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Abstract. Spark has emerged as an easy to use, scalable, robust and fast system
for analytics with a rapidly growing and vibrant community of users and con-
tributors. It is multipurpose—with extensive and modular infrastructure for
machine learning, graph processing, SQL, streaming, statistical processing, and
more. Its rapid adoption therefore calls for a performance assessment suite that
supports agile development, measurement, validation, optimization, configura-
tion, and deployment decisions across a broad range of platform environments
and test cases.
Recognizing the need for such comprehensive and agile testing, this paper

proposes going beyond existing performance tests for Spark and creating an
expanded Spark performance testing suite. This proposal describes several
desirable properties flowing from the larger scale, greater and evolving variety,
and nuanced requirements of different applications of Spark. The paper identi-
fies the major areas of performance characterization, and the key methodological
aspects that should be factored into the design of the proposed suite. The
objective is to capture insights from industry and academia on how to best
characterize capabilities of Spark-based analytic platforms and provide
cost-effective assessment of optimization opportunities in a timely manner.

1 Introduction

Spark’s brisk evolution and rapid adoption outpace the ability of developers and
deployers of solutions to make informed tradeoffs between different system designs,
workload compositions, configuration optimizations, software versions, etc. Designers
of its core and layered capabilities cannot easily gauge how wide ranging the potential
impacts can be when planning and prioritizing software changes. While Spark-perf [16]
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can be used to calibrate certain categories of operations, a Spark-specific, compre-
hensive and extensible performance evaluation alternative is essential for ferreting out
inefficiencies and anomalies. This proposal is intended to be a starting point for a
community driven development of such a testing suite. With this proposal we plan to
open discussion and solicit feedback and participation from the community at the very
beginning of designing such a performance testing suite.

1.1 Objective

The objective is to develop a far-reaching performance testing suite that enables per-
formance comparisons between different levels of Spark offerings, including Spark
libraries and Spark core. The suite is intended to facilitate evaluation of technologies
and be relevant to Spark adopters and solutions creators. We anticipate that the
implementation and execution of this suite will benefit from efforts of many groups of
professionals – Spark operators, workload developers, Spark core developers, and
vendors of Spark solutions and support services.

The following sections present the use cases, the fundamental requirements of the
performance testing suite, the design of data models and data generators, the chosen
workloads covering the Spark ecosystem, the execution and auditing rules, and the
performance metrics. Finally, we conclude the proposal and indicate some areas for
future work.

1.2 Related Work

Benchmarks and performance testing suites serve many different communities. They
are valuable tools for software engineering teams to assess the performance impact of
design trade-offs, to refine choices in system architectures, to inform implementation
choices and to identify performance bottlenecks. They can be used by researchers to
evaluate new concepts and algorithms. They are excellent vehicles for assessing the
performance impact of new hardware or different hardware topologies. They can be
used by users and system integrators to gain a deeper understanding of the capabilities
offered by competing technologies. No one performance test can ever perfectly serve
the needs of all constituencies, but the TPC and SPEC benchmarks, as well as open
source benchmarks like DOTS [13] have proven track records in providing value to a
broad spectrum of constituencies.

Overall, the focus of benchmarks and testing suites can span a spectrum from
low-level (e.g. SPEC CPU2006 [7]) to high-level (e.g. TPC-E [6], SAP SD,
LDBC SNB [11]) functions. In the big data application domain, existing performance
testing suites and benchmarks can be grouped into three categories: component-level
testing, technology-specific solutions and technology-agnostic solutions.

Component-level tests (sometimes called micro-benchmarks) focus on stressing
key system primitives or specifically targeted components using a highly synthetic
workload. Examples of big data component-level testing include the suite of Sort
Benchmarks [17], YCSB [23] and AMP Lab Big Data [21].
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Technology-specific solutions involve a set of representative applications in the
targeted domains and generally mandate the use of a specific technology to implement
the solution. The goal is to test the efficiency of a selected technology in the context of
a realistic operational scenario. Examples of technology-specific solutions testing for
big data are MRBench [29], PigMix [28], HiBench [18, 19] and SparkBench [24].

Technology-agnostic solutions aim at creating a level playing field for any number
of technologies to compete in providing the most efficient implementation of a realistic
application scenario within the targeted application domain. No assumption is made
about which technology choice will best satisfy the real world demands at a solution
level. Benchmarks such as BigDataBench [20], BigBench [22] and TPC-DS [6] fall
into this category.

