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Preface

Essays in Mathematics and its Applications: In Honor of Vladimir Arnold focuses
on various important areas of Mathematical research. The contributed papers have
been written by eminent scientists and experts from the international Mathematical
community. These papers deepen our understanding of some of the current research
problems and theories which have their origin or have been influenced by V. Arnold.

The presentation of concepts and methods featured in this volume makes it an
invaluable reference for a wide readership.

We are indebted to all of the scientists who contributed to this volume, and we
would also like to acknowledge the superb assistance that the staff of Springer has
provided for this publication.

Athens, Greece Themistocles M. Rassias
Gainesville, FL, USA Panos M. Pardalos
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A New Way to Compute the Rodrigues
Coefficients of Functions of the Lie Groups
of Matrices

Dorin Andrica and Oana Liliana Chender

Abstract In Theorem 1 we present, in the case when the eigenvalues of the matrix
are pairwise distinct, a direct way to determine the general Rodrigues coefficients of
a matrix function for the general linear group GL.n;R/ by reducing the Rodrigues
problem to the system (7). Then, Theorem 2 gives the explicit formulas in terms
of the fundamental symmetric polynomials of the eigenvalues of the matrix. Our
formulas permit to consider also the degenerated cases (i.e., the situations when
there are multiplicities of the eigenvalues) and to obtain nice determinant formulas.
In the cases n D 2; 3; 4, the computations are effectively given, and the formulas
are presented in closed form. The method is illustrated for the exponential map and
the Cayley transform of the special orthogonal group SO.n/, when n D 2; 3; 4.

AMS Subject Classification (2010): 22Exx, 22E60, 22E70

1 Introduction

The exponential map exp W gl.n;R/ D Mn.R/ ! GL.n;R/, where GL.n;R/
denotes the Lie group of real invertible n�n matrices, is defined by (see, for instance,
Chevalley [8], Marsden and Raţiu [15], or Warner [22])

exp.X/ D
1X

kD0

1

kŠ
Xk: (1)

According to the well-known Hamilton–Cayley theorem, it follows that every power
Xk, k � n, is a linear combination of X0, X1, : : :, Xn�1; hence, we can write

exp.X/ D
n�1X

kD0
ak.X/X

k; (2)
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2 D. Andrica and O.L. Chender

where the real coefficients a0.X/; : : : ; an�1.X/ are uniquely defined and depend
on the matrix X. From this formula, it follows that exp.X/ is a polynomial of X.
The problem to find a reasonable formula for exp.X/ is reduced to the problem to
determine the coefficients a0.X/; : : : ; an�1.X/. We will call this general question the
Rodrigues problem and the numbers a0.X/; : : : ; an�1.X/ the Rodrigues coefficients
of the exponential map with respect to the matrix X 2 Mn.R/.

The origin of this problem is the classical Rodrigues formula obtained in 1840
for the special orthogonal group SO.3/:

exp.X/ D I3 C sin �

�
X C 1 � cos �

�2
X2;

where
p
2� D kXk and kXk denotes the Frobenius norm of the matrix X (for

details, see Sect. 3.1). There are numerous arguments pointing out the importance
of this formula, and we mention here the following two: the study of the rigid body
rotations in R

3 and the parameterization of the rotations in R
3.

The general idea of construction of matrix function generalizing the exponential
map is to consider an analytic function f .z/ D ˛0C˛1zC� � �C˛mzmC� � � , such that
the induced series Qf .X/ D ˛0InC ˛1XC � � � C ˛mXmC � � � is convergent in an open
subset of Mn.R/. Then, via the well-known Hamilton–Cayley–Frobenius theorem,
we can write a reduced form for the matrix Qf .X/, that is,

Qf .X/ D
n�1X

kD0
a.f /k .X/X

k: (3)

We call the above relation the Rodrigues formula with respect to Qf . The numbers
a.f /0 .X/; : : : ; a

.f /
n�1.X/ are the Rodrigues coefficients of the map Qf with respect to the

matrix X 2 Mn.R/. Clearly, the real coefficients a.f /0 .X/; : : : ; a
.f /
n�1.X/ are uniquely

defined, they depend on the matrix X, and Qf .X/ is a polynomial of X.
An important property of the Rodrigues coefficients is the invariance under the

matrix conjugacy, i.e., the following result holds:

Proposition 1. For every invertible matrix U, the following relations hold

a.f /k .UXU�1/ D a.f /k .X/; k D 0; : : : ; n � 1: (4)

Proof. Assume that we have

Qf .UXU�1/ D
n�1X

kD0
b.f /k .UXU�1/k;

where b.f /k D b.f /k .UXU�1/; k D 0; : : : ; n � 1. Then, we have

Qf .UXU�1/ D
1X

jD0
˛j.UXU�1/k D

1X

jD0
˛j.UXkU�1/

D U

0

@
1X

jD0
˛jX

k

1

AU�1 D UQf .X/U�1:
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Hence, we can write

Qf .UXU�1/ D UQf .X/U�1 D U

 
n�1X

kD0
a.f /k .X/X

k

!
U�1 D

n�1X

kD0
a.f /k .X/.UXU�1/k;

and the property immediately follows from the uniqueness of the Rodrigues
coefficients.

In Sect. 2 of this paper, we present a new method to determine the general
Rodrigues coefficients a.f /0 .X/; : : : ; a

.f /
n�1.X/ when the eigenvalues of the matrix

X are pairwise distinct. Formula (12) gives an explicit formula in terms of the
symmetric fundamental polynomials of the eigenvalues. Section 3 illustrates the
particular cases n D 2; 3; 4, and in Sect. 4, the possible cases of degeneration are
considered. Sections 5 and 6 are devoted to the special case of the exponential map
and the Cayley transform of the special orthogonal group. We mention that in the
paper [5], the same method was used to derive the Rodrigues formula for the Lorentz
group O.1; 3/.

2 The Rodrigues Formula for Qf.X/

In this section, we will present a new way to determine the general Rodrigues
coefficients a.f /0 .X/; : : : ; a

.f /
n�1.X/ introduced in (3). Following the paper [4], our

main idea consists in the reduction of relation (3) to a linear system with the
unknowns a.f /0 .X/; : : : ; a

.f /
n�1.X/.

In this respect, we multiply both sides of (3) by the matrix power Xj, j D
0; : : : ; n � 1, and we obtain the matrix relations

XjQf .X/ D
n�1X

kD0
a.f /k XkCj; j D 0; : : : ; n � 1; (5)

where a.f /k D a.f /k .X/; k D 0; : : : ; n � 1. Now, considering the matrix trace in the
both sides of (5), we obtain the linear system

n�1X

kD0
tr.XkCj/a.f /k D tr.XjQf .X//; j D 0; : : : ; n � 1; (6)

where the coefficients are functions of the matrix X. Now, assume that �1; : : : ; �n

are the eigenvalues of matrix X. Then, it is well known that the matrix XkCj

has the eigenvalues �kCj
1 ; : : : ; �kCj

n and the matrix XjQf .X/ has the eigenvalues
�

j
1f .�1/; : : : ; �

j
nf .�n/.
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Indeed, the function fj W C! C, fj.z/ D zjf .z/ is analytic; hence, the eigenvalues
of the matrix fj.X/ are fj.�1/; : : : ; fj.�n/. But, clearly, we have fj.�s/ D �j

sf .�s/; s D
1; : : : ; n, and the property is proved.

According to the considerations above, the system (6) is equivalent to

n�1X

kD0

 
nX

sD1
�kCj

s

!
a.f /k D

nX

sD1
�j

sf .�s/; j D 0; : : : ; n � 1: (7)

From the system (7), we obtain the following result concerning the solution to the
general Rodrigues problem with respect to the function f .

Theorem 1.

1) The Rodrigues coefficients in formula (3) are solutions to the system (7).
2) If the eigenvalues �1; : : : ; �n of the matrix X are pairwise distinct, then the

Rodrigues coefficients a.f /0 .X/; : : : ; a
.f /
n�1.X/ are perfectly determined by the

system (7), and they are given by the formulas

a.f /k .X/ D
V.f /

n;k.�1; : : : ; �n/

Vn .�1; : : : ; �n/
; k D 0; : : : ; n � 1; (8)

where Vn .�1; : : : ; �n/ is the Vandermonde determinant of order n and
V.f /

n;k.�1; : : : ; �n/ is the determinant of order n obtained from Vn .�1; : : : ; �n/

by replacing the line kC 1 by f .�1/; : : : ; f .�n/.
3) If the eigenvalues �1; : : : ; �n of the matrix X are pairwise distinct, then

the Rodrigues coefficients a.f /0 .X/; : : : ; a
.f /
n�1.X/ are linear combinations of

f .�1/; : : : ; f .�n/ having the coefficients rational functions of �1; : : : ; �n, i.e.,
we have

a.f /k D b.1/k f .�1/C � � � C b.n/k f .�n/; k D 0; : : : ; n � 1: (9)

Proof. The first statement was already proved.
For the second statement, observe that the determinant of the system (7) is

Dn D det

0

BB@

S0 S1 : : : Sn�1
S1 S2 : : : Sn

: : : : : : : : : : : :

Sn�1 Sn : : : S2n�1;

1

CCA

where Sl D Sl.�1; : : : ; �n/ D �l
1 C � � � C �l

n; l D 0; : : : ; 2n � 1:
It is clear that

Dn D det

0

BB@

1 : : : 1

�1 : : : �n

: : : : : : : : :

�n�1
1 : : : �n�1

n

1

CCA � det

0

BB@

1 �1 : : : �
n�1
1

1 �2 : : : �
n�1
2

: : : : : : : : : : : :

1 �n : : : �
n�1
n

1

CCA

D V2
n D

Y

1�i<j�n

�
�j � �i

�2 ¤ 0;

where Vn D Vn .�1; : : : ; �n/ is the Vandermonde determinant of order n.
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Now, it is important to observe that we have

�
a
.f /
k
D Vn �W.f /

n;k ; k D 0; : : : ; n � 1; (10)

where W.f /
n;k D W.f /

n;k .�1; : : : ; �n/ is the transpose of the determinant V.f /
n;k.�1; : : : ; �n/

and the conclusion follows from well-known formulas giving the unique solution
to the system by using the property W.f /

n;k.�1; : : : ; �n/ D V.f /
n;k.�1; : : : ; �n/; k D

0; : : : ; n � 1.
The last property immediately follows from formula (8) by expanding the

determinant V.f /
n;k.�1; : : : ; �n/ with respect to the line kC 1. �

Expanding the determinant V.f /
n;k.�1; : : : ; �n/ in Theorem 1 2) with respect to the

line kC 1, it follows

a.f /k .X/ D
1

Vn

nX

jD1
.�1/kCjC1LVn�1.�1; : : : ;b�j; : : : ; �n/f .�j/; (11)

where LVn�1.�1; : : : ;b�j; : : : ; �n/f .�j/ is the k C 1 lacunary Vandermonde deter-

minant in the variables �1; : : : ;b�j; : : : ; �n, i.e., the determinant obtained from
Vn .�1; : : : ; �n/ by cutting the row kC1 and the column j. Applying the well-known
formula (see the reference [21]),

LVn�1.�1; : : : ;b�j; : : : ; �n/ D sn�k�1.�1; : : : ;b�j; : : : ; �n/Vn�1.�1; : : : ;b�j; : : : ; �n/;

where sl is the l-th symmetric polynomial in the n � 1 variables �1; : : : ;b�j; : : : ; �n,
where �j is missing, we obtain the following result which completely solves the
general problem in the case when the eigenvalues �1; : : : ; �n of the matrix X are
pairwise distinct.

Theorem 2. For every k D 0; : : : ; n � 1, the following formulas hold:

a.f /k D
nX

jD1
.�1/kCjC1Vn�1.�1; : : : ;b�j; : : : ; �n/sn�k�1.�1; : : : ;b�j; : : : ; �n/

Vn.�1; : : : ; �n/
f .�j/;

(12)

where sl denotes the l-th symmetric polynomial and b�j means that in the Vander-
monde determinant Vn�1, the variable �j is omitted.

3 Illustrating the Cases n D 2; 3; 4

Clearly, when X D On, we have Qf .X/ D ˛0In, and in this situation a.f /0 D ˛0; a.f /1 D
� � � D a.f /n�1 D 0. In this section, we assume that the eigenvalues �1; : : : ; �n of the
matrix X are pairwise distinct.
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3.1 The Case n D 2

We have V2.�1; �2/ D �2 � �1 and

V1.b�1; �2/ D V1.�1; b�2/ D 1;
s1.b�1; �2/ D �2; s1.�1; b�2/ D �1;
s0.b�1; �2/ D s0.�1; b�2/ D 1:

From (8) and (12), it follows

a.f /0 D
V.f /
2;0.�1; �2/

V2.�1; �2/
D

ˇ̌
ˇ̌f .�1/ f .�2/
�1 �2

ˇ̌
ˇ̌

�2 � �1 D �2

�2 � �1 f .�1/ � �1

�2 � �1 f .�2/

and

a.f /1 D
V.f /
2;1.�1; �2/

V2.�1; �2/
D

ˇ̌
ˇ̌ 1 1

f .�1/ f .�2/

ˇ̌
ˇ̌

�2 � �1 D � 1

�2 � �1 f .�1/C 1

�2 � �1 f .�2/:

It follows the general Rodrigues formula

Qf .X/ D
�

�2

�2 � �1
f .�1/� �1

�2 � �1
f .�2/

�
I2 C

�
� 1

�2 � �1
f .�1/C 1

�2 � �1
f .�2/

�
X: (13)

3.2 The Case n D 3

We have V3.�1; �2; �2/ D .�2 � �1/.�3 � �1/.�3 � �2/ and

V2.b�1; �2; �3/ D �3 � �2;V2.�1; b�2; �3/ D �3 � �1;V2.�1; �2; b�3/ D �2 � �1:

Moreover,

s2.b�1; �2; �3/ D �2�3; s2.�1; b�2; �3/ D �1�3; s2.�1; �2; b�3/ D �1�2;
s1.b�1; �2; �3/ D �2 C �3; s1.�1; b�2; �3/ D �1 C �3; s1.�1; �2; b�3/ D �1 C �2;
s0.b�1; �2; �3/ D s0.�1; b�2; �3/ D s0.�1; �2; b�3/ D 1:
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Using again formulas (8) and (12), it follows

a.f /0 D
V.f /
3;0.�1; �2; �3/

V3.�1; �2; �3/
D

ˇ̌
ˇ̌
ˇ̌
f .�1/ f .�2/ f .�3/
�1 �2 �3
�21 �22 �23

ˇ̌
ˇ̌
ˇ̌

.�2 � �1/.�3 � �1/.�3 � �2/

D �2�3

.�2 � �1/.�3 � �1/ f .�1/ � �1�3

.�2 � �1/.�3 � �2/ f .�2/

C �1�2

.�3 � �1/.�3 � �2/ f .�3/

a.f /1 D
V.f /
3;1.�1; �2; �3/

V3.�1; �2; �3/
D

ˇ̌
ˇ̌
ˇ̌
1 1 1

f .�1/ f .�2/ f .�3/
�21 �22 �23

ˇ̌
ˇ̌
ˇ̌

.�1 � �2/.�1 � �3/.�2 � �3/

D � �2 C �3
.�2 � �1/.�3 � �1/ f .�1/C �3 C �1

.�2 � �1/.�3 � �2/ f .�2/

� �1 C �2
.�3 � �1/.�3 � �2/ f .�3/

a.f /2 D
V.f /
3;2.�1; �2; �3/

V3.�1; �2; �3/
D

ˇ̌
ˇ̌
ˇ̌
1 1 1

�1 �2 �3
f .�1/ f .�2/ f .�3/

ˇ̌
ˇ̌
ˇ̌

.�1 � �2/.�1 � �3/.�2 � �3/

D 1

.�2 � �1/.�3 � �1/ f .�1/ � 1

.�2 � �1/.�3 � �2/ f .�2/

C 1

.�3 � �1/.�3 � �2/ f .�3/

and the corresponding general Rodrigues formula

Qf .X/ D
�

�2�3

.�2 � �1/.�3 � �1/ f .�1/ � �1�3

.�2 � �1/.�3 � �2/ f .�2/

C �1�2

.�3 � �1/.�3 � �2/ f .�3/

�
I3 C

�
� �2 C �3
.�2 � �1/.�3 � �1/ f .�1/

C �3 C �1
.�2 � �1/.�3 � �2/ f .�2/ � �1 C �2

.�3 � �1/.�3 � �2/ f .�3/

�
X

C
�

1

.�2 � �1/.�3 � �1/ f .�1/ � 1

.�2 � �1/.�3 � �2/ f .�2/

C 1

.�3 � �1/.�3 � �2/ f .�3/

�
X2:
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3.3 The Case n D 4

We have V4.�1; �2; �3; �4/ D .�2��1/.�3��1/.�4��1/.�3��2/.�4��2/.�4��3/
and

V3.b�1; �2; �3; �4/ D .�3 � �2/.�4 � �2/.�4 � �3/;
V3.�1; b�2; �3; �4/ D .�3 � �1/.�4 � �1/.�4 � �3/;
V3.�1; �2; b�3; �4/ D .�2 � �1/.�4 � �1/.�4 � �2/;
V3.�1; �2; �3; b�4/ D .�2 � �1/.�3 � �1/.�3 � �2/:

Here, we have the corresponding symmetric sums

s3.b�1; �2; �3; �4/ D �2�3�4; s3.�1; b�2; �3; �4/ D �1�3�4;
s3.�1; �2; b�3; �4/ D �1�2�4; s3.�1; �2; �3; b�4/ D �1�2�3;
s2.b�1; �2; �3; �4/ D �2�3 C �2�4 C �3�4; s2.�1; b�2; �3; �4/ D �1�3 C �1�4 C �3�4;
s2.�1; �2; b�3; �4/ D �1�2 C �1�4 C �2�4; s2.�1; �2; �3; b�4/ D �1�2 C �1�3 C �2�3;
s1.b�1; �2; �3; �4/ D �2 C �3 C �4; s1.�1; b�2; �3; �4/ D �1 C �3 C �4;
s1.�1; �2; b�3; �4/ D �1 C �2 C �4; s1.�1; �2; �3; b�4/ D �1 C �2 C �3;
s0.b�1; �2; �3; �4/ D s0.�1; b�2; �3; �4/ D s0.�1; �2; b�3; �4/ D s0.�1; �2; �3; b�4/ D 1:

From formulas (8) and (9), we obtain

a.f /0 D
V.f /4;0.�1; �2; �3; �4/

V4.�1; �2; �3; �4/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

f .�1/ f .�2/ f .�3/ f .�4/
�1 �2 �3 �4

�21 �22 �23 �24
�31 �32 �33 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.�2 � �1/.�3 � �1/.�4 � �1/.�3 � �2/.�4 � �2/.�4 � �3/

D �2�3�4

.�2 � �1/.�3 � �1/.�4 � �1/ f .�1/ � �1�3�4

.�2 � �1/.�3 � �2/.�4 � �2/ f .�2/

C �1�2�4

.�3 � �1/.�3 � �2/.�4 � �3/ f .�3/ � �1�2�3

.�4 � �1/.�4 � �2/.�4 � �3/ f .�4/;

a.f /1 D
V.f /4;1.�1; �2; �3; �4/

V4.�1; �2; �3; �4/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 1 1

f .�1/ f .�2/ f .�3/ f .�4/
�21 �22 �23 �24
�31 �32 �33 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.�2 � �1/.�3 � �1/.�4 � �1/.�3 � �2/.�4 � �2/.�4 � �3/
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D � �2�3 C �2�4 C �3�4
.�2 � �1/.�3 � �1/.�4 � �1/ f .�1/C �1�3 C �1�4 C �3�4

.�2 � �1/.�3 � �2/.�4 � �2/ f .�2/

� �1�2 C �1�4 C �2�4
.�3 � �1/.�3 � �2/.�4 � �3/ f .�3/C �1�2 C �1�3 C �2�3

.�4 � �1/.�4 � �2/.�4 � �3/ f .�4/;

a.f /2 D
V.f /4;2.�1; �2; �3; �4/

V4.�1; �2; �3; �4/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 1 1

�1 �2 �3 �4

f .�2/ f .�2/ f .�3/ f .�4/
�31 �32 �33 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.�2 � �1/.�3 � �1/.�4 � �1/.�3 � �2/.�4 � �2/.�4 � �3/

D �2 C �3 C �4
.�2 � �1/.�3 � �1/.�4 � �1/ f .�1/ � �1 C �3 C �4

.�2 � �1/.�3 � �2/.�4 � �2/ f .�2/

C �1 C �2 C �4
.�3 � �1/.�3 � �2/.�4 � �3/ f .�3/ � �1 C �2 C �3

.�4 � �1/.�4 � �2/.�4 � �3/ f .�4/;

a.f /3 D
V.f /4;3.�1; �2; �3; �4/

V4.�1; �2; �3; �4/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 1 1 1

�1 �2 �3 �4

�21 �22 �23 �24
f .�2/ f .�2/ f .�3/ f .�4/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

.�2 � �1/.�3 � �1/.�4 � �1/.�3 � �2/.�4 � �2/.�4 � �3/

D � 1

.�2 � �1/.�3 � �1/.�4 � �1/ f .�1/C 1

.�2 � �1/.�3 � �2/.�4 � �2/ f .�2/

� 1

.�3 � �1/.�3 � �2/.�4 � �3/ f .�3/C 1

.�4 � �1/.�4 � �2/.�4 � �3/ f .�4/

and the corresponding general Rodrigues formula but we don’t write it here because
of the space reason.

4 Degeneration in Cases n D 2; 3; 4

In this section, we show how to obtain the general Rodrigues coefficients when the
eigenvalues �1; � � � ; �n of the matrix X are not distinct, when n D 2; 3; 4.

4.1 The Case n D 2

Assume that �1 D �2. Then the corresponding general Rodrigues coefficients can
be obtained from the formulas in Sect. 3.1 for �2 ! �1. Using the formula of the
derivative of a functional determinant, we get
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a.f /0 D
ˇ̌
ˇ̌f .�1/ f 0.�1/
�1 1

ˇ̌
ˇ̌ D f .�1/ � �1f 0.�1/

a.f /1 D
ˇ̌
ˇ̌ 1 0

f .�1/ f 0.�1/

ˇ̌
ˇ̌ D f 0.�1/:

4.2 The Case n D 3

In this case, we have to consider the following two possibilities, if we don’t take
into account the permutations of the eigenvalues �1; �2; and�3.

The Case �1 D �2 ¤ �3

The corresponding general Rodrigues coefficients can be obtained from the formu-
las in Sect. 3.2 for �2 ! �1. Using again the formula of the derivative of a functional
determinant, we get

a.f /0 D

ˇ̌
ˇ̌
ˇ̌
ˇ

f .�1/ f 0.�1/ f .�3/
�1 1 �3

�21 2�1 �23

ˇ̌
ˇ̌
ˇ̌
ˇ

.�3 � �1/2 D �23 � 2�1�3
.�3 � �1/2 f .�1/ � �1�3

�3 � �1 f 0.�1/C
�21

.�3 � �1/2 f .�3/

a.f /1 D

ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1

f .�1/ f 0.�1/ f .�3/
�21 2�1 2�23

ˇ̌
ˇ̌
ˇ̌
ˇ

.�3 � �1/2 D 2�1

.�3 � �1/2 f .�1/C
�23

.�3 � �1/2 f 0.�1/C 2�1

.�3 � �1/2 f .�3/

a.f /2 D

ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1

�1 1 �3

f .�1/ f 0.�1/ f .�3/

ˇ̌
ˇ̌
ˇ̌
ˇ

.�3 � �1/2 D � 1

.�3 � �1/2 f .�1/ � 1

�3 � �1 f 0.�1/C 1

.�3 � �1/2 f .�3/:

The Case �1 D �2 D �3

We use the formulas obtained in Section “The Case �1 D �2 ¤ �3” for �3 ! �1,
and we obtain

a.f /0 D lim
�3!�1

ˇ̌
ˇ̌
ˇ̌
f .�1/ f 0.�1/ f 0.�3/
�1 1 1

�21 2�1 2�3

ˇ̌
ˇ̌
ˇ̌

2.�3 � �1/ D lim
�3!�1

1

2

ˇ̌
ˇ̌
ˇ̌
f .�1/ f 0.�1/ f 00.�3/
�1 1 0

�21 2�1 2

ˇ̌
ˇ̌
ˇ̌
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D f .�1/ � �1f 0.�1/C 1

2
�21f

00.�1/;

a.f /1 D lim
�3!�1

ˇ̌
ˇ̌
ˇ̌
1 0 0

f .�1/ f 0.�1/ f 0.�3/
�21 2�1 2�3

ˇ̌
ˇ̌
ˇ̌

2.�3 � �1/ D lim
�3!�1

1

2

ˇ̌
ˇ̌
ˇ̌
1 0 0

f .�1/ f 0.�1/ f 00.�3/
�21 2�1 2

ˇ̌
ˇ̌
ˇ̌

D f 0.�1/ � �1f 00.�1/;

a.f /2 D lim
�3!�1

ˇ̌
ˇ̌
ˇ̌
1 0 0

�1 1 1

f .�1/ f 0.�1/ f 0.�3/

ˇ̌
ˇ̌
ˇ̌

2.�3 � �1/ D lim
�3!�1

1

2

ˇ̌
ˇ̌
ˇ̌
1 0 0

�1 1 0

f .�1/ f 0.�1/ f 00.�3/

ˇ̌
ˇ̌
ˇ̌

D 1

2
f 00.�1/;

and the corresponding Rodrigues formula.

4.3 The Case n D 4

In this case, we have to consider the following four possibilities, without taking into
account the permutations of the eigenvalues �1; �2; �3; and�4.

The Case �1 D �2 ¤ �3 ¤ �4

The general Rodrigues coefficients can be obtained from the formulas in Sect. 3.3
for �2 ! �1, and using the formula of the derivative of a functional determinant,
we get

a.f /0 D
1

.�3 � �1/2.�4 � �1/2.�4 � �3/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

f .�1/ f 0.�1/ f .�3/ f .�4/
�1 1 �3 �4

�21 2�1 �23 �24
�31 3�21 �33 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �3�4.3�
2
1 C �3�4 � 2�1.�3 C �4//

.�3 � �1/2.�4 � �1/2 f .�1/C ��1�3�4
.�3 � �1/.�4 � �1/ f 0.�1/

C �21�4

.�3 � �1/2.�4 � �3/ f .�3/C
��21�3

.�4 � �1/2.�4 � �3/ f .�4/;



12 D. Andrica and O.L. Chender

a.f /1 D
1

.�3 � �1/2.�4 � �1/2.�4 � �3/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 1

f .�1/ f 0.�1/ f .�3/ f .�4/
�21 2�1 �23 �24
�31 3�21 �33 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D ��1.3�1.�3 C �4/ � 2.�
2
3 C �3�4 C �24//

.�3 � �1/2.�4 � �1/2 f .�1/C �3�4 C �1.�3 C �4/
.�3 � �1/.�4 � �1/ f 0.�1/

C ��1.�1 C 2�4/
.�3 � �1/2.�4 � �3/ f .�3/C �1.�1 C 2�3/

.�4 � �1/2.�4 � �3/ f .�4/;

a.f /2 D
1

.�3 � �1/2.�4 � �1/2.�4 � �3/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 1

�1 1 �3 �4

f .�2/ f 0.�1/ f .�3/ f .�4/
�31 3�21 �33 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 3�21 � �23 � �3�4 � �24
.�3 � �1/2.�4 � �1/2 f .�1/C �.�1 C �3 C �4/

.�3 � �1/.�4 � �1/ f 0.�1/

C 2�1 C �4
.�3 � �1/2.�4 � �3/ f .�3/C �2�1 � �3

.�4 � �1/2.�4 � �3/ f .�4/;

a.f /3 D
1

.�3 � �1/2.�4 � �1/2.�4 � �3/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 1

�1 1 �3 �4

�21 2�1 �23 �24
f .�2/ f 0.�1/ f .�3/ f .�4/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �2�1 C �3 C �4
.�3 � �1/2.�4 � �1/2 f .�1/C 1

.�3 � �1/.�4 � �1/ f 0.�1/

C �1
.�4 � �3/.�3 � �1/2 f .�3/C 1

.�4 � �3/.�4 � �1/2 f .�4/:

The Case �1 D �2 D �3 ¤ �4

We use the formulas in the case “�1 D �2 ¤ �3 ¤ �4” for �3 ! �1 and obtain

a.f /0 D
1

2.�4 � �1/3

ˇ̌
ˇ̌
ˇ̌
ˇ̌

f .�1/ f 0.�1/ f 00.�1/ f .�4/
�1 1 0 �4
�21 2�1 2 �24
�31 3�21 6�1 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �31 C .�4 � �1/3
.�4 � �1/3 f .�1/C �1�4.2�1 � �4/

.�4 � �1/2 f 0.�1/

C �21�4

2.�4 � �1/ f 00.�1/C ��31
.�4 � �1/3 f .�4/;



Rodrigues Coefficients of Functions of the Lie Groups of Matrices 13

a.f /1 D
1

2.�4 � �1/3

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 1

f .�1/ f 0.�1/ f 00.�1/ f .�4/
�21 2�1 2 �24
�31 3�21 6�1 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �3�21
.�4 � �1/3 f .�1/C �2�

2
1 � 2�1�4 C �24
.�4 � �1/2 f 0.�1/

C��1.�1 C 2�4/
2.�4 � �1/ f 00.�1/C 3�21

.�4 � �1/3 f .�4/;

a.f /2 D
1

2.�4 � �1/3

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 1

�1 1 0 �4
f .�1/ f 0.�1/ f 00.�1/ f .�4/
�31 3�21 6�1 �34

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 3�1

.�4 � �1/3 f .�1/C 3�1

.�4 � �1/2 f 0.�1/

C 2�1 C �4
2.�4 � �1/ f 00.�1/C �3�1

.�4 � �1/3 f .�4/;

a.f /3 D
1

2.�4 � �1/3

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 1

�1 1 0 �4
�21 2�1 2 �24

f .�1/ f 0.�1/ f 00.�1/ f .�4/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �1
.�4 � �1/3 f .�1/C �1

.�4 � �1/2 f 0.�1/C �1
2.�4 � �1/ f 00.�1/

C 1

.�4 � �1/3 f .�4/:

The Case �1 D �2 D �3 D �4

We use the formulas obtained in the previous case for �4 ! �1 and get

a.f /0 D
1

6

ˇ̌
ˇ̌
ˇ̌
ˇ̌

f .�1/ f 0.�1/ f 00.�1/ f 000.�1/
�1 1 0 0

�21 2�1 2 0

�31 3�21 6�1 6

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 2f .�1/ � 2�1f 0.�1/C �21f 00.�1/C ��
3
1

3
f 000.�1/;
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a.f /1 D
1

6

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 0

f .�1/ f 0.�1/ f 00.�1/ f 000.�1/
�21 2�1 2 0

�31 3�21 6�1 6

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D 2f 0.�1/ � 2�1f 00.�1/C �21f 000.�1/;

a.f /2 D
1

6

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 0

�1 1 0 0

f .�1/ f 0.�1/ f 00.�1/ f 000.�1/
�31 3�21 6�1 6

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D f 00.�1/ � �1f 000.�1/;

a.f /3 D
1

6

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 0

�1 1 0 0

�21 2�1 2 0

f .�1/ f 0.�1/ f 00.�1/ f 000.�1/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D 1

3
f 000.�1/:

The Case �1 D �2; �3 D �4 and �2 ¤ �4

The general Rodrigues coefficients can be obtained from the formulas in Sec-
tion “The Case �1 D �2 ¤ �3 ¤ �4” for �4 ! �3. We obtain

a.f /0 D
1

.�3 � �1/4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

f .�1/ f 0.�1/ f .�3/ f 0.�3/
�1 1 �3 1

�21 2�1 �23 2�3

�31 3�21 �33 3�23

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �23.�3�1 C �3/
.�3 � �1/3 f .�1/C

��1�23
.�3 � �1/2 f 0.�1/

C��
2
1.�1 � 3�3/
.�3 � �1/3 f .�3/C

��21�3
.�3 � �1/2 f 0.�3/;

a.f /1 D
1

.�3 � �1/4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 0

f .�1/ f 0.�1/ f .�3/ f 0.�3/
�21 2�1 �23 2�3

�31 3�21 �33 3�23

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 6�1�3

.�3 � �1/3 f .�1/C �3.2�1 C �3/
.�3 � �1/2 f 0.�1/

C �6�1�3
.�3 � �1/3 f .�3/C �1.�1 C 2�3/

.�3 � �1/2 f 0.�3/;
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a.f /2 D
1

.�3 � �1/4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 0

�1 1 �3 1

f .�1/ f 0.�1/ f .�3/ f 0.�3/
�31 3�21 �33 3�23

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �3.�1 C �3/
.�3 � �1/3 f .�1/C ��1 � 2�3

.�3 � �1/2 f 0.�1/

C3.�1 C �3/
.�3 � �1/3 f .�3/C �2�1 � �3

.�3 � �1/2 f 0.�3/;

a.f /3 D
1

.�3 � �1/4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 0

�1 1 �3 1

�21 2�1 �23 2�3

f .�1/ f 0.�1/ f .�3/ f 0.�3/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 2

.�3 � �1/3 f .�1/C 1

.�3 � �1/2 f 0.�1/C �2
.�3 � �1/3 f .�3/C 1

.�3 � �1/2 f 0.�3/:

5 The Exponential Map on the Special Orthogonal
Group SO.n/

It is easy to check that the set of the real n � n orthogonal matrices forms a Lie
group under multiplication, denoted by O.n/. The subset of O.n/ consisting of
those matrices having the determinant equal toC1 is a subgroup, denoted by SO.n/
and called the special orthogonal group of the Euclidean space R

n. SO.n/ is an
important group used in Mechanics (see the famous book of Arnold [6]) and other
research directions. Due to geometric reasons, the matrices in SO.n/ are also called
rotation matrices.

It is well known that the Lie algebra so.n/ of SO.n/ consists in all skew-
symmetric matrices in Mn.R/ and the Lie bracket is the standard matrix commutator
ŒA;B� D AB�BA. The exponential map exp W so.n/! SO.n/ is defined by the same
formula (1) because it is given by the restriction exp jso.n/ of the exponential map
exp W gl.n;R/! GL.n;R/. It is known that for every compact connected Lie group,
the exponential map is surjective (see Bröcker and tom Dieck [7], Andrica and Casu
[1] for the standard proof, or Rohan [20] for applying a new idea of proof given by T.
Tao), that is, every compact connected Lie group is exponential (see the monograph
of Wüstner [23] for details about the exponential groups). Because the group SO.n/
is compact, it follows that the exponential map exp W so.n/ ! SO.n/ is surjective.
The surjectivity of exp for the group SO.n/ is an important property. Indeed, it
implies the existence of a locally inverse function log W SO.n/ ! so.n/, and this
has interesting applications. In the paper of Gallier and Xu [10] is mentioned that
the functions exp and log for the group SO.n/ can be used for motion interpolation
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(see Kim and Shin [13, 14] and Park and Ravani [16, 17]). Motion interpolation and
rational motions have also been investigated by Jüttler [11, 12]. Also, the surjectivity
of the exponential map for the group SO.n/ gives the possibility to describe the
rotations of the Euclidean space R

n (see Rohan [20]). The connection with the
noncommutative differential geometry is given in the paper of Piscoran [18]. The
problem of describing the image of the exponential map in the general setting is
discussed in the paper Andrica and Rohan [3]. The exponential map on other groups
of matrices is presented in details in Gallier [9].

In what follows, we apply the results obtained in Sects. 2–4 to get the Rodrigues
formulas for the exponential map on the special orthogonal group SO.n/. The
matrices in the Lie algebra so.n/ have two essential properties which simplify the
computation of the Rodrigues coefficients:

• If n is odd, then they are singular, i.e., they have one eigenvalue equal to 0
(possible with a multiplicity).

• The nonzero eigenvalues are purely imaginary and, of course, conjugated.

5.1 Illustrating the Classical Cases n D 2; 3

When n D 2, a skew-symmetric matrix X ¤ O2 can be written as

X D
�
0 a
�a 0

�
; a 2 R

�;

having the eigenvalues �1 D ai, �2 D �ai.
From the formulas derived in Sect. 3.1, we immediately obtain

a0 D 1

2

�
eai C e�ai

� D cos a;

a1 D e�1 � e�2

�1 � �2 D
eai � e�ai

2ai
D sin a

a
;

and then the corresponding Rodrigues formula is

exp.X/ D .cos a/I2 C sin a

a
X:

When n D 3, a real skew-symmetric matrix X is of the form

X D
0

@
0 �c b
c 0 �a
�b a 0

1

A ;
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having the characteristic polynomial

pX.t/ D t3 C .a2 C b2 C c2/t D t3 C �2t;

where � D pa2 C b2 C c2. The eigenvalues of X are �1 D � i; �2 D �� i; �3 D 0.
It is clear that X D O3 if and only if � D 0; hence, it suffices to consider only the
situation � ¤ 0. Because � ¤ 0, using the formulas obtained in Sect. 3.2, it follows
that

a0 D 1; a1 D sin �

�
; a2 D 1 � cos �

�2
;

giving the well-known classical formula due to Rodrigues

exp.X/ D I3 C sin �

�
X C 1 � cos �

�2
X2:

5.2 The Case n D 4

The general skew-symmetric matrix X 2 so.4/ is

X D

0

BB@

0 a b c
�a 0 d e
�b �d 0 f
�c �e �f 0

1

CCA ;

and the corresponding characteristic polynomial is given by

pX.t/ D t4 C .a2 C b2 C c2 C d2 C e2 C f 2/t2 C .af � beC cd/2:

Let �1;2 D ˙˛i; �3;4 D ˙ˇi be the eigenvalues of the matrix X, where ˛; ˇ 2 R.
It is clear that the real numbers ˛ and ˇ can be effectively determined in terms of
a; b; c; d; e; f by solving the equation pX.t/ D 0.

We consider the following three cases:

Case 1. If j˛j ¤ jˇj, ˛; ˇ 2 R
�; then using the formulas in Sect. 3.3, after simple

computations, we obtain the Rodrigues coefficients

a0 D ˇ2 cos˛ � ˛2 cosˇ

ˇ2 � ˛2 ; a1 D ˇ3 sin˛ � ˛3 sinˇ

˛ˇ.ˇ2 � ˛2/ ;

a2 D cos˛ � cosˇ

ˇ2 � ˛2 ; a3 D ˇ sin˛ � ˛ sinˇ

˛ˇ.ˇ2 � ˛2/ :
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In this case, it follows the corresponding Rodrigues formula in the form:

exp.X/ D ˇ2 cos˛ � ˛2 cosˇ

ˇ2 � ˛2 I4 C ˇ3 sin˛ � ˛3 sinˇ

˛ˇ.ˇ2 � ˛2/ X (14)

C cos˛ � cosˇ

ˇ2 � ˛2 X2 C ˇ sin˛ � ˛ sinˇ

˛ˇ.ˇ2 � ˛2/ X3:

Case 2. If ˛ ¤ 0 and ˇ D 0, then we will use the formulas in Section “The Case
�1 D �2 ¤ �3 ¤ �4” when �1 ¤ �2 ¤ �3 D �4 and obtain

a0 D 1; a1 D 1; a2 D 1 � cos˛

˛2
; a3 D C˛ � sin˛

˛3
: (15)

Therefore, the corresponding Rodrigues formula to this case is

exp.X/ D I4 C X C 1 � cos˛

˛2
X2 C ˛ � sin˛

˛3
X3: (16)

Case 3. If ˛ D ˇ ¤ 0, then we will use the formulas in Section “The Case
�1 D �2; �3 D �4 and �2 ¤ �4” for �1 D �3; �2 D �4; �1 ¤ �2, and
after simple computations, we get

a0 D ˛ sin˛ C 2 cos˛

2
; a1 D 3 sin˛ � ˛ cos˛

2˛
;

a2 D sin˛

2˛
; a3 D sin˛ � ˛ cos˛

2˛3
: (17)

Hence, the Rodrigues formula is

exp.X/ D ˛ sin˛ C 2 cos˛

2
I4 C 3 sin˛ � ˛ cos˛

2˛
X (18)

C sin˛

2˛
X2 C sin˛ � ˛ cos˛

2˛3
X3:

Note that in the paper [4], the formulas (16) and (18) are derived by using
the so-called Putzer’s method (see [19] for the original reference).

6 The Cayley Transform and the Rodrigues-Type Formulas

As we have already mentioned in the previous section, the matrices of the SO.n/
group describe the rotations as movements in the space R

n. If the matrix A belongs
to the Lie algebra so.n/ of the Lie group SO.n/, then the matrix In � A is invertible.
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Indeed, the eigenvalues �1; : : : ; �n of the matrix A are 0 or purely imaginary, so
eigenvalues of the matrix In � A are 1 � �1; : : : ; 1 � �n. They are clearly different
from 0; therefore, we have det.In � A/ D .1 � �1/ : : : .1 � �n/ ¤ 0, so In � A is
invertible.

The map Cay W so.n/! SO.n/, defined by

Cay.A/ D .In C A/.In � A/�1;

is called the Cayley transform of the group SO.n/. Let us show that this map is well
defined. Let be Cay.A/ D R: We have

RtR D .In C A/.In � A/�1tŒ.In C A/.In � A/�1�

D .In C A/.In � A/�1tŒ.In � A/�1�t.In C A/

D .In C A/.In � A/�1.In �t A/�1.In Ct A/

D .In C A/.In � A/�1.In C A/�1.In � A/ D In;

because matrices and their inverses commute. Therefore, R 2 SO.n/. The map Cay
is obviously continuous, and we have Cay.On/ D In 2 SO.n/; hence, necessarily
we have R 2 SO.n/.

Denote by
P

the set of the group SO.n/ containing the matrices with eigenvalue
�1. Clearly, we have R 2P if and only if the matrix In C R is singular.

Theorem 3. The map Cay W so.n/ ! SO.n/ nP is bijective and its inverse is
Cay�1 W SO.n/ nP! so.n/, where Cay�1.R/ D .RC In/

�1.R � In/.

Proof. If R 2 SO.n/ nP, then the relation Cay.A/ D R is equivalent to

R D .In C A/.In � A/�1 D .2In � .In � A//.In � A/�1 D 2.In � A/�1 � In:

Because R 2 SO.n/ nP, it follows that the matrix R C In is invertible, and from
the above relation, we obtain that its inverse is .RC A/�1 D 1

2
.In � A/. Using this

relation, we have

.RC In/
�1.R � In/ D 1

2
.In � A/.2.In � A/�1 � 2In/ D In � In C A D A;

so Cay�1.R/ D .RC In/
�1.R � In/.

In addition, a simple computation shows that if the matrix R is orthogonal, then
the matrix A D .RC In/

�1.R � In/ is antisymmetric. Indeed, we have

tA D .tR � In/.
tRC In/

�1 D .R�1 � In/.R
�1 C In/

�1

D .In � R/R�1R.In C R/�1 D �.RC In/
�1.R � In/ D �A;

because the matrices R � In and .RC In/
�1 commute.
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Clearly, the Cayley transform is obtained from the analytic map

f .z/ D 1C z

1 � z
D 1C 2zC 2z2 C � � � ; jzj < 1:

Therefore, we can apply the results derived in Sects. 2–4. Because the inverse of the
matrix In � A can be written in the form

.In � A/�1 D In C AC A2 C � � �

for a sufficiently small neighborhood of On, from the Hamilton–Cayley theorem, it
follows that the Cayley transform of A can be written in the polynomial form

Cay.A/ D b0.A/In C b1.A/AC � � � C bn�1.A/An�1 (19)

where the coefficients b0; : : : ; bn�1 are uniquely determined and depend on the
matrix A. We will call these numbers, as in the general setting, the Rodrigues
coefficients of A with respect to the application Cay.

6.1 Illustrating the Cases n D 2; 3

Following the paper [2] we will continue by the presentation of the particular cases
n D 2 and n D 3. If A D On, then Cay.A/ D In, and so b0.On/ D 1; b1.On/ D
� � � D bn�1.On/ D 0.

In the case n D 2, consider the antisymmetric matrix A ¤ O2, where

A D
�
0 a
�a 0

�
; a 2 R

�;

with eigenvalues �1 D ai; �2 D �ai. From the formulas derived in Sect. 3.1, we
obtain

b0 D 1 � a2

1C a2
and b1 D 1

1C a2
:

Thus, the Rodrigues-type formula for the Cayley transform is

Cay.A/ D 1 � a2

1C a2
I2 C 2

1C a2
A: (20)

For n D 3, any real antisymmetric matrix X is of the form

A D
0

@
0 �c b
c 0 �a
�b a 0

1

A ;
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with the characteristic polynomial pA.t/ D t3 C �2t, where � D pa2 C b2 C c2.
The eigenvalues of the matrix A are �1 D � i; �2 D �� i; �3 D 0. We have A D O3

if and only if � D 0, so it is enough to consider only the situation in which � ¤ 0.
Using the formulas obtained in Sect. 3.2, it follows

b0 D 1; b1 D 2

1C �2 ; b2 D
2

1C �2

and the Rodrigues-type formula for the Cayley transform of group SO.3/

Cay.A/ D I3 C 2

1C �2AC 2

1C �2A2: (21)

Formula (21) offers the possibility to obtain another form for the inverse of Cayley
transform. Indeed, let be R 2 SO.3/ such that

R D I3 C 2

1C �2AC 2

1C �2A2;

where A is an antisymmetric matrix. Considering the matrix transpose in both sides
of the above relation and taking into account that tA D �A, we obtain

R �t R D 4

1C �2A: (22)

On the other hand, we have

tr.R/ D 3 � 4�2

1C �2 D �1C
4

1C �2 ;

and by replacing in the relation (22), we get the formula

Cay�1.R/ D 1

1C tr.R/
.R �t R/: (23)

Formula (23) makes sense for rotations R 2 SO.3/ for which 1 C tr.R/ ¤ 0. If R
is a rotation of angle ˛, then we have tr.R/ D 1C 2 cos˛, so application Cay�1 is
not defined for the rotations of angle ˛ D ˙� . Because in the domain where it is
defined the application Cay is bijective, it follows that the antisymmetric matrices
from so.3/ can be used as coordinates for rotations. Considering the Lie algebra
isomorphism “b” between .R3;�/ and .so.3/; Œ�; ��/, where “�” denote the vector
product, defined by v 2 R

3 !bv 2 so.3/, where

v D
0

@
x1
x2
x3

1

A
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and

bv D
0

@
0 �x3 x2
x3 0 �x1
�x2 x1 0

1

A ;

by composing the applications

R
3b!so.3/

Cay��! SO.3/

we get a vectorial parameterization of rotations from SO.3/.

6.2 The Case n D 4

As in Sect. 5.2, for a skew-symmetric matrix A 2 so.4/, let �1;2 D ˙˛i; �3;4 D ˙ˇi
be the eigenvalues of the matrix A, where ˛; ˇ 2 R. We consider the following three
situations.

Case 1. If j˛j ¤ jˇj, ˛; ˇ 2 R
�; then using the formulas in Sect. 3.3, we obtain

b0 D 1C ˛2 C ˇ2 � ˛2ˇ2
.1C ˛2/.1C ˇ2/ ; b1 D 2.1C ˛2 C ˇ2/

.1C ˛2/.1C ˇ2/

b2 D 2

.1C ˛2/.1C ˇ2/ ; b3 D
2

.1C ˛2/.1C ˇ2/
and the corresponding Rodrigues formula

Cay.A/ D 1C ˛2 C ˇ2 � ˛2ˇ2
.1C ˛2/.1C ˇ2/ I4 C 2.1C ˛2 C ˇ2/

.1C ˛2/.1C ˇ2/A

C 2

.1C ˛2/.1C ˇ2/A2 C 2

.1C ˛2/.1C ˇ2/A3:

Case 2. If ˛ ¤ 0 and ˇ D 0, then we will use the formulas in Section “The Case
�1 D �2 ¤ �3 ¤ �4” when �1 ¤ �2 ¤ �3 D �4 and obtain

b0 D 1

�2i˛5

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 2 1C˛i
1�˛i

1�˛i
1C˛i

0 1 ˛i �˛i
0 0 �˛2 �˛2
0 0 �i˛3 i˛3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D 1; b1 D 1

�2i˛5

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 1 1

1 2 1C˛i
1�˛i

1�˛i
1C˛i

0 0 �˛2 �˛2
0 0 �i˛3 i˛3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D 2;
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b2 D 1

�2i˛5

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 1 1

0 1 ˛i �˛i
1 2 1C˛i

1�˛i
1�˛i
1C˛i

0 0 �i˛3 i˛3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D 2

1C ˛2 ;

b3 D 1

�2i˛5

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 1 1

0 1 ˛i �˛i
0 0 �˛2 �˛2
1 2 1C˛i

1�˛i
1�˛i
1C˛i

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D 2

1C ˛2 :

The Rodrigues formula in this case is

Cay.A/ D I4 C 2AC 2

.1C ˛2/A2 C 2

.1C ˛2/A3:

Case 3. If ˛ D ˇ ¤ 0, then we will use the formulas in Section “The Case
�1 D �2; �3 D �4 and �2 ¤ �4” for �1 D �3; �2 D �4; �1 ¤ �2, and
after simple computations, we get

b0 D 1

16˛4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1C˛i
1�˛i

2
.1�˛i/2

1�˛i
1C˛i

2
.1C˛i/2

˛i 1 �˛i 1

�˛2 2˛i �˛2 �2˛i
�i˛3 �3˛2 i˛3 �3˛2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1C 2˛2 � ˛4
.1C ˛2/2 ;

b1 D 1

16˛4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 0
1C˛i
1�˛i

2
.1�˛i/2

1�˛i
1C˛i

2
.1C˛i/2

�˛2 2˛i �˛2 �2˛i
�i˛3 �3˛2 i˛3 �3˛2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 2.2˛2 C 1/
.1C ˛2/2 ;

b2 D 1

16˛4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 0

˛i 1 �˛i 1
1C˛i
1�˛i

2
.1�˛i/2

1�˛i
1C˛i

2
.1C˛i/2

�i˛3 �3˛2 i˛3 �3˛2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 2

.1C ˛2/2 ;

b3 D 1

16˛4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 1 0

˛i 1 �˛i 1

�˛2 2˛i �˛2 �2˛i
1C˛i
1�˛i

2
.1�˛i/2

1�˛i
1C˛i

2
.1C˛i/2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 2

.1C ˛2/2

and the corresponding Rodrigues formula

Cay.A/ D 1C 2˛2 � ˛4
.1C ˛2/2 I4 C 2.2˛2 C 1/

.1C ˛2/2 AC 2

.1C ˛2/2 A2 C 2

.1C ˛2/2 A3:
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Quasimodes in Integrable Systems
and Semi-Classical Limit

M. Baldo and F. Raciti

Abstract Quasimodes are long-living quantum states that are localized along
classical orbits. They can be considered as resonances, whose wave functions
display semi-classical features. In some integrable systems, they have been con-
structed mainly by the coherent state method, and their connection with the classical
motion has been extensively studied, in particular as a tool to perform the semi-
classical limit of a quantum system. In this work, we present a method to construct
quasimodes in integrable systems. Although the method is based on elementary
procedures, it is quite general. It is shown that the requirement of a long lifetime
and strong localization implies that the quasimode must be localized around a closed
classical orbit. At a fixed degree of localization, the lifetime of the quasimode can
be made arbitrarily longer with respect to the classical period in the asymptotic limit
of large quantum numbers. It turns out that the coherent state method is a particular
case of this general scheme.

1 Introduction

The semi-classical limit has been one of the basic issues that attracted continuous
interest since the foundation of quantum mechanics. The eigenvalues of integrable
systems can be obtained from the Bohr–Sommerfeld semi-classical quantization
method, which is valid in the large quantum number limit, i.e. large actions with
respect to the Planck constant h. More difficult is to obtain the semi-classical limit
of the corresponding wave functions. It is usually assumed that the wave functions
of the eigenstates cover uniformly the whole available phase space, which is the
Liouville torus determined by the values of the quantum numbers. As such, they
have no resemblance with any classical behaviour of the system. This is of course
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due to the fact that the eigenstates are stationary states which cannot be connected
with any classical trajectory, which requires both localization and time dependence.
The alternative method for a semi-classical description is through the introduction
of wave packets, following the celebrated theorem by Ehrenfest. In the case of
a particle motion, the time-dependent localized wave packet follows the classical
trajectories. Its size actually spreads with time, but for macroscopic objects, the
spreading time becomes asymptotically so large that the particle behaves in a
completely classical fashion. For a particle moving in a potential, the theorem can
be applied as a valid method for performing the semi-classical limit if the typical
distance over which the potential is changing turns out to be much larger than the
wavelengths that characterize the wave packet, that is, as it is well known, in the
short wavelength limit.

For non-completely macroscopic objects, this means that the wave packet cannot
move inside a container with sharp boundaries, noticeably a billiard; otherwise,
the wave packet would spread rapidly as it hits one of the boundaries. However,
it has been found that also in this typical case, localization can occur because of the
presence of caustics [1], and if there is an exact degeneracy among different sites
of the billiard, an exact eigenstate can be obtained by a linear combination of the
wave functions localized in each site. These wave functions are generically indicated
as “quasimodes”. They exist also in a generic system. They have a counterpart in
classical sound phenomena, like the whispering modes in an auditorium. However,
the term quasimode has been used to indicate generically to states that are “close”
to stationary mode, i.e. to eigenstates of the system [2, 12, 20, 22, 26]. We will
indicate by quasimodes a more specific class of states. For a generic system, we will
consider as quasimodes states that have the wave function sharply localized around
a classical periodic orbit and have a long lifetime, in some sense to be specified later.
Many authors have proposed different methods to construct quasimodes, either on
the basis of particular eigenstate superposition suggested by Ehrenfest theorem [21]
or on geometrical optics methods [5, 18]. In the latter work, it has been shown that
in a billiard of generic shape, two types of quasimodes can be indeed present, the
“whispering gallery” and “bouncing ball” modes.

Several authors [11, 25] have developed general methods to construct long-
living quasimodes that asymptotically for „ ! 0 “are close” to eigenstates, in
a mathematically well-defined sense. All these methods build up the quasimode
around a stable periodic orbit, corresponding to an elliptical fixed point. For a
Riemann manifold [11], the quasimode is localized around a stable geodesic. The
general case for a smooth dynamics has been treated in [25]. An extensive analysis
of the mathematical basis of quasimodes can be found in [3].

It has to be stressed that quasimodes have not to be confused with the phe-
nomenon of scars in chaotic systems [15]. In this case, one refers to an exact
eigenstate whose wave function shows some enhancement around an unstable
classical periodic orbit. This phenomenon is especially present in billiards. It has
been studied extensively in the literature [6, 15–17, 23, 27, 28]. Partial explanations
of scars have been presented by many authors. In [7], an approach based on
the Gutzwiller trace formula [14] for chaotic systems has been used, where the
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density of states is determined, in the semi-classical limit, solely by the classical
(unstable) periodic orbits. If around a classical periodic orbit one takes also the
contribution from closed non-periodic orbits, the average wave function can display
some enhancement in the vicinity of the periodic orbit.

However, it is possible to relate quasimodes and scars. A method [23, 27] that has
been developed to show this link is based on the so-called Gaussian beams, where
a Gaussian wave packet is launched along an unstable periodic orbit. The short-
time dynamics of the wave packet provides the correct superposition of eigenstates,
belonging to a band in the smoothed spectrum, that gives a wave function localized
along the unstable periodic orbit. In this way, one gets a short-living quasimode.
At the same time, the substantial overlap of the eigenstates, involved in the
superposition, with the quasimode gives an explanation of the presence of scars.
These results establish a link between quasimode and scars in chaotic systems. Since
the periodic orbit is unstable, the quasimode so constructed has a short lifetime,
determined at least by the Lyapunov exponents of the orbit. It seems clear that a
long-living quasimode, sharply localized around an unstable classical orbit, with a
lifetime arbitrarily larger than the classical period, cannot exist, even in the semi-
classical limit. In particular, this method can have a limited application to billiards,
since, as it is well known, a wave packet that hits a sharp edge spreads out rapidly.
However, in [27], it was shown that following the evolution of the wave packet, one
can obtain a wave function close to an eigenstate that in some cases displays scarred
structure.

In integrable systems, the situation is substantially different. Periodic orbits can
be grouped in families that can be obtained by a smooth variation of an orbital
parameter. As an example, in the circular billiard, one can smoothly vary the
orientation of the orbit. Furthermore, each periodic orbit corresponds to a parabolic
fixed point in the Poincaré map, since neighbouring trajectories diverge linearly with
time. The systems have symmetries that the eigenfunctions must respect. On the
contrary, a given generic periodic orbit can have only discrete symmetries, different
from the ones of the system, and therefore, a quasimode, localized around a periodic
orbit, cannot approach any eigenstate, even asymptotically for „ ! 0, while this is
possible in the case of an isolated stable periodic orbit (in a generic system, chaotic
or not). Of course a suitable linear combination of such quasimodes can approach
asymptotically an eigenstate, but this cannot be considered a semi-classical object.
This does not prevent the quasimode to have a long lifetime, possibly arbitrarily
larger than the classical period. At the same time, localization around the orbit can
be in principle achieved by a proper superposition of almost degenerate eigenstates,
like in the case of isolated unstable orbits in a chaotic system. To which extent
localization and long lifetime can be reached in integrable systems is the subject of
the present paper.

For rectangular billiards, a method to construct quasimodes was developed in
[9], based on the introduction of coherent states, in analogy with the case of the
harmonic oscillator.

In this paper, we present a general procedure to build quasimodes in integrable
systems that, although based on elementary methods, allows for a systematic study
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of their properties. In particular, we will construct quasimodes that, in the proper
asymptotic limit, are localized with arbitrary precision around a periodic orbit and
at the same time have a lifetime that can be made arbitrarily larger than the period
of the orbit. In this way, the quasimodes can be considered as resonances within
the point spectrum of the system, as we are going to consider systems completely
confined in a restricted region like billiards. Notice however that they are particular
resonances, since the wave function is localized around a periodic orbit and they do
not respect in general the symmetries of the system and of the eigenfunctions. In
any case, because of their properties, they are surely semi-classical objects.

The quasimodes could be the basis for a different way of performing the semi-
classical limit, but a systematic study of this possibility has not been fully developed.

Finally, one has to mention that there are exceptional cases where quasimodes are
also eigenstates because of the asymptotically large and exact degeneracy present
in the spectrum, like for the harmonic oscillator. This feature is clearly connected
with the well-known fact that a wave packet does not spread indefinitely, but on
the contrary, its size oscillates indefinitely while following the classical trajectory
(a closed orbit) [24].

In Sect. 2, we present the method in its general form for two-dimensional systems
and for integrable systems, either billiards or Hamiltonian ones. In Sect. 3, we
present results for the quasimodes in billiards of different shapes, and we discuss
their lifetimes. The connection with coherent states is also discussed. In Sect. 4, we
consider Hamiltonian systems. Besides the special case of the harmonic oscillators,
we analyse a generic two-dimensional system, and we discuss the quasimodes
associated with trajectories that close after several revolutions. Section 5 is devoted
to the conclusions and prospects.

