resource following a
[<ResourceName> annotated by <ServiceName(s)>] pattern, filling in annotation
information in the AnnotationInfo component of the record, creating relations between
the original dataset and the annotated one (in the RelationInfo component) and updating
contact information by aggregating information from the ContactInfo components of
the original dataset and the annotation service.

Certain extensions concern the providers of Language Resources who wish to deposit
their LRs to the QT21 repository and make them processable. A user can also discover
a processing service for a particular language and annotation level by querying the
repository using either a simple query or the faceted search, and input a user-owned
dataset to the processing mechanism, if it complies with the following specifications:
(i) the user should upload (Fig. 5) the actual dataset to the QT21 repository storage, (ii)
the dataset should be compressed and must not exceed 5 MB or 35 MB in size, depending
on the user’s status, i.e. registered or editor group member respectively, (iii) the user
specifies the data format of the dataset, by choosing one of the supported data formats
(information regarding every data format is available by clicking the help buttons of the
metadata editor, which accompany each data format choice).

Fig. 5. Describing and uploading user owned data

User-owned processed datasets are temporarily stored in the repository storage and
are available for download for 48 h. After this period, the processed dataset and the
original data are permanently deleted. If, however, the user wishes to permanently store
his/her processed dataset, (s)he can choose to do so on condition that (1) (s)he becomes

Combining and Extending Data Infrastructures 11

an editor group member and (2) (s)he verifies that (s)he has cleared the rights of use of
the specific dataset.

6.1 Language Processing Layer Implementation

The Language Processing (LP) layer has been implemented in Java, based on the Apache
Camel framework14. Camel is an open-source project that provides libraries which
enable the easy integration of different components and technologies and the creation
of (data) processing workflows. The implemented LP is bundled as a web application
and can be deployed in a standard java-based web container15.

LP’s workflows are implemented based on a variety of natural language processing
services. These services run either locally within the application environment (loc), or
they are accessed via remote services (rmt). Currently, OpenNLP services (loc) are
deployed for English, German and Portuguese, Panacea-DCU services (rmt) for English,
LX-Center/University of Lisbon services (rmt) for Portuguese, Heart of Gold/DFKI
services (rmt) for German, ILSP NLP services (loc) for Greek, and Hunalign text align‐
ment services for aligning parallel corpora at sentence level (loc).

Each set of workflows, for example the UIMA-based ones for the Greek language
(see Fig. 6, top), can be modelled as an acyclic directed graph (tree) where each node
corresponds to a processing service (tool). The processing of a data chunk is performed
by following a path in such a workflow tree. For example, in case the input is a raw text
the starting point is the root of the tree (e.g. splitter/tokenizer in Fig. 6, bottom). However,
LP is also capable of processing already annotated resources, for example a POS tagged
text can be lemmatized and parsed for dependencies by following the appropriate path.

In particular, processing chains are supported, as follows:
If the user requests to process a dataset at a level L (e.g. OpenNLP chunking), and

the resource has already been processed at a level A that is a prerequisite for L (e.g.
Open NLP Tokenization), then the process will start from the already existing level A
annotated resource, therefore saving processing time and resources (see Fig. 6).

The system is also aware of what annotation levels make sense and therefore can be
available for an already processed resource and presents the corresponding choices to
the user via the web interface. For example, a POS-tagged corpus can be parsed or
chunked, but not tokenised.

Currently, LP implements services and workflows that can process (a) monolingual
resources in raw text as well as XCES format and (b) bilingual resources in TMX,
MOSES, and XCES formats. Bilingual resources, essentially parallel corpora, are split
into their language specific parts and monolingual processing services are invoked for
each language side. This is straightforward in case of the MOSES format (one file of
raw text for each language), by parsing the folder structure of the parallel corpora, while
in the case of TMX input it necessitates parsing, extracting text from the relevant

14 http://camel.apache.org/.
15 In our tests, we used Jetty, which is small, fast and embeddable server that powers many software

projects (e.g. Solr).

12 S. Piperidis et al.

http://camel.apache.org/

translation unit variant elements16 and creating language specific files. The resources
are stored in the QT21 repository in a compressed format (e.g. .zip, tar.gz, .gz). Initially,
a service decompresses the specified resource file and then uses an appropriate reader
that splits the content of the extracted files in smaller text (data) chunks, so that any file
size constraints that a service might have can be met. These chunks are then forwarded
to the appropriate NLP service/workflow. A symmetric service that collects the data
chunks after the processing and merges them in a single compressed resource is initiated
as soon as the service/workflow has completed the data processing.

The output format for the produced annotations of the LP is pertinent to the specific
workflow that is executed. For example, the annotations of a UIMA-based pipeline are
serialized in the XML Metadata Interchange format (XMI) whereas in OpenNLP and
DCU workflows the output is stored in a custom XML representation and in a text-based
format, respectively.

In all cases, the files with the annotations which are produced from the processing
of a language resource are checked for potential software errors (e.g. number of files

16 <tuv> tags.

Fig. 6. Workflow trees for the Greek Language (on the top), for OpenNLP pipelines (on the
bottom).

Combining and Extending Data Infrastructures 13

processed as expected), archived in a single file and added to the QT21 repository. In
the cases where a tool is remotely accessed, we use a timeout mechanism to prevent the
application from hanging. When such a timeout occurs, for any reason, the processing
of the corresponding data chunk is terminated, i.e., it is not forwarded to the next step
of the workflow. The same policy is also applied in case an error occurs in a service that
runs locally.

To ensure that the LP system concurrently executes several workflows or parts of a
workflow, we use data queues and multiple threads. In particular, there are separate
threads for (a) decompressing an input resource, (b) reading and splitting the input files,
and (c) for archiving the output files. Moreover, there are one or more threads for
executing a processing pipeline depending on the workflow.

6.2 Workflow Assumptions and Limitations

Currently, each QT21 NLP workflow chains together components or services of the
same suite/family of tools, for example OpenNLP or the PANACEA-DCU services. To
accommodate cases where the services deployed belong to different suites, we have
developed the appropriate converters. For example, in the UIMA-based tree of Fig. 6,
where a GATE-based Named Entity Recognizer is integrated in the respective Named
Entity Recognition workflow, the UIMA output of the processing services preceding
named entity recognition is converted to the GATE format and is fed to the GATE-
compatible Named Entity Recognizer (e.g. Tokenizer->Splitter->POSTagger->UIMA-
GATE Converter->NERC).

For adding new atomic or composite, interoperable integrated services (SOAP,
OpenNLP, UIMA, GATE compatible) the provider has to appropriately document his/
her services/workflows using the META-SHARE metadata schema, i.e. at least service
name and location, platform and service version, languages, acceptable input/output
formats, while the LP has to be appropriately enhanced with a mechanism that dynam‐
ically creates the appropriate workflows based on the given description.

Enabling the user to define and deploy custom workflows, cross-suite or not, is on
our agenda for the immediate future. The implementation of cross-suite workflows
requires the development of several data format converters for each pair of different
technologies (e.g. UIMA-GATE, DCU-OpenNLP). Understandably, there are several
performance, compatibility and above all interoperability issues that arise in such cases
and have to be investigated and addressed, especially in the light of Language Grid [3]
and LAPPS Grid [5] developments. For example, the machine learning models on which
the tools are based, have been trained and optimized using the output of a specific tool.
This fact, may lead to significant drop in the performance of a tool. Moreover, in a mixed
workflow it is possible, not to say highly expected, that a tool may use a different tagset
than the one required as input in the next step. This may lead to either a software error
or to an output of low quality.

In addition, worthwhile noting is the dependence of the LP application on the design
properties of individual, remotely called workflows. Such properties may constrain the
amount of data a workflow can process per unit time (workload), as some workflows are:

14 S. Piperidis et al.

• deployed in a single machine which might also have limited processing and memory
capabilities.

• inherently designed and implemented to serve only non-concurrent requests.

To assess the stability, performance and scalability of the LP application we have
tested it with resources of various lengths depending on the workflow. Locally running
services (tools that run within our application) were tested with resources of 1 MB,
10 MB and 50 MB. Remote services were tested with smaller resources of 500 KB,
5 MB and 10 MB. First, each tool/service was tested separately (not concurrently) so as
to assess its processing efficiency. Then, we initiated concurrent workflows. All
performed tests, concurrent or not, were completed successfully generating the expected
output. The tests have also shown that LP application can handle in parallel at least
4 workflows and 200 MB of data.

Last, but not least, considering the experimental QT21 repository operations from
the legal framework point of view, we have adopted a rather simple operational model
by which only openly licensed, with no no-derivatives (ND) restriction, datasets can be
processed by openly licensed services and workflows. In future versions, in collabora‐
tion with other infrastructure providers, we intend to elaborate on a business logic that
will allow processing of otherwise licensed datasets and services supporting the appro‐
priate business models.

7 Conclusions and Future Work

This paper presented a data sharing infrastructure which is able to process (annotate)
datasets with appropriate NLP tools (e.g. tokenization, parsing). An initial set of tests
has shown that the LP layer of the infrastructure can be easily used (via the interface)
by the users and it can handle and process a significant amount of input data. However,
performance also depends on the available processing resources (e.g. memory, CPU,
number of machines), the requested workflow (e.g. dependency parsing is usually more
time consuming that tokenization) and the service implementation. Currently, the
processing layer is appropriately enhanced so as to run on multiple machines in a Hadoop
cluster. This will enable the processing of large volumes of data. In addition, in the
immediate future we plan to focus on interoperability and deployment issues and enable
the execution of custom and mixed (cross-suite) workflows.

Acknowledgements. This paper presents work done in the framework of the projects T4ME
(GA no. 249119), QTLaunchPad project (GA no. 296347), funded by DG INFSO of the European
Commission through the FP7 and ICT-PSP Programmes. The infrastructure described in the paper
is maintained and further extended in the framework of the Greek CLARIN Attiki project (MIS
441451), Support for ESFRI/2006 Research Infrastructures, of the Greek Government.

Combining and Extending Data Infrastructures 15

References

1. Soria, C., Bel, N., Choukri, K., Mariani, J., Monachini, M., Odijk, J., Piperidis, S., Quochi,
V., Calzolari, N.: The FLaReNet strategic language resource agenda. In: Calzolari, N.,
Choukri, K., Declerck, T., Doğan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S.
(eds.) Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC 2012), European Language Resources Association (ELRA), Istanbul,
23–25 May 2012

2. Wittenburg, P., Bel, N., Borin, L., Budin, G., Calzolari, N., Hajicova, E., Koskenniemi, K.,
Lemnitzer, L., Maegaard, B., Piasecki, M., Pierrel, J.M., Piperidis, S., Skadina, I., Tufis, D.,
Veenendaal, R.V., Váradi, T., Wynne, M.: Resource and service centres as the backbone for
a sustainable service infrastructure. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J.,
Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh International
Conference on Language Resources and Evaluation (LREC 2010), European Language
Resources Association (ELRA), Valletta (2010)

3. Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for Language
Resource Interoperability. Springer, Heidelberg (2011)

4. Poch, M., Bel, N.: Interoperability and technology for a language resources factory. Article
Presented in the Workshop on Language Resources, Technology and Services in the Sharing
Paradigm at IJCNLP 2011, Chiang Mai, 12 November 2011

5. Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., Wang, D., Suderman, K., Verhagen, M., Wright,
J.: The language application grid. In: Calzolari, N., Choukri, K., Declerck, T., Loftsson, H.,
Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC 2014), European
Language Resources Association (ELRA), Reykjavik (2014)

6. Piperidis, S.: The META-SHARE language resources sharing infrastructure: principles,
challenges, solutions. In: Calzolari, N., Choukri, K., Declerck, T., Doğan, M.U., Maegaard,
B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC 2012), European Language
Resources Association (ELRA), Istanbul, 23–25 May 2012

7. Piperidis, S., Papageorgiou, H., Spurk, C., Rehm, G., Choukri, K., Hamon, O., Calzolari, N.,
del Gratta, R., Magnini, B., Girardi, C.: METASHARE: one year after. In: Calzolari, N.,
Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J.,
Piperidis, S. (eds.) Proceedings Of The Ninth International Conference On Language
Resources and Evaluation (LREC 2014), European Language Resources Association
(ELRA), Reykjavik (2012)

8. Federmann, C., Georgantopoulos, B., Girardi, C., Hamon, O., Mavroeidis, D., Minutoli, S.,
Schröder, M.: META-SHARE v2: an open network of repositories for language resources
including data and tools. In: Calzolari, N., Choukri, K., Declerck, T., Doğan, M.U., Maegaard,
B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC 2012), European Language
Resources Association (ELRA), Istanbul, 23–25 May 2012

9. Gavrilidou, M., Labropoulou, P., Desypri, E., Piperidis, S., Papageorgiou, H., Monachini,
M., Frontini, F., Declerck, T., Francopoulo, G., Arranz, V., Mapelli, V: The META-SHARE
metadata schema for the description of language resources. In: Calzolari, N., Choukri, K.,
Declerck, T., Uğur Doğan, M., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.)
Proceedings of the Eighth International Conference on Language Resources and Evaluation
(LREC 2012), European Language Resources Association (ELRA), Istanbul, 23–25 May
2012

16 S. Piperidis et al.

10. Broeder, D., Kemps-Snijders, M., Van Uytvanck, D., Windhouwer, M., Withers, P.,
Wittenburg, P. Zinn, C.: A Data category registry- and component-based metadata
framework. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S.,
Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh Conference on International
Language Resources and Evaluation (LREC 2010), European Language Resources
Association (ELRA), Valletta (2010)

11. ISO 12620. Terminology and other language and content resources – Specification of data
categories and management of a Data Category Registry for language resources. (2009).
http://www.isocat.org

Combining and Extending Data Infrastructures 17

http://www.isocat.org

The Language Application Grid Web Service
Exchange Vocabulary

Nancy Ide1(B), Keith Suderman1, Marc Verhagen2, and James Pustejovsky2

1 Vassar College, Poughkeepsie, NY, USA
ide@cs.vassar.edu, suderman@cs.vassar.edu

2 Brandeis University, Waltham, MA, USA
marc@cs.brandeis.edu, jamesp@cs.brandeis.edu

Abstract. In the context of the Linguistic Applications (LAPPS) Grid
project, we have undertaken the definition of a Web Service Exchange
Vocabulary (WS-EV) specifying a terminology for a core of linguistic
objects and properties exchanged among NLP tools that consume and
produce linguistically annotated data. The goal is not to define a new set
of terms, but rather to provide a single web location where terms relevant
for exchange among NLP tools are defined and provide a “sameAs” link
to all known web-based definitions that correspond to them. The WS-EV
is intended to be used by a federation of six grids currently being formed
but is usable by any web service platform.

Keywords: Linguistic standards · Interoperability · Web services ·
Service grids

1 Introduction

There is clearly a demand within the community for some sort of standard for
exchanging annotated language data among tools.1 This has become particularly
urgent with the emergence of web services, which has enabled the availability
of language processing tools that can and should interact with one another, in
particular, by forming pipelines that can branch off in multiple directions to
accomplish application-specific processing. While some progress has been made
toward enabling syntactic interoperability via the development of standard repre-
sentation formats (e.g., ISO LAF/GrAF [11,13], NLP Interchange Format (NIF)
[7], UIMA2 Common Analysis System (CAS)) which, if not identical, can be triv-
ially mapped to one another, semantic interoperability among NLP tools remains
problematic [8]. A few efforts to create repositories, type systems, and ontolo-
gies of linguistic terms (e.g., ISOCat3, OLiA4, various repositories for UIMA
1 See, for example, proceedings of the recent LREC workshop on “Language Tech-

nology Service Platforms: Synergies, Standards, Sharing” (http://www.ilc.cnr.it/
ltsp2014/).

2 https://uima.apache.org/.
3 http://www.isocat.org.
4 http://nachhalt.sfb632.uni-potsdam.de/owl/.

c© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 18–32, 2016.
DOI: 10.1007/978-3-319-31468-6 2

http://www.ilc.cnr.it/ltsp2014/
http://www.ilc.cnr.it/ltsp2014/
https://uima.apache.org/
http://www.isocat.org
http://nachhalt.sfb632.uni-potsdam.de/owl/

The Language Application Grid Web Service Exchange Vocabulary 19

type systems5, GOLD6, NIF Core Ontology7) have been undertaken to enable
(or provide) a mapping among linguistic terms, but none has yet proven to
include all requisite terms and relations or be easy to use and reference. Gen-
eral repositories such as Dublin Core8, schema.org, and the Friend of a Friend
project9 include some relevant terms, but they are obviously not designed to
cover all the kinds of information found in linguistically annotated data. There
have been recent efforts to address semantic interoperability among NLP web
services [15,16], but the solutions deal only with meta-data and high-level ele-
ments (e.g., text); more precise specification of information types are deliberately
left underspecified and left to the service provider to determine.

In the context of the Linguistic Applications (LAPPS) Grid project [10], we
have undertaken the definition of a Web Service Exchange Vocabulary (WS-EV)
specifying a terminology for a core of linguistic objects and properties exchanged
among NLP web services that consume and produce linguistically annotated
data. The work is being done in collaboration with ISO TC37 SC4 WG1 in order
to ensure full community engagement and input. The goal is not to define a new
set of terms, but rather to provide a single web location where terms relevant
for exchange among NLP tools are defined and provide a “sameAs”link to all
known web-based definitions that correspond to them. A second goal is to define
relations among the terms that can be used when linguistic data are exchanged.
The WS-EV is intended to be used by a newly-formed federation of grids, includ-
ing the Kyoto Language Grid10, the Language Grid Jakarta Operation Center11,
the Xinjiang Language Grid, the Language Grid Bangkok Operation Center12,
LinguaGrid13, MetaNet/MetaShare14, and LAPPS, but is usable by any web
service platform.

This paper describes the LAPPS WS-EV, which is currently under construc-
tion. We first describe the LAPPS project and then overview the motivations
and principles for developing the WS-EV. We then describe its use in the JSON-
LD LAPPS Interchange Format (LIF) to enable semantic interoperability among
web services in the LAPPS Grid.

2 The Language Application Grid Project

The Language Application (LAPPS) Grid project establishing a framework that
enables language service discovery, composition, and reuse, in order to promote

5 E.g., http://www.julielab.de/Resources/Software/UIMA+type+system-p-91.html.
6 http://linguistics-ontology.org.
7 http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.
8 http://dublincore.org.
9 http://www.foaf-project.org.

10 http://langrid.org.
11 http://langrid.portal.cs.ui.ac.id/langrid/.
12 http://langrid.servicegrid-bangkok.org.
13 http://www.linguagrid.org/.
14 http://www.meta-share.eu.

http://www.julielab.de/Resources/Software/UIMA+type+system-p-91.html
http://linguistics-ontology.org
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core
http://dublincore.org
http://www.foaf-project.org
http://langrid.org
http://langrid.portal.cs.ui.ac.id/langrid/
http://langrid.servicegrid-bangkok.org
http://www.linguagrid.org/
http://www.meta-share.eu

20 N. Ide et al.

sustainability, manageability, usability, and interoperability of natural language
Processing (NLP) components. It is based on the service-oriented architecture
(SOA), a more recent, web-oriented version of the pipeline architecture that has
long been used in NLP for sequencing loosely-coupled linguistic analyses. The
LAPPS Grid provides a critical missing layer of functionality for NLP: although
existing frameworks such as UIMA and GATE provide the capability to wrap,
integrate, and deploy language services, they do not provide general support for
service discovery, composition, and reuse.

The LAPPS Grid is a collaborative effort among US partners Brandeis Uni-
versity, Vassar College, Carnegie-Mellon University, and the Linguistic Data
Consortium at the University of Pennsylvania, and is funded by the US National
Science Foundation (NSF). The project builds on the foundation laid in the NSF-
funded project SILT [9], which established a set of needs for interoperability and
developed standards and best practice guidelines to implement them. LAPPS is
similar in its scope and goals to ongoing projects such as The Language Grid [12],
PANACEA15, LinguaGrid16, and CLARIN17, which also provide web service
access to basic NLP processing tools and resources and enable pipelining these
tools to create custom NLP applications and composite services such as question
answering and machine translation, as well as access to language resources such
as mono- and multi-lingual corpora and lexicons that support NLP. The trans-
formative aspect of the LAPPS Grid is therefore not the provision of a suite of
web services, but rather that it orchestrates access to and deployment of lan-
guage resources and processing functions available from servers around the globe,
and enables users to easily add their own language resources, services, and even
service grids to satisfy their particular needs. The specific goals of the LAPPS
project are to: (1) design, develop, and promote a Language Application Grid
(LAPPS Grid) based on Service Grid Software to support the development and
deployment of integrated natural language applications and enable federation
of grids and services throughout the world; (2) provide an open advancement
(OA) framework (Ferrucci et al., 2009a) for component- and application-based
evaluation; (3) provide access to language resources for members of the NLP
community as well as researchers in a wide range of social science and human-
ities disciplines; (4) enable easy navigation through licensing issues; and (5)
actively promote adoption, use, and community involvement with the LAPPS
Grid.

One of the most unique innovations in the LAPPS Grid is the provision of
an open advancement (OA) framework (Ferrucci et al., 2009a) for component-
and application-based evaluation of NLP tools and pipelines. The availability of
this type of evaluation service will provide an unprecedented tool for NLP devel-
opment that could, in itself, take the field to a new level of productivity. OA
involves evaluating multiple possible solutions to a problem, consisting of differ-
ent configurations of component tools, resources, and evaluation data, to find the

15 http://panacea-lr.eu/.
16 http://www.linguagrid.org/.
17 http://www.clarin.eu/.

http://panacea-lr.eu/
http://www.linguagrid.org/
http://www.clarin.eu/

The Language Application Grid Web Service Exchange Vocabulary 21

optimal solution among them, and enabling rapid identification of frequent error
categories, together with an indication of which module(s) and error type(s)
have the greatest impact on overall performance. On this basis, enhancements
and/or modifications can be introduced with an eye toward achieving the largest
possible reduction in error rate [2,20]. OA was used in the development of IBM’s
Watson to achieve steady performance gains over the four years of its develop-
ment [3]; more recently, the open-source OAQA project has released software
frameworks which provide general support for open advancement [5,20], which
has been used to rapidly develop information retrieval and question answering
systems for bioinformatics [14,20].

The fundamental system architecture of the LAPPS Grid is based on the
Open Service Grid Initiative’s Service Grid Server Software18 developed by the
National Institute of Information and Communications Technology (NICT) in
Japan and used to implement Kyoto University’s Language Grid, a service grid
that supports multilingual communication and collaboration. Like the Language
Grid, the LAPPS Grid provides three main functions: language service regis-
tration and deployment, language service search, and language service compo-
sition and execution. The LAPPS Grid project has adopted Galaxy [6] as a
workflow engine, which provides a graphical interface where data inputs and
computational steps are selected from dynamic menus, and results are displayed
in plots and summaries that encourage interactive workflows and the explo-
ration of hypotheses. The LAPPS Grid produces relevant component-level mea-
sures for standard metrics, given gold-standard test data, for each component
in a pipeline, which facilitates error analysis. In addition, the Grid automati-
cally generates metrics measurements plus variance and statistical significance
calculations for each possible pipeline, using a service-oriented version of the
Configuration Space Exploration (CSE) algorithm [20]. The LAPPS Grid also
implements a dynamic licensing system for handling license agreements on the
fly19, provides the option to run services locally with high-security technology to
protect sensitive information where required, and enables access to grids other
than those based on the Service Grid technology.

We have adopted the JSON-based serialization for Linked Data (JSON-
LD) to represent linguistically annotated data for the purposes of web service
exchange. The JavaScript Object Notation (JSON) is a lightweight, text-based,
language-independent data interchange format that defines a small set of for-
matting rules for the portable representation of structured data. Because it is
based on the W3C Resource Definition Framework (RDF), JSON-LD is trivially
mappable to and from other graph-based formats such as ISO LAF/GrAF and
UIMA CAS, as well as a growing number of formats implementing the same data
model. Most importantly, JSON-LD enables services to reference categories and
definitions in web-based repositories and ontologies or any suitably defined con-
cept at a given URI. JSON-LD provides syntactic interoperability among services

18 http://servicegrid.net.
19 See [1] for a description of how licensing issues are handled in the LAPPS Grid.

http://servicegrid.net

22 N. Ide et al.

in the LAPPS Grid, while semantic interoperability is provided by the LAPPS
Web Service Exchange Vocabulary, described in the next section.

3 LAPPS Web Service Exchange Vocabulary

3.1 Motivation

The WS-EV addresses a relatively small but critical piece of the overall
LAPPS architecture: it allows web services to communicate about the con-
tent they deliver, such that the meaning–i.e., exactly what to do with and/or
how to process the data–is understood by the receiver. As such it performs
the same function as a UIMA type system performs for tools in a UIMA
pipeline that utilize that type system, or the common annotation labels
(e.g.,“Token”,“Sentence”, etc.) required for communication among pipelined
tools in GATE. These mechanisms provide semantic interoperability among tools
as long as one remains in either the UIMA or GATE world. To pipeline a tool
whose output follows GATE conventions with a tool that expects input that
complies with a given UIMA type system, some mapping of terms and struc-
tures is likely to be required.20 This is what the WS-EV is intended to enable;
effectively, it is a meta-type-system for mapping labels assigned to linguistically
annotated data so that they are understood and treated consistently by tools
that exchange them in the course of executing a pipeline or workflow. Since web
services included in LAPPS and federated grids may use any i/o semantic con-
ventions, the WS-EV allows for communication among any of them–including,
for example, between GATE and UIMA services21.

The ability to pipeline components from diverse sources is critical to the
implementation of the OA development approach described in the previous
section, it must be possible for the developer to “plug and play” individual
tools, modules, and resources in order to rapidly re-configure and evaluate new
pipelines. These components may exist on any server across the globe, consist
of modules developed within frameworks such as UIMA and GATE, and/or be
user-defined services existing on a local machine.

3.2 WS-EV Design

The WS-EV was built around the following design principles, which were com-
piled based on input from the community:

1. The WS-EV will not reinvent the wheel. Objects and properties defined in
the WS-EV will be linked to definitions in existing repositories and ontologies
wherever possible.

20 Within UIMA, the output of tools conforming to different type systems may them-
selves require conversion in order to be used together.

21 Figure 6 shows a pipeline in which both GATE and UIMA services are called; GATE-
to-GATE and UIMA-to-UIMA communication does not use the WS-EV, but it is
used for communication between GATE and UIMA services, as well as other services.

The Language Application Grid Web Service Exchange Vocabulary 23

2. The WS-EV will be designed so as to allow for easy, one-to-one mapping from
terms designating linguistic objects and properties commonly produced and
consumed by NLP tools that are wrapped as web services. It is not necessary
for the mapping to be object-to-object or property-to-property22

3. The WS-EV will provide a core set of objects and properties, on the principle
that “simpler is better”, and provide for (principled) definition of additional
objects and properties beyond the core to represent more specialized tool
input and output.

4. The WS-EV is not LAPPS-specific; it will not be governed by the processing
requirements or preferences of particular tools, systems, or frameworks.

5. The WS-EV is intended to be used only for interchange among web services
performing NLP tasks. As such it can serve as a “pivot” format to which user
and tool-specific formats can be mapped.

6. The web service provider is responsible for providing wrappers that perform
the mapping from internally-used formats to and/or from the WS-EV.

7. The WS-EV format should be compact to facilitate the transfer of large
datasets.

8. The WS-EV format will be chosen to take advantage, to the extent possible,
of existing technological infrastructures and standards.

As noted in the first principle, where possible the objects and properties
in the WS-EV are drawn from existing repositories such as ISOCat and the
NIF Core Ontology and linked to them using the taxonomy of relation types
defined in RELcat [19], which accommodates multiple vocabularies for relation
predicates, including those from the Web Ontology Language (OWL) [17] and
the Simple Knowledge Organization System (SKOS) [18], as shown in Fig. 1.

However, many repositories do not include some categories and objects rel-
evant for web service exchange (e.g., “token” and other segment descriptors),
do include multiple (often very similar) definitions for the same concept, and/or
do not specify relations among terms. We therefore attempted to identify a set
of (more or less) “universal” concepts by surveying existing type systems and
schemas–for example, the Julie Lab and DARPA GALE UIMA type systems and
the GATE schemas for linguistic phenomena–together with the I/O requirements
of commonly used NLP software (e.g., the Stanford NLP tools, OpenNLP, etc.).
Results of the survey for token and sentence identification and part-of-speech
labeling23 showed that even for these basic categories, there exists no“standard”
set of categories and relations.
22 We follow the terminology used in RDF/OWL and JSON-LD: the term “objects” (in

RDF, nodes in the Semantic Web graph) refers to common linguistic labels or types,
and “properties” denote what are often referred to as “features” or “attributes” of
an object (in RDF, these are labels of edges between object nodes). We emphasize
that our assignment of linguistic labels as objects and properties, while principled
to the extent possible, is otherwise arbitrary and may therefore differ from existing
type systems and schemas. This does not, however, impede mapping to object and
properties in the WS-EV.

23 Available at http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/ep-draft.
pdf.

http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/ep-draft.pdf
http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/ep-draft.pdf

24 N. Ide et al.

1. Related (rel:related)

1.1. Sameas(rel:sameAs)

1.2. Almost same as (rel:almostSameAs)

1.3. Broader than(rel:broaderThan)

1.3.1. Superclass of (rel:superClassOf)

1.3.2. Has part (rel:hasPart)

1.3.2.1. Has direct part (rel:hasDirectPart)

1.4 Narrower than (del:narrowerThan)

1.4.1. Sub class of (rel:subClassOf)

1.4.2. Part of (rel:partOf)

1.4.2.1. Direct part of (rel:directPartOf)

Fig. 1. Relation types in RELCat

Perhaps more problematically, sources that do specify relations among con-
cepts, such as the various UIMA type systems and GATE’s schemas, vary widely
in their choices of what is an object and what is a property; for example, some
treat “token” as an object (label) and “lemma” and “pos” as associated prop-
erties (features), while others regard “lemma” and/or “pos” as objects in their
own right. Decisions concerning what is an object and what is a property are
for the most part arbitrary; no one scheme is right or wrong, but a consistent
organization is required for effective web service interchange. The WS-EV there-
fore defines an organization of objects and properties solely for the purposes
of communication among web services in the LAPPS Grid. It is irrelevant if a
given scheme treats, say, “pos” as an object or type in its own right, as long as
it is mapped to the correspondingly defined WS-EV object or property for the
purposes of web service exchange.

In addition, the WS-EV is intended to provide a core set of terms, aug-
mented as needed when services are added to the LAPPS Grid, but it is by no
means intended to be comprehensive. The WS-EV includes sameAs and simi-
larTo mappings that link to like concepts in other repositories where possible,
thus serving primarily to group the terms and impose a structure of relations
required for web service exchange in one web-based location.

In addition to the principles above, the WS-EV is built on the principle
of orthogonal design, such that there is one and only one definition for each
concept. It is also designed to be very lightweight and easy to find and reference
on the web. To that end we have established a straightforward web site (the Web
Service Exchange Vocabulary Repository24), similar to schema.org, in order to
provide web-addressable terms and definitions for reference from annotations
exchanged among web services. Our approach is bottom-up: we have adopted a
minimalist strategy of adding objects and properties to the repository only as
they are needed as services are added to the LAPPS Grid. Terms are organized
in a shallow hierarchy, with inheritance of properties, as shown in Fig. 2.

24 http://vocab.lappsgrid.org.

http://vocab.lappsgrid.org

The Language Application Grid Web Service Exchange Vocabulary 25

Fig. 2. Fragment of the WS-EV type hierarchy (associated properties in gray)

Note that the WS-EV does not provide a repository of specific categories for
part-of-speech or syntactic and semantic roles; rather, a specific label may be
referenced in the JSON-LD representation using a URI for one of the several
locations where such information resides on the web. Alternatively, a string pro-
viding the information may be used (see, for example, the JSON-LD sample in
Sect. 4.1). Metadata specifying the tags and/or software that produced a given
labeling can be checked to ensure that the labels required by a consumer service
conform to those generated by the provider.

4 WS-EV and JSON-LD

We have defined the LAPPS Interchange Format (LIF)25 using JSON-LD for
interchange among LAPPS Grid web services. References in LIF point to URIs
providing definitions for specific linguistic categories in the WS-EV. They may
also reference documentation for processing software and rules for processes such
as tokenization, entity recognition, etc. used to produce a set of annotations,
which are often left unspecified in annotated resources thus inhibiting repro-
ducibility of results (see for example [4]). While not required for web service
exchange in the LAPPS Grid, the inclusion of such references can contribute to
the better replication and evaluation of results in the field. Figure 4 shows the
information for Token, which defines the concept, identifies application types
that produce objects of this type, cross-references a similar concept in ISOCat,
and provides the URI for use in the LIF representation. It also specifies the com-
mon properties that can be specified for a set of Token objects, and the individual
properties that can be associated with a Token object. There is no requirement
to use any or all of the properties in the LIF representation, and we foresee that
many web services will require definition of objects and properties not included
in the WS-EV or elsewhere. We therefore provide mechanisms for (principled)
25 For a full description of LIF, see Verhagen, et al., “The LAPPS Interchange Format”,

elsewhere in this volume.

26 N. Ide et al.

definition of objects and properties beyond the WS-EV. Two options exist: users
can provide a URI where a new term or other documentation is defined, or users
may add a definition to the WS-EV. In the latter case, service providers use the
name space automatically assigned to them at the time of registration, thereby
avoiding name clashes and providing a distinction between general categories
used across services and more idiosyncratic categories.

"@context" : "http://vocab.lappsgrid.org/",

"metadata" : { },

"text" : {

"@value" : "Some of the strongest critics of our welfare system..."

}

"views" : [{

"metadata" : {

"contains" : {

"Token" : {

"producer" : "org.anc.lapps.stanford.SATokenizer:1.4.0",

"type" : "tokenization:stanford"

}

}

}

}],

"annotations" : [{

"@type" : "Token",

"id" : "tok0",

"start" : 18,

"end" : 22

}],

. . .

Fig. 3. JSON-LD fragment referencing the LAPPS Grid WS-EV

Figure 3 shows a fragment of the LIF representation that references terms
in the WS-EV. The context statement at the top identifies the URI that is to
be prefixed to any unknown name in order to identify the location of its defin-
ition. For the purposes of the example, the text to be processed is given inline.
Our current implementation includes results from each step in a pipeline, where
applicable, together with metadata describing the service applied in each step
(here, org.anc.lapps.stanford.SATokenizer:1.4.0) and identified by an internally-
defined type (tokenization:stanford). The annotations include references to the
objects defined in the WS-EV, in this example, Token (defined at http://vocab.
lappsgrid.org/Token), with (inherited) properties id, start, and end defined at
http://vocab.lappsgrid.org/Token#id, http://vocab.lappsgrid.org/Token#start
and http://vocab.lappsgrid.org/Token#end. The web page defining these terms
is shown in Fig. 4.

http://vocab.lappsgrid.org/Token
http://vocab.lappsgrid.org/Token
http://vocab.lappsgrid.org/Token#id
http://vocab.lappsgrid.org/Token#start
http://vocab.lappsgrid.org/Token#end

The Language Application Grid Web Service Exchange Vocabulary 27

Fig. 4. Token definition

4.1 Mapping to JSON-LD

As noted above in Sect. 1, existing schemes and systems for organizing linguis-
tic information exchanged by NLP tools vary considerably. Figure 5 shows some
variants for a few commonly used NLP tools, which differ in terminology, struc-
ture, and physical format. To be used in the LAPPS Grid, tools such as those
in the list are wrapped so that their output is in JSON-LD format, which pro-
vides syntactic interoperability, terms are mapped to corresponding objects in
the WS-EV, and the object-feature relations reflect those defined in the WS-EV.
Correspondingly, wrappers transduce the LIF representation to the format used
internally by the tool on input. This way, the tools use their internal format as
usual and map to LIF for exchange only.

For example, the Stanford POS tagger XML output format produces output
like this:

<word id="0" pos="VB">Let</word>

28 N. Ide et al.

Name Input Form Output Form Example

Stanford tagger pt n/a word pos opl box NN1
XML n/a XML inline <word id=”0” pos=”VB”>Let</word>

NaCTeM tagger pt n/a word/pos inline box/NN1
CLAWS (1) pt n/a word pos inline box NN1
CLAWS (2) pt n/a XML inline <w id=”2” pos=”NN1”>Type</w>
CST Copenhagen pt n/a word/pos inline box/NN1
TreeTagger pt? n/a word pos lem opl The DT the
TnT token opl word pos opl der ART

word (pos pr)+ opl Falkenstein NE 8.00 NN 1.99
Twitter NLP pt opl word pos conf opl smh G 0.9406
NLTK pt s, bls [(’word’, ’pos’)] inline [(’At’, ’IN’), (’eight’, ’CD’),]
OpenNLP splitter pt n/a sentences ospl I can’t tell you if he’s here.
OpenNLP tokenizer sent ospl tokens wss, ospl I can ’t tell you if he ’s here .
OpenNLP tagger token wss, ospl word pos ospl At IN eight CD o’clock JJ on IN

pt = plain text
opl = one per line
wss = white space separated
ospl = one sentence per line
bps = blank line separated

Fig. 5. I/O variants for common splitters, tokenizers, and POS taggers

This maps to the following LIF representation:

{

"@type" : "Token",

"id" : "0",

"start" : 18,

"end" : 21,

"features" : {

"pos" : "VB"

}

}

The Stanford representation uses the term “word” as an XML element name,
gives an id and pos as attribute-value pairs, and includes the string being
annotated as element content. For conversion to JSON-LD/WS-EV, “word” is
mapped to “Token”, and the attributes id and pos map to properties of Token
with the same names. Because the LIF representation uses standoff annotation,
the properties start and end are included in order to provide the offset location
of the string in the primary data.

Services that share a format other than JSON-LD need not map into and
out of LIF when pipelined in the LAPPS Grid. For example, two GATE ser-
vices would exchange GATE XML documents, and two UIMA services would
exchange UIMA CAS, as usual. This avoids unnecessary conversion and at the
same time allows including services consisting of individual tools or entire com-
posite workflows from other frameworks. Figure 6 gives an example of the logical
flow in the LAPPS Grid, showing conversions into and out of LIF where needed.

Each service in the LAPPS Grid is required to provide metadata that spec-
ifies what kind of input is required and what kind of output is produced. For
example, any service as depicted in the flow diagram in Fig. 6 can require input
with specific content (tokens, sentences, etc.), reduced according to certain spec-
ifications (stanford-style tokenization, penn pos tags, etc.), and in a particular
format (gate-document, uima-cas, LIF).

The Language Application Grid Web Service Exchange Vocabulary 29

Fig. 6. Logical flow through the LAPPS Grid (client-server communication not repre-
sented) (Color figure online)

We have created the WS-EV to provide a basic, common terminology that can
handle the basic types that are exchanged among LAPPS Grid services, regard-
less of the internal representations they use, with the intention that where pos-
sible, commonly used linguistic types (whatever their names, and whether they
are objects or properties in the original scheme) are mapped to terms in the WS-
EV. However, services may provide their own definitions for any object or prop-
erty, or use names other than those in the WS-EV. This is achieved by using the
optional JSON-LD @context key to reference a set of user-defined context ele-
ments or redefine the names that refer to WS-EV terms. For example, in the frag-
ment below, a service provides an alternative definition forToken by associating it
with a different URI (where, presumably, an alternative definition is provided). It
also renames the properties “start” and “end” to “startOffset” and “endOffset”,
by associating these names with the URIs for the former names in the WS-EV:

{

"@context": {

"Token":"http:/www/example.com/MyToken",

"startOffset":"http://vocab.lappsgrid.org/Token#start",

"endOffset":"http://vocab.lappsgrid.org/Token#end",

},

"annotations": [

{"@type":"Token","id":"t0","startOffset": 0,"endOffset": 5}

]

}

30 N. Ide et al.

The @context key can also be used to provide alternative definitions for
linguistic objects and properties when mappings are not one-to-one.

Note that the producer field in the LIF representation provides the name of
the process or program that produced the object (see Fig. 3). So, for example, the
producer associated with a set of Token objects (e.g., the Stanford Tokenizer)
can be checked by the consuming service to ensure they are produced according
to specific tokenization rules.

Properties associated with objects are not required (with the exception of
properties such as “id”, “start”, and “end”). So, for example, “pos” (part-of-
speech) is specified as a property of Token, but would be omitted if no part-of-
speech tag is associated with a token.

5 Conclusion

In this paper, we have given a brief overview of the LAPPS Web Service
Exchange Vocabulary (WS-EV), which provides a terminology for a core of lin-
guistic objects and properties exchanged among web services that consume and
produce linguistically annotated data. The goal is to enable semantic interoper-
ability among NLP data, tools, and services within the LAPPS Grid. While we
recognize the inherent problems of defining a type system for linguistic objects,
the LAPPS Grid cannot operate without semantic interoperability among ser-
vices, and the WS-EV is our means to fulfill that requirement. Our approach
is therefore notably bottom-up (adding objects and properties as needed) and
treads a fine line between over- and under-specification. Ideally, the WS-EV will
be useful to others, either web service providers or users of systems like UIMA,
as a point of departure for defining type systems etc., and potentially provide a
base upon which others can usefully build.

Acknowledgements. This work was supported by National Science Foundation
grants NSF-ACI 1147944 and NSF-ACI 1147912.

References

1. Cieri, C., DiPersio, D., Wright, J.: Intellectual property rights management with
web services. In: Proceedings of the Workshop on Open Infrastructures and Analy-
sis Frameworks for HLT, Dublin, Ireland, August 2014

2. Ferrucci, D., Nyberg, E., Allan, J., Barker, K., Brown, E., Chu-Carroll, J.,
Ciccolo, A., Duboue, P., Fan, J., Gondek, D., Hovy, E., Katz, B., Lally, A.,
McCord, M., Morarescu, P., Murdock, B., Porter, B., Prager, J., Strzalkowski, T.,
Welty, C., Zadrozny, W.: Towards the open advancement of question answering
systems. Technical report, IBM Research, Armonk, New York (2009)

3. Ferrucci, D.A., Brown, E.W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur,
A., Lally, A., Murdock, J.W., Nyberg, E., Prager, J.M., Schlaefer, N., Welty, C.A.:
Building Watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

The Language Application Grid Web Service Exchange Vocabulary 31

4. Fokkens, A., van Erp, M., Postma, M., Pedersen, T., Vossen, P., Freire, N.: Off-
spring from reproduction problems: what replication failure teaches us. In: Proceed-
ings of the 51st Annual Meeting of the Association for Computational Linguistics,
vol. 1, pp. 1691–1701. Association for Computational Linguistics, Sofia, Bulgaria,
August 2013. http://www.aclweb.org/anthology/P13-1166

5. Garduno, E., Yang, Z., Maiberg, A., McCormack, C., Fang, Y., Nyberg, E.:
CSE framework: a UIMA-based distributed system for configuration space explo-
ration unstructured information management architecture. In: Klgl, P., de Castilho,
R.E., Tomanek, K. (ed.) UIMA@GSCL, CEUR Workshop Proceedings, pp. 14–17.
CEUR-WS.org (2013)

6. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P.,
Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J.,
Nekrutenko, A.: Galaxy: a platform for interactive large-scale genome analysis.
Genome Res. 15(10), 1451–1455 (2005)

7. Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using
linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C.,
Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC
2013, Part II. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013).
http://svn.aksw.org/papers/2013/ISWC NIF/public.pdf

8. Ide, N., Pustejovsky, J.: What does interoperability mean, anyway? toward an
operational definition of interoperability. In: Proceedings of the Second Interna-
tional Conference on Global Interoperability for Language Resources, ICGL (2010).
http://www.cs.vassar.edu/∼ide/papers/ICGL10.pdf

9. Ide, N., Pustejovsky, J., Calzolari, N., Soria, C.: The SILT and FlaReNet inter-
national collaboration for interoperability. In: Proceedings of the Third Linguistic
Annotation Workshop, ACL-IJCNLP, August 2009

10. Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., Wang, D., Suderman, K., Verhagen,
M., Wright, J.: The language application grid. In: Proceedings of the Ninth Inter-
national Conference on Language Resources and Evaluation LREC 2014. European
Language Resources Association (ELRA), Reykjavik, Iceland, May 2014

11. Ide, N., Suderman, K.: The linguistic annotation framework: a standard for anno-
tation interchange and merging. Lang. Resour. Eval. 48(3), 395–418 (2014)

12. Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for
Language Resource Interoperability. Springer, Heidelberg (2011)

13. ISO-24612: Language Resource Management - Linguistic Annotation Framework.
ISO 24612 (2012)

14. Patel, A., Yang, Z., Nyberg, E., Mitamura, T.: Building an optimal QA system
automatically using configuration space exploration for QA4MRE 2013 tasks. In:
Proceedings of CLEF 2013 (2013)

15. Poch, M., Bel, N.: Interoperability and technology for a language resources factory.
In: Proceedings of the Workshop on Language Resources. Technology and Ser-
vices in the Sharing Paradigm, Asian Federation of Natural Language Processing,
Chiang Mai, Thailand, pp. 32–40, November 2011

16. Villegas, M., Bel, N., Bel, S., Rodrguez, V.: A case study on interoperability for
language resources and applications. In: Proceedings of the Seventh International
Conference on Language Resources and Evaluation, LREC 2010, Valletta, Malta,
May 2010

17. W3C OWL Working Group: OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation (2012)

18. W3C SKOS Working Group: SKOS Simple Knowledge Organization System Ref-
erence. W3C Recommendation (2009)

http://www.aclweb.org/anthology/P13-1166
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf
http://www.cs.vassar.edu/~ide/papers/ICGL10.pdf

32 N. Ide et al.

19. Windhouwer, M.: RELcat: a Relation Registry for ISOcat data categories. In:
Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J.,
Odijk, J., Piperidis, S. (eds.) LREC. European Language Resources Association
(ELRA), pp. 3661–3664 (2012)

20. Yang, Z., Garduno, E., Fang, Y., Maiberg, A., McCormack, C., Nyberg, E.: Build-
ing optimal information systems automatically: configuration space exploration for
biomedical information systems. In: Proceedings of the CIKM 2013 (2013)

The LAPPS Interchange Format

Marc Verhagen1(B), Keith Suderman2, Di Wang3, Nancy Ide2, Chunqi Shi1,
Jonathan Wright4, and James Pustejovsky1

1 Brandeis University, Waltham, MA, USA
{marc,shicq,jamesp}@cs.brandeis.edu

2 Vassar College, Poughkeepsie, NY, USA
{suderman,ide}@cs.vassar.edu

3 Carnegie Mellon University, Pittsburgh, PA, USA
diwang@cs.cmu.edu

4 Linguistic Data Consortium, Philadelphia, PA, USA
jdwright@ldc.upenn.edu

Abstract. We describe and motivate the LAPPS Interchange Format,
a JSON-LD format that is used for data transfer between language ser-
vices in the Language Application Grid. The LAPPS Interchange Format
enables syntactic and semantic interoperability of language services by
providing a uniform syntax for common linguistic data and by using the
Linked Data aspect of JSON-LD to refer to external definitions of linguis-
tic categories. It is tightly integrated with the Web Services Exchange
Vocabulary, which specifies a terminology for a core of linguistic objects
and features exchanged by services.

