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Preface

This volume aims at providing a pedagogical review on recent developments and
applications of black hole physics in the context of high energy physics and cos-
mology. The contributions are based on lectures delivered at the school
“Theoretical Frontiers in Black Holes and Cosmology”, held at the “International
Institute of Physics” (IIP) in Natal, Brazil, in June 2015. The lectures give a
panoramic view of mainstream research lines sharing black hole solutions to gravity
and supergravity as common denominator. Starting with accessible and introduc-
tory concepts, the newcomer to the field will be brought to a level suitable to face
cutting-edge research in the various topics considered in this book.

The only prerequisite for the reader is a working knowledge in field theory and
group theory, and the knowledge of general relativity and supersymmetry is
desirable. The primary audience is intended to be postgraduate students but the
well-established techniques presented in this volume forms a useful review for any
scientist working in the field. The selection of authors has been based on worldwide
recognized contributions on geometric approaches to fundamental problems in the
field of black hole physics.

The book is organized as follows: Chapter “Three Lectures on the FGK
Formalism and Beyond” introduces the key role of dualities and the attractor
mechanism in the context of singular solutions in ungauged supergravities. These
concepts are further developed in Chap. “Introductory Lectures on Extended
Supergravities and Gaugings”, which is a review of the present methods to build up
a gauged supergravity. A basic knowledge on how to gauge a supergravity is the
necessary ingredient for Chap. “Supersymmetric Black Holes and Attractors in
Gauged Supergravity” that deals with the construction of black hole solutions in a
gauged supergravity. The relevance of these solutions is due to applications to
gauge/gravity duality, where black hole backgrounds in the bulk are used to model
finite temperature condensed matter systems on the boundary. In this framework,
the asymptotical AdS space, generated by the gauging procedure, provides the right
symmetries to describe a conformal system on the boundary. These first three
contributions are intended to be a primer for the community of scientists working in

v

http://dx.doi.org/10.1007/978-3-319-31352-8_1
http://dx.doi.org/10.1007/978-3-319-31352-8_1
http://dx.doi.org/10.1007/978-3-319-31352-8_2
http://dx.doi.org/10.1007/978-3-319-31352-8_2
http://dx.doi.org/10.1007/978-3-319-31352-8_3
http://dx.doi.org/10.1007/978-3-319-31352-8_3


the field of gauge/gravity duality that want to embed more complicated bulk
backgrounds in the holographic settings. In Chap. “Lectures on Holographic
Renormalization”, we selected the holographic renormalization among the many
topics in gauge/gravity duality, due to the strong overlapping with techniques used
to find the scalar flows for black holes backgrounds in supergravity. Chapter
“Nonsingular Black Holes in Palatini Extensions of General Relativity” introduces
the reader to a different formulation of gravity based on metric-affine spaces. This
approach allows to remove the singularity of general relativity giving rise to a
wormhole structure. Finally, Chap. “Inflation: Observations and Attractors” is an
introduction to inflation both from theoretical and experimental points of view,
aimed at describing the role of cosmological attractors for inflationary model
building.

We acknowledge the staff at the IIP for the support in organizing the school
“Theoretical Frontiers in Black Holes and Cosmology” where these lectures have
been delivered.

Stanford Renata Kallosh
Natal Emanuele Orazi
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Three Lectures on the FGK
Formalism and Beyond

Tomás Ortín and Pedro F. Ramírez

Abstract We review the formalism proposed by Ferrara, Gibbons and Kallosh
to study charged, static, spherically symmetric black-hole solutions of d = 4
supergravity-like theories and its extension to objects of higher worldvolume dimen-
sions in higher spacetime dimensions and the so-called H-FGK formalism based on
variables transforming linearly under duality in the effective action. We also review
applications of these formalisms to 4- and 5-dimensional supergravity theories.

1 The FGK Formalism for d = 4 Black Holes

Many results in black-hole physics1 have been derived from the study of families of
solutions, that is, solutions whose fields depend on a number of independent physical
parameters (mass, electric and magnetic charges, angular momentum and moduli).
Obtaining these families of solutions requires, typically, a great deal of effort. The
FGK formalism [2] that we are going to review in this lecture dramatically simplifies
this task for the static case in supergravity-like field theories. But it does much more
than that, since it allows us to derive generic results about entire families of solutions
without having to find them explicitly. One of these results is the general form of
the celebrated attractor mechanism [3–6] that controls the behaviour of scalar fields
in the near-horizon limit for extremal black holes and leads to the conclusion that
their entropy is moduli-independent and a function of quantized charges only, which
strongly suggest a microscopic explanation.

1Most of the material covered in these lectures, with additional complementary material and
references can be found in the recent book [1].

T. Ortín (B) · P. F. Ramírez
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2 T. Ortín and P.F. Ramírez

The formalism relies heavily on the control over the global symmetries of the equa-
tions of motion (dualities) of the theory under consideration. Gaillard and Zumino
showed in [7] that the symmetries that act on the vector fields are necessarily a sub-
group of Sp(2n̄,R) for theories containing n̄ Abelian vector fields. We are going
to start by reviewing this general result, taking the opportunity to introduce basic
concepts and notation.

1.1 Generic Symmetries of 4-Dimensional Field Theories

In this section we are going to investigate which are the most general symmetries
of the equations of motion of supergravity-like theories in 4 dimensions. These
are theories defined in a curved space with metric gμν , containing n̄ the Abelian
1-form fields AΛ2 with field strengths FΛ = d AΛ and a number of scalar fields ϕi

parametrizing a space with metric Gi j (ϕ). The action contains an Einstein–Hilbert
term for the metric and takes the general form

S[F, ϕ] =
∫

d4x
√|g| {R + Gi j∂μϕi∂μϕ j

+ 2�mNΛΣ FΛ μν FΣ
μν − 2�eNΛΣ FΛμν � FΣ

μν

}
. (1)

The n̄×n̄ matrices that describe the coupling of the scalar fields to the vector fields are
combined into NΛΣ(ϕ), the complex, symmetric, scalar-dependent period matrix.
Its imaginary part must be negative-definite.

The bosonic sectors of all the 4-dimensional ungauged N > 1 supergravities have
this form.3 The addition of a scalar potential to this action will not change our main
conclusions.

On top of standard global symmetries, this kind of theories can have the so-called
electric-magnetic dualities4 which do not leave the action invariant at all, but do
leave invariant the complete set of equations of motion extended with the Bianchi
identities of the vector field strengths. Gaillard and Zumino showed that there is an
associated conserved current for each possible electric-magnetic duality, but it is not
the standard Noether current and has to be computed in a different way. We will call
it Noether-Gaillard-Zumino (NGZ) current.

2Capital Greek indices Λ,Σ,Δ,Γ etc. are used to label 4-dimensional vector fields.
3Ungauged N = 1, d = 4 can have a scalar potential derived from a superpotential.
4Schrödinger was the first to consider electromagnetic duality transformations, which he introduced
in the context of the Born-Infeld theory of non-linear electrodynamics [8]. These transformations
were studied in curved spacetime in [9] and in the context of supergravity theories in [10, 11]
for N = 1 Maxwell-Einstein and pure N = 2 supergravity, respectively. In [12, 13] it was first
observed that, in 4 dimensional supergravity theories, electric-magnetic dualities can be extended
to U(N ). However, they were not studied in general field theories until the publication of [7] by
Gaillard and Zumino, which we are going to review.
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Gaillard and Zumino also showed that the largest possible group of symmetries
of the equations of motion of a 4-dimensional theory of the kind we are considering
is Sp(2n̄,R) for theories containing n̄ Abelian 1-forms AΛ. The symmetry group of
the equations of motion extended with the Bianchi identities of the Abelian 1-form
fields

d FΛ = 0, (2)

will always be a subgroup of Sp(2n̄,R).5 In higher dimensions and for higher-rank
form fields the groupmay be different.Wewill study this generalization in Lecture 2.
Here we are going to review the original 4-dimensional result.

Let us start by defining a dual (or “magnetic”) vector field strength GΛ(F, ϕ) for
each of the fundamental (or “electric”) vector field strengths FΛ:

� GΛ
μν ≡ 1

4
√|g|

δS

δFΛ
μν

, ⇒ GΛ = �eNΛΣ FΣ + �mNΛΣ � FΣ, (3)

which implies
GΛ

+ = N ∗
ΛΣ FΣ +. (4)

Now theMaxwell equations for each fundamental vector AΛ canbewritten asBianchi
identity for the dual vector field strength

∇μ � GΛ
μν = 0, or dGΛ = 0, (5)

which can be locally solved by
GΛ = d AΛ, (6)

for some 1-forms which are the dual (or “magnetic”) 1-form fields.
The Bianchi identities (2) and the Maxwell equations (5) can now be combined

linearly. To this end it is useful to define 2n̄-component vectors of the fundamental
and dual 2-form field strengths and consider the linear transformations with a real
constant matrix S

(
F ′
G ′

)
= S

(
F
G

)
, with S ≡

(
A B
C D

)
, (7)

Some of the transformations included in the general matrix S are conventional rota-
tions between the 2-form fields but other transformations (involving the off-diagonal
blocks B and C) are electric-magnetic duality rotations between the fundamental,
electric, 2-form field strengths FΛ and the dual, magnetic, 2-form field strengths
GΛ.

5Strictly speaking, this is the part of the symmetry group that acts on the vector fields. The symmetry
group of a sector of the scalar fields that does not couple to the vector fields is not restricted at all.
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The duality transformations (7) cannot be completely arbitrary: they have to
respect the defining relation (4): G ′

Λ is related to F ′Λ in the same form, that is

G ′
Λ

+ = N ′ ∗
ΛΣ F ′Σ +. (8)

Using the definition of the transformations and the relation between the untrans-
formed 2-form field strengths we get the condition

{
(C + DN ∗) − N ′ ∗(A + BN ∗)

}
F+ = 0, (9)

which can only be satisfied if the the period matrix transforms as

N ′ = (C + DN )(A + BN )−1, (10)

The transformed period matrix: N ′ must be symmetric and its imaginary part must
remain negative-definite. The first condition is

CT A − (AT D − CT B)N + N (DT B)N − transposed = 0, (11)

and leads to

CT A = AT C, BT D = DT B, AT D − CT B = κ1n̄×n̄, (12)

for an arbitrary κ ∈ R. Later on we will see that the invariance of the energy-
momentum tensor (required by the duality-invariance of themetric) requires κ = +1.

The above properties of the matrices A, B, C and D allow us to write the trans-
formation of the imaginary part of the period matrix in this form

�mN ′ = κ(AT + N †BT )−1�mN (A + BN )−1, (13)

from which it follows that it will remain negative-definiteness only if κ > 0. This is
consistent with the value κ = +1 which we have advanced and which we will use
from now onwards.

The conclusion is that S ∈ Sp(2n̄,R), which we can define as the the group of
transformations S that preserve the symplectic metric Ω ,

ST ΩS = Ω, Ω ≡
(

0 1
−1 0

)
. (14)

Observe that we have not proven that the whole Sp(2n̄,R) group leaves invariant
the Maxwell and Bianchi identities. There are more conditions that we still have not
considered which will restrict the actual symmetry group to a subgroup of Sp(2n̄,R).

It is convenient to use a manifestly symplectic-covariant notation, introduc-
ing symplectic indices M, N , . . ., equivalent to one upper index-lower index pair
Λ,Σ, . . . to label the components of 2n̄-dimensional vectors transforming in the
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fundamental representation of Sp(2n̄,R). For instance

(FM) ≡
(

FΛ

GΛ

)
, F ′M = SM

NF N . (15)

Ω is used to raise and lower symplectic indices according to the following convention

FN ≡ ΩN MFM , F N = FMΩM N , ΩM N = −(Ω−1)M N = ΩM N , (16)

so that
(FM) = (GΛ,−FΛ). (17)

Many objects in the theories that we are considering can be written using these
symplectic vectors. For instance, the energy-momentum tensor for the 1-form fields
is

T vect
μν ≡ 2

δSvectors
δgμν

= −8�mNΛΣ

[
FΛ

μ
ρ FΣ

νρ − 1
4gμν FΛ ρσ FΣ

ρσ

]
, (18)

where Svectors corresponds to the last two terms in the generic supergravity-like action
(1). This tensor can be rewritten in the two equivalent forms

T vect
μν = −4MM N (N )FM

μ
ρF N

νρ = −4ΩM N � FM
μ

ρF N
νρ, (19)

where we have introduced the symmetric 2n̄ × 2n̄ matrix M(N ), which is defined
in terms of the components of the period matrix by

(MM N (N )) ≡
⎛
⎝ IΛΣ + RΛΓ I Γ Ω RΩΣ −RΛΓ I Γ Σ

−I ΛΩ RΩΣ I ΛΣ

⎞
⎠ , (20)

where we are using the shorthand notation

IΛΣ ≡ �mNΛΣ, RΛΣ ≡ �eNΛΣ, IΛΩ I ΩΣ = δΛ
Σ. (21)

MM N (N ) itself is a symmetric symplectic matrix, that is, it satisfies

MM P(N )Ω P QMQN (N ) = ΩM N , ⇒ (M−1(N ))M N = ΩM PMP Q(N )Ω QN .

(22)
When we transform the period matrix as in (10), the matrix MM N (N ) transforms
according to

MM N (N ′) = (S−1)P
MMP Q(N )(S−1)Q

N ≡ M′
M N (N ), (23)
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and, therefore, the energy-momentum tensor will be invariant under duality trans-
formations. Notice that M will remain a symplectic matrix only if κ = +1, which
is the restriction that identifies the symplectic group mentioned above.

We can also write the constraint (4) in a symplectic-covariant form using FM ,
MM N (N ) and the symplectic metric ΩM N :

� FM = ΩM NMN P(N )F P . (24)

In the preceding discussion we have derived the transformation rule for the period
matrix (10) but we have not yet discussed under which conditions it remains invariant
(otherwise, we are not dealing with a symmetry). The invariance of the period matrix
does not need to be absolute: it can be invariant up to transformations of the scalar
fields. In other words: it is enough to demand that functional form of the period
matrix remains the same in terms of transformed scalars ϕ′ i . Or, yet in another form:
it is enough to demand that the linear transformation rule (10) be equivalent to a
reparametrization of the scalars. This condition can be expressed in this form:

N ′(ϕ) = [C + DN (ϕ)][A + BN (ϕ)]−1 = N (ϕ′). (25)

Depending on the functional form of the periodmatrix (which is part of the definition
of the theory), this condition will be satisfied for a different subgroup of Sp(2n̄,R).
It is clear that, in general, it will not be possible to satisfy it for the whole symplectic
group.

But this is not the whole story: in this discussion we have only dealt with the
contribution to the equations of motion of the last two terms in the action, but we
are interested in the global symmetries of the complete set of equations of motion
plus Bianchi identities. Besides the scalar fields also occur in their own kinetic term.
Therefore, if the transformation of the period matrix has to be equivalent to a trans-
formation of the scalars, this transformation must leave that kinetic term invariant.
This can only happen if the transformation of the scalars induced by the duality
transformations is an isometry of the metric Gi j (ϕ). If we write the infinitesimal
transformations in the form

δϕi = αAξ i
A(ϕ), (26)

(the scalar transformations may be non-linear) where αA are a set of global parame-
ters, then the ξ i

A(ϕ) must be Killing vectors of the metric. Their Lie algebra

[ξA, ξB] = − f AB
CξC , (27)

will be the Lie algebra of the duality group of the theory.6

6Up to the scalars which do not occur in the period matrix and, therefore, do not couple to the
1-form fields, whose global symmetry group is not restricted by any of the previous considerations.
Examples of this kind of scalars are provided by the scalars in hypermultiplets of N = 2, d = 4
and d = 5 supergravity theories.
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1.2 The d = 4 FGK Formalism

Following Ferrara et al. [2], let us consider the static, spherically symmetric black-
hole solutions of the 4-dimensional supergravity-like theory (1). Since there is no
scalar potential nor cosmological constant, the black holes that we will be interested
in are also asymptotically flat.

In order to find this kind of solutions we must impose the symmetry conditions on
the equations of motion. This is usually done by making an Ansatz for all the fields
of the theory. We do not want to study each theory case by case and, therefore, we
will make an Ansatz general enough so the solutions of all the theories of the form
(1) fit into it.

A somewhat surprising result of [14] is that the metrics of all the single, static,
spherically-symmetric, asymptotically-flat black holes of these theories have the
general form

ds2 = e2U dt2 − e−2U γmndxmdxn,

γmndxmdxn = r40
sinh4 r0ρ

dρ2 + r20
sinh2 r0ρ

dΩ2
(2).

(28)

where eU , which we will call “metric function” (but it is sometimes called “warp
factor”), is a function of the radial coordinate ρ which is different for each solution,
dΩ2

(2) is he metric of the round 2-sphere of unit radius

dΩ2
(2) = dθ2 + sin2 θdφ2, (29)

and r0, the so-called non-extremality parameter, a function of the physical parameters
of the solution to be determined, measures how far from the extremal limit a regular
black-hole solution is. The extremal limit can be defined as the limit in which the
Hawking temperature T vanishes and, as we are going to show, it corresponds to
r0 = 0 if in that limit the black hole horizon remains regular (otherwise it makes no
sense to talk about extremal black hole and temperature at all).

The radial coordinate used to write the general Ansatz for the metric, ρ, is meant
to go to minus infinity on the horizon and vanish at spatial infinity. In other words:
the near-horizon limit is ρ → −∞ and the spatial infinity limit is at ρ → 0−.

Let us now proceed to prove the above statement. For r0 
= 0, in the near-horizon
limit ρ → −∞, the 3-dimensional spatial metric γmn behaves as

γmndxmdxn ∼ r40e4r0ρdρ2 + r20 e2r0ρdΩ2
(2). (30)

This implies that only if the metric function behaves as

eU ∼ eC+r0ρ. (31)
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in the same limit, the full metric can have a regular horizon (gtt vanishing while the
coefficient of dΩ2

(2) remains finite). The behavior of the full metric in that limit is,
in that case

ds2 ∼ e2C+2r0ρ[dt2 − r40e−4C dρ2] − e−2Cr20dΩ2
(2), (32)

and the Bekenstein–Hawking (BH) entropy S (one quarter of the area of the horizon
in our units) will be given by

S = πe−2Cr20 . (33)

Changing the radial coordinate to ρ = (e2Cρ/r0)2 − C/r0 the time-radial part of the
metric of the generic non-extremal black hole we are studying always takes the form
of a Rindler metric

e2e2C ρ/r0 [dt2 − dρ2], (34)

and the Hawking temperature can be read from it by comparing it with

e
4πρ

β [dt2 − dρ2], (35)

where β = 1/T . Thus,

T = e2C

2πr0
, (36)

which, together with the general value of the BH entropy obtained above, lead to the
general relation derived in [15]

r0 = 2ST, (37)

which implies what we wanted to show. This formula is a generalization of the Smarr
formula for Reissner–Nordström black holes of mass M and electric charge q which
is usually written in the form

M = 2T S + qφh, with φh = q

M + r0
, and r20 = M2 − q2, (38)

where φh is the electrostatic potential evaluated on the outer horizon at r = M + r0.
The Smarr formula looks like an integrated first law of black-hole thermodynamics
and clearly contains a great deal of information about it.

In the extremal limit, the generic black-hole metric becomes

ds2 = e2U dt2 − e−2U 1

ρ2

[
1

ρ2
dρ2 + dΩ2

(2)

]
, (39)

which can be cast in a more common form by changing the radial coordinate ρ to
r = −1/ρ:

ds2 = e2U dt2 − e−2U
[
dr2 + r2dΩ2

(2)

] = e2U dt2 − e−2U dx 2. (40)
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One of the surprising things about the generic black-hole metric (28) is that it only
contains a function to be determined by using the equations of motion of the theory,
namely eU while a generic static and spherically-symmetric metrics depend on two
different functions. In a sense, the Ansatz (28) has already solved the equation for
one of them.7 This will simplify dramatically the equations of motion. To get some
intuition about the metric function eU and the non-extremality parameter r0, let us
see what they look like in the simplest black-hole solutions.

For Schwarzschild black holes

e−2U = e−2r0ρ, r0 = M, (41)

while for the Reissner–Nordström black holes

e−2U =
(

r+
2r0

e−r0ρ − r−
2r0

er0ρ

)2

, with r0 =
√

M2 − q2, and r± = M ± r0.

(42)
We must also make compatible Ansatzë for the 1-form and scalar fields, which will
also be static and spherically symmetric. For the scalars, it is enough to assume that
they are functions of ρ only.

For the vector fields the situation ismore complicated: the 2-formfield strength of a
magneticmonopole is spherically symmetric but depends on the angular coordinates.
However, its Hodge dual only depends on ρ and so does the dual 1-form field. Our
Ansatz must make judicious use of both the dual 1-form fields and the electric ones
in order to have simple radial dependence. Thus, we are going to assume the time
component of each fundamental 1-form, AΛ

t , is a function of ρ that we call ψΛ(ρ)

and that the time component of each magnetic 1-form field AΛ t is another function
of ρ, that we call χΛ(ρ):

AΛ
t = ψΛ(ρ), ⇒ FΛ

mt = ∂mψΛ, AΛ t = χΛ(ρ), ⇒ GΛ mt = ∂mχΛ,

(43)
where ∂m are the partial derivatives with respect to the three spatial Cartesian coor-
dinates xm to which the metric γmn refers. Using the relations

FΛ = I −1ΛΓ RΓ Σ � FΣ − I −1ΛΣ � GΣ,

GΛ = (I + RI −1 I )ΛΣ � FΣ − RΛΓ I −1Γ Σ � GΣ,

(44)

The GΛ mt components of the magnetic 2-form field strengths will determine the
angular components of the fundamental 2-form field strengths FΛ

θφ and vice-versa.
As a result, the whole 2-form field strengths (both fundamental and dual) will be
determined by the functions ψΛ and χΛ.

Having defined completely our Ansatz, it is time to substitute it into the equations
of motion. We will first use the metric (28) with an unspecified time-independent

7We will see in more detail in Lecture 2 that this is exactly the case.
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spatial metric γmn allowing for a general spatial dependence for the fields. In other
words, we will not assume spherical symmetry in a first stage.Wewill do it in second
stage, specifying the metric γmn as done in (28).

Only the time components of the Maxwell equations and Bianchi identities are
non-trivial (the spatial components are automatically solved by our Ansatz) and they
can be written as the following symplectic-covariant differential equations in the
3-dimensional space with metric γmn:

∇m
[
e−2UMM N ∂mΨ N

] = 0, where (Ψ M) ≡
(

ψΛ

χΛ

)
. (45)

We see that the symplecticmatrixMM N = MM N (N ) defined in (20) arises naturally
in this problem.

The scalar equations of motion take the 3-dimensional form

∇m(Gi j∂
mϕ j )− 1

2∂iG jk∂mϕ j∂mϕk − 1
2∂i

(
4e−2UMM N

)
∂mΨ M∂mΨ N = 0. (46)

As for the Einstein equations, which must be conveniently written using (19)

Gμν + Gi j
[
∂μϕi∂νϕ

j − 1
2gμν∂ρϕ

i∂ρϕ j
]+ 4MM N (N )FM

μ
ρF N

νρ = 0, (47)

the flat 00, 0m and mn components take the form

R + 2(∂U )2 − 4∇2U + Gi j∂mϕi∂nϕ
j − 4e−2UMM N ∂mΨ M∂mΨ N = 0, (48)

∂[mψΛ∂n]χΛ = 0, (49)

Gmn + 2
[
∂mU∂nU − 1

2δmn(∂U )2
]+ Gi j

[
∂mϕi∂nϕ

j − 1
2δmn∂qϕ

i∂qϕ j
]

+ 4e−2UMM N
[
∂mΨ M∂nΨ

N − 1
2δmn∂qΨ

M∂qΨ N
] = 0. (50)

This completes the first stage of our calculation, but we still have to massage the
result to cast it in a more convenient form.

First,we eliminate R from thefirst of these last equations using the trace of the third
and now all the 3-dimensional equations that we have obtained (except for the next to
last one, which is a constraint which will be solved by requiring spherical symmetry)
are nothing but the equations of a set of scalar fields (φA) ≡ (U, ϕi , Ψ M) coupled
to 3-dimensional gravity which can be derived from the effective 3-dimensional
action [16]

S[γ, φ] =
∫

d3x
√

γ
[
R(γ ) + GAB(φ)γ mn∂mφA∂nφ

B
]
, (51)
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where we have defined the metric of indefinite signature GAB

(GAB) ≡
⎛
⎝ 2

Gi j

4e−2UMM N

⎞
⎠ . (52)

The constraint (49) has to be added to the equations of motion derived from the
effective action.

In the second stage of this calculation we specify the form of γmn for which the
Ricci tensor has as only non-vanishing component Rρρ = −2r20 and we restrict the
scalar fields to be functions of ρ only. This solves the constraint (49) while the rest
of the equations of motion reduce to8

d

dρ
(GAB φ̇B) − 1

2∂AGBC φ̇B φ̇C = 0, (53)

GAB φ̇Aφ̇B − 2r20 = 0, (54)

where an overdot indicates a (ordinary) derivative with respect to ρ.
The first equation, which is the geodesic equation in the space with metric GAB

parametrized by the scalars φA can be derived from the effective action

S[φ] =
∫

dρ GAB φ̇Aφ̇B, (55)

which has the form of the action of a point particle moving in a space with metric
GAB and coordinates φA, ρ being the particle’s proper time.9

The second equation is a constraint. The first term is just the “Hamiltonian”
of the system, which is conserved because there is no explicit dependence on the
evolution parameter ρ. The constraint relates the value of the Hamiltonian to the
non-extremality parameter of the black-hole metric.

This almost completes our calculation. We have reduced the problem of find-
ing static, spherically symmetric, asymptotically-flat black-hole solutions of the
supergravity-like action (1) to that of finding solutions of a mechanical system and
the solutions are just geodesics in a space with metric GAB .

8Needless to say, we always have to substitute our Ansatzë in the equations of motion and not in
the action as it is sometimes done in certain literature. Sometimes the final result (the equations of
motion obtained from that action) is equivalent, but, often, it is not. In this case, it is clearly not
equivalent: we get a constraint that cannot be obtained from the action.
9Similar actions arise in the search of other types of solutions of our supergravity-like action which
depend effectively on only one direction: cosmologies, instantons, domain walls, etc. See, for
instance, [17] and references therein.
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Often, the metric GAB is that of a Riemannian symmetric space10 and there are
many group-theoretical methods to find the geodesics. See, for instance, [16–33].

However, even in non-symmetric spaces, there is a subset of equations of this sys-
tem that can be integrated immediately11:GAB does not depend on the scalarsΨ M and
the corresponding conserved quantities, QM 12 used to integrate the corresponding
equations

d

dρ
(GM N Ψ̇ N ) = 0, ⇒ GM N Ψ̇ N = 4e−2UMM N Ψ̇ N = QM/α. (56)

This relation can be inverted to eliminate Ψ̇ M from the rest of the equations ofmotion,
which, upon the definition of the black-hole potential Vbh = Vbh(ϕ,Q)13

− Vbh(ϕ,Q) ≡ − 1
2QMMM NQN . (57)

take the final form [2]

Ü + e2U Vbh = 0, (58)

d

dρ
(Gi j ϕ̇

j ) − 1
2∂iG jk ϕ̇

j ϕ̇k + e2U ∂i Vbh = 0, (59)

U̇ 2 + 1
2Gi j ϕ̇

i ϕ̇ j + e2U Vbh = r20 . (60)

Yet again, the first two equations can be obtained from an effective action which now
takes the form

Seff [U, ϕi ] =
∫

dρ
[
U̇ 2 + 1

2Gi j ϕ̇
i ϕ̇ j − e2U Vbh

]
. (61)

whichwewill call FGK effective action. This is our final result: an effective, mechan-
ical, actionwhich, supplemented by a constraint, gives the equations ofmotion corre-
sponding to the static, spherically symmetric, asymptotically flat black-hole solutions
of any theory of the form (1).

10This is always the case in N ≥ 3, d = 4 supergravities.
11Observe that integrating these equations of motion will break most of the symmetries of action
(55) and no longer wewill be able to use group-theoretical methods to solve the equations ofmotion.
We will, nevertheless, obtain very powerful results.
12These conserved quantities can be identified up to a normalization constant α to be determined,

with the electric qΛ and magnetic pΛ:(QM ) ≡
(

pΛ

qΛ

)
.

13From now on we will set the normalization constant α = 1/2 for convenience.
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This result is so general that it will allow us to study very general properties of
the black-hole solutions (specially for the extremal ones, supersymmetric or not)
without having to know them explicitly. We do that in the next section.

1.3 FGK Theorems and the Attractor Mechanism

Let us first consider regular extreme black holes, whose metric has the form (39) or
(40). In the near-horizon limit ρ → −∞ of a regular extremal black hole the metric
function e−2U must diverge as

e−2U ∼ A

4π
ρ2, (62)

where A is the area of the event horizon and, therefore, the metric will always take
the form of the metric of a Robinson–Bertotti solution which is that of Ad S2 × S2,
both with radii equal to

√
A/(4π)

ds2 ∼ 4π

A

dt2

ρ2
− A

4π

dρ2

ρ2
− A

4π
dΩ2

(2). (63)

We are going to assume as in [2] that the the scalar fields are finite on the horizon of
a regular black-hole solution and satisfy the near-horizon condition

lim
ρ→−∞Gi j ϕ̇

i ϕ̇ j e2U ρ4 = lim
ρ→−∞

4π

A
Gi j ϕ̇

i ϕ̇ jρ2 ≡ ξ 2 < ∞ . (64)

Multiplying the Hamiltonian constraint (60) by e2U ρ4 and then by A2/(4π) and
using the above assumptions we get a bound for the area of the horizon in relation
with the value of the black-hole potential on the horizon:

A + A2

8π
ξ 2 + 4πVbh(ϕh,Q) = 0, ⇒ A ≤ −4πVbh(ϕh,Q). (65)

In terms of a new coordinate � ≡ − log (−ρ), the definition of the parameter ξ

becomes

ξ 2 = lim
�→−∞

4π

A
Gi j

dϕi

d�

dϕ j

d�
, (66)

but the r.h.s. is nothing but the kinetic term of the scalar fields in the original action.
This identity implies14

14If the limit was any non-vanishing constant (the only possibility if the scalar metric is going to be
regular on the horizon) then ϕ would be linear in � and would diverge on the near-horizon-limit.
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lim
�→−∞

dϕ j

d�
= lim

ρ→−∞ ρ
dϕ j

dρ
= 0. (67)

We conclude that, as matter of fact, ξ 2 = 0, and the above bound for the area is an
identity:

S/π = −Vbh(ϕh,Q). (68)

But, what is the value of the scalars on the horizon ϕh? Let us analyze the near-
horizon limit of their equations of motion (59). Multiplying them by ρ2 and taking
into account (62) and (67) we find

lim
ρ→−∞ ρ2ϕ̈i = −4π

A
Gi j∂ j Vbh

∣∣
ϕ=ϕh

, (69)

which provides us with the necessary information to expand the scalars as a power
series around the horizon

ϕi ∼ 4π

A
Gi j∂ j Vbh

∣∣
ϕ=ϕh

log (−ρ) + αρ + ϕi
h + O(1/ρ). (70)

We have assumed that the scalars should take a finite value over a regular horizon.
Then, the first two coefficients in the above expansion must vanish. That is α = 0
and

∂i Vbh|ϕ=ϕh
= 0. (71)

The regularity of the horizon in the extremal limit implies that the possible values of
the scalars on the horizon (whose popular name is attractors) are the critical points
of the black-hole potential and these values determine the entropy through (68).

If the attractors ϕh depend only on the charges, tat is ϕh(Q), the values of the
scalars on the horizon will be entirely independent of the values of the scalars at
spatial infinity ϕi∞ (known as moduli). This is the basic attractor mechanism [3–6].
In this case it is evident that the entropy will only depend on the quantized charges

S/π = −Vbh(ϕh(Q),Q). (72)

However, in general, Vbh may have flat directions around a given attractor and some
of the equations (71) may not be independent. As a result, the attractor depends
on the parameters of the flat directions. Since the only independent parameters of
an extremal black-hole solution are the charges QM and the moduli ϕi∞,15 those
parameters must be (functions of) the moduli and ϕi

h = ϕi
h(Q, ϕ∞). The values of

the scalars on the horizon are not attractors in the standard sense.
Nevertheless, as point out by Sen in [34], even in that case the entropy (the black-

hole potential at the attractor) is a function of the quantized charges only.

15The mass M depends on these through the equation r0 = 0.
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The independence of the BH entropy of extremal black holes on the moduli
(the only continuous parameters the solutions depend on) is the most important
consequence of the attractor mechanism as it strongly suggests the existence of an
interpretation of the entropy based on microscopic state counting.

We can show explicitly that there is at least one extremal black hole for each
attractor: the so-called double extremal black hole whose scalars are constant for all
values of ρ, the constant being equal to the attractor, according to the above theorem.

The metric function of any non-extremal black hole with ϕi∞ = ϕi
h takes the form

e−U = cosh r0ρ − M
sinh r0ρ

r0
, with r20 = M2 + Vbh(ϕh,Q) ≥ 0. (73)

This is identical to themetric of theReissner–Nordströmblack hole (42). The entropy
is just

S/π = (M + r0)
2, ⇒ T = r0

2S
= r0

2π(M + r0)2
. (74)

Taking in the above formulae the extremal limit r0 = 0 we immediately find the
double-extremal solutions and their entropies.

On the other hand, in all N > 1, d = 4 supergravities there are supersymmetric
black holes whose metric is that of an extremal black hole. This means that the
corresponding the black-hole potential of the supergravity theory must admit at least
a supersymmetric attractor, which is unique.

Let us study the spatial-infinity limit (ρ → 0−) in the non-extremal case ToO(ρ2)

we must have the following behaviour

U ∼ Mρ, ϕi ∼ ϕi
∞ + Σ iρ, (75)

where M is the black-hole mass and the constants Σ i are, by definition, the scalar
charges. Taking into account the above behaviors, the same limit in (60) gives

M2 + 1
2Gi j (ϕ∞)Σ iΣ j + Vbh(ϕ∞,Q) = r20 ≥ 0, (76)

which can be read as a non-extremality bound.
The scalar charges are not independent quantities characterizing regular black

holes, according to the no-hair theorem. Therefore, they must be functions Σ i =
Σ i (ϕ∞,Q, M). Knowing them we could turn the above identity into a formula
for the non-extremality parameter r20 = r20 (ϕ∞,Q, M), but they are not known in
general.

For double extremal black holes,Σ i = 0 by definition, which leads to the relation

M2
double extremal = −Vbh(ϕh,Q) = S/π, (77)

which we could have obtained from the explicit solution above as well.
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1.4 The FGK Formalism for N = 2, d = 4 Supergravity

UngaugedN = 2, d = 4 supergravity theories with n vector multiplets are specially
well suited for putting the FGK formalism to use. We are only interested in the
bosonic sector, and we will not consider hyperscalars (the scalar in hypermultiplets)
because they do not couple to the vector fields and they can only lead to singular
solutions because their charges would be independent and would constitute primary
hair. They can be consistently truncated in the bosonic action, which takes the form

S =
∫

d4x
√|g| [R + 2Gi j∗∂μ Zi∂μ Z∗ j∗

+ 2�mNΛΣ FΛ μν FΣ
μν − 2�eNΛΣ FΛμν � FΣ

μν

]
,

(78)

where Zi i = 1, . . . , n are the complex scalars in the vector multiplets and (AΛ) =
(A0, Ai ) are the vector fields (A0 belongs to the supergravity multiplet). The metric
Gi j∗ is a Kähler metric and it is related to the period matrix by a structure called
Special Geometry (see, for instance [1] and references therein). In Special Geometry,
all the scalar functions that appear in the theory (Kähler potential, connection and
metric, period matrix etc.) can be derived from the so-called canonical, covariantly
holomorphic symplectic section VM(Z , Z∗) that defines the theory. An alternative
characterization of the theory is through the so-called prepotential, but, sometimes,
it cannot be defined in certain frames.

The action is of the general form of (1), although the scalar fields are complex.
The FGK action and the Hamiltonian constraint take the form

S[U, Zi ] =
∫

dρ
[
U̇ 2 + Gi j∗ Ż i Ż∗ j∗ − e2U Vbh

]
,

r20 = U̇ 2 + Gi j∗ Ż i Ż∗ j∗ + e2U Vbh.

(79)

Using the relations of Special Geometry, it can be seen that the black-hole potential
can be written in terms of an object called central charge Z

− Vbh(Z , Z∗,Q) = |Z|2 + 4Gi j∗
∂i |Z|∂ j∗ |Z|. (80)

where the central charge is defined in terms of the charges and of the symplectic
section by

Z(Z , Z∗,Q) ≡ VMQM . (81)

The supersymmetric black holes (SBHs) of these theories are always extremal and
saturate the supersymmetric (or BPS) bound:

M = |Z∞|. (82)
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Combining this bound with the bound (77) that holds for double extremal black holes
we get two relations which are valid for all SBHs:

S/π = |Zh|2, ∂i |Z||h = 0, (83)

where Zh is only a function of the charges, and which say that the supersymmetric
attractors are also critical points of |Z| and that the entropy is also determined by
(the square of) the absolute value of the central charge on the horizon [2].

The special form of the black-hole potential for these theories, (80), allows us to
rewrite the action as a sum of non-negative terms, à la Bogomol’nyi [35]

S[U, Zi ] =
∫

dρ
[(

U̇ ± eU |Z|)2 + Gi j∗
(
Ż i ± 2eU ∂ i |Z|) (Ż∗ j∗ ± 2eU ∂ j∗ |Z|)] ,

(84)

up to the boundary term ∓2eU |Z|. Then, the action is extremized by the config-
urations that make all these terms vanish and these configurations must solve the
equations of motion derived from the action. The terms in the action vanish if

U̇ = ∓eU |Z|, Ż i = ∓2eU ∂ i |Z|. (85)

These first-order (flow) imply the second-order Euler-Lagrange equations of motion
and should be easier to solve or, at least, to analyze, than those. However, one has to
take into account that the Hamiltonian constraint, is only implied by these equations
for the extremal case r0 = 0.

These BPS equations can also be derived from the condition of unbroken super-
symmetry and are clearly associated to the extremal, supersymmetric solutions and
attractors.16 We know that, in general, there are more, non-supersymmetric, extremal
solutions. They are associated to generalizations of the central charge sometimes
called fake central charges and they satisfy similar flow equations. Let us see how
this comes about.

1.4.1 Flow Equations

It is a fact that the black-hole potential can be written in the form (80) for other
functions of the scalars and charges W (Z , Z∗,Q) different from the central charge
and which receive different names in the literature. We will call them fake central
charges and the black-hole potential reads in terms of them

− Vbh(Z , Z∗,Q) = W 2 + 4Gi j∗
∂i W∂ j∗ W. (86)

16In the near-horizon limit, these equations give the attractor mechanism for the supersymmetric
case.
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Then we can rewrite the FGK action again à la Bogomol’nyi as in (84) with |Z|
replaced by W and, following the same reasoning, we get the flow equations

U̇ = ∓eU W, Ż i = ∓2eU ∂ i W. (87)

These fake central charges are associated to extremal non-supersymmetric black-hole
solutions of N = 2, d = 4 supergravity theories [36–42].

The flow equations are not easy to solve, but their analysis leads to the following
important and general conclusions:

1. The extrema of the fake central charge are always extrema of the black-hole
potential

∂i W |Zh
= 0 ⇒ ∂i Vbh|Zh

= 0. (88)

2. The mass and the scalar charges of the solutions are given by the values of the
fake central charge and its derivatives at spatial infinity:

M = W∞, Σ i = − lim
ρ→0−

Gi j∂ j W . (89)

2 The General FGK Formalism

Black holes are not the only interesting solutions that supergravity-like theories can
have, specially in higher dimensions where higher-rank (p + 1) differential-form
fields that couple to p-branes through Wess–Zumino terms of the form

q
∫

A(p+1) μ1...μp+1d Xμ1 ∧ · · · ∧ d Xμp+1 , (90)

can occur. It is natural to try to generalize the FGK formalism to handle those cases
and try to use the power of the formalism to derive general properties of p-brane
solutions in d dimensions. This generalization was worked out in [43] and we will
follow it in this second lecture. The plan of this second lecture will be very similar to
that of the first lecture: first, we will define the form of the supergravity-like theories
we want to work with and study the possible global symmetries. Then, we will define
appropriate Ansatzë for the different fields and cases and will substitute it into the
equations of motion, reducing their number and dimensionality. In the end we will
have a number of equations in a single variable most of which can be derived from
an effective FGK-like action. Then we will study general properties of the solutions,
deriving theorems similar to those studied in the first lecture. We will finish this
lecture with the application of the formalism to some simple theories.

Although most higher-dimensional supergravities include potentials of different
ranks we will restrict ourselves to the potentials AΛ

(p+1) of a single rank (p + 1) to
study charged p-brane solutions. Our action will contain couplings to scalar fields
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to scalar fields φi . similar to those of the d = 4 p = 0 case we studied in the first
lecture.

In general the dual fields AΛ ( p̃+1) ( p̃ ≡ d − p − 4) have different rank and p-
branes cannot couple to them. Thus, we cannot consider magnetic charges in general.
For the same reason, terms of the form F(p+2) � F(p+2) where

F(p+2) ≡ d A(p+1), (91)

are the (p + 2)-form field strengths, make no sense in the action. However, for some
values of d and p we can have p = p̃ and p-branes can carry magnetic charges
(electric with respect to the dual potentials AΛ (p+1)) and F(p+2) � F(p+2) terms do
make sense.

In order to save time and energy, wewill treat all cases simultaneously introducing
alwaysmagnetic charges and F(p+2) �F(p+2) terms evenwhen they do not make sense
with the convention that we must ignore them except when they do.

Therefore, the generalization of the action in (1) that we are going to study is

I[g, AΛ
(p+1), φ

i ] =
∫

dd x
√|g| {R + Gi j (φ)∂μφi∂μφ j

+ 4 (−1)p

(p+2)! IΛΣ(φ)FΛ
(p+2) · FΣ

(p+2)

+ 4ξ 2 (−1)p

(p+2)! RΛΣ(φ)FΛ
(p+2) · �FΣ

(p+2)

}
. (92)

where

FΛ
(p+2) ≡ d AΛ

(p+1), or FΛ
(p+2) μ1...μp+2

= (p + 2)∂[μ1| A
Λ

(p+1) |μ2...μp+2], (93)

are the (p + 2)-form field strengths, and we are using the notation

FΛ
(p+2) · FΣ

(p+2) ≡ FΛ
(p+2) μ1...μp+2

FΣ
(p+2)

μ1...μp+2 . (94)

The scalar-dependent matrix IΛΣ(φ) is symmetric and negative-definite and the
scalar-dependent matrix RΛΣ will have the same symmetry as the FΛ

(p+2) · �FΣ
(p+2)

term:
RΛΣ = −ξ 2RΣΛ, ξ 2 = −(−1)d/2 = (−1)p+1. (95)

We have added a ξ 2 factor for convenience to the action. The value of ξ (+1 or
+i) will determine the duality group. It is understood that we must set in the results
RΛΣ = 0 whenever p 
= p̃ = (d − 4)/2.

This is all, but there is still a possibility that we have not discussed: in the special
case d = 4n + 2, p = p̃-branes can also be self- or anti-self-dual (and, yet, real, as
different from the d = 4, p = 0 case) with the (p + 2)-field strengths satisfying the
corresponding constraint. In our framework we can take this into account by electric
and magnetic charges up to a sign.
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Thus, we can consider all the possible cases at onceworkingwith the above action,
taking into account the particular properties of given p and d afterwards.

2.1 Duality Rotations in Higher Dimensions and Ranks

The next step will be to study the general dualities of the (d, p) supergravity-like
theories defined by actions similar to the (d = 4, p = 0) one in (1), following the
same steps as we (following Gaillard and Zumino) took in the first lecture for the
(d = 4, p = 0) case.

First, we define the dual (magnetic) ( p̃ + 2)-form field strengths G( p̃+2) Λ by

G( p̃+2) Λ ≡ RΛΣ FΣ
(p+2) + IΛΣ � FΣ

(p+2), (96)

in terms of which the equations of motion (“Maxwell equations”) of the (p+1)-form
potentials take the form

dG( p̃+2) Λ = 0, (97)

which is identical to that of the Bianchi identities of the electric (p + 2)-form poten-
tials

d FΛ
(p+2) = 0. (98)

We can rotate into each other the last two equations only if p = p̃, but we are going
to construct a 2n vector with these field strengths anyway with the understanding
that only in p = p̃ case we can mix the upper and lower components:

(FM
) ≡

(
FΛ

(p+2)

G( p̃+2) Λ

)
. (99)

Then, the Maxwell equations (97) and Bianchi identities (98) can be written as

dFM = 0. (100)

These equations will be preserved by non-singular linear transformations17

F ′M = SM
NF N , S ≡

(
A B
C D

)
, (101)

After this transformation, the new magnetic field strengths must be given in terms
of the transformed electric one by (96) and this is only possible if we also transform

17When p 
= p̃ we have to set B = C = 0.
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the matrices R, I . It is very convenient to express these transformations in terms of
the generalized period matrix

N ≡ R + ξ I, (102)

which will be real or complex in different dimensions, depending on ξ . Using this
matrix the relation between the magnetic and electric field strengths takes a form
similar to (4)

G(p+2)Λ
+ = N ∗

ΛΣ FΣ +
(p+2), (103)

if we define

G(p+2)Λ
± = 1

2

(
G(p+2)Λ ± ξ

)
, ⇒ �G(p+2)Λ

± = ±ξ 3G(p+2)Λ
±. (104)

The transformations are, then

N ′ = (C + DN ) (A + BN )−1 , (105)

and, when p 
= p̃, setting R = B = C = 0 we get

I ′ = DI A−1. (106)

Next, let us consider the contribution of the (p + 1)-form potentials to the energy-
momentum tensor. It can be written in the following convenient form:

T
A( p+1)

μν = 4(−1)p+1

(p + 1)(p + 1)!MM N (N )FM
μ

ρ1...ρp+1F N
νρ1...ρp+1 , (107)

where we have introduced the symmetric matrix

(MM N (N )) ≡
⎛
⎝ I − ξ 2RI −1R ξ 2RI −1

−I −1R ξ 4 I −1

⎞
⎠ , (108)

When p = p̃ all forms have the same rank and the above expression for the energy-
momentum tensor is always consistent. When p 
= p̃ R = 0 and MM N is diagonal
and only the indices forms of the same rank are contracted in each term and the
expression is, with this understanding, consistent as well.

Using this matrix we can express the self-duality constraint of the field strengths
(103) in the form

MM N (N )F N = ξ 2ΩM N � FM , where (ΩM N ) ≡
(

0 I

ξ 2
I 0

)
. (109)

Wewill use thematrixΩM N as ametric to raise and lower indices as in the symplectic
case of the first lecture.
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Using the self-duality relationwe canfinally express the energy-momentum tensor
in the form in which it will be easier to determine its symmetry group

T
A( p+1)

μν = 4(−1)p+1ξ 4

p + 1
ΩM N � FM

μ
ρ1...ρp+1F N

νρ1...ρp+1 . (110)

It is now very easy to see that the only linear transformations of the field strengths
FM that will leave the energy-momentum tensor are those that leave the matrixΩM N

invariant: for p = p̃ O(n, n) when ξ 2 = +1 and Sp(2n,R) when ξ 2 = −1. For
p 
= p̃ there is not constraint and we can have GL(n) rotating among each other the
electric field strengths.

2.2 The Generalized FGK Effective Action

The next step is to make an Ansatz adequate to describe single, charged, static, flat,18

black p-branes solutions of the action (92) in d = p + p̃ + 4 dimensions. We will
use a transverse radial coordinate ρ such that the event horizon is at ρ → ∞ instead
of −∞ since this option presents problems in d 
= 4.

An educated Ansatz for the metric based on the known solutions (such as the
original solutions of [44] or those in the general [1]) is [43, 45]19

ds2(d) = e
2

p+1 Ũ
[
W

p
p+1 dt2 − W − 1

p+1 dy 2
p

]
− e− 2

p̃+1 Ũ dσ 2
p̃+3, (111)

dσ 2
p̃+3 =

(
ω/2

sinh
(

ω
2 ρ
)
) 2

p̃+1

⎡
⎣
(

ω/2

sinh
(

ω
2 ρ
)
)2

dρ2

( p̃ + 1)2
+ dΩ2

( p̃+2)

⎤
⎦ , (112)

where ρ is the radial coordinate in the ( p̃+3)-dimensional transverse space, dΩ2
( p̃+2)

is the metric of the round ( p̃ + 2)-sphere of unit radius, yp = (y1, . . . , y p) are the
spatial worldvolume coordinates, Ũ and W are two functions of ρ to be found and
ω is the non-extremality parameter.

This metric reduces to that in (28) for d = 4, p = 0 with the identification
ω = −2r0 and to the d-dimensional black-hole (p = 0) metric used in [45] in which
W disappears and Ũ is just the U used there.

On the other hand, this metric has one undetermined function more than wemight
have expected.Wewill see that the equation ofmotion of W can always be integrated,
leaving Ũ as the only function to be found by solving the equations of motion.

18Flat in the spatial directions of its worldvolume where the metric should be Euclidean.
19This metric has also been obtained in [46].
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The Ansatz for the (p + 1)-form fields is a direct generalization of that of the
d = 4, p = 0 case:

AΛ
(p+1) t y1...y p = ψΛ(ρ),

A(p+1) Λ t y1...y p = χΛ(ρ),

(113)

but now we will ignore the dual (p + 1)-form fields A(p+1) Λ, setting χΛ = 0 unless
p = p̃.

Finally, we will assume that all the scalars depend only on ρ.
Substituting the Ansatz into the Maxwell equations and Bianchi identities (100)

we get
d

dρ

[
e−2Ũ MM N Ψ̇ N

]
= 0, (114)

where
(
Ψ M

) ≡ (
ψΛ

χΛ

)
and the overdots indicate derivation w.r.t. ρ.

These equations can be integrated right away and they give

Ψ̇ M = αe2ŨMM NQN , (115)

where the integration constants QM are the charges with respect to the electric and
magnetic potentials and α is a normalization constant. We will replace Ψ̇ M by the
above value in all the equations, which never depend on Ψ M .

Plugging the Ansatz into the Einstein equations

Gμν + Gi j

[
∂μϕi ∂νϕ

j − 1
2 gμν∂ρϕi ∂ρϕ j

]
+ 4ξ2

(p + 1)!MM NFM
μ

ρ1...ρp+1F N
νρ1...ρp+1 = 0,

(116)
we get three equations. The first equation is

d2 ln W

dρ2
= 0, ⇒ W = eγρ, (117)

where we have normalized W = 1 at spatial infinity. As we advanced, this leaves us
with just one function to be determined by solving the remaining, model-dependent,
equations of motion.

Before finding these equations it is worth studying the implications of this form
of W for the p-brane metric (111), which now takes the form

ds2(d) = e
2

p+1 Ũ
[
e

p
p+1 γρdt2 − e− 1

p+1 γρdy 2
p

]
− e− 2

p̃+1 Ũ dσ 2
( p̃+3), (118)

with dσ 2
p̃+3 still given by (112). This metric now depends on two different constants

ω and γ while we expect it to depend on just one: the non-extremality parameter ω.
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Actually, γ is a function of ω in branes with regular horizon: In the near-horizon
(ρ → +∞) limit, for ω 
= 0 the angular part of dσ 2

( p̃+3) behaves as

∼ e
1

p̃+1ωρ
(−ω)

2
p̃+1 dΩ2

( p̃+2), (119)

and the angular part of the whole metric will be regular only if, in the same limit, Ũ
behaves as

Ũ ∼ C + (ω/2)ρ. (120)

Requiring the regularity of the worldvolume components of the metric in this limit
and using the above behaviour of Ũ we conclude that

γ = ω. (121)

The constant C determines the entropy density by unit (world-) volume S̃: the
constant-time sections of the event horizons of the branes described by the met-
ric (118), whose worldvolume is not compact, have the topology R

p × S p̃+2 and
have an infinite volume. Only the entropy per unit worldvolume is finite.

It is convenient to further normalize it by dividing by the volume of the S p̃+2 of
unit radius which we denote by ω( p̃+2) (for 4-dimensional black holes S̃ = S/π )
which leads to the definition

S̃ ≡ Ah ( p̃+2)

ω( p̃+2)
, (122)

where Ah ( p̃+2) is the volume of the ( p̃ + 2)-dimensional constant worldvolume
sections of the horizon.

Now, using (120) we get

S̃ = (−e−Cω
) p̃+2

p̃+1 , ⇒ eC = −ωS̃− p̃+1
p̃+2 . (123)

From this discussion we conclude that the metric of a black, non-extremal (ω 
= 0)
p-brane with regular horizon in d dimensions always has the form

ds2(d) = e
2

p+1 Ũ
[
e

p
p+1ωρdt2 − e− 1

p+1ωρdy 2
p

]
− e− 2

p̃+1 Ũ dσ 2
( p̃+3),

dσ 2
p̃+3 =

(
ω/2

sinh
(

ω
2 ρ
)
) 2

p̃+1

⎡
⎣
(

ω/2

sinh
(

ω
2 ρ
)
)2

dρ2

( p̃ + 1)2
+ dΩ2

( p̃+2)

⎤
⎦ .

(124)

and the near-horizon limit of the metric function is

eŨ ∼ (−ω)S̃− p̃+1
p̃+2 e

ω
2 ρ. (125)
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Now, the near-horizon limit of the time-radial part of the metric (124) can be recast
in the form

∼ e
2

p+1 C exp

(
− ( p̃ + 1)eCc

(−ω)
1

p̃+1

ρ

) [
dt2 − dρ2

]
, where c ≡ d − 2

(p + 1)( p̃ + 1)
,

(126)

and comparing it with the Rindler metric (35) we find that the inverse Hawking
temperature is

β = 4π(−ω)
1

p̃+1

( p̃ + 1)eCc
, (127)

and the following generalization of (37) holds

(−ω)
1

p+1 = 4π
p̃+1T S̃

(d−2)
(p+1)( p̃+2) , (128)

justifying our calling ω the non-extremality parameter for all d and p.
To finish our study of the black p-brane metric, let us compute the tension fol-

lowing [47, 48]. Let us expand the metric around Minkowski’s, far from the brane
where the field is weak gμν = ημν + hμν with

hμν = cμν

r p̃+1
, (129)

where cμν is a constant tensor and r is a radial coordinate such that the angular part
of the metric is, asymptotically, r2dΩ p̃+3. Then, the p-brane’s energy-momentum
tensor tab (where the indices ab cover the worldvolume directions) is given by

tab = − ω p̃+2

16πG(d)
N

[
( p̃ + 1)cab + ηabη

cdccd
]
, (130)

where G N
(d) is the d-dimensional Newton constant. The brane tension Tp is just the

t00 component which, for the above p-brane metric (124), is given in units such that

ω p̃+2( p̃ + 2) = 8πG(d)
N = 1, (131)

(G(4)
N = 1 for p = p̃ = 0) by

Tp = − 1

(p + 1)( p̃ + 2)

[
(d − 2)ũ + p( p̃ + 1)ω/2

]
, (132)

where we have defined the constant

ũ ≡ − ˙̃U
∣∣∣
ρ→0+

. (133)
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For d = 4, p = p̃ = 0 Tp = M , the black-hole mass and the above formula gives

M = −ũ,⇒ eŨ ∼ e−Mρ. (134)

Let us go back to the substitution of our Ansatz into the Einstein equations of
motion. Substituting our results for W and Ψ M into them we find two equations for
Ũ , ϕi

¨̃U + e2Ũ Vbb = 0, (135)

˙̃U 2 + (p+1)( p̃+1)
d−2 Gi j ϕ̇

i ϕ̇ j + e2Ũ Vbb = (ω/2)2, (136)

where
Vbb(ϕ,Q) ≡ 2α2 (p+1)( p̃+1)

(d−2) MM NQMQN , (137)

is the black-brane potential.
Finally, from the equations of motion of the scalars

∇2ϕi + Γ jk
i ϕ̇ j ϕ̇k + 2

(p + 2)!∂
i (FΛ � GΛ) = 0, (138)

we get the equation

ϕ̈i + Γ jk
i ϕ̇ j ϕ̇k + d−2

2( p̃+1)(p+1) e2Ũ ∂ i Vbb = 0. (139)

Equations (135) and (139) can be derived from a mechanical effective action

S[Ũ , ϕi ] =
∫

dρ
{ ˙̃U 2 + (p+1)( p̃+1)

d−2 Gi j ϕ̇
i ϕ̇ j − e2Ũ Vbb

}
, (140)

and (136) is the Hamiltonian constraint which must be imposed on the solutions of
the above effective action.

2.3 FGK Theorems for Static Flat Branes

We will just state the results, since they are obtained in exactly the same way as in
the d = 4, p = 0 case studied in full detail in the first lecture.

The extremal metric (ω −→ 0) is given by

ds2(d) = e
2Ũ
p+1

[
dt2 − dy 2

p

]− e− 2Ũ
p̃+1

ρ
2

p̃+1

[
1

ρ2

dρ2

( p̃ + 1)2
+ dΩ2

( p̃+2)

]
, (141)
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and the transverse part can be seen to be the Euclidean metric in R
p̃+3 by making

the coordinate change ρ = 1/r p̃+1.
In the near-horizon limit it always takes the form

ds2(d) = ρ
−2
p+1 S̃− 2( p̃+1)

(p+1)( p̃+2)
[
dt2 − dy 2

p

]− S̃
2

p̃+2

[
1

ρ2

dρ2

( p̃ + 1)2
+ dΩ2

( p̃+2)

]
, (142)

which is the metric of Ad Sp+2 × S p̃+2 with radii equal to S̃
1

p̃+2 .
The regularity of the fields in the near-horizon limit leads to the following relation

between the entropy density and black-brane potential

S̃ = [−Vbb(ϕh,Q)]
p̃+2

2( p̃+1) , (143)

and to the conclusion that the attractors φi
h are the critical points of the black-brane

potential on the horizon
∂i Vbb|ϕ=ϕh

= 0. (144)

The attractor mechanism also works in this general context and the entropy density
of an extremal black p-brane will only depend on the quantized charges.

The generalization of the bound (76) for non-extremal p-branes is

ũ2 + (p + 1)( p̃ + 1)

d − 2
Gi j (ϕ∞)Σ iΣ j + Vbb(ϕ∞,Q) = (ω/2)2, (145)

where ũ is not the p-brane tension Tp but is related to it by (132). For uncharged
(Schwarzschild) branes ũ = ω/2 and Tp = −ω/2.

2.4 FGK Formalism for the Black Holes of N = 1, d = 5
Theories

The simplest higher-dimensional theory to which we can apply the generalized FGK
formalism is that of ungaugedN = 1, d = 5 supergravity coupled to n vector super-
multiplets.20 The 1-forms can couple to black holes and their dual 2-form potentials,
can couple to black strings. We have to consider both cases separately and we start
by the black-hole case.

20We ignore the hypermultiplets for exactly the same reasons as in the N = 2, d = 4 case.



28 T. Ortín and P.F. Ramírez

The bosonic sector of these theories is controlled by the action

S[F, ϕ] =
∫

d5x
√|g|

{
R + 1

2gxy∂μφx∂μφ y − 1
4aI J F I

μν F Jμν

+CI J K εμνρσλ

12
√
3
√|g| F I

μν F J
ρσ AK

λ

}
, (146)

where φx x = 1, . . . , n are the real scalars in the vector multiplets and (AI ) =
(A0, Ax ) are the vector fields (A0 belongs to the supergravity multiplet). The real
metric gxy is related to the scalar-dependent kinetic matrix aI J and to the symmet-
ric, constant tensor CI J K that defines the theory by a structure called Real Special
Geometry (see, for instance [1] and references therein).

