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Abstract We construct exact localised solutions of the PT-symmetric Gross-
Pitaevskii equation with an attractive cubic nonlinearity. The trapping potential has
the form of two δ-function wells, where one well loses particles while the other
one is fed with atoms at an equal rate. The parameters of the constructed solutions
are expressible in terms of the roots of a system of two transcendental algebraic
equations. We also furnish a simple analytical treatment of the linear Schrödinger
equation with the PT -symmetric double-δ potential.

1 Introduction

We consider the Gross-Pitaevskii equation,

i Ψt + Ψxx − V (x)Ψ + g|Ψ |2Ψ = 0, (1)

with g ≥ 0 and the PT -symmetric potential

V (x) = U (x) + iW (x), U (−x) = U (x), W (−x) = −W (x). (2)

The system (1)–(2) was employed to model the dynamics of the self-gravitating
boson condensate trapped in a confining potential U (x). The imaginary coefficient
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iW accounts for the particle leakage—in the region whereW (x) < 0—and the com-
pensatory injection of atoms in the region where W (x) > 0 [1, 2].

The same equation was used to describe the stationary light beam propagation
in the self-focusing Kerr medium. In the optical context, t stands for the scaled
propagation distance while Ψ is the complex electric-field envelope. The real part of
the potential (U ) is associated with the refractive index guiding, while the imaginary
part (W ) gives the optical gain and loss distribution [3].

We are interested in localised solutions of this equation, that is, solutions with the
asymptotic behaviour Ψ (x, t) → 0 as x → ±∞. We also require that

∞∫

−∞
|Ψ |2dx = 1. (3)

In the context of leaking condensate with injection, the normalisation condition (3)
implies that the total number of particles in the condensate is kept at a constant level.

In this study, we consider stationary solutions of the form Ψ (x, t) = ψ(x)eiκ
2t ,

where κ2 is real and the spatial part of the eigenfunction obeys

− ψxx + V (x)ψ − gψ |ψ |2 = −κ2ψ. (4)

Assuming that the potential satisfies V (x) → 0 as x → ±∞, the coefficient κ2 has
to be taken positive. For definiteness, we choose the real quantity κ to be positive as
well. Equation (4) will be solved under the normalisation constraint

∞∫

−∞
|ψ |2dx = 1, (5)

stemming from the condition (3).
Our study will be confined to the PT -symmetric solutions of equation (4), that is,

solutions satisfying
ψ(−x) = ψ∗(x). (6)

Typically, stationary solutions supported by PT -symmetric potentials can be brought
to the form (6) by a suitable constant phase shift.

With an eye to the forthcoming study of the jamming anomaly [4], we consider a
PT -symmetric potential of the special form:

V (x) = −(1 − iγ )δ(x + L/2) − (1 + iγ )δ(x − L/2). (7)

Here γ ≥ 0 and L > 0. The V (x) is an idealised potential consisting of two infinitely
deep wells. The right-hand well is leaking particles, while its left-hand counterpart
is injected with atoms at an equal constant rate γ .
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Previous analyses of the double-delta cubic Gross-Pitaevskii equation focused
mainly on the situation with no gain or loss—that is, on the potential (7) with γ = 0.
Using a combination of analytical and numerical tools, Gaididei, Mingaleev and
Christiansen [5] demonstrated the spontaneous breaking of the left-right symmetry
by localised solutions. Subsequently, Jackson and Weinstein [6] performed geomet-
ric analysis of the symmetry breaking and classified the underlying bifurcations of
stationary solutions. Besides the absence of gain and loss, the mathematical setting
of [6] was different from our present problem in that the normalisation condition (3)
was not imposed there.

Studies of the PT -symmetric model with γ �= 0 were pioneered by Znojil and
Jakubský who analysed the linear Schrödinger equation with point-like gain and loss
(but no wells) on a finite interval [7, 8]. The double-well potential (7) was proposed
by Uncu and Demiralp [9] whose paper also focussed on the linear equation—
yet on the infinite line. Cartarius and Wunner [2, 10] considered both linear and
nonlinear Gross-Pitaevskii model. The numerical study of [2, 10] identified a branch
of localised nonlinear modes bifurcating from eigenfunctions of the linear operator
in (4).

In this contribution, we get an analytical handle on the PT -symmetric double-δ
problem, linear and, most importantly, nonlinear. In the linear situation (equation (4)
with g = 0)weprovide amathematical interpretation and verification of the numerics
reported in [2, 10]. In the nonlinear case (g �= 0), the analytical consideration allows
us to advance beyond the numerical conclusions of the previous authors. In particular,
we demonstrate the existence of infinite families of localised solutions with multiple
humps and dips between the two potential singularities.

