
Physical Aspect of Exceptional Point
in the Liouvillian Dynamics
for a Quantum Lorentz Gas

Kazunari Hashimoto, Kazuki Kanki, Satoshi Tanaka
and Tomio Petrosky

Abstract Physical aspect of the exceptional point in the spectrum of the Liouville-
vonNeumann operator (Liouvillian) is discussed. The examplewe study in this paper
is the weakly-coupled one-dimensional quantum perfect Lorentz gas. The effective
Liouvillian for the system derived by applying the Brillouin-Wigner-Feshbach for-
malism takes non-Hermitian form due to resonance singularity, thus its spectra take
complex values. We find that the complex spectra has two second order exceptional
points in the wavenumber space. As a physical effect of the exceptional points, we
show that the time evolution of the Wigner distribution function is described by the
telegraph equation. The time evolution described by the telegraph equation shows
a shifting motion in space. We also show that mechanism of the shifting motion
completely changes at the exceptional points.

1 Introduction

In modern physics, the importance of non-Hermitian operator as a generator of
motion has been recognized in many area of physics, both on an applied level and on
a fundamental level. A typical example of the appearance of non-Hermitian operator
is in a situation where we discuss irreversible processes. For example, in decaying
processes in unstable systems, the effective Hamiltonian takes a non-Hermitian form
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[1–3].Non-Hermitian operator also plays a central role in PT (parity-time) symmetric
systems [4–7].

In statistical mechanics, the Liouville-von Neumann operator (Liouvillian) gen-
erates time evolution of the distribution function, or of the density matrix [8]. As in
the case of the effective Hamiltonian in open quantum systems, the effective Liou-
villian takes a non-Hermitian form for thermodynamic systems where the intensive
variables and the extensive variables exist in the thermodynamic limit [9].

Among many characteristic properties of the non-Hermitian operator, the appear-
ance of the exceptional points in parameter space is especially interesting and it has
been studied in many contexts in recent years [10–13]. The exceptional point is a
singular point in the parameter space at which both eigenvalues and eigenvectors
coalesce [10]. As a result, the non-Hermitian operator cannot be diagonalized at the
point. Instead, the operator can be reduced to the Jordan block form. In the time evo-
lution of the wave function in the Hamiltonian dynamics, the Jordan block leads to
a linear time dependence besides the usual exponential time behavior as t exp[−γ t]
[11]. Such time behavior at the exceptional point has been studied recently, for exam-
ple, in [12] for an optical microcavity and in [13] for Rabi oscillation.

In our recent study, we have found that the exceptional point also appears in
the spectrum of the Liouvillian for variety of physical systems both in quantum and
classicalmechanics. Such systems include theone-dimensional (1D)quantumperfect
Lorentz gas [14], the two-dimensional classical perfect Lorentz gas [15] and the one-
dimensional polaron system [16]. Although the physics of the exceptional point in
Hamiltoniandynamics has been studied extensively, the studyof the exceptional point
in the Liouvillian dynamics is still in a poor level, as far as the authors knowledge.

Themain purpose of this paper is to report our recent results on the physical effects
of the exceptional points in the Liouvillian dynamics. The example we discuss in this
paper is the weakly-coupled 1D quantum perfect Lorentz gas [14, 15]. The Lorentz
gas is one of the simplest system that have the exceptional point in the spectrum of
the Liouvillian.

In this paper, we shall show that the spectrum of the Liouvillian for the system
has the second order exceptional points in the wavenumber space. We shall discuss
physical effect of the exceptional points by analyzing time evolution of the Wigner
distribution function. We shall show that the second order exceptional point leads to
the telegraph equation in its spatial time evolution. There we shall also show that the
time evolution of the distribution function in space shows a shifting motion, but its
mechanism completely changes at the exceptional points; one is due to asymmetry
of the momentum distribution function, while the other is due to wave propagation
associated to the real part of the complex spectrum.

