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  Pref ace    

 High-throughput sequencing (HTS), also named next-generation sequencing (NGS) 
or massive parallel sequencing (MPS), is an amazingly speedy evolving world. 
Since 2005, when the fi rst HTS equipment was released to the market by 454 Life 
Sciences, there have been dozens of companies developing a variety of methods that 
offer distinct characteristics, and therefore, each protocol should be applied wisely. 
Being aware of the wide range and complexity of the reported HTS strategies, we 
observed that there is a lack of bibliographic support when scientists need to choose 
the most suitable methodology or combination of platforms and to defi ne their 
experimental designs to achieve unambiguous aims. 

 Genomics core facilities can give limited advice on which technology fi ts one’s 
purposes and the number of cloud-based HTS data analysis pipelines, to process 
output raw data in a standard mode, is rapidly increasing. Ideally, scientists that 
request this sort of services should have clear clue questions concerning wet-lab 
procedures and data analysis. Thus, the purpose of this guideline is to collect in a 
single volume all aspects that should be taken into account and the reasons behind 
when HTS technologies are being incorporated into a scientifi c research project, 
and it is directed to both, specialist, but primarily to newcomers. 

 Accordingly, the book encloses a brief introduction on HTS technologies chal-
lenges, followed by 14 chapters with profi cient discussions and recommendations 
to select the best among all the available workfl ows for sample processing, align-
ment of results, algorithms at downstream data analysis, etc., and the minimum 
number of samples that should be characterized in each assay for accurately 
sequencing and interpreting genomes, sets of RNA molecules, DNA methylated 
regions, nucleic acids interacting with targeted proteins, metagenomes, metatran-
scriptomes, and/or single-cell contents. Moreover, examples of several successful 
strategies are analyzed to make the point of the crucial features. 

 Whole genome sequencing (WGS) wet-lab procedures and data analyses are 
portrayed in Chap.   2    , followed by a description of how to face the characterization 
of partial genomes (i.e., genes of interest) in a number of samples in Chap.   3    . In 
addition, a detailed variety of sequencing library preparation approaches and results 
examination pipelines to catalogue transcriptomes, sets of noncoding RNAs and 
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small RNAs as well as ribosome networking RNAs under singular conditions, are 
depicted within Chaps.   4    –  8    . Furthermore, ways of studying epigenetic events such 
as DNA methylation and interactions of DNAs or RNAs with targeted proteins are 
illustrated in Chaps.   9    ,   10    , and   11    , respectively. Chapters   12     and   13     discuss the 
appealing world of classifying environmental (e.g., microbial communities) 
genomes and transcriptomes by means of metagenomics and metatranscriptomics. 
Likewise, the hot topic of single-cell DNA and RNA content characterization is 
considered in Chaps.   14     and   15    . The last chapter of the book, Chap.   16    , is a detailed 
protocol on how to submit HTS data to public repositories as required when this sort 
of results are being published. 

 As a special feature, this book includes a sort of quick reference guide as appen-
dix for each chapter, where readers can, at a glance, access a fi gure representing the 
main steps of the wet-lab and bioinformatic workfl ows as well as a table that gathers 
information about the experimental design recommendations for the techniques 
described and another one referred to the bioinformatic recommended analysis soft-
ware together with the results yielded by each program. The intention of this section 
is to grant rapid access to a summary of the principles of each of the methodologies 
described. 

 Considering that HTS technologies can be applied to a vast variety of biological 
questions and are used by scientists working in unlike fi elds such as biology, medi-
cine, or ecology, and in a wide range of taxonomical levels (mammals, plants, bac-
teria, viruses, etc.), we hope that this book will be a precious resource for all scientist 
that lack skills in HTS and pretend to incorporate such technologies into their 
research.  

  Derio, Spain     Ana     M.     Aransay      
Derio, Spain    José     Luis     Lavín-Trueba     

Preface 

http://dx.doi.org/10.1007/978-3-319-31350-4_4
http://dx.doi.org/10.1007/978-3-319-31350-4_8
http://dx.doi.org/10.1007/978-3-319-31350-4_9
http://dx.doi.org/10.1007/978-3-319-31350-4_10
http://dx.doi.org/10.1007/978-3-319-31350-4_11
http://dx.doi.org/10.1007/978-3-319-31350-4_12
http://dx.doi.org/10.1007/978-3-319-31350-4_13
http://dx.doi.org/10.1007/978-3-319-31350-4_14
http://dx.doi.org/10.1007/978-3-319-31350-4_15
http://dx.doi.org/10.1007/978-3-319-31350-4_16


vii

    1     The High-Throughput Sequencing Technologies 
Triple-W Discussion: Why Use HTS, What Is the Optimal 
HTS Method to Use, and Which Data Analysis Workflow 
to Follow ..................................................................................................   1   
    José   Luis   Lavín Trueba     and     Ana   M.   Aransay    

     2     Whole-Genome Sequencing Recommendations ..................................   13   
    Toni   Gabaldón     and     Tyler   S.   Alioto    

     3     Targeted DNA Region Re-sequencing ..................................................   43   
    Karolina   Heyduk    ,     Jessica   D.   Stephens    ,     Brant   C.   Faircloth    , 
and     Travis   C.   Glenn    

     4     Transcriptome Profiling Strategies ......................................................   69   
    Abdullah   M.   Khamis    ,     Vladimir   B.   Bajic    , and     Matthias   Harbers    

     5     Differential mRNA Alternative Splicing ..............................................   105   
    Albert   Lahat     and     Sushma   Nagaraja   Grellscheid    

     6     microRNA Discovery and Expression Analysis in Animals ...............   121   
    Bastian   Fromm    

     7     Analysis of Long Noncoding RNAs in RNA- Seq Data ........................   143   
    Farshad   Niazi     and     Saba   Valadkhan    

     8     Ribosome Profiling .................................................................................   175   
    Anze   Zupanic     and     Sushma   Nagaraja   Grellscheid    

     9     Genome-Wide Analysis of DNA Methylation Patterns 
by High-Throughput Sequencing .........................................................   197   
    Tuncay   Baubec     and     Altuna   Akalin    

     10     Characterization of DNA-Protein Interactions: 
Design and Analysis of ChIP-Seq Experiments ..................................   223   
    Rory   Stark     and     James   Hadfi eld    

  Contents 



viii

     11     PAR-CLIP: A Genomic Technique to Dissect RNA-Protein 
Interactions .............................................................................................   261   
    Tara   Dutka    ,     Aishe   A.   Sarshad    , and     Markus   Hafner    

     12     Metagenomic Design and Sequencing ..................................................   291   
    William   L.   Trimble    ,     Stephanie   M.   Greenwald    , 
    Sarah   Owens    ,     Elizabeth   M.   Glass    , and     Folker   Meyer    

     13     A Hitchhiker’s Guide to Metatranscriptomics ....................................   313   
    Mariana   Peimbert     and     Luis   David   Alcaraz    

     14     Eukaryotic Single-Cell mRNA Sequencing .........................................   343   
    Kenneth   J.   Livak    

   15     Eukaryotic Single-Cell DNA Sequencing .............................................   367   
    Keith E. Szulwach and Kenneth J. Livak      

     16     Submitting Data to a Public Repository, the Final Step 
of a Successful HTS Experiment ..........................................................   385   
    Christopher   O’Sullivan     and     Jonathan   Trow

Index ................................................................................................................  393     

Contents



ix

  Contributors 

     Altuna     Akalin  ,   Ph.D.       Bioinformatics Platform, Berlin Institute for Medical 
Systems Biology ,  Max Delbrück Centre  ,  Berlin ,  Germany     

      Luis     David     Alcaraz       Departamento de Ecología de la Biodiversidad, LANCIS, 
Instituto de Ecología ,  Universidad Nacional Autónoma de México  ,  Coyoacán, Cd. 
Mx., México       

      Tyler     S.     Alioto  ,   B.S., Ph.D.       Centro Nacional de Análisis Genómico ,  Centre de 
Regulació Genòmica  ,  Barcelona ,  Spain     

      Ana     M.     Aransay  ,   Ph.D.       Genome Analysis Platform ,  CIC bioGUNE  ,  Derio ,  Spain   

  Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas 
(CIBERehd)  ,  Madrid ,  Spain     

      Vladimir     B.     Bajic  ,   Ph.D.       Computer, Electrical and Mathematical Sciences and 
Engineering Division, Computational Bioscience Research Center ,  King Abdullah 
University of Science and Technology (KAUST)  ,  Thuwal ,  Saudi Arabia     

      Tuncay     Baubec  ,   Ph.D.       Epigenomics and Chromatin Biology Lab, Institute of 
Veterinary Biochemistry and Molecular Biology ,  University of Zurich  ,  Zurich , 
 Switzerland     

      Tara     Dutka       Laboratory of Muscle Stem Cells and Gene Regulation ,  NIAMS  , 
 Bethesda ,  MD ,  USA     

      Brant     C.     Faircloth  ,   Ph.D.       Department of Biological Sciences and Museum of 
Natural Science ,  Louisiana State University  ,  Baton Rouge ,  LA ,  USA     

      Bastian     Fromm  ,   Ph.D.       Department of Tumor Biology, Institute for Cancer 
Research, Norwegian Radium Hospital ,  Oslo University Hospital  ,  Oslo ,  Norway     

      Toni     Gabaldón  ,   Ph.D.       Bioinformatics and Genomics Programme ,  Centre for 
Genomic Regulation (CRG)  ,  Barcelona ,  Spain   

  Universitat Pompeu Fabra (UPF)  ,  Barcelona ,  Spain   



x

  Institució Catalana de Recerca i Estudis Avançats (ICREA)  ,  Barcelona ,  Spain     

      Elizabeth     M.     Glass       Argonne National Laboratory  ,  Argonne ,  IL ,  USA     

      Travis     C.     Glenn       Department of Environmental Health Science ,  University of 
Georgia  ,  Athens ,  GA ,  USA     

      Stephanie     M.     Greenwald       Institute for Genomics and Systems Biology  ,  Argonne , 
 IL ,  USA     

      Sushma     Nagaraja     Grellscheid  ,   Ph.D.       School of Biological and Biomedical 
Sciences ,  Durham University  ,  Durham ,  UK     

      James     Hadfi eld  ,   B.Sc., Ph.D.       Cancer Research UK Cambridge Institute , 
 University of Cambridge  ,  Cambridge ,  UK     

      Markus     Hafner       Laboratory of Muscle Stem Cells and Gene Regulation ,  NIAMS  , 
 Bethesda ,  MD ,  USA     

      Matthias     Harbers  ,   Ph.D.       Division of Genomic Technologies ,  RIKEN Center for 
Life Science Technologies  ,  Yokohama ,  Kanagawa ,  Japan     

      Karolina     Heyduk       Department of Plant Biology ,  University of Georgia  ,  Athens , 
 GA ,  USA     

      Abdullah     M.     Khamis  ,   M.Sc.       Computer, Electrical and Mathematical Sciences 
and Engineering Division, Computational Bioscience Research Center ,  King 
Abdullah University of Science and Technology (KAUST)  ,  Thuwal ,  Saudi Arabia     

      Albert     Lahat  ,   B.Sc.       School of Biological and Biomedical Sciences ,  Durham 
University  ,  Durham ,  UK     

      José     Luis     Lavín Trueba  ,   Ph.D.       Genome Analysis Platform ,  CIC bioGUNE  , 
 Derio ,  Spain     

      Kenneth     J.     Livak  ,   Ph.D.       Fluidigm Corporation  ,  South San Francisco ,  CA ,  USA     

      Folker     Meyer       Argonne National Laboratory  ,  Argonne ,  IL ,  USA     

      Farshad     Niazi  ,   M.D.       Department of Molecular Biology and Microbiology ,  Case 
Western Reserve University School of Medicine  ,  Cleveland ,  OH ,  USA     

      Christopher     O’Sullivan       National Center for Biotechnology Information , 
 U.S. National Library of Medicine  ,  Bethesda ,  MD ,  USA     

      Sarah     Owens       Argonne National Laboratory  ,  Argonne ,  IL ,  USA     

      Mariana     Peimbert       Departamento de Ciencias Naturales ,  Universidad Autónoma 
Metropolitana Unidad Cuajimalpa, Cuajimalpa, Cd. Mx., México        

      Aishe     A.     Sarshad       Laboratory of Muscle Stem Cells and Gene Regulation ,  NIAMS  , 
 Bethesda ,  MD ,  USA     

Contributors



xi

      Rory     Stark  ,   B.A., M.Sc., M.Phil., D.Phil.       Cancer Research UK Cambridge 
Institute ,  University of Cambridge  ,  Cambridge ,  UK     

      Jessica     D.     Stephens       Department of Plant Biology ,  University of Georgia  ,  Athens , 
 GA ,  USA     

      Keith     E.     Szulwach  ,   Ph.D.       Fluidigm Corporation  ,  South San Francisco ,  CA ,  USA     

      William     L.     Trimble       Institute for Genomics and Systems Biology  ,  Argonne ,  IL , 
 USA     

      Jonathan     Trow       National Center for Biotechnology Information ,  U.S. National 
Library of Medicine  ,  Bethesda ,  MD ,  USA     

      Saba     Valadkhan  ,   M.D., Ph.D.       Department of Molecular Biology and 
Microbiology ,  Case Western Reserve University School of Medicine  ,  Cleveland , 
 OH ,  USA     

      Anze     Zupanic  ,   Ph.D.       Department of Environmental Toxicology ,  Eawag – Swiss 
Federal Institute for Aquatic Research and Technology  ,  Dübendorf ,  Switzerland      

Contributors



1© Springer International Publishing Switzerland 2016 
A.M. Aransay, J.L. Lavín Trueba (eds.), Field Guidelines for Genetic 
Experimental Designs in High-Throughput Sequencing, 
DOI 10.1007/978-3-319-31350-4_1

    Chapter 1   
 The High-Throughput Sequencing 
Technologies Triple-W Discussion: Why Use 
HTS, What Is the Optimal HTS Method 
to Use, and Which Data Analysis Workfl ow 
to Follow                     

       José     Luis     Lavín Trueba       and     Ana     M.     Aransay     

1.1           Evolution of the HTS Platforms and the Spawn of New 
Research Applications 

 High-throughput sequencing (HTS) technologies have conquered the genetic, 
genomic, and epigenomic worlds during the last decade. At the moment of writing 
this manuscript, there are more than 23,000 indexed references considering HTS 
techniques at  the   PubMed repository, focused on an incredible diversity of topics 
and species: from biomarkers defi nition for complex human diseases to ancient pro-
karyote taxonomic identifi cation and evolutionary tree resolution. Promising, novel 
real-time nanopore sequencers output longer and longer reads in an extraordinarily 
speedy mode, allowing even de novo complete microbial genomes (Check Hayden 
 2015 ; Quick et al.  2014 ). Furthermore, the possibility of sequencing single-cell 
genomes and transcriptomes (reported as method of the year 2013 by  Nature 
Methods ; see  Nature Methods  Issue from January 2014 (Editorial  2014 )) opens a 
novel, very exciting perspective for basic and medical research. 

 Since the fi rst massive parallel sequencer was available in 2005 (Margulies et al. 
 2005 ), prices to run HTS projects have been reduced signifi cantly, making possible 
to sequence a human genome by about $1000. However, no matter how cheap, easy, 
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and quick HTS technologies become if there is a lack of specifi c questions to be 
answered and, accordingly, of a precise experimental design, all the resources 
employed in those projects will keep on being a waste. According to High- 
Throughput “Next-Generation” Sequencing Facilities Statistics web (  http://omics-
maps.com/stats    ), there are 7400 sequencers from seven different companies 
registered around the world that have worked or are working on 69,444 sequencing 
projects (see   https://gold.jgi.doe.gov/index     and (Reddy et al.  2015 )) of very differ-
ent nature, from which about 36,000 are incomplete or just started. 

 As core facility members, we are aware of the lack of detailed information for most 
“materials and methods” sections within the articles that consider HTS data. Thus, in 
order to start the planning of any HTS project, ideally, experts on sample collection and 
science behind the project with clear aims and HTS wet lab and data analyses special-
ists should meet to share/discuss their points of view and make the most of each strat-
egy. This communion is not always possible, and, consequently, more projects than 
expected are run in an inappropriate mode, resulting in big amounts of public money 
thrown away. To avoid these events, we have worked on the present detailed guideline, 
in which all the ins and outs of each currently used HTS approach are considered.  

1.2     Guide to Effectively Select a High-Throughput 
Sequencing Technique Fitting Your Research Objectives 

 To make a conceptually dense book, like this, easy to read and use as reference, we 
have organized it into seven main thematic blocks where chapters are tightly related 
to each other; nevertheless, each chapter has its own distinctiveness and, therefore, 
can be followed independently. Here we present each of the sections and the chal-
lenges discussed in the chapters included in it. 

1.2.1     Reading the Book of Life, DNA Sequencing 

  During the past decade, the fi rst complete genomes of different types of organisms 
such as bacteria, fungi, plants,  or   animals were sequenced (Consortium CES  1998 ; 
International Human Genome Sequencing C  2004 ). First sequencing projects 
involved the collaboration between research groups, institutions, and sequencing 
facilities to afford such projects. High-throughput technologies changed this fact and 
made cost and time effective to perform genomic scale analysis, to study a variety of 
genomic characteristics. Therefore, whole-genome sequencing and resequencing 
become affordable to single laboratories or research projects (Anonymous  2014 ). 

 The fi rst thematic block of this book is referred to DNA sequencing, specifi cally 
to genome sequencing and resequencing. Chapter   2     deals with whole-genome 
sequencing whose primary goal is to produce a high-quality genome assembly to 
serve as a reference for an organism or a closely related phylogenetic group. 

J.L. Lavín Trueba and A.M. Aransay
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Moreover, it is considered as a tool to grant access to the genetic information of liv-
ing beings and understand their essence. Due to the current technological develop-
ments in sequencing technologies and the bioinformatics procedures developed in 
parallel, this technology is becoming so affordable that several single-organism (or 
even cells) genomes can be sequenced as part of a single research project (Jarvis 
et al.  2014 ). As a result of the rapid advances in the fi eld, this chapter focuses on 
general principles that will have a more general applicability instead of merely dis-
playing an overview of current methodologies that will likely soon become obso-
lete. In addition,  various   genome resequencing methods with a focus on target 
enrichment are examined in Chap.   3    . A part of these methods can be applied  to 
  non-model organisms with few genetic resources available (Jarvis et al.  2014 ). The 
precise method to use for the organism of interest depends on several factors that are 
addressed in this chapter. Additionally, experimental design considerations, bioin-
formatic pipelines, and proper reporting of results for target enrichment are also 
carefully explained .  

1.2.2     Transcribe to Survive, RNA-Sequencing Methods 

  The transcriptome of a cell is dynamically changing along time while adapting to 
variable environment conditions (Nagalakshmi et al.  2008 ; Wilhelm et al.  2008 ) 
(whether if it is an external environment like microbes or cells forming tissues or 
organs inside complex organisms). The recent developments of high-throughput 
sequencing (HTS) enable to achieve a relatively high base coverage of cDNA 
sequences, obtained from RNA samples. Comprehensive overviews on transcrip-
tomes can be obtained today by combination of those new sequencing technologies 
with large-scale cDNA library preparation forming the basis to different approaches 
for transcriptome profi ling. This fact enables to look at events like posttranscrip-
tional modifi cations or alternative gene splicing. In addition to mRNA transcripts, 
there are several other RNA populations included in total RNA extracts, for 
instance, microRNA (miRNA), transfer RNA (tRNA), and long noncoding RNA 
(lncRNA). Sequencing methods for those different RNA species are covered in this 
book through the second thematic block of chapters (Chaps.   4    –  7    ) introduced in this 
section. 

 In Chap.   4    , the use of full-length  coding DNA (cDNA)   preparations in combina-
tion with shotgun RNA-seq and RNA profi ling directly from RNA (transcriptome 
profi ling) (Hestand et al.  2010 ) are exhaustively explained, in addition to the use of 
cap analysis gene expression (CAGE) for high-throughput mRNA detection and 
genomic determination of transcription start sites (TSS). Real examples from stud-
ies on transcriptional regulation of gene expression are used to illustrate the 
transcriptome- profi ling strategies covered in the chapter. To extend transcriptome- 
profi ling strategies, RNA splicing is also included in an individual chapter, since a 
high proportion of human genes undergo these splicing events (Wang et al.  2008 ). 
This is a regulated biological mechanism where a single gene can give rise to 

1 The High-Throughput Sequencing Technologies Triple-W Discussion…
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multiple transcripts through alternative processing of primary RNA transcripts, 
RNA (Wang et al.  2008 ). RNA sequencing enables the analysis not only of differ-
ential gene expression but also isoform-level changes in gene expression from the 
same original data, although differential splicing detection requires deeper sequenc-
ing coverage. Chapter   5     widely covers the set of bioinformatic tools necessary to 
analyze and study splicing from RNA-seq data. Moreover, those tools are classifi ed 
depending on the step of the analysis they are designed to carry out, and counseling 
is given on which one should be implemented depending on the focus of the study. 

  Among   noncoding RNAs, miRNAs have become key players in different fi elds 
ranging from disease diagnosis (as biomarkers) to phylogenetic studies where they 
are also used to monitor evolutionary history and developmental relationships among 
organisms, as they present highly conserved structural features, and changes in their 
regulation may unleash different health conditions (Bartel  2009 ). Chapter   6     sheds 
light on this methodology focusing on the bioinformatic prediction and annotation 
steps, pointing out current available software and database strengths and weaknesses. 
There is another group of noncoding RNAs, which are bigger in size, the lncRNAs, 
which constitute a major fraction of the output of the genome in higher eukaryotes 
(Carninci et al.  2005 ). Analysis of lncRNAs expression from RNA-seq data is chal-
lenging because of the particularities  this   RNA category has, such as low expression 
level, abundance of repeat element-derived sequences, loci overlap between tran-
scripts, high percentage of non-polyA molecules, and scarcity of splicing events 
(Zhang et al.  2014 ). Therefore, although  wet   lab protocols are mostly common to 
those used for RNA-seq, bioinformatic analyses are required to be aware of the pecu-
liarities of lncRNAs. To that aim, it is required to use the tools developed exclusively 
for this case, and some other shared with ordinary RNA-seq, but tuning working 
parameters accordingly. Chapter   7     accounts for the singularity of lncRNAs and gives 
advice on the best alternatives to select when dealing with this novel family of RNAs .  

1.2.3     Translation by Interaction, RNA-Protein Interactions 

  In eukaryotic cells, mRNA levels do not perfectly match with protein expression 
levels. This means that regulation, at translation and protein stability levels, has an 
important effect on the result of gene expression in those cells (Tome et al.  2014 ). 
RNA-protein interactions are essential to cellular homeostasis and management of 
RNA metabolism in the cell. Consequently, the inspection of RNA-protein interac-
tions is underpinned in this third thematic block. 

 The sequencing of mRNA fragments protected by the translating ribosome via 
HTS is a method aimed at narrowing the gap between the mRNA molecule and the 
protein (Zupanic et al.  2014 ). In Chap.   8    , different ways where ribosome profi ling 
has been applied and guides readers through state-of-the-art experimental proce-
dures, focusing on alternative protocols, are detailed.    Correspondently, RNA- protein 
networks studies can take advantage of HTS technologies to improve methodologies 
looking for a better understanding of posttranscriptional gene regulation. As part of 

J.L. Lavín Trueba and A.M. Aransay
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this block, photoactivatable ribonucleoside-enhanced cross- linking and immunopre-
cipitation (PAR-CLIP) (Spitzer et al.  2014 ) together with other currently available 
techniques is reviewed in Chap.   11    . These are recently developed techniques that 
require a detailed discussion of experimental and data analysis procedures for readers 
to understand, implement in their current research, and even being able to contribute 
to the refi nement of, for instance, current data analysis pipelines, in a close future .  

1.2.4     Teaching What to Read, DNA Regulation Analysis 

  Gene regulation is the process of turning genes on and off, providing that the correct 
genes are expressed at precise times (Lister et al.  2013 ). Genes require some kind of 
interface that enables them to interact with the environment and respond to the 
stimuli felt in order to grant the organism survival. This task is accomplished 
through gene regulation, which includes a variety of mechanisms, from chemically 
modifying genes (e.g., methylation) to using regulatory proteins to turn genes on or 
off (DNA-protein interaction) (Jaenisch and Bird  2003 ). 

  DNA methylation is a relevant epigenetic modifi cation of DNA affecting gene 
expression, which is typically related to a repression of transcription (Baubec et al. 
 2015 ; Maurano et al.  2015 ). Processes such as cancer and aging are regularly asso-
ciated to variations in  DNA   methylation patterns which impel researchers to invest 
time and resources in understanding the contribution of this alteration to human 
health. High-throughput sequencing allows interrogating the status of  DNA   meth-
ylation all throughout the genome at a nucleotide-level resolution, uncovering the 
distribution and fl uctuations of this modifi cation between health and disease condi-
tions. Chapter   9     considers the most accepted technologies dealing with DNA meth-
ylation, offering detailed advice from the wet lab as well as the in silico sides of the 
technique. Another mechanism in this thematic block, besides DNA modifi cation, 
is DNA-protein interactions. This term does not only include those of transcription 
factor proteins to specifi c binding sites on DNA but also proteins related to tran-
scriptional regulation (e.g., methylases) or transcription events (e.g., polymerases). 
Chapter   10     describes how to design, implement, and analyze data derived from 
chromatin immunoprecipitation sequencing (ChIP-seq), to elucidate different 
aspects involving an array of biological issues concerning DNA-protein interactions 
and modulation of transcriptional regulatio n  (Mohammed et al.  2015 ).  

1.2.5     Sequencing Communities Rather than Single Organisms, 
the Meta-Sequencing 

  As part of the fi fth separated thematic block, another HTS approach, which is 
widely extended to perform the sequencing of “raw” environmental samples, is 
meta-sequencing (which includes metagenomics and metatranscriptomics, so far). 

1 The High-Throughput Sequencing Technologies Triple-W Discussion…
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By defi nition, “meta-sequencing” aims to obtain information from DNA/RNA 
extracted from environmental samples or mixtures of microorganisms (Eisen  2007 ; 
Leininger et al.  2006 ). This methodology enables to obtain genomic/transcriptomic 
information about the full community of organisms present in the sample at once, 
hologenome, which is quite interesting in order to get an idea of the species compo-
sition of the sample, the genetic coding potential, and the probable metabolic func-
tions (carried out by the organisms from the sample) and, depending on the approach, 
even to decipher which genes are transcribed under the conditions the sample was 
isolated. 

 The fi rst of the meta-sequencing procedures covered in this book is metagenom-
ics in Chap.   12    . In that chapter the method is defi ned and topics like recommenda-
tions on the best sequencing platform to use depending on the kind of metagenomic 
study to carry out, whether the aim is to characterize the species composition of the 
sample (16s rRNA sequencing) or to also infer the coding potential of the sequenced 
community (whole-genome shotgun sequencing). Recommendations about impor-
tant issues/features related to the experimental design such as the number of sam-
ples to sequence per comparative group, the sequencing depth per sample, or the 
bioinformatic analysis pipeline to choose for the different kinds of study (Wilke 
et al.  2013 ) are also discussed. The second meta-sequencing procedure addressed in 
this volume is metatranscriptomics, in Chap.   13    . In this case the aim will be to study 
community-wide gene expression, under strictly determined conditions, by whole- 
genome shotgun RNA sequencing (Simon-Soro et al.  2014 ). The metatranscriptome 
case is elaborated, requiring  strong   experimental design, wet laboratory, and bioin-
formatic skills. This chapter provides step-by-step counseling for both wet lab and 
in silico analyses while highlighting some of the more common complications met 
in this type of experiments .  

1.2.6     From Bulk to Individual Cells, Single-Cell Approaches 

   There is a trend toward HTS studies of single-cell genomes and transcriptomes, 
rather than what could be referred as “bulk cell” characterization (Trapnell et al. 
 2014 ; Wills et al.  2013 ). It is interesting to point out that the ability to fi rst isolate 
individual cells in order to examine their nucleic acid content has led to signifi cant 
advances in areas such as the examination of tumor structure, the accurate identifi -
cation and characterization of specifi c cell types, and  the      screening of the transcrip-
tome from uncommon cell types (e.g., circulating tumor cells), among others. Those 
facts are covered in Chaps.   14     and   15    , where DNA and RNA single-cell sequencing 
techniques are discussed. In this manuscript, the advantages of sequencing multiple 
single-cell genomes in opposition to bulk cell samples are addressed along with a 
state-of-the-art report on the technical development of the procedures and steps 
required to carry out such kind of experiments  .  
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1.2.7     Last Step but Not the Least Important, Uploading Data 
to Public Sequence Repositories 

 Chapter   16     covers a mandatory step for any HTS-related experiment that intends to 
be published: data upload to a public repository such as  The   Sequence Read Archive 
(SRA) at  the   National Center for Biotechnology Information (NCBI). There, raw 
sequencing data and alignment information (including metadata describing differ-
ent details of whole wet lab and in silico workfl ows) from most of the published and 
some still unpublished studies related to HTS are stored and correlated to unique 
IDs, which grant access to those data to any member of the research community 
interested in obtaining them. Collecting and maintaining these large data collections 
is one of the most valuable actions to perform reporting the scientifi c progress in 
fi elds related to biosciences, by the current human civilization.   

1.3     Remember the Past, Appreciate the Present, and Behold 
the Future of Sequencing 

 We are living in days where technology exponentially advances in short periods of 
time. There is a tendency of reducing the size of devices while increasing the num-
ber of their functionalities (e.g., nowadays a smartphone is a technological Swiss 
knife that can reproduce music and movies, tune TV and radio, take photographs, 
record video, play games, and be a pocket computer… feels like carrying the full 
catalog of a 1990 multimedia store in a single device). Sequencing technologies are 
not an exception and enhanced performance is reached in relatively short periods of 
time. Meanwhile, new technologies are developed to exceed their predecessors. 

 Although this book presents an up-to-date catalog of sequencing techniques and 
their current caveats, we should expect many of them to be signifi cantly infl uenced 
by new developments, probably changing the whole experimental strategy in the 
years to come. Here, we will exhibit different ways technological improvements in 
the sequencing systems subsequently promoted advances in computing and how 
that changed the bioinformatics analysis landscape. 

1.3.1     Days of a Present Past:  Pre - HTS Era  Formats and Their 
Current Counterparts 

  From now on (in this chapter), we will use the term  pre - HTS era  to refer to methods 
and data produced before HTS emergence. During that period, main data formats were 
relatively few (compared to those on the HTS), data fi le size (kilobytes) was smaller in 
general, and processing times were remarkably shorter, so multiple trials could be 
performed on a dataset in a short period of time, ranging from seconds to several min-
utes (e.g., dealing with multiple-sequence fi les) in a common PC or laptop. 

1 The High-Throughput Sequencing Technologies Triple-W Discussion…
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 After the HTS expansion, computational requirements changed substantially, for 
instance, data storage needs increased exponentially (e.g., a single  Illumina HiSeq 
2500 ’ s  150 bp paired-end run can fi ll up a common laptop hard disk drive), and the 
same happened to computational power (the number of processing cores increased 
up to a minimum of 8 to fl uently run the analyses); required RAM memory (over 
8 GB recommended to avoid long computation periods) and high-speed bandwidth 
became vital for data traffi c (in cases like remote access to fi les from a server or 
workstation). Plus, HTS fi eld is strongly biased toward open-source software, which 
is mainly developed under Unix/Linux architecture, and so, medium level skills 
working under environment are required. Apart from the bottlenecks mentioned 
before, a certain level of programming language knowledge in Linux shell, Perl, 
Python, Java, or R is essential in case you need to fi x any unexpected issues that 
might come out during your analysis workfl ow setup. 

  Pre - HTS era  data fi le formats are easier to manage; for instance, most fi les can 
be displayed in any text editor and intuitively understand what is stored on them. 
This is not so simple with HTS output fi les. Besides, there are fewer formats and not 
much overlapping between them (which occurs with HTS fi le formats). For exam-
ple,  FASTA  format was used for DNA, RNA, or protein  sequences  and  gff  format 
was designed to store annotation data. Other formats like  embl ,  pdb , and  genbank , 
were developed by their corresponding sequence repositories (EMBL, PDB, and 
Genbank), being a mixture of descriptive metadata and sequences. Moreover, mul-
tiple sequences analysis (MSA) produced a set of fi les to depict the multiple align-
ment information ( aln ,  msf ,  phylip , or  meg ), that can be readily exported into 
different phylogeny software (e.g., Phylip, Treeview, or MEGA) for further process-
ing (the description of these formats can be found at   http://emboss.sourceforge.net/
docs/themes/SequenceFormats.html    ). During a certain time-lapse, being familiar 
with these data types was basically suffi cient for a researcher to perform a wide 
range of bioinformatic analysis during the  pre - NGS era . 

 When HTS technologies arrived, most of those formats evolved or were substi-
tuted by others that could fulfi ll the requirements of the new kind of data and scien-
tifi c questions, although some persisted, if the new methodologies did not compete 
with them. If we make an analogy to the “tower of Babel” passage from the Bible 
(  Genesis 11:5–8     at   https://en.wikisource.org/wiki/Bible_%28King_James%29/
Genesis#11:5     and (Harris  2002 )), HTS has come, with a fi stful of sequencing 
 technological platforms that produce heterogeneous data. This heterogeneity made 
visible the necessity to develop highly optimized tools through a wide range of 
programming languages, therefore, increasing the need for creating/adapting new 
fi le formats to successfully contain the different kinds of features that each method-
ology needs to account for, namely, FASTQ, SAM/BAM, BED, WIG, VCF (with 
their respective variations), and several others described in different sites like 
  https://genome.ucsc.edu/FAQ/FAQformat.html#ENCODE    , as well as many differ-
ent tool- specifi c output formats (e.g. Bowtie’s “.bow,” BWA’s “.sai,” Maq’s “.map,” 
or SOAP’s “.gout/.gout.trim” output fi les) including analogous information, as they 
carry out the same analysis step (Hatem et al.  2013 ). Something that most of these 
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fi les have in common is that they contain very large data volumes and are not human 
readable unless opened “programmatically” (command line instructions are 
required to inspect their content, since ordinary text editors cannot process those 
data volumes), and, in general, Linux/Unix system profi ciency is mandatory to 
inspect the information in those fi les. As result of this, data is displayed in a signifi -
cant number of fi le formats (that may overlap functionalities), which prevent soft-
ware compatibility per se, thus requiring bioinformaticians to interconvert data 
formats to enable interaction between analysis tools. Since a wide range of analyses 
are performed, and data  fl ux   between programs is essential, an important percent-
age of the processing time is spent converting data from one format to another in 
order to guarantee the datafl ow between each step of the pipeline. Hence, format 
conversion becomes an onerous task that consumes a large amount of the process-
ing time, even though very effi cient tools have been developed to that end (Li et al. 
 2009 ; Quinlan and Hall  2010 ). 

 Current developments suggest that this tendency may change as new technolo-
gies under development offer much longer reads, which should allow reaching 
enough coverage depth of the template with a signifi cant decrease in the number 
of reads (as we will explain for MinION technology in the next section) and hope-
fully the number of fi le formats if analyses are back to a certain homogeneity as 
in the pre-HTS era. Therefore, the fi nal volume of data yielded should be easier 
to handle by fi nal users with improvements related to saving time when transfer-
ring data between computers/servers and required bandwidth and, consequently, 
to the expenses of the analyses, whether those are carried out at local servers or in 
the cloud .  

1.3.2     Days of a Present Future: Example of a State-of-the-Art 
Technology 

  We will use a state-of-the-art technology as an example of the direction of current 
technical developments:    Oxford Nanopore Technologies (ONT) MinION sequencer 
(  https://www.nanoporetech.com/products-services/minion-mki    ). This device is rev-
olutionary since it implements a new sequencing approach, namely,    charged protein 
nanopores, consisting of DNA molecules passing through those structures on the 
fl owcell, where different nucleotides are detected by the voltage sensors within each 
nanopore, and base calling begins. Although this sequencer currently yields high 
error rates (around 30 % of the bases), there is a thread of opinion that argues about 
the possibility of those “errors” being artifacts due to nucleotide modifi cations or 
analogues embedded in the DNA strand. There are studies that may support this 
theory (Clarke et al.  2009 ; Wolna et al.  2014 ) and also at least a patent has been 
registered on this subject (Stephen and Jonas  2012 ). If this hypothesis was true, 
then, current understanding of DNA will change substantially, and maybe a deeper 
insight into its functionality would be achieved. 

1 The High-Throughput Sequencing Technologies Triple-W Discussion…
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 Another change referred to current sequencers is its compact form, a MinION is 
slightly bigger than a  common   USB pendrive (small and portable) and, in principle, 
is aimed to be used by nonexperts.  ONT   adopted a new data format, FASTA5 
(derived from the HDF standard), which is a highly compact data format capable to 
“represent very complex data objects and a wide variety of metadata” and “com-
pletely portable  fi le   format with no limit on the number or size of data objects in the 
collection” (  http://www.hdfgroup.org/HDF5/whatishdf5.html    ). 

 Such features allow it to be used as  a   “mobile sequencer” that can be imple-
mented for rapid diagnostic, for example, in the case of an infectious outbreak 
where a patient’s blood sample could be directly sequenced, on the fi eld, to deter-
mine the microbe causing the disease (Check Hayden  2015 ). 

 There are some weak points though, which may eventually prevent MinION 
 implementation   in certain cases:

    1.    It requires a Windows laptop that uploads the yielded data to a server for its 
analysis, which makes its use “on the fi eld” impossible in places with no network 
connection (although Internet is not compulsory for the sequencing step, data 
analysis of these results does require remote web access).   

   2.    Even though FASTA5 is a compact format, information can only be extracted 
programmatically using the HDF5 library; this requires further software devel-
opment by ONT to enhance analysis tools that really allow nonexperts to use 
their technology or the obstacles related to transforming raw sequencing data 
into “human interpretable” results will remain, and this technology will not live 
up to the expectations it created.   

   3.    Most researchers will not be very comfortable if data can only be analyzed in the 
cloud due to privacy law violation or bioethical concerns, so it is mandatory to 
enable potential users to perform sequencing data retrieval (base calling) and 
analysis locally, in their computers. This option would also allow the sequencer 
to operate “in the fi eld” in a Wi-Fi-independent manner/basis.   

   4.    It is mandatory to allow the use  of   free license software. Otherwise, the charges 
for private analysis software will not be affordable and this technology will not 
succeed, unless the whole sequencing plus analysis expenses match other tech-
nologies whose data analysis can be carried out for free .    

1.4        Up-and-Coming Challenges at the HTS World 

 At the moment, more than 2200 tera-base pairs are open-accessed at the main HTS 
data repository (  http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=announcement    ) 
and still many gigabytes of raw data are stored on hard drive disks, which, in many 
cases, are regrettably worthless to be further processed due to the lack of proper 
experimental design and/or because of an inaccurate planning of the resources 
required for this sort of tasks (wet lab specialized personnel, choice of appropriate 
technology(ies), robust computer equipment, and/or skilled analysts). 

J.L. Lavín Trueba and A.M. Aransay
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 Since most of the HTS techniques are quite complex from a procedural point of 
view, which leads to the diffi culty of many researchers in understanding their foun-
dations or the results that should be obtained, this book intends to serve as a guide 
for beginners approaching the fi eld. Researchers must be aware of the technical 
diffi culties they will face carrying out the wet lab work until they obtain adequate 
material to be sequenced and  the   bioinformatic requirements to carry out each par-
ticular analysis. It is very important to have a detailed idea of each technique and the 
inclusion criteria of the samples, according to both, and the scientifi c aims as well 
as the minimum quantity and quality of DNA and/or RNA needed for each wet lab 
protocol, in order to evaluate the compulsory resources and skills before embarking 
on performing an HTS-based project. To bypass unsuccessful cases, the techniques 
described in this volume are thoroughly explained, and counseling on how to choose 
the right method to achieve the research objective is given. 

 Further development of suitable workfl ows will be required when all the rising 
HTS techniques will be established in the molecular labs, which obviously will require 
specifi c tuning of not only data analysis but, very specifi cally, of sample preparation 
together with secure and ethical ways of HTS data storage in cloud computers.     
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    Chapter 2   
 Whole-Genome Sequencing Recommendations                     

       Toni     Gabaldón       and     Tyler     S.     Alioto     

2.1           Introduction to Genome Sequencing 

2.1.1     Introduction 

 The recent revolution in sequencing technologies has democratized genome 
sequencing projects. What once was a daunting endeavor reserved for large interna-
tional consortia backed by strong funding bodies is now a reasonable goal for a 
moderately sized research project and can be performed by small teams backed by 
public or private sequencing and bioinformatic centers. However, the decrease in 
sequencing costs and the increased availability to groups of sequencing and com-
puting platforms has also brought about the necessity of keeping up with recent 
developments and strategies, as the sequencing technologies and bioinformatic 
tools for downstream analyses keep evolving at a fast pace. Sequencing approaches 
are thus a moving target. However, some general principles can be drawn that can 
guide the design of a successful genome sequencing project. Common consider-
ations include evaluating known information about size and genome complexity of 
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the target genome, obtaining samples with minimal sequence polymorphism, and 
assessing the needs in terms of contiguity, coverage, and quality of the assembly to 
address the desired research questions. Here we will provide some general guide-
lines  and   recommendations for planning whole-genome sequencing project while 
focusing on the two most extended applications of whole-genome sequencing. 
Genome sequencing projects can be grossly subdivided in two broad groups: (1) de 
novo genome sequencing, in which the objective is obtaining a high-quality genome 
assembly that can serve as a reference for a species or variety, and (2) resequencing, 
when there is an available reference genome and the objective is to map sequence 
variation of an individual or a set of individuals. As we will see below, these two 
objectives differ in the type of sequencing strategies, in the amount of initial mate-
rial, as well as in the bioinformatics processing of the data. Despite these differ-
ences, all whole-genome sequencing projects have, nevertheless, a similar overall 
workfl ow. Four main steps can be defi ned: (1) sample collection and DNA extrac-
tion, (2) sequencing library preparation, (3) sequencing, and (4) bioinformatics data 
processing. After the data has been processed, this has to be interpreted and addi-
tional analyses should be performed. These additional analyses will depend on the 
particular question under study and will not be the focus of this book chapter.  

2.1.2     Sample Collection and DNA Extraction 

  The fi rst crucial step for whole-genome sequencing is the isolation and quality con-
trol of the extracted nucleic acids. The ability to obtain suffi cient quantity of fresh 
samples may sometimes be compromised by the very nature of the organisms under 
study. For instance, whereas it is simple to obtain enough quantities  of   material 
from organisms that can be grown in the lab or that are easily accessible in nature, 
others may pose serious problems. Examples of problematic materials are material 
from museum specimens of recently extinct (or rare) species and species that cannot 
be grown in the laboratory or that are intimately associated with other organisms 
(e.g., symbionts, obligate parasites). Once samples are collected, DNA should be 
extracted .  The extraction of suffi cient quantities of pure, intact, double-stranded, 
highly concentrated, and uncontaminated genomic DNA is desirable for a reliable 
whole-genome analysis. The collection and DNA extraction protocols will depend 
on the organism under study. For instance, the presence of a cell wall in plant and 
fungal cells makes necessary the use of physical (vortexing in the presence of beads, 
heating) or biochemical (e.g., cellulase or zymolyase for plants and fungi, respec-
tively) means to break this barrier. Thus a sensible approach for planning of  the   
sample collection and DNA extraction is to survey existing methods that have been 
previously used for the genetic study of that particular species. In general, standard 
DNA extraction methods can be used, as long as the necessary quality and quantity 
of DNA of the target species is produced. These requirements depend on each spe-
cifi c application and sequencing strategy. Sections  2.4  and  2.5  provide some spe-
cifi c guidelines .  
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2.1.3     DNA Library Preparation 

  The preparation of sequencing libraries from DNA comprises a series of standard 
molecular biology reactions, such as fragmentation, amplifi cation, or ligation. In 
general terms library preparation protocols include the fragmentation of the tar-
get DNA and the selection of fragments within a determined size range using gel 
or bead purifi cation. The size range of the fragments depends on the specifi c 
whole- genome sequencing and/or assembly strategy. Subsequent amplifi cation 
and ligation steps ensure the addition of the specifi c adaptors at the 5′ and 3′ 
ends, required for the sequencing phase (see below). Alternatively, “tagmenta-
tion” combines the fragmentation and ligation reactions into a single step, which 
can greatly increase the effi ciency of the library preparation. Adapter-ligated 
fragments are then amplifi ed by polymerase chain reaction (PCR) and purifi ed in 
gel. Preparation of high- quality libraries and obtaining high yields require a good 
initial material (see point above) and a careful execution of the library prepara-
tion protocol. A number of kits that ease the preparation of libraries are available, 
and some are provided by the company that manufactures the sequencer. Potential 
problems in  the   library preparation phase include biases in the inclusion of 
genomic regions into the library and the creation of chimeric fragments by arti-
factual ligation of fragments originating from different genomic regions  (Van 
Dijk et al.  2014 ).  

2.1.4     Sequencing 

   The principle  of   next-generation sequencing (NGS) is similar to that of capillary 
electrophoresis (Sanger) sequencing: sequencing by synthesis, in which the addi-
tion of each nucleotide is monitored while DNA  polymerase   copies a DNA tem-
plate. However, the critical difference in NGS is that instead of sequencing a 
single DNA fragment, millions of fragments can be processed in parallel. In the 
most widely used sequencing-by-synthesis NGS technology, Illumina, DNA 
polymerase catalyzes the incorporation of fl uorescently labeled deoxyribonucle-
otide triphosphates (dNTPs) into a DNA template strand during a number of 
cycles of DNA synthesis. At each cycle, the incorporated nucleotides are identi-
fi ed by fl uorophore excitation. Sanger sequencing is now obsolete due to its high 
cost, and some of the earlier generations of NGS technologies are disappearing 
in favor of newer ones. For instance, Roche has announced that its support for 
454 sequencing will be discontinued in 2016. This turnover of sequencing tech-
nologies is likely to continue in the coming years. The interested reader is 
encouraged to read a recent review of current sequencing technologies   (Reuter 
et al.  2015 ).  
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2.1.5     Bioinformatics and Data Processing 

  The sequencing process produces a  signifi cant   amount of data. For instance, a single 
run of an Illumina HiSeq2500 will produce 1 terabyte of data in about 6 days. The 
raw data is primarily provided in the form of plaintext fi les containing the sequences 
with associated quality scores. The general format used is the so- called   FASTQ 
format which bundles a FASTA sequence fi le to its quality data codifi ed as ASCII 
characters. The information of the quality scores is generally used for an initial 
quality clipping of the data, in which reads with low qualities are removed or 
trimmed. Subsequently, in a whole-genome analysis, there are two basic operations 
with this data. In de novo genome sequencing, reads are assembled into larger con-
tigs by means of detecting sequence overlap between the reads. Alternatively, in 
genome “resequencing,” reads are mapped (i.e., aligned) to a reference genome 
sequence in order to subsequently detect the desired variations (see below). Both 
assembly and mapping processes may require signifi cant computational resources. 
Mapping can be easily parallelized but assembly needs to consider large amounts of 
data simultaneously which requires access to large amounts of RAM. Currently, 1 
terabyte RAM, 32 core servers are often used .   

2.2     Review of Achievable Objectives 

2.2.1     De Novo Genome Sequencing 

  The ultimate goal of a de  novo   whole-genome sequencing project is to obtain a good 
quality reference assembly and sequence for a representative genome of a given 
species. What is understood as “good quality” may vary depending on the subse-
quent application. Generally, one major goal of high-quality genome references is 
to obtain high-quality gene model annotation. If there is interest in the large-scale 
organization of the genome and/or the dynamics of repetitive elements, high conti-
guity is also needed. Ideally, one would wish for a fi nal assembly that contains a 
single scaffold per chromosome, encompassing all sequence information, from telo-
mere to telomere, and containing no sequencing or assembly errors .  

2.2.2     Resequencing 

  The goal of a genome  resequencing   project is to annotate, for a given sample (indi-
vidual, cell line, tissue, etc.), the variations (polymorphisms) in the genome with 
respect to the reference (or to another sample). These variations may comprise all or 
a subset of the following types: single-nucleotide changes, including 
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polymorphisms (SNPs), rare variants (SNVs), or simple somatic mutations (SSMs), 
insertions and deletions, copy number variations (CNVs), and other rearrangements 
broadly categorized as structural variants (SVs) .   

2.3     Recommended Sequencing Platforms 

  Sequencing platforms are evolving continuously at a fast pace (Reuter et al.  2015 ). 
The  recommendations   outlined here will necessarily be limited to the current avail-
able techniques which may soon be surpassed by newer technologies. In general 
we will phrase our recommendations in terms of read length, throughput, and read 
pairing strategies. The Illumina platforms give high-quality sequence at the lowest 
cost per Mb. The main disadvantage is that read length is limited to shorter reads 
(100–300 bp) because of phasing issues and size restrictions on bridging amplifi ca-
tion. Single-molecule sequencing (Pacifi c Biosciences and Oxford Nanopore 
Technologies) can achieve longer reads at the expense of error rate, throughput, 
and cost. Coverage can offset problems in high error rate, at least for de novo 
assembly .  

2.4      Experimental Design Guidelines (Best Practices) 

2.4.1     De Novo Genome Sequencing 

 For a de novo genome sequencing, the most crucial part is to perform the assembly. 
This process is based on fi nding sequence overlaps between reads that allow their 
assembly  into   contigs and scaffolds that represent longer sequences (Simpson and 
Pop  2015 ). The presence of sequence variants within the sequenced DNA sample 
complicates this process, because these variants create mismatches between reads 
that correspond to the same genomic locus. The source of sequence variants can 
originate from the presence of a genetically heterogeneous set of organisms in the 
sample. Thus one fi rst recommendation is to use a genetically homogeneous source 
of genomic DNA. In large organisms it is easy to obtain enough material from a 
single individual. For smaller ones, the use of several individuals from clonal popu-
lations is preferred.  In   diploid organisms (or organisms with higher ploidy) sequence 
variants of the same locus can be present in the same organism. When possible, the 
use of inbred lines with reduced heterozygosity levels is recommended. 

 Once the appropriate source for the DNA has been selected, the next important 
consideration is the sequencing strategy. This will be determined mainly by  the   size 
and complexity of the target genome. For the same sequencing error rate, longer 
reads and higher sequencing coverage facilitate the assembly process. However, 
different technologies or sequencing strategies differ in throughput, read length, and 
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error rate in a way that a combination of several of them is generally the optimal 
solution. To inform this process, it is highly recommended to learn from previous 
efforts in sequencing the genomes of highly related species and to gather as much 
information on the complexity of the target genome in terms of size, level  of   hetero-
zygosity, and abundance of highly repetitive regions. As the number of sequencing 
projects increases, such guidelines and learned best practices are starting to be avail-
able for more diverse sets of organisms (Richards and Murali  2015 ). When this 
information is not available in the literature for that species or closely related ones, 
one sensible approach is to perform a small sequencing test involving one single 
run. Simple analysis  of   k-mers (a short DNA sequence consisting of a fi xed number 
(K) of bases) can inform us on parameters such as estimated genome size, presence 
of repetitive regions, and heterozygosity, among others (Simpson  2014 ). A common 
practice in the era of  Sanger sequencing   was to clone a few bacterial artifi cial chro-
mosomes (BACs) and shotgun sequence them fi rst and annotate them with repeats 
and genes.  

2.4.2     Genome Resequencing 

  Genome resequencing generally involves fewer constraints on the data than de novo 
sequencing. When the main objective is mostly  to   determine single-nucleotide poly-
morphisms and copy number variations, the accuracy and sequence depth of cover-
age is instrumental, and thus sequencing strategies that provide a higher throughput 
are preferred. When information on genome rearrangements is required, the design 
needs to include sequencing strategies that provide information of the relative posi-
tion of sequences over larger genomic distances. This includes technologies provid-
ing long reads or library preparation strategies that capture long genomic fragments 
from which the extremes are sequenced (mate-pair (MP) or clone end sequencing). 
Optical mapping (e.g., BioNano Genomics and OpGen) shows potential in this 
arena, but is not yet standard  (Howe and Wood  2015 ; Tang et al.  2015 ).   

2.5      Technique Overview (Wet Lab Protocol Overview: 
Library Construction Recommendations) 

 As mentioned above, sequencing involves DNA extraction and sequencing library 
preparation. DNA extraction should be performed with protocols that are appropri-
ate to the particularities of the biological material available so that a suffi cient quan-
tity and quality of DNA is obtained. A fi rst step that precedes the preparation of the 
library is the quality control (QC) of the DNA samples. QC involves quantifi cation 
of the amount of DNA, checking the 260:280 absorbance ratio (ratios between 1.8 
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and 2 are considered to indicate relatively pure DNA), and running an aliquot on a 
gel to check integrity and detect ribosomal bands. Ideally, there should be a suffi -
cient amount of DNA to proceed with a no-PCR protocol, which reduces the GC 
bias effect. The difference in coverage of a particular locus affected by PCR- 
dependent GC bias is shown in Fig.  2.1 . For Illumina SBS sequencing, sample 
preparation proceeds starting with  DNA   fragmentation (e.g., with Covaris), 
A-tailing, adapter ligation, and then size selection (column/beads for automation 
and consistency or gel for tighter size selection). An aliquot should then be run on a 
Bioanalyzer or similar instrument in order to choose the most promising libraries 
for sequencing. Longer fragments are not amplifi ed as well by bridging PCR on the 
Illumina fl ow cell, so smaller fragments need to be removed by column purifi cation 
if longer (>500 bp) fragment libraries are to be sequenced.
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  Fig. 2.1    No-PCR library preparation results in more even coverage across wide range of GC 
content. Panel A shows the coverage profi le (both sets of reads were downsampled to 30x at the 
locus shown) while panel B shows the fragment-size distributions. In  magenta  is the standard PCR 
protocol (10 cycles of PCR) and in  blue  the no-PCR protocol. While the fragment-size distribution 
is not as tight, the no-PCR protocol leads to more even coverage, for the most part independent of 
GC content       

 

2 Whole-Genome Sequencing Recommendations



20

2.6        Decision Tree for Good Sequencing Strategy Selection 

  The most important aspects that anticipate the diffi culty of an assembly in a de novo 
genome sequencing project is the complexity of the target genome, in terms of size, 
repeat structure, and level of heterozygosity.    Determination of the correct sequenc-
ing approach is diffi cult if no prior knowledge is available. Fortunately, depending 
on the genome size, a lane or two of Illumina sequencing can be analyzed using 
k-mer counting approaches (Simpson  2014 ). This can be done using specifi c soft-
ware (Preqc, gce) or by using the simple 17-mer counting approach described in 
Figure S8 of the giant panda genome supplementary information (Li et al.  2010 ) 
with a k-mer counter such as Jellyfi sh (Marçais and Kingsford  2011 ). See Fig.  2.2  
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  Fig. 2.2    The k-mer  frequency   plot for a heterozygous genome. Unique 17-mers were counted 
with Jellyfi sh. The number of unique 17-mers is plotted according to the number of times they are 
seen in the input set of Illumina reads (k-mer depth). The highest peak occurs at depth of one. 
These k-mers that appear only once in the set of reads correspond to sequencing errors. The next 
highest peak (at k-mer depth of 233) is the main peak, which is correlated with the depth of 
sequencing. In this case we see a substantial minor peak at half the depth (k-mer depth of 116), 
which is induced by the presence of polymorphisms. This is a diploid genome, so we only see one 
minor peak. In genomes of higher ploidy, it is possible to see additional peaks. To the right of the 
main peak, one can observe a wavelike pattern corresponding to repetitive elements. Larger peaks 
here are sometimes observed indicating a higher fraction of repetitive content. To estimate the 
genome size (without correcting for major sequencing biases like GC bias), one can simply divide 
the total number of k-mers by the depth of the main peak       
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for an example. Genome size, repeat content, and heterozygosity can all be esti-
mated with such an approach. Table  2.1  lists some real examples that illustrate dif-
ferent genome complexities and the sequencing strategy that led to good quality 
assemblies.

    One strategy that helps with highly repetitive genomes and highly heterozygous 
genomes (Fig.  2.3 ) is to divide the genome into smaller pieces by cloning fragments 
in BACs or fosmid vectors and sequence them either individually (antiquated 
Sanger-based clone-by-clone approach) or in pools (more easily managed and cost- 
effective on the Illumina platform). Drawbacks include cost of making the fosmid 
library, dividing into pools and preparing the DNA as well as the cost of sequencing, 
which depends on the target clone coverage. 5× clone coverage (necessary to cover 
99 % of the genome) would cost at least fi ve times as much as a standard whole- 
genome shotgun approach. Perhaps soon, long single-molecule reads may present a 
fast and cheap replacement for this approach; however, the goal remains the same—
to reduce the problems caused by repeats and to deal with polymorphism. With 
regard to genome resequencing projects, the constraints are fewer, and the charac-
teristics of the genome are generally known for that species, as there is a reference 
genome available. The genome size determines the required amount of sequencing 
so that variations can be called with suffi cient confi dence .

   Table 2.1    Provides several examples  of   sequencing and assembly strategies   

 Case  Sequencing strategy  Assembly strategy  Reference 

 Haploid fungal genome 
( Penicillium digitatum ) 
26 Mb 

 Illumina pair-end 
(PE) 2 × 50 

 SOAPdenovo  Marcet- Houben 
et al. ( 2012 ) 

 Illumina mate-pairs 
2 × 50 5 kb inserts 

 Diploid fungal hybrid 
(highly heterozygous) 
( Candida orthopsilosis ) 
12.6 Mb 

 Illumina pair-end 
2 × 75 

 SOAPdenovo  Pryszcz et al. 
( 2014 )  REDUNDANS 

 Giant panda  Illumina paired- end 
2 × 50 and 2 × 75 

 SOAPdenovo  Li et al. ( 2010 ) 

 Illumina mate-pairs 
2 × 50 2 kb, 5 kb, 10 kb 
inserts 

 Loblolly pine (22 Gb)  Illumina MiSeq 
paired-end 2 × 255 

 MaSuRCA  Neale et al. 
( 2014 ) 

  D. melanogaster ,  A. 
thaliana ,  S. cerevisiae , cell 
line CHM1 

 PacBio SMRT 
sequencing 

 Celera Assembler with 
MHAP 

 Berlin et al. 
( 2015 ) 

  E. coli   Oxford Nanopore  Nanocorrect 
(DALIGNER + POA), 
Celera Assembler, 
nanopolish 

 Loman et al. 
( 2015 ) 

  Several different sequencing and assembly strategies are shown from examples taken from a diver-
sity of organisms  

2 Whole-Genome Sequencing Recommendations



22

2.7        Potential Bottlenecks of the Methodology 

  The sequencing itself is no longer a bottleneck for genome sequencing projects. 
Depending on the strategy taken, if cloning steps are involved (e.g., fosmid or BAC 
libraries) or if experimental sequencing library preparation is to be carried out, one 
can expect delays on the front end. However, the conversion of the raw sequencing 
data into a high-quality, fi nished genome assembly is generally one of the major 
bottlenecks in a de novo genome sequencing project. This process is complicated by 
the different read lengths, read counts, and error profi les that are produced by differ-
ent sequencing technologies. In addition, biases in sample preparation, sequencing, 
and genomic alignment and assembly may result in genomic regions without cover-
age (i.e., gaps) and in regions with much higher or lower coverage than theoretically 
expected. GC-rich regions, such as CpG islands, can particularly suffer from low 
coverage because such regions remain annealed during the amplifi cation step. 
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  Fig. 2.3    Deciding  between   sequencing pools of clones vs. pure whole-genome shotgun approach. 
FPS = fosmid pool sequencing. WGS = whole-genome shotgun sequencing       
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Highly repetitive regions, which are prominent in multicellular organisms with 
large genome sizes, are hard to assemble. In theory, one needs to bridge the repeti-
tive regions by sequencing fragments that expand the whole region and its boundar-
ies, either by using long reads or long mate-pair libraries. Due to its large size and 
high redundancy, some regions may remain unresolved at any given fragment size. 
These would need to be closed by targeted approaches that are costly and time con-
suming.    Depending on the expected use of the assembly, this can tolerate the pres-
ence of gaps or unresolved regions, and most projects reach a compromise that 
would satisfy most general applications. Recently, duplicated regions, such as those 
deriving from tandem gene duplications, are also problematic and most assemblers 
would collapse these regions into a single one. The same type of regions is problem-
atic in genome resequencing projects, for the same reasons: some regions are less 
covered among sequenced reads, giving rise to gaps and coverage biases. In addi-
tion, short reads may map in multiple loci leading to ambiguity in the localization 
of a particular variant .  

2.8     Bioinformatic Analyses (Best Practices) 

2.8.1     Bioinformatician Consulting for Experimental Design 

  It is important to consult with the team that will perform the bioinformatic analysis 
earlier on. Poorly designed experiments or sample collection will introduce analyti-
cal challenges in downstream analyses; to minimize these complications, bioinfor-
matic teams can provide useful recommendations based on previous experiences. 
Ideally, a bioinformatic team that has previous expertise in similar analyses and that 
is easily accessible would be involved in the project from the beginning. Many 
teams doing bioinformatics research may be recruited to the project if they have a 
scientifi c interest in the project. A recommendation is to try to involve them from 
the start of the project and make them aware of the research interest, asking them to 
contribute to its solution, rather than simply using them for subsidiary help in the 
tedious task of “simply” processing the data. This will ensure a high level of impli-
cation and a true interest in producing the best results. An important guideline in 
this respect is to reward the help of  bioinformatic   collaborators with due recognition 
in terms of authorship (Chang  2015 ). Beyond collaborations from other groups, 
bioinformatic support can be obtained from core services at many large institutions 
or companies that specialize in bioinformatic analyses. Assessing what is the exper-
tise of these teams in projects similar to the one at hand is crucial to ensure a suc-
cessful experience. Finally, it is advisable to envision the hiring of bioinformaticians 
in the project. If bioinformatic expertise is lacking in the host group, these special-
ists could ideally be embedded (at least for some time) in teams of data analysis 
collaborators or cores, so that he/she benefi ts from expert knowledge accumulated 
in experienced teams .  
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2.8.2     Analysis Workfl ow Overview (From Raw Reads QC 
to Functional Characterization) 

2.8.2.1     Quality Clipping, Filtering, and Error Correction 

  Invariably, the fi rst step of data analysis is the quality clipping and fi ltering of the 
raw sequencing results. An effi cient fi ltering of low-quality data will minimize 
problems in downstream analysis. One fi rst fi ltering that must be done is to remove 
any partial adapter sequence that may have been sequenced. This can occur when a 
given sequenced fragment was shorter than the read length. In addition it is possible 
that concatenated adapter-only sequences have been sequenced. These sequences 
must be removed. Subsequently it is highly advised to perform a control of the qual-
ity of the reads which may lead to fi ltering or trimming reads of regions thereof that 
have low quality. As mentioned above raw sequencing reads are made available as 
FASTQ text fi les, in which each short read takes up four lines: the read identifi er 
(starting with an @), the DNA sequence itself, another identifi er (same as line 1, but 
starting with a + (or sometimes only consisting of a +)), and the Phred quality score 
for each base in the read. The quality score is encoded with an ASCII character code 
(  http    :  //      www    .  ascii      -      code    .  com      /    ). Illumina and other manufacturers currently (as of 
v1.8) use the Sanger Phred ASCII encoding offset of 33, so that the ASCII code 33 
(!) is 0, and ASCII code 74 (J) is 41. Quality scores are defi ned as  Q  phred  = −10log10( p ), 
where  p  is the estimated probability of a wrong base call. So a  Q  phred  of 20 corre-
sponds to a 99 % probability of a correctly identifi ed base (1 % error; see Table  2.2 ).

   One of the fi rst evaluation routines is to assess how the distribution of quality 
scores and nucleotides looks like. This is generally done by summarizing and plot-
ting the data (typically with FASTQC or a similar software). A typical plot includes 
the quality score per residue (see Fig.  2.4  for an example of a 250 nt HiSeq2500 
read 1). Quality scores generally decrease over the length of a read (i.e., fi rst incor-
porated nucleotides are determined with higher accuracy), and how fast these 
declines occur can vary from one sequencing run to the next. This plot will reveal 
whether the sequencing run maintained an overall high quality during the whole 
procedure or whether trimming the last residues of the reads would be advisable. 
Q30% (average percent of bases >Q30) is a frequently used metric to determine the 
overall quality of a run, while error rate (estimated by spiking in PhiX DNA as a 
control) is probably the most relevant metric for downstream analyses. Quality 

   Table 2.2    Relationships between Phred quality scores and accuracy   

 Phred quality score  Probability of incorrect base call  Base call accuracy 

 10  1 in 10  90 % 
 20  1 in 100  99 % 
 30  1 in 1000  99.9 % 
 40  1 in 10,000  99.99 % 
 50  1 in 100,000  99.999 % 
 60  1 in 1,000,000  99.9999 % 
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scores and error rates are related, of course, but not perfectly, which is why some 
analyses recalibrate base qualities using packages such as the Genome Analysis 
Toolkit (GATK) from the Broad Institute (McKenna et al.  2010 ). Another informa-
tive plot is the base composition per residue, e.g., what fraction of A’s, C’s, G’s, and 
T’s has a given position in a read. A perfectly random sampling of reads along a 
genome should render horizontal lines for each residue, with their values in accor-
dance to the overall base composition of the genome (e.g., with GC content). 
Nonuniform patterns reveal biases in the composition of the reads and may indicate 
strong amplifi cation biases or  the   presence of sequenced adapters in the reads. In 
addition, it is recommended to assess the fraction of duplicate reads (identical reads 
present that are present in the dataset), as they may originate from primer or PCR 
bias, and thus a large fraction of duplicate reads may be indicative of a poor cDNA 
library. Several tools and packages are available for performing the quality 
 assessment and trimming of FASTQ fi les. Some currently popular options include 
FASTX, FASTQC, Trimmomatic (Bolger et al.  2014 ), cutadapt, trim_galore, or 
PRINSEQ  (Schmieder and Edwards  2011 ).

   In addition to trimming, another way to  deal   with errors is to correct them. For de 
novo genome assembly, error correction can reduce memory consumption and lead 
to simpler assembly graphs. Popular assembly tools SOAPdenovo (Luo et al.  2012 ), 
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ALLPATHS-LG (Gnerre et al.  2011 ), and SGA (Simpson and Durbin  2012 ) have 
built-in error correction. Some tools such as QUAKE (Kelley et al.  2010 ) can be run 
stand-alone. The basic idea behind most of these approaches is that low- coverage 
k-mers (presumably caused by sequencing errors) can be corrected by high-coverage 
k-mers within a low edit distance of the low-coverage k-mer.  

2.8.2.2     Genome Assembly 

  Essentially, there have been two successful approaches to the assembly of sequenc-
ing reads into a genome sequence: those based on the basic overlap-layout- consensus 
(OLC) algorithm and those based primarily on de Bruijn graphs. For detailed 
reviews, see Miller et al. (  2010 ) and Compeau et al. ( 2011 ). Archetypal OLC 
assemblers include Phrap, TIGR assembler, PCAP, JASS, Phusion, Arachne, 
Newbler, and the Celera Assembler. In the era of Sanger sequencing-based genome 
projects, these programs were successful in producing high-quality draft genomes, 
although the fi nal contiguity reported was often achieved by combining clone-based 
approaches and lots of manual “fi nishing” work. The basic approach taken by 
Celera Assembler, for example, is as follows:

    1.    Overlap

    (a)    Overlaps are computed among the set of all reads (“all against all”) using a 
BLAST-like seed and extend algorithm.  ovl  (classic) or  mer  (for 454) are 
used as the overlapper. Both use a seed and extend approach, but with param-
eters tuned to Sanger or 454 read length and error profi les, respectively. 
Other assemblers use similar seed approaches (like BLAST) and usually 
process the initial overlaps with Smith-Waterman alignment.   

   (b)    Such overlap computations use the majority of CPU time.       

   2.    Layout

    (a)    The genomic order or “layout” of the reads is determined by computing a 
Hamiltonian path in which reads are represented as vertices in a graph, the 
overlaps are edges, and a path is found that visits each vertex once and only 
once.   

   (b)    The CA module unitigger is used to compute initial high-confi dence 
contigs.   

   (c)    Scaffolder uses additional mate-pair data to join unitigs with estimated gaps.   
   (d)    The layout step often uses the most memory.       

   3.    Consensus

    (a)    The optimal multiple sequence alignment is usually unattainable. Heuristics 
are used to guide the alignment and output a consensus. Variants can some-
times be output. Depending on the length and pairing of input data, the vari-
ants can be phased.        
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  Practically speaking, most OLC software cannot be run effi ciently on NGS data. 
However, the cost of hardware (CPUs and memory) has fallen and the algorithms 
and implementations improved so much that, for example, the Celera Assembler 
can now be run on Illumina data, although still not as effi ciently as the k-mer graph 
(de Bruijn graph)-based assemblers. 

 With the introduction of massively parallel sequencing, which is characterized 
by the production of a very large number of short reads, OLC approaches became 
computationally infeasible, necessitating new algorithmic development. Fortunately, 
the mathematics had already been worked out and only required co-opting for the 
assembly problem. A Eulerian path, in particular the k-mer version of the de Bruijn 
graph, is similar to a Hamiltonian path, but where vertices are the k-mers and edges 
are the k—one overlaps and each edge is visited at least once. The solution to this 
problem is more computationally feasible and has become popular for assembling 
NGS data. However, the problems that complex genomes present, such as repeats 
and heterozygosity, become even harder to resolve. Extra attention must be paid to 
read trimming and error correction and to cleaning of the assembly graph (pruning 
tips, popping bubbles, etc.). 

 To generate high-quality assemblies from NGS data, one more or less follows the 
general workfl ow depicted in Fig.  2.5 . It is important to preprocess the read data as 
described above and to do quality control checks (e.g., FASTQC) and plot k-mer 
frequencies to estimate genome size and complexity. Then, the overlap graph (as 
discussed above the more effi ciently computed by de Bruijn graph) is created. To 
generate unitigs using a de Bruijn graph, k-mers of different lengths should be 
tested. K-mers that are too short will result in an assembly broken by short tandem 
repeats, while k-mers that are too long will result in assemblies broken at regions of 
low coverage. Moreover, longer k-mers often require more memory to store k-mer 
counts, as errors create a number of unique k-mers equal to the k-mer size each time 
an error occurs in a read. Then pairing information from short fragment paired-end 
reads and/or long fragment mate-pair reads is used to join unitigs into longer contigs 
and these contigs into scaffolds containing gaps of estimated size using the mean 
and standard deviation of the fragment lengths for each sequencing library. It is 
important to detect potential misassemblies along the way by trying to detect chime-
ras, aberrant depth (repeat) contigs, or compression/expansion errors either by 
determining the consistency or support of the read data aligned back to the interme-
diate assembly (e.g., using REAPR (Hunt et al.  2013 )) or by  using   external informa-
tion such as physical or genetic maps or alignment to phylogenetically close 
high-quality reference genomes. After misassembly correction, one can fi ll scaffold 
gaps using either built-in modules or stand-alone programs such as GapFiller 
(Boetzer and Pirovano  2012 ). Polishing, or fi xing small errors such as 
 single- nucleotide substitutions or indel errors like homopolymers, can be achieved 
using approaches nearly identical to variant calling of resequencing data. Finally, if 
genetic, physical, or optical maps have been generated, the assembly can be 
“anchored” to chromosomes/linkage groups/pseudomolecules by mapping the posi-
tioned markers onto the scaffolds and then ordering and orienting them if possible 
to create a fi nal anchored assembly .
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2.8.2.3        Read Mapping and Variant Calling 

  Read mapping refers to the process of aligning short sequencing reads to a reference 
sequence, which is generally a complete genome, but can also be a transcriptome. A 
plethora of computer programs have been developed that map (also called align) 
reads to a reference sequence. These programs use different algorithms that vary in 
speed and accuracy (Fonseca et al.  2012 ). The majority of fast mapping algorithms 
perform indexing on the read sequences or the reference sequence, or sometimes 
both. Similar to Google’s indexing of websites, a preprocessing of sequence data 
creates an index data structure that accelerates the search for a near-exact match. 
Depending on the nature of the index, mapping algorithms can be roughly grouped 
into three categories: algorithms based on hash tables, algorithms based on suffi x 
trees, and algorithms based on merge sorting (Li and Homer  2010 ). Most  existing 
  algorithms belong to the fi rst two types. All algorithms based on hash tables keep 

data
conditioning

assembly

Reads    
Paired End
Mate Pairs

Clone Ends
Long Reads

processed
reads

preprocess
remove adapters

trim
filter

correct

unitigs

Overlap/DBG

contigs scaffoldsscaffold 
overlap/

join 

FASTQC
0 50 100 150 200

0.
0e

+0
0

1.
0e

+0
7

2.
0e

+0
7

Counts (N)

Di
sti

nc
t k

m
er

s (
N)

raw
q_filter
p_filter
aphid

0 50 100 150 200

0e
+0

0
4e

+0
8

8e
+0

8

Counts (N)

To
ta

l k
m

er
s (

N)

raw
q_filter
p_filter
aphid

0 2000 4000 6000 8000 10000

0.
99

0
0.

99
2

0.
99

4
0.

99
6

0.
99

8
1.

00
0

Counts (N)

Di
sti

nc
t k

m
er

s (
cu

m
ula

tiv
e 

fre
q.

)

raw
q_filter
p_filter
aphid

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Counts (N)

To
ta

l k
m

er
s (

cu
m

ula
tiv

e 
fre

q.
)

raw
q_filter
p_filter
aphid

k-mer analysis

contamination
chloroplast

E.coli

chromosomes scaffolds

correct
misassemblies

scaffolds
gapfill

& polishanchor

genetic or
physical 
map(s)

  Fig. 2.5    General assembly workfl ow       

 

T. Gabaldón and T.S. Alioto



29

the position of each k-mer subsequence (a sequence of k residues) of the query in a 
table (hash table) and scans the databases for k-mer exact matches (called seeds). 
Algorithms based on suffi x trees fi rst identify exact matches using a data structure 
that stores all the suffi xes of a string and then build inexact alignments around the 
exact matches. Different mappers diverge in their particular implementation of the 
strategy and in their inclusion of additional parameters that enable more effi cient 
mapping of dissimilar types of data, for instance, the ability to perform alignments 
containing gaps, or split alignments, or the possibility to incorporate information 
from pair-end or mate-pair reads. The most immediate goal of read mapping is to 
create an alignment fi le also known as a sequence alignment/map (SAM) fi le. The 
SAM fi le contains one line per mapped read indicating the reference sequence and 
position to which it maps, as well as a Phred-scaled quality score of the mapping, 
among other details (Li et al.  2009 ). The SAM format is human readable and easier 
to process by conventional processing programs. The BAM format provides binary 
versions of most of the same data and is designed to provide higher compression . 

  One of the main purposes of genome resequencing is to discover genetic varia-
tion among related individuals or samples in a large scale. This inference is gener-
ally done after the mapping of the reads is completed. Again, a number of algorithms 
and computer programs are available that are designed to call variants from SAM/
BAM fi les. Most are focused on the detection of single-nucleotide polymorphisms 
(SNPs) or small insertions and deletions. A variation from the reference sequence 
will result in mismatches, gaps, or a signifi cantly different coverage, and  most   algo-
rithms perform a statistical analysis of mapping results to provide a call of present 
variants. Most prevalent types of sequence variation, including SNPs, indels, and 
larger structural variants, are generally stored in a specifi c format denoted as variant 
call format (VCF). Larger variations such  as   copy number variants (CNVs) and 
genomic rearrangements are generally detected with specifi c programs. For instance, 
CNVs can be detected by methods that assess the depth of coverage, by piling up 
aligned reads against genomic coordinates and then calculate the depth of coverage 
along windows and compare it with the average coverage of the region (Consortium 
 2012 ). Genomic rearrangements can be assessed by using information of the map-
pings of mate-pair or pair-end reads  (Xi et al.  2010 ).   

2.8.3     Sequencing Depth (Number of Aligned Reads Required 
for a Reliable Analysis) 

2.8.3.1     Introduction 

 Despite signifi cant drops in price, sequencing costs still set limits to the total amount 
of sequence that can be generated. In addition, various analyses may require differ-
ent minimal sequence coverage to provide reliable results. These factors are keys 
for the experimental design of a whole-genome sequencing project (Sims et al. 
 2014 ). Here we will provide an overview of current guidelines and precedents with 
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respect to sequence coverage.  The   empirical per-base coverage (or sequencing 
depth) is the exact number of times that a base in the reference is covered by a high- 
quality aligned read in a given sequencing experiment. However, when planning a 
whole-genome sequencing project, we must deal with the  expected   coverage, which 
is the average number of times that each nucleotide in the genome is expected to be 
sequenced given a certain number and length of reads and with the assumption that 
reads will be randomly distributed across the genome. Lander and Waterman ( 1988 ) 
described this as  c  =  LN / G , where  L  is the read length,  N  is the number of reads, and 
 G  is the haploid genome length. Sequencing depth is generally expressed in fold 
coverage units (e.g., 10× means that an average base is covered by ten reads). 

  Redundancy   in sequencing data is necessary to overcome sequencing errors and 
biases. If a sequencing method would be 100 % accurate and perfectly balanced 
over the entire genome sequence, then a 1× depth of coverage would suffi ce for all 
downstream analyses. However, in reality, sequencing errors are not negligible. To 
distinguish errors from sequence variants, one needs to assess all reads mapped to a 
given residue. For instance, at a 1 % error rate, the combination of ten identical 
reads that cover the location of the variant will produce a strongly supported variant 
call with an associated error rate of 10 −20 . It must be noted, however, that increased 
depth of coverage cannot solve other sequencing problems such as gaps or ambigu-
ous alignments in repetitive regions. Thus, sequencing depth must be considered in 
combination with alternative sequencing strategies (e.g., paired-end, mate-pairs).  

2.8.3.2     De Novo Sequencing 

  The required depth in a de novo genome sequencing project is determined by sev-
eral factors including the sequencing method and strategy, read length, the assembly 
approach, and the complexity in terms of repetitive regions of the genome (length, 
similarity, and abundance of the repetitive regions). For instance, Sanger-based 
sequenced genomes such as dog and human provide good reference assemblies at 
low coverage (7–10×), whereas much higher sequencing depths (~73×) using short 
reads rendered poor assembly qualities in the giant panda, a genome of similar size 
and complexity to that of dog (Lindblad-Toh et al.  2005 ; Li et al.  2010 ). For Illumina 
data, the depth and library types need to be matched to the assembly algorithm, 
which can have very specifi c requirements. For example, ALLPATHS-LG requires 
a 2 × 100 PE library of fragment length 180 bp (20 bp overlap) at >50× coverage and 
at least one MP library of 3 kb fragment length also at 45–50× coverage. Larger 
mate-pair libraries are necessary for more contiguous assemblies. It can also take 
advantage of long PacBio reads at about 50× coverage. This software is being 
replaced by DISCOVARdenovo, which requires 50–80× coverage by a single 450 
bp fragment PE library sequenced in 2 × 250 PE mode on a HiSeq2500. Of course 
additional scaffolding with MP libraries or other means can and should be carried 
out with stand-alone scaffolding software. 

 SOAPdenovo and ABySS are more fl exible in the number of input libraries and 
coverage. ABySS is able to use distributed memory and thus has more fl exibility in 
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terms of the number of reads you give it. However, best results are achieved when 
at least 100× coverage in PE reads (all PE libraries combined) is used for the initial 
de Bruijn graph construction, with a minimum of 20–30× per library for scaffold-
ing. Higher coverage can give better scaffolding results, but with diminishing 
returns. 

 For PacBio-only assemblies, one can use the MHAP algorithm (Berlin et al. 
 2015 ) that is now available as part of the Celera Assembler. Required coverage is a 
minimum of 50–70×. This strategy is able to reconstruct whole chromosome arms 
of the  D. melanogaster  genome. A similar approach  for   Oxford Nanopore 
Technologies two-directional reads has been implemented in a pair of packages 
called  nanocorrect  and  nanopolish  (Loman et al.  2015 ). At least 25× coverage is 
necessary, with higher depth likely to yield better results. For both technologies, the 
error rate is typically too high to run self-alignments with more traditional aligners, 
a step necessary for calculating overlaps; thus they utilize new alignment algorithms 
(the MinHash Alignment Process (MHAP) and DALIGNER (  https://github.com/
thegenemyers/DALIGNER    ), respectively) that are roughly based on the idea of 
shared k-mer content .  

2.8.3.3     Resequencing 

  Early resequencing studies of humans using Illumina short-read approach showed 
that the required sequencing depth to detect most of the SNPs and short indels was 
15× when they were homozygous and 33× if they were heterozygous (Bentley et al. 
 2008 ). Subsequent studies have provided similar estimates, and thus depths exceed-
ing 30× have become the de facto standard in resequencing analyses (Ajay et al. 
 2011 ). The use of low base qualities and nonuniform coverage may challenge the 
detection of variants, so these numbers should be considered after fi ltering reads by 
quality and assuming a uniform coverage over the genome. For  the   detection of 
CNVs, uniformity of sequencing coverage is instrumental to avoid false positives. 
In addition, accurate inference of break points and absolute copy number estimation 
improve with increasing read depth .   

