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Abstract The Kolmogorov-Arnold-Moser (KAM) theorem and the Nekhoroshev
theorem are the two “pillars” of canonical perturbation theory for near-integrable
Hamiltonian systems. Over the years there have been many extensions and general-
izations of these fundamental results, but it is only very recently that extensions of
these theorems near-integrable Hamiltonian systems having explicit, and aperiodic,
time dependence have been developed. We will discuss these results, with particular
emphasis on the new mathematical issues that arise when treating aperiodic time
dependence.

1 Introduction

Vladimir Arnold’s contributions to mathematics and mechanics are truly remarkable
for both their breadth and depth. In this article we discuss an area where he
made contributions that are essential to understand for any student or researcher in
the field of Hamiltonian dynamics. In particular, “Arnold” is the middle name on the
famous Kolmogorov-Arnold-Moser (KAM) theorem [1–3], which gives sufficient
conditions for the existence of quasiperiodic motion in near-integrable Hamiltonian
systems (expressed in the action-angle variables of the unperturbed integrable
Hamiltonian system). Another theorem in the same field (and with a very similar
setup), due to Nekhoroshev [4], describes stability of the action variables over and
exponentially long time interval. Together, the KAM and Nekhoroshev theorems
are the two “rigorous pillars” that establish canonical perturbation theory of near-
integrable Hamiltonian systems. A recent monograph that traces the historical
development of this theory in some detail is [5].

Despite the firm establishment of the “KAM theory” and “Nekhoroshev theory”
in the mathematics, physical science, and engineering disciplines, there is an
important area that has not been addressed. In particular, the development of similar
types of perturbation theorems for near-integrable systems having “general” time

A. Fortunati • S. Wiggins (�)
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
e-mail: alessandro.fortunati@bristol.ac.uk; s.wiggins@bristol.ac.uk

© Springer International Publishing Switzerland 2016
T.M. Rassias, P.M. Pardalos (eds.), Essays in Mathematics and its Applications,
DOI 10.1007/978-3-319-31338-2_5

89

mailto:alessandro.fortunati@bristol.ac.uk
mailto:s.wiggins@bristol.ac.uk


90 A. Fortunati and S. Wiggins

dependence, i.e., when the perturbation of the integrable Hamiltonian (or of a
particular motion), is not required to be neither periodic nor quasiperiodic. We shall
refer to this class of perturbation as aperiodic. The motivation for such results comes
from applications, e.g. the study of transport and mixing in fluid mechanics from
the dynamical systems point of view (see [6] for a discussion of the issues from the
Hamiltonian dynamic point of view that arise in this field).

While our goal here is not to review KAM and Nekhoroshev theory (the mono-
graph of Dumas [5] does an excellent job of this), we do note some of the issues
such as results for time-dependent, near-integrable Hamiltonian systems. Essentially
all of the literature (with a few notable exceptions that we will mention toward
the end of this introduction) concerned with time-dependent Hamiltonian systems
deal with periodic or quasiperiodic time dependence. For such time dependence,
the problems can often be cast in a form where classical results and approaches
can be applied. The monographs [7, 8] discuss some of these topics. The paper [9]
develops a KAM type result for quasiperiodically time-dependent systems and the
paper [10] develops a Nekhoroshev result for the same class of systems. The first
paper to develop a Nekhoroshev type result for Hamiltonian systems with general
time dependence was [11]. The form of the system they treated was somewhat
different than the classical near-integrable Hamiltonian systems since their goals
were somewhat different. The first papers to develop Nekhoroshev type results for
systems with general time dependence in the classical setting were [12, 13], and the
only paper treating a KAM type result in the classical setting is [14]. The purpose of
this paper is to describe the results in these latter papers dealing with aperiodic
time dependence, with particular attention on the issues that arise for explicitly
time-dependent Hamiltonians and the correspondent regularity hypotheses that the
perturbation function is required to satisfy. In Sect. 2 we discuss the Nekhoroshev
theorem and in Sect. 3 we discuss the KAM theorem.

2 A Nekhoroshev Theorem with Aperiodic Time Dependence

In this section we describe the setup and strategy for the proof of the theorem. This
will provide us with the background and framework for providing a description
of the theorem. We follow closely the setup in [11] (but see [15] for a detailed
development of the canonical perturbation theory and the Nekhoroshev theory,
including historical background).

2.1 The Setup and Assumptions

We consider a near-integrable, slowly varying (to be quantified shortly) time-
dependent Hamiltonian system expressed in the action-angle variables of the
unperturbed system of the following form:

H .I; '; t/ WD h.I/C "f .I; '; �t/: (1)
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We note the following:

• "; � > 0 small parameters.
• I D .I1; : : : ; In/ 2 G , ' D .'1; : : : ; 'n/ 2 T

n denote action-angle variables,
where G � R

n is an open set.
• The dependence on t is, in general, aperiodic, i.e., it need not be periodic or

quasiperiodic.

