
Introductory Lectures on Extended
Supergravities and Gaugings

Antonio Gallerati and Mario Trigiante

Abstract In an ungauged supergravity theory, the presence of a scalar potential is
allowed only for the minimal N = 1 case. In extended supergravities, a non-trivial
scalar potential can be introduced without explicitly breaking supersymmetry only
through the so-called gauging procedure. The latter consists in promoting a suitable
global symmetry group to local symmetry to be gauged by the vector fields of the
theory. Gauged supergravities provide a valuable approach to the study of superstring
flux-compactifications and the construction of phenomenologically viable, string-
inspired models. The aim of these lectures is to give a pedagogical introduction to
the subject of gauged supergravities, covering just selected issues and discussing
some of their applications.

1 Introduction

A long-standing problem of high energy theoretical physics is the formulation of a
fundamental theory unifying the four interactions. Superstring theory in ten dimen-
sions and M-theory in eleven seem to provide a promising theoretical framework
where this unification could be achieved. However, there are many shortcomings
originating from this theoretical formulation.

First of all, these kinds of theories are defined in dimensionsD > 4, and, since we
live in a four-dimensional universe, a fundamental requirement for any predictable
model is the presence of a mechanism of dimensional reduction from ten or eleven
dimensions to four. Moreover, the non-perturbative dynamics of the theory is far
from being understood, and there is no mechanism to select a vacuum state for our
universe (i.e. it is not clear how to formulate a phenomenological viable description
for the model). Finally, there are more symmetries than those observed experimen-
tally. These models, in fact, encode Supersymmetry (SUSY), but our universe is not

A. Gallerati · M. Trigiante (B)
Department DISAT, Politecnico di Torino, Corso Duca Degli Abruzzi 24,
10129 Torino, Italy
e-mail: mario.trigiante@gmail.com

© Springer International Publishing Switzerland 2016
R. Kallosh and E. Orazi (eds.), Theoretical Frontiers in Black Holes
and Cosmology, Springer Proceedings in Physics 176,
DOI 10.1007/978-3-319-31352-8_2

41



42 A. Gallerati and M. Trigiante

supersymmetric and its gauge interactions are well described, at our energy scales,
by the StandardModel (SM). Therefore deriving a phenomenologically viablemodel
from string/M-theory also requires the definition of suitable mechanisms of super-
symmetry breaking.

Spontaneous compactification. The simplest way for deriving a four-dimensional
theory froma higher dimensional one is through spontaneous compactificationwhich
generalizes the original Kaluza–Klein (KK) compactification of five-dimensional
general relativity on a circle.We consider the low-energy dynamics of superstring/M-
theory on space-time solutions with geometry of the form

M4
(1,3) × Mint, (1)

where M4
(1,3) is the maximally symmetric four dimensional space-time with

Lorentzian signature andMint is a compact internal manifold. TheD = 10 orD = 11
fields, excitations of the microscopic fundamental theory, are expanded in normal
modes (Y(n)) on the internal manifold

Φ(xμ, yα) =
∑

(n)

Φ(n)(x
μ) Y(n)(y

α), (2)

the coefficientsΦ(n) of this expansion describing massive fields inM4
(1,3) with mass

of the order of 1
R , where R is the “size” of the internal manifold Mint. These are the

Kaluza–Klein states, forming an infinite tower.
Inmany cases, a consistent truncation of themasslessmodesΦ(0) is well described

by a D = 4 Supergravity theory (SUGRA), an effective field theory consistently
describing superstring dynamics on the chosen background at energies Λ, where

Λ � 1

R
� string scale. (3)

The effective supergravity has M4
(1,3) as vacuum solution, and its general features

depend on the original microscopic theory and on the chosen compactification. In
fact, the geometry of Mint affects the amount of supersymmetry of the low-energy
SUGRA, as well as its internal symmetries.

Internal manifold, compactification and dualities. According to the Kaluza–Klein
procedure, the isometries ofMint induce gauge symmetries in the lower-dimensional
theory gauged by the vectors originating from the metric in the reduction mechanism
(KK vectors). The internal manifoldMint also affects the field content of the D = 4
theory, which arrange in supermultiplets according to the residual (super)symmetry
of the vacuum solution M4

(1,3).
The compactification of superstring/M-theory on a Ricci-flat internal manifold

(like a torus or a Calabi Yau space) in the absence of fluxes of higher-order form field-
strengths, yields, in the low-energy limit, an effective four-dimensional SUGRA,
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which involves the massless modes on M4
(1,3). The latter is an ungauged theory,

namely the vector fields are not minimally coupled to any other field of the theory. At
the classical level, ungauged supergravity models feature an on-shell global symme-
try group,whichwas conjectured to encode the known superstring/M-theory dualities
[3]. The idea behind these dualities is that superstring/M-theory provide a redundant
description for the samemicroscopic degrees of freedom: different compactifications
of the theory turns out to define distinct descriptions of the same quantum physics.
These descriptions are connected by dualities, which also map the correspondent
low-energy description into one another. The global symmetry group G of the clas-
sical D = 4 supergravity is in part remnant of the symmetry of the original higher
dimensional theory, i.e. invariance under reparametrizations in Mint.1

Ungauged versus Gauged models. From a phenomenological point of view,
extended supergravity models on four dimensional Minkowski vacua, obtained
through ordinary Kaluza–Klein reduction on a Ricci-flat manifold, are not consistent
with experimental observations. These models typically contain a certain number of
massless scalar fields—which are associated with the geometry of the internal man-
ifold Mint—whose vacuum expectation values (vevs) define a continuum of degen-
erate vacua. In fact, there is no scalar potential that encodes any scalar dynamics, so
we cannot avoid the degeneracy. This turns into an intrinsic lack of predictiveness
for the model, in addition to a field-content of the theory which comprises massless
scalar fields coupled to gravity, whose large scale effects are not observed in our
universe.

Another feature of these models, as we said above, is the absence of a internal
local-symmetry gauged by the vector fields. Thismeans that nomatter field is charged
under a gauge group, hence the name ungauged supergravity.

Realistic quantum field theory models in four dimensions, therefore, require the
presence of a non-trivial scalar potential, which could solve (in part or completely)
moduli-degeneracy problem and, on the other hand, select a vacuum state for our
universe featuring desirable physical properties like, for instance

• introduce mass terms for the scalars;
• support the presence of some effective cosmological constant;
• etc.

The phenomenologically uninteresting ungauged SUGRAs can provide a general
framework for the construction of realistic model. In a D = 4 extended supergravity
model (i.e. having N > 1 susy), it is possible to introduce a scalar potential, without
explicitly breaking supersymmetry, through the so-called gauging procedure [4–12].
The latter can be seen as a deformation of an ungauged theory and consists in pro-
moting some suitable subgroup Gg of the global symmetry group of the Lagrangian
to local symmetry. This can be done by introducing minimal couplings for the vector
fields, mass deformation terms and the scalar potential itself. The coupling of the

1In part they originate fromgauge symmetries associatedwith the higher dimensional antisymmetric
tensor fields.
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(formerly abelian) vector fields to the new local gauge group gives us matter fields
that are charged under this new local gauge symmetry.

In particular, in the presence of fluxes of higher-order form field-strengths across
cycles of the internal manifold

〈
∫

Σp

F(p) 〉 �= 0, (4)

the non-linear dynamics of the low lyingmodes (or of a consistent truncation thereof)
is, in most cases, captured by a D = 4 theory which is gauged.

The gauge group Gg of the lower dimensional SUGRA depends on the geometry
of the internal manifold and on the possible internal fluxes

The fluxes and the structure of the internal manifold, aside from the gauge symmetry,
also inducemasses and a scalar potentialV(φ) (for reviews on flux-compactifications
see [13–15]). Thesemass terms produce, in general, supersymmetry breaking already
at the classical level (which is phenomenologically desirable) and the presence of a
scalar potential lift the moduli degeneracy (already at the tree level) andmay produce
an effective cosmological constant term

Supergravity theories inD dimensions are consistently defined independently of their
higher-dimensional origin, and are totally defined by

◦ amount of supersymmetry;
◦ field content;
◦ local symmetry, gauged by the vector fields (feature of gauged SUGRAs).

When originating from superstring/M-theory compactifications, gauged SUGRAs
offer a unique window on the perturbative low-energy dynamics of these theories,
since they describe the full non-linear dynamics of the low lying modes. In general,
there is a correspondence between vacua of the microscopic fundamental theory and
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vacua of the low-energy supergravity. However, there are several gauged SUGRAs
whose superstring/M-theory origin is not known.

Gauged supergravities are obtained from ungauged ones, with the same field
content and amount of SUSY, through the gauging previously mentioned procedure,
which iswell-defined andworks provided the gauge groupGg satisfies some stringent
conditions originating from the requirement of gauge invariance and supersymmetry.

As mentioned above, gauging is the only known way to introduce a scalar poten-
tial in extended supergravities without an explicit breaking of the supersymmetry.
However this procedure will in general break the global symmetry group of the
ungauged theory. The latter indeed acts as a generalized electric-magnetic duality
and is thus broken by the minimal couplings, which only involve the electric vec-
tor fields. As a consequence of this, in a gauged supergravity we loose track of the
string/M-theory dualities, which were described by global symmetries of the original
ungauged theories.

The drawback can be avoided using the embedding tensor formulation of the
gauging procedure [5, 8, 16–18] inwhich all deformations involved by the gauging is
encoded in a single object, the embedding tensor,which is itself covariantwith respect
to the global symmetries of the ungauged model. This allows to formally restore
such symmetries at the level of the gauged field equations and Bianchi identities,
provided the embedding tensor is transformed together with all the other fields. The
global symmetries of the ungauged theory now act as equivalences between gauged
supergravities. Since the embedding tensor encodes all background quantities in the
compactification describing the fluxes and the structure of the internal manifold, the
action of the global symmetry group on it allows to systematically study the effect
of dualities on flux compactifications.

These lectures are organized as follows.
In Sect. 2 we briefly review the general structure of ungauged supergravities.
In Sect. 3 we discuss the gauging procedure in the electric symplectic frame and

comment on the relation between the embedding tensor and the internal fluxes and
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the action on the latter of dualities. We end the section by discussing, as an example,
the gauging of the maximal four dimensional theory.

In Sect. 4 we review a manifestly covariant formulation of the gauging procedure
and introduce the notion of tensor hierarchy in higher dimensions.

2 Review of Ungauged Supergravities

Let us recall some basic aspects of the extended ungauged D = 4 supergravity.

Field content andbosonic action. The bosonic sector consists in the graviton gμν(x),
nv vector fields AΛ

μ(x), ns scalar fields φ
s(x) and is described by bosonic Lagrangian

of the following general form2

1

e
Lb = −R

2
+ 1

2
Gst(φ) ∂μφ

s ∂μφt + 1

4
IΛΣ(φ)FΛ

μν F
Σ μν

+ 1

8 e
RΛΣ(φ) εμνρσ FΛ

μν F
Σ
ρσ , (5)

where e = √|Det(gμν)| and the nv vector field strengths are defined as usual:

FΛ
μν = ∂μA

Λ
ν − ∂νA

Λ
μ . (6)

Let us comment on the general characteristics of the above action.

◦ The scalar fields φs are described by a non-linear σ -model, that is they are coor-
dinates of a non-compact, Riemannian ns-dimensional differentiable manifold
(target space), named scalar manifold and to be denoted by Mscal. The positive
definite metric on the manifold is Gst(φ). The corresponding kinetic part of the
Lagrangian density reads:

Lscal = e

2
Gst(φ) ∂μφ

s∂μφt . (7)

The σ -model action is clearly invariant under the action of global (i.e. space-
time independent) isometries of the scalar manifold. As we shall discuss below,
the group G can be promoted to a global symmetry group of the field equations
and Bianchi identities (i.e. on-shell global symmetry group) provided its (non-
linear) action on the scalar fields is combined with an electric-magnetic duality
transformation on the vector field strengths and their magnetic duals.

◦ The two terms containing the vector field strengths will be called vector kinetic
terms. A general feature of supergravity theories is that the scalar fields are non-
minimally coupled to the vector fields as they enter these terms through symmetric

2Using the “mostly minus” convention and 8πGn = c = � = 1.
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matrices IΛΣ(φ), RΛΣ(φ) which contract the vector field strengths. The former
IΛΣ(φ) is negative definite and generalizes the −1/g2 factor in the Yang–Mills
kinetic term. The latter RΛΣ(φ) generalizes the θ -term.

◦ There is a U(1)nv gauge invariance associated with the vector fields:

AΛ
μ → AΛ

μ + ∂μζ
Λ. (8)

All the fields are neutral with respect to this symmetry group.
◦ There is no scalar potential. In an ungauged supergravity a scalar potential is
allowed only for N = 1 (called the F-term potential). In extended supergravities
a non-trivial scalar potential can be introduced without explicitly breaking super-
symmetry only through the gauging procedure, which implies the introduction of
a local symmetry group to be gauged by the vector fields of the theory and which
will be extensively dealt with in the following.

The fermion part of the action is totally determined by supersymmetry once the
bosonic one is given. Let us discuss in some detail the scalar sector and its mathe-
matical description.

2.1 Scalar Sector and Coset Geometry

As mentioned above the scalar fields φs are coordinates of a Riemannian scalar
manifold Mscal, with metric Gst(φ). The isotropy group H of Mscal has the general
form

H = HR × Hmatt, (9)

where HR is the R–symmetry group and Hmatt is a compact group acting on the
matter fields. The gravitino and spin- 12 fields will transform in representations of the
H group. The maximal theory N = 8 describes the gravitational multiplet only and
thus H = HR = SU(8). The isometry group G of Mscal clearly defines the global
symmetries of the scalar action.

In N > 2 theories the scalar manifold is constrained by supersymmetry to be
homogeneous symmetric, namely to have the general form

Mscal = G

H
, (10)

where G is the semisimple non-compact Lie group of isometries and H its maximal
compact subgroup (Table1). Generic homogeneous spacesMscal can always be writ-
ten in the above form though G need not be semisimple. The action of an isometry
transformation g ∈ G on the scalar fields φr parametrizingMscal is defined by means
of a coset representative L(φ) ∈ G/H as follows:

g · L(φr) = L(g � φr) · h(φr, g), (11)
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Table 1 Examples of
homogeneous symmetric
scalar manifolds in extended
supergravities and their real
dimensions ns. We have
omitted in the list the
homogeneous symmetric
quaternionic Kaehler
manifolds in the N=2 models

N
G

H
ns

8 E7(7)
SU(8) 70

6 SO∗(12)
U(6) 30

5 SU(5,1)
U(5) 10

4 SL(2,R)
SO(2) × SO(6,n)

SO(6)×SO(n) 6n + 2

3 SU(3,n)
S[U(3)×U(n)] 6n

2 SU(1,n+1)
U(n+1) 2(n + 1)

SL(2,R)
SO(2) × SO(2,n+2)

SO(2)×SO(n+2) 2(n + 2)+2

Sp(6)
U(3) 12

SU(3,3)
S[U(3)×U(3)] 18

SO∗(12)
U(6) 30

E7(−25)
U(1)×E6

54

where g � φr denote the transformed scalar fields, non-linear functions of the original
ones φr , and h(φr, g) is a compensator inH. The coset representative is definedmod-
ulo the right-action of H and is fixed by the chosen parametrization of the manifold.
Of particular relevance in supergravity is the so-called solvable parametrization,
which corresponds to fixing the action of H so that L belongs to a solvable Lie
group3 GS = exp(S ), generated by a solvable Lie algebra S and defined, in the
symmetric case, by the Iwasawa decomposition of G with respect to H. The scalar
fields are then parameters of the solvable Lie algebra S :

L(φr) = eφ
rTr ∈ exp(S ), (12)

where {Tr} is a basis of S (r = 1, . . . , ns). All homogeneous scalar manifolds
occurring in supergravity theories admit this parametrization, which is useful when
the four-dimensional supergravity originates from the Kaluza–Klein reduction of a
higher-dimensional one on some internal compact manifold. The solvable coordi-
nates directly describe dimensionally reduced fields and moreover this parametriza-
tion makes the shift symmetries of the metric manifest.

The Lie algebra g of G can be decomposed into the Lie algebra H generating H,
and a coset space K:

3A solvable Lie group GS can be described (locally) as a the Lie group generated by solvable Lie
algebra S : GS = exp(S ). A Lie algebra S is solvable iff, for some k > 0, DkS = 0, where the
derivative D of a Lie algebra g is defined as follows: Dg ≡ [g,g], Dng ≡ [Dn−1g,Dn−1g]. In a
suitable basis of a given representation, elements of a solvable Lie group or a solvable Lie algebra
are all described by upper (or lower) triangular matrices.
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g = H ⊕ K, (13)

where in general we have:

[H, H] ⊂ H ; [H, K] ⊂ K ; [K, K] ⊂ H ⊕ K, (14)

that is the space K supports a representation K of H with respect to its adjoint
action. An alternative choice of parametrization corresponds to defining the coset
representative as an element of exp(K):

L(φr) = eφ
rKr ∈ exp(K), (15)

where {Kr} is a basis of K. As opposed to the solvable parametrization, the coset
representative is no-longer a group element, since K does not close an algebra, see
last of (14). The main advantage of this parametrization is that the action of H on
the scalar fields is linear:

∀h ∈ H : hL(φr) = h eφ
rKr h−1 h = eφ

r h Kr h−1
h = L(φ′r) h, (16)

where φ′r = (h−1)s
r φs, and hsr describes h in the representation K. This is not the

case for the solvable parametrization since [H, S ] � S .
In all parametrizations, the origin O is defined as the point in which the coset

representative equals the identity element of G and thus the H-invariance of O is
manifest: L(O) = I.

