
Enhancing Data Generation in TPCx-HS
with a Non-uniform Random Distribution

Raghunath Nambiar1(&), Tilmann Rabl2, Karthik Kulkarni1,
and Michael Frank3

1 Cisco Systems, Inc.,
275 East Tasman Drive, San Jose, CA 95134, USA

{rnambiar,kakulkar}@cisco.com
2 University of Toronto,

27 King’s College Circle, Toronto, ON M5S, Canada
tilmann.rabl@utoronto.ca

3 Bankmark, Bahnhofstrasse 10, 94032 Passau, Germany
michael.frank@bankmark.de

Abstract. Developed by the Transaction Processing Performance Council, the
TPC Express Benchmark™ HS (TPCx-HS) is the industry’s first standard for
benchmarking big data systems. It is designed to provide an objective measure
of hardware, operating system and commercial Apache Hadoop File System API
compatible software distributions, and to provide the industry with verifiable
performance, price-performance and availability metrics [1, 2]. It can be used to
compare a broad range of system topologies and implementation methodologies
of big data systems in a technically rigorous and directly comparable and
vendor-neutral manner. The modeled application is simple and the results are
highly relevant to hardware and software dealing with Big Data systems in
general. The data generation is derived from TeraGen [3] which uses uniform
distribution of data. In this paper the authors propose normal distribution
(Gaussian distribution) which may be more representative of real life datasets.
The modified TeraGen and complete changes required to the TPCx-HS kit are
included as part of this paper.

Keywords: TPC � Big data � Industry standard � Benchmark

1 TPCx-HS Current State

As Big Data technologies like Hadoop have become an integral part of enterprise IT
ecosystem across all major industry verticals, industry standard benchmarks that can
fairly compare technologies and products are critical [4]. Big Data was identified as
critical area for benchmarking at conferences such as TPCTC 2013 [5]. Keep this in
mind the Transaction Processing Performance Council (TPC) developed TPC Express
Benchmark™HS (TPCx-HS) that provides an objective measure of hardware, operating

© Springer International Publishing Switzerland 2016
R. Nambiar and M. Poess (Eds.): TPCTC 2015, LNCS 9508, pp. 94–129, 2016.
DOI: 10.1007/978-3-319-31409-9_7



system and commercial Apache Hadoop File System API compatible software distri-
butions. TPCx-HS provides the industry with verifiable performance, price-performance
and availability metrics. The benchmark models a continuous system availability of 24 h
a day, 7 days a week [1, 6, 7].

Even though the modeled application is simple, the results are highly relevant to
hardware and software dealing with Big Data systems in general. The TPCx-HS
stresses both hardware and software including Hadoop runtime, Hadoop File Sys-
tem API compatible systems and MapReduce layers. This workload can be used to
asses a broad range of system topologies and implementation of Hadoop clusters. The
TPCx-HS can be used to assess a broad range of system topologies and implementation
methodologies in a technically rigorous and directly comparable, in a vendor-neutral
manner [4–6].

TPCx-HS workload is based on TeraSort [1] designed to evaluate the sorting
performance of a system-under-test (SUT) [2]. This is highly relevant for every big data
system because sorting is a basic operation required in many high level abstractions
like ordering, grouping, and joining. The dataset of TPCx-HS consists of records of
100 Byte length where the first 10 Bytes of each record is the sorting key. The keys are
distributed uniformly and randomly over the key space. Because of the large key space
(2^80 possible keys), duplicate keys are very unlikely and the key space is sparsely
populated. In most real world data sets keys are either of sequential type indexing the
row of a table or they are referencing other tuples. In both cases, keys are almost never
uniformly distributed over the key space. Depending on the data set properties, keys are
dense in some areas (e.g., a sequence with some missing keys) and sparse in others or
some keys occur more often than others (e.g., in a purchase table one product ID will
be bought more frequently than others). The underlying system often is not aware of
the nature of data, but its properties like ordering, density, sparsity, and duplication are
important to perform efficient sorting.

