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Abstract A new non-Hermitian E2-quasi-exactly solvable model is constructed
containing two previously known models of this type as limits in one of its three
parameters. We identify the optimal finite approximation to the double scaling limit
to the complexMathieu Hamiltonian. A detailed analysis of the vicinity of the excep-
tional points in the parameter space is provided bydiscussing the branch cut structures
responsible for the chirality when exceptional points are surrounded and the struc-
ture of the corresponding energy eigenvalue loops stretching over several Riemann
sheets. We compute the Stieltjes measure and momentum functionals for the coef-
ficient functions that are univariate weakly orthogonal polynomials in the energy
obeying three-term recurrence relations.

1 Introduction

In addition to the interesting mathematical aspect of enlarging the set of sl2(C) [1,
2] to E2-quasi-exactly solvable models [3], the latter type also constitutes the nat-
ural framework for various physical applications in optics where the formal analogy
between the Helmholtz equation and the Schrödinger equation is exploited [4–13].
Furthermore, a special case of these systems with a specific representation corre-
sponds to the complex Mathieu equation that finds an interesting application in non-
equilibrium statistical mechanics, where it corresponds to the eigenvalue equation
for the collision operator in a two-dimensional classical Lorentz gas [14, 15].

Here we are mainly concerned with the extension of quasi-exactly solvable mod-
els [3, 16–19] to non-Hermitian quantum mechanical systems [20–23] within the
above mentioned scheme. So far two different types of E2-models have been con-
structed in [3, 24] and the main purpose of this manuscript is to investigate whether
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it is possible to construct a more general model that unifies the two. We show that
this is indeed possible by combining the two models and introducing a new para-
meter into the system that interpolates between the two. In a similar fashion as the
previously constructed models, also this one reduces in the double scaling limit to
the complex Mathieu equation. As that equation is not fully explored analytically
this limit provides an important option to obtain interesting information about the
complex Mathieu system. On the other hand, for some applications it may also be
sufficient to study an approximate behaviour for some finite values of the coupling
constants. For that purpose we identify the parameter for which the general model is
the optimal approximation for the complex Mathieu system.

Our manuscript is organized as follows: In Sect. 2 we introduce the general unify-
ing model involving three parameters. We determine the eigenfunctions by solving
the standard three-term recurrence relations for the coefficient functions and deter-
mine the energy eigenfunction from the requirement that the three-term recurrence
relations reduce to a two-term relation. We devote section three to the study of the
exceptional points and their vicinities in the parameter space. The explicit branch cut
structure is provided that explains the so-called energy eigenvalue loops. In Sect. 4
we compute the central properties of the weakly orthogonal polynomials entering as
coefficient functions in the Ansatz for the eigenfunctions, i.e. their norms, the corre-
sponding Stieltjes measure and the momentum functionals. We state our conclusions
in Sect. 5.

2 A Unifying E2-Quasi-Exactly Solvable Model

The general notion [1, 2] underlying solvable Hamiltonian systems is that its Hamil-
tonian operatorsH acting on somegraded spaceVn asH : Vn �→ Vn preserves theflag
structure V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · . A distinction is usually made between
exactly and quasi-exactly solvable, depending on whether the structure preservation
holds for an infinite or a finite flag, respectively. Here we are concerned with the
latter. Lie algebraic versions of Hamiltonians in this context are usually taken to be
of sl2(C)-type [1, 2], but as recently proposed [3, 24], they may also be taken to be
of a Euclidean Lie algebraic type, thus giving rise to qualitatively new structures.