2.8.4     Diffi culties of the Bioinformatic Analyses 

 Although an increasing number of user-friendly solutions are becoming available, 
the diffi culty of the bioinformatic analyses required remains high. Attempts to 
undergo a genomic analysis without the required expertise can lead to frustration 
and dangerous misinterpretations of the data. Thus, it is highly advisable to include 
in the team the necessary human resources with suffi cient expertise. As mentioned 
above, this can be achieved through collaborations with bioinformatic teams, ser-
vice cores, or companies.  
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2.8.5     Expected Results 

2.8.5.1     De Novo Sequencing 

  The expected result for a de novo genome sequencing project is a high-quality 
genome assembly, which is annotated to some satisfactory level. The quality of the 
assembly in terms of contiguity depends on the expected use. As mentioned above, 
the optimal target is an end-to-end, one chromosome one contig, no-gap containing 
accurate sequence. However, such an objective has only been accomplished for 
small genomes, and larger genomes containing repetitive sequences are generally 
incomplete, despite extensive effort. As an example, the human genome still con-
tains hundreds of large, unresolved gaps that correspond to repetitive or heterochro-
matic regions. Fortunately, not all applications of de novo genome sequencing 
require full completion of the assembly. For instance, protein-coding regions of the 
genome, which remain the main focus of de novo genome sequencing, are generally 
well recovered. However, a highly fragmented genome may  split   genes across dif-
ferent contigs. If the interests lie on higher-scale properties of the genome such as 
gene order, high contiguity in the assembly is required, although the presence of 
undetermined sequences may be allowed. Finally, some analyses are highly demand-
ing on the assembly completion, for instance, when the focus is in determining the 
content and distribution of transposable elements .  

2.8.5.2     Resequencing 

 The expected results for a  genome   resequencing analysis would be a comprehensive 
catalog of genetic variations in individuals, samples, or populations with respect to 
a given reference. This includes single-nucleotide variants, small insertions and 
deletions (indels), larger structural variants (such as inversions and translocations), 
and copy number variants (CNVs).   

2.8.6     Effective Result Reporting 

2.8.6.1     De Novo Sequencing 

 Genome assemblies are  reported   and shared as a set of fi les including:

    1.    A set of FASTA fi les corresponding to contigs, scaffolds, and/or chromosomes. 
Scaffold FASTA fi les are the most common and useful of these.   

   2.    One or more AGP fi les describing the structure of the assembly with contigs as 
the building blocks. An AGP (acronym for “A Golden Path”) is a commonly 
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used fi le format for describing assemblies. This format was originally conceived 
by the International Human Genome Sequencing Consortium and used to 
describe the genome assembly of human. It is now the most commonly used 
format for specifying assembly information (  http    :  //      www    .  ncbi    .  nlm    .  nih    .  gov      /      proje
cts      /      genome      /      assembly      /      agp      /      AGP      _      Specifi cation    .  shtml    ). There can be multiple 
AGP fi les: one for scaffolds, another for superscaffolds, and another for pseudo-
molecules/chromosomes/linkage groups.    

2.8.6.2       Assembly Metrics 

  A wide range of basic statistics are available that serve to describe the quality of a 
given assembly. The most basic one is the total size of the assembly (assembly size), 
which reports the total number of bases contained in the genome. When compared 
to the estimated or known size of the target genome, this metric can be transformed 
into the coverage of a given assembly over the genome of interest. Another set of 
useful metrics inform on the contiguity of the assembly, that is, whether the assem-
bly is formed by many, small contigs or by few large ones. These statistics can refer 
to contigs or scaffolds, being the simplest metric the total number of contigs and 
scaffolds in that assembly. Rather than the mean contig length, a metric known as 
the N50 is often used to describe the contiguity of an assembly. It is defi ned as the 
length  N  for which at least 50 % of all bases in the sequences are contained in 
sequences of length  N  or longer. An easy way to compute it is to order your sequence 
lengths from longest to shortest and compute the cumulative sum of their lengths; 
when the sequence is reached, which brings the sum to greater than or equal to half 
of the total length of the assembly, the N50 equals the length of that sequence. The 
metric can also be computed for other proportions of the assembly, for example, 
N10 or N90 (where 90 % of the assembled bases are in scaffolds/contigs of length 
N90 or longer). When comparing multiple assemblies or assembly methods on a 
genome with an accurate size estimate, the assembly length can be substituted by 
the estimated genome length to give NG50 (NG10, NG80, NG90, etc.) values. 

 As many would point out, contiguity is good to have but not at the expense of 
correctness. It would be easy to make  an   assembly of one single contig by joining 
all sequences end to end, yet it would be highly inaccurate. Aggressive scaffolding 
requiring low support can infl ate N50 values and the expense of more  misassemblies. 
Thus other metrics should be considered. Gene content (both the completeness of 
the gene set and the connectivity of exons) is a very important point to consider. The 
CEGMA (Parra et al.  2007 ) or BUSCO (Simão et al.  2015 ) pipelines which search 
for a conserved set of core eukaryotic genes in draft genomes can report on both 
completeness of the genome and its connectivity. Several other analysis suites aim 
to provide a more complete picture of quality. FRCurve (Vezzi et al.  2012 ) can be 
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run on assemblies to which at least one paired-end library and, optionally, one mate-
pair library have been mapped and provided in BAM format. QUAST (Gurevich 
et al.  2013 ) is another useful tool for plotting a number of contiguity and gene con-
tent metrics .  

2.8.6.3     Genome Resequencing 

 Effi cient reporting of a  resequencing   study includes making available the raw reads, 
the variant calling fi les (VCFs, (Danecek et al.  2011 )), as well as a statistical analy-
sis that will depend on the focus of study (detection of disease variants, population 
structure, etc.). Quality metrics for call sets are lacking. Pipelines can be bench-
marked (e.g., using the Genome in a Bottle materials (  https://www-s.nist.gov/
srmors/view_detail.cfm?srm=8398    )), but individual call sets, unless independently 
validated with an orthogonal technology, cannot. As such, it is important to report 
base frequencies, base qualities, mapping qualities, allele frequencies, strand bias, 
positional bias, etc. so that the data may be reanalyzed at a future date by more up- 
to- date pipelines, perhaps tuned to return few false positives or few false negatives, 
depending on the goal of the resequencing experiment. It must be noted that variant/
mutation calling procedures may vary depending on the frequency of the alternate 
allele.  

2.8.6.4     Repositories to Upload Research Results Data for Publication 

  The   European Nucleotide Archive (ENA (Leinonen et al.  2011 )) is Europe’s pri-
mary nucleotide-sequence repository.    It comprises the Sequence Read Archive 
(SRA) where raw reads from different sequencing experiments can be submitted. 
The European Genome-phenome Archive (EGA) is the appropriate repository for 
human resequencing data. Raw data (FASTQs), alignments (BAMs), and genotypes 
and structural variants (VCFs) can all be submitted. Access is governed by a data 
access committee.    

2.9     Main Remarks and Conclusions 

 To summarize, successful whole-genome sequencing requires the ability to think 
ahead and develop a strategy that accomplishes the goals of the project. Specifi cally, 
we recommend the following:
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  Before the Project Starts 

•   Survey existing genomic literature in search of required information (genome 
complexity, heterozygosity, size)  

•   Study previous projects on similar organisms.  
•   In the absence of related studies, consider a sequencing test to obtain preliminary 

data on genomic characteristics.  
•   Plan the sequencing strategy according to the assembly/analysis strategy that 

you will use afterward.  
•   Make a concerted effort to obtain high-quality DNA material, from samples of 

minimal polymorphism if possible (for genome assembly).  
•   Engage collaborators that will participate in the analysis from the beginning.  
•   Consider data storage and processing costs in addition to library preparation and 

sequencing costs.  
•   Balance cost with desirable depth of sequencing, most useful library frag-

ment sizes, and longest reads possible (for genome assembly). Underfunding 
a project will achieve suboptimal results. In some cases, additional sequenc-
ing can save a project; however, depending on the strategy, it may have been 
a waste.   

  During the Project 

•   Revise and optimize as you go. If a strategy is not working, try to diagnose the 
problem and fi x it as early as possible.  

•   Coordinate the work of the different teams involved, avoid redundant analysis, 
and establish clear dependencies and workfl ows.  

•   Freeze assembly and annotation at the time downstream analyses and start to 
avoid multiple recomputations due to constant minor updates.   

  After the Project 

•   Use effi cient reporting and standard formats.  
•   Submit assemblies, annotations, raw data, and main analyses to public 

repositories.         
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    Annex: Quick Reference Guide 
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  Fig. QG2.1    Representation of the wet lab procedure workfl ow       
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  Fig. QG2.2    Main steps of the computational analysis pipeline       
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  Table QG2.1    Experimental design considerations (I)   

 Project phase  Recommendations 

 Sample  1. Reduce expected genetic variability of the sample by using minimal 
number of inbreed individuals if possible 

 Sequencing strategy  1. Determine early size, heterozygosity, and repetitive structure of the 
target genome 
 2. Consider recent experiences in similar organisms 
 3. Consider contiguity and coverage needed to address the specifi c 
questions 
 4. Combine throughput with long-range approach (FOSMIDS, longer 
read technology) 

 Bioinformatic 
analyses 

 1. Engage expert collaborators from the beginning 
 2. Survey state-of-the-art methodology 
 3. Consider specifi cities of the project (e.g., high heterozygosity) 

 Effi cient reporting  1. Deposit all possible data (raw reads, assemblies, annotations) in 
public repositories 
 2. Link data to publication 
 3. Report standard quality parameters for assembly and annotation 
 4. Use standard formats when possible 

  De novo genome sequencing hints  

  Table QG2.2    Experimental design considerations (II)   

 Project phase  Recommendations 

 Sample  1. Plan balanced sampling of a suffi cient size to address the questions 
driven by the project 

 Sequencing strategy  1. Consider required sequencing depth depending on size of the target 
genome and required coverage for effi cient variant calling 
 2. Consider whether determination of structural variants is needed and 
use required strategy (e.g., pair-end, mate-pair libraries) 

 Bioinformatic 
analyses 

 1. Engage expert collaborators from the beginning 
 2. Survey state-of-the-art methodology 
 3. Consider specifi cities of the project (e.g., high heterozygosity) 

 Effi cient reporting  1. Deposit all possible variation data in public repositories 
 2. Link data to publication 
 3. Use standard formats when possible 

  Whole-genome resequencing hints  
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    Chapter 3   
 Targeted DNA Region Re-sequencing                     

       Karolina     Heyduk      ,     Jessica     D.     Stephens      ,     Brant     C.     Faircloth     , 
and     Travis     C.     Glenn    

3.1            Different Types of Re-sequencing Methodologies 

 Multiple re-sequencing  approaches   have been developed and reviewed (McCormack 
et al.  2013a ; Lemmon and Lemmon  2013 ). Below, we briefl y summarize the major 
re-sequencing methods, indicating  their   advantages and disadvantages (Table  3.1 ) 
and the scale at which they are most appropriate (Fig.  3.1 ). For all methods, we 
assume that sequencing coverage will be reasonably deep to achieve  high   accuracy 
(Table  3.2 ), especially at heterozygous sites. All methods are usually paired with 
DNA sequence tags (also known as barcodes, indexes, or molecular identifi ers, 
MID tags; see Faircloth and Glenn  2012 ) to identify individual samples from a pool 
of samples. We assume that lower costs will increase how widely the techniques 
will be adopted, and that total costs of ≤$100 US/sample, including personnel costs, 
are highly desirable.
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3.1.1         Whole Genome Re-sequencing 

    Whole genome re-sequencing (WGRS)   is  the   easiest method to implement in the 
lab, offers the most complete data, and has excellent software support due to its 
widespread use in human genomics (for a review of software, see Bao et al.  2011 ). 
While WGRS studies are being published in nonhuman systems, these are mostly 
limited to agriculturally important crops (rice, Xu et al.  2010 ; soybean, Li et al. 
 2013 ) or model organisms ( Arabidopsis ,   www.1001genomes.org    ;  Mus , Keane et al. 
 2011 ;  Drosophila , Zhu et al.  2012 ). The lack of WGRS studies are due to the inher-
ent problems associated with WGRS; these include (1) a required reference genome 
from the same or a closely related species, (2) the amount of sequencing is directly 
proportional to genome size (i.e., big genomes require a lot of sequencing), and (3) 
computational efforts increase as a power function of genome size (i.e., large 
genomes require much more computational effort than small ones)—all of which 
increase costs. As of 2015, it is possible to re-sequence a human genome at 30× 
coverage for ~$1000 on Illumina HiSeq 4000s (  www.illumina.com    ). Thus, it is pos-
sible to sequence  Drosophila -sized genomes for a cost approaching $100/sample, 
but most other non-model and large-genome organisms remain uneconomical for 
WGRS efforts  .  

3.1.2     Transcriptome Sequencing 

    Transcriptome sequencing (RNA-seq)   has the advantage of using the cellular 
transcriptional machinery to naturally reduce the complexity of genomes and enrich 
for functional elements. There are multiple advantages of focusing on genome 
reduction through transcriptomics. For example, transcript profi les for polymor-
phism comparisons are predicted to be similar if using the same tissue across 

Number of individuals

Low

L
o

w

High

H
ig

h

N
um

be
r 

of
 lo

ci

PCR amplicon sequencing

Whole genone re-sequencing
RNA-seq

Target enrichment

PCR amplicon sequencing

Target enrichment
RADseq

  Fig. 3.1    Methods for re-sequencing based on number of individuals and loci for analyses       
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individuals or species. There are large-scale initiatives attempting just that through 
a consortium of universities (plants, 1KP project,   http://www.onekp.com    ; insects, 
1KITE,   http://www.1kite.org    ; eukaryote microbes, Marine Microbial Eukaryote 
Transcriptome Sequencing Project,   http://www.marinemicroeukaroytes.org    ). 
Another benefi t of transcriptome sequencing is that the assembled template can be 
used to develop markers for future studies (Ekblom and Galindo  2011 ). 

 RNA-seq has several disadvantages. First, differences in gene expression will 
vary depending on which tissues are collected, developmental stage of tissue, time 
of day, and nutritional status of individuals; this can limit comparison of ortholo-
gous loci across samples. Variation between libraries can be mitigated, however, by 
pooling several life stages, tissues, etc. during cDNA library preparation (Hahn 
et al.  2009 ). Second, RNA-seq requires signifi cant sequencing depth to account for 
loci that are weakly expressed. Third, models relating to demographic history  and 
  population structure generally assume neutral evolutionary processes, which may 
be violated by transcribed genes and thus may cause problems with downstream 
analyses for these types of studies. Finally, RNA-seq currently costs one to a few 
hundred dollars per sample; thus, sampling a large number of individuals and spe-
cies can be costly for reagents and sequencing and can increase computational time 
requirements for transcriptome assembly and subsequent analysis   (Wang et al. 
 2009 ; Ozsolak and Milos  2011 ).  

3.1.3     PCR Amplicon Sequencing 

  PCR can be used to  produce   amplicons that are sequenced using MPS. This has 
most frequently been done for 16S metagenomics (Wang and Qian  2009 ; Haas et al. 
 2011 ) and specifi c disease panels (Easton et al.  2015 ), but many other applications 
of this technique have been developed (Faircloth and Glenn  2012 ). Amplicon 
sequencing has the advantage of working from very limited amounts of starting 
material, building on well-known techniques, and can be done for well under $100 
US per sample if the number of target loci is limited. The major disadvantages of 
amplicon sequencing are that (1) costs increase signifi cantly as the number of target 
loci increases, (2) amplicons generally need to be combined with other samples to 
increase sequence diversity on Illumina platforms and to take advantage of capacity, 
and (3) assay development time and costs increase signifi cantly as the number of 
target loci increases; thus, amplicon sequencing is generally limited to surveying 
only a very small portion of the genome .  

3.1.4     Restriction-Site-Associated DNA Makers (RADseq) 

   RADseq uses restriction enzymes  to   reduce genome complexity and isolate a 
smaller, repeatable fraction of the genome and is combined with MPS to genotype 
thousands of genetic markers without having prior genetic information for the 

3 Targeted DNA Region Re-sequencing

http://www.onekp.com/
http://www.1kite.org/
http://www.marinemicroeukaroytes.org/


48

organism(s) under study. Multiple fl avors of RADseq have been developed, making 
use of one, two, three, or more restriction enzymes (Davey et al.  2011 ; Puritz et al. 
 2014 ). The method used is often selected based on the genome size of the organism 
and the predicted amount of coverage resulting from the enzyme combination 
selected. RADseq was developed for and has been extensively utilized for questions 
pertaining to genetic mapping and population genomics (Davey et al.  2011 ; Puritz 
et al.  2014 ). RADseq data have also been used for phylogenetic assessments (Rubin 
et al.  2012 ; Cariou et al.  2013 ; Wagner et al.  2013 ), but these are often in small, 
species-level phylogenies. A major advantage of RADseq is that discovery, devel-
opment, and screening of markers generally happens in only one or two rounds of 
MPS, making RADseq time effi cient and cost-effective (Davey and Blaxter  2010 ). 
In addition, there are well-developed downstream bioinformatics pipelines to 
handle these data (e.g., Stacks—Catchen et al.  2013 ; PyRAD—Eaton  2014 ). 
Although RADseq is ineffi cient in its use of MPS data (i.e., most data are dis-
carded), because MPS data are cheap, most RADseq projects still achieve costs well 
below $100 US/sample. Thus, RADseq represents a generally reasonable approach 
for acquiring genotype information dispersed across large genomes. 

 Unfortunately, RADseq also suffers from several disadvantages. First, RADseq 
loci are untargeted (i.e., any fragment of DNA with the restriction site(s) will be 
obtained). Thus, the loci may be less evenly spread across a genome than desired 
and may miss important portions simply due to chance or bias (Davey et al.  2013 ). 
Second, RADseq loci are dominant—substitutions that cause the loss of restriction 
sites create null alleles (Gautier et al.  2012 ; McCormack et al.  2013a ). Thus, 
RADseq is not recommended for deeper-level phylogenetics because variation in 
restriction sites that occurs across divergent taxa yields large  amounts   of missing 
data across a given taxonomic sample (McCormack et al.  2012 ). Third, most 
RADseq users experience signifi cant variance in reproducibility among taxa or 
projects, which can cause many samples to fail quality control, increasing the num-
ber of samples that must be repeated. Fourth, the variance inherent in RADseq 
(Davey et al.  2013 ) frequently results in sparse data matrixes. Finally, RADseq also 
presents challenges post-sequencing when trying to determine whether fragments 
are paralogs and have appropriate coverage, because they were not targeted   
(McCormack et al.  2013a ).  

3.1.5     Target Enrichment 

 Target enrichment approaches (also known as sequence capture and gene capture) 
use baits (also known as probes) to specifi cally pull out fragments of interest from 
a genomic library, keeping the fragments of interest while fragments that do not 
hybridize to the baits are washed away (Mamanova et al.  2010 ). In contrast to 
RADseq, target enrichment has higher up-front costs, both  for   library preparation 
and  the   cost of baits and capture, but is more effi cient than RADseq because spe-
cifi c targeted areas make up large portions of the data (Grover et al.  2011 ). Target 
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enrichment is less likely than RADseq to suffer from allelic loss (null alleles) 
because alleles with one to several substitutions are recovered at a higher rate across 
individuals and species. In addition, target enrichment baits can be designed to tar-
get a variety of genomic locations including intergenic regions assumed to evolve 
under neutral processes, making this method ideal for population-level questions. 
Target enrichment is also useful for organisms with large, complex genomes (such 
as plants or amphibians) because targeting specifi c regions can avoid repetitive ele-
ments. These strengths of target enrichment result from  a priori  upstream methods 
to eliminate potentially paralogous sequences, regions of low complexity, and repet-
itive regions while focusing on those targeted regions of interest and returning data 
having high coverage across these regions. Moreover, baits can be designed to target 
regions of varying size depending on different treatments of the data during library 
preparation and the MPS platform used (McCormack et al.  2013a ). 

  Disadvantages   of target enrichment include: (1) prior genetic resources are 
needed to design baits (e.g., genomes, genomic regions, or transcriptomes of related 
species); (2) bait design can sometimes be challenging when targeting genomic 
regions that are highly variable within and among species (e.g., introns, immune- 
coding loci); and (3) most target enrichment studies to date have focused on using 
genomic libraries of randomly sheared DNA, which are more expensive to create 
than RADseq libraries and result in less coverage of targeted bases per sequence. 
Below, we discuss study design and bioinformatic methods to ameliorate many of 
these disadvantages, with a focus on target enrichment for population genetic and 
phylogenetic studies.   

3.2     Experimental Design Considerations 

 As with any study, understanding the biology of the organism(s) of interest is criti-
cally important to study design and downstream analyses. For instance, knowing 
whether the organism under study has undergone recent gene/genome duplications, 
whether the organism is polyploid, and/or whether the lineages being studied fre-
quently hybridize can have a dramatic infl uence on data collection and subsequent 
inference. Paralogs, hybridization, and horizontal gene transfer can infl uence gene 
tree discordance  for   phylogenetic analyses. In addition, many programs have a long 
list of assumptions or may not properly model aspects of the study system if the 
proper number of samples has not been sequenced. As an example, *BEAST is an 
excellent program for coestimating gene trees and their underlying species tree 
using a Bayesian MCMC procedure; however, the authors of *BEAST recommend 
the use of at least two individuals per species to properly estimate population param-
eters (Heled and Drummond  2010 ). Knowing this prior to sequencing can help bet-
ter inform experimental design and simplify downstream analyses. 

 When considering the correct number of individuals per species to sample, in a 
phylogenetic context, it is mostly based on preference, study system, sample avail-
ability, and downstream analyses. If the study system has  frequent   hybrids or 
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taxonomic designations below the species level, then one may consider including 
multiple exemplar individuals for a given species to examine reciprocal monophyly 
within species. In this case, a phylogenetic program that assigns individuals to spe-
cies and then infers the phylogeny of the species may be more appropriate than 
having a phylogeny where every individual represents a lineage. Moreover, some 
phylogenetic programs require that every gene has a representative sequence from 
an out-group (Table  3.3 ). Therefore, it may be advantageous to include multiple 
exemplar individuals of the out-group species to increase the likelihood of capturing 
a high number of targets in the out-group. This is especially important to consider if 
the out-group was not used in the bait design and is distantly related to the in-group 
species, which would result in more sequence variability in regions targeted by the 
hybrid enrichment baits between out-group and in-group members. Whenever pos-
sible, it is recommended that multiple individuals per species are sequenced, as it 
not only helps analyses but safeguards against species or population dropout due to 
unexpected low sequence coverage or low enrichment effi ciency of any particular 
sample. While multiple exemplars per species or populations are benefi cial to both 
phylogenetic  and   population genomic inferences, if the taxonomic sample is large, 
then it may not be cost-effective or computationally effi cient to include multiple 
individuals per species.

   In contrast to phylogenomic studies,    the number of individuals used for popula-
tion genomic studies is more contingent on capturing rare alleles within a  population. 
Having prior knowledge of the system (i.e., population size, generation time, etc.) 
can better inform this decision. Ideally sampling a larger number of individuals per 
population is better, but sample size is dependent upon sample availability, number 
of populations, number of sequence tags needed for pooling samples, and overall 
sequencing costs, including the benchwork costs and amount of sequencing required 
to obtain adequate coverage. Obtaining samples for population-level work can also 
be more diffi cult. However, for both phylogenetic and population-level sequencing, 
DNA from preserved samples (i.e., herbaria, zoological collections, etc.) have been 
successfully sequenced using target enrichment methods (e.g., Carpenter et al. 
 2013 ; Enk et al.  2014 ; Comer et al.  2015 ; McCormack et al.  2015 ). The ability to 
use fragmented DNA for target enrichment greatly facilitates the sequencing of 
larger sets of individuals. 

 When deciding on the number of loci to target, it is best to plan on some modest 
proportion of the loci being dropped from analysis due to low coverage or poor 
enrichment across taxa. Thus, designing  baits for a large amount of target loci  will 
help to keep the fi nal number of loci analyzed at the desired level, even after fi ltering 
poorly covered  targets. The number of targeted loci that may actually be used for 
analysis varies among studies, ranging from 35 % to close to 100 % (Heyduk et al. 
 2016 ; McCormack et al.  2013b ; Stephens et al.  2015a ). These numbers can vary 
depending on biology  and   evolutionary history of the focal organisms, the phyloge-
netic scope or population divergence among the samples, and the number of sam-
ples that will be included (e.g., if a locus needs to be present in at least 50% of 
individuals to be analyzed, then increasing the number of samples makes this 
threshold harder to reach). 
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 Determining the number  of   targeted loci may also be dependent on the system of 
interest and the study question. Questions pertaining to population genomics would 
benefi t from sampling as many loci as the cost of sequencing allows to ensure detec-
tion of outlier loci which can improve parameter estimates such as effective popula-
tion size and relatedness (Luikart et al.  2003 ). For studies that are examining 
population differentiation in phenotypic space, a larger number of loci are important 
to be able to accurately pinpoint genomic regions responsible for any local adapta-
tion. On the other hand, genomic studies assessing population structure at a fi ne 
scale would benefi t from highly informative loci. When selecting the number of loci 
to target  for   phylogenomic studies, the decision is equally situational. For example, 
if the study system has been historically diffi cult to resolve due to rapid or recent 
radiation and/or high levels of gene tree discordance, then including more genes or 
more informative genes in the analyses should improve resolution of species rela-
tionships. Although one would always prefer highly informative loci, it is diffi cult 
to predict which loci will be informative  a priori . Lastly, computational time should 
be taken into account when adding more loci to any study, as many statistically 
robust methods (e.g., *BEAST, see “Post-sequencing”) are unable to handle large 
datasets, and analysis time increases with each locus. 

 The types of  genomic regions (e.g., exons, introns, etc.)   collected using target 
enrichment can vary within or across studies. General approaches range from col-
lecting single loci with single baits to using multiple baits to collect loci spread 
throughout the genome to collecting data from a single long region of interest with 
overlapping (tiled) baits (see bait design below) Exons are common targets, includ-
ing collection of all the exons (i.e., the exome) of model organisms, but any region 
of the genome may be targeted by baits. 

   The use  of   ultraconserved elements ( UCEs)   for target enrichment is becoming 
popular given their applicability across extremely divergent taxa (Bejerano et al. 
 2004 ; Faircloth et al.  2012 ; McCormack et al.  2012 ). UCEs are highly conserved 
genomic regions that are ≥60 bp and found among widely divergent taxa (Bejerano 
et al.  2004 ; Dermitzakis et al.  2005 ). UCEs are appealing as targets because they are 
abundant, extremely conserved, straightforward to identify, and found within many 
groups of organisms (Stephen et al.  2008 ). In addition, UCEs tend to be orthologous 
(Derti et al.  2006 ) with few retroelement insertions. Finally, their utility for phy-
logenomic approaches is that while UCEs themselves show reduced variation, mak-
ing them easy to capture, the fl anking regions show much higher counts of 
informative sites (Faircloth et al.  2012 ). Several research groups have targeted con-
served elements for target enrichment approaches, and much work remains to test 
and optimize the methods of identifying and using such loci  . Here, we have focused 
on those methods that are open-access, because they are amenable to continued 
optimization and improvement by the research community. 
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3.2.1     Cost Reductions 

  The method used for re-sequencing can vary based on the number of individuals and 
number of loci required to address the questions of interest (Fig.  3.1 ). For questions 
that require sampling a limited number of individuals (<50) at very few loci (1–3), 
traditional PCR and Sanger sequencing may be the most cost- and time-effective 
methods. On the other end of the spectrum, a one-time study requiring many loci for 
few individuals might be best served by transcriptome sequencing. For studies 
requiring the collection of large numbers of loci from large numbers of individuals, 
then RADseq and/or target enrichment could be warranted. RADseq produces 
libraries at the lowest cost per sample, but more funds are spent on sequences that 
ultimately will not be used. Target enrichment signifi cantly reduces both cost and 
time spent on sequencing, but methods to reduce costs prior to sequencing are 
important. Below we focus on ways to reduce costs for target enrichment. 

 Although a variety of home-brew methods are possible, commercial synthesis of 
target enrichment baits is the most convenient and cost-effective method for most 
researchers to conduct target enrichment (Fig.  3.2 ). Most companies that provide 
baits offer both premade kits and custom bait designs. A wide spectrum of baits can 
be accommodated, ranging from single biotinylated oligos from traditional oligo-
nucleotide manufacturers (e.g., IDT, Life Technologies, Sigma, etc.) to companies 
that use high-density microarray technologies (e.g., Agilent, MYcroarray, 
NimbleGen, etc.) to construct massive numbers of unique baits. If <100 baits are 
needed, traditional biotinylated oligonucleotides are generally most economical. 
For example, if a study requires few loci for a large number of individuals, one 
might consider homemade baits complementary to the sequences of interest (e.g., 
for studies focusing on one pathway or known genes of interest). This methodology 
typically requires the bait sequence of interest to be PCR amplifi ed, then subse-
quently size selected and biotinylated (see Peñalba et al.  2014  for methodological 
descriptions). If >1000 baits are needed, then high-density approaches for bait con-
struction are most economical. Whole-exome capture kits for humans and model 
species can include hundreds of thousands of baits.

   Although custom, commercial, high-bait number kits have list costs of hundreds 
of dollars per sample, many methods are available for reducing the costs of target 
enrichment when using such kits. First, it has long been appreciated that pooling 
sample libraries prior to conducting enrichment hybridization is an effi cient way to 
reduce costs (Fig.  3.2 ; Cummings et al.  2010 ; Shearer et al.  2012 ). In this strategy, 
individual samples are tagged during library construction and pooled prior to target 
enrichment. This allows the costs of target enrichment to be divided among multiple 
samples. Pooling generally ranges from 2 to 96 samples per pool, with trade-offs 
between better coverage (i.e., less variance in capture effi ciency and read depth with 
fewer samples per pool) and better cost savings (more samples per pool). In prac-
tice, we generally pool 4 to 12 samples prior to enrichment (Faircloth et al.  2012 ; 
Heyduk et al.  2016 ; Stephens et al.  2015a ;   http://ultraconserved.org    ). When pooling, 
samples should have similar: molarity (i.e., accounting for insert size and concen-
tration), copy number (i.e., accounting for genome size and ploidy), and sequence 
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  Fig. 3.2    Overview of the wet-lab workfl ow for target enrichment       

divergence from the baits (or phylogenetic distance from the taxon used for bait 
design). Any of these three factors can lead to preferential capture of loci in higher 
number from some of the taxa in the pool (i.e., those with more targets or those with 
targets more similar to the baits than other individuals in the pool). 
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 In addition to pooling prior to hybridization reactions, the quantity of baits per 
reaction may also be decreased if the targeted number of base pairs is signifi cantly 
smaller than the protocol assumes (Faircloth et al.  2012 ; Heyduk et al.  2016 ;   http://
ultraconserved.org    ). Indeed, fl ooding the reaction with an overwhelming excess of 
baits relative to genomic targets can reduce capture effi ciency rather than increase 
it. As a simple example, consider a project in which a researcher wishes to survey 
1000 loci from 960 individuals. That research might design 2 baits per locus × 1000 
loci = 2000 baits. A single custom bait kit that normally allows 12 captures, each 
with a 20,000 bait pool, is all that is necessary to conduct this experiment because 
the researcher can dilute the baits tenfold (20,000/2000 = 10; yielding enough baits 
for 120 captures instead of 12) and pool 8 samples per capture (120 × 8 = 960). 
Additional hybridization reagents will be necessary, but these can be purchased 
commercially or made from common reagents (Blumenstiel et al.  2010 ;   http://ultra-
conserved.org    ). 

 Library preparation costs are another signifi cant expense for target enrichment. 
Library costs can be reduced by decreasing reaction sizes and/or using home-brew 
protocols (e.g., Meyer and Kircher  2010 ; Fisher et al.  2011 ; Glenn et al.  2016 ;   http://
ultraconserved.org    ) rather than commercial kits. Strategically choosing a sequence 
tagging scheme can reduce costs as well. Illumina sequencing was once limited to a 
single 6 nt index. Newer methods allow two indices per fragment, employing a 
combinatorial approach that increases the versatility of indexing. With the dual- 
indexing method,  n  unique barcodes for each side of the fragment can be used on  n  2  
libraries to reduce the number, complexity, and cost of barcode oligos. 

 Finally, in addition to  the   on-target sequences captured, target enrichment meth-
ods also yield off-target bonus sequences (i.e., DNA sequence lagniappe). Off-target 
sequences are unavoidable because no target enrichment process is perfectly effi -
cient. Thus, sequences that have partial similarity to the baits or were simply present 
in the pre-enrichment library, especially in high-copy numbers, will be present post- 
enrichment. As a result, high-copy DNA from chloroplasts, mitochondria, and ribo-
somes are commonly sequenced as off-target reads. These sequences are often 
informative however, and studies in both plants and animals have used these bonus 
sequences to assemble complete or mostly complete chloroplast and mitochondrial 
genomes  (Weitmeier et al.  2014 ; Stephens et al.  2015a , b ; Meiklejohn et al.  2014 ; 
Raposo do Amaral et al.  2015 ).  

3.2.2     Workfl ow Bottlenecks 

  Sequence capture is highly effective  at   generating a large number of sequences for 
many individuals rapidly and consistently. While sequencing methods continue to 
improve, a number of bottlenecks exist in current workfl ows for sequence capture. 
The speed at which hundreds of libraries can be generated is limited by human 
labor, although protocols exist for robotic library preparation (e.g., Fisher et al. 
 2011 ; Rohland and Reich  2012 ). Quantifi cation of hundreds of libraries 

3 Targeted DNA Region Re-sequencing

http://ultraconserved.org/
http://ultraconserved.org/
http://ultraconserved.org/
http://ultraconserved.org/
http://ultraconserved.org/
http://ultraconserved.org/


56

pre- hybridization is expensive in both time and cost, depending on the method used. 
Most hybridization methods currently require ≥12 h for libraries to hybridize to 
baits. Shorter hybridization times are possible but generally require shorter baits, 
which require trade-offs in specifi city and ability to capture library fragments with 
small sequence differences. Post-sequencing bioinformatic analysis is often not 
limited by human labor but by computational power; the same hundreds of libraries 
that take human hours to create may take many days and gigabytes of memory to 
analyze. For both pre- and post-sequencing, the number of individuals is the most 
infl uential limitation to sequence capture projects. As library protocols become 
more effi cient and analysis programs are written to accommodate large numbers of 
individuals sequenced at many loci, sequence capture bottlenecks will decrease, 
and multi-species phylogenies and robust population genomics studies will become 
the norm .   

3.3     Bioinformatics 

3.3.1     Pre-sequencing 

  Initial bioinformatics work will depend on whether capture baits are being designed 
in-house or are available from a prior study (e.g., ultraconserved elements (UCEs), 
Faircloth et al.  2012 ). Bait design  de novo  requires genomic resources and can be 
conducted using genome sequences, transcriptomes, or even EST databases 
(Fig.  3.2 ). Comparative analyses of genomic data from divergent taxa can be used 
to design baits that will work across study systems including divergent taxa; for 
example, using regions that are conserved across a family will result in baits more 
likely to anneal to targeted regions and thus give more representative sequences per 
species. If the study requires examination of intra- and interspecifi c variation, then 
baits must be designed so they capture fragments with informative intraspecifi c 
sequence differences while still being able to capture targets across species (Stephens 
et al.  2015b ), or suffi cient amounts of sequence polymorphisms must accumulate in 
the regions immediately fl anking the conserved sequences used for baits (Faircloth 
et al.  2012 ; Smith et al.  2014 ). This technique could also be applied to bait design 
for population-level questions. In particular, having genomic resources for multiple 
populations across the range of interest will help ensure baits are designed that 
maximize differences between and among populations. 

 Avoiding duplicated sequences is paramount to both phylogenomic and popula-
tion genomic analyses, and care should be taken to exclude regions of the genome 
present in more than one copy (Faircloth et al.  2012 ,  2015 ). Prior to bait design, all 
repeat-like regions across the source data should be masked, and bait design proto-
cols should avoid these regions. It is also recommended that potential areas for 
targeting should be aligned within and among species to ensure that targets are 
orthologous and only present in a single copy, especially in systems where poly-
ploidy is abundant (e.g., low-copy genes across angiosperms described in Duarte 
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et al.  2010 , as done in Heyduk et al.  2016 ). Once targets have been determined, baits 
can be designed in-house (cf.   http://ultraconserved.org    ), or  target   sequence informa-
tion can be sent to commercial companies for bait design and synthesis. Bait sets 
may be designed having one bait per target or including multiple baits that are 
overlapped (tiled) across longer regions. Whether or how much to overlap baits 
depends primarily on the size of the targets, the number of baits, and research 
budget. Additionally, the sequence similarity of the taxa of interest will infl uence 
not only the optimal amount of overlap but also if multiple baits per locus (i.e., baits 
designed from multiple taxa) are necessary or desirable. Light (2×) tiling (i.e., each 
target nucleotide has two  baits) can increase capture success even when targets are 
small and the target species are similar, thus decreasing sequencing costs but 
increasing bait costs relative to no tiling .  

3.3.2     Post-sequencing for Phylogenomics Designs 

  Bioinformatics analysis post-sequencing can be quite daunting, but more pipelines 
and programs are being designed to handle these data. For example, those targeting 
UCEs can use phyluce (Faircloth  2016 ;   https://github.com/faircloth-lab/phyluce    ) to 
go from raw reads to fi nal alignments for phylogenetic analyses, with an added 
bonus of fl exibility regarding how baits were designed. Throughout this process, 
phyluce will output relevant summary information that can be reported in a table as 
a supplement to the manuscript (see reporting section below). An alternative method 
from Heyduk et al.  2016  (  https://github.com/kheyduk/reads2trees    ) is less stream-
lined than phyluce but allows for more customizable parameters throughout the 
bioinformatic pipeline. Together these programs and pipelines are achieving the 
same goal with very similar methodological steps (Fig.  3.3 ). First, all raw reads 
must be cleaned by removing Illumina adapters and trimming reads with poor qual-
ity scores. These clean reads are then used for assembly, which can either be refer-
ence based or  de novo . Users can assemble reads through both routes and then 
merge similar sequences or opt to use one type of assembly program. The resulting 
assembled contigs can then be matched via local alignment searches (e.g., BLAST 
or LASTZ) against the initial targets and retained for further analyses. Contigs that 
match the target areas should be sorted into loci (e.g., by merging exons from the 
same gene), aligned, and trimmed prior to downstream analyses. A second round of 
duplicate removal may be necessary, depending on the target loci, because paralo-
gous sequences may be captured or make it through as nontarget data that were not 
in the initial reference used for bait design.

   We have seen a dramatic increase in the amount of data that can be collected 
using recent genomic techniques, and this trend is likely to increase as sequencing 
costs continue to decrease. The bottleneck with handling high-throughput data 
generally arises from the computational time required for their analysis and from 
our current understanding of phylogenomics and population dynamics. Historically, 
phylogeneticists would concatenate genes to estimate the species tree, but both 
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  Fig. 3.3    Overview of a 
bioinformatic pipeline for 
re-sequencing data. 
Programs for each step 
should be determined 
based on assumptions 
regarding data and 
downstream analyses. 
Assembly can be 
conducted using multiple 
programs, or a single 
optimal assembly method 
can be implemented       

empirical and theoretical data suggest that this is not always a robust method. 
Specifi cally, it has been known for some time that gene trees can have different 
histories from each other and from the species tree. Gene tree discordance can 
impact phylogenetic analyses, and modeling the processes that lead to discordance 
(i.e., incomplete lineage sorting [ILS], recombination, hybridization, etc.) has been 
challenging. To date the majority of phylogenetic programs can only estimate spe-
cies trees when accounting for ILS. Programs are emerging to model the process of 
hybridization (STEM-hy—Kubatko  2009 ; PhyloNet—Yu et al.  2011 ; Yu and 
Nakhleh  2015 ), and, in general, the analysis of multilocus data is rapidly develop-
ing, making it hard for newcomers to fi nd appropriate programs for analyzing their 
data. Care should also be taken to consider the biology of your taxa of interest. 
Therefore, we recommend that researchers consider the programs and the underly-
ing models they are most likely going to be implementing given their system. For 
example, understanding the phylogenetic relationships of a recent or rapid radiation 
will most likely involve high levels of ILS and possibly hybridization. In this exam-
ple, it may be worthwhile to sequence multiple individuals per species to increase 
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the accuracy of parameter estimation for the coalescent models (Heled and 
Drummond  2010 ), but not all programs are capable of taking into  account   multiple 
individuals per species (Table  3.3 ). In addition, some programs may take an exceed-
ingly long time (or fail) to run depending on the number of loci and number of taxa 
input (Table  3.3 ). Computational biologists are developing new ways to reduce the 
size and complexity of datasets for phylogenetic analyses (e.g., Bayzid and Warnow 
 2013 ), though these methods should be carefully evaluated on individual projects to 
assess their suitability .  

3.3.3     Post-sequencing for Population Genomic Designs 

 Many of the  diffi culties   described above for phylogenetic analyses hold true for 
population genomic analyses, as well. Pipelines for analyzing target enrichment 
data collected at the population level are generally lacking (but see Faircloth  2016 ; 
  https://github.com/mgharvey/seqcap_pop    ). With a bit of legwork, one can identify 
genomic features of interest, including SNP and indel calls and use these data to 
estimate heterozygosity, FST, Tajima’s D, and others, using the bcftools (  https://
github.com/samtools/bcftools    ) command line program (among others). The pro-
gram requires reads to be mapped to some sort of assembly or reference genome, 
and it extracts and analyzes relevant information from those mappings. Note, how-
ever, that the estimates of population genomic statistics through bcftools are only as 
good as the reads and reference contigs that are used in mapping;    duplicated loci of 
any kind could allow for a read to map to multiple locations and create false allele 
calls and erroneous estimates. Low-coverage contigs are particularly problematic 
because they may contain erroneous homozygous SNP calls.  

3.3.4     Computational Resource Requirements 

  Although it is possible to run most of the individual programs on desktop comput-
ers, parallel compute clusters are highly recommended or necessary to process the 
data in a timely and effi cient manner. For projects that have an especially large 
number of individuals that need to have sequence data assembled  de novo , paral-
lelization will greatly increase the speed at which assemblies can be completed. 
Similarly, for many loci, performing many calculations across all loci will be unten-
able without the help of parallel computing. In addition to large clusters housed at 
universities and research centers, researchers interested in attempting large-scale 
analyses can use third-party computing such as CyVerse (  http://www.cyverse.org/    ), 
Amazon (  www.amazon.com/hpc    ), and XSEDE (  https://www.xsede.org/home    ). 
While parallelization greatly reduces time spent on the bioinformatics side of target 
enrichment, researchers should note the memory requirements for a number of pro-
grams. For example, Trinity (Grabherr et al.  2011 ) recommends 1 Gb of RAM per 

3 Targeted DNA Region Re-sequencing

https://github.com/mgharvey/seqcap_pop
https://github.com/samtools/bcftools
https://github.com/samtools/bcftools
http://www.cyverse.org/
http://www.amazon.com/hpc
https://www.xsede.org/home


60

every 1 M reads; RAxML requires ~2.8 Gb for a 100 kb alignment of 50 taxa (  http://
www.exelixis-lab.org/software.html    ). Perhaps most important for consideration is 
 the   sheer size of storage space required to store raw reads, cleaned reads, assem-
blies, and various intermediate fi les that are produced during analysis. Projects with 
many individuals and loci can quickly use a terabyte of hard-drive space .   

3.4     Results Reporting and Community Resources 

3.4.1     Standards of Reporting 

 Sequence capture methods, no matter how baits are designed, are fundamentally 
similar in their attempt to reduce genomic representation in the sequenced reads. As 
a result, similar statistics are important for assessing the quality and effi ciency of 
sequence capture. For example, the number  of   on-target contigs assembled per 
library, relative to how many were targeted, gives a general impression of how well 
hybridization worked, although this metric is slightly confounded by sequencing 
depth, which alone can increase the number of assembled contigs. Coverage statis-
tics—both for assembled contigs from targeted regions and off-target regions and 
perhaps for exon and intron sequences separately (see Heyduk et al.  2016 )—indi-
cate whether the depth of sequencing was adequate to call polymorphisms and 
whether hybridization of certain baits was more effi cient than others, perhaps due to 
sequence similarity or genomic copy variation. For studies that attempt to capture 
loci from taxa across broader phylogenetic distance, assessing hybridization varia-
tion in baits across taxa helps to defi ne the phylogenetic boundary of effective cap-
ture using a particular bait set. In addition, it is often important to know how effi cient 
capture was across the entire library—in other words, researchers might be inter-
ested in how many reads were on target or how many reads map to contigs used in 
the fi nal analyses. Consistent reporting of such metrics enables comparisons of vari-
ous methods and techniques across different sampling schemes and bait designs, 
leading to informed decision-making by researchers looking to implement sequence 
capture methods. 

 While numerical information about a given sequence capture project is useful for 
those looking to replicate methodology, the raw and cleaned data generated can be 
used by the larger scientifi c community as a whole. For this reason, researchers 
should take special care to deposit raw reads, alignments, and downstream analyses 
into common repositories (e.g., NCBI’s Short Read Archive (  http://www.ncbi.nlm.
nih.gov/sra    ) and Dryad (  http://datadryad.org/    ) ). The bait sequences should be 
shared after publication as well. The time and effort put into designing effective and 
informative baits should be stretched beyond a single project. Indeed, some bait sets 
have suffi cient utility that commercial companies may synthesize them in bulk, 
making them available to the research community at far lower cost than custom kits 
(  http://www.mycroarray.com/mybaits/mybaits-UCEs.html    ).       
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    Annex: Quick Reference Guide 
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 Fig. QG3.1    Representation of the wet-lab procedure workfl ow  

  

3 Targeted DNA Region Re-sequencing



62

  

Clean reads

Raw reads

Assembly

de novo
Reference

based method

Extract
contigs of

interest

Align or
call SNPs

Filter

Downstream
analyses  

 Fig. QG3.2    Main steps of the computational analysis pipeline  
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4.1  Introduction to Technologies

Our understanding of transcriptomes, the RNA content of biological samples,
correlates by large with the progress of DNA sequencing technologies. With the
development of capillary sequencers using the Sanger sequencing method, it
became feasible to sequence deeply into cDNA libraries prepared from RNA pools.
In the initial sequencing studies, a few thousand or even tens of thousands of ran-
domly isolated cDNA clones were sequenced most commonly from their 3′ end to
obtain short, so-called EST (expressed sequence tag) reads. Unsupervised EST
sequencing for the first time gave an overview on the complexity of RNA transcripts
and their presence at different biological stages. This approach was later extended
by the development of full-length cDNA cloning technologies for obtaining
sequence information on the entire RNA transcripts (Harbers 2008). The knowledge
gained from large-scale cDNA cloning and sequencing projects led to transcriptome
and genome annotations that are today the basis to all approaches to transcriptome
profiling. New high-speed sequencing methods can by now provide comprehensive
overviews on transcriptomes at reasonable cost and by far exceed the achievements
of the early EST projects (de Klerk et al. 2014). Many of these methods allow for
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quantitative measurements on individual RNA transcripts to monitor changes in the
RNA content between different samples.
While working for the annotation of the honey bee (Apis mellifera) genome and

later studying transcriptional regulation of gene expression during behavioral matu-
ration of worker bees, we have applied full-length cDNA preparation and different
high-speed sequencing methods to transcriptome analysis. Based on our experience,
we describe here the use of full-length cDNA preparations in combination with shot-
gun sequencing inmRNAprofiling (so-called RNA-Seqmethods for “RNA sequenc-
ing”) and RNA-Seq profiling starting directly from RNA. Moreover, we describe the
use of CAGE for high-throughput mRNA detection and determination of transcrip-
tion start sites (TSSs) on the genome level. For other RNA profiling methods refer to
the recent review from (de Klerk and ‘t Hoen 2015) on RNA sequencing.
Various approaches to RNA characterization have been developed addressing dif-

ferent aspects of transcriptome analysis. It can be meaningful to apply multiple meth-
ods on the same samples during your studies for a better understanding of RNA
structures and regulatory processes. Although beyond the scope of this chapter, there
are additional methods for characterization and monitoring of short RNAs as well as
not sequencing-based approaches to transcriptome profiling such as DNA microar-
rays or qPCR methods. Some of those are of interest to the users of high-speed
sequencing methods to confirm their results by independent experimental means.

4.2  Objectives of RNA-Seq and CAGE Experiments

Ideally, we would like to obtain the full-length sequence of every mRNA transcript
in a sample. Only high-quality sequence information on the entire mRNA transcripts
would allow us to distinguish between splice variants derived from the same gene
and to understand the extent of alternative splicing related to the complex regulation
of biological processes. Our technical limitations, however, restrict today our ability
to study RNA splicing, where most high-speed sequencing methods can only provide
short sequencing reads of some 100–200 bp. Those reads are much shorter than an
average mRNA molecule, and therefore RNA profiling methods are using tag-based
approaches or RNA-Seq methods for transcriptome analysis. Tag-based approaches
like CAGE obtain a single sequencing read per RNA molecule for transcript identi-
fication. Since just only one sequencing read per RNA molecule is obtained, the
number of reads directly correlates with the transcript levels in the sample (“digital
sequencing”). On the contrary, RNA-Seq methods obtain multiple, random reads
from each transcript for a better coverage of the entire RNA sequence (Kawaji et al.
2014). RNA-Seq data sets are more complex and require additional considerations
during data analysis to obtain quantitative measures on mRNA levels. To obtain
quantitative data on the expression of different splice variants is still a great challenge
for RNA-Seq experiments and requires very high sequencing depths.
We advise to use CAGE for basic mRNA profiling and quantification and will

therefore focus on CAGE experiments in this chapter while providing additional
information on more commonly used RNA-Seq to show how the processes and data
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compare. The 5′ end of eukaryotic mRNA molecules is protected by the
7-methylguanylate cap structure, which can be used to obtain sequences from the
5′ end of mRNAs. Different CAGE protocols are in use that utilize the so-called
Cap-Trapper method or template switching in the 5′ end selection step. Short cDNA
fragments complementary to the 5′ end of mRNAs are then sequenced at high
throughput, where the CAGE method has been adapted to different sequencing
methods. CAGE commonly achieves a much better coverage of the mRNA content
for the same amount of sequencing than possible by any RNA-Seq method.
The short sequencing reads allow for reliable transcript identification and quantifi-
cation. Moreover, CAGE sequencing reads can be mapped to a reference genome
for TSS identification, thus providing accurate information on transcriptional activ-
ity at defined genome locations. Therefore CAGE was the method of choice for
genome-wide TSSmapping during the ENCODE (Consortium 2012) and FANTOM
(Consortium F et al. 2014; Lizio et al. 2015) projects, which provided essential
information for further analysis of regulatory regions in the human genome. CAGE
experiments have been further performed on a number of other model organisms,
and the method has been recognized as one of the basic approaches to study
transcriptional networks.
While CAGE is effective in RNA transcript and TSS identification, the method

falls short on providing further information on full-length RNA structures.
Therefore, CAGE cannot provide a complete picture on the extent of RNA splicing
in the sample. This limitation of CAGE can be overcome by different RNA-Seq
methods for the preparation of random cDNA fragments from RNA pools. These
random cDNA fragments are then sequenced at a very high throughput to obtain
sufficient sequence information for covering the entire length of each transcript by
multiple reads. RNA-Seq experiments can identify different splice variants mostly
by using reads comprising splice junctions. However, in most cases it is very difficult
to reconstruct the full-length sequences of different splice variants from RNA-Seq
data. Moreover, transcript quantification is more complex than working with tag-
based methods, because the multiple reads obtained from transcripts of different
length require additional normalization steps during data analysis. Regardless of the
complex data analysis and sequencing requirements, RNA-Seq methods are today
the most commonly used approach to transcriptome profiling, where different pro-
viders offer reagent kits to conduct such experiments. Table 4.1 summarizes the
main differences between CAGE and RNA-Seq methods.

4.3  Sequencing Platforms

CAGE as well as RNA-Seq methods have been adapted to different sequencing
platforms, but as of today most laboratories including the work done for our projects
use Illumina sequencing on a routine basis. During protocol development and feasi-
bility studies, the smaller sequencing yields of an Illumina MiSeq instrument are
suitable for library sequencing. However, for deep sequencing of RNA-Seq libraries
and multiplex sequencing of many RNA-Seq or CAGE samples, we prefer the use
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of a HiSeq instrument. Providers like Illumina offer sets of adapters for multiplex
sequencing experiments, which should have been optimized for library preparation.
We recommend using multiplex sequencing as a proven approach for standard
experiments to cut sequencing costs. While planning the sequencing experiment,
consider first the desired sequencing depth for each sample versus to the total num-
ber of reads per run to determine how many samples may be pooled per run. In our
experiments, we used multiplex sequencing, and each of the pooled libraries was
sequenced on one lane on an Illumina HiSeq2000 instrument for 100 cycles from
each end of the fragments using a TruSeq SBS sequencing kit version 3 followed by
data processing with Casava 1.8 (pipeline 1.9).
We will not discuss further on the use of other sequencing methods, although the

new PacBio RS II, which is a third-generation single-molecule, real-time DNA
sequencing system, provides interesting means for full-length cDNA sequencing
that could lead to much better information on RNA transcripts than possible by any
RNA-Seq method. Unfortunately, the present throughput of the method and the
associated costs make the method unfeasible for regular transcriptome analysis.
Preliminary data, however, showed that full-length cDNA sequences can be obtained
on a PacBio sequencer with a reasonable success rates.

4.4  Experimental Design

Transcriptome profiling experiments should be well planned to assure that they pro-
vide meaningful results for describing a biological context. Originally, descriptive
high-speed sequencing experiments have been made that just targeted at a catalog of
the different transcripts present in a given sample. Such data sets are not suitable to
compare different samples and to quantify mRNA levels by statistical means.
Moreover, in biological studies commonly relative mRNA levels are compared
between different samples. Therefore, the experimental design of the study has to
give considerations to which is the most meaningful reference sample or samples to
drive data analysis.

Table 4.1 Main differences between CAGE and RNA-Seq methods

CAGE RNA-Seq

Sequencing from capped 5′ end of
RNA molecules

Sequencing of fragments distributed randomly along
RNA molecules

One read corresponds to a single
transcript

Multiple reads may correspond to a single transcript

5′ Cap selection of RNA (no
preference for poly(A))

Poly(A) selection of RNA, or removal of rRNA by
capturing method or digestion

Effective for transcript identification
and quantification

Provides better coverage of the entire RNA sequence,
quantification possible

Reliable method for TSS identification Effective for RNA splicing and detection of genetic
variations
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We advise to first perform some test experiments to establish a newmethod at the
laboratory. Some three or more technical replicas should be used to confirm the
reproducibility of the method, and results should be compared to published data to
assure the procedures provide reliable data. There are high-speed sequencing data
sets in the public domain (see below) that can be downloaded for testing bioinfor-
matics routines before starting the analysis of your own experimental data. Once the
bench protocols and analysis platform work well in the laboratory, the method
should no longer be changed during the course of the study. Changing parts of a
protocol and analysis platform can make it difficult or even impossible to compare
the data from different experiments. For the statistical analysis of the data from
biological samples, we advise to use at least three biological replicas per data point
all analyzed by the same standard procedure. Biological replica should provide con-
sistent data, although there is always some fluctuation between biological samples,
because environmental conditions cannot be perfectly normalized. Therefore, you
should consider even more biological replicas when working, for example, on indi-
vidual wildlife animals as we had done for our work on honey bees. For large-scale
projects using many different samples over an extended time, it may be useful to
consider also a “technical standard”, which uses a reference RNA that is repeatedly
used during different rounds of library preparation. Analyzing the data obtained
from such a “technical standard” can confirm the constancy of the different experi-
ments. A reference RNA may be prepared from a cell line for easy availability; also
the brain RNA has been used as a reference because of its high complexity (e.g., the
human brain reference RNA is commercially available).
Different transcriptome profiling methods have also different sample require-

ments (compare Fig. 4.1 and Table 4.2). Therefore, the experimentsmay be restricted
by the available RNA amounts, and choices have to be made on which aspects are
the most important to be answered in the study. Sometimes, it may be necessary to
pool RNA samples to reach the necessary RNA amount for doing the experiments.
It should be noted, however, that pooling many RNA samples leads to a kind of
“normalization” for the different RNA species. While RNAs expressed in all
samples can keep their concentration constant in the pool, RNA species only pres-
ent in some of the RNA samples within the pool will be diluted. Consequently, rare
transcripts may be harder to find in pooled RNA samples.
Control experiments should not only consider a reference sample as outlined

above, but sufficient RNA should be available from each sample to confirm the
results from the sequencing experiments by other experimental means, e.g., by
performing some qPCR experiments on selected targets, after the sequencing exper-
iments have been completed.

4.5  Full-Length cDNA Preparation

Methods for the preparation of full-length cDNAs have been instrumental for build-
ing large collections of cDNA clones from different species, but are less frequently
used in high-speed sequencing experiments. The most commonly used RNA-Seq
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protocols avoid additional steps for 5′ end enrichment to streamline library prepara-
tion. However, this comes at the expense of a much lower coverage of the 5′- and 3′ 
end sequences of the transcripts in the sequence data. Therefore, we think that a 5′ 
end enrichment step can help for certain experiments to improve the coverage of
RNA-Seq experiments; for experiments like CAGE that target sequence informa-
tion from the 5′ end of mRNAs, the enrichment step is essential to obtain reliable
data. Although sequencing costs are going down, a higher sequencing depth is not a
tool to overcome shortcomings of the library preparation methods. For the evalua-
tion of any experiment, it is important to understand the possible bias of the
method(s) selected for the study and to consider the specifications of the methods
when interpreting the data. Important findings should be confirmed by independent
experimental means to assure the conclusions of the study and to avoid mistakes
caused by library or analysis artifacts.
Different approaches for full-length cDNA selection have been described in the

literature, where we focus on the so-called “Cap-Trapper” method and “template
switching.” Cap trapping proved to be the most effective approach to full-length
cDNA cloning during different large-scale projects (Harbers 2008). After the
reverse transcription reaction, the Cap structure of mRNA is selectively biotinylated
to capture the cDNA/mRNA hybrids on streptavidin-coated beads. Remaining
single-stranded RNA is then digested by RNase I treatment leaving only those
cDNA/mRNA hybrids intact where the complementary cDNA reached the 5′ end of

Fig. 4.1 Comparison of the different RNA requirements and processing steps for preparing CAGE
and RNA-Seq libraries as used in our work on honey bee samples. We prepared RNA-Seq libraries
directly from rRNA-depleted RNA and full-length cDNA. RNA prepared from the full-length
cDNA was used in RNA-Seq library preparation as outlined under RNA-Seq
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mRNAs. The single-stranded cDNA from those hybrids is then isolated after mRNA
hydrolysis and can be used for cDNA cloning or direct sequence analysis.
As an alternative to theCap-Trappingmethod,we are using the so-called “template-

switching” reaction of the reverse transcriptase. Oligonucleotides with three rG nucle-
otides at their 3′ end (so-called template-switching oligonucleotides) can interact with
the Cap structure at the 5′ end of mRNAs. The bound oligonucleotide is then becom-
ing a template when the reverse transcriptase “switches” from the mRNA template to
the oligonucleotide. At the end of the transcription reaction, the resulting cDNA com-
prises sequences complementary to the template-switching oligonucleotide. Those
oligonucleotide-derived sequences can then be used for the selective enrichment of
full-length cDNAs. The template-switching method allows for cDNA preparations
from very small amounts of RNA giving the method a very high sensitivity even
though the full-length enrichment is not as good as in the Cap-Trapper experiments.
In the examples to this chapter, we will show some data on how to use full-length

enriched cDNA in RNA-Seq experiments. We advised to use the Cap-Tapper
method for preparing full-length cDNA templates because the cDNA may not be
used only for preparing an RNA-Seq library. Having a high-quality cDNA pool
provides further means to isolated cDNAs for selected targets identified while ana-
lyzing the RNA-Seq data. Those cDNAs can be cloned and used to accurately deter-
mine their full-length sequences, which may not have been obtained correctly by
assembling short RNA-Seq reads. In addition, cloned cDNA fragments can be used
in functional annotation experiments.

4.6  CAGE Library Preparation and Sequencing

The original CAGE protocol was developed based on the experience working with
the Cap-Trapper method in cDNA cloning projects. While using the Cap-Trapper
method for selecting regions from the 5′ end of mRNAs for sequencing, the new
protocol divided from the cDNA library protocol by adding a digestion step to cut
off a short cDNA fragment at the end of full-length cDNAs. These short fragments
or “tags” could be amplified and then sequenced at high throughput. Moreover, we
shifted from using oligo(dT) priming used in full-length cDNA cloning to the use of
random priming in the reverse transcription reaction. Random priming not only
increases the changes to reach the 5′ end of very long transcripts but also allows for
capturing tags from non-polyadenylated mRNAs that are not covered in oligo(dT)-
primed cDNApreparations (there is a large number of non-polyadenylatedmRNAs).
The basic CAGE protocol has been adapted over the years for use on different

sequencing platforms (Murata et al. 2014; Takahashi et al. 2012a, b). The latest ver-
sion of the CAGE protocol for using long sequencing reads on Illumina platforms
no longer requires the tag-digestion step, but sequences cDNA fragments of differ-
ent length are obtained by random priming. From such longer cDNA fragments, end
sequences can be obtained from the 5′ and 3′ ends by using paired-end reads on the
Illumina sequencers (“CAGEscan” method) (Plessy et al. 2010).
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Although the CAGE protocol has been improved for working with small amounts
of RNA, the Cap-Trappermethod does not reach the same sensitivity as the template-
switching method. Therefore, a new version of CAGE, denoted as “nanoCAGE,”
was developed that uses template switching instead of Cap trapping to obtain CAGE
data even from very small amounts of RNA (50–500 ng total RNA) (Salimullah
et al. 2011). We found it useful to pretreat total RNA with an exonuclease that
digests 5′ end phosphorylated RNA prior to preparing a nanoCAGE library. This
pretreatment reduces background signals derived from rRNAs in the library and
seems to improve also the 5′ selection.
For our analysis of changes in the gene expression in honey bee brains, we

wanted to compare expression levels and to have an outlook on the alternative usage
of TSS between individual animals that belonged to two distinct groups based on
their behavioral maturation, nurses, and foragers (Khamis et al. 2015). Because of
the small RNA amounts obtained from individual honey bee brains, we decided to
apply nanoCAGE for our studies. The nanoCAGE protocol allowed us to prepare
cDNA fragments from individual samples that were individually tagged by specific
sequencing tags. Therefore, nanoCAGE libraries from eight individual animals of
each group could be sequenced in parallel in a single-Illumina HiSeq2000 sequenc-
ing reaction, and the reads for each sample were then sorted by using the sample-
specific sequencing tags. Such multiplex sequencing methods are common by now
to make better use of the very throughput of high-speed sequencers.

4.7  Bioinformatics Data Analyses of nanoCAGE Data

The advancement in sequencing technologies in the past decade has increased their
capacity making them useful for transcriptome profiling with high sequencing depth
and transcriptome coverage. A typical Illumina HiSeq sequencing platform can
sequence hundreds of millions of single- or paired-end reads, each having few hun-
dred base pairs. Consequently, suitable bioinformatics analysis methodology is
required to leverage this volume of data and the information it contains. Here, we
discuss common bioinformatics analysis steps to process nanoCAGE data. An over-
view of a nanoCAGE data analysis process is depicted in Fig. 4.2. The basic process
is the same regardless whether only 5′ end sequences are provided (“nanoCAGE”)
or the DNA fragments have been sequenced from both ends using paired-end reads
on the Illumina platform (“CAGEscan”). In our example working on the honey bee
project, paired-end reads had been available for the analysis.
As shown in Fig. 4.2, the primary analysis starts by generating the sequences

(“reads”) and the read quality data. This is followed by generating read counts that
are usually captured in a matrix whose rows represent genes and columns represent
samples (e.g., in our study different ages within the lifespan of worker honey bees).
Finally, biological insight and data interpretation are performed on the gene expres-
sion matrix using different analysis techniques. Figure 4.3 shows the detailed work-
flow for a bioinformatics analysis pipeline for typical nanoCAGE data. We provide
detailed descriptions on each of these analysis steps in this chapter.
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Fig. 4.2 Overview of nanoCAGE data analysis process
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Fig. 4.3 Typical bioinformatics analysis pipeline for nanoCAGE data
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4.7.1  Sequencing Depth

A crucial requirement in any transcriptome profiling experiment is to determine the
minimal number of reads required to reasonably capture the profile of a particular
sample. This number differs from species to species based on the genome size. For
example, a minimum of ten million reads per sample is recommended to profile the
transcriptome of the human genome which consists of ~3 billion bp (Liu et al.
2014). However, few hundred thousands of reads are sufficient to sequence for a
typical prokaryote species. To ensure that the mapped reads provide sufficient tran-
scriptome coverage for further analysis, their distribution can be plotted using
RSeQC (Wang et al. 2012).

4.7.2  Base Calling

When the sequencing of nanoCAGE libraries has been completed, the process
known as “base calling” of producing nucleotide sequences from the chromatogram
peaks starts. As a result of base calling, the raw data files that contain the sequenced
reads are generated, usually as SRA files. Then, in order to proceed further in the
data analysis, the SRA files are validated and then extracted into FASTQ files. This
is usually performed using the SRA Toolkit.

4.7.3  Quality Control

As the sequenced reads are generated, a quality control to assess the sequenced
libraries is highly recommended in order to detect potential problems (e.g., artifacts,
contaminations) that may affect subsequent data analysis. An example of such qual-
ity control tools is FASTQC (http://www.bioinformatics.bbsrc.ac.uk/projects/
fastqc) that we have used in our honey bee data.

4.7.4  Quality and Adapter Trimming

Trimming the sequenced reads based on their quality and removing their 5′ and 3′ 
adapters is of particular importance in order to avoid potential problems during the
mapping process of the sequenced reads to the reference genome. For example, in
the study on honey bees, we removed artificial sequences having no or incorrect
adapters. Then, we removed the adapter sequence (21 bp) from the first mate of the
paired-end sequences and correspondingly trimmed part the second mate, such that
both mates had equal lengths (79 bps). Also, sequences can be trimmed by
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removing low-quality portions, keeping the main part of the reads intact.
Trimmomatic (Bolger et al. 2014) and Cutadapt (Martin 2011) are examples of
common quality and adapter trimming tools.

4.7.5  Sequence Alignment (Mapping)

After trimming, sequences are mapped to a reference genome using one of the
sequence alignment tools. There are numerous alignment tools that can align
CAGE reads such as BWA (Li and Durbin 2009), Bowite (Langmead et al. 2009),
Bowtie2 (Langmead and Salzberg 2012), and Tophat2 (Kim et al. 2013). In our
honey bee nanoCAGE data, the 79 bp paired-end reads obtained after trimming
were mapped to the honey bee reference genome (version 4.5) using Bowtie2
v2.1.0 (Langmead and Salzberg 2012) in order to calculate the estimated mean
(588 bp) and standard deviation (767 bp) of the inner distance between mapped
paired-end reads. Then, we used these estimated values of the mean and the
standard deviation along with the CAGE reads as input to Tophat v2.0.8 64 (Kim
et al. 2013) sequence alignment tool, allowing for up to two mismatches and two
gaps per read.

4.7.6  Post-mapping Filtering

The sequence alignment tools attempt to map all CAGE tags to the reference
genome using the user-provided parameters. As this process completes, a post-
mapping filtering is required in order to remove mapped reads that were mapped
incorrectly. For the CAGE tag filtering process in our data, we filtered out mapped
reads that had a low-mapping quality score (MAPQ<20) corresponding to a prob-
ability of (greater than 1%) of being mapped incorrectly. To ensure the selection of
proper alignment output, we excluded paired-end reads when: (1) mates mapped to
alternate strands, (2) one mate was unmapped, (3) the mates mapped to different
scaffolds, or (4) there was an inner distance greater than (mean+standard deviation)
of the estimated inner distance between paired reads.

4.7.7  Read Count Matrix (Gene Expression)

As mentioned earlier, the CAGE method produces one read per RNA molecule, and
therefore the transcript identification becomes much easier than with RNA-Seq meth-
ods. Consequently, the number of reads directly correlates to the transcript levels in
the sample. To generate the read count matrix, the CAGE tags are mapped to the gene
set of the species under study. In the case of honey bee, the CAGE tags were mapped
to the honey bee gene set, OGSv3.2 (Elsik et al. 2014). A CAGE tag was considered
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to be associated with a gene if it intersects with the region that covers [−2000 bp
upstream of 5′ end of a gene, 3′ end of a gene], but may be restricted by the end of the
upstream gene at the same strand. In such cases the tag was considered to be associ-
ated if it maps to the region [3′ end of the upstream gene + 1, 3′ end of a gene].
Consequently, it is possible for multiple CAGE tags to be associated with one gene, or
one CAGE tag to span two adjacent genes. Note that we include up to 2000 bp
upstream of an annotated 5′ end of a coding region in the genome, because many
TSSs are still unknown, and those could be located upstream of the annotated 5′ end.
As a result, a gene expression data matrix is generated using the association of

tags and genes, where each row represents the expression levels for a gene and each
column represents a sample (in our case we have a total of 16 samples, eight are
forager bees and other eight samples are nurse bees). For the purpose of using genes
that have significant expression for subsequent analysis, we retained those genes
that had nonzero expression level in at least two samples of any of the nurse/forager
groups and excluding other genes that did not meet this condition. There are some
tools that can be used to generate the read count matrix, such as, HTSeq (Anders
et al. 2015) and featureCounts (Liao et al. 2014).

4.7.8  Normalization

There are multiple technical effects that may occur during the sample preparation
and sequencing process. Such effects need to be corrected or at least reduced before
proceeding in the analysis of the gene expression matrix. For this purpose, numer-
ous normalization methods have been proposed in the literature. Most of these
methods aim at correcting one or two sources of technical effects. The first is the
sequencing bias that leads to different library sizes (different number of reads per
library leads to different coverage of the transcripts). Removing the sequencing bias
enables between-sample comparison. The second is the within-sample gene-specific
effects such as the gene length or GC-content effects. For a survey of common nor-
malization methods, see (Dillies et al. 2013). Because CAGE sequencing produces
one read per transcript, a simple normalization method that eliminates the sequenc-
ing bias might be sufficient. An example of these methods is the tags per million of
reads (TPM), which is the number of CAGE tags divided by the total number of
mapped tags, multiplied by 106. In our honey bee work, we normalized the gene
expression by rescaling the number of tags from each sample to the minimum num-
ber of tags across all samples to reduce sequencing bias.

4.7.9  Differentially Expressed Genes

Identifying genes that are differentially expressed between two groups of samples
or time points has become popular in a wide variety of applications. Such analysis
is important to detect changes between different conditions leading to discovering
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of biologically relevant genes or even important biomarkers for clinical use. Typical
differential analysis of nanoCAGE data represented in the form of an expression
matrix starts by excluding genes (or transcripts) that are not (or not significantly)
expressed between different conditions. Then, the data is fitted to a model, and a
method is derived to identify significant differentially expressed genes across exper-
imental conditions. EdgeR (Robinson et al. 2010), DESeq (Anders and Huber
2010), and DESeq2 (Love et al. 2014) are common tools for differential analysis of
expression levels. It is highly recommended to use the raw read count matrix as an
input to these tools because such tools apply their own normalization method on the
raw count matrix. In our honey bee work, we used EdgeR to identify differentially
expressed genes between nurse and forager bees. The raw read count matrix was
used as the input to EdgeR, which applies its own normalization using trimmed
mean of M-value (TMM) method.

4.7.10  Identification of Transcription Start Sites

Tag-based methods (including CAGE and nanoCAGE) provide a unique and accu-
rate tool to identify TSSs. In our analysis of honey bee nanoCAGE data, we grouped
CAGE tags for each sample independently and clustered the 5′ end positions of
these tags in small clusters with a maximum width of 50 bp using Paraclu (Frith
et al. 2008). Clusters with more than 50 bp in length or having fewer than five tags
after rescaling were removed. We also excluded clusters having a maximum den-
sity/baseline density ratio of less than 2 (because of low signal strength which is
insufficient to represent a real TSS). These CAGE clusters represent potential TSSs
of genes. The common TSSs clusters among samples of a particular group may
represent a common TSS for that group. The difference in common TSSs of a par-
ticular gene between different groups may provide insights on alternative TSS usage
between different sample groups or experimental conditions. It is common that mul-
tiple TSSs are associated with one gene. The assignment to a given gene can be
further confirmed using the 3′ end reads in paired-end reads (CAGEscan). The 3′ 
end reads should map onto different exons within the same gene as their positions
are derived from random priming.

4.7.11  Gene and Sample Clustering Based on Expression

Sometimes it is useful to cluster the gene expression matrix based on genes, sam-
ples, or both genes and samples (i.e., biclustering) to detect gene clusters for groups
of samples. For our analysis to compare and determine the differences in the brain
gene expression levels between honey bee nurses and foragers, we performed two-
way unsupervised hierarchical clustering using MATLAB to cluster genes and sam-
ples with Ward’s method using inner squared distance (minimum variance
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algorithm). The Euclidean distance metric and Pearson’s correlation coefficient
were used to measure the distances between gene profiles (rows) and between sam-
ple profiles (columns), respectively. Figure 4.4 shows that foragers and nurses were
clustered into two separate groups.
In order to statistically measure how the clustering maintains the actual differ-

ences between the clustered samples, an unsupervised evaluation of hierarchical
clustering, e.g., using cophenetic correlation coefficient (CPCC), can be performed.
The CPCC is defined as:
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where xij is the Euclidean distance between ith and jth observation, and dij is the 
cophenetic distance, which is the height of the link that joins the two observations
in the obtained clustering dendrogram; x and d are the averages of xij and dij, respec-
tively. CPCC is the linear correlation coefficient between the observed distances in
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Fig. 4.4 Dendrogram plot of the hierarchical binary clustering tree for the honey bee brain gene
expression data. A unique color was assigned to each group of nodes (samples) in the dendrogram
whose in-group distances is less than 70% of the maximum distance in the tree. The height of each
joint point represents the distance between the two nodes being connected. The labels on the x-axis
represent the sample ID for eight foragers (represented by “F”) and eight nurses (represented by “N”)
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samples and the obtained cophenetic distances from the clustering. In the hierarchi-
cal clustering of honey bee expression data, the CPCC value was 0.78, suggesting
that the hierarchical clustering represents the actual differences between the two
groups (nurses and foragers).

4.7.12  Variability of Gene Expression

Using the expression matrix, we can measure if samples belonging to a particular
group are more variable than samples of the other group(s). This can be achieved by
calculating either the per-gene or the per-sample variance between genes/samples in
each of the groups. For the honey bee expression data, we evaluated differences in
the brain gene expression between individual bees within the nurse and forager
groups by calculating the per-gene variance in expression levels between individu-
als within each group. The variance was calculated on scaled expression data using
the z-score, so that the expression values of each gene had a zero mean and standard
deviation of 1. To examine if the variation in gene expression between forager sam-
ples was significantly different from the variation between nurse samples, we used
the Wilcoxon rank-sum test between the two vectors of variances. Finally, we com-
pared the samples using the per-sample biological coefficient of variation (the
square root of the dispersion parameter for the 500 most variable genes) and the
per-gene squared coefficient of variation (CV2) (the squared ratio of the standard
deviation of gene expression across all group samples to the group average gene
expression) (see Fig. 4.6).

4.7.13  Functional Annotation of DEGs

The functional characteristics of differentially expressed genes/transcripts between
two groups of samples may help to identify key differences in function and/or
behavior between these groups. The functional annotation of differentially expressed
genes (DEGs) starts by extracting Gene Ontology (GO) terms for the DEGs. If no
GO terms are defined for DEGs in your species of interest, the GO terms of ortholo-
gous genes from a close species are used instead. Then, there are different methods
to study the enriched functions in these GO terms. One method is to study the GO
enrichment using Fisher’s exact test followed by multiple testing corrections (e.g.,
false discovery rate or Bonferroni correction). Different tools can be used to study
functional annotation such as, DAVID (da Huang et al. 2009), GOrilla (Eden et al.
2009), REVIGO (Supek et al. 2011), and many other tools. In our honey bee work,
we identified orthologous genes from Drosophila melanogaster for honey bee
genes. Then, we assigned the GO terms of the orthologous genes to our DEGs.
In the next step, we studied the functional annotation of the DEGs using Fisher’s
exact test with false discovery rate and using DAVID and GOrilla tools.
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4.7.14  Repositories to Upload Data

We recommend uploading both of the raw data (e.g., SRA files or FASTQ data) and
processed data (e.g., raw read count matrix or normalized matrix) to NCBI GEO
(Barrett et al. 2013). This is important to enable others using the data in their analysis.

4.7.15  Recommended Tools for CAGE Data Analysis

Table 4.3 summarizes some common bioinformatics tools that can be used in the
analysis of CAGE data.

4.7.16  Examples for Output of CAGE Data Analysis

The original data from our CAGE analysis studying honey bee workers will be pub-
lished elsewhere by (Khamis et al. 2015), but we provide here some examples on the
information that can be obtained from such experiments. As explained in the analy-
sis pipeline, we mapped reads using Tophat and then associated the mapped reads
to the nearest genes. The results given in Table 4.4 show the statistics on the mapped
reads, the mapping percentage, and the percentage of mapped reads that could be
associated to genes. The data show a high rate for linking mapped reads to genes in
the honey bee genome, although the genome is less well annotated as compared to
the human or mouse genome.
Clustering gene expression matrix provides insight on the groups of genes that

discriminate two groups of samples. We performed hierarchical clustering using
Ward’s method of the brain gene expression profiles of nurse and forager honey
bees. As shown in Fig. 4.4, the two groups of honey bee samples are clearly sepa-
rated using their gene expression profiles. This indicates different regulation mecha-
nisms that underline the two groups.
The identification of theDEGs is useful to highlight genes that are regulated differently

between twogroups. In our analysis of the honeybeedata,weusedEdgeR to identify 1058
DEGs of which 534 were overexpressed in forager group, and 524 were overexpressed in
nurse group. The gene expression profiles of these DEGs (Fig. 4.5) show distinct expres-
sion patterns of the DEGs between the two groups (nurses and foragers).
Measuring the within-group variability is useful to identify if samples belong to

a particular group have more complex regulation mechanisms than other group(s).
Such analysis may indicate different regulatory mechanisms within the same group.
In our analysis of the per-gene variance between honey bee samples, we found that
there was a substantially higher degree of within-group variation in gene expression
among foragers than nurses (Fig. 4.6). This finding may reflect the fact that foragers
have to respond to a far more diverse set of stimuli and adapt to more variable condi-
tions outside the hive than necessary for the nurses with a limited number of tasks
on caring for the offspring.
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Fig. 4.5 Hierarchical clustering of 1058 DEGs using k-mean algorithm. Rows correspond to 1058
DEGs and columns represent samples. The scale bar indicates the z-scores of gene expression
values. Highly expressed genes are shown in dark red while genes with low levels of expression
are in dark blue

Table 4.4 The statistics of mapping nanoCAGE library reads to honey bee genome and the
statistics of reads which could be associated to genes

Sample
Total number
of reads

Mapped
reads

Mapping
percentage

Percentage of mapped reads associated
to genes to the total mapped reads

F14 5,449,888 3,143,064 57.67% 87.35%
F27 3,586,235 2,157,798 60.16% 89.14%
F28 7,725,895 4,244,582 54.93% 85.32%
F41 9,237,207 3,130,408 33.88% 82.64%
F48 2,936,239 1,798,240 61.24% 89.07%
F49 4,355,366 3,040,200 69.80% 89.48%
F50 4,307,121 2,955,469 68.61% 88.52%
F54 2,348,738 1,623,527 69.12% 88.54%
N2 14,172,924 8,084,168 57.03% 88.22%
N4 12,209,666 7,068,767 57.89% 88.84%
N29 10,652,219 6,949,056 65.23% 89.25%
N31 10,424,626 6,820,778 65.42% 88.84%
N32 11,031,651 7,173,714 65.02% 89.61%
N33 10,998,419 7,503,984 68.22% 89.50%
N41 12,987,132 8,050,612 61.98% 88.52%
N42 10,126,459 6,529,766 64.48% 88.12%

The first column contains the sample ID for eight foragers (represented by “F”) and eight nurses
(represented by “N”)
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Fig. 4.6 The squared coefficient of variation (CV2) in per-gene expression for foragers and
nurses. We used all genes that have at least one tag per million reads in at least two samples, which
correspond to the threshold 1.5 in the log10 of per-gene expression. The x-axis is the log10 normal-
ized per-gene expression level, and the y-axis is the squared coefficient of variance (CV2)

4.8  RNA-Seq Library Preparation and Sequencing

There are many protocols in the literature for the preparation of RNA-Seq libraries.
In addition, various providers offer commercial kits for RNA-Seq library prepara-
tion. Refer to the recent review from de Klerk and ‘t Hoen (2015) on RNA sequenc-
ing for more information on important criteria for selecting a good method for the
preparation of RNA-Seq libraries. In our honey bee work after concluding the
CAGE experiment, we pooled RNA samples from nurse and forager bees into two
pools, one pool for the preparation of full-length cDNA and the other pool for RNA-
Seq directly prepared from RNA. Then, we prepared three libraries from each of
these two pools.