2 The General Method

We describe the proposed method by recalling for completeness some elementary
results for classical integrable systems. The treatment will be restricted, as in the
rest of the paper, to two degrees of freedom. The extension to higher dimension
looks possible but not obvious. In the semi-classical limit, we quantize the two-
dimensional integrable system by the Bohr–Sommerfeld scheme, where each action
integral along a topological distinct path in the invariant torus is imposed to be an
integer multiple of the Planck constant h. Therefore, in two-dimensional integrable
systems, the energy levels E.n; l/ are a function of two integers (quantum numbers)
n; l. We are looking for linear combinations of almost degenerate levels that are
localized as much as possible. Starting from a particular pair of quantum numbers
n0; l0 and the corresponding energy E0 D E.n0; l0/, we look for the set of quantum
numbers that in linear approximation correspond to levels degenerate with E0.
Formally,
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n D n0 C ın

l D l0 C ıl

ıE D @E
@n ın C @E

@l ıl D 0

(1)

Since n and l are integers, in order to fulfil the condition ıE D 0, it is necessary
that the variations ın and ıl be in a constant fractional ratio

ın

ıl
D p

q
D �@E

@l
=
@E

@n
(2)

where p and q are two integers that are prime with each other. The partial derivatives
of the energy are the frequencies of the classical motion along each degree of
freedom

!n D @E

@n
I !l D @E

@l
(3)

It follows that the classical orbit associated with .n0; l0/ closes after N D pq
periods of the faster degrees of freedom. Notice however that the trajectory is
closed only to order 1=n, since the frequencies around the tori are discrete upon
quantization. This shows the well-known result that sets of quasidegenerate levels,
otherwise called “shells” [8], are associated with closed classical orbits. Notice that
the condition (2) is also a constraint on the reference quantum numbers .n0; l0/.
Because the semi-classical limit corresponds to asymptotically large quantum
numbers, this condition can be fulfilled to any degree of precision.

An estimate of the level of degeneracy can be obtained by calculating the second
derivative of the energy along the direction defined by Eq. (2). Here we are of course
treating the quantum numbers as continuous variables, which is justified in the semi-
classical limit. Along this direction, one can take, e.g. the quantum number n as a
linear function of the other quantum number l. As a consequence, also the energy
is a function only of the quantum number l. Let us assume for simplicity that the
energy appears explicitly only in the action integral J corresponding to the quantum
number n, that is, the corresponding Bohr–Sommerfeld quantization („ D 1)

J.E; l/ D 2�n (4)

is the equation that determines the semi-classical energy for a given pair .n; l/
of quantum numbers (assuming for simplicity no exact quantal degeneracy). This
will be the case in all explicit models considered in the rest of the paper. The
more general case can be treated along the same lines. In Eq. (4), both E and n
are considered functions of l. Taking the first derivative of Eq. (4), one gets

dJ

dl
D
�
@J

@E

�
dE

dl
C @J

@l
D �2� !l

!n
(5)
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which fixes the condition on the quantum numbers .n0; l0/. At the reference point
.n0; l0/, the derivative of the energy is zero by construction. Taking into account this
fact, the second derivation at .n0; l0/ of the equation reads

d2J

dl2
D
�
@J

@E

�
d2E

dl2
C @2J

@l2
D 0 (6)

where we have used the vanishing of the second derivative of n with respect to l due
to linear dependence of n on l, according to Eq. (2). From this, one gets at .n0; l0/

d2E

dl2
D �@

2J

@l2
=
@J

@E
(7)

The spread �E in energy within a range of values �l of the quantum number l
around the reference value l0 can be estimated up to second order as

�E D
ˇ̌
ˇ̌1
2

d2E

dl2

ˇ̌
ˇ̌�l2 (8)

It follows that a linear combination of eigenstates within this range will correspond
to a state with a lifetime � of order 1=�E, („ D 1). Notice that the energy derivative
of J is associated with the characteristic time T of the corresponding closed classical
orbit, in particular to its period, and therefore,

�

T
D 1 =

ˇ̌
ˇ̌
�
@2J

@l2
�l2

�ˇ̌
ˇ̌ (9)

Within the same range �l, one can construct a linear combination of eigenstates
 n;l to obtain a wave function ‰ localized in coordinate space. To some extent,
the type of linear combination is arbitrary. The standard choice is a Gaussian
superposition

‰.r/ D
X

l

expŒ�.l � l0/
2=�l2� l.r/ (10)

where the summation is only over l because it is performed along the direction
defined by Eq. (2) (i.e. n is a function of l) and r is the two-dimensional position
vector (coordinate space). The localization will be in the coordinate (cyclic) variable
	, canonical conjugated to l. The localization �	 will be then of the order of 1=�l.
The main goal is now to see to what extent this localization put constraints to the
lifetime � of this state. It turns out that the second derivative of J with respect to l is
asymptotically of the order of 1=l, and therefore,

�

T
� l=.�l/2 (11)
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which means that, at a fixed localization �	, the ratio between the lifetime and the
classical orbital period is asymptotically arbitrarily large. This result is valid for all
the particular systems we are going to consider. The extension of these properties to
a general system looks likely but not obvious.

It remains to demonstrate that the localization is around a definite classical orbit.
This can be shown by introducing the standard semi-classical expression for the
wave functions

‰l.r/ � exp.iSl.r// exp.il	/ (12)

where Sl.r/ is the reduced action, i.e. the wave function is the exponential of the
total action. Expanding the action around l D l0 and taking the stationary phase
approximation of the superposition in l of Eq. (10) gives (apart from an irrelevant
phase)

‰.r/ � exp

�
�j	 � 	S.r/j2

2�	2

�
(13)

where

	S.r/ D �
�

dSl.r/

dl

�

lDl0

(14)

and 	 D 	S.r/ is indeed the equation of the trajectory. It has to be noticed that the
superposition (10) is invariant under a shift of 	 by a multiple of the quantity ı	

ı	 D 2�

q
(15)

because the summation over l is performed with a step q. This implies that the
quasimode has a discrete symmetry of �	 . This means also that there are actually
multiple points of stationary phase, regularly spaced in 	 by ı	. The approximate
expression of Eq. (13) must be then summed up over these q stationary points, which
gives the discrete symmetry. All that will be more clear in the explicit applications
of the method, where the meaning of this shift ı	 will be more evident.

The superposition of Eq. (10) can be performed also numerically, as we will do in
the specific examples where the eigenfunctions are analytically known. Since in this
case no approximation is used for calculating the quasimode wave function (10), the
symmetry discussed above is automatically included. It has to be stressed that in this
case there is some freedom in the choice of the eigenfunctions ‰nl, since they can
be normalized but they can still be multiplied by a phase which eventually can be
dependent on the quantum numbers .n; l/. This can modify the superposition (10),
since the phases will result in a different interference pattern. This is a quantum
feature that cannot be eliminated even in the semi-classical limit. The choice of
the phases can modify the region where the quasimode is localized. To get the
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proper choice, one can look at the approximate expression (12) and check if in the
asymptotic limit this expression is indeed recovered. As a particular case, we can
associate to each wave function a phase factor exp.il	0/. According to Eq. (13), this
would just simply shift the variable 	 by a fixed amount 	0. Since 	0 is arbitrary,
one can see that one can associate to each classical orbit a family of orbits with
similar characteristics but with a different geometry.

3 Quasimodes in Integrable Billiards

The billiards are the simplest systems where quasimodes can be constructed.
At classical level, they cannot be described easily by means of a Hamiltonian,
because of the discontinuity of the trajectory velocity at the point of bounce on
the billiard boundary. However, between two bounces, the motion is free, and one
can describe the trajectory as piecewise continuous. Moreover, one can still consider
the Liouville–Arnold tori in phase space.

3.1 The Rectangular Billiard

Despite billiards not being Hamiltonian systems, they can be treated within the
general method we have introduced. Let us start with the simplest billiard, the square
billiard (SB). This case has been extensively studied in [9]. It has also been shown
[10] that the quasimodes present wave functions characterized by a vortex structure.
In that work, the quasimodes were constructed by coherent states, defined as in the
case of the harmonic oscillator. We will treat briefly this case, following the scheme
of Sect. 2, and show that one can construct quasimodes more generally, being the
coherent states a particular class of them.

For the square billiard, the constants of motion are the (quasi)momenta kx and ky

along the two side directions, and quantization gives

kx
n D n�R

ky
m D m�

R

(16)

where R is the side length of the square and n, m two integers, positive or negative.
The motion is free, and therefore, the energy levels E.n;m/ are readily obtained

E.n;m/ D n2 C m2 (17)

where for simplicity we put �=R D 1. The condition (2) of stationary energy
around the point .n0;m0/ in this case is

ın

ım
D �m0

n0
D �p

q
(18)
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Eq. (18) gives in a straightforward way the conditions on both the reference quantum
numbers .n0;m0/ and the direction .ın; ım/ along which the quantum numbers must
move. The eigenfunctions are just the products of standing waves along x and y,
which are sine (cosine) functions for even (odd) quantum numbers (taking the origin
at the centre of the square). The two quantum numbers n and m are equivalent, and
the superposition of Eq. (10) can be done in anyone of the two. For illustration, let us
take m0 D n0 and a step of one unit for both quantum numbers in the superposition
of Eq. (10). One can write

‰.x; y/ D
X

l

exp.i.m0 C l/yC l	0/ lŒ.n0 � l/x� (19)

where for even values of n0 � l, the eigenfunction  l is a sine function, while for
odd ones, it is a cosine function. The additional phase 	0 has a given value. Here,
the summation on l is extended in an interval between l D �N0 and l D N0,
being N0 large enough but much smaller than n0 and m0. Notice that we took a
superposition with a constant factor rather than the Gaussian form of Eq. (10). The
summation can be calculated exactly, since it involves geometrical series. The result
is the superposition of four terms of the type

S˙˙.x; y/ D sin Œ.N0 C 1/.y ˙ x ˙ 	0/� = sin.y ˙ x ˙ 	0/ (20)

where the choices of the signs are independent of each other. The wave function
is therefore concentrated along the four straight lines y ˙ x ˙ 	0 D 0. For the
choice 	0 D �=2, the numerical calculation gives the result depicted in Fig. 1. This
has been obtained for .n0;m0/ D .400; 400/ and N0 D 10. The wave function
is clearly concentrated along a classical trajectory. Notice that the considered
superposition with a constant weight produces oscillations outside the region of
maximum contribution, as it can be seen from Eq. (20). A similar procedure can be
obtained with a Gaussian weight, as in Eq. (10). The approximate result is expected
to be the superposition of the same four branches, but with smoother profiles. The
numerical evaluation produces a plot practically indistinguishable from the one
depicted in Fig. 1. This indicates that the type of weight for the superposition is
not crucial, provided of course that the width of the superposition is similar. Other
choices of 	0 correspond to different classical trajectories. At classical level, this
phase can be interpreted as fixing the time laps of the motions along the x and y
directions. For 	0 D �=3, the result is reported in Fig. 2.

As 	0 is varied, a family of classical trajectories is generated.
Other trajectories with a different topology are generated by different steps in the

summation for the quantum numbers n an m. For ın=ım D 1=2 and 	0 D �=2

and 	0 D �=3, the result is reported in Fig. 3 and in Fig. 4, respectively.
The connection of the present method with the one in [9], based on the coherent

states, can be obtained by considering the asymptotic form of the combinatorial
factors that are used in the superposition. In fact, one has
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Fig. 1 Quasimode in the
square billiard corresponding
to the quantum numbers
.n0;m0/ D .400; 400/ and
p D q D 1. The phase is
	0 D � [see Eq. (19)]

Fig. 2 The same as in Fig. 1,
but for 	0 D �=4

0

@
N

K

1

A � expŒ�.K � K0/
2=K0� (21)

where we expanded the Stirling formula for the factorials around the value K0 D
N=2, where the combinatorial factor has its maximum. One can see that the coherent
state representation corresponds to a Gaussian superposition with a particular choice
for the width of the Gaussian.

Finally, for the energy spread of Eq. (8) and lifetime � of Eq. (9), one gets

�E D 1=n0 I �

T
D n30=E � n0 (22)
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Fig. 3 Quasimode
corresponding to p D 1 and
q D 2 with the values of
.n0;m0/ reported in the title.
The phase 	0 D � . See the
text for details

Fig. 4 The same as in Fig. 3,
but with 	0 D �=2

which asymptotically for large quantum numbers have the anticipated trend. In
the particular cases considered above, one has �=T � 4. With the same degree
of localization, one can get an increasing value of �=T as the quantum numbers
increase.

3.2 The Circular Billiard

The next example we are considering is the circular billiard (SB), that was partially
analysed in [4]. Here, we report a more extensive analysis, a set of results that
illustrate the general method and a study of the localization around a classical
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trajectory. The semi-classical Bohr–Sommerfeld quantization of the circular billiard
leads to a formula of the type of Eq. (4), which explicitly reads [18] („ D 2M D 1,
being M the mass of the particle)

q
k2nlR

2 � l2 � lˇ0 D
�

n C 1

2

�
� C �

4
(23)

where in this case l is the angular momentum, n is the quantum number associated
with the radial motion, R is the radius of the billiard and knl is the momentum,
which is then an implicit function of l and n, i.e. it is the eigenvalue. This formula
can be obtained by the usual action integral along a closed path on the Liouville
torus. Notice that this action integral is actually twice the LHS expression. The
additional term 1=2 at the RHS is introduced as a minimal quantum correction,
and the additional term �=4 is needed because of the presence of reflections at a
sharp boundary. These are standard corrections, but in any case, they can be safely
neglected since we are working in the large quantum number limit. In this case, the
motion is free, and the corresponding energy is just the kinetic energy

Enl D k2nl (24)

In Eq. (23), the angle ˇ0 is related to the momentum by

cos.ˇ0/ D l=knlR (25)

and therefore, ˇ0 is also an implicit function of the quantum numbers n; l. At the
classical level, the angle 2ˇ0 can be interpreted as the angle spanned by the vector
r that fixes the position of the particle, between two bouncing on the billiard wall.
If this angle is a rational fraction of 2� , i.e. 2ˇ0 D p

q2� , then the particle orbit
will close after pq hits on the wall (here we assume that p and q have no common
factor). If instead it is an irrational fraction of 2� , the orbit will never close, and in
the long time limit, the position of the hits will fill uniformly the circular boundary.
The general Eq. (2) in this case reads

ˇ0

�
D cos�1

�
l0

knlR

�
D ın

ıl
D �p

q
(26)

and the corresponding classical orbit around which the quasimode is localized
is indeed a closed orbit which closes after q bounces. The localization can be
constructed according to the general prescription of Eq. (10). The action integral
Sl.r/ in this case can be calculated analytically. After some manipulations, it reads

Sl.r/ D
R r dr0

q
E � l2

r02

D
q

k2r2 � l2 � lˇ.r/ C C

(27)
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where C is a constant and

cos.ˇ.r// D l

kr
(28)

Taking the lower limit of the integral as r0 D l=kR and the upper limit r D R,
one gets the LHS of Eq. (23). In fact, this expression, multiplied by 2, is just the
action integral over a closed loop along the proper Liouville torus. Following the
general procedure, one can consider the superposition of Eq. (10), and one gets for
the quasimode wave function (13) in the semi-classical limit

‰.r; 	/ � exp

�
� Œ	 � ˇ.r/�

2

2�	2

�
(29)

where .r; 	/ are the cylindrical coordinates and �	 D 1=�l, being �l the spread
in l values considered along the direction specified by Eq. (26). The wave function
is therefore concentrated along the curve 	 D ˇ.r/, which is the straight line
between two successive bounces. As discussed in Sect. 2, this expression should
be summed up over the series of shifted phases, resulting in the total wave function
of the quasimode ‰tot

‰tot.r; 	/ D
qX

jD1
‰.r; 	 C j�	/ (30)

where in this case the discrete symmetry is indeed a rotational symmetry in ordinary
space. After q bounces, the trajectory closes, while p has the meaning of “winding
number”, i.e. the number of times the trajectory performs a complete rotation around
the centre of the billiard before closing.

Notice that the spatial width can be estimated as�s � R�	 � R=�l. Here, we
have implicitly assumed that the superposition is centred around 	 D 0. Shifting 	
by a certain angle 	0 would rotate the wave function by 	0.

The energy spread �E can be calculated according to Eq. (8). One finds for �E
and the corresponding lifetime � of the quasimode

�E

E
�
�

�l

kn0l0R

�2
I �

T
�
�
�s

R

�2
l0 (31)

One can see that the lifetime is asymptotically large in the semi-classical limit with
respect to the period of the corresponding classical orbit at a fixed value of the spatial
width.

Also in this system, the eigenfunctions are analytically known, and the eigen-
value equation (23) can be also obtained by considering their asymptotic expression
for large quantum numbers. The eigenfunctions are given by the cylindrical Bessel
function Jl

‰nl D exp.il	/Jl.knlr/ (32)
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Fig. 5 Quasimode in the
circular billiard
corresponding to p D 1 and
q D 3 and the central values
.l0; n0/ reported in the title

The exact eigenvalues are given by the zeros of the Bessel function at the boundary

Jl.knlR/ D 0 (33)

If one uses the asymptotic expression [13] for the Bessel function, one recovers the
Bohr–Sommerfeld quantization of Eq. (23). The superposition of Eq. (10) can be
done numerically with the exact eigenfunctions and eigenvalues, while of course
the constraint on .n0; l0/ implicitly implied by Eq. (2) can be only approximately
satisfied, in principle with arbitrary precision in the large quantum number limit.

Let us consider some applications. If we take p D 1 and q D 3, we get the
trajectory of triangular shape depicted in Fig. 5 for a specific case. A preliminary
study of this case was already considered in [4]. In general, for p D 1 one gets, as
it can be easily checked, the trajectory along a polygon of q sides, as in the case
of Fig. 6, corresponding to q D 7. For large q, these quasimodes merge into the
“whispering modes”, studied in [5] for a generic billiard. For p > 1, a trajectory
of “star” shape is generated. For .p; q/ D .2; 7/ and .p; q/ D .3; 7/, one gets the
trajectories of Fig. 7 and of Fig. 8, respectively. For sake of illustration, we report
in Table 1 the values of the quantum numbers used in the superposition and the
corresponding energies in the case of Fig. 7.

For the star cases, it seems that a large concentration of the wave function is
along a polygon on the points of the self-intersections of the classical trajectories.
However, this is an artefact of the plotting system. In fact, close to the centre, the
Bessel functions display an extremely oscillating behaviour that any plotting system
is not able to follow, but instead it samples randomly the sharp and very high peaks
of the wave function. This feature is not connected with the self-intersections that
occur in the wave function, as it can be checked by looking at the square billiard,
analysed in the previous subsection, where self-intersections occur but they do not
display any similar behaviour. However, the interference that must occur between
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Fig. 6 Quasimode in the
circular billiard
corresponding to p D 1 and
q D 7, with the central values
.l0; n0/ reported in the title.
The quasimode is localized
around the classical trajectory
that is the polygon of seven
sites inscribed in the circle.
See the text

Fig. 7 Quasimode in the
circular billiard
corresponding to p D 2 and
q D 7 and the central values
.l0; n0/ reported in the title.
The quasimode is localized
around the classical trajectory
of “star” shape, in which the
particle bounces seven times
and performs two turns
around the centre before
closing

the two branches of the wave function that intersect seems to emphasize this effect.
To illustrate the oscillations, we report in Fig. 9 the plot of the Bessel function
corresponding to l D 1000 and n D 69. One can see the suppression of the
wave function below the centrifugal barrier and the corresponding sharp rise at the
barrier. In any case, it is important to realize that these wild oscillations will persist
even in the extreme semi-classical limit (i.e. very large quantum numbers) and they
are quantum phenomena that cannot be eliminated. This touches the well-known
problem of the de-coherence that should occur in the classical limit, as suggested by
several authors [29].
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Fig. 8 Quasimode in the
circular billiard
corresponding to p D 3 and
q D 7 and the central values
.l0; n0/ reported in the title.
The quasimode is localized
around the classical trajectory
of “star” shape, in which the
particle bounces seven times
and performs three turns
around the centre before
closing

Table 1 Quantum numbers
used for the quasimode of
Fig. 7 and the corresponding
energy (last column)

l n E.n; l/

430 77 797.5520632

437 75 798.3765400

444 73 799.1238211

451 71 799.7920827

458 69 800.3793629

465 67 800.8835484

472 65 801.3023598

479 63 801.6333358

486 61 801.8738136

493 59 802.0209079

500 57 802.0714854

507 55 802.0221372

514 53 801.8691447

521 51 801.6084410

528 49 801.2355660

535 47 800.7456120

542 45 800.1331610

549 43 799.3922075

556 41 798.5160678

563 39 797.4972677

570 37 796.3274064

In bold face are indicated
the central quantum num-
bers .l0; n0/ of the superpo-
sition (see text)
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Fig. 9 Plot of the cylindrical
Bessel function
corresponding to the quantum
numbers
.l0; n0/ D .1000; 69/. Notice
the classically forbidden
region and the rapid
oscillation at the
corresponding boundary

In all these examples, the lifetime � of the quasimodes is in the range
�=T D 10–15. It has to be noticed that the wave function is concentrated along a
classical orbit only if the condition of quasidegeneracy of Eq. (1) is satisfied. In fact,
localization can be easily obtained by a suitable superposition of eigenfunctions, but
if that condition is not satisfied, the localization is not along a classical trajectory,
even if the wave function has the same symmetry. An example is shown in Fig. 10,
where the superposition is not taken along the direction fixed by Eq. (1), even if the
considered eigenfunctions are chosen to be approximately degenerate, but not with
the same degree of accuracy, and the steps are taken as for Fig. 7. In other words,
the reference values n0 and l0 of the quantum numbers do not satisfy the condition
implicit in Eq. (2). One can see that the localization is along some “curved star”,
which is not of course a classical trajectory, but with the symmetry fixed by the
values of p and q.

4 Hamiltonian Systems

We now consider two-dimensional systems described by an integrable smooth
Hamiltonian. We will concentrate on the motion of a particle in a central potential.
In this case, the natural choices of the quantum numbers are the angular momentum
and the one associated with the radial motion. In general, the classical trajectories
are not closed for a generic potential. For particular values of the constant of motion,
the trajectory can close after a certain number of turns around the centre of the
potential. According to the general scheme, quasimodes are associated with such
trajectories, on which they are concentrated. A special case is represented by the
circular orbits, which needs a separate treatments since the radial quantum number
vanishes. There are few central potentials that admit an exact quantum solution. The
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Fig. 10 Wave function
localized around a
non-classical path, which is
not a quasimode. See the text
for explanations

harmonic oscillator and the Kepler motion are the most known. However, these are
very particular cases, since the trajectories are all closed and the spectrum displays
very large exact degeneracy. We will consider briefly these cases that have been
already considered in the literature in connection with quasimodes. We will then
treat in an approximate way the general case and show the resemblance with the
circular billiard.

4.1 The Harmonic Oscillator

It is well known that for the harmonic oscillator, the hypotheses of the Ehrenfest
theorem are verified, i.e. a wave packet that moves inside the potential has its
centre of mass moving indefinitely along a classical (closed) trajectory and its width
does not spread but only oscillates with the frequency of the harmonic oscillator.
In [10, 24], quasimodes were constructed using the coherent state representation,
and it has been shown they concentrate indeed along a classical trajectory and
furthermore the quasimode wave function has the largest strength in the positions
where the classical motion is slower, e.g. at the point of maximum radial position
(“periastron”), and actually, it is proportional to this time. As already noticed for the
square billiard, the coherent state method is a particular case of the general method
we have described. As we will show in the next subsection, in this case, the energy
width of Eq. (8) vanishes, which is in line with the large degree of degeneracy in
the spectrum. This shows the connection between the time-dependent treatment of
Ehrenfest and the quasimodes.

We only illustrate in Fig. 11 a quasimode constructed with a uniform superposi-
tion of eigenfunctions, with a specific width, belonging to a given degenerate shell.
The result is in line with [24].
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Fig. 11 Quasimode for the
harmonic oscillator for the
central values .l0; n0/
reported in the title. The
superposition is performed
with exactly degenerate
eigenfunctions, and therefore,
it is actually an eigenstate of
the harmonic oscillator

A similar treatment could be followed for the Kepler motion, for which no simple
coherent states exist. It can be suggestive to guess a connection between quasimodes
and the Rydberg states [19] in hydrogen-like atoms. The study of this case is left to
future work.

4.2 The General Potential Case

Let us consider the bound motion in a generic central potential V.r/. For simplicity,
we will assume that the potential is monotonically increasing with r. The action
integral Jr for the radial motion can be written as

Jr.E; l/ D 2

Z rM

rm

dr
p
2m.E � V.r// � l2=r2 (34)

where rm and rM are the smaller and the larger radial coordinates where the square
root vanishes. They correspond to the turning points of the trajectory. The derivative
of Jr turns out to be the angle�� spanned by the radial vector as the particle moves
from rm to rM and back

�� D � @
@l

Jr.E; l/ D 2

Z rM

rm

dr

r2
l

p
2m.E � V.r// � l2=r2

(35)
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Fig. 12 Schematic
representation of a generic
central potential (pot) with a
possible centrifugal potential
(c.pot) and their sum (tot.pot).
The thick horizontal line
indicates a possible value of
the total energy

radial distance

pot.
c. pot.

tot. pot.

For a generic potential, this angle depends both on the energy E and the angular
momentum l. According to Eqs. (2) and (5), this angle must be a rational fraction
of � , which is the condition on .n0; l0/ and implies that the corresponding classical
trajectory is closed. For the harmonic oscillator and the Kepler motion, this angle is
however exactly � , independent of E and l. As a consequence, all the trajectories are
closed (they close after two radial oscillations), and the second derivative of Eq. (7),
which determines the energy spread, vanishes, as it was anticipated in the previous
subsection.

In Fig. 12 is reported a schematic representation of the three terms appearing
in the square root, the energy E, the potential V.r/ and the centrifugal potential
l2=r2. Under our assumptions, the effective potential U.r/, the sum of V.r/ and
the centrifugal potential, has a single minimum at a given radial distance r0,
and the energy must be larger than U.r0/.

As shown in the appendix, after some manipulations of the integral, one finally
gets

�� D G.E; zl/ I zl D l=
p
2mE (36)

where G is a smooth function, i.e. its derivatives with respect to the arguments are
bounded. This term is identically � for the harmonic oscillator. The derivative of
G with respect to l at a fixed energy E is therefore of the order at most of 1=

p
E,

which in the semi-classical limit becomes vanishing small. Furthermore, if the ratio
l=
p
2mE tends to a finite value, the derivative is equally of the order 1=l. The result

is valid for a generic potential, provided some reasonable conditions on the potential
are fulfilled (see appendix). This finding is in line with the general statement about
the lifetime of the quasimode with respect of the classical period, according to
Eq. (9).

The motion in the potential can become close to the motion in a circular billiard if
the potential resembles a container with a steep boundary. For the billiard, the ratio
l=
p
2mE is bound by the radius R of the billiard. The limiting values R and zero

correspond to the condition on the angle 2ˇ0 to approach asymptotically a value
equal to zero (circular orbit) or to � (radial oscillation passing through the centre).
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5 Conclusion

We have presented a general method to construct semi-classical quasimodes in
integrable two-dimensional systems. These quantum states are localized around a
given classical closed orbit, and at the same time, their lifetime � can be made
asymptotically large with respect to the classical period T of the orbit. At a fixed
value of the localization width around the classical closed orbit, the ratio �=T
diverges for asymptotically large quantum numbers. This means that the system
is considered first in the asymptotically large time limit, and then eventually in the
limit usually indicated as the „ ! 0 limit. As it is well known, the two limits cannot
be inverted in general, and therefore, the quasimodes have to be constructed with a
definite procedure.

The method is general, and it can be applied both to billiards and to the
Hamiltonian system. It includes as a particular case the one based on the generalized
coherent states. Several examples have been illustrated for billiards, and, besides
the harmonic oscillator, the treatment of a generic Hamiltonian system has been
discussed. The construction of quasimodes suggests a method to perform the semi-
classical limit in integrable systems, which however keeps some quantum features
since these states are uniformly distributed along a classical periodic orbit. They
can be considered as particular resonance states within the spectrum of the system.
Their connection with the Ehrenfest semi-classical limit, based on (time-dependent)
localized wave packets, has still to be clarified.

Appendix

In this appendix, we evaluate for a generic potential the dependence of the angle
�� in Eq. (36) on the angular momentum l at a fixed energy E. In the expression of
Eq. (35), it is convenient to introduce the new variable y2 D l2=2mEr2. In the new
variable, one gets

�� D 2

Z yM

ym

dy
p
1 � Œy2 C V.r/=E�

(37)

where

r D r.y/ D lp
2mE y

(38)

The limits of integration ym and yM are the values at which the square root vanishes.
Under the assumption of a monotonically increasing potential at increasing r, there
are only two values, corresponding to the extremes of the radial oscillations

1

E
V.r.y0 // C y2

0
D 1 (39)
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where y0 is either ym or yM . If the potential is smooth and the radial motion has a non-
zero amplitude (i.e. the trajectory is not exactly circular), y0 is a smooth function of l,
which actually appears only in the combination l=

p
2mE. However, the integrand is

singular at the integration limits, although the integral is of course converging. This
does not allow to do any derivative with respect to l inside the integral to calculate
the derivative of �� . We have then to analyse the contribution to the integral from
an interval close to the limits of integration. If the trajectory is not circular, at yM ,
the function R.y/ inside the square root vanishes linearly, and the integrand can be
written as

1
p
1 � R.y/

D 1
p

R0.yM /.yM � y/
C S.y/ (40)

where R0 is the derivative of R and the remainder S.y/ is a regular smooth function.
The contribution to the integral from an interval y1 < y < yM , with y1 some value
close to yM , can then be written as

Z yM

y1

dy
p

R.y/
D 2

p
R0.yM /

p
yM � y1 C

Z yM

y1

dy S.y/ (41)

Explicitly, the derivative R0 is

R0.yM / D �
1

E
V 0
 

lp
2mE yM

!
lp

2mE y2
M

C 2yM (42)

where V 0.x/ D dV=dx. The same procedure can be followed for the lower limit ym .
At fixed E, the integral is therefore a smooth function of l=

p
2mE.
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Manifolds Which Are Complex and Symplectic
But Not Kähler

Giovanni Bazzoni and Vicente Muñoz

Abstract The first example of a compact manifold admitting both complex and
symplectic structures but not admitting a Kähler structure is the renowned Kodaira–
Thurston manifold. We review its construction and show that this paradigm is
very general and is not related to the fundamental group. More specifically, we
prove that the simply connected eight-dimensional compact manifold of Fernández
and Muñoz (Ann Math (2), 167(3):1045–1054, 2008) admits both symplectic and
complex structures but does not carry Kähler metrics.

1 Introduction

A complex manifold M is a topological space modeled on open subsets of C
n

and with change of charts being complex differentiable (i.e., biholomorphisms).
Here we say that n is the complex dimension of M. Complex manifolds are the
objects that appear naturally in algebraic geometry: a projective variety is the zero
locus of a collection of polynomials in the complex projective space CPN . When a
projective variety is smooth and of complex dimension n, it is a complex manifold
of dimension n.

A complex manifold M of complex dimension n is in particular a smooth
differentiable manifold of real dimension 2n. Multiplication by i on each complex
tangent space TpM, p 2 M, gives an endomorphism JWTM ! TM such that
J2 D �Id. An endomorphism JWTM ! TM with J2 D �Id is called an almost
complex structure. For a complex manifold M, J satisfies that the Nijenhuis tensor

NJ.X;Y/ D ŒX;Y�C JŒJX;Y�C JŒX; JY� � ŒJX; JY�
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vanishes, NJ.X;Y/ D 0 for all vector fields X;Y . In this case, we say that the almost
complex structure is integrable. The celebrated Newlander–Nirenberg theorem [30]
says that an almost complex structure with NJ D 0 is equivalent to a complex
structure. Hence, for a smooth manifold M to admit a complex structure, we need
to check if there exist almost complex structures (this is a topological question) and
then to find an integrable one (this is an analytic problem).

Projective varieties have further geometric properties. The complex projective
space CPN has a natural Hermitian metric, the Fubini–Study metric. This is the nat-
ural metric when one views CPN as the homogeneous space U.NC1/=U.1/�U.N/.
Therefore, a projective variety M � CPN inherits this Hermitian metric. Denote by
h the Hermitian metric on M and write h D gC i!, where g.X;Y/ D Re.h.X;Y//
and !.X;Y/ D Im.h.X;Y// D Re.�ih.X;Y// D Re.h.JX;Y// D g.JX;Y/. Then
g is a Riemannian metric for which J is an isometry (g.JX; JY/ D g.X;Y/) and !
turns out to be skew-symmetric; hence, it is a 2-form with !.JX; JY/ D !.X;Y/ and
g.X;Y/ D !.X; JY/. We say that ! is the fundamental form of .M; h/. This 2-form
is positive, in the sense that !n > 0 (it gives the natural complex orientation). The
Fubini–Study metric hFS has a fundamental form !FS 2 ˝2.CPN/. It is easy to see,
using the U.N C 1/-invariance, that d!FS D 0. Therefore, for ! D !FSjM , it also
holds d! D 0.

We say that .M; h/ is a Kähler manifold when M is a complex manifold and
the fundamental form ! satisfies d! D 0. A smooth projective variety is a
Kähler manifold. Actually the converse holds when Œ!� 2 H2.M;R/ is an integral
cohomology class, by Kodaira’s theorem [39].

A different weakening of the Kähler condition (forgetting J but keeping !) is
that of a symplectic structure. A symplectic structure on a smooth 2n-dimensional
manifold M is given by a 2-form ! 2 ˝2.M/ which is closed (d! D 0) and
nondegenerate (!n is nowhere zero). Let M be an even-dimensional manifold
endowed with a complex structure J and a symplectic structure !. Then J is said
to be compatible with ! if, for vector fields X;Y on M, the bilinear form

g.X;Y/ D !.X; JY/ (1)

is a Riemannian metric. Therefore, a Kähler manifold is a symplectic manifold
endowed with a compatible complex structure, and h D gC i! is the Kähler metric.
The existence of a Kähler metric on a compact manifold constraints the topology.
In particular, if .M; J; !/ is a compact Kähler manifold of dimension 2n, then (see
[1, 12, 18, 39]):

1. The fundamental group �1.M/ belongs to a very restricted class of groups, called
Kähler groups.

2. b2i�1.M/ is even for i D 1; : : : ; n.
3. The Lefschetz map Ln�pWHp.MIR/ ! H2n�p.MIR/, a 7! Œ!�n�p ^ a, is an

isomorphism.
4. M is formal in the sense of Sullivan (see Sect. 2 for details).
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So it is natural to ask if the classes of smooth manifolds admitting complex,
symplectic, and Kähler structures coincide under some topological constraints.

The lack of examples in symplectic geometry has been haunting this area of
mathematics for many years now (pretty much since its début as a discipline in its
own). Indeed, the main source of examples of symplectic manifolds is algebraic
geometry. This led to the belief that symplectic and Kähler conditions coincided in
the compact case (see, for instance, [21]). There was a discrete breakthrough, in
1976, when Thurston [38] gave the first example of a compact symplectic manifold
with no Kähler structure. Thurston’s example had already been discovered, as a
complex manifold, by Kodaira during his work on the classification of compact
complex surfaces [23]. We call it the Kodaira–Thurston manifold KT . Since KT is
a compact complex and symplectic manifold without Kähler structure, we obtain:

Theorem 1. There exist compact manifolds which admit complex and symplectic
structures but carry no Kähler metrics.

This means that the complex and symplectic structures that KT admits cannot be
compatible. The manifold KT is in the place shown in Fig. 1.

The next natural question is whether some topological constraints may force the
symplectic category to reduce to the Kähler one [32]. Regarding the fundamental
group, it is natural to look for simply connected symplectic compact manifolds.
In [28], McDuff constructed a compact, simply connected, symplectic manifold
with b3 D 3, hence not Kähler. For a detailed study on the relationship between
formality and Lefschetz property on symplectic manifolds, we refer to [10]. In [9],
Bock constructed nonformal symplectic manifolds with arbitrary Betti numbers.

The construction of simply connected symplectic nonformal (compact) man-
ifolds turned out to be a more difficult problem. In fact, it was conjectured in
1994 (see [26]) that a compact simply connected symplectic (compact) manifold
should be formal: this is the so-called Lupton–Oprea conjecture on the formalizing
tendency of a symplectic structure. This conjecture was proven false by Babenko
and Taı̌manov in 2000 (see [2]). For every n � 5, they constructed an example of a
simply connected, symplectic nonformal compact manifold of real dimension 2n.
On the other hand, by a result of Miller [16, 29], simply connected compact
manifolds of dimension � 6 are formal. Hence, a remarkable gap in dimension
8 was left. This gap was filled by M. Fernández and the second author in 2008
(see [17]).

Fig. 1 Diagram of the
different classes of manifolds,
including KT
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Here we shall prove that the manifold constructed in [17] admits a complex
structure, thereby giving a new example fitting in the scheme of Theorem 1. The
precise result is:

Theorem 2. There exists an 8-dimensional, compact, simply connected, symplec-
tic, and complex manifold which is nonformal and does not satisfy the Lefschetz
property. In particular, it does not admit Kähler structures.

This paper is organized as follows. In Sect. 2, we recall the basics of rational
homotopy theory and formality. In Sect. 3, we give a description of KT , construct
explicit complex and symplectic structures on it, and show that it carries no Kähler
metric. In Sect. 4, we review the construction of the symplectic manifold .eM; Q!/
of Fernández and Muñoz [17]. This is constructed by resolving symplectically the
singularities of a symplectic orbifold .bM; O!/, a quotient of a compact symplectic
nilmanifold .M; !/ by a certain Z3-action. In Sect. 5, we describe a complex
structure bJ on the orbifold bM and construct a complex resolution of singularities
.M; J/. Finally, in Sect. 6, we show that eM and M are diffeomorphic.

2 Formality

Formality is a property of the rational homotopy type of a space X. We present
here a rough introduction, referring to [14, 15, 19] for more details. By space,
we mean a connected CW complex of finite type (we allow a finite number of
cells in each dimension) which is nilpotent (its fundamental group is nilpotent and
acts nilpotently on higher homotopy groups). A space X is rational if �i.X/ is a
rational vector space for every i � 1 (recall that a nilpotent group has a well-defined
rationalization). The rationalization of a space X is a rational space XQ together with
a map f WX ! XQ such that fiW�i.X/ ˝ Q ! �i.XQ/ is an isomorphism for every
i � 1. We identify two spaces if they have a common rationalization. By rational
homotopy type of a space X, we mean the homotopy type of its rationalization.
Quillen and Sullivan proposed two different approaches to capture the rational
homotopy type of a space in an algebraic model (see [33, 37]). Here we review
briefly Sullivan’s ideas.

A commutative differential graded algebra .A; d/ over a field k of zero char-
acteristic (k-cdga for short) is a graded algebra A D ˚i�0Ai which is graded
commutative, together with a k-linear map dWAi ! AiC1, the differential, which
satisfies d2 D 0 and which is a graded derivation, i.e., for homogeneous elements
a 2 Ap and b 2 Aq,

d.a � b/ D .da/ � bC .�1/pa � .db/:

The cohomology of a .A; d/, denoted H�.A/, is a k-cdga with trivial differential.
A k-cdga is connected if H0.A/ Š k.
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The de Rham algebra ˝.M/ of a smooth manifold M, together with the exterior
differential, is an R-cdga. The piecewise linear forms APL.X/ on a PL manifold
X, endowed with a suitable differential combining the exterior differential and the
boundary of simplices, form a Q-cdga (see [19]). There is a de Rham-type theorem
for both cdgas; hence, we have isomorphisms

H�.˝.M// Š H�.MIR/ and H�.APL.X// Š H�.XIQ/:

Let X be a space. The idea of Sullivan is to replace APL.X/ by another Q-cdga,
which has the same cohomological information as APL.X/ but is algebraically more
tractable: the minimal model. A k-cdga .A; d/ is minimal if

• A is the free graded algebra over a graded vector space V D ˚iVi; this means
that A is the tensor product of the exterior algebra on the odd-degree generators
and the symmetric algebra on the even-degree generators, A D Ext.Vodd/ ˝
Sym.Veven/. The standard notation is A D 
V .

• There exists a collection fxigi2I of generators of V , indexed by a well-ordered set
I, such that jxij � jxjj if i < j and the differential of a generator xj is an element
of
.V<j/. Here, j � j denotes the degree and V<j consists of the generators xi with
i < j. Notice, in particular, that d does not have linear part.

We denote a minimal k-cdga by .
V; d/. A minimal model for a k-cdga .A; d/ is
a minimal k-cdga .
V; d/ together with a k-cdga morphism 	W .
V; d/ ! .A; d/
which induces an isomorphism in cohomology (such a morphism is called quasi-
isomorphism).

We have the following fundamental result:

Theorem 3 ([14], Theorem 14.12). Any connected k-cdga has a minimal model,
which is unique up to isomorphism.

By definition, the rational minimal model of a space X, .
VX; d/, is the minimal
model of the Q-cdga .APL.X/; d/. One can show that, when M is a smooth manifold,
the real minimal model of M can be computed from the de Rham algebra .˝.M/; d/.
A central result in rational homotopy theory is the following:

Theorem 4 ([37]). Two spaces have the same rational homotopy type if and only if
their rational minimal models are isomorphic.

In particular, PL forms (resp. smooth forms) contain all the rational homotopic
(resp. real-homotopic) information of a space (smooth manifold). It is often difficult
to know the whole de Rham algebra of a manifold; it would be very convenient
if the (say, real) minimal model could be constructed directly from the de Rham
cohomology. A space for which this happens is called formal. More precisely, a
space X is formal if there exists a quasi-isomorphism .
VX; d/! .H�.XIQ/; 0/. In
particular, the rational homotopy type of a formal space X is a formal consequence of
its rational cohomology. Many spaces are known to be formal: compact Lie groups,
H-spaces, symmetric spaces, etc. For us, the relevant result is the following:
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Theorem 5 ([12]). A smooth compact manifold M admitting a Kähler structure is
formal.

A very useful criterion for establishing formality is the following:

Theorem 6 ([12], Theorem 4.1). Let X be a space and let .
VX; d/ be its minimal
model. Then X is formal if and only if we can write VX D C ˚ N with d D 0 on C
and d injective on N, in such way that every closed element in the ideal generated
by N is exact.

Let .A; d/ be a k-cdga and let H�.A/ be its cohomology. Let a 2 Hjaj.A/, b 2
Hjbj.A/, and c 2 Hjcj.A/ such that a � b D b � c D 0. Then a � b � c is zero for
two reasons. Consequently, a difference element ha; b; ci 2 HjajCjbjCjcj�1.A/=J can
be formed, where J is the ideal generated by a and c in H�.A/. Take cocycles
˛; ˇ; � 2 A representing a; b; c, respectively. Then ˛ � ˇ D d� and ˇ � � D d;
hence, � ��C .�1/jajC1˛ � is a closed .jajCjbjCjcj�1/-form whose cohomology
class is well-defined modulo J. We set ha; b; ci D Œ� � � C .�1/jajC1˛ � �. Then
ha; b; ci is called the triple Massey product of the cohomology classes a; b; c.

The definition of higher Massey products is as follows (see [24, 27]). The Massey
product ha1; a2; : : : ; ati, ai 2 Hjaij.A/, 1 � i � t, t � 3, is defined if there are
˛i;j 2 A, with 1 � i � j � t, except for the case .i; j/ D .1; t/, such that

ai D Œ˛i;i�; d˛i;j D
j�1X

kDi

.�1/j˛i;kj˛i;k ^ ˛kC1;j: (2)

Then the Massey product is

ha1; a2; : : : ; ati D
("

t�1X

kD1
.�1/j˛1;kj˛1;k ^ ˛kC1;t

#)
� Hja1jC���Cjatj�.t�2/.A/ ;

(3)

where the ˛i;j are as in (2). We say that the Massey product is trivial if 0 2
ha1; a2; : : : ; ati. Note that for ha1; a2; : : : ; ati to be defined, it is necessary that both
ha1; : : : ; at�1i and ha2; : : : ; ati are defined and trivial.

Proposition 1. If X is formal, then all (higher) Massey products of .
VX; d/ are
zero.

Proof. The proof can be found in [3]. We shall give a simple proof for the case of
triple and quadruple Massey products, which suffices for this paper.

As X is formal, Theorem 6 guarantees that we can write VX D C ˚ N with
d D 0 on C and d injective on N, in such way that every closed element in the
ideal I.N/ generated by N is exact. Note that there is a decomposition
V D 
C˚
I.N/. Let ai 2 Hjaij.A/, 1 � i � t. By definition of Massey product, there are
˛i;i 2 
V with ai D Œ˛i;i�, and for each i < j, .i; j/ ¤ .1; t/, there are ˛i;j with

d˛i;j D
j�1P
kDi
.�1/j˛i;kj˛i;k ^ ˛kC1;j.
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Write ˛i;j D ˇi;j C i;j with ˇi;j 2 
C, i;j 2 I.N/. As d˛i;j D di;j, we can use
in the case of triple Massey products (i.e., t D 3) the elements 12 and 23. Then the
triple Massey product ha1; a2; a3i contains .�1/j12j12˛33 C .�1/j˛11j˛1123 which
is in I.N/, hence exact.

In the case of quadruple Massey products (i.e., t D 4), we use 12; 23; 34 instead
of ˛12; ˛23; ˛34. The equation

d˛13 D .�1/j˛12j˛12˛33 C .�1/j˛11j˛11˛23
D .�1/j˛12j12˛33 C .�1/j˛11j˛1123 C .�1/j˛12jˇ12˛33 C .�1/j˛11j˛11ˇ23

implies that .�1/j˛12j12˛33 C .�1/j˛11j˛1123 is closed, hence exact (as it lives
in I.N/). Write it as d 13 with  13 2 I.N/. Analogously define  24 2 I.N/.
Thus, the quadruple Massey product ha1; a2; a3; a4i contains .�1/j 13j 13˛44 C
.�1/j12j1234 C .�1/j˛11j˛11 24 which is in I.N/, hence exact.

3 The Kodaira–Thurston Manifold

The Kodaira–Thurston manifold can be described in various ways. For Kodaira, KT
was a compact quotient of C

2 by a certain group acting co-compactly. Thurston
interpreted it as a symplectic T2-bundle over T2. In this section, we describe it as
a nilmanifold, write down explicit symplectic and complex structures on KT , and
show that KT carries no Kähler metric.

A nilmanifold is a compact quotient of a simply connected, nilpotent Lie group
G by a lattice � . Since � is a subgroup of a nilpotent group, it is also nilpotent.
The exponential map exp W g! G is a diffeomorphism; hence, G Š R

n for some n.
Therefore, if N D � nG is a compact nilmanifold, G ! N is the universal cover,
�1.N/ Š � and �i.N/ D 0 for i � 2. Hence, a nilmanifold is a nilpotent space.

Nilmanifolds are interesting because they are a rich source of answers to many
questions in different areas of mathematics. As we already mentioned, KT was
the first example of a compact symplectic non-Kähler manifold. From the point of
view of complex geometry, there exist complex nilmanifolds for which the Frölicher
spectral sequence is arbitrarily nondegenerate (see [35]).

Kähler nilmanifolds are very special:

Theorem 7 (Benson–Gordon, Hasegawa [7, 22]). Let N be a compact symplectic
nilmanifold endowed with a Kähler structure. Then N is diffeomorphic to a torus.

Benson and Gordon proved that a symplectic nilmanifold N for which the Lef-
schetz map Ln�1 W H1.NIR/ ! H2n�1.NIR/ is an isomorphism is diffeomorphic
to a torus. Hasegawa showed that a formal nilmanifold N is diffeomorphic to a
torus. Notice, however, that there exist many examples of non-toral symplectic and
complex nilmanifolds (see [6, 20, 36]).
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Let H denote the Heisenberg group, i.e.:

H D
8
<

:

0

@
1 b c
0 1 a
0 0 1

1

A j a; b; c 2 R

9
=

;

and let HZ denote the subgroup of matrices with entries in Z. Then H is a nilpotent
Lie group, diffeomorphic to R

3, HZ � H is a lattice, and N D HZnH is a compact
nilmanifold. Let G D H �R and GZ D HZ �Z. The Kodaira–Thurston manifold is
KT D GZnG.

Let k be a Lie algebra over a field k of characteristic zero. The exterior algebra

k� is endowed with a differential dW
pk� ! 
pC1k�, defined as follows: dW k� !

2k� is the dualization of the bracket, i.e., .d˛/.X;Y/ D �˛.ŒX;Y�/ if ˛ 2 k�
and X;Y 2 k. d is then extended to 
k� by imposing the graded Leibnitz rule: for
˛ 2 
pk� and ˇ 2 
qk�, d.˛ ^ ˇ/ D .d˛/^ ˇC .�1/p˛ ^ .dˇ/. The vanishing of
d2 is equivalent to the Jacobi identity in k. In the language of Sect. 2, .
k�; d/ is a
k-cdga, known as Chevalley–Eilenberg complex of k.

Let g be the Lie algebra of G and let g� be its dual. We identify tensors on
g and g� with left-invariant objects on G, which therefore descend to KT . It is
easy to check that g has a basis hX1;X2;X3;X4i in which the only nonzero bracket
is ŒX1;X2� D �X3. Let hx1; x2; x3; x4i be the dual basis of g�. The only nonzero
differential on g� is computed to be dx3 D x1 ^ x2.

The element ! D x1^x4Cx2^x3 2 
2g� is closed and nondegenerate. By abuse
of notation, we denote by ! the corresponding left-invariant symplectic structure on
KT as well. Thus, .KT; !/ is a compact symplectic 4-manifold.

Recall that if k is an even-dimensional Lie algebra, JW k! k is a complex structure
if J2 D �Id and it satisfies the integrability condition

NJ.X;Y/ D ŒX;Y�C JŒJX;Y�C JŒX; JY� � ŒJX; JY� D 0; for X;Y 2 k: (4)

In our situation, define JW g! g by

J.X1/ D X2; J.X2/ D �X1; J.X3/ D X4 and J.X4/ D �X3:

A straightforward computation shows that (4) holds; hence, J is a complex structure
on g. Again by abuse of notation, we denote by J the corresponding left-invariant
complex structure on KT . Thus, .KT; J/ is a compact complex surface.

Let N D � nG be a compact nilmanifold. Considering 
g� as left-invariant
forms on N, we have a natural inclusion �W .
g�; d/ ! .˝.N/; d/. By a result of
Nomizu (see [31]), � is a quasi-isomorphism; hence, the de Rham cohomology of N
is isomorphic to the cohomology of the Chevalley–Eilenberg complex of g. In our
case, three of the four generators of g� are closed; hence, we get b1.KT/ D 3.

Since KT has an odd Betti number which is odd, we see that it does not carry
any Kähler metric. We also see explicitly that KT does not satisfy the Lefschetz
property. Indeed, take Œx2� 2 H1.KTIR/. Then LWH1.KTIR/ ! H3.KTIR/ sends
Œx2� to �Œx1 ^ x2 ^ x4� D �Œd.x3 ^ x4/� D 0.
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The Lie algebra g is endowed with a complex structure J and a symplectic
structure !. Define a tensor g W g˝ g! R by

g.X;Y/ D !.X; JY/; X;Y 2 g:

It is easy to see that the matrix of g in the basis hX1;X2;X3;X4i is

0

BB@

0 0 1 0

0 0 0 �1
�1 0 0 0

0 1 0 0

1

CCA :

g is not a scalar product on g; hence, the corresponding left-invariant tensor on KT
is not a Riemannian metric.

Let M be a manifold endowed with a complex structure J and a symplectic
structure !. One could in principle relax condition (1) above and ask J to be
only tamed by !, which means !.X; JX/ > 0 for X 2 X.M/. A symplectic
manifold .M; !/ endowed with a tamed complex structure J is called Hermitian
symplectic. There are no known examples of compact Hermitian symplectic non-
Kähler manifolds.

We see that .KT; J; !/ is not Hermitian symplectic. Indeed, !.X1; JX1/ D 0. It
is proved in [13] that a compact nilmanifold endowed with a Hermitian-symplectic
structure is actually Kähler. Hence, we see that KT does not carry any Hermitian-
symplectic structure (not just left invariant).

To see explicitly that KT is nonformal, we need to compute the minimal model
of a nilmanifold.

Theorem 8 ([22]). Let N D � nG be a compact nilmanifold. Then .
g�; d/ is the
rational minimal model of N.

Since a nilmanifold is a nilpotent space, Theorem 4 holds and the rational
homotopy of a compact nilmanifold is codified in the corresponding minimal model.
Here .
g�; d/ is a minimal algebra generated in degree 1. By a result of Mal’cev
(see [34, Theorem 2.12]), a simply connected nilpotent Lie group G admits a lattice
if and only if g admits a basis such that the structure constants are rational numbers.
Hence, if N D � nG is a compact nilmanifold, .
g�; d/ is automatically a Q-cdga.

Applying Theorem 8, the minimal model of KT is

.
�hx1; x2; x3; x4i; dx3 D x1 ^ x2/:

In the notation of Theorem 6, we have C D hx1; x2; x4i and N D hx3i. The element
x1 ^ x3 belongs to the ideal generated by N and is closed, but not exact. A nonzero
Massey product is constructed as follows. Take a D b D Œx1� and c D Œx2� in
H1.KTIQ/. The recipe given after Theorem 6 tells us that the triple Massey product
hŒx1�; Œx1�; Œx2�i D Œx1^x3� is a well-defined element of H2.KTIQ/, which is nonzero
modulo the ideal generated in H�.KTIQ/ by Œx1� and Œx2�.
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4 A Simply Connected Symplectic Nonformal 8-Manifold

In this section, we recall the construction of a simply connected, 8-dimensional
symplectic nonformal manifold performed in [17]. Although quite involved, this
construction also starts with a nilmanifold, showing the importance of such mani-
folds in the whole theory.

Let HC be the complex Heisenberg group, defined as

HC D
8
<

:A D
0

@
1 u2 u3
0 1 u1
0 0 1

1

A j u1; u2; u3 2 C

9
=

; :

The map HC ! C
3, A 7! .u1; u2; u3/, gives a global system of holomorphic

coordinates on HC. Set G D HC � C, with global coordinates .u1; u2; u3; u4/. Let
� � C be the lattice generated by 1 and � D e2� i=3. Also, let G� � G be the
discrete subgroup of matrices with entries in � . We let G� act on G on the left and
set M D G� nG. Then M is a compact complex parallelizable nilmanifold. Notice
that M can be seen as a principal torus bundle

T2 D � nC ,! M ! T6 D .� nC/3

using the projection .u1; u2; u3; u4/ 7! .u1; u2; u4/. M is a complex version of the
Kodaira–Thurston manifold.

We interpret Z3 as the group of cubic roots of unity and consider the right Z3-
action � W Z3 � G! G given, in terms of a generator � D e2� i=3, by

.�; .u1; u2; u3; u4// 7! .�u1; �u2; �
2u3; �u4/: (5)

This action preserves the group operation on G and the lattice, hence descends to
an action of Z3 on M. Set bM D M=Z3. Then bM is not smooth; it has 81 isolated
quotient singularities.

A basis for left-invariant 1-forms on G is given by

� D du1; � D du2; � D du3 � u2du1 and  D du4

(over the complex numbers), with

d� D d� D d D 0; d� D � ^ �:
The action of Z3 on left-invariant 1-forms is given by

��� D ��; ��� D ��; ��� D �2� and �� D �:

The 2-form

! D i� ^ N�C � ^ � C N� ^ N� C i ^ N (6)
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on M satisfies N! D !, so it is real. It is closed and satisfies !4 ¤ 0. Thus, ! is a
symplectic form. Notice also that

��! D �3.i� ^ N�C � ^ � C i ^ N/C ��3 N� ^ N� D !:
Hence, ! is Z3�invariant and descends to a symplectic form O! on the quotient bM.
Therefore, .bM; O!/ is a symplectic orbifold. In [17], a desingularization procedure
for the symplectic orbifold is given, producing a symplectic manifold.

Proposition 2 ([17], Propositions 2.1 and 2.3). There exists a smooth compact
simply connected symplectic manifold .eM; Q!/ which is isomorphic to .bM; O!/ outside
a small neighborhood of the singular points.

In [17], it is shown that .eM; Q!/ is nonformal and also that it does not satisfy the
Lefschetz property (see Remark 3.3 in [17]). The nonformality is seen in [17] via
a modification of the Massey product, named a-Massey product, which is studied
extensively in [11]. Here we shall see the nonformality of bM by showing that there
exists a nonzero quadruple Massey product. Transferring the Massey product from
bM to the desingularization eM follows the arguments of [17, Theorem 3.2] and it is
quite standard.

The complex minimal model of M is
VM D 
.�; �; �; ; N�; N�; N�; N/ with d� D
� ^ � and d N� D N� ^ N�. Our orbifold is bM D M=Z3, where Z3 acts in the minimal
model as .�; �; �; / 7! .��; ��; �2�; �/. A model (i.e., a C-cdga quasi-isomorphic
to its minimal model) for bM is given by A D .
VM/

Z3 . Easily,

A1 D 0;
A2 D �h�; �; i ^ h N�; N�; Ni�˚ h� ^ �; � ^ �;  ^ �; N� ^ N�; N� ^ N�; N ^ N�; � ^ N�i;
A3 D 
3.�; �; ; N�/˚
3. N�; N�; N; �/:

With this, one can check that H3.A/ D 0.
Take now a1 D Œ� ^ N�, a2 D Œ� ^ N��, a3 D Œ� ^ N��, and a4 D Œ ^ N��. We

shall compute ha1; a2; a3; a4i and check that it does not contain the zero element.
A Massey product b 2 ha1; a2; a3; a4i is computed according to formula (3). As
A1 D 0, it must be ˛11 D � ^ N, ˛22 D ˛33 D � ^ N�, and ˛44 D  ^ N�. Then

˛12 D �� ^ N� ^ NC z1;

˛13 D � ^ N ^ f2 � f1 ^ � ^ N�C w1;

˛23 D z2;

˛24 D � ^ N� ^ f3 � f2 ^  ^ N� C w2;

˛34 D � N� ^ � ^ C z3;

where z1; z2; z3 2 A3 are closed, hence exact; thus, zi D dfi, with fi 2 A2, and
w1;w2 2 A4 are closed. A computation gives

b DŒ˛11 ^ ˛24 � ˛12 ^ ˛34 C ˛13 ^ ˛44�
DŒ� ^ N� ^ � ^ N� ^  ^ NC w1 ^  ^ N� C w2 ^ � ^ N�:
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To check that this is nonzero, we multiply by Œ� ^ N��. Then the terms with w1 and
w2 cancel, so b ^ Œ� ^ N�� ¤ 0; hence, b ¤ 0.

5 The Complex Structure

In this section, we describe the complex structure J on G in two equivalent ways, and
we show that it descends to M D G� nG and also to the orbifold bM D .G� nG/=Z3.
Then we construct a complex resolution of singularities, which will give a smooth
complex manifold of dimension four .M; J/.

