
Mathematical and Physical Meaning
of the Crossings of Energy Levels
inPT -Symmetric Systems

Denis I. Borisov and Miloslav Znojil

Abstract Unavoided crossings of the energy levels due to a variation of a real
parameter are studied. It is found that after the quantum system in question passes
through one of its energy-crossing points alias Kato’s exceptional points (EP), its
physical interpretation may dramatically change even when the crossing energies
themselves do not complexify. The anomalous physical phase-transition mechanism
of the change is revealed, attributed to the EP-related mathematics and illustrated via
several exactly solvable matrix toy models.

1 Introduction

One-parametric quantum Hamiltonians H̃(λ) are most often assumed self-adjoint
inside a real interval of λ ∈ D(physical). This implies that an unavoided crossing of
energy levels is either excluded or “incidental”, i.e., resulting from a symmetry. The
centrally symmetric harmonic oscillator with energies Ẽn,� ∼ 4n + 2� + 3 where
n = 0, 1, . . . and � = 0, 1, . . . may be recalled as the best known illustration of the
incidental degeneracy due to which one has Ẽn+1,0 = Ẽn,2, etc.

The exclusion of degeneracy accompanied by the well known tendency of eigen-
values to avoid each other may be illustrated via the following four by four tilded
matrix
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Fig. 1 Repulsion of levels
for Hermitian Hamiltonian
(1)
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H̃ (4)(z) =

⎡
⎢⎢⎣
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3z 0 0√

3z −1 2 z 0
0 2 z 1

√
3z

0 0
√
3z 3

⎤
⎥⎥⎦ =

[
H̃ (4)(z)

]†
. (1)

This model without incidental symmetries nicely illustrates a “mutual repulsion” of
eigenvalues (cf. Fig. 1).

1.1 Crossings of Energies in PT -Symmetric Models

Incidental energy-level crossings also occur for multiple non-Hermitian Hamilto-
nians exhibiting parity-times-time-reversal (a.k.a. PT , i.e., nonlinear) symmetry
(cf. review paper [1] or recent papers [2, 3]). One of the simplest illustrations is
provided by the generalized radial harmonic oscillator Hamiltonian of [4], i.e., by
the non-selfadjoint ordinary differential operator

H (H O)(α, c) = − d2

dx2
+ x2 − 2ic x + α2 − 1/4

(x − ic)2
, x ∈ (−∞,∞) (2)

defined in L2(R) and possessing all of its energy eigenvalues in closed form,

E = E(n,q) = 4n + 2 − 2qα + c2, n = 0, 1, . . . , q = ±1. (3)

These quantities are real along the whole real line of α (we may ignore here the role
of the inessential second parameter c �= 0). The unavoided energy-level crossings
abound. At all of the integer couplingsα = m − n they have the form of degeneracies
E(m,1) = E(n,−1).
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1.2 Exceptional Points

Tentatively, one could conjecture that in the context of crossing of levels the linear and
nonlinear symmetries might have played a similar role. A deeper study of solvable
models reveals that it is not so. A number of decisive differences emerges. First of
all, Hermitian Hamiltonians exhibiting a linear symmetry remain diagonalizable at
the crossing point. In our non-Hermitian model (2), in contrast, all of the energy-
degeneracy parameters α = m − n are “exceptional points” (EP; the concept was
introduced by Kato [5]) at which the Hamiltonian ceases to be diagonalizable (see
[4] for details). For this reason the model does not admit the standard physical
probabilistic interpretation at any energy-crossing value of α = m − n = α(E P). In
contrast to their Hermitian analogues, operators H (H O)(α(E P), c) cannot consistently
describe a quantum system. This means that the physics which is controlled by a
parameter may change abruptly at the EP horizon [6].

The argumentmay further be strengthenedwhen one recalls the finite-dimensional
and non-Hermitian PT -symmetric toy-models of [7]. Their four-by-four sample

H (4)(z) =

⎡
⎢⎢⎣

−3
√
3z 0 0

−√
3z −1 2 z 0

0 −2 z 1
√
3z

0 0 −√
3z 3

⎤
⎥⎥⎦ �= [

H (4)(z)
]†

(4)

differs from (1) just by the inversion of the signs in the lower diagonal. The newmodel
is also solvable yielding equidistant spectrum En(z) = dn

√
1 − z2 with coefficients

d0 = −3, d1 = −1, d2 = 1 and d3 = 3. These energies are only real for |z| ≤ 1
(cf. Fig. 2). The two points zcoll. = ±1 of the collision of the eigenvalues become
exceptional in the sense of Kato, zcoll. = z(E P). At these parameters the eigenvectors
cease to form a complete basis. This means that also mathematics changes abruptly
at the EP horizon.