2 Extending TPCx-HS

TPCx-HS uses 100 Byte records, where the first 10 Bytes are the keys on which the
data is sorted and the remaining 90 Bytes are random payload. TPCx-HS has two
implementations –for MapReduce 1 (MR1) and for MapReduce 2 (MR2). They differ
in the way random numbers are generated and in the key layout.

2.1 MR1 Implementation

The MR1 version uses a 64 Bit linear congruential generator (LCG) based random
number generator. To generate each key, three random numbers are drawn. Each 64 Bit
random number is split into four bytes. The last random number only populates two

Enhancing Data Generation in TPCx-HS 95



bytes, resulting in a total of 10 bytes per key. During the split the byte value is mapped
to the range of the 95 printable ASCII characters. Because of this reduction the total
number of distinct keys is only 1095 ≅ 266.

2.2 MR2 Implementation

The MR2 version uses a 128 Bit LCG random number generator. To generate a key, a
single 128 Bit random number is drawn. From that 128 Bit random number the highest
80 Bits are used for the key. Unlike the MR1 version, the keys remain in the binary
format and cover the whole 280 key range.

Both versions split the random number sequence based on the current mapper row
for parallelization. The sequence is pre-split and the pre-calculated seeds for these splits
are stored inside TPCx-HS’ random number generator. This splitting schema only
works if the same amount of random numbers is generated for each row. The MR1
version requires exactly three 64 Bit random numbers and the MR2 version exactly one
128 Bit random number to generate a key.

2.3 Proposed Changes

Main change proposed is the key distribution from uniform distribution to normal
distribution (Gaussian distribution). The normal distribution is typically used to
describe independent random processes such as growth, income, and measurement
errors. A typical example for a uniformly distributed random event is a single fair roll
of a die, each side of the die has the same probability and, thus, the results will be
uniformly distributed. However, the probability distribution of the sum of multiple rolls
converges to a normal distribution. As few natural observations consist of a single
random event but rather of a process of random events, the normal distribution is more
frequently found than a uniform distribution in real and is the most important distri-
bution in statistics1.

In order to change the key distribution in TeraGen, an interface was introduced that
enables plugging in and parametrizing different ways of generating the key. This was
done in the following classes and functions, HsGen.SortGenMapper.addKey()
in the MR1 version and HsGen.SortGenMapper.map() and GenSort.
GenerateRe-cord() in the MR2 version.

The code of the existing uniform key-generation implementation was copied into a
separate plugin. The uniform key generation plugin is used as default, if no other key
generation strategy is specified. Additional changes were made to enable the specifi-
cation and configuration of the key generation strategy via command line. An example

1 Cf., http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc51.htm.

96 R. Nambiar et al.

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc51.htm


will be given below. Besides the existing default implementation for uniform key
generation, an implementation to produce normal distributed keys (Gaussian distri-
bution) was added for both the MR1 and MR2 version of TPCx-HS HsGen:

• org.tpc.hs.hsgen.mr1.dist.NormalDistributionBigInt
• org.tpc.hs.hsgen.mr2.dist.NormalDistributionBigInt

A normal distribution is parametrized by two values. A mean value μ (mu) and the
standard deviation σ (sigma). A visual representation of the normal distribution and the
meaning of its parameters can be seen in Fig. 1. The implementation uses a standard
polar Box-Muller algorithm for generating normally distributed values using two
values sampled from a uniform random number source. Modifications had to be made
to scale the algorithm producing 64 Bit double values to the required 80 Bit BigInteger
values.