Let us consider the group G D HC � C above. G can be realized as a complex
Lie subgroup of GL.5;C/ by sending the pair .A; u4/ 2 HC � C to the matrix

0

BBBBB@

1 u2 u3 0 0
0 1 u1 0 0
0 0 1 0 0

0 0 0 1 u4
0 0 0 0 1

1

CCCCCA
:

GL.5;C/ is an open subset of C25; hence, each tangent space TXGL.5;C/ Š C
25,

X 2 GL.5;C/, inherits the standard complex structure of the ambient space, which
is the multiplication by i D p�1. As a complex submanifold of GL.5;C/, G
inherits the same complex structure on each tangent space. This means that the
complex structure on G is multiplication by i on each tangent space TgG, g 2 G. The
left translations Lg W G! G, h 7! gh are holomorphic maps, since they are written
as polynomials in local coordinates. This shows that G is a complex parallelizable
Lie group: the differential of Lg is complex linear, and a parallelization is given
by moving TeG around. Let J denote the complex structure on G induced by the
inclusion G ,! GL.5;C/. The above considerations show that J is left invariant.

Let us consider the tangent space TeG, where e 2 G is the identity. There is an
identification between the Lie algebra g of G and the vector space of left-invariant
holomorphic vector fields on G, endowed with the natural Lie bracket. The complex
structure on g is multiplication by i, and g is a complex Lie algebra of dimension 4,
described as follows:

g D fhZ1;Z2;Z3;Z4i j ŒZ1;Z2� D �Z3g:
By identifying g with TeG, one has TgG D deLg.g/; 8g 2 G. This shows again that
the complex structure Jg on TgG is multiplication by i, for every g 2 G.

We go through the details of the construction of left-invariant complex structure
on G. Let Je denote the complex structure (i.e., multiplication by i) on g and let
g 2 G be a point. Define the complex structure Jg W TgG! TgG as

Jg.X.g// D deLg.ix/;
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where X is a left-invariant vector field on G and x 2 g is such that deLg.x/ D X.g/.
This defines J as a smooth section of the bundle End.TG/. Let us show that J2 D
�Id. Indeed,

J2g.X.g// D Jg.Jg.X.g/// D deLg.i.ix// D �deLg.x/ D �X.g/:

Lemma 1. The (almost) complex structure defined above is left invariant.

Proof. We must prove that, for every g 2 G, .Lg/
�J D J. So take X.h/ 2 ThG. Then

Jh.X.h// D deLh.ix/;

where x 2 g is the unique vector satisfying deLh.x/ D X.h/. On the other hand, we
have

..Lg/
�J/.X.h// D dghLg�1 ı .Jgh/ ı .dhLg.X.h///

D dghLg�1 ı deLgh.ix/ D deLh.ix/

D Jh.X.h//:

Lemma 2. The (almost) complex structure defined above is integrable.

Proof. This is trivial. Since J is left invariant, it is enough to work in the Lie algebra
g. But on g, the complex structure is multiplication by i; hence, the Nijenhuis tensor

NJ.X;Y/ D ŒX;Y�C JŒJX;Y�C JŒX; JY� � ŒJX; JY�

D ŒX;Y�C iŒiX;Y�C iŒX; iY� � ŒiX; iY� D 0;

for X;Y 2 g.

Lemma 3. The two complex structures on G coincide.

Proof. It is enough to notice that the left translations are holomorphic maps; thus,
their differential is complex linear. Let g 2 G be a point and X a left-invariant vector
field on G, such that X.g/ D deLg.x/, x 2 g. Then

iX.g/ D ideLg.x/ D deLg.ix/ D Jg.X.g//:

So far we know that the natural complex structure J on the Lie group G D HC�C
is left invariant and it is multiplication by i on each tangent space. As above, let
G� � G be the subgroup of matrices whose elements belong to the lattice � D
faC b� j � D e2� i=3; a; b 2 Zg � C. Since J is left invariant, it defines a complex
structure on the quotient M D G� nG, which we denote again by J. Hence, .M; J/
is a complex nilmanifold.

Next we show that J is compatible with the Z3-action defined by (5). The
complex structure J on M is multiplication by i at each tangent space TpM, p 2 M,
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since it comes from the complex structure on G. Let ' W M ! M denote the Z3-
action, and consider the map

dp'WTpM ! T'.p/M:

We claim that the map ' can be lifted to a holomorphic action Q' of Z3 on G. By
taking global coordinates .u1; u2; u3; u4/ on G, Q' sends the generator � 2 Z3 to the
diagonal matrix diag.�; �; �2; �/. Since Q' is linear, it coincides with its differential
dg Q' W TgG! T Q'.g/G. This is clearly a complex linear map, i.e.:

dg Q' ı Jg D J Q'.g/ ı dg Q': (7)

This proves the claim. Since the complex structure J on M is multiplication by i on
each tangent space, (7) shows that we can write

dp' ı Jp D J'.p/ ı dp';

showing that the complex structure commutes with the Z3-action, hence descends
to the quotient bM D M=Z3. We denote by bJ the complex structure on bM. Thus we
have proved:

Proposition 3. Let M D G� nG be as above and denote by J the natural complex
structure on M. Then .bM;bJ/ is a complex orbifold.

Remark 1. The complex nilmanifold M is an example of an 8-dimensional non-
simply connected complex, symplectic, and non-Kähler manifold, the symplectic
form being given by (6). Indeed, M is nonformal; hence, it cannot be Kähler. One
can show that .bM;bJ; O!/ is simply connected. Therefore, we have an example of an
eight-dimensional simply connected complex and symplectic orbifold which is not
Kähler. Indeed, one can see that bM is not formal [17], while Kähler orbifolds are
formal [8].

Proposition 4. There exists a smooth complex manifold .M; J/ which is biholomor-
phic to .bM;bJ/ outside a neighborhood of a singular point.

Proof. Let p 2 M be a fixed point of the Z3-action. Translating with an element
g 2 G, we can suppose that p D .0; 0; 0; 0/ in our coordinates. Let U � M be a
neighborhood of p and let 	 W U ! B be a holomorphic local chart, given by the
exponential map (by holomorphic we mean with respect to the complex structure J).
Here B D BC4 .0; "/ � C

4. In these coordinates, the action of Z3 can be written as

.u1; u2; u3; u4/ 7! .�u1; �u2; �
2u3; �u4/:

The local model for the singularity is thus B=Z3. From now on, the desingularization
process is formally analogous to that in [17]. We blow up B at p to obtain eB. The
point p is replaced with a complex projective space F D P

3 D P.TpB/ on which Z3

acts by

Œu1 W u2 W u3 W u4� 7! Œ�u1 W �u2 W �2u3 W �u4� D Œu1 W u2 W �u3 W u4�:



Manifolds Which Are Complex and Symplectic But Not Kähler 63

Fig. 2 The second blowup and the Z3-action

Thus, Z3 acts on the exceptional divisor F with fixed locus fqg [ H where q D Œ0 W
0 W 1 W 0� and H D fu3 D 0g. Then one blows upeB at q and H to obtaineeB. The point
q is replaced by a projective space H1 Š P

3. The normal bundle to H � F � eB is
the sum of the normal bundle of H in P

3, which is OP2 .1/, and the restriction to H of
the normal bundle of F ineB, which is OP2 .�1/. Hence, the second blowup replaces
the projective plane H with a P

1-bundle over P
2 defined as H2 D P.OP2 .1/ ˚

OP2 .�1//. The strict transform of F � eB under the second blowup is the blowup
eF of F at q, which is a P

1-bundle over P2 D H, actually eF D P.OP2 ˚ OP2 .1//.
The resulting situation is depicted in Fig. 2.

The fixed point locus of the Z3-action oneeB consists of the two disjoint divisors H1

and H2. According to [4, p. 82], the quotienteeB=Z3 is a smooth Kähler manifold. This
provides a complex resolution of the singularity B=Z3. Notice that the blowing up is
performed with respect to the natural complex structure inherited from the ambient
space. By resolving every singular point, we obtain a smooth complex manifold
.M; J/.

Proposition 5. The complex manifold .M; J/ is simply connected.

Proof. The proof is analogous to that of [17, Proposition 2.3].

The desingularization process of Proposition 4 is completely similar to the
symplectic resolution of [17, Proposition 2.1]. However, the two blowups are
performed with respect to different complex structures. In the complex resolution,
one uses the natural complex structurebJ of bM. In the symplectic resolution, one uses
a (local) complex structure obtained by using a Kähler model for a neighborhood of
a fixed point which is not holomorphically equivalent to a local holomorphic chart
for bJ. Indeed, this Kähler model is obtained by performing the following change of
coordinates in a small neighborhood of a fixed point of the action:8

ˆ̂̂
<

ˆ̂̂
:

w1 D u1
w2 D 1p

2
.u2 C iNu3/

w3 D 1p
2
.iNu2 � u3/

w4 D u4

(8)

Certainly, this is not holomorphic with respect to the natural complex structure bJ
on bM.
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Locally, we have the following situation: on a small neighborhood U of 0 2 C
4

(which is a fixed point of the Z3-action in suitable coordinates), we have two
complex structures, J1 and J2. The two complex structures are different, because
the change of variables which brings one to the other is not holomorphic. As
a consequence, the two blowups are different. In fact, the natural map that one
would construct from one resolution to the other would not be even continuous.
This becomes particularly clear when the blowup is interpreted as a symplectic cut,
following Lerman and McDuff (see, for instance, [25]). The blowup of Cn at 0 can
be thought of as removing a small ball of radius " centered at the origin and then
collapsing the fibers of the Hopf fibration in the boundary of the remaining set. But
the fibers of the Hopf fibration (i.e., the intersections of the boundary of the ball,
which is a S2n�1, with the “complex” lines through the origin) depend heavily on
the complex structure of the ball.

6 Proof of the Main Theorem

In this section, we prove that the smooth manifolds which underlie the two
resolutions M and eM are diffeomorphic. This completes the proof of Theorem 2.

Proposition 6. The symplectic and the complex resolution of the orbifold .bM;bJ; O!/
are diffeomorphic.

Proof. We work locally, in a small neighborhood of each fixed point. We construct a
smooth map which is the identity outside this small neighborhood and that does the
right job inside the neighborhood. The local model is thus a small ball BC4 .0; ı/ �
C
4 endowed with two different complex structures J1 and J2. There is a map � W

BC4 .0; ı/! BC4 .0; ı/ which interchanges the two complex structures, namely,

��J1 D J2:

Notice that � can be composed with biholomorphisms on the right and on the left,
thus is not unique. If we take J1 as the complex structure on the ball induced by the
natural complex structure on bM and J2 to be the complex structure associated to
the local Kähler model used for the symplectic resolution, then � is given by (8).
We introduce real coordinates uk D xkC iyk and wk D skC itk, k D 1; 2; 3; 4. In such
coordinates, (8) is an automorphism of R8 written as8

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

s1 D x1
t1 D y1
s2 D 1p

2
.x2 C y3/

t2 D 1p
2
.y2 C x3/

s3 D 1p
2
.y2 � x3/

t3 D 1p
2
.x2 � y3/

s4 D x4
t4 D y4
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The associated matrix is

� D

0

BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1p
2
0 0 1p

2
0 0

0 0 0 1p
2

1p
2

0 0 0

0 0 0 1p
2
� 1p

2
0 0 0

0 0 1p
2
0 0 � 1p

2
0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCA

:

The matrix � belongs to SO.8/. To construct the diffeomorphism, we will find an
isotopy f�tgt2Œ0;1�, such that �0 is the identity Id 2 SO.8/ and �1 D �. In this way
we get a path of complex structures JtC1 D ��

t J1 connecting J1 and J2. To do this
we must produce a smooth path in SO.8/ between the identity matrix and �, which
is furthermore equivariant with respect to the Z3-action. In fact it is enough to find
a smooth Z3-equivariant path in SO.4/ connecting the identity to the matrix

� D

0

BBBB@

1p
2
0 0 1p

2

0 1p
2

1p
2

0

0 1p
2
� 1p

2
0

1p
2
0 0 � 1p

2

1

CCCCA
:

In the coordinates .s2; t2; s3; t3/ spanning the R
4 of interest, the Z3-action can be

written as

� D

0

BBB@

� 1
2
�

p
3
2

0 0p
3
2
� 1
2

0 0

0 0 � 1
2

p
3
2

0 0 �
p
3
2
� 1
2

1

CCCA

under the natural inclusion U.2/ ,! SO.4/. We must ensure that the path f�sg �
SO.4/ satisfies �s ı � D � ı �s, for every s 2 Œ0; 1�. We do this explicitly. First,
notice that � D P� 0, where

P D

0

BB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1

CCA and � 0 D

0

BBBB@

1p
2
0 0 � 1p

2

0 1p
2
� 1p

2
0

0 1p
2

1p
2

0
1p
2
0 0 1p

2

1

CCCCA
:
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The matrix � 0 is the image, under the exponential map exp W so.4/! SO.4/, of the
matrix �

4
Q, where

Q D

0

BB@

0 0 0 �1
0 0 �1 0

0 1 0 0

1 0 0 0

1

CCA :

Thus, a smooth path in SO.4/ between the identity and � 0 is given by the image of
the straight line in so.4/ joining the zero matrix with Q,

� W Œ0; �=4�! SO.4/
s 7! exp.sQ/

One sees that, for every s 2 Œ0; �=4�, �.s/ ı � D � ı �.s/; hence, �.s/ is Z3-
equivariant. Now consider the matrix P. We juxtapose the following three paths in
order to join P with the identity matrix:

P1.s/ D

0

BB@

0 0 sin.�s=2/ cos.�s=2/
0 0 cos.�s=2/ � sin.�s=2/

sin.�s=2/ cos.�s=2/ 0 0

cos.�s=2/ � sin.�s=2/ 0 0

1

CCA ;

P2.s/ D

0

BB@

sin.�s=2/ 0 cos.�s=2/ 0

0 sin.�s=2/ 0 � cos.�s=2/
cos.�s=2/ 0 � sin.�s=2/ 0

0 � cos.�s=2/ 0 � sin.�s=2/

1

CCA ;

P3.t/ D

0

BB@

1 0 0 0

0 1 0 0

0 0 � cos.�s/ sin.�s/
0 0 � sin.�s/ � cos.�s/

1

CCA :

Again, a computation shows that Pi.s/ ı � D � ı Pi.s/; 8s 2 Œ0; 1�, i D 1; 2; 3.
Hence, the path P.s/ D P1 	 P2 	 P3.s/ satisfies P.0/ D P, P.1/ D Id and is Z3-
equivariant. The path �.s/ D P.1 � s/� 0 satisfies �.0/ D � 0 and �.1/ D � . Finally,
the path � D � 	 � satisfies �.0/ D Id and �.1/ D � . However, � is not globally
smooth, because at the concatenation points, it is only continuous. To smooth it, we
proceed as follows. Let 0 < s1 < � � � < sn�1 < sn < 1 denote the points in which the
resulting path has a cusp. Consider a smooth, increasing function h W Œ0; 1�! Œ0; 1�

such that there exist intervals Ji D .ti � "; ti C "/, 0 < t1 < � � � < tn�1 < tn < 1

with h.t/ D si for t 2 Ji. Define a new path �t D �h.t/. Clearly, � and � have the
same image. Then �t is a smooth, Z3-equivariant path in SO.4/ connecting � with



Manifolds Which Are Complex and Symplectic But Not Kähler 67

the identity matrix. Viewing it as a path in SO.8/, we obtain the isotopy�t such that
�0 D Id and �1 D �. Thus, ��

0 J1 D J1 and ��
1 J1 D J2. We also endow the ball

with the standard metric. Since Z3 � SO.8/, Z3 acts by isometries.
We are ready to define the diffeomorphism between the two resolutions. Notice

that the expression of the Z3-action is the same in the two sets of coordinates
.u1; : : : ; u4/ and .w1; : : : ;w4/. Thus, when we blow up, we get, in both cases, an
exceptional divisor P

3 with one fixed point q D Œ0 W 0 W 1 W 0� and one fixed
hyperplane H D fu3 D 0g D fw3 D 0g. The differential of � at 0 2 BC4 .0; ı/,
which we denote d0�, defines an automorphism of the exceptional divisor (when
we projectivize the action), which fixes q and maps H to itself (d0� is .J1; J2/
holomorphic, meaning that d0� ı J1 D J2 ı d0�). Thus, d0� also lifts to the second
blowup, hence to a map between the two exceptional divisors. Let � W R ! Œ0; 1�

be a cutoff function, i.e., a C1 function, which is identically 0 on .�1; 0� and
identically 1 on Œ1;1/. Using the metric on the ball, the diffeomorphism f can then
be defined as follows:

f .x/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

x if jxj > 2ı
3

�t.x/ if ı
3
< jxj < 2ı

3

�.x/ if jxj < ı
3

where t D �
��
2ı
3
� jxj� 3

ı

�
. By what we have said, f W bM ! bM lifts to a

diffeomorphism Qf W M ! eM.

Corollary 1. The manifold eM is a simply connected, eight-dimensional, nonformal
manifold that admits both complex and symplectic structures, but which carries no
Kähler metric.
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Solvability of a Nonclamped Frictional Contact
Problem with Adhesion

O. Chau, D. Goeleven, and R. Oujja

Abstract In this paper, we study a class of dynamic thermal problems involving a
frictional normal compliance adhesive contact model and a nonclamped condition
for viscoelastic materials. The variational formulation of the problem leads to a
general system defined by a second-order quasi-variational evolution inequality on
the displacement field coupled with two firstorder evolution equations describing
the adhesion and temperature fields. Our main result establishes an existence and
uniqueness result of these fields.

1 Introduction

Mathematical problems involving contact between deformable bodies play an
important role in the engineering sciences. A considerable engineering and math-
ematical literature has now been devoted to the study of dynamic and quasistatic
frictional contact problems. Many results concerning mathematical modeling,
mathematical analysis, numerical analysis, and numerical simulations have been
published.

An early attempt at the study of contact problems for elastic viscoelastic
materials within the mathematical analysis framework was introduced in the
pioneering reference works [2, 3, 8, 9, 12]. Infinitesimal frictional models on contact
problems with nonlinear viscoelastic or elastoplastic materials were widely studied
in [7, 10, 14]. These models are good approximations in the framework of linearized
deformations, with some limitations on the impenetrability of mass condition or
on the appropriated conservation laws of thermodynamics. The main purpose in
these works is to show the cross-fertilization between various frictional new and
nonstandard models arising in contact mechanics and numerous types of abstract
variational inequalities.

Further extensions to nonconvex contact conditions with non-monotone and
possible multivalued constitutive laws led to the active domain of non-smooth
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mechanics within the framework of the so-called hemivariational inequalities, for
a mathematical as well as mechanical treatment, we refer to [6] and [13].

This paper is a continuation work of the results obtained in [1]. In this last
paper the authors studied a problem for the dynamic contact between a body and
an obstacle. The constitution law was assumed viscoelastic of short memory. The
contact was considered as clamped on some part of the boundary and assumed to be
frictionless. More precisely, it was defined by a normal compliance condition with
adhesion. An existence and uniqueness result on displacement and adhesion fields
has been established. Moreover, some numerical approximations and simulations
have been presented.

Here we investigate a class of dynamic contact problems with adhesive normal
compliance condition, friction, and thermal effects, and this for viscoelastic materi-
als of long memory. Moreover, the usual clamped condition has been deleted, which
leads to a new nonstandard model resulting in a system defined by a second-order
quasi-variational inequality on the displacement field coupled with two differential
equations describing the evolution of the adhesion and temperature fields. The main
difficulties are that Korn’s inequality cannot be applied any more. Here, nonlinearity
due to the friction appears strongly. Semi-coercive problems were first studied in [3]
for Coulomb’s friction models, where the inertial term of the dynamic process has
been used in order to balance the loss of coerciveness in the a priori estimates.
Then, adopting fixed point methods as used in [7, 14], we prove the existence and
uniqueness of displacement, adhesion, and temperature fields.

The paper is organized as follows. In Sect. 2 we describe the mechanical problem
and specify the assumptions on the data so as to derive the variational formulation.
Then, we state our main existence and uniqueness result. In Sect. 3, we give the
proof of the claimed result.

2 The Contact Problem

In this section we study a class of thermal contact problems with nonclamped
frictional normal compliance condition, for viscoelastic materials. We describe the
mechanical problems, list the assumptions on the data, and derive the corresponding
variational formulations. Then, we state an existence and uniqueness result on
displacement and temperature fields, which we will prove in the next section.

Let us recall now some classical notations, see, e.g., [3, 11] for further details.
We denote by Sd the space of second-order symmetric tensors on Rd, while “�” and
j � j will represent the inner product and the Euclidean norm on Sd and Rd. Let �

denote the unit outer normal on � . Everywhere in the sequel, the indices i and j
run from 1 to d, summation over repeated indices is implied, and the index that
follows a comma represents the partial derivative with respect to the corresponding
component of the independent variable. We also use the following notation:

H D
�

L2.˝/
�d
; H D f � D .�ij/ j �ij D �ji 2 L2.˝/; 1 � i; j � dg;

H1 D fu 2 H j ".u/ 2H g; H1 D f � 2H j Div � 2 H g:
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Here " W H1 �! H and Div W H1 �! H are the deformation and the divergence
operators, respectively, defined by :

".u/ D ."ij.u//; "ij.u/ D 1

2
.ui;j C uj;i/; Div � D .�ij;j/:

The spaces H, H , H1, and H1 are real Hilbert spaces endowed with the canonical
inner products given by:

.u; v/H D
Z

˝

uivi dx; .� ;�/H D
Z

˝

�ij�ij dx;

.u; v/H1 D .u; v/H C .".u/; ".v//H ; .� ;�/H1 D .� ;�/H C .Div � ;Div �/H :

We recall that C denotes the class of continuous functions; Cm, m 2 N� the set
of m times continuously differentiable functions and Wm;p, m 2 N, 1 � p � C1
for the classical Sobolev spaces.

The physical setting is as follows. A viscoelastic body occupies a bounded
domain ˝ � Rd .d D 1; 2; 3/ with a Lipschitz boundary � that is partitioned into
two disjoint measurable parts, �F and �c. Let Œ0;T� be the time interval of interest,
where T > 0. We assume that a volume force of density f 0 acts in˝�.0;T/ and that
surface tractions of density f F apply on �F � .0;T/. The body may come in contact
with an obstacle, the foundation, over the potential contact surface �c. A gap g exists
between the potential contact surface �c and the foundation and is measured along
the outward normal vector �.

We denote by u.x; t/ the displacement field, � .x; t/ the stress field, and ".u/
the small strain tensor. To simplify the notation, we do not indicate explicitly the
dependence of various functions on the variables x 2 ˝ [ � and t 2 Œ0;T�;
dots above a quantity represent derivative of the quantity with respect to the time
variable, i.e.,

u.t/ D u.�; t/; Pu.t/ D @u
@t
.�; t/; Ru.t/ D @2u

@t2
.�; t/:

We assume that the material is viscoelastic and its deformation follows a
Kelving–Voigt long-memory thermo-viscoelastic constitutive law of the form

� .t/ D A ". Pu.t//C G ".u.t//C
Z t

0

B.t � s/ ".u.s// ds � �.t/Ce:

Here A and G are given nonlinear constitutive functions representing the
viscosity operator and the elastic operator, respectively. The term Ce WD .cij/

represents the thermal expansion tensor, and B is the so-called tensor of relaxation
which defines the long memory of the material, as an important particular case,
when B 
 0, we find again the usual viscoelasticity of short memory.
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Next we describe the condition on the potential contact surface �c. Following
Frémond [4], we introduce an internal state variable ˇ, which represents the
intensity of adhesion, 0 � ˇ � 1, where ˇ D 1 means the total adhesion, ˇ D 0

means the lack of adhesion, and 0 < ˇ < 1 is the case of partial adhesion. Then, we
assume that the normal stress satisfies the following general expression of normal
compliance contact condition with adhesion

��.t/ D �p�.u�.t/ � g/C Hst.ˇ.t/; u�.t// on �c;

where u� represents the normal displacement; g is the gap between the potential
contact surface and the foundation, measured along the outward normal vector on
the contact surface; p� is a normal compliance function such that p�.r/ D 0 for
r � 0. When u� � g is positive, it represents the penetration of the body into the
foundation and �p�.u�.t/� g/ represents a compression acted by the foundation to
the body.

Different types of prescribed functions p� were used in [7] for the study of
quasistatic contact problems for viscoelastic materials. As an example, we may
consider

p�.r/ D c� rC;

where c� is a positive constant and rC D maxf0; rg: Formally, Signorini’s
nonpenetration condition is obtained in the limit c� ! C1. We can also consider
the normal compliance function

p�.r/ D
(

c� rC if r � ˛0;
c� ˛0 if r > ˛0;

where ˛0 is a positive coefficient related to the wear and hardness of the surface.
In this case the contact condition means that when the penetration is too large, i.e.,
it exceeds ˛0, the obstacle disintegrates and offers no additional resistance to the
penetration.

For example, we may consider

Hst.ˇ; u�/ D ��ˇ2R�.u�/;

where �� is a coefficient depending on the adhesion facility of the contact surface
�c, R� a Lipschitz-bounded function such that 8r > 0, R�.r/ D 0.

Moreover, we assume that during the process, there is friction modeled by a
version of Coulomb’s dry friction law, that is:

8
ˆ̂<

ˆ̂:

j� � .t/j � p� .u�.t/ � g/;

j� � .t/j < p� .u�.t/ � g/ H) Pu� .t/ D 0;

j� � .t/j D p� .u�.t/ � g/ H) Pu� .t/ D �� � � .t/; for some � � 0;
on �c:
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Here � � is the tangential stress, p� .u�.t/� g/ is the friction bound measuring the
maximal frictional resistance, and Pu� is the tangential velocity.

In [7], the friction bound

p� .u�/ D �� c� .u�/C on �c

is proportional to the normal stress with some positive coefficient of friction �� c� .
The evolution of the adhesion field is described by the following differential

equation

P̌.t/ D Ha.ˇ.t/; u�.t//:

As an example, the model defined by Had.ˇ.t/;u.t// D ���.ˇ.t//C ŒR�.u�.t//�2
was used in [1], where the adhesion is always decreasing.

Finally the evolution of the temperature with its associated boundary condition
is given by:

8
ˆ̂<

ˆ̂:

P�.t/ � div.Kc r�.t// D �cij
@ Pui
@ xj
.t/C q.t/ on ˝;

�kij
@ �
@ xj
.t/ ni D ke .�.t/ � �R/ on �c;

�.t/ D 0 on �F;

on �c:

In this system, Kc WD .kij/ represents the thermal conductivity tensor, q.t/ the
density of volume heat sources, �R is the temperature of the foundation, and ke is
the heat exchange coefficient between the body and the obstacle.

To conclude, we are able now to formulate the mechanical problem as follows.

Problem Q. Find a displacement field u W ˝ � Œ0;T� �! Rd, a stress field � W
˝ � Œ0;T� �! Sd, an adhesion field ˇ W �c � Œ0;T� ! R and a temperature field
� W ˝ � Œ0;T� �! RC such that for a.e. t 2 .0;T/:

� .t/ D A ". Pu.t//C G ".u.t//C
Z t

0

B.t � s/ ".u.s// ds � �.t/Ce in ˝;

(1)

Ru.t/ D Div � .t/C f 0.t/ in ˝; (2)

� .t/� D f F.t/ on �F; (3)

��.t/ D �p�.u�.t/ � g/C Hst.ˇ.t/; u�.t// on �c; (4)

8
ˆ̂<

ˆ̂:

j� � .t/j � p� .u�.t/ � g/;

j� � .t/j < p� .u�.t/ � g/ H) Pu� .t/ D 0;

j� � .t/j D p� .u�.t/ � g/ H) Pu� .t/ D �� � � .t/; for some � � 0;
on �c;

(5)
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P̌.t/ D Had.ˇ.t/; u�.t//; 0 � ˇ.t/ � 1 on �c; (6)

P�.t/ � div.Kc r�.t// D �cij
@ Pui

@ xj
.t/C q.t/ on ˝; (7)

�kij
@ �

@ xj
.t/ ni D ke .�.t/ � �R/ on �c; (8)

�.t/ D 0 on �F; (9)

u.0/ D u0; Pu.0/ D v0; �.0/ D �0 in ˝; (10)

ˇ.0/ D ˇ0 on �c: (11)

The equation in (2) is the dynamic model of motion where the mass density
% 
 1. Equation (3) is the traction boundary condition. The data in u0; v0; �0,
and ˇ0 in (10)–(11) represent the initial displacement, velocity, temperature, and
adhesion, respectively.

In view to derive the variational formulation of the mechanical problems (1)–(9),
let us first precise the functional framework. Let

V D H1

be the admissible displacement space, endowed with the inner product given by

.u; v/V D .".u/; ".v//H C .u; v/H 8u; v 2 V;

and let k � kV be the associated norm, i.e.,

kvk2V D k".v/k2H C kvk2H 8 v 2 V:

It follows that k�kH1 and k�kV are equivalent norms on V , and therefore .V; k�kV/ is a
real Hilbert space. Moreover, by the Sobolev’s trace theorem, there exists a constant
c0 > 0 depending only on ˝, and �c such that

kvkL2.�c/ � c0 kvkV 8 v 2 V:

Next, let

E D f 2 H1.˝/;  D 0 on �Fg

be the admissible temperature space, endowed with the canonical inner product of
H1.˝/.

We use here two Gelfand evolution triples (see, e.g., [16, pp. 416]) given by

V � H 
 H0 � V 0; E � L2.˝/ 
 .L2.˝//0 � E0;

where the inclusions are dense and continuous.
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In the study of the mechanical problem (1)–(11), we assume that the viscosity
operator A W ˝ � Sd �! Sd satisfies

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

(i) there exists LA > 0 such that
kA .x; �1/ �A .x; �2/k � LA j�1 � �2j; 8 �1; �2 2 Sd; a:e: x 2 ˝I

(ii) there exists mA > 0 such that
.A .x; �1/ �A .x; �2// � .�1 � �2/ � mA j�1 � �2j2;
8 �1; �2 2 Sd; a:e: x 2 ˝I

(iii) the mapping A .�; �/ is Lebesgue measurable on ˝; 8� 2 SdI
(iv)) the mapping A .�; 0/ 2H :

(12)

We suppose that the elasticity operator G W ˝ � Sd �! Sd satisfies the following
properties:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

(i) there exists LG > 0 such that
jG .x; "1/ � G .x; "2/j � LG j"1 � "2j; 8"1; "2 2 Sd; a:e: x 2 ˝I

(ii) the mapping G .�; "/ is Lebesgue measurable on ˝; 8" 2 Sd I
(iii) the mapping G .�; 0/ 2H :

(13)

The relaxation tensor B W Œ0;T� �˝ � Sd �! Sd, .t; x;�/ 7�! .Bijkh.t; x/ �kh/

satisfies
8
<̂

:̂

(i) Bijkh 2 L1.0;TIL1.˝//I
(ii) B.t/� � � D � �B.t/�
8� ;� 2 Sd; a.e. t 2 .0;T/; a.e. in ˝

(14)

The normal compliance functional p� W �c � R �! RC satisfies the following
properties:
8
ˆ̂̂
<̂

ˆ̂̂
:̂

(i) there exists L� > 0 such that
jp�.x; r1/ � p�.x; r2/j � L� jr1 � r2j; 8r1; r2 2 R; a:e: x 2 �cI

(ii) the mapping p�.�; r/ is Lebesgue measurable on �c; 8r 2 R I
(iii) p�.�; r/ D 0; on �c; 8r � 0:

(15)

The tangential compliance functional p� W �c �R �! RC satisfies the following
properties:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

(i) there exists L� > 0 such that
jp�.x; r1/ � p�.x; r2/j � L� jr1 � r2j; 8r1; r2 2 R; a:e: x 2 �cI

(ii) the mapping p� .�; r/ is Lebesgue measurable on �c; 8r 2 R I
(iii) p� .�; r/ D 0; on �c; 8r � 0:

(16)
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The functional Hst W �c � R � R �! R satisfies

8
ˆ̂̂
<̂

ˆ̂̂
:̂

(i) the mapping Hst.�; r; s/ 2 L1.�c/; 8 r; s 2 RI
(ii) 9Lst > 0; 9bst W R2 �! R;

jHst.x; r1; s1/ � Hst.x; r2; s2/j � Lst jr1 � r2j C bst.r1; r2/ js1 � s2j;
8x 2 �c; 8r1; s1; r2; s2 2 R:

(17)
where bst is some function which maps any bounded subset in R2 into a bounded
subset in R.

The functional Had W �c � R � R �! R satisfies

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

(i) the mapping Had.�; r; s/ 2 L1.�c/; 8 r; s 2 RI
(ii) 9Lad > 0; 9bad W R2 �! R;

jHad.x; r1; s1/ � Had.x; r2; s2/j � Lad jr1 � r2j C bad.r1; r2/ js1 � s2j;
8x 2 �c; 8r1; s1; r2; s2 2 RI

(iii) 8x 2 �c; 8r; s 2 R W
r � 0 H) Had.x; r; s/ � 0;
r � 1 H) Had.x; r; s/ � 0:

(18)
where bad is some function which maps any bounded subset in R2 into a bounded
subset in R.

We suppose the body forces and surface tractions satisfy the regularity
conditions:

f 0 2 L2.0;TIH/; f F 2 L2.0;TIL2.�F/
d/: (19)

The coefficients of the frictional normal compliance verifies.
The gap function verifies

g 2 L1.�cI RC/: (20)

Concerning the thermal tensors and the heat sources density, we suppose that:

Ce D .cij/; cij D cji 2 L1.˝/; q 2 L2.0;TIL2.˝//: (21)

We assume that the boundary thermal data satisfy the following regularity
properties:

ke 2 L1.˝I RC/; �R 2 W1;2.0;TIL2.�c//: (22)
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We suppose that the thermal conductivity tensor verifies the usual symmetry end
ellipticity : for some ck > 0 and for all .�i/ 2 Rd,

Kc D .kij/; kij D kji 2 L1.˝/; kij �i�j � ck �i�i: (23)

Finally, we assume that the initial data satisfy the conditions

u0 2 V; v0 2 V; �0 2 E; ˇ0 2 L1.�c/; 0 � ˇ0 � 1: (24)

Using Green’s formula, we obtain the following weak formulation of the
mechanical problem Q, defined by a system of second-order quasi-variational
evolution inequality coupled with a first-order evolution equation.

Problem QV . Find a displacement field u W Œ0;T� ! V , an adhesion field ˇ W
Œ0;T� ! L1.�c/, and a temperature field � W Œ0;T� ! E satisfying for a.e.
t 2 .0;T/:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

h Ru.t/C A Pu.t/C B u.t/C C �.t/C
Z t

0

B.t � s/ ".u.s// ds; w � Pu.t/iV0�V ;

Cj�.ˇ.t/;u.t/;w � Pu.t//C j� .u.t/;w/ � j� .u.t/; Pu.t//
� hf .t/; w � Pu.t/iV0�V 8w 2 VI

P̌.t/ D Had.ˇ.t/; u�.t//; 0 � ˇ.t/ � 1 on �cI
P�.t/C K �.t/ D R Pu.t/C Q.t/ in E0I
u.0/ D u0; Pu.0/ D v0; ˇ.0/ D ˇ0; �.0/ D �0:

Here, the operators and functions A; B W V �! V 0, C W E �! V 0,
j� W L1.�c/ � V2 �! R, j� W V2 �! R, K W E �! E0, R W V �! E0,
f W Œ0;T� �! V 0, and Q W Œ0;T� �! E0 are defined by 8v 2 V , 8w 2 V , 8� 2 E,
8 2 E, 8ˇ 2 L1.�c/:

hA v;wiV0�V D .A ."v/; "w/H I

hB v;wiV0�V D .G ."v/; "w/H I

hC�;wiV0�V D �.� Ce; "w/H I

j�.ˇ; v;w/ D
Z

�c

.p� .v�/ � Hst.ˇ; v�/w� daI

j� .v;w/ D
Z

�c

p� .v�/ jw� j daI

hf .t/;wiV0�V D .f 0.t/;w/H C .f F.t/;w/.L2.�F//d I
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hK �; iE0�E D
dX

i;jD1

Z

˝

kij
@�

@xj

@

@xi
dxC

Z

�c

ke � �  daI

hR v; iE0�E D �
Z

˝

cij
@vi

@xj
 dxI

hQ.t/; iE0�E D
Z

�c

ke �R.t/  dxC
Z

˝

q.t/  dx:

Our main existence and uniqueness result is the following, which we will prove
in the next section.

Theorem 1. Assume that (12)–(24) hold, and under the condition that L� is small
enough, then there exists a unique solution fu; ˇ; �g to problem QV with the
regularity:

8
ˆ̂<

ˆ̂:

u 2 C1.0;TIH/ \W1;2.0;TIV/ \W2;2.0;TIV 0/I
ˇ 2 W1;1.0;TIL1.�c//I
� 2 C.0;TIL2.˝// \ L2.0;TIE/ \W1;2.0;TIE0/:

(25)

3 Proof of Theorem 1

The idea is to bring the second order inequality to a first order inequality, using
monotone operator, convexity and fixed point arguments, and will be carried out in
several steps.

Let us introduce the velocity variable

v D Pu:
The system in Problem QV is then written for a.e. t 2 .0;T/:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

u.t/ D u0 C
Z t

0

v.s/ dsI

h Pv.t/C A v.t/C B u.t/C C �.t/C
Z t

0

B.t � s/ ".u.s// ds; w � v.t/iV0�V

Cj�.ˇ.t/;u.t/;w � v.t//C j� .u.t/;w/ � j� .u.t/; v.t//

� hf .t/; w � v.t/iV0�V 8w 2 VI
P̌.t/ D Had.ˇ.t/; u�.t//; 0 � ˇ.t/ � 1 on �cI
P�.t/C K �.t/ D R v.t/C Q.t/ in E0I
v.0/ D v0; ˇ.0/ D ˇ0; �.0/ D �0;
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with the regularities

8
ˆ̂<

ˆ̂:

v 2 C.0;TIH/ \ L2.0;TIV/ \W1;2.0;TIV 0/I
ˇ 2 W1;1.0;TIL1.�c//I
� 2 C.0;TIL2.˝// \ L2.0;TIE/ \W1;2.0;TIE0/:

Let us begin by

Lemma 1. For all  2 L2.0;TIV 0/, there exists a unique

v 2 C.0;TIH/ \ L2.0;TIV/ \W1;2.0;TIV 0/

satisfying

8
ˆ̂̂
<̂

ˆ̂̂
:̂

hPv.t/C A v.t/; w � v.t/iV0�V C h.t/;w � v.t/iV0�V

Cj� .u.t/;w/ � j� .u.t/; v.t// � hf .t/;w � v.t/iV0�V ;

8w 2 V; a.e. t 2 .0;T/I
v.0/ D v0;

(26)

where

u.t/ D u0 C
Z t

0

v.s/ ds:

Moreover, if L� is small enough, then 9c > 0 such that 81; 2 2 L2.0;TIV 0/,
8t 2 Œ0;T�:

kv2.t/ � v1.t/k2H C
Z t

0

kv2 � v1k2V � c
Z t

0

k1 � 2k2V0 : (27)

Proof. Given  2 L2.0;TIV 0/ and x 2 C.0;TIV/, by using a general result on
parabolic variational inequality (see, e.g., [5, Chap. 3]), we obtain the existence of a
unique v x 2 C.0;TIH/ \ L2.0;TIV/ \W1;2.0;TIV 0/ satisfying

8
ˆ̂̂
<̂

ˆ̂̂
:̂

hPv x.t/C A v x.t/; w � v x.t/iV0�V C h.t/;w � v x.t/iV0�V

Cj� .x.t/;w/ � j� .x.t/; v x.t// � hf .t/;w � v x.t/iV0�V ;

8w 2 V; a.e. t 2 .0;T/I
v x.0/ D v0;

(28)

Now let us fix  2 L2.0;TIV 0/ and consider 
 W C.0;TIV/ ! C.0;TIV/
defined by

8x 2 C.0;TIV/; 
x .t/ D u0 C
Z t

0

v x.s/ ds:
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We check by algebraic manipulation that for all u1;u2;w1;w2 2 V , we have

j� .u1;w2/ � j� .u1;w1/C j� .u2;w1/ � j� .u2;w2/ � c ku2 � u1kV kw2 � w1kV ;

where c > 0 is some constant proportional to L� involving c0.
Let x1; x2 2 C.0;TIV/ be given. Putting in (28) the data x D x1 with w D v x2 ,

and x D x2 with w D v x1 , adding then the two inequalities and integrating over
.0;T/, we obtain 8t 2 Œ0;T�:

kv x2 .t/ � v x1 .t/k2H C
Z t

0

kv x2 .s/ � v x1 .s/k2Vds

� c
Z t

0

kx2.s/ � x1.s/k2VdsC c
Z t

0

kv x2 .s/ � v x1 .s/k2H ds:

Using Gronwall’s inequality, we deduce that 8x1; x2 2 C.0;TIV/; 8t 2 Œ0;T�;

k
.x2/.t/ �
.x1/.t/k2V � c
Z t

0

kx2.s/ � x1.s/k2Vds:

Thus, by Banach’s fixed point principle, we know that 
 has a unique fixed
point denoted by x. We then verify that

v D v x

is the unique solution verifying (26).
Now let 1; 2 2 L2.0;TIV 0/. Putting in (26) the data  D 1 with w D v2 , and

 D 2 with w D v1 , adding then the two inequalities and integrating over .0;T/,
we obtain 8t 2 Œ0;T�:

kv2.t/ � v1.t/k2H C
Z t

0

kv2.s/ � v1.s/k2Vds

� c
Z t

0

k2.s/ � 1.s/k2V0dsC c
Z t

0

ku2.s/ � u1.s/k2V ds

C c
Z t

0

kv2.s/ � v1.s/k2H ds;

where c > 0 is some constant proportional to L� . We deduce (27) from Gronwall’s
inequality provided that L� is small enough.

Here and below, we denote by c > 0 a generic constant, which value may change
from lines to lines.
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Lemma 2. For all  2 L2.0;TIV 0/, there exists a unique

ˇ 2 W1;1.0;TIL1.�c//

satisfying

8
ˆ̂<

ˆ̂:

for a:e: t 2 .0;T/; P̌
.t/ D Had.ˇ.t/; u�.t//;

ˇ.0/ D ˇ0; on �c;

8t 2 Œ0;T�; 0 � ˇ.t/ � 1 on �c:

(29)

Moreover, if L� is small enough, then 9c > 0 such that 81; 2 2 L2.0;TIV 0/:

kˇ2.t/ � ˇ1.t/k2L1.�c/
� c

Z t

0

k1 � 2k2V0 ; 8t 2 Œ0;T�: (30)

Proof. Fix  2 L2.0;TIV 0/.
Let us consider X D L1.�c/ and F W Œ0;T� � X ! X defined by for all

.t; ˇ/ 2 Œ0;T� � X :

F.t; ˇ/ D ���.ˇ/C ŒR�.u�.t//�2:

We verify that :

(i) For all t 2 Œ0;T�, F.t; �/ is Lipschitz continuous;
(ii) For all ˇ 2 X, F.�; ˇ/ 2 L1.0;TIX/.

By using Cauchy-Lipschitz’s Theorem (see [15]) we have :
There exists a unique ˇ 2 W1;1.0;TIX/ satisfying for a.e. t 2 .0;T/,

P̌.t/ D F.t; ˇ.t//; ˇ.0/ D ˇ0 on �c:

Let us consider X D L1.0;TIL1.�c//, and for all ˇ 2 X, define 
a.ˇ/ 2 X by

8.x; t/ 2 �c � Œ0;T�; 
a.ˇ/.x; t/ D ˇ0.x/C
Z t

0

Had.x; ˇ.x; s/; u�.x; s// ds:

Using (18) and after some algebraic manipulation, we have 8ˇ1; ˇ2 2 X:

k
a.ˇ2/.t/ �
a.ˇ2/.t/k2L1.�c/
� c

Z t

0

kˇ1.s/ � ˇ2.s/k2L1.�c/
; 8t 2 Œ0;T�:

By Banach’s contraction principle, 
a has a unique fixed point denoted by
ˇh 2 X. Then, ˇ 2 W1;1.0;TIL1.�c//.

Let us show that for all t 2 Œ0;T�, 0 � ˇ.�; t/ � 1 on �c.
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Indeed, we have that for all t 2 Œ0;T�, x 2 �c :

ˇ.x; t/ D ˇ0.x/C
Z t

0

Had.x; ˇ.x; s/; u�.x; s// ds:

Now let us fix t0 2 Œ0;T�, x 2 �c. To simplify denote by

F.x; s/ D Had.x; ˇ.x; s/; u�.x; s//:

Assume that ˇ.x; t0/ < 0.
Then, 0 < t0 � T and there exists some 0 � t1 < t0 such that ˇ.x; t1/ D 0. Thus,
for all t 2 Œt1;T� :

ˇ.x; t/ D ˇ.x; t1/C
Z t

t1

F.x; s/ ds D
Z t

t1

F.x; s/ ds � 0:

Then, for all s 2 Œt1;T�, F.x; s// D 0 and for all t 2 Œt1;T�, ˇ.x; t// D 0 which
contradicts the fact that ˇ.x; t0/ < 0. We conclude that for all t 2 Œ0;T�, ˇ.�; t/ � 0
on �c.

We prove in the same way that for all t 2 Œ0;T�, x 2 �c, ˇ.x; t/ � 1.
Now for any 1; 2 2 L2.0;TIV 0/, for any t 2 Œ0;T�, we have on �c :

jˇ2.t; �/ � ˇ1.t; �/j � c
Z t

0

jHad.ˇ2.s/; u2�.s// � Had.ˇ1.s/; u1�.s//j ds:

Using (18) we obtain

jHad.ˇ2.s/; u2�.s//�Had.ˇ1.s/; u1�.s//j � c jˇ2.s/�ˇ1.s/jCc ju2�.s/�u1�.s/j:

We deduce that for any t 2 Œ0;T� :

kˇ2.t/�ˇ1.t/k2L1.�c/
� c

Z t

0

kˇ2.s/�ˇ1.s/k2L1.�c/
dsCc

Z t

0

ku2.s/�u1.s/k2V :

As
Z t

0

ku2.s/ � u1.s/k2V � c
Z t

0

kv2.s/ � v1.s/k2V ;

using then Gronwall’s inequality and Lemma 1, we deduce the inequality (30) under
the condition that L� is small enough.

Lemma 3. For all  2  2 L2.0;TIV 0/, there exists a unique

� 2 C.0;TIL2.˝// \ L2.0;TIE/ \W1;2.0;TIE0/

satisfying
( P�.t/C K �.t/ D R v.t/C Q.t/; in E0; a.e. t 2 .0;T/;
�.0/ D �0:

(31)
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Moreover, if L� is small enough, then 9c > 0 such that 81; 2 2 L2.0;TIV 0/:

k�1.t/ � �2.t/k2L2.˝/ � c
Z t

0

k1 � 2k2V0 ; 8t 2 Œ0;T�: (32)

Proof. We verify that the operator K W E �! E0 is linear continuous and strongly
monotone, and from the expression of the operator R, we have

v 2 L2.0;TIV/ H) R v 2 L2.0;TIE0/;

as Q 2 L2.0;TIE0/ then R v C Q 2 L2.0;TIE0/. Therefore, the existence and
uniqueness result verifying (29) follows from classical result on first-order evolution
equation.

Now for 1; 2 2 L2.0;TIV 0/, we have for a.e. t 2 .0IT/:

h P�1.t/ � P�2.t/; �1.t/ � �2.t/iE0�E C hK �1.t/ � K �2.t/; �1.t/ � �2.t/iE0�E

D hR v1.t/ � R v2.t/; �1.t/ � �2.t/iE0�E:

Then integrating the last property over .0; t/, using the strong monotonicity of K
and the Lipschitz continuity of R W V �! E0, we deduce

k�1.t/ � �2.t/k2L2.˝/ � c
Z t

0

kv1 � v2k2V ; 8t 2 Œ0;T�:

The inequality (32) follows then from Lemma 1.
Consider the operator 
 W L2.0;TIV 0/ ! L2.0;TIV 0/ defined by for all  2

L2.0;TIV 0/:

h
 .t/; wiV0�V D hB u.t/C C �.t/C
Z t

0

B.t � s/ ".u.s// ds; wiV0�V

C j�.ˇ.t/;u.t/;w/; 8w 2 V; a.e. t 2 .0;T/;

where

u.t/ D u0 C
Z t

0

v.s/ ds; 8t 2 Œ0;T�:

Lemma 4. Under the condition that L� is small enough, then 
 has a unique fixed
point � 2 L2.0;TIV 0/.

Proof. We check that the operator C W E �! V 0 is linear and that

9c > 0; 8� 2 E; kC �kV0 � c k�kL2.˝/:
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Let 1; 2 2 L2.0;TIV 0/ be given. We verify that for a.e. t 2 .0;T/:

k
2.t/ �
1.t/kV0 � c kB u2.t/ � B u1.t/kV0 C c k�2.t/ � �1.t/kL2.˝/

C c ku2.t/ � u1.t/kV C c kˇ2.t/ � ˇ1.t/k2L1.�c/
:

Thus, from (13), Lemmas 1, 2, and 3, we deduce that if L� is small enough, then
9c > 0 satisfying : for all 1; 2 2 L2.0;TIV 0/ and for all t 2 Œ0;T�,

k
2.t/ �
1.t/k2V0 � c
Z t

0

k2.s/ � 1.s/k2V0ds:

Then, using again Banach’s fixed point principle, we obtain that 
 has a unique
fixed point.

Proof of Theorem 1. We have now all the ingredients to prove the Theorem 1.
We verify then that the functions

u.t/ WD u0 C
Z t

0

v� ; 8t 2 Œ0;T�; ˇ WD ˇ� ; � WD ��

are solutions to problem QV with the regularities (25); the uniqueness follows from
the uniqueness in Lemmas 1, 2, and 3.
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The Kolmogorov-Arnold-Moser (KAM)
and Nekhoroshev Theorems with Arbitrary
Time Dependence

Alessandro Fortunati and Stephen Wiggins

Abstract The Kolmogorov-Arnold-Moser (KAM) theorem and the Nekhoroshev
theorem are the two “pillars” of canonical perturbation theory for near-integrable
Hamiltonian systems. Over the years there have been many extensions and general-
izations of these fundamental results, but it is only very recently that extensions of
these theorems near-integrable Hamiltonian systems having explicit, and aperiodic,
time dependence have been developed. We will discuss these results, with particular
emphasis on the new mathematical issues that arise when treating aperiodic time
dependence.

1 Introduction

Vladimir Arnold’s contributions to mathematics and mechanics are truly remarkable
for both their breadth and depth. In this article we discuss an area where he
made contributions that are essential to understand for any student or researcher in
the field of Hamiltonian dynamics. In particular, “Arnold” is the middle name on the
famous Kolmogorov-Arnold-Moser (KAM) theorem [1–3], which gives sufficient
conditions for the existence of quasiperiodic motion in near-integrable Hamiltonian
systems (expressed in the action-angle variables of the unperturbed integrable
Hamiltonian system). Another theorem in the same field (and with a very similar
setup), due to Nekhoroshev [4], describes stability of the action variables over and
exponentially long time interval. Together, the KAM and Nekhoroshev theorems
are the two “rigorous pillars” that establish canonical perturbation theory of near-
integrable Hamiltonian systems. A recent monograph that traces the historical
development of this theory in some detail is [5].

Despite the firm establishment of the “KAM theory” and “Nekhoroshev theory”
in the mathematics, physical science, and engineering disciplines, there is an
important area that has not been addressed. In particular, the development of similar
types of perturbation theorems for near-integrable systems having “general” time
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dependence, i.e., when the perturbation of the integrable Hamiltonian (or of a
particular motion), is not required to be neither periodic nor quasiperiodic. We shall
refer to this class of perturbation as aperiodic. The motivation for such results comes
from applications, e.g. the study of transport and mixing in fluid mechanics from
the dynamical systems point of view (see [6] for a discussion of the issues from the
Hamiltonian dynamic point of view that arise in this field).

While our goal here is not to review KAM and Nekhoroshev theory (the mono-
graph of Dumas [5] does an excellent job of this), we do note some of the issues
such as results for time-dependent, near-integrable Hamiltonian systems. Essentially
all of the literature (with a few notable exceptions that we will mention toward
the end of this introduction) concerned with time-dependent Hamiltonian systems
deal with periodic or quasiperiodic time dependence. For such time dependence,
the problems can often be cast in a form where classical results and approaches
can be applied. The monographs [7, 8] discuss some of these topics. The paper [9]
develops a KAM type result for quasiperiodically time-dependent systems and the
paper [10] develops a Nekhoroshev result for the same class of systems. The first
paper to develop a Nekhoroshev type result for Hamiltonian systems with general
time dependence was [11]. The form of the system they treated was somewhat
different than the classical near-integrable Hamiltonian systems since their goals
were somewhat different. The first papers to develop Nekhoroshev type results for
systems with general time dependence in the classical setting were [12, 13], and the
only paper treating a KAM type result in the classical setting is [14]. The purpose of
this paper is to describe the results in these latter papers dealing with aperiodic
time dependence, with particular attention on the issues that arise for explicitly
time-dependent Hamiltonians and the correspondent regularity hypotheses that the
perturbation function is required to satisfy. In Sect. 2 we discuss the Nekhoroshev
theorem and in Sect. 3 we discuss the KAM theorem.

2 A Nekhoroshev Theorem with Aperiodic Time Dependence

In this section we describe the setup and strategy for the proof of the theorem. This
will provide us with the background and framework for providing a description
of the theorem. We follow closely the setup in [11] (but see [15] for a detailed
development of the canonical perturbation theory and the Nekhoroshev theory,
including historical background).

2.1 The Setup and Assumptions

We consider a near-integrable, slowly varying (to be quantified shortly) time-
dependent Hamiltonian system expressed in the action-angle variables of the
unperturbed system of the following form:

H .I; '; t/ WD h.I/C "f .I; '; �t/: (1)
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We note the following:

• "; � > 0 small parameters.
• I D .I1; : : : ; In/ 2 G , ' D .'1; : : : ; 'n/ 2 T

n denote action-angle variables,
where G � R

n is an open set.
• The dependence on t is, in general, aperiodic, i.e., it need not be periodic or

quasiperiodic.

We will rewrite the time-dependent Hamiltonian (1) as a time-independent
Hamiltonian by defining two new conjugate variables in the standard way. If we
define � WD �t and  as the new conjugate variable pair, the Hamiltonian (1) takes
the autonomous form on D WD G � R � T

n � R 3 .I; ; '; �/.
H.I; '; ; �/ WD h.I/C �C "f .I; '; �/: (2)

Since we use complex function techniques in the proof of the theorem, we will
need to complexify the real domain of the Hamiltonian. Let �; � > 0 be real
numbers. Then we define D�;2� WD G��R��Tn

2��S� to be a complex neighborhood
of D , where

G� WD
[

I2G
��.I/; ��.I/ WD fOI 2 C

n W jOI � Ij < �g;

R� WD f 2 C W j=j < �g; T
n
2� WD f' 2 C

n W j='j < 2�g;
S� WD f� 2 C W j=�j < �g.

The case n D 1 is illustrated in Fig. 1.
Then we assume that h.I/ and f .I; '; �/ are holomorphic on D�;2� . Furthermore,

we also make a standard assumption on the unperturbed Hamiltonian.

Hypothesis 2.1 (Convexity). There exists two constants M � m > 0 such that, for
all I 2 G�

j@2I h.I/vj � Mjvj; jh@2I h.I/v; vij � mjvj2, (3)

for all v 2 R
n.

�I

�I

ρ 2σ

�ϕ

�ϕ
−π π

�η

�ξ

ACTION: ANGLE:

TIME:

σ �ξ

CONJ. to TIME: �η

ρ

Fig. 1 The sets D (dash dotted) and D�;2� for n D 1
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2.2 Statement of the Theorem

We can now state a version of the Nekhoroshev theorem for time-dependent
Hamiltonian systems having a general time dependence. First, we define

QF WD sup
D�;2�

jf j
 
1C e� �

2

1 � e� �
2

!n

; �";� WD �C e QF "; (4)

and we note that the set of parameters �; �;M;m; and QF are characteristic of a given
Hamiltonian H. Now we state the theorem.

Theorem 2.2 (Aperiodic Nekhoroshev Theorem ). Assume the convexity hypoth-
esis above. Then there exists constants�� and T , depending on �; �;M;m; QF , and
n, such that if " and � satisfy

�";� < 1=.3
4��/; (5)

then orbits .I.t/; '.t// of the Hamiltonian system (2) starting in G �Tn at t0, satisfy

jI.t/ � I.t0/j < .����;"/
1
4 �; for jt � t0j < T

"
exp

"�
1

����;"

� 1
2n.nC1/

#
.

We note that within the threshold (5), " and � are independent. We refer this as
unconditionally slow time dependence.

2.2.1 Scheme of the Proof

The classical proof of Nekhoroshev is divided into two parts:

Analytic part (normal form lemma): For the analytic part, we construct an "-close
to the identity canonical change Cr casting H into the normal form:

HN WD H ı Cr D h.I/C �C Z.r/ CR.rC1/. (6)

We note the following:

• The result is local: it holds on sets called non-resonance domains.
• Cr is the composition of r <1 canonical transformations.

Geometric part (global result): This is an extremely clever contribution of
Nekhoroshev [4] that shows how to cover the entire phase space D with non-
resonance domains where the normal form lemma can be applied. See also
[16, 17].
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Remark 2.3. It is important to note that the Hamiltonian is not normalized with
respect to the variables .�; / (it is a “partial normal form”). Hence the same
geometric result of the time-independent classical Nekhoroshev theorem applies.

The construction of the abovementioned normal form is classically achieved
in two steps. First a formal perturbation scheme is developed, based on the Lie
transform method that yields a normal form on non-resonance domains. Second,
we consider the properties of the normal form on the appropriate domains and the
“optimal” choice of parameters leading to exponentially small estimates.

We give a brief overview of the “formal scheme” for developing the normal form.

Formal Scheme

Step 1: Expand the perturbation as follows:

f .I; '; �/ D
X

k2Zn

fk.I; �/e
ik�':

Given K 2 N (to be determined afterward in an “optimal” way with respect to
all of the parameters in a way that makes the remainder small), we write the
expanded Hamiltonian in such a way it is decomposed into suitable “levels” (sets
of Fourier harmonics in this case) in order to apply the Lie transform method :

H D h.I/C �C H1 C H2 C � � � ; Hs WD "
X

.s�1/K�jkj<sK

fk.I; �/e
ik�' .

Step 2 (Lie transform method): The aim is to find �.r/ WD f�sgsD1;:::;r such that
T�.r/H D HN , where

T�.r/ WD
X

s�0
Es; Es WD

8
<̂

:̂

id s D 0
1

s

sX

jD1
jL�j Es�j s � 1

and Lf g WD ff ; gg D @' f@IgC @� f@g � @'g@I f � @�g@f is the Lie derivative.
Step 3 Hierarchy of homological equations: Each �s is determined as a solution

of a homological equation:

Lh�s C Zs D  s; s D 1; : : : ; r,

where Z.r/ D Z1 C � � � C Zr, where Zs contains the same harmonics as Hs

 s WD

8
<̂

:̂

H1 s D 1
Hs C �Es�1C 1

s

s�1X

jD1
jŒL�j Hs�j C Es�jHj� 2 � s � r
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We make the following remarks concerning the solution of the homological
equations.

