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Preface

The Transaction Processing Performance Council (TPC) is a non-profit organization
established in August 1988. Over the years, the TPC has had a significant impact on the
computing industry’s use of industry-standard benchmarks. Vendors use TPC bench-
marks to illustrate performance competitiveness for their existing products, and to
improve and monitor the performance of their products under development. Many
buyers use TPC benchmark results as points of comparison when purchasing new
computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement, and characterization of complex systems. The TPC remains committed
to developing new benchmark standards to keep pace with these rapid changes in
technology. One vehicle for achieving this objective is the TPC’s sponsorship of the
Technology Conference Series on Performance Evaluation and Benchmarking
(TPCTC) established in 2009. With this conference series, the TPC encourages
researchers and industry experts to present and debate novel ideas and methodologies
in performance evaluation, measurement, and characterization.

This book contains the proceedings of the 7th TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2015), held in conjunction with
the 40th International Conference on Very Large Data Bases (VLDB 2015) in Kohala
Coast, Hawaii, USA, from August 31 to September 4, 2014, including eight selected
peer-reviewed papers, a keynote, and a vision paper.

The hard work and close cooperation of a number of people contributed to the
success of this conference. We would like to thank the members of the TPC and the
organizers of VLDB 2015 for their sponsorship; the members of the Program Com-
mittee and Publicity Committee for their support; and the authors and the participants
who are the primary reason for the success of this conference.

February 2016 Raghunath Nambiar
Meikel Poess
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About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a non-profit organization
that defines transaction processing and database benchmarks and distributes
vendor-neutral performance data to the industry. Additional information is available
at http://www.tpc.org/.

TPC Memberships

Full Members

Full Members of the TPC participate in all aspects of the TPC’s work, including
development of benchmark standards and setting strategic directions. The full-member
application can be found at http://www.tpc.org/information/about/app-member.asp.

Associate Members

Certain organizations may join the TPC as associate members. Associate members may
attend TPC meetings, but are not eligible to vote or hold office. Associate membership
is available to non-profit organizations, educational institutions, market researchers,
publishers, consultants, governments, and businesses that do not create, market, or
sell computer products or services. The associate member application can be found at
http://www.tpc.org/information/about/app-assoc.asp.

Academic and Government Institutions

Academic and government institutions are invited join the TPC and a special invitation
can be found at http://www.tpc.org/information/specialinvitation.asp.

Contact the TPC

TPC
Presidio of San Francisco
Building 572B (surface)
P.O. Box 29920 (mail)
San Francisco, CA 94129-0920
Voice: 415-561-6272
Fax: 415-561-6120
E-mail: info@tpc.org

http://www.tpc.org/
http://www.tpc.org/information/about/app-member.asp
http://www.tpc.org/information/about/app-assoc.asp
http://www.tpc.org/information/specialinvitation.asp


How to Order TPC Materials

All of our materials are now posted free of charge on our website. If you have any
questions, please feel free to contact our office directly or by e-mail at info@tpc.org.

Benchmark Status Report

The TPC Benchmark Status Report is a digest of the activities of the TPC and its
technical subcommittees. Sign-up information can be found at the following URL:
http://www.tpc.org/information/about/email.asp.
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Reinventing the TPC: From Traditional
to Big Data to Internet of Things

Raghunath Nambiar1(✉) and Meikel Poess2

1 Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
rnambiar@cisco.com

2 Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065, USA
meikel.poess@oracle.com

Abstract. The Transaction Processing Performance Council (TPC) has made
significant contributions to the industry and research with standards that
encourage fair competition to accelerate product development and enhancements.
Technology disruptions are changing the industry landscape faster than ever. This
paper provides a high level summary of the history of the TPC and recent initia‐
tives to make sure that it is a relevant organization in the age of digital transfor‐
mation fueled by Big Data and the Internet of Things.

Keywords: Database benchmarks · Big data · Internet of things

1 Reinventing the TPC

The Transaction Processing Performance Council (TPC) was formed in 1988, as a non-
profit corporation focused on defining database processing benchmarks and dissemi‐
nating objective, verifiable performance data to the IT industry. Over the years the TPC
has gained the reputation of providing the most credible performance results to the
industry often referenced in a role of consumer reports for the computing industry. The
most critical contribution of the TPC has been providing the industry with a solid foun‐
dation for complete, system-level performance and methodologies for calculating the
total price and price for performance.

Over the years the TPC has changed its mission – to define transaction-processing
benchmarks (when founded in 1988), to defining transaction processing benchmarks
and database benchmarks (1999) and to defining data-centric benchmarks (2015) inline
with industry trends.

The first set of benchmark standards were focused on transaction processing. Later
standards were developed for decision support systems addressing industry demands
until the late 1990s, but the TPC was unable to address the rapidly changing industry
landscape in the early part of the last decade with the emergence of virtualization, cloud,
energy efficiency, etc. The main challenges were very long benchmark development
cycles, unable to reach consensus on standards, failed benchmark standards due to lack
of traction from the industry and industry consolidation of member companies [1, 2].

© Springer International Publishing Switzerland 2016
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In 2009, the TPC initiated a set of initiatives to reinvent itself. The first major initia‐
tive was the International Technology Conference Series on Performance Evaluation
and Benchmarking to bring industry experts and researcher to accelerate benchmark
developments [3–8]. The second major initiative was the TPC Express benchmark
initiative where benchmarks based on predefined, executable kits can be rapidly
deployed and measured [8, 9]. The third major initiative is developing a set of bench‐
marks for emerging areas such as big data, analytics and Internet of Things [8, 22].

2 TPC Benchmark Timelines

To date, the TPC has approved a total of thirteen independent benchmarks. Of these
benchmarks, TPC-C, TPC-H, TPC-E, TPC-DS, TPC-VMS, TPC-DI and TPCx-HS are
currently active. TPC-VMC, TPCx-V, TPC-DS 2.0. TPCx-BB and TPC-IoTare under
development. The timelines are shown in Fig. 1.

Fig. 1. TPC Benchmark Timelines

A high level summary of current active standards are listed below:

• TPC-C: An On-Line Transaction Processing (OLTP). It has been TPC’s foundational
and flagship benchmark with several hundreds of result publications across a variety
of hardware and software systems. Historical analysis shows that the performance
and price performance trend of TPC-C results has followed Moore’s Law [10, 11].

• TPC-H: An ad-hoc, decision support benchmark widely popular in the industry and
academia. Vendors continue to publish results on single node configurations as well
as large scale-out configurations [12].

2 R. Nambiar and M. Poess



• TPC-E: An On-line Transaction Processing (OLTP) workload simulates the work‐
load of a brokerage firm. It has been a popular benchmark but odate all publications
have been on one database platform and on single node configurations [13].

• TPC-DS: A complex decision support benchmark representative of modern decision
support systems. TPC took several years to develop this benchmark and reach
consensus approving it as a standard. No official publications as of date. TPC-DS 2.0
is under development, one major change is loosening the relational database prop‐
erties to support emerging platforms like Hadoop [14–16].

• TPC-VMS: A Single system virtualization benchmark leveraging TPC-C, TPC-E,
TPC-H and TPC-DS benchmarks by adding the methodology and requirements for
running and reporting performance metrics for virtualized databases [17].

• TPC-DI: Data Integration (also known as ETL) benchmark combines and transforms
data extracted from a brokerage firm’s OLTP system along with other sources of
data, and loads it into a data warehouse. No official publications as of date [18].

• TPCx-HS: Industry’s first big data benchmark standard, also TPC’s first benchmark
in the TPC Express benchmark category. Modeled on a simple application, the
standard is highly relevant to hardware and software dealing with Big Data systems
in general. There have been over a dozen results publications till date [19, 20].

A high level summary of standards under development are listed below:

• TPC-VMC: A complex virtualization benchmarkfor database workloads [21].
• TPC-DS 2.0: A complex and comprehensive benchmark built on TPCDS 1.0

supporting emerging platforms like Hadoop. Industry’s first standard for SQL based
Big Data systems [14–16].

• TPCx-BB: A comprehensive Big Data benchmark in the TPC Express benchmark
category leveraging existing workloads including TPC-DS, TPCx-HS, HiBench,
etc. [20].

• TPC-IoT: A new committee with the mission of exploring standards for Internet of
Things workloads [22].

3 TPCTC Conference Series

To keep pace with these rapid changes in technology, in 2006, the TPC initiated the
conference series on performance analysis and benchmarking. The TPCTC has been
challenging Industry experts and researchers to develop innovative techniques for
performance evaluation, measurement, and characterization of hardware and software
systems. Over the years it has emerged as a leading forum to present and debate the
latest and greatest in the world of benchmarking. The topics of interest included:

• Big Data
• Data Analytics
• Cloud Computing
• In-memory databases
• Social media infrastructure
• Security

Reinventing the TPC 3



• Complex event processing
• Internet of Things
• Database Optimizations
• Disaster tolerance and recovery
• Energy and space efficiency
• Hardware innovations
• Hybrid workloads
• Virtualization
• Lessons learned in practice
• Enhancements to TPC workloads
• Data Integration

A short summary of TPCTC conference proceedings are listed below.
The first TPC Technology Conference on Performance Evaluation and Bench‐

marking (TPCTC 2009) was held in conjunction with the 35th International Conference
on Very Large Data Bases (VLDB 2009) in Lyon, France from August 24th to August
28th, 2009. The keynote speaker was Michael Stonebraker. [1, 3]

The second TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2010) was held in conjunction with the 36th International Conference
on Very Large Data Bases (VLDB 2010) in Singapore from September 13th to September
17th, 2010. The keynote speaker was C. Mohan. [4]

The third TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2011) was held in conjunction with the 37th International Conference
on Very Large Data Bases (VLDB 2011) in Seattle, Washington from August 29th to
September 3rd, 2011. The keynote speaker was Umeshwar Dayal. [5, 23]

The fourth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2012) was held in conjunction with the 38th International Conference
on Very Large Data Bases (VLDB 2012) in Istanbul, August 27th to August 31st, 2012.
The keynote speaker was Michael Carey. [6, 24]

The fifth TPC Technology Conference on Performance Evaluation and Bench‐
marking (TPCTC 2013) was held in conjunction with the 39th International Conference
on Very Large Data Bases (VLDB 2013) in Riva del Garda, Trento, Italy, August 26th

to August 30st, 2013. The keynote speaker was Raghu Ramakrishnan. [7]
The sixth TPC Technology Conference on Performance Evaluation and Bench‐

marking (TPCTC 2014) was held in conjunction with the 40th International Conference
on Very Large Data Bases (VLDB 2014) in Hangzhou, China, September 1st to
September 5th, 2014. [8]

TPCTC has had significant positive impact to the TPC. TPC is able to attract new
members from industry and academia to join the TPC. The formation of the Workshop
Series on Big Data Benchmark (WBDB) was inspired by TPCTC [26]. TPCTC also
triggered development of benchmark standards in virtualization, data integration and
Big Data. The formation of a working group on IoT was a direct result of TPCTC
conferences.

4 R. Nambiar and M. Poess



4 Big Data and the Internet of Things [25]

Industry and technology landscapes are changing rapidly. Two of the technologies that
will change the world in the next decade years are expected to be Big Data and the
Internet of things (IoT).

Big Data: Big Data is a popular term now that describes the exponential growth of
data, often defined by the 5Vs, associated technologies like storage, and how to effec‐
tively process and drive business values. The Big Data technology and services market
represents one of the fast-growing, multi-billion dollar, worldwide market that is
expected to grow to a $60 billion marke, driving $300 billion in worldwide IT spending
directly or indirectly by 2020.

Foreseeing the importance, in 2014 the TPC developed the TPC Express Benchmark
HS (TPCx-HS) to provide the industry with verifiable performance, price-performance,
and availability metrics of hardware and software systems dealing with Big Data. This
standard can be used to assess a broad range of system topologies and implementation
of Hadoop systems in a technically rigorous and directly comparable, and vendor-neutral
manner. This is the first major step while the TPC continues to enhance and develop
new standards in this area such as TPC-DS with support for Hadoop and TPC-Big Bench.

Internet of Things (IoT): IoT has emerged in the last few years, poised to transform
virtually every major market segment which contains a complex mix of technologies
and products, from data collection and data curation to complex analytics exploiting the
data generated by an exploding number of connected devices. According to IDC, the
global IoT market will grow from $665 billion in 2014 to $1.7 trillion in 2020. To put
that in perspective, it’s an absolutely enormous figure; only 16 economies in the world
had gross domestic products exceeding $1 trillion in 2014.

As the IoT ecosystem evolves in the enterprises, it is eminent to have a set of stand‐
ards that enable effective comparison of hardware and software systems and topologies
in a technology and vendor-neutral manner. Continuing its commitment to bring relevant
standards to the industry, today the TPC announced the formation of the TPC-IoT
benchmark committee, tasked with developing industry standard benchmarks for bench‐
marking hardware and software platforms associated with IoT [25].

5 Outlook and Acknowledgements

Over the last few years the TPC has truly reinvented itself by investing in the Technology
Conference Series, Express benchmark initiatives, and new areas including Big Data
and the Internet of Things. TPC remains committed to developing relevant standards in
collaboration with industry and research communities, and to continue to enable fair
comparison of technologies and products in terms of performance, cost of ownership
and energy efficiency.

Developing benchmark standards requires a huge effort to conceptualize, research,
specify, review, prototype, and verify the benchmark. The authors acknowledge the
work and contributions of past and present members of the TPC.
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Pocket Data: The Need for TPC-MOBILE

Oliver Kennedy(B), Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek

University at Buffalo, Buffalo, NY 14260, USA
{okennedy,jerryant,challen,ziarek}@buffalo.edu

http://odin.cse.buffalo.edu/research/

Abstract. Embedded database engines such as SQLite provide a con-
venient data persistence layer and have spread along with the applica-
tions using them to many types of systems, including interactive devices
such as smartphones. Android, the most widely-distributed smartphone
platform, both uses SQLite internally and provides interfaces encour-
aging apps to use SQLite to store their own private structured data.
As similar functionality appears in all major mobile operating systems,
embedded database performance affects the response times and resource
consumption of billions of smartphones and the millions of apps that run
on them—making it more important than ever to characterize smart-
phone embedded database workloads. To do so, we present results from
an experiment which recorded SQLite activity on 11 Android smart-
phones during one month of typical usage. Our analysis shows that
Android SQLite usage produces queries and access patterns quite dif-
ferent from canonical server workloads. We argue that evaluating smart-
phone embedded databases will require a new benchmarking suite and
we use our results to outline some of its characteristics.

Keywords: Sqlite · Client-side · Android · Smartphone · Embedded
database

1 Introduction

The world’s 2 billion smartphones represent the most powerful and pervasive
distributed system ever built. Open application marketplaces, such as the Google
Play Store, have resulted in a vibrant software ecosystem comprising millions of
smartphone and tablet apps in hundreds of different categories that both meet
existing user needs and provide exciting novel capabilities. As mobile apps and
devices become even more central to the personal computing experience, it is
increasingly important to understand and improve their performance.

A common requirement of mobile apps and systems is persisting structured
private data, a task that is frequently performed using an embedded database
such as SQLite [18]. Android, the open-source and widely-used smartphone plat-
form, provides interfaces that simplify the process of accessing private SQLite
databases, and many apps make use of SQLite for this purpose. In addition,
Android platform services themselves make heavy use of SQLite, as do built-in
c© Springer International Publishing Switzerland 2016
R. Nambiar and M. Poess (Eds.): TPCTC 2015, LNCS 9508, pp. 8–25, 2016.
DOI: 10.1007/978-3-319-31409-9 2
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apps (Mail, Contacts), popular apps (Gmail, Maps), and libraries (Google Play
Services) distributed by Google. As a result, the large and growing number of
mobile apps using embedded databases represent a new and important class of
database clients.

Unsurprisingly, mobile app usage of embedded databases is quite different
from the workloads experienced by database servers supporting websites or big
data applications. For example, while database servers are frequently tested
and tuned for continuous high-throughput query processing, embedded data-
bases experience lower-volume but bursty workloads produced by interactive
use. As another example, enterprise database servers are frequently provisioned
to have exclusive access to an entire machine, while apps using embedded data-
bases compete for shared system resources with other apps and may be affected
by system-wide policies that attempt to conserve limited energy on battery-
constrained mobile devices. So while the fundamental challenges experienced
by mobile apps using embedded databases—minimizing energy consumption,
latency, and disk utilization—are familiar ground for database researchers, the
specific tradeoffs produced by this domain’s specific workload characteristics are
far less well understood.

In this paper, we present results drawn from a one-month trace of SQLite
activity on 11 PhoneLab [16] smartphones running the Android smartphone
platform. Our analysis shows that the workloads experienced by SQLite on
these phones differ substantially from the database workloads expressed by pop-
ular database benchmarking suites. We argue that a new benchmark for mobile
embedded databases is required to effectively measure their performance, and
that such a benchmark could spur innovation in this area.

Our specific contributions are as follows: (a) A month-long trace of SQLite
usage under real world conditions (details in Sect. 2), (b) An in-depth analysis of
the complexity (Sect. 3) and runtime (Sect. 4) characteristics of SQL statements
evaluated by SQLite during this trace, (c) A comparison of these characteris-
tics to existing benchmarking strategies (Sect. 5), and (d) An overview of the
requirements for a new “pocket data” benchmark: TPC-MOBILE (Sect. 6).

2 Experimental Setup

To collect and analyze SQLite queries generated by Android, we used the
unique capabilities of the PhoneLab smartphone platform testbed located at
the University at Buffalo (UB). Approximately 200 UB students, faculty, and
staff use instrumented LG Nexus 5 smartphones as their primary device and
receive discounted service in return for providing data to smartphone experi-
ments. PhoneLab participants are balanced between genders and distributed
across ages, and thus representative of the broader smartphone user population.
PhoneLab smartphones run a modified version of the Android Open Source
Platform (AOSP) 4.4.4 “KitKat” including instrumentation and logging devel-
oped in collaboration with the mobile systems community. Participating smart-
phones log experimental results which are uploaded to a central server when the
device is charging.
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We instrumented the PhoneLab AOSP platform image to log SQLite activ-
ity by modifying the SQLite source code and distributing the updated binary
library as an over-the-air (OTA) platform update to PhoneLab participants.
Our logging recorded each SQL statement that was executed, along with its
resulting runtime and the number of rows returned as appropriate. All current
PhoneLab instrumentation including our SQLite logging statements are docu-
mented at https://phone-lab.org/experiment/data/. To protect participant pri-
vacy, our instrumentation removes as much personally-identifying information as
possible, as well as recording prepared statement arguments only as hash values.

Our trace data-set is drawn from publicly-available data provided by
11 PhoneLab developers who willingly released1 complete trace data for their
phones for March 2015. Of the eleven participants, seven had phones that were
participating in the SQLite experiment every day for the full month, with the
remaining phones active for 1, 3, 14, and 19 days. A total of 254 phone/days
of data were collected including 45,399,550 SQL statements. Of these, we were
unable to interpret 308,752 statements (∼0.5 %) due to a combination of data
corruption and the use of unusual SQL syntax. Results presented in this paper
that include SQL interpretation are based on the 45,090,798 queries that were
successfully parsed.

3 Query Complexity

In this section we discuss the query complexity we observed during our study
and illustrate typical workloads over pocket data. Figure 1 summarizes all 45
million statements executed by SQLite over the 1 month period. As might be
expected, SELECT forms almost three quarters of the workload by volume. UPSERT
statements (i.e., INSERT OR REPLACE) form a similarly substantial 16 % of the
workload — more than simple INSERT and UPDATE statements combined. Also
of note is a surprising level of complexity in DELETE statements, many of which
rely on nested sub-queries when determining which records to delete.

Figure 2 shows the 10 most frequent and 10 least frequent clients of SQLite
over the one month trace. The most active SQLite clients include internal
Android services that broker access to data shared between apps such as personal
media, calendars, and address books; as well as pre-installed and popular social
media apps. There is less of a pattern at the low end, although several infrequent
SQLite clients are themselves apps that may be used only infrequently, especially
on a phone-sized device. We suspect that the distribution of apps would differ
significantly for a tablet-sized device.

3.1 Database Reads

Of the 45 million queries analyzed, 33.47 million were read-only SELECT queries.
Figure 3 shows the distribution of SELECT queries by number of tables accessed by

1 https://phone-lab.org/static/experiment/sample dataset.tgz.

https://phone-lab.org/experiment/data/
https://phone-lab.org/static/experiment/sample_dataset.tgz
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Fig. 1. Types and numbers of SQL statements executed during the trace, and query
features used in each.

Fig. 2. Apps that executed the (a) 10 most and (b) 10 fewest SQL statements.

Fig. 3. SELECT queries by (a) number of tables accessed and (b) maximum nesting
depth.

the query, as well as the maximum level of query nesting. Nesting includes from-
nesting (e.g., SELECT ... FROM (SELECT ...)), as well as expression-nesting
(e.g., SELECT ... WHERE EXISTS (SELECT ...)). Even at this coarse-grained
view of query complexity, the read-only portion of the embedded workload dis-
tinguishes itself from existing TPC benchmarks.
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Like TPC-C [6], the vast majority of the workload involves simple, small
requests for data that touch a small number of tables. 29.15 million, or about
87 % of the SELECT queries were simple select-project-join queries. Of those,
28.72 million or about 86 % of all queries were simple single-table scans or look-
ups. In these queries, which form the bulk of SQLite’s read workload, the query
engine exists simply to provide an iterator over the relationally structured data
it is being used to store. Conversely, the workload also has a tail that consists
of complex, TPC-H-like [8] queries. Several hundred thousand queries involve at
least 2 levels of nesting, and over a hundred thousand queries access 5 or more
tables. As an extreme example, our trace includes 10 similar SELECT queries
issued by the Google Play Games Service2, each of which accesses up to 8 distinct
tables to combine developer-provided game state, user preferences, device profile
meta-data, and historical game-play results from the user.

Simple SELECT Queries. We next examine more closely a class of simple look-
up queries, defined as any SELECT query that consists exclusively of selections,
projections, joins, limit, and order by clauses, and which does not contain any
nested sub-queries or unions. Figure 4 shows queries of this class, broken down by
the number of tables involved in the query (Join Width) and the complexity of
the where clause, as measured in number of conjunctive terms (Where Clauses).
For example, consider a query of the form: SELECT R.A FROM R, S WHERE R.B
= S.B AND S.C = 10 This query would have a join width of 2 (R, S) and 2
conjunctive terms (R.B = S.B and S.C = 10). For uniformity, NATURAL JOIN
and JOIN ON (e.g., SELECT R.A from R JOIN S ON B) expressions appearing
in the FROM clause are rewritten into equivalent expressions in the WHERE clause.

Fig. 4. Number of simple look-up queries subdivided by join width (number of tables)
and number of conjunctive terms in the WHERE clause.

2 https://developers.google.com/games/services/.

https://developers.google.com/games/services/
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Fig. 5. The WHERE clause structure for single-tabled simple lookup queries with a single
conjunctive term in the WHERE clause.

The first column of this table indicates queries to a single relation. Just over 1
million queries were full table scans (0 where clauses), and just under 27 million
queries involved only a single conjunctive term. This latter class constitutes
the bulk of the simple query workload, at just over 87 % of the simple look-up
queries. Single-clause queries appear to be the norm. Recall that an N-way equi-
join requires N-1 conjunctive terms; Spikes occur in the number of queries with
one more term than strictly required to perform a join, suggesting a constraint
on at least one relation.

Narrowing further, we examine simple look-up queries referencing only a
single source table and a single conjunctive term in the WHERE clause. Figure 5
summarizes the structure of the predicate that appears in each of these queries.
In this figure, constant terms (Const) are any primitive value term (e.g., a quoted
string, an integer, or a float), or any JDBC-style parameter (?). For simple
relational comparators, we group together inequalities (i.e., <, ≤, >, ≥ and
�=) under the symbol θ, and explicitly list equalities. Other relational operators
such as LIKE, BETWEEN, and IN are also seen with some frequency. However, the
majority (85 % of all simple look-ups) are exact match look-ups. Not surprisingly,
this suggests that the most common use-case for SQLite is as a relational key-
value store. As we show shortly through a per-app analysis of the data (Sect. 3.1),
24 out of the 179 apps that we encountered posed no queries other than exact
look-ups and full table scans.

Other SELECT Queries. Figure 6 shows a similar breakdown for all 33.5 million
SELECT queries seen. As before, the table shows the form of all expressions that
appear as one of the conjunctive terms of a WHERE clause, alongside the number of
queries where the expression appears at least once. 31.0 million of these queries
contain an exact lookup. 1.6 million queries contain at least one multi-attribute
equality expression such as an equi-join constraint, lining up nicely with the 1.7
million queries that reference at least two tables.
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Fig. 6. WHERE clause expression structures, and the number of SELECT queries in
which the structure appears as a conjunctive clause.

App developers make frequent use of SQLite’s dynamic typing: Where
clauses include bare column references (e.g., WHERE A, implicitly equivalent to
WHERE A <> 0) as well as bare bit-wise AND expressions (e.g., A&0xc4). This
latter predicate appearing in a half-million queries suggests extensive use of bit-
arrays packed into integers.

Functions. Functions extend the basic SQL syntax, providing for both spe-
cialized local data transformations, as well as computation of aggregate values.
Figure 7 shows all functions appearing in SELECT queries during our trace, orga-
nized by the number of times that each function is used. All functions that we
saw are either built-in SQLite functions, or in the case of PHONE NUMBERS EQUAL
are Android-specific extensions; No user-defined functions appeared in the trace.

Overall, the most common class of function was aggregate functions (e.g.,
SUM, MAX, COUNT), followed by string operations (e.g., LENGTH and SUBSTR). The
most commonly used function was GROUP CONCAT, an aggregate operator that

Fig. 7. Functions appearing in SELECT queries by number of times the function is
used.
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constructs a string by concatenating its input rows. This is significant, as it
means that the most commonly used aggregate operator is holistic — its output
size is linear in the number of input rows.

Per-Application Analysis. We next break the SELECT workload down by
the calling application (app). Due to limitations of the logging infrastructure,
4.32 million queries (just over 12.9 % of the workload) could not be associated
with a specific application, and our app-specific analysis excludes these queries.
Additionally, system services in Android are often implemented as independent
apps and counted as such in the numbers presented.

Over the course of the one-month trace we observed 179 distinct apps, varying
from built-in Android applications such as Gmail or YouTube, to video players
such as VLC, to games such as 3 Kingdoms. Figure 8a shows the cumulative
distribution of apps sorted by the number of queries that the app performs. The
results are extremely skewed, with the top 10 % of apps each posing more than
100 thousand queries over the one month trace. The most query-intensive system
service, Media Storage was responsible for 13.57 million queries or just shy of
40 queries per minute per phone. The most query-intensive user-facing app was
Google+, which performed 1.94 million queries over the course of the month or 5
queries per minute. At the other end of the spectrum, the bottom 10 % of apps
posed as few as 30 queries over the entire month.

We noted above that a large proportion of SELECT queries were exact look-
ups, suggesting that many applications running on the device might be using
SQLite as a simple key-value store. This suggestion was confirmed in our app-
level analysis. For example, approximately half of one specific app’s query work-
load consisted of the following two queries:

INSERT OR REPLACE INTO properties(property_key,property_value) VALUES (?,?);

SELECT property_value FROM properties WHERE property_key=?;

In this query, ? is a prepared statement parameter that acts as a place holder
for values that are bound when the prepared statement is evaluated.

Fig. 8. Breakdown of SELECT queries by app. (a) Cumulative distribution of applica-
tions by the number of SELECT queries issued (note the logarithmic scale). (b) Cumu-
lative distribution of applications by the percent of the app’s SELECT queries that are
full table scans or exact look-ups.
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To broaden the scope of our analysis of key/value queries, we define a key-
value look-up query as a SELECT query over a single relation that either performs
a full table scan, or performs an exact look-up on a single attribute. Figure 8b
shows the cumulative distribution of apps sorted by the fraction of each app’s
queries that are key-value lookup queries. For 24 apps (13.4 %), we observed only
key-value queries during the entire, month-long trace.

3.2 Database Writes

Write statements, INSERT, INSERT OR REPLACE (here abbreviated as UPSERT),
UPDATE, and DELETE, together constitute 11.6 million statements or about 25 % of
the trace. As shown in Fig. 1, the most prevalent operation is the UPSERT. INSERT
and UPSERT together account for 9.3 million operations, of which 7.4 are UPSERTs.
In many of these cases, the use of UPSERTS appears to be defensive programming
on the part of wrapper libraries that make use of SQLite (e.g., Object Relational
Mappers, or ORMs). UPSERTS are also the canonical form of update in key-value
stores, further supporting the argument that a large fragment of SQLite’s traffic
is based on key-value access patterns.

DELETE Statements. The trace includes 1.25 million DELETE statements. This
was by far the most expensive class of statement, with an average DELETE taking
just under 4 ms to complete. A significant portion of this cost is attributable to
the use of DELETE as a form of bulk erasure. As shown in Fig. 9, 323 thousand
DELETEs have no exact match condition in their WHERE clause, while 528 thou-
sand do include a range predicate. DELETE predicates can become quite complex;
46,122 DELETEs (just under 3.7 %) use nested SELECT queries, and touch as many
as 7 separate tables (in 616 cases). This suggests extensive use of DELETE as a

Fig. 9. WHERE clause expression structures, and the number of DELETE statements in
which the structure appears.
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Fig. 10. WHERE clause expression structures, and the number of UPDATE statements in
which the structure appears.

form of garbage-collection or cache invalidation, where the invalidation policy is
expressed through SQL.

UPDATE Statements. Slightly over 1 million statements executed by SQLite
over the course of the month were UPDATE statements. Figure 10 breaks down
the predicates used to select rows to be updated. Virtually all UPDATE statements
involved an exact look-up. Of the million updates, 28 thousand did not include
an exact look-up.

193 of the UPDATE statements relied on a nested SELECT statement as part
of their WHERE clause, including 56 that involved 2 levels of nesting. Of the 193
UPDATEs with nested subqueries, 25 also involved aggregation.

Although the WHERE clause of the updates included a variety of expressions,
every single setter in every UPDATE statement in the trace assigned a constant
value; Not a single UPDATE expression attempted to compute new values using
SQL, suggesting a strong preference for computing updated values in the appli-
cation itself. This is not entirely unexpected, as the database lives in the address
space of the application. Consequently, it is feasible to first perform a SELECT
to read values out of the database and then perform an UPDATE to write out the
changes, a tactic used by many ORMs. An unfortunate consequence of this tac-
tic is that ORMs cache database objects at the application layer unnecessarily,
suggesting that a stronger coupling between SQL and Java (e.g., through lan-
guage primitives like LINQ [2] or StatusQuo [4]) could be of significant benefit
to Android developers.

Per-Application Analysis. Figure 11a illustrates app-level write workloads,
sorting applications by the number of INSERT, UPSERT, UPDATE, and DELETE
operations that could be attributed to each. The CDF is almost perfectly expo-
nential, suggesting that the number of write statements performed by any given
app follows a long-tailed distribution, a feature to be considered in the design of
a pocket data benchmark.
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Fig. 11. App-level write behavior. (a) Cumulative distribution of applications by num-
ber of data manipulation statements performed (note the logarithmic scale). (b) Cumu-
lative distribution of applications by read/write ratio.

