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Abstract We investigate the parametric evolution of the real discrete spectrum of
several complex PT symmetric scattering potentials of the type V (x) = −V1Fe(x) +
iV2Fo(x), V1 > 0, Fe(x) > 0 by varying V2 slowly. Here e, o stand for even and odd
parity and Fe,o(±∞) = 0. Unlike the case of Scarf II potential, we find a general
absence of the recently explored accidental (real to real) crossings of eigenvalues in
these scattering potentials. On the other hand, we find a general presence of coalesc-
ing of real pairs of eigenvalues at a finite number of exceptional points. After these
points, real discrete eigenvalues become complex conjugate pairs. We attribute such
coalescings of eigenvalues to the presence of a finite barrier (on the either side of
x = 0) which has been linked to a recent study of stokes phenomenon in the complex
PT-symmetric potentials.

The discovery [1] that the complex PT-symmetric Hamiltonians may have real dis-
crete spectrumhas given rise to PT-symmetric quantummechanics. The coalescing of
real discrete eigenvalues at a parametric point and their transition to complex conju-
gate eigenvalues just after has been known earlier as a phenomenon of spontaneous
breaking of complex PT-symmetry. The exactly solvable complex PT-symmetric
Scarf II scattering potential
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VS(x) = −V1 sech
2x + iV2 sech x tanh x, V1, V2 ∈ R, V1 > 0, (1)

has been well known to display spontaneous breaking of PT-symmetry when [2]
|V2| = V2c = 1/4 + V1 (2m = 1 = �

2). In the theory of exceptional points (EPs) of
non-Hermitian potentials [3], the value(s) of |V2| = V2c are called EPs where the real
pairs of eigenvalues coalesce and just after they turn into complex conjugate pairs.
Exactly at these values the corresponding eigenstates become linearly dependent and
the Hamiltonian looses diagonalizability.

A recent study of the Stoke’s phenomenon of complex PT-symmetric potentials
claims [4] the occurrence of level-coalescing (they call it level-crossings) at infi-
nite exceptional points in the potential V (x) = ig(x3 − x). In [4], this potential is
called “PT-symmetric double well” with “twowells at x = ±1/

√
3”. Such potentials

as having this feature have been claimed to have infinite number level-coalescings.
However, in more simple terms this V (x) is such that its imaginary part has a finite
barrier on the either side of x = 0 according as g is positive or negative. In this
work, we show that evolution of several complex PT-symmetric scattering poten-
tials whose imaginary part has a barrier on the either side of x = 0 have a finite
number of level-coalescings at the critical values |V2| = V2c. It is important to recall
that the complex PT-symmetric potentials V (x) = x2 + igx, V (x) = igx3, V (x) =
−V1sech2x + iV2 tanh x [5] do not entail coalescing of levels and exceptional points.
However, the interesting potential V (x) = x4 + igx [6] does have them.

Recently, it has been found that the potential (1) has a very interesting property
wherein real discrete eigenvalues cross at special valuesV2∗ of |V2|. This phenomenon
has been called accidental crossing [7] of real discrete eigenvalues in one-dimension.
As in one dimension, the degeneracy (two (distinct) linearly independent eigenstates
having coincident eigenvalue) cannot occur consequently the crossing levels have
linearly dependent eigenstates. This gives rise to loss of diagonalizability of the
Hamiltonianwhich in turn hampers the completeness of the spectrumof the potential.

Interestingly, the solvable regularized one-dimensional complex harmonic oscil-
lator (RCHO) [8, 9] potential also had this feature of level-crossings however this
came up more clearly in two recent presentations [10, 11].

In the parlance of exceptional points of non-Hermitian Hamiltonians the above-
mentioned two types (real to real, real to complex) of crossings of levels may not be
distinguished. However the real to real crossing of eigenvalue appears to be so rare,
that so far only two potentials RCHO [8, 9] and Scarf II (1) have yielded it. Curiously,
the former is only binding (infinite spectrum) potential that does not allow scattering
whereas the latter allows both bound (finite spectrum) and scattering states.

So, with the motivation of studying level coalescings (and any possibility of
level-crossings), we propose to find the parametric evolution of the finite number
of eigenvalues for five models of complex PT-symmetric scattering potentials (see
Fig. 1) employing various methods.