Fig. 2 Attraction of levels
for non-Hermitian
Hamiltonian (4)
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One of the most characteristic generic features of finite-dimensional non-
Hermitian Hamiltonians exhibiting PT symmetry lies in an effective attraction
between eigenvalues. For model (4), in particular, the four half-hyperbolas of Fig. 1
become replaced by four half-ellipses of Fig. 2 (matched in two ellipses). The whole
spectrum is complex at all z < −1 and z > 1. A priori, no space seems left for a real
crossing of the levels. Other toy models must be sought.

2 Ad Hoc Physical Hilbert Spaces

Our forthcoming considerations will be motivated by all of the latter observations.
We feel addressed by the apparent lack of suitable (i.e., preferably, non-numerical)
N by N matrix examples which would exhibit an unavoided energy-level crossing
phenomenon (without complexifications) and which would admit a consistent prob-
abilistic quantum-mechanical interpretation, i.e., an explicit construction of some
standard physical Hilbert spaceH (S) of quantum states. Our interest in models with
N < ∞ was also co-evoked by the technical complexity of the latter task in the case
of N = ∞ [8–10].

2.1 The Concept of Metric Operator Θ

Agiven diagonalizable Hamiltonianwith real spectrummay be found non-Hermitian
when considered in an unphysical Hilbert space H (F). In the notation of [11] the
superscript stands here for both “false” and “favored” alias “friendly”. The most
straightforward amendment of the situation may be mediated by the replacement of
the unphysical Hilbert space by a physical one, H (F) → H (S). This replacement
is being realized by the mere change of the inner product,

〈ψ1|ψ2〉(F) → 〈ψ1|ψ2〉(S) = 〈ψ1|Θ|ψ2〉(F) (5)

where symbol Θ denotes the so called inner-product-metric operator [12].
The main idea of the recipe is that for a given Hamiltonian with real spectrum

which appeared non-Hermitian inH (F) (wewillwrite H �= H †)wemay achieve, via
a suitable choice of metric, its Hermiticity inH (S) (we will define H ‡ = Θ−1H †Θ

and write H = H ‡). The assignment of the Hermitizing metric Θ to a given Hamil-
tonian H is not unique [12]. This ambiguity may play the role of a new freedom in
quantum model-building.

From an opposite perspective, a unique choice of physical metric Θ enables us to
decide whether a given candidate for an observable is acceptable (i.e., Hermitian in
givenH (S)) or not. Any change of the metric would induce the change of the set of
the operators of observables, i.e., of the whole physical meaning and interpretation of
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the quantum system in question. This ideawill form a background of our forthcoming
considerations.

2.2 Constructive Specification of Eligible Metrics

The concrete specification and practical use of metricΘ must take into consideration
its necessary mathematical properties [12]. Firstly, in a setting valid for all observ-
ables, the generator H of the time evolution of wave functions must be Hermitian in
H (S), i.e.,

N∑
k=1

[
H †

jk Θkn − Θ jk Hkn

]
= 0, j, n = 1, 2, . . . , N , N = dim H (F,S) ≤ ∞.

(6)

Although H may be non-Hermitian inH (F) (though not necessarily—see [13]), the
spectrum must be real in a suitable physical domain D of a multiplet of parameters
λ. Inside this domain, our preselected Hamiltonian H = H(λ) must be also diag-
onalizable [14]. For the sake of non-triviality of our considerations, we shall also
assume the non-emptiness of the EP boundary, ∂D �= ∅.

The spectrum of H is often postulated non-degenerate, discrete and bounded
from below. This is a technical condition which may easily be satisfied whenever
one works with Hilbert spaces H (F) of a finite dimension N < ∞. In such a case
one may construct the (complete) set of N eigenstates |Ξ j 〉 of the F-space-conjugate
operator H †(λ),

H † |Ξn〉 = En |Ξn〉, n = 0, 1, . . . , N − 1. (7)

Following [15], we finally define the general metric as the following sum

Θ = Θ(H, κ) =
N−1∑
j=0

|Ξ j 〉 κn 〈Ξ j |. (8)

The practically unrestricted variability of the optional parameters κ j > 0 represents
just the well known degree of freedom of the theory.

