
Chapter 12
Affective Music Information Retrieval

Ju-Chiang Wang, Yi-Hsuan Yang and Hsin-Min Wang

Abstract Much of the appeal of music lies in its power to convey emotions/moods
and to evoke them in listeners. In consequence, the past decade witnessed a growing
interest inmodeling emotions frommusical signals in themusic information retrieval
(MIR) community. In this chapter, we present a novel generative approach to music
emotion modeling, with a specific focus on the valence–arousal (VA) dimension
model of emotion. The presented generative model, called acoustic emotion Gaus-
sians (AEG), better accounts for the subjectivity of emotion perception by the use
of probability distributions. Specifically, it learns from the emotion annotations of
multiple subjects a Gaussian mixture model in the VA space with prior constraints
on the corresponding acoustic features of the training music pieces. Such a computa-
tional framework is technically sound, capable of learning in an online fashion, and
thus applicable to a variety of applications, including user-independent (general) and
user-dependent (personalized) emotion recognition, emotion-based music retrieval,
and tag-to-VA projection. We report evaluations of the aforementioned applications
of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the
effectiveness of AEG and to showcase how evaluations are conducted for research
on emotion-based MIR. Directions of future work are also discussed.

12.1 Introduction

Automatic music emotion recognition (MER) aims at modeling the association
between music and emotion so as to facilitate emotion-based music organization,
indexing, and retrieval. This technology has emerged in recent years as a promising
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M. Tkalčič et al. (eds.), Emotions and Personality in Personalized Services,
Human–Computer Interaction Series, DOI 10.1007/978-3-319-31413-6_12

227



228 J.-C. Wang et al.

solution to deal with the huge amount of music information available digitally [1,
25, 33, 77]. It is generally believed that music cannot be composed, performed, or
listened to without affection involvement [32]. The pursuit of emotional experience
has also been identified as one of the primary motivations and benefits of music
listening [31]. In addition to music retrieval, music emotion also finds applications
in context-aware music recommendation, playlist generation, music therapy, and
automatic music accompaniment for other media content including image, video,
and text, amongst others [37, 51, 66, 78].

Despite the significant progress that has been made in recent years, MER is still
considered as a challenging problem because the perception of emotion in music is
usually highly subjective. A single, static ground-truth emotion label is not sufficient
to describe the possible emotions different people perceive in the same piece ofmusic
[15, 26]. On the contrary, it may be more reasonable to learn a computational model
from multiple responses of different listeners [47] and to present probabilistic (soft)
rather than deterministic (hard) emotion assignments as the final result. In addition,
the subjective nature of emotion perception suggests the need of personalization in
systems for emotion-based music recommendation or retrieval [82]. Early work on
MER often chose to sidestep this critical issue by either assuming that a common
consensus can be achieved [25, 62], or by simply discarding music pieces for which
a common consensus cannot be achieved [38].

To help address this issue, we have proposed a novel generative model referred to
as acoustic emotion Gaussians (AEG) in our prior work [65–68, 72]. The name of
the AEG model comes from its use of multiple Gaussian distributions to model the
affective content of music. The algorithmic part of AEG has been first introduced
in [67], along with the preliminary evaluation of AEG for MER and emotion-based
music retrieval. More details about the analysis part of the model learning of AEG
can be found in a recent article [72]. Due to the parametric nature of AEG, model
adaptation techniques have also been proposed to personalize an AEG model in an
online, incremental fashion, rather than learning from scratch [7, 68]. The goal of
this chapter is to position the AEG model as a theoretical framework and to provide
detailed information about the model itself and its application to personalized MER
and emotion-based music retrieval.

We conceptualize emotion by the valence–arousal (VA) model [49], which has
been used extensively by psychologists to study the relationship between music
and emotion [13, 56]. These two dimensions are found to be the most fundamental
through factor analysis of self-report of human’s affective response to music stimu-
lus. Despite differences in nomenclature, existing studies give similar interpretations
of the resulting factors, most of which correspond to valence (or pleasantness; pos-
itive/negative affective states) and arousal (or activation; energy and stimulation
level). For example, happiness is an emotion associated with a positive valence and
a high arousal, while sadness is an emotion associated with a negative valence and a
low arousal.We refer to the 2-D space spanned by valence and arousal as theVA space
hereafter. Moreover, we are concerned with the emotion an individual perceives as
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being expressed in a piece of music, rather than the emotion the individual actu-
ally feels in response to the piece. This distinction is necessary [15], as we do not
necessarily feel sorrow when listening to a sad tune, for example.

However, the descriptive power of VA model has been questioned by several
researchers, and various extensions or alternative solutions have been proposed [14,
46, 85]. Beyond the valence and arousal, adding more dimensions (e.g., potency,
or dominant–submissive) might help resolve the ambiguity between affective terms,
such as anger and fear, which are close to one another in the second quadrant of the
VA space [2, 10]. AEG is theoretically extendable to model the emotion in higher
dimensions. Nevertheless, we stay with the 2-D emotion model here, partly because
it is easier to explain AEG graphically, and partly because to date many existing
music datasets adopt VA labels [8, 52, 59, 79].

In this chapter, we focus on the dimensional emotion (VA) values. Interested read-
ers can refer to [1, 24, 57] for studies and surveys on categorical MER approaches
that view emotions as discrete labels such as mood tags. As the dimensional and
categorical approaches may offer complementary advantages [74], researchers have
studied the relationship between the discrete emotion labels and the dimensional
VA values [50, 65]. Due to its probabilistic nature, AEG can be combined with a
probabilistic classification model. Such a combination leads to an approach (called
Tag2VA) that is able to project a mood tag to the VA space [65].

The chapter is organized as follows. We first review the related work in Sect. 12.2.
Then, we present the mathematical derivation and learning algorithm of AEG in
Sect. 12.3, followed by the personalization algorithm in Sect. 12.4. Sections12.5,
12.6, and 12.7 present the applications of AEG to MER, emotion-based music
retrieval, and the Tag2VA projection, respectively. Finally, we conclude in Sect. 12.8.

12.2 Related Work on Dimensional Music Emotion
Recognition

Early approaches to MER [39, 81] assumed that the perceived emotion of a music
piece can be represented as a single point in the VA space, in which the valence and
arousal values are considered as independent numerical values. The ground-truth
VA values of a music piece is obtained by averaging the annotations of a number of
human subjects, without considering the covariance of the annotations. To predict
the VA value from the feature vector of a music piece, a regression model such as
support vector regression (SVR) [55] can be applied. Regression model learning
algorithms typically minimize the mismatch (e.g., mean squared loss) between the
predicted and the ground-truth VA values in the training data.

As emotion perception is rarely dependent on a single music factor but a com-
bination of them [19, 30], algorithms used feature descriptors that characterize the
loudness, timbre, pitch, rhythm,melody, harmony, or lyrics ofmusic [22, 43, 54, 57].
In particular, while it is usually easier to predict arousal using, for example, loudness
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Fig. 12.1 Subjects’ annotations of the perceived emotion of four 30-s clips, which from left to
right are Dancing Queen by ABBA, Civil War by Guns N’ Roses, Suzanne by Leonard Cohen,
and All I Have To Do Is Dream by the Everly Brothers. Each circle here corresponds to a subject’s
annotation, and the overall emotion for a clip can be approximated by a 2-D Gaussian distribution
(the red cross and blue ellipse). The ellipse outlines the standard deviation of a Gaussian distribution

and timbre features, the prediction of valence has been found more challenging [57,
69, 76]. Cross cultural aspects of emotion perception have also been studied [23]. To
exploit the temporal continuity of emotion variation within a piece of music, tech-
niques such as system identification [34], conditional random fields [27, 53], hidden
Markov models [40], deep recurrent neural networks [73], or dynamic probabilistic
model [71] have also been proposed. Various approaches and features for MER have
been evaluated and compared using benchmarking datasets comprising over 1,000
Creative Commons licensed music pieces from the Free Music Archive, in the 2013
and 2014 MediaEval ‘Emotion in Music’ tasks [59, 60].