Since our solutions will be either black holes or black strings, always static and
non-intersecting, we can safely ignore the last term and, then, we have a theory which
is of the general form (92) replacing p = 0, p̃ = 1, Gi j by 1

2gxy and IΛΣ by aI J

(RΛΣ = 0 here and there are no magnetic charges). The effective action is obtained
by making the same replacements in (140) and Hamiltonian constraint (136). They
take the simple form (writing U instead of Ũ )

S[U, φx ] =
∫

dρ
{
U̇ 2 + 1

3gxyφ̇
x φ̇ y − e2U Vbh

}
, (147)

(ω/2)2 = U̇ 2 + 1
3gxyφ̇

x φ̇ y + e2U Vbh. (148)

In these equations the black-hole potential Vbh(φ, q) is given, with the normalization
α2 = 3/32, by these two equivalent expressions

− Vbh(φ, q) = aI J qI qJ = Z2
e + 3gxy∂xZe∂yZe, (149)

where Ze(φ, q) is the (electric) black-hole central charge defined, in its turn, by

Ze(φ, q) ≡ hI (φ)qI . (150)

The solutions for the metric function eU must be substituted in the general metric of
regular 5-dimensional black holes, which is always of the form

ds2 = e2U dt2 − e−U

(
ω/2

sinh
(

ω
2 ρ
)
)⎡
⎣
(

ω/2

sinh
(

ω
2 ρ
)
)2

dρ2

4
+ dΩ2

(3)

⎤
⎦ . (151)

The SBHs of these theories saturate the supersymmetric (BPS) bound

M = Ze(φ∞, q). (152)
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Furthermore, the values of the scalars on the horizon are critical points of the black-
hole central charge Ze and of the black-hole potential:

∂xZe|φh
= 0, and ∂x Vbh|φh

= 0. (153)

However, as in the N = 2, d = 4 case there are non-supersymmetric attractors
which extremize the black-hole potential but not the back-hole central charge.

Equation (147) can be rewritten à la Bogomol’nyi:

S[U, φx ]
=
∫

dρ

{
(U̇ ± eUZe)

2 + 1
3gxy(φ̇

x ± 3eU ∂ xZe)(φ̇
y ± 3eU ∂ yZe) ∓ d

dρ
(2eUZe)

}
,

(154)

and the standard arguments lead to the flow equations

U̇ = ∓eUZe φ̇x = ∓3eU ∂ xZe, (155)

which can be handled as in the N = 2, d = 4 case. In particular, the first equa-
tion leads precisely to (152), which characterizes supersymmetric black holes. Non-
supersymmetric black holes are associated to fake central charges different fromZe,
as in N = 2, d = 4.

There is another way of rewriting the action à la Bogomol’nyi using the scalar
functions hI (φ), which are constrained to satisfy

CI J K hI h J hK = 1, (156)

a constraint which is precisely solved by the physical scalars. Using simple identities
of Real Special Geometry we arrive to

S[U, φx ] =
∫

dρ

{
e2U aI J

[
d

dρ
(e−U hI ) ± qI

] [
d

dρ
(e−U h J ) ± qJ

]
± d

dρ
(2eUZe)

}
,

(157)

whose associated flow equations are

d

dρ
(e−U hI ) = ∓qI . (158)

These can be solved immediately, giving

e−U hI = AI ∓ qI ρ, (159)
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for some integration constants AI . These are harmonic functions in the 4-dimensional
spatial, transverse space. It is a well-known result that the static, timelike supersym-
metric solutions of these theories can be constructed in terms of harmonic functions
(which can havemore poles that the ones we have obtained, whichmust be consistent
with spherical symmetry) [49]. We have just recovered this result in a very simple
way.

2.5 FGK Formalism for the Black Strings ofN = 1, d = 5
Theories

The 1-form fields AI , can be dualized into 2-form fields, BI associated to black-
string solutions as follows: the Maxwell equations for the 1-forms are (ignoring the
contribution of the Chern–Simons term)

d
(
aI J � F J

) = 0, (160)

which we can solve locally by

aI J � F J = d BI ≡ HI , ⇒ F I = aI J � HI , (161)

where and aI J is the inverse of aI J . TheBianchi identity for the 2-formfield strengths
becomes the Maxwell equation for the dual 2-forms

d F I = 0, −→ d
(
aI J � HI

) = 0, (162)

and this equation (and the Einstein equation, conveniently dualized) can be derived
from an action of the form

S =
∫ √

g
{

R + 1
2gxy∂μφx∂μφ y + 1

2·3!a
I J HI HJ

}
. (163)

The effective action and Hamiltonian constraint can be immediately written using
the data in the above action and take the explicit form

S[Ũ , φx ] =
∫

dρ
{ ˙̃U 2 + 1

3gxyφ̇
x φ̇ y − e2U Vbs

}
, (164)

(ω/2)2 = ˙̃U 2 + 1
3gxyφ̇

x φ̇ y + e2U Vbs. (165)

In these two equations Vbs(φ, p) is the black-string potential. It is again given by
two equivalent expressions

− Vbs(φ, p) ≡ aI J pI pJ = Z2
m + 3∂xZm∂ xZm, (166)
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where Zm is (magnetic) string central charge, defined by

Zm(φ, p) = hI (φ)pI , (167)

and where we have denoted by pI the string charges.
Zm(φ, p) plays for black strings exactly the same role played by Ze(φ, q) for

black holes: it allows us to rewrite the effective action à la Bogomol’nyi and find
flow equations, the string tension of supersymmetric strings is determined by its value
at infinity and the entropy density by its near-horizon behavior. The supersymmetric
attractors are also critical values of Zm.

Once we have solved the equations and we have found the metric function eU we
just have to replace it in the metric

ds2 = eŨ
[
e

ω
2 ρdt2 − e− ω

2 ρdy2
]

− e−2Ũ

(
ω/2

sinh
(

ω
2 ρ
)
)2⎡
⎣
(

ω/2

sinh
(

ω
2 ρ
)
)2

dρ2 + dΩ2
(2)

⎤
⎦ ,

(168)

which describes a black string in a 5-dimensional spacetime lying along the direction
parametrized by the coordinate y.

3 The H-FGK Formalism

The FGK equations are still hard to solve if we want to construct explicitly the black-
hole solutions andwe are not happy enoughwith just determining the attractors. Even
the first-order equations are difficult to solve and that requires the determination of
the corresponding fake central charge in advance.

In contrast, the supersymmetric solutions of supergravity theories are easy to
construct, probably because of the choice of building blocks (the basic functions
whose equations need to be solved) which have the property that they transform
linearly under duality, unlike the scalar fields.

Could we use these building blocks in non-supersymmetric solutions? In other
words: can we use the supersymmetry-inspired variables transforming linearly under
duality in the FGK action?

In [45, 50] it was shown that in some models of N = 2, d = 4 and N =
1, d = 5 supergravity coupled to vector supermultiplets, the non-extremal solutions
can be written in terms of the same building blocks as the supersymmetric ones,
the difference being the functional form of the building blocks, which are always
harmonic functions in the supersymmetric cases.

This is not accident: these supergravity theories can be formulated in terms of
those building blocks, as shown in [51–53]. It is natural to try to combine this fact
and the FGK formalism, as suggested above. In order to do this, we are going tomake
a quick review of the form that the supersymmetric, static, spherically symmetric,
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asymptotically black-hole solutions of these solutions have for the case of N =
2, d = 4 supergravity. We start by reviewing what a supersymmetric solution is.

3.1 Supersymmetric Solutions

A configuration of a supersymmetric theory (such as a supergravity theory) is said
to be supersymmetric if it is invariant under some supersymmetry transformations.
A supergravity theory is invariant under an infinite number of these transformations,
because they are local, but a supersymmetric solutions will only be invariant under
some.

The supersymmetry transformations are generated by the spinor ε and their action
on the bosonic fields φb and fermionic field φ f takes the generic form21

δεφ
b ∼ ε̄φ f ,

δεφ
f ∼ ∂ε + (φb + φ̄ f φ f )ε,

(169)

We are usually interested in purely bosonic configurations only. These have φ f = 0
which is always a consistent truncation. Then, the supersymmetry variations of the
bosonic fields vanish automatically. A bosonic configuration will be supersymmetric
if the second equation, the supersymmetry variation of the fermionic fields of the
theory, vanishes for some parameter ε(x)

δεφ
f ∼ ∂ε + φbε = 0. (170)

This condition is known as Killing Spinor Equations (KSEs).
Supersymmetric solutions enjoy remarkable properties. They can be identified,

characterized, classified and constructed by analyzing theKSEs under the assumption
that a solution with ε 
= 0 exists.22

We are going to review the results for supersymmetric black-hole solutions of
ungauged N = 2, d = 4 supergravity coupled to vector supermultiplets in the next
section.

3.2 Supersymmetric, Static N = 2, d = 4 Black Holes

All the supersymmetric solutions of ungauged N = 2, d = 4 supergravity coupled
to vector supermultiplets were classified in [54] and a recipe to construct all of them

21The term ∂ε only occurs in theories with local supersymmetry: supergravities.
22For more information on supersymmetric solutions see, for instance, [1] and references therein.
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was found. For the black-hole solutions of a model characterized by the canonical,
covariantly holomorphic symplectic section VM we can proceed as follows:

1. Introduce the auxiliary function X with the same Kähler weight as VM to define
define real symplectic vectorsRM and IM , which have vanishing Kähler weight

RM + iIM ≡ VM/X. (171)

2. The components ofRM can be expressed in terms of the components of IM only.
Finding the expressionsRM(I) is equivalent to solving the so-called stabilization
or Freudenthal duality equations [55].

3. The map IM −→ RM(I) defines an operation called Freudenthal duality [56–
58] that can be generalized to any symplectic vector of the same theory. We will
denote the Freudenthal dual of IM by ĨM ≡ RM(I).
This operation is an antiinvolution

˜̃IM = −IM . (172)

4. We define the Hesse potential W (I) as the symplectic product of IM and its
Freudenthal dual

W (I) = ĨMIM = RM(I)IM . (173)

Its most fundamental property is that it is homogenous of second degree on the
IM .

5. In the static, spherically symmetric black-hole solutions, the components of the
symplectic vector IM are harmonic functions in E

3, H M with a single pole,
satisfying the constraint

HM d H M = 0. (174)

Using the FGK coordinate ρ of the first lecture, these functions must take the
form

IM = H M ≡ AM − B Mρ, with AM B M = 0. (175)

It can be shown that the integration constants B M can be identifiedwith the electric
and magnetic charges

B M = QM/
√
2. (176)

6. The choice of harmonic functions determines completely all the fields of the
supersymmetric solution. We just have to give the recipe to reconstruct them in
terms of the harmonic functions. First of all, the metric function is given by the
Hesse potential

e−2U = 1

2|X |2 = W (H). (177)
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Thus, in the near-horizon limit

e−2U ∼ 1

2r2
W (Q), (178)

where W (Q) is the Hesse potential evaluated on the charges and the black-hole
entropy is completely determined by theHesse potential which, being symplectic-
invariant is duality invariant23

S/π = W (Q)/2. (179)

The vector field strengths and the complex scalar fields are given in terms of the
harmonic functions by

FM = − 1√
2
d(H̃ M e2U ) ∧ dt − 1√

2
e2U � (dt ∧ d H M),

Zi = H̃ i + i H i

H̃ 0 + i H 0
.

Observe that the auxiliary variable X can bewritten in terms of themetric function
and a phase α

X = 1√
2
eU+iα, (180)

which does not occur in any of the bosonic fields and, therefore, does not occur in
the FGK action.

Also, observe that the scalar fields and themetric (theHesse potential) are invariant
under Freudenthal duality, but not the vector fields: their transformation is equivalent
to the replacement of the charge symplectic vectorQM by its Freudenthal dual Q̃M .
Freudenthal duality will not respect supersymmetry but, will it transform solutions
into solutions? To investigate this and other questionswewant to replace the variables
used in the original FGK formalism U, Zi by the symplectic vector IM which we
will denote by H M to follow the literature.

3.3 The H-FGK Formalism

The details of the change of variables from U, Zi to H M are rather technical and can
be found in the original reference [59]. We will just quote the result (effective action
and Hamiltonian constraint)

23All symplectic vectors transform linearly under the duality transformations, just as the vector
fields, according to the Gaillard and Zumino results reviewed in the first lecture.
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− SH-FGK[H ] =
∫

dρ
{
1
2gM N Ḣ M Ḣ N − V

}
, (181)

−r20 = 1
2gM N Ḣ M Ḣ N + V, (182)

where the metric gM N (H) and the potential V (H) are given in terms of W (H) by

gM N (H) ≡ ∂M∂N log W − 2
HM HN

W 2
, (183)

V (H) ≡
{
− 1

4∂M∂N log W + HM HN

W 2

}
QMQN = −Vbh/W, (184)

and we will notice that this change of variables introduces one extra variable: from
2n̄ +1 to 2n̄ +2. This means that the H-FGK effective action must be invariant under
a local symmetry. It is not difficult to realize that the symmetry must be associated
to local shifts of α, the phase of X which, as mentioned above, does not occur in the
variables of the FGK formalism but enters in the definition of the variables of the
H-FGK formalism.24

A sign of the existence of a local symmetry that would allow us to eliminate one
variable is that the metric gM N (H) always admits a null eigenvector [53, 58]

H̃ M gM N = 0, (185)

and it is singular. This has to be taken into account when deriving the equations of
motion, which take the form

gM N Ḧ N + (∂N gP M − 1
2∂M gN P)Ḣ N Ḣ P + ∂M V = 0. (186)

It is not difficult to show that Ḣ M = QM/
√
2 is always a solution, which is the

general SBH of the theory. This is not so easy to prove in the FGK formalism.
Multiply these equations with H M and using the homogeneity properties of the

Hesse potential and the Hamiltonian constraint we get

H̃M
(
Ḧ M − r20 H M

)+ (Ḣ M HM)2

W
= 0. (187)

If we impose the condition
HM Ḣ M = 0, (188)

24Let us stress that this local shift of the phase of X cannot be interpreted as a Kähler transformation
because such a transformation would act on all the fields with non-vanishing Kähler weight, which
is not the case.
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which we have not used at all in the definition of the H-FGK effective action but that
arises naturally in the recipe for constructing static SBHs (in particular with no NUT
charge [60]) the above equation takes the form

H̃M
(
Ḧ M − r20 H M

) = 0, (189)

which are solved by harmonic functions in the extremal case and by hyperbolic
functions in the non-extremal one. See [61] for an exhaustive study of these solutions.

Not all solutions are of this form, though. The most general non-supersymmetric
ones of the t3 and ST U models, for instance, have non-harmonic H Ms [37, 62–
64]. We have called these solutions, which do not satisfy the above constraint (188),
unconventional solutions [58] and there is still much to learn about them. The most
general non-extremal solution of the ST U model has been proposed in [65] but not
in terms of the H M variables.

All the FGK theorems and, in particular, the attractor mechanism, can be recast
in these variables:

1. The values of the H -variables on the horizon of an extremal black hole, H M
h ,

extremize the black-hole potential

∂M Vbh|Hh
= 0. (190)

The H M
h are the attractors in this language and are defined up to a global factor

because Vbh(H) is homogeneous of degree zero on the H -variables. The values
of the scalars on the horizon (the usual attractors) are completely determined by
these:

Zi
h = H̃ i

h + i H i
h

H̃ 0
h + i H 0

h

. (191)

For SBHs the attractors are just H M
h = −QM/

√
2 and

Zi
h = Q̃i + i pi

Q̃0 + i p0
. (192)

2. The entropy is completely determined by the attractors:

S/π = W (Hh). (193)

For SBHs
S/π = W (Q)/2. (194)
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3.4 Freudenthal Duality

In this formalism, Freudenthal duality appears in two ways:

1. If H M
h = B M is an attractor extremizing the black-hole potential, then its Freuden-

thal dual B̃ M is also an attractor that extremizes the same black-hole potential
and the entropy of the corresponding extremal black holes is the same, because
its expression (the Hesse potential evaluated on B M ) is manifestly Freudenthal-
duality invariant:

S(B)/π = 1
2W (B) = 1

2W (B̃) = S(B̃)/π. (195)

This fact was first observed in a more restricted case in [56].
2. There is a local symmetry in the H-FGK action, as we have discussed above. We

are going to see that the discrete Freudenthal duality is nothing but one of of these
local transformations for a particular (constant) choice of the gauge parameter.

The existence of a null eigenvector of the metric, H̃ M can be used to prove the
following identity that relates the equations of motion of the H-FGK action

H̃ M δSH-FGK
δH M

= 0, (196)

and which can be seen as the Noether identity associated to a local symmetry of
the theory. Multiplying this identity by an infinitesimal arbitrary function f (ρ) and
integrating the expression over ρ we get an expression that we can rewrite as the
transformation of the action under a local symmetry with parameter f :

δ f SH-FGK =
∫

dρδ f H M δSH-FGK
δH M

= 0, where δ f H M ≡ f (ρ)H̃ M . (197)

The above transformations have been explicitly checked to leave invariant the com-
plete H-FGK action. Their finite form is

(H̃ ′ M + i H ′ M) = ei f (ρ)(H̃ M + i H M), ⇒ VM/X ′ = ei f (ρ)VM/X, (198)

which corresponds to a transformation of the phase of X , as we advanced

δ f α = − f. (199)

For f = −π/2 we recover the discrete Freudenthal duality transformations.
The reason for the existence of this local symmetry in the H-FGK action is clear,

but its physical meaning is unknown. There are no higher-dimensional analogues
of this purely 4-dimensional symmetry that preserves the black-hole entropy. More
work is necessary to understand this mysterious symmetry.
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Introductory Lectures on Extended
Supergravities and Gaugings

Antonio Gallerati and Mario Trigiante

Abstract In an ungauged supergravity theory, the presence of a scalar potential is
allowed only for the minimal N = 1 case. In extended supergravities, a non-trivial
scalar potential can be introduced without explicitly breaking supersymmetry only
through the so-called gauging procedure. The latter consists in promoting a suitable
global symmetry group to local symmetry to be gauged by the vector fields of the
theory. Gauged supergravities provide a valuable approach to the study of superstring
flux-compactifications and the construction of phenomenologically viable, string-
inspired models. The aim of these lectures is to give a pedagogical introduction to
the subject of gauged supergravities, covering just selected issues and discussing
some of their applications.

1 Introduction

A long-standing problem of high energy theoretical physics is the formulation of a
fundamental theory unifying the four interactions. Superstring theory in ten dimen-
sions and M-theory in eleven seem to provide a promising theoretical framework
where this unification could be achieved. However, there are many shortcomings
originating from this theoretical formulation.

First of all, these kinds of theories are defined in dimensionsD > 4, and, since we
live in a four-dimensional universe, a fundamental requirement for any predictable
model is the presence of a mechanism of dimensional reduction from ten or eleven
dimensions to four. Moreover, the non-perturbative dynamics of the theory is far
from being understood, and there is no mechanism to select a vacuum state for our
universe (i.e. it is not clear how to formulate a phenomenological viable description
for the model). Finally, there are more symmetries than those observed experimen-
tally. These models, in fact, encode Supersymmetry (SUSY), but our universe is not
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supersymmetric and its gauge interactions are well described, at our energy scales,
by the StandardModel (SM). Therefore deriving a phenomenologically viablemodel
from string/M-theory also requires the definition of suitable mechanisms of super-
symmetry breaking.

Spontaneous compactification. The simplest way for deriving a four-dimensional
theory froma higher dimensional one is through spontaneous compactificationwhich
generalizes the original Kaluza–Klein (KK) compactification of five-dimensional
general relativity on a circle.We consider the low-energy dynamics of superstring/M-
theory on space-time solutions with geometry of the form

M4
(1,3) × Mint, (1)

where M4
(1,3) is the maximally symmetric four dimensional space-time with

Lorentzian signature andMint is a compact internal manifold. TheD = 10 orD = 11
fields, excitations of the microscopic fundamental theory, are expanded in normal
modes (Y(n)) on the internal manifold

Φ(xμ, yα) =
∑
(n)

Φ(n)(x
μ) Y(n)(y

α), (2)

the coefficientsΦ(n) of this expansion describing massive fields inM4
(1,3) with mass

of the order of 1
R , where R is the “size” of the internal manifold Mint. These are the

Kaluza–Klein states, forming an infinite tower.
Inmany cases, a consistent truncation of themasslessmodesΦ(0) is well described

by a D = 4 Supergravity theory (SUGRA), an effective field theory consistently
describing superstring dynamics on the chosen background at energies Λ, where

Λ � 1

R
� string scale. (3)

The effective supergravity has M4
(1,3) as vacuum solution, and its general features

depend on the original microscopic theory and on the chosen compactification. In
fact, the geometry of Mint affects the amount of supersymmetry of the low-energy
SUGRA, as well as its internal symmetries.

Internal manifold, compactification and dualities. According to the Kaluza–Klein
procedure, the isometries ofMint induce gauge symmetries in the lower-dimensional
theory gauged by the vectors originating from the metric in the reduction mechanism
(KK vectors). The internal manifoldMint also affects the field content of the D = 4
theory, which arrange in supermultiplets according to the residual (super)symmetry
of the vacuum solution M4

(1,3).
The compactification of superstring/M-theory on a Ricci-flat internal manifold

(like a torus or a Calabi Yau space) in the absence of fluxes of higher-order form field-
strengths, yields, in the low-energy limit, an effective four-dimensional SUGRA,
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which involves the massless modes on M4
(1,3). The latter is an ungauged theory,

namely the vector fields are not minimally coupled to any other field of the theory. At
the classical level, ungauged supergravity models feature an on-shell global symme-
try group,whichwas conjectured to encode the known superstring/M-theory dualities
[3]. The idea behind these dualities is that superstring/M-theory provide a redundant
description for the samemicroscopic degrees of freedom: different compactifications
of the theory turns out to define distinct descriptions of the same quantum physics.
These descriptions are connected by dualities, which also map the correspondent
low-energy description into one another. The global symmetry group G of the clas-
sical D = 4 supergravity is in part remnant of the symmetry of the original higher
dimensional theory, i.e. invariance under reparametrizations in Mint.1

Ungauged versus Gauged models. From a phenomenological point of view,
extended supergravity models on four dimensional Minkowski vacua, obtained
through ordinary Kaluza–Klein reduction on a Ricci-flat manifold, are not consistent
with experimental observations. These models typically contain a certain number of
massless scalar fields—which are associated with the geometry of the internal man-
ifold Mint—whose vacuum expectation values (vevs) define a continuum of degen-
erate vacua. In fact, there is no scalar potential that encodes any scalar dynamics, so
we cannot avoid the degeneracy. This turns into an intrinsic lack of predictiveness
for the model, in addition to a field-content of the theory which comprises massless
scalar fields coupled to gravity, whose large scale effects are not observed in our
universe.

Another feature of these models, as we said above, is the absence of a internal
local-symmetry gauged by the vector fields. Thismeans that nomatter field is charged
under a gauge group, hence the name ungauged supergravity.

Realistic quantum field theory models in four dimensions, therefore, require the
presence of a non-trivial scalar potential, which could solve (in part or completely)
moduli-degeneracy problem and, on the other hand, select a vacuum state for our
universe featuring desirable physical properties like, for instance

• introduce mass terms for the scalars;
• support the presence of some effective cosmological constant;
• etc.

The phenomenologically uninteresting ungauged SUGRAs can provide a general
framework for the construction of realistic model. In a D = 4 extended supergravity
model (i.e. having N > 1 susy), it is possible to introduce a scalar potential, without
explicitly breaking supersymmetry, through the so-called gauging procedure [4–12].
The latter can be seen as a deformation of an ungauged theory and consists in pro-
moting some suitable subgroup Gg of the global symmetry group of the Lagrangian
to local symmetry. This can be done by introducing minimal couplings for the vector
fields, mass deformation terms and the scalar potential itself. The coupling of the

1In part they originate fromgauge symmetries associatedwith the higher dimensional antisymmetric
tensor fields.
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(formerly abelian) vector fields to the new local gauge group gives us matter fields
that are charged under this new local gauge symmetry.

In particular, in the presence of fluxes of higher-order form field-strengths across
cycles of the internal manifold

〈
∫
Σp

F(p) 〉 �= 0, (4)

the non-linear dynamics of the low lyingmodes (or of a consistent truncation thereof)
is, in most cases, captured by a D = 4 theory which is gauged.

The gauge group Gg of the lower dimensional SUGRA depends on the geometry
of the internal manifold and on the possible internal fluxes

The fluxes and the structure of the internal manifold, aside from the gauge symmetry,
also inducemasses and a scalar potentialV(φ) (for reviews on flux-compactifications
see [13–15]). Thesemass terms produce, in general, supersymmetry breaking already
at the classical level (which is phenomenologically desirable) and the presence of a
scalar potential lift the moduli degeneracy (already at the tree level) andmay produce
an effective cosmological constant term

Supergravity theories inD dimensions are consistently defined independently of their
higher-dimensional origin, and are totally defined by

◦ amount of supersymmetry;
◦ field content;
◦ local symmetry, gauged by the vector fields (feature of gauged SUGRAs).

When originating from superstring/M-theory compactifications, gauged SUGRAs
offer a unique window on the perturbative low-energy dynamics of these theories,
since they describe the full non-linear dynamics of the low lying modes. In general,
there is a correspondence between vacua of the microscopic fundamental theory and
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vacua of the low-energy supergravity. However, there are several gauged SUGRAs
whose superstring/M-theory origin is not known.

Gauged supergravities are obtained from ungauged ones, with the same field
content and amount of SUSY, through the gauging previously mentioned procedure,
which iswell-defined andworks provided the gauge groupGg satisfies some stringent
conditions originating from the requirement of gauge invariance and supersymmetry.

As mentioned above, gauging is the only known way to introduce a scalar poten-
tial in extended supergravities without an explicit breaking of the supersymmetry.
However this procedure will in general break the global symmetry group of the
ungauged theory. The latter indeed acts as a generalized electric-magnetic duality
and is thus broken by the minimal couplings, which only involve the electric vec-
tor fields. As a consequence of this, in a gauged supergravity we loose track of the
string/M-theory dualities, which were described by global symmetries of the original
ungauged theories.

The drawback can be avoided using the embedding tensor formulation of the
gauging procedure [5, 8, 16–18] inwhich all deformations involved by the gauging is
encoded in a single object, the embedding tensor,which is itself covariantwith respect
to the global symmetries of the ungauged model. This allows to formally restore
such symmetries at the level of the gauged field equations and Bianchi identities,
provided the embedding tensor is transformed together with all the other fields. The
global symmetries of the ungauged theory now act as equivalences between gauged
supergravities. Since the embedding tensor encodes all background quantities in the
compactification describing the fluxes and the structure of the internal manifold, the
action of the global symmetry group on it allows to systematically study the effect
of dualities on flux compactifications.

These lectures are organized as follows.
In Sect. 2 we briefly review the general structure of ungauged supergravities.
In Sect. 3 we discuss the gauging procedure in the electric symplectic frame and

comment on the relation between the embedding tensor and the internal fluxes and
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the action on the latter of dualities. We end the section by discussing, as an example,
the gauging of the maximal four dimensional theory.

In Sect. 4 we review a manifestly covariant formulation of the gauging procedure
and introduce the notion of tensor hierarchy in higher dimensions.

2 Review of Ungauged Supergravities

Let us recall some basic aspects of the extended ungauged D = 4 supergravity.

Field content andbosonic action. The bosonic sector consists in the graviton gμν(x),
nv vector fields AΛ

μ(x), ns scalar fields φ
s(x) and is described by bosonic Lagrangian

of the following general form2

1

e
Lb = −R

2
+ 1

2
Gst(φ) ∂μφ

s ∂μφt + 1

4
IΛΣ(φ)FΛ

μν F
Σ μν

+ 1

8 e
RΛΣ(φ) εμνρσ FΛ

μν F
Σ
ρσ , (5)

where e = √|Det(gμν)| and the nv vector field strengths are defined as usual:

FΛ
μν = ∂μA

Λ
ν − ∂νA

Λ
μ . (6)

Let us comment on the general characteristics of the above action.

◦ The scalar fields φs are described by a non-linear σ -model, that is they are coor-
dinates of a non-compact, Riemannian ns-dimensional differentiable manifold
(target space), named scalar manifold and to be denoted by Mscal. The positive
definite metric on the manifold is Gst(φ). The corresponding kinetic part of the
Lagrangian density reads:

Lscal = e

2
Gst(φ) ∂μφ

s∂μφt . (7)

The σ -model action is clearly invariant under the action of global (i.e. space-
time independent) isometries of the scalar manifold. As we shall discuss below,
the group G can be promoted to a global symmetry group of the field equations
and Bianchi identities (i.e. on-shell global symmetry group) provided its (non-
linear) action on the scalar fields is combined with an electric-magnetic duality
transformation on the vector field strengths and their magnetic duals.

◦ The two terms containing the vector field strengths will be called vector kinetic
terms. A general feature of supergravity theories is that the scalar fields are non-
minimally coupled to the vector fields as they enter these terms through symmetric

2Using the “mostly minus” convention and 8πGn = c = � = 1.
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matrices IΛΣ(φ), RΛΣ(φ) which contract the vector field strengths. The former
IΛΣ(φ) is negative definite and generalizes the −1/g2 factor in the Yang–Mills
kinetic term. The latter RΛΣ(φ) generalizes the θ -term.

◦ There is a U(1)nv gauge invariance associated with the vector fields:

AΛ
μ → AΛ

μ + ∂μζ
Λ. (8)

All the fields are neutral with respect to this symmetry group.
◦ There is no scalar potential. In an ungauged supergravity a scalar potential is
allowed only for N = 1 (called the F-term potential). In extended supergravities
a non-trivial scalar potential can be introduced without explicitly breaking super-
symmetry only through the gauging procedure, which implies the introduction of
a local symmetry group to be gauged by the vector fields of the theory and which
will be extensively dealt with in the following.

The fermion part of the action is totally determined by supersymmetry once the
bosonic one is given. Let us discuss in some detail the scalar sector and its mathe-
matical description.

2.1 Scalar Sector and Coset Geometry

As mentioned above the scalar fields φs are coordinates of a Riemannian scalar
manifold Mscal, with metric Gst(φ). The isotropy group H of Mscal has the general
form

H = HR × Hmatt, (9)

where HR is the R–symmetry group and Hmatt is a compact group acting on the
matter fields. The gravitino and spin- 12 fields will transform in representations of the
H group. The maximal theory N = 8 describes the gravitational multiplet only and
thus H = HR = SU(8). The isometry group G of Mscal clearly defines the global
symmetries of the scalar action.

In N > 2 theories the scalar manifold is constrained by supersymmetry to be
homogeneous symmetric, namely to have the general form

Mscal = G

H
, (10)

where G is the semisimple non-compact Lie group of isometries and H its maximal
compact subgroup (Table1). Generic homogeneous spacesMscal can always be writ-
ten in the above form though G need not be semisimple. The action of an isometry
transformation g ∈ G on the scalar fields φr parametrizingMscal is defined by means
of a coset representative L(φ) ∈ G/H as follows:

g · L(φr) = L(g � φr) · h(φr, g), (11)
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Table 1 Examples of
homogeneous symmetric
scalar manifolds in extended
supergravities and their real
dimensions ns. We have
omitted in the list the
homogeneous symmetric
quaternionic Kaehler
manifolds in the N=2 models

N
G

H
ns

8 E7(7)
SU(8) 70

6 SO∗(12)
U(6) 30

5 SU(5,1)
U(5) 10

4 SL(2,R)
SO(2) × SO(6,n)

SO(6)×SO(n) 6n + 2

3 SU(3,n)
S[U(3)×U(n)] 6n

2 SU(1,n+1)
U(n+1) 2(n + 1)

SL(2,R)
SO(2) × SO(2,n+2)

SO(2)×SO(n+2) 2(n + 2)+2

Sp(6)
U(3) 12

SU(3,3)
S[U(3)×U(3)] 18

SO∗(12)
U(6) 30

E7(−25)
U(1)×E6

54

where g � φr denote the transformed scalar fields, non-linear functions of the original
ones φr , and h(φr, g) is a compensator inH. The coset representative is definedmod-
ulo the right-action of H and is fixed by the chosen parametrization of the manifold.
Of particular relevance in supergravity is the so-called solvable parametrization,
which corresponds to fixing the action of H so that L belongs to a solvable Lie
group3 GS = exp(S ), generated by a solvable Lie algebra S and defined, in the
symmetric case, by the Iwasawa decomposition of G with respect to H. The scalar
fields are then parameters of the solvable Lie algebra S :

L(φr) = eφ
rTr ∈ exp(S ), (12)

where {Tr} is a basis of S (r = 1, . . . , ns). All homogeneous scalar manifolds
occurring in supergravity theories admit this parametrization, which is useful when
the four-dimensional supergravity originates from the Kaluza–Klein reduction of a
higher-dimensional one on some internal compact manifold. The solvable coordi-
nates directly describe dimensionally reduced fields and moreover this parametriza-
tion makes the shift symmetries of the metric manifest.

The Lie algebra g of G can be decomposed into the Lie algebra H generating H,
and a coset space K:

3A solvable Lie group GS can be described (locally) as a the Lie group generated by solvable Lie
algebra S : GS = exp(S ). A Lie algebra S is solvable iff, for some k > 0, DkS = 0, where the
derivative D of a Lie algebra g is defined as follows: Dg ≡ [g,g], Dng ≡ [Dn−1g,Dn−1g]. In a
suitable basis of a given representation, elements of a solvable Lie group or a solvable Lie algebra
are all described by upper (or lower) triangular matrices.
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g = H ⊕ K, (13)

where in general we have:

[H, H] ⊂ H ; [H, K] ⊂ K ; [K, K] ⊂ H ⊕ K, (14)

that is the space K supports a representation K of H with respect to its adjoint
action. An alternative choice of parametrization corresponds to defining the coset
representative as an element of exp(K):

L(φr) = eφ
rKr ∈ exp(K), (15)

where {Kr} is a basis of K. As opposed to the solvable parametrization, the coset
representative is no-longer a group element, since K does not close an algebra, see
last of (14). The main advantage of this parametrization is that the action of H on
the scalar fields is linear:

∀h ∈ H : hL(φr) = h eφ
rKr h−1 h = eφ

r h Kr h−1
h = L(φ′r) h, (16)

where φ′r = (h−1)s
r φs, and hsr describes h in the representation K. This is not the

case for the solvable parametrization since [H, S ] � S .
In all parametrizations, the origin O is defined as the point in which the coset

representative equals the identity element of G and thus the H-invariance of O is
manifest: L(O) = I.

If the manifold, besides being homogeneous, is also symmetric, the space K can
be defined so that:

[K, K] ⊂ H. (17)

In this case the (13) defines the Cartan decomposition of g into compact and non-
compact generators, in H and K, respectively. This means that, in a given matrix
representation of g, a basis of the carrier vector space can be chosen so that the
elements of H and of K are represented by anti-hermitian and hermitian matrices,
respectively.

The geometry ofMscal is described by vielbein and an H-connection constructed
out of the left-invariant one-form

Ω = L−1 dL ∈ g, (18)

satisfying the Maurer-Cartan equation:

dΩ + Ω ∧ Ω = 0. (19)

The Vielbein and H-connection are defined by decomposing Ω according to (13)

Ω(φ) = Φ(P) + w(φ); w ∈ H, P ∈ K. (20)
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Let us see how these quantities transform under the action ofG. For any g ∈ G, using
(11), we can write L(g � φ) = gL(φ) h−1, so that:

Ω(g � φ) = hL(φ)−1 g−1d(gL(φ) h−1) = hL(φ)−1 dL(φ) h−1 + h dh−1. (21)

From (20) we find:

P(g � φ) + w(g � φ) = hP(φ) h−1 + hw(φ)h−1 + h dh−1. (22)

Since h dh−1 is the left-invariant 1-form onH, it has value in this algebra. Projecting
the above equation over K and H, we find:

P(g � φ) = hP(φ) h−1, (23)

w(g � φ) = hw(φ) h−1 + h dh−1. (24)

We see that w transforms as an H-connection while the matrix-valued one-form
P transforms linearly under H. The vielbein of the scalar manifold are defined by
expanding P in a basis {Ks} of K (underlined indices s, r, t, . . . are rigid tangent-
space indices, as opposed to the curved coordinate indices s, r, t, . . . ):

P(φ) = Vs(φ)Ks. (25)

From (23) it follows that the vielbein 1-forms Vs(φ) = Vs
s(φ)dφs transform under

the action of G as follows:

Vs(g � φ) = Vt(φ) (h−1)t
s = hstV

t(φ). (26)

For symmetric spaces, from (19) it follows that w and P satisfy the following con-
ditions

DP ≡ dP + w ∧ P + P ∧ w = 0, (27)

R(w) ≡ dw + w ∧ w = − P ∧ P, (28)

where we have defined the H-covariant derivative DP of P and the H-valued cur-
vature R(w) of the manifold. The latter can be written in components:

R(w) = 1

2
Rrs dφ

r ∧ dφs ⇒ Rrs = −[Pr, Ps] ∈ H. (29)

We define the metric at the origin O as the H-invariant matrix:

ηst ≡ k Tr(Ks Kt) > 0, (30)
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where k is a positive number depending on the representation, so that the metric in
a generic point reads:

ds2(φ) ≡ Gst(φ)dφ
s dφt ≡ Vs

s(φ)Vt
t(φ)ηst dφ

s dφt = k Tr(Ps Pt). (31)

As it follows from (23), (26), the above metric is manifestly invariant under global
G-transformations acting on L to the left (as well as local H-transformations acting
on L to the right):

ds2(g � φ) = ds2(φ) . (32)

The σ -model Lagrangian can be written in the form:

Lscal = e

2
G(φ)st∂μφs ∂μφt = e

2
k Tr

(Pμ(φ)Pμ(φ)
)
, Pμ = Ps

∂φs

∂xμ
, (33)

and, just as the metric ds2, is manifestly invariant under global G and local H-
transformations acting on L as in (11).

The bosonic part of the equations of motion for the scalar fields can be derived
from the Lagrangian (5) and read:

Dμ(∂
μφs) = 1

4
Gst

[
FΛ

μν ∂t IΛΣ FΣ μν + FΛ
μν∂t RΛΣ

∗FΣ μν
]
, (34)

where ∂s ≡ ∂
∂φs , while Dμ also contains the Levi-Civita connection Γ̃ on the scalar

manifold:
Dμ(∂νφ

s) ≡ ∇μ(∂νφ
s) + Γ̃ s

t1t2∂μφ
t1 ∂νφ

t2 , (35)

∇μ being the covariant derivative containing the Levi-Civita connection on space-
time.

Let us end this paragraph by introducing, in the coset geometry, theKilling vectors
describing the infinitesimal action of isometries on the scalar fields. Let us denote by
tα the infinitesimal generators ofG, defining a basis of its Lie algebra g and satisfying
the corresponding commutation relations

[tα, tβ] = fαβγ tγ , (36)

fαβγ being the structure constants of g. Under an infinitesimal G-transformation
generated by εα tα (εα � 1):

g ≈ I + εα tα, (37)

the scalars transform as:
φs → φs + εα ksα(φ), (38)

ksα(φ) being the Killing vector associated with tα . The action of g on the scalars is
defined by (11), neglecting terms of order O(ε2):
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(I + εα tα)L(φ) = L(φ + εα kα)

(
I − 1

2
εαWI

α JI

)
, (39)

where (I − 1
2 εαWI

α JI) denotes, expanded to linear order in ε, the compensating
transformation h(φ, g), {JI} being a basis of H. Equating the terms proportional to
εα , multiplying to the left by L−1 and using the expansion (20) of the left-invariant
1-form, we end up with the following equation:

L−1tαL = ksα (Ps + ws) − 1

2
WI

α JI = ksα Vs
s Ks + 1

2
(ksαω

I
s − WI

α) JI , (40)

where we have expanded the H-connection along JI as follows:

ws = 1

2
ωI
s JI . (41)

Equation (40) allows to compute kα for homogeneous scalar manifolds by projecting
L−1tαL along the directions of the coset space K. These Killing vectors satisfy the
following algebraic relations (note the minus sign on the right hand side with respect
to (36):

[kα, kβ] = −fαβγ kγ , (42)

We can split, according to the general structure (9), the H-generators JI into HR-
generators Ja (a = 1, . . . , dim(HR)) and Hmatt-generators Jm (m = 1, . . . ,
dim(Hmatt)), and rewrite (40) in the form:

L−1tαL = ksα Vs
s Ks − 1

2
Pa

α Ja − 1

2
Pm

α Jm. (43)

The quantities
Pa

α = −(ksαω
a
s − Wa

α), (44)

generalize the so called momentum maps in N = 2 theories, which provide a Pois-
sonian realization of the isometries tα . One can verify the general property:

ksα R
a
st = DtP

a
α, (45)

where Ds denotes the H-covariant derivative and we have expanded the curvature
R[w] defined in (28) along JI :

R[w] = 1

2
RI
st dφ

s ∧ dφt JI . (46)

These objects are important in the gauging procedure since they enter the definition of
the gauged connections for the fermionfields aswell as gravitino-shiftmatrixSAB (see
Sect. 3). For all those isometries which do not produce compensating transformations
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in HR, Wa
α = 0 and Pa

α are easily computed to be

Pa
α = −ksαω

a
s .

This is the case, in the solvable parametrization, for all the isometries in S , which
include translations in the axionic fields.

In N = 2 models with non-homogeneous scalar geometries, though we cannot
apply the above construction of kα, Pa

α , the momentum maps are constructed from
the Killing vectors as solutions to the differential equations (45). In general, in these
theories, with each isometry tα of the scalar manifold, we can associate the quantities
Pa

α, P
m
α which are related to the corresponding Killing vectors kα through general

relations (see [19] for a comprehensive account of N = 2 theories).

2.2 Vector Sector

We can associate with the electric field strengths FΛ
μν their magnetic duals GΛμν

defined as:

GΛμν ≡ −εμνρσ

∂L4

∂FΛ
ρσ

= RΛΣ FΣ
μν − IΛΣ

∗FΣ
μν, (47)

where we have omitted fermion currents in the expression of GΛ since we are only
focussing for the time being on the bosonic sector of the theory. In ordinaryMaxwell
theory (no scalar fields), IΛΣ = −δΛΣ and RΛΣ = 0, so that GΛμν coincides with
the Hodge-dual of FΛ

μν : GΛ = ∗FΛ.
In terms of FΛ and GΛ the bosonic part of the Maxwell equations read

∇μ(∗FΛ
μν) = 0; ∇μ(∗GΛμν) = 0, (48)

In order to set the stage for the discussion of global symmetries, it is useful to rewrite
the scalar and vector field equations in a different form. Using (47) and the property
that ∗∗FΛ = −FΛ, we can express ∗FΛ and ∗GΛ as linear functions of FΛ and GΛ:

∗FΛ = I−1ΛΣ (RΣΓ FΓ − GΣ) ; (49)
∗GΛ = (RI−1R + I)ΛΣ FΣ − (RI−1)Λ

Σ GΣ, (50)

where, for the sake of simplicity, we have omitted the space-time indices. It is useful
to arrange FΛ and GΛ in a single 2nv-dimensional vector F ≡ (FM) of two-forms:

F =
(
1

2
FM

μν dx
μ ∧ dxν

)
≡

(
FΛ

μν

GΛμν

)
dxμ ∧ dxν

2
, (51)
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in terms of which the Maxwell equations read:

dF = 0, (52)

and (50) are easily rewritten in the following compact form:

∗F = −CM(φs)F, (53)

where

C = (CMN ) ≡
(

0 I
−I 0

)
, (54)

I, 0 being the nv × nv identity and zero-matrices, respectively, and

M(φ) = (M(φ)MN ) ≡
(
(RI−1R + I)ΛΣ −(RI−1)Λ

Γ

−(I−1R)ΔΣ I−1ΔΓ

)
, (55)

is a symmetric, negative-definite matrix, function of the scalar fields. The reader can
easily verify that this matrix is also symplectic, namely that:

M(φ)CM(φ) = C. (56)

This matrix contains IΛΣ and RΛΣ as components, and therefore defines the non-
minimal coupling of the scalars to the vector fields.

After some algebra, we can also rewrite (34) in a compact form as follows

Dμ(∂
μφs) = 1

8
Gst FT

μν∂tM(φ)Fμν, (57)

2.3 Coupling to Gravity

We can now compute the Einstein equations:

Rμν − 1

2
gμν R = T (S)

μν + T (V)
μν + T (F)

μν , (58)

where the three terms on the right hand side are the energy-momentum tensors of
the scalars, vectors and fermionic fields, respectively. The first two can be cast in the
following general form

T (S)
μν = Grs(φ) ∂μφ

r∂νφ
s − 1

2
gμν Grs(φ) ∂ρφ

r∂ρφs, (59)

T (V)
μν =

(
FT

μρ I Fν
ρ − 1

4
gμν (F

T
ρσIFρσ )

)
, (60)
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where in the last equation the vector indicesΛ,Σ have been suppressed for the sake
of notational simplicity. It is convenient for our next discussion, to rewrite, after some
algebra, the right hand side of (60) as follows

T (V)
μν = 1

2
FT

μρ M(φ)Fν
ρ, (61)

so that (58) can be finally recast in the following form:

Rμν = Grs(φ) ∂μφ
r∂νφ

s + 1

2
FT

μρ M(φ)Fν
ρ + · · · , (62)

where the ellipses refer to fermionic terms.
The scalar fields enter the kinetic terms of the vector fields through the matrices

I(φ) and R(φ). As a consequence of this, a symmetry transformation of the scalar
part of the Lagrangian will not in general leave the vector field part invariant.

2.4 Global Symmetry Group

In extended supergravitymodels (N > 1) the (identity sector of the) global symmetry
group G of the scalar action can be promoted to a global invariance [20] of, at least,
the field equations and the Bianchi identities, provided its (non-linear) action on the
scalar fields is associated with a linear transformation on the vector field strengths
FΛ

μν and their magnetic duals GΛμν :

g ∈ G :
⎧⎨
⎩

φr → g � φr (non–linear),(
FΛ

GΛ

)
→ Rv[g] ·

(
FΛ

GΛ

)
=

(
A[g]ΛΣ B[g]ΛΣ

C[g]ΛΣ D[g]ΛΣ

) (
FΣ

GΣ

)
(linear).

(63)

The transformations (63) are clearly a symmetry of the scalar action and of the
Maxwell equations (dF = 0) if FΛ and GΛ were independent, since the latter are
clearly invariant with respect to any linear transformation on FM . The definition
GΛ in (47) as a function of FΛ, ∗FΛ and the scalar fields, which is equivalently
expressed by the twisted self-duality condition (53), however poses constraints on
the 2nv × 2nv matrixRv[g] = (Rv[g]MN ). In order for (63) to be an invariance of the
vector equations of motion (52) and (53) the following conditions have to be met:

(i) for each g ∈ G (more precisely in the identity sector of G), the matrix Rv[g]
should be symplectic, namely

Rv[g]TCRv[g] = C; (64)

(ii) the symplectic, scalar dependent, matrix M(φ) should transform as follows:
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M(g � φ) = Rv[g]−TM(φ)Rv[g]−1, (65)

where we have used the short-hand notation Rv[g]−T ≡ (Rv[g]−1)T .

The reader can indeed verify that conditions (i) and (ii) are sufficient to guarantee
invariance of (53) under (63). The symplectic transformationRv[g], associated with
each element g of G, mixes electric and magnetic field strengths, acting therefore as
a generalized electric–magnetic duality and defines a symplectic representation Rv

of G:
∀g ∈ G

Rv−→ Rv[g] ∈ Sp(2nv, R). (66)

The field strengths and their magnetic duals transform therefore, under the duality
action (63) of G in a 2nv-dimensional symplectic representation.

We denote by Rv∗ = R−T
v the representation dual to Rv, acting on covariant

symplectic vectors, so that, for any g ∈ G:

Rv∗[g] = (Rv∗[g]MN ) = Rv[g]−T = −CRv[g]C
⇒ Rv∗[g]MN = CMP Rv[g]PQ CNQ, (67)

where we have used the property that Rv is a symplectic representation.4

From (64) and (65), it is straightforward to verify the manifest G-invariance of
the scalar field equations and the Einstein equations written in the forms (57) and
(62).

Conditions (i) and (ii) are verified in extended supergravities as a consequence
of supersymmetry. In these theories indeed supersymmetry is large enough as to
connect certain scalar fields to vector fields and, as a consequence of this, symmetry
transformations on the former imply transformations on the latter (more precisely
transformations on the vector field strengths FΛ and their duals GΛ). The existence
of a symplectic representation Rv of G, together with the definition of the matrix
M and its transformation property (65), are built-in in the mathematical structure
of the scalar manifold. More precisely they follow from the definition onMscal of a
flat symplectic structure. Supersymmetry totally fixes M(φ) and thus the coupling
of the scalar fields to the vectors, aside from a freedom in the choice of the basis of
the symplectic representation (symplectic frame) which amounts to a change in the
definition ofM(φ) by a constant symplectic transformation E:

M(φ) → M′(φ) = EM(φ)ET . (68)

Clearly if E ∈ Rv∗[G] ⊂ Sp(2nv,R), its effect onM(φ) can be offset be a redefini-
tion of the scalar fields, by virtue of (65). On the other hand ifE awere block-diagonal
matrix, namely an element of GL(nv,R) ⊂ Sp(2nv,R), it could be reabsorbed in a
local redefinition of the field strengths. Inequivalent symplectic frames are then con-

4The symplectic indicesM, N, . . . are raised (and lowered) with the symplectic matrixC
MN (CMN )

using north-west south-east conventions: XM = C
MN XN (and XM = CNM XN ).
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nected by symplecticmatricesE definedmodulo redefinitions of the scalar and vector
fields, namely by matrices in the coset [5]:

E ∈ GL(nv,R)\Sp(2nv,R)/Rv∗[G], (69)

where the quotient is definedwith respect to the left-action of GL(nv,R) (local vector
redefinitions) and to the right-action ofRv∗[G] (isometry action on the scalar fields).

A change in the symplectic frame amounts to choosing a different embeddingRv

of G inside Sp(2nv, R), which is not unique. This affects the form of the action, in
particular the coupling of the scalar fields to the vectors. However, at the ungauged
level, it only amounts to a redefinition of the vector field strengths and their duals
which has no physical implication. In the presence of a gauging, namely if vectors
are minimally coupled to the other fields, the symplectic frame becomes physically
relevant and may lead to different vacuum-structures of the scalar potential.

We emphasize here that the existence of this symplectic structure on the scalar
manifold is a general feature of all extended supergravites, including those N = 2
models in which the scalar manifold is not even homogeneous (i.e. the isometry
group, if it exists, does not act transitively on the manifold itself). In the N = 2 case,
only the scalar fields belonging to the vector multiplets are non-minimally coupled
to the vector fields, namely enter the matrices I(φ), R(φ), and they span a special
Kähler manifold. On this manifold a flat symplectic bundle is defined,5 which fixes
the scalar dependence of the matrices I(φ), R(φ), aside from an initial choice of the
symplectic frame, and the matrix M(φ) defined in (55) satisfies the property (65).

If the scalar manifold is homogeneous, we can consider at any point the coset
representative L(φ) ∈ G in the symplectic, 2nv-dimensional representation Rv:

L(φ)
Rv−→ Rv[L(φ)] ∈ Sp(2nv, R). (70)

In general the representation Rv[H] of the isotropy group H may not be orthogo-
nal, that is Rv[H] � SO(2nv). In this case we can always change the basis of the
representation6 by means of a matrix S

S = (SN
M) ∈ Sp(2nv, R)/U(n) (71)

such that, in the rotated representation Rv ≡ S−1Rv S:

Rv[H] ≡ S−1Rv[H]S ⊂ SO(2nv) ⇔ Rv[h]TRv[h] = I , ∀h ∈ H. (72)

For any point φ on the scalar manifold define now the hybrid coset-representative
matrix L(φ) = (L(φ)MN ) as follows:

5A special Kähler manifold is in general characterized by the product of a U(1)-bundle, associated
with its Kähler structure (with respect to which the manifold is Hodge Kähler), and a flat symplectic
bundle. See for instance [19] for an in depth account of this issue.
6We label the new basis by underlined indices.
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L(φ) ≡ Rv[L(φ)]S ⇔ L(φ)MN ≡ Rv[L(φ)]MNSN
N . (73)

We also define the matrix

L(φ)M
N ≡ CMP CNQ L(φ)PQ . (74)

Notice that, as a consequence of the fact that the two indices ofL refer to two different
symplectic bases, L itself is not a matrix representation of the coset representative
L. From (11), the property ofRv of being a representation and the definition (73) we
have:

∀g ∈ G : Rv[g] L(φ) = L(g � φ)Rv[h], (75)

where h ≡ h(φ, g) is the compensating transformation. The hybrid index structure
ofL poses no consistency problem since, by (75), the coset representative is acted on
to the left and to the right by two different groups: G and H, respectively. Therefore,
in our notations, underlined symplectic indices M, N, . . . are acted on by H while
non-underlined ones by G.

The M(φ) is then expressed in terms of the coset representative as follows:

M(φ)MN = CMPL(φ)PLL(φ)RL CRN ⇔ M(φ) = CL(φ)L(φ)T C, (76)

where summation over the indexL is understood. The reader can easily verify that
the definition of the matrix M(φ) given above is indeed consistent, in that it is
H-invariant, and thus only depends on the point φ, and transforms according to (65):

∀g ∈ G : M(g � φ) = CL(g � φ)L(g � φ)TC

= CRv[g] L(φ)(Rv[h]−1 Rv[h]−T )L(φ)TRv[g]TC

= Rv[g]−TCL(φ)L(φ)TCRv[g]−1

= Rv[g]−TM(φ)Rv[g]−1, (77)

wherewe have used (75), the orthogonality property (72) ofRv[h] and the symplectic
property ofRv[g]. From the definition (76) ofM in terms of the coset representative,
it follows that for symmetric scalar manifolds the scalar Lagrangian (33) can also be
written in the equivalent form:

Lscal = e

2
Gst(φ)∂μφ

s ∂μφt = e

8
k Tr

(M−1∂μMM−1∂μM)
, (78)

where k depends on the representation Rv of G.
The transformation properties of the matrices IΛΣ and RΛΣ under G can be

inferred from (65) and can be conveniently described by defining the complex sym-
metric matrix

NΛΣ ≡ RΛΣ + i IΛΣ. (79)

Under the action of a generic element g ∈ G, N transforms as follows:
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N(g � φ) = (C[g] + D[g]N(φ))(A[g] + B[g]N(φ))−1, (80)

where A[g], B[g], C[g], D[g] are the nv × nv blocks of the matrixRv[g] defined in
(63).

Parity. We have specified above that only the elements of G which belong to the
identity sector, namely which are continuously connected to the identity, are asso-
ciated with symplectic transformations. There may exist isometries g ∈ G which do
not belong to the identity sector and are associated with anti-symplectic matrices
A[g]:

M(g � φ) = A[g]−T M(φ)A[g] ; A[g]TCA[g] = −C. (81)

Anti-symplectic matrices do not close a group but can be expressed as the product
of a symplectic matrix S times a fixed anti-symplectic one P, that is A = S P. In a
suitable symplectic frame, the matrix P can be written in the following form:

P =
(
I 0
0 −I

)
. (82)

Due to their being implemented by anti-symplectic duality transformations (63),
these isometries leave (53) invariant up to a sign which can be offset by a parity
transformation, since under parity one has ∗ → −∗ . Indeed one can show that
these transformations are a symmetry of the theory provided they are combined with
parity. Notice that this poses no problem with the generalized theta-term since, as
parity reverses the sign of εμνρσFΛ

μνF
Σ
ρσ , under P we have:

IΛΣ → IΛΣ ; RΛΣ → −RΛΣ, (83)

see (80), so that the corresponding term εμνρσFΛ
μνF

Σ
ρσRΛΣ in the Lagrangian is

invariant. The global symmetry group of the theory is therefore described by a group

G = G0 × Z2 = {G0, G0 · p}, (84)

where G0 is the proper duality group defined by the identity sector of G and p is
the element of G which corresponds, in a suitable symplectic frame, to the anti-
symplectic matrix P: P = A[p].
Example. Let us discuss the simple example of the lower-half complex plane

G/H = SL(2,R)/SO(2). (85)
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This manifold is parametrized by a complex coordinate z, with Im(z) < 0. As sym-
plectic representation of G = SL(2,R) we can choose the fundamental representa-
tion and the following basis of generators of g = sl(2,R):

sl(2,R) = {σ 1, i σ 2, σ 3} =
{(

0 1
1 0

)
,

(
0 1

−1 0

)
,

(
1 0
0 −1

)}
. (86)

The subalgebra S of upper-triangular generators

S = {σ 3, σ+}, σ+ ≡
(
0 1
0 0

)
. (87)

defines the solvable parametrization φs = (ϕ, χ), in which the coset representative
L has the following form:

L(ϕ, χ) ≡ eχσ+
e

ϕ

2 σ
3 =

(
1 χ

0 1

)(
eϕ/2 0
0 e−ϕ/2

)
∈ eS . (88)

The relation between the solvable coordinates and z is

z = z1 + i z2 = χ − i eϕ. (89)

The metric reads:

ds2 = dϕ2

2
+ 1

2
dχ2e−2ϕ = 1

2z22
dzdz̄ ; (90)

and the matrixM(φ)MN reads:

M(z, z̄)MN = CMP L(φ)PL L(φ)RL CRN = 1

z2

(
1 −z1

−z1 |z|2
)
. (91)

Thegeneric isometrywhich is continuously connected to the identity is a holomorphic
transformation of the form

z → z′ = az + b

cz + d
, ad − bc = 1, (92)

corresponding to the SL(2,R) transformation S =
(
a b
c d

)
with det(S) = 1. The

reader can easily verify that:

M(z′, z̄′) = S−TM(z, z̄)S−1. (93)
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We also have the following isometry:

z → −z̄, (94)

which is not in the identity sector of the isometry group, and corresponds to the
anti-symplectic transformation P = diag(1,−1) in that:

M(−z̄, −z) = P−TM(z, z̄)P−1. (95)

This corresponds to a parity transformation whose effect is to change the sign of the
pseudo-scalar χ while leaving the scalar ϕ inert:

parity : χ → −χ, ϕ → ϕ. (96)

Notice that the correspondence between the linear transformation P and the isometry
(94) exists since P is an outer-automorphism of the isometry algebra g = sl(2,R),
namely:

P−1sl(2,R)P = sl(2,R), (97)

while P is not in SL(2,R) and the above transformation cannot be offset by any
conjugation by SL(2,R) elements. Analogous outer-automorphisms implementing
parity can be found in other extended supergravities, including the maximal one in
which G = E7(7) × Z2 [21].

Solitonic solutions, electric-magnetic charges and duality. Ungauged supergravities
only contain fields which are neutral with respect to the U(1)nv gauge-symmetry of
the vector fields. These theories however feature solitonic solutions, namely con-
figurations of neutral fields which carry U(1)nv electric-magnetic charges. These
solutions are typically black holes in four dimensions or black branes in higher and
have been extensively studied in the literature. On a charged dyonic solution of this
kind, we define the electric and magnetic charges as the integrals7:

eΛ ≡
∫
S2
GΛ = 1

2

∫
S2
GΛμν dx

μ ∧ dxν,

mΛ ≡
∫
S2
FΛ = 1

2

∫
S2
FΛ

μν dx
μ ∧ dxν,

(98)

where S2 is a spatial two-sphere. They define a symplectic vector Γ M :

Γ = (Γ M) =
(
mΛ

eΛ

)
=

∫
S2

FM . (99)

7The electric and magnetic charges (e,m) are expressed in the rationalized-Heaviside-Lorentz
(RHL) system of units.
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These are thequantized charges, namely they satisfy theDirac-Schwinger-Zwanziger
quantization condition for dyonic particles [22–24]:

Γ T
2 CΓ1 = mΛ

2 e1Λ − mΛ
1 e2Λ = 2π � c n; n ∈ Z. (100)

At the quantum level, the dyonic charges therefore belong to a symplectic lattice and
this breaks the duality group G to a suitable discrete subgroup G(Z) which leaves
this symplectic lattice invariant:

G(Z) ≡ G ∩ Sp(2nv,Z). (101)

This discrete symmetry group of surviving quantum corrections (or a suitable exten-
sion thereof) was conjectured in [3] to encode all known string/M-theory dualities.