If the manifold, besides being homogeneous, is also symmetric, the space K can
be defined so that:

[K, K] ⊂ H. (17)

In this case the (13) defines the Cartan decomposition of g into compact and non-
compact generators, in H and K, respectively. This means that, in a given matrix
representation of g, a basis of the carrier vector space can be chosen so that the
elements of H and of K are represented by anti-hermitian and hermitian matrices,
respectively.

The geometry ofMscal is described by vielbein and an H-connection constructed
out of the left-invariant one-form

Ω = L−1 dL ∈ g, (18)

satisfying the Maurer-Cartan equation:

dΩ + Ω ∧ Ω = 0. (19)

The Vielbein and H-connection are defined by decomposing Ω according to (13)

Ω(φ) = Φ(P) + w(φ); w ∈ H, P ∈ K. (20)
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Let us see how these quantities transform under the action ofG. For any g ∈ G, using
(11), we can write L(g � φ) = gL(φ) h−1, so that:

Ω(g � φ) = hL(φ)−1 g−1d(gL(φ) h−1) = hL(φ)−1 dL(φ) h−1 + h dh−1. (21)

From (20) we find:

P(g � φ) + w(g � φ) = hP(φ) h−1 + hw(φ)h−1 + h dh−1. (22)

Since h dh−1 is the left-invariant 1-form onH, it has value in this algebra. Projecting
the above equation over K and H, we find:

P(g � φ) = hP(φ) h−1, (23)

w(g � φ) = hw(φ) h−1 + h dh−1. (24)

We see that w transforms as an H-connection while the matrix-valued one-form
P transforms linearly under H. The vielbein of the scalar manifold are defined by
expanding P in a basis {Ks} of K (underlined indices s, r, t, . . . are rigid tangent-
space indices, as opposed to the curved coordinate indices s, r, t, . . . ):

P(φ) = Vs(φ)Ks. (25)

From (23) it follows that the vielbein 1-forms Vs(φ) = Vs
s(φ)dφs transform under

the action of G as follows:

Vs(g � φ) = Vt(φ) (h−1)t
s = hstV

t(φ). (26)

For symmetric spaces, from (19) it follows that w and P satisfy the following con-
ditions

DP ≡ dP + w ∧ P + P ∧ w = 0, (27)

R(w) ≡ dw + w ∧ w = − P ∧ P, (28)

where we have defined the H-covariant derivative DP of P and the H-valued cur-
vature R(w) of the manifold. The latter can be written in components:

R(w) = 1

2
Rrs dφ

r ∧ dφs ⇒ Rrs = −[Pr, Ps] ∈ H. (29)

We define the metric at the origin O as the H-invariant matrix:

ηst ≡ k Tr(Ks Kt) > 0, (30)
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where k is a positive number depending on the representation, so that the metric in
a generic point reads:

ds2(φ) ≡ Gst(φ)dφ
s dφt ≡ Vs

s(φ)Vt
t(φ)ηst dφ

s dφt = k Tr(Ps Pt). (31)

As it follows from (23), (26), the above metric is manifestly invariant under global
G-transformations acting on L to the left (as well as local H-transformations acting
on L to the right):

ds2(g � φ) = ds2(φ) . (32)

The σ -model Lagrangian can be written in the form:

Lscal = e

2
G(φ)st∂μφs ∂μφt = e

2
k Tr

(Pμ(φ)Pμ(φ)
)
, Pμ = Ps

∂φs

∂xμ
, (33)

and, just as the metric ds2, is manifestly invariant under global G and local H-
transformations acting on L as in (11).

The bosonic part of the equations of motion for the scalar fields can be derived
from the Lagrangian (5) and read:

Dμ(∂
μφs) = 1

4
Gst

[
FΛ

μν ∂t IΛΣ FΣ μν + FΛ
μν∂t RΛΣ

∗FΣ μν
]
, (34)

where ∂s ≡ ∂
∂φs , while Dμ also contains the Levi-Civita connection Γ̃ on the scalar

manifold:
Dμ(∂νφ

s) ≡ ∇μ(∂νφ
s) + Γ̃ s

t1t2∂μφ
t1 ∂νφ

t2 , (35)

∇μ being the covariant derivative containing the Levi-Civita connection on space-
time.

Let us end this paragraph by introducing, in the coset geometry, theKilling vectors
describing the infinitesimal action of isometries on the scalar fields. Let us denote by
tα the infinitesimal generators ofG, defining a basis of its Lie algebra g and satisfying
the corresponding commutation relations

[tα, tβ] = fαβγ tγ , (36)

fαβγ being the structure constants of g. Under an infinitesimal G-transformation
generated by εα tα (εα � 1):

g ≈ I + εα tα, (37)

the scalars transform as:
φs → φs + εα ksα(φ), (38)

ksα(φ) being the Killing vector associated with tα . The action of g on the scalars is
defined by (11), neglecting terms of order O(ε2):
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(I + εα tα)L(φ) = L(φ + εα kα)

(
I − 1

2
εαWI

α JI

)
, (39)

where (I − 1
2 εαWI

α JI) denotes, expanded to linear order in ε, the compensating
transformation h(φ, g), {JI} being a basis of H. Equating the terms proportional to
εα , multiplying to the left by L−1 and using the expansion (20) of the left-invariant
1-form, we end up with the following equation:

L−1tαL = ksα (Ps + ws) − 1

2
WI

α JI = ksα Vs
s Ks + 1

2
(ksαω

I
s − WI

α) JI , (40)

where we have expanded the H-connection along JI as follows:

ws = 1

2
ωI
s JI . (41)

Equation (40) allows to compute kα for homogeneous scalar manifolds by projecting
L−1tαL along the directions of the coset space K. These Killing vectors satisfy the
following algebraic relations (note the minus sign on the right hand side with respect
to (36):

[kα, kβ] = −fαβγ kγ , (42)

We can split, according to the general structure (9), the H-generators JI into HR-
generators Ja (a = 1, . . . , dim(HR)) and Hmatt-generators Jm (m = 1, . . . ,
dim(Hmatt)), and rewrite (40) in the form:

L−1tαL = ksα Vs
s Ks − 1

2
Pa

α Ja − 1

2
Pm

α Jm. (43)

The quantities
Pa

α = −(ksαω
a
s − Wa

α), (44)

generalize the so called momentum maps in N = 2 theories, which provide a Pois-
sonian realization of the isometries tα . One can verify the general property:

ksα R
a
st = DtP

a
α, (45)

where Ds denotes the H-covariant derivative and we have expanded the curvature
R[w] defined in (28) along JI :

R[w] = 1

2
RI
st dφ

s ∧ dφt JI . (46)

These objects are important in the gauging procedure since they enter the definition of
the gauged connections for the fermionfields aswell as gravitino-shiftmatrixSAB (see
Sect. 3). For all those isometries which do not produce compensating transformations
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in HR, Wa
α = 0 and Pa

α are easily computed to be

Pa
α = −ksαω

a
s .

This is the case, in the solvable parametrization, for all the isometries in S , which
include translations in the axionic fields.

In N = 2 models with non-homogeneous scalar geometries, though we cannot
apply the above construction of kα, Pa

α , the momentum maps are constructed from
the Killing vectors as solutions to the differential equations (45). In general, in these
theories, with each isometry tα of the scalar manifold, we can associate the quantities
Pa

α, P
m
α which are related to the corresponding Killing vectors kα through general

relations (see [19] for a comprehensive account of N = 2 theories).

2.2 Vector Sector

We can associate with the electric field strengths FΛ
μν their magnetic duals GΛμν

defined as:

GΛμν ≡ −εμνρσ

∂L4

∂FΛ
ρσ

= RΛΣ FΣ
μν − IΛΣ

∗FΣ
μν, (47)

where we have omitted fermion currents in the expression of GΛ since we are only
focussing for the time being on the bosonic sector of the theory. In ordinaryMaxwell
theory (no scalar fields), IΛΣ = −δΛΣ and RΛΣ = 0, so that GΛμν coincides with
the Hodge-dual of FΛ

μν : GΛ = ∗FΛ.
In terms of FΛ and GΛ the bosonic part of the Maxwell equations read

∇μ(∗FΛ
μν) = 0; ∇μ(∗GΛμν) = 0, (48)

In order to set the stage for the discussion of global symmetries, it is useful to rewrite
the scalar and vector field equations in a different form. Using (47) and the property
that ∗∗FΛ = −FΛ, we can express ∗FΛ and ∗GΛ as linear functions of FΛ and GΛ:

∗FΛ = I−1ΛΣ (RΣΓ FΓ − GΣ) ; (49)
∗GΛ = (RI−1R + I)ΛΣ FΣ − (RI−1)Λ

Σ GΣ, (50)

where, for the sake of simplicity, we have omitted the space-time indices. It is useful
to arrange FΛ and GΛ in a single 2nv-dimensional vector F ≡ (FM) of two-forms:

F =
(
1

2
FM

μν dx
μ ∧ dxν

)
≡

(
FΛ

μν

GΛμν

)
dxμ ∧ dxν

2
, (51)
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in terms of which the Maxwell equations read:

dF = 0, (52)

and (50) are easily rewritten in the following compact form:

∗F = −CM(φs)F, (53)

where

C = (CMN ) ≡
(

0 I
−I 0

)
, (54)

I, 0 being the nv × nv identity and zero-matrices, respectively, and

M(φ) = (M(φ)MN ) ≡
(
(RI−1R + I)ΛΣ −(RI−1)Λ

Γ

−(I−1R)ΔΣ I−1ΔΓ

)
, (55)

is a symmetric, negative-definite matrix, function of the scalar fields. The reader can
easily verify that this matrix is also symplectic, namely that:

M(φ)CM(φ) = C. (56)

This matrix contains IΛΣ and RΛΣ as components, and therefore defines the non-
minimal coupling of the scalars to the vector fields.

After some algebra, we can also rewrite (34) in a compact form as follows

Dμ(∂
μφs) = 1

8
Gst FT

μν∂tM(φ)Fμν, (57)

2.3 Coupling to Gravity

We can now compute the Einstein equations:

Rμν − 1

2
gμν R = T (S)

μν + T (V)
μν + T (F)

μν , (58)

where the three terms on the right hand side are the energy-momentum tensors of
the scalars, vectors and fermionic fields, respectively. The first two can be cast in the
following general form

T (S)
μν = Grs(φ) ∂μφ

r∂νφ
s − 1

2
gμν Grs(φ) ∂ρφ

r∂ρφs, (59)

T (V)
μν =

(
FT

μρ I Fν
ρ − 1

4
gμν (F

T
ρσIFρσ )

)
, (60)
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where in the last equation the vector indicesΛ,Σ have been suppressed for the sake
of notational simplicity. It is convenient for our next discussion, to rewrite, after some
algebra, the right hand side of (60) as follows

T (V)
μν = 1

2
FT

μρ M(φ)Fν
ρ, (61)

so that (58) can be finally recast in the following form:

Rμν = Grs(φ) ∂μφ
r∂νφ

s + 1

2
FT

μρ M(φ)Fν
ρ + · · · , (62)

where the ellipses refer to fermionic terms.
The scalar fields enter the kinetic terms of the vector fields through the matrices

I(φ) and R(φ). As a consequence of this, a symmetry transformation of the scalar
part of the Lagrangian will not in general leave the vector field part invariant.

2.4 Global Symmetry Group

In extended supergravitymodels (N > 1) the (identity sector of the) global symmetry
group G of the scalar action can be promoted to a global invariance [20] of, at least,
the field equations and the Bianchi identities, provided its (non-linear) action on the
scalar fields is associated with a linear transformation on the vector field strengths
FΛ

μν and their magnetic duals GΛμν :

g ∈ G :
⎧
⎨

⎩

φr → g � φr (non–linear),(
FΛ

GΛ

)
→ Rv[g] ·

(
FΛ

GΛ

)
=

(
A[g]ΛΣ B[g]ΛΣ

C[g]ΛΣ D[g]ΛΣ

) (
FΣ

GΣ

)
(linear).

(63)

The transformations (63) are clearly a symmetry of the scalar action and of the
Maxwell equations (dF = 0) if FΛ and GΛ were independent, since the latter are
clearly invariant with respect to any linear transformation on FM . The definition
GΛ in (47) as a function of FΛ, ∗FΛ and the scalar fields, which is equivalently
expressed by the twisted self-duality condition (53), however poses constraints on
the 2nv × 2nv matrixRv[g] = (Rv[g]MN ). In order for (63) to be an invariance of the
vector equations of motion (52) and (53) the following conditions have to be met:

(i) for each g ∈ G (more precisely in the identity sector of G), the matrix Rv[g]
should be symplectic, namely

Rv[g]TCRv[g] = C; (64)

(ii) the symplectic, scalar dependent, matrix M(φ) should transform as follows:
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M(g � φ) = Rv[g]−TM(φ)Rv[g]−1, (65)

where we have used the short-hand notation Rv[g]−T ≡ (Rv[g]−1)T .

The reader can indeed verify that conditions (i) and (ii) are sufficient to guarantee
invariance of (53) under (63). The symplectic transformationRv[g], associated with
each element g of G, mixes electric and magnetic field strengths, acting therefore as
a generalized electric–magnetic duality and defines a symplectic representation Rv

of G:
∀g ∈ G

Rv−→ Rv[g] ∈ Sp(2nv, R). (66)

The field strengths and their magnetic duals transform therefore, under the duality
action (63) of G in a 2nv-dimensional symplectic representation.

We denote by Rv∗ = R−T
v the representation dual to Rv, acting on covariant

symplectic vectors, so that, for any g ∈ G:

Rv∗[g] = (Rv∗[g]MN ) = Rv[g]−T = −CRv[g]C
⇒ Rv∗[g]MN = CMP Rv[g]PQ CNQ, (67)

where we have used the property that Rv is a symplectic representation.4

From (64) and (65), it is straightforward to verify the manifest G-invariance of
the scalar field equations and the Einstein equations written in the forms (57) and
(62).

Conditions (i) and (ii) are verified in extended supergravities as a consequence
of supersymmetry. In these theories indeed supersymmetry is large enough as to
connect certain scalar fields to vector fields and, as a consequence of this, symmetry
transformations on the former imply transformations on the latter (more precisely
transformations on the vector field strengths FΛ and their duals GΛ). The existence
of a symplectic representation Rv of G, together with the definition of the matrix
M and its transformation property (65), are built-in in the mathematical structure
of the scalar manifold. More precisely they follow from the definition onMscal of a
flat symplectic structure. Supersymmetry totally fixes M(φ) and thus the coupling
of the scalar fields to the vectors, aside from a freedom in the choice of the basis of
the symplectic representation (symplectic frame) which amounts to a change in the
definition ofM(φ) by a constant symplectic transformation E:

M(φ) → M′(φ) = EM(φ)ET . (68)

Clearly if E ∈ Rv∗[G] ⊂ Sp(2nv,R), its effect onM(φ) can be offset be a redefini-
tion of the scalar fields, by virtue of (65). On the other hand ifE awere block-diagonal
matrix, namely an element of GL(nv,R) ⊂ Sp(2nv,R), it could be reabsorbed in a
local redefinition of the field strengths. Inequivalent symplectic frames are then con-

4The symplectic indicesM, N, . . . are raised (and lowered) with the symplectic matrixC
MN (CMN )

using north-west south-east conventions: XM = C
MN XN (and XM = CNM XN ).
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nected by symplecticmatricesE definedmodulo redefinitions of the scalar and vector
fields, namely by matrices in the coset [5]:

E ∈ GL(nv,R)\Sp(2nv,R)/Rv∗[G], (69)

where the quotient is definedwith respect to the left-action of GL(nv,R) (local vector
redefinitions) and to the right-action ofRv∗[G] (isometry action on the scalar fields).

A change in the symplectic frame amounts to choosing a different embeddingRv

of G inside Sp(2nv, R), which is not unique. This affects the form of the action, in
particular the coupling of the scalar fields to the vectors. However, at the ungauged
level, it only amounts to a redefinition of the vector field strengths and their duals
which has no physical implication. In the presence of a gauging, namely if vectors
are minimally coupled to the other fields, the symplectic frame becomes physically
relevant and may lead to different vacuum-structures of the scalar potential.

We emphasize here that the existence of this symplectic structure on the scalar
manifold is a general feature of all extended supergravites, including those N = 2
models in which the scalar manifold is not even homogeneous (i.e. the isometry
group, if it exists, does not act transitively on the manifold itself). In the N = 2 case,
only the scalar fields belonging to the vector multiplets are non-minimally coupled
to the vector fields, namely enter the matrices I(φ), R(φ), and they span a special
Kähler manifold. On this manifold a flat symplectic bundle is defined,5 which fixes
the scalar dependence of the matrices I(φ), R(φ), aside from an initial choice of the
symplectic frame, and the matrix M(φ) defined in (55) satisfies the property (65).

If the scalar manifold is homogeneous, we can consider at any point the coset
representative L(φ) ∈ G in the symplectic, 2nv-dimensional representation Rv:

L(φ)
Rv−→ Rv[L(φ)] ∈ Sp(2nv, R). (70)

In general the representation Rv[H] of the isotropy group H may not be orthogo-
nal, that is Rv[H] � SO(2nv). In this case we can always change the basis of the
representation6 by means of a matrix S

S = (SN
M) ∈ Sp(2nv, R)/U(n) (71)

such that, in the rotated representation Rv ≡ S−1Rv S:

Rv[H] ≡ S−1Rv[H]S ⊂ SO(2nv) ⇔ Rv[h]TRv[h] = I , ∀h ∈ H. (72)

For any point φ on the scalar manifold define now the hybrid coset-representative
matrix L(φ) = (L(φ)MN ) as follows:

5A special Kähler manifold is in general characterized by the product of a U(1)-bundle, associated
with its Kähler structure (with respect to which the manifold is Hodge Kähler), and a flat symplectic
bundle. See for instance [19] for an in depth account of this issue.
6We label the new basis by underlined indices.
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L(φ) ≡ Rv[L(φ)]S ⇔ L(φ)MN ≡ Rv[L(φ)]MNSN
N . (73)

We also define the matrix

L(φ)M
N ≡ CMP CNQ L(φ)PQ . (74)

Notice that, as a consequence of the fact that the two indices ofL refer to two different
symplectic bases, L itself is not a matrix representation of the coset representative
L. From (11), the property ofRv of being a representation and the definition (73) we
have:

∀g ∈ G : Rv[g] L(φ) = L(g � φ)Rv[h], (75)

where h ≡ h(φ, g) is the compensating transformation. The hybrid index structure
ofL poses no consistency problem since, by (75), the coset representative is acted on
to the left and to the right by two different groups: G and H, respectively. Therefore,
in our notations, underlined symplectic indices M, N, . . . are acted on by H while
non-underlined ones by G.