Recent years have witnessed growing attempts to model the emotion of a music
piece as a probability distribution in the VA space [7, 52, 67, 75] to better account
for the subjective nature of emotion perception. For instance, Fig. 12.1 shows the
VA values applied by different annotators to four music pieces. To characterize the
distribution of the emotion annotations for each clip, a typical way is to use a bivariate
Gaussian distribution, where the mean vector presents the most possible VA values
and the covariance matrix indicates its uncertainty. For a clip with highly subjective
affective content, the determinant of the covariance matrix would be larger.

Existing approaches for predicting the emotion distribution of a music clip from
acoustic features fall into two categories. The heatmap approach [53, 75] quantizes
each emotion dimension by W equally spaced cells, leading to aW × W grid repre-
sentation of the VA space. The approach trains W 2 regression models for predicting
the emotion intensity of each cell. Higher intensity at a cell indicates that people
are more likely to perceive the corresponding emotion from the clip. The emotion
intensity over the VA space creates a heatmap-like representation of emotion distrib-
ution. However, heatmap is not a continuous representation of emotion, and emotion
intensity cannot be strictly considered as a probability estimate.

The Gaussian-parameter approach [52, 75], on the other hand, models emotion
distribution of a clip as a bivariate Gaussian and trains multiple regressors, each for a
parameter of the mean vector and the covariance matrix. This makes it easy to apply
lessons learned from modeling the mean VA values. In addition, performance analy-
sis of this approach is easier; one can analyze the importance of different acoustic
features to each Gaussian parameter individually. However, since the regression
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models are trained independently, the correlation between valence and arousal is not
exploited. The parameter estimation of the mean and variance is disjoined as well.

A different methodology to address the subjectivity is to call for a user-dependent
model trained on annotations of a specific user to personalize the emotion predic-
tion [79, 84, 86]. In [79], two personalization methods are proposed; the first trains
a personalized MER system for each individual specifically, whereas the second
groups users according to some personal factors (e.g., gender, music experience, and
personality) and then trains group-wise MER system for each user group. Another
two-stage personalization scheme has also been studied [82]: the first stage esti-
mates the general perception of a music piece, whereas the second one predicts the
difference between the general perception and the personal one of the target user.

We note that none of the aforementioned approaches renders a strict probabilistic
interpretation [72]. In addition, many existing work is developed on discriminative
models such asmultiple linear regression andSVR. Fewattempts aremade to develop
a principled probabilistic framework that is technically sound formodeling themusic
emotion and that permits extending the user-independent model to a user-dependent
one, preferably in an online fashion.

We also note that most existing work focuses on the annotation aspect of music
emotion research, namely MER. Little work has been made to the retrieval aspect—
the development of emotion-based music retrieval systems [77]. In what follows, we
present the AEG model and its applications to the both of these two aspects.

12.3 Acoustic Emotion Gaussians: A Generative
Approach for Music Emotion Modeling

In [65–68, 72], we proposed AEG, which is fundamentally different from the exist-
ing regression or heatmap approaches. As Fig. 12.2 shows, AEG involves the gener-
ative process of VA emotion distributions from audio signals. While the relationship
between audio and music emotion may sometimes be complicated and difficult to
observe directly from an emotion-annotated corpus, AEG uses a set of clip-level
latent topics {zk}Kk=1 to resolve this issue.

Fig. 12.2 Illustration of the generative process of the AEG model
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We first define the terminology and explain the basic principle of AEG. Suppose
that there are K audio descriptors {Ak}Kk=1, each is related to some acoustic feature
vectors of music clips. Then, we map the associated feature vectors of Ak to a clip-
level topic zk . To implement each Ak , we use a single Gaussian distribution in the
acoustic feature space. The aggregated Gaussians of {Ak}Kk=1 is called an acoustic
GMM (Gaussian mixture model). Subsequently, we map each zk to a specific area in
the VA space, which is modeled by a bivariate Gaussian distribution Gk . We refer to
the aggregated Gaussians of {Gk}Kk=1 as an affective GMM. Given a clip, its feature
vectors are first used to compute the posterior distribution over the topics, termed
as a topic posterior representation θ . In θ , the posterior probability of zk (denoted
as θk) is associated with Ak and will then be used to show the clip’s importance to
Gk . Consequently, the posterior distribution θ = {θk}Kk=1 can be incorporated into
learning the affective GMM as well as making emotion prediction for a clip.

AEG-based MER follows the flow depicted in Fig. 12.2. Based on θ of a test
clip, we obtain the weighted affective GMM

∑
k θkGk , which is able to generate

various emotion distribution. Following this sense, if a clip’s acoustic features can
be completely described by the h-th topic zh , i.e. θh = 1, and θk = 0, ∀k �= h, then
its emotion distribution would exactly follow Gh . As will be described in Sect. 12.5,
we can further approximate

∑
k θkGk by a single, representative affective Gaussian

Ĝ for simplicity. This is illustrated in the rightmost of Fig. 12.2.

12.3.1 Topic Posterior Representation

The topic posterior representation of a music clip is generated from its audio. We
note that the temporal dynamics of audio signals is regarded as essential for human
to perceive musical characteristics such as timbre, rhythm, and tonality. To capture
more local temporal variation of the low-level features, we represent the acoustic
features at a time instance in the segment-level, which corresponds to sufficiently
long duration (e.g., 0.4 s). A segment-level feature vector x can be formed by, for
example, concatenating the mean and standard deviation of the frame-level feature
vectors within the segment. As a result, a clip is divided into multiple overlapped
segments which are then represented by a sequence of vectors, {x1, . . . , xT }, where
T is the length of the clip.

To start the generative process of AEG, we first learn an acoustic GMM as the
bases to represent a clip. This acoustic GMM can be trained using the expectation–
maximization (EM) algorithm on a large set of segment-level vectors F extracted
fromexistingmusic clips. The learned acousticGMMdefines the set of audio descrip-
tors {Ak}Kk=1, and can be expressed as follows:

p(x) =
K∑

k=1

πk Ak(x | mk,Sk) , (12.1)
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where Ak(·) is the k-th component Gaussian distribution, and πk ,mk , and Sk are its
corresponding prior weight, mean vector, and covariance matrix, respectively. Note
that we substitute equal weight for the GMM (i.e., πk = 1

K , ∀k), because the original
πk learned from F does not imply the prior distribution of the feature vectors in a
clip. Such a heuristic usually results in better performance as pointed in [63].

Suppose that we have an emotion-annotated corpus X consisting of N music
clips {si }Ni=1. Given a clip si = {xi,t }Tit=1, we then compute the segment-level posterior
probability for each feature vector in si based on the acoustic GMM,

p(Ak | xi,t ) = Ak(xi,t | mk,Sk)
∑K

h=1 Ah(xi,t | mh,Sh)
. (12.2)

Finally, the clip-level topic posterior probability θi,k of si can be approximated by
averaging the segment-level ones,

θi,k ← p(zk | si ) ≈ 1

Ti

Ti∑

t=1

p(Ak | xi,t ) . (12.3)

This approximation assumes that θi,k is equally contributed by each segment of si
and thereby capable of representing the clip’s acoustic features. We use a vector
θ i ∈ R

K , whose k-th component is θi,k , as the topic posterior of si .

12.3.2 Prior Model for Emotion Annotation

To consider the subjectivity of emotional responses of a music clip, we ask multiple
subjects to annotate the clip. However, as some subjects’ annotations may not be
reliable, we introduce a user prior model to quantify the contribution of each subject.

Let ei, j ∈ R
2 (a vector including the valence and arousal values) denote one of the

annotations of si given by the j-th subject, and let Ui denote the number of subjects
who have annotated si . Note that eq, j and er, j , where q �= r , may not correspond to
the same subject. Then, we build the user prior model γ to describe the confidence
of ei, j in si using a single Gaussian distribution,

γ (ei, j | si ) ≡ G(ei, j | ai ,Bi ), (12.4)

where ai = 1
Ui

∑Ui
j=i ei, j , Bi = 1

Ui

∑Ui
j=1(ei, j − ai )(ei, j − ai )T , and G(e | ai ,Bi ) is

called the annotation Gaussian of si . One can observe what ai and Bi look like from
the four example clips in Fig. 12.1. Empirical results show that a single Gaussian
performs better than a GMM for setting up γ (·) [67].
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The confidence of ei, j can be estimated based on the likelihood calculated by
Eq.12.4. If an annotation is far away from the mean, it gives small likelihood accord-
ingly. In addition to Gaussian distributions, any criterion that is able to reflect the
importance of a user’s annotation of a clip can be applied to γ .