4 Transcriptome Profiling Strategies
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Since we did not want to establish a new RNA-Seq protocol in-house to extend our
work on CAGE, we decided to use a commercial RNA-Seq kit from Epicenter for our
experiments. It had been important to us to select a kit that keeps the strand orientation
during RNA-Seq library preparation.We prepared RNA-Seq libraries according to the
maker’s directions starting from rRNA-depleted total RNA. The rRNA removal was
performed using a ScriptSeq mRNA library preparation kit from Epicenter. When
using full-length cDNA as a temple for RNA-Seq library preparation, we transcribed
RNA transcripts from the full-length cDNA that could then be directly used for RNA-
Seq library preparation using the same kit (refer to Fig. 4.1; (Khamis et al. 2015)). To
avoid carrying over any DNA from the cDNA pool into the RNA-Seq library, all DNA
templates were destroyed by DNase treatment after the RNA synthesis had been com-
pleted. In our experiments, the full-length cDNA had always been prepared by the
Cap-Trapper method following the basic protocol for cDNA library preparation, but
omitting the last steps for cloning the cDNA into a vector. Each of the pooled libraries
was sequenced on an Illumina HiSeq2000 sequencer. Table 4.5 summarizes the main
differences between the two types of RNA-Seq library preparation methods (with and
without full-length cDNA preparation step).

4.9  Bioinformatics Data Analysis of RNA-Seq Data

As mentioned earlier in this chapter, CAGE sequencing yields one read per tran-
script, whereas RNA-Seq produces multiple random reads per transcript. However,
the first few steps of the data analysis related to sequence generation and read count
generation are identical for CAGE and RNA-Seq data (Fig. 4.7).
Most of the analysis steps for nanoCAGE (Fig. 4.3) are common with RNA-Seq

(Figs. 4.7 and 4.8). This includes extraction of sequences and qualities, sequencing
depth assessment, quality control, quality and adapter trimming, and read count

Table 4.5 Main differences between full-length cDNA and direct RNA-Seq methods

From full-length cDNA Direct RNA-Seq

Sequencing from RNAs prepared from full-length
cDNA

Sequencing directly from mRNA

rRNA removed during full-length cDNA selection
(Cap-Trapper method)

rRNA depleted by rRNA removal kit

Gives lower coverage than direct RNA-Seq. It
loses coverage because of the additional
experimental steps

Gives higher coverage than full-length
cDNA

Gives better (longer) contigs with better coverage
of the ends

Gives shorter contigs than full-length
cDNA

Provides a template to clone interesting
transcripts. Also, the full-length cDNA
enrichment could be a very good basis to use long
reads, e.g., on PacBio

No template for preparation of cDNA
clones. Contig sequences may not be
suitable for preparing cDNAs by gene
synthesis

A.M. Khamis et al.
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extraction. However, there are few main differences. One difference is in the align-
ment of reads to a reference genome as it is highly recommended to use splice-
aware alignment tools. Another difference is the normalization technique to be used
with the read count matrix and finally the target analysis to be performed which
leads to biological insights on the sequenced samples.

• Base Calling (Generate Bases
and Qualities) 

Sequence
Generation 

• Reads Trimming and Filtering 
• Read Alignment 

Read Counts
Generation • Alternative Splicing 

• Alternative Polyadenylation 
• Differential Gene Expression 
• Genes/Samples Clustering 
• Functional Annotation 

Data
Interpretation 

Fig. 4.7 Overview of RNA-Seq data analysis process

Sequence
more reads

Sequenced nanoCAGE libraries

Extract sequences and
qualities “base calling”

Single or paired-end reads

Check sequencing depth

Mapping

No Sufficient
reads

By gene By transcript

Read Counts Extraction

Post-mapping filtering

Reads mapped to reference genome

By exon

Read Counts Matrix

Advanced Normalization

Biological Insight

Alternative
splicing

mechanism

Alternative
polyadenylation

mechanism

Transcriptome
coverage

Gene and sample
clustering

Functional
annotation of
genes and/or

DEGs

Differentially
Expressed Genes
(edgeR, Deseq,

DEGseq)

Quality control

Quality and
Adapter Trimming

Spliced Alignment
(e.g. Tophat)

Non Spliced Alignment
(e.g. Bowtie)

Yes

Fig. 4.8 Typical bioinformatics analysis pipeline for RNA-Seq data
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There are good overviews on RNA-Seq data analysis (Yendrek et al. 2012; Auer 
and Doerge 2010; Anders et al. 2013), and therefore we focus here on those steps
we used in the analysis of our data to compare the results obtained by using two
different RNA-Seq library preparations (with and without full-length cDNA prepa-
ration step).

4.9.1  Sequence Alignment (Mapping)

While the same alignment tools used to align CAGE reads can be used with RNA-
Seq reads, it is highly recommended to use splice-aware alignment tools for RNA-
Seq. Such tools exploit the advantage of RNA-Seq to discover splice junction sites
and exon/intron boundaries and eventually identify transcript isoforms based on this
information. Examples of such splice-aware mapping tools include among others
Tophat (Kim et al. 2013), SOAPsplice (Huang et al. 2011), and STAR (Dobin et al.
2013). A typical RNA-Seq alignment tool starts by aligning reads to the reference
genome and at the same time recording information about exon/intron boundaries
and possible splice junction sites. The alignment tool analyzes this information in
order to identify alternative splicing events and transcript isoforms. Then, the align-
ment tool uses this information to map reads that span multiple exons, which were
not mapped in the first phase.

4.9.2  Normalization

Because the RNA-Seq provides multiple reads per transcript that have different
lengths, the normalization technique for RNA-Seq data should eliminate the effects
caused by length differences. A common normalization method for RNA-Seq is the
reads per kilobase per million (RPKM) read method, which is also known for
paired-end reads as fragments per kilobase per million (FPKM) reads method.
RPKM is defined as:

 

RPKMij
i

j i

N

T L
=
109 *

*
 

where Ni is the number of mapped reads to gene (transcript) i, and Tj refers to the
total number of sequences reads for sample j. Li is the total number of bp (length) of
all exons within gene (transcript) i.

A.M. Khamis et al.
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4.9.3  RNA Splicing Analysis

To study RNA splicing in a particular sample and to identify the alternative splicing
mechanisms, we need to use RNA-Seq to sequence multiple reads that cover the
entire length of each transcript. The identification of different splice variants is
achieved by using reads comprising splice junctions. Multiple software tools can be
used for this purpose, which include, for example, Tophat (Kim et al. 2013) and
Cufflinks (Trapnell et al. 2012).

4.9.4  Further Analysis of RNA-Seq Data

Similar to CAGE data, also RNA-Seq data can be used to identify DEGs and to
further annotate DEGs, for example, using GO terms. We will not describe those
steps in more detail here, because the process is the same for CAGE and RNA-Seq
data. Therefore refer to the description of the CAGE data analysis on “Gene and
Sample Clustering Based on Expression,” “Variability of Gene Expression,” and
“Functional Annotation of DEGs.”
Similar to the data obtained by CAGE, we advise to upload RNA-Seq data in

public databases like the NCBI GEO.

4.9.5  Examples for Output of RNA-Seq Data Analysis

As described above we have prepared two pools of RNA for RNA-Seq, one pool for
RNA-Seq through full-length cDNA and another one for direct RNA-Seq from
mRNA. We prepared the libraries from each pool and sequenced them using
Illumina HiSeq2000. The number of sequenced reads is much higher in direct
RNA-Seq experiments as compared to full-length cDNA (Table 4.6, column 3),
suggesting that RNA-Seq from cDNA loses coverage because of the additional
experimental steps; the lower number of reads could go along with lower DNA
yields obtained from the libraries. We further compared the read coverage of both
types of libraries over the gene body within the honey bee transcriptome in order to
check if the coverage of reads is uniform and to examine if there is any 5′ or 3′ bias.
Figure 4.9 shows a much better coverage at the 5′ end when using the full-length
cDNA, while the coverage toward the 3′ end is more similar for both approaches.
This observation suggests that full-length cDNA sequences provide better data
spanning of the entire transcript length and generate a more uniform coverage over
the gene body. Direct RNA-Seq data may do better at the 3′ end because of the

4 Transcriptome Profiling Strategies
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higher sequencing depth obtained in our experiments. Furthermore, in order to see
whether the difference in the number of sequenced reads obtained by both types of
libraries could explain the difference in the number of genes covered by those reads,
we mapped the reads from all libraries to the honey bee genome and clustered the
mapped reads into clusters of 50 bp width. While the results in (Table 4.6, columns
6–8) show that the number of clusters obtained from direct RNA-Seq is much more
than those obtained from full-length cDNA, we notice that only an about ~5% dif-
ference in the number of genes that could be associated to the sequencing reads in
both methods (Table 4.7). This suggests that the high number of clusters were

20 40 60 80 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gene body percentile (5’−>3’)

Full−length cDNA_1
Full−length cDNA_2
Full−length cDNA_3
Direct RNA−Seq_4
Direct RNA−Seq_6
Direct RNA−Seq_5

C
ov

er
ag

e

Fig. 4.9 Comparison of gene body coverage between full-length cDNA and direct RNA-Seq

Table 4.7 Association of honey bee OGS3.2 gene set (15,314 genes) with mapped reads generated
by different sequencing methods

Type
Number of genes covered by
sequenced reads

Percentage (out of the total 15,314
honey bee genes)

nanoCAGE 13,111 85.61%
Full-length cDNA 13,162 85.94%
Direct RNA-Seq 13,978 91.27%

4 Transcriptome Profiling Strategies
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obtained because of the larger number of reads generated by the direct RNA-Seq
method. We observed, however, a somewhat higher mapping rate for the reads from
the libraries that had included the full-length cDNA preparation step, which could
argue for a better library quality, and may compensate in part for the lower overall
number of reads.
We associated the mapped reads to the honey bee OGS3.2 gene set (15,314

genes). Table 4.7 supports our previous finding of high coverage of direct RNA-Seq
as compared to other sequencing methods.
We have further compared the three types of sequencing methods (nanoCAGE,

full-length cDNA, and direct RNA-Seq) by monitoring the distribution of the
mapped reads on the genome using IGV genome browser (Thorvaldsdottir et al.
2013). An example in Fig. 4.10 shows for gene GB42183 that the sequenced
libraries of direct RNA-Seq provide higher number of small reads distributed over
the gene body. However, full-length cDNA provides longer contigs (Fig. 4.10).
Also, we notice that nanoCAGE provides information about the TSS positions of
transcripts across the transcriptome (so-called exon painting). This had been
observed before, where CAGE tags had been found at the beginning of exons. It is
unclear whether all those positions represent real TSS.
Overall, while we see a high number of the annotated genes in the honey bee

genome that could be covered by reads obtained from the direct use of RNA-Seq
libraries (91.27% for direct RNA-Seq as compared to 85.94% and 85.61% in RNA-

Fig. 4.10 Genome browser snapshot shows comparison in the honey bee genome coverage
between nanoCAGE, full-length cDNA, and direct RNA-Seq for gene (GB42183) on scaffold
(Group 1.1)

A.M. Khamis et al.
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Seq from full-length cDNA and nanoCAGE, respectively), we think that the nano-
CAGE and full-length cDNAprotocols offer additional information on the expressed
genes. In particular, full-length cDNA provided uniform and better distributed reads
over the entire transcriptome while direct RNA-Seq had a bias toward better cover-
age of the 3′ end. CAGE is the only option to specifically identify TSS regions in
the genome, which are underrepresented in direct RNA-Seq libraries.

4.10  Conclusions

In this chapter, we have summarized our experience on using a tag-based method
like CAGE and RNA-Seq shotgun sequencing for transcriptome profiling of honey
bee brain samples. The different methods were used to address specific aspects of
gene regulation. While CAGE gave us for the first time an overview on TSS and
transcriptional regulation, we used the RNA-Seq data to better annotate honey bee
transcripts and genome sequences. We used two different library protocols for
obtaining RNA-Seq data from RNA pools, where one set of data was obtained from
full-length selected cDNAs. While more time-consuming to prepare than standard
RNA-Seq libraries, our data show also some benefits for including a full-length
cDNA selection step for preparing RNA-Seq libraries. Although much less reads
were obtained from those libraries, the reads were more equally distributed over the
entire transcripts. Therefore we think that this approach is suitable, where new
splice variants should be identified and later characterized by full-length sequencing
of individual cDNA fragments isolated from the full-length cDNA pool. Admitting
the general value of RNA-Seq methods for transcriptome profiling, we would still
suggest the use of CAGE methods for studies on gene regulation with a focus on
promoter usage and regulatory networks. Until new sequencing methods reach the
market that can obtain full-length RNA sequences at high throughput and low cost,
choices will have to be made on the focus of a transcriptome profiling study and the
selection of the most suitable approach. We hope this chapter provides some useful
information to the readers to plan their own experiments and to consider whether to
focus on the importance of splicing or a better understanding of the regulatory prin-
ciples behind differential gene expression.
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Fig. QG4.2 Main steps of the computational analysis pipeline
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Fig. QG4.1 Representation of the wet-lab procedure workflow

 Annex: Quick Reference Guide
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    Chapter 5   
 Differential mRNA Alternative Splicing                     

       Albert     Lahat       and     Sushma     Nagaraja     Grellscheid     

5.1           Introduction 

 Over 90 % of human genes have been reported to be alternatively spliced to produce 
more than one mRNA isoform from the same gene (Cooper et al.  2009 ; Pan et al. 
 2008 ; Wang et al.  2008 ). While a proportion of alternative splicing events may be 
explained by stochasticity in the regulation of individual splicing events, there are 
many examples of tissue or developmental stage-specifi c switches in isoform 
expression as a result of tightly regulated alternative splicing. 

 When using RNA-seq to measure gene expression, reads mapped within a gene loci 
directly count towards the gene-level transcript abundance. Most sequencing technolo-
gies currently in widespread use yield short reads of less than 250 nucleotides in length 
making it impossible to unambiguously assign reads to specifi c isoforms, with the 
possible exception of some exon-exon junction reads that may be unique. Therefore, 
when measuring relative transcript-level abundance, read mapping is inferred indi-
rectly, potentially leading to biases in the calculated outcome. Two possible approaches 
are fi rstly, to give greater weightage to exon-exon junction reads, which requires a 
greater sequencing depth compared to gene-level expression analysis. 

 Secondly, recent approaches developed for full-length cDNA sequencing avoid 
this problem altogether (Tilgner et al.  2015 ; Treutlein et al.  2014 ). However, these 
approaches are still either more expensive, requiring specialised equipment for 
library preparation, or have low throughput of the order of just 25,000 transcripts 
which is at least one order of magnitude less than the total number of expressed 
transcripts per eukaryotic cell. 
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 This review will focus on approaches available to analyse short-read sequencing 
datasets. These datasets and approaches to generate them have become widely 
available and used by numerous laboratories to interrogate gene-level transcript 
abundance, but existing datasets can frequently be further analysed to infer differen-
tial alternative splicing as well. Therefore, the wet-lab methods to generate short- 
read data for alternative splicing analysis are very similar to standard RNA-seq 
library preparation approaches (see Chap.   4     for detailed protocols and recommen-
dations). A recent study showed that most methods able to infer both gene-level and 
transcript-level abundance require 1–3 million reads for accurate quantifi cation of 
gene-level expression and 10–30 million reads per sample for accurate inference 
of isoform level transcript abundance (Kanitz et al.  2015 ).  

5.2     Steps in Data Analysis 

 A few basic steps are common between data processing for gene-level differential 
expression analysis and for the analysis for alternative splicing. Quality control pro-
cesses including read trimming to process FASTQ can be carried out according to 
conventional pipelines. But even though there are many similarities in  the   data pro-
cessing required for splicing analysis, there are important differences:

    (a)    Spliced transcripts don’t directly align to a reference genome when mapping as 
they have components of at least two different noncontinuous loci.   

   (b)    Reads corresponding to different alternatively spliced isoforms often have com-
mon exons, causing ambiguous read assignments.   

   (c)    Different types of alternative splicing events have to be modelled.    

  The early steps are  frequently   variants to standard RNA-seq analysis such as 
mapping, assembling and transcript counting. 

5.2.1     Read Mapping 

  Mapping involves uniquely aligning reads onto a reference genome or transcriptome. 
Mapping outputs are SAM (sequence Alignment/Map) or BAM (binary SAM) fi les. 
Spliced exon-exon junction reads do not align directly to the genome due to the read 
having parts corresponding to two separated loci. Mapping onto a reference transcrip-
tome instead would not allow for de novo splice site discovery. Moreover, aligners to 
transcriptomes must be able to handle the redundancy resulting from reads mapping to 
several transcripts of the same gene. Since 2010, several splice-sensitive aligners have 
been developed such as SpliceMap (Au et al.  2010 ), HMMsplicer (Dimon et al.  2010 ), 
SplitSeek (Ameur et al.  2010 ), Supersplat (Bryant et al.  2010 ), MapSplice (Wang et al. 
 2010 ), MATS (Shen et al.  2012 ), TopHat (Trapnell et al.  2009 ), GSNAP (Wu and Nacu 
 2010 ) and STAR (Dobin et al.  2013 ). This is not an exhaustive list by any means. 
Alamancos et al.  2014 , table 1, list the various splice-sensitive aligners together with a 
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brief summary of attributes such as whether or not they require/use annotation informa-
tion, can support paired end data, etc. 

 The relative performance of the various methods has been benchmarked in sev-
eral recent articles (Engström et al.  2013 ; Grant et al.  2011 ; Lindner and Friedel 
 2012 ). The benchmarking studies above showed that GSNAP, MapSplice and STAR 
compared favourably to the other alignment methods. However, every method has 
pros and cons and must be chosen carefully based on the desired outcome. For 
example, GSNAP and STAR are highly sensitive, but output a high proportion of 
false junctions, and require a subsequent step to fi lter out junctions by the number 
of supporting alignments. GSNAP and MapSplice require considerable computing 
time, whereas TopHat2 and STAR were reported to be faster by 3 times and 180 
times, respectively (Dobin et al.  2013 ). Several aligners such as GEM, MapSplice 
and TopHat carry out splice junction discovery annotation as part of the alignment, 
while others such as STAR and GSNAP depend on existing annotation, though 
TopHat output is also improved with annotation. Using genomic annotation, infor-
mation is clearly benefi cial to the latter group of algorithms, but this may not always 
be available for non-model organisms. 

 A recently developed method, Sailfi sh (Patro et al.  2014 ), uses k-mer statistics on 
transcripts and disposes of the time-consuming and memory-demanding step of 
alignment altogether. 

 The provision of  effective   mapping strategies for splicing analysis remains an 
area of much ongoing development. The main future challenges are to address the 
issue of correct assignment of multi-mapped reads, increasing specifi city of exon 
junctions reported and fi nally adapting algorithms to accommodate the longer 
read methods that are beginning to emerge involving higher error rates and mul-
tiple exon junctions .  

5.2.2     Read Assembly 

  Instead of mapping all reads onto a reference genome, reads can be overlapped onto 
each other thus assembling the original transcript. An assembler takes as input reads 
from a sequencer and attempts to reassemble the original transcript by merging 
overlapping reads (reads whose ends align to each other). A considerable advantage 
of this approach is the analysis of sequences from organisms without a good refer-
ence genome. Two recent benchmarking studies evaluated the various available 
algorithms (Li et al.  2014 ; Steijger et al.  2013 ; Zhao et al.  2011 ). There are a variety 
of assemblers designed to handle alternative splicing events such as Trinity 
(Grabherr et al.  2011 ), SOAPdenovo-Trans (Luo et al.  2012 ) and Trans-ABySS 
(Robertson et al.  2010 ). The development of splicing sensitive assemblers is still 
very much an area of active research. Another class of tools such as PIntron 
(Bonizzoni et al.  2015 ) utilises sequencing data together with available EST data to 
improve exon-intron structure annotation and can be useful for improving annota-
tion fi les for organisms with good genomic annotation but poor isoform annotation, 
such as the rat genome. 
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 De novo assembly is a memory-intensive process, requiring either generous mem-
ory availability (circa 256–512 G) or multiple nodes to run, and most available soft-
ware runs exclusively on Linux operating systems. Zhao et al.  2011  showed that in 
order to assemble 13 billion reads, Trinity used a peak of 57 Gb of RAM and required 
150 h. RAM usage and process time increased linearly with increased reads. 
SOAPdenovo-Trans was more effi cient, consuming a peak of 20 Gb for 13 billion 
reads in 1.5 h. Trans-ABySS being a parallelised assembler running simultaneously 
on multiple nodes showed the lowest usage of peak RAM (8.2 Gb) during 4 h  for 
  assembling 13 billion reads. In all cases, both peak RAM and time increased linearly 
with read number. Thus, the choice of assembler may depend on the type of high 
performance computing infrastructure available and the quality of the reference 
genome annotation. Alamancos et al.  2014 , table 6, is a useful compilation of meth-
ods for de novo transcriptome assembly, with an indication of whether they are also 
able to carry out isoform quantifi cation at the same time .  

5.2.3     Isoform Quantifi cation 

 In order to analyse and interpret mapped data, a menagerie of analysis tools are 
available. Most of them employ different models to normalise and quantify the 
number of reads for  each   exon/transcript isoform in each sample or sample repli-
cates and compare differential gene expression. Most of these tools take as input 
BAM/SAM fi les from a mapping tool. As this is a rapidly evolving fi eld, there are 
rather few benchmarking studies systematically comparing the commonly used 
tools. Chandramohan et al.  2013  and Liu et al.  2014  have carried out a limited evalu-
ation of isoform quantifi cation methods and found HTSeq and MATS to perform 
best, while Kanitz et al.  2015  present a more in-depth comparative benchmarking 
analysis of several algorithms such as BitSeq, Cuffl inks, RSEM and Sailfi sh among 
others for determining isoform abundance, but unfortunately do not include the 
popularly employed HTSeq/DEXSeq or MISO methods used for differential iso-
form quantifi cation between two biological samples. The mathematical basis of sev-
eral methods is briefl y summarised in the study by Kanitz et al.  2015  and more 
extensively compared in Pachter  2011 . Some of these analysis tools include multi-
variate statistical comparisons, GO enrichment and other functions, which might be 
useful depending on the analysis required. 

 We briefl y summarise a few of the many methods available, to enable the reader 
to choose a suitable analysis tool based on their requirements, data handling exper-
tise and desired output format. 

  DEXSeq  (Anders et al.  2012 ) takes input of  read   count data from HTSeq (Anders 
et al.  2015 ) and is a widely used method, which is very well annotated with easy to 
follow vignettes requiring very basic understanding of R to use. It is similar to 
DESeq2 and uses the same negative binomial distribution model to compare sam-
ples but treats exons or smaller variants (such as those defi ned by alternative 3′ or 5′ 
splice sites) as units instead of genes. DEXSeq counts the expression of each exon, 
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or smaller variant unit per sample, and normalises this value by the size of the 
library. When comparing samples it returns the  p -value,  p -adjusted value, base 
means and log2fold changes for each exon. DEXSeq can also generate a fi tted 
expression plot of a gene and its exon usage. 

  Multivariate Analysis of Transcript Splicing  ( MATS ) (Shen et al.  2012 ) is a 
command line tool and is  another   general- purpose   analysis tool to study splicing. It 
can take as an input BAM/SAM fi les or FASTQ fi les and align reads directly. It 
utilises Bayesian statistics to compare splicing between samples and can detect and 
categorise common splicing events (Skipped exon, alternative 5′ splice site, alterna-
tive 3′ splice site, mutually exclusive exons and retained intron). 

  SplicingCompass  (Aschoff et al.  2013 ) is an R module  to   quantify changes in 
isoform abundance regardless of expression-level changes by plotting a gene as an 
 n  dimensional vector of read counts where  n  is the number of exons. This form of 
data interpretation enables simple geometry in order to predict alternative isoform 
expression. It is an R module and it requires R skills to be used. This module can 
plot normalised exon abundance and normalised junction reads for a given gene. 

  DiffSplice  (Hu et al.  2013 ) is an analysis  tool   from the same group that made and 
maintains MapSplice. DiffSplice is a tool designed to detect ab initio alternative 
spliced modules (part of genes that are differentially spliced). It produces differen-
tially expressed exon and alternative spliced module tables fi ltered by desired sig-
nifi cance. The signifi cance is calculated using a nonparametric test. It also produces 
GTF fi les of the alternative spliced modules and of the isoforms found.  Those   GTF 
fi les can be visualised in genome viewers or used for further analysis. DiffSplice 
does not require annotation fi les and takes SAM fi les as input. This tool can fi nd 
novel splicing events and splicing categories and is useful for de novo discovery of 
splicing events and if needed, is one of the few tools capable of producing de novo 
GTF fi les. 

  SpliceR  (Vitting-Seerup et al.  2014 ) is an  R   bioconductor tool to analyse 
mapped data. It is designed to work with Cuffl inks to fi nd and categorise alterna-
tive splicing events (single exon skipping exclusion/inclusion, multiple exon 
exclusion/inclusion, intron retention/inclusion, alternative 3′/5′ splice sites, alter-
native transcription start/end site, mutually exclusive exons). It is also capable of 
discovering de novo splice sites as it does not rely on annotation fi les to fi nd 
exons. SpliceR can then generate annotation GTF fi les, which can be used as input 
for many other analysis pipelines and also visualised into genome browsers. 
Splicer can also visualise Venn diagrams comparing splicing events between dif-
ferent samples. 

  AltAnalyze  is a multipurpose tool (Emig et al.  2010 ). It can be used with micro-
arrays as well as RNA-seq data. It has A GUI which can be used locally or through 
a server.    AltAnalyze provides expression clustering, gene enrichment analysis, 
pathway visualisation, network analysis and visualisation, alternative exon visuali-
sation, sample classifi cation, Venn diagram creation and ANOVA. It also has full 
command line usage, so, this program can be automatised or streamlined if needed. 
This tool is reasonably easy to use and is convenient for multipurpose analysis; it 
can take as input bed fi les or microarray fi les from many suppliers. 

5 Differential mRNA Alternative Splicing



110

  CuffDiff  is part of the  Tuxedo   suite which analyses mapped data (SAM or BAM) 
and compares changes in expression, alternative splicing and promoter use between 
different treatments and replicates (Trapnell et al.  2012 ). CuffDiff outputs differen-
tial expression fi les of isoforms, genes, coding sequences and primary transcript in 
FPKM (fragment per kilobase per million fragments mapped), raw counts and dif-
ferential expression tests. This test can only be made when comparing two samples 
(with replicates for each). Like other Tuxedo tools, CuffDiff can be used  through 
  usegalaxy.org without command line usage. CuffDiff can use four models; pooled 
model, a precondition where all condition get modelled independently (needs repli-
cates for each condition), a blind model where all samples are treated as if they were 
the same condition and a Poisson model. CuffDiff performed rather poorly in the 
benchmarking study by Kanitz et al.  2015 . 

  Mixture of isoform  ( MISO ) (Katz et al.  2010 ) uses Markov Chain Monte Carlo 
models to estimate the expression of each isoform.     MISO   can compare between 
multiple samples and derive the signifi cance of isoform expression changes. It 
requires a GFF3 annotation fi le (a GTF fi le can be easily converted to a GFF3 fi le) 
and cannot detect novel isoforms. It takes as input-sorted and indexed BAM fi les. It 
outputs a summary table with one or more samples which can be fi ltered by MISO 
itself. MISO can also produce sashimi plots which can also be generated using IGV 
genome visualiser tool (Robinson et al.  2011 ). 

  SwitchSeq  (Gonzalez-Porta and Brazma  2014 ). Considering that 85 % of pro-
tein-coding transcripts belong to dominant transcript isoforms (Gonzalez-Porta 
et al.  2013 ), which indicates that even though there are many isoforms present of a 
given gene, only one is dominant. SwitchSeq fi nds the dominant isoform and exclu-
sively reports on changes in splicing on the dominant isoform (regardless of the 
gene expression changes). SwitchSeq takes as input normalised counts and outputs 
an HTML fi le summarising the results, a table reporting on the switch events found, 
a list of events discarded if they were not present in the annotation fi le, distribution 
plots for events found and star plots for events found. 

   SplicePlot  (Wu et al.  2014 ) is a command line tool that can analyse mapped data 
(SAM or BAM fi les) in the focus of genomic variability. It takes as input BAM fi les 
of samples and VCF (variant call format) fi les, a fi le that contains information about 
genetic sequence variation. It can produce plots designed to study genomic variation 
and splicing such as sashimi plots, hive plots and structure plots. This tool might be 
useful to visualise the effect of genomic background variation on splicing. 

 Numerous tools have not been discussed here due to limited space, such as 
Alt Event Finder (Zhou et al.  2012 ), ASprofi le (Florea et al.  2013 ), AStalavista 
(Foissac and Sammeth  2007 ) and SpliceTrap (Wu et al.  2011 ) which are similar 
to others above. SUPPA (Alamancos et al.  2015 ) and Vast-tools (Langmead 
et al.  2009 ) are toolsets for profi ling alternative splicing events in RNA-seq 
data. DSGseq (Wang et al.  2013 ) compares relative abundance of isoforms 
between samples, and Spanki (Sturgill et al.  2013 ) is a fl exible tool to  analyse 
  alternative splicing events. RSVP (Majoros et al.  2014 ) is a software package 
for prediction of alternative isoforms of protein-coding genes, based on both 
genomic DNA evidence and aligned RNA-seq reads. SAJR (Mazin et al.  2013 ) 
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calculates the number of the reads that confi rm a segment inclusion or exclusion 
and, then, model these counts by GLM with quasi- binomial distribution to 
account for biological variability .   

5.3     Visualising Alternative Splicing 

  It is often useful to explore RNA-seq data without needing to generate and analyse 
numerous plots or tables for each gene. Visualising tools enable to graphically, 
intuitively and interactively visualise and navigate the genome. Some of them are 
included in the analysis package and can be used as command line tools (RSEM, 
SpliceGrapher, DiffSplice, DEXSeq, SplicingCompass) and were covered in the 
previous section. Others are graphical user interfaces (IGV, IGB, Savant, 
SpliceSeq). Integrative Genome Viewer (Robinson et al.  2011 ) from the Broad 
Institute is a widely used, user-friendly general-purpose genome viewer.  Besides 
  interactive navigation of the genome, IGV can also generate sashimi plots for 
alternative splicing, showing the number of reads at individual exon-exon junc-
tions, with a few mouse clicks. IGV requires suffi cient RAM and at least 10 G 
RAM is recommended. Another popular general-purpose viewer for microarray 
and RNA-seq data is the Integrated Genome Browser (Nicol et al.  2009 ). Support 
to handle splicing was added in 2014 (Gulledge et al.  2014 ). It can handle a vast 
variety of fi le formats and has several plugins available for additional features and 
fi le formats. SpliceSEQ (Ryan et al.  2012 ) is a user-friendly program allowing 
graphical visualisation of splicing events. SpliceSEQ also categorises reads 
depending on splicing event type (exon skipping, alternate donor/acceptor site, 
retained intron, etc.) .  

5.4     Conclusion 

 RNA sequencing is now widely used as a method for global expression profi ling, 
due to its large dynamic range, robust reproducibility and most importantly, its abil-
ity to detect transcript isoforms. While this technique and its applications have wide 
impact on understanding gene regulation in health and disease, this is still an area of 
active development for new tools and benchmarking of existing pipelines for wet- 
lab as well as analytical methods. 

 Especially in the case of determination of isoform abundance and relative expres-
sion of alternatively spliced isoforms, every step in the pipeline needs to be splicing 
sensitive and take into account the transcriptomic as well as the genomic view of 
gene expression. Not unexpectedly, methods developed for calculating  isoform- level 
expression that aggregates the abundances of isoforms are also more accurate esti-
mators of gene-level expression. 
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 There are a variety of tools available, and encouragingly, most of the methods 
available to estimate transcript isoform abundance produce comparable and repro-
ducible results (Kanitz et al.  2015 ). In general, isoforms from high-abundance tran-
scripts are more accurately quantifi ed, and as expected this accuracy increases with 
read depth, up to about 30 million reads after which there is limited improvement in 
prediction of the presence of transcripts. Higher read depth is likely to continue to 
have an impact in differential expression of alternatively spliced isoforms, but a 
large systematic benchmarking study is still lacking. In addition to higher read 
depth of short-read sequencing output, recent technologies such as from Pacifi c 
Biosciences enable full-length transcript readouts and will address many issues sur-
rounding mapping. However, these are still relatively low throughput but expected 
to improve in the near future. Nevertheless, short-read sequencing methods that 
have become increasingly cost-effective are highly suitable for isoform abundance 
and differential alternative splicing analysis. 

 Thus the main factors infl uencing choice of analysis method may depend on the 
availability of computational resources and the researcher level of expertise using 
informatics. Sailfi sh is extremely fast and memory effi cient as it uses a mapping- 
free approach. TIGAR2 (Nariai et al.  2014 ), which is highly accurate, has high 
memory requirements and takes longer to run. Some tools such as AltAnalyze, 
DEXSeq and CuffDiff, among others, are easy to use with limited programming 
knowledge. Newer methods operating on the transcript rather than genomic refer-
ence sequence appear to be more accurate but have not yet been adapted for use on 
a GUI platform and thus require some scripting knowledge.      
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    Annex: Quick Reference Guide 

  Fig. QG5.1    Representation of  the   wet-lab procedure workfl ow        
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  Fig. QG5.2    Main steps of  the   computational analysis pipeline        
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  Table QG5.1     Experimental design   considerations   

 Technique  Number of replicates  Sequencing depth 
 Recommended 
sequencing platforms 

 RNA-seq for 
alternative splicing 
analysis 

 3 (minimum per 
condition), 5 
recommended 

 30 million reads 
uniquely mapped 

 Illumina HiSeq 

  Table that comprises relevant experimental design parameters, to carefully consider before apply-
ing this methodology  
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  Table QG5.2     Available   software recommendations   

 Application  Software  Reference 

 Graphical user 
interface (GUI) or 
command line 
(CL) or via 
Galaxy-UCSC 

 De novo transcriptome 
assembly 

 Trinity  Grabherr et al. ( 2011 )  CL, Galaxy 
 SOAPdenovo-trans  Xie et al. ( 2014 )  CL 
 Trans-ABySS  Robertson et al. 

( 2010 ) 
 CL 

 Splice-sensitive mapping 
to genome 

 TopHat  Trapnell et al. ( 2009 )  CL, Galaxy 
 MapSplice  Wang et al. ( 2010 )  CL 
 HMMSplicer  Dimon et al. ( 2010 )  CL 
 GSNAP  Wu and Nacu ( 2010 )  CL 
 STAR  Dobin et al. ( 2013 )  CL 

 Mapping to 
transcriptome 

 eXpress  Roberts and Pachter 
( 2013 ) 

 CL 

 IsoEM  Nicolae et al. ( 2011 )  CL 
 MMSEQ  Turro et al. ( 2011 )  CL 

 Transcript isoform 
quantifi cation 

 BitSeq  Glaus et al. ( 2012 )  CL 
 RSEM  Li and Dewey ( 2011 )  CL 
 Cuffl inks  Trapnell et al. ( 2010 )  CL, Galaxy 

 Differential expression 
of isoforms,  isoform - 
 based differential 
expression  

 DEXSEq  Anders et al. ( 2012 )  CL 
 MATS  Shen et al. ( 2012 )  CL 
 SplicingCompass  Aschoff et al. ( 2013 )  CL 
 MISO  Katz et al. ( 2010 )  CL 
 Altanalyze  Emig et al. ( 2010 )  GUI, CL 
  BitSeq   Glaus et al. ( 2012 )  CL 
  EBSeq   Leng et al. ( 2013 )  CL 
  Cuffdiff2   Trapnell et al. ( 2012 )  CL, Galaxy 

 Visualising and reporting 
results 

 IGV  Thorvaldsdóttir et al. 
( 2013 ) 

 GUI 

 IGB  Nicol et al. ( 2009 )  GUI 
 UCSC Genome 
Browser 

 Raney et al. ( 2014 )  GUI 

 SpliceSeq  Ryan et al. ( 2012 )  GUI 
 SwitchSeq  Gonzalez-Porta and 

Brazma ( 2014 ) 
 CL 

  Table displaying a selection of the recommended software available for the computational analysis 
of data yielded by this technique  
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    Chapter 6   
 microRNA Discovery and Expression Analysis 
in Animals                     

       Bastian     Fromm     

6.1           Introduction 

 When the fi rst miRNA Lin-4 was discovered in  Caenorhabditis elegans  in 1993 
(Lee et al.  1993 ), the importance of the discovery was underestimated, and only few 
imagined that these small noncoding molecules could represent a completely new 
and major class of gene regulators in worms or even further (Wickens and Takayama 
 1994 ). And indeed it took another 7 years until the second miRNA Let-7 was dis-
covered (Pasquinelli et al.  2000 ). Soon after several more miRNAs and their wide 
distribution across, the majority of animal groups was simultaneously published by 
three groups (Lee and Ambros  2001 ; Lau et al.  2001 ; Lagos-Quintana et al.  2001 ). 
However, not the fact that they are evolutionary highly conserved across the animal 
tree of life, but that they represented a novel way of gene regulation in all animals, 
triggered a vast range of studies and a new fi eld of molecular biology: the small 
noncoding RNA fi eld. 

 In this chapter I will give an overview of miRNAs in animals and the challenges 
of miRNA discovery, annotation, and expression analysis using high-throughput 
sequencing. 

 MiRNAs in animals are single-stranded, 20–26 nucleotide long small RNAs that 
derive from hairpin precursor and regulate gene expression by negative posttran-
scriptional regulation of messenger RNAs (mRNAs) (Fromm et al.  2015a ). In the 
canonical pathway, a pri-miRNA is transcribed by RNA polymerase II and pro-
cessed by the RNase Drosha to the pre-miRNAs. Via Exportin 5 channel proteins, 
the pre-miRNA is exported from the nucleus into the cytosol where another RNase, 
Dicer, removes the remaining loop sequence. The miRNA/miRNA* RNA duplex is 
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typically transferred to AGO2 that removes the passenger strand, retains the mature 
miRNA, and exposes positions 2–8 of the sequence (miRNA seed) via conforma-
tional change (Schirle et al.  2014 ). Subsequently the RISC-complex, a complex of 
several proteins, is assembled and modulates the seed-sequence-directed binding to 
the 3′ UTR of a target mRNA (but see (La Rocca et al.  2015 )). This interaction leads 
to inhibition  of   translation and degradation of the respective mRNA that negatively 
affects the protein levels of the corresponding genes (for more details see for 
instance (Pasquinelli  2012 ; Krol et al.  2010 ; Berezikov  2011 )). Today it is known 
that miRNAs play key roles in a broad variety of biological processes, such as, e.g., 
cell proliferation and metabolism (Brennecke and Cohen  2003 ), tissue identity 
(Christodoulou et al.  2010 ), developmental timing (Reinhart et al.  2000 ), cell death 
(Baehrecke  2003 ), hematopoiesis (Chen et al.  2004 ), neuron development (Johnston 
and Hobert  2003 ), tumorigenesis (Esquela-Kerscher and Slack  2006 ), DNA meth-
ylation, and chromatin modifi cation (Bao et al.  2004 ), as well as in immune defense 
against viruses (Sarnow et al.  2006 ). Recently it has also been shown that miRNAs 
can mediate interspecies cross talk and immune regulation via extracellular vesicles 
(Buck et al.  2014 ; Fromm et al.  2015b ). 

 While in the early days the presence of mature products was confi rmed by clon-
ing and subsequent sequencing (Lau et al.  2001 ), it was impossible to assess relative 
expression accurately or if the retained sequences were derived from appropriately 
folding hairpin precursors. This rapidly changed when the number and quality of 
available genome sequences increased and modern sequencing methods became 
available also for short RNAs (Lu et al.  2005 ). Consequently the number of pub-
lished miRNAs virtually exploded (Fig.  6.1 ).

   However, studies on the human genome uncovered massive numbers of puta-
tive miRNA hairpins with a high probability for false-positives (Bentwich  2005 ). 
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  Fig. 6.1    PubMed entries with “microRNA” in title per year 2001–2014       
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This and the fl ood of steadily increasing amounts of small RNA sequencing data 
exposed the need for bioinformatic tools and more accurate criteria for the annota-
tion of miRNAs. Increasing knowledge about the details of miRNA processing 
and their structural features is used to improve miRNA predictions.  

6.2     Unique Structural Features of miRNAs 

  While in the last two decades, the small noncoding RNA fi eld signifi cantly expanded 
leading to a vast number of new small RNA families like piRNAs (Lau et al.  2006 ), 
siRNAs (Hamilton and Baulcombe  1999 ), snRNAs and snoRNAs (Matera et al. 
 2007 ), and novel small RNA functions of, e.g., tRNA (Goodarzi et al.  2015 ) and 
rRNA fragments (Chak et al.  2015 ), no other group like (canonical) miRNAs has so 
many unique structural features that clearly separate them from any other RNA fam-
ily (summarized in Fromm et al.  2015a ; see Fig.  6.2 ):

     1.    miRNAs are between 20 and 26 nt long.   
   2.    They are genome encoded.   
   3.    They derive from hairpin precursor that shows imperfect complementarity (~16 nt).   
   4.    Mature products of both hairpin arms are expressed (mature, co-mature, or star 

sequence).   

Dicer
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Dicer 

star reads

mature reads

loop reads

Drosha 
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C 
N 

pre-miRNA 

pri-miRNA 
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position -14 
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  Fig. 6.2    Simplifi ed structure of a canonical human miRNA and its read representation (based on 
(Fromm et al.  2015a ; Nguyen et al.  2015 ; Auyeung et al.  2013 )). Note the 5′ read homogeneity and 
the 2 nt overlap between the mature and passenger strand       
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   5.    They show a 5′ read homogeneity in 90 % of the reads.   
   6.    They show a 2 nt offset on both ends, which is a consequence of Drosha/Dicer 

processing.    

  Besides those features, it was also described that mature miRNAs show signifi -
cantly higher ratios of As or Us at position 1 or, alternatively, show mismatched 
hairpin sequences at this position which seems to facilitate arm selection by 
Argonaute at least in mammals (Schirle et al.  2014 ; Suzuki et al.  2015 ).

    7.    Mature miRNA sequences usually start with A or U.    

  Additionally, recently, a number of publications described a set of motifs in the 
fl anking regions and loop sequence that seems to be crucial for processing of most 
miRNAs in mammals and could be used as another set of criteria (Nguyen et al. 
 2015 ; Auyeung et al.  2013 ).

    8.    The fl anking region upstream shows UG motif at position 14, loop shows UGU 
motif at the 3′ end of the 5′ arm, and fl anking region downstream shows CNNC 
motif at positions 17–18.    

  One of the key features of miRNA complements of most metazoan animals is 
that they usually consist of species-specifi c miRNAs that are evolutionary novelties 
(novel miRNAs) and miRNAs that are representatives of evolutionary conserved 
miRNA families that are found in other animal groups, too, and refl ect their hierar-
chical acquisitions over evolutionary time (conserved miRNAs). The latter have 
been shown to be highly conserved across all bilaterian animals (Hertel et al.  2006 ; 
Sempere et al.  2006 ; Heimberg et al.  2008 ; Sperling and Peterson  2009 ; Wheeler 
et al.  2009 ), and in some cases identical mature miRNA sequences are found, for 
instance, in human and fl y (Hsa-Let-7-P1-5p, Dme-Let-7-5p) underlining their evo-
lutionary age and critical importance for some key processes in animals.

    9.    At least some miRNAs of any higher animal taxon are representatives of phylo-
genetically conserved miRNA families and show very high sequence 
similarities.    

  If all these features would be carefully implemented in a bioinformatic pipeline 
that scores predictions based on them, I argue that miRNA prediction could be rela-
tively simple. However, some of the listed features are very recent fi ndings that were 
validated only for specifi c animal groups so far (feature 7 A or U as mature start), and 
others are known to be specifi c for such groups only (e.g., feature 8 motifs in mam-
mals) and are therefore not found in any existing pipeline. For many of the early-
days studies, several of the listed features that would allow checking for many of the 
required miRNA annotation criteria from above weren’t available at the time either 
(read coverage, genome availability). As a consequence, many miRNAs have been 
described that lack falsifi able data for virtually all the structural features listed above, 
except for feature 9: phylogenetic conservation that is very often used to recover the 
expected set  of   miRNAs based on existing databases. Hitherto, this is not only his-
torically relevant: in particular for studies on “non-genome organisms,” miRNA 
complements are published continuously that often lack crucial parts of the actual 
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miRNA complement (Xu et al.  2012 ) and require additional work (Fromm et al. 
 2015b ). Unfortunately, it is not the absence of miRNAs from published comple-
ments that is the main issue, but false-positive miRNAs, hundreds and thousands of 
putative miRNAs that do not meet the simplest of the mentioned structural features .  

6.3     Generating miRNA Next-Generation Sequencing Data 
from Biological Samples 

  To introduce the generation of miRNA data, I would like to mention common steps, 
challenges, and pitfalls that can infl uence the quality and the signifi cance of the data 
generated. I hereby only focus  on   next-generation sequencing (NGS) technology 
because it is the only method that is not restricted to known sequences and isoforms. 
Detailed comparisons between available NGS methods and array or qPCR-based 
detection methods have been reported elsewhere (Leshkowitz et al.  2013 ; Git et al. 
 2010 ; Baker  2010 ; Willenbrock et al.  2009 ; Chen et al.  2009 ; Mestdagh et al.  2014 ; 
Knutsen et al.  2013 ,  2015 ). For NGS approaches, four steps are distinguishable in 
the process from sample to miRNA sequences:

    1.    Sampling   
   2.    RNA extraction   
   3.    Library preparation   
   4.    Sequencing    

    1.    Sampling of material for the generation of miRNA data is a crucial step as this 
step can have a big impact on the quality of the RNA produced and the amount 
of small RNAs in it. To assess RNA quality, usually a RIN (RNA Integrity 
Number) value will be determined (Schroeder et al.  2006 ). While a RIN value of 
10 denotes the highest possible overall RNA quality, an RNA sample where even 
high molecular weight RNA molecules like 28S and many mRNAs are not 
degraded, RIN values below ten denote stepwise degradation of them. 
Consequently, it has been argued that the RIN value has an important function to 
distinguish representative samples from biased ones, which is obviously true for 
RNAseq studies where the focus lays on relatively long mRNA sequences. 
However, it has been argued that the RIN value does refl ect degradation of miR-
NAs and thus does not affect miRNA studies (Jung et al.  2010 ). Unfortunately, 
this has not been shown for NGS studies, where short fragments of high molecu-
lar RNAs would at least “dilute” the amount of small RNAs in a given library. 
More importantly, recent research shows that even mature miRNAs can degrade 
and do this heterogeneously based on the sequential composition; thus, the 
 introduction of bias in samples with low RINs has to be expected (pers. com-
munication Francesco Nicassio, IIT). Essentially three possible routes can be 
followed that have been used successfully before. The fi rst and obviously best 
method is to sample fresh material and immediately proceed to #2 RNA extraction. 
Alternatively, often used in clinical studies, fresh material is sampled and stored 
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on −80 °C where it can be stored for long times until #2 RNA extraction will be 
done. Similarly fresh samples can be stored in RNA stabilizing solution that is 
available from many suppliers (e.g., RNAlater). Dependent on the size of organ-
isms of interest, it might be required to think about the design of the study more 
carefully—e.g., in cases where organisms are very small, several individuals 
might have to be pooled in order to arrive at a big enough number RNA mole-
cules that allow for NGS sequencing (often around 1 μg total RNA required). Or 
in other cases, particular tissue types have to be collected. Anyway, clean and 
quick work on ice is recommended.   

   2.    Historically most labs had own RNA extraction protocols; however, today many 
commercially available protocols exist that promise high-quality and high-yield 
total RNA samples that include miRNAs from a range of different tissue, cell, 
and organism types with acceptable price/value ratios. Nevertheless, when they 
are compared for, e.g., very little sample inputs, particular sample, and tissue 
types or in comparison to other nucleic acids, substantial differences were 
observed (Fromm et al.  2011 ; Bergallo et al.  2015 ; Grabmuller et al.  2015 ; 
Hantzsch et al.  2014 ; Monleau et al.  2014 ; Guo et al.  2014 ). In conclusion, there 
is no optimal method that satisfi es all demands and it appears that each method 
has specifi c merits and fl aws. I recommend to carefully choose from the avail-
able methods, based on literature and centered on the experimental needs. RNA 
quality (RIN) and purity (DNA or protein contamination) should be carefully 
assessed.   

   3.    Library preparation is highly dependent on the sequencing strategy chosen, but 
many different methods exist here, too, and it has been suggested that this step—
which is usually done as a service, but can also been done by anyone that pur-
chases the respective kits or chemicals—is the most crucial step in the generation 
of miRNA data (Knutsen et al.  2015 ; van Dijk et al.  2014 ; Toedling et al.  2012 ; 
Jackson et al.  2014 ; Jayaprakash et al.  2011 ; Hafner et al.  2011 ). Common meth-
ods of library preparation are laborious and require training and a signifi cant 
amount of RNA (between 500 ng and 1 μg totalRNA). Often, yields in read 
number and miRNA content cannot be predicted accurately and much depends 
on individual skills and personal experience. Recently, new library preparation 
kits are emerging that claim an improved sensitivity and accuracy in generating 
high-quality libraries from as little as 100 pg RNA (see   www.trilinkbiotech.com/
cleantag/ligation-kit.asp    ). Realistically you might not be able to choose a library 
preparation method if you are within a, e.g., clinical setting, but it is important to 
be aware of the potential pitfalls and could be advisable to talk to sequencing 
facilities before you conduct an experiment.   

   4.    During the years different sequencing platforms emerged with ever-increasing 
read counts and different techniques that all perform in their own ways (Knutsen 
et al.  2013 ; Toedling et al.  2012 ; Raabe et al.  2014 ). Today, however, Illumina 
technology is clearly leading the small RNA sequencing fi eld and used the most. 
As for the relatively short size of miRNAs, usually short reads will be sequenced 
in order to maximize the amount of biological sequences as opposed to adapters 
or primers that are ligated to them, may it be in the preferable single-end or 
paired-end sequencing strategy. The desired number of reads that should be 
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aimed for depends signifi cantly on the organism (i.e., how many miRNAs are 
expected), the biological question (characterization of few vs many miRNAs or 
expression analysis of, e.g., top 100 miRNAs), the aimed for resolution (e.g., 
detection of rare miRNAs in pooled samples requires sometimes extreme mea-
sures like the generation of hundreds of millions of reads for individual samples), 
and the yield of miRNA sequences of the library preparation protocol used (also 
dependent on who uses it, variations of 10–80 % miRNA content of the reads can 
occur between facilities; personal observation). In my opinion, single-end 
sequencing of as short as possible read length is the best optio n.    

6.4       Status of miRNA Repositories 

  Given the historical development and technical challenges miRNA predictions face, 
it is not surprising that the overall quality and completeness of published and depos-
ited miRNA complements are very heterogenic. An miRNA reference however is 
very important not only to understand transcription or biology of a known organ-
ism, but crucial to make accurate predictions in novel—previously not sequenced—
organisms. Until recently, miRBase was the only online repository for miRNAs, 
and it regulates new entries by accepting published miRNAs only, assuming that 
peer review would eliminate incorrect calls. In the latest version (Release 21) of the 
database, it contains 28,645 hairpin precursor miRNAs and 35,828 mature miRNA 
products of 223 organisms, roughly half of them from animals (Kozomara and 
Griffi ths-Jones  2014 ). While annotation and nomenclature of miRNAs have admit-
tedly been problematic, and, therefore, many representatives of conserved miRNA 
families are named redundantly, which is partly covered by miRBase (but see table 
2 in (Tarver et al.  2013 )), it was recently found that almost half of all animal entries 
in miRBase are not derived from  bona fi de  miRNA genes (Fromm et al.  2015a ), 
supporting earlier doubts (Castellano and Stebbing  2013 ; Chiang et al.  2010 ; Jones- 
Rhoades  2012 ; Langenberger et al.  2011 ; Meng et al.  2012 ; Tarver et al.  2012 ; 
Taylor et al.  2014 ; Wang and Liu  2011 ) and questioning a system of accepting 
miRNAs based on their publication alone. Consequently, a database of manually 
curated miRNA genes—MirGeneDB.org—was erected that aims at providing high- 
confi dence miRNA complement with low false-positive and low false-negative 
rates at the same time (Fromm et al.  2015a ). A uniform system for the annotation of 
miRNAs based on a set of consistent criteria (see above: structural features) was 
used to decide whether or not a given putative miRNA entry in miRBase is likely to 
be derived from a  bona fi de  miRNA gene or not.    Additionally, a new consistent 
nomenclature was put in place (while keeping old names for relocation) that is 
simple and stable over time, comprehensible especially between species, and is 
predictive in evolutionary terms, so it reveals the expected number of miRNAs in 
any species and can expose instances of miRNA loss or absence (see (Fromm et al. 
 2015a ) for details). Currently MirGeneDB.org consists of 1421 fully annotated 
miRNA genes from human, mouse, chicken, and zebrafi sh and will signifi cantly 
increase in numbers of species (invertebrates and vertebrates) in the next years .  
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6.5     Prediction of miRNAs in Genome and Non-genome 
Organisms 

  Today the prediction of miRNAs is a bioinformatic task and highly reliant on 
programmers and their biological knowledge of structural features of miRNAs. 
However, the prediction depends much on the quality and purity of the samples 
(degradation or contamination of RNA), the depth of sequencing (i.e., enough 
reads to detect passenger reads of lower expressed miRNAs, too), the quality of 
miRNA references (number of false-positives), and reference genomes (complete-
ness, redundancy). While lately more and more web-interface-based program 
limit the required computer literacy for miRNA work for some organisms and 
questions (Rueda et al.  2015 ), it is advisable to be able to work on command line 
interfaces and know basic UNIX commands for text manipulations, especially if 
nonstandard organisms, i.e., without genome found within available genomes. 
However, programming skills are usually not required as many pipelines have 
been developed that include all required steps. It is of importance to remark that 
all currently available pipelines require manual curation of predictions. Among 
the most infl uential pipelines for animal miRNAs are (alphabetically) DARIO 
(Fasold et al.  2011 ), miRanalyzer (Hackenberg et al.  2009 ,  2011 ), miRDeep2 
(Friedländer et al.  2008 ,  2012 ), miRDeep* (An et al.  2013 ), mirTools2 (Wu et al. 
 2013 ; Zhu et al.  2010 ), miRTRAP (Hendrix et al.  2010 ), and UEA sRNA work-
bench (Rueda et al.  2015 ; Stocks et al.  2012 ). Although the differences between 
the pipelines in approach, requirements, performance, and ease of use are substan-
tial (Table  6.1  and for detailed review of some of the listed programs, see (Kang 
and Friedlander  2015 ; Li et al.  2012 )), many of them share a common set of steps 
(see Fig.  6.3  for generalized workfl ow):

      1.    Preprocessing of reads 
 Usually miRNA sequencing data (Illumina Inc.) will be provided in unpro-

cessed (raw) format that requires preprocessing like adaptor handling, quality 
and length fi ltering, and setting required number of unique reads (depending on 
library and sequencing protocol and sequencing depth). While some of the pro-
grams provide these steps as options, stand-alone tools like fastx-toolkit (  http://
hannonlab.cshl.edu/fastx_toolkit/index.html    ), Galaxy implementations (  https://
usegalaxy.org    ), or custom scripts are regularly used for this purpose, too. 
 Eventually reads between 20 and 26 nt in length should be used for further analy-
sis (see structural feature 1).   

   2.    Profi ling of known miRNAs 
 Not necessarily the second step in each pipeline, it is common to screen the 

read data of small RNA sequencing experiments for known miRNAs. This is 
useful for getting a fi rst impression of the quality of the sequencing run (e.g., 
depth), and, in cases where samples of organisms with known miRNA comple-
ment are sequenced or where no reference genome is available, this step might 
already be suffi cient to identify differences in expression of known miRNAs of 
interests given the biological samples or scientifi c question (e.g., normal vs. tumor 
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  Fig. 6.3    Workfl ow for miRNA prediction. #1: Many pipelines offer preprocessing of raw sequenc-
ing reads in order to get them in the right format and to fi lter putative miRNA reads based on qual-
ity and length only. #2: Based on a given reference (usually miRBase but often a custom reference 
is possible, too), known miRNAs are identifi ed and profi led (e.g., in heat map changed from 
(Fromm et al.  2015b )) within or between samples. #3: Small RNA reads are further fi ltered by 
mapping them to reference genome. #4: Regions where read map in so-called read stacks with 
clear boundaries rather than smears are excised for #5: Folding of putative miRNA loci (usually 
mfold or similar). #6: Small RNA reads are remapped to the approved hairpins in order to be able 
to bioinformatically assess structural features and score candidates accordingly       
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samples in human cancer studies). For other studies on, e.g., novel organisms, it 
is possible to compare the identity of the conserved miRNAs with the expected 
complement given the taxonomic position and draw preliminary conclusions that 
would need further confi rmations (Tarver et al.  2013 ). All of the abovementioned 
pipelines profi le known and novel (putative) miRNAs.   

   3.    Mapping of reads to genome 
 In order to be able to confi rm criteria feature 2 (genomic origin), only reads 

that map to the required (!) reference genome sequence can be considered. Here, 
somewhat relaxed features can be used that allow for some mismatches as it is 
known that posttranscriptionally modifi ed miRNAs occur and can play impor-
tant roles, too (Neilsen et al.  2012 ). This step is also a condition for the identifi -
cation of genomic regions where reads map in stacks that can trigger the selection 
or precursor candidates (for details see Box 1 in (Berezikov  2011 )). Recently a 
method (MirCandRef) was described that uses small RNAseq data and genomic 
sequencing data without prior need for genome assembly to create so-called 
crystal contigs that can be used as a reference genome (Fromm et al.  2013 ).   

   4 & 5.    Identifying hairpins 
 After regions around read stacks are identifi ed, they can be excised and sepa-

rately folded (e.g., Mfold (Zuker  2003 ), RNAfold (Gruber et al.  2015 ; Lorenz 
et al.  2011 )) for assessing the folding energy and structure of a possible hairpin 
that is required as a structural feature (feature 3). At this step, the size of the 
excised region for folding the hairpin is of course important to assess corre-
sponding minimal folding energies (the longer the higher the energy cutoff). 
Nevertheless, it has also been shown that hairpin size can differ dramatically 
among certain groups of invertebrates and indeed can exceed the average value 
of 59 nt (Fromm et al.  2015a ) by sometimes hundreds of nucleotides (Fromm 
et al.  2013 ,  2015a ). A variable size option is clearly desirable but, to my knowl-
edge, not available at the moment. As a sidenote, hairpin size is one of the main 
differences between the structural features of animals and plants.   

   6.    Remapping reads to putative hairpins 
 After a set of putative hairpins has been identifi ed, reads are often mapped 

back to them in order to assess structural features 4, 5, and 6. If both arms are 
expressed (feature 4—at least if the miRNA is not already known), reads show 
5′ homogeneity (feature 5), and a 2 nt offset is obvious (feature 6), candidates 
should be accepted as miRNAs or are given a high score in the assessment of 
candidates.    

  Usually, a list of predicted miRNAs  is   created and sorted for expression levels of 
known and novel miRNA predictions that are given scores according to their struc-
ture and structural features (e.g., DARIO, miRDeep2). In some cases, multiple 
samples can be analyzed, differential expression profi les are produced, and target 
prediction software is included for downstream analyses, too (miRanalyzer, 
mirTools2, UEA sRNA workbench). In this case, normalization of expression val-
ues across samples is a crucial and controversially discussed issue that is best dealt 
with by sequencing samples one wants to compare with exactly the same method 
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and ideally on the same platform (Leshkowitz et al.  2013 ; Mestdagh et al.  2014 ; 
Knutsen et al.  2013 ,  2015 ; Bergallo et al.  2015 ; Monleau et al.  2014 ; Guo et al. 
 2014 ; Li et al.  2012 ; Sauer et al.  2014a ,  b ).   

6.6     Discussion and Outlook 

 The discovery of miRNAs in the last 20 years has triggered the development of new 
fi elds in biological research and further accelerated the understanding of human 
diseases like cancer. With the advent of novel sequencing technologies and avail-
ability of ever-increasing datasets, great bioinformatic efforts were undertaken to 
catch up with the demand of the fi eld. However, the current surplus of bioinformatic 
pipelines is not necessarily refl ecting a progress of the fi eld as all have high numbers 
of false-positive (erroneously identifi ed miRNAs) and false-negative rates (miR-
NAs that are present in the data but not detected) despite the known structural fea-
tures of miRNAs and lead to many incorrectly predicted miRNAs in public 
databases. It seems to be a recent trend—at least in human miRNA research—to 
rather describe more putative miRNAs than accurate predictions (Friedländer et al. 
 2014 ; Londin et al.  2015a ,  b ; Backes and Keller  2015 ). A throughout comparison of 
all available pipelines that would focus on false-discovery rates and the accuracy of 
annotations is clearly missing. More so, the current status of the main online reposi-
tory miRBase is questionable as about 50 % of all entries seem to be incorrect put-
ting miRNA predictions based on this database on jeopardy of being biased toward 
false-positives (Fromm et al.  2015a ). 

 Besides noncanonical miRNAs like Mir-451 (Yang et al.  2010 ), where assessing 
all the described features is impossible, also several cases of extra-long hairpins 
have been described for animal species that are currently not detectable in an 
automatized fashion (see (Fromm et al.  2013 ; Grimson et al.  2008 ) and others). 

 While most of the presented pipelines show non-template reads of miRNAs 
(isomiRs) in their results (i.e., miRNAs that can be assigned to a particular miRNA 
locus but differ, for example, in a few additional nucleotides or show other polymor-
phisms), a detailed analysis of this subspecies of miRNAs is currently not available 
in a systematic and detailed fashion (sRNA bench gives at least an overall count of 
most prominent additions), although their potential role in some biological setting 
such as cancer has been proposed (Koppers-Lalic et al.  2014 ). 

 Much is known about the structural features of miRNAs, and new fi ndings of 
distinct sequence motifs in the fl anking regions (Nguyen et al.  2015 ; Auyeung et al. 
 2013 ), or by-products of miRNA processing like miRNA-offset RNAs (moRs) (Shi 
et al.  2009 ; Langenberger et al.  2009 ; Asikainen et al.  2015 ; Bortoluzzi et al.  2011 ; 
Babiarz et al.  2008 ), are very interesting, but it has yet to be demonstrated that they 
represent features that can be implemented in miRNA prediction pipelines, also for 
nonmammalian species. However, currently not a single pipeline exists that uses all 
the confi rmed structural features of miRNAs. It is therefore not surprising that the 
knowledge about the phylogenetic distribution of miRNA families that could be 
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used to predict miRNA complements of any given animal is nowhere implemented 
either (Fromm et al.  2013 ,  2015a ; Tarver et al.  2013 ). 

 To summarize, miRNA prediction is possible with many different programs, but 
their performance is not only different but far from being optimal, as high rates of 
false-positives and false-negatives persist. Today, bioinformatic knowledge is less 
needed than before, because more comprehensive, web-based pipelines are avail-
able. Nevertheless, a certain level is still advisable because manual curation of 
miRNA candidates is continuously required given the high rates of incorrect or 
incomplete identifi cations. When asking more complex biological questions or 
looking for many samples in parallel, or from “unusual” reference genomes that are 
not part of the pipeline, all programs lack at least some important features. This is 
generally true for accurate screening for structural features (especially for the most 
recently discovered ones) and for high resolution of isomiRs distribution.     
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     Annex: Quick Reference Guide 
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 Fig. QG6.1    Representation 
of the wet-lab procedure 
workfl ow  
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    Chapter 7   
 Analysis of Long Noncoding RNAs 
in RNA- Seq Data                     

       Farshad     Niazi       and     Saba     Valadkhan     

7.1           Introduction 

 One of the most exciting outcomes of the high-throughput analysis of the transcriptome 
of higher eukaryotes has been the discovery of thousands of novel transcripts that 
do not seem to have any protein-coding capacity. These RNAs, collectively named 
the long noncoding RNAs (lncRNAs), are found in both prokaryotes and eukary-
otes; however, they seem to be particularly abundant in higher eukaryotes including 
both animals and plants (Rinn and Chang  2012 ; Morris and Mattick  2014 ). Some 
lncRNAs can be tens of thousands of nucleotides long, and while an originally pro-
posed arbitrary lower length limit of 200 nucleotides should not be applied too 
strictly, it serves to distinguish this class of RNAs from the small noncoding classes 
of RNAs such as small nuclear RNAs (snRNAs), small nucleolar RNAs (snoR-
NAs), microRNAs (miRNAs), etc. (Clark and Mattick  2011 ; Rinn and Chang  2012 ; 
Mattick and Rinn  2015 ). Due to their relatively recent discovery, lncRNAs remain 
poorly characterized, and every RNA-seq experiment of suffi cient depth will yield 
several novel lncRNAs that are not present in the existing reference annotations. 
Further, many protein-coding RNAs have alternatively processed isoforms that do 
not have protein-coding capacity and fall into the category of lncRNAs (Carninci 
et al.  2005 ; Djebali et al.  2012 ; Bernstein et al. with ENCODE Project Consortium 
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et al.  2012 ). Thus, discovery of novel lncRNAs and noncoding isoforms of 
 protein-coding genes is quickly becoming a major aspect of analysis of every RNA-
seq experiment. 

 While the computational steps involved in detection and analysis of the noncod-
ing transcriptome are largely identical to the workfl ow of a typical RNA-seq analy-
sis aiming at study of the protein-coding genes (reviewed by Ramsköld et al.  2012a ; 
Trapnell et al.  2012 ; Anders et al.  2013 , and Chaps.   4     and   5     in this volume), some 
aspects of the biology of lncRNAs require fi ne-tuning of several steps of the work-
fl ow. The low expression level of many lncRNAs, the abundance of transposon- 
derived sequences in them, and frequent genomic overlap with other protein-coding 
and noncoding genes (Carninci et al.  2005 ; Djebali et al.  2012 ; Bernstein et al. with 
ENCODE Project Consortium et al.  2012 ) present unique challenges in identifi ca-
tion and accurate quantifi cation of expression of these transcripts. Further, the lack 
of poly(A) tails in many lncRNAs and monoexonic genomic architecture requires 
changes in the sample preparation steps for RNA-seq experiments. Finally, many 
lncRNAs are expressed in a cell type- and state-specifi c manner, and thus, provided 
there is suffi cient sequencing depth, almost every RNA-seq experiment can poten-
tially yield novel lncRNAs that are specifi c to the cell type and state being studied. 
Identifi cation of such novel transcripts requires the additional computational steps of 
transcriptome assembly and sequence-based analysis of protein-coding potential. 

 Even among the currently annotated lncRNAs, the vast majority remain unstud-
ied, providing an exciting opportunity for uncovering novel aspects of biological 
processes. Functional analysis of a very small fraction of lncRNAs suggests their 
involvement in virtually every aspect of cellular function, with regulation of nuclear 
events including epigenetic state of chromatin and transcription emerging as major 
themes in lncRNA function (Rinn and Chang  2012 ; Amaral et al.  2013 ; Rinn  2014 ). 
Although computational analyses cannot replace functional “wet bench” studies for 
defi ning the cellular role of lncRNAs, they can provide clues that can guide the wet 
bench studies and help select the most exciting candidates for further analysis. In 
this review, we will discuss the specifi c requirements and considerations needed for 
a successful analysis of the long noncoding transcriptome in RNA-seq experiments, 
followed by some computational analysis steps that will serve as a fi rst step toward 
functional characterization of the lncRNAs identifi ed in the RNA-seq computa-
tional analysis steps.  

7.2     Practical Considerations in Defi ning the Long Noncoding 
Transcriptome by RNA-Seq 

 As previously mentioned, the majority of the computational analysis steps used for 
characterization of the long noncoding transcriptome are similar to those used for 
the study of protein-coding genes. However, considering the challenges discussed 
above, some changes to the protocols will help improve the detection and character-
ization of the lncRNAs, as detailed below. The following recommendations are 
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written with the higher eukaryotic transcriptome analysis using short-read RNA-seq 
(Illumina technology) in mind. However, with minor modifi cations, they can also 
be applicable to other sequencing platforms and organisms. 

7.2.1     Design of the Study and the Need for Replicates 

  An interesting feature of lncRNAs, which distinguishes them from protein-coding 
RNAs, is that their expression can be highly specifi c to a certain cell type, a certain 
developmental stage, or a certain cellular state (Mercer et al.  2008 ; Djebali et al. 
 2012 ; Bernstein et al. with ENCODE Project Consortium et al.  2012 ). In a large- 
scale study across 15 human cell types, over half of protein-coding genes showed 
ubiquitous expression, with 7 % being cell type specifi c. For lncRNAs, the ubiqui-
tous and cell type-specifi c RNA comprised 10 % and 29 % of all expressed lncRNAs, 
respectively (Djebali et al.  2012 ). Thus, the use of a heterogeneous population of 
cells comprising different cell types may result in loss of signal for lncRNAs that 
are expressed in a small subset of cells and an overall lncRNA expression profi le 
that is very diffi cult or impossible to deconvolute without resorting to additional 
studies. The issue is compounded by the low expression level of many lncRNAs, 
which makes the detection of their expression diffi cult even in highly homogeneous 
samples. If profi ling the gene expression pattern of complex tissues or highly het-
erogeneous samples are of interest, single-cell RNA-seq (see below) is likely to be 
a better choice than the commonly used population-level RNA-seq. The use of 
more-or-less homogeneous cell populations such as cell lines or primary cultured 
cells of high purity, when possible, will provide the cleanest and most informative 
lncRNA profi les when the population-level RNA-seq is employed. 

 Another important aspect  of   lncRNA biology is the responsiveness of the pro-
moter of many lncRNAs to cellular stress. This becomes important during the prep-
aration of cells for RNA extraction, as any preparation or processing step that results 
in cellular stress can result in an expression pattern that does not refl ect the condi-
tion being studied, but rather the impact of the cellular stress caused during the 
processing steps. Thus, gentle handling of cells prior to the harvest of cellular RNA 
for high-throughput sequencing is strongly recommended. 

7.2.1.1     Determining the Number of Needed Replicates 

 Since lncRNAs are expressed at levels lower than protein-coding genes, a higher 
depth of sequencing and/or higher replicate number will be required for obtaining 
suffi cient statistical power in the differential expression analysis. Calculation of 
statistical power for lncRNA analysis (Ching et al.  2014 ) and general RNA-seq 
analysis (Hart et al.  2013 ) has been previously discussed. In addition, the studies 
cited above have provided simple tools that allow investigators to defi ne the number 
of needed replicates and depth of sequencing required to achieve an acceptable 
statistical power .   
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7.2.2     Preparation of RNA for the Use in Deep Sequencing 

  A signifi cant percentage of lncRNAs function in regulation of nuclear events and 
are therefore predominantly or even exclusively nuclear in their subcellular local-
ization, although the exact ratio of nuclear to cytoplasmic copies of RNA may 
depend on the cell type being studied (Djebali et al.  2012 ). Thus, if the analysis of 
the noncoding transcriptome is one of the goals of the RNA-seq study, care must be 
taken to ensure the inclusion of nuclear RNAs during the RNA-extraction process. 
Importantly, many lncRNAs are chromatin associated and may be discarded along 
with the chromatin fraction during the extraction processes. To prevent this from 
occurring, DNase treatment of the chromatin fraction and re-extraction for RNA are 
recommended. If a deeper analysis of lncRNAs is of interest, cellular fractionation 
into cytoplasmic, nucleoplasmic, and chromatin fractions followed by RNA extrac-
tion and sequencing will provide key insights into the potential functional category 
that the identifi ed lncRNAs may belong to. For example, the absence of a novel 
identifi ed RNA in the cytoplasmic fraction combined with computational evidence 
of lack of protein-coding capacity (see below) is strongly indicative of the noncod-
ing nature of the RNA. Similarly, if RNA is predominantly found in the chromatin- 
associated fraction, it is likely to function in regulation of an aspect of chromatin 
function, such as epigenetic events or transcription. 

 Large-scale studies have shown that many lncRNAs are found in both polyade-
nylated and non-polyadenylated cellular  RNA   fractions, and a small percentage 
(~5 % in human) of the annotated lncRNAs are exclusively found in the non- 
polyadenylated fraction (Djebali et al.  2012 ; Bernstein et al. with ENCODE Project 
Consortium et al.  2012 ). The percentage of non-polyadenylated RNAs is likely 
to increase with technical improvements in RNA-seq, as many such RNAs are 
expressed at low levels or have short half-lives. Thus, in order to capture the entire 
complexity of the long noncoding transcriptome, it is important to refrain from the 
use of RNA preparation strategies that select for polyadenylated RNAs. Another 
common feature of lncRNAs is their low expression level compared to protein- 
coding genes (Derrien et al.  2012 ; Djebali et al.  2012 ; Iyer et al.  2015 ). This makes 
them particularly vulnerable to loss as a result of even minute amounts of degrada-
tion, so for studies involving the analysis of lncRNAs, extra care must be taken 
during the RNA-extraction process. In our own experience, the use of RNA- 
extraction strategies that involve a column purifi cation step results in loss of a frac-
tion of low copy number RNAs, and it’s best to avoid them .  

7.2.3     Preparation of Sequencing Libraries 

  During the library preparation step for RNA-seq, cellular RNAs are converted to 
cDNA fragments which will hopefully refl ect the RNA population within the sam-
ple, and additional sequences are added to the ends of the cDNA fragments to assist 
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in the sequencing step. As mentioned above, in addition to the small percentage of 
lncRNAs that are exclusively found in the non-polyadenylated fraction, many other 
lncRNAs exist in both polyadenylated and non-polyadenylated forms (Djebali et al. 
 2012 ; Bernstein et al. with ENCODE Project Consortium et al.  2012 ). Thus, to 
defi ne their cellular abundance both polyadenylated and non-polyadenylated tran-
scripts should be included in the RNA-seq experiment. Several library preparation 
kits have been developed that lack a poly(A) selection step and, thus, include all 
cellular RNAs in the library. However, since ribosomal RNAs and other abundant 
housekeeping RNAs can make up over 90 % of cellular RNA content, it is essential 
to exclude them from the library preparation step. All “total RNA” library prepara-
tion kits have a ribosomal RNA depletion step that should be carefully followed to 
ensure elimination of these abundant transcripts from the resulting library. However, 
it should be mentioned that when total cellular RNA is used in library preparation, 
nascent transcripts will also be included in the library, and this should be taken into 
consideration in the downstream computational analysis steps, especially if quanti-
tation of the level of fully processed RNAs is desired (Sultan et al.  2014 ). 

 Another consideration regarding the library preparation step for lncRNA analy-
sis is related to the diversity of genomic loci from which lncRNAs originate. The 
large-scale transcriptome analyses have revealed a complex and overlapping pattern 
of transcription in higher eukaryotes in which many transcribed units overlap each 
other in sense or antisense orientations (Djebali et al.  2012 ; ENCODE Project 
Consortium et al.  2012 ). This is particularly the case with lncRNAs, which originate 
from genomic loci both within and outside of other transcribed units. As can be seen 
in Fig.  7.1 , lncRNAs can overlap protein-coding or other noncoding RNAs in the 
sense or antisense orientation by originating from a promoter within an exon or 
intron of the overlapped gene or from a promoter located in its 3′ UTR or further 
downstream. Another commonly observed conformation of transcribed units in the 
higher eukaryotes is the “twin” transcripts originating from the so-called bidirec-
tional promoters (Fig.  7.1 ) (Adachi and Lieber  2002 ; Wakano et al.  2012 ; Uesaka 
et al.  2014 ). While promoters inherently lack directionality, it has been shown that 
their transcription is often limited to one direction due to the sequence context 
(Almada et al.  2013 ; Ntini et al.  2013 ). However, it has been shown that about 11 % 
of human genes have a detectable transcript originating from the same promoter 

  Fig. 7.1    Diverse genomic origins of lncRNAs. The broken arrows mark the location of transcrip-
tion start sites and direction of transcription       
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region in the opposite orientation (Adachi and Lieber  2002 ; Trinklein et al.  2004 ). 
In many cases, these “twin” transcripts are noncoding/protein-coding pairs, and in 
some studied examples, one of the twins regulates the expression of their promoter- 
sharing RNA (Wei et al.  2011 ; Uesaka et al.  2014 ). Thus, inclusion of lncRNAs 
originating from bidirectional promoters in RNA-seq analysis is needed for obtain-
ing a complete picture of the cellular regulatory networks. In addition, many 
lncRNAs originate from bidirectional promoters in enhancer loci and are thought to 
be needed for the function of the enhancer in which they originate (Fig.  7.1 ) (Lam 
et al.  2014 ). Other lncRNAs arise from genomic loci that don’t overlap with other 
genes or enhancer elements and fall into the “intergenic” lncRNA class (Fig.  7.1 ). 
From the above discussion, it is clear that knowledge of the directionality of tran-
scription at the lncRNA loci is essential for detecting their presence, especially in 
the case of lncRNAs overlapping another gene in the antisense manner and those 
originating from bidirectional promoters. For example, in the absence of directional 
data, a lncRNA originating from a bidirectional promoter that also gives rise to a 
protein-coding gene can be mistaken for an alternative isoform of the protein- 
coding gene resulting from the use of an alternative upstream promoter. Further, as 
mentioned above, RNA-seq experiments often lead to discovery of novel intergenic 
transcripts for which no directionality data is available in public databases. While 
some transcript assembly packages such as Cuffl inks (see below) (Trapnell et al. 
 2012 ) can predict directionality from canonical splice site information in some cases, 
this is often not feasible due to lack of splice sites which is observed in many lncRNAs, 
the presence of non-canonical splice sites, and at complex loci. Thus, preservation of 
the directionality of the cellular RNAs during the library preparation step is essential 
for analysis of the lncRNAs. Many library preparation kits preserve strandedness 
information either through the use of distinct RT and PCR primers or via incorpora-
tion of chemically distinct nucleotides such as dUTP during the cDNA synthesis step. 
While both methods can successfully capture directionality, in our experience and that 
of others, the second method has provided cleaner data (Levin et al.  2010 ).

   As mentioned above, lncRNAs are  often   expressed at much lower levels compared 
to protein-coding genes. Estimation of the abundance of low expression level genes 
by RNA-seq is often plagued by the higher level of technical “noise” which partly 
results from the library preparation step. The use of primers carrying random sequence 
tags (a.k.a. unique molecular identifi ers, UMI) that will allow identifi cation of the 
PCR-amplifi ed fragments in the downstream analyses has been shown to improve 
reproducibility especially for low-abundance genes (Islam et al.  2014 ; Grün et al. 
 2014 ) and, thus, should be used in RNA-seq studies aiming at analysis of lncRNAs .  

7.2.4     Sequencing 

  While there are several sequencing platforms available, the majority of RNA-seq 
results are obtained using the Illumina technology, with tens of millions of shorter 
(~100 nucleotide long) reads generated. However, other platforms that generate 

F. Niazi and S. Valadkhan



149

longer reads such as the 454 technology and Pacifi c Bio instruments have also been 
successfully used for the detection of lncRNAs (Tilgner et al.  2013 ). With the use of 
either technology, obtaining a suffi ciently high number of reads is essential to detect 
the expression of lncRNAs, as many of them are expressed in lower copy numbers 
compared to protein-coding genes (Derrien et al.  2012 ; Djebali et al.  2012 ; Iyer 
et al.  2015 ). With the use of  Illumina   platform, a sequencing depth of 60–100 mil-
lion reads seems to yield a good coverage of most lncRNAs, although deeper 
sequencing will provide more detailed information. Also, the paired-end sequenc-
ing option is strongly recommended for RNA-seq studies aiming to analyze the 
noncoding transcriptome. Since many lncRNA are rich in retroelement-derived 
sequences (Kelley and Rinn  2012 ; Kapusta et al.  2013 ), paired-end sequencing 
improves the mappability of the reads originating from lncRNAs and, thus, enhances 
their detection. Even for more abundant RNAs, although gene-level abundance can 
be determined using single-end RNA-seq, paired-end reads greatly improve the 
detection of splicing patterns and isoform-level expression quantitation  (Li and 
Dewey  2011 ).  