The structure of the paper is as follows: In Sect. 2, we introduce the model.
In Sect. 3, we summarize essential formulae in the Liouville space description. In
Sect. 4, we briefly summarize the complex spectral representation of the Liouvillian.
In Sect. 5, we derive the effective Liouvillian for the system. In Sect. 6, we show a
solution of the eigenvalue problem of the effective Liouvillian. In Sect. 7, we discuss
the relation between the time evolution of the system and the exceptional points. In
Sect. 8, we give a summary and a concluding remark.
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2 System

We consider a weakly-coupled one-dimensional (1D) quantum Lorentz gas. The
Lorentz gas consists of one light-mass particle (the test particle) with mass m and
N heavy particles with mass M . We suppose that the system is enclosed in a large
1D box of volume L with the periodic boundary condition. The Hamiltonian of the
system is given by

H = H0 + gV = p2

2m
+

N∑

j=1

p2j
2M

+ g
N∑

j=1

1

Ω

∑

n

Vqn e
iqn(x−x j ), (1)

where g is a dimensionless coupling constant, Ω ≡ L/2π and qn ≡ nΔq with
Δq ≡ 1/Ω and n = 0,±1,±2, . . .. The interaction is given by the Fourier expan-
sion of V (|x − x j |) with Vqn = V|qn |, which is assumed to be a short-range repulsive
potential. We assume Vqn is a continuous function at qn = 0 in the continuous limit
Δq → 0, and satisfies the condition O(|qn|3/2) <

∣∣Vqn

∣∣ < O(|qn|1/2) for qn → 0,
in order to avoid a singular transport process characteristic in 1D system. We also
consider the weak-coupling situation (g � 1). In the following analysis, we restrict
our attention to the limitm/M → 0 in which the system is called the perfect Lorentz
gas [17].

In this paper, we shall consider the thermodynamic limit,

L → ∞, N → ∞, c ≡ N

L
= finite, (2)

where c is the concentration of heavy particles. In this limit, we have Δq → 0 and
the wavenumber and the momentum become continuous variables. At an appropriate
stage, we shall replace a summation with an integration and a Kronecker delta δKr

with a Dirac δ-function as

1

Ω

∑

q

→
∫

dq, Ω�δKr (P − P ′) → δ(P − P ′), (3)

with Ω� ≡ Ω/� (Hereafter we use a conventional notation
∑

q for
∑

n and drop the
index n in qn).

In this paper we investigate the time evolution of the reduced density matrix for
the test particle, which is defined as

f (t) ≡ Trhev[ρ(t)], (4)

where ρ(t) is the density matrix for the whole system and Trhev denotes a partial
trace over all heavy particles. We assume that the initial condition of the system is
given by

ρ(0) = f (0) ⊗ ρ
eq
hev, (5)
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where ρ
eq
hev is the Maxwell distribution of the heavy particles with temperature T ,

ρ
eq
hev =

N∏

j=1

exp(−p2j/2MkBT )

Tr[exp(−p2j/2MkBT )] , (6)

where kB is the Boltzmann constant. In the thermodynamic limit the time evolution of
the density matrix associated with the heavy particles is negligible since its deviation
from ρ

eq
hev is proportional to 1/L in this limit, as can be easily shown.

3 The Liouville Space Description

The time evolution of the system is governed by the Liouville-vonNeumann equation
for the density matrix ρ(t),

i
∂

∂t
ρ(t) = LHρ(t). (7)

Here LH is theLiouville-vonNeumannoperator (Liouvillan in short)which is defined
by LHρ ≡ [H, ρ]/�.

To discuss the space and momentum dependence of the distribution of the par-
ticles in parallel with classical mechanics, it is convenient to introduce the Wigner
distribution function:

ρW (X, {X j }, P, {Pj }, t) ≡ 1

LN+1

∑

k,{k j }
ρk,{k j }(P, {Pj }, t)ei(kX+k1X1+···+kN XN ), (8)

which is a quantum analog of the phase space distribution function [9]. Here the
notation {X j } represents a set of variables for the N heavy particles and

ρk,{k j }(P, {Pj }, t) ≡
〈
P + �

2
k,

{
Pj + �

2
k j

}∣∣∣∣ρ(t)