Figure 11b breaks apps down by their read/write ratio. Surprisingly, 25 apps
(14 % of the apps seen) did not perform a single write over the course of the
entire trace. Manual examination of these apps suggested two possible explana-
tions. Several apps have reason to store state that is updated only infrequently.
For example, JuiceSSH or Key Chain appear to use SQLite as a credential
store. A second, far more interesting class of apps includes apps like Google Play
Newsstand, Eventbrite, Wifi Analyzer, and TuneIn Radio Pro, which all have
components that query data stored in the cloud. We suspect that the cloud data
is being encapsulated into a pre-constructed SQLite database and being pushed
to, or downloaded by the client applications. This type of behavior might be
compared to a bulk ETL process or log shipment in a server-class database work-
load, except that here, the database has already been constructed. Pre-caching
through database encapsulation is a unique feature of embedded databases, and
one that is already being used in a substantial number of apps.

4 Runtime Characteristics

Next, we look at overall runtime characteristics of the query workload observed
during our study. We examine how often queries arrive, how long they run,
and how many rows they return—all important inputs into designing the TPC-
Mobile embedded database benchmark.

General Characteristics. Figure 12 shows query interarrival times, runtimes,
and returned row counts (for SELECT statements) for all users, applications, and
non-informational query types (SELECT, UPDATE, INSERT, DELETE) included in
our dataset. Given that each mobile application is really generating an isolated
workload to its own embedded database, we measure query interarrival time only
between queries issued by the same application.

Examining the interarrival times shown in Fig. 12a, it is interesting to observe
that many queries seem to arrive much more quickly than the minimum query
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Fig. 12. Summary Statistics for Android SQLite Queries. Distributions of (a) inter-
query arrival times, (b) query runtimes, and (c) rows returned per query.

runtime shown in Fig. 12b. Part of this may be due to apps that use multiple
separate databases, which is not yet captured by our analysis. However, our
logging is also done above any locking performed by SQLite, and so this may
demonstrate that there are many cases where multiple application threads are
issuing overlapping queries in parallel, even if the queries are eventually serialized
before results are returned. Figure 12a also shows that, in addition to a standard
long-tailed distribution of query inter-arrival times, about 20 % of the workload
is very periodic, arriving at a rate of 0.01 Hz.

The runtime CDF shown in Fig. 12b shows while overall query runtimes show
variation over several orders of magnitude, a large fraction of queries are exe-
cuted in between 100 and 1000 μs. Further investigation into the small fraction of
extremely slow queries may discover areas for database or application improve-
ment. Finally, the row count CDF shown in Fig. 12c shows that 80 % of queries
return only one row, further supporting our observation that many applications
seem to be using the SQLite database almost as a key-value store.

Runtime Characteristics by Query Type. Figure 13 shows runtime charac-
teristics for each of the four types of SQL statement. Figure 13a and b in partic-
ular show the time since the last query to be issued and the time until the next
query is issued (respectively), while Fig. 13c shows the distribution of runtimes
for each type of query. Examining the differences between Fig. 13a and b, we
observe that INSERT queries are far more likely to arrive shortly before another
query than shortly after. Almost 80 % of INSERTs are followed by another query
within 100 μs. A similar, but far more subdued pattern can be seen for UPDATE
statements. Conversely, both SELECT and DELETE statements are slightly more
likely to arrive shortly before, rather than shortly after another query. Figure 13c
shows significant deviations from the global average runtime for DELETE and
UPDATE statements. UPDATE statements in particular have a bimodal distribu-
tion of runtimes, spiking at 100μs and 10 ms. We suspect that this performance
distribution is related to SQLite’s use of filesystem primitives for locking and
write-ahead logging [10,11]. This could also help to explain the 0.01 Hz query
periodicity we observed above.
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Fig. 13. By-Query-Type Statistics for Android SQLite Queries. Distribution of times
since the query (a) immediately preceding, and (b) immediately following the query in
question. (c) Distribution of runtimes for each query.

Fig. 14. Per-App Summary Statistics for Android SQLite Queries. Distributions of (a)
inter-query arrival times, (b) query runtimes, and (c) rows returned per query.

Runtime Characteristics by Application. Figure 14 shows query interar-
rival times, runtimes, and returned row counts for ten of the most active SQLite
clients. As seen in Fig. 14a, the 0.01 Hz periodicity is not unique to any one
application, further suggesting filesystem locking as a culprit. Two of the most
prolific SQLite clients, Google Play services and Media Storage appear to be very
bursty: 70 % of all statements for these applications are issued within 0.1 ms of
the previous statement. Also interesting is the curve for queries issued by the
Android System itself. The interarrival time CDF appears to be almost precisely
logarithmic for rates above 10μs, but has a notable lack of interarrival times
in the 1 ms to 10 ms range. This could suggest caching effects, with the cache
expiring after 1 ms. As seen in Fig. 14b, most apps hold to the average runtime
of 100 μs, with several notable exceptions. Over 50 % of the Android System’s
statements take on the order of 1 ms. Just under 20 % of Hangouts statements
take 10 ms, suggesting an update-heavy workload. Also, Contacts Storage has
a heavier-duty workload, with 30 % of statements taking between 100μs and
1 ms. Figure 14c shows that the Android System and Media Storage issue almost
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exclusively single-row lookup queries. The remaining apps issue a large number
of single-row queries — Even Contacts Storage has a workload consisting of 45 %
single-row reads — the number of rows returned in general varies much more
widely. Many of these apps’ user interfaces have both a list and a search view
that show multiple records at a time, suggesting that these views are backed
directly by SQLite. Although all apps have long tails, two apps in particular:
Gmail and Google+ are notable for regularly issuing queries that return on the
order of 100 rows.

5 Pocket Data and Related Work

In spite of the prevalence of SQL on mobile devices, and an increasing interest in
so-called “small data” [9], relatively little attention has been paid to the rapidly
growing pocket data space. In this section, we first explore some existing research
on mobile databases, with a focus on how the authors evaluate their solutions.
Then, we turn to existing benchmarking suites and identify specific disconnects
that prevent them from being applied directly to model pocket data. In the
process, we explore aspects of these benchmarks that could be drawn into a
potential pocket data benchmark.

5.1 Pocket Data Management

Kang et al. [11] explored the design of a flash-aware transactional layer called X-
FTL, specifically targeting limitations of SQLite’s redo logging on mobile devices.
To evaluate their work, the authors used the TPC-C benchmark in conjunction
with a series of micro-benchmarks that evaluate the file system’s response to
database write operations. This workload is appropriate for their target opti-
mizations. However, as we discuss below, TPC-C is not sufficiently representa-
tive of a pocket data workload to be used as a general-purpose mobile database
benchmark.

Jeong et al. [10] noted similar limitations in SQLite’s transactional layer, and
went about streamlining the IO-stack, also primarily for the benefit of mobile
devices. Again, micro-benchmarks played a significant role in the author’s evalu-
ation of their work. To evaluate their system’s behavior under real-world condi-
tions, the authors ran the Twitter and Facebook apps, simulating user behavior
using a mobility trace generated by MobiGen [1]. This is perhaps the most rep-
resentative benchmarking workload that we encountered in our survey of related
work.

Many of the same issues with IO and power management that now appear in
mobile phones have also historically arisen in sensor networks. Madden et al.’s
work on embedded databases with TinyDB [15] is emblematic of this space,
where database solutions are driven by one or more specific target application
domains. Naturally, evaluation benchmarks and metrics in sensor networks are
typically derived from, and closely tied to the target domain.
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5.2 Comparison to Existing Benchmarks

Given the plethora of available benchmarking software, it is reasonable to ask
what a new benchmark for pocket-scale data management brings to the table.
We next compare the assumptions and workload characteristics behind a variety
of popular benchmarking suites against a potential TPC-MOBILE, and iden-
tify concerns that this benchmark would need to address in order to accurately
capture the workload characteristics that we have observed.

Existing Mobile Benchmarks and Data Generators. Although no explicit
macro-benchmarks exist for mobile embedded databases, we note two benchmark
data generators that do simulate several properties of interest: AndroBench [12]
and MobiGen [1]. AndroBench is a micro-benchmark capable of simulating the
IO behavior of SQLite under different workloads. It is primarily designed to
evaluate the file-system supporting SQLite, rather than the embedded database
itself. However, the structure of its micro-benchmark workloads can just as effec-
tively be used to compare two embedded database implementations.

The second benchmark, MobiGen has little to do with data management
directly. Rather, it generates realistic traces of environmental inputs, simulating
the effects of a phone being carried through a physical space. Replaying these
traces through a virtual machine running a realistic application workload could
generate realistic conditions (e.g., as in the evaluation of X-FTL [10]). However,
it can not simulate the effects of user interactions with apps running on the
device.

TPC-C. One macro-benchmark suite that bears a close resemblance to the trace
workload is TPC-C [6], which simulates a supply-chain management system. It
includes a variety of transactional tasks ranging from low-latency user interac-
tions for placing and querying orders, to longer-running batch processes that
simulate order fulfillment. A key feature of this benchmark workload is the level
of concurrency expected and required of the system. Much of the data is neatly
partitioned, but the workload is designed to force a non-trivial level of cross-talk
between partitions, making concurrency a bottleneck at higher throughputs.
Conversely, mobile SQLite databases are isolated into specialized app-specific
silos. In our experiments, throughput remained at very manageable levels from
a concurrency standpoint. The most intensive database user, Google Play ser-
vices had 14.8 million statements attributable to it, just under half of which were
writes. This equates to about one write every 3 seconds, which is substantial from
a power management and latency perspective, but not from the standpoint of
concurrency.

YCSB. We observed many applications using SQLite as a simple key/value
store. Indeed, 13 % of the applications we observed had a read workload that
consisted exclusively of key/value queries, and over half of the applications we
observed had a workload that consisted of at least 80 % key/value queries.
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The Yahoo Cloud Services benchmark [5] is designed to capture a variety of
key/value query workloads, and could provide a foundation for a pocket-scale
data benchmark in this capacity. However, it would need to be extended with
support for more complex queries over the same data.

Analytics. These more complex queries include multiple levels of query nest-
ing, wide joins, and extensive use of aggregation. As such, they more closely
resemble analytics workload benchmarks such as TPC-H [8], The Star-Schema
Benchmark [17], and TPC-DS [7]. This resemblance is more than passing; many
of the more complex queries we encountered appeared to be preparing appli-
cation runtime state for presentation to the user. For example the Google Play
Games service tracks so-called events and quests, and participating apps. One
of the most complex queries that we encountered appeared to be linking and
summarizing these features together for presentation in a list view. We note
that the presence of analytics queries in pocket data management is likely to
increase further, as interest grows in smartphones as a platform for personal
sensing [3,13,14].

TPC-E. The TPC-E benchmark emulates a brokerage firm, and includes a
mix of reporting and data mining queries alongside stream-monitoring queries.
It models decision support systems that involve a high level of CPU and IO
load, and that examine large volumes of rapidly changing data. SQLite does not
presently target or support streaming or active database applications, although
such functionality may become available as personal sensing becomes more preva-
lent.

6 Why TPC-MOBILE?

Our primary observation was that a pocket data workload includes a mix of
both OLTP and OLAP characteristics. The majority of operations performed
by SQLite were simple key-value manipulations and look-ups. However, a sub-
stantial fraction of the (comparatively read-heavy) workload consisted of far
more complex OLAP-style operations involving wide, multi-table joins, nested
sub-queries, complex selection predicates, and aggregation.

Many of these workload characteristics appeared to be motivated by fac-
tors unique to embedded databases. For example, SQLite uses single-file data-
bases that have a standard, platform-independent format. As a consequence, we
saw indications of entire databases, indexes and all, being transported in their
entirety through web downloads or as attachments to other files [9]. This is sug-
gestive of a pattern where cloud services package fragments of their state into
SQLite databases, which are then downloaded and cached by the app for both
lower-latency and offline access.

Query optimization goals also differ substantially for pocket data workloads.
For example, latency is a primary concern, but at vastly different scales. Over
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our one-month trial, the average SQL statement took 2 ms to evaluate, and even
complex SELECT queries with 4-level deep nesting only took an average of 120 ms.

Finally, unlike typical server-class benchmark workloads, where throughput
is a key factor, embedded databases have smaller workloads — on the order of
hundreds of rows at most. Moreover, embedded databases need to share com-
puting resources fairly with other processes on the same device. This means that
in stark contrast to server-class workloads, an embedded database is idle more
frequently. Periods of low-utilization are opportunities for background optimiza-
tion, but must be managed against the needs of other applications running on
the device, as well as the device’s limited power budget.

Pocket data workloads represent a growing, and extremely important class
of database consumers. Unfortunately, research and development on embedded
databases (e.g., [10,11]) is presently obligated to rely on micro-benchmarks or
anecdotal observations about the needs and requirements of embedded database
engines. We believe that a new TPC-MOBILE benchmark that captures the
characteristics observed in this paper can provide a principled, standardized
way to evaluate advances in mobile database technology, which will in turn, help
to drive the development of such advances.

7 Conclusions

In this paper, we identified embedded databases on smartphones as the founda-
tion of a new class of pocket data workloads. We have presented the preliminary
results for a long-running study of SQLite embedded database usage on Android
smartphones, and identified numerous ways in which pocket data workloads dif-
fer from big data workloads. Through this study, we hope to be able to create a
benchmark that will spur further research and development on pocket data and
embedded databases.
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Abstract. Spark has emerged as an easy to use, scalable, robust and fast system
for analytics with a rapidly growing and vibrant community of users and con-
tributors. It is multipurpose—with extensive and modular infrastructure for
machine learning, graph processing, SQL, streaming, statistical processing, and
more. Its rapid adoption therefore calls for a performance assessment suite that
supports agile development, measurement, validation, optimization, configura-
tion, and deployment decisions across a broad range of platform environments
and test cases.
Recognizing the need for such comprehensive and agile testing, this paper

proposes going beyond existing performance tests for Spark and creating an
expanded Spark performance testing suite. This proposal describes several
desirable properties flowing from the larger scale, greater and evolving variety,
and nuanced requirements of different applications of Spark. The paper identi-
fies the major areas of performance characterization, and the key methodological
aspects that should be factored into the design of the proposed suite. The
objective is to capture insights from industry and academia on how to best
characterize capabilities of Spark-based analytic platforms and provide
cost-effective assessment of optimization opportunities in a timely manner.

1 Introduction

Spark’s brisk evolution and rapid adoption outpace the ability of developers and
deployers of solutions to make informed tradeoffs between different system designs,
workload compositions, configuration optimizations, software versions, etc. Designers
of its core and layered capabilities cannot easily gauge how wide ranging the potential
impacts can be when planning and prioritizing software changes. While Spark-perf [16]
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can be used to calibrate certain categories of operations, a Spark-specific, compre-
hensive and extensible performance evaluation alternative is essential for ferreting out
inefficiencies and anomalies. This proposal is intended to be a starting point for a
community driven development of such a testing suite. With this proposal we plan to
open discussion and solicit feedback and participation from the community at the very
beginning of designing such a performance testing suite.

1.1 Objective

The objective is to develop a far-reaching performance testing suite that enables per-
formance comparisons between different levels of Spark offerings, including Spark
libraries and Spark core. The suite is intended to facilitate evaluation of technologies
and be relevant to Spark adopters and solutions creators. We anticipate that the
implementation and execution of this suite will benefit from efforts of many groups of
professionals – Spark operators, workload developers, Spark core developers, and
vendors of Spark solutions and support services.

The following sections present the use cases, the fundamental requirements of the
performance testing suite, the design of data models and data generators, the chosen
workloads covering the Spark ecosystem, the execution and auditing rules, and the
performance metrics. Finally, we conclude the proposal and indicate some areas for
future work.

1.2 Related Work

Benchmarks and performance testing suites serve many different communities. They
are valuable tools for software engineering teams to assess the performance impact of
design trade-offs, to refine choices in system architectures, to inform implementation
choices and to identify performance bottlenecks. They can be used by researchers to
evaluate new concepts and algorithms. They are excellent vehicles for assessing the
performance impact of new hardware or different hardware topologies. They can be
used by users and system integrators to gain a deeper understanding of the capabilities
offered by competing technologies. No one performance test can ever perfectly serve
the needs of all constituencies, but the TPC and SPEC benchmarks, as well as open
source benchmarks like DOTS [13] have proven track records in providing value to a
broad spectrum of constituencies.

Overall, the focus of benchmarks and testing suites can span a spectrum from
low-level (e.g. SPEC CPU2006 [7]) to high-level (e.g. TPC-E [6], SAP SD,
LDBC SNB [11]) functions. In the big data application domain, existing performance
testing suites and benchmarks can be grouped into three categories: component-level
testing, technology-specific solutions and technology-agnostic solutions.

Component-level tests (sometimes called micro-benchmarks) focus on stressing
key system primitives or specifically targeted components using a highly synthetic
workload. Examples of big data component-level testing include the suite of Sort
Benchmarks [17], YCSB [23] and AMP Lab Big Data [21].
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Technology-specific solutions involve a set of representative applications in the
targeted domains and generally mandate the use of a specific technology to implement
the solution. The goal is to test the efficiency of a selected technology in the context of
a realistic operational scenario. Examples of technology-specific solutions testing for
big data are MRBench [29], PigMix [28], HiBench [18, 19] and SparkBench [24].

Technology-agnostic solutions aim at creating a level playing field for any number
of technologies to compete in providing the most efficient implementation of a realistic
application scenario within the targeted application domain. No assumption is made
about which technology choice will best satisfy the real world demands at a solution
level. Benchmarks such as BigDataBench [20], BigBench [22] and TPC-DS [6] fall
into this category.

The Spark performance testing suite introduced in this paper is designed to fall into
the category of technology-specific solutions. It aims at providing a Spark specific,
comprehensive and representative set of workloads spanning the broad range of
application types successfully implemented within the Spark ecosystem. While other
benchmarks such as BigBench [22], BigDataBench [20] and HiBench [18] each cover
a small number of Spark-enabled workloads, they are far from including a compre-
hensive coverage of the full set of application types supported under Spark. Spark-
Bench [24] and Spark-perf [16] provide good initial starting points, yet they fall short
of covering the full Spark picture. In particular Spark-perf is a performance testing suite
developed by DataBricks to test the performance of MLlib, with extensions to
streaming, SQL, data frame and Spark core currently under development. In contrast
the Spark performance testing suite proposed in this paper incorporates a broader set of
application types including text analytics, Spark R and ETL, with realistic and scalable
data generators to enable testing them in a more real-world environment.

2 Targeted Dimensions

A distinctive aspect of the Spark performance testing suite proposed here is that it will
simultaneously target the following three dimensions of performance analysis within
the Spark ecosystem.

• Quantitative Spark Core Engine Evaluation, by enabling comparative analysis of
core Spark system ingredients, such as caching policy, memory management
optimization, and scheduling policy optimization, between baseline (standard)
Spark release and modified/enhanced variations. It anticipates in-depth performance
studies from multiple perspectives, including scalability, workload characterization,
parameter configurations and their impacts, and fault tolerance of Spark systems.

• Quantitative Spark Library Evaluation, by allowing quantitative comparison of
different library offerings built on top of the Spark core engine. These include the
categories of SQL, streaming, machine learning, graph computation, statistical
analysis, and text analytics. We envision interest in comparisons among different
levels/versions of Spark libraries, as well as alternative libraries from vendors.

• Quantitative Staging Infrastructure Evaluation, by providing insight toward
analysis relative to a fixed software stack, two examples of which are
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(a) comparison across different runtimes and hardware cluster setups in private
datacenters or public clouds, and with use of Spark data services, (b) gaining of
configuration and tuning insights for cluster sizing and resource provisioning, and
accelerated identification of resource contentions and bottlenecks.

In summary, the Spark performance testing suite is intended to serve the needs and
interests of many different parties, and aims to cover the technology evaluation of the
Spark ecosystem by exercising its key components comprehensively.

3 Requirements

Measurement is the key to improvement, in computing as in many other spheres. The
Transaction Processing Performance Council [6] and the SPEC [7] are among the most
prominent performance benchmarking organizations. Supplementing them are efforts
like LDBC, for more specific yet significant areas like graph and RDF technologies
benchmarking [27]. Application level benchmarks from vendors like SAP [14] and
Infor Baan [15] play a key role in influencing solution choice, workload balancing and
configuration tuning. Open source communities have created a rich variety of perfor-
mance test suites, DOTS [13] being just one example. From these and other efforts we
recognize an established set of core attributes that any new performance testing suite
should possess.

From Huppler [3] we have the following attributes

– Relevant
– Repeatable
– Understandable
– Fair
– Verifiable
– Economical

In the context of a 21st century Spark performance testing suite we can further
refine these timeless attributes as follows:

• Simple, Easy-to-use and Automated: The suite needs to be simple to understand,
deploy, execute, and analyze in an automated fashion, requiring only modest
configuration. Considering the rapidly evolving nature of Spark ecosystem,
automation is essential.

• Comprehensive: The performance testing suite should be comprehensive and
representative of the diversity of applications supported by Spark. Different Spark
operations can put pressure on different resources, in different ratios. Since a
benchmark suite cannot capture all such operations, it is important that the chosen
representatives reflect both the diversity of Spark uses at the application level and
the variant stresses put on the computing resources at the systems level. For
example, the suite should include workloads that have high resource demands for
specific system resources to test extreme cases for a provisioned system as these
workloads will be one of several uses of Spark.
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• Bottleneck Oriented: Frequently a role of performance testing is to spur tech-
nology advancement. The concept of bottleneck (or choke point) analysis appears
with the LDBC benchmark effort and is a good means to shape workloads, and
thereby provide impetus for innovation by drawing attention to tough, but solvable,
challenges.

• Extensible: Due to the rapid evolution of Spark, the Spark performance testing suite
needs to be able to evolve, which includes allowing users to easily add new or
extend/expand existing capabilities. A successful Spark benchmark will success-
fully address the many parts of the Spark taxonomy and be flexible to extend to new
capabilities that the community may develop. This is illustrated in Fig. 1 Spark
Taxonomy, derived from Databricks [1], starting with the Spark Core Engine as a
base with several workload-focused extensions on top.

• Portable: The benchmark suite should run on a broad range of open systems and be
designed to be readily portable to other operating systems if required.

• Scalable: To allow scaling of tests to large distributed or cloud environments, the
suite should facilitate generation of data that is sufficiently voluminous and varied
that it exercises systems under test in statistically significant ways. The rate at which
new data needs to be generated also needs to create meaningful stresses.

4 Data Model

Ideally we will want to develop a unified data model that allows integrating the
multiple varieties of data, (relational tables, resilient distributed datasets,
semi-structured data, graphs, arrays, and unstructured data such as text) that arise in
Spark usages. A possible approach could be to start with an existing, largely traditional,
relational data model and then extend it to the emerging domains. This has been
popularized by the BigBench benchmark [8] which started with TPC-DS [6] and
extended its data model to the SQL/MR and Mahout machine learning areas. An
interesting possibility is to build on top of the LDBC Social Network Benchmark
(SNB) [11] which already covers a number of the Spark ecosystem domains, and to
extend it further.

Fig. 1. Spark Taxonomy (https://databricks.com/Spark/about)
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We believe it would be effective to use this extension approach for the Spark
performance testing suite. As the design and overall implementation of the Spark
performance testing suite is refined, the choice between TPC-DS, SNB or some other
option can be made. Since any kind of relational model would support SQL, the data
model for that domain is quite straightforward. Streaming can use the relational tables
both as sources and as targets. Work to recast the Mahout-based machine learning with
Spark MLlib [2] is already underway. For graph computation, understanding the link
between the Social Network Benchmark of LDBC and how it could contribute to the
testing suite will be a challenge [25]. Finally, defining a data model across various
specialized Spark features and spanning text analytics, and SparkR for a unified per-
formance testing suite appears feasible in principle, but more investigation is needed.

5 Data Generator

Scalable, efficient, and realistic data generation plays a crucial role in the success of a
data intensive testing suite. The built-in scalable data generator of TPC-H made it very
compelling, as recounted in a retrospective of TPC-H [4]. TPC-DS further refined this
notion and added non-uniform distributions and correlation. Multiple research efforts
(e.g., Myriad [9] from TU Berlin, Parallel Data Generation Framework (PDGF) from
Bankmark [10], and DATAGEN from the LDBC Social Network Benchmark [11]) are
addressing these well appreciated needs for scalability and for reflecting real-world
characteristics into synthetic data generation. We recognize similarly that while it may
require significant development effort, rapid generation of representative data for use in
large scale clusters will be critical in the adoption of the proposed Spark performance
testing suite. We expect that the definition, design and validation of a powerful data
generator is a key work item as we proceed with the implementation of this Spark
performance testing suite.

5.1 Properties of Data Generator

A data generator must have multiple key attributes in order to be successful; in par-
ticular, it will need to be:

• Open source and transparent: to allow users to view and modify the code to enhance
it or alter its behavior

• Scalable: to allow users to use it in a variety of environments, from small single
node servers with only a few GB of data to the largest clusters with hundreds or
even thousands of nodes and Petabytes of data.

• Parallel and distributed: as practical generation of petabytes of data will require
many multi-core servers

• Incremental: to allow data to grow in iterations one must be able to generate data in
“chunks” rather than in one monolithic start to finish method

• Realistic: Although synthetic, data must strive to be realistic; i.e., representative of
real data sets. Following are some of the common properties of real life data:
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• Correlation
• Non-uniform distributions representing high levels of skew
• Fields/columns with both low and high cardinality
• Varying numeric fields
• Text fields of varying length

• Able to represent relationships: as capturing connections across multiple tables/data
sets is essential for advanced analytics.

• Random but predictable: The data must be sufficiently random to challenge the
system-under-test with unknown input sets. And yet, the output of data processing
must be sufficiently predictable to permit validation of results and to determine
which sets of input may trigger comparable levels of processing by the workload.

6 Workloads

6.1 Machine Learning

Several subtasks in the Machine Learning (ML) category are desirable for inclusion in
the proposed suite, and are described further below. For each, the Spark performance
testing suite should contain a reference implementation based on the most recent Spark
MLlib capabilities. The suite should include a written specification for each machine
learning subtask. It should be easy to substitute a different ML algorithm or imple-
mentation, provided that the replacing algorithm meets the specifications identically
with reference implementation. The specification should therefore be at a sufficiently
high level to permit alternative implementations, and be sufficiently strict to ensure that
variant implementations produce useful outputs leading to quality results from a data
science perspective.

It is important for the data generator for the machine learning tasks to cover a broad
range of data characteristics which affect the behavior of ML algorithms. Input data
should include dense, sparse, and hybrid (some attributes dense, others sparse) inputs.
Algorithms should run against both small and large numbers of features.

In order to be able to draw broadly accepted conclusions and to drive innovation
towards continuously improved machine learning, the generated data should also be
robust and highly representative of real world data. In machine learning, processing
speed is important but certain levels of quality are even more important. In a nutshell,
generated data should not be so well-conditioned as to favor optimization algorithms
that are not usable in practice with real-world data. We believe that substantial work is
required to construct a robust, realistic data generator for the performance testing suite
assessing Spark machine learning implementations.

Based on the above criteria, a Spark performance testing suite could augment the
features tested in Spark-perf [16] and supplement [16] with extensions in the areas of
logistic regression, support vector machine and matrix factorization. These are widely
used regression, classification and recommendation algorithms for machine learning
applications.
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6.1.1 ML Subtasks
Logistic Regression. Logistic regression, as a machine learning classifier can be used to
predict continuous or categorical data. For example, it is used to predict whether a
patient has a given cancer based on measured characteristics such as various blood test,
family disease history, age, sex, etc. The algorithm uses the stochastic gradient descent
to train the classification model. The input data sets are kept in memory through RDD
abstractions, and the parameter vector is calculated, updated, and broadcast in each
iteration.

Support Vector Machine. A support vector machine (SVM) model is trained by con-
structing a set of hyper-planes in a high, or even infinite, dimension space for classi-
fication. Compared with linear and logistic classification, SVMs can implicitly map
inputs into a high dimensional feature space and efficiently conduct nonlinear
classifications.

Matrix Factorization. Matrix factorization, typically used by recommendation systems,
is a collaborative filtering technique that fills in the missing entries of a user-item
association matrix. Matrix factorization in Spark currently supports model based col-
laborative filtering and can be configured to use either explicit or implicit feedback
from users.

Random Forest Classification. A random forest classifier uses a large set of relatively
simple decision trees to perform classification tasks. The classifier combines the results
of the individual classifiers to produce a consensus result. Random forests have shown
to be effective in a number of machine learning tasks beyond their primary uses in
classification. Since building a random forest involves training many small models in
parallel, the task involves different communication patterns from other types of training
tasks. MLlib exposes a random forest classifier implementation via the mllib.tree.
RandomForest API.

6.2 Graph Computation

Graph is a very widely utilized data model. Consequently, a comprehensive Spark
performance testing suite needs to include graph processing. The graph packages
supported under Spark include GraphX and Dato. Additional projects are underway.

Graph computations to be included in the testing suite need to be representative of
common types of graphs and graph analytics operations, and graph properties should
reflect those in practical applications. Therefore, the data generator should be able to
generate graphs of different types, such as the social graphs and man-made graphs (e.g.
road-network) where a sensitive metric (say, vertex degree distribution) can be varied
to obtain a wide range of analytics impact. Where practical, we want to be able to link
graph data with other data generated for other components of the Spark performance
testing suite. We propose to draw considerably from the LDBC Social Network
Benchmark [25, 26] and need to examine how best to adapt their benchmarks to the
Spark ecosystem and the Spark performance testing suite infrastructure. Different types
of work, such as static structure-based traversal, graph structure morphing/property
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updates, and the processing of property-rich graphs, are highly desirable to include in
the graph analytics operations of the testing suite.

The following subtasks are proposed according to the above criteria.

6.2.1 Graph Generator Subtask
The Linked Data Benchmark Council (LDBC [27]) has created two benchmarks. One
of them is the LDBC Social Network Benchmark [25, 26] (SNB) whose correlated
graph generation, graph querying tests, complex graph dependencies and scalable
benchmark drivers reflect landmark innovation in graph benchmarking. Its data gen-
erator (ldbc_snb_datagen) uses experimentally extracted metrics and correlations to
produce scalable datasets mimicking real world social networks. LDBC introduced a
new choke-point driven methodology for developing benchmark workloads, which
combines user input with that from expert systems architects.

The SNB analytics workload [26] includes General Statistics, Community Detec-
tion, Breath First Search, Connected Components and Graph Evolution; a list that will
grow in the near future with the addition of new algorithms. We propose to select
workloads from this benchmark for the Spark performance testing suite and develop
additional workloads to cover various aspects of graph computing as detailed in the
next subsection.

Graph500 [12] is a graph benchmark focusing on data-intensive workloads and
particularly on large graphs. It is based on a breadth first search in a synthetically
generated large undirected graph with power-law property based on the Kronecker
model with average degree of 16. It measures performance in TEPS (for Traversed
Edges Per Second) and its problem size can be changed by varying a SCALE parameter
that determines the total number of vertices as 2SCALE. Thus its generated graphs can be
of various sizes, suitable for benchmarking software or platforms at different scales. It
consists of three phases: construction, computation, and validation.

A dataset generator for Belief Propagation should be included as it would make rich
property graph analytics possible, and it should produce directed acyclic graphs
(DAG) with (conditional) probability distributions of various scales.

