
Big-SeqDB-Gen : A Formal and Scalable
Approach for Parallel Generation of Big

Synthetic Sequence Databases

Rim Moussa(B)

ENICarthage Engineering School of Carthage, Carthage, Tunisia
rim.moussa@esti.rnu.tn

Abstract. The recognition that data is of big economic value and the
significant hardware achievements in low cost data storage, high-speed
networks and high performance parallel computing, foster new research
directions on large-scale knowledge discovery from big sequence data-
bases. There are many applications involving sequence databases, such as
customer shopping sequences, web clickstreams, and biological sequences.
All these applications are concerned by the big data problem. There is no
doubt that fast mining of billions of sequences is a challenge. However,
due to the non availability of big data sets, it is not possible to assess
knowledge discovery algorithms over big sequence databases. For both
privacy and security concerns, Companies do not disclose their data. In
the other hand, existing synthetic sequence generators are not up to the
big data challenge.

In this paper, first we propose a formal and scalable approach for Par-
allel Generation of Big Synthetic Sequence Databases. Based on Whit-
ney numbers, the underlying Parallel Sequence Generator (i) creates
billions of distinct sequences in parallel and (ii) ensures that injected
sequential patterns satisfy user-specified sequences’ characteristics. Sec-
ond, we report a scalability and scale-out performance study of the Paral-
lel Sequence Generator, for various sequence databases’ sizes and various
number of Sequence Generators in a shared-nothing cluster of nodes.

Keywords: Big synthetic data · Sequence database · Sequential pat-
tern · Parallel generator · Whitney numbers

1 Introduction

There are many applications involving sequence databases, namely customer shop-
ping sequences, web clickstreams, biological sequences, and sequences of events
in science and engineering. Jiawei Han, Micheline Kamber and Jian Pei define
a Sequence Database as it consists of sequences of ordered elements or events,
recorded with or without a concrete notion of time [1]. Problems addressed within
sequence databases, include mining the frequently occurring patterns [2–6], min-
ing for outliers patterns [7,8], building efficient sequence databases and indexes for
sequence data [9,10], mining compressing sequential patterns [11,12] and compar-
ing sequences for similarity [13]. Most published papers in the literature address
c© Springer International Publishing Switzerland 2016
R. Nambiar and M. Poess (Eds.): TPCTC 2015, LNCS 9508, pp. 61–76, 2016.
DOI: 10.1007/978-3-319-31409-9 5

62 R. Moussa

the Frequent Sequential Pattern Mining problem. The latter was introduced by
Agrawal and Srikant in 1995 [2] and is defined as follows: Given a database of
sequences, where each sequence consists of a list of transactions ordered by trans-
action time and each transaction is a set of items, sequential pattern mining is to
discover all sequential patterns with a user-specified minimum support. An exam-
ple of a sequential pattern is that customers typically rent video Star Wars, then
Empire Strickes Back, then Return of the Jedi. Elements of a sequential pattern
might be sets of items (i.e., itemsets), with a sequential pattern which looks as
customers typically rent video Star Wars, then the triplet Return of the Jedi, Lord
of Ring and Alien movies.

Experiences with mining big data ascertain that more data usually beats bet-
ter algorithms [14]. All pattern mining algorithms over sequence databases are
concerned by the big data challenges. Big data adds a further level of complexity
to any knowledge discovery algorithm. However, due to the non availability of
big real data sets, it is not possible to assess sequential patterns’ mining algo-
rithms over big sequence databases. For both privacy and security concerns,
companies do not disclose and share their data. It is also complex to encode real
data sets, while preserving their characteristics. On the other hand, available
synthetic sequence generators such as IBM Quest Synthetic Data Generator [15]
are not up to the big data challenge. Hence, in this paper, we propose a for-
mal and scalable approach based on Whitney numbers for Parallel Generation
of Big Synthetic Sequence Databases satisfying both user-specified sequences’
characteristics and velocity requirements.

In this paper, we make the following contributions,

– We propose a new efficient and fast approach based on Whitney numbers for
a parallel generation of big sequence databases,

– We assess by performance measurements the scalability and the scale-out of
the proposed Parallel Sequence Generator on a GRID5000 cluster of shared-
nothing nodes [16]. Performance measurements report the throughput in terms
of MBps and in terms of number of sequences created and stored per second
for various number of sequence generators (termed workers in distributed
computing) and various number of injected sequential patterns. The latter
grows linearly with the sequence database size.