2.3 N = 2 Illustration

In a two-by-two-matrix illustration using real Hilbert space H (F) = R
2, the

Hamiltonian-simulating matrix
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H = H (2)(λ) =
(

0 1
1 + λ 0

)
, λ > −1 (9)

is exclusively Hermitian at λ = 0 but it possesses manifestly real and non-degenerate
eigenvalues E± = ±√

1 + λ at any λ > −1.Wemay recall (8) and define the general
metric

Θ = Θ(S)(λ, b) =
(
1 + λ b

b 1

)
, −√

1 + λ < b <
√
1 + λ (10)

with two positive eigenvalues θ± = 1 + λ/2 ± √
b2 + λ2/4. This enables us to

declare the same Hamiltonian matrix (9) Hermitian in all Hilbert spacesH (S) num-
bered by parameter b.

3 Four-State Non-Hermitian Toy Model

Practical applications of nontrivial metrics Θ suffer from a scarcity of their sup-
ply [16]. Up to rare exceptions [17] a restriction of attention to finite Hilbert-space
dimensions N < ∞ seems necessary. In a search for insight, the use of the small-
est Ns admitting non-numerical results seems particularly rewarding. Let us start,
therefore, from the choice of N = 4.

3.1 Energies

Illustrative Hamiltonian (4) was designed as an example in which the spontaneous
breakdown of PT -symmetry proceeds exclusively via complexifications of the
energies [7]. Such amodel would be unsuitable for our present purposes. Fortunately,
in the light of our more recent methodical studies [3, 18] it appeared that many
methodical advantages of the family of N by N models of [7] (like the reality of
spectrum or its non-numerical tractability) may be shared by simpler, albeit more-
parametric models in which the main diagonal is allowed to vanish. After we picked
up the first nontrivial two-parametric element

H = H (4)(α, β) =

⎡
⎢⎢⎣

0 −1 + β 0 0
−1 − β 0 −1 + α 0

0 −1 − α 0 −1 + β

0 0 −1 − β 0

⎤
⎥⎥⎦ (11)

of this family (cf. [18]), we discovered that it may offer the service.
The potentially observable bound-state energies of model (11) coincide with the

four real roots of secular equation
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E4 + (
α2 − 3 + 2 β2

)
E2 + 1 − 2 β2 + β4 = 0. (12)

These energies occur in pairs E±,ε = ±√
Zε numbered by ε = ± where the symbol

Zε denotes two easily written roots of a quadratic equation. Inside the closure of the
physical parametric domain D these roots must be non-negative.

From the secular equation one immediately deduces the double degeneracy E →
0 of one of the pairs of the eigenenergies in the limit of β2 → 1. Under this constraint
the complete quadruple degeneracy E±,± → 0 takes place in the second limit of
α2 → 1. Still, the exact knowledge of the energies

E±,± = ± 1
2

√
6 − 2 α2 − 4β2 ± 2

√
α4 − 6α2 + 4α2β2 + 5 − 4β2

offers more insight than expected.

3.2 A Reparametrization

In terms of new variables A = 1 − α2, B = 1 − β2 and C = A + 4B the previous
formula becomes more transparent,

2 E±,± = ±
√

A + C ± 2
√

AC = ±
√

(
√

A ± √
C)2 = ±√

A ± √
C . (13)

The reparametrization clarifies the root-complexification nature of the lines A = 0
and C = 0. More precisely, formula (13) indicates that the set of the potentially
physical parameters A and B or C yielding the real spectrum of energies is specified
by the two elementary inequalities A ≥ 0 and C ≥ 0 in the A − B plane (cf. Fig. 3).