7.2.5     Quality Control and Preprocessing 

 Once the sequencing results are accessible,  a   quality control step should be per-
formed to ensure that suffi cient high-quality reads are obtained for the downstream 
computational steps. Several quality control packages are available; perhaps the 
most commonly used ones are FastQC (  http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/    ) and ShortRead (Morgan et al.  2009 ; Anders et al.  2013 ). Removal 
of adaptor-derived sequences may improve the downstream alignment step, and 
commonly used packages include trim galore (  http://www.bioinformatics.babra-
ham.ac.uk/projects/trim_galore/    ), Trimmomatic (Bolger et al.  2014 ) and ShortRead 
(Morgan et al.  2009 ). Importantly, removal of reads that map to ribosomal RNAs or 
other abundant cellular RNAs such as tRNAs and snRNAs can improve  the   accu-
racy of gene expression quantitation for low-abundance transcripts such as lncRNAs. 
In addition to the removal of ribosomal RNAs during the library preparation step, 
the reads originating from the remaining ribosomal RNAs can be removed at  the 
  preprocessing step using  the   sortmerna package (Kopylova et al.  2012 ). Sortmerna 
eliminates ribosomal RNAs from the fastq fi les using fasta-formatted reference fi les 
that contain the sequence of ribosomal RNAs, tRNAs, snRNAs, and other abundant 
cellular RNAs, which can be obtained from Rfam (Daub et al.  2015 ) or similar RNA 
databases. This step is particularly helpful if the quality control step indicates 
enrichment for sequences with a high (>50 %) GC content, which is found in ribo-
somal RNAs from most organisms. It is also possible to replace this step with mask-
ing or removal of ribosomal RNAs during the alignment and quantifi cation steps, as 
detailed below.  
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7.2.6     Alignment of RNA-Seq Reads to the Genome 

  The next step in RNA-seq pipelines is the mapping or alignment (or pseudoalign-
ment in the case of newer quantifi cation tools, see below) of the reads in fastq fi les 
to the target genome (or transcriptome). As is the case for all RNA-seq experiments, 
genome mapping should be performed with an aligner that is able to map splice 
sites such as TopHat (Trapnell et al.  2012 ), STAR (Dobin et al.  2013 ), GSNAP (Wu 
and Nacu  2010 ), MapSplice (Wang et al.  2010 ), or RUM (Grant et al.  2011 ), among 
others. Many of the available aligner tools have been subjected to detailed side-by- 
side comparison in benchmarking studies (Hatem et al.  2013 ; Engström et al.  2013 ; 
Benjamin et al.  2014 ). Overall, most aligners were found to perform well especially 
when transcriptome annotations were provided; however, an important consider-
ation regarding the use of RNA-seq for lncRNA discovery is the impact of the cho-
sen aligner on the transcript assembly step. An analysis of the infl uence of aligners 
on transcript assembly indicated that when transcript assembly was performed with 
Cuffl inks, the best results were obtained when TopHat was used in the alignment 
step along with a reference annotation fi le (Palmieri et al.  2012 ; Engström et al. 
 2013 ; Hayer et al.  2015 ). Thus, the combination of TopHat-Cuffl inks is likely to 
be the pipeline of choice in RNA-seq studies aiming at lncRNA analysis and 
discovery. 

 If ribosomal RNA-derived reads have not been removed prior to the alignment 
step, it is possible to remove them by performing a preliminary alignment of the 
reads to a fasta fi le containing the sequence of ribosomal RNAs and other abundant 
cellular RNAs such as tRNAs and snRNAs. The reads that are rejected from this 
preliminary alignment can then be aligned to the entire genome of choice. A com-
monly used alternative approach, the use of GTF fi les lacking rRNAs in the align-
ment and subsequent steps, is not recommended when the study includes a novel 
gene discovery step, as the “masked” genes will be “discovered” in that step. 

 In every RNA-seq  experiment  , it is essential to perform frequent reality checks 
on the data as it is processed through the pipeline. For example, after the alignment 
step, the integrated genome viewer (IGV) or a similar genome viewer can be used 
to visualize the alignment of the reads to the genome and the transcriptome in order 
to ensure that the reads are split at the predicted splice junctions. Also, if there are 
genes which are highly likely to show a change in expression, they should be 
checked to ensure that there is a detectable change in the number of mapped reads .  

7.2.7     Transcript Assembly 

  The long noncoding transcriptome is at present very poorly characterized, and in 
every RNA sequencing effort, several novel lncRNAs and novel isoforms of known 
lncRNAs are discovered. This is partly due to the novelty of this class of RNAs and 
partly due to the fact that they show a much higher level of cell type and state 
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specifi city than protein-coding genes. Very large numbers of such transcripts are 
discovered in large-scale transcriptome studies (Iyer et al.  2015 ), and it is likely that 
the number of lncRNAs is strongly underestimated in current reference annotation 
databases. The transcript assembly step should be part of every RNA-seq analysis 
even when the focus is on the protein-coding transcriptome, as even for protein- 
coding genes, novel isoforms may be observed. Importantly, some less commonly 
observed isoforms of the protein-coding genes seem to lack protein-coding capac-
ity. In the absence of transcript assembly and transcript-level expression analysis, 
changes in the expression of a noncoding isoform may be erroneously attributed to 
an increase in the expression of the main protein-coding isoforms of the gene. 

 Transcript assemblers, which use the mapped reads to assemble a gene model 
that explains the observed mapping of the reads and splice junctions, are thus  critical 
for accurate interpretation of RNA-seq data. These fall into two general categories, 
one category which includes Cuffl inks (Trapnell et al.  2012 ), IsoLasso (Li et al. 
 2011 ), and Scripture (Guttman et al.  2010 ) requires the use of a reference annotation 
fi le for optimal function. However, when RNA-seq is performed on a non-model 
organism with no reference genome and transcriptome available, or when the tran-
scriptome under study contains many structural rearrangements such as those aris-
ing within complex cancer genomes, there is a need for transcript assembly platforms 
that can operate without reference transcriptomes. To address this requirement, sev-
eral de novo transcript assemblers have been developed including Trinity (Grabherr 
et al.  2011 ), SOAPdenovo (Li et al.  2009 ), transAbyss (Robertson et al.  2010 ), and 
Oases (Schulz et al.  2012 ). However, de novo assemblers cannot effectively assem-
ble low expression level transcripts and thus are only able to reconstruct the most 
abundant lncRNAs and miss the low copy number RNAs which include the majority 
of lncRNAs (Schulz et al.  2012 ). Further, at least in some independent benchmark-
ing studies, they seem to have a higher error rate compared to Cuffl inks, which 
performed better than all the other assemblers studied especially when paired with 
TopHat as the read aligner (Hayer et al.  2015 ). Importantly, Cuffl inks can also per-
form novel transcript discovery which should be attempted if the study of lncRNA 
expression is of interest. Taken together, if a reference transcriptome is available, it 
is good practice to use reference-based transcript assemblers such as Cuffl inks. The 
use of de novo assemblers is warranted only if a large number of structural rear-
rangements are suspected. However, even with Cuffl inks, the transcript assembly is 
far from perfect in complex loci (Hayer et al.  2015 ), and thus, visual inspection of 
the functionally important subset of transcripts should be performed. A newer tran-
script assembler, Astroid, has been developed in an attempt to improve the accuracy 
of the assembly process (Huang et al.  2014 ). However, it has not yet been indepen-
dently benchmarked against other available packages. 

 There are a number of reference annotations available for use in the assembly 
step and other RNA-seq computational processes including the reference transcrip-
tomes from Gencode (Harrow et al.  2012 ), UCSC genome browser (Rosenbloom 
et al.  2015 ), and RefSeq (Pruitt et al.  2014 ), all of which include both lncRNA and 
protein-coding RNA annotations. In addition, there are lncRNA-centric databases 
and annotations such as lncRNAdb (Quek et al.  2015 ), NONCODE (Xie et al.  2014 ), 
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MiTranscriptome (Iyer et al.  2015 ), LNCipedia (Volders et al.  2015 ), and RNAcentral 
(RNAcentral Consortium  2015 ) which can be used as additional guides for tran-
script assembly when the analysis of lncRNAs is required. These annotations are 
frequently updated, so it is important to use the latest annotation version. 

 In every RNA-seq experiment of suffi cient depth, transcript assembly tools will 
yield a number of transcript models that originate from loci which are not annotated 
as genes in the reference transcriptome provided to the transcript assembly tool. 
These transcripts are likely to be specifi c to the condition and cell type being studied 
and hence absent in reference annotations. These are usually fl agged as novel RNAs 
in the output of the transcript assembly step. Further, there are usually a number of 
novel isoforms for annotated genes, including protein-coding genes. In addition, 
many novel monoexonic transcripts found in large-scale transcriptome efforts, a 
large percentage of which are likely to be long noncoding RNAs (Derrien et al. 
 2012 ; Djebali et al.  2012 ), can be very diffi cult to computationally distinguish from 
sequencing artifacts resulting from low levels of genomic DNA contamination and 
are therefore largely excluded from the reference annotations (Cabili et al.  2011 ; 
Harrow et al.  2012 ). Thus, it should be expected that the transcriptome produced 
during the transcript assembly step of the RNA-seq analysis will contain a signifi -
cant number  of   predicted transcripts that are not found in the reference databases. 
However, it should also be considered that the reference annotations are not neces-
sarily in full agreement with each other even for protein-coding RNAs and much 
less so for lncRNAs (Frankish et al.  2015 ), so an RNA that is fl agged as novel with 
the use of one reference transcriptome may already be annotated in another. Once it 
is confi rmed that the transcripts fl agged as novel in the assembled transcriptome are 
indeed not found in any of the reference transcriptomes, they should be analyzed for 
protein-coding capacity as discussed below .  

7.2.8     Differential Expression Analysis 

7.2.8.1      Quantifi cation of Read Mapping to Desired Features 

  Once an experiment-specifi c transcriptome is assembled and the reads are aligned 
to the genome/transcriptome, the number of reads that map to each gene or tran-
script should be calculated and used in the differential expression analysis. This 
quantifi cation step can be performed at the gene level with htseq-count tool from the 
HTSeq python library (Anders et al.  2015 ), which is the most commonly used pack-
age for determining the number of raw read counts that map to a gene. Alternatively, 
one of the packages developed for transcript-level quantifi cation of reads can be 
used. In addition to several packages that perform  combined   quantifi cation and dif-
ferential expression analysis at transcript level (see below), a number of newer tools 
for transcript-level quantifi cation of reads have been developed. RSEM (Li and 
Dewey  2011 ) can determine transcript-level abundance from aligned reads in a 
highly accurate manner (Bray et al.  2015 ) and can also work in the absence of a 
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reference genome. Sailfi sh (Patro et al.  2014 ) and kallisto (Bray et al.  2015 ) 
are alignment-free algorithms that offer very fast transcript-level quantifi cation. 
A newer package from the Sailfi sh team, Salmon (  http://salmon.readthedocs.org/
en/latest/    ), can perform both alignment-based and alignment-free transcript-level 
quantifi cation and has improved accuracy compared to Sailfi sh. Although no inde-
pendent comparison of these tools has been performed, it is likely that RSEM, kal-
listo, and Salmon compare favorably to the older tools available for transcript-level 
expression quantifi cation .  

7.2.8.2     Removal of Ribosomal RNAs 

  If   ribosomal RNAs and other abundant small housekeeping RNAs were not removed 
in preprocessing or alignment steps, they should be masked in the differential 
expression analysis step. Masking the reads that map to ribosomal RNA and abun-
dant small RNA species will help improve quantitation for the low expression level 
RNAs such as lncRNAs. Depending on the differential expression platform, this can 
be achieved by using a masking option included in the package (e.g., the -M option 
in Cuffquant) or manual removal (e.g., using the grep command on a Linux system) 
of the ribosomal RNAs, tRNAs, and snRNAs from the annotation fi les provided to 
the quantifi cation software.  

7.2.8.3     Filtering Low Read Count Genes/Transcripts 

 Since many lncRNAs are expressed at lower levels compared  to   protein-coding 
genes (Djebali et al.  2012 ; Bernstein et al. with ENCODE Project Consortium et al. 
 2012 ; Iyer et al.  2015 ), it is important to perform the fi ltering of low-abundance 
transcripts in a very conservative manner when analysis of lncRNAs is one of 
the goals of the RNA-seq experiment. In general, the use of transcript length- and 
depth-adjusted abundance indicators such as RPKM/FPKM/TPM (Hebenstreit 
et al.  2011 ; Wagner et al.  2012 ,  2013 ) is preferable to raw read counts for defi ning 
the fi ltering threshold. Determining the exact value of the threshold must be guided 
by the empirical examination of several lncRNA loci to determine what would be a 
good threshold in the particular set of samples being studied. In general, the thresh-
old needed for studies of the noncoding transcriptome is much lower than what is 
commonly used for the analysis of protein-coding genes (Hebenstreit et al.  2011 ; 
Wagner et al.  2012 ,  2013 ).  

7.2.8.4     Choice of a Differential Expression Analysis Platform 

  As discussed above, to obtain a picture of the entire long noncoding transcriptome, 
differential expression analysis should be performed at both gene and transcript 
levels. While the gene-level quantifi cation algorithms show a high level of accuracy, 
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until recently, the transcript-level quantifi cation tools had not reached the desired 
level of robustness. Since the concept of “gene” is likely to be functionally outdated 
soon and replaced by transcripts as the functionally relevant entities, it is likely that 
transcript-level analyses will become the dominant method of differential expres-
sion analysis in near future. However, since many downstream packages such as 
pathway analysis tools have been developed with gene-level analysis in mind, for 
the moment, both gene-level and transcript-level differential expression analyses 
should be attempted. A number of packages have been developed for performing 
the differential expression analysis, and based on the type of quantitation data pro-
vided (gene- or transcript-level quantitation of reads), they can perform gene-level 
or transcript-level differential expression tests. There are also a number of “com-
bined” packages that perform both transcript-level quantifi cation and differential 
expression analysis. It is advisable to use more than one analysis platform to 
improve quantitation accuracy for low-abundance transcripts which include most 
lncRNAs. The following paragraphs contain a discussion of the strengths and weak-
nesses of the most commonly used packages.  

7.2.8.5     Differential Expression Analysis Tools 

 Similar to the other steps in the RNA-seq analysis pipeline, there are several special 
considerations that must be taken for optimal detection and analysis of lncRNAs. 
During the differential expression analysis in particular, two aspects of the biology 
of lncRNAs should be taken into account, namely, their generally low expression 
level compared to protein-coding genes and their highly state-specifi c expression 
pattern resulting in a high rate of binary (all or none) expression changes. 

 A benchmarking study by Rapaport and colleagues has compared several com-
monly used differential expression analysis packages for their ability to accurately 
determine differential expression of the low expression level genes/transcripts 
(Rapaport et al.  2013 ). The results of this study suggest that poissonSeq (Li et al. 
 2012 ) and edgeR (Robinson et al.  2010 ) packages perform the most robust differen-
tial expression analysis overall for low expression genes especially when at least 
three replicates were analyzed from each study group. Even with these two pack-
ages, the depth of sequencing is very important to the extent of detection (sensitiv-
ity) for low expression genes, as is the number of replicates (Rapaport et al.  2013 ). 
However, specifi city of the analysis did not seem to be affected with low sequencing 
depth. On the other hand, for high expression genes, the impact of sequencing depth 
on sensitivity decreased as the level of expression of genes increased. In both low 
and highly expressed genes, the number of replicates made a stronger contribution 
to the accuracy of differential expression analysis than sequencing depth. Thus, 
when budget is limited, it’s better to divide the same read number into 3–4 replicates 
of moderate depth (e.g., 60 million reads each) rather than having fewer replicates 
with higher read numbers (Rapaport et al.  2013 ). Other benchmarking studies 
(Seyednasrollah et al.  2015 ; Ching et al.  2014 ) also found edgeR to show one of the 
best performances in overall sensitivity and specifi city, although these analyses did 
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not specifi cally assess the accuracy of detection of low expression level genes. Also, 
poissonSeq was not included in these benchmarking studies. 

 In cases when the expression level of a gene is zero in one of the conditions, 
 poissonSeq, Limma (Ritchie et al.  2015 ), and Bayseq (Hardcastle and Kelly  2010 ) 
packages performed best  in   accurately calculating the signifi cance of the change 
(Rapaport et al.  2013 ). The commonly used package Cuffdiff did not perform 
strongly in gene-level analysis in benchmarking studies (Rapaport et al.  2013 ). 
Thus, edgeR and poissonSeq packages seem to be the best differential expression 
analysis tools for the study of lncRNAs .  

7.2.8.6     Transcript-Level Differential Expression 

  Several packages have been developed for performing both read quantitation and 
differential expression analysis at transcript level. The Cuffl inks package (Trapnell 
et al.  2012 ) is perhaps the most commonly used one. Additional packages include 
DEXseq (Anders et al.  2012 ), which can determine differential expression at exon 
level; rMATS (Shen et al.  2014 ), which can perform differential splicing analysis; 
EBseq (Leng et al.  2013 ); BitSeq (Glaus et al.  2012 ); and rnaSeqMap (Okoniewski 
et al.  2012 ), among others. As mentioned above in Sect.  7.2.8.1 , a number of new 
tools for transcript-level quantitation of reads have been developed, and their output 
can be used with most differential expression  analysis   packages discussed in the 
previous subsection. While no independent benchmarking studies have done a side- 
by- side comparison of the performance of the transcript-level differential expres-
sion packages, it is likely that the newer quantifi cation tools will be good candidates 
to try, especially considering their signifi cantly shorter processing time. 

 Finally, although many of the existing software packages for differential expres-
sion analysis provide a robust assessment of changes in expression, it is important 
to tailor the approach to the particular requirements of the study in hand. For exam-
ple, a large-scale study on the long noncoding transcriptome of cancer (Iyer et al. 
 2015 ) used a custom-made nonparametric differential expression method which 
allowed sensitive detection of differential expression in the highly heterogeneous 
samples such as tumor subtypes .  

7.2.8.7     Quality Control Check 

 As in all high-throughput studies, it  is   important to do frequent reality checks to 
ensure the differential expression analysis conforms to the visual inspection of the 
read density on genes/transcripts. This can be done for some of the genes/transcripts 
identifi ed as the top differentially expressed species using IGV or a similar genome 
viewer to ensure that the computationally defi ned level of differential expression is 
commensurate with the difference in the number of reads mapping to the gene or 
transcript of interest.   
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7.2.9     Data Sharing 

 In addition to the  deposition   of the RNA-seq raw data into the public sequencing 
data repositories, the assembled transcriptomes that include lncRNAs should 
be deposited into GenBank (  http://www.ncbi.nlm.nih.gov/genbank/    ), RNAcentral 
(  http://rnacentral.org/    ), or similar warehouse-type websites.   

7.3     Discovery of Novel lncRNAs: Defi ning the Protein- 
Coding Potential 

 As discussed in the transcript assembly section, every RNA-seq experiment will yield 
a number of assembled transcripts that are not found in reference databases. These 
will include transcripts originating from novel genic regions and novel isoforms of 
known genes. These novel  isoforms   are functionally important to characterize, as 
large-scale experiments indicate that many protein-coding RNAs have noncoding iso-
forms (Carninci et al.  2005 ; Bernstein et al. with ENCODE Project Consortium et al. 
 2012 ). Such isoforms may not only complicate the interpretation of the differential 
expression data for the genes they originate from but also may regulate the protein-
coding function of the coding isoforms. For example, if they share 3′ UTR sequences 
with the protein-coding isoforms, they can act as sinks for miRNAs and other regula-
tory factors, underscoring the importance of their detection and analysis. The same is 
true with expressed pseudogenes, which fall under the broad category of lncRNAs. 
The fi rst step in the characterization of these transcripts and identifying novel lncRNAs 
among them is a rigorous computational study of their protein-coding potential 
(Dinger et al.  2008 ; Ilott and Ponting  2013 ; Mattick and Rinn  2015 ). 

 Effort should be made to ensure the accurate identifi cation of the beginning and 
ends of the transcripts and their splicing architecture before the analysis of their 
coding potential. Although many lncRNAs are multiexonic, mono-exonic RNAs 
seem to constitute a much larger proportion of lncRNAs compared to protein- coding 
genes (Niazi and Valadkhan  2012 ; Derrien et al.  2012 ; Djebali et al.  2012 ). Detection 
of unspliced transcripts can also result from artifacts caused by a low level of 
genomic DNA contamination or due to currently incomplete information on tran-
script structures. This, in turn, can result from the low expression level of the RNA 
which prevents the accurate assignment of its 5′ and 3′ ends or splicing patterns. In 
such cases, the use of publicly available datasets from relevant tissues or cellular 
states that may have better coverage of this region is recommended. 

7.3.1     ORF Analysis 

  The fi rst step in defi ning the protein-coding capacity of a novel transcript is ORF 
analysis, which can be performed with the NCBI ORF fi nder or similar tools. It has 
been shown that the vast majority of protein-coding genes in mammals are over 100 
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amino acid long; thus, the length of predicted ORFs in a novel transcript can  provide 
clues into its protein-coding capacity. However, in the absence of additional infor-
mation, ORF length is not very useful, as on the one hand, short peptides can be 
functional, and, on the other, longer ORFs can occur fortuitously in longer RNAs 
without being in a context conducive to translation. To further characterize the 
protein- coding potential of an ORF, a number of tools have been developed includ-
ing PhyloCSF (Lin et al.  2011 ), which relies on phylogenetic codon substitution 
frequency among other parameters; CONC (Liu et al.  2006 ) and CPC (Kong et al. 
 2007 ), both of which rely on support vector machine (SVM)-mediated classifi cation 
of RNAs based on the robustness of ORFs and their protein-coding features; CNCI 
(Sun et al.  2013b ) and PLEK (Li et al.  2014 ), both of which use k-mer frequencies 
and a SVM algorithm to separate lncRNAs and protein-coding RNAs; and CPAT 
(Wang et al.  2013 ), which uses ORF size and coverage, Fickett statistics, and hex-
amer nucleotide usage. Although no independent benchmarking studies have been 
performed to compare the robustness of the predictions made by these tools, the 
developing team of PLEK compared the sensitivity and specifi city of their tool with 
CPC, phyloCS, and CNCI (Li et al.  2014 ). Their results, overall, suggested that each 
package has its own strengths and weaknesses, and thus, the use of more than one 
tool may be necessary to ensure a more robust prediction. Also, the details of  the   
RNA-seq experiment may determine which tool will be most useful. For example, 
PhyloCSF strongly relies on interspecies alignments, which makes it restricted to 
well-aligned regions. The alignment-free tools that use the intrinsic sequence fea-
tures of the transcript are more powerful when annotations are not complete, but are 
sensitive to errors caused by indels that occur during sequencing, which are com-
mon with 454 and Pacifi c Biosciences sequencing platforms  (Quail et al.  2012 ; 
Loman et al.  2012 ).  

7.3.2     Comparison with Existing Protein Databases 

  Another helpful approach in distinguishing novel protein-coding genes from non-
coding genes is comparison of their sequence and potential coded peptides with 
protein domain databases such as PFAM (Finn et al.  2014 ) and databanks of large- 
scale proteomics efforts. For example, one can search large proteomics datasets for 
peptides that uniquely map to transcripts of unknown coding potential, as imple-
mented in Pinstripe suite of programs (Gascoigne et al.  2012 ) and also performed in 
a large-scale effort at identifi cation of cancer-related lncRNAs (Iyer et al.  2015 ). A 
partial list of suitable peptide databases includes the EBI Proteomics Identifi cations 
Database (PRIDE) peptide database (Vizcaíno et al.  2013 ), the Human Proteome 
Map (Kim et al.  2014 ), UniProt/Swiss-Prot (The UniProt Consortium  2015 ), PFAM 
(Finn et al.  2014 ), and more recent databases explicitly aiming at defi ning the cod-
ing potential of novel transcripts in the genome (Khatun et al.  2013 ). This approach, 
while certainly valuable, has two major shortcomings. First, lack of a match does 
not mean lack of protein-coding capacity, as a novel RNA may code for a protein 
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that is not similar to any previously analyzed protein. On the other hand, the 
 presence of a domain similar to a known protein domain does not necessarily mean 
that the RNA containing it is translated, as this sequence may be in a sequence or 
location context within the transcript that is not amenable to translation. For exam-
ple, an RNA that is strictly nuclear in its localization is unlikely to code for a peptide 
even if it contains a short ORF that can potentially code for a peptide containing a 
known protein motif. Further, some lncRNAs and transcribed pseudogenes have 
evolved from protein-coding genes or overlap them and, thus, do carry sequences 
corresponding to those coding for known protein motifs. Further, many proteome 
databases such as PFAM contain endogenous retroviral protein sequences which 
will match many transposon-derived sequences found in lncRNAs, leading to erro-
neous identifi cation of lncRNAs as coding transcripts. 

 A number of platforms have  been   developed for quick and user-friendly annota-
tion of the genes found in the output of RNA-seq experiments. A recent example 
is Annocript (Musacchia et al.  2015 ), which uses several annotation databases, 
BLASTX and BLASTP searches, and two packages (dna2pep (Wernersson  2006 ) 
and Protrait (Arrial et al.  2009 )) for determining the protein-coding capacity of 
putative lncRNAs in a transcriptome. Additional examples of such packages have 
been developed in recent years  (Sun et al.  2013a ).  

7.3.3     Ribosome Profi ling 

  Determining whether the novel identifi ed transcripts associate with the polysomes, 
or ribosome profi ling, is also a helpful approach (Ingolia et al.  2011 ). It has been 
shown that a small number of transcripts that were assigned to the lncRNA category 
do associate with the ribosomes (Guttman et al.  2013 ); however, whether this results 
in the formation of any functional peptides or has any other functional consequences 
remains to be determined. Nonetheless, analysis of the polysome-associated RNAs 
under conditions that match the ones used to obtain the RNA for the sequencing 
experiment will be very helpful. Computational analysis of the existing RNA-seq 
experiments performed on ribosome-bound RNAs can also be insightful, although 
the association of RNAs with polysomes may depend on cell type and cellular state 
being studied. 

 Based on the outcome of  the   above analyses, it should be possible to categorize 
the novel RNAs into most likely coding, most likely noncoding, and transcripts of 
unknown coding potential, this latter group being the novel RNAs that seem to have 
some coding potential, but it’s not clear enough to assign them to the protein-coding 
category (Cabili et al.  2011 ). While not all novel transcripts identifi ed in an RNA- 
seq study will be noncoding, large-scale studies to date suggest that the majority of 
such transcripts indeed do not code for peptides  (Bánfai et al.  2012 ; Djebali et al. 
 2012 ; Khatun et al.  2013 ).   
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7.4     Computational Characterization of the lncRNAs 

 In some cases, a novel but potentially interesting transcript is expressed at such a low 
level that distinguishing it from sequencing artifacts becomes necessary. In such 
cases, analysis of the publicly  available   ChIP-seq and DNaseI hypersensitivity data 
mapping to the genomic locus of the novel RNA can be very helpful. For example, 
the presence of histone 3 lysine 4 trimethylation (H3K4me3) marks and DNase I 
hypersensitivity sites close to its transcription start site and the presence of RNA 
polymerase II (Pol II) and H3K36me3 broad peaks over the body of the putative 
transcript are strong evidence for the presence of a transcript in this region. Further, 
chromatin marks can provide insights into the potential function of lncRNAs. For 
example, the presence of H3K4me1 marks which are associated with active or poised 
enhancers at the locus of lncRNA can point to an enhancer- associated function for 
the RNA (Lam et al.  2014 ). The genomic locus of an RNA can provide additional 
clues to its function, for example, 11 % of human genes are thought to originate from 
bidirectional promoters (Adachi and Lieber  2002 ; Trinklein et al.  2004 ) and many 
such promoters give rise to lncRNA/protein-coding RNA pairs which often affect the 
expression of each other (Wei et al.  2011 ; Uesaka et al.  2014 ). 

 Although it has been shown that lack of conservation of the primary sequence of 
lncRNAs does not indicate lack of a conserved function (Pang et al.  2006 ; Ulitsky 
et al.  2011 ), the presence of a high level of conservation can strengthen the likeli-
hood that the lncRNA plays an important cellular role. A number of packages, 
including phyloP (Pollard et al.  2010 ) and phaseCons (Siepel et al.  2005 ), can be 
used for defi ning the extent of conservation of lncRNAs. Finally, predicting the gen-
eral area of function of lncRNAs through identifi cation of protein-coding genes with 
similar expression patterns or via more sophisticated, weighted gene  co- expression 
network analyses (Langfelder and Horvath  2008 ) has been attempted (Liao et al. 
 2011 ; Guo et al.  2013 ; Jiang et al.  2015 ; Xiao et al.  2015 ; Bergmann et al.  2015 ). 
However, the usefulness of such approaches remains to be determined. 

7.4.1     RNA Editing in lncRNAs 

  A large fraction of higher  eukaryotic   cellular RNAs are subjected to posttranscrip-
tional modifi cations. Most frequently observed RNA editing events involve deami-
nation of A residues to inosine, but other modifi cations including methylation are 
also abundantly found in cellular RNAs. While editing occurs both in coding and 
noncoding RNAs, it seems to be most abundant in noncoding RNAs and noncoding 
regions of protein-coding genes. Since these changes affect the structure and func-
tion of the RNAs (Nishikura  2010 ; Li and Mason  2014 ), defi ning the location of 
such changes is of interest. The use of RNA-seq for this purpose has been very fruit-
ful (Picardi et al.  2010 ; Ramaswami et al.  2012 ; Ramaswami and Li  2014 ), and 
there are a number of tools that have been developed to simplify the detection of 
RNA editing sites in deep sequencing data  (Picardi et al.  2014 ).  
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7.4.2     Detection of Circular RNAs 

 Another interesting class of cellular RNAs,    circular RNAs, have been implicated in 
regulation of transcription and miRNA function by acting as miRNA sponges, 
which places them within the broader category of regulatory long noncoding RNAs 
(Guo et al.  2014 ; Lasda and Parker  2014 ; Chen and Yang  2015 ). A number of tools 
have been developed for discovery of circular RNAs in transcriptomic studies 
(Zhang et al.  2014 ; Gao et al.  2015 ; Pan and Xiong  2015 ).   

7.5     Special Considerations for Post-analysis Validation Steps 
on lncRNAs 

  Similar to other high-throughput studies, RNA-seq results should also be validated 
using low-throughput approaches. RT-PCR-based validation experiments are the 
simplest and most commonly used validation experiments. In the case of lncRNAs, 
it is important to perform strand-specifi c RT-PCR, especially for low expression 
level lncRNAs, and to use primers that fl ank predicted exon-exon junctions to 
ensure that the obtained signal is not affected by genomic DNA contamination. 
Using both gel-based and qPCR-based approaches is recommended, as for low 
expression level lncRNAs, RT-qPCR may result in artifactual results. We recom-
mend the use of radioactively labeled primers for low expression level lncRNAs 
followed by visualization on PAGE in order to obtain a clear signal without the need 
for too many PCR amplifi cation cycles. 

 For downstream functional studies, it is important to appreciate that unlike 
protein- coding RNAs, addition of sequences to the beginning and ends of 
lncRNAs is not appropriate, as the RNA itself is the functional molecule, and 
thus, it should not be modifi ed. Similarly, “fusion” to GFP or similar protein tags 
is completely unacceptable. If cloning of the lncRNA into a plasmid is to  be   per-
formed, the annotated 5′ end of the lncRNA should be placed at the transcription 
start site of the promoter used in the plasmid, and the 3′ end of the lncRNA should 
be placed at the cleavage site of the plasmid for polyadenylated lncRNAs and 
transcription stop site for non-polyadenylated ones. Clearly, a non-polyadenyl-
ated RNA should not be expressed with a poly(A) tail, as it changes the localiza-
tion and proteome of the RNA. In our experience with peer review of the literature, 
such mistakes are unfortunately common and result in artifactual data being 
reported in literature. Additional guidelines for experimental analysis and manip-
ulation of lncRNAs and lncRNA genes are discussed in a recent review  (Bassett 
et al.  2014 ).  
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7.6     Naming Novel lncRNAs 

 Guidelines by the HUGO Genome Nomenclature Committee (HGNC) (Wright 
 2014 ) provide a helpful framework for naming the newly discovered putative 
lncRNAs. The suggested guidelines propose including some information about the 
genomic context of the lncRNA locus in its name and promote the inclusion of 
functional information when available. For example, a novel putative lncRNA of 
unknown function that overlaps the   MET  gene   in the antisense orientation should be 
named MET-AS1, if it were encoded within an intron of the  MET  gene, MET-IT1 
(for intronic), and if it originated from a bidirectional promoter that also gives rise 
to the  MET  gene, MET-AU1 (for antisense upstream). However, once there is func-
tional information available on a gene, it should be named based on that function 
(Wright  2014 ).  

7.7     Capturing the Full Complexity of the Noncoding 
Transcriptome 

7.7.1     Capture-Seq 

  As mentioned above, the low expression level of many lncRNAs and their highly 
state-dependent expression pattern, together with their relatively recent emergence 
as a functionally important class of transcripts, have limited our current knowledge 
of the extent and pattern of expression of long noncoding RNAs, even in highly 
studied organisms such as human and mouse. With improvements in sequencing 
technology resulting in increase of sequencing depth and reduced cost, and wider 
interest in discovery of the function of the noncoding transcriptome, many of the 
existing gaps in our knowledge of this class of RNAs are likely to be addressed 
in the coming years. In addition, creative use of existing technologies can make 
a signifi cant contribution to our understanding of the complexity of the long non-
coding transcriptome.    In an exciting step in this direction, Mercer and colleagues 
have made clever use of tiling arrays to select and enrich RNAs transcribed from a 
targeted region of the genome, followed by RNA-seq analysis (Mercer et al.  2012 , 
 2014 ). This enrichment-sequencing approach (capture-seq) has yielded unprece-
dented insight into the extent of intergenic transcription and the enormous complex-
ity of the nonprotein-coding (and protein-coding) transcriptome. The use of this 
approach can provide invaluable clues into the expression pattern of rare transcripts 
or rare isoforms of more abundant transcripts that may have important functions or 
act as biomarkers .  
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7.7.2     Single-Cell RNA-Seq 

  The use of conventional RNA-seq, which is performed on RNA extracted from a 
large number of cells, will likely continue to yield pivotal information on the long 
noncoding transcriptome for many years to come. However, studies focusing on 
protein-coding genes have shown a signifi cant level of cell-to-cell variation in 
expression level and splicing pattern of many genes within the same cell population, 
both under basal conditions and in response to external stimuli (Shalek et al.  2013 ). 
Further, many cellular processes such as reprogramming are stochastic, and thus, 
cell population-level RNA-seq is of very limited use in elucidating the processes 
and pathways involved. The emergence of single-cell RNA-seq technologies (Saliba 
et al.  2014 ; Stegle et al.  2015 ) has provided the means to address these shortcomings 
of cell population-based RNA-seq through the analysis of the individual transcrip-
tomes of a large number of cells. In addition to shedding light on the cell-to-cell 
heterogeneity of gene expression, the increased resolution provided by this technol-
ogy has the potential to identify novel pathways which could not have been detected 
using the traditional, cell population-level RNA-seq (Trapnell et al.  2014 ). 

 Although very few studies have used this technique to analyze lncRNA expres-
sion (Yan et al.  2013 ; Kim et al.  2015 ), this technology clearly has the potential to 
provide a much more in-depth look into the regulation and expression pattern of the 
lncRNAs at the cellular level. Current data from in situ hybridization studies on a 
subset of lncRNAs using well-established cell lines suggest that at least for this 
subset, lncRNAs show a cell-to-cell expression heterogeneity similar to that of 
protein- coding genes (Cabili et al.  2015 ). However, considering the cell type- and 
developmental stage-specifi c expression pattern of many lncRNAs, the use of 
single- cell techniques will be required to interrogate the lncRNA expression pattern 
in samples more complex than cell lines, such as patient-derived tissues or during 
development. Also, it is possible that even in cell lines, some lncRNAs may show a 
very high level of heterogeneity in their basal expression level or in their response 
to extrinsic stimuli. Finally, many lncRNAs have allele-specifi c expression patterns 
and are involved in modulation of the expression of genes nearby, which can be best 
studied using single-cell sequencing techniques (Stegle et al.  2015 ). 

 Although the use of single-cell RNA-seq for lncRNA expression analysis is an 
exciting prospect, there are several limitations and caveats that should be considered 
(Saliba et al.  2014 ). The number of lncRNAs that can be detected by current single- 
cell techniques such as smartSeq (Ramsköld et al.  2012b ) is very small (Marinov 
et al.  2014 ). Without the use of targeted primers during the library preparation step 
(Armour et al.  2009 ), a large proportion of cellular RNAs remain undetected or min-
imally covered, especially for low-abundance RNAs such as lncRNAs. Even when 
represented in the sequenced population, the high level of technical noise makes the 
reliable detection of differential expression diffi cult for low-abundance transcripts 
such as lncRNAs (Shalek et al.  2013 ; Islam et al.  2014 ; Grün et al.  2014 ). Fortunately, 
this  c  oncern can be addressed by the use of bar-coded oligonucleotides (UMIs) 
 during the library preparation steps, which can improve transcript  quantifi cation and 
cell-to-cell reproducibility (Islam et al.  2014 ; Grün et al.  2014 ), especially for low-
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abundance transcripts including lncRNAs. Further, existing methodologies for prep-
aration of cellular RNA for single-cell sequencing are limited to polyadenylated 
RNAs, which will eliminate a large proportion of lncRNA- derived transcripts from 
analysis. Finally, there are also technical limitations for simultaneous detection of 
the transcript isoforms and maintenance of strand- specifi c information when short 
reads are used in the sequencing step, which reduces the complexity and accuracy of 
detection of lncRNAs. However, it is likely that with further development of single-
cell techniques, many of these concerns will be appropriately addressed .  

7.7.3     In situ RNA-Seq 

  An exciting addition to the available techniques for analysis of transcriptome is in 
situ sequencing or sequencing of RNAs without displacing them from their cellular 
location (Ke et al.  2013 ; Avital et al.  2014 ; Lovatt et al.  2014 ; Lee et al.  2014 ). 
In this technique, the transcripts are chemically linked to the cellular protein 
matrix and are converted to cDNA using either gene-specifi c or random primers. 
Amplifi cation of the cDNAs by PCR is followed by sequencing using a fl uorescent 
microscope, allowing the detection of the location of cellular RNAs in cellular com-
partments, changes in localization  in   response to stimuli, and co-localization of 
RNAs. Although this technique is still in its infancy, further development and adap-
tion of this technique for detection of lncRNAs, for example, through the use of 
lncRNA-specifi c primers for cDNA synthesis step, will yield a plethora of informa-
tion about both abundance and subcellular localization of all cellular lncRNAs. 
This, in turn, will provide novel clues into the function of this class of RNAs and 
regulation of their expression level and subcellular localization in a population of 
cells or within tissues in a high-throughput manner .   

7.8     Concluding Remarks 

 Despite existing shortcomings, analysis of lncRNAs in RNA-seq experiments con-
tinues to provide key insights into the extent of noncoding transcription and the 
regulation and function of this class of transcripts. Improvements on existing tech-
nologies will likely make single-cell sequencing a viable method for analysis of the 
lncRNAs, and development of new sequencing platforms such as nanopore-based 
sequencing will eliminate many of the current bottlenecks in analysis of cellular 
lncRNAs in near future. However, developing algorithms for extraction of knowl-
edge from the high volume of emerging sequencing data is likely to remain a chal-
lenge for the years to come.     
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     Annex: Quick Reference Guide 

      

 Fig. QG7.1    Representation of  the   wet-lab procedure workfl ow  
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 Fig. QG7.2    Main steps of  the   computational analysis pipeline  
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Chapter 8
Ribosome Profiling

Anze Zupanic and Sushma Nagaraja Grellscheid

8.1  Introduction

In the last decade gene expression profiling by microarrays (Brown and Botstein 
1999), and more recently by RNA-Seq (Mortazavi et al. 2008), has become one of 
the most important and widely used tools of molecular biology. However, recent 
studies have shown that mRNA levels only imperfectly correlate with protein levels 
(Vogel et al. 2010), and that regulation at the level of translation and the level of 
protein stability plays a very important role (Sonnenberg and Hinnebusch 2009) in 
influencing the final outcome of gene expression. Ribosome profiling (also called 
Ribo-Seq), i.e. next-generation sequencing of mRNA fragments protected by the 
translating ribosome, pioneered in the Weissman lab in 2009 (Ingolia et al. 2009), is 
a method that closes some of the gap between the mRNA molecule and the protein. 
Since 2009, ribosome profiling has been used to shed light on many open questions 
in several different species (Table 8.1), from the mechanisms behind miRNA regu-
lation (Bazzini et al. 2012) to experimental determination of translation initiation 
sites (Ingolia et al. 2011). Perhaps surprisingly, and most probably due to a very 
demanding and labour intensive protocol behind the ribosome profiling, since the 
first publication only 56 published studies have presented new ribosome profiling 
datasets. This means that although already 6 years old, ribosome profiling is still 
very much in the development phase and although a detailed protocol has been 
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Table 8.1 Studies that provided new ribosome profiling datasets from 2009 to 2014

Application Species Sequencing platform Reference

Methodology S. cerevisiae Illumina GAII Ingolia et al. (2009)

Methodology M. musculus Illumina GAII, HiSeq Ingolia et al. (2011)

Methodology E. coli Illumina HiSeq2000 Li et al. (2014a)

Oxidative stress S. cerevisiae Illumina HiSeq2000 Gerashchenko et al. 
(2012)

Chemotherapy H. sapiens Illumina HiSeq2000 Wiita et al. (2013)

Light exposure A. thaliana Illumina (model not 
given)

Liu et al. (2013a)

Methodology S. cerevisiae Illumina HiSeq2000 Gerashchenko and 
Gladyshev (2014)

Meiosis S. pombe Illumina GAII, HiSeq Duncan and Mata 
(2014)

Meiosis S. cerevisiae Illumina GAII Brar et al. (2012)

Cell cycle M. musculus, H 
sapiens

Illumina HiSeq2000 Stumpf et al. (2013)

Development C. elegansa Illumina HiSeq2000 Stadler and Fire 
(2013)

Development D. melanogaster Illumina 
HiSeq2000/2500

Lee et al. (2013)

Development A. suum Illumina HiSeq Wang et al. (2014)

Development P. falciparum Illumina HiSeq2000 Caro et al. (2014)

Development T. brucei Illumina GAII Jensen et al. (2014)

Antibiotics E. coli Illumina GAII Kannan et al. (2014)

Ethanol stress E. coli Illumina HiSeq2000 Haft et al. (2014)

Lifespan S. cerevisiae Illumina HiSeq2000 Labunsky et al. (2014)

Sarcoma Herpesvirus, H. 
sapiens,

Illumina HiSeq2000 Arias et al. (2014)

Viral infection Bacteriophage 
lambda E. coli

Illumina HiSeq2000 Liu et al. (2013b)

Elongation E. coli Illumina HiSeq2000 Li and Weissman 
(2012)

Elongation C. elegans Illumina HiSeq2000 Stadler and Fire 
(2011)

Elongation S. cerevisiae Illumina HiSeq2000 Gardin et al. (2014)

Elongation S. cerevisiae Illumina GAII Lareau et al. (2014)

Elongation S. cerevisiae platform not given Pop et al. (2014)

Elongation E. coli Illumina GAII Nakahigashi et al. 
(2014)

Elongation D. melanogaster Illumina HiSeq Dunn et al. (2013)

miRNA C. elegans Illumina GAII Stadler et al. (2012)

miRNA D. rerio Illumina GAII Bazzini et al. (2012)

miRNA H. sapiens, M. 
musculus

Illumina GAII Guo et al. (2010)

(continued)
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published (Ingolia et al. 2012), individual procedures, such as the use of cyclohexi-
mide for translation inhibition, have recently come under intense scrutiny. In the 
following pages, we present different ways in which ribosome profiling has been 
put to use, different biological application of the methods and the current state-of- 
the-art experiment guidelines, with special attention put to alternative protocols and 
still open questions.

Table 8.1 (continued)

Application Species Sequencing platform Reference

Leaders S. cerevisiae, S. 
paradoxus

Illumina HiSeq2000 McManus et al. (2014)

Evolution S. cerevisiae Illumina HiSeq2000 Artieri and Fraser 
(2014)

Selenoproteins M. musculus Illumina HiSeq2000 Howard et al. (2013)

eIF4A H. sapiens Illumina HiSeq2000 Rubio et al. (2014)

P53 H. sapiens Illumina HiSeq2000 Loayza-Puch et al. 
(2013)

mTOR M. musculus Illumina GAII Hsieh et al. (2012)

mTOR M. musculus Illumina GAII Thoreen et al. (2012)

ORFs S. cerevisiae Illumina HiSeq Smith et al. (2014)

ORFs C. albican Illumina GAII, HiSeq Muzzey et al. (2014)

ORFs D. rerio Illumina HiSeq2000 Bazzini et al. (2014)

ORFs T. brucei platform not given Vasquez et al. (2014)

ORFs M. musculus, Illumina HiSeq2000 Ingolia (2014)

ORFs S. cerevisiae Illumina HiSeq2000 Albert et al. (2014)

ORFs C. crescentus Illumina GAII, HiSeq Schrader et al. (2014)

ORFs D. rerio Illumina HiSeq2000 Chew et al. (2013)

ORFs H sapiens Illumina HiSeq Koch et al. (2013)

ORFs D. melanogaster Illumina HiSeq2000, 
Illumina MiSeq

Aspden et al. (2014)

Hypoxia A. thaliana Illumina HiSeq2000 Juntawong et al. 
(2013)

Proteotoxic stress H. sapiens Illumina HiSeq2000 Liu et al. (2013c)

Heat Shock M. musculus Illumina GAII Shalgi et al. (2013)

Prion stress S. cerevisiae Illumina (model not 
given)

Baudin-Bailleau et al. 
(2014)

Mito-translation H. sapiens Illumina HiSeq2000 Rooijers et al. (2013)

Mito-translation S. cerevisiae platform not given Williams et al. (2014)

ER-translation S. cerevisiae platform not given Jan et al. (2014)

ER-translation H. sapiens SOLiD 4 Reid and Nicchitta 
(2012)

Chaperones E. coli Illumina GAII Oh et al. (2011)
aOther Caenorhabditis species also used
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8.2  Applications

Different applications of ribosome profiling have been recently reviewed (Ingolia 
2014). In this section, we report on all studies (identified by using the search term 
ribosome profiling or Ribo-Seq in Web of Knowledge) that have generated ribo-
some profiling data until December 2014, together with information of the species, 
main application and sequencing platform (Table 8.1). There have been several spe-
cific exciting discoveries made with ribosome profiling in the last 5 years and it is 
beyond this chapter to name all of them; however from all the studies some very 
general conclusions can be made. Perhaps most important is that the studies have 
demonstrated that global and specific regulation of gene expression at the transla-
tional level is ubiquitously present in all biological processes, from development to 
defence against oxidative stress. The mechanisms behind specific regulation are 
most likely sequence features on the 5′ and 3′-UTRs of individual transcripts that 
are subject to different translation initiation regimes, but more research is needed 
until firmer conclusions can be made. A second important conclusion is that transla-
tion often involves initiation from alternative initiation codons on single transcripts, 
and thirdly, apparently translated RNAs correspond to surprising regions of the 
genome, such as 5′UTRs or noncoding RNAs. It is reasonable to assume that ribo-
some profiling will in the future significantly increase the number of discovered 
peptide and proteins.

In the abovementioned studies, ribosome profiling has generally been used in 
three different ways: (1) identification of translated RNA regions, (2) calculation of 
single transcript and global translation efficiency as a measure of protein synthesis, 
and (3) comparing ribosome occupancy along single transcripts and along the tran-
scriptome. Each of these takes advantage of different ribosome profile properties 
and is described in more detail below.

8.2.1  Identification of Translated Regions

Traditionally eukaryotic protein-coding regions were identified based on cDNA 
sequence data generated from known transcripts or from peptide sequences. 
Normally the longest possible ORF in a transcript is assumed to be the coding 
region (CDS). Today, despite the fact that a combination of ab initio transcriptomic, 
comparative genomic and machine learning approaches have increased the accuracy 
of gene prediction above 95 %, the prediction of coding regions still lags behind 
(Yip et al. 2013). Ribosome profiling provides a very promising alternative to the 
current state-of-the-art (Ingolia et al. 2011) by (1) assuming that ribosome-protected 
regions of the mRNA are also translated and (2) taking advantage of the near nucle-
otide precision of ribosome profiling—since ribosome-protected fragments are of 
quite uniform size it is possible to assign the position of ribosomal A site to a par-
ticular nucleotide or at least codon.
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One of the strategies (see Fig. 8.1 for a schematic of all strategies) used for 
identification of coding region by several groups was to detect all translation initia-
tion sites (TIS), by using a translational initiation inhibitor, such as harringtonine 
(Ingolia et al. 2011) or lactimidomycin (Lee et al. 2012), before sequencing 
ribosome- protected fragments. The result is a very sparse ribosome coverage, which 
is assumed to coincide with translational initiation sites. To further reduce the num-
ber of false positives, machine learning methods are used to recognize patterns of 
ribosome coverage similar to pattern of known initiation sites. In all studies that 
have used this strategy so far, a surprisingly high number of translational initiation 
sites was discovered in 5′-UTRs and in noncoding RNAs, leading to the hypothesis 
that current annotation misses a large part of the translated transcriptome (Ingolia 
et al. 2011). This proved a very controversial hypothesis and many following studies 
have tried to confirm or repudiate it using alternative strategies.

One of the arguments against prevalent translation of UTR regions and noncod-
ing RNAs was that although the discovered TISs do show translation initiation, this 
does not necessarily also lead to elongation. In one study, the predicted TISs were 
compared to regions predicted to be translated by a segmentation algorithm, which 
identified genetic regions with uniform ribosome coverage, indicating uninterrupted 
translation (Zupanic et al. 2014). The study showed that less than 1 % of the alterna-
tive identified TISs were found to initiate robust translation. The segmentation 
method was also able to detect alternative initiation in cases when more than one 
TIS is used for a given transcript.

harringtonine

no drug

a

b

c

TIS

Peptide 1
Peptide 2

AUG………………………………UGA………………………………..UGA

subcodon positions

fragment length

Artefacts

Protein
coding
genes

Fig. 8.1 Strategies for detecting translated mRNA regions based on ribosome profiling. (a) 
Typical ribosome profile obtained with or without translation inhibition with harringtonine. The 
harringtonine profile is high over the putative TIS, while the no drug profile is high throughout the 
translated region. Segmentation of the profile identified two separate translated regions, both start-
ing at the same TIS: it seems a shorter and a longer peptide are produced from this genomic region, 
as would be the case of selenoprotein translation (Zupanic et al. 2014). (b) If the ribosome density 
over the subcodon positions does not follow a standard subcodon pattern (usually high low low), 
then translation is questionable. (c) Distribution of RNA fragment length in a protein-coding 
region and RNA not covered by ribosomes (but by, e.g. telomerase) (Ingolia et al. 2014)
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Other strategies have also been developed. In one, the size distribution of the 
ribosome fragment aligned to the putative translated region is compared to a stan-
dard distribution of fragment sizes and significant deviation from the standard was 
deemed artefacts not connected with translation (Ingolia et al. 2014). To profile only 
actively translating ribosome complexes Poly-Ribo-Seq was developed, in which 
polysomes (actively translated RNA-ribosomes complexes) are biochemically puri-
fied prior to ribosome footprinting (Aspden et al. 2014). Another strategy was to 
analyse the nucleotide periodicity of ribosome profiling (the first nucleotide posi-
tion in a codon has higher ribosome density than the second and third)—a broken 
periodicity points to artefacts or a possible frameshift during translation (Michel 
et al. 2012). Other strategies for defining coding regions include searching for a stop 
codon after the putative TIS (Zupanic et al. 2014; Albert et al. 2014; Howard et al. 
2013; Guttman et al. 2013), which enables detection of premature termination dur-
ing translation, and confirmation of the putative translated peptide sequences by 
mass spectrometry (Schrader et al. 2014; Smith et al. 2014; Menschaert et al. 2013). 
There has so far been no standardized comparison of the different strategies using 
common or comparable datasets, so it is currently not clear whether any single of 
them is superior or a combination would provide the best result.

8.2.2  Translational Efficiency

Biological systems react to perturbation by employing appropriate regulatory path-
ways. In most cases, the regulation consists of changes in gene expression; however 
these changes occur at both the transcriptional and translational level. To differenti-
ate between regulation that occurs at the translational level from that at the tran-
scriptional level, a measure called translational efficiency (TE) was developed 
(Ingolia et al. 2009; Guo et al. 2010):

 

TE =

′
′ ′

C
N L

C
NL  

where C′ is the number of ribosome profiling reads aligned to an individual coding 
region of a gene, N′ is the total number of ribosome profiling reads aligned to all 
coding regions, L′ is the length of the coding region of the gene, C is the number of 
RNA-Seq reads aligned to a transcript, N is the total number of RNA-Seq reads 
aligned to all the transcripts and L is the length of the transcript. TE can only be 
calculated if RNA-Seq and ribosome profiling were both performed by taking sam-
ples from the same source. For lower counts, the TE metric is associated with a large 
error; therefore all genes with a low number of aligned reads (usually, below an 
average of at least 1 read per nucleotide—(Guo et al. 2010)) are disregarded in the 
analysis. As defined above, TE does not account for error due to alternative splicing 
of individual genes or alternative protein-coding regions on individual transcripts; 
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however if RNA-Seq and ribosome profiling are also used to estimate these two 
events (Zupanic et al. 2014), it can easily be adjusted.

Although most studies performed so far use the above definition of translational 
efficiency, it lacks statistical robustness. This can be improved by using a linear 
modelling approach that also leverages both RNA-Seq and ribosome profiles—the 
method has been provided as an R package (Larsson et al. 2011). Another, more 
recently published approach called Babel relies on error-in-variables regression 
model for estimation of unexpected patterns in ribosome occupancy, and the Fisher’s 
exact test to calculate significance levels (Olshen et al. 2013).

The outcome of a translational efficiency study is a list of genes that are differ-
entially regulated at the translational level, and this list can be used analogously to 
RNA-Seq to determine differentially expressed pathways and processes regulated at 
the translational level or resolve sequence features of groups of genes to establish 
mechanisms behind their differential translation (Thoreen et al. 2012; Hsieh et al. 
2012). Another option is to use ribosome profiling datasets as estimates of protein 
production rates and perform downstream analysis on these alone (Li et al. 2014a).

8.2.3  Ribosome Speed

A number of studies thus far have focused, not on detecting translated regions or 
translational efficiency, but on using the nucleotide precision of ribosome profiling 
to try to understand what controls ribosomal speed along a transcript (Ingolia et al. 
2011; Gardin et al. 2014; Stadler and Fire 2011; Pop et al. 2014; Li and Weissman 2012; 
Charneski and Hurst 2013; Artieri and Fraser 2014; Dana and Tuller 2012, 2014; 
Shah et al. 2013). The assumption behind this is that ribosomes spend more time on 
slower codons; therefore there is a higher probability that a ribosome will be found 
on these codons and the ribosome density on these codons will be bigger than on 
their faster counterparts.

So far, studies have come to very different conclusions, and it is not clear whether 
these results depend on the species studied or are due to different analysis methods. 
Heterogeneity in tRNA availability across tissues and cell types used in different 
experiments is also likely to contribute to the biases observed (Dittmar et al. 2006). 
Although all studies have used a similar methodology, there is as yet no consensus 
on how to account for the biases (see later sections) inherent to ribosome profiling: 
some studies have excluded regions at the beginning and end of coding regions from 
the analysis, others have used these regions (but used normalization) and again oth-
ers have not accounted for bias at all.

In short, some studies have found a strong effect of codon bias on elongation 
speed (Pop et al. 2014), others of tRNA availability (Dana and Tuller 2014), again 
other effects of positive amino acids (Charneski and Hurst 2013), strong control 
asserted by proline alone (Artieri and Fraser 2014), specific stalling sequences (Li 
and Weissman 2012) or even none of the above (Ingolia et al. 2011). A systematic 
evaluation of a large number of ribosome profiling datasets with the whole set of 
methodologies is needed to evaluate different contributions to elongation speed.
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8.3  Experimental Design Guidelines

With regard to sequencing, ribosome profiling is little different from the more tradi-
tional RNA-Seq; therefore the guidelines established in the last decade for RNA- Seq 
(and described in other sections in this book) should also be valid for ribosome 
profiling (SEQC/MAQC-III Consortium 2014; Li et al. 2014b). In any case, no sys-
tematic comparison of different sequencing platform for ribosome profiling is avail-
able, and those few studies that made any sort of comparison between RNA- Seq and 
ribosome profiling properties have found clear correlations between different prop-
erties of both types of datasets (Zupanic et al. 2014; Artieri and Fraser 2014).

There are, however, important differences between ribosome profiling and RNA- 
Seq with respect to the preparation of samples for sequencing and in bioinformatic 
analysis after sequencing. In the following pages we, therefore, focus particularly on 
those parts of the ribosome profiling protocols that are different from RNA-Seq coun-
terparts. In the description, we mostly follow the ribosome profiling protocol pub-
lished by Ingolia et al. in 2012, and its modifications as proposed by various studies.

8.3.1  Technical and Biological Replicates, Sequencing Depth

In the recent large-scale assessment of RNA-Seq accuracy, it has been found that 
technical variation due to sequencing artefacts is low, while biological variation is 
high (SEQC/MAQC-III Consortium 2014). The study thus emphasized the value of 
biological replicates to increase the quality of RNA-Seq studies. Although the mini-
mum number of biological replicates required in some studies has been 2, the 
study suggests big improvements can be made with each additional biological rep-
licates, with the biggest influence of the first 4–5. There is currently no reason to 
expect that ribosome profiling would have different requirements.

The same study also evaluated the importance of sequencing depths and con-
cluded that increasing the depth up to 500 million aligned reads still contributes 
significantly to the number of detected genes, but that the improvements with fur-
ther increase are smaller (SEQC/MAQC-III Consortium 2014). While the first ribo-
some sequencing studies feature lower total read counts, some of the later studies 
have already taken the number of aligned reads towards 100 million and this has 
significantly increased the number of detected genes (McManus et al. 2014). As for 
the number of biological replicates, there is currently no reason to provide any rec-
ommendation that would differ from RNA-Seq guidelines.

8.3.2  Wet Lab Protocol

A detailed ribosome profiling protocol for mammalian cells, together with a list of 
necessary reagents, reagent setup, equipment and equipment setup, has recently 
been published (Ingolia et al. 2012). In the following sections, we follow the 

A. Zupanic and S.N. Grellscheid



183

published protocol, but also describe alternatives and point out those parts that have 
received criticism from the community.

8.3.2.1  Cell Lysis

Following cell culture according to conditions relevant to the study, cells must 
undergo lysis. The most contentious issue during this first phase of the protocol is 
the timing and use of translation elongation inhibitors. In the original ribosome 
profiling study, cycloheximide was used to stabilize the polysomes before perform-
ing lysis (Ingolia et al. 2009). The study found an increase in ribosome density 
immediately after the TISs and postulated that an elevated 5′ ribosome density 
(ramp) is a general feature of translation. It was later discovered that different trans-
lation inhibitors (i.e., emetine vs cycloheximide vs anisomycin vs chloramphenicol 
vs tetracycline) lead to different distribution of sizes of ribosome-protected frag-
ment and also different shapes of the ramp, while the ramp even disappears when 
using no drugs (Ingolia et al. 2011; Lareau et al. 2014; Nakahigashi et al. 2014).

Recently, a critical study has cast some doubt on some of the previous discoveries 
and put them down to a bias caused by inappropriate cycloheximide use (Gerashchenko 
and Gladyshev 2014). They discovered that the nature of the ramp also depends on 
the used concentrations of the translation inhibitors: the ramp effect gets smaller 
with higher concentration and disappears completely when the concentration used is 
high enough. This concentration dependence was explained by slow passive diffu-
sion of the drug into the cells—at low concentrations cycloheximide is only partly 
effective and allows for some extra movement of the ribosomes. For this reason 
many of the newer studies avoid the use of translation inhibitors and rather opt for 
flash freezing (Oh et al. 2011) of the samples to stabilize the ribosome positions.

8.3.2.2  Translation Initiation Site Profiling

While the use of translation elongation inhibitors, such as cycloheximide and eme-
tine, can bias the position of ribosomal fragment and should be used with caution, 
nothing similar has been reported for translation initiation inhibitors, such as har-
ringtonine (Ingolia et al. 2011) or lactimidomycin (Lee et al. 2012). These inhibi-
tors, which need to be used immediately before adding cycloheximide and lysis of 
the cells, are used to enrich ribosomes on TISs and thus enable discovery of new 
coding regions. While their use might still bias the distribution of ribosome around 
the TIS, this was shown not to be critical for TIS identification.

8.3.2.3  Nuclease Footprinting

After lysis, the next step is ribosome footprinting, using endonucleases to digest 
the unprotected RNA. While most studies use bacterial RNAse I for digestion 
(Ingolia et al. 2009), some recent studies also use micrococcal nuclease (MNAse) 
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(Dunn et al. 2013; Nakahigashi et al. 2014). The choice of nuclease depends on the 
studied species, with most higher eukaryote studies so far using RNAse I, but in 
those studies that used both nucleases no significant differences were found 
(Nakahigashi et al. 2014). Recently, a ribosome profiling kit has become available 
for both yeast and mammalian cells (ARTseq/TruSeq Ribo Profile Kit) and it has 
been successfully used in a few studies (Bazzini et al. 2014).

While the use of different endonucleases does not seem to affect the results, it 
has been shown that the lysis buffer can have an important effect. Buffers with lower 
salt and magnesium content result in narrower ribosome fragment size distributions, 
and fragments whose termini show more specific positioning relative to the reading 
frame being decoded (Ingolia et al. 2012). These can then be aligned to the genome 
with a higher positional resolution, making inference of the coding regions easier. 
Recent studies have shown that ribosome complexes are not maintained in all buffer 
compositions, the result being loss of a part of the ribosome footprint population 
(Aspden et al. 2014).

8.3.2.4  Ribosome and RNA Fragment Recovery

After nuclease digestion, ribosome-RNA complexes need to be isolated from cell 
lysates. In earlier studies this was performed by sucrose density gradient purifica-
tion (Ingolia et al. 2009); however due to the need of special equipment and meth-
odological difficulties this was then replaced by sucrose cushion sedimentation 
(Ingolia et al. 2012). This includes laying the lysate on top of a 1 M sucrose cushion 
in an ultracentrifuge tube, followed by centrifugation to pellet ribosomes.

Alternative methods for ribosome recovery include translating ribosome affinity 
purification (TRAP) (Heiman et al. 2008; Oh et al. 2011; Becker et al. 2013) and 
size exclusion chromatography (Bazzini et al. 2014). TRAP takes advantage of 
genetically modified, epitope tagged ribosomal proteins, and chromatography using 
strongly specific antibodies. Size-exclusion spin column chromatography, on the 
other hand, separates the ribosome-RNA complexes from other lysate content 
purely based on size. The speed and convenience of size exclusion chromatography 
could very well make it the preferred method for ribosome recovery in the future; 
however so far, it has not been used in many studies.

After recovery of ribosome-RNA complexes, the ribosomes need to be removed 
from the RNA fragments, which is usually done using one of the widely available 
RNA purification kits, such as miRNeasy kit (Ingolia et al. 2012). Care must be 
taken to avoid any ribonuclease contamination from this point on, as this will lead 
to RNA fragment digestion. Finally, the remaining RNA fragments of sizes ranging 
from 26 to 34 nt for mammalian cells (Ingolia et al. 2012) or shorter for prokaryotes 
(Li et al. 2014a) are separated from the rest using RNA gels and electrophoresis 
followed by gel extraction. Recently, at least in E. coli it has been shown that a 
larger range of mRNA foot print sizes can also be used without significantly affect-
ing the final results. Indeed, another recent study in yeast showed that in the absence 
of cycloheximide, there exist two different populations of ribosome-protected 
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fragments, one of size 28–30 nt and a shorter of size 20–22 nt (Lareau et al. 2014). 
Contrary to cycloheximide, the 20–22 nt fragments were seen in case of using 
anisomycin as translation inhibitors, indicating that the ribosome-RNA complex 
can exist in two different configurations. It therefore seems best that the size 
inclusion of RNA fragments is defined according to the translation inhibitor used 
and that if no inhibitor is used, a wider fragment size distribution is taken for 
further analysis.

8.3.2.5  Library Preparation

Linker Ligation

Since most of the studies performed so far used Illumina platforms for the sequenc-
ing, linker ligation is mostly performed according to the Illumina prescribed proto-
cols, which include the addition of a polyA tail to each sequence. Alternatively, 
optimized RNA ligation of a preadenylated linker can be used to achieve similar 
results (Ingolia et al. 2012). Ligation is followed by reverse transcription, polyacryl-
amide gel electrophoresis and circularization of the reverse transcription products to 
get the cDNA molecules used in the following procedures.

Barcoding

Following the circularization it is optional to add barcode sequences for each sam-
ple (multiplexing) (Ingolia et al. 2012; Duncan and Mata 2014), followed by several 
cycles of PCR amplification. The amplification reactions can either be purified by 
magnetic bead-based methods or are loaded on to polyacrylamide nondenaturating 
gels, separated by electrophoresis and the amplified PCR product excised. The latter 
step is now widely available as an automated process via pippin prep, E-gels and 
other similar products. The libraries thus generated are finally characterized using 
one or more of the following methods such as qPCR, Bioanalyzer, and Tape-station 
to ensure library quality and concentration, before using for sequencing.

rRNA Depletion

At this point, cDNA molecules derived from rRNA still represent a significant 
amount of the sample. In most studies, it turned out that a few (species specific) 
rRNA molecules are responsible for the bulk of the contamination and it was thus 
possible to remove most of the contamination by focusing on a few specific mole-
cules. This was mostly done using hybridization to biotinylated sense-strand oligo-
nucleotide followed by removal of duplexes through streptavidin affinity (Ingolia 
et al. 2012). Alternatively, more general removal of rRNA via rRNA removal kits 
before the library preparation step was also used with good results.
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8.3.2.6  Sequencing

All ribosome profiling studies conducted so far, with the exception of one (Reid and 
Nicchitta 2012), have used the Illumina Platforms (GAII or HiSeq2000) for the 
sequencing, with the same basic protocol that is no different from the one used in 
RNA-Seq (Ingolia et al. 2012). The output of a Illumina sequencing run is a FASTQ 
format file, which includes both the sequence and the quality all the sequenced read 
and is the basis for computational analysis which follows the sequencing.

8.3.3  Computational Analysis

Although it takes quite some time and effort to get from the initial samples to the 
sequences, without proper interpretation the sequences are not worth much. 
Computational analysis enables one to first align the sequenced reads to a genome 
and then to evaluate whether the number of aligned reads to particular genetic 
regions has an important biological function.

8.3.3.1  Alignment

The alignment of the reads to the genome is also no different than for RNA-Seq. 
First, the sequencing data are pre-processed by discarding low quality reads, remov-
ing the 3′ linker sequence and removing the first nucleotide from the 5′ end of each 
read. This can be done, e.g. using the FastX Toolkit. Note that although the outputs 
of different sequencing platforms are not all the same, FastX Toolkit and most simi-
lar tools can read most of the formats if these are correctly specified. The trimmed 
sequences are then first aligned to an rRNA reference, using any of the available 
aligners (Bowtie, Subread, Burrows-Wheeler). The non-rRNA reads are then 
aligned to the genome using a splicing-aware aligner (e.g., Tophat2).

Because the ribosome-protected fragments are quite short, the alignment is not 
always perfect, i.e. many reads align to more than one genomic segment. Different 
studies have applied different strategies to remove the bias potentially arising from 
such multiple alignments: (Guo et al. 2010) simply discarded all reads with multiple 
alignments, (Ingolia et al. 2011) kept all alignments, thereby counting a single read 
multiple times, (Dana and Tuller 2012) suggested an iterative approach, in which 
first only uniquely aligned reads are kept, then in the second round each multiple 
aligned read is assessed for the presence of neighbouring reads from the first round, 
and keeping only those with neighbours, while discarding the rest. Since reads with 
no neighbours are excluded from the analysis in any case at later stages, the iterative 
procedure should lead to the least bias and is recommended. An iterative approach is 
usually implemented by running the alignment algorithms several times, with dif-
ferent input files. The output of the alignment is either a BAM or a SAM (human 
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readable version of BAM) file, which is the basis for all further computational 
analysis.

Another general occurring problem with alignment shared with RNA-Seq is 
assignment of a read to the correct transcript for alternatively spliced genes. 
Although none of the ribosome profiling studies used alternative splicing detection, 
several studies have shown that this can bias the final analysis (Zupanic et al. 2014). 
We therefore recommend that an algorithm for detection of alternative splicing, 
such as rMATs (Shen et al. 2014), is used during analysis.

8.3.3.2  Biases

Since both ribosome profiling and RNA-Seq are based on the same sequencing 
procedures, it is reasonable to assume they would also suffer from the same biases. 
This was demonstrated by a recent study that used RNA-Seq profiles to normalize 
ribosome profiles. The study showed that the obtained normalized average profiles 
are a better representation of our current understanding of translation than the non- 
normalized profiles: ribosome density was quite smooth and slowly decreasing 
from the 5′ to the 3′ region, which was to be expected if occasional ribosome drop- 
offs occur (Zupanic et al. 2014). Another study took a similar approach and discov-
ered that normalization with RNA-Seq significantly changes the previous analyses 
of ribosome speed, implicating proline as an important ribosome pausing factor 
(Artieri and Fraser 2014). In none of these studies did normalization completely 
remove the increased ribosome density observed in the first couple of codons in 
coding regions, when using translational inhibitors. This bias can be eliminated 
either by using correction factors for the biased region (Li et al. 2014a) or by simply 
ignoring the biased regions in the analysis. In any case, bias removal by RNA-Seq 
normalization and accounting for translation inhibition artefacts is necessary before 
any further analysis.

8.3.3.3  Functional Analysis

Once the sequences have been aligned and bias has been taken care of, the visualiza-
tion and the functional interpretation of data can begin. For easy visualization, we 
recommend the riboseqR Bioconductor package, which produces a genome browser 
type of a visualization which can be useful for analysis of open reading frames 
(Hardcastle 2014). The most common application of Ribo-Seq is to find translated 
regions, changes in translational efficiency after a perturbation or follow ribosomal 
speed across the genome to study codon bias. Regardless of the application, there 
are currently no standard methods that the community would use nor specifically 
developed and widely available computational packages. Currently, the optimal 
strategy for a researcher is to carefully study the work performed by others and then 
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test the proposed methods. Most papers have made the algorithms they developed 
available as supplementary material, but even when this is not the case the commu-
nity gladly shares their computational resources.

In case of using Ribo-Seq to determine differentially translated transcripts after 
a perturbation, it is possible to use the differential expression packages developed 
for RNA-Seq, such as edgeR and DESeq (Robinson et al. 2010; Anders and Huber 
2010). Upon obtaining a list of differentially expressed genes, further functional 
analysis is possible, but this is beyond the scope of this chapter.

8.4  Databases

Currently, most ribosome profiling datasets are being deposited in the GEO data-
base in the SRA format (Barrett et al. 2013); however GWIPS-viz a ribosome 
profiling specific database and genome browser is under development (Michel 
et al. 2013). Currently, the database features some preloaded datasets available 
from the GEO, but in the future the developers plan to include options to upload 
own datasets. In its latest update, they have made available a range of tools to help 
the researcher develop own workflows of the sequenced data.

Although there are no alternatives for publishing raw ribosome profiling data, 
except for a special section for ribosome profiling data in the E. coli PortEco data-
base (Hu et al. 2014), the results of ribosome profiling analysis have been included 
in a few other databases. One such option is the TISdb, a database of mRNA alterna-
tive translation that followed studies that searched for TISs (Lee et al. 2012; Wan 
and Qian 2014). Another is HAltORF, a database of alternative out-of-frame open 
reading frames for human (Vanderperre et al. 2012, 2013).

8.5  Conclusion

Ribosome profiling is emerging as a powerful technique to gain a genome-wide 
snapshot of gene expression and translation control under a given cellular condition. 
The availability of positional information of ribosome occupancy facilitates the dis-
covery of novel translational control elements such as alternative initiation at non- 
canonical start sites, upstream and multiple ORFs, stop codon readthrough such as 
in the case of selenoprotein translation and pause/regulation of elongation. In addi-
tion, coupled with RNA-seq it is a powerful tool to discover alternative splicing 
variants undergoing differential translation as well as measuring productive alterna-
tive splicing at the translational level. Thus, this technique is expected to have a far 
reaching impact on multiple biological investigations.
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 Annex: Quick Reference Guide

Cells/tissues

Translation inhibition
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RNA digestion

Ribosome/RNA
complex isolation 

RNA purification
(ribosome removal) 

Library preparation

Sequencing

RNA size fractionation

Biological
replication

Wet lab workflow

  

Fig. QG8.1 Representation of the wet lab procedure workflow
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Table QG8.2 Available software recommendations

Results reporting

Application Method Software Reference Output Format

Translated 
regions

– ribosome reads 
map counting 
(threshold)

riboseqR (R 
package)

Hardcastle 
(2014)

– bar plots of 
number of 
reads along 
the genome

–png, 
pdf

Translational 
efficiency

– Ribo-Seq/
RNA-Seq

edgeR, 
DESeq (R 
packages)

Ingolia et al. 
(2009)

– gene lists –txt, xls

– differential 
expression 
analysis

– graphics

Ribosome 
speed

– ribosome 
density

riboseqR (R 
package)

Dana and 
Tuller (2012)

– bar plots of 
number of 
reads along 
the genome

–png, 
pdf

Hardcastle 
(2014)

Table displaying a selection of the recommended software available for the computational analysis 
of data yielded by this technique

Table QG8.1 Experimental design considerations

Technique Number of replicates
Sequencing 
depth

Recommended sequencing 
platforms

Ribo-Seq 3 (minimum per 
condition), 5 recommended

15–25 M reads 
uniquely mapped

Illumina HiSeq, Solid 5500

Table that comprises relevant experimental design parameters, to carefully consider before 
applying this methodology

RNA-Seq sequence QC
• FastX-toolkit

Read alignment
• Bowtie, Tophat,

Subread

Normalization

Computational analysis

Ribo-Seq  sequence QC
• FastX-toolkit

Read alignment
Bowtie, Tophat, 

Subread

Depositing raw data
• SRA/GEO

Translation efficiency
analysis, differential 
efficiency analysis
• edgeR, DESeq

Identification of coding
and translated mRNA

regions

Ribosome speed
analysis and cis-

regulatory sequence
identification

  

Fig. QG8.2 Main steps of the computational analysis pipeline
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Chapter 9
Genome-Wide Analysis of DNA Methylation 
Patterns by High-Throughput Sequencing

Tuncay Baubec and Altuna Akalin

9.1  Principles of Genome Regulation by DNA Methylation

DNA methylation is a highly relevant epigenetic mark associated with transcrip-
tional repression in mammals, plants, and various other organisms (Suzuki and Bird 
2008). In mammals, this epigenetic modification occurs predominantly at cytosines 
in the CpG dinucleotide context, although non-CpG methylation has been observed 
in human embryonic stem and neuronal cells (Lister et al. 2009, 2013). Once 
established by the de novo methyltransferases DNMT3A and DNMT3B, the 
maintenance methyltransferase DNMT1 secures stable inheritance of CpG meth-
ylation during cell division (Goll and Bestor 2005), until removed by passive or 
active processes including DNA repair or TET-mediated conversion to 
5- hydroxymethylcytosine (5-hmC) (Kohli and Zhang 2013). Functional evidence 
for the involvement of DNA methylation in gene regulation and genome function 
comes from knock-out studies of DNMTs (Okano et al. 1999) or chemical interfer-
ence with these enzymes (Jones and Taylor 1980), resulting in embryonic lethality, 
chromosomal aberrations, or transcriptional derepression of repetitive elements.

Recent advances in genome-wide analysis were instrumental to broaden our 
knowledge on the genomic distribution and the developmental dynamics of DNA 
methylation in various species, tissues, and cancer cells (Lister et al. 2009; Zemach 
et al. 2010; Stadler et al. 2011; Ziller et al. 2013). These important studies identified 
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various features of DNA methylomes: While the majority of CpG dinucleotides in 
mammalian genomes are methylated, CpGs within regulatory sites such as active 
promoters or enhancers are depleted of methylation. Importantly, changes in DNA 
methylation at such regulatory sites correlate with transcriptional activity and 
dynamic binding of transcription factors during biological processes. This suggests 
a tightly regulated interplay between DNA methylation and transcriptional regula-
tion with relevance for developmental regulatory processes and disease.

Taken together, these relevant findings highlight the emerging requirement for 
quantitative and high-resolution measurements of cytosine methylation at a genome- 
wide scale followed by downstream analysis using computational and statistical 
tools. Here we will discuss current wet-lab and computational approaches for quan-
titative DNA methylation analysis.

9.2  Methods for Quantitative DNA Methylation Analysis

Prior to the advent of microarray and high-throughput sequencing technologies, 
DNA methylation analysis could only be performed for single genomic sites indi-
vidually. These measurements utilized either restriction enzymes sensitive to DNA 
methylation or methylcytosine-specific antibodies and methyl-CpG-binding 
domains to enrich for methylated DNA at sites of interest. These methods however 
did not address the methylation status of single CpGs, but rather indicated the meth-
ylation over the measured region (depending on the assay ranging from 100 to 1000 
bp). A significant contribution was made by the discovery of sodium bisulfite treat-
ment, which converts unmethylated cytosines to thymine (via uracil), whereby 
methylated cytosines remain protected (Wang et al. 1980) (Fig. 9.1). In combination 

Fig. 9.1 Schematic representation of bisulfite conversion of methylated DNA molecules. (a) 
The original DNA template (shown as single strand) is converted by bisulfite treatment. (b) 
Cytosines (C) are converted to uracil (U), whereas the methyl group (m) inhibits this reaction. (c) 
PCR amplification results in a double-strand molecule where uracil is replaced by thymine (T)
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with Sanger sequencing of cloned PCR products, this allowed readout of DNA 
methylation at nucleotide resolution (Clark et al. 1994) (Fig. 9.1).

The development of microarray and sequencing technologies allowed to profile 
DNA methylation at high resolution in a genome-wide manner, partially by building 
up on the approaches previously used to study single sites. Here we will discuss the 
most commonly utilized methods (Table 9.1 and Fig. 9.2). For a comprehensive 
overview of all methods designed to measure 5mC, including derivates from TET- 
mediated oxidation (5-hmC), we would like to draw attention to a recent review 
describing these approaches (Plongthongkum et al. 2014).

9.2.1  The Infinium 450K BeadChip Array

The Infinium 450K BeadChip from Illumina is a microarray-based readout that is 
widely applied for rapid profiling of DNA methylation at 450,000 CpG sites in the 
human genome. These CpG sites are located within nearly all promoters, CpG 
islands, genes, and numerous enhancers. Using bisulfite-converted DNA as tem-
plate, this assay detects the methylation status of cytosines via hybridization of 
probes specific to the methylated or unmethylated locus. Extension of these probes 
by fluorescently labeled nucleotides allows quantification of DNA methylation at 
single CpGs, which is reported as beta values ranging from 0 to 1. The benefit of 
this approach is easy accessibility, low input requirements (500 ng–1 μg of DNA), 
parallel analysis of up to 12 samples, and a great amount of available datasets from 
various tissues, ages, and diseases generated using the same standardized protocol 
(>10,000 samples). The 450K BeadChip is routinely used in clinical settings or 
large-scale mapping initiatives (ENCODE and Cancer Genome Atlas), which makes 
this platform a great resource for comparison between samples of interest, or for 
data mining. The downside of the 450K BeadChip is the restriction to a predefined 
set of CpGs and availability for human genomes only.

9.2.2  MeDIP/MBD-Affinity Enrichments and Sequencing

MeDIP/MBD-seq relies on affinity enrichment of methylated DNA followed by 
microarray hybridization or high-throughput sequencing. In both approaches, 
genomic DNA is randomly sheared to 100–500 base pairs by sonication or restric-
tion enzymes. For MeDIP, the DNA is denatured and captured using monoclonal 
antibodies specific to 5-methylcytosine (Weber et al. 2005) (or to 5-hydroxymethyl-
cytosine for hydroxyl-MeDIP (Ficz et al. 2011)). Alternatively, methylated DNA 
can be precipitated using domains cloned from methyl-CpG- binding domain (MBD) 
proteins, without the need of denaturation (Cross et al. 1994). MBD proteins spe-
cifically bind methylated CpGs in vitro and in vivo (Hendrich and Bird 1998; 
Baubec et al. 2013) and several enrichment techniques have been developed based 
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on MBD domains (Rauch and Pfeifer 2005; Gebhard et al. 2006; Jørgensen et al. 
2006). MBD-based enrichment using salt gradients further allows stratification of 
CpG densities (MethylCap, Brinkman et al. 2010).

The DNA enriched by both methods can be used for genomics approaches using 
microarray hybridization or high-throughput sequencing. For microarray hybridiza-
tion, low amounts of DNA require amplification by whole-genome amplification 
(WGA) protocols. However, since WGA could introduce biases, pooling of multi-
ple MeDIP samples is recommended (Mohn et al. 2009). The amplified material is 
subsequently labeled with fluorophores for microarray hybridization.