At present twodifferent types of E2-quasi-exactly solvablemodelswere identified

H(1)
E2

= J 2 + ζ2(u2 − v2)2 + 2iζN (u2 − v2), ζ, N ∈ R, (1)

H(0)
E2

= J 2 + ζuv J + 2iζN (u2 − v2), (2)

in [3, 24], respectively. Both Hamiltonians are expressed in terms of the E2-basis
operators u, v and J that obey the commutation relations

[u, J ] = iv, [v, J ] = −iu, [u, v] = 0. (3)
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Except for H(0)
E2

at N = 1/4, both Hamiltonians are non-Hermitian, but respect the
anti-linear symmetry [25] PT 3 : J → J , u → v, v → u, i → −i as defined in
[10]. For the particular representation J := −i∂θ, u := sin θ v := cos θ the PT 3-
symmetry is simply PT 3 : θ → π/2 − θ, i → −i , such that the invariant vector
spaces over R were defined as

V s
n (φ0) : = span

{
φ0

[
sin(2θ), i sin(4θ), . . . , in+1 sin(2nθ)

]∣∣∣ θ ∈ R,PT 3(φ0) = φ0 ∈ L
}

, (4)

V c
n (φ0) : = span

{
φ0

[
1, i cos(2θ), . . . , in cos(2nθ)

]∣∣ θ ∈ R,PT 3(φ0) = φ0 ∈ L
}
. (5)

In order to construct Hamiltonians that preserve the flag structure one needs to
identify the action of the E2-basis operators and its combinations on these spaces
as explained in more detail in [3]. The behaviour found allowed to identify the
Hamiltonians H(1)

E2
and H(0)

E2
in (1) and (2) as quasi-exactly solvable. The general

structure suggests that there might be a master Hamiltonian that unifies the above
Hamiltonians into one preserving the quasi-exact solvability. We demonstrate here
that this is possible and study the properties of that model.

Thus we introduce the new Hamiltonian

H(N , ζ,λ) = J 2 + 2(1 − λ)ζuv J + λζ2(u2 − v2)2 + 2iζN (u2 − v2), λ, ζ, N ∈ R, (6)

and demonstrate explicitly that it is indeed E2-quasi-exactly solvable. First we
observe thatH(N , ζ,λ) interpolates between the twomodels in (1) and (2) by varying
λ, since

lim
λ→1

H(N , ζ,λ) = H(1)
E2

and lim
λ→0

H(2N , ζ/2,λ) = H(0)
E2

. (7)

Furthermore, H(N , ζ,λ) reduces to the complex Mathieu Hamiltonian in the dou-
ble scaling limit limN→∞,ζ→0 H(N , ζ,λ) = HMat = J 2 + 2ig(u2 − v2) for g :=
Nζ < ∞. We also note thatH†(N , ζ,λ) = H(1 − λ − N , ζ,λ), which implies that
H(N , ζ,λ) is non-Hermitian unless 2N = 1 − λ, with free coupling constant ζ ∈ R.

Given the structure for the vector spaces in (4) and (5) we nowmake the following
Ansätze for the two fundamental solutions of the correspondingSchrödinger equation
HNψN = EψN

ψc
N (θ) = φ0

∞∑
n=0

incn Pn(E) cos(2nθ), and ψs
N (θ) = φ0

∞∑
n=0

in+1cnQn(E) sin(2nθ),

(8)
where the PT 3-symmetric ground state is taken to be φ0 = e

i
2 ζ cos(2θ) and the con-

stant cn is cn = 1/ζn(N + λ)(1 + λ)n−1 [(1 + N + 2λ)/(1 + λ)]n−1 with (a)n :=
� (a + n) /� (a) denoting the Pochhammer symbol. The constants are chosen con-
veniently in order to ensure the simplicity of the to be determined nth and (n − 1)th
order polynomials Pn(E), Qn(E) in the energies E , respectively. Upon substitution
into the Schrödinger equation we obtain the three-term recurrence relations
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P2 = (E − λζ2 − 4)P1 + 2ζ2 [N − 1] [N + λ] P0, (9)
Pn+1 = (E − λζ2 − 4n2)Pn + ζ2 [N + nλ + (n − 1)] [N − (n − 1)λ − n] Pn−1, (10)
Q2 = (E − 4 − λζ2)Q1, (11)