2.5 Symplectic Frames and Lagrangians

As pointed out earlier, the duality actionRv[G] ofG depends on which elements, in a
basis of the representation space, are chosen to be the nv electric vector fields (appear-
ing in the Lagrangian) and which their magnetic duals namely on the choice of the
symplectic framewhich determines the embedding of the groupG inside Sp(2nv, R).
Different choices of the symplectic frame may yield inequivalent Lagrangians (that
is Lagrangians that are not related by local field redefinitions) with different global
symmetries. Indeed, the global symmetry group of the Lagrangian8 is defined as the
subgroup Gel ⊂ G, whose duality action is linear on the electric field strengths

g ∈ Gel : Rv[g] =
(
AΛ

Σ 0
CΛΣ DΛ

Σ

)
, (102)

where D = A−T by the symplectic condition, so that

g ∈ Gel : FΛ → F ′Λ = AΛ
Σ FΣ ,

GΛ → G ′
Λ = CΛΣ FΣ + DΛ

Σ GΣ. (103)

Indeed, as the reader can verify using (80), under the above transformation the matri-
ces I, R transform as follows:

IΛΣ → DΛ
ΠDΣ

Δ IΠΔ; RΛΣ → DΛ
ΠDΣ

Δ RΠΔ + CΛΠ DΣ
Π, (104)

8Here we only consider local transformations on the fields.
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and the consequent variation of the Lagrangian reads

Lb = 1

8
CΛΠ DΣ

Πεμνρσ FΛ
μνF

Σ
ρσ , (105)

which is a total derivative since CΛΠ DΣ
Π is constant. These transformations are

called Peccei-Quinn transformations and follow from shifts in certain axionic scalar
fields. They are a symmetry of the classical action, while invariance of the pertur-
bative path-integral requires the variation (105), integrated over space-time, to be
proportional through an integer to 2π�. This constrains the symmetries to belong to
a discrete subgroupG(Z) ofGwhose duality action is implemented by integer-valued
matrices Rv[g]. Such restriction of G to G(Z) in the quantum theory was discussed
earlier as a consequence of the Dirac-Schwinger-Zwanziger quantization condition
for dyonic particles (100).

From (103) we see that, while the vector field strengths FΛ
μν and their duals GΛμν

transform together under G in the (2nv–dimensional) symplectic representationRv,
the vector field strengths alone transform linearly under the action ofGel in a smaller
representation nv, defined by the A-block in (102).

Different symplectic frames of a same ungauged theorymay originate from differ-
ent compactifications. A distinction here is in order. In N ≥ 3 theories, scalar fields
always enter the same multiplets as the vector fields. Supersymmetry then implies
their non-minimal coupling to the latter and that the scalar manifold be endowedwith
a symplectic structure associating with each isometry a constant symplectic matrix.
In N = 2 theories, scalar fields may sit in vector multiplets or hypermultiplets. The
former span a special Kähler manifold, the latter a quaternionic Kähler one, so that
the scalar manifold is always factorized in the product of the two:

M (N=2)
scal = Msk × Mqk. (106)

The scalar fields in the hypermultiplets are not connected to vector fields through
supersymmetry and consequently they do not enter the matrices I(φ) andR(φ). As
a consequence of this the isometries of the Quaternionic-Kähler manifolds spanned
by these scalars are associated with trivial duality transformations

g ∈ isom. of Mqk ⇒ Rv[g] = I , (107)

while only Msk features a flat symplectic structure which defines the embedding
of its isometry group inside Sp(2nv,R) and the couplings of the vector multiplet-
scalars to the vector fields through the matrix M(φ). It is important to remark that
such structure on a special Kähler manifold exists even if the manifold itself is not
homogeneous. This means that one can still define the symplectic matrix L(φ) and,
in terms of the components IΛΣ andRΛΣ , also the matrixM(φ) as in (76), although
L(φ) has no longer the interpretation of a coset representative for non-homogeneous
manifolds.
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It is convenient for later purposes to rewrite the transformation properties of the
bosonic fields the group G, discussed in this section, in the following infinitesimal
form:

G :
{
δ L = Λα tα L ,

δFM
μν = −Λα (tα)NM FN

μν,

in terms of the infinitesimal generators tα of G introduced earlier and, satisfying the
relation (36). The matrices (tα)MN define the infinitesimal duality action of G and
are symplectic generators

(tα)M
N CNP = (tα)P

N CNM M, N, . . . = 1, . . . , 2nv . (108)

This is equivalently stated as the property of the tensor tαMN ≡ (tα)MP CPN of being
symmetric in M N:

(tα)MN = (tα)NM . (109)

2.6 The Fermionic Sector

Fermions in supergravity transform covariantly with respect to the isotropy group H
of the scalar manifold, which has the general form (9), while they do not transform
under G, as opposed to the bosonic fields. Bosons and fermions have therefore defi-
nite transformation properties with respect to different groups of internal symmetry.
The matrix L, defining the coset representative for homogeneous scalar manifolds,
transforms under the action of G to the left and of H to the right, according to (11)

G → L ← H, (110)

and thus has the right index structure to “mediates” in the Lagrangian between bosons
and fermions. This means that we can constructG-invariant terms by contractingL to
the left by bosons (scalars, vectors and their derivatives), and to the right by fermions

(Bosons) � L(φ) � (Fermions), (111)

the two � symbols denote some contraction of indices: G-invariant to the left and
H-invariant to the right. The “Boson” part of (111) may also contain L and its
derivatives. These are the kind of terms occurring in the field equations. If under a
transformation g ∈ G, symbolically:

Bosons → Bosons′ = Bosons � g−1, (112)
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and the fermions are made to transform under the compensating transformation
h(φ, g) in (11):

Fermions → Fermions′ = h(φ, g) � Fermions. (113)

Using (11) we see that (111) remains invariant:

(Bosons)′ � L(g � φ) � (Fermions′) = (Bosons) � L(φ) � (Fermions). (114)

The Lagrangian is manifestly invariant under local H-transformations since the
covariant derivatives on the fermion fields contain the H-connection9 wμ:

Dμξ = ∇μξ + wμ � ξ, (115)

where, as usual, the � symbol denotes the action of the H-valued connection wμ on
ξ in the corresponding H-representation. The reader can verify that (115) is indeed
covariant under localH-transformations (113), provided w is transformed according
to (24). As opposed to the gauge groups we are going to introduce by the gauging
procedure,which involveminimal couplings to the vector fields of the theory, the local
H-symmetry group of the ungauged theory is not gauged by the vector fields, but by a
composite connection wμ, which is a function of the scalar fields and their derivatives.
The minimal coupling wμ � ξ is an example of the boson-fermion interaction term
(111).

It is useful to write the coupling (111) in the following form:

f(φ,Bosons) � (Fermions), (116)

where we have introduced the H-covariant composite field:

f(φ,Bosons) ≡ (Bosons) � L(φ), (117)

obtained by dressing the bosonic fields and their derivatives with the coset-
representative so as to obtain anH-covariant quantity with the correctH-index struc-
ture to contract with fermionic currents. Indeed under a G-transformation

f(g � φ,Bosons′) ≡ f(φ,Bosons) � h(φ, g)−1, (118)

The manifest H-invariance of the supergravity theory requires the supersymme-
try transformation properties of the femionic fields to be H-covariant. Indeed such
transformation rules, which in rigid supersymmetric theories (i.e. theories which
are invariant only under global supersymmetry) can be schematically described
as follows10:

9We define wμ ≡ ws ∂μφ
s.

10This is a schematic representation in which we have suppressed the Lorentz indices and gamma-
matrices.
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δFermion =
∑
Bosons

∂Boson · ε, (119)

and in supergravity theories have the following general H-covariant form11

δFermion =
∑
Bosons

f(φ,Bosons) · ε, (120)

where the space-time derivatives of the bosonic fields are dressed with the scalars
in the definition of f(φ,Bosons). Examples of composite fields f(φ,Bosons) are
the vielbein of the scalar manifold (pulled back on space-time) Pμ ≡ Ps ∂μφ

s, the
H-connection wμ in (115), the dressed vector field-strengths

F(φ, ∂A)Mμν ≡ −(L(φ)−1)MN FM
μν, (121)

or the T-tensor, to be introduced later, in which the bosonic field to be dressed by
the coset representative is the embedding tensor Θ defining the choice of the gauge
algebra.

3 Gauging Supergravities

We have reviewed the field content and the Lagrangian of ungauged supergravity, as
well as the action of the global symmetry group G. Now we want to discuss how to
construct a gauged theory from an ungauged one.

In the following, we will employ a covariant formalism in which the possible
gaugings will be encoded into an object called embedding tensor, that can be char-
acterized group-theoretically [5, 16, 17].

3.1 The Gauging Procedure Step-by-Step

As anticipated in the Introduction, the gauging procedure consists in promoting a
suitable global symmetry group Gg ⊂ Gel of the Lagrangian to a local symmetry
gauged by the vector fields of the theory. This requirement gives us a preliminary
condition

dim(Gg) ≤ nv . (122)

11The gravitino field has an additional term Dε which is its variation as the gauge field of local
supersymmetry.
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As explained in Sect. 2.5, different symplectic frames correspond to ungauged
Lagrangians with different global symmetry groups Gel and thus to different choices
for the possible gauge groups.

The first condition for the global symmetry subgroupGg to become a viable gauge

group, is that there should exist a subset {AΛ̂} of the vector fields12 which transform
under the co-adjoint representation of the duality action of Gg. These fields will
become the gauge vectors associated with the generators XΛ̂ of the subgroup Gg.

We shall name electric frame the symplectic frame defined by our ungauged
Lagrangian and labeled by hatted indices.

Note that, once the gauge group is chosen within Gel, its action on the various
fields is fixed, being it defined by the action of Gg as a global symmetry group of
the ungauged theory (duality action on the vector field strengths, non-linear action
on the scalar fields and indirect action through H-compensators on the fermionic
fields): fields are thus automatically associated with representations of Gg.

After the initial choice ofGg inGel, the first part of the procedure is quite standard
in the construction of non-abelian gauge theories: we introduce a gauge-connection,
gauge-curvature (i.e. non-abelian field strengths) and covariant derivatives. We will
also need to introduce an extra topological term needed for the gauging of the Peccei-
Quinn transformations (105). This will lead us to construct a gauged Lagrangian
L (0)

gauged withmanifest localGg-invariance. Consistency of the constructionwill imply
constraints on the possible choices of Gg inside G. The minimal couplings will
however break supersymmetry.

The second part of the gauging procedure consists in further deforming the
Lagrangian L (0)

gauged in order to restore the original supersymmetry of the ungauged
theory and, at the same time, preserving local Gg-invariance.

Step 1. Choice of the gauge algebra. We start by introducing the gauge connection:

Ωg = Ωgμdx
μ ; Ωgμ ≡ g AΛ̂

μ XΛ̂, (123)

g being the coupling constant. The gauge-algebra relations can be written in the form

[
XΛ̂, XΣ̂

] = fΛ̂Σ̂
Γ̂ XΓ̂ , (124)

and are characterized by the structure constants fΛ̂Σ̂
Γ̂ . This closure condition should

be regarded as a constraint on XΛ̂, since the structure constants are not generic but
fixed in terms of the action of the gauge generators on the vector fields as global
symmetry generators of the original ungauged theory. To understand this, let us
recall that Gg is a subgroup of Gel and thus its electric-magnetic duality action, as
a global symmetry group, will have the form (102). Therefore the duality action on
the vector field strengths and their duals of the infinitesimal generators XΛ̂ will then
by represented by a symplectic matrix of the form (see Eq. (102))

12We describe by hatted-indices those pertaining to the symplectic frame in which the Lagrangian
is defined.



68 A. Gallerati and M. Trigiante

(
XΛ̂

)M̂
N̂ =

(
XΛ̂

Γ̂
Σ̂ 0

XΛ̂ Γ̂ Σ̂ XΛ̂ Γ̂
Δ̂

)
, (125)

whereXΛ̂
Γ̂

Σ̂ andXΛ̂ Γ̂
Δ̂ are the infinitesimal generators of theA andD-blocks in (102)

respectively,whileXΛ̂ Γ̂ Σ̂ describes the infinitesimalC-block. It isworth emphasizing
here that we do not identify the generator XΛ̂ with the symplectic matrix defining
its electric-magnetic duality action. As pointed our in Sect. 2.5, there are isometries
in N = 2 models which do not have duality action, see (107), namely for which the
matrix in (125) is null.

The variation of the field strengths under an infinitesimal transformation ξ Λ̂ XΛ̂,
whose duality action is described by (125), is:

δFM̂ = ξ Λ̂ (XΛ̂)
M̂
N̂ FN̂ ⇒

{
δFΛ̂ = ξ Γ̂ XΓ̂

Λ̂
Σ̂ FΣ̂ ,

δGΛ̂ = ξ Γ̂ XΓ̂ Λ̂Σ̂F
Σ̂ + ξ Γ̂ XΓ̂ Λ̂

Σ̂ GΣ̂ .
(126)

The symplectic condition on the matrix XΛ̂ implies the properties:

XΛ̂M̂
P̂ CN̂P̂ = XΛ̂N̂

P̂ CM̂P̂ ⇔
{
XΛ̂

Σ̂
Γ̂ = − XΛ̂Γ̂

Σ̂ ,

XΛ̂ Γ̂ Σ̂ = XΛ̂ Σ̂Γ̂ .
(127)

The condition that AΛ̂
μ transform in the co-adjoint representation of the gauge group:

δFΛ̂ = ξ Γ̂ fΓ̂ Σ̂
Λ̂FΣ̂ , (128)

together with the transformation properties (126), lead us to identify the structure
constants of the gauge group in (124) with the diagonal blocks of the symplectic
matrices XΛ̂:

fΓ̂ Σ̂
Λ̂ = −XΓ̂ Σ̂

Λ̂, (129)

so that the closure condition reads

[
XΛ̂, XΣ̂

] = − XΛ̂Σ̂
Γ̂ XΓ̂ , (130)

and is a quadratic constraint on the tensorXΛ̂
M̂
N̂ . The identification (129) also implies

X(Γ̂ Σ̂)
Λ̂ = 0. (131)

The closure condition (130) can thus be interpreted in two equivalent ways:

◦ the vector fields AΛ̂
μ transform in the co-adjoint representation of Gg under its

action as global symmetry, namely
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nv = co-adj(Gg); (132)

◦ the gauge generators XΛ̂ are invariant under the action of Gg itself:

δΛ̂XΣ̂ ≡ [XΛ̂, XΣ̂ ] + XΛ̂Σ̂
Γ̂ XΓ̂ = 0. (133)

Step 2. Introducing gauge curvatures and covariant derivatives. Having defined the
gauge connection (123) we also define its transformation property under a local
Gg-transformation g(x) ∈ Gg:

Ωg → Ω ′
g = gΩg g−1 + dg g−1 = g A′Λ̂ XΛ̂. (134)

Under an infinitesimal transformation g(x) ≡ I + g ζ Λ̂(x)XΛ̂, (134) implies the fol-
lowing transformation property of the gauge vectors:

δAΛ̂
μ = Dμζ

Λ̂ ≡ ∂μζ
Λ̂ + g AΣ̂

μ XΣ̂Γ̂
Λ̂ ζ Γ̂ , (135)

where we have introduced theGg-covariant derivative of the gauge parameterDμζ
Λ̂.

As usual in the construction of non-abelian gauge-theories, we define the gauge
curvature13

gF = g FΛ̂ XΛ̂ = g

2
FΛ̂

μν dx
μ ∧ dxν XΛ̂ ≡ dΩg − Ωg ∧ Ωg, (136)

which, in components, reads:

FΛ̂
μν = ∂μA

Λ̂
ν − ∂νA

Λ̂
μ − g fΓ̂ Σ̂

Λ̂ AΓ̂
μ AΣ̂

ν = ∂μA
Λ̂
ν − ∂νA

Λ̂
μ + g XΓ̂ Σ̂

Λ̂ AΓ̂
μ AΣ̂

ν .

(137)
The gauge curvature transforms covariantly under a transformation g(x) ∈ Gg:

F → F ′ = gF g−1, (138)

and satisfies the Bianchi identity:

DF ≡ dF − Ωg ∧ F + F ∧ Ωg = 0 ⇔ DFΛ̂ ≡ dFΛ̂ + g XΣ̂Γ̂
Λ̂AΣ̂ ∧ FΛ̂ = 0,

(139)
where we have denoted by DFΛ̂ the Gg-covariant derivative acting on FΛ̂. In the
original ungauged Lagrangian we then replace the abelian field strengths by the new
Gg-covariant ones:

13Here we use the following convention for the definition of the components of a form: ω(p) =
1
p! ωμ1...μp dx

μ1 ∧ . . . dxμp .
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∂μA
Λ̂
ν − ∂νA

Λ̂
μ → ∂μA

Λ̂
ν − ∂νA

Λ̂
μ + g XΓ̂ Σ̂

Λ̂ AΓ̂
μ AΣ̂

ν . (140)

After having given the gauge fields a Gg-covariant description in the Lagrangian
through the non-abelian field strengths, we now move to the other fields. The next
step in order to achieve local invariance of the Lagrangian under Gg consists in
replacing ordinary derivatives by covariant ones

∂μ −→ Dμ = ∂μ − g AΛ̂
μ XΛ̂. (141)

As it can be easily ascertained, the covariant derivatives satisfy the identity which is
well known from gauge theories:

D2 = −gF = −g FΛ̂ XΛ̂ ⇔ [Dμ, Dν] = −g FΛ̂
μν XΛ̂. (142)

Aside from the vectors and the metric, the remaining bosonic fields are the scalars
φs, whose derivatives are covariantized using the Killing vectors kΛ̂ associated with
the action of the gauge generator XΛ̂ as an isometry:

∂μ −→ Dμφ
s = ∂μφ

s − g AΛ̂ ks
Λ̂
(φ), (143)

The replacement (141), and in particular (143), amounts to the introduction of mini-
mal couplings for the vector fields.

Care is needed for the fermion fields which, as we have discussed above, do not
transform directly under G, but under the corresponding compensating transforma-
tions inH. This was taken into account by writing theH-connectionw in the fermion
H-covariant derivatives. Now we need to promote such derivatives to Gg-covariant
ones, by minimally coupling the fermions to the gauge fields. This is effected by
modifying the H-connection.

For homogeneous scalar manifolds redefine the left-invariant 1-form Ω (pulled-
back on space-time), defined on them in (18), by a gauged one obtained by covari-
antizing the derivative on the coset representative:

Ωμ = L−1∂μL −→ Ω̂μ ≡ L−1DL = L−1
(
∂μ − g AΛ̂

μ XΛ̂

)
L = P̂μ + ŵμ

(144)
where, as usual, the space-time dependence of the coset representative is defined by
the scalar fields φs(x): ∂μL ≡ ∂sL ∂μφ

s.
The gauged vielbein and connection are related to the ungauged ones as follows:

P̂μ = Pμ − g AΛ̂
μ PΛ̂; ŵμ = wμ − g AΛ̂

μ wΛ̂. (145)

The matrices PΛ̂, wΛ̂ begin the projections onto K and H, respectively, of L−1XΛ̂L:

PΛ̂ ≡ L−1XΛ̂L
∣∣
K

; wΛ̂ ≡ L−1XΛ̂L
∣∣
H
. (146)
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Using (43) we can express the above quantities as follows:

PΛ̂ = ks
Λ̂
Vs

s Ks ; wΛ̂ = −1

2
Pa

Λ̂
Ja − 1

2
Pm

Λ̂
Jm, (147)

where Pa
Λ̂
were defined in Sect. 2.1.

For non-homogeneous scalar manifolds we cannot use the construction (144)
based on the coset representative. Nevertheless we can still define Pm

Λ̂
, Pa

Λ̂
in

terms of the Killing vectors, see discussion below (45). From these quantities one
then defines gauged vielbein P̂μ and H-connection ŵμ using (145) and (147), where
now Ks should be intended as a basis of the tangent space to the manifold at the
origin (and not as isometry generators) and {Ja, Jm} a basis of the holonomy group.

Notice that, as a consequence of (147) and (145), the gauged vielbein 1-forms
(pulled-back on space-time) can be written as the ungauged ones in which the deriva-
tives on the scalar fields are replaced by the covariant ones (143). This is readily seen
by applying the general formula (40) for homogeneous manifolds to the isometry
XΛ̂ in (144), and projecting both sides of this equation on the coset space K:

P̂μ = Ps Dμz
s. (148)

Consequently the replacement (143) is effected by replacing everywhere in the
Lagrangian Pμ by P̂μ.

Consider now a local Gg-transformation g(x) whose effect on the scalars is
described by (11): gL(φ) = L(g � φ) h(φ, g). From (144) and from the fact that
D is the G-covariant derivative, the reader can easily verify that:

Ω̂μ(g � φ) = h Ω̂μ(φ) h
−1 + hdh−1 ⇒

{
P̂(g � φ) = h P̂(φ) h−1,

ŵ(g � φ) = h ŵ(φ) h−1 + hdh−1,

(149)
where h = h(φ, g). By deriving (144) we find the gauged Maurer-Cartan equations:

dΩ̂ + Ω̂ ∧ Ω̂ = −gL−1FL, (150)

where we have used (142). Projecting the above equation onto K and H we find the
gauged version of (27), (28):

DP̂ ≡ dP̂ + ŵ ∧ P + P ∧ ŵ = −g FΛ̂ PΛ̂, (151)

R̂(ŵ) ≡ dŵ + ŵ ∧ ŵ = −P ∧ P − g FΛ̂ wΛ̂. (152)

The above equations are manifestly Gg-invariant. Using (148) one can easily verify
that the gauged curvature 2-form (with value in H) can be written in terms of the
curvature components Rrs of the manifold, given in (29), as follows:
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R̂(ŵ) = 1

2
Rrs Dφr ∧ Dφs − g FΛ̂ wΛ̂. (153)

The gauge-covariant derivatives, when acting on a generic fermion field ξ , is defined
using ŵμ, so that (115) is replaced by

Dμξ = ∇μξ + ŵμ � ξ. (154)

Summarizing, local invariance of the action underGg requires replacing everywhere
in the Lagrangian the abelian field strengths by the non abelian ones, (140) and the
ungauged vielbein Pμ and H-connection wμ by the gauged ones:

Pμ → P̂μ; wμ → ŵμ. (155)

Clearly supersymmetry of the gauged actionwould require as a necessary, though not
sufficient, condition to perform the above replacements also in the supersymmetry
transformation laws of the fields.

Step 3. Introducing topological terms. If the symplectic duality action (125) ofXΛ̂ has
a non-vanishing off-diagonal blockXΛ̂Γ̂ Σ̂ , that is if the gauge transformations include

Peccei-Quinn shifts, then an infinitesimal (local) gauge transformation ξ Λ̂(x)XΛ̂

would produce a variation of the Lagrangian of the form (105):

δLb = −g

8
ξ Λ̂(x)XΛ̂Γ̂ Σ̂ εμνρσ FΓ̂

μνF
Σ̂
ρσ . (156)

Being ξ Λ̂(x) a local parameter, the above term is no longer a total derivative and
thus the transformation is not a symmetry of the action. In [25] it was proven that
the variation (156) can be canceled by adding to the Lagrangian a topological term
of the form

Ltop. = −1

3
g εμνρσ XΛ̂Γ̂ Σ̂ AΛ̂

μ AΣ̂
ν

(
∂ρA

Γ̂
σ + 3

8
g XΔ̂Π̂

Γ̂ AΔ̂
ρ AΠ̂

σ

)
, (157)

provided the following condition holds

X(Λ̂Γ̂ Σ̂) = 0. (158)

Wewill see in the following that condition (158), together with the closure constraint
(130), is part of a set of constraints on the gauge algebra which are also implied by
supersymmetry. Indeed, even if the LagrangianL (0)

g constructed so far is locallyGg-
invariant, the presence of minimal couplings explicitly breaks both supersymmetry
and the duality global symmetry G.

Choice of the gauge algebra and the embedding tensor. We have seen that the
gauging procedure corresponds to promoting some suitable subgroup Gg ⊂ Gel to a
local symmetry. This subgroup is defined selecting a subset of generators within the
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global symmetry algebra g of G. Now, all the information about the gauge algebra
can be encoded in a Gel -covariant object θ , which expresses the gauge generators as
linear combinations of the global symmetry generators tα of the subgroup Gel ⊂ G

XΛ̂ = θΛ̂
σ tσ ; θΛ̂

σ ∈ nv × adj(Gel), (159)

with Λ̂ = 1, . . . , nv and with σ = 1, . . . , dim(Gel). The advantage of this descrip-
tion is that the Gel -invariance of the original ungauged LagrangianL is restored at
the level of the gauged Lagrangian Lgauged, to be constructed below, provided θΛ̂

σ

is transformed under Gel as well. However, the full global symmetry group G of the
field equations and Bianchi identities is still broken, since the parameters θΛ̂

σ can
be viewed as of electric charges, whose presence manifestly break electric-magnetic
duality invariance. In other words we are working in a specific symplectic frame
defined by the ungauged Lagrangian we started from.

We shall give later on a definition of the gauging procedure which is completely
freed from the choice of the symplectic frame. For the time being, it is useful to give
a description of the gauge algebra (and of the consistency constraints on it) which
does not depend on the original symplectic frame, namely which is manifestly G-
covariant. This is done by encoding all information on the initial symplectic frame
in a symplectic matrix E ≡ (EM

N ) and writing the gauge generators, through this
matrix, in terms of new generators

XM = (XΛ, X
Λ) (160)

which are at least twice as many as the XΛ̂:

(
XΛ̂

0

)
= E

(
XΛ

XΛ

)
. (161)

This description is clearly redundant and this is the price we have to pay in order
to have a manifestly symplectic covariant formalism. We can then rewrite the gauge
connection in a symplectic invariant fashion

AΛ̂ XΛ̂ = AΛ̂ EΛ̂
Λ XΛ + AΛ̂ EΛ̂Λ XΛ = AΛ

μ XΛ + AΛμ X
Λ = AM

μ XM , (162)

where we have introduced the vector fields AΛ
μ and the corresponding dual ones AΛμ,

that can be regarded as components of a symplectic vector

AM
μ ≡ (AΛ

μ , AΛμ). (163)

These are clearly not independent, since they are all expressed in terms of the only
electric vector fields AΛ̂ of our theory (those entering the vector kinetic terms):

AΛ
μ = EΛ̂

Λ AΛ̂
μ , AΛμ = EΛ̂Λ AΛ̂

μ . (164)
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In what follows, it is useful to adopt this symplectic covariant description in terms
of 2nv vector fields AM

μ and 2nv generators XM , bearing in mind the above definitions
through the matrix E, which connects our initial symplectic frame to a generic one.

The components of the symplectic vectorXM are generators in the isometry algebra
g and thus can be expanded in a basis tα of generators of G:

XM = ΘM
α tα, α = 1, . . . , dim(G). (165)

The coefficients of this expansion ΘM
α represent an extension of the definition of θ

to a G-covariant tensor:

θΛ
σ ��� ΘM

α ≡ (θΛα, θΛ
α); ΘM

α ∈ Rv∗ × adj(G), (166)

which describes the explicit embedding of the gauge group Gg into the global sym-
metry group G, and combines the full set of deformation parameters of the original
ungauged Lagrangian. The advantage of this description is that it allows to recast all
the consistency conditions on the choice of the gauge group into G-covariant (and
thus independent of the symplectic frame) constraints on Θ .

We should however bear in mind that, just as the redundant set of vectors AM
μ , also

the components of ΘM
α are not independent since, by (161),

θΛ̂
α = EΛ̂

M ΘM
α , 0 = EΛ̂M ΘM

α, (167)

so that
dim(Gg) = rank(θ) = rank(Θ). (168)

The above relations (167) imply for ΘM
α the following symplectic-covariant condi-

tion:
ΘΛ

α ΘΛβ − ΘΛ
β ΘΛα = 0 ⇔ CMNΘM

αΘN
β = 0. (169)

Vice versa, one can show that if ΘM
α satisfies the above conditions, there exists a

symplectic matrix E which can rotate it to an electric frame, namely such that (167)
are satisfied for some θΛ̂

α . Equations (169) define the so-called locality constraint
on the embedding tensor ΘM

α and they clearly imply:

dim(Gg) = rank(Θ) ≤ nv , (170)

which is the preliminary consistency condition (122).
The electric-magnetic duality action of XM , in the generic symplectic frame

defined by the matrix E, is described by the tensor:

XMN
P ≡ ΘM

α tα N
P = E−1

M
M̂E−1

N
N̂ XM̂N̂

P̂ EP̂
P. (171)
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For each value of the index M, the tensor XMN
P should generate symplectic transfor-

mations. This implies that:

XMNP ≡ XMN
QCQP = XMPN , (172)

which is equivalent to (127). The remaining linear constraints (131), (158) on the
gauge algebra can be recast in terms of XMN

P in the following symplectic-covariant
form:

X(MNP) = 0 ⇔

⎧⎪⎨
⎪⎩
2X(ΛΣ)

Γ = XΓ
ΛΣ,

2X(ΛΣ)
Γ = XΓ

ΛΣ,

X(ΛΣΓ ) = 0.

(173)

Notice that the second of equations (173) implies that, in the electric frame in which
XΛ̂ = 0, also the B-block (i.e. the upper-right one) of the infinitesimal gauge gen-
erators Rv[XΛ̂] vanishes, being XΓ̂

Λ̂Σ̂ = 0, so that the gauge transformations are
indeed in Gel. Moreover from the first of equation (173), equation (131) follows in
the electric frame.

Finally, the closure constraints (130) can be written, in the generic frame, in the
following form:

[XM, XN ] = −XMN
P XP ⇔ ΘM

αΘN
βfαβ

γ + ΘM
α tα N

PΘP
γ = 0. (174)

The above condition can be rephrased, in a G-covariant fashion, as the condition
that the embedding tensor ΘM

α be invariant under the action of the gauge group it
defines:

δMΘN
α = 0. (175)

Summarizing we have found that consistency of the gauging requires the following
set of linear and quadratic algebraic, G-covariant constraints to be satisfied by the
embedding tensor:

◦ Linear constraint:

X(MNP) = 0, (176)

◦ Quadratic constraints:

CMNΘM
αΘN

β = 0, (177)

[XM, XN ] = −XMN
P XP. (178)

The linear constraint (176) amounts to a projection of the embedding tensor on a
specific G-representation RΘ in the decomposition of the product Rv∗ × Adj(G)

with respect to G
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Rv∗ × Adj(G)
G−→ RΘ + . . . (179)

and thus can be formally written as follows:

PΘ · Θ = Θ, (180)

where PΘ denotes the projection on the representation RΘ . For this reason (176) is
also named representation constraint.

The first quadratic constraint (177) guarantees that a symplectic matrix E exists
which rotates the embedding tensor ΘM

α to an electric frame in which the magnetic
componentsΘΛ̂α vanish. The second one (178) is the condition that the gauge algebra
close within the global symmetry one g and implies that Θ is a singlet with respect
to Gg.

The second part of the gauging procedure, which we are going to discuss below,
has to dowith restoring supersymmetry afterminimal couplings have been introduced
and the Gg-invariant LagrangianL

(0)
gauged have been constructed. As we shall see, the

supersymmetric completion of L (0)
gauged requires no more constraints on Gg (i.e. on

Θ) than the linear (176) and quadratic ones (177), (178) discussed above.

As a final remark let us prove that the locality constraint (177) is independent of
the others only in theories featuring scalar isometries with no duality action, namely
in which the symplectic duality representation Rv of the isometry algebra g is not
faithful. This is the case of the quaternionic isometries in N = 2 theories, see (107)
of Sect. 2.5. Let us split the generators tα ofG into t�, which have a non-trivial duality
action, and tm, which do not:

(t�)M
N �= 0 ; (tm)M

N = 0. (181)

From (178) we derive, upon symmetrization of the M, N indices, the following con-
dition:

X(MN)
P XP = X(MN)

P ΘP
α tα = 0, (182)

where tα on the right hand side are not evaluated in the Rv representation and thus
are all non-vanishing. Using the linear constraint (176) we can then rewrite X(MN)

P

as follows:

X(MN)
P = −1

2
CPQ XQMN = −1

2
CPQ ΘQ

�t�MN , (183)

so that (182) reads
CQP ΘQ

�ΘP
α tα t�MN = 0. (184)

Being tα and t�MN independent for any α and �, conditions (176) and (178) only
imply part of the locality constraint (177):

CQP ΘQ
�ΘP

α = 0, (185)
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while the remaining constraints (177)

CQP ΘQ
mΘP

n = 0, (186)

need to be imposed independently. Therefore in theories in which all scalar fields sit
in the same supermultiplets as the vector ones, as it is the case of N > 2 or N = 2
with no hypermultiplets, the locality condition (178) is not independent but follows
from the other constraints.

3.2 The Gauged Lagrangian

The three steps described above allow us to construct a LagrangianL (0)
gauged which is

locally Gg-invariant starting from the ungauged one. Now we have to check if this
deformation is compatible with local supersymmetry. As it stands, as emphasized
above the Lagrangian L (0)

gauged is no longer invariant under supersymmetry, due to
the extra contributions that arise from variation of the vector fields in the covariant
derivatives.

Consider, for instance, the supersymmetry variation of the (gauged) Rarita-
Schwinger term in the Lagrangian

Lrs = i e ψ̄A
μγ

μνρDνψA ρ + h.c. , (187)

whereDν is the gauged covariant derivative defined in (154). Under supersymmetry
variation of ψμ:

δψμ = Dμε + · · · , (188)

ε being the local supersymmetry parameter.14 The variation ofLrs produces a term

δLrs = · · · + 2i e ψ̄A
μγ

μνρDνDρεA + h.c.

= − i g e ψ̄A
μγ

μνρFΛ̂
νρ (wΛ̂ε)A + h.c. , (189)

where we have used the property (142) of the gauge covariant derivative. Similarly
we can consider the supersymmetry variation of the spin-1/2 fields:

δλI = i P̂I A
μ γ μεA + . . . , (190)

where the dots denote terms containing the vector fields and P̂I A
μ is a specific compo-

nent of the K-valued matrix P̂μ. The resulting variation of the corresponding kinetic

14The ellipses refer to terms containing the vector field strengths.
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Lagrangian contains terms of the following form:

δ
(−i/2e λ̄Iγ μDμλ

I + h.c.
) = · · · − i e λ̄Iγ μνDμP̂I A

ν εA + h.c.

= · · · + i/2g e λ̄Iγ μνFΛ̂
μν PI A

Λ̂
εA + h.c. (191)

We see that the supersymmetry variation of the minimal couplings in the fermion
kinetic terms have produced O(g)-terms which contain the tensor

FΛ̂
μν L

−1XΛ̂L = FM
μν L

−1XML (192)

projected on H and contracted with the ψ̄ε current in (189), or restricted to K and
contracted with the λ̄ε current in the second case (191). On the right hand side of
(192) the summation over the gauge generators has been written in the symplectic
invariant form defined in (162): FM XM ≡ FΛ̂ EΛ̂

M XM . These are instances of the
various terms occurring in the supersymmetry variation δL (0)

gauged. Just as (189) and
(191), these terms are proportional to an H-tensor defined as follows15:

T(Θ, φ)M ≡ 1

2
L(φ)−1

M
N L(φ)−1XN L(φ) = 1

2
L(φ)−1

M
N ΘN

β L(φ)βα tα

= T(Θ, φ)M
α tα, (194)

where

T(Θ, φ)M
α ≡ 1

2
L(φ)−1

M
N ΘN

βL(φ)βα = 1

2
(L−1(φ) � Θ)M

α, (195)

where � denotes the action of L−1 as an element of G on ΘM
α in the corresponding

RΘ -representation. The tensor T(φ, Θ) = 1
2L

−1(φ) � Θ is called the T-tensor and
was first introduced in [4].

IfΘ and φ are simultaneously transformed withG, the T-tensor transforms under
the corresponding H-compensator:

∀g ∈ G : T(g � φ, g � Θ) = 1

2
L−1(g � φ) � (g � Θ)

= 1

2
(h(g, φ)L−1(φ)g−1) � (g � Θ) = h(g, φ) � T(φ, Θ). (196)

15In the formulas below we use the coset representative in which the first index (acted on by G)
is in the generic symplectic frame defined by the matrix E and which is then related to the same
matrix in the electric frame (labeled by hatted indices) as follows:

L(φ)M̂
N = EM̂

P L(φ)PN ⇒ M(φ)M̂N̂ = EM̂
PEN̂

QM(φ)PQ, (193)

last equation being (68).
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This quantityT naturally belongs to a representation of the groupH and is an example
of composite field discussed at the end of Sect. 2.6.

If, on the other hand, we fix φ and only transform Θ , T transforms in the same
G-representation RΘ as Θ , being T defined (aside for the factor 1/2) by acting on
the embedding tensor with the G-element L−1. As a consequence of this, T satisfies
the same constraints (176), (177) and (178) as Θ:

TNM
N = T(MNP) = 0,

CMN TM
α TN

β = 0,

[TM, TN ] + TMN
P TP = 0,

(197)

where we have defined TMN
P ≡ TM

α tαNP. Equations (197) have been originally
derived within maximal supergravity in [4], and dubbed T-identities.16

Notice that, using (146) and (147) we can rewrite the T-tensor in the following
form:

TM = 1

2
L−1

M
N ΘN

α

(
ksα Vs

s Ks − 1

2
Pa

α Ja − 1

2
Pm

α Jm

)
, (198)

which can be extended to N = 2 theories with non-homogeneous scalar manifolds,
see discussion at the end of this section.

To cancel the supersymmetry variations of L (0)
gauged and to construct a gauged

LagrangianLgauged preserving the original supersymmetries, one can apply the gen-
eral Noether method (see [26] for a general review) which consists in adding new
terms to L (0)

gauged and to the supersymmetry transformation laws, iteratively in the
gauge coupling constant. In our case the procedure converges by adding terms of
order one (ΔL (1)

gauged) and two (ΔL (2)
gauged) in g, so that

Lgauged = L (0)
gauged + ΔL (1)

gauged + ΔL (2)
gauged. (199)

The additional O(g)-terms are of Yukawa type and have the general form:

e−1ΔL (1)
gauged

= g
(
2ψ̄A

μ γ μν ψB
ν SAB + i λ̄I γ μ ψμA NIA + λ̄I λJ MIJ

) + h.c.,
(200)

characterized by the scalar-dependent matrices SAB and NIA called fermion shift
matrices, and a matrix MIJ that can be rewritten in terms of the previous mixed
mass tensor NIA (see the subsequent sections).

The O(g2)-terms consist of a scalar potential:

e−1ΔL (2)
gauged = −g2 V(φ). (201)

16Recall that in maximal supergravity the locality constraint follows from the linear and the closure
ones.
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At the same time the fermionic supersymmetry transformations need to be suitably
modified. To this end, we shall add order–g terms to the fermion supersymmetry
transformation rules of the gravitino (ψμA) and of the other fermions (χI)

δεψμA = DμεA + i g SAB γμ εB + · · · ,
δελI = gNIA εA + · · · (202)

depending on the same matrices SAB, NIA entering the mass terms. The fermion
shift-matrices are composite fields belonging to some appropriate representations
RS, RN of the H group, such that (200) is H-invariant.

These additional terms in the Lagrangian and supersymmetry transformation laws
are enough to cancel the original O(g) variations in δL (0)

gauged—like (189) and (191),
together with new O(g) terms depending on S and N in the supersymmetry vari-
ation of L (0)

gauged—provided the shift-tensors SAB, NIA are identified with suitable
H-covariant components of the T-tensor:

RΘ
H−→ RN + RS + Rother, (203)

and that additional H-representations Rother in the T-tensor do not enter the super-
symmetry variations of the Lagrangian. This can be formulated as a G-covariant
restriction on the representation RΘ of the T-tensor or, equivalently, of embedding
tensor, which can be shown to be no more than the representation constraint (176)
discussed earlier.

The identificationwith components of theT-tensor defines the expression fermion
shift-tensors as H-covariant composite fields in terms of the embedding tensor and
the scalar fields:

SAB = SAB(φ,Θ) = T(φ,Θ)|RS
; NIA = NIA(φ,Θ) = T(φ,Θ)|RN

. (204)

Finally, in order to cancel theO(g2)-contributions resulting from the variations (202)
in (200),we need to add an order-g2 scalar potential V(φ)whose expression is totally
determined by supersymmetry as a bilinear in the shift matrices by the condition

δB
A V(φ) = g2

(
NIA NI

B − 12 SAC SBC
)
, (205)

where we have defined NI
A ≡ (NIA)∗ and SAB ≡ (SAB)

∗. The above condition is
called potential Ward identity [27, 28] (for a comprehensive discussion of the super-
symmetry constraints on the fermion shifts see [29]). This identity defines the scalar
potential as a quadratic function of the embedding tensor and non-linear function of
the scalar fields. As a constraint on the fermion shifts, once these have been iden-
tified with components of the T-tensor, it follows from the T-identities (197) or,
equivalently, from the quadratic constraints (177), (178) on Θ . The derivation of
quadratic supersymmetry constraints on the fermion shifts in maximal supergravity
from algebraic constraints (i.e. scalar field independent) on the embedding tensor,
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was originally accomplished in [16], though in a specific symplectic frame, and in
maximal D = 3 theory in [17]. In [5] the four-dimensional result was extended to a
generic symplectic frame of the N = 8 model, i.e. using the G-covariant constraint
(176), (177), (178) on the embedding tensor.17

Let us comment on the case of N = 2 theories with a non-homogeneous scalar
manifold (106). In this case we cannot define a coset representative. However, as
mentioned earlier, one can still define a symplectic matrix LM

N depending on the
complex scalar fields in the vector multiplets (which has no longer the interpretation
of a coset representative). We can then define the T-tensor in these theories as in
(198) where {Ks} should be intended as a basis of the tangent space to the origin (and
not as isometry generators), while {JI} = {Ja, Jm} are holonomy group generators.18

Recall that {Pa
α, P

m
α } enter the definition of the gauged composite connection (147)

on the scalar manifold and, as mentioned earlier, are related to the Killing vectors by
general properties of the spacial Kähler and quaternionic Kähler geometries [19].

It is a characteristic of supergravity theories that—in contrast to globally super-
symmetric ones—by virtue of the negative contribution due to the gravitino shift-
matrix, the scalar potential is in general not positive definite, but may, in particu-
lar, feature AdS vacua. These are maximally symmetric solutions whose negative
cosmological constant is given by the value of the potential at the corresponding
extremum: Λ = V0 < 0. Such vacua are interesting in the light of the AdS/CFT
holography conjecture [30], according to which stable AdS solutions describe con-
formal critical points of a suitable gauge theory defined on the boundary of the space.
In this perspective, domain wall solutions to the gauged supergravity interpolating
between AdS critical points of the potential describe renormalization group (RG)
flow (from an ultra-violet to an infra-red fixed point) of the dual gauge theory and
give important insights into its non-perturbative properties. The spatial evolution of
such holographic flows is determined by the scalar potential V(φ) of the gauged
theory.

In some cases the effective scalar potential V(φ), at the classical level, is non–
negative and defines vacuawith vanishing cosmological constant inwhich supersym-
metry is spontaneously broken and part of the moduli are fixed. Models of this type
are generalizations of the so called “no–scale” models [31–33] which were subject
to intense study during the eighties.

17In a generic gauged model, supersymmetry further require the fermion shifts to be related by
differential “gradient flow” relations [29] which can e shown to follow from the identification of
the shifts with components of the T-tensor and the geometry of the scalar manifold.
18The HR = U(2)-generators {Ja} naturally split into a U(1)-generator J0 of the Kähler transfor-
mations on Msk and SU(2)-generators Jx (x = 1, 2, 3) in the holonomy group of the quaternionic
Kähler manifold Mqk.
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3.3 Dualities and Flux Compactifications

Let us summarize what we have learned so far.

◦ The most general local internal symmetry group Gg which can be introduced in
an extended supergravity is defined by an embedding tensor Θ , covariant with
respect to the on-shell global symmetry group G of the ungauged model and
defining the embedding of Gg inside G. Since a scalar potential V(φ) can only be
introduced through the gauging procedure,Θ also defines the most general choice
for V = V(φ,Θ).

◦ Consistency of the gauging at the level of the bosonic action requiresΘ to satisfy
a number of (linear and quadratic) G-covariant constraints. The latter, besides
completely determining the gauged bosonic action, also allow for its consistent
(unique) supersymmetric extension.

◦ Once we find a solutionΘM
α to these algebraic constraints, a suitable symplectic

matrix E, which exists by virtue of (177), will define the corresponding electric
frame, in which its magnetic components vanish.

Although we have freed our choice of the gauge group from the original symplectic
frame, the resulting gauged theory is still defined in an electric frame and thus depends
on the matrix E: whatever solution Θ to the constraints is chosen for the gauging,
the kinetic terms of the gauged Lagrangian are always written in terms of the only
electric vector fields AΛ̂

μ , namely of the vectors effectively involved in the minimal
couplings, see (162). We shall discuss in the next section a more general formulation
of the gauging which no longer depends on the matrix E.

Dual gauged supergravities. All the deformations of the ungauged model required
by the gauging procedure depend onΘ in a manifestlyG-covariant way. This means
that, if we transform all the fields Φ (bosons and fermions) of the model under G
(the fermions transforming under corresponding compensating transformations inH)
and at the same time transform Θ and the matrix E, the field equations and Bianchi
identities—collectively denoted by E (E, Φ, Θ) = 0—are left invariant:

∀g ∈ G : E (E, Φ, Θ) = 0 ⇔ E (E′, g � Φ, g � Θ) = 0

(with E′ = ERv[g]T ). (206)

Since the embedding tensor Θ is a spurionic, namely non-dynamical, object, the
above on-shell invariance should not be regarded as a symmetry of a single theory,
but rather as an equivalence (or proper duality) between two different theories, one
defined by Θ and the other by g � Θ . Gauged supergravities are therefore classified
in orbits with respect to the action of G (or better G(Z)) on Θ . This property has an
important bearing on the study of flux compactifications mentioned in the Introduc-
tion. Indeed, in all instances of flux compactifications, the internal fluxes manifest
themselves in the lower-dimensional effective gauged supergravity as components
of the embedding tensor defining the gauging [6, 34, 35]:
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Θ = Internal Fluxes. (207)

This allows us to formulate a precise correspondence between general fluxes (form,
geometric and non-geometric) and the gauging of the resulting supergravity. More-
over, using this identification, the quadratic constraints (177), (178) precisely repro-
duce the consistency conditions on the internal fluxes deriving from the Bianchi
identities and field equations in the higher dimensional theory such as, in the pres-
ence of RR fluxes, the tadpole cancelation condition [6, 13, 34].

Consider the limit in which the lower-dimensional gauged theory provides a reli-
able description of the low-energy string orM-theory dynamics on a flux background.
This limit is defined by the condition that the flux-induced masses in the effective
action be much smaller than the scale of the Kaluza–Klein masses (of order 1/R,
where R is the size of the internal manifold)19:

Flux-induced masses � 1

R
. (208)

In this case, fields and fluxes in the lower-dimensional supergravity arrange in repre-
sentationswith respect to the characteristic symmetry groupGint the internalmanifold
would have in the absence of fluxes. In the case of compactifications on Tn, such
characteristic group is GL(n, R), acting transitively on the internal metric moduli.

In general, in the absence of fluxes,Gint is a global symmetry group of the action:
Gint ⊂ Gel. By branching RΘ with respect to Gint , we can identify within Θ the
components corresponding to the various internal fluxes. The effect of any such
background quantities in the compactification is reproduced by simply switching on
the corresponding components of Θ . The gauging procedure does the rest and the
resulting gauged model is thus uniquely determined. Since, as mentioned earlier at
the end of Sect. 2.4, a suitable subgroup G(Z) of G was conjectured to encode all
known string/M-theory dualities, the embedding tensor formulation of the gauging
procedure provides an ideal theoretical laboratory where to systematically study
the effects of these dualities on fluxes. Some elements of G(Z) will map gauged
supergravity descriptions of known compactifications into one another, see Fig. 1.

Other elements of G(Z) will map gauged supergravities, originating from known
compactifications, into theories whose string or M-theory origin is unknown, see
Fig. 2.

In this case we can use the duality between the corresponding low-energy descrip-
tions to make sense of new compactifications as “dual” to known ones.

The so-called non-geometric fluxes naturally fit in the above description as dual
to certain compactifications with NS-NS H-flux. If we consider superstring theory
compactified to four-simensions on a six-torusT 6 without fluxes, the resulting (classi-
cal) ungauged supergravity features a characteristic O(6, 6) global symmetry group,
which contains the T-duality group O(6, 6; Z) and which acts transitively on the

19For string theory compactifications we should also require this latter scale to be negligible com-
pared to the mass-scale of the string excitations (order 1/

√
α′).
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Fig. 1 Dualities between
known flux
compactifications (“GS”
stands for “gauged
supergravity”)

Fig. 2 Dualities connecting
known flux
compactifications to
unknown ones

moduli originating from the metric and Kalb-Ramond B-field in ten dimensions. The
G-representation RΘ of the embedding tensor, defining the most general gauging,
contains the representation 220 of O(6, 6)

RΘ

O(6,6)−→ 220 + . . . (209)

which in turn branches with respect to the characteristic group Gint = GL(6,R) of
the torus as follows:

220
GL(6,R)−→ 20−3 + (84 + 6)−1 + (84′ + 6′)+1 + 20+3. (210)

The component 20−3 can be identified with the H-flux Hαβγ (that is the flux of the
field strength of the Kalb-Ramond field B) along a 3-cycle of the torus. Switching
on only the 20−3 representation in Θ , the gauging procedure correctly reproduces
the couplings originating from a toroidal dimensional reduction with H-flux. What
(210) tells us is that the action of the T-duality group O(6, 6; Z) will generate, from
an H-flux in the 20−3, all the other representations:

(84 + 6)−1 : ταβ
γ ,

(84′ + 6′)+1 : Qα
βγ ,

20+3 : Rαβγ . (211)
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The first tensor ταβγ is an instance of geometric flux, being a background quantity
which characterizes the geometry of the internal manifold. It describes a compact-
ification on a space which is no longer a torus, but is locally described by a group
manifold [36] with structure constants ταβγ . The constraint (178) indeed implies for
ταβ

γ the Jacobi identity: τ[αβγ τσ ]γ δ = 0. This new internal manifold is called twisted
torus [37] (see also [13] and references therein).

TheT-duality picture is completedby the remaining two representations, described
by the tensors Qα

βγ , Rαβγ . Their interpretation as originating from a string theory
compactification is more problematic, since in their presence the internal space can-
not be given a global or even local description as a differentiable manifold. For this
reason they are called non-geometric fluxes [38–40] (see also [13] and references
therein). The H, τ, Q, R-fluxes can all be given a unified description as quantities
defining the geometry of more general internal manifolds, having the T-duality group
as structure group. Such manifolds are defined in the context of generalized geom-
etry [41, 42] (see also [13] and references therein), by doubling the tangent space
to the internal manifold in order to accommodate a representation of O(6, 6) and
introducing on it additional geometric structures, or of double geometry/double field
theory [2, 43–45], in which the internal manifold itself is enlarged, and parametrized
by twice as many coordinates as the original one.

Finally there are gauged supergravities which are notG(Z)-dual to models with a
known string or M-theory origin, Fig. 3. Finding an ultra-violet completion of these
theories, which are sometimes called intrinsically non-geometric, in the context of
string/M-theory is an open challenge of theoretical high-energy physics. Progress
in this direction has been achieved in the context of extended generalized geometry
[46, 47] or exceptional field theory [1, 48, 49].

If the hierarchy condition (208) is not met, the gauged supergravity cannot be
intended as a description of the low-energy string/M-theory dynamics, but just as
a consistent truncation of it, as in the case of the spontaneous compactification of
D = 11 supergravity on AdS4 × S7. In this case, the back-reaction of the fluxes on
the internal geometry will manifest in extra geometric fluxes, to be identified with
additional components of Θ .

Fig. 3 Intrinsically
non-geometric theories
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Vacua and dualities. The scalar potential

V(φ,Θ) = g2

N
(
NIA NI

B − 12 SAC SBC
)
, (212)

being expressed as an H-invariant combination of composite fields (the fermion
shifts), is invariant under the simultaneous action of G on Θ and φs:

∀g ∈ G : V(g � φ, g � Θ) = V(φ, Θ). (213)

This means that, if V(φ, Θ) has an extremum in φ0

∂

∂φs
V(φ, Θ)

∣∣∣∣
φ0

= 0, (214)

V(φ, g � Θ) has an extremum at φ′
0 = g � φ0 with the same properties (value of the

potential at the extremum and its derivatives):

∂

∂φs
V(φ, g � Θ)

∣∣∣∣
g�φ0

= 0, g ∈ G . (215)

If the scalarmanifold is homogeneous,we canmap anypointφ0 to the originO, where
all scalars vanish, by the inverse of the coset representative L(φ0)

−1 ∈ G.We can then
map a generic vacuum φ0 of a given theory (defined by an embedding tensorΘ) to the
origin of the theory defined by Θ ′ = L(φ0)

−1 � Θ . As a consequence of this, when
looking for vacua with given properties (residual (super)symmetry, cosmological
constant,mass spectrumetc.), with no loss of generalitywe can compute all quantities
defining the gauged theory—fermion shifts and mass matrices—at the origin:

N(O, Θ), S(O, Θ), M(O, Θ), (216)

and translate the properties of the vacuum in conditions on Θ . In this way, we can
search for the vacua by scanning though all possible gaugings [50–52].

3.4 Gauging N = 8, D = 4

Ungauged action. The four dimensional maximal supergravity is characterized by
havingN = 8 supersymmetry (that is 32 supercharges), which is themaximal amount
of supersymmetry allowed by a consistent theory of gravity.

We shall restrict ourselves to the (ungauged)N = 8 theory with no antisymmetric
tensor field—which would eventually be dualized to scalars. The theory, firstly con-
structed in [53, 54], describes a single massless graviton supermultiplet consisting
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of the graviton gμν , 8 spin-3/2 gravitini ψA
μ (A = 1, . . . , 8) transforming in the fun-

damental representation of the R–symmetry group SU(8), 28 vector fields AΛ
μ (with

Λ = 0, . . . , 27), 56 spin-1/2 dilatini χABC in the 56 of SU(8) and 70 real scalar
fields φr :

[
1 × gμν

j=2

, 8 × ψA
μ

j= 3
2

, 28 × AΛ
μ

j=1

, 56 × χABC

j= 1
2

, 70 × φr

j=0

]
. (217)

The scalar fields are described by a non-linear σ -model on the Riemannian manifold
Mscal, that in the N = 8 model has the form

Mscal = G

H
= E7(7)

SU(8)
, (218)

the isometry group being G = E7(7), and H = SU(8) being the R–symmetry group.
The bosonic Lagrangian has the usual form (5). The global symmetry group of the
maximal four-dimensional theory G = E7(7) has 133 generators tα . The (abelian)
vector field strengths FΛ = dAΛ and their magnetic duals GΛ together transform in
the Rv = 56 fundamental representation of the E7(7) duality group with generators
(tα)MN , so that

δFM
μν =

(
δFΛ

μν

δGΛμν

)
= − Λα (tα)N

M FN
μν . (219)

Gauging. According to our general discussion of Sect. 3.1, the most general gauge
group Gg which can be introduced in this theory is defined by an embedding tensor
ΘM

α (M = 1, . . . , 56 andα = 1, . . . , 133),which expresses the gauge generatorsXM

as linear combinations of the global symmetry group ones tα (165). The embedding
tensor encodes all parameters (couplings and mass deformations) of the gauged
theory. This object is solution to the G-covariant constraints (176), (177), (178).

The embedding tensor formally belongs to the product

ΘM
α ∈ Rv ⊗ adj(G) = 56 ⊗ 133 = 56 ⊕ 912 ⊕ 6480. (220)

The linear constraint (176) sets to zero all the representation in the above decompo-
sition which are contained in the 3-fold symmetric product of the 56 representation:

X(MNP) ∈ (56 ⊗ 56 ⊗ 56)sym. → 56 ⊕ 6480 ⊕ 24320. (221)

The representation constraint therefore selects the 912 as the representation RΘ of
the embedding tensor.20

20Wecan relax this constraint by extending this representation to include the 56 in (220).Consistency
however would require the gauging of the scaling symmetry of the theory (which is never an off-
shell symmetry), also called trombone symmetry [55, 56]. This however leads to gauged theories
which do not have an action. We shall not discuss these gaugings here.
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The quadratic constraints pose further restrictions on the E7(7)-orbits of the 912
representation which ΘM

α should belong to. In particular the locality constraint
implies that the embedding tensor can be rotated to an electric frame through a
suitable symplectic matrix E, see (167).

Steps 1, 2 and 3 allow to construct the bosonic gauged Lagrangian in this electric
frame. We shall discuss in Sect. 4 a frame-independent formulation of the gauging
procedure in which, for a given solution Θ to the constraints, we no longer need to
switch to the corresponding electric frame.

The complete supersymmetric gauged Lagrangian is then obtained by adding
fermion mass terms, a scalar potential and additional terms in the fermion super-
symmetry transformation rules, according to the prescription given in Step 4. All
these deformations depend on the fermion shift matrices SAB, NIA. In the maximal
theory I = [ABC] labels the spin-1/2 fields χABC and the two fermion shift-matrices
are conventionally denoted by the symbols A1 = (AAB), A2 = (AD

ABC). The precise
correspondence is21:

SAB = − 1√
2
AAB; NABC

D = −√
2AD

ABC, (223)

where
AAB = ABA; AABC

D = A[ABC]D; ADBC
D = 0. (224)

The above properties identify the SU(8) representations of the two tensors:

AAB ∈ 36; AABC
D ∈ 420. (225)

21In the previous sections we have used, for the supergravity fields, notations which are different
from those used in the literature of maximal supergravity (e.g. in [18]) in order to make contact
with the literature of gauged N < 8 theories, in particular N = 2 ones [19]. Denoting by a hat the
quantities in [18], the correspondence between the two notations is:

γ̂ μ = iγ μ; γ̂5 = γ5,

ε̂i = 1√
2
εA; ε̂i = 1√

2
εA; (i = A),

ψ̂iμ = √
2ψA

μ; ψ̂ i
μ = √

2ψAμ; (i = A),

χ̂ijk = χABC; χ̂ ijk = χABC; ([ijk] = [ABC]),
Âij = (Âij)

∗ = AAB; Âi
jkl = (Âi

jkl)
∗ = AA

BCD; (i = A, j = B, k = C, l = D),

VΛ ij = − i√
2

L
Λ
AB; VΛ

ij = i√
2

LΛAB; (i = A, j = B),

(222)

where in the last line the 28 × 28 blocks of VM
N have been put in correspondence with those of

L
M
N . The factor

√
2 originates from a different convention with the contraction of antisymmetric

couples of SU(8)-indices: V̂ijV̂ ij = 1
2 V

AB VAB.
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The T-tensor, defined in (194) as an E7(7)-object, transforms inRΘ = 912, while as
an SU(8)-tensor it belongs to the following sum of representations:

T ∈ 912
SU(8)−→ 36 ⊕ 36 ⊕ 420 ⊕ 420 , (226)

which are precisely the representations of the fermion shift-matrices and their con-
jugates AAB AAB, AA

BCD, AA
BCD. This guarantees that the O(g)-terms in the super-

symemtry variation of L (0)
gauged, which depend on the T-tensor, only contain SU(8)-

structures which can be canceled by the new terms containing the fermion shift-
matrices. This shows that the linear condition Θ ∈ RΘ is also required by super-
symmetry.

The same holds for the quadratic constraints, in particular for (178), which implies
the T-identities and also the Ward identity (205) for the potential [4, 18]:

V(φ) δBA = g2

6
NCDE

ANCDE
B − 12 g2 SACSBC = g2

3
AB

CDEAA
CDE − 6 g2 AAC ABC,

(227)
from which we derive:

V(φ) = g2
(

1

24
|AB

CDE |2 − 3

4
|AAB|2

)
. (228)

The scalar potential can also be given in a manifestly G-invariant form [18]:

V(φ) = − g2

672

(
XMN

R XPQ
S MMP MNQ MRS + 7XMN

Q XPQ
N MMP

)
, (229)

where MMN is the inverse of the (negative definite) matrix MMN defined in (55)
and, as usual, XMN

R describe the symplectic duality action of the generators XM in
theRv∗-representation: XMN

R ≡ Rv∗[XM]NR.