The M(φ) is then expressed in terms of the coset representative as follows:

M(φ)MN = CMPL(φ)PLL(φ)RL CRN ⇔ M(φ) = CL(φ)L(φ)T C, (76)

where summation over the indexL is understood. The reader can easily verify that
the definition of the matrix M(φ) given above is indeed consistent, in that it is
H-invariant, and thus only depends on the point φ, and transforms according to (65):

∀g ∈ G : M(g � φ) = CL(g � φ)L(g � φ)TC

= CRv[g] L(φ)(Rv[h]−1 Rv[h]−T )L(φ)TRv[g]TC

= Rv[g]−TCL(φ)L(φ)TCRv[g]−1

= Rv[g]−TM(φ)Rv[g]−1, (77)

wherewe have used (75), the orthogonality property (72) ofRv[h] and the symplectic
property ofRv[g]. From the definition (76) ofM in terms of the coset representative,
it follows that for symmetric scalar manifolds the scalar Lagrangian (33) can also be
written in the equivalent form:

Lscal = e

2
Gst(φ)∂μφ

s ∂μφt = e

8
k Tr

(M−1∂μMM−1∂μM)
, (78)

where k depends on the representation Rv of G.
The transformation properties of the matrices IΛΣ and RΛΣ under G can be

inferred from (65) and can be conveniently described by defining the complex sym-
metric matrix

NΛΣ ≡ RΛΣ + i IΛΣ. (79)

Under the action of a generic element g ∈ G, N transforms as follows:
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N(g � φ) = (C[g] + D[g]N(φ))(A[g] + B[g]N(φ))−1, (80)

where A[g], B[g], C[g], D[g] are the nv × nv blocks of the matrixRv[g] defined in
(63).

Parity. We have specified above that only the elements of G which belong to the
identity sector, namely which are continuously connected to the identity, are asso-
ciated with symplectic transformations. There may exist isometries g ∈ G which do
not belong to the identity sector and are associated with anti-symplectic matrices
A[g]:

M(g � φ) = A[g]−T M(φ)A[g] ; A[g]TCA[g] = −C. (81)

Anti-symplectic matrices do not close a group but can be expressed as the product
of a symplectic matrix S times a fixed anti-symplectic one P, that is A = S P. In a
suitable symplectic frame, the matrix P can be written in the following form:

P =
(
I 0
0 −I

)
. (82)

Due to their being implemented by anti-symplectic duality transformations (63),
these isometries leave (53) invariant up to a sign which can be offset by a parity
transformation, since under parity one has ∗ → −∗ . Indeed one can show that
these transformations are a symmetry of the theory provided they are combined with
parity. Notice that this poses no problem with the generalized theta-term since, as
parity reverses the sign of εμνρσFΛ

μνF
Σ
ρσ , under P we have:

IΛΣ → IΛΣ ; RΛΣ → −RΛΣ, (83)

see (80), so that the corresponding term εμνρσFΛ
μνF

Σ
ρσRΛΣ in the Lagrangian is

invariant. The global symmetry group of the theory is therefore described by a group

G = G0 × Z2 = {G0, G0 · p}, (84)

where G0 is the proper duality group defined by the identity sector of G and p is
the element of G which corresponds, in a suitable symplectic frame, to the anti-
symplectic matrix P: P = A[p].
Example. Let us discuss the simple example of the lower-half complex plane

G/H = SL(2,R)/SO(2). (85)
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This manifold is parametrized by a complex coordinate z, with Im(z) < 0. As sym-
plectic representation of G = SL(2,R) we can choose the fundamental representa-
tion and the following basis of generators of g = sl(2,R):

sl(2,R) = {σ 1, i σ 2, σ 3} =
{(

0 1
1 0

)
,

(
0 1

−1 0

)
,

(
1 0
0 −1

)}
. (86)

The subalgebra S of upper-triangular generators

S = {σ 3, σ+}, σ+ ≡
(
0 1
0 0

)
. (87)

defines the solvable parametrization φs = (ϕ, χ), in which the coset representative
L has the following form:

L(ϕ, χ) ≡ eχσ+
e

ϕ

2 σ
3 =

(
1 χ

0 1

)(
eϕ/2 0
0 e−ϕ/2

)
∈ eS . (88)

The relation between the solvable coordinates and z is

z = z1 + i z2 = χ − i eϕ. (89)

The metric reads:

ds2 = dϕ2

2
+ 1

2
dχ2e−2ϕ = 1

2z22
dzdz̄ ; (90)

and the matrixM(φ)MN reads:

M(z, z̄)MN = CMP L(φ)PL L(φ)RL CRN = 1

z2

(
1 −z1

−z1 |z|2
)
. (91)

Thegeneric isometrywhich is continuously connected to the identity is a holomorphic
transformation of the form

z → z′ = az + b

cz + d
, ad − bc = 1, (92)

corresponding to the SL(2,R) transformation S =
(
a b
c d

)
with det(S) = 1. The

reader can easily verify that:

M(z′, z̄′) = S−TM(z, z̄)S−1. (93)
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We also have the following isometry:

z → −z̄, (94)

which is not in the identity sector of the isometry group, and corresponds to the
anti-symplectic transformation P = diag(1,−1) in that:

M(−z̄, −z) = P−TM(z, z̄)P−1. (95)

This corresponds to a parity transformation whose effect is to change the sign of the
pseudo-scalar χ while leaving the scalar ϕ inert:

parity : χ → −χ, ϕ → ϕ. (96)

Notice that the correspondence between the linear transformation P and the isometry
(94) exists since P is an outer-automorphism of the isometry algebra g = sl(2,R),
namely:

P−1sl(2,R)P = sl(2,R), (97)

while P is not in SL(2,R) and the above transformation cannot be offset by any
conjugation by SL(2,R) elements. Analogous outer-automorphisms implementing
parity can be found in other extended supergravities, including the maximal one in
which G = E7(7) × Z2 [21].

Solitonic solutions, electric-magnetic charges and duality. Ungauged supergravities
only contain fields which are neutral with respect to the U(1)nv gauge-symmetry of
the vector fields. These theories however feature solitonic solutions, namely con-
figurations of neutral fields which carry U(1)nv electric-magnetic charges. These
solutions are typically black holes in four dimensions or black branes in higher and
have been extensively studied in the literature. On a charged dyonic solution of this
kind, we define the electric and magnetic charges as the integrals7:

eΛ ≡
∫

S2
GΛ = 1

2

∫

S2
GΛμν dx

μ ∧ dxν,

mΛ ≡
∫

S2
FΛ = 1

2

∫

S2
FΛ

μν dx
μ ∧ dxν,

(98)

where S2 is a spatial two-sphere. They define a symplectic vector Γ M :

Γ = (Γ M) =
(
mΛ

eΛ

)
=

∫

S2
FM . (99)

7The electric and magnetic charges (e,m) are expressed in the rationalized-Heaviside-Lorentz
(RHL) system of units.
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These are thequantized charges, namely they satisfy theDirac-Schwinger-Zwanziger
quantization condition for dyonic particles [22–24]:

Γ T
2 CΓ1 = mΛ

2 e1Λ − mΛ
1 e2Λ = 2π � c n; n ∈ Z. (100)

At the quantum level, the dyonic charges therefore belong to a symplectic lattice and
this breaks the duality group G to a suitable discrete subgroup G(Z) which leaves
this symplectic lattice invariant:

G(Z) ≡ G ∩ Sp(2nv,Z). (101)

This discrete symmetry group of surviving quantum corrections (or a suitable exten-
sion thereof) was conjectured in [3] to encode all known string/M-theory dualities.

2.5 Symplectic Frames and Lagrangians

As pointed out earlier, the duality actionRv[G] ofG depends on which elements, in a
basis of the representation space, are chosen to be the nv electric vector fields (appear-
ing in the Lagrangian) and which their magnetic duals namely on the choice of the
symplectic framewhich determines the embedding of the groupG inside Sp(2nv, R).
Different choices of the symplectic frame may yield inequivalent Lagrangians (that
is Lagrangians that are not related by local field redefinitions) with different global
symmetries. Indeed, the global symmetry group of the Lagrangian8 is defined as the
subgroup Gel ⊂ G, whose duality action is linear on the electric field strengths

g ∈ Gel : Rv[g] =
(
AΛ

Σ 0
CΛΣ DΛ

Σ

)
, (102)

where D = A−T by the symplectic condition, so that

g ∈ Gel : FΛ → F ′Λ = AΛ
Σ FΣ ,

GΛ → G ′
Λ = CΛΣ FΣ + DΛ

Σ GΣ. (103)

Indeed, as the reader can verify using (80), under the above transformation the matri-
ces I, R transform as follows:

IΛΣ → DΛ
ΠDΣ

Δ IΠΔ; RΛΣ → DΛ
ΠDΣ

Δ RΠΔ + CΛΠ DΣ
Π, (104)

8Here we only consider local transformations on the fields.



Introductory Lectures on Extended Supergravities and Gaugings 63

and the consequent variation of the Lagrangian reads

Lb = 1

8
CΛΠ DΣ

Πεμνρσ FΛ
μνF

Σ
ρσ , (105)

which is a total derivative since CΛΠ DΣ
Π is constant. These transformations are

called Peccei-Quinn transformations and follow from shifts in certain axionic scalar
fields. They are a symmetry of the classical action, while invariance of the pertur-
bative path-integral requires the variation (105), integrated over space-time, to be
proportional through an integer to 2π�. This constrains the symmetries to belong to
a discrete subgroupG(Z) ofGwhose duality action is implemented by integer-valued
matrices Rv[g]. Such restriction of G to G(Z) in the quantum theory was discussed
earlier as a consequence of the Dirac-Schwinger-Zwanziger quantization condition
for dyonic particles (100).

From (103) we see that, while the vector field strengths FΛ
μν and their duals GΛμν

transform together under G in the (2nv–dimensional) symplectic representationRv,
the vector field strengths alone transform linearly under the action ofGel in a smaller
representation nv, defined by the A-block in (102).

Different symplectic frames of a same ungauged theorymay originate from differ-
ent compactifications. A distinction here is in order. In N ≥ 3 theories, scalar fields
always enter the same multiplets as the vector fields. Supersymmetry then implies
their non-minimal coupling to the latter and that the scalar manifold be endowedwith
a symplectic structure associating with each isometry a constant symplectic matrix.
In N = 2 theories, scalar fields may sit in vector multiplets or hypermultiplets. The
former span a special Kähler manifold, the latter a quaternionic Kähler one, so that
the scalar manifold is always factorized in the product of the two:

M (N=2)
scal = Msk × Mqk. (106)

The scalar fields in the hypermultiplets are not connected to vector fields through
supersymmetry and consequently they do not enter the matrices I(φ) andR(φ). As
a consequence of this the isometries of the Quaternionic-Kähler manifolds spanned
by these scalars are associated with trivial duality transformations

g ∈ isom. of Mqk ⇒ Rv[g] = I , (107)

while only Msk features a flat symplectic structure which defines the embedding
of its isometry group inside Sp(2nv,R) and the couplings of the vector multiplet-
scalars to the vector fields through the matrix M(φ). It is important to remark that
such structure on a special Kähler manifold exists even if the manifold itself is not
homogeneous. This means that one can still define the symplectic matrix L(φ) and,
in terms of the components IΛΣ andRΛΣ , also the matrixM(φ) as in (76), although
L(φ) has no longer the interpretation of a coset representative for non-homogeneous
manifolds.
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It is convenient for later purposes to rewrite the transformation properties of the
bosonic fields the group G, discussed in this section, in the following infinitesimal
form:

G :
{
δ L = Λα tα L ,

δFM
μν = −Λα (tα)NM FN

μν,

in terms of the infinitesimal generators tα of G introduced earlier and, satisfying the
relation (36). The matrices (tα)MN define the infinitesimal duality action of G and
are symplectic generators

(tα)M
N CNP = (tα)P

N CNM M, N, . . . = 1, . . . , 2nv . (108)

This is equivalently stated as the property of the tensor tαMN ≡ (tα)MP CPN of being
symmetric in M N:

(tα)MN = (tα)NM . (109)

2.6 The Fermionic Sector

Fermions in supergravity transform covariantly with respect to the isotropy group H
of the scalar manifold, which has the general form (9), while they do not transform
under G, as opposed to the bosonic fields. Bosons and fermions have therefore defi-
nite transformation properties with respect to different groups of internal symmetry.
The matrix L, defining the coset representative for homogeneous scalar manifolds,
transforms under the action of G to the left and of H to the right, according to (11)

G → L ← H, (110)

and thus has the right index structure to “mediates” in the Lagrangian between bosons
and fermions. This means that we can constructG-invariant terms by contractingL to
the left by bosons (scalars, vectors and their derivatives), and to the right by fermions

(Bosons) � L(φ) � (Fermions), (111)

the two � symbols denote some contraction of indices: G-invariant to the left and
H-invariant to the right. The “Boson” part of (111) may also contain L and its
derivatives. These are the kind of terms occurring in the field equations. If under a
transformation g ∈ G, symbolically:

Bosons → Bosons′ = Bosons � g−1, (112)
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and the fermions are made to transform under the compensating transformation
h(φ, g) in (11):

Fermions → Fermions′ = h(φ, g) � Fermions. (113)

Using (11) we see that (111) remains invariant:

(Bosons)′ � L(g � φ) � (Fermions′) = (Bosons) � L(φ) � (Fermions). (114)

The Lagrangian is manifestly invariant under local H-transformations since the
covariant derivatives on the fermion fields contain the H-connection9 wμ:

Dμξ = ∇μξ + wμ � ξ, (115)

where, as usual, the � symbol denotes the action of the H-valued connection wμ on
ξ in the corresponding H-representation. The reader can verify that (115) is indeed
covariant under localH-transformations (113), provided w is transformed according
to (24). As opposed to the gauge groups we are going to introduce by the gauging
procedure,which involveminimal couplings to the vector fields of the theory, the local
H-symmetry group of the ungauged theory is not gauged by the vector fields, but by a
composite connection wμ, which is a function of the scalar fields and their derivatives.
The minimal coupling wμ � ξ is an example of the boson-fermion interaction term
(111).

It is useful to write the coupling (111) in the following form:

f(φ,Bosons) � (Fermions), (116)

where we have introduced the H-covariant composite field:

f(φ,Bosons) ≡ (Bosons) � L(φ), (117)

obtained by dressing the bosonic fields and their derivatives with the coset-
representative so as to obtain anH-covariant quantity with the correctH-index struc-
ture to contract with fermionic currents. Indeed under a G-transformation

f(g � φ,Bosons′) ≡ f(φ,Bosons) � h(φ, g)−1, (118)

The manifest H-invariance of the supergravity theory requires the supersymme-
try transformation properties of the femionic fields to be H-covariant. Indeed such
transformation rules, which in rigid supersymmetric theories (i.e. theories which
are invariant only under global supersymmetry) can be schematically described
as follows10:

9We define wμ ≡ ws ∂μφ
s.

10This is a schematic representation in which we have suppressed the Lorentz indices and gamma-
matrices.
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δFermion =
∑

Bosons

∂Boson · ε, (119)

and in supergravity theories have the following general H-covariant form11

δFermion =
∑

Bosons

f(φ,Bosons) · ε, (120)

where the space-time derivatives of the bosonic fields are dressed with the scalars
in the definition of f(φ,Bosons). Examples of composite fields f(φ,Bosons) are
the vielbein of the scalar manifold (pulled back on space-time) Pμ ≡ Ps ∂μφ

s, the
H-connection wμ in (115), the dressed vector field-strengths

F(φ, ∂A)Mμν ≡ −(L(φ)−1)MN FM
μν, (121)

or the T-tensor, to be introduced later, in which the bosonic field to be dressed by
the coset representative is the embedding tensor Θ defining the choice of the gauge
algebra.

3 Gauging Supergravities

We have reviewed the field content and the Lagrangian of ungauged supergravity, as
well as the action of the global symmetry group G. Now we want to discuss how to
construct a gauged theory from an ungauged one.

In the following, we will employ a covariant formalism in which the possible
gaugings will be encoded into an object called embedding tensor, that can be char-
acterized group-theoretically [5, 16, 17].

3.1 The Gauging Procedure Step-by-Step

As anticipated in the Introduction, the gauging procedure consists in promoting a
suitable global symmetry group Gg ⊂ Gel of the Lagrangian to a local symmetry
gauged by the vector fields of the theory. This requirement gives us a preliminary
condition

dim(Gg) ≤ nv . (122)

11The gravitino field has an additional term Dε which is its variation as the gauge field of local
supersymmetry.
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As explained in Sect. 2.5, different symplectic frames correspond to ungauged
Lagrangians with different global symmetry groups Gel and thus to different choices
for the possible gauge groups.

The first condition for the global symmetry subgroupGg to become a viable gauge

group, is that there should exist a subset {AΛ̂} of the vector fields12 which transform
under the co-adjoint representation of the duality action of Gg. These fields will
become the gauge vectors associated with the generators XΛ̂ of the subgroup Gg.

