
Pocket Data: The Need for TPC-MOBILE

Oliver Kennedy(B), Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek

University at Buffalo, Buffalo, NY 14260, USA
{okennedy,jerryant,challen,ziarek}@buffalo.edu

http://odin.cse.buffalo.edu/research/

Abstract. Embedded database engines such as SQLite provide a con-
venient data persistence layer and have spread along with the applica-
tions using them to many types of systems, including interactive devices
such as smartphones. Android, the most widely-distributed smartphone
platform, both uses SQLite internally and provides interfaces encour-
aging apps to use SQLite to store their own private structured data.
As similar functionality appears in all major mobile operating systems,
embedded database performance affects the response times and resource
consumption of billions of smartphones and the millions of apps that run
on them—making it more important than ever to characterize smart-
phone embedded database workloads. To do so, we present results from
an experiment which recorded SQLite activity on 11 Android smart-
phones during one month of typical usage. Our analysis shows that
Android SQLite usage produces queries and access patterns quite dif-
ferent from canonical server workloads. We argue that evaluating smart-
phone embedded databases will require a new benchmarking suite and
we use our results to outline some of its characteristics.

Keywords: Sqlite · Client-side · Android · Smartphone · Embedded
database

1 Introduction

The world’s 2 billion smartphones represent the most powerful and pervasive
distributed system ever built. Open application marketplaces, such as the Google
Play Store, have resulted in a vibrant software ecosystem comprising millions of
smartphone and tablet apps in hundreds of different categories that both meet
existing user needs and provide exciting novel capabilities. As mobile apps and
devices become even more central to the personal computing experience, it is
increasingly important to understand and improve their performance.

A common requirement of mobile apps and systems is persisting structured
private data, a task that is frequently performed using an embedded database
such as SQLite [18]. Android, the open-source and widely-used smartphone plat-
form, provides interfaces that simplify the process of accessing private SQLite
databases, and many apps make use of SQLite for this purpose. In addition,
Android platform services themselves make heavy use of SQLite, as do built-in
c© Springer International Publishing Switzerland 2016
R. Nambiar and M. Poess (Eds.): TPCTC 2015, LNCS 9508, pp. 8–25, 2016.
DOI: 10.1007/978-3-319-31409-9 2



Pocket Data: The Need for TPC-MOBILE 9

apps (Mail, Contacts), popular apps (Gmail, Maps), and libraries (Google Play
Services) distributed by Google. As a result, the large and growing number of
mobile apps using embedded databases represent a new and important class of
database clients.

Unsurprisingly, mobile app usage of embedded databases is quite different
from the workloads experienced by database servers supporting websites or big
data applications. For example, while database servers are frequently tested
and tuned for continuous high-throughput query processing, embedded data-
bases experience lower-volume but bursty workloads produced by interactive
use. As another example, enterprise database servers are frequently provisioned
to have exclusive access to an entire machine, while apps using embedded data-
bases compete for shared system resources with other apps and may be affected
by system-wide policies that attempt to conserve limited energy on battery-
constrained mobile devices. So while the fundamental challenges experienced
by mobile apps using embedded databases—minimizing energy consumption,
latency, and disk utilization—are familiar ground for database researchers, the
specific tradeoffs produced by this domain’s specific workload characteristics are
far less well understood.

In this paper, we present results drawn from a one-month trace of SQLite
activity on 11 PhoneLab [16] smartphones running the Android smartphone
platform. Our analysis shows that the workloads experienced by SQLite on
these phones differ substantially from the database workloads expressed by pop-
ular database benchmarking suites. We argue that a new benchmark for mobile
embedded databases is required to effectively measure their performance, and
that such a benchmark could spur innovation in this area.

Our specific contributions are as follows: (a) A month-long trace of SQLite
usage under real world conditions (details in Sect. 2), (b) An in-depth analysis of
the complexity (Sect. 3) and runtime (Sect. 4) characteristics of SQL statements
evaluated by SQLite during this trace, (c) A comparison of these characteris-
tics to existing benchmarking strategies (Sect. 5), and (d) An overview of the
requirements for a new “pocket data” benchmark: TPC-MOBILE (Sect. 6).

2 Experimental Setup

To collect and analyze SQLite queries generated by Android, we used the
unique capabilities of the PhoneLab smartphone platform testbed located at
the University at Buffalo (UB). Approximately 200 UB students, faculty, and
staff use instrumented LG Nexus 5 smartphones as their primary device and
receive discounted service in return for providing data to smartphone experi-
ments. PhoneLab participants are balanced between genders and distributed
across ages, and thus representative of the broader smartphone user population.
PhoneLab smartphones run a modified version of the Android Open Source
Platform (AOSP) 4.4.4 “KitKat” including instrumentation and logging devel-
oped in collaboration with the mobile systems community. Participating smart-
phones log experimental results which are uploaded to a central server when the
device is charging.