• The solution is found in the Fourier space, by expanding �s, Zs, and  s in a
Fourier expansion in the angles.

• The term �Es�1 is the extra-term due to the aperiodic time dependence.

Convergence: Consider on D�;2� the Fourier norm

kFk.�;�/ WD
X

k2Zn

 
sup
D�;�

jfkj
!

ejkj� ,

with fk Fourier coefficients of F and jkj WD jk1jC� � �Cjknj. The following lemma
of Giorgilli describes the type of estimates that are required in order to establish
the convergence of the formal scheme.

Lemma 1 (Giorgilli). Suppose that there exist h > 0 and F ; b � 0 such that

kHsk.�;�/ � hs�1F ; k sk.1�d/.�;�/ �
bs�1

s
F (7)

for all s � 1 and for all d 2 .0; 1=4/. Then, if F and b are sufficiently small,
the operator T�.r/ (and its inverse T�1

�.r/
) defines a canonical transformation on the

domain D.1�d/.�;�/.

After having bounded the above-described extra-term with the tools used in [15],
one can see that the constraints imposed by condition (7) lead to more involved
estimates with respect to the autonomous case. More precisely, the system of
recurrence equations arising from (7) forbids straightforward bounds as in [15]
but requires an ad hoc analysis, carried out in this case with the use of the
generating function method. See [13] for the details.
The smallness condition of � required by (5) turns out to be an essential
ingredient in order to satisfy condition (7).

3 A KAM Theorem with Aperiodic Time Dependence

In this section we describe the setup and strategy for the proof of the theorem. This
will provide us with the background and framework for providing a description
of the theorem. Our approach follows closely the Lie transform approach to
Kolmogorov’s original version of the KAM theorem given in [18].
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3.1 The Setup and Assumptions

The setup and assumptions are different than those for the Nekhoroshev theorem.
We will comment more in this later on.

We consider a near-integrable, quadratic in P, time-dependent Hamiltonian
expressed in the action-angle variables of the unperturbed system of the following
form:

H .P;Q; t/ D 1

2
h� P;Pi C "f .P;Q; t/; (8)

where:

• � is a real non-singular n � n matrix.
• " is a small parameter.

We will focus on the preservation of a particular torus (in the spirit of the original
Kolmogorov theorem). Therefore, we consider a particular OP, we translate the
coordinates .p; q/ WD .Q;P� OP/ so that they are “centered” on the torus of interest,
and we transform the time-dependent Hamiltonian to an autonomous Hamiltonian,
as above, by introducing a new conjugate pair of coordinates. The Hamiltonian that
we obtain in this way has the form:

H.p; q; ; �/ D h!; pi C 1

2
h� p; pi C C "f .p; q; �/,

where:

• � WD t and  2 R is its conjugate momentum.
• ! WD � OP.
• .p; q; ; �/ 2 R

n � T
n � R � R

C DW D .

We next define a complex extension to the domain. We let �; �; and� > 0, and
then D�;�;� WD �� �Tn

� �S� �R� is defined to be the complex neighborhood of D
where

�� WD fp 2 C
n W jpj � �g; T

n
� WD fq 2 C

n W j=qj � �g;
S� WD f 2 C W j=j � �g; R� WD f� 2 C W <� � ��I j=�j � �g.

We endow D with the Fourier norm defined as

kgkŒ�;� I�� WD
X

k2Zn

sup
p2D�;�;�

jgk.p; �/jejkj� .

We make the following assumptions.

Hypothesis 3.1 (I). There exists m 2 .0; 1/ such that, for all v 2 C
n

j� vj � m�1jvj.
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Hypothesis 3.2 (II, Slow Decay). The perturbation is an holomorphic function on
D satisfying

kf .q; p; �/kŒ�;� I�� � Mf e
�aj�j;

for some Mf > 0 and a 2 .0; 1/.

3.2 Statement of the Theorem

Now we can state the theorem

Theorem 3.3 (Aperiodic Kolmogorov Theorem). Assume hypotheses I and II
and suppose that OP is such that ! is a � � � Diophantine vector. Then, for all
a 2 .0; 1/, there exists "a > 0 such that, for all " 2 .0; "a�, it is possible to
find a canonical, "-close to the identity, analytic change of variables .q; p; �; / D
K .q.1/; p.1/; �; .1//, K W D� ! D with D� � D , transforming the
Hamiltonian (1) into the Kolmogorov normal form

H1.q.1/; p.1/; �; .1// D h!; p.1/i C .1/ CQ.q.1/; p.1/; �I "/,
where Q is a homogeneous polynomial of degree 2 in p.

Remark 3.4. We note that no restrictions are imposed on a, which implies that
the decay of the time dependence can be arbitrarily slow. On the other hand, the
threshold is of the form "a � Ca3, with C (very small!) constant.

3.2.1 Scheme of the Proof

The proof follows the classical iterative approach following the Lie transform
approach of [18] and it is carried out along the lines of [19]. In particular, it is
organized as follows:

Step I (Induction basis) We rewrite the Hamiltonian H in the following form:

Hj D h!; pi C C A.j/.q; �/C hB.j/.q; �/; pi C 1

2
hC.j/.q; �/p; pi; (9)

where j D 0 denotes zeroth step in the induction process, and for this reason, we
set H0 WD H.

Step II (Perturbative scheme, formal part) For all j, a generating function �j is
chosen in such a way the action of exp.L�j/ on Hj removes A.j/ and B.j/. �j

is such that HjC1 WD exp.L�j/Hj has the same form (9).
Step III (Perturbative scheme, quantitative part) We show that the “unwanted

terms” A.j/ and B.j/ get “smaller and smaller” as j increases. More precisely

max
n��A.j/

��
Œ�jI�j�

;
��B.j/

��
Œ�jI�j�

o
� �je

�aj�j;
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with �j (quadratically) infinitesimal as j ! 1, while �j � �� > 0. The desired
canonical transformation is obtained by setting

K WD lim
j!1 exp.L�j/ ı exp.L�j�1 / ı : : : ı exp.L�0/:

The composition H ıK produces the desired Kolmogorov normal form.
Time-dependent homological equation: The equation for the determination of �j

at each stage of the normalization algorithm is of the form

@�' C ! � @q' D  , (10)

with  D  .q; �/ given.
Equation (10) is the novelty of our analysis, and it reflects a remarkable
conceptual difference with the normalization algorithm used for the Nekhoroshev
theorem. Basically, the latter uses the fact that the number of normalization
steps is finite: the contribution of the aperiodic term is controlled only over a
finite timespan and the constant �� of formula (5) tends to zero as r ! 1.
The situation is substantially different in the Kolmogorov scheme, in which the
number of normalization steps is infinite, and the only way to control the effect
of the time is to annihilate it at each stage of the algorithm with Eq. (10). The
properties of its solution are described in the following lemma.

Lemma 2. Let ı 2 Œ0; 1/ and suppose that  satisfies

k kŒ.1�ı/� I�� � Ke�aj�j,

(exponential decay). Then for all d 2 .0; 1�ı/ and for all � such that 2j!j� � d� ,
the solution of (10) exists and satisfies

k'kŒ.1�ı�d/� I�� �
KS

a.d�/2�
e�aj�j; S � 0. (11)

Remark 3.5. Finally, we note that the exponential rate of the decay is not necessary
and is used for simplicity. However a decay hypothesis is essential in order to ensure
the existence of the integrals appearing in the bounds which lead to (11).

4 Summary and Outlook

The aim of this paper was to give an overview of the Nekhoroshev and Kolmogorov
stability-type results for integrable Hamiltonian systems subject to aperiodic time-
dependent perturbations, obtained in the papers [13] and [14]. These are recently
added tesseræ to the rich mosaic of the Stability Theory of Hamiltonian Sys-
tems, one of the several fields in which V.I. Arnold made so many fundamental
contributions.
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The motivation for generalizing the classical Nekhoroshev and KAM theorems to
include explicit, but arbitrary, time dependence arises from many applications. Most
notably, applications of the dynamical systems approach to the study of Lagrangian
transport in fluid mechanics, as described in [6]. Hopefully, the results in this paper
will serve as motivation to analyze other possibilities for the generalization of these
fundamental results in Hamiltonian perturbation theory and, thus, extend both the
mathematical framework and the range of applications to which these results can be
applied.
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Iterative Methods for the Elastography Inverse
Problem of Locating Tumors

B. Jadamba, A.A. Khan, F. Raciti, C. Tammer, and B. Winkler

Abstract The primary objective of this work is to present a rigorous treatment
of various iterative methods for solving the elastography inverse problem of
identifying cancerous tumors. From a mathematical standpoint, this inverse problem
requires the identification of a variable parameter in a system of partial differential
equations. We pose the nonlinear inverse problem as an optimization problem by
using an output least-squares (OLS) and a modified output least-squares (MOLS)
formulation. The optimality conditions then lead to a variational inequality problem
which is solved using various gradient, extragradient, and proximal-point methods.
Previously, only a few of these methods have been implemented, and there is
currently no understanding of their relative efficiency and effectiveness. We present
a thorough numerical comparison of the 15 iterative solvers which emerge from a
variational inequality formulation.

1 Introduction

Given the domain ˝ as a subset of R2 or R3 and @˝ D �1 [ �2 as its boundary,
the following system models the response of an isotropic elastic body to the known
body forces and boundary traction:

� r � � D f in ˝; (1a)

� D 2��.u/C �div u I; (1b)
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u D g on �1; (1c)

�n D h on �2: (1d)

In (1), the vector-valued function u D u.x/ is the displacement of the elastic
body, f is the applied body force, n is the unit outward normal, and �.u/ D 1

2
.ruC

ruT/ is the linearized strain tensor. The resulting stress tensor � in the stress-strain
law (1b) is obtained under the condition that the elastic body is isotropic, and the
displacement is sufficiently small so that a linear relationship remains valid. Here �
and � are the Lamé parameters which quantify the elastic properties of the object.

In this work, our primary objective is to develop a computational framework for
the elastography inverse problem of locating soft inclusions in an incompressible
object, for example, cancerous tumor in the human body. From a mathematical
standpoint, this inverse problem seeks � from a measurement of the displacement
vector u under the assumption that the parameter � is very large. The key idea
behind the elastography inverse problem is that the stiffness of soft tissue can vary
significantly based on its molecular makeup and varying macroscopic/microscopic
structure, and such changes in stiffness are related to changes in tissue health. In
other words, the elastography inverse problem mathematically mimics the practice
of palpation by making use of the differing elastic properties of healthy and
unhealthy tissue to identify tumors. In most of the existing literature on elastography
inverse problem, the human body is modeled as an incompressible elastic object.
Although this assumption simplifies the identification process as there is only one
parameter � to identify, it significantly complicates the computational process as
the classical finite element methods become quite ineffective due to the so-called
locking effect. To describe the difficulties associated with near incompressibility, we
first introduce some notation. The dot product of two tensors A1 and A2 is denoted by
A1 �A2:Given a sufficiently smooth domain˝ � R

2; the L2-norm of a tensor-valued
function A D A.x/ is provided by

kAk2L2 D kAk2L2.˝/ D
Z

˝

A � A D
Z

˝

�
A211 C A212 C A221 C A222

�
:

On the other hand, for a vector-valued function u.x/ D .u1.x/; u2.x//T; the L2-
norm and the H1-norm are given by:

kuk2L2 D kuk2L2.˝/ D
Z

˝

�
u21 C u22

�
;

kuk2H1 D kuk2H1.˝/
D kuk2L2 C kruk2L2 :

For the time being, in (1), we set g D 0: For this case, the space of test functions,
denoted by V; is given by:

V D fNv 2 H1.˝/ � H1.˝/ W Nv D 0 on �1g:
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By employing the Green’s identity and by using (1c) and (1d), we get the
following variational form of (1): Find Nu 2 V such that

Z

˝

2��.Nu/ ��. Nv/C
Z

˝

�.div Nu/.div Nv/ D
Z

˝

f NvC
Z

�2

Nvh; for every Nv 2 V: (2)

For T W V � V ! R defined by:

T.Nu; Nv/ D
Z

˝

2��.Nu/ � �. Nv/C
Z

˝

�.div Nu/.div Nv/;

it can be shown that if � and �C� are bounded away from zero, then there are two
positive constants c1 > 0 and c2 > 0 with c1 � � and c2 � �C � such that

c1k Nvk2V � T. Nv; Nv/ � c2k Nvk2V ; for every Nv 2 V:

Since �� �, the ratio c3 D c2=c1 is large. Given that the constant c3 determines
the error estimates (as defined by Céa’s lemma), it follows that the error estimates
could easily outweigh the actual approximation error. This situation is well known
and has been dubbed the “locking effect.”

A wide range of approaches have been given to overcome the locking effect with
one of the most popular being the use of mixed finite elements, an approach which
we adopt in this work. For this we introduce a “pressure” term p 2 Q D L2.˝/ by
p D � div Nu; which results in the following weak form:

Z

˝

.div Nu/q �
Z

˝

1

�
pq D 0; for every q 2 Q: (3)

Using p D � div Nu, the weak form (2) then seeks Nu 2 V such that

Z

˝

2��.Nu/ � �. Nv/C
Z

˝

p.div Nv/ D
Z

˝

f Nv C
Z

�2

Nvh; for every Nv 2 V: (4)

Thus, we have moved from finding Nu 2 V fulfilling (2) to finding .Nu; p/ 2 V � Q
satisfying the mixed variational problems (3) and (4).

2 An Optimization Framework

Let V and Q be Hilbert spaces and let B be a Banach space. Let A be a nonempty,
closed, and convex subset of B. Let a W B � V � V ! R be a trilinear map which is
symmetric with respect to the second and the third arguments. Let b W V�Q! R be
a bilinear map, let c W Q � Q! R be a symmetric bilinear map, and let m W V ! R

be a linear and continuous map. We assume that there are strictly positive constants
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�1; �2; &1; &2; and �0 such that for every � 2 A; p; q 2 Q; and Nu; Nv 2 V; we have

a.�; Nv; Nv/ � �1k Nvk2; (5a)

a.�; Nu; Nv/ � �2k�kkNukk Nvk; (5b)

c.q; q/ � &1kqk2; (5c)

c.p; q/ � &2kpkkqk; (5d)

b. Nv; q/ � �0k Nvkkqk: (5e)

We consider the following mixed variational problem: Given � 2 A; find .Nu; p/ 2
W WD V � Q such that

a.�; Nu; Nv/C b. Nv; p/ D m. Nv/; for every Nv 2 V (6a)

b.Nu; q/ � c.p; q/ D 0; for every q 2 Q: (6b)

Given all the data, the direct problem in the context of (6) is to find .Nu; p/.
However, our interest is in the inverse problem of finding a parameter � 2 A that
makes (6) true for a measurement .Nz; Oz/ of .Nu; p/:

Clearly, Eqs. (3) and (4) which are connected to the elasticity imaging inverse
problem of identifying a variable parameter � in the system of incompressible linear
elasticity can be recovered by setting:

a.�; Nu; Nv/ D
Z

˝

2��.Nu/ � �. Nv/

b.Nu; q/ D
Z

˝

.div Nu/ q

c.p; q/ D
Z

˝

1

�
pq

m. Nv/ D
Z

˝

f Nv C
Z

�2

Nvh:

In this work, we will focus on two optimization formulations. The first one is the
output least-squares (OLS) functional JOLS W A! R defined by

JOLS.�/ WD 1

2
ku.�/ � zk2W D

1

2
kNu.�/ � Nzk2V C

1

2
kp.�/ � Ozk2Q; (7)

where z D .Nz; Oz/ is the measured data and u.�/ D .Nu; p/ solves (6) for �:
Due to the known ill posedness of inverse problems, some kind of regularization

is necessary for developing a stable computational framework. Therefore, instead
of (7), we will use its regularized analogue and consider the following regularized
optimization problem: Find � 2 A by solving
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min
�2A

J�.�/ D 1

2
ku.�/ � zk2W D

1

2
kNu.�/ � Nzk2V C

1

2
kp.�/ � Ozk2Q C �R.�/; (8)

where, given a Hilbert space H, R W H ! R is a regularizer, � > 0 is a regularization
parameter, u.`/ WD .Nu.`/; p.`// is the unique solution of (6) that corresponds to the
coefficient `, and z D .Nz; Oz/ is the measured data.

The above optimization problem is a constrained optimization problem where
the implicit constraint is the mixed variational problem and the explicit constraint is
the set of admissible coefficients A. For nonlinear inverse problems, the output least-
squares functional is nonconvex in general and hence can only be used to investigate
local minimizers.

Besides (8) we will also consider the following regularized problem

min
�2A

bJ�.�/ D bJ.�/C �R.�/; (9)

where bJ W A! R is a modified output least squares defined by

bJ.�/ WD 1

2
a.�; Nu.�/�Nz; Nu.�/�Nz/Cb.Nu.�/�Nz; p.�/�Oz/� 1

2
c.p.�/�Oz; p.�/�Oz/:

Theoretical results dealing with the above and some other optimization formula-
tions for this and simpler inverse problems are given in [10, 16, 17, 19–23, 32].

3 Discrete Formulae for the OLS and the MOLS

In this subsection, we collect some basic information concerning the discretization
of the OLS and MOLS functionals defined in (8) and (9). More details can be found
in [21]. As usual, we assume that Th is a triangulation on ˝; Lh is the space of all
piecewise continuous polynomials of degree d� relative to Th; NUh is the space of all
piecewise continuous polynomials of degree du relative to Th, and Qh is the space of
all piecewise continuous polynomials of degree dq relative to Th:

To represent the discrete mixed variational problem in a computable form, we
proceed as follows. We represent bases for Lh; NUh, and Qh by f'1; '2; : : : ; 'mg ;
f 1;  2; : : : ;  ng ; and f�1; �2; : : : ; �kg; respectively. The space Lh is then isomor-
phic to R

m, and for any � 2 Lh, we define � 2 R
m by �i D �.xi/; i D

1; 2; : : : ;m; where the nodal basis f'1; '2; : : : ; 'mg corresponds to the nodes
fx1; x2; : : : ; xmg. Conversely, each � 2 R

m corresponds to � 2 Lh defined by
� D Pm

iD1 �i'i: Analogously, Nu 2 NUh will correspond to NU 2 R
n, where

NUi D u.yi/; i D 1; 2; : : : ; n; and Nu D Pn
iD1 NUi i; where y1; y2; : : : ; yn are the

nodes of the mesh defining NUh. Finally, q 2 Qh will correspond to Q 2 R
k, where

Qi D q.zi/; i D 1; 2; : : : ; k; and q D Pk
iD1 Qi�i; where z1; z2; : : : ; zk are the nodes

of the mesh defining Qh.
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We next define S W Rm ! R
nCk to be the finite element solution operator

that assigns to each coefficient �h 2 Ah; the unique approximate solution uh D
.Nuh; ph/ 2 NUh � Qh. Then, S.�/ D U, where U is defined by

K.�/U D F; (10)

where K.�/ 2 R
.nCk/�.nCk/ is the stiffness matrix and F 2 R

nCk is the load vector.
We will also use the mass matrices defined by:

M1
ij D

˝
 i;  j

˛ D
Z
 i j

M2
ij D

˝
�i; �j

˛ D
Z
�i�j:

With the above preparation, we obtain the following discrete versions:

J.�/ D 1

2
. NU.�/ � NZ/TM1. NU.�/ � NZ/C 1

2
.P.�/ �bZ/TM2.P.�/ �bZ/; (11)

bJ.�/ D 1

2
. NU.�/ � NZ/TbK.�/. NU.�/ � NZ/C . NU.�/ � NZ/TBT.P.�/ �bZ/

� 1
2
.P.�/ �bZ/TC.P.�/ �bZ/: (12)

4 Gradient, Extragradient, and Proximal-Point Methods

Although we perform numerical tests for some gradient-based methods, the main
emphasis of this work is on numerical testing of the so-called extragradient meth-
ods and proximal-point methods. We note that extragradient methods, originally
proposed to solve minimization and saddle point problems, have received a great
deal of attention in recent years, particularly in the context of variational inequalities
(see [1, 4, 7–9, 11–13, 26, 28, 30, 35, 37–41, 43–46, 50, 51, 53, 55–57, 59–61]).

Korpelevich [39] introduced the method in the context of smooth optimization
and saddle point problems. Earlier developments of these methods were of theoret-
ical nature; however, the recent developments focus not only on the convergence
analysis but also on testing their practical usefulness on numerical examples.
Therefore, we anticipate that the novel application of these methods to solve inverse
problems for partial differential equations will give a plethora of test problems for
examining their efficiency and effectiveness.

In this work, we employ variants of projected gradient methods, extragradient
methods, and proximal-point methods to solve the inverse problem of parameter
identification by first posing it as a variational inequality. We implement numerous
algorithms and present a thorough comparison of the projected gradient method,
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fast projected gradient method [fast iterative shrinkage thresholding (FISTA)],
scaled projected gradient method, and several extragradient methods including
the Marcotte variants, the He-Goldstein-type method, the projection-contraction
methods proposed by Solodov and Tseng, the hyperplane method developed by A.
Iusem, and various proximal-point methods. During the last two decades, numerous
researchers have focused on these methods, but to the best of our knowledge, this
is the first instance where these methods have been thoroughly compared in the
context of an applied problem.

Subsequently, we implement and test the numerical performance of the fol-
lowing iterative schemes for solving the elastography inverse problem of tumor
identification:

1. Gradient projection using Armijo line search
2. Fast gradient projection using Armijo line search (FISTA)
3. Scaled gradient projection using Barzilai–Borwein rules
4. Khobotov extragradient method using Marcotte rules (three variants)
5. Solodov–Tseng projection-contraction method (two variants)
6. Improved He-Goldstein-type extragradient method
7. Two-step extragradient method
8. Hyperplane extragradient method
9. Hager–Zhang proximal-point method (four variants)

4.1 Basic Gradient-Based Methods

We will solve the elastography inverse problem by formulating the regularized OLS
and MOLS functional, henceforth denoted simply by J; as a variational inequality
of finding �� 2 K such that

hrJ.��/;� � ��i � 0; 8 � 2 K;

where K � R
m is the set of admissible coefficients. In all numerical experiments,

we take the set K to be box constrained.
The above variational inequality has a unique solution if rJ is strongly mono-

tone, that is,

hrJ.�1/ � rJ.�2/;�1 � �2i � ck�1 � �2k2; 8 �1;�2 2 K; c > 0;

and Lipschitz continuous

krJ.�1/ � rJ.�2/k � Lk�1 � �2k; 8�1;�2 2 K; L > 0:
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As usual, we convert the above variational inequality into a fixed point problem
of finding �� 2 K such that

�� D PK.�
� � ˛rJ.��//; ˛ > 0;

where PK is the metric projection onto K:
Note that for the variational inequality emerging from the MOLS formulation, the

map J is strongly monotone due to the monotonicity of the gradient of the convex
MOLS functional and strongly monotone regularizer. On the other hand, for the
variational inequality emerging from the OLS formulation, it is necessary to choose
a large enough regularization parameter to ensure that the gradient of the regularized
OLS is strongly monotone. In fact, it can be shown that the gradient of the OLS
functional JOLS satisfies the following inequality:

hrJOLS.�1/ � rJOLS.�2/;�1 � �2i � �c1k�1 � �2k2; 8 �1;�2 2 K; c1 > 0:

Gradient Projection Method

The projected gradient algorithm admits the form: Given �k 2 K; find �kC1 2 K
by the following scheme

�kC1 D PK.�
k � ˛rJ.�k//:

The strong convergence can be established by assuming that

˛ 2
�
0;
2c

L2

�
;

where c and L are the modulus of strong monotonicity and Lipschitz continuity,
respectively.

Note that we do not have information about c and L and hence it is important to
use a method to determine the steplength ˛.

We use Armijo line search to backtrack until the following condition is satisfied:

J.�kC1/ � J.�k/ � �˛�krJ.�k/k2; for � 2 .0; 1/:

An interesting article devoted to a general projected gradient method for smooth
convex optimization problem is given by Dunn [18].

Fast Iterative Shrinkage-Thresholding Algorithm

In this subsection, we describe the “fast iterative shrinkage-thresholding algorithm,”
which was proposed by Beck and Teboulle for minimizing the sum of two convex,



Iterative Methods for the Elastography Inverse Problem of Locating Tumors 109

lower-semicontinuous, and proper functions (defined in a Euclidean or Hilbert
space), such that one is differentiable with Lipschitz gradient and the proximity
operator of the second is easy to compute. This method constructs a sequence of
iterates for which the objective is controlled, up to a (nearly optimal) constant, by
the inverse of the square of the iteration number. In recent years, this method has
received a great deal of attention due to its simplicity and fast convergence properties
(see also [6, 15, 58]). We note the convergence of the iterates themselves has only
been given recently by Chambolle and Dossal [14].

In the context of linear inverse problems, Beck and Teboulle [3], following the
work of Nesterov [47], presented the following fast version of the projected gradient
method, which is an optimal first-order method. Here L again is the Lipschitz
constant of rJ:

Algorithm: FISTA
Choose N�1 D �0, t1 D 1, and N, the maximum number of iterations.
For k D 0; 1; 2; : : : ;N, perform the following:

Step 1: �k D PK. N�k � 1
L rJ. N�k//

Step 2: tkC1 D 1C
p
1C4t2k
2

Step 3: N�kC1 D �k C tk�1

tkC1
.�k � �k�1/

End

Scaled Gradient Projection

The projected gradient suffers from slow convergence, and many authors have
considered a scaled analogue to accelerate the convergence.

The scaled gradient projection (SGP) iteration has the following form

�kC1 D PK.�
k � ˛kDkrJ.�k//;

where Dk is a scaling matrix. It is a common practice to take the scaling matrix Dk

as the main diagonal of the Hessian of J.�k/; with all other entries equal to zero
(see Harker [27]).

Following Benvenuto et al. [5], we choose ˛k using the rules suggested by
Barzilai and Borwein [2]. That is, for

rk�1 D �k � �k�1

zk�1 D rJ.�k/ � rJ.�k�1/;
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Algorithm: SGP
Choose �0 2 K; ˇ; � 2 .0; 1/; 0 < ˛min < ˛max; M > 0

For k D 0; 1; 2; : : : ; perform the following steps:
Step 1: Choose ˛k 2 Œ˛min; ˛max� and Dk

Step 2: Projection Yk D PK.�
k � ˛DkrJ.�k//

If Yk D �k Stop
Step 3: Descent direction: dk D Yk � �k

Step 4: Set �k D 1 and fmax D max
0�j�min.k;M�1/

J.�k�j/

Step 5: Backtracking loop:
If J.�k C �kdk/ � fmax C ˇ�krJ.�k/T dk

Go to Step 6
Else

Set �k D ��k and go to Step 5
EndIf

Step 6: �kC1 D �k C �kdk

End

we compute:

˛
.1/
k D

r.k�1/T D�1
k D�1

k r.k�1/

r.k�1/T D�1
k z.k � 1/

˛
.2/
k D

r.k�1/T Dkz.k�1/

z.k�1/T D2
kz.k�1/ :

Determining ˛k: Take a prefixed nonnegative integer M˛ and �1 2 .0; 1/:
If ˛.2/k =˛

.1/
k � �k then

˛k D min
�
˛
.2/
j ; j D max .1; k �M˛/ ; : : : ; k

�

�kC1 D 0:9�k

Else
˛k D ˛.1/k
�kC1 D 1:1�k

EndIf.

4.2 Extragradient Methods

Korpelevich [39] introduced the extragradient method in the context of saddle
point problem studied through a variational inequality formulation. Instead of one
projection, her scheme required two projections per iteration. At its purest, the
extragradient methods take the following form:

N�k D PK.�
k � ˛rJ.�k//
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�kC1 D PK.�
k � ˛rJ. N�k//:

Convergence can be proved under the conditions that the solution set is
nonempty, rJ is monotone and Lipshitz (with constant L) and ˛ 2 .0; 1=L/. In the
context of variational inequalities, as opposed to the (single) projection methods,
these methods do not require the strong monotonicity of the underlying map.
Evidently, the drawback is that when computing the projection on to constraint set is
expensive, these methods are, in turn, also quite expensive. In the context of inverse
problems, extragradient methods are attractive since the strong monotonicity for the
OLS/MOLS can be attained through regularization. These methods then demand
relaxed conditions on the regularization parameters. On the other hand, since the
constraint sets for the considered inverse problems are typically box constraints,
computing the projection is relatively inexpensive and thus not computationally
cost prohibitive.

Clearly, when L is unknown, we may have difficulties choosing an appropriate
˛. Intuitively as with the gradient projection method, if ˛ is too small, then the
algorithm will converge slowly and if ˛ is too big, then it may not converge at all.

Khobotov Extragradient Method

In the following, we will consider extragradient methods where ˛ is now an adaptive
steplength. We implement the adaptive steplength first introduced in [36] to remove
the constraint that rJ must be Lipshitz continuous. The adaptive algorithm is of the
form:

N�k D PK.�
k � ˛krJ.�k//

�kC1 D PK.�
k � ˛krJ. N�k//:

Intuitively, we get better convergence when ˛ gets smaller between iterations,
however, it is obvious that we must also control how the sequence of f˛kg shrinks.

We use the following reduction rule for ˛k given in [36]:

˛k > ˇ
�k � N�k

rJ.�k/ � rJ. N�k/
;

where ˇ 2 .0; 1/. Results from [53] and [36] show that ˇ is usually 0:8 or 0:9; an
observation that is also supported by our results.
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The Khobotov extragradient method has the following general form:

Algorithm: Khobotov Extragradient
Choose ˛0 > 0, �0, and ˇ 2 .0; 1/

While k�kC1 � �kk > TOL
Step 1: Compute rJ.�k/

Step 2: Compute N�k D PK.�
k � ˛krJ.�k//

Step 3: Compute rJ. N�k/

If rJ. N�k/ D 0, Stop

Step 4: If ˛k > ˇ
k�k

� N�k
k

krJ.�k/�rJ. N�k/k

then reduce ˛k and go to Step 5
Step 5: Compute �kC1 D PK.�

k � ˛krJ. N�k//

End.

Marcotte Choices for Steplength

Khobotov’s algorithm gives one workable method for reducing ˛k but does not
rule out other, perhaps more desirable, methods. Marcotte developed a new rule
for reducing ˛k along with closely related variants [42, 53]. The first Marcotte rule
is based on the sequence ˛k D 1

2
˛k�1 and forces ˛k to satisfy Step 4 of Khobotov’s

algorithm by additionally taking:

˛k D min

	
˛k�1
2
;

k�k � N�kkp
2krJ.�k/ � rJ. N�k/k



:

Both the Khobotov and Marcotte reduction rules can still run the risk of choosing
an initial ˛ small enough that ˛k is never reduced, resulting in slow convergence.
Ideally, ˛k should then have the ability to increase if ˛k�1 is smaller than some
optimal value. This leads to a modified version of Marcotte’s rule where an initial ˛
is selected using the rule

˛ D ˛k�1 C �
�
ˇ

k�k�1 � N�k�1k
krJ.�k�1/ � rJ. N�k�1/k � ˛k�1

�

where � 2 .0; 1/.
The reduction rule in Step 4 of Khobotov’s algorithm is then replaced with

˛k D max

	
Ǫ ;min

	
� � ˛; ˇ k�k�1 � N�k�1k

krJ.�k�1/ � rJ. N�k�1/k




where � 2 .0; 1/ and Ǫ is some lower limit for ˛k (generally taken as no less than
10�4).
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Scaled Extragradient Method

Now we consider a projection-contraction-type extragradient method presented by
Solodov and Tseng [52]. It involves a scaling matrix M to accelerate convergence.
The main steps read:

N�k D PK.�
k � ˛krJ.�k//

�kC1 D �k � �M�1.T˛.�k/ � T˛.PK. N�k//

where � 2 R
C and T˛ D .I � ˛rJ/. Here, I is the identity matrix, and ˛ is chosen

such that T˛ is strongly monotone.
Additional discussion of the scaling matrix is given in [53]; however, in both

[53] and [52], test problems take M equal to the identity matrix. In our numerical
experiments, we consider the scaling matrix as both the identity matrix and the
diagonal of the Hessian of J.

Algorithm: Solodov–Tseng
Choose �0; ˛�1; � 2 .0; 2/; � 2 .0; 1/; ˇ 2 .0; 1/;M 2 R

m�m

Initialize: N�0 D 0; k D 0; rx D ones.m; 1/
While krxk > TOL

Step 1: if krxk < TOL then Stop
else ˛ D ˛k�1; flag D 0

Step 2: if rJ.�k/ D 0 then Stop
Step 3: While ˛.�k � N�k/T .rJ.�k/� rJ. N�k// > .1� �/k�k � N�kk2 or flag D 0

If flag ¤ 0 Then ˛ D ˛k�1ˇ endif
update N�k D PK.�

k � ˛rJ.�k//, compute rJ. N�k/

flag D flag C 1

endwhile
Step 4: update ˛k D ˛

Step 5: compute � D ��k�k � N�kk2=kM1=2.�k � N�k � ˛krJ.�k/C ˛krJ. N�k//k2
Step 6: compute �kC1 D �k � �M�1.�k � N�k � ˛krJ.�k/C ˛krJ. N�k//

Step 7: rx D �kC1 � Ak; k D k C 1 go to Step 3
End

The Solodov–Tseng method suggests a more general form for the advanced
extragradient methods:

N�k D P�.�
k � ˛krJ.�k//

�kC1 D P�.�
k � krJ. N�k//;

where ˛k and k are chosen using different rules.
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Goldstein-Type Methods

The classical Goldstein projection method presented in [40] is of the form:

�kC1 D PK.�
k � ˇkrJ.�k//;

where ˇk > 0:

The He-Goldstein method, an extragradient method that requires Lipschitz
continuity and strong monotonicity of rJ, is of the form:

N�k D PK.rJ.�k/ � ˇk�
k/

�kC1 D �k � 1

ˇk
frJ.�k/ � N�kg:

It can also be expressed:

r.�k; ˇk/ D 1

ˇk
frJ.�k/ � PK ŒrJ.�k/ � ˇk�

k�g

�kC1 D �k � r.�k; ˇk/:

We implement the more general version above, presented in [40], as it allows us to
control the second projection (i.e., choosing k).

Algorithm: Improved He-Goldstein
Initialize: choose ˇU > ˇL >

1
.4�/
; � 2 .0; 2/; � > 0;�0; ˇ0 2 ŒˇL; ˇU �; k D 0

Step 1: Compute:
r.�k; ˇk/ D 1

ˇk
frJ.�k/� PK ŒrJ.�k/� ˇk�

k�g
If kr.�k; ˇk/k � � then Stop

Step 2: �kC1 D �k � �˛kr.�k; ˇk/ where ˛k WD 1� 1
4ˇk�

Step 3: Update ˇk

!k D krJ.�kC1
�rJ.�k/k

ˇkk�kC1
��k

k

If !k <
1
2

Then ˇkC1 D maxfˇL;
1
2
ˇkg

Else if !k >
3
2

Then ˇkC1 D minfˇU ;
6
5
ˇkg

Step 4: k D k C 1, go to Step 1

Two-Step Extragradient Method

Zykina and Melenchuk in [61] considered a three-step projection method which
they called a two-step extragradient method. Numerical experiments with mixed
variational problem for bilinear functions given in [61] shows that the convergence
of this method is faster when compared to the standard extragradient method.
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Additional results related to the two-step extragradient method were recently given
by Zykina and Melenchuk [62]. The adaptive version of the algorithm is of the form:

N�k D PK.�
k � ˛krJ.�k//

e�k D PK. N�k � krJ. N�k//

�kC1 D PK.�
k � �krJ.e�k//;

where ˛k; k; and �k are suitable step lengths.

Hyperplane Extragradient Method

Within the context of the more general extragradient method, we choose k using
the following rule from Iusem [29] ( see also [31, 53]):

k D hrJ. N�k/;�k � N�ki
krJ. N�k/k2

The idea in this method is that the hyperplane of all solutions � such that

hrJ. N�k/; N�k � �i D 0;

separates all the solutions onto one side of the hyperplane. Using the variational
inequality, we know then which side the solutions fall into since:

hrJ.�/; N�k � �i � 0:

Consequently, if rJ is monotone, then we also have

hrJ. N�k/; N�k � �i � 0

and thus if

hrJ. N�k/; N�k � �ki < 0;

then the solution is on the other side of the hyperplane.

4.3 Proximal-Point Methods

In this section, we now examine several proximal-like optimization algorithms
and their application to the optimization frameworks developed in the previous
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Algorithm: Hyperplane
Choose: �0; �; Ǫ ; Q̨
Initialize: k D 0; rx D ones.m; 1/
While krxk > TOL

Step 1: Choose Q̨k using a finite bracketing procedure
Step 2: Compute Kk D PK.�

k � Q̨krJ.�k// and rJ.Kk/

Step 3: If rJ.Kk/ D 0 then Stop

Step 4: If krJ. Q�k
/� rJ.�k/k � kKk

��k
k
2

2 Q̨
2
k krJ.�k/k

Then N�k D Kk

Else find ˛k 2 .0; Q̨k/ such that

�
kKk

��k
k
2

2 Q̨
2
k krJ.�k/k

� krJ.PK.�
k � ˛krJ.�k///� rJ.�k/k � kKk

��k
k
2

2 Q̨
2
k krJ.�k/k

Step 5: Compute N�k D PK.�
k � ˛krJ.�k//

Step 6: If rJ. N�k/ D 0 then Stop
Step 7: Compute k

Step 8: Compute �kC1 D PK.�
k � krJ. N�k//

Step 9: rx D �kC1 � �k; k D k C 1; go to Step 3;
End

sections. Specifically, we will look at several variants of the adaptive proximal-point
algorithms developed by Hager and Zhang [24].

To begin our analysis, we first review the classical proximal-point algorithm.
Recall that the solution of the discretized elastography inverse problem is now
reposed as a constrained optimization:

min
�2K

J.�/ (13)

where K is a closed and convex set of feasible parameters and J is either the MOLS
or OLS objective functionals.

Now, consider the functional

JP.�/ D J.�/C 1

2�k
k� � �kk2; (14)

where �k is a positive number and �k 2 K. We note that JP.�/ is strictly convex in
the MOLS case since J is convex and the term 1

2�k k���kk22, known as the proximal
regularization term, is strictly convex. Thus, we have an optimization subproblem

min
�2K

JP.�/ (15)

with a unique solution and whose optimality conditions give the following varia-
tional inequality:

hrJP.�
�/;� � ��i � 0 for all � 2 K: (16)
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The classical proximal-point algorithm generates a sequence f�kg of solutions to
the subproblem (17) with the iteration:

�kC1 D arg min
�2K

	
J.�/C 1

2�k
k� � �kk2



(17)

where f�kg is a sequence of positive real numbers. The iterates f�kg can be shown
to converge to a solution of (13) under a certain set of assumptions (see [33]).

We note that for convex problems using a Tikhonov-like regularization method
(necessary to overcome the general ill posedness of an inverse problem like the
one at hand), algorithms like the gradient and extragradient methods are known to
converge to a minimal-norm solution. Comparatively for proximal-point methods,
no such characterization is possible. However, this also makes their application to
inverse problem optimization frameworks appealing in their eliminating the need
for the selection of an “ideal” regularization parameter.

In the remaining subsections, we will consider several improvements and
variations on the classical proximal method mainly based on the method of Hager
and Zhang [24] and applied to the MOLS and OLS frameworks for solving the
parameter identification problem. For more details on the development of proximal
methods, we refer the reader to [25, 34, 48, 49, 54] and their cited references.

Hager and Zhang’s Proximal-Point Method

Hager and Zhang [24] introduce two criteria between subsequent iterates of (17):

JP.�
kC1/ � J.�k/ (18)

krJP.�
kC1/k � � kkrJ.�k/k: (19)

The proximal regularization parameter is then taken as

� k D �krJ.�k/k;

where  2 Œ0; 2/ and � > 0 are constants. As they show in [24], the iterates converge
quadratically to the solution set of (15). This gives rise to the following algorithm:

The minimization of the subproblem in Step 1 is achieved using an unconstrained
conjugate-gradient trust-region method.

Hager and Zhang’s Proximal-Point Method Using '-Divergence

We can now consider a variant of the Hager–Zhang proximal-point method by
replacing the notion of distance between the current point and its proximal “neigh-
bor” with that of '-divergences (see [33] for a detailed treatment). We consider ˚ ,
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Algorithm: Hager–Zhang Proximal-Point
Initialization Step: Choose an initial guess �0, initialize � and , and take k D 0.

Let � D 1.
Step 1: Let � k D �krJ.�k/k.

Find �kC1 satisfying krJP.�
kC1/k � � k�krJ.�k/k

Step 2:
If �kC1 satisfies JP.�

kC1/ � J.�k/

Go to Step 3.
Else,

Set � D 0:1� and go to Step 1.
End.

Step 3: Let �k D �kC1:

Step 4: Set k D k C 1 and go to Step 1.

the class of closed, proper, and convex functions ' W RC ! R [ fC1g for which
the following properties hold:

1. ' is twice continuously differentiable on int.domain.'// D .0;C1/:
2. ' is strictly convex on its domain.
3. lim

t!0C'
0.t/ D �1:

4. '.1/ D '0.1/ D 0 and '00.1/ > 0:
5. There exists � 2 � 1

2
'00.1/; '00.1/

�
such that

�
1 � 1

t

� �
'00.1/C �.t � 1/� � '0.t/ � '00.1/.t � 1/; 8t > 0:

Using the above definition, for some ' 2 ˚ , the '-divergence between any two
x; y 2 R

nC is given by:

d'.x; y/ D
nX

iD1
yi'

�
xi

yi

�
: (20)

As can be easily verified, several ' functions are given by:

'1.t/ D t log t � tC 1
'2.t/ D � log tC t � 1
'3.t/ D

�p
t � 1�2 :

By way of example, taking '1 above then gives the '-divergence

d'1 .x; y/ D
nX

iD1
xi log

xi

yi
C yi � xi (21)
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The '-divergence can now be used to replace the proximal regularization term
in (14) giving

J'1.�/ D J.�/C � kd'1.�;�
k/: (22)

and subsequently the proximal-like iteration

�kC1 D arg min
�2K

J'1.�/ (23)

Substituting J'1.�/ for JP.�/ into the Hager–Zhang algorithm yields the '-
divergence proximal-like algorithm.

Hager and Zhang’s Proximal-Point Method Using Bregman Functions

Similarly, we can also replace the notion of distance in the proximal regularization
term using another strictly convex function:

D .x; y/ WD  .x/ �  .y/ � r .y/T.x � y/; (24)

where  is known as a Bregman function.
A Bregman function is defined as follows. Let S � R

n be an open and convex set
and a let  W NS ! R be a given mapping.  is a Bregman function if it meets the
following criteria:

1.  is strictly convex and continuous on NS.
2.  is continuously differentiable in S.
3. The partial level set

L˛ D fy 2 NSjD .x; y/ � ˛g

is bounded for every x 2 NS:
4. If fykg � S converges to x, then lim

k!1 D .x; y
k/ D 0:

It is again easy to verify that the following are all examples of Bregman functions:

 1.x/ D 1

2
kxk2 with S D R

n;

 2.x/ D
nX

iD1
xi log xi � xi with S D R

nC;

 3.x/ D �
nX

iD1
log xi with S D R

nC:
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The distance function related to  1 is then defined by:

D 1.x; y/ WD
1

2
kx � yk2;

which, we note, corresponds with the classical proximal regularization approach
from (14). Taking  2 we then have

D 2.x; y/ WD
nX

iD1
xi log

xi

yi
C yi � xi

which, we likewise note, corresponds to '-divergence proximal regularization given
by (21).

Finally, taking  3 yields

D 3.x; y/ WD
nX

iD1

xi

yi
� log

xi

yi
� 1

with the proximal regularized functional

J 3.�/ D J.�/C � kD 3.�;�
k/ (25)

and the corresponding iteration

�kC1 D arg min
�2K

J 3.�/: (26)

Proximal-Like Methods Using Modified '-Divergence

All of the proximal methods outlined so far rely on the solution of an optimization
subproblem such as one found in Step 1 of the Hager–Zhang algorithm. Second-
order methods, like Newton’s method, applied to the subproblem provide fast
convergence but require calculation of the Hessian of both the objective function
and the proximal regularization term.

Problems of conditioning in the Hessian of the proximal regularization term (see
[33]) can be overcome with the introduction of a modification to the notion of '-
divergence:

Qd'.x; y/ WD
nX

i�1
y2i '

�
xi

yi

�
: (27)

The Hessian of the proximal term can then be calculated using '00:
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r2xx
Qd'.x; y/ D

nX

iD1
'00
�

xi

yi

�
eie

T
i (28)

where ei is the ith unit basis vector of Rn.
We can again apply this to the Hager–Zhang algorithm in the context of the

elastogrpahy inverse problem by taking

J Q'1.�/ WD J.�/C Qd'1.�;�k/ (29)

where now, however, we can apply full second-order methods to solve the sub
problem

�kC1 D arg min
�2K

J Q'1.�/: (30)

5 Performance Analysis

In this section, we present a numerical comparison of the following methods:

1. Gradient projection using Armijo line search
2. Fast gradient projection using Armijo line search
3. Scaled gradient projection using Barzilai–Borwein rules
4. Khobotov extragradient method using Marcotte rules (three versions)
5. Solodov–Tseng (projection-contraction) method
6. Improved He-Goldstein-type extragradient method
7. Hyperplane extragradient method
8. Hager–Zhang proximal-point methods using:

• Classical proximal regularization
• '-divergences
• Bregman functions
• Second-order modified '-divergence

We considered two representative examples of elastography inverse problems
for the recovery of a variable � on a two-dimensional isotropic domain ˝ D
.0; 1/�.0; 1/ with boundary @˝ D �D[�L[�R. �D, where the Dirichlet boundary
conditions hold, was taken as the union of the top and bottom boundary of the square
domain. �L and �R, where the Neumann conditions hold, were taken as the left and
right boundaries, respectively.

In both examples, the inverse problem was solved on a 40 � 40 quadrangular
mesh with 1681 quadrangles and 5041 total degrees of freedom (3360 degrees of
freedom for the solution u and 1681 for the factitious pressure term p).

Due to the near incompressibility of the tumor identification inverse problem, �
was kept as a large constant: � D 106.
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The two numerical examples used in the experiments are defined as follows.

Example 1.

� .x; y/ D 2C 1

4
cos.3�xy/ sin.�x/; g .x; y/ D

�
y2.1C x/
1C x2 C x2y

�
on �D

hL .x; y/ D
��.�C 4/y2
�4y

�
on �L; hR.x; y/ D

�
4y2 C �.1C y2/

4C 12y

�
on �R:

Example 2.

� .x; y/ D 1C x2y; g .x; y/ D
�

y2.1C x/
1C x2 C x2y

�
on �D

hL .x; y/ D
��.�C 2/y2
�2y

�
on �L; hR.x; y/ D

�
.2C �/y2 C 2y3 C �

6y2 C 8yC 2
�

on �R:

5.1 Implementation Remarks

• The gradient and Hessian of the MOLS functional were computed using an
adjoint stiffness method (see [32]), while the gradient and Hessian of the OLS
functional were computed with an adjoint method and a hybrid adjoint/classical
method, respectively (see [10]).

• The Hessian of the OLS functional for both examples was not positive definite
in practice (due to the functional’s nonconvexity), and this made it unsuitable
for direct use as a scaling matrix in the scaled projected gradient or Solodov–
Tseng methods due to the appearance of negative values. The absolute value of
the diagonal of the Hessian was substituted for scaling.

• A maximum of 50,000 iterations was taken for all algorithms. Iteration counts
with this value in Tables 1 or 2 indicate a failure of the algorithm to converge.

• For the proximal-point algorithms, the number of iterations includes both
the proximal algorithm iterations and the iterations necessary for solving the
optimization subproblems.

• The parameter constraints were taken as either non-active box constraints in the
case of the extragradient methods and were ignored in the case of the proximal-
point algorithms.

6 Discussion and Concluding Remarks

Here we interpret and discuss the results of the numerical experiments summarized
in the figures and in Tables 1 and 2 from the previous section. We would like
to emphasize that our remarks on the efficacy of the given methods are based



Iterative Methods for the Elastography Inverse Problem of Locating Tumors 123

Table 1 Performance results for MOLS using the gradient, extragradient, and proximal-
point methods. The bold values represent the best method of its class

Example 1 Example 2

Method J evals CPU(s) Iter. J evals CPU (s) Iter.

FISTA 196;564 40;073:086 50;000 83;137 16;458:189 23;516

Proj. grad. 181;124 36;202:334 50;000 373;449 71;332:026 50;000

Scaled PG 1081 290:895 431 2274 641:224 1023
He-Goldstein 50;000 10;667:586 50;000 50;000 9607:489 50;000

Hyperplane 67;793 13;612:401 21;567 31;420 6013:724 7889

Khobotov 51,008 10,210:173 25,502 21,032 4,180:868 10,513
Korpelevich 100;000 19;416:231 50;000 100;000 19;133:270 50;000

Marcotte 1 100;000 20;294:617 50;000 41;058 8892:693 20;524

Marcotte 2 57;770 11;953:809 21;721 22;370 4202:067 8394

Solodov–Tseng (I) 150;000 63;307:693 50;000 150;000 41;805:362 50;000

Solodov–Tseng (H) 53;762 11;655:049 17;918 29;301 5458:782 9764

Two-step 63;240 12;668:029 20;998 24;630 4751:831 8092

HZ (classical) 185;945 31;973:062 8174 155;188 27;796:726 7110

HZ '-divergence 161;305 31;256:567 7159 159;162 30;915:996 7019

HZ Bregman 168;501 30;853:027 7152 161;462 31;408:740 7111

HZ Modified ' 262 21,487:738 484 122 10,214:647 209

Table 2 Performance results for OLS using the gradient, extragradient, and proximal-point
methods. The bold values represent the best method of its class

Example 1 Example 2

Method J evals CPU (s) Iter. J evals CPU (s) Iter.

FISTA 65,429 15,131:008 1865 34,834 8027:285 1033
Proj. grad. 100;000 22;068:355 50;000 100;000 22;824:003 50;000

Scaled PG 100;206 23;073:380 50;000 100;203 21;804:025 50;000

He-Goldstein 100;000 11;552:631 50;000 50;000 11;797:437 50;000

Hyperplane 150;000 34;871:848 50;000 142;185 33;254:525 47;393

Khobotov 40;648 9105:919 20;320 20;954 5647:784 10;474

Korpelevich 100;000 21;876:791 50;000 100;000 22;310:550 50;000

Marcotte 1 100;000 19;163:717 50;000 94;866 22;912:561 47;430

Marcotte 2 41,640 8708:808 17,380 21,114 5,113:853 8497
Solodov–Tseng (I) 150;000 60;630:438 50;000 150;000 63;143:018 50;000

Solodov–Tseng (H) 150;000 25;351:700 50;000 128;164 30;212:637 42;717

Two-step 47;655 10;082:619 15;837 23;145 5;225:002 7660

HZ (classical) 15;897 2915:064 842 8670 1956:415 440

HZ '-Divergence 17;003 3195:805 917 10;508 2594:147 506

HZ Bregman 18;057 3929:007 886 8630 1735:847 425

HZ Modified ' 451 37;591:002 863 406 39;453:602 777
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on (and their scope limited to) our experiments in connection with the parameter
identification problem. We begin our discussion with the classical extragradient
method and its direct extensions: Korpelevich, Khobotov, and the two related
Marcotte variants. Tables 1 and 2 both indicate that the Khobotov and Marcotte
variants generally improve over the performance of the Korpelevich method for
both the OLS and MOLS approaches. In the MOLS case, the Khobotov algorithm,
although the simplest, not only outperforms the more sophisticated Marcotte
variants but actually performs best out of all other extragradient methods considered.
In particular, we note that even when the Khobotov algorithm results in more overall
iterations, it results in fewer objective evaluations and therefore total CPU time.
For the OLS case, the second variant of the Marcotte method bests Khobotov’s,
but with only a marginal improvement. These results suggest that given the second
Marcotte variant converges in fewer iterations, the computational overhead of its
more sophisticated reduction of ˛k can potentially outweigh most of the benefit of
its accelerated convergence.

Of the remaining extragradient methods, only the two-step method performs
reasonably on par with the more successful methods like Khobotov’s. The “extra”
extragradient step taken by this method grants faster convergence but also more
objective evaluations and subsequent overhead. The hyperplane method performs
well for the MOLS functional, but fairs poorly when applied to the OLS approach.
The distinct performance difference can perhaps be explained by the existence of
instances when the algorithm gets “stuck” near the hyperplane, and this may be
exacerbated by the nature of the OLS functional. In particular, this occurs when
N�k is near the hyperplane, making the difference between �k and �kC1 small. It is
possible then that ˛0s or 0s stops being adaptive and resulting in slow convergence.

The Solodov–Tseng (I) method, scaled using the identity matrix (effectively
unscaled), performs poorly in both examples for both the OLS and MOLS
approaches. Scaling using the Hessian of the objective function [i.e., Solodov–
Tseng (H)] shows markedly different behavior when applied to either OLS or
MOLS. In the case of MOLS, the scaling brings performance in line with the
Khobotov and Marcotte methods and indicates how proper scaling can significantly
enhance the convergence of the algorithm. However, because of the nonpositive
definiteness of the OLS functional, scaling matrices derived from the Hessian
contained negative values. This made their direct use unfeasible in the context of
Solodov–Tseng due to the evaluation of the term M

1
2 . The results presented in

Table 2 instead used the absolute value of the Hessian’s diagonal to accommodate
the algorithm but also indicate that this scaling did not provide any performance
benefit over the unscaled algorithm.

For the simpler gradient-based methods, again there were significant discrep-
ancies in performance between the OLS and MOLS approaches. Considering
only MOLS, the scaled projected gradient method performed remarkably well,
outstripping all other similar methods. Again, compared to the projected gradient
method, this shows the dramatic effect of proper scaling on algorithm convergence.
Just as in the case of the Solodov–Tseng method, the benefit of scaling disappears
when applied to the OLS functional for similar reasons. For OLS, the FISTA
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algorithm performs best of the gradient methods, but the performance is only
commensurate with the Marcotte or Khobotov extragradient method, and no
remarkable performance gains are seen as with MOLS.

To gain more insight into the overall performance of these methods beyond
what is summarized in Tables 1 and 2, the history of the objective function values
(Figs. 1 and 2) was plotted on a logarithmic scale at each iteration for a selection of
algorithms. These figures show the smoother or more “direct” convergence of the
extragradient methods when compared with the characteristic zigzagging instability

Fig. 1 Example 1: Convergence history comparison for the MOLS and OLS functionals

Fig. 2 Example 2: Convergence history comparison for MOLS and OLS functionals
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Fig. 3 Example 1: Solodov–Tseng (H) Method (MOLS)

of the projected gradient methods. This behavioral difference can be of significance
when considering using the norm of the gradient as a practical algorithmic stopping
criteria.

For the proximal-point methods considered, the modified '-divergence with the
MOLS approach performed starkly better than the other proximal methods due to
its use of second-order methods for solving the optimization subproblem. However,
for the OLS method, this benefit is largely erased due to the computational cost of
computing the Hessian of the OLS functional using a hybrid adjoint method [10].
There appears no clear advantage among the proximal methods concerning the OLS
approach.

Comparing now all the methods, the proximal-point algorithms roundly outper-
form all gradient or extragradient methods for either the MOLS or OLS approaches.
As can be seen in Figs. 1 and 2, the proximal Hager–Zhang methods not only
converge faster (steeper curves) but achieve significantly smaller objective function
values in fewer iterations. This performance enhancement can be directly attributed
to the nature of proximal regularization and its ability to overcome the error
introduced by Tikhonov-type regularization employed by the other methods.

In summary, iterative optimization methods for solving large-scale problems
like the elastography inverse problem show significant performance gains when
methods such as MOLS are coupled with properly-scaled algorithms like the
scaled projected gradient algorithm. In a more general context, when such scaling
information is unfeasible or not available, our numerical experiments indicate that
careful selection of an initial steplength in a simpler algorithm like Khobotov’s can
still provide effective “real-world” benefit over more sophisticated but computa-
tionally expensive algorithms. Overall, proximal methods coupled with fast solvers
for the minimization subproblem show significant performance advantages and
overcome inherent drawbacks of other forms of regularization in iterative methods
(Figs. 3, 4, 5, 6, 7, and 8).
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Fig. 4 Example 2: Solodov–Tseng (H) Method (MOLS)

Fig. 5 Example 1: FISTA Method (MOLS)

Fig. 6 Example 2: FISTA Method (MOLS)
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Fig. 7 Example 1: Hager–Zhang Modified ' (MOLS)

Fig. 8 Example 2: Hager–Zhang Modified ' (MOLS)
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Transversality Theory with Applications
to Differential Equations

Dumitru Motreanu and Viorica Venera Motreanu

Abstract The generic existence of Morse functions in a prescribed family of
smooth functionals is investigated. The approach is based on arguments involv-
ing the transversality theory. The abstract result is applied to semilinear elliptic
boundary value problems. One obtains qualitative information concerning the set
of solutions.

1 Introduction

The critical point theory provides powerful tools in studying various nonlinear
problems. One of the reasons is that usually the weak solutions in such a problem
coincide with the critical points of a suitably constructed smooth functional. The
critical points of the associated functional can be located by detecting the change
in the homotopy type of the level sets (see, e.g., Marino and Prodi [8], Mawhin
[9], Rabinowitz [16], Schwartz [18], Struwe [20], Tanaka [21]). This topological
approach is particularly efficient in the case where the functional is a Morse
function, that is, it admits only nondegenerate critical points and satisfies the Palais–
Smale condition. The reason is that the special properties of a Morse function permit
to make use of the powerful tools supplied by the transversality theory.

The aim of this work is to give verifiable criteria for obtaining a Morse function
whose critical points be exactly the solutions of the semilinear elliptic boundary
value problem

	 ��u D p.x; u/C f .x/; x 2 ˝;
u D 0; x 2 @˝; (1)
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on a bounded domain ˝ in R
N with a smooth boundary @˝. More precisely, we

show that under natural hypotheses upon p, the Euler functional corresponding
to (1) (see, e.g., [16, p. 61] and [21]) is generically a Morse function. The stated
property simplifies tedious arguments in specific situations. Also it allows to apply
different results where the nondegeneracy of solutions is a basic assumption. For
a comprehensive discussion in this direction, we refer to the related work of
Mawhin [10].

Our approach relies on an abstract result ensuring the generic existence of Morse
functions in a given collection of smooth functionals. We recall that a property on
a topological space is called generic if it holds on a residual set, i.e., a countable
intersection of dense open subsets. The abstract result presented in Theorem 1 below
is in fact a version of a general property proved in Motreanu [13] in the setting of
differentiable manifolds. The starting idea of our theorem was inspired by the work
of Saut and Temam [17] who studied the dependence of solutions with respect to
parameters entering the equation. Subsequently, we obtain in Theorem 2 a generic
existence result for Morse functions having finitely many critical points.

