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Abstract Negative energy states are appeared in the structure of complex
Hamiltonian dynamics. These states also play the main role in Krein space quantiza-
tion to achieve a naturally renormalized theory. Here, wewill have an overlook on the
role of negative energy states in complex mechanics and Krein space. In a previous
work, we have shown that the method of complex mechanics provides us some extra
wave functions within complex spacetime. We have supported our method of includ-
ing negative energy states, by referring to the theory of Krein space quantization that
by taking the full set of Dirac solutions is able to remove the infinities of quantum
field theory (QFT), naturally. Our main proposal here is that particles and antiparti-
cles should be treated as physical entities with positive energy instead of considering
antiparticles with negative energy and the unphysical particle and antiparticle with
negative energy should be introduced as the complement of the sets of solutions for
Dirac equation. Therefore, we infer that the Krein space method which is supposed
as a pure mathematical approach, has root on the strong foundations of Hamilton-
Jacobi equations and therefore on classical dynamics and it can successfully explain
the reason why the renormalization procedure in QFT works.

1 Introduction

In recent years, complex spacetime and complexmechanics has been studied by some
physicists. In fact, complex spacetime originates fromcomplex time, as first proposed
by Naschie [1], according to a special case of E∞ theory [2–6] and then applied
by Yang in a series of papers [7–16]. The complex aspects of quantum mechanics
has been also dealt with by Bender (see for example [17]).The complex spacetime
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proposed by Yang is in the form xμ = xμR + ixμI , xμR , xμI ∈ R; xμ = (ct, x, y, z),
showing that quantum mechanics is nothing but an extension of classical mechanics
to complex domain and relativistic quantum mechanics is an extension of special
relativity to the complex domain, so that considering both relativistic and quantum
effects, theKlein-Gordon equation couldbederived as a special formof theHamilton-
Jacobi (H-J) equation. Also, the complex spacetime which is a natural consequence
of including quantum effects in the relativistic mechanics, is a bridge connecting the
causality in special relativity and the non-locality in quantum mechanics, and the
entangled state causing the faster-than-light links, is a consequence of an entangled
energy plus a quantum potential, i.e. E2 + 2m0c2Q, resulting in a constant quantity
[15]. Furthermore, it has been shown that negative energy states are appeared in the
structure of complex Hamiltonian dynamics [15].

In a previous paper, we have shown that discussing the complex spacetime in a
relativistic entangled “space-time” state leads to 12 extra wave functions than the
four solutions of Dirac equation for a free particle [18], and then we have presented
a new physical interpretation, realizing particles and antiparticles as physical enti-
ties with positive energy instead of considering antiparticles with negative energy
[19], and introducing unphysical particle and antiparticle with negative energy, as the
complement of the sets of solutions for Dirac equation, in accordance to the concept
of Krein space quantization, which is a naturally renormalized theory and negative
energy states play the main role in its concept [20–42]. Here, our main infer will
focus on the connection between complex quantum Hamiltonian dynamics, stan-
dard quantum field theory and Krein space quantization emphasizing the point that
the Krein space method which is supposed as a pure mathematical approach, has
root on the strong foundations of Hamilton-Jacobi equations and therefore on clas-
sical dynamics and it can successfully explain the reason why the renormalization
procedure in QFT works.

2 A Brief Review on Krein Space Quantization

Here, we have a brief review on the problem of divergence in quantum field theory
and its elimination using the method of Krein space quantization. In this method,
the auxiliary negative frequency states have been utilized, the modes of which do
not interact with the physical states and are not affected by the physical boundary
conditions. In Krein space the quantum scalar field is defined as follows [22, 25]:

φ(x) = 1√
2
[φp(x) + φn(x)],

where

φp(x) =
∫

d3k[a(k)up(k, x) + a†(k)u∗
p(k, x)],
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φn(x) =
∫

d3k[b(k)un(k, x) + b†(k)u∗
n(k, x)].

a(k) and b(k) are two independent operators and

up(k, x) = eik · x−iwt√
(2π)32w

= e−ik · x√
(2π)32w

, un(k, x) = e−ik · x+iwt√
(2π)32w

= eik · x√
(2π)32w

,

where w(k) = k0 = (k.k + m2)
1
2 ≥ 0. The positive mode φp is the scalar field

operator as was used in the usual QFT and φn plays the role of the regularization
field. The time-ordered product is defined as:

iGT (x, x′) = 〈0 | Tφ(x)φ(x′) | 0〉 = 
GF(x, x′),

where GF(x, x′) is the Feynman Green function.
As we know, the origin of divergences in standard quantum field theory lies in the

singularity of the Green’s function. The divergence appears in the imaginary part of
the Feynman propagator, and the real part is convergent [32]:

