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Abstract A short resumé of the essentials of exceptional points of second order is
given. We then concentrate on a discussion of specific features of exceptional points
of third order. While general properties of these singularities have been expounded
extensively in the literature, we here concentrate on some specific aspects, that is
the occurrence of ‘hidden’ or ‘concealed’ third order exceptional points. They occur
under specific circumstances when an apparent second order exceptional point is
accompanied by a third eigenvalue being equal to the other two at the singularity.

1 Introduction

When physical phenomena are described in terms of mathematical functions it is
usually the singularities of such functions that point to particular physical phenomena.
For instance, in scattering theory it is the pole terms in the complex energy plane
of the scattering function that describe resonance phenomena observable at real
energies. During the past two decades a different type of singularities has given
rise to much attention. The Exceptional Points (EPs), so named by Kato [1], are
spectral singularities giving rise to a great variety of physical phenomena. They occur
generically in eigenvalue problems when eigenvalues and eigenfunctions depend on
parameters and are thus potentially encountered in almost any problem of physical
interest. As such they occur in classical as well as in quantum mechanical problems.
In fact, the classical damped harmonic oscillator provides for a prime example being
presented below. While there are numerous classical phenomena, in the literature
most applications and effects seem to relate to quantum mechanical problems. Some
of the more important ones, in our opinion, are briefly described in the following
section.
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In the subsequent section we present a rehash of the basic properties of EPs
followed by a short discussion of some major phenomena associated with EPs. This
part is aimed at the general reader and not at the experts. In Sect. 3 we present a few
special facts and examples in connection with EPs of higher order with an emphasis
on ‘hidden’ third order EPs.

2 Exceptional Points of Second Order

2.1 Formal Properties

Consider one of the simplest problem in classical mechanics: the damped classical
oscillator. In suitable units it is described by the differential equation

ẍ + 2kẋ + ω2x = 0 (1)

with the two linearly independent solutions

x1,2(t) = exp(i ω̃1,2t) where ω̃1,2 = ik ±
√

ω2 − k2. (2)

Obviously, for k = ω the two solutions coalesce and here we encounter an EP in its
simplest form. It is well known that in this case the additional independent solution
bears the factor t being multiplied to the exponential function exp(−kt). In this
context see also [2–5].

We next confine our discussion to the eigenvalues of a two-dimensional matrix
where the direct connection of an EP and the phenomenon of level repulsion is easily
demonstrated. Consider the problem

H(λ) = H0 + λV

=
(

ε1 0
0 ε2

)
+ λ

(
ω1 δ
δ ω2

)
(3)

where the parameters εk and ωk determine the non-interacting resonance energies
Ek = εk + λωk, k = 1, 2 being two crossing lines as a function of λ. Wemay choose
all parameters complex and we require [H0, V ] �= 0 to avoid the problem from being
trivial. Owing to the interaction invoked by the matrix elements δ the two levels do
not cross but repel each other. However, the two levels coalesce at specific values of
λ in the vicinity of the level repulsion, that is at the two EPs

λ1,2 = (ε1 − ε2)

(ω2 − ω1) ± 2iδ
. (4)
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For δ �= 0 the energy levels have a square root singularity as a function of λ and read

E1,2(λ) = 1

2

(
ε1 + ε2 + λ(ω1 + ω2) ±

√
(ω1 − ω2)2 + 4δ2

√
(λ − λ1)(λ − λ2)

)
.

(5)
We use the term coalesce as the pattern is distinctly different from a degeneracy

usually encountered for Hermitian operators. Note that H(λ) is Hermitian if all
parameters in (3) are real. However, in this case, λ1 and λ2 are complex, in other
words, at the EP the Hamiltonian is non-Hermitian. In fact, an EP cannot occur for
a Hermitian matrix or any Hamiltonian. This becomes obvious when looking at the
eigenfunctions. At λ = λ1 there is only one eigenvector which reads (up to a factor)

|φ1〉 =
(+i
1

)
(6)

and similar at λ = λ2

|φ2〉 =
(−i
1

)
. (7)

Since H is non-Hermitian at the EPs, we have to use the bi-orthogonal basis. The
corresponding left hand eigenvector of H are at λ1 and λ2

〈φ̃1,2| = (±i, 1), (8)

respectively. Note that the norm—that is the scalar product 〈φ̃k|φk〉, k = 1, 2—
vanishes which is often referred to as self-orthogonality [6]. Note that, for a (com-
plex) symmetric Hamiltonian as in (3), the eigenvector at the EP is independent of
parameters occurring in (3).

At the EP the difference between a degeneracy and a coalescence is clearly man-
ifested by the occurrence of only one eigenvector instead of the familiar two in the
case of a genuine twofold degeneracy. Note, however, that a non-Hermitian operator
can also have a genuine degeneracy which is, of course, not an EP. The important
point is the converse: a Hermitian operator can never have an EP.