We will rewrite the time-dependent Hamiltonian (1) as a time-independent
Hamiltonian by defining two new conjugate variables in the standard way. If we
define � WD �t and � as the new conjugate variable pair, the Hamiltonian (1) takes
the autonomous form on D WD G � R � T

n � R 3 .I; �; '; �/.
H.I; '; �; �/ WD h.I/C ��C "f .I; '; �/: (2)

Since we use complex function techniques in the proof of the theorem, we will
need to complexify the real domain of the Hamiltonian. Let �; � > 0 be real
numbers. Then we define D�;2� WD G��R��Tn

2��S� to be a complex neighborhood
of D , where

G� WD
[

I2G
��.I/; ��.I/ WD fOI 2 C

n W jOI � Ij < �g;

R� WD f� 2 C W j=�j < �g; T
n
2� WD f' 2 C

n W j='j < 2�g;
S� WD f� 2 C W j=�j < �g.

The case n D 1 is illustrated in Fig. 1.
Then we assume that h.I/ and f .I; '; �/ are holomorphic on D�;2� . Furthermore,

we also make a standard assumption on the unperturbed Hamiltonian.

Hypothesis 2.1 (Convexity). There exists two constants M � m > 0 such that, for
all I 2 G�

j@2I h.I/vj � Mjvj; jh@2I h.I/v; vij � mjvj2, (3)

for all v 2 R
n.
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Fig. 1 The sets D (dash dotted) and D�;2� for n D 1
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2.2 Statement of the Theorem

We can now state a version of the Nekhoroshev theorem for time-dependent
Hamiltonian systems having a general time dependence. First, we define

QF WD sup
D�;2�

jf j
 
1C e� �

2

1 � e� �
2

!n

; �";� WD �C e QF "; (4)

and we note that the set of parameters �; �;M;m; and QF are characteristic of a given
Hamiltonian H. Now we state the theorem.

Theorem 2.2 (Aperiodic Nekhoroshev Theorem ). Assume the convexity hypoth-
esis above. Then there exists constants�� and T , depending on �; �;M;m; QF , and
n, such that if " and � satisfy

�";� < 1=.3
4��/; (5)

then orbits .I.t/; '.t// of the Hamiltonian system (2) starting in G �T
n at t0, satisfy

jI.t/ � I.t0/j < .����;"/
1
4 �; for jt � t0j < T

"
exp

"�
1

����;"

� 1
2n.nC1/

#
.

We note that within the threshold (5), " and � are independent. We refer this as
unconditionally slow time dependence.

2.2.1 Scheme of the Proof

The classical proof of Nekhoroshev is divided into two parts:

Analytic part (normal form lemma): For the analytic part, we construct an "-close
to the identity canonical change Cr casting H into the normal form:

HN WD H ı Cr D h.I/C ��C Z.r/ C R.rC1/. (6)

We note the following:

• The result is local: it holds on sets called non-resonance domains.
• Cr is the composition of r < 1 canonical transformations.

Geometric part (global result): This is an extremely clever contribution of
Nekhoroshev [4] that shows how to cover the entire phase space D with non-
resonance domains where the normal form lemma can be applied. See also
[16, 17].
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Remark 2.3. It is important to note that the Hamiltonian is not normalized with
respect to the variables .�; �/ (it is a “partial normal form”). Hence the same
geometric result of the time-independent classical Nekhoroshev theorem applies.

The construction of the abovementioned normal form is classically achieved
in two steps. First a formal perturbation scheme is developed, based on the Lie
transform method that yields a normal form on non-resonance domains. Second,
we consider the properties of the normal form on the appropriate domains and the
“optimal” choice of parameters leading to exponentially small estimates.

We give a brief overview of the “formal scheme” for developing the normal form.

Formal Scheme

Step 1: Expand the perturbation as follows:

f .I; '; �/ D
X

k2Zn

fk.I; �/e
ik�':

Given K 2 N (to be determined afterward in an “optimal” way with respect to
all of the parameters in a way that makes the remainder small), we write the
expanded Hamiltonian in such a way it is decomposed into suitable “levels” (sets
of Fourier harmonics in this case) in order to apply the Lie transform method :

H D h.I/C ��C H1 C H2 C � � � ; Hs WD "
X

.s�1/K�jkj<sK

fk.I; �/e
ik�' .

