Some Generalizations of Fixed-Point Theorems
on S-Metric Spaces

Nihal Yilmaz Ozgiir and Nihal Tas

Abstract In this paper we prove new fixed-point theorems on complete S-metric
spaces. Our results generalize and extend some fixed-point theorems in the litera-
ture. We give some examples to show the validity of our fixed-point results.

1 Introduction

Metric spaces are very important in the various areas of mathematics such as analy-
sis, topology, applied mathematics, etc. So it has been studied new generalizations of
metric spaces. Recently in 2012, Sedghi et al. have defined the concept of S-metric
spaces [13].

Many authors have defined some contractive mappings on complete metric
spaces as a generalization of the well-known Banach’s contraction principle. In
1974, Ciric studied a generalization of Banach’s contraction principle and gave
quasi-contractions [3]. In 1979, Fisher proved new fixed-point theorems for quasi-
contractions and continuous self-mappings [5]. In 1977, Rhoades investigated some
comparisons of various contractive mappings and introduced a new contractive
mapping called a Rhoades’ mapping [11]. He studied some fixed-point theorems.
But he did not have any fixed-point theorem for a Rhoades’ mapping. Hence in
1986, Chang introduced the concept of a C-mapping and obtained some fixed-point
theorems using this mapping for a Rhoades’ mapping [1]. In 1988, Liu et al. defined
the notion of L-mapping to give necessary and sufficient conditions for the existence
of a fixed point for a Rhoades” mapping [8]. In 1990, Chang and Zhong proved some
fixed-point theorems using the notion of periodic point [2].

The fixed-point theory in various metric spaces was also studied. For example,
in 2013 Gupta presented the concept of cyclic contraction on S-metric spaces [6]. In
2014, Sedghi and Dung proved some fixed-point theorems and gave some analogues
of fixed-point theorems in metric spaces for S-metric spaces [12]. Hieu et al. gave
the relation between a metric and an S-metric [7]. In 2014, Dung et al. proved some
generalized fixed-point theorems for g-monotone maps on partially ordered S-metric

N.Y. Ozgiir (5<) * N. Tag
Department of Mathematics, Balikesir University, 10145 Balikesir, Turkey
e-mail: nihal @balikesir.edu.tr; nihaltas @balikesir.edu.tr

© Springer International Publishing Switzerland 2016 229
T.M. Rassias, P.M. Pardalos (eds.), Essays in Mathematics and its Applications,
DOI 10.1007/978-3-319-31338-2_11


mailto:nihal@balikesir.edu.tr
mailto:nihaltas@balikesir.edu.tr

230 N.Y. Ozgiir and N. Tas

spaces [4]. The present authors defined Rhoades’ condition on S-metric spaces
and proved some fixed-point theorems satisfying Rhoades’ condition [9]. Also they
introduced some new contractive mappings on S-metric spaces and investigated their
relationships with the Rhoades’ condition [10].

Similar to the Banach’s contraction principle, now we recall the following result
on S-metric spaces given in [13]:

Let (X, S) be a complete S-metric space, T be a self-mapping of X, and

S(Tx, Tx, Ty) < aS(x, x,y), (1)

for some 0 < a < 1 and all x,y € X. Then T has a unique fixed point in X and T is
continuous at the fixed point.

Notice that there exists a self-mapping 7 which has a fixed point, but it does not
satisfy Banach’s contraction principle on S-metric spaces as we have seen in the
following example:

Let R be the S-metric space which is not generated by any metric with

S(,y,2) =|x—z| + |x+z—-2y|,
for all x,y, z € R defined in [10]. Let
Tx =1—x.

Then T is a self-mapping on the complete S-metric space [0, 1]. T has a fixed point

x = > but T does not satisfy the Banach’s contraction principle (1). Hence it is

important to study some new fixed-point theorems.

In this paper, we investigate some generalized fixed-point theorems on S-metric
spaces. In Sect.2 we recall some concepts, lemmas, and corollaries which are
useful in the sequel. In Sect.3 we prove new fixed-point theorems on complete
S-metric spaces. Our results generalize and extend some fixed-point theorems in
the literature. Also we give some examples to show the validity of our fixed-point
theorems.

2 Preliminaries

The following definitions, lemmas, and corollaries can be found in the paper
referred to.

Definition 1 ([13]). Let X be a nonempty set and S : X3 — [0, c0) be a function
satisfying the following conditions for all x,y,z,a € X :
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S S(x,y,2) >0,
(S2) S(x,vy,27) =0ifandonlyifx =y =z,
(83) S(x.y.2) < S(x.x.a) +S(v.y,a) + S(z,z.).

Then S is called an S-metric on X and the pair (X, S) is called an S-metric space.
Definition 2 ([13]). Let (X, S) be an S-metric space.

1. Asequence (x,) C X convergestox € X if S(x,, x,,,x) — 0asn — oo, that s, for
each ¢ > 0, there exists ng € N such that for all n > ng, we have S(x,, x,,x) < &.

2. A sequence (x,) C X is a Cauchy sequence if S(xy, Xy, X)) — 0 as n,m — oo,
that is, for each ¢ > 0, there exists ny € N such that for all n,m > ny, we have
S(Xns Xy X)) < €.

3. The S-metric space (X, S) is complete if every Cauchy sequence is a convergent
sequence.

Lemma 1 ([13]). Let (X, S) be an S-metric space and x,y € X. Then we have

S, x,y) = S(y,y,%).

Lemma 2 ([13]). Let (X, S) be an S-metric space. If x, — x and y, — y then we
have

S (s X, Yn) = S(x, X, y).

Lemma 3 (See Corollary 2.4 in [12]). Let (X,S), (Y, S’) be two S-metric spaces
andf : X — Y be a function. Then f is continuous at x € X if and only if f(x,)) —
f(x) whenever x, — x.

The relation between a metric and an S-metric is given in [7] as follows:

Lemma 4 ([7]). Let (X,d) be a metric space. Then the following properties are
satisfied:

1. Sy(x,y,2) =d(x,z) +d(y,z) forall x,y,z € X is an S-metric on X.
2. x, = xin (X, d) if and only if x, — x in (X, Sy).

3. (x,) is Cauchy in (X, d) if and only if (x,) is Cauchy in (X, Sy).

4. (X, d) is complete if and only if (X, S,) is complete.

Now we recall the following fixed-point results.

Corollary 1 (See Corollary 2.12 in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and

S(Tx, Tx, Ty) < aS(x,x,y) + bS(Tx, Tx,x) + cS(Ty, Ty, y), 2)
for some a,b,c > 0,a+ b+ c < 1, and all x,y € X. Then T has a unique fixed
1
point in X. Moreover, if ¢ < 3 then T is continuous at the fixed point.

Corollary 2 (See Corollary 2.14 in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and
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S(Tx, Tx, Ty) < hmax{S(Tx, Tx,y), S(Ty, Ty, x)}, 3)

1
for some h € |0, 5) and all x,y € X. Then T has a unique fixed point in X. Moreover,
T is continuous at the fixed point.

Corollary 3 (See Corollary 2.10in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and
S(Tx, Tx, Ty) < hmax{S(Tx, Tx, x), S(Ty, Ty, y)}, “)

for some h € [0,1) and all x,y € X. Then T has a unique fixed point in X. Moreover,
ifh €0, 5) then T is continuous at the fixed point.

Corollary 4 (See Corollary 2.17 in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and

S(Tx, Tx, Ty) < aS(x,x,y) + bS(Tx, Tx,y) + cS(Ty, Ty, x), 4)
for some a,b,c > 0,a+b+c < 1,a+3c < 1,andall x,y € X. Then T has a
unique fixed point in X. Moreover, T is continuous at the fixed point.
Corollary 5 (See Corollary 2.19 in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and

S(Tx, Tx, Ty) < aS(x,x,y) + bS(Tx, Tx, x) + c¢S(Tx, Tx, y)

+dS(Ty, Ty, x) + eS(Ty, Ty, y), (6)

for some a,b,c,d,e > 0 such thatmax{a+b+3d+e,a+c+d,d+2e} < 1and

all x,y € X. Then T has a unique fixed point in X. Moreover, T is continuous at the
fixed point.