The paper is organized as follows, Sect. 2 overviews existing sequence gener-
ators. Section 3 presents basic concepts of sequence databases. Section 4 details
our proposed Parallel Sequence Generator (for short PSG), precisely the require-
ments it fulfills and its computational model. Section 5 presents a thorough per-
formance study of PSG. Finally, Sect. 6 concludes the paper and presents future
research.

2 Related Work

The most known generator of sequential patterns is the IBM Quest Synthetic
Data Generator [15,17,18]. A second testbed for patterns’ mining is described

Big Synthetic Sequence DB Generation 63

in [19], although the testbed is not available for download. After a performance
study of distributed implementations [18] of GSP [3] and PrefixSpan [6] algo-
rithms, we investigated the source code of the IBM Quest Synthetic Data Gen-
erator. The generator reveals the shortcomings enumerated below,

1. First issue is related to the fact that the benchmark is not documented. The
original source code is no longer available through IBM web site1. Available
implementations address portability and compatibility issues.

2. Second issue is related to sequences’ generation. Indeed, regards generated
sequences, no evident correlation could be drawn from input parameters, and
particularly how do they should scale with the sequence database size. A ran-
dom process is used for generating sequences and corrupting base sequential
patterns used for populating the sequence database [15,17,18]. This process
does not guarantee that a sequential pattern repeats a number of times pro-
portional to the database size.

3. Third issue is related to capacity and velocity requirements, the IBM Quest
Synthetic Data Generator was not designed for fast generation of big sequence
databases.

Most data mining benchmarks relate to small test datasets. Many big data
benchmarks exist, but have different objectives. For instance, the TeraSort
benchmark [20] measures the time to sort 1 TB (10 billions of 100 Bytes records)
of randomly generated data. The Parallel Data Generator Framework (PDGF)
[21,22] allows parallel generation of big relational databases. The BigDataBench
[23] proposes several benchmarks specifications to model five important applica-
tion domains, including search engine, social networks, e-commerce, multimedia
data analytics and bioinformatics.

To the best of our knowledge, the Parallel Sequence Generator is the first
synthetic sequence generator addressing big data and velocity requirements. Our
contribution is then three fold (i) a computational approach based on Whitney
numbers allowing the generation of billions of data sequences, (ii) an efficient
implementation and an experimental assessment of the scalability and the scale-
out of the proposed Parallel Sequence Generator, finally (iii) an open-source
code, available for download in order to help researchers in benchmarking knowl-
edge discovery algorithms over big sequence databases [18].

3 Sequence Databases: Concepts and Primitives

Given a database of customer purchase histories, one would like to mine and
predict the behaviors of customers. A customer buying A and then B is likely to
buy C, D and E. A marketing manager can then send advertisements of products
C, D and E to clients who have bought A and then B. 〈{A}{B}{C,D,E}〉 is
termed a sequential pattern.

1 URL: http://www.research.ibm.com/labs/almaden/index.shtml#assocSynData
does not point to the benchmark homepage.

http://www.research.ibm.com/labs/almaden/index.shtml#assocSynData

64 R. Moussa

Fig. 1. Example of S-a database of sequences.

Figure 1 illustrates a sequence database S composed of four sequences, which
abstract customer-shopping sequences. The set of items in S is {1,2,3,4,5,6,7}.
The count of a sequence s, denoted by count(s), is defined as the number of
sequences that contain s. For instance for s = 〈{1}{3}{3}〉, count(s) = 2. Indeed,
s is a subsequence of both s1 and s2, denoted as s � s1 and s � s2. Inversely, s1
and s2 are supersequences of s. A sequence contributes only one to the count of a
sequential pattern, for instance count(〈{1}{1}〉) = 2. The support of a sequence
s, denoted by support(s), is defined as count(s) divided by the total number of
sequences seen. If support(s) ≥ τ , where τ is a user-supplied minimum support
threshold, then we say that s is a frequent sequential pattern. For τ = 0.75,
s′ = 〈{1}{3}{2}〉 is a frequent sequential pattern. Indeed, s′ is a subsequence of
all of s2, s3 and s4. Finally, the length of a sequence s, denoted by |s| is the sum
all its itemsets’ lengths, and a k-sequence is a sequence of length k. For instance,
s1 is a 9-sequence and 〈{1}{3}{3}〉 is a 3-sequence.