We shall name electric frame the symplectic frame defined by our ungauged
Lagrangian and labeled by hatted indices.

Note that, once the gauge group is chosen within Gel, its action on the various
fields is fixed, being it defined by the action of Gg as a global symmetry group of
the ungauged theory (duality action on the vector field strengths, non-linear action
on the scalar fields and indirect action through H-compensators on the fermionic
fields): fields are thus automatically associated with representations of Gg.

After the initial choice ofGg inGel, the first part of the procedure is quite standard
in the construction of non-abelian gauge theories: we introduce a gauge-connection,
gauge-curvature (i.e. non-abelian field strengths) and covariant derivatives. We will
also need to introduce an extra topological term needed for the gauging of the Peccei-
Quinn transformations (105). This will lead us to construct a gauged Lagrangian
L (0)

gauged withmanifest localGg-invariance. Consistency of the constructionwill imply
constraints on the possible choices of Gg inside G. The minimal couplings will
however break supersymmetry.

The second part of the gauging procedure consists in further deforming the
Lagrangian L (0)

gauged in order to restore the original supersymmetry of the ungauged
theory and, at the same time, preserving local Gg-invariance.

Step 1. Choice of the gauge algebra. We start by introducing the gauge connection:

Ωg = Ωgμdx
μ ; Ωgμ ≡ g AΛ̂

μ XΛ̂, (123)

g being the coupling constant. The gauge-algebra relations can be written in the form

[
XΛ̂, XΣ̂

] = fΛ̂Σ̂
Γ̂ XΓ̂ , (124)

and are characterized by the structure constants fΛ̂Σ̂
Γ̂ . This closure condition should

be regarded as a constraint on XΛ̂, since the structure constants are not generic but
fixed in terms of the action of the gauge generators on the vector fields as global
symmetry generators of the original ungauged theory. To understand this, let us
recall that Gg is a subgroup of Gel and thus its electric-magnetic duality action, as
a global symmetry group, will have the form (102). Therefore the duality action on
the vector field strengths and their duals of the infinitesimal generators XΛ̂ will then
by represented by a symplectic matrix of the form (see Eq. (102))

12We describe by hatted-indices those pertaining to the symplectic frame in which the Lagrangian
is defined.
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(
XΛ̂

)M̂
N̂ =

(
XΛ̂

Γ̂
Σ̂ 0

XΛ̂ Γ̂ Σ̂ XΛ̂ Γ̂
Δ̂

)
, (125)

whereXΛ̂
Γ̂

Σ̂ andXΛ̂ Γ̂
Δ̂ are the infinitesimal generators of theA andD-blocks in (102)

respectively,whileXΛ̂ Γ̂ Σ̂ describes the infinitesimalC-block. It isworth emphasizing
here that we do not identify the generator XΛ̂ with the symplectic matrix defining
its electric-magnetic duality action. As pointed our in Sect. 2.5, there are isometries
in N = 2 models which do not have duality action, see (107), namely for which the
matrix in (125) is null.

The variation of the field strengths under an infinitesimal transformation ξ Λ̂ XΛ̂,
whose duality action is described by (125), is:

δFM̂ = ξ Λ̂ (XΛ̂)
M̂
N̂ FN̂ ⇒

{
δFΛ̂ = ξ Γ̂ XΓ̂

Λ̂
Σ̂ FΣ̂ ,

δGΛ̂ = ξ Γ̂ XΓ̂ Λ̂Σ̂F
Σ̂ + ξ Γ̂ XΓ̂ Λ̂

Σ̂ GΣ̂ .
(126)

The symplectic condition on the matrix XΛ̂ implies the properties:

XΛ̂M̂
P̂ CN̂P̂ = XΛ̂N̂

P̂ CM̂P̂ ⇔
{
XΛ̂

Σ̂
Γ̂ = − XΛ̂Γ̂

Σ̂ ,

XΛ̂ Γ̂ Σ̂ = XΛ̂ Σ̂Γ̂ .
(127)

The condition that AΛ̂
μ transform in the co-adjoint representation of the gauge group:

δFΛ̂ = ξ Γ̂ fΓ̂ Σ̂
Λ̂FΣ̂ , (128)

together with the transformation properties (126), lead us to identify the structure
constants of the gauge group in (124) with the diagonal blocks of the symplectic
matrices XΛ̂:

fΓ̂ Σ̂
Λ̂ = −XΓ̂ Σ̂

Λ̂, (129)

so that the closure condition reads

[
XΛ̂, XΣ̂

] = − XΛ̂Σ̂
Γ̂ XΓ̂ , (130)

and is a quadratic constraint on the tensorXΛ̂
M̂
N̂ . The identification (129) also implies

X(Γ̂ Σ̂)
Λ̂ = 0. (131)

The closure condition (130) can thus be interpreted in two equivalent ways:

◦ the vector fields AΛ̂
μ transform in the co-adjoint representation of Gg under its

action as global symmetry, namely
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nv = co-adj(Gg); (132)

◦ the gauge generators XΛ̂ are invariant under the action of Gg itself:

δΛ̂XΣ̂ ≡ [XΛ̂, XΣ̂ ] + XΛ̂Σ̂
Γ̂ XΓ̂ = 0. (133)

Step 2. Introducing gauge curvatures and covariant derivatives. Having defined the
gauge connection (123) we also define its transformation property under a local
Gg-transformation g(x) ∈ Gg:

Ωg → Ω ′
g = gΩg g−1 + dg g−1 = g A′Λ̂ XΛ̂. (134)

Under an infinitesimal transformation g(x) ≡ I + g ζ Λ̂(x)XΛ̂, (134) implies the fol-
lowing transformation property of the gauge vectors:

δAΛ̂
μ = Dμζ

Λ̂ ≡ ∂μζ
Λ̂ + g AΣ̂

μ XΣ̂Γ̂
Λ̂ ζ Γ̂ , (135)

where we have introduced theGg-covariant derivative of the gauge parameterDμζ
Λ̂.

As usual in the construction of non-abelian gauge-theories, we define the gauge
curvature13

gF = g FΛ̂ XΛ̂ = g

2
FΛ̂

μν dx
μ ∧ dxν XΛ̂ ≡ dΩg − Ωg ∧ Ωg, (136)

which, in components, reads:

FΛ̂
μν = ∂μA

Λ̂
ν − ∂νA

Λ̂
μ − g fΓ̂ Σ̂

Λ̂ AΓ̂
μ AΣ̂

ν = ∂μA
Λ̂
ν − ∂νA

Λ̂
μ + g XΓ̂ Σ̂

Λ̂ AΓ̂
μ AΣ̂

ν .

(137)
The gauge curvature transforms covariantly under a transformation g(x) ∈ Gg:

F → F ′ = gF g−1, (138)

and satisfies the Bianchi identity:

DF ≡ dF − Ωg ∧ F + F ∧ Ωg = 0 ⇔ DFΛ̂ ≡ dFΛ̂ + g XΣ̂Γ̂
Λ̂AΣ̂ ∧ FΛ̂ = 0,

(139)
where we have denoted by DFΛ̂ the Gg-covariant derivative acting on FΛ̂. In the
original ungauged Lagrangian we then replace the abelian field strengths by the new
Gg-covariant ones:

13Here we use the following convention for the definition of the components of a form: ω(p) =
1
p! ωμ1...μp dx

μ1 ∧ . . . dxμp .
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∂μA
Λ̂
ν − ∂νA

Λ̂
μ → ∂μA

Λ̂
ν − ∂νA

Λ̂
μ + g XΓ̂ Σ̂

Λ̂ AΓ̂
μ AΣ̂

ν . (140)

After having given the gauge fields a Gg-covariant description in the Lagrangian
through the non-abelian field strengths, we now move to the other fields. The next
step in order to achieve local invariance of the Lagrangian under Gg consists in
replacing ordinary derivatives by covariant ones

∂μ −→ Dμ = ∂μ − g AΛ̂
μ XΛ̂. (141)

As it can be easily ascertained, the covariant derivatives satisfy the identity which is
well known from gauge theories:

D2 = −gF = −g FΛ̂ XΛ̂ ⇔ [Dμ, Dν] = −g FΛ̂
μν XΛ̂. (142)

Aside from the vectors and the metric, the remaining bosonic fields are the scalars
φs, whose derivatives are covariantized using the Killing vectors kΛ̂ associated with
the action of the gauge generator XΛ̂ as an isometry:

∂μ −→ Dμφ
s = ∂μφ

s − g AΛ̂ ks
Λ̂
(φ), (143)

The replacement (141), and in particular (143), amounts to the introduction of mini-
mal couplings for the vector fields.

Care is needed for the fermion fields which, as we have discussed above, do not
transform directly under G, but under the corresponding compensating transforma-
tions inH. This was taken into account by writing theH-connectionw in the fermion
H-covariant derivatives. Now we need to promote such derivatives to Gg-covariant
ones, by minimally coupling the fermions to the gauge fields. This is effected by
modifying the H-connection.

For homogeneous scalar manifolds redefine the left-invariant 1-form Ω (pulled-
back on space-time), defined on them in (18), by a gauged one obtained by covari-
antizing the derivative on the coset representative:

Ωμ = L−1∂μL −→ Ω̂μ ≡ L−1DL = L−1
(
∂μ − g AΛ̂

μ XΛ̂

)
L = P̂μ + ŵμ

(144)
where, as usual, the space-time dependence of the coset representative is defined by
the scalar fields φs(x): ∂μL ≡ ∂sL ∂μφ

s.
The gauged vielbein and connection are related to the ungauged ones as follows:

P̂μ = Pμ − g AΛ̂
μ PΛ̂; ŵμ = wμ − g AΛ̂

μ wΛ̂. (145)

The matrices PΛ̂, wΛ̂ begin the projections onto K and H, respectively, of L−1XΛ̂L:

PΛ̂ ≡ L−1XΛ̂L
∣∣
K

; wΛ̂ ≡ L−1XΛ̂L
∣∣
H
. (146)
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Using (43) we can express the above quantities as follows:

PΛ̂ = ks
Λ̂
Vs

s Ks ; wΛ̂ = −1

2
Pa

Λ̂
Ja − 1

2
Pm

Λ̂
Jm, (147)

where Pa
Λ̂
were defined in Sect. 2.1.

For non-homogeneous scalar manifolds we cannot use the construction (144)
based on the coset representative. Nevertheless we can still define Pm

Λ̂
, Pa

Λ̂
in

terms of the Killing vectors, see discussion below (45). From these quantities one
then defines gauged vielbein P̂μ and H-connection ŵμ using (145) and (147), where
now Ks should be intended as a basis of the tangent space to the manifold at the
origin (and not as isometry generators) and {Ja, Jm} a basis of the holonomy group.

Notice that, as a consequence of (147) and (145), the gauged vielbein 1-forms
(pulled-back on space-time) can be written as the ungauged ones in which the deriva-
tives on the scalar fields are replaced by the covariant ones (143). This is readily seen
by applying the general formula (40) for homogeneous manifolds to the isometry
XΛ̂ in (144), and projecting both sides of this equation on the coset space K:

P̂μ = Ps Dμz
s. (148)

Consequently the replacement (143) is effected by replacing everywhere in the
Lagrangian Pμ by P̂μ.

Consider now a local Gg-transformation g(x) whose effect on the scalars is
described by (11): gL(φ) = L(g � φ) h(φ, g). From (144) and from the fact that
D is the G-covariant derivative, the reader can easily verify that:

Ω̂μ(g � φ) = h Ω̂μ(φ) h
−1 + hdh−1 ⇒

{
P̂(g � φ) = h P̂(φ) h−1,

ŵ(g � φ) = h ŵ(φ) h−1 + hdh−1,

(149)
where h = h(φ, g). By deriving (144) we find the gauged Maurer-Cartan equations:

dΩ̂ + Ω̂ ∧ Ω̂ = −gL−1FL, (150)

where we have used (142). Projecting the above equation onto K and H we find the
gauged version of (27), (28):

DP̂ ≡ dP̂ + ŵ ∧ P + P ∧ ŵ = −g FΛ̂ PΛ̂, (151)

R̂(ŵ) ≡ dŵ + ŵ ∧ ŵ = −P ∧ P − g FΛ̂ wΛ̂. (152)

The above equations are manifestly Gg-invariant. Using (148) one can easily verify
that the gauged curvature 2-form (with value in H) can be written in terms of the
curvature components Rrs of the manifold, given in (29), as follows:
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R̂(ŵ) = 1

2
Rrs Dφr ∧ Dφs − g FΛ̂ wΛ̂. (153)

The gauge-covariant derivatives, when acting on a generic fermion field ξ , is defined
using ŵμ, so that (115) is replaced by

Dμξ = ∇μξ + ŵμ � ξ. (154)

Summarizing, local invariance of the action underGg requires replacing everywhere
in the Lagrangian the abelian field strengths by the non abelian ones, (140) and the
ungauged vielbein Pμ and H-connection wμ by the gauged ones:

Pμ → P̂μ; wμ → ŵμ. (155)

Clearly supersymmetry of the gauged actionwould require as a necessary, though not
sufficient, condition to perform the above replacements also in the supersymmetry
transformation laws of the fields.

Step 3. Introducing topological terms. If the symplectic duality action (125) ofXΛ̂ has
a non-vanishing off-diagonal blockXΛ̂Γ̂ Σ̂ , that is if the gauge transformations include

Peccei-Quinn shifts, then an infinitesimal (local) gauge transformation ξ Λ̂(x)XΛ̂

would produce a variation of the Lagrangian of the form (105):

δLb = −g

8
ξ Λ̂(x)XΛ̂Γ̂ Σ̂ εμνρσ FΓ̂

μνF
Σ̂
ρσ . (156)

Being ξ Λ̂(x) a local parameter, the above term is no longer a total derivative and
thus the transformation is not a symmetry of the action. In [25] it was proven that
the variation (156) can be canceled by adding to the Lagrangian a topological term
of the form

Ltop. = −1

3
g εμνρσ XΛ̂Γ̂ Σ̂ AΛ̂

μ AΣ̂
ν

(
∂ρA

Γ̂
σ + 3

8
g XΔ̂Π̂

Γ̂ AΔ̂
ρ AΠ̂

σ

)
, (157)

provided the following condition holds

X(Λ̂Γ̂ Σ̂) = 0. (158)

Wewill see in the following that condition (158), together with the closure constraint
(130), is part of a set of constraints on the gauge algebra which are also implied by
supersymmetry. Indeed, even if the LagrangianL (0)

g constructed so far is locallyGg-
invariant, the presence of minimal couplings explicitly breaks both supersymmetry
and the duality global symmetry G.

Choice of the gauge algebra and the embedding tensor. We have seen that the
gauging procedure corresponds to promoting some suitable subgroup Gg ⊂ Gel to a
local symmetry. This subgroup is defined selecting a subset of generators within the
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global symmetry algebra g of G. Now, all the information about the gauge algebra
can be encoded in a Gel -covariant object θ , which expresses the gauge generators as
linear combinations of the global symmetry generators tα of the subgroup Gel ⊂ G

XΛ̂ = θΛ̂
σ tσ ; θΛ̂

σ ∈ nv × adj(Gel), (159)

with Λ̂ = 1, . . . , nv and with σ = 1, . . . , dim(Gel). The advantage of this descrip-
tion is that the Gel -invariance of the original ungauged LagrangianL is restored at
the level of the gauged Lagrangian Lgauged, to be constructed below, provided θΛ̂

σ

is transformed under Gel as well. However, the full global symmetry group G of the
field equations and Bianchi identities is still broken, since the parameters θΛ̂

σ can
be viewed as of electric charges, whose presence manifestly break electric-magnetic
duality invariance. In other words we are working in a specific symplectic frame
defined by the ungauged Lagrangian we started from.

We shall give later on a definition of the gauging procedure which is completely
freed from the choice of the symplectic frame. For the time being, it is useful to give
a description of the gauge algebra (and of the consistency constraints on it) which
does not depend on the original symplectic frame, namely which is manifestly G-
covariant. This is done by encoding all information on the initial symplectic frame
in a symplectic matrix E ≡ (EM

N ) and writing the gauge generators, through this
matrix, in terms of new generators

XM = (XΛ, X
Λ) (160)

which are at least twice as many as the XΛ̂:

(
XΛ̂

0

)
= E

(
XΛ

XΛ

)
. (161)

This description is clearly redundant and this is the price we have to pay in order
to have a manifestly symplectic covariant formalism. We can then rewrite the gauge
connection in a symplectic invariant fashion

AΛ̂ XΛ̂ = AΛ̂ EΛ̂
Λ XΛ + AΛ̂ EΛ̂Λ XΛ = AΛ

μ XΛ + AΛμ X
Λ = AM

μ XM , (162)

where we have introduced the vector fields AΛ
μ and the corresponding dual ones AΛμ,

that can be regarded as components of a symplectic vector

AM
μ ≡ (AΛ

μ , AΛμ). (163)

These are clearly not independent, since they are all expressed in terms of the only
electric vector fields AΛ̂ of our theory (those entering the vector kinetic terms):

AΛ
μ = EΛ̂

Λ AΛ̂
μ , AΛμ = EΛ̂Λ AΛ̂

μ . (164)
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In what follows, it is useful to adopt this symplectic covariant description in terms
of 2nv vector fields AM

μ and 2nv generators XM , bearing in mind the above definitions
through the matrix E, which connects our initial symplectic frame to a generic one.

The components of the symplectic vectorXM are generators in the isometry algebra
g and thus can be expanded in a basis tα of generators of G:

XM = ΘM
α tα, α = 1, . . . , dim(G). (165)

The coefficients of this expansion ΘM
α represent an extension of the definition of θ

to a G-covariant tensor:

θΛ
σ ��� ΘM

α ≡ (θΛα, θΛ
α); ΘM

α ∈ Rv∗ × adj(G), (166)

which describes the explicit embedding of the gauge group Gg into the global sym-
metry group G, and combines the full set of deformation parameters of the original
ungauged Lagrangian. The advantage of this description is that it allows to recast all
the consistency conditions on the choice of the gauge group into G-covariant (and
thus independent of the symplectic frame) constraints on Θ .