GP
F(x, x′) = − 1

8π
δ(σ0) + m2

8π
θ(σ0)

⎡
⎣J1

(√
2m2σ0

)
− iN1

(√
2m2σ0

)
√
2m2σ0

⎤
⎦

− im2

4π2
θ(−σ0)

K1

(√
2m2(−σ0)

)
√
2m2(−σ0)

where, J1, N1 and K1 are Bessel functions:

J1(z) = z

2

∞∑
s=0

(−1)s

s!(s + 1)!
[ z
2

]2s
, lim

z→0

J1(z)

z
= 1

2

N1(z) = 2J1(z) log
z

2
− 2

z
, lim

z→0

N1(z)

z
= − 2

π

1

z2

K1(z) = −π

2
[J1(iz) + iN1(iz)], lim

z→0

K1(z)

z
= 1

z2

Consideration of negative frequency states removes singularity of the Green func-
tion with exception of delta function singularity:

GT (x, x′) = − 1

8π
δ(σ0) + m2

8π
θ(σ0)

J1
(√

2m2σ0

)
√
2m2σ0

, σ0 ≥ 0
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However, considering the quantum metric fluctuations removes the latter singu-
larity:

〈GT (x, x′)〉 = − 1

8π

√
π

2〈σ 2
1 〉 exp

(
− σ 2

0

2〈σ 2
1 〉

)
+ m2

8π
θ(σ0)

J1
(√

2m2σ0

)
√
2m2σ0

. (1)

where 〈σ 2
1 〉 is related to the density of gravitons. When σ0 = 0, due to the metric

quantum fluctuation 〈σ 2
1 〉 �= 0, and we have

〈GT (0)〉 = − 1

8π

√
π

2〈σ 2
1 〉 + m2

16π
.

By using the Fourier transformation, we obtain [41]

〈G̃T (p)〉 = G̃T (p) + PP
m2

p2(p2 − m2)

However, in the one-loop approximation, the contribution of delta function is neg-
ligible and the Green function in Krein space quantization appearing in the transition
amplitude is

〈G̃T (p)〉 |one−loop ≡ G̃T (p) |one−loop ≡ PP
m2

p2(p2 − m2)

where G̃1(p) is the Fourier transformation of the first part of the Green function (1)
and its explicit form is not needed for our discussion here. In a previous paper, it has
proved that for the λϕ4 theory in the one-loop approximation, the Green function in
Krein space quantization, which appear in the s-channel contribution of transition
amplitude, is the second part of (1) [25]. That means in this approximation, the
contribution of the first part (i.e. quantummetric fluctuation) is negligible. It is worth
mentioning that in order to improve the UV behavior in relativistic higher-derivative
correction theories, the second part of (1) has been used by some authors [43, 44].
This part also appears in the super-symmetry theory [45].

The time-order product of the spinor field is:

〈ST (x − x′)〉 ≡ (i � ∂ + m)〈GT (x, x′)〉

And the time-ordered product propagator in the Feynman gauge for the vector
field in Krein space is given by:

〈DT
μν(x, x

′)〉 = −ημν〈GT (x, x′)〉.



The Relationship Between Complex Quantum Hamiltonian Dynamics … 349

3 Essential Graphs of QED in Krein Space Quantization

In the standard quantum electrodynamics (QED) the divergent quantities are found
in the electron self-energy, the vacuum polarization and the vertex graphs. In the
standard QED, we have [46]:

ΣHi(p) = e2

8π2

{
ln

(
−Λ2

m2

) (
2m − � p

2

)
+

(
2m − 3

4
� p

)

− � p
2

[
m4 − (p2)2

(p2)2
ln

(
1 − p2

m2

)]
+ 2m

[
m2 − p2

p2
ln

(
1 − p2

m2

)]}
.

and

ΠHi(k
2) = e2

12π2
ln

(
Λ2

m2

)
− e2

2π2

1∫

0

dx(1 − x)x ln

(
1 − x(1 − x)

k2

m2

)
.

and

FHi
1 (q2)q2→0 = − e2

16π2
ln

(
Λ2

m2

)
− e2q2

12π2m2

(
ln

m

μ
− 3

8

)
.