10 O. Kennedy et al.

We instrumented the PhoneLab AOSP platform image to log SQLite activ-
ity by modifying the SQLite source code and distributing the updated binary
library as an over-the-air (OTA) platform update to PhoneLab participants.
Our logging recorded each SQL statement that was executed, along with its
resulting runtime and the number of rows returned as appropriate. All current
PhoneLab instrumentation including our SQLite logging statements are docu-
mented at https://phone-lab.org/experiment/data/. To protect participant pri-
vacy, our instrumentation removes as much personally-identifying information as
possible, as well as recording prepared statement arguments only as hash values.

Our trace data-set is drawn from publicly-available data provided by
11 PhoneLab developers who willingly released1 complete trace data for their
phones for March 2015. Of the eleven participants, seven had phones that were
participating in the SQLite experiment every day for the full month, with the
remaining phones active for 1, 3, 14, and 19 days. A total of 254 phone/days
of data were collected including 45,399,550 SQL statements. Of these, we were
unable to interpret 308,752 statements (∼0.5 %) due to a combination of data
corruption and the use of unusual SQL syntax. Results presented in this paper
that include SQL interpretation are based on the 45,090,798 queries that were
successfully parsed.

3 Query Complexity

In this section we discuss the query complexity we observed during our study
and illustrate typical workloads over pocket data. Figure 1 summarizes all 45
million statements executed by SQLite over the 1 month period. As might be
expected, SELECT forms almost three quarters of the workload by volume. UPSERT
statements (i.e., INSERT OR REPLACE) form a similarly substantial 16 % of the
workload — more than simple INSERT and UPDATE statements combined. Also
of note is a surprising level of complexity in DELETE statements, many of which
rely on nested sub-queries when determining which records to delete.

Figure 2 shows the 10 most frequent and 10 least frequent clients of SQLite
over the one month trace. The most active SQLite clients include internal
Android services that broker access to data shared between apps such as personal
media, calendars, and address books; as well as pre-installed and popular social
media apps. There is less of a pattern at the low end, although several infrequent
SQLite clients are themselves apps that may be used only infrequently, especially
on a phone-sized device. We suspect that the distribution of apps would differ
significantly for a tablet-sized device.

3.1 Database Reads

Of the 45 million queries analyzed, 33.47 million were read-only SELECT queries.
Figure 3 shows the distribution of SELECT queries by number of tables accessed by

1 https://phone-lab.org/static/experiment/sample dataset.tgz.

https://phone-lab.org/experiment/data/
https://phone-lab.org/static/experiment/sample_dataset.tgz


Pocket Data: The Need for TPC-MOBILE 11

Fig. 1. Types and numbers of SQL statements executed during the trace, and query
features used in each.

Fig. 2. Apps that executed the (a) 10 most and (b) 10 fewest SQL statements.

Fig. 3. SELECT queries by (a) number of tables accessed and (b) maximum nesting
depth.

the query, as well as the maximum level of query nesting. Nesting includes from-
nesting (e.g., SELECT ... FROM (SELECT ...)), as well as expression-nesting
(e.g., SELECT ... WHERE EXISTS (SELECT ...)). Even at this coarse-grained
view of query complexity, the read-only portion of the embedded workload dis-
tinguishes itself from existing TPC benchmarks.



12 O. Kennedy et al.

Like TPC-C [6], the vast majority of the workload involves simple, small
requests for data that touch a small number of tables. 29.15 million, or about
87 % of the SELECT queries were simple select-project-join queries. Of those,
28.72 million or about 86 % of all queries were simple single-table scans or look-
ups. In these queries, which form the bulk of SQLite’s read workload, the query
engine exists simply to provide an iterator over the relationally structured data
it is being used to store. Conversely, the workload also has a tail that consists
of complex, TPC-H-like [8] queries. Several hundred thousand queries involve at
least 2 levels of nesting, and over a hundred thousand queries access 5 or more
tables. As an extreme example, our trace includes 10 similar SELECT queries
issued by the Google Play Games Service2, each of which accesses up to 8 distinct
tables to combine developer-provided game state, user preferences, device profile
meta-data, and historical game-play results from the user.