2 Linear Schrödinger Equation with Complex Double-δ
Well Potential

Relegating the analysis of the full nonlinear equation (4), (7) to the subsequent
sections, here we consider its linear particular case (g = 0). The normalised eigen-
function pertaining to the eigenvalue −κ2 is given by

ψ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eiφ+eκL−iφ

2
√
N

eκx , x ≤ −L/2;
cosh(κx+iφ)√

N
, −L/2 ≤ x ≤ L/2;

e−iφ+eκL+iφ

2
√
N

e−κx , x ≥ L/2.

Here κ is a positive root of the transcendental equation [2, 9, 10]

e−2κL = γ 2 + (2κ − 1)2

γ 2 + 1
, (8)
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while φ and N are readily expressible through κ . The secular equation (8) was solved
numerically in [2, 10]. Here, we analyse it without resorting to the help of computer.

To this end, we express γ as an explicit function of κ:

γ 2 = 4κ(1 − κ)

1 − e−2κL
− 1. (9)

Instead of evaluating eigenvalues κ as the parameter γ > 0 is varied, we identify the
range of positive κ where the function γ 2(κ) is positive. We prove the following

Proposition 1 Regardless of the value of L, there is a finite interval of κ where
γ 2 > 0. When L < 2, the interval is 0 < κ < κ(b), and when L > 2, the interval is
κ(a) < κ < κ(b). Here κ(a) and κ(b) are dependent on L, with 0 < κ(a) < κ(b) < 1.

Proof The inequality γ 2 > 0 amounts to k1 < κ < k2, where the endpoints of the
interval (k1, k2) also depend on κ:

k1(κ) = 1 − e−κL

2
, k2(κ) = 1 + e−κL

2
.

If L < 2, the quantity k1(κ) is smaller than κ for all κ > 0. If, on the other hand, L >

2, the graph of the function y = k1(κ) lies above y = κ in the interval 0 ≤ κ < κ(a)

and below y = κ in the interval κ(a) < κ < ∞. Here κ(a) = κ(a)(L) is the (unique)
root of the equation k1(κ) = κ .

On the other hand, the function k2(κ) is greater than κ when 0 < κ < κ(b) and
smaller than κ when κ > κ(b). Here κ(b) = κ(b)(L) is the root of the equation k2(κ) =
κ . (There is a unique root for all L > 0.)

Note that in the range of the L values where the root κ(a) exists—that is, in the
region L > 2—we have κ(a) < κ(b). Since κ2(1) < 1, we have κ(b) < 1. �

Our next result concerns the number of eigenvalues arising for various γ . Again,
instead of counting branches of the function κ(γ ), we identify regions of monotonic-
ity of the inverse function, γ (κ). These are separated by the points of local extrema
(stationary points).

Proposition 2 When L < 1, the function γ (κ) is monotonically decreasing as κ

changes from 0 to κ(b), with κ(b) defined above. When L > 1, the function γ (κ) has
a single local maximum at κ = κc (where κc < κ(b)).

Proof Stationary points of the function γ 2(κ) are given by zeros of

dγ 2

dκ
= (1 − 2κ)

2κL sinh2(Lκ)
[ f (κ) − g(κ)] , (10)

where

f = e2Lκ − 1

2Lκ
, g = 1 − κ

1 − 2κ
.
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We consider (10) for 0 < κ < 1. (Note that κ = 1/2 is not a zero of dγ 2/dκ .) When
1/2 < κ < 1, the function g is strictly negative; hence stationary points may only
lie in the interval 0 < κ < 1/2.

Assume, first, that L < 1 and expand f (κ) and g(κ) in powers of κ:

f = 1 +
∞∑
n=1

fnκ
n, fn = (2L)n

(n + 1)! (11)

g = 1 +
∞∑
n=1

gnκ
n, gn = 2n−1. (12)

The series (11) converges in the entire complex plane of κ while the series (12)
converges in the disc |κ| < 1/2. Noting that fn < gn for all n, we conclude that
f (κ) < g(κ) for all 0 < κ < 1/2. Equation (10) implies then that for any L < 1,
the function γ 2(κ) decreases monotonically as κ changes from 0 to 1.

Let now L > 1. The values of f and g at the origin are equal while their slopes
are not:

d f

dκ

∣∣∣∣
κ=0

= L ,
dg

dκ

∣∣∣∣
κ=0

= 1.

Consequently, the graph of f (κ) lies above the graph of g(κ) as long as κ remains
sufficiently close to the origin.At the opposite endof the interval, that is, in the vicinity
of κ = 1/2, the graph of g(κ) lies above f (κ). Therefore the equation f (κ) = g(κ)

has (at least one) root κc in the interval 0 < κ < 1/2. This root emerges from the
point κ = 0 as soon as L becomes greater than 1.