∣∣∣∣P − �

2
k,

{
Pj − �

2
k j

}〉

≡ 〈〈k, {k j }; P, {Pi }|ρ(t)〉〉, (9)

where the single bra-ket vectors stand for vectors in the wave function space and
the double bra-ket vectors stand for vectors in the Liouville space [9]. Here the
“wavenumbers” and the “momenta” in the Wigner representation are defined as

k ≡ p − p′

�
, P ≡ p + p′

2
, (10)

and the Wigner basis is defined by a dyad of two eigenstates of H0 as

|k, {k j }; P, {Pj }〉〉 ≡ |p, {p j }〉〈p′, {p′
j }|. (11)
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We represent a linear operator A in the wave function space as a ket-vector |A〉〉 in
the Liouville space. The inner product of the bra- and ket-vectors is then defined by
〈〈B|A〉〉 = Tr[B†A], where B† is the Hermitian conjugate of a liner operator B. As
a result, it is easy to show that the Wigner basis vectors are normalized with respect
to the box normalization condition

〈〈k,{k j };P,{Pj }|k ′,{k ′
j };P ′,{P ′

j }〉〉

= δKr (k − k ′)δKr (P − P ′)
N∏

j=1

δKr (k j − k ′
j )δ

Kr (Pj − P ′
j ). (12)

4 The Complex Spectral Representation of the Liouvillian

The eigenvalue problem of the Liouvillian is given by

LH |F (ν)
α 〉〉 = Z (ν)

α |F (ν)
α 〉〉, 〈〈F̃ (ν)

α |LH = 〈〈F̃ (ν)
α |Z (ν)

α , (13)

where the indices α and ν specify an eigenstate (especially ν denotes the spatial
correlation subspace (see [9])), and |F (ν)

α 〉〉 and 〈〈F̃ (ν)
α | are right- and left-eigenstates

of the Liouvillian, respectively. We solve the eigenvalue problem of the Liouvil-
lian by using the well-known Brillouin-Wigner-Feshbach formalism with projection
operators P (ν) and Q(ν) satisfying the following relations,

P (ν)L0 = L0P
(ν), P (ν)P (μ) = δν,μ,

∑

ν

P (ν) = ÎN+1, P (ν) + Q(ν) = ÎN+1,

(14)
where ÎN+1 is the unit operator for the N + 1 particle system. By applying these
projection operators on the first equation in (13), we have

Ψ (ν)(Z (ν)
α )P (ν)|F (ν)

α 〉〉 = Z (ν)
α P (ν)|F (ν)

α 〉〉, (15)

where

Ψ (ν)(z) ≡ P (ν)LH P (ν) + P (ν)LH Q
(ν) 1

z − Q(ν)LH Q(ν)
Q(ν)LH P (ν), (16)

is the effective Liouvillian. Its second term is the self-frequency part that corresponds
to the self-energy part of an effective Hamiltonian in the case of the Hamiltonian
operator in the wave function space. The effective Liouvillian is also called the col-
lision operator which is a central object in the kinetic theory in non-equilibrium
statistical mechanics [8, 9]. One can see from its eigenvalue equation (15) that
the collision operator shares the eigenvalues with the Liouvillian. The eigenvalue
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equation of the effective Liouvillian (15) is non-linear, i.e. the effective Liouvillian
itself depends on the eigenvalue.

In terms of the right- and left-eigenstates of the effective Liouvillian Ψ (ν)(z), the
right- and the left-eigenvectors of the original Liouvillian LH are given by

|F (ν)
α 〉〉= [

P (ν) + C (ν)(Z (ν)
α )

]
P (ν)|F (ν)

α 〉〉, 〈〈F̃ (ν)
α |=〈〈F̃ (ν)

α |P (ν)
[
P (ν) + D (ν)(Z (ν)

α )
]
,

(17)

where

C (ν)(z) = 1

z − Q(ν)LH Q(ν)
Q(ν)LH P(ν), D(ν)(z) = P(ν)LH Q(ν) 1

z − Q(ν)LH Q(ν)

(18)

are the creation-of-correlation operator and the destruction-of-correlation operator,
respectively, which are off-diagonal transitions between the Q(ν) subspace and the
P (ν) subspace [9].