Alternatively, the precipitated material can be used to generate libraries for high- 
throughput sequencing. For MeDIP, library adapters have to be ligated to the soni-
cated DNA prior to denaturation and immunoprecipitation. Library amplification is 
performed after the MeDIP step. Since MBD-enrichment does not require denatur-
ation, all MBD-seq library preparation steps can be performed on the precipitated 
material. Standard protocols using Illumina reagents require 1–5 μg of DNA, but 
MeDIP-seq protocols have been optimized to use 100-fold less (10–50 ng) material 
(Taiwo et al. 2012). MeDIP and MBD-seq are both quick and simple approaches to 
measure DNA methylation genome-wide. Numerous kits and protocols are available 

Fig. 9.2 Workflow for high-throughput sequencing methods for DNA methylation analysis. 
Target-BS: only PCR-based amplification of target regions is shown
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and both methods offer high coverage at low cost. Usually 20–50 million single- end 
reads of 50 nucleotides length are sufficient for coverage saturation. The downsides 
of MeDIP and MBD-chip/seq approaches are low resolution (depending on sonica-
tion or array design) and, therefore, no absolute quantification of single cytosines. 
Since both approaches measure methylation densities, the signal does not discrimi-
nate between methylation levels and CpGs densities in the analyzed region, which 
can be problematic for the interpretation of intermediate signal intensities. Local 
variation in CpG densities can introduce additional biases in the measurement due to 
antibody or MBD domain preferences towards regions with different methyl- CpG 
densities (Nair et al. 2014) or, in case of sequencing, from library amplification biases 
(Aird et al. 2011). Furthermore, both methods do not allow to measure DNA meth-
ylation based on sequence context, as required for tissues containing methylation 
outside of CpG dinucleotides, such as plants (Cokus et al. 2008) or human neuronal 
tissues (Lister et al. 2013). Antibodies used for MeDIP do not discriminate sequence 
context and MBD domains recognize methylation mainly at CpG dinucleotides.

9.2.3  Whole-Genome Bisulfite Sequencing (WGBS)

Whole-genome bisulfite sequencing (WGBS) is the gold standard method in terms 
of whole-genome coverage and quantification of DNA methylation at nucleotide 
resolution. Initial WGBS results were achieved for the small genome of Arabidopsis 
thaliana (Cokus et al. 2008). Increasing sequencing depth and read length facili-
tated generation of high-resolution DNA methylation maps from larger genomes 
such as human (Lister et al. 2009), mouse (Stadler et al. 2011; Hon et al. 2013), 
maize (Gent et al. 2013), and numerous other organisms (Feng et al. 2010; Zemach 
et al. 2010). The benefits of WGBS are clearly the unbiased representation of the 
entire genome. This for instance allowed the genome-wide identification of 
megabase- sized, partially methylated domains (PMDs, Lister et al. 2009) or low 
methylated regions at distal regulatory elements (LMRs, Stadler et al. 2011), fea-
tures otherwise undetected by previous approaches. In addition, the single nucleo-
tide resolution readout gives insight into previously unnoticed sequence-specific 
deposition of methylcytosines (Cokus et al. 2008; Lister et al. 2009, 2013). 
Individual reads mirror the methylation state of single DNA molecules. For instance, 
WGBS can be used to compare the methylation state of neighboring CpGs on the 
same DNA molecule (Baubec et al. 2015).

WGBS requires extensive coverage (Ziller et al. 2015). Depending on the 
genome size, several sequencing reactions are required in order to reliably call 
methylation frequencies for the majority of CpGs. A precise recall of cytosine 
methylation does not only require sufficient sequencing depth but also strongly 
depends on the quality of bisulfite conversion and library amplification. In brief, 
1–5 μg of fragmented genomic DNA (100–500 bp, by sonication) is sufficient to 
generate WGBS libraries. However, lower amounts can also be used, as recently 
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shown for single cell methylomes (Smallwood et al. 2014). In order to prevent arti-
facts during bisulfite conversion, RNAs and proteins should be completely removed 
prior to treatment (Warnecke et al. 2002). We recommend to spike-in low amounts 
of sonicated, unmethylated Lambda phage DNA and in vitro methylated T7 dsDNA 
(by the CpG-methyltransferase SssI) before library preparation. These controls 
allow measuring non-conversion and over-conversion rates respectively, and there-
fore are useful for estimating bisulfite conversion quality. Combined genomic DNA 
and spike-ins are end-repaired and ligated to methylated paired-end library adap-
tors. Libraries are size selected on agarose gels (300–400 bp) and bisulfite converted 
using commercially available kits (e.g., Epitect from Qiagen, EZ DNA methylation 
from Zymo Research, and Imprint from Sigma). These kits are also designed for 
lower starting material. Alternatively, newer protocols and bisulfite sequencing 
library kits allow adapter ligation post-conversion (EpiGnome from Epicentre). In 
both cases, prepared libraries are amplified via PCR using polymerases that tolerate 
uracil templates (e.g., Pfu Cx Turbo from Agilent Technologies). Number of PCR 
cycles have to be determined according to input material. Usually 6–10 cycles 
should be sufficient. These can be increased for low starting material; however this 
can introduce library amplification biases (see Sect. 9.3.2). Libraries are subse-
quently sequenced using paired-end reads of 100–150 nucleotides length in order to 
obtain sufficient coverage of the entire template.

9.2.4  Reduced Representation Bisulfite Sequencing (RRBS)

Enzymatic restriction of genomic DNA methylation-insensitive enzymes that cut in 
a CG context allows enrichment of genomic regions with mid to high CpG densities 
(Meissner 2005; Gu et al. 2011). Since CpG distribution in mammalian genomes is 
nonuniform and with higher CpG densities at promoters and CpG islands, this 
digest allows for preferential enrichment of such genomic elements. The digested 
DNA is end-repaired and ligated to methylated sequencing adapters followed by 
gel-based size selection (40–220 base pairs). Sequencing libraries are treated with 
sodium bisulfite for conversion and finally amplified by PCR, cleaned up and 
sequenced similar to WGBS (for a detailed protocol see (Gu et al. 2011)). Due to 
the reduced representation of the genome (~1 %), RRBS requires only modest 
sequencing read numbers for sufficient coverage, which makes it more affordable 
than whole-genome sequencing. However, this benefit is also the disadvantage of 
RRBS. Biologically relevant changes in DNA methylation can occur beyond CpG 
islands (Doi et al. 2009; Lister et al. 2009; Stadler et al. 2011). Thus, bias towards 
CpG-rich regions results in limited coverage for relevant genomic regions such as 
distal enhancers and transcription binding sites, repetitive elements, or large regions 
in the genome located within PMDs. A more extended CpG representation can be 
achieved by increasing the range of DNA fragments (up to 400 bp) selected after gel 
purification (Akalin et al. 2012a).

9 Genome-Wide Analysis of DNA Methylation Patterns…
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9.2.5  Targeted Bisulfite Sequencing (Target-BS)

Targeted bisulfite sequencing (Target-BS) entails selection or amplification of pre-
defined genomic regions in combination with bisulfite conversion and high- throughput 
sequencing. Frequently used protocols employ either PCR amplification of regions of 
interest (Taylor et al. 2007; Landan et al. 2012), padlock probes (Ball et al. 2009), or 
hybridization-based target enrichment (SureSelect, Ivanov et al. 2013).

PCR amplification from targeted genomic regions requires specialized primer 
design protocols that take in account DNA sequence conversion by bisulfite treat-
ment. First, the primers need to be designed based on the converted DNA template, 
meaning that the first primer should anneal to one strand of the converted template, 
while the second primer should base pair to the DNA sequence synthesized in the 
first PCR reaction. In addition, numerous other parameters have to be taken into 
consideration that grant reliable PCR amplification. Primers need to have reason-
ably high melting temperatures (above 50 °C), should not exceed a product size of 
500 bp, and should not be designed over regions with CpGs. The latter parameter 
can complicate the design over CpG-dense regions such as CpG islands. To over-
come these limitations, some design parameters can be relaxed, such as allowing 
1–2 CpGs within the primer site, or including mixed bases for pyrimidines (T and 
C) or purines (A and G) at CpG sites. Numerous useful tools are available online for 
bisulfite primer design (e.g., MethPrimer, Li and Dahiya 2002); however, given the 
complications that arise from the reduced nucleotide complexity after bisulfite con-
version and the before-mentioned optimizations, none of them allows batch design 
of multiple target sites. Development of automated, iterative primer design algo-
rithms (Komori et al. 2011, Schmidt et al. in prep) should aid in the design of primer 
pairs targeting multiple regions of interest in the genome, resulting in a set with 
similar properties (melting temperature, product length). PCR reactions are per-
formed as individual reactions (e.g., 96-well or 384-well setup) from bisulfite- 
converted genomic DNA (1–2 μg DNA is sufficient for 96 reactions). PCR conditions 
have to be optimized in order to obtain homogenous representation of all targets. 
We recommend touchdown PCR using proofreading enzymes and testing various 
annealing temperatures and cycle numbers. Once established, the same PCR proto-
col can be used for all subsequent samples analyzed with the designed primer set. 
Amplified PCR products are pooled and purified on agarose gels based on the 
expected size distribution of the entire PCR library.

Target enrichment based on hybridization has been previously applied for 
exome capture followed by sequencing. Similar approaches can be used for 
methylated DNA. First the DNA is fragmented, ligated to methylated adapters, 
and enriched by hybridization using biotinylated oligonucleotides. Bisulfite con-
version can be performed prior or after enrichment. Conversion after enrichment 
suffers from low DNA input and depending on the amount of material, this can 
be problematic for downstream library preparation steps (Lee et al. 2011). 
Conversion before enrichment requires design of oligonucleotides complemen-
tary to the converted DNA. Since genomic regions can be partially and low meth-
ylated (Stadler et al. 2011; Gaidatzis et al. 2014), bisulfite conversion of the same 
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genomic location can generate DNA molecules with heterogeneous DNA 
sequences. In order to avoid mismatches, the probes need to be designed in such 
a manner that they take all possible combinations of C to T conversions in con-
sideration (Ivanov et al. 2013). Commercial vendors provide predesigned kits for 
methylation capture and allow customers to design their own sets online 
(SureSelect by Agilent Technologies).

Depending on the number of target regions, libraries can be multiplexed for 
parallel sequencing. For example, 6–8 libraries of 96-well PCR-based targeted 
bisulfite sequencing can be sequenced on an Illumina MiSeq machine, yielding 
sufficient coverage. The benefits of complexity reduction by targeting methods 
are specific interrogation of a predesigned set of genomic regions, low genome 
complexity of sequencing libraries, and nucleotide resolution readout. Another 
benefit of both approaches is that the fragment length can be optimized to fit the 
sequencing platform read length, resulting in complete sequencing of the entire 
DNA molecule.

9.3  Computational Analysis of High-Throughput Bisulfite 
Sequencing

Since high-throughput bisulfite sequencing is the gold standard method and rapidly 
gaining popularity over other methods, we will describe the computational analysis 
of bisulfite sequencing over the next couple of sections.

9.3.1  Alignment and Methylation Calling for Bisulfite 
Sequencing Experiments

During bisulfite sequencing the unmethylated cytosines (C) are changed to thy-
mines (T). This helps to pinpoint unmethylated Cs on the reads but this complicates 
the alignment process by introducing these artificial mutations. If one were able to 
align the reads reliably, percent methylation for a cytosine would be number of Cs 
divided by number of Cs + Ts (Fig. 9.3). The alignment methodologies mostly 
revolve around modifications of known short read alignment strategies accounting 
for possible C → T conversions. One of the most popular methods Bismark (Krueger 
and Andrews 2011) utilizes the popular Bowtie aligner (Langmead et al. 2009). The 
essential idea is that the aligner transforms the reads and the genome to bisulfite- 
treated versions in silico, then it aligns the converted reads to the converted genomes 
and resolves multi-mapping reads based on alignment quality calculated from mis-
match rates. Other methods, such as MethylCoder (Pedersen et al. 2011), BS-Seeker2 
(Guo et al. 2013), and BRAT-BW (Harris et al. 2012), also use similar approaches. 
However, there are methods that deviate from the strategy described above. Notably, 
BSMAP (Xi and Li 2009) masks thymines in the reads and regards them as potential 
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match to cytosines in the genome. In addition, Last (Frith et al. 2012) uses a more 
traditional approach where it makes use of a score matrix for alignment scoring. 
The matrix adjusts for possibility of C-T mismatches. Finally, BiSS (Dinh et al. 
2012) uses a Smith-Waterman local alignment implementation for bisulfite- 
converted reads, allowing for increased mapping of sequencing reads.

Proceeding the alignment and methylation calling, the results can be exported as 
BigWig files (https://genome.ucsc.edu/goldenPath/help/bigWig.html) to allow 
visual inspection of results in a genome browser. At this point, the samples can also 
be merged to inspect correlation and clusters of the samples. This should further 
confirm the sample quality, similarity of the replicates, and existence of a biological 
effect that is of interest.

9.3.2  Issues with Methylation Calling

There are multiple caveats with methylation calling that stem from the nature of the 
experiment and specific variations of the bisulfite sequencing protocol. Below, we 
described some of the caveats and suggest mitigating strategies.

9.3.2.1  Base Qualities

First issue is ubiquitous in most sequencing experiments. Each base on a read com-
ing from a high-throughput sequencing experiments is associated with a quality 
value that indicates the confidence in the called base. Low quality bases might 

Fig. 9.3 Calling methylation from aligned reads. If bisulfite-converted reads can be aligned to the 
genome. Calling methylation proportion/percentage is simply counting number of Cs and dividing 
it with number of Cs + Ts for a given base. The illustration exemplifies that procedure. Note that 
non-CpG Cs have no methylation in the example. Ts that stem from bisulfite conversion are in gray 
color. Cytosines of CpGs are bound by rectangles
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harbor sequencing errors and, therefore, should be removed from the analysis. This 
can either be done by sequence trimming since quality tends to decrease towards the 
end of the reads using tools such as FASTX toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/) or by discarding bases during methylation calling based on their 
quality score (Akalin et al. 2012a).

9.3.2.2  Coverage

In addition, coverage per base becomes an important issue for methylation calling 
and subsequent differential methylation analysis. The greater the number of reads 
covering a certain position, the greater the precision for estimating differential 
methylation will be. The recommended coverage optimized for sensitivity and cost- 
effectiveness is 10× (Ziller et al. 2015). However, it should be noted that high cover-
age in some regions may be due to PCR bias; therefore for WGBS reads, we 
recommend discarding reads with overlapping coordinates. For RRBS, due to use of 
a restriction enzyme, most reads will have the same start and end coordinates and 
such a removal of duplicated reads is not feasible. However, one can remove the 
very high coverage regions from the analysis (above 1000× or top 5 %) in order to 
minimize PCR bias in RRBS experiments (Akalin et al. 2012a).

9.3.2.3  Adapter Sequencing

In certain cases parts of the adapter are sequenced. This could be due to decay medi-
ated by bisulfite conversion or problems with size selection, where shorter frag-
ments slip into the sample. In these cases, removing sequencing adapters prior to 
alignment increases the number of mapped reads. Removal of adapters can be 
achieved with tools like FLEXBAR (Dodt et al. 2012) or cutadapt (Martin 2011) 
where adapters can be partially aligned to reads and aligning parts can be excised 
from the read. Removing adapters will most likely increase the mapping rates and 
therefore the overall data quality.

9.3.2.4  SNPs

The SNPs that are cytosine in the genome but thymine in the sample will be regarded 
as authentic conversion events during methylation calling. To avoid such inaccura-
cies, one can remove such SNPs from the dataset if there is available genomic poly-
morphism data. If there is no SNP information available, one can try to use SNP 
callers that are designed for bisulfite sequencing experiments (Bis-SNP, Liu et al. 
2012). However, it will not be possible to recover all C → T SNPs.
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9.3.2.5  Conversion Rate

Another important issue is the conversion rate, which denotes the efficiency of 
unmethylated cytosines being converted to thymine. This can be calculated from the 
number of non-CpG C → T conversions divided by the total coverage of non-CpG 
Cs. This relies on the fact that non-CpG methylation is rare or of low prevalence in 
many mammalian cell types except in embryonic stem cells, oocytes, and the brain 
(Lister et al. 2009, 2013). For a more reliable conversion rate, spike-in sequences 
with fully unmethylated DNA could be introduced before bisulfite conversion and 
subsequent sequencing. Measuring C → T conversions in those spike-in samples 
would give a better understanding of conversion rate (Stadler et al. 2011). The sam-
ples with low conversion rate should be discarded, as methylation measurement will 
not be reliable. Although there are no systematic studies on the effect of conversion 
rate to differential methylation calculations, it is better to maximize conversion rate 
close to 100 % and certainly not below 95 %.

9.3.2.6  Assay-Specific Issues

In addition to the issues described above, there are a couple of other issues that stem 
from variations in the experimental protocol. First, it should be noted that bisulfite 
sequencing can not discriminate between hydroxy-methylation and methylation 
(Huang et al. 2010). Therefore, methylation measurements for tissues having high 
5-hydroxy-methylation will not be reliable at least in certain genomic regions. Here, 
specific measurement protocols are required that discriminate hydroxy-methylation 
from methylation (Plongthongkum et al. 2014). Other issues may arise due to bisul-
fite sequencing protocol variations. For example, RRBS introduces biased methyla-
tion at C in a 5′-CCGG-3′ motif, and this should be removed before calling 
methylation (Gu et al. 2011).

9.3.3  Segmentation-Based Methods for Discovering Genome- 
Wide DNA Methylation Patterns

Distinct patterns in methylation profiles are associated with other epigenomic marks 
and consequently gene regulation (Smith and Meissner 2013). For example, regions 
with low methylation are usually associated with H3K4me3 on active promoters. In 
contrast, high methylation for a promoter or regulatory region is associated with 
repression. However, many variations of this exist. Recently, low methylated regions 
in mouse embryonic stem cell methylomes were shown to mark enhancers genome- 
wide (Stadler et al. 2011).
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As regulatory regions can be cell type specific and their locations can be discovered 
by methylome analysis, it is of interest to explore all possible patterns in an unsu-
pervised way. One of the popular methods is to segment methylomes into distinct 
categories such as regions with low methylation or high methylation. The most 
popular method for categorical methylome segmentation is based on hidden Markov 
models (HMM). The method is widely used in bioinformatics for applications in 
sequence analysis such as finding patterns in genomic DNA or protein sequences 
(Durbin 1998). However, it can also be used for analyzing quantitative and continu-
ous signals from genome-wide experiments, including whole-genome bisulfite 
sequencing. In very basic terms, when applied to the methylomes, the method labels 
each CpG based on its methylation and the methylation status of neighboring CpGs. 
The labels could be as simple as high or low methylated regions (sometimes referred 
to as hyper- and hypo-methylated, respectively).

In essence, the method tries to find the optimal statistical model (HMM) that 
could have generated the observed data. The statistical model is defined over a 
sequence of methylation proportion values and consists of methylation states and 
the transition probabilities between states. In addition, each state generates a distri-
bution of methylation proportion values. Figure 9.4 shows the observed sequence of 
methylation values and HMM states that fit the observed methylation values. The 
HMM model learned from the data is depicted on the left side. The hypo- methylation 
or low methylation state generates mostly low methylation values (Gray distribu-
tion Fig. 9.4b) and the hyper-methylation state gives rise to higher methylation 
values (Black distribution Fig. 9.4). During the optimization process, the model 

Fig. 9.4 (a) Hidden Markov model-based segmentation of the depicted methylation profile into 
hypo-methylated (gray segments) and hyper-methylated segments (black segments). Each CpG 
methylation proportion is shown as a black dot. (b) The segmentation is achieved by learning the 
parameters of the HMM that best fit the observed methylation profile. The procedure learned the 
transition probabilities between states (probabilities depicted on the arcs) and emission probability 
distributions associated with each state. In this case, the method learned that when a CpG is in 
hypo-methylated state its methylation proportion is distributed as shown in the gray density plot 
and when it is associated with a hyper-methylation state, the methylation proportion is distributed 
as the black density plot
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learns the parameters of gray and black distributions (Fig. 9.4), the most likely state 
labels for each CpG and the transition probabilities between states. Those states 
correspond to hyper- or hypo-methylated CpGs in the simplest case (Molaro et al. 
2011), and methPipe tool (http://smithlabresearch.org/software/methpipe/) imple-
ments this approach.

There are also variations along this theme where one can allow more methylation 
states than just two. Stadler et al. (Stadler et al. 2011) fitted a three state HMM 
model upon observation of lowly methylated regions along with fully methylated 
and unmethylated regions. This allowed them to discover all low methylated regions 
in the genome, which turned out to be enhancer regions.

Other segmentation strategies include variants of changepoint analysis where 
change points in a signal across the genome is recorded and the genome is seg-
mented to regions between two change points. These methods are typically used 
in CNV (copy number variation) detection but have applications in this context as 
well (Klambauer et al. 2012). In the context of methylation, segments separated 
by change points can be found and those segments can be clustered into groups 
based on the methylation similarity of the segment (implemented in methylKit 
(Akalin et al. 2012b)) In addition, hybrid approaches between HMMs and simple 
data modeling such as MethylSeekeR (Burger et al. 2013) are also useful for seg-
mentation. MethylSeekeR first identifies partially methylated domains using an 
HMM and removes them from the rest of the analysis. Following that low, fully 
methylated and unmethylated regions are identified by dataset-specific cutoffs.

All in all, the users can use multiple publicly available tools to do the segmenta-
tion. The expected output of all these programs are at the very least a tabular output 
and BED files that can be used to visualize the segments on a genome browser.

9.3.4  Finding Differentially Methylated Regions: Comparing 
Samples

Differences in methylation between samples indicate changes in epigenomic structure 
and therefore could be related to gene regulation. In addition, many loci are aber-
rantly methylated in cancer cells when compared to normal cells (Laird and Jaenisch 
1994). Therefore, it is usually of interest to compare different samples and find 
differentially methylated regions or bases in the genome. The comparisons employ 
various statistical tests to assess the statistical confidence associated with the differ-
ence seen between samples for a given region or base. There are multiple ways to 
model the methylation from samples in a comparative manner when there are repli-
cates. However, when there are no replicates one of the most appropriate method 
is Fisher’s Exact test where methylation ratios between two samples for a given loci 
can be compared (Akalin et al. 2012b). Even in the presence of replicates, the 
replicates can be pooled and Fisher’s exact test can be applied. However, this 
process will lead to loss of variation between replicates that could be leveraged by 
other tests.
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When there are replicates, regression-based frameworks are mostly used to 
model the variation and methylation levels in relation to the sample groups. The 
differences in methods usually come from the choice of underlying distribution 
to model the data and the variation associated with it. Using regression-based 
frameworks have the added benefit of being able to model other covariates into 
the tests. For example, it has been shown that age is a contributing factor for 
methylation values at some CpGs. By adding covariates into the model, their 
contribution can be accounted when deciding if the observed difference between 
methylation levels of two sample groups is indeed due to biological differences.

In the simplest case, linear regression can be used to model methylation per 
given CpG or loci across sample groups. The model fits b0 and b1 values, which 
model the expected methylation proportion values (denoted as P in Eq. (9.1)) 
for each x.

 

P b b X

N

= + +0 1
20

e
e s~ ( , )  

(9.1)

In this case, x is a factor variable that is either 0 or 1 (this variable controls if the 
samples are from the test group or control group in a simple case–control experi-
mental design). When x = 0 (assume this is the control group), methylation is b0. 
When x = 1 methylation equals to b0 + b1. The error term models the variation along 
the fitted values. It is expected to have a normal distribution with 0 mean and varia-
tion σ2 to be estimated from the data. If there is a good fit to the data, where the 
methylation values are considerably different in test and control groups, the fitted 
model will be better than a null model where only the intercept term b0 is fitted. 
These two models can be tested using F-tests within the analysis of variance frame-
work. The idea depends on the accurate estimation and comparison of variances 
between and within samples. If the model fits well, variance substantially drops in 
fitted model versus the null model. Estimating accurate variances may not be always 
possible when sample sizes are small. Empirical Bayes methods then can be used 
to estimate variances while borrowing information across all loci (Smyth 2004).

However, linear regression-based methods to model methylation levels for a 
given sample group might produce predictions out-of-bounds, meaning methylation 
levels that are beyond the 0 and 1 bracket can be fitted. Furthermore, the variance 
estimated by these models will also not be bound by 0 and 1 and it is assumed to be 
constant. An alternative for linear regression-based models is logistic regression (a 
generalized linear model with binomial errors). Logistic regression for modeling 
methylation per given CpG or loci across samples is a more appropriate choice since 
it can deal with data that is strictly bounded between 0 and 1, with nonconstant vari-
ance, and it also is a go-to modeling method for proportion data such as methylation 
proportion values (denoted as P in Eq. (9.2)).
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In the logistic regression case, the data is fitted to a model by optimizing the b1 and 
b0 parameters, but this time the dependent variable is not the methylation proportion 
but the logarithm of P/(1 − P) where P is the methylation proportion (see Eq. (9.2)). 
The procedure essentially maximizes the likelihood of observing the data coming 
from a specific binomial distribution with parameters related to b1 and b0 values in 
the regression. Similar to the linear regression case, again a statistical test can be 
used to compare the fitted model versus the null model to see if the fitted model 
explains the data better.

Further enhancements can be made by tinkering with the variance assumptions 
of the logistic regression model. In logistic regression, fitted values assumed to have 
variation of n(p)(1 − p) where p is the fitted value for methylation proportion for a 
given sample and n is the read coverage. This assumption sometimes tends to under-
estimate the variance. This can be amended by calculating a scaling factor and using 
that factor to adjust the variance and/or other estimates that could be used in the 
statistical tests.

More complex models are also available for methylation data. They are particu-
larly useful for better modeling of the variance. One natural choice is to use beta- 
binomial models. It is similar to logistic regression where the data (number of 
methylated and unmethylated Cs) is binomial distributed but methylation 
 proportion is distributed according to a beta distribution. Practically, this amends 
the n(p)(1 − p) variance assumption, thus performing better when there is more 
variance than expected by the simple logistic model. Further enhancements to this 
include using Empirical Bayes methods to better estimate variance-related param-
eters by borrowing information from other bases or regions in the genome. 
Although detailed statistical explanations are beyond the scope of this text, some 
of the available tools using different methods described in this section are summa-
rized in Table 9.2.

Table 9.2 Differential methylation software for bisulfite sequencing experiments

Software Method Language/platform Reference

methylKit Logistic regression with/without 
overdispersion correction/Fisher’s 
Exact test

R package Akalin et al. 
(2012b)

BSseq Smoothing + Linear 
regression + Empirical Bayes

R package Hansen et al. 
(2012)

BiSeq Beta regression R package Hebestreit et al. 
(2013)

DSS Beta-binomial with Empirical 
Bayes

R package Feng et al. (2014)

MOABS Beta-binomial with Empirical 
Bayes

C/C++/Command line Sun et al. (2014)

RADMeth Beta-binomial regression C/C++/Command line Dolzhenko and 
Smith (2014)
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9.4  Regional vs. Base-Pair Resolution Differential 
Methylation

Most of the methods mentioned here can operate in both base-pair level and regional 
level. When the input for differential methylation functions are regions, the data 
should be summarized adequately per region. Normally, this is done by counting 
methylated and unmethylated bases per C of a CpG in a given region. The regions 
may be chosen arbitrarily such as promoters of interest or tilling windows that cover 
the whole genome. Another way of getting differentially methylated regions is to 
first get differentially methylated bases and combine the differentially methylated 
bases to differentially methylated regions. Several methods use this strategy. 
RADmeth (Dolzhenko and Smith 2014) and eDMR (Li et al. 2013) groups P-values 
of adjacent CpGs and produce differentially methylated regions based on distance 
between differential CpGs and combination of their P-values by weighted Z-test. 
MOABS (Sun et al. 2014) proposes to use an HMM to segment the differential 
CpGs into hypo- and hyper-methylated regions; however this is not implemented in 
the software.

All methods described in Table 9.2 uses methylation profiles from multiple sam-
ple groups to detect differentially methylated regions or bases. The output of 
R-based tools are R objects that are in tabular format and can easily be exported as 

Fig. 9.5 Workflow for analysis of DNA methylation using data from bisulfite sequencing 
experiments
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BED tracks for genome-wide visualization. Other command line tools produce 
tabular text files and BED files. The tools return also summary statistics on a num-
ber of differentially methylated bases/regions. The next logical step for differential 
methylation and also for segmentation tools is to annotate the output regions. It is 
usually of interest to know which genes or other genomic features (CpG islands, 
promoters, enhancers, etc.) are associated with those regions. Although this is a 
general genome analysis problem not specific to methylation data, certain tools, 
such as methylKit, come with such capability.

The analysis of methylation data involves multiple steps and checkpoints. The 
users have to be aware of the issues and the general analysis flow. Therefore, we 
have prepared a computational workflow summarizing major steps of analysis and 
quality checking described in this section in Fig. 9.5.

9.5  Conclusion

We have discussed experimental and computational techniques to measure genome- 
wide methylation levels. Bisulfite sequencing-based methods come across as the 
state of the art for detecting methylation patterns genome-wide or in a targeted man-
ner. We further described computational methods to deal with downstream analysis 
of bisulfite sequencing experiments. Coincidently, most of the tools described here 
use the R framework for downstream analysis. We believe through this guideline 
experimental biologists not only will have an idea about experimental protocols and 
best practices in the wet-lab but also they will be able to get into hands-on analysis 
if other priorities allow.
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 Annex: Quick Reference Guide

 

Fig. QG9.1 Representation of the wet-lab procedure workflow
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Fig. QG9.2 Main steps of the computational analysis pipeline
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    Chapter 10   
 Characterization of DNA-Protein Interactions: 
Design and Analysis of ChIP-Seq Experiments                     

       Rory     Stark       and     James     Hadfi eld     

10.1           Introduction to Genome-Wide Analysis of DNA-Protein 
Interactions Using ChIP-seq 

 Within the last decade, advances in high-throughput sequencing have enabled 
extensive research into protein-DNA interactions on a genomic scale. These interac-
tions include the binding of transcription factor proteins to localized positions on 
DNA, as well as proteins involved in other aspects of  transcriptiona  l regulation 
(e.g., methylases, acetylases) and in transcription itself (polymerases, etc.). The 
same methods can further be used to ascertain relevant aspects of chromatin state 
involved in transcriptional regulation, most notably key histone “marks” (including 
methylation and acetylation). 

 The primary experimental method used is chromatin immunoprecipitation fol-
lowed by sequencing, or ChIP-seq. While ChIP assays have been utilized for some 
time, modern high-throughput sequencing has enabled the entire genome (rather 
than just a small number of genes or genomic loci) to be  interr  ogated in a single 
experiment. Figure  10.1 , generated by the  ENCODE project   (ENCODE Project 
Consortium  2011 ), shows the high-level picture of regulatory elements in the 
genome, including the aspects that may be examined using ChIP-seq. This chapter 
describes how to design, implement, and analyze ChIP-seq experiments to success-
fully address a range of biological questions involving DNA-protein interactions 
and transcriptional regulation.
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10.1.1       What Is ChIP-seq? 

 ChIP-seq can be understood in terms of four defi nitional components contained in 
its name:  Ch romatin  I mmuno- P recipitation followed by  Seq uencing:

•     Chromatin , indicating that  the   assay requires not just purifi ed DNA but also all 
the associated proteins;  

•    Immuno , indicating the use of antibodies that target specifi c proteins of 
interest;  

•    Precipitation , indicating that this is an enrichment assay, where a total pool of 
chromatin will be enriched for those parts that involve the protein of interest, 
leaving as much of the nonassociated chromatin as possible behind;  

•    Sequencing , indicating that the result of the precipitation will be subjected to 
high-throughput sequencing (which in turn implies that the precipitate should be 
purifi ed to obtain sequenceable DNA).    

 Currently, ChIP-seq is performed on chromatin extracted from populations of 
cells (this chapter will not address potential issues involved in single-cell ChIP-seq), 
typically numbering in the tens of thousands. This has implications for the analysis 
phase as described in later sections. 

Hypersensitive
Sites

CH3

CH3
CH3

CO

RNA
polymerase

5C DNase-seq
FAIRE-seq

ChIP-seq RNA-seq
Computational
predictions and

RT-PCR

Gene

TranscriptLong-range regulatory elements
(enhancers, repressors/

silencers, insulators)

cis-regulatory elements
(promoters, transcription

factor binding sites)

  Fig. 10.1    Regulatory elements in the genome. Regulatory aspects of the genome include chroma-
tin structure (open/closed chromatin), enhancers, repressors, silencers, insulators, promoters, tran-
scription factor biding sites, histone modifi cation, methylation of DNA nucleotides, presence of 
transcriptional proteins such as RNA Polymerase, etc. ChIP-seq and related techniques can be used 
to assay many of these. This fi gure is generated by  t  he  E  NCODE project (ENCODE Project 
Consortium  2011 )       
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 The main steps of a ChIP-seq  a  ssay are as follows (see Fig.  10.2 ):

•      Isolation of nuclear material  to extract chromatin from the cells.  
•    Cross - linking  preserves the protein-DNA interactions.  
•    Fragmentation  divides the sample into much smaller pieces of chromatin, some 

of which include the protein of interest (generally a very small proportion).  
•    Introduce antibodies , generally attached to beads, that will bind to the protein 

of interest, thus tagging the fragments associated with that protein.  
•    Precipitate  the fragments by isolating the beads, and hence the chromatin frag-

ments of associated with the protein of interest.  
•    Reverse  the cross-linking of the precipitated fragments.  
•    Purify  the fragments to obtain the associated DNA.  
•    Sequence  the purifi ed, precipitated DNA fragments. This includes preparing 

libraries by ligating sequencing adapters in a manner consistent with the sequenc-
ing technology platform to be used.  

•    Process  the sequencing reads to determine quality and where they likely origi-
nated in the genome.  

•    Analyze  the data to determine a result.    

 It is essential to recognize that while a well-performed ChIP-seq results in a 
library highly enriched for fragments associated with the protein of interest, this 
enrichment is far from perfect; the majority of resulting sequencing reads are gener-
ally from fragments that are not actually associated with the protein of interest.  

Process

• Isolate chromatin

• Cross-link
• Fragmentation

• Introduce antibody
• Precipitate

• Reverse cross-links
• Purify DNA

• Ligate adaptors
• Sequencing

Material

• Tissue 

• Cross-linked cells

• Lysed chromatin fragments

• ChIPed DNA

• Sequencing library

  Fig. 10.2    Chromatin Immunoprecipitation (ChIP) procedure. Overview of ChIP  processing   steps, 
from whole cells to enriched DNA, ready for sequencing. Adapted from (Schmidt et al.  2009 )       
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10.1.2     What Kinds of Questions Can Be Addressed 
with ChIP-seq? 

 The study of DNA-protein interactions generally falls into the category of 
  Functional Genomics   , where the focus is on how the genome is operating within 
cells rather than on the attributes of the DNA itself. ChIP-seq analysis holds the 
promise of observing regulatory events governing the transcription of RNA from 
DNA by measuring how transcription factors, histone marks, and key nuclear tran-
scriptional proteins behave in cells. These studies range from large-scale attempts to 
comprehensively map the regulatory elements in the genome [e.g., ENCODE] to 
specifi c studies exploring the dynamics of specifi c transcription factors and histone 
marks in disease states. Recent advances in epigenetics, such as work on the role of 
 enha  ncers in cell differentiation and cellular function (Pennacchio et al.  2013 ), rely 
heavily on ChIP-seq experiments and are impacting nearly every aspect of molecu-
lar biology.  

10.1.3     Overview of ChIP-seq Process 

 A successful ChIP-seq experiment goes well beyond the mechanics described 
above. The remainder of this chapter will discuss the key aspects of applying ChIP- 
seq to a specifi c biological question. The main  thre  e steps include:

•     Experimental design : understanding exactly what biological question is being 
asked (optimally the testing of a specifi c hypothesis) is perhaps the most crucial 
step in a successful experiment. Once clearly explicated, refi ning an appropriate 
experimental design prior to preparing samples is the next most important aspect 
of obtaining a meaningful result;  

•    Sample preparation and sequencing : executing the steps of the assay at the 
bench and on the sequencing instrument, within the parameters of the experi-
mental design, carefully and precisely;  

•    Data Analysis : performing an analysis of the data generated by the experiment 
involves many steps, each of which can impact the usefulness of the fi nal result.      

10.2     Design of ChIP-seq Experiments 

 Most interesting ChIP-seq experiments involve multiple samples that must be care-
fully coordinated to produce a usable result. This section looks at the key question of 
how to design multi-ChIP experiments to enhance the likelihood of a meaningful 
result. We consider different types of protein-DNA interactions and quantitative anal-
yses, as well as technical considerations for determining the choice of antibody, num-
bers of replicates, experimental and technical controls, and sequencing parameters. 
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10.2.1     Types of DNA-Protein Interactions: Punctate vs. Broad 
Enrichment 

 There are two general types of  int  eractions to consider, corresponding to how nar-
row or broad the enriched regions of DNA are expected to be. For classic transcrip-
tion factors that bind directly to the DNA at specifi c locations (often marked by a 
sequence motif), the “binding sites” on the DNA are relatively narrow (generally 
between 4 and 24 bp, depending on the motif). However many assays explore 
broader regions of enrichment, such as histone marks that may be present on many 
contiguous nucleosomes covering longer stretches of DNA (anywhere from 100 bp 
to many thousands of base pairs long). The distinction is not as straightforward as 
DNA-binding proteins vs. marks on structural proteins such as histones, however; 
for example the histone mark H3K4me3 (an indicator of active expression when 
found in promoters) appears in very narrow ranges, forming peaks similar to that for 
transcription factors, while some DNA-binding proteins (e.g., polymerases) may 
bind over the full length of a gene. An additional complication is that even transcrip-
tion factors may themselves not bind directly to the DNA, but bind to other co- 
factors that are DNA-associated. 

 One way of thinking about the punctate/broad distinction concerns the fragment 
size distribution obtained after the fragmentation step. These frequently have a 
mean between 200 and 300 bp in length. If the binding site is expected to be nar-
rower than this, the enrichment can be considered punctate, while if the region of 
enrichment is wider, the enrichment can be considered broad. 

 In some experiments, multiple proteins will be ChIPed, some of which may be 
punctate and some broad. For example, when attempting to determine how a punc-
tate transcription factor is impacting transcription, one may also assay active and 
repressive histone marks (such as H3K27me3 and H3K9me3), which have broad 
enrichment, as well as the polymerase PolII. Likewise, for  trans  cription factors 
binding that occurs distal to gene promoters, it is often useful to ChIP histone marks 
and proteins that indicate active enhancers.  

10.2.2     Occupancy Mapping vs. Quantitative Affi nity 

  One of the most important aspects to consider in designing a ChIP-seq experiment 
is the type of analysis to be done. Specifi cally, a distinction can be made between 
mapping experiments looking primarily at  identifying   where in the genome a pro-
tein can bind and those looking at the relative strength and functional nature of that 
binding. 

 For example, when exploring the role of a specifi c transcription factor, it can be 
very helpful to know which genes it binds to. This can be used to narrow a set of 
genes that may be regulated by the transcription factor, help defi ne its binding motif, 
identify potential co-factors, etc. We refer to this type of mapping experiment as 
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being  occupancy  based, as the main question is what sites on the DNA are occupied 
by a protein of interest. The majority of ChIP-seq work done to date fall into this 
category, including the bulk of ChIP data generated by the ENCODE project, which 
is focused on identifying high-confi dence binding sites for a range of factors across 
a range of cell types. 

 A related question is to determine how a factor’s occupancy differs between two 
sample groups (such as different cell types, or treated vs. untreated cells, or diseased 
vs. normal cells). The most simplistic way of doing this is to generate occupancy 
maps for each sample group, then compare their overlap (often using Venn dia-
grams). In this way, three sets of binding sites can be identifi ed: a set of sites bound 
in both sample groups, and two sets of “unique” sites bound in only one group. 

 However, this type of analysis, where binding sites are mapped independently in 
each sample and then overlapped, is inadequate to identify many of the most impor-
tant differentially bound sites (see Sect.  10.4.3  for a detailed discussion). Consider 
how ChIP-seq data appears in a genome browser (Fig.  10.3 ). The binding sites are 
seen as “peaks” where there are pileups of sequencing reads in specifi c genomic 
locations. It is clear that the height of these pileups vary widely between binding 
sites. This is because binding sites are not fully characterized as either being occu-
pied or unoccupied by a protein. As the assay is representing the binding over a 
population of cells, the height of the pileup is related to the proportion of the cells 
in the sample that have the protein bound at that location. This refl ects the  affi nity  
of the protein to bind at that location in that cell population. Generally, a protein is 

  Fig. 10.3    ChIP-seq reads in genome browser. An example of sequencing reads for three ChIP-seq 
samples. The  top  shows a transcription factor, the  middle  shows a histone mark, and the  bottom  
shows an Input control. Reads on the two strands are shown separately, with positive strand reads 
shown above the line in  red , and negative strand reads shown below the line in  blue        
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not bound in  every  cell in one condition and  none  of the cells in another condition. 
As occupancy mapping focuses on identifying sites where a protein can bind—even 
if it is in a small proportion of the cells—a differential analysis that relies on occu-
pancy maps cannot distinguish between cases where the factor has a low-but- distinct 
binding affi nity in one sample group and a very high binding affi nity in another 
sample group (say, the difference between being bound in 10 % of the cells vs. 90 % 
of the cells).

   If a robust affi nity analysis is desired, this has an impact on experimental design, 
as more replicates are required (as discussed below) in order to capture within- 
group variance.   

10.2.3     Antibody Specifi city 

 ChIP-seq assays are deeply dependent on having an effective antibody that targets 
the protein of interest. While  complete   procedures for determining the effi cacy of an 
antibody are out of the scope of this discussion, careful consideration should be 
given to ensure that the antibody being used effectively targets the protein of interest 
and has as high a degree of specifi city as possible to minimize pull-down of frag-
ments that are not associated with the protein of interest. 

 The ENCODE project maintains useful guidelines for characterizing antibodies 
(Landt et al.  2012 ), the most current of which can be found here:   http://genome.
ucsc.edu/ENCODE/experiment_guidelines.html      

10.2.4     Replicates 

 For results to be meaningful,  all ChIP - seq experiments require some degree of rep-
lication . Even the most straightforward experimental design, where a single anti-
body is used to map punctate binding sites in a single cell type, requires 
replication. 

 While there is general acceptance that RNA expression assays should never be 
done without replication, this is less widespread in the ChIP-seq arena. However, 
what we know of transcriptional regulation indicates that we should expect even 
higher variability in this area (Schmidt et al.  2010 ). In addition, the ChIP-seq assay 
itself is less reproducible than that for  RNA-seq  , as there are more steps to go from 
cells to ChIP-seq than to  RNA-seq   (each having its own associated variability and 
bias). Finally, the analysis component for ChIP-seq results in more variability as 
well, with peak calling in particular being highly sensitive to relatively small 
changes in the sequencing data (see Sect.  10.4.2 ). 

 As ChIP-seq experiments exhibit high variability, there is no way to know if the 
results of a single ChIP-seq are representative or an outlier; hence a nonreplicated 
ChIP-seq should never be considered defi nitive. 
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10.2.4.1     Types of Replicates: Biological, Experimental, and Technical 

 Depending on the types of samples being used, it is useful to think of replication in 
three categories:

•      Biological replication    is required to capture the inherent variance present in 
biological systems. In vivo experiments should involve multiple different source 
organisms. In vitro experiments should involve multiple cell lines, as the domi-
nant signal in most ChIP-seq refl ects the open chromatin, which is cell-type (or 
cell-line) dependent.  

•     Experimental replication    is required to capture the differences in ChIP effi -
ciency between different runs. For example, if a cell line is used, the ChIP should 
be repeated multiple times using the same antibody, preferably with cells grown 
separately (or a subsequent passage of the cells).  

•     Technical replication   , referring mostly to the sequencing aspect of the assay, 
involves re-sequencing the same libraries to capture possible sequencing 
biases. While these biases are real, their variance is far less than that introduced 
by biological and experimental aspects. In the next section on sample prepara-
tion, large-scale multiplexing (pooled libraries) is advocated, which can help 
with technical replication as (a) any sequencing biases in a run will apply 
equally to all samples in the experiment and (b) it is more likely that multiple 
sequencing runs of the entire experiment will be required to obtain the neces-
sary read depth.     

10.2.4.2     Sample Groups 

 In order to determine the types and degree of replication appropriate for a ChIP-
seq experiment, the sample groups used for the analysis must be identifi ed up 
front. 

 In the simplest case, where there is no comparison being done (a pure occupancy 
mapping experiment), there may only be a single sample type. 

 If any sort of comparison is being made, there are at least two sample types rep-
resenting the two conditions being compared. Examples include: two cell types; the 
same cell type in two states; untreated cells vs. ones treated with a drug; wild-type 
vs. knock-down cells; normal vs. diseased cells; two different disease subtypes, etc. 
For each of these sample groups, there may be more than one antibody being used 
to survey multiple factors or marks. 

 More complicated designs may include more elaborate comparisons (say, 
between multiple treatments or knock-downs, rather than just two), time series, or 
multi-level designs where multiple variables are being altered simultaneously (e.g., 
wild-type vs. knock-down, each untreated vs. treated with a drug). 

 In these designs, every sample group should have some degree of replication. If 
multiple antibodies are used to assay different proteins, each sample group-antibody 
pair should have some degree of replication.  
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10.2.4.3     Numbers of Replicates and Experimental Power 

 The fi rst issue in determine how many replicates are required is whether the goal is 
purely occupancy mapping (identifi cation of putative binding sites) or a quantitative 
affi nity analysis (comparing differences in binding levels between groups). 

 For pure mapping exercises, the ENCODE project has established useful guide-
line for the identifi cation of high-confi dence peaks (Landt et al.  2012 ). These 
guidelines require two  high-quality replicates   for each cell type/antibody pair. For 
primary tissue these would be biological replicates, while for cultured cells these 
would be what we have referred to as experimental replicates. In order to get two 
high-quality replicates, it may be necessary to prepare more than two samples. 
Quality assessment and peak identifi cation are discussed in Sect.  10.4  of this 
chapter. 

 For experiments where sample groups are to be compared by assessing quantita-
tive differences in occupancy levels, more replicates are required. Determining the 
optimal number is potentially diffi cult, but echoes how sample sizes for RNA-seq 
are calculated. Optimally, power calculations can be carried out (Zuo and Keleş 
 2014 ) to determine how many samples are required to reliably detect differences 
refl ecting a given effect size. However, these calculations rely on an accurate mea-
sure of variance in the data, which is rarely available when embarking on a new 
experiment. The analysis techniques outlined below rely on at least three high- 
quality replicates of each sample group (or of each sample group/antibody pair). For 
punctate transcription factors and well-studied histone marks with reliable antibod-
ies, three or four replicates of each sample type for  in vitro experiments   have gener-
ated useful data (Ross-Innes et al.  2012 ; Mohammed et al.  2015 ). For certain  in vivo 
experiments  , for example using primary disease tissues from patients, many more 
biological samples may be required to obtain a useful result (although technical 
replicates are less necessary). 

 See Sect.  10.2.6  for an example of a published experimental design including 
replicate numbers.   

10.2.5     Controls 

 Another key part of any experimental design is the use of controls to ensure the 
experiment is accomplishing its goals, detect technical biases, and calibrate confi -
dence statistics. Like replicates, controls in ChIP-seq experiments may be thought 
of in three main categories:

•      Experimental     controls  are used as part of the high-level experimental design to 
control for specifi c biological effects inherent to the experiment, such as intro-
duction of siRNAs for knock-downs, or the effect of particular vectors utilized 
for introducing certain chemical treatments. These controls are not specifi c to 
ChIP-seq.  
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•    ChIP controls  are an essential part of the ChIP-seq assay. These are used to 
detect chromatin signatures specifi c to the cell types being studied and to estab-
lish background noise levels for separating signal from noise.  

•     Technical     controls  are generally specifi c to the sequencing portion of the assay 
and are used to detect sequencing biases, and possibly (via spike-ins) for quanti-
tative normalization.    

 Detailed discussion of appropriate experimental and technical controls is out the 
scope of this chapter, so we will focus on the controls specifi c to ChIP-seq assays. 

10.2.5.1     ChIP Controls 

  It is standard practice to generate control libraries alongside full ChIP preparations. 
The most common is an  Input control , in which the ChIP protocol is followed 
except no antibody is introduced. The resulting pulled-down fragments should not 
be enriched for any specifi c binding protein. 

 There are two main purposes of generating these Input controls as part of a ChIP- 
seq experiment:

•     Input serves as a background model . Most ChIP-seq analyses involve a peak 
identifi cation step (see below). As previously stated, ChIP enrichment is far from 
perfect, and the majority of sequenced fragments are not actually associated with 
the protein of interest. For example, if a transcription factor binds on 0.01 % of 
the DNA, and the effi ciency of the ChIP in enriching for these positions is 1000- 
fold, only 10 % of the fragments will actually be associated, and 90 % will be 
“background” or “noise.” The ability to separate truly enriched regions requires 
a clean model of this background, which is provided by the Input control.  

•    Input reveals chromatin signatures specifi c to a particular cell type . While 
sequencing purifi ed DNA results in relatively even coverage, sequenced Input con-
trols exhibit coverage far from even (Park  2009 ). As the fragmentation step is con-
ducted on integral chromatin, and not purifi ed DNA, some DNA positions will be 
more likely to fragment than others, depending on how densely they are encased in 
proteins (particularly nucleosomes). Each cell type has an  open- chromatin “signa-
ture” that is revealed by the Input control. Indeed, the open- chromatin signature 
tends to dominate the overall signal in ChIP-seq data; Input helps controlled for this.    

 While there is some debate about the necessity of ChIP controls, and whether use 
of a nonspecifi c antibody (such as IgG) is preferable to a pure Input, the vast major-
ity of ChIP experiments utilize  Input   controls, which in our experience work best .  

10.2.5.2     How Many ChIP Controls? 

 Determining how many Input controls to generate for a ChIP-seq experiment is a 
key step in the design. Optimally, every ChIP performed should be accompanied by 
a control. However in practice this may not be necessary; indeed, most published 
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ChIP-seq experiments with many samples do not have an equal number of Input 
controls. 

 It is however important to have  distinct controls   for each cell type. For example, 
when comparing binding of the same factor in different tissue types within a species 
(e.g., binding in liver vs. skin), separate Input controls for the two tissue types are 
required. However, if a single population of cultured cells is used to generate two 
ChIPs, with the only difference being the introduction of different antibodies (e.g., 
to compare two transcription factors), a single control serves for both ChIPs. 

 Now suppose this experiment were being done using three replicates, with each 
pair of ChIPs using a different passage. Optimally, there would be three controls 
generated, and we recommend using all three. In practice, often only one is used, as 
the cell type hasn’t really changed, and the Inputs for each passage should be com-
parable. So, it may be acceptable to use a single  Input control   for all six ChIPs. If 
this experiment were to use three different cell lines, however, three Input controls 
should be generated, as these comprise true biological replicates. 

 Careful consideration is required when comparing different conditions and treat-
ments. If a treatment is likely to change the chromatin signature of a cell type, an 
Input should be generated. For example, if one were to knock-down a chromatin 
remodeling gene in one condition, those replicates defi nitely require a separate 
Input control.   

10.2.6      Example ChIP-seq Experimental Design 

 Here, we introduce an example ChIP-seq experiment, taken from Ross-Innes et al. 
( 2012 ). This will be used not only to demonstrate an  experimental design  , but sub-
sequently in the discussion of analyzing ChIP-seq data. 

 This experiment uses cultured estrogen-positive breast cancer cells to look at the 
role of the transcription factor ERα in resistance to the drug tamoxifen. The goal is 
to perform a differential analysis to isolate ERα sites that have signifi cantly altered 
binding affi nity in cells that are responsive to the drug vs. those that are resistant. 
Hence, there are two sample groups:  Responsive  and  Resistant . 

 Two levels of replication are incorporated. Biological replication is achieved by 
using fi ve different cell lines. Three of these are responsive to tamoxifen as evi-
denced by reduced cell growth. The other two are resistant to tamoxifen (cells grow 
in presence of tamoxifen), resulting in three biological replicates on the Responsive 
side and two on the Resistant side. There is an additional complication, discussed 
below, if that one of the Resistant cell lines is derived from one of the Responsive 
cell lines. There is also a level of experimental replication, in that the ChIP is 
repeated in two different passages of each cell line (with one of the Responsive cell 
lines having three experimental replicates). This gives 11 ChIPs in total: seven in 
the Responsive group (3 cell lines × 2 replicates + 1 additional replicate) and four in 
the Resistant group (2 cell lines × 2 replicates). 
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 Input controls are generated for each  u  nique cell line (including the Responsive 
and Resistant versions of the shared cell line), for a total of fi ve Input controls. In 
total, 16 libraries are required (11 ChIPs and 5 controls). Table  10.1  shows informa-
tion for the samples.

10.3         Preparation and Sequencing of ChIP-seq Samples 

10.3.1     Preparation of ChIP-seq Samples 

  This section is based on the  metho  ds used in the authors’ previous work (Schmidt 
et al.  2009 ). The amount of starting material can be critical for any experiments and 
ChIP-seq is similarly affected. Unlike genome sequencing experiments, the amount 
of material available for library preparation is highly variable due to the variation in 
how much of the genome different DNA binding proteins will pull down in the 
immunoprecipitation step. We have successfully used around one million cells; oth-
ers have reported using limited material (Acevedo et al.  2007 ; O’Neill et al.  2006 ) 
but the complexity of a library can be adversely affected during the “remove dupli-
cates” step. We have had success with nonstandard library preparation technologies 
such as Thruplex [Rubicon Genomics, USA] in very low-input exome sequencing 
from cell-free tumor DNA in blood (Murtaza et al.  2013 ) and applied these to ChIP-
seq with mixed results. The Thruplex technology does allow us to reduce DNA 
input signifi cantly (10,000–100,000 cells) but only if chromatin fragmentation is 
carefully controlled. 

 Cells and/or tissue are cross-linked using formaldehyde before being homoge-
nized and lysed to remove cytosolic proteins, leaving only the nucleus for ChIP. It 
is critical to treat all samples in an experiment in the same manner to avoid introduc-
ing confounding technical artifacts, cross-linking samples for different times, or 
shearing samples to different lengths could introduce different biases. All samples 

      Table 10.1    Example data set (tamoxifen resistance in fi ve breast cancer cell lines)   

 Sample  Tissue  Factor  Status  Rep#  Peaks 

 MCF71  MCF7  ERα  Responsive  1  74,029 
 MCF72  MCF7  ERα  Responsive  2  49,075 
 MCF73  MCF7  ERα  Responsive  3  67,130 
 T47D1  T47D  ERα  Responsive  1  28,713 
 T47D1  T47D  ERα  Responsive  2  23,575 
 ZR751  ZR75  ERα  Responsive  1  74,971 
 ZR752  ZR75  ERα  Responsive  2  70,560 
 MCF7r1  MCF7  ERα  Resistant  1  47,034 
 MCF7r2  MCF7  ERα  Resistant  2  52,517 
 BT4741  BT474  ERα  Resistant  1  41,924 
 BT4742  BT474  ERα  Resistant  2  40,783 
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should be treated as a single batch where possible. Careful randomization of sam-
ples to each step can mitigate technical effects. 

 Chromatin from lysed cell nuclei is sheared, usually with sonication, although 
the Covaris system [Covaris Inc, USA] offers a less variable and more tunable alter-
native. Whichever system is used, settings for the shearing of chromatin must be 
predetermined to maximize the amount of DNA in the desired fragment size range 
most commonly 200 and 400 bp. 

 Sheared chromatin is incubated with a protein-specifi c antibody linked to pro-
tein- G magnetic beads; the specifi city of this antibody is key to the success of ChIP- 
seq experiments. The antibodies need to be incubated with magnetic beads 
immediately prior to use; excess antibody is removed by washing to prevent compe-
tition of unbound antibodies for target proteins; the storage of antibody prepared 
beads is not recommended. ChIP with antibody bound beads is performed overnight 
at 4 °C. After washing to remove nonprecipitated chromatin, the ChIPed DNA is 
eluted and cross-links are reversed by incubation at 65 °C. It is critical to avoid 
overheating the DNA at this point to avoid denaturation, which will reduce the 
amount  of material available for the double-stranded adapter ligation during library 
preparation.  

10.3.2     Sequencing ChIP-seq Samples 

 Sequencing of ChIP samples proceeds based on the sequencing platform to be uti-
lized. Generally there is a library preparation step fi rst. For the Illumina Inc.’s HiSeq 
platforms, the sheared chromatin is used as the input to a standard end-repair 
adapter-ligation Illumina library preparation. It is more common to use kits from 
Illumina or other providers than perform a home-brew library preparation. 
Whichever method is used, individual libraries should be quality assessed and quan-
tifi ed. It is critical to carefully assess each library if these are to be pooled into a 
multiplexed sequencing run. Uneven pooling due to poor quantifi cation or poor 
assessment of average library size can make the sequencing very ineffi cient as low 
yield libraries mean the pool needs signifi cant oversequencing to achieve the speci-
fi ed minimum read depth. 

 The choice of sequencing parameters is based on the specifi cs of the experiment, 
but certain guidelines can be followed. The three main considerations are:

•      Single vs. Paired End   : The main goal of ChIP-seq is to maximize the number of 
uniquely mappable reads. In general this does not require paired-end sequencing. 
While paired-end sequencing can help in distinguishing PCR duplicates from 
“true” duplicate reads (see analysis section below), identifying more fragments 
in the sequencing pool has a greater impact on the quality of results. In addition, 
the most-used peak callers are designed to work with single-end reads. Unless 
there is a compelling reason to use paired-end sequencing, single end is the 
standard.  
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•    Read length : the  read length   needs only be suffi cient to optimally map frag-
ments. As a result long reads do not meaningfully improve the results of a stan-
dard ChIP-seq experiment. 50 bp reads are more than suffi cient for this purpose 
and generally represent a cost-effi cient read length.  

•     Read depth   : The ENCODE guidelines call for a minimum of 20 M reads with a 
goal of 30 M reads per sample. While this is suffi cient for most ChIP-seq experi-
ments, the optimal read depth can depend on the proteins being mapped. 30 M 
reads will provide plenty of depth for most punctate proteins like transcription 
factors, especially those that bind in very specifi c portions of the genome. Indeed 
with appropriate replication, 10–20 M reads can be suffi cient to identify peaks 
and distinguish differences in enrichment. Some broader marks, such as 
H3K27me3, may be present to greater or lesser degrees across a much larger 
portion of the genome, and distinguishing between degrees of enrichment may 
rely on bigger depth.    

 For well-designed ChIP-seq experiments involving several samples, it is 
always better to multiplex the entire experiment in a single pool, and sequencing 
that pool as many times as necessary to obtain the desired depth, than is it to 
divide the samples and sequence them separately. This is in order to control for 
technical effects that may arise in the sequencing process itself. Sequencing in 
multiple lanes provides for technical replicates, while maintaining a single pool 
prevents batch effects that may be confl ated with an experiment variable of 
interest.   

10.4      Analysis of ChIP-seq Experiments 

 Depending on the purpose of the experiment, analysis of ChIP-seq data can follow 
a number of different paths. Here we discuss four main phases of analysis (not all of 
which apply to all analyses):

•     Read processing , including alignment to a reference genome, application of 
fi lters, and quality assessment at the read level.  

•    Enrichment analysis , including peak calling and alternatives, derivation of con-
sensus peaksets, and quality assessment at the peak level.  

•    Differential analysis , including binary (occupancy) based and quantitative 
(affi nity) based analyses.  

•    Downstream analysis , including motif analysis and determination of target 
genes.    

 In the succeeding discussion, the examples are drawn from the previously 
described experiment looking at ERα binding in breast cancer cell lines that are 
responsive or resistant to treatment with the drug tamoxifen. 
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10.4.1     Read Processing: Alignment, Filtering, and Quality 
Assessment 

 The result of sequencing is in general a set of large fi les, most frequently in FASTQ 
format (Cock et al.  2010 ), containing the data for the many millions of sequencing 
reads. For each read, this includes the identifi ed bases at each position with an asso-
ciated confi dence metric. For multiplexed experiments, there is a de-multiplexing 
step where a separate  FASTQ   is generated for each constituent sample, along with 
some metrics indicating the relative distribution of reads between the samples (as 
well as how many reads are unable to be assigned uniquely to a specifi c sample, and 
are discarded). If multiple sequencing runs (or multiple lanes on a run) are required 
to obtain necessary depth, there will be a set of such fi les for each sample for each 
lane. Coverage for each sample should be checked to ensure that targeted read levels 
have been reached. In multiplexed experiments, there will be a distribution of read 
numbers over the samples, so some samples will receive fewer reads (or drop out 
entirely). In some cases, libraries may need to be re-quantifi ed and re-sequenced if 
read quantity targets are not reached. 

 It is a good idea to perform some quality assessment at this stage to determine 
that the sequencing phase was successful. A popular tool for this is  FastQC   (Andrews 
 2010 ), which can check for biases and other sequencing anomalies; a complemen-
tary tool, MGA (Hadfi eld and Eldridge  2014 ), can check for contamination, unalign-
able sequence, and presence of sequencing adapter dimers. 

10.4.1.1     Alignment 

  The next step is to align the reads to a reference genome. The most popular current 
aligners are based on a Burrow-Wheeler transform (Li and Durbin  2009 ; Langmead 
et al.  2009 ). The  alignment   task for ChIP-seq is generally straightforward, without 
requiring local alignments to detect genomic anomalies. 

 The output of the alignment step are generally binary BAM fi les (Li et al.  2009 ), 
which includes the sequence information from the source FASTQ fi les in addition 
to alignment information. This information includes the genomic position of the 
best mapping (chromosome, start position, strand) and quality metrics for the con-
fi dence that the read is correctly and uniquely aligned. Separate BAM fi les for mul-
tiple sequencing runs can be combined for each individual sample at this stage .  

10.4.1.2     Read Filtering 

 Once the reads are aligned, a number of fi lters may be applied to reduce them to a 
set appropriate for further analysis. Reads may be fi ltered based on mapping quality, 
duplicates, and overlap with backlists. 
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   Mapping Quality 

 The most straightforward fi lter is on the  mapping quality   score. This score indicates 
the confi dence that the correct origin location in the genome has been uniquely 
identifi ed. Low values for this metric may arise from sequencing errors but are 
mostly expected to arise from the likelihood of an ambiguous mapping due to repeat 
regions in the genome. Reads that are unable to be uniquely mapped to a single 
location in the genome, sometimes called “multi-mapped” reads, can be problem-
atic in ChIP-seq analysis. If the incorrect location is used, false positive enriched 
regions may be identifi ed. Standard practice is to eliminate all multi-mapped reads 
from further analysis. However this can lead to other issues. The main one is that if 
a repeat occurs in the middle of a legitimate region of enrichment—for example at 
a motif identifying a binding site—the reads at that location will be eliminated, thus 
lessening the evidence for enrichment, or breaking a single large peak into two 
smaller ones. In some cases, the biology of the experiment is such that the most 
interesting reads are highly likely to occur in repeat regions. In such cases, multi- 
mapped reads may either be retained with one possible location chosen at random, 
or more sophisticated modeling may be used to distribute the reads to the most 
probable source locations (Kutter et al.  2011 ).  

   Duplication Rate and Handling of Duplicate Reads 

  The next issue to  consider   concerns remaining reads that align to identical genomic 
locations. In single-end sequencing, reads may appear to be duplicates if they were 
fragmented at the same point on only one end; paired-end sequencing can identify 
true duplicates covering an identical genomic interval. How these reads are treated 
can greatly infl uence fi nal results. 

 It is common in ChIP-seq studies to consider all duplicate reads as artifacts of the 
PCR amplifi cation stage of sequencing library preparation, and hence erroneous. 
The default step is to fi lter out all duplicated reads (leaving only a single exemplar 
of the read) before further analysis. This is meant to cut down on the false positive 
rate when identifying enriched regions, as a few highly overrepresented reads can 
give the false appearance of high enrichment. 

 However, this may be inappropriate, particularly if a differential analysis of 
quantitative affi nity is desired (Carroll et al.  2014 ; Lun and Smyth  2014 ). While the 
likelihood of sampling multiple identical fragments is very low when conducting 
whole-genome sequencing, the nature of ChIP enrichment, particularly for a punc-
tate factor, is such that true duplicate reads are expected at enriched areas, particu-
larly when using short-read single-end sequencing. Removing duplicates “clips” the 
ChIP signal at relatively low levels and eliminates most of the relative quantitative 
information relating to binding affi nity. If duplicates are not allowed, the highest 
number of unique fragments that include any one base position is twice the single- 
end read length (one fragment on each strand in each possible position of the read). 
So, for 50-bp single-end sequencing without duplicates, the greatest level of pileup 
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at a peak summit cannot exceed a coverage rate of 100 reads. As cell populations 
used in the ChIP reactions involve many thousands of cells, each with more than 
one copy of the genome, much higher pileups should be expected (and indeed can 
easily be seen in a genome browser). While we cannot fully distinguish between 
duplicate reads attributable to technical effects and those associated with high bind-
ing affi nity, proper use of replicate samples should enable sites with consistently 
high binding to be distinguishable, as amplifi cation biases will be different in each 
replicate. 

 It is possible to remove duplicates for some portions of the analysis and retain 
them for others. For example, eliminating duplicates when peak calling can reduce 
the false positive rate, while true peaks will still have high enough read concentra-
tions to be confi dently identifi ed. The full set of reads can then be used for the quali-
tative analysis to determine cases where a site is bound at detectable levels in 
multiple sample groups, but the affi nity changes systematically between them. 

 From a quality assessment perspective, overall duplication rates should be 
checked after alignment. Input controls are useful here; lacking enrichment, they 
should exhibit low duplication rates (5 % or less). Higher duplication rates in their 
corresponding ChIPs support the hypothesis that the ChIP was successful in enrich-
ing specifi c regions. While there are no set values for the increase in enrichment, 
duplication rates 5× higher are not out of line (up to about 25 %). Libraries that 
exhibit very high duplication rates should be viewed with suspicion, particularly if 
they exceed 75 %.   

   Blacklists and Greylists 

  The third major criterion for fi ltering relates to known problem regions in specifi c 
genomes. Reads in these regions tend to have systematic anomalies that make anal-
ysis of enrichment unreliable across  a   variety of ChIP antibodies. These regions 
have been collected in genome-specifi c “blacklists” as part of the ENCODE project 
(Kundaje  2013 ). Unless there are specifi c experimental reasons for exploring these 
areas, reads overlapping these regions should be removed before processing further. 
Note that it is not advisable to keep the reads for peak calling and eliminate subse-
quently identifi ed enriched regions as the presence of reads in these regions impacts 
all following processing negatively (Carroll et al.  2014 ). 

 Many samples also exhibit anomalous regions specifi c to their cell type. For 
example, immortalized cell lines have distinct karyotypes that result in unique 
issues, as do cells with high levels of genomic instability (such as cancer cells). In 
these cases, in addition to the blacklist for their genome, it may be advisable to 
compute a “greylist” unique to each cell type and fi lter reads from there as well. 
There is a Bioconductor package (Gentleman et al.  2004 ) called   GreyListChIP    
(Brown  2015 ) that can aid in this. Note that if multiple cell types are to be used in 
an experiment, it is important to apply the same fi lters for all samples to be analyzed 
together .   
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10.4.1.3     Quality Assessment 1: Reads 

 Quality assessment should occur  at   each stage of data analysis. Once a set of aligned 
reads is identifi ed, a number of quality assessment metrics may be computed and 
assessed. At this point in the analysis, the checks are primarily intended to verify 
appropriate enrichment of the ChIP samples. 

10.4.1.3.1    ChIPQC Package 

 The example plots below  were   generated using the Bioconductor package  ChIPQC  
(Carroll and Stark  2014 ). This package works on a sample sheet (similar to Table 
 10.1 ) and the BAM fi les (as well as, optionally, called peaks) to compute quality 
assessment metrics and generate plots. It is designed to work closely with the 
  DiffBind  package   (Ross-Innes et al.  2012 ; Stark and Brown  2011 ), used below to 
illustrate differential binding analysis; together these are useful and fl exible tools 
for processing and analyzing data from ChIP-seq experiments. 

 The following quality metrics may be of use in understanding data generated by 
ChIP-seq experiments:  

   Reads in Blacklists 

 For quality assessment, it can be valuable to compute a metric representing the pro-
portion of total reads that are fi ltered out using  blacklists  . This metric can be useful 
in identifying outliers when comparing replicates or can be matched up to historical 
data for anomalous ChIPs.  

   Coverage Histogram and Computation of SSD 

  Evidence of enrichment can be seen by plotting a coverage histogram. Figure  10.4a  
shows example plots for the  examp  le dataset. In these plots, the  X -axis represents 
the number of reads overlapping a single base, and the  Y -axis shows the number (on 
a log scale) of base positions in the genome with exactly that level of coverage. 
Most of the genome shows low (or no) coverage, but successful ChIPs will have 
regions with higher coverage (representing enriched areas). By including the associ-
ated Input control on the same plot, there should be a clear area between the Input 
histogram (which should show lower levels of high coverage areas) and the ChIP 
histograms, representing enrichment of binding “peaks.”

   The  Standardized Standard Deviation (SSD)   metric can be calculated for each 
sample to indicate relative levels of enrichment (Planet et al.  2012 ). This is com-
puted by taking the standard deviation of the coverage values for a sample and 
normalizing by dividing by the square root of the number of sequencing reads for 
the sample. Samples with high enrichment will have more variance in coverage 
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between background and enriched regions and hence a higher standard deviation. 
By comparing SSD values, it can be seen if the ChIP samples have higher enrich-
ment than their corresponding Input controls and if replicates of the same ChIP 
experiment have comparable enrichment .  

   Cross-Coverage and Computation of Fragment Length 

  Experiments performed using single-end sequencing are expected overall to have an 
equal proportion of reads mapping to  e  ach DNA strand. Likewise, around enriched 
areas, there should be on average an equal proportion of reads from each strand, 
although the proportion at individual sites will vary. Popular peak identifi cation 
methods rely on this property in identifying high-quality peaks, as there should be 
distinct peaks on each strand offset by the mean insert size of the fragment (Zhang 
et al.  2008 ). This can be used to estimate the mean fragment size that is derived in 
the process as another metric that indicates enrichment in a sample (Kharchenko 
et al.  2008 ). 
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  Fig. 10.4    Read-based quality control plots. This fi gure shows plots for the tamoxifen example 
dataset, generated using the  ChIPQC  package in  Bioconductor . In each case, there is a separate 
part for each cell type with separate plots for Responsive and Resistant MCF7 cells. Within each 
plot, each replicate is plotted, along with the associated Input control. ( a ) Coverage histograms. 
The  X -axis represents the range of pileup heights (coverage), while the  Y -axis represents how 
many positions have this coverage (log 10 values). Most positions have low coverage, but success-
ful ChIPs will have distinct subsets with high coverage (peaks), while Input controls should drop 
off more steeply. ( b ) Cross-coverage plots. The  X -axis represents a range of shift sizes, while the 
 Y -axis shows the genome coverage when reads on the two strands are shifted toward each other by 
that amount. ChIP peaks should converge at a sift-size equal to the mean fragment length, while 
Input controls (and failed ChIPs) have no coverage peak at the fragment length. ( c ) Genomic 
enrichment. Heatmaps showing the relative enrichment of reads in certain genomic features. 
 Bright yellow  indicates enrichment relative to background near the start of genes (promoters and 
5′UTRs), while  blue  indicates some depletion in coding regions and the end of genes (3′UTRs)       
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 The idea is to compute a measurement of agreement between the two strands, 
then re-compute this measurement after shifting the two strands closer and closer 
together one base pair at a time. The agreement measurement should be maxi-
mized when the adjustment equals the mean fragment size (Kharchenko et al. 
 2008 ). A number of measurements can be used, including a Pearson correlation 
(cross- correlation) or the degree of coverage (cross-coverage). The results can be 
visualized in a plot as seen in Fig.  10.4b , where the  Z -axis represents shift sizes (in 
this case ranging from 1 to 300 base pairs) and the  Y -axis shows the agreement (in 
this case mean coverage). There is generally a small peak at the read length, but 
enriched samples will have a much higher peak at the correct fragment length (this 
effect is minimized if blacklists are applied (Carroll and Stark  2014 )). As with 
coverage histograms, plotting ChIP replicates and associated Input controls reveals 
if the ChIPs are enriched relative to the Input and consistency between ChIP 
replicates. 

 A single metric for each sample can be computed by dividing the maximum 
agreement score by the score at the read length. ChIP samples should have values 
greater than 1.0, while Input controls should be close to that value. This metric 
works best for punctate enrichment (where the enriched regions are narrower than 
the fragment size).   

   Annotation and Genomic Distribution of Aligned Reads 

 At this point, it may be useful to annotate the reads, assigning them to categories of 
genomic features they may overlap.    Feature types of interest may include promoters 
or other regions upstream of transcription start sites (TSSs), UTRs, exons, introns, 
known enhancers, and intergenic regions. Computing the enrichment of reads in 
certain type of features relative to an expected distribution based on unenriched 
genomic DNA can give insight into where the enrichment occurs. For example, 
when assaying a transcription factor that is expected to bind in promoters just 
upstream of TSSs, a higher proportion of reads would be expected to overlap these 
regions than would by chance. Figure  10.4c  shows a heatmap representation of 
genomic enrichment for the example dataset. This plot comes from ChIPQC, but 
related, useful plots can be derived from other tools (Liu et al.  2011 ).    

10.4.2      Peak Calling 

 After aligning, fi ltering, and quality assessment of the sequencing reads, the next 
step in many ChIP-seq analyses is to identify enriched regions for each sample. This 
step, often referred to as  peak calling , attempts to separate the enrichment “signal” 
from the background “noise.” As previously discussed, it is not unusual only a small 
minority of the reads overlap true enriched regions (“peaks”).  Peak calling   is 
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feasible because this minority of “signal” reads is concentrated in very specifi c 
regions, while the larger set of “background” reads is distributed over the entire 
genome. 

 Methods for  identifi cation   of peaks have been extensively researched and dozens 
of tools are available to aid in this endeavor (Rye et al.  2011 ; Massie and Mills 
 2012 ). While it is out of the scope of this chapter to describe their various statistical 
and computational approaches, there are salient points to keep in mind when deploy-
ing peak callers. 

 Crucial, given the profusion of  competing methods  , is the lack of agreement 
between the results from different peak callers. While there is generally a core set 
of peaks that will be consistently identifi ed, corresponding to high pileups clearly 
visible in a genome browser, the majority of called peaks are more diffi cult to dif-
ferentiate from background and less consistently identifi ed. This is part of the nature 
of the peak-calling task, where genomic locations must conform to a binary classi-
fi cation of being either enriched (in a peak) or not enriched (not in a peak). 
Comparing different peak callers on different datasets shows signifi cant differences 
in the numbers of peaks identifi ed (Wilbanks and Facciotti  2010 ; Koohy et al.  2014 ). 
Besides differing in identifi cation of enriched regions, the boundaries of such 
regions also vary from peak caller to peak caller, with some tending toward identify-
ing wider or narrower regions. Indeed, most peak callers are oriented more toward 
identifying either punctate peaks where the enriched regions are narrower than the 
fragmented DNA size or broad peaks encompassing relatively long regions of 
enrichment. 

 As there is rarely a “gold standard” set of peaks by which to judge the perfor-
mance of different methods, it is diffi cult to assess the accuracy of the peaks identi-
fi ed for a particular sample in a specifi c experiment. While some attempts have been 
made, using spike-ins, simulated data, and the presence of known binding motifs, 
no set of peak calls can be considered defi nitive. There are some steps that can be 
taken to increase the confi dence in a set of peaks, generally by driving down the 
likelihood of false positive (but increasing false negatives). This includes using 
more than one peak caller and accepting only regions that are identifi ed by all of 
them, or looking for overlaps in peaks called from different replicates (see discus-
sion of IDR below). 

 Most popular peak callers use a control track in addition to the ChIP track to 
identify peaks. The  MACS peak caller   (Zhang et al.  2008 ) is the most popular of 
these for identifying punctate peaks; for broad peaks, popular choices include 
SICER (Zang et al.  2009 ). These are generally stand-alone pieces of software avail-
able for download, which must be installed and executed for each ChIP sample’s 
BAM fi le and its corresponding control. The output of these programs is a set of 
peak intervals (chromosome, start and end location) along with some statistics, 
measures, and/or scores indicating the confi dence of the peak call as well as some 
indication of its degree of enrichment. 

 For the  tamoxifen resistance   example, Table  10.1  shows the numbers of peaks 
identifi ed by MACS for each sample. 
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10.4.2.1     Deriving Consensus Peaksets 

  In the types of ChIP-seq experiments we are discussing, with multiple samples 
groups and replicates, it is often useful to derive consensus sets of peaks to take 
forward in the analysis. Even in a simple case of an ENCODE-style exercise of 
mapping enrichment of a single protein in a single cell type,    there should be at least 
two replicated samples. If only a single peak caller is used to identify peaks for 
each replicate, these intervals must be combined in some manner. Simple ways for 
doing this include taking the union of all identifi ed peaks, or the more stringent 
method of taking their intersection, keeping only regions that are identifi ed as 
enriched in both samples. The ENCODE project has outlined a more statistically 
robust procedure (Landt et al.  2012 ) using the Irreproducible Discovery Rate (IDR) 
(Li et al.  2011 ), which takes two sets of peaks with their confi dence measures and 
computes a statistic corresponding to the confi dence that the region is reproducibly 
identifi able. 

 This method has some limits, however, and is not easily generalizable to the case 
where there are many more than two replicates. In such a case, it may be useful to 
derive consensus peaksets separately by combing the peaks for the replicates in 
each sample group. Ultimately the choice of how to derive consensus peaksets 
depends on how they will be used for subsequent analysis, which is driven by the 
specifi c biological question being addressed. If the consensus peakset is itself a key 
deliverable of the analysis, it will be important to minimize false positive, and hence 
a conservative method (like intersection or IDR) should be used. If the subsequent 
analysis is robust with respect to noise, as is the quantitative differential analysis 
method described below, a more lenient approach may be used such as taking the 
union of all (or most) of the identifi ed peaks .  

10.4.2.2     Alternatives to Peak Calling 

 In certain cases, the use of peak callers (and their associated issues) can be avoided. 
Alternatives include annotation-based approaches and windowing schemes. 

 If the goal of the experiment involves cis-effects on transcription, the focus can 
be directed to enrichment in regions that  e  ncompass and/or are proximal to anno-
tated genes. If interest lies in transcription factors (or certain properties of chroma-
tin like the activating histone mark H3K4me3) that are known to bind in promoter 
regions, a set of potentially enriched intervals can be defi ned based on annotated 
transcription start sites. While other binding sites will be excluded, in many analy-
ses, sites distal from genes are discarded anyway. As the annotation of regulatory 
elements becomes more widespread, more of the potentially functional sites can be 
identifi ed in this way. Some (or even most) of these sites will not actually be enriched 
in specifi c experiments, but these can be fi ltered out or otherwise dealt with in sub-
sequent steps, particularly in a quantitative analysis. 
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 Another approach is to  use   windows across the genome and determine enrich-
ment of each window (Lun and Smyth  2014 ). Different window sizes (and overlaps 
if using sliding windows) can be used based on the expected breadth of enriched 
regions. Adjacent enriched windows can be merged to defi ne enriched intervals, and 
windows with low read counts across samples can be fi ltered out.  

10.4.2.3     Quality Assessment 2: Peaks 

  Given a set of enriched regions defi ned by a peak caller, annotation, or windowing 
scheme, some further quality assessment metrics can be computed and checked. 
These can be done using either sets of peaks specifi c to each sample (i.e., the output 
of a peak caller) or using the same consensus peakset for all samples. 

   Reads in Peaks 

 A basic measure of ChIP  ef  fi ciency is the proportion of sequencing reads that 
overlap peaks. These can be compared across replicates to identify technical 
outliers; across sample  gro  ups to identify difference in enrichment across treat-
ments and conditions; and to determine baseline effi ciency and consistency of 
different antibodies. Examining the distribution of reads across peaks can show 
whether the peaks have similar enrichment levels or vary considerably in cover-
age, and help identify outlier replicates. Figure  10.5a  shows such a plot for the 
example experiment, with one of the cell line (ZR75) exhibiting higher variance 
than the others.