Keywords: Language services · Interoperability · Linguistic resources ·
Web services · JSON-LD · Natural Language Processing

1 Introduction

The Language Application (LAPPS) Grid project is establishing a framework
that enables language service discovery, composition and reuse. It promotes sus-
tainability, manageability, usability, and interoperability of Natural Language
Processing (NLP) components, provides access to basic NLP processing tools
and resources, and enables pipelining these tools to create custom NLP appli-
cations and composite services. The LAPPS Grid is based on the Service Grid
Server Software [6] and has currently deployed a suite of services for applications
that typically appear in NLP pipelines, including multiple tokenizers, sentence
splitters, POS taggers, named entity recognizers, coreference resolution modules,
phrase structure parsers and dependency parsers. The LAPPS philosophy and
its implementation is described in more detail in [4].

An essential aspect of composing services is to provide a vehicle for data
exchange. We have designed the LAPPS Interchange Format (LIF) to represent
linguistically annotated data for the purposes of web service exchange. Services
that implement or wrap a linguistic application may be required to consume LIF
c© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 33–47, 2016.
DOI: 10.1007/978-3-319-31468-6 3

34 M. Verhagen et al.

objects and are responsible for creating LIF objects.1 LIF is an instantiation of
JSON-LD (JavaScript Object Notation for Linked Data), a method for trans-
porting Linked Data using JSON. JSON is a lightweight, text-based, language-
independent data interchange format that defines a small set of formatting rules
for the portable representation of structured data. JSON-LD extends JSON by
enabling services to reference categories and definitions in web-based repositories
and ontologies or any suitably defined concept at a given URI.2

Although the pipeline architecture has been implemented in several NLP
frameworks over the past decades, including self-contained (non-service) frame-
works such as GATE and UIMA, no accepted standard for module description
or input/output interchange exists to support service discovery, composition and
reuse in the language application domain. To address this, we have defined a Web
Service Exchange Vocabulary (WS-EV), which specifies a terminology for a core
of linguistic objects and features exchanged among NLP tools that consume and
produce linguistically annotated data. As such, it addresses a need to not only
identify a standard terminology, but also indicate the relations among them.
Where possible, the core is drawn from existing repositories such as ISOCat;
however, because many categories and objects relevant for web service exchange
are not included in such repositories, we have attempted to identify a set of more
or less universal concepts by surveying concepts, type systems and schemas used
in, for example, the Julie Lab and DARPA GALE UIMA type systems and
the GATE schemas for linguistic phenomena, together with the I/O require-
ments of commonly used NLP software (for example, the Stanford NLP tools
and OpenNLP). WS-EV is described in more detail in [5] and all current defin-
itions are available online at http://vocab.lappsgrid.org, also see The Language
Application Grid Web Service Exchange Vocabulary elsewhere in this volume.

The LAPPS Interchange Format is in essence a vehicle for transporting infor-
mation between NLP web services. The core of this information consists of lin-
guistics annotation objects and features, as well as metadata associated with
these annotation objects and features. Many of these objects, features and meta
data properties are described in the WS-EV (also known as the LAPPS Vocab-
ulary, and we will use these two terms interchangeably), but LIF allows services
to use its own definitions and annotation objects. In spirit, LIF is similar to the
Linguistic Annotation Framework [3], the CAS format used in UIMA [2] and the
format used by the GATE architecture [1].

In the following sections, we describe the structure of LIF objects and the
relation between LIF and the LAPPS Vocabulary. We also provide some exam-
ples with extensive comments. Throughout, we motivate our choices and explain
some of the trade-offs.

1 The USE of LIF objects is actually not a strict requirement imposed for LAPPS
Services. For example, services based on an existing pipeline of GATE components
may choose to use the GATE format until the output of the very last component. We
have created a suite of translation services that translate common linguistic objects
between LIF and common existing formats.

2 See http://www.json.org/ and http://json-ld.org/.

http://vocab.lappsgrid.org
http://www.json.org/
http://json-ld.org/

The LAPPS Interchange Format 35

2 The Structure of LIF Objects

The top-level structure of a LIF object contains keys to represent contextual
information, meta data, the text being processed and a list of views. A minimal
LIF object looks as follows:

{

"@context": "http://vocab.lappsgrid.org/context-1.0.0.jsonld",

"metadata": { },

"text": { },

"views": []

}

2.1 The @context@context@context Key

The @context key holds a special meaning in JSON-LD. It is used to define the
short-hand names called terms that are used throughout a JSON-LD document.
In the case of LIF, the value of the @context key is a fixed URL that points
to an external context file with abbreviations into various parts of the LAPPS
vocabulary. We allow services to provide their own context in a LIF object, but
we require that services do this by adding contexts to individual views or to add
elements to existing contexts in individual views.

While not recommended, services can use local contexts in views to redefine
terms that are also defined in the external context file. The drawback here is that
some annotation objects or properties would have different meanings depending
on what view they are in. For example, if we have two definitions for Token, one
in the top-level context and one in a view, then the Token annotation type in
two different views would be expanded to two different full URIs with different
associated definitions. While this can be considered to impede interoperability
in the sense that these two types are now not the same thing anymore, allowing
different expansions does reflect the reality that different definitions exist, allows
services to use either definition, and makes this transparent to the user.

2.2 The metadatametadatametadata Key

In the current LAPPS Grid, there is no use case for what should be in this meta-
data object. LIF objects are created and consumed by services and metadata
added by services are typically relevant to individual views only and are therefore
included as metadata inside the views, as described in Sect. 2.4. Nevertheless,
we allow a metadata key here for future use.

2.3 The texttexttext Key

This is a JSON-LD value object containing @value and @language keys. The
value associated with @value is a string and the value associated with @language
follows the rules in [7], which for our current purposes boils down to using the

36 M. Verhagen et al.

ISO 639 code. Note also that language is defined as a meta data property in
the vocabulary.3

2.4 The viewsviewsviews Key

This is where all the annotations live with their associated meta data. The value
is a JSON-LD array of views where each view specifies what information it con-
tains and what service created that information. Views are similar to annotation
layers and annotation tasks as used by several mainstream annotation tools, for-
malisms and frameworks. They contain structured information about a text but
are separate from that text. Views also provide flexibility in structuring anno-
tations. One example of this flexibility is that the results of two separate part
of speech taggers can be stored in two different views. These taggers could use
different tag sets or different rules or even different training data. The important
point here is that from the perspective of the services in a pipeline, this flexibility
allows the services to add exactly what they want to add without them being
restricted by views already in the LIF object.

A note on the nature of the views array. JSON-LD arrays are by default
unordered lists, but we have added context definitions to the external file to
ensure this is an ordered list. The order is interpreted to reflect when views were
added. So we require that any view added by a service has to be appended to
the end.

There are a few general principles that apply to views:

1. For each view, the metadata section specifies what kind of information objects
are in the view. Information objects are Annotation objects as defined in the
vocabulary or subtypes thereof.4

2. Annotation objects in views can refer to annotation objects in other views.
3. There is no limit to the number of views and services may create as many

new views as they want.
4. Services may add information to existing views by adding annotation objects

or by adding features to annotation objects. If annotation objects added are
of a type that does not yet occur in the view, then the view’s metadata section
may need to be updated.

5. Services may even overwrite or delete information in existing views, but this
is generally not recommended and such services should make it obvious that
they are overwriting data.

This last principle deserves some elaboration. One side effect of allowing non-
monotonic operations is that the meta data on a view (described a few para-
graphs below) cannot fully describe what data are available in a view, which is
suboptimal. We allow this because the current versions of some of our evaluation
services need to overwrite data. Note however that the vast majority of services

3 See http://vocab.lappsgrid.org/Document.html#language.
4 See http://vocab.lappsgrid.org/Annotation.

http://vocab.lappsgrid.org/Document.html#language
http://vocab.lappsgrid.org/Annotation

The LAPPS Interchange Format 37

will not overwrite data and many pipelines can be constructed without fear of
impacted annotation integrity.

Each view object has four keys: @context, id, metadata and annotations.
Below is a minimal example of a view with just one annotation element.

"views": [

{

"@context": {},

"id": "v0",

"metadata": {

"contains": {

"Token": {

"producer": "lappsgrid.brandeis.opennlp.Tokenizer:0.0.4",

"rules": "tokenization:opennlp_basic" }}},

"annotations": [

{ "@type": "Token",

"id": "t0",

"start": 0,

"end": 5,

"features": {} }]

}

]

The @context key in a view is an optional key that can be used for user-
defined context elements. The LAPPS Vocabulary is considered a recommen-
dation for commonly used linguistic types, but services may provide their own
definitions and link to them in the local context. For example, a service that
has a non-standard definition for Token could either use another name for this
annotation type or use the same term yet redefine its meaning:

{

"@context": { "Token": "http://www.example.com/MyToken" },

"annotations": [

{ "@type": "Token", "id": "t0", "start": 0, "end": 5 }]

}

Note that annotations of type Token in other views are still governed by the
definition of Token in the LAPPS Vocabulary. Clearly, full semantic operability
between the two types of tokens carrying the same is not automatically enforced,
but at least there is transparency in what terms are used in each view.

Amongst the general principles listed above was that services may add con-
texts and information to existing views. Nothing prevents services from taking
an existing view with Token annotations, copy those to a new view and redefine
the meaning of Token for that view. We have chosen to allow this flexibility,
while recognizing that there may be value in not allowing services to redefine
terms that are already used in a view.

Services are not required to spell out user-defined properties in the context
of the view, but, if they do not, full URIs must be used for the values of the
@type key.

38 M. Verhagen et al.

The id key is required and its value should be unique relative to all view
objects. If annotation elements refer to an annotation element in another view
then they have to use the view identifier as part of the reference. An example of
this will be given in Sect. 3.2.

The metadata key contains information to describe the annotations in a
view. At this point, its only key is contains. Other keys may be added, including
timestamp or a key like dependsOn, which would spell out what other views a
view is dependent on. The contains dictionary has keys that refer to annotation
objects in the LAPPS vocabulary or properties of those annotation objects (they
can also refer to user-defined objects or properties). And the value of each of
those keys is a JSON object with producer, type and rules keys. The relevant
part of the example above is repeated here:

{

"contains": {

"Token": {

"producer": "lappsgrid.brandeis.opennlp.Tokenizer:0.0.4",

"type": "tokenization:opennlp",

"rules": "tokenization:opennlp_basic" }}

}

The producer key contains a string that gives an indication what service
created this particular annotation category in this view and its value is generated
by the service itself. It is considered good practice to add a versioning number of
the wrapped component. A guiding principle on the current LAPPS Grid is that
older versions of components remain in operation, even while newer versions
are added.5 This key is not a unique identifier for the service. In the current
implementation of the LAPPS Grid, this string cannot be the unique name
that the LAPPS grid has for this service, nor can it be the URL where the
service resides. The reason for this is that the service itself has no access to this
information and it is the service that adds information to the LIF objects.

The type key is used to specify what kind of token we are dealing with. It
allows several tokenizers to specify the same type, for example if two tokenizers
are both implementations of the OpenNLP tokenization. In the example here the
type key has the compact IRI value tokenization:opennlp and tokenization
is defined in the external context file, helping to expand the value of type to a
full URL that contains a definition of this tokenization scheme. This particular
definition resides in the WS-EV.

The rules key inside of Token can be used to specify a rule set, and, similarly
to the types key, its value expands to a URL with a rule set definition. In
the LAPPS vocabulary, producer, type and rules are all defined as metadata
properties on Token (albeit inherited from Annotation)

5 A related issue is that versioning not only applies to the version of the wrapped
NLP component, but also the version of the wrapper itself as well as to versions of
definitions in the vocabulary. This issue is currently under discussion.

The LAPPS Interchange Format 39

Finally, the value of annotations, the fourth key in a view object, is a list
of annotation objects. The relevant part of the view printed above is repeated
here:

"annotations": [

{ "@type": "Token",

"id": "t0",

"start": 0,

"end": 5,

"features": {}

}

As with other LIF objects, the keys allowed are specified in the JSON LIF
Schema at http://vocab.lappsgrid.org/schema/lif-schema.json, in this case in the
definitions for annotations and annotation.

The @type key is another special JSON-LD key and it is used to set the data
type of a node or typed value. The value of @type is an element of the LAPPS
vocabulary or an annotation category added by the user. But, as mentioned
above, note that if a user-definition is added it would be defined outside of the
LAPPS vocabulary. In that case the user should either use the full URI or add a
context to the view in which this new annotation category lives. Each annotation
object has a id key, which is an identifier unique to the view as well as start
and end keys, which indicate the character offsets in the text. Annotations that
do not refer to a text segment can have -1 as the start and end.

The features dictionary holds all features of the annotation object. Techni-
cally all that is required of the keys in the features dictionary is that they expand
to a URI. In most cases, the keys reflect properties in the LAPPS vocabulary
and we prefer to use the same name. So if we have a property pos, we will use
pos in the features dictionary. This implies that pos needs to be defined in the
context so that it can be expanded to the correct URI in the vocabulary. This in
turn implies that in the vocabulary each property should be only defined once.

It may be instructive here to expand a bit on how elements of a LIF object
relate to elements in the WS-EV. One of the differences between WS-EV and
LIF is in where properties of annotation objects are expressed. LIF is governed
syntactically by its schema. A fragment of the schema, the specification for the
annotation object, is printed below.

"annotation": {

"type": "object",

"properties": {

"id": { "type": "string" },

"@type": { "type": "string" },

"start": { "type": "integer", "minimum": -1 },

"end": { "type": "integer", "minimum": -1 },

"features": { "$ref": "#/definitions/map" },

"metadata": { "$ref": "#/definitions/map" }

}

http://vocab.lappsgrid.org/schema/lif-schema.json

40 M. Verhagen et al.

The WS-EV pages for Annotation and its subtypes define many properties
that cannot be expressed on the top-level of the LIF annotation object, like pos
and lemma. In LIF, these are all expressed in the features dictionary, which is
not restricted in any way and which can also be used by user-services to put in
any property it wants.

3 Examples

To illustrate the principles and descriptions above, we now give some examples
of LIF objects that would be generated by services that add common annotation
types. In particular, we look at sentences, tokens, parts of speech, coreference
and phrase structure.

3.1 Tokens and Parts-of-Speech

This section contains examples on how to represent tokenized and split text. It
also elaborates on how to represent token-level information, in particular part of
speech tags. Sentence splitters create annotation objects of type Sentence and
tokenizers create objects of type Token, these are both defined in the LAPPS
vocabulary.6 POS taggers fill in the pos property in the features dictionary
on the token (but note that some taggers create token objects as part of that
process).7 There are many potential pipelines for creating sentences, tokens and
part of speech tags. For our example, we take a pipeline where the OpenNLP
splitter service on the Brandeis University LAPPS Grid Node is followed by the
Stanford tokenizer and the Stanford POS tagger, both implemented as services
on the Vassar LAPPS Grid Node. Note that in this case the Stanford tokenizer
and tagger are wrapped as separate services. The LIF object handed into the
pipeline is as follows:

{

"@context": "http://vocab.lappsgrid.org/context-1.0.0.jsonld",

"text": { "@value": "Fido barks." },

"views": []

}

With this object as input, the sentence splitter will append a sentence view
to the views array and the tokenizer a token view, as exemplified on the next
page. Recall from Sect. 2.4 that wrapped components are expected to add views
to the end of the views array and that each view has a unique identifier.
6 See http://vocab.lappsgrid.org/Sentence.html and http://vocab.lappsgrid.org/
Token.html.

7 An alternative to this approach is to make PosTag a kind of annotation rather than
a feature of an annotation, which can help in reducing potential redundancies that
will become obvious later in this section. However, it was important to us to keep
the number of annotation categories in the vocabulary as low as possible. We also
felt that conceptually a part-of-speech tag is a natural feature of a token and not a
standalone category.

http://vocab.lappsgrid.org/Sentence.html
http://vocab.lappsgrid.org/Token.html
http://vocab.lappsgrid.org/Token.html

The LAPPS Interchange Format 41

{

"@context": "http://vocab.lappsgrid.org/context-1.0.0.jsonld",

"text": { "@value": "Fido barks." },

"views": [

{

"id": "v1",

"metadata": {

"contains": {

"Sentence": {

"producer": "lapps.brandeis.opennlp.Splitter:0.0.4",

"type": "splitter:opennlp" }}},

"annotations": [

{ "@type": "Sentence", "id": "s0", "start": 0, "end": 11 }]

},

{

"id": "v2",

"metadata": {

"contains": {

"Token": {

"producer": "lapps.anc.stanford.SATokenizer:1.4.0",

"type": "tokenization:stanford" }}},

"annotations": [

{ "@type": "Token", "id": "tok0", "start": 0, "end": 4 },

{ "@type": "Token", "id": "tok1", "start": 5, "end": 10 },

{ "@type": "Token", "id": "tok2", "start": 10, "end": 11 }]

}

]

}

The Stanford tagger, the third step in the pipeline, could add part-of-speech
information to an existing view, in which case the view with the identifier “v2”
will be amended by the tagging service (not all meta data are printed):

{

"id": "v2",

"metadata": {

"contains": {

"Token": { ... },

"Token#pos": {

"producer": "lapps.anc.stanford.SATagger:1.4.0",

"posTagSet": "penn",

"type": "postagging:stanford" }}},

"annotations": [

{ "@type": "Token", "id": "tok0", "start": 0, "end": 4,

"features": { "pos": "NNP" } },

{ "@type": "Token", "id": "tok1", "start": 5, "end": 10,

"features": { "pos": "VBZ" } },

{ "@type": "Token", "id": "tok2", "start": 10, "end": 11,

"features": { "pos": "." } }]

}

42 M. Verhagen et al.

In the vocabulary, posTagSet is defined as a meta data property on Token
and penn is a term defined in the external context file that points to a URL
with information on this tag set. Note the use of Token#pos and pos. These are
two alternative ways of pointing to the same URL in the vocabulary and again
depend on term definitions in the external context file.

The second way for the tagger to add to the LIF object is to add a view and
not change the existing token view. While the views with identifier “v1” and
“v2” would remain the same, the next view would be appended to the views list:

{

"id": "v3",

"metadata": {

"contains": {

"Token": {

"producer": "lapps.anc.stanford.SATokenizer:1.4.0",

"type": "tokenization:stanford" },

"Token#pos": {

"producer": "lapps.anc.stanford.SATagger:1.4.0",

"posTagset": "penn",

"type": "postagging:stanford" }}},

"annotations": [

{ "@type": "Token", "id": "tok0", "start": 0, "end": 4,

"features": { "pos": "NNP" } },

{ "@type": "Token", "id": "tok1", "start": 5, "end": 10,

"features": { "pos": "VBZ" } },

{ "@type": "Token", "id": "tok2", "start": 10, "end": 11,

"features": { "pos": "." } }]

}

This view’s annotation list is identical to the previous one shown because
annotation elements from the view with identifier “v2” are copied and the tagger
does not overwrite existing information, rather, it fills in slots in the feature
dictionary. There are other cases though where existing information could be
overwritten. One example would be a cascade of taggers all writing to the same
view and where later taggers are allowed to overwrite results of earlier taggers.
In those cases, the provenance of a particular part-of-speech tag is not clear
anymore. Adding a view with merged information would have the benefit of
introducing that clarity again at the cost of extra views and some redundancy.

3.2 Coreference

Coreference provides an example where (1) elements in a view refer to elements
in other views and (2) the feature dictionary contains non-atomic values. The
examples below are all for the simple phrase Sue sees herself. The JSON-LD
used in this section is fairly informal, just showing the bits and pieces that are
relevant to the discussion.

First assume an existing LIF object that contains tokens, that is, the coref-
erence module applies in a pipeline after a tokenizer, and consumes a LIF object

The LAPPS Interchange Format 43

generated by the tokenizer. Below we print just the relevant view with its anno-
tations.

{

"id": "v1",

"metadata": {

"contains": {

"Token": {

"producer": "lapps.brandeis.opennlp.Tokenizer:1.4.0",

"type": "tokenizer:opennlp" }}},

"annotations": [

{ "@type": "Token", "id": "tok0", "start": 0, "end": 3 },

{ "@type": "Token", "id": "tok1", "start": 4, "end": 8 },

{ "@type": "Token", "id": "tok2", "start": 9, "end": 16 }]

}

A view added by a coreference component introduces two new annotation
objects: Coreference and Markable, both defined in the LAPPS Vocabulary.
Both objects refer to other annotation elements, which for the Markable object
are outside of the view.

{

"id": "v2",

"metadata": {

"contains": {

"Markable": {

"producer": "lapps.brandeis.opennlp.coref:1.0",

"type": "coreference:opennlp" },

"Coreference": {

"producer": "lapps.brandeis.opennlp.coref:1.0",

"type": "coreference:opennlp" }}},

"annotations": [

{ "@type": "Markable", "id": "m0",

"features": { "targets": ["v1:tok0"] } },

{ "@type": "Markable", "id": "m1",

"features": { "targets": ["v1:tok2"] } },

{ "@type": "Coreference", "id": "coref0",

"features": {

"mentions": ["m0", "m1"],

"representative": "m0" }}]

}

The Coreference and Markable definitions in the LAPPS vocabulary include
definitions for the mentions, representative and targets properties. These
properties allow for a common representation that abstracts away over the rep-
resentations produced by common coreference components in GATE, OpenNLP
or the Stanford tools.

The markables are required and the mentions list cannot refer directly to
other views. There is a slight redundancy penalty to pay because other views

44 M. Verhagen et al.

may already have the objects that are co-referring. But it appeared conceptually
cleaner to do it this way. In the example above, the targets property in the
Markable annotation object contains a list of pointers to annotation objects in
another view. The reference “v1:tok0” contains both a view identifier and an
annotation object identifier, the latter is unique to the view it occurs in.

Here is an example where the coreference service applies to virgin data, that
is, it is the first and only component in a pipeline. In that case, there is no other
view to refer to. Again, the input text is Sue sees herself and we print just the
view added by the coreference service. For brevity, we also decline to fill in all
the structure inside the contains key.

{

"id": "v1",

"metadata": {

"contains": {

"Markable": { },

"Coreference": { } }},

"annotations": [

{ "@type": "Markable", "id": "m0", "start": 0, "end": 3 },

{ "@type": "Markable", "id": "m1", "start": 9, "end": 16 },

{ "@type": "Coreference",

"id": "coref0",

"features": {

"mentions": ["m0", "m1"],

"representative": "m0" }}]

}

The annotation elements here are very similar to the ones used in the previous
example. The only difference is that the Markable objects have a start and end
key instead of the targets key.

If a coreference component generates actual annotations that can be used,
but that are not available in other views, then we put them in the coreference
view. These could be named entities like persons (which is what the ANNIE
Coreference module in GATE produces), noun chunks or tokens. These can all
be added to the coreference view. Below we have an example where token anno-
tations are added to the coreference view.

{

"id": "v1",

"metadata": {

"contains": {

"Token": { },

"Markable": { },

"Coreference": { } }},

"annotations": [

{ "@type": "Token", "id": "tok0", "start": 0, "end": 3 },

{ "@type": "Token", "id": "tok2", "start": 9, "end": 16 },

{ "@type": "Markable",

The LAPPS Interchange Format 45

"id": "m0",

"features": {

"targets": ["tok0"] }},

{ "@type": "Markable",

"id": "m1",

"features": {

"targets": ["tok2"] }},

{ "@type": "Coreference",

"id": "coref0",

"features": {

"mentions": ["m0", "m1"],

"representative": "m0" }}]

}

Sometimes, coreference modules will have all kinds of other information on
the annotations that are linked. For example, the ANNIE Coreference component
has an attribute entity mention type with value pronoun on one of the
annotations. We can put these in the features directory of the Markable.

{

"metadata": {

"contains": {

"Token": { },

"Markable": { },

"Coreference": { } }},

"annotations": [

{ "@type": "Token", "id": "tok0", "start": 0, "end": 3 },

{ "@type": "Token", "id": "tok2", "start": 9, "end": 16 },

{ "@type": "Markable", "id": "m0",

"features": {

"targets": ["tok0"] }},

{ "@type": "Markable", "id": "m1",

"features": {

"targets": ["tok2"],

"ENTITY_MENTION_TYPE": "PRONOUN" } },

{ "@type": "Coreference", "id": "coref0",

"features": {

"mentions": ["m0", "m1"],

"representative": "m0" }}]

}

The features dictionary can be used for any feature generated by a service.
Note however that each key in the dictionary needs to resolve to a full URI and
that the service is now responsible for adding a statement to the context that
does this.

46 M. Verhagen et al.

3.3 Syntactic Structure

As a final example we show how a tree structure is represented in LIF. Let’s
assume the syntactic parser service consumes as input the output of a tokenizer
(here printed without the metadata for the view):

{

"text": "Sue sees herself",

"views": [

{ "id": "v1",

"annotations": [

{ "@type": "Token", "id": "tok0", "start": 0, "end": 3 },

{ "@type": "Token", "id": "tok1", "start": 4, "end": 8 },

{ "@type": "Token", "id": "tok2", "start": 9, "end": 16 }]}],

}

We introduce an annotation object of type PhraseStructure. This object
contains a list of constituents for some text span, typically for a sentence. It
introduces the constituents feature which contains a list of identifiers pointing
at annotations of type Constituent in the same view. A Constituent has a
label reflecting the category and in the feature dictionary a list of children.
Again, these annotation types are defined in the vocabulary. The view added by
the parser looks as follows.

{

"id": "v2",

"metadata": {

"contains": {

"PhraseStructure": {

"producer": "edu.brandeis.cs.lappsgrid.SimpleParser:1.0.0",

"categorySet": "categories:PTBcategories",

"type": "PhraseStructure:SimpleParser" }}},

"annotations": [

{ "@type": "PhraseStructure",

"id": "phrase0",

"start": 0,

"end": 16,

"features": {

"constituents": ["c0", "c1", "c2"] } },

{ "@type": "Constituent", "label": "S", "id": "c0",

"features": { "children": ["c1", "c2"] } },

{ "@type": "Constituent", "label": "NP", "id": "c1",

"features": { "children": ["v1:tok0"] }},

{ "@type": "Constituent", "label": "VP", "id": "c2",

"features": { "children": ["v1:tok1", "v1:tok2"] }}]

}

This example highlights an important feature of the constituents list in the
view, which is that all annotation objects on the view are top-level elements in
the constituents list. Annotation objects can refer to other annotation objects

The LAPPS Interchange Format 47

but cannot contain them. We decided to not represent the tree structure directly
using deeper embedding. This is part of a more general issue which is whether
we LIF structures are structurally as close as possible to encoded data structures
like trees, linked lists and graphs. We flatten out all these structures.

4 Conclusion and Future Work

We have described the LAPPS Interchange Format and have given examples
of what kind of LIF objects need to be generated by language services in
order to promote interoperability amongst services. While the specifications for
many types of language data are mature, the LAPPS Interchange Format is a
work in progress and updated versions of the specifications will be available on
the LAPPS Grid website at http://www.lappsgrid.org/interoperability/. We are
working on a set of Java classes that provide an API for quickly reading and
generating LIF objects, thereby facilitating the work of developers who wrap ser-
vices for the LAPPS Grid. In addition, we continue to explore other processing
modules including temporal and spatial processors.

Acknowledgements. This work was supported by two National Science Foundation
grants: NSF-ACI 1147944 and NSF-ACI 1147912.

References

1. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework
and graphical development environment for robust NLP tools and applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (2002)

2. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured informa-
tion processing in the corporate research environment. Nat. Lang. Eng. 10(3–4),
327–348 (2004). Cambridge University Press

3. Ide, N., Suderman, K.: The linguistic annotation framework: a standard for anno-
tation interchange and merging. Lang. Resour. Eval. 48(3), 395–418 (2014)

4. Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., Wang, D., Suderman, K., Verhagen,
M., Wright, J.: The language application grid. In: The Ninth Language Resources
and Evaluation Conference (LREC 2014), Reykjavik, Iceland

5. Ide, N., Pustejovsky, J., Suderman, K., Verhagen, M.: The language application
grid web service exchange vocabulary. In: Workshop on Open Infrastructures and
Analysis Frameworks for HLT (OIAF4HLT), Held in Conjunction with COLING,
Dublin, Ireland (2014)

6. Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for
Language Resource Interoperability. Springer, Heidelberg (2011). ISBN: 978-3-642-
21177-5. Observation of strains. Infect Dis Ther. 3(1), 35–43 (2011)

7. Phillips, A., Davis, M.: Tags for Identifying Languages. IETF Best Current Prac-
tice, September 2009. http://tools.ietf.org/html/bcp47

http://www.lappsgrid.org/interoperability/
http://tools.ietf.org/html/bcp47

Service Platform and Service
Management

The Language Application Grid

Nancy Ide1(B), James Pustejovsky2, Christopher Cieri3, Eric Nyberg4,
Denise DiPersio3, Chunqi Shi2, Keith Suderman1, Marc Verhagen2,

Di Wang4, and Jonathan Wright3

1 Vassar College, Poughkeepsie, NY, USA
{ide,suderman}@cs.vassar.edu

2 Brandeis University, Waltham, MA, USA
{jamesp,shicq,marc}@cs.brandeis.edu

3 Linguistic Data Consortium, Philadelphia, PA, USA
{ccieri,dipersio,jdwright}@ldc.upenn.edu

4 Carnegie-Mellon University, Pittsburgh, PA, USA
{ehn,diwang}@cs.cmu.edu

Abstract. The Language Application (LAPPS) Grid project is estab-
lishing a framework that enables language service discovery, composi-
tion, and reuse and promotes sustainability, manageability, usability, and
interoperability of natural language Processing (NLP) components. It is
based on the service-oriented architecture (SOA), a more recent, web-
oriented version of the “pipeline” architecture that has long been used
in NLP for sequencing loosely-coupled linguistic analyses. The LAPPS
Grid provides access to basic NLP processing tools and resources and
enables pipelining such tools to create custom NLP applications, as well
as composite services such as question answering and machine transla-
tion together with language resources such as mono- and multi-lingual
corpora and lexicons that support NLP. The transformative aspect of
the LAPPS Grid is that it orchestrates access to and deployment of lan-
guage resources and processing functions available from servers around
the globe and enables users to add their own language resources, services,
and even service grids to satisfy their particular needs.

Keywords: NLP frameworks · Web services · Service grids · Open
advancement · Resource licensing

1 Introduction

The need for robust language processing capabilities across academic disciplines,
education, and industry is without question of vital importance to national
security, infrastructure development, and the competitiveness of American busi-
ness. However, while the past two decades have produced reliable and accurate
tools for the various linguistic analyses required by Natural Language Process-
ing (NLP) applications, component interoperability–and hence, reusability–has
remained a serious problem for the field. A few application frameworks have

c© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 51–70, 2016.
DOI: 10.1007/978-3-319-31468-6 4

52 N. Ide et al.

been recently developed for the integration and delivery of end-to-end language
software (e.g., UIMA, GATE), but these frameworks provide for interoperability
among tools and components only within the frameworks themselves. Addition-
ally, while such frameworks provide for syntactic interoperability via internally-
defined physical formats, semantic interoperability [11], even within a given
framework, is still problematic because users must define their own type systems
and ontologies, which vary widely. As a result, the field has remained relatively
fragmented, characterized by a lack of standard practices, few widely usable and
reusable tools and resources, and much redundancy of effort. Rapid develop-
ment and deployment of NLP applications has also been hindered by the lack of
ready-made, standardized evaluation mechanisms, especially those which enable
evaluation of component performance in applications consisting of a pipeline of
processing tools. This capability, coupled with access to a repository of interop-
erable NLP processing components and test data, will enable a major leap in
productivity for researchers and developers alike.

To meet this need, the Language Application (LAPPS) Grid project is
establishing a framework that enables language service discovery, composition,
and reuse and promotes sustainability, manageability, usability, and interoper-
ability of natural language Processing (NLP) components. It is based on the
service-oriented architecture (SOA), a more recent, web-oriented version of the
“pipeline” architecture that has long been used in NLP for sequencing loosely-
coupled linguistic analyses. The LAPPS Grid provides a critical missing layer of
functionality for NLP: although existing frameworks such as UIMA and GATE
provide the capability to wrap, integrate, and deploy language services, they do
not provide general support for service discovery, composition, and reuse.

The LAPPS Grid is a collaborative effort among US partners Brandeis Uni-
versity, Vassar College, Carnegie-Mellon University, and the Linguistic Data
Consortium at the University of Pennsylvania, and is funded by the US National
Science Foundation. The project is part of a larger multi-way international
collaboration including key individuals and projects from the U.S., Europe,
Australia, and Asia involved with language resource development and distri-
bution and standards-making, who are creating the “Open Language Grid”
federation [14], a multi-lingual, international network of web service grids and
providers that integrates large-scale computing, high-speed networks, and mas-
sive data archives across the world to support the development and testing of
integrated natural language applications. The key to the success of this feder-
ation is the interoperability among tools and services that is accomplished via
the service-oriented architecture and the development of common vocabular-
ies and multi-way mappings that have involved key researchers from around
the world for over a decade, including members of the LAPPS Grid project1.

1 E.g., in the NSF-funded Sustainable Interoperability for Language Technology
(SILT) project (NSF-INTEROP 0753069) [12], the EU-funded Fostering Language
Resources Network (FLaReNet) project [1], the International Standards Organiza-
tion (ISO) committee for Language Resource Management (ISO TC37 SC4), and
parallel efforts in Asia and Australia, together with the LAPPS project and inter-
national collaborators.

The Language Application Grid 53

These efforts laid the groundwork in terms of standards development, raising
community awareness and buy-in, and proof-of-concept implementation upon
which the creation of a comprehensive, international infrastructure supporting
discovery and deployment of web services for language resources and processing
components is now being built.

The development and deployment of the LAPPS Grid and its integration in
the Open Language Grid has already demonstrated its potential to significantly
transform the way language data is accessed, analyzed, and exploited across
disciplines for diverse research and development needs, and to ultimately enable
a major leap in language processing capabilities that can impact the way people
use and interact with computers. The LAPPS Grid offers the following benefits:

– access to high-performance computing NLP facilities for members of the
research and education communities who would otherwise have no such access,
or who have little background in NLP, while reducing the often prohibitive
overhead now required to adapt or develop new components;

– substantially increased access to resources for members of the NLP com-
munity as well as researchers in sociology, psychology, economics, educa-
tion, linguistics, digital media, etc., including mono- and multi-lingual lex-
ical, semantic, and ontological resources that provide information relevant to
a wide range of sub-domains (e.g., speech, machine translation, information
retrieval);

– means to address the current lack of interoperability among NLP components
and data by negotiating across formats and categories;

– access to a state-of-the-art, sophisticated evaluation environment that facili-
tates assessment of component contribution to overall performance and iter-
ative application development;

– capabilities for rapid development of resources for less-resourced and endan-
gered languages, for which automatic language processing capabilities are
only beginning or have yet to be developed;

– enhanced capability for state-of-the-art, “on-the-fly” stream processing of lan-
guage by enabling NLP applications to call services and extract information
from service resources;

– enhancement of research, development, and teaching of NLP by providing
controlled access to resources that are otherwise too costly to acquire or
restricted by intellectual property rights, as well as access to large-scale com-
puting required to process massive language resources.

It is important to note that the transformative aspect of the LAPPS Grid
is not the provision of a suite of web services and composite workflows, but
rather that it orchestrates access to and deployment of language resources and
processing functions available from servers around the globe and enables users to
add their own language resources, services, and even service grids to satisfy their
particular needs. As such, the LAPPS Grid is ultimately a community-based
project, to which services will be contributed by members of the community
and existing service repositories and grids can be federated to enable universal
access.

54 N. Ide et al.

In this paper we provide an overview of the LAPPS Grid and the technologies
we are developing to support its use. Section 2 describes the overall architecture
of the LAPPS Grid. In Sect. 3, the development of the LAPPS Web Service
Exchange Vocabulary, which enables interoperability among services in the Grid,
is described. Section 4 introduces the LAPPS/Galaxy interface for accessing and
constructing atomic and composite web services, and in Sect. 5 we overview
the open advancement evaluation capabilities that are being provided in the
Grid. Section 6 discusses our approach to handling potentially divergent licensing
constraints in web service pipelines. Finally, Sects. 7 and 8 discuss user-provided
evaluation of the LAPPS Grid and the relation of this project to similar projects
in Asia, Australia, and the European Union.

2 LAPPS Grid Design

The fundamental system architecture of the LAPPS Grid is based on the Open
Service Grid Initiative’s Service Grid Server Software developed by the National
Institute of Information and Communications Technology (NICT) in Japan and
used to implement Kyoto University’s Language Grid, a service grid that sup-
ports multilingual communication and collaboration. Like the Language Grid,
the LAPPS Grid provides three main functions: language service registration and
deployment, language service search, and language service composition and exe-
cution. From the perspective of application developers, one of the intended audi-
ences for the LAPPS Grid, several aspects of service deployment are important:

1. Service Discovery. An application designer can query for existing components
and services that provide some desired functionality, and quickly identify
elements in the repository that are suited to the task.

2. Service Adaptation. The LAPPS Grid supports straightforward customization
and adaptation of each component or service (e.g., by exposing parameters,
options, etc.).

3. Service Composition. New applications can be built from existing elements
and tested on client data with a minimum amount of programming.

4. Metrics and Measurement. The LAPPS Grid is instrumented to provide rele-
vant component-level measures for standard metrics, given gold-standard test
data. New applications automatically include instrumentation for component-
level and end-to-end measurement; intermediate (component-level) I/O is
logged to support effective error analysis.

By opting to begin with the software supporting the Japanese grid, we have
been able to deploy a new service grid hosted entirely within the United States,
without incurring the very significant cost of an entirely new software devel-
opment effort, although differences in local reality and implementation made it
necessary to augment the service grid software in a number of ways. The LAPPS
Grid extends the core functionality of the Service Grid Software by (1) further
enabling composition of tool and resource chains as well as providing sophis-
ticated evaluation services; (2) implementing a dynamic licensing system (see

The Language Application Grid 55

Fig. 1. LAPPS grid architecture

Sect. 6 for handling license agreements on the fly; (3) providing the option to
run services locally, with high-security technology to protect sensitive informa-
tion where required, improve data delivery services; and (4) enabling access to
grids other than those based on the Service Grid technology. Also, because the
LAPPS Grid is a community-based resource to which members of the community
will increasingly contribute as well as use, we provide user-friendly, transparent
facilities for wrapping user-provided services.

The basic components of the LAPPS Grid are presented in Fig. 1. The main
LAPPS server maintains a workflow repository for composite linguistic services
and is equipped with a workflow engine to enable users to develop their own
composite (pipelined) services. It also contains modules for discovery, wrapping
and conversion. LAPPS Grid nodes housed at Brandeis University and Vassar
College maintain repositories of known atomic linguistic services and provide
service discovery functionality to users and applications. The LDC node houses
various data services, and the node at CMU provides services for automatic
measurement and analysis of workflow components, including error analysis at
the component and end-to-end application level.

3 Interoperability

Differing specifications of linguistic categories and typologies from application
to application have posed a well-known obstacle to interoperability. We have
worked with researchers, projects and standards-making bodies from around
the world to develop common vocabularies and multi-way mappings, using as
a basis the output of various international efforts undertaken over the previous
decade2. Our developments address both syntactic interoperability among web
services by providing an implementation of a well-established physical format
for web service exchange, as well as semantic interoperability to enable services
to mutually understand the “meaning” of exchanged objects.
2 E.g., SILT [12], FLaReNet [1], ISO TC37 SC4, etc.

56 N. Ide et al.

3.1 LAPPS Interchange Format

Syntactic interoperability among services is enabled via JSON-based serialization
for Linked Data (JSON-LD)3, a widely accepted format that allows data repre-
sented in the international standard JSON format4 to interoperate at Web-scale.
The JavaScript Object Notation (JSON)5 is a lightweight, text-based, language-
independent data interchange format that defines a small set of formatting rules
for the portable representation of structured data. Because it is based on the
W3C Resource Definition Framework (RDF), JSON-LD is trivially mappable
to and from other graph-based formats such as ISO LAF/GrAF [13,15] and
UIMA CAS6, as well as a growing number of formats implementing the same
data model. JSON-LD enables services to reference categories and definitions
in web-based repositories and ontologies (e.g., ISOCat7, GOLD8, Dublin Core9,
OLiA10) or any suitably defined concept at a given URI.

We have designed the LAPPS Interchange Format (LIF) to represent lin-
guistically annotated data in JSON-LD. Services that implement a linguistic
application (or wrap an existing application) must consume LIF objects and
are responsible for creating LIF objects. Each web service in the LAPPS Grid
publishes metadata describing what it requires for input and what it produces
as output. A process that is constructing a service pipeline can then query each
service to determine compatibility. Where necessary, data converters included in
the Language Application Service Engines (see Fig. 1) are automatically invoked
map from commonly used formats to the JSON-LD interchange format. For a
fuller description of LIF, see Verhagen et al., “The LAPPS Interchange Format”,
in this volume.

3.2 Exchange Vocabulary

Semantic interoperability among web services is a far greater challenge. Although
the pipeline architecture has been implemented in several NLP frameworks over
the past two decades, including self-contained (non-service) frameworks such as
GATE and UIMA, no accepted standard for module description or input/output
interchange to support service discovery, composition, and reuse in the language
application domain exists. To address this, we have worked closely with inter-
ested and invested groups and members of ISO TC 37 SC4 to develop a light-
weight, web-accessible, and readily mappable hierarchy of concepts called the
Web Service Exchange Vocabulary (WS-EV) that specifies a terminology for a

3 http://json-ld.org.
4 http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.
5 http://www.json.org and http://www.ietf.org/rfc/rfc4627.txt.
6 The Common Analysis Structure (CAS) is the internal format for exchange among

modules in the UIMA framework.
7 http://www.isocat.org.
8 http://linguistics-ontology.org.
9 http://dublincore.org.

10 http://nachhalt.sfb632.uni-potsdam.de/owl/.

http://json-ld.org
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.json.org
http://www.ietf.org/rfc/rfc4627.txt
http://www.isocat.org
http://linguistics-ontology.org
http://dublincore.org
http://nachhalt.sfb632.uni-potsdam.de/owl/

The Language Application Grid 57

core of linguistic objects and features exchanged among NLP tools that con-
sume and produce linguistically annotated data. Development is further guided
by collaboration with projects such as the CLARIN Data Concept Registry11

and ISOcat12, and integration with existing web service ontologies such as the
Language Grid’s Language Service Ontology [10]. The WS-EV addresses a need
within the community to not only identify a readily usable set of terms, but
also specify the relations among them. However, it is crucial to note that the
goal of the WS-EV is not to provide a definitive set of terms and relations that
will serve every purpose and satisfy every user, but rather to provide a base set
of terms, trivially mappable from a substantial number of widely-used schemes,
that can be used for exchanging linguistic data among web services. A fuller
description of the WS-EV and the philosophy behind it are provided elsewhere
in this volume.13

Our approach to development of the WS-EV is “bottom-up”, in order to
avoid a priori development of a comprehensive linguistic type system. To that
end, we have adopted a “minimalist” strategy of providing a simple core set of
objects and features. Where possible, the core is drawn from existing repositories
such as ISOCat; however, because many categories and objects relevant for web
service exchange are not included in such repositories, we have attempted to
identify a set of (more or less) “universal” concepts by surveying existing type
systems and schemas–for example, the Julie Lab and DARPA GALE UIMA
type systems and the GATE schemas for linguistic phenomena–together with
the I/O requirements of commonly used NLP software (e.g., the Stanford NLP
tools, OpenNLP, etc.).14

We have established an Exchange Vocabulary Repository15 similar to
schema.org, in order to provide web-addressable terms and definitions for ref-
erence from annotations exchanged among web services for NLP tools and
processes. Wherever possible, terms in the vocabulary are mapped to categories
defined in other repositories, ontologies, registries, etc. (including mapping to
multiple repositories when appropriate). For this purpose we utilize the tax-
onomy of relation types defined in RELcat [21], which accommodates multiple
vocabularies for relation predicates including those from the Web Ontology Lan-
guage (OWL) [19] and the Simple Knowledge Organization System (SKOS) [20].

Terms in the repository are organized in a shallow hierarchy, with inheritance
of properties, as shown in Fig. 2. WS-EV development is undertaken in collab-
oration with a Working Group within ISO TC37 SC4, to guarantee substantial

11 https://openskos.meertens.knaw.nl/ccr/browser/.
12 http://www.isocat.org.
13 See Ide et al., “The Language Application Grid Web Service Exchange Vocabulary”,

in this volume.
14 The survey of basic linguistic objects was undertaken within a Working Group

of ISO TC37 SC4. A working draft and an inventory of type systems are avail-
able at http://vocab.lappsgrid.org/EV/ev-draft.pdf and http://vocab.lappsgrid.
org/EV/materials/.

15 http://vocab.lappsgrid.org/.

http://schema.org
https://openskos.meertens.knaw.nl/ccr/browser/
http://www.isocat.org
http://vocab.lappsgrid.org/EV/ev-draft.pdf
http://vocab.lappsgrid.org/EV/materials/
http://vocab.lappsgrid.org/EV/materials/
http://vocab.lappsgrid.org/

58 N. Ide et al.

community involvement and so that our results may ultimately become a part
of the larger set of ISO standards for language resource management.

Fig. 2. Fragment of the WS-EV type hierarchy (associated properties in gray)

References in the LAPPS JSON-LD representation exchanged between web
services point not only to definitions for specific linguistic categories, but also
to documentation for processing software and “rules” for processes such as tok-
enization, entity recognition, etc. used to produce a set of annotations, which
are often left unspecified in annotated resources, thus inhibiting replication of
results (see for example [5]). While not required for web service exchange in
the LAPPS Grid, the inclusion of such references can contribute to the better
replication and evaluation of results in the field.

Figure 3 shows the information for Token, which defines the concept, identifies
application types that produce objects of this type, cross-references a similar
concept in ISOCat, and provides the URI for use in the JSON-LD representation.
It also specifies the common properties that can be specified for a set of Token
objects, and the individual properties that can be associated with a Token object.

The LAPPS WS-EV is intended to support URI-based references to basic
concepts used in the description and processing of linguistically annotated cor-
pora from JSON-LD and other linked data representations such as W3C RDF,
or any linguistically annotated resource. There is no requirement to use any or
all of the specified properties, and we foresee that many web services will require
definition of objects and properties not included in the WS-EV or elsewhere. We
therefore provide mechanisms for (principled) definition of objects and features
beyond the WS-EV. Two options exist: users can provide a URI where a new
term or other documentation is defined, or users may add a definition to the
WS-EV. In the latter case, service providers use the name space automatically
assigned to them at the time of registration, thereby avoiding name clashes and
providing a distinction between general categories used across services and more
idiosyncratic categories.

The Language Application Grid 59

Fig. 3. Token definition in the LAPPS WS-EV

4 LAPPS/Galaxy Workflow Engine

The Galaxy project16 started in 2005 to create a system enabling biologists
without informatics expertise to perform computational analysis through the
web [7]. Galaxy is an open-source application17 that includes tool integration
and history capabilities together with a workflow system for building automated
multi-step analyses, a visualization framework including visual analysis capabili-
ties, and facilities for sharing and publishing analyses [8]. It is accessed through a
graphical interface where data inputs and computational steps are selected from
dynamic menus, and results are displayed in plots and summaries that encourage
interactive workflows and the exploration of hypotheses.