3.5 Brief Account of Old and New Gaugings

As mentioned in Sect. 3.1, different symplectic frames (i.e. different ungauged
Lagrangians) correspond to different choices for the viable gauge groups and may
originate from different compactifications (see [5] for a study of the different sym-
plectic frames for the ungauged maximal theory).

The toroidal compactification of eleven dimensional theory performed in [53],
upondualizationof all form-fields to lower order ones, yields anungaugedLagrangian
with global symmetry Gel = SL(8,R). We shall refer to this symplectic frame as
the SL(8,R)-frame. The first gauging of the maximal theory was performed in this
symplectic frame by choosingGg = SO(8) ⊂ SL(8,R) [4]. The scalar potential fea-
tures a maximally supersymmetric anti-de Sitter vacuum which corresponds [57] to
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the spontaneous compactification of eleven dimensional supergravity on AdS4 × S7.
The range of possible gaugings in the SL(8,R)-frame was extended to include non-
compact and non semisimple groups Gg = CSO(p, q, r) (with p + q + r = 8) [10].
These were shown in [16] to exhaust all possible gaugings in this frame.

The discovery of inequivalent Lagrangian formulations of the ungauged maxi-
mal theory broadened the choice of possible gauge groups. Flat-gaugings in D = 4
describing Scherk-Schwarz reductions of maximal D = 5 supergravity [58] and
yielding no-scale models, were first constructed in [59]. The corresponding symplec-
tic frame is the one originating from direct dimensional reduction of the maximal
five-dimensional theory on a circle and has a manifest off-shell symmetry which
contains the global symmetry group of the parent model22 E6(6): one has in fact
Gel = O(1, 1) × E6(6).

Exploiting the freedom in the initial choice of the sympectic frame, it was recently
possible to discover a new class of gauging generalizing the original CSO(p, q, r)
ones [60–62]. These models are obtained by gauging, in a different frame, the same
CSO(p, q, r).

Consider two inequivalent frames admitting Gg = CSO(p, q, r) as gauge group,
namely for each of which CSO(p, q, r) ⊂ Gel. Let R̂v andRv be the corresponding
symplectic duality representations of G. We can safely consider one of them (R̂v)
as electric. The duality action of the gauge generators R̂v∗ andRv∗ are described by
two tensors XM̂N̂

P̂ and XMN
P, respectively, related by a suitable matrix E (171):

XM̂N̂
P̂ = EM̂

M EN̂
N (E−1)P

P̂ XMN
P. (230)

The matrices M(φ) in the two frames are then related by (68). The two embedding
tensors describe the same gauge group provided that {XM} and {E XM E−1} define
different bases of the same gauge algebra gg = cso(p, q, r) in the Lie algebra e7(7) of
E7(7). In other words,E should belong to the normalizer of cso(p, q, r) in Sp(2nv,R).
At the same time the effect of E should not be offset by local (vector and scalar field)
redefinitions, see (69). Theduality actionofGg in both R̂v∗ andRv∗ is block-diagonal:

R̂v∗[Gg] = Rv∗[Gg] =
(
Gg 0
0 G−T

g

)
. (231)

For semisimple gauge groupsGg = SO(p, q) (with p + q = 8), it was shown in [62]
that the most general E belongs to an SL(2,R)-subgroup of Sp(56,R) and has the
general form:

E =
(
a I b η

c η d I

)
∈ Sp(56,R) ; ad − bc = 1, (232)

22See Table2 at the end of Sect. 4.
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where ηΛΣ is the so(p, q)-Cartan Killing metric, normalized so that η2 = I. The
most general SL(2,R)-matrix can be written, using the Iwasawa decomposition, as
follows: (

a b
c d

)
=

(
λ 0
0 1

λ

)(
1 ϑ

0 1

)(
cos(ω) sin(ω)

− sin(ω) cos(ω)

)
. (233)

The leftmost block corresponds in E to an unphysical rescaling of the vectors (in
GL(28,R)). Themiddle block realizes, in going from the unhatted frame to the hatted
one, a constant shift in the generalized θ -angle matrix R: R → R + ϑ η. This can
have effects at the quantum level, but does not affect field equations [62].

The rightmost block has, on the other hand, important bearing on the physics
of the classical theory. Let E(ω) be the symplectic image (232) of this block only,
and letRv be the SL(8,R)-frame, where the CSO(p, q, r) gaugings were originally
constructed and in which the matrices L and M are given by well know general
formulas [4, 53]. For ω �= 0, this frame is no longer electric, but is related to the
electric one by E(ω). Using (167) we can write:

XΛ̂ = cos(ω)XΛ + sin(ω)ηΛΣ XΣ ; 0 = − sin(ω)ηΛΣ XΣ + cos(ω)XΛ, (234)

where (ηΛΣ) ≡ η−1 = η. The above relation is easily inverted:

XΛ = cos (ω)XΛ̂, XΛ = sin (ω) ηΛΣXΣ̂ . (235)

We can then write the symplectic invariant connection (162) in the following way:

Ωgμ = AMμ XM = AΛ
μ XΛ + AΛμ XΛ = (cosω AΛ

μ + sin(ω)AΛμ)X
Λ̂

= AΛ̂
μ X

Λ̂
. (236)

In other words, the gauging defined by XM amounts to gauge, in the SL(8,R)-frame,
the sameSO(p, q)-generators by a linear combination of the electricAΛ

μ andmagnetic
AΛμ vector fields. The true electric vectors are all and only those entering the gauge

connection, that is AΛ̂
μ , and define the electric frame. We shall denote by Θ[ω] the

corresponding embedding tensor.
The gauged model can be constructed either directly in the SL(8,R)-frame, using

the covariant formulation to be discussed in Sect. 4, or in the electric frame, along
the lines described in Sect. 3. The range of values of ω is restricted by the discrete
symmetries of the theory. One of these is parity (see Sect. 2.4), whose duality repre-
sentation P in the SL(8,R)-frame has the form (82) [21]. The reader can verify that
its effect on the T-tensor (194) is:

T(Θ[ω], φ)M = P � T(Θ[−ω], φp) (237)

by using the properties

PM̂
N̂ P−1XN̂P = XM̂; P−1E(ω)P = E(−ω); P−1L(φ)P = L(φp), (238)
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where φp denote the parity-transformed scalar fields. Equation (237) shows that
parity maps φ into φp and ω in −ω. In other words ω is parity-odd parameter. The
overall P transformation on T in (237) is ineffective, since it will cancel everywhere
in the Lagrangian, being P an O(2nv)-transformation. Similarly, we can use other
discrete global symmetries of the ungauged theory, which include the SO(8)-triality
transformations S3 ⊂ E7(7) for the SO(8)-gauging, to further restrict the range of
values of ω. One finds that [61, 62]:

ω ∈
(
0,

π

8

)
, SO(8)-gauging,

ω ∈
(
0,

π

4

)
, non-compact SO(p, q)-gaugings. (239)

These are called “ω-rotated” SO(p, q)-models, or simply SO(p, q)ω-models. The
SO(8) ones, in particular, came as a surprise since they contradicted the common
belief that the original de Wit-Nicolai SO(8)-gauged model was unique.

For the non-semisimple CSO(p, q, r)-gaugings, the non-trivial matrix E does not
depend on continuous parameters but is fixed, thus yielding for each gauge group
only one rotated-model [60, 62].

Evenmore surprisingly, these new class of gauged theories feature a broader range
of vacua than the original models. In this sense the ω → 0 limit can be considered a
singular one, in which some of the vacua move to the boundary of the moduli space
at infinity and thus disappear.

Consider for instance the SO(8)ω-models. They all feature an AdS4, N = 8 vac-
uum at the origin with the same cosmological constant and mass spectrum as the
original SO(8) theory. The parameter ω manifests itself in the higher order inter-
actions of the effective theory. They also feature new vacua, which do not have
counterparts in the ω = 0 model. Figure4 illustrates some of the vacua of the de
Wit-Nicolai model (ω = 0), namely those which feature a residual symmetry group
G2 ⊂ SO(8).

Fig. 4 The G2-invariant vacua of the de Wit-Nicolai model, with their interpretation in terms of
compactifications of the eleven-dimensional theory
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Figure5 shows the G2-invariant vacua of a particular SO(8)ω model and the dis-
appearance of one of the vacua in the ω → 0 limit [61]. The vacua of these models
have been extensively studied [63–66] also in the context of renormalization group
flows interpolating between (or simply originating from) AdS vacua [67, 68] and
AdS black holes [69–71].

Determining a string or M-theory origin of the ω-rotated models is, to date, an
open problem [72]. They seem to provide examples of what we named intrinsically
non-geometric models in Sect. 3.3. The only exception so far is the dyonic ISO(7)
which was related to compactifications of massive Type IIA theory [73].

4 Duality Covariant Gauging

Let us discuss in this section a formulation of the gauging procedure in four-
dimensions which was developed in [8, 18] and which no longer depends on the
matrix E, so that the kinetic terms are not written in terms of the vector fields in the
electric frame.

Step 1, 2 and 3 revisited. We start from a symplectic-invariant gauge connection of
the form23:

Ωgμ ≡ AM
μ XM = AΛ

μ XΛ + Aμ
Λ XΛ = AM

μ ΘM
α tα, (240)

where ΘM
α satisfies the constraints (176), (177), (178). The fields AΛ

μ and AΛμ are
now taken to be independent. This is clearly a redundant choice and, as we shall see,
half of them play to role of auxiliary fields. Equation (177) still implies that at most
nv linear combinations AΛ̂

μ of the 2nv vectors AΛ
μ , AΛμ effectively enter the gauge

connection (and thus the minimal couplings):

AM
μ XM = AΛ̂

μ XΛ̂, (241)

where XΛ̂ are defined in (167) through the matrix E, whose existence is guaranteed

by (177), and where AΛ̂
μ ≡ E−1

M
Λ̂ AM

μ .
In the new formulation we wish to discuss, however, the vectors AΛ

μ instead of

AΛ̂
μ enter the kinetic terms. The covariant derivatives are then defined in terms of

(240) as in Step 2 of the Sect. 3.1, and, as prescribed there, should replace ordinary
derivative everywhere in the action. The infinitesimal gauge variation of AM reads:

δAM
μ = Dμζ

M ≡ ∂μζ
M + AN

μXNP
M ζ P, (242)

where, as usual, XMP
R ≡ Rv∗[XM]PR. We define for this set of electric-magnetic vec-

tor fields a symplectic covariant generalization FM of the non-abelian field strengths
FΛ̂ (137):

23Here, for the sake of simplicity, we reabsorb the gauge coupling constant g into Θ: gΘ → Θ .
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FM
μν ≡ ∂μA

M
ν − ∂νA

M
μ + X[NP]M AN

μA
P
ν ⇔ FM ≡ dAM + g

2
XNP

M AN ∧ AP,

(243)

where in the last equation we have used the form-notation for the fields strengths.
The gauge algebra-valued curvature F is defined as in (136):

F ≡ FM XM . (244)

The first problem one encounters in describing the vectors AΛ
μ in the kinetic terms

is that, in a symplectic frame which is not the electric one, such fields are not well
defined, since their curvatures fail to satisfy the Bianchi identity. This comes with
no surprise, since the components ΘΛα of the embedding tensor are nothing but
magnetic charges. One can indeed verify that:

DFM ≡ dFM + XNP
M AN ∧ FP = X(PQ)

M AP ∧
(
dAQ + g

3
XRS

QAR ∧ AS
)

�= 0.

(245)
In particular DFΛ �= 0 since X(PQ)

Λ = − 1
2 ΘΛα tαM

PCPN �= 0, being in the non-
electric frame ΘΛα �= 0. To deduce (245) we have used the quadratic constraint
(178) on the gauge generators XM in the Rv∗-representation, which reads:

XMP
RXNR

Q − XNP
RXMR

Q + XMN
RXRP

Q = 0. (246)

From the above identity, after some algebra, one finds:

X[MP]RX[NR]Q + X[PN]RX[MR]Q + X[NM]RX[PR]Q = −(XNM
R X(PR)

Q)[MNP], (247)

that is the generalized structure constants X[MP]R entering the definition (243) do
not satisfy the Jacobi identity, and this feature is at the root of (245). Related to
this is the non-gauge covariance of FM . The reader can indeed verify that (using the
form-notation):

δFM = −XNP
M ζN FP + (

2X(NP)
M ζN FP − X(NP)

M AN ∧ δAP
) �= −XNP

M ζN FP,

(248)

where δAM is given by (242) and where we have used the general property

δFM = DδAM − X(PQ)
M AP ∧ δAQ, (249)

valid for generic δAM . We also observe that the obstruction to the Bianchi identity
(245), as well as the non-gauge covariant terms in (248), are proportional to a same
tensor X(MN)

P. This quantity, as a consequence of (178) and (182), vanishes if con-
tracted with the gauge generators XM , namely with the first index of the embedding
tensor: X(MN)

P ΘP
α = 0. Therefore the true electric vector fields AΛ̂

μ and the gauge
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connection which only depends on them, are perfectly well defined. Indeed, one can
easily show using the matrix E that the gauge curvature (244) only contains the field
strengths FΛ̂ associated with AΛ̂ and defined in (137):

F ≡ FM XM = FΛ̂ XΛ̂. (250)

On the other hand, using (245) and (182) we have:

DF = DFM XM = 0. (251)

The gauge covariance (138) of F , and thus of FΛ̂, is also easily verified by the same
token, together with (142): D2 = −F .

In order to construct gauge-covariant quantities describing the vector fields, we
combine the vector field strengths FM

μν with a set of massless antisymmetric tensor
fields24 Bα μν in the adjoint representation of G through the matrix

ZM α ≡ 1

2
CMN ΘN

α, (252)

and define the following new field strengths:

HM
μν ≡ FM

μν + ZM α Bα μν :
{
HΛ = dAΛ + 1

2 ΘΛα Bα,

HΛ = dAΛ − 1
2 ΘΛ

α Bα.
(253)

From the definition (252) and (177) we have:

ZM α ΘM
β = 0 ⇔ ZM α XM = 0. (254)

The reader can verify, using the linear constraint (176), that:

X(NP)
M = −1

2
CMQ XQN

RCRP = −1

2
CMQ ΘQ

α tα N
RCRP = −ZM α tα NP, (255)

where, as usual, we have defined tα NP ≡ tα N
RCRP.

The reason for considering the combination (253) is that the non-covariant terms
in the gauge variation of FM

μν , being proportional to X(NP)
M , that is to ZM α , can be

canceled by a corresponding variation of the tensor fields δBαμν :

δHM = XPN
M ζN FP + ZMα

(
δBα + tαNP A

N ∧ δAP
)

= XPN
M ζN HP + ZMα

(
δBα + tαNP A

N ∧ δAP
)

= −XNP
M ζN HP + 2X(NP)

M ζN HP + ZMα
(
δBα + tαNP A

N ∧ δAP
)

24These fields will also be described as 2-forms Bα ≡ 1
2 Bμν dxμ ∧ dxν .
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= −XNP
M ζN HP + ZMα

[
δBα + tαNP (AN ∧ δAP − 2 ζN HP)

]
, (256)

where, in going from the first to the second line, we have used (254), so that
XPN

M FP = XPN
M HP. If we define:

δBα ≡ tαNP (2 ζN HP − AN ∧ δAP), (257)

the term proportional to ZM α vanishes and HM transforms covariantly. The kinetic
terms in the Lagrangian are then written in terms of HΛ

μν :

1

e
Lv, kin = 1

4
IΛΣ(φ)HΛ

μν HΣ μν + 1

8 e
RΛΣ(φ) εμνρσ HΛ

μν HΣ
ρσ . (258)

The above transformation property (257) should however bemodified since the quan-
titywewant to transformcovariantly is not quiteHM , but rather the symplectic vector:

GM ≡
(HΛ

GΛ

)
; GΛμν ≡ −εμνρσ

∂L

∂HΛ
ρσ

, (259)

corresponding, in the ungauged theory, to the field-strength-vector FM of (51),
and which contains inside GΛ fermion bilinears coming from Pauli terms in the
Lagrangian. Consistency of the construction will then imply that the two quantities
HM and GM , which are off-shell different since the former depends on the magnetic
vector fields AΛ as opposed to the latter, will be identified on-shell by the equation

(HM − GM)ΘM
α = (HΛ − GΛ)Θ

Λα = 0. (260)

These equationswill in particular identify the field strengths of the auxiliary fieldsAΛ

inHΛ with the duals toHΛ. The best that we can do is to make GM on-shell covariant
under Gg, namely upon use of (260). To this end, we modify (257) as follows:

δBα ≡ tαNP (2 ζN GP − AN ∧ δAP), (261)

so that the variations of the symplectic vectors HM and GM read:

δHM = −XNP
M ζN HP + non-covariant terms,

δGM = −XNP
M ζN GP + non-covariant but on-shell vanishing terms. (262)

Consistent definition of Bα requires the theory to be gauge-invariant with respect
to transformations parametrized by 1-forms: Ξα = Ξαμ dxμ. Such transformations
should in turn be Gg-invariant and leave HM unaltered:

AM → AM + δΞA
M ; Bα → Bα + δΞBα ⇒ δΞHM = 0. (263)
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Let us use (249) then to write

δΞHM = DδΞA
M + ZM α

(
δΞBα + tαNP A

N ∧ δΞA
P
)
. (264)

If we set
δΞA

M = −ZMα Ξα, (265)

the invariance of HM implies:

δΞBα = DΞα − tαNP A
N ∧ δΞA

P, (266)

where
DΞα ≡ dΞα + ΘM

β fβα
γAM ∧ Ξγ . (267)

Let us now introduce field strengths for the 2-forms:

H(3)
α ≡ DBα − tαPQA

P ∧
(
dAQ + 1

3
XRS

Q AR ∧ AS

)
. (268)

Writing the forms in components,

H(3)
α = 1

3! Hα μνρ dx
μ ∧ dxν ∧ dxρ ; DBα = 1

2
DμBα νρ dx

μ ∧ dxν ∧ dxρ,

(269)
we have:

Hα μνρ = 3D[μBα νρ] − 6 tαPQ

(
AP

[μ∂νA
Q
ρ] + 1

3
XRS

Q AP
[μA

R
νA

S
ρ]

)
. (270)

The reader can verify that the following Bianchi identities hold:

DHM = ZMα H(3)
α , (271)

DH(3)
α = XNP

M HN ∧ HP. (272)

Just as in Step 3 of Sect. 3.1, gauge invariance of the bosonic action requires the
introduction of topological terms, so that the final gauged bosonic Lagrangian reads:

Lb = − e

2
R + e

2
Gst(φ)Dμφ

s Dμφt

+ e

4
IΛΣ Hμν

ΛHμν Σ + 1

8
RΛΣ εμνρσHμν

ΛHρσ
Σ

− 1

8
εμνρσ θΛα Bμν α

(
2 ∂ρAσ Λ + XMN Λ Aρ

MAσ
N − 1

4
θΛ

βBρσ β

)

− 1

3
εμνρσXMN Λ Aμ

MAν
N
(
∂ρAσ

Λ + 1

4
XPQ

ΛAρ
PAσ

Q
)
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− 1

6
εμνρσXMN

Λ Aμ
MAν

N
(
∂ρAσ Λ + 1

4
XPQΛAρ

PAσ
Q
)
. (273)

The Chern-Simons terms in the last two lines generalize those in (157). On top of
them, gauge invariance of the action requires the introduction of new topological
terms, depending on the B-fields, which appear in the third line of (273). Notice that
if the magnetic charges ΘΛα vanish (i.e. we are in the electric frame), Bα disappear
from the action, since the second line of (273) vanish as well as the B-dependent
Stueckelberg term in HΛ.

The constraints (176), (177) and (178) are needed for the consistent construction
of the gauged bosonic action, which is uniquely determined. Just as discussed in
Sect. 3.1, they are also enough to guarantee its consistent supersymmetric completion
through Step 4, which equally applies to this more general construction.

Some comments are in order.

(i) The construction we are discussing in this Section requires the introduction of
additional fields: nv magnetic potentials AΛμ and a set of antisymmetric tensors
Bα μν . These newfields come togetherwith extra gauge-invariances (242), (265),
(266), which guarantee the correct counting of physical degrees of freedom. As
we shall discuss below these fields can be disposed of using their equations of
motion.

(ii) It is known that in D-dimensions there is a duality that relates p-forms to (D −
p − 2)-forms, the corresponding field strengths having complementary order
and being related by a Hodge-like duality. In four dimensions vectors are dual
to vectors, while scalars are dual to antisymmetric tensor fields. From this point
of view, we can understand the 2-forms Bα as “dual” to the scalars in the same
way as AΛ are “dual” to AΛ. This relation can be schematically illustrated as
follows:

∂[μBνρ] ∝ e εμνρσ ∂
σφ + . . . . (274)

More precisely, we can write the non-local relation between Bα and φs in a G-
covariant fashion as a Hodge-like duality betweenH(3)

α and the Noether current
jα of the sigma model describing the scalar fields, associated with the generator
tα:

Hα μνρ ∝ e εμνρσ jσα ; jμα ≡ δLb

δ∂μφs
ksα, (275)

ksα being the Killing vector corresponding to tα . This motivated the choice of
the 2-forms in the adjoint representation ofG. In the gauged theory we will find
a Gg-invariant version of (275), see discussion below.

(iii) It can be shown that the presence of the extra fields Bα and AΛ in the action is
related to non-vanishing magnetic components ΘΛα of the embedding tensor.
In the electric frame in whichΘΛα = 0, these fields disappear altogether from
the Lagrangian and we are back to the gauged action described in Sect. 3.1.
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(iv) The kinetic terms in the Lagrangian only describe fields in the ungauged theory,
while the extra fields enter topological terms or Stueckelberg-like couplings and
satisfy first order equations, see discussion below. This feature is common to
the G-covariant construction of gauged supergravities in any dimensions [7,
74–76].

(v) The dyonic embedding tensorΘM
α determines a splitting of the 2nv vector fields

AM
μ into the truly electric ones AΛ̂

μ , which are singled out by the combination

AM
μ ΘM

α and thus define the gauge connection. The remaining ones ÃM
μ corre-

spond to non-vanishing components of ZM α , that is to the components along
which the Jacobi identity is not satisfied, see (247). These latter vectors, of
which there are at most nv independent, can be then written as ÃM

μ = ZM αAα μ

and are ill-defined, since the corresponding field strengths do not satisfy the
Bianchi identity. An other problem with the vectors ÃM

μ is that they are not part
of the gauge connection, but in general are charged under the gauge group,
that is are minimally coupled to AΛ̂

μ . These fields cannot therefore be consis-
tently described as vector fields. However, this poses no consistency problem
for the theory, since ÃM

μ can be gauged away by a transformation (265), (266)
proportional to Ξα . In a vacuum, they provide the two degrees of freedom
needed by some of the tensor fields Bα to become massive, according to the
anti-Higgs mechanism [77, 78]. In the electric frame, these vectors become
magnetic (AΛ̂ μ) and disappear from the action. This phenomenon also occurs

in higher dimensions: the vectors ÃM
μ which do not participate in the gauge

connection but are charged with respect to the gauge group, are gauged away
by a transformation associated with some of the antisymmetric tensor fields
which, in a vacuum, become massive.

(vi) An important role in this construction was played by the linear constraint (176),
in particular by the property (255) implied by it, which allowed to cancel the
non-covariant terms in the gauge variation of FΛ by a corresponding variation
of the antisymmetric tensor fields. It turns out that a condition analogous to
(255) represents the relevant linear constraint on the embedding tensor needed
for the construction of gauged theories in higher dimensions [7, 74–76].

Let us now briefly discuss the bosonic field equations for the antisymmetric tensor
fields and the vectors. The variation of the actionwith respect toBα μν yields equations
(260). By fixing the Ξα-gauge freedom, we can gauge away the ill-defined vectors
ÃM

μ = ZM αAα μ and then solve (260) in Bα as a function of the remaining field

strengths, which are a combination of the FΛ̂ only. Substituting this solution in
the action, the latter will only describe the AΛ̂

μ vector fields and no longer contain
magnetic ones or antisymmetric tensors. In other words by eliminating Bα through
equations (260) we effectively perform the rotation to the electric frame and find the
action discussed in Sect. 3.1.
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By varying the action with respect to AM
μ we find the following equations:

D[μGM
ρσ ] = −2 eCMN εμνρσ DσφsGsr k

r
N = −2 eCMN εμνρσ jσN , (276)

which are the manifestly G-covariant form of the Maxwell equations. The right-
hand-side is proportional to the electric current

jσN ≡ DσφsGsr k
r
N = ΘN

α DσφsGsr k
r
α = ΘN

α jσα . (277)

If we contract both sides of (276) withΘM
α , we are singling out the Bianchi identity

for the fields strengths FΛ̂ of the vectors which actually participate in the minimal
couplings. By using the locality condition on Θ , we find:

D[μGM
ρσ ] ΘM

α = −2 eCMN ΘM
α ΘN

βεμνρσ DσφsGsr k
r
β = 0, (278)

which are nothing but the Bianchi identities forFΛ̂. This is consistent with our earlier
discussion, see (251), in which we showed that the locality condition implies that
the Bianchi identity for the gauge curvature have no magnetic source term, so that
the gauge connection is well defined.25

Now we can use the Bianchi identity (271) to rewrite (278) as a dualization
equation generalizing (275). To this end, we consider only the upper components of
(278), corresponding to the field equations for AΛμ:

ZΛα Hα μνρ = −12 e ZΛα εμνρσ DσφsGsr k
r
α. (279)

When the gauging involves translational isometries [8], φI → φI + cI , the above
equations can be solved in the fields AΛ contained in the covariant derivative. This
is done by first using the ζ -gauge freedom associated with AΛ to gauge away the
scalar fields φI acted on by the translational isometries. Equations (279) are then
solved in the fields AΛ, which are expressed in terms of the remaining scalars, the
vectors AΛ and the field strengths of the antisymmetric tensors. Substituting this
solution in the action, we obtain a theory in which no vectors AΛ appear and the
scalar fields φI have been effectively dualized to corresponding tensor fields BI μν .
The latter become dynamical and are described by kinetic terms. These theories were
first constructed in the framework of N = 2 supergravity in [79, 80], generalizing
previous results [81].

The gauged theory we have discussed in this section features a number of non-
dynamical extra fields. This is the price we have to pay for amanifestG-covariance of
the field equations and Bianchi identities. The embedding tensor then defines how the
physical degrees of freedom are distributed within this larger set of fields, by fixing

25In our earlier discussion we showed that DHM ΘM
α = DFM ΘM

α = 0. This is consistent with
(278) since on-shell HMΘM

α = GMΘM
α .
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the gauge symmetry associated with the extra fields and solving the corresponding
non-dynamical field equations (260), (279).

A view on higher dimensions. As mentioned in point (ii) above, there are equivalent
formulations of ungauged supergravities inD-dimensions obtained from one another
by dualizing certain p-forms C(p) (i.e. rank-p antisymmetric tensor fields) into (D −
p − 2)-forms C(D−p−2) through an equation of the type:

dC(p) = ∗dC(D−p−2) + · · · . (280)

Such formulations feature in general different global symmetry groups. This phe-
nomenon is calledDualization of Dualities and was studied in [82]. The scalar fields
in these theories are still described by a non-linear sigma model and in D ≥ 6 the
scalar manifold is homogeneous symmetric. Just as in four dimensions, the scalars
are non-minimally coupled to the p-form fields (see below) and the global symmetry
group G is related to the isometry group of the scalar manifold and thus is maximal
in the formulation of the theory in which the scalar sector is maximal, that is in which
all forms are dualized to lower order ones. This prescription, however, does not com-
pletely fix the ambiguity related to duality in even dimensionsD = 2k, when order-k
field strengths, corresponding to rank-(k − 1) antisymmetric tensor fields C(k−1), are
present. In fact, after having dualized all forms to lower-order ones, we can still
dualize (k − 1)-formsC(k−1) into (k − 1)-forms C̃(k−1). This is the electric-magnetic
duality of the four-dimensional theory, related to the vector fields, and also occurs
for instance in six dimensions with the 2-forms and in eight dimensions with the
3-forms.

Duality transformations interchanging C(k−1) with C̃(k−1), and thus the corre-
sponding field equations with Bianchi identities, are encoded in the group G, whose
action on the scalar fields, just as in four dimensions, is combined with a linear action
on the k-form field strengths F(k) and their duals F̃(k):

g ∈ G :
{
F(k) → F ′

(k) = A[g]F(k) + B[g] F̃(k),

F̃(k) → F̃ ′
(k) = C[g]F(k) + D[g] F̃(k).

(281)

As long as the block B[g] is non-vanishing, this symmetry can only be on-shell since
the Bianchi identity for the transformed F(k), which guarantees that the transformed
elementary field C′

(k−1) be well defined, only holds if the field equations dF̃(k) = 0
for C(k−1) are satisfied [83]:

dF ′
(k) = A[g] dF(k) + B[g] dF̃(k) = B[g] dF̃(k) = 0. (282)

The field strengths F(k) and F̃(k) transform in a linear representationR of G defined
by the matrix:

g ∈ G
R−→ R[g] =

(
A[g] B[g]
C[g] D[g]

)
. (283)
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Just as in four dimensions, depending on which of the C(k−1) and C̃(k−1) are chosen
to be described as elementary fields in the Lagrangian, the action will feature a
different global symmetry Gel, though the global symmetry group G of the field
equations and Bianchi identities remains the same. The constraints onR derive from
the non-minimal couplings of the scalar fields to the (k − 1)-forms which are a direct
generalization of those in four dimensions between the scalars and the vector fields,26

see (258)

Lkin,C = − eε

2k!
(IΛΣ(φ)FΛ

μ1...μk
FΛμ1...μk + RΛΣ(φ)FΛ

μ1...μk

∗FΛμ1...μk
)
, (285)

where μ = 0, . . . ,D − 1 and Λ,Σ = 1, . . . , nk , being nk the number of (k − 1)-
forms C(k−1) and ε ≡ (−)k−1.

The matrices IΛΣ(φ), RΛΣ(φ) satisfy the following properties:

IΛΣ = IΣΛ < 0, RΛΣ = −εRΣΛ. (286)

Just as we did in four dimensions, see (47), we define dual field strengths (omitting
the fermion terms):

GΛμ1... μk ≡ ε εμ1... μkν1...νk

δL

δFΛ
ν1...νk

⇒ GΛ = −IΛΣ
∗FΣ − εRΛΣ FΣ, (287)

and define the vector of field strengths:

F = (FM) ≡
(
FΛ

GΛ

)
. (288)

The definition (287) can be equivalently written in terms of the twisted self-duality
condition [82]:

∗F = −Cε M(φ)F, (289)

which generalizes (53), where

Cε ≡ (CMN ) ≡
(
0 I
ε I 0

)
, (290)

26The Hodge dual ∗ω of a generic q-form ω is defined as:

∗ ωμ1...μD−q = e

q! εμ1...μD−qν1...νq ω
ν1...νq , (284)

where ε01...D−1 = 1. One can easily verify that ∗∗ω = (−)q(D−q) (−)D−1 ω.
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I, 0 being the nk × nk identity and zero-matrices, respectively, and

M(φ) = (M(φ)MN ) ≡
(
(I − εRI−1R)ΛΣ −(RI−1)Λ

Γ

ε(I−1R)ΔΣ I−1ΔΓ

)
. (291)

The reader can easily verify that:

MT CεM = Cε. (292)

For ε = −1, which is the case of the vector fields in four dimensions, Cε is the
symplectic invariant matrix andM is a symmetric, symplectic matrix. For ε = +1,
which is the case of 2-forms in six dimensions, Cε is the O(nk, nk)-invariant matrix
and M a symmetric element of O(nk, nk).

The Maxwell equations read:
dF = 0. (293)

In order for (283) to be a symmetry of (289) and (293) we must have:

M(g � φ) = R[g]−TM(φ)R[g]−1, (294)

and
R[g]TCεR[g] = Cε. (295)

This means that in D = 2k dimensions:

k even : R[G] ⊂ Sp(2nk,R),

k odd : R[G] ⊂ O(nk, nk). (296)

All other forms of rank p �= k − 1, which include the vector fields in D > 4, will
transform in linear representations of G. The corresponding kinetic Lagrangian only
feature the first term of (285), with no generalized theta-term (R = 0).

If we compactify Type IIA/IIB or eleven-dimensional supergravity on a torus
down to D-dimensions, we end up with an effective ungauged, maximal theory in D
dimensions, featuring form-fields of various order. Upon dualizing all form-fields to
lower order ones, we end up with a formulation of the theory in whichG is maximal,
and is described by the non-compact real form E11−D(11−D) of the group E11−D. Here
we use the symbol E11−D(11−D) as a short-hand notation for the following groups:

D = 9 : G = E2(2) ≡ GL(2,R),

D = 8 : G = E3(3) ≡ SL(2,R) × SL(3,R),

D = 7 : G = E4(4) ≡ SL(5,R), (297)

D = 6 : G = E5(5) ≡ SO(5, 5),

D = 5 : G = E6(6),
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D = 4 : G = E7(7),

D = 3 : G = E8(8).

Only for D ≤ 5, E11−D(11−D) is a proper exceptional group. The ungauged four-
dimensional maximal supergravity was originally obtained from compactification of
the eleven-dimensional one and dualization of all form-fields to lower order ones in
[53], where the E7(7) on-shell symmetry was found.

In D = 10 Type IIA and IIB theories feature different global symmetry groups:
GIIA = SO(1, 1) and GIIB = SL(2,R), respectively. The latter encodes the conjec-
tured S-duality symmetry of Type IIB string theory. In this theory GIIB does not act
as a duality group since the 5-form field strength is self-dual and is a GIIB-singlet.

A G-covariant gauging [7, 74–76] is effected starting from the formulation of the
ungauged theory in which G is maximal and promoting a suitable global symmetry
group of the Lagrangian Gg ⊂ G to local symmetry. The choice of the gauge group
is still completely encoded in a G-covariant embedding tensor Θ:

Θ ∈ Rv∗ × adj(G), (298)

subject to a linear constraint, generalizing (255), which singles out in the above
product a certain representation RΘ for the embedding tensor, and a quadratic one
expressing the Gg-invariance ofΘ . In Table2 we give, in the various D-dimensional
maximal supergravities, the representations RΘ of Θ .

Just as in the duality covariant construction of the four-dimensional gaugings
discussed above, one introduces all form-fields which are dual to the fields of the
ungauged theory. All the form-fields will transform in representations of G and dual
forms of different order will belong to conjugate representations. In D = 2k, in the
presence of rank-(k − 1) antisymmetric tensors, this amounts to introducing thefields
C̃(k−1)Λ dual to the elementary ones CΛ

(k−1), just as we did for the vector fields in
four dimensions. Together they transform in the representation R discussed above.
By consistency, each form-field is associated with its own gauge invariance. Only
the fields of the original ungauged theory are described by kinetic terms, the extra
fields enter in topological terms and in Stueckelberg-like combinations within the
covariant field strengths. The latter, for a generic p-form field, can be schematically
represented in the form (we suppress all indices)

F(p+1) = DC(p) + Yp[Θ] · C(p+1) + · · · . (299)

where Yp[Θ] is a constant intertwiner tensor constructed out ofΘ and ofG-invariant
tensors. The gauge variation of the p-form has the following schematic expression:

δC(p) = Yp[Θ] · Ξ(p) + DΞ(p−1) + · · · (300)

The embedding tensor defines, through the tensors Yp[Θ], a splitting of the p-forms
into physical fields and unphysical ones. The former will in general become massive
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Table 2 Decomposition of the embedding tensor Θ for maximal supergravities in various space-
time dimensions in terms of irreducible G representations [5, 7]

D G H Θ

7 SL(5) USp(4) 10 × 24 =
10 + 15 + 40 + 175

6 SO(5, 5) USp(4) × USp(4) 16 × 45 =
16 + 144 + 560

5 E6(6) USp(8) 27 × 78 =
27 + 351 + 1728

4 E7(7) SU(8) 56 × 133 =
56 + 912 + 6480

3 E8(8) SO(16) 248 × 248 =
1 + 248 + 3875 +
27000 + 30380

Only the underlined representations are allowed by supersymmetry. The R-symmetry group H is
the maximal compact subgroup of G

by “eating” corresponding unphysical (p − 1)-forms, while the latter, whose field
strengths fail to satisfy the Bianchi identity, are in turn gauged away and become
degrees of freedom of massive (p + 1)-forms. The constraints on the embedding
tensor and group theory guarantee the consistency of the whole construction.

Just as in the four-dimensional model discussed above, the embedding tensor
defines the distribution of the physical degrees of freedom among the various fields
by fixing the gauge freedom (300) and solving the non-dynamical field equations.
These G-covariant selective couplings between forms of different order, determined
by a single objectΘ , define the so-called tensor hierarchy and was developed in the
maximal theories, in [7, 75, 76] as a general G-covariant formulation of the gauging
procedure in any dimensions. In this formalism the maximal gauged supergravity in
D = 5 was constructed in [74], generalizing previous works [84, 85]. The general
gauging of the six and seven -dimensional maximal theories were constructed in [86]
and [75] respectively, extending previous works [87]. In D = 8 the most general
gaugings were constructed in [88]. We refer to these works for the details of the
construction in the different cases.
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Supersymmetric Black Holes and Attractors
in Gauged Supergravity

Dietmar Klemm

Abstract These are notes of lectures given by the author at the school ‘Theoretical
frontiers in black holes and cosmology’, iiP Natal (Brazil), June 2015. They are
divided into three parts. The first contains a brief introduction to matter-coupled
N = 2 gauged supergravity in four dimensions and its ingredients. Part two deals
with the attractor mechanism in gauged supergravity, while in the last part we show
how to construct both supersymmetric and nonextremal black holes in these theories.

1 Introduction

Black holes in gauged supergravity theories provide an important testground to
address fundamental questions of gravity, both at the classical and quantum level.
Among these are for instance the problems of black hole microstates, the final state
of black hole evolution, uniqueness- or no hair theorems, to mention only a few of
them. In gauged supergravity, the solutions typically have AdS asymptotics, and one
can then try to study these issues guided by the AdS/CFT correspondence. On the
other hand, black hole solutions to these theories are also relevant for a number of
recent developments in high energy- and especially in condensed matter physics,
since they provide the dual description of certain condensed matter systems at finite
temperature, cf. [1] for a review. In particular, models that contain Einstein gravity
coupled to U(1) gauge fields1 and neutral scalars have been instrumental to study
transitions fromFermi-liquid to non-Fermi-liquid behaviour, cf. [2, 3] and references
therein. In AdS/condensed matter applications one is often interested in including a
charged scalar operator in the dynamics, e.g. in the holographic modeling of strongly
coupled superconductors [4]. This is dual to a charged scalar field in the bulk, that

1The necessity of a bulkU(1)gaugefield arises, because a basic ingredient of realistic condensed
matter systems is the presence of a finite density of charge carriers.
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typically appears in supergravity coupled to gauged hypermultiplets, which is the
theory that will be considered in these lectures.

Another point of interest addressed here is the attractor mechanism [5–9], that
has been the subject of extensive research in the asymptotically flat case, but for
which not very much has been done for black holes with more general asymptotics.
First steps towards a systematic analysis of the attractor flow in gauged supergravity
were made in [10, 12] for the non-BPS and in [11, 13–15] for the BPS case. Some
interesting results have been found, for instance the appearance of flat directions in
the effective black hole potential for BPS flows [13], a property that does not occur
in ungaugedN = 2, d = 4 supergravity [9], at least as long as the metric of the scalar
manifold is strictly positive definite.

In the second part of our lectureswe extend thework of [12] to include also gauged
hypermultiplets. We shall construct an effective potential Veff that depends on both
the usual black hole potential and the potential for the scalar fields. Veff governs the
attractors, in the sense that it is extremized on the horizon by all the scalar fields of the
theory, and the entropy is given by the critical value of Veff. As in [12], our analysis
does not make use of supersymmetry, so our results are valid for any static extremal
black hole in four-dimensional N = 2 matter-coupled supergravity with gauging of
abelian isometries of the hypermultiplet scalar manifold.

These lectures are organized as follows: In the next section, we review N = 2,
d = 4 gauged supergravity coupled to vector- and hypermultiplets. Section3 contains
an extension of the results of [12] on black hole attractors in gauged supergravity
to the case that includes also hypermultiplets. Finally, in Sect. 4 we show how to
construct both supersymmetric and nonextremal black holes in Fayet–Iliopoulos
gauged N = 2, d = 4 supergravity.

2 Brief Introduction to N = 2, d = 4 Gauged Supergravity
and Ingredients

In this section we shall give a brief introduction into matter-coupled N = 2 gauged
supergravity in four dimensions. For a much more extended discussion we refer to
the original paper [16], to the book [17], or to the lecture notes [18].

The gravitymultiplet ofN = 2, d = 4 supergravity can be coupled to a number nV
of vector multiplets and to nH hypermultiplets. The bosonic sector then includes the
vierbein eaμ, n̄ ≡ nV + 1 vector fieldsAΛ

μ withΛ = 0, . . . , nV (the graviphoton plus
nV other fields from the vectormultiplets), nV complex scalar fieldsZi, i = 1, . . . , nV ,
and 4nH real hyperscalars qu, u = 1, . . . , 4nH .

The complex scalars Zi of the vector multiplets parametrize an nV -dimensional
special Kähler manifold, i.e. a Kähler–Hodgemanifold (whichmeans that the Kähler
form is of even integer cohomology), with Kähler metric Gij̄(Z, Z̄), which is the base
of a symplectic bundle with the covariantly holomorphic sections



Supersymmetric Black Holes and Attractors in Gauged Supergravity 113

V =
( LΛ

MΛ

)
, Dı̄V ≡ ∂ı̄V − 1

2

(
∂j̄K

)V = 0, (1)

obeying the constraint

〈V|V̄ 〉 ≡ L̄ΛMΛ − LΛM̄Λ = −i, (2)

whereK is the Kähler potential andD denotes the Kähler-covariant derivative. Alter-
natively one can introduce the explicitly holomorphic sections of a different sym-
plectic bundle,

Ω ≡ e−K/2V ≡
(

χΛ

FΛ

)
. (3)

In appropriate symplectic frames it is possible to choose a homogeneous function
of second degree F(χ), called prepotential, such that FΛ = ∂ΛF . In terms of the
sections Ω the constraint (2) becomes

〈
Ω|Ω̄ 〉 ≡ χ̄ΛFΛ − χΛF̄Λ = −ie−K. (4)

The couplings of the vector fields to the scalars are determined by the n̄ × n̄ period
matrix N , defined by the relations

MΛ = NΛΣ LΣ, Dı̄M̄Λ = NΛΣ Dı̄ L̄Σ. (5)

If the theory is defined in a frame in which a prepotential exists, N can be obtained
from

NΛΣ = F̄ΛΣ + 2i

(
NΛΓ χΓ

) (
NΣ�χ�

)
χΩNΩ	χ	

, (6)

where FΛΣ = ∂Λ∂ΣF and NΛΣ ≡ Im(FΛΣ).
As an exercise, consider the prepotential F = −iχ0χ1. This is a model with

just one vector multiplet (nV = 1), and thus there is only one coordinate Z = Z1. We
have thenF0 = −iχ1,F1 = −iχ0. If we choose the parametrizationχ0 = 1,χ1 = Z
(called ‘special coordinates’), the holomorphic symplectic section (3) becomes

Ω =

⎛
⎜⎜⎝

χ0

χ1

F0

F1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
Z

−iZ
−i

⎞
⎟⎟⎠ , (7)

and the constraint (4) gives

− ie−K = −2i(Z + Z̄). (8)
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The special Kähler metric is thus

GZZ̄ = ∂Z∂Z̄K = 1

(Z + Z̄)2
. (9)

This is the SU(1, 1)/U(1) model. Using (5), determine the period matrix N !
Further exercise: Consider the more general prepotential F = −i(χ0)n(χ1)2−n.

Determine the symplectic section, the Kähler potential, Kähler metric and period
matrix. Why is n restricted to the range 0 < n < 2? (In order to answer this last
question, you need to take a look at the kinetic terms in the action (14)).

We come now to the hypermultiplet sector. The 4nH real hyperscalars qu para-
metrize a quaternionic Kähler manifold with metric Huv(q). A quaternionic Kähler
manifold is a 4n-dimensional Riemannianmanifold admitting a locally defined triplet
Kv

u of almost complex structures satisfying the quaternion relations

KxKy = εxyzK
z − δxy , (x, y, z = 1, 2, 3), (10)

and whose Levi–Civita connection preserves K up to a rotation,

∇wKv
u + Aw × Kv

u = 0, (11)

with SU(2) connectionA ≡ Au(q) dqu. (This distinguishes quaternionicKählerman-
ifolds from hyper-Kähler manifolds). A further property is that the SU(2) curvature
is proportional to the complex structures,

Fx ≡ dAx + 1

2
εxyzAy ∧ Az = −2Kx. (12)

Quaternionic Kähler manifolds are Einstein manifolds with holonomy group
USp(2nH) × SU(2)/Z2. The SU(2) factor mixes the three complex structures. Since
USp(2nH) = Sp(nH) and SU(2) = Sp(1), this is sometimes written in the form
Sp(nH) × Sp(1)/Z2. Notice in this context that the compact symplectic group
USp(2n) is the subgroup of GL(n,H) that preserves the standard hermitian form
on Hn,

〈x, y〉 = x̄1y1 + · · · + x̄nyn.

USp(2n) is thus just the quaternionic unitary group U(n,H). Notice that, in general,
quaternionic Kähler manifolds are not Kähler.

In what follows, we will only consider gaugings of abelian isometries of the
quaternionic-Kähler metric Huv. (No gauging of isometries of the vector multiplets’
special Kähler manifold). These are generated by commuting Killing vectors kΛ

u(q),
[kΛ, kΣ ] = 0. The requirement that the quaternionic-Kähler structure is preserved
implies the existence of a triplet of Killing prepotentials, or moment maps, PΛ

x for
each Killing vector such that
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PΛ
x = 1

2nH
Kx

u
v∇vkΛ

u, DuPΛ
x ≡ ∂uPΛ

x + εxyzAy
uPΛ

z = −2Kx
uvkΛ

v. (13)

Note that the moment maps are related to the generating functions of canonical
transformations in classical mechanics: In that case, one requires that an infinitesimal
symmetry preserves the symplectic form. This gives the canonical transformations,
and implies that they are given in terms of a generating function.

The bosonic action reads

S =
∫

d4x
√|g|

[
R + 2Gij̄ ∂μZ

i∂μZ̄ j̄ + 2Huv Dμq
uDμqv

+2 IΛΣ FΛ μνFΣ
μν − 2RΛΣ FΛ μν 
 FΣ

μν − V(Z, Z̄, q)
]
,

(14)

where the scalar potential has the form

V(Z, Z̄, q) = g2
[
2L̄ΛLΣ(HuvkΛ

ukΣ
v − PΛ

xPΣ
x) − 1

4
IΛΣPΛ

xPΣ
x

]
, (15)

and g is the gauge coupling constant. The covariant derivatives acting on the hyper-
scalars are

Dμq
u = ∂μq

u + gAΛ
μkΛ

u, (16)

and
IΛΣ ≡ Im(NΛΣ), RΛΣ ≡ Re(NΛΣ), IΛΣ IΣΓ = δΛ

Γ . (17)

Before we continue, some comments are in order:

• Symplectic transformations: Consider the case without gauging, g = 0, and
define

F±Λ
μν := 1

2

(
FΛ

μν ∓ i

2
εμνρσF

Λρσ

)
, Gμν

±Λ := NΛΣF
±Σμν. (18)

Then the Bianchi identities and Maxwell equations can be written in the form

∇μImF+Λμν = 0 (Bianchi), ∇μImGμν
+Λ = 0 (Maxwell). (19)

Exercise: Show this!
The (19) are invariant under GL(2n̄,R),

(
F̃+

G̃+

)
=
(
A B
C D

)(
F+
G+

)
. (20)

Since (18) must be preserved, we need
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G̃+ = CF+ + DG+ = (C + DN )F+ = (C + DN )(A + BN )−1F̃+ != Ñ F̃+,

(21)
and thus N transforms as

Ñ = (C + DN )(A + BN )−1. (22)

It is an easy exercise to shew that the symmetry of Ñ implies the relations

ATC − CTA = 0, BTD − DTB = 0, ATD − CTB = , (23)

and hence

S ≡
(
A B
C D

)
∈ Sp(2n̄,R), (24)

since (23) is equivalent to STΩS = Ω , where

Ω =
(

0

− 0

)
. (25)

Note that in the case of gauging, the potentials AΛ
μ appear explicitely, for instance

in the covariant derivative (16). Symplectic covariance is thus broken, unless one
considers an extended formalism that includes in addition also magnetic gaugings,
like e.g. in [14].Moreover, from (22) we see that the scalars in the vectormultiplets
transform under symplectic transformations (N depends on the Zi), and thus the
presence of a scalar potential typically breaks symplectic covariance. In some
cases, a discrete subgroup of Sp(2n̄,R) may survive after the gauging.

• Case without hypermultiplets: The algebra of symmetries implies the ‘equivari-
ance condition’

PΛ × PΣ + 1

2
KuvkΛ

ukΣ
v = 0. (26)

If the quaternionic Kähler manifold is nontrivial (nH ≥ 1), the unique solution of
(26) is given by

PΛ = 1

2nH
Ku

v∇vkΛ
u, (27)

cf. (13). However, for nH = 0, there is still the solution

PΛ = eξΛ, (28)

where e denotes an arbitrary constant vector in SU(2) space, and the ξΛ are con-
stants, called Fayet-Iliopoulos (FI) parameters. The moment maps (28) are called
U(1) FI terms. They will be relevant for the last part of these lectures, where we
shall consider only the case without hypers.
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3 Attractor Mechanism in Gauged Supergravity

In ungauged supergravity, the attractor mechanism [5–9] essentially states that, at
the horizon of an extremal black hole, the scalar fields φ of the theory are always
attracted to the same values φhor (fixed by the black hole charges), independently of
their values φ∞ at infinity. When the so-called black hole potential (to be introduced
below) has flat directions, it may happen that some moduli are not stabilized, i.e.,
their values at the horizon are not fixed in terms of the black hole charges. Yet,
the Bekenstein–Hawking entropy turns out to be independent of these unstabilized
moduli. Notice that this does not hold anymore for nonextremal black holes, for
which the horizon is not necessarily an attractor point.

The aim of this part of our lectures is to show how the attractor mechanism is
generalized in gauged supergravity. In this case, the moduli fields have a potential,
and typically approach the critical points of this potential asymptotically, where the
solution approaches anti-de Sitter space. Thus, unless there are flat directions in
the scalar potential, the values of the moduli at infinity are completely fixed (for
instance in terms of FI parameters or other constants appearing in the potential), and
therefore a more suitable formulation of the attractor mechanism in the gauged case
would be to say that the black hole entropy is determined entirely by the charges,
and is independent of the values of the moduli on the horizon that are not fixed by
the charges. First steps towards a systematic analysis of the attractor flow in gauged
supergravityweremade in [10–15, 19, 20]. In particular, in [12] the authors presented
a generalization of the attractor mechanism to extremal static black holes in N = 2,
d = 4 gauged supergravity coupled to abelian vectormultiplets. In this section,which
is mainly based on the results of [21], we closely follow their argument, generalizing
it by taking into account the presence of gauged hypermultiplets. As in [12], wemake
no assumption on the form of the scalar potential, of the vectors’ kinetic matrixN or
on the scalar manifolds, so that our results are valid not only for N = 2 supergravity,
but for any theory described by an action of the form (14).

The equations of motion obtained from the variation of (14) are

Rμν + Tμν + 2Gij̄ ∂(μZ
i∂ν)Z̄

j̄ + 2HuvDμq
uDνq

v − 1

2
gμνV = 0, (29)

∇ν (
FΛ
νμ) + g

2
kΛuD

μqu = 0, (30)

D2Zi + ∂ iFΛ
μν 
 FΛ

μν + 1

2
∂ iV = 0, (31)

D2qu + 1

4
∂uV = 0, (32)

where
Tμν ≡ IΛΣ

(
4FΛ ρ

μ FΣ
νρ − gμνF

Λ
ρσF

Σρσ
)

, (33)
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the dual field strengths are given by

FΛμν ≡ − 1

4
√|g|

δS

δ 
 FΛμν
= RΛΣF

Σ
μν + IΛΣ 
 FΣ

μν, (34)

and the second covariant derivatives on the scalars act as

D2Zi = ∇μ∂μZi + Γ i
jk∂μZ

j∂μZk, (35)

D2qu = ∇μD
μqu + Γ u

vwDμq
vDμqw + gAΛ

μ∂vkΛ
uDμqv. (36)

The metric for the most general static extremal black hole background with flat,
spherical or hyperbolic horizon can be written in the form

ds2 = e2U(r)dt2 − e−2U(r)
[
dr2 + e2W(r)

(
dϑ2 + fκ(ϑ)2dϕ2

)]
, (37)

with

fκ(ϑ) =
⎧⎨
⎩

sin ϑ, κ = 1,
ϑ, κ = 0,

sinh ϑ, κ = −1.
(38)

We require that all the fields are invariant under the symmetries of the metric, namely
the time translation isometry generated by ∂t and the spatial isometries generated by
the Killing vectors

∂ϕ, cosϕ ∂ϑ − f ′
κ

fκ
sin ϕ ∂ϕ, sin ϕ ∂ϑ + f ′

κ

fκ
cosϕ ∂ϕ. (39)

The scalar fields can then only depend on the radial coordinate r, and the request of
invariance of the field strength 2-forms FΛ leads to

FΛ = 1

2
FΛ

μν(x)dx
μdxν = FΛ

tr(r)dt ∧ dr + FΛ
ϑϕ(r, ϑ)dϑ ∧ dϕ, (40)

with
FΛ

ϑϕ(r, ϑ) = 4πpΛ(r)fκ(ϑ), (41)

where pΛ(r) is a generic function of r. The Bianchi identities

∇ν

(

FΛνμ

) = 0 ⇐⇒ ∂[μFΛ
νρ] = 0 (42)

imply that pΛ must be constant.With field strengths of this form, it is always possible
to choose a gauge in which the gauge potential 1-forms can be written as

AΛ = AΛ
t(r)dt + AΛ

ϕ(ϑ)dϕ. (43)
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The r-component of the Maxwell equations (30) reduces then to the condition

kΛu(q)∂rq
u = 0, (44)

while the ϑ-component is automatically satisfied and the ϕ-component gives

AΣ
ϕkΣ

ukΛu = 0 (45)

for every value of Λ, or equivalently

kΛ
u(q) pΛ = 0. (46)

Finally if we define a function eΛ(r) such that

FΛ
tr(r) = 4π IΛΣ

(
eΣ(r) − RΣΓ p

Γ
)
e2(U−W), (47)

we have FΛϑϕ = 4πeΛ(r)fκ(ϑ) and the t-component of the Maxwell equations
becomes

4πe2(U−W)∂reΛ = g2

2
e−2UAΣ

tkΣ
ukΛu. (48)

The quantities pΛ and eΛ(r) are the magnetic and electric charge densities inside the
2-surfaces Sr of constant r and t,

pΛ = 1

4πV

∫
Sr

FΛ, eΛ(r) = 1

4πV

∫
Sr

FΛ, V =
∫
Sr

fκ(ϑ)dϑ ∧ dϕ. (49)

The r-dependence of eΛ can be easily understood: Due to (16), the hyperscalars are
charged, and thus they contribute to the electric charge densities inside the surfaces Sr .

The non-vanishing components of Tμν are given by

Tt
t = Tr

r = −T θ
θ = −Tϕ

ϕ = (8π)2e4(U−W)ṼBH, (50)

where ṼBH is the so-called black hole potential,

ṼBH = −1

2

(
pΛ, eΛ(r)

) (IΛΣ + RΛΓ IΓ ΩRΩΣ −RΛΓ IΓ Σ

−IΛΓ RΓ Σ IΛΣ

)(
pΣ

eΣ(r)

)
, (51)

which however, unlike the usual definition, has an explicit dependence on r through
the varying electric charges eΛ. It is also straightforward, using the expressions (41),
(47) and the definition (34), to verify that

∂ iFΛ
μν 
 FΛ

μν = (8π)2e4(U−W)∂ iṼBH, (52)
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where on the left-hand side only the dual field strengths FΛ are taken to depend on
the complex scalars Zi and only through the matrices RΛΣ and IΛΣ appearing in (34),
while on the right-hand side the charges eΛ(r) are considered to be independent of
the Zi. Equations (29), (31) and (32) then reduce to

e2U
(
2U ′W ′ + U ′′)− (8π)2e4(U−W)ṼBH − 2g2e−2UAΛ

tkΛuA
Σ
tkΣ

u + V

2
= 0,

(53)

e2U
(
U ′2 + W ′2 + W ′′)− (8π)2e4(U−W)ṼBH + e2UGij̄Z

i′Z̄ j̄′ + e2UHuvq
u′qv′

− g2e−2UAΛ
tkΛuA

Σ
tkΣ

u + V

2
= 0, (54)

e2U
(−κe−2W + 2W ′2 + W ′′)− 2g2e−2UAΛ

tkΛuA
Σ
tkΣ

u + V = 0, (55)

e2U
(
Zi′′ + 2W ′Zi′ + G ij̄∂lGkj̄Z

l′Zk′
)

− (8π)2e4(U−W)∂ iṼBH − 1

2
∂ iV = 0, (56)

e2U
(
qu′′ + 2W ′qu′ + Γ u

vzq
v′qz′

)− g2e−2UAΛ
tkΛ

vAΣ
t∇vkΣ

u − 1

4
∂uV = 0, (57)

where a prime denotes a derivative with respect to r.
Suppose now to have an extremal black hole, with horizon at r = 0, where the

geometry becomes AdS2 × Σ , withΣ = E
2,H2 or S2 for κ = 0,−1, 1 respectively.

In the near horizon limit (r → 0) one has

U ∼ log
r

rAdS
, W ∼ log

(
rH
rAdS

r

)
, (58)

where rAdS is the AdS2 curvature radius. We require all the fields, their derivatives,
the scalar potential and the couplings to be regular on the horizon. Then we can
choose a gauge such that

AΛ
t

∣∣
r=0 = 0 =⇒ AΛ

t
r→0∼ FΛ

rt

∣∣
r=0 r. (59)

It is also reasonable to assume that the derivative of the electric charges ∂reΛ remains
finite on the horizon. In this case, (48) implies that in the near-horizon limit the
quantity AΣ

tkΣ ukΛ
u is at least of order r2. If we expand in powers of r, in the gauge

(59) the order zero term automatically vanishes, while for the order one termwe have

0 = ∂r
(
AΣ

tkΣ ukΛ
u
)∣∣

r=0 = −FΣ
trkΣ ukΛ

u
∣∣
r=0 =⇒ FΛ

trkΛ
u
∣∣
r=0 = 0.