We should however bear in mind that, just as the redundant set of vectors AM
μ , also

the components of ΘM
α are not independent since, by (161),

θΛ̂
α = EΛ̂

M ΘM
α , 0 = EΛ̂M ΘM

α, (167)

so that
dim(Gg) = rank(θ) = rank(Θ). (168)

The above relations (167) imply for ΘM
α the following symplectic-covariant condi-

tion:
ΘΛ

α ΘΛβ − ΘΛ
β ΘΛα = 0 ⇔ CMNΘM

αΘN
β = 0. (169)

Vice versa, one can show that if ΘM
α satisfies the above conditions, there exists a

symplectic matrix E which can rotate it to an electric frame, namely such that (167)
are satisfied for some θΛ̂

α . Equations (169) define the so-called locality constraint
on the embedding tensor ΘM

α and they clearly imply:

dim(Gg) = rank(Θ) ≤ nv , (170)

which is the preliminary consistency condition (122).
The electric-magnetic duality action of XM , in the generic symplectic frame

defined by the matrix E, is described by the tensor:

XMN
P ≡ ΘM

α tα N
P = E−1

M
M̂E−1

N
N̂ XM̂N̂

P̂ EP̂
P. (171)
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For each value of the index M, the tensor XMN
P should generate symplectic transfor-

mations. This implies that:

XMNP ≡ XMN
QCQP = XMPN , (172)

which is equivalent to (127). The remaining linear constraints (131), (158) on the
gauge algebra can be recast in terms of XMN

P in the following symplectic-covariant
form:

X(MNP) = 0 ⇔

⎧
⎪⎨

⎪⎩

2X(ΛΣ)
Γ = XΓ

ΛΣ,

2X(ΛΣ)
Γ = XΓ

ΛΣ,

X(ΛΣΓ ) = 0.

(173)

Notice that the second of equations (173) implies that, in the electric frame in which
XΛ̂ = 0, also the B-block (i.e. the upper-right one) of the infinitesimal gauge gen-
erators Rv[XΛ̂] vanishes, being XΓ̂

Λ̂Σ̂ = 0, so that the gauge transformations are
indeed in Gel. Moreover from the first of equation (173), equation (131) follows in
the electric frame.

Finally, the closure constraints (130) can be written, in the generic frame, in the
following form:

[XM, XN ] = −XMN
P XP ⇔ ΘM

αΘN
βfαβ

γ + ΘM
α tα N

PΘP
γ = 0. (174)

The above condition can be rephrased, in a G-covariant fashion, as the condition
that the embedding tensor ΘM

α be invariant under the action of the gauge group it
defines:

δMΘN
α = 0. (175)

Summarizing we have found that consistency of the gauging requires the following
set of linear and quadratic algebraic, G-covariant constraints to be satisfied by the
embedding tensor:

◦ Linear constraint:

X(MNP) = 0, (176)

◦ Quadratic constraints:

CMNΘM
αΘN

β = 0, (177)

[XM, XN ] = −XMN
P XP. (178)

The linear constraint (176) amounts to a projection of the embedding tensor on a
specific G-representation RΘ in the decomposition of the product Rv∗ × Adj(G)

with respect to G
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Rv∗ × Adj(G)
G−→ RΘ + . . . (179)

and thus can be formally written as follows:

PΘ · Θ = Θ, (180)

where PΘ denotes the projection on the representation RΘ . For this reason (176) is
also named representation constraint.

The first quadratic constraint (177) guarantees that a symplectic matrix E exists
which rotates the embedding tensor ΘM

α to an electric frame in which the magnetic
componentsΘΛ̂α vanish. The second one (178) is the condition that the gauge algebra
close within the global symmetry one g and implies that Θ is a singlet with respect
to Gg.

The second part of the gauging procedure, which we are going to discuss below,
has to dowith restoring supersymmetry afterminimal couplings have been introduced
and the Gg-invariant LagrangianL

(0)
gauged have been constructed. As we shall see, the

supersymmetric completion of L (0)
gauged requires no more constraints on Gg (i.e. on

Θ) than the linear (176) and quadratic ones (177), (178) discussed above.

As a final remark let us prove that the locality constraint (177) is independent of
the others only in theories featuring scalar isometries with no duality action, namely
in which the symplectic duality representation Rv of the isometry algebra g is not
faithful. This is the case of the quaternionic isometries in N = 2 theories, see (107)
of Sect. 2.5. Let us split the generators tα ofG into t�, which have a non-trivial duality
action, and tm, which do not:

(t�)M
N �= 0 ; (tm)M

N = 0. (181)

From (178) we derive, upon symmetrization of the M, N indices, the following con-
dition:

X(MN)
P XP = X(MN)

P ΘP
α tα = 0, (182)

where tα on the right hand side are not evaluated in the Rv representation and thus
are all non-vanishing. Using the linear constraint (176) we can then rewrite X(MN)

P

as follows:

X(MN)
P = −1

2
CPQ XQMN = −1

2
CPQ ΘQ

�t�MN , (183)

so that (182) reads
CQP ΘQ

�ΘP
α tα t�MN = 0. (184)

Being tα and t�MN independent for any α and �, conditions (176) and (178) only
imply part of the locality constraint (177):

CQP ΘQ
�ΘP

α = 0, (185)
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while the remaining constraints (177)

CQP ΘQ
mΘP

n = 0, (186)

need to be imposed independently. Therefore in theories in which all scalar fields sit
in the same supermultiplets as the vector ones, as it is the case of N > 2 or N = 2
with no hypermultiplets, the locality condition (178) is not independent but follows
from the other constraints.

3.2 The Gauged Lagrangian

The three steps described above allow us to construct a LagrangianL (0)
gauged which is

locally Gg-invariant starting from the ungauged one. Now we have to check if this
deformation is compatible with local supersymmetry. As it stands, as emphasized
above the Lagrangian L (0)

gauged is no longer invariant under supersymmetry, due to
the extra contributions that arise from variation of the vector fields in the covariant
derivatives.

Consider, for instance, the supersymmetry variation of the (gauged) Rarita-
Schwinger term in the Lagrangian

Lrs = i e ψ̄A
μγ

μνρDνψA ρ + h.c. , (187)

whereDν is the gauged covariant derivative defined in (154). Under supersymmetry
variation of ψμ:

δψμ = Dμε + · · · , (188)

ε being the local supersymmetry parameter.14 The variation ofLrs produces a term

δLrs = · · · + 2i e ψ̄A
μγ

μνρDνDρεA + h.c.

= − i g e ψ̄A
μγ

μνρFΛ̂
νρ (wΛ̂ε)A + h.c. , (189)

where we have used the property (142) of the gauge covariant derivative. Similarly
we can consider the supersymmetry variation of the spin-1/2 fields:

δλI = i P̂I A
μ γ μεA + . . . , (190)

where the dots denote terms containing the vector fields and P̂I A
μ is a specific compo-

nent of the K-valued matrix P̂μ. The resulting variation of the corresponding kinetic

14The ellipses refer to terms containing the vector field strengths.
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Lagrangian contains terms of the following form:

δ
(−i/2e λ̄Iγ μDμλ

I + h.c.
) = · · · − i e λ̄Iγ μνDμP̂I A

ν εA + h.c.

= · · · + i/2g e λ̄Iγ μνFΛ̂
μν PI A

Λ̂
εA + h.c. (191)

We see that the supersymmetry variation of the minimal couplings in the fermion
kinetic terms have produced O(g)-terms which contain the tensor

FΛ̂
μν L

−1XΛ̂L = FM
μν L

−1XML (192)

projected on H and contracted with the ψ̄ε current in (189), or restricted to K and
contracted with the λ̄ε current in the second case (191). On the right hand side of
(192) the summation over the gauge generators has been written in the symplectic
invariant form defined in (162): FM XM ≡ FΛ̂ EΛ̂

M XM . These are instances of the
various terms occurring in the supersymmetry variation δL (0)

gauged. Just as (189) and
(191), these terms are proportional to an H-tensor defined as follows15:

T(Θ, φ)M ≡ 1

2
L(φ)−1

M
N L(φ)−1XN L(φ) = 1

2
L(φ)−1

M
N ΘN

β L(φ)βα tα

= T(Θ, φ)M
α tα, (194)

where

T(Θ, φ)M
α ≡ 1

2
L(φ)−1

M
N ΘN

βL(φ)βα = 1

2
(L−1(φ) � Θ)M

α, (195)

where � denotes the action of L−1 as an element of G on ΘM
α in the corresponding

RΘ -representation. The tensor T(φ, Θ) = 1
2L

−1(φ) � Θ is called the T-tensor and
was first introduced in [4].

IfΘ and φ are simultaneously transformed withG, the T-tensor transforms under
the corresponding H-compensator:

∀g ∈ G : T(g � φ, g � Θ) = 1

2
L−1(g � φ) � (g � Θ)

= 1

2
(h(g, φ)L−1(φ)g−1) � (g � Θ) = h(g, φ) � T(φ, Θ). (196)

15In the formulas below we use the coset representative in which the first index (acted on by G)
is in the generic symplectic frame defined by the matrix E and which is then related to the same
matrix in the electric frame (labeled by hatted indices) as follows:

L(φ)M̂
N = EM̂

P L(φ)PN ⇒ M(φ)M̂N̂ = EM̂
PEN̂

QM(φ)PQ, (193)

last equation being (68).
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This quantityT naturally belongs to a representation of the groupH and is an example
of composite field discussed at the end of Sect. 2.6.

If, on the other hand, we fix φ and only transform Θ , T transforms in the same
G-representation RΘ as Θ , being T defined (aside for the factor 1/2) by acting on
the embedding tensor with the G-element L−1. As a consequence of this, T satisfies
the same constraints (176), (177) and (178) as Θ:

TNM
N = T(MNP) = 0,

CMN TM
α TN

β = 0,

[TM, TN ] + TMN
P TP = 0,

(197)

where we have defined TMN
P ≡ TM

α tαNP. Equations (197) have been originally
derived within maximal supergravity in [4], and dubbed T-identities.16

Notice that, using (146) and (147) we can rewrite the T-tensor in the following
form:

TM = 1

2
L−1

M
N ΘN

α

(
ksα Vs

s Ks − 1

2
Pa

α Ja − 1

2
Pm

α Jm

)
, (198)

which can be extended to N = 2 theories with non-homogeneous scalar manifolds,
see discussion at the end of this section.

To cancel the supersymmetry variations of L (0)
gauged and to construct a gauged

LagrangianLgauged preserving the original supersymmetries, one can apply the gen-
eral Noether method (see [26] for a general review) which consists in adding new
terms to L (0)

gauged and to the supersymmetry transformation laws, iteratively in the
gauge coupling constant. In our case the procedure converges by adding terms of
order one (ΔL (1)

gauged) and two (ΔL (2)
gauged) in g, so that

Lgauged = L (0)
gauged + ΔL (1)

gauged + ΔL (2)
gauged. (199)

The additional O(g)-terms are of Yukawa type and have the general form:

e−1ΔL (1)
gauged

= g
(
2ψ̄A

μ γ μν ψB
ν SAB + i λ̄I γ μ ψμA NIA + λ̄I λJ MIJ

) + h.c.,
(200)

characterized by the scalar-dependent matrices SAB and NIA called fermion shift
matrices, and a matrix MIJ that can be rewritten in terms of the previous mixed
mass tensor NIA (see the subsequent sections).

The O(g2)-terms consist of a scalar potential:

e−1ΔL (2)
gauged = −g2 V(φ). (201)

16Recall that in maximal supergravity the locality constraint follows from the linear and the closure
ones.
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At the same time the fermionic supersymmetry transformations need to be suitably
modified. To this end, we shall add order–g terms to the fermion supersymmetry
transformation rules of the gravitino (ψμA) and of the other fermions (χI)

δεψμA = DμεA + i g SAB γμ εB + · · · ,
δελI = gNIA εA + · · · (202)

depending on the same matrices SAB, NIA entering the mass terms. The fermion
shift-matrices are composite fields belonging to some appropriate representations
RS, RN of the H group, such that (200) is H-invariant.

These additional terms in the Lagrangian and supersymmetry transformation laws
are enough to cancel the original O(g) variations in δL (0)

gauged—like (189) and (191),
together with new O(g) terms depending on S and N in the supersymmetry vari-
ation of L (0)

gauged—provided the shift-tensors SAB, NIA are identified with suitable
H-covariant components of the T-tensor:

RΘ
H−→ RN + RS + Rother, (203)

and that additional H-representations Rother in the T-tensor do not enter the super-
symmetry variations of the Lagrangian. This can be formulated as a G-covariant
restriction on the representation RΘ of the T-tensor or, equivalently, of embedding
tensor, which can be shown to be no more than the representation constraint (176)
discussed earlier.

The identificationwith components of theT-tensor defines the expression fermion
shift-tensors as H-covariant composite fields in terms of the embedding tensor and
the scalar fields:

SAB = SAB(φ,Θ) = T(φ,Θ)|RS
; NIA = NIA(φ,Θ) = T(φ,Θ)|RN

. (204)

Finally, in order to cancel theO(g2)-contributions resulting from the variations (202)
in (200),we need to add an order-g2 scalar potential V(φ)whose expression is totally
determined by supersymmetry as a bilinear in the shift matrices by the condition

δB
A V(φ) = g2

(
NIA NI

B − 12 SAC SBC
)
, (205)

where we have defined NI
A ≡ (NIA)∗ and SAB ≡ (SAB)

∗. The above condition is
called potential Ward identity [27, 28] (for a comprehensive discussion of the super-
symmetry constraints on the fermion shifts see [29]). This identity defines the scalar
potential as a quadratic function of the embedding tensor and non-linear function of
the scalar fields. As a constraint on the fermion shifts, once these have been iden-
tified with components of the T-tensor, it follows from the T-identities (197) or,
equivalently, from the quadratic constraints (177), (178) on Θ . The derivation of
quadratic supersymmetry constraints on the fermion shifts in maximal supergravity
from algebraic constraints (i.e. scalar field independent) on the embedding tensor,
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was originally accomplished in [16], though in a specific symplectic frame, and in
maximal D = 3 theory in [17]. In [5] the four-dimensional result was extended to a
generic symplectic frame of the N = 8 model, i.e. using the G-covariant constraint
(176), (177), (178) on the embedding tensor.17

Let us comment on the case of N = 2 theories with a non-homogeneous scalar
manifold (106). In this case we cannot define a coset representative. However, as
mentioned earlier, one can still define a symplectic matrix LM

N depending on the
complex scalar fields in the vector multiplets (which has no longer the interpretation
of a coset representative). We can then define the T-tensor in these theories as in
(198) where {Ks} should be intended as a basis of the tangent space to the origin (and
not as isometry generators), while {JI} = {Ja, Jm} are holonomy group generators.18

Recall that {Pa
α, P

m
α } enter the definition of the gauged composite connection (147)

on the scalar manifold and, as mentioned earlier, are related to the Killing vectors by
general properties of the spacial Kähler and quaternionic Kähler geometries [19].

It is a characteristic of supergravity theories that—in contrast to globally super-
symmetric ones—by virtue of the negative contribution due to the gravitino shift-
matrix, the scalar potential is in general not positive definite, but may, in particu-
lar, feature AdS vacua. These are maximally symmetric solutions whose negative
cosmological constant is given by the value of the potential at the corresponding
extremum: Λ = V0 < 0. Such vacua are interesting in the light of the AdS/CFT
holography conjecture [30], according to which stable AdS solutions describe con-
formal critical points of a suitable gauge theory defined on the boundary of the space.
In this perspective, domain wall solutions to the gauged supergravity interpolating
between AdS critical points of the potential describe renormalization group (RG)
flow (from an ultra-violet to an infra-red fixed point) of the dual gauge theory and
give important insights into its non-perturbative properties. The spatial evolution of
such holographic flows is determined by the scalar potential V(φ) of the gauged
theory.

In some cases the effective scalar potential V(φ), at the classical level, is non–
negative and defines vacuawith vanishing cosmological constant inwhich supersym-
metry is spontaneously broken and part of the moduli are fixed. Models of this type
are generalizations of the so called “no–scale” models [31–33] which were subject
to intense study during the eighties.

17In a generic gauged model, supersymmetry further require the fermion shifts to be related by
differential “gradient flow” relations [29] which can e shown to follow from the identification of
the shifts with components of the T-tensor and the geometry of the scalar manifold.
18The HR = U(2)-generators {Ja} naturally split into a U(1)-generator J0 of the Kähler transfor-
mations on Msk and SU(2)-generators Jx (x = 1, 2, 3) in the holonomy group of the quaternionic
Kähler manifold Mqk.
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3.3 Dualities and Flux Compactifications

Let us summarize what we have learned so far.

◦ The most general local internal symmetry group Gg which can be introduced in
an extended supergravity is defined by an embedding tensor Θ , covariant with
respect to the on-shell global symmetry group G of the ungauged model and
defining the embedding of Gg inside G. Since a scalar potential V(φ) can only be
introduced through the gauging procedure,Θ also defines the most general choice
for V = V(φ,Θ).

◦ Consistency of the gauging at the level of the bosonic action requiresΘ to satisfy
a number of (linear and quadratic) G-covariant constraints. The latter, besides
completely determining the gauged bosonic action, also allow for its consistent
(unique) supersymmetric extension.

◦ Once we find a solutionΘM
α to these algebraic constraints, a suitable symplectic

matrix E, which exists by virtue of (177), will define the corresponding electric
frame, in which its magnetic components vanish.