Rather than duplicate the extensive work of the Galaxy project, we recently
adopted it as the primary workflow management system for the LAPPS Grid.18

We have worked with the Galaxy development team in order to adapt the system

16 http://galaxyproject.org.
17 Distributed under the terms of permissive Academic Free License; http://getgalaxy.

org.
18 http://galaxy.lappsgrid.org.

http://galaxyproject.org
http://getgalaxy.org
http://getgalaxy.org
http://galaxy.lappsgrid.org

60 N. Ide et al.

to our domain, and continue this collaboration to both enhance the capabilities
we require as well as contribute to the expansion of Galaxy to domains outside
the life sciences, which is a current goal of the Galaxy project.

We provide Galaxy wrappers to call all LAPPS web services to the Galaxy
ToolShed19. This enables the creation of complex workflows involving stan-
dard NLP components and composite services from a wide range of sources
from within an easy-to-use, intuitive workflow engine with capabilities to persist
experiments and results. An additional, and potentially hugely significant, out-
come of the LAPPS/Galaxy collaboration is that it enables the use of LAPPS
Grid NLP services to extract information from repositories of biomedical pub-
lications such as PubMed20 and passing it on to biomedical analysis and visu-
alization tools available in Galaxy. The synergistic development of capabilities
supporting both NLP and genomic analysis within the Galaxy framework can
have a significant impact on work in both fields. For example, NLP researchers
will benefit enormously from access to sophisticated visualization software for
display and analysis of results common to research in the life sciences, but rarely
used in NLP research. Similarly, biologists will be able to take advantage of
bio-oriented NLP web services for text mining of bio-entities and relations from
textual sources, and via capabilities already present in Galaxy, integrate them
into existing bio-data resources and analysis tools. The integration of data, tools,
as well as workflows and methods from previously distinct scientific communities
can provide unprecedented capabilities for both the emerging field of BioNLP
and biomedical and genomic science.

In addition to access to LAPPS Grid tools and data, we have developed and
contributed the following capabilities of the LAPPS Grid for use in Galaxy in
order to support NLP research and development within that platform, including
(1) exploitation of our web service metadata to allow for automatic detection
of input/output formats and requirements for modules in a workflow and sub-
sequent automatic invocation of converters to make interoperability seamless
and invisible to the user, and (2) incorporation of authentication procedures for
protected data using the open standard OAuth21, which specifies a process for
resource owners to authorize third-party access to their server resources with-
out sharing their credentials. We also have contributed a “Galaxy Flavor” for
LAPPS, which is effectively a pre-configured virtual machine (VM) that can be
run in any of several VMS (e.g., VirtualBox, AmazonEC2, Google, Microsoft
Azure, VMWare, OpenStack, etc.). This enables users to download a galaxy-
stable image and run it locally. This capability is ideal for class work, work-
shops, and presentations as it allows full-blown installations to be easily shared
and run. In addition, if the images are downloaded ahead of time, no network
connection is required.

Figures 4 and 5 show a simple workflow configuration and a visualization of
named entity annotation over a document.

19 https://toolshed.g2.bx.psu.edu.
20 http://www.ncbi.nlm.nih.gov/pubmed.
21 http://oauth.net.

https://toolshed.g2.bx.psu.edu
http://www.ncbi.nlm.nih.gov/pubmed
http://oauth.net

The Language Application Grid 61

Fig. 4. The LAPPS/Galaxy interface: workflow configuration

Fig. 5. Visualization of a named entity annotation using LAPPS/Galaxy

62 N. Ide et al.

We have adopted and, as necessary, adapted Galaxy strategies for the fol-
lowing:

1. Replication of Experiments, Pervasive Sharing of Methods and Results. Repro-
ducing experimental results is an essential part of scientific inquiry, providing the
foundation for understanding, integrating, and extending results toward new dis-
coveries. However, the field of NLP research and development has been plagued
by a chronic lack of potential for replicability of results, as discussed in several
recent publications [5,17]), blogs22, and workshops23. As a result, there is not
only a great deal of re-inventing of the wheel and wasted effort, but also serious
inhibition to progress that can be made possible by tapping into the collective
intelligence of the community. Evaluation of results is also seriously hampered
when details of an experiment (including versions and parameters for data, soft-
ware) are not included in papers, which is all too often the case. Our adaptation
of the Galaxy workflow system enables us to foster replicability and reuse for
NLP by providing the following capabilities (see [9] for a comprehensive overview
of Galaxy’s sharing and publication capabilities):

– automatic recording of inputs, tools, parameters and settings used for each
step in an analysis in a publicly viewable history, thereby ensuring that each
result can be exactly reproduced and reviewed later;

– provisions for sharing datasets, histories, and workflows via web links, with
progressive levels of sharing including the ability to publish in a public repos-
itory;

– ability to create custom web-based documents to communicate about an
entire experiment, which represent a step towards the next generation of
online publication or publication supplement.

In addition to enabling other users to replicate an experiment, the individual
user can develop a rich, organized catalog of reusable workflows rather than
starting from scratch each time or trying to navigate a collection of ad hoc
analysis scripts. Similarly, it is possible to repeatedly apply a command history
on different data. Once an analysis is done, the record eliminates ambiguity as
to which result used which settings provide critical information for follow-up
analysis.

2. Enhancement of the User Base and Community Involvement. The Galaxy
project has had notable success in community building and outreach, comparable
to what we hope to achieve for the LAPPS Grid. Inspired by their success, we
will adopt the Galaxy project’s outreach strategies in order to most effectively
reach, teach, and involve the community in the LAPPS Grid, as well as promote
community engagement in LAPPS development via sharing of tools, data, and
(especially) workflows and results.
22 E.g., http://nlpers.blogspot.com/2006/11/reproducible-results.html.
23 E.g., Replicability and Reusability in Natural Language Processing: from Data to

Software Sharing: http://nl.ijs.si/rrnlp2015/.

http://nlpers.blogspot.com/2006/11/reproducible-results.html
http://nl.ijs.si/rrnlp2015/

The Language Application Grid 63

5 Open Advancement

CMU has provided the tooling and infrastructure for two major services, based
in part on the existing OAQA framework developed at CMU and deployed on a
service node housed at CMU. The availability of this type of evaluation service,
which implements state-of-the-art Open Advancement techniques, provides an
unprecedented tool for NLP development that could, in itself, take the field to a
new level of productivity. The open advancement (OA) approach for component-
and application-based evaluation has been successful in enabling rapid identifica-
tion of frequent error categories within modules and documents, together with an
indication of which module(s) and error type(s) have the greatest impact on over-
all performance, thus contributing to more effective investment of resources in
both research and application assembly [3,22]. The OA approach was used in the
development of IBM’s Watson to achieve steady performance gains over the four
years of its development [4]. More recently, the open-source OAQA project has
released software frameworks which provide general support for open advance-
ment of information systems [6,22]; the OAQA software has been used to rapidly
develop information retrieval and question answering systems for bioinformatics
[16,22].

A fundamental element of open advancement involves evaluating multiple
possible solutions to a given problem, to find the optimal solution available
using given components, resources and evaluation data. The output of the opti-
mal solution is then subjected to error analysis, to identify the most frequent
errors with the highest impact on system output quality. Possible enhancements
to the system are then considered, with an eye toward achieving the largest
possible reduction in error rate by addressing the most frequent error types.
The performance of each new configuration is evaluated to determine whether
a significant improvement has been achieved in comparison with prior baselines
or best known configurations. When multiple teams collaborate to implement
this process across several sites, types of components, etc. it is possible to make
rapid progress in improving solution quality, as measured by the chosen metrics
and evaluation dataset [3,22]. To support rapid, open advancement, a developer
can add new components to the system and test them in the context of existing
pipelines by “plugging them in” to existing solutions. We also provide capabilities
for parallel exploration of alternative workflows, evaluation of module-by-module
results, and “best path” analysis to determine the optimal workflow.

The LAPPS/Galaxy workflow engine described in the previous section pro-
vides easy configuration and re-configuration of pipelines, and represents the first
step in supporting open advancement by allowing users to rapidly configure and
evaluate a new, single pipeline on a chosen dataset and metrics. In addition, the
user can specify an entire range of pipeline configurations for comparative eval-
uation; the system evaluates each possible pipeline configuration and generate
metrics measurements, plus variance and statistical significance calculations. We
are working to extend the LAPPS/Galaxy interface to allow easy specification
of configuration descriptors (ECD); [22] that define a space of possible pipelines,
where each step in the pipeline might be achieved by multiple components or

64 N. Ide et al.

Fig. 6. The LAPPS/Galaxy interface: evaluation configuration for two workflows

services; each component or service may also have configuration parameters with
more than one possible value to be tested. We are also extending the system to
support automatic evaluation of each configuration so specified, by implementing
a service-oriented version of the Configuration Space Exploration (CSE) algo-
rithm [22].

Figure 6 shows a simple evaluation configuration in LAPPS/Galaxy, which
compares evaluative statistics for two parallel pipelines performing named entity
identification.

6 Resource Access

LDC’s contributions to the multi-site LAPPS Grid focus naturally on data. LDC
is creating services that provide grid access to the contents of its LDC Online
service: multilingual newswire and transcribed conversational telephone speech
in English, as well as to lexical databases. The challenges of this work lie in
developing useful and efficient service interfaces to these data. In each case,
we envision the interface as containing a number of simple operations: requests
to retrieve the features of the supplied data, queries into the data using those
features that return identifiers and requests to fetch data elements by identifier,

The Language Application Grid 65

via iteration or randomly. LDC already deploys data services, both internal and
external, so our Grid work emphasizes enclosing those services in a thin wrapper
within a Grid node that we host. Using the data source API developed by the
LAPPS project, we pass on Grid requests to LDC services. Some LDC services,
including the Grid node, run on virtual machines, allowing us to easily adjust
system resources to match changing demand. LDC’s infrastructure also includes
a Solr24 server for searching text, including some of the content available to the
Grid.

Along with the flexibility the LAPPS Grid offers to users seeking to create
service pipelines comes an increase in the complexity of intellectual property
arrangements. We anticipate two major pipeline types. In the first, users request
language resources from a given source (or supply their own) and route them
through a workflow of multiple grid services with the final result returned to
the user. In the second type, language resources are routed through a single
service and then back to the user before being routed along to the next service.
The difference between these user case types has implications for licensing and
constraints imposed on grid users, services and operators. Moreover, within those
cases, one must consider constraints imposed by the language resources, data and
software enabling the web services.

At each point in either pipeline above, constraints depend upon the lan-
guage resources or resulting services, processing and user. Resources may be
constrained or unconstrained. Constraints may be imposed by legal principles
such as copyright or by contract. Constraints may prohibit commercial use, deriv-
ative works or re-distribution or insist upon attribution or in-kind sharing of the
user’s intellectual products. Resources may be constrained as to user, typically
forbidding use by commercial organizations, or as to use, whether for educa-
tion, basic research, applied research, technology development, evaluation and
deployment or resale. Processing may also be constrained, for example, ruling
out derivative works and only permitting so-called transformative works. Users
may be licensed or not. Their licensing may be defined by enumeration or by
user features, for example whether they work in an academic, non-academic,
not-for-profit, government, pre-commercial or commercial environments.

We manage this complexity by identifying the licenses associated with each
Grid service and analyzing them into their component constraints. Those con-
straints are accumulated as the service pipeline is constructed, and users are
notified about them before the pipeline is executed. Constraints are of two types,
requirement and notification. Required constraints block the pipeline until the
constraint is removed. Examples include cases where users must pay a fee or sign
a specific agreement in order to access the desired resource or service. Other con-
straints, such as redistribution, commercial/non-commercial use, use of deriva-
tives and so on are presented as conditions which users must acknowledge before
the pipeline will be executed. Figure 7 summarizes that process.

Variation in license terms notwithstanding, the human language technology
community has for some time envisioned open source-based models for language

24 https://lucene.apache.org/solr/.

https://lucene.apache.org/solr/

66 N. Ide et al.

Fig. 7. LAPPS grid license constraint enforcement

resource development and distribution. Most recently, META-SHARE proposes
a network of distributed repositories that license resources from a single plat-
form via open source agreements (META-SHARE Commons licenses) as well as
more restrictive arrangements [18]. Although all levels of licensing complexity
are acknowledged in the LAPPS Grid, the LAPPS license scheme depends on the
utilization of open source software and resource licenses to the greatest extent
possible. By limiting distribution and processing constraints, we aim to promote
the project goal of community engagement through sharing, federation and other
means. By developing a comprehensive model for addressing constraints on the
intellectual property used in the Grid we hope to create a resource that is max-
imally open to users ranging from open source developers to commercial users
of languages services.

7 User Evaluation

To a large extent, the measure of success for LAPPS is a matter of the ease
with which the user community–both NLP researchers and developers and those
with little knowledge of the field–can use the infrastructure to serve their needs.
The project therefore includes an on-going user-evaluation component involving
a range of user types, including those whose computational expertise may be
limited, who provide periodic feedback concerning Grid access, adding applica-
tions to the Grid, using external applications or services in combination with
the Grid, etc. In the spirit of open advancement, we measure the total time and
effort required to determine the optimal configuration of existing components
for a given problem and use these measures to improve the system’s design.

To support community use, we regularly offer tutorials and training work-
shops on LAPPS Grid use at major conferences in the field25, including venues
associated with other disciplines, with the goal of introducing scientists and
25 E.g., Web Services for Effective NLP Application Development and Evaluation:

Using and Contributing to the Language Application (LAPPS) Grid, offered at LREC
2014.

The Language Application Grid 67

engineers from diverse disciplines to a broad-based and integrated set of NLP
services that has the potential to impact their research and development needs.
We envision that research from sociology, psychology, economics, education, lin-
guistics, digital media, as well as engineering, can be impacted by the ability to
manipulate and process diverse data sources in multiple languages.

Another major effort aimed toward both development of the LAPPS Grid and
user evaluation is inclusion of LAPPS use in courses offered at Carnegie-Mellon
University and Brandeis University. At Carnegie-Mellon, two courses will use the
LAPPS framework: a master’s level seminar course including a project on “auto-
matically building customized search engines with LAPPS”, and a Question
Answering course including development of a world history question-answering
pipeline. At Brandeis, the LAPPS Grid will be deployed as the development, test-
ing, and evaluation platform for several projects in a course on Fundamentals
in Computational Linguistics course. We are also pursuing the development of
courses relying on the LAPPS Grid for use in US Government agencies. Feedback
from these courses on all aspects of the LAPPS Grid–configuration, availability
of relevant services, usability of interfaces, etc.–will provide valuable input to
iterative development of the LAPPS Grid.

8 Relation to Other Projects

The LAPPS Grid effort builds on the foundation laid in several recent U.S., Euro-
pean, and Asian projects, including the NSF-funded Sustainable Interoperability
for Language Technology (SILT) project [12] and the EU-funded Fostering Lan-
guage Resources Network (FLaReNet) project [1]. At the same time, the Inter-
national Standards Organization (ISO) committee for Language Resource Man-
agement (ISO TC37 SC4)26 has addressed the need for standards for linguistic
data. Through these and other projects and parallel efforts in Asia and Australia,
substantial groundwork—in terms of standards development, raising community
awareness and buy-in, and proof-of-concept implementation—has been laid to
turn existing, fragmented NLP technologies and data into web-accessible, stable,
and interoperable resources that can be readily reused across several fields. As a
result, existing and potential projects across the globe are beginning to converge
on common data models, best practices, and standards, and the vision of a com-
prehensive infrastructure supporting discovery and deployment of web services
that deliver language resources and processing components is an increasingly
achievable goal.

Our vision is therefore not for a monolithic grid, but rather a heterogeneous
configuration of federated grids that implement a set of best practices for man-
aging and interchanging linguistic information, so that services on all of these
grids are mutually accessible. To that end, the LAPPS Grid project has entered
into a multi-way international collaboration among the US partners and insti-
tutions in Asia and Europe. The basis of the collaboration is the federation
of the LAPPS Grid, the Language Grid (Kyoto University, Japan), NECTEC
26 ISO/TC 37/SC4, Language Resources Management, http://www.tc37sc4.org.

http://www.tc37sc4.org

68 N. Ide et al.

(Thailand)27, grids operated by the University of Indonesia28 and Xinjiang Uni-
versity (China)29, and LinguaGrid30, to be formally as the “Open Language
Grid” announced in January 2016.31 The connection of these six grids into a
single federated entity will enable access to all services and resources on any of
these grids by users of any one of them and, perhaps most importantly, facilitate
adding additional grids and service platforms to the federation in the future.
Currently, the European MetaNet/Meta-Share32 initiative is committed to join-
ing the federation in the near future, which will provide access to the substantial
resource holding of the European Language Resources Association (ELRA) as
well as web services developed in the EU project PANACEA. We are also work-
ing with the EU CLARIN initiative33, a large-scale pan-European collaborative
effort aimed at making language resources and technology readily available for
the whole European Humanities (and Social Sciences) communities, as well as
the LINDAT-CLARIN Centre for Language Research Infrastructure’s open digi-
tal repository of tools and data (Charles University, Prague), and the Australian
Alveo Virtual Laboratory [2] to similarly share access to services and resources
in the near future

One goal of our work is to ensure that all relevant parties can provide input
to the development and/or refinement of standards and practices that promote
increased interoperability among web service platforms. Therefore, we continue
to reach out to other projects to join the collaboration and, where appropri-
ate, grid federation, including EU projects such as KYOTO34 as well as large
projects developing NLP components and data such as the Global WordNet
Grid35 and U-Compare36, which provides an interface to UIMA-based compo-
nents primarily for the Biomedical domain. We are also pursuing potentially
fruitful uni-directional federations, in which other grids and service nodes are
one-way users of the LAPPS Grid; for example, users of an e-Learning Grid
could be users of the LAPPS Grid in order to develop e-learning resources, but
the LAPPS Grid need not be a user of the e-Learning Grid.

9 Conclusion

The LAPPS Grid project is currently in its third year and has so far provided the
basic functionality of the framework. The next steps include expanding the range
27 http://langrid.servicegrid-bangkok.org/en/overview.php.
28 http://langrid.portal.cs.ui.ac.id/langrid/.
29 Under development.
30 http://www.linguagrid.org/.
31 Funding for the LAPPS Grid involvement in the federation has awarded as a sup-

plement to the NSF SI2 grants ACI-1147912 and ACI-1147944.
32 http://www.meta-net.eu/.
33 http://eudat.eu/communities/clarin-common-language-resources-and-technology-

infrastructure.
34 http://www.kyoto-project.eu/.
35 http://www.globalwordnet.org/gwa/gwa grid.html.
36 http://u-compare.org/.

http://langrid.servicegrid-bangkok.org/en/overview.php
http://langrid.portal.cs.ui.ac.id/langrid/
http://www.linguagrid.org/
http://www.meta-net.eu/
http://eudat.eu/communities/clarin-common-language-resources-and-technology-infrastructure
http://eudat.eu/communities/clarin-common-language-resources-and-technology-infrastructure
http://www.kyoto-project.eu/
http://www.globalwordnet.org/gwa/gwa_grid.html
http://u-compare.org/

The Language Application Grid 69

of services offered and enhancing the integration with Galaxy. As noted above
in Sect. 7, another important activity is the evaluation of current LAPPS Grid
capabilities on the basis its use in several graduate-level courses in computational
linguistics at major U.S. universities, which we hope will lead to significant
enhancements of its usability as well as the range of available services. Another
focus of activity will be to adapt the LAPPS Grid in order to empower users to
carry out computational analyses without having to be an expert in computer
science, so that users can focus on scientific rather than technical questions.

As our intention is to provide one piece of what is envisioned to become
a global network of federated grids and services for NLP, another important
activity is to pursue additional collaborations with similar projects around the
world and work to ensure the maximal involvement of the community in the
development of exchange mechanisms. We are also seeking means to incorporate
individual services and composite service pipelines into the LAPPS Grid (either
via direct inclusion or federation with grids that provide these services) for tasks
relevant for research in areas such as digital humanities and bioinformatics, and
in general to better accommodate the non-technical user.

Acknowledgements. This work was supported by National Science Foundation
grants NSF-ACI 1147944 and NSF-ACI 1147912.

References

1. Calzolari, N., Baroni, P., Bel, N., Budin, G., Choukri, K., Goggi, S., Mariani, J.,
Monachini, M., Odijk, J., Piperidis, S., Quochi, V., Soria, C., Toral, A. (eds.) Pro-
ceedings of The European Language Resources and Technologies Forum: Shaping
the Future of the Multilingual Digital Europe. ILC-CNR (2009)

2. Cassidy, S., Estival, D., Jones, T., Burnham, D., Burghold, J.: The alveo virtual
laboratory: a web based repository API. In: Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation (LREC 2014). European
Language Resources Association (ELRA), Reykjavik, May 2014

3. Ferrucci, D., Nyberg, E., Allan, J., Barker, K., Brown, E., Chu-Carroll, J.,
Ciccolo, A., Duboue, P., Fan, J., Gondek, D., Hovy, E., Katz, B., Lally, A.,
McCord, M., Morarescu, P., Murdock, B., Porter, B., Prager, J., Strzalkowski, T.,
Welty, C., Zadrozny, W.: Towards the open advancement of question answering
systems. Technical report, IBM Research, Armonk (2009)

4. Ferrucci, D.A., Brown, E.W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur,
A., Lally, A., Murdock, J.W., Nyberg, E., Prager, J.M., Schlaefer, N., Welty, C.A.:
Building Watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

5. Fokkens, A., van Erp, M., Postma, M., Pedersen, T., Vossen, P., Freire, N.: Off-
spring from reproduction problems: what replication failure teaches us. In: Pro-
ceedings of the Conference of The Association for Computational Linguistics, pp.
1691–1701. The Association for Computational Linguistics (2013)

6. Garduno, E., Yang, Z., Maiberg, A., McCormack, C., Fang, Y., Nyberg, E.: CSE
Framework: a UIMA-based distributed system for configuration space exploration
unstructured information management architecture. In: Klgl, P., de Castilho, R.E.,
Tomanek, K. (eds.) UIMA@GSCL, pp. 14–17 (2013). Proceedings of the CEUR
Workshop, CEUR-WS.org

http://CEUR-WS.org

70 N. Ide et al.

7. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P.,
Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W.J.,
Nekrutenko, A.: Galaxy: a platform for interactive large-scale genome analysis.
Genome Res. 15(10), 1451–55 (2005)

8. Goecks, J., Coraor, N., Team, T.G., Nekrutenko, A., Taylor, J.: NGS analyses by
visualization with trackster. Nat. Biotechnol. 30(11), 1036–1039 (2012)

9. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for sup-
porting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biol. 11, R86 (2010)

10. Hayashi, Y., Declerck, T., Calzolari, N., Monachini, M., Soria, C., Buitelaar, P.:
Language service ontology. In: Ishida, T. (ed.) The Language Grid - Service-
Oriented Collective Intelligence for Language Resource Interoperability, pp. 85–
100. Springer, Heidelberg (2011)

11. Ide, N., Pustejovsky, J.: What does interoperability mean, anyway? toward an oper-
ational definition of interoperability. In: Proceedings of the Second International
Conference on Global Interoperability for Language Resources (ICGL 2010), Hong
Kong, China (2010)

12. Ide, N., Pustejovsky, J., Calzolari, N., Soria, C.: The SILT and FlaReNet inter-
national collaboration for interoperability. In: Proceedings of the Third Linguistic
Annotation Workshop, ACL-IJCNLP, August 2009

13. Ide, N., Suderman, K.: The linguistic annotation framework: a standard for anno-
tation interchange and merging. Lang. Resour. Eval. 48, 395–418 (2014)

14. Ishida, T., Murakami, Y., Lin, D., Nakaguchi, T., Otani, M.: Open language
grid-towards a global language service infrastructure. In: The Third ASE Inter-
national Conference on Social Informatics (SocialInformatics 2014). Cambridge,
Massachusetts, USA (2014)

15. ISO-24612: Language Resource Management - Linguistic Annotation Framework.
ISO 24612 (2012)

16. Patel, A., Yang, Z., Nyberg, E., Mitamura, T.: Building an optimal QA system
automatically using configuration space exploration for QA4MRE’13 tasks. In:
Proceedings of CLEF 2013 (2013)

17. Pedersen, T.: Empiricism is not a matter of faith. Comput. Linguist. 34(3), 465–
470 (2008)

18. Piperdis, S.: The META-SHARE language resources sharing infrastructure: prin-
ciples, challenges, solutions. In: Proceedings of the Eighth International Language
Resources and Evaluation (LREC12). European Language Resources Association
(ELRA), Istanbul (2012)

19. W3C OWL Working Group: OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation (2012)

20. W3C SKOS Working Group: SKOS Simple Knowledge Organization System Ref-
erence. W3C Recommendation (2009)

21. Windhouwer, M.: RELcat: a Relation Registry for ISOcat data categories. In:
Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B.,
Mariani, J., Odijk, J., Piperidis, S. (eds.) LREC 2012, pp. 3661–3664. European
Language Resources Association (ELRA), Istanbul (2012)

22. Yang, Z., Garduno, E., Fang, Y., Maiberg, A., McCormack, C., Nyberg, E.: Build-
ing optimal information systems automatically: configuration space exploration for
biomedical information systems. In: Proceedings of the CIKM 2013 (2013)

A Policy-Aware Parallel Execution Control
Mechanism for Language Application

Mai Xuan Trang1(B), Yohei Murakami2, and Toru Ishida1

1 Department of Social Informatics, Kyoto University, Kyoto, Japan
trangmx@ai.soc.i.kyoto-u.ac.jp, ishida@i.kyoto-u.ac.jp

2 Unit of Design, Kyoto University, Kyoto, Japan
yohei@i.kyoto-u.ac.jp

Abstract. Many language resources have been shared as web services
to process data on the internet. As data sets keep growing, language
services are experiencing more big data problems, such as challenging
demands on storage and processing caused by very large data sets such
as huge amounts of multilingual texts. Handling big data volumes like
this requires parallel computing architectures. Parallel execution is one
way to improve performance of language services when processing huge
amounts of data. The large data set is partitioned and multiples processes
of the language service are executed concurrently. However, due to limi-
tation of computing resources, service providers employ policies to limit
number of concurrent processes that their services could serve. In an
advanced language application, several language services, provided by
different providers with different policies, are combined in a composite
service to handle complex tasks. If parallel execution is used for greater
efficiency of a language application we need to optimize the parallel con-
figuration by working with the language service policies of all participat-
ing providers. We propose a model that considers the atomic language
service policies when predicting composite service performance. Based on
this model, we design a mechanism that adapts parallel execution set-
ting of a composite service to atomic services’ policies in order to attain
optimal performance for the language application.

Keywords: Language service composition · Big data · Parallel execu-
tion · Adaptation mechanism

1 Introduction

Rapid advance in data observation, collection and analysis technologies has led
to a tremendous growth in the amount of data. Examples including tremendous
size of multilingual data such as a very large-scale multilingual text published
on Wikipedia1. There are more than 288 languages supported in Wikipedia, in
each language there are millions of articles have been published, for example

1 https://www.wikipedia.org/.

c© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 71–85, 2016.
DOI: 10.1007/978-3-319-31468-6 5

https://www.wikipedia.org/

72 M.X. Trang et al.

currently there are almost 5 million articles in English, 2 million articles in
Swedish, and the number of data sets keep growing approximately. With this
large-scale of data, the challenge now is how to make applications effectively and
efficiently process the large-scale data, so scientists and developers must rely on
distributed and parallel processing methodologies (e.g. Hadoop MapReduce [5])
for comprehensive data analysis.

As success has been achieved in adding encapsulation and data integration
to service oriented computing and Web service, the academic world and indus-
try have started to adopt Web service and SOA (Service Oriented Architecture)
to manage and process data on the Internet. This is promoting the develop-
ment, operation and management of data-intensive applications. Many linguistic
tools have been shared as language service such as translation services, paral-
lel text services, etc. The performance or execution time of language services
when processing huge datasets is a major concern. Many studies in the field of
data-intensive services have been conducted. Technologies such as data-intensive
computing [18], and scientific workflows [17] have the potential to enable rapid
data analysis in many linguistic and scientific problems, however, they failed to
consider parallel execution policies when composing language services, let alone
consider how the policies of language services being executed affects overall effi-
ciency of the composite service.

A common technique to improve performance of a language service when
working with large-scale data is parallel execution. The large data is split into
small independent portions that are executed in parallel by multiple processes of
the language service. This should decrease the overall execution time of the ser-
vice. However, the service providers will not have uniform computing resources.
If a provider is rich in computing resources, he may ready to accept large num-
bers of concurrent requests. However, all computing resources are bounded and
each service provider will limit the number of concurrent processes to maintain
performance of currently provided language services. This parallel execution lim-
itation becomes the policy of the service provider. Language service users should
not violate this policy. In some cases, if the policy is violated the invocation of
the service may fail or performance of the service maybe degraded. Since differ-
ent providers have different computing resources and current loads, the parallel
execution policies will also be different. When composing composite services by
combining different language services, a promising way to realize good perfor-
mance of composite services when using parallel execution is to make a model
that can find the optimal parallel execution setting for each composite service
with consideration of the atomic language services’ policies.

In advanced language applications, to handle complex linguistic tasks, users
combine several language services to define a collaboration workflow or so called
composite service. Composing a composite service can be divided into two steps.
First, at design-time, developers need to design the orchestration by selecting
appropriate set of service specifications (hereby referred to as abstract services)
such that the final system meets its functional requirements. Second, at run-
time, for each abstract service, a service that matches the specification (hereby

A Policy-Aware Parallel Execution Control Mechanism 73

referred to as concrete services) is selected and bound to the abstract service.
The set of concrete services is called the execution plan of the composite service.
Forming the optimal execution plan that maximizes the composition’s QoS is
a well-known problem called QoS-aware service composition or selection. Many
methodologies have been proposed for this problem. [3,21] proposed approaches
for QoS-aware composite service based on linear integer programming, while [2]
proposed an approach based on Genetic Algorithms (GAs). Most of the proposed
approaches lack consideration of determining parallel execution settings that
ensure that the composite service can attain optimal performance.

Different from current approaches, this paper focuses on configuring the par-
allel execution setting of a composite service (associated with concrete language
service policies) to optimize its performance. The configuration of composite ser-
vice must conform to the policies of all language services in the execution plan
if its performance is to be optimized. To this end, we set the following goals:

– Predicting the performance of a composite service under parallel execution
given the policies of the language services.

– Designing a mechanism to control parallel execution of composite services.
Based on the prediction, this mechanism adapts parallel execution setting of
the composite service to language services’ policies to create optimal configu-
ration. A new workflow representation with optimal parallel execution setting
of a composite service is generated.

The remainder of the paper is organized as follows. Section 2 presents a moti-
vating example. In Sect. 3, we introduces a mechanism to control parallel execu-
tion of composite service. Section 4 describes parallel execution policies of lan-
guage services. The parallel execution optimization is briefly described in Sect. 5.
We give an evaluation of our model in Sect. 6. Section 7 introduces some related
works. Finally, Sect. 8 concludes the paper.

2 Motivating Example

The Language Grid [6] provides an infrastructure for sharing and combining
language services. Different groups or providers can join and share language
services on the Language Grid. Currently, more than 140 organizations have
joined the Language Grid to share over 170 language services. Different providers
may employ different policies for their provided services. With the Language
Grid, users can easily combine different atomic language services to define new
composite service that meets their requirement.

We consider here an real task when a Japanese agriculture expert want to
translate a japanese document which contains two parts, one is information
about rice and the other is information about fertilizer. The former is intended
to transfer information to Vietnamese farmers, while the latter is for French
fertilizer suppliers. Assume that, there is no direct translation services from
Japanese to Vietnamese and French. The Japanese expert does not want to
translate the whole document into Vietnamese or French due to high cost of

74 M.X. Trang et al.

Fig. 1. An example of language service composition

the translation. In order to do this task, he use a composite service shown in
Fig. 1. First, the document is translated from Japanese to English using J-Server
translation service with a multilingual agriculture dictionary. A condition is used
so that a part of the intermediate translated document is to be translated into
Vietnamese by Google translation service and the other part into French by
Bing translation service. J-Server and Bing translation services are not very fast,
these slowdown the composite service. To improve performance of the composite
service we use parallel execution.

Now, let us consider a scenario where the concrete atomic language services
used in the composite service employ different policies for parallel execution. Lets
say the dictionary service limits the maximum number of concurrent requests
that they can serve to Pdict, while translation services J-Server, Google and Bing
limit the maximum number concurrent requests that they can serve to Pjserver,
Pgoogle and Pbing respectively. The performance of J-Server or Bing exhibits no
improvement when the number of concurrent requests sent to the services is
larger than Pjserver or Pbing, while performance of Google translation service
becomes worse if more than Pgoogle concurrent requests send to the service.
In this scenario, when configuring parallel execution of the composite service
we need to specify a suitable number of concurrent processes of the composite
service to achieve optimal performance. Several questions to be asked here are
(1) How can we model parallel execution policies of language services? (2) How
to control parallel execution of a composite service with regard language services’
policies in order to attain optimal performance? These issues are addressed in
the next sessions.

A Policy-Aware Parallel Execution Control Mechanism 75

3 System Architecture

In this section, we describe the system architecture of a policy-aware parallel
execution control mechanism for composite language services. Figure 2 shows
the overview of the system proposed in this paper. The system consists of the
Workflow Execution Engine and Parallel Execution Setting Adapter.

Fig. 2. Policy-aware parallel execution control framework

The input of our system is a composite service being executed. Assume that
the composite service is described by WS-BPEL [10]. The Parallel Execution
Setting Adapter converts the BPEL file to our workflow representation which
provides parallel execution configuration for composite services, we call this rep-
resentation is parallel execution representation. The Adapter also estimates the
optimal case of parallel execution for the composite service based on atomic lan-
guage services’ policies and optimizes the new workflow representation with the
optimal parallel execution setting. The Parallel Execution Setting Adapter con-
sists of three components: Service Policy Analyzer, Parallel Execution Setting
Optimizer and Workflow Converter.

– The Service Policy Analyser analyses parallel execution policy of atomic lan-
guage service. From the endpoints of a composite services we can get infor-
mation of language services. The Analyser invokes a language service with
different parallel execution setting over a test data. Execution time of the
service is recorded and analysed to determined parallel execution policy of
the service. This policy is stored into a database for reused purpose.

– Based on the policies of atomic language services, the Parallel Execution
Setting Optimizer estimates an optimal setting for a composite service where
the composite service may have the best performance.

– The Workflow Converter converts BPEL workflow file to parallel execution
representation and adds optimal parallel execution setting to create a new
workflow representation.

76 M.X. Trang et al.

Algorithm 1. Parallel Execution Optimization
Input: An execution plan of a composite service: TheExecutionPlan
Output: Recommended parallel execution setting for the execution plan

1 concreteServiceList ← getServiceEndPoints(TheExecutionP lan)
2 performancePatterns ← ∅
3 parallelExecutionSetting ← ∅
4 foreach s in concreteServiceList do
5 if isAnalysed(s) then
6 p ← getPerformancePattern(s)
7 performancePatterns ← performancePatterns ∪ p

8 else
9 p ← analysePerformancePattern(s)

10 insertintoPerformancePatternDB(p)
11 performancePatterns ← performancePatterns ∪ p

12 parallelExecutionSetting ←
optimizeParallelExecutionSetting(performancePatterns)

13 return parallelExecutionSetting

Output of the Parallel Execution Setting Adapter is new representation of
the composite service with an optimal parallel execution setting. The steps of
optimizing parallel execution setting for a concrete composite service are shown
in Algorithm 1. List of atomic language services is retrieved from the composite
service representation. If a language service is already analysed, function get-
PerformancePattern gets policy of this service from the database. Otherwise,
performance of the language service is analysed by function analysePerforman-
cePattern to determine policy of the service. Function optimizeParallelExecu-
tionSetting() uses language services’ policies and a prediction model to produces
the optimal parallel execution setting for the concrete composite service.

We adopt the integrated engine proposed in previous work [15] to be the
Workflow Execution Engine to interpret and execute the new workflow repre-
sentation. This engine enables parallel execution and pipelined execution when
executing a composite service. Each atomic service in the composite service is
invoked with multiple processes. Input data sets are streamingly sent to the ser-
vice without waiting for the responses. This workflow execution engine helps to
improve performance of a composite service significantly. However, due to paral-
lel execution policies of atomic language services we need the Parallel Execution
Setting Adapter to ensure the optimal performance of the composite service.

The main goal of our proposed mechanism is to create an optimal parallel
execution setting for a composite service which conforms to policies of all partic-
ipated providers. Our mechanism can be a middleware for a workflow system to
make the system more efficiency when invoking composite services under parallel
execution. A core issue is to predict the optimal parameter for composite ser-
vice under parallel execution regarding atomic services’ policies. We will briefly
introduce the issue in the next sections.

A Policy-Aware Parallel Execution Control Mechanism 77

4 Parallel Execution Policy of Language Services

Language services are designed to process huge amount of data sets. These ser-
vices can benefit from the use of parallel execution to improve performance. That
is, when a service processes large amounts of data, the data is separated and then
each instance of the service will be applied over each partition in parallel. This
process may significantly decrease execution time of the service. However, due
to differences in computing resources, different providers set different parallel
execution policies for their provided services. In this session we propose a model
to describe parallel execution policies of language services.

Suppose that a language service processes a large dataset using parallel exe-
cution with n concurrent processes. This means that, the input data is split
into M partitions and n processes of the language service are applied over n
partitions in parallel. Execution time of the service depends on the number of
concurrent processes, denoted by f(n). Increasing n may help to decrease execu-
tion time of the service. However, this trend is not infinite, it will change when
n reaches to a certain number which is specified by the service’s policy, let’s say
this limitation number is P . Parallel execution policy of the language service is
defined as following.

Definition (Parallel Execution Policy). A parallel execution policy of an
language service is a tuple of (α, α�, α′, P). Where:

– α is execution time of the service when the M partitions are serially executed,
i.e., n = 1: f(1) = α.

– α� is execution time of the service to process M partitions with P concurrent
processes, i.e., n = P : f(P) = α�.

– α′ is execution time of the service to process M partitions with M concurrent
processes, i.e., n = M : f(M) = α′.

According to values of the above parameters we recognize three types of
parallel execution policy: Slow-down policy, restriction policy, and penalty policy.

Slow-down Policy. The Slow-down policy throttles the performance improve-
ment when number of concurrent processes exceeds specified number (Ps).
This means that execution time of the service decreases as the number con-
current processes increases. When number of concurrent processes exceeds Ps

speed-up of the execution time decrease is lower. The performance pattern,
given by this policy, is depicted in Fig. 3a. The execution time of the service
to process M partitions can be calculated by the following equation:

f(n) =

{
α − α−α�

Ps−1 (n − 1), if 1 ≤ n < Ps

α� − α�−α′
M−Ps

(n − Ps), if Ps ≤ n ≤ M

with: α > α� > α′, and
α − α�

Ps − 1
>

α� − α′

M − Ps

78 M.X. Trang et al.

Restriction Policy. In this policy, service providers limit the maximum num-
ber of concurrent requests that their services can serve. Service performance
has no improvement when number of concurrent processes exceeds a speci-
fied number (Pr). Performance of service remains the same when number of
concurrent processes larger than Pr. This policy creates the service perfor-
mance pattern shown in Fig. 3b. Execution time of the service to process M
partitions can be calculated by the following equation:

f(n) =

{
α − α−α�

Pr−1 (n − 1), if 1 ≤ n < Pr

α� = α′, if Pr ≤ n ≤ M

with: α� < α, and α′ = α�

Penalty Policy. With this policy, service provider specifies a certain number of
concurrent requests that yield good service performance. If number of con-
current requests send to the services exceeds specified number (Pp), service
performance is reduced. The performance pattern of this policy is shown in
Fig. 3c. The execution time of the service to process M partitions is calculated
by the following equation:

f(n) =

{
α − α−α�

Pp−1 (n − 1), if 1 ≤ n < Pp

α� + α′−α�

M−Pp
(n − Pp), if Pp ≤ n ≤ M

with: α > α�, and α′ > α�

(a) Slow-down Policy (b) Restriction Policy (c) Penalty Policy

Fig. 3. Performance patterns of parallel execution policies

Using this model, when parallel execution policy of a language service is
determined, we can predict execution time of the language service to process
large data with different parallel execution setting. We use this prediction to
predict performance of composite service when using parallel execution.

5 Optimizing Composite Service Parallel Execution

In the following sections we describe parallel execution of composite services
and a model to predict performance of composite services considering parallel
execution policies of atomic services. Based on the prediction the optimal parallel
execution setting for the composite services is determined.

A Policy-Aware Parallel Execution Control Mechanism 79

5.1 Parallel Execution of Composite Language Service

To build advanced language application, developers combine several atomic lan-
guage services in a workflow. A service described by a workflow is called compos-
ite service. In order to improve performance of the applications when processing
huge amounts of data, a promising way is to use parallel execution to execute
workflows. We introduce two types of parallelism for executing a workflow: data
parallelism and workflow pipeline execution.

Data Parallelism. Considering a workflow processes huge amounts of data sets.
The data sets are split into independent portions, and several computing tasks
of the composite are instantiated to process several portions in parallel.

Workflow Pipeline Execution. Input data sets are likely to be independent
from each other, for instance when a single workflow is iterated in parallel on
many input data sets. Workflow pipeline execution denotes that the processing of
several independent input data sets by several instances of a language service are
independent. This parallelism enables pipeline processing of a workflow. That is,
when n concurrent requests are sent to a composite service, multiple instances
of each atomic service are created to process the data partitions concurrently.
The pooling technique is used such that when processing M data sets, n out of
M data sets are streamingly sent to the composite service in parallel without
waiting for responses. Since there are multiple instances of each atomic service,
the execution of the composite service can be done in pipeline manner. Consider
an example of a sequential composition of two services. This example yields the
pipeline processing time-line shown in Fig. 4, where L = �M/n� is number of
time-steps needed to send M data sets, each time n data sets are sent in parallel,
tnij is the time that n concurrent processes of service si take to finish processing
n data sets at time step j.

Fig. 4. Pipeline processing time-line of composite services

Parallel execution of a composite service requires parallel invocation of each
atomic language service in the composite service. However, as mentioned above,
different language services employ different parallel execution policies. In order
to achieve optimal performance of a composite service, the parallel execution set-
ting needs to conform to the policies of the language services. There exist several
workflow manager systems such as Kepler system [11], the Taverna workbench
[12], and the Triana workflow manager [16]. These workflow managers support
parallel execution of workflows, but none of them considers configuring optimal
parallel execution setting for workflow with regard service policies. To control

80 M.X. Trang et al.

parallel execution, in Taverna users can limit number of parallel threads, how-
ever, users only care about their computing resources condition to set the limi-
tation, the policies of each service in the workflow is not considered. A parallel
execution control mechanism is needed that can control parallel execution set-
ting of composite service based on language services’ policies in order to attain
optimal performance. This mechanism uses a prediction model that can predict
composite service performance and estimate optimal parallel execution setting
for the composite service regarding language services’ policies.

5.2 Prediction of Composite Service Performance

(a) Sequential (b) Parallel

r1
r2

(c) Conditional

k

(d) Loop

Fig. 5. Four types of composite structures

There are four basic composite structures normally used to compose atomic
services in a workflow: Sequential, Parallel, Conditional and Loop, see Fig. 5,
where circles represent atomic services and arrows represent the transfer of data
between services. QoS of a composite service is aggregate QoS of all atomic ser-
vices. Existing QoS calculation methods can be classified into two categories:
Reduction method with single QoS for service composition [3,8], and direct
aggregation method with multiple QoSs for the service composition [1,20].

Table 1. Aggregation functions to predict execution time

Structure Aggregate function

Sequential fc(n) �
k

max
i=1

fi(n) +

k∑

i=1
fi(n)− k

max
i=1

fi(n)

�M/n�

Parallel fc(n) �
k

max
i=1

fi(n)

Conditional
fc(1) �

k∑

1

fi(1)

fc(n) �
k

max
i=1

fi(rin), if n > 1

Loop fc(n) �

2
k−1∑

j=1

j
max
i=1

(f(in))

�M/n� + (�M/n� − k + 1)

k
max
i=1

f(in)

�M/n�

In this work we adapt the aggregation formulae, proposed in [3], to esti-
mate execution time of composite service. We involved parallel execution

A Policy-Aware Parallel Execution Control Mechanism 81

policies and pipeline execution defined above to calculate execution time of a
composite service. Given that a composite service C consists of k atomic ser-
vices C = {s1, s2, . . . , sk}:

– Supposed that the input data of the composite service is split into M parti-
tions.

– (αi, α�
i , α′

i, Pi) is parallel execution policy of si.
– Execution time of si when processing M partitions with n concurrent

processes is calculated by fi(n).
– Aggregate functions to calculate execution time of C for different structures

are shown in Table 1. In the conditional structure, ri denotes the probability

with which service si is invoked,
k∑

i=1

ri = 1. In the loop structure, k represents

number of iteration of service s1.

By using above equations, we can predict performance of a composite ser-
vice with different parallel execution setting (number of concurrent processes of
each atomic language service). From the prediction we are able to configure the
composite service with optimal parallel execution setting.

6 Evaluation

In this evaluation we will evaluate accuracy of our prediction model and we will
compare performance improvement of a composite service when using parallel
execution in our workflow execution engine and a well-known workflow engine
Taverna.

First, we evaluate how accurate is our prediction model, compared to the
actual result. We invoke composite services with different settings and compare
the actual performance results with our predictions. Consider the translation
part of the composite service described in the motivating example. This part is
combination of three translation services and uses two structures, i.e. Sequen-
tial structure and Conditional structure. This composite service translates a
Japanese agriculture document containing 200 sentences. Firstly, the document is
translated into English using J-Server translation service. Then, a part of trans-
lated document, containing information about rice (100 sentences), is translated
into Vietnamese using Google translation service. The other part of, contain-
ing information about fertilizer (100 sentences), is translated into French using
Bing translation service. After analysing performance of translation services, we
observe that J-Server and Bing employ slow-down and restriction policies with
Psjserver = 4, Prjserver = 10 and Psbing = 4, Prbing = 14, while Google employs
slow-down and penalty policies with Psgoogle = 4 and Ppgoogle = 8. Performance
prediction of the composite service is shown in Fig. 6. We maximize the number
of concurrent processes of service to 50, Google and Bing translation services
are invoked in conditional structure with ratio of requests is r = 0.5, maximum
concurrent requests of Google and Bing is 25. The green line is execution time
of the composite service predicted by our model, while the purple line is the

82 M.X. Trang et al.

Fig. 6. Evaluation of a composite service (Color figure online)

real execution time. Our model predicts that the composite service attains best
performance when number of concurrent processes is 28 (28 concurrent processes
of J-Server, 14 concurrent processes of Google, and 14 concurrent processes of
Bing) which matches the real result. However prediction of execution time is not
so precise, the best execution time calculated by the model is 6811 milliseconds,
while the real result is 7709 milliseconds. In the optimal case, execution time of
the composite service decreases nearly 83 % compared to normal case (no parallel
execution).