The existence of only one eigenvector with vanishing norm is related to the fact
that for λ = λ1 orλ = λ2 thematrixH(λ) cannot be diagonalised [1]. At these points
the Jordan decomposition reads

H(λ1) = S

(
E(λ1) 1
0 E(λ1)

)
S−1 (9)

with

S =
(
i 2iδ −ω1 +ω2

(ε1 − ε2)δ

1 0

)
(10)
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and E(λ1) being the eigenvalue at the EP. Similar expressions hold at λ = λ2. We
mention that the second column of S is often referred to as an associate vector obeying
(H(λ1) − E(λ1))|ψassoc〉 = |φ1〉.

The consideration of a two dimensional problem covers all aspect of an EP, since
the vanishing of the norm of the eigenvectors allows to reduce a high dimensional
problem approximately to two dimensions in close vicinity of an EP (see for instance
[7]).

2.2 Physical Effects

To the best of our knowledge, the first direct experimental verification of the analytic
properties of an EP has been achieved by theDarmstadt group some fifteen years ago.
In two papers [8] an encircling of the square root branch point was performed using
a microwave cavity. The expected behaviour, i.e. the interchange of the energies as
well as the interchange of the corresponding eigenfunctions including their global
phase change has been verified experimentally. Moreover, the phase difference π/2
between the two components of the eigenstate at the EP (see (6)) has been established
experimentally. There are many more physical effects related to EPs as discussed in
the literature (see a survey e.g. in [9]), the list is still continuously expanding. They
cover classical as well as quantum mechanical problems.

Three more general aspects deserve to be mentioned. The idea of PT -symmetric
Hamiltonians suggested in [10] has given rise to a host of literature during the past
few years. The point of PT -symmetry breaking under parameter variation is an
EP. In other words, the specific non-Hermitian Hamiltonians being symmetric under
the combined action of parity and time reversal can have a real spectrum. In this
case the eigenfunctions are also symmetric under PT . At a particular point of some
suitable parameter the symmetry gets broken, the eigenvalue becomes complex and
the eigenfunction ceases to bePT -symmetric. Usually two real eigenvalues coalesce
and move into the complex plane when such parameter sweeps over the symmetry
breaking point. This point has all characteristics of an EP. Note that owing to the non-
hermiticity from the outset of the Hamiltonian such parameters and in particular the
energy is real at the EP being impossible, as we recall, for a Hermitian Hamiltonian.

The second aspect refers to the combined effect of many EPs in many body
problems. As has been points out many years ago [11] quantum phase transitions are
related to singularities of the partition function. This has been elaborated in detail
using the Lipkin model [12] where the role of EPs and their accumulation in the
thermodynamic limit is demonstrated. Moreover, when such models are perturbed
the onset of chaos, especially in the transitional region, can be understood by the
irregular trajectories of the EPs under a perturbation. The connection between chaos
and EPs in many body problems has been pointed out earlier in [13].

The third aspect, beingmore of theoretical interest, is the role of EPs in approxima-
tion schemes. The Random Phase Approximation, often used in the past to calculate
excited states in a mean field approach [14], yields an approximate Hamiltonian that
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is non-Hermitian. The instability point which occurs when the particle-hole interac-
tion is increased is in fact an EP, where two energies coalesce and then move into
the complex plane. Yet, in some cases, this point can be interpreted as the onset of
a phase transition of the many body system. Being singularities the EPs also affect
the convergence radius of power expansions in, say, a strength parameter. A typical
case in point are the “intruder” states introduced in [15] in a shell model approach
of an effective interaction.

3 Exceptional Points of Third Order

Exceptional points of higher order are possible if sufficient parameters are at one’s
disposal. For the special case of (complex) symmetric matrices the occurrence of
an EPN (N th order EP) requires (N2 + N − 2)/2 parameters for the N-dimensional
matrix, and even more parameters for a more general N-dimensional matrix. As an
implementation in the laboratory would require a very special experimental effort for
N > 3 we restrict ourselves to EP3s. Some general properties have been discussed
in [16, 17] where the latter paper also gives special examples of particular simple
matrices giving rise to an EP3. Here we focus upon the study of some special cases
which we like to denote as concealed EP3: the spectrum has three equal eigenvalues
at some parameter value that seem to appear as an EP2 in addition to an incidentally
coinciding third eigenvalue, whereas for some specific perturbation the three eigen-
values turn out to be an EP3. A situation of this nature occurred in the study of a
Bose system by the Pitaevski equation being a non-linear problem [18].

It is obvious that the spectrum alone of three equal eigenvalues cannot give any
indication as to whether we encounter a degeneracy or an EP of second or third
order. Recall that it is the eigenfunctions that distinguish between a coalescence
and a degeneracy. Related to this is the Jordan form J of the full original matrix
problem involving the interaction between the levels: if J is diagonal the three equal
eigenvalues constitute a true degeneracy, if one element of the (upper) side diagonal
is unity we expect an EP2 and an EP3 if both elements of the side diagonal are unity.