Corollary 6 (See Corollary 2.21 in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and

S(Tx, Tx, Ty) < hmax{S(x, x,y), S(Tx, Tx, x), S(Tx, Tx, y),

7
S(Ty, Ty, x), S(Ty, Ty, y)}, @

1
for some h € |0, 5) and all x,y € X. Then T has a unique fixed point in X. Moreover,
T is continuous at the fixed point.

Corollary 7 (See Corollary 2.15in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and

S(Tx, Tx, Ty) < a(S(Tx, Tx,y) + S(Ty, Ty, x)), )
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1
for some a € |0, 5) and all x,y € X. Then T has a unique fixed point in X. Moreover,
T is continuous at the fixed point.
Corollary 8 (See Corollary 2.8 in [12]). Let (X, S) be a complete S-metric space,
T be a self-mapping of X, and

S(Tx, Tx, Ty) < a(S(Tx, Tx, x) + S(Ty, Ty, y)), &)

1
for some a € [0, 5) and all x,y € X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

In the next section we give some generalizations of the above results.

3 Some Fixed-Point Theorems on S-Metric Spaces

In this section we give some definitions and generalizations of fixed-point theorems
for self-mappings on complete S-metric spaces.

Definition 3. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
(SN1) There exist real numbers a, b satisfying a 4+ 3b < 1 with a, b > 0 such that
S(Tx, Tx, Ty) < aS(x,x,y) + bmax{S(Tx, Tx,x), S(Tx, Tx,y),
S(Ty, 1y. y), S(Ty. Ty, x)},
forall x,y € X.

Theorem 1. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN1), then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let xo € X and define the sequence (x,) as follows:
Txo = x1,Tx1 = x2, ..., Txpy = Xp41, - ...
Suppose that x,, # x,+; for all n. Using the condition (SN1) we have

S(xilvxnsxn+l) = S(Txp—1, Txp—1, Txn) < aS(Xu—1,Xn—1,Xn)
+bmax{s(xns Xns xn—l)» S(xns Xns xn)~ S(anrl s Xn+1 ,)C,,), S(xn+l sXn+1, xn—l)}

= aS(xnflaxnflvxn) + bmaX{S(xnvxmxn*l)vS(xn-i-lsxn-‘rhxn)v S(xn-‘rl-,xn-i-lvxnfl)} (10)

By the condition (S3) we have

St 15 X1 Xn—1) < S 15 Xnt 15 Xn) + SO 15 X1, %) + SC—1, Xn—1, X,)
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= 2S(xn+lyxn+l’xn) +S(xn—l»xn—lvxn)' (11)
Then using Lemma 1 and the conditions (10) and (11), we obtain
S()Cn, Xns xn+1) < aS(xn—l s Xn—1, xn) +b maX{S(xm Xns xn—l)v S(xn+1 s Xn+1, xn),

2S(xn+lvxn+lvxn) + S(xn—lvxn—l,xn)}

S aS(xnflaxnflaxn) + ZbS(xn+1»xn+1,xn) + bS(xnflaxnflvxn)

and so
(1 - 2b)S(xnvxn»xn+1) = (a + b)S(xn—lv-xn—lv-xn),

which implies

b
S(xn—lv-xn—lv-xn)- (12)

S nstns‘n S
G ) < 1o

a+b . . [
Letp = T-2 Then we have p < 1 since a + 3b < 1 (notice that b # 5 since we

1
have 0 < b < 3 by the conditions a + 3b < 1 and a, b > 0).

Repeating this process in the condition (12), we obtain
S(xnsxn»xn—l-l) SP”S(XO,X(J,Xl)- (13)

Then for all n,m € N, n < m, using the condition (13) and the condition (S3), we
have

S(xnvxmxm) < 2S(xmxn7xn+l) + ZS(xn+laxn+lvxn+2) +...+ 2S(xm*1,xm717xm)
<2(" +p"t 4+ . 4+ " HS(x0, X0, x1)
<" +p+p +...+p"7")S(x0, %0, 1)

__ pm—n

n P
<2p ?S(xosxo,xl)

7

2
v 80,30, (14)

7

Hence lim S(x,,x,,x,;) = 0since lim S(xo,x0,x1) = 0. Therefore (x;)
n,m—>00

n,m—0oQ —_
is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) convergent to x. Assume that Tx # x. Then we have
S(Xn, Xns T)C) = S(Txnfl 5 T-xnfl s T)C) =< aS(-xnfl s Xn—1, )C)
+b maX{S(xnv Xns xn—l), S(-xm Xns x), S(Tx, Tx, x)? S(sz Tx, xn—l)}
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and so taking the limit for n — oo, using the continuity of the function S and
Lemma 1, we obtain

S(x, x, Tx) = S(Tx, Tx, x) < bS(Tx, Tx, x),

L L 1
which is a contradiction since 0 < b < —. So we have Tx = x.

Now we show the uniqueness of x. Suppose that x # y such that 7x = x and
Ty = y. Using the condition (SN1) and Lemma 1, we have

S(Tx, Tx, Ty) = S(x,x,y) < aS(x,x,y)
+bmax{S(x, x,x),S(x,x,y).50,y,y), S, y,x)}
= aS(x,x,y) + bS(x,x,y) = (a + b)S(x, x,y),

which implies x = y since a + b < 1.

Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have
S(Tx,, Tx,, Tx) < aS(x,, Xy, X)

+bmax{S(Tx,, Tx,, x,), S(Tx,, Tx,, x), S(Tx, Tx, x), S(Tx, Tx, x,)}
= aS(x,, x,, x) + bmax{S(Tx,, Tx,, x,), S(Tx,, Tx,,x), S(x, x, X,)}

(15)
Using the condition (S3) we have
S(Txn, Txn, %) < S(Txn, Txn, x) + S(Txn, Txy, x) + S(x, Xy, X)
= 285(Tx,, Tx,, x) + S(x,, X, X). (16)

Then using the conditions (15), (16) and Lemma 1, we obtain
S(Txy, Ty, Tx) < aS(xy, Xy, X)
+bmax{2S(Tx,, Tx,, x) + S(x,, xn, x), S(Tx,, Txn, x), S(x, x, x,)}
= aS(xu, X, X) + b{2S(Txp, Ty, x) + S, X5, X) §
= aS(x,, xp, x) + 2bS(Tx,, Txy, x) + bS(xy, Xy, X),
which implies

a+b
1-2b

S(Txn, Txy, Tx) = S(Tx,, Txp, x) < S (X, X, X). (17)

So using the condition (17), for n — oo we have

lim S(Tx,, Tx,, Tx) = 0.
n—oo
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Hence the sequence (TXx;,) is convergent to Tx = x by Definition 2 (1). Consequently
T is continuous at x by Lemma 3.

We note that Theorem 1 is a generalization of the Banach’s contraction princi-
ple (1). Indeed, if we take b = 0 in Theorem 1, we obtain the Banach’s contraction
principle (1).

Now we give an example of a self-mapping satisfying the condition (SN1) such
that the condition of the Banach’s contraction principle (1) is not satisfied.

Example 1. Let R be the S-metric space with
S, y,2) =|x—z| + |x+z—2y],
for all x,y,z € R [10]. Let us define

X4+ 50if [x—1] =1

Tx = .
TTV45 =1 #£1

Then T is a self-mapping on the complete S-metric space R and satisfies the

1
condition (SN1) for @ = 0 and » = —. Then T has a unique fixed point x = 45. But

T does not satisfy the condition of the Banach’s contraction principle (1). Indeed,
forx = 0,y = 2 we obtain

S(Tx, Tx, Ty) = 4 < aS(x, x,y) = 4a,

which is a contradiction since a < 1.