It is well-known for an unstable quantum system with a continuous spectrum that
the effective Hamiltonian becomes a non-Hermitian operator due to the resonance
singularity in the self-energy part [1]. Similarly, the effective Liouvillian becomes a
non-Hermitian operator in theLiouville space in the thermodynamic limit.As a result,
the effective Liouvillian has eigenstates with complex eigenvalues that are called
resonance states. The imaginary part of the complex eigenvalue of the Liouvillian
gives a transport coefficient of the system [18].

5 Effective Liouvillian for the System

We apply the general formalism presented above to the weakly-coupled 1D quantum
perfect Lorentz gas. In the weak-coupling situation, the effective Liouvillian can be
approximated up to the second order in g as

Ψ
(k)
2 (z) = P (k)L0P

(k) + g2P (k)LV Q
(k) 1

z − L0
Q(k)LV P

(k). (19)

Here we define the projection operators as

P (k) ≡ 1

ΩN+1
�

∑

P,{Pj }
|k, {0 j }; P, {Pj }〉〉〈〈k, {0 j }; P, {Pj }|, (20)

and Q(k) ≡ 1 − P (k), where we have used the notation {0 j } to indicate that all
wavenumbers associated to the heavy particle are zero. For the projection opera-
tor P (k), we have
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P (k)L0P
(k)|k, {0 j }; P, {Pj }〉〉 = kP

m
|k, {0 j }; P, {Pj }〉〉, (21)

and

P (k)gLV P
(k) = 0, (22)

because of the condition V0 = 0.
We focus our attention on the test particle, then we trace out the variables for the

heavy particles. We also take the limit m/M → 0 to obtain the perfect Lorentz gas.
Thus we define the reduced effective Liouvillian for the 1D quantum perfect Lorentz
gas as

ψ(k)(z) ≡ lim
m/M→0

Trhev[Ψ (k)
2 (z)ρeq

hev]. (23)

Expression of a matrix element of the reduced effective Liouvillian in the Wigner
representation is given by

〈〈k; P|ψ(k)(z)|k; P ′〉〉 =
[
kP

m
− 2πg2c

�2

1

Ω

∑

q 
=0

|Vq |2∂�q/2
P

1

z − (k − q)P/m
∂

�q/2
P

]

×δΩ�
(P − P ′), (24)

where we have dropped the variables for the heavy particles on theWigner basis, and
∂

�q/2
P ≡ η̂

�q/2
P − η̂

−�q/2
P with η̂

�q/2
P f (P) = f (P + �q/2). Note that the expression

(24) does not depend on the temperature of the heavy particles T . This is due to
the limit of the perfect Lorentz gas m/M → 0 where there is no energy exchange
between the test particle and the heavy particles.

For the reduced effective Liouvillian, we write the eigenvalue problem as

ψ(k)(z(k)
α )|u(k)

α 〉〉 = z(k)
α |u(k)

α 〉〉, 〈〈ṽ(k)
α |ψ(k)(z(k)

α ) = z(k)
α 〈〈ṽ(k)

α |, (25)

We note that z(k)
α = Z (k)

α for our Lorentz gas, because the heavy particles are in an
eigenstatewith zero eigenvalue, i.e. they remain in thermal equilibrium. The effective
Liouvillian in (25) depends on its eigenvalue. In this sense, the eigenvalue equation
is non-linear. Assuming bicompleteness in the subspace

p̂(k) ≡ 1

Ω�

∑

P

|k; P〉〉〈〈k; P|, (26)

we can always construct sets of eigenstates {〈〈ũ(k)
α |}, which is biorthogonal to

{|u(k)
α 〉〉}, and {|v(k)

α 〉〉}, which is orthogonal to {〈〈ṽ(k)
α |}, with 〈〈ũ(k)

α | 
= 〈〈ṽ(k)
α | and

|v(k)
α 〉〉 
= |u(k)

α 〉〉 [9].
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6 Solution of the Eigenvalue Problem

6.1 The Boltzmann Approximation

In order to solve the eigenvalue problem (25), here we study a situation where the
wavenumber k satisfies

|k| � d−1, (27)

where d is the interaction range between particles. In this situation in addition to the
weak-coupling, we shall show that the eigenvalue dependence of the effective Liou-
villian (24) is negligible and the non-linear eigenvalue problem (25) is linearized.
There the effective Liouvillian is reduced to the phenomenological Boltzmann col-
lision operator.