Fig. 3 The A − B plane of
reparametrized Hamiltonian
(11). After exemption of the
dashed line, the points inside
the thick-line-bounded
upper-right wedge specify
the unitary dynamical regime
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After a return to the old parameters α = √
1 − A and β = √

1 − B, our new
N = 4 matrix (11) would cease to be real in the whole A − B plane. This slightly
redefines the model. Keeping this in mind let us further recall Fig. 3 and separate the
A − B plane of parameters into eleven subdomains while noticing that

• in the usual matrix sense, i.e., inside the most common complex vector space
H (F) ≡ C

4 endowedwith trivialmetricΘ(F) = I , our (possibly, complex)Hamil-
tonian (11) is manifestly Hermitian just in the single subdomain D3;

• our four by four Hamiltonian is a real matrix with real spectrum just in the two
simply connected subdomains of parameters D5 and D7;

• the spectrum is real inside the closure of the unionD2 ∪ D3 ∪ D5 ∪ D6 ∪ D7 ∪ D8

of six subdomains.

In Fig. 3 the two thick EP half-lines with A = 0 and C ≥ 0 or with C = 0 and
A ≥ 0 play the role of the boundaries of stability of the system (let us call them
“quantumhorizons of the first kind”). Beyond these horizons the energies complexify
and cease to be observable.

The most elementary illustration of this most common form of quantum phase
transition is provided by Fig. 4 where we varied parameter A along a line connecting
the unphysical subdomainD4 with its most conventional physical neighborD5. Once
we choose a nonvanishing second parameter B = 1/50 we obtained a generic picture
in which the two separate degenerate energies are unfolding in parallel.

With the decrease of B > 0 the degenerate energies get closer to each other. In
the limit one arrives at an exceptional, double-degeneracy scenario with A = B = 0.
The spectrum in the vicinity is sampled in Fig. 5. Onemoves there along the pathwith
B = A so that the system passes through the origin in a way connecting the physical
regionD5 with the twice-forbidden unphysical subdomainD9. Obviously, one could
now reinterpret a return to the pattern of Fig. 4 as a consequence of perturbation due
to which the upper and lower doublets get decoupled.

The B = A pass is anomalous because inside the twice-forbidden subdomainD9

the model happens to have a purely imaginary spectrum. As long as this means that

Fig. 4 The spectrum in the
vicinity of the A = 0 horizon
of the first kind
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Fig. 5 The confluent-EP
scenario at B = A
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Im (i En) = 0, one could obtain a potentially measurable spectrum also in subdo-
main D9, using simply a premultiplied form Ĥ = i H (4)(α, β) of an after-transition
candidate for one of possible physical Hamiltonians in D9.

4 New Physics Behind the Unavoided Level Crossings

Admitting, in Fig. 3, a further decrease of B below zerowhile keeping A ≥ 0we enter
another dynamical regime which opens the possibility of the C = 0 EP phase transi-
tions of the first kind.During themonemoves, typically, from the physical subdomain
D7 to its unphysical neighbor D10. The parameter-dependence of the spectrum as
well as its complexification pattern will be analogous to the ones displayed in Fig.4.

Alongboth of the thickEP lines of Fig. 3 the phase transitions between the complex
and real spectrum are qualitatively the same (i.e., in our terminology, of the first
kind). In both of these cases the degeneracy of a pair of energies at the EP singularity
is followed by its subsequent unfolding into unobservable complex eigenvalues.
This mechanism is widely known as the so called spontaneous breakdown of PT
symmetry (see also its numerous exactly solvable models in [19]).

What remains unclarified is the physical nature of the other, alternative parameter-
changingprocesses duringwhich a pair of energieswould pass through the remaining,
dashed B = 0 EP line of Fig. 3 without getting complexified. We intend to show now
that after one crosses such an EP horizon there will emerge good reasons for speaking
about an anomalous phase transition “of the second kind”.

4.1 The Menu of Metrics

In the light of formula (8) themetric ceases to be positive definite at anyEP parameter.
Keeping in mind Fig. 3 we may conclude that no positive definite metric Θ can exist
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at A ≤ 0, at C ≤ 0 and at B = 0. Temporarily, let us assume that A > 0, C > 0 and
B �= 0, therefore.

