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Preface

The 2015 edition of the Multi-Agent-Based Simulation (MABS) workshop was the
13th of a series that began in 1998. Its scientific focus lies in the confluence of social
sciences and multi-agent systems, with a strong application/empirical vein, and its
emphasis is on (a) exploratory agent-based simulation as a principled way of under-
taking scientific research in the social sciences and (b) using social theories as an
inspiration to new frameworks and developments in multi-agent systems.

The excellent quality level of this workshop has been recognized since its inception
and its proceedings have been regularly published in Springer’s Lecture Notes in
Artificial Intelligence series. More information about the MABS workshop series may
be found at http://www.pcs.usp.br/*mabs.

MABS 2015 was hosted at AAMAS 2015, the 14th International Conference on
Autonomous Agents and Multiagent Systems, which took place in Istanbul, Turkey, on
May 5, 2015. In this edition, 22 submissions from 16 countries were submitted, from
which we selected 12 for presentation (near 55 % acceptance). The papers presented in
the workshop have been revised, and eventually extended and reviewed again, in order
to make part of this post-proceedings volume.

We are very grateful to Frank Dignum, who gave a very inspiring invited talk, and
to the participants, who provided a lively atmosphere of debate during the presentation
of the papers and during the general discussion about the challenges that the MABS
field faces. We are also very grateful to all the members of the Program Committee for
their hard work. Thanks are also due to Michal Pechoucek and Longbing Cao
(AAMAS 2015 workshop co-chairs), to Gerhard Weiss and Pιnar Yolum (AAMAS
2015 general co-chairs), the last also having played the crucial role of AAMAS 2015
local organization chair.

January 2016 Benoit Gaudou
Jaime Simão Sichman

MABS 2015 Co-chairs

http://www.pcs.usp.br/~mabs
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Formalism Coupling in MABS



Extending the Gillespie’s Stochastic Simulation
Algorithm for Integrating Discrete-Event

and Multi-Agent Based Simulation

Sara Montagna(B), Andrea Omicini, and Danilo Pianini

DISI, Alma Mater Studiorum–Università di Bologna, via Sacchi 3,
47521 Bologna, Italy

{sara.montagna,andrea.omicini,danilo.pianini}@unibo.it

Abstract. Whereas Multi-Agent Based Simulation (MABS) is emerging
as a reference approach for complex system simulation, the event-driven
approach of Discrete-Event Simulation (DES) is the most used approach
in the simulation mainstream. In this paper we elaborate on two intu-
itions: (i) event-based systems and multi-agent systems are amenable
of a coherent interpretation within a unique conceptual framework; (ii)
integrating MABS and DES can lead to a more expressive and powerful
simulation framework. Accordingly, we propose a computational model
integrating DES and MABS based on an extension of the Gillespie’s
stochastic simulation algorithm. Then we discuss a case of a simulation
platform (ALCHEMIST) specifically targeted at such a kind of complex
models, and show an example of urban crowd steering simulation.

Keywords: Multi-agent based simulation · Discrete-event simulation ·
Stochastic simulation · Gillespie algorithm · ALCHEMIST

1 Introduction

Computer simulation is a powerful tool used in principle in the analysis of real
system behaviour in order to understand the main processes and mechanisms
underlying the observed phenomena, and to predict the evolution of system
dynamics under specified conditions. More recently, simulation became a com-
mon practice in the engineering of artificial computational systems, mainly dur-
ing the design phase for testing, validating, and predicting system behaviour
before actually starting the implementation phase [19].

Different approaches have been developed and proposed over the years to
build models and execute simulations. In the last decade, Multi-Agent Based
Simulation (MABS) became a reference approach for complex system simulation
[4,15,17]. MABS provides constructs aimed at structuring the model following
the multi-agent systems (MAS) paradigm, typically around three main abstrac-
tions – agent, society, and environment [15] –, and at defining their dynamic
behaviour over time. MABS is usually introduced as a novel and alternative

c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-31447-1 1



4 S. Montagna et al.

approach to Discrete-Event Simulation (DES) and to Systems Dynamic (SD),
which entered the simulation mainstream long ago.

When developing a MABS, the common practice is to build and execute
the model on top of ad-hoc platforms that should provide the required tools
to shape the agent-based model, as well as a scheduling module managing the
simulation execution with respect to time. This paper focuses on such a module,
by discussing the main approaches available in literature and implemented in
the simulation engine of the most used platforms, such as NetLogo, Repast [24],
MASON [14], Swarm [18], and AnyLogic: (1) continuous time; (2) discrete time
with fixed interval, where time is advanced in equidistant steps; (3) discrete-event
time, where time is advanced of discrete steps along a continuous timeline only
once an event is triggered, which changes the state of the system. In particular we
observe that the vast majority of the available simulation toolkits adopt a time-
driven architecture, which is easier to be implemented both for the simulation
developers and for the users when building a MABS, but has some problems of
efficiency, accuracy, and coherence with the real system behaviour [16]. For this
reason a time-driven architecture seems to bring in too many assumptions when
modelling complex systems.

Following these preliminary remarks, we claim that an integration of MABS
and DES could be crucial in the simulation of complex systems. Besides some
recent literature [16], this also supported by a recent re-interpretation of EBS
and MAS as two computational paradigms amenable of a coherent interpretation
within a unique conceptual framework [25,26].

Along these lines, we here propose an event-driven stochastic computational
model to build a full-fledged MABS engine and to structure agent-based mod-
els (ABM). Our scheduling module derives from two optimised versions [9,36]
of the popular and successful Gillespie’s stochastic simulation algorithm (SSA
[10]), which was originally defined for the simulation of chemical systems and
is intrinsically event driven. Our extension aims at making the algorithm more
flexible so as to move from the pure chemistry towards the world of ABM. This
impacts on the engine as well as on the ABM, here built around the concepts of
reactions and compartments. To the best of our knowledge, our model is quite
innovative in the MABS field.

Whereas we mostly aim at discussing a theoretical issue, rather than a new
simulation framework, in this paper we present the case of a simulation platform
(ALCHEMIST [30]) specifically developed for running such a kind of complex
models. After quoting some successful application of our integrated DES/MABS
model – in particular, in the fields of biology and pervasive computing – we show
a running example of urban crowd steering to demonstrate its application in
complex scenarios, and to test its computational performances.

2 Background

In the simulation mainstream, DES and MABS are usually presented as alterna-
tives to continuous mathematical models – often referred as Systems Dynamic
(SD) modelling approaches – and to Monte Carlo simulation.
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2.1 Discrete-Event Simulation (DES)

DES is recommended when the dynamic of the system to be reproduced is char-
acterised by a finite number of instantaneous events that are responsible for
the changes in the system state. In between events, no change to the system is
assumed to occur. Different events cannot be simultaneous. DES is usually very
efficient since it allows to jump in time from one relevant event, corresponding to
a state of the system, to the next one that modifies such a state. Thus it differs
from SD, where the system state is assumed to change continuously over time.

Defining a DES means to model the behaviour of a system as an ordered
sequence of non-continuous events, by specifying for each of them the perturba-
tions in the system state it provokes, and the exact point in time when it has
to be triggered. The simulation maintains at least one list of simulation events,
sometimes called the pending event set since it lists those events that are pending
as a result of previously simulated event but have not been simulated yet. Two
functions should be defined: for choosing the next event from the list, and for
changing the system state. Simulation proceeds by defining a clock that tracks
time evolution, by advancing of discrete Δt once events occur.

2.2 Agent Based Modelling (ABM) and Simulation (MABS)

ABM and MABS are often discussed in the literature as alternative approaches to
DES, and to mathematical models (such as differential equations), which model
systems at the macro-level, i.e., from the viewpoint of the entire population.
On the contrary, ABM models the system at the micro-level, that is, at the
level of its components: each active entity is modelled as an autonomous and
interacting agent, situated in a dynamic environment with which it interacts by
receiving inputs and by affecting its state with its actions. The global system-
level behaviour of an ABM emerges as a result of the agent-to-agent interactions
– i.e. from the societies of agents – and of the agent-to-environment interactions.

A computational engine for simulating agent behaviours, interactions, and
environment – which may be spatially explicit and contain dynamic processes in
addition to agents – is then needed to run the model—i.e. executing a MABS.
Various platforms were developed for the purpose [2,33], which generally provide
tools for developing, editing, and executing ABM, as well as for visualising the
simulation dynamic. However, the crucial point here is to discuss the way they
operate over a timeline, i.e. how the agents and environment behaviours are
coupled and scheduled. We examine in depth such an issue in the next section.

3 Motivation

A crucial issue in MABS is how to deal with the evolution of time. The model
for relating agent actions with the dynamics of the environment can be either
continuous or discrete. Continuous approaches are rare and, in case, specifically
used for modelling the endogenous dynamic of the environment coupled with
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discrete agent internal processes. In discrete approaches, time evolves with either
regular intervals (time steps) or event executions (time is increased along a
continuous timeline from one event to the next one) [17]. Among such techniques,
the most widely used is the discrete approach with fixed time steps (hereafter
called time-driven) [16,33]. The time-driven approach is the easiest one from
both the simulation infrastructure perspective (no need to implement scheduler
or event list, as required by DES) and the perspective of the modeller, who has
just to specify the order of actions occurring during the same time step.

3.1 Time-Driven Drawbacks: A Comparison with DES

Efficiency — The time-driven approach is definitely less efficient than an event-
driven approach: t has to pass by fixed time steps even if no actions are
scheduled to be executed for changing the system state. Thus, modellers
are required to choose the temporal granularity of actions: this normally
corresponds to the fastest events, but it could obviously be a problem in those
systems with a wide spectrum of time scales, such as in stiff systems possibly
requiring an inefficient allocation of computational resources. In this regard,
an event-driven approach can really improve the efficiency of a simulation by
skipping those phases that are actually inactive.

Accuracy/Validity/Coherency — To be as close as possible to the MAS
paradigm, agents should conduct their internal behaviour (actions and inter-
actions) concurrently (so, simultaneous actions can occur), and be coupled
with a possibly dynamic environment. In a time-driven approach, from time
t, the state at t + Δt results from combining all agent actions scheduled in
the interval Δt with the environment evolution expected in the same inter-
val. However, concurrency is lost: whereas agent and environment actions
are interdependent, the order in which they are performed can radically
change the overall result. Although some solutions were proposed (e.g., [17]),
an event-driven approach is apparently the best compromise, since it lim-
its the problem to those rare actions that are expected to be triggered
simultaneously.

Congruence — The approximation of the reality in which all the entities of the
system are updated simultaneously, as for the time-driven approach, often
seems to be too far from the real behaviour of a complex system.

3.2 Related Work

The vast majority of the MABS platforms implement a time-driven scheduler.
For instance, in NetLogo1, one of the most widely used, time passes in dis-
crete steps with the same length, called “ticks”. However, MABS / DES inte-
gration was recently recognised as crucial: some of the most popular MABS
platforms include an event-driven scheduler [16] (e.g. MASON [14] and Repast
[24]). MASON is explicitly defined as “a fast discrete event multiagent simulation

1 http://ccl.northwestern.edu/netlogo/.

http://ccl.northwestern.edu/netlogo/
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library”: agents are programmed to be stepped, i.e. their actions to be scheduled
at some time in the future. To avoid conflicts, if multiple agents are scheduled for
the same time, an ordering property can be specified. On the contrary, Repast
mainly focuses on the time-driven approach, even though it provides constructs
to possibly implement also event-driven simulations. The AnyLogic simulation
software2, which can boast hundreds of commercial and governmental organisa-
tions and hundreds of universities as users, still provides separate functionalities
and tools for DES and MABS.

4 A Unified Conceptual Framework

The issue of a unified conceptual framework for MAS and EBS is indeed a
complex one, and was generally faced in [25,26]. In the following, we just resume
the main points of the framework that are relevant to the simulation problem—
thus, to this paper.

4.1 MAS and Events

Generally speaking, the event-based architectural style has become prevalent for
large-scale distributed applications, whereas MAS seemingly provide the most
viable abstractions to deal with complex distributed systems. Thus, promoting
a coherent integration of agent-based and event-based abstractions is generally
relevant for the engineering of complex software systems, as demonstrated by
the many approaches already integrating MAS with some sort of event-driven
system:

– most of the agent architectures adopts some effective notion of event in order
to provide for agent reactiveness—e.g., BDI architectures [34];

– most of the agent middlewares provide some event-based abstractions and
mechanisms so as to deal with asynchronous message passing and environment
change—such as Jade3 [3] and TuCSoN4 [29];

– [1] presents an agent-based architecture for coordinating event streams from
WBSN

– ELDA is an event-driven agent meta-model [8];

4.2 MAS as EBS

The conceptual foundation of our unified framework lies in the observation that,
from a software engineering viewpoint, agents and environment are the abstrac-
tions that represent the only sources of events in a MAS:

– agents represent the designed source of events, autonomously driving control
towards their own goals, and producing internal events through their actions;

2 http://www.anylogic.com.
3 http://jade.tilab.com.
4 http://tucson.unibo.it.

http://www.anylogic.com
http://jade.tilab.com
http://tucson.unibo.it


8 S. Montagna et al.

– environment models the external events that are relevant for the MAS, whose
dynamics is in principle unpredictable, through abstractions of some sorts –
environment resources, sensors & actuators, probes – that also capture the
diversity of environment.

Along this line, an event-driven view of MAS is possible: MAS can be seen as
event-driven systems, where

– agents encapsulate internal events—more generally, they encapsulate the
activities in MAS that generate events according to some application crite-
rion;

– environment models external events through dedicated abstraction—thus cap-
turing the dynamics of the unpredictable events, which occur externally but
are indeed relevant to the MAS.

Since agents encapsulate control along with the criteria for control – expressed
in terms of high-level abstractions such as beliefs, goals, intentions, plans – artic-
ulated events histories can be modelled along with their motivations in MAS
once they are interpreted as event-driven systems. Also, since environment in
MAS is modelled as a first-class event-based abstraction, all causes of change
and disruption in a MAS are modelled in a uniform way as event pro-sumers
(that is, both producers and consumers of events).

Finally, social abstractions in MAS take care of coordinating multiple event
flow according to their mutual dependencies in MAS – such as agent-agent and
agent-environment dependencies – as in the case of coordination artefacts [27,28].

5 A Unified Stochastic Computational Model

In the following, we present a computational model derived from the popu-
lar and successful Gillespie’s stochastic simulation algorithm (SSA [10]), and in
particular from its notable and more efficient extensions developed by Gibson-
Bruck [9] and by Slepoy [36]. Gillespie’s SSA is a discrete and stochastic method
intrinsically endowed with the event-driven properties [5]: introduced to model
chemical systems, nowadays it represents the basis for many simulation plat-
forms, in particular those aimed at the investigation of biochemical systems
[6,11–13,22,32,37]. With significative extensions, it was recently used to model
artificial systems inspired to chemical natural systems and ecology [23]. Thus,
from the computational model perspective, the ABM we devised and presented
in this paper is derived on Gillespie’s well-accepted algorithm, especially because
it intrinsically features event-driven properties, and it is also widely used in the
simulation of complex systems. Moreover, the possibility to adopt the chemical
metaphor is apparently the most natural way to model those systems featuring
self-* properties [7]. From the perspective of the simulation engine, the optimised
extensions of the Gillespie’s SSA [9,36] are very efficient, and make it possible
really fast simulation runs.
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5.1 Gillespie’s SSA as an Event-Driven Algorithm

Gillespie’s SSA revolves around the idea of modelling a chemical system as a sin-
gle space filled with molecules that interact through a number of reactions defin-
ing how they combine. The instantaneous speed of a reaction is called propensity,
and depends on the kinetic rate of the reaction as well as on the number of mole-
cules of all the reagents involved. For a reaction i with k reactants, j products,
rate r of the form R0 + R1 + . . . + Rk

r−→ P0 + P1 + . . . Pj , the propensity ai is
defined as: ai = r · [R0] · [R1] · . . . · [Rk] where [Ra] is the number of molecules
of species Ra. Given that, the algorithm relies on the idea that the system can
be simulated by effectively executing the reactions one by one, and by changing
the system status accordingly.

The algorithm follows four steps: (i) select the next reaction μ to be executed;
(ii) calculate the time of occurrence of μ according to an exponential time dis-
tribution and make it the current simulation time; (iii) change the environment
status in order to reflect this execution; (iv) update the propensities of the reac-
tions. Such algorithm is event-driven in that it executes only one reaction/event
at a time: it changes the state of the system, and consequently the event list.

5.2 Gillespie’s SSA in MABS: Related Work

Most of the few works integrating the Gillespie’s SSA into a MABS refer to the
simulation of living organisms, which naturally manifest stochastic behaviour.
Integration may occur at different levels: the SSA can either model the agents
and environment behaviour (which is the sort of integration we are aiming at) or
only a portion of the system behaviour. In [40], for instance, only the diffusion of
molecules is modelled, whereas molecules, in turn, are modelled as agents with
trivial behaviours. A more advanced method is presented in [35], where a mul-
ticellular system is modelled as a MAS whose agents are cells whose behaviour
is modelled as a set of reactions, simulated via a modified version of the SSA,
interacting with the local environment, populated by diffusing molecules.

5.3 Gillespie’s Optimised Versions

The algorithm was improved by various works in literature. In particular, both
[9] and [36] optimise the base algorithm in two phases: the selection of the next
reaction to execute, and the update of the reaction pool – pending event list –
once an event has been executed. For the latter, they both rely on the concept of
dependency graph, namely, a data structure statically linking each reaction to the
set of reactions whose execution speed may be influenced by the execution of the
former. Even though the optimisation does not affect the worst case complexity,
it offers great benefits in the average case, since most of the reactions are not
interdependent—which actually impacts optimisation the most [36].

The selection of the next reaction to execute is where those improved algo-
rithms differ most. The “Composition-Rejection” (CR) algorithm [36] smartly
groups reactions with similar rate in such a way that the number of such groups
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remains constant for most biological scenarios. Once reactions are grouped, the
algorithm can correctly choose the next one to execute in constant time: if the
number of groups is constant throughout the simulation, the algorithm is actually
able to select the next reaction in constant time. The same selection operation in
[9] is made by computing a putative execution time for each reaction, and then
using a binary heap data structure to sort them. This way, the next reaction to
execute is always the root node of the tree, and the selection is performed in
constant time. However, once the reaction has been executed, all the dependent
reactions must be updated and re-sorted in the tree. In the worst case, this takes
logarithmic time with respect to the number of reactions.

5.4 Bridging DES and MABS Through an Enhanced Gillespie’s
SSA

Based on [9,36], we here adopt and extend a novel stochastic computational
model [30] for (i) integrating into a MABS toolkit a DES scheduler based on
the Gillespie’s SSA, and (ii) specifying the agent (internal and interacting) and
environment behaviours by the concept of reactions, properly extended from the
original concept of chemistry found in Gillespie.

The Simulation Engine. Both the Gibson-Bruck’s [9] and Slepoy’s [36] sched-
ulers are granted to correctly simulate a Poisson process. However, in order to
build a full-fledged DES engine, we must offer the possibility to schedule also
non-Markovian events. For instance, let us consider the simulation of an agent
that acts at every fixed time interval (e.g. a walking man): this, clearly, is not
a memoryless process. Gibson-Bruck offers a more suitable base for a generic
DES: in fact, its selection mechanism for next reaction is orthogonal to the way
the putative times are computed. This allows the neat separation between the
generation of times (namely, the time distribution of each event) and the actual
scheduling (choice of which event should run next). Moreover, Slepoy’s group-
ing fails if there are instantaneous reactions (for which r=∞), and there is no
straightforward way to pick non-markovian events using CR.

Another feature needed to shift the paradigm from pure chemistry towards
ABM is the possibility to simulate multiple, separate, interacting, and possibly
mobile entities. This can be partly addressed by the notion of intercomunicat-
ing compartments [6,11,22,37], in a way that makes it possible also to model
systems characterised by a set of connected volumes and not just a unique chem-
ical solution. The hardest challenge in simulating multiple compartments with
an efficient SSA is in improving the dependency graph: reactions that could be
interdependent but occur in separated compartments should not be marked as
interconnected within the dependency graph. Mobility makes everything even
harder, since it may lead to the creation and disruption of communication chan-
nels between compartments, and consequently to simulation-time changes in the
structure of such dependency graph. Summarising, supporting dynamic envi-
ronments with multiple mobile compartments requires the dependency graph to
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become a dynamic data structure, which cannot be pre-computed at the simu-
lation initialisation and kept static.

A possibility for efficiently adapting a dependency graph to a network of
compartments could be to define the input and output contexts for each reac-
tion, namely, the places where reactions respectively “read” their reactants and
“write” their products. Multiple contexts could be defined: in [30] we propose the
adoption of three levels: local, neighborhood and global, along with suitable
procedures to correctly compute the graph’s edges. On top of this finer-grain
locality concept, if the model supports compartment mobility, the dependency
graph must support the dynamic addition and removal of reactions.

The Computational Model. Such an engine, despite its improved flexibility,
is still bound to a world made of molecules, reactions, and compartments. Typical
ABM require instead the specification of higher-level concepts, such as agent,
internal and interactive behaviour, and environment.

Here, then, a compartment can represent an agent, and all the possible events
in the model should in the end break down to a set of reactions (see Fig. 1). In
the following discussion, we interchangeably use compartment/agent/node and
reaction/events as synonyms.

As a first step, we introduce the notion of environment as a first-class abstrac-
tion [38], missing in chemistry-derived SSA. The environment has the responsi-
bility to provide, for each compartment, a set of compartments that are its neigh-
bours. The function of the current environment state that determines whether or

Fig. 1. The computational model
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not two nodes are neighbours can be arbitrarily complicated. Also, it is respon-
sible of exposing possible physical boundaries, namely, to limit movements of
compartments situated within the environment.

The fact that reactions are the only abstraction the modeller can rely upon
in order to let the simulated system progress does not really hinder expressivity.
In fact, our model does not use a strictly-chemical agent behavioural model [39]:
instead, it generalises the concept of reaction as “a set of conditions that, when
matched, trigger a set of actions on the environment”. Accordingly, a condition is
a function that associates a numeric value ranging from zero to positive infinity
to each possible state of the environment. If such value is zero, the event can
not be scheduled; otherwise, it is up to the reaction to interpret the number. In
this framework, actions are arbitrary changes to the environment. To allow the
dependency graph to be built, both conditions and actions should expose the
set of possible data items (molecules) that they may read or modify. Also, both
conditions and actions should expose a context of the type local, neighborhood
or global, used to determine the input and output contexts for the reaction
itself.

Reactions compute their own expected execution time. Such putative time is
generated by a function (“rate equation” in the following) taking as input all the
values generated by conditions and a time distribution. The engine may require
putative time to be updated in case that (i) the reaction has been executed, or
(ii) another reaction which the reaction depends on has been executed.

The injection of a time distribution as a parameter for the rate equation
makes it possible to model a whole set of events that are not exponentially dis-
tributed: imagine, for instance, a burette dropping some quantity of reactant in
a compartment every fixed time interval. Such an event is clearly not memo-
ryless, and can be modelled in the proposed framework with a reaction having
no condition and a single action increasing the reactant concentration in the
compartment. Such a reaction can be fed with a Dirac comb, and the resulting
system would seamlessly mix exponential and non-exponential events.

The low expressive power of the classical concentration is probably the hard-
est challenge when trying to extend a chemical-born meta-model towards the
rich world of agents. To this end, we define concentration as depending on the
actual meta-model: so, in the following, concentration is related to the “the
data items agents can manipulate”. Besides the trivial example of chemistry,
where data items are integer numbers, let us consider a distributed tuple spaces
model: in this case, the molecules would be tuples, and the concentration would
be defined as “the number of tuples matching a certain tuple”. Clearly, such
flexibility comes at a cost: since the conditions and actions operating on differ-
ent concentrations dramatically change their behaviour, for any possible class of
data items the meta-model must be instanced with a proper set of conditions
and actions that can act on such a sort of concentration.

We argue that our model allows for enough flexibility to support complex
agents, too: for instance, a complex mind cycle could be implemented as an
action, and a condition expressing whether or not the agent is alive would allow
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it to run. In Sect. 6 some evidence for our assertion is provided, by referencing
works that rely on such computational model to build and simulate complex
scenarios.

6 ALCHEMIST as a Stochastic DES/MABS Platform

ALCHEMIST5 [30] is a simulation platform implementing the simulation algo-
rithm described in Subsect. 5.4, thus allowing ABM to be built according to the
computational model described in the same Subsection. ALCHEMIST is a highly-
performant simulator faster than advanced ABM simulators such as Repast [30],
able to load simulation specifications from XML files, which are normally gen-
erated using domain-specific languages (DSL). ALCHEMIST comes distributed
with several DSL, one of which was explicitly designed to model pervasive service
ecosystems [23].

The framework was already used in literature producing promising results,
thus demonstrating the feasibility of SSA-based ABM. Most such works simulate
pervasive computing scenarios (e.g. [20,31]), but the same framework has been
used to model multicellular biological systems in [21].

Besides using the previously described engine and model, ALCHEMIST comes
with a set of features valuable to the modeller, such as:

– support for complex environments, which can be generated automatically upon
black and white images;

– loading of maps data from OpenStreetMap, supporting (through Graphhop-
per) navigation of users, cars and bicycles along proper roads;

– loading of GPS traces;
– advanced mobility models for agents, ranging from interpolation of traces using

maps data to realistic indoor pedestrians behaviour.

6.1 A Case Study: Crowd Steering in London

To demonstrate how our computational model can be applied to complex sce-
narios, and also to show how the simulation algorithm performs, we here present
one notable application example of ABM: crowd steering at the urban scale. The
idea is to guide people in an urban area towards locations they are interested
in, following the most satisfactory path according to any arbitrary metric—
for instance, the shortest, the quickest, the less trafficked, or the less polluted.
Such situations may vary in time and space, dynamically changing the emer-
gent suggested path. Moreover, according to the ABM approach, system has to
evolve without any centralised computing system involved, and based on the local
interactions among agents and agent-environment—namely, in a self-organising
fashion.

5 http://alchemist.apice.unibo.it.

http://alchemist.apice.unibo.it
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Model. We set up our model in the city of London. According to the ABM
abstractions, we model the environment as a static network of nodes randomly
deployed along the city streets. Such nodes must be equipped with network
capabilities similar to those of a Wi-Fi access point; in particular, they must
allow nearby mobile devices to connect to all the static nodes within their com-
munication range. We suppose users, modelled as agents, to be equipped with
smart devices aware of their position. We think such hypotheses are quite real-
istic: nowadays, almost everybody brings (at least) one smart device along with
her, and such devices are always equipped with a GPS positioning system and
networking capabilities.

Each environmental node is responsible of computing – according to internal
reactions – the local value of some distributed data structures, called gradients
[7], relying only on values provided by neighbouring nodes and on contextual
information. Each agent receives the gradient value from each environmental
node in its neighbourhood. Such values are compared and the lowest is chosen
as current destination. The agent is instructed to navigate pedestrian roads
towards the current destination, following the navigation system suggestions.

Simulation. Our simulation consists of 1000 nodes deployed along the city
streets, with a communication range of 400m. We mark as unfavourable the
area comprised between Westminster bridge and Golden Jubilee Bridge, and
as particularly attractive the area south of Blackfriars Bridge. In Elephant and
Castle, a point of interest (POI) propagates a gradient. Such a data structure is
dynamic, and as such it is computed by simulating the corresponding reactions.

In our setup, 30 pedestrians located in the proximity of St. James Park
want to be navigated towards the POI. In order to do so, they follow down the
gradient. Being the unfavourable area along the shortest path, some of the nodes
are steered south and some north. Such a group division is completely emergent.
Simulation snapshots are shown in Fig. 2.

(a) Initial (b) Ongoing (c) Near-end

Fig. 2. Three snapshots of the simulation. Our altered distance metric (the gradient)
goes from green (most favourable and close to destination) to red (unpleasant or far
from destination). Agents (in black) climb this structure towards greener values (Color
figure online).
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The simulator completed the whole simulation (863450 simulated seconds) in
around 580 s with the graphical interface attached on an Intel Core i5–2500 with
8 GB of RAM running Linux 3.17. The dependency graph for such experiment
counted 2088 nodes, while the number of arcs ranged from 30520 to 35811. The
number of nodes did not change because no new nodes, no new events were
injected while the simulation was running, nor any was removed. The number of
arcs, instead, varied because of the agent movement across the map, which led
to changing neighbourhood relationships.

7 Conclusion and Future Work

In this paper we adopt an extension to the Gillespie’s SSA as a stochastic event-
driven algorithm that lead us to a novel model enabling the integration of DES
and MABS. The model impacts both on the way the scheduling module of a
MABS platform is implemented, and on the way agents and environment behav-
iours have to be defined. Since it draws its inspiration from the chemistry word,
it is grounded on the concepts of chemical reactions and biological compart-
ments. However, such abstractions are suitably extended to properly fill the gap
with the abstractions characteristic of an ABM and to be most suitable for the
simulation of a more generic scenario. To the best of our knowledge this is one
of the first attempts to bring Gillespie’s SSA into the MABS scientific field.

Even though the meta-model we envision is inspired by chemical systems,
and its main applications are actually devoted to reproduce the dynamic of
biochemical or ecological systems, self-organising systems, or artificial systems
with an inspiration into ecology, it has the potential to be actually adapted to
model other sorts of systems featuring suitable description in terms of atomic,
instantly-happening events. The three main concepts of environment, reaction,
and concentration are those that have to be suitably extended to move towards a
higher level of expressiveness. In particular, in this work we show how the notions
of environment and reaction can be made generally more expressive. Concen-
tration requires instead a definition tailored on the specific scenarios, since its
meaning in our framework is generically “the kind of data that is manipulated”.
However, it is worth mentioning that our intent is not to provide an ABM gen-
erally valid for any application domain. For instance we believe that for those
systems manifesting elaborated cognitive abilities the chemical abstraction, even
if opportunely extended as we presented here, might not be sufficient.

Finally, we discuss ALCHEMIST as a simulation framework built upon
those concepts, which demonstrates the feasibility and expressiveness of our
DES/MABS integrated approach through a simulation of crowd steering at the
urban scale.

In future, we intend to measure the impact of an event-based scheduling
both on the quality of the simulation outcome and on the execution time. Our
expectation is that an event-driven algorithm will provide a the same simulation
precision of an extremely fine grained time-driven algorithm with much higher
performance, due to the number of “empty” events ignored. Also, we expect



16 S. Montagna et al.

more coarse time ticks to progressively increase the simulation performance, at
expense of precision in the simulation outcome.
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Abstract. A hybrid model coupling an aggregated equation-based
model and an agent-based model is presented in this article. It is applied
to the simulation of a disease spread in a city network. We focus here on
the evaluation of our hybrid model by comparing it with a simple aggre-
gated model. We progressively introduce heterogeneities in the model
and measure their impact on three indicators: the maximum intensity of
the epidemic, its duration and the time of the epidemic peak. Finally we
present how to integrate mitigation strategies in the model and the ben-
efits we can get from our hybrid approach over single paradigm models.

Keywords: Hybrid model · ODE · Metapopulation · Network · Disease
spread

1 Introduction

The modelling of socio-environmental processes often requires to couple
processes defined at distinct temporal and spatial scales. Models involving a
single paradigm to describe all the processes, such as either an aggregate app-
roach at the macroscopic scale (with a system dynamic approach) or a totally
disaggregated microscopic approach (with an agent-based approach), fail to
describe multi-scale phenomena. The aim of this article is thus to introduce
a hybrid model coupling micro and macro dynamics models and to assess step-
by-step the impact of the heterogeneity and the stochasticity introduced by
microscopic model.

As a case study, we consider a disease spread in a network of cities. The
two main dynamics we take into account are the disease spread within each city
and its spread between cities through air traffic. The former dynamics involves
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a large number of people in each city (millions of people) and its temporal scale
order is of several weeks. In contrarily the latter one involves few (hundreds) of
people in each airplane, and a flight temporal scale order is of several hours.

The heterogeneities that will be studied in the model are related to the initial
population distribution, heterogeneity in the network (we will experiment various
network topologies) and heterogeneity in flight duration to take into account the
space size.

The classical approach to model such phenomena is named metapopulation
approach, comes from ecology [8] and has been applied to various fields and in
particular to disease spread in large-scale networks [1,3,11]. The main idea is
that each node of the network has a dynamic described using a system dynamics
approach (often described using an Ordinary Differential Equation (ODE) sys-
tem). In addition edges represent migration (modelled as instantaneous streams)
between nodes. Such an approach allows modellers to study disease spread con-
ditions and to test various spread mitigation strategies [11].

We argue that this approach is too limited to take into account strategies
dealing with individual behaviours. In this article we thus go one step further
by introducing individual and possibly heterogeneous passengers in order to
better take into account intentionality, reflexivity and adaptability of human
beings [4,5]. Due to space limitation, we cannot present this in details; we can
only give an insight of the benefits of our approach. The main contribution is to
design, build and evaluate a frame model that will be extend in the future with
more complex individual behaviors.

The article is organized as follows. Section 2 introduces the various modelling
approach used in this article. Section 3 presents the model and Sect. 4 the method
we use to evaluate the hybrid model. Section 5 presents the results and Sects. 6
and 7 introduces mitigation strategies in the model and conclude.

2 State of the Art

2.1 System Dynamics Modeling of Epidemic

One of the traditional ways to describe the dynamic of systems is the system
dynamics approach [6], i.e. the description of the evolution of macroscopic vari-
ables using a set of equations, often an ODE system. Generally it is not possible
to get an exact solution of such system, and a numerical integration method
(e.g. Runge Kutta [13]) is used to approximate it. Nevertheless we can prove
analytical properties on equilibrium points and on their stability. In epidemiol-
ogy, the most famous equation-based model is the SIR model [9]. It considers
the global population of N people as a whole and describes the evolution of
the 3 stocks of Susceptible (S), Infected (I) and Recovered (R) people using
the system presented in Fig. 1 (N = S + I + R in this system). The numerical
integration using the Runge Kutta 4 (RK4) method is plotted in Fig. 2.

The parameter β is the infection rate of the disease in case of contact between
a Susceptible and an Infected individual, i.e. it describes the transition between
Susceptible and Infected stocks. Similarly α describes the transition between
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dt
= −βIS
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dI

dt
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βIS

N
− αI

dR

dt
= αI

(1)

Fig. 1. ODE system for a SIR model Fig. 2. Plot of the evolution of S, I and
R for a SIR model. We choose: α = 0.2,
β
N

= 0.5.

the Infected and the Recovered states, i.e. it represents the recovery rate. This
system can be graphically drawn using a Forrester diagram [6] as in Fig. 3.

Fig. 3. SIR compartiments

This system is very simple but can be complexified by introducing additional
stocks or streams between stocks. For example if people that have recovered from
the disease can be infected again, a stream between the Recovered and Suscepti-
ble stocks can be added (we get the SIRS model). If the disease is characterized
by a time period when the individual is exposed to the disease but not yet seek,
an additional stock (Exposed) can be added between Susceptible and Infected,
we thus get the SEIR model.

2.2 Metapopulation Models

One of the strongest limitation of the system dynamic approach is that it consid-
ers the population as a whole. It has been extended in ecology by the so called
metapopulation approach [8]: the aim is to represent several populations and
the migration relationships between them. The whole population is thus split
into several populations that are the nodes of a graph, the edges representing
the possible migrations. The dynamic inside each node (population) is described
by an ODE model whereas migrations are managed as instantaneous streams
between nodes. This approach has also been applied in epidemiology [3,11] to
deal with the spread of a disease over a network of cities.

The metapopulation approach allows modellers to study how to control an
epidemic by testing some mitigation strategies at the city level, such as the
quarantine (a city is closed for arrivals and departures), avoidance (the traffic
avoids a city, but airplanes can still leave it) or at the individual level, such as
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the risk culture (people being aware they are infected can choose to postpone
their travel in order to avoid to infect other persons). Nevertheless such strate-
gies remain limited as they can not take into account heterogeneous individual
travels: individuals are not and cannot be represented in such models. This is
the main feature of the agent-based modelling approach.

2.3 Agent-Based Models

The main idea of the agent-based models is to describe individual entities of
a system and to let emerge the macroscopic expected behavior thanks to the
interactions among entities. In epidemiology, it has also been successfully applied
in studying the diffusion of mumps in Portugal [14] or plague in Madagascar [10].

Works such as [12] or [2] have already investigated the link between agent-
based and equation-based models, but their point was to compare the two
approaches in their representation of the same phenomenon. They highlight the
difference of paradigm, scale of representation and way of thinking the phenom-
enon. But as far as we are aware, few articles investigate deeply the coupling of
these two approaches into one single model as we do in the sequel.

