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Abstract In this paper we prove new fixed-point theorems on complete S-metric
spaces. Our results generalize and extend some fixed-point theorems in the litera-
ture. We give some examples to show the validity of our fixed-point results.

1 Introduction

Metric spaces are very important in the various areas of mathematics such as analy-
sis, topology, applied mathematics, etc. So it has been studied new generalizations of
metric spaces. Recently in 2012, Sedghi et al. have defined the concept of S-metric
spaces [13].

Many authors have defined some contractive mappings on complete metric
spaces as a generalization of the well-known Banach’s contraction principle. In
1974, Ciric studied a generalization of Banach’s contraction principle and gave
quasi-contractions [3]. In 1979, Fisher proved new fixed-point theorems for quasi-
contractions and continuous self-mappings [5]. In 1977, Rhoades investigated some
comparisons of various contractive mappings and introduced a new contractive
mapping called a Rhoades’ mapping [11]. He studied some fixed-point theorems.
But he did not have any fixed-point theorem for a Rhoades’ mapping. Hence in
1986, Chang introduced the concept of a C-mapping and obtained some fixed-point
theorems using this mapping for a Rhoades’ mapping [1]. In 1988, Liu et al. defined
the notion of L-mapping to give necessary and sufficient conditions for the existence
of a fixed point for a Rhoades’ mapping [8]. In 1990, Chang and Zhong proved some
fixed-point theorems using the notion of periodic point [2].

The fixed-point theory in various metric spaces was also studied. For example,
in 2013 Gupta presented the concept of cyclic contraction on S-metric spaces [6]. In
2014, Sedghi and Dung proved some fixed-point theorems and gave some analogues
of fixed-point theorems in metric spaces for S-metric spaces [12]. Hieu et al. gave
the relation between a metric and an S-metric [7]. In 2014, Dung et al. proved some
generalized fixed-point theorems for g-monotone maps on partially ordered S-metric
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spaces [4]. The present authors defined Rhoades’ condition on S-metric spaces
and proved some fixed-point theorems satisfying Rhoades’ condition [9]. Also they
introduced some new contractive mappings on S-metric spaces and investigated their
relationships with the Rhoades’ condition [10].

Similar to the Banach’s contraction principle, now we recall the following result
on S-metric spaces given in [13]:

Let .X; S/ be a complete S-metric space, T be a self-mapping of X, and

S.Tx; Tx; Ty/ � aS.x; x; y/; (1)

for some 0 � a < 1 and all x; y 2 X. Then T has a unique fixed point in X and T is
continuous at the fixed point.

Notice that there exists a self-mapping T which has a fixed point, but it does not
satisfy Banach’s contraction principle on S-metric spaces as we have seen in the
following example:

Let R be the S-metric space which is not generated by any metric with

S.x; y; z/ D jx � zj C jx C z � 2yj ;

for all x; y; z 2 R defined in [10]. Let

Tx D 1 � x:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. T has a fixed point

x D 1

2
, but T does not satisfy the Banach’s contraction principle (1). Hence it is

important to study some new fixed-point theorems.
In this paper, we investigate some generalized fixed-point theorems on S-metric

spaces. In Sect. 2 we recall some concepts, lemmas, and corollaries which are
useful in the sequel. In Sect. 3 we prove new fixed-point theorems on complete
S-metric spaces. Our results generalize and extend some fixed-point theorems in
the literature. Also we give some examples to show the validity of our fixed-point
theorems.

2 Preliminaries

The following definitions, lemmas, and corollaries can be found in the paper
referred to.

Definition 1 ([13]). Let X be a nonempty set and S W X3 ! Œ0; 1/ be a function
satisfying the following conditions for all x; y; z; a 2 X W
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(S1) S.x; y; z/ � 0,
(S2) S.x; y; z/ D 0 if and only if x D y D z,
(S3) S.x; y; z/ � S.x; x; a/ C S.y; y; a/ C S.z; z; a/.

Then S is called an S-metric on X and the pair .X; S/ is called an S-metric space.

Definition 2 ([13]). Let .X; S/ be an S-metric space.

1. A sequence .xn/ � X converges to x 2 X if S.xn; xn; x/ ! 0 as n ! 1, that is, for
each " > 0, there exists n0 2 N such that for all n � n0, we have S.xn; xn; x/ < ".

2. A sequence .xn/ � X is a Cauchy sequence if S.xn; xn; xm/ ! 0 as n; m ! 1,
that is, for each " > 0, there exists n0 2 N such that for all n; m � n0, we have
S.xn; xn; xm/ < ".

3. The S-metric space .X; S/ is complete if every Cauchy sequence is a convergent
sequence.

Lemma 1 ([13]). Let .X; S/ be an S-metric space and x; y 2 X. Then we have

S.x; x; y/ D S.y; y; x/.

Lemma 2 ([13]). Let .X; S/ be an S-metric space. If xn ! x and yn ! y then we
have

S.xn; xn; yn/ ! S.x; x; y/.

Lemma 3 (See Corollary 2.4 in [12]). Let .X; S/; .Y; S0/ be two S-metric spaces
and f W X ! Y be a function. Then f is continuous at x 2 X if and only if f .xn/ !
f .x/ whenever xn ! x.

The relation between a metric and an S-metric is given in [7] as follows:

Lemma 4 ([7]). Let .X; d/ be a metric space. Then the following properties are
satisfiedW
1. Sd.x; y; z/ D d.x; z/ C d.y; z/ for all x; y; z 2 X is an S-metric on X.
2. xn ! x in .X; d/ if and only if xn ! x in .X; Sd/.
3. .xn/ is Cauchy in .X; d/ if and only if .xn/ is Cauchy in .X; Sd/:

4. .X; d/ is complete if and only if .X; Sd/ is complete.

Now we recall the following fixed-point results.

Corollary 1 (See Corollary 2.12 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx; Tx; Ty/ � aS.x; x; y/ C bS.Tx; Tx; x/ C cS.Ty; Ty; y/; (2)

for some a; b; c � 0, a C b C c < 1, and all x; y 2 X. Then T has a unique fixed

point in X. Moreover, if c <
1

2
then T is continuous at the fixed point.