The major approaches for mining of sequential patterns [2–6] are based on the
The Apriori property. The latter states that all non empty subsets of a frequent
itemset must also be frequent, including frequent items. This property is also
denoted antimonotonicity. If a sequence is infrequent, all of its supersequences
must be infrequent, and if a sequence is frequent, all of its subsequences must
be frequent. For instance for τ = 0.75, all of 〈{1}{3}〉, 〈{1}{2}〉, 〈{3}{2}〉, are
subsequences of s′ = 〈{1}{3}{2}〉 and are frequent sequential patterns. For more
details, readers are invited to check the seminal paper on Sequential Patterns
Mining by Agrawal R. and Srikant R. [2].

4 Parallel Generation of a Sequence Database

Very early, the Database community proposed synthetic benchmarks, which han-
dle big data and variety of workloads. Our work is mainly inspired by [24], the
TPC benchmarks [25], and PDGF [21,22]. In the sequel, first, we define goals
that the proposed Parallel Sequence Generator (for short PSG) fulfills. Second,
we detail a formal method based on Whitney enumerators for the enumeration
of sequential patterns, denoted as source sequences in this paper.

4.1 Requirements

The Parallel Sequence Generator is designed so that it fulfills well known require-
ments of benchmarking [25,26], namely,

Big Synthetic Sequence DB Generation 65

– Relevance: PSG implements Whitney Enumerators a computational method
which efficiently enumerates in parallel distinct source sequences to be injected
in the sequence database,

– Repeatability : for multiple runs with same input parameters, PSG outputs
a sequence database with same characteristics, namely sequence database
volume, sequence size, number of sequences, average number of items per
sequence, average number of itemsets per sequence, and source sequences with
lengths and quotas equal to input parameters,

– Economy : PSG is open-source and is hardware and platform independent,
– Fairness: the generator does not overfit a particular algorithm of sequential

pattern mining, and provides directions to generate a sequence database for
testing the mining capacity of algorithms through variation of database size
and sequential patterns size.

– Performance: PSG reports metrics demonstrating its velocity for synthetic
sequence generation. Experiments are carried out in order to assess scalability
and scale-out performance of PSG.

4.2 Whitney Enumerators for the Enumeration of Source Sequences

Raissi and Pei used Whitney numbers in order to bound the number of fre-
quent sequential patterns [27]. PSG implements Whitney Enumerators a com-
putational method based on Whitney numbers which efficiently enumerates in
parallel distinct source sequences. PSG is based on the Apriori property : given
a finite set of items I, which cardinality is n; PSG generates distinct source
sequences of a given length k, to be injected in the sequence database. Next, we
show how to enumerate source sequences using Whitney enumerators.

Enumerating the k-sequences is described in the recurrence relation intro-
duced in Eq. 1. WEk stands for Whitney Enumerator of source sequences of
length k and E(

n
i

)
stands for Combination Enumerator.

WEk =
k−1⋃

i=0

E
(

n

k − i

)
× WE i with

⎧
⎨

⎩

n = |I|
WE0 = ∅

WE1 = E(
n
1

) (1)

For instance, for I = {1, 2},

– WE1 = E(
2
1

)
= {1}, {2}

– WE2 =
1⋃

i=0

E
(

2
2 − i

)
×WE i = E

(
2
2

)
×WE0 ∪ E

(
2
1

)
×WE1 = {1, 2}× ∅ ∪

{1}, {2} × {1}, {2} = {1, 2}, {1}{1}, {1}{2}, {2}{1}, {2}{2}.

Figure 2 illustrates compositions of source sequences obtained from WE5 and
I, such that |I| = 10. Notice that each branch allows the enumeration of a
number of source sequences presented in blue. For instance, the last branch

66 R. Moussa

Fig. 2. Source sequence enumeration and count for WE5 (k = 5) and n = 10 (Color
figure online).

allows the enumeration of 105 source sequences, such that each is composed of
five singletons, while the first branch’s capacity is only 252 sequences, and each
source sequence is a single itemset which contains five items. For small values:
k = 5 and n = 10, one could enumerate 392, 002 source sequences.