Qm+1 = (E − λζ2 − 4m2)Qm + ζ2 [N + mλ + (m − 1)] [N − (m − 1)λ − m] Qm−1, (12)

for n = 0, 2, . . . and for m = 2, 3, 4, . . .. Note that a more generic Ansatz for the
unifying model involving two independent coupling constants μ, λ in the terms
μζuv J + λζ2(u2 − v2)2 leads to a four term recurrence relation in which the highest
term is always proportional to μ + 2λ − 2. Thus taking this term to zero with the
appropriate choice for μ reduces this to the desired three term relations that may be
solved in complete generality as outlined in [3]. The lowest order polynomials are
easily computed in a recursive way. Taking P0 = 1 we obtain

P1 = E − λζ2, (13)
P2 = λ2ζ4 + 2ζ2 [λ − λE + N (λ + N − 1)] + (E − 4)E,

P3 = −λ3ζ6 + λζ4
(
λ(2λ + 3E − 13) − 3N2 − 3(λ − 1)N + 2

)
+ (E − 16)(E − 4)E

− ζ2
[
3λE2 + E

(
2λ2 − 3N2 − 3λ(N + 11) + 3N + 2

)
+ 32(λ + N (λ + N − 1))

]
,

and likewise with Q1 = 1 we compute

Q2 = E − 4 − λζ2, (14)

Q3 = λ2ζ4 + ζ2
[
λ(15 − 2λ − 2E) + N2 + (λ − 1)N − 2

]
+ (E − 16)(E − 4),

Q4 = −λ3ζ6 + λζ4
[
8 + λ(8λ + 3E − 38) − 2N2 − 2(λ − 1)N

]
+ (E − 36)(E − 16)(E − 4)

+ ζ2
[
−8

(
−12λ2 + 69λ + 5λN + 5(N − 1)N − 12

)]

+ ζ2
[
−3λE2 + 2E

(
(47 − 4λ)λ + N2 + (λ − 1)N − 4

)]
.

In both cases we observe the typical feature for quasi-exactly solvable systems that
the three term relation can be reset to a two-term relation at a certain level. This
is due to the fact that in (10) and (12) the last term vanishes when m = n = n̂ =
−(1 + N )/(1 + λ) or m = n = ñ = (λ + N )/(1 + λ). Thus when taking N = ñ +
(ñ − 1)λ we find the typical factorization

Pñ+� = Pñ R� and Qñ+� = Qñ R�. (15)

The first solutions for the factor R� are easily found from (10) and (12) to

R1 = E − 4ñ2 − λζ2, (16)

R2 = (E − 4ñ2 − λζ2)(E − 4(ñ + 1)2 − λζ2) − 2ñ(1 + λ)2ζ2. (17)

Next we compute the energy eigenvalues Eñ from the constraints Pñ(E) = 0
and Qñ(E) = 0 for the lowest values of N . For the solutions related to the even
fundamental solution in (8) we find
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N = 1 : Ec
1 = λζ2, (18)

N = 2 + λ : Ec,±
2 = 2 + λζ2 ± 2

√
1 − (1 + λ)2ζ2, (19)

N = 3 + 2λ : Ec,�
3 = 20

3
+ λζ2 + 4�̂

3
e
iπ�
3 + 1

3

[
52 − 12(1 + λ)2ζ2

]
e−

iπ�
3 �̂−1, (20)

with �̂3 := 35 + 18(λ + 1)2ζ2 +
√[

3(λ + 1)2ζ2 − 13
]3 + [

18(λ + 1)2ζ2 + 35
]2
,

� = 0,±2.
For the solutions related to the odd fundamental solution in (8) we obtain

N = 2 + λ : Es
2 = 4 + λζ2, (21)

N = 3 + 2λ : Es,±
3 = 10 + ζ2λ ± 2

√
9 − (λ + 1)2ζ2, (22)

N = 4 + 3λ : Es,�
4 = 56

3
+ λζ2 + 4�

3
e
iπ�
3 + 1

3

[
196 − 12(1 + λ)2ζ2

]
e−

iπ�
3 �−1, (23)

with�3 := 143 +18ζ2(λ+1)2 +
√(

3ζ2(λ + 1)2 − 49
)3 + (

18ζ2(λ + 1)2 + 143
)2
,

� = 0,±2. Solutions for higher order may of course also be obtained, but are rather
lengthy and therefore not reported here.