The probability of ei, j , referred to as the clip-level annotation prior, can be calcu-
lated by normalizing the likelihood of ei, j over the cumulative likelihood of all other
annotations in si ,

p(ei, j | si ) ≡ γ (ei, j | si )
∑Ui

r=1 γ (ei,r | si )
. (12.5)

Based on the clip-level annotation prior, we further define the corpus-level clip prior
to describe the importance of each clip,

p(si | X ) ≡
∑Ui

j=1 γ (ei, j | si )
∑N

q=1

∑Uq

r=1 γ (eq,r | sq)
. (12.6)

From Eqs. 12.5 and 12.6 we can make two observations. First, if a clip’s annotations
are consistent (i.e., Bi is small), it is considered less subjective. Second, if a clip
is annotated by more subjects, the corresponding γ model should be more reliable.
As a result, we can define the corpus-level annotation prior γi, j for each ei, j in the
corpus X by multiplying Eqs. 12.5 and 12.6:

γi, j ← p(ei, j | X ) ≡ γ (ei, j | si )
∑N

q=1

∑Uq

r=1 γ (eq,r | si )
, (12.7)

which is computed beforehand and fixed in learning the affective GMM.

12.3.3 Learning the Affective GMM

Given a training music clip si in the corpus X , we assume the emotional responses
can be generated from an affective GMM weighted by its topic posterior θ i ,

p(ei, j | θ i ) =
K∑

k=1

θi,kGk(ei, j | μk,Σk) , (12.8)

where Gk(·) is the k-th affective Gaussian with mean μk and covariance Σk to be
learned. Here θi,k stands for the fixed weight associated with Ak to carry the audio
characteristics of si . We therefore call θ i an acoustic prior. Then, the objective
function is in the form of the marginal likelihood function of the annotations
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p(E | X ,Λ) =
N∑

i=1

p(si | X )

Ui∑

j=1

p(ei, j | si )p(ei, j | θ i ,Λ)

=
N∑

i=1

Ui∑

j=1

p(si | X )p(ei, j | si )p(ei, j | θ i ,Λ)

=
N∑

i=1

Ui∑

j=1

p(ei, j | X )

K∑

k=1

θi,kGk(ei, j | μk,Σk) ,

(12.9)

where E = {ei, j }N ,Ui
i=1, j=1, X = {si , θ i }Ni=1, and Λ = {μk,Σk}Kk=1 is the parameter set

of the affective GMM. Taking the logarithm of Eq.12.9 and replacing p(ei, j | X ) by
γi, j leads to

L = log
∑

i

∑

j

γi, j
∑

k

θi,kGk(ei, j | μk,Σk) , (12.10)

where
∑

i

∑
jγi, j = 1. To learn the affective GMM, we can maximize the log-

likelihood in Eq.12.10 with respect to the Gaussian parameters. We first derive a
lower bound of L according to Jensen’s inequality,

L ≥ Lbound =
∑

i

∑

j

γi, j log
∑

k

θi,kGk(ei, j | μk,Σk) . (12.11)

Then, we treat Lbound as a surrogate of L and use the EM algorithm [3] to estimate
the parameters of the affective GMM. In the E-step, we derive the expectation over
the posterior distribution of zk for all the training annotations,

Q =
∑

i

∑

j

γi, j
∑

k

p(zk | ei, j )
(
log θi,k + logGk(ei, j | μk,Σk)

)
, (12.12)

where

p(zk | ei, j ) = θi,kGk(ei, j | μk,Σk)
∑K

h=1 θi,hGk(ei, j | μh,Σh)
. (12.13)

In the M-step, we first set the derivative of Eq.12.12 with respect to μk to zero and
obtain the updating form for the mean vector,

μ′
k ←

∑
i

∑
j γi, j p(zk | ei, j )ei, j

∑
i

∑
j γi, j p(zk | ei, j ) . (12.14)
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Following a similar line of reasoning, we obtain the update rule for Σk :

Σ ′
k ←

∑
i

∑
j γi, j p(zk | ei, j )(ei, j − μ′

k)(ei, j − μ′
k)

T

∑
i

∑
j γi, j p(zk | ei, j ) . (12.15)

Theoretically, theEMalgorithm iterativelymaximizes the Lbound value inEq.12.11
until convergence. One can fix the number of maximal iterations or set a stopping
criterion for the increasing ratio of Lbound.

Note that we can ignore the annotation prior by setting a uniform distribution, i.e.,
∀i, j , γi, j = 1. This case is called “AEG Uniform” in the evaluation. In contrast, the
case with nonuniform annotation prior is called “AEG AnnoPrior.”

12.3.4 Discussion

As Eqs. 12.14 and 12.15 show, the re-estimated parameters μ′
k and Σ ′

k are collec-
tively contributed by ei, j ,∀ i, j , with the weights governed by the product of γi, j
and p(zk | ei, j ). Consequently, the learning process seamlessly takes the annotation
prior, acoustic prior, and annotation clusters over the current affective GMM into
consideration. In such a way, the annotations of different clips can be shared with
one another according to their corresponding prior probabilities. This can be a key
factor that enables AEG to generalize the audio-to-emotion mapping.

As the affective GMM is getting fitted to the data, a small number of affec-
tive Gaussian components might overly fit to some emotion annotations, rendering
the so-called singularity problem [3]. When this occurs, the corresponding covari-
ance matrices would become non-positive definite (non-PD). Imagining that when
a component affective Gaussian is contributed by only one or two annotations, the
corresponding covariance shape will become a point or a straight line in the VA
space. To tackle this issue, we can remove the component Gaussian when it happens
to produce a non-PD covariance matrix during the EM iterations [72].

We note that “early stop” is a very important heuristic while learning the affective
GMM. We find that setting a small number for the maximal iteration (e.g., 7–11) or
a larger stopping threshold for the increasing ratio of Lbound (e.g., 0.01) empirically
leads to better generalizability. It can not only prevent the aforementioned singularity
problem but also avoid overly fitting to the training data. Empirical results show that
the accuracy of MER improves as the iteration evolves and then degrades when the
optimal iteration number has reached [72]. Moreover, AEG AnnoPrior empirically
converges faster and learns smaller covariances than AEG Uniform does.

12.4 Personalization with AEG

The capability for personalization is a very important characteristic that completes
the AEG framework, making it more applicable to real-world applications. As AEG
is a probabilistic, parametric model, it can incorporate personal information of a
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particular user via model adaptation techniques to make custom predictions. While
such personal information may include personal emotion annotation, user profile,
transaction records, listening history, and relevance feedback, we focus on the use
of personal emotion annotations in this chapter.

Because of the cognitive load for annotating music emotion, it is usually not easy
to collect a sufficient amount of personal annotations at once tomake the system reach
an acceptable performance level. On the contrary, a user may provide annotations
sporadically in different listening sessions. To this end, an online learning strategy [5]
is desirable. When the annotations of a target user are scarce, a good online learning
method needs to prevent over-fitting to the personal data in order to keep certain
model generalizability. In other words, we cannot totally ignore the contributions of
emotion perceptions from other users. Motivated by the Gaussian Mixture Model-
Universal Background Model (GMM-UBM) speaker verification system [48], we
first treat the affective GMM learned from broad subjects (called background users)
as a background (general) model, and then employ a maximum a posteriori (MAP)-
based method [16, 48] to update the parameters of the background model using the
personal annotations in an online manner. Theoretically, the resulting personalized
model will appropriately find a good trade-off between the target user’s annotations
and the background model.

12.4.1 Model Adaptation

In what follows, the acoustic GMM will stay fixed throughout the personalization
process, since it is used as a reference model to represent the music audio. In con-
trast, the affective GMM is assumed to be learned on plenty of emotion annotations
from quite a few subjects, so it possesses a sufficient representation (well-trained
parameters) for user-independent (i.e., general) emotion perceptions. Our goal is to
learn the personal perception with respect to the affective GMM Λ accordingly.