      Peak Profi les 

 Generating a profi le of the peaks can be useful in seeing the “shape” of the enrich-
ment. Profi les are generated by either  ta  king a window centered on certain point 
in each peak or dividing the peak into percentiles, and then computing the mean 
pileup at that position across all the peaks for a sample. Figure  10.5b  shows peak 
profi les for the example data set (using 400 bp windows centered on the summit). 
ChIPs have more distinct peak shapes than their associated Input Samples, and 
some samples show greater peak heights, although at this point the data are not 
normalized (a simple normalization scheme, such as RPKM and derivative mea-
sures (Mortazavi et al.  2008 ), can be used for these plots). The profi les can be 
particularly helpful when using an annotation-based method for identifying 
enriched regions, for example to show the mean enrichment pattern of a histone 
mark before and after a transcription start site across all genes for differing sam-
ple groups.  
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   Sample Clustering 

  Identifi cation of enriched regions can be used to explore  clustering   characteristics 
of the dataset. For this, a single consensus peakset must be used. A consensus peak-
set can be generated in a number of ways (see next section). The simplest way is to 
take all identifi ed peaks (potentially merging overlapping ones) and create vectors 
for each sample with values of 1 if the peak was identifi ed for that sample and 0 
otherwise. These vectors can be used to cluster the samples. A more sophisticated 
method is to count all the reads for all enriched regions across all the samples in the 
experiment. A simple normalization method such as RPKM (reads per kilobase per 
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  Fig. 10.5    Peak-based quality control plots. This fi gure shows plots for the tamoxifen example 
dataset, generated using the  ChIPQC  package in  Bioconductor . In the fi rst two plots, there is a 
separate part for each cell type with separate plots for Responsive and Resistant MCF7 cells. 
Within these plots, each replicate is plotted, along with the associated Input control. ( a ) Bar plots 
of distribution of the number of reads that overlap each peak. Successful ChIPs should show a 
range of enrichment values, while Input controls should be uniformly low. ( b ) Peak profi les. Mean 
number of reads across all peaks in a 400-bp window centered on the peak summit. ChIPs should 
show a distinct “peak” shape, while Input controls should be mostly fl at. ( c ) Clustering correlation 
heatmap. Reads are counted for each consensus peak in every sample, and Pearson correlation 
coeffi cients are computed. The heatmap is plotted using the correlations cores, and hierarchical 
clustering is performed to determine the relationships between samples. Here, the Input controls 
form a distinct “outgroup” cluster, while the ChIP samples cluster by cell type, with replicates 
clustering most closely together. The two MCF7 cell types cluster together despite being in differ-
ent response groups. ( d ) Principal Component Analysis plot using read count data. Input controls 
cluster very tightly together at one end of fi rst component, while the replicates for the ChIP sam-
ples are close to each other, with the different cell types being distinguished in the second principal 
component       
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million) should be applied, resulting in a vector for each sample, with length equal 
to the number of enriched regions in the consensus peakset, and with values equal 
to the normalized read count for each peak. 

 Unsupervised hierarchical clustering can be done by computing a correlation 
score between each pair of count vectors, giving a distance matrix for the experi-
ment. Figure  10.5c  shows a clustering heatmap for correlation scores of the example 
experiment. In this fi gure (generated using ChIPQC), all of the Input controls form 
a distinct cluster. The remainder of the samples cluster by cell type, with all of the 
replicates for each cell type clustering closely together. There is no inherent cluster-
ing dividing the samples group of primary interest (cells either Responsive or 
Resistant to treatment with the drug tamoxifen). 

 Another way of viewing clustering is to perform a principal component analysis 
(PCA) directly on the count vectors. Figure  10.5d  shows a plot of the fi rst two prin-
cipal components for the example dataset. This shows all of the Input controls 
(which should have no enrichment) clustering extremely close to each other, sepa-
rable in the fi rst component. Replicates from the other cell lines are close to each 
other, and the cell line themselves are separable, particularly in the second 
component. 

 In ChIP-seq experiment involving multiple samples, it can be illuminating to 
study cluster pattern, particularly to identify outliers and possible batch effects. For 
comparative studies, it is useful to see if distinctions between elements of the con-
trast of interest are apparent even at this stage, before identifying differentially 
enriched peak s .    

10.4.3      Differential Binding Analysis 

 Once a set of ChIP-seq samples have been processed, they can be used to address 
the original biological question of interest. Most functional genomics studies 
involve a comparison of some sort, where sample groups are contrasted to identify 
similarities and differences. For  RNA transcription   assays, this takes the form of 
differential gene expression analyses, which are well established. The ChIP-seq 
equivalent is a differential binding analysis. There are a number of ways to accom-
plish this, as discussed in this section. 

10.4.3.1     Occupancy Analysis 

  The simplest method  for   isolating peaks unique to sample groups is to work directly 
with the peaks identifi ed using a peak caller. The idea is to derive consensus peak-
sets for each sample group and overlap them to isolate common and unique peaks. 
Examples of this are common in the literature (e.g., (Ross-Innes et al.  2010 )), but 
are becoming less common as more sophisticated techniques have been developed. 
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 For example, consider the tamoxifen resistance dataset described in Table  10.1 . 
Using very strict criteria, a consensus peakset can be derived for each sample group 
(Responsive and Resistant) by including only peaks identifi ed in  all  the samples in 
a group. For the samples in the Responsive group, there are 9456 peaks that are 
identifi ed in all seven samples (where peaks that overlap by at least 1 bp are merged 
to form wider peaks). For the samples in the Resistant group, there are 19,941 peaks 
identifi ed in all four samples. Figure  10.6a  shows a Venn diagram of the overlap of 
these two peaksets. There are 6920 sites identifi ed in both sample groups. If the goal 
is to identify binding sites that uniquely distinguish the Responsive or Resistant 
condition, these sites can be considered uninteresting. Of the remaining sites, there 
are 2558 regions uniquely enriched in the Responsive condition and a much higher 
number, 12,765, unique to the Resistant condition. This analysis suggests a substan-
tial  gain  of ERα binding sites in tamoxifen resistant cells.

   However, there are other ways to derive the consensus peaks that can change the 
conclusion. Consider a more lenient criterion, whereby all peaks that are identifi ed 
in at least two samples are included. This yields a consensus peakset that include 
104,051 ERα binding events. We can then consider these sites to be associated with 
the Resistant condition if they were identifi ed in at least two tamoxifen resistant 

2558 6889 12,765

Responsive Resistant Responsive Resistant

37,793 60,800 5456

Strict Lenienta b

  Fig. 10.6    Results from two overlap analyses. This fi gure shows the results from performing over-
lap analysis using strict and lenient criteria on the tamoxifen resistance dataset. ( a ) Using strict 
overlap criteria, where only peaks that are identifi ed in either all the Responsive samples or all of 
the Resistant sample are included, results in 22,212 peaks to be considered, of which the majority 
show increased binding levels in the Resistant samples, suggesting a gain of ERα binding in tamox-
ifen resistance. 6889 peaks are identifi ed in both the Responsive and Resistant samples and would 
be excluded from subsequent analysis as being nondifferentially bound. ( b ) Using more lenient 
criteria that includes all peaks identifi ed in at least two samples, 104,049 peaks are considered, of 
which most (60,800) are identifi ed in at least two samples in each group. Of the remaining peaks, 
the majority (37,793) are identifi ed in at least two Responsive samples, with only 5456 peaks iden-
tifi ed in at least two Resistant samples (but not Responsive samples). This suggests the opposite 
conclusion, a loss of ERα binding in tamoxifen resistance. Compare these results to Fig.  10.7b        
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samples, and associated with the Responsive condition if they were identifi ed in at 
least two responsive samples. This results in 98,593 of the sites being bound in the 
Responsive condition and 66,256 of the sites being bound in the Resistant condi-
tion. Figure  10.6b  shows a Venn diagram of the overlap of these peaks. The greatest 
proportion of sites (60,800) is common to both conditions. Of the unique sites, the 
Resistant group has only 5456, while the Responsive group include 37,793 ERα 
binding sites. From this analysis, we would reach the opposite conclusion that we 
did previously: that tamoxifen resistance involves a large  loss  of ERα binding sites 
in tamoxifen resistant cells. 

 While there are a number of issues complicating this analysis, such as the noise 
inherent in peak calling and the imbalance in sample numbers between the groups, 
it is diffi cult to know what the “correct” answer is. What is needed is a more 
 rigorous, statistically sound method for determining sites that change their binding 
profi le between the sample groups .  

10.4.3.2     Quantitative Analysis 

  While peak callers may be  usef  ul for identifying potentially interesting areas of 
enrichment, low agreement between peak callers suggests that they add a certain 
amount of noise to the experimental analysis. By comparing the identifi ed peaks to 
the aligned reads in those regions, and particularly to the variance in  enrichment   
between replicate samples, confi dence statistics can be computed characterizing the 
likelihood of a difference in enrichment between sample groups at each binding site 
(Ross-Innes et al.  2012 ; Robinson and Oshlack  2010 ; Liang and Keleş  2012 ). 

 The steps to carrying out such an analysis are as follows:

•     Derive a consensus peakset for the experiment . A variety of methods can be 
used to determine the  consensus peakset  . The “lenient” method above, where all 
or most of the identifi ed peaks are included, can be utilized as the additional 
noise introduced by spurious peaks will be assigned very low confi dence scores.  

•    For each sample ,  count the reads that overlap each consensus peak . A read 
count can be determined for every peak in every sample,  whether or not a peak 
was identifi ed in that  sample. The result for each sample is a vector of read 
counts. These vectors form the columns of a  binding matrix .  

•    Utilize a negative binomial-based method for calculating differential expres-
sion . Count- based differential expression tools, such as the Bioconductor 
(Gentleman et al.  2004 ) packages  edgeR  (Robinson et al.  2010 ) and  DESeq2  
(Love et al.  2014 ), can be used directly on the binding matrix. There are four 
main steps to be followed in using these tools:

 –     Normalization . As the different samples will be sequenced to different 
depths, may exhibit differences in antibody effi ciency (Bao et al.  2013 ) and 
refl ect varying degrees of enrichment, then, raw read counts must be normal-
ized. Most of the read-based tools include normalization procedures, for 
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example the TMM method in edgeR (Robinson and Oshlack  2010 ). The 
choice of normalization method and parameters can have a signifi cant effect 
on the ultimate conclusions reached. For example, the TMM method used in 
edgeR, developed primarily for RNA data, relies on an assumption that there 
is a core of sites that do not signifi cantly change their affi nity rates. If this 
assumption is not true for an experiment (e.g., if a transcription factor exhib-
its essentially no binding in one condition and high binding rate in the other), 
the normalization step can alter the data to the point of yielding invalid 
results.  

 –    Contrast modeling . The simplest contrast is to compare one sample group 
against another. As the method uses a generalized linear model (GLM) 
(McCarthy et al.  2012 ), complex experimental designs can be modeled.  

 –    Dispersion estimation . Each method has its own way of determining the 
dispersion of the negative binomial in fi tting the GLM.  

 –    Computation of confi dence statistics . This includes applying an exact test to 
the GLM fi t (Robinson and Smyth  2007 ), and performing a multiple testing 
correction on the resultant  p -values (Benjamini and Hochberg  1995 ).       

 The  Bioconductor package    DiffBind  (Ross-Innes et al.  2012 ; Stark and Brown 
 2011 ) encapsulates the entire process of working with ChIP-seq data, including 
deriving consensus peaksets, computing overlaps, counting and normalizing a bind-
ing matrix, establishing contrast, fi tting linear models, generating reports of differ-
entially bound sites, as well as including a variety of useful plotting tools.  

 Consider again the tamoxifen resistance example. Using  DiffBind  , we contrast the 
tamoxifen responsive and resistant samples using the 104,051 site consensus peakset 
described previously. Using the edgeR tool, 13,901 sites are identifi ed as being dif-
ferentially bound with FDR < 0.1. Figure  10.7a  shows an MA plot of the result, with 
sites that show higher binding affi nity in the Responsive case above the center line, 
and sites with greater binding affi nity in the Resistant sample group below the line, 
and signifi cantly differentially bound sites shown in magenta. Using the same asso-
ciation of sites to the Resistant and Responsive groups (sites that are identifi ed in at 
least two samples in a group are associated with that group), we can categorize the 
13,901 sites.

   Figure  10.7b  shows a  Venn diagram   of the results (compare with Fig.  10.7 ). Two 
observations are worth making. First, we see that neither of the original conclusions 
is valid as there is no dramatic gain in overall binding in one sample group over the 
other. Second, the largest single group contains sites that are common to both condi-
tions, and hence would have been removed from further consideration in both of the 
previous overlap analyses. These are sites where there is some degree of ERα bind-
ing in both sample groups,  but the binding affi nity changes signifi cantly between the 
sample groups . 

 This example is shown step-by-step in the DiffBind vignette, available online at 
  http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.
pdf     .   
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10.4.4     Downstream Analysis 

   Identifying potentially interesting subsets of binding sites is generally the end of the 
fi rst phase of analysis. Answering the underlying biological questions involves 
 downstream analysis      beyond the scope of this chapter. There is however a number 
of fairly standard steps that are useful in making sense of these sets, including the 
following:

•     Annotating peaks : It is often useful to annotate peaksets with nearby genomic 
features (genes, promoters, etc.). There are a number of tools available for map-
ping enriched intervals to reference genome annotations, such as ChIPpeakAnno 
(Zhu et al.  2010 ), HOMER (Heinz et al.  2010 ), and Cistrome (Liu et al.  2011 ).  

•    Motif analysis : A useful analysis to run is a  motif analysis   to (a) discover 
sequence motifs associated with the binding sites and (b) identify known motifs 
enriched in a peakset. Tools that accomplish this include the HOMER (Heinz 
et al.  2010 ) and MEME (Machanick and Bailey  2011 ) suites. This can yield par-
ticularly interesting results in the case of a differential analysis, where peaks 
enriched in one condition may be associated with different motifs than in another 
conditions. In the tamoxifen resistance data, for example, it was discovered that 

Responsive Resistant

4,964 5,658 3,279

Results

MA Plota
b

  Fig. 10.7    Results from differential binding analysis. This fi gure shows the results of a differential 
binding analysis of the tamoxifen resistance dataset using the DiffBind package from Bioconductor. 
( a ) MA plot of all peaks identifi ed in at least two samples (all the sites in Fig.  10.6b ). Peaks identi-
fi ed as being differentially bound (FDR < 0.1) are shown in  magenta . Sites that gain binding affi n-
ity in the Resistant group have negative fold changes (below the center line). ( b ) Venn diagram of 
peaks identifi ed as being differentially bound. Compare to Fig.  10.6  (especially Fig.  10.6b ). 
Signifi cant differences in binding affi nity show no strong tendency toward ERα binding gain or 
loss in either the Responsive or Resistance groups. The largest subset of differentially bound sites 
includes peaks identifi ed in both groups, and would be undetectable using an overlap analysis       
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the peaks differentially enriched in the Responsive group included a different 
co-factor than was enriched in the other peaks (Ross-Innes et al.  2012 ).  

•    Mapping enriched regions to genes : As the purpose of many ChIP-seq studies 
is to illuminate the regulatory elements underlying genomic transcription, it is 
frequently desirable to associate binding sites with the genes that they regulate. 
While this task may appear to be a straightforward matter of genomic annotation, 
in practice it is diffi cult to accomplish. Many (if not most) binding sites are not 
actually functionally active, and while some peaks may be easier to associate 
(i.e., peaks in promoters of known protein-coding genes), many DNA-associated 
proteins bind some distant from known genes (for example in enhancers). Simply 
assuming that the “closest” gene is being regulated is generally incorrect (Wang 
et al.  2013 ).  

•    Integration of ChIP - seq and RNA - seq data : ChIP-seq assays have become 
more important in complementing RNA-based studies as the focus has been 
drawn toward understanding transcriptional regulation. Reliance primarily on 
mRNA levels requires regulatory components to be inferred, while, and how 
they may be associated with transcriptional output and observable phenotypes. 
If both ChIP-seq and RNA-seq data are available for an experiment, there is the 
possibility of integrating them in order to associate the regulatory events with 
transcription itself by fi nding correlations between changes in binding sites and 
changes in transcription. A number of tools are available for helping with this 
process, such as Binding and Expression target Analysis (BETA) (Wang et al. 
 2013 ).  

•    Functional / Pathway enrichment : While identifi ed sites that have been mapped 
to genes can be tested for functional enrichment (i.e., GO analysis) or subjected 
to pathway analysis, tools also exist that can utilize binding peaksets directly to 
test for functional enrichment. Notable here is the GREAT tool   (McLean et al. 
 2010 ).      

10.5     Conclusions 

 Finally, it is important to keep in mind that ChIP-seq experiments are imperfect, and 
each step in the analysis process can result in noise and false positives. All interest-
ing results need ultimately be validated using some other experimental method in 
order to have confi dence in any conclusions.     
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  Fig. QG10.1    Representation of the wet-lab procedure workfl ow        

Primary material e.g. 
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  Fig. QG10.2    Main steps of the computational analysis pipeline       
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    Chapter 11   
 PAR-CLIP: A Genomic Technique to Dissect 
RNA-Protein Interactions                     

       Tara     Dutka     ,     Aishe     A.     Sarshad     , and     Markus     Hafner     

11.1            Introduction 

 In recent years our concept of gene expression has expanded beyond the central 
dogma (DNA → RNA → protein) to include  post-transcriptional gene regulation 
(PTGR)  . In  PTGR processes  ,  RNA-binding proteins (RBPs)   and ribonucleoprotein 
complexes (RNPs) control the stability, maturation, location, or translation of virtu-
ally all cellular transcripts (Keene  2007 ; Morris et al.  2010 ; Gerstberger et al.  2014 ). 
Recent estimates suggest the presence of more than 1500 genes encoding RBPs in 
the human genome, of which ~700 interact with and regulate mRNA, while the rest 
interact with other classes of RNA, such as rRNA, sn/snoRNA, and tRNA (Mattaj 
 1993 ; Mansfi eld and Keene  2009 ; Gerstberger et al.  2014 ). Given that approxi-
mately 10 % of RBPs have already been linked to human disease phenotypes in 
OMIM (  http://www.ncbi.nlm.nih.gov/omim    ), the critical role of these proteins in 
cellular and organismal homeostasis cannot be overstated. However, the specifi c 
mechanistic role of most of these RBPs remains to be elucidated. 

 The effort to catalogue heterogeneous nuclear ribonucleoproteins (Piñol-Roma 
et al.  1988 ) led to the realization that RBPs recognize their targets via discrete  RNA 
binding domains (RBDs)   at specifi c structural or sequence elements, termed RNA 
recognition elements (RREs) (Swanson et al.  1987 ; Dreyfuss et al.  1988 ; Bandziulis 
et al.  1989 ; Query et al.  1989 ). Currently 75 canonical RBDs are known, including 
the well-characterized RRM, KH, dsrm, zf-CCHC, PAZ, and Piwi domains. While 
approximately 60 % of RBPs contain a single RBD, some 40 % of RBPs contain 
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either repeats or multiple different RBDs, an arrangement thought to increase affi n-
ity and sequence-specifi city of an RBP (Ascano et al.  2012a ). 

  RBPs   belong to the most abundant protein classes and are expressed with low 
tissue-specifi city, further increasing the complexity of PTGR networks by possible 
widespread competition and synergy. Considering that most known RBDs recog-
nize short sequence stretches of 4–6 nt, every RBP potentially interacts with hun-
dreds to thousands of different RNAs.    RBP occupancy on a given sequence stretch 
of an RNA will depend on expression levels and localization of the RBP and RNA 
target, as well as accessibility of the target site (e.g., binding of competitors in the 
vicinity, secondary structure effects). These factors complicate in silico prediction 
of PTGR networks and their characterization thus required the development of 
appropriate experimental approaches (Mattaj  1993 ; Hafner et al.  2010 ; Baltz et al. 
 2012 ; Castello et al.  2012 ).  

11.2     Techniques for Examining RNA-Protein Interactions 

 A variety of techniques have been employed to characterize RNA-protein interac-
tions (Table  11.1 ). Here we will give a brief, noncomprehensive overview of in vitro 
and in vivo approaches, before describing in greater detail Photoactivatable- 
Ribonucleoside- Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), a 
method to identify RREs on a transcriptome-wide scale with nucleotide resolution.

11.2.1       In Vitro Techniques 

11.2.1.1     One Protein to One RNA Species, EMSA 

 Several in vitro techniques allow for the investigation of the thermodynamic proper-
ties of interactions between purifi ed RBPs and single RNA species, including iso-
thermal titration calorimetry (Salim and Feig  2009 ),  s  urface plasmon resonance 
(Katsamba et al.  2002 ; Yang et al.  2008 ), and fi lter binding (Rio  2012 ).  Electrophoretic 
Mobility Shift Assay (EMSA)   is one of the most widely used, and oldest, methods 
to determine binding affi nities of RBPs and RNA. In this assay, radioactively or 
fl uorescently labeled RNA is incubated with varying concentrations of a purifi ed 
protein to permit formation of the RNPs, which are subsequently fractionated by 
electrophoresis under native conditions, either on an agarose or a polyacrylamide 
gel. The labeled RNA is then visualized and quantifi ed using autoradiography or 
fl uorometry. Formation of an RNP will result in higher retention of bound compared 
to unbound RNA and cause a “shift” in migration on the gel. Thermodynamic con-
stants are determined using the ratio of bound versus unbound RNA at varying RBP 
concentrations. The structural determinants for binding can be validated by sequen-
tial mutation of target RNA or protein sequences. In the variant competition 
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gel-shift assay, simultaneous incubation with a variety of unlabeled RNA competi-
tors is employed to survey the relative affi nities and specifi cities of sequence vari-
ants. It is possible to adapt EMSA assays to allow the use of extracts or partially 
purifi ed proteins by incubating with an antibody against the RNP causing an addi-
tional shift in the gel band, or “supershift,” which identifi es the binding RBP 
(Gagnon and Maxwell  2010 ). EMSA assays rely on knowledge of possible interac-
tions  an  d are less able to identify kinetically weak interactions. However, some of 
these limitations may be overcome with crosslinking.  

11.2.1.2     One Protein to Many RNA 

   SELEX   (Systematic Evolution of Ligands by EXponential Enrichment) (Stoltenburg 
et al.  2007 ; Manley  2013 ) and newer  va  riations such as RNAcompete (Ray et al. 
 2009 ) or Bind-n-seq (Lambert et al.  2014 ) interrogate a large sequence pool for 
RNAs that bind to the RBP with high affi nity. In its basic iteration, SELEX involves 
an in vitro transcribed single stranded RNA (ssRNA) sequence library of approxi-
mately 10 13  to 10 15  different sequences of 20–80 randomized nucleotides fl anked by 
constant sequences that allow reverse transcription (RT), PCR amplifi cation, and in 
vitro transcription (Stoltenburg et al.  2007 ). This library is incubated with a target 
RBP, RNA molecules with low binding affi nity are removed by washing, and the 
bound RNA is amplifi ed by RT and PCR amplifi cation to form a new pool as input 
for the next round of selection. After several cycles, generally 6–20 rounds, only 
RNAs that bind with high affi nity remain in the amplifi ed pool and can be identifi ed 
by sequencing (Stoltenburg et al.  2007 ; Manley  2013 ). Phylogenetic analysis of the 
sequences reveals the optimal motif resulting in high-affi nity interactions. SELEX 
has been used to identify high-affi nity RNA ligands to proteins, cofactors, and small 
molecules (Stoltenburg et al.  2007 ). In addition, the selection conditions can be 
modifi ed to isolate RNA sequences catalyzing a variety of chemical and biochemi-
cal reactions (ribozymes) (Bartel and Szostak  1993 ; Joyce  1994 ; Seelig and Jäschke 
 1999 ). Application of SELEX to a diverse set of RBPs, including Pumilio (White 
et al.  2001 ), Quaking (Galarneau and Richard  2005 ), and FMR1 (Chen et al.  2003 ), 
revealed candidates for their RNA recognition element (RRE) that were then used 
for the genome-wide prediction of RNA targets. 

 Newer SELEX-type experiments, such as RNA Bind-n-Seq, HiTS-RAP, and 
RNA-MaP (Ozer et al.  2014 ; Buenrostro et al.  2014 ; Tome et al.  2014 ; Lambert 
et al.  2014 ), are designed to capture lower affi nity binders, which, in the context of 
widespread competition and synergy between RBPs, may represent equally valu-
able RRE candidates. For example, in RNA Bind-n-Seq, multiple RBP concentra-
tions are used in a single binding step followed by deep sequencing and bioinformatics 
sequence analysis, which captures more variation than the repeated cycles of tradi-
tional SELEX. 

 The sophisticated imaging and fl uidics capabilities of Illumina Genome 
Analyzers can allow the simultaneous interrogation of the binding landscapes of 
more than 10 7  sequences (Buenrostro et al.  2014 ; Tome et al.  2014 ). In these assays, 

T. Dutka et al.



267

the RNA pool is directly immobilized on the fl ow cell and incubated with fl uores-
cently tagged proteins. Quantifi cation of protein association and dissociation rates 
allows for the simultaneous determination of the thermodynamic binding constants 
for the entire sequence collection. Furthermore, these rates can be used to identify 
the compensatory effect of multiple sequence variations, which can be challenging 
for the other SELEX-type methods. 

 RNAcompete combines a carefully designed sequence pool with microarray- 
based detection methods and thus allows for an increased throughput in the identi-
fi cation of unstructured RREs. The RNA pool consists of ~240,000 different 
sequences of 30–40 nt length containing at least 16 copies of every possible RNA 
9-mer sequence (Ray et al.  2009 ). This pool is printed on microarrays, amplifi ed 
directly from these arrays, in vitro transcribed, and incubated with affi nity-tagged 
proteins of interest in a high molar excess to ensure that at equilibrium the propor-
tion of binding of each sequence refl ects the affi nity to the protein. After recovery 
of the protein, the enrichment of each sequence over the input pool is determined on 
microarrays and the RRE inferred from comparison of enrichment scores for every 
possible 7-mer (Ray et al.  2009 ). RNAcompete was used for a comprehensive sur-
vey of 193 different RBPs revealing the deep conservation of binding properties of 
homologous RBPs (Ray et al.  2013 ). 

 While these methods provide valuable insights into the binding specifi city 
between RNA and proteins, they are biased towards identifi cation of high-affi nity 
interactions. In living cells, RBPs compete for some RNA targets and act in synergy 
on others. Thus, in vivo, some high-affi nity interactions may be irrelevant compared 
to others of lower affi nity due to differences in RNA abundance or localization .   

11.2.2     In Vivo Techniques 

11.2.2.1     Visualization of Interactions with Fluorescence 

  Known or suspected RNA-protein interactions can be visualized in tissues and cells 
by detecting co-localization using  fl uorescence   in situ hybridization (FISH) and 
fl uorescence resonance energy transfer (FRET) (Selvin  2000 ; Vyboh et al.  2012 ; 
Silahtaroglu  2014 ). These microscopy-based methods require labeling of the RBP, 
generally by expressing a chimeric protein with a fl uorescent tag and incorporating 
fl uorescently labeled RNA probes either in situ, following fi xation and permeabili-
zation, or in vivo using microinjection, streptolysin O, scrape-loading, peptide- 
mediated membrane transfer, or electroporation (Geiger and Neugebauer  2005 ; 
Tanke et al.  2005 ). While FISH indicates a possible interaction, the large resolution 
distance of typically 200 nm precludes defi nitive conclusions. The resolution can be 
increased to approximately 1 nm using FRET, in which a donor fl uorophore excites 
fl uorescence of an acceptor fl uorophore in close proximity. This transfer causes an 
apparent reduction in intensity of the donor and an increase in acceptor intensity 
that depends on the distance between the two molecules (Selvin  2000 ). FRET has 
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been successfully applied to investigate the binding of hnRNP H to its target RNA 
(Huranová et al.  2009 ), the interaction of fi brillarin and snRNA in  Giardia lamblia  
(Ganguly et al.  2004 ), and the proteins interacting with the mutant  DMPK  gene 
RNA foci in Myotonic Dystrophy type 1 (Rehman et al.  2014 ). FISH and FRET can 
be useful in demonstrating in vivo interactions; however, the necessity to fl uores-
cently label protein and RNAs limits the applicability outside cell culture systems .  

11.2.2.2     Immunoprecipitation-Based Assays 

 Most in vivo RNA-protein interaction analyses are based on immunoprecipitation 
and are conceptually related to chromatin immunoprecipitation (ChIP) assays for 
studying DNA-protein interactions in vivo (Niranjanakumari et al.  2002 ). 

11.2.1.1.1    RNase Protection 

  RNase protection   assays can be used to determine binding sites and RREs on known 
RNA ligands for the RBPs of interest. The RNP is immunoprecipitated from cell 
lysates (Günzl and Bindereif  1999 ) and small single-stranded DNA (ssDNA) probes 
complementary to the suspected RRE and fl anking regions are allowed to hybridize 
to the immunoprecipitate. Bound RBPs prevent this hybridization and protect the 
RRE from RNase H, which selectively degrades RNA-DNA hybrids. The extent of 
protection is typically quantifi ed using Northern blotting. RNase protection has 
been used to examine the structure of spliceosome complexes and confi rm the 
impact of a stem-loop structure on ribosome binding (Paulus et al.  2004 ; Ilagan 
et al.  2009 ).  

11.2.1.1.2    RNA Immunoprecipitation Followed by Microarray Analysis 
(RIP-Chip) or Next-Generation Sequencing (RIP-Seq) 

   RNA immunoprecipitation (RIP) coupled to high-throughput methods allows for 
the comprehensive identifi cation and quantifi cation of RNA binding on a global 
scale. In its original form, the RNA co-immunoprecipitated with the RBP of interest 
was quantifi ed using microarray analysis (RIP-Chip) (Tenenbaum et al.  2000 ).  In   
place of microarrays, more recent variants involve next-generation sequencing anal-
ysis of the RNA (RIP-Seq) (Cloonan et al.  2008 ). RIP-Chip and RIP-Seq have been 
applied to multiple RBPs from a wide variety of tissues and species (see Table 1 in 
Morris et al.  2010 ). 

  RIP-Chip   approaches gave fi rst insights into the dynamic remodeling of RNPs in 
post-transcriptional gene regulatory processes. Among the important insights 
gained from RIP-type experiments is the understanding that RBPs typically interact 
with multiple (m)RNAs, with some RBPs interacting with a sizeable fraction of the 
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transcriptome (Hogan et al.  2008 ). The analysis of the interacting mRNAs and the 
fi nding that they oftentimes encode functionally related proteins led to the hypoth-
esis that RBPs are capable of coordinating so-called RNA regulons, regulatory enti-
ties conceptually related to DNA operons found in bacteria (Keene  2007 ). RIP-Chip 
assays for RBPs shuttling in and out of cytoplasmic granules under conditions of 
cellular stress also confi rmed the dynamic nature of RNP complexes (Anderson and 
Kedersha  2006 ). 

 A common concern when utilizing RIP is that possible RNP reorganization dur-
ing lysis and immunoprecipitation leads to a misrepresentation of the RNA target 
complement (Mili and Steitz  2004 ). This issue can be “fi xed” by immobilizing the 
RBP onto its target RNAs with formaldehyde crosslinking before RIP (fRIP). 
Formaldehyde crosslinking is reversible and is compatible with cDNA library con-
struction; however, while it allows for the recovery of more weakly bound tran-
scripts, the 2.3–2.7 Å (Sutherland et al.  2008 ) crosslinking distance makes it 
impossible to distinguish between direct and indirect RNA-protein interactions. 
RNA recovered from indirectly interacting RNPs can increase background signal 
and further complicate the analysis and requires stringent experimental controls. 
However, fRIP may prove useful in analyzing RNA-protein interactions of RBPs 
that are refractory to other crosslinking methods (see below), as shown in a recent 
study of Staufen1 protein binding and function (Ricci et al.  2014 ). 

 While RIP methods are successful for dissecting the RNA content of RNPs, they 
do not directly identify the RRE within long RNA targets. Furthermore, computa-
tional methods are only successful in predicting RREs of high-information content 
from RIP-data (López de Silanes et al.  2004 ; Gerber et al.  2006 ; Zhang et al.  2007 ; 
Karginov et al.  2007 ; Landthaler et al.  2008 ). Determination of the RRE thus 
requires genome-wide methods with higher nucleotide resolution  .  

11.2.1.1.3    Crosslinking and Immunoprecipitation (CLIP) 

 In order to specifi cally isolate the RREs from RNPs, Darnell and colleagues (Ule 
et al.  2003 ) introduced Crosslinking and Immunoprecipitation (CLIP) by adapting 
the in vivo  UV-crosslinking methods   used to characterize hnRNP proteins (Dreyfuss 
et al.  1984 ). Irradiation of RNPs in living cells with 254 nm UV light leads to pho-
toaddition of uridines to proximal (<1 Å), reactive amino acid residues of interact-
ing proteins and nucleic acids (Kramer et al.  2014 ). The irreversible nature of this 
type of crosslinking allows for stringent purifi cation of an RNP complex. In CLIP, 
the RNP of interest is immunoprecipitated and mild RNase treatment ensures that 
only the protected RRE bound by the RBP is recovered (Jensen and Darnell  2008 ). 
The immunoprecipitate can be further fractionated by SDS-PAGE and subsequently 
blotted onto nitrocellulose membranes, which helps remove contaminating, non- 
crosslinked RNA molecules. The  RNP protein component   is removed by Proteinase 
K and the recovered RNA is carried through small RNA cDNA library preparation 
protocols before sequencing. 
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 Initially, the  cDNA   was cloned into bacterial vectors, followed by Sanger 
sequencing (Ule et al.  2003 ) and these sequences gave insights into the targets and 
functions of Nova and a handful of other proteins (Darnell  2010 ). However, the low 
throughput of traditional sequencing methods limited the comprehensive analysis of 
RNPs containing multiple RNA targets. Combination of CLIP with next-generation 
sequencing provided RREs on a genome-wide scale (Licatalosi et al.  2008 ). For 
example, for Nova protein, the number of binding sites increased from 340 RNAs 
with CLIP to 412,686 with HiTS-CLIP (Darnell  2010 ). However, the large size of 
the clusters, up to 1 kb, (Darnell et al.  2011 ), and the diffi culty of distinguishing 
crosslinked sequences from co-purifi ed, non-crosslinked sequences requires strin-
gent controls and complicates the analysis.  

   CLIP Variants 

 Complete digestion of the crosslinked RBPs by proteases leaves oligopeptides 
attached to the RNA at the site of crosslinking,    frequently resulting in abortive RT 
during cDNA library preparation. Thus, fragments of co-purifying, non-crosslinked 
RNAs will be more effi ciently converted into cDNA and result in a sizeable back-
ground. Recent, careful computational analysis of HiTS-CLIP datasets indicated an 
increased presence of mutations within binding sites, which is potentially useful for 
the identifi cation of precise binding sites. However, the nature of these transitions in 
HiTS-CLIP libraries is unclear and ranges from deletions and insertions to specifi c 
C-to-T mutations (Granneman et al.  2009 ; Zhang and Darnell  2011 ; Wang et al. 
 2012 ). Several newer CLIP variants try to specifi cally address these limitations and 
thereby increase nucleotide-level resolution (Table  11.2 ).

      Individual-Nucleotide Resolution CLIP (iCLIP) 

 Individual-nucleotide resolution CLIP ( iCLIP  )    achieves nucleotide-level resolution 
by taking advantage of the abortive RT at the crosslinking site. Instead of the intro-
duction of primer binding sites by ligation of adapter oligonucleotides to the 5′ and 
3′ end of the recovered RNA, only a 3′ adapter is ligated to the recovered RNA. The 
RT primer hybridizing to the 3′ adapter contains forward and reverse primer binding 
sites for PCR amplifi cation (König et al.  2010 ; Sugimoto et al.  2012 ). After RT, the 
cDNA is circularized and purifi ed. The circular DNA is then linearized and ampli-
fi ed by PCR before Illumina sequencing. Clusters of sequence reads, overlapping 
after mapping to the genome, are considered binding sites if they contain a sharp 5′ 
end, indicating the site of abortive RT (König et al.  2010 ; Huppertz et al.  2014 ). 
iCLIP has been performed for several intensely studied RBPs, including TDP-43 
(Tollervey et al.  2011 ), TIA1, TIAL1 (Wang et al.  2010 ), hnRNP C (Zarnack et al. 
 2013 ), and hnRNP L (Rossbach et al.  2014 ).  
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11.2.1.1.4    Photoactivatable-Ribonucleoside-Enhanced Crosslinking 
and Immunoprecipitation (PAR-CLIP) 

 Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation 
(PAR-CLIP) allows precise determination of crosslinking sites on a  transcriptome- 
wide scale   (Fig.  11.1 ). It relies on the incorporation of photoactivatable thioribo-
nucleoside analogs, such as 4-thiouridine (4SU) and 6-thioguanosine (6SG), into 
nascent RNAs.  Thioribonucleoside-labeled RNA   is effi ciently crosslinked to inter-
acting RBPs using UV of 310–365 nm (UVA and UVB). RBP IP, RNA recovery, 
and cDNA library construction are performed analogous to other CLIP procedures 
and the cDNA library is sequenced using next-generation sequencing methods. 
While PAR-CLIP offers similar or greater effi ciency of crosslinking and thus RNA 
recovery compared to other methods, one unique hallmark of PAR-CLIP is a struc-
tural change in the thioribonucleoside induced by the photoaddition reaction, which 
leads to specifi c misincorporation of bases in the RT reaction. The reverse transcrip-
tase incorporates a T instead of a C when using 6SG, or a G instead of A in the case 
of 4SU. This misincorporation allows for specifi c mapping of the site of interaction 
by evaluating these characteristic mutations. In addition to revealing the site of 
crosslinking, the transition also enables the effi cient removal of any non- crosslinked, 
background sequences. PAR-CLIP has been applied to identify the binding sites and 
specifi cities of dozens of RNA-binding proteins in various cell lines (reviewed in 
Ascano et al.  2012a ) and in model organisms such as yeast and  C. elegans  (Creamer 
et al.  2011 ; Jungkamp et al.  2011 ).

11.2.3          Practical Considerations for PAR-CLIP 

 In the following section, we will describe detailed considerations for the setup and 
analysis of a PAR-CLIP experiment. 

11.2.3.1     Scale of the Experiment 

 The  scale of   a PAR-CLIP experiment will depend on the expression levels of the 
RBP of interest. In our experience, for RBPs expressed at high copy numbers of 
50,000–100,000 copies per cell, 10–50 million cells are suffi cient for PAR-CLIP. It 
may be necessary to adjust the cell and tissue lysis conditions according to the RBP 
examined. Most cytoplasmic and nucleocytoplasmic shuttling RBPs are amenable 
to NP-40 lysis; however, chromatin-associated RBPs may require more specialized 
cell lysis conditions to generate the extract for immunoprecipitation  
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UV crosslink
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5’ end radiolabeling of RNA crosslinked to RBP

Autoradiography and isolation of RBP

  Fig. 11.1    Schematic depiction of PAR-CLIP workfl ow. ( a ) A photoreactive nucleoside analog, 
4-thiouridine (4SU) or 6-thioguanosine (6SG, not shown), is directly added to the growth medium 
of cultured cells. Cells are irradiated with 312 nm (UVB) or 365 nm (UVA) UV light followed by 
lysis and RNase treatment to isolate RNP complexes. The RBP of interest ( green oval ) is immuno-
precipitated, and the crosslinked and protected RNA further trimmed using RNases, and fi nally the 
RNP is further purifi ed by SDS-PAGE fractionation. Other, directly interacting RBPs ( brown oval ) 
will also be visualized on an autoradiograph of the SDS-PAGE. The crosslinked RNA is recovered 
and carried through a small RNA cDNA library preparation protocol and deep sequenced. 
Photocrosslinking induces a structural change on the thioribonucleoside, which causes a character-
istic mutation in the corresponding position in the cDNA library (T-to-C for 4SU, or G-to-A when 
using 6SG) and can be used to fi lter RBP binding sites from the background of fragments from 
abundant cellular RNAs. 4SU denotes 4-thiouridine, U xl  denotes crosslinked uridines, and  32 P 
denotes P-32 labeled 5′ phosphate. ( b ) PAR-CLIP workfl ow       
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11.2.3.2     Choice of Photoreactive Nucleoside Analog and Treatment 

 Ideal  photoreactive nucleosides   for PAR-CLIP will be spontaneously taken up by 
cells, incorporated into nascent RNAs, and importantly, change their base-pairing 
properties upon photoaddition of reactive amino acid side chains in order to induce 
a characteristic mutation in the cDNA preparation process. Currently, 4-thiouridine 
(4SU) and 6-thioguanosine (6SG) satisfy all these requirements. Below, we will 
focus on 4SU as the nucleoside analog of choice because of its high reactivity. 

 In cultured mammalian cells,    4SU is readily taken up from growth medium, tri-
phosphorylated by the cellular machinery, and incorporated into nascent RNA. In 
HEK293, it was found that treatment for 16 h with 100 μM of 4SU results in a substi-
tution of 1 in 40 uridines (Hafner et al.  2010 ). This substitution rate proved suffi cient 
for effi cient crosslinking of most RBPs, while at the same time ensuring that most 
RNA fragments contained only a single U substitution, facilitating mapping to the 
genome and scoring the T-to-C mutation. The rate of uptake and incorporation may 
vary from cell line to cell line and needs to be determined when characterizing a novel 
cell system. 4SU incorporation rates can be effi ciently monitored after RNA recovery 
either by complete digestion with snake venom phosphodiesterases and quantifi cation 
of individual nucleotides by HPLC (Andrus and Kuimelis  2001 ) or, alternatively, by 
derivatization of RNA blotted onto nylon membranes by iodoacetamido-biotin reac-
tion with HRP-streptavidin and comparison to standards (Rädle et al.  2013 ). 

 For simple model organisms such as   C. elegans   , it is possible to perform PAR- 
CLIP in vivo (iPAR-CLIP) by providing 4SU to larvae grown in liquid cultures and 
harvesting at adult stage (Jungkamp et al.  2011 ; Rybak-Wolf et al.  2014 ). Some 
organisms, e.g., yeast, that do not take up 4SU by themselves but express  uracil phos-
phoribosyltransferases (UPRT)   can be labeled using 4-thiouracil, which is converted 
by UPRT into 4SU. Heterologous expression of UPRT has been used in  Drosophila 
melanogaster  to label newly synthesized RNA in vivo (Miller et al.  2009 ). Expanding 
on this concept, tissue-specifi c expression of transgenic UPRT, referred to as TU tag-
ging, allows for cell type specifi c incorporation labeling of RNA with 4SU (Gay 
et al.  2014 ), with great potential for expansion of PAR-CLIP in vivo. 

 In  HEK293 cells  , we found that treatment with up to 1 mM of 4SU did not result 
in a noticeable change in the mRNA profi le, indicating low toxicity at working con-
centration. However, a recent study reported effects of prolonged 4SU treatment at 
high concentrations on rRNA processing, demonstrating the need to monitor for 
possible toxicity of the employed photoreactive analog in the cell system of choice 
(Burger et al.  2013 ).  

11.2.3.3     Crosslinking and Immunoprecipitation 

 Upon irradiation with UVA (365 nm) and UVB light (312 nm), 4SU labeled RNA 
forms photoadducts with reactive amino acid side chains of interacting RNA- 
binding proteins, as well as RNA or DNA. For cells grown in monolayers, such as 
HEK293, an energy dose of 0.15–0.5 J/cm 2  was found to be suffi cient for effi cient 
crosslinking of the majority of examined RBPs. For cells grown in suspension and 
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for model organisms with varying opacity, it may be necessary to determine the 
optimal energy dose, e.g., 2 J/cm 2  was used for iPAR-CLIP in   C. elegans    (Jungkamp 
et al.  2011 ). 

 A key step in the PAR-CLIP protocol is the immunoprecipitation, which needs to 
be both comprehensive and as specifi c as possible. Quality  control   of the antibody 
used is necessary prior to performing PAR-CLIP experiments. Such assays can 
include probing lysate from RBP-knockout or depleted cells to document specifi c-
ity. In addition, lysates from cells expressing epitope-tagged transgenic versions of 
the RBP can be used to monitor IP effi ciency. If no suitable antibody for the RBP is 
available, we routinely generate stable cell lines inducibly expressing FLAG/
HA-tagged versions of the RBP of interest. Note that inappropriate placing of such 
epitope tags may interfere with RBP function, e.g., changing the C-terminus of 
Argonaute proteins abolishes their capacity of binding small RNAs. In most cases, 
antibodies can be immobilized on Protein G coated magnetic beads, allowing con-
venient buffer exchanges and other experimental manipulations. Prior blocking of 
the matrix with BSA or heparin can further minimize background introduced by 
unspecifi c binding of RNA and proteins. For optimal capture of the studied RNP the 
fi nal amount of antibody and matrix used in the PAR-CLIP experiments should be 
adjusted based on RBP expression levels as well as the affi nity of antibody.  

11.2.3.4     RNase Digestion 

   The main motivation to  use   PAR-CLIP approaches to study an RBP is to gain insights 
into its binding sites (or RREs) on target RNAs at nucleotide resolution. Thus, cross-
linked and co-immunoprecipitated RNA needs to be trimmed to reveal the footprint 
of the RBP using RNases. We suggest titrating the amount of RNases used to ensure 
that the length of the recovered RNA distributes between 20 and 40 nt. At these 
lengths, >90 % of nonrepetitive sequences uniquely map to the human genome, and 
thus allow unambiguous determination of target sites. Furthermore, limiting the 
length of resulting clusters of overlapping sequence reads helps pinpointing RREs 
and eliminates confounding contributions of other proteins binding in close proxim-
ity. Finally, small RNA cDNA libraries can be cost-effi ciently sequenced in a stan-
dard Illumina sequencing run of 50 cycles. We routinely use RNase T1 for its high 
activity and specifi city of cutting after guanosines, which affords an additional layer 
of quality control for sequenced reads by requiring their genomic mapping directly 
after G. Nevertheless, multiple other RNases have been used for PAR-CLIP, includ-
ing micrococcal nuclease and RNase I   (Kishore et al.  2011 ; Munschauer et al.  2014 ).  

11.2.3.5     Labeling of RNA Molecules and Denaturing SDS-PAGE 

 Trimming of RNA with RNases generally leaves the RNA with 5′ hydroxyl and 
2′3′ cyclic phosphate or 2′ or 3′ phosphate termini, which are not compatible with 
the small RNA cDNA library preparation procedure (Hafner et al.  2012 ). Thus,    
the RNA needs to be treated with phosphatases to remove these termini and then 
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labeled with γ- 32 P-ATP to facilitate downstream detection of the RNP. After 
radiolabeling the immunoprecipitated RNP complex is fractionated by denaturing 
SDS polyacrylamide electrophoresis to allow isolation of RNA specifi cally inter-
acting with the RBP of interest and to remove contributions of other possibly 
interacting RBPs. Transferring the fractionated RNP onto  nitrocell  ulose helps 
further remove non- crosslinked RNA molecules. RNPs are visualized by autora-
diography and the relative intensity of the radioactive bands provides a measure 
of the occupancy of the RBP in vivo. Finally, the crosslinked RNA is recovered 
by excision of the radioactive band corresponding to the RBP of interest and 
removal of the RBP with Proteinase K. Note the importance of using maximally 
active proteinases to minimize the length of oligopeptides remaining covalently 
bound at the site of crosslinking, which may otherwise interfere with the cDNA 
preparation.  

11.2.3.6     cDNA Library Preparation for Sequencing 

 Recovered RNA with 5′  p  hosphate and 3′ hydroxyl termini is carried through a 
small RNA cDNA library preparation protocol (Hafner et al.  2012 ). The fi rst step 
typically involves ligation of an oligonucleotide adapter to the 3′ end of the sam-
ple RNA using T4 RNA ligases to allow RT priming and subsequent PCR. To 
avoid undesired side reactions, such as circularization and concatamerization of 
the 5′ phosphorylated RNAs, we recommend using truncated and mutated T4 
RNA ligase 2 (Rnl2(1–249)K227Q) and preadenylated 3′ adapters with chemi-
cally blocked 3′ ends for the reaction (Lau  2001 ). The next step consists of joining 
the 3′-OH of the 5′-adapter oligonucleotide to the 5′ end of the 3′-adapter ligation 
product. Side reactions are of no concern because the 3′ end of the 3′-adapter liga-
tion product is chemically modifi ed, and the 5′ adapter does not have a reactive 
5′-phosphate. After each adapter ligation step the reaction products containing the 
desired RNA of 20 to ~40 nt are size-selected by denaturing urea PAGE to mini-
mize co-purifi cation of adapter-adapter ligation products formed by the vast 
excess of adapters over input RNA. To maximize RT across crosslinking sites, 
thermostable RT enzymes, such as the SuperScript family, are preferably used. 
Finally, a PCR reaction is required to amplify the cDNA as input for Illumina 
sequencing.  

11.2.3.7     Computational Analysis 

  Current depths of Illumina sequencing reach >200 million sequence reads per sam-
ple and data analysis requires sophisticated approaches to identify binding sites. A 
number of biocomputational pipelines as well as databases for  the   analysis of PAR- 
CLIP datasets have been made available (Table  11.3 ).

   The exogenous adapter sequence is trimmed off before aligning sequenced reads 
to the genome, allowing for at least one error (substitution, insertion, or deletion) to 
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capture reads with crosslinking-induced mutations. Overlapping sequence reads are 
grouped, taking into account the frequency of crosslinking-induced mutations. To 
allow insights into the RBP’s binding preferences, these groups of overlapping 
sequence reads can be then mapped against the transcriptome to annotate and cate-
gorize them as derived from exonic regions of mRNA (5′ untranslated region 
(UTR), coding sequence (CDS), 3′UTR), introns, rRNA, long noncoding RNAs, 
tRNAs, etc. Note that the presence of a single site within a cluster containing T-to-C 
(or G-to-A when using 6SG as photoreactive nucleoside) can occasionally be mis-
interpreted as a crosslinking event, if it is derived from sequence polymorphisms or 
sequencing errors. Recently, a repository of sequences contaminating CLIP-based 
experiments in human cell lines has been created and can be used to further refi ne 
the analysis (Friedersdorf and Keene  2014 ). The frequency of the T-to-C (or G-to-A) 
mutations allows ranking of the groups to predict those RBP-RNA interactions with 
the highest functional impact. In addition, the top-ranked groups provide a useful 
set of sequences as input into motif-fi nding programs to determine the underlying 
RRE. Some of the algorithms listed in Table  11.3 , such as  PARalyzer  , take advan-
tage of the frequency and distribution of crosslinking-induced mutations to predict 
the shortest possible region of interaction between RBP and RNA that harbors the 
RRE. Several programs initially developed for the analysis of transcription-factor 
binding sites on DNA are available to calculate the common sequence motifs of the 

    Table 11.3    Available software for CLIP-based data analysis a    

 MicroMummie  A model for predicting miRNA binding sites 
using PAR-CLIP data 

 Majoros et al. ( 2013 ) 

 PARma  Software for analyzing PAR-CLIP targets  Erhard et al. ( 2013 ) 
 PARalyzer  Identifi es high-confi dence interaction sites from 

PAR-CLIP data based on a kernel-density estimate 
from T-to-C conversion frequency and sequence 
read density 

 Corcoran et al. ( 2011 ) 

 doRiNA  Repository of miRNA and RBP target sites  Anders et al. ( 2012 ) 
 wavClusteR  Defi nes clusters at high resolution based on 

binding site (clusters) identifi cation algorithm 
 Sievers et al. ( 2012 ) 

 CLIPZ  Defi nes binding sites from CLIP-based methods at 
the genomic and individual transcript levels 

 Khorshid et al. ( 2011 ) 

 PIPE-CLIP  Galaxy-based tool for CLIP, HiTS-CLIP, 
PAR-CLIP, and iCLIP data analysis 

 Chen et al. ( 2014 ) 

 starBase  Repository of published CLIP data  Yang et al. ( 2011 ) 
 CLIPdb  Repository of published CLIP data  Yang et al. ( 2015 ) 
 Piranha  Algorithm identifying binding sites from 

CLIP-based methods 
 Uren et al. ( 2012 ) 

 dCLIP  Database including quantitative comparative 
analysis of published CLIP-seq 

 Wang et al. ( 2014 ) 

 miRTarCLIP  Tool defi ning miRNA target sites from RBP CLIP 
data 

 Chou et al. ( 2013 ) 

   a Results are aligned sequence reads as SAM/BAM fi les and target clusters as csv fi les  
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RRE, including MEME (Bailey  2002 ), MDScan (Liu et al.  2002 ), cERMIT 
(Georgiev et al.  2010 ), and Gimsan (Ng and Keich  2008 ). For the identifi cation of 
structured RREs (e.g., hairpins), secondary structure prediction algorithms such as 
RNAfold (Hofacker and Stadler  2006 ) or Mfold (Zuker  2003 ) may be useful and 
should be coupled to analysis of evolutionary conservation of binding sites to iden-
tify signatures of base-pair covariation (Eddy and Durbin  1994 ) (Fig.  11.2 ). 

11.2.3.8        Follow-Up Experiments 

  PAR-CLIP substantially furthers the understanding of the in vivo binding prefer-
ences and specifi city of an RBP.  Follow-up experiments   are necessary to couple 
information from the thousands to tens of thousands of binding sites to the regula-
tory function of an RBP. 

 The in vitro methods described in the fi rst section of this chapter can be used in 
order to experimentally validate the RRE predicted from the identifi ed binding sites. 

Sequenced PAR-CLIP 
cDNA libraries

Pre-processing

e.g. PARalyzer

PAR-CLIP database:
annotated reads & clusters

e.g. cERMIT e.g. RNAfold

e.g. Bowtie

1. Convert from sequencer format to FASTQ
2. Quality control
3. Adapter trimming

Alignment to genome

Binding site identification

Identification of sequence motifs Identification of structural motifs

Annotation Comparison to reference transcriptome (Ensembl, RefSeq)

Hypothesis building Proposed fucntion of the RBP to be validated experimentally

  Fig. 11.2    PAR-CLIP computational analysis workfl ow. The programs listed are examples of soft-
ware that could be used for these analysis steps. Other programs exist and each algorithm will yield 
slightly different results. The RBP functions hypothesized based on these analyses must be vali-
dated by follow-up experiments       
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These methods will yield dissociation constants for synthetic sequences represent-
ing the RREs alone, the top-ranked binding sites, or RRE/binding sites with intro-
duced mutations. Thermodynamic constants for various sequence elements can then 
be related to their enrichment in RIP-type experiments (Ascano et al.  2012b ; 
Mukherjee et al.  2014 ). 

 Many RNA-binding proteins regulate RNA stability, turnover, and splicing. In 
these instances, the effect of an RBP on its targets can be conveniently studied by 
perturbing the RBP of interest and quantifying its RNA targets, e.g., on mRNA 
microarrays or by RNAseq. In cultured cells, RBP levels can be easily manipulated 
by overexpression from plasmids of the normal RBP and/or a mutant form lacking 
RNA binding ability (Teplova et al.  2013 ), by knockdown using siRNA and shR-
NAs (Hafner et al.  2010 ), or by knockout using the emerging CRISPR-Cas system 
(Ran et al.  2013 ; Doudna and Charpentier  2014 ). Ideally, these results would be 
related to RNA quantifi cation from model organisms with and without the RBP 
knocked-out in the relevant cells or tissues to verify possible functionality in vivo. 

 Recently developed high-throughput proteomics methods based on isotopic 
labeling, such as SILAC and iTRAQ, allow for the analysis of the regulatory impact 
of an RBP on target gene product levels (Lebedeva et al.  2011 ; Hafner et al.  2013 ; 
Graf et al.  2013 ). To monitor subtle, cumulative effects on translation effi ciency, 
next-generation sequencing-based ribosome profi ling may prove to be a useful 
alternative (Ingolia et al.  2009 ; Guo et al.  2010 ). 

 More customized follow-up experiments may be necessary to understand the 
infl uence of RBPs on other post-transcriptional processes, such as RNA transport or 
localization. For example, to dissect the regulatory roles of the MBNL1 protein, 
RNAseq from multiple cellular compartments was performed (Wang et al.  2012 ). In 
addition, individual transcripts may be tracked using FISH methods or using reporter 
systems.     

11.3     Conclusion 

 The role of PTGR in basic cellular function and human disease has become increas-
ingly appreciated over time. Each new discovery in this fi eld has been supported by 
novel methods to test if, how, and where protein-RNA interactions occur and to 
relate these interactions to a cellular and organismal function. CLIP-based methods, 
including PAR-CLIP, dissect RNA-protein interaction sites on a genome-wide scale 
with nucleotide resolution and have already vastly increased our knowledge of the 
extent of PTGR networks. Rapid advances in single-cell genomics and single- 
molecule imaging technologies will provide further granularity in the dissection of 
PTGR networks. In conjunction with the emerging data of genomic and transcrip-
tomic variation between individuals (1000 Genomes Project Consortium  2010 ), 
these novel approaches will provide insights into the role of PTGR in development 
and disease.      
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    Annex: Quick Reference Guide 

  Fig. QG11.1    Representation of the wet-lab procedure workfl ow        
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  Fig. QG11.2    Main steps of the computational analysis pipeline        
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  Table QG11.2    Available software recommendations   

 MicroMummie  A model for predicting miRNA binding sites 
using PAR-CLIP data 

 Majoros et al. ( 2013 ) 

 PARma  Software for analyzing PAR-CLIP targets  Erhard et al. ( 2013 ) 
 PARalyzer  Identifi es high-confi dence interaction sites from 

PAR-CLIP data based on a kernel-density estimate 
from T-to-C conversion frequency and sequence 
read density 

 Corcoran et al. ( 2011 ) 

 doRiNA  Repository of miRNA and RBP target sites  Anders et al. ( 2012 ) 
 wavClusteR  Defi nes clusters at high resolution based on 

binding site (clusters) identifi cation algorithm 
 Sievers et al. ( 2012 ) 

 CLIPZ  Defi nes binding sites from CLIP-based methods at 
the genomic and individual transcript levels 

 Khorshid et al. ( 2011 ) 

 PIPE-CLIP  Galaxy-based tool for CLIP, HiTS-CLIP, 
PAR-CLIP, and iCLIP data analysis 

 Chen et al. ( 2014 ) 

 starBase  Repository of published CLIP data  Yang et al. ( 2011 ) 
 CLIPdb  Repository of published CLIP data  Yang et al. ( 2015 ) 
 Piranha  Algorithm identifying binding sites from 

CLIP-based methods 
 Uren et al. ( 2012 ) 

 dCLIP  Database including quantitative comparative 
analysis of published CLIP-seq 

 Wang et al. ( 2014 ) 

 miRTarCLIP  Tool defi ning miRNA target sites from RBP CLIP 
data 

 Chou et al. ( 2013 ) 

  Table displaying a selection of the recommended software available for the computational analysis 
of data yielded by this technique  
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    Chapter 12   
 Metagenomic Design and Sequencing                     

       William     L.     Trimble     ,     Stephanie     M.     Greenwald     ,     Sarah     Owens     ,     
Elizabeth     M.     Glass     , and     Folker     Meyer    

12.1           Introduction 

 The technological advances in sequencing technology in the recent decade have 
made determining the sequence nucleic acid polymers affordable and widespread. 
While the study of variations in the genomes of model organisms including humans 
is a rich and fruitful area of investigation, microorganisms have vastly greater num-
bers and sequence diversity than macroorganisms. Sequencing of DNA from envi-
ronmental samples has become a fast-growing application of sequencing 
technology. 

  Metagenomics is t  he analysis of genetic material extracted from environmental 
samples or extracted from mixtures of organisms. Two general approaches are avail-
able, targeted gene sequencing and random “shotgun” sequencing. Targeted 
sequencing amplifi es gene fragments of interest using PCR primers corresponding 
to conserved regions of selected genes. Subsets of the sequence of the prokaryotic 
rRNA 16S subunit, the internal transcribed spacer (ITS) in fungi, functional genes 
of interest to oxidation–reduction metabolism (NifH, AmoA), and conserved non- 
RNA phylogenetic marker genes are all suitable. The 16S rRNA gene has proven 
most popular for surveying the composition of microbial communities, and as one 
of the genes that has been under investigation for the longest, its primers and 
sequences have been the most studied and have the largest number of database 
sequences, and protocols for high-throughput sample preparation are available 
(Caporaso et al.  2012 ). 
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 Random “shotgun”  sequencing   provides unaligned samples from each organ-
ism’s thousands of genes, rather than amplifying a single gene per organism or 
organismal type. This increases the complexity of the sequencing data product 
several thousandfold, and as a result, much greater per-sample sequencing effort is 
required. This higher sequencing effort has meant that environmental shotgun 
sequencing has been enabled disproportionately by low-cost sequencing technolo-
gies, and as a consequence the total amount of shotgun metagenomic sequence data 
has been rising rapidly. The Sequence Read Archive has (as of May 2015) 34 
Terabases of sequence data tagged as metagenomic in origin; IMG/M and MG-RAST 
claim to have 4.5 and 76 × 10 12  bp, respectively. Most metagenomic shotgun datasets 
at present have between a gigabase and a few-tens-of-gigabases sequencing effort. 
Sequencing single samples to depths of a hundred gigabases or greater have been 
uncommon but not unheard of.  

12.2     Design 

 Generally, researchers are interested in the effect of external (non-sequence derived) 
variables on the composition of microbial communities. For both the targeted-gene 
and shotgun approaches, a vector of inferred relative taxonomic abundances is pro-
duced. For shotgun sequencing, the sequences can be further interpreted as relative 
abundances of fragments from different functional classes of genes. Analytical 
approaches that use additional information (from comparative genomics, or from 
chemical reaction networks) to extend the inferred profi les are in current use. 

 Finally, we can confi dently recommend engaging the specialists in the wetlab 
and in computational analysis early in the sequencing process; many steps along the 
sample- and data-handling path have different sensitivities and different effi ciencies 
for different sorts of target data; DNA handling and DNA processing technicians 
can only help if they are informed about the purpose of the experiment, the type of 
experimental design, and the relevant sampling characteristics. 

12.2.1     Sample Replicates 

  Experimental design for metagenomic sampling is similar to that for RNA-seq 
experiments, where block experimental design and at least fi vefold biological repli-
cation are recommended.  Thr  eefold biological replication is tolerated, but may not 
be forever. Biological samples are much more valuable than technical samples in 
supporting the detection of signifi cant differences between treatments. 

 Auer (Auer and Doerge  2010 ) and Williams (Williams et al.  2001 ) have sug-
gested using barcodes for blocked experimental designs that control for per-lane 
technical effects. It has been our experience that the technical repeatability within 
platforms is very good, and that the principal source of technical variability lies 
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between different types of sequencing (different read lengths, ABI SOLiD vs. 454 
vs. Illumina) and different protocols for library preparation (use of different frag-
mentation techniques, use of different PCR parameters for low-content samples, or 
use of different read lengths or sequencing platforms). Block designs to balance 
technical variation are better spent on the factors of the experiment, randomizing 
treatments to sequencing runs or batches of sample processing than to hedge against 
the effect of lanes or barcodes. 

 Sequencing samples sometimes fail; when sequencing many libraries at once, 
the failure of some of the samples becomes likely. A single lane or a single barcode 
can fail, producing insuffi cient quality or quantity data while other samples at the 
same time produce good sequence. The principal benefi t of a design that spreads 
samples across several lanes is that this design provides insurance against a techni-
cal failure that is confi ned to a single lane. If one lane fails, a loss of one eighth of 
the sequencing depth is less disruptive to experimental design that the loss of data 
for one eighth of the samples. Block randomization is clearly indicated, however, if 
the sequencing protocol, whether extraction, template construction or purifi cation, 
sequencing chemistry, or platform is changed during an experimental campaign, or 
when there are so many samples that batch changes in the sequencing protocol 
could confound the results.   

12.2.2     Sequencing Options 

  The target sequencing depth—the number of sequences and base pairs to collect per 
sample—is the next design parameter. For experiments using shotgun sequencing, 
the relationship between number  of   samples and sequencing depth per sample is 
seen as the principal design constraint (Auer and Doerge  2010 ). While there is evi-
dence of diminishing returns on RNA-seq sampling in excess of ten million tags (2 
gigabases with 2 × 100 cycle sequencing reads) for eukaryotic RNA-seq (Wang 
et al.  2011 ), shotgun metagenomic samples typically target 10 gigabases per sam-
ple. This allows one or two samples per MiSeq fl owcell (seven million spots at 400 
bp per spot) and four samples per HiSeq fl owcell at 2 × 101. 

 The large complexity difference between shotgun and targeted gene surveys and 
the availability of protocols to multiplex more than 600 samples in a single sequenc-
ing run, invite researchers to sequence large numbers of samples with just a single 
gene, and to apply shotgun sequencing to selected samples. Another sequencing 
option is to sequence one or a small number of samples to much greater depth than 
the others. This approach is not recommended, as it (by defi nition) consumes large 
amounts of sequencing effort that would usually be better applied to more samples 
to permit characterization of the within-group variability of sequence signals. 

 Unlike RNA-seq experiments, metagenomic shotgun experiments suffer when 
individual read lengths are less than 150 bp. Individual metagenomic reads bear the 
burden of identifying which organism they come from and which biochemical entity 
they represent. The reads must do this individually, since each random fragment 
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may or may not be from the same organism. This makes longer high-quality reads—
reads in the range of 150–450 bp—more valuable for exploitation than even over-
whelming numbers of short (<75 bp) reads. ABI SOLiD has been successfully 
applied to metagenomics (Iverson et al.  2012 ), but the short read lengths (ca. 50 bp) 
present a challenge both to assembly and annotation. Iontorrent has been applied 
successfully to targeted-gene metagenomic analysis, but is not recommended for 
shotgun metagenomics because it has similar read lengths and costs to Illumina, but 
has poorer error characteristics. On the other side of the read-length continuum, 
some instruments produce very long (>3 kbase) reads with very poor sequence qual-
ity—base call error rates above 10 % (Pacifi c Bio-sciences, Oxford Nanopore). The 
anonymous nature of individual reads makes these poor choices for metagenomics 
unless complemented with Illumina data with high base accuracy. The simultaneous 
inference of the organism and the corrected sequence is not currently feasible with 
only long-read low-quality data except, perhaps, in the lowest complexity samples 
(Table  12.1 ) .

12.2.3        Library Types 

 There are two main metagenomic library types/kits that we have tested thoroughly 
and can confi dently recommend for metagenomic sequencing. These are the TruSeq 
and the Nextera, both from Illumina, Inc. (San Diego, California). These two library 
types differ in their approach in two key components of metagenomic library gen-
eration: the fragmenting or shearing of the input material and the ligation of 
sequencing adapters and sample-identifying barcodes. TruSeq  libraries   have been 

   Table 12.1    Sequencing platforms suitable for metagenomic sequencing   

 Platform 
 Read 
length 

 Read 
number 

 Raw data 
yield 

 Error 
rate 
%  Targeted  Shotgun 

 Iontorrent 
PGM 318 

 200,400  5M  1–2 Gb/cell  2  OK 

 Iontorrent 
Proton 

 200  10M  2 Gb/cell  3  OK 

 Illumina 
MiSeq 

 2 × 100–2 × 300  16M  3–5 Gb/cell  1   a    a  

 Illumina 
NextSeq 

 2 × 150  120M  110 Gb/cell  1   a    a  

 Illumina 
HiSeq 

 2 × 100, 2 × 150  160M × 8  40 Gb/lane  1   a    a  

 ABI SOLiD  50  1.4G  70G  5 
 PacBio  6000  50k  300M  15  Supplemental 

   M  millions 
  a Recommended platforms  

W.L. Trimble et al.



295

on the market longer, so there are more kits and biotechnology companies that cater 
to their creation. Nextera libraries are newer and, to date can only be made with 
Illumina reagent kits. TruSeq library generation uses mechanical shearing in a soni-
cator to fragment the DNA and ligates adapters separately.  Nextera library   genera-
tion uses an engineered transposase enzyme to simultaneously fragment and ligate 
adapters to the input material. The TruSeq and Nextera approaches differ consider-
ably in the amount of input material needed. TruSeq libraries require 500–1000 ng 
of input DNA, while Nextera needs only 50 ng. This makes Nextera libraries is 
particularly helpful with low biomass samples. Because of the use of sonication 
instead of enzymatic incubation, TruSeq libraries give the user greater control over 
the insert size of library fragments.  

12.2.4     Sample Requirements 

 Input DNA quantities for library preparation kits range from 1 ng to 1 μg of mate-
rial. It is important to  make   sure that the amount of genetic material available for 
library preparation falls within the range given by the kit’s protocol. Because library 
creation depends on creating fragments in size ranges that work well with the 
sequencing technology, and because fragments in the wrong size range can be fi l-
tered out during library creation, the quality of the input nucleic acids has a large 
effect on library success. Even if a researcher has ample genetic material, if the 
material is not of good quality a robust library often cannot be made. Sample qual-
ity, referring to the survival of high-molecular-weight nucleic acids, depends on the 
circumstances of extraction and storage as well as  pr  operties of the sampling envi-
ronment; samples taken from hot or acidic environments tend to have lower nucleic 
acid quality compared to samples from cold or more neutral environment.   

12.3     Wetlab Protocol 

12.3.1     Storage 

 The proper  storage   of a sample also plays a role in overall sample quality. Storage 
variables such as delay before storage, storage temperature, and storage time can 
drastically affect relative abundances of microorganisms. Systematic studies have 
shown that samples stored at room temperature and at –4 °C show loss of 16S diver-
sity and storage-associated microbial composition biases (Rubin et al.  2013 ). We 
recommend storing samples at −80 °C as soon as possible after collection, avoiding 
free-thaw cycles, and consistent extraction following storage to reduce storage asso-
ciated community shits. 

 We have experience with the MoBio PowerSoil DNA isolation Kit.  
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12.3.2     Quantifi cation 

 DNA  quantifi cation   is an essential step at many places in the library creation work-
fl ow because some of the steps in library preparation and sequencing are 
concentration-dependent. 

 For assessing the quantity of a sample after extraction we recommend Invitrogen’s 
 Qubit Fluorometer  . The Qubit utilizes a fl uorescent dye that binds to nucleic acids 
to determine the starting concentrations. We recommend avoiding the NanoDrop, as 
it consistently overestimates nucleic acid concentrations. Unlike the NanoDrop, the 
 Qubit Fluorometer   can discriminate between DNA and contaminants, such as 
RNA. To assess the quality of the genetic material we recommend  using   Agilent’s 
2100 Bioanalyzer or an agarose gel. Generally, high quality nucleic acids destined 
for metagenomic research will be free of any fragments below 100–200 bp. If the 
number of fragments smaller than 200 bp outnumbers the rest this is an indication 
of overfragmentation or low input quality. 

12.3.3       Positive and Negative Controls 

 There are numerous controls utilized throughout metagenomic library preparation 
in order to ensure quality data. The fi rst of these controls is the extraction blank, a 
negative control. When extracting DNA from metagenomic samples researchers 
should include 1–3 extraction blanks with the sample set. The researcher will then 
compare the quality and quantity of the  ext  raction blank to the samples and if a 
sample is found to match the extraction blank it will be discarded as a false positive. 
The second of these controls is the library blank and is used in the same manner as 
the extraction blank. Water will be run through the library preparation process in 
tandem with the samples and used to remove false positives from the set. Use of a 
negative control during library preparation is more common during the PCR step 
and several negative controls will often be included. This is because primer-dimers 
will often be generated by PCR along with the amplifi ed libraries. Researchers will 

  Equipment   
     1.    Invitrogen Qubit Fluorometer   
   2.    Covaris S-series system   
   3.    Wafergens Apollo 324 system   
   4.    Magnetic Stand or Rack (holds 1.5 ml or 96 well plates)   
   5.    Thermocycler   
   6.    Sage Sciences BluePippin Prep   
   7.    Agilent 2100 Bioanalyzer     
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use the nucleic acid concentration of the negative controls to determine the concen-
tration of primer-dimers in any given sample, often called the background noise. 
Researchers also employ positive controls in metagenomic preparation. These posi-
tive controls consist of sequences of DNA that are of high quality, well studied, and 
explicitly known. The most common positive control is called PhiX. These positive 
controls can either be spiked into the samples as an internal control or they can be 
run by themselves, separately barcoded, as an external control. The positive controls 
are then compared to the individual samples to help determine the quality of the 
library and the effectiveness of the library preparation method.  

12.3.4     DNA Quantifi cation 

 We recommend starting with 500 ng of high-quality DNA for TruSeq metagenomic 
library prep, although lower quality and concentrations may be used. By contrast, 
the  Nextera protocol   is optimized for exactly 50 ng, and samples should be diluted 
to that level. 

 We recommend the following protocol:

    1.     Make a Qubit working solution by diluting the Qubit DNA reagent 1:200 in 
Qubit DNA buffer using a sterile plastic tube.   

   2.    Load 190 μL of Qubit working solution into tubes labeled standard 1 and 2.   
   3.    Add 10 μL of standard 1 solution and standard 2 solution to the appropriate 

tube and mix by vortexing for 2–3 s.   
   4.    Note: These are positive and negative controls used to calibrate the 

instrument.   
   5.    Load 198 μL of Qubit working solution into each individual assay tube.   
   6.    Add 2 μL of DNA to each assay tube and mix by vortexing for 2–3 s. The fi nal 

volume of this solution should equal 200 μL.   
   7.    Note: The amount of sample and working solution added to each assay tube can 

vary depending on concentration of the sample. The sample can vary between 
1 and 20 μL, and the working solution can vary between 199 and 180 μL with 
the fi nal volume equaling 200 μL. It is recommended to use 2 μL of sample to 
produce the most accurate results.   

   8.    Allow all the tubes to incubate at room temperature for 2 min.   
   9.    Select DNA assay on the Qubit Fluorometer. Select run a new calibration.   
   10.    Insert the tube containing Standard 1, close lid and press read.   
   11.    Remove standard 1 and repeat step 8 for standard 2.   
   12.    Insert sample, close lid and press read.   
   13.    Calculate concentration using dilution calculation on Qubit Fluorometer by 

selecting original volume of sample added to the assay tube.   
   14.    Repeat steps 10 and 11 until all samples have been quantifi ed .      
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12.3.5     TruSeq Metagenomic Library Prep 

12.3.5.1     Insert Size Determination 

   Insert size determination   is an important consideration for all Illumina libraries. 
Due to the enzymatic shearing of Nextera libraries, the ratio of DNA to enzyme and 
the enzymatic cut sites will determine the size distribution of a Nextera library. For 
TruSeq library prep, however, the user has more control over the size distribution. It 
is critically important to determine what library insert size will work best for your 
downstream analysis. Often, bioinformaticians will have a preference. We recom-
mend consulting with the bioinformaticians that will be analyzing data before mak-
ing your libraries. 

 The current generation of sequencing platforms produces reads with error rates 
that vary as a function of position in the read. The deterioration of sequence quality 
results from imperfect extension reactions that cause the sequencing signal to fade 
in strength and contrast, in part due to contributions from nonsynchronized popula-
tions of template molecules. Paired-end sequencing, which initiates synthesis from 
primers on opposite ends of the sequencing template, allows the high-quality bases 
to be drawn from both ends of the templates. 

 Careful selection of the size of the template molecules further permits reads to 
overlap. Libraries constructed so that the end of the fi rst read overlaps with the end 
of the second are called “overlapping” libraries and allow the construction of longer 
composite reads, where the low-quality parts of each reads are complemented by 
redundant sequencing. Read merging is computationally inexpensive compared to 
assembly. When applied to well constructed libraries, more than 90 % of paired 
reads can be found to overlap. Variations in the overlap fraction between different 
samples likely result from differences in template length distribution, and to the 
extent that this affects annotation, this may be one of the sources of library- 
construction biases that occur in annotation output as batch effects. 

 Getting 90 % overlap requires careful control of the insert size. Templates that 
are too short result in more overlap (and less resulting sequence) than expected, 
reducing sequencing yield. Templates that are too long result in nonoverlapping 
sequences, or mixtures of nonoverlapping and overlapping sequences. When tem-
plates are much too short, shorter than the read length, the sequencer sequences the 
template and a piece of the normally unsequenced adapter on each end—resulting 
in reads that overlap for most of the beginning of the sequences, but that have unre-
lated artifi cial barcode sequences at their ends. These sequences can be recovered 
bioinformatically, but are of lower value than optimally overlapping sequences. 

 For paired-end sequencing, insert sizes fall in several qualitatively different 
regimes, illustrated in Fig.  12.2 . A 160–180 base pair insert (270–280 bp including 
adapters) will result in overlapping reads on a 2 × 100 bp HiSeq run, with 20–40 bp 
of overlap. A 250 base pair insert (350 bp with adapters) will result in overlapping 
reads on a 2 × 150 HiSeq run. A 500 base pair insert (600 bp with adapters) will 
result in no overlap on a 2 × 100 or 2 × 150 HiSeq run. Finally, a 350–450 base pair 
insert (450–550 bp with adapters) will result in no overlap with a known distance 
between the reads for single genome assembly .
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  Fig. 12.1    Histogram of dataset sizes for metagenomic datasets in the Sequence Read Archive as 
of June 2015. Shotgun datasets have much greater sequencing requirements, and as a consequence, 
targeted-gene datasets outnumber them by a factor of 7       
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  Fig. 12.2    Cartoons of possible insert sizes, with attention to overlap between paired reads. The 
 blue lines  indicate DNA from the library and the  orange lines  indicate the forward and reverse 
adapters for 2   × 100 paired-end sequencing.        

12.3.5.2        Shearing of Libraries 

  For TruSeq libraries we recommend using the  Covaris S-series system   for mechani-
cal shearing. The following instructions pertain to the S2 system but can be easily 
adapted to the S1 series. We recommend setting the water bath between 6 and 8 °C 
and using a minimum of 500 ng sample in 50–100 μL. It is important to use no less 
than 50 μL of sample as the Covaris relies on surface area to appropriately shear the 
material. If there is not at least 500 ng in 100 μL, we recommend using Agencourt 
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Ampure XP Beads to concentrate the sample down to a smaller volume using a 1.8× 
beads ratio. The conditions set on the Covaris are directly related to the preferred 
insert size of the fi nal library.  

12.3.5.3        Choosing Barcodes and Multiplexing 

 When multiplexing, it is important to choose mixtures of barcodes that result in 
complementary color  mixt  ures within the same pool/sequencing lane. Illumina 
MiSeq and HiSeq instruments use four-color encoding, and bases A and C are prin-
cipally found in the red channel while bases T and G are read out in the green chan-
nel. Mixtures of balanced color signals for each base—including the bases in the 
barcode—help the software maintaining high data quality. We recommend choos-
ing indexes for samples that allow for at least one base in each channel per pool.  

12.3.5.4     End Repair, A-Tailing, and Adapter Ligation on the Apollo 324 

 After samples have been sheared, there are several different kits that will perform 
end-repair and ligation of  A-tails and adapters  . We recommend Illumina’s TruSeq 
PCR free Sample Prep, Illumina’s Nano DNA Sample Prep Kits, Kapa Biosystems 
Library Amplifi cation kits, or Wafergens PrepX Complete ILMN DNA library Kits. 
Each of these kits uses the same basic pipeline of end-repair, A-tail ligation, and 
adapter ligation and each will produce high quality libraries. The kits differ by the 
amount of input material they can handle, the insert size ranges they can produce, 
the time investment needed to complete the protocol, and the price. We prefer the 
Wafergen PrepX Complete ILMN DNA library kit as it has the fastest completion 
time and it is completed on an automated system allowing for less human error and 
increased reproducibility. It should be noted that the Kapa Biosystems Library 
Amplifi cation kits can also be used on  Wafergens Apollo 324 system  . The following 
protocol pertains  only   to using Wafergens PrepX Complete ILMN DNA library Kits 
on Wafergens Apollo 324 system.  

12.3.5.5     PCR and Size Selection 

  PCR and further size  selection   is not always necessary. For some applications the 
wide size distribution generated during library prep is suffi cient. If the libraries are 
at least 2 nM concentration, then PCR is unnecessary. If size selection is unneces-
sary start this protocol at step 9. If PCR is necessary, we recommend using Bio-O 
Scientifi cs NEXTfl ex DNA Barcodes and PCR mixture. We recommend 10–15 
cycles of PCR to achieve at least 2 nM concentration. If a tighter size distribution is 
necessary, we recommend further size selection with the BluePippin Prep (Sage 
Science, Inc., Beverly, MA), agarose gels, or E-Gels. Each of these methods vary in 
the amount of input material they can handle, the insert size ranges they can pro-
duce, the time investment needed to complete the protocol, and the price. We prefer 
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the BluePippin Prep due to its ability to produce tighter sized libraries. The protocol 
below applies to the BluePippin Prep only. It is important to remember that we have 
accounted for the approximately 100 bp of adapter length to the library. For instance, 
a 180 bp insert must be thought of as a 280 bp library. Thus, we will size-select for 
100 bp larger than the given insert size to accommodate for the adapters. We recom-
mend the following protocol:

    1.    Choose the appropriate cassette to the given insert size and library size.

    (a)    3 % cassette ranges from 90 to 200 bp.   
   (b)    2 % cassette ranges from 100 to 600 bp.   
   (c)    1.5 % cassette ranges from 250 bp to 1.5 kb.   
   (d)    0.75 % cassette ranges from 1 to 50 kb.       