The abstract result given in Theorem 1 is applied to deduce in Theorem 3 that the
Morse functions related to Eq. (1) exist generically with respect to f 2 L2.˝/ that
is regarded as a parameter. In particular, this ensures the density of the set of these
generic functions f in L2.˝/. Regularity information concerning the dependence of
the solutions to (1) with respect to f 2 L2.˝/ is also available.

A further application of the abstract result given in Theorem 1 treats in Theorem 5
the uniqueness and in generic sense the existence of solutions to (1). This can be
seen as an addition to the result due to Saut and Temam [17] establishing the generic
finiteness of the set of solutions to a boundary value problem of type (1) with respect
to parameters. Note also that, under other hypotheses, the Dirichlet problem (1) may
possess infinitely many solutions (see Rabinowitz [16], Struwe [20], Tanaka [21]).
A comparison between the different types of assumptions is performed in Sect. 3.

The next objective of the present work is to focus on the natural question of
constructing a Morse function whose critical points coincide with the solutions
of (1) and be of finite Morse index. In this respect, Theorem 6 below provides a
sufficient condition in the case f D 0. As an application of Theorem 6, we infer in
Corollary 2 the stability with respect to small perturbations of nontrivial solutions
to the Dirichlet problem

	 ��u D p.x; u/; x 2 ˝;
u D 0; x 2 @˝: (2)

In particular, problem (1) can be seen as a perturbation of (2). Finally, we give
in Theorem 7 a positive answer to a question raised in Mawhin [9, p. 160], namely,
whether the approach based on Marino and Prodi [8] that was developed by Mawhin
[9] for one-dimensional domains ˝ and functions p.x; t/ D arjtjr�2t with a > 0,
r > 2, could be extended to problem (1) in multidimensions and in superlinear case,
i.e., p.x; t/t�1 !C1 as jtj ! C1.
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The developments presented in this work use essentially different arguments
from the transversality theory. In order to increase the readability of the text, we
have included basic elements of transversality theory that are utilized in our proofs.

The rest of the paper is organized as follows. Section 2 sets forth some
prerequisites of transversality theory. Section 3 contains the abstract generic result.
Section 4 studies the genericity for the existence of Morse functions related to
Eq. (1) and the uniqueness in solving (1). Section 5 discusses the Morse functions
related to problem (1) with critical points of finite Morse index.

2 Background Material About Transversality

In the sequel we need the basic notion of Fredholm operator. For the sake of clarity,
we recall a few essential facts in this direction. A linear Fredholm operator means
a linear bounded operator L W X ! Y between Banach spaces X and Y such that
its kernel ker L is of finite dimension and its range R.L/ is of finite codimension.
An important consequence of this definition is that the range R.L/ of L is closed in
Y (see, e.g., [23, p. 294]). The index of a linear Fredholm operator L W X ! Y is
defined by

ind L D dim ker L � codim R.L/:

The linear Fredholm operators of index zero are of special interest, mainly because
their class contains the sums of a bijective linear bounded operator and of a linear
compact operator.

More generally, a C1-map f W X ! Y between Banach spaces X and Y is called
a Fredholm operator if the derivative f 0.x/ W X ! Y at each x 2 X is a linear
Fredholm operator. It was shown in [19] that if f W X ! Y is a Fredholm operator,
then its index exists being defined by

ind f D dim ker f 0.x/ � codim R.f 0.x//

independently of x 2 X. A fundamental result for Fredholm operators is the theorem
of Sard–Smale in [19] (see also [22, pp. 829–830]), which asserts that if a Ck-map
f W X ! Y between Banach spaces X and Y is a Fredholm operator with

k > maxfind f ; 0g;

then the set of regular values of f is residual in Y (i.e., a countable intersection of
dense open subsets), so dense in Y . The density assertion follows from the Baire
theorem. We recall that a regular value of a C1-map f W X ! Y between Banach
spaces X and Y means a point y 2 Y such that y does not belong to the range of f or
for every x 2 X with f .x/ D y one has that the derivative f 0.x/ W X ! Y is surjective
and its kernel splits X.
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Another related fundamental concept is that of transversality. A C1-map f W X !
Y between Banach spaces X and Y is said to be transversal to a C1-submanifold S
of Y if for every x 2 f �1.y/ with y 2 S, the range R.f 0.x// intersects transversally
the tangent space TyS of S at y, that is,

R.f 0.x//C TyS D Y;

and .f 0.x//�1.TyS/ splits X. The simplest but highly significant example is that a
C1-map f W X ! Y is transversal to S D fyg if and only if y 2 Y is a regular value
of f .

The key result in this context is that the transversality ensures that the preimage
of a submanifold is a submanifold, which goes back to Thom transversality theorem.
More precisely, if a Cr-map f W X ! Y (r � 1) between Banach spaces X and Y
is transversal to a Cr-submanifold S of Y , then f �1.S/ is a Cr-submanifold of X.
Moreover, the tangent spaces are related by the fundamental formula

Tx.f
�1.S// D .f 0.x//�1.Tf .x/S/ for all x 2 X with f .x/ 2 S:

In particular, if y 2 Y is a regular value of a C1-map f W X ! Y , then f �1.y/ is a
C1-submanifold of Y and its tangent space Tx.f �1.y// at any x 2 f �1.y/ is given by

Tx.f
�1.S// D ker f 0.x/:

For more details regarding the transversality theory, we refer to [7, 22].
Finally, we recall that a C2-function f W U ! R defined on an open set U of a

Hilbert space X is called a Morse function if:

(I) The function f satisfies the Palais–Smale condition, i.e., if a sequence .un/ �
U is such that .f .un// is bounded and f 0.un/ ! 0 as n ! 1, then .un/

contains a convergent subsequence.
(II) f has only nondegenerate critical points, that is, if f 0.u/ D 0, then the second

derivative f 00.u/ W X ! X is an isomorphism.

3 Abstract Result

The general problem studied in the present section is to seek Morse functions in a
given family fFa W U ! Rga2A of smooth functionals defined on an open set U of
a Hilbert space. For technical reasons, the family is described by a smooth mapping
I W U � A! R, with Fa D I.�; a/, a 2 A.

Our main existence result for Morse functions in a prescribed family is formu-
lated in the next theorem. A version of this theorem in the setting of Riemannian
manifolds can be found in [13].
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Theorem 1. Let U be an open set in a separable Hilbert space X, let A be a
separable Banach space, and let I W U�A! R be a map satisfying the hypotheses:

(H.1) The partial derivation I0
u W U � A ! X� D X of I with respect to the first

argument u 2 U exists and is a Cr-mapping, for some r � 1.
(H.2) The second-order partial derivative I00

uu.u; a/ W X ! X at any .u; a/ 2 U�A
with

I0
u.u; a/ D 0 (3)

is a Fredholm operator of index zero.
(H.3) For every .u; a/ 2 U � A satisfying (3), the kernel ker.I0

u/
0.u; a/ splits X �

A; moreover, the kernels of the linear operators I00
uu.u; a/ W X ! X and

I00
ua.u; a/ WD .I0

a/
0
u.u; a/ W X ! A� fulfill the condition

ker I00
uu.u; a/ \ ker I00

ua.u; a/ D 0: (4)

Then, there hold:

(a) The set

G WD fa 2 A W I.�; a/ W U ! R has only nondegenerate critical pointsg (5)

is a residual set in A; hence, it is dense in A.
(b) If, in addition to (H.1)–(H.3), we assume that

(H.4) each function I.�; a/ W U ! R satisfies the Palais–Smale condition,

then the set G in (5) becomes

G D fa 2 A W I.�; a/ W U ! R is a Morse functiong: (6)

So, in particular, the latter set is residual in A.
(c) In addition to (H.1)–(H.3), we assume that

(H.4)0 if .un; an/ 2 U � G satisfies (3) for all n � 1 and if an ! a 2 G, then
.un/ has a convergent subsequence in U.

Then, for every connected component G0 of G, the critical points of I.�; a/
depend smoothly on a 2 G0 in the following sense: there exists an at most
countable collection fgigi2J of Cr-mappings, each of which maps a neighbor-
hood of G0 in A into U such that

fu 2 U W I0
u.u; a/ D 0g D fgi.a/gi2J for all a 2 G0. (7)

Moreover, gi.a/ 6D gj.a/ for all a 2 G0, i 6D j. In particular, the number of
critical points of I.�; a/, with a 2 G, is constant on each connected component
G0 of G.
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We proceed to the proof of Theorem 1 by expressing assumption (H.3) in a form
for which an adequate transversality technique can be utilized.

Lemma 1. Let U � X and A be as in Theorem 1. Assume that the function I W
U � A ! R satisfies (H.1) and (H.2). Then, condition (H.3) is equivalent to the
following statement:

(H.3)0 0 2 X is a regular value of the mapping I0
u W U � A ! X� D X, that is,

for every .u; a/ 2 U � A which solves (3), .I0
u/

0.u; a/ is surjective and its
kernel splits X � A.

Proof. Let .u; a/ satisfy (3). Then .I0
u/

0.u; a/ is surjective if and only if for every
v 2 X� there is w 2 A such that

v � I00
ua.u; a/.�;w/ 2 R.I00

uu.u; a//: (8)

The range of the self-adjoint operator I00
uu.u; a/ W X ! X� is characterized by the

equality

R.I00
uu.u; a// D R.I00

uu.u; a// D fz 2 X� W z.x/ D 0 for all x 2 ker I00
uu.u; a/g: (9)

The first equality above follows from the fact that I00
uu.u; a/ is a Fredholm operator

by (H.2) (see Sect. 2), while, for the second equality, we refer, e.g., to [1, Corollary
2.18]. By (H.2), ker I00

uu.u; a/ possesses a finite basis feigmiD1. Then, from (8) and (9),
it turns out that .I0

u/
0.u; a/ is surjective if and only if for every v 2 X�, there is an

element w 2 A such that

I00
ua.u; a/.ei;w/ D v.ei/ for all i 2 f1; : : : ;mg.

The last equality is equivalent to the surjectivity of the linear operator

w 2 A 7! .I00
ua.u; a/.ei;w//1�i�m 2 R

m:

In turn, this is equivalent to the nonexistence of a nonzero vector .˛1; : : : ; ˛m/ 2 R
m

with
mX

iD1
˛iI

00
ua.u; a/.ei;w/ D 0 for all w 2 A. (10)

We have thus shown the equivalence between the surjectivity of .I0
u/

0.u; a/ and the
linear independence of the linear continuous forms on A

fI00
ua.u; a/.ei; �/gmiD1: (11)

Now, writing (10) as

I00
ua.u; a/

� mX

iD1
˛iei;w

�
D 0 for all w 2 A,
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the independence of the forms in (11) is seen to be valid if and only if property (4)
holds true. Hence, the equivalence between (H.3) and (H.3)0 is proven. ut
Proof (Proof of Theorem 1). Lemma 1 ensures that V D .I0

u/
�1.0/ is a

Cr-submanifold of U � A (see Sect. 2). Denote by � W V ! A the restriction
to V of the projection U � A ! A onto the second factor. Applying Lemma A.2 in
[17], we obtain that

a 2 A is a regular value of
� W V ! A

” 0 2 X is a regular value of
I0
u.�; a/ W U ! X (12)

and

� W V ! A is a Fredholm operator of index zero: (13)

In view of (H.2) and the definition of the notion of nondegenerate critical point, one
can express (12) as follows:

a 2 A is a regular value of
� W V ! A

” I.�; a/ W U ! R admits only
nondegenerate critical points.

(14)

Property (13) allows us to invoke the Sard–Smale theorem (see Sect. 2) for obtaining
that the set

G D fa 2 A W a is a regular value of � W V ! Ag

is residual in the Banach space A. The Baire theorem guarantees the density of the
set G in A. It is seen from (14) that the above set G coincides with the one introduced
in (5). This completes the proof of the first part of Theorem 1.

Part (b) of Theorem 1 is an immediate consequence of part (a) and of the
definition of the notion of Morse function.

The proof of part (c) requires some preliminaries.

Claim 1. For every .u; a/ 2 U �G0 satisfying (3), there is an open subset Vu;a � A
containing G0 and a Cr-mapping gu;a W Vu;a ! U satisfying:

(i) gu;a.a/ D u .
(ii) gu;a.y/ is a critical point of I.�; y/ for all y 2 Vu;a .

(iii) For every y 2 Vu;a , there are neighborhoods Vy � Vu;a of y and Wy � U
of gu;a.y/ such that gu;a.y0/ is the unique critical point of I.�; y0/ in Wy for all
y0 2 Vy.

By (5), we know that I00
uu.u; a/ W X ! X is a linear isomorphism. Then, according

to hypothesis (H.1), the implicit function theorem yields the existence of a maximal
open subset Vu;a � A containing a and a Cr-mapping gu;a W Vu;a ! U satisfying
(i)–(iii). It remains to verify that Vu;a contains G0. In view of the connectedness of
G0, it suffices to check that Vu;a \ G0 is closed in G0. So let a0 2 Vu;a \ G0 and
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let us show that a0 2 Vu;a. Let .an/ � Vu;a \ G0 such that an ! a0 in A. For
every n � 1, let un D gu;a.an/. By (H.4)0, up to considering a subsequence, we may
assume that un ! u0 for some u0 2 U. Thus, I0

u.u0; a0/ D 0. Since a0 2 G0, the
implicit function theorem yields neighborhoods V0 � A of a0, W0 � U of u0, and a
Cr-mapping g0 W V0 ! W0 such that g0.y/ is the unique critical point of I.�; y/ in W0

whenever y 2 V0. Up to considering V0 smaller if necessary, we may assume that
Vu;a\V0 is connected. Relying on property (iii) of the mapping gu;a , we see that the
set fy 2 Vu;a \ V0 W g0.y/ D gu;a.y/g is open and closed in Vu;a \ V0, and nonempty
(since it contains an for n large enough), whence g0jVu;a\V0 D gu;ajVu;a\V0 . Then, the
maximality of Vu;a yields a0 2 Vu;a. This completes the proof of Claim 1.

Claim 2. If .u; a/; .u0; a0/ 2 U �G0 satisfy (3), then we have either gu;a D gu0;a0 on
G0 or gu;a.y/ 6D gu0;a0.y/ for all y 2 G0.

It follows from conditions (i)–(iii) of Claim 1 that the set fy 2 G0 W gu;a.y/ D
gu0;a0.y/g is open and closed in G0. Claim 2 then follows from the connectedness of
the set G0.

We write fgu;a W .u; a/ 2 U � A satisfy (3)g D fgigi2J in such a way that gi 6D gj

whenever i 6D j.

Claim 3. For every a 2 G0, the map J ! fu 2 U W I0
u.u; a/ D 0g, i 7! gi.a/ is

bijective.

The injectivity follows from Claim 2. Moreover, given u 2 U a critical point of
I.�; a/, we get gu;a.a/ D u (by Claim 1). Taking i 2 J such that gu;a D gi, we get
u D gi.a/, whence the surjectivity. This shows Claim 3.

For every a 2 G0, the (nondegenerate) critical points of the function I.�; a/ are
isolated; hence, the set of critical points of I.�; a/ is at most countable. Part (c) of
Theorem 1 follows from Claims 1–3 and this observation. ut
Remark 1. In (H.2) it suffices to ask that I00

uu.u; a/ W X ! X be a Fredholm operator
because, if this is the case, it is necessarily of null index (cf., Marino–Prodi [8]).
Hypothesis (H.2) is always satisfied in the case of a finite dimensional vector space
X. The Palais–Smale condition imposed in (H.4) has been extended in Motreanu
[11] for studying general constrained minimization problems. Theorem 1, especially
the final part, is inspired from Saut and Temam [17], where the dependence of the
solutions of equations with respect to parameters is investigated.

We illustrate with a simple situation the possible use of Theorem 1.

Example 1. Let g W U ! R be a C2-function on an open subset U of a Hilbert space
X with the scalar product h�; �i. Assume that there is a closed linear subspace A of X
such that the following conditions hold:

(a) If g0.u/ 2 A, then g00.u/ W X ! X is a Fredholm operator and ker g00.u/ � A.
(b) If .un/ is a sequence in U such that .g.un/Chun; ai/ is bounded and g0.un/! �a

as n!1 with a 2 A, then .un/ contains a convergent subsequence.
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The mapping I W U � A! R given by

I.u; a/ D g.u/C hu; ai for all .u; a/ 2 U � A

satisfies the assumptions (H.1)–(H.4) of Theorem 1. Therefore, according to
Theorem 1, there exists a residual set G in A such that I.�; a/ D g C h�; ai is a
Morse function on U for all a 2 A.

In fact, one derives directly from Theorem 1 the density of Morse functions
on a finite dimensional manifold (see Motreanu [12]). Moreover, arguing with a
suitable modification of the mapping I of Example 1, Theorem 1 leads to the
results of Marino and Prodi [8] of approximation by Morse functions on an infinite
dimensional Riemannian manifold.

We end this section by pointing out a sufficient condition to have, in addition
to the density, the stability of Morse functions under small perturbations. This is
expressed by the openness of the set G introduced in (5). At the same time, one
obtains the generic finiteness of the set of critical points.

Theorem 2. Assume that conditions (H.1)–(H.3) in Theorem 1 are fulfilled together
with

(H.5) for each compact subset C � A, the set fu 2 U W u satisfies (3) for some
a 2 Cg is compact in U.

Then the set G defined in (5) is open and dense in A. Furthermore, for every
connected component G0 of G, there exist finitely many Cr-mappings fgigkiD1 from a
neighborhood of G0 in A into U such that

fu 2 U W I0
u.u; a/ D 0g D fgi.a/gkiD1 for all a 2 G0. (15)

Thus, the functional I.�; a/ on U, with a 2 G0, has a finite number of critical points
that is constant on the same connected component G0 of G.

Proof. We check the openness of the set

G D fa 2 A W I.�; a/ W U ! R possesses only nondegenerate critical pointsg:

According to (14), this means the openness of the set of regular values of the
mapping � W V ! A introduced in the proof of Theorem 1. By a result due to
Geba [3], it reduces to show that � is a proper map. If C is a compact subset of A,
assumption (H.5) implies that

��1.C/ D f.u; a/ 2 U � C W I0
u.u; a/ D 0g

is a compact subset of V . Therefore, the map � is proper, so the openness claim is
established. The density of G is known from Theorem 1 (a).
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Hypothesis (H.4)0 of Theorem 1 is implied by (H.5). Therefore, in view of
Theorem 1 (c), it remains to show the finiteness of the set of critical points of I.�; a/
for each a 2 G. This set is compact by (H.5). Since it consists only of isolated
points, the required finiteness follows. ut

4 Morse Functions in Boundary Value Problems

The goal of the present section is to apply the abstract results of Theorems 1 and 2
to the elliptic boundary value problem (1). To this end, we associate to problem (1)
the function I W W1;2

0 .˝/ � L2.˝/! R defined by

I.u; f / D
Z

˝

�1
2
kruk2 � P.x; u/ � fu

�
dx for all .u; f / 2 W1;2

0 .˝/ � L2.˝/;

(16)

where ru stands for the gradient of u and P denotes the primitive of p given by

P.x; t/ D
Z t

0

p.x; �/ d� for all .x; t/ 2 ˝ � R.

It is well known that, under appropriate growth condition on p, the function I
in (16) is continuously differentiable and the critical points of I.�; f / W W1;2

0 .˝/ !
R, with f 2 L2.˝/ fixed, coincide with the weak solutions of the boundary value
problem (1) (see Rabinowitz [16] and Tanaka [21]). Therefore, the nondegeneracy
of the critical points of I.�; f / becomes a significant qualitative information for the
solutions in the study of the Dirichlet problem (1). The following theorem addresses
this question.

Theorem 3. (a) Let ˝ be a bounded domain in R
N (N � 3), whose boundary is a

C2-submanifold of RN. Assume that the function p W ˝ � R ! R satisfies the
following conditions:

(i) p 2 C1.˝ � R;R/.
(ii) There exist constants c1; c2 � 0 such that for the partial derivative p0

t.x; t/
one has

jp0
t.x; t/j � c1 C c2jtjs�1 for all .x; t/ 2 ˝ � R

with some s 2 .1; NC2
N�2 /.

Then, the set

G D ff 2 L2.˝/ W I.�; f / W W1;2
0 .˝/ ! R has only nondegenerate

critical points}
(17)

is residual, so dense, in L2.˝/.
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(b) If we further suppose

.	/ there are constants � > 2, q � 0, and M 2 R such that

p.x; t/t � �P.x; t/ � M for all .x; t/ 2 ˝ � R with jtj � q,

then the residual set G in (17) coincides with

G D ff 2 L2.˝/ W I.�; f / W W1;2
0 .˝/! R is a Morse functiong: (18)

Proof. (a) Conditions (i) and (ii) imply that the function I W W1;2
0 .˝/�L2.˝/! R

introduced in (16) is differentiable of class C2 (see Rabinowitz [16, p. 94]).
Consequently, hypothesis (H.1) is verified. The first-order partial derivative
I0
u.u; f / at any point .u; f / 2 W1;2

0 .˝/ � L2.˝/ is equal to

I0
u.u; f /.v/ D

Z

˝

.hru;rvi � p.x; u/v � fv/ dx for all v 2 W1;2
0 .˝/. (19)

Hence, the critical points of I.�; f / are exactly the weak solutions of (1).
Differentiating in (19) with respect to u, one obtains

I00
uu.u; f /.v;w/ D

Z

˝

.hrv;rwi � p0
u.x; u/vw/ dx for all v;w 2 W1;2

0 .˝/.

(20)

Let us check that the continuous linear operator K W W1;2
0 .˝/ ! W1;2

0 .˝/

given by

hKv;wiW1;2
0 .˝/

D
Z

˝

p0
t.x; u/vw dx for all v;w 2 W1;2

0 .˝/

is compact for each weak solution u of Eq. (1). By the assumption imposed on
the exponent s in hypothesis (ii), we have

s <
N C 2
N � 2 D 1C

2N

N � 2
�
1 � N � 2

2N
� N � 2

2N

�
:

Hence, there are q; � 2 Œ1; 2N
N�2 � and � 2 Œ1; 2N

N�2 / such that s D 1Cq.1� 1
�
� 1
�
/,

i.e.,

s � 1
q
C 1

�
C 1

�
D 1:

If .vn/ is a bounded sequence in W1;2
0 .˝/, then it converges in both L2.˝/

and L� .˝/ along a subsequence. Using assumption (ii), the Cauchy–Schwarz
inequality, and the generalized Hölder inequality with the exponents q

s�1 , � , and
� , we see that for each weak solution u of (1), one has
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sup
kwk

W
1;2
0 .˝/

�1
jhKvn � Kvm;wij D sup

kwk
W
1;2
0 .˝/

�1

ˇ̌
ˇ
Z

˝

p0
t.x; u/.vn � vm/w dx

ˇ̌
ˇ

� c1 sup
kwk

W
1;2
0 .˝/

�1
kvn � vmkL2.˝/kwkL2.˝/

C c2 sup
kwk

W
1;2
0 .˝/

�1
kuks�1

Lq.˝/kvn

� vmkL� .˝/kwkL� .˝/:

The Sobolev embedding theorem yields now the following estimate

sup
kwk

W
1;2
0 .˝/

�1
jhKvn � Kvm;wij � C1kvn � vmkL2.˝/ C C2kvn � vmkL� .˝/

for all n;m � 1, where C1;C2 2 .0;C1/ are constants independent of the
sequence .vn/. It turns out that .Kvn/ contains a convergent subsequence in
W1;2
0 .˝/; thus, the claim concerning the compactness of K is valid.
Formula (20) can be written as follows:

I00
uu.u; f / D idW1;2

0 .˝/
� K: (21)

The compactness of K and equality (21) show that I00
uu.u; f / W W1;2

0 .˝/ !
W1;2
0 .˝/ is a Fredholm operator of index zero (see Palais [15, p. 122]).

Condition (H.2) is thus satisfied.
Differentiating in (19) with respect to f (and identifying I00

uf and I00
fu), we find

that

I00
uf .u; f /.v; h/ D �

Z

˝

hv dx for all .v; h/ 2 W1;2
0 .˝/ � L2.˝/.

Hence, for the linear operator I00
uf .u; f / W W1;2

0 .˝/! L2.˝/, we get

ker I00
uf .u; f / D 0;

which shows that (H.3) holds, too. So, Theorem 1 can be applied to the function
I of (16). Part (a) of the statement ensues.

(b) We need to show equality (18). To this end, we have to verify hypothesis (H.4) in
Theorem 1 for the function I.�; f / W W1;2

0 .˝/! R, with an arbitrary f 2 L2.˝/.
The proof relies on assumption .	/ and was given by Rabinowitz [16, pp. 10-
11] in the case f D 0. The present situation can be treated following essentially
the same lines, so we omit it. Equality (6) in Theorem 1 implies (18), which
completes the proof.

ut
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Remark 2. (a) Under assumptions (i), (ii), and .	/ of Theorem 3, we deduce
that for every r1; r2 2 R with r1 < r2 and every f 2 G, with G in (18),
problem (1) has finitely many solutions u satisfying r1 � I.u; f / � r2. This is
the consequence of the Palais–Smale condition and of the property of a Morse
function to have only isolated critical points.

(b) Condition .	/ was introduced by Rabinowitz [16]. It is possible to replace
hypothesis .	/ in Theorem 3 by other assumptions implying the Palais–Smale
condition or a weaker compactness condition of this type, as for example,
Cerami condition (see, e.g., the monograph [14]).

The next consequence of Theorem 3 provides an extension of the range of the
solution operator for Eq. (1). An abstract result of this type is proven in Mawhin
[10].

Corollary 1. Assume that the hypotheses (i), (ii), and .	/ of Theorem 3 hold. Let
f0 be in the set G in (17) and let u0 2 W1;2

0 .˝/ be a solution of (1) with f replaced
by f0. Then there exists a constant ı > 0 such that, if .u1; f1/ 2 W1;2

0 .˝/ � L2.˝/
satisfies

ku1 � u0kW1;2
0 .˝/

< ı; kf1 � f0kL2.˝/ < ı;

and

	 ��u1 D p.x; u1/C f1.x/ in ˝
u1 D 0 on @˝

then there are a neighborhood V of u1 in W1;2
0 .˝/ and a constant " > 0 such that

the problem

	 ��u D p.x; u/C f1.x/C h.x/ in ˝
u D 0 on @˝

has a unique weak solution u 2 V for every h in .W1;2
0 .˝//� D W�1;2.˝/ with

khkW�1;2.˝/ < ".

Proof. Since f0 belongs to the set G in (17), it follows that I00
uu.u0; f0/ W W1;2

0 .˝/!
W1;2
0 .˝/ is a linear topological isomorphism. By the continuity of I00

uu and the
openness of the set of linear topological isomorphisms, one can find a constant ı > 0
such that, whenever

ku � u0kW1;2
0 .˝/

< ı and kf � f0kL2.˝/ < ı;

the linear operator I00
uu.u; f / is an isomorphism of W1;2

0 .˝/. Therefore, for every
.u1; f1/ 2 W1;2

0 .˝/ � L2.˝/ as in the statement, we get that I0
u.�; f1/ W W1;2

0 .˝/ !
W�1;2.˝/ is a local C1-diffeomorphism from a neighborhood of u1 in W1;2

0 .˝/ onto



146 D. Motreanu and V.V. Motreanu

a neighborhood of 0 in W�1;2.˝/. Then, for every h 2 W�1;2.˝/ with khkW�1;2.˝/

sufficiently small, there is a unique u 2 W1;2
0 .˝/ near u1 satisfying I0

u.u; f1/ D h.
This yields the conclusion of the corollary. ut

It is shown in Theorem 3 that, under the hypotheses therein, generically with
respect to f 2 L2.˝/, problem (1) has a countable number of solutions. It is natural
to ask when there is a finite number of solutions, or even a unique solution, for
problem (1). In this respect, we notice that there are situations where problem (1)
admits an unbounded sequence of weak solutions. For example, this is the case when
one supposes p 2 C.˝ �R;R/, the growth assumption jp.x; t/j � c1C c2jtjs for all
.x; t/ 2 ˝ � R, with a condition on s more restrictive than the one in (ii), and the
additional hypotheses:

(a) The function p.x; t/ is odd in the second argument.
(b) There are constants � > 2 and q � 0 such that 0 < �P.x; t/ � tp.x; t/ for all

.x; t/ 2 ˝ � R with jtj � q

(see Rabinowitz [16, p. 61] and also Tanaka [21]). Comparing the conditions .	/ and
(b), it is seen that in (b) it is required, in addition to .	/, the positive sign condition
for the primitive P.x; t/ of p.x; t/ whenever jtj is large enough.

The following result presents a simple situation where problem (1) admits
generically a finite number of solutions.

Theorem 4. Assume that conditions (i) and (ii) of Theorem 3 hold together with

.		/ there are constants c0
1; c

0
2 2 R and r 2 Œ1; 2/ such that

jp.x; t/j � c0
1 C c0

2jtjr�1 for all .x; t/ 2 ˝ � R.

Then:

(a) The set G in (17) is open and dense in L2.˝/.
(b) For every connected component G0 of G, the number of weak solutions of (1) is

(at most) finite and independent of f 2 G0.
(c) There exists an (at most) finite family fgigkiD1 of C1-mappings defined on a

neighborhood of G0 in L2.˝/ and taking values in W1;2
0 .˝/ such that the weak

solutions of (1) for each f 2 G0 consist of the set fgi.f /gkiD1.
Proof. As shown in the proof of Theorem 3, conditions (i) and (ii) imply conditions
(H.1)–(H.3) of Theorem 1. Theorem 4 can be deduced from Theorem 2 once we
verify condition (H.5). So let .un; fn/ 2 W1;2

0 .˝/�L2.˝/ such that fn ! f in L2.˝/
and un is a solution of (1) with f replaced by fn, and let us show that .un/ admits a
convergent subsequence. Acting on (1) with un as a test function, and taking .		/
into account, we find

kunk2W1;2
0 .˝/

D
Z

˝

.p.x; un/un C fnun/ dx � c00
1 C c00

2kunkr
W1;2
0 .˝/

C c00
3kunkW1;2

0 .˝/
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for some constants c00
1 ; c

00
2 ; c

00
3 � 0. Since r < 2 (see .		/), this implies that .un/ is

bounded in W1;2
0 .˝/. Hence, along a relabeled subsequence, .un/ converges weakly

to some u in W1;2
0 .˝/, and the convergence is strong in L2.˝/ and Lr.˝/. Acting

on (1) with the test function un � u, and passing to the limit, we obtain

lim
n!1h��un; un � ui D 0:

Since the negative Laplacian is an operator of .S/C type (see, e.g., [14, p. 40]), we
conclude that un ! u in W1;2

0 .˝/. Therefore, condition (H.5) is verified. The proof
is complete. ut

The below theorem addresses the question asked above to have uniqueness in
solving the Dirichlet problem (1). It also gives information for the solutions on their
existence, regularity, and stability with respect to small perturbations of f 2 L2.˝/.
We point out that there are no restrictions on s other than the one in (ii).

Theorem 5. Suppose that conditions (i) and (ii) of Theorem 3 hold together with
the assumptions:

(iii) p fulfills the following Lipschitz condition: there is a function L 2 L1.˝/ such
that

jp.x; t1/ � p.x; t2/j � L.x/jt1 � t2j for all x 2 ˝, t1; t2 2 R.

(iv) There is a constant C.˝/ > 0 satisfying the Poincaré inequality

kvkL2.˝/ � C.˝/kvkW1;2
0 .˝/

for all v 2 W1;2
0 .˝/

such that

kLkL1.˝/ <
1

C.˝/2
:

Then, the following assertions are valid:

(a) The subset G of L2.˝/ introduced in (17) is dense and open in L2.˝/.
(b) Problem (1) has at most one solution whenever f 2 L2.˝/.
(c) If for some f0 2 G the associated problem (1) has a solution, then for every f

belonging to the connected component G0 of G containing f0, problem (1) has
a unique solution u D u.f /. Moreover, the mapping f 2 G0 � L2.˝/ 7! u.f / 2
W1;2
0 .˝/ is of class C2.

Proof. (a) The result is deduced from Theorem 2 applied to the function I W
W1;2
0 .˝/ � L2.˝/ ! R in (16). Because hypotheses (H.1)–(H.3) were verified

in the proof of Theorem 3, it suffices to check assumption (H.5) of Theorem 2. Let
.fn/n�1 be a convergent sequence in L2.˝/ and, for every n � 1, let un be a solution
of (1) with f replaced by fn, that is,

	 ��un D p.x; un/C fn.x/; x 2 ˝
un D 0; x 2 @˝: (22)
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For all n;m � 1, we get from (22) that

��.un � um/ D p.x; un/ � p.x; um/C fn � fm: (23)

Multiplying (23) by un � um and then integrating over ˝ lead to

kun � umk2W1;2
0 .˝/

D
Z

˝

.p.x; un/� p.x; um//.un � um/ dxC
Z

˝

.fn � fm/.un � um/ dx:

Hypothesis (iii) and the Poincaré and Cauchy–Schwarz inequalities imply

�
1 � C.˝/2kLkL1.˝/

�kun � umkW1;2
0 .˝/

� C.˝/kfn � fmkL2.˝/:

From hypothesis (iv) it turns out that the sequence .un/ converges in W1;2
0 .˝/. This

in conjunction with Theorem 2 yields assertion (a).
The reasoning above with fn D fm D f in equality (23) provides the uniqueness

of the solution of (1) for every f 2 L2.˝/. Thus, property (b) is also true.
Finally, since problem (1) is supposed to have a solution for f D f0 and recalling

that Theorem 2 guarantees that the number of solutions is constant on the connected
component G0 of G with f0 2 G0, there exists a solution u D u.f / of (1) for every
f 2 G0, which is also unique in view of (b). The C2-differentiability of the mapping
f 7! u.f / follows once again from Theorem 2. This proves assertion (c). The proof
of Theorem 5 is complete. ut
Remark 3. (a) If we add to hypotheses (i)–(iv) in Theorem 5 the assumption

p.x; 0/ D 0 and p0
t.x; 0/ D 0 for all x 2 ˝,

then the Dirichlet problem (1) has a solution whenever f belongs to the connected
component in G of the null element 0 2 L2.˝/. It is so because the trivial solution
0 is a nondegenerate critical point of I.�; 0/ as can be seen from (20). Then, one
can apply part (c) of Theorem 5. The same remark is also valid for Theorem 4.

(b) Part (b) of Theorem 5 holds true without the need of assumptions (i) and (ii).

Remark 4. Assumption (iii) contrasts with conditions (a), (b) stated before Theo-
rem 5 that have been employed in Rabinowitz [16] and Tanaka [21]. Indeed, the
properties of p.x; t/ to be odd in t and satisfy the Lipschitz condition (ii) result in

jp.x; t/j D 1

2
jp.x; t/ � p.x;�t/j � kLkL1.˝/jtj for all .x; t/ 2 ˝ � R.

Therefore, the primitive P.x; t/ is subquadratic in t, while by (b) there exist constants
a1; a2 > 0 such that

P.x; t/ � a1jtj� � a2 for all .x; t/ 2 ˝ � R,

with � > 2. The contradiction proves the remark.
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Remark 5. The result stated in Theorem 5 has been inspired by the ideas of Saut
and Temam in [17], who showed that the finiteness and the smooth dependence of
solutions of a second-order quasilinear elliptic boundary value problem

8
<

:

X

i;j

aij.x/uxixj C g.x; u;ru/ D 0 in ˝

u D ' on @˝
(24)

is generic with respect to the coefficients aij, the boundary data ', and the domain
˝. The dependence of such properties with respect to the nonlinear part g in (24) is
not considered in [17]. In this sense, the present paper complements [17]. Here the
approach is different involving associated Morse functions.

5 Finite Morse Index and Perturbations

This section deals with the existence of a Morse function as the Euler functional
associated to the Dirichlet problem (2) and having all its critical points of finite
Morse index. We note that this type of critical points is actually detected by
topological tools (see Marino and Prodi [8], Mawhin [9]). We focus here on a
different aspect: the presence of critical points of finite Morse index allows to
estimate the critical points of the perturbations of the functional. In this respect, for
applications it is relevant to consider problem (1) as a perturbation of problem (2).
The final part of the section is devoted to a result giving an answer to a question
raised in Mawhin [9, p. 160] regarding the superlinear elliptic equations.

The following result provides a sufficient condition ensuring that the Euler
functional corresponding to problem (2) is a Morse function possessing only critical
points of finite Morse index. In some sense, this is an embodiment in concrete form
of Theorem 3.

Theorem 6. Let ˝ be a bounded domain in R
N (N � 3) whose boundary @˝ is a

C2-submanifold of RN. Assume that the function p W ˝�R! R satisfies hypotheses
(i) and (ii) in Theorem 3 and in addition

(v) if u is a (necessarily classical) solution of the Dirichlet problem (2), then the
partial derivative p0

t.x; t/ satisfies p0
t.x; u.x// � 0 for all x 2 ˝.

Then, the functional J W W1;2
0 .˝/! R given by

J.v/ D
Z

˝

�1
2
krvk2 � P.x; v.x//

�
dx for all v 2 W1;2

0 .˝/, (25)

with P as in (16), admits only nondegenerate critical points of finite Morse index.
If an additional assumption on the function p to ensure the Palais–Smale condition
for J (for example, .	/ in Theorem 3) is supposed, then J W W1;2

0 .˝/! R in (25) is
a Morse function whose critical points are of finite Morse index.
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Proof. Hypotheses (i) and (ii) guarantee that the functional J in (25) is twice
continuously differentiable (see, e.g., [16, p. 94]). The first- and second-order
derivatives of J at any point u 2 W1;2

0 .˝/ are expressed as follows:

J0.u/.v/ D
Z

˝

�hru;rvi � p.x; u/v
�

dx for all v 2 W1;2
0 .˝/ (26)

and

J00.u/.v;w/ D
Z

˝

�hrv;rwi � p0
t.x; u/vw

�
dx for all v;w 2 W1;2

0 .˝/. (27)

It is seen from (26) that the critical points of J are exactly the solutions of (2), so
assumption (v) can be applied for every critical point u 2 W1;2

0 .˝/ of J. As usual, we
identify the bilinear form J00.u/ W W1;2

0 .˝/ �W1;2
0 .˝/! R with the corresponding

linear operator J00.u/ W W1;2
0 .˝/ ! W1;2

0 .˝/ taking into account that W1;2
0 .˝/ is a

Hilbert space.
We claim that this operator is injective for each solution u of problem (2). Indeed,

if v 2 ker J00.u/, then (27) implies that v must solve the linear Dirichlet problem

	 ��v D p0
t.x; u/v; x 2 ˝;

v D 0; x 2 @˝: (28)

Thanks to hypothesis (i), u 2 C2.˝/ \ C.˝/. The function p0
t.x; u.x// is thus

bounded on ˝. Assumption (v) yields then the uniqueness of solution of (28) (see,
e.g., Gilbarg and Trudinger [5, p. 180]). It follows that v D 0, which proves the
injectivity of J00.u/.

Note that J00.u/ W W1;2
0 .˝/ ! W1;2

0 .˝/, with u solving (2), is a Fredholm
operator of index zero. This can be seen as in the proof of Theorem 3 because
the right-hand sides of relations (27) and (20) coincide and, as shown above, the
term p0

t.x; u.x// is bounded. Combining with the injectivity of J00.u/, we get from
the nullity of the Fredholm index of J00.u/ that

dim W1;2
0 .˝/=Im J00.u/ D dim ker J00.u/ D 0:

Therefore, J00.u/ W W1;2
0 .˝/ ! W1;2

0 .˝/ is a linear topological isomorphism for
every critical point u of the function J, which means that all the critical points of J
are nondegenerate.

It remains to establish the finiteness of the Morse index for every (nondegenerate)
critical point u of J. From (27) it is clear that

J00.u/ D idW1;2
0 .˝/

� K; (29)

with the same linear operator K W W1;2
0 .˝/ ! W1;2

0 .˝/ appearing in the proof
of Theorem 3. Since K is self-adjoint and compact, its spectrum is bounded and
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contains only real eigenvalues allowing at most 0 as a limit point. The Morse index
of J at u is equal to the number of negative eigenvalues of J00.u/. From (29) this
number coincides with the number of eigenvalues of K greater than 1, which is
finite. ut
Remark 6. (a) Condition (v) was used by Gidas, Ni, and Nirenberg [4] and by

Cheng and Smoller [2] in the study of positive solutions to problem (2).
(b) In the statement of Theorem 6, one can replace .	/ by any other hypothesis

implying the Palais–Smale condition for the functional J. An example of
function p.x; t/ satisfying all the hypotheses (i), (ii), (v), and .	/ is p.x; t/ D
�f .x/.t � sin t/, where the function f W ˝ ! R is nonnegative and f 2
C1.˝/ \ C.˝/.

(c) The knowledge of Morse indexes of classical solutions of problem (2) permits
to obtain L1-estimates (see [6]).

Theorem 6 enables us to get an existence and regularity result for a perturbation
of problem (2) that is more general than the one considered in (1). This result is
useful for obtaining the existence of nontrivial solutions to perturbation problems.

Corollary 2. Suppose that the function p W ˝ � R ! R satisfies hypotheses (i),
(ii), (v), and .	/ of Theorem 6. Let the function h 2 C.˝ � R;R/ and the positive
number " > 0 fulfill the conditions:

(A) There exist constants b1; b2 � 0, and r 2 Œ0; NC2
N�2 / such that

jh.x; t/j � b1 C b2jtjr for all .x; t/ 2 ˝ � R.

(B) Denoting

H.x; t/ D
Z t

0

h.x; �/ d� for all .x; t/ 2 ˝ � R,

one assumes

jH.x; t/j � "

3j˝j for all .x; t/ 2 ˝ � R; (30)

where j˝j stands for the Lebesgue measure of ˝.
(C) There are constants d � 0 and  2 R such that

h.x; t/t � �H.x; t/ �  for all .x; t/ 2 ˝ � R such that jtj � d

with � > 2 as in .	/.
Then, for each (classical) solution u0 of (2) such that c WD J.u0/ is the unique
critical value of J in the interval Œc� "; cC "�, there exists a weak solution u1 of the
boundary value problem
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	 ��u D p.x; u/C h.x; u/; x 2 ˝;
u D 0; x 2 @˝; (31)

satisfying the estimate

J.u1/ �
Z

˝

H.x; u1/ dx 2 Œc � "; cC "�;

with J defined in (25).

Proof. Theorem 6 ensures that J W W1;2
0 .˝/ ! R is a Morse function; hence, its

critical values are isolated. So, there exists a constant " > 0 such that c D J.u0/ is
the unique critical value of J in the interval Œc � "; cC "�. Hypotheses (i), (ii), and
(A) imply that the real-valued function

u 2 W1;2
0 .˝/ 7! J.u/ �

Z

˝

H.x; u/ dx

is continuously differentiable and its critical points are the weak solutions of the
semilinear elliptic equation (31) (see [16, pp. 90–91]). By assumptions .	/ and (C),
it verifies the Palais–Smale condition. Since J satisfies the Palais–Smale condition
and has only isolated critical points, its set of critical points in the level set J�1.c/
is finite. By Theorem 6 it is also known that J possesses only nondegenerate critical
points of a finite Morse index. This enables us to apply a stability result due to
Marino and Prodi [8] to the function J. Taking condition (B) into account, one
achieves the stated conclusion. ut
Example 2. A function satisfying the assumptions (i), (ii), (v), and .	/ is p.x; t/ D
p.t/ D �jtjp�2t with 2 � p < 2N

N�2 . In order to fulfill .	/, we have to choose � > p.
Consequently, Corollary 2 can be applied to the corresponding Dirichlet problem.

We now admit that the function p W ˝ � R ! R satisfies the hypotheses (i) and
(ii) together with the condition

(vi) there exist constants � > 2 and a1; a2;M0; q > 0 such that

p.x; t/t � maxf�P.x; t/ �M0; a1t
2 � a2g for all .x; t/ 2 ˝ � R with jtj � q;

where P is the primitive of p in (16).

It is clear that (vi) is stronger than condition .	/ in Theorem 3. For example,
p.x; t/ D jtjr�2t with 2 < r < 2N

N�2 satisfies all the assumptions (i), (ii), and (vi). In
order to check (vi), it suffices to choose 2 < � � r.

Consider the problem (1) with f belonging to the residual subset G of L2.˝/ as
given in (18) (see Theorem 3). By Theorem 3 (b), the function I.�; f / W W1;2

0 .˝/ !
R introduced in (16) is a Morse function, so its critical values are isolated. In the
following, we shall be concerned with functions f 2 G fulfilling the additional
hypothesis:
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(vii) I.�; f / possesses an unbounded sequence of (positive) critical values fck D
ck.f /gk�1 with

c1 < c2 < � � � < ck < � � �

and

1

ckC1
.ckC1 � ck/

2 !C1 as k!1: (32)

We present a result exhibiting, under appropriate conditions, the property that (1)
has infinitely many solutions under arbitrary perturbations in L2.˝/ of the term f .x/.

Theorem 7. Assume that the function p W ˝ � R! R satisfies conditions (i), (ii),
and (vi). Then there exists a residual set G in L2.˝/ [namely, the set G in (18)],
hence dense in L2.˝/, such that there holds: for every f 2 G satisfying hypothesis
(vii) and every L > 0, there is a positive integer k0 such that, for every k � k0 and
every h 2 L2.˝/ with khkL2 � L, the Dirichlet problem

	 ��u D p.x; u/C f .x/C h.x/; x 2 ˝
u D 0; x 2 @˝ (33)

has a weak solution uk with

ck � "k � I.uk; f C h/ � ck C "k;

where

"k D 1

3
.ckC1 � ck/:

In particular, problem (33) has infinitely many solutions for every h 2 L2.˝/.

Proof. We proceed by adapting the reasoning developed in Mawhin [9] in the case
of a one-dimensional domain ˝ and the function p.x; t/ D arjtjr�2t with constants
a > 0 and r > 2. Actually, we will show that the conclusion of Theorem 7 holds for
the residual subset G of L2.˝/ given by (18).

Fix f 2 G and h 2 L2.˝/ with khkL2 � L. Let us choose a nonincreasing C2-
function � W R ! R satisfying �.t/ D 1 for t � 0 and �.t/ D 0 for t � 1.
Corresponding to any constant � > 0, we define the function I� W W1;2

0 .˝/! R by

I�.u/ D I.u; f / �
Z

˝

�
�1
�
.kuk2L2.˝/ � �/

�
hu dx for all u 2 W1;2

0 .˝/, (34)

with I.u; f / given in (16). Under hypotheses (i) and (ii), the function I is twice
continuously differentiable (see [16, pp. 90–91]).
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Now we show that I� W W1;2
0 .˝/ ! R satisfies the Palais–Smale condition. In

view of [16, p. 94], it is sufficient to prove that if the sequence .un/ � W1;2
0 .˝/

satisfies

jI�.un/j � M for all n � 1, and .I�/0.un/! 0 as n!1

(for some constant M > 0), then .un/ is bounded in W1;2
0 .˝/. A direct computation,

based on the properties of the function � , renders that for n sufficiently large one has

M C 1

�
kunkW1;2

0 .˝/
� I�.un/ � 1

�
.I�/

0.un/.un/

�
�1
2
� 1

�

�
kunk2W1;2

0 .˝/
C
Z

˝

� 1
�

p.x; un/un � P.x; un/
�

dx

�
�
1 � 1

�

�
kfkL2.˝/kunkL2.˝/ � k;

where k > 0 is a constant independent of the sequence .un/. From assumption (vi)
it is then clear that the boundedness of .un/ follows, so I� satisfies the Palais–Smale
condition.

Setting

�k D "2k
18L2

for all k � 1,

then (34) yields

jI.u; f / � I�k.u/j �
"k

3
for all k � 1. (35)

Since f 2 G, it follows from (18) that I.�; f / W W1;2
0 .˝/ ! R is a Morse function.

Hence, the set I.�; f /�1.ck/ contains only finitely many critical points, and each
critical point of I.�; f / is nondegenerate. Arguing as in the final part of the proof
of Theorem 6, one justifies that every (nondegenerate) critical point of the function
I.�; f / is of finite Morse index. Therefore, we may apply the stability result of Marino
and Prodi [8] to the function I.�; f /. By the estimate (35) we then deduce that the
function I�k has a critical value dk in the closed interval Œck � "k; ck C "k� for every
k � 1. So, there exists uk 2 W1;2

0 .˝/ such that

.I�k/
0.uk/ D 0 and I�k.uk/ D dk 2 Œck � "k; ck C "k� for all k � 1. (36)

To conclude the proof, it suffices to show the existence of an integer k0 such that

I0
u.uk; f C h/ D 0 and I.uk; f C h/ D dk for all k � k0. (37)
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In order to do this, we need the next lemma. For the particular situation
mentioned at the beginning of the present proof, it can be found in
Mawhin [9, p. 156].

Lemma 2. Under hypotheses (i), (ii), and (vi), there exist positive constants ˛; ˇ
such that if for some � > 0 and u 2 W1;2

0 .˝/ there hold

.I�/
0.u/.u/ D 0 and I�.u/ � ˛� � ˇ;

then the functions I.�; f C h/ and I� coincide on a neighborhood of u in W1;2
0 .˝/.

Proof (Proof of Lemma 2). The equality .I�/0.u/.u/ D 0 yields

I�.u/ D I�.u/ � 1
2
.I�/

0.u/.u/ D
Z

˝

�1
2

p.x; u/u � P.x; u/
�

dx � 1
2

Z

˝

fu dx

�1
2
�
�1
�
.kuk2L2.˝/ � �/

� Z

˝

hu dx

C1
�
� 0�1

�
.kuk2L2.˝/ � �/

�
kuk2L2.˝/

Z

˝

hu dx:

On the other hand, by hypothesis (vi), it follows that

1

2
p.x; t/t � P.x; t/ D 1

�
p.x; t/t � P.x; t/C

�1
2
� 1

�

�
p.x; t/t

�
�1
2
� 1

�

�
.a1t

2 � a2/ �M0 for all .x; t/ 2 ˝ � R with jtj � q.

Then the Cauchy–Schwarz inequality and the property of �.t/ to vanish for t � 1
imply that there exist constants ˛; ˇ > 0 independent of u and � such that

I�.u/ > ˛kuk2L2.˝/ � ˇ: (38)

Let us check that these constants fulfill the required properties. Indeed, assuming
the inequality

I�.u/ � ˛� � ˇ;
if we combine it with (38), we get

kuk2L2.˝/ < �: (39)

In view of (39), we consider the following closed ball in W1;2
0 .˝/ centered at u:

n
v 2 W1;2

0 .˝/ W kv � ukW1;2
0 .˝/

� 1

C.˝/
.
p
� � kukL2.˝//

o
; (40)
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where C.˝/ denotes a positive constant entering the Poincaré inequality

kwkL2.˝/ � C.˝/kwkW1;2
0 .˝/

for all w 2 W1;2
0 .˝/.

For every v in (40), one sees

kvkL2.˝/ � kv � ukL2.˝/ C kukL2.˝/ � p�:

Then, the fact that �.t/ D 1 for t � 0 readily implies that the mappings I� and
I.�; f C h/ are equal on the neighborhood of u in W1;2

0 .˝/ defined in (40). The proof
is thus complete. ut
Proof of Theorem 7 (continued). Let the constants ˛; ˇ > 0 be those produced in
Lemma 2. We claim that

dk � ˛�k � ˇ for all k � k0, (41)

with a fixed positive integer k0 to be determined.
In order to prove (41), in view of (36), it is sufficient to find k0 such that

ˇ C ckC1 � ˛�k provided k � k0:

This readily follows from hypothesis (vii) on f 2 G and the expression of �k. Hence,
the claim in (41) is proven.

Then, taking again into account (36), we may apply Lemma 2 for u D uk and
� D �k, with k � k0. In this way we derive from Lemma 2 and (36) that both
relations in (37) hold true. Since each critical point uk of I.�; f C h/ W W1;2

0 .˝/! R

is a weak solution of the Dirichlet problem (33), the proof of Theorem 7 is complete.
ut

Remark 7. Theorem 7 answers in the affirmative a question raised in Mawhin
[9, p. 160], where it is suggested to study the solutions to perturbations of a
superlinear problem (2) (i.e., in the case where p.x;t/

t ! C1 as jtj ! C1), in
the multidimensional case, via the method of Marino and Prodi [8]. In fact, we
showed that, under suitable conditions, the result given in Mawhin [9, p. 158] holds
for multidimensional superlinear Dirichlet problems that are generically perturbed
in L2.˝/.
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Lattice-like Subsets of Euclidean Jordan
Algebras

A.B. Németh and S.Z. Németh

Abstract While studying some properties of linear operators in a Euclidean Jordan
algebra, Gowda, Sznajder, and Tao have introduced generalized lattice operations
based on the projection onto the cone of squares. In two recent papers of the authors
of the present paper, it has been shown that these lattice-like operators and their
generalizations are important tools in establishing the isotonicity of the metric
projection onto some closed convex sets. The results of this kind are motivated
by methods for proving the existence of solutions of variational inequalities and
methods for finding these solutions in a recursive way. It turns out that the closed
convex sets admitting isotone projections are exactly the sets which are invariant
with respect to these lattice-like operations, called lattice-like sets. In this paper, it
is shown that the Jordan subalgebras are lattice-like sets, but the converse in general
is not true. In the case of simple Euclidean Jordan algebras of rank at least 3, the
lattice-like property is rather restrictive, e.g., there are no lattice-like proper closed
convex sets with interior points.
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1 Introduction

By using and generalizing the extended lattice operations due to Gowda, Sznajder,
and Tao [1], in [2] and [3], it has been shown that the projection onto a closed
convex set is isotone with respect to the order defined by a cone if and only if the
set is invariant with respect to the extended lattice operations defined by the cone.
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1-3, RO-400084 Cluj-Napoca, Romania
e-mail: nemab@math.ubbcluj.ro

S.Z. Németh (�)
School of Mathematics, The University of Birmingham, The Watson Building, Edgbaston,
Birmingham B15 2TT, UK
e-mail: s.nemeth@bham.ac.uk

© Springer International Publishing Switzerland 2016
T.M. Rassias, P.M. Pardalos (eds.), Essays in Mathematics and its Applications,
DOI 10.1007/978-3-319-31338-2_8

159

mailto:nemab@math.ubbcluj.ro
mailto:s.nemeth@bham.ac.uk


160 A.B. Németh and S.Z. Németh

We shall call such a set simply invariant with respect to the cone, or, if there is no
ambiguity, lattice-like, or shortly l-l. We also showed that the a closed convex set
with interior points is l-l if and only if all of its tangent hyperplanes are l-l. These
results were motivated by iterative methods for variational inequalities similar to
the ones for complementarity problems in [4–7]. More specifically, a variational
inequality defined by a closed convex set C and a function f can be equivalently
written as the fixed point problem x D PC.x � f .x//, where PC is the projection
onto the closed convex set C. If the Picard iteration xkC1 D PC.xk � f .xk// is
convergent and f continuous, then the limit of xk is a solution of the variational
inequality defined by f and C. Therefore, it is important to give conditions under
which the Picard iteration is convergent. This idea has been exploited in several
papers, such as [8–18]. However, none of these papers used the monotonicity of
the sequence xk. If one can show that xk is monotone increasing (decreasing) and
bounded from above (below) with respect to an order defined by a regular cone
(that is, a cone for which all such sequences are convergent), then it is convergent
and its limit is a solution of the variational inequality defined by f and C. In
[4–7] the convergence of the sequence xk was proved by using its monotonicity.
Although they use non-iterative methods, we also mention the paper of Nishimura
and Ok [19], where the isotonicity of the projection onto a closed convex set is
used for studying the solvability of variational inequalities and related equilibrium
problems. To further accentuate the importance of ordered vector structures, let
us also mention that recently they are getting more and more ground in studying
various fixed point and related equilibrium problems (see the book [20] of S. Carl
and S Heikkilä and the references therein). The case of a self-dual cone is of
special importance because of the elegant examples for invariant sets with respect
to the nonnegative orthant and the Lorentz cone [2]. Moreover, properties of self-
dual cones are becoming increasingly important because of conic optimization and
applications of the analysis on symmetric cones. Especially important self-dual
cones in applications are the nonnegative orthant, the Lorentz cone, and the positive
semidefinite cone; however, the class of self-dual cones is much larger [21]. The
results of [2] and [3] extend the results of [22] and [19]. G. Isac showed in [22] that
the projection onto a closed convex sublattice of the Euclidean space ordered by the
nonnegative orthant is isotone. H. Nishimura and E. A. Ok proved an extension of
this result and its converse to Hilbert spaces in [19]. The study of invariant sets with
respect to the nonnegative orthant goes back to the results of Topkis [23] and Veinott
Jr. [24], but it wasn’t until quite recently when all such invariant sets have been
determined by Queyranne and Tardella [25]. The same results have been obtained
in [2] in a more geometric way. Although [2] also determined the invariant sets with
respect to the Lorentz cone, it left open the question of finding the invariant sets with
respect to the cone S

mC of n � n positive semidefinite matrices, called the positive
semidefinite cone.

As a particular case, we show that if n � 3, then there is no proper closed convex
l-l set with nonempty interior in the space .Sm;SmC/ (the space Sm of n�n symmetric
matrices ordered by the cone S

mC of symmetric positive semidefinite matrices).
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For this it is enough to show that there are no invariant hyperplanes because the
closed convex invariant sets with nonempty interior are the ones which have all
tangent hyperplanes invariant.

All these problems can be handled in the unifying context of the Euclidean Jordan
algebras. This way we can augment this field to an approach, where the order
induced by the cone of squares (the basic notion of the Jordan algebra) becomes
emphasized.

To shorten our exposition, we assume the knowledge of basic facts and results
on Euclidean Jordan algebras. We strive to be in accordance with the terminology
in [26]. A concise introduction of the used basic notions and facts in the field can be
found in [1].

2 Preliminaries

Denote by R
m the m-dimensional Euclidean space endowed with the scalar product

h�; �i W Rm � R
m ! R and the Euclidean norm k � k and topology this scalar product

defines.
Throughout this note, we shall use some standard terms and results from convex

geometry (see, e.g., [27] and [28]).
Let K be a convex cone in R

m, i.e., a nonempty set with (1) K C K � K and
(2) tK � K; 8 t 2 RC D Œ0;C1/. The convex cone K is called pointed, if
K \ .�K/ D f0g:

The convex cone K is generating if K � K D R
m.

For any x; y 2 R
m, by the equivalence x �K y , y � x 2 K, the convex cone

K induces an order relation �K in R
m, that is, a binary relation, which is reflexive

and transitive. This order relation is translation invariant in the sense that x �K y
implies xC z �K yC z for all z 2 R

m and scale invariant in the sense that x �K y
implies tx �K ty for any t 2 RC. If � is a translation-invariant and scale-invariant
order relation on R

m, then �D�K , where K D fx 2 R
m W 0 � xg is a convex cone.

If K is pointed, then �K is antisymmetric too, that is, x �K y and y �K x imply that
x D y: The elements x and y are called comparable if x �K y or y �K x:

We say that �K is a latticial order if for each pair of elements x; y 2 R
m, there

exist the least upper bound supfx; yg and the greatest lower bound inffx; yg of the
set fx; yg with respect to the order relation �K . In this case K is said a latticial or
simplicial cone, and R

m equipped with a latticial order is called an Euclidean vector
lattice.