We shall be solving the one-dimensional time-independent Schrödinger equation

d2ψ(x)

dx2
+ 2μ

�2
[E − V (x)]ψ(x) = 0 (2)
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(a) (b)

Fig. 1 Schematic depiction of the Complex PT-symmetric scattering potentials, real part (thick
line), imaginary part (thin line). a Represents the rectangular well VR(x) (4) and b represents VS(x)
(1), VG(x) (5), VF (x) (6), VH (x) (7) and VWC (x) (14)

for five models of one-dimensional complex PT-symmetric scattering potentials.
These potentials (see Fig. 1) essentially vanish at x = ±∞ and their real part consti-
tutes a well which support only a finite numbers of real discrete eigenvalues. Their
imaginary parts are the corresponding anti-symmetric profile. These potential wells
are piece-wise constant rectangular, Gaussian, −(1 + x4)−1, −sech x and Wigner-
Coulomb profiles.

Wewould like to outline ourmethod of finding real discrete eigenvalues by numer-
ical integration of the Schrödinger equation (2). Let us define k = √−2μE/�.
We take the general solution of (2) as ψ(x < −L) = Cekx , ψ(−L < x < L) =
Au(x) + Bv(x), ψ(x > L) = De−kx . Here u(x) and v(x) are linearly independent
solutions of (2), their initial values as u(0) = 1, u′(0) = 0 and v(0) = 0, v′(0) = 1
to start the integration to both left and right side up to −L and +L , respectively.
L is sufficiently large distance to be chosen. We match these piece-wise solutions
and their first derivatives at x = −L , 0, L . Finally, we eliminate A, B,C, D in the
resulting equations to obtain the eigenvalue formula

ku(L) + u′(L)

kv(L) + v′(L)
= ku(−L) − u′(−L)

kv(−L) − v′(−L)
(3)

to find the eigenvalues.
We choose the distance L such that the final results (eigenvalues) have the desired

accuracy. For all the calculations here we use 2μ = 1 = �
2. Using (3), we fix a

value of V1 so that there are at least 6 real discrete eigenvalues for the real potential
well (V2 = 0) by varying E = −V1 to E = 0. Next, V2 is proposed to vary slowly
till we get real pairs of eigenvalue curves which coalesce. We call these special
values of V2 as V2c which are known as exceptional points (EPs) of non-Hermitian
potential. Nonetheless, we are interested to see whether or not there will be crossings
of real discrete eigenvalues from real to real when we vary V2. The eigenvalues of
complex PT-symmetric potentials (4, 5, 6, 7, 14) considered here in the sequel satisfy
En(−V2) = En(V2), we therefore evaluate En(V2) only for V2 > 0.

First, to confirm our numerical method, we take up the well known rectangular
complex PT-symmetric profile [12] of width 2a.
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Fig. 2 The parametric evolution of real discrete spectrum, En(V2), for rectangular potential with
V1 = 40 and a = 2, notice that there are no level-crossings, but the eigenvalue pairs do coalesce at
the exceptional points |V2| = 0.96, 2.75, 4.88, 7.33. The solid line is due to numerical integration
using (3) and the dots are due to the exact analytic method using (9)

VR(x) = −V1Θ1(x) − iV2Θ2(x),Θ1(x) =
{
1, |x | ≤ a
0, |x | > a

,Θ2(x) =
⎧⎨
⎩
0, |x | ≥ a
−1, −a < x < 0
1, 0 ≤ x < a

(4)

which is also solvable analytically (see (9)). The potential (4) being of finite sup-
port we take L = a = 2. In Fig. 1, the solid lines are due to numerical integration
method using (3). No crossing (real to real) of eigenvalues is observed but eigenval-
ues coalesce at |V2| = V2c = 0.96, 2.75, 4.88, 7.33. Next, we find the evolution of
eigenvalues of Gaussian model for V1 = 50

VG(x) = V1e
−x2 + iV2xe

−x2 , V1, V2 ∈ R, V1 > 0. (5)

By thismethod a distance of L = 10–12 has been found sufficient for the convergence
of eigenvalues. In Fig. 3, the solid lines represent the result due to (3). The exceptional
points for this potential (5) are |V2| = V2c = 43.26, 55.55, 63.70 and the crossing of
levels is not found. In Fig. 4, the parametric evolution of the spectrum of