Once we insert Hamiltonian (11) in the implicit linear algebraic definition (6) of
the real, symmetric and positive definite metric matrix Θ , we obtain an overdeter-
mined set of 16 equations for 10 unknown matrix elements. As long as formula (8)
indicates that there are strictly four free real parameters in the family of solutions, let
us pick up the quadruplet of elementsΘ1 j = t j with j = 1, 2, 3, 4 as free parameters.
Next, let us solve the system by the standard elimination technique yielding

Θ22 = −−t1 + t1 β − t3 − t3 α

1 + β
, Θ23 = t2 − t2 α + t4 + t4 β

1 + β
, Θ24 = − t3 (−1 + β)

1 + β

in the second row of the matrix,

Θ33 = t1 − t1 α − t1 β + t1 βα + t3 − t3 α2

1 + β + α + αβ
= (−t1 + t1 β − t3 − t3 α) (−1 + α)

(1 + β) (1 + α)
,

Θ34 = t2 (1 − α − β + αβ)

1 + β + α + αβ
= t2 (−1 + α) (−1 + β)

(1 + β) (1 + α)

in the third row and

Θ44 = − t1
(
αβ2 − β2 + 2 β − 2αβ + α − 1

)
β2 + αβ2 + 2 β + 2αβ + 1 + α

= − t1 (−1 + β)2 (−1 + α)

(1 + β)2 (1 + α)

in the fourth row of the metric. An exhaustive, general and complete solution is
obtained. It would be too space-consuming to display the whole matrix of the eligible
metrics in print. Still, its display element by element enables us to discuss some of
the most important consequences.

4.2 EP Horizon of the Second Kind

The insertion of B = 0 alias β = 1 reduces our Hamiltonian (11) to one-parametric
matrix

H = H (4)(α, 1) =

⎡
⎢⎢⎣

0 0 0 0
−2 0 −1 + α 0
0 −1 − α 0 0
0 0 −2 0

⎤
⎥⎥⎦ . (14)

One can easily prove that such a matrix possesses two vanishing eigenvalues E = 0
but just a single related eigenvector. Thismeans thatmatrix (14) is non-diagonalizable
and that the B = 0 line is all composed of exceptional points. The Jordan-block
canonical structure of the B = 0 Hamiltonian cannot be Hermitized by any metric
Θ . Two of the eigenvectors |Ξ j 〉 in formula (8) coincide in the limit B → 0 so that in
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Fig. 6 The unavoided level
crossing at B = 0 for
A = 1/50
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the same limit, one of the eigenvalues ofΘ goes to zero. All of the metric-candidates
of the concrete form (8) become non-invertible at B = 0.

The B-dependence of the energy levels is such that two of them merge at B = 0.
In the vicinity of the B = 0 singularity (i.e., in our present terminology, along the EP
horizon of the second kind) one observes the unavoided level crossing, the concrete
formofwhich is illustrated in Fig. 6. The picturemay be complemented by the closed-
form construction of the bound-state solutions starting from the small-perturbation
version

H = H (4)(α, 1 − γ ) =

⎡
⎢⎢⎣

0 −γ 0 0
−2 + γ 0 −1 + α 0

0 −1 − α 0 −γ

0 0 −2 + γ 0

⎤
⎥⎥⎦

of the original Hamiltonian. A small shift γ in β = 1 − γ yields an equally small
value of B = 2γ + O(γ 2) of both signs. The resulting closed form of the pair of the
almost-vanishing eigenvalues reads

± 2E±,− =
√
2 − 2 α2 + 8 γ − 4 γ 2 − 2

√
α4 − 8α2γ + 4α2γ 2 − 2 α2 − 4 γ 2 + 8 γ + 1.

(15)
Onequickly arrives at the requiredperturbation-expansiondescriptionof the crossing
phenomenon in the language of Taylor series

E±,− ≈ ± (
2 + α2 + 3/4α4 + · · · ) γ ∓ (

5 + 13/2 α2 + · · · ) γ 2 ± · · · .

The change of the sign of the auxiliary small parameter γ may be perceived as a
transition between the potentially physical real-spectrum domain D5 and another,
equally acceptable real-spectrum domain D7.
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4.3 Phase Transition of the Second Kind

During the above-mentioned transition, the only suspicious point is B = 0 at which
the metric ceases to exist. Hence, we have to analyze the B-dependence of the metric
near the EP singularity at B = 0 in a more explicit representation. Most efficiently,
such a taskmay be simplified whenwe accept the specific choice of t2 = t3 = t4 = 0.
Under a symmetrized overall normalization choice of t1 �= 0 this makes our metric
strictly diagonal, with elements

Θ11 = (1 + α) (1 + β)

1 − β
, Θ22 = 1 + α, Θ33 = 1 − α, Θ44 = (1 − α) (1 − β)

1 + β
.

Inside the physical subdomain D5 of Fig. 3 our diagonal metric is positive definite
for all of the real parameters such that |α| < 1 and |β| < 1. Below the EP line B = 0
our metric ceases to be positive definite.