The Spark performance testing suite introduced in this paper is designed to fall into
the category of technology-specific solutions. It aims at providing a Spark specific,
comprehensive and representative set of workloads spanning the broad range of
application types successfully implemented within the Spark ecosystem. While other
benchmarks such as BigBench [22], BigDataBench [20] and HiBench [18] each cover
a small number of Spark-enabled workloads, they are far from including a compre-
hensive coverage of the full set of application types supported under Spark. Spark-
Bench [24] and Spark-perf [16] provide good initial starting points, yet they fall short
of covering the full Spark picture. In particular Spark-perf is a performance testing suite
developed by DataBricks to test the performance of MLlib, with extensions to
streaming, SQL, data frame and Spark core currently under development. In contrast
the Spark performance testing suite proposed in this paper incorporates a broader set of
application types including text analytics, Spark R and ETL, with realistic and scalable
data generators to enable testing them in a more real-world environment.

2 Targeted Dimensions

A distinctive aspect of the Spark performance testing suite proposed here is that it will
simultaneously target the following three dimensions of performance analysis within
the Spark ecosystem.

• Quantitative Spark Core Engine Evaluation, by enabling comparative analysis of
core Spark system ingredients, such as caching policy, memory management
optimization, and scheduling policy optimization, between baseline (standard)
Spark release and modified/enhanced variations. It anticipates in-depth performance
studies from multiple perspectives, including scalability, workload characterization,
parameter configurations and their impacts, and fault tolerance of Spark systems.

• Quantitative Spark Library Evaluation, by allowing quantitative comparison of
different library offerings built on top of the Spark core engine. These include the
categories of SQL, streaming, machine learning, graph computation, statistical
analysis, and text analytics. We envision interest in comparisons among different
levels/versions of Spark libraries, as well as alternative libraries from vendors.

• Quantitative Staging Infrastructure Evaluation, by providing insight toward
analysis relative to a fixed software stack, two examples of which are
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(a) comparison across different runtimes and hardware cluster setups in private
datacenters or public clouds, and with use of Spark data services, (b) gaining of
configuration and tuning insights for cluster sizing and resource provisioning, and
accelerated identification of resource contentions and bottlenecks.

In summary, the Spark performance testing suite is intended to serve the needs and
interests of many different parties, and aims to cover the technology evaluation of the
Spark ecosystem by exercising its key components comprehensively.

3 Requirements

Measurement is the key to improvement, in computing as in many other spheres. The
Transaction Processing Performance Council [6] and the SPEC [7] are among the most
prominent performance benchmarking organizations. Supplementing them are efforts
like LDBC, for more specific yet significant areas like graph and RDF technologies
benchmarking [27]. Application level benchmarks from vendors like SAP [14] and
Infor Baan [15] play a key role in influencing solution choice, workload balancing and
configuration tuning. Open source communities have created a rich variety of perfor-
mance test suites, DOTS [13] being just one example. From these and other efforts we
recognize an established set of core attributes that any new performance testing suite
should possess.

From Huppler [3] we have the following attributes

– Relevant
– Repeatable
– Understandable
– Fair
– Verifiable
– Economical

In the context of a 21st century Spark performance testing suite we can further
refine these timeless attributes as follows:

• Simple, Easy-to-use and Automated: The suite needs to be simple to understand,
deploy, execute, and analyze in an automated fashion, requiring only modest
configuration. Considering the rapidly evolving nature of Spark ecosystem,
automation is essential.

• Comprehensive: The performance testing suite should be comprehensive and
representative of the diversity of applications supported by Spark. Different Spark
operations can put pressure on different resources, in different ratios. Since a
benchmark suite cannot capture all such operations, it is important that the chosen
representatives reflect both the diversity of Spark uses at the application level and
the variant stresses put on the computing resources at the systems level. For
example, the suite should include workloads that have high resource demands for
specific system resources to test extreme cases for a provisioned system as these
workloads will be one of several uses of Spark.
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• Bottleneck Oriented: Frequently a role of performance testing is to spur tech-
nology advancement. The concept of bottleneck (or choke point) analysis appears
with the LDBC benchmark effort and is a good means to shape workloads, and
thereby provide impetus for innovation by drawing attention to tough, but solvable,
challenges.

• Extensible: Due to the rapid evolution of Spark, the Spark performance testing suite
needs to be able to evolve, which includes allowing users to easily add new or
extend/expand existing capabilities. A successful Spark benchmark will success-
fully address the many parts of the Spark taxonomy and be flexible to extend to new
capabilities that the community may develop. This is illustrated in Fig. 1 Spark
Taxonomy, derived from Databricks [1], starting with the Spark Core Engine as a
base with several workload-focused extensions on top.

• Portable: The benchmark suite should run on a broad range of open systems and be
designed to be readily portable to other operating systems if required.