3 A Micro-Macro Coupled Model: The MicMac Model

In this section, we present the MicMac coupled model. It has been developed
using the Netlogo platform [16] (c.f. Fig. 4) dynamically coupled with a Scala
extension we designed for Runge-Kutta 4 numerical integration method. Due to
space limitation, we cannot present it using the full ODD protocol [7], but we
keep only the main parts of it.

3.1 Overview of the Model

The main purpose of this approach is to model the disease spread in a network of
cities using a coupled model composed of an aggregated equation-based approach
(SIR) for the epidemic dynamic within cities and an agent-based approach for
the epidemic spread between cities (air traffic). The two main processes we take
into account are the local spread of the epidemic in each city and the spread
through the network (we consider here only the air traffic).

3.2 Entities, State Variables and Scales

The model is composed of two kinds of agents: the cities (that are the nodes
of the network) and the airplanes (that will carry passenger from one city to
another one).

A city agent (defined in the node breed) is dedicated to describe the epidemic
evolution of the whole population of a city. As this evolution will be described
using the SIR model, the population of the city is represented by three state vari-
ables (S Node, I Node, R Node) representing respectively the number of inhabi-
tants in the Susceptible, Infected and Recovered states. It is important to notice
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that these state variables will contain float values (due to the integration of the
SIR system using the Runge-Kutta 4 method). A city agent is also characterized
by a mobility rate (mobility-rate-node) that will be used to compute the number
of inhabitants that will travel. The number of people that should travel is stored
in the variable stock-to-flight. To deal with mitigation strategies, two additional
state variables are introduced (in-airport and out-airport): they take boolean
values and represent the fact that the city accepts (or not) incoming flights and
emits (or not) flights.

The airplane agents (defined in the MobileGroup breed) are characterized by
their speed (that will be calibrated given the chosen disease and the spacial scale),
their target city (Next-Node) and their population (i.e. the number of susceptible
S Group, infected I Group and recovered R Group people in the plane).

An edge of the network is only characterized by the two cities it connects.
We consider it represents an air route without stopover. As a consequence, in
this simple version of the model, we do not consider stopovers in the trips.

In order to allow the numerical integration of the SIR systems, we chose
that the simulation step corresponds to the integration step. We thus need to
synchronize the air traffic process on this time discretisation. The time and space
scales are defined as parameters of the simulation. Given a disease (characterized
by its alpha and beta parameters) and an initial population, the modeller can
choose the size of the environment (TerritorySize-km in km) and the integration
step (h). Then a calibration phase is done at the initialization to compute other
parameters (e.g. speed of airplanes).

3.3 Process Overview and Scheduling

The 2 main processes in the model are (i) the epidemic evolution and (ii) the air
traffic. In terms of scheduling, at each simulation step, first the model computes
the disease spread in each city and each airplane and then each city computes
whether it should create a new airplane and chooses its target. Finally each
airplane moves toward its target and when it reaches it, its population is inte-
grated into the city population.

Epidemic Evolution. In each city and airplane, the epidemic dynamics is
driven by a SIR ODE system (c.f. Fig. 1). We consider only one disease and we do
the hypothesis that the same system (with the same disease-related parameters)
can be applied to each city and each airplane. So taken as input the number
of people of a city in each state, we update these numbers by discretising the
system using the Runge Kutta 4 numerical integration method1. This computes
the new number of people in each state. It is important to notice that the number
of people in each state computed using the chosen integration method is a float
value.

1 The numerical integration is done using an external plugin computing each RK4
integration step.
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The equation-based approach has been chosen to describe the epidemic evo-
lution in each city because this approach is dedicated to describe dynamics in a
huge and homogeneous population, which is implicitly the case when we consider
a city as one agent. In addition, it allows us to increase the population on each
node without lose in terms of computation time.

Air Traffic. Each city has a variable stock-to-flight that represents the number
of people that should leave the city and travel to another one. At each simula-
tion step, each city computes (thanks to its mobility-rate-node attribute and its
population) the number of people that should leave the city and add it to the
stock-to-flight variable. If this number is greater than an airplane capacity, air-
planes are created in order to empty this stock. Given the number of people that
take an airplane, we extract a set of people that is representative of the whole
city population by using a proportional random draw: for each individual to be
added in the airplane we randomly choose his epidemic state. As a consequence,
the number or Susceptible, Infected and Recovered people are initialized with
an integer value: as the population in airplane is small we need to extract and
manage individually each people.

Once an airplane has been populated, its target is randomly chosen among
all the adjacent cities.

3.4 Initialization

Calibration. The duration of flights depends on the distance between the source
and the target and is calibrated on the integration step. Therefore, the simu-
lation setup contains a calibration step between the integration step, the flight
duration and the distance. Given a particular disease (characterized by its alpha

Fig. 4. Interface of the MicMac model. The modeller can choose the topology of the
network (among complete, random, small-world...), the mobility rate and the initial
population. The interface allows the modeller to observe the epidemic dynamics of
one city but also of the whole network. The difference between the current and the
initial population (error) is computed at each step, in order to ensure that the popu-
lation remains constant during the simulation (a divergence could appear as we both
manipulate float and integer values for the population).
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and beta (parameters) and its observed duration, the calibration is done on an
additional reference node containing the population of the whole network: a
SIR dynamics is applied until the epidemic end (i.e. until the step where the
number of infected people is lower that an given threshold). This gives us the
simulation step corresponding to the end of the epidemic and thus the duration
corresponding to an integration step h. Given the size of the environment, we
can thus adjust the flight speed.

As an example, if we consider a disease characterized by α = 0.2, β/N = 0.5
and a duration of 60 days and an initial population of 39999 susceptible and
1 infected individuals in each of the 10 cities of the network, we get a step
duration of 0.1 days. So 1 simulation step duration is about 2.4 h in this case,
which justifies the need to take into account flights that are not instantaneous.

Parameters Values. Parameters of the MicMac model are based on the U.S.
domestic flights data2. The 10 cities with the biggest airports have 57 709 474
inhabitants and about 21 420 000 passengers per month. The mobility rate is
thus 0.37 per month and 0.012 per day. In addition, the area of the U.S. is about
9600000 km2 and the mean size of airplanes is 80 passengers.

We chose thus parameters proportional to these values.

4 Evaluation Method

In order to assess the impact of the agent-based model coupled with SIR models,
we will progressively study several heterogeneities introduced by the individual
airplane transportations and compare them with a reference model. This model
considers only the epidemic dynamic in the cities: it is thus the integration
of several SIR nodes3. This model is also equivalent to a homogeneous meta-
population model on a complete graph.

On this model we will consider three particular values (illustrated on the
Fig. 5) as indicators:

– the maximum value of the number of infected people: MaxI;
– the time when the number of infected people is maximum: TimeofMaxI;
– the duration of the epidemic: Duration.

These three indicators will be denoted MaxInSIR, TimeofMaxInSIR and
DurationnSIR for the reference model and MaxIMicMac, TimeofMaxIMicMac

and DurationMicMac for the hybrid MicMac model.
Whereas the two last indicators are computed by (numerical) simulation, this

model is interesting because the first one can be computed analytically. If we
have n nodes with on each an initial population of Iinit infected, Sinit susceptible

2 http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/press releases/
airline traffic data.html.

3 This is not equivalent to 1 node containing the whole population.

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/press_releases/airline_traffic_data.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/press_releases/airline_traffic_data.html
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Fig. 5. Evolution of the number of susceptible, infected and recovered people over
time, computed with α = 0.2, β/N = 0.5 and Sinit = 1000, Iinit = 10, Rinit = 1. The
numerical integration method was Runge Kutta 4 with an integration step h = 10−3.

and Rinit recovered (N = Sinit + Iinit +Rinit being the total number of people),
the value of MaxI is:

MaxInSIR = n

(
Iinit + Sinit +

Nα

β

(
−1 + ln (

Nα

β
) − ln (Sinit)

))

5 Comparison

From a mean field model fitting with the reference model (Sect. 5.1), we pro-
gressively introduce heterogeneity on various dimensions: (i) initial population
distribution (Sect. 5.2), (ii) time of flights (Sect. 5.3) and (iii) network (Sect. 5.4)
and evaluate their impact.

5.1 Reference Case: Equivalence of both Models

In this model, we remove all heterogeneity and the effect of the spatial component
on the model:

– the mobility rates and initial population are the same for every node (no
heterogeneity among cities).

– flights are instantaneous (the model is aspatial);
– the network is a complete network (no heterogeneity due to the network);

We compute (by simulation) the various indicators and we get the following
results:

– MaxInSIR = MaxIMicMac;
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– TimeofMaxInSIR = TimeofMaxIMicMac;
– DurationnSIR = DurationMicMac.

This first experiment shows that the MicMac model fits the reference model:
we have thus built an agent-based model able to reproduce a set of equation-
based models under mean field assumptions. This initial step was necessary
to carefully assess the following models. From this we can go deeper in the
exploration of the impact of heterogeneity in our agent-based model.

5.2 Impact of Initial Conditions (Populations)

Instead of having a homogeneous population in each node, we introduce het-
erogeneity among nodes by creating initially all the infected people in only one
city (this represents a more realistic situation where an epidemic starts in one
location before spreading). Nevertheless the global population remains the same
in the two models. Other hypotheses made in the previous section remain true.
We get the following results:

– MaxInSIR > MaxIMicMac;
– TimeofMaxInSIR < TimeofMaxIMicMac;
– DurationnSIR < DurationMicMac.

All these indicators show that we now have a disease spread behaving as a
classical diffusion phenomenon: the maximum of the epidemic is lower in the
MicMac model because all the cities are not synchronized anymore and the
TimeofMaxI is postponed (which induces a longer epidemic). We have to notice
that the network topology has no effect here (as it is complete), but the diffusion
is not instantaneous because of the fact that an airplane without infected people
can leave an infected city (due to the random filling of the airplanes).

5.3 Impact of the Time in Flight

From the MicMac model presented above (with initial heterogeneous popula-
tion distribution), we now release the instantaneity of flights. The size of the
area is now taken into account and thus travels now take several simulation
steps: the temporal coupling between travel time and integration step is made
at initialization during the calibration step (c.f. Sect. 3.4).

We have explored the impact of the size of the area over the three indicators
and the results are presented in Fig. 6. We observe that the size of the area does
not have a significant impact on the results (for all the indicators).

This result is quite surprising as it shows that the distance has no influence
on results in the current MicMac model. We can imagine two explanations:

– the total flying population is constant (i.e. independent on the travel distance
and time);

– the contagion model in the airplanes is not adapted (the population in air-
planes is small, so out of the scope of the classical SIR model).
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Fig. 6. Influence of the area size on the indicators MaxI, TimeofMaxI and Duration

It could be interesting to investigate the second explanation. A way to do
could be to replace the ODE model by a Gillespie algorithm that is dedicated
to small population (everything else in the model remaining unchanged).

5.4 Impact of the Network

In order to study the impact of the network topology on results, we consider
the same model initialized with various networks. In every case, we consider
a network with 100 nodes (cities). First we use regular networks with 4 to 99
neighbours for each node (the last one is a complete network). Then we use
a small-word network. To produce small-world networks, we use the Watts &
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Fig. 7. Indicators values for regular networks with order among {0.04, 0.2, 0.5, 0.7,
0.99}

Strogatz algorithm [15]: we start with a regular network with 4 neighbors for
each node. Then we rewire some of the nodes. To evaluate the impact of various
small-world network, we consider rewiring probabilities from 0.2 to 1. Results
are summarized in Figs. 7 and 8.

In the case of regular networks, we can observe that the MaxI value increases
and the TimeofMaxI and Duration decrease when the number of edges increases.
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Fig. 8. Indicators values for small-world networks with rewiring probability among
{0.2, 0.4, 0.6, 0.8, 1}

It is due to the fact that it is easier to infect other nodes when it is easier to
access them via the network (which is allowed by increasing the number of edges).
In the case of the small-world networks, we have similar observation when we
increase the rewiring probability. The rewiring indeed creates shortcut in the
network. The more shortcuts the network has, the easier it is to infect other
nodes.
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Rewiring
probability 0.2 0.4 0.6 0.8 1

APL 4.23 3.73 3.46 3.44 3.41

Fig. 9. Average path length for various
small-worlds networks

Order 0.04 0.2 0.5 0.7 0.99

APL 12.88 2.98 1.5 1.22 1

Fig. 10. Average path length for vari-
ous regular networks

In fact, increasing the rewiring probability (small-world networks) or the net-
work order (regular networks) have the same effect: they decrease the diameter
and the average path length (APL) of the network (c.f. Figs. 9 and 10). In addi-
tion it is interesting to notice that the topology itself has not such an influence
on the result, mainly the diameter (and the APL) of the network has the higher
influence on results4.

6 Perspectives: Application of Mitigation Strategies

Once the model being designed, we can use it to evaluate several mitigation
strategies. Due to space limitation, we give here only the method to implement
these strategies. Several strategies have been proposed in the literature [3,11],
such as the quarantine, avoidance of risk culture (c.f. Sect. 2.2).

The two first strategies are parameterized by a threshold: a city is put in
quarantine or avoidance when its rate of infected people is greater than the
given threshold. As an example, in the quarantine strategy, we consider that a
city is put in quarantine when the ratio of infected people reached the threshold
θquarantine, i.e. when the following condition is fulfilled:

Ii
Si + Ii + Ri

> θquarantine

Fig. 11. Influence of the quarantine threshold on the indicator MaxI for the MetaPop
(red plots) and the MicMac models (Color figure online).

4 This is only a first attempt of result: it should be verified on other network topologies.
Other characteristics should also be tested.
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We might consider that such strategy of containment is well defined at a
macroscopic level and directly compatible with the metapopulational model.
Therefore, adding a microscopic component would not add much. However, sim-
ulations run with both models suggest a different conclusion (Fig. 11). While
the dynamics of the epidemic is largely driven by the SIR dynamics on nodes
composed of large static populations (compared to small flying populations),
the discretisation and stochasticity implied by the agent formalism has a signif-
icant impact on containment strategies, even if they rely to a macroscopic level.
Indeed, as can be seen on Fig. 11, the impact of such a quarantine strategy on
the epidemic, defined by the three indicators MaxI, TimeofMaxI and Duration,
is much more progressive and realistic.

7 Conclusion

We have presented the MicMac model that is a model coupling equation-based
and agent-based models in a model representing the spread of a disease in a city
network. We have studied carefully the influence of heterogeneities due to the
agent-based model and compared results w.r.t. a reference model that does not
contain the agent part. Finally we have presented how to integrate mitigation
strategies inside.

As perspectives we plan to show the benefits of the hybrid approach (and in
particular the benefits brought by the agent approach) by introducing much more
complex diffusion processes: in particular, passengers will be able to do multi-
stop travels, with possibility to be infected in the transit airport and passengers
will be able to do round trips (they will be able to bring back disease to their
home city).
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Abstract. Agent-based simulation has shown great success for the
study of complex adaptive systems and could in many areas show advan-
tages over traditional analytical methods. Due to their internal complex-
ity, however, agent-based simulations are notoriously difficult to verify
and validate.

This paper presents MC2MABS, a Monte Carlo Model Checker for
Multiagent-Based Simulations. It incorporates the idea of statistical run-
time verification, a combination of statistical model checking and runtime
verification, and is tailored to the approximate verification of complex
agent-based simulations. We provide a description of the underlying the-
ory together with design decisions, an architectural overview, and imple-
mentation details. The performance of MC2MABS in terms of both runtime
consumption and memory allocation is evaluated against a set of example
properties.

Keywords: Agent-based simulation · Verification · Formal methods ·
Testing

1 Introduction

Agent-based simulation (ABS) is rapidly emerging as a popular paradigm for the
simulation of complex systems that exhibit a significant amount of non-linear
and emergent behaviour [28]. It uses populations of interacting, heterogeneous
and often adaptive agents to model and simulate various phenomena that arise
from the dynamics of the underlying complex systems. Although social science
has been its traditional domain, ABS is also increasingly being used for the
analysis of complex (socio-)technical, often also safety-critical systems in areas
such as avionics [5], the design and analysis of robot and UAV swarms [30], and
increasingly also the Internet of Things [17].

In that context, and similar to other software systems, correctness plays a
central role and questions of quality assurance become increasingly important.
It is common to distinguish between verification and validation. Whereas the
former is targeted towards a system’s correctness with respect to its specification
(i.e. its correct implementation), the latter ensures a sufficient level of accuracy
c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 37–54, 2016.
DOI: 10.1007/978-3-319-31447-1 3
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with respect to the intended application domain. In the context of modelling and
simulation, the distinction between verification and validation becomes more
complicated; it can thus be more useful to talk about internal and external
validation instead [4,34].

With their ability to produce complex, emergent behaviour from the action
and interaction of its components, ABSs are notoriously difficult to understand
and to engineer. In the multiagent systems community, formal and semi-formal
verification approaches (both qualitative and quantitative) have shown great
power. Methods and tools for the verification of ABS in particular, however, are
still largely missing. With potentially large populations, different observational
levels, heterogeneity, a strong focus on emergent behaviours, and a significant
amount of randomness, ABSs possess a range of characteristics which, in their
combination, represent a great challenge for verification.

In this paper, we present our research efforts on the ABS verification prob-
lem and introduce MC2MABS— the Monte-Carlo Model Checker for Multiagent-
Based Simulations — a prototypical statistical runtime verification approach
and framework for complex agent-based simulation models. We start with a
motivational example from the area of swarm robotics in Sect. 2. An overview of
related work and some theoretical background on statistical model checking and
runtime verification is given in Sects. 3 and 4. The framework itself is described
in Sect. 5, followed by a brief performance evaluation w.r.t. both runtime and
memory consumption in Sect. 5.3. The paper concludes with a summary and
ideas for future work.

2 Motivational Example: Collective Behaviour in Swarm
Robotics

In order to motivate the usefulness of verification for the analysis of agent-based
simulation models, we introduce a small scenario from the area of swarm robot-
ics. Although purely formal approaches for the analysis of swarm robotic models
have shown to be useful [19,23], they are not always applicable. For example, in
order to be analytically tractable, purely formal approaches typically pose strong
homogeneity assumptions upon the individual agents. This is appropriate as long
as details of the environment, particular interactions, and individual differences
(e.g. w.r.t. faulty behaviour) are irrelevant for the analysis. However, many emer-
gent phenomena only become apparent if interaction, heterogeneity, and locality
are taken into account. In this case, formal analysis may become intractable and
the only way to investigate the dynamics of the scenario is simulation.

We focus here on swarm foraging, a problem which has been widely discussed
in the literature on cooperative robotics [7]. Foraging describes the process of
a group of robots searching for food items, each of which delivers energy. Indi-
vidual robots strive to minimise their energy consumption whilst searching in
order to maximise the overall energy intake. The study of foraging is important
because it represents a general metaphor to describe a broad range of (often crit-
ical) collaborative tasks such as waste retrieval, harvesting or search-and-rescue.
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A good overview of multirobot foraging has been given by Cao et al. [7]. In
a foraging scenario, robots move through the space and search for food items.
Once an item has been detected within the robot’s field of vision, it is brought
back to the nest and deposited which delivers a certain amount of energy to the
robot. Each action that the robot performs also consumes a certain amount of
energy. The overall swarm energy is the sum of the individual energy levels.

A designer’s main challenge is to tune the parameters of the individual agents
such that the swarm as a whole is able to self-organise efficiently, i.e. to adapt to
environmental circumstances such as food density. Since there is no central con-
trol, adaptation has to emerge from the agents’ local actions and interactions.
Due to the irreducibility of emergent phenomena, designing a distributed algo-
rithm with a particular emergent behaviour in mind can be highly non-trivial.
Interesting mechanisms have been presented by Liu et al. [24]. Here, agents
adapt their behaviour according to three cues: (i) internal cues (personal suc-
cess in retrieving food), (ii) environmental cues (collisions with teammates while
searching for food), and (iii) social cues (teammate success in food retrieval).
Depending on those influences, agents increase or decrease their searching and
resting times with the goal of achieving an optimal collective division of labour.

ABS represents a powerful approach to study the dynamics of a distrib-
uted swarm algorithm. However, tuning the individual parameters such that
the overall emergent behaviour is optimal can be hard. Verification — both
qualitative and quantitative — can be of great help during the design process.
As a starting point, one could, for example, formulate and verify the following
qualitative safety property upon the simulation model: “the swarm must never
run out of energy” (formally: ¬ F(energy ≤ 0)). Although useful, such a pure
macro-level criterion is rarely sufficient since, despite the whole swarm always
having enough energy, individual agents may still run out. In order to solve this
problem, a more fine-grained, quantified criterion may be formulated. Rather
than stating that the swarm as a whole must never run out of energy, one may,
for example, stipulate that “no individual agent must ever run out of energy”
(formally: ∀ a • ¬ F(energya ≤ 0)). Checking this criterion would catch those
cases in which individual agents run out of energy, but one would still not know
(i) how many of them do, and (ii) why this is the case.

In addition to conventional qualitative safety and liveness checking which
provides clear yes/no answers but little explanatory insights, quantitative analy-
sis may help to shed further light on the dynamics of the system. In addition
to the two safety criteria above, it may, for example, be useful to answer the
following questions.

– What is the avg./min./max. probability of an agent running out of energy?
– What fraction of time does an agent spend homing/resting/etc.?
– What fraction of time does an agent spend transitioning, e.g. from depositing

to resting? (= overall probability of recharging)
– How likely is an agent to transition

• from searching to grabbing? (= probability of finding food)
• from grabbing to depositing? (= probability of losing out on food)
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– What is the correlation between an agent’s type and its probability of doing
sth.?

Summarising the example above, we believe that a verification approach for
ABS needs to satisfy the following requirements.

Efficiency: the approach should allow for the verification of complex simula-
tion models in a timely manner. Due to the highly iterative nature of the
modelling process, a user should be able to choose between a high level of
accuracy at the expense of verification time and a lower level of accuracy
but quicker results.

Expressivity: properties need to be formulable in a formal, unambiguous way
and verifiable on different levels of observation: individual agents, groups of
agents, as well as the whole population. Furthermore, the approach should
allow for the verification of both qualitative and quantitative properties.

Flexibility: due to the sensitivity of complex systems to local differences and
environmental conditions, a verification approach should not impose any
unrealistically strict limitations on the simulation models that are verifiable,
e.g. by assuming that agents are entirely homogeneous, by abstracting away
the environment, etc.

Immediacy: in order to ensure the relevance of the verification results, the gap
between the model to be verified and the actual simulation model should
be as small as possible. Ideally, verification is performed upon the original
simulation model.

As described in the following section, existing approaches do not currently
satisfy those requirements in their combination. With the framework presented
in this work, we aim to close this gap.

3 Related Work

Model Checking Multiagent Systems: Since its beginnings around 30 years ago,
model checking has gained huge significance in computer science and software
engineering in particular and has been successfully applied to many real-world
problems. Model checking has also gained increasing importance in the multia-
gent community and numerous approaches have been presented in literature [9].
In alignment with the classical problems studied in the community, multiagent
verification typically focusses on qualitative properties involving notions such
as time, knowledge, strategic abilities, permissions, obligations, etc. In order
to allow for the verification of larger agent populations, model checking algo-
rithms for temporal-epistemic properties have also been combined successfully
with ideas such as bounded model checking [26], partial order reduction [25]
and parallelisation [20]. Despite impressive advances, however, verification still
remains limited to either relatively small populations or scenarios with strong
homogeneity assumptions [33].
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In recent years, probabilistic approaches to model checking have also gained
increasing importance in the multiagent community. Examples include the veri-
fication of systems with uncertainty w.r.t. communication channels and actions
[11], qualitative and quantitative analysis of agent populations with uncer-
tain knowledge [37], verification of probabilistic swarm models [18], or auto-
mated game analysis [3]. Similar to their non-probabilistic counterparts, these
approaches also suffer from the state space explosion and are thus either limited
to relatively small systems or dependent upon strong homogeneity or symmetry
assumptions which increase their scalability but also limit their applicability to
the verification of complex simulation models.

Verification of Agent-Based Simulations: In the simulation community, most
work on quality assurance focusses on validation, in particular statistical analysis
of simulation output [29,35]. Albeit related, those approaches possess a differ-
ent flavour than the one described in this work since they focus on the external
validity of the model, i.e. the link between the model world and the real world1.
Verification (or internal validation), on the other hand, focusses on the link
between the model and the theory. If mentioned at all in the simulation lit-
erature, verification is mostly equated with conventional code verification, e.g.
through testing, reviews, or static analysis.

In the ABS community, a number of testing and monitoring approaches have
been presented [6,32,39]. Most of these approaches are based on top of existing
modelling frameworks such as Repast or Mason; consequently, correctness prop-
erties (in the form of test cases) are formulated in the target language, typically
in Java. An approach that combines ABS with numeric analysis has been pre-
sented by Wolf et al. [10]. The main motivation of the work is to determine if
an individual-based system exhibits certain macroscopic emergent behaviour. To
that end, repeated simulation is paired with numeric analysis from the system
dynamics domain in order to detect deviations or to approximate the steady-
state behaviour of the simulation. An advantage of the approach is its ability
to speed up simulation by steering it into the direction required by the analy-
sis algorithm. Due to its global focus, the approach is restricted to macro-level
analysis; nevertheless, the power lies in the fact that it allows for the analysis of
properties which conventional testing is not able to deal with.

Semi-formal and formal verification approaches similar to those for MAS
described above but particularly tailored to ABS are still largely missing. The
work closest related to ours is that of Sebastio and Vandin [36]. They present
MultiVeStA, a statistical analysis tool which pairs discrete event simulation with
statistical model checking. Similar to MC2MABS, MultiVeStA can be coupled with
existing simulators and allows for the verification of properties about expected
values of observations. Properties are propositional in nature, i.e. more complex
calculations or aggregations have to be ‘wrapped’ into propositions. Since Multi-
VeStA is not tailored to ABS, no internal structure is imposed on the simulation
traces. As a consequence, there is no direct notion of observational levels in the
property specification language.
1 McKelvey refers to this link as the model’s ontological adequacy [31].
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It is important to note that, although useful in its own right, (semi-)formal
verification will be even more powerful if it is embedded in a proper experimental
environment. It has been argued that, if the systematic design of experiments
was fully realised, the transparency of a simulation model could be increased
significantly [27]. We believe that, rather than serving as an alternative, (semi-)
formal verification may well become an integral part of this process.

4 Background

Statistical Model Checking: Conventional model checking aims to find an accurate
solution to a given property by exhaustively searching the underlying state space
which is, in general, only possible if the space is of manageable size [2]. One
solution that works for probabilistic systems is to use a sampling approach and
employ statistical techniques in order to generalise the results to the overall state
space. In this case, n paths or traces are sampled from the underlying state space
and the property is checked on each of them; statistical inference, e.g. hypothesis
testing, can then be used to determine the significance of the results. Approaches
of this kind are summarised under the umbrella of statistical model checking ; a
good overview is given by Legay et al. [21]. Due to its independence of the
underlying state space, statistical model checking allows for the verification of
large-scale systems in a timely, yet approximate manner.

One particular approach, Approximate Probabilistic Model Checking, provides
a probabilistic guarantee on the accuracy of the approximate value generated by
using Hoeffding bounds on the tail of the underlying distribution [12]. According
to this idea, ln

(
2
δ

)
/2ε2 samples need to be obtained in order for the estimated

probability Y to deviate from the real probability X by at most ε with prob-
ability 1 − δ, i.e. Pr(|X − Y | ≤ ε) ≥ 1 − δ. In this case, the number of traces
grows logarithmically with δ and quadratically with ε. It is, however, interest-
ing to note that the sample size is completely independent from the size of the
underlying system.

Runtime Verification: Runtime verification attempts to circumvent the combi-
natorial problems of conventional model checking by focussing on the execution
trace of a system rather than on its universal behaviour and performing correct-
ness checks on-the-fly [22]. Due to its focus on the execution trace of a running
system, it avoids most of the complexity problems that are inherent to static
techniques; in that respect, runtime verification bears a strong similarity to test-
ing. However, in contrast to conventional testing, runtime verification typically
allows for the formulation of the system’s desired behaviour in a more rigor-
ous way, e.g. using temporal logic, and can thus be considered more formal.
In general, runtime verification provides a nice balance between rigorous and
strong but complex formal verification one hand, and efficient but significantly
weaker conventional software testing on the other hand. It can thus be seen as a
lightweight alternative for systems that are not amenable to formal verification.

Due to its focus on individual execution traces, runtime verification views
time as a linear flow and properties are thus often formulated in a variant of
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linear temporal logic (LTL). Those properties are then translated into a monitor
which is used to observe the execution of the system and report any satisfaction
or violation that may occur. In order for a monitoring approach to be efficient,
it necessarily needs to be forward-oriented ; having to rewind the execution of a
system in order to determine the truth of a property is generally not an option.
In terms of monitor construction, two different approaches, automaton-based
and symbolic, can be distinguished. In this work, we follow a symbolic approach
which strongly relies upon the notion of expansion laws. Informally, expansion
laws allow for the decomposition of an LTL formulae into two parts: the fragment
of the formula that needs to hold in the current state and the fragment that needs
to hold in the next state in order for the whole formula to be true. It is useful
to view both fragments as obligations, i.e. aspects of the formula that the trace
under consideration needs to satisfy immediately and those that it promises to
satisfy in the next step. For example, the expansion law for the ‘until’ operator
of LTL is shown below:

φ1 U φ2 ≡ φ2 ∨ (φ1 ∧ X(φ1 U φ2)) (1)

The equivalence states that, in order for a formula φ1 U φ2 to be satisfied at
time t , either (i) φ2 needs to be satisfied at time t , or (ii) φ1 needs to be satisfied
at time t and φ1 U φ2 needs to be satisfied at time t + 1. Expansion laws play
an important role for the idea of runtime verification since they form the basis
for a decision procedure which can be used to decide in a certain state if a given
property has already been satisfied or violated. By decomposing a formula into
an immediate and a future obligation, optimality can be achieved: as soon as
the immediate obligation is satisfied and no future obligation has been created,
the entire formula is satisfied and the evaluation finishes.

5 The Verification Framework

Considering the complexity of ABSs, we believe that a combination of statistical
model checking and runtime verification, which we refer to as statistical runtime
verification (SRV), may serve as an interesting alternative to formal verification.
Due to their probabilistic nature, ABSs can be seen as special variants of Monte
Carlo simulations and each execution thus naturally produces a random trace
of the underlying space. By verifying a property on a sufficiently large number
of simulation runs, its probability can thus be estimated to an arbitrary level
of precision. Clearly, the usefulness of this idea is critically dependent on the
number of traces analysed. As described further below, the efficiency of each trace
check can be improved significantly by interleaving simulation and verification.
As opposed to formal macro-level analysis, SRV preserves the individual richness
of the ABS and allows for the verification of interesting properties in a semi-
formal way. Due to its focus on independent traces, SRV is easily parallelisable
and thus highly scalable by exploiting the power of modern parallel hardware.

MC2MABS is a practical framework that incorporates the idea of SRV. Its
design is based on four central requirements, as informally motivated in Sect. 2:
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(i) efficiency (timely and tunably accurate verification of large-scale ABSs),
(ii) expressivity (formulation and verification of qualitative and quantitative cor-
rectness properties in a formal, rigorous way), (iii) flexibility (verification of arbi-
trary ABSs), and (iv) immediacy (verification of the ABS itself, not a simplified
model thereof). An overview of the framework is given below, the source code
as well as additional documentation is available online [1].
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Fig. 1. The overall architecture of MC2MABS

5.1 Architectural Overview

A high-level overview of MC2MABS is shown in Fig. 1. The framework comprises
as its central components (i) an estimator, (ii) a modelling framework, (iii) a
property parser, (iv) a simulator, and (v) a runtime monitor. All components
are described in more detail in Sect. 5.2 below. The typical sequence of actions
in a verification experiment using MC2MABS is as follows:

1. The user provides (i) the logic of the ABS by utilising the modelling frame-
work, (ii) an associated correctness property, and (iii) the desired precision
of the verification results as inputs to the verification framework.

2. The correctness property is parsed by the property parser and transformed
into an expanded property that is used by the runtime monitor.

3. The estimator determines the number of simulation traces necessary to
achieve the desired level of precision.
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4. The simulator uses the model together with additional configuration infor-
mation to produce a set of simulation traces.

5. Each simulation trace is observed by a runtime monitor which assesses the
correctness of the trace using a given correctness property; due to the online
nature of the monitor, a verdict is produced as soon as possible.

6. The individual results are aggregated into an overall verification result and
presented to the user.

Due to the decoupling of simulation and verification, MC2MABS supports both
ad-hoc and a-posteriori verification. Ad-hoc verification is synonymous to run-
time verification and assesses the correctness of a system during its execution.
A-posteriori verification assumes the existence of traces prior to the actual ver-
ification. The latter mode can be useful, for example, if the traces have been
obtained with a different simulation tool, e.g. NetLogo [38] or Repast [8]. In that
case, the simulator of MC2MABS is merely used to ‘replay’ the pre-existing output
for the purpose of verification.

5.2 Components

Estimator: The main purpose of the estimator is to determine the number of
traces necessary to achieve a certain level of precision (provided by the user)
w.r.t. the verification results. MC2MABS uses an algorithmic variant of the Hoeffd-
ing bounds briefly mentioned in Sect. 4. Due to its approximate nature, the
Hoeffding bound often overestimates the actually required number of samples
by a significant degree. The procedure we use instead operates directly on the
Binomial distribution [13]. It has the same theoretical dependence on δ and ε but,
due to its accurate nature, it returns a lower total sample size. In the presence
of resource constraints, this (theoretically irrelevant) difference can represent a
critical practical advantage. Different levels of precision and their corresponding
sample size are shown below:

1. confidence δ = 99%, accuracy ε = 1% ⇒ 13,700 traces
2. confidence δ = 99.9%, accuracy ε = 0.1% ⇒ 24,000 traces
3. confidence δ = 99.9, accuracy ε = 0.1% ⇒ 2,389,000 traces

Modelling Framework: Instead of providing a dedicated model description lan-
guage — a path taken by most existing verification tools — we decided to allow
for the formulation of the underlying model in a high-level programming lan-
guage. This is motivated by the observation that ABSs often contain a significant
level of functional complexity (probability evaluations, loading and manipulation
of external data, location-based search algorithms, etc.). Any simple modelling
language would thus significantly (and unnecessarily) limit the range of models
which it is capable of describing. As a consequence, we decided to take a different
path and realise the communication between the simulation model and the mon-
itor through a service provider interface (SPI) which provides a basic skeleton
for the underlying model and limits the prescriptive part of the framework to a
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handful of callback functions. In order to maintain a high level of performance
(which is crucial for the generation of large batches of traces), we use C++ as
the modelling language. As a compiled multi-paradigm language, C++ offers a
good balance between usability and performance.

Alternatively, rather than hosting the actual model logic, the modelling
framework can also be used to implement logic that controls an external simu-
lation tool such as NetLogo or Repast (e.g. running in ‘headless mode’), collects
the resulting data and forwards it to the verifier. In this case, MC2MABS acts as
a ‘man-in-the-middle’ and extends existing simulation frameworks with a verifi-
cation capability.

Property Parser: The property parser is responsible for translating a textual
representation of a correctness property into an expanded version which is then
used by the monitor to observe the temporal dynamics of a simulation trace.
The parser uses a formal grammar that defines the space of valid properties.
MC2MABS supports simLTL, a variant of LTL tailored to the formulation of prop-
erties about ABS traces [14]. As opposed to conventional LTL, simLTL allows for
the formulation of properties about individual agents as well as about arbitrary
groups of agents. This is achieved by a subdivision of the language into an agent
layer and a global layer. Furthermore, the language is augmented with quan-
tification and selection operators. These features make it possible to formulate
properties such as the following:

– It is true for every agent that the energy level will never fall below 0
– No more than 20% of the agents will eventually run out of energy
– Agents of group x are more likely to run out of energy than those of group y

Furthermore, as explained below, the formulation of properties is closely
linked with the way the simulator performs the sampling from the probability
space underlying the simulation model. This is also accommodated by the prop-
erty specification language which allows for (i) the annotation of properties in
order to denote the length of trace fragments required for their verification as
well as (ii) the formulation of higher-order properties, e.g. about the correlation
of events, as described in the next paragraph.