Calculating in Krein space, we get:

Σkr(p) = e2

8π2

{
ln

(
− p2

m2

)(
2m − � p

2

)
− � p

2

(
m2

p2

)

− � p
2

[
m4 − (p2)2

(p2)2
ln

(
1 − p2

m2

)]
+ 2m

[
m2 − p2

p2
ln

(
1 − p2

m2

)]}
.

and

Π kr
μν(k

2) = (k2gμν − kμkν)Πkr(k
2),

where

Πkr(k
2) = − e2

12π2 ln

(
− k2

m2

)
− e2

6π2
k2

m2 − e2

2π2

1∫

0

dx(1 − x)x ln

(
1 − x(1 − x)

k2

m2

)
.
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and

Λ
μ

kr(p
′, p) = e2

8π

∫
d4k

(2π)4
γ ν( � p′− � k + m)γ μ( � p− � k + m)γνPP

1

k2 − μ2

PP

(
m2

(p′ − k)2 − m2

)
PP

(
m2

(p − k)2 − m2

)
= Fkr

1 (q2)γ μ + iσμνqν

2m
Fkr
2 (q2).

Fkr
2 (q2) in the two different method is the same and Fkr

1 (q2) in the Krein regular-
ization is:

Fkr
1 (q2)q2→0 = − e2q2

16π2m2
+ 3e2q2

64π2m2
− e2q2

12π2m2

(
ln

m

μ
− 3

8

)
,

where q2 = (p − p′)2. The singular terms of 3 standard graphs of QED are replaced
with the two first terms in the resulted graphs inKrein space quantization [47, 48]. By
using the value ofF1(q2) and the photon self energy inKrein space, the value of Lamb
Shift is calculated to be 1018.19 MHz, whereas in standard QED it is 1052.1 MHz;
and its experimental value has been given as 1057.8 MHz. The small differences
may be because of neglecting the linear quantum gravitational effect and working in
the one-loop approximation [39]. It should be noted that for QED, the Krein space
calculations just eliminate the singularity in the theory without changing the standard
physical contents i.e. in calculations of graphs, the unphysical states are eliminated
in the external lines and are introduced only in the propagators and eliminate the
divergence of the theory automatically.

4 Consequences of Complex Spacetime in a Relativistic
Entangled “Space-Time” State

In a paper by Yang [15], it has been shown that the general form of energy can be
written as two sets of positive and negative energies:

E(t) = ±
√
k20 − 2m0c2Q(t) = ±

√
(m0c2)2 + c2p2 − 2m0c2Q(t) ≡ ±E± (2)

where Q(t) is quantum potential and is responsible for the quantum mechanical
behavior of particles. It is clear that for any time t, there are two momenta (p >

0, p < 0) and two energies (E+ > 0,E− < 0), and in this general form of energy,
the quantum potential Q(t) is nonzero.

Considering Q(t) = 0,Q(t) �= 0 and discussing the complex space-time in a rel-
ativistic entangled “space-time” state, we have realized 16 wave functions i.e. 12
extra ones than the four solutions of Dirac equation for a free particle [18]:
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ψ1 = Ce
i
�

(Et−p · r) (E > 0, p > 0); ψ2 = Ce
i
�

(Et−(−p) · r) (E > 0, p < 0)

ψ3 = Ce
i
�

((−E)t−p · r) (E < 0, p > 0); ψ4 = Ce
i
�

((−E)t−(−p) · r) (E < 0, p < 0)

ψ5 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)C−e− i
�
p · r/� (E+ > 0, p > 0)

ψ6 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)C−e− i
�

(−p) · r/� (E+ > 0, p < 0)

ψ7 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)C−e− i
�
p · r/� (E− < 0, p > 0)

ψ8 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)C−e− i
�

(−p) · r/� (E− < 0, p < 0)

ψ9 = C+
0 e

i(E+/�)t(C+e
i
�
p · r/� + C−e− i

�
p · r/�)(E+ > 0, p > 0)

ψ10 = C+
0 e

i(E+/�)t(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E+ > 0, p < 0)

ψ11 = C+
0 e

i(E−/�)t(C+e
i
�
p · r/� + C−e− i

�
p · r/�) (E− < 0, p > 0)

ψ12 = C+
0 e

i(E−/�)t(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E− < 0, p < 0)

ψ13 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)(C+e
i
�
p · r/� + C−e− i

�
p · r/�) (E+ > 0, p > 0)

ψ14 = (C+
0 e

i(E+/�)t + C−
0 e

−i(E+/�)t)(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E+ > 0, p < 0)

ψ15 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)(C+e
i
�
p · r/� + C−e− i

�
p · r/�) (E− < 0, p > 0)

ψ16 = (C+
0 e

i(E−/�)t + C−
0 e

−i(E−/�)t)(C+e
i
�

(−p) · r/� + C−e− i
�

(−p) · r/�) (E− < 0, p < 0)