• Scalable: To allow scaling of tests to large distributed or cloud environments, the
suite should facilitate generation of data that is sufficiently voluminous and varied
that it exercises systems under test in statistically significant ways. The rate at which
new data needs to be generated also needs to create meaningful stresses.

4 Data Model

Ideally we will want to develop a unified data model that allows integrating the
multiple varieties of data, (relational tables, resilient distributed datasets,
semi-structured data, graphs, arrays, and unstructured data such as text) that arise in
Spark usages. A possible approach could be to start with an existing, largely traditional,
relational data model and then extend it to the emerging domains. This has been
popularized by the BigBench benchmark [8] which started with TPC-DS [6] and
extended its data model to the SQL/MR and Mahout machine learning areas. An
interesting possibility is to build on top of the LDBC Social Network Benchmark
(SNB) [11] which already covers a number of the Spark ecosystem domains, and to
extend it further.

Fig. 1. Spark Taxonomy (https://databricks.com/Spark/about)
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We believe it would be effective to use this extension approach for the Spark
performance testing suite. As the design and overall implementation of the Spark
performance testing suite is refined, the choice between TPC-DS, SNB or some other
option can be made. Since any kind of relational model would support SQL, the data
model for that domain is quite straightforward. Streaming can use the relational tables
both as sources and as targets. Work to recast the Mahout-based machine learning with
Spark MLlib [2] is already underway. For graph computation, understanding the link
between the Social Network Benchmark of LDBC and how it could contribute to the
testing suite will be a challenge [25]. Finally, defining a data model across various
specialized Spark features and spanning text analytics, and SparkR for a unified per-
formance testing suite appears feasible in principle, but more investigation is needed.

5 Data Generator

Scalable, efficient, and realistic data generation plays a crucial role in the success of a
data intensive testing suite. The built-in scalable data generator of TPC-H made it very
compelling, as recounted in a retrospective of TPC-H [4]. TPC-DS further refined this
notion and added non-uniform distributions and correlation. Multiple research efforts
(e.g., Myriad [9] from TU Berlin, Parallel Data Generation Framework (PDGF) from
Bankmark [10], and DATAGEN from the LDBC Social Network Benchmark [11]) are
addressing these well appreciated needs for scalability and for reflecting real-world
characteristics into synthetic data generation. We recognize similarly that while it may
require significant development effort, rapid generation of representative data for use in
large scale clusters will be critical in the adoption of the proposed Spark performance
testing suite. We expect that the definition, design and validation of a powerful data
generator is a key work item as we proceed with the implementation of this Spark
performance testing suite.

5.1 Properties of Data Generator

A data generator must have multiple key attributes in order to be successful; in par-
ticular, it will need to be:

• Open source and transparent: to allow users to view and modify the code to enhance
it or alter its behavior

• Scalable: to allow users to use it in a variety of environments, from small single
node servers with only a few GB of data to the largest clusters with hundreds or
even thousands of nodes and Petabytes of data.

• Parallel and distributed: as practical generation of petabytes of data will require
many multi-core servers

• Incremental: to allow data to grow in iterations one must be able to generate data in
“chunks” rather than in one monolithic start to finish method

• Realistic: Although synthetic, data must strive to be realistic; i.e., representative of
real data sets. Following are some of the common properties of real life data:
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• Correlation
• Non-uniform distributions representing high levels of skew
• Fields/columns with both low and high cardinality
• Varying numeric fields
• Text fields of varying length

• Able to represent relationships: as capturing connections across multiple tables/data
sets is essential for advanced analytics.

• Random but predictable: The data must be sufficiently random to challenge the
system-under-test with unknown input sets. And yet, the output of data processing
must be sufficiently predictable to permit validation of results and to determine
which sets of input may trigger comparable levels of processing by the workload.

6 Workloads

6.1 Machine Learning

Several subtasks in the Machine Learning (ML) category are desirable for inclusion in
the proposed suite, and are described further below. For each, the Spark performance
testing suite should contain a reference implementation based on the most recent Spark
MLlib capabilities. The suite should include a written specification for each machine
learning subtask. It should be easy to substitute a different ML algorithm or imple-
mentation, provided that the replacing algorithm meets the specifications identically
with reference implementation. The specification should therefore be at a sufficiently
high level to permit alternative implementations, and be sufficiently strict to ensure that
variant implementations produce useful outputs leading to quality results from a data
science perspective.

It is important for the data generator for the machine learning tasks to cover a broad
range of data characteristics which affect the behavior of ML algorithms. Input data
should include dense, sparse, and hybrid (some attributes dense, others sparse) inputs.
Algorithms should run against both small and large numbers of features.