Step 2 (Lie transform method): The aim is to find 	.r/ WD f	sgsD1;:::;r such that
T	.r/H D HN , where

T	.r/ WD
X

s�0
Es; Es WD

8
<̂

:̂

id s D 0

1

s

sX

jD1
jL	j Es�j s � 1

and Lf g WD ff ; gg D @' f@Ig C @� f@�g � @'g@I f � @�g@�f is the Lie derivative.
Step 3 Hierarchy of homological equations: Each 	s is determined as a solution

of a homological equation:

Lh	s C Zs D  s; s D 1; : : : ; r,

where Z.r/ D Z1 C � � � C Zr, where Zs contains the same harmonics as Hs

 s WD

8
<̂

:̂

H1 s D 1

Hs C �Es�1�C 1

s

s�1X

jD1
jŒL	j Hs�j C Es�jHj
 2 � s � r
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We make the following remarks concerning the solution of the homological
equations.

• The solution is found in the Fourier space, by expanding 	s, Zs, and  s in a
Fourier expansion in the angles.

• The term �Es�1� is the extra-term due to the aperiodic time dependence.

Convergence: Consider on D�;2� the Fourier norm

kFk.�;�/ WD
X

k2Zn

 
sup
D�;�

jfkj
!

ejkj� ,

with fk Fourier coefficients of F and jkj WD jk1jC� � �Cjknj. The following lemma
of Giorgilli describes the type of estimates that are required in order to establish
the convergence of the formal scheme.

Lemma 1 (Giorgilli). Suppose that there exist h > 0 and F ; b � 0 such that

kHsk.�;�/ � hs�1F ; k sk.1�d/.�;�/ � bs�1

s
F (7)

for all s � 1 and for all d 2 .0; 1=4/. Then, if F and b are sufficiently small,
the operator T	.r/ (and its inverse T�1

	.r/
) defines a canonical transformation on the

domain D.1�d/.�;�/.

After having bounded the above-described extra-term with the tools used in [15],
one can see that the constraints imposed by condition (7) lead to more involved
estimates with respect to the autonomous case. More precisely, the system of
recurrence equations arising from (7) forbids straightforward bounds as in [15]
but requires an ad hoc analysis, carried out in this case with the use of the
generating function method. See [13] for the details.
The smallness condition of � required by (5) turns out to be an essential
ingredient in order to satisfy condition (7).

3 A KAM Theorem with Aperiodic Time Dependence

In this section we describe the setup and strategy for the proof of the theorem. This
will provide us with the background and framework for providing a description
of the theorem. Our approach follows closely the Lie transform approach to
Kolmogorov’s original version of the KAM theorem given in [18].
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3.1 The Setup and Assumptions

The setup and assumptions are different than those for the Nekhoroshev theorem.
We will comment more in this later on.

We consider a near-integrable, quadratic in P, time-dependent Hamiltonian
expressed in the action-angle variables of the unperturbed system of the following
form:

H .P;Q; t/ D 1

2
h� P;Pi C "f .P;Q; t/; (8)

where:

• � is a real non-singular n � n matrix.
• " is a small parameter.

We will focus on the preservation of a particular torus (in the spirit of the original
Kolmogorov theorem). Therefore, we consider a particular OP, we translate the
coordinates .p; q/ WD .Q;P � OP/ so that they are “centered” on the torus of interest,
and we transform the time-dependent Hamiltonian to an autonomous Hamiltonian,
as above, by introducing a new conjugate pair of coordinates. The Hamiltonian that
we obtain in this way has the form:

H.p; q; �; �/ D h!; pi C 1

2
h� p; pi C �C "f .p; q; �/,

where:

• � WD t and � 2 R is its conjugate momentum.
• ! WD � OP.
• .p; q; �; �/ 2 R

n � T
n � R � R

C DW D .

We next define a complex extension to the domain. We let �; �; and� > 0, and
then D�;�;� WD �� �T

n
� �S� �R� is defined to be the complex neighborhood of D

where

�� WD fp 2 C
n W jpj � �g; T

n
� WD fq 2 C

n W j=qj � �g;
S� WD f� 2 C W j=�j � �g; R� WD f� 2 C W <� � ��I j=�j � �g.

We endow D with the Fourier norm defined as

kgkŒ�;� I�
 WD
X

k2Zn

sup
p2D�;�;�

jgk.p; �/jejkj� .

We make the following assumptions.

Hypothesis 3.1 (I). There exists m 2 .0; 1/ such that, for all v 2 C
n

j� vj � m�1jvj.
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Hypothesis 3.2 (II, Slow Decay). The perturbation is an holomorphic function on
D satisfying

kf .q; p; �/kŒ�;� I�
 � Mf e
�aj�j;

for some Mf > 0 and a 2 .0; 1/.