Corollary 2 (See Corollary 2.14 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and
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S.Tx; Tx; Ty/ � h maxfS.Tx; Tx; y/; S.Ty; Ty; x/g; (3)

for some h 2 Œ0;
1

3
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Corollary 3 (See Corollary 2.10 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx; Tx; Ty/ � h maxfS.Tx; Tx; x/; S.Ty; Ty; y/g; (4)

for some h 2 Œ0; 1/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

if h 2 Œ0;
1

2
/ then T is continuous at the fixed point.

Corollary 4 (See Corollary 2.17 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx; Tx; Ty/ � aS.x; x; y/ C bS.Tx; Tx; y/ C cS.Ty; Ty; x/; (5)

for some a; b; c � 0, a C b C c < 1, a C 3c < 1, and all x; y 2 X. Then T has a
unique fixed point in X. Moreover, T is continuous at the fixed point.

Corollary 5 (See Corollary 2.19 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx; Tx; Ty/ � aS.x; x; y/ C bS.Tx; Tx; x/ C cS.Tx; Tx; y/

CdS.Ty; Ty; x/ C eS.Ty; Ty; y/; (6)

for some a; b; c; d; e � 0 such that maxfa C b C 3d C e; a C c C d; d C 2eg < 1 and
all x; y 2 X. Then T has a unique fixed point in X. Moreover, T is continuous at the
fixed point.

Corollary 6 (See Corollary 2.21 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx; Tx; Ty/ � h maxfS.x; x; y/; S.Tx; Tx; x/; S.Tx; Tx; y/;

S.Ty; Ty; x/; S.Ty; Ty; y/g; (7)

for some h 2 Œ0;
1

3
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Corollary 7 (See Corollary 2.15 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx; Tx; Ty/ � a.S.Tx; Tx; y/ C S.Ty; Ty; x//; (8)
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for some a 2 Œ0;
1

3
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Corollary 8 (See Corollary 2.8 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx; Tx; Ty/ � a.S.Tx; Tx; x/ C S.Ty; Ty; y//; (9)

for some a 2 Œ0;
1

2
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

In the next section we give some generalizations of the above results.

3 Some Fixed-Point Theorems on S-Metric Spaces

In this section we give some definitions and generalizations of fixed-point theorems
for self-mappings on complete S-metric spaces.

Definition 3. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN1) There exist real numbers a; b satisfying a C 3b < 1 with a; b � 0 such that

S.Tx; Tx; Ty/ � aS.x; x; y/ C b maxfS.Tx; Tx; x/; S.Tx; Tx; y/;

S.Ty; Ty; y/; S.Ty; Ty; x/g;

for all x; y 2 X.

Theorem 1. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN1/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and define the sequence .xn/ as follows:

Tx0 D x1; Tx1 D x2; : : : ; Txn D xnC1; : : : .

Suppose that xn ¤ xnC1 for all n. Using the condition .SN1/ we have

S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/ � aS.xn�1; xn�1; xn/

Cb maxfS.xn; xn; xn�1/; S.xn; xn; xn/; S.xnC1; xnC1; xn/; S.xnC1; xnC1; xn�1/g
D aS.xn�1; xn�1; xn/ C b maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/; S.xnC1; xnC1; xn�1/g: (10)

By the condition .S3/ we have

S.xnC1; xnC1; xn�1/ � S.xnC1; xnC1; xn/ C S.xnC1; xnC1; xn/ C S.xn�1; xn�1; xn/
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D 2S.xnC1; xnC1; xn/ C S.xn�1; xn�1; xn/: (11)

Then using Lemma 1 and the conditions (10) and (11), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/ C b maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/;

2S.xnC1; xnC1; xn/ C S.xn�1; xn�1; xn/g
� aS.xn�1; xn�1; xn/ C 2bS.xnC1; xnC1; xn/ C bS.xn�1; xn�1; xn/

and so

.1 � 2b/S.xn; xn; xnC1/ � .a C b/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � a C b

1 � 2b
S.xn�1; xn�1; xn/: (12)

Let p D a C b

1 � 2b
. Then we have p < 1 since a C 3b < 1 (notice that b ¤ 1

2
since we

have 0 � b <
1

3
by the conditions a C 3b < 1 and a; b � 0).

Repeating this process in the condition (12), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (13)

Then for all n; m 2 N, n < m, using the condition (13) and the condition .S3/, we
have

S.xn; xn; xm/ � 2S.xn; xn; xnC1/ C 2S.xnC1; xnC1; xnC2/ C : : : C 2S.xm�1; xm�1; xm/

� 2.pn C pnC1 C : : : C pm�1/S.x0; x0; x1/

� 2pn.1 C p C p2 C : : : C pm�n�1/S.x0; x0; x1/

� 2pn 1 � pm�n

1 � p
S.x0; x0; x1/

� 2pn

1 � p
S.x0; x0; x1/: (14)

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � aS.xn�1; xn�1; x/

Cb maxfS.xn; xn; xn�1/; S.xn; xn; x/; S.Tx; Tx; x/; S.Tx; Tx; xn�1/g
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and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x; Tx/ D S.Tx; Tx; x/ � bS.Tx; Tx; x/;

which is a contradiction since 0 � b <
1

3
. So we have Tx D x.

Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN1/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � aS.x; x; y/

Cb maxfS.x; x; x/; S.x; x; y/; S.y; y; y/; S.y; y; x/g
D aS.x; x; y/ C bS.x; x; y/ D .a C b/S.x; x; y/;

which implies x D y since a C b < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � aS.xn; xn; x/

Cb maxfS.Txn; Txn; xn/; S.Txn; Txn; x/; S.Tx; Tx; x/; S.Tx; Tx; xn/g
D aS.xn; xn; x/ C b maxfS.Txn; Txn; xn/; S.Txn; Txn; x/; S.x; x; xn/g:

(15)

Using the condition .S3/ we have

S.Txn; Txn; xn/ � S.Txn; Txn; x/ C S.Txn; Txn; x/ C S.xn; xn; x/

D 2S.Txn; Txn; x/ C S.xn; xn; x/: (16)

Then using the conditions (15), (16) and Lemma 1, we obtain

S.Txn; Txn; Tx/ � aS.xn; xn; x/

Cb maxf2S.Txn; Txn; x/ C S.xn; xn; x/; S.Txn; Txn; x/; S.x; x; xn/g
D aS.xn; xn; x/ C bf2S.Txn; Txn; x/ C S.xn; xn; x/g
D aS.xn; xn; x/ C 2bS.Txn; Txn; x/ C bS.xn; xn; x/;

which implies

S.Txn; Txn; Tx/ D S.Txn; Txn; x/ � a C b

1 � 2b
S.xn; xn; x/: (17)

So using the condition (17), for n ! 1 we have

lim
n!1S.Txn; Txn; Tx/ D 0:
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Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 1 is a generalization of the Banach’s contraction princi-
ple (1). Indeed, if we take b D 0 in Theorem 1, we obtain the Banach’s contraction
principle (1).