Equation 2 introduced by Raissi and Pei [27] allows the count of each Whitney
number in terms of number of source sequences. Table 1 presents capacities of
Whitney numbers while varying k for |I| = 50, as well as the count of single
itemset sequences and k itemsets sequences. Notice that, for |I| = 50, WE5

allows the enumeration of more than one billion of source sequences, and WE10

enumerates more than two and half trillions of source sequences (one trillion =
1018). For higher values of k and |I|, enumerating and storing all possible source
sequences can turn into high storage costs and memory leaks. Next, we detail
an efficient enumeration procedure.

Wk =
k−1∑

i=0

(
n

k − i

)
× Wi with

⎧
⎨

⎩

n = |I|
W0 = 1
W1 = n

(2)

4.3 Efficient Enumeration of Source Sequences

Hereafter, we describe how Parallel Sequence Generator enumerates in parallel
variety of source sequences at less cost.

Big Synthetic Sequence DB Generation 67

Table 1. Whitney numbers’ capacities for |I| = 50.

Wk Nbr. of source sequences Nbr. of k itemsets source
sequences

Nbr. of single itemset
source sequences

W1 50 50 50

W2 3,725 2,500 1,225

W3 267,100 125,000 19,600

W4 19,128,425 6,250,000 230,300

W5 1,370,262,510 312,500,000 2,118,760

W6 98,160,302,325 15,625,000,000 15,890,700

W7 7,031,803,751,400 781,250,000,000 99,884,400

W8 503,729,624,143,775 39,062,500,000,000 536,878,650

W9 36,085,128,550,756,000 1,953,125,000,000,000 2,505,433,700

W10 2,584,990,924,265,820,000 97,656,250,000,000,000 10,272,278,170

Enumerate Source Sequences at Less Cost. We propose algorithms for
the enumeration of a Combination contents as well as for the Cross product of
Combinations. Our algorithms save a current context, which is composed of a
current combination and a current cross of combinations. The enumeration is
then performed through successive calls of next sequence method. The source
code of Whitney numbers and Whitney enumerators manipulations for source
sequences’ enumeration is available for download [18].

Figure 3 demonstrates the enumeration process. Starting with the first source
sequence of the 10th branch of WE5, which is {0}{0,1,2}{0}, the next source
sequence is obtained by shifting third combination to next value in order to
obtain source sequence {0}{0,1,2}{1}. Successive calls of next sequence method
continue so, until we reach source sequence {0}{0,1,2}{9}. The next source
sequence is obtained by reset of third combination and shift of second com-
bination to next value, in order to obtain source sequence {0}{0,1,3}{0}.
The enumeration procedure is generalized to cross products of multiple
combinations [18].

Enumerate Variety of Source Sequences. As illustrated in Fig. 2, source
sequences of same length k have different number of itemsets. The first branch
is composed of a single itemset, while the last branch is composed of k item-
sets source sequences. A depth-first traversal of the tree will enumerate source
sequences branch by branch. Within each branch, source sequences feature the
same number of itemsets and the same number of items for each itemset. For the
example illustrated in Fig. 2, the enumeration of the first 10,000 source sequences
stops at the third branch, and does not include any source sequence beyond
this branch. This might have an impact on the mining process. Thus, in order
to variate generated source sequences, we preponderate the number of source
sequences to be generated along each branch capacity of the tree. Likewise, the

68 R. Moussa

Fig. 3. Excerpt of enumerated source sequences in (a) 10th branch:
(
10
1

)× (10
3

)× (10
1

)
,

(b) 1st branch:
(
10
5

)
, (c) last branch:

(
10
1

) × (10
1

) × (10
1

) × (10
1

) × (10
1

)
, for WE5 and

I = {0, 1, 2, 3, ..., 9}.

10,000 source sequences will be generated from each of the 16 branches with
the following quotas, [6, 54, 137, 307, 137, 517, 516, 1148, 53, 307, 516, 1148, 306,
1148, 1147, 2553].