Fig. 7. Compare our workflow execution engine and Taverna engine

A Policy-Aware Parallel Execution Control Mechanism 83

Secondly, we conduct an experiment to compare our workflow execution
engine and Taverna engine. Taverna [12] is a well-known scientific workflow sys-
tem, it offers a dataflow model to create and execute workflows. The second
version Taverna 2 [14] enables pipeline execution and streaming of data. In this
version, users can also number of parallel jobs for each service in a workflow,
which is similar with in our integrated engine. Figure 7 shows performance of a
composite service executed using parallel execution by our workflow execution
engine and by Taverna. The result shows that parallel execution of our engine
and Taverna’s have similar performance improvement effect. With Taverna, the
workflow has the best performance when number of concurrent processes is 28
which matches our prediction. Our prediction model can also be used for several
popular workflow systems, which support parallel and pipelined execution, such
as Taverna.

7 Related Work

Scientific workflows have emerged as an useful instrument to comprehensively
design and sharethe best practices and create reproducible scientific experiment.
Many Scientific Workflow Management Systems (SWMSs) have been developed,
such as Taverna [12], Kepler [11], Triana [16] or WINGS/Pegasus [7] to enable
graphical design, execution and monitoring of local or distributed scientific work-
flows. In the era of big data, workflow optimization has been an important. One
of the common optimization targets is to improve the scientific workflow runtime
performance. Scientific workflow runtime optimization is very heterogeneous as
different criteria of the workflow can be taken into account. Typical criteria are
the workflow structure, data processing or the component model. Whereas work-
flow structure optimization aims at clustering or dividing jobs, data processing
tries to optimize the execution of jobs regarding their data usage and component
model optimization schedules the single jobs regarding their task type.

Some of those solutions do not only support the optimization of execution
time, but also other quality of service (QoS) parameters, such as cost, or relia-
bility. The optimization extension for the WINGS/Pegasus SWSMS developed
by Kuma et al. [9] focuses on the optimization of the runtime performance by
modifying application parameters. The integrated framework takes quality of
service requirements into account in order to adjust data dependent parameters
so that, in a second step, the distributed data processing of applications can be
improved.

Other proposed mechanisms apply heuristic-based optimization algorithms
to manage the scheduling of large-scale scientific workflows such as Ant Colony
Optimization [4], Multi-Objective Evolutionary Algorithms [19] or Genetic Algo-
rithms [13]. These methods focus on user specified QoS constrains for certain
applications. A threshold can be set and the method then tries to find a solution
so that all constrains are met and optimized.

None of the existing work above take parallel execution policies of task
providers into account in order to configure workflows with optimal parallel
execution setting to attain the best performance as we do in this paper.

84 M.X. Trang et al.

8 Conclusions

This paper proposed a prediction model that can predict performance of com-
posite services that use parallel execution; the model well considers the policies
of the language service providers. A mathematical model was proposed to cat-
egorize parallel execution policies of atomic services into three different types:
Slow-down policy, Restriction policy, and Penalty policy. We have observed that
several real-world web services (Google translation service, Baidu translation
service, etc.) follow these types of parallel execution policies. Based on the pre-
diction model we proposed a parallel execution control framework. The main
contributions of this paper are:

– A prediction model that can predict the optimal parallel execution setting of
a composite service which conforms to all atomic language services’ policies.

– A parallel execution control mechanism for composite service. Using this
mechanism, a workflow manager system (e.g. the Language Grid, Taverna)
can dynamically adapts parallel execution of composite service to language
service policies in order to attain best performance.

This mechanism is helpful for application based language service workflow to
configure a best parallel execution setting regarding language service’s policies.
This is the first attempt to incorporate service providers’ decisions into parallel
computing for language application.

Our model is, however, not so accurate in predicting the execution time.
Future work includes improving the model to increase prediction accuracy. Fur-
thermore, we will consider the use of other QoS metrics such as cost and repu-
tation.

Acknowledgments. This research was partly supported by a Grant-in-Aid for Scien-
tific Research (S) (24220002, 2012–2016) from Japan Society for Promotion of Science
(JSPS).

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Softw. Eng. 33(6), 369–384 (2007)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-
aware binding and re-binding of composite web services. J. Syst. Softw. 81(10),
1754–1769 (2008)

3. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Web Semant. Sci. Serv. Agents World Wide
Web 1(3), 281–308 (2004)

4. Chen, W.N., Zhang, J.: An ant colony optimization approach to a grid work-
flow scheduling problem with various QoS requirements. IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev. 39(1), 29–43 (2009)

5. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun.
ACM 53(1), 72–77 (2010)

A Policy-Aware Parallel Execution Control Mechanism 85

6. Ishida, T.: The Language Grid: Service-Oriented Collective Intelligence for Lan-
guage Resource Interoperability. Springer Science & Business Media, Heidelberg
(2011)

7. Gil, Y., Ratnakar, V., Kim, J., Gonzalez-Calero, P., Groth, P., Moody, J.,
Deelman, E.: Wings: Intelligent workflow-based design of computational
experiments. IEEE Intell. Syst. 26, 62–72 (2010)

8. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for web service
composition using workflow patterns. In: 8th IEEE International Enterprise Dis-
tributed Object Computing Conference, pp. 149–159. IEEE (2004)

9. Kumar, V.S., Kurc, T., Ratnakar, V., Kim, J., Mehta, G., Vahi, K., Saltz, J.:
Parameterized specification, configuration and execution of data-intensive scien-
tific workflows. Clust. Comput. 13(3), 315–333 (2010)

10. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard, 11, 11 (2007)

11. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system.
Concurrency Comput. Pract. Experience 18(10), 1039–1065 (2006)

12. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver,
T., Clover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054
(2004)

13. Prodan, R., Fahringer, T.: Dynamic scheduling of scientific workflow applications
on the grid: a case study. In: The 2005 ACM Symposium on Applied Computing,
pp. 687–694. ACM (2005)

14. Sroka, J., Hidders, J., Missier, P., Goble, C.: A formal semantics for the Taverna
2 workflow model. J. Comput. Syst. Sci. 76(6), 490–508 (2010)

15. Trang, M.X., Murakami, Y., Lin, D., Ishida, T.: Integration of workflow and
pipeline for language service composition. In: Proceeding of the 9th International
Conference on Language Resources and Evaluation Conference (LREC 2014), pp.
3829–3836

16. Taylor, I., Wang, I., Shields, M., Majithia, S.: Distributed computing with Triana
on the Grid. Concurrency Comput. Pract. Experience 17(9), 1197–1214 (2005)

17. Deelman, E., Gannon, D., Shields, M.: Workflows for e-Science. Springer, London
(2007)

18. Williams, R., Gorton, I., Greenfield, P., Szalay, A.: Data-intensive computing in
the 21st century. IEEE Comput. 41(4), 0030–32 (2008)

19. Yu, J., Kirley, M., Buyya, R.: Multi-objective planning for workflow execution on
grids. In: The 8th IEEE/ACM International Conference on Grid Computing, pp.
10–17. IEEE Computer Society (2007)

20. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimiza-
tion. ACM Trans. Web (TWEB) 2(1), 6 (2008)

21. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for web services composition. IEEE Trans. Softw. Eng.
30(5), 311–327 (2004)

A License Scheme for a Global Federated
Language Service Infrastructure

Christopher Cieri and Denise DiPersio(&)

Linguistic Data Consortium, 3600 Market Street, Philadelphia, PA 19104, USA
{ccieri,dipersio}@ldc.upenn.edu

Abstract. Language service infrastructures are an efficient means for hosting
tools and services and processing data, but they can cause complications for
licensing language resources. This paper describes the proposed license scheme
for the US Language Application (LAPPS) Grid – an open grid incorporating
diverse tools, services and resources – and suggests that the LAPPS Grid license
approach can be extended to a global federated language service infrastructure.

1 Introduction

Language service infrastructures, often referred to as grids, have risen to prominence in
the natural language processing and human language technology communities, capi-
talizing on the advantages of cloud computing for processing large amounts of data.
The idea is that grids reduce the burden of tool acquisition, integration and hosting by
presenting them as services and coordinating their input and output requirements, while
the grid infrastructure rapidly builds and executes workflows and pipelines from
resources and services. How that framework interacts with licensing constraints is a
question that has received some attention and approaches vary across grids. As interest
in a global language service infrastructure gains traction, the question becomes how
license conditions on multiple resources and tools combined in complex workflows
across different platforms can be rationalized to support grid interoperability on a large
scale. Solving that problem requires the community to rethink traditional language
resource and tool distribution schemes, some of which carry a host of use restrictions,
in an environment based on open access and cross-platform integration.

Researchers and organizations that rely on language resources (LRs) are well
acquainted with the class of use restrictions under a set of finite standard license
arrangements. In that scenario, users take time to integrate the LR into a local workflow
before acquiring the next resource. Unless grid developers create a mechanism that
coordinates licensing issues while constructing workflows, they risk exacerbating
intellectual property issues while they ameliorate tool integration problems. In the
sections below, we present steps for handling licensing constraints within a language
service grid with a proposal for implementation in a globally-federated language ser-
vice infrastructure.

© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 86–98, 2016.
DOI: 10.1007/978-3-319-31468-6_6

2 Web Service Complexities

Web-based language services implement and combine data sets and tools in new ways
that may not fit comfortably under established intellectual property law and existing
contracts. In a traditional license model, a data center or data provider gives a user the
right to process data, but prohibits the user from sharing the LR with others. To the
extent that moving the resources over the web for processing could be considered a
kind of “redistribution” – albeit not in the sense of the original license condition – it is
not clear that all copyright holders would consider web processing a permitted use.
Shared software in a service grid presents challenges as well. How will users know any
license terms or that attribution is required when they are working in an organic grid
pipeline where source code is not visible and the command line is not needed?

Add to this the fact that service grids are characterized by multiple stakeholders.
Grid operators are responsible for the software and servers that support the infras-
tructure. Service providers control access to data and to software. Users avail them-
selves of grid services to access data and otherwise process it. Importantly, grid
operators and service providers may or may not be the copyright holders of the soft-
ware and data underlying the services they provide. Each stakeholder’s view of
intellectual property protection may vary depending on what is provided by whom to
whom. Users generally favor less restrictions than providers do. Some operators and
providers may be compensated. Operators will likely want to track user behavior.
Service providers can impose multiple conditions including attribution and restricted
use (e.g., research) and at the same time, use the data they process for their own
research or system development purposes. Moreover, federated grids will have multiple
grid operators each seeking to preserve the integrity of their particular infrastructure.

Furthermore, data and software are variously combined in these infrastructures in
ways that produce varied effects on licensing. Examples follow in Figs. 1 and 2 below.

Figure 1 summarizes three simple grid use cases. The first example illustrates users
directing their owned or controlled data through an external service controlled by a
second party (Provider 2). In the second scenario, a single entity who is not the user
(Provider 2) controls the data and the processing. In the third instance, one external

Fig. 1. Simple configurations of web services

A License Scheme for a Global Federated Language Service Infrastructure 87

party (Provider 1) controls the data while another controls the software (Provider 2).
The presence of multiple parties and actions in each example has the potential to affect
licensing depending on the constraints introduced by each.

Figure 2 sketches more complex use cases in which data passes through multiple
services. The data may or may not be owned or controlled by the user, while the
services are likely controlled by many separate parties as well. Examples of the first
two use cases, which show data that is processed through multiple services, might have
as its output translated speech that was first transcribed from audio and followed by
translation of the transcribed text. The input speech can be controlled by the user (e.g.,
in voicemail transcription) or by an independent party (e.g., translated newswire). In
the third case, multiple services operate on the same data that depend on inputs from
other providers for operations on specific languages, such as language identification
systems.

Moreover, the fact that no party controls the entire system adds another layer of
complexity for licensing. Each stakeholder is likely distinct, there are many of them,
and even more in a global federated grid, It is expected therefore that each may act in
its own interest which probably does not align with the interests of others in the grid
community.

3 Approaches to Grid Licensing

There are multiple approaches to grid licensing. One may constrain service and data
providers by requiring as a condition of grid participation, that resources are available
to particular users under specified terms as in the case of The Language Grid (National
Institute of Information and Communications Technology (NICT), Kyoto University)
(Ishida et al. 2008). But what if grid service providers are not the owners or developers
of the resources? For example, the US NSF-funded Language Application (LAPPS)
Grid contains services based on NLTK (Natural Language Toolkit) (Bird et al. 2009)
and the Stanford Toolkit (Manning et al. 2014). Because the LAPPS service providers

Fig. 2. More complex web service configurations

88 C. Cieri and D. DiPersio

do not own those tools, they cannot directly license them to LAPPS users. A solution
could be to provide the resources and their underlying agreements and constrain users
to comply with the terms. A third alternative assumes that all parties are responsible for
their actions during grid operations and no controls are imposed on providers or users.
A fourth option restricts providers and users.

The licensing approaches used by existing grids are not easily discovered. They can
be gleaned from the grids themselves in a few cases, from papers or web pages in
others or by implication based on the licenses used. They are described below from
available information.

META-SHARE is a membership-based infrastructure of networked repositories
that contain language data and language processing tools. It does not provide grid
services as they are described here. It is designed as an infrastructure for data providers
and data users to promote resource description and sharing. Those language resources
are available under three license types: all combinations of the Creative Commons
licenses; META-SHARE Commons Licenses, based on the Creative Commons model,
for resources available to META network members only; and “No Redistribution”
licenses that prohibit users from redistributing a resource regardless of use, leaving
control of distribution to the resource owner.1 Its metadata catalog is publicly available
under a Creative Commons license.

The META-SHARE license types permit a range of controls as seen above, some of
which also include the payment of fees. META-SHARE presents the elements of each
license group as a table of characteristics, in fact the model of our Table 2 below. The
META-SHARE license scheme does not address cumulative rights, that is, what rights
attach to any derivative works. Instead, members are asked to deposit any derivatives in
the network under the same license as the original resource (Piperdis 2012).

PANACEA (Platform for Automatic, Normalized Annotation and Cost-Effective
Acquisition of Language Resources for Human Language Technologies) was a
European project whose object was to create an infrastructure to acquire, produce,
update and maintain language resources needed for machine translation systems.
Described as a factory, PANACEA acts like a grid in that it offers chained web services
(workflows, tools) for processing data. A unique aspect of the platform is its capability
to develop data sets on demand by crawling the web; those corpora can then in turn be
processed through PANACEA’s web services.2

The PANACEA licensing strategy is two-fold: (1) the cluster of open source tools
comprising the web services are available under various open source software licenses
(e.g., Apache 2.0, BSD, GPL); and (2) data sets developed on the platform or provided
by users are governed by a non-commercial research only license. In both cases, it is
the responsibility of the resource provider to “clear” intellectual property rights for
tools and data even if the provider is not the owner of the resource. For the data sets
developed by harvesting web sites, PANACEA consortium members undertook to
obtain research rights to the source material; any materials for which permission was
not obtained were not included among PANACEA resources.

1 http://www.meta-net.eu/meta-share/licenses accessed 15 December 2014.
2 http://panacea-lr.eu/en/project/ accessed 15 December 2014.

A License Scheme for a Global Federated Language Service Infrastructure 89

http://www.meta-net.eu/meta-share/licenses
http://panacea-lr.eu/en/project/

Users can try out the platform on an experimental basis but must register for
extended access.3 The PANACEA project ended in 2012, and the project consortium
committed to operating the platform for an additional two years (Arranz et al. 2012).

The Language Grid developed by NICT is a closed system whose resources and
services are available to members only under conditions established by the resource or
service provider. There are three use categories: non-profit, research and commercial.
License text appears in the resource description when available. When a workflow is
executed, the licenses that pertain to the selected tools and data are displayed.4 One can
also browse the available language services which include for each service the “pur-
pose of use,” that is, research and/or non-profit.5 The Language Grid has federated with
like infrastructures in Thailand, Malaysia and China that operate under a common
Service Grid Agreement (Ishida et al. 2011).

Bosca et al. (2012) describe Linguagrid as “open to different operators (Univer-
sities, Research institutes, Companies) with configurable service access policies: free,
restricted to registered users, research or commercial licensing”.6 Linguagrid is
administered by CELI, University of Trento (Italy). It is built on the Language Grid
infrastructure and presumably employs that grid’s license scheme.

CLARIN (the Common Language Resources and Technology Infrastructure) is a
networked federation of European data repositories and service centers accessible to
users in the participating countries.7 Its diverse licensing options include those rooted
in the Creative Commons licenses with clauses to constrain LRs by user group (e.g.,
META-SHARE members, academic users). For some resources, papers about them
must be reported to the providers and in a variation on a share-alike condition, any
derived resources are to deposited in the CLARIN repository.

The LAPPS Grid model for license management is described in detail in Sect. 6. It
is open to all users and accommodates a range of license types as well as fees. Since
many licenses constrain behavior that occurs post-grid, the LAPPS license scheme is
designed to block obvious and immediate violations of licenses, make users aware of
constraints that affect future behavior and secure their agreement to relevant terms.
Thus, constraints accumulate as the pipeline is constructed and are presented to users
prior to the execution of the workflow. Most constraints are presented as notifications
which users acknowledge before the workflow begins. A smaller set of constraints are
presented as requirements and block the workflow until their conditions are satisfied
(Cieri and DiPersio 2014).

3 http://myexperiment.elda.org/ accessed 15 December 2014.
4 http://langrid.org/en/index.html accessed 15 December 2014.
5 http://langrid.org/operation/en/service_list.html accessed 15 December 2014.
6 http://www.linguagrid.org/ accessed 15 December 2014.
7 http://www.clarin.eu/ accessed 15 December 2014.

90 C. Cieri and D. DiPersio

http://myexperiment.elda.org/
http://langrid.org/en/index.html
http://langrid.org/operation/en/service_list.html
http://www.linguagrid.org/
http://www.clarin.eu/

4 Dimensions of Constraints on Language Resource Use

License constraints vary along a number of aspects, starting with the object licensed.
Software licenses generally pertain to using software and derivative works of the
software, and data licenses regulate the use of the data and derivative works of the data.
None of the software licenses reviewed for this paper placed limitations on the use of
their output, which is often data. On the other hand, data licenses can and do impose
restrictions on using processed data.

The LRs used in web services may be owned by the user, by someone else, or they
may be in the public domain. Copyrighted LRs may carry various restrictions: on the
use (commercial use, creating and using derivative works); on the user (research labs,
non-profit organizations; commercial organizations); on sharing (with whom and how,
including attribution and license requirements such as share-alike). There are less
common restrictions as well. For instance, we are aware of at least one corpus that
requires training in the treatment of human subjects prior to use.

An additional complexity lies in the fact that neither the law nor most licenses
distinguish between derivative works (which are typically restricted) and transforma-
tive uses (which are typically not restricted). The difference can be illustrated with
simple examples from human language technology and natural language processing
tasks. Transcribing audio from a copyrighted news broadcast constitutes a derivative
work subject, at least in the US, to copyright as well as any license restrictions on the
source audio. In contrast, a unigram frequency list based on the transcript is deemed to
be a highly transformed work not subject to such limitations.

Many licenses prevent commercial organizations from accessing an LR or using it
to develop commercial technology. The motivation in some instances is to encourage
direct negotiations with the provider for commercial access which can include a fee.
User types typically distinguished by LR licenses include academic institutions,
not-for-profit organizations, governments and commercial entities. Cases of
pre-commercial technology development may receive different treatment. A licensing
model must also recognize those organizations that have executed a required, specific
license for a particular resource and those that have not executed the required agree-
ment. Licenses can track users by enumeration or by features. The Linguistic Data
Consortium (LDC) maintains databases of all users, all required licenses and the
organizations that have executed each license. This is an example of licensing by
enumeration. Tracking licenses by organization type (e.g., non-profit organizations) is
an example of licensing by feature.

Existing grid licenses in general do not address the use case where service providers
wish to benefit from user activity. For instance, a translation service that computes
n-grams from processed text that are used to improve the provider’s models – in
addition to translating the input text as requested by the user – raises the question of
whether the user can permit, or consent to, such use by the provider.

A License Scheme for a Global Federated Language Service Infrastructure 91

5 Combining Licensing Constraints

For some combinations of license constraints, users should be notified that a specific
workflow is blocked or requires agreement to a set of conditions. Clear cases of the
former are those in which some input data requires a specific license that the user had
not executed or in which some processing service required a fee that the user had not
yet paid. With respect to the latter, a commercial organization should be warned by the
grid when it wants to use an LR with a non-commercial restriction and should be
required to click-through its assent to that condition before activating the workflow.

In the United States (and likely elsewhere), copyright law and individual licenses
commonly associated with LRs do not directly address questions relevant to web-based
language services. For example, the notion of “fair use” under US copyright law is not
defined, but rather depends on a case-specific analysis under the four-factor statutory
criteria. Accordingly, it is expected that laws will be of little help in developing a way
to assess the effect on any given workflow of a combination of constraints.

For example, what license attaches to the output of a workflow that uses two LRs,
one which permits commercial use and another that does not? We posit a pipeline that
consists of a language recognition service that identifies the language of the input and
routes it to a machine translation service. If the language identification service relies on
an LR that cannot be used commercially, can the resulting translation be sold if the
input data and the translation system permit commercial applications? We may think
this is acceptable, but would our thinking change if the data used by the translation
engine was restricted to research purposes? Is the answer different if the input text
cannot be used commercially but other components in the pipeline could?

Another thorny area is the derivative work-transformative work continuum. Should
an LR with a no derivatives element in its licensing contract be blocked from further
processing on the assumption that such processing might be a derivative use? As shown
in Table 3 below, the LAPPS Grid license model does not block processing on those
grounds, but provides the user with notifications about any conditions on derivative and
transformative uses.

Of some comfort perhaps is the fact that grid licensing is not so different from
traditional LR license schemes in that users agree to a set of conditions and providers
are not generally informed about the planned use. The gaps in the law referred to above
are present in both instances. And in both, users are expected to abide by any applicable
agreements and conditions. From a data center perspective, we can say that the lan-
guage research community generally acts responsibly in that regard. The noteworthy
difference in the web language service environment is that the analysis of multiple
license terms and users’ acquiescence to them happen on the fly, raising the concern
that some users may miss the import of the license. Hence the need for careful planning
in the grid license infrastructure to include user-friendly license information and
click-through options as well as any necessary authentication mechanisms.

92 C. Cieri and D. DiPersio

6 The Language Application Grid

We now consider the resources implemented in the LAPPS Grid as a model for a
license management solution.

To date, the LAPPS Grid has used 27 unique software packages (programs,
toolkits, APIs, libraries) covered by the nine licenses summarized in Table 1.

The LAPPS Grid includes a small number of data sets. Those include the Manually
Annotated Sub-Corpus (MASC), an open resource that can be used by anyone for any
purpose,8 and portions of LDC’s Gigaword corpora, distributed under LDC’s standard
license model.9

Many of the constraints imposed by those licenses fall into recognizable categories
summarized in Table 2.

These many licenses have in common the constraints and values summarized in
Table 3.

Grid operators have less flexibility with respect to licensing conditions than pro-
viders under the historical distribution model. In the latter case, any fees are generally
required in advance and it is not unusual for providers to condition resource delivery on
a signed license or click-through consent. Or users may receive the LR and its license
on the understanding that the user’s consent to license terms is deemed made when the
resource is used. Also, as mentioned earlier, most licenses address future events, such
as redistribution, derivative works, attribution and share-alike. Thus, a key consider-
ation for a grid licensing model is for it to accommodate those kinds of license pro-
visions in real time as a workflow is built and executed. We address this in the LAPPS
Grid by establishing two classes of enforcement, requirement and notification
(summarized in Table 4). For required actions, a pipeline is blocked until conditions are

Table 1. LAPPS grid software by license

License Software

Apache 2.0 Language Grid, NLTK, ANC2G0, UIMA, OAQA, Uimafit, guava-
libraries, ActiveMQ, AnyObject, Jaxws-maven-plug-in, Jetty,
OpenNLP

BSD Hamcrest, NERsuite, CRFsuite (in NERsuite)
CDDL 1.1 Jaxws-rt
CPL 1.0 MALLET, AGTK, JUnit
Eclipse 1.0 logback (v1.0), Jetty
HTK-Cambridge HTK
MIT Mockito, libLBFGS (in NERsuite), GIZA (v3)
Python NLTK
WordNet Genia tagger library (in NERsuite)

8 http://www.anc.org/data/masc/ accessed 9 January 2015.
9 https://catalog.ldc.upenn.edu/LDC2011T07 accessed 9 January 2015.

A License Scheme for a Global Federated Language Service Infrastructure 93

http://www.anc.org/data/masc/
https://catalog.ldc.upenn.edu/LDC2011T07

met. Otherwise, users are presented with accumulated conditions before the pipeline is
executed. Actual licenses must be made available as well since summarizing license
terms is not a legal substitute for the subject license.

The two types of enforcement, requirement and notification, are naturally imple-
mented differently in the LAPPS Grid. Notification is treated similarly to a
click-through license. Specifically, the software used to build grid pipelines queries
each service as it is added to the pipeline for any licensing constraints. Those con-
straints may include Creative Commons primitives or the requirement to agree on the

Table 2. LAPPS grid licenses and common constraints

License Redistribution Use Derivative use Attribution Share alike $

Apache 2.0 Yes Commercial Commercial Yes No N
BSD Yes Commercial Commercial No No N
CDDL 1.1 Yes Commercial Commercial Yes Yes N
CPL 1.0 Yes Commercial Commercial No No N
Eclipse 1.0 Yes Commercial Commercial Yes Yes N
HTK-Cambridge No Commercial Commercial No No N
MIT Yes Commercial Commercial No No Y
Python Yes Commercial Commercial Yes No N
WordNet Yes Commercial Commercial Yes No N
LDCFP member No Commercial Commercial No No N
LDCNFP member No Research Research No No N
LDCNon-member No Research Research No No Y
CC-Zero Yes Commercial Commercial No No N
CC-BY Yes Commercial Commercial Yes No N
CC-BY-SA Yes Commercial Commercial Yes Yes N
CC-BY-ND Yes Commercial None Yes No N
CC-BY-NC Yes Research Research Yes No N
CC-BY-NC-SA Yes Research Research Yes Yes N
CC-BY-NC-ND Yes Research None Yes No N
GPL (v2,3) Yes Commercial Commercial Yes Yes N

Table 3. LAPPS grid common license constraints and values

Constraint Values

Redistribution Yes/No
Use Commercial/Research only
Derivative use Commercial/Research only/None
Transformative use Commercial/Research only/None
Attribution Yes/No
Share alike Yes/No
Fee Yes/No
Other constraint –

94 C. Cieri and D. DiPersio

fly to specific licenses such as those listed in Table 1. The user is offered the oppor-
tunity to review each of those licenses and is notified that continued execution of the
pipeline signals agreement with their terms. Requirement is implemented through a
special module that connects the user to the organization responsible for enforcing the
relevant constraints. The module passes to the authorizing organization the identifier of
the resource requested and a token uniquely identifying the session. The authorizing
organization may require the user to present login credentials, make payment or
otherwise demonstrate that he has satisfied the constraint, after which it returns an
approval or rejection that causes the pipeline to be executed or blocked respectively.

7 A Federated Grid Licensing Model

We propose the framework in Fig. 3 for a federated grid licensing model.

Users initiate their sessions by authenticating themselves in one of the federated
grid frameworks. Resources and services are requested from the workflow management
tools. For instance, in the LAPPS Grid, the Composer (Ide et al. 2014, Ide and
Suderman 2014) displays available tools and services which are selected by the user in
their preferred order which can include multiple parallel operations on the same data.

Table 4. LAPPS grid license constraint enforcement

Constraint Action

Redistribution Notify
Use Notify
Derivatives use Notify
Attribution Notify
Share alike Notify
Fee Require
Other specific license Require
Other specific constraint ?

Fig. 3. Federated grid licensing model

A License Scheme for a Global Federated Language Service Infrastructure 95

The Composer directs resources to the appropriate service, taking into account varying
tool input and output requirements. Using the LAPPS Grid Planner, users specify input
and output requirements and a pipeline is then constructed.

Grid services are linked to the workflow managers, so users cannot implement in a
pipeline any resources outside the grid. As the user builds a workflow, the management
tools query license conditions from each requested resource or service; they may also
query an API or data center regarding the user’s satisfaction of license conditions. The
pipeline is blocked if certain required conditions such as a fee or a signed license
(Table 4) are not satisfied. If there are no required pre-conditions, a list of click-through
licenses and their provisions are accumulated by the manger as the pipeline grows. The
end result is a summary of restraints with links to the license texts with which the user
must agree before processing can commence. Similarly, any service license conditions
such as attribution or statements from a README file or in the command line are also
displayed by the manager.

The success of this model depends on the existence of a closed grid system where
few management programs control each process. Some problems cannot be resolved,
such as the distinction between derivative and transformative uses. Our proposed
licensing scheme utilizes a conservative legal approach in that case, issuing appropriate
warnings about uses that might be considered derivative.

Where formerly independent service grids are federated, we must also address the
question of managing the variation in practice related to intellectual property that arises
from their separate evolutions. In Sect. 3, we provided examples of how several extant
grids approach licensing. In subsequent sections, we proposed a model for managing
agreements between software and data service providers, on the one hand, and users on
the other. Here, we continue by discussing the kinds of agreements that must be
coordinated across all stakeholders in federated grids. We will set aside differences in
local law, which are beyond the scope of this paper, focusing instead on differences in
agreements.

Federated grids must decide whether participants should sign agreements devel-
oped specifically for the federation. As noted above, existing grids seem to differ with
respect to how “membership” and related agreements are treated. If there is no single
federation agreement, it will be necessary to address how to resolve differences in
pre-existing grid agreements.

Federated grids must also consider the basis upon which grid operators, service
providers and copyright holders participate and how to deal with mismatches. For
example, does a non-profit grid operator have any say as to whether providers may
offer services for a fee? Along with that question comes the issue of what responsibility
stakeholders assume by virtue of working together. If a service offered commercially
becomes unavailable to the detriment of users, does the grid operator or service pro-
vider accept responsibility? Similarly, if any users, service providers, grid operators or
software developers disrupt a grid, whether their home infrastructure or a federated
grid, whether accidentally or intentionally, who assumes responsibility and what are the
remedies? Finally, does any grid operator, service provider or copyright holder make
any warranties of any kind relative to their offerings? Should disputes arise between
grid users and providers, or between operators or federated grids, how are these

96 C. Cieri and D. DiPersio

disputes resolved and in which jurisdiction? This becomes especially important in the
case of a dispute between a user and a remote grid operator.

Secondary issues include what information grid operators or service providers may
collect from users and does that vary when the user comes from a remote grid? This
will be particularly important in the case of unique, proprietary and business sensitive
data. Also, in the event of changes to the grid or its hosted services, who is responsible
for notification of the change and how does that information flow to other stakeholders?
Finally, who decides whether a user is authorized to use the grid, does such autho-
rization commute to federated grids, is it similarly revoked from all grids if revoked
from any?

8 Conclusion

We discussed the challenges web language service infrastructures present for licensing
language resources and how those challenges are addressed in the US LAPPS Grid.
The LAPPS Grid license schema is based on a two-fold enforcement mechanism –

requirement and notification. Under that model, most pipelines will be executed once a
user agrees to the accumulated license provisions that attach to workflow components.
A few pipelines that include resources with pre-use requirements such as a fee or
signed license will be blocked until the condition is satisfied. This model protects
intellectual property interests while permitting credentialed users to construct complex
pipelines. Finally we proposed an extension of the LAPPS Grid license scheme to an
open globally-federated language service infrastructure.

Acknowledgements. This work was supported by US National Science Foundation grants
NSF-ACI 1147944 and NSF-ACI 1147912.

References

Arranz, V., Choukri, K., Hamon, O., Bel, N., Tsiavos, P.: PANACEA Project D2.4, Platform
Software, Project Tools + Resources, Licensing Policy and Exploitation Plan (2012)

Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly Media,
Sebastopol (2009)

Bosca, A., Dini, L., Kouylekov, M., Trevisan, M.: Linguagrid: a network of linguistic and
semantic services for the Italian language. In: Proceedings of the Eighth International
Language Resources and Evaluation (LREC 2012). European Language Resources Associ-
ation (ELRA), Turkey (2012)

Cieri, C., DiPersio, D.: Intellectual property rights management with web service grids. In:
OIAF4HLT Workshop: Open Infrastructures and Analysis Frameworks for HLT. The 25th
International Conference on Computational Linguistics (COLING 2014), Dublin, Ireland
(2014)

Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., DiPersio, D., Shi, C., Suderman, K., Verhagen, M.,
Wang, D., Wright, J.: The language application grid. In: Proceedings of the Ninth
International Language Resources and Evaluation (LREC 2014). European Language
Resources Association (ELRA), Reykjavik (2014)

A License Scheme for a Global Federated Language Service Infrastructure 97

Ide, N., Suderman, K.: The linguistic annotation framework: a standard for annotation
interchange and merging. Lang. Resour. Eval. 48(3), 395–418 (2014)

Ishida, T., Murakami, Y., Tsunokawa, E., Kubota, Y., Sornlertlamvanich, V.: Federated
operation model for service grids. In: Ishida, T. (ed.) The Language Grid, pp. 279–298.
Springer, Heidelberg (2011)

Ishida, T., Nadamotoa, A., Murakami, Y., Inaba, R., Shigenobu, T., Matsubara, S., Hattori, H.,
Kubota, Y., Nakaguchi, T., Tsunokawa, E.: A non-profit operation model for the language
grid. In: International Conference on Global Interoperability for Language Resources,
pp. 114–121 (2008)

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The stanford
CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

Piperdis, S.: The META-SHARE language resources sharing infrastructure: principles,
challenges, solutions. In: Proceedings of the Eighth International Language Resources and
Evaluation (LREC 2012). European Language Resources Association (ELRA), Istanbul
(2012)

98 C. Cieri and D. DiPersio

Language Mashup: Personal Grid
for Language Resources

Masayuki Otani1(B), Takao Nakaguchi1, Donghui Lin1,
Yohei Murakami2, and Toru Ishida1

1 Department of Social Informatics, Kyoto University, Kyoto, Japan
{m-otani,nakaguchi,lindh,ishida}@i.kyoto-u.ac.jp

2 Unit of Design, Kyoto University, Kyoto, Japan
yohei.murakami@design.kyoto-u.ac.jp

Abstract. This paper proposes a language service infrastructure for
personal use called Language Mashup. It enables users to develop
domain-specific multilingual applications on their personal devices by
combining various kinds of language services created from the language
resources provided by both academia and industry. To discuss the poten-
tial of Language Mashup, this paper introduces two key communication
problems, and then our solution of a multilingual application that sup-
ports international meetings whose participants come from various coun-
tries and communicate with each other in their own languages.

Keywords: Service infrastructure for personal use · Language service ·
Language resource · Machine translation · Services computing

1 Introduction

With the expansion of globalization, the communication environment has
become more and more diversified. Not just the activities of companies and inter-
national NPO/NGO but also individual activities have become more frequent.
Individual people traveling abroad for private trips or migration, or are mak-
ing friends in foreign countries through online games or community sites on the
Internet. The communication environment is becoming far more multi-faceted
with such personal behavior. The changes in communication infrastructures are
influencing this trend. Let us imagine the case of an international student. He
may use Skype to communicate with the university friends who speak different
languages. He also has to send e-mail about his research progress to his super-
visor. He will talk with his host family during dinner time. Since the styles and
backgrounds of communication are different in each case, the communication
support tools should also be different. Even if a complete communication tool is
prepared for this student, this is applicable to just him and people with identical
behavior; actually there is no one else who has identical behavior.

To cope with the extremely diversified communication needs, it is neces-
sary to build a communication environment that suits each individual. Unfor-
tunately, existing language services suit only adapt general users. Although
c© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 99–110, 2016.
DOI: 10.1007/978-3-319-31468-6 7

100 M. Otani et al.

there are several sophisticated language resources whose performances have been
improved year by year, we have to deal with the following problems. First, lan-
guage resources, which include dictionaries, parallel texts, part-of-speech taggers,
machine translators and so on, are often not accessible by end users because of
intellectual property rights. Second, even if they are accessible, said language
resources are often not easy to use because of nonstandard interfaces and qual-
ity glitches. Third, language resources are seldom customizable, i.e., machine
translators do not allow users to modify them; it is often impossible to add new
words to their dictionaries.

To overcome the language barrier, we have successfully operated the lan-
guage service infrastructure called the Language Grid for seven years [4,5]. It
enables users to develop new language services by sharing and combining lan-
guage resources as language services. However, we also encountered difficulties
in concluding contracts among service providers, service users, and grid opera-
tors. Legal issues have become one of the biggest problems facing the language
service infrastructure. Furthermore, registration and invocation of services is
allowed only to organization users, i.e., personal users cannot invoke services on
the Language Grid directly. Personal users are able to use only the applications
that have been developed and published non-commercially.

Given the above background, this paper proposes Language Mashup, which
enables its users to combine the language services provided by academia, industry
and other users on their own devices by using the language service platform
called Open Language Grid which allows personal users to invoke its registered
language services.

2 The Language Grid

2.1 Overview of Language Grid

Although there are many sophisticated language resources such as machine trans-
lators (Google translate, Bing translator, etc.) available on the Internet, it is
still hard for ordinary people to develop multilingual environments that suit
their problem domain by using those resources for the following reasons: (i) they
cannot use the machine translators and domain-specific language resources (e.g.,
medical dictionaries, parallel corpora on disasters, etc.) until they negotiate with
the companies or the research institutes that provide the machine translators,
and make contracts with them; (ii) they cannot combine the language services
provided by several organizations that have different specifications unless the
interfaces of the language services are standardized [1].

To overcome these problems, we proposed and operated Language Grid; it
allows language resources to be easily shared and combined by its users as lan-
guage services wrapped with a standard interface. Language resource providers
who join Language Grid as users can register their own language resources as
language services by using the wrapper library provided by the Language Grid
operation center. Services that are wrapped as the same service type are switch-
able since those services have the same interface.

Language Mashup: Personal Grid for Language Resources 101

Users also can create new services by combining services via the standard
interface, which we call the composite language service. Figure 1 illustrates the
process of composing a variety of atomic language services for Japanese agricul-
tural experts to translate their knowledge for Vietnamese farmers. We first need
to cascade Japanese-English and English-Vietnamese translators, because there
is no available direct translator handling Japanese to Vietnamese with assured
translation quality. To replace the words output by machine translators with
the words in multilingual dictionaries for agriculture, part-of-speech taggers are
necessary to divide the input sentences into parts. We can train example-based
machine translators with Japanese-Vietnamese parallel texts. We then have dif-
ferent types of translators including example-based machine translators and will
face the problem of determining which one is best: example-based machine trans-
lators can create high quality translation only when they trained with simi-
lar sentences. We may use back-translation, say Japanese-Vietnamese-Japanese
translation, to compare original and back-translated Japanese sentences, and
select the translator that produces back-translated sentences most similar to
the originals. If the quality of translation is still not enough for the Vietnamese
farmers to understand, however, Japanese experts may use human translation
services.

Fig. 1. Language service composition

The Language Grid is built on the Service Grid, which has been released as
open source software and is being used by other initiatives as a service infrastruc-
ture [3]. Figure 2 shows details of the service grid architecture [6]. The Service
Manager plays a front-end role for any functions other than service invocation.
All of the management information (i.e., domain definition, grid information,

102 M. Otani et al.

node information, user information, service information and resource informa-
tion) are registered through it. It also controls service validation according to
providers’ policies. The Grid Composer connects its service grid to others. The
Service Database is a repository to store various types of information registered
through the Service Manager and service invocation logs. The Composite Service
Container provides composite service deployment, composite service execution,
and dynamic service binding so that service users can customize services. In
developing and invoking a composite service, users can use Java coded work-
flows or the BPEL Engine.

Fig. 2. Service grid architecture

The Language Grid employs federated operation [7] where multiple operator
organizations combine to globally disseminate the service grid which is centered
on non-profit organizations like universities and research institutes. The forces
driving federated operation include not only the limited number of users that a
single operator can handle, but also the locality caused by geographical condi-
tions and application domains. Although we are able to solve such problems by
using federated operation, sometimes it is impossible for different service grids
to use exactly the same agreements. A typical problem is the governing law.
For international affiliation, a possible idea is to adopt a common law like New
York State law, but operators may wish to adopt the governing law of their own
locations. In such a case, operators will use the same agreements except for the
governing law. In that case, the service providers would need to accept the use
of the different governing law to handle the affiliated users in that location.

Language Mashup: Personal Grid for Language Resources 103

2.2 Uncovered Problems

After designing an institutional framework for a public service grid operated by
non-profit organizations such as universities and research institutes, we found
several hidden problems that hindered personal users from using this framework
to develop specific multilingual environments.

To promote the provision of language services from a range of providers, the
Language Grid employs strict agreements to protect intellectual property rights,
and requires that agreement be reached between organizations not individuals,
and prohibits commercial use of the language services. However, these limitations
resulted in the participation of only a few users, such as universities and non-
profit organizations. The agreement excluded companies who were interested in
commercial use of the language services, and individuals who wanted to use them
for their personal use.

Moreover, the current operation model of Language Grid assumes that lan-
guage grid operators reach agreement with each other for the federated opera-
tion, and language grid users register their language services into the servers so
that the third parties can use them. Server software was implemented to realize
this operation model, but the software based on this operation model interfered
with access to free commercial language services for personal use. This is because
access from the Language Grid is regarded as invocations for third party use not
personal use. Also, this operation model demands that service providers operate
their services stably.

3 Mobile Mashup Framework

As elucidated in the previous section, the following problems should be solved
to develop the multilingual applications available on personal devices by using
both commercial and non-commercial services.

– Since registration and invocation of the services on Language Grid is allowed
only to organizations, personal users cannot invoke its services directly.

– Although the services which can be registered to Language Grid have to be
non-profit use, many services are provided for commercial use and allowed
only for personal users.

To overcome these problems, this paper proposes a language platform for
personal users, which is called Language Mashup. It enables personal users
to develop multilingual communication environments that suit their problem
domain by combining commercial language services which are installed in their
own devices and language services which are registered on the language platform
for open access called Open Language Grid, wherein personal users can invoke
services usually developed as open source resources by research institutes.

This section starts with an overview of Open Language Grid. Next, Language
Mashup is described.

104 M. Otani et al.

3.1 Open Language Grid

To remove the limitations pointed out in the previous section and involve more
potential users like individuals and companies, we introduce a different language
grid and propose its coordination with the existing one: Open Language Grid
allows individuals to participate, to use language services for commercial pur-
pose, to easily start operation of grid servers, and to freely connect their servers
to other servers. Hereafter, to explicitly distinguish it from the existing one, we
call the existing one a contractual grid, and the Open Language Grid an open
grid.

These changes mainly impact the legal agreement and the registered language
services. In terms of agreement, this new policy is not compliant with any existing
agreement. Language services on the contractual grid cannot be accessed from
the open grid but the reverse is allowed.

In terms of available language resources, the open grid permits users to reg-
ister only the language resources that can be freely provided to the other users
as services, such as open-source language resources. Accordingly, we have reg-
istered open-source language resources into the Open Language Grid, such as
Stanford POS Tagger for English, SVMTool for Spanish, and MeCab, ChaSen,
and Juman for Japanese. These freely available language resources are published
by academic communities. They are easily found using LRE Map [2], which pro-
vides the possibility of search based on a fixed set of metadata and to view the
details of found resources.

In terms of available language resources, the open grid permits users to reg-
ister only those language resources that can be freely provided to the other
users as services, such as open-source language resources. Open-source language
resources registered with the Open Language Grid so far include Stanford POS
Tagger for English, SVMTool for Spanish, and MeCab, ChaSen, and Juman for
Japanese. These freely available language resources are published by academic
communities. They are easily found using LRE Map [2], which provides the pos-
sibility of search based on a fixed set of metadata and to view the details of
found resources.

3.2 Language Mashup

The operation models of both the contractual grid and open grid assume that
users register their language services with servers so that the third parties can
use them. Unfortunately, free commercial language services permit only per-
sonal use and access to said services from either grid is regarded as invocation
for third party use not personal use. To solve this problem, we introduced Lan-
guage Mashup (hereafter referred to as mashup). The rest of this section details
mashup, and how to coordinate both grids and mashup. The purpose of mashup
is to combine useful commercial language resources that are open to the public
but limited to just personal use. There are many such language resources on the
Web, for example, Bing Translator, Google Translate, Baidu Translation, and
SYSTRANet. They often provide high-quality services if users pay for them.

Language Mashup: Personal Grid for Language Resources 105

However, even if the users pay for them, they cannot register the services with
either the contractual or the open grid unless permission is explicitly given by
the providers. To solve this intellectual property right problem, we normally need
to spend a long time in negotiation, and implement some special functionality
to control access in a more secure manner. It is not realistic to deal with each
case by working with this type of language resource.

The design philosophy of mashup is to operate a grid server on the user’s
smart device(s) for his/her personal use and register the language resources
necessary to implement his/her environment by himself/herself. Figure 3 shows
the concept of mashup. By invoking mashup on the user’s smart device, the
user can form a composite language service by invoking language services that
are located on the users’ device, the remote servers, or contractual/open grids,
without considering where the service is located and what kind of device the
service is installed. To realize the framework whereby users can invoke a service
without notifying the location of the service or the device in which the service
is installed, mashup implements the following functions.

Fig. 3. The concept of Language Mashup

Virtualization of language resources by managing service setting which includes
information of location and device. Mashup manages the settings of service
invocation and handles invocation requests from users’ applications to combine
services which are located on remote servers, installed in users’ device, and regis-
tered with contractual/open grids. Concretely, it manages the following settings:
setting name, device information (on user’s device, on contractual/open grid),
and service location. The user applications can invoke one or more services by
setting name and parameters without its location and device. This framework
for controlling service invocation allows other invocation methods to be imple-
mented as long as these methods become components which mediate between the
invocation component of mashup and composite/atomic services by employing
the invocation interface of mashup.

106 M. Otani et al.

Automatic wrapping of local resources by using wrapper repository. To apply
wrappers to language resources accessible for only personal use and located on
user’s device or remote servers, we developed a framework for downloading and
deploying wrappers, where wrappers can be uploaded or downloaded from a
wrapper repository and are installed in the users’ devices as services which can
be invoked via mashup.

Furthermore, we developed a miniaturized composite service engine suitable
for mobile devices by removing the components of federation, from the existing
service grid. Finally, we downsized the software to 1 MB. Figure 4 shows the
system architecture of mashup.

Service Database

Service Supervisor

Invocation Processor

Intra-Grid Executor

Composite
Service

Container

Atomic
Service

Container
R

es
ou

rc
es

Profile Repository

Java Method Invoker

User Request Handler
HTTP Request

Handler
Java Method

Handler

Grid Composer
Intra-Grid Data Access

File Access

Profile List
(Fixed)

Protocol
Buffers

Java method
invocation

Other
protocols

Domain definition

Definition
Database

Application System

Fig. 4. Language mashup architecture

The mashup framework where users can form composite language services
by invoking services regardless of their location or device type is also applicable
to the Internet of Things (IoT) because it can combine personal and community
services. For example, a user whose name is Ken can turn on the light of his room
by saying “Turn on Ken’s room”, i.e., this user combined speech recognition,
text-to-speech, and translation services with the family’s dictionary where the
word of his room is registered as “Ken’s room”. Thus, mashup can be expected as
the useful interface to IoT devices by providing domain-specific communication.

Table 1 compares the features of each grid server including mashup. This
shows they can complement each other in dealing with various situations.