In order to be able to draw broadly accepted conclusions and to drive innovation
towards continuously improved machine learning, the generated data should also be
robust and highly representative of real world data. In machine learning, processing
speed is important but certain levels of quality are even more important. In a nutshell,
generated data should not be so well-conditioned as to favor optimization algorithms
that are not usable in practice with real-world data. We believe that substantial work is
required to construct a robust, realistic data generator for the performance testing suite
assessing Spark machine learning implementations.

Based on the above criteria, a Spark performance testing suite could augment the
features tested in Spark-perf [16] and supplement [16] with extensions in the areas of
logistic regression, support vector machine and matrix factorization. These are widely
used regression, classification and recommendation algorithms for machine learning
applications.
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6.1.1 ML Subtasks
Logistic Regression. Logistic regression, as a machine learning classifier can be used to
predict continuous or categorical data. For example, it is used to predict whether a
patient has a given cancer based on measured characteristics such as various blood test,
family disease history, age, sex, etc. The algorithm uses the stochastic gradient descent
to train the classification model. The input data sets are kept in memory through RDD
abstractions, and the parameter vector is calculated, updated, and broadcast in each
iteration.

Support Vector Machine. A support vector machine (SVM) model is trained by con-
structing a set of hyper-planes in a high, or even infinite, dimension space for classi-
fication. Compared with linear and logistic classification, SVMs can implicitly map
inputs into a high dimensional feature space and efficiently conduct nonlinear
classifications.

Matrix Factorization. Matrix factorization, typically used by recommendation systems,
is a collaborative filtering technique that fills in the missing entries of a user-item
association matrix. Matrix factorization in Spark currently supports model based col-
laborative filtering and can be configured to use either explicit or implicit feedback
from users.

Random Forest Classification. A random forest classifier uses a large set of relatively
simple decision trees to perform classification tasks. The classifier combines the results
of the individual classifiers to produce a consensus result. Random forests have shown
to be effective in a number of machine learning tasks beyond their primary uses in
classification. Since building a random forest involves training many small models in
parallel, the task involves different communication patterns from other types of training
tasks. MLlib exposes a random forest classifier implementation via the mllib.tree.
RandomForest API.

6.2 Graph Computation

Graph is a very widely utilized data model. Consequently, a comprehensive Spark
performance testing suite needs to include graph processing. The graph packages
supported under Spark include GraphX and Dato. Additional projects are underway.

Graph computations to be included in the testing suite need to be representative of
common types of graphs and graph analytics operations, and graph properties should
reflect those in practical applications. Therefore, the data generator should be able to
generate graphs of different types, such as the social graphs and man-made graphs (e.g.
road-network) where a sensitive metric (say, vertex degree distribution) can be varied
to obtain a wide range of analytics impact. Where practical, we want to be able to link
graph data with other data generated for other components of the Spark performance
testing suite. We propose to draw considerably from the LDBC Social Network
Benchmark [25, 26] and need to examine how best to adapt their benchmarks to the
Spark ecosystem and the Spark performance testing suite infrastructure. Different types
of work, such as static structure-based traversal, graph structure morphing/property
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updates, and the processing of property-rich graphs, are highly desirable to include in
the graph analytics operations of the testing suite.

The following subtasks are proposed according to the above criteria.

6.2.1 Graph Generator Subtask
The Linked Data Benchmark Council (LDBC [27]) has created two benchmarks. One
of them is the LDBC Social Network Benchmark [25, 26] (SNB) whose correlated
graph generation, graph querying tests, complex graph dependencies and scalable
benchmark drivers reflect landmark innovation in graph benchmarking. Its data gen-
erator (ldbc_snb_datagen) uses experimentally extracted metrics and correlations to
produce scalable datasets mimicking real world social networks. LDBC introduced a
new choke-point driven methodology for developing benchmark workloads, which
combines user input with that from expert systems architects.

The SNB analytics workload [26] includes General Statistics, Community Detec-
tion, Breath First Search, Connected Components and Graph Evolution; a list that will
grow in the near future with the addition of new algorithms. We propose to select
workloads from this benchmark for the Spark performance testing suite and develop
additional workloads to cover various aspects of graph computing as detailed in the
next subsection.

Graph500 [12] is a graph benchmark focusing on data-intensive workloads and
particularly on large graphs. It is based on a breadth first search in a synthetically
generated large undirected graph with power-law property based on the Kronecker
model with average degree of 16. It measures performance in TEPS (for Traversed
Edges Per Second) and its problem size can be changed by varying a SCALE parameter
that determines the total number of vertices as 2SCALE. Thus its generated graphs can be
of various sizes, suitable for benchmarking software or platforms at different scales. It
consists of three phases: construction, computation, and validation.

A dataset generator for Belief Propagation should be included as it would make rich
property graph analytics possible, and it should produce directed acyclic graphs
(DAG) with (conditional) probability distributions of various scales.