Simple SELECT Queries. We next examine more closely a class of simple look-
up queries, defined as any SELECT query that consists exclusively of selections,
projections, joins, limit, and order by clauses, and which does not contain any
nested sub-queries or unions. Figure 4 shows queries of this class, broken down by
the number of tables involved in the query (Join Width) and the complexity of
the where clause, as measured in number of conjunctive terms (Where Clauses).
For example, consider a query of the form: SELECT R.A FROM R, S WHERE R.B
= S.B AND S.C = 10 This query would have a join width of 2 (R, S) and 2
conjunctive terms (R.B = S.B and S.C = 10). For uniformity, NATURAL JOIN
and JOIN ON (e.g., SELECT R.A from R JOIN S ON B) expressions appearing
in the FROM clause are rewritten into equivalent expressions in the WHERE clause.

Fig. 4. Number of simple look-up queries subdivided by join width (number of tables)
and number of conjunctive terms in the WHERE clause.

2 https://developers.google.com/games/services/.

https://developers.google.com/games/services/


Pocket Data: The Need for TPC-MOBILE 13

Fig. 5. The WHERE clause structure for single-tabled simple lookup queries with a single
conjunctive term in the WHERE clause.

The first column of this table indicates queries to a single relation. Just over 1
million queries were full table scans (0 where clauses), and just under 27 million
queries involved only a single conjunctive term. This latter class constitutes
the bulk of the simple query workload, at just over 87 % of the simple look-up
queries. Single-clause queries appear to be the norm. Recall that an N-way equi-
join requires N-1 conjunctive terms; Spikes occur in the number of queries with
one more term than strictly required to perform a join, suggesting a constraint
on at least one relation.

Narrowing further, we examine simple look-up queries referencing only a
single source table and a single conjunctive term in the WHERE clause. Figure 5
summarizes the structure of the predicate that appears in each of these queries.
In this figure, constant terms (Const) are any primitive value term (e.g., a quoted
string, an integer, or a float), or any JDBC-style parameter (?). For simple
relational comparators, we group together inequalities (i.e., <, ≤, >, ≥ and
�=) under the symbol θ, and explicitly list equalities. Other relational operators
such as LIKE, BETWEEN, and IN are also seen with some frequency. However, the
majority (85 % of all simple look-ups) are exact match look-ups. Not surprisingly,
this suggests that the most common use-case for SQLite is as a relational key-
value store. As we show shortly through a per-app analysis of the data (Sect. 3.1),
24 out of the 179 apps that we encountered posed no queries other than exact
look-ups and full table scans.

Other SELECT Queries. Figure 6 shows a similar breakdown for all 33.5 million
SELECT queries seen. As before, the table shows the form of all expressions that
appear as one of the conjunctive terms of a WHERE clause, alongside the number of
queries where the expression appears at least once. 31.0 million of these queries
contain an exact lookup. 1.6 million queries contain at least one multi-attribute
equality expression such as an equi-join constraint, lining up nicely with the 1.7
million queries that reference at least two tables.



14 O. Kennedy et al.

Fig. 6. WHERE clause expression structures, and the number of SELECT queries in
which the structure appears as a conjunctive clause.

App developers make frequent use of SQLite’s dynamic typing: Where
clauses include bare column references (e.g., WHERE A, implicitly equivalent to
WHERE A <> 0) as well as bare bit-wise AND expressions (e.g., A&0xc4). This
latter predicate appearing in a half-million queries suggests extensive use of bit-
arrays packed into integers.

Functions. Functions extend the basic SQL syntax, providing for both spe-
cialized local data transformations, as well as computation of aggregate values.
Figure 7 shows all functions appearing in SELECT queries during our trace, orga-
nized by the number of times that each function is used. All functions that we
saw are either built-in SQLite functions, or in the case of PHONE NUMBERS EQUAL
are Android-specific extensions; No user-defined functions appeared in the trace.

Overall, the most common class of function was aggregate functions (e.g.,
SUM, MAX, COUNT), followed by string operations (e.g., LENGTH and SUBSTR). The
most commonly used function was GROUP CONCAT, an aggregate operator that

Fig. 7. Functions appearing in SELECT queries by number of times the function is
used.



Pocket Data: The Need for TPC-MOBILE 15

constructs a string by concatenating its input rows. This is significant, as it
means that the most commonly used aggregate operator is holistic — its output
size is linear in the number of input rows.

Per-Application Analysis. We next break the SELECT workload down by
the calling application (app). Due to limitations of the logging infrastructure,
4.32 million queries (just over 12.9 % of the workload) could not be associated
with a specific application, and our app-specific analysis excludes these queries.
Additionally, system services in Android are often implemented as independent
apps and counted as such in the numbers presented.