To show that no additional stationary points can emerge as L is further increased,
assume the contrary—assume that a pair of stationary points is born as L passes
through a critical value L∗ (where L∗ > 1). At the bifurcation value L = L∗, the
newborn stationary points are equal; we denote them κ∗. When L = L∗, the equality

d f

dκ

∣∣∣∣
κ=κ∗

= dg

dκ

∣∣∣∣
κ=κ∗

(13)

should be fulfilled along with

f (κ∗) = g(κ∗). (14)

Solving the system (13), (14) yields L∗ = (1 − 2κ∗)−1. This can be written as

L∗ = 1 + q, (15)
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Fig. 1 The function (9)
plotted for several
representative values of L . In
the interval of κ where
γ 2 ≥ 0, the function gives
the square of the gain-loss
coefficient. The inverse
function κ(γ 2) is obtained
simply by flipping the part of
the graph with γ 2 ≥ 0 about
the γ 2 = κ line (see Fig. 2)

where we have defined q = 2κ∗L∗. Making use of (15), equation (14) becomes

eq − 1

q
= 1 + q

2
.

Expanding the left-hand side in powers of q one can readily check that it is greater
than the right-hand side for anyq > 0; hence the above equality can never be satisfied.
This proves that the stationary point κc of the function γ 2(κ) is single.

Since dγ 2/dκ|κ=0 > 0, the stationary point κc is a maximum. �

The above propositions are illustrated by Fig. 1 which shows γ 2(κ) with L < 1
(a); 1 < L < 2 (b); L = 2 (c), and L > 2 (d).

Our conclusions are sufficient to determine the shape of the inverse function, κ(γ ).
When L < 1, there is a single positive branch of κ (γ )which decays, monotonically,
as γ is increased from zero to γ0 (Fig. 2a). As γ reaches γ0, the quantity κ drops to
zero and the eigenvalue −κ2 collides with the continuous spectrum. Since γ 2(0) =
2/L − 1, we can obtain the critical value of γ exactly: γ0 = γ (0) = √

2/L − 1.
When L is taken between 1 and 2, the function κ (γ ) has two branches (Fig. 2b).

Along themonotonically decreasingbranch,κ drops fromκ(b) toκc asγ is raised from
0 to γc. In addition, there is a monotonically increasing branch with γ0 < γ < γc.
Here, κ grows from 0 to κc as γ is increased from γ0 to γc. The two eigenvalues
merge and become complex as γ is raised through γc.

Finally, when L ≥ 2, themonotonically decreasing and increasing branch of κ(γ )

exist over the same interval 0 < γ < γc (Fig. 2c, d). As γ grows from 0 to γc, one
branch of κ grows from κ(a) to κc whereas the other one decreases from κ(b) to κc.

These conclusions are in agreement with the numerical results of [2, 10].
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Fig. 2 Positive roots of (8)
versus the gain-loss
coefficient γ , for several
representative values of L

3 PT-Symmetric Gross-Pitaevskii Equation with
Variable-Depth Wells

Proceeding to the nonlinear situation (g �= 0), it is convenient to transform the sta-
tionary equation (4) to

ϕττ + λ [δ(τ + T ) + δ(τ − T )]ϕ − iη[δ(τ + T ) − δ(τ − T )]ϕ + 2ϕ|ϕ|2 = ϕ,

(16)
with

τ = κx, T = κ
L

2
, ϕ =

√
g

2

ψ

κ
, λ = 1

κ
, η = γ

κ
.

Here η ≥ 0, λ > 0, and T > 0. In equation (16) the chemical potential has been
normalised to unity at the expense of making the well depths, λ, variable. The nor-
malisation constraint (5) acquires the form

∞∫

−∞
|ϕ|2dτ = λ

2
g, (17)

while the symmetry condition (6) translates into

ϕ∗(τ ) = ϕ(−τ). (18)
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Consider a solution ϕ(τ) of the equation (16) and denote N = ∫ |ϕ|2dτ the cor-
responding number of particles. The number of particles is a function of λ, η and
T : N = N (λ, η, T ). Setting g to a particular value, the constraint (17) defines a
two-dimensional surface in the (λ, η, T ) space:

1

λ
N (λ, η, T ) = g

2
.

For any fixed L , the “nonlinear eigenvalue” κ = λ−1 becomes an (implicit) function
of γ :

κN

(
1

κ
,
γ

κ
,
κL

2

)
= g

2
.

The purpose of our study is to construct the solutionϕ(τ) and determine this function.
It is fitting to note here that the equation (4) with g = 0 can also be transformed

to the form (16)—where one just needs to drop the cubic term. In this case, the
number of particles is not fixed though; that is, the constraint (17) does not need
to be satisfied. The relation between κ and γ—equation (8)—arises as a secular
equation for an eigenvalue problem.