(60)
Using (59) and (60) one can see that the terms with AΛ

t in the equations of motion,
e−2UAΛ

tkΛuAΣ
tkΣ

u and e−2UAΛ
tkΛ

vAΣ
t∇vkΣ

u, go to zero in the near-horizon limit.
In this limit the equations of motion (53)–(57) thus reduce to

1

r2AdS
= (8π)2

VBH

r4H
− V

2
, (61)
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κ

r2H
= 1

r2AdS
+ V , (62)

∂i

[
(8π)2

VBH

r4H
+ V

2

]
= 0, (63)

∂uV = 0, (64)

where VBH ≡ ṼBH|eΛ(r)→eΛ(0). Solving the first two equations for r2H and r2AdS one
gets

r2H = κ ±√
κ2 − 2(8π)2VBHV

V

∣∣∣∣∣
r=0

, (65)

r2AdS = ∓ r2H√
κ2 − 2(8π)2VBHV

∣∣∣∣∣
r=0

, (66)

and since of course r2AdS > 0wehave to choose the lower sign.We also have to require
r2H > 0, whichmeans that flat or hyperbolic geometries, κ = 0,−1, are only possible
if the scalar potential takes negative values on the horizon, V |r=0 < 0. Spherical
geometry (κ = 1), on the other hand, is compatible with both positive or negative
values of V on the horizon, but for V |r=0 > 0 there is the restriction VBHV |r=0 <

1
2(8π)2

, since VBH is always positive.
We can introduce an effective potential as a function of the scalars,

Veff(Z, Z̄, q) ≡ κ −√
κ2 − 2(8π)2VBHV

V
, (67)

defined for VBHV < 1
2(8π)2

, and write

r2H = Veff|ZH ,qH , (68)

r2AdS = Veff√
κ2 − 2(8π)2VBHV

∣∣∣∣∣
ZH ,qH

, (69)

with Zi
H ≡ limr→0 Zi, quH ≡ limr→0 qu. Because of (62)–(63), Veff is extremized on

the horizon by all the scalar fields of the theory,

∂iVeff|ZH ,qH = 0, ∂uVeff|ZH ,qH = 0. (70)

The values Zi
H , quH of the scalars on the horizon are then determined by the extrem-

ization conditions (70), and the Bekenstein–Hawking entropy density is given by the
critical value of Veff,
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s = S

V
= A

4V
= r2H

4
= Veff(ZH , Z̄H , qH)

4
. (71)

For a given theory this critical value, and thus also the entropy, depend only on the
charges (on the horizon) pΛ and eΛ(0), so that the attractor mechanism still works.
On the other hand Zi

H and quH may not be uniquely determined, since in general Veff

may have flat directions.
The limit for V → 0 of Veff only exists for κ = 1, in which case Veff → (8π)2VBH

and one recovers the attractor mechanism for ungauged supergravity. The fact that
this limit does not exist for κ = 0,−1 is not surprising since flat or hyperbolic horizon
geometries are incompatible with vanishing cosmological constant.

Note finally that in the case without hypers and U(1) FI gauging, the effective
potential (67) was obtained in [12].

4 Supersymmetric and Nonextremal Black Holes
in Gauged Supergravity

In this last part of the lectures we shall give some details on how to explicitely
construct black hole solutions in gauged supergravity. Similar to the ungauged case,
where black holes are typically determined by harmonic functions on a flat base
space, we will see that there appears a quite generic structure.

In this section, only the case without hypers (nH = 0) and U(1) FI gauging is
considered. Let us first choose the model with prepotential

F(χ) = −2i(χ0χ1χ2χ3)1/2, (72)

which has three vector multiplets (nV = 3). Notice that

• For zero axions (which means essentially real Zi, i = 1, 2, 3) and equal FI para-
meters ξΛ, this model can be obtained by compactifying d = 11 supergravity on
S7 and truncating to the Cartan subgroup U(1)4 of SO(8) [22].

• In absence of gauging this model is related to

F(χ) = −χ1χ2χ3/χ0 (73)

(cubic prepotential, that appears in what is called ‘very special geometry’) by a
symplectic transformation. As we said in Sect. 2, the gauging breaks symplectic
covariance, and thus the physics of (72) and (73) is different!
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If we choose the parametrization

χ0 = 1, χ1 = Z2Z3, χ2 = Z1Z3, χ3 = Z1Z2, (74)

the holomorphic symplectic vector (3) becomes

Ω = (1,Z2Z3,Z1Z3,Z1Z2,−iZ1Z2Z3,−iZ1,−iZ2,−iZ3)T , (75)

and theKähler potential and nonvanishing components of the Kählermetric are given
respectively by

e−K = 8ReZ1 ReZ2 ReZ3, Giı̄ = Gı̄ i = (Zi + Z̄ ı̄ )−2. (76)

In what follows, we assume the Zi to be real (this is a consistent truncation) and
positive. The latter requirement comes from the positivity of the kinetic terms in the
action. Then the kinetic matrix for the vectors reads

N = −i diag

(
Z1Z2Z3,

Z1

Z2Z3
,

Z2

Z1Z3
,

Z3

Z1Z2

)
, (77)

and thus
RΛΣ = 0, (IΛΣ) = −8 diag

(
L02,L12,L22,L32

)
. (78)

The scalar potential (15) becomes

V = −4g2
(

ξ0ξ1

Z1
+ ξ2ξ3Z

1 + ξ0ξ2

Z2
+ ξ1ξ3Z

2 + ξ0ξ3

Z3
+ ξ1ξ2Z

3

)
, (79)

which has an extremum at

Z1 =
(

ξ0ξ1

ξ2ξ3

)1/2

, Z2 =
(

ξ0ξ2

ξ1ξ3

)1/2

, Z3 =
(

ξ0ξ3

ξ1ξ2

)1/2

. (80)

Exercise: Verify (75)–(80).
We have thus a model with four U(1) vector fields and three real scalars. A class

of black hole solutions to this model was constructed in [23], using the ansatz

ds2 = e2(ψ(r)−V(r))dt2 − e−2(ψ(r)−V(r))dr2 − e2V(r)(dθ2 + fκ(θ)2dφ2), (81)

where

e2ψ(r) =
4∑

n=0

anr
n (82)
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is a quartic polynomial. Without loss of generality one can take a4 = 1 by using the
scaling symmetry

t → t/λ, r → λr, an → anλ
2−n

of the solution, and a3 = 0 by shifting r. The function V(r) turns out to be given by

e2V(r) = (f0f1f2f3)
1/2, (83)

where the fΛ are linear functions,

fΛ = αΛr + βΛ, (84)

with αΛ and βΛ constants. The upper part of the symplectic section V reads

LΛ = 1

2
√
2
e−V fΛ. (85)

Form this one can read off the scalars. The gauge field strengths are

FΛ = pΛfκ(θ)dθ ∧ dφ, (86)

so we have only magnetic charges pΛ. Dyonic generalizations have been constructed
in [24–26].2

The equations of motion are then satisfied if and only if the parameters satisfy the
equations

αΛ = 1

2
√
2gξΛ

,

3∑
Λ=0

ξΛβΛ = 0, a2 = κ − 4
3∑

Λ=0

g2ξ 2
Λβ2

Λ,

pΛ2 = a2
2

β2
Λ + a0

16g2ξ 2
Λ

− a1βΛ

4
√
2gξΛ

+ 4g2ξ 2
Λβ4

Λ. (87)

This leaves a five-parameter family of solutions, labeled e.g. by (β0, β1, β2, a0, a1),
or by four magnetic charges and the mass (that is related to the coefficient a1).

In what follows, we shall discuss some physical properties of the solution. First
of all, there is an event horizon at the largest root rh of e2ψ = 0. The Bekenstein–
Hawking entropy is given by

SBH = e2V(rh)

4G
V, (88)

2Reference [26] considers only the BPS case, but has a more general class of prepotentials, defining
symmetric very special Kähler manifolds.
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where the volumeVwas defined in (49). Moreover, a so-called area product formula
[27] holds: If we decompose

e2ψ =
4∏

α=1

(r − rα),

then the product of all horizon areas (including also possible complex roots rα)
becomes

4∏
α=1

A(rα) = 36V4

Λ2
p0p1p2p3. (89)

Here, A(rα) denotes the area of the α-th horizon, while

Λ = −24g2(ξ0ξ1ξ2ξ3)
1/2 (90)

is the asymptotic value of the cosmological constant. The area product (89) depends
thus only on the charges and the asymptotic cosmological constant, in agreement
with the analysis in [27]. Notice also that (89) reflects the form of the prepotential.
The deeper reason for this fact, which was first observed in [28], remains to be
understood.

The BPS limit of the above solution is obtained for [13] a1 = 0 and

2gξΛp
Λ = −κ. (91)

This is a Dirac-type quantization condition, due to the minimal coupling of the
gravitinos to the linear combination ξΛAΛ, that is used to gauge a U(1) subgroup
of the SU(2) R-symmetry group. Equation (91) can also be viewed as a twisting
condition [29] that expresses the cancellation in the gravitino variation δψμ of a
piece coming from the spin connection on S2, H2 or E2 with a piece coming from
the U(1) connection ξΛAΛ. If (91) (together with a1 = 0) is satisfied, the black
hole preserves two real supercharges. It interpolates between AdS2 × Σ near the
horizon and AdS4 at infinity. The infrared (near-horizon) geometry is 1/2 BPS (4
real supercharges preserved), while the AdS4 in the UV is fully supersymmetric (8
real supercharges). This is in contrast to the asymptotically flat case, where one has
1/2 BPS black holes, and a maximally supersymmetric near-horizon geometry.

Notice also that, by allowing for running scalars (as we did here), one can have
supersymmetric genuine black holes with spherical horizon [13], which are not pos-
sible in minimal gauged supergravity [30] (where there are no scalars). In the latter
case, static BPS black holes must have hyperbolic horizons [31].

Let us compare the solution presented here with the one constructed by Duff and
Liu [32]. They considered a U(1)4 truncation of SO(8) N = 8 gauged supergravity,
which is exactly the N = 2 model considered in this section, with all FI parameters
ξΛ equal. Themetric, moduli and gauge fields of their solution read (cf. (6.2) of [32])
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ds2 = −(H0H1H2H3)
−1/2fdt2 + (H0H1H2H3)

1/2

(
dr2

f
+ r2dΩ2

)
,

e2φ
(12) = H2H3

H0H1
, e2φ

(13) = H1H3

H0H2
, e2φ

(14) = H1H2

H0H3
,

HΛ = 1 + k sinh2μΛ

r
, f = 1 − k

r
+ 2g2r2H0H1H2H3,

FΛ
ϑϕ = ηΛ

2
√
2
k coshμΛ sinhμΛ sin ϑ. (92)

Here, ηΛ = ±1 are arbitrary signs, the μΛ determine the magnetic charges, and k
is a sort of nonextremality parameter (although the solution with k = 0 is not an
extremal black hole, but a naked singularity). After the coordinate transformation

r = r′
√
2g

− k

4

3∑
Λ=0

sinh2μΛ,

(and then dropping the prime), the solution (92) takes the form (81), (85) and (86),3

with FI parameters ξΛ = 1/2, and

βΛ = k

(
sinh2μΛ − 1

4

∑
Σ

sinh2μΣ

)
,

a0 = g2k2

2

⎡
⎣
(
1

2

∑
Λ

sinh2μΛ

)2

+
∑
Λ

sinh2μΛ

⎤
⎦+ 4g4β0β1β2β3,

a1 = −√
2gk

(
1 + 1

2

∑
Λ

sinh2μΛ

)
− √

2
g3k3

4

(
sinh2μ0 + sinh2μ1 − sinh2μ2

− sinh2μ3
) [

(sinh2μ2 − sinh2μ3)
2 − (sinh2μ0 − sinh2μ1)

2
]
,

a2 = 1 − g2
∑
Λ

β2
Λ. (93)

Since both (92) and the solution (81), (85), (86) are labeled by five continuous
parameters (k, μΛ for (92)), one might wonder if they are not equivalent (if all ξΛ are
equal; for generic FI parameters the solution (81), (85), (86) is clearly more general).
This is however not the case: Suppose for instance that all charges are equal in
(92). Then, the ‘harmonic’ functions HΛ coincide as well, and thus the scalar fields
are constant. In the solution considered here instead, one can have equal charges
and yet nontrivial profiles for the moduli (take e.g. a1 = 0, β0 = β1 = −β2 = −β3).
Moreover, (81)–(87) contains a subclass of black holes that are BPS, while it was
shown in [32] that (92) can never be supersymmetric. To understand better what

3As an exercise, work out the relation between the scalars Zi and φ(12), φ(13), φ(14).
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happens, let us consider the subcase β2 = β0, β3 = β1, such that L2 = L0, L3 = L1

and p2 = p0, p3 = p1, which amounts to taking the model with prepotential F =
−iχ0χ1 considered in [33]. Since all gI are equal (2gI = g), the second equation of
(87) boils down to β1 = −β0. From the last equation of (87) one obtains then

p1
2 − p0

2 = a1β0

g
√
2
.

If the charges are equal (up to a sign), p12 = p0
2, and we have therefore a1 = 0 or

β0 = 0. The former case is (for p1 = p0) the supersymmetric black hole found in [13]
(with running scalar), whereas the latter corresponds to the Duff–Liu solution (92),
with constant scalar profiles. In this context, notice also that in the parametrization
(93), for μ2 = μ0, μ3 = μ1, we get

a1 = −√
2gk(1 + sinh2μ0 + sinh2μ1),

which is always nonvanishing (if k �= 0), and thus the supersymmetric case cannot
appear.

In conclusion, the solution (81)–(87) contains more than one branch. One of them
is theDuff/Liu solution (92),while the other contains theBPSblack holes constructed
in [13].

Let us conclude this section with some final comments:
First of all, the appearance of a quartic polynomial e2ψ and linear rescaled sections
eV · (LΛ,MΛ) (actually in a different duality frame that has both electric and mag-
netic gaugings, cf. [34]) is a quite generic feature, that was shown to hold in a lot
of models, at least for symmetric very special Kähler manifolds, characterized by a
cubic prepotential

F ∼ dijkχ iχ jχ k

χ0
,

where the tensor dijk must satisfy certain properties in order for the special Kähler
manifold to be symmetric.
Note that quartic polynomials appear also in the Plebański–Demiański solution [35].4

This is the complete family of type-D spacetimes with a non-null electromagnetic
field, whose two principal null congruences are aligned with the two repeated prin-
cipal null congruences of the Weyl tensor. It solves the field equations of Einstein–
Maxwell–(A)dS gravity and describes a rotating, charged and uniformly accelerating
mass. The metric and field strength read respectively

ds2 = 1

(1 − pq)2

{
− Q(q)

p2 + q2
(dτ − p2dσ)2 + p2 + q2

Q(q)
dq2

4For a more recent review cf. [36].
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+ p2 + q2

P(p)
dp2 + P(p)

p2 + q2
(dτ + q2dσ)2

}
, (94)

F = Q(p2 − q2) + 2Ppq
(p2 + q2)2

dq ∧ (dτ − p2dσ) + P(p2 − q2) − 2Qpq

(p2 + q2)2
dp ∧ (dτ + q2dσ),

(95)
where the structure functions are given by

P(p) = (−Λ/6 − P2 + α) + 2np − εp2 + 2mp3 + (−Λ/6 − Q2 − α)p4,

Q(q) = (−Λ/6 + Q2 + α) − 2mq + εq2 − 2nq3 + (−Λ/6 + P2 − α)q4. (96)

Here, m and n are the mass and NUT parameters respectively, P andQ represent the
magnetic and electric charges, while α, ε are additional non-dynamical parameters.

A subclass of solutions can be obtained by scaling the coordinates according to

p → l−1p, q → l−1q, τ → lτ, σ → l3σ, (97)

and simultaneously adjusting the constants

P → l−2P, Q → l−2Q, m → l−3m, n → l−3n, ε → l−2ε, α → l−4α + Λ/6,
(98)

and taking the limit l → ∞. This removes the acceleration parameter5 and leads
to [35]

ds2 = − Q(q)

p2 + q2
(dτ − p2dσ)2 + p2 + q2

Q(q)
dq2 + p2 + q2

P(p)
dp2 + P(p)

p2 + q2
(dτ + q2dσ)2,

(99)

P(p) = α − P2 + 2np − εp2 + (−Λ/3)p4,

Q(q) = α + Q2 − 2mq + εq2 + (−Λ/3)q4. (100)

The electromagnetic field is still given by (95). Equation (99) is called the Carter–
Plebański solution, since itwas derived and studied already byCarter [37] and later by
Plebański [38]. Notice that one can take a different scaling limit (after the inversion
q → −1/q), leading to the cosmological C-metric, that describes either a pair of
accelerated black holes (with the acceleration provided by the pressure exerted by a
strut), or a single accelerated black hole, depending on the value of the acceleration
parameter, cf. the discussion in [39].

The appearance of quartic structure functions raises the question if we can gener-
alize the Plebański–Demiański, Carter–Plebański or C-metric to gauged supergavity
with running scalars. For the simple F = −iχ0χ1 model, this can indeed be done,

5The acceleration parameter is essentially given by l−2, as can be seen by comparing (97) and (98)
with (3) and (4) of [36].
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cf. [24, 40, 41]. We expect the construction of such solutions to have a wide range
of applications in AdS/CFT, AdS/cond-mat, black hole microstate counting etc.
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Lectures on Holographic Renormalization

Ioannis Papadimitriou

Abstract We provide a pedagogical introduction to the method of holographic
renormalization, in its Hamiltonian incarnation. We begin by reviewing the descrip-
tion of local observables, global symmetries, and ultraviolet divergences in local
quantum field theories, in a language that does not require a weak coupling
Lagrangian description. In particular, we review the formulation of the Renormal-
ization Group as a Hamiltonian flow, which allows us to present the holographic
dictionary in a precise and suggestive language. The method of holographic renor-
malization is then introduced by first computing the renormalized two-point function
of a scalar operator in conformal field theory and comparing with the holographic
computation. We then proceed with the general method, formulating the bulk theory
in a radial Hamiltonian language and deriving the Hamilton–Jacobi equation. Two
methods for solving recursively the Hamilton–Jacobi equation are then presented,
based on covariant expansions in eigenfunctions of certain functional operators on the
space of field theory couplings. These algorithms constitute the core of the method of
holographic renormalization and allow us to obtain the holographic Ward identities
and the asymptotic expansions of the bulk fields.

1 Introduction

The gauge/gravity duality [1] stipulates amathematical equivalence between a theory
of (quantum) gravity and a local quantum field theory (QFT), without gravity, on a
lower dimensional space. The best studied examples of such holographic dualities
typically involve gravity in an asymptotically anti de Sitter (AdS) space and a dual
QFT ‘living’ on the boundary of AdS. This mathematical equivalence is reflected
in a precise map between physical observables on the two sides of the duality. For
local observables, this map is summarized in the prescription for computing QFT
correlation functions from the gravity dual, originally proposed in [2, 3]. Namely,
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for every local, single-trace and gauge-invariant operator O(x) there is a field, Φ,
in the dual ‘bulk’ gravity theory. The generating functional of connected correlation
functions of O(x), W [J ], is then identified with the bulk on-shell action

W [J ] ∼ Son-shell[Φ]|Φ∼J , (1)

evaluated on solutions of the bulk equations of motion subject to Dirichlet bound-
ary conditions on the AdS boundary. The arbitrary function that is kept fixed at the
boundary is identified with the source J (x). This statement is an operational defini-
tion of the holographic dictionary, allowing one to compute, in principle, any local
QFT observable from the bulk theory. However, there are a number of practical and
conceptual obstacles.

The most obvious technical difficulty is that both sides of (1) actually involve infi-
nite quantities. On theQFT side, we know that the generating functional of composite
operators generically possesses ultraviolet (UV) divergences, even in a conformal
field theory (CFT). We will see an explicit example of this phenomenon later on. On
the gravity side, the on-shell action is also generically divergent, due to the infinite
volume of AdS space. In order to make sense of (1), therefore, one must somehow
remove the divergences from both sides and identify the remaining finite expressions.
On the QFT side the procedure for systematically and consistently removing the UV
divergences is known as renormalization.Holographic renormalization [4–13] is the
analogous procedure for the gravity side of the duality.

A more conceptual drawback of the identification (1) is that it only maps certain
objects on the two sides of the duality, such as the on-shell action and the generating
function. However, the bulk fields, or indeed the equations of motion in the bulk are
not given any concrete meaning on the QFT side, except from the indirect role in
evaluating the on-shell action. Aswe shall see, both the RenormalizationGroup (RG)
of local QFTs and the dual gravitational theories admit a Hamiltonian description
that allows us to formulate the holographic dictionary more precisely.

These lecture notes are organized as follows. In Sect. 2 we discuss local QFT
observables and global symmetries in a language that does not assume a weak cou-
pling or Lagrangian description. Moreover, we put forward a Hamiltonian formula-
tion of theRenormalizationGroupof localQFTs that directly parallels the description
of the holographic dual bulk theory later on. We end Sect. 2 with a concrete example
of UV divergences in the two-point function of a scalar operator in a CFT. In Sect. 3
we carry out explicitly the holographic computation for the two-point function on
a fixed AdS background and reproduce the renormalized result obtained from the
CFT calculation. The Hamiltonian formulation of the holographic dictionary is pre-
sented in Sect. 3.2. Section4 discusses at length the radial Hamiltonian formulation
of the bulk dynamics for Einstein–Hilbert gravity coupled to a self interacting scalar.
In Sect. 5 we present two algorithms for recursively solving the radial Hamilton–
Jacobi equation, which constitutes the core of holographic renormalization. Given
the solution of the Hamilton–Jacobi equation derived in Sect. 5, in Sect. 6 we pro-
vide general expressions for the renormalized one-point functions in the presence of
sources and derive the holographic Ward identities. Finally, in Sect. 7 we show how
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the asymptotic expansions of the bulk fields can be obtained systematically from the
solution of the Hamilton–Jacobi equation. Some background material is presented in
the appendices. In particular, Appendix “Hamilton–Jacobi primer” is a self contained
review of Hamilton–Jacobi theory in classical mechanics.

2 Local QFT Observables and the Local Renormalization
Group

Before we delve into the details of the holographic dictionary and the computation of
QFT observables from the bulk gravitational theory, it is instructive to review some
basic aspects of QFTs and to put them in a language that will later help us make
contact with the holographic dual bulk theory. In particular, since the gauge/gravity
duality relates the strongly coupled regime of local QFTs to the bulk gravity theory,
it is crucial to describe the local QFT observables and their properties in a way that
is valid at strong coupling. Ideally we would like to discuss local QFT observables
without assuming the existence of a microscopic Lagrangian description of the QFT.

2.1 QFT Correlation Functions and the Generating
Functional

The basic objects of a local QFT are correlation functions of local operators, O(x),
namely

〈O1(x1)O2(x2) . . .On(xn)〉. (2)

In particular, if we know all correlation functions of all local operators of a local
QFT, then in most cases we know all there is to know about this theory.1 In a generic
theory, even if there is only a finite number of local operators present in a given QFT,
the number of correlation functions that we need to know can be infinite. So, instead
of having to deal with an infinite number of correlation functions, it is useful to
introduce the generating function of correlation functions, Z [J ], as a book keeping
device. For a single local operator O(x), the generating function takes the form

Z [J ] =
∞∑
k=0

1

k!
∫

dd x1

∫
dd x2 . . .

∫
dd xk J (x1)J (x2) . . . J (xk)〈O(x1)O(x2) . . .O(xk)〉,

(3)

1Sometimes, additional global observables must be specified to uniquely identify a theory [14].
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where d is the spacetime dimension. Given Z [J ], any correlation function of the
operator O(x) can be extracted by multiple functional differentiation:

〈O(x1)O(x2) . . .O(xk)〉 = δk Z [J ]
δ J (x1)δ J (x2) . . . δ J (xk)

∣∣∣∣
J=0

. (4)

These definitions straightforwardly generalize to a set of local operators {O1(x),
O2(x), . . .}, with the corresponding generating functional Z [J1, J2, . . .] depending
on the sources J1(x), J2(x), . . .Moreover, the definition of the generating functional
through (3) is completely general and it does not assume a Lagrangian description
of the theory. Of course, if the theory admits a Lagrangian description, then the
generating functional Z [J ] has the standard path integral representation

Z [J ] =
∫

Dφei
∫
dd xL(φ)+∫

dd x J (x)O(x), (5)

where φ here stand for the elementary Lagrangian fields.
An alternative but equivalent way to encode all local observables is in terms of

the generating function of connected correlation functions

W [J ] = log Z [J ], (6)

or

W [J ] =
∞∑
k=0

1

k!
∫

dd x1

∫
dd x2 . . .

∫
dd xk J (x1)J (x2) . . . J (xk)〈O(x1)O(x2) . . .O(xk)〉c,

(7)

where 〈O(x1)O(x2) . . .O(xk)〉c are now connected correlation functions. The first
derivative of the generating function (7) corresponds to the one-point function of the
dual operator in the presence of an arbitrary source, namely

〈O(x)〉J = δW [J ]
δ J (x)

. (8)

Taking further derivatives with respect to the source we can obtain any desired cor-
relation function of the operator O(x). In particular, the one-point function in the
presence of sources (8) encodes the same local information as the generating function
(7). This fact will be crucial for the discussion of the holographic dictionary later on.

Another important aspect of (8) is that it amounts to a prescription for the insertion
of the local operator O(x) in any correlation function and so, in effect, it provides
a definition of the local operator O(x). This is indeed the point of view adopted in
the so called local Renormalization Group formulation of QFT [15], where local
operators are defined as derivatives of the generating function with respect to the
corresponding local coupling. For example, the stress tensor, a U (1) current and a
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scalar operator are defined through the relations

Ti j (x) = − 2√
g

δW

δgi j (x)
, (9a)

J i (x) = − 1√
g

δW

δAi (x)
, (9b)

O(x) = − 1√
g

δW

δϕ(x)
, (9c)

where gi j is a general background metric on the space where the QFT is defined, and
Ai is an Abelian background gauge field. The indices i, j = 1, 2, . . . , d run over all
coordinates parameterizing the space where the QFT is defined.

2.2 The Local Renormalization Group as a Hamiltonian
Flow

The expressions (9) for the one-point functions in the presence of sources bare striking
resemblance to the expression for the canonical momenta in classical Hamilton–
Jacobi (HJ) theory. In particular, the one-point functions (9) look mathematically
identical to the expressions (199) or (205) for the canonical momenta in Appendix
“Hamilton–Jacobi primer”, where we review some basic aspects of HJ theory that
we will use repeatedly throughout these lectures.

This analogy turns out to be particularly useful for developing the holographic
dictionary and can be formalized as follows [16]. Let Q be the space of functions
(more generally tensors) on the spacetime, S, where the QFT resides (e.g. Rd ). The
sources Jα(x) are coordinates on Q, which is the analogue of the configuration
space in classical mechanics. Let us extend this configuration space to Qext = Q ×
R, by appending an abstract “time” τ to the generalized coordinates Jα(x) as in
Appendix “Hamilton–Jacobi primer” in the case of a time-dependent Hamiltonian.
Accordingly, an abstract Hamiltonian operator, H, must be introduced as conjugate
momentum to τ . Note that H is a global operator, i.e. it does not depend on x .2 The
extended phase space is then parameterized by the variables

{Oα(x),H; Jα(x), τ }, (10)

and it is isomorphic to the cotangent bundle T ∗Qext, which is endowed with the
pre-symplectic form

Θ =
∫

dd xOα(x)δ Jα(x) − Hdτ, (11)

2Tomake contactwith [16] one can introduce aHamiltonian density,h(x), throughH = ∫
dd x h(x).
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and the canonical symplectic closed 2-form

	 =
∫

dd xδOα(x) ∧ δ Jα(x) − dH ∧ dτ, (12)

that can be written locally as 	 = δΘ .
Any functional, F[J ; τ ], provides a closed section of the cotangent bundle, s:

Qext −→ T ∗Qext, given locally by

s = δF[J ; τ ]. (13)

It follows that

Θ ◦ s = δF[J ; τ ], (14)

or equivalently

Oα = δF[J ; τ ]
δ Jα

, H = −∂F[J ; τ ]
∂τ

, (15)

while

	 ◦ s =
∫

dd x
∫

dd x ′ δ2F[J ; τ ]
δ Jβ(x ′)δ Jα(x)

δ Jβ(x ′) ∧ δ Jα(x) − ∂2F[J ; τ ]
∂τ 2

dτ ∧ dτ = 0.

(16)

As follows from the Hamilton–Jacobi theorem (see Appendix “Hamilton–Jacobi
primer”), the τ -evolution of all the variables is then governedbyHamilton’s equations

J̇α = δH

δOα

, Ȯα = − δH

δ Jα
, Ḣ = ∂H

∂τ
. (17)

Note that the functional derivatives in (15) and (17) are partial derivatives.
There are two different closed sections of the cotangent bundle T ∗Qext one can

naturally define for any local QFT. Taking τ to be related to some generic energy
scale μ via τ = log(μ/μo), where μo is some constant reference scale, the bare
and renormalized generating functions, respectively W [J ] and Wren[J ; τ ], provide
two distinct closed sections of the cotangent bundle T ∗Qext. The difference between
these two functionals is that Wren[J ; τ ] is RG invariant, i.e. given σ : R −→ Q, its
total derivative with respect to τ vanishes, Ẇren[σ(τ); τ ] = 0, while W [J ] is not an
RG invariant. The total derivative of W [J ] with respect to τ gives, by construction,
the Legendre transform of the Hamiltonian H, i.e. the associated Lagrangian3

3Note that in [16] only the RG invariant Wren[J ; τ ] is considered, written in terms of the bare and
renormalized couplings. W [J ] is not discussed at all in that reference.
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Ẇ [J ] = L =
∫

ddx J̇αOα − H =
∫

ddxβαOα − H, (18)

where βα = J̇α are the beta functions of the couplings Jα . Moreover,W [J ] depends
on τ only through the couplings Jα , while Wren[J ; τ ] can also depend explicitly on
τ through the conformal anomaly. Through (15), these two sections define different
local operators and Hamiltonians, which are related through a canonical transforma-
tion [17].

Renormalized RG Hamiltonian

Taking F[J ; τ ] = Wren[J ; τ ], the first equation in (15) is just the renormalized ver-
sion of the local RG definition of local operators that we saw above in (9), namely4

Oren
α = δWren[J ; τ ]

δ Jα
. (19)

The second equation in (15),with F[J ; τ ] = Wren[J ; τ ], can be viewed as adefinition
of the Hamiltonian Hren in QFT. In particular, we conclude that Hren is numerically
equal to the conformal anomaly,

Hren = −∂Wren[J ; τ ]
∂τ

= −
∫

ddx
√
gA, (20)

where A is the conformal anomaly.

Bare RG Hamiltonian

Taking F[J ; τ ] = W [J ], on the other hand, provides a section of T ∗Q. The first
equation in (15) is then identical to the local RG expressions (9), while the second
equation in (15) implies that the bare RG Hamiltonian vanishes identically

H = −∂W [J ]
∂τ

= 0. (21)

As we mentioned above, the bare and renormalized Hamiltonians, as well as the
corresponding local operators, are related by a canonical transformation whose gen-
erating function (in the sense of canonical transformations) is given by the local
counterterms, Wct[J ; τ ], [17]. Note that the explicit τ -dependence of Wren[J ; τ ] is
entirely due to the local counterterms and, in particular, the conformal anomaly.
Under this canonical transformation

W [J ] −→ Wren[J ; τ ] = W [J ] + Wct[J ; τ ]. (22)

4The way we have defined the operators Oα and H in this subsection, they are in fact densities
with respect to the background metric gi j , i.e. we have not divided by

√
g as in (9). Moreover, Oα

include the stress tensor.
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RG Equations

The RG equations for the generating functionsW [J ] andWren[J ; τ ] are respectively

L = Ẇ =
∫

dd xβαOα ⇔ H = 0, (23a)

0 = Ẇren =
∫

dd xβαOren
α + ∂Wren

∂τ
=

∫
ddxβαOren

α +
∫

dd x
√
gA. (23b)

The first of these equations is just the HJ equation (21). Comparing the second
equation with the HJ equation (20) we conclude that the renormalized Hamiltonian
takes the form

Hren =
∫

dd xβαOren
α , (24)

where the sum in this expression is over all operators in the theory, including the
stress tensor. Given the beta functions as functions of the local running couplings Jα ,
this Hamiltonian is linear in the canonical momenta, i.e. in Oren

α [16]. The standard
renormalization procedure in QFT is equivalent to determining the beta functions
as functions of the local running couplings and Wren[J ; τ ] through the HJ equation
(20), i.e.

(∫
ddxβα[J ] δ

δ Jα
+ ∂

∂τ

)
Wren[J ; τ ] = 0. (25)

This is the standard RG equation.
Given βα[J ] one can integrate the first Hamilton equation in (17) to obtain

H =
∫

dd xβα[J ]Oα + F[J ; τ ], (26)

for some unspecified F[J ; τ ]. Combining this relation with the fact that H and Hren

are related by a canonical transformation generated by Wct[J ; τ ], namely

H − Hren + ∂Wct

∂τ
= 0, (27)

we deduce that

F[J ; τ ] =
(∫

ddxβα[J ] δ

δ Jα
− ∂

∂τ

)
Wct[J ; τ ], (28)
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and hence

H[Oα, J β ] =
∫

dd xβα[J ]Oα +
(∫

ddxβα[J ] δ

δ Jα
− ∂

∂τ

)
Wct[J ; τ ]. (29)

However, if the beta functions are not just functions of the running couplings, but
depend linearly on the local operators Oα , i.e.

βα[O, J ] = Gαβ[J ]Oβ, (30)

then the first of Hamilton’s equations in (17) gives

H = 1

2

∫
ddx Gαβ[J ]OαOβ + F̃[J ; τ ], (31)

for some unspecified F̃[J ; τ ]. Notice that if the beta functions take the form (30),
then the RG flow is a gradient flow, since βα = GαβδW/δ J β . As we shall see, this
form of the beta functions and of the Hamiltonian H are directly related to the bulk
holographic description of the theory.

2.3 Global Symmetries and Ward Identities

A general property of QFTs is that they typically possess a number of global sym-
metries. For example, a relativistic QFT on flat Minkowski space possesses Poincaré
symmetry. If the theory is additionally scale invariant, then it will generically possess
conformal symmetry. Such theories are known as conformal field theories (CFTs)
and the fact that they are conformally invariant allows us to make sense of them
on curved backgrounds that are conformally related to flat Minkowski space. Other
examples of global symmetries include internal symmetries such as SU (2) isospin
(for massless up and down quarks) or supersymmetry.

InQFTs that admit a classical Lagrangian description, global symmetriesmanifest
themselves as invariances of the classical action and lead via Noether’s theorem to
conserved currents. For example, Poincaré invariance of the classical action implies
that the stress-energy tensor, Ti j , is conserved, i.e.

∂ iTi j = 0. (32)

Similarly, global internal symmetries lead to conserved currents J i ,

∂iJ i = 0. (33)

At the quantum level these currents become quantum operators and their classical
conservation laws imply relations among certain correlation functions that involve
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these currents. These identities, relating various correlation functions as a result of
the classical Noether theorem, are known as Ward identities.

It is often the case, however, that some of the classical symmetries are broken
at the quantum level. This happens because in a QFT various quantities contain
ultraviolet divergences which must be regulated and renormalized to yield a well
defined quantity. However, there may not exist a regulator that preserves all of the
classical symmetries of the theory, which leads to the breaking of some symmetries
at the quantum level. This breaking of the classical symmetries at the quantum level
leads to the so-called quantum anomalies in the Ward identities.

A particularly elegant way to derive theWard identities of a quantum field theory,
without relying on a classical Lagrangian description of the theory, is to work with
the generating functional of correlation functions and gauge the global symmetries
by promoting the sources of the corresponding conserved currents to gauge fields.
Among all operators in any QFT there is always the stress tensor, Ti j , and let us
assume that there is in addition an internal U (1) symmetry giving rise to a current,
J i , in the spectrum of operators. Moreover, to be generic, let us suppose that there
is also a scalar operator,O, transforming trivially both under the Poincaré group and
theU (1) symmetry, but has definite scaling dimension Δ. The generating functional
of connected correlation functions will then be a function of the sources, gi j , Ai , ϕ,
respectively for the stress tensor, the current of the internal symmetry, and for the
scalar operator, as well as for all other operators in the theory which we will not need
to consider:

W [g, A, ϕ, . . .]. (34)

As we would now do in a classical Lagrangian description of the theory to derive
Noether’s theorem, we gauge the global symmetries by promoting the Poincaré
transformations to diffeomorphisms and the internal global symmetry to a local
gauge symmetry, while promoting the sources5 g(0)

i j and A(0)i to gauge fields of the
corresponding local symmetries. In a classical Lagrangian description this would
amount to introducing ‘minimal couplings’ in the Lagrangian. Under infinitesimal
diffeomorphisms, parameterized by the vector ξ i (x), the sources then transform as

δξ g
i j
(0) = −(Di

(0)ξ
j + D j

(0)ξ
i ), δξ A(0)i = A(0) j D(0)i ξ

j + ξ j D(0) j A(0)i ,

δξ ϕ(0) = ξ j D(0) jϕ(0), (35)

while under infinitesimal U (1) gauge transformations, parameterized by the gauge
function α(x), they transform as

δαg(0)i j = 0, δαA(0)i = D(0)iα(x), δαϕ(0) = 0, (36)

5The subscript (0) here is intended to help make contact with the holographic computation later.
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where D(0)i denotes the covariant derivative with respect to the metric g(0)i j . The
Ward identities now can be stated very simply and generally as

δξW = 0, δαW = 0, ∀ ξ i , α, (37)

respectively following from the Poincaré and U (1) symmetries. We can manipulate
these expressions a bit further to bring the Ward identities in a more familiar form.
Starting with the U (1) Ward identity we have

δαW = 0 ⇔
∫

ddx

(
δαg(0)

i j δW

δg(0)
i j

+ δαA(0)i
δW

δA(0)i
+ δαϕ(0)

δW

δϕ(0)

)
= 0

⇔
∫

ddxD(0)iα(x)
δW

δA(0)i
= 0 ⇔

∫
dd xα(x)D(0)i

(
δW

δA(0)i

)
= 0, (38)

where we have integrated by parts in the last step and have dropped the boundary
term. Since α(x) is arbitrary, it follows that the U (1) Ward identity is equivalent to
the identity

D(0)i

(
δW

δA(0)i

)
= 0. (39)

We can now repeat this exercise for diffeomorphisms to obtain

δξW = 0 ⇔ Di
(0)

(
2

δW

δg(0)
i j

)
− F (0)i j

δW

δA(0)i
+ δW

δϕ(0)
D(0) jϕ(0)(x) = 0, (40)

where F (0)i j = ∂i A(0) j − ∂ j A(0)i is the field strength of the gauge field A(0)i .
In terms of the one-point functions in the presence of sources the above Ward

identities take the simple form

D(0)i 〈J i (x)〉 = 0, (41)

Di
(0)〈Ti j (x)〉 − 〈J i (x)〉s F (0)i j + 〈O(x)〉D(0) jϕ(0)(x) = 0, (42)

following respectively from U (1) and Poincaré invariance.
Finally, let us consider Weyl transformations, i.e. local scale transformations,

parameterized by the Weyl factor σ(x). Under infinitesimal Weyl transformations
the sources transform as

δσ g(0)
i j = −2δσ (x)g(0)

i j , δσ A(0)i = 0, δσ ϕ(0) = −(d − Δ)δσ(x)ϕ(0), (43)

where Δ is the conformal dimension of the operator O(x) and we focus here on
a CFT since scale invariance is not a symmetry of a generic QFT. As we have
seen, even if our theory is a conformal field theory, the generating functional of
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renormalized correlation functions will not be in general invariant under such a
Weyl transformation. The variation of the generating functional with respect toWeyl
transformations defines the conformal anomaly

δσW =
∫

ddx
√
g(0)δσ (x)A, (44)

where the anomaly density, A is a local function of the sources. Using the above
transformation of the sources, this then leads to the trace Ward identity

〈T i
i (x)〉 = −(d − Δ)ϕ(0)〈O(x)〉 + A. (45)

We recognize this Ward identity as the local version of the RG equation (25), at a
fixed point of the renormalization group.

2.4 UV Divergences and Renormalization of Composite
Operators

Let us now address in more detail the question of renormalization in QFT with a
simple example. Thiswill allow us to directly comparewith a holographic calculation
in the next subsection in order to get a first idea of the holographic dictionary.

Consider a CFTwith a scalar operatorOΔ(x) of conformal dimensionΔ. Confor-
mal symmetry determines the two-point function up to an overall constant, namely

〈OΔ(x)OΔ(y)〉 = c(g,Δ)

|x − y|2Δ , (46)

where c is an arbitrary constant, depending on the dimension Δ and possibly any
coupling constants, g, of the CFT, that we could absorb into the normalization of
the operator OΔ, but we will not. Depending on the conformal dimension, Δ, this
correlator may suffer from short distance singularities. Consider the caseΔ = d/2 +
k + ε, where ε is an infinitesimal parameter and k is a non-negative integer. Iterating
the identity

1

|x − y|2Δ = 1

2(Δ − 1)(2Δ − d)
� 1

|x − y|2Δ−2
, |x − y| �= 0, (47)

where � = δi j∂i∂ j , k + 1 times, we find

1

|x − y|2Δ = 1

2ε

Γ (1 + ε)Γ (d/2 + ε)

22kΓ (k + 1 + ε)Γ (d/2 + k + ε)

1

d − 2 + 2ε
�k+1 1

|x − y|d−2+2ε

∼ −1

2ε

ωd−1Γ (d/2)

22kΓ (k + 1)Γ (d/2 + k)
�kδ(d)(x − y), (48)



Lectures on Holographic Renormalization 143

where ωd−1 = 2πd/2/Γ (d/2) is the volume of the unit (d − 1)-sphere and we have
used the identity �(x2)−d/2+1 = −(d − 2)ωd−1δ

(d)(x). We thus find that there is a
pole at Δ = d/2 + k, or ε = 0. To produce a well defined distribution we subtract
the pole and define [18]

〈OΔ(x)OΔ(0)〉ren = c(g,Δ) lim
ε→0

{
1

2ε

Γ (1 + ε)Γ (d/2 + ε)

22kΓ (k + 1 + ε)Γ (d/2 + k + ε)

1

d − 2 + 2ε
�k+1 1

|x |d−2

(
1

|x |2ε − μ2ε

)}

= −ck
2(d − 2)

�k+1 1

|x |d−2

{
log

(
μ2x2

) + a(k)
}
, (49)

where

ck ≡ c(g,Δ)
Γ (d/2)

22kΓ (k + 1)Γ (d/2 + k)
. (50)

The constant a(k) reflects the scheme dependence in the subtraction of the pole. Here
we have defined the subtraction in such a way so that a = 0, but other subtraction
schemes, such as minimal subtraction, lead to a non-zero a. The renormalized cor-
relator agrees with the bare one away from coincident points but is also well-defined
at x2 = 0. To allow a direct comparison of the renormalized two-point function with
the result we will obtain below from the bulk calculation, it is useful to write down
its Fourier transform. Using the identity

∫
dd xeip·x

1

|x |d−2
log

(
μ2x2

) = − 4πd/2

Γ (d/2 − 1)

1

p2
log(p2/μ̄2), (51)

where μ̄ = 2μ/γ and γ = 1.781072 . . . is the Euler constant, we obtain

〈OΔ(p)OΔ(−p)〉ren = ck
(−1)k+1

2(d − 2)

4πd/2

Γ (d/2 − 1)
p2k log(p2/μ̄2). (52)

3 The Holographic Dictionary

3.1 A First Look at the and Holographic Renormalization

In order to compute the above scalar two-point function holographically, we consider
a self interacting scalar field in a fixed Euclidean background with the action

S =
∫

dd+1x
√
g

(
1

2
gμν∂μφ∂νφ + V (φ)

)
. (53)

We will take the metric to be of the form
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ds2 = dr2 + γi j (r, x)dx
idx j , (54)

where i, j = 1, 2, . . . , d run over the field theory directions, and the induced metric
on the constant r slices is given by

γi j (r, x) = e2A(r)ĝi j (x), (55)

with

A(r) = r, ĝi j (x) = δi j , (56)

for AdS. This metric is diffeomorphic to the upper-half plane or Poincaré coordinates
metric

ds2 = dz20 + d�z2
z20

. (57)

Our first task is to obtain the radial Hamiltonian for this model, interpreting the
radial coordinate r as Hamiltonian ‘time’. The action can be written in the form

S =
∫ r

dr ′L =
∫ r

dr ′dd x
√

γ

(
1

2
φ̇2 + 1

2
γ i j∂iφ∂ jφ + V (φ)

)
. (58)

The canonical momentum conjugate to φ then is

π = δL

δφ̇
= √

γ φ̇. (59)

The HJ equation can be derived from the relation

Ṡ = L =
∫

ddx

(
φ̇

δS
δφ

+ γ̇i j
δS
δγi j

)
, (60)

where Hamilton’s principal function (see Appendix “Hamilton–Jacobi primer”), S,
has no explicit r dependence since the Lagrangian is diffeomorphism covariant.
Writing

π = √
γ φ̇ = δS

δφ
, (61)

this equation becomes

∫
dd x

[
√

γ

(
1

2

(
1√
γ

δS
δφ

)2

− 1

2
γ i j∂iφ∂ jφ − V (φ)

)
+ 2 Ȧγi j

δS
δγi j

]
= 0. (62)
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This is the HJ equation for the scalar field in a fixed gravitational background, which
can be rewritten in the more useful form

√
γ

(
1

2

(
1√
γ

δS
δφ

)2

− 1

2
γ i j∂iφ∂ jφ − V (φ)

)
+ 2 ȦδγL = ∂i v

i , (63)

where

S =
∫

dd xL, (64)

and

δγ =
∫

dd xγi j
δ

δγi j
. (65)

The term ∂i vi on the RHS is a total derivative that can be arbitrary, but which gener-
ically needs to be taken into account when trying to solve (63). It is not difficult
to solve this equation iteratively, for example in a derivative expansion, for a gen-
eral potential V (φ). However, for the present discussion it suffices to consider the
simple—yet far from trivial—case of a free scalar field with the potential

V (φ) = 1

2
m2φ2. (66)

The great simplification that results from this potential is that we can solve the
corresponding HJ equation exactly, to all orders in transverse derivatives.

The HJ equation (63) in this case becomes

√
γ

(
1

2

(
1√
γ

δS
δφ

)2

− 1

2
γ i j∂iφ∂ jφ − 1

2
m2φ2

)
+ 2δγL = ∂i v

i . (67)

Inserting an ansatz of the form

S = 1

2

∫
dd x

√
γφ f (−�γ )φ, (68)

we find that it solves the HJ equation, provided the function f (x) satisfies [19]

f 2(x) + d f (x) − m2 − x − 2x f ′(x) = 0. (69)

The general solution of this equation is

f (x) = −d

2
−

√
x

(
K ′

k(
√
x) + cI ′

k(
√
x)

)
Kk(

√
x) + cIk(

√
x)

, (70)
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where k = Δ − d/2 > 0, c is an arbitrary constant, and Ik(x) and Kk(x) denote
the modified Bessel function of the first and second kind respectively. Using the
asymptotic behaviors as x → 0

K0(x) ∼ − log x, Kk(x) ∼ Γ (k)

2

( x
2

)−k
, k > 0, Ik(x) ∼ 1

Γ (k + 1)

( x
2

)k
,

(71)

we see that Kk(x) dominates in f (x) as x → 0, unless |c| → ∞. In particular, we
find

f (x)
x→0∼

{− d
2 + k = −(d − Δ), |c| < ∞,

− d
2 − k = −Δ, |c| → ∞.

(72)

Since,

φ̇ = 1√
γ

δS
δφ

, (73)

we see that the two asymptotic solutions for f (x) correspond to φ ∼ e−(d−Δ)r and
φ ∼ e−Δr respectively, which are precisely the asymptotic behaviors of the two lin-
early independent solutions of the equation of motion. The solution for f (x) with
|c| < ∞ corresponds to the asymptotically dominant mode. Hence, in order to make
the variational problem well defined for generic solutions of the equation of motion
we have no choice but demand that |c| < ∞.

Expanding the solution for f (x) with |c| < ∞ for small x and taking k to be an
integer we obtain,

f (x) = −(d − Δ) + x

(2Δ − d − 2)
− x2

(2Δ − d − 2)(2Δ − d − 4)

+ · · · + (−1)k

22k−1Γ (k)2
xk log x +

(
a(k) − c

22k−2Γ (k)2

)
xk + · · · , (74)

where a(k) is a known function of k, whose explicit form we will not need, and
the dots denote asymptotically subleading terms. A number of comments are in
order here. Firstly, this solution depends explicitly on the undetermined constant
|c| < ∞. Secondly, this solution seems to lead to a non-local boundary term due to
the logarithmic term. And finally, one may worry that higher terms in this asymptotic
expansion need to be considered. Fortunately, all these issues can be addressed by
noticing that the contribution of the last term to the boundary term is proportional to

∫
dd x

√
γφ(−�γ )kφ, (75)

which, taking into account the asymptotic behavior of the scalar and of the induced
metric, can be easily seen to have a finite limit as r → ∞. Such terms, therefore,
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correspond to adding finite local contributions to the boundary term Sb. We conclude
that higher order terms in the asymptotic expansion of f (x) need not be considered
since they would give rise to a vanishing contribution to Sb in the limit r → ∞.
Moreover, the arbitrariness in the value of c is not a problem because different values
of c lead to boundary terms Sb which differ by a finite local term. Any value of
|c| < ∞, therefore, is equally acceptable since the corresponding boundary term
makes the variational problem well defined. Finally, coming to the apparent non-
locality of the boundary term we have deduced above, we notice that the logarithmic
term can be written as

(−�γ )k log(−�γ ) = (−�γ )k
(
log(μ2e−2r ) + log(−�δ/μ

2)
)
, (76)

where μ2 is an arbitrary scale and �δ = ∂i∂i denotes the Laplacian in the flat trans-
verse space. Crucially, the non-local part gives rise to a finite contribution in Hamil-
ton’s principal function and so it can be omitted from counterterms. Themost general
local boundary term that makes the variational problem well defined is therefore
[12, 19]

Sct[γ, φ, r ] = − 1

2

∫
dd x

√
γφ

(
−(d − Δ) + −�γ

(2Δ − d − 2)
− (−�γ )2

(2Δ − d − 2)(2Δ − d − 4)

+ · · · + (−1)k

22k−1Γ (k)2
(−�γ )k log(μ2e−2r ) + ξ(−�γ )k

)
φ, (77)

where we have allowed for a local finite boundary term with arbitrary coefficient ξ .
Notice that although it is possible to find counterterms that remove the UV diver-
gences and are also local in transverse derivatives, this is only at the cost of intro-
ducing explicit dependence in the radial coordinate, r . This is precisely the origin of
the holographic conformal anomaly [4].

The renormalized action on the UV cut-off ro is defined as

Sren := Sreg + Sct, (78)

and it admits a finite limit, Ŝren, as the cut-off is removed:

Ŝren = lim
ro→∞ Sren. (79)

In this case, ignoring the scheme dependent contact terms, we obtain

Sren = (−1)k

22kΓ (k)2

∫
ddxφ(0)(−�)k log(−�/μ̄2)φ(0). (80)

The holographic dictionary identifies Sren with the renormalized generating function
of connected correlators, Wren[J ], and φ(0) with the source J . We therefore deduce
that the renormalized two-point function of the dual scalar operator takes the form
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〈OΔ(p)OΔ(−p)〉ren = (−1)k+1

22k−1Γ (k)2
p2k log(p2/μ̄2), (81)

which agrees with the CFT calculation in (52). Comparing the coefficients, we deter-
mine

c(g,Δ) = 2kΓ (d/2 + k)

πd/2Γ (k)
, (82)

which turns out to be precisely the correct coefficient consistent with the Ward
identities.

3.2 The Holographic Dictionary in Hamiltonian Language

The local RG description of QFTs that we discussed above allows us to formulate
the holographic dictionary in a more precise language, identifying all quantities in
the bulk theory with QFT quantities. In particular, we identify the following objects
on the two sides of the gauge/gravity duality.

Radial coordinate r ↔ τ = logμ RG “time”
Induced fields φ ↔ J Running local couplings (sources)
Regularized action Sreg[φ] ↔ W [J ] Generating function
Renormalized action Sren[φ] ↔ Wren[J ] Renormalized generating function
Radial Hamiltonian H ↔ H RG Hamiltonian
Radial momenta πφ ↔ 〈O〉 Running local operators
Non-normalizable modes φ(0) ↔ JR |∞ Renormalized couplings at ∞
Renormalized momenta π̂ (Δ) ↔ 〈O〉|∞ Bare operators

The above Table should serve as a guide in order to interpret all calculations in
the bulk theory that we are going to describe in the next sections.

4 Radial Hamiltonian Formulation of Gravity Theories

The holographic dictionary consists in a precise map between observables on the
two sides of the duality. From the point of view of the bulk gravitational theory, the
physical observables correspond to the symplectic space of asymptotic data, which
is the key to formulating a well posed variational problem [17]. As we will now
review, a general systematic construction of the symplectic space of asymptotic data
proceeds by formulating the bulk dynamics in Hamiltonian language, with the radial
coordinate identifiedwith theHamiltonian “time”. Aswe saw in the previous section,
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this formulation of the bulk dynamics parallels the real space renormalization group
of the dual QFT.

For concreteness, let us consider Einstein–Hilbert gravity in a d + 1-dimensional
non-compact manifold M coupled to a scalar field described by the action

S = − 1

2κ2

(∫
M

dd+1x
√
g

(
R[g] − 1

2
∂μϕ∂μϕ − V (ϕ)

)
+

∫
∂M

ddx
√

γ 2K

)
.

(83)

Here, κ2 = 8πGd+1 is the gravitational constant in d + 1 dimensions and the bound-
ary term is the standard Gibbons–Hawking term for Einstein–Hilbert gravity [20],
which, aswe shall see, is required in order to formulate the dynamics in aHamiltonian
language.6 Moreover, throughout these lectures we will work in Euclidean signature,
but the entire analysis can be straightforwardly adapted to Lorentzian signature.

The radial Hamiltonian formulation of the bulk dynamics starts with picking a
radial coordinate r such that r → ∞ corresponds to the location of the boundary
∂M of M. This radial coordinate need not be a Gaussian normal coordinate, nor
should it be a good coordinate throughout M. Instead, r need only cover an open
chartMε in the vicinity of ∂M inM. Moreover, if ∂M consists of multiple discon-
nected components then a different radial coordinate must be used in the vicinity of
each boundary component and different Hamiltonian descriptions must be applied
to describe the various asymptotic regimes, as is illustrated in Fig. 1.

Having picked a radial coordinate r emanating from (a component of) the bound-
aryM, the radial Hamiltonian formulation of the dynamics proceeds as in the stan-
dard ADM formalism [22], except that the Hamiltonian “time” r is a spacelike coor-
dinate instead of a timelike one. All tensor fields are decomposed in components
along and transverse to the radial coordinate r . In particular, the metric is parame-
terized in terms of the lapse function N , the shift vector Ni , and the induced metric
γi j on the hypersurfaces �r of constant radial coordinate r as

ds2 = (N 2 + Ni N
i )dr2 + 2Nidrdx

i + γi j dx
idx j , (84)

where i, j = 1, . . . , d. The metric gμν is therefore replaced in the Hamiltonian
description by the three fields {N , Ni , γi j } on �r . Moreover, the curvature tensors
of the metric gμν can be expressed in terms of the (intrinsic) curvature tensors of
the hypersurfaces �r and the extrinsic curvature, Ki j , describing the embedding of
�r ↪→ M. The latter is defined as

Ki j = 1

2
(Lng)i j = 1

2N

(
γ̇i j − Di N j − Dj Ni

)
, (85)

6We emphasize that, contrary to what is often claimed, the Gibbons–Hawking term does not render
the variational problem well posed in a non-compact manifold. It does so in a compact space, but
in a non-compact manifold additional boundary terms are required [17, 21].
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Fig. 1 A non-compact manifold M with a boundary ∂M consisting of two disconnected compo-
nents. The Hamiltonian formulation of the bulk dynamics in the vicinity of the two disconnected
components must be done separately, using two different radial coordinates, r1 and r2, emanat-
ing respectively from each disconnected component of the boundary. The Hamiltonian analysis
need only be applicable in an open neighborhood of each boundary component, which is sufficient
in order to construct the symplectic space of asymptotic data on each component, as well as the
appropriate boundary terms required to render the variational problem well posed

where the dot . denotes a derivative w.r.t. the radial coordinate r , Di denotes the
covariant derivative w.r.t. the induced metric γi j , and the unit normal to �r , nμ, is
given by nμ = (

1/N ,−Ni/N
)
. Using the expressions for the inverse metric and

the Christoffel symbols given in Appendix “ADM identities” one finds that the Ricci
scalar takes the form

R[g] = R[γ ] + K 2 − Ki j K
i j + ∇μζμ, (86)

where R[γ ] is the Ricci scalar of the induced metric γi j , K = γ i j Ki j denotes the
trace of the extrinsic curvature, and ζμ = −2Knμ + 2nρ∇ρnμ. From the identities
in Appendix “ADM identities” follows that ζ r = −2K/N and, hence, the Gibbons–
Hawking term in (83) precisely cancels the total derivative term in Ricci curvature
(86). This allows us to write the action as an integral over a radial Lagrangian as

S =
∫

dr L , (87)
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where

L = − 1

2κ2

∫
�r

dd x
√

γ N

(
R[γ ] + K 2 − K i

j K
j
i − 1

2N 2

(
ϕ̇ − Ni∂iϕ

)2 − 1

2
γ i j∂iϕ∂ jϕ − V (ϕ)

)
.

(88)

Note that, as we anticipated earlier, the Gibbons–Hawking term is required for the
radialHamiltonian formulation of the bulk dynamics. This observation can be utilized
in order to derive the correct Gibbons–Hawking term for general bulk Lagrangians,
such as, for example, that describing a scalar field conformally coupled to Einstein–
Hilbert gravity [23].

From the radial Lagrangian (88) we read-off the canonical momenta conjugate to
the induced metric γi j and the scalar ϕ

π i j = δL

δγ̇i j
= − 1

2κ2

√
γ (Kγ i j − K i j ), (89a)

πϕ = δL

δϕ̇
= 1

2κ2

√
γ N−1

(
ϕ̇ − Ni∂iϕ

)
. (89b)

However, the Lagrangian (88) does not depend on the radial derivatives (generalized
velocities), Ṅ and Ṅi , of the shift function and lapse vector and so their conjugate
momenta vanish identically. This means that the lapse function and the shift vector
are not dynamical fields, but rather Lagrange multipliers, whose equations of motion
lead to constraints. The separation of variables into dynamical fields and Lagrange
multipliers through the ADM decomposition (84) is one of the main advantages of
the Hamiltonian formulation of the bulk dynamics.

The Legendre transform of the Lagrangian (88) gives the Hamiltonian

H =
∫

�r

dd x
(
π i j γ̇i j + πϕϕ̇

) − L =
∫

�r

dd x
(
NH + NiHi

)
, (90)

where

H = 2κ2γ − 1
2

(
π i
jπ

j
i − 1

d − 1
π2 + 1

2
π2

ϕ

)
+ 1

2κ2
√

γ

(
R[γ ] − 1

2
∂iϕ∂ iϕ − V (ϕ)

)
,

(91a)

Hi = −2Djπ
i j + πϕ∂ iϕ. (91b)

It follows that Hamilton’s equations for the Lagrange multipliers N and Ni impose
the constraints

H = Hi = 0, (92)

and, hence, the Hamiltonian vanishes identically on the constraint surface. This is
a direct consequence of the diffeomorphism invariance of the bulk theory [24]. In



152 I. Papadimitriou

particular, the constraintsH = 0 andHi = 0 are first class constraints that, through
the Poisson bracket, generate diffeomorphisms along the radial direction and along
�r , respectively.