PSG allows generation of other specific compositions of source sequences,
namely,

– Source sequences with a single itemset, which are typical data sets for frequent
itemsets mining algorithms (a.k.a. market basket analysis) (see 2nd box in
Fig. 3),

– Source sequences composed of singletons, which are typical event type
sequences (see 3rd box in Fig. 3),

– Source sequences of different lengths through the use of different Whitney enu-
merators. Each Whitney enumerator has its own source of items i.e. I, so that
source sequences generated using smaller Whitney enumerators are not sub-
sequences of source sequences generated using bigger Whitney enumerators.

Emit Sequences. We vary sequences’ contents as follows: initially each source
sequence is composed of a number of itemsets in the range 1 to k itemsets and
of exactly k frequent items. All frequent items are in I. In order to mimic
real datasets, we add more itemsets and we append to each sequence ran-
dom items, which do not belong to I. Padded items are distributed among
all itemsets of the sequence. Each sequence s is finally emitted a number
of times which depicts the count(s). All of the input parameters, number of

Big Synthetic Sequence DB Generation 69

padded items, number of itemsets and sequence support follow a Poisson dis-
tribution. For instance, 〈{0}{0,1,2}{0}〉 is a source sequence for both following
sequences 〈{0,70,80}{180,200}{0,1,2,53,65,103}{0,1000}〉 and 〈{1003}{78,309}
{0}{407,509}{0,1,2,5000}{507,809}{0,3000}{67,89}〉.

Enumerate in Parallel. For parallel generation of distinct source sequences,
Whitney numbers are communicated to a pool of M Sequence Generators. Each
Sequence Generator has a logical identifier in the range: 0 . . .M − 1. Sequence
Generators generate simultaneously generate distinct source sequences using the
same Whitney numbers. For so, for each new branch of a Whitney Enumerator,
each Sequence Generator identified by sgj skips j source sequences. Then, each
time it processes a source sequence, it skips M sources sequences, simulating
a round robin distribution scheme [18]. Notice that this way, sequences having
the same source sequence are clustered. For declustering purpose, all Sequence
Generators may emit the same source sequence with different padding patterns.

5 Implementation and Performance Measurements

We implemented the Parallel Sequence Generator (PSG) using MapReduce
framework [28] of Apache Hadoop 2.4 YARN. The generation load is evenly dis-
tributed among all Sequence Generators. Each Sequence Generator (Mapper in
MapReduce framework terminology) is responsible for the creation of sequences
using x source sequences, such that x is equal to the number of source sequences
for injection divided by the number of Sequence Generators. For so, it creates
a single file and writes into generated sequences. Finally, the Sequence Gener-
ator emits the volume of data sequences as well as the number of generated
sequences. A Reducer aggregates summaries of generation results, it calculates
the total volume and the total number of sequences written into Hadoop Dis-
tributed File System (HDFS).

A performance study was conducted in a shared-nothing cluster of nodes to
demonstrate the scalability of the proposed Parallel Sequence Generator. The
hardware system configuration used for performance measurements are Suno
nodes located at Sophia site of french HPC platform GRID5000 [16]. Each Suno
node has 32 GB of memory, its CPUs are Intel Xeon E5520, 2.27 GHz, with 2
CPUs per node and 4 cores per CPU. All nodes are connected by a 10 Gbps
Ethernet.

The primary goal of carried-out experiments is to assess the scalability and
the scale out of PSG. We are interested in two metrics, namely (1) the Through-
put in terms of Mega Bytes per second (MBps), and (2) the Throughput in terms
of sequences per second (#Seqs/sec). We report these metrics for different exper-
iment settings, namely,

– Hadoop cluster size: the hadoop cluster is composed of one master and 2, 5
or 10 slave nodes. The Hadoop block size is set to 256 MB and the replication
factor is set to 1 in order to reduce data redundancy overhead, and determine
the maximum allowed throughput rates.

70 R. Moussa

– Number of sequence generators: each slave node sets up a number of sequence
generators, which also corresponds to the number of output data files. This
parameter denotes the degree of parallelism in sequence generation and writ-
ing to HDDs. Sequence generators run in parallel in order to increase write
throughput performances.

– Number of source sequences injected in the database: the size of the sequence
database grows linearly with the number of injected source sequences (see
Fig. 12). For experiments, a sequence is 420 bytes. This size relates to 5-
sequences type (i.e., WE5), with an average of 25 items padded to each source
sequence distributed over an average of 15 itemsets. Each source sequence
repeats in average 5 % of the number of source sequences injected.