Language Mashup: Personal Grid for Language Resources 107

Terms of Use

Operation
Center

Operation
Center

O
pe

n
 G

ri
d

Terms of Use

Operation
Center

Operation
Center

Federation
(Agreement)

Mashup Commercial
Language Services

Permitted for
Personal use

Individual
User

C
on

tr
ac

tu
al

 G
ri

d

Fig. 5. Coordination among contractual grid, open grid, and mashup

In particular, the ranges of available language resources differ with grid server
type. The contractual grid can make various language resources available if their
providers reach agreement. The open grid can provide only open-source lan-
guage resources to avoid complex legal negotiations. Mashup can combine free
commercial language resources with academic language resources for the userfs
personal access.

Table 1. Comparisons between three kinds of grid servers

Agreement Operator/User Purpose Language Resources
(LRs)

Contractual grid Strict Organization/Organization Non-profit, Research LRs provided under the
agreement

Open Grid Relaxed Organization/Individuals Non-profit, Research, Profit Open-source LRs (e.g.
MeCab, Stanford POS
Tagger)

Language Mashup None Individuals/Individuals Only personal use LRs permitted for per-
sonal use (e.g. Bing
Trans.)

By coordinating the three kinds of grid servers, we can create multilingual
environments to suit various situations. Figure 5 indicates how to coordinate
them. Each arrow represents the direction of a service invocation. Users of the
contractual grid can combine language services on both grids. On the other
hand, mashup users can combine commercial language services on mashup and
academic language services on open grid by registering the former with the
mashup server.

4 Potential of Language Mashup

To show the potential of mashup, this paper describes an application that
was developed to support multilingual meetings where the people from several

108 M. Otani et al.

countries make presentations or talk with each other. This section starts by
overviewing the application. Next, two typical examples of the multilingual meet-
ings supported by the system are introduced.

4.1 Multilingual Meeting Support System

Although international meetings, incentive tours, conventions or conferences,
exhibitions (called MICE) are more and more important in the increasingly
globalized world, language support is insufficient because its major activities
assume that every participant speaks English, an assumption that is not war-
ranted. This is a current problem and is seen in international festivals such as
the Olympics, World Cup, Universal Exposition, etc.

To overcome the above problem, we have developed a web system for sup-
porting multilingual meetings that allows users to communicate with each other
through their mobile devices in real time. Figure 6 provides a conceptual overview
of this system. This system is constructed as a web application that the users
are able to browse via their mobile devices. When the participants submit texts
written in their language, the system translates it into other languages through
the contractual/open grid. The translated texts are not only shown in the read-
ing area of the web system but are also published to social networking services
such as Twitter so that the participants are able to receive the translated texts
more easily. The participants are also able to select text-based or speech-based
input/output methods, i.e., they can use a text-based machine translation ser-
vice, speech recognition service, speech synthesis service, etc. Some users who
have installed mashup on their mobile device are able to improve the transla-
tion results by using the language services which are already installed on their
devices.

Fig. 6. Overview of multilingual meeting support system

Language Mashup: Personal Grid for Language Resources 109

4.2 Y’s Men International Convention

We will support Y’s Men International 26th Asia Area Convention1 which will
be held in 2015 and have approximately 1,000 participants from around the
world. Major Asian languages will be supported in addition to English in this
convention, i.e., Japanese, Chinese, and Korean. In the presentation sessions, the
conference room will be separated into four areas (Japanese, English, Chinese,
and Korean); a screen is placed at the front of each area. The presenters give their
presentations in English on the front screen, and the speeches are transcribed by
a note-talker in real time. The audiences are able to see the transcribed speeches
translated into their own languages on their screens during the presentation.

To enable the participants to understand the presentations more easily, the
translated texts are shown on not only the front screen of each language group
but also on user mobile devices such as smartphones, laptop, or tablet PCs.
Since many commercial machine translation services are not available on the
current contractual grid, it is difficult to provide optimal translation services for
those personal users from different countries with different languages. However,
mashup makes it possible for personal users to mashup commercial services that
are only available for personal use, and so participants can form various machine
translation services on their mobile devices for better translation quality during
the convention.

4.3 Communication Support in Enokojima Art, Culture and
Creative Center

We will also support communication in the Enokojima Art, Culture and Creative
Center (Enoco2), which encourages the activities of artists from all over the
world. Although the artists need the help of volunteers, they have difficulty in
communicating with the volunteers who are usually not good at English since
they are local Japanese people.

We will solve the communication problem in Enoco by applying mashup
and our developed application. Since we assume oral communication between
artists and volunteers, the system will be configured around speech recognition
and speech synthesis. Even if the participants find translation errors during
a discussion, they can improve service quality by editing the dictionaries or
changing translators through their mobile devices.

5 Conclusion

This paper proposed a language platform for personal devices called Language
Mashup. It represents a new solution where everyone can solve diversified com-
munication problems in their domain since it provides the following attributes.
1 Web site of Y’s Men International 26th Asia Area Convention: http://aac2015.jp/
en/.

2 Web site of Enokojima Art, Culture and Creative Center (in Japanese): http://www.
enokojima-art.jp/.

http://aac2015.jp/en/
http://aac2015.jp/en/
http://www.enokojima-art.jp/
http://www.enokojima-art.jp/

110 M. Otani et al.

– Allows users to instantiate language service servers on an open grid, where
users employ a simple open source Terms of Use instead of concluding legal
agreements among providers, users and operators. By avoiding legal negotia-
tions, usability of language services is significantly improved.

– Allows users to mashup commercial language services and services registered
with the open grid. Since commercial services are often free for personal use,
users can compose various language services on their mobile devices.

Two typical examples of the use of our web application based on Language
Mashup showed that the language platforms we propose have potential for solv-
ing a lot of communication problems existing all over the world by establishing
cooperation among the platforms. We believe that our proposal will contribute
to the construction of a new communication environment where everyone can
communicate each other regardless of distance and language in the near future.

Acknowledgments. The project was carried through the collaboration of many peo-
ple in various organizations. We acknowledge the considerable support of the user
community of Language Grid. This research is supported by a Grant-in-Aid for
Scientific Research (S) (24220002, 2012–2016) from Japan Society for the Promotion
of Science (JSPS).

References

1. Calzolari, N., Zampolli, A., Lenci, A.: Towards a standard for a multilingual lexical
entry: the EAGLES/ISLE initiative. In: Gelbukh, A. (ed.) CICLing 2002. LNCS,
vol. 2276, pp. 264–279. Springer, Heidelberg (2002)

2. Calzolari, N., Gratta, R.D., Francopoulo, G., Mariani, J., Rubino, F., Russo, I.,
Soria, C.: The LRE map. Harmonising community descriptions of resources. In:
Eighth Language Resources and Evaluation Conference (LREC 2012), pp. 1084–
1089 (2012)

3. Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., DiPersio, D., Shi, C., Suderman,
K., Verhagen, M., Wang, D., Wright, J.: The language application grid. In: Ninth
Language Resources and Evaluation Conference (LREC 2014), pp. 22–30 (2014)

4. Ishida, T.: Language grid: an infrastructure for intercultural collaboration. In:
IEEE/IPSJ Symposium on Applications and the Internet (SAINT 2006), keynote
address, pp. 96–100 (2006)

5. Ishida, T., Murakami, Y., Lin, D., Tanaka, M., Inaba, R.: Language grid revisited:
an infrastructure for intercultural collaboration. In: Demazeau, Y., Müller, J.P.,
Rodŕıguez, J.M.C., Pérez, J.B. (eds.) Advances on PAAMS. AISC, vol. 155, pp.
1–16. Springer, Heidelberg (2012)

6. Murakami, Y., Lin, D., Ishida, T.: Service-oriented architecture for interoperabil-
ity of multilanguage services. In: Buitelaar, P., Cimiano, P. (eds.) Towards the
Multilingual Semantic Web. Springer, Heidelberg (2014)

7. Murakami, Y., Tanaka, M., Lin, D., Ishida, T.: Service grid federation architec-
ture for heterogeneous domain. In: 9th IEEE International Conference on Services
Computing (SCC 2012), pp. 539–546 (2012)

Developing Language Resources
and Services

Building Indonesian Local Language Detection Tools
Using Wikipedia Data

Puji Martadinata(✉), Bayu Distiawan Trisedya, Hisar Maruli Manurung,
and Mirna Adriani

Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia
{puji.martadinata,b.distiawan,maruli,mirna}@cs.ui.ac.id

Abstract. The widespread use of social media today has generated lots of
research interest towards information retrieval, natural language processing, and
also machine learning. The vast diversity of languages used on social media
creates the need for accurate automated language identification tools. In this
research, we develop a language identification tool that can help automatically
identify social media posts in Indonesian, Javanese, Sundanese, and Minang‐
kabau. The latter three are some of the most widely spoken regional languages in
Indonesia. We conducted experiments to compare three popular methods used to
develop language identification tools, namely N-grams, statistical models, and
the Small Words technique. Our experiments conducted using articles on internet
for training and tested using social media data that we constructed, show that the
statistical method obtains the best result among all the methods used.

Keywords: Language identification · Language model · N-gram · Wikipedia ·
Twitter · Statistical method

1 Introduction

Nowadays, language identification has become an important pre-processing task for
various applications, e.g. information retrieval, machine translation and natural language
processing. This is due to the fact that we can find so many documents on the Internet,
where the languages of the text are so diverse. Documents are written in English,
Spanish, Japanese, Chinese or local language such as Sundanese and Javanese. Thus,
even though language identification has been researched for a long time, both in text
domain and in the speech domain [1] and is a much studied task, one still needs to study
the various methods and factors that can increase the accuracy and efficacy, particularly
when considering identification of languages that have previously not been handled.

The challenge faced by language technology researchers in Indonesia is quite large.
Indonesia has 746 [2] active local languages, although not all of these languages have
many speakers. Another problem faced is the lack of resources for such local languages,
as many local languages in Indonesia are not well documented.

These two problems have led us to conduct initial research to develop language
identification tools for several Indonesian local languages. The purpose of the develop‐
ment of language identification tool is to automate the process of filtering in order to

© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 113–123, 2016.
DOI: 10.1007/978-3-319-31468-6_8

collect data for research that requires local language corpora. The data we want to collect
is social media data that is written using local languages. With limited data available,
the idea that we propose is to utilize online resources available, one of which is
Wikipedia1. We use Wikipedia as a training data corpus and testing data. We also inter‐
ested on testing the language identification model on social media data like Twitter2.
Contribution of this research is to provide tools for research in IR and NLP especially
research that utilizes the twitter data.

2 Literature Review

2.1 Language Identification

In this experiment, we use three methods for language identification. All of them will
be trained with the Wikipedia Corpus and tested with a Twitter corpus. These methods
are: N-grams with rank order statistic, statistical method and small word technique.
These three methods use the same general system architecture for identifying the
language of a text.

Figure 1 shows the general architecture of the method that we use in this experiment.
The system first needs a corpus for building the language model. The language model
will be used as the basis of the language identification. When a text needs to be classified,
the system will consult the language model and compute some type of distance or prob‐
ability and choose the closest language as the text language. The three methods differ
on how the language is modeled and how the computation is carried out.

Fig. 1. The system general architecture

2.2 N-Grams with Rank Order Statistic

N-grams are substrings of a word that depends on the size of n. In this method we assume
a blank character at the beginning and end of a word, signified below with a “_” character.
It aims to make it easier to determine the beginning of a word or the end of a word.
Examples of n-grams for the word “TASK” are:

1 www.wikipedia.com.
2 twitter.com.

114 P. Martadinata et al.

http://www.wikipedia.com

• Uni-gram: T, A, S, K
• Bi-grams: _T, TA, AS, SK, K_
• Tri-grams: _TA, TAS, ASK, SK_

This technique was implemented by Cavnar and Trenkle [3]. In our experiments we
use TextCat3 for the method implementation. The system will create a language model
based on n-gram frequency. According to Kranig [4], unigrams can be ignored because
they do not account too much for the language information. The language model will
be consists of the n-gram profile and the n-gram frequency. The profile will be sorted
in decreasing frequency order.

The identification phase also constructs a language model based on the text that we
want to classify. After we obtain the language model, the system will compute a distance
between all the language models that the system has and the language model of the given
text. The computation will be based on the position of the language model. We can see
the computation illustration on Fig. 2. After the system computes the distance, the system
will choose the language that gives the smallest distance.

Fig. 2. The computation process of N-grams from Cavnar and Trenkle (1994)

2.3 Statistical Method

This technique was implemented by Ted Dunning [5]. This experiment use
lingua::ident4 which is a CPAN module for the implementation. The systems will divide
into two phases, training phase and identification phase. The training phase will make
a language model based on Markov process with length k characters. The Markov
process; that already counted when the training phase takes place; will be converted into
probabilities using Eq. (1).

(1)

3 http://odur.let.rug.nl/˜vannoord/TextCat/.
4 http://search.cpan.org/~mpiotr/Lingua-Ident-1.7/Ident.pm.

Building Indonesian Local Language Detection Tools 115

http://odur.let.rug.nl/%cb%9cvannoord/TextCat/
http://search.cpan.org/~mpiotr/Lingua-Ident-1.7/Ident.pm

Where |A| is the size of alphabet, T(w1…wk) is number of occurrences of Markov
process prefix, T(w1…wk+1) is number of occurrences of the whole Markov process and
p(w1…wk+1) is computed probabilities.

Examples in the processing of a text “abracadabra” in a Markov process with order
k = 1 can be seen in Table 1, c is the number of occurrences of a Markov process and
p is the probability of the calculation using Formula 1.

Table 1. Example of Markov model calculation

Prediction C P

a → b 2 3/10

a → c 1 2/10

a → d 1 2/10

b → r 2 3/7

c → a 1 2/6

d → a 1 2/6

b → a 2 3/7

In the identification phase, the language model for all the language will be used for
computing the probabilities of the language of the text given. The probabilities will be
computed based on Eq. (2).

(2)

T(w1…wk+1) is the number of occurrences of all Markov process in the text. p(wk

+1,w1…wk) is computed probabilities that stored on a particular model for each Markov
process. After the system get all the language probability the probability that closest to
zero is the best fitting language.

2.4 Small Word Technique

This technique was implemented by Grefenstette [6]. This experiment use lingua::iden‐
tify5 which is a CPAN module for the implementation. This method main idea is to store
all the high frequencies word for every language. The word such as preposition, conjunc‐
tion, and other is a good pointer to identify a language. Every document that needs to
be classified will be compared with all the word on database. After we have all the
frequencies, the frequency will be converted into probabilities. The probabilities are
based on the number of occurrences of the word divide with the number occurrence of
all word that occurs on the corpus.

5 http://search.cpan.org/~ambs/Lingua-Identify-0.56/lib/Lingua/Identify.pm.

116 P. Martadinata et al.

http://search.cpan.org/~ambs/Lingua-Identify-0.56/lib/Lingua/Identify.pm

When we need to identified a sentence, the sentence will be divided into words. Then
the words need to be compared with the words in our database, if the word from the
sentence does not match the words from the database then that word will be given a
minimum score from existed probabilities. The language probabilities for the sentence
are the sum of all probability on every word.

3 Methodology

3.1 Data and Corpus

On our experiment, we use Wikipedia article as training and testing data. Wikipedia is
an encyclopedia that is derived from a global collective intelligence; the content of
Wikipedia can be altered or created by any internet users [8]. Wikipedia is a multilingual
encyclopedia that has 287 languages and has 31 million articles with 1.7 billion times
the conversion is done by 45 million contributors. In Wikipedia there are 337 thousand
Indonesian articles, 220 thousand Minangkabau language (Minangnese) articles,
47 thousand articles written in Javanese and 17 thousand Sundanese articles. The data
continues to increase every day. Besides being freely modified, Wikipedia articles are
also freely distributed and also edited [10]. All articles on Wikipedia can be downloaded
via the Wikimedia dumps.

Besides Wikipedia, we also used social media data as testing data. On our experiment
we collect tweets that written in Indonesian local language. In a tweet, there are various
textual features such as hashtags, mentions, retweets and links. If a tweet is a retweet it
typically contains a marker signified by the string “RT” in the tweet. In a tweet we can
also mention another user using the “@” character, if the tweet is a retweet, after the
user name that is retweeted typically there is the “:” character. Hashtag features are
marked with the character “#”. These features are used to indicate that a tweet has rele‐
vance to a topic. The last feature is the link. These features are often used to display
photos or shared URLs sent by the user.

3.2 Data Preparation

In this experiment we will use Wikipedia data dump for the training phase. The data
dump will be in XML format and contain every article in a language that exists in
Wikipedia. The language that we use for this experiment is Bahasa, Javanese, Sundanese
and Minangnese. The Wikipedia data dump will be processed using the pre-processing
process for deleting all noise. After we get the pre-processed corpus, we will make four
different corpuses with different size for making the language corpus. The size will be
2 MB, 4 MB, 6 MB and the actual size. The process for making the language corpus is
by sampling the article in processed Wikipedia data dump. The sampling will randomize
the article until we get the size that needed for the experiment.

The testing phase will use four different language collection of tweet from Twitter.
Every collection consist 200 tweets which maintain the element of a tweet such as user‐
name, hashtag or retweet.

Building Indonesian Local Language Detection Tools 117

3.3 Pre-processing

The pre-processing step in this experiment will be divided into three phases. The first is
XML extraction which processes the Wikipedia data dump. The data dump will be
extracted with WikiExtractor.py that erases tags, references, tables, and lists. The tool
will give us the article title and body that needed for the next process.

The second phase is language filtering. In Wikipedia article, we found out that many
article still include another language that can disturb the quality of language model. We
also found that Sundanese article had so many English sentences and English language
articles. So, for eliminate that problem we will filter all English sentence in every corpus
using lingua::ident tools for identified English language.

The last phase is deleting all the non-alphabet character and every character that is
not used in those four languages. Every character such as !, #, $, &, Japanese alphabet,
Arabian alphabet and numbers will be deleted because that character is not needed for
making the language model and not represent the language. But there is exception for
character “é” that widely used in Javanese and Sundanese, that character will be replaced
with character “e” because of they have the same meaning but different pronunciation.

3.4 Experimental Design

The language corpus will be processed by the tool for creating the language model. After
the language model was created, we can start to identify the tweet. The tweet will be
processed first for deleting the unnecessary sentences or words such as non-alphabetic
characters, other kind of alphabets, links, retweet and username.

The experiment will be divided into four stages. For the first stage, we will compare
the corpus size to get the optimal corpus for making the language model. In this stage,
each language corpus with different size will be processed for creating the language
model. Each language model will be used for every method and tested with tweet data
for acquiring the precision percentages.

The second stage will use the experimental result from the first stage. The two most
optimum corpuses will be used to assess the language identification method in which
the n-gram and Markov method will be divided into three types. The Markov process
will use the 2 + 1 g, 3 + 1 g and 4 + 1 g and for the n-gram method will use 3 g, 4 g and
5 g. So, we will have seven methods to be experimented. Every method will be tested
by tweet data in which the hashtag removed for acquiring the precision percentages.

The experimental result from the second stage will be used for the third stage. The
most optimum method will be used for this experiment. In this stage we will examine
the number of the language factor. We will make three language groups for this experi‐
ment. The first is Bahasa and Javanese, the second is Bahasa, Javanese and Sundanese
and the last group is Bahasa, Javanese, Sundanese and Minangnese.

For the last stage, we will examine the hashtag feature in Twitter. This stage will
show us about the correlation between the language model with or without hashtag. For
the first experiment we will delete the hashtag in every tweet that contains it and for the
second experiment we will preserve the hashtag.

118 P. Martadinata et al.

4 Experiments and Results

This experiment is focused on four factors that can affect the language identification
system accuracy. The factors are corpus size, language identification method, the
language that the system can choose, and Twitter feature especially hashtag.

4.1 Corpus Size

The first stage experiment is focused on corpus size factor. We can see that when the
corpus size is 2 MB the total accuracy is the best than the others size with the highest
accuracy is obtained by Markov method. The second highest accuracy can be obtained
when the corpus size is the whole text. Both corpuses will be experimented in the second

Table 2. First stage results

Corpus size Percentage (%)

Language Markov N-gram Small words

2 MB Bahasa 91.0 90.0 57.0

Javanese 94.5 86.0 46.5

Minangnese 4.0 20.0 43.0

Sundanese 91.5 81.5 67.5

Total 70.25 69.375 53.5

4 MB Bahasa 90.5 91.0 52.5

Javanese 94.0 86.5 48.0

Minangnese 5.0 19.5 43.0

Sundanese 92.0 81.5 67.5

Total 70.375 69.625 52.75

6 MB Bahasa 89.5 90.0 53.0

Javanese 94.0 86.0 46.5

Minangnese 5.5 18.5 43.0

Sundanese 93.0 83.0 67.5

Total 70.5 69.375 52.5

Whole text Bahasa 90.0 89.5 54.0

Javanese 94.5 86.0 46.5

Minangnese 5.0 19.0 43.0

Sundanese 92.5 83.5 67.5

Total 70.5 69.5 52.75

Building Indonesian Local Language Detection Tools 119

stage. Whereas, the Table 2 show us that there is a bias regarding identification the
Minangnese. Every method and corpus that identified the Minangnese are always under
50 % accuracy. When we study the language model and language corpus of Minangnese,
we found out that there are so many repetitions in their article. Almost 90 % of the corpus
is repetition that decreases the quality of the language model.

4.2 Language Identification Method

This stage is focused on language identification method. We use three type of Markov
and N-gram method.

Table 3 shows us about the accuracy that every method gives with the whole text
corpus. We can see that the highest accuracy is Markov method with 5 g and the lowest
is the small word methods. This case happens because of small word method just need
small amount of words that are not necessary contains in a tweet, but for Markov method
which use Markov model to create the probabilities of a language will use entire tweet
text for determine the tweet language.

Table 3. The whole text results

Method Percentage (%)

Type Bahasa Javanese Minangnese Sundanese Total

Markov 3 g 90.0 94.5 5.0 92.5 70.5

4 g 95.0 96.5 1.0 96.0 72.125

5 g 95.5 97.5 6.0 98.0 74.25

N-gram 3 g 91.0 79.0 30.5 87.5 72.0

4 g 91.5 84.5 22.5 85.5 71.0

5 g 89.5 86.0 19.0 83.5 69.5

Small word Default 54.0 46.5 43.0 67.5 52.75

Table 4 contains data about the language identification method which using 2 MB
text for the data training. In this experiments, we can see that the 3-g method have the
highest accuracy. This is quite different from the results shown in Table 3, which the
Markov method is a method that has the highest accuracy. This is because by using 2 MB
as a corpus, the Markov method cannot capture Markov models well enough because
only given a small training corpus. This makes the n-gram method is much better than
the Markov method, this happens because the n-gram method does not use the Markov
models and only take into account the number of n-grams. So, we can state that n-gram
method is more robust while using a small data train.

120 P. Martadinata et al.

Table 4. 2 MB text results

Method Percentage (%)

Type Bahasa Javanese Minangnese Sundanese Total

Markov 3 g 91.0 94.5 4.0 91.5 70.25

4 g 94.5 94.5 0.5 95.5 71.25

5 g 93.5 97.0 0.5 97.5 72.125

N-gram 3 g 92.5 78.0 32.0 87.5 72.5

4 g 91.0 84.5 22.0 85.0 70.625

5 g 90.0 86.0 20.0 81.5 69.375

Small word Default 57.0 46.5 43.0 67.5 53.5

Accuracy is given by the 3-g is not greater than the accuracy given by Markov 5 g
by using the whole corpus. So Markov 5 g will be used in subsequent experiments.

4.3 Variety of Languages

This stage will focus on the number of languages used. Table 5 shows that more language
used will be smaller than the accuracy will be given. This is in accordance with the
experiments carried out by Muantsa Padró [7]. However it appears that the reduction
that occurred not too large so that the use of four languages in one machine can still be
done without having to revere the decline in accuracy.

Table 5. Third stage results

Language Percentage (%)

2 Lang 3 Lang 4 Lang

Bahasa 96.0 95.5 95.0

Javanese 99.0 97.5 96.5

Total 97.5 96.5 95.75

4.4 Twitter-Specific Features

In the fourth stage we conduct an experiment that focuses on the effect of hashtag usage
in the language identification tools. This is an additional experiment that aims to identify
whether hashtag feature has an effect on language detection accuracy or not. The result
of this experiment is only intended for language detection using twitter data instead of
general language detection. Table 5 shows that the accuracy when we didn’t remove the
hashtag is lower compared with accuracy when we remove the hashtag. This happens

Building Indonesian Local Language Detection Tools 121

because the hashtag used in a tweet often use foreign languages. However, given the
difference was not significant (Table 6).

Table 6. Fourth stage results

Language Percentage (%)

Hashtag No hashtag

Bahasa 95.5 95.5

Javanese 97.0 97.5

Minangnese 6.0 6.0

Sundanese 98.0 98.0

Total 74.125 74.25

5 Conclusion

In this research we have successfully implemented a language identification tools that
employ the usage of existing online resource. The training data corpus used in this
research is derived from the Wikipedia corpus and testing data corpus used is the data
tweets from Twitter. We build three models using different method, namely: small word
technique, n-gram model, and markov model. From our experiment, we can see that
markov model give the best result among them. We also try these methods on social
media data using specific feature like hashtag on a tweet, but unfortunately it does not
give significant result.

We also compare some parameters that need to be considered to build another
language identification tools, such as: the technique, size of corpus, and also the number
of language included in the language identification tools. This research has a good impact
because, the tool developed on this research can be a solution for another research that
needs local languages are recognized in Indonesia, especially Javanese, and Sundanese.

References

1. House, A.S., Neuburg, E.P.: Toward automatic identification of the language of an utterance.
I. Preliminary methodological considerations. J. Acoust. Soc. Am. 62(3), 708–713 (1977)

2. Ruslan, H.: Bahasa Daerah di Indonesia Terancam Punah (2013). Retrieved from Republika:
http://www.republika.co.id/berita/nasional/umum/13/06/12/moa5s5-bahasa-daerah-di-
indonesia-terancam-punah

3. Cavnar, W.B., Trenkle, J.M.: N-gram based text categorization. In: Proceedings of SDAIR
1994, pp. 161–175 (1994)

4. Kranig, S.: Evaluation of Language Identification Method. Bakalárska práca. Universität
Tübingen, Nemecko (2005)

5. Dunning, T.: Statistical identification of language. Technical report MCCS-94-273,
Computing Research Lab, New Mexico State University (1994)

122 P. Martadinata et al.

http://www.republika.co.id/berita/nasional/umum/13/06/12/moa5s5-bahasa-daerah-di-indonesia-terancam-punah
http://www.republika.co.id/berita/nasional/umum/13/06/12/moa5s5-bahasa-daerah-di-indonesia-terancam-punah

6. Grefenstette, G.: Comparing two language identification schemes. In: Proceedings of JADT
1995, 3rd International Conference on Statistical Analysis of Textual Data (1995)

7. Padró, M., Padró, L.: Comparing methods for language identification. Procesamiento del
Lenguaje Nat. 33, 155–162 (2004)

8. Wilkinson, D., Huberman, B.: Cooperation and quality in Wikipedia. In: Proceedings of the
2007 International Symposium on Wikis, pp. 157–164 (2007)

9. Adafre, S.F., De Rijke, M.: Finding similar sentences across multiple languages in Wikipedia.
In: Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 62–69 (2006)

10. Tyers, F.M., Pienaar, J.: Extracting bilingual word pairs from Wikipedia. In: Proceedings of
the SALTMIL Workshop at the Language Resources and Evaluation Conference, LREC
2008, pp. 19–22 (2008)

11. Louvan, S., Ibrahim, M., Adriani, M., Vania, C., Trisedya, B.D., Wanagiri, M.Z.: University
of Indonesia at TREC 2011 microblog track. In: Text Retrieval Conference Proceedings.
NIST (2011)

Building Indonesian Local Language Detection Tools 123

Building Uyghur Dependency Treebank:
Design Principles, Annotation Schema and Tools

Mairehaba Aili1(✉), Aziguli Xialifu2, Maihefureti1, and Saimaiti Maimaitimin2

1 School of Information Science and Engineering, Xinjiang University, Urumqi, China
marhaba@xju.edu.cn

2 School of Humanities, Xinjiang University, Urumqi, China
arzu221@sina.com, tilchin@162.com

Abstract. Treebank is a crucial source of information for NLP and linguistic
researches. In this paper, we describe the process of building a Uyghur depend‐
ency treebank, including designing principles, annotation schemas and tools for
corpus creation. The Uyghur Treebank is built from a public readings corpora,
employed multi-tier representation for extending future use, and created about
23 dependency relations. This paper presents the preliminary results of this project
and an overview of the new idea about combining this project with Language
Grid.

Keywords: Dependency treebank · Annotation scheme · Uyghur language

1 Introduction

Treebanks are essential for many NLP tasks, such as evaluating linguistic theories,
training and testing syntactic parsers. Currently, existing treebanks are mainly divided
into two types according to grammatical formalism adopted. Dependency based
formalism is assumed to suit better for representing syntactic structures of free order
languages. Recently many dependency treebanks have been built especially for the rich
inflectional languages. For example, Prague Dependency Treebank was developed for
Czech [1], English-Czech dependency annotated parallel corpus [2, 3], and Dependency
corpus for Arabic [4]. In addition to the above, dependency treebanks have already been
developed for numerous European languages such as Swedish [5], Greek [6], Russian
[7] and Slovenian [8]; and non-European languages such as Japanese [9] and Chinese
[10]; and even for dead languages: e.g. a corpus for Latin [11]. Dependency-based
parsing had been applied to 13 different languages in the shared task of the 10th Confer‐
ence on Computational Natural Language Learning (CoNLL 2006) [12].

So far, there is no Treebank available for Uyghur language. Uyghur is one of the
languages which still suffers from scarcity of annotated resources. The lack of such
resources has become major limitation in developing NLP applications in Uyghur.

The research was supported by the National Natural Science Foundation of China (Grant
No. 61262061) and Science & Technology Foundation of Xinjiang (Grant No. 201423120).

© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 124–136, 2016.
DOI: 10.1007/978-3-319-31468-6_9

Developing a new annotated corpora becomes crucial, especially to lesser studied
languages such as Uyghur, where we encounter difficulties in finding such data. To
address this obvious problem, we have commenced an effort to develop the first Uyghur
language treebank and, in this paper, we present the preliminary results of this project.
With a set of future applications, we have undertaken the design of the Uyghur depend‐
ency treebank. In the future, it will include at least 20,000 sentences with morphological
and syntactic annotations in Uyghur dependency treebank.

2 Uyghur Language

Uyghur is a Ural-Altaic language, and has rich and complex morphological structure.
As a typical agglutinative language, Uyghur displays rather different characteristics
compared to those more well-studied languages in the parsing literature. The word forms
in Uyghur consist of morphemes concatenated to a root morpheme or other morphemes,
which are much like beads on a string. The productive morphology of Uyghur implies
potentially a very large vocabulary size. For example, Nouns in Uyghur can give rise to
about 100 inflected forms, and verbs up to thousands.

Besides, Uyghur languages usually abide to phonetic harmony, which when concat‐
enating an affixes to a root, some changes will occur to some vowels and/or consonant.
Generally, there are 3 types of phonetic harmony: weakening, dropping and inserting.
Sometimes dropping and weakening will occur simultaneously. For example:

Usually, one type of suffix in Uyghur has several variants, but only one of them
would be selected according to phonetic harmony. As given in the following example,
-da, -de, -ta, -te are the variants of locative case, but its concatenation to a word is
determined by last vowel or consonant in root.

tam(wall) +da = tamda (on the wall)
öy(house) +de = öyde (in the house)
kitab (book) +ta = kitabta (in the book)
ishik (door) + te = ishikte (on the door)

In Uyghur, theoretically, one word can produce an infinite number of words by
inserting some derivational suffixes like the causative suffix in a word multiple times.
Sometimes, we can generate multi-layer suffix words as follows:

ölchemleshtürelmemsiler (couldn’t you standardize it?)

We can break this word into morphemes as shown below:

ölchem + lesh + tür + ele +me + msiler?

On the syntactic side, Uyghur has SOV constituent order, and considered a free-
constituent order language. However, the constituent order predominantly conforms to

Building Uyghur Dependency Treebank: Design Principles 125

the SOV order in written texts, constituents may freely change their position depending
on the requirements of the discourse context. Uyghur is also a pro-drop language, as the
subject can be elided if necessary, and recovered from the agreement markers on the
verb.

According to previous studies on similar languages such as Basque, Turkish, Finnish,
Hungarian, and Japanese, the dependency grammar is better suited to model the various
linguistic phenomena in Uyghur. It is the main reason why we choose dependency
grammar as our treebank’s theories.

3 Design Principle

We aim at building a dependency treebank to provide basic resources for future NLP
researches. We expect the treebank users do not limit on computational linguists studies
of language model and evaluating parsers, but include linguists investigating morpho‐
logical structure, syntactic structure and other linguistic phenomenon. Therefore the
method of representing the information is very important. Whereas many works on
parsing have been mostly dedicated to languages with poor morphology, such as Penn
Treebank in English [13], and there has been a growing interest to researches on agglu‐
tinative languages like Turkish, Basque, Finnish and Russian etc. [14] studied the use
of several types of morphological information in Turkish, and showing that using
morphemes as the unit of analysis (instead of words) has better performance. Similarly,
other researchers have also verify this conclusion [15].

Uyghur has the same features with Turkish on the aspects of word structure— each
word contains several morphemes that can be individually relevant to parsing. Words
in Uyghur can be divided into a linear sequence of distinct morphemes or inflectional
Groups (IGs), each of which typically has a fairly consistent shape and a single consistent
meaning or function. There are strong internal links among different annotation levels.
The morphological annotation in an inflectional group can provide strong indicators for
dependency relation identification and morphological word recognition. The following
is an example that could explain the effect of suffix on syntactic relation.

In Fig. 1, the relation between mektep + ke (school + allative case) and mang (go)
is labeled dative adjunction according to an allative case suffix -ke, and then mang
becomes a modifier of bala (child) by adding –ghan (a suffix that forms adjective from
verb).

As discussed above, morphological structure plays an important role in finding
syntactic relations between words in Uyghur sentences. So all texts are morphologically

Fig. 1. Dependency relations in a Uyghur phrase

126 M. Aili et al.

analyzed by Uyghur Morphological Analyzer (UMA) software [16]. Then, the results
are corrected manually. There are 137 tags designed for POS tagging in our Treebank
and 12 basic POS tags as shown in Table 1. Each category is also divided into several
sub categories, for example, subcategory of Noun includes General Nouns (NG), Time
Noun (NT), Locative Noun (NL), and Proper Noun (NP).

Table 1. Basic post tags in Uyghur languages

No Tags POS No Tags POS

1 N Noun 7 I Imitative

2 A Adjective 8 C Conjunction

3 M Numeral 9 T Particle

4 Q Quantifier 10 E Exclamation

5 D Adverb 11 V Verb

6 P Pronoun 12 R Postposition

Inflected words in Uyghur either have derivational morphology or configuration
suffixes such as causative and passive morphemes for verbs. However, the morpholog‐
ical structure of a word form can be quite complex when multiple derivations are
involved. The information associated with a word form can be encoded using a finite
number of tags, and it is also a common approach to deal with such phenomenon. But,
using such a finite tagset approaches to Uyghur could easily lead to loss of information.
The reason for this is that the morphological features of intermediate derivations can
contain markers for syntactic relationships. Leaving out this information within a fixed-
tagset scheme may prevent crucial syntactic information from being represented. For
this reason, we have decided not to compress the morphological information associated
with a Uyghur word in any way and represent such words as a sequence of inflectional
groups (IGs), separated by ̂ DBs denoting derivation boundaries. In particular, we found
that employing IGs, rather than a word form, as the basic parsing units improves the
parsing accuracy. Thus a word can be represented in the following general form:

Root + Infl1^DB + Infl2^DB + …. +^DB + Infln

Where the Infli denote relevant inflectional features including the POS for the root
or any of the subsequent derived forms. Same work has been done to other languages
such as Turkish [17], French [18] etc. But the work that tags the inflectional groups is
not yet to be done in Uyghur because the morphological analyzer that we employed
hasn’t the function of tagging POS for inflectional groups, so we have just used simple
form for inflectional groups. For example, kitablirimizdiki (in our books) can be anno‐
tated as following:

kitab + N^DB + lAr^DB + imiz^DB + Diki

Building Uyghur Dependency Treebank: Design Principles 127

4 Annotation Schema

4.1 Dependency Relations

As we discussed above, dependency relations between lexical items in Uyghur, are
usually determined by inflectional groups (IGs), and they are represented by a simple
dependency framework. Syntactic relation links only emanate from the last IG of a
(dependent) word, and land on one of the IGs of the (head) word to the right (with minor
exception) when a word is considered as a sequence of IGs. This feature of Uyghur
dependency grammar is very similar to that of Turkish as exemplified in Fig. 2 [19]:

Fig. 2. Links and inflectional groups

Figure 3 shows a dependency tree for a Uyghur sentence men alimning kitabini elip
keldim that means I brought over Alim’s book. Note that, for the word kitabini, the
previous word link to its second IG, while its third IG links to the verb al as object. For
the word al + ip, its first IG, a verb, is the head of previous object while its second IG,
a suffix that forms adverbials from verbs, links to final verb as modifier.

Fig. 3. Dependency structure for a sample Uyghur sentence

To choose a relationship for Uyghur dependency treebank, we employed a principle
that it should be cover various linguistics phenomena, whereas too many relations will
increase the difficulties of annotation and may result in the sparseness problem. Three
factors are taken into consideration in decision making: (1) The broad coverage of
syntactic relations; (2) Easily understanding by annotators; (3) Portability to and from
other grammatical formalism. Considering above factors and syntactic features of
Uyghur, we design a dependency relations scheme as general as possible. The schema
adopts 23 dependency relation tags which are listed in Table 2.

128 M. Aili et al.

Table 2. Dependency relation tags in Uyghur dependency treebank

No. Label Relations No. Label Relations

 1 ABL Ablative adjunct 13 OBJ Object

 2 ATT Attributive modifiers 14 POSS Possessor

 3 ADV Adverbial modifier 15 POST Postpositions

 4 APPOS Apposition 16 QUOT Quotation

 5 AUX Auxiliary verb 17 ROOT ROOT of sentence

 6 CLAS Classifier 18 PRED predicate

 7 COLL Collocation 19 SUBJ Subject

 8 CONJ Conjunction 20 CL Clause

 9 COORD Coordination 21 IND Independent component

10 DAT Dative adjunct 22 COP Copula

11 INST Instrumental adjuncts 23 COMP Comparison

12 LOC Locative adjunct

In which, some of the dependency relations need to be explained as follows:

– ABL: Ablative adjunct can be a reason, a source or a theme with ablative case suffix
–din/-tin.

– ATT: Attributive modifiers is a modifier used for nominal, nominal phrases and
adverbs alike. It is also possible for an adjective to take another adjective as a modifier
dependency type.

– APPOS: Apposition is a noun which follows another noun or a pronoun and has the
same reference as the first and they both have the same syntactic functions.

– AUX: Auxiliary Verb is a verb used to add functional or grammatical meaning to the
clause in which it appears.

– CLAS: a classifier is a nominal modifier in nominative case (as in book cover).
– COLL: Collocations are idiomatic usages and word sequences with certain patterns.
– CONJ: Conjunction is linked to the conjunctive word with a head of another depend‐

ency.
– DAT: Dative Adjunct can be a goal, a destination, a beneficiary or a value carrier in

a transaction, or a theme.
– POST: Postpositions is used to nominal complements of postpositions.

Building Uyghur Dependency Treebank: Design Principles 129

4.2 Special Cases

1. Coordination

The coordination has two types: direct (or conjunctionless) coordination and indirect
coordination that syntactically linked via a conjunction. Uyghur is a pro-drop language
and the subject may be elided on the surface. Such headless constructions as coordinating
conjunctions have been one of the weaker points of dependency grammar approaches.
Our solution for describing coordinate constructs essentially follows [20] solution. In
our solution, the first member of the construction functions as the main element and the
conjunction (if there is any) has to be linked to it with CONJ relation, then follow the
other members of coordination linked to the preceding element with COORD relation.
Figure 4 shows an example of that phenomena for a Uyghur sentence: munewwer oqut‐
quchi we oqughuchilar (excellent teachers and students):

2. Collocation

Fig. 4. Linking coordination

Collocation adjunction is used to mark stable construction word sequence like
idioms, multi-word expressions, name entity etc. Such words had to be recognized at
morphological analysis level to avoid worthless parsing for them. But some collocations
are not recognized correctly, and some type of them are beyond the power of morpho‐
logical analyzer software. So we need to mark them manually. For example, dependency
parsing of a sentence ming minglighan kishiler (lots of people) are as follows:

3. Punctuations

Punctuation marks do not play a role in the dependency structure unless they partic‐
ipate in a relation. There are three conditions that punctuation acts as a part of depend‐
ency structure:

– The sentence final punctuation. The head of the sentence is linked to the final punc‐
tuation with relation ROOT as in Fig. 3;

– The use of comma in coordination. The comma plays a role of separating (or conjoins)
the two conjunctions. We don’t mark them to any, rather just linked the words before
and after it.

– Punctuation marks can also have different roles such as marking the sentential
complements. The head of sentential complement depends on the intervening punc‐
tuations which is a double-quote in this instance (Fig. 5).

130 M. Aili et al.

Fig. 5. Dependency relations of collocations

5 Annotation Tool

Constructing a treebank is a time-consuming and labor-intensive work. Efficient tools
play a key role in lowering the costs of treebank development and enable creation of a
larger and higher quality treebank. Both goals are crucial. A well-designed and well-
implemented tool can aid the work of annotators considerably.

After a throughout study of existing annotation tools [21–23] which seem to be most
suitable for our work, we found that none of them satisfied all our requirements (such
as they do not have all the functions we required). Thus, a decision was made to design
and implement an annotation tool. We aimed to speed up the annotation process by using
graphical user-friendly interface and transforming the annotation process from a manual
procedure into auto controlling and correcting procedure. The annotation tool has been
implemented in c# programming language.

5.1 Framework

Uyghur dependency treebank annotation tool consists of three levels of annotation,
including morphological analysis, morphological corrector and syntax analysis. Figure 6
shows the main data flow.

Fig. 6. Main data flow

It takes raw sentences as an input and produces results in XML format. We have
choose fiction and journalistic genre, with a smaller percentage of scientific and popular
science texts as the source of corpus. The average length of sentences is bit shorter at
the present stage in order to detect the core relations between words. In the future, the
coverage of corpus would be extended.

After choosing one sentence (could type a sentence if necessary), it appears in a
textbox with morphologically analyzed form. Then, annotator checks its validity by
manually and corrects them if necessary. After that, each word in the sentence is shown

Building Uyghur Dependency Treebank: Design Principles 131

in a box with word form and the IGs are listed just below the box with a checkbox form.
The annotator then proceeds the dependency linking by clicking a box as a dependence
and clicking another as a head. We explain the main function of the tool as follows.

5.2 Morphological Analysis

The most important characteristics of Uyghur is its very rich morphological structure.
This structure has been represented by splitting the words into inflectional groups (IGs).

We have used Morphological Analyzer of Xinjiang University, which produces
sequences of morphemes for each word in sentences (such as Stem + suffix1 + suffix2

… + suffixn form) and tags. For example, the morphological form of a word kitabliri‐
mizning (of our books) is shown just as below.

Kitab/N +lar + imiz + ning

The morphological analysis stage is totally automatic except that the user can enter
other analyses to each word if the correct one is not given or the analyzer couldn’t suggest
any analysis.

5.3 Morphological Correction

After automatic morphological analyses, the annotators are asked to verify the results
and correct them if it is wrong. After correcting, the sentences will appear on screen,
each word is in a box and being prepared for syntax analyses. This step is done by
manually, and sentences could be recorrected if necessary.

5.4 Dependency Tagging

The aim of the dependency analysis is to find the binary relationships between dependent
and head unit. For Uyghur, it is not just enough to determine the relationships between
words, instead, it should also determine the relationships between inflectional groups.

Just mention above, syntactic relation links only emanate from the last IGs of a word
as a dependent one, and land on one of the IGs of the head word. Annotator should click
on one box in which has a word as the dependent unit, and click another by selecting
the checkbox under it as the head unit. Then a link line will appear between the two
words with the black color. Link line has different height according to the distance
between two words. The further the distance between two units is, the higher the link
line is. Then, relation type should be chosen. Each relation in scheme is specified in
different color in order to distinguish the relation type from each other. After finishing
the tagging work, the result is saved in XML format.

Another function of the tool is restore the saved result to the graphical form so that
checking or modifying it if necessary.

132 M. Aili et al.

5.5 XML File

The results of tagging are saved in XML form. Each sentence is bracketed with
tags < s > and </s >. Each word in a sentence is represented by a sequence of the attribute
lists of the words involved, bracketed by < w > and </w > tags. For example, kitab
oquchan qizchaq (the girl reading a book) is shown as kitab oqu + ghan qizchaq after
morphological analysis, the dependency relationship is shown as Fig. 7, so the result
saved as XML form just shown as Table 3.

Table 3. The description of dependency unit attribution

w ID Lem Morph Inf Rel

Kitab 1 kitab kitab kitab/N. 2,1,Subj

oqughan 2 oqu oqu + ghan oqu + ghan/V. 3,1,Det

qizchaq 3 qizchaq qizchaq Qizchaq/N.

Fig. 7. An example for dependency parsing

Fig. 8. The user interface of the treebank annotation tool

The attribute lists are including: (1) ID denotes the number or index of the word; (2)
Lem denotes the lemma of the word, as one would find in a dictionary; (3) Morph
indicates the morphological structure of the word as a sequence of morphemes, essen‐
tially corresponding to the lexical form. (4) Inf is a list of pairs of an integer and an
inflectional group; (5) Rel denotes the relationship of these words, as indicated by its
last inflection group, to an inflectional group of some other word. The form of Rel is a
triplet form as [N1, N2, R], in which N1 is index of a word which current word dependent

Building Uyghur Dependency Treebank: Design Principles 133

to, N2 is the number of the inflection group in the N1th word that the current word’s last
IG is linked to, and the R is a list of relation labels for any possible syntactic relationships
between the IGs involved. Figures 8 and 9 show the tools interface and result of XML
file of the senetence Men maqalamni texiche yezip bolalmidim. (I have not finished my
paper) with Uyghur Arabic alphabet form.

Fig. 9. Sample treebank encoding a Uyghur sentence

6 Conclusion and Future Work

In this study, we described our work on creating Uyghur dependency treebank. To the
best of our knowledge, this is the first effort to create a Uyghur dependency treebank.
The project has begun from 2013 and the total number of annotated sentences is less
than 1000, because our work to date has concentrated mainly on resolving annotation
scheme for UDT. We have created the initial annotation schema and annotated the
sentences with this schema. It is obvious that there will be some changes as the number
of sentences increases which have some special phenomena. At the present stage, the
annotation tool provides for full morphological analysis but couldn’t do automatic
parsing and suggest possible dependency link. The whole process is only done manually.
The user interface is not friendly enough, and can’t check the cross linking which is not
allowed to occur in dependency tree. Nevertheless, the tool provides visible interface
for annotating work and plays important roles at the present stage.

We plan to enhance its function with the services which are provided by Language
Grid [25] such as improving the function of morphological analyzer, adding automatic
parsing, checking wrong lines etc. and expect to complete about 20,000 annotating
sentences with multiple annotators working in parallel.