3 Exceptional Points and Their Vicinities

The special point in parameter space where two real energy eigenvalues viewed
as functions of the coupling constants merge and subsequently split into a complex
conjugate pair is usually referred to as exceptional point [26–29]. In our system these
points can be computed in an explicit simple and straightforward manner. Using that
by definition the discriminant� equals the product of the squares of the differences of
all energy eigenvalues Ei for 1 ≤ i ≤ n, i.e. � = ∏

1≤i< j≤n(Ei − E j )
2 one obtains

the exceptional points from the real zeros of �(E). For practical purposes one may
also exploit the fact [3], that the discriminant equals the determinant of the Sylvester
matrix. This viewpoint has the advantage that it does not require the computation of all
the eigenvalues and is more efficient when the sole purpose is to find the exceptional
points. Thus in our case we have to find the real zeros of the discriminants �c

ñ and
�s

ñ for the polynomials Pñ(E) and Qñ(E), respectively. Extracting overall constant
factors κ as � = κ�̃, that do not contribute to the zeros, we obtain for the lowest
values of ñ

�̃c
2 = ζ̂2 − 1, (24)

�̃s
3 = ζ̂2 − 9,

�̃c
3 = ζ̂6 − ζ̂4 + 103ζ̂2 − 36,

�̃s
4 = ζ̂6 − 37ζ̂4 + 991ζ̂2 − 3600,

�̃c
4 = ζ̂12 + 2ζ̂10 + 385ζ̂8 − 33120ζ̂6 + 16128ζ̂4 − 732276ζ̂2 + 129600,

�̃s
5 = ζ̂12 − 94ζ̂10 + 7041ζ̂8 − 381600ζ̂6 + 6645600ζ̂4 − 78318900ζ̂2 + 158760000,

where we abbreviated ζ̂ := ζ(1 + λ).
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(a) (b)

Fig. 1 Energy eigenvalue loops Ec,±
2 (λ̃ + ρeiπφ, ζ) around two real eigenvalues panel (a) and

around an exceptional point panel (b) as functions of φ, indicated by the numbers on the loops, for
fixed value of ζ = 1/2 at λ̃ = 1/10 in (a) and λ̃ = 1 in (b). The energy eigenvalues for ρ = 0 are
distinct in panel a as Ec,−

2 = 0.35, Ec,+
2 = 3.70 and coalesce to an exceptional point in panel b as

Ec,−
2 = Ec,+

2 = 9/4

There exist many detailed studies about the structures in the coupling constant
space in the vicinity of the exceptional points [30–34]. It is evident that when tracing
a complex energy eigenvalue E as functions of the coupling constants, λ or ζ in our
case, the corresponding path in the energy plane will inevitably pass through vari-
ous Riemann sheets due to the branch cut structure. As a consequence one naturally
generates eigenvalue loops that stretch over several Riemann sheets. This phenom-
enon is well studied for a large number of models and we demonstrate here that
it also occurs in quasi-exactly solvable models. The basic principle can be demon-
strated with the square root singularity occurring in Ec,±

2 with branch cuts from
(−∞,−1 − 1/ζ) and (1/ζ − 1,∞). The energy loops are generated by computing
Ec,±
2 (λ = λ̃ + ρeiπφ, ζ) for some fixed values of ζ, center λ̃ and the radius ρ in the

λ-plane as functions of φ as illustrated in Fig. 1a, b. In panel (a) we simply trace
the energy around a point in parameter space that leads to two real eigenvalues. For
a small radius ones reaches the starting point by encircling λ̃ just once. However,
when the radius is increased one needs to surround λ̃ twice to reach the starting point
and when the radius is increased even further one only needs to surround λ̃ once
switching, however, between both energy eigenvalues.