The dual of the convex cone K is the set

K� WD fy 2 R
m W hx; yi � 0; 8 x 2 Kg;

with h�; �i the standard scalar product in R
m.

The convex cone K is called self-dual, if K D K�: If K is self-dual, then it is a
generating pointed closed convex cone.
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In all that follows, we shall suppose that R
m is endowed with a Cartesian

reference system with an orthonormal basis e1; : : : ; em. If x 2 R
m, then we represent

it as usual by x D .x1; : : : ; xm/ with xi the coordinates of x with respect to this basis.
Then the scalar product of x D .x1; : : : ; xm/ and y D .y1; : : : ; ym/ will be the sum
hx; yi DPm

iD1 xiyi:

The set

R
mC D fx D .x1; : : : ; xm/ 2 R

m W xi � 0; i D 1; : : : ;mg
is called the nonnegative orthant of the above introduced Cartesian reference
system. A direct verification shows that RmC is a self-dual cone.

Using the above introduced notations, the coordinate-wise order � in R
m is

defined by

x D .x1; : : : ; xm/ � y D .y1; : : : ; ym/ , xi � yi; i D 1; : : : ;m:
By using the notion of the order relation induced by a cone, defined in the preceding
section, we see that �D�Rm

C

.
With the above representation of x and y, we define

x ^ y D .minfx1; y1g; : : : ;minfxm; ymg/; and x _ y D .maxfx1; y1g; : : : ;maxfxm; ymg/:

Then, x ^ y is the greatest lower bound and x _ y is the least upper bound of the
set fx; yg with respect to the coordinate-wise order. Thus, � is a lattice order in R

m:

The operations ^ and _ are called lattice operations.
A subset M � R

m is called a sublattice of the coordinate-wise ordered Euclidean
space R

m, if from x; y 2 M, it follows that x ^ y; x _ y 2 M:
The set

L mC1
C D f.x; xmC1/ 2 R

m ˚ R D R
mC1 W kxk � xmC1g (1)

is a self-dual cone called the mC 1-dimensional second-order cone, or the mC 1-
dimensional Lorentz cone, or the mC 1-dimensional ice-cream cone [1].

The nonnegative orthant RmC and the Lorentz cone L defined above are the most
important and commonly used self-dual cones in the Euclidean space. But the family
of self-dual cones is rather rich [21].

3 Generalized Lattice Operations

Denote by PD the projection mapping onto a nonempty closed convex set D � R
m;

that is, the mapping which associates to x 2 R
m the unique nearest point of x in

D [28]:

PDx 2 D and kx � PDxk D inffkx � yk W y 2 Dg:
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The nearest point PDx can be characterized by

PDx 2 D and hPDx � x;PDx � yi � 0; 8y 2 D: (2)

From the definition of the projection and the characterization (2), there follow
immediately the relations:

PD.�x/ D �P�Dx; (3)

PxCDy D xC PD.y � x/ (4)

for any x; y 2 R
m.

For a closed convex cone K, we define the following operations in R
m:

x uK y D Px�Ky; and x tK y D PxCKy

(see [1]). Assume the operations tK and uK have precedence over the addition of
vectors and multiplication of vectors by scalars.

A direct checking yields that if K D R
mC, then uK D ^, and tK D _. That is uK

and tK are some generalized lattice operations. Moreover, uK and tK are lattice
operations if and only if the self-dual cone used in their definitions is a nonnegative
orthant of some Cartesian reference system. This suggests to call the operations
uK and tK lattice-like operations, while a subset M � R

m which is invariant with
respect to uK and tK (i.e., if for any x; y 2 M, we have x uK y; x tK y 2 M) a
lattice-like or simply an l-l subset of .Rm;K/.

The following assertions are direct consequences of the definition of lattice-like
operations:

Lemma 1. The following relations hold for any x; y 2 .Rm;K/:

x uK y D x � PK.x � y/;

x tK y D xC PK.y � x/:

A hyperplane through the origin is a set of form

H.0; a/ D fx 2 R
m W ha; xi D 0g; a 6D 0: (5)

For simplicity the hyperplanes through 0 will also be denoted by H. The nonzero
vector a in the above formula is called the normal of the hyperplane.

A hyperplane through u 2 R
m with the normal a is the set of the form

H.u; a/ D fx 2 R
m W ha; xi D ha;ui ; a 6D 0g: (6)

A hyperplane H.u; a/ determines two closed halfspaces H�.u; a/ and HC.u; a/
of Rm, defined by

H�.u; a/ D fx 2 R
m W ha; xi � ha;uig;
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and

HC.u; a/ D fx 2 R
m W ha; xi � ha;uig:

If K is a nonzero closed convex cone, then the closed convex set C � R
m is called

a K-isotone projection set or simply K-isotone if x �K y implies PCx �K PCy. In
this case we use equivalently the term PC is K-isotone.

We shall refer next often to the following theorems:

Theorem 1 ([3]). Let K � R
m be a closed convex cone. Then, C is a lattice-like

set, if and only if PC is K-isotone.

Theorem 2 ([2]). The closed convex set C with nonempty interior in .Rm;K/ is
lattice-like, if and only if it is of form

C D
\

i2N
H�.ui; ai/;

where each hyperplane H.ui; ai/ through ui with the normal ai is tangent to C and
is lattice-like.

4 Characterization of the Lattice-like Subspaces of .Rm; K/

Denote by K a closed convex cone in R
m and by .Rm;K/ the resulting ordered vector

space.
The notation G b H will mean H and G are subspaces of Rm and G is a subspace

of H. Let H b R
m and L � H a closed convex cone. The notation G @L H will mean

G is an l-l subspace of .H;L/.
We gather some results from Theorem 1 [3] and Lemma 6 [2] and particularize

them for subspaces:

Corollary 1. Let H a subspace in .Rm;K/. the following assertions are equiva-
lent:

1. H @K R
m,

2. PKH � H,
3. PHK � K.

Proof. The corollary is in fact a reformulation of Theorem 1 for the case of D D H
a subspace. Indeed, condition 2 is nothing else as the l-l property of H since if
x; y 2 H, then by Lemma 1, one has

x uK y D x � PK.x � y/ 2 H;

since x; x � y; PK.x � y/ 2 H:
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Similarly, x tK y 2 H:
Condition 3 expresses, by the linearity of PH , its K-isotonicity.

Corollary 2. Let G b H and H @K R
m. Then, G @K\H H, G @K R

m.

Proof. In our proof we shall use without further comments the equivalences in
Corollary 1.

Let G b H and H @K R
m.

First suppose that

G @K R
m;

which is equivalent to

PGK � K:

Hence,

PG.H \ K/ � PGK � H \ K;

since PG.K/ � G � H: Thus, G @K\H H.
Conversely, assume that G @H\K H. Then

PG.H \ K/ � H \ K � K:

Whereby, since PG D PGPH; one has

PGK D PGPH.H \ K/ D PG.H \ K/ � K:

Thus, G @K R
m:

Lemma 2. Suppose that K is a closed convex cone in R
m. Let H.0; a/ � R

m be a
hyperplane through the origin with unit normal vector a 2 R

m. Then, the following
assertions are equivalent:

(i) PH.0;a/ is K-isotone;
(ii) PH.b;a/ is K-isotone for any b 2 R

m;
(iii)

hx; yi � ha; xi ha; yi ;

for any x; y 2 K.

Proof. The lemma is a direct consequence of some results in [3]. We give for
completeness its proof here.

The equivalence of (i) and (ii) follows from the formulas

.xC z/ uK .yC z/ D x uK yC z
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and

.xC z/ tK .yC z/ D x tK yC z;

which are consequences of Lemma 1.
We shall prove that (i),(iii).
Since PH is linear, it follows that PH is isotone if and only if

PHx D x � ha; xi a 2 K; 8x 2 K: (7)

By the self-duality of K, it follows that relation (7) is equivalent to

hx; yi D ha; xi ha; yi C hx � ha; xi a; yi � ha; xi ha; yi ;

for any y 2 K.

5 Lattice-like Subspaces of the Euclidean Jordan Algebra

In the particular case of a self-dual cone K � R
m, J. Moreau’s theorem [29] reduces

to the following lemma:

Lemma 3. Let K � R
m be a self-dual cone. Then, for any x 2 R

m the following
two conditions are equivalent:

(i) x D u � v; u; v 2 K; hu; vi D 0;
(ii) u D PKx; v D PK.�x/:

In all what follows, we will consider that the ordered Euclidean space is .V;Q/,
the Euclidean Jordan algebra V of unit e ordered by the cone Q of squares in V . All
the terms concerning V will be equally used for .V;Q/.

Since the hyperplanes in Theorem 2 play an important role, and since the l-l
property is invariant with respect to translations (Lemma 3, [2]), it is natural to study
the l-l subspaces in V which are naturally connected with the algebraic structure of
this space.

Theorem 3. Any Jordan subalgebra of .V;Q/ is a lattice-like subspace.

Proof. Take a Jordan subalgebra L in V and denote by Q0 its cone of squares. We
have

Q0 D fx2 W x 2 Lg � fx2 W x 2 Vg D Q: (8)

We shall prove that

x 2 L) PQx D PQ0x 2 L: (9)
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Indeed, we have, by Lemma 3 applied in the ordered vector space .L;Q0/, that

x D PQ0x � PQ0 .�x/; hPQ0x;PQ0 .�x/i D 0; (10)

By (8)

PQ0x; PQ0 .�x/ 2 Q0 � Q;

which, by Eqs. (10) and Lemma 3, yield PQ0x D PQx, or equivalently (9).
Accordingly PQL � L; which by Corollary 1 translates into L @Q V:

6 The Pierce Decomposition of the Euclidean Jordan
Algebra and Its Lattice-like Subspaces

Let r be the rank of V and fc1; : : : ; crg be an arbitrary Jordan frame in V , that is, ck

are primitive idempotents such that

cicj D 0; if i 6D j; c2i D ci;

c1 C � � � C cr D e:

With the notation

Vii D V.ci; 1/ D Rci;

Vij D V

�
ci;
1

2

�
\ V

�
cj;
1

2

�

(where for � 2 R, V.ci; �/ D fx 2 V W cix D �xg), we have by Theorem IV.2.1.
[26] the following orthogonal decomposition (the so-called Pierce decomposition)
of V:

V D
M

i�j

Vij; (11)

where

VijVij � Vii C VjjI VijVjk � Vik; if i 6D kI VijVkl D f0g; if fi; jg \ fk; lg D ;:
(12)

Taking for 1 � k < r

V.k/ D
M

i�j�k

Vij (13)
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is a Jordan algebra with the unit

ek D c1 C � � � C ck:

Indeed, relations (12) imply the invariance of V.k/ with respect to the Jordan product.
The same relations and the definitions imply ekxii D cixii D xii, for any xii 2 Vii

and i � k; clVij D f0g if l … fi; jg; ekxij D .ci C cj/xij D xij, for any xij 2 Vij and
i; j � k, i ¤ j. Hence, ek is the unity of V.k/. These relations also imply that

V.k/ D V.ek; 1/ D fx 2 V W ekx D xg: (14)

Thus, V.ek; 1/ is a subalgebra (this follows also by Proposition IV.1.1 in [26] since
ek is idempotent). Hence, by Theorem 3, V.ek; 1/ is an l-l subspace in .V;Q/.

A Jordan algebra is said simple if it contains no nontrivial ideal.
A consequence of the above cited theorem and the content of paragraph IV.2 of

[26] is that V is simple if and only if Vij 6D f0g for any Vij in (11). By the same
conclusion, V.k/ given by (13) is simple too, and by Corollary IV.2.6 in [26], the
spaces Vij; i 6D j have the common dimension d; hence, by (13),

dim V.k/ D kC d

2
k.k � 1/:

The subcone F � Q is called a face of Q if whenever 0 �Q x �Q y and y 2 F it
follows that x 2 F.

It is well known that for an arbitrary face F of Q, one has Pspan FQ � Q (see, e.g.,
Proposition II.1.3 in [30]). By Corollary 1 it follows thus the assertion:

Corollary 3. Each subspace generated by some face of Q is a lattice-like subspace
in .V;Q/.

We give an independent proof of this.

Proof. Let fc1; : : : ; crg be a Jordan frame in V , k � r. If

ek D c1 C � � � C ck; 0 � k � r;

then by Theorem 3.1 in [31],

F D V.ek; 1/ \ Q D fx 2 Q W ekx D xg

is a face of Q, and each face of Q can be represented in this form for some Jordan
frame.

The cone F D V.ek; 1/ \ Q is the cone of squares in the subalgebra V.ek; 1/;
hence, its relative interior is nonempty, accordingly

V.ek; 1/ D span F D F � F:

Since V.ek; 1/ is a subalgebra, by Theorem 3, it is an l-l subspace.
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7 The Subalgebras and the Lattice-like Subspaces
of the Space Spanned by a Jordan Frame

Suppose that the dimension of the Euclidean Jordan algebra V is at least 2. Let
fc1; : : : ; crg be a Jordan frame in V . Then,

Vr WD spanfc1; : : : ; crg

is a Jordan subalgebra of V . Obviously, Vr D V11 ˚ � � � ˚ Vrr. If x; y 2 Vr, then

xy D .x1y1; : : : ; xryr/;

where xi and yi are the coordinates of x and y, respectively, with respect to the above
Jordan frame.

By using the notations of the above section, denote Qr D Q\Vr and let us show
that

Qr D conefc1; : : : ; crg WD
(

rX

iD1
�ici W �i � 0; 81 � i � r

)
:

The inclusion conefc1; : : : ; crg � Qr is obvious. Next, we show that Qr �
conefc1; : : : ; crg. Suppose to the contrary that there exists x 2 Qr nconefc1; : : : ; crg.
It follows that hck; xi < 0 for some k 2 f1; : : : ; rg. Since Q is self-dual, this implies
x … Q, which is a contradiction.

The ordered vector space .Vr;Qr/ can be considered an r-dimensional Euclidean
vector space ordered with the positive orthant Qr engendered by the Jordan frame.

Let Hr�1 be an l-l hyperplane in .Vr;Qr/, with the unit normal a 2 Vr. Thus, the
results in [2] and [3] applies; hence, if

a D .a1; : : : ; ar/; (15)

then we must have

aiaj � 0; if i 6D j: (16)

Then, there are two possibilities:

Case 1. There exists an i such that ai D 1 and aj D 0 for j 6D i.
Case 2. There are only two nonzero coordinates, say ak and al with akal < 0.

Ad 1. In Case 1,

Hr�1 D spanfc1; : : : ; ci�1; ciC1; : : : ; crg

and Hr�1 is obviously a Jordan algebra.
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Ad 2. In Case 2,

Hr�1 D fx 2 Vr W akxk C alxl D 0g:

We know from the above cited result that Hr�1 is an l-l subspace in .Vr;Qr/,
and since Vr is a subalgebra of V , by Theorem 3, Vr @Q V . By using
Corollary 2, we have, for the l-l subspace, Hr�1 @Qr Vr, that is,

Hr�1 @Q V:

In the case Ad 1, the l-l hyperplane Hr�1 is also a Jordan algebra.
Suppose that Ad 2 holds. We would like to see under which condition the l-l

hyperplane Hr�1 is a Jordan algebra.
Let us suppose that Hr�1 is a Jordan algebra and take x 2 Hr�1, x D .x1; : : : ; xr/.

Then, x2 D .x21; : : : ; x2r / 2 Hr�1: Take x with xl D ak and xk D �al. Then, x 2 Hr�1
and we must have x2 2 Hr�1. Hence

aka2l C ala
2
k D akal.al C ak/ D 0;

and since akal 6D 0; we must have

ak D
p
2

2
al D �

p
2

2
;

or conversely. In this case

Hr�1 D fx W xk D xlg (17)

is obviously a subalgebra.

Remark 1. For any hyperplane Hr�1 in Vr with the unit normal a having only two
nonzero components with opposite signs and different absolute values, Hr�1 is an
l-l subspace, but not a Jordan subalgebra.

If a 2 V is arbitrary, then there exists a Jordan frame fc1; : : : ; crg such that a can
be represented in the form (15) (Theorem III.1.2 in [26]). We will call such a Jordan
frame as being attached to a.

Corollary 4. Let H be a lattice-like hyperplane in .V;Q/ with the normal a and
fc1; : : : ; crg be a Jordan frame attached to it. If a is represented by (15), then the
coordinates ai; i D 1; : : : ; r of a satisfy the relations (16).

Proof. If Vr D spanfc1; : : : ; crg, then Hr�1 D H\Vr is an l-l hyperplane in .Vr;Qr/

with the normal a because it is the intersection of two l-l sets: Vr (a subalgebra) and
H. Thus, we can apply the characterization of l-l hyperplanes in .Vr;Qr/ described
above in this section.
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Denote by F .Q/ the family of faces of Q, by A the family of subalgebras of V
and by L the family of the l-l subspaces in V . Then, by the above reasonings, we
conclude:

Corollary 5. We have the following strict inclusions:

fspan F W F 2 F .Q/g � A � L :

Proof. The second strict inclusion follows from Remark 1. The first inclusion
is strict since, for instance, the subspaces in (17) are subalgebras which are not
generated by faces of Q. Indeed, take in Vr the reference system engendered by
c1; : : : ; cr and let

Hr�1 D f.t; t; xrC3; : : : ; xr/ 2 Vr W t; xj 2 Rg:
Take y D .1; 1; 0; : : : ; 0/ and x D .1; 0; 0; : : : ; 0/ in Qr D Q \ Vr: Since in
Vr �QD�Qr and the latter is coordinate-wise ordering,

0 �Q x �Q y;

and we have y 2 Hr�1 \ Q, but x … Hr�1 \ Q, which shows that Hr�1 \ Q, is not a
face.

8 The Inexistence of Lattice-like Hyperplanes in Simple
Euclidean Jordan Algebras of Rank r � 3

Theorem 4. Suppose that V is a simple Euclidean Jordan algebra of rank r � 3.
Then, V does not contain lattice-like hyperplanes.

Proof. Assume the contrary: H is an l-l hyperplane through 0 in V with the unit
normal a.

Consider a Jordan frame fc1; : : : ; crg attached to a.
The set

Hr�1 D H \ Vr

is obviously a hyperplane through 0 in Vr.
Since by hypothesis H @Q V , by Corollary 2, Hr�1 @Qr Vr; where Qr D Q\Vr.
If a D .a1; : : : ; ar/ is the representation of a in the reference system engendered

by the Jordan frame, then using Corollary 4, the l-l property of Hr�1 in .Vr;Qr/

implies that one of the following cases must hold:

Case 1. For some i ai D 1 and aj D 0 for j 6D i.
Case 2. There are only two nonzero coordinates, say ai and aj with aiaj < 0.

Suppose that i D 1; j D 2.
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Since V is simple, V12 6D f0g (by Proposition IV.2.3 [26]); hence, we can take
x 2 V12 with kxk2 D 2. Then, by Exercise IV. 7 in [26], we have that

u D 1

2
c1 C 1

2
c2 C 1

2
x; and v D 1

2
c1 C 1

2
c2 � 1

2
x (18)

are idempotent elements; hence, u; v 2 Q: We further have

uv D
�
1

2
c1 C 1

2
c2

�2
� 1
4

x2;

whereby, by using Proposition IV.1.4 in [26], we have

x2 D 1

2
kxk2.c1 C c2/ D c1 C c2;

and after raising to the second power and substitution,

uv D 1

4
c1 C 1

4
c2 � 1

4
.c1 C c2/ D 0:

Hence,

hu; vi D 0:
Since Hr�1 is l-l, we have by Lemma 2,

0 D hu; vi � ha;ui ha; vi :

If a1 D 1; and aj D 0 for j 6D 1, the above relation becomes 0 � 1
4
kc1k4; which

is impossible.
Assume a1a2 < 0 and aj D 0 for j > 2.
Take now

w D 1

2
c1 C 1

2
c3 C 1

2
y

z D 1

2
c1 C 1

2
c3 � 1

2
y (19)

with y 2 V13; kyk2 D 2: Then, w; z 2 Q (similarly to u; v 2 Q) and, by using the
mutual orthogonality of the elements c1; c2; c3; y and Lemma 2, it follows that

0 D hw; zi � ha;wi ha; zi

D

a1c1 C a2c2;

1

2
c1 C 1

2
c3 C 1

2
y
� 

a1c1 C a2c2;
1

2
c1 C 1

2
c3 � 1

2
y
�
D 1

4
a21kc1k2;

which is a contradiction.

This theorem collated with Theorem 2 and Lemma 3 in [2] yields
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Corollary 6. In the ordered Euclidean Jordan algebra .V;Q/ of rank at least 3,
there is no proper closed convex lattice-like set with nonempty interior. In particular,
for n � 3 the ordered space .Sm;SmC/ contains no proper, closed, convex lattice-like
set with nonempty interior.

9 The Case of the Simple Euclidean Jordan Algebras
of Rank 2

A simple Euclidean Jordan algebra of rank 2 is isomorphic to an algebra associated
with a positive definite bilinear form (Corollary IV.1.5 [26]). This is in fact a Jordan
algebra associated with the Lorentz cone. Hence, the problem of the existence of l-l
hyperplanes in this case is answered positively in [2] and [3]. In this section we use
the formalism developed in the preceding sections to this case too.

Lemma 4. Suppose that a is the unit normal to a lattice-like hyperplane H through
0 in the simple Euclidean Jordan algebra V of rank 2. Let fc1; c2g be the Jordan
frame attached to a and a D a1c1 C a2c2. Then, supposing a1 > 0, we obtain

a D
p
2

2
c1 �

p
2

2
c2: (20)

Proof. Take u and v as in the formula (18). Then, u; v 2 Q and using Lemma 2 we
obtain

0 D hu; vi � ha;ui ha; vi

D

a1c1 C a2c2;

1

2
c1 C 1

2
c2 C 1

2
x
� 

a1c1 C a2c2;
1

2
c1 C 1

2
c2 � 1

2
x
�
D 1

4
.a1 C a2/

2;

whereby our assumption follows.

Theorem 5. Let V be a simple Euclidean Jordan algebra of rank 2 and H be a
hyperplane through 0 with unit normal a in V. Then, H is lattice-like if and only
if a D p2=2c1 �

p
2=2c2 in its Jordan frame representation. In this case H is a

subalgebra.

Proof. Suppose that H D ker a; kak D 1 is l-l, and that the Jordan frame attached
to a is fc1; c2g:

Then, by Lemma 4, it follows that a is of the form (20).
Suppose that the Jordan frame representation of a is of the form (20). Then,

Eqs. (11) and (12) imply that

ker a D ft.c1 C c2/C x D teC x W t 2 R; x 2 V12g:
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Then, for two arbitrary elements u; v 2 ker a, we have the representations:

u D t1eC xI v D t2eC yI x; y 2 V12I ti 2 R; i D 1; 2:

Then,

uv D t1t2eC t1yC t2xC xy:

Since xy D .1=4/..x C y/2 � .x � y/2/, by using Proposition IV.1.4 in [26], we
conclude that xy D q.c1 C c2/ D qe with q 2 R: Hence,

uv D .t1t2 C q/eC t1yC t2x 2 ker a:

This shows that H D ker a is a subalgebra and hence an l-l set.

Remark 2. With the notations in the above proof, we have that spanfc1; c2g is a
subalgebra of dimension 2 in V .

Similarly to Remark 1, it follows that there exist l-l subspaces of dimension 1 in
spanfc1; c2g which are not subalgebras.

Collating Theorem 5 and Theorem 2, it follows the result:

Corollary 7. The closed convex set with nonempty interior M � V is a lattice-like
set if and only if it is of the form

M D
\

i2N
H�.ui; ai/;

with the ai normal unit vectors represented in their Jordan frame ci
1; ci

2 by

ai D "i

 p
2

2
ci
1 �
p
2

2
ci
2

!
; "i D 1 or � 1: (21)

Example 1. Write the elements of RmC1 in the form .x; xmC1/ with x 2 R
m and

xmC1 2 R: The Jordan product in R
mC1 is defined by

.x; xmC1/ ı .y; ymC1/ D .ymC1xC xmC1y; hx; yi C xmC1ymC1/;

where hx; yi is the usual scalar product in R
m: The space R

mC1 equipped with the
usual scalar product and the operation ı just defined becomes an Euclidean Jordan
algebra of rank 2, denoted by L mC1 [1], with the cone of squares Q D L mC1

C , the
Lorentz cone defined by (1).

The unit element in L mC1 is .0; 1/, where 0 is the zero vector in R
m.

The Jordan frame attached to .x; xmC1/ 2 L mC1 with x 6D 0 is

c1 D 1

2

�
x
kxk ; 1

�
; c2 D 1

2

�
� x
kxk ; 1

�
:
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The unit normal a from Lemma 4 will be then parallel with .b; 0/ with some b 2
R

m; b 6D 0: This means that the hyperplanes H.ui; ai/ in Corollary 7 are parallel
with the mC1th axis and the closed convex set in the corollary is in fact of the form

M D C � R;

with C a closed convex set with nonempty interior in R
m:

This is exactly the result in Example 1 of [3].

10 The General Case

For a general Euclidean Jordan algebra V , gathering the results of Proposi-
tion III.4.4, Proposition III.4.5, and Theorem V.3.7, of [26], in Theorem 5 of [1],
the following result is stated:

Theorem 6. Any Euclidean Jordan algebra V is, in unique way, a direct sum

V D ˚k
iD1Vi (22)

of simple Euclidean Jordan algebras Vi; i D 1; : : : ; k. Moreover, the cone of squares
Q in V is, in a unique way, a direct sum

Q D ˚k
iD1Qk (23)

of the cones of squares Qi in Vi; i D 1; : : : ; k.

(Here the direct sum (by a difference to that in the Pierce decomposition) means
Jordan algebraic and hence also orthogonal direct sum.)

Let C � V a closed convex set. From the results in Theorem 6, it follows easily
(using the notations in the theorem) that

PC D
kX

iD1
PCi ; (24)

with Ci D C \ Vi; i D 1; : : : ; k.
Collating these results with Corollary 2, we have the following:

Corollary 8. With the notations in Theorem 6, for the subspace M b V, we have
the equivalence:

M @Q V , M \ Vi @Qi Vi; i D 1; : : : ; k: (25)

For the closed convex set C, the projection PC is Q-isotone if and only if PC\Vi is
Qi-isotone in .Vi;Qi/; i D 1; : : : k:
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Corollary 9. If H is a lattice-like hyperplane in V represented as (22) in Theorem 6,
then Vi b H for each simple subalgebra in (22) of rank at least 3.

Proof. Assume the contrary. Then, H \ Vi is an l-l hyperplane in Vi, which
contradicts Theorem 4.

Gathering the results in Theorem 2, Sect. 7, Corollaries 7, and 9, we have:

Theorem 7. Suppose that V is an Euclidean Jordan algebra of the form (22) with
Vi simple subalgebras. Let us write this sum as

V D W1 ˚W2 ˚W3 (26)

where

W1 D ˚i2I1Vi; W2 D ˚i2I2Vi; W3 D ˚i2I3Vi; (27)

such that Vi, for i 2 I1, are the subalgebras of rank 1; for i 2 I2, the subalgebras
of rank 2; and, for i 2 I3, the subalgebras of rank at least 3. Then, C � V is a
closed convex lattice-like subset with nonempty interior if and only if the following
conditions hold:

C D
\

i2N
H�.ui; ai/; (28)

where each hyperplane H.ui; ai/ through ui and with the unit normal ai is tangent
to C and is lattice-like. Let fci

1; : : : ; c
i
rg be a Jordan frame attached to ai. The last

conditions hold if and only if

ai D ai
1c

i
1C: : :Cai

r1c
i
r1Cai

r1C1c
i
r1C1C: : :Cai

r2c
i
r2Cai

r2C1c
i
r2C1C: : :Cai

rc
i
r (29)

with ci
1; : : : ; c

i
r1 2 W1I ci

r1C1; : : : ; c
i
r2 2 W2, and ci

r2C1; : : : ; c
i
r 2 W3, and exactly

one of the following two cases hold:

(i) There exists a k 2 f1; : : : ; r1g with ai
k 6D 0, and exactly one of the following two

statements is true:

(i)’ The equality ai
j D 0 holds for j ¤ k.

(i)” There exists an l 2 f1; : : : ; r1g such that ai
la

i
k < 0 and ai

j D 0, for j … fk; lg.
(ii) There exists k; l 2 fr1C1; : : : ; r2g and p 2 I2 such that ci

k; c
i
l 2 Vp, ai

k D
p
2=2,

ai
l D �

p
2=2, and ai

j D 0, for j … fk; lg.
Proof. Observe first that using the representation (29) of ai and the partition (27) of
V , we have the following relations:

r1 D jI1j; r2 � r1 D 2jI2j; r � r2 � 3jI3j:
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The representation (28) follows from Theorem 2. Let us see first that the
alternative (i) and (ii), respectively, is sufficient for H.ui; ai/ to be an l-l set.

If (i) holds, then the hyperplane Hr1�1 through 0 with the normal ai
W1
D

ai
1c

i
1C : : :C ai

r1c
i
r1 is by Sect. 7 an l-l set in spanfci

1; : : : ; c
i
r1g ordered by the orthant

engendered by c1; : : : ; cr1 . Hence, H.ui; ai/ D .Hr1�1 C ui/
L

W2

L
W3 is l-l in V

(by Theorem 1 and Lemma 2).
If (ii) holds, then the hyperplane H0 through 0with the normal ai

0 D ai
kci

kCai
lc

i
l D

.
p
2=2/.ci

k � ci
l/ in Vp is l-l (by Theorem 5, Theorem 1, and Lemma 2); hence,

H.ui; ai/ D .H0 C ui/
L
.
L

j6Dp Vj/ is l-l in V .
To complete the proof, we have to show the necessity of the alternatives (i) and

(ii). Observe first that if H.ui; ai/ is l-l, then in the representation (29) of ai, by
Corollary 9, we must have ai

j D 0 whenever j > r2. Thus, if ai
j 6D 0, then j � r2:

Suppose that ai
k 6D 0 for some ci

k 2 W2. Then, there exists an ai
l 6D 0 and ci

k; ci
l 2

Vp, for some Vp in the representation of W2. Indeed, in the case ai
k 6D 0, it follows

that ai
kci

k 2 Vp n f0g for some Vp � W2; hence, H.ui; ai/\ Vp is a hyperplane in Vp,
and our assertion follows from Lemma 4 (and in particular one of ai

k and ai
l is
p
2=2

and the other is �p2=2). From Corollary 4 it follows then that ai
j D 0 for j … fk; lg.

Thus, the alternative (ii) must hold.
Suppose now that ai

j 6D 0 for some j � r1. Then from the reasoning of the above
paragraph and Corollary 4, we must have ai

k D 0 if k > r1. In this case two situations
are possible: (i)’ ai

j D 1 and ai
l D 0 for l 6D j, and (i)” there exists ai

l 6D 0; .l � r1/
with ai

ja
i
l < 0 and ai

k D 0 for k … fj; lg: Thus, the alternative (i) must hold.

Example 2. Let V be a simple Euclidean Jordan algebra with the Pierce decom-
position given by (11) and (12) and d the common dimension of Vij, i ¤ j (see
Corollary IV.2.6 [26]). Denote

Wk;l D
M

k�i�j�l

Vij:

Then, Wk;l is a subalgebra, hence an l-l subspace. The sum

W1;k

M
WkC1;r; k < r

is a subalgebra too and hence an l-l subspace. Suppose that r � 4 and 2 � k � r�2.
Let H0 be an l-l hyperplane in WkC1;r which is not a subalgebra. Then,

W1;k C H0

is an l-l subspace in V of dimension kC .d=2/k.k � 1/C r � k � 1 which is not an
algebra.
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Simultaneous Diophantine Approximation:
Searching for Analogues of Hurwitz’s Theorem

Werner Georg Nowak

Abstract Hurwitz’s classic theorem of Diophantine approximation tells us that for
any irrational number ˛, there exist infinitely many reduced fractions p=q so that
j˛ � p=qj < .

p
5 q2/�1 and that this is no longer true if

p
5 is replaced by some

larger constant. Attempting to generalize this to dimensions s � 2, one is concerned
with the problem to determine, resp., to estimate the supremum � of all reals c so
that, for every real but not all rational s-tuple ˛, there exist infinitely many p 2 Z

s

and positive integers q satisfying gcd.p; q/ D 1 and j˛� q�1pj < .q s
p

cq/�1, where
j � j is any norm in R

s. This survey focuses on the cases of the maximum and the
Euclidean norms, giving a survey on the most relevant methods and results on these
constants � .

1 Introduction

For ˛ a real number and N > 1 a positive integer, consider the N C 1 numbers

j˛ � Œj˛� ; j D 0; 1; : : : ;N ;
where Œ�� denotes throughout the largest integer not exceeding � . They are all
contained in the half-open unit interval Œ0; 1Œ; hence, two of them must have a
distance less than 1

N ; say, j˛ � Œj˛� and k˛ � Œk˛�, where j > k. Writing j � k DW q,
Œj˛� � Œk˛� DW p, it follows that

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ <

1

Nq
� 1

q2
; (1)

where p 2 Z, q 2 ZC. This assertion is called Dirichlet’s Theorem. See, e.g., [11,
p. 1]. For ˛ irrational, it readily follows that there exist infinitely many reduced
fractions p

q , q > 0, which satisfy
ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ <

1

q2
: (2)
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This result is best possible, apart from a constant factor less than unity on the right-
hand side. In fact, the celebrated Hurwitz’s Theorem tells us that for every irrational
number ˛, there exist infinitely many reduced fractions p

q , where p 2 Z, q 2 ZC,
for which

ˇ̌
ˇ̌˛ � p

q

ˇ̌
ˇ̌ <

1p
5 q2

; (3)

and that the constant
p
5 is best possible. See, e.g., [18, pp. 189 and 221].

Applying the above reasoning to a pair of reals .˛1; ˛2/ and the unit square Œ0; 1Œ2,
we see that, for each positive integer N, there exist integers p1; p2; q, with 0 < q �
N2, such that

ˇ̌
ˇ̌˛1 � p1

q

ˇ̌
ˇ̌ <

1

Nq
� 1

q3=2
;

ˇ̌
ˇ̌˛2 � p2

q

ˇ̌
ˇ̌ <

1

Nq
� 1

q3=2
:

If ˛1; ˛2 are not both rational, it thus follows that there exist infinitely many pairs of

fractions
�

p1
q ;

p2
q

�
, with gcd.p1; p2; q/ D 1 and q > 0, such that

ˇ̌
ˇ̌˛1 � p1

q

ˇ̌
ˇ̌ <

1

q.cq/1=2
;

ˇ̌
ˇ̌˛2 � p2

q

ˇ̌
ˇ̌ <

1

q.cq/1=2
; (4)

as long as we take c D 1. The question for the supremum of all numbers c for which
this assertion remains true is still to date an open problem!

In fact, on this matter Charles Hermite (1822–1901) wrote:

La recherche des fractions p0=p; p00=p qui approchent le plus de deux nombres donnés n’a
cessé depuis plus de 50 ans de me préoccuper et aussi de désespérer.

More generally, for each positive integer s and each constant 1 � r � 1, one can
define �r;s as the supremum of all values c with the following property: For every
˛ 2 R

s n Qs, there exist infinitely many .p; q/ 2 Z
s � ZC with gcd.p; q/ D 1, such

that
����˛ � 1

q
p

����
r

<
1

q.cq/1=s
: (5)

In the literature, research concentrated on the cases r D 1 and r D 2 and on lower
bounds for the corresponding � ’s, since such results guarantee that the italicized
assertion above is true for a certain range of values c.

We will give an account on the achievements on this topic obtained so far and on
the methods developed and applied with success.
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2 The Approach via the Geometry of Numbers

As will be evident from (6), an extremely useful toolkit for simultaneous Diophan-
tine approximation is provided by the Geometry of Numbers; see [10] for a standard
and very useful textbook reference. Its central concept is that of a lattice � D AZs

in R
s, where A is a non-singular real .s � s/ matrix. The lattice constant of � is

defined as

d.� / D jdet Aj :

Another basic notion is that of a star body K in R
s, which is a nonempty o-symmetric

closed subset of Rs, with the property that for any point p 2 K, the closed straight
line segment joining p with o is contained in the interior of K, with the possible
exception of p itself [10, p. 15].

Further, a lattice � in R
s is called admissible for a star body K, if o is the only

lattice point of � contained in the interior of K.
Finally, the critical determinant �.K/ of a star body K is the infimum of all

lattice constants d.� /, where � ranges over all lattices which are admissible for K.
In 1955, Davenport [6, 8] achieved a major breakthrough, connecting the

simultaneous Diophantine approximation problem with the Geometry of Numbers:
He was able to show that, for any positive integer s and any r 2 Œ1;1�,

�r;s D �.Kr;s/ ; (6)

where

Kr;s D
˚
.x0; : : : ; xs/ 2 R

sC1 W jx0j k.x1; : : : ; xs/ks
r � 1

�
:

We outline a sketch of a proof of the more important part (in view of the remark at
the end of Sect. 1)

�r;s � �.Kr;s/ (7)

of this celebrated result, following [10, p. 481].
For t > 0, let

Kr;s.t/ D f.x0; : : : ; xs/ 2 Kr;s W k.x1; : : : ; xs/kr � t g :
Now, for positive reals t1; t2, the linear transformation

x0 7! .t1=t2/
sx0 ; xj 7! .t2=t1/xj .j D 1; : : : ; s/ ;

has determinant 1 and maps Kr;s.t1/ one-one onto Kr;s.t2/. Hence �.Kr;s.t// is a
constant independent of t. From this it follows (although this is actually not trivial!)
that, for any t > 0,

�.Kr;s.t// D lim
t!1�.Kr;s.t// D �.Kr;s/ :
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Now let " > 0 arbitrarily small, and c WD �.Kr;s/�". Further, let ˛ D .˛1; : : : ; ˛s/ 2
R

s n Qs, and t > 0. For .p0; p1; : : : ; ps/ 2 Z
sC1, we consider the lattice � D

f.�0; �1; : : : ; �s/g,

�0 Dcp0 ;

�j D˛jp0 � pj ; j D 1; : : : ; s :

Obviously, d.� / D c < �.Kr;s.t//. Thus � cannot be admissible for Kr;s.t/;
hence, there exists a nonzero lattice point of � contained in the interior of Kr;s.t/.
Therefore, there exists a nontrivial .p0; p1; : : : ; ps/ 2 Z

sC1, such that

jcp0j kp0˛ � .p1; : : : ; ps/ks
r < 1 ;

kp0˛ � .p1; : : : ; ps/kr � t :

Making t! 0 gives an infinity of .p0; p1; : : : ; ps/ 2 Z
sC1 with p0 > 0 for which

����˛ �
1

p0
.p1; : : : ; ps/

����
r

<
1

p0.cp0/1=s
:

Since c can be arbitrarily close to �.Kr;s/, the assertion (7) follows.
In what follows, we shall concentrate on the cases r D1 (maximum norm) and

r D 2 (Euclidean norm).

3 Bounds for the Simultaneous Diophantine Approximation
Constants with Respect to the Maximum Norm

3.1 Simultaneous Approximation of Two Numbers

To start with, we mention a few results on the case s D 2 addressed in the above
quotation from Hermite. Improving work by Mullender [17], Davenport [7] showed
that

�1;2 D �.K1;2/ � 4
p
46 D 2:604 : : : (8)

This was refined later by Mack [15] and the author [19] who obtained

�1;2 D �.K1;2/ �
�
13

8

�2
D 2:64062 : : : (9)

All of these estimates were established by quite intrinsic geometric considerations
of very special planar domains.
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In the opposite direction, Cassels [4] proved that

�1;2 D �.K1;2/ � 3:5 :

3.2 Theorems of Minkowski and of Blichfeldt

For C a bounded convex star body in R
s, Minkowski’s Theorem [10, p. 123] in its

simplest form tells us that

�.C/ � vol.C/2�s : (10)

Following Minkowski, we apply this to derive a crude lower bound for �1;s D
�.K1;s/, s � 2. By the arithmetic-geometric mean inequality, the body

K1;s W jx0j .max .jx1j ; : : : ; jxsj//s � 1

contains the convex body

CsC1 W jx0j C s max .jx1j ; : : : ; jxsj/ � sC 1 :

By a simple calculus exercise, we see that

vol.CsC1/ D
�
2

s

�s Z

jx0j�sC1
.sC 1 � jx0j/s dx0 D 2sC1

�
1C 1

s

�s

:

Hence, by (10),

�1;s D �.K1;s/ � �.CsC1/ �
�
1C 1

s

�s

:

For s D 2, this implies that �1;2 � 2:25, which is much poorer than (8) and (9).
Another classic theorem is more general and, therefore, capable of applications

which yield sharper bounds: Due to Blichfeldt [2] (see also [10, p. 123]), for any
star body K in R

s and any measurable set M � R
s whose difference set

DM D fm1 �m2 W m1;m2 2 M g

is contained in K, it follows that

�.K/ � vol.M/ : (11)



186 W.G. Nowak

Blichfeldt’s approach was sharpened by Mullender [16] and made perfect by Spohn
[27] who used the calculus of variations to determine, for each star body K1;s, the
set MsC1 � R

sC1 with maximal volume such that DMsC1 � K1;s. This turns out
to be

MsC1 W jx0j � 2s ;
ˇ̌
xj

ˇ̌ �  .2�s jx0j/ for j D 1; : : : ; s ;

 .z/ WD 1

2

�
1 � z1=s

� �
zC .1 � z1=s/s

��1=s
:

(12)

Its volume is readily calculated as

vol.MsC1/ D s2sC1
1Z

0

ws�1

.1C w/s.1C ws/
dw : (13)

Using this along with (7) and (11), we see that

�1;2 � 2� � 4 D 2:283 : : : ; �1;3 � 2:449 : : : ; �1;4 � 2:559 : : : ; �1;5 � 2:638 : : : :

For s � 3, these are the sharpest explicit lower bounds for the constants �1;s known
to date.

Concerning upper bounds for these constants, the reader is referred to the papers
by Cusick cited in the monograph [10].

3.3 The Approach of Siegel and Bombieri

To complete this section, we outline some most elegant ideas due to Siegel [26] and
Bombieri [3] which might be the basis of further refinements of the bounds given.

For an integer s � 2, put n D sC 1 for short, and let K be a star body in R
n with

�.K/ <1. Let further � D AZn be a lattice admissible for K with d.� / D �.K/,1
and M � R

n a bounded measurable set with DM � K. Denoting by IM the indicator
function of M, we define a function

	 W Rn ! R�0 ; 	.u/ WD
X

k2Zn

IM .A.uC k//

which is periodic in each component of u. It follows from the assumptions that
	.u/ D 	2.u/ almost everywhere. Let

	.u/ 
X

m2Zn

˛.m/e.�mu/

1Such a lattice is called critical for K. For its existence, see [10, p. 187].
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the corresponding Fourier series, where e.z/ WD e2� iz as usual and mu is the standard
inner product. The coefficients are readily calculated as

˛.m/ D
Z

Œ0;1�n

e.mw/	.w/dw D 1

jdet Aj
Z

M

e.mA�1v/dv :

In particular,

˛.o/ D vol.M/

d.� /
:

On the other hand, by Parseval’s identity,

˛.o/ D
Z

Œ0;1�n

	2.w/dw D
X

m2Zn

j˛.m/j2 :

Hence,

vol.M/

d.� /
D
�

vol.M/

d.� /

�2
C
X

m¤o

j˛.m/j2 :

Multiplying by d2.� /=vol.M/ gives

�.K/ D d.� / D vol.M/C 1

vol.M/

X

m2Zn; m¤o

ˇ̌
ˇ̌
ˇ̌
Z

M

e.mA�1v/dv

ˇ̌
ˇ̌
ˇ̌

2

: (14)

In particular, this implies that �.K/ � vol.M/, which just proves Blichfeldt’s
Theorem (11). Furthermore, if we suppose K to be convex and choose M D 1

2
K,

Minkowski’s Theorem (10) readily follows.
Moreover, with the choice K D K1;s and M D MsC1, formula (14) applies to

our problem of simultaneous Diophantine approximation. In fact, the author [20]
was able to show that at least two of the integrals on the right-hand side can be
bounded away from zero, by a suitable choice of the lattice � . Thus,

�1;s D �.K1;s/ � vol.MsC1/C 2

vol.MsC1/
�2s ; (15)

with some �s ¤ 0. More precisely,

�s D inf
jvjj�cs
jD1;:::;s

sup
t>0
jFs.v1; : : : ; vsI t/j ;

cs D 2.2�/1C1=svol.MsC1/�1=s :
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The function Fs has an explicit though quite involved representation and satisfies,
as t! 0C,

Fs.v1; : : : ; vsI t/  �2sC1t2s ;

uniformly in v1; : : : ; vs 2 Œ�cs; cs�. This obviously implies that �s ¤ 0 and thus in
principle improves upon the bound�.K1;s/ � vol.MsC1/. But in order to derive an
explicit numerical refinement, the technical difficulties are overwhelming.

4 Bounds for the Simultaneous Diophantine Approximation
Constants with Respect to the Euclidean Norm

There are at least two good reasons why the Euclidean norm is of particular interest
in this context: firstly, because this is the norm we usually measure distances in
R

s with, and secondly, because the very only case where �r;s has been determined
exactly (apart from Hurwitz’s case s D 1) is that of r D s D 2. In fact, Davenport
and Mahler [9] succeeded to prove that

�2;2 D�.K2;2/ D 1

2

p
23 ;

K2;2 W jx0j
�
x21 C x22

� � 1 :
(16)

To establish this deep and celebrated result, Mahler’s general theory on lattices
has been combined with quite intrinsic geometric considerations on special planar
domains.

In general, the task is to deduce (lower) bounds for the critical determinants of
the .sC 1/-dimensional star bodies

K2;s W jx0j
�
x21 C � � � C x2s

�s=2 � 1 ; s � 3 : (17)

4.1 Prasad’s Method of Inscribing Elliptic Balls

An obvious idea is to observe that, by the mean inequality, the elliptic ball in R
sC1,

EsC1 W x20 C s
�
x21 C � � � C x2s

� � sC 1

is contained in K2;s. By a suitable linear transformation,

�2;s D �.K2;s/ � �.EsC1/ D .sC 1/.sC1/=2
ss=2

�.SsC1/ ; (18)
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where SsC1 is the (spherical) unit ball in R
sC1. This was first noticed and applied

by Prasad [25]. Fortunately, due to special properties of quadratic forms, the values
of �.Sn/ are known up to n D 8: See [10, p. 410]. Cf. also Table 1 below.

From this and (18), it follows that

�2;3 � 1:5396 : : : ; �2;4 � 1:23526 : : : ; �2;5 � 0:83656 : : : : (19)

4.2 The Method of Mordell and Armitage

Mordell [12–14] had developed a method to relate the critical determinant of a star
body with a large group of automorphisms to that of another star body of lower
dimension. Using this approach, Armitage [1] proved that

�2;s D �.K2;s/ �
�
�.K.s;s//

�.sC1/=.s�1/
; (20)

where, for any positive integers p and s > 2,

K.s;p/ W jx1j
�
x21 C � � � C x2s

�p=2 � 1
is a star body in R

s. Carrying this argument a bit further, it has been proved that

�.K.s;p// � �K.s�1;p/�s=.s�1/ �
K.s;p/�

�1=.s�1/
; (21)

where

K.s;p/� W �
x21 C � � � C x2s

�p�sC2 �
x22 C � � � C x2s

�s�1 � 1

is another auxiliary star body in R
s, and it is assumed that p > s � 2. For p D s,

this result is due to Armitage [1] and for general p to the author [22]. Armitage
combined (20) and (21), in order to estimate �2;3. He thus deduced that

�2;3 D �.K2;3/ �
�
�.K.3;3//

�2 � ��.K.2;3//
�3
�.K.3;3/� / : (22)

Quoting the bound �.K.2;3// � 1:159 for the planar domain K.2;3/ from his
unpublished thesis and estimating�.K.3;3/� / by inscribing an optimal ellipsoid, using
the mean inequality, he finally obtained

�2;3 � 1:774 : : : : (23)

Later on, the author [21] was able to evaluate the critical determinant of the double
paraboloid P in R

3,

P W x21 C x22 C jx3j � 1 ; (24)
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Fig. 1 The body K.3;3/
� with a double paraboloid and an ellipsoid inscribed, in front view

Table 1 Critical
determinants of spherical unit
balls

n 2 3 4 5 6 7 8

�.Sn/

p
3

2

1p
2

1

2

p
2

4

p
3

8

1

8

1

16

finding that

�.P/ D 1

2
: (25)

Using (22) and fitting a paraboloid into K3;3� (Fig. 1), he improved (23) to

�2;3 � 1:1593 1C
p
2

2
D 1:879 : : : : (26)

Similarly, the problem of simultaneous approximation in R
4 can be dealt with

[21, 22]. Using (20) and (21), one gets

�2;4 D �.K2;4/ � �.K.4;4//5=3 � �.K.3;4//20=9�.K.4;4/� /5=9 : (27)

The general strategy now is to fit into three-dimensional bodies a double paraboloid
and to use (24), while bodies of higher dimensions are dealt with by inscribing
optimal elliptic balls and using the values of Table 1.
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Fig. 2 The bodies K.3;4/ and P.q/, q D 2:3242, in front view

In this way, one gets [21]

�.K.3;4// � 1:1621 ; �.K.4;4/� / �
p
80

6
p
12
:

The optimal paraboloid to be inscribed into K.3;4/ (Fig. 2) turns out to be

P.q/ W jxj C 1

q

�
y2 C z2

� � 1 (28)

with q D 2:3242. Thus, by (27),

�2;4 D �.K2;4/ � 1:3225 : : : : (29)

Moving on to dimension five, we apply (20) once and (21) twice to conclude that

�2;5 D �.K2;5/ � �.K.5;5//3=2 � �.K.4;5//15=8�.K.5;5/� /3=8

� �.K.3;5//5=2�.K.4;5/� /5=8�.K.5;5/� /3=8 :
(30)

Using P.q/ with q D 2:1341 to estimate �.K.3;5// (Fig. 3), one obtains �.K.3;5// �
1:067 : : : . Therefore,

�2;5 D �.K2;5/ � 0:876 (31)
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Fig. 3 The bodies K.3;5/
� and P.q/, q D 2:1341, in front view

Notice that (26), (29), (31) are significantly sharper than the corresponding bounds
in (19).

However, for dimensions s � 6, it turn out that this approach fails to yield
anything sharper than (19).

4.3 A Method of Davenport and Žilinskas

For dimensions s D 6 and 7, a different argument can be used to improve upon (18).
This is due to Davenport [5, 6] and Žilinskas [28]. It essentially rests on a refinement
of Minkowski’s Second Theorem. The latter says what follows [10, p. 133]:

Let C be any o-symmetric convex body in R
n, n � 2, given by

C W G.u/ � 1 ;

where G W Rn ! R�0 is homogeneous of order 1 and is called the distance function of C,
and let � be a lattice in R

n admissible for C. Then there exist n linearly independent lattice
points u.1/;u.2/; : : : ;u.n/ of � with 1 � G.u.1// � G.u.2// � � � � � G.u.n// and

G.u.1//G.u.2// � � � G.u.n// vol.C/2�n � d.� / :
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Now it is known that if either the dimension is � 3 or C is an o-symmetric
elliptic ball of arbitrary dimension, then in this inequality, the factor vol.C/2�n may
be replaced by the larger (in view of (10)) �.C/; see [10, p. 195]. That is,

G.u.1//G.u.2// � � �G.u.n//�.C/ � d.� / : (32)

This can be used to derive sharp lower bounds for �2;6; �2;7 [23]. We will sketch the
estimation of �2;6 D �.K2;6/, the case s D 7 being completely analogous.

By the mean inequality, the elliptic ball in R
7

E W G.u/ WD
0

@1
7

u20 C
6

7

6X

jD1
u2j

1

A
1=2

� 1

is contained in K2;6. Let � be a critical lattice of K2;6 and e a point of � on the
boundary of K2;6. Submitting � to a suitable automorphism of K2;6, if necessary,
one can assume that e D .1; 1; 0; 0; 0; 0; 0/. We apply (32), with C D E , and pick
u D .u0; u1; : : : ; u6/ 2 fu.1/;u.2/g so that u ¤ ˙e. It follows that

�.K2;6/ D d.� / � �.E /G.u/6 (33)

and

ju0j
0

@
6X

jD1
u2j

1

A
3

� 1 ; ju0 ˙ 1j
0

@.u1 ˙ 1/2 C
6X

jD2
u2j

1

A
3

� 1 ; (34)

since u and u˙ e are nonzero lattice points of � , hence outside the interior of K2;6.
Therefore,

�.K2;6/

�.E /
�
�

min
(34)

G.u/
�6

: (35)

Now assume that this minimum is attained in some point Ou 2 R
7 and that G. Ou/ � 1.

By the mean inequality and the first part of (34),

1 � G. Ou/ �

0

B@Ou20

0

@
6X

jD1
Ou2j

1

A
6
1

CA

1=14

� 1 :

Therefore, the mean inequality must hold with equality, which implies that

Ou20 D
6X

jD1
Ou2j ;
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hence Ou0 D ˙1. But this contradicts the right-hand part of (34); thus G. Ou/ > 1.
Numerical evaluation actually shows that min

(34)
G.u/ > 1:0007 : : : .

Obviously,

�.E / D 77=2

63
�.S7/ D 343

1728

p
7 ; (36)

by an appeal to Table 1. Hence [23],

�2;6 D �.K2;6/ � 343

1728

p
7
�
1C 9 � 10�4� � 0:52564 :

Similarly, it can be shown that

�2;7 D �.K2;7/ � 256

343

1p
7

�
1C 3 � 10�4� � 0:28218 :

For s > 7, however, the method fails to be very useful, since �.SsC1/ is known for
s � 7 only (Table 1).

4.4 Upper Bounds for the Constants �2;s

We conclude this section by a short discussion of upper estimates for these
Euclidean approximation constants. We follow the last sections of [1] and [22],
respectively. Let � D �.s/ D 2 if s is odd, and � D �.s/ D 1 if s is even. Consider
the .sC 1/-dimensional star body

KC
sC1 W

��1Y

jD0
x2j

.s�1��/=2Y

jD0

�
x2�C2j C x2�C2jC1

�
� 1 :

Let F be an algebraic number field of degree sC 1 with exactly � real embeddings,
and let D denote its discriminant. Following [10, p. 30], consider the lattice

� W �
�.0/; : : : ; �.��1/;<�.�/;=�.�/;<�.�C2/;=�.�C2/; : : : ;<�.s�1/;=�.s�1/� ;

where � ranges over all algebraic integers of F, and the superscripts denote
conjugates. � is admissible for KC

sC1, and d.� / D 2�.sC1��/=2pjDj; hence,

�.KC
sC1/ � 2�.sC1��/=2pjDj :

By suitable variants of the mean inequality, there exists a linear transformation � W
R

sC1 ! R
sC1 of determinant det � D 2.sC1��/=2s�s=2, such that

K2;s � �
�
KC

sC1
�
:
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As a consequence,

�2;s D �.K2;s/ � s�s=2
p
jDj : (37)

Using, for each degree s C 1, a number field which satisfies the conditions stated
and has minimal absolute discriminant (see, e.g., the Appendix of the textbook [24]),
one thus obtains

�2;1 D �.K2;1/ �
p
5 ;

�2;2 D �.K2;2/ � 1

2

p
23 ;

�2;3 D �.K2;3/ � 3�3=2p275 D 3:1914 : : : ;
�2;4 D �.K2;4/ � 4�2p1609 D 2:5070 : : : ;
�2;5 D �.K2;5/ � 5�5=2p28037 D 2:9953 : : : :

Here the first two bounds are sharp, according to Hurwitz and Davenport and Mahler
[9], respectively. The third estimate is due to Armitage [1].

5 Outlook on Further Research

The observation cannot be denied that the majority of publications in the field
(see, e.g., the bibliography in [10]) have been written more than half a century
ago. However, it appears that there was no intrinsic reason to stop research on
this matter: Of all simultaneous Diophantine approximation constants, only that for
the Euclidean norm in dimension two had been determined exactly (Davenport and
Mahler [9], see the beginning of Sect. 4). For all other cases, only more or less crude
bounds had been obtained, leaving ample space for further research. It is likely that
people just stopped considering these problems because at that time, they seemed to
be hopelessly hard, and new lines of attack were not in sight.

However, one must keep in mind that in these old days, personal computers were
not available, along with all the modern tools like computer algebra systems and
modern graphics devices. In fact, for the heuristic part of work on such problems,
the situation is much more favorable nowadays. The figures shown in this article
(produced throughout with the help of Mathematica) may give the reader a feeling
of how computer-generated graphics can help us to get the right ideas, in order to
make progress on these problems.

This observation—along with the wealth of specific open questions on these
approximation constants—should provide enough motivation to reactivate a vig-
orous research activity on this matter!
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There are a lot of problems in the area which still wait to be dealt with. Apart from
mere refinements of the work discussed above, it should be pointed out that there are
practically no results on the simultaneous Diophantine approximation constants �r;s

for 2 < r <1. Of course, the approach of Blichfeldt [2] and Spohn [27] discussed
in Sect. 3.2 also applies for this case, giving comparatively crude bounds for the
constants. But it is to be expected that at least for r close to 2, far better estimates
should be true. This might be a promising subject for further research.

Furthermore, there remain a wealth of norms in R
s, s � 2, which are not r-norms.

For instance, consider the cylindric norm in R
3:

k.x1; x2; x3/kC WD max

�
jx1j ;

q
x22 C x23

�
: (38)

Its “unit ball” is the cylinder jx1j � 1, x22 C x23 � 1. It gives rise to another
approximation constant �C defined as the supremum of all reals c for which, given
any ˛ 2 �R3 �Q

3
�
, there exist infinitely many .p; q/ 2 Z

3�ZC with gcd.p; q/ D 1,
satisfying

����˛ �
1

q
p

����
C

<
1

q 3
p

cq
:

As far as the author was able to ascertain, no nontrivial bounds on this constant �C
ever have been established. Of course, this “cylindric norm” readily can be extended
to spaces of higher dimensions.
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On the Fixed Points of a Hamiltonian
Diffeomorphism in Presence of Fundamental
Group

Kaoru Ono and Andrei Pajitnov

Abstract Let M be a weakly monotone symplectic manifold and H be a
time-dependent 1-periodic Hamiltonian; we assume that the 1-periodic orbits of
the corresponding time-dependent Hamiltonian vector field are non-degenerate. We
construct a refined version of the Floer chain complex associated to these data and
any regular covering of M and derive from it new lower bounds for the number
of 1-periodic orbits. Using these invariants we prove in particular that if �1.M/
is finite and solvable or simple, then the number of 1-periodic orbits is not less
than the minimal number of generators of �1.M/. For a general closed symplectic
manifold with infinite fundamental group, we show the existence of 1-periodic orbit
of Conley–Zehnder index 1 � n for any non-degenerate 1-periodic Hamiltonian
system.