Now we give an example of a self-mapping satisfying the condition .SN1/ such
that the condition of the Banach’s contraction principle (1) is not satisfied.

Example 1. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jx C z � 2yj ;

for all x; y; z 2 R [10]. Let us define

Tx D
�

x C 50 if jx � 1j D 1

45 if jx � 1j ¤ 1
:

Then T is a self-mapping on the complete S-metric space R and satisfies the

condition .SN1/ for a D 0 and b D 1

4
. Then T has a unique fixed point x D 45. But

T does not satisfy the condition of the Banach’s contraction principle (1). Indeed,
for x D 0; y D 2 we obtain

S.Tx; Tx; Ty/ D 4 � aS.x; x; y/ D 4a;

which is a contradiction since a < 1.

Definition 4. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN2) There exist real numbers a; b satisfying a C 3b < 1 with a; b � 0 such that

S.Tmx; Tmx; Tmy/ � aS.x; x; y/ C b maxfS.Tmx; Tmx; x/; S.Tmx; Tmx; y/;

S.Tmy; Tmy; y/; S.Tmy; Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 1.

Corollary 9. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN2/, then T has a unique fixed point x in X and Tm is
continuous at x.

Proof. From Theorem 1, it can be easily seen that Tm has a unique fixed point x in
X, and Tm is continuous at x. Also we have

Tx D TTmx D TmC1x D TmTx

and so we obtain that Tx is a fixed point for Tm. We get Tx D x since x is a unique
fixed point.
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Definition 5. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN3) There exist real numbers a; b; c; d satisfying maxfaCbCcC3d; 2bCdg < 1

with a; b; c; d � 0 such that

S.Tx; Tx; Ty/ � aS.x; x; y/ C bS.Tx; Tx; x/ C cS.Ty; Ty; y/

Cd maxfS.Tx; Tx; y/; S.Ty; Ty; x/g;
for all x; y 2 X.

Theorem 2. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN3/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN3/ we have

S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/ � aS.xn�1; xn�1; xn/ C bS.xn; xn; xn�1/

CcS.xnC1; xnC1; xn/ C d maxfS.xn; xn; xn/; S.xnC1; xnC1; xn�1/g
D aS.xn�1; xn�1; xn/ C bS.xn; xn; xn�1/ C cS.xnC1; xnC1; xn/ C dS.xnC1; xnC1; xn�1/: (18)

Then using Lemma 1 and the conditions (11) and (18), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/ C bS.xn�1; xn�1; xn/ C cS.xn; xn; xnC1/

C2dS.xn; xn; xnC1/ C dS.xn�1; xn�1; xn/

and so

.1 � c � 2d/S.xn; xn; xnC1/ � .a C b C d/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � a C b C d

1 � c � 2d
S.xn�1; xn�1; xn/: (19)

Let p D a C b C d

1 � c � 2d
. Then we have p < 1 since a C b C c C 3d < 1.

Repeating this process in the condition (19), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (20)

Then for all n; m 2 N, n < m, using the conditions (14) and (20), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:
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Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � aS.xn�1; xn�1; x/ C bS.xn; xn; xn�1/

CcS.Tx; Tx; x/ C d maxfS.xn; xn; x/; S.Tx; Tx; xn�1/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x; Tx/ D S.Tx; Tx; x/ � .c C d/S.Tx; Tx; x/;

which is a contradiction since 0 � c C d < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN3/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � aS.x; x; y/ C bS.x; x; x/ C cS.y; y; y/

Cd maxfS.x; x; y/; S.x; x; y/g D .a C d/S.x; x; y/;

which implies x D y since a C d < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � aS.xn; xn; x/ C bS.Txn; Txn; xn/ C cS.Tx; Tx; x/

Cd maxfS.Txn; Txn; x/; S.Tx; Tx; xn/g
D aS.xn; xn; x/ C bS.Txn; Txn; xn/

Cd maxfS.Txn; Txn; x/; S.Tx; Tx; xn/g: (21)

Then using the conditions (16), (21) and Lemma 1, we obtain

S.Txn; Txn; Tx/ � aS.xn; xn; x/ C 2bS.Txn; Txn; x/ C bS.xn; xn; x/

Cd maxfS.Txn; Txn; x/; S.Tx; Tx; xn/g
� aS.xn; xn; x/ C 2bS.Txn; Txn; x/ C bS.xn; xn; x/

CdS.Txn; Txn; x/ C dS.xn; xn; x/

and so

.1 � 2b � d/S.Txn; Txn; Tx/ � .a C b C d/S.xn; xn; x/;
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which implies

S.Txn; Txn; Tx/ � a C b C d

1 � 2b � d
S.xn; xn; x/: (22)

Using the condition (22) for n ! 1, we have

lim
n!1S.Txn; Txn; Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 2 is a generalization of Corollaries 1 and 2. Indeed, if

we take d D 0 and c <
1

2
in Theorem 2, we obtain Corollary 1 and if we take

a D b D c D 0; d D h in Theorem 2, we obtain Corollary 2.
Now we give an example of a self-mapping satisfying the condition .SN3/ such

that the condition (3) is not satisfied.

Example 2. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jx C z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D 5

6
.1 � x/:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx; Tx; Ty/ D 5

3
jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx; Tx; y/ D
ˇ̌̌
ˇ5

3
.1 � x/ � 2y

ˇ̌̌
ˇ ;

S.Ty; Ty; x/ D
ˇ̌̌
ˇ5

3
.1 � y/ � 2x

ˇ̌̌
ˇ ;

S.Tx; Tx; x/ D
ˇ̌̌
ˇ5

3
.1 � x/ � 2x

ˇ̌̌
ˇ ;

S.Ty; Ty; y/ D
ˇ̌̌
ˇ5

3
.1 � y/ � 2y

ˇ̌̌
ˇ :
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T satisfies the condition .SN3/ for a D 5

6
; b D c D 0, and d D 1

20
. Then T has

a unique fixed point x D 5

11
. But T does not satisfy the condition (3). Indeed, for

x D 1; y D 0 we obtain

S.Tx; Tx; Ty/ D 5

3
� h maxfS.Tx; Tx; y/; S.Ty; Ty; x/g

D h max

�
0;

1

3

�
D h

3
;

which is a contradiction since h <
1

3
.