Essentially this structure survives when the two eigenvalues merge into an excep-
tional point. However, since the exceptional point is a branch point we no longer have
the option for a closed loop around it produced from only one energy eigenvalue as
seen in Fig. 1b.

This behaviour is easily understood from the structure of the branch cuts as
depicted in Fig. 2. Whereas for small radii it is possible to encircle for instance
the point λ̃ = 1/10 without crossing any branch cut, this is not possible when encir-
cling the exceptional point at λ̃ = 1 where we have to analytically continue from
Ec,−
2 to Ec,+

2 when crossing a cut. This structure is the same for intermediate radii.
For large radii we cross the first cut already at a half circle turn, such that one returns
back to the original value already after one complete turn.
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Fig. 2 Energy levels and branch cut structure for Ec,±
2 for fixed ζ = 1/2 as functions of λ. The

branch cuts extend to the left and right from the exceptional points (−∞,−3) and (1,∞)

(a) (b)

Fig. 3 Energy eigenvalues Ec
4(λ̃ + ρeiπφ, ζ) as functions of φ, indicated by the numbers on the

loops, for fixed value ζ = 1/2 at λ̃ = 9.5284 in (a) and λ̃ = 5.2562 + i9.9526 in (b). The energy
eigenvalues for ρ = 0 in panel a are Ec,1

4 = Ec,2
4 = 25.6613, Ec,3

4 = (Ec,4
4 )∗ = 7.1029 + i29.8106

and Ec,1
4 = Ec,2

4 = 37.7449 − i8.7611, Ec,3
4 = 9.8103 + i6.7668, Ec,4

4 = −24.0439 + i20.7081
in panel (b). The radii are ρ = 4.0 and ρ = 8.5 in panels (a) and (b), respectively

When more eigenvalues are present the structure will be more intricate. Consider-
ing for instance a scenariowith four eigenvalues in the formof two complex conjugate
eigenvalues and an exceptional point, see Fig. 3a, we need to perform again at least
two turns in the λ-plane in order to return to the initial position for the energy loops
when surrounding an exceptional point. The two complex conjugate eigenvaluesmay
be enclosed with just one turn, albeit we require again different energy eigenvalues
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Fig. 4 Energy levels and branch cut structure for Ec,1,2,3,4
2 for fixed ζ = 1/2 as functions of λ
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for this. When enlarging the radius the loops will eventually merge as depicted in
Fig. 3b for a situation with a degenerate complex eigenvalue and two complex eigen-
values. We observe that for the given values we have to surround the chosen point at
least three times to obtain a closed energy loop surrounding the indicated centers.

In the same manner as for the simpler scenario one may understand the nature
of these loops from an analysis of the branch cut structure of the energy as seen
in Fig. 4. Tracing the indicated radii at ρ = 4.0 and ρ = 8.5 in Fig. 4 produces the
energy loops in Fig. 3 when properly taking care of the analytic continuation at the
branch cuts.

As discussed earlier the HamiltonianH(N , ζ,λ) has the interesting property that
in the double scaling limit it reduces to the complex Mathieu equation for which
only incomplete information is available, especially concerning the locations of the
exceptional points. In comparison with the previously analyzed models H(1)

E2
in [3]

andH(0)
E2

in [24] we have now the additional parameter λ at our disposal and we may
investigate how the complex Mathieu system is approached. In particular we may
address the question of whether there exists a value λ for which this is optimal. Our
numerical results are depicted in Fig. 5. We find a similar qualitative behaviour for
the other exceptional points, which we do not report here.

Comparing the rate of the approach for different values of λ we conclude that
H(N , ζ,λ = 1) is the best approximation to the complex Mathieu system for some
finite values of N .