4.1 Hamilton–Jacobi Formalism

From the expressions (90) and (91) we observe that the Hamiltonian does not depend
explicitly on the radial coordinate r , but only through the induced fields on Sr . This
is a consequence of the diffeomorphism invariance of the action (83) and it implies
that the HJ equation takes the form

H = 0, (93)

which is equivalent to the two constraints (92), where the canonical momenta are
expressed as gradients of Hamilton’s principal functionS (see Appendix “Hamilton–
Jacobi Primer”)

π i j = δS
δγi j

, πϕ = δS
δϕ

. (94)

This form of the canonical momenta turns the constraints (92) into functional partial
differential equations for S. The momentum constraint,Hi = 0, implies that S[γ, ϕ]
is invariant with respect to diffeomorphims on the radial slice �r . The Hamiltonian
constraint, H = 0, takes the form

2κ2

√
γ

((
γikγ jl − 1

d − 1
γi jγkl

)
δS
δγi j

δS
δγkl

+ 1

2

(
δS
δϕ

)2
)

+
√

γ

2κ2

(
R[γ ] − 1

2
∂iϕ∂ iϕ − V

)
= 0,

(95)

and dictates the radial evolution of the induced fields on �r .
As is reviewed in Appendix “Hamilton–Jacobi primer”, a solution S[γ, ϕ] of the

HJ equation leads to a solution of Hamilton’s equations, and hence of the second
order equations of motion. In particular, given a solution S[γ, ϕ] of the HJ equation,
equating the expressions (89) and (94) for the canonical momenta (this corresponds
to the first of Hamilton’s equations) leads to the first order flow equations

γ̇i j = 4κ2

(
γikγ jl − 1

d − 1
γklγi j

)
1√
γ

δS
δγkl

, (96a)

ϕ̇ = 2κ2

√
γ

δS
δϕ

. (96b)
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Integrating these first order equations one obtains the corresponding solution of the
second order equations of motion. Crucially, to determine the most general solution
of the equations of motion one need not find themost general solution of the HJ equa-
tion. The HJ equation is a (functional) partial differential equation and so its general
solution contains arbitrary integration functions of the induced fields. However, the
general solution of the equations of motion is parameterized by 2n integration con-
stants,7 where n is the number of generalized coordinates, i.e. of induced fields on
�r . The general solution of the equations ofmotion, therefore, can be obtained from a
complete integral of theHJ equation, which is a principal functionS[γ, ϕ] containing
n integration constants (functions of the transverse coordinates only) [24]. Another n
integration constants are obtained by integrating the first order equations (96), which
leads to a solution of the equations of motion with 2n integration constants, i.e. the
general solution.

Another important aspect of HJ theory reviewed in Appendix “Hamilton–Jacobi
primer” is that the regularized action, defined as the on-shell action evaluated with
the radial cut-off �r , i.e.

Sreg[γ (r, x), ϕ(r, x)] =
∫ r

dr ′ L|on-shell , (97)

is naturally a functional of the induced fields γi j and ϕ on �r and satisfies the HJ
equation (95). If the regularized action is evaluated on the general solution of the
equations of motion, then Sreg contains n integration constants and so it corresponds
to a complete integral of the HJ equation. If, however, Sreg is evaluated on solutions
of the equations of motion that satisfy certain conditions in the deep interior of M,
such as regularity conditions, then it will generically contain less than n integration
constants and so it will not correspond to a complete integral of the HJ equation.

Recapitulating the last two paragraphs, we have seen that the 2n integration con-
stants parameterizing the general solution of the equations of motion are divided
into two distinct sets of integration constants in the HJ formalism: n integration
constants parameterize a complete integral of the HJ equation, while the remaining
n arise as integration constants of the first order equations (96). As we shall see
later, the integration constants parameterizing a complete integral of the HJ equa-
tion correspond generically to the normalizable modes of the asymptotic solutions
of the equations of motion, while the integration constants coming from the flow
equations correspond to the non-normalizable modes.8 Moreover, we have argued
that the regularized action (97), evaluated on the general solution of the equations
of motion gives rise to a complete integral of the HJ equation. Combining these two

7In order to distinguish them from arbitrary integration functions of the HJ partial differential
equation, we refer to arbitrary functions of the transverse coordinates arising from the integration
of the radial equations of motion as “integration constants”.
8Since under certain conditions both modes can be normalizable, more generally the distinction is
between asymptotically subleading and dominant modes, respectively.
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facts leads to an observation that is fundamental to holographic renormalization and
its relation to HJ theory. In order for a theory to be (holographically) renormalizable,
the near-boundary divergences of the regularized action (97) must be the same for
all solutions of the equations of motion and should not depend on the details of the
solutions in the deep interior ofM. This means that the near-boundary divergences
of any complete integral of the HJ equation must be the same, and hence independent
of the n integration constants parameterizing a complete integral of the HJ equation.
We therefore arrive at the following definition:

Definition (Holographic Renormalizability)
A gravity theory in a non-compact manifold that admits a radial Hamiltonian descrip-
tion is holographically renormalizable if:

(i) The near boundary divergences of any complete integral of the radial HJ equation
are the same, so the difference between any two complete integrals is free of
divergences.

(ii) The common divergent terms of all complete integrals are local functionals of
the induced fields on the radial cut-off Sr , i.e. analytic functions of the induced
fields and polynomial in transverse derivatives.

The first of these conditions is equivalent with the existence of a well defined
symplectic space of asymptotic solutions of the equations of motion and it is required
in order to render the variational problem in M well posed [17, 21]. The second
condition, however, is necessary only due to the holographic interpretation of the
near boundary divergences of the regularized action as the UV divergences of the
generating functional of a local quantum field theory. As is discussed in [17], a free
scalar field in R

d+1 is an example of a system that satisfies condition (i), but not
(ii). In cases when condition (i) is not met, there are two possibilities for making
progress. One option is to treat the mode(s) that causes condition (i) to be violated
perturbatively, and proceed as one would in conformal perturbation theory in the
presence of an irrelevant operator. This approach was discussed in general in [25, 26]
and explicit examples can be found in [27–32]. Such an analysis is often sufficient, but
it is also possible to treat the modes that violate condition (i) non-perturbatively. This
requires constructing a well-defined symplectic space of asymptotic solutions of the
equations ofmotion and generically involves some rearrangement of the bulk degrees
of freedom, such as a Kaluza–Klein reduction. This approach, which is discussed in
[17], is the holographic dual of following the RGflow in the presence of the irrelevant
operator in reverse until a new UV “fixed point” is found. The new “fixed point” in
this case is defined in terms of the symplectic space of asymptotic solutions of the
bulk equation of motion, and almost in all cases it involves asymptotically non-AdS
backgrounds.

Assuming that both conditions of definition of holographic renormalizability hold,
as we will assume from now on, the UV divergences of any complete integral of the
HJ equation, and hence of the regularized action, can be removed by adding the
negative of the divergent part of any solution of the HJ equation as a boundary term
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in the original action (83). Namely, we define the counterterms as

Sct = −Slocal, (98)

where Slocal is the divergent part of any complete integral of the HJ equation, which,
by condition (ii) of the above definition, is a local functional of the induced fields
on the radial slice �r . In the next section we will give a precise definition of Slocal,
and discuss procedures for systematically determining these terms by solving the
HJ equation. Before we turn to the systematic construction of Slocal, however, we
should emphasize one last important point. Although the local and divergent part
of the HJ solution is unique, the above discussion suggests that it is possible to add
further finite and local boundary terms to the bulk action (83), corresponding to (a
very special choice of) the integration constants of a complete integral of the HJ
equation. More generally, therefore, the counterterms will be defined as

Sct = − (Slocal + Sscheme) , (99)

where Sscheme denotes these extra finite terms, which we will discuss in more detail
in the next sections. These terms, an example of which is the term proportional to ξ

in (77), do not cancel divergences, but they correspond to choosing a renormalization
scheme [8].Once the local counterterms,Sct, have been determined, the renormalized
action on the radial cut-off is given by

Sren := Sreg + Sct =
∫

dd x
(
γi j�

i j + ϕ�ϕ

)
, (100)

where the renormalized canonical momenta �i j and �ϕ are arbitrary functions that
correspond to the integration constants parameterizing an asymptotic complete inte-
gral of the HJ equation. As we shall see explicitly later, the holographic dictionary
relates �i j and �ϕ with the renormalized one-point functions of the dual operators.

5 Recursive Solution of the Hamilton–Jacobi Equation

The main task in carrying out the procedure of holographic renormalization is deter-
mining the local functionalSlocal, aswell as the asymptotic expansions for the induced
fields on �r . There is a number of methods to obtain these, differing in generality
and efficiency. The approach of [4, 8–10] does not rely on the HJ equation and its
first objective is to obtain the asymptotic expansions for the induced fields by solv-
ing asymptotically the second order equations of motion. Evaluating the regularized
action on these asymptotic solutions and then inverting the asymptotic expansions
in order to express the result in terms of induced fields on the cut-off �r leads to
an explicit expression for Slocal. This method is general but it is unnecessarily com-
plicated. In particular, as we shall see, it is much more efficient to first obtain Slocal

by solving the HJ equation, and only then derive the asymptotic expansions of the
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induced fields by integrating the first order equations (96), instead of the second order
equations. Moreover, deriving the holographicWard identities is much simpler in the
radial Hamiltonian language since they follow directly from the first class constraints
(92).

The method of [6, 11] does use the HJ equation to obtain Slocal, but it does so
by postulating an ansatz consisting of all possible local and covariant terms that can
potentially contribute to the UV divergences with arbitrary coefficients. Inserting this
ansatz in the HJ equation leads to equations for the coefficients that can be solved
to determine Slocal. For simple cases this approach is practical since the possible
terms in Slocal can be easily guessed. However, this method becomes impractical
for more complicated systems where Slocal contains more than a couple of terms, or
when it is not easy to guess all terms (e.g. for asymptotically Lifshitz backgrounds).
In particular, if n is the number of independent terms in the ansatz for Slocal, the
number of equations for the arbitrary coefficients in the ansatz one obtains from the
HJ equation is generically of order n(n + 1)/2, which grows much larger than n very
fast. The system of equations determining the coefficients in the ansatz is therefore
overdetermined, but all equations need to be checked to ensure that the solution is
consistent.

A systematic algorithm for solving the HJ equation recursively, without relying
on an ansatz, was developed in [13]. This method is based on a formal expansion
of the principal function S in eigenfunctions of the dilatation operator of the dual
theory at the UV, and can be applied to any background that possesses some kind
of asymptotic scaling symmetry. Besides asymptotically locally AdS backgrounds,
this includes backgrounds with non-relativistic Lifshitz symmetry [33, 34]. This
method was generalized to relativistic backgrounds that do not necessarily possess
an asymptotic scaling symmetry in [35],while a further generalization to include non-
relativistic backgroundswas carriedout in [31, 36]. This latter generalization involves
an expansion of S in simultaneous eigenfunctions of two commuting operators.
However, here we will focus on the simpler cases discussed in [13, 35], which
involve an expansion in eigenfunctions of a single operator.

The initial steps in the recursive algorithms of [13, 35] are common, and they just
rely on the fact that we seek a solution S of the HJ equation in the form of a covariant
expansion in eigenfunctions of a—yet unspecified—functional operator ‹. Namely,
we formally write

S = S(α0) + S(α1) + S(α2) + · · · , (101)

where each term is an eigenfunction of ‹, i.e.

‹S(αk ) = λkS(αk ), (102)

with an eigenvalue λk . αk denotes a convenient label that counts the order of the
expansion. In order to obtain a recursive algorithm for determining S(αk ) it is neces-
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sary to also introduce a density L such that

S =
∫

�r

dd xL[γ, ϕ]. (103)

We then have

L = L(α0) + L(α1) + L(α2) + · · · , (104)

where S(αk ) = ∫
�r

dd xL(αk ). Note that the densities L(αk ) are only defined up to total
derivative terms and they are not necessarily eigenfunctions of the operator ‹. They
are eigenfunctions up to total derivatives.

An important identity that is crucial in the construction of the recursion algorithm
follows from the expressions (94) for the canonical momenta. Namely, for arbitrary
variations we have

π i jδγi j + πϕδϕ = δL + ∂i v
i (δγ, δϕ), (105)

for some vector field vi (δγ, δϕ). Specializing this to the operator ‹ gives

π
i j
(αk )

‹γi j + πϕ(αk )‹ϕ = ‹L(αk ) + ∂i v
i
(αk )

(‹γ, ‹ϕ) = λkL(αk ) + ∂i ṽ
i
(αk )

(‹γ, δ̂ϕ),

(106)

where

π
i j
(αk )

= δS(αk )

δγi j
, πϕ(αk ) = δS(αk )

δϕ
, (107)

and ṽi(αk )
is a vector field, generically different from vi(αk )

due to the fact that the action
of ‹ on L(αk ) may involve a total derivative. Since L is defined only up to a total
derivative, however, without loss of generality we can choose the total derivatives in
such a way so that

π
i j
(αk )

‹γi j + πϕ(αk )‹ϕ = λkL(αk ). (108)

This identity will be crucial in the construction of the recursion algorithm.

5.1 The Induced Metric Expansion

To proceed with the recursion algorithm we need to pick a suitable operator ‹. The
choice of such an operator is not unique, but it has to satisfy certain consistency
criteria. Here we will discuss two specific choices. The first one is the operator
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δγ =
∫

2γi j
δ

δγi j
, (109)

whichwas introduced in [35]. The covariant expansion in eigenfunctions of this oper-
ator treats the scalar field non-perturbatively. In particular the resulting asymptotic
solution of the HJ equation is expressed in terms of a generic scalar potential V (ϕ),
without the need to explicitly specify V (ϕ). As a result, this expansion of the solu-
tion of principal function S is valid even for (relativistic) asymptotically non-AdS
backgrounds, such as non-conformal branes [37].

It is easy to see that the covariant expansion in eigenfunctions of the operator
(109) is a derivative expansion.9 Choosing the label αk = 2k to count derivatives,
the corresponding eigenvalue is λk = d − 2k, where d is the contribution of the
volume element. The zero order solution, therefore takes the form

S(0) = 1

κ2

∫
�r

dd x
√

γU (ϕ), (110)

for some “superpotential”U (ϕ). Inserting this ansatz into the Hamiltonian constraint
we find that U (ϕ) satisfies the equation

2(U ′)2 − d

d − 1
U 2 − V (ϕ) = 0. (111)

As for the full HJ equation, we only need to obtain an asymptotic solution of this
equation, around the value of ϕ near the boundary. As we have emphasized already,
the recursive algorithm for solving the HJ equation we are describing here applies
equally to asymptotically AdS and non-AdS backgrounds. The form of the scalar
potential, therefore, is largely unrestricted, and we will keep both V (ϕ) and U (ϕ)

general in the subsequent discussion. However, before we proceed it is instructive to
have a closer look at the explicit form of V (ϕ) andU (ϕ) in the case of asymptotically
AdS backgrounds.

In order for the theory (83) to admit an AdS solution, corresponding to ϕ = 0,
the scalar potential must admit a Taylor expansion of the form

V (ϕ) = −d(d − 1)

�2
+ 1

2
m2ϕ2 + · · · , (112)

where � is the AdS radius of curvature and the scalar mass must satisfy the
Breitenlohner–Freedman (BF) bound [38]

m2�2 ≥ −(d/2)2, (113)

9For the gravity-scalar system the expansion in eigenfunctions of (109) is indeed a derivative
expansion. However, in general this is not the case. A counterexample is a Maxwell field.
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in order for the AdS vacuum to be stable with respect to scalar perturbations. More-
over, themass is related to the dimensionΔ of the dual operator through the quadratic
equation

m2�2 = −Δ(d − Δ). (114)

Seeking a solution of (111) in the form of a Taylor expansion in ϕ, one finds two
distinct solutions of the form10

U (ϕ) = −d − 1

�
− 1

4�
μϕ2 + · · · , (115)

where μ takes the two possible values Δ or d − Δ. However, only a solution of the
form

U (ϕ) = −d − 1

�
− 1

4�
(d − Δ)ϕ2 + · · · , (116)

can be used as a counterterm since only this solution removes the divergences from
all possible solutions involving a non-trivial scalar [39].

Given the superpotential U (ϕ) that determines the zero order solution in the
covariant expansion of the HJ equation, we insert the formal expansion in eigenfunc-
tions of the operator (109) in the HJ equation and match terms of equal eigenvalue
using the identity (108), which leads to the linear recursion equations

2U ′(ϕ)
δ

δϕ

∫
dd xL(2n) −

(
d − 2n

d − 1

)
U (ϕ)L(2n) = R(2n), n > 0, (117)

where

R(2) = −
√

γ

2κ2

(
R[γ ] − 1

2
∂iϕ∂ iϕ

)
, (118)

R(2n) = −2κ2

√
γ

n−1∑
m=1

(
π(2m)

i
jπ(2(n−m))

j
i − 1

d − 1
π(2m)π(2(n−m)) + 1

2
πϕ(2m)πϕ(2(n−m))

)
, n > 1.

Note that ifU ′(ϕ) = 0, i.e.U (ϕ) is a constant, then these recursion equations become
algebraic. When U ′(ϕ) �= 0, these equations are first order linear inhomogeneous
functional differential equations. The general solution, therefore, is the sum of the

10The overall sign ofU is determined by requiring that the first order equations (96) imply the correct
leading asymptotic behavior for the scalar, namely ϕ ∼ e−(d−Δ)r . Moreover, when the scalar mass
saturates the BF bound, one of the two asymptotic solutions forU (ϕ) contains logarithms. We refer
to [39] for the explicit form of the function U (ϕ) in that case.
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homogeneous solution and a unique inhomogeneous solution. The homogeneous
solution takes the form

Lhom
(2n) = F (2n)[γ ] exp

(
1

2

(
d − 2n

d − 1

) ∫ ϕ dϕ̄

U ′(ϕ̄)
U (ϕ̄)

)
, (119)

whereF (2n)[γ ] is a local covariant functional of the inducedmetric of weight d − 2n.
It can be easily shown that these homogeneous solutions contribute only to the finite
part of the on-shell action, and sowe are not interested in them [35].We are, therefore,
only interested in the inhomogeneous solution of (117),which formally takes the form

L(2n) = 1

2
e−(d−2n)A(ϕ)

∫ ϕ dϕ̄

U ′(ϕ̄)
e(d−2n)A(ϕ̄)R(2n)(ϕ̄), (120)

where

A = − 1

2(d − 1)

∫ ϕ dϕ̄

U ′(ϕ̄)
U (ϕ̄). (121)

IfR(2n) does not involve derivatives of the scalar field with respect to the transverse
coordinates, then evaluating the integral (120) is straightforward since it reduces
to an ordinary integral. When R(2n) does contain derivatives of the scalar field,
however, some care is required in evaluating this integral. Table1 in [35] provides
general integration identities for up to and including four transverse derivatives, in all
possible tensor combinations. This allows one to determine L(2n) for n ≤ 2, which
suffices for d ≤ 4.

The recursive procedure to successively determine L(2n) proceeds as follows. For
n = 1,R(2) is given explicitly in (118) and soL(2) can be immediately obtained from
(120). The result is given in Table2 of [35]. Having obtained the solution for L(2),
the relations (107) give the corresponding canonical momenta, which allow one to
evaluate the next R(2n) using (118). Inserting this back in (120) and performing the
integral gives the next order solution for L(2n). For n = 2 the general result is given
in Table3 of [35].

The order at which the recursive procedure stops depends on the leading asymp-
totic behavior of the fields. For asymptotically locallyAdS backgrounds the recursion
stops at order n = [d/2], i.e. the integer part of d/2, since higher order terms are
UV finite and arbitrary integration constants, parameterizing a complete integral of
the HJ equation, enter in the solution. In that case, therefore, the counterterms are
defined as

Sct := −
[d/2]∑
n=0

S(2n). (122)

For even d, the last term in this sumgives rise to explicit cut-off dependence through a
logarithmic divergence. The way this arises in this approach is as follows. The recur-
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sive procedure described above must be done keeping d as an arbitrary parameter.
Denoting by 2k the final value of d, the recursion is carried out up to order n = k,
where one finds that the solution L(2k) contains a factor of 1/(d − 2k), which is
singular when we set d to its integer value 2k. This singularity is then removed by
the replacement

1

d − 2k
→ ro, (123)

where ro is the radial cut-off [13, 35]. After this replacement one sets d = 2k in the
counterterms, which now contain a term which explicitly depends on ro. This term
is identified with the holographic conformal anomaly [4].

5.2 Dilatation Operator Expansion

We next turn to the covariant expansion developed in [39], which is an expansion in
eigenfunctions of the dilatation operator

δD =
∫

ddx

(
2γi j

δ

δγi j
+ (Δ − d)ϕ

δ

δϕ

)
, (124)

where Δ is the conformal dimension of the scalar operator dual to ϕ. As we pointed
out earlier, this expansion is less general than the expansion in eigenfunctions of δγ

that we just discussed, since it is applicable only to backgrounds with an asymp-
totic scaling symmetry, but for such backgrounds it is technically simpler than the
induced metric expansion. For an application of this expansion to backgrounds with
asymptotic Lifshitz symmetry we refer the interested reader to [33, 34].

The dilatation operator (124) can be motivated as follows. Since the bulk theory is
diffeomorphism invariant, the Hamiltonian does not explicitly depend on the radial
coordinate r . It follows that the solution S of the HJ equation also only depends on
the radial coordinate through the induced fields, i.e. S = S[γ, ϕ]. Hence, the radial
derivative can be represented by the functional operator

∂r =
∫

ddx

(
γ̇i j [γ, ϕ] δ

δγi j
+ ϕ̇[γ, ϕ] δ

δϕ

)
. (125)

Using the leading asymptotic form of the induced fields appropriate for asymptoti-
cally locally AdS backgrounds, namely (setting the AdS radius of curvature, �, to 1)

γi j ∼ e2r g(0)i j (x), ϕ ∼ e−(d−Δ)rϕ(0)(x), (126)
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where g(0)i j (x) and ϕ(0)(x) are arbitrary sources, implies that

γ̇i j ∼ 2γi j , ϕ̇ ∼ −(d − Δ)ϕ. (127)

Inserting these expressions in the covariant representation (125) of the radial deriv-
ative we obtain

∂r ∼
∫

dd x

(
2γi j

δ

δγi j
+ (Δ − d)ϕ

δ

δϕ

)
≡ δD, (128)

where δD is the dilatation operator. This operator is ideally suited for asymptoti-
cally locally AdS backgrounds, but in order to construct the corresponding covariant
expansion one must fix the dimension Δ from the beginning. Hence, contrary to the
expansion in eigenfunctions of δγ , one must repeat the whole procedure for every
different value of Δ.

As above, we start by writing the principal function as11

S =
∫

�r

dd x
√

γL, (129)

and formally expand L[γ, ϕ] in an expansion in eigenfunctions of the dilatation
operator as

L = L(0) + L(2) + · · · + L̃(d) log e
−2r + L(d) + · · · , (130)

where

δDL(n) = −nL(n), ∀n < d, δDL̃(d) = −dL̃(d). (131)

A number of comments are in order here. Firstly, note that here we have defined L(n)

as eigenfunctions of δD , while earlier we only required S(αk ) to be eigenfunctions of
the operator ‹. This implied that L(αk ) is an eigenfunction of ‹ up to a total derivative
term. In order to derive (106), however, we argued that, since L(αk ) is defined only
up to a total derivative, one can always choose the total derivatives terms in L(αk )

such that it is an eigenfunction of ‹. In (130) we have applied this argument already
so that L(n) are eigenfunctions of δD . A second comment concerns the eigenvalue
of L(n) under δD , and the corresponding subscript labeling L(n). In general, these
eigenvalues depend on the value of the conformal dimensionΔ of the scalar operator
and need not be integer. However, the terms of weight 0 and d are universal and are
always there. What changes depending on the value of Δ is the intermediate terms.
Finally, notice that we have included the logarithmic term already in the expansion
(130), introducing explicit cut-off dependence. We could have proceeded instead

11To keep in line with the original notation in [39], we define the density L without
√

γ here, in
contrast to the earlier definition (103).
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using dimensional regularization as in the expansion in eigenfunctions of δγ above,
but it is instructive to discuss this alternative argument as well.

In particular, the explicit cut-off dependence introduced in the expansion (130)
implies that the term L(d) transforms inhomogeneously under δD . In order to derive
the action of the dilatation operator on the coefficient L(d) we recall that the full on-
shell action must not depend explicitly on the radial coordinate r , as a consequence
of the diffeomorphism invariance of the bulk action. Hence, requiring that ∂r gives
asymptotically the same result as δD we must have

∂r

(√
γ (L̃(d) log e

−2r + L(d))
)

∼ δD

(√
γ (L̃(d) log e

−2r + L(d))
)

, (132)

which determines, using δD
√

γ = d
√

γ , that

δDL(d) = −dL(d) − 2L̃(d). (133)

This transformation of the finite part of the on-shell action implies that L(d) cannot
be a local function of the fields γi j and ϕ, unless L̃(d) vanishes identically. This is
summarized in the following lemma:

Lemma If L̃(d) is not identically zero, then the transformation δDL(d) = −dL(d) −
2L̃(d) implies that L(d) cannot be a local functional of the induced fields γi j and ϕ

Proof What we need to show is that L(d) cannot be a polynomial in derivatives.
Suppose L(d) is a polynomial in derivatives. Since L(d) is scalar, derivatives must
come in pairs and must be contracted with an inverse metric γ i j . It follows that every
polynomial in derivatives can be decomposed as a finite sum of eigenfunctions of
the dilatation operator, namely,

L(d) = F(0) + F(1) + · · · + F(N ), (134)

for some positive integer N , where δDF (n) = −nF (n). Hence,

δDL(d) = − (F(1) + 2F(2) + · · · + NF(N )

) = −d(F(0) + F(1) + · · · + F(N )) − 2L̃(d).

(135)

Identifying terms of equal dilatation weight then gives

F (n) = 0, n �= d, 2L̃(d) = (n − d)F (n) = 0, n = d. (136)

This implies that L̃(d) = 0, contradicting the original hypothesis. �

In fact this is no accident. As we shall see, the term L(d) corresponds to the
renormalized on-shell action, while L̃(d) is the conformal anomaly. The fact that
L̃(d) is the conformal anomaly we will see more explicitly below when we derive
the trace Ward identity. However, the fact that L(d) corresponds to the renormalized
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on-shell action can be deduced directly from the dilatation weight of the various
terms in the covariant expansion. Note that L(n) with n < d, as well as L̃(d) all lead
to divergences as r → ∞. This is because L(n) ∼ e−nr as r → ∞ and

√
γ ∼ edr .

We therefore define the counterterms as

Sct := −
∫

�r

dd x
√

γ
(
L(0) + L(2) + · · · + L̃(d) log e

−2r
)

. (137)

It follows that the renormalized on-shell action on the radial cut-off is

Sren := Sreg + Sct =
∫

�r

dd x
√

γL(d) + · · · , (138)

where the dots stand for terms of higher dilatation weight that vanish as r → ∞. By
construction, Sren admits a finite limit as r → ∞, namely

Ŝren := lim
r→∞ Sren = lim

r→∞

∫
�r

dd x
√

γL(d). (139)

As we anticipated, the term L(d), which is a non-local function of the induced fields,
determines the renormalized on-shell action.

Let us now proceed to determine the divergent coefficients L(n) with n < d and
L̃(d). Since the canonical momenta are related to the on-shell action via the relations
(94), it follows that the momenta also admit an expansion of the form

π i j = δ

δγi j

∫
�r

dd x
√

γL = √
γ

(
π(0)

i j + π(2)
i j + · · · + π̃ (d)

i j log e−2r + π(d)
i j + · · ·

)
,

(140a)

πϕ = δ

δϕ

∫
�r

dd x
√

γL = √
γ (πϕ(d−Δ) + · · · + π̃ϕ(Δ) log e

−2r + πϕ(Δ) + · · · ). (140b)

Note that δDπ i
j (n) = −nπ i

j (n) and δDπ i j
(n) = −(n + 2)π i j

(n). With these expansions
at hand, we are ready to develop the recursive algorithm. Before we discuss the gen-
eral algorithm, however, let us point out that the first two of the L(n) coefficients can
be obtained easily, without relying on the algorithm. From the asymptotic relations
(127) and the expressions (89) for the canonical momenta we deduce that

π i j ∼ − 1

2κ2
(d − 1)

√
γ γ i j , πϕ ∼ − 1

κ2
(d − Δ)

√
γϕ, (141)

and hence

π(0)
i j = − 1

2κ2
(d − 1)γ i j , πϕ(d−Δ) = − 1

κ2
(d − Δ)ϕ. (142)
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Integrating π(0)
i j with respect to γi j determines L(0), whereas integrating π(d−Δ)

with respect to ϕ (assuming Δ < d) determines L(2(d−Δ)). Namely,

L(0) = − 1

κ2
(d − 1), L(2(d−Δ)) = − 1

2κ2
(d − Δ)ϕ2. (143)

As we shall see below, these results are reproduced by the general algorithm.
The first step in the algorithm it to relate the coefficients L(n) with n < d and L̃(d)

to the corresponding canonical momenta using the identity (108). Since

δDγi j = 2γi j , δDϕ = −(d − Δ)ϕ, (144)

applied to the dilatation operator this identity reads

2π i
i − (d − Δ)πϕϕ = δD

(√
γL)

, (145)

or, inserting the expansions (130) and (140),

2
√

γ
(
π(0) + π(2) + · · · + π̃ (d) log e

−2r + π(d) + · · · )
− (d − Δ)

√
γϕ(πϕ(d−Δ) + · · · + π̃ϕ(Δ) log e

−2r + πϕ(Δ) + · · · )
= √

γ
(
dL(0) + (d − 2)L(2) + · · · + 0 · L̃(d) log e

−2r − 2L̃(d) + 0 · L(d) + · · ·
)

.

(146)

In order to equate terms of the same dilatationweight, i.e. to obtain the exact analogue
of (108), we need to know the precise value of the scalar dimension Δ. However,
this identity shows that the coefficients L(n) of the on-shell action can always be
expressed in terms of the coefficients in the expansion of the canonical momenta.

As an example, we can use (146) to determine L(0). Provided Δ < d, identifying
terms of dilatation weight zero gives

L(0) = 2

d
π(0) = 2

d

(
− 1

2κ2
d(d − 1)

)
= − 1

κ2
(d − 1), (147)

where we have used the trace of π(0)
i j given in (142) in the second equality. This is

in agreement with the result (143) we found above. Similarly we deduce that

L̃(d) = −π(d) + 1

2
(d − Δ)ϕπϕ(Δ). (148)

As we shall see shortly, this relation is in fact the trace Ward identity. The general
algorithm using the dilatation operator expansion can be summarized as follows:
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The algorithm:

1. The first step is to use the identity (146) to express L(n), for n < d, and
L̃(d), in terms of the canonical momenta by matching terms of equal
dilatation weight. Note that the on-shell action, L, depends only on the
trace of π i j .

2. The second step is to insert the expansions (140) into the Hamiltonian
constraint (91a) and match terms of equal dilatation weight. This gives
an iterative relation for the trace π(n) and πϕ(Δ−d+n) in terms of the
momentum terms of lower dilatation weight.

3. Having determinedπ(n) andπϕ(Δ−d+n) at order n, we can use the relations
we found in the first step to determine L(n). The fullmomentum π(n)

i j—
i.e. not just its trace—is then obtained via the relations (107).

4. Steps 2 and 3 are iterated until all local terms are determined.

5.3 An Example

It is instructive to work out the counterterms explicitly in a concrete example. To this
end, let us apply the dilatation operator expansion to asymptotically AdS gravity in
five dimensions (d = 4) coupled to a scalar field, ϕ, dual to an operator of conformal
dimension Δ = 3, and with a general scalar potential. The action takes the form12

S =
∫

d5x
√
g

(
− 1

2κ2
R[g] + 1

2
gμν∂μϕ∂νϕ + V (ϕ)

)
, (149)

where

V (ϕ) = κ−2V0 + κ−1V1ϕ + V2ϕ
2 + κV3ϕ

3 + κ2V4ϕ
4 + · · · , (150)

with

V0 = � = −6, V1 = 0, V2 = 1

2
m2 = −3/2. (151)

Let us now implement step by step the algorithm we described above. The first step
is to use (146) to express all local terms of the expansion of the on-shell action, i.e.
L(n), n < d, and L̃(d), in terms of the canonical momenta by matching terms of equal
dilatation weight. For the system at hand, and dropping the total divergence term,
(146) becomes

12Note that the scalar field here is rescaled by a factor of
√
2κ2 relative to the scalar in (83).
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2
(
π(0) + π(1) + π(2) + π(3) + π̃ (4) log e

−2r + π(4) + · · · )
−ϕ(πϕ

(1) + πϕ
(2) + π̃ϕ

(3) log e
−2r + πϕ

(3) + · · · ) (152)

=
(
4L(0) + 3L(1) + 2L(2) + L(3) + 0 · L̃(4) log e

−2r − 2L̃(4) + 0 · L(4) + · · ·
)

.

(153)

Matching terms of equal dilatation weight we obtain

L(0) = 1

2
π(0) = −3/κ2,

L(1) = 2

3
π(1),

L(2) = π(2) − 1

2
ϕπϕ

(1) = π(2) + 1

2
ϕ2,

L(3) = 2π(3) − ϕπϕ
(2),

L̃(4) = −π(4) + 1

2
ϕπϕ

(3), (154)

as well as the constraint on the momenta

π̃ (4) − 1

2
ϕπ̃ϕ

(3) = 0. (155)

Note that L(4) is not determined, but it does not contribute to the divergences of the
on-shell action. As we saw in (139), it is the renormalized part of the on-shell action.
At this point we have determined all divergent terms of the on-shell action in terms
of the canonical momenta.

The second step is to insert the covariant expansions for the momenta into the
Hamiltonian constraint (91a), which in this case takes the form

H = √
γ

{
1

2κ2 R[γ ] + 2κ2γ −1
(

π i jπi j − 1

3
π2

)
+ 1

2
γ −1(πϕ)2 − 1

2
γ i j∂iϕ∂ jϕ − V (ϕ)

}
= 0.

(156)

Inserting the covariant expansions for the momenta and equating terms of equal
dilatation weight we obtain

2κ2
(

π(0)
i jπ(0)i j − 1

3
π(0)

2
)

− κ−2V0 = 0,

4κ2
(

π(0)
i jπ(1)i j − 1

3
π(0)π(1)

)
− κ−1V1ϕ = 0,

1

2κ2
R[γ ] + 2κ2

(
2π(0)

i jπ(2)i j + π(1)
i jπ(1)i j − 2

3
π(0)π(2) − 1

3
π(1)

2
)

+ 1

2
(πϕ)2 − V2ϕ

2 = 0,

4κ2
(

π(0)
i jπ(3)i j + π(1)

i jπ(2)i j − 1

3
π(0)π(3) − 1

3
π(1)π(2)

)
+ πϕ

(1)π
ϕ

(2) − κV3ϕ
3 = 0,
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2κ2
(
2π(0)

i jπ(4)i j + 2π(1)
i jπ(3)i j + π(2)

i jπ(2)i j − 2

3
π(0)π(4) − 2

3
π(1)π(3) − 1

3
π(2)

2
)

+πϕ
(1)π

ϕ
(3) + 1

2
(πϕ

(2))
2 − 1

2
γ i j ∂iϕ∂ jϕ − κ2V4ϕ

4 = 0,

4κ2
(
π(0)

i j π̃ (4)i j − π(0)π̃ (4)

)
+ πϕ

(1)π̃
ϕ

(3) = 0. (157)

The first of these equations is trivially satisfied, while the second equation determines
π(1) = 0 and hence from above L(1) = 0. Next we must use the third step in the
algorithm, namely the relations

π(n)
i j = 1√

γ

δ

δγi j

∫
ddx

√
γL(n), π̃ (d)

i j = 1√
γ

δ

δγi j

∫
dd x

√
γ L̃(d). (158)

This allows us to determine the full momentum π(n)
i j from its trace π(n) for n < d.

In particular, we conclude π(1)
i j = 0. The third equation in (157) gives

π(2) − 1

4κ2
R[γ ] − ϕ2, (159)

and hence,

L(2) = − 1

4κ2
R[γ ] − 1

2
ϕ2. (160)

It follows that

π(2)
i j = 1√

γ

δ

δγi j

∫
ddx

√
γL(2) = 1

4κ2

(
Ri j − 1

2
Rγ i j

)
− 1

4
ϕ2γ i j . (161)

Continuing this recursive procedure we determine

L(3) = κV3ϕ
3,

L̃(4) = 1

16κ2

(
Ri j Ri j − 1

3
R2

)
− 1

24
Rϕ2 − 1

4
γ i j∂iϕ∂ jϕ − κ2

2

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ4,

π(3)
i j = κ

2
V3ϕ

3γ i j ,

πϕ
(2) = 3κV3ϕ

2,

π̃ϕ
(3) = 1

12
Rϕ + 1

2
�γ ϕ − 2κ2

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ3,

π̃ (4)
i j = 1

16κ2

[
−2Rkl Rk

i
l
j + 1

3
Di D j R − �γ R

i j + 2

3
RRi j

+1

2
γ i j

(
Rkl Rkl + 1

3
�γ R − 1

3
R2

)]

+ 1

24

(
Ri j − 1

2
Rγ i j

)
ϕ2 − 1

24

(
Di D j − γ i j�γ

)
ϕ2 + 1

4
∂ iϕ∂ jϕ − 1

8
γ i j∂kϕ∂kϕ

− κ2

4

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ4γ i j .

(162)
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Note that these satisfy the identity

π̃ (4) − 1

2
ϕπ̃ϕ

(3) = 0, (163)

as required.

6 Renormalized One-Point Functions and Ward Identities

We found above that the renormalized action (139) admits a finite limit, Ŝren, as
r → ∞. The AdS/CFT dictionary identifies this with the generating functional of
renormalized connected correlation functions in the dual quantum field theory. In
particular, the first derivatives of the renormalized action with respect to the sources
correspond to the one-point functions of the dual operators. This implies that we
can identify the renormalized one-point functions with certain terms in the covariant
expansion of the canonical momenta in eigenfunctions of the dilatation operator.
Namely, we define

〈T i j 〉ren = −2|γ |−1/2 δSren
δγi j

= −2π(d)
i j , (164a)

〈O〉ren = |γ |−1/2 δSren
δϕ

= πϕ(Δ). (164b)

Note that these expressions are evaluated on the cut-off, i.e. they are covariant expres-
sions of the induced metric and scalar field. Since these fields asymptotically behave
as

γi j ∼ e2r g(0)i j , ϕ ∼ e−(d−Δ)rϕ(0), (165)

and since Sren has a finite limit as r → ∞, it follows that we must multiply these
one-point functions with a suitable factor of the radial coordinate to obtain finite
values as r → ∞. In particular, we define

〈T̂ i j 〉ren := lim
r→∞ e(d+2)r 〈T i j 〉ren = −2|g(0)|−1/2 δ Ŝren

δg(0)i j
= −2π̂ (d)

i j ,

〈Ô〉ren := lim
r→∞ eΔr 〈O〉ren = |g(0)|−1/2 δ Ŝren

δϕ(0)
= π̂ϕ(Δ).

(166)

Using these expressions for the renormalized one-point functions we can now
derive the holographic Ward identities. Inserting the expansions (140) into the
momentum constraint (91) and matching terms of equal dilatation weight gives for
the terms with weight d
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− 2Djπ(d)
i j + πϕ(Δ)∂

iϕ = 0. (167)

Rescaling this with the appropriate radial factor and taking the limit r → ∞ leads
to the diffeomorphism Ward identity

D(0) j 〈T̂ i j 〉ren + 〈Ô〉ren∂ iϕ(0) = 0. (168)

Finally, in order to derive the trace Ward identity note that under an infinitesimal
Weyl transformation the renormalized action transforms as

δσ Sren =
∫

�r

√
γ (−2L̃(d))δσ + total derivative. (169)

This follows from the fact that such a transformation corresponds to the infinitesimal
bulk diffeomorphism r → r + δσ (x). It follows that the conformal anomaly A is
given by

A := 2L̃(d). (170)

To see that this is compatible with the trace Ward identity, recall that we have shown
in (148) that

− 2π(d) + (d − Δ)ϕπϕ(Δ) = 2L̃(d), (171)

which, using the identifications (166), becomes

〈T̂ i
i 〉ren + (d − Δ)ϕ(0)〈Ô〉ren = A. (172)

It should be emphasized that these Ward identities hold in the presence of arbitrary
sources. This has important implications. Namely, even if the conformal anomaly
vanishes numerically on a particular background where the sources are set to zero,
the anomaly does contribute to some n-point function because the nth derivative of
the anomaly with respect to the sources will not be zero even when evaluated at zero
sources. The anomaly therefore is a genuine property of the quantum field theory
and affects the dynamics even in flat space.

7 Fefferman–Graham Asymptotic Expansions

Having obtained the asymptotic solution of the HJ equation in the form of a covariant
expansion in eigenfunctions of some suitable operator ‹, we can now use the first
order flow equations (96) to construct the asymptotic Fefferman–Graham expansions
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for the induced fields γi j and ϕ. In order to integrate these expansions, however, we
must pick a specific example and a specific solution of the HJ equation. We will
therefore demonstrate how this works in the example we worked out above.

Inserting the expansions (140) in the flow equations (96) we get13

γ̇i j = 4κ2
(

γikγ jl − 1

3
γklγi j

) (
π(0)

i j + π(2)
i j + · · · + π̃ (4)

i j log e−2r + π(4)
i j + · · ·

)
,

ϕ̇ = πϕ(1) + · · · + π̃ϕ(3) log e
−2r + πϕ(3) + · · · .

(173)
From the expressions (162) above we obtain

π(0)i j − 1

3
π(0)γi j = 1

2κ2 γi j ,

π(2)i j − 1

3
π(2)γi j = 1

4κ2

(
Ri j − 1

6
Rγi j

)
+ 1

12
ϕ2γi j ,

π(3)i j − 1

3
π(3)γi j = −κ

6
V3ϕ

3γi j ,

π̃ (4)i j − 1

3
π̃ (4)γi j = 1

16κ2

[
−2Rkl Rk i l j + 1

3
Di D j R − �γ Ri j + 2

3
RRi j

+ 1

2
γi j

(
Rkl Rkl + 1

3
�γ R − 1

3
R2

)]

+ 1

24

(
Ri j − 5

6
Rγi j

)
ϕ2 − 1

24

(
Di D j − γi j�γ

)
ϕ2 + 1

4
∂iϕ∂ jϕ

− 1

8
γi j∂

kϕ∂kϕ + κ2

12

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ4γi j − 1

12
ϕ�γ ϕγi j ,

πϕ(1) = −ϕ,

πϕ(2) = 3κV3ϕ
2,

π̃ϕ(3) = 1

12
Rϕ + 1

2
�γ ϕ − 2κ2

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ3.

(174)

Using these expressions we can integrate the flow equations (173) straightforwardly.
There are two ways to solve these equations order by order asymptotically as r →
∞. One way is to make an explicit Fefferman–Graham ansatz for the asymptotic
expansions for γi j and ϕ and insert them in the flow equations. This will result in
algebraic equations for the coefficients. A more general way that does not require
prior knowledge of the form of the asymptotic expansion is expanding the induced
fields formally as

γi j = γ
(0)
i j + γ

(1)
i j + γ

(2)
i j + γ

(3)
i j + · · · , ϕ = ϕ(0) + ϕ(1) + ϕ(2) + · · · , (175)

13Note one needs to adjust these for the different normalization of the scalar.
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where each order is assumed to be asymptotically subleading relative to the previous
one, but without assuming a specific functional form. Inserting these expansions in
the flow equations results in a sequence of differential equations that can be solved
order by order. To leading order we get the homogeneous equations

γ̇
(0)
i j = 2γ (0)

i j , ϕ̇(0) = −ϕ(0), (176)

and hence

γ
(0)
i j = e2r g(0)i j , ϕ(0) = e−rϕ(0), (177)

where g(0)i j (x) and ϕ(0)(x) are arbitrary integration sources. At the next order for
γi j we still get the same homogeneous equation

γ̇
(1)
i j = 2γ (1)

i j . (178)

However, we have already introduced an arbitrary source at order 0 and, since γ
(1)
i j is

asymptotically subleading relative to γ
(0)
i j by the hypothesis, we must set γ

(1)
i j = 0.

At the next order we obtain the inhomogeneous equations

γ̇
(2)
i j = 2γ (2)

i j + R[g(0)]i j − 1

6
R[g(0)]g(0)i j + κ2

3
ϕ2

(0)g(0)i j ,

ϕ̇(1) = −ϕ(1) + 3κV3ϕ
2
(0)e

−2r .

(179)

Discarding the homogeneous solutions again, the inhomogeneous solutions are

γ
(2)
i j = −1

2

(
Ri j [g(0)] − 1

6
R[g(0)]g(0)i j + κ2

3
ϕ2

(0)g(0)i j

)
,

ϕ(1) = −3κV3e
−2rϕ2

(0).

(180)

At the next order for the metric we get

γ
(3)
i j = 8

9
κ3V3e

−rϕ3
(0)g(0)i j , (181)

while, using the following expansions of the momenta

π(2)i j − 1

3
π(2)γi j = 1

4κ2

(
R[g(0)]i j − 1

6
R[g(0)]g(0)i j

)
+ 1

12
ϕ2

(0)g(0)i j + 1

6
ϕ(0)ϕ(1)γ

(0)
i j

+ e−2r
[

1

4κ2

(
Rk

(i [g(0)]γ (2)
k j) − Ri

k
j
l [g(0)]γ (2)

kl + D(0)(i D
k
(0)γ

(2)
k j)

−1

2

(
�(0)γ

(2)
i j + g(0)

kl D(0)i D(0) jγ
(2)
kl

)
− 1

6
R[g(0)]γ (2)

i j
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− 1

6
g(0)i j

(
−Rkl [g(0)]γ (2)

kl + Dk
(0)D

l
(0)γ

(2)
kl − gkl(0)�(0)γ

(2)
kl

))]

+ 1

12

([
(ϕ(1))2 + 2ϕ(0)ϕ(2)

]
γ

(0)
i j + (ϕ(0))2γ

(2)
i j

)
+ O(e−3r ),

π(3)i j − 1

3
π(3)γi j = −κ

6
V3(ϕ

(0))3γ
(0)
i j − κ

2
V3(ϕ

(0))2ϕ(1)γ
(0)
i j + O(e−3r ),

πϕ(2) = 3κV3(ϕ
(0))2 + 6κV3ϕ

(0)ϕ(1) + O(e−4r ), (182)

we obtain the next order equations

γ̇
(4)
i j = 2γ (4)

i j + (−2r)e−2r
{

1

16κ2

[
−2Rkl [g(0)]Rki l j [g(0)] + 1

3
D(0)i D(0) j R[g(0)]

− �(0)Ri j [g(0)] + 2

3
R[g(0)]Ri j [g(0)]

+ 1

2
g(0)i j

(
Rkl [g(0)]Rkl [g(0)] + 1

3
�(0)R[g(0)] − 1

3
R2[g(0)]

)]

+ 1

24

(
Ri j [g(0)] − 5

6
R[g(0)]g(0)i j

)
ϕ2

(0) − 1

24

(
D(0)i D(0) j − g(0)i j�(0)

)
ϕ2

(0)

+ 1

4
∂iϕ(0)∂ jϕ(0) − 1

8
g(0)i j∂

kϕ(0)∂kϕ(0) + κ2

12

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ4

(0)g(0)i j

+ 1

6
ϕ(0)ϕ̃(2)g(0)i j − 1

12
ϕ(0)�(0)ϕ(0)g(0)i j

}

+ e−2r
{
π̂(4)i j − 1

3
g(0)i j π̂(4) + 1

4κ2

(
Rk

(i [g(0)]γ (2)
k j) − Ri

k
j
l [g(0)]γ (2)

kl + D(0)(i D
k
(0)γ

(2)
k j)

− 1

2

(
�(0)γ

(2)
i j + g(0)

kl D(0)i D(0) jγ
(2)
kl

)
− 1

6
R[g(0)]γ (2)

i j

− 1

6
g(0)i j

(
−Rkl [g(0)]γ (2)

kl + Dk
(0)D

l
(0)γ

(2)
kl − gkl(0)�(0)γ

(2)
kl

))

+ 1

12

([
9κ2V 2

3 ϕ4
(0) + 2ϕ(0)ϕ̂(2)

]
g(0)i j + ϕ2

(0)γ
(2)
i j

)
+ 3κ2

2
V 2
3 ϕ4

(0)g(0)i j

}
, (183)

and

ϕ̇(2) = −ϕ(2)

+ e−3r (−2r)

[
1

12
R[g(0)]ϕ(0) + 1

2
�(0)ϕ(0) − 2κ2

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ3

(0)

]

+ e−3r
(
π̂ϕ(3) − 18κ2V 2

3 ϕ3
(0)

)
. (184)

The inhomogeneous solutions of these equations take the form

γ
(4)
i j = e−2r

(−2rh(4)i j + g(4)i j
)
, ϕ(2) = e−3r

(−2r ϕ̃(2) + ϕ̂(2)
)
, (185)
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where

h(4)i j = −κ2
{

1

16κ2

[
−2Rkl [g(0)]Rki l j [g(0)] + 1

3
D(0)i D(0) j R[g(0)] − �(0)Ri j [g(0)]

+ 2

3
R[g(0)]Ri j [g(0)] + 1

2
g(0)i j

(
Rkl [g(0)]Rkl [g(0)]

+ 1

3
�(0) R[g(0)] − 1

3
R2[g(0)]

)]

+ 1

24

(
Ri j [g(0)] − 5

6
R[g(0)]g(0)i j

)
ϕ2

(0)

− 1

24

(
D(0)i D(0) j − g(0)i j�(0)

)
ϕ2

(0) + 1

4
∂iϕ(0)∂ jϕ(0) − 1

8
g(0)i j∂

kϕ(0)∂kϕ(0)

+ κ2

12

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ4

(0)g(0)i j + 1

6
ϕ(0)ϕ̃(2)g(0)i j − 1

12
ϕ(0)�(0)ϕ(0)g(0)i j

}
,

(186)

g(4)i j = −κ2
{
π̂(4)i j − 1

3
g(0)i j π̂(4) + 1

4κ2

(
Rk

(i [g(0)]γ (2)
k j) − Ri

k
j
l [g(0)]γ (2)

kl + D(0)(i D
k
(0)γ

(2)
k j)

− 1

2

(
�(0)γ

(2)
i j + g(0)

kl D(0)i D(0) jγ
(2)
kl

)
− 1

6
R[g(0)]γ (2)

i j

− 1

6
g(0)i j

(
−Rkl [g(0)]γ (2)

kl + Dk
(0)D

l
(0)γ

(2)
kl − gkl(0)�(0)γ

(2)
kl

))

+ 1

12

([
9κ2V 2

3 ϕ4(0) + 2ϕ(0)ϕ̂(2)

]
g(0)i j + ϕ2(0)γ

(2)
i j

)
+ 3κ2

2
V 2
3 ϕ4(0)g(0)i j

}
− 1

2
h(4)i j ,

(187)

ϕ̃(2) = −1

3

[
1

12
R[g(0)]ϕ(0) + 1

2
�(0)ϕ(0) − 2κ2

(
V4 − 9

2
V 2
3 + 1

6

)
ϕ3

(0)

]
, (188)

and

ϕ̂(2) = −1

3

(
π̂ϕ(3) − 18κ2V 2

3 ϕ3
(0) − 2

3
ϕ̃(2)

)
. (189)

This completes the computation since the coefficients π̂(4)i j and π̂(3) have been iden-
tified above with the renormalized one-point functions. In particular, taking the trace
of the expression for g(4)i j relates the trace of π̂(4)i j with the trace of g(4)i j . Inserting
this back in the expression for g(4)i j one obtains the renormalized stress tensor π̂(4)i j

in terms of g(4)i j , its trace, and lower order terms that are explicitly expressed in
terms of the sources.
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Appendix

ADM Identities

A few identities relating to the ADM decomposition (84) of the metric are collected
in this appendix. In particular, in matrix form, the metric (84) and its inverse are

g =
(
N 2 + NkNk Ni

Ni γi j

)
, g−1 =

(
1/N 2 −Ni/N 2

−Ni/N 2 γ i j + Ni N j/N 2

)
, (190)

where the indices i = 1, . . . , d are raised and lowered respectively with γ i j and γi j .
Moreover, the Christoffel symbols Γ ρ

μν[g] can be decomposed into the following
components in terms of N , Ni and γi j :

Γ r
rr = N−1

(
Ṅ + Ni ∂i N − Ni N j Ki j

)
,

Γ r
ri = N−1

(
∂i N − N j Ki j

)
,

Γ r
i j = −N−1Ki j ,

Γ i
rr = −N−1Ni Ṅ − NDi N − N−1Ni N j ∂ j N + Ṅ i + N j D j N

i + 2NN j K i
j

+ N−1Ni Nk Nl Kkl ,

Γ i
r j = −N−1Ni ∂ j N + Dj N

i + N−1Ni NkKkj + NKi
j ,

Γ k
i j = Γ k

i j [γ ] + N−1NkKi j .

(191)

Hamilton–Jacobi Primer

In this appendix we collect a few essential facts about HJ theory in classical mechan-
ics. For an in-depth account of HJ theory we refer the interested reader to [24, 40].
A more abstract exposition can be found in [41].

Let Q be the configuration space of a point particle described by the action14

S =
∫ t

dt ′L(q, q̇; t), (192)

where qα are coordinates onQ. In the Hamiltonian formalism the generalized coor-
dinates qα and the canonical momenta

pα = ∂L

∂q̇α
, (193)

14In this appendix a dot ˙ denotes a derivative with respect to time t .
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are independent variables parameterizing the phase space, which is isomorphic to
the cotangent bundle T ∗Q of the configuration space Q. The cotangent bundle is a
symplectic manifold with a canonical closed 2-form (symplectic form)

	 = dpα ∧ dqα. (194)

Since 	 is closed, it can be locally expressed as

	 = dΘ, (195)

where

Θ = pαdq
α, (196)

is known as the canonical 1-form, or pre-symplectic form. The Hamiltonian, given
by the Legendre transform of the Lagrangian,

H(p, q; t) = pαq̇
α − L , (197)

is a map H : T ∗Q −→ R and governs the time evolution of the dynamical system
through Hamilton’s equations

q̇α = ∂H

∂pα

, ṗα = − ∂H

∂qα
. (198)

At this point it is instructive to distinguish two cases, depending on whether the
Hamiltonian depends explicitly on time t or not.

• Time-independent systems

A section, s, of the cotangent bundle is a map s : Q −→ T ∗Q, providing a 1-form
over each point q ∈ Q. A closed section of T ∗Q is locally exact and so it can
be written as s = dW for some function W(q) on Q. Under the isomorphism
between phase space and the cotangent bundle this means that locally

pα = ∂W(q)

∂qα
. (199)

Moreover,
Θ ◦ s = dW, 	 ◦ s = 0. (200)

These results hold for any closed section s of T ∗Q. The HJ theorem relates certain
closed sections, s, of the cotangent bundle to solutions of Hamilton’s equations
(198). In particular,
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d (H ◦ s) =
(

∂H

∂qα
+ ∂2W

∂qβ∂qα

∂H

∂pβ

)
dqα

=
(

∂H

∂qα
+ ṗα

)
dqα + ∂2W

∂qβ∂qα

(
∂H

∂pβ

− q̇β

)
dqα, (201)

which implies that the following two statements are equivalent (see Theorem 2.1
in [42]):

(i) If σ : R → Q satisfies the first of Hamilton’s equations in (198), then s ◦ σ

satisfies the second Hamilton equation.
(ii) d (H ◦ s) = 0.

Hence, a closed section s = dW of the cotangent bundle that satisfies the (time-
independent) HJ equation

H ◦ s = H

(
∂W
∂qα

, qβ

)
= E, (202)

where E is some constant, provides a solution of Hamilton’s equations.
• Time-dependent systems

In order to accommodate systems with a Hamiltonian that explicitly depends on
time we extend the configuration space by including time as a generalized coordi-
nate so thatQext = Q × R is now the extended configuration space. Phase space is
accordingly extended by including −H as the canonical momentum conjugate to
t . This extended phase space is isomorphic to the cotangent bundle T ∗Qext, which
carries the canonical symplectic form

	ext = dΘext = dpα ∧ dqα − dH ∧ dt. (203)

Moreover, to Hamilton’s equations we can now append the equation

Ḣ = ∂H

∂t
. (204)

A closed section of T ∗Qext can be locally written as s = dS for some function on
Qext, and consequently

pα = ∂S(q; t)
∂qα

, −H = ∂S(q; t)
∂t

, (205)

which imply that

Θext ◦ s = dS, 	ext ◦ s = 0. (206)
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It follows that

0 = d

(
H ◦ s + ∂S

∂t

)

=
[

∂H

∂qα
+ q̇β ∂2S

∂qβ∂qα
+ ∂2S

∂t∂qα
+ ∂2S

∂qβ∂qα

(
∂H

∂pβ

− q̇β

)]
dqα

+
[
∂H

∂t
+ q̇α ∂2S

∂t∂qα
+ ∂2S

∂t2
+ ∂2S

∂qβ∂t

(
∂H

∂pβ

− q̇β

)]
dt

=
[

∂H

∂qα
+ ṗα + ∂2S

∂qβ∂qα

(
∂H

∂pβ

− q̇β

)]
dqα

+
[
∂H

∂t
− Ḣ + ∂2S

∂qβ∂t

(
∂H

∂pβ

− q̇β

)]
dt, (207)

which allows us to generalize the HJ theorem to time-dependent Hamiltonians.
Namely, a closed section s = dS of T ∗Qext that satisfies the HJ equation

H ◦ s + ∂S
∂t

= H

(
∂S
∂qα

, qβ; t
)

+ ∂S
∂t

= 0, (208)

provides a solution to Hamilton’s equations.

A few comments are in order at this point. Firstly, note that the HJ formalism
for time-dependent Hamiltonians reduces to that for time-independent Hamiltonians
upon setting

S(q; t) = W(q) − Et. (209)

The functionS(q; t) is known asHamilton’s principal function, whileW(q) is called
the characteristic function. Secondly, the expressions (94) for the canonical momenta
and theHamiltonian should be familiar fromquantummechanics. Indeed,Hamilton’s
principal function S(q; t) is related to the WKB wavefunction by

ψWK B(q; t) ∼ eiS(q;t)/�, (210)

and so the expressions (94) are respectively the coordinate representation of the
momentum operator and the identification of theHamiltonianwith the time evolution
operator.

Finally, Hamilton’s principal function S(q; t), defined as a solution of the HJ
equation (208), is closely related to the on-shell action. To elucidate the relation,
consider the action (192) on the semi-infinite line (−∞, t]. A general variation of
the action (192) gives

δS =
∫ t

dt ′
(

∂L

∂qα
δqα + ∂L

∂q̇α
δq̇α

)
=

∫ t

dt ′
(

∂L

∂qα
− d

dt ′

(
∂L

∂q̇α

))
δq + ∂L

∂q̇α
δqα

∣∣∣∣
t
. (211)
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To ensure that the variational principle implies the equations of motion we need
to impose the boundary condition δqα = 0 at t ′ = t . The on-shell action therefore
becomes a function of the fixed but arbitrary boundary condition qα(t), namely
Son-shell(q; t), while

pα|t = ∂L

∂q̇α

∣∣∣∣
t

= ∂Son-shell
∂qα

. (212)

Moreover,

Ṡon-shell = L = ∂Son-shell
∂t

+ ∂Son-shell
∂qα

q̇α, (213)

and so Son-shell satisfies the HJ equation (208):

0 = pαq̇
α − L + ∂Son-shell

∂t
= H

(
∂Son-shell

∂qα
, qβ; t

)
+ ∂Son-shell

∂t
. (214)

We therefore conclude that the on-shell action as a function of the arbitrary but fixed
boundary condition q(t), Son-shell(q; t), can be identified with Hamilton’s principal
function S(q; t). The fact that the on-shell action is a solution of the HJ equation
is the fundamental reason for the critical role that HJ theory has in holographic
renormalization.
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Nonsingular Black Holes in Palatini
Extensions of General Relativity

Gonzalo J. Olmo

Abstract An introduction to extended theories of gravity formulated inmetric-affine
(or Palatini) spaces is presented. Focusing on spherically symmetric configurations
with electric fields, we will see that in these theories the central singularity present
in General Relativity is generically replaced by a wormhole structure. The resulting
space-time becomes geodesically complete and, therefore, can be regarded as non-
singular. We illustrate these properties considering two different models, namely, a
quadratic f (R) theory and a Born-Infeld like gravity theory.