Experiments compare PSG to TestDFSIO. The latter is a distributed I/O bench-
mark tool, part of the Hadoop distribution. Each mapper in TestDFSIO-write
workload creates a file and a 1 MB buffer and repeatedly writes the buffer into
the output file until the file size reaches a user-specified value. For instance, a
workload example of TestDFSIO could be create 10 files, such that each file is
10 GB. TestDFSIO reports average throughput per node, to be multiplied by
the cluster size in order to obtain the aggregated write throughput. We com-
pare throughput performances of PSG to TestDFSIO, in order to highlight the
sequence generation overhead.

Figure 4 presents performance measurements of PSG compared to TestDF-
SIO for a 3 nodes’ cluster. The cluster is composed of one master and 2 slave
nodes. It sets up 10 Sequence Generators, which create sequences independently
from each other. PSG creates a sequence database of over 450 GB with more
than 2 billions of sequences, it succeeds to write 1.2 millions of sequences per
second at a throughput of 287 MBps. The throughput is measured for various
number of injected source sequences in the range 1,000 .. 200,000. A maximum
throughput of 315 MBps is recorded, which results from the injection of 90,000

Fig. 4. PSG throughput performance results for a 3 nodes’ cluster for 10 sequence
generators, compared to TestDFSIO benchmark with 10 mappers.

Big Synthetic Sequence DB Generation 71

Fig. 5. PSG throughput performance results (MBps) for a 6 nodes’ cluster and 10, 25,
50 Sequence Generators, compared to TestDFSIO -write workload benchmark with 50
Mappers.

Fig. 6. PSG throughput performance results in terms of sequences per second for a 6
nodes’ cluster and various number of Sequence Generators.

source sequences. This corresponds to a 91 GB Sequence Database, composed of
more 400 millions of sequences.

Figures 5 and 6 present throughput performance measurements of PSG
respectively in terms of MBps and #Seqs/sec for a 6 nodes’ cluster. The clus-
ter is composed of one master and 5 slave nodes. It sets up various number
of Sequence Generators, which create sequences in parallel independently from
each other. PSG creates a sequence database of over 1.8TB with more than 8
billions of sequences, it succeeds to write 3 millions of sequences per second at
a throughput of 694 MBps. The throughput is measured for various number of
source sequences in the range 10,000 .. 400,000. For each experiment, whether
for 10, 25 or 50 Sequence Generators, the throughput increases for a number
of source sequences less than 100,000, then it is invariant, and finally slightly

72 R. Moussa

Fig. 7. PSG throughput performance results in terms of MBps for 11 nodes’ cluster and
10, 25, 50 Sequence Generators, compared to TestDFSIO -write workload benchmark
with 100 Mappers.

Fig. 8. PSG throughput performance results in terms of sequences per second for a 11
nodes’ cluster and various number of Sequence Generators.

decreases due to the saturation of HDDs of slave nodes. It reaches a maximum
value of 741.61 MBps for 50 Sequence generators and 180,000 source sequences.
This corresponds to a 365 GB Sequence Database composed of more than one
billion and half of sequences.

Figures 7 and 8 present respectively throughput performance measurements
of PSG respectively in terms of MBps and #Seqs/sec for an 11 nodes’ cluster.
The cluster is composed of one master and 10 slave nodes. It sets up various num-
bers of Sequence Generators, which create sequences in parallel independently
from each other. PSG creates a sequence database of over 4TB with more than
18 billions of sequences, it succeeds to write 5.3 millions of sequences per sec-
ond at a throughput of 1.2 GBps(1230 MBps). The throughput is measured for

Big Synthetic Sequence DB Generation 73

various number of injected source sequences in the range 10,000 .. 600,000. The
throughput increases for a number of source sequences less than 100,000, then it
is almost invariant, and finally slightly decreases due to the saturation of HDDs
of slave nodes. It reaches a maximum value of 1.45 GBps (1481.51 MBps) for 100
Sequence Generators and 300,000 injected source sequences.