6.2.2 Graph Analytics Subtask
Primitive operations for graph analytics, such as creating/reading/updating/deleting
(CRUD) vertices, edges, and properties, are nearly universal. Tests calibrating these
graph analytics building blocks are therefore essential to include in the suite. The
metrics would cover throughput (e.g., number of edges traversed per second), latency,
and scalability.

Graph construction for large scale property graph is another key subtask to cover.
The metrics would be running time, and scalability, akin to a subset of Graph500 [12].

Graph query is of interest as it involves both structural information and property
information [11].

Pagerank exercises graph structure traversal with fixed active working set; Triangle
counting stresses similarly. In such graph computations, each vertex iterates through
tasks of gathering information (say, rank score) from its (partial) neighbors (say,
predecessors), updating local information, and propagating it to the other neighbors
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(say, successors); and the iterations continue until convergence or certain termination
conditions are reached.

Breadth-first Search (BFS) represents another type of graph traversal where only
the vertices on the traversal frontier are affected, and the workload can vary from one
iteration to another.

Single Source Shortest Path (SSSP) with a maximum traversal depth represents a
type of graph traversal similar to BFS (e.g., Bellman Ford algorithm), but it only
touches a local subgraph, instead of engaging the entire graph. This workload can
evaluate if a graph processing framework on Spark can efficiently address local or
subgraph computations.

Belief Propagation on a Bayesian network represents property-rich graph pro-
cessing, and is a type of graph analytics operation that occurs in many cognitive
computing applications. For example, Loopy Belief Propagation on a Bayesian net-
work traverses graph iteratively, but when vertex or edge properties are updated, it can
become a multi-pattern and computationally intensive graph structure operation.

Graph Triangulation (a.k.a. Chordization) represents a type of graph processing
workload where the structure is dynamically changed. It is used to find graph cliques
(dense subgraphs) and/or the hyper graph representation. It is an iterative graph pro-
cessing algorithm that modifies topology in each iteration. It can be used to determine
whether graph dynamics can be efficiently captured by the system.

Collaborative Filtering finds a lot of application, especially in recommendation
systems. It involves a number of local graph searches on a bipartite graph, possibly in
parallel, and is suitable for evaluating the concurrent local traversal capacity of a graph
analytic system.

Graph Matching and motif searching are similarly used extensively. When the
target graph lacks an index, these operations are challenging and possibly involve
significantly high local traversals.

Various Graph Centrality metrics, such as the betweenness, degrees, closeness,
clustering coefficient should also be considered due to their wide use in many real
graph processing solutions.

6.3 SQL Queries

SQL continues to be an enduring query language due to its ubiquity, the broad
ecosystem of tools that supports it, and its ability to evolve and support new underlying
infrastructure and new requirements, such as advanced analytics and data sampling.

One area where a different approach might be warranted is in the construction of the
queries. Historically, different vendors have proposed queries that combined a variety
of SQL processing constructs, such as the TPC-D/H/DS benchmarks. In such case, the
coverage was often not obvious initially. There has been some good analysis of the
TPC-H query set [6].

We propose that we introduce a set of elemental or atomic queries that assess basic
scan, aggregation, and join properties, then a set of intermediate queries that add
challenges both to the query optimizer and to a runtime engine, and finally some
complex and very challenging queries, representing ROLAP concepts and advanced
analytic processing.
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6.4 Streaming Applications

Streaming applications can be characterized along three dimensions: latency,
throughput, and state size. Ideally, the Spark performance testing suite would exercise
each of these dimensions at three representative values - high, medium, and low -
giving a total of twenty-seven use cases. However, guided by applicability in the real
world scenarios, the number of use cases can be pruned down to a more manageable
count initially, and grow as more diverse workloads migrate to Spark over time.

6.4.1 Streaming Subtasks
The following are some of the use cases covering a subset of the twenty seven com-
binations posed above.

Real-time Model Scoring. The emphasis in this use case is on small and medium
latency ranges. Low latency is defined as response time in seconds and sub-second
values1. An example is sending an SMS alert to a prepaid mobile customer notifying
them of their leftover account balance and potentially inserting a marketing message in
the SMS alert after a model evaluation. In this use case, a latency in the range of 20 ms
to a few seconds is desired with lower latencies offering a larger payoff – for example, a
50 ms delay does not force the customer to take a second look at the phone screen to
get the marketing message while a delay exceeding 10 s may lead to customer pock-
eting the phone without getting the marketing message. Other examples in this area are
cybersecurity, fraud detection for online transactions, and insertion of ads in webpages,
where latency requirements are considerably more stringent (possibly 100 ms or less).

In all use cases of real-time model scoring, state management is an independent
dimension. The state could be as simple as a single quantity (e.g., in the example
above, minutes of calls left) which gets updated based only on the current record, with
the model scored on this simple state. Or, the state could be a very complex assemblage
of hundreds of attributes across millions of entities, updated by incoming records; with
the model evaluation proceeding over a selection of such entities (e.g., a fraud detection
application which maintains a profile with hundreds of attributes for each customer,
updates it based on incoming records and scores a model on the profile.)

Near Real-time Aggregations. Near real-time aggregates are required for a number of
scenarios in which a physically distributed system is monitored for its health using the
key performance indicators of its elements. Examples include monitoring of traffic
congestion on roads, monitoring of communication networks and energy grids.

In these usages either sliding or tumbling window aggregates are computed from
streaming records. Incoming records may be enriched by joining them with reference
information. The aggregation window size could be from one minute up to an hour. In
a typical case, records arrive out of order and are delayed, and contain a timestamp
which should be used for aggregate computation.

1 Current Spark Streaming is not recommended for sub-second response time, however, we discuss
this here in the anticipation of future improvements.
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For near real-time aggregations, throughput is an independent dimension. The
volumes could range from a few hundred GB a day (enriched Twitter data) and range
up to 500 TB a day (e.g., telecommunication call data records).

Another independent dimension is the number of aggregation buckets - which
themselves can vary from 100’s of millions (one bucket for each mobile user) to several
thousands (monitoring of different metropolitan cities within US).

The two subtasks listed above could be used to produce four use cases that could
become part of the Spark performance testing suite.

6.5 SparkR

R is a widely used language for statistical analysis, and the SparkR project will allow
practitioners to use familiar R syntax in order to run jobs on Spark. In the short term we
propose following SparkR subtasks for inclusion in the performance testing suite, with
future additions as SparkR capabilities evolve.

6.5.1 SparkR Subtasks
Data Manipulation. This covers SparkR DataFrame functions, and operations that can
be performed in a purely distributed fashion and includes all “record-at-a-time”
transformations such as log(), sin(), etc.

Segmented or Subpopulation Modeling. This is a technique in which the data is broken
down into subpopulations, such as by age and gender, and a separate model is built for
each segment of the data. Assuming each segment is of a “reasonable” size, R’s
existing ML libraries can be used to build the models.

Ensemble Modeling. This is a technique in which the data is broken down into ran-
domly selected sub-samples, each of which is a “reasonable” size. R’s existing ML
libraries can be used to build the component models of the ensemble; however, the
code that constructs the ensembles has to be written. This code could be in Scala or
maybe in R.

Scoring R Models. This is applying an existing model. In essence, it is a
“record-at-a-time” transformation.

6.6 Spark Text Analytics

Text analytics is an extremely broad topic, encompassing all types of analysis for
which natural language text is one of the primary inputs. To give the benchmark broad
coverage of this domain, we propose including a wide variety of text-related subtasks
described in the section that follows. For each subtask, the benchmark should include a
reference implementation based on an open-source NLP software stack (e.g., Stan-
ford NLP toolkit) consistent with the open-source license under which the performance
test suite is released.
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Different commercial vendors have proprietary implementations of these subtasks
and will want to substitute their own implementations for the reference implementation.
Each subtask should include a specification that is sufficiently detailed to permit
vendors to perform such substitutions. For example, it should be possible to perform
the “rule-based information extraction” subtask using IBM’s System T engine. In
general, proprietary implementations should be required to produce the same answer as
the reference implementations. For tasks with an element of randomization, the result
of a proprietary implementation should be of equal utility compared with the reference
result. For example, in the “deep parsing” subtask, any deep parser that produces
substantially the same parse trees as the reference implementation (say, 90 % or greater
overlap) would be acceptable.

Data for the subtasks should consist of English-language documents that a human
being could read and understand. The data generator should work either by taking a
random sample from an extremely large “canned” collection of documents, or by
mixing together snippets of English text drawn from a suitably large database. A range
of document sizes from 100 bytes up to 1 MB should be supported.

6.6.1 Text Subtasks
Rule-based Information Extraction. Information extraction, or IE, is the process of
identifying structured information inside unstructured natural language text. IE is an
important component of any system that analyzes text. In some cases, IE is used to
identify useful features for other NLP tasks. In other cases, it is the primary NLP
component of a processing pipeline. Rule-based IE systems use a collection of fixed
rules to define the entities and relationships to extract from the text. These systems are
widely used in practice, particularly in feature extraction applications, because they
deliver high throughput and predictable results. The rule-based IE task will stress Spark
by producing large amounts of structured information from each input document.

Information Extraction via Conditional Random Fields. A number of supervised sta-
tistical techniques are used in NLP as an alternative to using manually curated rules.
Conditional Random Fields (CRF) is currently the most popular of these techniques.
A CRF is a graphical model, similar to a hidden Markov model, but with greater
expressive power. CRF-based information extraction involves transforming each input
document into a graph with missing labels; then a collection of labeled training data is
used to compute the maximum likelihood estimate for each missing label. The
CRF-based extraction task will stress Spark due to its very high memory requirements.

Deep Parsing. Deep parsing involves computing the parse trees of natural language
sentences according to a natural language grammar. Deep parsing is an important
component of advanced feature extraction tasks such as sentiment determination. The
deep parsing task will stress Spark due to its high CPU requirements and large output
sizes.

Online Document Classification. Automatically classifying a stream of incoming
documents into two or more categories is a very common NLP task, arising in
applications such as publish-subscribe systems and spam filtering.

38 D. Agrawal et al.



Batch Topic Clustering. Topic clustering is a family of supervised learning techniques
for identifying important topics within a corpus of text, while simultaneously classi-
fying documents according to the topics. The resulting topics and clusters can be used
to understand the corpus at a high level, or serve as features for other machine learning
tasks.

6.7 Resilient Distributed Dataset (RDD) Primitives

Since the main programming abstraction in Spark is RDDs, offering RDD primitive
facilitates end users to gain micro-level understanding of how RDD performs within
Spark framework. The reference test suite implementation of RDD primitives should be
based on the latest version of Spark core and make it easy to substitute a different RDD
implementation, add new RDD operations and remove obsolete RDD operations.

While RDDs supports a wide variety of transformations and actions, the testing
suite should cover the key operations broadly. In particular, the RDD primitives should
include IO related, shuffle, set and compute RDD operations. We choose not to include
set operations with RDD.subtract and RDD.intersection because their
characteristics are a combination of compute and shuffle RDD operations.

The testing suite should provide a data generator which produces synthetic data sets
to exercise the various RDD primitives. Considering that data skew is known to
commonly exist in data analytics workloads, the data generator needs to be able to
generate data sets with different types of statistical distribution representing different
levels of data skew. Note that whereas this type of workloads is aimed at micro-level
RDD performance, the data generator needs not to generate realistic data sets.

6.7.1 RDD Primitives Subtasks
IO Related RDD Operations. This set of operations identify how fast Spark reads and
writes data from/to local or distributed file system and creates/removes RDDs for the
targeted data set with various size. Examples of RDD actions include SparkCon-
text.textFile, RDD.unpersist.

Shuffle RDD Operations. This set of operations focus on stressing the shuffle behavior
of RDD operations. They quantify how fast shuffle RDD operations can perform given
different data set sizes. Examples of RDD transformations include RDD.union, RDD.
zipPartition, RDD.reduceByKey, RDD.groupByKey, and RDD.
treeAggregate.

Compute RDD Operations. This set of operations exercise how fast the compute RDD
operations can perform. Examples of RDD transformations include RDD.map, RDD.
flatMap. We choose to specify trivial map function such as sleep within compute
RDD operations so that we can isolate the evaluation of the overhead of Spark
framework.

Check-pointing RDD Operations. This set of operations assesses how fast the check
pointing RDD operations can perform. This is a key factor which helps encourage the
adoption of Spark framework seeing that failure is a common phenomenon in large
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scale data centers and check-pointing and lineage are the fundamental failure recovery
mechanisms within Spark.

The key evaluation metrics for RDD primitives are as follows: (1) throughput: how
many RDD transformations and actions can Spark conducts within a given time
window; (2) scalability: how does the execution time change when the RDD data set
size increases; (3) efficiency of failure recovery: how fast can Spark recover from a
RDD data partition lost.

7 Execution and Auditing Rules

In this section we discuss the outline of the proposed execution and auditing rules of
the testing suite. These rules typically govern the preparation of the testing environ-
ment, the execution of the testing suite, and the evaluation, validation and reporting of
the test results.

During test environment preparation, a user first identifies the targeted workload(s)
and accordingly chooses a benchmarking profile. To reduce the performance testing
overhead, the testing suite provides a set of benchmarking profiles. Each profile
includes a subset of workloads from the entire testing suite, along with corresponding
data generation configurations and sequence(s) of workload execution. For example,
the testing suite has one benchmark profile for each workload described in Sect. 6. If
the testing focuses on machine learning, the machine learning benchmarking profile
can be used, eliminating the overhead of running the other workloads.

The execution rules also require both single user and multi-user execution sce-
narios. A single user scenario executes the workloads included in the benchmarking
profile one after another with a focus on evaluating and collecting per-workloads
metrics. A multi-user scenario runs multiple benchmarking profiles concurrently with
profile launching time following a certain statistical distribution. The multi-user sce-
nario also could support running the profiles against different data sets instead of
reusing the same data sets. This gives the users a better understanding of the perfor-
mance implication of the targeted system under a multi-user scenario.

Having selected a benchmarking profile, the testing environment can be set up. This
includes provisioning a set of connected machines and installing the software stack
needed for running the testing suite’s profile.

Once the testing environment is ready, the testing suite’s data generator is used to
generate needed datasets and loading them into the storage component of the tested
system. The user is then ready to proceed with running the benchmark with a workload
execution sequence defined by the chosen benchmarking profile. To check whether a
benchmark run is valid, all the workload execution should report successful return
status and pass the validation phase.

The testing suite includes an output quality evaluation and validation phase to
evaluate the correctness of the execution. While this varies by workloads, a user can get
an initial result indicating the validity and performance level of a test run from the
result log generated by the testing suite.
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Another important aspect of the execution and auditing rules is the requirement to
provide sufficient reporting about the testing to allow others to reproduce the results.
The system details needed in the disclosure report includes the hardware configurations
such as CPU, memory, network, disk speed, network controller, switches; and software
information such as the OS name and version, other software names and versions
relevant to the testing suite, and the parameters used to generate input datasets. The full
set of result logs generated by the testing suite should also be provided online and in a
format that is easy to reproduce.

8 Metrics

Whenever a set of somewhat independent measurements are performed, a question
always arises – how should the results be aggregated into a single metric, a simple and
comparable measure of composite “goodness”? Historically, geometric mean has been
chosen for some benchmarks [8, 9], while it has been argued later that a geometric
mean is inappropriate [6]. Several other options, viz. an arithmetic mean, a weighted
arithmetic mean, a harmonic mean, a weighted harmonic mean, etc. may also be
applicable candidates for devising a figure of merit.

Different components of the proposed suite have widely diverse origins, and are
likely to be accorded dissimilar measures of importance by different people. Thus
arriving at a consensus single metric is particularly challenging in this case. For the
purpose of this paper we therefore defer any specific recommendations. We understand
and accept that a simple single figure of merit for any set of measurements is highly
desirable.

Overall, we believe that most tests are best characterized by multi-user throughput.
However, as the community-based approach to evolve and finalize the ideas presented
in this paper gets underway, we expect considerable open discussion before a final
metric is settled upon.

9 Preliminary Work

Preliminary work [24] has been done in the design of a benchmarking suite focusing on
targeted dimensions of quantitative Spark Core and the staging of infrastructure
evaluation. In this work ten diverse and representative workloads were chosen, cov-
ering four types of applications supported by Spark – machine learning, graph com-
putation, SQL and streaming workloads. The ten chosen workloads were characterized
using synthetic data sets and demonstrating distinct patterns with regards to resource
consumption, data flow and communication features affecting performance. The work
also demonstrated how the benchmarking suite can be used to explore the performance
implications of key system configuration parameters such as task parallelism.
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10 Conclusion, Ongoing, and Future Work

As Spark is increasingly embraced by industries and academia, there is a growing need
for a comprehensive set of Spark performance tools. Such tools should enable devel-
opers, integrators and end users within the Spark and big data community to identify
performance bottlenecks, explore design trade-offs, assess optimization options and
guide hardware and software choices with a focus on key workload characteristics.
While early work has been done in this area, the Spark ecosystem, being a relatively
new data analytics platform, lacks a far reaching set of performance tools. This paper
introduces a framework for the creation of a comprehensive Spark performance testing
suite to address this need. It identifies several key factors such a performance testing
suite should consider, a set of Spark workloads consistent with those factors, and the
requirements for their reference implementations and corresponding data generators.

Currently we are focusing on machine learning and graph processing workloads.
More specifically, we are identifying real world data sets as seeds for data generator.
They exemplify the data characteristics that need to be preserved in order to generate
realistic data sets at selected scale factors. We are also looking into meaningful metrics
for each workload with a focus on setting apart high performing algorithms and
implementations from less efficient ones. In the future, we plan to add additional
workloads to the identified set. For instance, as a necessary step between the data
generation process and the analytics workflow, we identify extract-transform-load
(ETL) as another key workload within the Spark ecosystem. We also plan to explore
the possibility of supporting a Python interface within the performance testing suite.
Moreover, we recognize the need for a formal definition of the testing suite’s detailed
execution and auditing rules, along with the selection of representative metrics that
create an environment where true apples-to-apples comparisons can be made and
alternative choices can be fairly evaluated.
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Abstract. Writing enterprise grade software for multi-processor systems is an
interesting challenge since such a system primarily involves a multitude of hard‐
ware components that exhibit conflict due to simultaneous access by unorganized
software threads of user applications. The problem is particularly compounded
with In-Memory paradigm that includes potential applications like Data Manage‐
ment in the modern era. With an emergence of distributed hardware trends like
Non-Uniform Memory Access (NUMA), where access times to a system’s phys‐
ical address space depend on relative location of Memory w.r.t CPU, it is crucial
to rethink about placement of a user process’ workable memory with respect to
executing threads. We present a few novel techniques from our Heap management
work with SAP HANA as part of our goal towards building a strong NUMA
awareness with in-memory databases. Our work primarily focuses on providing
a robust and well-performant Memory Management framework on Linux OS by
handling the associated complexity and challenges seen with enabling enterprise
software to live on a distributed memory landscape. One of the important
outcomes of our approach is to build a rich set of kernel APIs that provide fine-
granular control to higher DBMS layers like Store and Query for educated place‐
ments of their relational data structures. However the generality of our techniques
allows them to be readily applied to other domains that need to deal with NUMA
performance penalty.

Keywords: Memory management · Heap manager · In-Memory databases ·
NUMA · Linux · Data locality · Performance

1 Introduction

1.1 Shared Memory Architectures

Traditional hardware systems have a shared memory architecture based on Uniform
Memory Access (UMA). On such an SMP system (Fig. 1), the memory is typically
accessed by processors via shared bus which provides similar access times for any CPU.
Inter-communication between CPUs is also channeled through this shared bus, which
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can quickly become congested with requests from multiple cores. The number of DRAM
chips manageable by a single controller is limited, which limits the memory capacity
supported by the system architecture. All in all such a design does not scale well for the
ever expanding multi-processing landscape [1, 2].

Fig. 1. Typical components of SMP system

1.2 Non-uniform Memory

To address the above limitations, modern CPU architectures have embraced a distributed
memory model called NUMA, where computer memory lives across a number of
processors and where each processor is able to access some locations (local memory)
faster than others (remote memory). A few examples of such sub-systems include the
AMD Opteron, IBM Power5, HP Superdome and SGI Altix [1]. The primarily goal of
this design is to surpass the scalability limits of shared memory architectures. The system
memory is typically partitioned into multiple physical Nodes (or Sockets), each with its
own processing units and a fast dedicated access path to its private memory (as outlined
in Fig. 2). All the nodes in such a system are glued together using a communication link
called “interconnect” that doubles up to provide access to inter-node memory as well as
to implement the Cache Coherency protocol (i.e. ccNUMA). Such hardwares were built
since the late 80’s, and early operating systems designed for it were optimized for access
locality. It first became commercially available with Linux distributions in 2004 with
SLES9 and RHEL4 [3].

Fig. 2. Typical layout of a NUMA system
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1.3 Processing Hierarchy of NUMA and Misgivings

Today’s generation of processor is so agile that it usually requires physical memory to
be directly attached to the socket of residence. Processing time in the life of such a system
is typically clogged inside hardware sensitive factors like shared cache contention,
remote memory latency, memory controller and interconnect contention, together of
which contribute to significant degradation in application workloads. The moving pieces
of hardware interaction are neatly captured in Fig. 3.

Fig. 3. Typical bottlenecks in a NUMA system [4]

The contention on last-level processor cache is a bottleneck experienced during
multi-processing with shared data access patterns. Processing units on the sameCPU
coreusually talk through a shared L1/L2 cache (~ 1–2 cycles), while processing units
residingon different CPU cores, but contained in a chip,talk through a shared L3 (~ 10–
20 cycles). Finally processing units residing on separate chips communicate either by
sharing memory or through a cache-coherence protocol (~ hundreds of cycles). Cache-
line contention can be a significant impediment in scaling large NUMA configura‐
tions,and its effects may be broadly classified as either “false cacheline sharing” or
“cache-line ping-ponging” [5]. The “false cache-line sharing” is the unintendedco-
residency of unrelated variables in the samecache-line, while“cache-line ping-ponging”
is the change in exclusive ownership of a cache-lineas different CPUs write to it. The
penalty is aggravated multi-folds when the contention is not self-contained within a
single socket and is further intensified by the cache-coherency policy (e.g. broadcast-
based global policies are hurtful). This is due to the need to traverse inter-node links to
handle the cache-to-cache traffic to resolve cache-line contention. An example of false
cache sharing is a poor datastructure layout whereby a single L3 cache-line contains a
location (frequently written) and another location (only read). In this situation, a read
will trigger an expensive cache coherency operation to demote the cache-linefrom
exclusive to shared state in the directory. Once identified, false cache sharing can often
be remedied by isolating the write-mostly variable into a separate cache locality. The
processor’s prefetch mechanism and usage of atomic operations additionally contribute
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to false cache contention [6]. An example of cachelineping-pong on the other hand is
that of multiple-reader single-writer lock synchronization which contains a contending
variable (read-lock count). Each read_lock() and read_unlock()changes the count and
dirties the cache-line containing the lock. Thus, an actively used lock object is contin‐
ually bounced across the entire system.

As a side-effect of NUMA hierarchy, a memory access from a given socket to its
neighbor incurs an additional hop. This is the penalty of remote memory access and is
typically ~ 1.2–1.5x in modern NUMA systems. However as seen from prior studies [4,
8], the overheads of contention from resource saturation (interconnect/memory control‐
lers) are far more significant than raw wire delays. Unbalanced distribution of memory
requests increase the memory access latency on overloaded controllers to as high as
1000 cycles, compared to ~ 200 cycles on a relatively idle controller. Proper placement
of application data plays a crucial role in optimizing both Query latency and Throughput
achieved with In-Memory data management.

2 Related Work

2.1 Application Agnostic Considerations

The performance differences of memory were first noticeable on large-scale systems
(e.g. SGI Altix) where data paths were spanning motherboards or chassis. These systems
required modified OS kernels with NUMA support that explicitly understood the
system’s topological properties to avoid the excessively long signal path lengths and
achieve High-Performance computing and scalability [2, 5]. Several techniques and
strategies have ever since been proposed by research community for application unaware
NUMA optimizations. The processor caching bottlenecks (from Fig. 3) are partly solved
with software techniques like “thread clustering” [7] that perform efficient thread
scheduling keeping in mind the application’s data sharing pattern. The remote access
and resource saturation penalties are considered by OS-based scheduling techniques like
Automatic NUMA Balancing in Linux kernel [9], DINO [4] and Carrefour [8]. The crux
of these algorithms is that they migrate data and threads closer to each other. The Auto-
Numa feature, available in recent kernels since Linux v3.8 +, allows applications to
transparently adapt to non-uniform hardware behavior by supporting dynamic schemes
like “CPU-follows-memory” and “Memory-follows-CPU”. These policies are internally
triggered by watching hardware statistics like Page Faults with special heuristics like
Quadratic Filter to migrate a page only when accessed by the same remote node more
than a specific threshold. The page migration in fact uses a lazy technique to move pages
present in the fault path [9, 10].

Some NUMA systems (e.g. AMD Opteron) may even be configured by firmware to
globally interleave their virtual address space across nodes. Such a technique is called
hardware interleaving [2] and is a quick and easy solution not entailing modification of
program source. It does avoid the worse-case performance penalties seen with central‐
ized bandwidth bottlenecks, but suffers from a lot of remote memory accesses and hence
may not always be an optimal choice. The DINO and Carrefour scheduling algorithms
[4, 8] take both remote latency and resource contention into account during NUMA
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guided decision-making. These approaches use contention-sensitive thread ranking
based on hardware metrics like LLC miss rate, Memory read ratio, DRAM accesses per
μs, and Local memory access ratio. These algorithms employ not just thread and memory
migration techniques, but are supplemented with advanced capabilities like memory
replication (with modified kernel and Page Table mgt.) to reduce both remote accesses
and resource contention. Such application neutral strategies are useful but not fully
optimal for applications like relational DBMS with a wide spectrum of access charac‐
terizations ranging from weakly parallel (point) transactional updates to highly parallel
(dense) analytical scans. For example, running a whole DBMS process in interleaved
mode may not be optimal and most likely not an option in real world [11]. It is desirable
to incorporate a fair degree of intelligence in DB kernel with respect to Memory
Management and Thread Scheduling capabilities for deeper hardware considerations.

2.2 Application Guided NUMA Awareness

There is substantial prior work in this field. For instance the authors [11, 12] deal with
executing join algorithms efficiently, while [13, 14] generalize the scope to other rela‐
tional operators. This is immensely useful to understand the different ways of coordi‐
nating and collocating threads along with their working data set during query execution.
But it does not deal with the specifics and complexity of the underlying memory infra‐
structure needed to create the hardware sensitive placement leveraged by algorithms in
higher spaces.

Prior work in the area of NUMA-aware Heap Managers by Kaminski et al. [15] is one
of the earliest works known to us on such low-level considerations. The authors acknowl‐
edge the need for programmer’s usage of heap memory libraries (C/C ++ runtime) to
avoid the expensive context switches between user and kernel space. Their work is based
on extending the TCMalloc allocators [16] to be NUMA-sensitive. TCMalloc is an open
source project available as part of the google-perftools package under BSD license. It typi‐
cally allocates memory in very large memory blocks, splits them into smaller chunks and
manages the client requests with minimal memory fragmentation. To achieve this goal it
maintains a separate memory pool per thread used for tiny allocations which greatly helps
to reduce the lock contention as well as OS API call overheads. The authors even extend
this existing fairly-scalable heap manager to work efficiently on NUMA by using the 3rd
party library ‘libnuma’ and showcase the performance benefits with respect to traditional
heap managers like glibc’s PtMalloc [19]. However there are a couple of inherent weak‐
nesses in their design, which need careful consideration and are neatly solved by our
proposal.

3 OS Allocation Policies and NUMA-Aware Heap Decisions

3.1 Policy of First Touch

Most operating systems use a well-established memory management paradigm called
“Policy of First Touch”. When an application requests memory, the virtual address is
initially not mapped to real memory. When the threads of user process first access the
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memory during initialization (using ‘memset’) or read/write of addresses, the OS will
allocate a physical memory region and map the virtual address to the physical range to
make it resident. The OS typically allocates physical memory from the same NUMA
node as holding the CPU executing the page faulting thread. This concept of Demand
Paging is used by most modern operating systems such as Microsoft Windows and
Linux. The OS thereby retains complete control over which physical address range to
use and user applications are completely abstracted [2, 17].

3.2 APIs to Control Location of Physical Memory

For data intensive algorithms one needs to consider where to place the consumed data.
Operating systems are typically aware of NUMA architectures. Linux for instance parti‐
tions memory into NUMA zones, one for each socket [2]. For each NUMA zone, the
kernel maintains separate management data structures. Unless explicitly bound to a
specified socket (NUMA zone) through a special system call (‘mbind’), the Linux kernel
allocates memory on the socket of first touch. The kernel tries to satisfy the allocation
from current zone, but in case of insufficient zone memory, it may select next zone with
free memory. System calls like ‘mbind’ thus help programmers with better control of
their process’ resident memory assignment.

Linux provides a 3rd party user-space library ‘libnuma’ [23] for NUMA-aware
programming which provides a convenient wrapper around the low level system calls
for target node binding and NUMA topology access. Similar APIs are available on other
OS flavors, although the focus of our present work is restricted to Linux only. The
‘libnuma’ library is generally installed with corresponding RPM packages ‘libnuma-
devel’ and ‘numactl-devel’ on SUSE and RHEL distributions respectively [1]. The
library APIs for heap locality currently support 3 different policy flavors as described
in Table 1. The default OS decision corresponds to “First Touch” policy.

Table 1. Memory Policies to control allocation locality [1, 17]

Name Description
Default System default is to allocate on local node running the

thread (first touch)
Bind Allocate strictly on a given set of nodes
Preferred Hint to allocate on a given set of nodes and fallback to

other nodes if needed
Interleave Interleave in round-robin on a set of nodes

The “BIND” policy is a strict specification to the kernel to restrict the physical alloca‐
tions from a specified set of nodes only. Although this provides a reliable and high preci‐
sion guarantee of memory acquisition, the behavior turns out to be overly restrictive during
resource hit situations like Node-level OOMs where this policy forces OS to reclaim the
local memory within target node(s). This may even cause undesired effects like VM swap‐
ping as a result of which the user process is sometimes chosen as victim by resource
daemons like Linux OOM killer [26]. Unfortunately this is also the de-facto policy of
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‘libnuma’ public APIs for node binding (e.g. numa_alloc_onnode(< size > , < node >)).
This is clearly not even an option for production-grade In-Memory systems like SAP HANA
[22] which need to deal with high concurrency and memory-intensive situations with
resource demand pressures.

The “PREFERRED” policy is a best-effort mechanism allowing user applications to
provide a hint to OS to provide the backing physical memory from a specified list of
nodes. This renders rich flexibility to Modern Operating Systems to transparently fall‐
back to other nodes from topology in the event of memory pressures. It provides a best
of both worlds (i.e. location affinity of Strict Binding and flexibility of First Touch) and
is the approach chosen by our NUMA-aware heap [18].

The “INTERLEAVE” policy directs the kernel to effect a round-robin distribution
of underlying physical pages across the specified subset of nodes with OS page stripe
(e.g. 4 KB on x86). This provides a powerful mechanism to balance the memory band‐
width and effectively reduce the controller contention [17]. In the relational context, the
data striping is a useful philosophy especially for shared Data Structures and Store
components that are accessed from multiple nodes e.g. Temporary structures of table
joins. This is an alternative choice for DB layers by our NUMAdesign [18].