VF (x) = −V1

1 + x4
+ iV2x

1 + x4
, V1, V2 ∈ R, V1 > 0 (6)

is presented. The pairs of eigenvalues are well separated from each other and the
levels do not cross. They do coalesce at |V2| = V2c = 19.39, 38, 87, 46.35, we have
fixed V1 = 50. So, for |V2| < 19.39 all the discrete eigenvalues are real and PT-
symmetry is un-broken. After this critical value, the initial discrete eigenvalues start
disappearing. Let us now consider sech-hyperbolic potential

VH = −V1sech x + iV2sech x tanh x, V1, V2 ∈ R, V1 > 0 (7)
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whose real part is sech x unlike the Scarf II potential (1). See in Fig. 5, the eigenvalue
pairs are well separated without crossing each other, they coalesce at |V2| = V2c =
25.37, 31.15, 34.92, 37.35.

In the following, we find eigenvalues of (4) alternatively by the exact and analytic
method which will also confirm the results in Fig. 2. We insert this potential in the
Schrödinger equation (2). Assuming 2m = 1 = �, we define

p = a
√
E + V1 − iV2, q = a

√
E + V1 + iV2, r = ak, k = √−E . (8)

The solution of (1) for this potential can be written asψ(x < −a) = Fekx , ψ(−a <

x < 0) = C sin qx + D cos qx, ψ(0 < x < a)= A sin px + B cos px, ψ(x > a)=
Ge−kx . By matching these solutions and their first derivative at x = −a, 0, a, we
eliminate A, B,C, D, F,G to get the eliminant as

2pqr cos p cos q + p(r2 − q2) cos p sin q + q(r2−p2) sin p cos q

− r(p2 + q2) sin p sin q = 0,
(9)

which serves as an analytic eigenvalue equation to be solved by varying E from
−V1 to 0. By fixing V1 = 20, and a = 2, we obtain the parametric evolution of the
spectrum of (4). These results are shown by dots in Fig. 2. See an excellent agreement
between the two.

Below, we propose to find the eigenvalues of the Gaussian potential (5) poten-
tial alternatively by the diagonalization of H = p2/(2μ) + VG(x) in the harmonic
oscillator (HO) basis. For HO basis |n〉, we know that H0 = − d2

dx2 + x2, H |n〉 =
(2n + 1)|n〉, where 2μ = 1 = �

2, �ω = 2. Using the well known a, a† operators,
we know that

〈m|p2|n〉 = −
√

(n − 1)n

2
δm,n−2 + (2n + 1)

2
δm,n −

√
(n + 1)(n + 2)

2
δm,n+2.

(10)

More interestingly the following required matrix elements can be found analytically
with help of available but rare integrals [13]

〈m|e−x2 |n〉 = cos[(m − n)π/2]Γ [(m + n + 1)/2]√
2πm!n! , (11)

and

〈m|xe−x2 |n〉 =
{

(m − n)

2
√
2 sin[(m − n)π/2]

Γ [(m + n)/2]√
2πm!n! , if, m + n = odd

0, otherwise.
(12)

Using (10, 11, 12), we write the matrix elements hm,n = 〈m|H |n〉 to get the
eigenvalues as

det |hm,n − E δm,n| = 0. (13)
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Fig. 3 The same as in Fig. 2,
for VG(x) (5), when
V1 = 50. The solid line
is due to (3) and dots
are due to (13). The
exceptional values are
|V2| = 43.26, 55.55, 63.70
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Fig. 4 The same as in Fig. 2,
for VF (x) (6). These results
are due to (3) and the
exceptional point are
|V2| = 19.39, 38, 87, 46.35
and V1 = 50
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In Fig. 3, see the excellent agreement between solid lines (using (3) and dots (obtained
by diagonalization using (13)).

Our last model to be discussed is the Wigner-Coulomb type complex PT-
symmetric scattering potential expressed as

VWC(x) = −V1

1 + x2
+ iV2x

1 + x2
, V1, V2 ∈ R, V1 > 0. (14)

The Schrödinger equation for this potential is known to be unamenable. A special
case (V1 = V2) of this potential is VWC(x) = iV2

x − i which is a complex regularized
PT-symmetric potential and on the real line x ∈ (−∞,∞) its discrete spectrum is
null. This may well be understood by realizing that for any real value of E it gives
rise to only one classical turning point (for bound states there should at least be two
turning points). This special case also serves to a priori indicate that V2c < V1. The
aforementioned special case of complex Coulomb potential has been treated [14, 15]
on a special complex trajectory to find a real discrete spectrum.
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In order to solve the eigenvalue equation Hψ = Eψ , where H = [ p2