Definition 6. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN4) There exist real numbers a; b; c; d satisfying maxfaCbCcC3d; 2bCdg < 1

with a; b; c; d � 0 such that

S.Tmx; Tmx; Tmy/ � aS.x; x; y/ C bS.Tmx; Tmx; x/ C cS.Tmy; Tmy; y/

Cd maxfS.Tmx; Tmx; y/; S.Tmy; Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 2.

Corollary 10. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition .SN4/, then T has a unique fixed point x in X and
Tm is continuous at x.

Proof. It follows from Theorem 2 by the same method used in the proof of
Corollary 9.

Definition 7. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN5) There exist real numbers a; b; c; d satisfying maxfa C 3c C 2d; a C b C
c; b C 2dg < 1 with a; b; c; d � 0 such that

S.Tx; Tx; Ty/ � aS.x; x; y/ C bS.Tx; Tx; y/ C cS.Ty; Ty; x/

Cd maxfS.Tx; Tx; x/; S.Ty; Ty; y/g;

for all x; y 2 X.

Theorem 3. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN5/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN5/ we have
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S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/ � aS.xn�1; xn�1; xn/ C bS.xn; xn; xn/

CcS.xnC1; xnC1; xn�1/ C d maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g
D aS.xn�1; xn�1; xn/ C cS.xnC1; xnC1; xn�1/

Cd maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g: (23)

Then using Lemma 1 and the conditions (11) and (23), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/ C 2cS.xnC1; xnC1; xn/ C cS.xn�1; xn�1; xn/

C dS.xn; xn; xn�1/ C dS.xnC1; xnC1; xn/

and

.1 � 2c � d/S.xn; xn; xnC1/ � .a C c C d/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � a C c C d

1 � 2c � d
S.xn�1; xn�1; xn/: (24)

Let p D a C c C d

1 � 2c � d
. Then we have p < 1 since a C 3c C 2d < 1.

Repeating this process in the condition (24), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (25)

Then for all n; m 2 N, n < m, using the conditions (14) and (25), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � aS.xn�1; xn�1; x/ C bS.xn; xn; x/

CcS.Tx; Tx; xn�1/ C d maxfS.xn; xn; xn�1/; S.Tx; Tx; x/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x; Tx/ D S.Tx; Tx; x/ � .c C d/S.Tx; Tx; x/;

which is a contradiction since 0 � c C d < 1. So we have Tx D x.
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Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN5/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � aS.x; x; y/ C bS.x; x; y/ C cS.y; y; x/

Cd maxfS.x; x; x/; S.y; y; y/g D .a C b C c/S.x; x; y/;

which implies x D y since a C b C c < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � aS.xn; xn; x/ C bS.Txn; Txn; x/ C cS.Tx; Tx; xn/

Cd maxfS.Txn; Txn; xn/; S.Tx; Tx; x/g
D aS.xn; xn; x/ C bS.Txn; Txn; x/ C cS.Tx; Tx; xn/

CdS.Txn; Txn; xn/: (26)

Then using the conditions (16), (26) and Lemma 1, we obtain

S.Txn; Txn; Tx/ � aS.xn; xn; x/ C bS.Txn; Txn; x/ C cS.Tx; Tx; xn/

C2dS.Txn; Txn; x/ C dS.xn; xn; x/

and

.1 � b � 2d/S.Txn; Txn; Tx/ � .a C c C d/S.xn; xn; x/;

which implies

S.Txn; Txn; Tx/ � a C c C d

1 � b � 2d
S.xn; xn; x/: (27)

So using the condition (27), for n ! 1 we have

lim
n!1S.Txn; Txn; Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 3 is a generalization of Corollaries 3 and 4. Indeed, if we
take d D 0 in Theorem 3, we obtain Corollary 4 and if we take a D b D c D 0; d D
h in Theorem 3, we obtain Corollary 3.

Notice that the condition .SN1/ is the special case of the conditions .SN3/ and
.SN5/ for b D c D 0 and b D d D 0, respectively. So we have obtained three
generalizations of the Banach’s contraction principle (1).
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Now we give an example of a self-mapping satisfying the condition .SN5/ such
that the condition (4) is not satisfied.

Example 3. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jx C z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D x

2
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx; Tx; Ty/ D jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx; Tx; y/ D 2
ˇ̌̌ x

2
� y

ˇ̌̌
;

S.Ty; Ty; x/ D 2
ˇ̌̌ y

2
� x

ˇ̌̌
;

S.Tx; Tx; x/ D jxj ;

S.Ty; Ty; y/ D jyj :

T satisfies the condition .SN5/ for a D 1

2
; b D c D 0, and d D 1

8
. Then T has

a unique fixed point x D 0. But T does not satisfy the condition (4). Indeed, for
x D 0; y 2 Œ0; 1� we obtain

S.Tx; Tx; Ty/ D jyj � h maxfS.Tx; Tx; x/; S.Ty; Ty; y/g
D h maxfjxj ; jyjg D h jyj ;

which is a contradiction since h < 1.

Definition 8. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN6) There exist real numbers a; b; c; d satisfying maxfa C 3c C 2d; a C b C
c; b C 2dg < 1 with a; b; c; d � 0 such that

S.Tmx; Tmx; Tmy/ � aS.x; x; y/ C bS.Tmx; Tmx; y/ C cS.Tmy; Tmy; x/

Cd maxfS.Tmx; Tmx; x/; S.Tmy; Tmy; y/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 3.
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Corollary 11. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN6/, then T has a unique fixed point x in X and Tm

is continuous at x.

Proof. It follows from Theorem 3 by the same method used in the proof of
Corollary 9.

Definition 9. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN7) There exist real numbers a; b; c; d; e; f satisfying maxfa C b C 3d C e C
3f ; a C c C d C f ; 2b C c C 2f g < 1 with a; b; c; d; e; f � 0 such that

S.Tx; Tx; Ty/ � aS.x; x; y/ C bS.Tx; Tx; x/ C cS.Tx; Tx; y/

C dS.Ty; Ty; x/ C eS.Ty; Ty; y/ C f maxfS.x; x; y/;

S.Tx; Tx; x/; S.Tx; Tx; y/; S.Ty; Ty; x/; S.Ty; Ty; y/g;
for all x; y 2 X.