As long as we stay inside the physical domain giving real energies (viz., inside
subdomain D7 of Fig. 3) we may put β = 1 + δ2 (where δ is small but real) and
check the statement. It gets verified: our diagonal matrix Θ loses the status of metric
and becomes converted into the mere indefinite diagonal pseudometric P which
possesses two negative elements and/or eigenvalues,

P11 = − (1 + α)
(
2 + δ2

)
δ2

, P22 = 1 + α, P33 = 1 − α, P44 = −δ2
1 − α

2 + δ2
.

Below the EP line B = 0, any correct physical metric must necessarily be non-
diagonal. The physics of the quantum system in question will be different in the
neighboring physical subdomains D5 and D7. The energies remain observable but
the set of the admissible operators of observables for parameters inside D5 will
necessarily be different from the set of the operators of observables for parameters
which crossed the B = 0 line and belong to D7.

Such a change of physics at B = 0 is not as drastic as the truly catastrophic loss
of the reality of the energies at the horizons A = 0 or C = 0. Still, one must speak
about phase transition. We propose to call such a change the phase transition of the
second kind.

5 Level Crossings Beyond N = 4

When addressing conceptual matters we made an ample use, up to now, of the
elementary nature of the toy-model secular (12) at N = 4. At a few higher matrix
dimensions N the determination of the EP horizons is more complicated but still
non-numerical. The methods were described in [20] where, for a not too dissimilar
class of matrix models, these methods were shown effective up to N = 11.
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5.1 The Family of Models

The pass of a quantum observable (typically, of Hamiltonian H(λ)) through a Kato’s
exceptional point λ(E P) leads, typically, to a quantum catastrophe during which cer-
tain eigenvalues collide and, subsequently, complexify. The observability status of
Hamiltonian H(λ) is lost and the critical value of λ = λ(E P) may be perceived as
a point on horizon of quantum stability. In the alternative, eigenvalue-crossing sce-
nario without complexification we reminded the readers that one has to distinguish
between the non-EP degeneracy (typical for Hermitian models) and an anomalous,
EP-caused degeneracy. In this general theoretical setting [3] we revealed that one
may encounter a loss of the system’s observability implying a subtler form of the
quantum phase transition.

Via the solvable N = 4 example we discovered that the mechanism of the anom-
alous transition is based on the loss of the positivity of themetric at the EP singularity.
The Hilbert space (i.e., its inner product, i.e., the set of the eligible operators of obser-
vales) changed. Beyond the eigenvalue-collision at λ = λ(E P) the physical contents
of the theory may be entirely different even if the energy spectrum itself stays real.

Whenever the matrix dimensions get too large, the proofs become more and more
numerical even when we keep working with the most elementary tridiagonal and
finite-dimensional quasi-real matrix Hamiltonians of [18],

H (N )(λ, μ, . . .) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 + λ 0 . . . . . . 0

− 1 − λ 2 −1 + μ 0 . . .
...

0 −1 − μ 2 −1 + ν 0 . . .

... 0 −1 − ν 2
. . .

. . .
...

. . .
. . .

. . . −1 + μ 0
...

. . . −1 − μ 2 −1 + λ

0 . . . . . . 0 0 −1 − λ 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

The kinematics may be perceived as represented by the discrete Laplacean T =
H (N )(0, 0, . . .). The information about the dynamics is carried by the set of N /2
couplings.

Our preliminary numerical experiments with the N > 4models of the above class
proved encouraging, providing a few new qualitative insights (cf. the next subsec-
tion). On the abstract level it was useful that the interaction V = H − T itself was
kept minimally non-local and antisymmetric. The choice was further restricted to the
matrices which were required PT -symmetric with respect to the most elementary
antidiagonal N by N parity-simulating matrix
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P = P (N ) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 . . . 0 1 0
... . · .

. · .

. · . ...

0 1 0 . . . 0
1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦

(17)

in combination with the time-reversal-simulating antilinear operator T of matrix
transposition.