Although we have freed our choice of the gauge group from the original symplectic
frame, the resulting gauged theory is still defined in an electric frame and thus depends
on the matrix E: whatever solution Θ to the constraints is chosen for the gauging,
the kinetic terms of the gauged Lagrangian are always written in terms of the only
electric vector fields AΛ̂

μ , namely of the vectors effectively involved in the minimal
couplings, see (162). We shall discuss in the next section a more general formulation
of the gauging which no longer depends on the matrix E.

Dual gauged supergravities. All the deformations of the ungauged model required
by the gauging procedure depend onΘ in a manifestlyG-covariant way. This means
that, if we transform all the fields Φ (bosons and fermions) of the model under G
(the fermions transforming under corresponding compensating transformations inH)
and at the same time transform Θ and the matrix E, the field equations and Bianchi
identities—collectively denoted by E (E, Φ, Θ) = 0—are left invariant:

∀g ∈ G : E (E, Φ, Θ) = 0 ⇔ E (E′, g � Φ, g � Θ) = 0

(with E′ = ERv[g]T ). (206)

Since the embedding tensor Θ is a spurionic, namely non-dynamical, object, the
above on-shell invariance should not be regarded as a symmetry of a single theory,
but rather as an equivalence (or proper duality) between two different theories, one
defined by Θ and the other by g � Θ . Gauged supergravities are therefore classified
in orbits with respect to the action of G (or better G(Z)) on Θ . This property has an
important bearing on the study of flux compactifications mentioned in the Introduc-
tion. Indeed, in all instances of flux compactifications, the internal fluxes manifest
themselves in the lower-dimensional effective gauged supergravity as components
of the embedding tensor defining the gauging [6, 34, 35]:
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Θ = Internal Fluxes. (207)

This allows us to formulate a precise correspondence between general fluxes (form,
geometric and non-geometric) and the gauging of the resulting supergravity. More-
over, using this identification, the quadratic constraints (177), (178) precisely repro-
duce the consistency conditions on the internal fluxes deriving from the Bianchi
identities and field equations in the higher dimensional theory such as, in the pres-
ence of RR fluxes, the tadpole cancelation condition [6, 13, 34].

Consider the limit in which the lower-dimensional gauged theory provides a reli-
able description of the low-energy string orM-theory dynamics on a flux background.
This limit is defined by the condition that the flux-induced masses in the effective
action be much smaller than the scale of the Kaluza–Klein masses (of order 1/R,
where R is the size of the internal manifold)19:

Flux-induced masses � 1

R
. (208)

In this case, fields and fluxes in the lower-dimensional supergravity arrange in repre-
sentationswith respect to the characteristic symmetry groupGint the internalmanifold
would have in the absence of fluxes. In the case of compactifications on Tn, such
characteristic group is GL(n, R), acting transitively on the internal metric moduli.

In general, in the absence of fluxes,Gint is a global symmetry group of the action:
Gint ⊂ Gel. By branching RΘ with respect to Gint , we can identify within Θ the
components corresponding to the various internal fluxes. The effect of any such
background quantities in the compactification is reproduced by simply switching on
the corresponding components of Θ . The gauging procedure does the rest and the
resulting gauged model is thus uniquely determined. Since, as mentioned earlier at
the end of Sect. 2.4, a suitable subgroup G(Z) of G was conjectured to encode all
known string/M-theory dualities, the embedding tensor formulation of the gauging
procedure provides an ideal theoretical laboratory where to systematically study
the effects of these dualities on fluxes. Some elements of G(Z) will map gauged
supergravity descriptions of known compactifications into one another, see Fig. 1.

Other elements of G(Z) will map gauged supergravities, originating from known
compactifications, into theories whose string or M-theory origin is unknown, see
Fig. 2.

In this case we can use the duality between the corresponding low-energy descrip-
tions to make sense of new compactifications as “dual” to known ones.

The so-called non-geometric fluxes naturally fit in the above description as dual
to certain compactifications with NS-NS H-flux. If we consider superstring theory
compactified to four-simensions on a six-torusT 6 without fluxes, the resulting (classi-
cal) ungauged supergravity features a characteristic O(6, 6) global symmetry group,
which contains the T-duality group O(6, 6; Z) and which acts transitively on the

19For string theory compactifications we should also require this latter scale to be negligible com-
pared to the mass-scale of the string excitations (order 1/

√
α′).
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Fig. 1 Dualities between
known flux
compactifications (“GS”
stands for “gauged
supergravity”)

Fig. 2 Dualities connecting
known flux
compactifications to
unknown ones

moduli originating from the metric and Kalb-Ramond B-field in ten dimensions. The
G-representation RΘ of the embedding tensor, defining the most general gauging,
contains the representation 220 of O(6, 6)

RΘ

O(6,6)−→ 220 + . . . (209)

which in turn branches with respect to the characteristic group Gint = GL(6,R) of
the torus as follows:

220
GL(6,R)−→ 20−3 + (84 + 6)−1 + (84′ + 6′)+1 + 20+3. (210)

The component 20−3 can be identified with the H-flux Hαβγ (that is the flux of the
field strength of the Kalb-Ramond field B) along a 3-cycle of the torus. Switching
on only the 20−3 representation in Θ , the gauging procedure correctly reproduces
the couplings originating from a toroidal dimensional reduction with H-flux. What
(210) tells us is that the action of the T-duality group O(6, 6; Z) will generate, from
an H-flux in the 20−3, all the other representations:

(84 + 6)−1 : ταβ
γ ,

(84′ + 6′)+1 : Qα
βγ ,

20+3 : Rαβγ . (211)
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The first tensor ταβγ is an instance of geometric flux, being a background quantity
which characterizes the geometry of the internal manifold. It describes a compact-
ification on a space which is no longer a torus, but is locally described by a group
manifold [36] with structure constants ταβγ . The constraint (178) indeed implies for
ταβ

γ the Jacobi identity: τ[αβγ τσ ]γ δ = 0. This new internal manifold is called twisted
torus [37] (see also [13] and references therein).

TheT-duality picture is completedby the remaining two representations, described
by the tensors Qα

βγ , Rαβγ . Their interpretation as originating from a string theory
compactification is more problematic, since in their presence the internal space can-
not be given a global or even local description as a differentiable manifold. For this
reason they are called non-geometric fluxes [38–40] (see also [13] and references
therein). The H, τ, Q, R-fluxes can all be given a unified description as quantities
defining the geometry of more general internal manifolds, having the T-duality group
as structure group. Such manifolds are defined in the context of generalized geom-
etry [41, 42] (see also [13] and references therein), by doubling the tangent space
to the internal manifold in order to accommodate a representation of O(6, 6) and
introducing on it additional geometric structures, or of double geometry/double field
theory [2, 43–45], in which the internal manifold itself is enlarged, and parametrized
by twice as many coordinates as the original one.

Finally there are gauged supergravities which are notG(Z)-dual to models with a
known string or M-theory origin, Fig. 3. Finding an ultra-violet completion of these
theories, which are sometimes called intrinsically non-geometric, in the context of
string/M-theory is an open challenge of theoretical high-energy physics. Progress
in this direction has been achieved in the context of extended generalized geometry
[46, 47] or exceptional field theory [1, 48, 49].

If the hierarchy condition (208) is not met, the gauged supergravity cannot be
intended as a description of the low-energy string/M-theory dynamics, but just as
a consistent truncation of it, as in the case of the spontaneous compactification of
D = 11 supergravity on AdS4 × S7. In this case, the back-reaction of the fluxes on
the internal geometry will manifest in extra geometric fluxes, to be identified with
additional components of Θ .

Fig. 3 Intrinsically
non-geometric theories
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Vacua and dualities. The scalar potential

V(φ,Θ) = g2

N
(
NIA NI

B − 12 SAC SBC
)
, (212)

being expressed as an H-invariant combination of composite fields (the fermion
shifts), is invariant under the simultaneous action of G on Θ and φs:

∀g ∈ G : V(g � φ, g � Θ) = V(φ, Θ). (213)

This means that, if V(φ, Θ) has an extremum in φ0

∂

∂φs
V(φ, Θ)

∣∣∣∣
φ0

= 0, (214)

V(φ, g � Θ) has an extremum at φ′
0 = g � φ0 with the same properties (value of the

potential at the extremum and its derivatives):

∂

∂φs
V(φ, g � Θ)

∣∣∣∣
g�φ0

= 0, g ∈ G . (215)

If the scalarmanifold is homogeneous,we canmap anypointφ0 to the originO, where
all scalars vanish, by the inverse of the coset representative L(φ0)

−1 ∈ G.We can then
map a generic vacuum φ0 of a given theory (defined by an embedding tensorΘ) to the
origin of the theory defined by Θ ′ = L(φ0)

−1 � Θ . As a consequence of this, when
looking for vacua with given properties (residual (super)symmetry, cosmological
constant,mass spectrumetc.), with no loss of generalitywe can compute all quantities
defining the gauged theory—fermion shifts and mass matrices—at the origin:

N(O, Θ), S(O, Θ), M(O, Θ), (216)

and translate the properties of the vacuum in conditions on Θ . In this way, we can
search for the vacua by scanning though all possible gaugings [50–52].

3.4 Gauging N = 8, D = 4

Ungauged action. The four dimensional maximal supergravity is characterized by
havingN = 8 supersymmetry (that is 32 supercharges), which is themaximal amount
of supersymmetry allowed by a consistent theory of gravity.

We shall restrict ourselves to the (ungauged)N = 8 theory with no antisymmetric
tensor field—which would eventually be dualized to scalars. The theory, firstly con-
structed in [53, 54], describes a single massless graviton supermultiplet consisting
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of the graviton gμν , 8 spin-3/2 gravitini ψA
μ (A = 1, . . . , 8) transforming in the fun-

damental representation of the R–symmetry group SU(8), 28 vector fields AΛ
μ (with

Λ = 0, . . . , 27), 56 spin-1/2 dilatini χABC in the 56 of SU(8) and 70 real scalar
fields φr :

[
1 × gμν

j=2

, 8 × ψA
μ

j= 3
2

, 28 × AΛ
μ

j=1

, 56 × χABC

j= 1
2

, 70 × φr

j=0

]
. (217)

The scalar fields are described by a non-linear σ -model on the Riemannian manifold
Mscal, that in the N = 8 model has the form

Mscal = G

H
= E7(7)

SU(8)
, (218)

the isometry group being G = E7(7), and H = SU(8) being the R–symmetry group.
The bosonic Lagrangian has the usual form (5). The global symmetry group of the
maximal four-dimensional theory G = E7(7) has 133 generators tα . The (abelian)
vector field strengths FΛ = dAΛ and their magnetic duals GΛ together transform in
the Rv = 56 fundamental representation of the E7(7) duality group with generators
(tα)MN , so that

δFM
μν =

(
δFΛ

μν

δGΛμν

)
= − Λα (tα)N

M FN
μν . (219)

Gauging. According to our general discussion of Sect. 3.1, the most general gauge
group Gg which can be introduced in this theory is defined by an embedding tensor
ΘM

α (M = 1, . . . , 56 andα = 1, . . . , 133),which expresses the gauge generatorsXM

as linear combinations of the global symmetry group ones tα (165). The embedding
tensor encodes all parameters (couplings and mass deformations) of the gauged
theory. This object is solution to the G-covariant constraints (176), (177), (178).

The embedding tensor formally belongs to the product

ΘM
α ∈ Rv ⊗ adj(G) = 56 ⊗ 133 = 56 ⊕ 912 ⊕ 6480. (220)

The linear constraint (176) sets to zero all the representation in the above decompo-
sition which are contained in the 3-fold symmetric product of the 56 representation:

X(MNP) ∈ (56 ⊗ 56 ⊗ 56)sym. → 56 ⊕ 6480 ⊕ 24320. (221)

The representation constraint therefore selects the 912 as the representation RΘ of
the embedding tensor.20

20Wecan relax this constraint by extending this representation to include the 56 in (220).Consistency
however would require the gauging of the scaling symmetry of the theory (which is never an off-
shell symmetry), also called trombone symmetry [55, 56]. This however leads to gauged theories
which do not have an action. We shall not discuss these gaugings here.
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The quadratic constraints pose further restrictions on the E7(7)-orbits of the 912
representation which ΘM

α should belong to. In particular the locality constraint
implies that the embedding tensor can be rotated to an electric frame through a
suitable symplectic matrix E, see (167).

Steps 1, 2 and 3 allow to construct the bosonic gauged Lagrangian in this electric
frame. We shall discuss in Sect. 4 a frame-independent formulation of the gauging
procedure in which, for a given solution Θ to the constraints, we no longer need to
switch to the corresponding electric frame.

The complete supersymmetric gauged Lagrangian is then obtained by adding
fermion mass terms, a scalar potential and additional terms in the fermion super-
symmetry transformation rules, according to the prescription given in Step 4. All
these deformations depend on the fermion shift matrices SAB, NIA. In the maximal
theory I = [ABC] labels the spin-1/2 fields χABC and the two fermion shift-matrices
are conventionally denoted by the symbols A1 = (AAB), A2 = (AD

ABC). The precise
correspondence is21:

SAB = − 1√
2
AAB; NABC

D = −√
2AD

ABC, (223)

where
AAB = ABA; AABC

D = A[ABC]D; ADBC
D = 0. (224)

The above properties identify the SU(8) representations of the two tensors:

AAB ∈ 36; AABC
D ∈ 420. (225)

21In the previous sections we have used, for the supergravity fields, notations which are different
from those used in the literature of maximal supergravity (e.g. in [18]) in order to make contact
with the literature of gauged N < 8 theories, in particular N = 2 ones [19]. Denoting by a hat the
quantities in [18], the correspondence between the two notations is:

γ̂ μ = iγ μ; γ̂5 = γ5,

ε̂i = 1√
2
εA; ε̂i = 1√

2
εA; (i = A),

ψ̂iμ = √
2ψA

μ; ψ̂ i
μ = √

2ψAμ; (i = A),

χ̂ijk = χABC; χ̂ ijk = χABC; ([ijk] = [ABC]),
Âij = (Âij)

∗ = AAB; Âi
jkl = (Âi

jkl)
∗ = AA

BCD; (i = A, j = B, k = C, l = D),

VΛ ij = − i√
2

L
Λ
AB; VΛ

ij = i√
2

LΛAB; (i = A, j = B),

(222)

where in the last line the 28 × 28 blocks of VM
N have been put in correspondence with those of

L
M
N . The factor

√
2 originates from a different convention with the contraction of antisymmetric

couples of SU(8)-indices: V̂ijV̂ ij = 1
2 V

AB VAB.
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The T-tensor, defined in (194) as an E7(7)-object, transforms inRΘ = 912, while as
an SU(8)-tensor it belongs to the following sum of representations:

T ∈ 912
SU(8)−→ 36 ⊕ 36 ⊕ 420 ⊕ 420 , (226)

which are precisely the representations of the fermion shift-matrices and their con-
jugates AAB AAB, AA

BCD, AA
BCD. This guarantees that the O(g)-terms in the super-

symemtry variation of L (0)
gauged, which depend on the T-tensor, only contain SU(8)-

structures which can be canceled by the new terms containing the fermion shift-
matrices. This shows that the linear condition Θ ∈ RΘ is also required by super-
symmetry.

The same holds for the quadratic constraints, in particular for (178), which implies
the T-identities and also the Ward identity (205) for the potential [4, 18]:

V(φ) δBA = g2

6
NCDE

ANCDE
B − 12 g2 SACSBC = g2

3
AB

CDEAA
CDE − 6 g2 AAC ABC,

(227)
from which we derive:

V(φ) = g2
(

1

24
|AB

CDE |2 − 3

4
|AAB|2

)
. (228)

The scalar potential can also be given in a manifestly G-invariant form [18]:

V(φ) = − g2

672

(
XMN

R XPQ
S MMP MNQ MRS + 7XMN

Q XPQ
N MMP

)
, (229)

where MMN is the inverse of the (negative definite) matrix MMN defined in (55)
and, as usual, XMN

R describe the symplectic duality action of the generators XM in
theRv∗-representation: XMN

R ≡ Rv∗[XM]NR.

3.5 Brief Account of Old and New Gaugings

As mentioned in Sect. 3.1, different symplectic frames (i.e. different ungauged
Lagrangians) correspond to different choices for the viable gauge groups and may
originate from different compactifications (see [5] for a study of the different sym-
plectic frames for the ungauged maximal theory).

The toroidal compactification of eleven dimensional theory performed in [53],
upondualizationof all form-fields to lower order ones, yields anungaugedLagrangian
with global symmetry Gel = SL(8,R). We shall refer to this symplectic frame as
the SL(8,R)-frame. The first gauging of the maximal theory was performed in this
symplectic frame by choosingGg = SO(8) ⊂ SL(8,R) [4]. The scalar potential fea-
tures a maximally supersymmetric anti-de Sitter vacuum which corresponds [57] to
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the spontaneous compactification of eleven dimensional supergravity on AdS4 × S7.
The range of possible gaugings in the SL(8,R)-frame was extended to include non-
compact and non semisimple groups Gg = CSO(p, q, r) (with p + q + r = 8) [10].
These were shown in [16] to exhaust all possible gaugings in this frame.

The discovery of inequivalent Lagrangian formulations of the ungauged maxi-
mal theory broadened the choice of possible gauge groups. Flat-gaugings in D = 4
describing Scherk-Schwarz reductions of maximal D = 5 supergravity [58] and
yielding no-scale models, were first constructed in [59]. The corresponding symplec-
tic frame is the one originating from direct dimensional reduction of the maximal
five-dimensional theory on a circle and has a manifest off-shell symmetry which
contains the global symmetry group of the parent model22 E6(6): one has in fact
Gel = O(1, 1) × E6(6).

Exploiting the freedom in the initial choice of the sympectic frame, it was recently
possible to discover a new class of gauging generalizing the original CSO(p, q, r)
ones [60–62]. These models are obtained by gauging, in a different frame, the same
CSO(p, q, r).