4 Particle Moving in a Mexican-Hat Potential

In the external region |τ | ≥ T , the PT -symmetric solutions with the boundary con-
ditions ϕ(±∞) = 0 have the form

ϕ(τ) = e−iχ sech(τ + μ), τ ≤ −T ;
ϕ(τ) = eiχ sech(τ − μ), τ ≥ T . (19)

Here μ is an arbitrary real value, positive or negative, determining the amplitude of
ϕ, and χ is an arbitrary real phase. The solution ϕ(τ) in the internal region |τ | ≤ T
will be matched to the values of (19) at the endpoints τ = ±T :

ϕ(±T ) = e±iχ sech(μ − T ). (20)

Integrating (16) across the singularities and using (19) once again, we obtain the
matching conditions for the derivatives as well:

ϕ̇|τ=T−0 = eiχ sech(μ − T )[iη + λ + tanh(μ − T )],
ϕ̇|τ=−T+0 = e−iχ sech(μ − T )[iη − λ − tanh(μ − T )]. (21)

Here the overdot stands for the differentiation with respect to τ .
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To construct the solution between −T and T it is convenient to interpret the
modulus and the phase of ϕ as polar coordinates of a particle on the plane,

ϕ = reiθ ,

and the coordinate τ as time. The newtonian particle moves in the radial-symmetric
mexican hat-shaped potential U (r) = 1

2 (r
4 − r2). Hence the angular momentum

� = θ̇r2 (22)

and the energy

E = ṙ2

2
+Ueff(r), Ueff = �2

2r2
+ r4 − r2

2
(23)

are conserved. The effective potential for the radial motion is shown in Fig. 3a.
The particle starts its motion at time τ = −T and ends at τ = T . The boundary

conditions follow from (20) and (21):

r(±T ) = sech(μ − T ), (24)

ṙ(−T ) = −ṙ(T ) = −(λ + ξ)sech(μ − T ), (25)

θ(±T ) = ±χ, (26)

θ̇ (±T ) = η, (27)

where
ξ = tanh(μ − T ).

The parameter ξ satisfyingλ + ξ > 0 requires a negative initial velocity, ṙ(−T ) < 0,
and λ + ξ < 0 corresponds to an outward initial motion: ṙ(−T ) > 0.

Equations (22) and (27) imply that the conserved angularmomentumhas a positive
value:

Fig. 3 The left panel shows Ueff (r), the effective potential of radial motion defined in (23). Two
arrows indicate two possible directions of motion of the fictitious particle. Whether the particle
starts with a positive or negative radial velocity, it will run into a turning point. Dropping the quartic
term from (23) gives the effective potential for the linear equation (right panel). This time the
turning point will only be run into if ṙ(−T ) < 0
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� = η sech2(μ − T ) (28)

and so θ grows as τ varies from −T to T . (Hence χ > 0.) The energy of the particle
is found by substituting (24)–(25) in (23):

E = 1

2
(1 − ξ 2)

[
(λ + ξ)2 − ξ 2 + η2

]
. (29)

Since the energy (23) includes the square of ṙ but not ṙ itself, the information
about the initial direction of motion becomes lost in the expression (29). In fact, by
using the value of energy instead of the boundary condition (25) we are acquiring
spurious solutions. These solutions have the wrong sign of ṙ(τ ) as τ → −T + 0 and
do not satisfy (25). Fortunately we remember that the sign of ṙ |τ→−T+0 should be
opposite to that of λ + ξ . This simple rule will be used to filter out the spurious roots
in Sect. 7.

The radial trajectory r(τ ) for a PT -symmetric solution satisfying (18) should be
described by an even function and the trajectory should have a turning point at τ = 0:
ṙ(0) = 0. The separable equation (23) has two even solutions,

r2A(τ ) = (α − β)cn2
(√

2α + β − 1τ, k
)

+ β (30)

and
r2B(τ ) = (α − β)cn2

(
K − √

2α + β − 1τ, k
)

+ β. (31)

The Jacobi-function solutions (30) and (31) are parametrised by two parameters, α
and β, where α ≥ β ≥ 0 and α + β > 1. These are related to � and E via

�2 = αβ(α + β − 1), (32)

2E = (α + β)(α + β − 1) − αβ. (33)

The elliptic modulus k is given by

k2 = α − β

2α + β − 1
,

and K (k) in (31) is the complete elliptic integral of the first kind. Eliminating �

between (28) and (32), and E between (29) and (33) we get

η2(1 − ξ 2)2 = αβ(α + β − 1), (34)

(1 − ξ 2)(λ2 + η2 + 2λξ) = (α + β)(α + β − 1) − αβ. (35)

The solution rA is maximum-centred and rB is minimum-centred (see Fig. 4).
For the purposes of our study, it is convenient to have a relation between α, β,

and ξ not involving the gain-loss parameter. Eliminating η2 between (34) and (35)
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Fig. 4 Two even solutions
of equation (23). a The
maximum-centred solution,
equation (30). b The
minimum-centred solution,
equation (31). In both panels
α = 2 and β = 0.5

we obtain
(λ + ξ)2 = S2, (36)

where

S2 = (α + β)(α + β − 1) − αβ

1 − ξ 2
− αβ(α + β − 1)

(1 − ξ 2)2
+ ξ 2. (37)

The structural relation (36)–(37) will prove useful in what follows.