6.2.2 Graph Analytics Subtask
Primitive operations for graph analytics, such as creating/reading/updating/deleting
(CRUD) vertices, edges, and properties, are nearly universal. Tests calibrating these
graph analytics building blocks are therefore essential to include in the suite. The
metrics would cover throughput (e.g., number of edges traversed per second), latency,
and scalability.

Graph construction for large scale property graph is another key subtask to cover.
The metrics would be running time, and scalability, akin to a subset of Graph500 [12].

Graph query is of interest as it involves both structural information and property
information [11].

Pagerank exercises graph structure traversal with fixed active working set; Triangle
counting stresses similarly. In such graph computations, each vertex iterates through
tasks of gathering information (say, rank score) from its (partial) neighbors (say,
predecessors), updating local information, and propagating it to the other neighbors
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(say, successors); and the iterations continue until convergence or certain termination
conditions are reached.

Breadth-first Search (BFS) represents another type of graph traversal where only
the vertices on the traversal frontier are affected, and the workload can vary from one
iteration to another.

Single Source Shortest Path (SSSP) with a maximum traversal depth represents a
type of graph traversal similar to BFS (e.g., Bellman Ford algorithm), but it only
touches a local subgraph, instead of engaging the entire graph. This workload can
evaluate if a graph processing framework on Spark can efficiently address local or
subgraph computations.

Belief Propagation on a Bayesian network represents property-rich graph pro-
cessing, and is a type of graph analytics operation that occurs in many cognitive
computing applications. For example, Loopy Belief Propagation on a Bayesian net-
work traverses graph iteratively, but when vertex or edge properties are updated, it can
become a multi-pattern and computationally intensive graph structure operation.

Graph Triangulation (a.k.a. Chordization) represents a type of graph processing
workload where the structure is dynamically changed. It is used to find graph cliques
(dense subgraphs) and/or the hyper graph representation. It is an iterative graph pro-
cessing algorithm that modifies topology in each iteration. It can be used to determine
whether graph dynamics can be efficiently captured by the system.

Collaborative Filtering finds a lot of application, especially in recommendation
systems. It involves a number of local graph searches on a bipartite graph, possibly in
parallel, and is suitable for evaluating the concurrent local traversal capacity of a graph
analytic system.

Graph Matching and motif searching are similarly used extensively. When the
target graph lacks an index, these operations are challenging and possibly involve
significantly high local traversals.

Various Graph Centrality metrics, such as the betweenness, degrees, closeness,
clustering coefficient should also be considered due to their wide use in many real
graph processing solutions.

6.3 SQL Queries

SQL continues to be an enduring query language due to its ubiquity, the broad
ecosystem of tools that supports it, and its ability to evolve and support new underlying
infrastructure and new requirements, such as advanced analytics and data sampling.

One area where a different approach might be warranted is in the construction of the
queries. Historically, different vendors have proposed queries that combined a variety
of SQL processing constructs, such as the TPC-D/H/DS benchmarks. In such case, the
coverage was often not obvious initially. There has been some good analysis of the
TPC-H query set [6].

We propose that we introduce a set of elemental or atomic queries that assess basic
scan, aggregation, and join properties, then a set of intermediate queries that add
challenges both to the query optimizer and to a runtime engine, and finally some
complex and very challenging queries, representing ROLAP concepts and advanced
analytic processing.
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6.4 Streaming Applications

Streaming applications can be characterized along three dimensions: latency,
throughput, and state size. Ideally, the Spark performance testing suite would exercise
each of these dimensions at three representative values - high, medium, and low -
giving a total of twenty-seven use cases. However, guided by applicability in the real
world scenarios, the number of use cases can be pruned down to a more manageable
count initially, and grow as more diverse workloads migrate to Spark over time.

6.4.1 Streaming Subtasks
The following are some of the use cases covering a subset of the twenty seven com-
binations posed above.

Real-time Model Scoring. The emphasis in this use case is on small and medium
latency ranges. Low latency is defined as response time in seconds and sub-second
values1. An example is sending an SMS alert to a prepaid mobile customer notifying
them of their leftover account balance and potentially inserting a marketing message in
the SMS alert after a model evaluation. In this use case, a latency in the range of 20 ms
to a few seconds is desired with lower latencies offering a larger payoff – for example, a
50 ms delay does not force the customer to take a second look at the phone screen to
get the marketing message while a delay exceeding 10 s may lead to customer pock-
eting the phone without getting the marketing message. Other examples in this area are
cybersecurity, fraud detection for online transactions, and insertion of ads in webpages,
where latency requirements are considerably more stringent (possibly 100 ms or less).