Definition 4. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
(SN2) There exist real numbers a, b satisfying a + 3b < 1 with a, b > 0 such that

S(T"x, T"x, T™y) < aS(x, x,y) + bmax{S(T"x, T"x, x), S(T"x, T"x, y),
STy, T"y,y), S(T"y, Ty, x)}.
for all x,y € X and some m € N.

We give the following corollary as a result of Theorem 1.

Corollary 9. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN2), then T has a unique fixed point x in X and T" is
continuous at x.

Proof. From Theorem 1, it can be easily seen that 7™ has a unique fixed point x in
X, and T™ is continuous at x. Also we have

Tx =TT"x = Ty = T"Tx

and so we obtain that Tx is a fixed point for 7. We get Tx = x since x is a unique
fixed point.
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Definition 5. Let (X, S) be a complete S-metric space and 7 be a self-mapping of X.

(SN3) There exist real numbers a, b, ¢, d satisfying max{a+b+c+3d, 2b+d} < 1
with a, b, ¢, d > 0 such that

S(Tx, Tx, Ty) < aS(x,x,y) + bS(Tx, Tx,x) + cS(Ty, Ty, y)
+d max{S(Tx, Tx,y), S(Ty, Ty, x)},

forall x,y € X.

Theorem 2. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN3), then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let xy € X and let the sequence (x,) be defined as in the proof of Theorem 1.
Suppose that x,, # x,+; for all n. Using the condition (SN3) we have

S, X, Xng1) = S(Txn—1, Txp—1, Txy) < aS(Xu—1, Xn—1, %) + bS(Xn, X5, Xp—1)
+¢'S(xn+1»xn+l-xn) + dmax{S(x,,,x,,.x,,), S(xn+17xn+lax)1—1)}
= aS(xn—l’xn—an) + bs(xnsxnsxn—l) + CS()Cn+1,Xn+1,Xn) + dS(xn+l’xn+l»xn—l)- (18)

Then using Lemma 1 and the conditions (11) and (18), we obtain

S(xn’ xnaxn-i-l) = aS(xn—laxn—l’xn) + bS(xn—lyxn—],xn) + CS(xnvxmxn—l—l)

+2dS (X, X, Xpt1) + dS(Xp—1, Xu—1,Xn)
and so
(1 = ¢ = 2d)S (% X, Xn1) < (a4 b + d)S (X1, Xp—1. Xn),
which implies

a+b+d

S(xn7xnaxn+]) S 1 —c— 2dS(~xn—]7xn—lvxn)' (19)
a+b+d .
Letp = ﬁ.Thenwehavep<151ncea+b+c+3d< 1.
—c—

Repeating this process in the condition (19), we obtain
S(xn,xn»xn—l-l) SPHS(XO,XO»XI)- (20)

Then for all n,m € N, n < m, using the conditions (14) and (20), we have

7

S, Xy, Xp) < 7 S(xo, X0, x1).
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2 '
Hence lim S(x,,x,,x,;) = 0since lim P S(xo,x0,x1) = 0. Therefore (x;)

n,m—>00 nm—>o00] —
is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) convergent to x. Assume that Tx # x. Then we have

S(x,,,x,,, Tx) = S(Txn—la T-xn—ls T)C) S aS(xn—lsxn—lv-x) + bS(x,,,x,l, xn—l)
+cS(Tx, Tx, x) + d max{S(x,, x,, x), S(Tx, Tx, x,—1)}

and so taking the limit for n — o0, using the continuity of the function S and
Lemma 1, we obtain

S(x,x, Tx) = S(Tx, Tx, x) < (c + d)S(Tx, Tx, x),

which is a contradiction since 0 < ¢ + d < 1. So we have Tx = x.
Now we show the uniqueness of x. Suppose that x # y such that Tx = x and
Ty = y. Using the condition (SN3) and Lemma 1, we have
S(Tx, Tx, Ty) = S(x,x,y) < aS(x,x,y) + bS(x, x,x) + cS(y,y,y)
+d max{S(x, x,y), S(x, x,y)} = (a + d)S(x, x,y),
which implies x = y sincea + d < 1.
Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have
S(Tx,, Tx,, Tx) < aS(xy, xn, x) + bS(Tx,, Tx,, x,) + ¢S(Tx, Tx, x)
+d max{S(Tx,, Tx,, x), S(Tx, Tx, x,)}
= aS(Xn,Xn, .X) + bS(Txna Txn’ xn)
+d max{S(Tx,, Tx,, x), S(Tx, Tx, x,)}. 21

Then using the conditions (16), (21) and Lemma 1, we obtain

S(Tx,, Tx,, Tx) < aS(xy, Xy, x) + 2bS(Tx,, Txy, x) + bS(xy, Xy, X)
+d max{S(Tx,, Tx,, x), S(Tx, Tx, x,)}
< aS(xy, xp, x) + 2bS(Txy, Txy, x) + bS(x,, X, X)
+dS(Tx,, Tx,, x) + dS(x,, X, X)

and so

(1 =2b—d)S(Tx,, Tx,, Tx) < (a + b + d)S(x, X, X),
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which implies

a+b+d
STnyTn’T S—S ns Ans . 22
(Tx,, Tx,, Tx) 1_2b_d(xxx) 22)
Using the condition (22) for n — oo, we have

lim S(Tx,, Tx,, Tx) = 0.
n—>0o0

Hence the sequence (7, is convergent to 7x = x by Definition 2 (1). Consequently
T is continuous at x by Lemma 3.

We note that Theorem 2 is a generalization of Corollaries 1 and 2. Indeed, if

we take d = 0 and ¢ < = in Theorem 2, we obtain Corollary 1 and if we take

a=>b=c=0,d = hin Theorem 2, we obtain Corollary 2.
Now we give an example of a self-mapping satisfying the condition (SN3) such
that the condition (3) is not satisfied.

Example 2. Let R be the S-metric space with

Sy, 2) =[x —z| + x + 2= 2],
for all x,y,z € R [10]. Let

5
Tx = E(l —X).

Then T is a self-mapping on the complete S-metric space [0, 1]. We have

S(Tx, Tx, Ty) = g lx—y|,

SCe,x,y) = 2|x =yl

5
S(Tx, Tx,y) = 3(1 —x) —2y|,

5
S(Ty, Ty, x) = 5(1 -y —2x

5
S(Tx, Tx,x) = 5(1 —x) — 2x|,

5
STy, Ty,y) = 3(1 -y =2y
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5 1
T satisfies the condition (SN3) for a = 6 b=c=0,andd = 20" Then T has

5
a unique fixed point x = ITh But T does not satisfy the condition (3). Indeed, for

x =1,y = 0 we obtain

S(Tx, Tx, Ty) = = < hmax{S(Tx, Tx,y), S(Ty, Ty, x)}

W] W

h
3

)

1
= hmaX{O,—} =
3

L. . . 1
which is a contradiction since h < 3

Definition 6. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
(SN4)  There exist real numbers a, b, ¢, d satisfying max{a+b+c+3d, 2b+d} < 1
with a, b, ¢, d > 0 such that
S(T"x, T"x, T"y) < aS(x,x,y) + bS(T"x, T"x, x) + cS(T"y, Ty, y)
+d max{S(T"x, T"x, y), S(T"y, T"y, x)},

for all x,y € X and some m € N.
We give the following corollary as a result of Theorem 2.

Corollary 10. Let (X,S) be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition (SN4), then T has a unique fixed point x in X and
T™ is continuous at x.

Proof. It follows from Theorem 2 by the same method used in the proof of
Corollary 9.