Consider two inequivalent frames admitting Gg = CSO(p, q, r) as gauge group,
namely for each of which CSO(p, q, r) ⊂ Gel. Let R̂v andRv be the corresponding
symplectic duality representations of G. We can safely consider one of them (R̂v)
as electric. The duality action of the gauge generators R̂v∗ andRv∗ are described by
two tensors XM̂N̂

P̂ and XMN
P, respectively, related by a suitable matrix E (171):

XM̂N̂
P̂ = EM̂

M EN̂
N (E−1)P

P̂ XMN
P. (230)

The matrices M(φ) in the two frames are then related by (68). The two embedding
tensors describe the same gauge group provided that {XM} and {E XM E−1} define
different bases of the same gauge algebra gg = cso(p, q, r) in the Lie algebra e7(7) of
E7(7). In other words,E should belong to the normalizer of cso(p, q, r) in Sp(2nv,R).
At the same time the effect of E should not be offset by local (vector and scalar field)
redefinitions, see (69). Theduality actionofGg in both R̂v∗ andRv∗ is block-diagonal:

R̂v∗[Gg] = Rv∗[Gg] =
(
Gg 0
0 G−T

g

)
. (231)

For semisimple gauge groupsGg = SO(p, q) (with p + q = 8), it was shown in [62]
that the most general E belongs to an SL(2,R)-subgroup of Sp(56,R) and has the
general form:

E =
(
a I b η

c η d I

)
∈ Sp(56,R) ; ad − bc = 1, (232)

22See Table2 at the end of Sect. 4.
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where ηΛΣ is the so(p, q)-Cartan Killing metric, normalized so that η2 = I. The
most general SL(2,R)-matrix can be written, using the Iwasawa decomposition, as
follows: (

a b
c d

)
=

(
λ 0
0 1

λ

)(
1 ϑ

0 1

)(
cos(ω) sin(ω)

− sin(ω) cos(ω)

)
. (233)

The leftmost block corresponds in E to an unphysical rescaling of the vectors (in
GL(28,R)). Themiddle block realizes, in going from the unhatted frame to the hatted
one, a constant shift in the generalized θ -angle matrix R: R → R + ϑ η. This can
have effects at the quantum level, but does not affect field equations [62].

The rightmost block has, on the other hand, important bearing on the physics
of the classical theory. Let E(ω) be the symplectic image (232) of this block only,
and letRv be the SL(8,R)-frame, where the CSO(p, q, r) gaugings were originally
constructed and in which the matrices L and M are given by well know general
formulas [4, 53]. For ω �= 0, this frame is no longer electric, but is related to the
electric one by E(ω). Using (167) we can write:

XΛ̂ = cos(ω)XΛ + sin(ω)ηΛΣ XΣ ; 0 = − sin(ω)ηΛΣ XΣ + cos(ω)XΛ, (234)

where (ηΛΣ) ≡ η−1 = η. The above relation is easily inverted:

XΛ = cos (ω)XΛ̂, XΛ = sin (ω) ηΛΣXΣ̂ . (235)

We can then write the symplectic invariant connection (162) in the following way:

Ωgμ = AMμ XM = AΛ
μ XΛ + AΛμ XΛ = (cosω AΛ

μ + sin(ω)AΛμ)X
Λ̂

= AΛ̂
μ X

Λ̂
. (236)

In other words, the gauging defined by XM amounts to gauge, in the SL(8,R)-frame,
the sameSO(p, q)-generators by a linear combination of the electricAΛ

μ andmagnetic
AΛμ vector fields. The true electric vectors are all and only those entering the gauge

connection, that is AΛ̂
μ , and define the electric frame. We shall denote by Θ[ω] the

corresponding embedding tensor.
The gauged model can be constructed either directly in the SL(8,R)-frame, using

the covariant formulation to be discussed in Sect. 4, or in the electric frame, along
the lines described in Sect. 3. The range of values of ω is restricted by the discrete
symmetries of the theory. One of these is parity (see Sect. 2.4), whose duality repre-
sentation P in the SL(8,R)-frame has the form (82) [21]. The reader can verify that
its effect on the T-tensor (194) is:

T(Θ[ω], φ)M = P � T(Θ[−ω], φp) (237)

by using the properties

PM̂
N̂ P−1XN̂P = XM̂; P−1E(ω)P = E(−ω); P−1L(φ)P = L(φp), (238)
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where φp denote the parity-transformed scalar fields. Equation (237) shows that
parity maps φ into φp and ω in −ω. In other words ω is parity-odd parameter. The
overall P transformation on T in (237) is ineffective, since it will cancel everywhere
in the Lagrangian, being P an O(2nv)-transformation. Similarly, we can use other
discrete global symmetries of the ungauged theory, which include the SO(8)-triality
transformations S3 ⊂ E7(7) for the SO(8)-gauging, to further restrict the range of
values of ω. One finds that [61, 62]:

ω ∈
(
0,

π

8

)
, SO(8)-gauging,

ω ∈
(
0,

π

4

)
, non-compact SO(p, q)-gaugings. (239)

These are called “ω-rotated” SO(p, q)-models, or simply SO(p, q)ω-models. The
SO(8) ones, in particular, came as a surprise since they contradicted the common
belief that the original de Wit-Nicolai SO(8)-gauged model was unique.

For the non-semisimple CSO(p, q, r)-gaugings, the non-trivial matrix E does not
depend on continuous parameters but is fixed, thus yielding for each gauge group
only one rotated-model [60, 62].

Evenmore surprisingly, these new class of gauged theories feature a broader range
of vacua than the original models. In this sense the ω → 0 limit can be considered a
singular one, in which some of the vacua move to the boundary of the moduli space
at infinity and thus disappear.

Consider for instance the SO(8)ω-models. They all feature an AdS4, N = 8 vac-
uum at the origin with the same cosmological constant and mass spectrum as the
original SO(8) theory. The parameter ω manifests itself in the higher order inter-
actions of the effective theory. They also feature new vacua, which do not have
counterparts in the ω = 0 model. Figure4 illustrates some of the vacua of the de
Wit-Nicolai model (ω = 0), namely those which feature a residual symmetry group
G2 ⊂ SO(8).

Fig. 4 The G2-invariant vacua of the de Wit-Nicolai model, with their interpretation in terms of
compactifications of the eleven-dimensional theory
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Figure5 shows the G2-invariant vacua of a particular SO(8)ω model and the dis-
appearance of one of the vacua in the ω → 0 limit [61]. The vacua of these models
have been extensively studied [63–66] also in the context of renormalization group
flows interpolating between (or simply originating from) AdS vacua [67, 68] and
AdS black holes [69–71].

Determining a string or M-theory origin of the ω-rotated models is, to date, an
open problem [72]. They seem to provide examples of what we named intrinsically
non-geometric models in Sect. 3.3. The only exception so far is the dyonic ISO(7)
which was related to compactifications of massive Type IIA theory [73].

4 Duality Covariant Gauging

Let us discuss in this section a formulation of the gauging procedure in four-
dimensions which was developed in [8, 18] and which no longer depends on the
matrix E, so that the kinetic terms are not written in terms of the vector fields in the
electric frame.

Step 1, 2 and 3 revisited. We start from a symplectic-invariant gauge connection of
the form23:

Ωgμ ≡ AM
μ XM = AΛ

μ XΛ + Aμ
Λ XΛ = AM

μ ΘM
α tα, (240)

where ΘM
α satisfies the constraints (176), (177), (178). The fields AΛ

μ and AΛμ are
now taken to be independent. This is clearly a redundant choice and, as we shall see,
half of them play to role of auxiliary fields. Equation (177) still implies that at most
nv linear combinations AΛ̂

μ of the 2nv vectors AΛ
μ , AΛμ effectively enter the gauge

connection (and thus the minimal couplings):

AM
μ XM = AΛ̂

μ XΛ̂, (241)

where XΛ̂ are defined in (167) through the matrix E, whose existence is guaranteed

by (177), and where AΛ̂
μ ≡ E−1

M
Λ̂ AM

μ .
In the new formulation we wish to discuss, however, the vectors AΛ

μ instead of

AΛ̂
μ enter the kinetic terms. The covariant derivatives are then defined in terms of

(240) as in Step 2 of the Sect. 3.1, and, as prescribed there, should replace ordinary
derivative everywhere in the action. The infinitesimal gauge variation of AM reads:

δAM
μ = Dμζ

M ≡ ∂μζ
M + AN

μXNP
M ζ P, (242)

where, as usual, XMP
R ≡ Rv∗[XM]PR. We define for this set of electric-magnetic vec-

tor fields a symplectic covariant generalization FM of the non-abelian field strengths
FΛ̂ (137):

23Here, for the sake of simplicity, we reabsorb the gauge coupling constant g into Θ: gΘ → Θ .
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FM
μν ≡ ∂μA

M
ν − ∂νA

M
μ + X[NP]M AN

μA
P
ν ⇔ FM ≡ dAM + g

2
XNP

M AN ∧ AP,

(243)

where in the last equation we have used the form-notation for the fields strengths.
The gauge algebra-valued curvature F is defined as in (136):

F ≡ FM XM . (244)

The first problem one encounters in describing the vectors AΛ
μ in the kinetic terms

is that, in a symplectic frame which is not the electric one, such fields are not well
defined, since their curvatures fail to satisfy the Bianchi identity. This comes with
no surprise, since the components ΘΛα of the embedding tensor are nothing but
magnetic charges. One can indeed verify that:

DFM ≡ dFM + XNP
M AN ∧ FP = X(PQ)

M AP ∧
(
dAQ + g

3
XRS

QAR ∧ AS
)

�= 0.

(245)
In particular DFΛ �= 0 since X(PQ)

Λ = − 1
2 ΘΛα tαM

PCPN �= 0, being in the non-
electric frame ΘΛα �= 0. To deduce (245) we have used the quadratic constraint
(178) on the gauge generators XM in the Rv∗-representation, which reads:

XMP
RXNR

Q − XNP
RXMR

Q + XMN
RXRP

Q = 0. (246)

From the above identity, after some algebra, one finds:

X[MP]RX[NR]Q + X[PN]RX[MR]Q + X[NM]RX[PR]Q = −(XNM
R X(PR)

Q)[MNP], (247)

that is the generalized structure constants X[MP]R entering the definition (243) do
not satisfy the Jacobi identity, and this feature is at the root of (245). Related to
this is the non-gauge covariance of FM . The reader can indeed verify that (using the
form-notation):

δFM = −XNP
M ζN FP + (

2X(NP)
M ζN FP − X(NP)

M AN ∧ δAP
) �= −XNP

M ζN FP,

(248)

where δAM is given by (242) and where we have used the general property

δFM = DδAM − X(PQ)
M AP ∧ δAQ, (249)

valid for generic δAM . We also observe that the obstruction to the Bianchi identity
(245), as well as the non-gauge covariant terms in (248), are proportional to a same
tensor X(MN)

P. This quantity, as a consequence of (178) and (182), vanishes if con-
tracted with the gauge generators XM , namely with the first index of the embedding
tensor: X(MN)

P ΘP
α = 0. Therefore the true electric vector fields AΛ̂

μ and the gauge
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connection which only depends on them, are perfectly well defined. Indeed, one can
easily show using the matrix E that the gauge curvature (244) only contains the field
strengths FΛ̂ associated with AΛ̂ and defined in (137):

F ≡ FM XM = FΛ̂ XΛ̂. (250)

On the other hand, using (245) and (182) we have:

DF = DFM XM = 0. (251)

The gauge covariance (138) of F , and thus of FΛ̂, is also easily verified by the same
token, together with (142): D2 = −F .

In order to construct gauge-covariant quantities describing the vector fields, we
combine the vector field strengths FM

μν with a set of massless antisymmetric tensor
fields24 Bα μν in the adjoint representation of G through the matrix

ZM α ≡ 1

2
CMN ΘN

α, (252)

and define the following new field strengths:

HM
μν ≡ FM

μν + ZM α Bα μν :
{
HΛ = dAΛ + 1

2 ΘΛα Bα,

HΛ = dAΛ − 1
2 ΘΛ

α Bα.
(253)

From the definition (252) and (177) we have:

ZM α ΘM
β = 0 ⇔ ZM α XM = 0. (254)

The reader can verify, using the linear constraint (176), that:

X(NP)
M = −1

2
CMQ XQN

RCRP = −1

2
CMQ ΘQ

α tα N
RCRP = −ZM α tα NP, (255)

where, as usual, we have defined tα NP ≡ tα N
RCRP.

The reason for considering the combination (253) is that the non-covariant terms
in the gauge variation of FM

μν , being proportional to X(NP)
M , that is to ZM α , can be

canceled by a corresponding variation of the tensor fields δBαμν :

δHM = XPN
M ζN FP + ZMα

(
δBα + tαNP A

N ∧ δAP
)

= XPN
M ζN HP + ZMα

(
δBα + tαNP A

N ∧ δAP
)

= −XNP
M ζN HP + 2X(NP)

M ζN HP + ZMα
(
δBα + tαNP A

N ∧ δAP
)

24These fields will also be described as 2-forms Bα ≡ 1
2 Bμν dxμ ∧ dxν .
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= −XNP
M ζN HP + ZMα

[
δBα + tαNP (AN ∧ δAP − 2 ζN HP)

]
, (256)

where, in going from the first to the second line, we have used (254), so that
XPN

M FP = XPN
M HP. If we define:

δBα ≡ tαNP (2 ζN HP − AN ∧ δAP), (257)

the term proportional to ZM α vanishes and HM transforms covariantly. The kinetic
terms in the Lagrangian are then written in terms of HΛ

μν :

1

e
Lv, kin = 1

4
IΛΣ(φ)HΛ

μν HΣ μν + 1

8 e
RΛΣ(φ) εμνρσ HΛ

μν HΣ
ρσ . (258)

The above transformation property (257) should however bemodified since the quan-
titywewant to transformcovariantly is not quiteHM , but rather the symplectic vector:

GM ≡
(HΛ

GΛ

)
; GΛμν ≡ −εμνρσ

∂L

∂HΛ
ρσ

, (259)

corresponding, in the ungauged theory, to the field-strength-vector FM of (51),
and which contains inside GΛ fermion bilinears coming from Pauli terms in the
Lagrangian. Consistency of the construction will then imply that the two quantities
HM and GM , which are off-shell different since the former depends on the magnetic
vector fields AΛ as opposed to the latter, will be identified on-shell by the equation

(HM − GM)ΘM
α = (HΛ − GΛ)Θ

Λα = 0. (260)

These equationswill in particular identify the field strengths of the auxiliary fieldsAΛ

inHΛ with the duals toHΛ. The best that we can do is to make GM on-shell covariant
under Gg, namely upon use of (260). To this end, we modify (257) as follows:

δBα ≡ tαNP (2 ζN GP − AN ∧ δAP), (261)

so that the variations of the symplectic vectors HM and GM read:

δHM = −XNP
M ζN HP + non-covariant terms,

δGM = −XNP
M ζN GP + non-covariant but on-shell vanishing terms. (262)

Consistent definition of Bα requires the theory to be gauge-invariant with respect
to transformations parametrized by 1-forms: Ξα = Ξαμ dxμ. Such transformations
should in turn be Gg-invariant and leave HM unaltered:

AM → AM + δΞA
M ; Bα → Bα + δΞBα ⇒ δΞHM = 0. (263)
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Let us use (249) then to write

δΞHM = DδΞA
M + ZM α

(
δΞBα + tαNP A

N ∧ δΞA
P
)
. (264)

If we set
δΞA

M = −ZMα Ξα, (265)

the invariance of HM implies:

δΞBα = DΞα − tαNP A
N ∧ δΞA

P, (266)

where
DΞα ≡ dΞα + ΘM

β fβα
γAM ∧ Ξγ . (267)

Let us now introduce field strengths for the 2-forms:

H(3)
α ≡ DBα − tαPQA

P ∧
(
dAQ + 1

3
XRS

Q AR ∧ AS

)
. (268)

Writing the forms in components,

H(3)
α = 1

3! Hα μνρ dx
μ ∧ dxν ∧ dxρ ; DBα = 1

2
DμBα νρ dx

μ ∧ dxν ∧ dxρ,

(269)
we have:

Hα μνρ = 3D[μBα νρ] − 6 tαPQ

(
AP

[μ∂νA
Q
ρ] + 1

3
XRS

Q AP
[μA

R
νA

S
ρ]

)
. (270)

The reader can verify that the following Bianchi identities hold:

DHM = ZMα H(3)
α , (271)

DH(3)
α = XNP

M HN ∧ HP. (272)

Just as in Step 3 of Sect. 3.1, gauge invariance of the bosonic action requires the
introduction of topological terms, so that the final gauged bosonic Lagrangian reads:

Lb = − e

2
R + e

2
Gst(φ)Dμφ

s Dμφt

+ e

4
IΛΣ Hμν

ΛHμν Σ + 1

8
RΛΣ εμνρσHμν

ΛHρσ
Σ

− 1

8
εμνρσ θΛα Bμν α

(
2 ∂ρAσ Λ + XMN Λ Aρ

MAσ
N − 1

4
θΛ

βBρσ β

)

− 1

3
εμνρσXMN Λ Aμ

MAν
N
(
∂ρAσ

Λ + 1

4
XPQ

ΛAρ
PAσ

Q
)
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− 1

6
εμνρσXMN

Λ Aμ
MAν

N
(
∂ρAσ Λ + 1

4
XPQΛAρ

PAσ
Q
)
. (273)

The Chern-Simons terms in the last two lines generalize those in (157). On top of
them, gauge invariance of the action requires the introduction of new topological
terms, depending on the B-fields, which appear in the third line of (273). Notice that
if the magnetic charges ΘΛα vanish (i.e. we are in the electric frame), Bα disappear
from the action, since the second line of (273) vanish as well as the B-dependent
Stueckelberg term in HΛ.