1 Introduction

Shortly after the publication of Einstein’s equations for the gravitational field, Karl
Schwarzschild found an exact solution describing the vacuum region surrounding a
spherical body of mass M . The line element characterizing this space-time takes the
form

ds2 = −
(
1 − 2M

r

)
dt2 + 1(

1 − 2M
r

)dr2 + r2dΩ2 (1)

where r is the radial coordinate and dΩ2 ≡ dθ2 + sin θ2dϕ2 represents the spher-
ical sector. Given the smallness of the quantity rS ≡ 2M , which for a star like the
sun is about rS ∼ 3km, and the limited astrophysical knowledge about compact
objects at that time, this line element was thought to be physically meaningful only
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in the exterior regions of stars. With the discovery of neutron stars, the physical exis-
tence of ultra compact objects was reconsidered and in the 1960s it was understood
that geometries such as Schwarzschild’s could be a physical reality. In fact, using
powerful mathematical techniques it was concluded that under reasonable condi-
tions, complete gravitational collapse is unavoidable for sufficiently massive objects
[1–5]. Black holes, therefore, are an important prediction of Einstein’s theory of
General Relativity (GR).

The existence of black holes has a deep impact for the theoretical consistency of
GR. In fact, given that the laws of Physics as we know them are defined on top of
a dynamical geometry, the space-time, if the geometry becomes ill defined at some
event then our ability to describe physical phenomena and make predictions will be
seriously affected [6]. This is precisely what happens in the interior of black holes.

In the Schwarzschild case, for instance, any observer within the region r < rS
is forced to travel towards decreasing values of r , being r = 0 reached in a finite
proper time [7]. At that location, curvature scalars diverge and gravitational forces
are so strong that any extended body is instantaneously crushed to zero volume. Thus,
any observer reaching r = 0 is destroyed and disappears together with its ability to
describe the physical processes taking place in that region. Under this circumstance,
it is typically stated that the Schwarzschild black hole contains a singularity or that
it describes a singular space-time.

The notion of singularity is a very elusive concept, though [8]. The Schwarzschild
example suggests that curvature divergences can somehow be regarded as a signa-
ture of their existence. However, if one takes a space-time such as Minkowski and
artificially removes a portion of it, any observer or signal that propagates through it
and reaches the boundary of the removed portion simply vanishes there, as there is
nowhere to go beyond that boundary. One can also find observer trajectories which
intersect this boundary in their past, suggesting that they came into existence out
of the blue. The potential creation and/or destruction of physical observers and/or
light signals in a given space-time is thus fundamental to determine if an appropriate
physical description is possible or not. For this reason, for the characterization of
singular space-times one should not focus on the potential existence of infinities in
the gravitational fields, which are absent in the amputated Minkowskian example,
but rather one should be worried about the existence of physical observers at all
times.

Following this line of reasoning, it is generally stated that a singular space-time
is one in which there exist incomplete timelike and/or null geodesics, i.e., geodesics
which cannot be extended to arbitrary values of their affine parameter in the past
or in the future [9–11] (see also [12] for a more recent discussion of this point and
references). Note, in this sense, that observers are identified with geodesic curves.
The incompleteness of geodesics, therefore, hinges in the fact that in order to be
able to provide a reliable description of phenomena on a given space-time, physical
observers and/or signals should never be created or destroyed, i.e., their existence
should be unrestricted along their worldline. The presence of curvature divergences
is thus irrelevant for the determination of whether a space-time is singular or not: the
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potential suffering of observers due to intense tidal forces is not comparable to the
importance of their very existence.

The fact that the Schwarzschild solution, as well as all other black hole solutions
known to date, represent geodesically incomplete space-times is thus a serious con-
ceptual limitation of GR. Improvements in the theory are thus necessary, which has
motivated different approaches to the problem of singularities. Some of those are
based on the idea of bounded curvature scalars [13–18] which, however, is logically
unrelated to the notion of geodesic completeness.

In these lectures we will be dealing with certain (classical) extensions of GR in
which simple non-rotating black hole solutions which are geodesically complete,
and hence nonsingular, are possible. The approach presented here does not follow
the intuitive and widespread idea that to get a nonsingular theory one should keep
curvature scalars bounded. In our case, curvature divergences do arise in some regions
but their presence is not an obstacle to have complete geodesic paths1 [19]. Making a
long story short, this is accomplished by the replacement of the black hole center by a
wormhole [20, 21]. Unlike the case of GR, in our approach one does not need exotic
matter sources to generate the wormhole. Rather, a simple free electric field will be
able to do the job. Also, our geometries are not designed a priori but, rather, follow
directly by integrating the field equations once the matter fields are specified. It is
in this sense that these wormholes are more natural than those typically discussed in
the context of GR, where one first defines the metric and then obtains the necessary
stress-energy tensor by plugging it in Einstein’s equations.

It is worth noting at this point that the use of nontrivial topologies (wormholes) in
combination with self-gravitating free fields as a way to cure space-time singularities
was suggested long ago by J.A.Wheeler [22].Wewill see that our solutions represent
an explicit example of geons inWheeler’s sense [23, 24] and, as such, avoid the well-
known problem of the sources [25] that one finds in GR for the Schwarzschild and
Reissner-Nordström black holes, for instance.

The content is organized as follows. In Sect. 2 our geometrical scenario is intro-
duced, making emphasis on the importance of understanding gravitation as a geo-
metric phenomenon and geometry as an issue of metrics and connections, i.e., as
something else than a theory of just metrics. Once the fundamental notions of metric-
affine geometry have been presented, in Sect. 3 we work out the field equations of
GR à la Palatini, and in Sect. 4 we do the same for two models of interest, namely,
a quadratic f (R) theory and a Born-Infeld-like gravity theory. The first example
appears naturally in that quadratic corrections in curvature are common to many dif-
ferent approaches to quantum and non-quantum extensions of GR. The simplicity of
this model comes at the price of introducing a nonlinear theory of electrodynamics
as matter source in order to obtain the desired effects in the equations. The Born-
Infeld case, on the contrary, can be easily combined with a standardMaxwell electric
field. In both cases, exact analytical black hole solutions can be found, which allows
us to explore the behavior of geodesics in both geometries in detail. The equations

1This provides a counterexample to the correlation typically observed in GR between space-times
with incomplete geodesics and which contain curvature divergences.
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governing black hole structure are derived in a generic form in Sect. 5 and applied to
the gravitational Born-Infeld model in Sect. 6 and to the f (R) model in Sect. 7. The
study of geodesics appears in Sect. 8. We conclude in Sect. 9 with a brief summary
and discussion of the results.

2 Basic Framework: Metric-Affine Gravity

In elementary courses on gravitation [7] one learns that general covariance is
accomplished by replacing flat Minkowskian derivatives ∂μ by covariant deriva-
tives ∇μ, whose action on vector components (for instance) is of the form ∇μAν =
∂μAν − Γ λ

μν Aλ. HereΓ λ
μν is the so-called Levi-Civita connection, which is defined as

Γ λ
μν = gλρ

2

[
∂μgρν + ∂νgρμ − ∂ρgμν

]
, (2)

with gμν representing the space-time metric. The connection has a non-tensorial
transformation law which compensates the action of ∂μ in such a way that ∇μAν

transforms as a tensor under arbitrary changes of coordinates. With the connection
one defines the Riemann curvature tensor as

Rα
βμν = ∂μΓ α

νβ − ∂νΓ
α
μβ + Γ κ

νβΓ α
μκ − Γ κ

μβΓ α
νκ , (3)

and Einstein’s equations take the form

Rβν − 1

2
gβνR = κ2Tβν, (4)

where Rβν = Rλ
βλν is the Ricci tensor, R = gμνRμν the Ricci curvature scalar, Tβν

the stress-energy tensor of the matter, and κ2 = 8πG/c4. Written in this form, GR
is a theory based on the metric tensor gμν as the field that describes gravitational
interactions.

Interestingly, at the time Einstein formulated GR, the theory of affine connections
had not been developed yet. Only Riemannian geometry, based on the metric tensor,
was available to implement his idea of gravitation as a geometric phenomenon.
Einstein’s theory boosted the interest of mathematicians on differential geometry,
giving rise to the study of non-Riemannian spaces [26]. It was then established that
general covariance could be implemented without defining a metric structure. This is
so because the non-tensorial transformation law of the connection is a property that
does not depend on the particular form of the connection, i.e., it is independent of the
definition (2). As a consequence, the Riemann curvature tensor (3) can be defined
without referring it to a metric.

This point is very important because it opens a whole new range of possibilities
to implement the idea of gravitation as a geometric phenomenon. Is the space-time
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geometry Riemannian? It is rather apparent that the Euclidean space of Newtonian
mechanics is not appropriate to describe relativistic phenomena, but that does not
lead uniquely to the Riemannian case (the metric as the foundation of all). Whether
the space-time geometry is Riemannian or not is a fundamental question that must be
answered by experiments, as Einstein himself stated [27]. Wemust, obviously, admit
that the Riemannian description of GR is very successful at the length scales and
energies accessible in laboratory and the Solar system (as well as in other systems
whose orbital motions are well understood) [28]. However, there is still a broad range
of energies and length scales that lie beyond direct experimental scrutiny. Demanding
that the Riemannian condition (2), or ∇μgαβ = 0, be satisfied at all scales might be
an excessive assumption/constraint.

Aside from the purely theoretical interest in non-Riemannian geometries, there
are other reasons to explore the effects that independent metric and affine degrees
of freedom could have in gravitation. It turns out that in continuous systems with
an ordered microstructure, such as in Bravais crystals or materials as popular as
graphene, one needs a metric-affine geometry in order to correctly describe macro-
scopic properties like viscosity or plasticity [29, 30]. These properties are intimately
related with the existence of defects in the microstructure. And these defects are
responsible for the independence between metric and affine degrees of freedom. For
instance, in a crystal without defects, one can introduce a notion of distance (metric-
ity) by counting atoms along crystallographic directions (a special set of directions
in the structure which minimize distances) [29, 31–34]. However, if there exist point
defects such as missing atoms, the microscopic process of step counting breaks down
and the idea of metricity cannot be translated to the continuum in any natural way.

The microscopic notion of distance can be extended to the continuum by defin-
ing an auxiliary or idealized structure without defects in which the step-counting
procedure is naturally implemented. Physical distances can be defined once the den-
sity of defects is known, which allows to establish a correspondence between the
idealized structure and the physical one. The idealized crystallographic directions
need not coincide everywhere with the directions that minimize physical distances,
which implies that the physical metric gαβ is not conserved along the idealized paths,
i.e., ∇(Γ )

μ gαβ �= 0, where Γ is the connection associated to the auxiliary metric. The
quantity Qμαβ ≡ ∇(Γ )

μ gαβ , known as non-metricity tensor, then plays a relevant role
in the physical description of the continuized system.

Another interesting geometric structure arises when there exist dislocations (one-
dimensional defects). It is well-known that dislocations are the discrete version of
torsion [35, 36]. Crystals with a certain density of dislocations, therefore, lead to
effective geometries with a metric and a non-symmetric connection, which is related
to the Einstein–Cartan theory of gravity [30]. Given that point defects (vacancies
and interstitial) can interact with dislocations (creating and/or destroying them),
a complete theory should have into account the metric, the non-metricity tensor,
and the torsion. If the space-time had a microstructure with defects, such as that
suggested by the notion of space-time foam, the continuum that we perceive could
require geometric structures beyond those typically considered in Einstein’s theory
of gravity [37–39].
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It is for the above simple reasons that we are going to explore several examples of
theories of gravity assuming that metric and connection are equally fundamental and
a priori independent fields. Imposing a principle of democracy, we will derive the
equations governing the metric and the connection from an action, without imposing
any a priori constraint between them. The field equations should determine how
metric and affine degrees of freedom interact between them and with the matter
fields.

3 General Relativity à la Palatini

To begin with, it is useful to consider the metric-affine or Palatini version of GR [40].
The action functional for the Einstein–Palatini theory can be written as

S = 1

2κ2

∫
d4x

√−ggμνRμν(Γ ) + Sm(gμν, ψ), (5)

where Rμν(Γ ) = Rα
μαν is defined in terms of a connection which is a priori inde-

pendent of themetric gμν , Sm represents thematter action, andψ denotes collectively
the matter fields.2

Variation of the action with respect to the (inverse) metric and the connection
leads to

δS = 1

2κ2

∫
d4x

√−g

[(
Rμν(Γ ) − 1

2
gμνg

αβ Rαβ(Γ ) − κ2Tμν

)
δgμν + gμνδRμν

]
,

(6)
where

δRμν = ∇λ

(
δΓ λ

νμ

)− ∇ν

(
δΓ λ

λμ

)+ 2Sρ
ανδΓ

α
ρμ, (7)

and Sρ
αν ≡ 1

2

(
Γ ρ

αν − Γ ρ
να

)
is the torsion tensor. For simplicity, in the following deriva-

tions we will skip all torsional terms.3 After elementary manipulations, and knowing
that ∇μ(

√−gJμ) = ∂μ(
√−gJμ) + 2Sλ

λμ(
√−gJμ), (6) turns into

2For simplicity, in the matter action we have only assumed a dependence on the metric. This
prescription is compatible with the experimental evidence on the Einstein equivalence principle
[28]. However, dependence on the connection should also be allowed to explore its phenomenology
in regimes not yet accessed experimentally. The coupling of fermions to gravity, whose spin may
source the torsion tensor (antisymmetric part of the connection), is a particular case of interest which
has been considered explicitly in supergravity theories and in the Einstein–Cartan theory [25], for
example.
3We do this to focus our attention on the symmetric part of the connection but we do admit the
possibility of having an antisymmetric part because fermions do exist in Nature. Note in this sense
that, in general, assuming a symmetric connection before performing the variations or setting it to
zero after the field equations have been obtained are inequivalent procedures. A detailed discussion
with concrete examples can be found in [41].
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δS = 1

2κ2

∫
d4x

√−g

[(
Rμν(Γ ) − 1

2
gμνg

αβRαβ(Γ ) − κ2Tμν

)
δgμν

+ (−∇λ

(√−ggμν
)+ δ

μ
λ ∇ρ

(√−ggρν
))

δΓ λ
μν

]
. (8)

The field equations are obtained by setting to zero the coefficients multiplying the
independent variations δgμν and δΓ λ

μν , which yields

Rμν(Γ ) − 1

2
gμνg

αβRαβ(Γ ) = κ2Tμν (9)

−∇λ

(√−ggμν
)+ δ

μ
λ ∇ρ

(√−ggρν
) = 0. (10)

Contracting the indices μ and λ in (10) one finds that ∇ρ

(√−ggρν
) = 0, which

turns that equation into

∇λ

(√−ggμν
) = 0, (11)

writting this equation explicitly, we get

gμν∂λ

√−g + √−g∂λg
μν + √−g

[−Γ α
αλg

μν + Γ
μ
λαg

αν + Γ ν
λαg

αμ
] = 0, (12)

and contracting with gμν we find that Γ α
αμ = ∂μ ln

√−g, where the relation gμν∂λ

gμν = −2∂λ ln
√−g has been used. Inserting this result in (12), one finds that (11) is

equivalent to ∇λgμν = 0. Given that gμρgρν = δν
μ, one readily verifies that ∇λgμν =

0 also implies ∇λgμν = 0. This last relation can be used to obtain the form of Γ α
μν as

a function of the metric and its first derivatives by just using algebraic manipulations
[42]. The result is simply that Γ α

μν boils down to the Levi-Civita connection defined
in (2). As a consequence, the Ricci tensor Rμν(Γ ) turns into the Ricci tensor of the
metric gμν and (9) coincides with the Einstein equations (4).

In summary, the Einstein–Palatini action exactly recovers Einstein’s equations (in
the torsionless case) and implies that the geometry is Riemannian without the need
of imposing the compatibility condition ∇λgμν = 0 as an input.

It is important to remark at this point that the constraint ∇λgμν = 0 between
metric and connection is a property that belongs naturally to the Einstein–Palatini
theory but which is not a priori guaranteed in other theories. Nonetheless, in most
of the literature on extended theories of gravity it has been implicitly assumed as
true, forcing the geometry to be Riemannian from the onset (see, however, [43] for a
review on Palatini gravity). We will see in the following that relaxing this constraint
and allowing the theory to determine the form of the connection from a variational
principle, the compatibility between metric and connection is generically lost. The
implications of this will be nontrivial, providing new phenomenology that will be
relevant in the study of black hole interiors.
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4 Beyond GR

Considering extensions of GR to address questions concerning high and very high
energies one naturally finds the possibility of adding quadratic and/or higher order
curvature corrections in the gravitational Lagrangian. Such corrections arise when
one considers quantum fields propagating in curved space-times [44, 45], in the low-
energy limits of string theories [25], and in effective field theory or phenomenological
approaches [46, 47]. Theories such as R + λR2 + γ RμνRμν + βRα

βμνRα
βμν , for

instance, have been typically considered in the literature on the early universe and in
blackhole scenarios [48–59]. TheRiemann-squared dependence is typically removed
because it can be combinedwith the other quadratic terms to give the so-calledGauss-
Bonnet term, which does not contribute to the field equations and simply redefines
the coefficients λ and γ .

The standard argument is that high-order curvature corrections could capture
some relevant new physics beyond the range of applicability of GR but below the
full quantum gravity regime. Given the higher-order character of the resulting field
equations, analytical solutions are hard tofind ingeneral.Numerical solutions do exist
and regular cases (in the sense of bounded curvature scalars [14]) have been found for
static black hole configurations [60] coupled to nonlinear theories of electrodynamics
using perturbative methods.

The extensive literature existing on the metric (or Riemannian) formulation of
quadratic gravity contrasts with the little attention received by its metric-affine coun-
terpart. Interestingly, through recent work carried out in the last years, it has been
established that in the Palatini version of those theories one always finds analytical
solutions [61–63]. In the following we will study the field equations of models simi-
lar to the quadratic theory mentioned above but formulated in the Palatini approach.
We will then focus on spherically symmetric configurations in which new black hole
solutions can be found.

4.1 f (R) Theories

The derivation of the field equations for theories of the f (R) type,where f represents
a certain function of theRicci scalar4R = gμνRμν(Γ ), is straightforward and follows
essentially the same steps as in the case of GR presented in Sect. 3. Variation of the
action leads to the equations (see, for instance, [42, 43] for details)

4The typography R is used here to emphasize that this scalar is built by combining the metric gμν

with the Ricci tensor of a connection Γ α
μν whose relation with gμν is a priori unknown. Whenever

Γ α
μν be defined in terms of a metric kμν , then we will use the notation R(k) = kμν Rμν(k).
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fRRμν(Γ ) − 1

2
gμν f (R) = κ2Tμν (13)

−∇λ

(√−g fRgμν
)+ δ

μ
λ ∇ρ

(√−g fRgρν
) = 0, (14)

where we denote fR ≡ d f/dR. Manipulating the connection equation (14), one
finds that it can be reduced to

∇λ

(√−g fRgμν
) = 0. (15)

Before proceedingwith furthermanipulations, it is important to interpret this equation
in combination with (13). At first sight, one may think that (15) contains up to second
order derivatives of the connection because fR is being acted upon by a derivative
operator and it already contains first-order derivatives of Γ α

μν via its dependence on
R. However, taking the trace of (13) with gμν , one finds the important relation

R fR − 2 f = κ2T, (16)

which establishes an algebraic relation between R and T , generalizing in this way
the case R = −κ2T to nonlinear Lagrangians. This allows us to reinterpret (15) as
an equation in which the independent connection Γ α

μν satisfies an algebraic linear
equation which involves the matter fields through the function fR and the metric.

A solution to this equation can be obtained [64] by considering the existence of
a rank-two tensor hμν such that

√−g fRgμν can be written as
√−hhμν . With this

identification, (15) turns into∇μ(
√−hhαβ) = 0,with hμν = fRgμν , and the solution

can be obtained in much the same way as in the GR case (see the manipulations
following (11)). As a result, we find that Γ α

μν can be written as the Levi-Civita
connection of the auxiliary metric hμν , i.e.,

Γ λ
μν = hλρ

2

[
∂μhρν + ∂νhρμ − ∂ρhμν

]
. (17)

This result is valid for any Palatini theory of the f (R) type, including GR.
We now turn our attention to the metric field equations (13), which contains

elements referred to the metric gμν and others, like Rμν(Γ ), that depend on hμν .
Given that gμν = (1/ fR)hμν are conformally related, one can express Rμν(Γ ) in
terms of Rμν(g) and derivatives of fR using well-known formulas [65, 66] (see,
for instance, Appendix D in Wald’s book [11]). Another possibility is to express
everything in terms of hμν . This is the approach we will follow because it leads to a
very compact expression of the form

Rμ
ν(h) = κ2

f 2R

[
f

2κ2
δμ

ν + T μ
ν

]
, (18)

where Rμ
ν(h) = hμλRλν(h) and T μ

ν = gμλTλν . Written in this form, it is apparent
that the auxiliary metric hμν satisfies a set of second-order equations with a structure
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very similar to that found in GR. In fact, on the left-hand side we find a second-
order differential operator acting on hμν , whereas on the right-hand side we have the
matter, represented by Tμ

ν and by f and fR, which are both functions of the trace
T of Tμ

ν .
With the equations written in this form, one may try to solve for hμν and then

obtain gμν by just using the conformal relation gμν = (1/ fR)hμν . This strategymight
not always be straightforward, but will be very useful in the cases we will be dealing
with.

To conclude with the discussion of f (R) theories, it is important to consider the
vacuum solutions. Such solutions correspond to the case in which Tμ

ν = 0, which
implies T = 0. As a result, the algebraic equation (16) implies R = Rvac, where
Rvac is some constant which may depend on the parameters that characterize the
specific f (R) Lagrangian chosen (obviously, some models may yield more than one
solution and the good ones should be selected on physically reasonable grounds). A
constant R implies that any function of R is also a constant. A direct consequence
of this is that the conformal factor relating gμν and hμν can be absorbed into an
irrelevant redefinition of units, making the two metrics coincide. This means that
in vacuum the connection (17) boils down to the Levi-Civita connection of gμν .
Also, the metric field equations (18) recover the equations of GR in vacuum, with
an effective cosmological constant. All this implies that the vacuum solutions of the
theory are exactly the same as those appearing in vacuum GR (although different
boundary conditions may apply). Therefore, in order to explore new physics beyond
GR, one must consider explicitly the presence of matter sources. In this sense, we
note that though the Schwarzschild solution is a mathematically acceptable solution
of all Palatini f (R) theories in vacuum, one should carefully consider the boundary
conditions necessary to match that solution with the solution in the region containing
the sources. The intuitive view that a delta-like distribution at the center is valid
is not guaranteed here, as some models exhibit upper bounds for the density and
pressure [64, 67]. For this reason, vacuum solutions must be handled with care, and
non-vacuum solutions should be explored to gain insight on the properties of these
theories.

4.2 Born-Infeld Gravity

The Born-Infeld gravity model is defined by means of the following action

S = 1

κ2ε

∫
d4x

[√−|gμν + εRμν | − λ
√−|gμν |

]
+ Sm[gμν, ψ], (19)

where vertical bars inside the square-root denote the determinant of that quantity,
and ε is a small parameter with dimensions of length squared. This model was first
consider in metric formalism [68], where the model suffers from a ghost instability
due to its nonlinear dependence on the Ricci tensor. In [69], the theory was studied
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within the Palatini formalism, finding that in that approach the ghost is avoided.
The phenomenological consequences of this theory have since then been extensively
explored in cosmology [70–80], astrophysics [81, 82], stellar structure [83–90], the
problem of cosmic singularities [91, 92], black holes [93, 94], and wormhole physics
[95–98], among many others. Extensions of the original formulation have also been
considered [99–114].

In the limit ε → 0, this action recovers the quadratic5 gravity theory mentioned
at the beginning of this section with specific coefficients in front of R2 and RμνRμν

[94]. The parameter λ is related to the cosmological constant, which vanishes if
λ = 1. From now on we will set λ = 1 for simplicity. Higher-order contractions of
the Ricci tensor arise as higher-order corrections in ε are considered.

The derivation of the field equations is straightforward if one introduces the
definition

hμν = gμν + εRμν, (20)

which allows to express the action (19) in the more compact form

S = 1

κ2ε

∫
d4x

[√−h − √−g
]

+ Sm[gμν, ψ]. (21)

Variation of the action with respect to metric and connection [94, 99] leads to

√−hhμν − √−ggμν = −ε
√−gκ2T μν (22)

∇μ(
√−hhαβ) = 0 (23)

It is clear from (23) that one can formally solve for the connection as the Levi-Civita
connection of the auxiliary metric hμν . Accepting that possibility, then we find that
on the right-hand side of our original definition (20) the Ricci tensor contains up to
second-order derivatives of hμν . This simply indicates that to obtain hμν we need to
solve some differential equations which involve gμν and Rμν(h). In order to be able
to do it, we must first find the relation that exists between hμν and the pair (gμν, Tμν).
This relation is determined by (22). In fact, assuming that hμν and gμν are related by
some deformation matrix in the form

hμν = gμαΩα
ν, hμν = (Ω−1)μαg

αν, (24)

then we can write (22) as

√|Ω|(Ω−1)μν = δμ
ν − εκ2T μ

ν. (25)

5As mentioned before, in the quadratic theory the dependence on the Riemann squared term can
be eliminated by a simple redefinition of the coefficients in front of R2 and Rμν Rμν . It is this
Ricci-dependent theory which is recovered from the Born-Infeld action. We also note that the Ricci
tensor in the action is symmetric. Though this is not obvious a priori, it can be shown that it is
indeed true when torsion is set to zero at the level of the field equations [41].
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This equation tells us that the deformation that relates hμν with gμν is determined
by the local distribution of energy-momentum. This is similar to what we already
observed in the case of f (R) theories, where the conformal factor relating themetrics
was a function of the trace of Tμ

ν (see (16)). Note also that for this model the explicit
form of Ωα

ν is

Ωα
ν = δα

ν + εgαβRβν(h). (26)

Equation (25) is thus telling us that the object gαβRβν(h), which is a hybrid tensor
that mixes gαβ with hμν , is an algebraic function of the stress-energy tensor T μ

ν .
This is analogous to the relation between the scalar quantitiesR and T in the f (R)

case.
Having established the explicit relation between hμν and gμν , we can now go back

to (20) and write an equation for hμν and the matter. With a bit of algebra, one finds
that the corresponding equations can be written as

Rμ
ν(h) = κ2

√|Ω|
[√|Ω| − λ

κ2ε
δμ

ν + T μ
ν

]
. (27)

The structure of these equations is very similar to that found in the case of f (R)

theories, with the Ricci tensor of the metric hμν on the left-hand side and functions
of the matter fields on the right. We will see that in some cases of interest it will be
possible to solve for hμν and then use (24) to obtain gμν .

We also note here that the vacuum solutions of this model recover the field equa-
tions of vacuum GR. This is clearly seen from (20), which in vacuum implies that
the matrix Ωμ

α is a constant times the identity (when λ = 1, this constant is just
unity). As a result the two metrics are physically equivalent and one recovers the
equations of vacuum GR. The exploration of new physics should thus be carried out
considering explicitly the presence of matter sources.

4.3 Generic Field Equations

The field equations obtained in the previous subsections for two different types of
gravity models suggests that there exists a basic structure for the field equations in
Palatini theories. This similarity is even more transparent when one realizes that the
gravity Lagrangian in the case of f (R) theories isLG = f (R)/2κ2 and in the Born-
Infeld case, LG =

√|Ω|−λ

κ2ε
. Moreover, in the f (R) theories, the conformal relation

between the metrics can be seen as a particular case in which Ωμ
ν = fRδμ

ν . This
allows us to express the field equations in the generic form

Rμ
ν(h) = κ2

√|Ω|
[LGδμ

ν + T μ
ν

]
, (28)
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with Ωμ
ν representing the relations (24), and the explicit dependence of Ωμ

ν with
the matter fields determined by the field equations of the specific theory. With formal
manipulations, it is possible to show that this representation of the field equations
in terms of the auxiliary metric hμν is indeed correct for large families of theories
of gravity in which LG is just a functional of the inverse metric gμν and the Ricci
tensor of an independent connection [113, 115] (when torsion is set to zero at the
end of the variation). In vacuum configurations, the field equations recover GR plus
an effective cosmological constant.

For convenience, we will use the generic equations (28) to obtain formal expres-
sions for the solutions of static, spherically symmetric configurations in which the
stress-energy tensor possesses certain algebraic properties. These formal expressions
will then be particularized to specific gravity plus matter models.

5 Static, Spherically Symmetric Solutions

In this section we will be concerned with stress-energy tensors with a specific alge-
braic structure, namely

T μ
ν =

(
T+ Î2×2 Ô

Ô T− Î2×2

)
, (29)

where T± are some functions of the space-time coordinates, Î2×2 is the 2 × 2 identity
matrix, and Ô is the 2 × 2 zero matrix. Examples of stress-energy tensors with this
structure arise in the case of electric fields and also for certain anisotropic fluids. The
extension to higher-dimensions is straightforward using similar notation (see for
instance [115, 116]). Given that the deformation matrix Ωμ

ν will be determined by
the stress-energy tensor, we may assume that it also has a similar algebraic structure,
i.e., we can take

Ωμ
ν =

(
Ω+ Î2×2 Ô

Ô Ω− Î2×2

)
, (30)

where Ω± are given functions that should be provided by the field equations of the
specific model considered. This point has been verified in several models explicitly
and, therefore, appears as a reasonable assumption to proceed in a formal manner.

With the above assumptions, we find that the field equations (28) become

Rμ
ν(h) = κ2

√|Ω|
(

(LG + T+) Î2×2 Ô
Ô (LG + T−) Î2×2

)
. (31)

Now we need to focus on the form of the left-hand side to proceed further. For static,
spherically symmetric configurations, we can take the line element of the space-time
metric gμν as
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ds2 = gab(x
0, x1)dxadxb + r2(x0, x1)(dθ2 + sin2 θdϕ2), (32)

where (x0, x1) represent the coordinates of the 2 × 2 sector orthogonal to the 2-
spheres. Analogously, one can define a line element for the auxiliary metric hμν of
the form

ds̃2 = hab(x
0, x1)dxadxb + r̃2(x0, x1)(dθ2 + sin2 θdϕ2). (33)

Using the generic relations (24) between hμν and gμν together with (30), one finds
that

hab = Ω+gab (34)

r̃2 = Ω−r2. (35)

For static configurations, we further specify the form of hμν as follows:

ds̃2 = −A(x)e2Φ(x)dt2 + 1

A(x)
dx2 + r̃2(x)(dθ2 + sin2 θdϕ2). (36)

Computing the Ricci tensor associated to this line element, one finds the following
relations:

Rt
t (h) = Rx

x (h) + 4

r̃
(r̃xx − Φx r̃x ) (37)

Rθ
θ (h) = 1

r̃2

[
1 − Ar̃2x − r̃ A

(
r̃xx + r̃x

{
Ax

A
+ Φx

})]
. (38)

Given that the right-hand side of (31) implies that Rt
t = Rx

x , it follows that
(r̃xx − Φx r̃x ) = 0. This equation allows us to take Φ(x) → 0 and r̃ → x , without
loss of generality, and write the line element (36) in the form

ds̃2 = −A(x)dt2 + 1

A(x)
dx2 + x2(dθ2 + sin2 θdϕ2). (39)

As a result, Rθ
θ gets simplified as

Rθ
θ (h) = 1

x2
(1 − A − x Ax ). (40)

It is now useful to insert the Ansatz

A(x) = 1 − 2M(x)

x
, (41)
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which in combination with the right-hand side of (31) leads to the general expression

2Mx

x2
= κ2

√|Ω| (LG + T−). (42)

Given that we are dealing with a static, spherically symmetric space-time, the func-
tions appearing in the right-hand side of this equation are just functions of x (or
of r(x)). Therefore, by integrating this first-order equation, the geometry will be
completely determined. In practice, however, one still needs to find the explicit rela-
tion between the area functions r2(x) and x2, which is specified by (35). Recall, in
this sense, that r̃(x) ≡ x implies that x2 = Ω−r2 and that, in general, Ω− will be a
function of r . This point will become clear when we consider explicit examples.

In the examples that we will consider below, the functions Ω± depend on x via
r(x). For this reason, it is convenient to express (42) in terms of the derivative with
respect to r . This is immediate by just noting that x2 = Ω−r2 implies

dr

dx
= 1

Ω
1/2
−
[
1 + 1

2
Ω−,r

Ω−

] . (43)

The resulting expression for Mr is thus

Mr = κ2Ω
1/2
−

2Ω+
(LG + T−)r2

[
1 + r

2

Ω−,r

Ω−

]
. (44)

By integrating this equation, the space-time line element (defined by the metric gμν)
becomes

ds2 = − A(x)

Ω+
dt2 + 1

A(x)Ω+
dx2 + r2(x)(dθ2 + sin2 θdϕ2). (45)

In the next two sections we consider explicit examples that give concrete form to the
above formulas.

6 Solutions in Born-Infeld Gravity

Let us consider the coupling of the Born-Infeld gravity model to a spherically sym-
metric, static electric field defined by the action SM = − 1

16π

∫
d4x

√−gFμνFμν ,
being Fμν the electromagnetic field strength tensor. For this matter source, the stress
energy tensor can be written as

T μ
ν = q2

8πr4

(− Î2×2 Ô
Ô + Î2×2

)
, (46)
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where q represents the electric charge. Inserting this expression in (20), one finds
that the components of Ωμ

ν are just

Ω± = 1 ∓ εκ2q2

8πr4
. (47)

Now we make a specific choice for the parameter ε. Given that it has dimensions
of squared length, we take ε = −2l2ε , where lε represents some characteristic length
scale. The sign of ε and the factor 2 have been chosen in such a way that the resulting
solutions are identical to those found in the quadratic theory6

S = 1

2κ2

∫
d4x

√−g
[
R + l2ε (aR

2 + RμνR
μν)
]− 1

16π

∫
d4x

√−gFμνF
μν.

(48)
This is a curious property of theBorn-Infeld and quadratic gravity theories that occurs
in four space-time dimensions with stress-energy tensors of the form (29). With this
choice, we can introduce a dimensionless variable z = r/rc such that r4c ≡ l2εr

2
q , with

r2q ≡ κ2q2/4π , which turns (47) into

Ω± = 1 ± 1

z4
. (49)

We can now use (35), recalling that r̃ = x , to find that

r2 = x2 +√x4 + 4r4c
2

. (50)

This relation puts forward that the area of the 2−spheres has aminimumofmagnitude
Ac = 4πr2c at x = 0. In other words, the sector r < rc is excluded from the range of
values of the area function A = 4πr2(x) (Fig. 1).

The mass function determined by (44) has a constant contribution and a term that
comes from integrating over the electric field. The constant piece is identified with
the Schwarzschild mass and will be denoted as M0. To simplify the analysis, it is
convenient to parametrize the mass function as follows:

M(r) = M0(1 + δ1G(z)), (51)

6From an algebraic point of view, it is much easier to deal with the Born-Infeld model [94] than
with the above quadratic theory [61], though from an effective field theory approach it is easier to
motivate the latter. For this reason we analyzed the field equations of the Born-Infeld model but
restrict the discussion of solutions to those with more interest in the quadratic theory. We note that
the sign in front of l2ε in (48) has been chosen in such a way that cosmological models with perfect
fluids yield regular, bouncing solutions in both isotropic and anisotropic scenarios [117].
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Fig. 1 Representation of
r(x) (solid curve), defined in
(50), as a function of the
radial coordinate x in units of
the scale rc. The dotted lines
represent the function |x |

4 2 2 4
x

1

2

3

4

5
r x

where δ1 is a dimensionless constant andG(z) encodes the contribution of the electric
field. Inserting this form of M(r) in (44), one finds

Gz = 1

z4
(1 + z4)√
z4 − 1

, (52)

and

δ1 = r3c
2rSl2ε

= 1

2rS

√
r3q
lε

, (53)

where rS ≡ 2M0 denotes the Schwarzschild radius. The integration of Gz is imme-
diate and yields an infinite power series expansion of the form [61]

G(z) = − 1

δc
+ 1

2

√
z4 − 1

[
f3/4(z) + f7/4(z)

]
, (54)

where fλ(z) = 2F1[ 12 , λ, 3
2 , 1 − z4] is a hypergeometric function, and δc ≈ 0.572069

is a constant. Having obtained explicit solutions for r2(x) and G(z), the space-time
metric is completely specified.

6.1 Properties and Interpretation of the Solutions

One can verify from (52) that for z 
 1, G(z) ≈ −1/z yields the expected Reissner-
Nordström solution of GR, with Ω± ≈ 1, r2(x) ≈ x2, and

A(x) ≈ 1 − rS
r

+ r2q
2r2

+ O

(
r4c
r4

)
. (55)
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From this expression one readily verifies that the typical configurations in terms of
horizons found for Reissner-Nordström black holes also arise here, at least when
the location of the horizon is much bigger than the scale rc [61]. This occurs, in
particular, when the charge-to-mass ratio δ1 is greater than δc. We will refer to these
configurations as RN-like. When δ1 < δc, the solutions only have one horizon, like
the Scharzschild black hole (Schwarzschild-like from now on). In some sense, the
case δ1 < δc describes the limit in which the charge is much smaller than the mass.
When δ1 = δc, one finds a richer structure: depending on the number of charges, one
can have one horizon, like in Schwarzschild, or have no horizons. More details on
this will be given later.

It is apparent from (52) and (54) that the variable z ≡ r/rc can not become smaller
than unity. This is consistent with (50) and tells us that something relevant occurs
at r = rc (or z = 1 or x = 0). Some information in this direction can already be
extracted from the action that defines the theory. The fact that we are considering the
combination of gravity with an electric field without sources means that our theory
does not knowabout the existence of sources for the electric field. InGR, theReissner-
Nordström solution is derived under similar assumptions, and one considers that the
solution is only valid outside of the sources, which are supposed to be somehow
concentrated at the origin. This picture, however, is not completely satisfactory, and
a precise description of the sources is still an open question (see Chap.8 of [25] for
details). In our case, the combination of a minimum area for the two-spheres of the
spherical sector together with the existence of an electric flux without sources points
towards the notions of geon [22] andwormhole [118] suggested by J.A.Wheeler and
C.W. Misner in the decade of 1950.

It iswell-known that an electric fieldflowing through ahole in the topology (worm-
hole) can generate a charge which, from all perspectives, acts exactly in the sameway
as point charges. Wormholes are characterized by having a minimum area, which
defines their throat [119]. The Born-Infeld theory combined with a free Maxwell
field considered here, therefore, is yielding self-gravitating wormhole solutions for
which there is no need to consider additional sources [120].

One should now note that in the derivation of the field equations we used a radial
variable x which was different from r(x). The reason for this is that r can only
be used as a coordinate in those intervals in which it is a monotonic function of
x [121], and r(x) has a minimum at the wormhole throat (x = 0). Consistency of
our model of gravity plus electric field without sources together with this behavior
in the radial function implies the existence of a wormhole, in such a way that the
range of x is the whole real line (from −∞ to +∞). The theory is thus describing
a spherically symmetric electric field which flows from one universe into another
through a wormhole located at x = 0 [120]. On one of the sides, the electric field
lines point in the direction of increasing area thus defining a positive charge. On the
other side, the electric field points into the direction of decreasing area, defining in
this way a negative charge. This type of configuration is similar to that envisioned
by Einstein and Rosen [122] when they used the Schwarzschild geometry to build
a geometric model of elementary particles. A clear advantage of our model is that
the wormhole structure arises naturally from the field equations and, therefore, one
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needs not follow a cut-and-paste strategy gluing together two exterior Schwarzschild
geometries through the horizon to build the bridge that represents the particle in the
Einstein–Rosen model. Moreover, a simple electric field has been able to generate
a wormhole. This contrasts with the typical situation in GR, where wormholes sup-
ported by electric fields (linear like Maxwell’s or nonlinear) are not possible [123],
being necessary exotic energy sources that violate the energy conditions [21, 119].

Having established the wormhole nature of our solutions, one should re-think
the meaning of the classification given above regarding event horizons. What we
called Schwarzschild-like actually represents a wormhole with one horizon located
somewhere on the x > 0 side of the x−axis and another horizon symmetrical with
this one but on the x < 0 side. The RN-like configurations may have up to two
horizons on each side of the x−axis. In the case with δ1 = δc, depending on the
amount of electric charge (which is a measure of the intensity of the electric flux),
we can have Schwarzschild-like configurations (one horizon on each side of the
axis), a case in which the two horizons converge at x = 0, and a horizonless family
of (traversable) wormholes. This classification follows from a numerical study of the
solutions of the equation gtt = −A/Ω+ = 0 (see [61] for details).

An analytical discussion of the behavior near the wormhole throat is possible and
useful. In fact, defining the number of charges as Nq = q/e, where e is the proton
charge, we have

lim
r→rc

gtt ≈ lP
2lε

Nq

Nc

[
− (δ1 − δc)

2δ1δc

√
rc

r − rc
+
(
1 − lε

lP

Nc

Nq

)
+ O

(√
r − rc

)]
, (56)

where, for convenience, we have introduced the Planck length lP = √�G/c3 and
Nc ≡ √

2/αem ≈ 16.55, with αem representing the electromagnetic fine structure
constant. This expression puts forward that the metric is finite at r = rc only for
δ1 = δc, diverging otherwise. By direct computation one can verify that curvature
scalars generically diverge at r = rc except for those solutions with δ1 = δc, where
constant scalars are obtained. For this regular case, (56) also shows that thewormhole

is hidden behind an event horizon if the sign of
(
1 − lε

lP
Nc
Nq

)
is positive, because then

gtt > 0 near the throat.
If we take lε = lP , i.e., if the characteristic length scale of the gravity sector

coincides with the Planck scale, then the event horizon for the regular solutions exists
if Nq > Nc. For smaller values of the charge, Nq ≤ 16.55, the horizon disappears
and we are left with a regular horizonless object which could be interpreted as a black
hole remnant. The existence of this type of solutions is interesting for theoretical as
well as for astrophysical reasons. Theoretically, the existence of regular remnants
could have important implications for the quantum information loss in the process
of black hole evaporation [124]. From an astrophysical perspective, the existence of
remnants could justify the lack of observational evidence for black hole explosions.
Moreover, solutions of this type could contribute to the so-called dark matter in the
form of very massive neutral atoms [120]. In fact, from the charge-to-mass constraint
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δ1 = δc, one finds that the mass of these solutions is completely determined by their
electric charge according to the formula

M0 = nBImP

(
Nq

Nc

)3/2 ( lP
lε

)1/2

, (57)

where nBI = π3/2/(3Γ [3/4]2) ≈ 1.23605 is a number that also arises in the deter-
mination of the total electrostatic energy of a point charge in the Born-Infeld theory
of electrodynamics7 (formulated in flat Minkowski space-time). With the mass for-
mula (57), one can verify that Hawking’s original predictions regarding the mass
and charge spectrum of primordial black holes [125] formed in the early universe are
in consonance with our results. He found that collapsed objects of order the Planck
mass and above and with up to ±30 electron charges could have been formed by
large density fluctuations. It is typically argued that the existence of a quantum insta-
bility due to the horizon would make the lightest primordial black holes decay and
evaporate. With the above explicit results, it is apparent that new mechanisms could
lead to the formation of stable remnants which could survive until our times.

As a curiosity, from (57) one also finds that a solar mass black hole (with ∼1057

protons) of this type would require only Nq ∼ 3 × 1026 charges (or ∼484 moles) to
make the metric and all curvature scalars regular at the origin. Moreover, the external
horizon of such an object would almost coincide with the Schwarzschild radius
predicted byGR,making these objects astrophysically identical to those found inGR.
This amount of charge certainly allowsus to get rid of a number of important problems
at a very low price. However, one should recall that (57) is only strictly valid for the
δ1 = δc configuration, which suggests that only fine tuned configurations would be
satisfactory. This raises a natural question: given that for δ1 = δc the geometry is
completely regular and that infinitesimal deviations from this relation imply the
development of curvature divergences and infinities in the metric, what happens to
geodesics? In the δ1 = δc case we expect geodesics to be complete, as there is no
reason to expect any pathological behavior that limits their extendibility at or near the
wormhole throat.What happens to themwhen δ1 �= δc? Answering this question will
provide uswith useful information on the relation between curvature divergences and
the existence of observers. In other words, this model offers us a good opportunity to
better understand the correlation existing in GR between curvature divergences and
geodesic incompleteness. We will resume this discussion later on, when we consider
the geodesic equation in Sect. 8.

7In fact, using a notation similar to ours, in the Born-Infeld electromagnetic theory, whose

Lagrangian is LBI = β2
(√−|ημν + β−1Fμν | −√−|ημν |

)
, one finds that the total electrosta-

tic energy of a point particle is EBI = √
2nBImPc2

(
Nq
Nc

)3/2 ( lP
lβ

)1/2
, where l2β ≡ (4π/κ2cβ2) is

a length scale associated to the β parameter of the theory.
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7 Solutions in f (R) = R− λR2

In Sect. 4 we discussed the field equations of the Palatini version of f (R) theories.
Now we would like to find nontrivial black hole solutions and study their properties
to see how their geodesic structure compares with that provided by GR. A natural
procedure would be to consider the coupling of an electric field as we did in the previ-
ous section in the case of Born-Infeld gravity. However, given that the stress-energy
tensor of Maxwell’s electrodynamics is traceless and that the modified dynamics of
Palatini f (R) theories depends crucially on nonlinear functions of this trace, we find
that electrovacuum solutions in these theories are identical to those found in GRwith
a cosmological constant. Thus, in order to explore new physics, we need to consider
matter sources whose stress-energy tensor has a non-zero trace.

To proceed, we consider a generic anisotropic fluid with stress-energy tensor of
the form [95, 98]

Tμ
ν =

⎛
⎜⎜⎝

−ρ 0 0 0
0 Pr 0 0
0 0 Pθ 0
0 0 0 Pϕ

⎞
⎟⎟⎠ (58)

and set Pr = −ρ and Pθ = Pϕ = K (ρ), where K (ρ) is some function of the fluid
density, such that our fluid has the same structure as the generic stress-energy tensor
considered in Sect. 5

Tμ
ν = diag[−ρ,−ρ, K (ρ), K (ρ)]. (59)

It is worth noting that this structure of the stress-energy tensor allows us to see
it as corresponding to a non-linear theory of electrodynamics [126]. In fact, for a
theory where the electromagnetic Lagrangian goes from X = − 1

2 FμνFμν to ϕ(X),
the stress-energy tensor becomes

Tμ
ν = 1

8π
diag[ϕ − 2XϕX , ϕ − 2XϕX , ϕ, ϕ]. (60)

We can thus establish the correspondences−8πρ = (ϕ − 2XϕX ) and K (ρ) = ϕ(X),
which allow to solve for ϕ(X) once a function K (ρ) is specified.

Considering the fluid representation, the conservation equation ∇μT μ
ν = 0 for a

line element of the form ds2 = −C(x)dt2 + B−1(x)dx2 + r2(x)(dθ2 + sin2 θdϕ2)

leads to the relation ρx + 2[ρ + K (ρ)]rx/r = 0. This expression can be readily
integrated to obtain a formal relation between ρ(x) and r(x) given by

r2(x) = r20 exp

[
−
∫ ρ dρ̃

ρ̃ + K (ρ̃)

]
, (61)

where r0 is an integration constant with dimensions of length. In order to simplify
our discussion, we shall restrict ourselves to the case K (ρ) = αρ + βρ2, where α
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is a dimensionless constant and β has dimensions of inverse density. This example
yields analytical solutions and covers a number of interesting cases. In particular,
one finds that the relation between ρ(x) and r(x) turns into

ρ(r) = (1 + α)ρ0(
r
r0

)2(1+α) − βρ0

. (62)

One readily verifies that when α = 1 and β = 0, this fluid has the same stress-energy
tensor as the Maxwell electric field (46), with ρ0r40 = q2/8π . The inclusion of the
parameters α and β allows to generate a non-zero trace in the stress energy tensor.
The case with β = 0 and 0 < α < 1was studied in detail in [126]. Here we shall take
α = 1 and focus on the case β < 0 (a more exhaustive discussion will be presented
elsewhere [127]). This family of models rapidly recovers the usual RN solution away
from the center but regularizes the energy density, which is everywhere finite and
bounded above by ρm = (1+α)

|β| . We note that the effect of the parameter β > 0 is to

shift the location of the divergence in the density from r = 0 to (|β|ρ0)
1/(2+2α)r0.

With our choice of negative β, we regularize the divergence of the matter sector.
To proceed, we set α = 1, β = −β̃/ρ0, and introduce a dimensionless variable

z4 = r4/β̃r40 , in such a way that the density is now given by

ρ = ρm

1 + z4
. (63)

Using the trace equation (16) and the quadratic model f = R − λR2, one readily
finds that R = −κ2T , which is the same linear relation as in GR (this is just an
accident of the quadratic model in four dimensions). We thus find that the function
fR takes the simple form

fR = 1 − γ

(1 + z4)2
, (64)

where γ ≡ ρm/ρλ and ρλ ≡ 1/8κ2λ.
Following the same approach as in the Born-Infeld gravity theory studied above,

we find that parametrizing the mass function as M(r) = M0(1 + δ1G(z)) leads to

Gz = z2

(1 + z4) f 3/2R

(
1 − γ

(1 + z4)3

)(
1 − γ (1 − 3z4)

(1 + z4)3

)
(65)

δ1 ≡ κ2ρm(r0β̃
1
4 )3

rS
(66)

The function G(z) can be obtained easily in terms of power series expansions and
the solutions are classified in two types, depending on the value of the parameter
γ . If γ > 1 then z is bounded from below, z ≥ zc, with z4c = γ 1/2 − 1 representing
the location where fR = 0. At that point, the function Gz diverges, as can be easily
understood from the expression (65), which has a term f 3/2R in the denominator.
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Fig. 2 Representation of z(x) (solid curve) as a function of the radial coordinate x (in units of the
scale rc = |β̃|1/4r0) for different values of the parameter γ . The solid (red) curve corresponds to
γ = 1.1, the dashed (orange) curve is γ = 1.5, and γ = 2 is the dotted (green) one

The lower bound on z signals the presence of a wormhole, in much the same way
as we already observed in the case of Born-Infeld gravity. This is confirmed by the
relation between the radial functions x and z given by x2 = fRz2, which is plotted in
Fig. 2. Having this wormhole structure in mind, one finds that near zc we have fR ≈
8z3c
1+z4c

(z − zc) and Gz ≈ C/(z − zc)3/2, with C > 0 a constant (whose explicit form

can be computed but is not necessary). This leads to limz→zc G(z) ≈ −2C/
√
z − zc.

It is obvious that for 0 < γ < 1 there are no real solutions for zc. One finds that
for that case, and also for γ = 1, the range of z is comprised between 0 and ∞,
which implies that there is no wormhole, Gz is finite everywhere, and G(z) tends
to a constant as z → 0. In fact, near z = 0 we can approximate G(z) ≈ − 1

δ
(γ )
c

+
(1 − γ )1/2z3/3 + (7γ−1)√

1−γ
z7/7 + O(z11), where δ

(γ )
c is a constant. The case γ = 1

admits an analytical solution in terms of special functions and its series expansion
must be considered separately, yielding G(z) ≈ −1/δ(1)

c + 9z5

5
√
2

− 13z9

4
√
2

+ O(z13).
One can easily verify that for z 
 1 (65) rapidly converges to the GR prediction
Gz ≈ 1/z2 regardless of the value of γ .

Let us now discuss the geometry near the center in the two cases distin-
guished above in terms of γ . Consider first the wormhole case, γ > 1, for which

limz→zc fR ≈ 8z3c
1+z4c

(z − zc) and limz→zc G(z) ≈ −2C/
√
z − zc. The area of the two

spheres is determined by solving the relation x2 = fRr2. Denoting r = zrc, x = x̃rc,
and rc = r0β̃1/4, one finds

x̃ ≈
√

8z5c
1 + z4c

(z − zc)
1/2, (67)

which leads to

r2(x) ≈ r2c z
2
c + (1 + z4c)

4z4c
x2. (68)
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This relation puts forward that the physical 2−spheres have a minimum area at
x = 0, thus signaling the presence of a wormhole, as already advanced above. The
gtt component of the metric can be written as

gtt = − 1

fR

(
1 − rS(1 + δ1G(z))

x

)
≈ − C̃

(z − zc)2
, (69)

where C̃ is a positive constant whose explicit form is not relevant. It is clear that for
this type of solutions the metric diverges at z = zc. One can also verify that curvature
scalars generically diverge on that surface.We note that the properties of the solutions
with γ > 1 are shared by all those models in which fR has a simple pole at z = zc.
One can easily verify that if fR = b0(z − zc), then the two spheres satisfy a relation
like (68) and the metric has a quadratic divergence at zc.

When 0 < γ ≤ 1, the properties of the solutions largely depart from those
observed in the case of having a pole in fR. Given that the function fR does not
vanish in this case, we find that near the center x̃ ≈ √

1 − γ z. The gtt component
of the metric then becomes

gtt ≈ − 1

(1 − γ )

(
1 − rS(δ

(γ )
c − δ1)

rcδ
(γ )
c

√
1 − γ z

− rSδ1
2rc

z2 . . .

)
. (70)

This indicates that for the choice δ1 = δ
(γ )

1 , the metric is regular everywhere. Cur-
vature scalars, however, do have divergences. For γ = 1, the above expression must
be replaced by

gtt ≈ rS

2rc
√
2z7

− 1

2z4
+ O(z−3). (71)

Wenote that the case γ → 0 yields the limit inwhich this anistropic fluid is coupled to
GR. One can verify that the behavior of the solutions with 0 < γ ≤ 1 near the origin
is similar to that of models of nonlinear electrodynamics coupled to GR [128–142].

8 Geodesics

The modified gravitational dynamics generated by the models considered in the
previous sections has an impact on the space-time metric gμν and, consequently, on
its associated geodesics. Since we are interested in determining whether the space-
times derived above are geodesically complete or not, in this section we solve the
geodesic equation and explore their behavior in those regions where GR typically
yields incomplete paths.
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The geodesics of a given connection Γ
μ
αβ are determined by the equation

d2xμ

dλ2
+ Γ

μ
αβ

dxα

dλ

dxβ

dλ
= 0. (72)

Here we will focus on the geodesics of the metric gμν , which are the ones that matter
fields can see according to the Einstein equivalence principle. We thus take Γ

μ
αβ as

defined in (2). In order to solve these equations, we introduce aHamiltonian approach
that simplifies the analysis. To proceed, we first note that (72) can be derived from
an action of the form [143]

S = 1

2

∫
dλgμν

dxμ

dλ

dxν

dλ
, (73)

which for a line element like ds2 = −C(x)dt2 + B−1(x)dx2 + r2(x)dΩ2 becomes

S = 1

2

∫
dλ

[
−C(x)ṫ2 + 1

B(x)
ẋ2 + r2(x)θ̇2 + r2(x) sin2 θϕ̇2

]
. (74)

From this representation, one easily verifies that the momenta associated to the
variables (t, x, θ, ϕ) are

Pt = −∂L

∂ ṫ
= ṫC(x) (75)

Px = ∂L

∂ ẋ
= ẋ/B(x) (76)

Pθ = ∂L

∂θ̇
= r2(x)θ̇ (77)

Pϕ = ∂L

∂ϕ̇
= r2(x) sin2 θϕ̇. (78)

With these momenta one finds that the Hamiltonian H = −Pt ṫ + Px ẋ + Pθ θ̇ +
Pϕϕ̇ − L coincides with the Lagrangian (due to the absence of potential terms) and
can be written as

H = 1

2
gμν(x)PμPν . (79)

The geodesic equations can thus be written as

ẋμ = ∂H

∂Pμ

= gμνPν (80)

Ṗμ = − ∂H

∂xμ
= −1

2
(∂μg

αβ)PαPβ (81)
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From these equations one readily sees that Pt and Pϕ are constants of the motion,
as Ṗt = 0 = Ṗϕ . These equations also imply that dH/dλ = 0, showing that H is
another conserved quantity. We thus have

Pt =
(
dt

dλ

)
C(x) = E (82)

Pϕ =
(
dϕ

dλ

)
r2(x) sin2 θ = L (83)

2H = − P2
t

C(x)
+ B(x)P2

x + P2
θ

r2(x)
+ P2

ϕ

r2(x) sin2 θ
= − E2

C(x)
+ ẋ2

B(x)
+ L2

r2
,

(84)

where in the last equality we have set θ = π/2 without loss of generality (because
the motion takes place on a plane). When H �= 0, a constant rescaling of the affine
parameter λ → λ/

√|2H | makes it clear that only the sign of H is physically rele-
vant. This sign allows to classify the geodesics in three families: those with H > 0
(space-like), those with H < 0 (time-like), and those with H = 0 (null), which clar-
ifies the meaning of this conserved quantity. Denoting k ≡ 2H (with k = 1, 0,−1
corresponding to spatial, null, and time-like geodesics, respectively), (84) can be
recast as

C(x)

B(x)

(
dx

dλ

)2

= E2 − C(x)

(
L2

r2(x)
− k

)
, (85)

which will be used to study the range of λ in different scenarios.

8.1 Geodesics in GR

Let us consider the Schwarzschild and Reissner-Nordström solutions of GR, whose
line element takes the form

ds2 = −C(r)2dt2 + 1

C(r)
dr2 + r2dΩ2, (86)

withC(r) = 1 − rS
r + r2q

2r2 , rS = 2GM0/c2, r2q = κ2q2/4π (for Schwarzschild, r2q =
0), and κ2 = 8πG/c4. Given that here C(r) = B(r), we find that (85) turns into

(
dr

dλ

)2

= E2 − C(r)

(
L2

r2
− k

)
. (87)
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This equation has the same structure as that of a particle with energy E = E2 in

an effective one-dimensional potential of the form Veff(r) = C(r)
(

L2

r2 − k
)
, which

facilitates its interpretation.
Let us consider first the uncharged (Schwarzschild) case. In this scenario, the

functionC(r) becomes negative inside the horizon. As a result, the effective potential

becomes an infinitely attractive well of the form Veff ≈ − rS
r

(
L2

r2 − k
)
, and the causal

structure is such that all observers and light rays are forced to move in the direction
of decreasing r as time goes by. This can be seen straightforwardly by just writing
the line element (86) in ingoing Eddington-Finkelstein coordinates

ds2 = −C(r)2dv2 + 2dvdr + r2dΩ2, (88)

where dv = dt + dr/C(r) now plays the role of time coordinate. Inside the event
horizon, where A(r) < 0, we see that

− 2dvdr = −C(r)2dv2 − ds2 + r2dΩ2 (89)

implies that as time goes by (dv > 0) we must have dr < 0 for time-like and null
trajectories (ds2 ≤ 0). Thus, regardless of their point of origin, all physical observers
and light rays will sooner or later end up at r = 0. The precise evolution of the affine
parameter near the center is determined by dr/dλ ≈ −√

rS/r for radial timelike
geodesics (L = 0) and by dr/dλ ≈ −√rSL2/r3 for timelike and null geodesics
with L �= 0. By integrating these expressions, we find λ(r) = λ0 − 2

3

√
r3/rS and

λ(r) = λ0 − 2
5

√
r5/rSL2, respectively, where λ0 represents the value of the affine

parameter at r = 0. Given that the affine parameter cannot be extended beyond the
center, these geodesics are incomplete in the future. A similar analysis can be carried
out in the white hole region of the Schwarzschild geometry, where all geodesics are
outgoing (dr > 0 with growing time). In that case, geodesics are incomplete in the
past, i.e., they cannot be extended into λ → −∞. This space-time, therefore, can be
regarded as singular.

In theReissner-Nordströmcase, the situation is quite different fromSchwazschild.