Simulator: The simulator is responsible for executing the simulation model
repeatedly in order to obtain a set of traces used for subsequent verification
by the monitor. Technically, by repeatedly executing the simulation model, the
simulator performs a sampling from the underlying probability space. By inter-
preting the probability space in different ways, different levels of granularity
with respect to property formulation can be achieved [16]. So, for example, by
interpreting a trace of length k produced by the simulation model not as a sin-
gle sample from the distribution of traces of length k but instead as a set of k
samples from the distribution of states, properties about individual states and
their likelihood become expressible; by interpreting the trace as a set of k/2
samples from the distribution of subsequent states, properties about transitions
and their likelihood become expressible. In general, a single trace of length k
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can be interpreted as a set of samples of trace fragments of length 1 ≤ i ≤ k .
Furthermore, by relating probabilities of individual properties, statements about
correlations of events can be made. This allows for a high level of granularity
and expressivity with respect to property formulation and verification. Techni-
cally, the simulator is tightly interwoven with both the modelling framework and
the monitor (described below). At the current stage, all simulation replications
are executed sequentially. However, since the individual replications are entirely
independent, the framework is efficiently parallelisable.

Monitor: The runtime monitor is the central component of the verification frame-
work. Its main purpose is to observe the execution of a single trace as generated
by the simulator and check its correctness against the background of a given
property on-the-fly, i.e. while the trace is being produced. In the case of thou-
sands of traces that need to be assessed, online verification represents a critical
advantage: as soon as a property can be satisfied or violated, the monitor is
able to produce a verdict and move on to the next trace. For properties that are
satisfiable or refutable at some point along the trace, this leads to significant
improvements in speed over an exhaustive approach. As indicated in Sect. 4,
the core of a monitor is a temporal formula; it is constructed from the temporal
property provided by the user by exploiting expansion laws. The monitor is writ-
ten in Haskell. Apart from the code being close to the mathematical description
of the algorithms, an important decision for choosing Haskell as the underlying
programming language was its inherent support for lazy evaluation. Given the
potentially considerable complexity of the underlying simulation, unnecessary
computation is to be avoided in any case. Against this background, it is, for
example, important to postpone calls from the monitor to the underlying simu-
lator until a new state is strictly required for evaluating the current property (as
defined by the expansion laws). Furthermore, it is important to keep the under-
lying simulation strictly forward-oriented, i.e. such that ticks are simulated in
ascending order only and no tick is simulated twice. In that context, Haskell’s
lazy evaluation strategy is of great help. To illustrate this, consider the problem
of evaluating a property ψ on fragments of a trace π. In an offline setting, π
would have to be constructed in its entirety prior to evaluation. If ψ is either
satisfiable or refutable on a prefix of π, computation would be wasted. In order
to avoid that, π must not be produced prior to evaluation. To this end, instead
of holding a sequence of global states (which it would if π was the result of a full
simulation run), π holds a sequence of thunks, i.e. not yet evaluated expressions.
Thanks to Haskell’s lazy evaluation strategy, a thunk is only evaluated if strictly
necessary. In this way, the simulation of the next time step can be postponed
in order to achieve the desired online effect. Furthermore, lazy evaluation sup-
ports easy sharing of computations. Each tick is thus only simulated once which
achieves the strict monotonicity effect mentioned above.

5.3 Performance Evaluation

In this section, we provide a brief empirical performance evaluation of MC2MABS.
A more detailed evaluation can be found elsewhere [1,13]. We use as our example
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model a simple disease transmission scenario in which each agent can be either
susceptible, infected, or recovered. We assume that transitions between the states
are probabilistic and hardcoded and agents are entirely independent. We are
aware that, as a consequence of these simplifying assumptions, the model could
well be analysed analytically. Choosing an approximate approach may thus seem
unnecessarily limiting here. However, it is not our goal to perform a realistic
verification experiment here. We rather aim to illustrate the effects of online
verification — the central aspect of our approach — on the performance of the
tool. To this end, we have deliberately chosen a simple model. Since MC2MABS
is completely agnostic about the internals of the underlying model and solely
focussed on the resulting traces, the simplicity of the model does not negatively
impact the evaluation results. More comprehensive case studies that focus on the
usefulness of MC2MABS for the analysis of swarm-robotic scenarios can be found
elsewhere [13,15]. For the evaluation, we focus on the following four properties:

1. ‘F allInf ’: unquantified group property, not refutable before the end of the
trace

2. ‘G allInf ’: unquantified group property, immediately refutable
3. ‘F(∀ inf )’: quantified group property, not refutable before the end of the trace
4. ‘G(∀ inf )’: quantified group property, immediately refutable

‘allInf ’ describes a population-level proposition that is true if and only if all
agents in the population are infected. ‘inf ’ describes an individual proposition
that is true if and only if the agent under consideration is infected. Due to the
use of ‘finally’ and ‘globally’, respectively, Properties 1 and 2 differ in terms of
their satisfiability : Property 2 is immediately refutable, whereas the satisfiability
of Property 1 can only be determined at the end of the trace. As shown below,
this has a significant impact on the time needed for verification. The same is
true for Properties 3 and 4.

Properties 1 and 3 as well as Properties 2 and 4 are semantically equiva-
lent; they only differ in terms of their observational level : Properties 1 and 3
make a statement about the population as a whole, whereas Properties 2 and
4 are individual in nature; the distinction is only made to show the impact of
quantification on performance.

We assess the performance against two dimensions: runtime and memory
consumption. Since the executable binary file of MC2MABS is a merge of code
written in both C++ and Haskell, their independent evaluation is not easily
possible. For that reason, all individual measurements have to be derived from
the profiling results of the entire application. We focus on four major tasks:

Simulation (SIM): Time spent on executing the model logic; this describes
the performance of the C++-based simulator.

Extraction (EXT): Time spent on extracting and transforming (marshalling)
the group traces created by the C++ simulator into their corresponding
Haskell vectors.

Verification (VER): Time spent on the actual evaluation of the simLTL
property.
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Other (OTH): Time spent on ‘housekeeping’, i.e. other, non simulation- or
evaluation-related tasks such as garbage collection, system calls and profiling
itself.

Total (TOT): Total runtime of MC2MABS.

The evaluation was performed using gprof, Haskell’s built-in profiling system
on a 64 Bit Dell Latitude Laptop with two Intel R© CoreTM 2 Duo CPUs (2.8 GHz
each), 8 GB of memory and Linux Mint Rebecca (kernel version 3.13.0–24) as
operating system. The numbers are averaged over 10 runs, each of which involves
the execution of 100 individual simulation runs for the purpose of probability
estimation. The results w.r.t. runtime consumption are shown in Table 1, the
key points are briefly summarised below.

Table 1. Runtime consumption (in seconds) for different population sizes

10 agents 100 agents 1,000 agents

Prop SIM VER EXT OTH TOT SIM VER EXT OTH TOT SIM VER EXT OTH TOT

1 0.022 0.023 0.043 0.012 0.100 0.185 0.081 0.383 0.056 0.706 2.480 0.675 4.361 2.510 10.027

2 0.000 0.006 0.001 0.003 0.010 0.001 0.004 0.003 0.002 0.010 0.021 0.025 0.045 0.029 0.120

3 0.025 0.040 0.042 0.014 0.121 0.242 0.119 0.517 0.079 0.957 2.798 0.715 4.902 2.798 11.213

4 0.001 0.006 0.000 0.002 0.010 0.001 0.004 0.003 0.002 0.010 0.022 0.027 0.036 0.025 0.110

– MC2MABS scales linearly with the size of the underlying population.
– Satisfiability of the formula has a large impact on the time spent on each task.

Consider, for example, formula ‘G allInf ’ which is immediately refutable; in
this case, evaluation is very quick, even for large populations.

– As the population size grows, an increasing fraction of time is spent on extrac-
tion (i.e. marshalling the data structures between C++ and Haskell) and
housekeeping, in particular garbage collection. This may represent a bottle-
neck for large populations which we aim to address as part of the future work.

– MC2MABS also scales linearly with the population size in the case of universally
quantified formulae. However, housekeeping (particularly garbage collection)
becomes a serious overhead as the number of agents grows. We plan to address
this issue in the future, e.g. by employing strictness in some of the operations.

Profiling memory consumption for a lazy language like Haskell can be diffi-
cult. For example, expressions without arguments, so-called Constant Applica-
tion Forms (CAFs), are evaluated only once and shared for later use. Due to
their global scope, CAFs are thus, strictly speaking, not part of the call graph
and hence need to be treated differently. Straightforward analysis of memory
allocated within the call graph only can thus be misleading. In the analysis
below, all CAFs are aggregated under the ‘Other’ section. The results are shown
in Table 2. The key points are briefly summarised below.
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Table 2. Memory allocation (in Bytes) for different population sizes

10 agents 100 agents 1,000 agents

Pr SIM VER EXT OTH TOT SIM VER EXT OTH TOT SIM VER EXT OTH TOT

1 6.4e5 9.7e6 4.5e7 5.7e7 5.7e7 6.4e5 9.7e6 4.4e8 4.5e8 4.5e8 6.4e5 9.7e6 4.4e9 4.4e9 4.4e9

2 6.4e3 1.0e6 4.5e5 3.0e6 3.0e6 6.4e3 1.0e6 4.4e6 6.9e6 6.9e6 6.4e3 1.0e6 4.4e7 4.7e7 4.7e7

3 6.4e5 2.5e7 4.5e7 7.3e7 7.3e7 6.4e5 2.5e7 4.4e8 4.7e8 4.7e8 6.4e5 2.5e7 4.4e9 4.4e9 4.4e9

4 6.4e3 1.2e6 4.5e5 3.4e6 3.4e6 6.4e3 1.2e6 4.4e6 7.3e6 7.3e6 6.4e3 1.2e6 4.4e7 4.7e7 4.7e7

– Memory consumption for both verification and simulation is constant and
memory consumption for extraction and marshalling increases linearly with
population size.

– Verification is the only evaluation step that the formula size has an impact
on, which coincides with the runtime behaviour.

It is important to note that total memory allocation is not sufficient for
understanding the full allocation behaviour of the program. It is useful to also
analyse the runtime heap profile which describes memory allocation over time.
An example for 1,000 agents (Property 3) is shown in Fig. 2. For clarity, we
restrict the number of functions and data structures shown to 10. In the graph,
‘Pinned objects’ refers to information in memory which is not movable by the
garbage collection, e.g. memory allocated in the C++ part of the application.
Furthermore, some of the functions in the Haskell implementation are split up
into an inner and an outer part for technical reasons; this distinction is also
reflected in the graphs. Finally, due to the pure functional nature of Haskell,
global state cannot be maintained. In order to emulate this functionality, alter-
native options such as the State Monad have to be used. This state management
accounts for a certain level of memory allocation which is also considered in
the analysis. The graph shows that the peak memory allocation is stable and
fairly low compared with the overall memory consumption; the graphs also show
that the amount of garbage collection (indicated by the reduction in memory
consumption) is clearly a function of the runtime.

6 Case Studies

For space constraints, we cannot provide a full case study here. An exhaustive
evaluation of three different versions of the swarm foraging scenario introduced
in Sect. 2 including source code is provided in the first author’s PhD thesis [13].
Another evaluation of the same scenario with a particular focus on the quan-
titative capabilities of MC2MABS is provided in [16]. The paper illustrates how
properties about transition probabilities, residence probabilities, state distribu-
tions, and correlations between events can be formulated and answered purely
based on the analysis of individual traces.
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Fig. 2. Runtime heap profile for 1,000 agents

7 Conclusions and Future Work

This paper described the architecture, design decisions and implementation
details of MC2MABS, a statistical runtime verification framework for ABSs. With
properties formulated in temporal logic, high scalability due to the focus on indi-
vidual and independent simulation traces and its ability to provide confidence
intervals for the results, it aims to combine some of the strengths of both formal
and informal verification techniques into a common framework. The approach
aims to satisfy the four requirements introduced in Sect. 2 as follows:

Efficiency: Due to the approximate nature of the approach, simulation models
with a large number of constituents are efficiently verifiable. The number of
simulation runs necessary for verification is only dependent on the desired
level of precision and not on the size of the underlying system. Since individ-
ual traces are entirely independent, the approach is also inherently parallel
and therefore highly scalable.

Expressivity: Properties can be formulated in temporal logic and checked auto-
matically. The syntax of the specification language provides quantification
and selection operators and thus allows for the formulation of properties on
different observational levels. In addition to that, the trace fragment-based
semantics allow for the verification of quantitative properties.

Flexibility: Due to the reliance on simulation traces rather than on a formal
model, arbitrary simulation models are verifiable.

Immediacy: Verification is performed upon the output of the original
simulation.

It is important to stress here that we do not aim to propose a substitute
for purely formal verification. In cases where formal verification is feasible, it is
clearly preferable over an approximate approach such as the one describe here.
However, for cases which are not (and may never be) formally verifiable, MC2MABS
can present an interesting alternative and help to gain a better understanding of
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the emergent simulation dynamics than is currently possible. First experiments
produced encouraging results and showed that the tool allows for the verifica-
tion of complex simulation models with a high level of confidence (> 99 %) and
accuracy (< 1 %) in a timely manner [13,15]. Before MC2MABS can be used effi-
ciently in the real world, there are, of course, still plenty of limitations and open
problems to be overcome. Some are mentioned below.

Accuracy: It is clear that, for highly safety-critical areas, a significantly higher
level of precision than that used in our experiments is needed. With the current
estimation procedure, the number of simulation traces increases quadratically
with the level of accuracy which represents a critical bottleneck. One way to
remedy this problem is to use ideas from rare event sampling in order to reduce
the sample size needed.

Efficiency: An important advantage of trace-based verification is that it is effi-
ciently parallelisable. At the current stage, MC2MABS performs verification sequen-
tially and does not exploit the capabilities of modern parallel hardware. A second
important starting point for performance improvements is the performance of
the simulation itself. For example, by making use of C++ template metapro-
gramming, some of the runtime calculations can be shifted towards compile
time. Finally, MC2MABS is technically subdivided into a simulation (written in
C++) and a verification part (written in Haskell). Marshalling, i.e. translating
and transferring the data structures between the two languages represents a sig-
nificant bottleneck which also negatively influences the capability of the tool to
analyse large batches of simulation traces.

Usability: The tool is still in a prototypical state and its usability is therefore
still fairly low. Temporal logic and C++ are certainly not the most typical skills
of an agent-based modeller. The choice has been made for the purpose of rigour
and performance. But it is clear that, if the tool is to be used practically, higher-
level interfaces need to be developed. The same holds for the connection to
existing simulators such as Repast or NetLogo which currently requires manual
efforts.
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Abstract. Activity-based models, as a specific instance of agent-based
models, deal with agents that structure their activity in terms of (daily)
activity schedules. An activity schedule consists of a sequence of activ-
ity instances, each with its assigned start time, duration and location,
together with transport modes used for travel between subsequent activ-
ity locations. A critical step in the development of simulation models is
validation. Despite the growing importance of activity-based models in
modelling transport and mobility, there has been so far no work focus-
ing specifically on statistical validation of such models. In this paper,
we propose a six-step Validation Framework for Activity-based Models
(VALFRAM) that allows exploiting historical real-world data to assess
the validity of activity-based models. The framework compares tempo-
ral and spatial properties and the structure of activity schedules against
real-world travel diaries and origin-destination matrices. We confirm the
usefulness of the framework on three activity-based transport models.

1 Introduction

Transport and mobility have recently become a prominent application area for
multi-agent systems and agent-based modelling (Chen and Cheng 2010). Models
of transport systems offer an objective common ground for discussing policies
and compromises (de Dios Ortúzar and Willumsen 2011), help to understand
the underlying behaviour of these systems and aid in the actual decision making
and transport planning.

Large-scale, complex transport systems, set in various socio-demographic
contexts and land-use configurations, are often modelled by simulating the
behaviour and interactions of millions of autonomous, self-interested agents.
Agent-based modelling paradigm generally provides a high level of detail and
allows representing non-linear patterns and phenomena beyond traditional ana-
lytical approaches (Bonabeau 2002). Specific subclass of agent-based models,
called activity-based models, address particularly the need for realistic repre-
sentation of travel demand and transport-related behaviour. Unlike traditional
trip-based models, activity-based models view travel demand as a consequence
of agent’s needs to pursue various activities distributed in space and understand-
ing of travel decisions is secondary to a fundamental understanding of activity
behaviour (Jones et al. 1990).
c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 55–67, 2016.
DOI: 10.1007/978-3-319-31447-1 4
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Gradual methodological shift towards such a behaviourally-oriented mod-
elling paradigm is evident. An early work on the topic is represented by the
CARLA model, developed as a part of the first comprehensive assessment of
behaviourally-oriented approach at Oxford (Jones et al. 1983). Later work is
represented by the SCHEDULER model – a cognitive architecture producing
activity schedules from long- and short-term calendars and perceptual rules
(Gärling et al. 1994) or ALBATROSS, which was the first model where the
activity scheduling process was completely automatically estimated from the
data (Arentze and Timmermans 2000).

In order to produce dependable and useful results, the model needs to be
valid1 enough. In fact, validity is often considered the most important property
of models (Klügl 2009). The process of quantifying the model validity by deter-
mining whether the model is an accurate representation of the studied system
is called validation and the validation process needs to be done thoroughly and
throughout all phases of model development (Law 2009).

Despite the growing adoption of activity-based models and the generally
acknowledged importance of model validation, a validation process for activity-
based models in particular has not yet been standardized by a detailed method-
ological framework. Validation techniques and guidelines are addressed in most
modelling textbooks (Law 2007) and have even been instantiated in the form of
a validation process for general agent-based models (Klügl 2009); however, such
techniques are still too general to provide concrete, practical methodology for
the key validation step: statistical validation against real-world data.

In this paper, we address this gap and propose a validation framework enti-
tled VALFRAM (Validation Framework for Activity-based Models), designed
specifically for statistically quantifying the validity of activity-based transport
models. The framework relies on the real-world transport behaviour data and
quantifies the model validity in terms of clearly defined validation metrics. We
illustrate and demonstrate the framework on several activity-based transport
models of a real-world region populated by approximately 1 million citizens.

2 Preliminaries

2.1 Activity-Based Models

Activity-based models (Ben-Akivai et al. 1996) are multiagent models in which
the agents plan and execute so-called activity schedules – finite sequences of
activity instances interconnected by trips. Each activity instance needs to have
a specific type (e.g., work, school or shop), location, desired start time and
duration. Trips between activity instances are specified by their main transport
mode (e.g., car or public transport).

1 Valid model is a model of sufficient accuracy. We use these terms interchangeably
in the following text.
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2.2 Validation Methods

Validation methods in general are usually divided into two types:

– Face validation subsumes all methods that rely on natural human intelligence
such as expert assessments of model visualizations. Face validation shows
that model’s behaviour and outcomes are reasonable and plausible within
the frame of the theoretic basis and implicit knowledge of system experts
or stake-holders. Face validation is in general incapable of producing quan-
titative, comparable numeric results. Its basis in implicit expert knowledge
and human intelligence also makes it difficult to standardize face validation
in a formal methodological framework. In this paper, we therefore focus on
statistical validation.

– Statistical validation (sometimes called empirical) employs statistical measures
and tests to compare key properties of the model with the data gathered from
the modelled system (usually the original real-world system).

From a higher-level perspective, VALFRAM can be viewed as an activity-
based model-focused implementation of the statistical validation step of a more
comprehensive validation procedure for generic agent-based models, introduced
in (Klügl 2009), as depicted in Fig. 1. Besides the face and statistical valida-
tion, this procedure features other complementary steps such as calibration and
sensitivity analysis.

Being set in the context of activity-based modelling, the VALFRAM frame-
work is concerned with the specific properties of activity schedules generated
by the agents within the model. These properties are compared to historical
real-world data in order to compute a set of numeric similarity metrics.

3 VALFRAM Description

In this section a detailed description of VALFRAM is given. We cover validation
data, validation objectives and finally measures defined by VALFRAM.

3.1 Data

A requirement for statistical validation of any model is data capturing the rel-
evant aspects of the behaviour of modelled system, against which the model
is validated. To validate an activity-based model, the VALFRAM framework
requires two distinct data sets gathered in the modelled system:

1. Travel Diaries: Travel diaries are usually obtained by long-term surveys
(taking up to several days), during which participants log all their trips. The
resulting data sets contain anonymized information about every participant
(usually demographic attributes such as age, gender, etc.), and a collection of
all their trips with the following properties: time and date, duration, trans-
port mode(s) and purpose (the activity type at the destination). More detailed
travel diaries also contain the locations of the origin and the destination of
each trip.
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Fig. 1. Higher-level validation procedure for agent-based models in general, introduced
in (Klügl 2009). VALFRAM implements the statistical validation step specifically for
activity-based models.

2. Origin-Destination Matrix (O-D Matrix): The most basic O-D matrices are
simple 2D square matrices displaying the number of trips travelled between
every combination of origin and destination locations during a specified time
period (e.g., one day or one hour). The origin and destination locations are
usually predefined, mutually exclusive zones covering the area of interest and
their size determines the level of detail of the matrix.

3.2 VALFRAM Validation Objectives

The VALFRAM validation framework is concerned with a couple of specific
properties of activity schedules produced by modelled agents. These particular
properties need to correlate with the modelled system in order for the model
to accurately reproduce the system’s transport-related behaviour. At the same
time, these properties can actually be validated based on available data sets –
travel diaries and O-D matrices. In particular, we are interested in:

A. Activities and their:
1. temporal properties (start times and durations),
2. spatial properties (distribution of activity locations in space),
3. structure of activity sequences (typical arrangement of successive activity

types).
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B. Trips and their:
1. temporal properties (transport mode choice in different times of day;

durations of trips),
2. spatial properties (distribution of trip’s origin-destination pairs in space),
3. structure of transport mode choice (typical mode for each destination

activity type).

3.3 VALFRAM Validation Metrics

To validate these properties of interest, we need to perform six validation steps
(A1, A2, A3, B1, B2, B3), as depicted in Table 1 and detailed in the rest of this
section. In each validation step, we compute specific numeric metrics (statis-
tics). For all metrics, higher values of these statistics indicate a larger difference
between the model and validation set, i.e., lower accuracy.

Table 1. Six validation steps of VALFRAM framework and corresponding validation
data sets needed for each of them.

A. Activities B. Trips

Task Data set Task Data set

1. Time Compare the distributions

of start times and

durations for each

activity type using

Kolmogorov-Smirnov

(KS) statistic.

Travel Diaries Compare the distribution

of selected modes by

time of day and the

distribution of travel

times by mode using

χ2 and KS statistics.

Travel Diaries

2. Space Compare distribution of

each activity type in

2D space using RMSE.

Plot heat maps for

additional feedback.

Space-aware

Travel Diaries

Compute the distance

between generated

and real-world O-D

matrix using RMSE.

Origin-

Destination

Matrix

3. Structure (i) Compare activity

counts within activity

schedules using χ2

statistics. (ii)

Compare distributions

of activity schedule

subsequences as

n-grams profiles using

χ2 statistics.

Travel Diaries Compare the distribution

of selected transport

mode for each type of

target activity type

using χ2 statistics.

Travel Diaries

A1. Activities in Time: The comparison of activity distributions in
time is realized by means of a well-established Kolmogorov-Smirnov two-
sample statistic2 (Hollander et al. 2013). VALFRAM applies the method to
start time distributions p(start|act. type) as well as to duration distributions
p(duration|act. type).
2 We have also experimented with related Anderson-Darling and Cramér–von Mises

statistics getting similar results. Kolmogorv-Smrnov was finally selected as it is
widely known and easier to get insight into.
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The statistic is defined as the maximum deviation between the empirical
cumulative distribution functions FM and FV which are based on the model and
validation data distributions: dKS = supx |FM (x)−FV (x)|. The values lie in the
interval [0, 1].

Figure 2a shows an example application of the Kolmogorov-Smirnov statistic
comparing two different models to validation data.

Validation

Model A

Model B

0 5 10 15 20
0

start (h)

p
(s

ta
rt

|w
or

k
)

dKS
A = 0.56 dKS

B = 0.22

(a) work activity start time (b) Modeled area, sleep activity

Fig. 2. Start time distributions for work activity shown for validation data and two
different models (a) including Kolmogorov-Smirnov statistics. Modelled area including
sleep activity spatial PDF visualized as a heat map (b).

A2. Activities in Space: The comparison of activity distributions in space is
performed separately for every activity type. Unlike in the previous step, the
distributions are two-dimensional (latitude, longitude or projected coordinates).
The process consists of the following steps. First, bivariate empirical cumula-
tive distribution functions (ECDFs) FM and FV are constructed using coordi-
nate data for both model and validation data, respectively. Second, FM and FV

are regularly sampled getting matrices EM and EV both having m rows and
n columns. Third, Root Mean Squared Error (RMSE) of the two matrices is
computed using

decdf =

√√√√ m∑
i=1

n∑
j=1

(
EM

ij − EV
ij

)2
/(mn). (1)

As EM
ij ≤ 1 and EV

ij ≤ 1, the measure decdf is again limited to the [0, 1] interval.
Figure 2b shows the spatial probability distribution function (PDF) of sleep

type activities on the validation set visualized as a heat map. The probability
distribution was approximated from data using Gaussian kernels. Similar heat
maps might be helpful when developing a model as they can show where problems
or imprecisions are.

A3. Structure of Activities: In the previous steps, we examined the activity
distributions in time and space. In this step, we consider the activity composition
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of the entire activity schedules. We propose a measure which compares distribu-
tions of activity counts in activity schedules as well as a measure comparing the
distribution of possible activity type sequences.

Activity Count: The comparison of activity counts in activity schedules is based
on a well-known Pearson’s chi-square test (Sokal and Rohlf 1994). The procedure
is performed separately for each activity type. First, frequencies fM

i and fV
i for

the count i are collected for both model and validation data. Validation data
frequencies fV

i are then used to get count proportions pVi and in turn validation
frequencies sVi scaled to match the sum of model’s frequencies (

∑
i s

V
i =

∑
i f

M
i ).

Using fM
i and sVi chi-square statistic is computed as

χ2 =
∑
i

(
fM
i − sVi

)2
/sVi . (2)

Activity Sequences: We also compare activity sequence distributions. The method
is based on the well-established text mining techniques (Manning 1999). Par-
ticularly, we compare n-gram profiles using chi-square statistic. N-gram is a
continuous subsequence of the original sequence having a length exactly n. Con-
sider an example activity schedule consisting of the following activity sequence:
〈none, sleep, work, leisure, sleep, none〉3. The set of all 2-grams (bigrams)
is then: {〈none, sleep〉, 〈sleep, work〉, 〈work, leisure〉, 〈leisure, sleep〉 and
〈sleep, none〉}. We create an n-gram profile by counting frequencies of all
n-grams in a range n ∈ {1, 2, · · · , k} for all activity schedules. All the N n-grams
are then sorted by their counts in a decreasing order so that the counts are fi ≥ fj
for any two n-grams i and j where 1 ≤ i < j ≤ N (for a tie fi = fj one should
sort in the lexicographical order). We only work with a proportion P of n-grams
having the highest count in the profile. More precisely, we take only the first M
n-grams, where M is the highest value for which

∑M
i=1 fi ≤ P

∑N
i=1 fi is true.

In order to compare n-gram profiles of model and validation data, we employ
chi-square statistic matching both profiles by the corresponding n-grams (only
n-grams found in both profiles are considered).

B1. Trips in Time: The validation of trips in time consists of two sub-steps:
a comparison of mode distributions for a given time of day and a comparison of
travel time distributions for selected modes.

Modes by Time of Day: The comparison of mode distributions for a given time
of day, i.e., p(mode|time range), is based on exactly the same approach which we
used to compare activity counts (validation step A3): the χ2 statistic is computed
for mode frequencies of trips starting in a selected time interval. We suggest
computing χ2 statistic for twenty four one-hour intervals per day, although other
partitionings are possible.

Travel Times per Mode: Travel time distributions for modes p(travel time|mode)
are validated in the same way as activities in time (see validation step A1) using
Kolmogorov-Smirnov statistic dKS .
3 Note, that none activities are added to the beginning and end of the activity schedule

in order to preserve information about initial/terminal activity.
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B2. Trips in Space: In order to validate trip distributions in space, we propose
a symmetrical dissimilarity measure based on O-D matrix comparison. The algo-
rithm is realized in three consecutive steps. First, O-D matrices are rearranged
to use a common set of origins and destinations. Second, both matrices are scaled
to make trip counts comparable. Third, RMSE for all elements which have non
zero trip count in either of the matrices is computed.

The algorithm starts with two O-D matrices: model matrix M and validation
matrix V . Each element Mij (or Vij) represents a count of trips between origin
i and destination j. The positional information (i.e., latitude/longitude or other
type of coordinates) is denoted mi,mj ∈ CM for model and similarly vi, vj ∈ CV

for validation data where CM and CV are sets of all possible coordinates (e.g., all
traffic network nodes).

Note that in most practical cases CM �= CV . As an example we can have
precise GPS coordinates generated by the model, however, only approximate or
aggregated trip locations from validation travel diaries. As we have to work with
the same locations in order to compare the O-D matrices, we need to select a
common set of coordinates C. In practice, this would be typically the validation
data location set (C = CV ) while all locations from CM must be projected to
it by replacing each mi by its closest counterpart in C. This might eventually
lead to resizing of the O-D matrix M as more origins/destinations might get
aggregated into a single row/column.

In many cases the total number of trips in M and V can be vastly different.
The second step of the algorithm scales both M and V to a total element sum
of one: M ′

ij = Mij∑
i

∑
j Mij

and V ′
ij = Vij∑

i

∑
j Vij

. Each element of both M ′
ij and V ′

ij

now represents a relative traffic volume between origin i and destination j.
Finally, we compute the O-D matrix distance using the following equation:

dOD =

√√√√ ∑
i

∑
j

(
M ′

ij − V ′
ij

)2
∣∣{(i, j) : M ′

ij > 0 ∨ V ′
ij > 0

}∣∣ . (3)

Note that the equation is RMSE computed over all origin-destination pairs which
appear either in M ′

ij , V ′
ij or in both. We have decided to ignore the elements

which are zero in both matrices as these might represent trips which might not
be possible at all (i.e., not connected by the transport network). Possible values
of dOD lie in interval [0, 1] (the upper bound is given by M ′

ij ≤ 1 and V ′
ij ≤ 1).

B3. Mode for Target Activity Type: The validation of the mode choice for
target activity type is again based on χ2 statistic. Here, we collect counts per
each mode for each target activity of choice.

4 VALFRAM Evaluation

In general, we expect a statistical validation framework to meet three key condi-
tions. First, the framework quantifies the accuracy of the validated models in a
way which allows comparing model’s accuracy in replicating different aspects of
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the behaviour of the modelled system. Second, data required for validation are
available. Third, validation results produced by the framework correlate with
the expectations based on expert insight and face validation.

VALFRAM meets conditions 1 and 2 for activity-based models by explic-
itly expressing the spatial, temporal and structural properties of activities and
trips, using only travel diaries and O-D matrices. To evaluate it with respect
to condition 3, we have built three different activity-based models, formulated
hypotheses about them based on our expert insight and used VALFRAM to
validate both of them.

4.1 Evaluation Models

The first model, denoted MA (model A), is a rule-based model inspired by
ALBATROSS4 (Arentze and Timmermans 2000). The second model, denoted
MB, is a fully data-driven model based on Recurrent Neural Networks (RNNs).
More specifically, the model employs fully-connected Long-Short Term Memory
(LSTM) units (Hochreiter and Schmidhuber 1997) and several sets of softmax
output units. Given the training dataset based on travel diaries, the model is
trained to repetitively take current activity type and its end time as an input
in order to produce a trip (including trip duration and main mode) and the
following activity (defined by type and duration). As MB is currently unable to
generate spatial component of the schedules (e.g., activity locations), VALFRAM
steps A2 and B2 are evaluated on a predecessor of MA denoted M′

A (model A′).
M′

A uses a less sophisticated approach to select activity locations.
All MA, MB and M′

A models were used to generate a sample of 100,000
activity schedules. Our validation set V contained approximately 1,800 sched-
ules. Such a disproportion is typical in reality, since obtaining real-world data
tends to be more costly than obtaining synthetic data from model. All the data
used in this study cover a single workday. An overview of the modelled area is
depicted in Fig. 2b.

In the following text we present five hypotheses based on our insight of mod-
els. Note that all VALFRAM steps A1 through B3 are performed in order to
evaluate them.

4.2 Test Hypotheses

Hypothesis 1: The rule-based model MA uses a very simple linear classifier for
decisions on activity start times, so it will likely perform worse than the RNN-
based model in their assignment. On the other hand, the activity scheduler in
MA performs schedule optimization, during which it adapts activity durations
according to rules psychologically plausible. This should produce more realistic
behaviour than the purely data-driven RNN model5.
4 Although we call MA the rule-based model, it estimates activity count, durations

and occasionally start times using linear-regression models based on data. All other
activity schedule properties are based on rules constructed using expert knowledge.

5 At least given the limited size of the RNN training dataset.
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Step A1 of VALFRAM confirms the hypothesis. Figure 3a depicts the distri-
butions p(start|work) for validation data V and models MA and MB. The values
dAKS > dBKS indicate the higher accuracy of the RNN model, with the most sig-
nificant difference in the case of work and school activities. On the other hand,
Fig. 3b shows that MA outperforms MB in terms of activity durations.

Fig. 3. An example of activity in time comparison. The values of dKS are shown for
both models MA and MB. MB outperforms MA on start times while the situation is
the opposite for durations.

Hypothesis 2: Activity sequences of real-world system tend to be harder to
replicate using simple rule-based models than robust data-driven approaches.

Results of the step A3 (activity counts) for all the activity types are shown
in Table 2. The data-driven model MB outperforms MA with the exception of
the leisure activity (which we later found to be insufficiently covered by the
RNN training data). Note that both MA and MB give the same χ2 value for
the sleep activity which is caused by the fact that both models generate daily
schedules having strictly two sleep activities in the current setup. For the step
A3 (activity sequences) we got the following results for both models using the
proportion P = 0.9 and k = 11 (longest sequence in data): χ2 ≈ 8.4 × 105 for
MA and χ2 ≈ 2.6 × 105 for MB showing superiority of the RNN model.

Table 2. Activity counts for selected activities (χ2 statistic). Model MB outperforms
model MA with the exception of the leisure activity type.

Model sleep work school leisure shop

MA 21468.1 2889.3 542.2 1750.3 974.2

MB 21468.1 255.7 293.8 4625.7 773.8

Hypothesis 3: While rule-based model optimizes the whole daily activity plans,
RNN-based model works sequentially and schedules new activity based only on
the previous ones. Therefore, it will be less accurate towards the end of the day.

By a further analysis of step A3 (activity sequences), which involved the
comparison of a set of n-grams having highest frequency difference, we have,
indeed, found that the RNN model tends to be less accurate towards the end of
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the generated activity sequence resulting in schedules not ended by the sleep
activity in a number of cases. Moreover, Fig. 4 shows a comparison of mode by
time of day selection χ2 values (step B1) for MA and MB showing that although
MB is initially more accurate it eventually degrades and the rule-based model
MA prevails.

Fig. 4. Modes by the time of day. The figure shows a comparison of χ2 values for car

and public transport modes for one hour intervals between 3:00 and 23:00.

Hypothesis 4: Unlike the rule-based model, the RNN model has no access to
trip-planning data (i.e., transport network, timetables) which will decrease its
performance in selecting trip modes.

For the step B1 (travel times per mode) we got dAKS = 0.22 < dBKS = 0.31
for car and dAKS = 0.37 < dBKS = 0.43 for public transport modes. Results of
the step B3 are summarized in Table 3 also supporting the superiority of MA in
modelling mode selection.

Table 3. Transport mode selection for target activity type (χ2 statistic). Model MA

outperforms model MB in four out of five activity types.

Model sleep work school leisure shop

MA 562 1371.7 1120 12817.3 5

MB 2875.2 3437.9 7286.2 475.1 2507.3

Hypothesis 5: Model M′
A will be inferior to MA as it uses an oversimplified

activity location selection.
For the step A2 this is clearly demonstrated in Fig. 5 by dAecdf < dA

′
ecdf for

the leisure and shop activities (only activity types affected by the algorithm
selecting activity locations). For the step B2 we get dAOD = 3.7 × 10−4 < dA

′
OD =

4.8 × 10−4 which again supports the hypothesised improvement of A over A′.
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Fig. 5. Activities in space: comparison of Model A to Model A′. M′
A is inferior to MA

for flexible activities (dA
ecdf < dA′

ecdf ) based on 18 × 31 ECDF matrices.