Suppose that we have a target user u� annotatingM number ofmusic clips denoted
asX� = {ei , θ i }Mi=1, where ei and θ i are the emotion annotation and the topic posterior
of a clip, respectively. We first compute each posterior probability over the latent
topics based on the background affective GMM,

p(zk | ei , θ i ) = θi,kGk(ei | μk,Σk)
∑K

h=1 θi,hGk(ei | μh,Σh)
. (12.16)

Then, we derive the expected sufficient statistics onX� over the posterior distribution
of p(zk | ei , θ i ) for the mixture weight, mean, and covariance parameters:

Γk =
M∑

i=1

p(zk | ei , θ i ) , (12.17)
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E(μk) = 1

Γk

M∑

i=1

p(zk | ei , θ i )ei , (12.18)

E(Σk) = 1

Γk

M∑

i=1

p(zk | ei , θ i )
(
ei − E(μk)

)(
ei − E(μk)

)T
. (12.19)

Finally, the new parameters of the personalized affective GMM can be obtained
according to the MAP criterion [16]. The resulting update rules are the forms of
interpolations between the expected sufficient statistics (i.e., E(μk) and E(Σk)) and
the parameters of the background model (i.e., μk and Σk) as follows

μ′
k ← αm

k E(μk) + (
1 − αm

k

)
μk , (12.20)

Σ ′
k ← αv

kE(Σk) + (
1 − αv

k

) (
Σk + μkμ

T
k

) − μ′
k(μ

′
k)

T . (12.21)

The coefficients αm
k and αv

k are data-dependent and are defined as

αm
k = Γk

Γk + βm
, αv

k = Γk

Γk + βv
, (12.22)

where βm and βv are related to the hyper parameters [16] and thus should be empir-
ically defined by users. Note that there is no need to update the mixture weights, as
they are already occupied by the fixed topic posterior weights.

12.4.2 Discussion

The MAP-based method is preferable in that we can determine the interpolation
factor that balances the contribution between the personal annotations and the back-
ground model without loss of model generalizability, as demonstrated by its superior
effectiveness and efficiency in speaker adaptation tasks [48]. If a personal annota-
tion {em, θm} is highly correlated to a latent topic zk (i.e. p(zk |em, θm) is large),
the annotation will contribute more to the update of {μ′

k,Σ
′
k}. In contrast, if the

user’s annotations have nothing to do with zh (i.e., the cumulative posterior proba-
bility Γh = 0), the parameters of {μ′

h,Σ
′
h} would remain the same as those of the

background model, as shown by the fact that αk would be 0.
Another advantage of the MAP-based method is that users are free to provide

personal annotations for whatever songs they like, such as the songs they are more
familiar with. This can help reduce the cognitive load of the personalization process.
As the AEG framework is audio-based, the annotated clips can be arbitrary and does
not have to be those included in the corpus for training the background model.

Finally, we note that the model adaptation procedure only needs to be performed
once, so the algorithm is fairly efficient. It only requires K times of computing the
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expected sufficient statistics and updating the parameters. In consequence, we can
keep refining the background model whenever a small number of personal anno-
tations are available, and readily use the updated model for personalized MER or
music retrieval. The model adaptation method for GMM is not limited to the MAP
method. We refer interested readers to [7, 35] for more advanced methods.

12.5 AEG-Based Music Emotion Recognition

12.5.1 Algorithm

As described in Sect. 12.3, we predict the emotion distribution of an unseen clip by
weighting the affective GMM using the clip’s topic posterior θ̂ = {θ̂k}Kk=1 as

p(e | θ̂ ) =
K∑

k=1

θ̂kGk(μk,Σk) . (12.23)

In addition, we can also use a single, representative affective Gaussian G(μ̂, Σ̂) to
summarize the weighted affective GMM. This can be done by solving the following
optimization problem

min
μ̂,Σ̂

K∑

k=1

θ̂k DKL
(
Gk(μk,Σk)

∣
∣
∣
∣ G(μ̂, Σ̂)

)
, (12.24)

where

DKL(GA ‖ GB) = 1

2

(
tr(Σ AΣ−1

B ) − log | Σ AΣ−1
B | +(μA − μB)T�−1

B (μA − μB) − 2
)

(12.25)

denotes the one-way (asymmetric) Kullback–Leibler (KL) divergence (a.k.a. rela-
tive entropy) [35] from GA(μA,Σ A) to GB(μB,Σ B). This optimization problem is
strictly convex in μ̂ and Σ̂ , which means that there is a unique minimizer for the two
variables, respectively [11]. Let the partial derivative with respect to μ̂ be 0, we have

∑

k
θ̂k(2μ̂ − 2μk) = 0 . (12.26)

Given the fact that
∑

k θ̂k = 1, we derive

μ̂ =
K∑

k=1

θ̂kμk . (12.27)
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Setting the partial derivative with respect to Σ−1
k to 0,

∑

k
θ̂k

(
Σk − Σ̂ + (

μk − μ̂
) (

μk − μ̂
)T

)
= 0 , (12.28)

we obtain the optimal covariance matrix by,

Σ̂ =
K∑

k=1

θ̂k

(
�k + (

μk − μ̂
) (

μk − μ̂
)T

)
. (12.29)

12.5.2 Discussion

Representing the predicted result as a single Gaussian is functionally necessary,
because it is easier and more straightforward to interpret or visualize the emotion
prediction to the users with only a single mean (center) and covariance (uncertainty).
However, this may run counter to the theoretical arguments given in favor of a GMM
that permits emotion modeling in finer granularity. For instance, it is inadequate
for the clips whose emotional responses are by nature bi-modal. We note that in
applications such as emotion-based music retrieval (cf. Sect. 12.6) and music video
generation [66], one can directly use the raw weighted GMM (i.e., Eq. 12.23) as the
emotion index of a song in response to queries given in the VA space. We will detail
this aspect later in Sect. 12.6.

The computation of Eqs. 12.27 and 12.29 is quite efficient. The complexity
depends mainly on K and the number of frames T of a clip: computing θk requires
KT operations (cf. Eq.12.2), whereas computing μ̂ and Σ̂ requires K vector mul-
tiplications and K matrix operations, respectively. This efficiency is important for
dealing with a large-scale music database and for application such as real-timemusic
emotion tracking on a mobile device [27, 53, 64, 70, 71].

12.5.3 Evaluation on General MER

12.5.3.1 Dataset

We use the AMG1608 dataset [8] for evaluating both general and personalizedMER.
The dataset contains 1,608 30-s music clips annotated by 665 subjects (345 are
male; average age is 32.0 ± 11.4) recruited mostly from the crowdsourcing platform
Mechanical Turk [44]. The subjectswere asked to rate theVAvalues that best describe
their general (instead of moment-to-moment) emotion perception of each clip via
the internet. The VA values, which are real values ranging in between [–1, 1], are
entered by clicking on the emotion space on a square interface panel. The subjects
were instructed to rate the perceived rather than felt emotion. Each music clip was
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Table 12.1 Frame-based acoustic features used in the evaluation

Feature Dimension Description

MFCC 40 20 Mel-frequency cepstral coefficients and their
first-order time differences [12]

Tonal 17 Octave band signal intensity using a triangular octave
filter bank and the ratio of these intensity values [42]

Spectral 11 Linear predictor coefficients that capture the spectral
envelope of the audio signal [41], spectral flux, [42]
and spectral shape descriptors [45]

Temporal 4 Shape and statistics (centroid, spread, skewness, and
kurtosis) [17]

All 72 Concatenation of all the four types of features
mentioned above

annotated by 15–32 subjects. Each subject annotated 12–924 clips, and 46 out of
the 665 subjects annotated more than 150 music clips, making the dataset a useful
corpus for research on MER personalization. The average Krippendorff’s α across
the music clips is 0.31 for valence and 0.46 for arousal, which are both in the range
of fair agreement. Please refer to [8] for more details about this dataset.