Fig. 1. Normal distribution, its parameters and their implications (Based on Dan Kernler, http://
en.wikipedia.org/wiki/File:Empirical_Rule.PNG)

Enhancing Data Generation in TPCx-HS 97

http://en.wikipedia.org/wiki/File:Empirical_Rule.PNG
http://en.wikipedia.org/wiki/File:Empirical_Rule.PNG


98 R. Nambiar et al.



The nature of this algorithm is to randomly require more the two random values, if
certain conditions are not met (see Listing 1 NormalDistribution – Polar box-muller
method). Because of this requirement, the default random number generators of
TPCx-HS cannot be used, as they only work for if a predefined amount of random
numbers is drawn per row as described earlier. Because of this issue, a helper random
number generator is used (see Listing 2 HelperPRNG – xorShift128), which is seeded
with the random number for each row, obtained from the main random number generator.
This allows to draw an arbitrary amount of random samples in each row, as required by
the normal distribution algorithm. The implementation was verified to work correctly and
the verification results can be seen in Fig. 2. The plot shows the accumulated density
distribution of * 6*107 samples, drawn from the implemented normal distribution with
parameters mu: 279 and sigma: 276. To be able to count and plot the values, they were
quantized to the range [0, 65536] by using the highest 16 Bit of the full 80 Bit value,
resulting in mu: 32768 and sd: 4096. Additionally a wrapper was added for all the tools in
the tpcx-hs.jar to comfortably run the TPCx-HS benchmark end to end. Available are the
following modules, where 1 stands for the MR1 version and 2 for the MR2 version:

• hsgen1
• hsgen2

Enhancing Data Generation in TPCx-HS 99



• hssort1
• hssort2
• hsvalidate1
• hsvalidate2

An example on how to start and parametrize the generation of normally distributed
keys can be seen in the following listing:

3 Test Results

We compared the impact on data generation and sorting performance using uniformly
and normally distributed keys. The tests where done both for the MR1 and MR2 version
of TPCx-HS. We ran a test with a data set size of 9,09 TB (100.000.000.000 records).

For the test runs using the new normal distributed key schema we used the fol-
lowing parameters:

Mu 29.936.846.961.918.900.000
Sigma 1.000.000.000

SD is chosen to be 1/100 of the number of records, to ensure a high number of
duplicates within the generated keys. All tests were performed on the same 16 node
cluster with the following specification:

Fig. 2. Accumulated density with mu: 279 sigma: 276 quantized from highest 16 bit of the full 80
bit value to mu: 32768 and sigma: 4096

100 R. Nambiar et al.



Software configuration:

• Disabled SElinux on all the nodes
• Disabled iptables on all the nodes
• NTP configured
• Ulimit set to 64000

A default Hadoop installation using Yarn was used. Looking at the CPU resources, it
is obvious that generating non-uniform values is more CPU intensive than generating
uniform random values, as shown in Fig. 4. TheMapReduce 1 version is more expensive
to generate than theMapReduce 2 version because of the additional step of converting the
binary key into an ASCII representation. However, there was not much difference in real
clock time as shown in Fig. 3, because the cluster was I/O bound the entire time.

The interesting result is the impact of the non-uniform data on the sort performance
of TeraSort (Fig. 5). It shows that for both the MR1 and MR2 versions, the skewed
dataset takes more time to sort than the uniformly distributed dataset. The difference is
most notable when comparing the CPU times in Fig. 6. The impact was not as severe as
initially expected. TPCx-HS employs techniques to mitigate skewed datasets. It does so
by employing a custom split format and partitioning logic. This logic draws random

Fig. 3. HSGen wall clock time Fig. 4. HSGen CPU time

Servers: 16 Cisco UCS C240M3 Rack Server
CPU: 2 × Intel® Xeon® Processor E5-2650 v2 (20 M
Cache, 2.60 GHz)

Memory: 256 GB
Storage Controller: LSI MegaRAID SAS 9271-8i
Disk: 12 × 3 TB Large Form Factor HDD
Network: Cisco UCS VIC 1225 2 10GE SFP+

Enhancing Data Generation in TPCx-HS 101



Fig. 5. HSSort wall clock time Fig. 6. HSSort CPU time

samples from the generated data and sorts the samples locally to get an estimate of the
key distribution. Based on this sample, TPCx-HS’ sorting logic pre-partitions the data
and distributes it to the mappers.