1 Introduction

Let M2n be a closed symplectic manifold and denote by ! its symplectic form. Let
H W R=Z�M ! R be a C1 function (the Hamiltonian). We will write Ht.x/ instead
of H.t; x/. One associates to H a time-dependent Hamiltonian vector field XHt on M
by the formula:

!.XHt ; �/ D dHt for every t:

Assume that every 1-periodic orbit of fXHtg is non-degenerate. Then the set of all
1-periodic orbits is finite. Denote by P.H/ the set of all contractible 1-periodic
orbits; and let p.H/ be the cardinality of this set. Denote by M .M/ the Morse
number of M, that is, the minimal possible number of critical points of a Morse
function on M.
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The celebrated Arnold conjecture (see [1, Appendix 9], and [2, p. 284]) says that

p.H/ �M .M/: (1)

It was proved by V.I. Arnold himself in the case when H is “sufficiently small”
function. The Arnold conjecture implies in particular certain homological lower
bounds for p.H/. Namely, let us denote by bi.M/ the rank of Hi.M/ and by qi.M/
the torsion number of Hi.M/ (i.e., the minimal possible number of generators of the
abelian group Hi.M/). Then the conjecture (1) implies the following:

p.H/ �
X

i

�
bi.M/C qi.M/C qi�1.M/

�
: (2)

The inequality (1) implies also the following:

p.H/ �
X

i

bFi .M/; (3)

where F is any field and we denote by bFi .M/ the dimension of Hi.M;F/ over F.
Floer [7] constructed a chain complex associated with a non-degenerate 1-

periodic Hamiltonian fHtg; applying this construction he proved the homological
version (3) of the Arnold conjecture for any field F in the case of monotone
symplectic manifolds. The obstacle to obtain (2) is the following. Denote by N the
minimal Chern number of .M; !/. Then Floer homology is 2N-periodic in degrees,
or Floer homology is Z=2NZ-graded; torsions in ordinary homology appearing in
different degrees but congruent modulo 2N with relatively prime orders contribute
to the Floer homology in the same degree. This is the reason why (2) does not follow
from Floer homology with integer coefficients.

The construction of the Floer chain complex was generalized to wider classes of
symplectic manifolds, namely, weakly monotone symplectic manifolds, in [12, 17].
Taking the results on orientation of moduli spaces [7, Sect. 2e] and [8, Sect. 21] into
account, the conjecture (3) is verified in the case of weakly monotone symplectic
manifolds ([7] for monotone case, [12] for the case when N D 0 or N � n, and
[17] for the case of arbitrary weakly monotone manifolds). In the case of a weakly
monotone symplectic manifold, the Floer chain complex CF� is defined over Z and
any field F and is a Z=2NZ-graded chain complex of free 
-modules where 
 is
a suitable Novikov ring. It is generated in degree k by the periodic orbits of H of
Conley–Zehnder index k mod 2N, and there is an isomorphism:

Hk.CF�/ �
M

iDkCn.mod2N/

Hi.M/˝
 (4)

This implies (3) for any field F.
In the case of spherically Calabi–Yau manifolds (i.e., when the minimal Chern

number equals 0), the isomorphism (4) over Z implies the inequality (2).
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The construction over Q was further generalized to all closed symplectic
manifolds in [8, 14]; hence the inequality (3) with F of characteristic 0, e.g., F D Q

follows.
These results confirm the homological versions of the Arnold conjecture, i.e., (2)

holds when the minimal Chern number of the closed symplectic manifold is zero, (3)
with any field F holds in the case of weakly monotone closed symplectic manifolds,
and (3) with a field of characteristic zero holds for general closed symplectic
manifolds. As for the initial conjecture (1), it is still unproved in general case. For
a simply connected manifold M2n with n � 3, the statement (1) is equivalent to (2)
in view of S. Smale’s theorem [22]. However in the non-simply connected case, the
number M .M/ can be strictly greater than the right-hand side of (2). A first step
to the proof of the geometric Arnold conjecture (1) would be to prove a weaker
inequality involving only the invariants of the fundamental group. For a group G, let

R D f1 G F1  F2g (5)

be a presentation of G, where F1 and F2 are free groups of ranks d.R/ and r.R/.
Denote by d.G/ the minimum of numbers d.R/ for all presentations R and by D.G/
the minimum of numbers d.R/ C r.R/ for all presentations R. On the occasion
of Arnold Fest in Toronto 1997, V.I. Arnold asked the first author whether the
development in Floer theory at that time1 settled the original form of his conjecture,
i.e., (1), and, in particular, whether one can show the following weaker assertion,
which does not follow from homological version of the conjecture:

p.H/ � D.�1.M//: (6)

A weaker form of this conjecture is the following:

p.H/ � d.�1.M//: (7)

Since then some progress has been made in this direction, although the conjecture
is far from being solved. Damian [5] considered similar questions in the framework
of the Hamiltonian isotopies of the cotangent bundle of a compact manifold M
(see Sect. 3.6). In a recent preprint [3], J.-F. Barraud suggested a construction of
a Floer fundamental group and proved, in particular, that p1�n.H/ � 1 if �1.M/ is
nontrivial and M is symplectically aspherical, i.e., c1.M/ and Œ!� vanish on �2.M/ or
monotone. (Here pj.H/ stands for the number of periodic orbits of Conley–Zehnder
index j.)

In the present paper, we use the Floer chain complex associated with H and
a regular covering eM ! M of the underlying manifold and deduce from it new
lower bounds for p.H/ in terms of certain invariants �i.eM/, which depend on the
homotopy type of M, the minimal Chern number N of M, and the chosen covering

1Fukaya and Ono [8], Liu and Tian [14] appeared as preprints in the previous year.
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(see Definition 5.1). These invariants are similar to V.V. Sharko’s invariants of
chain complexes [21]. The numbers �i are indexed by N in the case of spherical
Calabi–Yau manifolds and by Z=2NZ in case when the minimal Chern number of
M equals N. We have

p.H/ �
X

i

�i.eM/:

Using these invariants we obtain partial results in the direction of the conjec-
ture (7). For a group G, denote by ı.G/ the minimal number of generators of the
augmentation ideal of G as a ZŒG�-module. In the case when M is weakly monotone
and �1.M/ is a finite group, we prove that

p.H/ � ı.�1.M//:

In particular we confirm the conjecture (7) for weakly monotone manifolds whose
fundamental groups are finite simple or solvable (Theorem 5.7).

We also show the existence of 1-periodic orbits of Conley–Zehnder index 1 � n
for any non-degenerate 1-periodic Hamiltonian system on any closed symplectic
manifold with infinite fundamental group (Theorem 5.9).

2 Floer Complex on the Covering Space

After the preliminary Sect. 2.1 where we gathered the necessary definitions of the
Novikov rings, we give the review of Hamiltonian Floer chain complex (Sect. 2.2)
and proceed to the definition of the Floer chain complex associated to a regular
covering of the underlying manifold.

2.1 Novikov Rings: Definitions

Let T be a finitely generated free abelian group and � W T ! R be a homomorphism.
Let R be a ring (commutative or not). Recall that the group ring RŒT� is the set of all
finite linear combinations:

l D
NX

iD0
aigi; with ai 2 R; gi 2 T

with a natural ring structure (determined by the requirement that the elements of R
commute with the elements of T).
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We denote by R..T// the set of all formal linear combinations (infinite in
general):

� D
1X

iD0
aigi; with ai 2 R; gi 2 T

such that �.gi/! �1 with i!1. Thus the series � can be infinite, but for every
C, the number of terms of � with �.gi/ � C is finite. Usually the homomorphism
� is clear from the context, so we omit it from the notation. The usual definition of
the product of power series endows the abelian group R..T// with the natural ring
structure (we require that the elements of R commute with the elements of T). This
ring is called the Novikov completion of the ring RŒT�. In this paper we will work
with the case R D ZŒG�, where G is a group.

The augmentation homomorphism " W ZŒG�! Z has a natural extension to a ring
homomorphism R..T//! Z..T//, which will be denoted by the same symbol ":

"

 
X

i

aigi

!
D
X

".ai/gi with ai 2 R; gi 2 T:

Thus the ring Z..T// acquires a natural structure of R..T//-module.

Remark 2.1. If the group G is finite, then the ring ZŒG�..T// coincides with the
group ring Z..T//ŒG� of the group G with coefficients in Z..T//.

In the case when � W T ! R is a monomorphism, we will use an abbreviated
notation. The group ring ZŒT� will be denoted by 
, and its Novikov completion
with respect to a monomorphism � will be denoted by b
. For a field F, we denote
by F the Novikov completion of the group ring FŒT�with respect to � . The ring b
 is
a principal ideal domain (PID), and F is a field. We will denote the ring ZŒG�..T//
by L and the ring FŒG�..T// by LF. These rings will appear frequently in Sects. 3
and 4.

The Novikov rings appear in Hamiltonian dynamics in the following context (see
Sect. 2.2). Let M be a closed symplectic manifold. The de Rham cohomology class
of the symplectic form determines a homomorphism Œ!� W �2.M/ ! R: Consider
the group

� D �2.M/=.KerŒ!� \ Ker c1.M//;

where c1.M/ is the Chern class of the almost complex structure associated to !.
The Novikov completion Z..� // will be denoted by 
Z

.M;!/. The Novikov ring

ZŒG�..� // will be denoted in this context by 
ZŒG�
.M;!/.

The restriction of the homomorphism ! to a smaller group

�0 D Ker c1.M/=.KerŒ!� \ Ker c1.M//
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is a monomorphism, so the corresponding Novikov completion Z..�0// is a PID; it
will be denoted by
.0/Z

.M;!/ D Z..�0//. The Novikov ring ZŒG�..�0//will be denoted

in this context by 
.0/ZŒG�
.M;!/ .

2.2 Review of Hamiltonian Floer Complex

In this subsection, we recall the construction of Hamiltonian Floer complex with
integer coefficients2 following [7, 12, 17]. Here we use homological version. Let
.M; !/ be a closed symplectic manifold of dimension 2n. The minimal Chern
number N D N.M; !/ of .M; !/ is a nonnegative integer such that fhc1.M/;AijA 2
�2.M/g D NZ. We call .M; !/ weakly monotone (semi-positive) if hŒ!�;Ai � 0

holds for any A 2 �2.M/ with 3 � n � hc1.M/;Ai < 0. This class of symplectic
manifolds, in particular, contains the following:

(1) (Monotone case) We call .M; !/ a monotone symplectic manifold, if there exists
a positive real number � such that the following equality holds

hc1.M/;Ai D �hŒ!�;Ai

for any A 2 �2.M/.
(2) (Spherically Calabi–Yau case) We call .M; !/ spherically Calabi–Yau, if the

minimal Chern number N is zero.

Let H W R=Z�M ! R be a smooth function. Set Ht.p/ D H.t; p/. We denote by
XHt the Hamiltonian vector field of Ht. We call ` W R=Z! M a 1-periodic solution
of fXHtg, if ` satisfies

d

dt
`.t/ D XHt.`.t//:

We assume that all contractible 1-periodic solutions of fXHtg are non-degenerate.
Denote by P.H/ the set of contractible 1-periodic solutions of fXHtg.

Pick a generic t-dependent almost complex structure J compatible with !. Floer
chain complex .CF�.H; J/; ı/ is constructed for monotone symplectic manifolds
in [7] and for weakly monotone case in [12, 17]. For a general closed symplectic
manifold, the construction over Q is due to [8] and [14].

Let L .M/ be the space of contractible loops in M. Consider the set of pairs
.`;w/, where ` W R=Z ! M is a loop and w W D2 ! M is a bounding disk of

2There is an approach to construct Hamiltonian Floer complex with integer coefficients for non-
degenerate periodic Hamiltonian systems on arbitrary closed symplectic manifold [9]. Since the
details have not been carried out, we restrict ourselves to the class of weakly monotone symplectic
manifolds.



Fixed Points of a Hamiltonian Diffeomorphism and Fundamental Group 205

the loop `. We set an equivalence relation  by .`;w/  .`0;w0/ if and only if
` D `0 and

hŒ!�;w#.�w0/i D 0 and hc1.M/;w#.�w0/i D 0;

where w#.�w0/ is a spherical two-cycle obtained by gluing w and w0 with orientation
reversed along the boundaries.

Then the space L .M/ of equivalence classes Œ`;w� is a covering space of L .M/.
Denote by˘ W L .M/! L .M/ the covering projection, and by � the group of the
deck transformations of this covering, so that we have

� D �2.M/=.KerŒ!� \ Ker c1.M//:

We have the weight homomorphism:

Z
! W �2.M/! R;

and the corresponding Novikov ring 
Z
.M;!/ D Z..� //.

We define the action functional AH W L .M/! R by

AH.Œ`;w�/ D
Z

D2
w�! C

Z 1

0

H.t; `.t//dt:

Then the critical point set CritAH is equal to ˘�1.P.H//. For each pair .`;w/
of ` 2 P.H/ and its bounding disk w, we have the Conley–Zehnder index
�CZ.`;w/ 2 Z:

�CZ W CritAH ! Z:

We define CFk.H; J/ to be the downward completion of the free module
generated by Œ`;w� 2 CritAH with �CZ.Œ`;w�/ D k 2 Z in the spirit of Novikov
complex using the filtration by AH . Pick and fix a lift Œ`;w`� for each ` 2 P.H/.
Then CF�.H; J/ is a free module generated by Œ`;w`� over the Novikov ring
Z

.M;!/.
The boundary operator @ W CFk.H; J/ ! CFk�1.H; J/ is defined by counting

Floer connecting orbits.
Let Œ`˙;w˙� 2 CritAH . We denote by fM .Œ`�;w��; Œ`C;wC�/ the space of the

solutions u W R � R=Z! M satisfying

@u

@�
C J.u.�; t//

�
@u

@t
� XHt.u.�; t//

�
D 0 (8)

lim
�!˙1 u.�; t/ D `˙.t/ (9)
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and

Œ`C;wC� D Œ`C;w�#u�: (10)

The group R acts on the space fM .Œ`�;w��; Œ`C;wC�/ of solutions of (8) by
shifting the parametrization in � -coordinate. We denote by M .Œ`�;w��; Œ`C;wC�/
the quotient space of fM .Œ`�;w��; Œ`C;wC�/ by the R-action. Note that the R-action
is free unless Œ`C;wC� D Œ`�;w��. We have

dimM .Œ`�;w��; Œ`C;wC�/ D �CZ.Œ`
C;wC�/ � �CZ.Œ`

�;w��/ � 1:

The moduli spaces M .Œ`�;w��; Œ`C;wC�/ are oriented in a compatible way;
see [7, Sect. 2e], [8, Sect. 21], and [18, Sect. 5]. For Œ`˙;w˙� such that
�CZ.Œ`

C;wC�/ � �CZ.Œ`
�;w��/ D 1, the set M .Œ`�;w��; Œ`C;wC�/ is a

0-dimensional compact oriented manifold. We denote by n.Œ`�;w��; Œ`C;wC�/
the order of M .Œ`�;w��; Œ`C;wC�/ counted with signs.

For Œ`C;wC� 2 CritAH , we define

@Œ`C;wC� D
X

n.Œ`�;w��; Œ`C;wC�/Œ`�;w��;

where the summation is taken over all Œ`�;w�� satisfying the condition that

�CZ.Œ`
�;w��/ D �CZ.Œ`

C;wC�/ � 1:
In [12, 17], the Floer complex is constructed over the Novikov ring 
Z=2Z

.M;!/ Š

Z
.M;!/˝Z=2Z with Z=2Z-coefficients. In order to construct the Floer complex over

the Novikov ring with Z-coefficients, we need an appropriate coherent system of
orientations on the moduli spaces M .Œ`�;w��; Œ`C;wC�/. Taking [7, Sect. 2e] and
[8, Sect. 21] into account, the argument in [12, Sect. 5] derives the well definedness
of the boundary operator @ and the fact that @ ı @ D 0.

Namely, if �CZ.Œ`2;w2�/ � �CZ.Œ`1;w1�/ D 2, the moduli space M .Œ`1;w1�;
Œ`2;w2�/ is a compact oriented 1-dimensional manifold with boundary. Its boundary
is the union of the sets M .Œ`1w1�; Œ`;w�/�M .Œ`;w�; Œ`2;w2�/where the orbits .l;w/
range over the set:

S D fŒl;w� 2 Crit AH j �CZ.Œ`;w�/ � �CZ.Œ`1;w1�/ D 1g:

Therefore the sum of the numbers n.Œ`1;w1�; Œ`;w�/ �n.Œ`;w�; Œ`2;w2�/ over S equals
0, and the coefficient of Œ`1;w1� in @ ı @.Œ`2;w2�/ vanishes.

Hence we have

Theorem 2.2. Let .M; !/ be a closed weakly monotone symplectic manifold. For a
non-degenerate 1-periodic Hamiltonian function H and a generic almost complex
structure compatible with !, .CF�.H; J/; @/ is a Z-graded chain complex over

Z
.M;!/ with integer coefficients.

We denote by HF�.H; J/ the homology of .CF�.H; J/; @/.
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Let H˛;Hˇ be non-degenerate 1-periodic Hamiltonians and J˛; Jˇ generic almost
complex structures compatible with !. Pick a one-parameter family of smooth
functions H D fH�g on R=Z � M and a one-parameter family J D fJ� g of
almost complex structures compatible with ! such that H� D H˛ and J� D J˛ for
sufficiently negative � and H� D Hˇ and J� D Jˇ for sufficiently positive � .

Theorem 2.3. Let H˛;Hˇ , and J˛; Jˇ be as above. Then there exists a chain
homotopy equivalence:

˚H ;J W CF�.H˛; J˛/! CF�.Hˇ; Jˇ/:

The chain homomorphism ˚H ;J is constructed by counting isolated solutions
u W R � R=Z ! M joining Œ`�;w�� 2 CritAH˛ and Œ`C;wC� 2 CritAHˇ of the
following equation:

@u

@�
C J� .u.�; t//

�@u

@t
� XH�

t
.u.�; t//

�
D 0: (11)

For two choices .H1;J1/ and .H2;J2/, the chain homomorphisms ˚H1;J1

and ˚H2;J2 are chain homotopic. To construct a chain homotopy between them,
we pick homotopies fHsg, resp. fJsg, s 2 Œ0; 1� between H1 and H2, resp. J1 and
J2, and count isolated solutions of Eq. (11) with Js;Hs for some s 2 Œ0; 1�.
Theorem 2.4 ([19]). Let .M; !/ be a closed weakly monotone symplectic manifold
and f a Morse function f on M. For a non-degenerate 1-periodic Hamilto-
nian H and a generic almost complex structure J compatible with !, the Floer
complex .CF�.H; J/; @/ is chain equivalent to the Morse complex .CM�Cn.f / ˝

Z
.M;!/; @

Morse/.

For the comparison of orientation of the moduli space of solutions of Eq. (8) and the
moduli space of Morse gradient flow lines, see [8, Sect. 21].

Remark 2.5. If .M; !/ is either monotone, spherically Calabi–Yau or the min-
imal Chern number N � n, we have a chain homotopy equivalence between
.CF�.H; J/; @/ and .CF�.f ; J/; @/ for a sufficiently small Morse function f . The
latter is isomorphic to the Morse complex .CM�Cn.f / ˝ 
Z

.M;!/I @Morse/, see [12,
Proposition 7.4].

In [17], we introduced modified Floer homology cHF�.H; J/, which is computed
in the case that .M; !/ is a closed weakly monotone symplectic manifold3 and
showed that

cHF�.H; J/ Š H�Cn.MI
Z
.M;!//:

3In [17], Œ!� is a rational cohomology class, i.e., an integral cohomology class after multiplying
a suitable integer. Any symplectic form is approximated by rational symplectic forms and the
estimate for the number of fixed points of a non-degenerate Hamiltonian diffeomorphism is
reduced to the one on a closed symplectic manifolds with rational symplectic class.
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(In order to work over integer coefficients, we use the orientation of the moduli space
of solutions of Eqs. (8), (11) as in [8, Sect. 21].) In the end of Sect. 6.3 [10], we have
an isomorphism between cHF�.H; J/ and HF�.H; J/; see also [4, Remark 4], which
also yields

HF�.H; J/ Š H�Cn

�
MI
Z

.M;!/

�
:

Let N be the minimal Chern number of .M; !/. We find that the Floer chain
complex .CF�.H; J/; ı/ is 2N-periodic, i.e.,

.CF�.H; J/; @/ Š .CF�C2N.H; J/; @/:

(Pick an element A 2 �2.M/ such that hc1.M/;Ai D N. Then the action of ŒA� 2
�2.M/=.KerŒ!� \ Ker c1.M// induces such an isomorphism of chain complexes.)
The Z=2NZ-graded version of Floer complex .CF�; ı/ is a free finitely generated
chain complex over the smaller Novikov ring. Namely, put

�0 D Ker c1.M/=.KerŒ!� \ Ker c1.M//:

endow it with the homomorphism
R
! W �0 ! R and consider the corresponding

Novikov completion
.0/Z

.M;!/ D Z..�0//. We may also denote this ring by b
 (observe
that

R
! W �0 ! R is a monomorphism).

In general, let R be a ring, and K� be a free chain complex over the graded
ring 
R

.M;!/. (In our applications R D Z or R D ZG.) Pick an element A as
above. Identifying every module Ki with KiC2N via the isomorphism, induced by
A, we obtain a free Z=2NZ-graded chain complex over the ring 
.0/R

.M;!/. This chain
complex will be denoted by Kı�.

Let f W M ! R be a Morse function. We have the following.

Theorem 2.6. Let .M; !/ be a closed weakly monotone symplectic manifold with
minimal Chern number N and H a non-degenerate 1-periodic Hamiltonian on M:

(1) Then there exists a Z=2NZ-graded chain complex .CFı�.H; J/; @/, which is

freely generated by fŒ`;w`�j` 2P.H/g over 
.0/Z

.M;!/.
(2) There is a chain equivalence

.CFı�.H; J; @/ 
�
.CM�Cn.f /˝
Z

.M;!//
ı; @Morse

�

of Z=2NZ-graded chain complexes over 
.0/Z

.M;!/.

We can also construct Floer complex with coefficients in a local system on M
(see [18, Sect. 6]) and prove corresponding results in the case with coefficients in a
local system on M.
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Theorem 2.7. Let .M; !/ be a closed weakly monotone symplectic manifold and
� W �1.M/ ! GL.r;F/. For a non-degenerate 1-periodic Hamiltonian H and a
generic almost complex structure compatible with !,

HFı�.H; JI �/ Š
�

H�Cn.MI �/˝
F
.M;!/

�ı
:

For a general symplectic manifold, we have the following

Theorem 2.8. Let .M; !/ be a closed symplectic manifold with minimal Chern
number N and H a non-degenerate 1-periodic Hamiltonian on M:

(1) Then there exists a Z=2NZ-graded chain complex .CFı�.H; J/; @/, which is

freely generated by fŒ`;w`�j` 2P.H/g over 
.0/Q

.M;!/.
(2) There is a chain equivalence

.CFı�.H; J; @/ 
�
.CM�Cn.f /˝
Q

.M;!//
ı; @Morse

�

of Z=2NZ-graded chain complexes over 
.0/Q

.M;!/.
(3) For a representation � W �1.M/! GL.r;Q/,

HFı�.H; JI �/ Š
�

H�Cn.MI �/˝
Q

.M;!/

�ı
:

2.3 Floer Complex Over a Regular Cover

Let pr W eM ! M be a regular covering of M with the covering transformation group
G. Let H be a non-degenerate 1-periodic Hamiltonian M and J a generic t-dependent
almost complex structures compatible with !. Denote by eH, resp.eJ, the pullback
of H, resp. J, to R=Z � eM. The Floer complex .CF�.eH;eJ/; @/ is constructed in the
spirit of [13].

We will now define L .eM/ similarly to L .M/. Consider the set of all pairs .�;w/
where � is a loop in eM and w is a bounding disk for pr ı � . Introduce in this set the
following equivalence relation: .�;w/ and .� 0;w0/ are equivalent if � D � 0 and the
values of both cohomology classes Œ!� and c1.M/ on w#.�w0/ are the same. The
set L .eM/ of the equivalence classes is a covering space of L .eM/, and the deck
transformation group of the covering is isomorphic to

� D �2.M/=.KerŒ!� \ Ker c1.M//:

The action functional

AeH W L .eM/! R



210 K. Ono and A. Pajitnov

is defined by the same formula as before, namely,

AeH.�;w/ D AH.pr ı �;w/:

We define CF�.eH;eJ/ to be the downward completion of free abelian group
generated by CritAeH with respect to the action functional AeH . Pick and fix a lift
è of ` 2 P.H/ to a 1-periodic solution of XeHt

on eM. Note that pr�1.P.H// D
fg �èj` 2P.H/; g 2 Gg. We have

CritAeH D fŒg �è;w�jŒ`;w� 2 CritAH; g 2 Gg:

We also pick and fix a bounding disk w` for each ` 2 P.H/. Then we find that
CF�.eH;eJ/ is isomorphic to a free module generated by fŒè;w`�j` 2 P.H/g over



ZŒG�
.M;!/.
The boundary operator is defined by counting certain isolated solutions

of Eq. (8) as follows. Let Œ�˙;w˙� 2 CriteH . We consider the moduli space
M .Œ��;w��; Œ�C;wC�/ of solutions of Eq. (8) satisfying Condition (9), with
`˙ D pr ı �˙, and Condition (10) and that u.�; 0/ W R ! eM lifts to a path
joining ��.0/ and �C.0/. We set n.Œ��;w��; Œ�C;wC�/ the signed count of isolated
solutions in M .Œ��;w��; Œ�C;wC�/. We have obviously

M
�
Œpr ı ��;w��; Œpr ı �C;wC�

�
Š
G

g2G

M .Œg � ��;w��; Œ�C;wC�/:

For �.Œ�C;wC�/��.Œ��;w��/ D 1 the left-hand side is a finite set; therefore there
is only finite number of the nonempty sets in the right-hand side, and each of them
is finite.

In other words, for fixed Œ��;w��, Œ�C;wC�, there are at most finitely many g 2
G such that n.Œg � ��;w��; Œ�C;wC�/ ¤ 0. The boundary operator @ on CF�.eH;eJ/
is given by

@Œ�C;wC� D
X

n.Œ�;w�; Œ�C;wC�/Œ�;w�;

where the sum is over Œ�;w� 2 CritAeH such that �CZ.Œ�
C;wC�/ � �CZ.Œ�;w�/ D 1:

It is clear that @ is linear over 
ZŒG�
.M;!/.

Keeping attention on the homotopy classes of paths u.�; 0/ W R ! M of
solutions of Eqs. (8) and (11), the proofs of Theorems 2.2–2.4 work for the case
of CF�.eH;eJ/. For example, we show the fact that @ ı @ D 0 in the following way.
In Sect. 2.2, we recalled that .CF�.H; J/; @/ is a chain complex using the moduli
space M .Œ`1;w1�; Œ`2;w2�/ with �CZ.Œ`2;w2�/ � �CZ.Œ`1;w1�/ D 2. The projection
pr W eM ! M gives an identification of M .Œ�1;w1�; Œ�2;w2�/ and the subspace
of M .Œpr ı ��;w��; Œpr ı �C;wC�/ consisting of connecting orbits u such that
u.�; 0/ lifts to a path joining �1.0/ and �2.0/. The boundary of this subspace is
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the union of the direct product M .Œ�1;w1�; Œ�;w�/ �M .Œ�;w�; Œ�2;w2�/ such that
�CZ.Œ�;w�/ D �CZ.Œ�

C;wC�/�1, which is identified with the union of the space of
pairs .u1; u2/ of M .Œpr ı �1;w1�; Œpr ı �;w�/�M .Œpr ı �;w�; Œpr ı �2;w2�/ such that
the concatenation of the paths u1.�; 0/ and u2.�; 0/ lifts to a path joining �1.0/ and
�2.0/. Hence, by looking at the components of M .Œpr ı �1;w1�; Œpr ı �2;w2�/ with
u.�; 0/ in the prescribed homotopy class of paths joining pr ı �1.0/ and pr ı �2.0/,
we find that CF�.eH;eJ/ is a chain complex. This Floer complex is periodic with
respect to the degree shift by 2N. Hence we can also obtain a Z=2NZ-graded chain
complex, which we denote by CFı�.eH;eJ/.

Let f W M ! R be a Morse function. The Morse complex of the function f ı pr W
eM ! R on the covering eM is a free chain complex over ZŒG�, and the following
theorem compares it with the Floer chain complex.

Theorem 2.9. Let pr W eM ! M be a regular covering of a closed weakly monotone
symplectic manifold .M; !/ with minimal Chern number N. Let G be the structure
group of the covering:

(1) For a non-degenerate 1-periodic Hamiltonian H on M, there exists a Z=2NZ-
graded chain complex .CFı�.eH;eJ/; @/ such that CFı�.eH;eJ/ is a free module

generated by fŒè;w`�j` 2P.H/g over 
.0/ZŒG�
.M;!/ .

(2) Let f be a Morse function on M. Then for a non-degenerate 1-periodic
Hamiltonian H and a generic almost complex structure J compatible with !,
there is a chain equivalence

.CFı�.eH;eJ/; @/ 
�
.CM�Cn.f ı pr/˝ZŒG� 


.0/ZŒG�

.M;!/ /
ı; @Morse

�

of Z=2NZ-graded chain complexes over 
.0/ZŒG�
.M;!/ .

In the case of arbitrary closed symplectic manifolds, we have an analog of this
result over the field Q.

Theorem 2.10. Let pr W eM ! M be a regular covering of a closed symplectic
manifold .M; !/ with minimal Chern number N. Let G be the structure group of the
covering:

(1) For a non-degenerate 1-periodic Hamiltonian H on M, there exists a Z=2NZ-
graded chain complex .CFı�.eH;eJ/; @/ such that CFı�.eH;eJ/ is a free module

generated by fŒè;w`�j` 2P.H/g over 
.0/QŒG�
.M;!/ .

(2) Let f be a Morse function on M. Then for a non-degenerate 1-periodic
Hamiltonian H and a generic almost complex structure J compatible with !,
there is a chain equivalence

.CFı�.eH;eJ/; @/ 
�
.CM�Cn.f ı pr/˝QŒG� 


.0/QŒG�

.M;!/ /
ı; @Morse

�

of Z=2NZ-graded chain complexes over 
.0/QŒG�
.M;!/ .
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3 Invariants of Chain Complexes: Z-Graded Case

The Sects. 3 and 4 are purely algebraic. We introduce some invariants of chain
complexes, which will be applied in Sect. 5 to obtain lower bounds for p.H/.

3.1 Definition of Invariants �i

Recall that a ring R is called an IBN-ring, if the cardinality of a base of a free
R-module does not depend on the choice of the base. Any principal ideal domain
(PID) is an IBN-ring. The group ring of any group with coefficients in a PID is an
IBN-ring. All the rings which we consider in this paper will be IBN-rings.

Definition 3.1. For a free based finitely generated module A over an IBN-ring R,
we denote by m.A/ the cardinality of any base of A. It will be called the rank of A.

Let C� D fCngn2Z be a free finitely generated chain complex over a ring R.
Denote by mi.C�/ the number m.Ci/. The minimum of the numbers mi.D�/, where
D� ranges over the set of all free based finitely generated chain complexes chain
equivalent to C�, will be denoted by �i.C�/.

Observe that the chain complexes which we consider are not supposed to vanish in
negative degrees.

Our aim in this section is to develop efficient tools for computing the invariants
�i.C�/ for the case of chain complexes arising in the applications to the Arnold
conjecture.

We will use here the terminology from Sect. 2.1. Namely, G is a group, T is a free
abelian finitely generated group, and � W T ! R is a monomorphism. We consider
the rings

L D ZŒG�..T//; b
 D Z..T//; F D F..T//:

The ring L is an IBN-ring since it has an epimorphism onto b
. Similarly, LF is an
IBN-ring.

We will use the following notation throughout the rest of the paper:

X is a connected finite CW-complex,eX ! X is a regular covering with a structure group G,
so that we have an epimorphism �1.X/ ! G,

C�.X/ D C�.eX/˝ZG ZŒG�..T//: (12)

Then C�.X/ is a free finitely generated chain complex over L D ZŒG�..T//.
Observe the following isomorphism of L -modules:

H0.C�.X// � b
: (13)
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3.2 Lower Bounds Provided by the Cohomology with Local
Coefficients

Let � W G! GL.r;F/ be a representation. We denote by bi.X; �/ the Betti numbers
of X with respect to the local coefficient system induced by �. Put

ˇi.X; �/ D 1

r
bi.X; �/: (14)

We will need the following basic lemma.

Lemma 3.2. Let D� be a free finitely generated chain complex over L , chain
equivalent to C�.X/. Let � W G ! GL.r;F/ be a representation. Then there is a
chain complex E� over F such that:

(1) dimF Ek D r � mk.D�/,
(2) dimF Hk.E�/ D bk.X; �/.

Proof. The vector space F
r has the structure of ZŒG�-module via the representa-

tion �. This structure induces a natural structure O� of L -module on F r by the
following formula:

 
X

i

aigi

!0

@
X

j

vjhj

1

A D
X

i;j

ai.vj/gihj with ai 2 ZŒG�; vj 2 F
r; gi; hj 2 T:

We have also the representation �0 W G ! GL.r;F / obtained as the composition
of � with the embedding F ,! F . Put E� D D�˝ O�F r. Then dimF Ek D r�mk.D�/,
and

C�.X/˝ O�F r D
�

C�.eX/˝ZŒG�L
�
˝ O�F r � C�.eX/˝�0F r �

�
C�.eX/˝�Fr

�
˝FF

so that

dimF Hk.E�/ D dimF Hk

�
C�.X/˝ O� F r

�
D bk.X; �/: ut

The next proposition follows.

Proposition 3.3. We have

�i.C�.X// � ˇi.X; �/:

Proof. Let D� be any chain complex over L which is chain equivalent to C�.X/.
Pick a chain complex E� constructed in the previous Lemma. We have

r � mk.D�/ D dimF Ek � dimF Hk.E�/ D bk.X; �/ D r � ˇi.X; �/: ut
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For i D 1, we have a slightly stronger version of this estimate. In order to prove
it, we need a lemma.

Lemma 3.4. Let A� be a free based finitely generated chain complex over a ring
R, such that A� D 0 for 	 � l� 2 and Hl�1.A�/ D 0. Then there exists a free based
finitely generated chain complex B� such that:

(1) Bj � Aj for j � lC 2, and j D l.
(2) BlC1 D AlC1 ˚ Al�1.
(3) Bj D 0 for j � l � 1.

Proof. Let T� be the chain complex

f0 Al�1
Id Al�1  0g

concentrated in degrees l and l C 1. By the Thickening Lemma [21, Lemma 3.6,
p. 56], the chain complex C� D A� ˚ T� is isomorphic to the chain complex:

C0� D f0 Al�1
@l Al�1 ˚ Al

@lC1 Al�1 ˚ AlC1  AlC2  : : :g

with @l.x; y/ D x. Splitting off the chain complex

f0 Al�1
Id Al�1  0g

concentrated in degrees l � 1 and l, we obtain the required chain complex B�. ut
Proposition 3.5. We have

�1.C�.X// � ˇ1.X; �/C 1

for any representation � such that H0.X; �/ D 0.

Proof. Let D� be any free based finitely generated chain complex over L , chain
equivalent to C�.X/. An easy induction argument using Lemma 3.4 shows that D�
is chain equivalent to a free based finitely generated chain complex D0� such that
D0

i D 0 for i � �2 and D0
i D Di for i � 1. Put

˛ D m.D0�1/; ˇ D m.D0
0/; � D m.D0

1/:

The homology of D0� and of D�˝ O�b
r
F vanishes in degree �1. Applying Lemma 3.2

to the trivial one-dimensional representation �0, we find a chain complex

E� D f0 F ˛ @0 F ˇ @1 F �  : : :g
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such that H�1.E�/ D 0 and H0.E�/ � F ; this implies ˇ � ˛ C 1. Applying
Lemma 3.2 to the representation �, we obtain a chain complex

E0� D f0 F ˛r
@0

0 F ˇr
@0

1 F �r  : : :g

with dimF Ker @0
1 � b1.X; �/. Since H0.X; �/ and H0.E0�/ vanish, we obtain

r� � b1.X; �/C r.ˇ � ˛/ � b1.X; �/C r: ut

Remark 3.6. Observe that the condition H0.X; �/ D 0 is true for every nontrivial
irreducible representation �.

When �1.X/ is a perfect group, the above methods allow to obtain a lower bound
for �2.X/.

Proposition 3.7. Assume that the covering eX ! X is the universal covering of X,
so that in particular �1.X/ � G. Assume that G is a perfect finite group. Then
�2.X/ � b2.X/C 2.

Proof. Let D� be any free based finitely generated chain complex over L , chain
equivalent to C�.X/. Consider the chain complex D0� constructed in the proof of the
Lemma 3.5. Applying Lemma 3.2 to the trivial one-dimensional representation �0,
we find a chain complex

E� D f0 F ˛ @0 F ˇ @1 F � @2 F ı  : : :g

such that H�1.E�/ D 0 and H0.E�/ � F ; we have dim Ker @1 D � � .ˇ � ˛/C 1.
Since G is perfect, we have dim H1.E�/ D b1.X/ D 0; therefore dim Im @2 D
� � .ˇ � ˛/C 1, so that

ı � b2.X/C � � .ˇ � ˛/C 1:

Choose an irreducible representation �, such that b1.X; �/ � 1 (this is possible by
Theorem 3.8 and the fact that the invariant ı.G/ > 1 for noncyclic finite groups as
we will mention after Theorem 3.8). Applying Lemma 3.2 to the representation �,
we deduce � � .ˇ � ˛/ � ˇ1.X; �/ > 0, so that ı � b2.X/C 2: ut

3.3 The Invariant �1: The Case of Finite Groups

The results of the previous subsection allow to obtain a complete result for the
invariant �1 in the case of finite groups. For a group G, denote by d.G/ the minimal
possible number of generators of G and by ı.G/ the minimal possible number of
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generators of the augmentation ideal of ZŒG� as a ZŒG�-module. The next theorem is
a reformulation of a well-known result in the cohomological theory of finite groups
(see, e.g., [20, Corollary 5.8, p. 191]).

Theorem 3.8. Let G be a finite group. Then ı.G/ equals the maximum of two
numbers A.G/ and B.G/, defined below:

A.G/ D max
p;�

�l1
r

b1.G; �/
m
C 1

�
;

where the maximum is taken over all prime divisors p of jGj and all the irreducible
nontrivial representations � W G! GL.r;Fp/: 4

B.G/ D max
p

b1.G;Fp/;

where the maximum is taken over all prime divisors p of jGj.
Remark 3.9. If 	 W G! K is a group epimorphism, V a K-module, and we endow
V with a structure of G-module via 	, then the induced homomorphism H1.G;V/!
H1.K;V/ is surjective.

Recall from (12) that X denotes a connected finite CW-complex, and eX ! X
is a regular covering with a structure group G, so that we have an epimorphism
�1.X/! G. We denote by C�.X/ the chain complex C�.eX/˝ZG L .

Theorem 3.10. Let G be a finite group with a group epimorphism �1.X/ ! G.
Then �1.C�.X// � ı.G/.
Proof. Let D� be a free based finitely generated chain complex chain equivalent
to C�.X/. The inequality �1.C�.X// � ı.G/ follows immediately from Proposi-
tions 3.3 and 3.5 together with Theorem 3.8 and Remarks 3.6 and 3.9. ut

The invariant ı.G/ of a finite group has the following properties:

(1) ı.G/ D d.G/ if G is solvable (K. Grünberg’s theorem [11]; see also [20,
Theorem 5.9]).

(2) ı.G/ D 1 if and only if G is cyclic (see [20, Lemma 5.5]).

The second point implies also that ı.G/ equals 2 for any simple non-abelian group
G (since d.G/ D 2 for such a group).

Corollary 3.11. Let G be a finite group with a group epimorphism �1.X/! G. We
have:

(1) �1.C�.X// � d.G/ if G is solvable or simple.
(2) �1.C�.X// � 1 for every nontrivial group G.
(3) �1.C�.X// � 2 if G is not cyclic.

4The symbol dze denotes the minimal integer k � z.
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3.4 The Invariant �1: The Case of Infinite Groups

If the group G is infinite, it is more difficult to give computable lower bounds
for �1.C�.X//. In this section we prove that �1.C�.X// > 0. Recall the ring
L D ZŒG�..T// and its subring b
 D Z..T//. Observe that the b
-module L has no
torsion. The ring b
 is also a module over L via the augmentation homomorphism
" (see Sect. 3.1).

Lemma 3.12. A free L -module contains no submodule isomorphic to b
.

Proof. Assume that there is an embedding i W b
 ! L n. There is a projection p W
L n ! L such that pıi is nontrivial. Since L has no b
-torsion, the homomorphism
p ı i is an embedding. Put a D .p ı i/.1/ 2 L . Multiplying a by a suitable element
of T if necessary, we can consider that a D ˛ � 1C ˛0 where ˛ 2 ZŒG� and ˛0 is a
power series in monomials gi 2 T with �.gi/ < 0. For every g 2 G, we have then
g � a D � � a with with some � 2 b
, which implies g˛ D l˛ for some l 2 Z. The
last property is impossible, since G is infinite, and ˛ is a finite linear combination
of elements of G. ut
Remark 3.13. The lemma and its proof hold also for the case of the ring QŒG�..T//.

Corollary 3.14. Let D� be a free based finitely generated chain complex over L .
Assume that H0.D�/ � b
. Then D1 6D 0.

Proof. If D1 D 0, then H0.D�/ is isomorphic to the kernel of the boundary operator
@0 W D0 ! D�1; therefore H0.D�/ is a submodule of free L -module, which
contradicts to Lemma 3.12. ut

The next proposition follows.

Proposition 3.15. If G is infinite, then �1.C�.X// � 1.

Remark 3.16. This proposition is valid also for nontrivial finite groups; see Theo-
rem 3.10.

3.5 The Invariant �1: The General Case

Definition 3.17. Let R be a ring, and N be a module over R. The minimal number
s such that there exists an epimorphism RsCr ! N ˚ Rr will be called the stable
number of generators of N and denoted by �.N/. The stable number of generators
of the augmentation ideal Ker " W L ! b
 of the ring L will be denoted �.G/.

Remark 3.18. Using Theorem 3.8, it is easy to show that �.G/ D ı.G/ for any
finite group. It does not seem that this equality holds in general, although we do not
have a counterexample at present.
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Proposition 3.19. �1.C�.X// � �.G/:
Proof. Let D� be any free based finitely generated chain complex over L , chain
equivalent to C�.X/. Similarly to Proposition 3.5, we construct a free based finitely
generated chain complex D0� chain equivalent to D� such that D0

i D 0 for i < �2
and D0

i D Di for i � 1. Denote D0�2 by A and D0�1 by B. Similarly to the proof of 3.5,
we deduce m.D0/ � m.B/ � m.A/C 1. We have Hi.D�/ D 0 for i < 0. Applying
Lemma 3.4, we obtain a chain complex

D0� D f: : : 0 D0�2
@�1 D0�1  D0  D1  : : : g

Applying Lemma 3.4 two more times, we obtain a chain complex

D00� D f: : : 0 D0 ˚ A D1 ˚ B D2  : : : g

chain equivalent to D0�. Since H0.D0�/ � b
, we have an exact sequence

0 b

	 D0 ˚ A

  D1 ˚ B:

Add to it the exact sequence f0  0  L
Id L  0g. By the Thickening

Lemma, the result is isomorphic to the following exact sequence:

0 b

� L ˚ D0 ˚ A

	 L ˚ D1 ˚ B

where �.f ; d; a/ D ".f /. Let J.G/ D Ker." W L ! b
/. We have Ker� D J.G/˚
D0˚A, so that 	 is an epimorphism of a free L -module of rank m.B/Cm.D1/C1
onto the sum of J.G/ and a free L -module of rank m.A/C m.D0/. Thus

�.G/ � m.B/ � m.A/C 1 � m.D0/C m.D1/ � m.D1/: ut

3.6 On the Case of Positively Graded Chain Complexes

If we restrict ourselves to the category of positively graded chain complexes, the
lower bound of the Proposition 3.19 can be improved.

Definition 3.20. Let C� D fCngn2N be a free finitely generated chain com-
plex over a ring R. Denote by mi.C�/ the number m.Ci/. The minimum of
the numbers mi.D�/, where D� ranges over the set of all free based finitely
generated chain complex es concentrated in degrees � 0 and chain equivalent to
C�, will be denoted by Mi.C�/.

The next proposition is proved in M. Damian’s work [5].
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Proposition 3.21. Let X be a finite connected CW-complex with �1.X/ � G. Let
C�.eX/ denote the cellular chain complex of the universal coveringeX. Then

M1.C�.eX// � ı.G/:

Let ˚t be a Hamiltonian isotopy of the cotangent bundle T�.M/ of a closed
manifold M. The zero section of the cotangent bundle will be denoted by M by
an abuse of notation.

Using the theory of generating functions developed by F. Laudenbach and
J.-Cl. Sikorav, one easily deduces from the above proposition a lower bound for
the number of intersections of ˚t.M/ and M:

card .˚t.M/ \M/ � ı.G/:

3.7 The Invariant �2

The results about this invariant are less complete than for �1: we have two different
lower bounds for �2.C�.X// (Proposition 3.22 and Corollary 3.31); none of them is
optimal in general. Denote by B1.X/ the maximum of numbers ˇ1.X; �/� ˇ0.X; �/
where � ranges over all representations of G.

Proposition 3.22. For every representation � W G! GL.r;F/, we have

�2.C�.X// � B1.X/C ˇ2.X; �/ � ˇ1.X; �/C ˇ0.X; �/: (15)

Proof. Let D� be any free finitely generated chain complex over L , chain
equivalent to C�.X/. Similarly to Proposition 3.5, we can assume that Di D 0 for
i � �2. Put

˛ D m.D�1/; ˇ D m.D0/; � D m.D1/; ı D m.D2/:

Apply Lemma 3.2 and let E� be the corresponding chain complex. Denote by Z0 the
space of cycles of degree 0 of this complex; then dimF Z0 D r.ˇ � ˛/. Consider
the chain complex

0 Z0  E1  E2  : : :

of vector spaces over F . Its Betti numbers are equal to the Betti numbers of X
with coefficients in �, and applying the strong Morse inequalities, we obtain the
following:

ˇ � ˛ � ˇ0.X; �/I (16)

� � .ˇ � ˛/ � ˇ1.X; �/ � ˇ0.X; �/I (17)

ı � � C ˇ � ˛ � ˇ2.X; �/ � ˇ1.X; �/C ˇ0.X; �/: (18)
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The inequality (17) implies that � � ˇ C ˛ � B1.X/. Now the proposition follows
from (18). ut
Corollary 3.23. Assume that G is finite and the epimorphism �1.X/ ! G is an
isomorphism. Then

�2.C�.X// � ı.G/ � b1.X;F/C b2.X;F/:

Proof. It follows from Theorem 3.8 that B1.X/C b0.X;F/ � ı.G/. ut
Remark 3.24. If G is a finite perfect group, then b1.X;F/ D 0, and ı.G/ � 2; thus
we recover the Proposition 3.7.

Now we will give a lower bound for �2.X/ in terms of a numerical invariant
depending only on G and related to the invariant D.G/ (see Introduction). Up to
the end of this section, we assume that G is finite and the epimorphism �1.X/ !
G is an isomorphism. In this case the natural inclusion b
ŒG� ,! ZŒG�..T// is an
isomorphism. We will make no difference between these two rings; observe also
that

C�.X/ D C�.eX/˝Z
b
:

Definition 3.25. Let R be a commutative ring and

F� D f0 R F0  F1  : : :g

be a free RŒG�-resolution of the trivial RŒG�-module R; put mi.F�/ D m.Fi/. The
minimum of mi.F�/ over all free resolutions of R will be denoted by �i.G;R/.5 If
R D Z, we abbreviate �i.G;R/ to �i.G/.

The following properties are easy to prove:

(1) For any ring R, we have �i.G;R/ � �i.G/.
(2) �1.G/ D ı.G/.
(3) D.G/ � �1.G/C �2.G/.
We will now introduce a similar notion appearing in the context of Z-graded
complexes.

Definition 3.26. Let R be a commutative ring. A Z-graded chain complex of free
finitely generated RŒG�-modules

E� D f: : : E�n  : : : E0  : : :En  : : :g

is called a Z-graded resolution of the trivial RŒG�-module R if

5 Our terminology here differs from that of Swan’s paper [23].
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(1) H�.E�/ D 0 for every i 6D 0 and H0.E�/ � R.
(2) E�n D 0 for sufficiently large n � 0.

The minimum of mi.E�/ over all Z-graded resolutions of R will be denoted by
N�i.G;R/. If R D Z, we abbreviate N�i.G;R/ to N�i.G/.

We have obviously N�i.G;R/ � �i.G;R/. The next proposition follows from the
fundamental result of Swan [23].

Proposition 3.27. We have �i.G/ D N�i.G/ for i D 1; 2.

Proof. Let E� be a Z-graded resolution. Similarly to Proposition 3.5, we can assume
that Ei D 0 for i � �2; put

f0 D m.E0/ � m.E�1/; fi D m.Ei/ for i � 1:

Let � W G ! GL.r;F/ be any irreducible representation. Put E �� D E� ˝� Fr, and
let Z�0 be the vector space of cycles of degree 0. Then dim Z�0 D rf0. By the strong
Morse inequalities applied to the chain complex,

0 Z�0  E
�
1  E

�
2  : : :

we have

f0 � ˇ0.E�; �/I (19)

f1 � f0 � ˇ1.E�; �/ � ˇ0.E�; �/I (20)

f2 � f1 C f0 � ˇ2.E�; �/ � ˇ1.E�; �/C ˇ0.E�; �/: (21)

By Swan’s theory [23, Theorem 5.1, Corollary 6.1, and Lemma 5.2], there exists a
free resolution F� of Z over ZŒG� such that mi.F�/ D fi for i D 0; 1; 2. Therefore
�i.G/ � fi for i D 1; 2. The proposition follows. ut
Remark 3.28. The proposition is valid for all i � 1, with some mild restrictions on
G (see Theorem 5.1 of [23].)

A similar method proves the next proposition.

Proposition 3.29. N�i.G;b
/ D �i.G/.

Now we can obtain the estimate for �2.C�.X//.

Proposition 3.30. We have �2.C�.X// � N�2.G;b
/.
Proof. Let D�be a free finitely generated chain complex chain equivalent to C�.X/.
Then

Hi.D�/ D 0 for i < 0; and H0.D�/ � b
; and H1.D�/ D 0:
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Using the standard procedure of killing the homology groups of a chain complex,
we embed D� into a free chain complex D0� D D� ˚ E� such that D0� is finitely
generated in each dimension and

Ei D 0 for i � 2; and H0.D
0�/ D b
 and Hi.D

0�/ D 0 for i 6D 0:
Then m2.D�/ D m2.D0�/ � �2.G/: The proposition follows. ut

The next corollary is immediate.

Corollary 3.31. �2.C�.X// � �2.G/.

4 Invariants of Chain Complexes: Z=kZ-Graded Case

Definition 4.1. Let R be a ring, and k 2 N; k � 2. A Z=kZ-graded chain complex
is a family of free based finitely generated R-modules Ai indexed by i 2 Z=kZ
together with homomorphisms @i W Ai ! Ai�1, satisfying @i ı @iC1 D 0:
Given k 2 N, k � 2, and a free based finitely generated Z-graded chain complex
C�, one constructs a Z=kZ-graded chain complex MC� as follows:

MCi D
M

s�i.k/

Cs:

In this section we will be working with the Z=kZ-graded chain complex induced by
C�.X/ [see Definition (12)]. It will be denoted by MC�.X/, where

MCi.X/ D
M

s�i.k/

Cs.X/: (22)

Definition 4.2. Let C� be a Z=kZ-graded complex and i 2 Z=kZ. The minimal
number m.Di/ where D� is a Z=kZ-graded complex, chain equivalent to C�, is
denoted by �i.C�/.

4.1 Lower Bounds from Local Coefficient Homology

Similarly to Sect. 3.2, we have the following estimates for the invariants �i of Z=kZ-
graded complexes. The proof of the next proposition is similar to 3.3.

Proposition 4.3. Let � W G ! GL.r;F/ a representation. Suppose that there is a
group epimorphism �1.X/! G, then

�i. MC�.X// �
X

s�i.k/

ˇs.X; �/:
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4.2 Invariant �1 in the k-Graded Case

The previous theorem implies the following lower bounds for �i. MC�.X// in terms
of the invariants d.G/ and ı.G/.

Theorem 4.4. If �1.X/ ! G is an epimorphism onto a finite nontrivial group G,
then:

(1) �1. MC�.X// � max.ı.G/ � 1; 1/:
(2) If G is simple or solvable, we have �0. MC�.X//C �1. MC�.X// � d.G/:

Proof. We need only to prove that �1. MC�.X// � 1. To this end, observe that if
�1. MC�.X// D 0, then the homology of X in degree 1 with all local coefficients
vanishes, which implies ı.G/ D 1; then G is cyclic, b1.G/ D 1, which leads to a
contradiction. ut

For the case of infinite groups, we have the following result.

Theorem 4.5. If G is an infinite group, then �1. MC�.X// � 1.

Proof. Let D� be a Z=kZ-graded chain complex equivalent to MC�.X/. The module
b
 D H0.C�.X// is a submodule of H0. MC�.X//. The condition D1 D 0 would
imply that H0.C ı� .X// and b
 are submodules of a free L -module C ı

0 .X/, and this
is impossible when G is infinite by Lemma 3.12. ut

This estimate can be improved in the case when k � 2 � dim X. Note that in this
case, the sum in the right-hand side of (22) contains only one term for every i.

Theorem 4.6. Assume that dim X � k � 2, and there exists a group epimorphism
from �1.X/ to a finite group G. Then

�1. MC�.X// � ı.G/:

Proof. Similarly to Sect. 3.3, it suffices to prove that

�1. MC�.X// � ˇ1.X; �/C 1

for any representation � such that H0.X; �/ D 0. Let

D� D f: : : D�2
@�1 D�1

@0 D0  : : :g

be a Z=kZ-graded complex, chain equivalent to K� D MC�.X/. The chain complex
D� does not necessarily vanish in any degree, and the argument which we used in
the proof of the Proposition 3.5 cannot be applied immediately.

Let D�
	! K�

 ! D� be the mutually inverse chain equivalences. Since k �
dim X C 2, the chain complex K� vanishes in degree �1, hence the map  ı 	 W
D�1 ! D�1 is equal to 0. The existence of chain homotopy from  ı 	 to Id
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implies that the submodule Ker @�1 D Im @0 is a direct summand of D�1, hence a
projective b
ŒG�-module. Let us denote it by L. The Z=kZ-graded chain complex D�
contains a (Z-graded) subcomplex:

D0� D f0 L
@0 D0  D1  D2  0g;

with H0.D0�/ � b
; H�1.D0�/ D 0;H1.D0�/ � H1.D�/: Denote by S � N the
multiplicative subset of all numbers t, such that gcd.t; jGj/ D 1. The module S�1L
is free by a fundamental result of R. Swan (see [20, Sect. 5]). Thus the chain complex
D00� D S�1D0� is free over S�1b
ŒG�; put

˛ D m.D00�1/; ˇ D m.D00
0 /; � D m.D00

1 /:

Let p be a prime divisor of jGj and � W G ! GL.r;Fp/ be a representation. The
homology of the complex K� ˝� Fr

p is isomorphic to that of D00� ˝� Fr
p in degrees

�1; 0; 1. Therefore the argument proving Proposition 3.5 applies here as well, and
the proof of the theorem is complete. ut

5 Estimates for the Number of Closed Orbits

We proceed to the estimates of the number of periodic orbits of a Hamiltonian iso-
topy induced by a non-degenerate 1-periodic Hamiltonian H on a closed connected
symplectic manifold M. We denote by eM ! M a regular covering with a structure
group G. Put

C�.M/ D C�.eM/˝ZŒG� 

ZŒG�
.M;!/: (23)

Denote by N the minimal Chern number of M. For N > 0, we obtain a Z=2NZ-
graded chain complex:

C ı� .M/ D
�

C�.eM/˝ZŒG� 

ZŒG�
.M;!/

�ı
:

Definition 5.1. If N D 0, put

�i.eM/ D �i.C�.M//: (24)

(see Definition 3.1; here i 2 N).
If N > 0 put

�i.eM/ D �i.C
ı� .M//: (25)

(see Definition 4.2; here i 2 Z=2NZ).
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The numbers �i.eM/ are obviously homotopy invariants of M and the chosen
covering eM ! M.

5.1 The Spherical Calabi–Yau Case

We consider here symplectic manifolds M with c1.M/.A/ D 0 for every A 2
�2.M/. In this case every contractible periodic orbit � has a well-defined index
i.�/ 2 Z. The Floer chain complex CF�.eH;eJ/ is a Z-graded free based finitely
generated chain complex over the ring
ZŒG�

.M;!/, generated in degree k by contractible
periodic orbits of the Hamiltonian vector field of index k, and we have

CF�.eH;eJ/  C�Cn.M/; where dim M D 2n:

Denote by pk the number of contractible periodic orbits of period k. The results
of the previous sections imply the following lower bound:

pi�n � �i.eM/:

Applying the results of Sect. 3, we obtain the following lower bounds for pi.

Proposition 5.2. For any field F and any representation � W G ! GL.r;F/, we
have

pi�n � 1

r
bi.M; �/:

Theorem 3.10 and Corollary 3.11 imply some stronger lower bounds for i D 1.

Theorem 5.3. (1) If �1.M/ is nontrivial, then p1�n � 1.
(2) If �1.M/ has an epimorphism onto a finite group G, then:

a. p1�n � ı.G/.
b. p1�n � d.G/ if G is solvable or simple.
c. p1�n � 2 if G is not cyclic.

Let us proceed to the lower bounds for p2�n. Applying Corollaries 3.23 and 3.31,
we obtain the following result.

Theorem 5.4. Assume that �1.M/ is finite and the homomorphism �1.M/ ! G is
an isomorphism. Then:

(1) p2�n � ı.�1.M// � b1.M;F/C b2.M;F/ for any field F.
(2) If G is perfect, then p2�n � b2.M;F/C 2.
(3) p2�n � �2.�1.M//.
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Remark 5.5. A recent result of Fine and Panov [6] asserts that for every finitely
presented group G, there exists a symplectic manifold M of dimension 6 with the
fundamental group G and c1.M/ D 0.

5.2 The Weakly Monotone Case

Let us denote by p the total number of the periodic orbits of the Hamiltonian vector
field. We have a Z=2NZ-graded chain complex CFı�.eH;eJ/, generated by periodic
orbits, such that

CFı�.eH;eJ/  C ı�Cn.M/; where 2n D dim M;

(see Theorem 2.9). Therefore

pi�n � �i.eM/ for i 2 Z=2NZ:

Applying the results of the Sect. 4, we obtain the following.

Theorem 5.6. For every representation � W G! GL.r;F/, we have

pi�n � 1

r

� X

s�i.2N/

bs.M; �/
�

for i 2 Z=2NZ:

As for the number p1�n, we have the following.

Theorem 5.7. (1) If �1.M/ is nontrivial, then p1�n � 1.
(2) If �1.M/ has an epimorphism onto a finite group G, then:

a. p1�n � max.1; ı.G/ � 1/, and p � ı.G/.
b. if G is simple or solvable, then p � d.G/.
c. if G is not cyclic, then p � 2.