For a spatial inhomogeneity satisfying the condition (27), a typical value of q
appearing in Vq is much larger than k in (24), i.e., |k| � |q|. Then we can neglect k
in the denominator in the second term in (24). On the other hand, we may expect that
the imaginary part of the eigenvalue z in (25) is proportional to g2 for g � 1 because
of the factor g2 in front of the collision term in (24). If this is the case, we can evaluate
z in (24) at z = 0. Then we have ψ(k)(z(k)

α ) = ψ(k)(+i0) + O(g4). Here +i0 means
that the collision operator ψ(k)(z) is evaluated on the real axis approaching from
the upper half-plane of z to ensure the time evolution is oriented to the future t > 0
[9]. Combining these arguments, we can approximate ψ(k)(z(k)

α ) by the new operator
given by

〈〈k; P|ψ(k)
B |k; P ′〉〉 ≡

[
kP

m
− 2πg2c

�2
lim

ε→+0

∞∫

−∞
dq|Vq |2∂�q/2

P

1

+iε + qP/m
∂

�q/2
P

]

×δ(P − P ′), (28)

where we have taken the thermodynamic limit (2). This is identical with the phe-
nomenological Boltzmann collision operator for the 1D quantum perfect Lorentz gas
[15, 19], for which the first term in the square bracket in (28) is called the flow term,
and the second term is called Boltzmann’s collision term.

By performing the q integration in (28), one can see that the Boltzmann col-
lision operator has non-vanishing matrix elements only between the states |k; P〉〉
and |k;−P〉〉 [14]. Physically, this is because there are only forward and backward
scattering in the 1D quantum system. Hence, in terms of these basis, the Boltzmann
collision operator is represented by a 2 × 2 non-Hermitian matrix,

ψ
(k)
B =

(
kP/m − ig2γP/2 ig2γP/2

ig2γP/2 −kP/m − ig2γP/2

)
, (29)
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with

g2γP ≡ g2
8π2mc

�2|P|
∣∣V 2P

�

∣∣2, (30)

where γP → 0 for P → 0 due to the condition V0 = 0.
In terms of the Boltzmann collision operator, the time evolution equation of the

reduced density matrix is given by

i
∂

∂t
p̂(k)| f (t)〉〉 = ψ

(k)
B p̂(k)| f (t)〉〉, (31)

which is the Boltzmann equation for the system.

6.2 Eigenstates of the Boltzmann Collision Operator

Let us denote the right- and left-eigenstates of the collision operator (29) as |φ(k)
α 〉〉

and 〈〈φ̃(k)
α |, respectively, i.e.,

ψ
(k)
B |φ(k)

α 〉〉 = z(k)
α |φ(k)

α 〉〉, 〈〈φ̃(k)
α |ψ(k)

B = z(k)
α 〈〈φ̃(k)

α |. (32)

Here we present the solution of the eigenvalue problem and show that the solution
has exceptional points in the wavenumber k space.

The characteristic equation for (29) is given by

det[ψ(k)
B − z Î2]=

(
z + i

g2γP

2

)2

−
(
kP

m

)2

+
(
g2γP

2

)2

= 0, (33)

where Î2 is the unit matrix of size 2. Hence, the eigenvalues are

z(k)
±;P = −i

g2γP

2
± |P|

m
(k2 − k2P)1/2, (34)

where

kP ≡ g2γP

2|P|/m = 1

lP
, (35)

is awavenumber that is equal to the inverse of themean-free-length of the test particle
with momentum P denoted by lP .