If one is exclusively interested in the computation of the exceptional point it is
most efficient to carry out the double scaling limit already for the three-term relation
(10) and (12) as explained in [3, 24].

Fig. 5 Double scaling limit of limN→∞,ζ→0 H(N , ζ,λ) = HMat to the smallest exceptional point
at ζM = 1.46877 with �(n) = ζ0N (n) − ζM , N (n) = (n + 1) + nλ for n = 1, 2, 3, . . .
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4 Weakly Orthogonal Polynomials

It is well known from Favard’s theorem [35, 36] that polynomials�n(E) constructed
from three-term relations in the way mentioned above possess a norm N�

n

L(�n�m) = N�
n δnm . (25)

defined by the action of a linear functional L acting on arbitrary polynomials p in
E as

L(p) =
∞∫

−∞
p(E)ω(E)dE, L(1) = 1. (26)

This normmay be computed in two alternative ways. The simplest way is to multiply
the three-term relation by �n−1 and act subsequently on the resulting equation with
L. Using the property N�

n = L(�2
n) = L(E�n−1�n) together with (25) then simply

yields N�
n = ∏n

k=1 bk , where the bk are the negative coefficients in front of �n−1.
Whereas the first method simply assumes that the functional exist the second method
goes further and actually provides an explicit expressions for the measure. As argued
in [37] the concrete formulae for ω(E) may be computed from

ω(E) =
�∑

k=1

ωkδ(E − Ek), (27)

where the energies Ek are the � roots of the polynomial �(E) . The � constants ωk

can be determined by the � equations

�∑
k=1

ωk�n(Ek) = δn0, for n ∈ N0. (28)

In our case the integer � are determined from N = � + (� − 1)λ and N = (� + 1) +
�λ for the P�(E) and Q�+1(E), respectively.

Using the first method we obtain

N P
n = 2ζ2n(1 + λ)2n

(
1 − N

1 + λ

)

n

(
λ + N

1 + λ

)

n

, n = 1, 2, 3, ... (29)

NQ
n = 1

2(N + λ)(1 − N )
N P
n , n = 2, 3, 4, ... (30)

with N P
0 = NQ

1 = 1. Due to the non-Hermitian nature of the Hamiltonian this norm
is in general not positive definite. For instance for N = 4 + 3λ we have
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N P
0 = 1, N P

1 = −24ζ2(1 + λ)2, N P
2 = 240ζ4(1 + λ)4, N P

3 = −1440ζ6(1 + λ)6.

(31)
The exception is the class of models where the Hamiltonian becomes Hermitian, i.e.
when λ = 1 − 2N holds. For this value of λ the expressions in (29) and (30) become
positive definite

N P
n = 21+2nζ2n(N − 1)2n

(
1

2

)2

n

= 2ζ2(N − 1)2NQ
n . (32)

Let us now consider the second method and compute explicitly the measure for a
few examples. For N = 2 + λ and N = 3 + 2λ we solve (28) for the even and odd
solutions, respectively, to

ωc
± = 1

2
± 1

2
√
1 − (1 + λ)2ζ2

, and ωs
± = 1

2
± 3

2
√
9 − (1 + λ)2ζ2

. (33)

Computing now (25) with (26) agrees with (29) and (30)

N P
0 = L(P2

0 ) = ωc
+ + ωc

− = 1 (34)

N P
1 = L(P2

1 ) = ωc
+

(
Ec,+
2 − λζ2

)2 + ωc
−

(
Ec,−
2 − λζ2

)2 = −4ζ̂2, (35)

NQ
2 = L(Q2

2) = ωs
+

(
Es,+
3 − 4 − λζ2

)2 + ωs
−

(
Es,−
3 − 4 − λζ2

)2 = −4ζ̂2. (36)

Similarly we compute for N = 3 + 2λ

ωc
1 = 1

3
−

(
260 − 60ζ̂2

)
� +

(
3ζ̂2 + 4

)
�2 + 20�3

12

[(
13 − 3ζ̂2

)2 +
(
13 − 3ζ̂2

)
�2 + �4

] , ωc
2 = χ−2, ωc

3 = χ2, (37)