In all use cases of real-time model scoring, state management is an independent
dimension. The state could be as simple as a single quantity (e.g., in the example
above, minutes of calls left) which gets updated based only on the current record, with
the model scored on this simple state. Or, the state could be a very complex assemblage
of hundreds of attributes across millions of entities, updated by incoming records; with
the model evaluation proceeding over a selection of such entities (e.g., a fraud detection
application which maintains a profile with hundreds of attributes for each customer,
updates it based on incoming records and scores a model on the profile.)

Near Real-time Aggregations. Near real-time aggregates are required for a number of
scenarios in which a physically distributed system is monitored for its health using the
key performance indicators of its elements. Examples include monitoring of traffic
congestion on roads, monitoring of communication networks and energy grids.

In these usages either sliding or tumbling window aggregates are computed from
streaming records. Incoming records may be enriched by joining them with reference
information. The aggregation window size could be from one minute up to an hour. In
a typical case, records arrive out of order and are delayed, and contain a timestamp
which should be used for aggregate computation.

1 Current Spark Streaming is not recommended for sub-second response time, however, we discuss
this here in the anticipation of future improvements.
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For near real-time aggregations, throughput is an independent dimension. The
volumes could range from a few hundred GB a day (enriched Twitter data) and range
up to 500 TB a day (e.g., telecommunication call data records).

Another independent dimension is the number of aggregation buckets - which
themselves can vary from 100’s of millions (one bucket for each mobile user) to several
thousands (monitoring of different metropolitan cities within US).

The two subtasks listed above could be used to produce four use cases that could
become part of the Spark performance testing suite.

6.5 SparkR

R is a widely used language for statistical analysis, and the SparkR project will allow
practitioners to use familiar R syntax in order to run jobs on Spark. In the short term we
propose following SparkR subtasks for inclusion in the performance testing suite, with
future additions as SparkR capabilities evolve.

6.5.1 SparkR Subtasks
Data Manipulation. This covers SparkR DataFrame functions, and operations that can
be performed in a purely distributed fashion and includes all “record-at-a-time”
transformations such as log(), sin(), etc.

Segmented or Subpopulation Modeling. This is a technique in which the data is broken
down into subpopulations, such as by age and gender, and a separate model is built for
each segment of the data. Assuming each segment is of a “reasonable” size, R’s
existing ML libraries can be used to build the models.

Ensemble Modeling. This is a technique in which the data is broken down into ran-
domly selected sub-samples, each of which is a “reasonable” size. R’s existing ML
libraries can be used to build the component models of the ensemble; however, the
code that constructs the ensembles has to be written. This code could be in Scala or
maybe in R.

Scoring R Models. This is applying an existing model. In essence, it is a
“record-at-a-time” transformation.

6.6 Spark Text Analytics

Text analytics is an extremely broad topic, encompassing all types of analysis for
which natural language text is one of the primary inputs. To give the benchmark broad
coverage of this domain, we propose including a wide variety of text-related subtasks
described in the section that follows. For each subtask, the benchmark should include a
reference implementation based on an open-source NLP software stack (e.g., Stan-
ford NLP toolkit) consistent with the open-source license under which the performance
test suite is released.
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Different commercial vendors have proprietary implementations of these subtasks
and will want to substitute their own implementations for the reference implementation.
Each subtask should include a specification that is sufficiently detailed to permit
vendors to perform such substitutions. For example, it should be possible to perform
the “rule-based information extraction” subtask using IBM’s System T engine. In
general, proprietary implementations should be required to produce the same answer as
the reference implementations. For tasks with an element of randomization, the result
of a proprietary implementation should be of equal utility compared with the reference
result. For example, in the “deep parsing” subtask, any deep parser that produces
substantially the same parse trees as the reference implementation (say, 90 % or greater
overlap) would be acceptable.

Data for the subtasks should consist of English-language documents that a human
being could read and understand. The data generator should work either by taking a
random sample from an extremely large “canned” collection of documents, or by
mixing together snippets of English text drawn from a suitably large database. A range
of document sizes from 100 bytes up to 1 MB should be supported.

6.6.1 Text Subtasks
Rule-based Information Extraction. Information extraction, or IE, is the process of
identifying structured information inside unstructured natural language text. IE is an
important component of any system that analyzes text. In some cases, IE is used to
identify useful features for other NLP tasks. In other cases, it is the primary NLP
component of a processing pipeline. Rule-based IE systems use a collection of fixed
rules to define the entities and relationships to extract from the text. These systems are
widely used in practice, particularly in feature extraction applications, because they
deliver high throughput and predictable results. The rule-based IE task will stress Spark
by producing large amounts of structured information from each input document.