As an example consider the y-dependent eigenvalue problem of the matrix

H =
⎛

⎝
0 1 0
0 0 1
y −2 − y 3

⎞

⎠ . (11)

Its Jordan-decomposition H = SJS−1 yields

J =
⎛

⎝
1 0 0
0 1 − √

1 − y 0
0 0 1 + √

1 − y

⎞

⎠ (12)
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with

S =
⎛

⎝
1 1 − √

1 − y 1 + √
1 − y

1 (1 − √
1 − y)2 (1 + √

1 − y)2

1 (1 − √
1 − y)3 (1 + √

1 − y)3

⎞

⎠ . (13)

At first superficial glance this might appear to be an EP2 as by going around the
branch point at y = 1 the eigenvalues and eigenfunctions simply interchange. An
indication for the richer structure is the rank drop of S at y = 1: the rank drop is 2
while for a genuine EP2 it should be only 1. In fact, when y is put equal to unity from
the outset in H, the Jordan form turns out to be

JH(y=1) =
⎛

⎝
1 1 0
0 1 1
0 0 1

⎞

⎠ (14)

clearly suggesting an EP3. The actual patterns become clear when we perturbH and
consider instead

Hε =
⎛

⎝
ε 1 0
0 0 1
y −2 − y 3

⎞

⎠ . (15)

We expand the eigenvalues of Hε in powers of ε and obtain

E1 = 1 + y

1 − y
ε + O(ε2) (16)

E2 = 1 − √
1 − y + 1 − y − √

(1 − y)3

2(1 − y)2
ε + O(ε2) (17)

E3 = 1 + √
1 − y + 1 − y + √

(1 − y)3

2(1 − y)2
ε + O(ε2) (18)

again confirming our finding from above as long as y �= 1; for y = 1 the expansion
fails. If, however, y is set equal to unity from the outset in Hε we this time obtain the
expansions

E1 = 1 + ε1/3 + O
(
ε2/3

)
(19)

E2 = 1 + exp

(
2πi

3

)
ε1/3 + O

(
ε2/3

)
(20)

E3 = 1 + exp

(
4πi

3

)
ε1/3 + O

(
ε2/3

)
(21)

clearly indicating the sprouting out of the three solutions from the EP3 at y = 1. Any
perturbation of a similar kind yields the same qualitative result, while the coefficients
of the powers of ε may be different.
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There are, however, specific non-generic perturbations of H that do not give rise
to an EP3. If we replace H by H + εPtb where each row of the perturbing matrix
Ptb contains the same number of the same element (say unity) irrespective of their
positionwhile the other elements are zero, then the perturbedmatrixH + εPtb cannot
have an EP3. To show this analytically consider the transformed matrix

S−1(H + εPtb)S = D + ε S−1Ptb S

with D the diagonal form of H and keeping in mind that det[H + εPtb] =
det[S−1(H + εPtb)S]. The first column of S can always be arranged to contain
only unities, hence the first column of the product Ptb S contains likewise the
same element under the condition made for Ptb. As a consequence, the first col-
umn of S−1Ptb S has the form {c, 0, 0}T with c a non-zero number. Thus, also
D + ε S−1Ptb S has this form of the first column (with different first element
c̃ = 1 + εc). The eigenvalues are obtained from the characteristic polynomial in
E, i.e. from det(D + ε S−1Ptb S − E I) = 0 which factors into (c̃ − E) × Q2(E),
with Q2(E) being a second order polynomial yielding an EP2 and making an EP3
impossible.

It may be of interest to contrast the matrix in (11) with the slightly modified form

h =
⎛

⎝
1 0 0
0 0 1

−1 + y −y 2

⎞

⎠ (22)

which has the same spectrum (diagonal form) as H but the corresponding similarity
transformation is now

s =
⎛

⎝
1 0 0
1 (1 − √

1 − y) (1 + √
1 − y)

1 (1 − √
1 − y)2 (1 + √

1 − y)2

⎞

⎠ . (23)

The rank drop of s at y = 1 is now 1, it implies that h has no ‘hidden’ EP3 at the
singularity which is just an EP2. In fact, the Jordan form of h at y = 1 is

Jh(y=1) =
⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ . (24)

Of course, the similarity transformation to obtain this form cannot be identified with
s in (23) by setting y = 1 as s−1 does not exist; as usually in such case s contains an
associate vector.

To summarise: whether or not three equal eigenvalues correspond to a threefold
degeneracy or to a coalescence of twoor even three eigenvalues can only been decided
by looking at the full problem, that is the type of interaction between the three states.
A singularity like the square root behaviour of levels as a function of an external
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parameters must also occur in the eigenfunctions to ensure the characteristics of an
EP. An important criterion is the rank of the matrix listing the three eigenvectors. If
it keeps its full rank when approaching the apparent singularity there is no EP but a
genuine degeneracy, if the rank drop is 1 or 2 there is an EP2 or an EP3, respectively.
This principle can be spun further to higher dimensions implying of course a rapidly
increasing number of different possibilities. While the Jordan decomposition at the
singularity yields all information at the singularity, the physically interesting aspect
is the analytic behaviour when by variation of an external parameter the particular
singularity is approached. Note that such limit is not uniform for the eigenvectors. In
fact, owing to the rank drop of the matrix listing the eigenvectors at the singularity,
its inverse does not exist. It is here where the associate vectors come into play for
the Jordan decomposition.
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