Definition 7. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
(SN5) There exist real numbers a, b, ¢, d satisfying max{a + 3¢ + 2d,a + b +
¢,b+ 2d} < 1witha,b,c,d > 0 such that
S(Tx, Tx, Ty) < aS(x,x,y) + bS(Tx, Tx, y) + cS(Ty, Ty, x)
+d max{S(Tx, Tx, x), S(Ty, Ty, y)},

forall x,y € X.

Theorem 3. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN5), then T has a unique fixed point x in X and T is
continuous at Xx.

Proof. Letxy € X and let the sequence (x,) be defined as in the proof of Theorem 1.
Suppose that x,, # x,,+; for all n. Using the condition (SN5) we have
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S(xmxna xn—i—l) = S(Txn—l’ Txn—l s Txn) =< aS(xn—laxn—l’xn) + bS(xm Xns xn)
FES (ot 15 X1, Xn—1) + d MAX{S (X, Xy Xn—1) 5 S (Xt 1 X 15 %)}
= aS(Xp—1,Xpn—1, %) + SXni1, X041, X0—1)

+d max{S(xn, xn,xn—l)y S(xn+1»xn+l’xn)}' (23)
Then using Lemma 1 and the conditions (11) and (23), we obtain

S(xnv-xn»-xn-l-l) = aS(xn—l,xn—lsxn) + 2CS(-xn-i-ls-)Cn+lv-xn) + CS(xn—lv-xn—lv-xn)

+ dS(-xmxna-xn—l) + dS(-xI1+ls-xn+lv-xll)
and
(I =2¢ —d)S(xn, Xp, Xpt1) < (@ + ¢ + d)S(Xu—1, Xn—1, %),

which implies

d
S(xnvxmxn+l) = ﬂs(xn—lvxn—lvxn) (24)
1—2c—-d
at+c+d )
Letp = T_2e—a Then we have p < I since a + 3¢ + 2d < 1.
—2c—

Repeating this process in the condition (24), we obtain
S, X, Xnt1) < p"S(x0, X0, X1). (25)

Then for all n,m € N, n < m, using the conditions (14) and (25), we have

7

S (X, X X)) < 1 S(xo, x0, x1).

7

Hence lim S(x,,x,,x,) = 0since lim
n,m—>00 nm—>o00] —

is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) is convergent to x. Assume that Tx # x. Then we have

S(xo, X0, x1) = 0. Therefore (x,)

S, X0, Ix) = S(Txy—1, Txp—1, Tx) < aS(xp—1, Xp—1,%) + bS(xy, X, X)
+cS(Tx, Tx, x,—1) + d max{S(x,, X,, x,—1), S(Tx, Tx, x)}

and so taking the limit for n — oo, using the continuity of the function S and
Lemma 1, we obtain

S(x, x, Tx) = S(Tx, Tx, x) < (¢ + d)S(Tx, Tx, x),

which is a contradiction since 0 < ¢ + d < 1. So we have Tx = x.
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Now we show the uniqueness of x. Suppose that x # y such that 7x = x and
Ty = y. Using the condition (SN5) and Lemma 1, we have
S(Tx, Tx, Ty) = S(x,x,y) < aS(x,x,y) + bS(x,x,y) + cS(y,y, x)
+d max{S(x,x,x),5y,y,y)} = (a+ b+ ¢c)S(x, x,y),
which implies x = ysincea+ b +c¢ < 1.
Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have
S(Txn, Txy, Tx) < aS(xy, X, X) + bS(Txy, Txy, x) + cS(Tx, Tx, x,)
+d max{S(Tx,, Tx,, x,), S(Tx, Tx, x)}
= aS(x,, X, x) + bS(Txy, Tx,, x) + cS(Tx, Tx, x,,)
+dS(Tx,, Tx,, xp,). (26)

Then using the conditions (16), (26) and Lemma 1, we obtain

S(Tx,, Tx,,, Tx) < aS(xy, Xy, x) + bS(Txy, Txy,, x) + cS(Tx, Tx, x;,)
+2dS(Tx,, Tx,, x) + dS(x,, x,, X)

and
(1 —=b—=2d)S(Tx,, Tx,, Tx) < (a + ¢ + d)S(xy, xp, x),

which implies

d
S(Txy. Ty, Tr) < 2767

= ms(xn,xmx)~ (27)

So using the condition (27), for n — oo we have

lim S(Tx,, Tx,, Tx) = 0.
n—oo

Hence the sequence (7Xx,,) is convergent to 7x = x by Definition 2 (1). Consequently
T is continuous at x by Lemma 3.

We note that Theorem 3 is a generalization of Corollaries 3 and 4. Indeed, if we
take d = 0 in Theorem 3, we obtain Corollary 4 and if we takea = b = ¢ = 0,d =
h in Theorem 3, we obtain Corollary 3.

Notice that the condition (SN1) is the special case of the conditions (SN3) and
(SNS) forb = ¢ = 0 and b = d = 0, respectively. So we have obtained three
generalizations of the Banach’s contraction principle (1).
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Now we give an example of a self-mapping satisfying the condition (SN5) such
that the condition (4) is not satisfied.

Example 3. Let R be the S-metric space with
S, y,2) = |x—z| + [x +2—2y|,
for all x,y,z € R [10]. Let

X
Tx = —.
2

Then T is a self-mapping on the complete S-metric space [0, 1]. We have
S(Tx, Tx, Ty) = |x —y|,
S(xvxvy) =2 |x—y| ’

S(Tx, Tx,y) = 2‘% —y’,

S(Ty, Ty, x) = 2 ‘g —x’ ,
S(Tx, Tx, x) = |x|,
STy, Ty,y) = |y|.

1 1
T satisfies the condition (SN5) for a = E,b =c¢=0,and d = 3 Then T has
a unique fixed point x = 0. But 7 does not satisfy the condition (4). Indeed, for

x =0,y € [0, 1] we obtain
S(Tx, Tx, Ty) = |y| < hmax{S(Tx, Tx, x), S(Ty, Ty, y)}
= hmax{|x[, |y[} = hlyl,

which is a contradiction since i < 1.
Definition 8. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
(SN6) There exist real numbers a, b, ¢, d satisfying max{a + 3¢ + 2d,a + b +
¢,b+ 2d} < 1witha,b,c,d > 0 such that
S(T™"x, T"x, T™y) < aS(x,x,y) + bS(T"x, T"x,y) + cS(T"™y, T™y, x)
+dmax{S(T"x, T"x, x), S(T"y, T™y, y)},

for all x,y € X and some m € N.

We give the following corollary as a result of Theorem 3.



244 N.Y. Ozgiir and N. Tas

Corollary 11. Let (X, S) be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition (SN6), then T has a unique fixed point x in X and T™
is continuous at x.

Proof. Tt follows from Theorem 3 by the same method used in the proof of
Corollary 9.

Definition 9. Let (X, S) be a complete S-metric space and T be a self-mapping of X.

(SN7) There exist real numbers a, b, ¢, d, e, f satisfying max{a + b + 3d + e¢ +
f,a+c+d+f,2b+ c+2f} < 1witha,b,c,d,e,f > 0 such that

S(Tx, Tx, Ty) < aS(x,x,y) + bS(Tx, Tx, x) + ¢S(Tx, Tx,y)
+dS(Ty, Ty, x) + eS(Ty, Ty, y) + f max{S(x, x, y),
S(Tx, Tx, x), S(Tx, Tx, y), S(Ty, Ty, x), S(Ty, Ty, y) },

for all x,y € X.

Theorem 4. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN7), then T has a unique fixed point x in X and T is
continuous at x.