As one approaches the center, the charge term dominates andC(r) ∼ r2q
2r2 > 0 implies

that for time-like observers (k = −1) dr/dλ in (87) must vanish at some point before
reaching r = 0 regardless of the value of L . These observers, therefore, bounce before
reaching the center due to the presence of an infinite potential barrier and continue
their trip in the direction of growing r , having the possibility of getting into new
asymptotically flat regions if horizons are present. Something similar happens also
to light rays (k = 0) with nonzero angular momentum L . However, for radial null
geodesics (k = 0 and L = 0), we find r(λ) = ±E(λ − λ0), where the minus sign
represents ingoing rays and the plus sign outgoing rays. Ingoing rays cannot be
extended beyond λ = λ0, whereas outgoing rays are created at some finite λ. Thus,
the Reissner-Nordström geometry is incomplete as far as radial null geodesics are
concerned.
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8.2 Geodesics in Born-Infeld Gravity

From our discussion of the spherically symmetric charged solutions found in Sect. 6
for the Born-Infeld theory, it is clear that geodesics in that space-time are essentially
the same as in GR as soon as one moves a few rc units away from the central
wormhole [19]. In fact, in Fig. 1 one can readily see that r(x) ≈ x as soon as one
reaches |x | ≈ 2rc. The gtt component of the metric also converges quickly to the GR
prediction, as shown in (55), with corrections that decay rapidly as ∼(rc/r)4. We
thus only need to focus on the behavior of geodesics near the wormhole to explore
the impact of curvature divergences on their completeness. Recall, in this sense, that
the different metric solutions could be classified according to whether the charge-
to-mass ratio δ1, defined in (53), was smaller, equal, or larger than the characteristic
value δc ≈ 0.572069 that arises in the electric field contribution to the mass function
of (54). The case δ1 = δc was completely regular (no metric or curvature divergences
[61]), whereas δ1 < δc (Schwarzschild-like) and δ1 > δc (RN-like) had divergences
at the wormhole throat, x = 0 (or r = rc or z = 1).

Using the identifications C(x) = A(x)/Ω+ and B(x) = A(x)Ω+ together with
the expression for r2(x) found in (50), (85) turns into

1

Ω2+

(
dx

dλ

)2

= E2 − A(x)

Ω+

(
L2

r2(x)
− k

)
. (90)

For radial null geodesics (L = 0, k = 0), which are incomplete in both the Schwarz-
schild and RN solutions of GR, the above equation becomes independent of the func-
tion A(x) and an exact solution can be found analytically. Using (50), one finds that
dx/dr = ±Ω+/Ω

1/2
− , with the minus sign corresponding to x ≤ 0. This turns (91)

into

1

Ω−

(
dr

dλ

)2

= E2, (91)

which can be integrated to obtain

± E · λ(x) =

⎧⎪⎨
⎪⎩

2F1[− 1
4 ,

1
2 ,

3
4 ; r4c

r4 ]r x ≥ 0

2x0 − 2F1[− 1
4 ,

1
2 ,

3
4 ; r4c

r4 ]r x ≤ 0

, (92)

where 2F1[a, b, c; y] is a hypergeometric function, x0 = 2F1[− 1
4 ,

1
2 ,

3
4 ; 1] =√

πΓ [3/4]
Γ [1/4] ≈ 0.59907, and the ± sign corresponds to outgoing/ingoing null rays in

the x > 0 region. It should be noted that given that dr/dλ is a continuous function,
the solution (92) is unique. One can easily verify that as x → ∞ the series expansion
of (92) yields ±Eλ(x) ≈ r + O(r−3) ≈ x and naturally recovers the GR behavior
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Fig. 3 Affine parameter λ(x) as a function of the radial coordinate x for radial null geodesics
(outgoing in x > 0). In the GR case (green dashed curve in the upper right quadrant), λ = x is
only defined for x ≥ 0. For radial null geodesics in our wormhole spacetime (solid red curve),
λ(x) interpolates between the GR prediction and a shifted straight line λ(x) ≈ x + 2x0, with x0 ≈
0.59907. In this plot E = 1 and the horizontal axis is measured in units of rc

for large radii (see Fig. 3). As x → −∞, we get ±Eλ(x) ≈ x + 2x0, which also
recovers the linear behavior of GR but shifted by a (negligible) constant factor.

Given that the radial coordinate x can naturally take negative values due to the
wormhole structure, it follows that the affine parameter for radial null geodesics
can be extended over the whole real line. As a result, these geodesics are complete.
This was expected for the regular case with δ1 = δc, for which the metric and all
curvature scalars are finite everywhere, but was not obvious a priori for the other
cases. Remarkably, the fact that this result is independent of the details of the function
A(x), which contains the information about δ1, confirms that radial null geodesics are
complete for all our solutions. This puts forward that a space-time can be geodesically
complete even when there exist divergences in the metric and/or in curvature scalars.
The wormhole has thus crucially contributed to allow the extendibility of the most
critical geodesics of GR.

For nonradial and/or time-like geodesics, the discussion must take into account
whether the geometry is Schwarzschild-like orRN-like.Considering the limit x → 0,
(91) turns into

1

4

(
dx

dλ

)2

= E2 − Vef f (x) (93)

Vef f (x) ≈ − a

|x | − b, (94)

with a =
(
κ + L2

r2c

)
(δc−δ1)

2δcδ2
, b =

(
κ + L2

r2c

)
(δ1−δ2)

2δ2
, and δ2 ≡ δ1

Nc
Nq

lε
lP
. From the above

expression it is easy to see that in the RN-like configuration the coefficient a is nega-
tive, thus implying that the right-hand side of (93) must vanish at some point before
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reaching the wormhole. The situation is thus analogous to that already observed in
the case of GR, with L �= 0 geodesics bouncing before reaching the center (or the
wormhole in our case). In the Schwarzschild-like configurations, the effective poten-
tial represents an infinite attractive well with the possibility of having a maximum
before reaching the throat. As a consequence, all geodesics with energy above that
maximum hit the wormhole (see [19] for more details). Using (93) and (94), one
finds that the affine parameter behaves as

λ(x) ≈ λ0 ± x

3

∣∣∣ x
a

∣∣∣
1
2

(
1 − 3(b + E2)

10

∣∣∣ x
a

∣∣∣
)

. (95)

This solution (which is unique) guarantees the extendibility of the affine parameter
accross x = 0. Therefore, all time-like and null geodesics in these space-times are
complete regardless of the existence of curvature divergences at the wormhole throat.

8.3 Geodesics in f (R) Gravity

In the f (R) case, our general approach for the description of geodesics leads to the
following equation

1

f 2R

(
dx

dλ

)2

= E2 − A(x)

fR

(
L2

r2(x)
− k

)
. (96)

Let us consider first the case with 0 < γ < 1, for which there is no wormhole struc-
ture. In these cases, as x → 0 we find fR ≈ (1 − γ ), r(x) ≈ x/

√
1 − γ , and

A(z) ≈ 1 − rS(δ
(γ )
c − δ1)

rcδ
(γ )
c

√
1 − γ z

− rSδ1
2rc

z2 + · · · (97)

With this, near the center (96) can be written as

(
dr

dλ

)2

= Ẽ2 − A(r)

(
L2

r2
− k

)
, (98)

with Ẽ2 = (1 − γ )E2. The discussion now proceeds in much the same way as in
models of non-linear electrodynamics coupled to GR. One can find configurations
for which the metric is regular at the origin, δ(γ )

c = δ1, and others with divergences,
δ

(γ )
c �= δ1. A detailed discussion of geodesics in such configurations will be provided
elsewhere [127]. The key point to note here is that the absence of a wormhole implies
that radial null geodesics,

(
dr
dλ

)2 = Ẽ2, always reach r = 0 in a finite proper time
with no possibility of extension beyond that point. Thus, similarly as in the Reissner-
Nordström case of GR, such solutions can be regarded as singular.
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Let us now consider the case with γ > 1, for which there is a wormhole. From
previous results, we know that as the wormhole is approached, we have A(x) ≈
C̃/(z − zc) and fR ≈ 8z3c

1+z4c
(z − zc), which implies that the right-hand side of (96)

must vanish at some z > zc if L �= 0 or k = −1 (time-like observers). This means
that such geodesics never reach the wormhole throat, which is similar to what we
already observed in the case of Reissner-Nordström inGR,where time-like observers
and L �= 0 geodesics never reach the center. If we consider radial null geodesics, (96)
turns into

1

f 2R

(
dx

dλ

)2

= E2. (99)

Far from the wormhole fR → 1 and this recovers the standard behavior r ≈ x ≈
±E(λ − λ0), with the +/− sign corresponding to outgoing/ingoing rays. Now, near
the wormhole, we can use the relation r2 fR = x2 and the fact that r → rc as x → 0
to write (99) as

r4c
x4

(
dx

dλ

)2

= E2, (100)

which leads to

− 1

x
= ± E

r2c
(λ − λ0). (101)

From this it follows that as x → 0, λ → −∞ for outgoing rays, while for ingoing
rays λ → +∞. Stated in words, ingoing rays which started their trip from x → +∞
and λ → −∞ approach the wormhole at x → 0 as λ → +∞, whereas outgoing
rays which started their trip near the wormhole at λ → −∞ propagate to infinity
as λ → +∞. Thus, all time-like and null geodesics in these configurations (γ > 1)
are complete. Curvature divergences, which arise at the wormhole throat, cannot be
reached in a finite affine parameter and, therefore, do not belong to the physically
accessible region. These solutions are nonsingular even though one can never go
through the wormhole. If one considers the region x < 0, identical conclusions are
obtained.

9 Summary and Conclusions

In these Lectures we have studied the classical problem of black hole singulari-
ties from a four dimensional geometric perspective. Motivated by the fact that GR
predicts the existence of singularities in simple static, spherically symmetric con-
figurations, we have considered extensions of the theory to test the robustness of
this disturbing result. In our study we have not followed the traditional approach of
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implicitly assuming that the space-time geometry is Riemannian. Rather, we have
emphasized that the type of geometry associated with the gravitational interaction
is an empirical question that must be settled by experiments, not imposed by con-
vention or tradition. Whether the geometry is Riemannian or not is as fundamental a
question as the number of space-time dimensions or the existence of supersymmetry,
which are aspects that have received much attention in the last years.

We have thus considered a metric-affine geometrical framework for the formula-
tion of our extensions of GR, with the additional simplification of setting torsion to
zero (Palatini approach [40, 43]). This choice is justified on simplicity grounds, as a
first step in the exploration of new gravitational physics. The inclusion of fermionic
matter, whose spin sources the torsion, would require a detailed treatment beyond
the Palatini approach.

An unusual property of the gravity theories considered here, as compared to the
more standard metric or Riemannian approach, is that their modified dynamics arises
as a result of nonlinearities generated by thematter fields rather than by the emergence
of new dynamical degrees of freedom. In fact, the field equations of f (R) theories,
the Born-Infeld model, or any Lagrangian which is just a function of the inverse
metric and the Ricci tensor à la Palatini admit a generic representation that exactly
recovers the equations of GR (with an effective cosmological constant) in vacuum
when the matter fields are absent [42, 113, 115, 144]. This means that generically
these theories neither exhibit ghosts nor massive gravitons. These properties together
with the second-order character of the field equations should be regarded as general
characteristics of the metric-affine formulation.

In our opinion, the most remarkable aspect of the theories presented here is that
they do what they were expected to do in a simple and clean manner. They were con-
ceived as extensions of GR which could bring new relevant physics at high energies,
and they yield solutions which are in agreement with GR almost everywhere, except
in regions of very high energy density. The modifications that they introduce are
such that black hole centers acquire a nontrivial structure that allows to preserve the
completeness of geodesics. In the Born-Infeld type model, geodesics can go through
the central wormhole, whereas in the f (R) case, the wormhole (when it exists) lies
beyond the reach of the geodesics.

Following the standard definition of space-time singularities given in the special-
ized literature and main text books on gravitation [9–12], we have concluded that
the solutions containing wormholes are nonsingular because they are geodesically
complete. And this is so despite the appearance of curvature divergences at theworm-
hole throat. One should note, however, that there exists a widespread tendency in the
literature to simplify the complex notion of space-time singularity and associate the
divergence of certain quantities (such as curvature scalars or tensor components) with
its definition. This tendency can be partly justified by the strong correlation existing
between the occurrence of divergences and the incompleteness of some geodesics.
Somehow, one tends intuitively to associate divergences with geodesic incomplete-
ness as if the former were the cause/reason for the latter [8]. We have shown here
with several explicit examples that black hole space-times can be geodesically com-
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plete and at the same time have curvature divergences, thus breaking the correlation
typically found in GR.

Divergences in curvature tensors/scalars are obviously associatedwith strong tidal
forces. The effects of such forces have been investigated in the literature by means
of geodesic congruences in an attempt to classify the strength of singularities [145–
151]. In that context, extended physical objects are represented as congruences of
geodesics, and the evolution of their relative distance as curvature divergences are
approached provides information about their fate. Those methods have been applied
in the general charged solutions of the Born-Infeld model studied here finding that
the different parts of a body that goes through the wormhole never lose causal contact
among them despite the existence of infinite accelerations at the throat [152]. This
offers a new view on the problem which should be further investigated to better
understand if curvature divergences possess any destructive power. We would like
to emphasize that though in the Born-Infeld model physical observers do interact
with the curvature divergence as the wormhole is crossed, in the f (R) case, the
divergence is never reached in a finite affine distance. Therefore, the f (R) model is
free from the potential drawbacks of directly interacting with a curvature divergence,
as it lies beyond the physically accessible space-time.

Though much research is still needed to better understand gravitational and
non-gravitational physics in metric-affine spaces, the point is that two analytically
tractable toy models with nontrivial results about black holes are already available.

Before concluding, we must note that our approach has assumed that particles
and observers can be viewed as structureless entities (geodesics), whereas phys-
ical measurements are carried out by means of probes with wave-like properties
because matter fields are of a quantum nature. One should thus study the propaga-
tion of waves in these space-times to see how they behave and interact with regions
of intense gravitational fields such as wormhole throats, where curvature scalars
typically diverge. A first analysis in this direction was carried out in [93], where
the scattering of scalar waves in horizonless (naked) configurations was considered.
Despite the infinite potential barrier that curvature divergences generate, one veri-
fies that the propagation through the wormhole is smooth and that transmission and
reflection coefficients can be computed numerically and contrasted with analytical
estimates, yielding good agreement. These results, therefore, give further support to
the absence of singularities in these geometries.
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Inflation: Observations and Attractors

Diederik Roest and Marco Scalisi

Abstract In these lecture notes, we present the latest status of CMB observations
and outline a particular set of inflationary models to explain these data. As an intro-
duction, we provide the necessary background to understand the Planck results on
the temperature fluctuations of the CMB. We then explain how these results can be
interpreted in terms of the number of e-folds during inflation. Finally, we discuss
theoretical models that underpin this interpretation and yield robust predictions for
future CMB observables.

1 Introduction and Outline

These notes are an extendedwrite-up of a set of lectures given by the first author in the
school “Theoretical Frontiers in Black Holes and Cosmology” in Natal, Brazil, from
June 8–12, 2015. They do not aim to give an exhaustive overview of cosmological
inflation; instead we will highlight a number of recent developments, both at the
observational as well as theoretical front, with an interesting interplay between them.
We hope they serve as an interesting stand-alone introduction to these particular
aspects of inflation. When possible we will avoid technical details, deferring these
to the original literature, and take a more pedestrian approach.

We will first introduce the standard cosmological viewpoint. This leads one to
conjecture a period of inflation in the very early Universe. In order to understand the
consequences of this phase, we study a consistent quantum formulation of the para-
digmwhere initial quantum fluctuations represent the natural seeds for the formation
of the cosmological structures. This allows us to present the most recent observa-
tions on the cosmic microwave background, and provide a theoretical interpretation
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of them. Finally, we discuss progress in inflationary model building, focusing on the
notion of cosmological attractors. Throughout these noteswewill refer to some of the
relevant papers. Complementary material can be found in more extensive reviews,
see e.g. [1–5]

2 Standard Cosmology in a Nutshell

In 1929 the astronomer EdwinHubblemade a discovery [6] which has revolutionized
the understanding of our Universe as a whole, and has given rise to the subsequent
establishment of cosmology as a science. He observed the mutual recession of galax-
ies, which was almost immediately interpreted as first evidence that we live in an
expanding Universe. This simple idea led to the development of the standard model
of Big Bang cosmology, whose predictions are in excellent agreement with observa-
tions. Despite the name, the model says nothing about the “Big Bang” which remains
a mathematical singularity as well as an unsolved physical question. On the other
hand, it furnishes a clear and precise picture of the cosmic evolution from a few
seconds after this mysterious start: the temperature decreases as the expansion of the
Universe proceeds, light elements form during a process called Big BangNucleosyn-
thesis (BBN), recombination of nuclei and electrons takes place followed by the last
scattering of photons which freely reach us today as cosmic microwave background
(CMB) radiation, observed in the sky at the temperature T = 2.73K.

Although the model has had many successful experimental confirmations, it con-
tains some serious theoretical shortcomings which can be better understood once we
know the geometric properties of the Universe we live in.

2.1 FRW Geometry and Dynamics

A dynamical Universe is what comes naturally from Einstein theory of general rela-
tivity which relates the geometry of spacetime to its matter-energy content, through
the field equations (throughout these notes we have fixed Newton’s constant by set-
ting the reduced Planck mass to unity: MPl = 1)

Gμν = Tμν. (1)

Prior to Hubble’s discovery, Einstein had already noticed such a genuine prediction
of a non-static Universe. However, puzzled by its cosmological implications, he
augmented his equations with a specific cosmological constant in order to avoid
such a phenomenon. Hubble’s discovery however confirmed that we do live in a
non-static Universe.

The simple observation that our Universe is homogeneous and isotropic at large
scales (>100Mpc) imposes stringent constraints on the form of both sides of (1).
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Originally an assumption, this so-called cosmological principle has been beautifully
confirmed by the observations of the distribution of galaxies at large scales REF and
the homogeneity and isotropyof theCMBradiationREF.Assuming these symmetries
leads to the Friedmann–Robertson–Walker (FRW) metric which, written in terms of
polar spherical coordinates (r, θ, σ ), reads

ds2 = −dt2 + a(t)2
[

dr2

1 − r2
+ r2(dθ2 + sin2 θ dσ 2)

]
. (2)

The scale factor a(t) sets the physical distances among objects and can vary with
respect to the cosmic time t (the proper time as measured by a comoving observer at
constant spatial coordinates) allowing, then, for an expanding Universe. The coordi-
nates (r, θ, σ ) reflect the symmetries assumed and are called “comoving coordinates”
as they are decoupled from the effect of the expansion. An FRW Universe can be
thought as an expanding grid where objects can be fixed on it (i.e. at constant comov-
ing coordinates) and still recede from each other as an effect of a growing scale factor.
Typical scales, e.g. the wavelength λ of a photon, will increase as λ ∝ a as the expan-
sion proceeds. However, the comoving wavelength λ/awill remain constant in time,
if no other external process occurs (see Fig. 1).

Homogeneity and isotropy still allow for a constant curvature of the 3-dimensional
spatial slices which can correspond to an open, flat or closed Universe and is parame-
trized by κ = −1, 0, 1, respectively. Moreover, the stress-energy tensor Tμν , com-
patible with such symmetries, is the one of a perfect fluid, that is

Tμ
ν = diag(−ρ, p, p, p), (3)

where ρ is the energy density and p the pressure as measured in the rest frame of the
fluid.

Due to the symmetries assumed, the independent equations (1) turn out to be two
which are known as Friedmann equations and read

Fig. 1 The expanding Universe with a typical scale λ. The grid schematically represents comoving
coordinates which do not change with time. Physical distances increase proportionally with the
scale factor a(t)
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H2 = ρ

3
− κ

a2
,

ä

a
= −1

6
(ρ + 3p), (4)

where dots denote derivatives with respect to the time t and we have defined the
Hubble parameter as

H ≡ ȧ

a
. (5)

In order to extract the evolution of the scale factor a(t), one must specify the
type of matter and solve (4). In fact, these two equations can be combined into the
continuity equation

ρ̇ + 3H(ρ + p) = 0, (6)

which, alternatively, can be also derived from the condition of energy conservation
∇μTμν = 0.Depending on the relation between energy density and pressure, dictated
by the equation of state parameter

p = wρ, (7)

we obtain the following scaling for the energy density

ρ ∝ a−3(1+w), (8)

which, plugged back into (4), yields

a(t) ∝
{
t

2
3(1+w) , w �= −1

eHt, w = −1
(9)

in the case of flat curvature (κ = 0). The parameter w can be assumed to be constant
and depends on the specific species filling the Universe at any epoch:

• Radiation, or any species with dominating kinetic energy (e.g. photons or neutri-
nos), is characterized by w = 1/3. The energy density scales as ρ ∝ a−4 which
implies that a Universe dominated by such type of matter expands as a ∝ t1/2.

• Matter, or any pressure-less species where kinetic energy is negligible with respect
to the mass (e.g. baryons or dark matter), is characterized by w = 0. One has
ρ ∝ a−3 and a Universe dominated by matter will have a scaling a ∝ t2/3.

• Dark energy, the mysterious component dominating the Universe nowadays, is
characterized by w = −1 (when described by a cosmological constant) with neg-
ative pressure and constant energy density. A Universe dominated by that will
expand exponentially as given by (9).

In standard cosmology, therefore, the history of the Universe is characterized
by early times dominated by radiation, a moment of matter-radiation equality and
subsequent domination of matter. Just recently we have entered an era in which dark
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Fig. 2 Standard evolution of the energy densities (left panel) and the scale factor (right panel).
According to the standard cosmological model, going back in time, the Universe becomes radiation
dominated and the scale factor shrinks up to a singular point a = 0, commonly called “Big Bang”

energy constitutes most of the total energy in the Universe, at present 68.3% of the
entire content. This evolution is shown in Fig. 2.

Finally, one may write the Friedmann equation in a form which is better for
the discussion of the shortcomings affecting the standard cosmological model. By
looking at (4), one may define, at any time, a critical energy density

ρc ≡ 3H2 (10)

corresponding to a perfect flat sectional curvature κ = 0.After normalizing all energy
densities as

Ωi ≡ ρi

ρc
, (11)

one can rewrite (4) as

Ω ≡
∑
i

Ωi = 1 + κ

(aH)2
. (12)

2.2 Flatness Problem

In standard cosmology, an expandingUniverse is naturally driven away fromflatness.
This can be well understood by differentiating (12), that is

Ω̇ = HΩ (Ω − 1) (1 + 3w), (13)

which can be rewritten as
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Fig. 3 Evolution of the total
energy density in standard
cosmology. The point
Ω = 1, corresponding to flat
curvature, is a repeller

d|Ω − 1|
d ln a

= Ω|Ω − 1|(1 + 3w). (14)

A Universe with a growing scale factor a(t) that is dominated by ordinary mat-
ter (subject to the strong energy condition 1 + 3w ≥ 0) therefore has Ω = 1 as an
unstable fixed point as displayed in Fig. 3.

This is exactly what happens in the standard cosmological picture where the
Universe has been dominated by such type of energy from the beginning until the
present time, as shown in Fig. 2. A Universe starting with generic initial curvature is
driven away from flatness during its evolution. The same conclusion can be reached
by looking at (12) and noticing that, in a Universe filled with radiation or matter, the
sum of the energy densities Ωi diverges from unity as the quantity (aH)−1 increases
with time.

The surprise comes with cosmological observations that suggest that the Universe
today must be flat with an accuracy of 10−2. This implies that, going back in time,
the curvature of the Universe should have been even closer to perfect flatness: at the
BBN epoch |Ω − 1| � 10−16, at the Planck scale |Ω − 1| � 10−64. Generally, such
an incredible amount of fine-tuning for the initial conditions of the Universe makes
physicists uncomfortable. A dynamical explanation of what we observe today would
be certainly more desirable.

2.3 Horizon Problem

Given a space–time, the scale of causal physics is set by null geodesics, being the
paths of photons. In an FRWUniverse, with flat curvature, radial null geodesics (i.e.
at constant θ and φ) are defined as

ds2 = −dt2 + a(t)2dr2 = 0 ⇒ dr = ± dt

a(t)
≡ ±dτ (15)



Inflation: Observations and Attractors 227

where, in the last step, we have introduced the conformal time τ which simplifies the
description of the causal structure of the FRW metric: the propagation of light is the
same as in Minkowski space and take place diagonally (at 45◦) in the (r, τ ) plane.

If we assume the standard picture given by Fig. 2, the Universe was dominated
by ordinary matter with state parameter w > −1/3 for most of its evolution and,
going back in time, the scale factor a(t) decreases up to the singular point a(0) = 0.
In this case there is a maximum distance to which an observer, at time t0, can see
a light-signal sent at t = 0. In comoving coordinates, this is given by the so-called
comoving particle horizon, that is

rph =
∫ t0

0

dt

a(t)
=

∫ a0

0
(aH)−1d ln a. (16)

If the comoving distance between two particles is greater than rph, they could have
never talked to each other. Assuming (9) and integrating (16), we get

rph ∼ a
1
2 (1+3w)

0 ∼ (a0H0)
−1. (17)

Then, in an expanding Universe filled with ordinary matter, the horizon grows with
time which means that comoving scales entering the horizon today have been never
in causal contact before, as shown in Fig. 2.

The quantity (aH)−1 is called comoving Hubble radius and determines the dis-
tance over which one cannot communicate at a given time. It basically fixes the causal
structure of the space–time and its time-evolution is crucial for the particle horizon
in (16).

3 Inflation

The shortcomings of standard cosmology concern the initial conditions of our Uni-
verse that require serious fine-tuning in order to reproduce what we observe today.
The flatness problem can be solved by assuming that the initial value of the curvature
was precisely flat. Similarly, in order to solve the horizon problem, one should imag-
ine at least 106 causally disconnected spatial patches to have started their evolution
exactly in the same physical conditions, in particular at the same temperature and
same magnitude of perturbations. Postulating all this is possible but hardly attractive
to a physicist that aims to understand the very early Universe.

In order to do better, inflation was proposed in the 1980s [7–9] to solve these
problems all at once. The fundamental idea is that the primordial Universe underwent
a finite phase of quasi-exponential expansion (similar to the one we are experiencing
nowadayswith dark energy) which changed the causal structure and how information
propagates.As a bonus, one gets a physicalmechanism to explain the presence of very
small inhomogeneities as quantumfluctuations in the very earlyUniverse; ultimately,
these represent the seeds for the large scale structures we observe in the sky.
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3.1 Basic Idea

Standard cosmology assumes that the early Universe was dominated by some form
of energy satisfying the strong energy condition ρ + 3p ≥ 0 which implies a decel-
erating phase of the scale factor, ä < 0, as dictated by (4). This is at the core of both
the flatness and horizon problems.

Inflation is nothing but inverting such a behavior and postulating a phase of accel-
erated expansion such as

ä > 0, (18)

which implies that the Universe was filled with some kind of matter with negative
pressure, satisfying

ρ + 3p < 0. (19)

The idea that, at very early times, neither matter nor radiation represented the dom-
inant components of energy is not in contrast with any well-tested physical theory.
In fact, the standard model of particles physics (SM) cannot be assumed to work
up to the first moments after the Big Bang, when energies were several orders of
magnitude higher than the domain of validity of the SM (which extends up to around
one TeV). Inflation lives off the idea that something non-trivial might have happened
due to high-energy physics.

3.2 Decreasing Hubble Radius

Interestingly, the condition (18) turns out to be equivalent to a decreasing comoving
Hubble radius

d

dt
(aH)−1 < 0, (20)

which gives a deeper insight into the causal structure of aUniverse undergoing a phase
of inflationary expansion. Typical scales, being initially inside the horizon, leaves the
radius of causal contact as inflation proceeds and theHubble radius (aH)−1 decreases.
They start reentering the horizon when inflation ends, the standard cosmological
evolution progresses and (aH)−1 increases. This situation is illustrated in Fig. 4.

The horizon problem is solved if one allows for enough inflation such that also
the largest scales we observe in the sky today (CMB and LSS scales) were inside
the horizon at early times. Then, the CMB photons had enough time to exchange
information and thermalize. Quantitatively, this means that the comoving scales of
the observable Universe today (a0H0)

−1 must fit inside the comoving Hubble radius
at the beginning of inflation (aiHi)

−1, that is

(aiHi)
−1 > (a0H0)

−1. (21)
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Fig. 4 The Hubbleand a typical comoving scale as a function of the scale factor. Due to the
anomalous scaling of the comoving Hubble radius, which does not remain constant in time as it
happens for all typical scales, the zone of causal physics change with time

The amount of inflation needed to allow for this resolution is quantified by the number
of e-folds N :

eN = aend
ai

, (22)

determined by the increase of the scale factor during inflation. A number N � 50–60
suffices to explain the thermalization of the largest observational scales at present.

The flatness problem is overcome bymeans of the samemechanism. A decreasing
comoving Hubble radius (aH)−1 drives the value of the total energy density Ω to
unity, providing a physical explanation for this apparently fine-tuned configuration.
After inflation, the curvature will start diverging from Ω ≈ 1, as it happens in a
Universe filled with ordinary matter. Interestingly, the same amount of inflation
needed to solve the horizon problem is enough to explain the flatness we observe
today. In fact, during inflation we have

Ω − 1 = κ2

(aH)2
∝ e−2N → 0. (23)

The same number of e-folds quoted before would give the accuracy required for the
value observed today.

3.3 Scalar Field Dynamics and Slow-Roll Inflation

The Einstein equations tell us that inflation should be supported by some form of
matter with a negative pressure, as given by (19). However, we are still left with the
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issue of identifying the origin of such an incredible energy which led the scale factor
to increase by an order of 1028.

The simplest example is to imagine that (a small portion of) the primordial Uni-
verse is filled with a scalar field, often called inflation field, minimally coupled to
gravity with Lagrangian

L = √−g
[
1
2R − 1

2g
μν∂μφ ∂νφ − V(φ)

]
, (24)

leading to the energy-momentum tensor

Tμν = ∂μφ ∂νφ − gμν

[
1
2∂

σφ ∂σφ + V(φ)
]
. (25)

In the case of a homogeneous scalar field φ(t) filling a patch of the Universe with
flat FRW metric (2), the energy density and pressure turn out to be simply

ρ ≡ T00 = 1
2 φ̇

2 + V(φ), p ≡ Tii = 1
2 φ̇

2 − V(φ). (26)

The dynamics and interaction of the spacetime metric and scalar field is described
by the two equations

H2 = 1

3

[
φ̇2

2
+ V(φ)

]
, φ̈ + 3Hφ̇ + V ′ = 0, (27)

where primes denote derivatives with respect to φ. The first is simply the Friedmann
equation (4), with κ = 0. The second is the equation of motion for the scalar field
which is derived by varying its action. It describes a particle rolling down along its
potential and subject to a friction due to the expansion term 3Hφ̇.

This region of the Universe will inflate if the state parameter w = p/ρ < −1/3,
which is easily realizable if the potential energy dominates over the kinetic energy,
that is

V(φ) � φ̇2. (28)

The regime described by (28) is said slow-roll inflation as the field will evolve really
slowly with respect to the quasi-exponential growth of the scale factor. Further, in
order to have an inflationary period lasting long enough, one must ensure a small
acceleration of the field and therefore impose

|φ̈| � |3Hφ̇|. (29)

Intuitively, such a scenario is possible any time that the shape of the potential is
sufficiently flat (in some measure) as it is shown in the cartoon of Fig. 5.
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Fig. 5 Cartoon picture of a
typical inflationary potential.
The scalar field slowly rolls
down along the shape driving
the quasi-exponential
expansion. Inflation ends at
φe and starts at φ∗, at least
around 60 e-foldings before
the end

Within the slow-roll regime, the dynamical equations (27) become

H2 ≈ V(φ)

3
≈ constant, φ̇ ≈ − V ′

3H
. (30)

Given a scalar field with its potential V(φ), one can verify whether such scenario is
suitable for inflation or not by calculating the so-called slow-roll parameters, defined
as

ε ≡ 1

2

(
V ′

V

)2

, η ≡ V ′′

V
, (31)

and check that
{ε, |η|} � 1, (32)

which is equivalent to (28) and (29).
Eventually, inflationmust end andgiveway to the standard cosmological evolution

(with an increasing Hubble radius and ordinary matter domination). This happens
when the conditions (32) are violated: the trajectory becomes first too steep and
the inflaton eventually falls into a local minimum. The oscillations around the vac-
uum convert the inflationary energy into ordinary particles, within a process called
reheating.

4 Quantum to Classical Perturbations

4.1 The Inhomogeneous Universe

The inflationary paradigm elegantly solves the standard cosmological puzzles, pro-
viding a natural explanation for the homogeneity and isotropy at large distances.
However, at scales smaller than 100Mpc, we do observe structures in form of
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galaxies, stars and so on. The standard cosmological theory allows us to accurately
trace the evolution of such structures back in time.We are able to identify their origin
in the gravitational instability of small density perturbations of a primordial plasma
made up of photons and baryons, which have evolved into the large-scale structures
of the present Universe.

This idea of structure formation is confirmed by the oldest snapshot we have of
our Universe: the cosmic microwave background (CMB). It was produced at the
time when electrons and nuclei have just recombined, around 300,000years after
the Big Bang, leaving the CMB photons to freely stream. The tiny temperature
fluctuations of order δT/T ∼ 10−5, indicated in Fig. 6, reflect the presence of regions
with slightly different densities; the wavelength of the photons is red-shifted or blue-
shifted depending on the value of the local density. Indeed the properties of the CMB
can be time-evolved into a forecast for the Universe that has an excellent match with
our observed one.

Despite the stunning success of the theory of structure formation, we are left with
some puzzling questions: what set those initial density perturbations? Which is their
fundamental origin? Why are they of the same magnitude at any scale? Why were
they there at all?

Surprisingly, inflation suggests a possible answer that is in excellent agreement
with observations, thus definitively establishing itself as the leading paradigm for the
understanding of the earlyUniverse physics. This answer stems fromadding quantum
mechanics to the fundamental inflationary dynamics. The scalar field implementa-
tion provides once more a very useful stage in order to discuss such a physics. In
fact, quantum fluctuations δφ are unavoidable in the homogeneous background rep-
resented by φ(t). These source metric perturbations via the Einstein equations and
vice versa according to the following scheme

φ(t, x) = φ(t) + δφ(t, x) ⇔ gμν(t, x) = gμν(t) + δgμν(t, x), (33)

where gμν(t) is simply the unperturbed FRW metric, as given by (2). Due to the
symmetries and gauge invariance of the coupled system, the resulting physical per-
turbations reduce to a scalar and a tensor one (vector perturbations decay during the
quasi-exponential expansion). Intuitively, quantum fluctuations excite all the light

Fig. 6 The fluctuations of 1
part in 105 around the
average temperature of
T = 2.73 of the CMB. Image
ESA
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particles, in the minimal scenario being the inflaton and the graviton. The scalar per-
turbations couple to the energy density and eventually lead to the inhomogeneities
and anisotropies observed in the CMB. The tensor perturbations are often referred to
primordial gravitational waves. They do not couple to the density but induce polar-
ization in the CMB spectrum [10–15]. This is considered to be a unique signature of
inflation and many current and proposed experiments are searching for it in the sky.

A detailed treatment of the cosmological perturbations theory goes beyond the
aim of the present lecture notes. The interested reader might consult the references
[2, 3, 5]. In the following, we would like just to sketch the main consequences of a
consistent quantum formulation of the inflationary paradigm. In order to simplify the
discussion, we will firstly discuss the pure de Sitter and massless case. In the Sect. 5,
we will focus on the proper inflationary analysis, regarded as a small deviation
from the case studied here, and eventually extrapolate the significant observational
parameters.

4.2 Quantum Scalar Fluctuations During Inflation

Scalar fluctuations can be fully attributed to the quantum nature of the inflaton field
living in an unperturbed FRW background. This corresponds to a specific gauge
(usually called spatially flat slicing) where metric perturbations are set equal to zero.
It is a perfectly consistent choice in order to discuss the relevant physics and show
how scalar fluctuations behave in an inflationary background metric. The decreasing
Hubble radius (aH)−1 will play again a crucial role, as we will see.

Let us consider the inflaton field φ(t, x) with a small spatial dependence as given
by (33). The corresponding equation of motion is

φ̈ + 3Hφ̇ − ∇2

a2
φ + V ′ = 0, (34)

which differs from the homogeneous equation (27) of the background field φ(t) for
the third extra term. We can Fourier expand the fluctuations such as

δφ(t, x) =
∫

d3k
(2π)3/2

δφk(t)e
ik·x, (35)

with x andk being respectively the comoving coordinates andmomenta. Note that the
Fourier modes δφk depend just on the modulo k = |k| because of the isotropy of the
background metric. Then, we can perturb at first order (34), plug the decomposition
(35) in and get

δφ̈k + 3Hδφ̇k + k2

a2
δφk = 0, (36)
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where we have neglected the additional term V ′′δφk due to the slow-roll conditions
(32) during inflation. Equation (36) can be rewritten in a simpler form, without the
Hubble friction term, once we introduce the variable

vk ≡ aδφk, (37)

and switch to conformal time τ . This was defined by (15) and it is naturally related
to the comoving Hubble radius as

τ = − 1

aH
, (38)

during a perfect exponential expansion with H constant. Then, the dynamics of
the scalar perturbations can be described simply by the equation of a collection of
independent harmonic oscillators

d2

dτ 2
vk + ω2

k (τ )vk = 0 , (39)

with time-dependent frequencies

ω2
k (τ ) = k2 − 2

τ 2
= k2 − 2(aH)2. (40)

The quantization of the physical system now becomes very easy and one proceeds
as in the case of the simple harmonic oscillator, following the canonical procedure.
In particular, the modes vk become nothing but the coefficients of the decomposition
of the quantum operator

v̂(τ,k) = vk(τ )âk + v∗
k (τ )â†k, (41)

where the creation and annihilation operators satisfy the canonical commutation
relation [

âk, â
†
k′

]
= δ3

(
k − k′) . (42)

The quantum zero-point fluctuations are given by

〈
0

∣∣ v̂†(τ,k)v̂(τ,k′)
∣∣ 0〉 = |vk(τ )|2δ3 (

k − k′) (43)

where the vacuum is defined by âk |0〉 = 0 for any k. Therefore, computing the
quantum perturbations of the inflaton field reduces to solving the classical equation
(39) and, then, extracting the time dependence of the Fourier modes vk(τ ).

The physics of the mode functions vk , during inflation, is non-trivial and crucially
depends on the fact that the comoving Hubble radius shrinks with time. In fact,
fluctuations are produced on every scale λ and therefore with any momentum k.
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While initially being inside the horizon, they leave the zone of causal physics at one
point of the accelerated expansion, as schematically shown in Fig. 4.

One can prove that an exact solution of (39) is

vk(τ ) = α
e−ikτ

√
2k

(
1 − i

kτ

)
+ β

eikτ√
2k

(
1 + i

kτ

)
, (44)

where α and β are some free parameters to be set by means of the initial conditions.
These are defined at very early times, when the relevant scales were still inside the
horizon. In the sub-horizon limit (k � aH), that is when k|τ | → ∞, the frequencies
(40) become time-independent and (39) reduces to

d2

dτ 2
vk + k2vk = 0, (45)

basically the one of a simple harmonic oscillator. We can exploit this fact in order to
get the correct normalized solution

lim
k|τ |→∞

vk = e−ikτ

√
2k

, (46)

which comes from the requirement of a unique vacuum (so-called Bunch–Davies
vacuum) being the ground state of energy. This sets α = 1 and β = 0 in (44), thus
yielding the definitive expression for the Fourier modes

vk(τ ) = e−ikτ

√
2k

(
1 − i

kτ

)
. (47)

Oncewehave the complete solution (47),we are particularly interested in studying
when the modes leave the horizon. We would like indeed to understand how they
behave after inflation and affect late time physics. How can quantum fluctuations
produced during inflation source density perturbation at CMB decoupling? These
events are separated by a huge amount of time where physics is very uncertain.
Fortunately, something special happens as we explain below.

The super-horizon limit (k � aH), that is when k|τ | → 0, corresponds to the
solution

lim
k|τ |→0

vk = − i√
2k3/2τ

. (48)

Since the conformal time is related to the scale factor by (15), the latter represents
a growing mode vk ∝ a, in de Sitter background. Switching to the physical scalar
perturbations by means of (37), one obtains that the amplitude δφk remains constant
as long as the Hubble radius is smaller than their typical length.Modes freeze outside
the horizon and this is a crucial result in order to connect the physics of the early
Universe to the time when the density perturbations are created. It is a great bonus
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we get from inflation as we do not need to worry about the time evolution of such
fluctuations for a very substantial part of the cosmic evolution.

Now we can return to (43) and properly evaluate the dimensionless power spec-
trum Δ2

v of the quantum fluctuations vk , defined as

〈
0

∣∣ v̂†(τ,k)v̂(τ,k′)
∣∣ 0〉 ≡ 2π2

k3
Δ2

v(k) δ3
(
k − k′) . (49)

Then, the power spectrum of the fluctuations after horizon crossing is

lim
k|τ |→0

Δ2
v(k) = k3

2π2
|vk|2 =

(
aH

2π

)2

, (50)

where we have used (43) in the first step while (48) and (38) in the last. Therefore,
the power spectrum of the physical fluctuations of the inflaton field on super-horizon
scales is

Δ2
δφ(k) =

(
H

2π

)2

, (51)

which is scale-invariant as no k-dependence enters the expression above. Note that
this result was first derived in [16], in a perfect de Sitter approximation, before
inflation was proposed. A proper inflationary analysis would bring corrections of
order O(ε, η).

4.3 Classical Curvature and Density Perturbations

In the previous section, we have learned that quantum fluctuations, produced dur-
ing inflation, stop oscillating once they are stretched to super-horizon scales. Their
amplitude freezes at some nonzero value, with scale invariant power spectrum given
by (51). This situation lasts for a very long period until the point when the modes
re-enter the horizon, during the standard cosmological evolution, as schematically
shown in Fig. 4. At horizon re-entry, the amplitude of the modes starts oscillating
again inducing the density perturbations. However, the energy density directly inter-
acts with the gravitational potential. Therefore, how do quantum fluctuations of the
inflaton affect the metric curvature and ultimately become density perturbations?
Here, we present a very simple and heuristic derivation, mainly based on the time-
delay formalism developed in [17].

The presence of quantum fluctuations δφ(t, x) over the smooth background φ(t)
translates into local differences δN of the duration of the inflationary expansion,
directly related to curvature perturbations ζ . In fact, not every point in space will end
inflation at the same time thus leading to local variations of the scale factor a. Then,
fluctuations δφ induce curvature perturbations equal to
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ζ = δN = H
δφ

φ̇
= δa

a
. (52)

The corresponding dimensionless power spectrum is

Δ2
ζ (k) = H2

φ̇2
Δ2

δφ(k) = H2

4π2φ̇2
, (53)

which, during slow-roll, reads

Δ2
ζ = 1

12π2

V 3

V ′2 = 1

24π2

V

ε
, (54)

where we have used (30) in the first equality and (31) in the second one.
Once inflation ends and the standard cosmological history begins, the energy

density will evolve as ρ = 3H2 and, then, decrease as given by (8) (the evolution
is shown in Fig. 2). Local delays of the expansion lead to local differences in the
density, schematically being δN ∼ δρ/ρ. The amplitude of the density fluctuations
will be directly related to the amplitude of the curvature perturbations with power
spectrum (54).

4.4 Primordial Gravitational Waves

Primordial quantumfluctuations excite also the graviton, corresponding to tensor per-
turbations δh of the metric. These have two independent and gauge-invariant degrees
of freedom, associated to the polarization components of gravitational waves (usu-
ally denoted by h+ and h×). One can prove that the Fourier modes of these functions
satisfy an equation analogous to (36). Therefore, onemay proceed identically to what
done in Sect. 4.2. The dimensionless power spectrum turns out to be

Δ2
h(k) = 2 × 4 ×

(
H

2π

)2

, (55)

where the factor 2 is due to the two polarizations and the factor 4 is related to different
normalization.

5 Observations and Extrapolation

The last 50years have seen extraordinary success in the development of observational
techniques and in the experimental confirmation of our cosmological theories. The
discovery of the CMB in 1965 [18] gave the start to a new scientific era where
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speculative ideas about the very early Universe have found empirical verification.
Analysing this primordial light has become our fundamental tool for the investigation
of the very early Universe physics.

Via CMBmeasurements, we are able to probe the inflationary era and set stringent
constraints on the fundamental dynamical mechanism. In the language of the scalar
field implementation, we can use observational inputs to impose restrictions on the
form of the scalar potentialV(φ). The reasonwhywe are able to have access to such a
primordial era is closely connected to themechanismoutlined in the previous section:
fluctuations produced during inflation freeze outside the horizon thus providing a link
between two very separated moments in time. This situation is depicted in Fig. 7.

In the following, we sketch the basic strategy to extract the inflationary parameters
from the CMB data. However, as we will explain, the observational window we have
access to is quite small (red region in Fig. 7) and corresponds to a short period around
50–60 e-folds before the end of inflation (this number was derived in Sect. 3 in order
to account for the homogeneity and isotropy of the CMB at its largest scale). This
implies that different scenarios, with very diverse potentials, may lead to the same
observational consequences, as long as they agree in that CMB window. Extrapo-
lating generic predictions, beyond the specific details of the model, and identifying
related universality properties will be our primary interest. A description of inflation
in terms of the number of e-folds N will turn out to be very useful.

Fig. 7 Quantum fluctuations produced during inflation (green area) freeze at the horizon exit. They
reenter the horizon after reheating thus sourcing acoustic oscillations of the plasma (yellow part).
At decoupling time, the CMB photons freely stream towards us who measure their power spectrum
just in the small red window
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5.1 CMB and Inflationary Observables

TheCMBis essentially the farthest pointwe canpushour observations to. It is nothing
but an almost isotropic 2D surface surrounding us and beyond which nothing can
directly reach our telescopes. One can draw an analogy to the surface of the Sun:
the inner dense plasma does not allow any light to freely stream outwards and the
analysis of the last scattering photons (around 8min old) becomes essential in order
to probe the internal structure. In fact, the homogeneity and isotropy of the CMB
together with its tiny and characteristic temperature anisotropy (see Fig. 6) naturally
led us to study inflation in Sects. 3 and 4 and consider it as our best probe of what
lies beyond that last scattering surface, around 13.4 billions years old.

The power spectrum of the temperature fluctuations in the CMB contains valu-
able information on the dynamics of inflation. The characteristic shape is simply
dictated by the two-point correlation function of the inflaton fluctuations calculated
in Sect. 4. A proper investigation of the CMB physics is required in order to under-
stand the functional form, which goes beyond the scope of the present work (see e.g.
[2, 19] for a detailed treatment). In practice, it is the so-called transfer functionwhich
relates the two power spectra: it contains all the information regarding the evolution
of the initial fluctuations from the moment when they re-enter the horizon to the
time of photon-decoupling (yellow part in Fig. 7) and, subsequently, their projection
in the sky as we observe them today. The final result is the solid line of Fig. 8 with
the peculiar Doppler peaks originated from the acoustic oscillations of the baryon-
photon plasma. The first peak corresponds to a mode that had just time to compress
once before decoupling. The other peaks underwent more oscillations and, on small
scales, are damped. The high suppression of the power spectrum, at small angular
scales, reflects why we are able to probe just a small window of the inflationary era.

Fig. 8 Power spectrum of the CMB temperature anisotropy as measured by Planck 2015. Image
ESA
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In terms of the number of e-folds this corresponds to aboutΔN ≈ 7. On the contrary,
scales to the left of the first peak show no oscillations as they were superhorizon at
the time of decoupling, and hence have not experienced any oscillations.

In Sect. 4, we have derived the power spectrum of perturbations in a perfect de
Sitter (H ≈ const) and massless (V ′′ ≈ 0) approximation. However, an appropriate
inflationary analysis would bring some corrections (order slow-roll) and hence a
small k-dependence. This is because, during inflation, the energy scale (set byH) will
slightly change together with time and the inflaton mass is non-zero, although being
very small (order η). In order to parametrize the deviation from scale-invariance, we
introduce the spectral indexes ns and nt defined by

ns − 1 ≡ d lnΔ2
ζ

d ln k
, nt ≡ d lnΔ2

h

d ln k
, (56)

respectively for scalar and tensor perturbations. In terms of the slow-roll parameters,
they read

ns − 1 = 2η − 6ε, nt = −2ε. (57)

Furthermore, since observations probe just a limited range of k, we can express
the deviation from scale-invariance by means of the power laws

Δ2
ξ (k) = Δ2

ζ (k0)

(
k

k0

)ns−1

, Δ2
h(k) = Δ2

h(k0)

(
k

k0

)nt

, (58)

where k0 is a normalization point called pivot scale. Note that we have only included
the first coefficients of scale-dependence; higher-order effects lead to a scale depen-
dence of these coefficients themselves (referred to as running). Finally, the tensor-
to-scalar ratio is defined by

r ≡ Δ2
h(k0)

Δ2
ζ (k0)

= 16ε, (59)

and indicates the suppression of the power of tensor with respect to scalar modes.

5.2 Planck Data

The Planck satellite [20, 21] has mapped the Universe with unprecedented accuracy.
In this way it has set stringent constraints on the parameters related to the inflationary
dynamics. First of all, at k0 = 0.05Mpc−1, the experimental value for the scalar
amplitude (first detected by COBE [22]) is

Δ2
ζ (k0) = (2.14 ± 0.10) × 10−9. (60)
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Secondly, the deviation from perfect scale-invariance has been definitively con-
firmed and the scalar spectral index ns has been measured to be

ns = 0.968 ± 0.006. (61)

On the other hand, the value of the tensor-to-scalar ratio has been observationally
bounded to be

r < 0.11. (62)

These values can be read from Fig. 12 of [21] where Planck 2015 results for the
spectral index and tensor-to-scalar ratio with the predictions of different inflationary
models are superimposed.

5.3 Universality at Large-N

As we saw in Sect. 5.1, the window we can probe by means of CMB observations
corresponds to a small portion of the inflationary trajectory. The measured values of
the cosmological parameters (61) and (62) constrain the form of the scalar potential
just on a limited part. This sensitive region is located around 50–60 e-folds before
the end of inflation, when the modes relevant for the CMB power spectrum left the
region of causal physics. The practical situation is that several scenarios can give
rise to the same predictions despite the details of specific model. This situation is
visually explained in Fig. 9.

In Sect. 3, we have described the inflationary background dynamics in terms of
the canonical normalized field φ. A valid alternative description is the one in terms
of the number of e-folds N , provided the relation

dφ

dN
= √

2ε. (63)

Fig. 9 Cartoon of a typical
inflationary scalar potential
(blue line) with different
deviation (grey lines). The
details of the models are
different but they agree on
the CMB window thus
yielding identical
observational predictions
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This can be interpreted as a background field redefinition from φ, with canonical
kinetic terms, to the field N with Lagrangian

L = √−g
[
1
2R − ε(N)(∂N)2 − V(N)

]
. (64)

Once switched to theN-formulation, we can expand the cosmological variables at
large number of e-foldsN , in order to keep the relevant features for observations. This
approach is also motivated by the percentage-level deviation of the Planck reported
value for the spectral index (61) from unity which can be interpreted as

ns = 1 − 2

N
, (65)

withN being equal to the number of e-folds between the pointsN∗ of horizon crossing
and Ne where inflation ends, that is

N = N∗ − Ne. (66)

These arguments naturally lead to assume the first slow-roll parameter scaling as
[23–25]

ε = β

Np
, (67)

where β and p are constant and we have neglected higher-order terms in 1/N as not
relevant for observations. This simple assumption (67) yields to

r = 16β

Np
, ns =

{
1 − 2β+1

N , p = 1,

1 − p
N , p > 1,

(68)

where we have discarded the case p < 1 as it generically not compatible with the
current cosmological data.

The analysis at large-N allows us to identify the generic predictions of the cos-
mological scenarios with a first slow-roll parameter scaling as (67) (implications on
the inflaton excursion Δφ studied in [26, 27]). Most of the inflationary models in
literature have this property and many examples are listed in [24, 25]. Specifically,
by means of (68), we can exclude a consistent region of the (ns, r) plane and make
definite predictions for our cosmological variables [24, 28]. The allowed regions can
be seen in Fig. 1 of [24] where are shown the predictions of the inflationary scenarios
with equation of state parameter given by (67) superimposed over the Planck data.
Given the favored value of the spectral index (65), one has generically a forbidden
region for value of the tensor-to-scalar ratio r. In particular, given the best fit value
for ns and the strict bound on r, we will generically expect a very low value for the
tensor-to-scalar ratio, probably order 10−3.
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6 Inflation, Supergravity and Attractors

In the last chapter of these lecture notes, we change gears somewhat and will discuss
a more theoretical underpinning of inflationary models. In particular, we consider
inflation in the context of supersymmetry. Due to the presence of gravity, this natu-
rally implies the framework of supergravity [29]. Although not observed (yet) at the
energies of particle colliders, i.e. up to 1TeV, supersymmetry is a natural ingredient
of many theories of UV physics such as string theory. Given that inflation takes place
at far higher energies than the Standard Model, this appears as a theoretically natural
framework. Moreover, supersymmetry helps in protecting the inflaton mass from a
very large contribution which would render inflation inviable: the inflaton mass is
protected from being raised above the Hubble scale. This reduces the amount of nec-
essary finetuning/modelbuilding by a few orders of magnitude. Finally, supergravity
naturally includes (many) scalar fields, yielding a magnitude of possible inflaton
candidates. In this chapter we will address the type of scalar potentials that arise (or
can be embedded) in this set of theories, and extract inflationary predictions from
these.

6.1 Flat Kähler Geometry

We will start from the simplest possible supergravity models, with N = 1 and a
single superfield Φ. Moreover, we take a flat geometry for this superfield: it is given
by ds2 = dΦdΦ̄. Note that it has an ISO(2) isometry group. We will assume that
inflation proceeds along the real part of Φ, which is one of the isometry directions.
The canonical Kähler potential reads

K = ΦΦ̄. (69)

However, the scalar potential will be of the form V = eK × · · · , where the dots
are determined by the superpotential. For generic choices of the latter, the present
Kähler potential will therefore induce order-one contributions to the second slow-
roll parameter η of inflation [30]. The reason for this is the particular choice of
Kähler potential: it has a rotational invariance but breaks the translational symmetry
along the inflationary direction.

To remedy this, one can invoke a Kähler transformation

K → K + λ + λ̄, W → e−λW , (70)

with holomorphic parameter λ, which leaves the entire N = 1 theory invariant. A
bringsbrins one to [31]

K = − 1
2 (Φ − Φ̄)2, (71)
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which does respect the shift symmetry of the inflaton. As a consequence, the scalar
potential does not receive order-one contributions from the Kähler potential: we
have evaded the η-problem. Additional simplifications arise as both K and its first
derivative KΦ vanish along the real inflationary direction.

In this simple set-up with a single superfield, one can introduce a superpotential

W = f (Φ). (72)

Provided the function f is a real holomorphic function, it is consistent to truncate to
the real part of Φ. We have therefore succeeded in identifying a possible single-field
inflationary trajectory. However, its scalar potential reads

V = −3f (Φ)2 + f ′(Φ)2, (73)

whichmakes it difficult to realize e.g. the simplest inflationarymodelwith a quadratic
scalar potential in this set-up.

At this point we will follow [31] and extend the field content. In addition to
the chiral superfield Φ that contains the inflaton, we introduce a second superfield
S. Its role will be to “soak up” the effects of supersymmetry breaking, leaving no
constraints on the inflationary potential. Indeed we will see that one can introduce
arbitrary inflationary models in this way [32].

The two-superfield model reads

K = − 1
2 (Φ − Φ̄)2 + SS̄, W = Sf (Φ), (74)

where we have added an additional piece to the Kähler potential, and moreover we
have assumed that the superpotential is linear in the new field S. As inflation will
take place along Φ − Φ̄ = S = 0, the F-term contributions read

DΦW = 0, DSW = f , (75)

confirming that indeed supersymmetry breaking takes place in the S-superfield. Since
both K and W vanish during inflation, the potential is given by

V = f (φ)2, (76)

where φ is the real part of Φ. At this point one can choose f = mΦ in the original
superpotential, thus reproducing the quadratic inflationary potential from a super-
gravity theory. This was the original motivation and result of [31]. However, as was
pointed out in [32], the same set-up allows for arbitrary real functions f (Φ). This
shows that one can build an arbitrary scalar potential in this simple scenario. This
implies that the predictive power of supergravity is rather limited! However, we will
see in the next subsection that this conclusion changes dramatically when including
curvature.
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6.2 Hyperbolic Kähler Geometry and α-Attractors

Instead of a flat geometry, we now turn to the other maximally symmetric possibility.
This is the hyperbolic space of the Poincaré half-plane (or disc). We will use half-
plane coordinates with Re(Φ) > 0. In this case the metric takes the form

ds2 = 3α
dΦdΦ̄(
Φ + Φ̄

)2 , (77)

whose curvature is given by

RK = − 2

3α
. (78)

Note that it is negative (corresponding to hyperbolic space), and maximal sym-
metry implies it to be constant over moduli space. Its isometries are given by the
Möbius group, which contain

• Nilpotent symmetry: Φ → Φ + ic, corresponding to a vertical shift,
• Non-compact symmetry: Φ → eλΦ, corresponding to a horizontal shift,
• Compact symmetry with a more complicated action.

The usual Kähler potential for this space is given by

K = −3α log(Φ + Φ̄). (79)

Note that it breaks all but one of the isometries: it is only invariant under the nilpotent
generator. Therefore it is not invariant under shifts of the inflaton, which again we
will take along the real axis of Φ. Similar to the flat case, one can however do a
Kähler transformation to make this isometry explicit in the Kähler potential. In this
case one finds [33]

K = −3α log

[
Φ + Φ̄

(ΦΦ̄)1/2

]
, (80)

which is invariant under the non-compact generator. Again both K and KΦ vanish
along the inflationary trajectory. This therefore seems to be the most natural starting
point for our discussion of the curved case.

Inclusion of the supersymmetry breaking sector leads to

K = −3α log

[
Φ + Φ̄

(ΦΦ̄)1/2

]
+ SS̄, (81)
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while we retain the simple superpotential of the flat case:

W = Sf (Φ). (82)

Again this allows us to restrict to the real axis ofΦ: the truncation toΦ − Φ̄ = S = 0
is consistent provided the function f is real. The single-field inflationary potential in
this case reads

V = f 2
(
e−

√
2
3α ϕ

)
, (83)

where ϕ is the canonically normalized scalar field that is related to the real part of
the superfield Φ by

φ = e−
√

2
3α ϕ. (84)

Note that the curvature has a dramatic effect on the inflationary potential: the argu-
ment of the arbitrary function f is now given by an exponential of the inflaton. For
a generic function f that, when expanded around φ = 0, has a non-vanishing value
and a slope, the resulting inflationary potential reads

V = V0(1 − e−
√

2
3α ϕ + · · · ). (85)

The potential therefore attains a plateau at infinite values of ϕ and has a specific
exponential drop-off at finite values. At smaller values of ϕ, higher-order terms
will come in whose form depends on the details of the function f . However, when
restricting to order-one values of α, none of these higher-order terms are important
for inflationary predictions: in order to calculate observables at N = 60, one only
needs the leading term in this expansion. This means that all dependence of the
function f has dropped out: the only remaining freedom is the parameter α.

In more detail, the inflationary predictions of this model are given by

ns = 1 − 2

N
+ · · · , r = 12α

N2
+ · · · . (86)

The dots indicate higher-order terms in 1/N , whose coefficients depend on the details
of the function f ; however, at N ∼ 60, none of these higher-order terms are relevant
for observations. The leading terms are independent of the functional freedom and
only depend on the curvature of the manifold. This is what is referred to as α-
attractors [34–40]: as α varies from infinity (i.e. the flat case) to order one or smaller,
the inflationary predictions go from completely arbitrary (in the flat case) to the very
specific values above. Turning on the curvature therefore “pulls” all inflationary
models into the Planck dome in the (ns, r) plane. The specific predictions include
the magnitude of the tensor-to-scalar ratio, which naturally comes out at the permille
level, as well as the scale dependence of the spectral index of scalar perturbations:
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this is referred to as the running parameter, and takes the expression

αs = − d

dN
ns = − 2

N2
+ · · · . (87)

Future observations will hopefully shed light on these crucial inflationary observ-
ables, and thus can (dis)prove the α-attractors framework.

7 Discussion

The topic of these lecture notes has been dual: both to provide the reader with
an understanding of recent CMB observations, as well as a theoretical proposal
to explain these data. We hope to have given a flavour of the excitement on the
present status of observations and the theoretical expectations for possible future
observations. First and foremost amongst the latter are tensor perturbations: a cru-
cial signature of inflation, a detection of these would prove the quantum-mechanical
nature of gravity as well as provide the inflationary energy scale. Moreover, depend-
ing on its value, such a detection would either disprove or lend further evidence to
the inflationary models known as α-attractors.
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