References

1. Hajič, J., Pajas, P.: The Prague dependency treebank: annotation structure and support. In:
Proceedings of the IRCS Workshop on Linguistic Databases, University of Pennsylvania,
USA, pp. 105–114 (2001)

2. Čmejrek, M., Cuřín, J., Havelka, J.: Prague Czech-English dependecy treebank: any hopes
for a common annotation scheme?. In: HLT/NAACL Workshop: Frontiers in Corpus
Annotation, Boston, Massachusetts, pp. 47–54 (2004)

134 M. Aili et al.

3. Čmejrek, M., Hajič, J., Kubo, V.: Prague Czech-English dependency treebank syntactically
annotated resources for machine translation. In: Proceedings of EAMT 10th Annual
Conference, pp. 1597–1600 (2004)

4. Hajič, J., Zemánek, P.: Prague Arabic dependency treebank: development in data and tools.
In: Proceedings of the NEMLAR International Conference on Arabic Language Resources
and Tools, pp. 110–114 (2004)

5. Nivre, J.: Theory-supporting treebanks. In: Nivre, J., Hinrichs, E. (Eds.) Proceedings of the
Second Workshop on Treebanks and Linguistic Theories, Växjö University Press, pp. 117–
128 (2003)

6. Prokopidis, S., Desipri, P., Koutsombogera, E., Papageorgiou, M., Piperidis, H.: Theoretical
and practical issues in the construction of a Greek dependency corpus. In: Proceedings of the
4th Workshop on Treebanks and Linguistic Theories, Barcelona, pp. 149–160 (2005)

7. Boguslavsky, I., Grigorieva, S.: Dependency treebank for Russian: concept, tools, types of
information. In: Proceedings of 18th International Conference on Computational Linguistics,
pp. 987–991 (2000)

8. Džeroski, A., Erjavec, S., Ledinek, T., Pajas, N., Žabokrtský, P., Žele, Z.: Towards a Slovene
dependency treebank. In: Proceedings of 5th International Conference on Language
Resources and Evaluation (2006)

9. Lepage, I., Shin-Ichi, Y., Susumu, A., Hitoshi, A.: An annotated corpus in Japanese using
Tesnière’s structural syntax. In: Proceedings of COLING-ACL 1998 Workshop on the
Processing of Dependency-Based Grammars, Montreal (1998)

10. Liu, H.: Building and using a Chinese dependency treebank. GrKG/Humankybernetik 48(1),
3–14 (2007)

11. Bamman, D., Crane, G.: The design and use of a Latin dependency treebank. In: Proceedings
of the TLT, pp. 67–78 (2006)

12. Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency parsing. In:
Proceedings of CONLL-X, New York, pp. 149–164 (2006)

13. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of
English: The Penn Treebank. Comput. Linguist. 19, 313–330 (1993)

14. Eryigit, G., Nivre, J., Oflazer, K.: Dependency parsing of Turkish. Comput. Linguist. 34(3),
357–389 (2008)

15. Goldberg, Y., Tsarfaty, R.: A single generative model for joint morphological segmentation
and syntactic parsing. In: Proceedings of ACLHLT Colombus, Ohio, USA (2008)

16. Aili, M., Wenbin, J., Zhiyang, W., Yibulayin, T., Qun, L.: Directed graph model of Uyghur
morphological analysis. J. Softw. 23(12), 3115–3129 (2012)

17. Oflazeri, K., Hakkani-Tiur, D., Tiur, G.: Design for a Turkish treebank. In: Linguistically
Interpreted Corpora: EACL Post-Conference Workshop, pp. 1–9 (1999)

18. Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for French. In: Abeillé, A. (ed.)
Treebanks: Building and Using Parsed Corpora. Treebanks Text, Speech Language
Technology, pp. 165–187. Springer, Netherlands (2003)

19. Oflazer, K.: Building a turkish treebank. In: Abeillé, A. (ed.) Treebanks: Building and Using
Parsed Corpora, pp. 261–277. Springer, Netherlands (2003)

20. Mel’cuk, I.A.: Levels of dependency in linguistic description: concepts and problems. In:
Dependency and Valency. An International Handbook of Contemporary Research, Vol. 1,
pp. 188–229, Berlin-New York (2003)

21. Atalay, N.B., Oflazer, K., Say, B.: The annotation process in the Turkish treebank. In:
Proceedings of the 4th International Workshop on Linguistically Interpreteted Corpora, pp.
33–38 (2003)

Building Uyghur Dependency Treebank: Design Principles 135

22. Kakkonen,T.: DepAnn - an annotation tool for dependency treebanks. In: Proceedings of the
11th ESSLLI Student Session, pp. 214–225 (2006)

23. Eryiğit, G.: ITU treebank annotation tool. In: Proceedings of the Linguistic Annotation
Workshop, pp. 117–120 (2007)

24. Mamitimin, S., Ibrahim, T., Eli, M.: The annotation scheme for Uyghur dependency treebank.
In: Proceedings of International Conference on Asian Language Processing, pp. 185–188
(2013)

25. Ishida, T.: The Language Grid: Service-Oriented Collective Intelligence for Language
Resource Interoperability. Springer, Heidelberg (2011). ISBN 978-3-642-21177-5

136 M. Aili et al.

Building Contemporary Uyghur Grammatical
Information Dictionary

Jiamila Wushouer1,2, Wayiti Abulizi1,2, Kahaerjiang Abiderexiti1,2,
Tuergen Yibulayin1,2(&), Maierhaba Aili1,2,

and Saimaiti Maimaitimin2

1 School of Information Science and Engineering, Xinjiang University,
Urumqi, China

{jiamila,wayit,kaharjan,turgun,marhaba}@xju.edu.cn
2 Xinjiang Laboratory of Multilanguage Information Technology,

Urumqi, China

Abstract. “Contemporary Uyghur Grammatical Information Dictionary” is the
basic language knowledge base for the Uyghur information processing. It pro-
vides a large amount of grammatical information and collocation features for
49,072 words. The original intention of the development of Uyghur grammatical
information dictionary is to provide basic resources for Natural Language
Processing (NLP). Building information dictionary has far-reaching theoretical
and practical value for Uyghur text retrieval, proofreading, machine translation,
summary generation, linguistic knowledge acquisition, representation and
usage, even allow the computer to “understand” language. In this paper, we use
the methods of computational linguistics, corpus linguistics and NLP techniques
to analyze Uyghur morphology, Uyghur syntax. On this basis, we study the
grammatical features of Uyghur nouns, verbs, and adjectives and so on, and then
establish classification system of part of speech of Uyghur. Guidance with this
classification system, we use relational database technology to design structures
of “Contemporary Uyghur Grammatical Information Dictionary”. According to
the principle of combining grammatical functions and meanings, using methods
of corpus linguistics, we select words from contemporary balanced Uyghur
corpus, and import them to the “Uyghur Grammatical Information Dictionary”,
then give each word’s grammatical attributes. Finally we build “Uyghur
Grammatical Information Dictionary” of practical value.

Keywords: Contemporary Uyghur language � Grammatical information
dictionary � Uyghur morphology

1 Introduction

With “Grammatical Knowledge base of Contemporary Chinese” proposed and con-
structed [1, 2], in the field of minority language information processing such as
Mongolian, Uyghur and Tibetan, researchers began to build the appropriate gram-
matical knowledge base. In terms of Uyghur information grammatical dictionary,
researchers at the Xinjiang University and other research organization use “Gram-
matical Knowledge base of Contemporary Chinese” as a model, beginning to research
related area of Uyghur information grammatical dictionary.

© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 137–144, 2016.
DOI: 10.1007/978-3-319-31468-6_10

In recent years, works of Uyghur information-processing is to deal with the
development of the shallow sentence parsing, named entity identification, machine
translation etc. Research and development of various applications in Uyghur infor-
mation processing begin to come out [3]. Not only research of input methods, product
localization but also other information processing area, such as NLP, has also been
expanded for other aspects of Uyghur language. Xinjiang University, Xinjiang Normal
University [4] and other universities have studied on the Uyghur language grammar,
syntax [4], machine translation [5], and proofreading [6] and search engine. For
example, Xinjiang Normal University professor Abdullah Yusuf research on Uyghur
phrase tree. Xinjiang Laboratory of Multilanguage Information Technology (XJLMIT)
lay the foundation for further research of Uyghur language processing by developing
an automatic lexical analyzer, Uyghur text proofing system, bi-directional large-scale
Chinese-English electronic dictionary [7].

Meanwhile, XJLMIT has also launched research on Uyghur sentence parser project
that funded by the National Natural Science Foundation of China, mainly in the phrase
structure grammar for parse system. But progress is slow, mainly because of lack of
theoretical research and engineering support. For example, Uyghur character recog-
nition, voice recognition, automatic proofreading, automatic transliteration of different
Uyghur texts in various countries, intelligent information retrieval system must
determine various properties of words in order to achieve full practical usages; machine
translation needs every word’s grammatical and semantic attributes to achieve the
correct analysis and translation. In addition, the deep analyzing of the corpus, such as
tagging and semantic annotation of phrases and other infrastructure work is also needed
to do semantic analysis. Therefore, building of “Contemporary Uyghur Grammatical
Information Dictionary” has a great importance for development of Uyghur informa-
tion processing.

In the study of Uyghur language grammatical knowledge, many linguists have done
a lot of research work and published grammar dictionary in Uyghur language.
Unfortunately, these works suffer from three major limitations in NLP: (1) most of the
research results are printed as a hard copy, electronic versions are not available. So they
cannot be used in an information platform as a shared resource; (2) these works are for
human use, without considering the needs of NLP, its scope of application has certain
restrictions; (3) due to limited research conditions, grammar dictionary includes a
limited amount of words, and their explanation and cited cases have some defects,
especially the amount of information cannot be updated in time. Because of these
deficiencies, resulting that value of existing grammatical information dictionary is not
very high for NLP. In order to improve the utilization of the traditional Uyghur
grammatical dictionary we need to design and develop electronic version of Uyghur
grammatical information dictionary that can be used in NLP.

2 Establishing the Foundation of Dictionary

“Contemporary Uyghur Grammatical Information Dictionary” contains 49072 stem-
med words with basic part of speech tag and additional part of speech tag annotated by
manually. The dictionary consists of one general database, one auxiliary information

138 J. Wushouer et al.

database, 18 sub-database (see Fig. 1), each sub-database contains the words guaran-
teed to be unique (homograph words is distinguished by letters or numbers base on
word formation. For example, تائ (horse, nouns, homograph 1), تائ (name, noun,
homograph 2) and تائ (throw, real verb). Each sub-database has different attributes
according to their main features.

For the general database, Uyghur words and grammatical classification code rep-
resentation (i.e. mark set) is of importance. Contemporary Uyghur language as an
agglutinative language, there are plenty of inflections rules. Each class of words has its
own word morphology (grammatical category, word formation etc.) and syntactic
features (syntactic function, matching relationships). Determining the classification
criteria, appropriate classification system and labeling set is an important basis for the
dictionary. Choices of what kind of grammatical annotation system must be carefully
considered. Therefore, we use “Uyghur POS Tag Annotation Set [3.0V] of Xinjiang
Laboratory of Multilanguage Information Technology” as the reference to analyze and
summarize various Uyghur grammatical rules and invite experts to discuss, and based
on expert advices form a relatively complete system of formal description.

According to experts’ opinions, the general database serves as a core syntax
repository, which contains Uyghur words with its stem, grammatical information; each
sub-database is constructed according to classification type of entries of total database;
auxiliary information database consists of an additional component configuration
sub-database, word-building additional component sub-database, punctuation and other
non- lexical units of sub-database (see Fig. 2). The types of words are divided into two
major categories: basic part of speech and additional classes. Among them, the basic
parts of speech consists of a noun (N), adjective (A), verb (V), adverb (D), numeral
(M), pronoun (P), conjunctions (C) etc.; additional classes consists of idiom (I), usage
(U), punctuation (W), suffix (S), affixes (F) etc.

The word POS tags are divided into one level POS tags and two level POS tags (see
Fig. 1). One level POS tags are divided into 18 categories (see Table 1), (where the

General database

Noun sub-database

Verb sub-database

Adjective sub-database

Conjunctions sub-database……..

Quantifier sub-database

Pronoun sub-database

Fig. 1. Main structure of the contemporary Uyghur grammatical information dictionary

Building Contemporary Uyghur Grammatical Information Dictionary 139

verb is divided into real verbs and auxiliaries); Two level POS tags are divided into 72
categories (Table 2). For example, simple numerals points are classified as numerals,
ordinal, cardinal etc.

3 Database Structure of the Dictionary

In general, database design means that for a given application environment, construct
optimal database model and its application to establish a database system to effectively
store data to meet user’s information requirements and processing requirements. On
this basis, we design the dictionary’s general database and its 18 sub-database.
According to the different attributes of words, we design related field attributes for each
sub-database. For example, the word in the general database treat stem as main unit to
set up common attributes, such as, words (Word), part of speech tag (cl), phonetics
(Latin), voice weakened, spelling variants, isomorphic, syllable types (open
syllable/closed syllables), structure type, domain, sources, notes etc. (see Table 3), of
all the words generated from this stem. In the same way the sub-database structure is
shown in Table 4.

The general database and sub-databases are connected by keyword field (ID), and
designed to various view to handle relationship between sub-databases. The relation-
ship processing as shown in Fig. 2.

Table 2. Uyghur word two level POS annotation set

Numeral ناس

ID Two level
annotation

Two level
annotation
tag

Main
id

Sub
id

Example

1 ناستەپۈس MA 3 32 نەگىلزۈي،ناغىلڭىمنەگىل،ناغىل

2 ناسرەچلۆم MB 3 33 ناس،شۇلۇشوقناسىككىئ،كەت،كەدىكايەچ
،پۆك،قۇترائ،نىقېي+ناس،ەچچەن،ەچناق+

نەگىل،ناغىل+ناس

3 پىترەت
ناس

MC 3 34 ىجنەك،ىجنۇت،ىچنى،ىچن

Table 1. Uyghur word one level POS annotation set

ID Annotation name (Uyghur) Annotation name (English) Tag

1 مىسىئ Noun N
2 تەپۈس Adjective A
3 ناس Numeral M
… … … …

140 J. Wushouer et al.

In order to effectively manage, maintain and expand data in the dictionary,
meanwhile allowing multiple users to easily use the dictionary in a network environ-
ment, we choose SQL Server database management system.

4 The Rules Adopted in the Dictionary

In the process of “Contemporary Uyghur Grammatical Information Dictionary” gen-
eration, about 70 % of the words in the dictionary comes from the Uyghur tilining
izahliq lughiti (Contemporary Uyghur Detailed Dictionary), 30 % of the content
(names, places, etc.) collected by manually. In the Dictionary, syllable segmentation,
number of syllables, syllable types, weakening homograph, Latin transliteration, word
suffix vowel variants and other grammar attributes automatically filled by related
algorithms [8–10] according to the rules provided by grammarians.

Table 3. General database structure

No Field name Data type Field size The annotation information or examples

1 ID Automatic numbering long 99000
2 IDS Number int 90000
3 Word Text 100 مەدائ

4 POS Text 2 n; {n|v|a|d|q|m|n…}
5 Latin Text 100 Adem
6 Char_len Number int 5
… … … … …

Table 4. Noun sub-database structure

No Field name Data type Field size The annotation information or examples

1 ID Automatic numbering Long 90000
2 Word Text 100 مەدائ

3 POS1 Text 2 NL\NP\NT\NB
4 Countable Text 2 Y
… … … … …

Common attributes of
general database

Special attributes of
sub-database

All attributes of words

+

Fig. 2. Relationship between the general-database and sub-databases

Building Contemporary Uyghur Grammatical Information Dictionary 141

5 Implementation of the Dictionary and Annotation
Examples

The dictionary management platform consists of user management module, basic
information system maintenance module, vocabulary maintenance module, annotation
module, query statistics module etc. The overall system structure shown in Fig. 3.

5.1 Annotation Examples

Figure 4 shows explicit data of the dictionary obtained by the querying. To be specific,
the query shown in Fig. 4 is search result for words that begin with “ ات ”, structures are

Dictionary management module

Annotation moduleVocabulary management User management Query moduleInformation maintenance

General database

Sub-databases

Import words

Export words

Information

The user
information
maintenance

Authorization

Task allocation

Parameter
setting

Tagging
maintenance

The term
maintenance

Automatic

tagging

Manual

tagging

Tagging
review

Query

Analysis

Statistics

Print

Fig. 3. The main function of dictionary management module

Fig. 4. Annotation examples of the dictionary

142 J. Wushouer et al.

compound words, and sources are from Uyghur noun. In Fig. 4, the search results
consist of 17 columns, the name of each column expressed by Chinese because our
dictionary interface language is in Chinese. The meaning of these 17 columns are
follows: (1) sequence number of results; (2) searched word in Uyghur Arabic script
(3) POS tag; (4) searched word in Uyghur Latin script (ULY); (5) word length;
(6) syllable decomposition of word; (7) counts of syllable decomposition; (8) whether
vowel weakening exist or not in the word; (9) variants of the word; (10) homonym;
(11) is searched word belongs to multi-category words or not; (12) suffix (vowels 1,
indicates whether back vowel or front vowel); (13) suffix (vowels 2, indicates whether
round vowel or unrounded vowel); (14) suffix (types of consonants); (15) whether open
syllable word or not; (16) structure of word; (17) domain of word.

6 Summary and Outlook

Building “Contemporary Uyghur Grammatical Information dictionary” is a huge
project, and the annotation is one of the laborious and boring tasks. It requires a solid
Uyghur grammar foundation. Until writing this paper the completed work as follows:

– Established a classification system and the Uyghur POS annotation set. The word
attributes are divided into one level, two level and third level. One level word
attributes are divided into 17 categories, two level word attributes are divided into
72 categories, and three level word attributes are divided into 52 categories.

– Designed a framework for the dictionary general database, sub-database and as well
as attribute fields and each field’s ranges.

– Implemented the dictionary management platform.
– Determined the dictionary grammatical information annotation specification.
– Completed 49,072 word’s grammatical information annotation task.

There are several issues needs to be resolved:

– Improve two level word attribute annotation scheme.
– Determine classification standard after connection of words and affixes.
– Improve automatic tagging function of the platform.

Acknowledgments. This work has been supported as part of China National Fundamental
Research Program (973) (2014cb340506), the NSFC (61331011, 61462083, 61463048),
National Social Sciences Foundation of China (10AYY006), key projects of Xinjiang Education
Department (XJEDU2011I08), as part of open project of Xinjiang laboratory of multi-language
information technology (049807).

Building Contemporary Uyghur Grammatical Information Dictionary 143

References

1. Yu, S., Zhu, X.: The Grammatical Knowledge-Base of Contemporary Chinese-A Complete
Specification. Tsinghua University Press, Beijing (2003)

2. Wang, H., Yu, S.: The semantic knowledge-base of contemporary Chinese and its
applications in WSD. In: Association for Computational Linguistics, pp. 112–118 (2003)

3. Kadir, A., Adir, K., Ibrahim, T.: Morphological analysis of Uighur noun for natural language
information processing. J. Chin. Inf. Process. 20(3), 43–48 (2006)

4. Ebeydulla, Y., Abliz, H., Yusup, A.: Research on the Uyghur information database for
information processing. In: International Conference on Asian Language Processing,
pp. 26–29 (2011)

5. Abiderexiti, K., Yao, T., Yibulayin, T., et al.: Implementation of Chinese-Uyghur bilateral
EBMT system. In: International Conference on Asian Language Processing, pp. 87–90
(2013)

6. Maihefureti, A.W., Aili, M., et al.: Spelling check method of Uyghur languages based on
dictionary and statistics. J. Chin. Inf. Process. 28(02), 66–71 (2014)

7. Ibrahim, T., Baoshe, Y.: A survey on minority language information processing research and
application in Xinjiang. J. Chin. Inf. Process. 25(06), 149–156 (2011)

8. Wumaier, A., Tursun, P., Kadeer, Z., et al.: Uyghur noun suffix finite state machine for
stemming. In: 2nd IEEE International Conference on Computer Science and Information
Technology, pp. 161–164 (2009)

9. Aili, M., Jiang, W.B., Wang, Z.Y., et al.: Directed graph model of Uyghur morphological
analysis. J. Softw. 23(12), 3115–3129 (2012)

10. Kadeer, Z., Wumaier, A., Yibulayin, T., et al.: Uyghur noun stemming system based on
hybrid method. Comput. Eng. Appl. 49(01), 171–175 (2013)

144 J. Wushouer et al.

Language Service Applications

Vietnamese Multimedia Agricultural
Information Retrieval System

as an Info Service

Thi H. Luong, Nhut M. Pham, and Quan H. Vu(&)

University of Science, VNU-HCM, Ho Chi Minh, Vietnam
vhquan@fit.hcmus.edu.vn

Abstract. Despite being crippled by a mandatory challenge, called “sematic
gap,” content-based information retrieval is still on the way of blooming. Its
application can be seen across different domains, from several daily Google
image-searches to an intense sport shot retrieval. Nonetheless, semantic agri-
cultural information retrieval has been averted from the eyes of computer sci-
entists. Meanwhile, farmer in the rural areas are suffering from the lack of
information and guidance, resulting in poverty and low life-quality. Stemming
from an agricultural country, it is our mission to put efforts on the field. There
are two contributions in this work: (1) building a Vietnamese agricultural the-
saurus, and (2) an agricultural multimedia retrieval system; putting together as
an info service for farming guidance. We spring our thesaurus in 2 sub-boughs:
the aquaculture ontology consists of 3455 concepts and 5396 terms, with 28
relationships, covering about 2200 fish species and their related terms; and the
plant production ontology comprises of 3437 concepts and 6874 terms, with 5
relationships, covering farming, plant production, pests, etc. These ontologies
serve as a global linkage between keywords, visual, and spoken features, as well
as providing reinforcement for the system performances. On the other hand,
constructing a semantic multimedia retrieval engine is a bit trickier. Automatic
transcriptions of audio channels are marked as the anchor points for the col-
lection of visual features. These features, in turn, got clustered based on the
referenced thesauri, and ultimately tracking out missing info induced by the
speech recognizer’s word error rates. This compensation technique bought us
back 16.2 % of loss recall and an increase of 9.4 % accuracy over the baseline
system.

Keywords: Semantic information retrieval � Agriculture � Multimedia �
Vietnamese � Info service � Language service � Agricultural ontology

1 Introduction

In Vietnam, agriculture plays an important part in the country’s economic structure. In
2013, agriculture and forestry accounted for 18.4 percent of Vietnam’s gross domestic
product (GDP) [1]. As a result, information on agriculture comes out in large numbers
and in different forms, from textual content to audio or videos. Farmers run into
difficulties when searching for this kind of information, because of their lack of subject

© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 147–160, 2016.
DOI: 10.1007/978-3-319-31468-6_11

knowledge and most of the time novice users face insurmountable difficulty in for-
mulating the right keyword queries [2], subsequently induces semantic mismatches
between query intension and the fetched documents. Generic search engines such as
Google or Bing can give decent results, but a carefully tailored search engine with
specific domain knowledge and semantic retrieval techniques [6] can give a better
performance. And hence it could bring out the possibilities for these novice seekers to
be able to efficiently access to the vast multimedia resources available on the Web.

Multimedia resources, such as videos, are self-contained materials which carry a
large amount of rich information. Researches [3–5] have been conducted in the field of
video retrieval amongst which semantic or content-based (as compared to text- or
tag-based) retrieval of video is an emerging research topic [6]. Figure 1 illustrates a
full-fledged content-based video retrieval system which typically combines text, spo-
ken words, and imagery. Such system would allow the retrieval of relevant clips,
scenes, and shots based on queries which could include textual description, image,
audio and/or video samples. Therefore, it involves automatic transcription of speech,
multi-modal video and audio indexing, automatic learning of semantic concepts and
their representation, advanced query interpretation and matching algorithms, which in
turn impose many new challenges to research. All these topics are entangled in the
name “semantic information retrieval” [3].

Taking on semantic information retrieval requires works on both visual and audi-
tory context of the media. This, however, is not a trivial task even with state-of-the-art
approaches. Its mandatory challenge, called “sematic gap,” [7] requires much more
understanding of the way human perceive things (i.e., visual and auditory information).
Computer scientists have spent thousands of hours seeking optimal solutions, only
ended up falling in the bound of this gap for both visual and spoken contexts. In the
spoken context, content-based retrievals are subjected to text-based retrievals by using
an automatic speech recognition system to transcribe speech signal into text.

Video DB

Search engine

Relevant
clips

Multi-modal
queries

Textual features
Auditory features

Visual features

Fig. 1. A full-fledged content-based multimedia retrieval system.

148 T.H. Luong et al.

Referenced works from [8, 9] attained an average performance level around 76 % recall
and 71 % precision, reasonable enough in academic but insufficient for field applica-
tions. Convictions are blamed on the erroneous generated transcription. On the other
hand, pathways of visual information retrieval rely on low-level features for
advancement, such as colors [10], textures [11], and sketches [12], etc. Nevertheless,
these struggling efforts get us nowhere near human-level perceptions, but only the
mediocre temporary solutions. Recent works [13, 14] also introduce a concept-based
approach which makes use of ontology to expand user queries and knowledge
indexing.

While an over-the-gap approach is unreachable, we insist on assembling current
viable techniques from both contexts, aligned with a domain concept base (i.e., an
ontology), to construct an info service for the retrieval of agricultural multimedia
information. The development process spans over three packages: (1) building a
Vietnamese agricultural thesaurus; (2) crafting a visual-auditory intertwined search
engine; and (3) system deployment as an info service. Automatic transcriptions of
audio channels are marked as the anchor points for the collection of visual features.
These features, in turn, got clustered based on the referenced thesauri, and ultimately
tracking out missing info induced by the speech recognizer’s word error rates.
Meanwhile, the domain ontologies serve as a global linkage between keywords, visual,
and spoken features, as well as providing reinforcement for the system performances
(e.g., through query expansion, knowledge indexing…).

The rest of this paper is organized as follows. Section 2 presents the ontology
development process in full details. Section 3 covers our system’s specification.
Section 4 gives experimental results. And finally, Sect. 5 concludes the paper.

2 Ontology Development

Taking the same model as in [11], we divide the construction of the Vietnamese
agricultural ontology into five stages: (1) Ontology specification, (2) Knowledge
acquisition, (3) Conceptualization, (4) Formalization and (5) Implementation.

2.1 Ontology Specification

In this stage, we define the domain and scope of the ontology. The basic questions are
what domain the ontology will cover and for what we are going to use the ontology. In
our case, the interested domains are aquaculture and plant production, including their
diseases, breeding and harvesting methods, etc. The main purpose of the ontology is to
maintain and share knowledge in the field, increasing retrieval efficiency.

2.2 Knowledge Acquisition

The first step is to gather and extract as much as possible related knowledge resources
from the literature, then categorize them systematically. Common groups of resources
are ontology construction guidelines and criteria, related thesauri and dictionaries, and

Vietnamese Multimedia Agricultural Information Retrieval System 149

relationship guidelines. For this research, we follow general guidelines and criteria, for
example, [16, 17]. Terms are collected from 5 Vietnamese textbooks. We also extract
and translate terms from FishBase [18], a global species database of fish species, and
the NAL Thesaurus [19]. Then we organize and summarize all of the related
information.

2.3 Conceptualization

In this stage, a conceptual model of the ontology will be built, consisting of concepts in
the domain and relationships among them. Concepts are organized in hierarchical
structures; with each concept has its superclass and subclass concepts. Two main
groups of relationships are hierarchical relationships and associative relationships. To
identify concepts, we use both the top-down and bottom-up approaches [20]. The
top-down approach can be used to identify hierarchical structures, while the bottom-up
approach completes these structures by identifying bottom-level concepts and defining
upper-class concepts until reaching the top. For hierarchical relationships, we use only
one relation namely “hasSubclass”. Concepts in different hierarchies that are related
will be connected by associative relationships. Knowledge modelling tools, i.e.,
CmapTools [21], can be used for sketching the model. Figure 2 illustrates an example
model in our aquaculture ontology.

Fig. 2. An example conceptual model of the Vietnamese aquaculture ontology.

150 T.H. Luong et al.

2.4 Formalization

The conceptual model from the previous stage is transformed into a formal model in
this stage. We listed all the concepts and relationships in a data sheet. Then for each
concept, we define a term representing the concept, which is called “preferred term”.
Synonym, or “non-preferred term”, is a term in a same concept that is not selected to be
the preferred term. Then we define the terminology relationships that are
concept-to-term relationships, term-to-term relationships, and concept-to-concept
relationships. The next step involves filling to formalize the concepts. There are
three kinds of data sheet: data sheet for concept lexicalization, data sheet for formal-
izing concept and hierarchical relationship, and data sheet for formalizing concept and
associative relationship.

2.5 Implementation

Finally, we can implement the ontology by using the Protégé tool [22]. Protégé is a
feature rich ontology-editing environment with full support for the OWL 2 Web
Ontology Language.

2.6 Results

Following the development process, we have developed two Vietnamese agricultural
ontologies in two different sub-domains, namely aquaculture and plant production. Our
ontologies come with two languages, Vietnamese and English. We also develop a
simple web application for searching terms in the ontologies.

The aquaculture ontology consists of 3455 concepts and 5396 terms, with 28
relationships. It covers about 2200 fish species and their related terms. The plant
production ontology comprises of 3437 concepts and 6874 terms, with 5 relationships,
covering farming, plant production, pests, etc. The ontologies are categorized as classes
to provide a comprehensive framework. The categories of the ontologies are summa-
rized in Tables 1 and 2. The number of relationships is given in Tables 3 and 4. While
being developed separately, the two ontologies share are a fair number of classes, so
merging them could be seen in a near future.

There is difference in number of associative relationships between two ontologies
because we used different relationship guidelines. The plant production ontology fol-
lows the NAL Thesaurus, which has only one associative relationship, namely “Related
to.” The aquaculture thesaurus, on the other hand, follows the AGROVOC ontology,
where additional relationships are defined, for example, “hasInfectingProcess,”
“hasHost” or “hasNaturalEnemy.”

A web-based application for searching terms in the ontology was also developed.
It provides additional functions to enhance ontology browsing capability, for instance,
bilingual searching (in English and Vietnamese), auto term completion, and external
links to other resources. Some of the application’s functions are illustrated in Fig. 3.

Vietnamese Multimedia Agricultural Information Retrieval System 151

Table 1. Concepts of the aquaculture ontology

Object concept Functional concept

Plant (weed, moss)/Thực vật (rong, cỏ dại) Breeding process/Quá trình sinh sản
Animal (fish, mollusk, and amphibian)/Động vật
(cá, giáp xác và lưỡng cư)

Pond preparation process/Quá trình
chuẩn bị ao nuôi

Fungi/Nấm Harvesting process/Phương pháp thu
hoạch

Bacteria/Vi khuẩn Protection and control process/Phương
pháp kiểm soát và bảo vệ

Virus/Vi-rút Cultivation process/Phương pháp nuôi
trồng thủy sản

Chemical substance and element/Chất hóa học
Fish anatomy/Giải phẫu học về cá
Disease/Bệnh
Environmental factor/Yếu tố môi trường

Table 2. Concepts of the plant production ontology

Object concept Functional concept

Plant (rice, fruit)/Thực vật (cây lúa, trái cây) Plant genetic and breeding/Gen và nhân
giống cây trồng

Animal (pest and natural enemy)/Động vật (sâu
bệnh và thiên địch)

Soil preparation process/Quá trình chuẩn
bị đất

Fungi/Nấm Fertilizing process/Phương pháp bón
phân

Bacteria/Vi khuẩn Harvesting process/Phương pháp thu
hoạch

Virus/Vi-rút Protection and control process
Chemical substance and element/Chất hóa học Cultivation process/Phương pháp nuôi

trồng
Plant anatomy/Giải phẫu học về cây trồng
Disease/Bệnh
Environmental factor/Yếu tố môi trường
Soil/Đất

Table 3. Number of aquaculture ontology relationships

Relationship Number

Equivalent relationship 2
Hierarchical relationship 1
Associative relationship 25
Total 28

152 T.H. Luong et al.

3 Semantic Agricultural Information Retrieval System

The prominent concept of this work basically relies on the composition of visual and
auditory (i.e., specifically speech) information, intertwining into each other by their
ontology’s keyword linkages. Figure 4 illustrates the construction of this idea – our
proposed semantic information retrieval framework.

3.1 System Construction

For each video crawled from the online sources, we demux it into audio and visual
channels, which are later segmented into a sequence of frames. The audio part got
manually transcribed to serve as a training corpus for building the ASR module. This in
turn, performs a force-alignment procedure on all video files, making them annotated
with timestamps and keywords. Now, we define a concept shot Fk as follow:

Fk t; dð Þ * derived frames clamped by keyword K begin at timestamp t and last for duration d

With the pre-built agricultural ontologies O, we then proceed to extract the concept
shots Fk−i defined by all keywords K−i existed in the ontologies, positioned by the
timestamps generated from the ASR module. This way, our video database is now
chopped down into segments – a set of concept-shots. We also keep track of their

Fig. 3. Ontology searching feature with auto term completion.

Table 4. Number of plant production ontology relationships

Relationship Number

Equivalent relationship 3
Hierarchical relationship 1
Associative relationship 1
Total 5

Vietnamese Multimedia Agricultural Information Retrieval System 153

contextual information by padding them with adjacent frames for a short leap Δt. Fk is
then refined as:

Fk�i ti � Dt; dþ 2Dtð Þ; i 2 1. . .jOj½ �; ki 2 O

Despite seeming scattered, concept-shots are closely related to each other, in term
of concept relationships and inferring. Consider using a decision tree clustering tech-
nique [23], global shots would be divided into local groups where members share the
same conceptual representation. HMM-GMM cluster-modeling is then taken place on
the group’s visual features. With the present of ontologies, specific semantic visual
features are no longer required, and thus low-level features might be sufficient enough
(i.e., ontologies take care of rendering the semantic layers). Here, we use a feature bag
of Harris cues, edge, color, blob, and ridge. Figure 5 shows how concept-shots are
shaped and clustered on each other through the linkage of ontologies.

Fig. 4. Intertwined visual-spoken information retrieval framework.

Ontology

Concept-shot

for keyword “pig”

Concept-shot

for keyword “boar”

ti t
j

t
m t

n

t t t
t

Inferring

Fig. 5. Illustration of concept-shots and ontology-inferred clustering.

154 T.H. Luong et al.

3.2 Building the ASR Engine

The speech recognition engine, serving as the system’s kernel, needs to attain a certain
level of performance as its outputs affect all other processes and outcomes. There are
several techniques currently available for this task, such as the canonical HMM-GMM
structure, its successor HMM-SGMM, or even a trendy Deep Neural Network (DNN),
etc. Since our target data (i.e., broadcast agricultural videos) contain a massive amount
of noise and spontaneous speech, DNN would be a rational choice. It provides an
abstract level of representation for speech signals, just like the way human perceive
things [24]. So noises and speaking styles would just blend in nicely, becoming parts of
the acoustic information or what we called acoustic models.

In our framework, we take in HMM-DNN for acoustic modeling. 4397 tied-stated
HMMs were derived in a typical manner, while DNN was setup with 11 context win-
dows, 6 hidden layers, and an output layer representing context-dependent phonemes.
This results in 429 input-nodes, 9000 hidden-nodes (i.e., 1500 nodes per hidden layer),
and 4397 output-nodes. The training procedure then proceeded as described in [26].

3.3 Classification

Any future unseen media collected from the online sources will be auditorily tran-
scribed and visually clustered into one of the available classes of our ontology (i.e.,
keywords or concept-shots). The classification of concept-shots would definitely
compensate for word-error-rates of the transcriptions, and ultimately tracking out
missing info potentially available in the media.

For example, in Fig. 5, if the feature bag of the “boar” shot is classified into the
same group as “pig,” then we would assume that there’d be some kind of pig in that
shot (e.g., the wild boar for this case).

3.4 Deployment

To make the whole system a viable application, we’ve wrapped it into an info service,
maintained as an AIS structure [25]. Our target audiences are the majority of farmers in
developing countries, who are unable to reach modern farming information and
knowledge. The info service is protocol- and platform- independent. It can be accessed
by any front-end devices, from traditional mobile phones to PC, or smartphones, etc.

The service is being hosted in its beta stage at http://www.ailab.hcmus.edu.vn.
Also, we would like to integrate our system with the language service to extend its
reach across countries.

Vietnamese Multimedia Agricultural Information Retrieval System 155

http://www.ailab.hcmus.edu.vn

4 Experiment

This Section presents the results captured from our experimental procedure. Compar-
ative analyses between a preset baseline and the proposed system are taken place to
measure how well it performs. All of which are conducted in the corpus described
below.

4.1 Datasets

Roughly 40 h of agricultural broadcast videos are collected from multiple broadcasting
studios in Mekong Delta. We requested the original media instead of the recorded ones
for their upper quality. Audio channels are sampled in 16 kHz, 16 bits, mono. And
video channels are normalized in standard 480p. The corpus is then manually tran-
scribed and divided into 3 subsets: training, development and test sets. Table 5 gives a
detailed look into these subsets.

The training set is used for training ASR and building concept clusters, which are
then verified and tuned by the development set. Retrieval performances are finally
measure upon the test set.

4.2 Parameter Tuning

This experiment measures performances of the speech recognizer on the development
set to further fine-tune system’s parameters. We construct 2 ASR engines for com-
parative purposes: one by a traditional left-right tied-triphone HMM-GMM recipe, and
the other by descriptions in Sect. 3.2. Recognition tasks include 412 utterances seg-
mented from 1 h speech of agricultural conversation (i.e., the development set).

Figure 6 plots the performance function of the HMM-GMM engine. As the number
of mixtures increases, accuracy acceleration slows down and reaches its limit even-
tually. In the best case, 78.14 % WAR (word accuracy rate) is achieved. This con-
figuration was then taken to compare with the other engine – HMM-DNN. Details are
shown in Table 6 with respect to the size of DNN’s context windows.

An intuitive conclusion can be derived firsthand right from Table 6: the gain of
DNN over GMM is almost entirely attributed to the context window range – the
number of concatenated feature frames. It reflects the way we perceive speech: con-
tinuously and correlatively. And so on, independently from unseen data, we choose the

Table 5. Datasets

Corpus Duration (hours)

Training set 20
Development set 1
Test set 19
Total 40

156 T.H. Luong et al.

best configuration of 11 context window DNN. Transcriptions generated by this one
alone also serve as the indexed database for the baseline retrieval system.

The same routine applies for choosing a number of mixtures in each concept
cluster-model. Feature bags extracted from 1-hour video are classified into one of 27
concept-classes found in the development set. With each model configuration, we
logged down classification accuracy as in Fig. 7, leading to the selection of 32-mixutre
candidate.

4.3 Retrieval Evaluations

Having set the ground for baseline system, ASR engine, and clustering models, we
proceed to assess our proposed system upon the remaining 19-h test set. 500 pseudo
test-queries are constructed to ensure the retrieved documents fall within the corpus’s
bound, thus making no false claim on missing retrievals.

Table 7 reports average recalls and precisions in a comparative manner for:
speech-based system (baseline), vision-based system, and visual-auditory intertwined
system. Since the semantic gap is too much for low-level features, vision-based system

Fig. 6. GMM fine-tuning.

Table 6. Transcription performances

Context-window HMM-GMM HMM-DNN

1 78.1 75.3
3 – 79.5
5 – 81.8
7 – 82.4
9 – 83.2
11 – 83.7
13 – 83.1

Vietnamese Multimedia Agricultural Information Retrieval System 157

seems falling back behind, while speech-based system renders recall closely to its
transcription accuracy. False alarms did rise, because both system neglects the semantic
layer. However, when combining spoken and visual features together under Ontology’s
linkages, we found the results shooting upward, attaining absolute increases of 16.2 %
recall and 9.4 % precision over the baseline system.

5 Conclusion

Not many achievements had been gained since our first approach of Vietnamese
speech-based video retrieval in 2010. Our research on semantic information retrieval
just lied dormant until the ICT torrent was brought to extension services. That’s when
we made an attempt to plan out a compensation technique that employs the use of
visual features and Ontology together. Experimental results did confirm the hypothesis.
Despite being a long way from human perceptions, the composite scheme surely shed
light on applicable solutions for semantic information retrieval. We also deploy our
system as an info service to support agricultural extension in Mekong Delta.

Fig. 7. Clustering performances.

Table 7. Retrieval performances

Metrics Speech-based system Vision-based system Intertwined system

Recall 70.2 % 56.1 % 86.4 %
Precision 81.3 % 64.5 % 90.7 %

158 T.H. Luong et al.

References

1. General Statistics Office: Thông cáo báo chí Tình hình kinh tế - xã hội năm 2013. http://
www.gso.gov.vn/. Accessed 18 September 2014

2. Markey, K.: Twenty-five years of end-user searching, Part 2: future research directions.
J. Am. Soc. Inf. Sci. Technol. 58(8), 1123–1130 (2007)

3. Amir, A., et al.: A multi-modal system for the retrieval of semantic video events. Comput.
Vis. Image Underst. 96(2), 216–236 (2004)

4. Ballan, L., Bertini, M., Bimbo, A.D., Serra, G.: Semantic annotation of soccer videos by
visual instance clustering and spatial/temporal reasoning in ontologies. Multimedia Tools
Appl. 48(2), 313–337 (2010)

5. Fujii, A., Itou, K., Ishikawa, T.: LODEM: a system for on-demand video lectures. Speech
Commun. 48(5), 516–531 (2006)

6. Hauptmann, A.G., Christel, M.G., Yan, R.: Video retrieval based on semantic concepts.
Proc. IEEE 96, 602–622 (2008)

7. Ekin, A., Tekalp, A.M.: Robust dominant color region detection and color-based
applications for sports video. In: IEEE International Conference on Image Processing,
Barcelona, Spain, vol. 1, pp. 21–24 (2003)

8. Brown, M.G., Foote, J.T., Jones, G.J., Sparck Jones, K., Young, S.J.: Automatic
content-based retrieval of broadcast news. In: Proceedings of the 3rd ACM International
Conference on Multimedia, pp. 35–43. ACM, January 1995

9. Adams, B., Iyengar, G., Neti, C., Nock, H.J., Amir, A., Permuter, H.H., Zhang, D.: IBM
research TREC 2002 video retrieval system, In: TREC, November 2002

10. Gevers, T., Smeulders, A.W.: Pictoseek: Combining color and shape invariant features for
image retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000)

11. Ma, W.Y., Manjunath, B.S.: NeTra: a toolbox for navigating large image databases.
Multimedia Syst. 7(3), 184–198 (1999)

12. Del Bimbo, A., Pala, P.: Visual image retrieval by elastic matching of user sketches. IEEE
Trans. Pattern Anal. Mach. Intell. 19(2), 121–132 (1997)

13. Jaimes, A., Smith, J.R.: Semi-automatic, data-driven construction of multimedia ontologies.
In: Proceedings of the 2003 International Conference on Multimedia and Expo, ICME 2003,
vol. 1, pp. 1–781. IEEE, July 2003

14. Hollink, L., Worring, M., Schreiber, A.T.: Building a visual ontology for video retrieval. In:
Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 479–
482. ACM, November 2005

15. Thunkijjanukij, A.: Ontology development for agricultural research knowledge
management: a case study for Thai rice. Ph.D. dissertation, Kasetsart University, Thailand
(2009)

16. Noy, N.F., Mcguinness, D.L.: Ontology Development 101: A Guide to Creating Your First
Ontology. Stanford University, Stanford (2001)

17. United States Department of Agriculture: Agricultural Thesaurus. http://agclass.nal.usda.gov.
Accessed 18 September 2014

18. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng.
Rev. 11(02), 93–136 (1996)

19. Froese, R.: FishBase. Oceanogr. Lit. Rev. 43, 3 (1996)
20. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing?

Int. J. Hum.-Comput. Stud. 43(5), 907–928 (1995)

Vietnamese Multimedia Agricultural Information Retrieval System 159

http://www.gso.gov.vn/
http://www.gso.gov.vn/
http://agclass.nal.usda.gov

21. Cañas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Eskridge, T., Gómez, G., Arroyo, M.,
Carvajal, R.: CmapTools: a knowledge modeling and sharing environment. In: Proceedings
of the 1st International Conference on Concept Mapping, Spain, vol. 1, September 2004

22. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé-OWL plugin: an
open development environment for semantic web applications. In: Proceedings of the 3rd
International Semantic Web Conference, Japan, November 2004

23. Vu, Q., et al.: A robust Vietnamese voice server for automated directory assistance
application. In: VLSP (2012)

24. Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional
neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process.
22(10), 1533–1545 (2014)

25. Hall, A.: Agricultural innovation systems: an introduction. Link-UNU-Merit
26. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural

networks for large vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process.
(2011)

160 T.H. Luong et al.

Mining Opinion Polarity from Multilingual
Song Lyrics

Qian Liu1,2(B) and Zhiqiang Gao1,2

1 School of Computer Science and Engineering, Southeast University,
Nanjing 210096, China

{qianliu,zqgao}@seu.edu.cn
2 Key Laboratory of Computer Network and Information Integration

of Ministry of Education, Southeast University, Nanjing 210096, China

Abstract. Song opinion is an important criterion when people orga-
nize and access songs. The ever growing amount of song data in the
Web, which includes multilingual songs, calls for the development of
automatic tools in classifying songs by opinion polarity. Sony lyric is a
critical resource for song opinion classification. In this paper, we propose
an approach to mine the opinion polarity of songs based on song lyrics in
a multilingual environment. This approach is based on classification and
translation. Firstly, we build monolingual opinion classifiers using super-
vised learning techniques for resource-rich languages, i.e., languages that
are rich of labeled training data. However, it is difficult to build a classi-
fier for a resource-rare language. In this case, we employ Language Grid,
which is an infrastructure that is built on the top of the Internet, and
provides easy-to-use services for multilingual translation, to bridge the
gap between the resources in different languages. Song lyrics are trans-
lated from resource-rare languages into resource-rich languages, then the
pre-trained monolingual opinion classifiers can be used to classify the
translated unseen lyrics. To build effective monolingual opinion classi-
fiers, we employ statistical information of song lyrics as features rather
than individual words in the song lyrics. Experiments show that, our pro-
posed approach performs better than two typical baseline approaches.

Keywords: Opinion classification · Multilingual song lyrics · Language
Grid

1 Introduction

Song opinion classification nowadays becomes a hot research topic due largely to
the increasing demand of ubiquitous song access. Song digital libraries face the
challenge of providing users with natural and diversified access points to songs.
Song opinion (or mood, emotion) has been recognized as an important criterion
when people organize and access songs [1]. The ever growing amount of song
data in the Web calls for the development of automatic tools in classifying songs
by opinion polarity.
c© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 161–172, 2016.
DOI: 10.1007/978-3-319-31468-6 12

162 Q. Liu and Z. Gao

To date, most automatic song opinion classification algorithms and systems
are solely based on the audio content of songs (as recorded in .wav, .mp3 or other
popular formats) [2,3]. Recently, researchers have started to exploit song lyrics
in opinion classification [4,5] and hypothesize that lyrics, which will be heard
and understood by listeners, play an important role in determining the opinion
polarity of songs. Therefore, detecting the opinion polarity of a song lyric effec-
tively contributes to detecting the opinion polarity of the song. However, there
is now comparatively less research done on methods for detecting the opinion
polarity of songs based on lyrics. There has been indeed a very large literature
already out there on opinion classification of traditional text. Song lyric opin-
ion classification is more challenging than traditional text opinion classification,
because songs can contain a series of negative lyrics but end with an uplifting,
positive note, or vice versa. For example, love songs can be misleading because
the lyrics often express how much the singer loves the other person, and then at
the end of the song the singer expresses his sadness over a sudden breakup.