5.2 Non-Hermitian Quantum Lattice with N = 6

The study of the three-parametric N = 6 model

H = H (6)(α, β · γ ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1 + γ 0 0 0 0
−1 − γ 0 −1 + β 0 0 0

0 −1 − β 0 −1 + α 0 0
0 0 −1 − α 0 −1 + β 0
0 0 0 −1 − β 0 −1 + γ

0 0 0 0 −1 − γ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)
provides an insight into the pattern of possible generalizations. Reparametriza-
tions A = 1 − α2, G = 1 − β2 and B = 1 − γ 2 enable us to establish a connection
between the N = 4 and N = 6 spectra.

• in the “innermost coupling” dynamical regime we find the same no-intersection
pattern both in Fig. 4 (where N = 4) and in Fig. 7 (where N = 6); the same form
of the phase transition of the first kind may be expected to survive at all of the
higher dimensions N < ∞;

Fig. 7 The N = 6 spectrum
near the A = 0 horizon of
the first kind
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Fig. 8 The unavoided
inner-level crossing at B = 0
for N = 6

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.06 –0.04 0.06 0.08 B

E

(A=0.2,

 G=0.2)

Fig. 9 The N = 6 spectrum
near the B = 0 horizon of
the first kind
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• in the opposite, “outermost coupling” dynamical regime the inner-level-crossing
pattern (which characterizes the phase transition of the second kind) emerges both
in Fig. 6 (with N = 4) and in Fig. 8 (with N = 6); a very similar pattern may be
expected at all N > 6;

• in the newly emerging “intermediate-coupling” dynamical regime the phase tran-
sition of the first kind is expected; in the first nontrivial N = 6 example of Fig. 9
the G = 0 EP mergers only involve two pairs of levels while the reality of the
remaining spectrum is not destroyed. This or similar pattern is also expected to
occur at N > 6.

6 Conclusions

Let us summarize that in applications of quantum theory the specification of the
physical domain D of parameters may be understood in two ways. A parameter
may vary in Hamiltonian H = H(λ) itself (plus, naturally, in the related physical
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Hilbert-space metric) or solely in the physical Hilbert space metric (remember that
the choice of the Hamiltonian-Hermitizing metric Θ = Θ(λ, κ) is not unique in
general [12]).

In the former case people often assume that the pass of the quantum system in
question through the EP boundary ∂D leads to the complexification of some energies
so that the unitarity of the evolution is inadvertently lost. In our present paper we
considered the second possibility in which the pass through the EP boundary does
not destroy the reality of the energies.

We imagined that in such a case one must ask the following natural question:
“Does this imply that the unitarity of the evolution is preserved?” A nontriviality of
this question lies in the fact that after the pass through EP, the very definition of the
norm of the wave functions may change.

By means of a constructive analysis of a few solvable models we managed to
demonstrate that in some caseswhen boundarymerely separates two disjoint physical
subdomains D± the change of the definition of the norm of the wave functions is
unavoidable. The value of the norm of a given wave function performs, in general, a
jump when crossing such an EP horizon ∂D of the second kind. In such a dynamical
scenario it is necessary to speak about a phase transition of the second kind.

We described the mechanism in more detail. Keeping in mind the popularity
of the phase transition of the first kind (during which the change of the metric is
accompanied by the necessary change of the effective Hamiltonian) we emphasized
the contrast. We introduced the concept of the phase transition of the second kind
during which the change of the metric is not accompanied by any change of the
effective Hamiltonian. Subsequently we emphasized that the change of the physics
is subtler, mediated merely by the change of the physical Hilbert space, with all of
its well known consequences for non-Hamiltonian observables.

In the related literature one often finds the phase transition of the first kind inter-
preted as a symptomof a spontaneous breakdownof thePT symmetry of the system
[1]. Via our illustrative examples we demonstrated that the spontaneous breakdown
of the PT symmetry is not necessary for the existence of quantum phase transi-
tion. A “no-complexification” dynamical scenario may exist during which the phase
transition does not require any lasting loss of PT symmetry.

The possibility seems anomalous because after the system passes through the
singularity λ(E P), the Hamiltonian survives without any changes. The most amazing
consequence of the phase transition of the second kind may be seen in the loss of the
observability status of multiple operators of observables. The crypto-Hermiticity of
many of themwill only hold before or after the transition. In any case, the occurrence
of the phase transition of both kinds will change the physics thoroughly.
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9. D. Krejčiřík, P. Siegl, J. Železný, Complex Anal. Oper. Theory 8, 255 (2014); D.C. Brody, J.
Phys. A: Math. Theor. 49, 10LT03 (2016)
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