3.3 NUMA Policy Hierarchy

Linux allows policies to be set either at the level of processes or memory regions. Policies
set per memory region are called VMA policies and allow a process to set policy for a
block of memory in its address space [17]. Memory region policies have a higher priority
than Process policy (see Fig. 4). The main advantage of memory region policy is it can
be set up before an allocation happens and hence we use it [18].

Fig. 4. Memory policy hierarchyof OS

3.4 Heap Manager Decisions with Libnuma

It must be noted that the allocation routines of ‘libnuma’ round up all allocations to
kernel page granularity and are relatively expensive. The cost is amortized when used
for large memory objects that exceed the CPU cache sizes and where NUMA-aware
policy is likely to help. Our design [18] amortizes and absorbs the internal overheads
by restricting usage of library APIs to request sizes exceeding a few 100 Megabytes.

Linux introduces three new system calls for NUMA awareness: (i) ‘mbind’, (ii)
‘set_mempolicy’, and (iii) ‘get_mempolicy’. Normally user applications should not
have to invoke the system calls directly and instead use the higher libnuma interfaces.
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The ‘mbind’ is the most important system call to bind memory to a node and our design
uses a high-level libnuma wrapper around this call. The ‘get_mempolicy’ retrieves the
memory policy of a given VMA. This system call is used by our design to publish API
for higher DB layers to query node of actual physical allocations. This metadata can be
used to guide scheduling decisions of relational worker tasks/threads.

The most important contribution of our Distributed Memory aware design is to
abstract the gory complexity of NUMA-driven management decisions from DBMS
client layers by exclusively dealing with contracts of the external library (and even OS).
This is achieved by publishing the frequently needed infrastructure services for clients
to be able to place and locate their in-Memory objects efficiently. Our design [18] does
not completely eliminate the lock synchronization overheads but manages to bring down
intra-node memory fragmentation to a bare minimum.

4 Memory Management in DBMS [18]

4.1 Existing Design

The basic principle of any scalable user-space memory allocator like PtMalloc of linux
glibc ([19], TcMalloc [16] and Hoard [20] is to use slab-based allocations based on
multiple slab classes along with tiered caching hierarchy like Thread vs Local vs Global
Heaps [25]. In similarity our Memory Manager is a user-level memory alloca servicing
the object sized allocations using buffer pools partitioned per logical core. As a conse‐
quence, threads executing on different logical processing units naturally do not need
synchronization. Whenever a DBMS worker thread needs to allocate a few chunks of
memory, the Memory Manager handles it by forwarding to designated allocator object
assigned to thread’s execution core. The slab allocation philosophy is coupled since each
Allocator object has four pre-defined sub-allocators based on request size (see Fig. 5 for
concept). The ‘SMALL’ allocator deals with tiny pre-defined slabs upto 4 KB, the
‘MEDIUM’ deals upto 32 KB, while ‘BIG’ allocator can handle upto half GB. The rest
are forwarded directly to OS through ‘HUGE’ allocator.

Fig. 5. Existing memory manager architecture
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The ‘BIG’ allocator is the crucial piece since it handles the segment allocations of
very large VMA regions by requesting OS to map them as anonymous pages. The large
span of the reserved memory region are then carved into chunks of 64 KB pages and
further into smaller pieces (<= 4 KB) which eventually get cached in the ‘MEDIUM’
and ‘SMALL’ allocators respectively. The memory chunks allocated by the ‘BIG’ allo‐
cator originate from a global list of free chunks, and hence once a chunk is de-allocated
it turns completely free and returned to the global freelist. However, the chunks are never
returned to OS and instead retained within the process’s address space, which helps
reduce expensive context switches and associated page faults.

As is apparent, the above design is lock-free and also makes sure that the memory
fragmentation overheads are minimized since after a particular memory is released, the
adjacent free virtual addresses in internal caches are combined and compacted wherever
possible. There may be lock waits in the scenario of more threads than processing units,
but this problem is partially addressed by our DBMS Task Scheduler [21] which fits
thread parallelism to available computing units. Our present design of memory allocators
is robust, efficient and scalable, but sub-optimal for NUMA.

4.2 Limitations of Existing Design from NUMA Perspective

The present design does not necessarily guarantee that allocated memory will live on
NUMA socket of the executing thread! Since we use ‘mmap’ call to reserve large
segments from Linux, we are bound by the “First Touch” policy (Sect. 3.1). Load
balancing by OS schedulers in multi-threaded environments may lead to context
switches, and increase likelihood of a situation where the memory touching thread runs
on a different socket Vs allocating thread

Since a single NUMA node may have multiple cores and our existing heap model
creates a per-core allocator, this does not eliminate the possibility of memory fragmen‐
tation. A thread might run OOM [26] with a particular CPU’s allocator and switch to
another CPU’s cache reserves (possibly on a very distant NUMA node)

4.3 NUMA-Conscious Heap Memory Design

API Perspective. The fundamental step towards becoming NUMA-friendly primarily
begins by creating a binding of physical memory immediately after VMA reservation.
As already discussed in Sect. 3.2, we choose to avoid the “BIND” policy and instead
support the “PREFERRED” and “INTERLEAVED” policies as a best effort to set the
physical page affinity on NUMA systems. We feel this is an important difference with
respect to earlier work prescribed on NUMA-aware heap allocators [15] that implicitly
relies on the strong binding guarantees of ‘libnuma’, bringing into picture the perils of
Node-level OOM and swapping during high memory demands. Our design creates a
robust NUMA heap manager by using a safe combination of the appropriate library
routines on Linux platform (explained in next section). With a best-effort approach, we
entrust OS with the responsibility of fallback decisions pertaining to physical memory
placement in event of low memory situations on the requested node. As per the library
documentation of “PREFERRED” policy behavior [23], the OS will automatically
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choose an optimal neighbor when the target node is unable to bind the requisite physical
memory. This creates a neat abstraction for application modules around the OS-
dependent gory rigors of physical memory management.

Below are APIs published by our Heap Manager to higher DB modules (aka Data Store
& Query Processor) to strategize their data structure and object placement (Table 2).

Table 2. Data placement APIs for allocating modules

Memory Manager API Purpose
ALLOC_ON_NUMA_NODE(< N>) hint to allocate on NUMA node < N>
ALLOC_ON_CURRENT_NODE hint to allocate on node of the executing

thread
ALLOC_ON_NUMA_INTER‐

LEAVED
hint to interleave memory with OS page

granularity in round-robin fashion
across all available nodes

Below are additional APIs useful for lower-level DBMS operations (aka Job Sched‐
uling) to guide placement decisions of relational worker threads (Table 3).

Table 3. Resource lookup APIs for task scheduling modules

Memory Manager API Purpose
GET_NUMA_NODE_OF_ADDR

(< addr >)
Determine physical memory mapping of

given virtual address (< addr >) to its
node of residence. This internallyinvokes
the get_mempolicy() system call

GET_NUMA_DISTANCE 
(< N1 >, <N2 >)

Determine relative distance in multiples of
10 from SLIT ACPI tables (linux kernel)
to quantify # of hops between
nodes < N1 > and < N2>

GET_NEAREST_NEIGHBOR
(< N>)

Determine the node closest to node < N > in
the NUMA Topology based on inter-node
distances

GET_FREE_MEMORY_ON_NODE
(< N>)

Determine total free memory (OS + Allo‐
cator caches) available with node < N>.
The OS portion is determined with
numa_node_size64() routine of libnuma,
while the Allocatorcache is tracked by our
Memory Manager

A Peek into Design Internals. The data placement APIs are further understood by
looking at the numbered steps in life of a NUMA-aware allocation workflow from Client
module to OS (Fig. 6).
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Fig. 6. Low-level interactions of NUMA-aware heap and OS

(1) Client thread calls placement API to allocate on a particular node (say Node# 7)
(2) Call by client to allocate < size > bytes of data object
(3) Entry into Memory Manager module where the decision is cleverly taken to use

the Memory Pool of executing core from target node and appropriate slab allocator
of the Pool that best fits the incoming request size

(4) ‘SMALL’ allocator satisfies request or forwards to ‘MEDIUM’ allocator
(5) ‘MEDIUM’ allocator satisfies request or forwards to ‘BIG’ allocator
(6) ‘BIG’ allocator of Node# 7 satisfies request or consults Global free list of segments
(7) Global Freelist of Node# 7 consults its internal caches or calls libnuma APIs…

– Mmap call to reserve memory segment of requested < size > (as in earlier
design)

– Specify ‘PREFERRED’ policy (Table 1) via call to numa_set_bind_policy API
– Prepare the allocation bitmask for binding and turn on bit for Node# 7
– Bind the reserved memory to Node# 7 with libnuma API ‘numa_to_node‐

mask_memory’ which internally invokes the ‘mbind’ system call
(8) (9)Add reserved segment into Freelist and carve out desired sized chunks

(segments/pages) and add them to slab allocator caches. In case memory is not
available in Step# 7, we borrow from pools of adjacent cores co-located in same
node

(10) Return VMA pointer of allocated memory to the requestor

Obviously one of the important considerations is also how Memory is released to
OS to meet the high demand pressures in high concurrency scenario. This is achieved
with the help of internal statistics/watermarks to track free memory available and used
in decision making to free up large segments. Remember our buffers do not otherwise
return memory to OS. At reclaim time, the selected chunks are unmapped and released
to OS. With the help of periodic memory reclaim triggered by appropriate events, our
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design is able to prevent the process footprint from bloating in production environments.
This may of course punch holes in an otherwise contiguous mapped memory arena, but
our compaction algorithms help reduce internal fragmentation.

4.4 Challenges and Unique Contributions of Our Proposal [18]

Our basic heap model overrides the C/C ++ library APIs (e.g. malloc, calloc, new) and
intercepts them to call the user wrappers that trigger our custom heap allocators. Working
with ‘libnuma’ in such an environment is bound to result in potentially undesirable
programming issues like reentrancy and stack overflow. This is because libnuma APIs
internally need to malloc/calloc temporary allocations, which triggers a recursive
behavior. Solving this requires a unique approach of suitably reworking routines like
numa_alloc_onnode(), numa_node_size64() and numa_distance().

The default NUMA policy of Linux kernel uses “STRICT” binding which is prone
to severe problems. Transparently dealing with low memory availability at actual
commit time (or “page touch”) at OS level requires applications to use “PREFERRED”
policy to spill over “non-fitting” allocations into other (remote) nodes. This is achievable
with special calls like ‘numa_set_bind_policy(0)’ [23].

Process-managed heap memory in multi-threaded environment requires more effort
for NUMA-awareness since it typically involves internally cached data structures which
are either “process-global” or “thread-private”. These structures are used to buffer the
OS-allocated segment chunks. With the concept of NUMA-aware heap, such internally
cached pools need to be “topology-sensitized”. This may include borrowing memory
from other CPU’s caches within socket boundaries (or closer nodes).

5 OS Settings and Their Adverse Effects on NUMA Systems

As mentioned earlier, the behavior during physical memory allocation at touch is heavily
dependent on the running Linux kernel flavor. With the “PREFERRED” scheme of
allocations, it is experimentally observed that the below system factors significantly
impact the %NUMA awareness (locality hit) of physical memory.

5.1 Transparent Huge Pages (or THP)

The “PREFERRED” policy (see Sect. 3.2) sometimes selects remote NUMA node
although specified node has free memory. Using advanced linux tools like ‘/proc/
< PID >/numa_maps’, ‘/proc/zoneinfo’ and ‘/proc/pagetypeinfo’, we
isolated the root cause of this behavior as due to Huge Pages feature on Linux.

The Transparent Huge Pages (THP) feature was introduced to solve performance
penalty of page fault rates and TLB accesses during virtual address translations, but
introduces the side-effect of memory fragmentation. The fragmentation is particularly
severe when requested target node has enough memory to satisfy the node binding, but
no continuous huge page range (e.g. 2 MB). In such situations, the OS tries the other
(remote) nodes, because it is cheaper than trying to defragment the free memory using
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compaction. In some cases, it may even decide to demote to 4 KB page allocations, but
that usually happens only if the huge page allocation failed on remote node and compac‐
tion also did not help. This is a highly OS-specific behavior and may trigger remote
allocations. Prior work in [24] also highlights the performance degradation in memory
accesses of THP owing to adverse effects like poor data locality and imbalance of data
distribution on NUMA systems. Based on discussions with Linux kernel team, we would
advise to disable THP on large topologies.

echo never > /sys/kernel/mm/transparent_hugepage/enabled
(as root)

5.2 Filesystem Page Cache

Linux typically uses unused memory for file system buffers. In situations when the page
file cache grows to significant proportions without periodic reclaim, this might cause a
given NUMA node to appear low on memory, when may be far from reality! The
problem we observed in the context of “PREFERRED” policy is that remote nodes were
sometimes being chosen, because the default OS behavior is to skip requested node if
most of its free memory resides within page caches.

In Linux 2.6.16 a form of local reclaim was introduced [3]. Zone reclaim begins to
do light-weight reclaim of local nodeby removing pages of unmapped page cache. By
default the system tunable (/proc/sys/vm/zone_reclaim_mode) is set to ‘0’
by Linux team for performance reasons, since it is found unwise to trigger a local reclaim
across every NUMA system. However on very large topologies with significant inter-
node distance, the parameter may be automatically activated by OS. Based on discus‐
sions with kernel team, our recommendation is to enable the local reclaim feature.

echo 1 > /proc/sys/vm/zone_reclaim_mode (as root)
Another option is to periodically free the system-wide cache, but this is expensive.
echo 3 > /proc/sys/vm/drop_caches (as root)

6 Performance and Scalability

6.1 Hardware Setup

Our hardware comprises of NUMA server with 8 sockets each of 15-core Intel Xeon
E7-8880 v2 2.50 GHz (Ivybridge-EX) processors. Each core consists of 2 hardware
threads with 32 KB L1, 256 KB L2 cache, and the cores in a socket share ~ 38 MB L3
cache. Each socket shares 2 memory controllers configured in independent mode for the
highest throughput. Each controller supports 2 Intel SMI interfaces, each SMI
supporting 2 memory channels, with up to 3 DDR3 DIMM attached on each channel.
Each channel has one 16 GB DDR3 (1600 MHz) DIMM. Each socket has 3 Intel Quick‐
Path Interconnect (QPI), each with 16 GB/s bandwidth that supports data requests and
directory-based cache coherence protocol. A remote hop is ~ 1.1–1.2x slower than a
local hop.
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6.2 Workload Scenario- I

The first workload was purely to measure raw speed of allocation requests of random
sizes (8B–130B) concurrently fired from multiple threads of user-space allocators
(Fig. 7).

Fig. 7. Scalability of NUMA-aware allocators for pure allocation workload

Our approach shows good scalability with increasing number of parallel threads
compared to some of the popular allocators like PtMalloc and TCMalloc [25]. The break-
even happens at ~ 5 threads, which is a less popular scenario in commercial DBMS
(Fig. 8).

Fig. 8. Distribution of allocation frequency per size class

6.3 Workload Scenario - II

For a real-world usecase, we ran an OLTP workload on SAP HANA with 40 users
concurrently updating a columnar table of 50 columns and 4 Million rows. Each user
updates an entire row and touches nearly 2 % of the entire dataset. We found an end-to-
end improvement of +9 % with our proposal of NUMA-aware allocators compared to
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OS default approach. The improvement may be correlated to the 1-hop latency of under‐
lying hardware. It may be noted that the default approach uses OS policy of first touch,
and hence incurs remote access overhead (Fig. 9).

Fig. 9. Response time speedup in OLTP (updates) with NUMA-aware allocations

7 Conclusion

In this paper, we demonstrated some techniques to create a scalable multi-threaded Heap
Memory Allocator optimized for NUMA architectures. Some of the earlier studies of
distributed memory systems have either used application agnostic approaches or employ
higher-level relational optimizations. None of the prior work focuses on creating a
deeper programming framework for NUMA-awareness suitable for DB kernels. In our
contribution, we use an appropriate mix of Linux library and system calls to create the
infrastructural pieces of Heap Management needed for higher layers to efficiently place
their internal data structures and data stores and also schedule their relational operator
execution threads. Our approach sustains minimal fragmentation overheads with hier‐
archical slab-based technique and helps showcase good performance scalability on large
multi-cores with respect to competitive approaches. We additionally conduct a study of
Linux kernel settings unsuitable for large NUMA.
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Abstract. The recognition that data is of big economic value and the
significant hardware achievements in low cost data storage, high-speed
networks and high performance parallel computing, foster new research
directions on large-scale knowledge discovery from big sequence data-
bases. There are many applications involving sequence databases, such as
customer shopping sequences, web clickstreams, and biological sequences.
All these applications are concerned by the big data problem. There is no
doubt that fast mining of billions of sequences is a challenge. However,
due to the non availability of big data sets, it is not possible to assess
knowledge discovery algorithms over big sequence databases. For both
privacy and security concerns, Companies do not disclose their data. In
the other hand, existing synthetic sequence generators are not up to the
big data challenge.

In this paper, first we propose a formal and scalable approach for Par-
allel Generation of Big Synthetic Sequence Databases. Based on Whit-
ney numbers, the underlying Parallel Sequence Generator (i) creates
billions of distinct sequences in parallel and (ii) ensures that injected
sequential patterns satisfy user-specified sequences’ characteristics. Sec-
ond, we report a scalability and scale-out performance study of the Paral-
lel Sequence Generator, for various sequence databases’ sizes and various
number of Sequence Generators in a shared-nothing cluster of nodes.

Keywords: Big synthetic data · Sequence database · Sequential pat-
tern · Parallel generator · Whitney numbers

1 Introduction

There are many applications involving sequence databases, namely customer shop-
ping sequences, web clickstreams, biological sequences, and sequences of events
in science and engineering. Jiawei Han, Micheline Kamber and Jian Pei define
a Sequence Database as it consists of sequences of ordered elements or events,
recorded with or without a concrete notion of time [1]. Problems addressed within
sequence databases, include mining the frequently occurring patterns [2–6], min-
ing for outliers patterns [7,8], building efficient sequence databases and indexes for
sequence data [9,10], mining compressing sequential patterns [11,12] and compar-
ing sequences for similarity [13]. Most published papers in the literature address
c© Springer International Publishing Switzerland 2016
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the Frequent Sequential Pattern Mining problem. The latter was introduced by
Agrawal and Srikant in 1995 [2] and is defined as follows: Given a database of
sequences, where each sequence consists of a list of transactions ordered by trans-
action time and each transaction is a set of items, sequential pattern mining is to
discover all sequential patterns with a user-specified minimum support. An exam-
ple of a sequential pattern is that customers typically rent video Star Wars, then
Empire Strickes Back, then Return of the Jedi. Elements of a sequential pattern
might be sets of items (i.e., itemsets), with a sequential pattern which looks as
customers typically rent video Star Wars, then the triplet Return of the Jedi, Lord
of Ring and Alien movies.

Experiences with mining big data ascertain that more data usually beats bet-
ter algorithms [14]. All pattern mining algorithms over sequence databases are
concerned by the big data challenges. Big data adds a further level of complexity
to any knowledge discovery algorithm. However, due to the non availability of
big real data sets, it is not possible to assess sequential patterns’ mining algo-
rithms over big sequence databases. For both privacy and security concerns,
companies do not disclose and share their data. It is also complex to encode real
data sets, while preserving their characteristics. On the other hand, available
synthetic sequence generators such as IBM Quest Synthetic Data Generator [15]
are not up to the big data challenge. Hence, in this paper, we propose a for-
mal and scalable approach based on Whitney numbers for Parallel Generation
of Big Synthetic Sequence Databases satisfying both user-specified sequences’
characteristics and velocity requirements.

In this paper, we make the following contributions,

– We propose a new efficient and fast approach based on Whitney numbers for
a parallel generation of big sequence databases,

– We assess by performance measurements the scalability and the scale-out of
the proposed Parallel Sequence Generator on a GRID5000 cluster of shared-
nothing nodes [16]. Performance measurements report the throughput in terms
of MBps and in terms of number of sequences created and stored per second
for various number of sequence generators (termed workers in distributed
computing) and various number of injected sequential patterns. The latter
grows linearly with the sequence database size.

The paper is organized as follows, Sect. 2 overviews existing sequence gener-
ators. Section 3 presents basic concepts of sequence databases. Section 4 details
our proposed Parallel Sequence Generator (for short PSG), precisely the require-
ments it fulfills and its computational model. Section 5 presents a thorough per-
formance study of PSG. Finally, Sect. 6 concludes the paper and presents future
research.

2 Related Work

The most known generator of sequential patterns is the IBM Quest Synthetic
Data Generator [15,17,18]. A second testbed for patterns’ mining is described
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in [19], although the testbed is not available for download. After a performance
study of distributed implementations [18] of GSP [3] and PrefixSpan [6] algo-
rithms, we investigated the source code of the IBM Quest Synthetic Data Gen-
erator. The generator reveals the shortcomings enumerated below,

1. First issue is related to the fact that the benchmark is not documented. The
original source code is no longer available through IBM web site1. Available
implementations address portability and compatibility issues.

2. Second issue is related to sequences’ generation. Indeed, regards generated
sequences, no evident correlation could be drawn from input parameters, and
particularly how do they should scale with the sequence database size. A ran-
dom process is used for generating sequences and corrupting base sequential
patterns used for populating the sequence database [15,17,18]. This process
does not guarantee that a sequential pattern repeats a number of times pro-
portional to the database size.

3. Third issue is related to capacity and velocity requirements, the IBM Quest
Synthetic Data Generator was not designed for fast generation of big sequence
databases.

Most data mining benchmarks relate to small test datasets. Many big data
benchmarks exist, but have different objectives. For instance, the TeraSort
benchmark [20] measures the time to sort 1 TB (10 billions of 100 Bytes records)
of randomly generated data. The Parallel Data Generator Framework (PDGF)
[21,22] allows parallel generation of big relational databases. The BigDataBench
[23] proposes several benchmarks specifications to model five important applica-
tion domains, including search engine, social networks, e-commerce, multimedia
data analytics and bioinformatics.

To the best of our knowledge, the Parallel Sequence Generator is the first
synthetic sequence generator addressing big data and velocity requirements. Our
contribution is then three fold (i) a computational approach based on Whitney
numbers allowing the generation of billions of data sequences, (ii) an efficient
implementation and an experimental assessment of the scalability and the scale-
out of the proposed Parallel Sequence Generator, finally (iii) an open-source
code, available for download in order to help researchers in benchmarking knowl-
edge discovery algorithms over big sequence databases [18].

3 Sequence Databases: Concepts and Primitives

Given a database of customer purchase histories, one would like to mine and
predict the behaviors of customers. A customer buying A and then B is likely to
buy C, D and E. A marketing manager can then send advertisements of products
C, D and E to clients who have bought A and then B. 〈{A}{B}{C,D,E}〉 is
termed a sequential pattern.

1 URL: http://www.research.ibm.com/labs/almaden/index.shtml#assocSynData
does not point to the benchmark homepage.

http://www.research.ibm.com/labs/almaden/index.shtml#assocSynData
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Fig. 1. Example of S-a database of sequences.

Figure 1 illustrates a sequence database S composed of four sequences, which
abstract customer-shopping sequences. The set of items in S is {1,2,3,4,5,6,7}.
The count of a sequence s, denoted by count(s), is defined as the number of
sequences that contain s. For instance for s = 〈{1}{3}{3}〉, count(s) = 2. Indeed,
s is a subsequence of both s1 and s2, denoted as s � s1 and s � s2. Inversely, s1
and s2 are supersequences of s. A sequence contributes only one to the count of a
sequential pattern, for instance count(〈{1}{1}〉) = 2. The support of a sequence
s, denoted by support(s), is defined as count(s) divided by the total number of
sequences seen. If support(s) ≥ τ , where τ is a user-supplied minimum support
threshold, then we say that s is a frequent sequential pattern. For τ = 0.75,
s′ = 〈{1}{3}{2}〉 is a frequent sequential pattern. Indeed, s′ is a subsequence of
all of s2, s3 and s4. Finally, the length of a sequence s, denoted by |s| is the sum
all its itemsets’ lengths, and a k-sequence is a sequence of length k. For instance,
s1 is a 9-sequence and 〈{1}{3}{3}〉 is a 3-sequence.

The major approaches for mining of sequential patterns [2–6] are based on the
The Apriori property. The latter states that all non empty subsets of a frequent
itemset must also be frequent, including frequent items. This property is also
denoted antimonotonicity. If a sequence is infrequent, all of its supersequences
must be infrequent, and if a sequence is frequent, all of its subsequences must
be frequent. For instance for τ = 0.75, all of 〈{1}{3}〉, 〈{1}{2}〉, 〈{3}{2}〉, are
subsequences of s′ = 〈{1}{3}{2}〉 and are frequent sequential patterns. For more
details, readers are invited to check the seminal paper on Sequential Patterns
Mining by Agrawal R. and Srikant R. [2].

4 Parallel Generation of a Sequence Database

Very early, the Database community proposed synthetic benchmarks, which han-
dle big data and variety of workloads. Our work is mainly inspired by [24], the
TPC benchmarks [25], and PDGF [21,22]. In the sequel, first, we define goals
that the proposed Parallel Sequence Generator (for short PSG) fulfills. Second,
we detail a formal method based on Whitney enumerators for the enumeration
of sequential patterns, denoted as source sequences in this paper.

4.1 Requirements

The Parallel Sequence Generator is designed so that it fulfills well known require-
ments of benchmarking [25,26], namely,
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– Relevance: PSG implements Whitney Enumerators a computational method
which efficiently enumerates in parallel distinct source sequences to be injected
in the sequence database,

– Repeatability : for multiple runs with same input parameters, PSG outputs
a sequence database with same characteristics, namely sequence database
volume, sequence size, number of sequences, average number of items per
sequence, average number of itemsets per sequence, and source sequences with
lengths and quotas equal to input parameters,

– Economy : PSG is open-source and is hardware and platform independent,
– Fairness: the generator does not overfit a particular algorithm of sequential

pattern mining, and provides directions to generate a sequence database for
testing the mining capacity of algorithms through variation of database size
and sequential patterns size.

– Performance: PSG reports metrics demonstrating its velocity for synthetic
sequence generation. Experiments are carried out in order to assess scalability
and scale-out performance of PSG.

4.2 Whitney Enumerators for the Enumeration of Source Sequences

Raissi and Pei used Whitney numbers in order to bound the number of fre-
quent sequential patterns [27]. PSG implements Whitney Enumerators a com-
putational method based on Whitney numbers which efficiently enumerates in
parallel distinct source sequences. PSG is based on the Apriori property : given
a finite set of items I, which cardinality is n; PSG generates distinct source
sequences of a given length k, to be injected in the sequence database. Next, we
show how to enumerate source sequences using Whitney enumerators.

Enumerating the k-sequences is described in the recurrence relation intro-
duced in Eq. 1. WEk stands for Whitney Enumerator of source sequences of
length k and E(

n
i

)
stands for Combination Enumerator.
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{1}, {2} × {1}, {2} = {1, 2}, {1}{1}, {1}{2}, {2}{1}, {2}{2}.

Figure 2 illustrates compositions of source sequences obtained from WE5 and
I, such that |I| = 10. Notice that each branch allows the enumeration of a
number of source sequences presented in blue. For instance, the last branch
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Fig. 2. Source sequence enumeration and count for WE5 (k = 5) and n = 10 (Color
figure online).

allows the enumeration of 105 source sequences, such that each is composed of
five singletons, while the first branch’s capacity is only 252 sequences, and each
source sequence is a single itemset which contains five items. For small values:
k = 5 and n = 10, one could enumerate 392, 002 source sequences.

Equation 2 introduced by Raissi and Pei [27] allows the count of each Whitney
number in terms of number of source sequences. Table 1 presents capacities of
Whitney numbers while varying k for |I| = 50, as well as the count of single
itemset sequences and k itemsets sequences. Notice that, for |I| = 50, WE5

allows the enumeration of more than one billion of source sequences, and WE10

enumerates more than two and half trillions of source sequences (one trillion =
1018). For higher values of k and |I|, enumerating and storing all possible source
sequences can turn into high storage costs and memory leaks. Next, we detail
an efficient enumeration procedure.

Wk =
k−1∑

i=0

(
n

k − i

)
× Wi with

⎧
⎨

⎩

n = |I|
W0 = 1
W1 = n

(2)

4.3 Efficient Enumeration of Source Sequences

Hereafter, we describe how Parallel Sequence Generator enumerates in parallel
variety of source sequences at less cost.
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Table 1. Whitney numbers’ capacities for |I| = 50.

Wk Nbr. of source sequences Nbr. of k itemsets source
sequences

Nbr. of single itemset
source sequences

W1 50 50 50

W2 3,725 2,500 1,225

W3 267,100 125,000 19,600

W4 19,128,425 6,250,000 230,300

W5 1,370,262,510 312,500,000 2,118,760

W6 98,160,302,325 15,625,000,000 15,890,700

W7 7,031,803,751,400 781,250,000,000 99,884,400

W8 503,729,624,143,775 39,062,500,000,000 536,878,650

W9 36,085,128,550,756,000 1,953,125,000,000,000 2,505,433,700

W10 2,584,990,924,265,820,000 97,656,250,000,000,000 10,272,278,170

Enumerate Source Sequences at Less Cost. We propose algorithms for
the enumeration of a Combination contents as well as for the Cross product of
Combinations. Our algorithms save a current context, which is composed of a
current combination and a current cross of combinations. The enumeration is
then performed through successive calls of next sequence method. The source
code of Whitney numbers and Whitney enumerators manipulations for source
sequences’ enumeration is available for download [18].

Figure 3 demonstrates the enumeration process. Starting with the first source
sequence of the 10th branch of WE5, which is {0}{0,1,2}{0}, the next source
sequence is obtained by shifting third combination to next value in order to
obtain source sequence {0}{0,1,2}{1}. Successive calls of next sequence method
continue so, until we reach source sequence {0}{0,1,2}{9}. The next source
sequence is obtained by reset of third combination and shift of second com-
bination to next value, in order to obtain source sequence {0}{0,1,3}{0}.
The enumeration procedure is generalized to cross products of multiple
combinations [18].

Enumerate Variety of Source Sequences. As illustrated in Fig. 2, source
sequences of same length k have different number of itemsets. The first branch
is composed of a single itemset, while the last branch is composed of k item-
sets source sequences. A depth-first traversal of the tree will enumerate source
sequences branch by branch. Within each branch, source sequences feature the
same number of itemsets and the same number of items for each itemset. For the
example illustrated in Fig. 2, the enumeration of the first 10,000 source sequences
stops at the third branch, and does not include any source sequence beyond
this branch. This might have an impact on the mining process. Thus, in order
to variate generated source sequences, we preponderate the number of source
sequences to be generated along each branch capacity of the tree. Likewise, the
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Fig. 3. Excerpt of enumerated source sequences in (a) 10th branch:
(
10
1

)× (10
3

)× (10
1

)
,

(b) 1st branch:
(
10
5

)
, (c) last branch:

(
10
1

) × (10
1

) × (10
1

) × (10
1

) × (10
1

)
, for WE5 and

I = {0, 1, 2, 3, ..., 9}.

10,000 source sequences will be generated from each of the 16 branches with
the following quotas, [6, 54, 137, 307, 137, 517, 516, 1148, 53, 307, 516, 1148, 306,
1148, 1147, 2553].