In Fig. 1, we show a k-dependence of the real part and the imaginary part of
the eigenvalues for P 
= 0. In the figures, the dashed lines and the dot-dashed lines
represent the eigenvalues z(k)B

+;P and z(k)B
−;P , respectively. The solid lines represent that

these two lines overlap.
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(a) (b)

Fig. 1 Eigenvalues of the Boltzmann collision operator (34) are drawn as functions of k. a is the real
part and b is imaginary part. In each figure, the dashed lines represent eigenvalue with α = + and
the dot-dashed lines represent eigenvalue with α = −. The solid lines represent that these two lines
are overlapping. The gray lines in a represents eigenvalues of the Liouvillian for a free light-mass
particle y = ±(1/2)(k/kP )

Corresponding right- and left-eigenvectors are

|χ(k)
±;P〉〉 =

[
1 ± (k2 − k2P)

1/2
+

k

]1/2

|k; |P|〉〉 + i
|k|
k

[
1 ∓ (k2 − k2P)1/2

k

]1/2

|k;−|P|〉〉,
(36a)

〈〈χ̃ (k)
±;P | = |k|

k

[
1 ± (k2 − k2P)1/2

k

]1/2

〈〈k; |P|| + i

[
1 ∓ (k2 − k2P)1/2

k

]1/2

〈〈k;−|P||.
(36b)

Here we have not yet normalized the eigenvectors by taking account of the fact
that we have a diverging normalization constant at k = ±kP (see (39)). The inner
products of these right- and left-eigenstates are given by

〈〈χ̃ (k)
±;P |χ(k)

±;P ′ 〉〉 = ±2(k2 − k2P)1/2

|k|
[
δ(P − P ′) + δ(P + P ′)

]
. (37)

Then, normalized eigenstates for k 
= ±kP are given by

|φ(k)
±;P〉〉 ≡

√
N (k)

±;P |χ(k)
±;P〉〉, 〈〈φ̃(k)

±;P | ≡
√
N (k)

±;P〈〈χ̃ (k)
±;P |, (38)

where the normalization constants are

N (k)
±;P ≡ ± |k|

2(k2 − k2P)1/2
. (39)

For k 
= ±kP , they satisfy the following bi-orthonormal and bi-completeness rela-
tions,
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〈〈φ̃(k)
α;P |φ(k)

α′;P ′ 〉〉 = δα,α′
[
δ(P − P ′) + δ(P + P ′)

]
,

∑

α=±

∞∫

0

dP|φ(k)
α;P〉〉〈〈φ̃(k)

α;P | = p̂(k).

(40)
As a function of the wavenumber k, the eigenvalues (34) have the following two

exceptional points on the real k axis,

k = ±kP . (41)

At these points, both eigenvalues and eigenvectors coalesce. Since there is only one
linearly independent eigenvector at these points, the Boltzmann collision operator
(29) can not be diagonalized. Instead, the collision operator has the Jordan block
structure at these points (see [3, 14]). This coalescence of eigenvectors does not take
place at the usual degeneracy point of the eigenvalues of a Hermitian operator for
which a degenerate eigenvalue is shared by two distinct eigenstates. In this sense,
the exceptional point is often referred as the non-Hermitian degeneracy [20] In the
previous paper [14], we have introduced a divergence free representation at excep-
tional points by continuously extending the Jordan block representation away from
exceptional points.

7 A Physical Aspect of the Spectrum of the Liouvillian
with the Exceptional Point

7.1 EP2 and the Telegraph Equation

In this subsection, we show that the second order exceptional point (EP2) in the
spectrum of the Liouvillian leads to the telegraph equation, which has a hybrid
nature of the diffusion equation and the wave equation. Let us first introduce the
Wigner distribution function for the test particle,

f W (X, P, t) ≡
∞∫

−∞
dk fk(P, t) ≡

∞∫

−∞
dk 〈〈k; P| f (t)〉〉. (42)

We rewrite the characteristic equation of the collision operator (33) as

z2 − ig2γP z − |v|2k2 = 0, (43)

where v ≡ P/m. Its inverse Fourier transformation on the variables z and k leads to
the telegraph equation
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∂2

∂t2
f W (X, P, t) + g2γP

∂

∂t
f W (X, P, t) = |v|2 ∂2

∂X2
f W (X, P, t). (44)

In other words, the characteristic equation of the Boltzmann collision operator (43)
is the same as the characteristic equation of the telegraph equation with regard to
the X - and t-dependence as exp[i(kX − zt)]. Hence our Boltzmann equation (31)
is equivalent to the telegraph equation with regard to the dependence os the Wigner
function on X and t . One can see that the telegraph equation reduces to the diffusion
equation in long-time behavior in t � (g2γP)−1 (see (50) as well as [14]).