Notice that we could not create bigger databases for HDDs’ space con-
straints. Indeed, for an 11 nodes’ cluster (one master and 10 slave nodes),
the exception message when creating a sequence database with 700,000 source
sequences is Error: org.apache.hadoop.ipc.RemoteException (java.io.IOException):

File/sequences/sequences 97.seq could only be replicated to 0 nodes instead of min-

Replication (=1). There are 10 datanode(s) running and no node(s) are excluded in

this operation.
In conclusion, the sequence generation is proved efficient, especially for big

Sequence databases. Comparisons with TestDFSIO shows that for big sequence
databases, HDFS IO operations which consist in appends to data files are much
more expensive than enumeration costs of source sequences. Figures 9 and 10

Fig. 9. Comparison of PSG Throughput (MBps) performance evaluation for various
number of hadoop data nodes.

Fig. 10. Comparison of PSG Throughput (#Seqs/sec) performance evaluation for var-
ious number of hadoop data nodes.

74 R. Moussa

Fig. 11. PSG Scale-out Tests.

Fig. 12. Average number of sequences (millions) and volume (Giga Bytes) of generated
Sequence DBs.

illustrate best performance measurements obtained for each cluster size. Figure 11
calculates the scale-out factor for the three cluster size settings, for a number of
injected source sequences limited by the generation capacity of each cluster. Com-
parisons to a 3 nodes’ cluster holds up to 200,000 injected source sequences, and
comparisons to a 6 nodes’ cluster holds up to 400,000 injected source sequences.
Pairwise comparisons of the three cluster sizes shows that the scale out is almost
ideal for big sequence databases. Indeed, n times the number of data nodes results
in n times the write throughput.

Big Synthetic Sequence DB Generation 75

6 Conclusions and Future Work

Starting from unavailability of synthetic big sequence databases for mining
sequential patterns. First, this paper proposes a scalable and formal approach
for Parallel Generation of Big Synthetic Sequence Databases satisfying both
user-specified sequences’ characteristics and velocity requirements. Experiments
prove that the underlying Parallel Sequence Generator (i) creates billions of dif-
ferent sequences in parallel, (ii) ensures that injected source sequences satisfy
the user requirements especially sequential pattern length characteristic. Second,
the paper reports a scalability and scale-out performance study of the Parallel
Sequence Generator, for various sequence databases’ sizes and various number
of Sequence Generators in a shared-nothing cluster of nodes.

Future work is mainly oriented towards three different directions. First, we
aim to conduct thorough performance study of GSP* and PrefixSpan* : our pro-
posed parallel implementations of GSP [3] and PrefixSpan [6] algorithms, using
big sequence databases generated using PSG. Second, we aim to propose sophis-
ticated algorithms with lessons learned from the performance studies of GSP*
and PrefixSpan*. Third, we aim to customize Parallel Sequence Generator in
order to generate datasets close to real data sets particularly for event sequences
of computer logs, where large clusters emit millions of log entries per second.

Acknowledgements. We acknowledge with thanks a VLDB travel fellowship.

References

1. Han, P.J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. The Mor-
gan Kaufmann Series in Data Management Systems, 3rd edn. Morgan Kaufmann,
Burlington (2011)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th
International Conference on Data Engineering (ICDE), pp. 3–14 (1995)

3. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and perfor-
mance improvements. In: 5th International Conference on Extending Database
Technology Proceedings (EDBT), pp. 3–17 (1996)

4. Zaki, M.J.: Efficient enumeration of frequent sequences. In: Proceedings of ACM
CIKM International Conference on Information and Knowledge Management, pp.
68–75 (1998)

5. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 1–12 (2000)

6. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: mining sequential patterns by prefix-projected growth. In: Proceedings of
the 17th International Conference on Data Engineering, pp. 215–224 (2001)

7. Sun, P., Chawla, S., Arunasalam, B.: Mining for outliers in sequential databases.
In: Proceedings of the 6th SIAM International Conference on Data Mining, pp.
94–105 (2006)

8. Hemalatha, C.S., Vaidehi, V., Lakshmi, R.: Minimal infrequent pattern based app-
roach for mining outliers in data streams. Expert Syst. Appl. 42, 1998–2012 (2015)

76 R. Moussa

9. Cheng, H., Yan, X., Han, J.: Seqindex: indexing sequences by sequential pattern
analysis. In: Proceedings of SIAM International Conference on Data Mining. SDM,
pp. 601–605 (2005)