PSG allows generation of other specific compositions of source sequences,
namely,

– Source sequences with a single itemset, which are typical data sets for frequent
itemsets mining algorithms (a.k.a. market basket analysis) (see 2nd box in
Fig. 3),

– Source sequences composed of singletons, which are typical event type
sequences (see 3rd box in Fig. 3),

– Source sequences of different lengths through the use of different Whitney enu-
merators. Each Whitney enumerator has its own source of items i.e. I, so that
source sequences generated using smaller Whitney enumerators are not sub-
sequences of source sequences generated using bigger Whitney enumerators.

Emit Sequences. We vary sequences’ contents as follows: initially each source
sequence is composed of a number of itemsets in the range 1 to k itemsets and
of exactly k frequent items. All frequent items are in I. In order to mimic
real datasets, we add more itemsets and we append to each sequence ran-
dom items, which do not belong to I. Padded items are distributed among
all itemsets of the sequence. Each sequence s is finally emitted a number
of times which depicts the count(s). All of the input parameters, number of
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padded items, number of itemsets and sequence support follow a Poisson dis-
tribution. For instance, 〈{0}{0,1,2}{0}〉 is a source sequence for both following
sequences 〈{0,70,80}{180,200}{0,1,2,53,65,103}{0,1000}〉 and 〈{1003}{78,309}
{0}{407,509}{0,1,2,5000}{507,809}{0,3000}{67,89}〉.

Enumerate in Parallel. For parallel generation of distinct source sequences,
Whitney numbers are communicated to a pool of M Sequence Generators. Each
Sequence Generator has a logical identifier in the range: 0 . . .M − 1. Sequence
Generators generate simultaneously generate distinct source sequences using the
same Whitney numbers. For so, for each new branch of a Whitney Enumerator,
each Sequence Generator identified by sgj skips j source sequences. Then, each
time it processes a source sequence, it skips M sources sequences, simulating
a round robin distribution scheme [18]. Notice that this way, sequences having
the same source sequence are clustered. For declustering purpose, all Sequence
Generators may emit the same source sequence with different padding patterns.

5 Implementation and Performance Measurements

We implemented the Parallel Sequence Generator (PSG) using MapReduce
framework [28] of Apache Hadoop 2.4 YARN. The generation load is evenly dis-
tributed among all Sequence Generators. Each Sequence Generator (Mapper in
MapReduce framework terminology) is responsible for the creation of sequences
using x source sequences, such that x is equal to the number of source sequences
for injection divided by the number of Sequence Generators. For so, it creates
a single file and writes into generated sequences. Finally, the Sequence Gener-
ator emits the volume of data sequences as well as the number of generated
sequences. A Reducer aggregates summaries of generation results, it calculates
the total volume and the total number of sequences written into Hadoop Dis-
tributed File System (HDFS).

A performance study was conducted in a shared-nothing cluster of nodes to
demonstrate the scalability of the proposed Parallel Sequence Generator. The
hardware system configuration used for performance measurements are Suno
nodes located at Sophia site of french HPC platform GRID5000 [16]. Each Suno
node has 32 GB of memory, its CPUs are Intel Xeon E5520, 2.27 GHz, with 2
CPUs per node and 4 cores per CPU. All nodes are connected by a 10 Gbps
Ethernet.

The primary goal of carried-out experiments is to assess the scalability and
the scale out of PSG. We are interested in two metrics, namely (1) the Through-
put in terms of Mega Bytes per second (MBps), and (2) the Throughput in terms
of sequences per second (#Seqs/sec). We report these metrics for different exper-
iment settings, namely,

– Hadoop cluster size: the hadoop cluster is composed of one master and 2, 5
or 10 slave nodes. The Hadoop block size is set to 256 MB and the replication
factor is set to 1 in order to reduce data redundancy overhead, and determine
the maximum allowed throughput rates.
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– Number of sequence generators: each slave node sets up a number of sequence
generators, which also corresponds to the number of output data files. This
parameter denotes the degree of parallelism in sequence generation and writ-
ing to HDDs. Sequence generators run in parallel in order to increase write
throughput performances.

– Number of source sequences injected in the database: the size of the sequence
database grows linearly with the number of injected source sequences (see
Fig. 12). For experiments, a sequence is 420 bytes. This size relates to 5-
sequences type (i.e., WE5), with an average of 25 items padded to each source
sequence distributed over an average of 15 itemsets. Each source sequence
repeats in average 5 % of the number of source sequences injected.

Experiments compare PSG to TestDFSIO. The latter is a distributed I/O bench-
mark tool, part of the Hadoop distribution. Each mapper in TestDFSIO-write
workload creates a file and a 1 MB buffer and repeatedly writes the buffer into
the output file until the file size reaches a user-specified value. For instance, a
workload example of TestDFSIO could be create 10 files, such that each file is
10 GB. TestDFSIO reports average throughput per node, to be multiplied by
the cluster size in order to obtain the aggregated write throughput. We com-
pare throughput performances of PSG to TestDFSIO, in order to highlight the
sequence generation overhead.

Figure 4 presents performance measurements of PSG compared to TestDF-
SIO for a 3 nodes’ cluster. The cluster is composed of one master and 2 slave
nodes. It sets up 10 Sequence Generators, which create sequences independently
from each other. PSG creates a sequence database of over 450 GB with more
than 2 billions of sequences, it succeeds to write 1.2 millions of sequences per
second at a throughput of 287 MBps. The throughput is measured for various
number of injected source sequences in the range 1,000 .. 200,000. A maximum
throughput of 315 MBps is recorded, which results from the injection of 90,000

Fig. 4. PSG throughput performance results for a 3 nodes’ cluster for 10 sequence
generators, compared to TestDFSIO benchmark with 10 mappers.
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Fig. 5. PSG throughput performance results (MBps) for a 6 nodes’ cluster and 10, 25,
50 Sequence Generators, compared to TestDFSIO -write workload benchmark with 50
Mappers.

Fig. 6. PSG throughput performance results in terms of sequences per second for a 6
nodes’ cluster and various number of Sequence Generators.

source sequences. This corresponds to a 91 GB Sequence Database, composed of
more 400 millions of sequences.

Figures 5 and 6 present throughput performance measurements of PSG
respectively in terms of MBps and #Seqs/sec for a 6 nodes’ cluster. The clus-
ter is composed of one master and 5 slave nodes. It sets up various number
of Sequence Generators, which create sequences in parallel independently from
each other. PSG creates a sequence database of over 1.8TB with more than 8
billions of sequences, it succeeds to write 3 millions of sequences per second at
a throughput of 694 MBps. The throughput is measured for various number of
source sequences in the range 10,000 .. 400,000. For each experiment, whether
for 10, 25 or 50 Sequence Generators, the throughput increases for a number
of source sequences less than 100,000, then it is invariant, and finally slightly
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Fig. 7. PSG throughput performance results in terms of MBps for 11 nodes’ cluster and
10, 25, 50 Sequence Generators, compared to TestDFSIO -write workload benchmark
with 100 Mappers.

Fig. 8. PSG throughput performance results in terms of sequences per second for a 11
nodes’ cluster and various number of Sequence Generators.

decreases due to the saturation of HDDs of slave nodes. It reaches a maximum
value of 741.61 MBps for 50 Sequence generators and 180,000 source sequences.
This corresponds to a 365 GB Sequence Database composed of more than one
billion and half of sequences.

Figures 7 and 8 present respectively throughput performance measurements
of PSG respectively in terms of MBps and #Seqs/sec for an 11 nodes’ cluster.
The cluster is composed of one master and 10 slave nodes. It sets up various num-
bers of Sequence Generators, which create sequences in parallel independently
from each other. PSG creates a sequence database of over 4TB with more than
18 billions of sequences, it succeeds to write 5.3 millions of sequences per sec-
ond at a throughput of 1.2 GBps(1230 MBps). The throughput is measured for
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various number of injected source sequences in the range 10,000 .. 600,000. The
throughput increases for a number of source sequences less than 100,000, then it
is almost invariant, and finally slightly decreases due to the saturation of HDDs
of slave nodes. It reaches a maximum value of 1.45 GBps (1481.51 MBps) for 100
Sequence Generators and 300,000 injected source sequences.

Notice that we could not create bigger databases for HDDs’ space con-
straints. Indeed, for an 11 nodes’ cluster (one master and 10 slave nodes),
the exception message when creating a sequence database with 700,000 source
sequences is Error: org.apache.hadoop.ipc.RemoteException (java.io.IOException):

File/sequences/sequences 97.seq could only be replicated to 0 nodes instead of min-

Replication (=1). There are 10 datanode(s) running and no node(s) are excluded in

this operation.
In conclusion, the sequence generation is proved efficient, especially for big

Sequence databases. Comparisons with TestDFSIO shows that for big sequence
databases, HDFS IO operations which consist in appends to data files are much
more expensive than enumeration costs of source sequences. Figures 9 and 10

Fig. 9. Comparison of PSG Throughput (MBps) performance evaluation for various
number of hadoop data nodes.

Fig. 10. Comparison of PSG Throughput (#Seqs/sec) performance evaluation for var-
ious number of hadoop data nodes.
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Fig. 11. PSG Scale-out Tests.

Fig. 12. Average number of sequences (millions) and volume (Giga Bytes) of generated
Sequence DBs.

illustrate best performance measurements obtained for each cluster size. Figure 11
calculates the scale-out factor for the three cluster size settings, for a number of
injected source sequences limited by the generation capacity of each cluster. Com-
parisons to a 3 nodes’ cluster holds up to 200,000 injected source sequences, and
comparisons to a 6 nodes’ cluster holds up to 400,000 injected source sequences.
Pairwise comparisons of the three cluster sizes shows that the scale out is almost
ideal for big sequence databases. Indeed, n times the number of data nodes results
in n times the write throughput.
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6 Conclusions and Future Work

Starting from unavailability of synthetic big sequence databases for mining
sequential patterns. First, this paper proposes a scalable and formal approach
for Parallel Generation of Big Synthetic Sequence Databases satisfying both
user-specified sequences’ characteristics and velocity requirements. Experiments
prove that the underlying Parallel Sequence Generator (i) creates billions of dif-
ferent sequences in parallel, (ii) ensures that injected source sequences satisfy
the user requirements especially sequential pattern length characteristic. Second,
the paper reports a scalability and scale-out performance study of the Parallel
Sequence Generator, for various sequence databases’ sizes and various number
of Sequence Generators in a shared-nothing cluster of nodes.

Future work is mainly oriented towards three different directions. First, we
aim to conduct thorough performance study of GSP* and PrefixSpan* : our pro-
posed parallel implementations of GSP [3] and PrefixSpan [6] algorithms, using
big sequence databases generated using PSG. Second, we aim to propose sophis-
ticated algorithms with lessons learned from the performance studies of GSP*
and PrefixSpan*. Third, we aim to customize Parallel Sequence Generator in
order to generate datasets close to real data sets particularly for event sequences
of computer logs, where large clusters emit millions of log entries per second.

Acknowledgements. We acknowledge with thanks a VLDB travel fellowship.
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Abstract. Lightweight data compression is frequently applied in main
memory database systems to improve query performance. The data
processed by such systems is highly diverse. Moreover, there is a high
number of existing lightweight compression techniques. Therefore, choos-
ing the optimal technique for a given dataset is non-trivial. Existing
approaches are based on simple rules, which do not suffice for such a
complex decision. In contrast, our vision is a cost-based approach. How-
ever, this requires a detailed cost model, which can only be obtained from
a systematic benchmarking of many compression algorithms on many
different datasets. A näıve benchmark evaluates every algorithm under
consideration separately. This yields many redundant steps and is thus
inefficient. We propose an efficient and extensible benchmark framework
for compression techniques. Given an ensemble of algorithms, it mini-
mizes the overall run time of the evaluation. We experimentally show
that our approach outperforms the näıve approach.

Keywords: Lightweight data compression · Main memory database sys-
tems · Efficient benchmarking

1 Introduction

Nowadays, main memory-centric column-oriented database management systems
are the prevailing technology for data processing [5,7,12]. Many of these systems
reduce the amount of data they have to store and process by making use of
lossless lightweight compression [1,3]. Owing to its reduced size, compressed data
offers several advantages such as less time spent on load and store instructions,
a better utilization of the cache hierarchy and less misses in the translation look-
aside buffer. Moreover, many plan operators in database systems can be modified
to directly process compressed data, which can be faster than processing the
original data [1,16]. On the other side, compression and decompression introduce
a certain computational overhead. For that reason, it is crucial to implement
these algorithms as efficient as possible.

The data being stored and processed by in-memory column stores is as diverse
as the application domains of such systems. It is characterized by a multitude of
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properties, such as data types, value distributions – including value ranges and
the number of distinct values – and correlations between subsequent values –
e.g., multiple subsequent occurrences of the same value. All these different kinds
of data must be compressed appropriately, since databases are expected to be
generic regarding the application area. At the same time, several decades of
research in the field of lossless compression yielded a multitude of different com-
pressed formats and compression algorithms to choose from. Some of these use
completely different approaches, i.e., address different sources of redundancy in
the original data, while others just differ in minor – but perhaps decisive –
details of the memory layout of their outputs. Some are tailored to fit certain
characteristics of modern hardware, while others are kept more generic.

When integrating compression into a database management system, it is cru-
cial to know which compression technique is suited best for what data. In that
respect, suited best can have different meanings ranging from lowest latency or
highest throughput over best compression rate to optimal for further processing
by plan operator X. Not leveraging such knowledge during the integration leads
to a suboptimal improvement of the database performance, in the best case. It
might, however, even cause a degradation of the performance, since most com-
pression techniques increase the size of the data if it does not exhibit appropriate
characteristics.

In the literature, several approaches exist attempting to identify a good com-
pression technique for some given data using rule-based strategies. One example
of these is the decision tree provided by Abadi et al. in [1]. However, rule-based
approaches are too coarse-grained and can hardly capture all imaginable data
characteristics. In contrast, we believe that a cost-based approach should be used
instead. For this, an underlying cost model is required, which must be obtained
from a systematic and exhaustive benchmarking and evaluation of numerous
compression algorithms on multitudes of different original data and on different
hardware. This systematic benchmarking is the scope of this paper. Thus, our
contribution is a benchmark framework for data compression techniques with
the following key features:

– It minimizes the overall evaluation run time for an ensemble of algorithms by
identifying and eliminating redundant steps and making use of today’s large
main memories.

– It efficiently verifies the correctness of the results of the evaluated algorithms.
– It is highly extensible; in particular, it allows the integration of third-party

compression algorithms and data generators, e.g., via a wrapper.

The rest of this paper is organized as follows: In the next section, we give an
overview of existing lightweight compression techniques and state more precisely
which classes of algorithms are relevant to our benchmarking. After that, Sect. 3
provides a high-level description of our benchmark framework. Section 4 discusses
the execution of compression algorithms in detail. Our experimental results are
presented in Sect. 5. We discuss related work in Sect. 6. Finally, we conclude our
paper in Sect. 7.
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2 Compression Techniques

In the context of database-oriented data compression, there are three classes of
algorithms relevant to our benchmark framework. The first two – compression
and decompression – are discussed in Sect. 2.1. The third one – transformation
– is discussed in Sect. 2.2. We only consider lossless techniques. Furthermore, we
only investigate 32-bit integers as the data type of the uncompressed data at
the current status. However, this limitation is not too strict, since integers can
be obtained from values of any data type by applying dictionary coding [1,11],
first. Our framework itself is generic in terms of data types.

2.1 Compression and Decompression

The general idea of compression is to represent some given original data in
another format in which the data has a smaller size. Thereby, the information
necessary to re-obtain the original data must be preserved, in order to allow a
lossless decompression. There are two classes of compression techniques: heavy-
weight and lightweight. Heavyweight techniques, such as Huffman encoding [6],
arithmetic coding [17], or LZW [10] compress the given data close to its entropy.
However, they require a lot of computation and are, hence, rather suited for disk-
centric DBMS. For main memory-centric systems, there are lightweight compres-
sion techniques which require much less computation. As a consequence, they
achieve much higher throughputs, while still yielding good compression rates.

The basic types of lightweight compression are dictionary coding (DICT)
[1,11,18], delta coding (DELTA) [9,13], frame-of-reference (FOR) [4,18], null
suppression (NS) [1,13], and run-length encoding (RLE) [1,13]. DICT maps
each distinct value to a unique key. DELTA and FOR represent each value as
the difference to its predecessor or a certain reference value, respectively. The
aim of these three techniques is to obtain a sequence of small integers from the
original data. After that, a scheme from the family of NS is typically applied
to achieve the actual compression. NS eliminates leading zeros in small integers.
RLE compresses uninterrupted sequences of occurrences of the same value, so-
called runs, by representing them by just one occurrence followed by the length.

Recent research in the field of lightweight compression has especially investi-
gated the efficient implementation of these classic schemes on modern hardware.
For instance, Zukowski et al. [18] introduced the paradigm of patched coding,
which especially aims at the exploitation of pipelining in modern CPUs. Another
promising direction is the vectorization of compression techniques by using SIMD
instruction set extensions such as SSE and AVX. Numerous vectorized techniques
have been proposed in recent years, e.g., in [9,14,15].

Besides compression and decompression algorithms for different compressed
formats, we explicitly consider different variants of the compression to and
decompression from a single compressed format. Such variants exist at both,
the algorithmic and the implementation level. Two implementations of the same
compression algorithm could, e.g., differ in whether they use SIMD extensions
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or not. We show an example of this case in Sect. 5. Furthermore, when compos-
ing two distinct compression algorithms, e.g., DELTA followed by NS, there are
several variants regarding the degree of integration. Our benchmark framework
especially optimizes the comparison of different variants of one algorithm.

2.2 Transformation

Beyond compression and decompression, we are also concerned with a third class
of algorithms: transformation, which we recently introduced in [2]. A transforma-
tion is a lossless change of the (compressed) format some data is represented in.
It expects data of a certain source format and outputs the representation of that
data in its destination format. Thus, transformation is a generalization of com-
pression and decompression. Henceforth, we use the term transformation to refer
to those transformations which are neither a compression nor a decompression,
i.e., that do not involve uncompressed data as their input or output.

There are two possible ways to transform some data represented in a com-
pressed format A to a compressed format B. A näıve approach, which we call
indirect transformation, first applies the decompression algorithm of its source
format to its entire compressed input data and materializes the result in main
memory. After that, it uses the compression algorithm of its destination for-
mat. While indirect transformations can easily be implemented for arbitrary
pairs of a source and a destination format, they are very inefficient due to their
many accesses to main memory. In contrast, there are direct transformation tech-
niques which do not materialize any intermediate data in main memory. Instead,
intermediate data stays in CPU registers or at worst in the L1 cache. In gen-
eral, direct transformations can be implemented by interleaving the code of the
decompression of the source format with the compression of the destination for-
mat. Thereby, the intermediate store and load instructions are omitted. In many
cases, even more optimizations are possible, which we described in detail in [2]
for some direct transformation techniques. In [2] we also experimentally showed
that direct transformations outperform their indirect counterparts in most cases.

Our benchmark framework supports the evaluation of transformation algo-
rithms and makes use of them, in order to minimize the overall evaluation run
time. How this is done is described in detail in Sect. 4.

3 Framework Overview

In this section, we provide a high-level view of our benchmark framework1.
Section 3.1 describes the general workflow of the framework. After that, Sect. 3.2
explicitly explains our design principles.

1 The source code of our framework can be downloaded at https://wwwdb.inf.
tu-dresden.de/team/staff/patrick-damme-msc/.

https://wwwdb.inf.tu-dresden.de/team/staff/patrick-damme-msc/
https://wwwdb.inf.tu-dresden.de/team/staff/patrick-damme-msc/
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3.1 General Workflow

The general workflow of our benchmark framework is shown in Fig. 1. The appli-
cations performing the individual steps are invoked by a script. In the following,
we briefly present each step.

Benchmark Specification. Before the framework can start, the user needs to spec-
ify a benchmark. She decides which algorithms shall be evaluated and subdivides
these into several, possibly overlapping sets. The algorithms in one set will be
evaluated on the same data. For each set of algorithms, the user specifies the
data characteristics by choosing (1) a data generator, (2) one data property to be
varied, including the distinct values to be assigned to it, and (3) the configura-
tion of the remaining, fixed data properties. For instance, the user could specify
to generate 100M values using generator simpleGen, whereby the values follow
a uniform distribution over the interval [28, 216 − 1], while the data consists of
runs, whose lengths follow a normal distribution with a standard deviation of 5
and a mean that is varied from 20 to 200 in steps of 10. Varying a data property
allows to investigate the influence of that property on the performance of the
algorithms. If the user wants to vary more than one data property or she wants
one data property to be varied in conjunction with multiple configurations of
fixed properties, then she must provide multiple specifications of the input data
for that set of algorithms, since only one property can be varied at a time. The
specification of the benchmark is passed to the framework as a file with a very
simple text-based format, an example of which is presented in Fig. 2.

Parsing. The first step of the framework is parsing the benchmark specification.
After that, it knows which algorithms the user wants to evaluate on what data.

Fig. 1. An overview of our benchmark framework.

Fig. 2. Example benchmark specification using our minimalistic specification language.
One benchmark may contain several of such pairs of data and algorithm specifications.
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Algorithm Execution. This is the core step of the framework. It is invoked once
for each specified pair of a set of algorithms and a configuration of data proper-
ties. It iterates over all values to be assigned to the varied data property. In each
iteration, the data is generated using the specified generator parameterized with
the specified data properties. After that, the specified algorithms are run on the
generated data. The framework also checks the output buffers of the algorithms
for correctness. The approach the evaluation follows is crucial for its efficiency.
We describe a näıve as well as our sophisticated approach in detail in Sects. 4.1
and 4.2, respectively. Since performance is crucial in this step, it is implemented
in C++. The output is a set of CSV files. Each of these contains some meta data
regarding the evaluation and a table containing only actual measurements, i.e.,
no derived results. For instance, for all algorithms we measure their run time
and for each format, we measure the size of the data in that format.

Result Enrichment. In this step, the measured results output by the previous
step are enriched with derived columns. We differentiate between two types of
enrichment. The first one provides additional representations of the measure-
ments for a single algorithm or compressed format. Examples include the exe-
cution speed of all algorithms or compression rates for all formats. The second
kind of enrichment is concerned with the relation between the measurements of
different algorithms or formats. These could, for instance, be speed ups of one
algorithm compared to another one. Separating the result enrichment from the
algorithm execution was an explicit decision. That way we can easily calculate
new derived results from existing measurements without having to re-run the
evaluation at a later point in time as a part of the framework’s workflow.

Result Analysis. After the benchmark framework is done, the collected results
can be analyzed. Our vision is the creation of a cost model for the investigated
compression, decompression, and transformation algorithms. The analysis could,
however, also simply be the generation of diagrams visualizing the results.

3.2 Design Principles

When designing our benchmark framework, we tried to adhere to three major
design principles:

Simplicity. Our framework uses a simple and yet expressive language to specify
a benchmark. Instead of describing it in detail, we just provide an example
in Fig. 2. Moreover, the steps of the framework are easily repeatable. Once a
benchmark has been specified, it can be run arbitrarily often, e.g., on different
hardware.

Efficiency. The framework minimizes the overall run time of the evaluation.
Our main focus is on the avoidance of redundant steps during the algorithm
execution. To achieve this, we utilize today’s large main memories by keeping
outputs instead of recomputing them. Details are provided in Sect. 4.
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Extensibility. The framework can be extended at several crucial points. In par-
ticular, it allows the integration of third-party compression, decompression and
transformation algorithms. The framework defines a common interface for these.
To use an existing algorithm with our framework, the algorithm must implement
that interface. Alternatively, a wrapper can be provided which translates our
interface to that of the third-party algorithm. In fact, we implemented a wrap-
per for the compression and decompression algorithms of the FastPFor library by
Lemire et al. [8]. In a similar way, third-party data generators can be integrated.
One particular extension could be a data generator which does not produce
synthetic data, but provides the system with data from a real world dataset.

4 Efficient Execution of Compression Techniques

Since it is the most critical step for the evaluation efficiency, the algorithm exe-
cution from Sect. 3.1 is explained in detail here. Its input is a specification of the
data properties along with a set A of algorithms to be evaluated on that data.
We assume that (1) the original data has a non-trivial size, e.g., several hundreds
of megabytes, and (2) the value of one data property is varied within a range
of a non-negligible cardinality, e.g., several hundreds or thousands of different
values. Otherwise, the evaluation would not take much time and therefore not
offer much potential for optimization.

When applying a compression or transformation algorithm to some data, it
must be ensured that a sufficiently large output buffer was allocated to prevent
buffer overflows. However, in general, it is impossible to know the exact size
of the output beforehand. Thus, a pessimistic estimation of the result size is
required. If nothing about the characteristics of the original data is known, such
an estimation can only be based on the number of original values. Unfortunately,
for most compressed formats, the size of the data increases, in the worst case. For
instance, data compressed with RLE is twice as large as the uncompressed data,
if it does not contain any run of a length greater than one. As a consequence,
the system could end up allocating to much memory. While this might be a
problem in a DBMS, we can circumvent it in our framework, since we know
the properties of the original data from the user’s specifications. Our estimation
uses this information to find a tighter fit for the actual result size, while never
underestimating it. Note, that this information is not made available to the
algorithms under investigation, since this could be considered unfair.

During the evaluation, we also check the result of each algorithm for cor-
rectness. Each result is compared to the original data, which might require a
decompression, first. Moreover, we place some random bytes after the end of
each output buffer, in order to be able to detect buffer overflows. Note that we
assume that all algorithms have been designed, implemented, and tested care-
fully before the benchmark. Hence, the purpose of the checks is only the detection
of errors, not the generation of detailed information for debugging.

While a certain overhead for the evaluation cannot be avoided, different eval-
uation approaches differ in the implied amount of overhead. In the following, we
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Table 1. The notations used in this section.

Symbol Meaning

S, D, X, Y ; U arbitrary formats; the uncompressed format

O; OX the original data; the representation of O in the format X

A; A an algorithm; the set of all algorithms specified by the user

describe a näıve evaluation approach in Sect. 4.1. After that, we present our
sophisticated approach in Sect. 4.2. Finally, we compare the two of them in
Sect. 4.3. Table 1 presents the notations used in those sections. As a running
example, we assume the user wants to benchmark two variants of the com-
pression of RLE (RleSeq-Co., RleSimd-Co.), the decompression of a dictionary
scheme (Dict-De.) as well as the transformation from the format of 4-Wise Null
Suppression [14] to that of 4-Gamma Coding [14] and vice versa (4Ns-2-4G,
4G-2-4Ns).

4.1 A Näıve Evaluation Approach

When conducting the benchmark näıvely, every algorithm is evaluated in isola-
tion, i.e., as if it was the only algorithm to be investigated. For each algorithm
A in A with source format S and destination format D, the following steps have
to be performed for every value to be assigned to the varied data property:

1. Generate the original data OU using the specified data generator and data
characteristics, including the current value of the varied data characteristic.

2. If S �= U : Obtain OS by applying a compression algorithm for S to OU .
3. Apply A to OS . Let the output of A be RD.
4. If D �= U : Obtain RU by applying a decompression algorithm for D to RD.
5. Compare RU and OU byte by byte to check whether all involved algorithms

worked correctly.

Figure 3 illustrates these steps for the example A given above. This procedure
is very simple and thus easy to implement. However, it is very inefficient in
general, since it implies multiple invocations of the same algorithms on the same

Fig. 3. The steps of a näıve evaluation strategy.
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data. In our example, the decompression of RLE is applied twice and the data
generation is done five times using the same properties.

4.2 Our Sophisticated Evaluation Approach

The basic idea of our sophisticated approach is the avoidance of redundant steps
in the evaluation. That is, no algorithm is invoked twice with the same input.
This holds for the algorithms and for the data generation. The key to this is
keeping the result buffers of all algorithms, as long as they are needed by another
algorithm being executed later. These are the high-level steps of our approach:

1. Find out which additional algorithms are needed for preparations and checks.
2. Determine a valid execution order of the algorithms.
3. Run the algorithms one by one and take the measurements.

Step 3 is re-executed for each value to be assigned to the varied data property,
step 2 is only re-run if otherwise the memory consumption would be too high
and step 1 is done only once in advance for A. In the following, we explain each
of these steps in detail. Figure 4 illustrates them for the example given above.

Finding Required Additions for Preparations and Checks. For this step,
we formalize the benchmark as a directed graph. The vertices of that graph rep-
resent formats, while an edge (X,Y ) represents an algorithm with source format
X and destination format Y . Since we explicitly consider different variants of a
certain algorithm, multiple edges between two nodes are allowed.

First, we build a graph representing the user’s benchmark. For each algorithm
A in A with source format S and destination format D, we add the two nodes
S and D as well as an edge (S,D) to the graph. That is, we initialize the graph
such that it contains only the algorithms in A as well as the formats involved in
them. If the uncompressed format is not already included as a node, we explicitly
add it. The result of this step for our example A is shown in Fig. 4 (a).

Fig. 4. The steps of our sophisticated evaluation strategy.
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Next, we ensure that the source format of each algorithm A in A can actually
be reached from the uncompressed format by a sequence of transformations. This
is important, since otherwise the input data for A might not be available. To
achieve this, we iterate the following two steps until all nodes are reachable (see
Fig. 4 (b) for a possible resulting graph for our example A):

1. Identify an unreachable node X. If the graph contains a source, i.e., a node
without ingoing edges, we select this one. If there are no sources, there could
still be nodes on cycles unreachable from the node of the uncompressed for-
mat. To find these, we perform a cycle-aware depth-first search. If the search
does not find all nodes, we randomly pick one of the nodes not found.

2. Make X reachable. For doing so, there could be multiple possibilities. For
simplicity, we always connect X by adding a compression from U to X.2

Since we also want to check the algorithms in A for correctness, we need to
decompress the representation of the data in each involved format in order to
be able to compare it to the original data. Consequently, for each node in the
graph we add an edge to the node of the uncompressed format, if there is not
already one. The result of this step for our example A is depicted in Fig. 4 (c).
We denote the set of algorithms resulting from this step by A+.

Determining the Execution Order. After it is clear which additional algo-
rithms must be performed, the second step is to determine the order in which
the algorithms shall be applied. A valid execution order must fulfil two require-
ments: (1) it must contain each algorithm in A+ exactly once, and (2) before
an algorithm with a source format X other than the uncompressed format is
applied, an algorithm with destination format X must have been applied. The
latter condition ensures that the appropriate input data is available for each
algorithm, whereby in the beginning, only the uncompressed data is present.

One strategy to obtain a valid order is the following: First, all compressions in
A+ are executed. Second, all transformations are run. Finally, all decompressions
are applied.3 One possible outcome for our example A is shown in Fig. 4 (d). For
general A+, this strategy requires a lot of main memory, since the compressed
buffers of each format allocated in the first phase must be kept in memory until
after the respective decompression in the third phase. Thus it is obvious that –
while it does not affect the run time – the execution order is decisive for the

2 Note that, alternatively, a transformation from some already reachable node to X
could be added. This could be especially useful, since transformations are faster than
compressions in many cases. However, finding the fastest way to make X reachable
would require a cost model for the algorithms, which can only be available after the
systematic benchmarking.