Over the course of the one-month trace we observed 179 distinct apps, varying
from built-in Android applications such as Gmail or YouTube, to video players
such as VLC, to games such as 3 Kingdoms. Figure 8a shows the cumulative
distribution of apps sorted by the number of queries that the app performs. The
results are extremely skewed, with the top 10 % of apps each posing more than
100 thousand queries over the one month trace. The most query-intensive system
service, Media Storage was responsible for 13.57 million queries or just shy of
40 queries per minute per phone. The most query-intensive user-facing app was
Google+, which performed 1.94 million queries over the course of the month or 5
queries per minute. At the other end of the spectrum, the bottom 10 % of apps
posed as few as 30 queries over the entire month.

We noted above that a large proportion of SELECT queries were exact look-
ups, suggesting that many applications running on the device might be using
SQLite as a simple key-value store. This suggestion was confirmed in our app-
level analysis. For example, approximately half of one specific app’s query work-
load consisted of the following two queries:

INSERT OR REPLACE INTO properties(property_key,property_value) VALUES (?,?);

SELECT property_value FROM properties WHERE property_key=?;

In this query, ? is a prepared statement parameter that acts as a place holder
for values that are bound when the prepared statement is evaluated.

Fig. 8. Breakdown of SELECT queries by app. (a) Cumulative distribution of applica-
tions by the number of SELECT queries issued (note the logarithmic scale). (b) Cumu-
lative distribution of applications by the percent of the app’s SELECT queries that are
full table scans or exact look-ups.



16 O. Kennedy et al.

To broaden the scope of our analysis of key/value queries, we define a key-
value look-up query as a SELECT query over a single relation that either performs
a full table scan, or performs an exact look-up on a single attribute. Figure 8b
shows the cumulative distribution of apps sorted by the fraction of each app’s
queries that are key-value lookup queries. For 24 apps (13.4 %), we observed only
key-value queries during the entire, month-long trace.

3.2 Database Writes

Write statements, INSERT, INSERT OR REPLACE (here abbreviated as UPSERT),
UPDATE, and DELETE, together constitute 11.6 million statements or about 25 % of
the trace. As shown in Fig. 1, the most prevalent operation is the UPSERT. INSERT
and UPSERT together account for 9.3 million operations, of which 7.4 are UPSERTs.
In many of these cases, the use of UPSERTS appears to be defensive programming
on the part of wrapper libraries that make use of SQLite (e.g., Object Relational
Mappers, or ORMs). UPSERTS are also the canonical form of update in key-value
stores, further supporting the argument that a large fragment of SQLite’s traffic
is based on key-value access patterns.

DELETE Statements. The trace includes 1.25 million DELETE statements. This
was by far the most expensive class of statement, with an average DELETE taking
just under 4 ms to complete. A significant portion of this cost is attributable to
the use of DELETE as a form of bulk erasure. As shown in Fig. 9, 323 thousand
DELETEs have no exact match condition in their WHERE clause, while 528 thou-
sand do include a range predicate. DELETE predicates can become quite complex;
46,122 DELETEs (just under 3.7 %) use nested SELECT queries, and touch as many
as 7 separate tables (in 616 cases). This suggests extensive use of DELETE as a

Fig. 9. WHERE clause expression structures, and the number of DELETE statements in
which the structure appears.



Pocket Data: The Need for TPC-MOBILE 17

Fig. 10. WHERE clause expression structures, and the number of UPDATE statements in
which the structure appears.

form of garbage-collection or cache invalidation, where the invalidation policy is
expressed through SQL.

UPDATE Statements. Slightly over 1 million statements executed by SQLite
over the course of the month were UPDATE statements. Figure 10 breaks down
the predicates used to select rows to be updated. Virtually all UPDATE statements
involved an exact look-up. Of the million updates, 28 thousand did not include
an exact look-up.

193 of the UPDATE statements relied on a nested SELECT statement as part
of their WHERE clause, including 56 that involved 2 levels of nesting. Of the 193
UPDATEs with nested subqueries, 25 also involved aggregation.

Although the WHERE clause of the updates included a variety of expressions,
every single setter in every UPDATE statement in the trace assigned a constant
value; Not a single UPDATE expression attempted to compute new values using
SQL, suggesting a strong preference for computing updated values in the appli-
cation itself. This is not entirely unexpected, as the database lives in the address
space of the application. Consequently, it is feasible to first perform a SELECT
to read values out of the database and then perform an UPDATE to write out the
changes, a tactic used by many ORMs. An unfortunate consequence of this tac-
tic is that ORMs cache database objects at the application layer unnecessarily,
suggesting that a stronger coupling between SQL and Java (e.g., through lan-
guage primitives like LINQ [2] or StatusQuo [4]) could be of significant benefit
to Android developers.