12.5.3.2 Acoustic Features

As different emotion perceptions are usually associated with different patterns of
features [18], we use two toolboxes, MIRtoolbox [36] and YAAFE [42], to extract
four sets of frame-based features from audio signals, including MFCC-related fea-
tures, tonal features, spectral features, and temporal features, as listed in Table12.1.
We down-sample all the audio clips in AMG1608 at 22,050Hz and normalize them
to the same volume level. All the frame-based features are extracted with the same
frame size of 50ms and 50% hop size. Each dimension in the frame-based feature
vectors is normalized to zero mean and unit standard deviation. We concatenate all
the four sets of features for each frame, as this leads to better performance in acoustic
modeling in our pilot study [83]. As a result, a frame-level feature vector contains
72 dimensions of features.

However, it does not make sense to analyze and predict the music emotion on
a specific frame. Instead of bag-of-frames approach [61, 63], we adopt the bag-of-
segments approach for the topic posterior representation, because a segment is able
to capture more local temporal variation of the low-level features. Our preliminary
result has also confirmed this hypothesis. To generate a segment-level feature vector
representing a basic term in the bag-of-segments approach, we concatenate the mean
and standard deviation of 16 consecutive frame-level feature vectors, leading to a
144-dimensional vector for a segment. The hop size for a segment is four frames.
Given the acoustic GMM (cf. Eq. 12.1), we then follow Eqs. 12.2 and 12.3 addressed
in Sect. 12.3.1 to compute the topic posterior vector of a music clip.
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12.5.3.3 Evaluation Metrics

The accuracy of generalMER is evaluated using three performancemetrics: two-way
KL divergence (KL2) [35], Euclidean distance, and R2 (also known as the coefficient
of determination) [58]. The first twomeasure the distance between the prediction and
the ground truth. The lower the value is, the better the performance. KL2 considers
the performance with respect to the bivariate Gaussian distribution of a chip, while
the Euclidean distance is concernedwith theVAmean only. R2 is also concernedwith
the VA mean only. In contrast to the distance measure, a high R2 value is preferred.
Moreover, R2 is computed separately for valence and arousal.

Specifically, we are given the distribution of the ground-truth annotations Ni =
G(ai ,Bi ) (cf. Sect. 12.3.2) and the predicted distribution of each test clip N̂i =
G(μ̂i , Σ̂ i ), both of which are modeled as a bivariate Gaussian distribution, where
i ∈ {1, . . . , N } denotes the index of a clip in the test set. Instead of one-way KL
divergence (cf. Eq.12.25) for determining the representative Gaussian, we evaluate
the performance of emotion distribution prediction based on the KL2 divergence
defined by

DKL2(GA,GB) ≡ 1

2

(
DKL(GA ‖ GB) + DKL(GB ‖ GA)

)
. (12.30)

The average KL2 divergence (AKL), which measures the symmetric distance
between the predicted emotion distribution and the ground truth one, is computed
by 1

N

∑N
i=1 DKL2(Ni , N̂i ). Using the l2 norm, we can compute the average Euclid-

ean distance (AED) between the mean vectors of two Gaussian distributions by
1
N

∑N
i=1 ‖ai − μ̂‖2. The R2 statistics is a standard way to measure the fitness of

regression models [58]. It is used to evaluate the prediction accuracy as follows:

R2 = 1 −
∑N

i=1(êi − ei )2
∑N

i=1 (ei − ē)2
, (12.31)

where êi and ei denote the predicted (either valence or arousal) value and the ground
truth one of a clip, respectively, and ē is the ground-truth value over the test set.
When the predictive model perfectly fits the ground-truth values, R2 is equal to 1. If
the predictive model does not fit the ground-truth well, R2 may become negative.

We perform three-fold cross-validation to evaluate the performance of general
MER. Specifically, the AMG1608 dataset is randomly partitioned into three folds,
and anMERmodel is trained on two of them and tested on the other one. Each round
of validation generates the predicted result of one-third of the complete dataset.
After three rounds, we will have the predicted result of each clip in the complete
dataset. Then, AKL, AED, and the R2 for valence and arousal are computed over the
complete dataset, instead of computing the performance over each one-third of the
dataset. This strategy gives an unbiased estimate for R2.
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12.5.3.4 Result

We compare the performance of AEG with two baseline methods. The first one,
referred to as the base-ratemethod, uses a reference affective Gaussian whose mean
and covariance are set using the global mean and covariance of the training annota-
tions without taking into account the acoustic features. In other words, the prediction
for every test clip would be the same for the base-rate method. The performance of
this base-rate method can be considered as a lower bound in this task accordingly.
Moreover, we compare the performance of AEG with SVR [55], a representative
regression-based approach for predicting emotion values or distributions, using the
same type of acoustic features. Specifically, the feature vector of a clip is formed by
concatenating the mean and standard deviation of all the frame-level feature vectors
within a clip, yielding a 144-dimensional vector. We use the radial basis function
(RBF) kernel SVR implemented by the libSVM library [6], with parameters opti-
mized by grid search with three-fold cross-validation on the training set. We further
use a heuristic favorable for SVR to regularize every invalid predicted covariance
parameter [72]. This heuristic significantly improves the AKL performance of SVR.

Our pilot study empirically shows that AEGUniform gives better emotion predic-
tion in AED, compared to AEG AnnoPrior, possibly because the introduction of the
annotation prior (cf. Eq.12.7) may bias the estimation of the mean parameters in the
EM learning. In contrast, AEG AnnoPrior leads to better result in AKL, indicating
its capability of estimating a more proper covariance for a learned affective GMM.
In light of this, we use a following hybrid method to take advantage of both AEG
AnnoPrior and AEG Uniform in optimizing the affective GMM. Suppose that we
have learned two affective GMMs, one for AEG AnnoPrior and the other for AEG
Uniform. To generate a combined affective GMM, for its k-th component Gaussian,
we take the mean from the k-th Gaussian of AEG Uniform and the covariance from
the k-th Gaussian of AEG AnnoPrior. This combined affective GMM is eventually
used to predict the emotion for a test clip with Eqs. 12.27 and 12.29 in this evaluation.

Table12.2 compares the performance of AEG with the two baseline methods. It
can be seen that both SVR and AEG outperform the base-rate method by a great
margin, and that AEG can outperform SVR. For AEG, we can obtain better AKL
and better R2 for valence when K = 128, but better AED and better R2 for arousal
when K = 256. The best R2 achieved for valence and arousal are 0.1601 and 0.6686.

Table 12.2 Performance evaluation on general MER (↓ stands for smaller-better and ↑ larger-
better)

Method AKL ↓ AED ↓ R2 Valence ↑ R2 Arousal ↑
Base-rate 1.2228 0.4052 –0.0009 0.0000

SVR-RBF 0.7124 0.2895 0.1409 0.6613

AEG (K = 128) 0.7049 0.2890 0.1601 0.6554

AEG (K = 256) 0.7078 0.2869 0.1579 0.6686
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In particular, the superior performance of AEG in R2 for valence is remarkable. Such
observation suggests AEG a promising approach, as it is typically more difficult to
model the valence perception from audio signals [74].

Figure12.3 presents the result of AEG when we vary the value of K (i.e., the
number of latent topics). It can be seen that the performance of AEG improves as a
function of K when K is smaller than 256, but starts to decrease when K is sufficient
larger. The best result is obtained when K is set to 128 or 256. As the parameters
of SVR-RBF has also been optimized, this result shows that, if the optimal case of
AEG is not attained (e.g., K = 64 or 512), AEG is still on par with the state-of-the-art
SVR approach to general MER.
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Fig. 12.3 Performance evaluation on general MER, using different numbers of latent topics in
AEG. a AKL, smaller-better. bAKL, smaller-better. c R2 of valence, larger-better. d R2 of arousal,
larger-better
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12.5.4 Evaluation on Personalized MER

12.5.4.1 Evaluation Setup

The trade-off between the number of personal annotations (feedbacks) and the per-
formance of personalization is important for personalized MER. On one hand, we
hope to have more personal annotations to more accurately model the emotion per-
ception of a particular user. On the other hand, we want to restrict the number of
personal annotations so as to relieve the burden on the user. To reflect this, evaluation
on the performance of personalized MER is conducted by fixing the test set for each
user, but varying the number of available emotion annotations from the particular
user to test how the performance improves as personal data amasses.