5 Conclusion

We have introduced a detailed methodological framework for data-driven statis-
tical validation of multiagent activity-based transport models. The VALFRAM
framework compares activity-based models against real-world travel diaries and
origin–destination matrices data. The framework produces several validation
metrics quantifying the temporal, spatial and structural validity of activity sched-
ules generated by the model. These metrics can be used to assess the accu-
racy of the model, guide model development or compare the model accuracy to
other models. We have applied VALFRAM to assess and compare the validity of
three activity-based transport models of a real-world region comprising around
1 million inhabitants. In the test application, the framework correctly identi-
fied strong and weak aspects of each model, which confirmed the viability and
usefulness of the framework.
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Abstract. Using Multi-Agent Based Simulation (MABS), computing
resources requirements often limit the extent to which a model could be
experimented with. Regarding this issue, some research works propose
to use the General-Purpose Computing on Graphics Processing Units
(GPGPU) technology. GPGPU allows to use the massively parallel archi-
tecture of graphic cards to perform general-purpose computing with huge
speedups. Still, GPGPU requires the underlying program to be compliant
with the specific architecture of GPU devices, which is very constraining.
Especially, it turns out that doing MABS using GPGPU is very chal-
lenging because converting Agent Based Models (ABM) accordingly is a
very difficult task. In this context, the GPU Environmental Delegation of
Agent Perceptions principle has been proposed to ease the use of GPGPU
for MABS. This principle consists in making a clear separation between
the agent behaviors, managed by the CPU, and environmental dynamics,
handled by the GPU. For now, this principle has shown good results, but
only on one single case study. In this paper, we further trial this princi-
ple by testing its feasibility and genericness on a classic ABM, namely
Reynolds’s boids. To this end, we first review existing boids implementa-
tions to then propose our own benchmark model. The paper then shows
that applying GPU delegation not only speeds up boids simulations but
also produces an ABM which is easy to understand, thanks to a clear
separation of concerns.

Keywords: Multi-Agent Based Simulation · Flocking · GPGPU ·
CUDA

1 Introduction

Because Multi-Agent Based Simulation (MABS) can be composed of many inter-
acting entities, studying their properties using digital simulation may require a
lot of computing resources. To deal with this issue, the use of General-Purpose
computing on Graphics Processing Units (GPGPU) can drastically speed up
simulation runs for a cheap cost [8]. GPGPU relies on using the massively par-
allel architectures of usual graphic cards to perform general-purpose computing.
However, this technology implies a very specific programming scheme which
requires advanced GPU (Graphics Processing Unit) programming skills [11].
c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 71–86, 2016.
DOI: 10.1007/978-3-319-31447-1 5
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Because there are many different MAS (Multi-Agent Systems) models, there
is no generic way for implementing MAS using GPGPU. It is not about only
changing of programming language. With GPGPU, many concepts which are
present in sequential programming are no longer available. Especially, impor-
tant features of object-oriented languages simply cannot be used (inheritance,
composition, etc.). So, it is very difficult to adapt an Agent Based Model (ABM)
so that it can be run on the GPU. Considering this issue, hybrid systems repre-
sent an attractive solution. Because the execution of the MAS is shared between
the Central Processing Unit (CPU) and the GPU, it is thus possible to select
only what is going to be translated and executed by the graphics card.

In this paper, we propose to challenge the feasibility and interest of the GPU
Environmental Delegation of Agent Perceptions (GPU Delegation for short) prin-
ciple which is based on an hybrid approach. This principle consists in identifying
and delegating to the environment some of the computations made by the agents.
A case study is presented in [9] and shows good results in terms of performances,
accessibility and reusability. We propose to trial this principle by using it on a
classic ABM, namely Reynolds’s boids [14].

In Sect. 2 we review how Reynolds’s Boids is implemented in several MABS
platforms and then propose our own flocking model in Sect. 3. Section 4 presents
the GPU Environmental Delegation of Agent Perceptions principle. In Sect. 5,
we describe the implementation of our model and how we have applied GPU
Delegation on it. In Sect. 6, we present and discuss the results of our tests.
Finally, we conclude and present perspectives in Sect. 7.

2 Reynolds’s Boids

2.1 Original Model Overview

Reynolds was interested in achieving a believable animation of a flock of artificial
birds and remarked that it was not possible to use a scripted flock motion.
That is why Reynolds proposed an ABM based on local individual rules, namely
boids [14]. Reynolds’s idea was that boids have to be influenced by the others
to flock in a coherent manner: “Boid behavior is dependant not only on internal
state but also on external state.”.

Reynolds proposes that each agent is subjected to forces that make it move
by taking into account the interactions with the others. So, each entity has to
follow three behavior rules:

– R.1 Collision Avoidance: Avoid collisions with nearby flockmates
– R.2 Flock Centering: Attempt to stay close to nearby flockmates
– R.3 Velocity matching: Attempt to match velocity with nearby flockmates

Reynolds’s boids is recognized as one of the most representative ABM and
many agent-based platforms integrate their own boids model.
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2.2 Boids in Current MABS Platforms

In this section, we compare several implementations of Reynolds’s boids that
we can find in popular MABS platforms. Among the related works found, we
only introduce models we were able to download and try with an open source
code: NetLogo, StarLogo, Gama, Mason and Flame GPU. For each model, we
describe how the three rules are implemented (Collision Avoidance (R.1), Flock
Centering (R.2), Velocity matching (R.3)).

NetLogo. In NetLogo1 [17], all the agents move and try to get closer to their
peers. If the distance between them and the nearest neighbor is too small, the
agent tries to get away (avoid collision (R.1)), otherwise the agent aligns with its
neighbors (R.2). However, there is no speed management (R.3): All the agents
have the same velocity during the entire simulation.

StarLogo. In StarLogo2 [13], the agent searches for his closest neighbor. If the
distance to his peer is too small, then the agent turns and gets away to avoid
collision (R.1). Otherwise, it moves toward him and use his direction. The search
for cohesion (R.2) is not explicitly expressed and the velocity of the agents is
fixed throughout the simulation (R.3).

Gama. In Gama3 [3], agents first look for a virtual target to follow (a moving
object in the environment that initiates the flocking behavior). Once the agents
have a target, they move according to three functions that implement Reynolds’s
rules: A separation function to avoid collision (R.1), a cohesion function (R.2)
and an alignment function for speed and direction (R.3). The model differs from
Reynolds’s because the agents need a target to actually make the flocking.

MasOn. MasOn4 [7] uses the computation of several vectors to integrate R.1
and R.2. Each agent computes a motion vector composed of an avoidance vector
(this is computed as the sum, over all neighbors, of a vector to get away from
the neighbors (R.1)), a cohesion vector (this is computed as the sum, over all
live neighbors, of a vector towards the “center of mass” of nearby flockers),
a momentum vector (a vector in the direction the flocker went last time), a
coherence vector (this is computed as the sum, over all live neighbors, of the
direction of other flockers are going (R.2)), and a random vector. The velocity
is not managed in this model (R.3).

1 https://ccl.northwestern.edu/netlogo/.
2 http://education.mit.edu/starlogo/.
3 https://code.google.com/p/gama-platform/.
4 http://cs.gmu.edu/∼eclab/projects/mason/.

https://ccl.northwestern.edu/netlogo/
http://education.mit.edu/starlogo/
https://code.google.com/p/gama-platform/
http://cs.gmu.edu/~eclab/projects/mason/
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Table 1. Boids in common MABS platforms

Platform
Compliance with Reynolds’s

Model Main characteristics Performances
Collision R.1 Cohesion R.2 Velocity R.3

NetLogo X X R.3 is not implemented: Velocity is fixed
throughout the simulation

214 ms (CPU / Logo)

StarLogo X A minimalist implementation of behavior
rules (only the collision avoidance is im-
plemented)

*1000 ms (CPU / Logo)

Gama X X X Flocking behaviour when agents have a
target to follow

375 ms (CPU / GAML)

MasOn X X The rules R.1 and R.2 are reinterpreted
into a global vector with addition of ran-
dom components, no speed management

45 ms (CPU / Java)

Flame GPU X X X The three rules are explicitly implemented *82ms (GPU / C,XML)

Flame GPU. Flame GPU5 [15] is the only GPGPU implementation that we
were able to test. In this model, R.1 R.2 and R.3 are actually implemented into
three independent functions.

Summary. Table 1 summarizes the implementations of Reynolds’s rules, sets
out the main features of the models and gives performance informations.

Performances. We evaluate for each model the average computation time in
milliseconds for an iteration. The purpose of this evaluation is to give an idea
of the possibilities of each implementation. So, we use as common parameter
an environment of 512× 512 containing 4000 agents. Our test configuration is
composed of an Intel i7-4770 processor (Haswell generation, 3.40 GHz) and an
Nvidia K4000 graphics card (768 CUDA cores).

It has to be noted that for StarLogo, we observed a computation time higher
than a second from 400 simulated agents so that we did not push the tests
further. Finally, for Flame GPU, it was not possible to modify the number of
agents in the simulation which is of 2048.

3 Reynolds’s Boids: Our Model and Implementation

From the previous study, we notice disparities between the various presented
models. Indeed, Reynolds’s rules allow a large variety of interpretations. For
instance, we notice that the speed adaptation rule (R.3) is not always taken into
account compared to R.1 and R.2 which are implemented in almost every model
(except StarLogo). However, when R.3 is implemented, the collective behav-
ior becomes much more convincing in terms of flocking dynamics and movement
believability. Also, in some works, alignment and cohesion behaviors are merged.
The models clarifying the difference between this two behaviors offer more inter-
esting movements.

5 http://www.flamegpu.com/.

http://www.flamegpu.com/
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The model that we propose takes into account the points observed previously:
Overall, when the three rules are explicitly considered, the dynamics and the
movement of the agents are more convincing. So, our model integrates R.1, R.2
and R.3 and also follows the KISS (Keep It Simple and Stupid) principle in the
aim of creating a minimalist version (with as few parameters as possible). So the
model focuses only on the speed and the orientation of the agent6.

Each entity has a global behavior which consists in moving while adapting
its speed and direction. To this end, the proximity with the other agents is first
tested and then Reynolds’s rules are triggered accordingly. More specifically,
every agent first looks in its vicinity. If no agent is present, then it continues to
move in the same direction. Otherwise, the agent checks if the neighbors are not
too close. Depending on the proximity between entities, agents separate (R.1),
align with other entities or create cohesion (R.2). Then agents adapt their speed
(R.3), move and restart the process. Figure 1 summarizes the global behavior
process.

Fig. 1. Flocking: global behavior process

In our model, we have two types of parameters: 5 constants for the model
and 3 attributes specific to each agent. The constants are the following ones:

– fieldOfView (agent’s field of view);
– minimalSeparationDistance (minimum distance between agents);
– cohesionThreshold (necessary number of agents to begin cohesion);
– maximumSpeed (maximum speed of the agent);
– maximumRotation (maximum angle of rotation).

The attributes specific to each agent are the following ones:

– heading (agent’s heading);
– velocity (agent’s speed);
– nearestNeighborsList (the list containing nearest neighbors).

Separation Behavior R.1. When an agent is too close from another one, it
separates (R.1). This behavior consists in retrieving the heading of both agents.
If these two directions lead to a collision, agent rotates to avoid its neighbor (see
Algorithm 1).
6 The orientation is an angle in degree (between 0 and 360) which gives the heading

of the agent according to the landmark fixed in the environment.
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Algorithm 1. Separate behavior

input : myHeading, nearestBird, maximumRotation
output: myHeading (the new heading)

1 collisionHeading ← headingToward(nearestBird) ;
2 if myHeading inTheInterval(collisionHeading,maximumRotation) then
3 changeHeading(myHeading);
4 end
5 return myHeading

Align Behavior R.2. When an agent comes closer to other entities, it tries to
align itself with them, by adjusting his direction according to its nearest neighbor
(see Algorithm 2).

Algorithm 2. Alignment behavior

input : myHeading, nearestBird
output: myHeading (the new heading)

1 nearestBirdHeading ← getHeading(nearestBird) ;
2 if myHeading isClose(nearestBirdHeading) then
3 adaptHeading(myHeading);
4 end
5 else
6 adaptHeading(myHeading,maximumRotation);
7 end
8 return myHeading

Cohesion Behaviors R.2. When multiple agents are close to each other with-
out having to separate, they have a cohesion behavior. Each agent retrieves the
directions of its neighbors and adjusts its own direction based on the average
direction found, thus strengthening the cohesion of the group (see Algorithm 3).

Speed Adaptation R.3. Before moving, the agents adapt their speed (R.3).
During all the simulation, every agent modifies its speed according to that of
its neighbors. If the agent has just executed the behavior of separation (R.1),
it accelerates to get free more quickly. Otherwise, the agent adjusts its speed
to make it correspond to that of its neighbors (in the limit authorized by the
maximumSpeed constant).
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Algorithm 3. Cohesion behavior

input : myHeading, nearestNeighborsList
output: myHeading (the new heading)

1 sumOfHeading, neighborsAverageHeading = 0 ;
2 foreach bird in nearestNeighborsList do
3 sumOfHeading+ = getHeading(bird);
4 end
5 neighborsAverageHeading =

sumOfHeading/sizeOf(nearestNeighborsList) ;
6 if myHeading isClose(neighborsAverageHeading) then
7 adaptHeading(myHeading);
8 end
9 else

10 adaptHeading(myHeading,maximumRotation);
11 end
12 return myHeading

Testing Our Model. We have put online a set of videos that show our model
in action7. On this page are also available the source codes of the mentioned
models and the resources required to test our solution.

4 GPU Environmental Delegation of Agent Perceptions

4.1 MABS and GPGPU

GPGPU Basics. For the purpose of understanding the basics of GPGPU pro-
gramming, one has to have in mind that it is strongly connected to the under-
lying hardware architecture of GPU. In this respect, one of the main differences
between a CPU and a GPU is the number of processing cores which is far more
important in the GPU case.

Today, GPU are composed of hundreds or thousands of processing core
(grouped into Streaming Multiprocessors, SM) forming a highly parallel struc-
ture able to perform more varied computing. GPGPU relies on using the SIMD
(Single Instruction, Multiple Data) parallel model. Also called stream processing,
the underlying programming approach consists in performing the same opera-
tion on multiple data points simultaneously. In other words, GPGPU relies on
the simultaneous execution of a series of computations (kernels) on a data set
(the flow - stream).

The related programming models rely on the following work flow: The CPU
is called the host and plays the role of scheduler. The host manages data and
triggers kernels, which are functions specifically designed to be executed by the
GPU, which is called the device. The GPU part of the code really differs from

7 www.lirmm.fr/∼hermellin/Website/Reynolds Boids With TurtleKit.html.

www.lirmm.fr/~hermellin/Website/Reynolds_Boids_With_TurtleKit.html
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sequential code and has to fit the underlying hardware architecture. More pre-
cisely, the GPU device is programmed to proceed the parallel execution of the
same procedure, the kernel, by means of numerous threads. These threads are
organized in blocks (the parameters blockDim.x, blockDim.y characterize the size
of these blocks), which are themselves structured in a global grid of blocks. Each
thread has unique 3D coordinates (threadIdx.x, threadIdx.y, threadIdx.z ) that
specifies its location within a block. Similarly, each block also has three spa-
tial coordinates (respectively blockIdx.x, blockIdx.y, blockIdx.z ) that localize it in
the global grid. Figure 2 illustrates this organization for the 2D case. So, each
thread works with the same kernel but uses different data according to its spa-
tial location within the grid8. Moreover, each block has a limited thread capacity
according to the hardware in use.

Fig. 2. Thread, blocks, grid organization

So, a multithreaded program is partitioned into blocks of threads that execute
independently from each other. The distribution of blocks and threads on SM
may be automatic and is provided by the runtime and drivers. For instance,
in the GPGPU platform from Nvidia (Compute Unified Device Architecture,
CUDA), a CUDA program can be executed on any number of multiprocessors
as illustrated by Fig. 3, and only the runtime system needs to know the physical
multiprocessor count.

Implementing MABS Using GPGPU. There are two ways of implementing
a model on GPU: (1) all-in-GPU, for which the simulation runs entirely on the
graphics card and (2) hybrid, the execution of the simulation is shared between
the CPU and the GPU. In the first case (1), it is not trivial to take an existing
model and translate it to make it work on GPU. GPU are very restrictive in
operations and programming and the hardware can only be used in certain ways
that requires advanced GPU programming skills. The hybrid approach (2) allows
to use jointly the CPU and GPU and thus has two major advantages. Firstly, it
brings more flexibility because one can choose what is going to be executed on
8 In this context, Thread is similar to the concept of task: A thread may be considered

as an instance of the kernel which is performed on a restricted portion of the data
depending on its location in the global grid (its identifier).
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Fig. 3. Automatic scalability (source: Nvidia programming guide)

the GPU, thus providing greater accessibility to the developed tools (as clearly
shown in [5,6,16,18]). Secondly, as hybrid systems are modular by design, they
make it possible to use agents with complex and heterogeneous architectures.
The GPU Environmental Delegation of Agent Perceptions principle relies on an
hybrid approach.

4.2 Converting Agent Perceptions in Environmental Dynamics

The Principle. GPU Environmental Delegation of Agent Perceptions princi-
ple was proposed in [9]. This principle consists in making a clear separation
between the agent behaviors, managed by the CPU, and environmental dynam-
ics, handled by the GPU. The underlying idea is to identify in the behavior
of the agents some computations which can be transformed into environmental
dynamics. It has been first stated as follows: Any agent perception computation
not involving the agents state could be translated to an endogeneous dynamic of
the environment, and thus considered as a potential GPU environment module.

Related Works. GPU delegation has to be related to other works which reify
parts of the agents’ computations in structures related to other concepts such
as the interactions or the environment.

In the MABS context, the EASS (Environment As Active Support for Simula-
tion) [1] approach aims at strengthening the role of the environment by delegat-
ing to it the scheduling policy and adding a filtering system for the perceptions.
IODA (Interaction Oriented Design of Agent simulations) [4] is centered on the
notion of interaction and considers that agent behaviors can be described in a
abstract way as a rule called interaction. [12] proposes to reduce the complexity
of the models by using an environment-centered approach: Some agent interac-
tion patterns are modeled as environmental dynamics to ease the reusability and
the integration of various agent processes.
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GPU Delegation on a Case Study. The integration of GPU computations
was performed in TurtleKit9 [10]. TurtleKit is a generic spatial ABM, imple-
mented with Java, wherein agents evolve in a 2D environment discretized in
cells. The proposed hybrid approach integrated in TurtleKit focuses on mod-
ularity. In this context, this allows to achieve three objectives: (1) maintain
accessibility in the agent model while using GPGPU, (2) to scale and work with
a large number of agents on large environment sizes and (3) promote re-usability
in the particular context of GPU programming.

GPU Delegation has been used only once on a model of multi-level emer-
gence (MLE) [2] of complex structures in TurtleKit. This very simple model
relies on a unique behavior which allows to generate complex structures which
repeat in a fractale way. The agent behavior is extremely simple and is based on
the perception, the spread and the reaction to pheromones. So, in these works,
GPU modules dedicated to the perception and the spread of pheromones were
proposed.

5 GPU Delegation for Boids

5.1 Applying GPU Delegation

With respect to the underlying hybrid approach, GPU Delegation is about iden-
tifying specific behaviors which can be turned into environmental dynamics.
Especially, GPU Delegation states that agent perception computations that do
not involve the agents state could be translated into environmental dynamics. For
instance, in the previous case study (MLE), the computation related to the agent
perceptions used to decide how the agents move according to pheromones (i.e.
following gradients) is completely independent from the agents’ state: Gradients
are equals whatever the agents’ states. So a GPU module (environmental dynam-
ics) has been produced for computing pheromones gradients independently from
the agents.

In our flocking model, it has not been possible to find a computation which
is independent from the agents’ attributes. However, we actually identified some
computations that can be done without modifying the agent’s state so that they
can be thus translated into an environmental dynamics computed by the GPU.

Indeed, the cohesion behavior consists in averaging the orientations of neigh-
boring agents according to the selected FieldOfView10. All the agents perform
this computation in their own behavior and use the result to adapt their direc-
tion. The sequential implementation of this process is as follows:

This loop is very costly when there is a large number of agents because they
all perform this computation for each step of the simulation.

9 http://www.turtlekit.org.
10 In the context of TurtleKit, FieldOfView is the range which is used to select the cells

around the agent.

http://www.turtlekit.org
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Algorithm 4. Computing the average of surroundings agents’ heading

for bird in nearestNeighborsList do
sumOfHeading+ = getHeading(bird);

end
neighborsAverageHeading =
sumOfHeading/sizeOf(nearestNeighborsList);

5.2 Designing the Average GPU Module

To achieve GPU translation for the previous computation, we extract informa-
tion from agents’ attributes (heading) and then delegate the associated compu-
tation (the loop) to the environment dynamics. To this end, for each simulation
step, each agent put its heading value in a 2D array (headingArray (a grid match-
ing the size of the environment) according to its position. This array is sent to
a GPU module (average module) that simultaneously, for each cell within the
FieldOfView, performs the average of the headings of the surrounding agents.
More precisely, each thread computes the average for a cell depending on its loca-
tion in the global GPU grid (its identifiers: i and j in Algorithm 5). The GPU
translation thus consists in transforming the sequential computation previously
done in the cohesion behavior of the agents into a parallel computation made on
the GPU and managed by the environment. Once done, the average headings are
available in every cells of the environment. So, the agents can access this data
instantaneously with respect to their position (from the 2D array, flockCentering,
returned by the GPU module) and then adapt their movement accordingly.

Algorithm 5 presents an implementation of the GPU average module: Once
the coordinates i and j of the thread are initialized, the algorithm tests if the
current thread ’s coordinates do not exceed the size of the environment (repre-
sented here by the 2D array headingArray). Next, the sum of all the headings are
assigned to sumOfheading, which is then divided by the number of agents taken
into account. The module then returns the array flockCentering containing all
the averages.

Compared with the sequential version (Algorithm 4, the loop has disap-
peared. So, one of the main interest of the GPU version lies in the fact that
the parallelization of the loop is realized thanks to the hardware architecture,
not through code parallelization: Programming with GPU, parts of the code are
in the structure.

5.3 Implementation and Integration of the GPU Average Module

The implementation of the GPU average module has been done with CUDA
and JCuda11. Figure 4 illustrates the integration of the GPU average module in
TurtleKit. The implementation was easy thanks to the independence between
this module and the agent model.
11 The JCuda library allows to call GPU kernels, written in C, directly from Java.
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Algorithm 5. Average Kernel

input : width, height, fieldOfV iew, headingArray and
nearestNeighborsList

output: flockCentering (the average of directions)

1 i = blockIdx.x ∗ blockDim.x + threadIdx.x ;
2 j = blockIdx.y ∗ blockDim.y + threadIdx.y ;
3 sumOfHeading, flockCentering = 0 ;
4 if i < width and j < height then
5 sumOfHeading = getHeading(fieldOfV iew, headingArray[i, j]);
6 end
7 flockCentering[i, j] = sumOfHeading/sizeOf(nearestNeighborsList) ;

Fig. 4. Integrating the GPU average module in TurtleKit

6 Experimentation

6.1 Experimental Protocol

To trial our implementation of Reynolds’s boids and the application of GPU
delegation, we simulated several environment sizes while varying the number
of agents. We execute successively the sequential version of the model (i.e. the
average is computed in the agents’ behavior) then the GPGPU version (using the
GPU average module). To estimate the performances according to the criteria
used in Sect. 2, we compare the average computation time in milliseconds for an
iteration.

6.2 Performance Tests

For those tests, the configuration is identical as the one used in Sect. 2 and is
composed of an Intel i7-4770 processor (Haswell generation, 3.40 GHz) and an
Nvidia K4000 graphics card (768 CUDA cores). Figure 5 presents the results
obtained for various population sizes in an 256× 256 environment (top) and
then in an 512× 512 environment (bottom).

The use of the GPU module increases the performances by 25 %. However, we
notice that the performances is linked to the density of population. Indeed, when
the density of the agents in the environment is lower, agents spend fewer time
in cohesion and more to align itself and to separate. The density of the agents
affects performance of the model when using the GPU module. The tipping point
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Fig. 5. Comparison of flocking simulations done with and without the GPU. Environ-
ment size: 256 (top) and 512 (bottom)

is clearly visible in the results, when the density of present agents exceeds 5 %
(respectively 1500 and 8000 entities), the joint use of the CPU and the GPU
becomes more effective. So, the more the density of agents in the environment
increases, more the observed gains of performances are important.

The performance gains are interesting considering the used hardware: Our
Nvidia K4000 embeds 768 CUDA cores while the last Nvidia Tesla K40 card
embeds 2880 CUDA cores and the Nvidia Tesla K10 card embeds 3072 cores
(two GPU with 1536 cores on the same card). The fast evolution of GPGPU
and graphics cards promise very significant gains of performances in the future.

6.3 Discussion

In addition to the observed performance gains, we noticed other benefits related
to GPU Delegation principle: Translating perception computations done in the
agent behavior into environmental dynamics allows to remove a part of the source
code and thus simplify the understanding of the behavior. It is more readable
because the agent does not have to deal with raw data. Indeed, the agent makes a
direct perception in the environment instead of a sequential computation which
can be rather heavy.

Another interesting aspect is that the created modules are independent from
the considered ABM thanks to this approach. They are thus not limited to the
context in which they were defined. That is why we will continue to apply GPU
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Delegation to create new GPU modules in order to incrementally build a generic
GPU modules library. This GPU library will improve the accessibility of the
approach and the use of the GPGPU in the MABS context with TurtleKit. This
improvement in terms of genericness and accessibility is important because work-
ing with GPGPU often leads to implementation difficulties due to the specificity
of this technology.

Moreover, GPU delegation is based on a simple criterion which is independent
from the implementation. So, GPU delegation allows to convert the model and
create the GPU module easily in a rather fast way. TurtleKit being still in alpha
release, we are going to continue to work on its architecture in order to make
the conversion of a model as simple as possible.

7 Conclusion and Perspectives

In this paper, we described how we used the GPU Environmental Delegation
of Agent Perceptions principle to implement a classic ABM, namely Reynolds’s
Boids, using GPGPU. Our purpose was to challenge the genericness and the
ease-of-use of GPU Delegation. To this end, we needed to evolve GPU delega-
tion so that it can be applied to the boids model. Indeed, find a computation
independent from agents’ attributes was impossible, so we have identified in the
cohesion behavior some computations independent of agent’s behaviors. We thus
translated these computations into a GPU module and made some tests to see
the advantages brought by the GPU Delegation.

Our experiments show that, using GPU Delegation, it is possible to increase
the size of the environments and the number of agents thanks to a speed up
which can reach 25 % according to the chosen parameters.

From a software engineering perspective, the use of GPU delegation allows
to consider important aspects of MABS with respect to the GPGPU context.
By promoting a clear separation between the agent behaviors (handled by the
CPU) and environmental dynamics (managed by the GPU), GPU Delegation
represents a design guideline which (1) allows to tackle the genericness issue
and (2) promotes reusability of created tools. This essential criterion is often
neglected in the GPGPU context [9]. GPU delegation allows the creation of
generic GPU modules which are independent from the agent models.

Both implementations of the delegation principle, realized with MLE in [9]
and flocking here, show that if the analysis of the model is made by keeping in
mind the characteristics of the approach, the delegation of the computations and
the creation of the GPU module could be very easy and fast, which is a valuable
aspect of GPU Delegation, especially considering the technical difficulties related
with the GPGPU context.

As GPU delegation still requires specific skills, we plan to apply to other
models this principle in order to experiencing and continuing to generalize the
approach. Then, as a long term perspective, our goal is to propose an explicit
design methodology that would provide any MABS end user with a simple and
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efficient means for addressing scalability issues, without compromising reusabil-
ity and accessibility which are major issues for the adoption of this technology
in the MABS community.
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Abstract. We present in this work some extended results to those
originally published in [8], when we simulated the Iterated n-Player Pris-
oner’s Dilemma in a sequential computer. In [12], we presented a solution
to parallel agent-based simulations where agents need to interact with
all its neighbours in a von Neumann neighbourhood, aiming to improve
the usage of computational resources. By using such parallel techniques,
we could better study the effect of several additional parameters of the
Iterated n-Player Prisoner’s Dilemma simulation, like the grid dimension
and the error rate.

1 Introduction

Several computational methods have been applied to social sciences to better
understand social phenomena. In particular, the interdisciplinary field of agent-
based social simulation [4] allows to model and to simulate how social agents
interact and exchange information, and how these processes influence the evo-
lution and behaviour of the population. An essential aspect of this technique is
to enable the traceability of micro and macro observations to micro and macro
specifications in agent-based models [5].

These simulations do not depend solely on domain dependent parameters,
but also on simulation characteristics like the population size [3]. The results of
these analysis could conclude that the variation on the population size may have
a significant impact on the simulation results [13,14].

One problem that arises in these cases is the high demand of computational
power required to simulate large populations. Indeed, there is no way to avoid
this problem since the amount of data usually grows significantly according to
simulation aspects and population size. A usual solution is to use computer
clusters, enabling to distribute the simulation in several independent machines.

In a previous work [12], we presented a solution to better arrange agents in
parallel simulations in order to improve the usage of computational resources.
That approach intended to be applied on simulations where agents need to inter-
act with all its neighbours in a von Neumann neighbourhood and they are dis-
tributed in a grid where cells in the borders are immediately connected to cells
in the other side, resembling a ring torus.
c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 87–105, 2016.
DOI: 10.1007/978-3-319-31447-1 6
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We present in this work some extended results to those originally published in
[8], when we simulated the Iterated n-Player Prisoner’s Dilemma in a sequential
computer. By using the parallel techniques mentioned above, we could better
study the effect of several additional parameters of the simulation, like the grid
dimension and the error rate.The relation between these approaches are repre-
sented in Fig. 1, the one described in this paper corresponds to the right side of
the figure. For conciseness, we will not detail here these parallel techniques: the
interested reader should refer to [12] for a detailed description.

Lindgren &
Johansson

(2003) Guerberoff (2011)

AFA

AF
AF

AFA

AF

S2E2 PS2E2

Fig. 1. Approaches to simulate the Iterated n-Player Prisoner’s Dilemma

The rest of the paper is organised as follows. In Sect. 2, we introduce very
briefly the main concepts of our simulation of the Iterated n-Player Prisoner’s
Dilemma; interested readers should refer to [8] for more details. The description
of the experiments is presented in Sect. 3. The first and second set of experiments,
as well as our results analysis, are then discussed in Sects. 4 and 5. Finally, we
present our conclusions and further work in Sect. 6.

2 Iterated n-Player Prisoner’s Dilemma

The Prisoner’s Dilemma (PD) is widely used as a paradigm for the study of the
evolution of cooperation in a society of agents. In its iterated version (IPD) with
two participants, at each round, agents simultaneously choose one of options: to
cooperate (“C”) or defect (“D”). If the game is repeated for a sufficient number
of periods, there is a chance for the agents to establish mechanisms that support
a mutual cooperation. Given the incentives the agents face in this game to defect,
it is fundamental that in order to maintain cooperation the free-rider problem
must be offset with some punishment mechanism. Moreover, an implementation
of IPD requires a strategy representation language that enables the agents to
represent different strategies, taking into account past interactions.

Axelrod [1] pioneered the use of computer simulation of IPD in an evolu-
tionary environment as a method of studying the dynamics of cooperation. In a
tournament of strategies open to the scientific community, he was able to analyse
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Fig. 2. Adaptive function execution

and compare different configurations of games, types of strategies and other vari-
ables, as well as individual and social outcomes. Since then, many other research
projects have been conducted modeling agents with heterogeneous strategies
playing the IPD in an evolutionary environment, like the work described in [6]
and [9].

Other works do not feature a pre-determined set of strategies, but study
their endogenous development and evolution through the use of genetic and
evolutionary mechanisms. Lindgren and Nordahl [11] used genetic algorithms
and strategies with changeable memory size in a spatial model where the agents
play the Prisoner’s Dilemma. Eriksson and Lindgren [7] used finite automata
to represent the strategy of agents where the payoff matrices can be randomly
modified.

In a previous work [8], we extended the results of [10], where agents’ strategies
are represented by finite automata. In that model, mutations in an evolutionary
and spatial environment allow for the endogenous emergence and evolution of
strategies. We reproduced the model as specified and extended it to allow the
use of adaptive automata, which is a richer language than finite automata; it
enables the model to execute adaptive actions when transitions between states
are fired. Thus, it allows to represent more complex strategies. An example of
such adaptive automata is shown in Fig. 2. Supposing that the current state is
D1 and the input is 0, a transition from D1 to D1 is fired. However, when this
transition is fired the automata adapts to a new configuration, as stated by the
two adaptive actions: first, it removes the fired transition (R(D#1, 0,D1)) and
then it creates a new transition from D1 to a new state labeled C1 when the
input is 0 (I(D1, 0, C#1)).

The strategies that we used in our simulation, two of them shown in Fig. 3
were the following ones:

– U strategy: the agent start playing defect and maintain this play, indepen-
dently of the other players;

– TT5 strategy: an approximation of the tit-for-tat strategy for n players, the
agent start playing cooperate and then follows the last play of the majority of
the players1;

1 In our case, since we used n = 5, the majority of the players is represented by
(n ≥ 3).
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Fig. 3. Strategies used in the simulation

– CCD strategy: strategy that contains some adaptive functions (and hence
only applicable to adaptive automata), the agent starts playing cooperate and
maintains this play until another player defects. The agent then calculates
c, the number of cooperative rounds. It then starts to play defect until all
the other agents cooperate again. From this point, the agent decides to play
cooperate again, but just after some m rounds, this m being a function of the
last number of cooperative rounds c.

In the rest of the paper, we will refer to the finite and adaptive automata respec-
tively as b.af and b.aa models.

3 Description of the Experiments

The main phases of our simulation experiment are shown in Fig. 4. First of
all, the agent population is initialized randomly in the grid, each agent having
one of the strategies described in Sect. 2. Following their strategy, agents then
play 150 times the Iterated n-Player Prisoner’s Dilemma with their four von
Neumann neighbours. The outcomes of these interactions are inputs to the fitness
functions of the evolutionary algorithm. Finally, a last phase involves applying
the mutation operator.

3.1 Parameters

We performed several simulations using the parallel techniques described in [12].
These experiments were divided into two sets, detailed in the following sections.
Each of them evaluates the impact that the change of some parameters and the
amount of processors has on the system outcomes.

To enable the comparison of our results with previous work, we used the
same parameters used by [2]:

– k is the number of processors to run the simulation;
– d is the dimension of the lattice;
– g is the number of generations;
– P (m) is the probability of mutation, i.e., the probability of changing the

strategy after the reproduction phase;
– P (e) is the error rate, i.e., the probability that the player does chooses a play

not consistent with his strategy.
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Each battery consists of running 32 simulations of both strategy representation
models (AF and AFA). The number of simulations has been arbitrarily selected
to get sufficient data subject to further statistical analysis. After running the
simulations, we collected the run times for each task, as well as the sum of the
utilities of all the agents in the lattice.

There are two additional parameters that were not studied in this work: the
cost of strategy complexity and the number of iterations per generation. The
strategy complexity cost is an aggregated weight to the agent’s strategy that
benefits those who have simpler strategies, i.e., strategies with fewer states. The
number of iterations per generation is the amount of times that agents play the
INPPD by making use of their strategy. In this work, these parameters were set
at 0,002 and 150, respectively, the same values used in [2].

3.2 Hardware

In order to evaluate the performance obtained with the parallelization of simu-
lation, 5 batteries were run on the Advanced Scientific Computing Laboratory
cluster, in the University of São Paulo (USP-LCCA). The cluster used consists
of 59 DELL PowerEdge 1950 servers with 2 processors Intel Xeon 5430 (4 cores
2.66 GHz, 12 MB L2 cache and FSB 1 333 MHz), 16 GB DDR2-FBDIMM RAM
of 667 MHz and HD SAS 300GB. The cluster uses OS Scientific Linux SL release
5.4 (Boron), 2.6.18–164.11.1.el5 lustre.1.8.3 kernel and uses the TORQUE /
PBS system queues manager and scheduler, that ensures the reservation of
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computational resources so that concurrent processes are not simultaneously
executed on the same processor.

Since the cluster resources were reserved, the system could evenly distribute
the processors among the different servers according with its availability. There-
fore, considering that each server has eight processing cores, simulations using
2 4 or 8 processors are not necessarily performed in a single machine, although
there is a likelihood that this has occurred. In other words, a simulation using
eight processors could has been performed on a single server, or may have been
performed in eight different servers using a single processor in each. Similarly,
simulations involving 16 or 32 processors were performed in at least 2 or 4 servers,
respectively, since there are no servers with these amounts of processors.

The operational costs generated by the communication between the servers
were not considered in this work.