Per-Application Analysis. Figure 11a illustrates app-level write workloads,
sorting applications by the number of INSERT, UPSERT, UPDATE, and DELETE
operations that could be attributed to each. The CDF is almost perfectly expo-
nential, suggesting that the number of write statements performed by any given
app follows a long-tailed distribution, a feature to be considered in the design of
a pocket data benchmark.



18 O. Kennedy et al.

Fig. 11. App-level write behavior. (a) Cumulative distribution of applications by num-
ber of data manipulation statements performed (note the logarithmic scale). (b) Cumu-
lative distribution of applications by read/write ratio.

Figure 11b breaks apps down by their read/write ratio. Surprisingly, 25 apps
(14 % of the apps seen) did not perform a single write over the course of the
entire trace. Manual examination of these apps suggested two possible explana-
tions. Several apps have reason to store state that is updated only infrequently.
For example, JuiceSSH or Key Chain appear to use SQLite as a credential
store. A second, far more interesting class of apps includes apps like Google Play
Newsstand, Eventbrite, Wifi Analyzer, and TuneIn Radio Pro, which all have
components that query data stored in the cloud. We suspect that the cloud data
is being encapsulated into a pre-constructed SQLite database and being pushed
to, or downloaded by the client applications. This type of behavior might be
compared to a bulk ETL process or log shipment in a server-class database work-
load, except that here, the database has already been constructed. Pre-caching
through database encapsulation is a unique feature of embedded databases, and
one that is already being used in a substantial number of apps.

4 Runtime Characteristics

Next, we look at overall runtime characteristics of the query workload observed
during our study. We examine how often queries arrive, how long they run,
and how many rows they return—all important inputs into designing the TPC-
Mobile embedded database benchmark.

General Characteristics. Figure 12 shows query interarrival times, runtimes,
and returned row counts (for SELECT statements) for all users, applications, and
non-informational query types (SELECT, UPDATE, INSERT, DELETE) included in
our dataset. Given that each mobile application is really generating an isolated
workload to its own embedded database, we measure query interarrival time only
between queries issued by the same application.

Examining the interarrival times shown in Fig. 12a, it is interesting to observe
that many queries seem to arrive much more quickly than the minimum query



Pocket Data: The Need for TPC-MOBILE 19

Fig. 12. Summary Statistics for Android SQLite Queries. Distributions of (a) inter-
query arrival times, (b) query runtimes, and (c) rows returned per query.

runtime shown in Fig. 12b. Part of this may be due to apps that use multiple
separate databases, which is not yet captured by our analysis. However, our
logging is also done above any locking performed by SQLite, and so this may
demonstrate that there are many cases where multiple application threads are
issuing overlapping queries in parallel, even if the queries are eventually serialized
before results are returned. Figure 12a also shows that, in addition to a standard
long-tailed distribution of query inter-arrival times, about 20 % of the workload
is very periodic, arriving at a rate of 0.01 Hz.

The runtime CDF shown in Fig. 12b shows while overall query runtimes show
variation over several orders of magnitude, a large fraction of queries are exe-
cuted in between 100 and 1000 μs. Further investigation into the small fraction of
extremely slow queries may discover areas for database or application improve-
ment. Finally, the row count CDF shown in Fig. 12c shows that 80 % of queries
return only one row, further supporting our observation that many applications
seem to be using the SQLite database almost as a key-value store.

Runtime Characteristics by Query Type. Figure 13 shows runtime charac-
teristics for each of the four types of SQL statement. Figure 13a and b in partic-
ular show the time since the last query to be issued and the time until the next
query is issued (respectively), while Fig. 13c shows the distribution of runtimes
for each type of query. Examining the differences between Fig. 13a and b, we
observe that INSERT queries are far more likely to arrive shortly before another
query than shortly after. Almost 80 % of INSERTs are followed by another query
within 100 μs. A similar, but far more subdued pattern can be seen for UPDATE
statements. Conversely, both SELECT and DELETE statements are slightly more
likely to arrive shortly before, rather than shortly after another query. Figure 13c
shows significant deviations from the global average runtime for DELETE and
UPDATE statements. UPDATE statements in particular have a bimodal distribu-
tion of runtimes, spiking at 100μs and 10 ms. We suspect that this performance
distribution is related to SQLite’s use of filesystem primitives for locking and
write-ahead logging [10,11]. This could also help to explain the 0.01 Hz query
periodicity we observed above.