Theorem 4. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN7/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN7/ we have

S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/ � aS.xn�1; xn�1; xn/ C bS.xn; xn; xn�1/

C cS.xn; xn; xn/ C dS.xnC1; xnC1; xn�1/ C eS.xnC1; xnC1; xn/

C f maxfS.xn�1; xn�1; xn/; S.xn; xn; xn�1/; S.xn; xn; xn/;

S.xnC1; xnC1; xn�1/; S.xnC1; xnC1; xn/g
D aS.xn�1; xn�1; xn/ C bS.xn; xn; xn�1/ C dS.xnC1; xnC1; xn�1/

C eS.xnC1; xnC1; xn/

C f maxfS.xn�1; xn�1; xn/; S.xn; xn; xn�1/;

S.xnC1; xnC1; xn�1/; S.xnC1; xnC1; xn/g: (28)

Then using Lemma 1 and the conditions (11) and (28), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/ C bS.xn; xn; xn�1/ C 2dS.xnC1; xnC1; xn/

C dS.xn�1; xn�1; xn/ C eS.xnC1; xnC1; xn/

C f maxfS.xn�1; xn�1; xn/; S.xn; xn; xn�1/;

2S.xnC1; xnC1; xn/ C S.xn�1; xn�1; xn/; S.xnC1; xnC1; xn/g
D .a C b C d/S.xn�1; xn�1; xn/ C .2d C e/S.xnC1; xnC1; xn/

Cf f2S.xnC1; xnC1; xn/ C S.xn�1; xn�1; xn/g
D .a C b C d C f /S.xn�1; xn�1; xn/ C .2d C e C 2f /S.xnC1; xnC1; xn/
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and

.1 � 2d � e � 2f /S.xnC1; xnC1; xn/ � .a C b C d C f /S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � a C b C d C f

1 � 2d � e � 2f
S.xn�1; xn�1; xn/: (29)

Let p D a C b C d C f

1 � 2d � e � 2f
. Then we have p < 1 since a C b C 3d C e C 3f < 1.

Repeating this process in the condition (29), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (30)

Then for all n; m 2 N, n < m, using the conditions (14) and (30), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � aS.xn�1; xn�1; x/ C bS.xn; xn; xn�1/

CcS.xn; xn; x/ C dS.Tx; Tx; xn�1/ C eS.Tx; Tx; x/

Cf maxfS.xn�1; xn�1; x/; S.xn; xn; xn�1/; S.xn; xn; x/;

S.Tx; Tx; xn�1/; S.Tx; Tx; x/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x; Tx/ D S.Tx; Tx; x/ � dS.Tx; Tx; x/ C eS.Tx; Tx; x/

Cf maxfS.Tx; Tx; x/; S.Tx; Tx; x/g D .d C e C f /S.Tx; Tx; x/;

which is a contradiction since 0 � d C e C f < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN7/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � aS.x; x; y/ C bS.x; x; x/ C cS.x; x; y/

CdS.y; y; x/ C eS.y; y; y/ C f maxfS.x; x; y/; S.x; x; x/; S.x; x; y/;

S.y; y; x/; S.y; y; y/g D .a C c C d C f /S.x; x; y/;

which implies x D y since a C c C d C f < 1.
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Now we show that T is continuous at x. Let .xn/ be any sequence in X such that
.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � aS.xn; xn; x/ C bS.Txn; Txn; xn/ C cS.Txn; Txn; x/

CdS.Tx; Tx; xn/ C eS.Tx; Tx; x/ C f maxfS.xn; xn; x/; S.Txn; Txn; xn/;

S.Txn; Txn; x/; S.Tx; Tx; xn/; S.Tx; Tx; x/g
D aS.xn; xn; x/ C bS.Txn; Txn; xn/ C cS.Txn; Txn; x/ C dS.Tx; Tx; xn/

Cf maxfS.xn; xn; x/; S.Txn; Txn; xn/; S.Txn; Txn; x/g: (31)

Then using the conditions (16), (31) and Lemma 1, we obtain

S.Txn; Txn; Tx/ D S.Txn; Txn; x/ � aS.xn; xn; x/ C 2bS.Txn; Txn; x/

CbS.xn; xn; x/ C cS.Txn; Txn; x/ C dS.Tx; Tx; xn/ C f maxfS.xn; xn; x/

C2S.Txn; Txn; x/ C S.xn; xn; x/; S.Txn; Txn; x/g
D aS.xn; xn; x/ C 2bS.Txn; Txn; x/ C bS.xn; xn; x/ C cS.Txn; Txn; x/

CdS.Tx; Tx; xn/ C 2fS.Txn; Txn; x/ C fS.xn; xn; x/

D .a C b C d C f /S.xn; xn; x/ C .2b C c C 2f /S.Tx; Tx; xn/

and

.1 � 2b � c � 2f /S.Txn; Txn; Tx/ � .a C b C d C f /S.xn; xn; x/;

which implies

S.Txn; Txn; Tx/ � a C b C d C f

1 � 2b � c � 2f
S.xn; xn; x/: (32)

So using the condition (32) for n ! 1 we have

lim
n!1S.Txn; Txn; Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 4 is a generalization of Corollaries 5 and 6. Indeed, if we
take f D 0 in Theorem 4, we obtain Corollary 5 and if we take a D b D c D d D
e D 0; f D h in Theorem 4, we obtain Corollary 6. Also the condition d C 2e < 1

which is used in Corollary 5 is not necessary condition in Theorem 4.
Now we give an example of a self-mapping satisfying the condition .SN7/ such

that the condition (7) is not satisfied.

Example 4. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jx C z � 2yj ;
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for all x; y; z 2 R [10]. Let

Tx D x

2
C 1

3
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx; Tx; Ty/ D jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx; Tx; y/ D 2

ˇ̌̌
ˇ x

2
C 1

3
� y

ˇ̌̌
ˇ ;

S.Ty; Ty; x/ D 2

ˇ̌̌
ˇ y

2
C 1

3
� x

ˇ̌̌
ˇ ;

S.Tx; Tx; x/ D 2

ˇ̌̌
ˇ�x

2
C 1

3

ˇ̌̌
ˇ ;

S.Ty; Ty; y/ D 2

ˇ̌̌
ˇ�y

2
C 1

3

ˇ̌̌
ˇ :

T satisfies the condition .SN7/ for a D 1

2
; b D c D d D e D 0 and f D 1

7
. Then T

has a unique fixed point x D 2

3
. But T does not satisfy the condition (7). Indeed, for

x D 1; y D 0 we obtain

S.Tx; Tx; Ty/ D 1

2
� h max

�
5

6
; 1;

2

3
;

1

6
;

1

3

�
D h;

which is a contradiction since h <
1

3
.