4 First Set of Experiments

A first set of experiments was designed with the unique purpose of evaluating the
performance gain achieved by distributing the agents’ interactions in the cluster.
We made an analysis based on the collection of the simulation run times per-
formed with different amounts of processors, in order to calculate the algorithm’s
efficiency.

For this purpose, five batteries simulations were performed in each one of the
models (b.af and b.aa). All batteries were composed by 32 runs of 5 000 gener-
ations of the game on a 50 × 50 grid, where all players start with the strategy
TT5. They interact 150 times per generation, and the strategy complexity cost,
mutation rate and error rate were fixed respectively in 0.002, 1 % and 1 %. These
values represent the base case test used in this work, identical to the one used
by [2], which facilitated the correctness verification of the algorithm during its
development.

In this first experiment, five test batteries differed only in the number of
processors used in their execution. This number was chosen based on the cluster
resources’ availability. Simulations were performed with 1, 2, 4, 8, 16 and 32
processors. Table 1 describes the parameters values of these test batteries.

Table 1. Batteries 01–06: Experimental settings

Battery k d g P (m) P (e) Strategy

01 1 50 × 50 5 000 1 % 1 % TT5

02 2 50 × 50 5 000 1 % 1 % TT5

03 4 50 × 50 5 000 1 % 1 % TT5

04 8 50 × 50 5 000 1 % 1 % TT5

05 16 50 × 50 5 000 1 % 1 % TT5

06 32 50 × 50 5 000 1 % 1 % TT5
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4.1 Number of Processors

The results obtained with the implementation of the batteries at this stage are
listed in Tables 2 and 3 for b.af and b.aa models respectively. The time dis-
played corresponds to the absolute real-time simulation of execution (also called
real time). Based on the implementation of the Battery 01 each model (corre-
sponding to code execution on a single processor, that is, the sequential code
execution), calculated the speedup factor and the code efficiency. Figure 5 dis-
plays the average time of the execution of simulations. The obtained execution
times are compared to the ones obtained with a sequential code execution divided
by the number of processors used in each experiment (linear time). In the b.af
model, one may notice that the gain obtained by increasing one single processor
was around 38 %; this gain increased as more processors were added, reaching
an upper limit around 84 %. The same behaviour can also be observed in the
b.aa model, with a gain around 52 % and 87 % when using 2 and 32 processors,
respectively. Furthermore, when using the b.aamodel it was observed the occur-
rence of a super-linear speedup when two processors were used. Since the test
batteries in the second set of experiments re composed of simulations that share
similar features, the results obtained in this first experimental set were used to
determine the amount of servers to be used in the subsequent batteries.

Table 2. Batteries 01–06: Average execution time for b.af model

Battery k Time Speedup Efficiency

μ σ

01 1 11 h 24 min 1 h 13 min 1,0000 1,0000

02 2 7 h 06 min 36 min 1,6063 0,8032

03 4 4 h 03 min 15 min 2,8124 0,7031

04 8 2 h 39 min 13 min 4,3047 0,5381

05 16 2 h 04 min 16 min 5,5233 0,3452

06 32 1 h 49 min 13 min 6,3008 0,1969

Table 3. Batteries 01–06: Average execution time for b.aa model

Battery k Time Speedup Efficiency

μ σ

01 1 27 h 49 min 1 h 57 min 1,0000 1,0000

02 2 13 h 22 min 2 h 20 min 2,0816 1,0408

03 4 7 h 49 min 46 min 3,5571 0,8893

04 8 5 h 15 min 31 min 5,2977 0,6622

05 16 4 h 05 min 27 min 6,8249 0,4265

06 32 3 h 40 min 19 min 7,5732 0,2367
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Fig. 5. Batteries 01–06: Average execution time for b.af and b.aa models

Efficiency of B.AF model
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Fig. 6. Batteries 01–06: Efficiency for b.af e b.aa models

Among the 59 servers in the cluster, 22 are dedicated to the execution of
parallel tasks, summing up 176 processors (8 processors per server). As the
cluster resources are shared between many users running different tasks, resource
allocation is made through a fair-share scheduling, given the server demand,
which does not allow a single user to use more than 35 % of all available resources,
or 61 processors. Furthermore, the system also allows each user to not hold
more than 13 tasks running simultaneously, regardless of amount of resources
allocated.

Considering this information, Fig. 7 displays the estimated execution time
of each of the models with different number of processors, given the resource
allocation in the cluster. This graph shows the total execution time of each
battery, composed by the execution of 32 different simulations, considering
both the availability and how resources are allocated on the server. In both
graphs, it can be seen that the use of 4 processors results in the shortest time.
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Estimated execution time of one B.AF model battery
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Fig. 7. Execution time estimation for one battery (32 simulations) for b.af e b.aa
models. This value was calculated using the average time of each simulation adjusted
by the number of tasks that can be simultaneously processed in the cluster.

Therefore, we have chosen this number of processors to execute the batteries of
the next set of experiments.

5 Second Set of Experiments

The second set of experiments aimed to assess how the variation of the simulation
parameters influence the outcomes. As in the previous set, all batteries were
executed 32 times in each of the proposed models.

In order to assess the gain related with each parameter, the sum of utilities
of all agents was collected in each of the generations. Let V aij be the utility of
agent aij in a particular generation, Eq. 1 calculates the Utility function. This
is done by dividing the sum of the utilities of all agents in a generation by the
amount of agents in the lattice in order to facilitate the comparison between
experiments with different amounts of agents.

Utility (U) =

∑
aij∈U

Vaij

|U| (1)

In this paper, we chose to use Wilcoxon test to accept or to reject our statistical
hypothesis, since we didn’t suppose that our data was normally distributed. In
all experiments the value of the pre-defined significance value α is 0.05, thus
rejecting the null hypothesis if p is less than this value. When this happens, we
may say that the alternative hypothesis can be statistically confirmed with 95 %
of confidence.

5.1 Number of Generations

This first experiment aimed to determine how much the outcomes vary with
respect to the system evolution. Differently from other experiment, only a single
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Table 4. Battery 07: Experimental settings

Battery k d g P (m) P (e) Strategy

07 4 50 × 50 20,000 1 % 1 % TT5

battery was run and data was collected every 5 000 generations. The parameters
used in this battery are detailed in Table 4. Figure 8 shows the average utility
of the set of agents in several generations. We can notice that the experiment
involving adaptive finite automata offered the agents an average utility value
higher to the one when we used finite automata: the outcomes present a higher
average utility of 22.78 %, 18.32 %, 14.96 % and 15.01 % in generations 5 000,
10 000 15 000 and 20 000, respectively. Moreover, we can see that in the b.aa
model the system stabilizes rather quickly: after the generation 4 000, it is no
longer possible to observe significant changes in the average utility of the agents.
However, in the b.af model, we can observe a subtle growth until generation
16 000.

We can therefore state our first hypothesis:

Hypothesis A: Agent’s utility grow in higher generations.
In order to validate this hypothesis, we can express it mathematically as:

Utility (X1) < Utility (X2)

where X1 e X2 represent a sample of the results obtained in a certain genera-
tion. We can then compare each two outcomes to verify the intervals where the
hyphotesis holds.

Fig. 8. Battery 07: Average utility obtained by the set of agents
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Table 5. Battery 07: Test results for hyphotesis A

X1 X2 α b.af b.aa

p H0 p H0

5 000 10 000 0,05 0,049 Rejects 0,402 Doesn’t reject

5 000 15 000 0,05 0,009 Rejects 0,165 Doesn’t reject

5 000 20 000 0,05 0,007 Rejects 0,089 Doesn’t reject

10 000 15 000 0,05 0,042 Rejects 0,089 Doesn’t reject

10 000 20 000 0,05 0,102 Doesn’t reject 0,105 Doesn’t reject

15 000 20 000 0,05 0,445 Doesn’t reject 0,452 Doesn’t reject

H0 = Utility (X1) ≥ Utility (X2)
HA = Utility (X1) < Utility (X2)

The test results are shown in Table 5. The null hypothesis was not rejected in
any test involving the b.aa model, showing that there is no significant gain in
this model as generations evolve. However, the test results for the b.af model
showed that there is a significant gain, probably caused by the inherent diffi-
culty that this model has to stabilize. Based on these tests, we decided to fix in
the further experiments the number of generations parameter g in 5 000. This
choice was made due to two reasons: (i) in this generation the b.af model is
already stabilized; another and (ii) computational constraints given the number
of resources available and the number of experiments proposed for this work.

5.2 Grid Size

The following batteries were designed to analyse how the grid dimension influ-
ence the strategies used by the agents. We used a 50 × 50 and 128 × 128 dimen-
sions, which were used in [2] and [10], respectively2. The parameters settings for
these experiments are detailed in Table 6. Figure 9 shown the average utilities
obtained by the agents. We couldn’t observe a big difference in the average util-
ity when using the b.aa model; however, in the case of the b.aa model, there is
a significative increase in the average utility of the agents in the larger lattice,
possibly due to the diversity of strategies produced by the experiment, which
has facilitated their convergence. We can therefore state our second hypothesis:

Table 6. Batteries 08–09: Experimental settings

Battery k d g P (m) P (e) Strategy

08 4 50 × 50 5 000 1 % 1 % TT5

09 8 128 × 128 5 000 1 % 1 % TT5

2 We decided to increase the number of processors used in battery 9 in order to reduce
execution time.
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(a) Battery 08 (b) Battery 09

Fig. 9. Batteries 08–09: Average utility obtained by the set of agents

Hypothesis B: Agent’s utility grow in grids with higher dimension.
In order to validate this hypothesis, we can express it mathematically as:

H0 = Utility (X1) ≥ Utility (X2)
HA = Utility (X1) < Utility (X2)

The test results are shown in Table 7. As expected, the null hypothesis was not
rejected in any test involving the b.aa model. We suppose that this result is
inconclusive to fix a good dimensions for the lattice; we intend to make further
experiments, for instance using a 50 × 50 grid to compare our results with those
obtained by [2]. However, the test results for the b.af model showed that there
is a significant gain for higher dimension grids.

Table 7. Batteries 08–09: Test results for hyphotesis B

X1 X2 α b.af b.aa

p H0 p H0

B08 B09 0,05 0,001 Rejects 0,805 Doesn’t reject

5.3 Initial Strategy

In order to validate the results obtained in [10] and [2], other test batter-
ies were executed where the initial agents strategies were respectively U, TT5
and CCD3, as presented in Sect. 2. Table 8 describes the parameter settings for

3 The experiment involving the initial strategy CCD is only applicable to the b.aa
model, since it contains transitions with adaptive functions.



Parallel Simulations of the Iterated n-Player Prisoner’s Dilemma 99

Table 8. Batteries 10–12: Experimental settings

Battery k d g P (m) P (e) Strategy

10 4 50 × 50 5 000 1 % 1 % U

11 4 50 × 50 5 000 1 % 1 % TT5

12 4 50 × 50 5 000 1 % 1 % CCD�

� Only applicable to the b.aa model.

(a) Battery 10 (b) Battery 11

(c) Battery 12

Fig. 10. Batteries 10–12: Average utility obtained by the set of agents

these experiments. Figure 10 shows the average utility obtained by the agents in
the experiments. When using U as initial strategy, the b.af model was not able
to develop a lot of strategies, which prevented the growth of the agents’ utilities.
However, in the b.aa model, we could observe an increasing in average utility,
over the generations. On the other hand, when using CCD as the initial strategy
we observed an increasing in the average utility of the agents, without any peaks
in the first generations. However, the initial strategy TT5 was the one that has
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Table 9. Batteries 10–12: Test results for hyphotesis C

X1 X2 α b.af b.aa

p H0 p H0

B10 B11 0,05 < 0, 001 Rejects < 0, 001 Rejects

B10 B12 0,05 N/A N/A 0,603 Doesn’t reject

B11 B12 0,05 N/A N/A 0,999 Doesn’t reject

generated a higher average utility of 5.9 % in generation 5 000. We can therefore
state our third hypothesis:

Hypothesis C: A variation in the initial strategy increases the agent’s utility.
In order to validate this hypothesis, we can express it mathematically as:

H0 = Utility (X1) ≥ Utility (X2)
HA = Utility (X1) < Utility (X2)

The test results are shown in Table 9. The experiments using TT5 (B11) as the
initial strategy had the best performance, and those using U (B10) had the worst
performance.

5.4 Mutation Rate

In order to increase the diversity of the population and to observe its effect, some
batteries were included varying the probability of mutation P (m). Since new
strategies are generated only by mutation, this parameter becomes important in
our study. The experimental settings of these batteries are described in Table 10,
and the results are shown in Fig. 11.

We can therefore state our fourth hypothesis:

Hypothesis D: If we increase the probability of mutation, the average utility
increases.

In order to validate this hypothesis, we can express it mathematically as:

H0 = Utility (X1) ≥ Utility (X2)
HA = Utility (X1) < Utility (X2)

Table 10. Batteries 13–17: Experimental settings

Battery k d g P (m) P (e) Strategy

13 4 50 × 50 5 000 1 % 1 % TT5

14 4 50 × 50 5 000 2 % 1 % TT5

15 4 50 × 50 5 000 3 % 1 % TT5

16 4 50 × 50 5 000 5 % 1 % TT5

17 4 50 × 50 5 000 10 % 1 % TT5
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Average utility of the agents
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Fig. 11. Battery 13–17: Average utility obtained by the set of agents

The test results are shown in Table 11. We observe that our hyphotesis was
confirmed in the b.aa model; on the other hand, we could not confirm it when
using the b.af model.

Table 11. Batteries 13–17: Test results for hyphotesis D

X1 X2 α b.af b.aa

p H0 p H0

B13 B14 0,05 1,000 Doesn’t reject 1,000 Doesn’t reject

B13 B15 0,05 1,000 Doesn’t reject 1,000 Doesn’t reject

B13 B16 0,05 0,083 Doesn’t reject 1,000 Doesn’t reject

B13 B17 0,05 < 0, 001 Rejects 1,000 Doesn’t reject

B14 B15 0,05 0,999 Doesn’t reject 0,840 Doesn’t reject

B14 B16 0,05 0,450 Doesn’t reject 0,999 Doesn’t reject

B14 B17 0,05 0,001 Rejects 1,000 Doesn’t reject

B15 B16 0,05 0,195 Doesn’t reject 1,000 Doesn’t reject

B15 B17 0,05 < 0, 001 Rejects 1,000 Doesn’t reject

B16 B17 0,05 0,995 Doesn’t reject 1,000 Doesn’t reject

5.5 Error Rate

In these batteries, we evaluated the effect of the error rate. Changing this para-
meter is especially interesting since it is the only parameter that exerts influ-
ence on the agent’s reproductive phase. As presented in Table 12, experiments
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Table 12. Batteries 18–22: Experimental settings

Battery k d g P (m) P (e) Strategy

18 4 50 × 50 5 000 1 % 0 % TT5

19 4 50 × 50 5 000 1 % 1 % TT5

20 4 50 × 50 5 000 1 % 2 % TT5

21 4 50 × 50 5 000 1 % 5 % TT5

22 4 50 × 50 5 000 1 % 10 % TT5

were made adopting probabilities of 0 %, 1 %, 2 %, 5 % and 10 %, where 0 % cor-
responds to the situation where the agents always plays according to his strategy
(no mistakes). Figure 12 displays the agents’ average utility in the two models.
In the b.af model, the 2 % value was the one that generated the greatest aver-
age utility, which is 12.74 % higher than the lowest average value obtained, with
a value of 10 %. Regarding the b.aa model, the agent’s average utility was also
reduced when the error rate was increased. The higher average utility was obtained
with a value of 0 %, which resulted in an outcome 21.81 % higher than the lowest
utility average obtained, when the value was 10 %. We can therefore state our fifth
hypothesis:

Average utility of the agents

Generation

A
ve

ra
ge

 u
til

ity

1 000 2 000 3 000 4 000 5 000
550

600

650

700

750

800

850

B18AF - P(e) = 0%
B19AF - P(e) = 1%
B20AF - P(e) = 2%
B21AF - P(e) = 5%
B22AF - P(e) = 10%

Average utility of the agents

Generation

A
ve

ra
ge

 u
til

ity

1 000 2 000 3 000 4 000 5 000
600

650

700

750

800

850

900

950

B18AA - P(e) = 0%
B19AA - P(e) = 1%
B20AA - P(e) = 2%
B21AA - P(e) = 5%
B22AA - P(e) = 10%

(a) B. AF (b) B. AA

Fig. 12. Batteries 18–22: Average utility obtained by the set of agents

Hypothesis E: If we increase the error rate, the average utility increases.
In order to validate this hypothesis, we can express it mathematically as:

H0 = Utility (X1) ≥ Utility (X2)
HA = Utility (X1) < Utility (X2)

The test results are shown in Table 13. They show rather clearly that the error
rate affects negatively the agents’ average utility in both models.
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5.6 Model Expressivity

Finally, our last test batteries aimed to verify the influence of the complexity of
the strategy representation formalism on the simulation outcomes. In order to
do so, we use all the results obtained in the second set of experiments, which
comprises the batteries 07 to 22. We can therefore state our sixth and last
hypothesis:

Hypothesis F: Using a more expressive language to represent agents’ strategies
(b.aa model) increases the average utility when compared to a less expressive
formalism (b.af model).

In order to validate this hypothesis, we can express it mathematically as:

H0 = Utility (X1) ≥ Utility (X2)
HA = Utility (X1) < Utility (X2)

The test results are shown in Table 14. Here we can see clearly that the use of
the b.aa model to represent the agents’ strategies resulted in an increase in the

Table 13. Batteries 18–22: Test results for hyphotesis E

X1 X2 α b.af b.aa

p H0 p H0

B18 B19 0,05 0,944 Doesn’t reject 1,000 Doesn’t reject

B18 B20 0,05 0,921 Doesn’t reject 1,000 Doesn’t reject

B18 B21 0,05 0,997 Doesn’t reject 1,000 Doesn’t reject

B18 B22 0,05 0,668 Doesn’t reject 1,000 Doesn’t reject

B19 B20 0,05 0,628 Doesn’t reject 1,000 Doesn’t reject

B19 B21 0,05 1,000 Doesn’t reject 1,000 Doesn’t reject

B19 B22 0,05 0,892 Doesn’t reject 1,000 Doesn’t reject

B20 B21 0,05 1,000 Doesn’t reject 1,000 Doesn’t reject

B20 B22 0,05 0,988 Doesn’t reject 1,000 Doesn’t reject

B21 B22 0,05 0,977 Doesn’t reject 1,000 Doesn’t reject

Table 14. Batteries 07–22: Test results for hyphotesis F
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population’s utility in all experiments. This can lead us to conclude that the
use of more complex mechanisms for the representation of strategies influences
positively the gain of society.

6 Conclusions and Further Work

In this paper, we presented new simulation results for the Iterated n-Player Pris-
oner’s Dilemma, thus extending our previous work that was originally published
in [8]. These extended results were made possible by running the simulation in
a cluster, applying the parallelization techniques that we have presented in [12].
By using such techniques, we could better study the effect of several additional
parameters on the simulation outcome, such as the grid dimension and the error
rate.

As further work, we intend to better explore and analyse the strategies pro-
duced by the evolutionary algorithm, in both b.af and b.aa models. We could
also extend the set of languages to represent the strategies, by applying prob-
abilistic models like Markov models. We also intend to investigate the main
characteristics that guarantee a cooperative behaviour of the population.

Acknowledgments. Jaime Sichman is partially supported by CNPq, Brazil, grant
# 303950/2013-7. During this work, Diego Queiroz was supported by CNPq, Brazil;
now, he is currently supported by Capes, Brazil. We also thank the CCE-USP, and
more particularly the LCCA-Laboratory of Advanced Scientific Computation of the
University of São Paulo, whose parallel machines were used in our experiments.

References

1. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1985)
2. Bó, I.G.L.: Influência da complexidade da representação de estratégias em modelos
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Abstract. Spatially explicit agent-based models and simulations are
playing an increasing role in the modelling of complex natural and social
systems. The ARCHEM project belongs to this new research area. It pro-
poses a new methodology to visualize the fine-scale sediment transport of
a river. In this paper, we present the first implementation of ARCHEM on
a case study of the Rhone river. Even though visualization cannot replace
the analysis of simulation results, it often constitutes a more accessible
medium that can facilitate more specific and accurate interpretations of
simulation output. It has the advantage of offering immediate feedback
as well as a way to interact with and analyze results. We show how
to support multiple viewpoints and different levels of abstraction using
an agent-based visualization approach. We present a specific application
focusing on dynamical 3D rendering of a GIS file and the analysis of
morphosedimentary adjustments.

Keywords: Agent-based model · Visualization · 3D · GIS · Human-
environments interactions · Sediment deposition

1 Introduction

In complex systems modelling, which by definition requires a mixture of different
entities at different levels of organization, visualization of structures emerging as
a result of the interactions among various system components is one of the hard-
est challenges for research in information technology [2]. One of the difficulties
is to provide generic tools to easily define represent, abstract and interact with
dynamical structures. Recent academic research has failed in this area, often
relying on ad-hoc approaches which are difficult, if not impossible, to change
and to reuse in other models [1]. There is still a lack of generic integrated analy-
sis and visualization tools running online [10]. To overcome this limitation, our
work presents solutions and tools that enable information visualization using
an agent-based approach implemented in the dedicated platform GAMA [5].
c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 109–120, 2016.
DOI: 10.1007/978-3-319-31447-1 7
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This framework supports the definition of flexible, adaptable and reusable visu-
alization components using abstraction and refinement concepts such as cluster-
ing, spatio-temporal aggregation and multi-layer representation.

Our project enhances dynamic information visualization by multiplying the
point of view and defining different levels of abstraction. It enables (i) to define
different points of view using observer (camera) position and agent aspect (ii) to
build abstraction and generalization with dedicated macro-agents used to aggre-
gate a set of micro agents or representing more abstract information coming
from data-mining tools (iii) to use those abstraction to control the reference
model. This practice enables answers from multiple perspectives, each with dif-
ferent requirements wherein different users with different skills work on the
same model, in multi-level modeling, to represent the different levels involved
and also in co-modeling to facilitate the coupling between heterogeneous
models.

The ARCHEM project has the goal of presenting tools that can improve
management decisions regarding sediment recharge operations in a river sys-
tem whose sources of sediment are limited. These tools are intended to assess
the spatial and temporal impact (travel speed, particle size and channel geom-
etry) of these operations based on several scenarios for sediment re-injection. In
this paper we present the first phase of this study wherein we focus on visu-
alizing simulations for the sediment recharge scenarios. The results of these
simulations are dynamically displayed in the framework of a GIS mapping
system.

The paper is organized as follows: Sect. 2 presents the context and the related
work. Section 3 presents the methodology used which consists of using an agent-
based model dedicated to information visualization that we call agent-based
visualization. Section 4 presents the implementation of our approach in five dif-
ferent steps. Section 5 discusses the results and the future work. Finally Sect. 6
concludes the paper.

2 Context and Related Work

The Rhone Valley Human-Environment Observatories (OHM) is responsible
for managing the riverscape that extends from Geneva to the Mediterranean,
including the main channel and all surrounding water bodies and riparian areas,
some of which are prone to flooding. The study area is influenced by numer-
ous alterations all along the river course as shown in Fig. 1. These are the
result of two key factors: construction of the navigable channel (1840–1910)
and the installation of hydroelectric facilities (1948–1986). These determine the
dynamics of the contemporary landscape and influence the distribution of human
activities.
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2.1 The Rhone River: A Century of Human Planning

River management along the Rhone, mainly related to navigation, has pro-
foundly changed the channel geometry in the twentieth century (incision of main
channel, less frequent flooding of channel margins) and resulted in degradation
of benthic habitats. Recent research, conducted as part of the OSR (master plan
for the restoration of river dynamics margins of the Rhone), showed the potential
value of demolition of some of these old facilities in Vieux-Rhone for restoration
of the river bed by re-expansion [9]. This work will most likely lead to sediment
recharge operations. Decision making around this type of operation is difficult
because the expected environmental gains are difficult and complex to evaluate
and represent. Therefore, the development of modeling tools and geovisualisa-
tion to inform the debate around these issues represents an important response
to both scientific and operational issues.

The theoretical approach to the hydro-sedimentary operation [6] is now possi-
ble to finely model scale sediment transport of a section. This type of theoretical
approach has recently been used to model the sedimentary processes on a 40 km
river reach downstream from a hydroelectric project (lower valley of the Ain).

Bank sedimentation

Vertical degradation

Before

1880 - 1910

after 1910

Fig. 1. The Rhone River has been modify to facilitate fluvial transport with the cre-
ation of dykes used to focus the flow. These changes have caused bank sedimentation
and a vertical degradation of the river.
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The Rhone is also sufficiently well documented in terms of available data to build
a model representation of an Old Rhone. It is therefore possible to use this type
of model to represent the effect of recharge operations.

2.2 Tools for Modelling Human-Environment Interactions

Modeling complex systems such as Human-Environment Interactions requires
the utilization of concepts and methods for studying the landscape at different
spatiotemporal scales. Among these techniques, agent-based modeling is used to
study a system by modeling the entities that comprise the form of agents whose
interactions allow the emergence of global dynamics.

Decision making around this type of operation is delicate, and development
of modeling tools and geovisualisation therefore responds to both scientific and
operational issues. However communication about results of these models can
still to be improved if it is to be used for decision support.

GIS. Current GIS software manages large GIS datasets and can perform com-
plex spatial analysis on them, but it is important to consider the following two
points. (i) No existing packages manages the 3D natively. While it is a safe bet
that in a few years 3D will be natively integrated into the GIS data process-
ing, our approach is one of the most viable solutions to display GIS data in 3D
today. (ii) No existing packages can give behavior to GIS objects. Our approach,
consisting in reifying those GIS objects, makes it easy to give behavior to GIS
data.

ABM. Public research and development investments gave birth to many ABMs
software environments. ABMs software environments can be divided into three
main categories. The first one enables the user to define a model using generic
languages such as Java, C++ or Python and dedicated libraries. Those platforms
are hard to use for non-computer scientist but are suitable for large scale and
complex models with many agents and processes involved (Repast [8] and Swarm
[13]). The second category encompasses platforms that enable the definition of
the model through a dedicated language like Netlogo [14] or GAMA [5]. They
are simpler to use but can have limitations when dealing with large models. The
last category is the one where the user can define the model using a graphical
language. These platforms do not require any programming skills but are still
limited, and include StarLogo [12] or AgentSheets [11]. Using agent-based model
for visualization purposes is a relatively new approach, and while most of the
existing ABM platforms include visualization tools, only agents present in the
reference model are displayed. They do not enable the use of graphical agent for
visualization purposes.
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3 Methodology and Tools

3.1 Agent-Based Visualization

Agent-based visualization (ABV) consists in using an agent-based model for
visualization purposes. As shown in Fig. 2, an agent-based model is a system
composed of different localized entities (agent) evolving in an environment.
An agent has attributes, behaviour and abilities of perception and communica-
tion and can interact together. Agent-based visualization uses discrete entities
responsible of visualization tasks and that can interact with other visual agents.
These agents have the possibility of learning about the collective/emergent pat-
terns or behaviors present in the data they handle and to adapt their individual
or collective aspect.

The different representations of those initial objects depend on two para-
meters: the observed attribute and the behavior of each graphical agent. Agent
attributes (or properties) are the variables manipulated by the agent. They rep-
resent the inner characteristics of an agent and can be atomic (int, real, boolean)
or more complex (list, matrix, agent). Each agent has a set of internal behav-
iours to modify its attributes (e.g. change my location, change my color, change
my size). An agent can have different aspects that can be used in different cases
depending on the properties the user wants to emphasize. It has a given shape,
size, color, etc.

ABV has proven, on various visualization tasks ([3,4]), to be flexible (in terms
of defining different graphical representations and viewpoints on a particular
dataset), modular (as agents can be added, removed or changed dynamically)
and adaptive (as agents can reorganize to dynamically handle new data sources).

Fig. 2. Agent-based meta-model
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4 Applications: Morphosedimentary Adjustements
Visualization

4.1 General Methodology

The goal of the ARCHEM project is to visualize morphosedimentary adjuste-
ments. In order to achieve this goal, we use a methodology, implemented in the
GAMA platform and using GAML language, consisting of 5 steps:

1. Build an immersive static 3D representation of the watershed.
2. Reconstruct missing data.
3. Build an immersive dynamic 3D representation of the watershed.
4. Animate the watershed.
5. Couple watershed representation with a morphodynamic model.

4.2 Step1: Static 3D Representation

This visualization model consists in converting GIS data into agents and rep-
resenting them in a 3D space as shown in Fig. 3. This model represents three
types of data corresponding to three distinct species of agents on the section of
the river studied (the Rhone). The river is represented according to its corre-
sponding shapefile. The type of land around the river(field) is represented with
a specific color that categorizes the different types of area. Finally kilometric
points located every 500 m are represented by red circles.

Field

Kilometric Point

species river {
  aspect base {
    draw shape color: #blue;
  }
}

River

species point {
  aspect base {
    draw circle(1) color:#red;
  }
}

species field {
  aspect base {
    draw shape color: field;
  }
}

Fig. 3. Static 3D representation and the corresponding GAML code (Color figure
online).
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4.3 Step 2: Data Reconstruction. Indicator Creation

An agent-based visualization model can adapt itself automatically to the data
and create local and global indicators of local and global basis. Unlike conven-
tional data visualization, graphical agents play a big role in the quality of the
information displayed thanks to their autonomy and spatially explicit behavior.
Information that is not present in the initial dataset can be calculated using
the dedicated graphical agents present in the model. The adaptive capacities of
agents are used to create new agents during the simulation.

In our case, from the initial agent kilometric point, we determine the point
with the lowest altitude in the transverse profile in order to build and represent
the thalweg (line joining the lowest points of a valley). The thalweg becomes a
new agent created during the simulation.

Figure 4 represents a section of the river, on which are represented the trans-
verse profiles and thalweg. The thalweg is a new species with a list of items
containing the deepest points of each section and a line connecting all the points
of the previous list.

Talweg

Profil

Zmin

species profil  {
  list<point> channelProfile;
  aspect base {
    draw channelProfile;
  }
}

species talweg  {
  aspect base {
    ask section{
      add zMin to:channelSlopePoints;
    }
    draw line(channelSlopePoints) color:#blue;
  }
}

Fig. 4. Representation of transverse profiles and talweg reconstruction and the corre-
sponding GAML code.
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4.4 Step 3: Dynamic 3D Representation

This model illustrates the flexibility and adaptability of our approach by pro-
viding a dynamic representation of the sedimentation process. Rainfall data are
represented as an agent and coupled with the previous model to visualize its
impact on the river.

Distributed along the river are dykes, that is, low areas between rock groins
that were themselves built to focus the river into a narrow zone, thereby enabling
navigation. These records contain a lot of sediment whose height varies according
to rainfall data. The species water representing the flow of water illustrates the
influence of water flow on the locks. Each agent water travels over the course
of the river on a given path (in this case the route of the river) and interacts
with locks present in its neighbourhood. All locks intersecting this zone are
considered part of the neighborhood. The agent water will have an effect on the
locks (increase or decrease its depth) depending on the speed of the stream at a
time t. The amount of sediment deposited in the bins is then represented by the
height of the lockers as shown in Fig. 5.

Lockers

Water

species locker {
  int sediment,
aspect base {
draw shape depth: sediment;

}
}

species water {
  int flewValue;
  reflex move{
    do follow path:list(section);
  }
  reflex updateLocker{
    ask casier{
      if(myNeighbours intersection self){
        self.sediment <-self.sediment+flewValue;  
      }
    }
  }
aspect base {
draw triangle(1) color: #blue;

    draw circle(neighbourdistance) color:#red;
}

}

Fig. 5. Modelling of water flow and the corresponding GAML code. The agent water
moves along the river and updates the height lockers located in its neighbourhood to
provide an animated representation of the sedimentation process.

4.5 Step 4: Coupling with Real Data

Historical records of flow in the river can be used to replicate past events. Data
are stored in a file where each line corresponds to the daily flow measurement
reading, in m3/s. At each iteration, depending on the value of the stream flow, an
agent water will be created. For example the first value in the file is 3070 m3/s,
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this corresponds to the creation of an agent water type fast represented by
a green triangle and causing a reduction in the height of the sediment in its
passage. The first 13 iterations of the simulation are shown in Fig. 6 below.

4.6 Step 5: Coupling with External Hydro-Sedimentary Model

In previous models, the water flow was represented by agents having a direct
influence on the river. This approach, however, remains an approximate method
to represent the phenomenon instead of actually model it. The hydro-sedimentary
models now allow accurate modeling scale sediment transport in a river stretch.

Fig. 6. Creating water agents from rainfall data and the corresponding GAML code.
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Fig. 7. Spatialized representation of the MAST-1D model.

Morphological changes in the river were modeled using a hydraulic/morpho-
dynamic model (Mast-1D [7]). However this kind of model only gives numerical
values corresponding to the water depth for each section. These numerical values
allow a detailed analysis of the behavior of the river but lack of intelligibility.

We spatially represent the outputs of the MAST-1D model. We provide a
generic representation of the model and then propose a spatial representation in
which the outputs will be represented on GIS corresponding to the river studied.
As shown in Fig. 7, this model represents for each section, the channel (Chanel),
the thickness of the active band (Active Layer), the thickness of the floodplain
(Floodplain) and finally the thickness of the outer floodplain (Distal Food plain)
which are output values coming from the MAST-1D model.

In Fig. 7, the left part is a generic representation of the model (MAST-1D).
This non-spatial model provides values of various parameters every 500 m along
the channel. The various parameters useful for spatial representation of the
model are updated at each iteration of the simulation. The changing course
of the river is then represented dynamically by reading the values of parame-
ters outputed by the MAST-1D model and updating the look of each agent
corresponding to a section of the river and at each iteration.

For a more realistic rendering, each agent representing a section has a position
so it is possible to apply a translation to a specific position to apply the model
to any river. The Fig. 7 is a representation of the MAST-1D model on the Rhone
river.

5 Results and Discussions

The first results of this approach are very encouraging1. Such coupling
has helped to build a space-time representation of the morphodynamics of the
1 An animated result can be found here http://youtu.be/HWctj1ni5Qk.

http://youtu.be/HWctj1ni5Qk


Agent-Based Visualization: A Simulation Tools for the Analysis of RMA 119

short-circuited section of the Rhone both retrospectively and prospectively. We
are able to represent in an immersive 3D environment a complete watershed
with the river and the surrounding fields. Moreover, the dynamical process of
sedimentation has been implemented both with synthetic values and with data
coming from historical datasets. Finally, the spatialization of a numerical hydro-
sedimentary model has been achieved. To the best of our knowledge, this is the
first time that such a visualization has been developed.

Future work will consist in analyzing the Rhone morphological adjustment
resulting from shrinkage of the bed Girardon developments of the late 19th
century and evaluating the effect of changes in flood regime following the con-
struction of a bypass channel in 1977. Those simulations will be used to test the
behavior of the MAST-1D model under known adjustment configurations and
apply prospectively to analyze the morphology and size of the channel response
at various artificial recharge scenarios.

6 Conclusion

In this paper we first integrated GIS data within the GAMA platform to vali-
date its potential. We then visualized and interpreted the model outputs from a
separate computer model, MAST-1D, to provide a generic visual representation
of this model and to spatially display results within the study reach. We intro-
duced a method that uses an agent-based paradigm for visualization purposes
through the use of a dedicated language in a specific platform. In this work we
described how to separate the simulation from its visualization and showed the
benefit of displaying abstract data from a model. With this approach we hope to
facilitate and encourage the development of new multi-disciplinary applications
by coupling rich visualization with other domains. We are currently working
on new ways to interact with a simulation and to share simulations wherein a
model could be played at runtime on or in a replay mode at different spatio-
temporal scale during the simulation on different devices. The future work faces
the challenge of providing new mapping environments for fundamental visual
data exploration applied to interaction techniques associated with a variety of
scientific domains and a range of complex simulations.

Acknowledgments. The ARCHEM Project (Action de Recherche Collaborative sur
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Abstract. Pervasive information and communication technologies and
large-scale complex systems, are strongly influencing today’s networked
society. Understanding the behaviour and impact of such distributed,
often emergent systems on society is of vital importance. This paper
proposes a new approach to better understand the complexity of large-
scale participatory systems in the context of smart grids. Multi-agent
based distributed simulations of realistic multi-actor scenarios incorpo-
rating real-time dynamic data and active participation of actors is the
means to this purpose. The Symphony experiment platform, developed
to study complex emergent behaviours and to facilitate the analysis of
the system dynamics and actor interactions, is the enabler.