The above mentioned wave functions represent different entanglements of parti-
cles and antiparticles. In [18], we have argued that the entanglement of two particles
or two antiparticles could be done only with the opposite momenta and the entan-
glement of particle and antiparticle could be done only with the same momenta,
where the latter is in contradiction with experiments. Since empirical experiments
have shown the quantum correlation at a distance of a particle-antiparticle system
like kaon and antikaon system which are entwined. Therefore, introducing a parallel
approach we corrected all the being results, considering the point that something
was missed there. According to the theory of Dirac, antiparticles are believed to be
particles of negative energy. But, due to the fact that antiparticles are detectable, so
the physical antiparticles must be of positive energies. Moreover, according to (2)
there are both positive and negative energy states. However, it seems that taking the
negative energies as antiparticles, is not covering all the underlying physics [19].
So, we proposed that it is rational to accept that positive energy belongs to physical
particles and negative energy belongs to unphysical particles. Then, we deduced that
the solutions of Dirac equation describe both physical particles and antiparticles with
positive energy and both unphysical particles and antiparticles with negative energy.
Consequently, we modified the descriptions of wave functions ψ1, ψ2, . . . , ψ16 and
as an application and verification of unphysical negative energy states, we referred
to two famous paradoxes of physics, EPR and Klein [18]. In 1929, Klein [49] calcu-
lated the reflection and transmission coefficients for an incident beam of electrons
of energy E, falling on a potential barrier of strength V0. He found out that the unex-
pected amount of reflected electrons or transmitted electronswith a steady rate causes
paradoxical results. TreatingKlein’s paradoxwith full set of Dirac solutions i.e. using
the unphysical negative energy states in addition to physical positive energy states,
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we have removed the Klein’s paradox without the need of any further explanations
or justifications like backwardly moving electrons and gain equal values for reflected
and transmitted electrons and positrons [18, 19, 50]. Also, in [18], we have explained
that the correct and unique solution to Einstein-Podolsky-Rosen (EPR) paradox [51],
can also be verified due to the new results based on quantum Hamiltonian dynamics
approach, i.e. the unique solution to the original version of EPR paradox is a particle
and its antiparticle moving in opposite direction.

As an interesting result, we observe that negative energy solutions necessarily
appear within the structure of the theory of complex quantumHamiltonian dynamics
and their interpretation as unphysical particles and antiparticles is vital for achieving
consistence results.

5 Discussion About the Relationship Between Complex
Hamiltonian Dynamics and Krein Space Quantization

In this part, we want to establish the connection between the Sects. 2, 3 and 4, in
order to discuss about the relationship between complex Hamiltonian dynamics and
Krein space quantization. As told before, negative energy states are appeared in the
structure of complex Hamiltonian dynamics. On the other hand, negative energy
states play the main role in Krein space quantization approach to achieve a naturally
renormalized theory. In this method, the auxiliary negative frequency states have
been utilized, the modes of which do not interact with the physical states and are
not affected by the physical boundary conditions and since it is similar to Pauli-
Villars regularization, so it is called the “Krein regularization”, too. Considering the
QED in Krein space quantization, it has been shown that the theory is automatically
regularized [39]. Calculation of the three primitive divergent integrals, the vacuum
polarization, electron self energy and vertex function usingKrein spacemethod leads
to finite values, since the infrared and ultraviolet divergencies do not appear. Also,
this method could be easily generalized to non-Abelian gauge theory and quantum
gravity in the background field method, and could be used as an alternative way for
solving the non-renormalizability of quantum gravity in the linear approximation.
However, since Krein space quantization is a purely mathematical theory and its
appearance and extension i.e. applying negative energy states is based on a historical
background and not a strong theoretical foundation, so the results have been under
debate by most of the physicists, up to now.

But, whereas Krein quantization is a pure mathematical approach, complex quan-
tum Hamiltonian dynamics is based on the strong foundations of Hamilton-Jacobi
equations and therefore on classical dynamics. The negative energy solutions nec-
essarily appear within the structure of the theory of complex quantum Hamiltonian
dynamics and as we referred in this paper, their interpretation as unphysical parti-
cles and antiparticles is vital for achieving consistence results. Due to the theory of
Dirac, antiparticles are believed to be particles of negative energy. But, according to
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the fact that antiparticles are detectable, so the physical antiparticles must be of pos-
itive energies i.e. taking the negative energies as antiparticles, is not covering all the
underlying Physics [19]. Then, our main proposal in this paper is due to the results
of Sect. 4, in which we deduced that particles and antiparticles should be realized
as physical entities with positive energy instead of considering antiparticles with
negative energy, and also unphysical particle and antiparticle with negative energy
should be introduced as the complement of the sets of solutions for Dirac equation.