Proof. Letx, € X and let the sequence (x,) be defined as in the proof of Theorem 1.
Suppose that x,, # x,+; for all n. Using the condition (SN7) we have

S(ns Xns Xnp1) = S(Txp—1, Txn—y, Txy) < aS(Xp—1, Xn—1,Xn) + bS(Xn, X, Xp—1)
+ Sy X, %) + dS g1, Xnp 15 Xn—1) + €SXnt15 Xnt-1, Xn)
+ f max{S(xX,—1, Xu—1, %), S, X, Xn—1), S(Xp, X X))
SOt 15 X415 Xn—1)> SQont 1, X1, X))}
= aS(Xu—1, Xn—1,%n) + DS(Xn, X, Xp—1) + dS (X1, X1, Xn—1)
+ eS(Xnt1, Xnt+1,%n)
4+ f max{S(x,—1, Xn—1, %), S(Xp, X, Xp—1),
S(n415 Xnt15 Xn—1)s S(n-1, X 1, Xn) §- (28)

Then using Lemma 1 and the conditions (11) and (28), we obtain

SQn, Xn, Xn1) < aS(Xn—1, Xn—1,Xn) + BS(Xn, Xn, Xp—1) + 2dS (X1, Xn41, Xn)
+dS(xn—1, Xn—1,Xn) + €S(Xn41,Xn41, Xn)
+f max{S(xn—1, Xn—1, %), S(Xn, Xn, Xn—1),

28 (X1, Xn415%n) + SOn—1,Xn—1, %), S(Xn41, Xn+1,Xn) }
(a+ b+ d)S(xp—1,Xp—1,%n) + (2d + €)S(Xp41, Xn41, Xn)

HA2S (Xnt-15 Xnt-1, %) + S(n—1, Xn—1, %)}
= (a+b+d+[f)Sxn—1,%u—1,%) + (2d + e + 2f)S(tn+1, Xn+1,Xn)
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and
(1—=2d—e—2)SXn+1,Xnt+1.%) < (@+ b+ d~+f)SKu—1,Xn—1,Xn),

which implies

b+d
R e e R} 29)
b+d
Letp = M.Thenwehavep <lsincea+b+3d+e+3f <1.
1—-2d—e—-2f

Repeating this process in the condition (29), we obtain
S(xn,xn»xn—l-l) SP”S(XO,XO,XI)- (30)
Then for all n,m € N, n < m, using the conditions (14) and (30), we have

7

2
S(Xn, Xy Xm) < ] d

S(xo, X0, x1).

7

Hence Ilim S(x,,x,,x,) = 0since lim S(xg,x9,x1) = 0. Therefore (x,)
n,m—>00

n,m—00
is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) is convergent to x. Assume that 7x # x. Then we have

S(Xu, X0, Tx) = S(Txp—1, Txp—1, Tx) < aS(xy—1, Xp—1, %) + bS (X, Xy, Xn—1)
+cS(xp, xp, x) + dS(Tx, Tx, x,—1) + eS(Tx, Tx, x)
+f max{S (Xu—1, Xn—1, %), SGn, Xn, Xn—1), S (X, X, X),
S(Tx, Tx, x,—1), S(Tx, Tx, x)}

and so taking the limit for n — o0, using the continuity of the function S and
Lemma 1, we obtain

S(x,x, Tx) = S(Tx, Tx,x) < dS(Tx, Tx, x) + eS(Tx, Tx, x)
+f max{S(Tx, Tx, x), S(Tx, Tx, x)} = (d + e + f)S(Tx, Tx, x),
which is a contradiction since 0 < d + e + f < 1. So we have Tx = x.

Now we show the uniqueness of x. Suppose that x # y such that 7x = x and
Ty = y. Using the condition (SN7) and Lemma 1, we have

S(Tx, Tx, Ty) = S(x,x,y) < aS(x,x,y) + bS(x, x,x) + cS(x, x,y)
+dS(y,y,x) + eS(y,y.y) + f max{S(x, x,y), S(x, x, x), S(x, x, y),
S, 3.2, 80, y. 0} = (a+ c+d+f)S(x,x,y),

which implies x = ysincea+c+d+f < 1.
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Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have
S(Tx,, Tx,, Tx) < aS(x,, x,,x) + bS(Tx,, Tx,, x,) + cS(Tx,, Tx,, x)
+dS(Tx, Tx, x,) + eS(Tx, Tx, x) + f max{S(x,, x,, x), S(Txy, Txp, X)),
S(Tx,, Tx,, x), S(Tx, Tx, x,,), S(Tx, Tx, x) }
= aS(x,, xn, x) + bS(Txy, Txy, X,) + cS(ITxy, Ty, x) + dS(Tx, Tx, x,,)
+f max{S(x,, X, x), S(Tx, Tx,, %), S(Tx,, Tx, X)}. a3

Then using the conditions (16), (31) and Lemma 1, we obtain

S(Tx,, Tx,, Tx) = S(Tx,, Tx,, x) < aS(x,, x,, x) + 2bS(Tx,,, Tx,, x)
+bS (x4, X, X) + cS(Tx,, Txy, x) + dS(Tx, Tx, x,) + f max{S(x,, X, x)
+285(Tx,,, Ty, x) + S, X, %), S(Tx, Ty, x)}
= aS(x,, Xn, X) + 2bS(Tx,,, Txy, x) + bS(Xn, X, x) + cS(Txy, Ty, X)
+dS(Tx, Tx, x,) + 2fS(Tx,,, Txy, x) + fS (X1, X, X)
= (@a+b+d+[f)S, xn,x) + (2b + ¢ + 2f)S(Tx, Tx, x,,)

and
(1 =2b—c—2f)S(Txn, Txy, Tx) < (@ + b+ d + f)S(xy, X, X),
which implies

a+b+d+f

S(Txp, Ty, Tx) < ———— = T2
1—2b—c—2f

S(xn, Xn, X). (32)

So using the condition (32) for n — oo we have

lim S(Tx,, Tx,, Tx) = 0.
n—oo

Hence the sequence (7, is convergent to 7x = x by Definition 2 (1). Consequently
T is continuous at x by Lemma 3.

We note that Theorem 4 is a generalization of Corollaries 5 and 6. Indeed, if we
take f = 0 in Theorem 4, we obtain Corollary S and if wetakea = b =c =d =
e = 0,f = hin Theorem 4, we obtain Corollary 6. Also the condition d + 2¢ < 1
which is used in Corollary 5 is not necessary condition in Theorem 4.

Now we give an example of a self-mapping satisfying the condition (SN7) such
that the condition (7) is not satisfied.

Example 4. Let R be the S-metric space with
Sy, 2) = =z + x +2-2y],
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for all x,y,z € R [10]. Let

T x+1
X = =4+ -.
2 3

Then T is a self-mapping on the complete S-metric space [0, 1]. We have
S(Tx, Tx, Ty) = |x —y|,

S, x.y) =2|x =yl

S(Tx, Tx,y) = 2 ;—i—%—y,

S(Ty, Ty, x) =2 X+l—x,
2 3

S(Te. Te.x) = 2| =% + 1.
2 3

S(Ty, Ty,y) = 2 _—y—i-l‘
2 3

1 1
T satisfies the condition (SN7) for a = o b=c=d=e=0andf = 7 Then T

2
has a unique fixed point x = 3" But 7T does not satisfy the condition (7). Indeed, for

x =1,y = 0 we obtain

S(Tx, Tx, Ty) =

N W
:»—a
w1
o =
W | =

< hmax{

N =

L. .. . 1
which is a contradiction since h < 3

Definition 10. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.

(SN8) There exist real numbers a, b, ¢, d, e, f satisfying max{a + b + 3d + ¢ +
f.a+c+d+f,2b+c+2f} < 1witha,b,c,d,e,f > 0such that
S(T"x, T"x, T™y) < aS(x,x,y) + bS(T"x, T"x,x) + cS(T"x, T"x, y)
+dS(T"y, T"y, x) + eS(T™y, T™y, y) + f max{S(x, x, y),
S(T"x, T"x,x), S(T"x, T"x,y), S(T"y, T"y,x),S(T"y, T"y, y)},

for all x,y € X and some m € N.
We give the following corollary as a result of Theorem 4.