χ� = 1

3
+

(
3ζ̂2 − 20� + 4

) (
1 + 2e

iπ�
3

)

36(3ζ̂2 + �2 − 13)
+ 4 + 3ζ̂2 − 20e

iπ�
3 �

12
(
1 + 2e

iπ�
3

) (
3ζ̂2 − 13

)
+

(
1 − e

iπ�
3

)
�2

and confirm that

N P
0 = L(P2

0 ) = ωc
1 + ωc

2 + ωc
3 = 1, (38)

N P
1 = L(P2

1 ) = ωc
1P

2
1 (Ec,0

3 ) + ωc
2P

2
1 (Ec,−2

3 ) + ωc
3P

2
1 (Ec,2

3 ) = −12ζ̂2,

N P
2 = L(P2

2 ) = ωc
1P

2
2 (Ec,0

3 ) + ωc
2P

2
2 (Ec,−2

3 ) + ωc
3P

2
2 (Ec,2

3 ) = 48ζ̂4

L(P1P2) = ωc
1P1(E

c,0
3 )P2(E

c,0
3 ) + ωc

2P1(E
c,−2
3 )P2(E

c,−2
3 ) + ωc

3P1(E
c,2
3 )P2(E

c,2
3 ) = 0.

Note that the last relation in (38) does not follow from the first method.
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As the final quantity we also compute the moment functionals defined in [35, 36]
as

μn := L(En) =
�∑

k=1

ωk E
n
k =

n−1∑
k=0

ν(n)
k μk, (39)

Once again also these quantities can be obtained in two alternative ways, that is
either from the computation of the integrals or directly from the original polynomials
Pn and Qn without the knowledge of the constants ωk . In the last equation the
coefficients ν(n)

k are defined through the expansion Pn(E) = 2n−1En − ∑n−1
k=0 ν(n)

k Ek

and Qn(E) = 2n−1En−1 − ∑n−2
k=0 ν(n)

k Ek for our even and odd solutions, respectively.
For the even solutions with N = 2 + λ we obtain

μP
0 = 1, (40)

μP
1 = λζ2, (41)

μP
2 = λ2ζ4 − 4ζ̂2, (42)

μP
3 = λ3ζ6 − 12λζ2ζ̂2 − 16ζ̂2, (43)

μP
4 = λ4ζ8 − 24λ2ζ4ζ̂2 + 16

(
ζ2 − 1

)2
ζ4 − 64ζ̂2, (44)

and similarly for the odd solutions with N = 3 + 2λ we compute for instance

μQ
0 = 1, (45)

μQ
1 = 4 + λζ2, (46)

μQ
2 = 16 − 4ζ̂2 + λ2ζ4, (47)

μQ
3 = λ3ζ6 − 12

(
λ3 + λ2 + λ

)
ζ4 − 48(2λ2 + 3λ + 2)ζ2 + 64. (48)

Thus H(N , ζ,λ) possesses indeed all the standard features of a quasi-exactly
solvable model of E2-type.

5 Conclusions

Following the principles outlined in [3] we have constructed a new three-parameter
quasi-exactly solvable model of E2-type. One of the parameters can be employed to
interpolate between two previously constructed models. With regard to one of the
original motivations that triggered the investigation of these models, that is the dou-
ble scaling limit towards the complex Mathieu equation, we found that for λ = 1,
i.e. H(1)

E2
, finite values for N best approximate the complex Mathieu system and

mimic its qualitative behaviour. We provided a detailed discussion of the determina-
tion of the exceptional points and the energy branch cut structure responsible for the
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intricate energy loop structure stretching over severalRiemann sheets. The coefficient
functions are shown to possess the standard properties of weakly orthogonal
polynomials.

Acknowledgments I am grateful to Kazuki Kanki for making [15] available to me.
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