Most of the text opinion classification works are supervised learning tech-
niques, which require training data annotated with the appropriate opinion
polarity labels (e.g. document-level or sentence-level positive vs. negative polar-
ity). However, labeled data is difficult and costly to obtain, especially for a
multilingual text opinion classification system because the labeled data must be
acquired separately for each language under consideration.

Previous works in multilingual opinion classification have focused on methods
to adapt opinion resources (e.g. lexicons) from resource-rich languages (typically
English) to other languages [6]. A monolingual opinion classifier is first con-
structed from a monolingual data. Opinion classifiers in target languages are
then constructed using translation (of the classifier or source data). The learnt
opinion classifiers are then used to classify data from their respective languages.
In recent years, however, opinion-labeled data is gradually becoming available
for languages other than English (e.g., [7–10]). In addition, there is still much
room for improvement in existing monolingual opinion classifiers.

In this paper, we propose to classify opinion polarity of multilingual song
lyrics using multilingual opinion classification techniques. There are two chal-
lenges in this work:

Challenge 1: The features used for training monolingual opinion classifiers are
difficult to select. The classifiers which make use of all words in the song lyrics
as features are proved to be ineffective [11] as many words in the song lyrics
make little contribution to opinion expressing. The polarity of an opinion maybe
inverted if negations and modifiers, which play a role to inverse or strengthen or
weaken the opinions, are found around the opinion word. In addition, the overall
opinion polarity maybe inverted by a sudden change at the end.

Challenge 2: The training data is difficult to obtain in resource-rare languages,
and thus difficult to train classifiers based on supervised learning techniques in
these languages directly. The human labeling work is difficult and time consum-
ing in a monolingual domain, not to say a multilingual domain.

Mining Opinion Polarity from Multilingual Song Lyrics 163

To address the aforementioned challenges, firstly, we train the monolingual
opinion classifiers from resource-rich languages based on pre-defined statistical
features instead of individual words. We use 10 features to represent the opinions
expressed in a song lyric, these 10 features correspond to 10 equal size segments
of the song lyric. In this way, we can represent and distinguish the opinions
expressed in each segment, and it is helpful to handle the problem of a sud-
den inverse at the end of the lyric. Secondly, we translate the unlabeled data
from resource-rare languages into resource-rich languages using a multilingual
translator to adapt the pre-trained monolingual opinion classifiers.

The rest of this paper is laid out as follows: in Sect. 2 we present related work
in multilingual opinion classification and how it has been extended to song lyrics.
In Sect. 3, we introduce the methods used to classify the opinions of multilingual
song lyrics. In Sect. 4, we discuss the experiment results. Finally, in Sect. 5, we
conclude by discussing future work in song lyric analysis.

2 Related Work

2.1 Multilingual Opinion Classification

There is a growing body of work on multilingual opinion classification or senti-
ment analysis. Most approaches focus on resource adaptation from one language
(usually English) to other languages with few sentiment resources [12]. For exam-
ple, The work [13] generates subjectivity analysis resources in a new language
from English sentiment resources by leveraging a bilingual dictionary or a parallel
corpus. Instead, the works [14,15] automatically translate the English resources
using automatic machine translation engines for subjectivity classification. The
work [16] investigates cross-lingual opinion classification from the perspective of
domain adaptation based on structural correspondence learning [17]. There are
also works aim to build multilingual opinion lexicons to facilitate multilingual
opinion classification, for example, the work [18] builds high-quality sentiment
lexicons for 136 major languages.

2.2 Opinion Classification with Lyrics

Lyrical analysis for opinion classification is a relatively new area of research. Mil-
lions of lyrics are now available on the Internet to researchers in semi-structured
formats. Lyrics are typically analyzed as part of a music classification task, where
songs are classified by genre, mood, or emotion [19,20]. The work [21] uses lyrical
features combined with audio, cultural, and symbolic features to classify songs
by genre. They find that lyrics alone are poor indicators of a song’s genre, but
that when lyrical analysis is combined with other features, their system is able
to achieve high genre classification accuracy.

Although lyrics are different from traditional text, traditional text opinion
classification techniques can still be used for lyric opinion classification. Many
literatures have been produced to address the opinion classification problem

164 Q. Liu and Z. Gao

in natural language processing research. Three approaches are dominating, i.e.
knowledge-based approach [22], information retrieval-based approach [23] and
machine learning approach [24], in which the last approach is found very pop-
ular. For example, the work [24] adopts the VSM model to represent product
reviews and apply text classification algorithms such as Naive Bayes, maximum
entropy and support vector machines to predict sentiment polarity of given prod-
uct review. However, the work [11] shows that song opinion classification with
the VSM model, which considers all content words in the song lyric delivers dis-
appointing quality because the VSM model is problematic in representing song
lyric when the dimension of the vector space is too high. In this work, we also
use VSM to represent song lyrics, however, we design new features to effectively
represent the song lyrics.

3 Approach

We propose an approach for automatically mining opinion polarity from mul-
tilingual song lyrics. This approach is based on classification and translation
technologies. We first give an overall introduction of the approach, and then
introduce the classification and translation components in detail.

Train opinion
classifiers in

source languages

Translate target
languages into

source languages

Labeled lyrics in
MLabeled lyrics in

2Labeled lyrics in
source language 1

Unlabeled lyrics in
NUnlabeled lyrics in

2Unlabeled lyrics in
target language 1

Unlabeled lyrics in
MUnlabeled lyrics in

2Unlabeled lyrics in
source language 1

Classify and merge
lyric opinions in
source languages

Opinion
classifiers in

source languages

Multilingual
translator

Labeled lyrics in
NLabeled lyrics in

2Labeled lyrics in
target language 1

Fig. 1. Workflow of the proposed multilingual song lyric opinion classification app-
roach.

In this paper, a set of song lyrics is called a labeled dataset if the opinion
polarity of each song lyric in it is known and labeled. We refer to the languages

Mining Opinion Polarity from Multilingual Song Lyrics 165

which have labeled datasets for training classifiers as source languages, and refer
to the languages which have only unlabeled datasets waiting to be classified as
target languages. Our purpose is to predict the opinion polarity of each unlabeled
song lyric in a target language by employing the labeled information in source
languages.

Figure 1 presents the workflow of our proposed multilingual song lyric opinion
polarity mining approach. Given labeled datasets SD = {sd1, sd2, ..., sdM} in
source languages S = {s1, s2, ..., sM}, and unlabeled datasets TD = {td1, td2, ...,
tdN} in target languages T = {t1, t2, ..., tN}, this approach includes three steps:

– Step 1: For each source language si ∈ S (i = 1..M), train a monolingual
opinion classifier ci, then we get a set of classifiers C = {c1, c2, ..., cM} for S;

– Step 2: For each dataset tdj ∈ TD (j = 1..N) in target language tj , translate
tdj into source languages s1, s2, ..., sM using a multilingual machine translator,
then we get a set of unlabeled datasets stdj = {tdj1, tdj2, ..., tdjM} in source
languages for tdj , and a set of unlabeled datasets STD = {std1, std2, ..., stdM}
in source languages for TD;

– Step 3: Classify the opinion polarity of each data in STD using the trained
classifiers in C, and then merge the results from different classifiers to get the
final class label for each data.

We give a detailed introduction of step 1 in Sect. 3.1, and introduce step 2
and step 3 in Sect. 3.2.

3.1 Building Monolingual Opinion Polarity Classifier

For the purposes of our studies, we limited opinion polarities of song lyrics to
positive and negative. We use the vector space model (VSM) [25,26] as the
document representation model, each song lyric is represented by a vector in
VSM. [11] show that VSM-based text classification method is ineffective in song
opinion classification if the model considers all content words within song lyric
as features in classification since many words in song lyric actually make little
contribution to opinion expressing. In addition, song lyrics are usually much
shorter than traditional text, thus using individual words as features in VSM
may suffer from serious sparse data problem, that is, most of words/features are
not appeared in a song lyric.

To address the problem, we propose to utilize statistical information of a
song lyric instead of individual words in it. For each song lyric, fi ∈ sdj , where
sdj ∈ SD (j = 1..M), we carry out the following process:

Part-of-speech Tagging. We extract tokens and their part-of-speech tags from
fi, and retain only whole words and remove all other noise (punctuation, paren-
theses, etc.). Also, the frequency of each token is calculated and stored along with
fi. We use Stanford Part-Of-Speech Tagger1 for English part-of-speech tagging,
and ICTCLAS2 for Chinese part-of-speech tagging.
1 http://nlp.stanford.edu/software/tagger.shtml.
2 http://ictclas.org/ictclas demo.html.

http://nlp.stanford.edu/software/tagger.shtml
http://ictclas.org/ictclas_demo.html

166 Q. Liu and Z. Gao

Stop-word Removal. Stop-words are the words that are of very little impor-
tance in the discrimination of documents in general. They can be specific to a
dataset. In this paper, we assume that only nouns, verbs, adjectives and adverbs
are useful for opinion classification, thus all words of other part-of-speech are
treated as stop words and should be removed.

Morphological Analysis. The retained words are then analyzed in order to
combine different words having the same root to a single one when necessary.
For example, in English the words “love”, “loved”, “lover” and “loving” should
be combined to form a single word, “love”. This is logical because all such words
convey the same (loosely) meaning. Also, it reduces the dimensionality of the
resulting dataset. We use Porter Stemmer algorithm3 for English morphological
analysis.

Dictionary Matching and Weight Resetting. The final set of words are
checked in the pre-defined opinion word dictionary, which contains opinion words
such as “happy”, “sad” and “love”, etc., and a reverse word list, which contains
words such as “not”, “n’t” and “never”, etc. In this paper, we employ the bilin-
gual HowNet sentiment word dictionary4 as our opinion word dictionary. If a
retained word w is matched with a positive word in the dictionary, then the
weight of w equals to the frequency of w; if w is matched with a negative word
in the dictionary or a word in the reverse word list, then the weight of w is set
to −frew, where frew is the frequency of w; if w cannot be matched with any
words in the dictionary, then the word is removed from the word set.

Opinion Representing. VSM is employed here to represent the opinion
expressed in fi, the vector for fi is denoted by vi. We use ten statistic scores as
the features in vi rather than individual opinion words for two reasons. Firstly, to
avoid serious sparse data problem in VSM-based classification. Secondly, these
features can represent and distinguish partial opinions expressed in the lyric and
thus help to model a sudden inversion at the end of the lyric. To get the sta-
tistical features, the lyric fi is divided into 10 equal segments according to the
number of lines, and then a polarity score is computed for each part by adding
the weights of all opinion words in this segment. The polarity score for each part
of song lyric corresponds to a feature in vi. The last, i.e., 11th dimension of vi
represents the opinion polarity of fi, its value is “pos” if the polarity of fi is
positive, or “neg” if the polarity of fi is negative.

Then we get a set of vectors for sdi, the song lyric opinion classification
can be viewed as a text classification task thus can be handled by standard
classification algorithms. In this work, Support Vector Machines (SVM) [25,27]
and Naive Bayes text classifiers [25] are chosen as our classifiers because of their
strong performances in text classification.
3 http://tartarus.org/martin/PorterStemmer/.
4 This dictionary contains 17,887 entries, and consists of 12 subsets, i.e.,

Chinese/English positive/negative feeling, Chines/English positive/negative senti-
ment, Chinese/English opinion, and Chinese/English degree.

http://tartarus.org/martin/PorterStemmer/

Mining Opinion Polarity from Multilingual Song Lyrics 167

3.2 Multilingual Classification via Translation

After building monolingual opinion classifiers for the source languages, we can
employ them to classify unlabeled datasets in target languages. A multilingual
language translator is then needed to bridge the gap between the monolingual
classifiers in source languages and unlabeled datasets in target languages. In this
paper, we employ the Language Grid5 [28] to translated song lyrics in target
languages into source languages.

Fig. 2. Document translation service in Language Grid. The English translation of the
song lyric is “Tiredness on his body turned into a smile. The rhythm of his pace started
not so heavy. The sultry summer night-wind is rotating gently. Ordinary or special,
clumsy or smart is the same. He never worried about being tortured by the world. The
sweet load is his biggest spiritual support. The sleepiness with a smile turned into a
rainbow. He walked straight to the starry night sky in his dream. The noise light up
the summer-long splurge desire. Light and strong, good and bad, he tasted them all. He
never mind teased by his fate. Pressed the alarm clock, to open another dream.”

The Language Grid is an infrastructure that is built on the top of the Internet.
It allows end users as well as professionals to conquer the language barriers by
themselves. Users can combine existing language services provided by researchers
and professionals, and create new language services for their own purposes by
permitting them to add their own language resources. Since the Language Grid
provides easy-to-use services for language translation as well as linguistic analy-
sis such as morphological analysis and dependency analysis, etc., we use the
language technologies it provides to facilitate our study. Figure 2 shows a screen
shot of using Language Grid for document translation, the source language and
target language can be changed at the end of the web page.

The process of classifying unlabeled datasets in target languages consists of
three steps:
5 http://langrid.org/en/index.html.

http://langrid.org/en/index.html

168 Q. Liu and Z. Gao

– Step 1: Translate each unlabeled lyric fi ∈ tdj , where j = 1..N , tdj ∈ TD
in target language tj ∈ T into M source languages s1, s2, ..., sM . This results
in a new dataset with M × |TD| unlabeled lyrics in sources languages, where
|TD| is the number of song lyrics in TD;

– Step 2: Classify the translated lyrics using M monolingual classifiers trained
on labeled datasets in source languages. For each unlabeled data, there are M
labels predicted by M classifiers;

– Step 3: Determine the final class label c label(fi) for fi data by merging the
M results using the following formula:

c label(fi) =

⎧⎪⎨
⎪⎩

pos, if score(fi) > 0
neg, if score(fi) < 0

freq label, if score(fi) = 0

where score(fi) =
∑M

i=1 polarity(ci) × precision(ci), and ploairty(ci) = 1 if
classifier ci classify fi as positive, polarity = −1 if ci classify fi as negative,
precision(ci) is the precision of classifier ci, which is built previously (see
Sect. 3.1). freq label is the most frequent class label predicted by M mono-
lingual classifiers.

4 Experiments

4.1 Data Acquisition

We use a dataset of 1,750 unique song lyrics, including 720 Chinese song lyrics,
730 English song lyrics and 300 Japanese song lyrics, divided equally between
positive and negative opinion polarities (hereafter referred to as positive lyrics
and negative lyrics).

To gather the ground truth opinion polarity labels for the song lyrics, we
utilized Baidu Music’s list of songs classified by mood, which includes sad, quiet,
sweet, lonely, happy, delightful and romantic, etc6. Baidu Music is a music search
engine, which provides comprehensive lists of popular Chinese music as well
as music in other languages, such as English, Japanese, Korean, etc., it can
also provide music, lyrics search and online music services. We assume that the
mood label for each song in Baidu Music’s list is labeled and checked manually,
thus we use the collected dataset as our training set. We manually selected
360 Chinese, 365 English and 150 Japanese positive song lyrics from the song
list with happy or delightful label, and selected 360 Chinese, 365 English and
150 Japanese negative song lyrics from the song list with sad or lonely label.
In our experiments, we use Chinese and English song lyrics for training, and
Japanese song lyrics for testing.
6 http://music.baidu.com/tag.

http://music.baidu.com/tag

Mining Opinion Polarity from Multilingual Song Lyrics 169

4.2 Results and Analysis

We adopt the standard evaluation criteria in text classification, namely precision,
recall and F1-measure. For each class (positive and negative), precision, recall
and F1-measure are averaged over a 10-fold cross validation. We use the LIBSVM
[29] implementation of SVM and Naive Bayes classifier in WEKA [30]. The
default parameters of both LIBSVM and Naive Bayes classifiers are used for all
the experiments.

To verify the effectiveness of our proposed monolingual opinion classifiers,
we use two typical approaches for comparison.

Dictionary based approach. This approach also makes use of the bilingual
HowNet sentiment word dictionary to detect opinion words and recognize the
neighboring negations, and then compute the polarity scores of the opinion words
in the song lyrics. The polarity of a lyric f is determined according to the
following rules.

1. The opinion polarity of f is positive, if the final polarity score is positive
after adding all the polarity scores of opinion words in f ;

2. The opinion polarity of f is negative if the final polarity score is negative
after adding all the polarity scores of opinion words in f ;

3. If the final polarity score of f is 0, and if there are more positive opinion words
than negative ones, then the opinion polarity of f is positive, otherwise, the
opinion polarity of f is negative.

Table 1. Precision, recall and F1-measure of the dictionary-based approach, opinion
word based VSM approach and the proposed monolingual classification approaches.

Approach Class Chinese English

Precision Recall F1-measure Precision Recall F1-measure

Dictionary-based positive 0.52 0.68 0.59 0.54 0.62 0.58

negative 0.47 0.33 0.39 0.51 0.40 0.45

Avg 0.50 0.51 0.49 0.53 0.51 0.51

Opinion word based VSM positive 0.56 0.71 0.63 0.56 0.62 0.59

negative 0.61 0.45 0.52 0.52 0.46 0.49

Avg 0.59 0.58 0.57 0.54 0.54 0.54

Ours-SVM positive 0.65 0.82 0.73 0.72 0.85 0.78

negative 0.76 0.56 0.65 0.82 0.67 0.74

Avg 0.71 0.69 0.69 0.77 0.76 0.76

Ours-NaiveBayes positive 0.82 0.71 0.76 0.87 0.68 0.76

negative 0.75 0.85 0.79 0.74 0.89 0.80

Avg 0.78 0.78 0.78 0.80 0.79 0.79

VSM using opinion words as features. As in our approach, this approach
uses VSM to represent a lyric as a vector. Each dimension in the vector cor-
responds to an opinion word in all the song lyrics under study, the value of
each dimension is either the weight of the word if it appears in the lyric, or 0

170 Q. Liu and Z. Gao

if it does not appear in the lyric. The last dimension of the vector represents
the opinion polarity of the lyric, its value is “pos” if the polarity is positive, or
“neg” if the polarity is negative. Then LIBSVM is chosen to train the classifier
as in our approach. The difference between opinion word based VSM and our
proposed opinion statistical feature based VSM is the features used for training
the classifiers.

Table 1 shows the precision, recall and F1-measure of the dictionary-based
approach, opinion word based VSM approach and ours on monolingual song
lyrics. Opinion word based VSM approach performs better than the dictionary-
based approach, and opinion statistical feature based VSM approaches, i.e., ours-
SVM and ours-NaiveBayes, outperform the opinion word based VSM approach,
ours-NaiveBayes is the best classifier of all. For dictionary-based approach, pos-
itive class gets higher F1-measure than negative class in both Chinese and Eng-
lish classifiers, and it is the same case in opinion word based VSM approach and
ours-SVM approach. That probably because song lyrics often express positive
opinions at the beginning, and then inverted the opinion polarity at the end of
the song, which is mentioned in the Sect. 1. In ours-NaiveBayes, negative class
gets higher F1-measure than positive class in both Chinese and English classifiers
thanks to the statistical features used in the classifier.

Table 2. Precision, recall and F1-measure of our proposed multilingual opinion polarity
classifiers.

Translate Japanese Class Ours-SVM Ours-NaiveBayes

Precision Recall F1-measure Precision Recall F1-measure

To Chinese positive 0.56 0.86 0.68 0.57 0.55 0.56

negative 0.80 0.44 0.57 0.64 0.67 0.66

Avg 0.69 0.63 0.62 0.61 0.61 0.61

To English positive 0.54 0.68 0.60 0.57 0.55 0.56

negative 0.67 0.52 0.58 0.64 0.67 0.66

Avg 0.61 0.59 0.59 0.61 0.61 0.61

Combined positive 0.56 0.86 0.68 0.57 0.55 0.56

negative 0.80 0.44 0.57 0.64 0.67 0.66

Avg 0.69 0.63 0.62 0.61 0.61 0.61

Table 2 shows the precision, recall and F1-measure of our proposed multilin-
gual opinion polarity classifiers. In average, ours-SVM performs better than ours-
NaiveBayes, and Ours-SVM gets higher F1-measure when translating Japanese
into Chinese than into English. The performance of ours-NaiveBayes is stable
when translating Japanese into both Chinese and English.

5 Conclusion

In this paper, we propose an approach for mining the opinion polarities in mul-
tilingual song lyrics based on classification and translation. Firstly, we train

Mining Opinion Polarity from Multilingual Song Lyrics 171

monolingual opinion classifiers in resource-rich languages, and then translate
the unlabeled data into resource-rich languages to bridge the gap between the
pre-trained monolingual opinion classifiers and the unlabeled data in resource-
rare languages. After translation, the pre-trained monolingual opinion classifiers
can be used to classify the unlabeled data in resource-rare languages. Experi-
ments show that, our proposed approach is effective in classifying the opinion
polarities in multilingual song lyrics.

In future work, we plan to explore more complicate features which can be
used in the classifiers by analyzing the syntactic and semantic structures of the
song lyrics.

Acknowledgments. This work was supported by the National Science Foundation
of China under grant 61170165.

References

1. Vignoli, F.: Digital music interaction concepts: a user study. In: Proceedings of the
5th International Conference on Music Information Retrieval (2004)

2. Lu, L., Liu, D., Zhang, H.J.: Automatic mood detection and tracking of music
audio signals. IEEE Trans. Audio Speech Lang. Process. 14, 5–18 (2006)

3. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification
of music into emotions. In: ISMIR, pp. 325–330 (2008)

4. He, H., Jin, J., Xiong, Y., Chen, B., Sun, W., Zhao, L.: Language feature mining for
music emotion classification via supervised learning from lyrics. In: Kang, L., Cai,
Z., Yan, X., Liu, Y. (eds.) ISICA 2008. LNCS, vol. 5370, pp. 426–435. Springer,
Heidelberg (2008)

5. Hu, Y., Chen, X., Yang, D.: Lyric-based song emotion detection with affective
lexicon and fuzzy clustering method. In: ISMIR 2009, pp. 123–128 (2009)

6. Lu, B., Tan, C., Cardie, C., Tsou, B.K.: Joint bilingual sentiment classification
with unlabeled parallel corpora. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies,
HLT 2011, vol. 1, pp. 320–330. Association for Computational Linguistics (2011)

7. Seki, Y., Evans, D.K., Ku, L.W., Chen, H.H., Kando, N., Lin, C.Y.: Overview of
opinion analysis pilot task at NTCIR-6. In: Proceedings of NTICR-6 (2007)

8. Seki, Y., Evans, D.K., Ku, L.W., Sun, L., Chen, H.H., Kando, N.: Overview of
multilingual opinion analysis task at NTCIR-7. In: Proceedings of NTCIR-7 (2008)

9. Nakagawa, T., Inui, K., Kurohashi, S.: Dependency tree-based sentiment classifi-
cation using CRFs with hidden variables. In: Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pp. 786–794 (2010)

10. Schulz, J.M., Womser-Hacker, C., Mandl, T.: Multilingual corpus development for
opinion mining. European Language Resources Association (2010)

11. Xia, Y., Wang, L., Wong, K.F.: Sentiment vector space model for lyric-based song
sentiment classification. Int. J. Comput. Process. Lang. 21(4), 309–330 (2008)

12. Balahur, A., Turchi, M.: Comparative experiments using supervised learning and
machine translation for multilingual sentiment analysis. Comput. Speech Lang. 28,
56–75 (2014)

13. Mihalcea, R., Banea, C., Wiebe, J.: Learning multilingual subjective language via
cross-lingual projections. In: Proceedings of ACL (2007)

172 Q. Liu and Z. Gao

14. Banea, C., Mihalcea, R., Wiebe, J.: Multilingual subjectivity: are more languages
better? In: Proceedings of the 23rd International Conference on Computational
Linguistics, COLING 2010, pp. 28–36. Association for Computational Linguistics
(2010)

15. Banea, C., Mihalcea, R., Wiebe, J., Hassan, S.: Multilingual subjectivity analysis
using machine translation. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2008, pp. 127–135. Association for
Computational Linguistics (2008)

16. Prettenhofer, P., Stein, B.: Cross-language text classification using structural cor-
respondence learning. In: Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2010, pp. 1118–1127. Association for
Computational Linguistics (2010)

17. Blitzer, J., McDonald, R., Pereira, F.: Domain adaptation with structural corre-
spondence learning. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2006, pp. 120–128. Association for Com-
putational Linguistics (2006)

18. Chen, Y., Skiena, S.: Building sentiment lexicons for all major languages. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Short Papers), vol. 2, pp. 383–389. Association for Computational
Linguistics (2014)

19. Cho, Y.H., Lee, K.J.: Automatic affect recognition using natural language process-
ing techniques and manually built affect lexicon. IEICE Trans. Inf. Syst. E89–
D(12), 2964–2971 (2006)

20. Hu, X., Downie, J.S.: Improving mood classification in music digital libraries by
combining lyrics and audio. In: Proceedings of the 10th Annual Joint Conference
on Digital Libraries, JCDL 2010, pp. 159–168. ACM (2010)

21. McKay, C., Burgoyne, J.A., Hockman, J., Smith, J.B.L., Vigliensoni, G., Fujinaga,
I.: Evaluating the genre classification performance of lyrical features relative to
audio, symbolic and cultural features. In: ISMIR 2010, pp. 213–218 (2010)

22. Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of
the 20th International Conference on Computational Linguistics, COLING 2004.
Association for Computational Linguistics (2004)

23. Turney, P.D., Littman, M.L.: Measuring praise and criticism: inference of semantic
orientation from association. ACM Trans. Inf. Syst. 21, 315–346 (2003)

24. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP 2002, vol. 10, pp. 79–86.
Association for Computational Linguistics (2002)

25. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

26. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18, 613–620 (1975)

27. Joachims, T.: Learning to Classify Text Using Support Vector Machines: Methods,
Theory and Algorithms. Kluwer Academic Publishers, Norwell (2002)

28. Ishida, T. (ed.): The Language Grid - Service-Oriented Collective Intelligence for
Language Resource Interoperability. Cognitive Technologies. Springer, Heidelberg
(2011)

29. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27: 1–27: 27 (2011)

30. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

Cooperative Philology on the Way
to Web Services: The Case

of the CoPhiWordNet Platform

Riccardo Del Gratta(B), Federico Boschetti, Angelo Del Grosso,
Fahad Khan, and Monica Monachini

Institute for Computational Linguistics “A. Zampolli”,
Via Moruzzi 1, 56100 Pisa, Italy

{riccardo.delgratta,federico.boschetti,angelo.delgrosso,
fahad.khan,monica.monachini}@ilc.cnr.it

http://www.ilc.cnr.it

Abstract. In this paper we present ongoing research carried out at the
Institute for Computational Linguistics “A. Zampolli” (ILC) in Pisa.
The institute has been active since many years in the field of Digital
Humanities providing resources, tools and solutions to address issues of
the to digital humanists. Starting from those previous initiatives, we
show how to re-engineer them as Web Services in order to make con-
nections between lexicons, semantic resources and a fine grained text
management. Linked Open Data is chosen as the paradigm used to link
the different resources as well as the modality of data presentation.

Keywords: Cooperative philology · Web services · Linked open data ·
Canonical text services

1 Introduction

In this article we will describe ongoing research in the field of computation-
ally assisted philology as carried out by two groups within the Institute for
Computational Linguistics “A. Zampolli”: the Laboratory of Cooperative Philol-
ogy(CoPhiLab)1 and the Language Resources and Infrastructures (LaRI) group,
in close cooperation with various other national and international partners.2 The
extensive interaction between these two groups is motivated by the high levels of
interdisciplinary collaboration demanded by the field of philology, with its focus
on the evaluation of textual variants attested by different primary sources of the
same work (for instance epigraphs, papyri or manuscripts), the reconstruction of

1 http://www.cophilab.eu/CoPhiLabPortal.
2 Musisque Deoque Project, http://mqdq.it

Open Philology Project, http://www.dh.uni-leipzig.de/wo/open-philology-project
Perseus Project, http://perseus.tufts.edu
Alpheios Project, http://alpheios.net.

c© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 173–187, 2016.
DOI: 10.1007/978-3-319-31468-6 13

http://www.cophilab.eu/CoPhiLabPortal
http://mqdq.it
http://www.dh.uni-leipzig.de/wo/open-philology-project
http://perseus.tufts.edu
http://alpheios.net

174 R. Del Gratta et al.

historical and cultural contexts relevant to the understanding of texts, and the
interpretation of texts supported by stylistic and, above all, linguistic analyses.

Taking into account the fact that ILC is an active partner in both CLARIN-
and DARIAH-ERIC initiatives, the presented work is part of a wider research
program that is focused on models, resources, instruments and infrastructures
for the Digital Humanities community.

With the overall program of research in Cooperative Philology proposed
by the authors of the current paper, we wish to stress the importance of a
library of components (CoPhiLib) to address issues pertaining to the philologi-
cal domain [9]. The architecture and the implemented modules of CoPhiLib are
the result of a continuous and fruitful interaction between experts in the domain
of the Digital Humanities, software engineers, and software developers within
the CoPhiLab and LaRI groups. This interaction aims at providing resources,
tools and solutions to address the issues of the Digital Humanities community,
causing a different method for approaching philological studies. The library is
a work in progress, whose structure is described in [1]. By following a general
trend, in the domain of Digital Humanities developers and engineers are progres-
sively shifting from a project-driven approach to a community-based paradigm.
This trend runs side by side with the shift from Collaborative to Cooperative
Philology [18].

According to [28], collaboration requires direct interaction (i.e. negotiations,
discussions, etc.) among individuals to create a product, whereas cooperation
requires that all participants accomplish their assigned parts separately and
share their results with the others. Thus, as pointed out in the aforementioned
[18], Collaborative Philology produces Web applications and platforms, so that
digital humanists, organized in communities, can work together with shared
goals; on the other hand, Cooperative Philology produces libraries of components
and Web Services that highly decouple their function from the overall goal they
are designed for.

It is important that the design of single individual components take into
consideration the principles of software engineering3 by hiding all additional
complexity from end users. In effect, users in Digital Humanities might be wor-
ried about the possible complexity that the use of software libraries could add to
their routine activities. But such libraries are designed to decouple the activities
of digital humanists from specific technologies.

Furthermore this work is ultimately directed towards the Web of Services4

which is emerging as an important means for the Digital Humanities community
to access new and existing instruments and resources.

1.1 Overview

In Sect. 2 we describe some of the most relevant models, resources and instru-
ments for Cooperative Philology with regards to infrastructures for the wider
3 For example bottom-up and top-down strategies, pattern programming, modularity,

maintainability, performance, atomicity, strong user requirements . . .
4 http://www.w3.org/TR/ws-arch/.

http://www.w3.org/TR/ws-arch/

Cooperative Philology on the Way to Web Services 175

Digital Humanities community. In Sect. 3 we present a high level description of
the CoPhiLib library of components. Section 4 presents the Cooperative Philol-
ogy WordNet Platform (CoPhiWordNet) as a case study to show the mutual ben-
efits when Language Resource are enhanced with philological dimensions such
as the interaction between linguistic and textual resources. The same section
describes the implemented components of the library devoted to the manage-
ment of the CoPhiWordNet. Finally Sect. 5 shows how the (Linguistic) Linked
Open Data ((L)LOD) can serve as a paradigm used to link different resources
as well as a modality of data presentation.

2 Background

Philology, as a historical discipline is language and culture dependent: Classical
Philology, Germanic Philology, Romance Philology, etc. have different traditions
and communities. Our attention is mainly focused on Classical Philology, even
if several common methods and tools are exploited by other philological com-
munities. As pointed out in Sect. 1, philological studies (in particular classical
studies) are mainly based on texts, variant readings, the examination of pri-
mary sources, the evaluation of contextual information, stylistic and linguistic
analyses. A general survey of digital and computational philology is provided
by [4]. Here we wish to mention just a few initiatives, representative of different
typologies of digital products.

Text Encoding Initiative (TEI)5 suggests models, frameworks and guidelines
for annotating digital texts and relevant textual phenomena, such as structural
division in sections and subsections, gaps in the primary sources, variant read-
ings, typographical rendering, etc. In order to overcome the scalability limitations
of in-line annotation, citation schemes are provided by the Canonical Text Service
(CTS) [7]. With CTS it is possible to associate an arbitrary number of annotations
at any level of analysis to textual chunks (part of a word, word, phrase, etc.) that
are uniquely identified. Given this machine actionable citation scheme and lin-
guistic analyses that are arranged according to the lemon model,6 the association
between texts and related analyses can be easily expressed in RDF.

The largest collection of digital resources (texts) for Greek and Latin cur-
rently available under an open license is maintained by the Perseus Project and
is continuously enhanced both by new OCR acquisitions and the integration of
interchangeable sub-collections, such as the corpus of “Poeti d’Italia in Lingua
Latina”.7 The Perseus Project also provides syntactically annotated corpora, the
Greek and Latin Dependency Treebanks.8 Furthermore, the Musisque Deoque
and the Memorata Poetis9 projects provide digital editions with critical appa-
ratus and texts annotated with themes and motifs, respectively. [12] describes

5 http://www.tei-c.org.
6 http://lemon-model.net/.
7 http://www.poetiditalia.it.
8 http://nlp.perseus.tufts.edu/syntax/treebank.
9 http://www.memoratapoetis.it.

http://www.tei-c.org
http://lemon-model.net/
http://www.poetiditalia.it
http://nlp.perseus.tufts.edu/syntax/treebank
http://www.memoratapoetis.it

176 R. Del Gratta et al.

computational instruments and linguistic tools for morphological analysis for
Greek, and [35] for Latin. Syntactic parsers [30] and tools for Named Entity
Recognitions [26] are currently under development. For lexico-semantic resources
for classical languages it is worth mentioning Latin WordNet (LWN) [33,34] and
the ongoing work on the Ancient Greek WordNet (AGWN) [5].

Finally, with regard to e-infrastructures we will mention the two largest
European ERIC initiatives dedicated to the Digital Humanities communities,
CLARIN10 (focused on Language Resource) and DARIAH11 (focused on cultural
heritage). According to the manifesto of CLARIN, its mission is the setting-
up of a “Common Language Resources and Technology Infrastructure, which
aims to provide easy and sustainable access for scholars in the humanities and
social sciences to digital language data . . . ”. CLARIN also offers humanists
“advanced tools to discover, explore, exploit, annotate, analyse or combine them
[i.e. the data], wherever they are located”. The current status of the CLARIN
infrastructure is described in [25]. The mission of DARIAH is to enhance and
support digitally-enabled research across the humanities and arts. According to
its manifesto DARIAH is “the Digital Research Infrastructure for the Arts and
Humanities” which “aims to enhance and support digitally-enabled research and
teaching across the humanities and arts. [. . .] DARIAH will develop, maintain
and operate an infrastructure in support of ICT-based research practices”.

The necessity of creating infrastructures to share Language Resources and
Technologies (LRT) for the Digital Humanities community is an emerging
research topic as demonstrated by initiatives such as InterEdition12 and the
aforementioned Open Philology and Perseus Projects.

3 CoPhilib: Analysis and Design

The library of components (CoPhiLib) which we describe here is strongly related
to the identification of different roles within the Digital Humanities community
at large. Digital and Traditional Humanists on the one side and software engi-
neers and developers on the other provide us with the primary roles; but often a
digital humanist may develop a software solution by him or herself and collapse
two distinct roles into one. This mixed situation necessitates a deep analysis of
the different user requirements of distinct actors. The more we aim at coopera-
tion, the more evidently this need emerges.

Within the Language Resources and Technologies community, for exam-
ple, the key role of user requirements has been clearly identified by META-
SHARE,13 the network of repositories of language data, tools and related Web
Services implemented in META-NET.14 In META-SHARE the different user
10 http://clarin.eu.
11 http://dariah.eu/.
12 http://www.interedition.eu/.
13 http://www.meta-share.eu/.
14 Co-funded by the 7th Framework Programme of the European Commission through

the grant agreement no. 249119.

http://clarin.eu
http://dariah.eu/
http://www.interedition.eu/
http://www.meta-share.eu/

Cooperative Philology on the Way to Web Services 177

requirements of various actors involved drive the design and the modeling of
the infrastructures more than Information Technology, whose experts are asked
to solve issues and provide solutions for the user requirements [19]. Also in
CLARIN, a user-driven approach is clearly perceived as a need for the develop-
ment of Digital Humanities Projects [27].

Along with the need for a user-driven approach, [24,31,40] many initia-
tives in the Digital Humanities community lack effective collections of reusable
Abstract Data Types (ADTs) [10],15 stable specifications of Application Pro-
gramming Interfaces (APIs) [11,41], and essentially, suitable well-designed (soft-
ware) libraries [2,38].

According to [16], this deficit occurs because communication between human-
ists and software engineers/developers is inadequate and software engineering
principles are not fully applied [15]. Indeed, a first and fast prototyping phase
rarely precedes systematic development steps; on the contrary, software imple-
mented for a specific project cannot be reused in other projects only because of
insufficient generalization of problems and user needs [14].

The objective of the work carried out in collaboration between the CoPhi-
Lab and LaRI groups is to tailor a set of software components to the needs of
humanists. The process which formalizes the users’ requirements into a library
of components can be summarized in the following step.

(1) Gathering functional and non functional requirements. The role of
the humanists is crucial since they provide the necessary requirements that
are generalized using pattern techniques cf. Fig. 1 and example in Listing 1.1.
The resulting entities and models are then formalized in UML diagrams;

(2) Refining the fundamental entities of the application model. This
phase refines the models and the entities in order to identify core struc-
tures;16

(3) Defining the APIs to make each component interoperable. This
phase defines the general Application Programming Interfaces and how var-
ious agents (human or software) interact with services and components.

Listing 1.1. Simple pattern

As <Role X> I want to do <Action Y> [Using <Resource A>,
[through] <Tool B>, [on/with] <I n f r a s t r u c t u r e C>]
[so that <Happens W>] to obta in <Result Z>

15 Abstract Data Types are values (data type) and operations (on them) without spec-
ifying how the data type is implemented (encapsulation) [23,39]. Designing reusable
Abstract Data Types is strategic since they generalize the domain requirements in
term of behavior and separation between implementation and interface.

16 We strongly apply software design techniques such as analysis pattern, architectural
pattern, design pattern . . .

178 R. Del Gratta et al.

Fig. 1. User requirements (Courtesy of Bridget Almas, Alpheios Project)

3.1 High Level Architecture

The resulting architecture consists of a set of components, at various levels,
which provide services for the agents and intercommunicate using Application
Programming Interfaces and services (cf. Figs. 2 and 3).

4 Cooperative Philology WordNet Platform

The Cooperative Philology WordNet Platform (CoPhiWordNet) is based on the
need for a lexico-semantic resource (specifically a WordNet) for Ancient Greek,
as noted in [5]. At the moment, CoPhiWordNet connects different WordNets in
both modern and classical languages. Each WordNet in the platform is modeled
on Princeton WordNet (PWN) which is used also as a pivot resource. In addition
to PWN, CoPhiWordNet manages and connects the Ancient Greek WordNet,
the Latin WordNet, the Italian WordNet [37], the Croatian WordNet [36] and
the Arabic WordNet [6,20]. The Cooperative Philology WordNet Platform is
accessed through a Web application17 which allows users to browse and edit
the WordNets: the platform is used as a means of assembling new linguistic
resources (such as the WordNet for Ancient Greek) as well as of extending exist-
ing WordNets while preserving the integrity of the originals (as with Latin and
Arabic).

CoPhiWordNet is the result of a collaboration between LaRI and CoPhi-
Lab groups. Experts in Language Resources (LRs) from former group provided
philologists in the latter with the necessary know-how on managing LRs suitable
for their requirements while software engineers/developers, with experience in
both LRTs and philology, defined the architecture and implemented the required
solutions. We have followed the three steps of the process which formalizes user
requirements into a library of components (cf. Sect. 3).

The CoPhiWordNet fulfills the requirements to have translations of classic
terms into both modern languages and classic languages more accessible and
17 GUI beta-version at http://www.languagelibrary.eu/new ewnui.

http://www.languagelibrary.eu/new_ewnui

Cooperative Philology on the Way to Web Services 179

Fig. 2. Basic layers and modules of the CoPhiLib components

Fig. 3. Components and services

vice versa. Moreover, it provides APIs to be connected to other platforms, such
as Perseids18 as developed by Alpheios Projects, as well as providing semantic
annotations. The core model and entities are mapped on the model of PWN
while mapping entities follow the model of Interlingual Index (ILI) [42]; the use
of Web Services makes the functions of the platform interoperable: each map-
ping service between WordNeti and WordNetj (WN i2j IndirectMapping Ws in
Fig. 4) is the composition of the ILI mapping between PWN and WordNetj ,
(PWN DirectMapping Ws in Fig. 4).

18 http://www.perseids.org/.

http://www.perseids.org/

180 R. Del Gratta et al.

Fig. 4. Cooperative Philology WordNet Platform Overview: Direct and Indirect
mappings

4.1 Enhancing Ancient Greek WordNet

In this section we describe different procedures to enhance the Ancient Greek
WordNet. As outlined in [5], the creation of the Ancient Greek WordNet is
based on digitized Greek-English bilingual dictionaries made available by the
Perseus Project. The Greek-English pairs (Greek words and English translations)
are extracted from these dictionaries and the English word is projected onto
Princeton WordNet. If the English translation is in Princeton WordNet, then its
synsets are assigned to the Greek word; the same holds for lexical and semantic
relations with other lemmas and senses respectively. On the contrary, when the
English translation is not in PWN, the Greek word of the pair is excluded from
AGWN. This strategy thus strongly reduces the coverage of AGWN for the
entire Greek lexicon to c.a 30%. For example, sákos () which is glossed
by shield is successfully inserted in AGWN as a synonym of asṕıs while
boágrion () glossed by a shield of wild bull’s hide is missing.

In order to improve the coverage, [8] describe the use of the Stanford parser to
identify the head of the English translation and assign the corresponding Greek
translation as an hypernym of the missing Greek word. In the previous example:

A different strategy used to increase the precision of the resource is based
on comparing Greek-Latin mapped pairs extracted from the CoPhiWord-
Net with Greek-Latin pairs extracted from other, more controlled, resources.

Cooperative Philology on the Way to Web Services 181

Each Greek-Latin pair of the controlled resource is projected into CoPhiWord-
Net and all pairs that are already in the platform are extracted along with their
pivot (English) synset(s). The resulting triples T = (g, l, s)19 are examined by
domain experts responsible for validating the corresponding Greek and Latin
synsets.

5 Cooperative Philology WordNet Platform and Linked
Open Data

The Semantic Web offers a means of publishing datasets online and making them
freely accessible as well as of facilitating the enrichment of such data with infor-
mation from other resources; it thus helps to avoid the problem of so called ‘data
islands’ or ‘data silos’ and makes the reuse of data much more straightforward.
The benefits of Linked Open Data (LOD) for cultural resources, in particular for
heritage resources in languages like Ancient Greek, Latin, and Classical Arabic
are clear especially when one considers the possibilities of interlinking different
datasets. The development of models to permit an appropriate representation of
cultural heritage resources on the Semantic Web is an important and burgeoning
area of research.

In this section we will focus on the RDF representation of the WordNets
in CoPhiWordNet exploiting the possibilities that such representation offers to
datasets for classical languages such as Greek, Latin and Arabic in order to
facilitate their use in linguistic and philological research. Firstly however we will
recap the Resource Description Framework (RDF) which is the model used to
structure data on the Semantic Web. The RDF [29] model represents facts or
statements by subject predicate object triples. Each member of such a triple is
a so called resource with a unique identifier referred to as its Uniform Resource
Identifier (URI). Each of these URI can be ‘dereferenced’ which means each URI
will give us access to a description of the entity in question in lieu of the actual
entity addressed.

As mentioned above the linked data paradigm enables the linking together of
lots of different kinds of information using categories and relations that originate
from diverse datasets. This is especially useful when it comes to lexical resources
where we are dealing with sets of lexical entries in one or more languages. Using
the RDF model we can attach various kinds of information to each lexical entry
respecting the morpho-syntactic properties associated with the entry, for exam-
ple its part of speech, its declensions, etc., using concepts and relations from vari-
ous other online vocabularies. What’s more we are able to represent the meaning
of each entry by linking the entry itself to a concept in an ontology. This allows
us to relate the concept associated with the word to a network of other concepts
described in a formal ontology language such as OWL.
19 Where g stands for Greek word, l for Latin and s is the id of the English synset

which bridges g into l.

182 R. Del Gratta et al.

The lemon model (see Sect. 2) is a follow up to previous work in computa-
tional lexicography such as the Lexical Markup Framework [21,22] and lexinfo,20

and provides a model for describing lexical resources on the Semantic Web. One
of the innovations of lemon is that it represents the meaning of words using so
called sense objects which allow the linking of a computational lexicon with an
ontology.21

According to this perspective, we aim to link the WordNets in CoPhiWord-
Net to other resources such as, for example PAROLE SIMPLE CLIPS [13] for
Italian and the classical texts provided by the Perseus Digital Library for Ancient
Greek. To achieve this goal, we are planning to complete the serialisation of the
WordNets22 in CoPhiWordNet in lemon-RDF [3,32] and use the lemon:reference
and lemon:example properties to connect those resources. The projected results
should be as in Figs. 5 and 6.

Fig. 5. Cooperative Philology WordNet Platform: RDF and interlinked resources

5.1 Adding Temporal Information to CoPhiWordNet

lemon allows the addition of temporal information via the use of the usedSince
property. This can address one of the possible problems a digital humanist
20 http://www.lexinfo.net/ontology/2.0/lexinfo.owl.
21 Where the ontology provides the semantics for the lexical entries in the lexicon.
22 So far, only Italian WordNet (IWN) is available in RDF - http://www.

languagelibrary.eu/owl/italWordNet15/download/italWordNet15.tar.gz-, but, given
the fact that each WordNet (WN) in CoPhiWordNet has the same structure as PWN
their conversion is straightforward.

http://www.lexinfo.net/ontology/2.0/lexinfo.owl
http://www.languagelibrary.eu/owl/italWordNet15/download/italWordNet15.tar.gz
http://www.languagelibrary.eu/owl/italWordNet15/download/italWordNet15.tar.gz

Cooperative Philology on the Way to Web Services 183

Fig. 6. Interaction between AGWN, PWN and CTS through lemon

Fig. 7. Approaching a new interpretation of a text

encounters during his/her activities, i.e. the semantic shifting of a specific sense:
the sense of a given word at different stages over time is crucial for text inter-
pretation. For instance, the shift between positive and negative connotations in
the term otium (cf. Figs. 7 and 8) is a compelling example.

The usedSince property may not be sufficient, however, for describing infor-
mation relating to the temporal validity of the different senses of a word or for
tracking how different word senses evolve one into another – something which
is particularly important in representing historical languages like Latin. It is
useful to have a more detailed representation of the evolution of word senses
when it comes to constructing lexica for classical languages (or even explicitly
diachronic lexica for modern languages like English or French) in which we want
to represent the evolution of a language at different stages over time.