1 Introduction

In today’s networked society many systems are becoming increasingly more chal-
lenging to design, in particular large-scale participatory systems, which involve
coordination of many autonomous actors distributed in location, time and organ-
isational context. Participatory systems, by nature social technical systems, are
used, for example, in crisis management, demand-supply chains, logistics, traf-
fic management, and distributed energy management. A common characteristic
of such systems is complexity: indeterminate system behaviour emerging from
aggregated activity of many interacting actors. A minor change triggered by local
interactions can create cascading effects, propagating throughout a system, giv-
ing rise to unforeseen system behaviour. Interrelating causes and effects across
a complex system often is beyond human comprehension.

Computer simulations can assist in understanding the dynamics of such large-
scale complex systems [5]. However, their potential is limited by two factors:
(I) a massive parameter space makes it difficult to accurately model those sys-
tems, especially in the presence of real-time dynamic conditions [9] (II) a large
number of independent decision makers makes it impossible to capture all inter-
actions with an adequate level of detail. Simulation tools are often used to analyse
local behaviours in a specific part of a complex system. Analysis of overall system
behaviour that emerges from interactions of autonomous actors is a challenge.
This paper addresses that challenge by introducing a new approach based on
the use of a multi-agent and distributed experiment platform that incorporates
c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 121–131, 2016.
DOI: 10.1007/978-3-319-31447-1 8
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active participation of actors with dynamic real-time data and simulation mod-
els, extending Symphony1 [16]. The integration of dynamic data and actions of
real actors is the contribution of this approach to overcome the limitations of
existing simulation tools in the analysis of complex systems.

This paper presents recent experiences in using the initial implementation of
Symphony to design experiments for distributed energy management under real
smart grid conditions across Europe2. In those experiments, autonomous actors
interact with each other and manage or use many distributed or local resources
in the environment examined.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related efforts in the field of simulation, in particular of smart grid
simulation. Section 3 discusses the basic characteristics of the smart grid domain.
Section 4 explains the elements of the Symphony experiment platform by briefly
describing a few implementation details. Section 5 presents a use case scenario
implementation deployed across Europe. Finally, Sect. 6 concludes the paper.

2 Related Work

Computer simulations are widely applied to analyse and understand complex
systems including smart grids. Many of these simulations are agent-based or
discrete-event based, and run in a closed computation environment with compo-
nent models of the systems designed and evaluated. The Repast Suite [15,17] is
an example of one of such systems, providing a toolkit for generic agent-based
simulations. Repast Simphony provides an interactive, java-based simulation
platform supporting agents written in multiple languages. A high-performance
version of Repast supports simulations on parallel machines or clusters to
improve performance in time. However, Repast does not directly support the
integration of distributed entities (e.g., hardware resources or third-party ser-
vice providers).

GridLAB-D [6,7] is an agent-based simulation framework specifically
designed for the simulation of the power distribution in the energy domain.
Devices are modelled as differential equations. It includes pre-defined modules
for power flow and controls, end-user appliance technologies, consumer behav-
iour, and market models. These can be used to test and evaluate control strate-
gies, even at the level of individual devices. The framework runs on a single
machine, and has no direct support to integrate real-time data or to include
hardware-in-the-loop.

The Power Trading Agent Competition (PowerTAC) [12] is an economic
simulator of the smart grid. It is used in a competition where broker agents
compete with one another in an energy market, selling electricity to consumers
and trading for electricity on the wholesale market. PowerTAC provides models
for consumers (e.g., households and electrical vehicles), the distribution utility,
1 Symphony is not related to Repast Simphony, see Sect. 2.
2 This work has been done in the context of EIT ICT Labs projects, see http://www.
eitictlabs.eu/.

http://www.eitictlabs.eu/
http://www.eitictlabs.eu/
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the wholesale electricity market. The competition focuses on experimenting with
broker strategies to maximize profit.

The Smart-grid Common Open Research Emulator (SCORE) [19] is a dedi-
cated emulator that supports integration of models for both the power and the
communication network in a smart grid. SCORE supports implementation and
evaluation of different control strategies. SCORE is based on the open source
communication network emulator CORE [3]. The nodes of the emulator can also
run on different physical computers, thereby enabling distributed emulations
which helps scalability. However, there is no direct support for incorporating
data from actual hardware or active participation from actors in a smart grid.

Another category of simulators, called co-simulations or hybrid simulations,
enable simulators to be run in parallel. Challenges for such frameworks include
the interaction between different simulators and time synchronization. An exam-
ple of such a framework is the High Level Architecture (HLA) [8]. HLA’s fed-
erates include both computer simulations and interfaces to human actors and a
runtime infrastructure with services such as federation management, time man-
agement, and data distribution.

Simulation Message Bus (SMB) [14] is another approach designed to create a
loosely coupled architecture for co-simulation of heterogeneous components that
supports message routing between clients. These clients can be both simula-
tions and emulations. Synchronization between clients is performed by proxies,
as is data provisioning to the outside world. SMB has the ability to incorpo-
rate hardware-in-the loop and to use real-time data. Coordination knowledge is,
however, very limited.

Mosaik [18] has been designed to facilitate the specification and execution
of smart grid scenarios, by composing different simulation models and provid-
ing functionality to analyse the results, coordinated by a discrete event-based
simulator based on SimPy [20], a discrete-event simulator framework written in
Python. Mosaik provides an API to connect existing simulators together and to
support data exchange. To the authors’ knowledge it does not support distrib-
uted simulations.

3 Smart Grid Domain

The electric power grid is currently going through a global modernization effort
to enable more reliable, resilient, sustainable and energy efficient electricity
delivery [2]. The envisioned power delivery system, a smart grid, incorporates
information and communication technologies (ICT) into the transmission and
distribution infrastructure of electricity. A smart grid accommodates bidirec-
tional flow of electricity and information supporting distributed generation,
active end-user participation and intelligent network components. This two-
way energy and information flow in deregulated markets blurs the traditional
boundary between producers and consumers and opens up the grid’s potential
to innovative products and services [10].
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A smart grid is a complex participatory system involving active consumers,
central and distributed generators, intelligent components, and competing stake-
holders. As consumers become prosumers (both producer and consumer), new
behaviour patterns in the generation, distribution and consumption of electricity
emerge.

A smart grid is, in fact, a system-of-systems inheriting the complexity of
its actors’ systems. It involves distributed decision-making and coordination,
by a large number of autonomous actors who interact with each other, and a
multitude of local or remote resources in the environment. Local interactions
result in the emergence of global changes [4]. For example, an unusually sunny
and windy day may lead to excessive generation of electricity from renewable
sources owned by prosumers, causing negative energy prices in the market. These
negative prices may further trigger a chain of actions across multiple domains,
such as charging storage units and electric vehicles, and possibly overloaded
components in transmission or distribution networks. It would be impossible to
explicitly model the overall system behaviour emerging from interactions of such
a vast number of entities [13].

4 Symphony Experiment Platform

Symphony [16] has been designed as a generic experiment platform to analyse
and study complex system behaviours by focusing on data-driven interactions
among autonomous actors. Symphony provides a distributed experimentation
environment that can integrate real-time dynamic data, existing simulation mod-
els, actions of real actors, and intelligent agents that can mimic the behaviour of
real entities. The following elements are the key features for such a platform to
capture all types of interactions while testing and validating new concepts and
solutions before turning them to real-life practises.

– Agent-based: Agents model interacting actors in real-world use cases. Agents
are, in fact, loosely coupled entities that interact through message passing [13],
making it possible to explicitly analyse the effects of interactions. The loosely
coupled nature of agents also enables decentralized experiments by distrib-
uting agents to remote locations. Actors in separate physical locations are
involved in experiments through those distributed agents.

– Distributed: To handle the complexity of large-scale, distributed systems,
the experiment platform is distributed as well, making it possible to scale up
for experiments with a large number of interacting agents, and to study the
impact of physical separation with distributed coordination.

– Dynamic Data-Driven: The smart grid and similar large-scale complex sys-
tems include a multitude of components with real-time dynamic conditions
such as renewable generators. A detailed model of a component can never
fully represent its real behaviour. In a simulation environment accommodat-
ing a large set of those models, the aggregated divergence from real system
behaviour can lead to incorrect analyses and false outcomes. Incorporating
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real-time data streams from actual resources into experiments can offer more
accurate analyses and predictions with more reliable results [9].

– Open: Openness, the ability to integrate existing data, third-party services,
tools and models, enhances the context of experiments. Dynamic data from
some domains may not always be available. Experiments requiring participa-
tion from such domains utilize existing data or simulation models.

Symphony, as discussed above is an agent-based, distributed experiment plat-
form that can incorporate dynamic data from real sources and third-party service
providers, tools, and models. A high-level description of its architecture is given
in [16]. In short, the platform consists of three layers as shown in Fig. 1. The
multi-agent platform, AgentScape [1], is the agent operating system deployed.
Reusable components support the development of elements for experiments. The
final layer contains the specification of a particular experiment with experiment
configurations, protocols, and agent implementations. The agent operating sys-
tem provides the ability to run agents on different machines in physically dis-
persed locations, making it possible for them to find each other and exchange
messages. It also provides security mechanisms and resilience against partial
system crashes.

Symphony offers a standard way to set up and specify experiment behaviour.
Protocols define the structure of agent interaction during an experiment. Agents
with the same protocol instances talk the same language. The set-up of an exper-
iment specifies the locations of agents, clock settings, and experiment-specific
configuration information. Symphony takes care of distributing the experiment
configuration and provides an experiment clock to allow non-real-time (e.g. sped
up) experiments.

The platform provides client or service agents to integrate real data sources,
third-party service providers, or other tools into experiments by providing stan-
dard web-service interfaces, for agents to join and leave experiments. A library of
ready-made protocols and web-services for data logging, agent organisation, and
user interaction is provided. There is also a web-service based implementation
that enables agents to communicate with external smart grid applications and
devices in a standard-compliant way. This facilitates the integration of existing
smart grid components into experiments. The data format of the information
exchange depends on the experiment context, which is, in smart grid experi-
ments, based on the International Electrotechnical Commission’s standard for
the design of electrical substation automation (IEC 61850 [11]).

An experiment is built using the available components or custom-made
components developed specifically for an experiment. The experiment designer
decides which physical locations are to be involved in an experiment, which
experiment agents are located where, and which protocols they are to use. An
experiment is defined by a combination of configuration files and Java class
implementations. After an experiment is started, external clients from different
locations may join and leave the experiment at any time.
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Fig. 1. Symphony platform architecture (taken from [16])

5 A Case Study: Virtual Power Plant Aggregation

A use case study was designed to illustrate the approach proposed in this paper
and test the initial version of Symphony. This study involves multiple partners
across Europe in the context of Smart Energy Systems Action Line projects
of EIT ICT Labs. The use case focuses on the effects of prosumers joining in
local energy collectives, forming virtual power plants. Multiple prosumers cluster
together into local energy collectives and use storage and demand-response tech-
niques (i.e., shifting energy loads) within the collective to balance energy con-
sumption and production. Different local energy collectives, in turn, negotiate
and coordinate their energy consumption and production between themselves.

This experiment scenario combines multiple domains of expertise: market
mechanisms, battery storage models, peak optimization, demand side manage-
ment, energy consumption/production patterns, and distributed negotiations
between groups. The purpose of this case study is to demonstrate how mod-
elling, implementation, and analysis of a complex scenario in the smart grid
domain are performed with Symphony. Discussion of the actual results of the
experiment itself is outside the scope of this paper.

5.1 Scenario Description

Figure 2 illustrates a scenario that has been modelled and implemented. The
scenario describes two energy collectives, each consisting of multiple prosumers.
Each prosumer, by definition, produces and consumes energy. Some prosumers
(e.g., households) have solar panels and others have wind-generators in their
neighbourhood. To be able to trade and/or store energy efficiently, prosumers
join together in energy collectives.

Each group of prosumers can make a number of local decisions. First, a
group can aggregate the combined energy consumption/production of its pro-
sumers. They can optimize the load schedules of all prosumers together to opti-
mize energy costs and/or to avoid use in energy peaks. This is done by shifting
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Fig. 2. Distributed scenario: local energy collectives forming virtual power plants.

energy loads to off-peak hours. Shiftable loads are loads generated by appliances,
such as washers, dryers, air-conditioners and refrigerators, for which time is not
critical. There are constraints when shifting, for example, a washing machine
must run before the dryer, and air-conditioners and refrigerators must keep the
temperature within a certain range. Last, a group can choose to store any excess
generated power in battery storage, so that it can be retrieved at a later time,
or it can choose to sell the excess power back to the grid, or perhaps even sell it
to other groups that are in need of power.

5.2 Specifying the Scenario in Symphony

The above described scenario is specified within Symphony. Each of the elements
in the scenario is represented by agents. The agents also represent resources that
interact with sensors or other hardware, such as batteries. A complete list of
agents, their behaviour, and interactions in this scenario is as follows:

– Market Agent calculates future energy prices given predicted energy loads
(based on a 24 h prediction) by using the price estimation service of an external
service provider.

– Storage Agent provides the storage facility to the prosumers. It uses a storage
service from a third-party service provider that has detailed battery models
and an actual battery with sensors for hardware-in-the-loop experiments.
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– Optimizer Agent performs demand-response optimization through an exter-
nal expert service that calculates an optimal schedule given predicted energy
loads, user constraints, and energy price forecasts.

– Prosumer Agent represents a prosumer with energy consumption and produc-
tion (e.g., through PV/wind installations), based on real data.

– Group (Representative) Agent represents a group of prosumer agents and
interacts with the market, storage and optimizer agents to maximizes the
benefits of its prosumers.

Service providers in this scenario are external entities in separate physical
locations across Europe. They are connected to the experiment through specific
distributed agents. Connections are specified as described in the scenario and
summarized in Table 1. The interaction between the group agent and the other
agents is not included in this paper for the purpose of simplicity.

Table 1. The agents, their behaviour, and their interactions for the local energy col-
lective scenario.

Agent Behaviour Interaction

Input Output

Market Calculate prices Load prediction Price forecast

Storage Store energy Storage requests Battery status

Optimizer Optimize loads Shiftable loads Optimized loads

Prosumers Predict load Price forecast Load prediction

Group Maximize benefit . . . . . .

5.3 Implementing the Scenario Within Symphony

The agents and their interactions have been implemented within Symphony.
Agents use web services to interact with external entities such as service
providers. Agent behaviours have been implemented as protocols and interac-
tions between agents are message-based. The steps performed by the agents in
this scenario are as follows:

1. The prosumer agents in a group send their predicted loads with the gran-
ularity of 30 min, for the next 24 h, to their group (representative) agent.
These load predictions include information on shiftable loads that may be
rescheduled (e.g. a washing machine).

2. Each group representative agent sends the combined load/generation predic-
tions to the demand-response optimizer agent to optimize the schedules.

3. The demand-response optimizer agent calculates the optimized load schedules
using the price predictions from the market agent for each prosumer agent
and sends the result back to the group representative agent.
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4. Each group representative agent consults the battery storage agent on the
availability of battery storage, either to store excess power or to buy required
power. The battery storage agent determines battery usage and price per
kWh storage for the group representative agent from the service provider for
the storage model.

5. The group representative agents make decisions about storing excess energy
or buying energy.

6. The prosumer agents receive their optimized load prediction through the
group representative agent.

7. The optimized load is sent to the market agent to determine a new energy
price forecast to be used in the next round.

8. The energy prices are sent to the prosumer agents and the cycle starts again.

Storage Service Provider
Offer storage capacity

Web Service: StorageClientWebService
Methods: checkStatus, storeEnergy, 

getEnergy

Symphony

checkStatus

storeEnergy

getEnergy

Storage
Agent

Battery Energy Level (Prosumer1)
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Fig. 3. Interaction of the battery storage agent with the storage service provider and
the energy stored for each prosumer group.

Figure 3 depicts the interaction between a storage service provider and a
storage agent. It also depicts the battery energy level measured in one of the
experiments performed for two of the prosumer group representatives. It shows
how different groups deploy batteries in different ways depending on the behav-
iour of their group members.

In this scenario, the logic is stored within the group agents. In a more elabo-
rate experiment, more groups can be used and the group agents can communicate
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among each other to share energy. In addition, groups can be dynamic and pro-
sumer agents can join and leave groups during the experiment. This experiment
does not take into account the actual transport of energy. It just focuses on
the interactions and emergence from algorithms used within the group agents
to form and manage a group of prosumers. It is an initial scenario and will be
extended with more steps to increase the complexity in the future.

6 Conclusion

This paper presents a new approach to address the complexity in large-scale
complex and participatory systems, in particular in the context of distributed
energy management for smart grids. The approach is based on modelling and
specifying the behaviour of individual actors and their interactions, implement-
ing these specifications for each actor as agents, and analysing their behaviour
once implemented in a simulation platform. This platform, Symphony, is agent-
based, distributed, dynamic data driven and open, designed specifically to cap-
ture emergent behaviours in large-scale complex distributed systems. A use case
experiment has been modelled, specified and implemented in the scope of an
EIT ICT Labs project involving participants across Europe.

Future research will extend the experimental set-up to develop more use cases
with which to analyse different aspects of the smart grid and study emergent
behaviours. The approach will also be applied to other domains.
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(11814). Partners in these projects include TU-Delft, CWI The Netherlands, Imperial
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Abstract. An agent-based simulation model for supporting the decision
making in urban transport planning is presented. The model can be used to
investigate how different transport infrastructure investments and policy
instruments will affect the travel choices of passengers. We identified four main
categories of factors influencing the choice of travel: cost, time, convenience,
and social norm. However, travelers value these factors differently depending on
their individual characteristics, such as age, income, work flexibility and envi-
ronmental engagement, as well as on external factors, such as the weather.
Moreover, instead of modeling the transport system explicitly, online web
services are used to generate travel options. The model can support transport
planners by providing estimations of modal share, as well as economical and
environmental consequences. As a first step towards validation of the model, we
have conducted a simple case study of three scenarios where we analyze the
effects of changes to the public transport fares on commuters’ travel choices in
the Malmö-Lund region in Sweden.

Keywords: Multi-agent based simulation � Traveler behavior modeling �
Passenger transport � Impact assessment � Web services

1 Introduction

The design of a “greener” transport system can be supported by a wide set of transport
measures, including both transportation policy instruments and investments in infras-
tructure, such as new public transport pricing schemes, taxes and fares for motorized
transport, new bus stops and lines, and new parking space.

In this paper, we propose a novel agent-based simulation model for supporting
decision making in urban transport planning. The model, which we refer to as ASI-
MUT (Agent-based simulator for urban passenger transport), can be used to investigate
how different transport measures affect the decisions of the travelers. It takes into
account how factors like cost, time, convenience, and social norm influences the
decisions on an individual level depending on the socio-economical features of the
individual. Another innovative property of the simulator is that it makes use of online
web services in order to generate travel options, rather than modeling the transport
system explicitly.
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In the next section we review the related work and motivate the chosen agent-based
approach. Section 3 presents ASIMUT. To make a first validation of the model, a
simple case study of three scenarios is presented in Sect. 4, where we analyze the
effects of changes to the public transport fares on commuter’s travel choices in a region
of Sweden. Some concluding remarks are provided in Sect. 5.

2 Related Work and Motivation

As the application of transport measures may have substantial impact on the travelers’
behavior, it is very important to assess their impact before implementation, so that
negative effects can be avoided and positive effects can be confirmed. One way of
doing this is to perform experimental studies in the real world, but such studies are
often very expensive and time-consuming. A common approach for assessing the
effects of transport measures is to use computational models, which allows studying the
transport system in a simulated environment. A recent review of policy impact
assessment models concludes that conventional discrete choice models are the domi-
nating method for travel behavior modeling [8]. These traditional models operate on
highly aggregated data. Moreover, they are typically built to study transport in a
particular country or a region, and they are often based on the so-called four-step
modeling approach. The four steps are: trip generation, where the frequency of trips
between zones is determined; trip distribution, where origins are matched with desti-
nations; mode choice, where the proportion of trips between each origin and destination
that use a particular transport mode is computed; and route assignment, where all trips
are assigned to routes. However, four-step models have been criticized both for
neglecting the interaction effects between the involved actors and for oversimplifica-
tion, which often lead to significant biases in output, especially in settings where the
interaction between policies and/or travelers is significant [17]. Furthermore, these
models only take into account a limited number of the factors influencing travel
behavior [8].

Agent-based simulation modeling is another approach that has been used for impact
assessment of transport measures. It is often regarded as a bottom-up approach where
each traveler is treated as an interacting, autonomous and independent entity. Thus, it
differs from conventional top-down approaches that focus on overall aggregated
analysis of the system’s behavior [6, 18].

In the agent-based simulation model presented in this paper, the passengers are
modeled as agents. We generate the different travel alternatives of an agent using
existing web services of online travel planners. We consider both motorized and
non-motorized modes of transportation and the combinations of them in generating
travel alternatives. The model focuses on how to travel when the destination is already
decided, i.e., corresponding to steps 3 and 4 of the traditional four-step models. More
specifically, we focus on the mode choice, route choice and departure time choices of
travelers, when source and destination data is available from the traveler agent, i.e., the
traveler’s home and work addresses. We believe that significant improvements to these
steps can be made using a more detailed bottom-up approach, and that this can be used
together with any approach to determine the travel demand.
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The agent-based modeling approach provides a more dynamic approach with
respect to the level of detail in modeling different parts. For instance, more interesting
parts of the infrastructure can be modeled with a higher granularity. This makes it
possible to study the effects of, e.g., building a new bike parking facility that is safe and
efficient and close to a train station, or allowing the travelers to bring their bikes on the
trains. Furthermore, by using an agent-based method it is possible to model what travel
options different travelers actually are aware of, or consider, when deciding what
option to choose. This makes it possible to study the effects of, e.g., travel awareness
campaigns and the availability of advanced travel planning systems. Such interventions
are difficult, or even impossible, to study using traditional models.

Furthermore, agent-based models are able to capture time-related aspects, such as
the effects of synchronization and optimization of timetables [16]. There are many
transport policy measures that concern time, e.g., time-differentiated congestion and
parking fees. Such transport policies are difficult to study using traditional models, but
they may have an important influence on travel choices.

We further argue that the use of an agent-based modeling approach, which captures
the behaviors of travelers and their interactions between each other and with the
environment, will facilitate capturing each individual’s preferences and characteristics.
This is critically important in order to determine the actual decisions of individual
travelers. Thus, agent-based modeling seems very well suited to predict and analyze the
effects of different transport measures, since it explicitly models the decisions of each
individual and is able to compute the consequences of these decisions. It should be
noted that agent-based modeling might require more information about travelers on an
individual level than the traditional models, which to a large extent are based on
population averages. However, modern consumer technology like smartphones, as well
as ITS services like advanced ticketing and tracking systems based on “Internet of
Things” technology (connected devices), enable efficient, large-scale, collection of
individual travel data.

There are few studies that have applied an agent-based modeling approach in the
context of transport policy analysis [8]. In most cases, the agent-based models have
been very simple and do not realize the potential of the approach [3, 14]. These models
are mostly developed to investigate the effects of a specific transport measure con-
cerning a specific scenario. Furthermore, they do not include all relevant modes of
transportation. The input variables, the model construction, and the collected output are
very much chosen with a specific scenario in mind. Therefore, these models cannot
investigate the effects of various kinds of transport measures in different scenario
settings. This means that they are unable to be used as a decision support system to
support transport policy making. An agent-based model that bears some resemblance
with the one we propose was developed by Grimaldo et al. [7]. It takes into account
cost, travel time and environmental in determining travel choice, but it does not regard
convenience and makes no difference between individuals (age, income, etc.) except
for car-ownership. Moreover, the transport system modeled is very simplistic, e.g., just
one road and two travel options, either car or train. In particular, combined transport
modes, such as walking, biking, car, bus, and train, are not at all considered.
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There are also frameworks for implementing large-scale agent-based transport
simulations, e.g. MATSim [4], but they focus on traffic flows and vehicles rather than
travel option choices and travelers.

The majority of the traditional models are mode choice models [13], which aim to
answer how many travelers will switch to another mode of transport in case of any
change in transport system [2]. However, in addition to the choice of transport mode,
there are also other important aspects of travel behavior, such as route choice and
departure time choice [11]. In order to have a comprehensive and accurate impact
assessment, we claim there is a need to investigate the impact on all aspects of travel.

3 ASIMUT

In the proposed model, each passenger is modeled as an agent. This enables us to
include each individual’s preferences and characteristics into the travel choice mod-
eling. The decision-making process of travelers when choosing between the available
travel alternatives is to some extent individual and not the same for all travelers. This
means that there is no objectively optimal travel choice from point A to point B for all
travelers in a given situation. Therefore, we assume that the “best” travel alternative can
be different for different travelers. In ASIMUT, the choices between alternatives are
based on four main factors: cost, time, convenience, and social norm. The perceived
value (priority) of each of these factors is typically different for each traveler and
depends on:

• The traveler’s characteristics; refers to the attributes of each traveler and have an
important influence on the choice of travel. Examples include socio-economic
attributes and geographical location of home and workplace.

• The available travel options at the time of travel and their related cost, travel time,
CO2 emission, number of changes, and walking and cycling distance.

• Contextual factors, factors related to the context where the travel happens, e.g. the
current and predicted weather.

Web-services are used in ASIMUT for data collection. We generate the travel
alternatives for a traveler from point A to point B, using the web services provided by
online travel planners. The use of online travel planners for generating travel alterna-
tives is a novel approach which enables us to capture the most recent information about
route alternatives and their relevant characteristics such as cost and travel time.
Furthermore, it provides the model with real-time information that adapts automatically
with updates, e.g., if the bus schedules change, this change will be automatically
updated in ASIMUT. Due to recent developments in application of information sys-
tems for online trip planning, nowadays most travelers have access to online travel
planners and are able to retrieve almost all the possible travel alternatives at the time of
departure. Therefore, we believe integration of web services of online travel planners in
ASIMUT makes the model represent the real traveling behavior and is highly con-
sistent with the way travelers choose to travel in everyday life. We use the route
alternatives’ data gathered from web services as input in the decision-making model.
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3.1 Passenger Behavior Modeling

For modeling the individual’s travel decision-making we use the theory of planned
behavior, which is an extension of the theory of reasoned action [1]. It assumes that
humans are rational and they make systematic use of information available to them
while they also consider the implications of their actions before they decide for a
certain behavior. In ASIMUT, we consider cost, travel time, and convenience as the
rational factors that affect the choice of travel. A rational agent aims to maximize the
utility and hence minimize cost and travel time and maximize convenience.

However, travelers do not always act completely rational. Social norms and per-
sonal values may affect the choice of travel. The theory of planned behavior com-
plements the theory of reasoned action by adding the concept of social norm [1].
Environmental awareness of the travelers is modeled as a social norm in ASIMUT. The
theory of planned behavior has also the possibility to cover the behaviors that are not
fully under an individual’s volitional control. This is very important in travel
decision-making where the choice of travel by each individual is not only influenced by
her characteristics, attitudes, and subjective norms, but also on intervening environ-
mental conditions, such as the weather which we have included as a contextual factor in
ASIMUT.

As mentioned earlier, we use four main categories of factors when making travel
choices: cost, time, convenience, and social norms. The significance of each of these
factors is determined by each traveler’s individual characteristics and contextual fac-
tors. In ASIMUT, the value of each of these factors is calculated based on traveler’s
characteristics and weather conditions. It has been argued that the factors influencing
choice of travel can be valued differently for different travel purposes [7, 9]. We have
included a weight for each of the factors (i.e., cost, time, convenience, CO2 emission)
in order to be able to change the significance of each factor for different travel purposes.
These weights will also be used for calibration purposes. For the decision-making
model, we use the weighted sum model [19].

The traveler characteristics that we include in ASIMUT are: age, income, work
flexibility, environmental awareness i.e. eco-friendliness, work and home address,
working start and end times, access to car, and access to bicycle at home and work. We
use work and home address, working hours, access to car, and access to bicycle at
home and work directly when generating the travel alternatives, while the other
mentioned factors are used for choosing between different travel alternatives. In
Table 1 we describe a model of how all these factors can potentially affect the choice of
travel and how they interrelate. The main factors influencing travel behavior are listed
as columns in Table 1, while the rows are referring to traveler’s characteristics and
contextual factors. We believe that the income level of the traveler can affect the
traveler’s perception of travel costs. Therefore, in the proposed decision making model,
we use this concept to calculate the value of cost for each traveler; the higher income
decreases the influence of the cost on the travel decision of the traveler [5, 13]. For
calculating the value of time, we use the traveler’s work flexibility factor. We assume
that more flexible working hours decreases the value of travel time to some extent.

Johansson et al. show that travelers who are more environmentally conscious tend
to take the travel options that have less negative effects on the environments, or more
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specifically, the travel options that generate least CO2 emissions [12]. Therefore, in
ASIMUT we assume that the amount of CO2 emission can affect the individual’s
choice of transport, depending on the individual’s level of eco-friendliness.

We assume that convenience is comprised of walking distance, cycling distance,
and number of changes for a travel option. The number of changes is defined as the
number of transfers between vehicles in order to complete a journey. It has a negative
effect on the choice of a travel option; the more interchanges in a travel option, the less
convenient it is perceived [10]. Moreover, the number of changes of a travel option
makes it less attractive the older you are [15]. Furthermore, we assume that the
interchange between vehicles is less convenient in case of bad weather conditions.

Heinen et al. [9] reviewed the factors influencing cycling and indicated that there is
a relationship between age and cycling, although it is not universal. While most studies
have concluded that the willingness to bike decline with age, there are also some other
studies that have not found any significant relation between age and cycling. Weather
has also a high influence on the distance the individuals are willing to cycle. High
precipitation and low temperature have been found as the most significant weather
conditions influencing cycling level. There appears to be no significant relation
between the other factors (e.g., income) and cycling [9]. In ASIMUT, we assume that
convenience is more important for older travelers. Moreover, bad weather conditions
(e.g., rain, snow, or low temperature) decrease the convenience of travel options with
long walking distance, cycling distance, and higher number of changes.

3.2 Decision-Making Model

We use a utility function in order to calculate a score for each travel option. The factors
influencing travel behavior are the main components of the model. The values of these
components are a function of the characteristics of the traveler (i.e., age, income, work
flexibility, and eco-friendliness), and contextual factor (i.e. weather). It should be
emphasized here that the calculated score actually represents the disutility of a travel
option; therefore, an agent will always choose the travel option with the lowest score
among the set of available options.

The components of the scoring function have different scales and unit of mea-
surements, and some are quantitative (e.g., age and income), while the others are

Table 1. Interrelationship between the factors influencing choice of travel

Factors Travel option’s attributes

Cost Time Environ.
impact

Convenience

Travel
costs

Travel
time

CO2

emission
No. of
changes

Walking
distance

Cycling
distance

Traveler’s
characteristics

Age * * *
Income *

Work
flex.

*

Eco-friend *
Contextual factor Weather * * *
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qualitative or categorical (e.g., weather and work flexibility). In order to avoid
domination of larger values, make the components consistent, and neutralize the unit of
measurement of the values, we chose to normalize the attributes of the travel options;
corresponding to the columns in Table 1. These normalized attributes are referred as
relative values in the Eq. (1), e.g., relenvImpactoat , which refers to the relative environmental
impact of travel option o for agent a. The relative values are typically different for
different agents, since these values are calculated with respect to the travel options
available for a specific agent. Moreover, we have converted all the characteristics of the
travelers and contextual factors to categorical data. These values are called as valxxa in
the Eq. (1), where xx are the factors of the traveler a mentioned in the rows of Table 1
and valwtht is the value assigned to the weather conditions of trip t. As we discuss further
below, all valxxa and valwtht are assigned values in the range [0,1].

As mentioned earlier, we chose to assign a weight to each factor, i.e., Wcost, Wtime,
Wconv, WenvImpact refering to the weight of cost, time, convenience, and environmental
impact, respectively. These weights are mainly used for calibration, but they can also
be used in order to change the importance of each factor according to travel motive, e.g.
traveling to work or travel for leisure. The score Soat (i.e., disutility) for travel option
o for agent a and trip t is calculated as:

Soat ¼ Wcost � relcostoat � valincomea þWtime � reltimeoat � valworkFlexa þWconv � relconvoat

� valagea þWconv � relconvoat � valwtht þWenvImpact � relenvImpactoat � valecoa ð1Þ

As mentioned earlier, convenience is determined by the three factors of walking
distance, cycling distance, and the number of changes of the travel option o for agent
a in ASIMUT, and it is calculated as:

relconvoat ¼ relwlkDisoat þ relcycDisoat þ relnoOfChangeoat ð2Þ

The relative time and cost are calculated by normalizing the cost and time of a
travel option with respect to the other travel options of traveler a for trip t. In the below
equations, O refers to the collection of all travel options of trip t for traveler a, i.e.,

relcostoat ¼ CostoatP
o O Costo at

; reltimeoat ¼ TimeoatP
o O Timeo atTime

;

relenvImpactoat ¼ Co2EmissionoatP
o O Co2Emissiono at

ð3Þ

The factors for convenience are also normalized, as shown below. For example, in
order to calculate the relative environmental impact of a travel option o, the CO2

emission of that travel option is divided by the sum over the CO2 emissions of all the
travel options o for trip t of the agent a:
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relwlkDisoat ¼ WalkingDistanceoatP
o O WalkingDistanceo at

; relcycDisoat ¼ CyclingDistanceoatP
o O CyclingDistanceo at

;

relnoOfChangeoat ¼ NoOfChangesoatP
o O NoOfChangeso at

ð4Þ

As part of the decision-making model, we translate the real values for the age,
income, work flexibility, environmental awareness (i.e., eco-friendliness), and weather
characteristics, into categories as shown in the Table 2 (in the value column). These
translations are the values used in the disutility function, i.e., valxxa and valwtht , and they
are all numbers between 0 and 1. As an illustrative example, for valagea we translate an
income higher than 100000 SEK to valagea = 0.1, an income in the range ½50000; 10000�
to the valagea = 0.3, etc. It can be seen that valagea increases as the income level decreases,
which means that the travel cost will be valued lower for the higher income level of the
travelers. It should be noted that the values used in the scoring function are just
preliminary estimations; they will be further analyzed and validated in future studies.

3.3 Generation of Travel Alternatives

For each trip of a traveler, ASIMUT generates a set of travel options, using web
services of online travel planners. The attributes that are extracted from the web

Table 2. The categorization of characteristics of travelers and contextual factor (valxxa or valwtht )

Variable Range Value

Age 15–25 0.1
25–35 0.3
35–55 0.5
55–70 0.7
+70 0.9

Income (monthly) +100000 0.1
50000–100000 0.3
25000–50000 0.5
15000–25000 0.7
<15000 0.9

Work flexibility high 0.4
average 0.5
low 0.6

Eco-friendliness not concerned 0.3
medium engagement 0.5
high engagement 0.7

Weather Good (no rain or snow, and temp > 10°C) 0.2
Average (no rain or snow and temp 0-10°C) 0.5
bad (rain or snow, or temp < 0°C) 0.8
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service, for each travel option include route specification, travel time, cost, CO2

emission, and the number of changes. These attributes are later used as input data in the
traveler decision-making model (see Sect. 3.2 for details).

Waking, cycling, and driving travel options refer to the options that use only one of
walking, cycle, and car as the mode of transport all the distance from the origin to the
destination. Public transport options refer to the travel options that use public transport
together with some short walking to and from public transport stops. They might also
include transferring between stops. The time and distance of these short walks are taken
into account in the simulation. We further complete the set of travel options by adding
additional options where we have replaced long walking distances from origin (A) to a
station (A′), and from a station (B′) to destination (B) by cycling. Long walking is
defined as walking distances (d) between 200 m and 6000 m. The different travel
options from point A to point B are illustrated in Fig. 1.

We use the Google Maps direction API1 in order to generate walking, cycling, and
driving travel options. The cost for the driving option is calculated based on the travel
distance and parking fees if the latter apply. To generate the public transport travel
options, web services by the public transport providers in the area are needed. In our
case, i.e., the most southern part of Sweden, the public transport travel options are
provided by the Skånetrafiken Open API2. It provides cost, travel time, number of
changes, CO2 emission, and walking distance of each travel option from point A to
point B in a specified time and date. We have also used an API called “Commute
Greener”3 in order to calculate the amount of CO2 emission for car users. The output of
the APIs is in XML4 or JSON5 schema format. These schemas are parsed in order to
extract relevant information, e.g. travel alternatives, travel time, cost, and CO2 emis-
sions of each alternative.