4 Conclusion

In this paper, the authors propose a potential enhancement to TPCx-HS benchmark
with a normally distributed keys. The impact on data generation and sorting perfor-
mance is compared against uniformly distributed keys.

The test results demonstrate that the distribution of keys has an impact on the data
generation and data sorting performance of the system. The authors believe that
non-uniform data distributions are more representative of real life datasets and a good
enhancement to the next generation of TPCx-HS.

5 Future Work

TTPCx-HS can further extend with more distributions that fit data skew commonly found
in production workloads. An example might be the Zipfian distribution, which models an
access pattern where some few keys are accessed very often and most of the keys rarely to
almost never. Another interesting addition would be the simulation of “null” values or
more generally a single key that accounts for a high percentage of the total keys. Null
values impose a great scaling problem, for example, in Hive queries, if not addressed
properly because many parallel algorithms rely on distributing the values by key. If a
single key occurs in, for example, 25 % of all data sets, a single mapper/reducer ends up
processing 25 % of the dataset by itself, greatly reducing speedup in a large cluster.

Acknowledgements. The authors thank the contributors of the original TPCx-HS development
committee, Andrew Bond (Red Hat), Andrew Masland (NEC), Avik Dey (Intel), Brian Caufield
(IBM), Chaitanya Baru (SDSC), Da Qi Ren (Huawei), Dileep Kumar (Cloudera), Jamie Reding

102 R. Nambiar et al.



(Microsoft), John Fowler (Oracle), John Poelman (IBM), Karthik Kulkarni (Cisco), Meikel Poess
(Oracle), Mike Brey (Oracle), Mike Crocker (SAP), Paul Cao (HP), Reza Taheri (VMware),
Simon Harris (IBM), Tariq Magdon-Ismail (VMware), Wayne Smith (Intel), Yanpei Chen
(Cloudera), Michael Majdalany (L&M), Forrest Carman (Owen Media), and Andreas Hotea
(Hotea Solutions). Thanks to Manankumar Trivedi for his support with benchmark testing and
analysis.

Authors also thank Satinder Sethi for his guidance and support with this effort.

Appendix

Enhancing Data Generation in TPCx-HS 103



104 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 105



106 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 107



108 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 109



110 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 111



112 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 113



114 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 115



116 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 117



118 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 119



120 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 121



122 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 123



124 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 125



126 R. Nambiar et al.



Enhancing Data Generation in TPCx-HS 127



128 R. Nambiar et al.



References

1. Nambiar, R., Poess, M., Dey, A., Cao, P., Magdon-Ismail, T., Qi Ren, D., Bond, A.:
Introducing TPCx-HS: The First Industry Standard for Benchmarking Big Data Systems. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 1–12. Springer, Heidelberg
(2015)

2. TPCx-HS Specification. www.tpc.org
3. O’Malley, O.: TeraByte sort on apache hadoop (2008)
4. Nambiar, R., Poess, M.: Keeping the TPC relevant! PVLDB 6(11), 1186–1187 (2013)
5. Nambiar, Raghunath, Poess, Meikel (eds.): TPCTC 2013. LNCS, vol. 8391. Springer,

Heidelberg (2014)
6. Nambiar, R.: A standard for benchmarking big data systems. In: BigData Conference 2014,

pp. 18–20 (2014)
7. Nambiar, R.: Benchmarking big data systems: introducing TPC express benchmark HS. In:

Rabl, T., Sachs, K., Poess, M., Baru, C., Jacobson, H.-A. (eds.) WBDB 2014. LNCS, vol.
8991, pp. 24–28. Springer, Heidelberg (2015)

Enhancing Data Generation in TPCx-HS 129

http://www.tpc.org

	Enhancing Data Generation in TPCx-HS with a Non-uniform Random Distribution
	Abstract
	1 TPCx-HS Current State
	2 Extending TPCx-HS
	2.1 MR1 Implementation
	2.2 MR2 Implementation
	2.3 Proposed Changes

	3 Test Results
	4 Conclusion
	5 Future Work
	Acknowledgements
	Appendix
	References