   2.    Program the Pippin.

    (a)    In the  BluePippin software   go to the Protocol Editor tab.   
   (b)    Click on the Cassette folder that matches the appropriate cassette for the 

given library size.   
   (c)    Select either range or tight and enter in the given base pair range or peak.   
   (d)    Click the use internal standards button.       

   3.    Calibrate the Optics.

    (a)    Place the calibration fi xture in the optical nest, close the lid and hit calibrate.   
   (b)    Continue only if it passes, if it does not pass, try again.       

   4.    Load the Cassette.

    (a)    Inspect the cassette from bubbles, breakage of agarose column, and equal 
buffer levels.   

   (b)    Dislodge any bubbles from the elution chamber.   
   (c)    Place the cassette into the optics nest.   
   (d)    Fill the sample well to the top with buffer.   
   (e)    Remove any buffer from the elution well and fi ll it with 40μL of fresh 

buffer.   
   (f)    Place a seal over the elution wells to keep them from overfl owing during 

the run.   
   (g)    Run a continuity test and continue only if it passes. Try again if it fails.       

   5.    Mix the library and dye.

    (a)    Mix at least 30 μL of library with 10 μL of dye. If there is less than 30 μL 
use nuclease-free water to dilute the libraries to 30 μL.   

   (b)    Vortex the libraries and dye well and spin the mixture down.       

   6.    Load the samples.

    (a)    Remove 40 μL of buffer from the sample well and replace it with the 40 μL 
mixture of sample and dye.   

   (b)    Repeat for each sample.   
   (c)    Close the lid and hit the start button.       
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   7.    The BluePippin will run for 30–56 min depending on the given program.   
   8.    Open the lid, remove the samples from the elution wells and place into a collec-

tion tube.   
   9.    Check the concentration of the samples with a DNA HS assay on the Qubit 

Fluorometer as referenced above.   
   10.    Use the Qubit concentration and estimated library size (100 bp + insert size) to 

calculate the molarity of the sample with the following equation (with  X  = ng/
μL concentration and  Y  = estimated size of fragment in bp): Molarity in nM 

 =[ X /1 × 10 −6 ]/[ Y  × 660].   
   11.    If the estimated molarity is less the 2 nM then proceed to PCR in step 12. If it 

is 2 nM or higher proceed to fi nal library quantifi cation.   
   12.    PCR using Bio-O Scientifi cs NEXTfl ex™ DNA Barcodes and PCR mixture.

    (a)    Mix 7.5 μL of the library, 29.5 μL of nuclease-free water, 12 μL of 
NEXTfl ex PCR master mix, and 2 μL NEXTfl ex Primer Mix in a well of 
a PCR strip tube or plate.   

   (b)    Set a pipette to 50 μL and mix by pipetting up and down ten times.   
   (c)    PCR on a thermocycler under the following settings.

•    2 min at 98 °C  
•   10–15 cycles of: 30 s at 98 °C, 30 s at 65 °C, 60 s at 72 °C  
•   4 min at 72 °C      

   (d)    Add 44 μ L of AMPure XP Beads.   
   (e)    Incubate at room temperature for 15 min. During incubation, prepare an 

80 % ethanol solution.   
   (f)    Place the tubes or plate on the magnetic stand at room temperature for at 

least 5 min, until the liquid appears clear.   
   (g)    Remove and discard the supernatant from each tube. Do not disturb the 

beads.   
   (h)    With the samples still on the magnetic stand, add 200 μ L of freshly pre-

pared 80 % ethanol to each sample, without disturbing the beads.   
   (i)    Incubate at room temperature for at least 30 s while still on the magnetic 

stand, then remove and discard all of the supernatant from each tube. 
Again, do not disturb the beads.   

   (j)    Repeat steps 6 and 7 one more time for a total of two 80 % ethanol washes.   
   (k)    Allow the tubes to air-dry on the magnetic stand at room temperature for 

15 min or until the beads no longer appear wet.   
   (l)    Add 15 μL of nuclease-free water to each tube.   
   (m)    Thoroughly resuspend the beads by gently pipetting ten times.   
   (n)    Incubate the tubes at room temperature for 2 min.   
   (o)    Place the tubes back onto the magnetic stand at room temperature for at 

least 5 min, until the liquid appears clear.   
   (p)    Transfer the clear supernatant from each tube to an appropriate collection 

tube. Leave at least 1 μL of the  supernatan  t behind to avoid carryover of 
magnetic beads.       

   13.    Proceed to Final Library Quantifi cation .    
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12.3.6        Nextera Metagenomic Library Prep 

  For metagenomic library prep of low biomass samples, we recommend using 
Illumina’s  Nextera   DNA kit. It is important that exactly 50 ng of sample is used as 
this protocol is optimized for exactly 50 ng. The sample should be in a 20 μL vol-
ume at a concentration of 2.5 ng/μL. If the sample has 50 ng but is in a volume that 
is larger than 20 μL, a 1.8× ratio of Agencourt Ampure XP Beads can be used to 
bring the sample to the appropriate volume. Please note that all of the abbreviations 
in this protocol refer to abbreviations used to describe reagents in the  Illumina 
Nextera DNA kit  . 

12.3.6.1     Tagmentation of Genomic DNA 

 In this step, the transposome  fr  agments the DNA while adding adapter sequences to 
the ends, allowing it to be amplifi ed by PCR in later steps; our protocol includes a 
5 min incubation at 55 °C.  

12.3.6.2     Cleanup of Tagmented DNA 

 This step is critical because  w  ithout it the Nextera transposome can bind tightly to 
the DNA and will interfere with downstream processing. We recommend using 
 ZymoTM Purifi cation Kit   (ZR-96 D NA clean and Concentrator TM-5) for this 
protocol.  

12.3.6.3     Choice of Barcodes 

 Nextera libraries are dual-indexed, meaning that each sample has two  barcodes   (an 
i7 and i5 index) ligated on opposite adapter/primers. It is important to ensure that no 
two samples in the same pool have the exact same combination of indexes. We rec-
ommend arranging samples in a 96 well plate and to assign each column an i7 index 
and each row an i5 index when working with moderate numbers of samples. 

 When multiplexing, it is also important to choose barcodes for individual sam-
ples that will be color-complementary with the barcodes of other samples in a given 
pool, avoiding mixtures of barcodes with extreme signals in the green and red chan-
nels. Illumina MiSeq and HiSeq instruments use four-color encoding, and bases A 
and C are principally found in the red channel while bases T and G are read out in 
the green channel. For example, if only samples with index 701(TAAGGCGA) and 
704(TCCTGAGC) were in a pool, during the fi rst read of the index the machine 
would only detect samples in the green channel (base T for index 1 and base T for 
index 2). This deprives the machine of the color contrast that it requires to identify 
clusters and issue confi dent base calls. We recommend choosing indexes for  samples 
that allow for at least one base in each channel per pool. For Nextera libraries, it is 
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also important to achieve red-green channel balance for both the i7 and i5 index 
mixtures separately.  

12.3.6.4     PCR Amplifi cation 

 It is critical to use the  full   amount of recommended input DNA at this step to ensure 
libraries that produce high quality sequencing results .   

12.3.7     Final Library Quantifi cation 

 The  molarity and library size   are critical for successful clustering and sequencing. 
Figure  12.3  shows examples of Bioanalyzer scans of completed library types. 
Illumina recommends that completed libraries achieve a molarity of at least 2 nM or 
greater in order to be sequenced with quality results. It is important to remove any 
primer dimers that may be present. Primer-dimers will be visible on a  Bioanalyzer 
electropherogram   between bases 0–100 depending on the length of PCR primers 
you are using. If primer-dimers are present, use a 1× ratio of AMPure XP Beads to 
remove them. To assess the  quality   of the completed library, we recommend the fol-
lowing protocol:

     1.    Use the Qubit Fluorometer to determine the concentration of libraries in ng/
μL. As referenced above.   

   2.    Use the Agilent 2100 Bioanalyzer to determine the library insert size and length, 
as referenced above.   

   3.    Use the concentration from the Qubit and peak base pair size generated by the 
Bioanalyzer to calculate the molarity of the sample with the equation provided 
above.   

   4.    The libraries are considered complete and ready for Illumina sequencing if the 
molarity is 2 nM or greater. 

12.4             Analysis 

12.4.1     Sequence Complexity 

  Nucleic acid  sequences   determined from environmental samples are diffi cult to 
interpret for a variety of reasons, and as a result exploitation of metagenomic shot-
gun data is computationally expensive compared to the study of model organisms. 
Some parts of microbial genomes evolve quickly and make detection of similarity 
technically diffi cult. Many environmental microbes and microbial genes lack close 
relatives in cultured organisms, resulting in large fractions of many environmental 
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  Fig. 12.3    Bioanalyzer traces of complete libraries. Panel  a  shows a TruSeq library with a narrow 
range peaking around 1 kb. Panel  b  shows a TruSeq library with a narrow range peaking around 
360 bp. Panel  c  shows a TruSeq library with a narrow range peaking around 700 bp. Panel  d  shows 
a TruSeq library with a broad range peaking around 450 bp. Panel  e  shows a Nextera library peak-
ing around 1600 bp       
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samples going unannotated. Environmental samples present a formidable inference 
problem of unraveling unknown mixtures of anonymous organisms. When this 
problem has been approached, expectation-maximization has been the algorithmic 
workhorse. Unlike the sequencing of reference organisms, where the complexity of 
the sequence is limited by the genome of the underlying organism, environmental 
samples sometimes show diversity whose limits have not yet been circumscribed by 
observations. This exceedingly high observed sequence diversity makes some data-
sets fail to compress, and exposes the annotation procedure to gigabases of raw data 
for annotation. 

 High-throughput sequencing datasets of typical size (10 8  to 10 11  bp) are too large 
for routine handling by general-purpose desktop and laptop computers. Moreover, 
these datasets are also too large for BLAST.   Faster, presumably less sensitive algo-
rithms are the only choice for searching tens of millions of reads at a time; BLAST 
is affordable only for small numbers of value-added sequences, not raw short-read 
data.   

12.4.2     Open and Closed 

 The analysis of both targeted-gene and shotgun sequencing can proceed according 
to two general approaches, depending on whether inferences about the sequence 
content of the samples depend on the databases used for comparison and interpreta-
tion. These approaches are called closed-reference and open-reference. Open- 
reference approaches are presumably more powerful, but involve unknown 
sample-dependent biases that cause the completeness of the analytical representa-
tion of the sequences to vary. 

 Comparing new sequence data to a database of sequences or sequence signatures 
is called “ closed-reference annotation  .” Closed-reference annotation has the advan-
tages that datasets annotated using the same procedure can be reliably compared 
because the space of possible annotations is limited and can be known in advance. 
Experience has shown that DNA recruitment of environmental samples to the 
genomes of all cultivated organisms often explains low (10–50 %) fractions of the 
dataset, leaving 50–90 % of environmental shotgun sequences without recognizable 
similarity to database sequences. 

  Table 12.2    Input protocols for a S2 Covaris to achieve a peak at a given base pair length                         

 Target modal fragment 
length (bp) 

 150  200  300  400  500  800  1000  1500 

 Duty cycle (%)  10  10  10  10  5  5  5  2 
 Intensity  5  5  4  4  3  3  3  4 
 Cycles per burst  200  200  200  200  200  200  200  200 
 Time (s)  430  180  80  55  80  55  40  15 
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 Constructing sequence hypotheses from the data and performing a database- 
comparison annotation on value-added sequences is called open reference annota-
tion. For targeted gene sequencing, the sequence hypotheses are clusters constructed 
from the observed data; for shotgun sequencing hypotheses are usually the products 
of sequence assembly of the shotgun data. Unlike closed-reference annotation, 
open-reference annotation can discover and describe sequence patterns present in 
the data but not in the database.  Open-reference annotation   is more technically 
tricky and suffers from uncharacterized biases in the sequence construction phase, 
and diffi culty in interpretation of the results. The sequences resulting from assem-
bly, called contigs, are longer and can contain both complete genes and chains of 
genes from the same organism, permitting better resolution when comparing to 
databases and allowing analysis of synteny in metagenomic data. 

 The increased value of the sequences in  open-reference annotation  , however, 
comes with added analytical complexity. The collection of all the assembled contigs 
is always an incomplete summary of the metagenomic dataset, and contigs are not 
of equal importance in light of the sequence data. Contigs vary both in length and in 
depth, and the effects of this heterogeneity, which depends on uncontrolled proper-
ties of the sample and its biological diversity, on analysis are as yet unexplored. 

 The growing nature of the set of reference sequences in open-reference 
(assembly- based) analysis of shotgun metagenomic data means that sequences are 
typically analyzed in batches using defi ned sets of reference sequences, and com-
parisons of sample sets between lots with different sets of references are not 
straightforward.  

12.4.3     Analysis Workfl ow Overview 

 To address artifacts associated with sequencing technology and to improve ultimate 
signal-to-noise, metagenomic  data   are subjected to a number of sequence-level fi l-
ters before assembly or annotation. These preprocessing steps remove uninforma-
tive sequences, correct low-level errors, and discard sequence subsets enriched in 
errors. Removal of known sequence contaminants or positive control spikes is com-
putationally straightforward when the contaminating sequences are known. Samples 
of host-associated microbes may contain varying amounts of host DNA, and the 
varying host content of the samples (or perhaps other host characteristics) repre-
sents an unwanted, potentially confounding signal in the genetic analysis of micro-
bial community composition. Reads are compared to the reference genome with a 
fast read aligner (bwa and bowtie2 are the current state of the art) and reads that 
match are excluded from further analysis. Fecal samples from humans and animals, 
samples of wounds, and plant-associated sampling are all subject to this sort of 
confounding from host-organism contamination. 

 Current sequencing technologies all have platform-specifi c artifi cial sequences 
which are part of the sequencing technology. These include PCR primers, barcodes, 
and linker sequences that are ligated onto the sequences of interest. For some proto-
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cols, these sequences are intended to appear in the output, but in the standard 
Illumina single-end and paired-end protocols, adapter sequences in the sequence 
output are a symptom of poorly executed sequencing library preparation, either bad 
sequence size selection or survival of primer-dimers to the sequencing stage. These 
contaminants can include as few as 30 bp and as much as 150 bp of distinct sequence. 
Removing these “adapter” sequences is not computationally expensive, but there 
are no generally accepted guidelines on how much contamination is acceptable. 
Contamination ranges from minimal, affecting less than 10 −5  of reads in a dataset, 
to as much as half of some sequence datasets; 10 −3  is typical.  Adapter   sequences are 
a bigger problem for assembly than for recruitment or annotation.  

12.4.4     The Human Factor 

 Just as with laboratory  t  echnicians, bioinformatic data processing requires people 
with specialized skills. The bioinformatic handling of any sort of sequencing data 
requires computational competency, including familiarity with transport, storage, 
and format conversion of large data fi les; management of maintainable workfl ows; 
ability to navigate sequence archives for sets of relevant reference sequences; and 
the ability to replicate computational workfl ows described in the literature, which 
requires installing and troubleshooting software. 

 Researchers usually get better results by sharing research goals, hypotheses, and 
prior information with the specialists, both in the wetlab and on the computational 
end. In order to suggest or apply procedures in the wetlab or in the computer lab to 
attenuate unwanted, contaminating DNA or sequences, technicians need to know 
what signals are interesting, and what likely uninformative signals look like. These 
specialists cannot help you if you give them DNA and  sample   numbers and no fur-
ther instructions.   

12.5     Reporting 

  The output from an Illumina  Next   Generation sequencing run is ultimately one or 
more FASTQ fi les (Cock et al.  2010 ). Metagenomes will be analyzed using the 
available online resources (e.g., IMG/M, MGRAST, CAMERA, EBIs Metagenomics 
portal) providing annotation by comparing transcripts to different functional gene 
databases (e.g., using BLAST to assign functions against M5NR, SFams, and 
SEED). For more detailed descriptions of potential functional pipelines and analy-
ses of these data see (Meyer et al.  2008 ; Thomas et al.  2012 ; Wilke et al.  2015 ). 

W.L. Trimble et al.



309

 The results of closed-reference annotation are per-sample “feature vectors” rep-
resenting the number of observations of biological molecules of a given type. The 
number of dimensions of this vector can range from a handful (classifying reads 
merely by estimated domain) to millions (counting each database sequence as a 
distinct potential unit of observation), and in general the number of observable fea-
tures far exceeds the number of samples. 

 Raw shotgun metagenomics datasets range from hundreds of megabytes to hun-
dreds of gigabytes in size. Since 2009, the NCBI’s Sequence Read Archive has 
archived raw data from sequencing runs with mandatory metadata on protocol, sam-
pling, and sequencing. The archive issues accession numbers for individual sam-
ples, individual instrument runs, collections of runs with the same protocol, 
collections of runs with the same purpose but different protocols, and collections of 
sequencing experiments with different samples, and has some features for acces-
sioning analysis products. In addition to the public archives, some annotation ser-
vices (MG-RAST, iMicrobe, and IMG/M) host metagenomic sequence data and 
annotation results and allow making public raw and value-added sequence data. 
NCBI’s Whole Genome Shotgun archive accepts assembled contigs in FASTA for-
mat if suffi cient metadata are provided, and is one option for making contigs avail-
able for later use for comparative study. Some consortia have published their 
value-added data products (for example annotation tables, results from assemblies) 
separately from the public sequence archives. 

 The accession numbers from depositions of the raw read data and of assemblies 
derived from the data must be included and associated with sample names when 
publishing results using metagenomic sequencing .      
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  Table QG12.1     Experimental design   considerations   

 Technique  Platform  Multiplexing  Target depth 

 Metagenomic/meta-
transcriptomic shotgun 

 HiSeq 2000, 
2500 

 4 samples/lane  40 M ~170 bp reads 
(2 × 100) 

 MiSeq  1 sample/fl owcell  15 M ~400 bp reads 
(2 × 250) 

 NextSeq  3 samples/fl owcell  30 M ~250 bp reads 
(2 × 150) 

 Targeted-gene amplicon  MiSeq 
preferred 

 700 samples/
fl owcell 

 >10,000 reads; size 
depends on primers 

 Iontorrent  96 samples/fl owcell  >10,000 reads / sample; 
size depends on primers 

 Design hints on matching 
samples to platforms 

  Table that comprises relevant experimental design parameters, to carefully consider before apply-
ing this methodology  

  Table QG12.2    Available  software recommendations     

 Software  Method  Language/platform 
 Input 
format 

 HUMAnN  tblast  Independent  fastq 
 CAMERA/RAMMCAP  Clustering + similarity  Independent 

(454-size data) 
 fastq 

 MG-RAST  Clustering + similarity  Online; API  fastq 
 EBI metagenomics portal  Similarity  Online  fastq 
 IMG-M  Similarity  Online  contig fasta 
 RAST  Genome guided similarity  Online; API  contig fasta 

  Table displaying a selection of the recommended software available for the computational analysis 
of data yielded by this technique. Pipelines for functional analysis of shotgun data. Because of the 
high computational burden relative to known- genome similarity searching, most general-purpose 
analysis seems to go through online portals. Note that none of the existing pipelines automate 
sequence assembly  
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    Chapter 13   
 A Hitchhiker’s Guide to Metatranscriptomics                     

       Mariana     Peimbert     and     Luis     David     Alcaraz    

13.1           Transcriptomics, Metatranscriptomics, and Bacterial 
RNA Complications 

 Transcriptomics is defi ned as the complete set of RNA molecules produced in a cell 
(Güell et al.  2011 ). Metatranscriptomics is the assessment of environmental gene 
expression, be it in a population or a whole community. The rapid advance in 
sequencing technologies has allowed to rapidly increase the environmental genom-
ics related works. At the beginning of the Next Generation Sequencing (NGS) about 
some 10 years ago from now, most of the works were only able to describe micro-
bial taxonomic diversity by means of  amplicon sequencing   (16S/18S rRNA 
sequences), and then the introduction of 454 pyrosequencing led to multiple groups 
start working with  Whole Genome Shotgun (WGS)   metagenomics. Although the 
work was merely descriptive at the beginning of  WGS   metagenomics, it threw light 
on both taxonomic and functional diversity of the studied environments. Within the 
functional diversity, metagenomics is only describing the potential outcome, but to 
test the functional profi le of a microbial community further methodologies for the 
expression (metatranscriptomics), and translation (metaproteomics) are required. 
The race for cheaper sequencing is still going on, and there is no such thing as a 
universal and unique best solution platform in the market but there are several tech-
nologies leading the competition like is the case for Illumina ® , and several 
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newcomers are still on its way with promising technologies like nanopores, and 
solid state based solutions. 

 The challenge of describing genome wide expression has been done historically 
by means of microarray chips, and they have the advantage of describing overall 
gene expression, but previous knowledge about the genomic sequence of the organ-
ism is mandatory. A previous NGS technique, to describe microbe’s transcripts, is 
 expressed sequence tags   (ESTs); the current transcriptome sequencing strategies are 
just an up-scaling of ESTs. While microarrays have been proved as an effective tool 
for describing the expression profi les for model organisms, they are not still a major 
player in metatranscriptomics. The cause of the microarrays relegated role in meta-
transcriptomics is that for complex environments with high diversity there would be 
the need to sequence the metagenome, then select representative gene clusters, and 
print them into the microarray, making it expensive and laborious. Although it 
would be possible to design environmental microarrays looking for some particular 
genes (pathogenesis, virulence, etc.) or particular species, this would be limited 
when comparing to current RNA-seq approaches (Westermann et al.  2012 ). 

 The main advantage of current  NGS   metatranscriptome is that is possible to 
associate gene expression patterns of even unknown genes, thus showing light that 
the unknown gene is transcribed under a particular condition. Hence, metatranscrip-
tomics aids to identify novel genes related with environmental functions, with no 
necessary previous knowledge about any particular gene present in the sample (so 
no probe or primer design needed). The main drawback of environmental NGS 
metatranscriptomics is that most, some times >95 %, of the environmental RNA 
isolated under any situation corresponds to ribosomal RNA (rRNA), and the pro-
karyotes do not have a polyA track in the 3′ end of mRNA which is central for the 
transcriptome sequencing of eukaryotes, because it allows to start reverse transcrip-
tion from the terminal polyA track and consequently the cDNA is almost exclu-
sively formed by mRNAs (Sorek and Cossart  2010 ). Although rRNA is useful to 
determine community structure and having by PCR an unbiased picture of the active 
taxonomic diversity out there (by identifying, and annotating 16S rRNA fragments), 
when trying to defi ne the community functional profi le, getting rid of rRNA could 
be a challenge. However, with the current NGS technologies, it is feasible to think 
of having less than 5 % of mRNAs in the total sample, and still have thousands of 
cDNAs to tell a story about, but nevertheless cleaning the  rRNA   is required. 

 There has been an active  development   for technologies trying to enrich the 
amount of total mRNA and they could be divided in the following four main strate-
gies: (1) Ribosomal RNA capture (rRNA hybridization), (2) 5–3′ exonuclease 
degrading processed RNAs, (3) adding polyA to mRNAs by means of polyA poly-
merase (from  Escherichia coli ), and (4) antibody capture of mRNAs interacting 
with selected proteins (Sorek and Cossart  2010 ). The polyA and antibody capture 
methods are highly biased, thus not recommended. The cDNAs enrichment is a 
major issue when designing the overall strategy and experiments. 

 A crucial factor in transcriptomics is whether you have a reference genome 
sequence to map the transcripts against or you will be performing de novo transcript 
assembly. It is the same situation with metatranscriptomics, if you have or not a 
reference metagenome obtained at the very same time to map against. The major 
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advantage of having a  reference metagenome   is that you can see if there is corre-
spondence between raw gene abundance, and its expression levels. There are plenty 
of options to map NGS sequencing data against references like BWA, bowtie, and 
tophat (Langmead et al.  2009 ; Li and Durbin  2009 ), and at the end of the day you 
could build count tables with each transcript abundance, and mapping Single 
Nucleotide Polymorphisms (SNPs) for each of the transcripts. If you are just inter-
esting to sequence the metatranscriptome without metagenomic reference you 
should assemble the reads fi rst using some NGS assemblers like SOAPdenovo, 
Velvet, Celera, and then perform ORF prediction with some tool like Glimmer, or 
Metagenemark (see Table QG13.2). 

 Up to date there are plenty of resources to address a metatranscriptome study. 
This work intention is to give an overall view of the metatranscriptomics process, 
experiments and analysis, and put the spotlight in the plenty of guides, tutorials and 
resources that have been systematically ordered for this purpose. Methodologically, 
the metatranscriptome uses the very same techniques and analytical tools as is sin-
gle species precursor, the transcriptome.  

13.2     Get to Know the Basics on Transcription Before Going 
Further 

 Previous work on systematizing the huge amount of information related to  RNA- 
seq experiments   in microorganisms has been done, and we strongly recommend to 
check out the biological and technical information before getting into the experi-
mental design. A great starting point for understanding our current knowledge about 
bacteria transcription could be assessed in two excellent reviews the fi rst by Sorek 
and Cossart  2010 , and then read the review by Güell and collaborators ( 2011 ), both 
works on Nature Reviews Microbiology. Some previous protocols on metatran-
scriptomics are available as well (Gilbert and Hughes  2011 ), though thinking on a 
virtually retired technology (454 pyrosequencing), but all principles are still valid. 
The literature recommendations are based on fi rst have a general outlook of what 
we know about bacteria gene regulation and how this is being enriched by transcrip-
tomics. We also recommend to check some of the works to see the fi nal publication 
output of metatranscriptomics, and how this is reported (Benítez-Páez et al.  2014 ; 
Frias-Lopez et al.  2008 ; Gilbert et al.  2008 ; Gosalbes et al.  2011 ; Hewson et al. 
 2009 ; Franzosa et al.  2014 ).  

13.3     Experimental Design 

  If you want to try metatranscriptomics, the fi rst thing would be choosing what kind 
of  experimental   approach is correct to your needs, and budget. Basically, there are 
two great fi rst approaches to it, a qualitative or quantitative (Fig.  13.1 ).
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   For metatranscriptomics using RNAseq, the qualitative approach is highly valu-
able, because even the high amount of rRNA obtained, this could be used to describe 
community structure and describe the metabolically active members of it. The data-
bases with 16S rRNA are still the best repositories for bacteria taxonomic diversity 
out there, and even though it may not be possible to perform the tasks done with 
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  Fig. 13.1    The overall metatranscriptome process. Here are shown the main steps from the initial 
stages of a metatranscriptome study, in the  central  part are the mandatory steps. In the  left  part of 
the schema are shown in  grey  some of the optional steps. On the  right , the main questions to 
address in order to perform a successful workfl ow       
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PCR microbiome amplicons like multiple alignments, and diversity metrics derived 
from them (like Unifrac, Phylogenetic Distance methods, etc.), it is possible to iden-
tify by homology each of the sequenced reads, and use some tools like the RDP 
classifi er or Greengenes to classify the overall active bacteria diversity (Lozupone 
et al.  2011 ; Cole et al.  2009 ; Schloss  2010 ; DeSantis et al.  2006 ). The rRNA clas-
sifi cation for a metatranscriptome has the additional advantages of not biasing the 
diversity due to primer election, and PCR amplifi cation effects. Moreover, the 
expected 5 % of mRNA helps to identify expressed genes in the community, some 
of the genes are going to have known homologs in the databases and they will be 
annotated accordingly but for the orphan genes (with no homologs in DBs) we will 
have information about them being expressed under the tested situation, something 
not into reach with metagenomes and so the importance of knowing previously the 
tested variables and the metadata that will be available for future comparisons. 

 The quantitative approach is the most used when doing transcriptomes on single 
organisms. This is because this approach allows us to detect signifi cant differences 
between the overall gene expression in contrasting situations. Single organism tran-
scriptomes in several contrasting experimental conditions had been proved to be a 
powerful tool when looking for Differential Gene Expression (DGEs). The success 
of getting DGEs depends on several factors like the number of conditions tested 
(biotic, abiotic), the number of biological replicas, sequencing coverage, read 
length. The sequencing coverage and read length could be easily planned if there is 
a reference genome. If there is no such thing like a reference genome one rule would 
be to dedicate equal sequence coverage for each of the replicas (i.e., if using Illumina 
HiSeq 2500 ®  dedicate a single sequencing lane to each replica). 

 If you are planning to conduct a metatranscriptome it would help a lot if you have 
some preliminary data on helping you to answer the basic how many sequences do 
I need? This could be the result of pilot studies on 16S rRNA amplicon diversity, a 
previous metagenome, or even diversity estimates from related systems of what you 
are currently studying. There are several tools aiding with the design and replica 
number in RNA-seq experiments, like EDDA (Experimental Design in Differential 
Abundance analysis) which is available like an R’s Bioconductor package (EDDA), 
or as a web server (Luo, et al.  2014 ). Within EDDA you can upload some pilot data 
you might have and test about the experimental design. The key questions are: How 
many replicates should I use? How much sequencing depth? Is the experimental 
design helping out to capture biological variation? 

 One rule of the thumb would be to use the same number of replicas for each 
condition tested and a minimum number of two replicates per condition to gain 
insight into the biological variance. Thus, considering one treatment and one con-
trol groups would be the simplest, and most widely used experimental design (See 
Table QG13.1). If you are trying a nested experimental design the number of 
 replicates would increase dramatically but this is out of the reach of this chapter, 
please refer to experimental design guides, a good starting point for this was pro-
vided by Knight and collaborators  ( 2012 ).  
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13.4     What Sequencing Platform Is the Best 
for Metatranscriptomics? 

 This is the most frequent question for most of researchers entering into the meta- 
omics world. There is no easy answer for this, as expected. The main trade-off 
would be between the overall cost, the read length, and the sequencing depth of 
each platform. The current major used platform is Illumina ®     due to its overall 
cost- benefi t, though it has several possible confi gurations (MiSEQ, HiSEQ, etc.), 
the major platform used not that long ago was 454, and now is practically retired 
from metatranscriptomics, the message here is that the market is still far from 
being stable and new players are coming all days into it. The actual major players 
are: Illumina’s HiSeq (X, 3000/4000, NexSeq, High-Output), and MiSeq, Life 
Technologies (PGM, Proton), Pacifi c Biosciences (RS), and the former 454. The 
sequence read length spans from 50 bp (Illumina) to 1.5 kb (PacBio), and the cost 
per Mb goes from USD$ 0.06 (Illumina) to USD$8.72 (454), and the output yield 
goes from ~40 Mb (PacBio) to ~300 Gb (Illumina). There are some recent works 
that show that in overall the gene expression profi les are similar across platforms 
and the main differences are the costs for detecting splice variants (Li et al.  2014 ). 
But keep in mind that the price is rather limiting but not the only variable to con-
sider, please take into account the quality of the data, the support for the available 
technology (aligners, assemblers) and compare the options offered by different 
providers, there are some places like   http://allseq.com     and   https://genohub.com     
where you can quote multiple providers all at once. Also keep in mind that you 
can mix two strategies, i.e., Illumina’s deep coverage mixed with PacBio long 
reads to aid in the assembly process. The main questions are: How many samples 
do you want to sequence? What is your desired read length? How many reads do 
you need per sample? How much money do you have?  

13.5     Sequencing Depth or the Number of Aligned Reads 
Required for a Reliable Analysis 

  A bacterial genome  is   considered complete when it has an 8× coverage depth. For 
an average 5 Mb genome it would be necessary to sequence at least 40 Mb to have 
that amount of coverage. When talking about a metatranscriptome in the ideal sce-
nario one would have previous data about the studied system, like the species abun-
dance with 16S rRNA amplicon sequencing. Lets say that a given environment 
hosts 700 species and assuming a 5 Mb genome per species one would need at least 
28 Gb of sequencing to have an 8× coverage depth. This is assuming some unreal-
istic situations like having equal abundances for each species and genes, and that 
they are all the same genome size. This is not an easy task, but with Illumina’s deep 
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sequencing it is expected to generate up to 300 Gb of sequencing that would be 
equivalent to a 85× coverage for each species of this hypothetical scenario, and 
considering that not every gene is always being expressed we can have an ultra-deep 
coverage of the metatranscriptome that can even be multiplexed. 

 Most of the meta-omics analysis are highly biased to over-represented features, 
even of ultra deep sequencing we cannot be certain that we are not recovering rare 
species, or genes because of the sequencing effort. The rule of the thumb for 
sequencing depth is to be equitable for each condition and replicate tested .  

13.6     General Considerations for Wet-Lab 

 When working with RNA is important to pay close attention to cleanliness of the 
bench working area, equipment and reagents. All living cells and all cell types pro-
duce intracellular and extracellular RNases. RNases are essential for the regulation 
of gene expression and are an important part of the immune system; that is the rea-
son why there are several types of these enzymes, some of which are very resistant 
to inactivation treatments. Some RNases have several disulfi de bridges so even after 
frozen or denatured they can be reactivated. RNase contamination main sources are 
the skin, saliva, hair, perspiration, clothing, fungi, bacteria, mites, plant, or any liv-
ing cell (Sambrook and Russell  2012 ). This is why you should always take the fol-
lowing  precautions  :

    1.    Always wear gloves.   
   2.    Change gloves frequently. Every time you touch the phone, the handle of the 

fridge, your face, skin, etc. you should change gloves.   
   3.    Wear clean gown. The lab coat protects the experiment from dust on the 

clothes.   
   4.    Use RNase-free tips and tubes. Providers indicate when their products meet this 

quality criterion. Bags and boxes must remain closed otherwise they are no 
longer RNase-free.   

   5.    Work in a specifi c clean area with low traffi c and free from air currents.   
   6.    Use RNase-free reagents. We recommend using commercial kits, and reagents 

designed to work with RNA. Remember, tubes and bottles must be handled 
with gloves and must be closed as long as possible.   

   7.    Clean every material to be used in a way that is free of RNase (see Sect.  13.6.1 ). 
 Some labs still take extra precautions such as:   

   8.    Use fi lter tips to avoid aerosols that could contaminate the sample.   
   9.    Have a unique set of pipettes to work with RNA.   
   10.    Aliquot reagents to reduce handling.   
   11.    Use an RNase-free fumehood or cabinet.   
   12.    Have a  clean   room equipped.    
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13.6.1       Treatments for RNase Cleaning 

  Contrary to common sense the autoclave does not inactivate all RNases. 
 All the water in contact with the RNA must be free of RNase. The most com-

monly used protocol for this is treatment with DEPC (diethyl pyrocarbonate)   . DEPC 
covalently modifi es the secondary  amines   inactivating RNases permanently. 
However, it also modifi es RNA so it must be destroyed before use. For this treat-
ment, a 0.1 % DEPC solution is prepared and incubated for 12 h at 37 °C. Then, the 
solution is autoclaved for 15 min for DEPC degradation. Buffers and other reagents 
with amines (Tris, MOPS) should not be incubated with DEPC. To prepare these 
buffers water is fi rst treated and then reagents are dissolved. 

 All nondisposable material should be treated. Glassware should be washed and 
baked at 240 °C for 4–16 h. Another protocol is to dip the glassware in water with 
0.1 % DEPC for 12 h at 37 °C and then autoclaved for 15 min to remove DEPC. It 
is important to wrap with foil glassware before putting it in the oven or autoclave. It 
is also recommended to have a clean area for all reagents and materials to be used. 

 Electrophoresis tank must also be treated; it should be washed with detergent, 
rinsed with RNase-free water, and fi nally rinsed with ethanol. 

 Some companies sell DEPC alternatives that do not require autoclave. RNase 
inhibitors are commercially available, inhibitors are high affi nity proteins specifi c 
for RNase type A. RNase inhibitors are expensive, and it is recommended only to 
preserve the purifi ed sample .  

13.6.2     RNA Purifi cation 

 Using commercial kits is recommended, mainly because they ensure that the solu-
tions are RNase-free. Please pay attention to the amount of sample that is recom-
mended by the supplier as excess can result in very low effi ciencies.  RNA 
purifi cation   is divided into the next steps: sampling, RNA stabilization, cell lysis, 
RNA isolation and treatment with DNAse I. Here we describe various protocols for 
each of these steps.  

13.6.3     Sampling 

 The samples should  be   acquired quickly and aseptically. The sample should be pro-
cessed immediately or snap-frozen. Generally, samples are frozen directly on the 
fi eld in either liquid nitrogen, or dry ice/acetone to stop metabolism without damag-
ing cell structures, however when samples are thawed RNases will be active. When 
planning your sampling you should anticipate how to stabilize RNA because usu-
ally this is done before freezing (see below).  
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13.6.4     Stabilization 

 As previously mentioned, all  cel  ls have intracellular RNase, the mRNA in bacteria 
generally have a few minutes life span so RNA can be degraded while purifi ed. 
Moreover, transport and purifi cation can induce the synthesis of new mRNA chang-
ing expression profi les. Several reagents may serve to inactivate endogenous RNase. 
The simplest is to add to the sample a 1:10 solution of 5 % phenol in ethanol. 
Another option is to start with the isolation process before freezing adding guani-
dinium thiocyanate–phenol–chloroform solution, commercially known as TRIzol ® , 
Qiazol ® , or TRi ® . One of the most popular stabilizers is RNAlater ®  containing 
EDTA, sodium citrate, and ammonium sulfate, it is used for all cell types and has 
been tested in bacteria. RNAprotect ®  is a stabilizer designed for bacteria; this works 
for gram-negative and -positive bacteria.  

13.6.5     Cell Wall Lysis 

 The three most popular methods to lyse the cell wall are: mechanical disruption 
(bead beater), enzymatic lysis (lysozyme or lysostaphin) and  proteinase   K diges-
tion. In axenic cultures lysate effi ciency is important for the total amount of RNA 
but when it comes to communities, lysis will also affect RNA distribution, as some 
bacteria are more sensitive to some treatments. If the aim is a qualitative study, it 
probably is best to mix all methods of lysis, to obtain as many as possible RNA, but 
if you want to make a quantitative study, you would better use a mechanical method 
that can lyse all bacterial types and is the most reproducible one. 

 When working with soil communities is important to consider the contamination 
with humic acids, as they inhibit further PCR reactions. PowerSoil ®  kit is specially 
designed to deal with humic acids. If you do not have access to the kit, we recom-
mend washing the cells several times with phosphate buffer and follow a purifi ca-
tion protocol with CTAB.  

13.6.6     DNase I Treatment 

 RNA samples often have trace contamination of genomic DNA, so the fi nal step is 
to treat the samples with DNAse I, and its subsequent inactivation. DNAse  I   can 
interfere with the following steps, if not inactivated. Once again RNA can be puri-
fi ed by extraction and precipitation or by silica columns. The RNeasy ®  kit allow 
using DNAse when the RNA is bound to the column, which prevents the second 
purifi cation. 

 To prevent freezing and thawing we  suggest   to aliquot pure RNA samples.  Store 
samples at  − 80  ° C before and after purifi cation .  
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13.6.7     RNA Quality Determination 

 There are three factors to  consi  der in determining the quality of a RNA sample: 
concentration, purity, and integrity. These three factors are important in deciding 
whether to continue the experiment or if repurifi cation are necessary. We always 
advise to perform an UV absorbance spectrum (220–350 nm), NanoDrop ®  instru-
ment allows to measure small volumes from 1 μL; absorbance at 260 nm indicates 
the concentration of nucleic acids, absorbance at 280 nm allows to estimate the 
protein concentration; while 230 nm absorbance indicates the presence of humic 
acids salts or compounds that were used for purifi cation. The disadvantage of this 
method is that it cannot determine if the RNA is degraded and this not either distin-
guishes DNA contaminations. It is generally considered good quality samples when 
the 260/280 ratio is greater than 1.8 and the 260/230 ratio is greater than 1.7. If the 
sample is not pure, the concentration may be overestimate as contaminants also 
absorb at this wavelength (Fig.  13.2 ). Fluorescent dyes detect lower RNA concen-
trations, and these only emit in the presence of nucleic acids, so RNA concentration 
is more reliable. Fluorescent dyes, generally, do not discriminate between different 
nucleic acids and this technique cannot determine the purity and integrity of the 
sample. The agarose gel electrophoresis allows knowing RNA integrity; the crite-
rion for determining that the RNA is intact is to observe 23S and 16S rRNA bands 
in a 1.8:1 ratio. The presence of genomic DNA can be identifi ed in agarose gel 
because its size is much greater than 23S, but it do not allow us to estimate other 
kinds of contamination. One of its great advantages is that it is an inexpensive 
method that can be done in most laboratories; nevertheless, it is a qualitative method. 
 The   2100-Bioanalyzer ®  is a quantitative method that uses cartridges ready to use for 
capillary electrophoresis. This equipment generates electropherograms and includes 
software that integrates the peaks to determine the RNA integrity number (RIN; Fig. 
 13.2 ). The big disadvantage of Bioanalyzer equipment and cartridges is their price, 
this method also allows to determine sample concentration.

13.6.8        Enrichment of mRNA 

 One of the most complicated steps in studying bacterial transcriptomes and meta-
transcriptomes is mRNA enrichment; in eukaryotes the problem is trivial by the 
presence of the polyA tail. The two most popular strategies to enrich the  mRNA   are 
rRNA hybridization, and degradation of processed RNA. rRNA hybridization is 
based on magnetic microbeads and oligo mixtures which hybridize with 16S and 
23S (MICROBExpress™, and Ribo-Zero™). The hybridization method is the most 
popular because RNA integrity is not required. This approach is sequence specifi c 
and does not eliminate all bacteria rRNA, for example those from high GC content. 
Another limitation is that oligos can also hybridize with some mRNA. Degradation 
of processed RNA requires a 5′ monophosphate exonuclease for the removal of 
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rRNA (mRNA-Only™). Most mRNAs carry 5′-end triphosphates therefore are not 
degraded. 5′ monophosphate may be created by pyrophosphatase or endonuclease 
cuts. The advantage of this method is that sample diversity does not interfere; how-
ever, it requires very pure RNA as exonuclease is susceptible to inhibition by impu-
rities; this also requires high RNA integrity (RIN > 8) otherwise exonuclease 
degrades both rRNA and mRNA (Fig.  13.3 ).

   There are other strategies that enable deeper sequencing such as immunoprecipi-
tations or duplex-specifi c nuclease digestion (DSN), these type of approaches only 
makes sense for specifi c experiments since strong bias is introduced. If your interest 
is to work with small RNA, these can be purifi ed from an agarose gel. Specifi c bio-
tinylated primers can be designed to eliminate other sequences, whether rRNA 
which are not recognized by hybridization kits or some other dominant messenger 
in the sample (Li et al.  2013 ). 

 Transcriptomic analyses are based on cDNA synthesis so the polarity (5′–3′) 
information is lost. The polarity of the transcripts can give important information 
for antisense RNA and novel transcripts identifi cation. If your interest is to know the 
polarity, there are protocols that incorporate dUTP in the synthesis of the second 
strand, allowing subsequent removal by uracil-DNA-Glycosylase (UDG) treatment 
(Parkhomchuk et al.  2009 ). 

 The rapid development of sequencing technologies, and larger sequencing yields 
soon will make possible that rRNA would only need to be fi ltered in silico.  
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  Fig. 13.2    Assessing RNA quality. ( a ) NanoDrop ® ’s absorbance UV spectrums, in the  left  plot 
an ideal sample with Pure RNA is shown, in the  middle  and  right  plots possible contaminations 
are shown. ( b ) Bioanalyzer ®  electropherogram profi les showing in the  left  plot the best case 
scenario with pure RNA, in the  middle  a plot of a partially degraded sample, and in the  right  a 
shred sample       
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  Fig. 13.3    The metatranscriptomics library preparation process. The main two strategies for 
mRNA enrichment are shown, fi rst using rRNA separation by means of hybridization with 16S and 
23S rRNA probes, and the second one is a depletion of rRNAs by means of a 5′-exonuclease. Then, 
fi rst strand of cDNA is synthesized by means of reverse transcriptase using random hexamers. 
Second strand of cDNA is synthesized by a DNA polymerase. Finally, sequencing adapters need 
to be attached to the cDNA strands, and this could be done either by PCR or by ligation       
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13.6.9     Library Preparation 

 Regardless of sequencing platform  tha  t will be used, the general idea is the same: to 
produce cDNA of a certain size (50–400 bp) that is fl anked by adapters. So library 
preparation requires fragmenting the RNA, fi rst strand synthesis, second strand syn-
thesis, coupling adapters, and validating the library. Sequence service providers can 
perform the library preparation. 

 cDNA should be of a certain size to optimize sequencing, depending on the 
platform is the size fragments must be. Fragmentation can be done with enzymes, 
metals, heat or sonication. Incubation times for fragmentation must be optimized 
for each case, as the integrity of each sample is usually different. 

 The synthesis of the fi rst cDNA strand is performed by a reverse transcriptase 
and generally random hexamer primers are used. The synthesis of the second strand 
of DNA is done with a DNA polymerase. In this case, primers with guanines at 3′ 
are generally used since reverse transcriptase leaves a polyC overhang (Fig.  13.3 ). 

 Sequencing adapters include a region for binding to platform support and 
a region for primer hybridization. Additionally, they can include a barcode 
that serves to identify the sample if several samples are mixed in the same run 
(multiplexing). Depending on the used adapter kit is how many samples can be 
multiplexed. Illumina allows sequencing of the complementary strand, which 
allows for longer reads (pair-end). The adapters can be attached by a PCR or ligation 
reaction (Fig.  13.3 ). 

 Currently the most widely used platform is Illumina for which there are kits like 
TruSeq ®  and SMARTer ® . The superiority of the former is that it allows multiplexing 
up to 96 samples while SMARTer ®  allows only 16 samples. The advantage of the 
latter is that you can start with 1 ng of enriched RNA whereas TruSeq ®  requires at 
least 100 ng (Alberti et al.  2014 ). 

 The last step is to validate the library. DNA concentration and size can be deter-
mined by the 2100-Bioanalyzer ®  coupled to a DNA chip like Agilent DNA 1000. 
We recommend contacting your sequencing provider, they have proven experience 
doing NGS on a daily basis, and they can assist you in fi ne-tuning the details about 
your samples. Sometimes your providers would even suggest some new sequencing 
platforms you have not noticed yet with  high  er yields at lower costs.   

13.7     Bioinformatic Analyses 

 The metatranscriptome analysis involves a conceptual and technical challenge when 
dealing with huge amounts of multivariate information. There is an intermediate 
level of computing knowledge required to be able to deal with this data, and we 
want to provide some basic steps previous to metatranscriptome analysis that should 
be fulfi lled if you do not have bioinformatics experience, the overall bioinformatic 
analysis  process   is summarized in Fig.  13.4 .
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   First basic steps:

    1.    Use the terminal (Linux, UNIX, Mac OS) or if you are running on Windows, 
immediately switch to Linux and learn how to use it. Use Ubuntu as it is the most 
supported Linux out there. And then, look for a Linux command line interface 
tutorial. Completing this exercise is highly recommended (see Table QG13.2).   

   2.    Download your brand new transcriptome fi les from your provider FTP or pro-
vided URL. The fi le is normally a FASTQ, which is a text that contains both the 

Filtering reads (QC an rRNA)
Download libraries.
De-multiplex (split sequences by its barcode).
Remove sequencing adapters.
Sequence trimming by quality.
Remove rRNA.

Sharing
Upload raw FASTQ files to SRA (NCBI).
Upload annotated dataset to MG-RAST.

Statistical analysis
Build and transforma the matrix.
Establish samples similarity: heatmaps, PCA and rlog/log2
Analyse differential expression: heatmaps, Volcano graphs.
Determine p-value.
Give meaning to the data.

Annotation

Aligning reads to a reference
Map with Bowite2 or BWA.
Count occurrence.

De novo assembly
Assemble with Velvet, 
SOAPdenovo or Trinity
Cluster results.

Annotate with: BLAST, KASS (Kegg), or M5NR (MG-RAST).

  Fig. 13.4    The metatranscriptomics bioinformatic overall process. The main steps are: Filtering 
reads, choosing between aligning to reference sequences and performing de novo assembly, anno-
tation, statistical analysis, and uploading the raw, assembled, and annotated data sets to the appro-
priate repositories       
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sequence read and the base calling, encoded in ASCII characters (non directly 
human readable). Use any web browser, the web browser negotiates different 
transfer protocols (FTP, HTTP) in a Graphic User Interface (GUI), or you could 
automate this with Linux/UNIX’s commands like wget, rsync, curl, and ftp.   

   3.    Unzip and manipulate the fi les only on the terminal, this means in the Command 
Line Interface (CLI, also known as terminal). If you are using your mouse and 
clicking the fi les to open/unzip them, you will be out of your computer resources 
pretty soon.   

   4.    Install the compilers (transforms source code to an executable), this is mandatory 
to install software from source, on Ubuntu’s terminal type:     

  $sudo apt-get install build-essential  
 For  Mac OSX google  : “Install the Command Line C Compilers in OS X” and 

follow the instructions.

    5.    Download your fi rst program (fastx_toolkit, see Table QG13.2), and follow the 
install instructions.   

   6.    Install R (see Table QG13.2).   
   7.    Install Bioconductor (see Table QG13.2).   
   8.    If you manage to do all the above tasks you are ready to install, and run almost 

any existent tools on Linux/UNIX.       

  If you do not want to improve your CLI skills, there are Graphical User Interfaces 
(GUIs) designed to cope with most of the sequence fi les processing like the Galaxy 
Server (see Table QG13.2). If you manage to do a local installation, you are doing 
it right. This is for the basic processing of the data, QC fi ltering, and trimming. 
Also, this is manageable by most of modern personal computers. 

 The overall process could be divided in the following stages: (1) Quality Control 
(QC), (2) Mapping against reference sequences, (3) de novo assembly, (4) annota-
tion, (5) statistical analysis, (6) sharing your results. Each stage is described with 
useful hints at every step: 

13.7.1     Sequences Quality Control 

     1.    Split the libraries into individual fi les, this is also known as de-multiplexing, if 
you are using barcodes to mix several  sample  s in a single run. Here the samples 
are split based on its barcode sequence.   

   2.    Remove sequencing adapters. Removing this sequences that were used as tem-
plates for the sequencing is important and could help to further steps of mapping 
or assembly.   

   3.    Quality Control, sequence trimming (and grooming). Each sequenced base has 
its own quality value, which is known as Phred score. Phred score serves as a 
proxy probability calculator, a Phred value of 30 accounts for 1 error every 1000 
bases, or a 99.9 % of accuracy. This is a good standard to make a cut-off. Visualize 
the overall quality of your sequences via boxplots.   
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   4.    Filter rRNA. A quick way to do this step can be done with an rRNA DB and 
MegaBLAST (Altschul et al.  1997 ). There are other strategies using Interpolated 
Markov Models like Infernal and SSU-align and will help at this stage (Nawrocki 
et al.  2009 ; Nawrocki  2009 ).     

 The fast_toolx is a relatively easy way to perform the QC steps, plot qualities, 
and manipulate FASTA/FASTQ fi les. If command line is not an option, you should 
try the Galaxy servers to perform de-multiplexing, trimming adapters, and quality 
control (NGS QC and manipulation). The trade-off between working on the cloud 
or locally is the speed and fi ne tweaking of the pipelines, which are better controlled 
in our own computers. There are plenty of  tutori  als helping beginners to become 
familiar with Galaxy (see Table QG13.2; Kosakovsky et al.  2009 ).  

13.7.2     Mapping Against Reference Sequences 

     1.    Mapping against the reference metagenome/genomes. Use short read aligners. If 
there is no reference sequence(s), go to Sect.  13.7.3 .     

 Here the standard options for short read mapping are Bowtie2 (Langmead et al. 
 2009 ), and BWA (Li and Durbin  2009 ). All of the mentioned programs are freely 
available online to be installed in CLI. There is also a cloud option provided by 
Galaxy under NGS Mapping. You should provide reference sequences, index the 
references if you are running this locally, and your metatranscriptome fastq fi les. 
After the alignment, you need to take the SAM/BAM resulting fi le and count 
the occurrence of each gene model (if available). The counting of each gene could 
be accomplished with R. R is a computer language intended for statistical comput-
ing and graphics, and the main recommended tool for downstream analysis 
(R Development Core Team  2004 ). For this purpose, use the libraries Rsamtools, 
summarizeOverlaps, and featureCounts of BioConductor (Huber et al.  2015 ).  

13.7.3      De Novo Assembly 

     1.     De novo assembly of m  etatranscriptome. This step applies if you do not have a 
reference, or you can do this step with the reads that were not aligned to it.     

 You can perform de novo assembly if you do not have reference sequences, keep 
in mind that the most frequent limiting factor during assembly is the amount of 
RAM memory of your computer. The amount of time required for assembly could 
last from minutes to days depending on the amount of sequences, and its complexity 
(repeats, SNPs, transcript forms, etc.). The most frequent choices are Velvet 
(Zerbino and Birney  2008 ), SOAPdenovo (Li et al.  2009 ), and Trinity (Grabherr 
et al.  2011 ). There is no clear better option when talking about assembly, you can 
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try each one of them and can cluster the overall results at the end (with CD-HIT-est; 
Huang et al.  2010 ). All the mentioned programs are freely available online ready to 
be installed in your CLI. Trinity, has a cloud Galaxy based service that you could 
give a try (see Table QG13.2), this is recommended if you do not have enough com-
putational resources locally.  

13.7.4     Annotation 

     1.     Annotate each transcript. If you have a metagenomic/genomic dataset already 
annotated, the coordinates could help you. Otherwise search by homology must 
be done. If there are no homolog sequences, you can try to use some RNA struc-
tural tools.     

 For the  annotation  , a hierarchical schema is suggested. If you know the species 
you are comparing and there are available annotated genome sequences for them, 
you could perform BLAST searches directly to them (Altschul et al.  1997 ). Then, 
for the sequences without homologs, go up to the next hierarchy a bacterial DB (see 
Table QG13.2). If there are still not homologs, try the largest DB, the NCBI’s NR 
(see Table QG13.2). This could be tricky if you do not have the computational 
resources or the skills to perform it. Don’t panic, there are some other cloud-based 
solutions like the KAAS, which is the KEGG’s Automatic Annotation Server, where 
you can upload your assembled transcripts and annotate them, this is the most fast 
annotation tool that we are aware of (Moriya et al.  2007 ). 

 The other main web-server solution is MG-RAST, which has the most elegant 
DB design which is named M5NR (Wilke et al.  2012 ). M5NR merges information 
from plenty of Databases in a nonredundant way like the annotation ontologies 
COG, SEED, eggNOG, KEGG, UniProt, IMG, Patric, RefSeq, SwissProt, TrEMBL, 
GO, and the NCBI’s NR (Tatusov et al.  2000 ; Overbeek et al.  2014 ; Powell et al. 
 2014 ; Kanehisa and Goto  2000 ; UniProt Consortium  2008 ; Markowitz et al.  2008 ; 
Wattam et al.  2014 ; Pruitt et al.  2005 ; The Gene Ontology Consortium  2014 ), all 
this information is accessible through the metagenomics analysis server (MG-RAST; 
Glass and Meyer  2012 ). This is the source to have the most cost-effective annotation 
pipeline for a regular wet-lab, though you will not learn any bioinformatic skill with 
this. The MG-RAST accepts uploads of FASTQ or regular FASTA fi les but be 
aware that you will need to upload some experiment metadata, the data remains 
private until you ask the MG-RAST system to release it to the public, so it also 
serves as a sequence repository. 

 If no homolog is present in your DB, you could use some tools like tRNA-SCAN 
(Lowe and Eddy  1997 ), and RNAFold (Denman  1993 ) to fi nd out if there is a chance 
to classify your sequences by its secondary structure (i.e., hairpins, loops). The 
structural look at your data is demanding in computational and human resources to 
inspect the results. This approach could be useful if you are looking for particular 
class or regulatory elements (sRNAs, riboswitches). An excellent overview on 
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annotation that should be reviewed, to understand the complexity of using multiple 
evidences to annotate, was done by  Yandell and Ence ( 2012 ).  

13.7.5     Statistical Analysis 

     1.     Build a count matrix. This could be done by counting the mapped reads or to 
cluster the sequences of all the experimental conditions by its  i  dentity and count 
the number of occurrences in each sample/experiment. This step is required for 
parsing the annotation data to the Data Analysis pipeline. If you have processed 
your datasets on MG-RAST there is an option to export the whole dataset in 
BIOM format (  http://biom-format.org/    ). The BIOM format is an acceptable 
input to R. There are ways to switch from BIOM to plain tabulator separated fi le 
with biom-convert tools. If you do not feel like using BIOM matrix, you could 
build a “table” where each row represents each individual gene and each column 
accounts for each sample/replica, save the fi le in plain text would work fi ne for 
R’s input. In R, be sure to read the data as matrix.   

   2.    Transform your matrix. There are several methods to accomplish this, one is the 
regularized-logarithm transformation (rlog), when measuring distances and sam-
ple similarities, and other normalizations like DESeq, which uses a negative 
binomial distribution, are preferred for differential expression. The log 2 and 
regularized logarithm transformation, also known as r-log, are the usual choice. 
This works to normalize your data between experiments, samples, and replicas, 
diminishing the importance and dependence of mean values. To perform this we 
recommend to use the R’s Bioconductor package DESeq2 and its function 
RNAseqGene (Love et al.  2014 ).   

   3.    Assess sample/treatment similarity, using heatmaps, Principal Component 
Analysis and calculating the distance on the r log/log 2 transformed data. With 
the transformed matrix, we can now describe the dissimilarity between samples/
replicates/experiments by means of clustering analysis. The preferred option is 
to use heatmaps and Principal Component Analysis (or whatever ordination 
method you feel comfortable with). For this purpose we recommend to use the 
packages heatmap.2 and the function plotPCA, part of DESeq2 package.   

   4.    Perform the differential expression analysis. In this point, you need to calculate 
the log 2 fold changes between your treatments (control vs. experiment). Here 
you will have to calculate the mean, log 2 fold change, its standard error, and test 
the null hypothesis that there is no change between treatments on each gene and, 
thus, reported as a  p -value. For this step of the process, you could employ plenty 
of available tools some of the most used ones are: edgeR, DESeq, baySeq, 
NOISeq, and Cuffdiff (Trapnell et al.  2013 ; Tarazona et al.  2011 ; Hardcastle and 
Kelly  2010 ; Anders and Huber  2010 ; Robinson et al.  2010 ). The differences 
between the tools are based on what tests and assumptions they are based upon: 
Fisher’s, negative binomial, parametric or nonparametric methods.   
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   5.    The  p -value of RNA-seq is not what you are used to. You need to perform mul-
tiple testing correction, to calculate the amount of false discovery rate (FDR), or 
in other words the amount of false positives, and then assess the signifi cance of 
the adjusted  p -value. Remember that this is to answer how much of false posi-
tives could be accepted. There are multiple tools to calculate FDR and corrected 
 p -values like metagenomeSeq which is available as part of Bioconductor and a 
standalone webserver (metastats), thus just working for pairwise control and 
experiment comparisons. This can also be done with DESeq2 package and its 
 p -adjusted ( p -adj) values.   

   6.    Visualize the amount of signifi cant differentially expressed genes. You can do 
this by means of Volcano plots, and heatmaps. If you are running a pairwise 
comparison, one way to accomplish this is by means of Volcano plots (log 2 fold 
changes versus signifi cance), or an  MA  plot ( M  = log ratios,  A  = average). This is 
done also by R’s Bioconductor.   

   7.    Connect the most abundant features with its annotation. To this purpose is 
extremely helpful to use an ontology. An ontology is a controlled dictionary 
about gene functions, organized in hierarchical way like: SEED, COG, GO, 
KO. After determining the overall signifi cant differentially expressed genes, 
usually they are coded with an identifi er to reduce the amount of data loaded into 
R. A new table with the DE-genes and its annotations is extremely useful. To 
build that table the use or relational databases (MySQL, PostgreSQL) makes this 
an easy task.   

   8.    Make sense of the known and annotated genes to direct new working hypothesis 
about their gene expression under the tested circumstances. The whole dataset of 
signifi cant genes derived from the previous steps could be divided into two main 
groups: genes with known functions, and genes with unknown functions. Most 
of the functional analysis will focus on the known annotated genes, and it is the 
easier part of the dataset to explain but most probably a large amount of the data 
from your metatranscriptome will be transcripts of unknown function and thus 
are suitable candidates to design further experiments to discover their function 
(mutants, heterologous expression, etc.). An expressed gene is better than a total 
hypothetical predicted gene. For the genes with a known function, a process of 
data mining will be necessary to get the most about the functions and processes 
involving their participation. There are several starting points for gene function 
data mining like the Protein Data Bank, UniProt, Pfam, InterPro, EcoCyc, 
STRING, and KEGG (Berman  2000 ; Finn et al.  2008 ; Karp et al.  2002 ; 
Szklarczyk et al.  2011 ; Kanehisa and Goto  2000 ; Hunter et al.  2012 ). The main 
advantages of using those starting points is to gain insights about the current 
knowledge of the proteins and access to the overall information like if there are 
any available crystal structures, the phylogenetic distribution, known and pre-
dicted interactions. The main resource to integrate the information would be 
spending hours searching PubMed for related literature, and connecting it on 
new associations something that not machine, for the moment, could not do bet-
ter than our brains .      
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13.7.6     Sharing Your Results 

     1.    Upload your RNA-seq experiments to appropriate databases and repositories. To 
upload your datasets the main repository is NCBI’s Short Read Archive ( SRA  ) 
where you need to register your project and then upload your raw FASTQ fi les 
to it. To upload your assemblies there is the Transcriptome Shotgun Assembly 
Sequence DB (see Table QG13.2). The suggested way to share the annotated 
dataset is through the MG-RAST server, this also assures you to have up-to-date 
annotations, and it becomes available to be compared with other publicly avail-
able datasets.       

13.8     Final Remarks 

 Metatranscriptomics as its relative metagenomics is attracting newcomers from 
multiple disciplines. The potential outcome to study both the environmental genome 
and its expression under certain conditions is a promising tool to describe the taxo-
nomic and functional diversity out there. There is a hype about the meta-omics 
everywhere now, and everyone is trying to sequence; this is great and opens new 
opportunities to learn from a myriad of scientifi c perspectives. We just want to rec-
ommend to be cautious before getting into the omics fashion trend, and be aware 
that you need some prerequisites before getting into the adventure: a well- established 
and -equipped molecular biology laboratory, some computational hardware, and the 
most valuable asset of trained people on both experimental and analytical aspects. 
Take your time to plan the experimental design before getting started; do not be part 
of a growing disappointed crowd that ventures without any experimental design/
controls and thus not able to get trustworthy biological meaningful data, or people 
with large experimental background but lacking the required analytical skills to 
tackle millions of multivariate data. Recognize your strengths and weaknesses, and 
go for successful collaborations; welcome to and good luck in the vibrant meta- 
omics road.     
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     Annex: Quick Reference Guide 

   

DNA purification

Metagenomics

Complete genomes

Annotation

Statistical analysis

Sharing

Aligning reads
to a reference

Filtering reads

de novo assembly

automatic or manual?

which references
are there?

how many samples?
qualitative or quantitative?

how to stabilize RNA?

how to enrich mRNA?

which plataform?RNAseq

Library preparation

RNA purification

Experimental Design

   

 Fig. QG13.1    Representation of the wet-lab procedure workfl ow  
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Filtering reads (QC and rRNA)
Download libraries.
De-multiplex (split sequences by its barcode).
Remove sequencing adapters.
Sequence trimming by quality.
Remove rRNA.

Aligning reads to a reference
Map with Bowite2 or BWA.
Count occurrence.

Assemble with Velvet,
SOAPdenovo or Trinity
Cluster results.

De novo assembly

Annoteate with: BLAST, KASS (Kegg), or M5NR (MG-RAST).
Annotation

Statistical analysis

Sharing

Build and transform the matrix.
Establish samples similarity: heatmaps, PCA and rlog/log .
Analyse differential expression: heatmaps, Volcano graphs.
Determine p-value.
Give meaning to the data.

Upload raw FASTQ files to SRA (NCBI).
Upload annotated dataset to MG-RAST.    

 Fig. QG13.2    Main steps of the computational analysis pipeline  
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    Chapter 14   
 Eukaryotic Single-Cell mRNA Sequencing                     

       Kenneth     J.     Livak     

14.1           Introduction 

 Single-cell sequencing of the transcriptome and genome is entering the scientifi c 
mainstream after years when cost and technical obstacles made it a mere vision in 
the eyes of researchers in the fi eld. Driving the change are new systems for the 
rapid, effi cient processing of large numbers of individual cells, improved methods 
for amplifying genetic material, and the emergence of reliable high-throughput 
sequencing instruments. 

 Designating single-cell sequencing its Method of the Year in early 2014, Nature 
Methods said the choice marked a “turning point in the widespread adoption” of 
these techniques. The ability to examine DNA and RNA at single-cell resolution is 
already yielding major advances in a wide range of critical areas including the 
examination of clonal structures of tumors, the unbiased identifi cation and charac-
terization of distinct cell types, the decoding of transcriptomes of rare cells such as 
circulating tumor cells, the revelation of  broad genetic diversity   in neurons and 
other somatic cells, analysis of genomes of uncultivable microbes, and improve-
ment of preimplantation screening of human embryos. 
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 The advances are part of a growing recognition of the extent of cellular hetero-
geneity. The wave of new data from single-cell research is unveiling cell-to-cell 
differences in genetic makeup, and to an even larger degree in gene expression, that 
had been invisible to standard bulk-cell analytic methods. This is because  bulk 
methods   yield results averaging all cells in a population or tissue sample. 
Examination of these differences and their causes and outcomes is leading to further 
revelations about cell function, cell states, cell type, and cell signaling and 
interaction. 

 This chapter reviews the most prevalent methods for obtaining mRNA sequence 
information from eukaryotic cells. The following chapter covers single-cell DNA 
sequencing. The steps in mRNA sequencing are: cell isolation, cell lysis, synthesis 
of cDNA using reverse transcriptase, initial amplifi cation, fragmentation, attach-
ment of sequencing adaptors and optional barcodes, library amplifi cation, sequenc-
ing, initial processing of data, and analysis of quantitative results. These steps are 
discussed in more detail below. 

 This chapter has a limited scope: it focuses on single-cell mRNA sequencing 
from mammalian cells. Furthermore, much of the mRNA sequencing work has used 
cells in suspension, with studies on cells from tissue just beginning to emerge. 
Single-cell libraries can be prepared using adaptors for any sequencing platform; in 
practice, though, the vast majority of single-cell mRNA Seq publications have used 
Illumina-based sequencing. For this reason, this chapter focuses on preparing librar-
ies for the Illumina ®  platforms.  

14.2     Cell Isolation Methods 

 Four main methods are available for isolating cells for single-cell sequencing—
micromanipulation, laser-capture microdissection (LCM), fl uorescence-activated 
cell sorting (FACS), and microfl uidic systems. Only the last two methods can pro-
vide the high throughput needed for the large sample numbers required to reliably 
refl ect a cell population’s heterogeneity. Here we discuss the features, strengths, and 
limitations of the four methods. 

14.2.1     Micromanipulation 

  Micromanipulation   is a common choice because of the ease of use and low equip-
ment cost of the mainly manual process. Because it relies on observation  with   a 
microscope, it allows visual inspection of each cell. This enables focusing on just 
the cells of interest, but is also subject to human error. Limited throughput can be 
addressed by using devices that add a degree of automation and allow handling of 
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up to 100 cells an hour (Choi et al.  2010 ). Optical tweezers employing laser technology 
enable measurement as well as manipulation of individual cells (Zhang and Liu 
 2008 ). Finally, patch pipettes can be used to draw RNA from individual cells but 
may fail to capture all of the desired material.  

14.2.2     Laser-Capture Microdissection 

    Laser-capture  microdi   ssection   (Frumkin et al.  2008 ), in which cells are cut away 
from sections of tissue  w  ith the assistance of high-resolution microscopy, is the only 
one of these four methods that retains spatial location information and thus allows 
more detailed analysis of how the cell relates to its microenvironment. But it requires 
skilled manual operation, and the process of fi rst slicing the tissue with a laser and 
then extracting the target material may result in unintentional capture of adjacent 
material or failure to capture all of the target cell (Espina et al.  2006 ). Some extrac-
tion methods involve heat or adhesive material, which may compromise genetic 
sample integrity. With these challenges as well as limited throughput, LCM is a 
lesser-used option.     

14.2.3     Fluorescence-Activated Cell Sorting 

 Fluorescence-activated cell sorting ( FACS  )    is distinguished by the choice it provides 
between untargeted and targeted sampling. In untargeted capture, cells can be 
counted and measured by the scattering of laser light projected at them, then sorted 
as single cells into 96- or 384-well plates. In targeted capture, specifi c cell types are 
tagged with fl uorescent probes and sorted based on the presence or absence of the 
specifi c markers. Targeted capture  ena  bles focusing sequencing costs on just the cell 
type (or types) of interest, as long as the cell type can be identifi ed using cell- surface 
markers. Though it provides automated and high-throughput sorting (Dalerba et al. 
 2011 ), FACS relies on a high number of cells in suspension, and samples are later 
processed in multiple-well plates, incurring costs associated with both reagent vol-
umes and the manual labor or robotics needed for well plate workfl ow. The advan-
tage of accommodating high cell numbers is that a large number of single cells (up 
to thousands) can be collected in a few hours. This is valuable when an important 
sample is available only during a limited time window. Furthermore, these single-
cell samples are stored at −80 °C, permitting processing and sequencing of a small 
batch of single cells and having the remaining samples as an archive that can be used 
if the preliminary results indicate more cells should be analyzed. Dependence on 
high cell number limits one of the key benefi ts of single-cell sequencing, analysis of 
rare cells. Finally, cells may be damaged by high fl ow rate in the instrument.  

14 Eukaryotic Single-Cell mRNA Sequencing



346

14.2.4     Microfl uidic Devices 

  Microfl uidic devices   use liquid fl ow-through, micrometer-scale channels to isolate 
and capture cells. Unlike other methods, these systems incorporate reagent handling 
and enable execution of up to thousands of discrete reactions at a time in nanoliter 
chambers on a single  instrumen  t. These features combine very high throughput and 
high precision in reaction control, and have been shown to have correspondingly 
positive effects on accuracy and reliability. By increasing the effective concentra-
tion of rare samples, nanoliter-scale processing can also improve sensitivity. The 
precision and automation of microfl uidic processing have been extended in recent 
years to additional workfl ow steps, now including culturing, lysing, amplifi cation, 
and downstream analysis (Wang et al.  2012 ; White et al.  2011 ; Landry et al.  2013 ; 
Kellogg et al.  2014 ). The PDMS (polydimethylsiloxane) technology used in these 
publications is also the basis for the commercial C1™ system (Fluidigm,   https://
www.fl uidigm.com/products/c1-system    ). The effi ciencies of these systems can 
drastically reduce costs related to the reagent quantities, personnel, and time needed 
to perform experiments. 

 Whether by detaching cells from substrate material and surrounding cells or 
starting with cells in culture, cell isolation by defi nition occurs outside a natural 
microenvironment and may involve trauma, bringing inevitable and potentially sub-
stantial changes both to the transcriptomic material and to the laboratory results it 
yields. Studying, limiting, and accounting for these effects remains a central chal-
lenge in design of experiment and the handling of sample cells.   

14.3     Cell Lysis 

  One advantage of working with the RNA from a single cell is that generally the 
RNA does not have to be purifi ed. The volume of a single cell is on the  pic  oliter 
scale. Even at the nanoliter scale used in microfl uidics, the dilution factor is great 
enough that enzymatic reactions can be performed directly in the cell lysate. Each 
of the methods in Table  14.1  includes a lysis protocol, and there are many more in 
the literature. Commercially available lysis solutions include CelluLyser™ (TATAA 
Biocenter), RealTime ready™ Cell Lysis (Roche Diagnostics), and Single Cell- 
to- CT™ (Life Technologies). Han et al. ( 2014 ) describe a procedure for evaluating 
the effi ciency of lysis. Cells are stained with a live cell cytosolic dye such as Calcein 
AM (Life Technologies). Then, under the microscope, the effects of different lysis 
agents are observed to see if the cells lyse and the dye is completely dispersed. It is 
important to check the effi cacy of lysis because some types of cells will lyse with 
just water and others require harsher treatment (Ståhlberg et al.  2011 ).

   A simple lysis solution to start with is 0.5 % NP-40, 50 mM Tris-HCl, pH 8.4, 1 
mM EDTA. This provides a pH that is optimal for reverse transcriptase, and the 
NP-40 does not inhibit reverse transcriptase. Inclusion of a brief incubation (1–2 
min) at 65–70 °C is suffi cient to lyse many mammalian cells. If harsher lysis is 
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required, this solution can be supplemented with 30 μg/mL proteinase K and incu-
bation at 50 °C for 30 min followed by 70 °C for 1 min. In this case, the proteinase 
K inhibitor AAPF (Cat. No. 539470, EMD Millipore) is included in the reverse 
transcriptase reaction at a concentration of 0.33 mM. Bengtsson et al. ( 2008 ) 
describe lysis with an even stronger agent, 0.5 M guanidine thiocyanate, but this 
requires a tenfold dilution to avoid inhibiting reverse transcriptase .  

14.4     Library Preparation 

 Table  14.1  lists many of the single-cell mRNA Seq methods that have been pub-
lished in the last few years. Figure QG14.1 in the Annex provides a fl owchart of the 
wet lab workfl ow for the most widely used options. All methods to date use oligo 
dT priming to synthesize the fi rst strand of cDNA. This has the benefi t of greatly 
reducing the contribution of ribosomal RNA to the libraries but focuses the analysis 
on just mRNA. These methods can be distinguished by a number of 
characteristics. 

14.4.1     Whole Transcript Versus End-Tag 

 In terms of content, the most important distinction is whether the method analyzes 
the whole transcript or is an end-tagging method. Whole transcript analysis is more 
comprehensive because it provides information about splice variants, the presence 
of mutations throughout the transcript, and the occurrence of transcripts that cross 
translocation or inversion breakpoints. In end-tagging methods, the library consists 

             Table 14.1    Single-cell mRNA sequencing methods   

 Shorthand  Reference  Commercial kit 
 Library 
content 

 Initial 
amplifi cation 

 Attachment 
of 5′ adaptor 

 Tang  Tang et al. 
( 2009 ) 

 Whole 
transcript 

 PCR  TdT addition 
of As 

 STRT  Islam et al. 
( 2012 ,  2014 ) 

 5′ end  PCR  Template 
switch 

 CEL-Seq  Hashimshony 
et al. ( 2012 ) 

 MessageAmp™ 
II aRNA 
Amplifi cation Kit 

 3′ end  IVT  Ligation to 
3′ end of 
aRNA 

 SMART- 
Seq 

 Ramsköld et al. 
( 2012 ) 

 SMARTer ®  
original and v3 

 Whole 
transcript 

 PCR  Template 
switch 

 Quartz- Seq  Sasagawa et al. 
( 2013 ) 

 Whole 
transcript 

 PCR  TdT addition 
of As 

 Smart- Seq2  Picelli et al. 
( 2013 ,  2014 ) 

 Whole 
transcript 

 PCR  Template 
switch 

 SCRB- Seq  Soumillon et al. 
( 2014 ) 

 3′ end  PCR  Template 
switch 
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of fragments derived only from the 5′ end or only from the 3′    end of transcripts. 
Thus, each transcript contributes only one fragment to the library prior to amplifi ca-
tion of the library. This simplifi es quantifi cation of RNA expression because the 
number of reads per gene can be more directly related to a count of the number of 
transcripts than with whole transcript methods. Because end-tagging methods result 
in the counting of the number of transcripts, they are sometimes referred to as digi-
tal transcript quantifi cation or digital gene expression analysis. Although end- 
tagging methods do not provide information about the full-length transcript, there 
are advantages in the accuracy of quantifi cation and workfl ow that are detailed 
below. The fi rst decision to make in embarking on a single-cell mRNA Seq project 
is whether to use a whole transcript or end-tagging method. If the purpose of the 
study is to quantify RNA expression, then end-tagging methods are preferred. If it 
is important to detect and analyze splice variants and/or mutations, then a whole 
transcript method needs to be used. 

 Regardless of which route is chosen, it is prudent to include spike-in controls. 
The generally accepted control is the External RNA Controls Consortium (ERCC) 
mRNA spike-ins (Cat. No. 4456740, Life Technologies). Jiang et al. ( 2011 ) provide 
guidelines on the use of these spike-ins, and most of the methods in Table  14.1  
describe how they are incorporated into each particular protocol. It is important to 
add the spike-ins as part of the cell lysis mix so that the reverse transcriptase and 
subsequent processing steps are identical for the cell RNA and the control RNA.  

14.4.2     PCR Versus In Vitro Transcription 

   Adding adaptors for    PCR   . Because the amount of RNA in a single cell is so small 
(on the order of 10 pg total RNA per cell), single-cell libraries need to be amplifi ed 
in order to generate enough template for sequencing. The next classifi cation made 
in Table  14.1  is whether the initial amplifi cation is performed using PCR or in vitro 
transcription (IVT). PCR has been the predominant method used, but PCR requires 
that adaptor sequences are appended to both ends of double-stranded (ds) 
cDNA. Using a primer for fi rst-strand cDNA synthesis that has sequences added 5′ 
to the oligo dT segment enables adding an adaptor sequence to one end of the 
cDNA. This end will be called the 3′ end because it corresponds to the 3′ end of the 
original mRNA. The harder task is attaching an adaptor sequence to the 5′ end of 
the ds cDNA. The fi rst single-cell mRNA Seq publication (Tang et al.  2009 ) accom-
plished this by using terminal transferase to add dAs to the 3′ end of the fi rst- strand 
cDNA. This enabled using an oligo dT primer to synthesize the second- strand 
cDNA. Again, by appending sequences 5′ to the oligo dT segment, an adaptor 
sequence can be placed on the 5′ end of the ds cDNA as well. Although this works 
to some extent, this method requires multiple steps in order to generate cDNA mol-
ecules with adaptor sequences at both ends . 

  Template switch . This process is simplifi ed by making use of the  template switch   
mechanism in the initial reverse transcriptase reaction (Zhu et al.  2001 ). In template 
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switch, the reverse transcriptase reaction not only contains an oligo dT primer for 
the initial priming of cDNA but also a template switch oligo with appropriate adap-
tor sequences. The template switch oligo is designed to hybridize to the 3′ end of the 
newly synthesized cDNA strand. When this occurs, reverse transcriptase can use the 
template switch oligo as a template and extend the fi rst-strand cDNA to include the 
complement of the adaptor sequence in the template switch oligo. Template switch 
is very convenient because it enables adding adaptor sequences to both ends of 
cDNA in a single reverse transcriptase reaction. PCR primers that hybridize to the 
adaptor sequences on each end of the cDNA are then used to achieve the initial 
amplifi cation of the cDNA library by PCR. Because of the convenience of adding 
adaptor sequences to both ends of cDNA in a single reaction, template switch has 
predominated in single-cell mRNA Seq publications. 

  In vitro transcription . CEL-Seq differs from the other methods in Table  14.1  
because it uses  in vitro transcription   for the initial amplifi cation of the cDNA library 
rather than PCR. CEL-Seq still uses an oligo dT primer with adaptor sequences for 
fi rst-strand cDNA, but in this case the T7 promoter sequence is added to the 5′ end 
of the oligo dT primer. The use of the T7 promoter means that adaptor sequences 
only need to be added to the 3′ end of ds cDNA before the initial amplifi cation is 
performed. After conventional second-strand cDNA synthesis, T7 RNA polymerase 
is used to make multiple RNA copies (termed aRNA) of the cDNA. These aRNA 
molecules are complementary to the original mRNA  mo  lecules. The 5′ ends of 
these aRNA molecules have adaptor sequences from the oligo dT primer. Adaptor 
sequences are added to the 3′ end of aRNA in a subsequent step of library 
construction. 

  IVT amplifi cation is a li  near process, as opposed to the exponential amplifi cation 
of PCR. This means that the amplifi cation factor is much smaller (a few hundred 
copies per original cDNA molecule as opposed to up to a million copies for PCR), 
but the opportunities for amplifi cation bias are reduced. The exponential nature of 
PCR has the potential to generate extreme bias, although when properly optimized 
the actual occurrence of bias is greatly reduced (Devonshire et al.  2011 ). Still, there 
are those who feel safer using the linear process of IVT than the exponential process 
of PCR. For single-cell mRNA Seq, this argument has become moot with the advent 
of unique molecular identifi ers (UMIs, see below).  

14.4.3     Completion of Library Construction 

 After the initial amplifi cation, the steps to complete library  construction   are the 
same as for conventional RNA Seq. For methods with PCR as the initial amplifi -
cation, these steps are fragmentation, attachment of adaptors with optional bar-
codes, and PCR to append the P5 and P7 tags required for immobilization and 
amplifi cation in the Illumina fl ow cells. The most convenient method for perform-
ing these tasks is to use the Nextera ®  XT DNA Sample Preparation Kit and Index 
Kit (Illumina). It is also possible to use the more conventional route of 
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fragmentation by sonication or enzymatic treatment, end repair, A-tailing, liga-
tion of Illumina sequencing adaptor, and PCR. For the IVT-based method, the 
library completion steps are optional fragmentation, ligation of an adaptor to the 
3′ end of the aRNA, reverse transcriptase reaction to generate DNA, and PCR to 
append the P5 and P7 tags. 