Definition 10. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN8) There exist real numbers a; b; c; d; e; f satisfying maxfa C b C 3d C e C
3f ; a C c C d C f ; 2b C c C 2f g < 1 with a; b; c; d; e; f � 0 such that

S.Tmx; Tmx; Tmy/ � aS.x; x; y/ C bS.Tmx; Tmx; x/ C cS.Tmx; Tmx; y/

CdS.Tmy; Tmy; x/ C eS.Tmy; Tmy; y/ C f maxfS.x; x; y/;

S.Tmx; Tmx; x/; S.Tmx; Tmx; y/; S.Tmy; Tmy; x/; S.Tmy; Tmy; y/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 4.

Corollary 12. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN8/, then T has a unique fixed point x in X and Tm

is continuous at x.
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Proof. It follows from Theorem 4 by the same method used in the proof of
Corollary 9.

Definition 11. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN9) There exist real numbers a; b; c satisfying 3a C b C 2c < 1 with a; b; c � 0

such that

S.Tx; Tx; Ty/ � a.S.Tx; Tx; y/ C S.Ty; Ty; x// C bS.x; x; y/

Cc maxfS.Tx; Tx; x/; S.Ty; Ty; y/g;

for all x; y 2 X.

Theorem 5. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN9/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN9/ we have

S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/ � a.S.xn; xn; xn/ C S.xnC1; xnC1; xn�1//

CbS.xn�1; xn�1; xn/ C c maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g
D aS.xnC1; xnC1; xn�1/ C bS.xn�1; xn�1; xn/

Cc maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g: (33)

Then using Lemma 1 and the conditions (11) and (33), we obtain

S.xn; xn; xnC1/ � 2aS.xnC1; xnC1; xn/ C aS.xn�1; xn�1; xn/ C bS.xn�1; xn�1; xn/

Cc.S.xn; xn; xn�1/ C S.xnC1; xnC1; xn//

D 2aS.xnC1; xnC1; xn/ C .a C b/S.xn�1; xn�1; xn/

CcS.xn; xn; xn�1/ C cS.xnC1; xnC1; xn/

D .2a C c/S.xnC1; xnC1; xn/ C .a C b C c/S.xn�1; xn�1; xn/

and

.1 � 2a � c/S.xn; xn; xnC1/ � .a C b C c/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � a C b C c

1 � 2a � c
S.xn�1; xn�1; xn/: (34)

Let p D a C b C c

1 � 2a � c
. Then we have p < 1 since 3a C b C 2c < 1.
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Repeating this process in the condition (34), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (35)

Then for all n; m 2 N, n < m, using the conditions (14) and (35), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � a.S.xn; xn; x/ C S.Tx; Tx; xn�1//

CbS.xn�1; xn�1; x/ C c maxfS.xn; xn; xn�1/; S.Tx; Tx; x/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx; Tx; x/ � .a C c/S.Tx; Tx; x/;

which is a contradiction since 0 � a C c < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN9/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � a.S.x; x; y/ C S.y; y; x//

CbS.x; x; y/ C c maxfS.x; x; x/; S.y; y; y/g
D .2a C b/S.x; x; y/;

which implies x D y since 2a C b < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � a.S.Txn; Txn; x/ C S.Tx; Tx; xn// C bS.xn; xn; x/

Cc maxfS.Txn; Txn; xn/; S.Tx; Tx; x/g
D a.S.Txn; Txn; x/ C S.Tx; Tx; xn// C bS.xn; xn; x/ C cS.Txn; Txn; xn/: (36)

Then using the conditions (16), (36) and Lemma 1, we obtain

S.Txn; Txn; Tx/ � aS.Txn; Txn; x/ C aS.Tx; Tx; xn/ C bS.xn; xn; x/

C2cS.Txn; Txn; x/ C cS.xn; xn; x/
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and

.1 � a � 2c/S.Txn; Txn; Tx/ � .a C b C c/S.xn; xn; x/;

which implies

S.Txn; Txn; Tx/ � a C b C c

1 � a � 2c
S.xn; xn; x/: (37)

So using the condition (37), for n ! 1 we have

lim
n!1S.Txn; Txn; Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 5 is a generalization of Corollary 7. Indeed, if we take
b D c D 0 in Theorem 5, we obtain Corollary 7.

Now we give an example of a self-mapping satisfying the condition .SN9/ such
that the condition (8) is not satisfied.

Example 5. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jx C z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D 2x

3
C 1

4
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx; Tx; Ty/ D 4

3
jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx; Tx; y/ D 2

ˇ̌̌
ˇ2x

3
C 1

4
� y

ˇ̌̌
ˇ ;

S.Ty; Ty; x/ D 2

ˇ̌̌
ˇ2y

3
C 1

4
� x

ˇ̌̌
ˇ ;

S.Tx; Tx; x/ D 2

ˇ̌̌
ˇ�x

3
C 1

4

ˇ̌̌
ˇ ;

S.Ty; Ty; y/ D 2

ˇ̌̌
ˇ�y

3
C 1

4

ˇ̌̌
ˇ :
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T satisfies the condition .SN9/ for a D 0; b D 2

3
and c D 1

7
. Then T has a unique

fixed point x D 3

4
. But T does not satisfy the condition (8). Indeed, for x D 1; y D 0

we obtain

S.Tx; Tx; Ty/ D 2

3
� a.S.Tx; Tx; x/ C S.Ty; Ty; y// D 5a

3
;

which is a contradiction since a <
1

3
.

Definition 12. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN10) There exist real numbers a; b; c satisfying 3aCbC2c < 1 with a; b; c � 0

such that

S.Tmx; Tmx; Tmy/ � a.S.Tmx; Tmx; y/ C S.Tmy; Tmy; x// C bS.x; x; y/

C c maxfS.Tmx; Tmx; x/; S.Tmy; Tmy; y/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 5.

Corollary 13. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition .SN10/, then T has a unique fixed point x in X and
Tm is continuous at x.