The equivalence of the Boltzmann equation and the telegraph equation in their
time development in X space is remarkable, since the telegraph equation represents
a prototypical time behavior of the system with the EP2 in the spectrum of the
Liouvillian with respect to the wavenumber. This is because, when the spectrum of
the Liouvillian has the EP2 in the wavenumber space, the essential properties of the
EP2 can be effectively described by a 2 × 2 matrix [21, 22], and the characteristic
equation for the matrix always takes the quadratic form (43).

7.2 Time Evolution of the Wigner Distribution Function

As a demonstration of the time development of the system described by the telegraph
equation, here we report a shifting motion of the Wigner distribution function local-
ized in moderately small spatial scale less than the mean-free-length, but yet with a
large enough width as compared with the microscopic scale given by the interaction
range. We found shifting motion of the peak of the distribution function in space in
addition to spreading as a result of a diffusion type process. However, the mechanism
of the shifting motion completely changes at the exceptional points k = ±kP as the
following manner:

1. For |k| ≤ kP , the shifting motion comes from asymmetry in the momentum dis-
tribution before the momentum relaxation is complete.

2. For |k| > kP , the shifting motion comes from the real part of the eigenvalue that
leads to a wave propagation with the initial velocity P/m.

In order to see the above results, we consider the following situation as an initial
condition,

fk(P, 0) = χkb(k)h(P), (45)

where χkb(k) is a step function which is defined with a given value of kb by χkb(k) =
1 for |k| ≤ kb or χkb(k) = 0 for |k| > kb, and h(P) is a momentum distribution
function that is normalized as

∞∫

−∞
dP h(P) = 1. (46)
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To extract the essence of the mechanism of the shifting motion, we here assume
h(P) = 0 for P < 0, i.e., initial distribution is composed of particles with positive
momentum.

The time evolution described by the telegraph equation (44) is also described by
the Boltzmann equation (31). The formal solution of the Boltzmann equation is

p̂(k)| f (t)〉〉 = e−iψ(k)
B t p̂(k)| f (0)〉〉. (47)

By multiplying 〈〈k; P| and using the completeness relation in (40), we have a special
solution for the initial condition (45),

fk(P, t) = 1

2

(
e−i z(k)

+;P t + e−i z(k)
−;P t

)
fk(P, 0) + kP

m

(
e−i z(k)

+;P t − e−i z(k)
−;P t

z(k)
+;P − z(k)

−;P

)
fk(P, 0).

(48)
We use the units in which lP = 1/kP = 1 and τP = 1/(g2γP) = 1, when we

present results of numerical calculations (see e.g. Fig. 2). With these units, the eigen-
values and the eigenvectors are independent of the value of P [23].

7.2.1 Time Evolution with the Spectrum in |k| ≤ KP

Let us first consider the situation where the initial distribution is composed of the
Fourier components with k in the region |k| ≤ kP . Hence, we take kb ≤ kP . In this
case, the time evolution of theWigner distribution function for P > 0 is expressed by

f W (X, P, t) =
kb∫

−kb

dk
kP

2
√
k2P − k2

[
e−i z(k)+;P t cos(kX − ϕk,P ) + e−i z(k)−;P t cos(kX + ϕk,P )

]

× fk(P, 0), (49)

with ϕk,P ≡ arctan[k/
√
k2P − k2].

In Fig. 2, we present the time evolution of (49) in X space with a specific value of
momentum P > 0, which is implicitly given as a function of lP and τP . In the figure,
the solid line is the initial distribution, and the dashed lines are the distribution of
later times. As shown in the figure, the peak of the distribution function shifts toward
X = lP in the first stage of its time evolution. Afterwards, it stops the shifting motion
with spreading its width with damping centering on the position of the peak, where
the time evolution is described by the diffusion equation. This can be seen by the
fact that (49) can be approximated after the above mentioned first stage as,