Corollary 12. Let (X, S) be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition (SN8), then T has a unique fixed point x in X and T"
is continuous at x.
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Proof. Tt follows from Theorem 4 by the same method used in the proof of
Corollary 9.

Definition 11. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.

(SN9) There exist real numbers a, b, ¢ satisfying 3a+ b+ 2c < 1 witha,b,c > 0
such that
S(Tx, Tx, Ty) < a(S(Tx, Tx,y) + S(Ty, Ty, x)) + bS(x, x,y)
+cmax{S(Tx, Tx, x), S(Ty, Ty, y)},

forall x,y € X.

Theorem 5. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN9), then T has a unique fixed point x in X and T is
continuous at Xx.

Proof. Letxy € X and let the sequence (x,,) be defined as in the proof of Theorem 1.
Suppose that x,, # x,,+; for all n. Using the condition (SN9) we have
S(xns Xns -xn+l) = S(Txn—l 5 T-xn—l ) Txn) =< a(S(xm Xns -xn) + S(xn-f—l » Xn+1, xn—l))
+bS(xn—l ’ xn—l ’ xn) + c max{S(lev -xn» xn—l)a S(er-l ’ xn+l ’ xn)}
= aS(Xu+1, Xn+1, Xn—1) + BS(u—1, Xp—1, X)

+cmax{S(x,, Xu, Xn—1), SCn+1, Xnt1,Xn) }- (33)
Then using Lemma 1 and the conditions (11) and (33), we obtain

Sy Xy Xnt1) < 2aS(Xp41> Xnt1, Xn) + aSO—1, Xp—1, Xn) + BS(Xn—1, Xu—1, Xp)
+(S s X Xn—1) + SXn41, Xn1, X))
= 2aS(Xn+41, Xn+1, %) + (a + D)SCen—1, Xp—1, Xn)
F¢S (X, X5 Xn—1) + SCn15 Xnt1,Xn)

= (261 + C)S(xn+lsxn+lvxn) + (a +b+ C)S(xn—l»xn—lyxn)

and
(1 —2a— C)S(xnvxna-xn-i-l) = (Cl + b + C)S(xn—lv-xn—l,xn),
which implies

a+b+c
S(xnaxnvxn-l-l) =< ms(xn—lvxn—l,xn)- (34)

at+b+c

Letp = ——
P 1—2a—c¢

. Then we have p < 1 since 3a + b + 2¢ < 1.
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Repeating this process in the condition (34), we obtain
S(xn,-xnv-xn-l-l) Ean()C(),X(),XO. (35)

Then for all n,m € N, n < m, using the conditions (14) and (35), we have

7

S(x0,x0, X1).

S(xn’xn»xm) < 1

7

Hence lim S(x,,x,,x,) = 0since lim S(x0, X0, x1) = 0. Therefore (x,)
Mm—>00 m—00 |

n n, _
is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) is convergent to x. Assume that 7x # x. Then we have

S, X, Tx) = S(Txp—1, Txy—1, Tx) < a(S(x,, X, x) + S(Tx, Tx, x,—1))
+bS(xp—1, Xn—1, %) + ¢ max{S(x,, X, X,—1), S(Tx, Tx, x) }

and so taking the limit for » — oo, using the continuity of the function § and
Lemma 1, we obtain

S(Tx, Tx,x) < (a + ¢)S(Tx, Tx, x),

which is a contradiction since 0 < a + ¢ < 1. So we have Tx = x.

Now we show the uniqueness of x. Suppose that x # y such that 7x = x and
Ty = y. Using the condition (SN9) and Lemma 1, we have

S(Tx, Tx, Ty) = S(x,x,y) < a(S(x,x,y) + S(,y,x))
+bS(x, x,y) + cmax{S(x, x,x), S, y,y)}
= (2a + b)S(x,x,y),

which implies x = y since 2a + b < 1.

Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have

S(Txy, Txy, Tx) < a(S(Txy,, Txy, x) + S(Tx, Tx, x,)) + bS(xy, X, x)
+cmax{S(Tx,, Txn, x), S(Tx, Tx,x)}
= a(S(Tx,, Tx,, x) + S(Tx, Tx, x,)) + bS(xp, Xp, x) + ¢S(Tx, Txp, x,).  (36)

Then using the conditions (16), (36) and Lemma 1, we obtain

S(Txy, Tx,, Tx) < aS(Txy,, Txy, x) + aS(Tx, Tx, x,) + bS(xn, X, X)
+2¢S(Txy, Txy, x) 4+ ¢S(x4, X, X)
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and

(1 —a—2¢)S(Tx,, Tx,, Tx) < (a + b + ¢)S(x,, X4, X),
which implies

b
S(Ty, T T1) < 22 €50 0, ). 37)
l1—a—2c

So using the condition (37), for n — oo we have

lim S(Tx,, Tx,, Tx) = 0.
n—o00

Hence the sequence (TXx;,) is convergent to Tx = x by Definition 2 (1). Consequently
T is continuous at x by Lemma 3.

We note that Theorem 5 is a generalization of Corollary 7. Indeed, if we take
b = ¢ = 01in Theorem 5, we obtain Corollary 7.

Now we give an example of a self-mapping satisfying the condition (SN9) such
that the condition (8) is not satisfied.

Example 5. Let R be the S-metric space with
S,y 2) = |x—z| + |x +z -2y,
for all x,y,z € R [10]. Let

2x

Tx = —
X 3+

=

Then T is a self-mapping on the complete S-metric space [0, 1]. We have

4
S(Tx, Tx, Ty) = 3 lx—y|,

S(x,x,y) = 2|x_y| s

S(Tx, T: )_—2—2 .
X, 1X, N
S(Ty, T x)—22 FRE

Tyx) =22+ 2 —al.
S(Tx, Tx,x) = 2 * 1

x, Tx, x 3 1l
S(Ty. Ty, y) = 2 v, 1

v, 1y,y 3 il
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2 1
T satisfies the condition (SN9) fora = 0,b = 3 and ¢ = 7- Then T has a unique

3
fixed point x = T But T does not satisfy the condition (8). Indeed, forx =1,y =0

we obtain

5
S(Tx, Tx, Ty) = = < a(S(Tx, Tx, x) + S(Ty, Ty, y)) = ?"

W N

L L 1
which is a contradiction since a < 5

Definition 12. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.

(SN10) There exist real numbers a, b, ¢ satisfying 3a+b+2c¢ < 1 witha,b,c > 0
such that
S(T"x, T"x, T"y) < a(S(T"x, T"x,y) + S(T™y, T"y, x)) + bS(x, x, y)
+ cmax{S(T"x, T"x, x), S(T"y, T™y, y)},

for all x,y € X and some m € N.
We give the following corollary as a result of Theorem 5.

Corollary 13. Let (X, S) be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition (SN10), then T has a unique fixed point x in X and
T™ is continuous at Xx.

Proof. Tt follows from Theorem 5 by the same method used in the proof of
Corollary 9.

Definition 13. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.

(SN11) There exist real numbers a, b, ¢ satisfying 2a+b+3c¢ < 1 witha,b,c > 0
such that
S(Tx, Tx, Ty) < a(S(Tx, Tx,x) + S(Ty, Ty, y)) + bS(x, x,y)
+ cmax{S(Tx, Tx, y), S(Ty, Ty, x)},

forall x,y € X.

Theorem 6. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN11), then T has a unique fixed point x in X and T is
continuous at Xx.