Fig. 1. All considered combinations of transport modes for generating travel options of a trip

1 https://developers.google.com/maps/documentation/directions/.
2 http://www.labs.skanetrafiken.se/.
3 http://developers.commutegreenerinfo.com/.
4 http://www.w3.org/XML/Schema.
5 http://json-schema.org/.
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When generating the travel alternatives from web services, the characteristics of the
traveler are taken into account, i.e., in case the traveler has no access to bike at home,
the travel options that include cycling from home will not be generated for that specific
traveler, or if the traveler has no access to car, driving options will not be generated.
Furthermore, the source and destination of travel options for a specific traveler, and the
departure time of the travel are set according to the traveler’s information i.e.,
work/home address and working hours.

Since it is not possible to obtain detailed weather forecast for more than 14 days
ahead, we used historical weather data of the same day as the travel date from the last
year provided by the Weather Underground service6. This service provides tempera-
ture, precipitation, and weather conditions (i.e., rainy or snowy) of the same day for the
last year. The sequence of steps performed by the model is illustrated in Fig. 2.

4 Case Study

In this section, we present a small case study that is implemented within a prototype of
ASIMUT. In this first basic experiment, we use a small sample population of 16 real
travelers from the cities of Malmö and Lund in Sweden, who commute between the
cities for work and study. This population sample provides the socio-demographic
attributes of the travelers, including their work and home addresses.

For each traveler, we generate two trips for commuting to work and back to home
respectively, using the traveler’s home and work address and work schedule. Travel
alternatives are generated for each trip using web services. A score is calculated for
each travel option using our decision-making model.

Fig. 2. Sequence diagram of ASIMUT.

6 http://www.wunderground.com/.
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We study three scenarios; in the first scenario, we simulate the current situation
(CS), in the second scenario we examine the effects of reducing the public transport
fare to half of the price (HP). The third scenario concerns doubling the public transport
fare (DP). We investigate how these changes to the public transport fare are expected to
affect the choice of travel and the modal share of the travelers using our implemented
prototype. We run the simulation for ten randomly generated days with different
weather conditions. The diagrams in Figs. 3 and 4 illustrate how changing the public
transport fare is expected to affect the modal share, amount of CO2 emission (estimated
CO2 footprint per traveler), and travel cost and time for the travelers’ commuting
during 10 random simulated days. It can be seen from the diagrams that reducing the
public transport fare significantly affects the choice of travel and shifts the modal share
from private vehicle use to public transport. The walking and cycling share decrease in

Fig. 4. CO2 emission, cost and time of selected travel options for 10 random days. Blue = half
price public transport, red = current price public transport, and green = double price public
transport scenario (Color figure online).

Fig. 3. Modal share (Km) for 10 random days.
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the DP scenario, which we believe is mostly due to the small walking distances
between public transport stations, or also due to the travelers who have combined
cycling and public transport. When the travelers switch from public transport to private
car, the mentioned walking and cycling links will also disappear. Therefore, we
observe a decrease in walking and cycling share in the DP scenario. Furthermore, it can
be seen from the Fig. 4 that the amount of CO2 emission is expected to decrease when
reducing public transport fare in HP scenario, which can be due to the shift from car use
to public transport. Moreover, the selected travel option of the agents cost more when
we increase the public transport fare in DP scenario, which can be both because of the
increase in public transport fare and the shift to car that is a more expensive mode of
transport.

5 Concluding Remarks

This paper has presented an innovative multi-agent based simulation model ASIMUT
for modeling travel behavior of passengers. The aim is to support policy makers and
urban transport planners in estimating the effects of new transport measures, e.g.
policies and infrastructure investments. Some of the characteristics of ASIMUT are:

• It uses combinations of transport modes for generating travel alternatives.
• It uses web services of online travel planners to generate travel options.
• It investigates mode, route, and departure time choice of travelers.
• It considers a range of factors influencing the choice of travel in the travel behavior

model, i.e., traveler characteristics, contextual data, and social norm.

Using online travel planners enabled us to access real-time network data that to a
large extent corresponds to the data that the real travelers are able to access. It also
helped reducing the effort and computation required for generating travel alternatives,
calculating travel time, cost, and emissions within ASIMUT. It should also be noted
that the use of web services as an input data source may have some potential draw-
backs. Firstly, the web services might be temporarily down. Secondly, the performance
of web services at a given time might be influenced by the load of the service at that
time. Although these potential issues can affect the performance of ASIMUT, we did
not notice any of these problems during the development and testing. In order to
support the scalability of this approach, we currently cache travel options in order to
minimize the number of requests. As a future extension of the approach, we will
consider the possibility to run our own server.

We have also described the decision-making model and how the travelers choose
between generated travel alternatives. We have included convenience factor in ASI-
MUT, which is a combination of walking distance, cycling distance and the number of
changes in a travel alternative. The initial results from our case study show the fea-
sibility of our approach in travel behavior modeling.

Future work consists of improving the decision-making model in different ways,
such as including more factors (e.g. reliability), and investigating the best way to model
the correlation between factors, e.g. how income influence the value of travel time. We
will also validate the factors considered in the decision-making model and their
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influence on the travelers’ decision-making. The convenience factor can be further
developed to include more factors, such as availability of parking facilities. At this
stage, social norms only concern environmental awareness, however, this will be
further developed in future versions of ASIMUT. We will also investigate the possi-
bility to consider factors like safety and health, for example avoiding walking through
parks during night and choosing to walk or bike instead of car or public transport as a
choice for healthier life style. The interaction between travelers will also be considered
in the further work, e.g. in the form of car-pooling options. We have also planned to
apply synthetic population methods in order to generate large populations of realistic
agents. Moreover, we will further test ASIMUT through more complicated scenarios,
where the effects of combinations of transport measures are investigated.

Future work also includes analyzing the performance of web services, focusing on
how the approach scales with increasing number of simulated travelers. In addition,
web services typically behave as black boxes, where the users have little (or no) insight
in how the services actually operate. To be able to trust the output generated by a model
that is based on externally provided web services, it is therefore critical to take special
consideration to the output of the web services when validating the model. Future work
also includes analyzing issues related to the use of services that cannot directly be
validated.
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Abstract. Farmers are the key actors of land-use change processes. It
is thus essential to choose a suitable architecture for farmer behavior
to model such processes. In this paper, we compared three models with
different architectures to model the farmer behavior in the coastal areas
of the Ben Tre province: (i) The first one is a probabilistic model that
allows farmer to select the land-use pattern based on land change prob-
ability; (ii) The second model is based on multi-criteria decision making
and takes into account the land suitability of the parcel and the farmer
benefit; (iii) The third model used a BDI (Beliefs - Desires - Intentions)
architecture. For each of these models, we have compared the difference
between simulated data and real data by using the Fuzzy Kappa coeffi-
cient. The results show the suitability of the BDI architecture to build
land-use change model and to support decision-making on land-use plan-
ning.

Keywords: Agent-based simulation · Agent architecture · BDI
architecture · Land-use change · Mekong Delta

1 Introduction

The Mekong Delta region will be heavily influenced by the effects of global cli-
mate change [23]. Indeed, the sea level rise and saltwater intrusion will strongly
impact the life of people and the situation of agricultural production [9,20]. Nhan
et al. [12] pointed out that the environmental conditions significantly impact the
agriculture and fisheries and that ordinary people tend to spontaneous change
the land-use, which causes difficulties for land resource management and culti-
vation of farmers. Another difficulty comes from the behaviors of farmers that
c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 146–158, 2016.
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tend to adapt their food production to the market [19]. The question for plan-
ners is how to simulate the behaviors of the farmer to understand land-use and
land cover (LULC) change in the next years to build a successful land-use plan.
In this context, the choice of an agent architecture to model the farmer behavior
is particularly important.

In this paper, we propose to compare three classic agent architectures defined
to model human beings behaviors: the first model is based on a probabilistic
model, the second one is based on multi-criteria decision making and the last
one is based on the BDI paradigm. The comparison is done on an example model
simulating the land-use change due to farmers’ decisions in the coastal areas of
the Ben Tre province (Mekong Delta, Vietnam). The objective is to determine
among these three architectures the one that seems the most adapted to model
the farmer behavior.

This paper is organized as follows: Sect. 2 presents a state of the art of the
existing models of land-use change and an overview of agent architectures used
to model such processes. Section 3 is dedicated to the presentation of the three
farmer models that have been implemented and of results of their comparison.
Finally Sect. 4 proposes a conclusion and offers some perspectives.

2 State of the Art

2.1 Modeling of Land-Use Change

For years, the follow-up study of land-use changes have been mainly based on
monitoring the changes in the past using diverse tools related to GIS and Remote
Sensing. These tools do not allow to model the dynamic but only to describe the
changes. Some researchers have also proposed models based on the combination
of GIS, Cellular Automata and Markov chain [11,24] to monitor and to predict
the land changing in the future. Although these models give good results for
monitoring the past time, they show their limitations to predict the future due
to complex behaviors of the social actors in the real world that is not captured
by these models. Concerning the modeling of actors involved in LULC changes,
Agent-Based Models (ABM) have been heavily used [8,14]. However, most of
these models remain simple models based on probabilities. They do not allow to
take into account the behavior complexity of the various stakeholders.

In order to represent in a more realistic way the behavior of the different
stakeholders, some research works have proposed to use BDI (Belief, Desire and
Intention) agent architecture [16] for LULC modeling. In this cognitive agent
architecture, agents have beliefs (pieces of information they believe to be true in
the world), desires (how they desire the world to become) driving their long-term
activities, and intentions of short-term actions to perform to make the world com-
pliant with desires they have chosen and which they commit to achieve. Besides
that, agents can change their behaviors and update their beliefs according to
what they perceive from the environment. This architecture has been applied to
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simulate human behavior in many different fields [1]. Concerning land-use plan-
ning, Behzadi et al. [3] have proposed a BDI architecture applied to city plan-
ning. In this model, the planer is the main agent of the model and decides
most effective plans to apply according to its beliefs and its goals. Another BDI
architecture, based on the belief theory and on a multi-criteria decision-making
process, has been proposed in [18] in yearly cropping plan decision-making. This
architecture has the advantages to be quite light (it allows to simulate simulta-
neously thousands of BDI agents) and easy to use by modelers. However, this
architecture does not propose any specific formalism for the definition of beliefs
and plans and was very specific to its application context.

Only few models have been developed to simulate LULC changes in Vietnam.
Among them, the model presented in [4] concerns the planning scenarios in the
northern mountains of Vietnam. Another one aims at studying the evolution of
cultivation field patterns in the central mountains [7]. However, these models
do not rely on real management data from the province departments of nat-
ural resources and their case studies are mostly concentrated in the mountains.
Almost no study has been carried out about the Mekong Delta, especially the
coastal areas affected by saltwater intrusion whereas there are important needs
of this type of models.

2.2 Existing Agent Architectures to Model Land-Use Change

Balke and Gilbert have pointed out in an article presenting 14 agent architectures
[2] how human beings are very complex machines and difficult to model. However,
many agent architectures have attempted to model them. These architectures
are often divided in two groups:

– Reactive architectures. The agent directly responds to the environment stimuli,
without taking into account event history. This architecture is often used in
large-scale model. Many of these architectures use production rules where the
behaviors are based on “if - then” rules [13].

– Cognitive architectures. These agents have reasoning capabilities. They can
memorize the past and display complex social behavior. The BDI architecture
belongs to this group.

If many complex agent architectures have been proposed, it is not always
essential to use them to model the human behaviors, as the human decision-
making process is often based more on many sources of information rather than
on complex deliberations [5]. Concerning LULC modeling, even if some models
propose to use a BDI agent architecture [3,18], most of the are still using simple
architectures based on probabilities or on multi-criteria decision-making algo-
rithms [8,14]. The main aims of this paper are thus to compare these three types
of architectures on a case study concerning the coastal area of the Vietnamese
Mekong Delta and establish recommendations for LULC modeling.
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3 Comparison of Agent Architectures to Model
Actors Involved in LULC Changes in Coastal Area
of the Mekong Delta

3.1 Land-Use Change in Coastal Area of the Vietnamese
Mekong Delta

In Vietnam, the land-use zoning policy that defines the type of developments
allowed on parcels is defined for 10 years and at four administrative levels:
country, province, district and village. The zoning policy is detailed by two
plans (five years per plan) under instructions of the Circulars of Ministry of Nat-
ural Resources and Environment [10,22]. However the province land-use changes
often do not fit with plans. This phenomenon is particularly visible for the Ben
Tre province: the total cultivated area planned for 2010 was 175,824 ha, and
reached in reality 179,671 ha (102 %); the rice area reached 38,000 ha compared
with the 30,000 ha planned; the aquaculture land was planned to be 39,200 ha
but only reached 30,289 ha; at last the forest area only reached 1.30 ha compared
with 350 ha planned [15]. This difference of planned and real developments can
also be observed at the village level. This unpredictability of the land-use change
accentuates the need of reliable tools to simulate the land-use changes to support
decision-making process.

3.2 Land Suitability Analysis

As stated in the previous Section, it is important to be able to understand
processes underlying land-use changes at the village level in order to be able
to predict the evolution of land-use change at province level. In this context,
we chose to study the evolution of land-use in the village of Binh Thanh. This
coastal village of the Ben Tre province of the Mekong Delta is representative
of the region as it contains a mix of brackish and fresh water. In such area the
land-use is strongly impacted by the irrigation.

We have collected data concerning the land-use of each parcel of this village
in 2005 (Fig. 1) and in 2010 from the Department of Natural Resources and
Environment of the Ben Tre province. In this area, six land-use types have
been defined:

– Rice,
– Rice - Vegetable,
– Rice - Shrimp,
– Annual crops,
– Industrial Perennial tree,
– Aquaculture.

We collected as well the soil map, the saltwater map and the flood map of the
regions and define from them six land-unit types (a value per land-unit type).
From each of these land-unit types, we defined with the help of domain-experts



150 Q.C. Truong et al.

a suitability value for each land-use type. This suitability, which was evaluated
by using fourth values, represents the adequacy between the land unit type and
the land-use type. For instance, producing industrial perennial tree on a salty
soil is very difficult and the yield will be very low.

We also built with domain-experts a transition matrix for each land-use-type.
This matrix allows to represent the technical difficulty to change from one land-
use type to another one. This difficulty was evaluated using three values (1: easy,
2: medium, 3: very difficult).

At last, we collected data concerning the evolution of benefit and cost of each
land-use type for a hectare from 2005 to 2010.

Fig. 1. Land-use map of Binh Thanh in 2005. source: department of environmental and
natural resources of Ben Tre province, Vietnam.

3.3 Tested Agent Architectures

The next section describes the general model that was used for the test. We
describe then the three architectures that have been implemented (the simplest
one based on transition probabilities, a more complex architecture) based on
multi-criteria decision-making process and the most complex BDI architecture.
In this work we only focused on simple architectures with few parameters, as we
aim at testing different kinds of architecture and not at defining a very complex
and realistic model.



Exploring Agent Architectures for Farmer Behavior in Land-Use Change 151

Model Description. The model was defined in order to simulate the evolution
of the land-use of the Binh Thanh village. We make the assumption that each
farmer has only one parcel and that he has to make a decision concerning the
land-use of the parcel every year. A simulation step in this model represents thus
1 year.

In this simple model, the main species of agents is the parcel species that rep-
resents the farmer and his/her parcel. A parcel agent has the following attributes:

– shape: geometry of the parcel (static),
– land unit type: type of soil for the parcel (static),
– region: is it inside or outside the dykes (static),
– neighbors: list of parcels at a given distance that have the same land unit type

(static),
– land-use: type of production (dynamic).

In addition to parcel agents, we define a world agent that contains all the
global variables:

– profit matrix: for each year (from 2005 to 2010) and for each land-use type
the benefit that can be expected from 1 ha of production,

– cost matrix: for each year (from 2005 to 2010) and for each land-use type the
cost of 1 ha of production,

– suitability by landuse: for each land unit type, the suitability to produce a
given land-use type,

– transition matrix: difficulty to change from a land-use to another one.

At each simulation step (i.e. every year), each parcel agent is activated in a
random order. When activated, a parcel agent (embedding the farmer making
decision) chooses its new land-use (that can be the same as the previous one)
and changes to it if necessary.

The different models presented in the following sections deal with this choice
of a new land-use. Note that all the agent attributes defined here will not be
used in all the models. For instance the neighbors attribute will only be used
by the BDI model.

Decisions Based on Transition Probabilities. In the first farmer behav-
ior model, farmer decisions are based on land change probability. A matrix of
probabilities to shift from one land-use type to another was built using the data
from 2005 and 2010 and more particularly the number of parcels that changed
from 2005 to 2010 (Table 1). As the study area is composed of 2 very different
regions - one inside the dykes and the other one outside - we chose to create two
matrices corresponding to each region.

The decision-making behavior of the agent is very simple: at each simulation
step (i.e. each year), a parcel agent has the probability 0.2 to change its land-
use. Each time, it chooses to change its land-use, it draws randomly its new
land-use according to the matrices previously defined. From the data we can
observe that parcels have changed their land-use on average once during the
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Table 1. Land-use changed from 2005 to 2010, counted by number of parcels

Land-use in 2010 (out-inside dykes)

A. Crops Trees Rice-Shrimps Rice-Vege Rice Aquaculture

Land-use in 2005 A. Crops 77-134 64-13 39-0 0-6 0-0 8-1

(in-outside dykes) Trees 20-8 151-29 3-0 0-31 1-0 2-2

Rice-Shrimps 0-100 0-0 0-0 0-1016 0-0 0-21

Rice-Vege 0-0 0-0 1-0 0-0 0-0 0-0

Rice 0-80 35-67 8-0 17-48 0-0 2-2

Aquaculture 17-4 173-8 1123-2 1-0 7-0 88-2

5 years of observations. As a consequence, we consider that each parcel has the
probability 1/5 of changing land use type at each step. As a consequence, during
a simulation some parcels can change their land-use multi times and others not,
which is the observed process.

Decision Model Based on Multi-criteria. In the second model, the par-
cel agent decisions are made according to a multi-criteria analysis. This type
of decision-making process in often used for land-use change models (see for
example [17]). We defined 3 criteria for the decision: the profit, the cost and the
transition difficulty. Indeed, it is generally accepted that farmers tend to choose
a production that maximizes their profits, that minimizes the cost - avoidance of
risky productions - and that are easy to implement. More precisely, the criterion
values are computed as follows for a given transition from old lu to lu and a
given soil type (i.e. land unit type) and a year number:

Profit(lu, soil, year) =
matrix profit(lu, year)

(max profit(year) ∗ matrix suitability(soil, lu))
(1)

With:

max profit(year) = max(matrix profit(lu, year)) (2)

Cost(lu, year) =
matrix cost(lu, year)

max cost(year)
(3)

With:
max cost(year) = max(matrix cost(lu, year)) (4)

Transition(old lu, lu) =
(3 − transition matrix(old lu, lu))

2
(5)

At each year, every parcel agents computes for each of the six possible land-
use types the values of the three criteria. Then, using a weighted mean (see
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Eq. 6), it chooses the best land-use type (the one that maximizes the fitness).

Fitness(lu, soil, year) = WprofitProfit(lu, soil, year) + (6)
WcostCost(lu, year) + WtransitionTransition(old lu, lu)

Decision Model Based on a BDI Architecture. In this last model, we
propose to use a BDI architecture to model the behavior of the parcel agents.
The choice of the land-use type will be based on the three criteria defined in
the previous section. However, instead of considering that all the parcel agents
have a precise idea of the expected profit according to their land unit type, we
consider in this model that the knowledge of the agents is imperfect. It is only
when they will have tested a particular land-use type that they will know the
real profit that could be obtained from it. We consider as well that a parcel
agent can give information to their neighbors concerning their profit. Indeed, in
Vietnamese village, the social links between farmers are particularly strong and
they often share advices and knowledge.

Figure 2 presents the UML activity diagram of our BDI architecture. First,
the agent tests a probability to change or not its current plan. If it keeps the
plan, it continues to execute it. Otherwise, it tests a probability to change its
goal. If it does not keep its goal, it selects a new goal among the desires with
the highest priority and adds it to its intention base. If several desires have the
same priority, the goal is randomly chosen among them. Once a goal has been
selected (or if the previous goal is kept) a new plan is selected among the ones
that can be activated (according to the agent desires and beliefs). The selected
plan is the one with the highest priority. Similarly to the goal selection, if several
plans have the same priority, the selected plan is chosen randomly among them.
At last, the selected plan is executed.

Table 2. Mean results for the percentage absolute deviation (the lowest, the best) and
the fuzzy Kappa (the highest, the best) for the three models and for 100 simulations

Probabilistic model Multi-criteria model BDI model

PAD 59.17 % 30.62 % 34 %

Fuzzy kappa 0.46 0.54 0.55

In our model, each parcel agent has the following belief and desire bases:

– Beliefs: pieces of knowledge concerning the expected profit for each land-use.
Each belief corresponds to a land-use type and a profit associated to it.

– Desires: the parcel agents can have two types of desires:
• define the best possible land-use type (with priority = 2),
• produce a given land-use type (with priority = 1).

– Intentions: the agent can activate two following plans to fulfill its desires:
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Fig. 2. Activity diagram of the BDI architecture

• analyze the possible land-use types: the agent uses the three criteria and
its current beliefs to evaluate each possible land-use type and to define
the fittest one. Then the value for the probability to change its current
plan is set to 1. The plan is activated when the current goal is define the
best possible land-use,

• implement a given land-use type: the agent sets its land-use attribute to
the given one and computes the actual profit with this land-use. Then it
updates its beliefs and gives this information to its neighborhood. At last,
the value for the probability to change its current plan is set to a given
parameter value. The plan is activated when the current goal is produce a
given land-use type.

3.4 Experiments

The three models were implemented on the GAMA platform1 [6]. GAMA is
an open-source agent-based simulation platform that provides modelers with
a complete modeling and simulation development environment to build agent-
based simulations. It is particularly powerful concerning the management of GIS
data and allows to simply manipulate them.

The different parameter values of the models were defined by using a genetic
algorithm to find the parameter set that fits the best to the real data. The fitness
1 http://gama-platform.org.

http://gama-platform.org
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function is defined using the Kappa coefficient comparing the observed data and
the simulation results in 2010. The fuzzy kappa coefficient allows to compare two
maps by taking into account the neighborhood of the parcels [21]. This coefficient
is between 0 (not similar at all) to 1 (totally similar). In these experiments, we
chose a neighborhood size of 100 m.

Figure 3 shows simulation results obtained from the three models and the
observed data. As it can be observed, none of the three models allows to repro-
duce the exact observed land-use. However, the multi-criteria and the BDI archi-
tectures provide better results than the probabilistic one.

Fig. 3. Observed and simulated land-use map of Binh Thanh in 2010
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To quantitatively evaluate the simulation results of the three models, we
used two indicators: the fuzzy kappa coefficient (local indicator) and the percent
absolute deviation (global indicator).

This second indicator that is often used to evaluate land-use change models
is computed by the following formula:

PAD(%) = 100
∑n

i=1 |X̂i − Xi|∑n
i=1 X̂i

(7)

with: X̂i the observed quantity of parcels with the land-use i and Xi the simu-
lated quantity of parcels with the land-use i.

As our models (at least two of them) are stochastic, we ran 100 times each
model and computed the average fuzzy kappa coefficient (kappa) and percent
absolute deviation (PAD). As shown in Table 2, the multi-criteria model allows
to get far better results in terms of PAD and kappa indicators than the proba-
bilistic model. Indeed, this model integrates some new pieces of knowledge linked
to the economy (profit and cost) and the practices (suitability and transition)
that allow to improve the accuracy of the model. Concerning the BDI model,
it gives results close to the multi-criteria one (slightly better concerning the
kappa coefficient and worst concerning the PAD). However, this model allows
to integrate heterogeneity in the model through the influence of the imperfect
knowledge and the influence of the neighborhood which make the model more
realistic.

4 Conclusion

In this paper, we have compared three architectures to model the land-use change
in the Binh Thanh village. The first architecture is based on change probabilities.
It gave correct simulation results for reproducing the past events but is limited for
predicting the future as it does only allow to reproduce past patterns. The second
architecture is based on multi-criteria decision-making. This architecture allowed
to get good simulations. However, it does not allow to introduce heterogeneities
between agents. The last architecture, which shows the highest fuzzy kappa
coefficient, is based on a BDI architecture. This architecture allows to take into
account the imperfection of knowledge of farmers and the relations between
them. If the three models gave good results, we plan to improve them, and more
particularly the third model, by integrating more domain-specific knowledge
inside.
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Abstract. I investigate relations between total performance of agent
societies and relative performance of individual agents with respect to
exploration ratio of multiagent learning. The exploration ratio is a key
parameter to determine features of multiagent learning in two aspects:
as a speed controller of learning in individual agents, and as a recipro-
cal noise factor for other agents. The investigation figures out trade-off
of the two aspects and shows existence of single optimal value of the
ratio to minimize the learning errors. I also carried out experiments to
compare the performances of agents who use different exploration ratios.
The results of the experiments tells existence of equilibrium points to
choose the ratio by individual agents. Finally, we discuss the relation-
ship between optimal and equilibrium values of the exploration ratio,
which might bring dilemma of selection of the exploration ratio in an
evolutionary way.

1 Introduction

Exploration policy is one of key factors to characterize reinforcement learning.
Exploration is necessary to get enough experiences for learning agents to adjust
their action policies. Therefore, for example, ε value in the ε-greedy policy should
be kept in significantly positive value during the learning. On the other hand,
the ε should be small in order to avoid loss of rewards for the learning agents.
This is called as dilemma of exploration and exploitation [4].

In the case of learning under nonstationary environments, the control of
the exploration policy become more sensitive. Because agents need to continue
learning to adapt to changes of nonstationary environments slowly, they need to
continue exploration in a certain amount. Therefore, in the case of the ε-greedy
policy, ε should remain positive rather than conversing to zero.

Multiagent situation brings additional dilemma to select the exploration
policy. In the case of multiagent simultaneous learning, exploration of one agent
cause noise for learning of other agents. This means that agent should use the
small ε in ε-greedy policies, for example. This direction is inconsistent with ones
for nonstationary environments.

c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 159–172, 2016.
DOI: 10.1007/978-3-319-31447-1 11
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1.1 Related Works and Structure of Article

Because of popularization of mobile information devices and auto-
matic/intelligent appliances, adaptation and balancing of usage of common
resources by such equipment becomes an important issue. Traffic control by
car navigation systems is a typical example. While each car selects a route from
multiple plans, selection by individual cars cause traffic congestion. Scheduling
of usage hours of electric powers has also similar problems. These problems are
typical application domain of multiagent learning.

Dynamics of multiagent Q-learning are well studied in the case of two-agents
and two-actions.Wunder et al. [7] investigated a two-agent gameand its adaptation
by reinforcement learning with ε-greedy exploration. Kaisers and Tuyls [1] applied
evolutionary game theory to adapt the stepsize parameter in update rule based on
exploration ratio. Main focus of these works is on small-scale (two-agent and two-
action) and stationary environments, but not on nonstationary environments.

Tokic and his colleague [5,6] proposed adaption method of exploration ratio
using value differences. Their method lets ε large when the TD-error is large in
a state. They are basically focus only on the case of single-agent and stationary
environment.

On the other hand, there are few works on effects of exploration in reinforce-
ment learning under the case of a large population of agents in nonstationary
environments. As mentioned above, these situations are general in real-world
problems. Especially, reciprocal affects of explorations are serious dilemma.

In this work, we focus on phenomena in learning process under such reciprocal
affects in the case of multiagent learning in nonstationary environments. In order
to determine the suitable exploration policy for such situation, we need to know
the relation between exploration policies and performance of learning of individ-
ual/collective agents as the first step. Based on the relation we will be able to dis-
cuss about the optimality from the view point of individual and total agent views.

The rest of this article consists of the formalization of repeated nonstation-
ary resource sharing problems (Sect. 2), experimental and theoretical analysis
of relations between learning performance and exploration ratio (Sect. 3), and
discussions about evaluation of the individual agents using various exploration
ratios and the possibility of evolutional methods to find optimal value for explo-
ration ratio (Sect. 4).

2 Repeated Nonstationary Resource Sharing Problem

In this article, I investigate a case of the following repeated nonstationary resource
sharing problems (RNRSP):

Multiple agents share some resources. Each agent selects one of resources
simultaneously (Fig. 1), while each resource provides an identical reward
for all agents who select the resource. The reward is determined according
to its capacity value and the number of agents who select the resource.
The capacities of resources changes slowly on a long-term basis.
The agents’ selection of the resources is infinitely iterated.
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Fig. 1. Repeated nonstationary resource sharing problem

The RNRSP is formally defined as follows:

RNRSP = 〈A,R, r〉 , (1)

where A = {a1, a2, · · · , aN} is a set of agents, R = {R1, R2, · · · , RM} is a set of
resources, and r(R) = f(dR/γR) + noiset is a common reward function. The γR

and dR indicate the capacity of each resource R and the population of agents
who select the resource R, respectively. We suppose that resources have different
capacities, so that the agents should distribute among resources according to the
ratio of the capacities. We also suppose that each γR changes slowly. This change
represents nonstationarity of environments. In the following experiments, γR is
doubled/halved with a certain small probability (hereafter, referred fluctuation
factors) in each time step.

The reward function f is supposed to be a monotonically decreasing function.
Therefore, when more and more agents select the same resource, the agents get
less and less rewards. In the following experiments, I use the function f(x) = 1

x

(in Exp. 1 and Exp. 2) or f(x) =
√

1
x (in Exp. 3).

Each agent a has its own reward table Va(R) that indicates an expected
reward for each reward. In every cycle, each agent selects the best resource
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(in exploitation) or another possible resource (in exploration) on the basis of its
own reward table and ε-greedy policy. When the agent gets an actual reward from
the resource, the it updates its own reward table by a reinforcement learning.

3 Optimal Exploration Ratio to Minimize Learning Error

In this section, I investigate the relation between the exploration ratio and the
average learning performance of agents by experiments and theoretical analysis.

In order to measure the total performance of agent learning, I use difference
of agent-distribution in the following discussions. The agent-distribution d is
an array of agent-population dR. In the case of RNRSP, the ideal distribution
d̊ = [d̊R] can be calculated as follows:

d̊R =
NγR∑
R′ γR′

,

where N is the number of agents. Therefore, the learning performance of the
collective agents can be measured by the distance of the ideal and actual distri-
butions. Hereafter, we refer the distance as learning error.

3.1 Experimental Analysis

In order to figure out the relationship described above, I conducted an experi-
ment (Exp. 1) of the multiagent learning for a RNRSP.

In the experiment, each agent learns to determine its action policy using
reinforcement learning as follow. Each agent a has its own expected reward Va(R)
for each resource R. In the selection of resource, the agent selects a resource using
ε-greedy policy, where the agent selects resources randomly with the probability
ε, otherwise, selects the resource whose expected rewards is maximum in the
expected reward table Va. When the agent a selects resource R and gets a reward
r, it updates the expected reward for resource R by the following update rule:

Va(R) ← (1 − α)Va(R) + αr.

All agents perform this selection and learning simultaneously.
This experiment used a RNSP that consists of 200 learning agents and 10

resources. I also supposed that all agents share the same learning parameters
(the exploration ratio ε and the stepsize parameter α), but do not share any
other information like expected reward tables. Capacities of the resources are
different from each other and slightly changed over time as described above.
Therefore the ideal distribution of agents is not stationary.

As defined, the learning performance is measured by learning error, that is,
the distance between actual and ideal agent-distributions after 10,000 cycles
of agents’ selection and learning. Because there are several random factors,
I conducted 100 simulations with the same learning and environmental para-
meters and calculate the average of the learning error. The parameters are set
in the following ranges exhaustively: ε ∈ (0, 0.5) and α ∈ [0.0001, 0.3].
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Figure 2 shows the results of the experiment. In the graph, the horizontal
and vertical axis indicate the exploration ratio ε and the error (distance between
ideal and actual agent-distribution). Each line correspond the case using the
same stepsize α. As shown in this graph, the error is large when the exploration
ratio is too small. This means that agents can not catch up the changes of
environments with too few exploration. On the other hand, large exploration
ratio also enlarge the error because of the reciprocal noise factor of exploration.
And, the best exploration ratio seems to exist in the middle, where the each
error curve hit the bottom.
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3.2 Theoretical Analysis

The characteristics of the relation between exploration ratio and learning error
are also supported by a theoretical analysis.

[2] showed a theoretical analysis about relation between lower boundary of
learning error and exploration ratio. The analysis finally shows the following
corollary about learning error in the MAL situation, which include the case of
RNRSP:

Corollary 31. The lower boundary of learning error of the above MAL situation
is given as the following inequality:

Error = E
[∥∥∥d̊’ā − d̃’ā

∥∥∥2
]

≥ Tσ2 +
Kg̃a

εT
+ εN(2 − K + 1

K
ε), (2)

where g̃a is a trail of the inverse Fisher information matrix of advantageous
probabilities ρa.
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Figure 3 shows the relationships between the lower boundary and ε. Each curve
corresponds to changes in the boundary for different values of T . From the com-
parison of this graph and Fig. 2, we can find that shapes of both curves are quite
similar. Note that the theoretical analysis only shows the characteristics of the
lower boundaries but not of the actual error. Because of the similarity, however,
we can imply features of effects of exploration to learning error analogically.

It is also known that these tendencies are kept in the case of different popu-
lations of agents [3].

3.3 Existence of Optimal Exploration Ratio

Here, I provide an investigation to confirm that there does not exists multiple
local minimum but only one optimal ε.

Because of the nature of the exploration ratio, it is reasonable to limit the
range of ε to [0, 1

2 ]. If the ratio is greater than 1
2 , the behavior of agents seems

almost random. Without the case of the beginning of the learning, such situation
is nonsense.

Under this condition, we can prove that the lower boundary of the learning
error given by Eq. (2) should be one of the following two cases: (see Sect.A)

– There is a single downward peak of error in the range [0, 1
2 ].

– The error curve is monotonically decreasing.

Therefore, we can focus on the single optimal point and do not care about other
local minimum.

4 Heterogeneous Exploration Ratio and Equilibrium

In this section, I explore the case that the exploration ratio is not uniform
(hereafter, we call such cases as heterogeneous one). In the previous section,
the analyses assume that all agents use the same exploration ratio. While this
assumption simplifies the analysis, it limits the possibility for individual agents
to adjust learning parameters independently. So, in order to investigate the case
where agents use different parameters, I conducted the following experiments.

4.1 Gain of Average Benefit

From the viewpoint of individual agents, the main question in the case of the
heterogenious exploration ratios is which ratio is superior to other ratio. Consider
the case where we apply evolutionary or game-theoretic methods to adjust the
exploration ratio. The relative advantage/disadvantage among agents is a key
factor to determine the better ratio. If an agent finds that other agents with
different exploration ratio are getting better average rewards, it is reasonable for
the agent to change the ratio to the other one.

In order to investigate such situation, I conducted experiments with the
following setting:
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– decide a certain value ε̄ as a standard(base) exploration ratio.
– prepare 180 agents who use ε̄ as the exploration ratio. (base group)
– prepare 10 agents who use 0.5ε̄ as the exploration ratio. (small-ε group)
– prepare 10 agents who use 1.5ε̄ as the exploration ratio. (large-ε group)

Using the above agents, I carried out an experiment (Exp. 2) using the same
condition as Exp. 1.

Figure 4 shows the learning error of Exp. 2. In the experiments, I carried out
setting of all combinations of base exploration ratio (ε̄) in [0, 0.5], stepsize (α)
in [0.001, 0.3], and the fluctuation factor in [0.0001, 0.03]. Each line plots the
changes of the error to various ε̄. Each line corresponds to each values of the
fluctuation factor. The lines are grouped by each α value.

In this time, I also evaluated average performances of agents who use different
ε as follows:

1. calculate the average benefit of agents of each group.
2. calculate ratios of the average benefits of the small/large-ε groups to the

average benefit of the base group, respectively. (The ratios are refered as
benefit gains.)

Figure 5 shows changes of the benefit gains to various ε̄ values. Each line corre-
sponds to each values of the fluctuation factor. The lines are grouped by each α
value. Figure 6 pick-up the lines in the case that the fluctuation factor is 0.0003.
In any case, the benefit gain of the small-ε group increases when ε̄ becomes large,
while the gain of the large-ε group decreases. Especially, in the cases α ≤ 0.03, it
is clear that the gain of the small-ε starts with less than 1.0 for the small ε̄, and
becomes larger than 1.0 for the large ε̄. Symmetrically, the gain of the large-ε
changes from larger than 1.0 to less than 1.0. Two gains for the same setting
cross in the middle.

4.2 Equilibrium by Benefit Gain

Here, we discuss about the possibility to acquire a way to adjust ε value using
the benefit gain.