Information Extraction via Conditional Random Fields. A number of supervised sta-
tistical techniques are used in NLP as an alternative to using manually curated rules.
Conditional Random Fields (CRF) is currently the most popular of these techniques.
A CRF is a graphical model, similar to a hidden Markov model, but with greater
expressive power. CRF-based information extraction involves transforming each input
document into a graph with missing labels; then a collection of labeled training data is
used to compute the maximum likelihood estimate for each missing label. The
CRF-based extraction task will stress Spark due to its very high memory requirements.

Deep Parsing. Deep parsing involves computing the parse trees of natural language
sentences according to a natural language grammar. Deep parsing is an important
component of advanced feature extraction tasks such as sentiment determination. The
deep parsing task will stress Spark due to its high CPU requirements and large output
sizes.

Online Document Classification. Automatically classifying a stream of incoming
documents into two or more categories is a very common NLP task, arising in
applications such as publish-subscribe systems and spam filtering.
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Batch Topic Clustering. Topic clustering is a family of supervised learning techniques
for identifying important topics within a corpus of text, while simultaneously classi-
fying documents according to the topics. The resulting topics and clusters can be used
to understand the corpus at a high level, or serve as features for other machine learning
tasks.

6.7 Resilient Distributed Dataset (RDD) Primitives

Since the main programming abstraction in Spark is RDDs, offering RDD primitive
facilitates end users to gain micro-level understanding of how RDD performs within
Spark framework. The reference test suite implementation of RDD primitives should be
based on the latest version of Spark core and make it easy to substitute a different RDD
implementation, add new RDD operations and remove obsolete RDD operations.

While RDDs supports a wide variety of transformations and actions, the testing
suite should cover the key operations broadly. In particular, the RDD primitives should
include IO related, shuffle, set and compute RDD operations. We choose not to include
set operations with RDD.subtract and RDD.intersection because their
characteristics are a combination of compute and shuffle RDD operations.

The testing suite should provide a data generator which produces synthetic data sets
to exercise the various RDD primitives. Considering that data skew is known to
commonly exist in data analytics workloads, the data generator needs to be able to
generate data sets with different types of statistical distribution representing different
levels of data skew. Note that whereas this type of workloads is aimed at micro-level
RDD performance, the data generator needs not to generate realistic data sets.

6.7.1 RDD Primitives Subtasks
IO Related RDD Operations. This set of operations identify how fast Spark reads and
writes data from/to local or distributed file system and creates/removes RDDs for the
targeted data set with various size. Examples of RDD actions include SparkCon-
text.textFile, RDD.unpersist.

Shuffle RDD Operations. This set of operations focus on stressing the shuffle behavior
of RDD operations. They quantify how fast shuffle RDD operations can perform given
different data set sizes. Examples of RDD transformations include RDD.union, RDD.
zipPartition, RDD.reduceByKey, RDD.groupByKey, and RDD.
treeAggregate.

Compute RDD Operations. This set of operations exercise how fast the compute RDD
operations can perform. Examples of RDD transformations include RDD.map, RDD.
flatMap. We choose to specify trivial map function such as sleep within compute
RDD operations so that we can isolate the evaluation of the overhead of Spark
framework.

Check-pointing RDD Operations. This set of operations assesses how fast the check
pointing RDD operations can perform. This is a key factor which helps encourage the
adoption of Spark framework seeing that failure is a common phenomenon in large

SparkBench – A Spark Performance Testing Suite 39



scale data centers and check-pointing and lineage are the fundamental failure recovery
mechanisms within Spark.

The key evaluation metrics for RDD primitives are as follows: (1) throughput: how
many RDD transformations and actions can Spark conducts within a given time
window; (2) scalability: how does the execution time change when the RDD data set
size increases; (3) efficiency of failure recovery: how fast can Spark recover from a
RDD data partition lost.

7 Execution and Auditing Rules

In this section we discuss the outline of the proposed execution and auditing rules of
the testing suite. These rules typically govern the preparation of the testing environ-
ment, the execution of the testing suite, and the evaluation, validation and reporting of
the test results.

During test environment preparation, a user first identifies the targeted workload(s)
and accordingly chooses a benchmarking profile. To reduce the performance testing
overhead, the testing suite provides a set of benchmarking profiles. Each profile
includes a subset of workloads from the entire testing suite, along with corresponding
data generation configurations and sequence(s) of workload execution. For example,
the testing suite has one benchmark profile for each workload described in Sect. 6. If
the testing focuses on machine learning, the machine learning benchmarking profile
can be used, eliminating the overhead of running the other workloads.