5 Boundary Conditions and Normalisation Constraint

The boundary conditions (24) give a transcendental equation

β + (α − β)cn2 (y, k) = 1 − ξ 2, (38a)

for the rA and
β + (α − β)cn2 (K − y, k) = 1 − ξ 2 (38b)

for the rB solution. Here
y = √

2α + β − 1T .

Note that there is a simple correspondence between equations (38a) and (38b).
Namely, if we assume that α, β and ξ in (38a) and (38b) are given, and denote
ỹ the value of y satisfying (38b), then y = K − ỹ will satisfy (38a).

The linear (g = 0) Schrödinger equation (4) with the potential (7) corresponds to
the newtonian particle moving in the effective potential without the quartic barrier at
large r . In this case the particle can only run into a turning point if ṙ(−T ) < 0 (see
Fig. 3b). On the other hand, when the quartic barrier is present, the particle will turn
no matter whether ṙ(−T ) is negative or positive (Fig. 3a).

Consider, first, the solution rA(τ ) and assume that ṙ(−T ) > 0. The simplest tra-
jectory satisfying the boundary conditions (24)–(25) describes the particle starting
with a positive radial velocity at τ = −T , reaching the maximum r2 = α at τ = 0
and returning to the starting point at τ = T . We use T0 to denote the corresponding
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return time, T . Coexisting with this solution are longer trajectories that reach the
maximum r2 = α not once but 2n + 1 times (n ≥ 1), namely, at τ = 2mΘ , where

Θ = K (k)√
2α + β − 1

(39)

is the half-period of the function cn2(
√
2α + β − 1τ, k) andm = 0,±1,±2, ...,±n.

These trajectories have the same values of α and β (the same apogee and perigee)
but different return times, T = T0 + 2nΘ . Since the trajectory reaches its apogee
2n + 1 times and pays 2n visits to its minimum value of r2 = β, we are referring to
these solutions as (2n + 1)-hump, 2n-dip nonlinear modes.

In contrast to these, the rA solution with ṙ(−T ) < 0 will be visiting its minimum
2n times (n ≥ 1), at τ = (1 − 2n)Θ, ...(2n − 1)Θ , but will only pay 2n − 1 visits to
its maximum. These trajectories will be classified as 2n-dip, (2n − 1)-hump modes.
The corresponding return times are T = 2nΘ − T0.

Turning to theminimum-centred solutions,we consider trajectorieswith ṙ(−T ) <

0 first. The simplest rB solution describes the particle startingwith a negative velocity
at τ = −T , reaching its perigee r2 = β at τ = 0 and returning to the starting point
at τ = T , where T = Θ − T0 and T0 was introduced above. The rB solutions with
more bounces visit the minimum r not once but 2n + 1 times (n ≥ 1), at τ = 2mΘ ,
m = 0,±1, ...,±n. The corresponding return time is T = (2n + 1)Θ − T0. With
their 2n + 1 local minima and 2n maxima, these solutions are referred to as the
(2n + 1)-dip, 2n-hump nonlinear modes.

Finally, the rB solution with ṙ(−T ) > 0 reaches its apogee 2n times (n ≥ 1), that
is, at τ = (2m + 1)Θ , with m = −n − 1, ..., n. The return time is T = T0 + (2n −
1)Θ . The trajectory pays 2n − 1 visits to its minimum value of r2 = β; hence we
classify this solution as the 2n hump, (2n − 1)-dip modes.

For the fixed α and β, the return time T0 is given by the smallest positive root of
(38a). (Note that T0 < Θ .) Other roots of this equation are T0 + 2Θ , T0 + 4Θ , ...,
and 2Θ − T0, 4Θ − T0, .... On the other hand, the smallest positive root of (38b) is
Θ − T0, with other roots being 3Θ − T0, 5Θ − T0, ..., and T0 + Θ , T0 + 3Θ , ....

The normalised return time
T

Θ
= y

K (k)
(40)

provides a simple tool for the identification of the nonlinear mode. Indeed, an rA
solution with T/Θ between 2n and 2n + 1 has 2n + 1 humps, 2n dips and ṙ(−T ) >

0. On the other hand, an rA solution with T/Θ between 2n − 1 and 2n has 2n dips,
2n − 1 humps and ṙ(−T ) < 0. Similarly, an rB solution will have 2n humps, 2n − 1
dips, and ṙ(−T ) > 0—if T/Θ lies between 2n − 1 and 2n, or 2n + 1 dips, 2n humps,
and ṙ(−T ) < 0—if T/Θ is between 2n and 2n + 1.
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Evaluating the number of particles

N =
−T∫

−∞
sech2(τ + μ)dτ +

T∫

−T

r2Adτ +
∞∫

T

sech2(τ − μ)dτ

and substituting in the normalisation constraint (17), the constraint is transformed
into

ζA(α, β, y, λ) = ξ, (41)

where the function ζA is defined by

ζA = α + β − 1√
2α + β − 1

y − 1 + g

4
λ − √

2α + β − 1E [am (y)] . (42)

Here E[am(y)] = E[am(y), k] is the incomplete elliptic integral of the second kind,

E[am(y), k] =
am(y)∫

0

√
1 − k2 sin2 θdθ =

y∫

0

dn2(w, k)dw,

and am(y) is the elliptic amplitude. (To simplify the notation,we omit the dependence
on the elliptic modulus k in (42).)