Figure 7 illustrates the changes of benefit gains of small/large-ε groups that
are acquired in Exp. 2. As discussed in Sect. 4.1, the gain of the small-ε group
changes from less-than-1.0 to more-than-1.0, while one of the large-ε group
changes symmetrically. Both lines cross in the middle.

Here, based on this feature, let us try to consider the case to apply evolu-
tionary methods to adjust ε to the cross point. Suppose that each agent can
know average benefits and ε value of other agents. In this case, the agent can
imitate ε value to the similar value of another agent who gets better benefit.
Because of the feature of benefit gain described above, ε value of each agent
will reach the cross point. When the value is too small, the average benefit of
agents in the large-ε group is better. So, the agent tends to shift the value to be
larger. The symmetric behavior will occur in the case of large ε. When the value
is too large, the average benefit of agents in the small-epsilon group is better.



166 I. Noda

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

a
v
e
. 
e
rr

o
r

epsilon

Changes of Ave. Error {:alpha=>0.001}

{:fluct=>0.0001}
{:fluct=>0.0003}
{:fluct=>0.001}
{:fluct=>0.003}
{:fluct=>0.01}
{:fluct=>0.03}

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5
a
v
e
. 
e
rr

o
r

epsilon

Changes of Ave. Error {:alpha=>0.003}

{:fluct=>0.0001}
{:fluct=>0.0003}

{:fluct=>0.001}
{:fluct=>0.003}
{:fluct=>0.01}
{:fluct=>0.03}

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

a
v
e
. 
e
rr

o
r

epsilon

Changes of Ave. Error {:alpha=>0.01}

{:fluct=>0.0001}
{:fluct=>0.0003}
{:fluct=>0.001}
{:fluct=>0.003}
{:fluct=>0.01}
{:fluct=>0.03}

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

a
v
e
. 
e
rr

o
r

epsilon

Changes of Ave. Error {:alpha=>0.03}

{:fluct=>0.0001}
{:fluct=>0.0003}
{:fluct=>0.001}
{:fluct=>0.003}

{:fluct=>0.01}
{:fluct=>0.03}

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

a
v
e
. 

e
rr

o
r

epsilon

Changes of Ave. Error {:alpha=>0.1}

{:fluct=>0.0001}
{:fluct=>0.0003}
{:fluct=>0.001}
{:fluct=>0.003}
{:fluct=>0.01}
{:fluct=>0.03}

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

a
v
e
. 

e
rr

o
r

epsilon

Changes of Ave. Error {:alpha=>0.3}

{:fluct=>0.0001}
{:fluct=>0.0003}
{:fluct=>0.001}
{:fluct=>0.003}

{:fluct=>0.01}
{:fluct=>0.03}

(The circle in each graphs indicates the optimal area of ε.)

Fig. 4. Average error (Exp. 2)
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Fig. 5. Average benefit gain (Exp. 2)
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Fig. 6. Average benefit gain (single plot) (Exp. 2)

So, the agent tends to shift the value to be smaller. Finally, the agent will reach
the cross point as an equilibrium.

4.3 Equilibrium vs. Optimum

Here, we can have a new question: Whether will the evolutionary adaptation by
individual agents described above will reach the optimal value of ε for the whole
agent society? As described in Sect. 3.3, an agent society with a certain RNRSP
has the single optimal value for ε. On the other hand, from the discussion in
Sect. 4.2, the ε value will converge into the equilibrium point when the individual
agents changes the value by evolutionary manner. But such equilibrium values
are not guaranteed to be optimal from viewpoints of the agent society.

In order to figure out the relation between the equilibrium and optimal value
of the ε, I analyzed the results of Exp. 2 in Sect. 4.1.
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Fig. 7. Illustrated relation of gains using relatively small/large ε and equilibrium of ε
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Fig. 8. Relation between optimal ε and
equilibrium ε (Exp. 2)
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Fig. 9. Relation between optimal ε and
equilibrium ε (Exp. 3)

Figure 8 shows the relationship between the equilibrium point of ε discussed
above and the optimal ε. Each dot in these graphs corresponds a combination of
various fluctuation factors (γ) and stepsize parameters (α). The horizontal axis
indicates the value of the optimal ε, which minimize the curve of average errors
shown in Fig. 4. The vertical axis indicates the value of ε at the equilibrium
point, where curves of small-ε and large-ε in Fig. 5 are crossing.

Figure 9 also shows a result of the same analysis of another experiment

(Exp. 3), in which we use different type of reward function f(x) =
√

1
x . We

can see the similar tendency in both graphs of Figs. 8 and 9.
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Relations between optimal and equilibrium is not simple linear: When the
optimal ε is relatively small, the equilibrium value is smaller than the optimal
one and close to zero. When the optimal value becomes relatively large, then, the
equilibrium value grows up suddenly. Especially, in the case of Exp. 2 (Fig. 8),
the equilibrium value becomes greater than the optimal one.

Such relations implies the following dilemma: Suppose that each agent is
selfish and try to change the exploration ratio by imitating other agents who
perform better. In a case where situations of environments requires relatively
small exploration for agents, agents tend to tune their exploration ratio very
small. Because of too-small exploration, agents can not catch up the changes of
environments and total and individual performance of agents get worse. On the
other hand, when the environment require relatively frequent explorations, the
agents tend to explore too much. It also degrades agents’ performance.

5 Conclusion

In this article, I investigate relation of exploration ratio in reinforcement learning
and learning performance from the viewpoint of optimality and evolutionary
aspect. Experimental and theoretical analyses of learning error tell us the simple
shape of error curve and existence of single optimal exploration ratio to minimize
the learning error. For the evolutionary aspect, experiments using heterogenious
agents who have various exploration ratios are carried out. The results of the
experiment shows another dilemma of evolutionary methods to find the best
exploration ratio in a selfish way.

For the future work, we need to investigate more general formalization of
nonstationary environments and variations of agent learning.

Acknowledgments. This work was supported by JST CREST and JSPS KAKENHI
24300064.

A Unimodality of Lower Bound

Here, the lower bound is denoted as L(ε). Also, A = Kg̃a

T and B = K+1
K is

introduced for the simplicity. So, L can be defined as:

L(ε) = Tσ2 + Aε−1 + εN(2 − Bε)

Because of the definition, 1 < B ≤ 2 is hold.

Lemma A1. ∂L
∂ε is unimodal and convex upward. �

Proof.

∂2L
∂ε2

= 2Aε−3 − 2NB = 0, ∴ ε = 3

√
A

NB
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Therefore, ∂L
∂ε has only one extremal value, and is unimodal.

∂3L
∂ε3

= −6Aε−4 < 0

Therefore, ∂L
∂ε is convex upward. �

Lemma A2. Suppose that K ≥ 3. If the solution of ∂L
∂ε = 0 exists in the range

0 < ε < 1
2 , the following inequality is hold:

∂L
∂ε

∣∣∣∣
ε= 1

2

> 0.

�

Proof. Suppose that the solution of ∂L
∂ε = 0 is ε0:

∂L
∂ε

∣∣∣∣
ε=ε0

= −Aε−2
0 + 2N − 2NBε0 = 0, ∴ A = 2Nε20(1 − Bε0).

Now, let’s consider the value of ∂L
∂ε

∣∣
ε= 1

2
:

∂L
∂ε

∣∣∣∣
ε= 1

2

= N(ε − 1
2
)(ε − ε+0 )(ε − ε−

0 )

ε±
0 =

−(B − 2) ±
√

−3(B − 2)(B + 2
3 )

4B
.

Because K ≥ 3 and 1 < B ≤ 4
3 are hold. So, we can get inequalitis, ε−

0 ≤ 0 and
ε0+ ≥ 1

2 . Therefore, solutions of ∂L
∂ε

∣∣
ε= 1

2
= 0 exist one in range ≤ 0 and two in

range ≥ 1
2 .

Because ∂L
∂ε

∣∣
ε= 1

2
is a cubic function of ε0 and 0 < ε0 < 1

2 , ∂L
∂ε

∣∣
ε= 1

2
> 0 is

hold. �

Theorem A3. L(ε) is monotonically decreasing or is uni-modal and convex
downward in the closed interval [0, 1

2 ]. �

Proof. Suppose that ∂L
∂ε = 0 has a solution in the closed interval [0, 1

2 ]. Using
Lemmas A1 and A2, we can say that the solution is only one in the interval.

Also, at the limit ε → 0, ∂L
∂ε is negative. Therefore, L(ε) is uni-modal and

convex downward in the closed interval.
If ∂L

∂ε = 0 has no solution in the interval [0, 1
2 ], L(ε) is monotonically decreas-

ing because ∂L
∂ε is negative. �
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Abstract. In large populations of autonomous individuals, the propa-
gation of ideas, strategies or infections is determined by the composite
effect of interactions between individuals. The propagation of concepts
in a population is a form of influence spread and can be modelled as a
cascade from a set of initial individuals through the population. Under-
standing influence spread and information cascades has many applica-
tions, from informing epidemic control and viral marketing strategies
to understanding the emergence of conventions in multi-agent systems.
Existing work on influence spread has mainly considered single concepts,
or small numbers of blocking (exclusive) concepts. In this paper we focus
on non-blocking cascades, and propose a new model for characterising
concept interaction in an independent cascade. Furthermore, we propose
two heuristics, Concept Aware Single Discount and Expected Infected,
for identifying the individuals that will maximise the spread of a partic-
ular concept, and show that in the non-blocking multi-concept setting
our heuristics out-perform existing methods.

1 Introduction

When autonomous individuals interact, as part of a large population, the propa-
gation of ideas, strategies or infections throughout the population is determined
by the composite effect of interactions between individuals. Populations can be
viewed as complex systems, with net effects that are hard to predict or influence
despite being due to individual behaviour. The propagation of concepts, strate-
gies or infections is a form of influence spread and can be modelled as a cascade
from a set of initial individuals through the population.

Understanding how to limit or increase the spread of cascades through a
population provides valuable insight into how to influence populations towards
a particular state. Such insight has many applications, from informing epidemic
control and viral marketing strategies to understanding the emergence of conven-
tions in multi-agent systems. For example, characterising the spread of disease
aids in identifying groups of individuals who are at risk, enabling containment
efforts to be focused intelligently to avoid wider spread. Understanding how ideas
and their adoption propagates can inform viral marketing strategies, or find the
network value of individuals in a population. In these cases the key is being able

c© Springer International Publishing Switzerland 2016
B. Gaudou and J.S. Sichman (Eds.): MABS 2015, LNAI 9568, pp. 173–187, 2016.
DOI: 10.1007/978-3-319-31447-1 12
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to identify the set of individuals who can help to spread an idea or product, or
who can restrict future spreading (e.g. through their vaccination).

Several models have been developed to simulate how influence spreads in a
network, and much attention has been focused on the influence maximisation
problem: finding a set of k nodes (individuals) whose activation will maximise
the spread of a particular concept. This problem has been shown to be NP-
hard, which has led to the development of heuristics to approximate optimal
solutions. Many models assume that cascades are blocking, in that a node that
has been infected/activated by an idea or concept cannot be activated by any
others. However, in many domains individuals can hold multiple opinions, adopt
multiple strategies, or have multiple interacting infections. The concepts held
by an individual will affect those that they are likely to adopt later, and those
that they are likely to propagate to others. This informs the idea of cascades
or concepts interacting, however most existing work on influence spread has
considered single concepts, or small numbers of blocking concepts.

There has been relatively little consideration of cascades with multiple con-
cepts, and such work has made simplifying assumptions. In the domain of
epidemic spread Sanz et al. developed a model that allows two concepts to
interact [20]. The concepts active on a node affect its ability to activate other
nodes, and so the spread of a concept is affected by the other concepts within
the network. Concept interaction could also be applied in other cascade models,
requiring re-evaluation of existing influence maximisation heuristics. There is
also the opportunity to develop heuristics that leverage concept interaction to
improve concept spread.

In this paper we focus on non-blocking cascades, and propose a new model
for characterising concept interaction in an independent cascade. Specifically, we
propose a modification to the independent cascade that incorporates interactions
for an arbitrary number of concepts. Furthermore, we propose two heuristics,
Concept Aware Single Discount and Expected Infected, for identifying individ-
uals that will maximise the spread of a given concept, and we show that in the
non-blocking multi-concept setting our heuristics out-perform existing methods.

2 Related Work

In many application areas it would be valuable to leverage influential nodes to
maximise the spread of a concept throughout the population. This is referred
to as the influence maximisation problem where we aim to pick a (minimal) set
of nodes that would maximise the spread of information through the popula-
tion. Several influence propagation models have been proposed in social network
analysis literature [8,14]. The target set of nodes is activated at the start of
influence propagation, and in subsequent cycles, neighbours of active nodes are
activated according some model of propagation. Such models can be classified
into two types: those that use node-specific thresholds and those based on inter-
acting particle systems [14].

In the linear threshold model [14], a node is influenced by each of its neigh-
bours to varying degrees, as defined by the edge weights. Each node v has a
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threshold θv, such that when the sum of the weights of v’s active neighbours
exceeds θv, v becomes active. Methods have been proposed for maximising influ-
ence spread within this model [7], but for now our focus is the independent
cascade model.

In the independent cascade model (ICM) [10], when a node v becomes active
it gets one chance to activate each of its inactive neighbours w, with some proba-
bility pvw. Kempe et al. showed that a hill-climbing approach can be guaranteed
to find a set of target nodes that has a performance slightly better than 63 % of
the optimal set [14]. A key issue with the greedy approach is the need to estimate
target set quality. Numerous heuristics have been proposed to improve the speed
of estimating the influence spread of a node [1,6], but it remains problematic in
large networks. Building on the greedy approach, Chen et al. proposed a degree
discount heuristic that accounts for the existing activations in the network and
attempts to reduce the impact of ‘double counting’ [6]. The degree discount
heuristic has been shown to have similar effectiveness to the greedy approaches,
while remaining computationally tractable.

The problem of influence maximisation has been studied in many contexts.
Early studies into influence spread and maximisation focused on the network
worth of users [8,18]. Influence cascades have also been studied in relation to epi-
demic spread [15,16,20]. The two most commonly applied models when charac-
terising epidemics are the Susceptible Infected Susceptible (SIS) and Susceptible
Infected Recovered (SIR) models [5,9]. These both take a probabilistic approach
to the independent cascade model, allowing nodes to become deactivated.

Many of these studies have used single cascade models. In many real-world
environments, there may be many concepts vying for the attention of an indi-
vidual. As such, the effect of multiple influence cascades within a single network
has been the focus of more recent work on influence spread [11,12], with consid-
eration of competing cascades that model competing products [2], epidemics [13]
or general influence spread [3]. Existing work in this area, has typically assumed
that the cascades are blocking, meaning that nodes activated/infected by one
cascade cannot be activated/infected by another. Additionally, most existing
work assumes only two concepts, while in reality there could be many interact-
ing concepts. It is also often assumed that once activated a node remains active,
although there are exceptions to this [17].

Sanz et al. developed a multi-layer network model in which concepts may only
spread on a given layer but nodes can be activated by more than one concept
at a time. Other work on the spread of epidemics also limits their travel to a
single layer [19]. Existing research typically either assumes blocking concepts
on a network layer, or non-blocking concepts that are each limited to a single
layer [12]. There has been little consideration of non-blocking concepts in a single
layered network. Much of the work in epidemics focuses on the SIS model and
the survival thresholds of viruses, with little exploration of multiple concepts
interacting within other models [4].
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3 Concept Interaction

To model concept interaction, we extend the work of Sanz et al. which modelled
two interacting diseases [20]. When attempting to infect a susceptible receiver,
the infectiousness will change if the receiver is infected with the other disease.
Conversely, the infectiousness of a disease is affected by the state of the infector
spreading it. If the infector has both diseases, their infectiousness will change.
This model, which was originally intended for use with SIS and SIR cascade
models, is the basis for our approach in the independent cascade.

We must allow for both positive and negative relationships when concepts can
interact. If a concept c affects c′ in a positive way, we call it boosting, while if c is
inhibiting c′ then the effect is negative. How concepts spread in a given cascade
model will change the exact effect of boosting and inhibiting. In general, boosting
a concept makes it more likely to activate on a node and inhibiting makes it less
likely. These relationships can be asymmetric: a concept could boost another
concept that inhibits it and vice versa.

The relationship between two concepts, c and c′ is defined by two concept
interaction factor (CIF) functions, which describe the effect of the interaction
on the infector and receiver respectively. Each concept active on an infector will
be able to affect the spread of any other concept active on the infector. Concepts
do not act independently in the real world, their combination and interaction
will affect which concepts a node spreads, and how infectious that spreading
is. We refer to these interactions as the internal effect of a given concept on
the infector. The function CIFint(c, c′) represents how concept c′ affects the
spread of c when an infector with both concepts active attempts to spread c.
For the receiver, we consider the concepts it has active and the external concept
that attempts activation. The concepts already active on a node will affect how
willing it is to adopt new concepts. Concepts a node has already activated may
make it more or less amenable to new incoming concepts, affecting the chance of
activation success. The function CIFext(c, c′) represents how concept c′ affects
the chance of a successful attempt by an infector to activate concept c on a
receiver with c′ active. These functions are both bounded in the range of [-1,1].
If c′ inhibits c, these functions return a value below 0, while above 0 indicates a
boosting relationship. If c′ does not affect c the functions return 0.

Since real-world environments may have more than 2 concepts we must evalu-
ate the effect the infector’s internal and receiver’s external environment will have
on the concept currently spreading. Two concept interaction environment func-
tions characterise these effects, CIEint(Cn, c) and CIEext(Cn, c) describe the
internal and external environment respectively for a spreading concept c and set
of concepts active on node n, Cn. These functions will take into account whether
each concept in Cn boosts or inhibits c and return a value that represents how
the combined effects of all the concepts in Cn affect either the infector’s ability
to spread c or the receiver’s receptiveness to c.

The notion of concept interaction is independent of the cascade model consid-
ered. For illustration, in this paper we focus on the independent cascade [14], as
it has been the focus for much influence maximisation research, and extend it to
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account for multiple interacting concepts. In the standard independent cascade,
an infector has chance p of making a neighbour active. With multiple concepts
this probability is affected by the CIEint function of the infector and the CIEext

function of the receiver. When node n attempts to activate concept c on node
m, the probability of success in the interactive independent cascade becomes:

psc = pc ∗ (1 + CIEint(Cn, c) + CIEext(Cm, c))

Where pc is the baseline probability for that concept. CIEint and CIEext are
bounded to prevent unbalanced boosting compared to inhibiting. Boosting and
inhibiting should have similar impact, rather than one offering more significant
change. Therefore, we define the concept interaction environment functions as:

CIEint(Cn, c) = max(−1/2,min(1/2,
∑

c′∈Cn

CIFint(c, c′)))

CIEext(Cn, c) = max(−1/2,min(1/2,
∑

c′∈Cn

CIFext(c, c′)))

This means that psc can range between [0, pc ∗2]. Since we must consider each
node’s environment and the resulting effect on the current concepts spread, this
value will be calculated for each interaction.

Cascades proceed in rounds, with an initial set of active nodes for each con-
cept. Nodes can be in more than one initial set. Each node in the initial set for
a concept will attempt to active that concept on each neighbour that is inactive
for that concept. Each successfully activated neighbour will attempt to activate
its neighbours in the next round. Nodes make one attempt on each neighbour
for each concept they have active, and when no concept activates new nodes the
cascade ends. For simplicity in this paper, we adopt the assumption that nodes
will never deactivate a concept.

4 Heuristics for Node Selection

Several heuristics have been proposed for influence maximisation, as discussed
in Sect. 2. In this section we introduce the main existing heuristics and propose
two new methods: Concept Aware Single Discount and Expected Infected, which
aim to take advantage of concept interaction.

Degree Based Selection. Degree based selection is the simplest heuristic, and has
the advantage of only using attributes of the network, meaning that it is cheap
to compute. With the degree heuristic we simply select the k nodes with the
highest degree, an approach that has previously been shown to be effective [14].

Single Discount. When a node is added to the selection set, each of its neighbours
has a chance to be activated in the first subsequent round of a cascade. How-
ever, if it is known that a node will become activated, adding it to the selection
set provides no additional value, since that node will be activated regardless of
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whether it is added to the selection set. This is the motivation behind the single
discount heuristic. When a node n is placed into the selection set, the degree of
all neighbouring nodes is lowered by 1 to represent their reduced network value
(i.e. the number of potential activations they can create has reduced since n is
already known to be active). Selection using the single discount heuristic pro-
ceeds in rounds, selecting the highest degree node and discounting its neighbours
until the desired selection size is reached [6].

Concept Aware Single Discount Heuristic. Introducing concept interaction into
the environment requires reconsideration of how concepts spread through a net-
work. Each node can now affect the reach of a concept’s spread based on the
other concepts they have active. Node degree is typically a good indicator of
influence, however in a concept interactive environment this is not always the
case. A node with many inhibiting concepts will be less desirable than a node
with many boosting concepts if their degrees are equal. Similarly, if a node has
many neighbours with active inhibiting concepts, its influence is likely to be low.

We propose a new heuristic, Concept Aware Single Discount (CASD), that
weights the degree of a node based on its own concept environment and that of its
neighbours, with the aim of providing a more accurate value of node desirability.
Specifically, for CASD we define node utility as:

Uc(v) = CIEint(Cv, c) +
∑

n∈N(v)

1 + CIEext(Cn, c)

where N(v) is v’s set of neighbours. Since we are attempting to select nodes that
would help to maximise the spread of the targeted concept, the internal environ-
ment of a node is a good indicator of node value along with its weighted degree.
The external environment of a neighbour of v affects the likelihood of v activat-
ing it. The aim of the heuristic is to target nodes with many boosting neighbours
and avoid those surrounded by inhibiting nodes. Therefore, CIEext(Cn, c) is used
to increase or decrease the contribution a neighbour makes to the degree of a
node. This allows for the concept environment of a node and its neighbours to
be considered when evaluating it’s worth to the selection set.

Selection proceeds in rounds, with the highest valued node selected each
round. When a node n is added to the seed set, neighbour v has its utility
updated accordingly:

Uc(v) = Uc(v) − (1 + CIEext(Cn, c))

In the same way as Single Discount, we remove the value contributed by
the neighbour as it can no longer be activated. Once all neighbours have been
updated, the next selection is made, until the required number of nodes is
selected.

Degree Discount. Degree discount has been shown to be effective in approaching
the optimal solution with reasonable computational overhead [6]. It relies on
calculating the expected nodes gained from adding a given node to the selection
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set. When a node is added, the expected gain of adding its neighbours is lowered.
Additionally, those neighbours now have a chance to be activated in the first
round of a cascade. The heuristic therefore weights the degree of a node based
on these factors, updating the value for any neighbours when a node is added to
the selection set. Nodes are initially ranked by degree, and when a node is added
to the seed set neighbours have their degree set to dv − 2tv − (dv − tv) ∗ tv ∗ p,
where dv is the original degree, tv is the number of neighbours in the seed set
and p is the probability of infection. This calculation is based on the expected
benefit of such nodes (details of its derivation can be found in [6]).

Expected Infected Heuristic. It is important to consider the environment of a
node and its neighbours when selecting nodes. The expected payoff from a node
will change if it is surrounded by inhibiting concepts compared to boosting ones.
Degree Discount is successful because it considers the expected number of acti-
vations for a node to decide its value. However, since it is intended for a single
cascade model, it requires updating to consider concept interaction. We propose
a new heuristic, Expected Infected, with the aim of accounting for these effects.

For each node, v, we consider the set of neighbours with chosen concept c
active, ANc(v). Each of these neighbours will have a chance to activate v, which
if successful removes any additional value v would have. The probability of v
having c activated by one of these neighbours, pa(c, v), is:

pa(c, v) =
∑

n∈ANc(v)

OPc(n, v)

The sum of the individual chances of each neighbour to activate concept c
on v, known as OPc(n, v), can be defined as:

OPc(n, v) = pc ∗ (1 + CIEint(Cn, c) + CIEext(Cv, c))

We can now determine the number of activations from N(v) that can be
expected as a result of activating v, as follows:

EAc(v) = 1 +
∑

n∈N(v)\ANc(v)

OPc(v, n)

In addition to v itself, for each non-active neighbour, we have a OPc(v, n)
chance to activate concept c. Summing the probabilities for each neighbour gives
the expected number of neighbours v will activate. However, the chance that v
will be activated by a neighbour must also be considered, and so the expected
utility for adding v to the seed set is given by:

Uc(v) = (1 − pa(c, v)) ∗ EAc(v)

where 1 − pa(c, v) is the chance of v not being activated. If activated anyway, v
will give no additional value. Accounting for this requires scaling EAc(v) by the
probability that v does not get activated. Initially nodes have a value of EAc(v),
since there will be no active neighbours.
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Table 1. Experimental Parameters

Parameter Values

Graph Type Small-world, Scale-free

Graph Size (nodes) 1000, 5000

Boost Proportion 0, 0.1, 0.2, 0.3, 0.4

Inhibit Proportion 0, 0.1, 0.2, 0.3, 0.4

Initial set size 1 %, 2.5 % or 5 % of graph size

Intervention set size 1 %, 2.5 %, 5 %, 7.5 % or 10 % of graph size

Rounds before intervention 5, 10, 25

In each selection round, we add the node with the highest value for this
heuristic and update its neighbours accordingly, continuing until the selection
set is the desired size.

5 Experimental Approach

To evaluate the effectiveness of our proposed heuristics in the context of multi-
ple interacting concepts, we perform simulations using the interactive indepen-
dent cascade model proposed in Sect. 3. Each simulation is performed using 10
concepts, with an activation probability for any concept of 0.05. We use the
heuristics introduced in Sect. 4, along with random selection to provide a base-
line for comparison. The network topologies listed in Table 1 were used, since
they exhibit characteristics found in real-world social networks.

For each simulation, we determine the number of concepts boosted and inhib-
ited by a given concept by selecting from a Gaussian distribution, with a mean
of boost proportion∗10 and inhibit proportion∗10 respectively, and a standard
deviation of 2.5. This, with the proportions defined in Table 1, prevents concepts
being too similar and allows for more realistic environments. The final number
of concepts boosted or inhibited by a single concept is restricted to be in the
range [0, 5).

The initial set of nodes for each concept is selected uniformly at random,
and is the size same for all concepts. The cascade proceeds for a fixed num-
ber of iterations (a burn-in period) until an intervention occurs, at which point
the targeted concept will activate an additional set of nodes selected using a
chosen heuristic. The burn-in period before intervention is necessary since the
concept aware heuristics require nodes to have concepts activated prior to selec-
tion. When selecting intervention nodes, the initial value of a node is discounted
considering active neighbours as dictated by the chosen heuristic. This helps
to compensate for heuristics that assume no nodes are active at the start. Each
heuristic is used for interventions in 100 runs for each combination of parameters
in Table 1.
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(a) Scale-free network of 1000 nodes (b) Small-world network of 1000 nodes

Fig. 1. Total activations against proportion of boosting concepts

6 Results

We initially compare the performance of each of the heuristics introduced above
for a range of parameters. Random selection performed significantly worse than
other heuristics in all cases, and while Degree was less effective than the other
heuristics it was by a much smaller margin. Therefore, for simplicity of pre-
sentation, we do not consider Random selection further. Figure 1a shows the
performance of the heuristics as the proportion of boosting concepts increases.
We can see that Expected Infected performs best and out-performs our other
proposed heuristic, CASD, with results for other topologies and populations
mirroring this result. It can be seen that CASD’s performance varies based on
the environment, at times out-performing degree discount but not consistently.
Therefore, the remainder of our analysis focuses on comparing Expected Infected
to the best performing of the existing heuristics, namely Degree Discount.

Expected Infected generally outperforms Degree Discount, although in scale-
free environments it suffers. Overall, the difference in performance is larger in
small-world networks than in scale-free, as shown by Fig. 1. This is likely due
to the difference in connectivity these two network environments present. In
a small-world network, most nodes can be reached with just a few hops from
any node, but most nodes do not neighbour each other. Scale-free networks, in
comparison to small-world, tend to be more connected and nodes are more likely
to be direct neighbours. Boosting concepts seem more advantageous in small-
world networks, perhaps since they can allow concepts to cascade for extra hops,
and in an environment where most nodes can be reached in a few hops this can
greatly help with activation numbers. In scale-free networks however, the high
density means each node is more likely to have a high degree, making it easier
to spread a concept to at least one neighbour.
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(a) Scale-free network (b) Small-world network

Fig. 2. Difference in activations of Expected Infected (EI) and Degree Discount (DD)
against boosting proportions for 1000 and 5000 node graphs

As the proportion of boosting concepts rises, all heuristics improve their total
activations, demonstrating the impact of concepts interacting. The advantage
of Expected Infected is stable for smaller populations, but is more varied in
larger populations. It seems that other network aspects counteract the benefit
of targeting boosting concepts. For instance, in larger graphs encountering other
concepts may be rarer, making smaller populations more sensitive to concept
interaction.

Targeting boosting concepts seems more effective in small-world environ-
ments, as their proportion within the network increases. As Fig. 2 shows, there
is a small overall decrease in performance difference between Expected Infected
and Degree Discount for the smaller scale-free environments. In larger popula-
tions there is, overall, a small increase. The results for small-world environments
demonstrate a steady performance, increasing slightly at higher proportions for
both population sizes. The drop off in performance at high boosting proportions
for scale-free networks shows that as boosting concepts become more numer-
ous in this environment, explicitly targeting them becomes less advantageous.
Naturally, the more boosting concepts exist the easier it is to encounter them by
chance. Furthermore, due to their construction through preferential attachment,
scale-free networks often have a core group of nodes with high degree. Both
Expected Infected and Degree Discount will target nodes of high degree, and
such nodes will be more capable of utilising nearby boosting concepts without
explicitly targeting them as the proportion of boosting concepts increases. Small-
world networks are less likely to have these central nodes, and so the advantage
gained from boosting concepts is more valuable.

It can be seen that the performance of Expected Infected compared to Degree
Discount suffers a drop of six activations from 0 to a 0.2 proportion of boost-
ing concepts in larger scale-free networks. Then, from a proportion of 0.2 to 0.3
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(a) Scale-free network (b) Small-world network

Fig. 3. Difference in activations of Expected Infected (EI) and Degree Discount (DD)
against inhibiting proportions for 1000 and 5000 node graphs

there is a dramatic rise in the performance difference, with Expected Infected
having, on average, 9 more activations. The small drop after this at a pro-
portion of 0.4, considering the previous increase, suggests the existence of an
optimum proportion of boosting concepts where explicitly targeting them gives
a significant benefit. The environment that creates a particular optimum is not
clear. It appears to be a more significant factor within scale-free networks, pos-
sibly due to their construction being based around hub nodes. Furthermore, the
method of choosing the proportion of boosting and inhibiting concepts for a given
single concept may also have an effect. The fairly large standard deviation for
the Gaussian distribution, considering there are only 10 concepts within any
network, means then number of boosting concepts can be quite varied and at
lower mean proportions will often be 0. Future work will explore the effect of
changing the standard deviation of the Gaussian distribution to investigate this
hypothesis.

Observing performance against the proportion of inhibiting concepts, Fig. 3
shows that performance tends to increase with more inhibiting concepts. This
increase is more pronounced in small-world networks, especially in the larger
networks. At a high proportion of inhibiting concepts, it becomes difficult to
avoid them by chance. In a heavily inhibiting environment, high degree nodes
have a higher chance to encounter inhibiting nodes and consequently have their
influence diminished. Part of the effectiveness of Expected Infected appears to
be in avoiding inhibiting concepts, rather than in taking advantage of boosting
ones, as the highest proportion of inhibiting concepts generally exhibits the best
performance difference. Scale-free networks demonstrate this behaviour at lower
inhibiting proportions, though at higher levels Expected Infected begins to per-
form worse compared to degree discount. Once again, this could be due to the
hub nodes finding the avoidance of inhibiting concepts impossible.
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In many of the environments represented within Figs. 2 and 3 there is a
decline in performance when the proportion of boosting or inhibiting concepts
reaches 0.2. At this level, it is likely that the boosting/inhibiting concepts are
numerous enough that they can be encountered by chance. This will lower the
advantage that can be gained by actively targeting or avoiding these concepts.
This decline is more prominent in larger networks, likely due to the number of
nodes causing the concepts to be sufficiently spread out that they will likely not
significantly interact with each other. Together, these factors provide an envi-
ronment that diminishes the advantages of Expected Infected, hence a drop in
performance. Expected infected seems to perform best in two scenarios, namely,
when interaction between concepts is low and it can target the advantageous
areas that exist or when inhibiting concepts are common and it can actively
avoid their detrimental effects.

The size of the initial and intervention sets also impacts performance as
shown by Fig. 4. For small-world networks we can see in Fig. 4a that larger initial
sets results in better performance and, mostly, increasing intervention size also
improves the performance over degree discount. This increase in coverage makes
concept interaction more likely and the consideration of other concepts more
advantageous. Furthermore, as the initial and intervention set sizes increase,
Degree Discount will find avoiding inhibiting concepts harder, demonstrating
the advantage of avoiding them. In scale-free networks the relationship is less
consistent, as the environment around the central nodes likely plays a bigger
part. Figure 4b shows that at higher populations, performance often actually
decreases as intervention set size increases. With the central nodes likely being
targeted by all intervention set sizes and the importance of concept interaction
consideration, the extra nodes in bigger intervention sets likely do not have many
concepts nearby to take advantage of. This means that degree is more important
for these extra nodes, and Expected Infected loses the advantage of boosting and
inhibiting nodes. Furthermore, we can see most environments in Fig. 4 have a
peak, followed by a harsh decline in performance. In small-world environments
the peak happens earlier for larger initial sets, likely a result of the structure of
small-world networks. Since most nodes can be reached by any node in a small
number of hops, the chance of choosing a node for the intervention set near
other concepts increases for all heuristics as the initial set grows. This means
that other heuristics gain from concept interaction, lessening Expected Infected’s
advantage.

A relationship also appears to exist between network density and performance
of Expected Infected, since as density increases Expected Infected performs better.
The denser a network, the more edges each node has, and avoiding inhibiting nodes
by chancebecomes less likely, potentially impactingperformance.The effect of such
network properties will be a key focus in our future work.

Overall the Expected Infected heuristic performs slightly, but consistently,
better then Degree Discount in a non-blocking multi-concept environment aside
from in some scale-free environments, and out-performs all other heuristics
considered. This includes the second proposed heuristic, CASD, which itself
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(a) 1000 node small-world network (b) 5000 node scale-free network

Fig. 4. Difference in activations of Expected Infected (EI) against Degree Discount
(DD) for different initial sets against intervention set size

performed inconsistently. CASD occasionally outperforms Degree Discount,
particularly in small-world environments or those focused on inhibiting con-
cepts. These are also the environments in which Expected Infected performs
best, highlighting that these environments contain key properties for making
use of concept interaction. The avoidance of inhibiting concepts seems to be a
particular advantage of considering concept interactions, preventing the spread
of a concept from being hindered.

7 Conclusion

The study of how ideas, strategies or concepts propagate through a network
has many applications. For example, simulations of disease and their infection
characteristics can help identify areas at risk of an epidemic that should be the
focus of containment, and detecting the influential individuals in a social net-
work allows for the improvement and refining of marketing strategies. This paper
introduced an extension of the concept interaction model by Sanz et al. [20] to
allow for n concepts within the independent cascade. We also proposed two
new heuristics, Expected Infected which uses concept relationships to find the
expected value of activating a node and Concept Aware Single Discount which
adapts the Single Discount heuristic for an environment with concept interac-
tions. Expected Infected was found to out-perform Degree Discount consistently
in an interacting concept environment. Specifically, the avoidance of inhibit-
ing factors helps Expected Infected to avoid a concept’s spread being hindered.
Concept Aware Single Discount was found to be inconsistent, and while it could
out-perform Degree Discount in some environments, it is always out-performed
by Expected Infected.
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Further work to quantify the effect of network properties on concept inter-
actions is needed, to give a better understanding of when best to utilise concept
interaction based heuristics. This will include investigating the effect on perfor-
mance from changing the density of scale-free graphs and the Gaussian function
for selecting boosting and inhibiting concept proportions. Observing how our
results scale with the increase of concepts within the network would also be of
interest, to see if the consideration of inhibiting concepts remains important.
The current model is also simplistic in its approach to concept interaction, and
extending the model to allow for nodes to deactivate concepts or for concepts
to deactivate other concepts could provide more realism to these simulations. If
concepts can be deactivated it is likely avoiding inhibiting concepts will become
even more important, however the extent to which this is the case remains to be
seen.
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