2μ + V (x)].
Here we use a special method [16, 17] wherein we find the roots of E by solving the
determinantal equation

det |〈m|(1 + x2)H − Ex2)|n〉 − Eδm,n| = 0, (15)

where |n〉 are the well known harmonic oscillator eigenstates. The motive behind
choosing thismethod [16, 17] is two-fold. Thematrix elements like 〈m|(1 + x2)−1|n〉
cannot be found analytically. As the determinant becomes larger and larger, the
analytic matrix elements are more desirable. Secondly, the imaginary part of this
potential (1) like the Coulomb potential varies as∼1/|x |, asymptotically. This insuf-
ficiently rapid asymptotic fall off of the coulomb potential brings in the typical
problems in the integration of the Schrödinger for asymptotic values. We again take
2μ = 1 = �

2, �ω = 2 the eigenvalue equation (2) can be expressed as

det |Hm,n(E)| = 0

Hm,n = 〈m|p2|n〉 + 〈m|x2 p2|n〉 − (E + V1)〈m|n〉 + iV2〈m|x |n〉 − E〈m|x2|n〉.
(16)

〈m|x |n〉 =
√
n

2
δm,n−1 +

√
(n + 1)

2
δm,n+1 (17)

〈m|x2|n〉 =
√

(n − 1)n

2
δm,n−2 + (2n + 1)

2
δm,n +

√
(n + 1)(n + 2)

2
δm,n+2 (18)

〈m|x2 p2|n〉 = − √
(n − 3)(n − 2)(n − 1)n δm,n−4/4 + √

n(n − 1) δm,n−2

+ (2n2 + 2n − 1) δm,n − √
(n + 1)(n + 2) δm,n+2/4

− √
(n + 1)(n + 2)(n + 3)(n + 4) δm,n+2/4

− √
(n + 1)(n + 2)(n + 3)(n + 4) δm,n+4/4. (19)

Curiously, the parametric evolution of eigenvalues obtained for this potential is quali-
tatively different from the other ones: VR(x), VG(x), VF (x), VH (x) discussed above.
See in Fig. 6, the initial eigenvalue curves are longer which go on becoming shorter
for higher eigenvalues. Once again there are no crossings of eigenvalues, but eigen-
values coalesce at |V2| = 19.73, 10.87, 5.53, 2.75 (Fig. 5).

Most importantly, for all the scattering potentials considered here, we find that the
change of the depth parameter V1 changes the number of discrete eigenvalues and the
subsequent values of exceptional points where energy levels coalesce and just after
they become complex conjugate pairs. Based on our calculations, we can claim that
by changing V1 we do not detect any real to real crossings of discrete eigenvalues as
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Fig. 5 The same as in Fig. 2,
for VH (x) (7), V1 = 50. The
exceptional points are |V2| =
25.37, 31.15, 34.92, 37.35
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Fig. 6 The same as Fig. 2,
for the Wigner-Coulomb
potential (14),
V1 = 20, a = 2. The
exceptional points are |V2| =
19.73, 10.87, 5.53, 2.74.
These results are due to the
special method [12, 13] of
diagonalization (16)
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it happens [7] in the case of complex PT-symmetric Scarf II scattering potential of
the similar shape as in Fig. 1a, b.

To conclude, in this paper we have found parametric evolution of eigenvalues for
five complex PT-symmetric scattering potentials employing different methods. Such
works are instructive and desirable especially when complex PT-symmetry makes
way in to textbooks of quantum mechanics. Unlike the Scarf II, these scattering
potentials do not give rise to the real to real crossing of discrete eigenvalues. In
this regard, the present work also attracts the attention on Scarf II (and also the
RCHO) as two highly exceptional cases of accidental crossings of eigenvalues. The
reason behind their specialty needs to be investigated. However, the PT-symmetric
scattering potentials discussed here do display a general coalescing of eigenvalues at
a finite number exceptional points, we attribute this phenomenon to the occurrence
of a finite barrier either side of x = 0. This may be sufficient but not a necessary
condition on a potential for the occurrence of level-coalescing. Further confirmations
and investigations are welcome in this regard.
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