20 O. Kennedy et al.

Fig. 13. By-Query-Type Statistics for Android SQLite Queries. Distribution of times
since the query (a) immediately preceding, and (b) immediately following the query in
question. (c) Distribution of runtimes for each query.

Fig. 14. Per-App Summary Statistics for Android SQLite Queries. Distributions of (a)
inter-query arrival times, (b) query runtimes, and (c) rows returned per query.

Runtime Characteristics by Application. Figure 14 shows query interar-
rival times, runtimes, and returned row counts for ten of the most active SQLite
clients. As seen in Fig. 14a, the 0.01 Hz periodicity is not unique to any one
application, further suggesting filesystem locking as a culprit. Two of the most
prolific SQLite clients, Google Play services and Media Storage appear to be very
bursty: 70 % of all statements for these applications are issued within 0.1 ms of
the previous statement. Also interesting is the curve for queries issued by the
Android System itself. The interarrival time CDF appears to be almost precisely
logarithmic for rates above 10μs, but has a notable lack of interarrival times
in the 1 ms to 10 ms range. This could suggest caching effects, with the cache
expiring after 1 ms. As seen in Fig. 14b, most apps hold to the average runtime
of 100 μs, with several notable exceptions. Over 50 % of the Android System’s
statements take on the order of 1 ms. Just under 20 % of Hangouts statements
take 10 ms, suggesting an update-heavy workload. Also, Contacts Storage has
a heavier-duty workload, with 30 % of statements taking between 100μs and
1 ms. Figure 14c shows that the Android System and Media Storage issue almost



Pocket Data: The Need for TPC-MOBILE 21

exclusively single-row lookup queries. The remaining apps issue a large number
of single-row queries — Even Contacts Storage has a workload consisting of 45 %
single-row reads — the number of rows returned in general varies much more
widely. Many of these apps’ user interfaces have both a list and a search view
that show multiple records at a time, suggesting that these views are backed
directly by SQLite. Although all apps have long tails, two apps in particular:
Gmail and Google+ are notable for regularly issuing queries that return on the
order of 100 rows.

5 Pocket Data and Related Work

In spite of the prevalence of SQL on mobile devices, and an increasing interest in
so-called “small data” [9], relatively little attention has been paid to the rapidly
growing pocket data space. In this section, we first explore some existing research
on mobile databases, with a focus on how the authors evaluate their solutions.
Then, we turn to existing benchmarking suites and identify specific disconnects
that prevent them from being applied directly to model pocket data. In the
process, we explore aspects of these benchmarks that could be drawn into a
potential pocket data benchmark.

5.1 Pocket Data Management

Kang et al. [11] explored the design of a flash-aware transactional layer called X-
FTL, specifically targeting limitations of SQLite’s redo logging on mobile devices.
To evaluate their work, the authors used the TPC-C benchmark in conjunction
with a series of micro-benchmarks that evaluate the file system’s response to
database write operations. This workload is appropriate for their target opti-
mizations. However, as we discuss below, TPC-C is not sufficiently representa-
tive of a pocket data workload to be used as a general-purpose mobile database
benchmark.

Jeong et al. [10] noted similar limitations in SQLite’s transactional layer, and
went about streamlining the IO-stack, also primarily for the benefit of mobile
devices. Again, micro-benchmarks played a significant role in the author’s evalu-
ation of their work. To evaluate their system’s behavior under real-world condi-
tions, the authors ran the Twitter and Facebook apps, simulating user behavior
using a mobility trace generated by MobiGen [1]. This is perhaps the most rep-
resentative benchmarking workload that we encountered in our survey of related
work.

Many of the same issues with IO and power management that now appear in
mobile phones have also historically arisen in sensor networks. Madden et al.’s
work on embedded databases with TinyDB [15] is emblematic of this space,
where database solutions are driven by one or more specific target application
domains. Naturally, evaluation benchmarks and metrics in sensor networks are
typically derived from, and closely tied to the target domain.



22 O. Kennedy et al.

5.2 Comparison to Existing Benchmarks

Given the plethora of available benchmarking software, it is reasonable to ask
what a new benchmark for pocket-scale data management brings to the table.
We next compare the assumptions and workload characteristics behind a variety
of popular benchmarking suites against a potential TPC-MOBILE, and iden-
tify concerns that this benchmark would need to address in order to accurately
capture the workload characteristics that we have observed.