The execution rules also require both single user and multi-user execution sce-
narios. A single user scenario executes the workloads included in the benchmarking
profile one after another with a focus on evaluating and collecting per-workloads
metrics. A multi-user scenario runs multiple benchmarking profiles concurrently with
profile launching time following a certain statistical distribution. The multi-user sce-
nario also could support running the profiles against different data sets instead of
reusing the same data sets. This gives the users a better understanding of the perfor-
mance implication of the targeted system under a multi-user scenario.

Having selected a benchmarking profile, the testing environment can be set up. This
includes provisioning a set of connected machines and installing the software stack
needed for running the testing suite’s profile.

Once the testing environment is ready, the testing suite’s data generator is used to
generate needed datasets and loading them into the storage component of the tested
system. The user is then ready to proceed with running the benchmark with a workload
execution sequence defined by the chosen benchmarking profile. To check whether a
benchmark run is valid, all the workload execution should report successful return
status and pass the validation phase.

The testing suite includes an output quality evaluation and validation phase to
evaluate the correctness of the execution. While this varies by workloads, a user can get
an initial result indicating the validity and performance level of a test run from the
result log generated by the testing suite.
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Another important aspect of the execution and auditing rules is the requirement to
provide sufficient reporting about the testing to allow others to reproduce the results.
The system details needed in the disclosure report includes the hardware configurations
such as CPU, memory, network, disk speed, network controller, switches; and software
information such as the OS name and version, other software names and versions
relevant to the testing suite, and the parameters used to generate input datasets. The full
set of result logs generated by the testing suite should also be provided online and in a
format that is easy to reproduce.

8 Metrics

Whenever a set of somewhat independent measurements are performed, a question
always arises – how should the results be aggregated into a single metric, a simple and
comparable measure of composite “goodness”? Historically, geometric mean has been
chosen for some benchmarks [8, 9], while it has been argued later that a geometric
mean is inappropriate [6]. Several other options, viz. an arithmetic mean, a weighted
arithmetic mean, a harmonic mean, a weighted harmonic mean, etc. may also be
applicable candidates for devising a figure of merit.

Different components of the proposed suite have widely diverse origins, and are
likely to be accorded dissimilar measures of importance by different people. Thus
arriving at a consensus single metric is particularly challenging in this case. For the
purpose of this paper we therefore defer any specific recommendations. We understand
and accept that a simple single figure of merit for any set of measurements is highly
desirable.

Overall, we believe that most tests are best characterized by multi-user throughput.
However, as the community-based approach to evolve and finalize the ideas presented
in this paper gets underway, we expect considerable open discussion before a final
metric is settled upon.

9 Preliminary Work

Preliminary work [24] has been done in the design of a benchmarking suite focusing on
targeted dimensions of quantitative Spark Core and the staging of infrastructure
evaluation. In this work ten diverse and representative workloads were chosen, cov-
ering four types of applications supported by Spark – machine learning, graph com-
putation, SQL and streaming workloads. The ten chosen workloads were characterized
using synthetic data sets and demonstrating distinct patterns with regards to resource
consumption, data flow and communication features affecting performance. The work
also demonstrated how the benchmarking suite can be used to explore the performance
implications of key system configuration parameters such as task parallelism.
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10 Conclusion, Ongoing, and Future Work

As Spark is increasingly embraced by industries and academia, there is a growing need
for a comprehensive set of Spark performance tools. Such tools should enable devel-
opers, integrators and end users within the Spark and big data community to identify
performance bottlenecks, explore design trade-offs, assess optimization options and
guide hardware and software choices with a focus on key workload characteristics.
While early work has been done in this area, the Spark ecosystem, being a relatively
new data analytics platform, lacks a far reaching set of performance tools. This paper
introduces a framework for the creation of a comprehensive Spark performance testing
suite to address this need. It identifies several key factors such a performance testing
suite should consider, a set of Spark workloads consistent with those factors, and the
requirements for their reference implementations and corresponding data generators.

Currently we are focusing on machine learning and graph processing workloads.
More specifically, we are identifying real world data sets as seeds for data generator.
They exemplify the data characteristics that need to be preserved in order to generate
realistic data sets at selected scale factors. We are also looking into meaningful metrics
for each workload with a focus on setting apart high performing algorithms and
implementations from less efficient ones. In the future, we plan to add additional
workloads to the identified set. For instance, as a necessary step between the data
generation process and the analytics workflow, we identify extract-transform-load
(ETL) as another key workload within the Spark ecosystem. We also plan to explore
the possibility of supporting a Python interface within the performance testing suite.
Moreover, we recognize the need for a formal definition of the testing suite’s detailed
execution and auditing rules, along with the selection of representative metrics that
create an environment where true apples-to-apples comparisons can be made and
alternative choices can be fairly evaluated.
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