 Each of the methods in Table  14.1  has a particular protocol that is followed for 
library completion. At this point, though, it is possible to substitute alternative pro-
tocols. To be clear, for single-cell mRNA Seq, it is critical to follow one of the 
methods in Table  14.1  through the initial amplifi cation step. After initial amplifi ca-
tion, there is leeway in how to  comp  lete library construction.  

14.4.4     Sample Barcodes 

  For single-cell mRNA Seq, it is desirable to use sample  barcodes   so that libraries 
from multiple single cells can be pooled before adding to an Illumina fl ow cell. This 
reduces the overall sequencing cost of a project by amortizing the cost of running an 
Illumina sequencing lane over many single-cell samples. This is especially true now 
that it has been demonstrated that as few as 50,000 reads per cell are suffi cient to 
distinguish different cell types (Pollen et al.  2014 ). For whole transcript methods, 
sample barcodes are generally added after fragmentation. This means that single- 
cell libraries have to be processed as individual samples through the steps of reverse 
transcriptase generation of cDNA, initial amplifi cation, fragmentation, and attach-
ment of adaptors with sample barcodes. For end-tagging methods, sample barcodes 
can be attached to one end of the cDNA during the reverse transcriptase step. This 
has a great benefi t in terms of workfl ow because it means that at any point after the 
reverse transcriptase step, multiple samples can be pooled and any subsequent pro-
cessing is performed on a single sample. Typically, 96 different barcodes are used, 
enabling pooling of 96 single-cell libraries. This requires synthesis of 96 different 
oligos, each with a unique sample barcode. For 5′-end-tagging, this would be 96 
different template switch oligos. For 3′-end-tagging, this would be 96 different 
oligo dT oligos. As these oligos are expensive to synthesize, this is an upfront 
expense that needs to be considered. If it is anticipated that thousands of single cells 
will eventually be analyzed, the oligo cost per single cell is minimal. 

 The capacity for pooling single-cell libraries can be increased by attaching sam-
ple barcodes to both ends of the ds cDNA to be sequenced. Consider the example of 
3′-end-tagging performed with 96 different oligo dT primers, each with a unique 
sample barcode. This places a sample barcode at the 3′ end of ds cDNA and enables 
pooling 96 single-cell libraries at any point after the reverse transcriptase step. After 
fragmentation, the adaptor attached to the 5′ end of the ds cDNA can also have a 
barcode. If adaptors with eight different barcodes are used, then eight pools of 96 
samples can be pooled after the adaptor attachment step. This enables sequencing 
8 × 96 = 768 single-cell libraries on one lane of an Illumina sequencer. This dual 
barcoding is what is used in the Nextera XT DNA Sample Preparation Kit for tag-
mentation, and is termed dual-indexing by Illumina.   
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14.4.5     Unique Molecular Identifi ers (UMIs) 

 Kivioja et al. ( 2012 )   describe the process of counting the absolute number of mol-
ecules using unique molecular identifi ers (UMIs). It is simplest to think of a  UMI   
as a random sequence label (generally N 4  to N 10 ) attached to a molecule to be 
sequenced prior to any amplifi cation step. For conventional RNA Seq, quantifi ca-
tion is inferred from the total number of reads that map to each particular transcript. 
With UMIs, quantifi cation is done by counting the number of unique  UMIs   observed 
for each particular transcript regardless of how many times each UMI is read. For 
the whole transcript methods in Table  14.1 , fragmentation to sequencing-sized 
pieces occurs after the initial amplifi cation. This precludes using UMIs with any of 
these methods. Thus, for the methods in Table  14.1 , the use of UMIs is restricted to 
5′-end-tagging and 3′-end-tagging methods. For 5′-end-tagging, the UMI is incor-
porated into the template switch oligo. For 3′-end-tagging, the UMI is incorporated 
into the oligo dT primer. 

 The concept of UMIs was introduced by Hug and Schuler ( 2003 ), who referred 
to them as tag sequences. In addition to Kivioja et al. ( 2012 ), Shiroguchi et al. 
( 2012 ), Islam et al. ( 2014 ), and Fu et al. ( 2014 ) describe how to apply UMIs to RNA 
Seq. Shiroguchi et al. ( 2012 ) carefully designed 20 nt (nucleotide) UMIs to mini-
mize miscategorization due to sequencing errors, avoid secondary structure, elimi-
nate signifi cant overlap or complementarity with each other or with primer and 
adaptor sequences, and avoid sequence motifs known to be problematic for sequenc-
ing chemistries. Islam et al. ( 2014 ), on the other hand, used a 5 nt random sequence 
UMI. The marginal benefi t of the careful design is offset by the fact that it uses 20 
bases of sequencing capacity to read the UMI. Thus, the use of a random-nucleotide 
UMI is indicated. For very abundant transcripts, there is some chance that the same 
UMI sequence will be used more than once. This effect can be corrected for based 
on probability calculations, but it does introduce some error into the quantifi cation 
of very abundant transcripts. In terms of the number of random nucleotides to use 
for the UMI, N 5  should be adequate for most mammalian cells. For larger cells, 
which would be expected to have a greater number of total transcripts, the use of N 6  
or N 7  might be prudent.    

14.4.6     Identifi ers and End-Tagging 

 The use of sample barcodes and UMIs provides advantages for  end-tagging meth-
ods   compared to whole transcript methods. For sample barcodes, the advantage is in 
terms of workfl ow. Pooling 96 single-cell samples after the reverse transcriptase 
step means that all subsequent steps are done on a single sample, reducing sample 
handling complexity, labor, and the cost of reagents. The whole transcript methods 
add sample barcodes at a much later step, and thus much of the library processing 
 ste  ps must be done on individual single-cell samples. For UMIs, the advantage is in 
terms of the accuracy of quantifi cation. UMIs are introduced during the reverse 
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transcriptase step before any amplifi cation of the cDNA library. By basing quantifi -
cation on counting the number of unique UMIs per transcript, the possibility that 
amplifi cation bias might distort quantifi cation is greatly reduced. Thus, the tradeoff 
between end-tagging and whole transcript methods is better quantitative informa-
tion versus information about the structure and sequence of the entire transcript.   

14.5     Sequencing 

 One of the surprises in comparing bulk mRNA Seq to single-cell mRNA Seq is that 
read depth per cell does not need to be particularly high. There are two reasons for 
this. The fi rst stems from the nature of eukaryotic transcription. A growing body of 
evidence accumulated over the last 10 years indicates  eukaryotic transcription   
occurs in bursts or pulses (e.g., Dar et al.  2012 ). Consequently, single-cell RNA 
expression data is inherently noisy. The correlation coeffi cient comparing transcript 
levels for two seemingly identical cells can be on the order of 0.6. Only by averag-
ing data from multiple cells is it possible to achieve correlations with bulk data 
above 0.9. The variability in sampling due to shallow read depth is insignifi cant 
compared to the variability between single cells. The way to address this noise is to 
obtain data from many single cells (on the order of hundreds to thousands). Thus, 
funds spent on sequencing are better used to obtain data from a larger number of 
single cells than to sequence any particular cell to great depth. The need to process 
a large number of cells is also why high-throughput methods are so critical for 
single- cell mRNA Seq analysis. 

 The second reason is empirical. Two studies (Jaitin et al.  2014 ; Pollen et al.  2014 ) 
have shown that as few as 50,000 reads per cell are suffi cient to distinguish distinct 
cell types. This is true even for closely related neural cell types (Pollen et al  2014 ). 
This fi nding seems to be independent of the mRNA Seq protocol, as Jaitin et al. 
( 2014 ) used an end-tagging method and Pollen et al. ( 2014 ) used a whole transcript 
method. Because many studies involve more than just distinguishing cell types, 
sequencing at depths greater than 50,000 reads per cell is usually warranted. A prac-
tical guide is to pool 96 single-cell libraries and analyze on a single lane of a  HiSeq ®   . 
This should generate on the order of one million to two million reads per cell. If 
50,000 reads per cell are suffi cient for a study, then an end-tagging method with dual 
barcodes can be used to combine multiple 96-cell pools. For example, 20 pools can 
be generated that have one of 96 sample barcodes introduced in the reverse tran-
scriptase step. If 20 distinct barcodes are added to the other end of the library frag-
ments, then all 20 pools can be combined to generate data from 1920 (20 × 96) cells 
on a single lane of a HiSeq with a read depth of 50,000–100,000 reads per cell. 

 Table QG14.1 in the Annex summarizes the experimental design options for the 
most widely used methods in Table  14.1 . For  whole transcript methods  , typically 
paired-end reads at 50 nt per read are performed. Depending on how sample bar-
codes are incorporated into the libraries, one or two index reads may also be 
required. For STRT as published, single-end reads of 50 nt and an index read of 8 nt 
were used. For CEL-Seq and SCRB-Seq, paired-end reads are used but the read 
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length is not equally divided between the two reads. Both of these methods incorpo-
rate the initial sample barcode and the UMI into the oligo dT primer to be in line 
with read 1 (i.e., not as an index read). Read 1 is used to read the sample barcode 
and UMI but then stopped because the subsequent bases are the Ts of the oligo dT 
segment. Thus, the length of read 1 is determined by the length of the sample bar-
code plus the length of the UMI. If dual barcodes are being used, then there is an 
index read. Finally, the remainder of the reads is used for read 2. The published 
account of  SCRB-Seq   used 17 cycles on read 1 to decode the sample barcode and 
UMI, an 8-cycle index read to decode the second barcode, and a 34-cycle read 2 to 
sequence the cDNA. This is possible because the Illumina kits nominally labeled 50 
cycles can actually perform slightly more than 50 cycles.  

14.6     Initial Processing of Data 

 Table  14.2  lists  tools   that can be used for the initial processing of the raw sequence 
data obtained from the sequencer, and Fig. QG14.2 in the Annex is a fl owchart of 
the steps. This list is not meant to be exhaustive, but rather to present the programs 
that are most widely used to get from raw sequence data to quantifi cation of tran-
script levels.

14.6.1       Early Screening of Results 

 Generally, reads not considered valid by the Illumina software are discarded. Then, 
FastQC can be used as a simple way to perform a preliminary quality check on the 
raw sequence data. This may indicate whether there have been problems in library 
construction. For example, on the FastQC website there is a report for a run con-
taminated with adaptor dimer. It  is   sometimes necessary to trim adaptor sequences, 
and this can be easily done with Cutadapt. PRINSEQ combines quality assessment 
with the ability to fi lter or trim reads with user-defi ned options, including by quality 
score. Finally, sample barcodes and UMIs need to be extracted for downstream bin-
ning of reads and then removed from the reads prior to alignment.  

14.6.2     Reference Alignment 

 After removal of known extraneous sequences, the reads need to be aligned to a 
reference. The most general alignment is to the genome using programs like BWA 
and Bowtie. If ERCC spike-ins have been used, the indexed genome reference fi le 
 should   be appended to include an artifi cial chromosome consisting of a concatemer 
of the ERCC control sequences. Because of splicing, there will be reads that do not 
align to the genome but are still derived from mRNA. Tools like TopHat, STAR, and 
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HISAT are used to align these reads to the genome and enable mapping to both 
known and novel splice sites. It is also possible to use BWA and Bowtie to align 
directly to transcripts by using an indexed RefSeq reference fi le. This provides 
quicker alignment and annotation to known transcripts, but precludes the detection 
of novel transcripts and splice variants.  

14.6.3     Assembly of Transcripts 

 The end result of alignment to the genome is reads mapped to genomic coordinates. 
These mappings need to be assembled into transcripts and then a quantitative mea-
sure for each transcript can be determined. The assembly can be to known  transcript 
models  , such as those available from the UCSC Genome Browser (Meyer et al. 
 2013 ). The tool rpkmforgenes performs the task of comparing aligned reads to a 
reference fi le of known transcripts and determining an RPKM value for each of the 
annotated transcripts (see below for a discussion of units). Cuffl inks and RSEM 
provide the additional capability of de novo transcript assembly, enabling the detec-
tion and quantifi cation of novel transcripts. Each of these programs has its own 
methods for handling reads that map to multiple genes or isoforms. The output from 
Cuffl inks is RPKM (reads per kilobase per million reads) or FPKM (fragments per 
kilobase per million reads), and the output from RSEM is TPM (transcripts per mil-
lion, see below for a discussion of units).  

   Table 14.2    mRNA sequencing data processing tools   

 Step  Tool  Reference  Link 

 Grooming  FastQC  http://www.bioinformatics.bbsrc.
ac.uk/projects/fastqc/ 

 Cutadapt  Martin ( 2011 )  http://code.google.com/p/cutadapt/ 
 PRINSEQ  Schmieder and 

Edwards ( 2011 ) 
 http://prinseq.sourceforge.net/ 

 Alignment  BWA  Li and Durbin ( 2010 )    http://bio-bwa.sourceforge.net/     
 Bowtie  Langmead et al. 

( 2009 ), Langmead 
and Salzberg ( 2012 ) 

 http://bowtie-bio.sourceforge.net/
index.shtml 

 TopHat  Trapnell et al. ( 2009 ), 
Kim et al. ( 2013 ) 

 http://ccb.jhu.edu/software/tophat/
index.shtml 

 STAR  Dobin et al. ( 2013 )  https://github.com/alexdobin/STAR/
releases 

 HISAT  Kim et al. ( 2015 )  https://github.com/infphilo/hisat 
 Quantifi cation 
of levels 

 RSEM  Li and Dewey ( 2011 )  http://deweylab.biostat.wisc.edu/
rsem/ 

 rpkmforgenes  Ramsköld et al. 
( 2009 ) 

   http://sandberg.cmb.ki.se/media/
data/rnaseq/instructions- 
rpkmforgenes.html     

 Cuffl inks  Trapnell et al. ( 2012 , 
 2013 ) 

 http://cole-trapnell-lab.github.io/
cuffl inks/ 
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14.6.4     Quantitative Units 

 The original  qua  ntitative unit for RNA Seq data is RPKM (Mortazavi et al.  2008 ). 
This is defi ned as reads mapped to a feature (transcript or exon) divided by the 
length of the feature in kilobases and also divided by the total number of reads in 
million-read units. Thus, RPKM attempts to normalize for both read depth of the 
library and for length of the transcript (or exon). RPKM is used for single-end reads. 
With paired-end reads, RPKM becomes FPKM (Trapnell et al.  2010 ). This is 
because two reads are used to determine a single mapped fragment. As pointed out 
by Wagner et al. ( 2012 ), though, there is a fl aw in the composition of the denomina-
tor of RPKM (or FPKM) that leads to inconsistencies in comparing RPKM values 
between different samples. They propose the unit TPM, where normalization is to 
the estimated number of transcripts sampled in a sequencing run rather than the total 
number of reads. Wagner et al. ( 2012 ) provide a formula for converting between 
RPKM and TPM. TPM is becoming the preferred unit for expressing the quantita-
tive results of RNA Seq. The need to decide on units is obviated by the use of UMIs. 
The number of unique UMIs for each transcript is a digital count of the number of 
transcript molecules detected per cell.  

14.6.5     Reporting of Data 

 The end result of primary processing is a giant table where each row is a different 
gene and each column is a single cell. For whole transcript methods, each entry is 
the TPM value for that particular gene and cell. For end-tagging methods with 
UMIs, each  entr  y is the number of unique UMIs observed. This table is similar to 
the data obtained from microarrays and can be analyzed and displayed using the 
tools developed for microarrays. The only difference of note is that the data are 
extremely sparse. That is, most entries are zero. Because of the zeroes, conversion 
to log space is performed by fi rst adding one to the transcript count, e.g., 
log 2 (TPM + 1) or log 2 (UMI count + 1).   

14.7     Analysis of Quantitative Results 

 With growing recognition of the potential of single-cell RNA Seq for a range of 
applications will come the need to measure its technical strengths and limits in those 
lines of research. Here we review means of comparing the accuracy, sensitivity, 
reproducibility, and other aspects of single-cell versus bulk sequencing, and of dif-
ferent single-cell methods. 

 The most straightforward measure of  sensitivity   is number of genes detected 
per cell. This will, of course, depend on the type of cell being analyzed. For the 
references in Table  14.1 , the range reported was 2000–10,000 genes detected per 
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cell. This metric can be used to assess the quality of any particular single-cell 
library. If the number of genes per cell is signifi cantly below the median for all 
cells of that type in the study, this can be used as a criterion for removing that cell 
from further analysis. 

  Assessing reproducibility   is complicated by the fact that each single cell is a 
biological replicate, not a technical replicate. Thus, how well the results of two 
single cells correlate is not a good measure of the reproducibility of the method. 
This is why the ERCC spike-ins are useful. Because the same amount of spike-ins 
is added to each single-cell lysate, the spike-ins provide the technical replication 
required to measure reproducibility. Another good way to assess reproducibility is 
to pool the results from multiple single cells. The average result from 100 single 
cells should show a good correlation to bulk RNA sequencing data for the same type 
of cells. 

 Wu et al. ( 2014 ) is a useful example of how to appraise single-cell mRNA Seq 
results to compare different methods and different preparation techniques, and to 
compare single-cell with bulk results. To evaluate accuracy, they focused on 40 
transcripts and compared results determined by single-cell qPCR with those deter-
mined by single-cell mRNA Seq. The correlations were suffi cient to indicate that 
single-cell mRNA Seq can indeed be used for the quantitative measurement of RNA 
expression. Interestingly, they found that the nanoliter reaction volumes enabled by 
microfl uidics improve accuracy as well as sensitivity and reproducibility.  

14.8     Downstream Quantitative Analysis 

  It is often useful to obtain an initial look at the data before delving into the more 
sophisticated analyses described below. For this purpose, multidimensional meth-
ods of analysis are preferred because of the large number of genes involved and 
because  o  f the large cell-to-cell variation observed for any particular gene transcript. 
The most widely used methods are hierarchical clustering and principal component 
analysis. A number of freeware and commercial packages can be used for this task. 
The Singular™ Analysis Toolset (  https://www.fl uidigm.com/software    ) is particu-
larly effective because it is designed specifi cally for the display of single- cell data. 

 The greatest challenge in analyzing single-cell mRNA Seq results is how to handle 
the noise, both biological and technical, in the data. This is a dynamic fi eld, so it is 
impossible to state categorically how best to do this at the present time. Table  14.3  
lists recent publications that have tried to address the challenges of noise in single-
cell RNA expression data. Table QG14.2 in the Annex lists additional information 
about readily available software packages from a subset of these publications.

   Brennecke et al. ( 2013 ) provide a quantitative statistical tool to distinguish true 
biological variability from technical noise. This method exploits spike-ins to quan-
tify how technical noise varies with expression level and then uses this information 
to assess the statistical signifi cance of cell-to-cell variation. Basically, this method 
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provides a statistical yardstick for deciding whether expression noise exceeds tech-
nical noise. 

 Kim and Marioni ( 2013 ) present a statistical framework based on a Poisson-beta 
model that specifi cally addresses the transcriptional bursting of eukaryotic RNA 
expression. Their analysis enables estimating parameters such as burst size and 
burst frequency from single-cell mRNA Seq data. 

 Monocle (Trapnell et al.  2014 ) addresses a different aspect of single-cell noise. 
This is the asynchrony noise observed when a developmental process is induced and 
monitored in vitro. Using single-cell mRNA Seq data collected at different time 
points, Monocle reorders the individual cells based on developmental progress 
(pseudotime axis) rather than along the experimental time axis. This enables identi-
fi cation of genes that share distinct variation motifs and improves resolution in dis-
secting regulatory pathways. 

 Grün et al. ( 2014 ) use control “single cells” to assess technical noise. These 
“single- cell” controls were created by taking 20 pg aliquots from RNA extracted 
from 1 million cells. Analysis of these controls identifi ed two sources of technical 
noise: Poisson sampling for low-expression transcripts, and global sample-to- 
sample variation in sequencing effi ciency for high-expression transcripts. These 
insights were used to develop three noise models to correct for the technical noise 
in mRNA Seq results. The accuracy of using these models was validated by compar-
ing to single-cell results determined by smFISH (single-molecule fl uorescent in situ 
hybridization). 

   Table 14.3    Single-cell mRNA sequencing downstream analysis tools   

 Title  Reference  Link 

 Accounting for technical noise in 
single-cell RNA-seq experiments 

 Brennecke et al. ( 2013 )  http://www.nature.com/
nmeth/journal/v10/n11/extref/
nmeth.2645-S2.pdf 

 Inferring the kinetics of stochastic 
gene expression from single-cell 
RNA- sequencing data 

 Kim and Marioni ( 2013 ) 

 The dynamics and regulators of cell 
fate decisions are revealed by 
pseudotemporal ordering of single 
cells 

 Trapnell et al. ( 2014 )  http://cole-trapnell-lab.github.
io/monocle-release/ 

 Validation of noise models for 
single-cell transcriptomics 

 Grün et al. ( 2014 ) 

 Bayesian approach to single-cell 
differential expression analysis 

 Kharchenko et al. ( 2014 )  http://pklab.med.harvard.edu/
scde/index.html 

 Single-cell RNA-seq reveals 
dynamic paracrine control of 
cellular variation 

 Shalek et al. ( 2014 ) 

 Cell types in the mouse cortex and 
hippocampus revealed by single-
cell RNA-seq 

 Zeisel et al. ( 2015 )    https://github.com/linnarsson- 
lab/BackSPIN     
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 In single-cell RNA expression experiments, failure to detect the transcript from 
a particular gene in a cell is an ambiguous result. It could mean the gene is inactive 
in that cell, the gene is active but the transcript was not detected because of the burst 
kinetics of eukaryotic transcription, or technical noise interfered with detection. 
Kharchenko et al. ( 2014 ) use Bayesian statistics to develop a probabilistic model to 
correct for the distortions in single-cell expression measurements due to dropout 
(non-detected) events. This model can be used to detect differential expression and 
to identify subpopulations in a manner that is more tolerant of single-cell noise. 

 The prevalence of non-detection events means that single-cell RNA expression 
data has a dualistic nature. In cells where a particular transcript is detected, there is 
a continuous distribution of expression levels. This can be thought of as the analog 
aspect of single-cell data. Yet, there is often a group of cells where the transcript is 
not detected and expression can be characterized as on or off. This can be viewed as 
the digital aspect of single-cell data. Similar to the way that McDavid et al. ( 2013 ) 
analyzed single-cell qPCR data, Shalek et al. ( 2014 ) use three parameters to charac-
terize the expression profi le of each transcript. For cells where the transcript is 
detected, the mean ( μ ) and variance ( σ  2 ) are used to capture the analog aspect of the 
profi le. The third parameter ( α ) is the fraction of cells where the transcript is detected, 
and thus captures the digital aspect of the profi le. The analog aspect of the data could 
also be expressed by fi tting the detected data to a gamma distribution and using the 
shape parameter  α  and inverse scale parameter  β  to characterize the distribution. 

 The most prevalent application of single-cell RNA Seq to date has been the unbi-
ased identifi cation of distinct cell types. Standard hierarchical clustering algorithms 
have diffi culty dealing with the sparse nature of single-cell RNA Seq data sets. This 
is because most genes are not informative in most pairwise comparisons, and only 
introduce noise into the analysis. Zeisel et al. ( 2015 ) developed BackSPIN, a pro-
gram based on a method called divisive biclustering, and used it to identify 47 
molecularly distinct subclasses of cells in the mammalian cerebral cortex.   

14.9     Concluding Remarks 

 It is diffi cult to write a chapter like this in such a fast-moving fi eld. Improvements 
and innovations that are being worked on will soon make some of the material in 
this chapter obsolete. Two particular technical advances are worth noting. The fi rst 
is use of microfabrication or droplets to increase the number of reaction vessels for 
generating single-cell RNA libraries (e.g., Fan et al.  2015 ; Macosko et al.  2015 ; 
Klein et al.  2015 ). This will enable effi cient processing, in terms of workfl ow and 
expense, of thousands of cells. These methods are not yet generally accessible but 
appear certain to come to prominence during 2015. The second technical advance is 
the capability to analyze multiple analytes from the same single cell. A good exam-
ple of this is DR-Seq (Dey et al.  2015 ), which is a method for sequencing both the 
genome and the transcriptome from the same cell.      
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    Annex: Quick Reference Guide 

   

Determine formulation that lyses cells of interest

Collect single cells in microfluidic device or by FACS

Which is more important—full 
transcript information or improved 

quantification using UMIs?

SMART-Seq
Smart-Seq2

5' end-tagging or
3' end-tagging?

CEL-Seq
SCRB-Seq

STRT

UMIs

5' end 3' end

Whole
transcript

Pool samples as soon after reverse transcriptase 
step as practical

Complete library construction
Fragmentation

PCR to append sequencer adaptors

Complete library construction
Fragmentation

Add sample barcodes
Pool samples

PCR to append sequencer adaptors

Sequencer

   
 Fig. QG14.1    Representation of the wet-lab procedure workfl ow  
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Report QC
statistics

Raw RNA Seq data
(FASTQ format)

Low quality score?
Tag contamination

in reads?

Read QC
FastQC toolkit

Trim data 
(remove aberrant bases)

Cutadapt
PRINSEQ

Identification of novel gene
expression and splicing

events?

No

Yes

High-quality reads
(FASTQ format)

Differential gene expression 
analysis 

Singular™  Analysis Toolset

Yes No

Map reads to reference genome
BWA

Bowtie

Map spliced reads to genome
TopHat
STAR
HISAT

Assemble transcripts & quantify
Cufflinks
RSEM

Convert to TPM

Map reads to known RefSeq genes
BWA

Bowtie

Assemble transcripts & quantify
rpkmforgenes

Convert to TPM

NCBI
Ref Genome

NCBI RefSeq

Extract sample barcodes & UMIs

  

  Fig. QG14.2    Main steps of the computational analysis pipeline  

K.J. Livak



361

  Ta
bl

e 
Q

G
14

.1
  

  E
xp

er
im

en
ta

l d
es

ig
n 

co
ns

id
er

at
io

ns
   

 M
et

ho
d 

 C
on

tr
ol

s 
 Se

qu
en

ci
ng

 d
ep

th
 

 Se
qu

en
ci

ng
 s

et
up

 
 Se

qu
en

ci
ng

 r
ea

ds
 

 R
ef

er
en

ce
s 

 SM
A

R
T-

 
Se

q 
an

d 
Sm

ar
t-

 
Se

q2
 

 E
R

C
C

 R
N

A
 c

on
tr

ol
s 

sp
ik

ed
 in

to
 ly

si
s 

bu
ff

er
 

 1–
2 

m
ill

io
n 

re
ad

s 
pe

r 
ce

ll 
 Po

ol
 9

6 
ce

lls
 a

nd
 lo

ad
 o

nt
o 

on
e 

la
ne

 o
f 

H
iS

eq
 

 50
 n

t p
ai

re
d-

en
d 

re
ad

s 
an

d 
2 

in
de

x 
re

ad
s 

 R
am

sk
öl

d 
et

 a
l. 

( 2
01

2 )
 

 Pi
ce

lli
 e

t a
l. 

( 2
01

3 ,
 

 20
14

 ) 
 ST

R
T

 
 E

R
C

C
 R

N
A

 c
on

tr
ol

s 
sp

ik
ed

 in
to

 ly
si

s 
bu

ff
er

 
 50

,0
00

 to
 2

 m
ill

io
n 

re
ad

s 
pe

r 
ce

ll 
 Po

ol
 9

6–
15

36
 c

el
ls

 a
nd

 lo
ad

 
on

to
 o

ne
 la

ne
 o

f 
H

iS
eq

 
 50

 n
t s

in
gl

e-
en

d 
re

ad
 a

nd
 1

 in
de

x 
re

ad
 (

se
co

nd
 in

de
x 

re
ad

 if
 p

oo
lin

g 
is

 >
96

) 

 Is
la

m
 e

t a
l. 

( 2
01

2 ,
 

 20
14

 ) 

 C
E

L
-S

eq
 

an
d 

SC
R

B
-S

eq
 

 E
R

C
C

 R
N

A
 c

on
tr

ol
s 

sp
ik

ed
 in

to
 ly

si
s 

bu
ff

er
 

 50
,0

00
 to

 2
 m

ill
io

n 
re

ad
s 

pe
r 

ce
ll 

 Po
ol

 9
6–

15
36

 c
el

ls
 a

nd
 lo

ad
 

on
to

 o
ne

 la
ne

 o
f 

H
iS

eq
 

 10
–1

7 
nt

 r
ea

d 
1 

(f
or

 s
am

pl
e 

ba
rc

od
e 

an
d 

U
M

I)
; 3

4–
50

 n
t r

ea
d 

2 
(f

or
 tr

an
sc

ri
pt

 id
en

tit
y)

; a
nd

 1
 

in
de

x 
re

ad
 if

 p
oo

lin
g 

is
 >

96
 

 H
as

hi
m

sh
on

y 
et

 a
l. 

( 2
01

2 )
 

 So
um

ill
on

 e
t a

l. 
( 2

01
4 )

 

  Ta
bl

e 
th

at
 c

om
pr

is
es

 r
el

ev
an

t e
xp

er
im

en
ta

l d
es

ig
n 

pa
ra

m
et

er
s,

 to
 c

ar
ef

ul
ly

 c
on

si
de

r 
be

fo
re

 a
pp

ly
in

g 
th

is
 m

et
ho

do
lo

gy
  

14 Eukaryotic Single-Cell mRNA Sequencing



362

  Ta
bl

e 
Q

G
14

.2
  

  A
va

ila
bl

e 
so

ft
w

ar
e 

re
co

m
m

en
da

tio
ns

   

 So
ft

w
ar

e 
 T

itl
e 

 R
ef

er
en

ce
 

 L
in

k 
 R

es
ul

ts
 o

ut
pu

t 
 R

es
ul

ts
 f

or
m

at
 

 A
cc

ou
nt

in
g 

fo
r 

te
ch

ni
ca

l n
oi

se
 in

 
si

ng
le

-c
el

l R
N

A
-s

eq
 e

xp
er

im
en

ts
 

 B
re

nn
ec

ke
 

et
 a

l. 
( 2

01
3 )

 
   ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/

nm
et

h/
jo

ur
na

l/v
10

/n
11

/
ex

tr
ef

/n
m

et
h.

26
45

-S
2.

pd
f     

 • 
Te

ch
ni

ca
l n

oi
se

 fi 
t 

 • 
Pl

ot
 o

f 
av

er
ag

e 
no

rm
al

iz
ed

 r
ea

d 
co

un
t 

ve
rs

us
 c

v 2   
 • 

In
fe

re
nc

e 
of

 h
ig

hl
y 

va
ri

ab
le

 g
en

es
 

 M
on

oc
le

 
 T

he
 d

yn
am

ic
s 

an
d 

re
gu

la
to

rs
 o

f 
ce

ll 
fa

te
 d

ec
is

io
ns

 a
re

 r
ev

ea
le

d 
by

 
ps

eu
do

te
m

po
ra

l o
rd

er
in

g 
of

 s
in

gl
e 

ce
lls

 

 T
ra

pn
el

l e
t a

l. 
( 2

01
4 )

 
   ht

tp
://

co
le

-t
ra

pn
el

l-
la

b.
gi

th
ub

.io
/m

on
oc

le
-r

el
ea

se
/     

 • 
D

if
fe

re
nt

ia
lly

 
ex

pr
es

se
d 

ge
ne

s 
 • 

D
if

fe
re

nt
ia

l e
xp

re
ss

io
n 

ta
bl

es
 a

nd
 g

ra
ph

ic
s 

 • 
Ps

eu
do

te
m

po
ra

l 
ex

pr
es

si
on

 p
at

te
rn

s 
 SC

D
E

 
 B

ay
es

ia
n 

ap
pr

oa
ch

 to
 s

in
gl

e-
ce

ll 
di

ff
er

en
tia

l e
xp

re
ss

io
n 

an
al

ys
is

 
 K

ha
rc

he
nk

o 
et

 a
l. 

( 2
01

4 )
 

   ht
tp

://
pk

la
b.

m
ed

.h
ar

va
rd

.
ed

u/
sc

de
/in

de
x.

ht
m

l     
 • 

D
if

fe
re

nt
ia

lly
 

ex
pr

es
se

d 
ge

ne
s 

 • 
D

if
fe

re
nt

ia
l e

xp
re

ss
io

n 
ta

bl
es

 a
nd

 g
ra

ph
ic

s 
 • 

G
en

om
e 

B
ro

w
se

r-
 

co
m

pa
tib

le
 g

ra
ph

ic
s 

 B
ac

kS
PI

N
 

 C
el

l t
yp

es
 in

 th
e 

m
ou

se
 c

or
te

x 
an

d 
hi

pp
oc

am
pu

s 
re

ve
al

ed
 b

y 
si

ng
le

-c
el

l R
N

A
-s

eq
 

 Z
ei

se
l e

t a
l. 

( 2
01

5 )
 

   ht
tp

s:
//g

ith
ub

.c
om

/
lin

na
rs

so
n-

la
b/

B
ac

kS
PI

N
     

 • 
C

lu
st

er
in

g 
C

E
F 

fi l
es

 
 • 

C
E

F 
fi l

es
 (

ta
b 

de
lim

ite
d 

te
xt

) 

  Ta
bl

e 
di

sp
la

yi
ng

 a
 s

el
ec

tio
n 

of
 th

e 
re

co
m

m
en

de
d 

so
ft

w
ar

e 
av

ai
la

bl
e 

fo
r 

th
e 

co
m

pu
ta

tio
na

l a
na

ly
si

s 
of

 d
at

a 
yi

el
de

d 
by

 th
is

 te
ch

ni
qu

e  

K.J. Livak

http://www.nature.com/nmeth/journal/v10/n11/extref/nmeth.2645-S2.pdf
http://www.nature.com/nmeth/journal/v10/n11/extref/nmeth.2645-S2.pdf
http://www.nature.com/nmeth/journal/v10/n11/extref/nmeth.2645-S2.pdf
http://cole-trapnell-lab.github.io/monocle-release/
http://cole-trapnell-lab.github.io/monocle-release/
http://pklab.med.harvard.edu/scde/index.html
http://pklab.med.harvard.edu/scde/index.html
https://github.com/linnarsson-lab/BackSPIN
https://github.com/linnarsson-lab/BackSPIN


363

           References 

    Bengtsson M, Hemberg M, Rorsman P et al (2008) Quantifi cation of mRNA in single cells and 
modelling of RT-qPCR induced noise. BMC Mol Biol 9:63  

      Brennecke P, Anders S, Kim JK et al (2013) Accounting for technical noise in single-cell RNA-seq 
experiments. Nat Methods 10:1093–1095  

    Choi JH, Ogunniyi AO, Du M et al (2010) Development and optimization of a process for auto-
mated recovery of single cells identifi ed by microengraving. Biotechnol Prog 26:888–895  

    Dalerba P, Kalisky T, Sahoo D et al (2011) Single-cell dissection of transcriptional heterogeneity 
in human colon tumors. Nat Biotechnol 29:1120–1127  

    Dar RD, Razooky BS, Singh A et al (2012) Transcriptional burst frequency and burst size are 
equally modulated across the human genome. Proc Natl Acad Sci U S A 109:17454–17459  

    Devonshire AS, Elaswarapu R, Foy CA (2011) Applicability of RNA standards for evaluating 
RT-qPCR assays and platforms. BMC Genomics 12:118–127  

    Dey SS, Kester L, Spanjaard B et al (2015) Integrated genome and transcriptome sequencing of the 
same cell. Nat Biotechnol 33:285–289  

    Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29:15–21  

    Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 
1:586–603  

    Fan HC, Fu GK, Fodor SP et al (2015) Combinatorial labeling of single cells for gene expression 
cytometry. Science 347:1258367  

    Frumkin D, Wasserstrom A, Itzkovitz S et al (2008) Amplifi cation of multiple genomic loci from 
single cells isolated by laser micro-dissection of tissues. BMC Biotechnol 8:17  

    Fu GK, Xu W, Wilhelmy J et al (2014) Molecular indexing enables quantitative targeted RNA 
sequencing and reveals poor effi ciencies in standard library preparations. Proc Natl Acad Sci U 
S A 111:1891–1896  

     Grün D, Kester L, van Oudenaarden A (2014) Validation of noise models for single-cell transcrip-
tomics. Nat Methods 11:637–640  

    Han L, Zi X, Garmire LX et al (2014) Co-detection and sequencing of genes and transcripts from 
the same single cells facilitated by a microfl uidics platform. Sci Rep 4:6485  

     Hashimshony T, Wagner F, Sher N et al (2012) CEL-Seq: single-cell RNA-Seq by multiplexed 
linear amplifi cation. Cell Rep 2:666–673  

    Hug H, Schuler R (2003) Measurement of the number of molecules of a single mRNA species in 
a complex mRNA preparation. J Theor Biol 221:615–624  

     Islam S, Kjällquist U, Moliner A et al (2012) Highly multiplexed and strand-specifi c single-cell 
RNA 5′ end sequencing. Nat Protoc 7:813–828  

       Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular 
identifi ers. Nat Methods 11:163–166  

     Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2014) Massively parallel single-cell RNA-Seq for 
marker-free decomposition of tissues into cell types. Science 343:776–779  

    Jiang L, Schlesinger F, Davis CA et al (2011) Synthetic spike-in standards for RNA-seq experi-
ments. Genome Res 21:1543–1551  

    Kellogg RA, Gomez-Sjoberg R, Leyrat AA et al (2014) High-throughput microfl uidic single-cell 
analysis pipeline for studies of signaling dynamics. Nat Protoc 9:1713–1726  

      Kharchenko PV, Silberstein L, Scadden DT (2014) Bayesian approach to single-cell differential 
expression analysis. Nat Methods 11:740–742  

    Kim D, Lansmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory require-
ments. Nat Methods 12:357–360  

    Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the 
presence of insertions, deletions and gene fusions. Genome Biol 14:R36  

     Kim JK, Marioni JC (2013) Inferring the kinetics of stochastic gene expression from single-cell 
RNA-sequencing data. Genome Biol 14:R7  

14 Eukaryotic Single-Cell mRNA Sequencing



364

     Kivioja T, Vähärautio A, Karlsson K et al (2012) Counting absolute numbers of molecules using 
unique molecular identifi ers. Nat Methods 9:72–74  

    Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics 
applied to embryonic stem cells. Cell 161:1187–1201  

    Landry ZC, Giovanonni SJ, Quake SR et al (2013) Optofl uidic cell selection from complex micro-
bial communities for single-genome analysis. Methods Enzymol 531:61–90  

    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 
9:357–359  

    Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-effi cient alignment of short 
DNA sequences to the human genome. Genome Biol 10:R25  

    Li B, Dewey CN (2011) RSEM: accurate transcript quantifi cation from RNA-Seq data with or 
without a reference genome. BMC Bioinformatics 12:323  

    Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. 
Bioinformatics 26:589–595  

    Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profi ling of 
individual cells using nanoliter droplets. Cell 161:1202–1214  

    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 
EMBnet J 17:10–12  

    McDavid A, Finak G, Chattopadyay PK et al (2013) Data exploration, quality control and testing 
in single-cell qPCR-based gene expression experiments. Bioinformatics 29:461–467  

    Meyer LR, Zweig AS, Hinrichs AS (2013) The UCSC Genome Browser database: extensions and 
updates 2013. Nucleic Acids Res 41:D64–D69  

    Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcrip-
tomes by RNA-Seq. Nat Methods 5:621–628  

     Picelli S, Björklund ÅK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcrip-
tome profi ling in single cells. Nat Methods 10:1096–1098  

     Picelli S, Faridani OR, Björklund ÅK et al (2014) Full-length RNA-seq from single cells using 
Smart-seq2. Nat Protoc 9:171–181  

       Pollen AA, Nowakowski TJ, Shuga J et al (2014) Low-coverage single-cell mRNA sequencing 
reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. 
Nat Biotechnol 32:1053–1058  

     Ramsköld D, Luo S, Wang YC et al (2012) Full-length mRNA-Seq from single-cell levels of RNA 
and individual circulating tumor cells. Nat Biotechnol 30:777–782  

    Ramsköld D, Wang ET, Burge CB et al (2009) An abundance of ubiquitously expressed genes 
revealed by tissue transcriptome sequence data. PLoS Comput Biol 5:e1000598  

    Sasagawa Y, Nikaido I, Hayashi T et al (2013) Quartz-Seq: a highly reproducible and sensitive 
single-cell RNA sequencing method reveals non-genetic gene expression heterogeneity. 
Genome Biol 14:R31  

    Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. 
Bioinformatics 27:863–864  

     Shalek AK, Satija R, Shuga J et al (2014) Single-cell RNA-seq reveals dynamic paracrine control 
of cellular variation. Nature 510:363–369  

     Shiroguchi K, Jia TZ, Sims PA et al (2012) Digital RNA sequencing minimizes sequence- 
dependent bias and amplifi cation noise with optimized single-molecule barcodes. Proc Natl 
Acad Sci U S A 109:1347–1352  

     Soumillon M, Cacchiarelli D, Semrau S et al (2014) Characterization of directed differentiation by 
high-throughput single-cell RNA-Seq. BioRxiv. doi:  10.1101/003236      

    Ståhlberg A, Kubista M, Åman P (2011) Single-cell gene-expression profi ling and its potential 
diagnostic applications. Expert Rev Mol Diagn 11:735–740  

     Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single 
cell. Nat Methods 6:377–382  

      Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate deci-
sions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386  

K.J. Livak

http://dx.doi.org/10.1101/003236


365

    Trapnell C, Hendrickson DG, Sauvageau M et al (2013) Differential analysis of gene regulation at 
transcript resolution with RNA-seq. Nat Biotechnol 31:46–53  

    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. 
Bioinformatics 25:1105–1111  

    Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of 
RNA-seq experiments with TopHat and Cuffl inks. Nat Protoc 7:562–578  

    Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantifi cation by RNA- 
Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat 
Biotechnol 28:511–515  

     Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: 
RPKM measure is inconsistent among samples. Theory Biosci 131:281–285  

    Wang J, Fan HC, Behr B et al (2012) Genome-wide single-cell analysis of recombination activity 
and de novo mutation rates in human sperm. Cell 150:402–412  

    White AK, Vaninsberghe M, Petriv OI et al (2011) High-throughput microfl uidic single-cell 
RT-qPCR. Proc Natl Acad Sci U S A 108:13999–14004  

    Wu AR, Neff NF, Kalisky T et al (2014) Quantitative assessment of single-cell RNA-sequencing 
methods. Nat Methods 11:41–46  

      Zeisel A, Muñoz Manchado AB, Codeluppi S et al (2015) Cell types in the mouse cortex and hip-
pocampus revealed by single-cell RNA-seq. Science 347:1138–1142  

    Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690  
    Zhu YY, Machleder EM, Chenchik A et al (2001) Reverse transcriptase template switching: a 

SMART approach for full-length cDNA library construction. Biotechniques 30:892–897    

14 Eukaryotic Single-Cell mRNA Sequencing



367

Chapter 15
Eukaryotic Single-Cell DNA Sequencing

Keith E. Szulwach and Kenneth J. Livak

15.1  Introduction

Significant advances in the ability to isolate and interrogate the genomes of indi-
vidual cells have recently led to great strides in our understanding of how somatic 
variation can affect normal development and disease. To interrogate the genomes of 
individual cells, two basic technical decisions need to be made. The first is which 
method to use for whole genome amplification (WGA). The second is how to con-
vert the WGA product into a sequencing library. The second choice depends on the 
downstream application and, to some extent, the sequencing budget. Finally, once 
sequencing has been completed, it is also important to consider how technical arti-
facts arising during amplification impact the identification of mutations. Applications 
of single-cell DNA sequencing include revealing clonality in tumor samples, detect-
ing lower-frequency mutations with improved sensitivity, tracing cell lineages, ana-
lyzing rare cell types, and studying somatic mosaicism in cancer, neuronal diversity, 
and other tissues. Applications not addressed in this chapter include microbial ecol-
ogy and prenatal genetic diagnosis.

15.2  Applications

Known for extreme heterogeneity, cancer cell populations are one area where 
single- cell methods have profoundly affected research. By sequencing hundreds of 
individual cells to detect copy number variation, Navin et al. (2011) identified clonal 
evolution as central to tumor growth in two breast cancer patients. Their data tracing 
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the lineage of these clonal populations indicated relatively brief periods of intense 
genomic change followed by more even growth of the cancer mass, in contrast to 
canonical models of tumorigenesis that posit steady accumulation of mutations. 
Other studies in which clonal structure has been a primary element include Jan et al.
(2012), suggesting that relapse of acute myeloid leukemia (AML) patients may be
rooted in a history of multiple hematopoietic stem cell mutations preceding full 
onset of AML, and Anderson et al. (2011), which linked genetic abnormalities in
individual cells to clonal patterns with implications for treatment and risk of relapse.
Attempts have been made to infer clonal structure from bulk tumor DNA sequenc-
ing, but the analysis of these results requires simplifying assumptions, such as that 
all mutations are heterozygous. As demonstrated by Paguirigan et al. (2015), single- 
cell data are needed in order to make unambiguous assignment of genotype combi-
nations. Thus, relying on bulk data to determine clonal structure will generate an
incomplete, and often misleading, picture of clonal heterogeneity in tumors. These 
paths of inquiry could lead to answers on fundamental topics such as how metasta-
sis occurs and whether it begins in particular cell types or even in cell fusion.
Among the key agents in metastasis are circulating tumor cells (CTCs), whose

rarity prevents bulk analysis and thus makes them a target for single-cell sequenc-
ing. Working with a few CTCs, Ni et al. (2013) reported insertions and deletions in 
exomes and single-nucleotide variations that were particular to individual cells and 
thus might inform therapy for specific patients. They also reported similar copy 
number variation (CNV) patterns among lung cancer adenocarcinoma patients, and 
different CNV patterns among small-cell lung cancer patients, a finding that could 
benefit CTC-based diagnostics.

Intriguingly, extensive somatic genetic heterogeneity has also been observed 
during normal development, where it has been proposed to play important roles in 
cellular fitness and disease etiologies. Beyond tumorigenesis, the presence and role 
of somatic mosaicism has been recognized within the central nervous system (Cai 
et al. 2014; Coufal et al. 2011; Evrony et al. 2015; McConnell et al. 2013; Muotri 
et al. 2010). Diversity in large-scale copy number alterations and transposable ele-
ment mobility has been observed during normal neuronal development as well as in 
the context of human neurological diseases. Moving forward, the influence of
genetic diversity on cellular fitness even during normal development and how such 
processes ultimately impacts the progression of human diseases will provide a high- 
definition perspective previously unattainable.

15.3  Cell Isolation Methods

Three of the four methods discussed in the chapter “Eukaryotic Single-Cell mRNA
Sequencing” have been used to isolate cells for single-cell DNA sequencing—
micromanipulation, fluorescence-activated cell sorting (FACS), and microfluidic
systems. In addition, DNA sequencing libraries can be prepared from individual 
nuclei (Navin et al. 2011; Baslan et al. 2012; Wang et al. 2014). This is especially 
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useful in analyzing solid tumors where it is difficult to obtain clean, single-cell sus-
pensions. Furthermore, the use of nuclei enables analysis of flash-frozen samples,
which may have been stored for decades (Leung et al. 2015). It has also been used 
extensively in analyzing neural samples because of the difficulty of obtaining intact 
cells from these highly networked tissues. Single nuclei can be obtained using
FACS or microfluidic capture.

15.4  WGA

Figure QG15.1 in the Annex is a flowchart of the wet lab workflow used for single-
cell DNA sequencing. Table QG15.1 in the Annex lists more details about the meth-
ods used for whole genome amplification. Figure 4 in Blainey (2013) and the 
accompanying text (pp. 416–419) provide an excellent summary of these different 
WGA methods. For mammalian single cells, three methods now are mainly used: 
MDA (multiple displacement amplification, Dean et al. 2002); PicoPLEX™ (based
on degenerate-oligonucleotide primer PCR, DOP-PCR), commercialized by
Rubicon Genomics, and MALBAC (multiple annealing and looping-based amplifi-
cation cycles, Zong et al. 2012). MDA is a single-step isothermal reaction. Following 
denaturation of genomic DNA, random 3′-protected 6-mers are extended on the 
genomic template using a polymerase with strong strand-displacing activity, gener-
ally phi29 DNA polymerase. PicoPLEX and MALBAC are two-step processes that
use thermal cycling. The first step, often termed preamplification, uses primers with 
degenerate bases at the 3′ end, a polymerase with strand-displacing activity, and a 
limited number of thermal cycles. The second step is essentially conventional PCR
with a single primer corresponding to the 5′ end of the primers used in the pream-
plification step. PicoPLEX and MALBAC differ in the DNA polymerases used, the
structure of the primers, and details of the thermal cycling protocols. Other varia-
tions that use degenerate primers and PCR are termed degenerate oligonucleotide-
primed PCR (DOP-PCR).

De Bourcy et al. (2014) compared these three methods on single-cell bacterial 
genomes; the results are instructive for amplification of mammalian genomes as 
well. The main criteria used to judge the quality of WGA are coverage, uniformity, 
and error rate. Their results indicate that a key factor influencing WGA quality can
be amplification gain. Regardless of the WGA method, WGA quality tends to
worsen as amplification gain increases. However, not all characteristics are affected 
equally. PCR-based methods (PicoPLEX and MALBAC) perform better in terms of
uniformity (lack of bias) in comparison to MDA across all levels of amplification
gain tested, whereas MDA amplification uniformity deteriorates as amplification 
gain increases. In terms of errors introduced during WGA, MDA exhibits a tenfold 
lower rate of single-nucleotide errors than PicoPLEX and MALBAC, presumably
due to the higher fidelity of phi29 DNA polymerase compared to the polymerases 
used in the PCR-based methods. Although these particular results demonstrated a
high breadth of genomic coverage in bacterial genomes for all methods tested, it has 
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been found by multiple other groups that MDA tends to amplify a much larger frac-
tion of mammalian genomes than PCR-based methods. Typically, MDA has been
found to amplify ≥90 % of single-cell mammalian genomes accessible by conven-
tional whole genome sequencing. MALBAC has been reported to amplify up to
70% of mammalian genomes, while DOP-PCR amplifies only ~10%. For these
reasons, De Bourcy et al. (2014) concluded that PCR-based methods may be espe-
cially well suited for analysis of copy number variation and MDA preferred for 
analysis of single-nucleotide variation (SNV).
Labs have reported that the use of nanoliter reaction volumes is particularly

advantageous for MDA in terms of coverage uniformity and low error rates (Wang 
et al. 2012; De Bourcy et al. 2014; Gole et al. 2013). Therefore, a combination of 
microfluidics and MDA may be the best general method that can be used for both
CNV and SNV.

15.5  Library Construction

The three choices for library construction are influenced by the method by which
the DNA will be interrogated downstream. Starting with whole-genome amplified 
DNA, whole genome sequencing (WGS), whole exome sequencing (WES), and 
targeted sequencing can be performed. WGS library construction is the most 
straightforward. For WGS, the processing steps for each WGA sample are frag-
mentation, attachment of adaptors (with optional barcodes), and PCR to append
the P5 and P7 tags required for immobilization and amplification in the Illumina® 
flow cells. The most convenient method for accomplishing these tasks is to per-
form tagmentation using the Illumina Nextera® System (e.g., Nextera Rapid
Capture Kit, FC-140-1003). It is also possible to use the more conventional route 
of fragmentation by sonication or enzymatic treatment, end repair, A-tailing, liga-
tion of Illumina sequencing adaptor, and PCR. Illumina and New England BioLabs
have kits for performing these tasks. WGS on a few single cells is the most com-
prehensive way to assess the quality of the WGA method. Because of the complex-
ity involved, this sequencing is generally performed on a HiSeq® instrument. For 
more than a few cells, it is much more cost efficient to use WES or targeted 
sequencing. This makes it practical to sequence the large number of cells that are
required to effectively characterize clonal heterogeneity and detect rarer subpopu-
lations. However, one application where WGS is not cost-prohibitive for analysis 
of a moderate number of cells is detection and quantification of CNV. As pio-
neered by Navin et al. (2011) and utilized by others (Francis et al. 2014; Baslan 
et al. 2015), read coverage as shallow as 0.06× per cell can provide useful informa-
tion on CNV in tumors. In this case, it is important to barcode the single-cell librar-
ies during library construction so that multiple libraries can be pooled together 
prior to sequencing.
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For WES, libraries are prepared from single-cell WGA products just as for 
WGS. At this point, exonic sequences are selected from the libraries. Incorporating 
barcodes as part of the adaptor attachment step enables pooling multiple single-cell 
libraries prior to exome capture. This is more cost-effective for experiments aimed 
at identifying protein-coding SNVs as sequencing efforts can be focused on the 
1–2 % of the genome that is exonic. Hybridization pullout has become the method 
of choice for exome capture. For single-cell libraries, solution-based rather than 
array-based hybridization is used for pullout because of the small amounts of DNA 
involved. To date, alternatives such as AmpliSeq™ from Life Technologies® and 
HaloPlex™ from Agilent Technologies have not been widely adopted for whole
exome enrichment. Chilamakuri et al. (2014) compared the four most popular kits
for exome capture by hybridization pullout: Agilent® SureSelect™ Human All
Exon, NimbleGen™ SeqCap™ EZ Exome Library, Illumina TruSeq™ Exome
Enrichment, and Illumina Nextera Exome Enrichment. All technologies performed 
reproducibly and well. Slight, but consistent, variations in coverage, GC bias, and 
SNV detection were observed, which might make one of the methods more suitable
for a particular application than the others. Following exome capture, a limited PCR
amplification is performed to restore double-stranded DNA fragments suitable for 
loading on a MiSeq™ or HiSeq instrument.
Leung et al. (2015) incorporated a very stringent quality control measure for 

deciding whether a WGA library should be processed further for WES. They 
designed a PCR panel consisting of 22 primer pairs, one for each autosome. A
single-cell WGA library must show PCR products for all 22 assays in order to
qualify the library for exome capture.
Libraries for targeted sequencing can be prepared in a similar manner to what is

used for WES. The only difference is that fewer oligonucleotide baits are used in the 
capture step. In addition, there are many variations of multiplex PCR that have been
used for target enrichment. Finally, there are methods based on selective circulariza-
tion of probes (Dahl et al. 2007; Hiatt et al. 2013; HaloPlex is a commercial version) 
that combine elements of hybridization capture and PCR. Mamanova et al. (2010) 
and Mertes et al. (2011) provide technical details on how these three general meth-
ods work. Altmüller et al. (2014) list the commercially available options across the 
three categories and provide guidelines on how to choose among the options. In 
general, PCR methods have better specificity than hybridization. This is an advan-
tage in discriminating homologous targets and in minimizing the contribution of 
repetitive elements to the sequencing libraries. High specificity can sometimes be a 
disadvantage because polymorphisms in primer binding sites can lead to reduced 
yield for particular segments. Coverage is characterized by the amount of the 
genome interrogated and the number of target regions. Typically, PCR methods
have been used for coverage of up to about 500 kb and hybridization methods for
above 500 kb. Read depth for targeted single-cell libraries does not need to be as
great as for bulk libraries. This is because bulk sequencing is generally trying to detect
variants at low frequency, whereas variants in single cells are at least hemizygous, 
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meaning they should be detected in about 50% of the reads. For PCR-based meth-
ods, sequencing to an average depth of 100× should be more than adequate to com-
pensate for locus-specific variation in amplification uniformity.

Targeted sequencing is the method of choice for analyzing hundreds or thou-
sands of single cells because focusing sequencing on a relatively small proportion 
of the genome can dramatically reduce sequencing costs. Thus, cost per sample is a 
critical parameter to consider when comparing different methods, depending on the 
breadth of genetic information desired. Targeted DNA sequencing from single-cell 
whole genome amplified DNA can also provide an excellent means to cost- 
effectively validate mutations detected by WGS and WES. It is also important to 
have a large number of barcodes available so that many single-cell samples can be 
pooled together in parallel sequencing experiments. Standard panels are the most 
economical option for targeted sequencing because the cost of oligonucleotide syn-
thesis is amortized over many customers. Standard panels also have the advantage 
that they are thoroughly validated. Of course, standard panels may not contain all 
the targets that are important for a particular study. Custom panels have a large 
upfront cost. This drawback becomes negligible, though, when a large number of
samples are analyzed.

15.6  Data Analysis

Identification of mutations in single-cell data can be accomplished in much the 
same manner as conventional approaches using bulk genomic DNA, with a few
considerations to account for the types of technical artifacts introduced during 
whole genome amplification (WGA). Following the identification of mutations 
across a population of cells, relationships between mutation profiles can be used 
to dissect clonality and phylogeny of the population. Here we summarize the key
steps unique to identifying single-cell mutations and examples of how single-cell 
mutation profiles can be used to reconstruct the clonal phylogeny of cell popula-
tions. For data processing steps that overlap with conventional genetic analyses 
from bulk genomic DNA, we refer the reader to more comprehensive
descriptions.

Table 15.1 lists popular programs that are used for alignment to the genome fol-
lowed by the identification of variants. Ruffalo et al. (2011) and Yu et al. (2012) 
assess the performance of the alignment tools in Table 15.1 plus others using simu-
lated data. The different types of mutations that can be detected are single- nucleotide 
variants (SNVs), insertion/deletions (INDELs), copy number variants (CNVs), and
structural variants (SVs). Single-cell analysis focuses predominantly on SNVs and 
CNVs. Figure QG15.2 in the Appendix is a flowchart of the steps used to process
single-cell data to detect SNVs and CNVs. Van der Auwera et al. (2013) is a detailed 
guide on the best practices to use in establishing this type of computational 
pipeline.
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Table 15.1 DNA sequencing data processing tools

Step Tool Reference Link

Alignment BWA Li and Durbin (2009a) http://bio-bwa.
sourceforge.net/

Bowtie Langmead et al. (2009), 
Langmead and Salzberg
(2012)

http://bowtie-bio.
sourceforge.net/index.
shtml

SOAPaligner/soap2 Li et al. (2009c) http://soap.genomics.org.
cn/#down2

Novoalign http://www.novocraft.com/
support/download/

SNV and 
INDEL

GATK McKenna et al. (2010), 
DePristo et al. (2011)

https://www.
broadinstitute.org/gatk/
download/

VarScan Koboldt et al. (2009), 
Koboldt et al. (2012)

http://varscan.sourceforge.
net/

SAMtools Li et al. (2009b) http://samtools.
sourceforge.net/

SNVer Wei et al. (2011) http://snver.sourceforge.
net/

CRISP Bansal (2010) https://sites.google.com/
site/vibansal/software/
crisp

CNV SegSeq Chiang et al. (2009) http://www.broadinstitute.
org/software/
cprg/?q=node/39

CNVnator Abyzov et al. (2011) http://sv.gersteinlab.org/
cnvnator/

Gingko Garvin et al. (2015) http://qb.cshl.edu/ginkgo
SV BreakDancer Chen et al. (2009) http://breakdancer.

sourceforge.net/
BreakPointer Drier et al. (2013) https://www.

broadinstitute.org/cancer/
cga/breakpointer

CLEVER Marschall et al. (2012) https://code.google.com/p/
clever-sv/

GASVPro Sindi et al. (2012) http://compbio.cs.brown.
edu/projects/gasv/

SVMerge Wong et al. (2010) http://svmerge.
sourceforge.net/

15.6.1  SNV

With single-cell DNA sequencing, it is important to account for the technical arti-
facts introduced during whole genome amplification. Such artifacts can be classi-
fied into four main categories; genomic coverage, SNV detection efficiency, allelic 
dropout rate (ADR), and SNV false positive rate (FPR). Genomic coverage
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influences SNV detection efficiency, as mutations within regions of the genome that
were either not amplified or not sequenced will be missed. Single-nucleotide errors 
introduced by the polymerase during WGA will lead to false positive mutation calls, 
while bias in the amplification of one allele over another at heterozygous loci will 
lead to allelic dropout. Table 15.2 describes how each of the metrics is quantified.

Once these values have been determined empirically for a given experiment, they 
can be taken into consideration when identifying mutations in single-cell whole
genome amplified DNA. As an example of this, Hou et al (2013) applied the SNV 
false discovery rate to a binomial test to determine the probability of a given SNV 
being false given the number of cells that variant was observed in amongst the total 
number of cells tested. Because polymerase-induced errors occurring during WGA 
are random (as evidenced by their distribution across the genome), the chance of an 
error occurring at the same position in the genome in two independent single cells 
is low, allowing for probabilities to be assigned to the set of variants detected across 
the population of cells tested. As the field of single-cell DNA sequencing moves 
forward, we expect further development of these metrics in parallel with their incor-
poration into analysis packages specifically geared toward handling single-cell
genetic data. Fluidigm has developed one such solution, the Singular™ Analysis
Toolset, based on open-source R software code.

The possibility of false positives means it is important to validate mutations iden-
tified by single-cell DNA sequencing. Wang et al. (2014) accomplished this by 
applying duplex sequencing (Schmitt et al. 2012) to the putative mutations detected 
in their single-nuclei libraries. A duplex library was prepared from a bulk sample
and target segments were selected covering the set of putative mutations. By attach-
ing different random molecular tags to each end of each DNA fragment, the duplex 
library enables maintenance of strand identity. The targeted duplex library was then 
sequenced to very high depth. Reading to an average depth of approximately
100,000× generated approximately 5000× single-molecule coverage. True  mutations 
are indicated by concordance on both strands. The results also measure precise 
allele frequencies in the bulk sample.

Table 15.2 Metrics defining the technical performance of single-cell whole genome amplification

Metric Calculation Description

Genomic 
coverage

Baseswith coverage

Total number of bases

≥ ×1 Fraction of the genome covered at ≥1×

Allelic dropout 
rate (ADR) 1 1

n n

i

∑
= Hom

Het
SingleCell

Bulk

Mean fraction of sites called homozygous in 
single cells that were heterozygous in bulk
genomic DNA

SNV false 
positive rate 
(FPR)

1 1

n n

i

∑
= Het

Hom
SingleCell

Bulk

Mean fraction of sites called heterozygous in 
single-cells that were called homozygous in 
bulk genomic DNA
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15.6.2  CNV

For CNV analysis, a comprehensive study using single-cell paired-end DNA 
sequencing to obtain accurate, high-resolution copy number profiles was reported 
by Voet et al. (2013). They identified the different types of artifacts generated by 
MDA- and PCR-based WGA and developed analysis tools to robustly distinguish
these artifacts from true copy number variants. This enabled them to detect copy 
number changes occurring in a single cell cycle. Furthermore, they reported more 
accurate copy number profiles using PicoPLEX for WGA than MDA.

Identification of CNVs is generally performed using methods similar to those 
used for sequencing DNA isolated from large populations of cells. Typically, the 
genome is divided into bins of a defined size dictated by the resolution at which a 
CNV is to be called. Aligned reads are then assigned to these bins to determine the 
read density of each. As not all portions of the genome are equally mappable, it is 
often useful to employ a variable-size binning approach (Navin et al. 2011) to 
ensure that all bins have an equal probability of reads being assigned to them. In this 
approach, bin size is adjusted to account for regions of the genome to which reads 
cannot be uniquely assigned so that all bins have an equal portion of mappable 
sequence. The GC content of bins can also impact mappability as a result of under-
representation of reads from GC-rich and AT-rich regions of the genome that are 
prone to bias during WGA, PCR, and sequencing. Generally, such bias can be cor-
rected for by LOESS regression. Using normalized read densities, copy numbers
can be calculated across the genome, usually assuming that the median read density 
corresponds to a copy number of two for largely diploid genomes. With copy num-
bers determined, the genome can be segmented by identifying bins that exhibit 
similar copy numbers. In single-cell analysis, an important consideration is that 
copy number changes should occur at discrete intervals due to the fact that they will 
have integer copy number states. Finally, a number of statistical approaches can be 
used to segment copy number profiles from single-cell data, including those imple-
mented in the approaches described in Table 15.1. In single-cell analysis, these have 
included circular binary segmentation (CBS) (Olshen et al. 2004; Venkatraman and
Olshen 2007), Kolmogorov–Smirnov segmentation (KS) (Navin et al. 2011), and 
piecewise constant fitting (PCF) (Voet et al. 2013).

15.6.3  Reporting of Data

The end result of primary processing of sequence reads obtained from a single-cell 
DNA sequencing experiment is dependent on the mode of mutation calling per-
formed. For SNV and INDEL analysis, variant callers typically report genotypes in
a variant call format (VCF) text file. A VCF file is in text format and contains a 
header at the top that tells the user meta-information about the parameters and filters 
used during variant calling as well as a series of definitions for the abbreviations used 
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for the reporting of information on the genotypes. Following the header will be the 
genotype information. This information includes the genomic position of the variant, 
the reference allele, the alternate allele, the quality score of the variant call, a flag
indicating whether or not the variant passed the applied filters defined during variant 
calling, and a series of data associated with the variant call (homozygous or hetero-
zygous). The data associated with the variant call generally includes metrics such as 
sequencing depths, reads supporting each allele detected, and genotype quality. For 
CNV and SV analysis, variants are usually reported in a straightforward manner. For 
CNVs this will typically include the genomic coordinates for the beginning and end 
of a portion of a contiguous portion of the genome over which copy number was 
determined to be the same as well a statistical value that indicates the probability of 
the identified segment being false. For SVs, the output will include similar values 
except the genomic coordinates of both break points will usually be specified.

15.6.4  Tertiary Analysis

The ultimate goal of single-cell DNA sequencing is to identify the clones present in 
the population of cells analyzed and then infer the phylogeny that relates these 
clones to one another. This type of analysis, though, is still in its infancy and so 
there are no easily accessible software packages to accomplish this task. Accurately
distinguishing the clonal structure and phylogeny across a population of cells can be 
impacted by technical artifacts introduced during WGA. In general, definition of 
clonal structures is performed by relating single-cell mutation profiles to one 
another, while accounting for the probability of mutations being missed due to lack
of genomic coverage or being incorrectly called as a result of ADR and
FPR. Although, at present, software packages are not available for such analyses, an
example of a statistical approach to define clonal structure from single-cell data was 
reported by Gawad et al. (2014). They used multiple methods to examine the clonal 
structures of cancer cell populations isolated from six acute lymphoblastic leukemia
patients. In the first, single-cell mutation profiles were used in a probabilistic 
modeling- based approach. Mutation calls were considered binary and then applied 
to a multivariate Bernoulli model that considers genomic coverage and ADR to
quantify the probability of an observed single-cell mutation profile for each cell. 
The finite mixture of the multivariate Bernoulli distributions was then used to rep-
resent distinct clones. Mutation profiles across cells were also subjected to hierar-
chical clustering based on Jaccard distances and compared to the probabilistic
method, yielding similar results. Finally, mutation profiles were used in a multiple 
correspondence analysis (MCA) as independent assessment of the underlying clonal 
structures from each patient. Similar to a principal component analysis (PCA) often 
applied to RNA expression profiles, MCA can be used to characterize categorical
data, such as binary mutation calls. Single-cell mutation profiles are then repre-
sented as individual points in a two-dimensional Euclidean space, with similar pro-
files clustering together.
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 Annex: Quick Reference Guide

Determine cell dissociation and lysis conditions to 
obtain cell suspension 

Isolate single cells in microfluidic device or by FACS

Choose mode of 
mutation detection

CNVs/SVs
SNVs/INDELs

PicoPLEX/DOP-PCR
MALBAC

SNVs/INDELsCNVs/SVs

MDA

Complete library construction
Fragmentation

Add sample barcodes
Pool samples

PCR to append sequencer adaptors

Sequence

 

Fig. QG15.1 Representation of the wet-lab procedure workflow
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Raw DNA sequence data
(FASTQ format)

Read QC
FASTX or FastQC toolkit Report QC statistics

Low quality score?
Tag or adaptor contamination

In reads?

Trim low-quality bases and adaptor sequences

High-quality reads
(FASTQ format)

Demultiplex sample barcodes

Align reads to reference genome
(BWA, Bowtie)

Choose mode of 
mutation detection

Bin reads across the genome

Perform read realignment and 
base quality recalibration

Calculate copy number values 
based on density

Call variants
(GATK, VarScan, SAMTools ,SNVer, CRISP)

Perform segmentation of bins with common 
copy numbers

(SegSeq, CNVnator, Ginkgo)

Annotate mutations
(snpEFF)

Identify mutations based on ADR/FDR and 
frequency within cell populations

Determine clonality from 
mutation profiles

Determine phylogenetic 
relationships between clonal 

populations

No

Yes

CNV SNV

 

Fig. QG15.2 Main steps of the computational analysis pipeline
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    Chapter 16   
 Submitting Data to a Public Repository, 
the Final Step of a Successful HTS Experiment                     

       Christopher     O’Sullivan      and     Jonathan     Trow    

16.1           Submitting Data to SRA 

 The Sequence Read Archive (SRA) forms the base of the NCBI archive stack. It holds 
raw data supporting downstream analysis and value-added data types like genome 
assemblies and annotation. Submissions should contain raw data suitable for reanaly-
sis. Metadata specifi c to SRA is contained in the SRA  Experiment and Run  . The SRA 
Experiment contains details describing sequence library preparation, molecular and 
bioinformatics workfl ows, and sequencing instruments. The SRA Run contains 
sequence data from a specifi c library prep for a single biological sample. Multiple 
sequencer runs from a library should be split into distinct SRA Runs or submitted as 
distinct Read Groups in bam format in order to retain batch information. 

 We capture submitted details describing your research effort, funding, and pub-
lication in NCBI’s BioProject resource, and describe the biological samples used to 
prepare sequencing libraries in NCBI’s BioSample resource. 

 Note: Each SRA Experiment points to a single BioProject and BioSample. 

16.1.1     Submission of Protected Human Data 

 Data which may contain human sequence and which does not have proper consent for 
public display in an unrestricted database should be submitted to   the database of 
Genotypes and Phenotypes (dbGaP    ). Submitters should contact the dbGaP helpdesk 
(dbgap-help@ncbi.nlm.nih.gov) for assistance with beginning the  submission process  .  

        C.   O’Sullivan      •    J.   Trow      (*) 
  National Center for Biotechnology Information ,  U.S. National Library of Medicine , 
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16.1.2     Bulk Center Submission 

 Bulk SRA metadata  may   be submitted via XML by registered submitting Centers. 
Submitting centers will need to set up a dedicated upload account using   Aspera     
(recommended) or FTP. Centers planning to programmatically submit to SRA 
should contact the SRA helpdesk (sra@ncbi.nlm.nih.gov) for resources and assis-
tance formatting submission XML and setting up an upload account.  

16.1.3     Formatting of Submitted Files 

 SRA accepts a variety of   fi le formats    ; following best  formatting practices   will help 
prevent delays or errors during data loading:

•    It is best to submit fastq fi les with the original header formatting. Modifi cation or 
replacement of the systematic identifi ers generated by the instrument may lead to 
errors or delays in Submission processing.  

•   Bam fi les are the preferred submission format. Please ensure that submitted bam 
fi les have robust header information, including Program (@PG) and Read group 
(@RG) fi elds. In addition, alignments to high quality (chromosome level) 
genomic reference assemblies are strongly recommended. Pre-submission vali-
dation of submitted bams can be completed using   ValidateSamFile     (The Broad 
Institute 2015) , which should ensure successful loading to SRA with no 
modifi cation.     

16.1.4     Gather Information Prior to Starting Submission 

16.1.4.1     BioProject: Why Did You Perform Your Analysis? 

     (a)    Project title and abstract   
   (b)    Aims and  Obje  ctives   
   (c)    Organisms Sequenced   
   (d)    Funding Sources, Publications, etc.      

16.1.4.2     BioSample: What Did You Sequence? 

     (a)    Descriptive sample  in  formation   
   (b)      Tabular format is ideal       
   (c)    Examples: Organism(s), age(s), gender(s), location data, cell line(s), etc.      

C. O’Sullivan and J. Trow
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16.1.4.3     SRA  Experiment  : How Did You Sequence Your Samples? 

     (a)    Sequencing methods you used   
   (b)    The kits you used   
   (c)    The model number(s) of the instrument(s) you used      

16.1.4.4     SRA Run: What Is Your Data File Format? 

     (a)    Files must be in an  acc  eptable format: BAM, FASTQ, etc.   
   (b)      MD5 Checksum for each fi le       
   (c)    Minimum of one  unique   dataset per sample       

16.1.5     SRA Submission Workfl ow 

16.1.5.1     Select or Create BioProject and BioSample(s) 

 BioProject is a description  of      your research effort. 
 BioSample records describe the biologically unique specimens used in your 

research effort. 
 If you have already created a BioSample(s) and BioProject(s) as a part of WGS, 

Genome or Transcriptome Shotgun Assembly (TSA) submission, use those in your 
SRA submission.  

16.1.5.2     SRA-Specifi c Metadata 

•       SRA Experiment    

 –    Describes the sequencing  lib  rary derived from a single biological specimen  
 –   Explains “How” you performed the sequencing  
 –   Multiple Experiments can point to a single Sample, but not vice versa     

•    SRA Run 

 –    All fi les specifi ed in  a   Run are merged into a single dataset  
 –   We extract sequence, quality, and alignment information from your submitted 

fi les and convert them to SRA archive fi le format        

16.1.5.3     Create a New Submission 

     1.     Go to the SRA Batch Submission portal:   https://submit.ncbi.nlm.nih.gov/
subs/sra/    .   

   2.    Click  th  e “New Submission” button.   

16 Submitting Data to a Public Repository, the Final Step of a Successful HTS…

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=faq#wia
http://www.ncbi.nlm.nih.gov/Traces/sra_sub/sub.cgi
https://submit.ncbi.nlm.nih.gov/subs/sra/
https://submit.ncbi.nlm.nih.gov/subs/sra/


388

   3.    Go to the “Submitter” tab and fi ll in all requested fi elds.   
   4.    Click “continue” once you have completed all the “Submitter” Tab fi elds.   
   5.    Go to the “General Info” tab.   
   6.    Select a BioProject by typing in part of the BioProject name (either the 

PRJNA#### accession or the BioProject title).

    (a)    If you do not have a BioProject registered, go to   https://submit.ncbi.nlm.
nih.gov/subs/bioproject/     and create a BioProject, then continue your sub-
mission from this point.       

   7.    Set the Release Date.   
   8.    Register Samples: 

 The “General Info” tab will ask if you are registering new samples:

    (a)    If you answer “Yes” the form will display 2 tabs for registering the new 
samples.   

   (b)    If you answer “No” you will skip steps 10 and 11 and will go directly to the 
SRA metadata tab. Use the Metadata tab if you wish to add additional data 
to existing samples.       

   9.    Click “continue” when you are satisfi ed with your selections.   
   10.    Go to the “BioSample Type” tab. 

 We designed the “BioSample Type” tab to help you select the appropriate 
BioSample type and the correct spreadsheet that goes with your selected 
BioSample Type. After you select your BioSample type, you will be directed to 
the “BioSample Attributes” tab.   

   11.    Once you arrive at the “BioSample Attributes” tab you will upload a tab- 
separated fi le describing your samples:

    (a)    A unique set of attributes describes a sample, and your identifi er for the 
sample is the sample name. Since we do not use sample name, title, or 
description to validate unique sample records, your samples should be 
unique even if these three fi elds are ignored.   

   (b)    Fill out the BioSample spreadsheet and include as much metadata as you 
can. If you have fi lled out all required columns and your samples are still 
not unique enough, you can add your own columns containing unique 
metadata for each sample. When you enter the dates, make sure to enter 
them in “DD-MM-YYYY” (e.g., 30-Oct-2010) format, the standard 
“YYYY-MM-DD” format (e.g., 2010-10-30), or the “YYYY-MM” format 
(e.g., 2010-10).   

   (c)    You can add additional attributes by creating another column with a new 
header.       

   12.    Go to the “SRA Metadata” tab. 
 The “SRA Metadata” tab accepts the tab-separated fi le containing your SRA 

metadata table. If you answered ‘no’ at step 8 above, change the “sample_
name” column heading to “biosample_accession” and enter your SAMN# 
accessions in this column.

C. O’Sullivan and J. Trow
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   Table 16.1    List of common experiment library strategy, source and selection descriptors   

 Strategy  Sequencing strategy used in the experiment 

 WGS  Random sequencing of the whole genome 
 WXS  Target enrichment for expressed subset of genome 
 RNA-Seq  sequencing of whole transcriptome 
 AMPLICON  Amplifi cation of a target loci using PCR 
 ChIP-Seq  Direct sequencing of chromatin immunoprecipitates 
 Bisulfi te-Seq  Sequencing following treatment of DNA with bisulfi te 

to convert cytosine residues to uracil depending on 
methylation status 

  Source    Type of genetic source material sequenced  
 GENOMIC  Genomic DNA (includes PCR products from genomic 

DNA) 
 TRANSCRIPTOMIC  Transcription products or non-genomic DNA (EST, 

cDNA, RT-PCR, screened libraries) 
 METAGENOMIC  Mixed material from metagenomic or environmental 

samples 
 METATRANSCRIPTOMIC  RNA extracted from environmental samples  
 SYNTHETIC  Synthetic DNA 
 VIRAL RNA  Viral RNA 
  Selection    Method of selection or enrichment used in the 

experiment  
 RANDOM  Random selection by shearing or other method 
 polyA  enrichment for messenger RNA (mRNA) 
 ChIP  Chromatin immunoprecipitation 
 MNase  Micrococcal nuclease (MNase) digestion 
 Hybrid Selection  target enrichment via complementary hybridization 
 Restriction Digest  DNA fractionation using restriction enzymes 

    (a)    Library Strategy, Source and Selection (see Table  16.1 ) are required fi elds 
and use controlled vocabularies. The template contains the currently valid 
values for these fi elds.

       (b)    To add a custom attribute in a key-value pair confi guration, you can add 
additional columns by entering a column header in a blank column and then 
entering the data for that column.   

   (c)    Multiple sequence fi les from a library are specifi ed by creating new columns 
with the name “fi lename#”, where # is the fi le count such as “fi lename1”, 
“fi lename2”.       

   13.    To upload fi les using your Web browser, go to the “Files” tab, then click the 
“Browse” button to select the fi le(s) you want to upload. We encourage the use 
of the Aspera plugin for faster data transfer (Aspera, Inc. 2015).

    (a)    Make sure the plugin is running after you install it by launching the Aspera 
Connect application you installed with the plugin.   

   (b)    When you use Aspera for the fi rst time, a pop-up should appear below the 
URL bar that will ask for permissions. If you do not see the pop-up, refresh 
the page, select a single fi le and then look for the pop-up.       

16 Submitting Data to a Public Repository, the Final Step of a Successful HTS…
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   14.    Uploaded fi les will be validated against the fi lenames specifi ed in the spread-
sheet prior to the completion of your submission.

    (a)    Using a Web browser for uploads may not be appropriate for large 
submissions.   

   (b)    Aspera command line or ftp client can also be used for uploads.   
   (c)    Write to sra@ncbi.nlm.nih.gov for instructions, passwords, and secure 

shell (ssh) keys.       

   15.    Go to the “Overview” tab. 
 Use the “Overview” tab to review your submission. If your submission looks 

correct, click the “Submit” button.   
   16.    Go to the   SRA submitter interface     to view your submission status, make edits 

or corrections.     

 Example 1: Data submission for a study with three distinct experimental condi-
tions, each with three replicates. 

 At  step 8  register three BioSamples, one for each condition. Make sure to 
include a distinguishing attribute(s), such as “Treatment” which would be unique 
for all three in this example case. Then at  step 12 , fi ll in one row of the spreadsheet 
for each replicate, making sure that each library_ID is unique and descriptive (see 
Table  16.2 ). Finally, continue with the submission process as indicated .

   Table 16.2    Example SRA metadata table   

 bioproject_access  sample_name  library_ID  fi lename  fi lename2 

 PRJNA1000000  Control mouse, 
untreated 

 Control 
rep. 1 

 Ctrl1_R1.fq  Ctrl1_R2.fq 

 PRJNA1000000  Control mouse, 
untreated 

 Control 
rep. 2 

 Ctrl2_R1.fq  Ctrl2_R2.fq 

 PRJNA1000000  Control mouse, 
untreated 

 Control 
rep. 3 

 Ctrl3_R1.fq  Ctrl3_R2.fq 

 PRJNA1000000  Treated mouse, 
50mg 
Compound A 

 A Treated 
50mg. 
rep. 1 

 ComA1_R1.fq  ComA1_R2.fq 

 PRJNA1000000  Treated mouse, 
50mg 
Compound A 

 A Treated 
50mg. 
rep. 2 

 ComA2_R1.fq  ComA2_R2.fq 

 PRJNA1000000  Treated mouse, 
50mg 
Compound A 

 A Treated 
50mg. 
rep. 3 

 ComA3_R1.fq  ComA3_R2.fq 

 PRJNA1000000  Treated mouse, 
50mg 
Compound B 

 B Treated 
50mg. 
rep. 1 

 ComB1_R1.fq  ComB1_R2.fq 

 PRJNA1000000  Treated mouse, 
50mg 
Compound B 

 B Treated 
50mg. 
rep. 2 

 ComB2_R1.fq  ComB2_R2.fq 

 PRJNA1000000  Treated mouse, 
50mg 
Compound B 

 B Treated 
50mg. 
rep. 3 

 ComB3_R1.fq  ComB3_R2.fq 

C. O’Sullivan and J. Trow
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