3 The compressions can be executed in an arbitrary order. The same applies to the
decompressions. However, the transformations cannot be applied in an arbitrary
order in general, since a transformation could require a source format that is not
present after all compressions in A+ have been executed, as it is the case for 4G-2-
4Ns in our example.
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maximum memory requirement of the evaluation. There are simple memory-
efficient solutions for certain special cases. For instance, if A+ contains only
compressions and decompressions, we simply determine the order the following
way: We process the compressed formats involved in A+ one by one. For each
compressed format X, we first execute all compressions to X in A+, then we
perform all decompressions from X in A+. That way, there is no point in time
when OX and OY are both in memory, for any compressed formats X and Y ,
with X �= Y . If A+ also contains transformations, finding an optimal order – or
a sufficiently good order with respect to some upper bound for the maximum
memory consumption – is non-trivial and might itself take considerable time.
However, our framework can easily be extended at that point by implementing
an appropriate order strategy.

Evaluating the Algorithms. When the order of the algorithms is fixed, the
actual evaluation begins. In this step, two auxiliary data structures are main-
tained: (1) a map m mapping each format X to a buffer containing OX , and
(2) a set of reference counters, one for each format involved in A+. Initially, m
is empty and for each format X involved in A+, the reference counter of X is
the number of algorithms in A+ with source format X plus the number of those
with destination format X. Thus, the reference counter of X is the number of
times, OX is needed either as input data or for a comparison. In the beginning,
a buffer for the original data is allocated. Then the original data is generated
according to the user’s specifications and put into m with the key U .

Then, the algorithms are executed. A loop iterates over all A in A+ with
source format S and destination format D using the order determined in the
previous step and does the following:

1. A buffer b that fits OD is allocated.
2. A is executed on OS , which is looked up in m. Note that OS is always available

if the execution order is valid.
3. It is checked, whether m already contains a buffer for D.

(a) If this is not the case, i.e., if A is the first algorithm producing a copy of
OD, then b is put in m with key D.

(b) Otherwise, i.e., if there is already a copy of OD, the content of b is com-
pared to that copy byte by byte. If they are not the same, this means an
error at some point. After the comparison, b is released.

4. The reference counters of both, S and D are decremented. If any of them
reaches 0, i.e., if no algorithm executing later will need them any more, then
the corresponding buffer is fetched from m and released to free memory.

This procedure guarantees that each required buffer is allocated as late as
possible and released as early as possible. Note that all checks are covered by step
3b. If D is a compressed format, the check is performed in the compressed space.
If D is the uncompressed format, it is not possible that step 3a is executed. This
is due to the fact that OU is in m right from the beginning onwards. It might be
released before the end of the evaluation, but not before the last decompression,
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otherwise the reference counter for U cannot become 0. Thus, a decompression
is always followed by a check with the uncompressed data.

4.3 Comparison of the Two Approaches

Our sophisticated approach avoids redundant executions of algorithms at several
points. In particular, these are:

– The näıve approach generates the original data anew for each algorithm in A.
Our approach generates it only once for the entire ensemble of algorithms.

– If multiple algorithms in A share the same compressed source format X, then
the näıve approach performs a compression to X for each of these, while our
approach performs it just once. If some compression to X is already included
in A, our approach causes no overhead for the preparation regarding X.

– If several algorithms in A share the same compressed destination format Y ,
then the näıve approach executes a decompression from Y for each of these,
whereas our approach runs it just once. Again, if this decompression is already
part of A, our approach causes no overhead.

– The näıve approach performs all checks in the uncompressed space, i.e., com-
pares large buffers. In contrast, our approach does as many checks as possible
in the compressed space, i.e., compares smaller compressed buffers.

To summarize these points, our approach is especially well-suited if A con-
tains many algorithms with shared source and/or destination formats. This is,
for instance, the case when different variants of the same algorithm are eval-
uated. Even if none of the algorithms in A have any formats in common, our
approach can still save the time for the redundant data generation. If A contains
only one algorithm, then both approaches do exactly the same. We investigate
the quantitative differences between the two approaches in the next section.

5 Experimental Evaluation

We implemented our framework as well as several compression, decompression,
and transformation algorithms in C++ and compiled them with g++ 4.8 using
the optimization flag -O3. Our experiments are conducted on a machine equipped
with an Intel Core i7-4710MQ CPU at 2.5 GHz and 16 GB of RAM. Section 5.1
focuses on the comparison of the näıve and our sophisticated evaluation app-
roach. After that, Sect. 5.2 reports some results output by our framework.

5.1 Näıve Approach vs. Our Sophisticated Approach

We compare the näıve approach as described in Sect. 4.1 (N) to our sophis-
ticated approach as described in Sect. 4.2 (S). Regarding the execution order
in S, we use the second idea described in Sect. 4.2 whenever possible and the
first idea, otherwise. Additionally, we investigate a variant of the näıve approach
that generates the original data only once for the ensemble of algorithms (N+),
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Table 2. The example benchmarks used in this section. C, D, and T stand for com-
pression, decompression, and transformation algorithms, respectively.

Benchmark Varied property #variations Algorithms

B1 avg. run length 1.000 C: RleSeq, RleSimd

B2 max. bit width 24 C: 4Ns, 4G, Dict; D: 4Ns, 4G, Dict

B3 avg. run length 200 C: RleSeq, RleSimd; D: Dict;

T: Rle-2-Dict, 4Ns-2-4G, 4G-2-4Ns

B4 max. bit width 24 C: 4G; D: Dict; T: 4Ns-2-Rle

B5 avg. run length 1.000 C: RleSimd

since this is an obvious and easy-to-implement improvement of N . We define five
different example benchmarks (B1 to B5), representing different cases of sets of
algorithms. Their specifications are summarized in Table 2. We consider the com-
pression schemes 4-Wise NS (4Ns) [14], 4-Gamma (4G) [14], dictionary coding
(Dict), a sequential and our vectorized variant of RLE (RleSeq and RleSimd)
as well as transformations between these. The original data consists of 125M
uncompressed 32-bit integers, i.e., 500 MB for each benchmark. We ran each of
the three evaluation approaches for each of the five example benchmarks.

Figure 5 (a) presents the overall run times of the benchmarks as well as the
time spent on the specified algorithms, the data generation, and the remaining
overhead. Naturally, the execution of the algorithms specified in the benchmark
takes equally much time, independent of the evaluation approach. N+ and S need
the same time for the data generation, since they generate it only once for the
entire ensemble per value of the varied data property. In contrast, N re-generates
the data for each algorithm, which is its major inefficiency. Due to that, it is never
faster than any of the other two. The remaining overhead, i.e., preparations,
decompressions added by the framework, and checks, is subject to the approach
and the ensemble of algorithms. When A contains many algorithms with formats
they have in common (B1 to B3), S can eliminate the redundant steps and thus
outperforms the other two approaches. These cases are especially relevant to us.
The more algorithms with formats they have in common A contains, respectively
the longer these take, the higher the speed up of S. In B4, the specified algorithms
have no compressed formats in common. Additionally, a compressed format is
only used as the input of a transformation in A, namely 4Ns. In this special
case, S is slightly slower than N+, because S also performs a check for 4Ns,
which N+ does not. In all other cases, S is not slower than any of the other two
approaches. If only one algorithm is evaluated (B5), all three approaches require
the same amount of time, since they do exactly the same then.

Figure 5 (b) reports the maximum memory consumption of each of the
approaches during each of the benchmarks. It can be seen that the speed up
of S in B1 and B3 is bought at the cost of a higher memory demand. However,
in B2, S outperforms N and N+ without requiring more memory. This is due
to the execution order used by S in B2. Since A contains only one compression
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Fig. 5. A comparison of the three evaluation approaches for the different example
benchmarks: (a) run times, subdivided into the time consumed by the specified algo-
rithms (bottom), the data generation, and the remaining overhead (top), (b) maximum
memory consumptions.

and one decompression algorithm for some formats, S does not need to keep the
compressed buffers of any format longer than N and N+. However, in certain
cases (B4) S requires more memory without being faster.

5.2 Example Benchmark

Independent from the evaluation approach, our framework gives us insights into
the performance of the investigated algorithms. To show just one example of the
outputs of our framework, we choose B3 from the previous section. In B3, the
data was generated such that it consists of runs. The individual run lengths were
chosen uniformly from the interval [x − 5, x + 5] whereby x was varied from 6
to 404 in steps of 2. The run values are uniformly distributed within the inter-
val [0, 255]. In order not to overload the diagrams, we limit the presentation to
our two variants of the compression of RLE (RleSeq and RleSimd) as well as
the transformations 4Ns-2-4G and 4G-2-4Ns, respectively their involved formats.
Figure 6 (a) reports the speeds of the algorithms. It can be seen that the speeds
of RleSeq and RleSimd are subject to the run length, while those of the trans-
formations between 4Ns and 4G are not. Furthermore, the vectorized algorithm
RleSimd outperforms the sequential one for all run lengths. Figure 6 (b) presents
the achieved compression rates of the formats. As expected, the compression rate
of RLE decreases, i.e., gets better, as the run length increases. Interestingly, the
compression rate of the format of 4-Gamma [14] is also slightly better for longer
runs. This is due to the fact that 4G uses a shared bit width for four values at
a time. With longer runs, there are more blocks consisting of four equal values,
which have the same bit width, and thus waste less bits.
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Fig. 6. The processing speeds in million integers per second (mis) (a) and compression
rates (b) of some of the algorithms and formats included in B3.

6 Related Work

While we intend to base the decision for a compression technique on a cost model
created from the output of our framework, there already exist other approaches
to identify an optimal technique in the literature.

Abadi et al. [1] integrate several compression techniques into the column-
oriented DBMS C-Store. Their aim is to improve the query performance by
compressing every column appropriately. From their experiments, they manually
derive a decision tree, which is based on certain data characteristics and on the
access patterns of a column. However, they consider only a small number of
compression schemes. We intend to consider a high number of techniques and
automatically create a cost model.

Another interesting approach was proposed by Paradies et al. [11]. They
intend to decrease the space requirement of the column-oriented SAP BW Accel-
erator. Being committed to dictionary coding, their goal is not to decide how,
but what to compress. They observe that correlated columns can be stored more
efficiently if their corresponding values are coded in pairs. To identify the most
promising pairs of correlated columns, they propose an efficient algorithm, which
employs sampling and pruning and is aware of additional compression techniques
already applied to the data.

7 Conclusions and Future Work

We described our highly extensible benchmark framework for compression,
decompression, and transformation algorithms. Based on a benchmark speci-
fication by a user, it generates synthetic data with certain characteristics and
automatically runs the specified algorithms on it. We proposed a highly efficient
evaluation approach, which is based on the elimination of redundant steps during
the benchmark execution and thus minimizes the overall benchmark run time.
Our experiments proved the superiority of our approach over a näıve approach.

Our ultimate research goal is to employ lightweight compression for the inter-
mediate results in an in-memory DBMS and to make compression subject to
query optimization. We intend to implement compression, decompression, and
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transformation as plan operators. Like for any other operator, the query opti-
mizer must be able to estimate their costs (additionally, it needs to know, how
efficient other plan operators can process the compressed data of a certain for-
mat). Simply knowing the best compression scheme for a given dataset does not
suffice in our case, since we will need to know the overall costs of multiple alterna-
tive query executions plans, each of which might contain compression operators
at several points. Hence, we need a cost model for compression techniques. To
obtain this cost model, we need to benchmark a high number of algorithms on
many different datasets in a structured and highly efficient way. Our framework
enables us to do precisely that. Besides the execution of a single compression
algorithm, we also intend to consider compositions of such algorithms as well as
direct transformations between two formats. Both of these further increase the
size of the benchmark space and thus stress the importance of our framework.

Acknowledgments. This work was funded by the German Research Foundation
(DFG) in the context of the project “Lightweight Compression Techniques for the
Optimization of Complex Database Queries” (LE-1416/26-1).
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Abstract. Developed by the Transaction Processing Performance Council, the
TPC Express Benchmark™ HS (TPCx-HS) is the industry’s first standard for
benchmarking big data systems. It is designed to provide an objective measure
of hardware, operating system and commercial Apache Hadoop File System API
compatible software distributions, and to provide the industry with verifiable
performance, price-performance and availability metrics [1, 2]. It can be used to
compare a broad range of system topologies and implementation methodologies
of big data systems in a technically rigorous and directly comparable and
vendor-neutral manner. The modeled application is simple and the results are
highly relevant to hardware and software dealing with Big Data systems in
general. The data generation is derived from TeraGen [3] which uses uniform
distribution of data. In this paper the authors propose normal distribution
(Gaussian distribution) which may be more representative of real life datasets.
The modified TeraGen and complete changes required to the TPCx-HS kit are
included as part of this paper.

Keywords: TPC � Big data � Industry standard � Benchmark

1 TPCx-HS Current State

As Big Data technologies like Hadoop have become an integral part of enterprise IT
ecosystem across all major industry verticals, industry standard benchmarks that can
fairly compare technologies and products are critical [4]. Big Data was identified as
critical area for benchmarking at conferences such as TPCTC 2013 [5]. Keep this in
mind the Transaction Processing Performance Council (TPC) developed TPC Express
Benchmark™HS (TPCx-HS) that provides an objective measure of hardware, operating
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system and commercial Apache Hadoop File System API compatible software distri-
butions. TPCx-HS provides the industry with verifiable performance, price-performance
and availability metrics. The benchmark models a continuous system availability of 24 h
a day, 7 days a week [1, 6, 7].

Even though the modeled application is simple, the results are highly relevant to
hardware and software dealing with Big Data systems in general. The TPCx-HS
stresses both hardware and software including Hadoop runtime, Hadoop File Sys-
tem API compatible systems and MapReduce layers. This workload can be used to
asses a broad range of system topologies and implementation of Hadoop clusters. The
TPCx-HS can be used to assess a broad range of system topologies and implementation
methodologies in a technically rigorous and directly comparable, in a vendor-neutral
manner [4–6].

TPCx-HS workload is based on TeraSort [1] designed to evaluate the sorting
performance of a system-under-test (SUT) [2]. This is highly relevant for every big data
system because sorting is a basic operation required in many high level abstractions
like ordering, grouping, and joining. The dataset of TPCx-HS consists of records of
100 Byte length where the first 10 Bytes of each record is the sorting key. The keys are
distributed uniformly and randomly over the key space. Because of the large key space
(2^80 possible keys), duplicate keys are very unlikely and the key space is sparsely
populated. In most real world data sets keys are either of sequential type indexing the
row of a table or they are referencing other tuples. In both cases, keys are almost never
uniformly distributed over the key space. Depending on the data set properties, keys are
dense in some areas (e.g., a sequence with some missing keys) and sparse in others or
some keys occur more often than others (e.g., in a purchase table one product ID will
be bought more frequently than others). The underlying system often is not aware of
the nature of data, but its properties like ordering, density, sparsity, and duplication are
important to perform efficient sorting.

2 Extending TPCx-HS

TPCx-HS uses 100 Byte records, where the first 10 Bytes are the keys on which the
data is sorted and the remaining 90 Bytes are random payload. TPCx-HS has two
implementations –for MapReduce 1 (MR1) and for MapReduce 2 (MR2). They differ
in the way random numbers are generated and in the key layout.

2.1 MR1 Implementation

The MR1 version uses a 64 Bit linear congruential generator (LCG) based random
number generator. To generate each key, three random numbers are drawn. Each 64 Bit
random number is split into four bytes. The last random number only populates two
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bytes, resulting in a total of 10 bytes per key. During the split the byte value is mapped
to the range of the 95 printable ASCII characters. Because of this reduction the total
number of distinct keys is only 1095 ≅ 266.

2.2 MR2 Implementation

The MR2 version uses a 128 Bit LCG random number generator. To generate a key, a
single 128 Bit random number is drawn. From that 128 Bit random number the highest
80 Bits are used for the key. Unlike the MR1 version, the keys remain in the binary
format and cover the whole 280 key range.

Both versions split the random number sequence based on the current mapper row
for parallelization. The sequence is pre-split and the pre-calculated seeds for these splits
are stored inside TPCx-HS’ random number generator. This splitting schema only
works if the same amount of random numbers is generated for each row. The MR1
version requires exactly three 64 Bit random numbers and the MR2 version exactly one
128 Bit random number to generate a key.

2.3 Proposed Changes

Main change proposed is the key distribution from uniform distribution to normal
distribution (Gaussian distribution). The normal distribution is typically used to
describe independent random processes such as growth, income, and measurement
errors. A typical example for a uniformly distributed random event is a single fair roll
of a die, each side of the die has the same probability and, thus, the results will be
uniformly distributed. However, the probability distribution of the sum of multiple rolls
converges to a normal distribution. As few natural observations consist of a single
random event but rather of a process of random events, the normal distribution is more
frequently found than a uniform distribution in real and is the most important distri-
bution in statistics1.

In order to change the key distribution in TeraGen, an interface was introduced that
enables plugging in and parametrizing different ways of generating the key. This was
done in the following classes and functions, HsGen.SortGenMapper.addKey()
in the MR1 version and HsGen.SortGenMapper.map() and GenSort.
GenerateRe-cord() in the MR2 version.

The code of the existing uniform key-generation implementation was copied into a
separate plugin. The uniform key generation plugin is used as default, if no other key
generation strategy is specified. Additional changes were made to enable the specifi-
cation and configuration of the key generation strategy via command line. An example

1 Cf., http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc51.htm.
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will be given below. Besides the existing default implementation for uniform key
generation, an implementation to produce normal distributed keys (Gaussian distri-
bution) was added for both the MR1 and MR2 version of TPCx-HS HsGen:

• org.tpc.hs.hsgen.mr1.dist.NormalDistributionBigInt
• org.tpc.hs.hsgen.mr2.dist.NormalDistributionBigInt

A normal distribution is parametrized by two values. A mean value μ (mu) and the
standard deviation σ (sigma). A visual representation of the normal distribution and the
meaning of its parameters can be seen in Fig. 1. The implementation uses a standard
polar Box-Muller algorithm for generating normally distributed values using two
values sampled from a uniform random number source. Modifications had to be made
to scale the algorithm producing 64 Bit double values to the required 80 Bit BigInteger
values.

Fig. 1. Normal distribution, its parameters and their implications (Based on Dan Kernler, http://
en.wikipedia.org/wiki/File:Empirical_Rule.PNG)
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The nature of this algorithm is to randomly require more the two random values, if
certain conditions are not met (see Listing 1 NormalDistribution – Polar box-muller
method). Because of this requirement, the default random number generators of
TPCx-HS cannot be used, as they only work for if a predefined amount of random
numbers is drawn per row as described earlier. Because of this issue, a helper random
number generator is used (see Listing 2 HelperPRNG – xorShift128), which is seeded
with the random number for each row, obtained from the main random number generator.
This allows to draw an arbitrary amount of random samples in each row, as required by
the normal distribution algorithm. The implementation was verified to work correctly and
the verification results can be seen in Fig. 2. The plot shows the accumulated density
distribution of * 6*107 samples, drawn from the implemented normal distribution with
parameters mu: 279 and sigma: 276. To be able to count and plot the values, they were
quantized to the range [0, 65536] by using the highest 16 Bit of the full 80 Bit value,
resulting in mu: 32768 and sd: 4096. Additionally a wrapper was added for all the tools in
the tpcx-hs.jar to comfortably run the TPCx-HS benchmark end to end. Available are the
following modules, where 1 stands for the MR1 version and 2 for the MR2 version:

• hsgen1
• hsgen2
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• hssort1
• hssort2
• hsvalidate1
• hsvalidate2

An example on how to start and parametrize the generation of normally distributed
keys can be seen in the following listing:

3 Test Results

We compared the impact on data generation and sorting performance using uniformly
and normally distributed keys. The tests where done both for the MR1 and MR2 version
of TPCx-HS. We ran a test with a data set size of 9,09 TB (100.000.000.000 records).

For the test runs using the new normal distributed key schema we used the fol-
lowing parameters:

Mu 29.936.846.961.918.900.000
Sigma 1.000.000.000

SD is chosen to be 1/100 of the number of records, to ensure a high number of
duplicates within the generated keys. All tests were performed on the same 16 node
cluster with the following specification:

Fig. 2. Accumulated density with mu: 279 sigma: 276 quantized from highest 16 bit of the full 80
bit value to mu: 32768 and sigma: 4096
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Software configuration:

• Disabled SElinux on all the nodes
• Disabled iptables on all the nodes
• NTP configured
• Ulimit set to 64000

A default Hadoop installation using Yarn was used. Looking at the CPU resources, it
is obvious that generating non-uniform values is more CPU intensive than generating
uniform random values, as shown in Fig. 4. TheMapReduce 1 version is more expensive
to generate than theMapReduce 2 version because of the additional step of converting the
binary key into an ASCII representation. However, there was not much difference in real
clock time as shown in Fig. 3, because the cluster was I/O bound the entire time.

The interesting result is the impact of the non-uniform data on the sort performance
of TeraSort (Fig. 5). It shows that for both the MR1 and MR2 versions, the skewed
dataset takes more time to sort than the uniformly distributed dataset. The difference is
most notable when comparing the CPU times in Fig. 6. The impact was not as severe as
initially expected. TPCx-HS employs techniques to mitigate skewed datasets. It does so
by employing a custom split format and partitioning logic. This logic draws random

Fig. 3. HSGen wall clock time Fig. 4. HSGen CPU time

Servers: 16 Cisco UCS C240M3 Rack Server
CPU: 2 × Intel® Xeon® Processor E5-2650 v2 (20 M
Cache, 2.60 GHz)

Memory: 256 GB
Storage Controller: LSI MegaRAID SAS 9271-8i
Disk: 12 × 3 TB Large Form Factor HDD
Network: Cisco UCS VIC 1225 2 10GE SFP+
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Fig. 5. HSSort wall clock time Fig. 6. HSSort CPU time

samples from the generated data and sorts the samples locally to get an estimate of the
key distribution. Based on this sample, TPCx-HS’ sorting logic pre-partitions the data
and distributes it to the mappers.

4 Conclusion

In this paper, the authors propose a potential enhancement to TPCx-HS benchmark
with a normally distributed keys. The impact on data generation and sorting perfor-
mance is compared against uniformly distributed keys.

The test results demonstrate that the distribution of keys has an impact on the data
generation and data sorting performance of the system. The authors believe that
non-uniform data distributions are more representative of real life datasets and a good
enhancement to the next generation of TPCx-HS.

5 Future Work

TTPCx-HS can further extend with more distributions that fit data skew commonly found
in production workloads. An example might be the Zipfian distribution, which models an
access pattern where some few keys are accessed very often and most of the keys rarely to
almost never. Another interesting addition would be the simulation of “null” values or
more generally a single key that accounts for a high percentage of the total keys. Null
values impose a great scaling problem, for example, in Hive queries, if not addressed
properly because many parallel algorithms rely on distributing the values by key. If a
single key occurs in, for example, 25 % of all data sets, a single mapper/reducer ends up
processing 25 % of the dataset by itself, greatly reducing speedup in a large cluster.
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Benchmarking has been critical in making progress in the field of data, as it has provided
a crucial mechanism to accelerate the progress in the data community. Early bench‐
marks have been responsible for spurring innovation and serving as a quantitative way
to get past marketing salvos. Prime examples of this observation are the Anon et al.
benchmark and the Wisconsin benchmark that spurred rapid advances in database
transaction and analytic query processing. These dual technologies are now crucial to
running our “digital planet1” today.

However, data benchmarking has changed considerably over the past four decades.
In the early days, pioneers like Jim Gray and David DeWitt, were crucial in creating
benchmarks that were genuinely designed to move the community forward. Back then
the data industry was in its “Wild West” days. A few good-meaning cowboys is all that
it took to set the industry in the right direction.

Sadly, those halcyon days are long gone. The digital planet is simply too dependent
on data. In fact, as has been noted before, data in the new currency. Thus, there are
deeply-vested interests in modern benchmarks that simply do not achieve the goals that
benchmarks claim to achieve. To address these issues, this article proposes a radical
rethinking of data benchmarks. This article makes three concrete suggestions: First,
data benchmarks should have no optional components, forcing the vendors to make
“hard” choices when reporting benchmark results (e.g. reporting on energy consump‐
tion in TPC benchmarks, and reporting results on newer benchmarks that subsume older
ones). Second, benchmarking in the cloud-era implies that each customer will have their
own measures that are important to them. Thus, a service that offers automated bench‐
marking (and associated tuning) of customer workload in the cloud is far more important
than actual benchmarks. Finally, we should dramatically rethink how our benchmark
councils (including TPC) work. We should reverse the stewardship of these councils by
replacing vendors from the council by the actual customers of data products, and let
customers directly drive the definition of new benchmarks.

1 Benchmarking Today: Issues and Root Causes

The art of benchmarking is nearly as old as the field of Computer Sciences. In the field
of data, which is the focus of this article, benchmarking has played a crucial role is

1 “Digital Planet” is a descriptive phrase used here to capture the notion that our world is
increasingly viewed by the data that describes the physical world, and operated by analytics
on this data.
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spurring big advances in data processing technologies. From early benchmarks such as
the Anon et al. benchmark [1] and the Wisconsin benchmark [2] to modern day bench‐
marks like those published by the TPC council, we as a community of developers and
users of data products gravitate to the results of benchmarks. A well-defined benchmark
allows a neutral and objective perspective of competing technologies, and forces vendors
to fix gaps in their products. Thus, the entire industry moves forward, and we all win.
This is exactly what happen with early data benchmark that accelerated the pace of
product development and maturity in data [3].

But, the crucial nature of benchmarks has also unleashed an ugly side. Vested inter‐
ests focused on short-terms gains endlessly aim to make benchmarks skewed towards
specific points-of-view. The financial and perception implication of under-performing
on a widely-publicized industry benchmark encourages vendors to maintain a tight
control over the benchmark creation process. Most benchmark are created by consor‐
tiums like the Transaction Processing Council (TPC). Such consortiums are also funded
by vendors, who naturally need to protect their companies’ best interests.

At the same time, it is far harder for independent researchers to develop a benchmark
that is widely-adopted. There is simply too much more noise in the ecosystem today
than many decades ago, and it often takes (lots of) real dollars to drive adoption of a
new benchmark. Admittedly, independent researchers may also not have a broader
perspective on actual customer needs, and thus may be in the dark when proposing
benchmarks that end-users actually care about.

The result of this unfortunate set of forces is that we now live with benchmarks that
are prescribed by consortiums, which in turn is made up of participants who have vested
interests. Even if a representative at a benchmarks council has the best intention, it is
hard to imagine anyone representing a company supporting features in a new benchmark
that would put their companies’ products at a disadvantage.

Consequently, benchmarks are moving further and further away from their original
goal – namely to help move the industry forward by providing an objective and neutral
view of performance characteristics that matter to actual customers. It is time to rethink
how we as a community (of developer and consumers of data products) spend our time,
energy, and money in creating future benchmarks. This paper proposes three concrete
measures (as described below) to radically rethinking benchmarks for data.

#1: Remove Ambiguity from Benchmarks
Benchmark councils often have robust arguments when designing a benchmark. Such
arguments result in positions that are hard to reconcile. Such situations are “easier” to
resolve by creating optional reporting components in benchmarks. Optional components
are meaningless and weaken benchmarks.

For example, the TPC adopted energy as a measurement requirement in 2010, and
made it an optional feature. Nearly everyone ignores this measure when reporting
benchmark results, although it is hard to find a vendor who does not think energy
consumption is important. Energy consumption is especially crucial when moving to
cloud-hosted data services, as the service provider now has a big incentive to reduce the
deployment and operational costs, of which energy consumption is a big component.
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Thus, if some measure is deemed important to be part of the benchmark specification,
then it must be a mandatory part in reporting the benchmark results.

Another source of ambiguity in benchmarks is multiple benchmarks from the same
benchmark council in the same target application area. TPC is the dominant benchmark
council in data. It has two benchmarks for OLTP, namely TPC-C and TPC-E. It also
has two benchmarks for data warehousing, namely TPC-H and TPC-DS. Multiple
benchmarks that target the same domain allows for manipulation by those vendors who
are at a disadvantage. For example, it is hard to argue that TPC-C is a relevant OLTP
benchmark compared to TPC-E, but only one vendor reports TPC-E results. Other OLTP
vendors have conveniently “chosen” to ignore it. Similarly, TPC-H is often used (espe‐
cially by the new data warehousing companies), while any data expert would find it hard
to argue that it is a better benchmark than TPC-DS today. To address this problem,
councils should immediately deprecate an old benchmark as soon as a newer replace‐
ment benchmark is created. Thus, reducing the benefits for vendors that choose to
continue reporting results on “dead” benchmarks.

The first proposal is: Remove opportunities for confusion by having zero optional
reporting measures in benchmarks, and deprecate benchmarks immediately when
new replacement benchmarks are created.

#2: Focus on Benchmark Measurement Methodology
Benchmarks are fascinating since they allow one to compare systems in precise quan‐
titative ways. However, for most major customers of data products (i.e. the folks who
actually write the checks for data products) generic benchmarks are of limited use. Every
big customer typically has her own benchmark, and any big sale requires that vendors
go through a proof-of-concept (PoC) process that often requires running the customer’s
specific benchmark.

Here is where the benchmark councils and other professional benchmark developers
can really help move the industry forward. A crucial aspect of benchmarking is devel‐
oping a well thought-out methodology to measure complex deployments, such as meas‐
uring the query throughput of a data service running in a cluster, or measuring energy
consumption in a meaningful way. The benchmark developers in organizations like the
TPC have done an amazing job of developing measurement frameworks and method‐
ologies that can be used across different vendors. A key contribution that these bench‐
mark developers could continue making is to proposed industry-wide standard meas‐
urement frameworks, making it easy for custom benchmarks to be run.

Such a move is crucial for the current move towards cloud-hosted databases as the
metric that is of interest to a customer changes from one customer to the other. For
example, in a cloud-hosted database an important metric for a specific customer may be
the lowest price that meets a certain response time latency for queries – no current
benchmark in data incorporates such SLAs.

One can go even further and think of extending this idea of a measurement framework
to developing “Benchmarking-as-a-Service (BaaS).” With BaaS a customer simply
provides a sample (perhaps synthetic) dataset, a workload and an SLA, and the service
determines the best configuration to deploy that meets precisely defined SLAs. (A more
detailed argument for BaaS was presented earlier [4].)
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Finally, we note that today many benchmarks are audited, and for good reasons
including ensuring that vendors stay honest. With BaaS there is not need to audit – a
customer is not going to complain if the vendor has techniques to speed up their work‐
load. Furthermore, with BaaS when the workload changes, the customer simply runs
that BaaS service again to determine the “right” configuration or the “right” cloud
provider. (We acknowledge that switching vendors requires many more considerations
rather than just performance, but with BaaS at least the customer has an answer to the
performance aspect, which is what benchmarks target.)

The second proposal is: Benchmark developers should consider abstracting the
measurement component of existing benchmarks (such as the TPC benchmarks) and
develop them as independent frameworks to use with any benchmark. A step further
is for cloud data providers to provide a Benchmark-as-a-Service function.

#3: Rethinking the Composition of Benchmark Councils
The crux of the problem at hand with benchmarking is that benchmarks are designed by
vendors who (naturally) also aim to “win” on the benchmarks. This situation is obviously
rife with conflict of interest. Benchmarks aim to compute precise and reproducible
measure(s) of how well products perform on customer workloads. Who understands
these workloads the best? The actual customers!

Thus, the last suggestion is simple: Flip the composition of benchmark councils (such
as the TPC), so that the benchmark specification is driven by key customers. Thus, the
customers become the drivers, and vendors can be passive participants in the benchmark
councils that help with aspects such as measurement frameworks and industry-wide
methodology for reporting benchmark results.