We consider 41 users who have annotated more than 150 clips in this evaluation.
We use the data of six of them for parameter tuning, and the data of the remaining
35 in the evaluation and report the average result for these 35 test users. One hundred
annotations of each test user are randomly selected as the personalized training
set for personalization for the user. Once the model is created, another 50 clips
annotated by the same user are randomly selected. Specifically, for each test user, a
general MER model is trained with 600 clips randomly selected from the original
AMG1608, excluding those annotated by the test user under consideration and those
self-inconsistent annotations. Then, the general model is incrementally personalized
five times using different numbers of clips selected from the personalized training
set. We use 10, 20, 30, 40, and 50 clips iteratively, with the preceding clips being a
subset of the current ones each time. The process is repeated 10 times for each user.

We use the following evaluation metrics here: the AED, the R2, and the average
likelihood (ALH) of generating the ground-truth annotation (a single VA point) e� of
the test user using the predicted affective Gaussian, i.e., p(e� | μ̂�, Σ̂�). Larger ALH
corresponds to better accuracy. We do not report KL divergence here because each
clip in the dataset is annotated by a user at most once, which does not constitute a
probability distribution.

12.5.4.2 Result

We compare the MAP-based personalization method of AEG with the two-stage
personalization method of SVR proposed in [79]. In the two-stage SVR method, the
first stage creates a general SVR model for general emotion prediction, whereas the
second stage creates a personalized SVR that is trained solely on a user’s annotations.
Thefinal prediction is obtainedby linearly combining thepredictions from thegeneral
SVR and the personalized SVR with weights 0.7 and 0.3, respectively. The weights
are derived empirically according to our pilot study. As for AEG, we only update the
mean parameters with βm = 0.01, because our pilot study shows that updating the
covariance empirically does not lead to better performance. This observation is also
in line with the findings in speaker adaptation [48]. We train the background model
with AEG Uniform for simplicity.
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Fig. 12.4 Performance evaluation on personalized MER, with varying numbers of personal data.
a ALH, smaller-better. b AED, smaller-better. c R2 of valence, larger-better. d R2 of arousal,
larger-better

Figure12.4 compares the result of different personalized MER methods, when
we vary the number of available personal annotations. The starting point of each
curve is the result given by the general MER model trained on partial users of the
AMG1608 dataset. We can see that the result of the general model is inferior to
those reported in Fig. 12.3, showing that a general MERmodel is less effective when
it is used to predict the emotion perception of individual users, compared to the
case of predicting the average emotion perception of users. We can also see that
the result of the considered personalized methods generally grows as the number of
personal annotations increases.When the value of K is sufficiently large, AEG-based
personalizationmethods can outperform the SVRmethod.Moreover, while the result
of SVR starts to saturate when the number of personal annotations is larger than 20,
AEG has the potential of keeping on improving the performance by exploiting more
personal annotations.We also note that there is no significant performance difference
for AEG when K is large enough (e.g., ≥128).
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Although our evaluation shows that personalization methods can improve the
result of personalized emotion prediction, the low values in the R2 statistics for
valence and arousal still show that the problem is fairly challenging. Future work
is still needed to improve either the quality of the emotion annotation data or the
feature extraction or machine learning algorithms for modeling emotion perception.

12.6 Emotion-Based Music Retrieval

12.6.1 The VA-Oriented Query Interface

The VA space offers a ready canvas for music retrieval through the specification of a
point in the emotion space [80]. Users can retrieve music pieces of certain emotions
without specifying the titles. Users can also draw a trajectory to indicate the desired
emotion changes across a list of songs (e.g., from angry to tender).

In addition to the above point-based query, one can also issue a Gaussian-based
query to an AEG-based retrieval system. As Fig. 12.5 shows, users can specify the
desired variances (or the confidence level at the center point) of emotion by pressing
a point in the VA space with different levels of duration or strength. The variance of
the Gaussian gets smaller as one increases the duration or strength of pressing, as
Fig. 12.5a shows. Larger variances indicate less specific emotion around the center
point. After specifying the size of a circular variance shape, one can even pinch
fingers to adjust the variance shape. For a trajectory-based query input, similarly,
the corresponding variances are determined according to the dynamic speed when
drawing the trajectory, as Fig. 12.5b shows. Fast speed corresponds to a less specific
query and the system will return pieces whose variances of emotion are larger. If

(a) (b)

Fig. 12.5 The stress-sensitive user interface for emotion-based music retrieval. Users can (a) spec-
ify a point or (b) draw a trajectory, while specifying the variance with different levels of duration
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Fig. 12.6 The diagram of
the content-based music
retrieval system using an
emotion query

songs with more specific emotions are desirable, one can slow down the speed when
drawing the trajectory. The queries inputted by such a stress-sensitive interface can
be handled by AEG for emotion-based music retrieval.

12.6.2 Overview of the Emotion-Based Music Retrieval
System

AsFig. 12.6 shows, the content-based retrieval system can be divided into two phases.
In the feature indexing phase, we index each music clip in an unlabeled music data-
base by one of the following two approaches: The emotion prediction approach
indexes a clip with the predicted emotion distribution (an affective GMM or a single
2-D Gaussian) given by MER, whereas the folding-in approach indexes a clip with
the topic posterior (a K -dimensional vector). In the latermusic retrieval phase, given
an arbitrary emotion-oriented query, the system returns a list of music clips ranked
according to one of the following two approaches: likelihood/distance-based match-
ing and pseudo song-based matching. These two ranking approaches correspond to
one of the two indexing approaches, respectively, as summarized in Table12.3. We
present the details of the two approaches in the following subsections.

12.6.3 The Emotion Prediction-Based Approach

This approach indexes each clip as a single, representative Gaussian distribution or
an affective GMM in the offline MER procedure. The query is then used to compare
with the predicted emotion distribution of each clip in the database. The system ranks
all the clips based on the likelihoods or distances in response to the query. Clips with
larger likelihood or smaller distance should be placed in the higher order.
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Table 12.3 The two implementations of the emotion-based music retrieval system

Approach Indexing phase Indexed type Matching phase

Emotion Prediction Full procedure of
MER by AEG

An affective GMM
(Eq.12.23) or a 2-dim
Gaussian {μ̂, �̂}

Likelihood (for point
query) or distance (for
Gaussian query)

Folding-In Compute only the
topic posterior

K -dim vector θ̂ Cosine similarity of
pseudo song (K -dim
vector λ)

Given a point query ẽ, the corresponding likelihood of the indexed emotion dis-
tribution of a clip θ̂ i is generated by a single Gaussian p(ẽ | μ̂i , Σ̂ i ) or an affective
GMM p(ẽ | θ̂ i ) (cf. Eq. 12.23), where {μ̂i , Σ̂ i } is the predicted parameters of the
representation Gaussian for θ̂ i , and θ̂i,k is the k-th component of θ̂ i . Note that here
we use the topic posterior vector to represent a clip in the database.