Proof. It follows from Theorem 5 by the same method used in the proof of
Corollary 9.

Definition 13. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

.SN11/ There exist real numbers a; b; c satisfying 2aCbC3c < 1 with a; b; c � 0

such that

S.Tx; Tx; Ty/ � a.S.Tx; Tx; x/ C S.Ty; Ty; y// C bS.x; x; y/

C c maxfS.Tx; Tx; y/; S.Ty; Ty; x/g;

for all x; y 2 X.

Theorem 6. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN11/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN11/ we have
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S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/ � a.S.xn; xn; xn�1/ C S.xnC1; xnC1; xn//

C bS.xn�1; xn�1; xn/ C c maxfS.xn; xn; xn/; S.xnC1; xnC1; xn�1/g
D aS.xn; xn; xn�1/ C aS.xnC1; xnC1; xn/

C bS.xn�1; xn�1; xn/ C cS.xnC1; xnC1; xn�1/: (38)

Then using Lemma 1 and the conditions (11) and (38), we obtain

S.xn; xn; xnC1/ � aS.xn; xn; xn�1/ C aS.xnC1; xnC1; xn/ C bS.xn�1; xn�1; xn/

C2cS.xnC1; xnC1; xn/ C cS.xn�1; xn�1; xn/

D .a C 2c/S.xnC1; xnC1; xn/ C .a C b C c/S.xn�1; xn�1; xn/

and

.1 � a � 2c/S.xn; xn; xnC1/ � .a C b C c/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � a C b C c

1 � a � 2c
S.xn�1; xn�1; xn/: (39)

Let p D a C b C c

1 � a � 2c
. Then we have p < 1 since 2a C b C 3c < 1.

Repeating this process in the condition (39), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (40)

Then for all n; m 2 N, n < m, using the conditions (14) and (40), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � a.S.xn; xn; xn�1/ C S.Tx; Tx; x//

CbS.xn�1; xn�1; x/ C c maxfS.xn; xn; x/; S.Tx; Tx; xn�1/g
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and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx; Tx; x/ � .a C c/S.Tx; Tx; x/;

which is a contradiction since 0 � a C c < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN11/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � a.S.x; x; x/ C S.y; y; y//

CbS.x; x; y/ C c maxfS.x; x; y/; S.y; y; x/g
D .b C c/S.x; x; y/;

which implies x D y since b C c < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � a.S.Txn; Txn; xn/ C S.Tx; Tx; x// C bS.xn; xn; x/

Cc maxfS.Txn; Txn; x/; S.Tx; Tx; xn/g
D aS.Txn; Txn; xn/ C bS.xn; xn; x/

Cc maxfS.Txn; Txn; x/; S.Tx; Tx; xn/g: (41)

Then using the conditions (16), (41) and Lemma 1, we obtain

S.Txn; Txn; Tx/ � 2aS.Txn; Txn; x/ C aS.xn; xn; x/ C bS.xn; xn; x/

CcS.Txn; Txn; x/ C cS.Tx; Tx; xn/

D .2a C c/S.Txn; Txn; x/ C .a C b C c/S.Tx; Tx; xn/

and

.1 � 2a � c/S.Txn; Txn; Tx/ � .a C b C c/S.xn; xn; x/;

which implies

S.Txn; Txn; Tx/ � a C b C c

1 � 2a � c
S.xn; xn; x/: (42)

So using the condition (42), for n ! 1 we have

lim
n!1S.Txn; Txn; Tx/ D 0:
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Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 6 is a generalization of Corollary 8. Indeed, if we take
b D c D 0 in Theorem 6, we obtain Corollary 8.

Now we give an example of a self-mapping satisfying the condition .SN11/ such
that the condition (9) is not satisfied.

Example 6. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jx C z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D 3x

4
C 1

5
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx; Tx; Ty/ D 3

2
jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx; Tx; y/ D 2

ˇ̌̌
ˇ3x

4
C 1

5
� y

ˇ̌̌
ˇ ;

S.Ty; Ty; x/ D 2

ˇ̌̌
ˇ3y

4
C 1

5
� x

ˇ̌̌
ˇ ;

S.Tx; Tx; x/ D 2

ˇ̌̌
ˇ1

5
� x

4

ˇ̌̌
ˇ ;

S.Ty; Ty; y/ D 2

ˇ̌̌
ˇ1

5
� y

4

ˇ̌̌
ˇ :

T satisfies the condition .SN11/ for a D 0; b D 3

4
, and c D 1

13
. Then T has a unique

fixed point x D 4

5
. But T does not satisfy the condition (9). Indeed, for x D 1; y D 0,

we obtain

S.Tx; Tx; Ty/ D 3

2
� a.S.Tx; Tx; x/ C S.Ty; Ty; y// D a

2
;

which is a contradiction since a <
1

2
.

Definition 14. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.
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(SN12) There exist real numbers a; b; c satisfying 2aCbC3c < 1 with a; b; c � 0

such that

S.Tmx; Tmx; Tmy/ � a.S.Tmx; Tmx; x/ C S.Tmy; Tmy; y// C bS.x; x; y/

Cc maxfS.Tmx; Tmx; y/; S.Tmy; Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 6.

Corollary 14. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN12/, then T has a unique fixed point x in X and Tm

is continuous at x.

Proof. It follows from Theorem 6 by the same method used in the proof of
Corollary 9.

Definition 15. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN13) There exist a real number h satisfying 0 � h <
1

4
such that

S.Tx; Tx; Ty/ � h maxfS.Tx; Tx; y/CS.Ty; Ty; y/; S.Ty; Ty; x/CS.Tx; Tx; x/g;

for all x; y 2 X.

Theorem 7. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN13/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN13/ we have

S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/

� h maxfS.xn; xn; xn/ C S.xnC1; xnC1; xn/;

S.xnC1; xnC1; xn�1/ C S.xn; xn; xn�1/g
D h maxfS.xnC1; xnC1; xn/; S.xnC1; xnC1; xn�1/ C S.xn; xn; xn�1/g: (43)

Then using Lemma 1 and the conditions (11) and (43), we obtain

S.xn; xn; xnC1/ � h maxfS.xnC1; xnC1; xn/; 2S.xnC1; xnC1; xn/ C 2S.xn�1; xn�1; xn/g
D 2hS.xnC1; xnC1; xn/ C 2hS.xn; xn; xn�1/

and

.1 � 2h/S.xn; xn; xnC1/ � 2hS.xn; xn; xn�1/;
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which implies

S.xn; xn; xnC1/ � 2h

1 � 2h
S.xn�1; xn�1; xn/: (44)

Let p D 2h

1 � 2h
. Then we have p < 1 since a <

1

4
.