A similar procedure involving the solution rB yields

ζB(α, β, y, λ) = ξ, (43)

where we have introduced

ζB = α + β − 1√
2α + β − 1

y − 1 + g

4
λ − √

2α + β − 1
{
E

(π

2

)
− E [am (K − y)]

}
.

(44)
Here E(π/2) = E(π/2, k) is the complete elliptic integral of the second kind.

Note that unlike the pair of equations (38a) and (38b), the normalisation con-
straints (41) and (43) are not related by the transformation y = K − ỹ. Therefore,
the solution of the system (38b)+(43) cannot be reduced to solving (38a)+(41). The
“rA” and “rB” systems have to be considered independently.

6 Reduction to the Linear Schrödinger Equation

Before proceeding to the analysis of the systems (38a)+(41) and (38b)+(43), it is
instructive to verify that the transcendental equation (8) for the linearGross-Pitaevskii
equation is recovered as the g → 0 limit of (38b).
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Assume that κ is fixed and g is varied in the stationary Gross-Pitaevskii equa-
tion (4). When g is small, the solution of (4) bifurcating from the solution of the
corresponding linear Schrödinger equation remains of order 1. The corresponding
solution ϕ of equation (16) will then have to be of order g1/2. This means, in par-
ticular, that for all |τ | ≥ T , the “outer” solution (19) will have to approach zero as
g → 0. In order to have

∞∫

T

sech2(τ − μ)dτ → 0 as g → 0,

one has to require that tanh(μ − T ) → −1 as g → 0. Defining σ by

sech2(μ − T ) = σ 2g, σ = O(1), (45)

the quantity ξ = tanh(μ − T ) will have the following asymptotic behaviour:

ξ = −1 + σ 2

2
g + O(g2).

Letting
α = 1 + A1g + A2g

2 + · · · , β = B1g + B2g
2 + · · ·

and substituting these expansions in (34) and (35) gives

A1 = Aσ 2, B1 = Bσ 2,

where

A = λ2 − 2λ + η2, B = −1

2
A + 1

2

√
A2 + 4η2. (46)

Turning to the transcendental equation (38b), we note that the elliptic modulus of
the Jacobi cosine tends to 1 as g → 0:

k2 = 1 − (A1 + 2B1)g + · · ·

In this limit, the elliptic function approaches a hyperbolic sine:

cn(K − y, k) = k ′ sinh y + O(k ′3), k ′2 = 1 − k2.

In equation (38b), y = √
2α + β − 1T . With

√
2α + β − 1 = 1 + O(g), the tran-

scendental equation reduces to

B + (A + 2B) sinh2 T = 1. (47)
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Substituting for A and B from (46), equation (47) gives

e−4T = (λ − 2)2 + η2

λ2 + η2
. (48)

Transforming to γ = η/λ, κ = 1/λ and L = 2λT , we recover the transcendental
equation (8).

Finally, we consider the normalisation constraint (43). As k → 1, the elliptic
integral of the second kind has the following asymptotic behaviour:

E
(π

2

)
− E [am(K − y)] = k ′2

y∫

0

du

dn2(u, k)
= k ′2

2

(
y + sinh 2y

2

)
+ O

(
k ′4) .

Making use of this expansion, we reduce equation (43) to

2 − 2AT +
√
A2 + 4η2 sinh(2T ) = λ

σ 2
. (49)

Given λ, η and T , equation (49) furnishes the coefficient σ in the relation (45). The
relation (45), in turn, determines the amplitude of the solution ϕ corresponding to
the nonlinearity parameter g.

7 Transcendental Equations

In this section we assume that L , the distance between the potential wells in the
original Gross-Pitaevskii equation (4), and g, the coefficient of the nonlinearity, are
fixed. On the other hand, the gain-loss coefficient γ and the “nonlinear eigenvalue”
κ (and hence the scaling factor λ = κ−1, the scaled gain-loss η = γ κ−1, and the
dimensionlesswell-separation distance 2T = κL) are allowed to vary. The parameter
ξ—the parameter defining the amplitude of the nonlinear mode—has not been fixed
either.