When it comes to a Gaussian-based query G̃ = G(μ̃, Σ̃), the approach generates
the ranking scores based on the KL2 divergence. In the case of indexing with a single
Gaussian, we use Eq.12.30 to compute DKL2

(
G̃,G(μ̂i , Σ̂ i )

)
between the query and

a clip. On the other hand, in the case of indexing with an affective GMM,we compute
the weighted KL2 divergence by

DKL2
(
G̃, p(e | θ̂ i )

) =
K∑

k=1

θ̂i,k DKL2
(
G̃,Gk(μk,Σk)

)
. (12.32)

12.6.4 The Folding-In-Based Approach

As Fig. 12.7 shows, this approach estimates the probability distribution λ = {λk}Kk=1,
subject to

∑
k λk = 1, for an input VA-oriented query in an online manner. Each

estimated λk corresponds to the relevance of a query to the k-th latent topic zk , so we
can treat the distribution of λ as the topic posterior of the query and call it a pseudo
song. In the case of Fig. 12.7, for example, we show a query that is very likely to be
represented by the second affective Gaussian component. The folding-in process is
likely to assign a dominative weight λ2 = 1 for z2, and λh = 0, ∀h �= 2. This implies
that the query is highly related to the song whose topic posterior is dominated by θ2.
Therefore, the pseudo song can be used to match with the topic posterior vector θ̂ i

of each clip in the database.
Given a point query ẽ, we start the folding-in process by first generating the

pseudo song via maximizing the query likelihood of the λ-weighted affective GMM
with respective to λ. By taking the logarithm of Eq.12.23, we obtain the following
objective function:
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Fig. 12.7 Illustration of the
folding-in process of
emotion-based music
retrieval by AEG

max
λ

log
K∑

k=1

λk Gk(ẽ | μk,Σk) , (12.33)

where λk is the k-th component of the vector λ. In some sense, a good λwill make the
corresponding λ-weighted affective GMMwell generate the query ẽ. The problem in
Eq.12.33 can be solved by the EM algorithm. In the E-step, the posterior probability
of zk is computed by

p(zk | ẽ) = λkGk(ẽ | μk,Σk)
∑K

h=1 λhGh(ẽ | μh,Σh)
. (12.34)

In the M-step, we then only update λk by

λ′
k ← p(zk | ẽ) . (12.35)

As for a Gaussian-based query G̃, we fold in the query into the learned affective
GMM to estimate a pseudo song as well. This time, we maximize the following
log-likelihood function:

max
λ

log
K∑

k=1

λk p(G̃ | Gk) , (12.36)

where p(G̃ | Gk) is the likelihood function based on KL2 (cf. Eq.12.30):

p(G̃ | Gk) = exp
( − DKL2(G̃,Gk)

)
. (12.37)

Again, Eq.12.36 can be solved by the EM algorithm, with the following update,

λ′
k ← p(zk | G̃) = λk p(G̃ | Gk)

∑K
h=1 λh p(G̃ | Gh)

. (12.38)
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The EM processes for both point- and Gaussian-based queries stop early after few
iterations (e.g., 3), because the pseudo song estimation is sensitive to over-fitting.
Several initialization settings can be used, such as a random, uniform, or prior distri-
bution. Considering the stability and the reproducibility of the experimental result,
we opt for using a uniform distribution for initialization. Note that random initial-
ization may introduce discrepant results among different trials even with identical
experimental settings,whereas initializingwith a prior distributionmay render biased
results in favor of songs that predominates the training data [67]. Finally, the retrieval
system ranks all the clips in descending order of the following cosine similarities in
response to the pseudo song:

Φ(λ, θ i ) = λT θ i

‖λ‖‖θ i‖ . (12.39)

12.6.5 Discussion

The Emotion Prediction approach is straightforward, as the purpose of MER is to
automatically index unseen music pieces in the database. In contrast, the folding-in
approach goes one step further to embed a VA-based query into the space of music
clips. Although the folding-in process requires an additional step of estimating the
pseudo song, it is in fact more flexible. In a personalized music retrieval context, for
example, a personalized affective GMM can readily produce a personalized pseudo
song for comparing with the original topic posterior vectors of all the pieces in the
database, without the need to predict the emotion again with the personalized model.

The complexity of the emotionprediction approachmainly comes fromcomputing
the likelihood of a point query on each music clip’s emotion distribution or the KL
divergence between the Gaussian query and the emotion distribution of each clip.
Therefore, the matching process needs to compute N (the number of clips in the
database) times the likelihood or the KL divergence. In the folding-in approach, the
complexity comes from estimating the pseudo song (with the EM algorithm) and
computing the cosine similarity between the pseudo song and each clip. EM needs
to compute K× ITER times the likelihood of a component affective Gaussian or
the Gaussian KL divergence, where ITER is the number of EM iterations. Then,
the matching process computes N times the cosine similarity. Obviously, computing
the likelihood on an emotion distribution (i.e., a single Gaussian or a GMM) is
computationallymore expensive than computing the cosine similarity (as K is usually
not large). Therefore, when N is large (e.g., N  K× ITER), the folding-in approach
is considered as a more feasible one in practice.
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12.6.6 Evaluation for Emotion-Based Music Retrieval

12.6.6.1 Evaluation Setup

The AMG1608 dataset is again adopted in this music retrieval evaluation. We con-
sider two emotion-based music retrieval scenarios: query-by-point and query-by-
Gaussian. For each scenario, we create a set of synthetic queries and use the learned
AEGmodel to respond to each test query and return a ranked list of music clips from
an unlabeled music database. The generation of the test query set for query-by-point
is simple. As Fig. 12.8a shows, we uniformly sample 100 2-D query points within[[−1,−1]T , [1, 1]T ]

in the VA space. The test query set for query-by-Gaussian is
then based on this set of points. Specifically, we convert a point query to a Gaussian
query by associating with the point a 2-by-2 covariance matrix, as Fig. 12.8b shows.
Motivated by our empirical observation from data, the covariance of a Gaussian
query is set in inverse proportion to the distance between the mean of the Gaussian
query (determined by the corresponding point query) and the origin of the VA space.
That is, if a given point query is far from the origin (with large emotion magnitude),
the user may want to retrieve songs with a specific emotion (with smaller covariance
ellipse).

The performance is evaluated by aggregating the ground-truth relevance scores
of the retrieved music clips according to the normalized discounted cumulative
gain (NDCG), a widely used performance measure for ranking problems [28]. The
NDCG@P , which measures the relevance of the top P retrieved clips for a query,
is computed by

NDCG@P = 1

ZP

{

R(1) +
P∑

i=2

R(i)

log2 i

}

, (12.40)
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Fig. 12.8 Test queries used in evaluating emotion-based music retrieval: a 100 points generated
uniformly in between [–1, 1]. b 100 Gaussians generated based on the previous 100 points
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where R(i) is the ground-truth relevance score of the rank-i clip, i = 1, . . . , Q, where
Q ≥ P is the number of clips in the music database, and ZP is the normalization
term that ensures the ideal NDCG@P equal 1. Let Ni (with parameters {ai ,Bi })
denote the ground-truth annotation Gaussian of the rank-i clip. For a point query ẽ,
R(i) is obtained by p(ẽ | ai ,Bi ), the likelihood of the query point. For a Gaussian
query Ñ , R(i) is given by p(Ñ | Ni ) defined by Eq.12.37. From Eq.12.40, we see
that if the system ranks the clips in similar order as the descending order obtained on
{R(i)}Qi=1, we obtain a larger NDCG. We report the average NDCG computed over
the test query set. Note that we do not adopt evaluation metrics, such as the mean
average precision and the area under the ROC curve, because currently it is not trivial
to set a threshold to binarize R(i).

We perform threefold cross-validation as that used in evaluating general MER. In
each round, the test fold (with 536 clips) serves as the unlabeled music database.

12.6.6.2 Result

We implement a random approach to reflect the lower bound performance using
a random permutation for each test query, without taking into consideration any
ranking approach. We further implement an Ensemble approach that averages the
rankings of a test query given by emotion prediction and folding-in. Specifically,
both approaches assign an ordinal number to a clip according to their respective
rankings. Then, we average the two ordinal numbers of a clip as a new score, and
re-rank all the clips in ascending order of their new scores.

Note that we only consider AEG Uniform for simplicity in the result presenta-
tion. Our preliminary study reveals that AEG Uniform in general perform slightly
better than AEGAnnoPrior and the hybrid method mentioned in Sect. 12.5.3.4 in the
retrieval task. Moreover, for the folding-in approach, early stop is not only important
to the folding-in process, but also necessary to learning the affective GMM. Accord-
ing to our pilot study, setting ITER between 2 and 4 for learning affective GMM and
ITER = 3 for learning the pseudo song lead to the optimal performance.

Figure 12.9 compare the NDCG@5 of the emotion prediction and folding-in
approaches to emotion-based music retrieval using either point-based or Gaussian-
based queries. We are interested in how the result changes as we vary the number
of latent topics. It can be found that the two approaches perform very similarly for
point-based query when K is in between 64 and 256. Moreover, we see that emotion
prediction canoutperform folding-in forGaussian-based querywhen K is sufficiently
large (K ≥ 64). The optimal model is attained when K = 128 in all cases. Similar
to the result in general MER, it seems that setting K either too large or too small
would lead to sub-optimal result.