184 R. Del Gratta et al.

Fig. 8. Semantic Shift

It transpires however that adding a temporal dimension to RDF triples can
be notoriously challenging given we are in effect confined within the RDF model
to binary relations and breaking up n-ary relations into binary relations raises a
number of other problems. The best solution seems to be to take a higher level,
conceptual, approach namely, to work with perdurants, that is, entities with an
associated temporal span, in the course of which individual properties can or
can not hold at different intervals [43].

In previous work [17] we have devised an extension of lemon in which sense
objects are modelled as perdurants. These different sense entities can then be
combined in one meaning shift entity allowing us to explicitly represent and thus
to query the meaning shifts that words can take on. With this explicit encoding
of word senses as temporal entities it becomes easier to represent the dynamic
semantic aspects of the lexicon.

6 Conclusion

In conclusion, we have attempted to illustrate a variety of scenarios in which the
community of linguists, focused on linguistic analyses, lexico-semantic resources
etc. meets the community of philologists, focused on texts, multiple interpre-
tations etc. In the age of software components, Web Services and Linked Open
Data, the interaction between these two communities can lead to a fruitful cross-
fertilization, which aims at extending linguistic resources by textual evidence and
enhancing scholarly editions by linguistic tools and lexico-semantic resources.

Acknowledgments. The present research has been partially supported by the Italian
National Project Memorata Poetis (PRIN-2010/2011-2010NK2ACB). The work is part
of a wider research panorama that is focused on models, resources, instruments and
infrastructures for the Digital Humanities, namely CLARIN- and DARIAH-ERIC. The
authors would also like to thank Bridget Almas, Harry Diakoff (Alpheios Project) and
Gregory Crane (Perseus Project and Open Philology Project) who provided insight
and expertise that greatly inspired important aspects of the research.

References

1. Del Grosso, A.M.: Designing a Library of Components for Textual Scholarship.
Ph.D. thesis, University of Pisa (2015)

2. Arthur, P., Bode, K. (eds.): Advancing Digital Humanities: Research, Methods,
Theories. Palgrave Macmillan, Basingstoke (2014)

Cooperative Philology on the Way to Web Services 185

3. Assem, M., Gangemi, A., Schreiber, G.: Conversion of WordNet to a standard
RDF/OWL representation. In: Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC 2006), pp. 237–242, May 2006.
http://www.cs.vu.nl/∼mark/papers/Assem06a.pdf

4. Babeu, A.: Rome Wasn’t Digitized in a Day: Building a Cyber Infrastructure for
Digital Classics. Council on Library and Information Resources (2011)

5. Bizzoni, Y., Boschetti, F., Diakoff, H., Del Gratta, R., Monachini, M., Crane, G.:
The Making of Ancient Greek WordNet. In: Calzolari, N., Choukri, K., Declerck,
T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S.
(eds.) Proceedings of the Ninth International Conference on Language Resources
and Evaluation, LREC 2014. European Language Resources Association (ELRA),
Reykjavik, May 2014

6. Black, W., Elkateb, S., Vossen, P.: Introducing the Arabic WordNet Project. In:
Proceedings of the Third International WordNet Conference (GWC-06) (2006)

7. Blackwell, C., Smith, N.: Four URLs, Limitless Apps: Separation of Concerns in the
Homer Multitext Architecture. Donum natalicium digitaliter confectum Gregorio
Nagy septuagenario a discipulis collegis familiaribus oblatum: A Virtual Birthday
Gift Presented to Gregory Nagy on Turning Seventy by His Students, Colleagues,
and Friends (2012)

8. Boschetti, F., Del Gratta, R., Lamé, M.: Computer Assisted Annotation of Themes
and Motifs in Ancient Greek Epigrams: First Steps. In: CLIC, La prima Conferenza
Italiana di Linguistica Computazionale, Pisa, Italy, December 2014

9. Boschetti, F., Del Grosso, A.M., Khan, A.F., Lamé, M., Nahli, O.: A top-down
approach to the design of components for the philological domain. In: Digital
Humanities 2014: Book of Abstracts, pp. 109–111 (2014)

10. Boschetti, F., Del Grosso, A.M.: TeiCoPhiLib: A Library of Components for the
Domain of Collaborative Philology. J. Text Encoding Initiative (8) (2015). http://
jtei.revues.org/1285

11. Burnard, L.: The evolution of the Text Encoding Initiative: from research project to
research infrastructure. J. Text Encoding Initiative (5) (2013). http://jtei.revues.
org/811

12. Crane, G.: Generating and parsing classical Greek. Literary Linguist. Comput.
6(4), 243–245 (1991)

13. Del Gratta, R., Frontini, F., Khan, F., Monachini, M.: Converting the PAROLE
SIMPLE CLIPS lexicon into RDF with lemon. Semantic Web J. 6(4), 387–392
(2015)

14. Del Grosso, A.M., Boschetti, F.: Collaborative Multimedia Platform for Compu-
tational Philology, CoPhi Architecture. In: Davis, P. (ed.) Proceedings of the 5th
International Conferences on Advances in Multimedia (MMEDIA), Venice, Italy,
pp. 46–51. International Academy, Research, and Industry Association, IARIA,
April 2013

15. Del Grosso, A.M., Nahli, O.: Towards a flexible open-source software library
for multi-layered scholarly textual studies: an Arabic case study dealing with
semi-automatic language processing. In: Proceedings of 3rd IEEE International
Colloquium, Information Science and Technology (CIST), Tetouan, Marocco,
pp. 285–290. IEEE, Washington, D.C., October 2014. http://dx.doi.org/10.1109/
CIST.2014.7016633

16. Dombrowski, Q.: What Ever Happened to Project Bamboo? Literary Linguist.
Comput. 29(3), 326–339 (2014). http://llc.oxfordjournals.org/content/29/3/326.
abstract

http://www.cs.vu.nl/~mark/papers/Assem06a.pdf
http://jtei.revues.org/1285
http://jtei.revues.org/1285
http://jtei.revues.org/811
http://jtei.revues.org/811
http://dx.doi.org/10.1109/CIST.2014.7016633
http://dx.doi.org/10.1109/CIST.2014.7016633
http://llc.oxfordjournals.org/content/29/3/326.abstract
http://llc.oxfordjournals.org/content/29/3/326.abstract

186 R. Del Gratta et al.

17. Khan, F., Boschetti, F., Frontini, F.: Using lemon to Model Lexical Semantic Shift
in Diachronic Lexical Resources. In: LDL-2014 3rd Workshop on Linked Data in
Linguistics (2014)

18. Boschetti, F., Lamé, M., Del Gratta, R.: Few notes on the domain and subdo-
mains of Collaborative and Cooperative Philology. In: Proceedings of First Digital
Humanities and Antiquity Conference (DHANT-2015) (2016, to appear)

19. Federmann, C., Georgantopoulos, B., Del Gratta, R., Magnini, B., Mavroeidis, D.,
Piperidis, S., Speranza, M.: META-SHARE functional and technical specification
(deliverable d7.1). Tech. report, METANET, dissemination Level: Open, January
2011

20. Fellbaum, C., Alkhalifa, M., Black, W.J., Elkateb, S., Pease, A., Rodŕıguez, H.,
Vossen, P.: Building a WordNet for Arabic. In: Proceedings of the 5th Conference
on Language Resources and Evaluation, LREC 2006, May 2006

21. Francopoulo, G.: LMF - Lexical Markup Framework, 1st edn. ISTE Ltd., Wiley,
New York (2013)

22. Francopulo, G., Laurent, R., Monica, M., Calzolari, N.: Lexical Markup Frame-
work (LMF ISO-24613). In: Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC 2006), Genova, Italy (2006)

23. Gabbrielli, M., Martini, S.: Programming Languages: Principles and Paradigms.
Undergraduate Topics in Computer Science. Springer, London (2010)

24. Gibbs, F., Owens, T.: Building Better Digital Humanities Tools: Toward broader
audiences and user-centered designs. Digital Humanit. Q. 6(2) (2012). http://www.
digitalhumanities.org/dhq/vol/6/2/000136/000136.html

25. Hinrichs, E., Krauwer, S.: The CLARIN Research Infrastructure: Resources and
Tools for eHumanities Scholars. In: Chair, N.C.C., Choukri, K., Declerck, T.,
Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.)
Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC 2014). European Language Resources Association (ELRA),
Reykjavik, May 2014

26. Isaksen, L., Simon, R., Barker, E.T., de Soto Cañamares, P.: Pelagios and the
emerging graph of ancient world data. In: Proceedings of the 2014 ACM Conference
on Web Science, pp. 197–201. ACM (2014)

27. Kemman, M., Kleppe, M.: Too Many Varied User Requirements for Digital Human-
ities Projects. In: The 3rd CLARIN ERIC Annual Conference, 24–25 October 2014,
Soesterberg, The Netherlands (2014)

28. Kozar, O.: Towards Better Group Work: Seeing the Difference Between Coopera-
tion and Collaboration. Engl. Teach. Forum 48(2), 16–23 (2010)

29. Lassila, O., Swick, R.R.: Resource Description Framework (RDF). Model and
Syntax Specification. Tech. report, W3C (1999). http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222

30. Mambrini, F., Passarotti, M.: Non-projectivity in the Ancient Greek Dependency
Treebank. In: DepLing 2013, p. 177 (2013)

31. McCarty, W.: Signs of times present and future. Human Discussion Group, vol.
22, no. 218 (2008)

32. McCrae, J., Fellbaum, C., Cimiano, P.: Publishing and Linking WordNet using
lemon and RDF. In: Proceedings of the 3rd Workshop on Linked Data in Linguistics
(2014)

33. McGillivray, B.: Automatic selectional preference acquisition for Latin verbs. In:
Proceedings of the ACL 2010 Student Research Workshop, ACL student 2010,
pp. 73–78. ACL (2010). http://dl.acm.org/citation.cfm?id=1858913.1858926

http://www.digitalhumanities.org/dhq/vol/6/2/000136/000136.html
http://www.digitalhumanities.org/dhq/vol/6/2/000136/000136.html
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://dl.acm.org/citation.cfm?id=1858913.1858926

Cooperative Philology on the Way to Web Services 187

34. Minozzi, S.: The Latin WordNet Project. In: Anreiter, P., Kienpointner, M. (eds.)
Latin Linguistics Today. Akten des 15. Internationalem Kolloquiums zur Lateinis-
chen Linguistik. Innsbrucker Beiträge zur Sprachwissenschaft, vol. 137, pp. 707–716
(2009). http://www.dfll.univr.it/documenti/Iniziativa/dall/dall234343.pdf

35. Passarotti, M.: LEMLAT. Uno strumento per la lemmatizzazione morfologica auto-
matica del latino. J. Latin Linguist. 9(3), 107–128 (2007)

36. Raffaelli, I., Tadić, M., Bekavac, B., Agić, Ž.: Building Croatian WordNet. In:
GWC 2008 4th International Global Wordnet Conference, pp. 349–360 (2008)

37. Roventini, A., Alonge, A., Bertagna, F., Calzolari, N., Girardi, C., Magnini, B.,
Marinelli, R., Zampolli, A.: Italwordnet: building a large semantic database for the
automatic treatment of Italian. Computational Linguistics in Pisa, Special Issue,
XVIII-XIX, Pisa, Roma, IEPI, vol. 2, pp. 745–791 (2003)

38. Schmitz, P., Pearce, L., Dombrowski, Q.: DH-CASE II: Collaborative Annotations
in Shared Environments: Metadata, Tools and Techniques in the Digital Human-
ities. In: Proceedings of the 2014 ACM Symposium on Document Engineering
(DocEng), Fort Collins, Colorado, USA, pp. 211–212. ACM, New York, September
2014. http://doi.acm.org/10.1145/2644866.2644898

39. Shaffer, C.A.: A Practical Introduction to Data Structures and Algorithm Analysis,
3rd edn. Prentice Hall, Upper Saddle River (2010)

40. Teehan, A., Keating, J.G.: Appropriate Use Case modeling for humani-
ties documents. Literary Linguist. Comput. 25(4), 381–391 (2010). http://llc.
oxfordjournals.org/content/25/4/381.abstract

41. Terras, M., Nyhan, J., Vanhoutte, E. (eds.): Defining Digital Humanities: A Reader.
Ashgate, Farnham (2013)

42. Vossen, P. (ed.): EuroWordNet: A Multilingual Database with Lexical Semantic
Networks. Kluwer Academic Publishers, Norwell (1998)

43. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in owl. In: FOIS,
vol. 150, pp. 226–236 (2006)

http://www.dfll.univr.it/documenti/Iniziativa/dall/dall234343.pdf
http://doi.acm.org/10.1145/2644866.2644898
http://llc.oxfordjournals.org/content/25/4/381.abstract
http://llc.oxfordjournals.org/content/25/4/381.abstract

Effectiveness of Keyword and Semantic
Relation Extraction for Knowledge

Map Generation

Virach Sornlertlamvanich1(&) and Canasai Kruengkrai2

1 Sirindhorn International Institute of Technology,
Thammasat University, Bangkok, Thailand

virach@siit.tu.ac.th
2 Graduate School of Information Sciences, Tohoku University,

Sendai, Japan
canasai@ecei.tohoku.ac.jp

Abstract. We explore the named entity (NE) recognition and semantic relation
extraction technique on the Thai cultural database. Within the limited domain
and well-structured database, our proposed method can perform in an acceptable
high accuracy to generate the tuples of semantic relation for expressing the
essence of the record in terms of infobox and knowledge map. In this paper, we
propose a semantic relation extraction approach based on simple relation tem-
plates that determine relation types and their arguments. We attempt to reduce
semantic drift of the arguments by using named entity models as semantic
constraints. Experimental results indicate that our approach is very promising.
We successfully apply our approach to a cultural database and discover more
than 18,000 relation instances with expected high accuracy.

Keywords: Named entity extraction � Semantic relation extraction � Cultural
database � Infobox � Knowledge map

1 Introduction

Targeting on the user generated content (UGC) e.g. Thai Cultural Information Center
website,1 we are interested in relating the document units semantically to generate a
network that can express in a knowledge map manner. In our approach, we focus on
keyword and semantic relation extraction. Some language dependent problems have to
be solved especially in handling the Thai language, which has no word delimiter or
punctuation mark. We apply general tools for word segmentation and POS tagging,
then extract the keyword according to the model trained from named entity (NE) tagged
corpus.

The size of this cultural database has gradually increased to around 100,000 records
(from November 2010 to December 2014). Each record contains a number of fields
describing a specific cultural object. The content includes four main components:
(1) cover image and thumbnails, (2) title, (3) description and (4) domain. We need to

1 http://www.m-culture.in.th/.

© Springer International Publishing Switzerland 2016
Y. Murakami and D. Lin (Eds.): WLSI 2015, LNAI 9442, pp. 188–199, 2016.
DOI: 10.1007/978-3-319-31468-6_14

http://www.m-culture.in.th/

extract facts (hereafter referred to as relation instances) from the description. One can
view relation instances as formal meaning representations of corresponding texts.
These relation instances are useful for question answering and other applications i.e.
summary as an infobox, or a network of information in knowledge map.

Recent research in semantic relation extraction has shown the possibility to auto-
matically find such relation instances. Some approaches rely on high-quality syntactic
parsers. For example, DIRT [10] and USP [12] discover relation instances based on the
outputs from dependency parsers. Such parsers and annotated training corpora are
difficult to obtain in non-English languages. Pattern-based approaches [1, 2, 11] seem to
be more practical for languages with limited NLP resources. For example, TEX-
TRUNNER [2] can efficiently extract relation instances from a large-scale Web corpus
with minimal supervision. It only requires a lightweight noun phrase chunker to identify
relation arguments. More advanced approaches like SNE [7], RESOLVER [17] and
SHERLOCK [13] exploit the outputs of TEXTRUNNER for learning.

Our cultural database allows us to make two assumptions:

(A1) Each record belongs to only one main cultural domain.
(A2) Each record has only one subject of relations.

The assumption (A1) seems to hold for most of records. We adopt the assumption
(A2) from [6] that try to extract infobox-like relations from Wikipedia. Also, the
assumption (A2) seems to hold for our data since the description provides the details
about one cultural object whose name is expressed in the record title.

Based on the above two assumptions, we propose our strategy to
semi-automatically extract relation instances from the cultural database. We focus on
unary relation extraction similar to [4, 6]. We assume that the subject of the relation is
the record title. Each relation remains only one argument to be extracted.

The Thai cultural database has been collected in the structure as described in
Sect. 2. We describe our relation template in Sect. 3 and how to effectively find relation
texts in a large database in Sect. 4. We use named entities to reduce semantic drift of
the target arguments in Sect. 5. We examine the effect of the distances between the
relation surfaces and the target arguments in Sect. 6.1 and provide preliminary results
of our experiments in Sect. 6.2. The results indicate that our strategy of semantic
relation extraction is very promising for real-world applications by applying to generate
infobox and knowledge map of the Thai cultural database as described in Sect. 7.

2 Thai Cultural Database

The portal is hosted by Thai Ministry of Culture providing for cultural rural office to
collect culture information online. The cultural information is structured to follow
a template guideline mainly adopted from Dublin Core Metadata Element Set,
Version 1.1.2

2 http://dublincore.org/documents/2012/06/14/dces/.

Effectiveness of Keyword and Semantic Relation Extraction 189

http://dublincore.org/documents/2012/06/14/dces/

There are 15 elements that have been introduced to annotate the record as elabo-
rated in Table 1. The record is allowed to contain text, image, and video. In the period
of November 2010 to December 2014, the number of uploaded records has already
exceeded 100,000 records.

As an example, Fig. 1 shows an excerpt of the front-end web page of the record
number 35860 about the Phra Samut Chedi; (1) is the photo images of the record, (2) is
the title of the record, (3) is the description of the record, (4) is the subject of the record.

The annotated information of title, description, and subject are the essential key
fields that we use to identify the NE for keyword and semantic relation extraction.
Subject is used to filter for the records of attraction (location), person, and artifact.
These are the group of NE in which we are interested in this paper. Title is the target
NE according to our assumption to identify the semantic relation to any occurrence of
related NE in the description.

3 Relation Template

Table 2 shows the relation template. There are five main cultural domains in the
database, and each main cultural domain has several sub-domains.

In our work [9], we focus on three cultural domains, including attraction, person
and artifact, as shown in the first column. Based on these cultural domains, we expect
that the subject of relations in each record (i.e., the record title) should be a place, a
human or a man-made object, respectively. As a consequence, we can design a set of
relations that correspond to the subject. For example, if the subject is a place, we may

Table 1. The elements for annotating the content of the cultural information

Label Definition

dc.title Name of the culture resource
dc.subject Set of tags or keywords representing the category of the resource
dc.description Detail about the resource
dc.type Type of attaching media i.e. image, video, sound, SWF
dc.relation Reference identification to other resource
dc.coverage Location of the resource
dc.creator Person primarily responsible for making the resource
dc.publisher Person responsible for making the resource available
dc.contributor Person responsible for making contributions to the resource.
dc.rights Information about rights held in and over the resource
dc.date Point of time describing the last updating, creating, submitting, approving,

contributing the detail of the resource
dc.identifier Unambiguous reference to the resource within a given context
dc.language Language of the resource
dc.source Name of the attached media file
dc.format File format, physical medium, or dimensions of the resource

190 V. Sornlertlamvanich and C. Kruengkrai

need to know where it is, when it was built and who built it. We can formally write
these expressions by ISLOCATEDAT, ISBUILTIN and ISBUILTBY. The second
column shows our relations that are associated with the subject domains. The third
column shows relation surfaces used for searching relation texts in which arguments

Fig. 1. An excerpt of the front-end web page of the record number 35860 about the Phra Samut
Chedi

Table 2. Relation template (LOC denotes location; PER denotes person; ORG denotes
organization; DATE denotes date)

Domain Relation Surface Argument

Cultural attraction ISLOCATEDAT ตั้งอยู่ที่ LOC
ISBUILTIN สร้าง(ขึ้น)*ใน

สร้าง(ขึ้น)*เมื่อ
ตั้ง(ขึ้น)*เมื่อ

DATE

ISBUILTBY สร้าง(ขึ้น)*โดย
ตั้ง(ขึ้น)*โดย

PER, ORG

HASOLDNAME เดิมชื่อ
ชื่อเดิม

LOC, ORG

Cultural person MARRIEDWITH สมรสกับ PER
HASFATHERNAME บิดาชื่อ PER
HASMOTHERNAME มารดาชื่อ PER
HASOLDNAME เดิมชื่อ

ชื่อเดิม
PER

HASBIRTHDATE เกิด(เมื่อ)* DATE
BECOMEMONKIN อุปสมบทเม่ือ DATE

Cultural artifact ISMADEBY ผลิต(ขึ้น)*โดย
ทำ(ขึ้น)*โดย
ผลงานโดย

PER, ORG

ISSOLDAT จำหน่ายที่ LOC, ORG

Effectiveness of Keyword and Semantic Relation Extraction 191

may co-occur. The word in parentheses with an asterisk indicates that it may or may not
appear in the surface.

The answers to where, when and who questions are typically short and expressed in
the form of noun phrases. Using noun phrases as relation arguments can lead to high
recall but low precision. For example, the noun phrase occurring after the relation
ISBUILTIN could be a place (is built in the area of…) or an expression of time (is built
in the year of…). In our case, we expect the answer to be the expression of time, and
hence returning the place is irrelevant. This issue can be thought of as semantic drift.
Here, we attempt to reduce semantic drift of the target arguments by using named
entities as semantic constraints. The forth column shows named entity types associated
with the subject domains and their relations. Each relation can be expressed in more
than one surface in the text. However, the surface list in Table 2 is not thoroughly
expressed. Many other more can be extracted from the corpus.

4 Surface-Relation Mapping

Mapping text segments containing a given relation surface (e.g., “สร้างโดย” (is built
by)) in a large database is not a trivial task. Here, we use Apache Solr3 for indexing and
searching the database. Apache Solr works well with English and also has extensions
for handling non-English languages. To process Thai text, one just enables
ThaiWordFilterFactory module in schema.xml. This module invokes the Java
BreakIterator and specifies the locale to Thai (TH). The Java BreakIterator
uses a simple dictionary-based method, which does not tolerate word boundary
ambiguities and unknown words. For example, the words “สร้าง” (build) and
“ก่อสร้าง” (construct) occur in the Java’s system dictionary. Both convey the same
meaning (to build). We can see that the first word is a part of the second word.
However, these two words are indexed differently. This means if our query is “สร้าง”
(build), we cannot retrieve the records containing “ก่อสร้าง” (construct). In other
words, the dictionary-based search returns results with high precision but low recall.

In our work, we process Thai text in lower units called character clusters. A char-
acter cluster functions as an inseparable unit, which is larger than (or equal to) a
character and smaller than (or equal to) a word. Once the character cluster is produced,
it cannot be further divided into smaller units. For example, we can divide the word
“ก่อสร้าง” (construct) into 5 character clusters like “ก่-อ-ส-ร้า-ง”. As a result, if our
query is “สร้าง” (build), we can retrieve the records containing “ก่อสร้าง” (construct).
We refer to [16] for more details about character cluster based indexing. In our work,
we implement our own ThaiWordTokinizeFactory module and plug it into
Apache Solr by replacing the default WhitespaceTokenizerFactory. Our
character cluster generator class is based on the spelling rules described in [8].

In Thai, sentence boundary markers (e.g., a full stop) are not explicitly written. The
white spaces placing among text segments can function as word, phrase, clause or
sentence boundaries (see the “รายละเอียด” (description) section in Fig. 1 for example).

3 http://lucene.apache.org/solr/.

192 V. Sornlertlamvanich and C. Kruengkrai

http://lucene.apache.org/solr/

To obtain a relation text, which is not too short (one text segment) or too long (a whole
paragraph), we proceed as follows. After finding the position of the target relation
surface, we look up at most ±4 text segments to generate relation texts. This length
should be enough for morphological analyzer and named entity recognizer.

5 Named Entity Recognition

We control semantic drift of the target arguments using named entities. We build our
named entity (NE) recognizer from an annotated corpus developed by [15]. The
original contents are from several news websites. The corpus consists of 7 NE types.
We focus on 4 NE types according to our relation templates in Table 2. Once we
obtained the NE corpus, we checked it and found several issues as follows:

1. Each NE tag contains nested NE tags. For example, the person name tag contains
the forename and surname tags.

2. The corpus does not provide gold word boundaries and POS tags.
3. Each NE type is annotated separately.

For the first issue, we ignored the nested NE tags and trained our model with top
NE tags (PER, ORG, LOC, DATE). For the second issue, we used a state-of-the-art
Thai morphological analyzer [8] to obtain word boundaries and POS tags. In this work,
we trained the morphological analyzer using ORCHID corpus [14] and TCL’s lexicon
[3]. We then converted the corpus format into the IOB tagging style for NE tags. Thus,
the final form of our corpus contains three columns (word, POS tag, NE tag), where the
first two columns are automatically generated and of course contain a number of errors.
For the third issue, we trained the model separately for each NE type. We obtained
33231, 20398, 8585, 2783 samples for PER, ORG, LOC, DATE, respectively.

To ensure that our NE models work properly, we split samples into 90 %/10 %
training/test sets and conducted some experiments. We trained our NE models using
k-best MIRA (Margin Infused Relaxed Algorithm) [5]. We set k = 5 and the number of
training iterations to 10. We denote the word by w, the k-character prefix and suffix of
the word by Pk(w) and Sk(w), the POS tag by p and the NE tag by y. Table 3 sum-
marizes all feature combinations used in our experiments. Our baseline features
(I) include word unigrams/bigrams and NE tag bigrams. Since we obtained the word
boundaries and POS tags automatically, we introduced them gradually to our features
(II, III, IV) to observe their effects.

Figure 2 shows F1 results for the NE models. We used the conlleval script4 for
evaluation. We observe that PER is easy to identify, while ORG is difficult.
Prefix/suffix features dramatically improve performance on ORG. Using all features
(IV) gives best performance on PER (93.24 %), ORG (68.75 %) and LOC (83.78 %),
while slightly drops performance on DATE (85.06 %). Thus, our final NE models used
in relation extraction are based on all features (IV). Although these results are from the

4 http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt.

Effectiveness of Keyword and Semantic Relation Extraction 193

http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

news domain, we could expect similar performance when applying the NE models to
our cultural domains.

We summarize our strategy as follows. After selecting the subject domain, we send
its relation surfaces (shown in the 3rd column of Table 2) to Apache Solr. We then trim
the resulting record descriptions to obtain the relation texts (described in Sect. 4). Next,
we perform word segmentation and POS tagging simultaneously using our morpho-
logical analyzer and feed the results into our NE models (described in Sect. 5). We
invoke the appropriate NE model based on our relation templates (described in Sect. 3).
Finally, our system produces outputs in the form of RELATION(a, b), where a is a
record title, and b is an argument specified by its NE type in the templates.

6 Experiments

6.1 Effect of the Distances Between Relation Surfaces and Arguments

In this section, we examine the number of extracted instances for each relation (without
considering its accuracy). Our assumption is that the target argument tends to be

Table 3. NE features

(I): word 1, 2 grams + label bigrams
⟨wj⟩, j 2 [−2, 2] × y0
⟨wj, wj+1⟩, j 2 [−2, 1] × y0
⟨y−1, y0⟩

(III): (II) + POS 3 grams
⟨pj, pj+1, pj+2⟩, j 2 [−2, 0] × y0

(II): (I) + POS 1,2 grams
⟨pj⟩, j 2 [−2, 2] × y0
⟨pj, pj+1⟩, j 2 [−2, 1] × y0

(IV): (III) + k-char prefixes/suffixes
⟨Pk(w0)⟩, k 2 [2, 3] × y0
⟨Sk(w0)⟩, k 2 [2, 3] × y0
⟨Pk(w0), Sk(w0)⟩, k 2 [2, 3] × y0

Fig. 2. F1 evaluation results of the NE models

194 V. Sornlertlamvanich and C. Kruengkrai

relevant if it is adjacent (or close) to the relation surface. The relevance weakens with
the distance. In our first example, the target argument “ตำบลปากน้ำ” (Tambon Pak-
nam, a subdistrict name) is adjacent (distance = 0) to the relation surface “ตั้งอยู่ที่” (is
located at). This target argument is relevant. Suppose there are intervening words
(white space or punctuation mark) between them. The relevance tends to decrease.
However, if we only select adjacent named entities to be the target arguments, the
coverage may be limited. In our experiments, we varied the distances from 0 to 5
intervening words for observation.

Table 4 shows the numbers of relation instances when the distances are varied. For
all relations, we observe that the numbers of relation instances do not significantly
change after one word distance. For example, we cannot extract more relation instances
for MARRIEDWITH + PER, even we increased the distance. This indicates that using
named entities helps to bound the number of possible arguments.

6.2 Preliminary Results

To inspect the quality of relation instances extracted by our strategy, we randomly
selected at most 50 instances of each relation for evaluation. Our evaluation procedure
is as follows. Based on the assumptions (A1) and (A2), we expect that the subject
(record title) of an instance should be relevant to its domain. We ignored instances
whose subject is irrelevant. For example, the subject of the record no. 8026 is a person,
but the volunteer assigned it to the cultural artifact domain. Note that this case rarely
occurs, but exists. Next, a relation instance is considered to be correctly extracted if its
argument exactly matches the fact. For example, if our system only extracts the first

Table 4. Numbers of relation instances when the distances are varied

Relation Argument Distance
0 1 2 3 4 5

Cultural attraction
ISLOCATEDAT LOC 356 574 591 624 678 757
ISBUILDIN DATE 3825 11487 11538 11573 11633 11667
ISBUILDBY PER, ORG 131 202 218 234 249 257
HASOLDNAME LOC, ORG 0 9 21 26 27 29
Cultural person
MARRIEDWITH PER 132 177 177 177 177 177
HASFATHERNAME PER 120 372 372 373 373 373
HASMOTHERNAME PER 97 383 383 383 383 383
HASOLDNAME PER 51 259 273 277 277 283
HASBIRTHDATE DATE 4122 4745 4801 4947 4966 5075
BECOMEMONKIN DATE 346 435 435 436 436 436
Cultural artifact
ISMADEBY PER, ORG 62 107 109 125 129 130
ISSOLDAT LOC, ORG 31 31 56 59 62 64

Effectiveness of Keyword and Semantic Relation Extraction 195

name while the fact is the whole name, then we consider this instance to be incorrect.
Finally, we set the maximum distance between the relation surface and its argument to
5. Table 5 shows the performance of our relation extraction. The overall results are
surprisingly good, except those of HASOLDNAME and ISMADEBY. Table 6 shows
some samples of relation instances produced by our system.

7 Knowledge Map Generation

Relations between NE (or keyword) are successfully extracted as shown in the result in
Table 6. The accuracy is acceptably high, ranging from 85 % to 100 % corresponding
to the type of the relation. The tuples of relation are stored attaching to the record they
belong to. Though the tuple of semantic relation is extracted from a part of the
description, it determines the semantic modification to the title of the record. From the
set of tuples of each record, the infobox of the record is generated to express the
essence of the title we are looking for. NE’s are used to modify the title which is also
included in the set of NE. By mapping the NE found in the database, we can exten-
sively trace the semantic modification of any target NE. Finally, the knowledge map,
which is a network of the NE can be express to understand the relation among all NE’s
in the database.

Figure 3 shows the tuples of semantic relation extracted from the record of Phra
Samut Chedi i.e.

ISBUILDIN(พระเจดีย์กลางน้ำ, พ.ศ. 2403)
Lit. ISBUILDIN(Phra Samut Chedi, BE 2403), and
ISLOCATEDAT(พระเจดีย์กลางน้ำ, ตำบลปากน้ำ).
Lit. ISLOCATEDIN(Phra Samut Chedi, Tambon Paknam).

Table 5. Performance of the relation extraction

Relation Argument #Sample #Correct #Incorrect Accuracy

Cultural attraction
ISLOCATEDAT LOC 50 49 1 98 %
ISBUILDIN DATE 50 48 2 96 %
ISBUILDBY PER, ORG 50 48 2 96 %
HASOLDNAME LOC, ORG 27 23 4 85 %
Cultural person
MARRIEDWITH PER 50 49 1 98 %
HASFATHERNAME PER 50 48 2 96 %
HASMOTHERNAME PER 50 49 1 98 %
HASOLDNAME PER 50 47 3 94 %
HASBIRTHDATE DATE 50 48 2 96 %
BECOMEMONKIN DATE 50 50 0 100 %
Cultural artifact
ISMADEBY PER, ORG 50 44 6 88 %
ISSOLDAT LOC, ORG 50 49 1 98 %

196 V. Sornlertlamvanich and C. Kruengkrai

In the infobox as shown in Fig. 4(1), it notifies when and where the Phra Samut
Chedi was constructed. The summary information about the record in the form of
infobox can help the audience to grasp the information about the record in quick. By
knowing that the pagoda (Chedi) was founded in Tambon Paknam, we can trace further
for what else are related to the NE of Tambon Paknam. As a result, we can find that

Table 6. Relation instances produced by the system

Record no. Relation instance

Cultural attraction
38481 ISLOCATEDAT(วัดโพธ์ิศรี, บ้านโพธ์ิศรี ต.อินทร์บุรี)
114585 ISBUILDIN(วัดเขาวงกฏ, ประมาณปี พ.ศ.2471-2573)
114333 ISBUILDBY(วัดปิตุลาธิราชรังสฤษฎ์ิ, กรมหลวงรักษ์รณเรศธ์)
61446 HASOLDNAME(วัดหนองกันเกรา, วัดหนองตะเกรา)
Cultural person
14125 MARRIEDWITH(นายเนาวรัตน์ พงษ์ไพบูลย์, นางประคองกูล อิศรางกูร ณ

อยุธยา)
32530 HASFATHERNAME(พระครูประยุตนวการ, นายเหยม เดชมาก)
45389 HASMOTHERNAME(หลวงพ่อล้ัง สุทสฺสโน, นางพร้ิง แก้วแดง)
144574 HASOLDNAME(พระครูมงคลวรวัฒน์, สวัสด์ิบพุศิร)ิ
145771 HASBIRTHDATE(อาจารย์ธนิสร์ ศรีกลิ่นดี, วันจันทรที่ 23 มกราคม 2494)
123678 BECOMEMONKIN(พระครูพิจิตรสิทธิคุณ, วันท่ี ๑๖ เมษายน พ.ศ. ๒๕๒๘)
Cultural artifact
160974 ISMADEBY(หนังสือประวัติคลองดำเนินสะดวก, พระครูสิริวรรณวิวัฒน์)
94286 ISSOLDAT(ข้าวเกรียบปากหม้อ, ตลาดเทศบาลพรานกระต่าย)

Fig. 3. Tuples of semantic relation extracted from the record of Phra Samut Chedi

Effectiveness of Keyword and Semantic Relation Extraction 197

many other attractions are located in this Tambon Paknam. These records can then be
attached to the location name of Tambon Paknam. The example of the knowledge map
expression is shown in Fig. 4(2). The audience can traverse for other related infor-
mation about the focus topic and understand the relation among the records. Further
level of relation can be expended as far as they are connected with the extracted tuples
of semantic relation.

8 Conclusion

We successfully applied our approach to a cultural database and could discover more
than 18,000 relation instances with expected high accuracy. The outputs of our NE and
relation extraction can be useful for other applications such as question answering or
suggesting related topics based on semantic relations. For an example, attaching the
tuples of semantic relation to the corresponding record, we can express the essence of
the record in terms of infobox. In addition, by mapping among the NE’s, a network of
NE can be generated to form a knowledge map for better understanding the content of
the cultural database.

In future work, many more other semantic relations are interested, especially in the
cultural artifact domain. As an example, the relations like ISMADEOF, which requires
the NE type like materials, can help in understanding the raw materials from what the
artifacts are made. However, this NE type is not available in the current NE corpus. We
will explore other techniques to constrain the noun phrases to prevent the semantic drift
problem.

(1) Infobox (2) Knowledge map

Fig. 4. Infobox and knowledge map extracted from the cultural database for the record of Phra
Samut Chedi

198 V. Sornlertlamvanich and C. Kruengkrai

Acknowledgement. The experiments in this paper are conducted on the Thai Cultural Database
of the Ministry of Culture, developed under the central information project since November
2010.

References

1. Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text collections.
In: Proceedings of ICDL, pp. 85–94 (2000)

2. Banko, M., Cafarella, M.J., Soderl, S., Broadhead, M., Etzioni, O.: Open information
extraction from the web. In: Proceedings of IJCAI, pp. 2670–2676 (2007)

3. Charoenporn, T., Kruengkrai, C., Sornlertlamvanich, V., Isahara, H.: Acquiring semantic
information in the TCL’s computational lexicon. In: Proceedings of the Fourth Workshop on
Asia Language Resources (2004)

4. Chen, H., Benson, E., Naseem, T., Barzilay, R.: In-domain relation discovery with
meta-constraints via posterior regularization. In: Proceedings of ACL-HLT, pp. 530–540
(2011)

5. Crammer, K., McDonald, R., Pereira, F.: Scalable large-margin online learning for
structured classification. In: Proceedings of NIPS Workshop on Learning with Structured
Outputs (2005)

6. Hoffmann, R., Zhang, C., Weld, D.S.: Learning 5000 relational extractors. In: Proceedings
of ACL (2010)

7. Kok, S., Domingos, P.: Extracting semantic networks from text via relational clustering. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI),
vol. 5211, pp. 624–639. Springer, Heidelberg (2008)

8. Kruengkrai, C., Uchimoto, K., Kazama, J., Torisawa, K., Isahara, H., Jaruskulchai, C.:
A word and character-cluster hybrid model for Thai word segmentation. In: Proceedings of
InterBEST: Thai Word Segmentation Workshop (2009)

9. Kruengkrai, C., Sornlertlamvanich, V., Buranasing, W., Charoenporn, T.: Semantic relation
extraction from a cultural database. In: Proceedings of The 3rd Workshop on South and
Southeast Asian NLP (2012)

10. Lin, D., Pantel, P.: Dirt-discovery of inference rules from text. In: Proceedings of KDD,
pp. 323–328 (2001)

11. Pantel, P., Pennacchiotti, M.: Espresso: leveraging generic patterns for automatically
harvesting semantic relations. In: Proceedings of ACL, pp. 113–120 (2006)

12. Poon, H., Domingos, P.: Unsupervised semantic parsing. In: Proceedings of EMNLP,
pp. 1–10 (2009)

13. Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order horn clauses from
web text. In: Proceedings of EMNLP, pp. 1088–1098 (2010)

14. Sornlertlamvanich, V., Charoenporn, T., Isahara, H.: ORCHID: Thai part-of-speech tagged
corpus. Technical report TR-NECTEC-1997-001, NECTEC (1997)

15. Theeramunkong, T., Boriboon, M., Haruechaiyasak, C., Kittiphattanabawon, N., Kosawat,
K., Onsuwan, C., Siriwat, I., Suwanapong, T., Tongtep, N.: THAI-NEST: a framework for
Thai named entity tagging specification and tools. In: Proceedings of CILC (2010)

16. Theeramunkong, T., Sornlertlamvanich, V., Tanhermhong, T., Chinnan, W.: Character
cluster based Thai information retrieval. In Proceedings of IRAL, pp. 75–80 (2000)

17. Yates, A., Etzioni, O.: Unsupervised methods for determining object and relation synonyms
on the web. J. Artif. Intell. Res. 34, 255–296 (2009)

Effectiveness of Keyword and Semantic Relation Extraction 199

Author Index

Abiderexiti, Kahaerjiang 137
Abulizi, Wayiti 137
Adriani, Mirna 113
Aili, Maierhaba 137
Aili, Mairehaba 124

Bakagianni, Juli 3
Boschetti, Federico 173

Cieri, Christopher 51, 86

Del Gratta, Riccardo 173
Del Grosso, Angelo 173
DiPersio, Denise 51, 86

Galanis, Dimitrios 3
Gao, Zhiqiang 161

Ide, Nancy 18, 33, 51
Ishida, Toru 71, 99

Khan, Fahad 173
Kruengkrai, Canasai 188

Lin, Donghui 99
Liu, Qian 161
Luong, Thi H. 147

Maihefureti 124
Maimaitimin, Saimaiti 124, 137
Manurung, Hisar Maruli 113

Martadinata, Puji 113
Monachini, Monica 173
Murakami, Yohei 71, 99

Nakaguchi, Takao 99
Nyberg, Eric 51

Otani, Masayuki 99

Pham, Nhut M. 147
Piperidis, Stelios 3
Pustejovsky, James 18, 33, 51

Shi, Chunqi 33, 51
Sofianopoulos, Sokratis 3
Sornlertlamvanich, Virach 188
Suderman, Keith 18, 33, 51

Trang, Mai Xuan 71
Trisedya, Bayu Distiawan 113

Verhagen, Marc 18, 33, 51
Vu, Quan H. 147

Wang, Di 33, 51
Wright, Jonathan 33, 51
Wushouer, Jiamila 137

Xialifu, Aziguli 124

Yibulayin, Tuergen 137

	Preface
	Organization
	Contents
	Metadata and Annotation for Language Services
	Combining and Extending Data Infrastructures with Linguistic Annotation Services
	Abstract
	1 Introduction
	2 META-SHARE Platform and Repository Software
	2.1 META-SHARE Repository Software

	3 Language Resources Formal Description
	4 Managing Metadata in META-SHARE
	4.1 Referencing Other Entities
	4.2 Documenting Rights of Use

	5 User Management in META-SHARE
	6 Extending META-SHARE Through a Language Processing Layer
	6.1 Language Processing Layer Implementation
	6.2 Workflow Assumptions and Limitations

	7 Conclusions and Future Work
	References

	The Language Application Grid Web Service Exchange Vocabulary
	1 Introduction
	2 The Language Application Grid Project
	3 LAPPS Web Service Exchange Vocabulary
	3.1 Motivation
	3.2 WS-EV Design

	4 WS-EV and JSON-LD
	4.1 Mapping to JSON-LD

	5 Conclusion
	References

	The LAPPS Interchange Format
	1 Introduction
	2 The Structure of LIF Objects
	2.1 The @context-.4 Key
	2.2 The metadata-.4 Key
	2.3 The text-.4 Key
	2.4 The views-.4 Key

	3 Examples
	3.1 Tokens and Parts-of-Speech
	3.2 Coreference
	3.3 Syntactic Structure

	4 Conclusion and Future Work
	References

	Service Platform and Service Management
	The Language Application Grid
	1 Introduction
	2 LAPPS Grid Design
	3 Interoperability
	3.1 LAPPS Interchange Format
	3.2 Exchange Vocabulary

	4 LAPPS/Galaxy Workflow Engine
	5 Open Advancement
	6 Resource Access
	7 User Evaluation
	8 Relation to Other Projects
	9 Conclusion
	References

	A Policy-Aware Parallel Execution Control Mechanism for Language Application
	1 Introduction
	2 Motivating Example
	3 System Architecture
	4 Parallel Execution Policy of Language Services
	5 Optimizing Composite Service Parallel Execution
	5.1 Parallel Execution of Composite Language Service
	5.2 Prediction of Composite Service Performance

	6 Evaluation
	7 Related Work
	8 Conclusions
	References

	A License Scheme for a Global Federated Language Service Infrastructure
	Abstract
	1 Introduction
	2 Web Service Complexities
	3 Approaches to Grid Licensing
	4 Dimensions of Constraints on Language Resource Use
	5 Combining Licensing Constraints
	6 The Language Application Grid
	7 A Federated Grid Licensing Model
	8 Conclusion
	Acknowledgements
	References

	Language Mashup: Personal Grid for Language Resources
	1 Introduction
	2 The Language Grid
	2.1 Overview of Language Grid
	2.2 Uncovered Problems

	3 Mobile Mashup Framework
	3.1 Open Language Grid
	3.2 Language Mashup

	4 Potential of Language Mashup
	4.1 Multilingual Meeting Support System
	4.2 Y's Men International Convention
	4.3 Communication Support in Enokojima Art, Culture and Creative Center

	5 Conclusion
	References

	Developing Language Resources and Services
	Building Indonesian Local Language Detection Tools Using Wikipedia Data
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Language Identification
	2.2 N-Grams with Rank Order Statistic
	2.3 Statistical Method
	2.4 Small Word Technique

	3 Methodology
	3.1 Data and Corpus
	3.2 Data Preparation
	3.3 Pre-processing
	3.4 Experimental Design

	4 Experiments and Results
	4.1 Corpus Size
	4.2 Language Identification Method
	4.3 Variety of Languages
	4.4 Twitter-Specific Features

	5 Conclusion
	References

	Building Uyghur Dependency Treebank: Design Principles, Annotation Schema and Tools
	Abstract
	1 Introduction
	2 Uyghur Language
	3 Design Principle
	4 Annotation Schema
	4.1 Dependency Relations
	4.2 Special Cases

	5 Annotation Tool
	5.1 Framework
	5.2 Morphological Analysis
	5.3 Morphological Correction
	5.4 Dependency Tagging
	5.5 XML File

	6 Conclusion and Future Work
	References

	Building Contemporary Uyghur Grammatical Information Dictionary
	Abstract
	1 Introduction
	2 Establishing the Foundation of Dictionary
	3 Database Structure of the Dictionary
	4 The Rules Adopted in the Dictionary
	5 Implementation of the Dictionary and Annotation Examples
	5.1 Annotation Examples

	6 Summary and Outlook
	Acknowledgments
	References

	Language Service Applications
	Vietnamese Multimedia Agricultural Information Retrieval System as an Info Service
	Abstract
	1 Introduction
	2 Ontology Development
	2.1 Ontology Specification
	2.2 Knowledge Acquisition
	2.3 Conceptualization
	2.4 Formalization
	2.5 Implementation
	2.6 Results

	3 Semantic Agricultural Information Retrieval System
	3.1 System Construction
	3.2 Building the ASR Engine
	3.3 Classification
	3.4 Deployment

	4 Experiment
	4.1 Datasets
	4.2 Parameter Tuning
	4.3 Retrieval Evaluations

	5 Conclusion
	References

	Mining Opinion Polarity from Multilingual Song Lyrics
	1 Introduction
	2 Related Work
	2.1 Multilingual Opinion Classification
	2.2 Opinion Classification with Lyrics

	3 Approach
	3.1 Building Monolingual Opinion Polarity Classifier
	3.2 Multilingual Classification via Translation

	4 Experiments
	4.1 Data Acquisition
	4.2 Results and Analysis

	5 Conclusion
	References

	Cooperative Philology on the Way to Web Services: The Case of the CoPhiWordNet Platform
	1 Introduction
	1.1 Overview

	2 Background
	3 CoPhilib: Analysis and Design
	3.1 High Level Architecture

	4 Cooperative Philology WordNet Platform
	4.1 Enhancing Ancient Greek WordNet

	5 Cooperative Philology WordNet Platform and Linked Open Data
	5.1 Adding Temporal Information to CoPhiWordNet

	6 Conclusion
	References

	Effectiveness of Keyword and Semantic Relation Extraction for Knowledge Map Generation
	Abstract
	1 Introduction
	2 Thai Cultural Database
	3 Relation Template
	4 Surface-Relation Mapping
	5 Named Entity Recognition
	6 Experiments
	6.1 Effect of the Distances Between Relation Surfaces and Arguments
	6.2 Preliminary Results

	7 Knowledge Map Generation
	8 Conclusion
	Acknowledgement
	References

	Author Index