Substituting ξ from the normalisation constraint (41) to the boundary condition
(38a) we obtain a transcendental equation

ζ 2
A + β + (α − β)cn2y − 1 = 0 (50a)

for the parameters of the rA solution. In a similar way, substituting from (43) to (38b)
we obtain an equation

ζ 2
B + β + (α − β)cn2 (K − y) − 1 = 0 (50b)
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for the solution rB . Note that the functions ζA and ζB , defined in (42) and (44), depend
on λ as a parameter.

Substituting ξ from the constraint (41) to the structural relation (36) gives another
transcendental equation for the maximum-centred nonlinear mode:

(λ + ζA)
2 − S2A = 0. (51a)

Here we are using a new notation SA for the combination that was previously denoted
S and given by (37). In a similarway, substituting ξ from (43) to (36) gives an equation
for the minimum-centred (the rB) solution:

(λ + ζB)2 − S2B = 0, (51b)

where the same combination S (defined in (37)) has been renamed SB . (We are
using two different notations for the same combination in order to be able to set
the variable S to two different values later.) Like equations (50a) and (50b) before,
equations (51a) and (51b) include λ as a parameter.

Eliminating 1 − ξ 2 from the expression (37) by means of the boundary condition
(38a), we specify SA:

S2A = (α + β)(α + β − 1) − αβ

β + (α − β)cn2y
− αβ(α + β − 1)[

β + (α − β)cn2y
]2 + 1 − β − (α − β)cn2y.

(52a)
In order to specify SB , we use the boundary condition (38b) instead:

S2B = (α + β)(α + β − 1) − αβ

β + (α − β)cn2 (K − y)
− αβ(α + β − 1)[

β + (α − β)cn2 (K − y)
]2

+1 − β − (α − β)cn2 (K − y) . (52b)

The system (50a), (51a) with ζA as in (42) and SA as in (52a), is a system of two
equations for two parameters of the solution rA (the “A-system”). For the given L ,
g and λ, the A-system has one or several roots (αn, βn).

Not all roots define the Gross-Pitaevskii solitons though; some roots are spurious.
To filter the spurious roots out, we use the simple rule formulated in Sect. 4. First, we
calculate the normalised return time (40) and establishwhether 2n < T/Θ < 2n + 1
or 2n − 1 < T/Θ < 2n for some natural n. The former situation corresponds to
ṙ(−T ) > 0 and the latter to ṙ(−T ) < 0. Evaluating the amplitude parameter ξ by
means of (42), we then discard the roots with the sign of λ + ξ coincident with the
sign of ṙ(−T ).

Having thus validated the genuine roots for a range of λ values, we can use (38a)
to express 1 − ξ 2 through α(λ) and β(λ), and then employ equation (34) to obtain
η(λ). Transforming from λ and η to κ = 1/λ and γ = η/λ, we arrive at



Localised Nonlinear Modes in the PT-Symmetric Double-Delta … 139

γA(κ) =
√

αβ(α + β − 1)κ

β + (α − β)cn2
(√

2α + β − 1κL/2
) . (53a)

The transcendental system (50b), (51b), (44), (52b) (the “B-system”) is not equiv-
alent to the A-system and has to be solved independently. Having determined the
roots α(λ), β(λ) and validated them in the same way as we did with the A-roots
before, we obtain an analogue of the formula (53a):

γB(κ) =
√

αβ(α + β − 1)κ

β + (α − β)cn2
(
K − √

2α + β − 1κL/2
) . (53b)

The curve γ (κ)—or, equivalently, κ(γ )—will constitute the central result of our
analysis. Each root (αn, βn) of the A- or B-system will contribute a branch to this
curve. Before presenting the κ(γ ) relationships for various L and g, we note a useful
symmetry of the A- and B-systems.

8 The Dip- and Hump-Adding Transformation

Consider the rA solution and assume (α, β) is a root of the system (50a), (51a), (42),
(52a) with parameters g, T and λ. The A-system with shifted parameters

T̃ = T + 2Θ, λ̃ = λ, g̃ = g + Δg,

Δg = 8

λ

[√
2α + β − 1E − α + β − 1√

2α + β − 1
K

]
, (54)

will have the same root (α, β). Here Θ is given by (39), while K = K (k) and
E = E(k) are the complete elliptic integrals of the first and second kind, respectively.

The mapping (54) adds two units to the normalised return time T/Θ: T/Θ →
T/Θ + 2. Therefore (54) adds two humps and two dips to the A-mode with 2n dips
and 2n ± 1 humps. Note that the expression in the square brackets in (54) is equal
to

∫ Θ

0 r2Adτ ; hence Δg > 0 for any α and β. Therefore the map generates an infinite
sequence of nonlinearity strengths g, g + Δg, g + 2Δg, ... supporting hump-centred
nonlinear modes with an increasing number of lateral crests.