Tables12.4 and 12.5 present the result of NDCG@5, 10, 20, and 30 for different
retrieval methods, including the random baseline, emotion prediction, folding-in,
and the ensemble approaches. The latter three use AEG Uniform with K = 128.
It is obvious that the latter three can significantly outperform the random baseline,
demonstrating the effectiveness of AEG in emotion-based music retrieval. It can also
be found that the ensemble approach leads to the best result.
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Fig. 12.9 Evaluation result of emotion-based music retrieval. a Point-based query, larger-better.
b Gaussian-based query, larger-better

Table 12.4 The query-by-point retrieval performance in terms of NDCG@5, 10, 20, and 30

Method P = 5 P = 10 P = 20 P = 30

Random 0.1398 0.1504 0.1666 0.1804

Emotion Prediction 0.3907 0.4027 0.4288 0.4490

Folding-In 0.3868 0.4067 0.4333 0.4533

Ensemble 0.3954 0.4129 0.4398 0.4601

Table 12.5 The query-by-Gaussian retrieval performance in terms of NDCG@5, 10, 20, and 30

Method P = 5 P = 10 P = 20 P = 30

Random 0.1032 0.1090 0.1185 0.1272

Emotion Prediction 0.3143 0.3306 0.3481 0.3658

Folding-In 0.2932 0.3147 0.3383 0.3532

Ensemble 0.3204 0.3368 0.3601 0.3783

A closer comparison between emotion prediction and folding-in for point-based
query shows nip and tuck, whereas the former performs consistently better regardless
of the value of P for Gaussian-based query. Moreover, the NDCG measure seems
more favorable for point-based query thanGaussian-based one. Our observation indi-
cates that the standard deviation of the ground-truth relevance scores (i.e., {R(i)}Qi=1)
for Gaussian-based query is much larger, resulting in a more challenging measure-
ment basis than that for point-based query. However, the relative performance dif-
ference between the two methods is similar for point-based and Gaussian-based
queries.
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12.7 Connecting Emotion Dimensions and Categories

In addition to describing emotions by dimensions, emotions can also be described
in terms of discrete labels (or tags). While the dimensional approach offers a sim-
ple means for constructing a 2-D user interface, the categorical approach offers an
atomic description of music that is easy to be incorporated into conventional text-
based retrieval systems. Being two extreme scenarios (discrete/continuous), the two
approaches actually share a unified goal of understanding the emotion semantics of
music. As the two approaches are functionally complementary, it is therefore inter-
esting to explore the relationship between them and combine their advantages to
enhance the performance of emotion-based music retrieval systems. For example,
as a novice user may be unfamiliar with the essence of the valence and activation
dimensions, it would be helpful to display emotion tags in the emotion space to
give the user some cues. This can be achieved if we have the mapping between the
emotion tag space and the VA space.

In this section, we briefly introduce the Tag2VA approach that can maps a mood
tag to the VA space.

12.7.1 Algorithm Overview

Based on AEG, we can unify the two semantic modalities under a unified probabilis-
tic framework, as illustrated in Fig. 12.10. Specifically, we establish two component
models, the Acoustic Tag Bernoullis (ATB) model and the AEG model, to computa-
tionally model the generative processes from acoustic features to an mood tag and a
pair of valence-activation values, respectively. ATB is a probabilistic classification
model (a.k.a. the CBA model [20]) which can be learned from a tag-labeled music
dataset. The latent topics {zk}Kk=1 can act as a bridge between the two spaces, so that
the ATB and AEG models can share and transit the semantic information to each

Fig. 12.10 Illustration of the generation flow between tag-based and VA-based emotion semantics
of music. Two component models, namely Acoustic Tag Bernoullis (ATB) and AEG, are shown in
the left and right panels, respectively. The affective Gaussian of a tag can be generated by following
the black dashed arrows
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other. The latent topics are learned directly from acoustic feature vectors, and thus
the training datasets for learning the ATB and AEG models can be totally separate,
relieving the requirement for a jointly-annotated dataset for the two emotion modal-
ities. Note that we model each tag independently as a binary classification problem,
so that an ATB model is learned for one tag.

Once we have learned the AEG model and the ATB model for a tag, we can
obtain the VA value for the tag. As Fig. 12.10 illustrates, we first generate the topic
posterior probability of the tag using a method similar to the folding-in approach
(cf. Sect. 12.6.4) over the mixture of Bernoulli models. With the topic posterior θ ,
we can then directly predict the affective Gaussian using the AEG-based MER (cf.
Sect. 12.5.1). Interested readers are referred to [65] for more details.

12.7.2 Result

We use the AMG1608 dataset to provide qualitative evaluation on the Tag2VA
approach. AMG1608 additionally contains the binary labels of 34 mood tags, which
are used to train 34 ATB models, respectively. The AEG model is trained following
that described in general MER evaluation (cf. Sect. 12.5.3.4). Figure12.11 presents
the tag cloud generated from the VA Gaussians of the 34 mood tags. The font size
of a tag is inversely proportional to the variance of the corresponding VA Gaussian.
From the result, it can be seen that the automatically generated tag cloud reasonably
matches the result by the psychologists [65].

Fig. 12.11 The tag cloud
generated from AMG1608
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12.8 Conclusion

AEG is a principled probabilistic framework that nicely unifies the computation
processes for MER and emotion-based music retrieval for dimensional emotion rep-
resentations such as valence and arousal. Moreover, AEG better takes into account
the subjective nature of music emotional responses through the use of probabilistic
inference andmodel adaptation, furthermaking it possible to personalize an emotion-
based MIR system. The source codes for implementing AEG can be retrieved from
the link: http://slam.iis.sinica.edu.tw/demo/AEG/.

Despite that AEG is a powerful approach, there remains a number of challenges
for MER, including

• Is it the best way to consider the valence–arousal space as a coordinate space (with
two orthogonal axes)?

• How do we define the “intensity” of emotion? Does the magnitude of a point in
the emotion space implies intensity? Would it be possible to train regressors that
treat the emotion space as a polar coordinate?

• What are the features that are more important for modeling emotion?
• Cross genre generazability [13].
• Cross culture generazability [23].
• How to incorporate lyrics features for MER?
• How to model the effect of the singing voice in emotion perception?
• How do findings in MER help emotion-based music synthesis or manipulation?

We note that the number of topics in AEG is crucial to its performance. Like many
probabilistic models in text information retrieval, this is an open problem [4, 21].
Empirically, larger number of topics fine grains the model resolution and thereby
results in better accuracy. Similarly, it makes sense to use more topics to model a
larger music dataset (with more songs and annotations). However, to understand the
relationship between the topic number and performance in a real-world setting, more
user studies are still required in the future.

Moreover, AEG is only suitable for an emotion-based MIR system when we
characterize emotions in terms of valence and arousal. It does not apply to systems
that use categorical mood tags to describe emotion. A corresponding probabilistic
model for categorical MER is yet to be developed. More research efforts are also
needed for the personalization and retrieval aspects for categorical MER.

The AEG model itself can also be improved in a number of directions. For exam-
ple, there are several alternative methods that one can adopt to enhance the latent
acoustic descriptors (i.e., {Ak}Kk=1 in Sect. 12.3) for clip-level topic poster representa-
tion, such as deep learning [54] or sparse representations [61]. One can also perform
discriminative training to reduce the prediction error using the same corpus with
respect to the selection of Gaussian components or parameter refinement over the
affective GMM. For example, a stacked discriminative learning on the parameters
initialized by a EM-learned generative model has been studied for years in speech
recognition [9, 29]. Following this research line, it may help improve AEG as well.

http://slam.iis.sinica.edu.tw/demo/AEG/
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Finally, the AEG framework can be extended to include multi-modal content such
as lyrics, review comments, album cover, and music video. For instance, one can
accompany a given silent video sequence with a piece of music based on music
emotion [66]. To incorporate the lyrics into AEG, on the other hand, one can learn a
lyric topic model via algorithms such as pLSA [21] and LDA [4], and compute the
probability distribution for each song’s lyrics based on the topic model.
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