The constraints (176), (177) and (178) are needed for the consistent construction
of the gauged bosonic action, which is uniquely determined. Just as discussed in
Sect. 3.1, they are also enough to guarantee its consistent supersymmetric completion
through Step 4, which equally applies to this more general construction.

Some comments are in order.

(i) The construction we are discussing in this Section requires the introduction of
additional fields: nv magnetic potentials AΛμ and a set of antisymmetric tensors
Bα μν . These newfields come togetherwith extra gauge-invariances (242), (265),
(266), which guarantee the correct counting of physical degrees of freedom. As
we shall discuss below these fields can be disposed of using their equations of
motion.

(ii) It is known that in D-dimensions there is a duality that relates p-forms to (D −
p − 2)-forms, the corresponding field strengths having complementary order
and being related by a Hodge-like duality. In four dimensions vectors are dual
to vectors, while scalars are dual to antisymmetric tensor fields. From this point
of view, we can understand the 2-forms Bα as “dual” to the scalars in the same
way as AΛ are “dual” to AΛ. This relation can be schematically illustrated as
follows:

∂[μBνρ] ∝ e εμνρσ ∂
σφ + . . . . (274)

More precisely, we can write the non-local relation between Bα and φs in a G-
covariant fashion as a Hodge-like duality betweenH(3)

α and the Noether current
jα of the sigma model describing the scalar fields, associated with the generator
tα:

Hα μνρ ∝ e εμνρσ jσα ; jμα ≡ δLb

δ∂μφs
ksα, (275)

ksα being the Killing vector corresponding to tα . This motivated the choice of
the 2-forms in the adjoint representation ofG. In the gauged theory we will find
a Gg-invariant version of (275), see discussion below.

(iii) It can be shown that the presence of the extra fields Bα and AΛ in the action is
related to non-vanishing magnetic components ΘΛα of the embedding tensor.
In the electric frame in whichΘΛα = 0, these fields disappear altogether from
the Lagrangian and we are back to the gauged action described in Sect. 3.1.
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(iv) The kinetic terms in the Lagrangian only describe fields in the ungauged theory,
while the extra fields enter topological terms or Stueckelberg-like couplings and
satisfy first order equations, see discussion below. This feature is common to
the G-covariant construction of gauged supergravities in any dimensions [7,
74–76].

(v) The dyonic embedding tensorΘM
α determines a splitting of the 2nv vector fields

AM
μ into the truly electric ones AΛ̂

μ , which are singled out by the combination

AM
μ ΘM

α and thus define the gauge connection. The remaining ones ÃM
μ corre-

spond to non-vanishing components of ZM α , that is to the components along
which the Jacobi identity is not satisfied, see (247). These latter vectors, of
which there are at most nv independent, can be then written as ÃM

μ = ZM αAα μ

and are ill-defined, since the corresponding field strengths do not satisfy the
Bianchi identity. An other problem with the vectors ÃM

μ is that they are not part
of the gauge connection, but in general are charged under the gauge group,
that is are minimally coupled to AΛ̂

μ . These fields cannot therefore be consis-
tently described as vector fields. However, this poses no consistency problem
for the theory, since ÃM

μ can be gauged away by a transformation (265), (266)
proportional to Ξα . In a vacuum, they provide the two degrees of freedom
needed by some of the tensor fields Bα to become massive, according to the
anti-Higgs mechanism [77, 78]. In the electric frame, these vectors become
magnetic (AΛ̂ μ) and disappear from the action. This phenomenon also occurs

in higher dimensions: the vectors ÃM
μ which do not participate in the gauge

connection but are charged with respect to the gauge group, are gauged away
by a transformation associated with some of the antisymmetric tensor fields
which, in a vacuum, become massive.

(vi) An important role in this construction was played by the linear constraint (176),
in particular by the property (255) implied by it, which allowed to cancel the
non-covariant terms in the gauge variation of FΛ by a corresponding variation
of the antisymmetric tensor fields. It turns out that a condition analogous to
(255) represents the relevant linear constraint on the embedding tensor needed
for the construction of gauged theories in higher dimensions [7, 74–76].

Let us now briefly discuss the bosonic field equations for the antisymmetric tensor
fields and the vectors. The variation of the actionwith respect toBα μν yields equations
(260). By fixing the Ξα-gauge freedom, we can gauge away the ill-defined vectors
ÃM

μ = ZM αAα μ and then solve (260) in Bα as a function of the remaining field

strengths, which are a combination of the FΛ̂ only. Substituting this solution in
the action, the latter will only describe the AΛ̂

μ vector fields and no longer contain
magnetic ones or antisymmetric tensors. In other words by eliminating Bα through
equations (260) we effectively perform the rotation to the electric frame and find the
action discussed in Sect. 3.1.
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By varying the action with respect to AM
μ we find the following equations:

D[μGM
ρσ ] = −2 eCMN εμνρσ DσφsGsr k

r
N = −2 eCMN εμνρσ jσN , (276)

which are the manifestly G-covariant form of the Maxwell equations. The right-
hand-side is proportional to the electric current

jσN ≡ DσφsGsr k
r
N = ΘN

α DσφsGsr k
r
α = ΘN

α jσα . (277)

If we contract both sides of (276) withΘM
α , we are singling out the Bianchi identity

for the fields strengths FΛ̂ of the vectors which actually participate in the minimal
couplings. By using the locality condition on Θ , we find:

D[μGM
ρσ ] ΘM

α = −2 eCMN ΘM
α ΘN

βεμνρσ DσφsGsr k
r
β = 0, (278)

which are nothing but the Bianchi identities forFΛ̂. This is consistent with our earlier
discussion, see (251), in which we showed that the locality condition implies that
the Bianchi identity for the gauge curvature have no magnetic source term, so that
the gauge connection is well defined.25

Now we can use the Bianchi identity (271) to rewrite (278) as a dualization
equation generalizing (275). To this end, we consider only the upper components of
(278), corresponding to the field equations for AΛμ:

ZΛα Hα μνρ = −12 e ZΛα εμνρσ DσφsGsr k
r
α. (279)

When the gauging involves translational isometries [8], φI → φI + cI , the above
equations can be solved in the fields AΛ contained in the covariant derivative. This
is done by first using the ζ -gauge freedom associated with AΛ to gauge away the
scalar fields φI acted on by the translational isometries. Equations (279) are then
solved in the fields AΛ, which are expressed in terms of the remaining scalars, the
vectors AΛ and the field strengths of the antisymmetric tensors. Substituting this
solution in the action, we obtain a theory in which no vectors AΛ appear and the
scalar fields φI have been effectively dualized to corresponding tensor fields BI μν .
The latter become dynamical and are described by kinetic terms. These theories were
first constructed in the framework of N = 2 supergravity in [79, 80], generalizing
previous results [81].

The gauged theory we have discussed in this section features a number of non-
dynamical extra fields. This is the price we have to pay for amanifestG-covariance of
the field equations and Bianchi identities. The embedding tensor then defines how the
physical degrees of freedom are distributed within this larger set of fields, by fixing

25In our earlier discussion we showed that DHM ΘM
α = DFM ΘM

α = 0. This is consistent with
(278) since on-shell HMΘM

α = GMΘM
α .
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the gauge symmetry associated with the extra fields and solving the corresponding
non-dynamical field equations (260), (279).

A view on higher dimensions. As mentioned in point (ii) above, there are equivalent
formulations of ungauged supergravities inD-dimensions obtained from one another
by dualizing certain p-forms C(p) (i.e. rank-p antisymmetric tensor fields) into (D −
p − 2)-forms C(D−p−2) through an equation of the type:

dC(p) = ∗dC(D−p−2) + · · · . (280)

Such formulations feature in general different global symmetry groups. This phe-
nomenon is calledDualization of Dualities and was studied in [82]. The scalar fields
in these theories are still described by a non-linear sigma model and in D ≥ 6 the
scalar manifold is homogeneous symmetric. Just as in four dimensions, the scalars
are non-minimally coupled to the p-form fields (see below) and the global symmetry
group G is related to the isometry group of the scalar manifold and thus is maximal
in the formulation of the theory in which the scalar sector is maximal, that is in which
all forms are dualized to lower order ones. This prescription, however, does not com-
pletely fix the ambiguity related to duality in even dimensionsD = 2k, when order-k
field strengths, corresponding to rank-(k − 1) antisymmetric tensor fields C(k−1), are
present. In fact, after having dualized all forms to lower-order ones, we can still
dualize (k − 1)-formsC(k−1) into (k − 1)-forms C̃(k−1). This is the electric-magnetic
duality of the four-dimensional theory, related to the vector fields, and also occurs
for instance in six dimensions with the 2-forms and in eight dimensions with the
3-forms.

Duality transformations interchanging C(k−1) with C̃(k−1), and thus the corre-
sponding field equations with Bianchi identities, are encoded in the group G, whose
action on the scalar fields, just as in four dimensions, is combined with a linear action
on the k-form field strengths F(k) and their duals F̃(k):

g ∈ G :
{
F(k) → F ′

(k) = A[g]F(k) + B[g] F̃(k),

F̃(k) → F̃ ′
(k) = C[g]F(k) + D[g] F̃(k).

(281)

As long as the block B[g] is non-vanishing, this symmetry can only be on-shell since
the Bianchi identity for the transformed F(k), which guarantees that the transformed
elementary field C′

(k−1) be well defined, only holds if the field equations dF̃(k) = 0
for C(k−1) are satisfied [83]:

dF ′
(k) = A[g] dF(k) + B[g] dF̃(k) = B[g] dF̃(k) = 0. (282)

The field strengths F(k) and F̃(k) transform in a linear representationR of G defined
by the matrix:

g ∈ G
R−→ R[g] =

(
A[g] B[g]
C[g] D[g]

)
. (283)
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Just as in four dimensions, depending on which of the C(k−1) and C̃(k−1) are chosen
to be described as elementary fields in the Lagrangian, the action will feature a
different global symmetry Gel, though the global symmetry group G of the field
equations and Bianchi identities remains the same. The constraints onR derive from
the non-minimal couplings of the scalar fields to the (k − 1)-forms which are a direct
generalization of those in four dimensions between the scalars and the vector fields,26

see (258)

Lkin,C = − eε

2k!
(IΛΣ(φ)FΛ

μ1...μk
FΛμ1...μk + RΛΣ(φ)FΛ

μ1...μk

∗FΛμ1...μk
)
, (285)

where μ = 0, . . . ,D − 1 and Λ,Σ = 1, . . . , nk , being nk the number of (k − 1)-
forms C(k−1) and ε ≡ (−)k−1.

The matrices IΛΣ(φ), RΛΣ(φ) satisfy the following properties:

IΛΣ = IΣΛ < 0, RΛΣ = −εRΣΛ. (286)

Just as we did in four dimensions, see (47), we define dual field strengths (omitting
the fermion terms):

GΛμ1... μk ≡ ε εμ1... μkν1...νk

δL

δFΛ
ν1...νk

⇒ GΛ = −IΛΣ
∗FΣ − εRΛΣ FΣ, (287)

and define the vector of field strengths:

F = (FM) ≡
(
FΛ

GΛ

)
. (288)

The definition (287) can be equivalently written in terms of the twisted self-duality
condition [82]:

∗F = −Cε M(φ)F, (289)

which generalizes (53), where

Cε ≡ (CMN ) ≡
(
0 I
ε I 0

)
, (290)

26The Hodge dual ∗ω of a generic q-form ω is defined as:

∗ ωμ1...μD−q = e

q! εμ1...μD−qν1...νq ω
ν1...νq , (284)

where ε01...D−1 = 1. One can easily verify that ∗∗ω = (−)q(D−q) (−)D−1 ω.
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I, 0 being the nk × nk identity and zero-matrices, respectively, and

M(φ) = (M(φ)MN ) ≡
(
(I − εRI−1R)ΛΣ −(RI−1)Λ

Γ

ε(I−1R)ΔΣ I−1ΔΓ

)
. (291)

The reader can easily verify that:

MT CεM = Cε. (292)

For ε = −1, which is the case of the vector fields in four dimensions, Cε is the
symplectic invariant matrix andM is a symmetric, symplectic matrix. For ε = +1,
which is the case of 2-forms in six dimensions, Cε is the O(nk, nk)-invariant matrix
and M a symmetric element of O(nk, nk).

The Maxwell equations read:
dF = 0. (293)

In order for (283) to be a symmetry of (289) and (293) we must have:

M(g � φ) = R[g]−TM(φ)R[g]−1, (294)

and
R[g]TCεR[g] = Cε. (295)

This means that in D = 2k dimensions:

k even : R[G] ⊂ Sp(2nk,R),

k odd : R[G] ⊂ O(nk, nk). (296)

All other forms of rank p �= k − 1, which include the vector fields in D > 4, will
transform in linear representations of G. The corresponding kinetic Lagrangian only
feature the first term of (285), with no generalized theta-term (R = 0).

If we compactify Type IIA/IIB or eleven-dimensional supergravity on a torus
down to D-dimensions, we end up with an effective ungauged, maximal theory in D
dimensions, featuring form-fields of various order. Upon dualizing all form-fields to
lower order ones, we end up with a formulation of the theory in whichG is maximal,
and is described by the non-compact real form E11−D(11−D) of the group E11−D. Here
we use the symbol E11−D(11−D) as a short-hand notation for the following groups:

D = 9 : G = E2(2) ≡ GL(2,R),

D = 8 : G = E3(3) ≡ SL(2,R) × SL(3,R),

D = 7 : G = E4(4) ≡ SL(5,R), (297)

D = 6 : G = E5(5) ≡ SO(5, 5),

D = 5 : G = E6(6),
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D = 4 : G = E7(7),

D = 3 : G = E8(8).

Only for D ≤ 5, E11−D(11−D) is a proper exceptional group. The ungauged four-
dimensional maximal supergravity was originally obtained from compactification of
the eleven-dimensional one and dualization of all form-fields to lower order ones in
[53], where the E7(7) on-shell symmetry was found.

In D = 10 Type IIA and IIB theories feature different global symmetry groups:
GIIA = SO(1, 1) and GIIB = SL(2,R), respectively. The latter encodes the conjec-
tured S-duality symmetry of Type IIB string theory. In this theory GIIB does not act
as a duality group since the 5-form field strength is self-dual and is a GIIB-singlet.

A G-covariant gauging [7, 74–76] is effected starting from the formulation of the
ungauged theory in which G is maximal and promoting a suitable global symmetry
group of the Lagrangian Gg ⊂ G to local symmetry. The choice of the gauge group
is still completely encoded in a G-covariant embedding tensor Θ:

Θ ∈ Rv∗ × adj(G), (298)

subject to a linear constraint, generalizing (255), which singles out in the above
product a certain representation RΘ for the embedding tensor, and a quadratic one
expressing the Gg-invariance ofΘ . In Table2 we give, in the various D-dimensional
maximal supergravities, the representations RΘ of Θ .

Just as in the duality covariant construction of the four-dimensional gaugings
discussed above, one introduces all form-fields which are dual to the fields of the
ungauged theory. All the form-fields will transform in representations of G and dual
forms of different order will belong to conjugate representations. In D = 2k, in the
presence of rank-(k − 1) antisymmetric tensors, this amounts to introducing thefields
C̃(k−1)Λ dual to the elementary ones CΛ

(k−1), just as we did for the vector fields in
four dimensions. Together they transform in the representation R discussed above.
By consistency, each form-field is associated with its own gauge invariance. Only
the fields of the original ungauged theory are described by kinetic terms, the extra
fields enter in topological terms and in Stueckelberg-like combinations within the
covariant field strengths. The latter, for a generic p-form field, can be schematically
represented in the form (we suppress all indices)

F(p+1) = DC(p) + Yp[Θ] · C(p+1) + · · · . (299)

where Yp[Θ] is a constant intertwiner tensor constructed out ofΘ and ofG-invariant
tensors. The gauge variation of the p-form has the following schematic expression:

δC(p) = Yp[Θ] · Ξ(p) + DΞ(p−1) + · · · (300)

The embedding tensor defines, through the tensors Yp[Θ], a splitting of the p-forms
into physical fields and unphysical ones. The former will in general become massive
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Table 2 Decomposition of the embedding tensor Θ for maximal supergravities in various space-
time dimensions in terms of irreducible G representations [5, 7]

D G H Θ

7 SL(5) USp(4) 10 × 24 =
10 + 15 + 40 + 175

6 SO(5, 5) USp(4) × USp(4) 16 × 45 =
16 + 144 + 560

5 E6(6) USp(8) 27 × 78 =
27 + 351 + 1728

4 E7(7) SU(8) 56 × 133 =
56 + 912 + 6480

3 E8(8) SO(16) 248 × 248 =
1 + 248 + 3875 +
27000 + 30380

Only the underlined representations are allowed by supersymmetry. The R-symmetry group H is
the maximal compact subgroup of G

by “eating” corresponding unphysical (p − 1)-forms, while the latter, whose field
strengths fail to satisfy the Bianchi identity, are in turn gauged away and become
degrees of freedom of massive (p + 1)-forms. The constraints on the embedding
tensor and group theory guarantee the consistency of the whole construction.

Just as in the four-dimensional model discussed above, the embedding tensor
defines the distribution of the physical degrees of freedom among the various fields
by fixing the gauge freedom (300) and solving the non-dynamical field equations.
These G-covariant selective couplings between forms of different order, determined
by a single objectΘ , define the so-called tensor hierarchy and was developed in the
maximal theories, in [7, 75, 76] as a general G-covariant formulation of the gauging
procedure in any dimensions. In this formalism the maximal gauged supergravity in
D = 5 was constructed in [74], generalizing previous works [84, 85]. The general
gauging of the six and seven -dimensional maximal theories were constructed in [86]
and [75] respectively, extending previous works [87]. In D = 8 the most general
gaugings were constructed in [88]. We refer to these works for the details of the
construction in the different cases.
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