10. Lin, M.Y., Lee, S.Y.: Fast discovery of sequential patterns through memory index-
ing and database partitioning. J. Inf. Sci. Eng. 21, 109–128 (2005)

11. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets. In:
Proceedings of the 31st International Conference on Very Large DataBases, pp.
709–720 (2005)

12. Lam, H.T., Mörchen, F., Fradkin, D., Calders, T.: Mining compressing sequential
patterns. Stat. Anal. Data Min. 7, 34–52 (2014)

13. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation
sequencing. Briefings Bioinform. 11, 473–483 (2010)

14. Rajaraman, A.: More data usually beats better algorithms (2008). http://anand.
typepad.com/datawocky/2008/04/data-versus-alg.html

15. Srikant, R.: IBM quest synthetic data generator (1999). http://sourceforge.net/
projects/ibmquestdatagen/files/

16. Grid5000: Large-scale and versatile testbed for experiment-driven research: distrib-
uted computing-HPC and big data (2015). https://www.grid5000.fr/

17. Kum, H.C., Chang, J.H., Wang, W.: Benchmarking the effectiveness of sequential
pattern mining methods. Data Knowl. Eng. 60, 30–50 (2007)

18. Moussa, R.: Mining big sequence databases (2015). https://sites.google.com/site/
rimmoussa/miningbigseqdb

19. Pei, J., Mao, R., Hu, K., Zhu, H.: Towards data mining benchmarking: a testbedfor
performance study of frequent pattern mining. In: Proceedings of ACM SIGMOD
International Conference on Management of Data, p. 592 (2000)

20. Gray, J.: Sort benchmark home page (2008). http://research.microsoft.com/barc/
SortBenchmark/

21. Tilmann, R., Meikel, P.: Parallel data generation for performance analysis of large,
complex RDBMS. In: Proceedings of the 4th International Workshop on Testing
Database Systems, pp. 5:1–5:6 (2011)

22. Poess, M., Rabl, T., Frank, M., Danisch, M.: A PDGF implementation for TPC-
H. In: Nambiar, R., Poess, M. (eds.) TPCTC 2011. LNCS, vol. 7144, pp. 196–212.
Springer, Heidelberg (2012)

23. Luo, C., Gao, W., Jia, Z., Han, R., Li, J., Lin, X., Wang, L., Zhu, Y., Zhan, J.:
Handbook of BigDataBench: A Big Data Benchmark Suite (2015). http://prof.ict.
ac.cn/BigDataBench

24. Jim, G., Prakash, S., Susanne, E., Ken, B., Weinberger, P.J.: Quickly generating
billion-record synthetic databases. In: Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 243–252 (1994)

25. Transaction Processing Council: TPC benchmarks (2015). http://www.tpc.org/
26. Karl, H.: The art of building a good benchmark. In: Proceedings of TPC-TC, pp.

18–30 (2009)
27. Räıssi, C., Pei, J.: Towards bounding sequential patterns. In: Proceedings of the

17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1379–1387 (2011)

28. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: 6th Symposium on Operating System Design and Implementation (OSDI), pp.
137–150 (2004)

http://anand.typepad.com/datawocky/2008/04/data-versus-alg.html
http://anand.typepad.com/datawocky/2008/04/data-versus-alg.html
http://sourceforge.net/projects/ibmquestdatagen/files/
http://sourceforge.net/projects/ibmquestdatagen/files/
https://www.grid5000.fr/
https://sites.google.com/site/rimmoussa/miningbigseqdb
https://sites.google.com/site/rimmoussa/miningbigseqdb
http://research.microsoft.com/barc/SortBenchmark/
http://research.microsoft.com/barc/SortBenchmark/
http://prof.ict.ac.cn/BigDataBench
http://prof.ict.ac.cn/BigDataBench
http://www.tpc.org/

	Big-SeqDB-Gen: A Formal and Scalable Approach for Parallel Generation of Big Synthetic Sequence Databases
	1 Introduction
	2 Related Work
	3 Sequence Databases: Concepts and Primitives
	4 Parallel Generation of a Sequence Database
	4.1 Requirements
	4.2 Whitney Enumerators for the Enumeration of Source Sequences
	4.3 Efficient Enumeration of Source Sequences

	5 Implementation and Performance Measurements
	6 Conclusions and Future Work
	References