Turning to the B-solution and the system (50b), (51b), (44), (52b), the same
mapping (54) transforms this system into itself. As a result of the application of the
mapping (54), the B-solutionwith 2n humps and2n ± 1dips acquires twonewhumps
and two new dips. The expression in the square brackets in (54) equals

∫ Θ

0 r2Bdτ ;
hence we have Δg > 0 in the case of the B solution as well. As with the A-solution
before, the map (54) generates an infinite sequence of multicrest (yet dip-centred)
modes.
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9 PT-Symmetric Localised Nonlinear Modes

The A- and B-system of two transcendental equations were solved numerically.
We employed a path-following algorithm with a newtonian iteration to obtain the
root (α, β) as κ was varied with g and L fixed. The initial guess for the continuation
processwas provided either by the analysis of intersecting graphs of two simultaneous
equations on the (α, β)-plane, or by transplanting a known root to a different set of
g and L by means of the mapping (54).

Figure5a traces a branch of the B-modes on the (γ, κ)-plane. Here, the parameters
(L = 2.2 and g = 1) correspond to Fig. 1a in [2]. These are nonlinear modes with
exactly one dip—at x = 0. The spatial structure of the mode is illustrated by Fig. 6a.

As it was established numerically in [2] and corroborated analytically in Sect. 6,
the modes making up this branch are nonlinear deformations of the eigenfunctions
of the linear Schrödinger equation (equation (4) with g = 0). This kinship is clearly
visible in Fig. 6a where the nonlinear (g = 1) mode is plotted next to the normalized
linear (g = 0) eigenfunction with the same value of γ .

In contrast to the above B branch, the A-modes exist onlywhen g exceeds a certain
finite threshold; these have no relation to the g = 0 eigenfunctions. A single-humped
A-mode is exemplified by Fig. 6b, with the corresponding κ(γ ) branch appearing in
Fig. 5b.

Finally, the bottom panels of Figs. 5 and 6 correspond to nonlinear modes with
multiple humps and dips. The κ(γ ) curve in Fig. 5c pertains to a B-mode with
three dips and two humps between the potential wells. This branch results by the
κ-continuation from a root (α0, β0) of the B-system with κ equal to some κ0 and

Fig. 5 “Nonlinear
eigenvalues” κ versus the
gain-loss coefficient γ for
several sets of g and L . The
red curves correspond to the
A- and the blue ones to the
B-modes. Solutions marked
by the black dots are shown
in Fig. 6. In these plots,
g = 1, L = 2.2 (a); g = 5,
L = 2 (b); g ≈ 12.12,
L ≈ 8.26 (c); g ≈ 12.38,
L ≈ 9.35 (d). Note a break
in the horizontal axis in (b)

(a) (b)

(c) (d)
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(a) (b)

(c) (d)

Fig. 6 Solid curves depict nonlinear localisedmodes at representative points along the κ(γ ) curves.
(These points are marked by black dots in the corresponding panels of Fig. 5.) The B-modes are
shown in blue and the A-modes in red. Vertical dotted lines indicate the positions of the potential
wells. The dashed curve in (a) renders the eigenfunction of the equation (4) with g = 0 where L
and γ are set equal to the L and γ of the nonlinear mode shown in the same panel. Note that the
three-hump mode in (d) has four and not two local minima inside the (−L , L) interval. The two
lateral dips are pressed close to the wells but are nevertheless discernible by zooming in

g, T obtained by a once-off application of the map (54). A typical nonlinear mode
arising along this branch is shown in Fig. 6c.

Figure5d traces a branch of the multi-hump A-modes. Solutions on this branch
have three humps and four dips situated between the wells; an example is in Fig. 6d.
The starting point for the branch was suggested by the graphical analysis of the
equations making up the A-system.

10 Summary and Conclusions

The double-δ well potential, where one well gains and the other one loses parti-
cles, furnishes one of the simplest Gross-Pitaevskii models employed in the studies
of boson condensates. However the information on its nonlinear modes is scarce
and based entirely on numerical solutions. The purpose of this contribution was to
formulate an analytical procedure for the construction of localised nonlinear modes.

We started with the linear Schrödinger equation with the PT -symmetric double-
delta well potential and provided a simple analytical classification of its bound states.

In the nonlinear situation, our procedure reduces the construction of localised
modes to finding roots of a system of two simultaneous algebraic equations involving
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elliptic integrals and Jacobi functions. We have classified the nonlinear modes under
two broad classes: those with a maximum of |ψ | at the centre and those centred
on a minimum of |ψ |. Accordingly, there are transcendental systems of two types
(referred to as the A- and B-systems). Our construction procedure is supplemented
with an “identification” algorithm allowing to relate the number of crests and troughs
of the nonlinear mode to the root of the transcendental system.We have established a
correspondence between localisedmodes in systemswith different distances between
the wells and different nonlinearity strengths.

Our procedure has been illustrated by the construction of branches of A- and
B-modes for several values of g and L .
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