Existing Mobile Benchmarks and Data Generators. Although no explicit
macro-benchmarks exist for mobile embedded databases, we note two benchmark
data generators that do simulate several properties of interest: AndroBench [12]
and MobiGen [1]. AndroBench is a micro-benchmark capable of simulating the
IO behavior of SQLite under different workloads. It is primarily designed to
evaluate the file-system supporting SQLite, rather than the embedded database
itself. However, the structure of its micro-benchmark workloads can just as effec-
tively be used to compare two embedded database implementations.

The second benchmark, MobiGen has little to do with data management
directly. Rather, it generates realistic traces of environmental inputs, simulating
the effects of a phone being carried through a physical space. Replaying these
traces through a virtual machine running a realistic application workload could
generate realistic conditions (e.g., as in the evaluation of X-FTL [10]). However,
it can not simulate the effects of user interactions with apps running on the
device.

TPC-C. One macro-benchmark suite that bears a close resemblance to the trace
workload is TPC-C [6], which simulates a supply-chain management system. It
includes a variety of transactional tasks ranging from low-latency user interac-
tions for placing and querying orders, to longer-running batch processes that
simulate order fulfillment. A key feature of this benchmark workload is the level
of concurrency expected and required of the system. Much of the data is neatly
partitioned, but the workload is designed to force a non-trivial level of cross-talk
between partitions, making concurrency a bottleneck at higher throughputs.
Conversely, mobile SQLite databases are isolated into specialized app-specific
silos. In our experiments, throughput remained at very manageable levels from
a concurrency standpoint. The most intensive database user, Google Play ser-
vices had 14.8 million statements attributable to it, just under half of which were
writes. This equates to about one write every 3 seconds, which is substantial from
a power management and latency perspective, but not from the standpoint of
concurrency.

YCSB. We observed many applications using SQLite as a simple key/value
store. Indeed, 13 % of the applications we observed had a read workload that
consisted exclusively of key/value queries, and over half of the applications we
observed had a workload that consisted of at least 80 % key/value queries.



Pocket Data: The Need for TPC-MOBILE 23

The Yahoo Cloud Services benchmark [5] is designed to capture a variety of
key/value query workloads, and could provide a foundation for a pocket-scale
data benchmark in this capacity. However, it would need to be extended with
support for more complex queries over the same data.

Analytics. These more complex queries include multiple levels of query nest-
ing, wide joins, and extensive use of aggregation. As such, they more closely
resemble analytics workload benchmarks such as TPC-H [8], The Star-Schema
Benchmark [17], and TPC-DS [7]. This resemblance is more than passing; many
of the more complex queries we encountered appeared to be preparing appli-
cation runtime state for presentation to the user. For example the Google Play
Games service tracks so-called events and quests, and participating apps. One
of the most complex queries that we encountered appeared to be linking and
summarizing these features together for presentation in a list view. We note
that the presence of analytics queries in pocket data management is likely to
increase further, as interest grows in smartphones as a platform for personal
sensing [3,13,14].

TPC-E. The TPC-E benchmark emulates a brokerage firm, and includes a
mix of reporting and data mining queries alongside stream-monitoring queries.
It models decision support systems that involve a high level of CPU and IO
load, and that examine large volumes of rapidly changing data. SQLite does not
presently target or support streaming or active database applications, although
such functionality may become available as personal sensing becomes more preva-
lent.

6 Why TPC-MOBILE?

Our primary observation was that a pocket data workload includes a mix of
both OLTP and OLAP characteristics. The majority of operations performed
by SQLite were simple key-value manipulations and look-ups. However, a sub-
stantial fraction of the (comparatively read-heavy) workload consisted of far
more complex OLAP-style operations involving wide, multi-table joins, nested
sub-queries, complex selection predicates, and aggregation.

Many of these workload characteristics appeared to be motivated by fac-
tors unique to embedded databases. For example, SQLite uses single-file data-
bases that have a standard, platform-independent format. As a consequence, we
saw indications of entire databases, indexes and all, being transported in their
entirety through web downloads or as attachments to other files [9]. This is sug-
gestive of a pattern where cloud services package fragments of their state into
SQLite databases, which are then downloaded and cached by the app for both
lower-latency and offline access.

Query optimization goals also differ substantially for pocket data workloads.
For example, latency is a primary concern, but at vastly different scales. Over



24 O. Kennedy et al.

our one-month trial, the average SQL statement took 2 ms to evaluate, and even
complex SELECT queries with 4-level deep nesting only took an average of 120 ms.