Some may be alarmed by the notion of handing over the running of benchmark coun‐
cils to customers. It could be argued that customers may not have the incentives to do the
work of creating a benchmark. But, it is clear to anyone who has dealt with large customers
of data products that the customers have the biggest incentives to drive changes across the
industry. The reason is simple: in the end the customer wins when product innovation
moves at a faster pace, and relevant benchmarks helps catalyze innovations.

In fact, such a flipping of the benchmark council composition would also help the
vendors. Rather than spend endless energy in crafting marketing messages around
product shortcomings, it levels the playing field and allows the best technology to shine.
This approach also allows more resources to be dedicated to actually improving and
fixing shortcomings in data products. In fact, the early benchmarks in data were created
in such “conflict-free” ways, and allowed the industry to innovate at a rapid pace.

The final proposal is: Let’s flip the composition of benchmark and have customers
drive the benchmark creation. Vendors can help with operational aspects of the
benchmark such as industry-wide methodology to run the benchmark, but should be
silent observers in the creation of the actual benchmark definitions.

Disclaimers: The author is currently employed at Pivotal Inc. and is also a Professor
(on leave) from the University of Wisconsin. All opinions expressed in the document are
those of the author, and do not necessarily reflect that of the organizations the author
is affiliated with.
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Abstract. The field of Big Data and related technologies is rapidly
evolving. Consequently, many benchmarks are emerging, driven by acad-
emia and industry alike. As these benchmarks are emphasizing different
aspects of Big Data and, in many cases, covering different technical plat-
forms and uses cases, it is extremely difficult to keep up with the pace
of benchmark creation. Also with the combinations of large volumes of
data, heterogeneous data formats and the changing processing velocity,
it becomes complex to specify an architecture which best suits all appli-
cation requirements. This makes the investigation and standardization of
such systems very difficult. Therefore, the traditional way of specifying
a standardized benchmark with pre-defined workloads, which have been
in use for years in the transaction and analytical processing systems,
is not trivial to employ for Big Data systems. This document provides
a summary of existing benchmarks and those that are in development,
gives a side-by-side comparison of their characteristics and discusses their
pros and cons. The goal is to understand the current state in Big Data
benchmarking and guide practitioners in their approaches and use cases.

1 Introduction

Big Data is a new and rapidly evolving discipline in computer science utilizing a
diverse spectrum of technical platforms and serving a wide range of applications.
This is because, with the combinations of large volumes of data, heterogeneous
data formats and the rapidly improving performance of both hardware and Big
Data systems, it is hard to generalize architectural aspects that best suit all
application requirements, making the investigation and standardization of such
systems very difficult.
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As these systems are evolving, there is an inherent need to evaluate and
quantify their performance with the ultimate goal of comparing these systems.
Comparisons are desirable in different dimensions, such as software stack, hard-
ware, use case, and tuning parameters. That is, one might want to compare a
particular software stack on different hardware systems, a particular hardware
setting on different software stacks, or one software stack on a particular hard-
ware with different tunings.

With the rapid increase in Big Data solutions, both academia and industry
alike are developing new benchmarks at a rapid pace. Driven by the “velocity of
change” many performance benchmark developers “cut corners” by customizing
their benchmarks too closely to the architectural characteristic of the system they
want to benchmark, instead of abstracting its core performance attributes. These
benchmarks become “island solutions” that only fit the systems they targeted in
the first place. This approach works well if the goal is to compare the performance
of a particular software stack on a particular hardware setting. However, this
does not work well to compare the performance of different software stacks on
the same hardware platforms or vice versa.

Many standard performance organizations, such as TPC, SPEC, and SPC
follow similar approaches when developing benchmarks. One of their approaches,
which is targeted at increasing the acceptance of benchmarks across many hard-
ware and software vendors, is developing technology agnostic benchmarks for
general use cases. The goal is to define a set of functional requirements that can
be applied to any system that claims to be able to solve the use case, regardless of
hardware, database management software or operating system. It is the respon-
sibility of those measuring the performance of systems using the benchmarks to
implement the specification and to submit proof that the implementation meets
all benchmark requirements, i.e., that the implementation complies with the
specification. The proof is generally captured in a document, e.g., Full Disclo-
sure Report (FDR), whose intent is to enable other parties to reproduce the per-
formance measurement. This approach allows any vendor, using “proprietary”
or “open” systems, to implement the benchmarks while still guaranteeing end-
users that the resulting measurements are comparable. A second approach is to
provide executable versions of benchmarks that are targeted on a small number
of hardware and software solutions. While these benchmarks can only be used
to compare a small number of systems, they are generally easier to develop and
deploy. Both approaches can be modeled after actual production applications
and environments or be synthetic. The former allows for benchmark analysts to
better understand and interpret benchmark results, while the latter is generally
better for engineering, e.g., in product development and product improvement.

Employing these traditional ways of specifying standardized benchmarks with
predefined workloads is not trivial for Big Data systems, because of the combina-
tions of large volumes of data, heterogeneous data formats, and velocity of changes
in the processing technology used in Big Data solutions. As a consequence, many
companies and research institutions are developing their own “island solutions”
that only fit systems they target. It is a challenge for both industry and academia
to keep track of the large number of emerging benchmarks.
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This document serves as a compendium of Big Data benchmarks that are
currently available and that are under development. The contributions of this
paper are a detailed summary of these benchmarks as well as a detailed discussion
of the commonalities and differences of them, which can guide academia and
industry in choosing the most appropriate benchmark to suit their needs. The
paper concludes by proposing a simplified Big Data benchmarks classification,
which can be used to come up with a more generalized Big Data benchmark in
the future.

2 Existing Big Data Benchmarks

This section presents, in alphabetical order, Big Data benchmarks that are most
frequently referenced in current literature. They were developed to stress test
and evaluate Big Data systems such as the Hadoop framework and its extensions
into the open source ecosystem.

2.1 AMP Lab Big Data Benchmark

AMP Lab Benchmark [2] measures the analytical capabilities of data warehous-
ing solutions. This benchmark currently provides quantitative and qualitative
comparisons of five data warehouse systems: RedShift, Hive, Stinger/Tez, Shark,
and Impala. Based on Pavlo’s Benchmark [44,53] and HiBench [28,32], it con-
sists of four queries involving scans, aggregations, joins, and UDFs. It supports
different data sizes and scaling to thousands of nodes.

2.2 BigBench

BigBench [13,15,27] is an end-to-end Big Data benchmark that represents a data
model simulating the volume, velocity, and variety characteristics of a Big Data
system, together with a synthetic data generator for structured, semi-structured,
and unstructured data. The structured part of the retail data model is adopted
from the TPC-DS benchmark and further extended with semi-structured (reg-
istered and guest user clicks) and unstructured data (product reviews). The
BigBench raw data volumes can be dynamically changed based on a scale fac-
tor. The simulated workload is based on a set of 30 queries covering the different
aspects of Big Data analytics proposed by McKinsey [37]. The benchmark con-
sists of four key steps: (i) System setup; (ii) Data generation; (iii) Data load;
and (iv) Execute application workload. A reference implementation [15] for the
Hadoop ecosystem is available. Currently the TPC committee is working towards
standardizing it as a TPC Big Data benchmark [14].

2.3 BigDataBench

BigDataBench [57] is an open source Big Data benchmark suite [31] consisting
of 14 data sets and 33 workloads. Six of the 14 data sets are real-world based,
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generated using the BDGS [39] data generator. The generated data types include
text, graph, and table data, and are fully scalable. According to the literature
it is unclear of what the upper bound of the data set sizes are. The remaining
eight data sets are generated from a small seed of real data and are not scal-
able yet. The 33 workloads are divided into five common application domains:
search engine, social networks, electronic commerce, multimedia analytics, and
bioinformatics. BigDataBench has many similarities with the DCBench [30], a
benchmark suite developed to test data center workloads. This is a rapidly evolv-
ing benchmark. Please check the official website for current updates.

2.4 BigFrame

BigFrame [34] is a benchmark generator offering a benchmarking-as-a-service
solution for Big Data analytics. While the latest version together with documen-
tation is available on GitHub [16], changes are still being made to the benchmark
generator. The benchmark distinguishes between two different analytics work-
load, (1) offline-analytics and (2) real-time analytics. It consists of structured
data (Sales, Item, Customer and Promotion tables) adapted from the TPC-DS
benchmark and semi-structured JSON data types containing unstructured text.
The current version of the benchmark provides data models for two types of
workloads: historical and continuous query. The data in the historical workflow
is processed at typical data warehouse rates, e.g., week, whereas the continuous
workflow is processed in real-time. It enables real-time decision making based on
instant sales and user feedback updates. The development of mixed workloads
combining relational, text and graph data is also in progress.

2.5 CloudRank-D

CloudRank-D [29,36] is a benchmark suite for evaluating the performance of
cloud computing systems running Big Data applications. The suite consists of
13 representative data analysis tools, which are designed to address a diverse
set of workload data and computation characteristics (i.e., data semantics, data
models, and data sizes, the ratio of the size of data input to that of data output).
Table 1 depicts the representative applications along with its workload type. The
benchmark suite reports two complimentary metrics: data processed per second
(DPS) and data processed per Joule (DPJ). DPS is defined as the total amount
of data inputs of all jobs divided by the total running time from the submission
time of the first job to the end time of the last job. The DPJ is defined as the
total amount of data inputs of all jobs divided by the total energy consumed
during the duration from the submission time of the first job to the end time of
the last job.

2.6 CloudSuite

CloudSuite [25] is a benchmark suite consisting of both emerging scale-out work-
loads and traditional benchmarks. The goal of the benchmark suite is to ana-
lyze and identify key inefficiencies in the processor’s core micro-architecture and
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Table 1. Representative applications in CloudRank-D; Adopted from [36]

Category No Workload

Basic Operations 1 Sort

2 WordCount

3 Grep

Classification 4 Naive bayes

5 Support vector machine

Clustering 6 K-means

Recommendation 7 Item based collaborative filtering

Association rule mining 8 Frequent pattern growth

Sequence learning 9 Hidden Markov

Data warehouse operations 10 Grep select

11 Ranking select

12 User-visits aggregation

13 User-visits ranking join

Table 2. Applications in CloudSuite; Adopted from [25]

Category Application

Data Serving Cassandra 0.7.3 with YCSB 0.1.3

MapReduce Bayesian classification from Mahout 0.4 lib

Media Streaming Darwin Streaming Server 6.0.3 with Faban Driver

SAT Solver Klee SAT Solver

Web Frontend Olio, Nginx and CloudStone

Web Search Nutch 1.2/Lucene 3.0.1

Web Backend MySQL 5.5.9

Traditional Benchmarks PARSEC 2.1, SPEC CINT2006, SPECweb09,
TPC-C, TPC-E

memory system organization when running today’s cloud workloads. Table 2
summarizes the workload categories as well as the applications that were actu-
ally benchmarked.

2.7 GridMix

GridMix [9] is a benchmark suite for Hadoop clusters, which consists of a
mix of synthetic jobs. The benchmark suite emulates different users sharing
the same cluster resources and submitting different types and number of jobs.
This includes also the emulation of distributed cache loads, compression, decom-
pression, and job configuration in terms of resource usage. In order to run the
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GridMix benchmark a trace describing the mix of all running MapReduce jobs
in the given cluster has to be recorded.

2.8 Hadoop Workload Examples

Since its first version the Hadoop framework has included several ready to
use MapReduce sample applications. They are located in the hadoop-examples-
version.jar jar file. These applications are commonly used to both learn and
benchmark Hadoop. The most popular ones include: WordCount, Grep, Pi, and
Terasort. The Hibench suite, which is briefly described in the next sub-section,
also includes these example workloads.

Grep Task. Grep [6] is a standard MapReduce program that is included in
the major Hadoop distributions. The program extracts strings from text input
files, matches regular expressions against those strings and counts their number
of occurrences. More precisely it consists of two MapReduce jobs running in
sequence. The first job counts how many times a matching string occurred, and
the second job sorts the matching strings by their frequency and stores the
output in a single output file.

Pi. Pi [4] is a MapReduce program computing the exact binary digits of the
mathematical constant Pi. It uses multiple map tasks to do the computation and
a single reducer to gather the results of the mappers. Therefore, the application
is more CPU bound and produces very little network and storage I/O.

2.9 HiBench

HiBench [28,32] is a comprehensive benchmark suite for Hadoop consisting of ten
workloads including both synthetic micro-benchmarks and real-world applica-
tions. HiBench features several ready-to-use benchmarks from 4 categories: micro
benchmarks, web search, machine learning, and HDFS benchmarks. Table 3
depicts the category and the exact workload included in HiBench.

The HiBench suite evaluates and characterizes the MapReduce framework in
terms of speed (job running time) and throughput (the number of tasks completed
per minute) and the HDFS in terms of bandwidth, system resource utilization
and data access patterns.

The following list briefly describes the benchmarks currently implemented.
For a complete description please refer to [28,32].

– Sort, uses the MapReduce framework to sort the input directory into the
output directory, being predominately I/O intensive.

– WordCount, counts number of word occurrences in a large text files. It is
distributed with Hadoop and used in many MapReduce learning books. It is
CPU bound.
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Table 3. HiBench Workloads

Category No Workload

Micro Benchmarks 1 Sort

2 WordCount

3 TeraSort

4 EnhancedDFSIO

Web Search 5 Nutch Indexing

6 PageRank

Machine Learning 7 Bayesian Classification

8 K-means Clustering

Analytical Query 9 Hive Join

10 Hive Aggregation

– TeraSort, sorts data generated by the TeraGen program distributed with
Hadoop. TeraSort is widely used as reference in research papers as well as
in Big Data competitions. TeraSort is I/O and CPU intensive.

– EnhancedDFSIO or DFSIOE,is an I/O intensive benchmark that measures
throughput in HDFS using MapReduce. It features separate read and write
workloads.

– Nutch Indexing, tests the search indexing sub-system in Nutch, a popular open
source (Apache project) search engine.

– PageRank, an implementation of Google’s Web page ranking algorithm. It
crawls Wikipedia sample pages.

– Bayes, Bayesian Machine Learning classification using the Mahout library.
The input of this benchmark is extracted from a subset of the Wikipedia
dump.

– K-means, Mahout’s implementation of the k-means clustering algorithm for
knowledge discovery and data mining.

– HiveBench, the OLAP-style Join and Aggregation queries, are adapted from
the Pavlo’s Benchmark [44] and have the goal to test the Hive performance.

Since version 4.0, HiBench contains 12 Spark workloads implemented in Java,
Scala and Python.

2.10 MRBench

MRBench [33] is a benchmark evaluating the processing of business oriented
queries and concurrent data modifications on MapReduce systems. It implements
the 22 queries of the TPC-H decision support system benchmark directly in
map and reduce operations. The MRBench supports three configuration options:
database size and number of map and reduce tasks.
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2.11 MapReduce Benchmark Suite (MRBS)

MRBS [40,50,51] is a comprehensive benchmark suite for evaluating the per-
formance of MapReduce systems. It covers five application domains listed
in Table 4. The high-level metrics reported by the benchmark are client
request latency, throughput and cost. Additionally, low-level metrics like size
of read/written data, throughput of MR jobs, and tasks are also reported. The
MRBS implements a service that provides different types of operations, which
can be requested by clients. Two execution modes are supported: interactive
mode and batch mode. The benchmark run consists of three phases dynamically
configurable by the end-user: warm-up phase, run-time phase, and slow-down
phase. The user can specify the number of runs and the different aspects of load:
dataload and workload. The dataload is characterized by the size and the nature
of the data sets used as inputs for a benchmark, and the workload is charac-
terized by the number of concurrent clients and the distribution of the request
type.

Table 4. Representative Applications in MRBS

Domain Application

Recommendation Benchmark based on real movie database

Business Intelligence TPC-H

Bioinformatics DNA sequencing

Text Processing Search patterns, word occurrence and sorting on randomly
generated text files

Data Mining Classifying newsgroup documents into categories, canopy
clustering operations

2.12 Pavlo’s Benchmark (CALDA)

Pavlo’s Benchmark [3,44,53] consists of five tasks defined as SQL queries among
which is the original MapReduce Grep task, which is a representative of most
real user MapReduce programs. The benchmark was developed to specifically
compare the capabilities of Hadoop with those of commercial parallel Relational
Database Management Systems (RDBMS). Although the reported results do
not favor the Hadoop platform, the authors remain optimistic that MapReduce
systems will coexist with traditional database systems. Table 5 summarizes all
types of tasks in Pavlo’s Benchmark and their complimentary SQL statements.

2.13 PigMix

PigMix/PigMix2 [11] is a set of 17 queries specifically created to test the per-
formance of Pig systems. Specifically, it tests the latency and scalability of Pig
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Table 5. Pavlo’s Benchmark Queries

Category No Workload/SQL Query

General task 1 SELECT * FROM Data

WHERE field LIKE ’%XYZ%’;

PageRank/Selection
Task

2 SELECT pageURL, pageRank

FROM Rankings WHERE pageRank >X;

Web Log/Aggregation
Task

3 SELECT sourceIP, SUM(adRevenue)

FROM UserVisits GROUP BY sourceIP;

SELECT SUBSTR(sourceIP,1,7), SUM(adRevenue)

FROM UserVisits

GROUP BY SUBSTR(sourceIP, 1, 7);

Join Task 4 SELECT INTO Temp sourceIP,

AVG(pageRank) as avgPageRank,

SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(’2000-01-15’)

AND Date(’2000-01-22’)

GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank

FROM Temp

ORDER BY totalRevenue DESC LIMIT 1;

UDF Aggregation Task 5 SELECT INTO Temp F(contents) FROM Documents;

SELECT url, SUM(value) FROM Temp

GROUP BY url;

systems. The queries, written in Pig Latin [42], test different operations like
data loading, different types of joins, group by clauses, sort clauses, as well as
aggregation operations. The benchmark includes eight data sets, with varying
schema attributes and sizes, generated using the DataGeneratorHadoop [7] tool.
PigMix/PigMix2 are not considered true benchmarks as they lack some of the
main benchmark elements, such as metrics.

2.14 PRIMEBALL

PRIMEBALL [26] is a novel and unified benchmark specification for compar-
ing the parallel processing frameworks in the context of Big Data applications
hosted in the cloud. It is implementation- and technology-agnostic, using a fic-
tional news hub called New Pork Times, based on a popular real-life news site.
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Included are various use-case scenarios made of both queries and data-intensive
batch processing. The raw data set is fetched by a crawler and consists of both
structured XML and binary audio and video files, which can be scaled by a
pre-defined scale factor (SF) to 1 PB.

The benchmark specifies two main metrics: throughput and price perfor-
mance. The throughput metric reports the total time required to execute a
particular scenario. The price performance metric is equal to the throughput
divided by the price, where the price is defined by the specific cloud provider
and depends on multiple factors. Additionally, the benchmark specifies several
relevant properties characterizing cloud platforms, such as (1) scale-up; (2) elas-
tic speedup; (3) horizontal scalability; (4) latency; (5) durability; (6) consistency
and version handling; (7) availability; (8) concurrency and other data and infor-
mation retrieval properties.

2.15 SparkBench

SparkBench [35,38], developed by IBM, is a comprehensive Spark specific bench-
mark suite. It comprises of four main workload categories: machine learning,
graph processing, streaming, and SQL queries. Currently ten workloads are
implemented, listed in Table 6. The purpose of the benchmark suite is to help
users evaluate and analyze the tradeoffs between different system designs, guide
the optimization of workload configurations and cluster provisioning for Spark
deployments. SparkBench reports two metrics: job execution time (seconds) and
data process rate (MB/second). The job execution time measures the execution
time of each workload, whereas the data process rate is defined as the input data
size divided by the job execution time.

Table 6. SparkBench Workloads

Application Type Workload

Machine Learning Logistic Regression

Support Vector Machine

Matrix Factorization

Graph Computation PageRank

SVD++

TriangleCount

SQL Queries Hive

RDDRelation

Streaming Application Twitter

PageView
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2.16 Statistical Workload Injector for MapReduce (SWIM)

SWIM [20,21,60] is a benchmark, which takes a different approach in the testing
process. It consists of a framework, which is able to synthesize representative
workload from real MapReduce traces taking into account the job submit time,
input data size, and shuffle/input and output/shuffle data ratio. The result is a
synthetic workload, which has the exact characteristics of the original workload.
Similarly, the benchmark generates artificial data. Then the workload executor
runs a script which takes the input data and executes the synthetically generated
workload (jobs with specified data size, data ratios, and simulating gabs between
the job executions). Additionally, the reproduced workload includes a mix of job
submission rates and sequences and a mix of common job types. Currently, the
benchmark includes multiple real Facebook traces and the goal is to further
extend the repository by including new real workload traces.

2.17 TPC-H

TPC-H [54] is the de facto benchmark standard for testing data warehouse capa-
bility of a system. Instead of representing the activity of any particular business
segment, TPC-H models any industry that manages, sells, or distributes prod-
ucts worldwide (e.g., car rental, food distribution, parts, suppliers, etc.). The
benchmark is technology-agnostic. The purpose of TPC-H is to reduce the diver-
sity of operations found in a typical data warehouse application, while retaining
the application’s essential performance characteristics, namely: the level of sys-
tem utilization and the complexity of operations. The core of the benchmark
is comprised of a set of 22 business queries designed to exercise system func-
tionalities in a manner representative of complex decision support applications.
These queries have been given a realistic context, portraying the activity of a
wholesale supplier to help the audience relate intuitively to the components of
the benchmarks. It also contains two refresh functions (RF1, RF2) modeling the
loading of new sales information (RF1) and the purging of stale or obsolete sales
information (RF2) from the database. The exact definition of the workload can
be found in the latest specification [54]. It was adapted very early in the devel-
opment of Hive [10,12] and Pig [8], and implementations of the benchmark are
available for both. In order to publish a TPC-H compliant performance result
the system needs to support full ACID (Atomicity, Consistency, Isolation, and
Durability).

2.18 TPC-DS

TPC-DS [55] is a decision support benchmark that models several generally
applicable aspects of a decision support system, including queries and data
maintenance. It takes the marvels of TPC-H and, now obsolete TPC-R, and
fuses them into a modern DSS benchmark. The main focus areas:
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– Multiple snowflake schemas with shared dimensions
– 24 tables with an average of 18 columns
– 99 distinct SQL 99 queries with random substitutions
– More representative skewed database content
– Sub-linear scaling of non-fact tables
– Ad-hoc, reporting, iterative and extraction queries
– ETL-like data maintenance

While TPC-DS may be applied to any industry that must transform operational
and external data into business intelligence, the workload has been granted a
realistic context. It models the decision support tasks of a typical retail product
supplier. The goal of selecting a retail business model is to assist the reader
in relating intuitively to the components of the benchmark, without tracking
that industry segment so tightly as to minimize the relevance of the benchmark.
The schema, an aggregate of multiple star schemas, contains essential business
information, such as detailed customer, order, and product data for the classic
sales channels: store, catalog, and Internet. Wherever possible, real world data
are used to populate each table with common data skews, such as seasonal sales
and frequent names. In order to realistically scale the benchmark from small
to large datasets, fact tables scale linearly while dimensions scale sub linearly.
The benchmark abstracts the diversity of operations found in an information
analysis application, while retaining essential performance characteristics. As
it is necessary to execute a great number of queries and data transformations
to completely manage any business analysis environment, TPC-DS defines 99
distinct SQL-99 (with OLAP amendment) queries and twelve data maintenance
operations covering typical DSS like query types such as ad-hoc, reporting, itera-
tive (drill down/up), and extraction queries and periodic refresh of the database.
The metric is constructed in a way that favors systems that can overlap query
execution with updates (trickle updates). As with TPC-H full ACID characteris-
tics are required. Implementation with more than 50 sample queries is available
for Hive [12].

2.19 TPCx-HS

This section presents the TPCx-HS benchmark, its methodology and some of
its major features as described in the current specification (version 1.3.0 from
February 19, 2015) [56].

The TPCx-HS was released in July 2014 as the first industry’s standard
benchmark for Big Data systems [41]. It stresses both the hardware and soft-
ware components including the Hadoop run-time stack, Hadoop File System,
and MapReduce layers. The benchmark is based on the TeraSort workload [5],
which is part of the Apache Hadoop distribution. Similarly, it consists of four
modules: HSGen, HSDataCkeck, HSSort, and HSValidate. The HSGen is a pro-
gram that generates the data for a particular Scale Factor (see Clause 4.1 from
the TPCx-HS specification) and is based on the TeraGen, which uses a random
data generator. The HSDataCheck is a program that checks the compliance of
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Table 7. TPCx-HS Phases

Phase Description as provided in TPCx-HS specification [56]

1 Generation of input data via HSGen. The data generated must be
replicated 3-ways and written on a durable medium

2 Dataset (See Clause 4) verification via HSDataCheck. The program is to
verify the cardinality, size, and replication factor of the generated data.
If the HSDataCheck program reports failure then the run is considered
invalid

3 Running the sort using HSSort on the input data. This phase samples the
input data and sorts the data. The sorted data must be replicated
3-ways and written on a durable medium

4 Dataset (See Clause 4) verification via HSDataCheck. The program is to
verify the cardinality, size and replication factor of the sorted data. If
the HSDataCheck program reports failure then the run is considered
invalid

5 Validating the sorted output data via HSValidate. HSValidate validates
the sorted data. If the HSValidate program reports that the HSSort did
not generate the correct sort order, then the run is considered invalid

the dataset and replication. The HSSort is a program, based on TeraSort, which
sorts the data into a total order. Finally, HSValidate is a program, based on
TeraValidate, that validates the output is sorted.

A valid benchmark execution consists of five separate phases which have to be
run sequentially to avoid any phase overlapping. Additionally, Table 7 provides
the exact description of each of the execution phases. The benchmark is started
by the <TPCx-HS-master> script and consists of two consecutive runs, Run1
and Run2. No activities except file system cleanup are allowed between Run1
and Run2. The completion times of each phase/module (HSGen, HSSort and
HSValidate) except HSDataCheck are currently reported.

An important requirement of the benchmark is to maintain 3-way data repli-
cation throughout the entire experiment.

The benchmark reports the total elapsed time (T) in seconds for both runs.
This time is used for the calculation of the TPCx-HS performance metric also
abbreviated with HSph@SF. The run that takes more time and results in lower
TPCx-HS performance metric is defined as the performance run. On the con-
trary, the run that takes less time and results in TPCx-HS performance metric
is defined as the repeatability run. The benchmark reported performance metric
is the TPCx-HS performance metric for the performance run.

The scale factor defines the size of the dataset, which is generated by HSGen
and used for the benchmark experiments. In TPCx-HS, it follows a stepped
size model. Table 8 summarizes the supported scale factors, together with the
corresponding data sizes and number of records. The last column indicates the
argument with which to start the TPCx-HS-master script.
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Table 8. TPCx-HS Phases

Dataset Size Scale Factor (SF) Number of Records Option to Start Run

100 GB N/A 1 Billion ./TPCx-HS-master.sh -g 1

300 GB N/A 3 Billion ./TPCx-HS-master.sh -g 2

1 TB 1 10 Billion ./TPCx-HS-master.sh -g 3

3 TB 3 30 Billion ./TPCx-HS-master.sh -g 4

10 TB 10 100 Billion ./TPCx-HS-master.sh -g 5

30 TB 30 300 Billion ./TPCx-HS-master.sh -g 6

100 TB 100 1000 Billion ./TPCx-HS-master.sh -g 7

300 TB 300 3000 Billion ./TPCx-HS-master.sh -g 8

1 PB 1000 10000 Billion ./TPCx-HS-master.sh -g 9

2.20 Yahoo! Cloud Serving Benchmark (YCSB)

YCSB [23,43] is a benchmark designed to compare emerging cloud serving sys-
tems like Cassandra, HBase, MongoDB, Riak, and many more, which do not
support ACID. The benchmark consists of a workload generator and a generic
database interface, which can be easily extended to support other relational or
NoSQL databases. YCSB provides a core package of six pre-defined workloads A-
F, which simulate a cloud OLTP application (read and update operations). The
reported metrics are execution time and throughput (operations per second).
The benchmark is open source and available on GitHub [59].

3 Discussion

There is a great number of existing benchmarks focused on testing certain fea-
tures of data intensive systems, but they are all developed with different goals in
mind and for different platforms. With the steady growth of Big Data, the need
for a specific benchmark testing the Big Data characteristics of current platforms
becomes more important. At the same time, the platforms are becoming more
complex as the number of requirements they should address also grows. This
makes the creation of an objective Big Data benchmark, that covers all relevant
characteristics, a complex task.

The workload diversity is one such important characteristics in a Big Data
benchmark, as outlined in related papers [13,18–20,22,27,36,57]. The bench-
mark should include a wide range of workloads, based on real world applica-
tions, and offer the ability to easily integrate new ones. At the same time these
workloads should not be redundant or test similar data and component char-
acteristics [58]. The different workload types should be seen as complementary
to each other in a benchmark suite, with the overall goal to test a bigger range
of functionalities. Tightly coupled with the workload type is the data generator
used to synthesize the test data, based on real data samples, for a specifically
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set scale factor and size. The generated data varies between structured, semi-
structured, unstructured, or mixed. Because of this data heterogeneity, there are
various different approaches to generate the data discussed in research papers
[1,20,39,46,47]. Similarly, existing benchmarks differ in how they define accu-
rate and representative benchmark metrics, which incorporate all the necessary
information to independently compare the systems under test. Motivated by the
platform and benchmark complexity, data heterogeneity, size, and scalability,
there is an urgent need of new metrics. They can be workload specific like in
HiBench [28] or more complex based on multiple workloads in an end-to-end
benchmark suite [27]. Others, like the SWIM benchmark [20,21], define job spe-
cific metrics like number of jobs for each job type and job submission patterns,
which are limited only to MapReduce platforms. On the contrary, more general
metrics, independent of workload type, based on processor micro-architecture
characteristics are reported. Such examples, presented in [24,58], are Cycles per
Instructions (CPI), first level data cache misses per 1000 instructions (L1 MPKI),
and last level cache (LLC) miss ratio. Finally, new types of metrics like data
processed per second and data processed per Joule implemented in CloudRank-
D [36], improve the measurement of data processing and energy consumption.

4 Benchmarking Platforms

Benchmarking platforms are systems and tools that facilitate the different phases
of executing and evaluating benchmark results. These include: benchmark plan-
ning, server deployment and configuration, execution and queuing, metrics col-
lection, data and results management, data transformation, error detection, and
evaluation of results. The evaluation of results can be either by individual bench-
marks or by group of benchmarks.

4.1 ALOJA Benchmarking Platform

The ALOJA research project [45] is an initiative from the Barcelona Supercom-
puting Center (BSC) to produce a systematic study of Hadoop configuration and
deployment options. The project provides an open source platform for executing
Big Data frameworks in an integrated manner facilitating benchmark execution
and evaluation of results. ALOJA currently provides tools to deploy, provision,
configure, and benchmark Hadoop, as well as providing different evaluations for
the analysis of results covering both software and hardware configurations of
executions.