f W (X, P, t) �
∞∫

−∞
dk

1

2
e−DPk2t cos[k(X − lP)] fk(P, 0), (50)
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Fig. 2 Time evolution of the
Wigner distribution function
for P > 0. The solid line
represents the initial
distribution. The initial
distribution is given by (45)
with kb = kP . The initial
distribution evolves to the
distributions represented by
the dotted lines as
represented by the arrows

with

DP ≡ g2γP

4k2P
= (P/m)2

g2γP
, (51)

which is a solution of the diffusion equation with a diffusion coefficient DP [23].
We note that, for t → ∞, the momentum distribution function is stationary as

f0(P, t) = f0(−P, t) = f0(P, 0)/2. This implies that themomentum relaxation has
been completed, and this is the reason that the peak of the distribution no longer
moves.

7.2.2 Time Evolution with the Spectrum in |k| > kP

The eigenvalues (34) take complex values for |k| > kP and their real part approach
to the eigenvalues of a free particle ±kP/m for |k| � kP . Here we discuss how the
structure of the spectrum affects to the time evolution of the system. For this purpose,
we analyze time evolution with an initial condition (45) with kb > kP . For this initial
condition, the time evolution of the Wigner distribution function for P > 0 can be
divided into two parts; (i) f Wd with pure imaginary eigenvalues and (ii) f Wp with
complex eigenvalues as

f W (X, P, t) ≡
∞∫

−∞
dk fk(P, t)eikX = f Wd (X, P, t) + f Wp (X, P, t), (52)
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(a) (b)

(c)

Fig. 3 Time evolution of the Wigner distribution function for P > 0. The initial distribution a is
given by (45) with kb = 5.0kP . The distribution functions are shown for a t = 0, b t = 1/(g2γP )

and c t = 5/(g2γP ). In each figure, the solid line represents total value of the function f W , the
dashed line and the dot-dashed line represents f Wd and f Wp , respectively

with

f Wd (X, P, t) ≡
kP∫

−kP

dk fk(P, t)eikX , f Wp (X, P, t) ≡
( −kP∫

−kb

+
kb∫

kP

)
dk fk(P, t)eikX .

(53)
In Fig. 3, we show the time evolution of f Wd and f Wp aswell as the total distribution

function f W with a specific value of momentum P > 0. In each figure, the solid line
represents the total distribution f W , the dashed line represents f Wd and the dot-dashed
line represents f Wp .

The time evolution of f Wd has the same character as the time evolution of (49)
discussed in the above subsection A, namely the distribution f Wd (X, P, t) firstly
shifts toward X = lP , within the time interval 0 ≤ t � 1/(g2γP). Afterwards, the
distribution no longer shift and spreads its width by the diffusion process with its
center fixed at lP . On the other hand, the distribution f Wp (X, P, t) propagates as a
wave packet with a velocity nearly equal to the initially given velocity P/m and
decays in time. The wave propagation is due to the real part of the eigenvalues of the
Liouvillian in the region |k| > kP .
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8 Summary and a Concluding Remark

In this paper, we have discussed physical significance of the exceptional point in
the Liouvillian dynamics. The example we have studied is the weakly-coupled 1D
quantum perfect Lorentz gas.We have solved the complex eigenvalue problem of the
Liouvillian with a linear approximation where we approximate the effective Liou-
villian by the Boltzmann collision operator. There we have shown that the spectrum
has the second order exceptional points in the wavenumber space.

We have discussed the physical aspects of the exceptional points by studying
the time evolution of the Wigner distribution function. There we have shown that
when the Liouvillian of the system has the second order exceptional points in the
wavenumber space, the time evolution obeys the telegraph equation. We have also
shown that the time evolution described by the telegraph equation shows a shifting
motion in space. There we have found two completely different mechanisms of the
shifting motion; one is due to the asymmetry of the momentum distribution function,
while the other is due to the wave propagation associated to the real part in the
eigenvalue.

Among many properties of the exceptional point, the geometrical phase around
it is especially interesting. Indeed, one can find many theoretical [2, 11, 20, 22,
24–32] and experimental papers [7, 13, 33–35] on this subject. However, all of these
previous studies in this subject have been performed on the Hamiltonian level, and
there is no study performed on the Liouvillian level. We hope to discuss this subject
elsewhere.
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