Finally, unlike typical server-class benchmark workloads, where throughput
is a key factor, embedded databases have smaller workloads — on the order of
hundreds of rows at most. Moreover, embedded databases need to share com-
puting resources fairly with other processes on the same device. This means that
in stark contrast to server-class workloads, an embedded database is idle more
frequently. Periods of low-utilization are opportunities for background optimiza-
tion, but must be managed against the needs of other applications running on
the device, as well as the device’s limited power budget.

Pocket data workloads represent a growing, and extremely important class
of database consumers. Unfortunately, research and development on embedded
databases (e.g., [10,11]) is presently obligated to rely on micro-benchmarks or
anecdotal observations about the needs and requirements of embedded database
engines. We believe that a new TPC-MOBILE benchmark that captures the
characteristics observed in this paper can provide a principled, standardized
way to evaluate advances in mobile database technology, which will in turn, help
to drive the development of such advances.

7 Conclusions

In this paper, we identified embedded databases on smartphones as the founda-
tion of a new class of pocket data workloads. We have presented the preliminary
results for a long-running study of SQLite embedded database usage on Android
smartphones, and identified numerous ways in which pocket data workloads dif-
fer from big data workloads. Through this study, we hope to be able to create a
benchmark that will spur further research and development on pocket data and
embedded databases.

References

1. Ahmed, S.: MobiGen: a mobility generator for environment aware mobility model
(2009). http://arrow.monash.edu.au/hdl/1959.1/109933

2. Box, D., Hejlsberg, A.: LinQ: NET language-integrated query. MSDN Developer
Centre 89 (2007)

3. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A., Lu, H.,
Zheng, X., Musolesi, M., Fodor, K., Ahn, G.-S.: The rise of people-centric sensing.
IEEE Internet Comput. 12(4), 12–21 (2008)

4. Cheung, A., Arden, O., Madden, S., Solar-Lezama, A., Myers, A.C.: StatusQuo:
making familiar abstractions perform using program analysis. In: CIDR (2013)

5. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SOCC. ACM, New York, NY, USA (2010)

6. Transaction Processing Performance Council. TPC-C specification. http://www.
tpc.org/tpcc/

7. Transaction Processing Performance Council. TPC-DS specification. http://www.
tpc.org/tpcds/

http://arrow.monash.edu.au/hdl/1959.1/109933
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/


Pocket Data: The Need for TPC-MOBILE 25

8. Transaction Processing Performance Council. TPC-H specification. http://www.
tpc.org/tpch/

9. Dittrich, J.: The case for small data management. In: CIDR (2015)
10. Jeong, S., Lee, K., Lee, S., Son, S., Won, Y.: I/O stack optimization for smart-

phones. In: USENIX ATC, pp. 309–320. USENIX Association, Berkeley, CA, USA
(2013)

11. Kang, W.-H., Lee, S.-W., Moon, B., Gi-Hwan, O., Min, C.: X-FTL: Transactional
FTL for SQLite databases. In: SIGMOD (2013)

12. Kim, J.-M., Kim, J.-S.: AndroBench: benchmarking the storage performance of
android-based mobile devices. In: Sambath, S., Zhu, E. (eds.) Frontiers in Com-
puter Education. AISC, vol. 133, pp. 667–674. Springer, Heidelberg (2012)

13. Klasnja, P., Consolvo, S., McDonald, D.W., Landay, J.A., Pratt, W.: Using mobile
& personal sensing technologies to support health behavior change in everyday life:
lessons learned. In: AMIA (2009)

14. Lam, S.C.K., Wong, K.L., Wong, K.O., Wong, W., Mow, W.H.: A smartphone-
centric platform for personal health monitoring using wireless wearable biosensors.
In: ICICS, December 2009

15. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisi-
tional query processing system for sensor networks. ACM TODS 30(1), 122–173
(2005)

16. Nandugudi, A., Maiti, A., Ki, T., Bulut, F., Demirbas, M., Kosar, T., Qiao, C.,
Ko, S.Y., Challen, G.: PhoneLab: a large programmable smartphone testbed. In:
SenseMine, pp. 4:1–4:6 (2013)

17. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and
augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009.
LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009)

18. Owens, M., Allen, G.: SQLite. Springer, Heidelberg (2010)

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

	Pocket Data: The Need for TPC-MOBILE
	1 Introduction
	2 Experimental Setup
	3 Query Complexity
	3.1 Database Reads
	3.2 Database Writes

	4 Runtime Characteristics
	5 Pocket Data and Related Work
	5.1 Pocket Data Management
	5.2 Comparison to Existing Benchmarks

	6 Why TPC-MOBILE?
	7 Conclusions
	References