Proof. Letxy € X and let the sequence (x,) be defined as in the proof of Theorem 1.
Suppose that x,, # x,,+; for all n. Using the condition (SN11) we have
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SO X, Xnp1) = S(Txp—1, Txp—1, Txy) < a(SOn, X, Xn—1) + SXn+1, Xnt-1,Xn))
+ bS(xn—1, Xn—1, %) + cmax{S(xn, Xn, Xn), S(Xnt1, Xnt15 Xn—1) }
= aS(xp, X, Xn—1) + aS(Xn41, Xnt1, Xn)
+ DS (Xn—1, Xn—1, Xn) + S(n1, Xnp1 Xp—1)- (38)
Then using Lemma 1 and the conditions (11) and (38), we obtain
S(Xns Xy Xnp1) < aS(On, X, Xn—1) + aSXn41, Xnt-1, Xn) + DS (Xu—1, Xn—1, Xn)
+2¢S (X1, Xnt 1, Xn) + €SOtn—1, Xn—1, Xn)

= (a + 20)S(Xn+1, Xnt1,X0) + (@ + b + )S(xu—1, Xp—1, %)
and
(1 —a— 2C)S(xn’xn’ -xn-H) = (Cl + b + C)S(xn—lvxn—l,-xn),

which implies

+b+
S(xnvxmxn+l) =< us(xn—lsxn—lvxn)- (39)
l1—a—2c
a+b+c )
Letp = a2 Then we have p < 1 since 2a + b + 3¢ < 1.
—a — 4LC

Repeating this process in the condition (39), we obtain
S(Xns X, Xp1) < pP"S(x0, X0, X1). (40)

Then for all n,m € N, n < m, using the conditions (14) and (40), we have

7

S, X, X)) < 1 S(xo, X0, x1).

7

Hence lim S(x,,x,,x;) = 0since lim
n,m— 00 n,m—o0 _—

is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) is convergent to x. Assume that Tx # x. Then we have

S(xo, X0, x1) = 0. Therefore (x,)

S, X, Tx) = S(Txp—1, Txp—1, Tx) < a(S(xy, X, Xu—1) + S(Tx, Tx, x))

+bS(xn,1,xn,1,x) + cmax{S(xn, X,,,X), S(Tx, TX, xn*l)}
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and so taking the limit for n — oo, using the continuity of the function S and
Lemma 1, we obtain

S(Tx, Tx,x) < (a + ¢)S(Tx, Tx, x),

which is a contradiction since 0 < a 4+ ¢ < 1. So we have Tx = x.
Now we show the uniqueness of x. Suppose that x # y such that 7x = x and
Ty = y. Using the condition (SN11) and Lemma 1, we have
S(Tx, Tx, Ty) = S(x,x,y) < a(S(x, x,x) + S(y.y.y))
+bS(x, x,y) + cmax{S(x,x,y),S(y,y,x)}
= (b+0)S(x.x.y),
which implies x = y since b + ¢ < 1.
Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have
S(Tx,, Tx,,, Tx) < a(S(Tx,, Txy, x,) + S(Tx, Tx, x)) 4+ bS(x,, X, X)
+c max{S(Tx,, Tx,, x), S(Tx, Tx, x,)}
= aS(Tx,, Tx,, x,) + bS(x,, X, X)
+cmax{S(Tx,, Tx,, x), S(Tx, Tx, x,)}. 41)

Then using the conditions (16), (41) and Lemma 1, we obtain

S(Tx,, Tx,, Tx) < 2aS(Tx,, Tx,,x) + aS(x,, x,, x) + bS(x,, x,,, X)
+¢S(Txy, Ty, x) + ¢S(Tx, Tx, x,,)
= (2a + ¢)S(Tx,, Tx,, x) + (a 4+ b + ¢)S(Tx, Tx, x,)

and
(1 —=2a—¢)S(Tx,, Tx,, Tx) < (a + b + ¢)S(x,, X4, X),
which implies

a+b+c

S(Txp, T, Tx) < —————
1—2a—c¢

S(xp, X, X). 42)

So using the condition (42), for n — oo we have

lim S(Tx,, Tx,, Tx) = 0.
n—oo
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Hence the sequence (TXx;,) is convergent to Tx = x by Definition 2 (1). Consequently
T is continuous at x by Lemma 3.

We note that Theorem 6 is a generalization of Corollary 8. Indeed, if we take
b = ¢ = 01in Theorem 6, we obtain Corollary 8.

Now we give an example of a self-mapping satisfying the condition (SN11) such
that the condition (9) is not satisfied.

Example 6. Let R be the S-metric space with
S(x,y,2) = |x—z| + |x +z—2y],
for all x,y,z € R [10]. Let

3

Ix = —
4

| =

+

Then T is a self-mapping on the complete S-metric space [0, 1]. We have

3
S(Tx, Tx, Ty) = 3 |x—y|,

S(x,x,y) = 2|x_y| ’

S(Tx, Tx,y) =2 §+l—y',
4 5
sy 0 =22 £ '
S(Tx, Tx,x) = 2 l—f ,
5 4
S(Ty, Ty,y) =2 l—X'
5 4

3 1
T satisfies the condition (SN11) fora = 0,b = T andc = (ER Then T has a unique

4
fixed point x = g But T does not satisfy the condition (9). Indeed, forx = 1,y = 0,
we obtain
a

S(Tx, Tx, Ty) = = < a(S(Tx, Tx,x) + S(Ty, Ty, y)) = 3

N W

L L 1
which is a contradiction since a < 5

Definition 14. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.



Some Generalizations of Fixed-Point Theorems on S-Metric Spaces 255

(SN12) There exist real numbers a, b, ¢ satisfying 2a+b+3c < 1 witha,b,c > 0
such that
S(T"x, T"x, T™y) < a(S(T"x, T"x,x) + S(T™y, T™y,y)) + bS(x, x,y)
+cmax{S(T"x, T"x,y), S(T"y, T"y, x)},

for all x,y € X and some m € N.

We give the following corollary as a result of Theorem 6.

Corollary 14. Let (X, S) be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition (SN12), then T has a unique fixed point x in X and T"
is continuous at x.

Proof. Tt follows from Theorem 6 by the same method used in the proof of
Corollary 9.

Definition 15. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.

1
(SN13) There exist a real number 4 satisfying 0 < h < 1 such that

S(Tx, Tx, Ty) < hmax{S(Tx, Tx,y)+S(Ty, Ty, y), S(Ty, Ty, x)+S(Tx, Tx, x)},

forall x,y € X.

Theorem 7. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN13), then T has a unique fixed point x in X and T is
continuous at Xx.

Proof. Let xy € X and let the sequence (x,) be defined as in the proof of Theorem 1.
Suppose that x,, # x,+; for all n. Using the condition (SN13) we have

Sy Xns Xnt1) = S(Txp—1, Txp—1, Txy,)
< hmax{S(x,, Xu, Xn) + S(Xu+1> Xn+1, %),
Snt15 Xn1, Xn—1) + S (X, Xy Xn—1) }

= hmax{S(Xy+1, Xn+1, %) S(Xn4 1, Xnt 1, Xo—1) + S(Xn, X, Xu—1) ). (43)
Then using Lemma 1 and the conditions (11) and (43), we obtain
S(Xns Xy Xpp1) < Ahmax{S(Xu+1, Xu+1>Xn)» 25 Xn15 Xn15 %) + 28(Xn—1, Xu—1,Xn) }

= 2hS (11, Xnt1, Xn) + 208X, X, Xp—1)

and

(1 - Zh)S(xnvxn»xn+l) = ZhS(xnvxn»xn—l)a
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which implies

S(x,,,xn, xn+1) =< S(xn—lv-xn—lv-xn)- (44)

h
1—-2h

2h 1
Letp = 1= Then we have p < 1 since a < —.
Repeating this process in the condition (44), we obtain

Sy Xn, Xng1) < P"S(x0, X0, x1). (45)

Then for all n,m € N, n < m, using the conditions (14) and (45), we have

7

S(xo, X0, x1).