Repeating this process in the condition (44), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (45)

Then for all n; m 2 N, n < m, using the conditions (14) and (45), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � h maxfS.xn; xn; x/ C S.Tx; Tx; x/;

S.Tx; Tx; xn�1/ C S.xn; xn; xn�1/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx; Tx; x/ � hS.Tx; Tx; x/;

which is a contradiction since 0 � h <
1

4
. So we have Tx D x.

Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN13/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � h maxfS.x; x; y/ C S.y; y; y/;

S.y; y; x/ C S.x; x; x/g D hS.x; x; y/;

which implies x D y since h <
1

4
.

Now we show that T is continuous at x. Let .xn/ be any sequence in X such that
.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � h maxfS.Txn; Txn; x/ C S.Tx; Tx; x/; S.Tx; Tx; xn/ C S.Txn; Txn; xn/g:

(46)
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Then using the conditions (16), (46) and Lemma 1, we obtain

S.Txn; Txn; Tx/ � h maxfS.Txn; Txn; x/; 2S.xn; xn; x/ C 2S.Txn; Txn; x/g
D 2hS.Txn; Txn; x/ C 2hS.xn; xn; x/

and

.1 � 2h/S.Txn; Txn; Tx/ � 2hS.xn; xn; x/;

which implies

S.Txn; Txn; Tx/ � 2h

1 � 2h
S.xn; xn; x/: (47)

So using the condition (47), for n ! 1 we have

lim
n!1S.Txn; Txn; Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

Definition 16. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN14) There exist a real number h satisfying 0 � h <
1

4
such that

S.Tmx; Tmx; Tmy/ � h maxfS.Tmx; Tmx; y/ C S.Tmy; Tmy; y/;

S.Tmy; Tmy; x/ C S.Tmx; Tmx; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 7.

Corollary 15. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN14/, then T has a unique fixed point x in X and Tm

is continuous at x.

Proof. It follows from Theorem 7 by the same method used in the proof of
Corollary 9.

Definition 17. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN15) There exist a real number h satisfying 0 � h <
1

3
such that

S.Tx; Tx; Ty/ � h maxfS.Tx; Tx; x/ C S.Ty; Ty; y/; S.Tx; Tx; y/ C S.Ty; Ty; x/g;

for all x; y 2 X.
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Theorem 8. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN15/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN15/ we have

S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/

� h maxfS.xn; xn; xn�1/ C S.xnC1; xnC1; xn/; S.xn; xn; xn/

CS.xnC1; xnC1; xn�1/g: (48)

Then using Lemma 1 and the conditions (11) and (48), we obtain

S.xn; xn; xnC1/ � h maxfS.xn; xn; xn�1/ C S.xnC1; xnC1; xn/;

2S.xnC1; xnC1; xn/ C S.xn�1; xn�1; xn/g
D 2hS.xnC1; xnC1; xn/ C hS.xn; xn; xn�1/

and

.1 � 2h/S.xn; xn; xnC1/ � hS.xn; xn; xn�1/;

which implies

S.xn; xn; xnC1/ � h

1 � 2h
S.xn�1; xn�1; xn/: (49)

Let p D h

1 � 2h
. Then we have p < 1 since a <

1

3
.

Repeating this process in the condition (49), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (50)

Then for all n; m 2 N, n < m, using the conditions (14) and (50), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn; Tx/ D S.Txn�1; Txn�1; Tx/ � h maxfS.xn; xn; xn�1/ C S.Tx; Tx; x/;

S.xn; xn; x/ C S.Tx; Tx; xn�1/g
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and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx; Tx; x/ � hS.Tx; Tx; x/;

which is a contradiction since 0 � h <
1

3
. So we have Tx D x.

Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN15/ and Lemma 1, we have

S.Tx; Tx; Ty/ D S.x; x; y/ � h maxfS.x; x; x/ C S.y; y; y/;

S.x; x; y/ C S.y; y; x/g D 2hS.x; x; y/;

which implies x D y since h <
1

3
.

Now we show that T is continuous at x. Let .xn/ be any sequence in X such that
.xn/ is convergent to x. For n 2 N we have

S.Txn; Txn; Tx/ � h maxfS.Txn; Txn; xn/CS.Tx; Tx; x/; S.Txn; Txn; x/CS.Tx; Tx; xn/g:
(51)

Then using the conditions (16), (51) and Lemma 1, we obtain

S.Txn; Txn; Tx/ � h maxf2S.Txn; Txn; x/ C S.xn; xn; x/;

S.Txn; Txn; x/ C S.xn; xn; x/g
D 2hS.Txn; Txn; x/ C hS.xn; xn; x/

and

.1 � 2h/S.Txn; Txn; Tx/ � hS.xn; xn; x/;

which implies

S.Txn; Txn; Tx/ � h

1 � 2h
S.xn; xn; x/: (52)

So using the condition (52), for n ! 1 we have

lim
n!1S.Txn; Txn; Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

Definition 18. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.
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(SN16) There exist a real number h satisfying 0 � h <
1

3
such that

S.Tmx; Tmx; Tmy/ � h maxfS.Tmx; Tmx; x/ C S.Tmy; Tmy; y/;

S.Tmx; Tmx; y/ C S.Tmy; Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 8.

Corollary 16. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition .SN16/, then T has a unique fixed point x in X and
Tm is continuous at x.

Proof. It follows from Theorem 8 by the same method used in the proof of
Corollary 9.

Notice that the condition .SN15/ is the special case of the condition .SN1/ for
a D 0; b D h.

Example 7. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jx C z � 2yj ;

for all x; y; z 2 R [10]. Let us consider the following constant function:

Tx D k; k 2 Œ0; 1�:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx; Tx; Ty/ D 0;

S.Tx; Tx; y/ D 2 jk � yj ;

S.Ty; Ty; x/ D 2 jk � xj ;

S.Tx; Tx; x/ D 2 jk � xj ;

S.Ty; Ty; y/ D 2 jk � yj :

T satisfies the conditions .SN13/ and .SN15/ for all h 2 Œ0;
1

3
/, respectively. Then

T has a unique fixed point x D k.
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