The project also hosts the largest public Hadoop benchmark repository with
over 42,000 executions from HiBench (See Sect. 2.9). The online repository can
be used as a first step to understand and select benchmarks to execute in the
selected deployment and reduce benchmarking efforts by sharing results from
different systems. The repository and the tools can be found online [17].
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Table 9. Big Data Benchmarks - Data Types: Structured(S), Semi-structured(SS),
Unstructured(U); Hadoop = MapReduce and HDFS

Benchmark Workloads Metrics S SS U Current Available

Implementations

AMP Lab Big

Data

Benchmark

Micro

Benchmark

Query time Yes No No Hive, Tez, Shark,

Impala,

Redshift

Yes [2]

BigBench 30 Queries Query time and BBQpH Yes Yes Yes Teradata Aster,

Hadoop, Spark

Yes [15]

BigDataBench Multiple

(See [31])

Multiple metrics Yes Yes Yes Multiple

technologies

Yes [31]

BigFrame Multiple Execution time Yes Yes Yes Multiple Yes [16]

CloudRank-D Multiple (See

Table 1)

Data processed per

second and Data

processed per Joule

Yes Yes Yes Hadoop Yes [29]

CloudSuite Multiple (See

Table 2)

No Yes Yes Yes Multiple

technologies

No

GridMix Synthetic and

Basic

Operations

Number of completed

jobs and elapsed

time

Yes No No Hadoop Yes [9]

Hadoop

Workload

Examples

Micro

Benchmarks

No No No Yes Hadoop Yes [4,6]

HiBench Micro

Benchmarks

(See

Table 3)

Execution time and

throughput

Yes Yes Yes Hadoop, Spark Yes [32]

MRBench Data warehouse

operations:

TPC-H

Query time Yes No No Hadoop No

MRBS Multiple (See

Table 4)

Client request latency,

throughput and cost

Yes Yes Yes Hadoop Yes [40]

Pavlo’s

Benchmark

(CALDA)

Micro

Benchmark

(See

Table 5)

Query time Yes No No Hive Yes [3]

PigMix Pig Specific

Queries

Execution time Yes No No Pig, Hadoop Yes [11]

PRIMEBALL Multiple (See

Subsec-

tion 2.14)

Price performance and

other property

specific

Yes Yes Yes Hadoop No

SparkBench Multiple (See

Table 6)

Job execution time and

data process rate

Yes Yes Yes Spark Yes [38]

SWIM Synthetically

User-

generated

Multiple metrics No No No Hadoop Yes [60]

TPC-H Data warehouse

operations

Query time and

throughput:

QphH@Size,

$/QphH@Size

Yes No No Hive, Pig, Impala,

IBM Big SQL

Yes [8,10]

TPC-DS Data warehouse

operations

Query time and

throughput:

QphDS@SF,

$/QphDS@SF

Yes No No Hive, Pig, Impala,

IBM Big SQL

Yes [12]

TPCx-HS HSGen, HSData

Ckeck,

HSSort and

HSValidate

Performance, price and

energy: HSph@SF,

$/HSph@SF,

Watts/HSph@SF

No No Yes Hadoop Yes [56]

YCSB Cloud OLTP Execution time and

throughput

Yes No No NoSQL databases Yes [59]
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4.2 Liquid Benchmarking Platform

Liquid Benchmarking [48,49,52] is an online cloud-based platform for democra-
tizing the performance evaluation and benchmarking processes. The goals of the
project are to:

– Dramatically reduce the time and effort for conducting performance evalua-
tion processes by facilitating the process of sharing the experimental artifacts
(software implementations, datasets, computing resources, and benchmarking
tasks) and enabling the users to easily create, mashup, and run the experi-
ments with zero installation or configuration efforts.

– Support for searching, comparing, analyzing, and visualizing (using different
built-in visualization tools) the results of previous experiments.

– Enable the users to subscribe for notifications about the results of any new
running experiments for the domains/benchmarks of their interest.

– Enable social and collaborative features that can turn the performance eval-
uation and benchmarking process into a living process where different users
can run different experiments and share the results of their experiments with
other users.

5 Conclusion

This document presented a review of existing Big Data benchmarks, as well as
a discussion about their major characteristics. Table 9 summarizes the Big Data
benchmarks described in our survey.

5.1 Future Work

This benchmark survey is the beginning of a mid-term project to perform an
in-depth analysis of Big Data benchmarks. This project not only aims to cover
more benchmarks, but also to provide a performance characterization that can be
used as a reference for the results one should expect from each benchmark type.
There is also the intention to compare different data compression and storage
formats i.e., avro, parquet, ORC, as well as testing different implementations of
reference benchmarks such as BigBench and TCP-H.
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A., Rinaldi, B.: YCSB++: benchmarking and performance debugging advanced
features in scalable table stores. In: ACM Symposium on Cloud Computing in
conjunction with SOSP 2011, SOCC 2011, Cascais, Portugal, 26–28 October 2011,
p. 9 (2011)

44. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S.,
Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: SIG-
MOD, pp. 165–178 (2009)

45. Poggi, N., Carrera, D., Call, A., Mendoza, S., Becerra, Y., Torres, J., Ayguadé,
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Abstract. The proliferation of virtualized servers in data centers has conquered
the last frontier of bare-iron servers: back-end databases. The multi-tenancy issues
of elasticity, capacity planning, and load variation in cloud data centers now
coincide with the heavy demands of database workloads; which in turn creates a
call for a benchmark specifically intended for this environment.

The TPC–V benchmark will fill this need with a publicly-available, end-to-
end benchmark kit. Using a prototype of the kit, we profiled the performance of
a server running 60 virtual machines with 48 databases of different sizes, load
levels, and workloads. We will show that virtualized servers can indeed handle
the elasticity and multi-tenancy requirements of the cloud, but only after careful
tuning of the system configuration to avoid bottlenecks.

In this paper, we will provide a brief description of the benchmark, discuss
the results and the conclusions drawn from the experiments, and propose future
directions for analyzing the performance of cloud data centers by augmenting the
capabilities of the TPCx-V benchmark kit.

Keywords: Database performance · Virtualization · SQL server · Workload
consolidation · Performance tuning · Cloud computing

1 Introduction

Server virtualization is ubiquitous in data centers, whether in the cloud or on users’
premises. 32 % of the new servers shipped in 2014 were deployed as virtualized servers
[13]. In the early days of virtualization, database applications were deemed too
demanding to be virtualized, but today’s virtualized servers routinely run database
applications.

Benchmarking database applications has always been a challenge due to the
complexity and demanding nature of the applications. Virtualization adds an additional
level of complexity, making it harder to both design and use such a benchmark. The
Transaction Processing Performance Council (TPC) has been working on developing
the TPCx-V benchmark to fill this need.
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Prior publications [1, 2, 8] have reported on the TPCx–V’s design philosophy,
detailed architecture, and specific properties. We will not repeat those details in this
paper. Instead, we will provide a status update on the more recent changes, and show
how the benchmark was used to measure and optimize performance on a large server.

2 Other Virtualization Benchmarks

Prior to TPCx–V, there have been 3 other industry-standard, virtualization-specific
benchmarks: VMmark 2.x, SPECvirt_sc2013, and TPC–VMS.

The earliest virtualization-specific benchmark was VMware’s VMmark [17]. In its
latest version, VMmark 2.x has evolved into a multi-host data center virtualization
benchmark that includes both application-level workloads and platform-level opera‐
tions, such as guest VM deployment, dynamic virtual machine relocation (vMotion) and
dynamic datastore relocation (storage vMotion). VMmark has a tile architecture. Each
tile includes 6 workloads of set workload levels. The user is expected to keep adding
tiles until the system reaches peak throughput.

SPEC’s SPECvirt_sc2013 [11] is another server consolidation benchmark with a
tile-based architecture. Each tile includes workloads from earlier SPEC benchmarks
SPECweb2005, SPECjAppServer2004, SPECmail2008 and SPECINT2006.

Neither VMmark 2.x nor SPECvirt_sc2013 addressed database workloads, and had
lightly-loaded VMs with little storage I/O demands. The first virtualization benchmark
with a database workload was TPC’s TPC–VMS benchmark [3]. Although TPC–VMS
was adequate in emulating a simple server consolidation scenario, its shortcomings
included having a single DBMS workload, a constant count of 3 VMs, and no variation
in the level of the loads of VMs.

3 TPCx-V Benchmark

A TPC Subcommittee has been working on the development of the TPCx-V benchmark
since 2010. The benchmark specification and the Express benchmark kit are nearly
complete, and the development subcommittee is planning to submit the benchmark to
the TPC General Council for final review and approval in August or November 2015.

3.1 Genesis of TPCx-V

The goal of TPCx–V is to measure how a virtualized server runs database workloads.
It uses a database workload to measure the performance of virtualized platforms, notably
the hypervisor, the server hardware, storage, and networking. To save development time,
it relies on a prior TPC benchmark, in the same manner that SPECvirt_sc2013 used prior
SPEC benchmarks as its workloads. The goal for TPCx–V was not to introduce a new
database workload. The Subcommittee started out with the TPC–E [14] benchmark as
the foundational workload for TPCx–V. However, the TPCx–V workload has evolved
to be different from TPC–E in many ways. So comparing TPC–E results and TPCx–V
results would be erroneous, as well as against the TPC policies.
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Consult [1,2] for details of the TPCx–V architecture. The full functional specification
of TPCx-V will be available when the benchmark is officially released.

3.2 TPCx-V Properties

The original design goals of TPCx–V were:

• Simulate cloud computing with:
– A mix of On Line Transaction Processing (OLTP) and Decision Support Systems

(DSS) workloads
– Use databases of different sizes and load levels
– Vary load levels to each VM to represent the elastic nature of load levels on cloud

computing servers
• Devise a workload that stresses the virtualization layer and drives the state of the art

for future hypervisor designs
• A Tiled architecture that requires more Tiles on larger servers
• But unlike earlier virtualization benchmarks, the load of TPCx–V Tiles is not

constant: as in real world, larger servers run larger VMs, not just more VMs
• Improved ease of benchmarking compared to TPC–E. For example, the TPC–E

schema makes it impossible to initially populate the database for one performance
level, but run against a subset of the loaded data. TPCx–V schema has been updated
to allow a benchmark sponsor to initially populate L1 Load Units1, but run against
L2 Load Unit, L2 < L1.

• Currently, the TPCx V kit is written to run on PostgreSQL. Future kit revisions may
add the ability to use other databases.

3.2.1 Performance Metric
TPCx–V has a predefined mix of transactions that are used to simulate the business
activity of processing a trade. The Trade-Result transactions make up 10 % of this mix.
The Performance Metric reported by TPCx–V is tpsV, which is a “business throughput”
measure of the number of completed Trade-Result transactions per second.

3.3 TPCx-V Architecture

3.3.1 Tiles, Groups, and VMs
The System Under Test (SUT) is divided into multiple Tiles. Tile is the unit of replication
of TPCx–V configuration and load distribution. Each Tile consists of 4 Groups. A valid
TPCx–V configuration may have between 1 and 6 Tiles, with all Tiles contributing
identical proportions of the total load. The number of Tiles and the number of Load
Units configured in the initial populations of the databases in each Group depend on the
throughput, and are determined by a formula defined in the TPCx-V specification.

1 A Load Unit represents 1,000 rows in the Customers table. The cardinalities of the other 32
tables are either fixed, or are proportional to the number of Customers.
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Each Tile has four Groups, with Groups 1, 2, 3, and 4 contributing an average of
10 %, 20 %, 30 %, and 40 % of the total throughput of the Tile, respectively.

Each Group consists of one Tier A Virtual Machine and two transaction-specific
Tier B Virtual Machines. So there are a total of 12 VMs in each Tile as seen in Fig. 1.

Fig. 1. One Tile, 4 Groups, and 12 VMs in a simple TPCx-V configuration

VM1 of each Group contains that Group’s Tier A, which runs the business logic
application, and has the frames code functions that issue the database transactions. VM1
does not contain a database. VM2 is the Tier B VM that holds the DSS database, and
accepts the 2 storage load-heavy DSS transactions. VM3 is the Tier B VM that holds
the OLTP database, and accepts the 9 CPU load-heavy OLTP transactions.

3.3.2 Elasticity
Each of the 4 Groups in a Tile contributes a different amount of that Tile’s overall load.
Although the total load offered by a Tile remains constant over the 10 12-minute Phases
of a benchmark run, the distribution of that load over the 4 Groups varies greatly, as
depicted in Fig. 2. This is done to better emulate the elasticity of the load offered by
different tenants of a server in a data center in the cloud.
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Fig. 2. TPCx-V dynamic load variation

3.3.3 Ensuring the Balance of Load over Tiles and Groups
A novel property of the TPCx–V benchmark kit is ensuring that the relative ratios of the
loads offered to the Tiles and Groups conform to the specification requirements. Bench‐
marks typically vary the number of threads of execution in the benchmark driver to
match the load level on the SUT. For example, if there are three Tiles, 1/3 of the driver
threads would direct transactions to each of the three Tiles. The fundamental problem
with this approach is that if one of the Tiles is too slow, it will fall behind the other two,
and we won’t have equal performance levels. Rebalancing the load offered to the Tiles
is a complex, error-prone task. The TPCx–V benchmark avoids that complexity by
having each driver thread distribute its transactions over all Tiles and Groups according
to the specification requirements, implemented via a deck of cards algorithm. If three
Tiles should receive equal loads, each thread uses a deck of cards with equal numbers
of cards for all Tiles. If one Tile slows down, the driver thread will automatically issue
transactions more slowly to all Tiles. Similarly, a deck of cards method is used to ensure
each Group in a Tile receives the proper portion of that Tile’s load. The Groups deck is
changed at every Phase change. As a result, the benchmark kit is faithful to the ratios
specified in the test configuration file to a very high level of precision.
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4 TPC Express Benchmarks

The TPC has operated for many years with the same benchmark development and results
submission process (TPC Enterprise). TPC Express represents a shift in aspects of the
development process and the benchmark execution process. A central component of this
shift is the TPC-provided benchmark kit.

4.1 Role of the Benchmarking Kit in the Express Benchmark

In the TPC Enterprise model, the TPC would develop a benchmark specification and it
was up to the test sponsor to develop a compliant implementation. This is a non-trivial
task. It requires expertise in a variety of areas including software development and
performance tuning and optimization. Additionally, it requires a deep understanding of
the benchmark specification and the complex subtleties of its many constraints. The net
effect can be a prohibitively high bar for otherwise-would-be test sponsors.

TPC Express looks to minimize the cost of entry by utilizing a TPC-provided bench-
mark kit. With a TPC-provided kit there is no longer a need to carefully craft language
to express all of the implementation requirements. There is no longer a need for the test
sponsor to have an intimate knowledge of all of the benchmark constraints and their
interrelationships. All of this can be captured and expressed cleanly and concisely in the
form of code.

In addition to avoiding these complexities, a TPC-provided kit saves development
time and costs on the test sponsor’s part. This allows a test sponsor to get an environment
up and running with less up-front investment. TPCx–HS [16] was the first Express
benchmark released by the TPC, with 4 official results published so far.

4.1.1 Software Components of TPCx-V Benchmark Kit
The TPCx-V benchmark specification will be published when the TPC General Council
approves the benchmark for official release, and will have a detailed description of the
architecture and components of the TPCx-V benchmark kit. We will provide a brief
description here.

There are five software components to the TPCx-V benchmark driver; four that are
used to drive the workload and one to provide reporting functionality:

• Prime client: The prime client (vdriver.jar) is the benchmark execution controller.
It coordinates and controls the behavior of the CE client(s), MEE clients(s) and Tier
A SUT connectors through RMI connections to each.

• CE client: The client emulator (vce.jar) is responsible for emulating customers,
requesting a service of the brokerage house, providing the necessary input for the
requested service, etc.

• MEE client: The market exchange emulator (vmee.jar) is responsible for emulating
the stock exchanges by providing services to the brokerage house, performing
requested trades, providing market activity updates, etc.
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• Tier A SUT connector: The Tier A SUT connector (vconnector.jar) receives the
transaction requests from the CE and MEE clients and sends queries to its Tier B
databases.

• Reporter: The reporter (reporter.jar) performs the self-validation checks against the
transaction log data and (optionally) creates an executive summary report.

Figure 3 illustrates the four benchmark driver components and the communication
paths between them. The RMI communication is used to control and coordinate bench‐
mark runtime behavior while the actual benchmark transactions occur on separate
network ports and/or hosts.

Fig. 3. Software architecture (for a single Tile) of the TPCx-V benchmark kit

4.2 Self-validation

In order to minimize the auditing requirements for this benchmark as well as to help the
benchmark user more readily identify run validation errors prior to engaging in a bench‐
mark result audit, the TPCx-V benchmark includes self-validation code in the reporter
that checks as many of the validation requirements as possible. These validation checks
include:

• Sampling interval data: The tpsV sampling data required to create the test run graph
referenced in clause 6.8.2 of the benchmark specification
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• Input mix checks: The input value mix requirements specified in clause 6.5.1 of the
benchmark specification

• Transaction mix checks: The transaction mix requirements specified in clause 6.4.1
of the benchmark specification

• Average response time checks: Checks that the average response time for each type
of transaction is not greater than the corresponding 90th % response time per clause
6.6.1.4 of the benchmark specification

• Group measured throughput checks: Checks that the Group measured throughput
for each phase is between 98 % and 102 % of the expected throughput for that group
per clause 6.8.1.3 of the benchmark specification

The reporter writes out a list of each of the validation checks performed and whether
the benchmark result passed or failed that check.

4.3 Self-audit

One of the longstanding positive characteristics of all TPC benchmarks is the rigor that
is applied in validating each implementation. Traditionally this is accomplished via
independent third party review performed by TPC-Certified auditors.

The TPC Express model requires the use of a TPC-provided kit. As a result, all
implementations now have much more in common. Thus it is feasible to include a set
of tools with the kit that automate, or at least facilitate, some of the required audit tasks.
Since the TPC-provided kit limits which DBMS may be used, tools have be written to
facilitate many audit tasks related to the database.

• The database schema tool captures details of all user-defined types in every database.
• The cardinality tool captures the current cardinality of all TPCx-V tables in each

database in the testbed. This data is used to validate the state of an initially populated
database, the state of a database prior to any given test run, and it can be used as the
basis for space calculations. Cardinality tests are run in parallel, and the outcomes
are hierarchically rolled up from the individual database level up to the SUT level.

• The atomicity tool is used to validate that commit and rollback control operations
are handled correctly by the DBMS.

• The database population rules and transaction profiles create a set of conditions that
should always be true. The specification defines 3 separate conditions that are to be
evaluated. The consistency tool is used to validate that these three conditions are met
in all databases in the testbed.

• The TPCx-V specification defines isolation levels that must be maintained for each
of the transactions in the workload. Furthermore, it defines three tests that must be
performed to ensure that these required isolation levels are met. The tests purposely
create conflicts between concurrently executing transactions and thereby show the
ability to handle the conflicts correctly. The isolation tool implements the required
tests, captures the necessary data, and reports whether the conditions were met.
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5 Experimental Results with TPCx-V

To illustrate tuning with TPCx-V, we will use two examples: one that compares a non-
varying load with TPCx-V’s elastic load, and one that was run on an untuned configu‐
rations. First, let us briefly consider the configuration used for testing.

5.1 Testbed Configuration

5.1.1 Benchmark
For this set of experiments, we wanted to create as difficult a challenge for the virtual‐
ization platform as we could. So although the server would have normally had 1 or 2
Tiles based on its performance, we built a 5-Tile configuration with 60 VMs. We also
loaded as many LUs as the disk drives had space for, which gave us a total of 800 LUs,
divided into 5 Tiles of 160 LUs each, with each Group 1/2/3/4 having 16/32/48/64 LUs.

5.1.2 Hardware

• HP ProLiant DL580 G7
– 4 Intel(R) Xeon(R) CPU E7- 4870 @ 2.40 GHz processors
– 40 cores/80 threads
– 512 GB of memory

• Two EMC VNX.5700 disk arrays:
– Storage Processors with Intel Xeon Dual Core 5600 CPUs and 18 GB of memory
– 72 SSDs for the tables of DSS VM2s, which have high IOPS requirements
– 112 spinning 15K RPM drives for the tables of OLTP VM3s
– 10 spinning 15K RPM drives for PostgreSQL redo logs

As we will see in Sect. 5.2, the key to optimizing performance for TPCx–V (and
indeed, for a multi-tenant server in the cloud) is to spread the entire load equally across
all the resources. When one tenant is hitting a peak, another one might be experiencing
a low-load period, allowing the system resources to keep up with the demand. Following
this policy, all the data from all the VMs were striped across all the disk drives.

5.1.3 Software
One of the benefits of virtualization is that a virtual computer can be abstracted as a
file, and be moved or copied. A common use of this property is to package and distribute
applications as self-contained virtual appliances. The TPCx–V subcommittee has
created a downloadable VM template in the OVF [4] format with all the necessary
software for the benchmark pre-loaded and pre-configured. Although the use of this
template is not mandatory, using it greatly reduces the benchmark installation time.

The tests were run on VMware vSphere version 6.0, plus the following software
stack required by the benchmark specification:

• Red Hat Enterprise Linux 7.1 (3.10.0-123)
• PostgreSQL 9.3
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• unixODBC-2.3.1-10
• Java jdk1.7.0_71
• TPCx-V source code version 242 from the TPC subversion server

5.1.4 Virtual Machines
The 60 VMs were cloned from the OVF file described in Sect. 5.1.3. We used PowerCLI
[17] scripts to customize each VM to have a different number of virtual CPUs and a
different memory size. vmdk virtual disks were created in advance, and were added to
Tier B database VMs using PowerCLI scripts.

5.2 Results

Valid TPCx–V test runs are 10-Phase, 2-hours runs. But we also ran 2 h without any
Phase changes to have a baseline for investigating the effects of load elasticity.

To aid in locating the plotted graphs (Excel series) in the figures, the legend for each
figure lists the series in the order that they appear at the leftmost portion of the figure.

5.2.1 Grouping VMs by Group or by Tile
To study the profile of individual components of the System Under test (SUT),
throughput values can be calculated and plotted for each VM of each Group of each
Tile. In our configuration, that would mean 60 such graphs. However, that is unneces‐
sary. Recall from Sect. 3.3.3 that the benchmark kit guarantees that all 5 Tiles have the
same throughput using a deck of cards method. The same is true for the 4 Groups of a
Tile: the kit ensures that their offered loads and resulting throughputs conform exactly
to the specified ratios. Similarly, the DSS and OLTP VMs will receive the proper ratio
of transactions. So, if we have the overall throughput plot, adding the per-Tile throughput
plots is not interesting: each is receiving exactly 1/5th of the overall load. But grouping
the results on a per-Group basis presents interesting results since each Group receives
a different proportion of the load, which varies for the group from Phase to Phase.

5.2.2 Single Phase Results
For the single-Phase tests, the load contribution of Groups 1/2/3/4 remained constant at
10 % / 20 % / 30 % / 40 % as seen in Fig. 4. Although this avoids elasticity and is clearly
not acceptable for publishing TPCx–V results, we ran this test to create a baseline to
study the effects of elasticity. For Fig. 4, we have added the contributions from Group
1 s of all 5 Tiles together. We can see that these 5 Groups together contribute 10 % of
the overall throughput. Groups 2, 3, and 4 similarly contribute 20 %, 30 %, and 40 %,
respectively. Figure 5 shows that the sum of CPU utilizations of all 60 VMs, which
averages to 5,777 %. The server has 40 cores/80 hyperthreads, and reports an average
utilization of 73 % for each thread for a total of 5840 %. The small difference is due to
some processing inside the hypervisor that is not recorded by the VMs. The overall I/O
rate is 47K IOPS. When we add the CPU utilizations of all Group 1 VMs together, they
amount to 550 %, around 1/10th of the total as expected from these Groups contributing
1/10th of the total throughput. Figure 7 shows a similar behavior for Groups 2–4.
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Fig. 4. Run without elasticity: throughputs of 5 Groups 1/2/3/4, summed over the 5 Tiles

Fig. 5. Total CPU usages and I/O rates for run without elasticity

Fig. 6. CPU usage for 3 VMs of Tile 1 Group 1 for run without elasticity

Figure 6 shows the CPU utilizations of the 3 VMs of Tile 1, Group 1. Tier A VM1
has the lowest CPU utilization as expected. Tier B VM2 is also low in CPU utilization
at around 20 % average. Tier B VM3 comes in at around 69 %. The situation is reversed
for I/O where VM2 has 608 reads/sec and 84 writes/sec, whereas VM3 sees only 97
reads/sec and 140 writes/sec.
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Fig. 7. CPU usage summed by Group for run without elasticity

5.3 10-Phase Results

For these runs, we allowed the kit to vary the load offered to each Group based on the
elasticity requirements of the TPCx–V specification. We will study the effects of elas‐
ticity on performance by first reporting the result from runs on an early, unoptimized
configuration. We will show how TPCx–V identified the source of a performance
problem, and will demonstrate the effects of the optimization step.

5.3.1 Results on Unoptimized Configuration
In this early configuration, we had allocated the CPU counts listed in Table 1 for the 12
VMs of each Tile. The throughput of this run was 482 tpsV, which is 91 % of the single-
phase throughput of the run in Sect. 5.2.2. This is a poor result since we want to showcase
how well the virtualization platform can handle the cloud-like variations in load. To see
the source of this performance drop, let us first consider the throughput curves in Fig. 8.
We can see that the overall throughput stays over 500 tpsV until Phase 7, which starts
at minute 72. At this point, when Groups numbered 1 in each Tile reach their peak
demands, we have a slight drop in performance. The drop is more pronounced in Phase
8 when Groups numbered 2 reach their peak. We see in Table 1 that the CPU-heavy
VM3 of Group 1 has 3 virtual CPUs. The CPU utilization graph of T1G1VM1 in

Fig. 8. Overall tpsV and per-Group throughputs
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Fig. 9 (in yellow) shows an average utilization of over 200 % and even hitting 300 %
during Phase 7. If there are any transient peaks, T1G1VM3 may not be able to satisfy
the demand. The situation is more pronounced in Phase 8 for T1G2VM3 (in green) with
4 vCPUs and average utilizations that regularly approach 400 %.

Table 1. virtual CPU counts of VMs

Group Group 1 Group 2 Group 3 Group 4

VM VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3

vCPUs 1 1 3 1 2 4 1 2 6 2 2 6

Fig. 9. CPU utilization of the 8 Tier B VMs of Tile 1 (Color figure online)

Fig. 10. Overall tpsV and per-Group throughputs after optimization
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5.3.2 Optimized Results
We increased the virtual CPU count of VM3s in all Group 1s to 4 vCPUs, and VM3s in
all Group 2s to 5 vCPUs, and repeated the experiment. Figure 11 shows that although
there is a drop in throughput in Phases 8-10, it is not nearly as pronounced as in Fig. 9.
In Fig. 11, we can see that T1G2VM3 can use more than 400 % of CPU time in Phase
8, so allocating 5 virtual CPUs to it ensured that it will always meet transient demand
peaks, as did allocating 4 virtual CPUs to T1G1VM3.

Fig. 11. CPU utilization of the 8 Tier B VMs of Tile 1 after optimization

The throughput of this run was 512 tpsV, 6 % higher than the earlier run, and within
3 % of the run with no elasticity.

6 Performance Analysis of Results

6.1 Overcommitment and Elasticity

Optimizing a configuration for TPCx–V requires CPU overcommitment, a feature in
wide usage in cloud environments. If we add up the CPU counts of all 60 VMs in the
optimized case, we arrive at a total of 165. The server has only 80 hyperthreads. This is
called overcommitment of CPU resources. We cannot expect to have all the VMs
running at max utilization at once. However, allocating only enough virtual CPUs to
handle the average load will leave the VM under-provisioned during its peak demand
periods. So to optimize performance, we need to provision the virtual CPUs of each VM
based on peak demand.
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Overcommitment of virtual CPUs works well when the peak periods of one VM
match up with the low periods of another VM (or the peak demand period of one tenant
in a cloud server coincides with a low demand period of another). TPCx–V emulates
this characteristic. We can see in Fig. 10 that the benchmark injects a nearly constant
overall load, and as long as the virtualization platform is well-optimized, the server
should be able to handle the load despite the wide variations of the load of each VM.

6.2 Hysteresis

The TPC-E workload, which is the origin of the TPCx–V workload, emulates a
brokerage house. For one of its main transactions, Trade-Order, around 20 % of orders
are limit orders, and are deferred until the limit price is reached. In TPCx–V, the limit
price is guaranteed to be reached within 6 min. After running for a while and reaching
steady state, an equilibrium exists where the rate of new limit orders that are deferred
matches exactly the rate of old limit orders that reach their intended price and are
executed. In other words, previously-deferred limit orders make up 20 % of executed
Trade-Result transactions, while 20 % of new Trade-Order transactions are deferred. At
any given point in time, the average number of deferred Trade-Order transactions is
24Xtps. So, for example, running at 186 tps, an average of 37.2 transactions per second
are deferred; and there are an average of 4,464 transactions in the deferred queue, waiting
for their limit price to be reached.

In Fig. 12 we see Tile 1, Group 1transitioning from Phase 6, when it is running at
around 26.6 tps, to Phase 7, where it will eventually run at 186 tps. Its contribution grows
from 5 % to 35 %. But the number of deferred limit orders at the beginning of Phase 7 is
only 24X26.5 = 636. As these orders meet their limits and are completed, their contribu‐
tion to the throughput is not at the same rate that 4,464 transactions in the deferred queue
(corresponding to a 186 tps throughput) would have provided. Hence, we start at 122 tps,
and it takes 6 min for all the limit orders from Phase 6 to be drained, before the Group
runs at its steady state 186 tps for the next 6 min. The situation is reversed in the transi‐
tion to Phase 8 where the Group wants to run at 26 tps again, but has a large backlog of
4,464 limit orders from Phase 7. It takes 6 min before throughput drops to the desired level.

Fig. 12. Overall tpsV and per-Group throughputs after optimization
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Although each Group has to deal with this hysteresis effect at every Phase transition,
the too-high and too-low hysteresis effects of the various Groups should match up and
cancel out, and the overall throughput should not be impacted if the SUT is well-
optimized and the virtualization platform is efficient.

7 Future Work

Potential areas of future work with the TPCx-V benchmark involve expanding the data‐
base coverage of the benchmark and leveraging the workload and its characteristics to
measure the performance of cloud and cloud infrastructure environments.

7.1 Database Coverage

Adding support to the TPCx-V kit for databases other than PostgreSQL would make the
kit attractive to a wider audience. The use of the ODBC client API in the kit was a design
choice to make it easier to add other databases. A logical next step would be to add
support for the MySQL interface to the TPCx-V kit. Having this interface in the kit
would immediately add support for many database environments such as MySQL,
MariaDB, Percona, and others that support the MySQL interface. Having the ability to
drive a TPCx-V load against these additional database environments would make the
TPCx-V kit and benchmark interesting to individuals, academic institutions, and compa‐
nies that are more familiar with these other database environments.

7.2 Cloud and Cloud Infrastructure

The TPCx-V workload and kit were designed to drive and measure the performance of
multiple distinct database environments. The TPCx-V benchmark specification states
that all these environments must be run on a single virtualized server. However, the
usage of the TPCx-V kit could be expanded to measure the performance of environments
where the Tiles/Groups/VMs can be placed on multiple servers, and the elasticity
features of the benchmark can be used to measure the efficiency of the testbed in
deploying and possibly migrating VMs and applications as the load changes and need
arises. In other words, a better emulation of cloud data centers and cloud infrastructure.
Also, since the TPCx-V kit does not inherently need to know the location or placement
of the databases it is driving, the kit could be used to drive elastic database workloads
in public cloud environments where the details of the underlying implementation are
typically abstracted.
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