3.2 Statement of the Theorem

Now we can state the theorem

Theorem 3.3 (Aperiodic Kolmogorov Theorem). Assume hypotheses I and II
and suppose that OP is such that ! is a  � � Diophantine vector. Then, for all
a 2 .0; 1/, there exists "a > 0 such that, for all " 2 .0; "a
, it is possible to
find a canonical, "-close to the identity, analytic change of variables .q; p; �; �/ D
K .q.1/; p.1/; �; �.1//, K W D� ! D with D� � D , transforming the
Hamiltonian (1) into the Kolmogorov normal form

H1.q.1/; p.1/; �; �.1// D h!; p.1/i C �.1/ C Q.q.1/; p.1/; �I "/,
where Q is a homogeneous polynomial of degree 2 in p.

Remark 3.4. We note that no restrictions are imposed on a, which implies that
the decay of the time dependence can be arbitrarily slow. On the other hand, the
threshold is of the form "a � Ca3, with C (very small!) constant.

3.2.1 Scheme of the Proof

The proof follows the classical iterative approach following the Lie transform
approach of [18] and it is carried out along the lines of [19]. In particular, it is
organized as follows:

Step I (Induction basis) We rewrite the Hamiltonian H in the following form:

Hj D h!; pi C �C A.j/.q; �/C hB.j/.q; �/; pi C 1

2
hC.j/.q; �/p; pi; (9)

where j D 0 denotes zeroth step in the induction process, and for this reason, we
set H0 WD H.

Step II (Perturbative scheme, formal part) For all j, a generating function 	j is
chosen in such a way the action of exp.L	j/ on Hj removes A.j/ and B.j/. 	j

is such that HjC1 WD exp.L	j/Hj has the same form (9).
Step III (Perturbative scheme, quantitative part) We show that the “unwanted

terms” A.j/ and B.j/ get “smaller and smaller” as j increases. More precisely

max
n��A.j/

��
Œ�jI�j


;
��B.j/

��
Œ�jI�j


o
� �je

�aj�j;
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with �j (quadratically) infinitesimal as j ! 1, while �j � �� > 0. The desired
canonical transformation is obtained by setting

K WD lim
j!1 exp.L	j/ ı exp.L	j�1 / ı : : : ı exp.L	0/:

The composition H ı K produces the desired Kolmogorov normal form.
Time-dependent homological equation: The equation for the determination of 	j

at each stage of the normalization algorithm is of the form

@�' C ! � @q' D  , (10)

with  D  .q; �/ given.
Equation (10) is the novelty of our analysis, and it reflects a remarkable
conceptual difference with the normalization algorithm used for the Nekhoroshev
theorem. Basically, the latter uses the fact that the number of normalization
steps is finite: the contribution of the aperiodic term is controlled only over a
finite timespan and the constant �� of formula (5) tends to zero as r ! 1.
The situation is substantially different in the Kolmogorov scheme, in which the
number of normalization steps is infinite, and the only way to control the effect
of the time is to annihilate it at each stage of the algorithm with Eq. (10). The
properties of its solution are described in the following lemma.

Lemma 2. Let ı 2 Œ0; 1/ and suppose that  satisfies

k kŒ.1�ı/� I�
 � Ke�aj�j,

(exponential decay). Then for all d 2 .0; 1�ı/ and for all � such that 2j!j� � d� ,
the solution of (10) exists and satisfies

k'kŒ.1�ı�d/� I�
 � KS

a.d�/2�
e�aj�j; S � 0. (11)

Remark 3.5. Finally, we note that the exponential rate of the decay is not necessary
and is used for simplicity. However a decay hypothesis is essential in order to ensure
the existence of the integrals appearing in the bounds which lead to (11).

4 Summary and Outlook

The aim of this paper was to give an overview of the Nekhoroshev and Kolmogorov
stability-type results for integrable Hamiltonian systems subject to aperiodic time-
dependent perturbations, obtained in the papers [13] and [14]. These are recently
added tesseræ to the rich mosaic of the Stability Theory of Hamiltonian Sys-
tems, one of the several fields in which V.I. Arnold made so many fundamental
contributions.
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The motivation for generalizing the classical Nekhoroshev and KAM theorems to
include explicit, but arbitrary, time dependence arises from many applications. Most
notably, applications of the dynamical systems approach to the study of Lagrangian
transport in fluid mechanics, as described in [6]. Hopefully, the results in this paper
will serve as motivation to analyze other possibilities for the generalization of these
fundamental results in Hamiltonian perturbation theory and, thus, extend both the
mathematical framework and the range of applications to which these results can be
applied.
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