Now, Comparing the two approaches i.e. complex quantum Hamiltonian dynam-
ics and Krein space quantization we can point out to the existence of a connection
between quantum Hamiltonian dynamics, standard quantum field theory, and Krein
space quantization. Aswe know, there are some gaps between the theories of classical
mechanics, quantum mechanics, special relativity, Relativistic quantum mechanics,
standard quantum field theory and quantum field theory in Krein space. However, the
theory of complex quantumHamiltonian dynamics has shown that quantummechan-
ics is nothing but the extension of classical mechanics into complex domain, so that
in the viewpoint of complex H-J theory, quantum mechanics does not seem strange
anymore and simplifies into an understandable theory. Also, the complex spacetime
is a natural consequence of including quantum effects in the relativistic mechanics,
and is a bridge connecting the causality in special relativity and the non-locality in
quantum mechanics, i.e. extending special relativity to the complex domain leads
to relativistic quantum mechanics. On the other hand, Krein space quantization is a
parallel approach and without sufficient and strong base to quantum field theory in
order to show and explain the hidden part of the theory, which is purposely omitted
by physicists and then has led to infinities in QFT. In other words, in the viewpoint
of Krein space quantization, the procedure of ugly mathematics of renormalization
can be explained by the hidden part of theory i.e. negative energy solutions. How-
ever, it can be seen that the base of Krein space quantization i.e. appearance and
applying negative energy states has root in the theory of complex quantum Hamil-
tonian dynamics. Hence, it seems as if complex quantum Hamiltonian dynamics
can construct a connecting bridge between standard quantum field theory and Krein
space quantization in order to explain the reason for the practical ugly mathematics
of renormalization and provide an answer to the Feynman reply: “A Nobel prize for
hiding the rushes (infinities) under the carpet”?. So, the other important result is that
Krein spacemethod is nothing but an extension of complexmechanics into the theory
of quantum fields and it can successfully explain the reason why the renormalization
procedure in QFT works. So that, it should not be considered as a pure mathematical
approach and it is necessary to devote more efforts to include more physics in the
concept of negative energy states.

It could be inferred here that investigation in complex aspects of quantummechan-
ics and quantum field theory may open the doors to bridge between the being the-
ories in physics and fill their gaps, and as a result our main discussion here is that
negative energies should be considered as important as positive ones, since they con-
tribute in variety of processes and their importance has been pointed out by some
famous physicists, e.g. Feynman has discussed the negative probabilities as viable
concepts in quantumphysics [52, 53] andDirac has replied thatNegative energies and
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probabilities should not be considered as nonsense, since they are well-defined con-
cepts mathematically like a negative sum of money, and important properties of them
can still be used when they are negative [54, 55].

6 Conclusion

Negative energy states are applied in Krein space quantization approach to achieve
a naturally renormalized theory. For example, this theory by taking the full set of
Dirac solutions, is able to remove the propagator Green function’s divergences and
automatically without any normal ordering, to vanish the expected value for vacuum
state energy.

On the other hand, negative energy states are also appeared in the structure of
complex Hamiltonian dynamics. However, whereas Krein quantization is a pure
mathematical approach, complex quantumHamiltonian dynamics is based on strong
foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics.
Due to complex quantum Hamilton-Jacobi theory, complex spacetime is a natural
consequence of including quantum effects in the relativistic mechanics. Character-
izing the complex time involved in an entangled energy state and writing the general
form of energy considering quantum potential, two sets of positive and negative
energies could be realized that are in accordance with Krein space Quantization.
Realizing new states for both positive and negative values of energy and momentum
and then discussing the complex space-time in a relativistic entangled “space-time”
state leading to 12 extra wave functions than the four solutions of Dirac equation
for a free particle, we observed that negative energy solutions necessarily appear
within the structure of the theory of complex quantum Hamiltonian dynamics and
their interpretation as unphysical particles and antiparticles is vital for achieving
consistence results. So, along with a previous investigation [19], we realized parti-
cles and antiparticles as physical entities with positive energy instead of considering
antiparticles with negative energy. Finally, Comparing the two approaches i.e. com-
plex quantum Hamiltonian dynamics and Krein space quantization we concluded
that Krein space method is nothing but an extension of complex mechanics into the
theory of quantum fields and along with the physicists desire, it can successfully
explain the reason why the renormalization procedure in QFT works. Therefore, it
should not be considered as a pure mathematical approach.

The main idea is that investigation in complex aspects of quantum mechanics and
quantum field theory may open the doors to bridge between the being theories in
physics and fill the unavoidable gaps between the theories of classical mechanics,
quantum mechanics, special relativity, relativistic quantum mechanics, and quantum
field theory.
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