2
S, Xy, Xp) < lp

Hence lim S(x,,x,,x,;) = 0since lim S(xo,x0,x1) = 0. Therefore (x;)

n,m—00 nm—o00 ]| —
is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) is convergent to x. Assume that Tx % x. Then we have

S(xp, xn, Tx) = S(Txp—1, Txp—1, Tx) < hmax{S(x,, x,,x) + S(Tx, Tx, x),
S(Tx, Tx, xy—1) + S, Xy Xp—1)}

and so taking the limit for n — o0, using the continuity of the function S and
Lemma 1, we obtain

S(Tx, Tx, x) < hS(Tx, Tx, x),

L. D 1
which is a contradiction since 0 < h < —. So we have Tx = x.

Now we show the uniqueness of x. Suppose that x # y such that 7x = x and
Ty = y. Using the condition (SN13) and Lemma 1, we have
S(Tx, Tx, Ty) = S(x,x,y) < hmax{S(x,x,y) + S, y.y),
S, y,x) + S(x,x,x)} = hS(x,x,y),

S . 1
which implies x = y since h < re

Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have

S(Txy, Txn, Tx) < hmax{S(Tx,, Tx,,x) + S(Tx, Tx, x), S(Tx, Tx, x,) + S(Txy, Txp, x)}.
(46)
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Then using the conditions (16), (46) and Lemma 1, we obtain
S(Tx,, Tx,, Tx) < hmax{S(Tx,, Tx,,x),2S(x,, X,, x) + 28(Tx,, Tx,, x)}
= 2hS(Tx,, Tx,, x) + 2hS(x,, X;, X)
and
(1 =2h)S(Tx,, Tx,, Tx) < 2hS(x,, Xu, X),

which implies

S(Txy, Tx,. Tx) <

N Sy 0. ) 7)
T X, Xy X).

So using the condition (47), for n — oo we have

lim S(Tx,, Tx,, Tx) = 0.
n—>oo
Hence the sequence (7Xx,,) is convergent to 7x = x by Definition 2 (1). Consequently

T is continuous at x by Lemma 3.

Definition 16. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.

1
(SN14) There exist a real number 4 satisfying 0 < h < 7 such that

S(T"x, T"x, T™y) < hmax{S(T"'x, T"x,y) + S(T"y, T"y, ),
S(Tmy, Tmy,x) + S(me, me, x)},

for all x,y € X and some m € N.
We give the following corollary as a result of Theorem 7.

Corollary 15. Let (X, S) be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition (SN14), then T has a unique fixed point x in X and T™
is continuous at x.

Proof. Tt follows from Theorem 7 by the same method used in the proof of
Corollary 9.

Definition 17. Let (X, S) be a complete S-metric space and 7 be a self-mapping
of X.

1
(SN15) There exist a real number # satisfying 0 < h < 3 such that

S(Tx, Tx, Ty) < hmax{S(Tx, Tx, x) + S(Ty, Ty, y), S(Tx, Tx, y) + S(Ty, Ty, x) },

forall x,y € X.
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Theorem 8. Let (X, S) be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition (SN15), then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let xy € X and let the sequence (x;,) be defined as in the proof of Theorem 1.
Suppose that x,, # x,+; for all n. Using the condition (SN15) we have

S(xm xn»xn—l-l) = S(Txn—l» Txn—h Txn)
S hmax{S(x,,,xn,xn_l) + S(xn+lvxn+lsxn)a S(xnvxnaxn)
+S(Xnt-1, Xnt15 Xn—1) }- (48)

Then using Lemma 1 and the conditions (11) and (48), we obtain

S(xns-xnvxn-i—l) S hmax{S(x,,,x,l, xn—l) + S(xn—i-lvxn-i—l,-xn)s
2S(xn+lvxn+l»xn) + S(xn—lvxn—la-xn)}
= 2hS(xn+lsxn+lvxn) + hS(xns xmxn—l)
and
(1 = 2h)S(xy, X, Xpg1) < BS(Cx, X, Xn—1),

which implies

S(xn7xn’xn+l) S S(xn—lwxn—l’xn)' (49)

1 —2h

h 1
T Then we have p < 1 since a < —.
Repeating this process in the condition (49), we obtain

Letp =

SO, Xn, Xng1) < P"S(x0, X0, x1). (50)

Then for all n,m € N, n < m, using the conditions (14) and (50), we have

7

S (X, Xns X)) < ] S(xo, x0, x1).

7

Hence lim S(x,,x,,x,) = 0since lim S(xo, X0, x1) = 0. Therefore (x,)
n,m— 00

nm—o0 ] —
is a Cauchy sequence. By the completeness hypothesis, there exists x € X such that
(x,) is convergent to x. Assume that Tx # x. Then we have

S(xn, Xn, Tx) = S(Txp—1, Txy—1, Tx) < hmax{S(x,, xn, xn—1) + S(Tx, Tx, x),

S(xu, X, x) + S(Tx, Tx, x,—1) }
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and so taking the limit for n — oo, using the continuity of the function S and
Lemma 1, we obtain

S(Tx, Tx, x) < hS(Tx, Tx, x),

L. .. . 1
which is a contradiction since 0 < & < —. So we have Tx = x.

Now we show the uniqueness of x. Suppose that x # y such that Tx = x and
Ty = y. Using the condition (SN15) and Lemma 1, we have

S(Tx, Tx, Ty) = S(x,x,y) < hmax{S(x,x,x) + Sy, v, ).
S(x,x,y) + SO, y,x)} = 2hS(x, x,y),

1
which implies x = y since h < —.
Now we show that T is continuous at x. Let (x,) be any sequence in X such that
(x,) is convergent to x. For n € N we have

S(Tx,, Tx,, Tx) < hmax{S(Tx,, Tx,, x,)+S(Tx, Tx, x), S(Tx,, Tx,, x)+S(Tx, Tx, x,)}.

(51)
Then using the conditions (16), (51) and Lemma 1, we obtain
S(Tx,, Tx,, Tx) < hmax{2S(Tx,, Tx,, x) + S(x,, X, X),
S(Tx,, Txy, x) + S(X, X, X)}
= 2hS(Tx,, Tx,, x) + hS(x,, x,, x)
and
(1 - 2h)S(Txn» Txn, T.X) = hS(-xmxna-x)»
which implies
S(Tx,, Tx,, Tx) < h S(. ) (52)
Xp, 41Xy, 1X) = 1 — 2h Xn, X, X).

So using the condition (52), for n — oo we have

lim S(Tx,, Tx,, Tx) = 0.
n—>oo
Hence the sequence (TXx;,) is convergent to Tx = x by Definition 2 (1). Consequently

T is continuous at x by Lemma 3.

Definition 18. Let (X, S) be a complete S-metric space and T be a self-mapping
of X.
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1
(SN16) There exist a real number 4 satisfying 0 < h < 3 such that

S(T"x, T"x, T"y) < hmax{S(T"x, T"x,x) + S(I"y, T"y.y),
S(T"x, T"x,y) + S(T"y, T"y, x)},

for all x,y € X and some m € N.

We give the following corollary as a result of Theorem 8.

Corollary 16. Let (X, S) be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition (SN16), then T has a unique fixed point x in X and
T™ is continuous at Xx.

Proof. Tt follows from Theorem 8 by the same method used in the proof of
Corollary 9.

Notice that the condition (SN15) is the special case of the condition (SN1) for
a=0,b=h.

Example 7. Let R be the S-metric space with
Sey.2) = x—z| + [x+2-2,
for all x,y,z € R [10]. Let us consider the following constant function:
Tx =k, k €[0,1].
Then T is a self-mapping on the complete S-metric space [0, 1]. We have
S(Tx, Tx, Ty) = 0,
S(Tx, Tx,y) =21k—y|,
S(Ty, Ty,x) = 2 |k — x|,
S(Tx, Tx,x) = 2 |k — x|,
STy, Ty,y) = 2|k — .

1
T satisfies the conditions (SN13) and (SN15) for all 2 € [0, 5), respectively. Then
T has a unique fixed point x = k.
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