For the manifolds where the minimal Chern number N is strictly greater than n D
dim M=2, we have the following improvement of Theorem 5.7 (the proof follows
from Theorem 4.6).

Theorem 5.8. Let N � nC1. Assume that �1.M/ has an epimorphism onto a finite
group G. Then:

(1) p1�n � ı.G/.
(2) If G is simple or solvable, then p1�n � d.G/.
(3) If G is not cyclic, then p1�n � 2.
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5.3 The General Case

Let M2n be an arbitrary closed connected symplectic manifold. Applying Theo-
rem 2.10 instead of Theorem 2.9, working over Q and using Remark 3.13, we obtain
the following result.

Theorem 5.9. Assume that �1.M/ is infinite. Then p1�n � 1.
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Some Generalizations of Fixed-Point Theorems
on S-Metric Spaces

Nihal Yılmaz Özgür and Nihal Taş

Abstract In this paper we prove new fixed-point theorems on complete S-metric
spaces. Our results generalize and extend some fixed-point theorems in the litera-
ture. We give some examples to show the validity of our fixed-point results.

1 Introduction

Metric spaces are very important in the various areas of mathematics such as analy-
sis, topology, applied mathematics, etc. So it has been studied new generalizations of
metric spaces. Recently in 2012, Sedghi et al. have defined the concept of S-metric
spaces [13].

Many authors have defined some contractive mappings on complete metric
spaces as a generalization of the well-known Banach’s contraction principle. In
1974, Ciric studied a generalization of Banach’s contraction principle and gave
quasi-contractions [3]. In 1979, Fisher proved new fixed-point theorems for quasi-
contractions and continuous self-mappings [5]. In 1977, Rhoades investigated some
comparisons of various contractive mappings and introduced a new contractive
mapping called a Rhoades’ mapping [11]. He studied some fixed-point theorems.
But he did not have any fixed-point theorem for a Rhoades’ mapping. Hence in
1986, Chang introduced the concept of a C-mapping and obtained some fixed-point
theorems using this mapping for a Rhoades’ mapping [1]. In 1988, Liu et al. defined
the notion of L-mapping to give necessary and sufficient conditions for the existence
of a fixed point for a Rhoades’ mapping [8]. In 1990, Chang and Zhong proved some
fixed-point theorems using the notion of periodic point [2].

The fixed-point theory in various metric spaces was also studied. For example,
in 2013 Gupta presented the concept of cyclic contraction on S-metric spaces [6]. In
2014, Sedghi and Dung proved some fixed-point theorems and gave some analogues
of fixed-point theorems in metric spaces for S-metric spaces [12]. Hieu et al. gave
the relation between a metric and an S-metric [7]. In 2014, Dung et al. proved some
generalized fixed-point theorems for g-monotone maps on partially ordered S-metric
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spaces [4]. The present authors defined Rhoades’ condition on S-metric spaces
and proved some fixed-point theorems satisfying Rhoades’ condition [9]. Also they
introduced some new contractive mappings on S-metric spaces and investigated their
relationships with the Rhoades’ condition [10].

Similar to the Banach’s contraction principle, now we recall the following result
on S-metric spaces given in [13]:

Let .X; S/ be a complete S-metric space, T be a self-mapping of X, and

S.Tx;Tx;Ty/ � aS.x; x; y/; (1)

for some 0 � a < 1 and all x; y 2 X. Then T has a unique fixed point in X and T is
continuous at the fixed point.

Notice that there exists a self-mapping T which has a fixed point, but it does not
satisfy Banach’s contraction principle on S-metric spaces as we have seen in the
following example:

Let R be the S-metric space which is not generated by any metric with

S.x; y; z/ D jx � zj C jxC z � 2yj ;

for all x; y; z 2 R defined in [10]. Let

Tx D 1 � x:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. T has a fixed point

x D 1

2
, but T does not satisfy the Banach’s contraction principle (1). Hence it is

important to study some new fixed-point theorems.
In this paper, we investigate some generalized fixed-point theorems on S-metric

spaces. In Sect. 2 we recall some concepts, lemmas, and corollaries which are
useful in the sequel. In Sect. 3 we prove new fixed-point theorems on complete
S-metric spaces. Our results generalize and extend some fixed-point theorems in
the literature. Also we give some examples to show the validity of our fixed-point
theorems.

2 Preliminaries

The following definitions, lemmas, and corollaries can be found in the paper
referred to.

Definition 1 ([13]). Let X be a nonempty set and S W X3 ! Œ0;1/ be a function
satisfying the following conditions for all x; y; z; a 2 X W
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(S1) S.x; y; z/ � 0,
(S2) S.x; y; z/ D 0 if and only if x D y D z,
(S3) S.x; y; z/ � S.x; x; a/C S.y; y; a/C S.z; z; a/.

Then S is called an S-metric on X and the pair .X; S/ is called an S-metric space.

Definition 2 ([13]). Let .X; S/ be an S-metric space.

1. A sequence .xn/ � X converges to x 2 X if S.xn; xn; x/! 0 as n!1, that is, for
each " > 0, there exists n0 2 N such that for all n � n0, we have S.xn; xn; x/ < ".

2. A sequence .xn/ � X is a Cauchy sequence if S.xn; xn; xm/ ! 0 as n;m ! 1,
that is, for each " > 0, there exists n0 2 N such that for all n;m � n0, we have
S.xn; xn; xm/ < ".

3. The S-metric space .X; S/ is complete if every Cauchy sequence is a convergent
sequence.

Lemma 1 ([13]). Let .X; S/ be an S-metric space and x; y 2 X. Then we have

S.x; x; y/ D S.y; y; x/.

Lemma 2 ([13]). Let .X; S/ be an S-metric space. If xn ! x and yn ! y then we
have

S.xn; xn; yn/! S.x; x; y/.

Lemma 3 (See Corollary 2.4 in [12]). Let .X; S/; .Y; S0/ be two S-metric spaces
and f W X ! Y be a function. Then f is continuous at x 2 X if and only if f .xn/ !
f .x/ whenever xn ! x.

The relation between a metric and an S-metric is given in [7] as follows:

Lemma 4 ([7]). Let .X; d/ be a metric space. Then the following properties are
satisfiedW
1. Sd.x; y; z/ D d.x; z/C d.y; z/ for all x; y; z 2 X is an S-metric on X.
2. xn ! x in .X; d/ if and only if xn ! x in .X; Sd/.
3. .xn/ is Cauchy in .X; d/ if and only if .xn/ is Cauchy in .X; Sd/:

4. .X; d/ is complete if and only if .X; Sd/ is complete.

Now we recall the following fixed-point results.

Corollary 1 (See Corollary 2.12 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx;Tx;Ty/ � aS.x; x; y/C bS.Tx;Tx; x/C cS.Ty;Ty; y/; (2)

for some a; b; c � 0, a C b C c < 1, and all x; y 2 X. Then T has a unique fixed

point in X. Moreover, if c <
1

2
then T is continuous at the fixed point.

Corollary 2 (See Corollary 2.14 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and
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S.Tx;Tx;Ty/ � h maxfS.Tx;Tx; y/; S.Ty;Ty; x/g; (3)

for some h 2 Œ0; 1
3
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Corollary 3 (See Corollary 2.10 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx;Tx;Ty/ � h maxfS.Tx;Tx; x/; S.Ty;Ty; y/g; (4)

for some h 2 Œ0; 1/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

if h 2 Œ0; 1
2
/ then T is continuous at the fixed point.

Corollary 4 (See Corollary 2.17 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx;Tx;Ty/ � aS.x; x; y/C bS.Tx;Tx; y/C cS.Ty;Ty; x/; (5)

for some a; b; c � 0, a C b C c < 1, a C 3c < 1, and all x; y 2 X. Then T has a
unique fixed point in X. Moreover, T is continuous at the fixed point.

Corollary 5 (See Corollary 2.19 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx;Tx;Ty/ � aS.x; x; y/C bS.Tx;Tx; x/C cS.Tx;Tx; y/

CdS.Ty;Ty; x/C eS.Ty;Ty; y/; (6)

for some a; b; c; d; e � 0 such that maxfaC bC 3dC e; aC cC d; dC 2eg < 1 and
all x; y 2 X. Then T has a unique fixed point in X. Moreover, T is continuous at the
fixed point.

Corollary 6 (See Corollary 2.21 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx;Tx;Ty/ � h maxfS.x; x; y/; S.Tx;Tx; x/; S.Tx;Tx; y/;
S.Ty;Ty; x/; S.Ty;Ty; y/g; (7)

for some h 2 Œ0; 1
3
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Corollary 7 (See Corollary 2.15 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx;Tx;Ty/ � a.S.Tx;Tx; y/C S.Ty;Ty; x//; (8)
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for some a 2 Œ0; 1
3
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

Corollary 8 (See Corollary 2.8 in [12]). Let .X; S/ be a complete S-metric space,
T be a self-mapping of X, and

S.Tx;Tx;Ty/ � a.S.Tx;Tx; x/C S.Ty;Ty; y//; (9)

for some a 2 Œ0; 1
2
/ and all x; y 2 X. Then T has a unique fixed point in X. Moreover,

T is continuous at the fixed point.

In the next section we give some generalizations of the above results.

3 Some Fixed-Point Theorems on S-Metric Spaces

In this section we give some definitions and generalizations of fixed-point theorems
for self-mappings on complete S-metric spaces.

Definition 3. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN1) There exist real numbers a; b satisfying aC 3b < 1 with a; b � 0 such that

S.Tx;Tx;Ty/ � aS.x; x; y/C b maxfS.Tx;Tx; x/; S.Tx;Tx; y/;
S.Ty;Ty; y/; S.Ty;Ty; x/g;

for all x; y 2 X.

Theorem 1. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN1/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and define the sequence .xn/ as follows:

Tx0 D x1;Tx1 D x2; : : : ;Txn D xnC1; : : : .

Suppose that xn ¤ xnC1 for all n. Using the condition .SN1/ we have

S.xn; xn; xnC1/ D S.Txn�1; Txn�1; Txn/ � aS.xn�1; xn�1; xn/

Cb maxfS.xn; xn; xn�1/; S.xn; xn; xn/; S.xnC1; xnC1; xn/; S.xnC1; xnC1; xn�1/g
D aS.xn�1; xn�1; xn/C b maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/; S.xnC1; xnC1; xn�1/g: (10)

By the condition .S3/ we have

S.xnC1; xnC1; xn�1/ � S.xnC1; xnC1; xn/C S.xnC1; xnC1; xn/C S.xn�1; xn�1; xn/
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D 2S.xnC1; xnC1; xn/C S.xn�1; xn�1; xn/: (11)

Then using Lemma 1 and the conditions (10) and (11), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/C b maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/;

2S.xnC1; xnC1; xn/C S.xn�1; xn�1; xn/g
� aS.xn�1; xn�1; xn/C 2bS.xnC1; xnC1; xn/C bS.xn�1; xn�1; xn/

and so

.1 � 2b/S.xn; xn; xnC1/ � .aC b/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � aC b

1 � 2b
S.xn�1; xn�1; xn/: (12)

Let p D aC b

1 � 2b
. Then we have p < 1 since aC 3b < 1 (notice that b ¤ 1

2
since we

have 0 � b <
1

3
by the conditions aC 3b < 1 and a; b � 0).

Repeating this process in the condition (12), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (13)

Then for all n;m 2 N, n < m, using the condition (13) and the condition .S3/, we
have

S.xn; xn; xm/ � 2S.xn; xn; xnC1/C 2S.xnC1; xnC1; xnC2/C : : :C 2S.xm�1; xm�1; xm/

� 2.pn C pnC1 C : : :C pm�1/S.x0; x0; x1/

� 2pn.1C pC p2 C : : :C pm�n�1/S.x0; x0; x1/

� 2pn 1 � pm�n

1 � p
S.x0; x0; x1/

� 2pn

1 � p
S.x0; x0; x1/: (14)

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � aS.xn�1; xn�1; x/

Cb maxfS.xn; xn; xn�1/; S.xn; xn; x/; S.Tx;Tx; x/; S.Tx;Tx; xn�1/g
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and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x;Tx/ D S.Tx;Tx; x/ � bS.Tx;Tx; x/;

which is a contradiction since 0 � b <
1

3
. So we have Tx D x.

Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN1/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � aS.x; x; y/

Cb maxfS.x; x; x/; S.x; x; y/; S.y; y; y/; S.y; y; x/g
D aS.x; x; y/C bS.x; x; y/ D .aC b/S.x; x; y/;

which implies x D y since aC b < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn;Tx/ � aS.xn; xn; x/

Cb maxfS.Txn;Txn; xn/; S.Txn;Txn; x/; S.Tx;Tx; x/; S.Tx;Tx; xn/g
D aS.xn; xn; x/C b maxfS.Txn;Txn; xn/; S.Txn;Txn; x/; S.x; x; xn/g:

(15)

Using the condition .S3/ we have

S.Txn;Txn; xn/ � S.Txn;Txn; x/C S.Txn;Txn; x/C S.xn; xn; x/

D 2S.Txn;Txn; x/C S.xn; xn; x/: (16)

Then using the conditions (15), (16) and Lemma 1, we obtain

S.Txn;Txn;Tx/ � aS.xn; xn; x/

Cb maxf2S.Txn;Txn; x/C S.xn; xn; x/; S.Txn;Txn; x/; S.x; x; xn/g
D aS.xn; xn; x/C bf2S.Txn;Txn; x/C S.xn; xn; x/g
D aS.xn; xn; x/C 2bS.Txn;Txn; x/C bS.xn; xn; x/;

which implies

S.Txn;Txn;Tx/ D S.Txn;Txn; x/ � aC b

1 � 2b
S.xn; xn; x/: (17)

So using the condition (17), for n!1 we have

lim
n!1S.Txn;Txn;Tx/ D 0:
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Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 1 is a generalization of the Banach’s contraction princi-
ple (1). Indeed, if we take b D 0 in Theorem 1, we obtain the Banach’s contraction
principle (1).

Now we give an example of a self-mapping satisfying the condition .SN1/ such
that the condition of the Banach’s contraction principle (1) is not satisfied.

Example 1. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jxC z � 2yj ;

for all x; y; z 2 R [10]. Let us define

Tx D
	

xC 50 if jx � 1j D 1
45 if jx � 1j ¤ 1 :

Then T is a self-mapping on the complete S-metric space R and satisfies the

condition .SN1/ for a D 0 and b D 1

4
. Then T has a unique fixed point x D 45. But

T does not satisfy the condition of the Banach’s contraction principle (1). Indeed,
for x D 0; y D 2 we obtain

S.Tx;Tx;Ty/ D 4 � aS.x; x; y/ D 4a;

which is a contradiction since a < 1.

Definition 4. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN2) There exist real numbers a; b satisfying aC 3b < 1 with a; b � 0 such that

S.Tmx;Tmx;Tmy/ � aS.x; x; y/C b maxfS.Tmx;Tmx; x/; S.Tmx;Tmx; y/;
S.Tmy;Tmy; y/; S.Tmy;Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 1.

Corollary 9. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN2/, then T has a unique fixed point x in X and Tm is
continuous at x.

Proof. From Theorem 1, it can be easily seen that Tm has a unique fixed point x in
X, and Tm is continuous at x. Also we have

Tx D TTmx D TmC1x D TmTx

and so we obtain that Tx is a fixed point for Tm. We get Tx D x since x is a unique
fixed point.
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Definition 5. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN3) There exist real numbers a; b; c; d satisfying maxfaCbCcC3d; 2bCdg < 1
with a; b; c; d � 0 such that

S.Tx;Tx;Ty/ � aS.x; x; y/C bS.Tx;Tx; x/C cS.Ty;Ty; y/

Cd maxfS.Tx;Tx; y/; S.Ty;Ty; x/g;
for all x; y 2 X.

Theorem 2. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN3/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN3/ we have

S.xn; xn; xnC1/ D S.Txn�1;Txn�1;Txn/ � aS.xn�1; xn�1; xn/C bS.xn; xn; xn�1/

CcS.xnC1; xnC1; xn/C d maxfS.xn; xn; xn/; S.xnC1; xnC1; xn�1/g
D aS.xn�1; xn�1; xn/C bS.xn; xn; xn�1/C cS.xnC1; xnC1; xn/C dS.xnC1; xnC1; xn�1/: (18)

Then using Lemma 1 and the conditions (11) and (18), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/C bS.xn�1; xn�1; xn/C cS.xn; xn; xnC1/

C2dS.xn; xn; xnC1/C dS.xn�1; xn�1; xn/

and so

.1 � c � 2d/S.xn; xn; xnC1/ � .aC bC d/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � aC bC d

1 � c � 2d
S.xn�1; xn�1; xn/: (19)

Let p D aC bC d

1 � c � 2d
. Then we have p < 1 since aC bC cC 3d < 1.

Repeating this process in the condition (19), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (20)

Then for all n;m 2 N, n < m, using the conditions (14) and (20), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:
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Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � aS.xn�1; xn�1; x/C bS.xn; xn; xn�1/

CcS.Tx;Tx; x/C d maxfS.xn; xn; x/; S.Tx;Tx; xn�1/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x;Tx/ D S.Tx;Tx; x/ � .cC d/S.Tx;Tx; x/;

which is a contradiction since 0 � cC d < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN3/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � aS.x; x; y/C bS.x; x; x/C cS.y; y; y/

Cd maxfS.x; x; y/; S.x; x; y/g D .aC d/S.x; x; y/;

which implies x D y since aC d < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn;Tx/ � aS.xn; xn; x/C bS.Txn;Txn; xn/C cS.Tx;Tx; x/

Cd maxfS.Txn;Txn; x/; S.Tx;Tx; xn/g
D aS.xn; xn; x/C bS.Txn;Txn; xn/

Cd maxfS.Txn;Txn; x/; S.Tx;Tx; xn/g: (21)

Then using the conditions (16), (21) and Lemma 1, we obtain

S.Txn;Txn;Tx/ � aS.xn; xn; x/C 2bS.Txn;Txn; x/C bS.xn; xn; x/

Cd maxfS.Txn;Txn; x/; S.Tx;Tx; xn/g
� aS.xn; xn; x/C 2bS.Txn;Txn; x/C bS.xn; xn; x/

CdS.Txn;Txn; x/C dS.xn; xn; x/

and so

.1 � 2b � d/S.Txn;Txn;Tx/ � .aC bC d/S.xn; xn; x/;
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which implies

S.Txn;Txn;Tx/ � aC bC d

1 � 2b � d
S.xn; xn; x/: (22)

Using the condition (22) for n!1, we have

lim
n!1S.Txn;Txn;Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 2 is a generalization of Corollaries 1 and 2. Indeed, if

we take d D 0 and c <
1

2
in Theorem 2, we obtain Corollary 1 and if we take

a D b D c D 0; d D h in Theorem 2, we obtain Corollary 2.
Now we give an example of a self-mapping satisfying the condition .SN3/ such

that the condition (3) is not satisfied.

Example 2. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jxC z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D 5

6
.1 � x/:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx;Tx;Ty/ D 5

3
jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx;Tx; y/ D
ˇ̌
ˇ̌5
3
.1 � x/ � 2y

ˇ̌
ˇ̌ ;

S.Ty;Ty; x/ D
ˇ̌
ˇ̌5
3
.1 � y/ � 2x

ˇ̌
ˇ̌ ;

S.Tx;Tx; x/ D
ˇ̌
ˇ̌5
3
.1 � x/ � 2x

ˇ̌
ˇ̌ ;

S.Ty;Ty; y/ D
ˇ̌
ˇ̌5
3
.1 � y/ � 2y

ˇ̌
ˇ̌ :
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T satisfies the condition .SN3/ for a D 5

6
; b D c D 0, and d D 1

20
. Then T has

a unique fixed point x D 5

11
. But T does not satisfy the condition (3). Indeed, for

x D 1; y D 0 we obtain

S.Tx;Tx;Ty/ D 5

3
� h maxfS.Tx;Tx; y/; S.Ty;Ty; x/g

D h max

	
0;
1

3



D h

3
;

which is a contradiction since h <
1

3
.

Definition 6. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN4) There exist real numbers a; b; c; d satisfying maxfaCbCcC3d; 2bCdg < 1
with a; b; c; d � 0 such that

S.Tmx;Tmx;Tmy/ � aS.x; x; y/C bS.Tmx;Tmx; x/C cS.Tmy;Tmy; y/

Cd maxfS.Tmx;Tmx; y/; S.Tmy;Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 2.

Corollary 10. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition .SN4/, then T has a unique fixed point x in X and
Tm is continuous at x.

Proof. It follows from Theorem 2 by the same method used in the proof of
Corollary 9.

Definition 7. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN5) There exist real numbers a; b; c; d satisfying maxfa C 3c C 2d; a C b C
c; bC 2dg < 1 with a; b; c; d � 0 such that

S.Tx;Tx;Ty/ � aS.x; x; y/C bS.Tx;Tx; y/C cS.Ty;Ty; x/

Cd maxfS.Tx;Tx; x/; S.Ty;Ty; y/g;

for all x; y 2 X.

Theorem 3. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN5/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN5/ we have
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S.xn; xn; xnC1/ D S.Txn�1;Txn�1;Txn/ � aS.xn�1; xn�1; xn/C bS.xn; xn; xn/

CcS.xnC1; xnC1; xn�1/C d maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g
D aS.xn�1; xn�1; xn/C cS.xnC1; xnC1; xn�1/

Cd maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g: (23)

Then using Lemma 1 and the conditions (11) and (23), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/C 2cS.xnC1; xnC1; xn/C cS.xn�1; xn�1; xn/

C dS.xn; xn; xn�1/C dS.xnC1; xnC1; xn/

and

.1 � 2c � d/S.xn; xn; xnC1/ � .aC cC d/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � aC cC d

1 � 2c � d
S.xn�1; xn�1; xn/: (24)

Let p D aC cC d

1 � 2c � d
. Then we have p < 1 since aC 3cC 2d < 1.

Repeating this process in the condition (24), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (25)

Then for all n;m 2 N, n < m, using the conditions (14) and (25), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � aS.xn�1; xn�1; x/C bS.xn; xn; x/

CcS.Tx;Tx; xn�1/C d maxfS.xn; xn; xn�1/; S.Tx;Tx; x/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x;Tx/ D S.Tx;Tx; x/ � .cC d/S.Tx;Tx; x/;

which is a contradiction since 0 � cC d < 1. So we have Tx D x.
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Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN5/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � aS.x; x; y/C bS.x; x; y/C cS.y; y; x/

Cd maxfS.x; x; x/; S.y; y; y/g D .aC bC c/S.x; x; y/;

which implies x D y since aC bC c < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn;Tx/ � aS.xn; xn; x/C bS.Txn;Txn; x/C cS.Tx;Tx; xn/

Cd maxfS.Txn;Txn; xn/; S.Tx;Tx; x/g
D aS.xn; xn; x/C bS.Txn;Txn; x/C cS.Tx;Tx; xn/

CdS.Txn;Txn; xn/: (26)

Then using the conditions (16), (26) and Lemma 1, we obtain

S.Txn;Txn;Tx/ � aS.xn; xn; x/C bS.Txn;Txn; x/C cS.Tx;Tx; xn/

C2dS.Txn;Txn; x/C dS.xn; xn; x/

and

.1 � b � 2d/S.Txn;Txn;Tx/ � .aC cC d/S.xn; xn; x/;

which implies

S.Txn;Txn;Tx/ � aC cC d

1 � b � 2d
S.xn; xn; x/: (27)

So using the condition (27), for n!1 we have

lim
n!1S.Txn;Txn;Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 3 is a generalization of Corollaries 3 and 4. Indeed, if we
take d D 0 in Theorem 3, we obtain Corollary 4 and if we take a D b D c D 0; d D
h in Theorem 3, we obtain Corollary 3.

Notice that the condition .SN1/ is the special case of the conditions .SN3/ and
.SN5/ for b D c D 0 and b D d D 0, respectively. So we have obtained three
generalizations of the Banach’s contraction principle (1).
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Now we give an example of a self-mapping satisfying the condition .SN5/ such
that the condition (4) is not satisfied.

Example 3. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jxC z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D x

2
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx;Tx;Ty/ D jx � yj ;
S.x; x; y/ D 2 jx � yj ;

S.Tx;Tx; y/ D 2
ˇ̌
ˇ
x

2
� y

ˇ̌
ˇ ;

S.Ty;Ty; x/ D 2
ˇ̌
ˇ
y

2
� x

ˇ̌
ˇ ;

S.Tx;Tx; x/ D jxj ;
S.Ty;Ty; y/ D jyj :

T satisfies the condition .SN5/ for a D 1

2
; b D c D 0, and d D 1

8
. Then T has

a unique fixed point x D 0. But T does not satisfy the condition (4). Indeed, for
x D 0; y 2 Œ0; 1� we obtain

S.Tx;Tx;Ty/ D jyj � h maxfS.Tx;Tx; x/; S.Ty;Ty; y/g
D h maxfjxj ; jyjg D h jyj ;

which is a contradiction since h < 1.

Definition 8. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN6) There exist real numbers a; b; c; d satisfying maxfa C 3c C 2d; a C b C
c; bC 2dg < 1 with a; b; c; d � 0 such that

S.Tmx;Tmx;Tmy/ � aS.x; x; y/C bS.Tmx;Tmx; y/C cS.Tmy;Tmy; x/

Cd maxfS.Tmx;Tmx; x/; S.Tmy;Tmy; y/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 3.
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Corollary 11. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN6/, then T has a unique fixed point x in X and Tm

is continuous at x.

Proof. It follows from Theorem 3 by the same method used in the proof of
Corollary 9.

Definition 9. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.

(SN7) There exist real numbers a; b; c; d; e; f satisfying maxfa C b C 3d C e C
3f ; aC cC dC f ; 2bC cC 2f g < 1 with a; b; c; d; e; f � 0 such that

S.Tx;Tx;Ty/ � aS.x; x; y/C bS.Tx;Tx; x/C cS.Tx;Tx; y/

C dS.Ty;Ty; x/C eS.Ty;Ty; y/C f maxfS.x; x; y/;
S.Tx;Tx; x/; S.Tx;Tx; y/; S.Ty;Ty; x/; S.Ty;Ty; y/g;

for all x; y 2 X.

Theorem 4. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN7/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN7/ we have

S.xn; xn; xnC1/ D S.Txn�1;Txn�1;Txn/ � aS.xn�1; xn�1; xn/C bS.xn; xn; xn�1/

C cS.xn; xn; xn/C dS.xnC1; xnC1; xn�1/C eS.xnC1; xnC1; xn/

C f maxfS.xn�1; xn�1; xn/; S.xn; xn; xn�1/; S.xn; xn; xn/;

S.xnC1; xnC1; xn�1/; S.xnC1; xnC1; xn/g
D aS.xn�1; xn�1; xn/C bS.xn; xn; xn�1/C dS.xnC1; xnC1; xn�1/

C eS.xnC1; xnC1; xn/

C f maxfS.xn�1; xn�1; xn/; S.xn; xn; xn�1/;

S.xnC1; xnC1; xn�1/; S.xnC1; xnC1; xn/g: (28)

Then using Lemma 1 and the conditions (11) and (28), we obtain

S.xn; xn; xnC1/ � aS.xn�1; xn�1; xn/C bS.xn; xn; xn�1/C 2dS.xnC1; xnC1; xn/

C dS.xn�1; xn�1; xn/C eS.xnC1; xnC1; xn/

C f maxfS.xn�1; xn�1; xn/; S.xn; xn; xn�1/;
2S.xnC1; xnC1; xn/C S.xn�1; xn�1; xn/; S.xnC1; xnC1; xn/g

D .aC bC d/S.xn�1; xn�1; xn/C .2dC e/S.xnC1; xnC1; xn/

Cf f2S.xnC1; xnC1; xn/C S.xn�1; xn�1; xn/g
D .aC bC dC f /S.xn�1; xn�1; xn/C .2dC eC 2f /S.xnC1; xnC1; xn/
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and

.1 � 2d � e � 2f /S.xnC1; xnC1; xn/ � .aC bC dC f /S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � aC bC dC f

1 � 2d � e � 2f
S.xn�1; xn�1; xn/: (29)

Let p D aC bC dC f

1 � 2d � e � 2f
. Then we have p < 1 since aC bC 3dC eC 3f < 1.

Repeating this process in the condition (29), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (30)

Then for all n;m 2 N, n < m, using the conditions (14) and (30), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � aS.xn�1; xn�1; x/C bS.xn; xn; xn�1/

CcS.xn; xn; x/C dS.Tx;Tx; xn�1/C eS.Tx;Tx; x/

Cf maxfS.xn�1; xn�1; x/; S.xn; xn; xn�1/; S.xn; xn; x/;

S.Tx;Tx; xn�1/; S.Tx;Tx; x/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.x; x;Tx/ D S.Tx;Tx; x/ � dS.Tx;Tx; x/C eS.Tx;Tx; x/

Cf maxfS.Tx;Tx; x/; S.Tx;Tx; x/g D .dC eC f /S.Tx;Tx; x/;

which is a contradiction since 0 � dC eC f < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN7/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � aS.x; x; y/C bS.x; x; x/C cS.x; x; y/

CdS.y; y; x/C eS.y; y; y/C f maxfS.x; x; y/; S.x; x; x/; S.x; x; y/;
S.y; y; x/; S.y; y; y/g D .aC cC dC f /S.x; x; y/;

which implies x D y since aC cC dC f < 1.
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Now we show that T is continuous at x. Let .xn/ be any sequence in X such that
.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn;Tx/ � aS.xn; xn; x/C bS.Txn;Txn; xn/C cS.Txn;Txn; x/

CdS.Tx;Tx; xn/C eS.Tx;Tx; x/C f maxfS.xn; xn; x/; S.Txn;Txn; xn/;

S.Txn;Txn; x/; S.Tx;Tx; xn/; S.Tx;Tx; x/g
D aS.xn; xn; x/C bS.Txn;Txn; xn/C cS.Txn;Txn; x/C dS.Tx;Tx; xn/

Cf maxfS.xn; xn; x/; S.Txn;Txn; xn/; S.Txn;Txn; x/g: (31)

Then using the conditions (16), (31) and Lemma 1, we obtain

S.Txn;Txn;Tx/ D S.Txn;Txn; x/ � aS.xn; xn; x/C 2bS.Txn;Txn; x/

CbS.xn; xn; x/C cS.Txn;Txn; x/C dS.Tx;Tx; xn/C f maxfS.xn; xn; x/

C2S.Txn;Txn; x/C S.xn; xn; x/; S.Txn;Txn; x/g
D aS.xn; xn; x/C 2bS.Txn;Txn; x/C bS.xn; xn; x/C cS.Txn;Txn; x/

CdS.Tx;Tx; xn/C 2fS.Txn;Txn; x/C fS.xn; xn; x/

D .a C b C d C f /S.xn; xn; x/C .2b C c C 2f /S.Tx;Tx; xn/

and

.1 � 2b � c � 2f /S.Txn;Txn;Tx/ � .aC bC dC f /S.xn; xn; x/;

which implies

S.Txn;Txn;Tx/ � aC bC dC f

1 � 2b � c � 2f
S.xn; xn; x/: (32)

So using the condition (32) for n!1 we have

lim
n!1S.Txn;Txn;Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 4 is a generalization of Corollaries 5 and 6. Indeed, if we
take f D 0 in Theorem 4, we obtain Corollary 5 and if we take a D b D c D d D
e D 0; f D h in Theorem 4, we obtain Corollary 6. Also the condition d C 2e < 1

which is used in Corollary 5 is not necessary condition in Theorem 4.
Now we give an example of a self-mapping satisfying the condition .SN7/ such

that the condition (7) is not satisfied.

Example 4. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jxC z � 2yj ;
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for all x; y; z 2 R [10]. Let

Tx D x

2
C 1

3
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx;Tx;Ty/ D jx � yj ;
S.x; x; y/ D 2 jx � yj ;

S.Tx;Tx; y/ D 2
ˇ̌
ˇ̌ x
2
C 1

3
� y

ˇ̌
ˇ̌ ;

S.Ty;Ty; x/ D 2
ˇ̌
ˇ̌ y
2
C 1

3
� x

ˇ̌
ˇ̌ ;

S.Tx;Tx; x/ D 2
ˇ̌
ˇ̌�x

2
C 1

3

ˇ̌
ˇ̌ ;

S.Ty;Ty; y/ D 2
ˇ̌
ˇ̌�y

2
C 1

3

ˇ̌
ˇ̌ :

T satisfies the condition .SN7/ for a D 1

2
; b D c D d D e D 0 and f D 1

7
. Then T

has a unique fixed point x D 2

3
. But T does not satisfy the condition (7). Indeed, for

x D 1; y D 0 we obtain

S.Tx;Tx;Ty/ D 1

2
� h max

	
5

6
; 1;

2

3
;
1

6
;
1

3



D h;

which is a contradiction since h <
1

3
.

Definition 10. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN8) There exist real numbers a; b; c; d; e; f satisfying maxfa C b C 3d C e C
3f ; aC cC dC f ; 2bC cC 2f g < 1 with a; b; c; d; e; f � 0 such that

S.Tmx;Tmx;Tmy/ � aS.x; x; y/C bS.Tmx;Tmx; x/C cS.Tmx;Tmx; y/

CdS.Tmy;Tmy; x/C eS.Tmy;Tmy; y/C f maxfS.x; x; y/;
S.Tmx;Tmx; x/; S.Tmx;Tmx; y/; S.Tmy;Tmy; x/; S.Tmy;Tmy; y/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 4.

Corollary 12. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN8/, then T has a unique fixed point x in X and Tm

is continuous at x.
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Proof. It follows from Theorem 4 by the same method used in the proof of
Corollary 9.

Definition 11. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN9) There exist real numbers a; b; c satisfying 3aCbC2c < 1 with a; b; c � 0
such that

S.Tx;Tx;Ty/ � a.S.Tx;Tx; y/C S.Ty;Ty; x//C bS.x; x; y/

Cc maxfS.Tx;Tx; x/; S.Ty;Ty; y/g;

for all x; y 2 X.

Theorem 5. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN9/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN9/ we have

S.xn; xn; xnC1/ D S.Txn�1;Txn�1;Txn/ � a.S.xn; xn; xn/C S.xnC1; xnC1; xn�1//

CbS.xn�1; xn�1; xn/C c maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g
D aS.xnC1; xnC1; xn�1/C bS.xn�1; xn�1; xn/

Cc maxfS.xn; xn; xn�1/; S.xnC1; xnC1; xn/g: (33)

Then using Lemma 1 and the conditions (11) and (33), we obtain

S.xn; xn; xnC1/ � 2aS.xnC1; xnC1; xn/C aS.xn�1; xn�1; xn/C bS.xn�1; xn�1; xn/

Cc.S.xn; xn; xn�1/C S.xnC1; xnC1; xn//

D 2aS.xnC1; xnC1; xn/C .aC b/S.xn�1; xn�1; xn/

CcS.xn; xn; xn�1/C cS.xnC1; xnC1; xn/

D .2aC c/S.xnC1; xnC1; xn/C .aC bC c/S.xn�1; xn�1; xn/

and

.1 � 2a � c/S.xn; xn; xnC1/ � .aC bC c/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � aC bC c

1 � 2a � c
S.xn�1; xn�1; xn/: (34)

Let p D aC bC c

1 � 2a � c
. Then we have p < 1 since 3aC bC 2c < 1.
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Repeating this process in the condition (34), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (35)

Then for all n;m 2 N, n < m, using the conditions (14) and (35), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � a.S.xn; xn; x/C S.Tx;Tx; xn�1//

CbS.xn�1; xn�1; x/C c maxfS.xn; xn; xn�1/; S.Tx;Tx; x/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx;Tx; x/ � .aC c/S.Tx;Tx; x/;

which is a contradiction since 0 � aC c < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN9/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � a.S.x; x; y/C S.y; y; x//

CbS.x; x; y/C c maxfS.x; x; x/; S.y; y; y/g
D .2aC b/S.x; x; y/;

which implies x D y since 2aC b < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn; Tx/ � a.S.Txn; Txn; x/C S.Tx; Tx; xn//C bS.xn; xn; x/

Cc maxfS.Txn; Txn; xn/; S.Tx; Tx; x/g
D a.S.Txn; Txn; x/C S.Tx; Tx; xn//C bS.xn; xn; x/C cS.Txn; Txn; xn/: (36)

Then using the conditions (16), (36) and Lemma 1, we obtain

S.Txn;Txn;Tx/ � aS.Txn;Txn; x/C aS.Tx;Tx; xn/C bS.xn; xn; x/

C2cS.Txn;Txn; x/C cS.xn; xn; x/
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and

.1 � a � 2c/S.Txn;Txn;Tx/ � .aC bC c/S.xn; xn; x/;

which implies

S.Txn;Txn;Tx/ � aC bC c

1 � a � 2c
S.xn; xn; x/: (37)

So using the condition (37), for n!1 we have

lim
n!1S.Txn;Txn;Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 5 is a generalization of Corollary 7. Indeed, if we take
b D c D 0 in Theorem 5, we obtain Corollary 7.

Now we give an example of a self-mapping satisfying the condition .SN9/ such
that the condition (8) is not satisfied.

Example 5. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jxC z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D 2x

3
C 1

4
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx;Tx;Ty/ D 4

3
jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx;Tx; y/ D 2
ˇ̌
ˇ̌2x

3
C 1

4
� y

ˇ̌
ˇ̌ ;

S.Ty;Ty; x/ D 2
ˇ̌
ˇ̌2y

3
C 1

4
� x

ˇ̌
ˇ̌ ;

S.Tx;Tx; x/ D 2
ˇ̌
ˇ̌�x

3
C 1

4

ˇ̌
ˇ̌ ;

S.Ty;Ty; y/ D 2
ˇ̌
ˇ̌�y

3
C 1

4

ˇ̌
ˇ̌ :
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T satisfies the condition .SN9/ for a D 0; b D 2

3
and c D 1

7
. Then T has a unique

fixed point x D 3

4
. But T does not satisfy the condition (8). Indeed, for x D 1; y D 0

we obtain

S.Tx;Tx;Ty/ D 2

3
� a.S.Tx;Tx; x/C S.Ty;Ty; y// D 5a

3
;

which is a contradiction since a <
1

3
.

Definition 12. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN10) There exist real numbers a; b; c satisfying 3aCbC2c < 1with a; b; c � 0
such that

S.Tmx;Tmx;Tmy/ � a.S.Tmx;Tmx; y/C S.Tmy;Tmy; x//C bS.x; x; y/

C c maxfS.Tmx;Tmx; x/; S.Tmy;Tmy; y/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 5.

Corollary 13. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition .SN10/, then T has a unique fixed point x in X and
Tm is continuous at x.

Proof. It follows from Theorem 5 by the same method used in the proof of
Corollary 9.

Definition 13. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

.SN11/ There exist real numbers a; b; c satisfying 2aCbC3c < 1with a; b; c � 0
such that

S.Tx;Tx;Ty/ � a.S.Tx;Tx; x/C S.Ty;Ty; y//C bS.x; x; y/

C c maxfS.Tx;Tx; y/; S.Ty;Ty; x/g;

for all x; y 2 X.

Theorem 6. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN11/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN11/ we have
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S.xn; xn; xnC1/ D S.Txn�1;Txn�1;Txn/ � a.S.xn; xn; xn�1/C S.xnC1; xnC1; xn//

C bS.xn�1; xn�1; xn/C c maxfS.xn; xn; xn/; S.xnC1; xnC1; xn�1/g
D aS.xn; xn; xn�1/C aS.xnC1; xnC1; xn/

C bS.xn�1; xn�1; xn/C cS.xnC1; xnC1; xn�1/: (38)

Then using Lemma 1 and the conditions (11) and (38), we obtain

S.xn; xn; xnC1/ � aS.xn; xn; xn�1/C aS.xnC1; xnC1; xn/C bS.xn�1; xn�1; xn/

C2cS.xnC1; xnC1; xn/C cS.xn�1; xn�1; xn/

D .aC 2c/S.xnC1; xnC1; xn/C .aC bC c/S.xn�1; xn�1; xn/

and

.1 � a � 2c/S.xn; xn; xnC1/ � .aC bC c/S.xn�1; xn�1; xn/;

which implies

S.xn; xn; xnC1/ � aC bC c

1 � a � 2c
S.xn�1; xn�1; xn/: (39)

Let p D aC bC c

1 � a � 2c
. Then we have p < 1 since 2aC bC 3c < 1.

Repeating this process in the condition (39), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (40)

Then for all n;m 2 N, n < m, using the conditions (14) and (40), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � a.S.xn; xn; xn�1/C S.Tx;Tx; x//

CbS.xn�1; xn�1; x/C c maxfS.xn; xn; x/; S.Tx;Tx; xn�1/g
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and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx;Tx; x/ � .aC c/S.Tx;Tx; x/;

which is a contradiction since 0 � aC c < 1. So we have Tx D x.
Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and

Ty D y. Using the condition .SN11/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � a.S.x; x; x/C S.y; y; y//

CbS.x; x; y/C c maxfS.x; x; y/; S.y; y; x/g
D .bC c/S.x; x; y/;

which implies x D y since bC c < 1.
Now we show that T is continuous at x. Let .xn/ be any sequence in X such that

.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn;Tx/ � a.S.Txn;Txn; xn/C S.Tx;Tx; x//C bS.xn; xn; x/

Cc maxfS.Txn;Txn; x/; S.Tx;Tx; xn/g
D aS.Txn;Txn; xn/C bS.xn; xn; x/

Cc maxfS.Txn;Txn; x/; S.Tx;Tx; xn/g: (41)

Then using the conditions (16), (41) and Lemma 1, we obtain

S.Txn;Txn;Tx/ � 2aS.Txn;Txn; x/C aS.xn; xn; x/C bS.xn; xn; x/

CcS.Txn;Txn; x/C cS.Tx;Tx; xn/

D .2aC c/S.Txn;Txn; x/C .aC bC c/S.Tx;Tx; xn/

and

.1 � 2a � c/S.Txn;Txn;Tx/ � .aC bC c/S.xn; xn; x/;

which implies

S.Txn;Txn;Tx/ � aC bC c

1 � 2a � c
S.xn; xn; x/: (42)

So using the condition (42), for n!1 we have

lim
n!1S.Txn;Txn;Tx/ D 0:
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Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

We note that Theorem 6 is a generalization of Corollary 8. Indeed, if we take
b D c D 0 in Theorem 6, we obtain Corollary 8.

Now we give an example of a self-mapping satisfying the condition .SN11/ such
that the condition (9) is not satisfied.

Example 6. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jxC z � 2yj ;

for all x; y; z 2 R [10]. Let

Tx D 3x

4
C 1

5
:

Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx;Tx;Ty/ D 3

2
jx � yj ;

S.x; x; y/ D 2 jx � yj ;

S.Tx;Tx; y/ D 2
ˇ̌
ˇ̌3x

4
C 1

5
� y

ˇ̌
ˇ̌ ;

S.Ty;Ty; x/ D 2
ˇ̌
ˇ̌3y

4
C 1

5
� x

ˇ̌
ˇ̌ ;

S.Tx;Tx; x/ D 2
ˇ̌
ˇ̌1
5
� x

4

ˇ̌
ˇ̌ ;

S.Ty;Ty; y/ D 2
ˇ̌
ˇ̌1
5
� y

4

ˇ̌
ˇ̌ :

T satisfies the condition .SN11/ for a D 0; b D 3

4
, and c D 1

13
. Then T has a unique

fixed point x D 4

5
. But T does not satisfy the condition (9). Indeed, for x D 1; y D 0,

we obtain

S.Tx;Tx;Ty/ D 3

2
� a.S.Tx;Tx; x/C S.Ty;Ty; y// D a

2
;

which is a contradiction since a <
1

2
.

Definition 14. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.
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(SN12) There exist real numbers a; b; c satisfying 2aCbC3c < 1with a; b; c � 0
such that

S.Tmx;Tmx;Tmy/ � a.S.Tmx;Tmx; x/C S.Tmy;Tmy; y//C bS.x; x; y/

Cc maxfS.Tmx;Tmx; y/; S.Tmy;Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 6.

Corollary 14. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN12/, then T has a unique fixed point x in X and Tm

is continuous at x.

Proof. It follows from Theorem 6 by the same method used in the proof of
Corollary 9.

Definition 15. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN13) There exist a real number h satisfying 0 � h <
1

4
such that

S.Tx;Tx;Ty/ � h maxfS.Tx;Tx; y/CS.Ty;Ty; y/; S.Ty;Ty; x/CS.Tx;Tx; x/g;

for all x; y 2 X.

Theorem 7. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN13/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN13/ we have

S.xn; xn; xnC1/ D S.Txn�1;Txn�1;Txn/

� h maxfS.xn; xn; xn/C S.xnC1; xnC1; xn/;

S.xnC1; xnC1; xn�1/C S.xn; xn; xn�1/g
D h maxfS.xnC1; xnC1; xn/; S.xnC1; xnC1; xn�1/C S.xn; xn; xn�1/g: (43)

Then using Lemma 1 and the conditions (11) and (43), we obtain

S.xn; xn; xnC1/ � h maxfS.xnC1; xnC1; xn/; 2S.xnC1; xnC1; xn/C 2S.xn�1; xn�1; xn/g
D 2hS.xnC1; xnC1; xn/C 2hS.xn; xn; xn�1/

and

.1 � 2h/S.xn; xn; xnC1/ � 2hS.xn; xn; xn�1/;
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which implies

S.xn; xn; xnC1/ � 2h

1 � 2h
S.xn�1; xn�1; xn/: (44)

Let p D 2h

1 � 2h
. Then we have p < 1 since a <

1

4
.

Repeating this process in the condition (44), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (45)

Then for all n;m 2 N, n < m, using the conditions (14) and (45), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � h maxfS.xn; xn; x/C S.Tx;Tx; x/;

S.Tx;Tx; xn�1/C S.xn; xn; xn�1/g

and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx;Tx; x/ � hS.Tx;Tx; x/;

which is a contradiction since 0 � h <
1

4
. So we have Tx D x.

Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN13/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � h maxfS.x; x; y/C S.y; y; y/;

S.y; y; x/C S.x; x; x/g D hS.x; x; y/;

which implies x D y since h <
1

4
.

Now we show that T is continuous at x. Let .xn/ be any sequence in X such that
.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn; Tx/ � h maxfS.Txn;Txn; x/C S.Tx; Tx; x/; S.Tx; Tx; xn/C S.Txn;Txn; xn/g:
(46)
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Then using the conditions (16), (46) and Lemma 1, we obtain

S.Txn;Txn;Tx/ � h maxfS.Txn;Txn; x/; 2S.xn; xn; x/C 2S.Txn;Txn; x/g
D 2hS.Txn;Txn; x/C 2hS.xn; xn; x/

and

.1 � 2h/S.Txn;Txn;Tx/ � 2hS.xn; xn; x/;

which implies

S.Txn;Txn;Tx/ � 2h

1 � 2h
S.xn; xn; x/: (47)

So using the condition (47), for n!1 we have

lim
n!1S.Txn;Txn;Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

Definition 16. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN14) There exist a real number h satisfying 0 � h <
1

4
such that

S.Tmx;Tmx;Tmy/ � h maxfS.Tmx;Tmx; y/C S.Tmy;Tmy; y/;

S.Tmy;Tmy; x/C S.Tmx;Tmx; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 7.

Corollary 15. Let .X; S/ be a complete S-metric space and T be a self-mapping of
X. If T satisfies the condition .SN14/, then T has a unique fixed point x in X and Tm

is continuous at x.

Proof. It follows from Theorem 7 by the same method used in the proof of
Corollary 9.

Definition 17. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.

(SN15) There exist a real number h satisfying 0 � h <
1

3
such that

S.Tx;Tx;Ty/ � h maxfS.Tx;Tx; x/C S.Ty;Ty; y/; S.Tx;Tx; y/C S.Ty;Ty; x/g;

for all x; y 2 X.
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Theorem 8. Let .X; S/ be a complete S-metric space and T be a self-mapping of X.
If T satisfies the condition .SN15/, then T has a unique fixed point x in X and T is
continuous at x.

Proof. Let x0 2 X and let the sequence .xn/ be defined as in the proof of Theorem 1.
Suppose that xn ¤ xnC1 for all n. Using the condition .SN15/ we have

S.xn; xn; xnC1/ D S.Txn�1;Txn�1;Txn/

� h maxfS.xn; xn; xn�1/C S.xnC1; xnC1; xn/; S.xn; xn; xn/

CS.xnC1; xnC1; xn�1/g: (48)

Then using Lemma 1 and the conditions (11) and (48), we obtain

S.xn; xn; xnC1/ � h maxfS.xn; xn; xn�1/C S.xnC1; xnC1; xn/;

2S.xnC1; xnC1; xn/C S.xn�1; xn�1; xn/g
D 2hS.xnC1; xnC1; xn/C hS.xn; xn; xn�1/

and

.1 � 2h/S.xn; xn; xnC1/ � hS.xn; xn; xn�1/;

which implies

S.xn; xn; xnC1/ � h

1 � 2h
S.xn�1; xn�1; xn/: (49)

Let p D h

1 � 2h
. Then we have p < 1 since a <

1

3
.

Repeating this process in the condition (49), we obtain

S.xn; xn; xnC1/ � pnS.x0; x0; x1/: (50)

Then for all n;m 2 N, n < m, using the conditions (14) and (50), we have

S.xn; xn; xm/ � 2pn

1 � p
S.x0; x0; x1/:

Hence lim
n;m!1S.xn; xn; xm/ D 0 since lim

n;m!1
2pn

1 � p
S.x0; x0; x1/ D 0. Therefore .xn/

is a Cauchy sequence. By the completeness hypothesis, there exists x 2 X such that
.xn/ is convergent to x. Assume that Tx ¤ x. Then we have

S.xn; xn;Tx/ D S.Txn�1;Txn�1;Tx/ � h maxfS.xn; xn; xn�1/C S.Tx;Tx; x/;

S.xn; xn; x/C S.Tx;Tx; xn�1/g
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and so taking the limit for n ! 1, using the continuity of the function S and
Lemma 1, we obtain

S.Tx;Tx; x/ � hS.Tx;Tx; x/;

which is a contradiction since 0 � h <
1

3
. So we have Tx D x.

Now we show the uniqueness of x. Suppose that x ¤ y such that Tx D x and
Ty D y. Using the condition .SN15/ and Lemma 1, we have

S.Tx;Tx;Ty/ D S.x; x; y/ � h maxfS.x; x; x/C S.y; y; y/;

S.x; x; y/C S.y; y; x/g D 2hS.x; x; y/;

which implies x D y since h <
1

3
.

Now we show that T is continuous at x. Let .xn/ be any sequence in X such that
.xn/ is convergent to x. For n 2 N we have

S.Txn;Txn;Tx/ � h maxfS.Txn;Txn; xn/CS.Tx;Tx; x/; S.Txn;Txn; x/CS.Tx;Tx; xn/g:
(51)

Then using the conditions (16), (51) and Lemma 1, we obtain

S.Txn;Txn;Tx/ � h maxf2S.Txn;Txn; x/C S.xn; xn; x/;

S.Txn;Txn; x/C S.xn; xn; x/g
D 2hS.Txn;Txn; x/C hS.xn; xn; x/

and

.1 � 2h/S.Txn;Txn;Tx/ � hS.xn; xn; x/;

which implies

S.Txn;Txn;Tx/ � h

1 � 2h
S.xn; xn; x/: (52)

So using the condition (52), for n!1 we have

lim
n!1S.Txn;Txn;Tx/ D 0:

Hence the sequence .Txn/ is convergent to Tx D x by Definition 2 .1/. Consequently
T is continuous at x by Lemma 3.

Definition 18. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X.
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(SN16) There exist a real number h satisfying 0 � h <
1

3
such that

S.Tmx;Tmx;Tmy/ � h maxfS.Tmx;Tmx; x/C S.Tmy;Tmy; y/;

S.Tmx;Tmx; y/C S.Tmy;Tmy; x/g;

for all x; y 2 X and some m 2 N.

We give the following corollary as a result of Theorem 8.

Corollary 16. Let .X; S/ be a complete S-metric space and T be a self-mapping
of X. If T satisfies the condition .SN16/, then T has a unique fixed point x in X and
Tm is continuous at x.

Proof. It follows from Theorem 8 by the same method used in the proof of
Corollary 9.

Notice that the condition .SN15/ is the special case of the condition .SN1/ for
a D 0; b D h.

Example 7. Let R be the S-metric space with

S.x; y; z/ D jx � zj C jxC z � 2yj ;
for all x; y; z 2 R [10]. Let us consider the following constant function:

Tx D k; k 2 Œ0; 1�:
Then T is a self-mapping on the complete S-metric space Œ0; 1�. We have

S.Tx;Tx;Ty/ D 0;
S.Tx;Tx; y/ D 2 jk � yj ;
S.Ty;Ty; x/ D 2 jk � xj ;
S.Tx;Tx; x/ D 2 jk � xj ;
S.Ty;Ty; y/ D 2 jk � yj :

T satisfies the conditions .SN13/ and .SN15/ for all h 2 Œ0; 1
3
/, respectively. Then

T has a unique fixed point x D k.

References

1. Chang, S.S.: On Rhoades’ open questions and some fixed point theorems for a class of
mappings. Proc. Am. Math. Soc. 97(2), 343–346 (1986)

2. Chang, S.S., Zhong, Q.C.: On Rhoades’ open questions. Proc. Am. Math. Soc. 109(1), 269–274
(1990)



Some Generalizations of Fixed-Point Theorems on S-Metric Spaces 261

3. Ciric, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2),
267–273 (1974)

4. Dung, N.V., Hieu, N.T., Radojevic, S.: Fixed point theorems for g-monotone maps on partially
ordered S-metric spaces. Filomat 28(9), 1885–1898 (2014)

5. Fisher, B.: Quasi-contractions on metric spaces. Proc. Am. Math. Soc. 75(2), 321–325 (1979)
6. Gupta, A.: Cyclic contraction on S-metric space. Int. J. Anal. Appl. 3(2), 119–130 (2013)
7. Hieu, N.T., Ly, N.T., Dung, N.V.: A generalization of ciric quasi-contractions for maps on

S-metric spaces. Thai J. Math. 13(2), 369–380 (2015)
8. Liu, Z., Xu, Y., Cho, Y.J.: On characterizations of fixed and common fixed points. J. Math.

Anal. Appl. 222, 494–504 (1998)
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1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[46] concerning the stability of group homomorphisms. The functional equation
f .xC y/ D f .x/C f .y/ is called the Cauchy equation. In particular, every solution
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of the Cauchy equation is said to be a (Cauchy) additive mapping. Hyers [17] gave
a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
theorem was generalized by Aoki [1] for additive mappings and by Rassias [43] for
linear mappings by considering an unbounded Cauchy difference. A generalization
of the Th. M. Rassias theorem was obtained by Găvruta [14] by replacing the
unbounded Cauchy difference by a general control function in the spirit of the
Th. M. Rassias’ approach.

The functional equation f
�

xCy
2

�
D 1

2
f .x/C 1

2
f .y/ is called the Jensen equation.

The functional equation

f .xC y/C f .x � y/ D 2f .x/C 2f .y/

is called the quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The functional
equation

2f

�
xC y

2

�
C 2

�x � y

2

�
D f .x/C f .y/

is called a Jensen-type quadratic equation. The stability problems of several
functional equations have been extensively investigated by a number of
authors, and there are many interesting results concerning this problem
(see [9, 13, 18–20, 22, 34–36, 44]).

Gilányi [15] showed that if f satisfies the functional inequality

k2f .x/C 2f .y/ � f .x � y/k � kf .xC y/k (1)

then f satisfies the Jordan-von Neumann functional equation

2f .x/C 2f .y/ D f .xC y/C f .x � y/:

See also [45]. Fechner [11] and Gilányi [16] proved the Hyers–Ulam stability of the
functional inequality (1). Park et al. [41] investigated the following three-variable
additive functional inequalities

kf .x/C f .y/C f .z/k �
����2f

�
xC yC z

2

����� ; (2)

kf .x/C f .y/C f .z/k � kf .xC yC z/k; (3)

kf .x/C f .y/C 2f .z/k �
����2f

�
xC y

2
C z

����� (4)

and proved the Hyers–Ulam stability of the functional inequalities (2)–(4) in Banach
spaces.

Katsaras [23] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view [12, 27, 47]. In particular, Bag and
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Samanta [2], following Cheng and Mordeson [7], gave an idea of fuzzy norm in
such a manner that the corresponding fuzzy metric is of Kramosil and Michalek
type [26]. They established a decomposition theorem of a fuzzy norm into a family
of crisp norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 30, 32] to investigate
a fuzzy version of the Hyers–Ulam stability for functional inequalities in the fuzzy
normed vector space setting.

Definition 1 ([2, 30–32]). Let X be a real vector space. A function N W X � R !
Œ0; 1� is called a fuzzy norm on X if for all x; y 2 X and all s; t 2 R,

.N1/ N.x; t/ D 0 for t � 0;

.N2/ x D 0 if and only if N.x; t/ D 1 for all t > 0;

.N3/ N.cx; t/ D N.x; t
jcj / if c ¤ 0;

.N4/ N.xC y; sC t/ � minfN.x; s/;N.y; t/g;

.N5/ N.x; �/ is a nondecreasing function of R and limt!1 N.x; t/ D 1;

.N6/ for x ¤ 0, N.x; �/ is continuous on R.

The pair .X;N/ is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are

given in [30, 32].

Definition 2 ([2, 30–32]). Let .X;N/ be a fuzzy normed vector space. A sequence
fxng in X is said to be convergent or converge if there exists an x 2 X such that
limn!1 N.xn � x; t/ D 1 for all t > 0. In this case, x is called the limit of the
sequence fxng and we denote it by N-limn!1 xn D x.

Definition 3 ([2, 30, 32]). Let .X;N/ be a fuzzy normed vector space. A sequence
fxng in X is called Cauchy if for each " > 0 and each t > 0 there exists an n0 2 N
such that for all n � n0 and all p > 0, we have N.xnCp � xn; t/ > 1 � ".

It is well known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete, and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f W X ! Y between fuzzy normed vector spaces X and Y
is continuous at a point x0 2 X if for each sequence fxng is converging to x0 in X,
and then the sequence ff .xn/g converges to f .x0/. If f W X ! Y is continuous at each
x 2 X, then f W X ! Y is said to be continuous on X (see [3]).

In [28], Lee, Saadati, and Shin investigated the following functional inequalities

N.f .x/C f .y/C f .z/; t/ � N
�

f .xC yC z/;
t

2

�
(5)

for all x; y; z 2 X and all t > 0, and

N.f .x/C f .y/C 2f .z/; t/ � N

�
2f

�
xC y

2
C z

�
;
2

3
t

�
(6)
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for all x; y; z 2 X and all t > 0, and proved the Hyers–Ulam stability of the
functional inequalities (5) and (6) in fuzzy Banach spaces in the spirit of the Th.
M. Rassias’ stability approach.

In [39], Park defined and solved the additive �-functional inequalities

kf .xC y/ � f .x/ � f .y/k �
�����
�
2f

�
xC y

2

�
� f .x/ � f .y/

����� (7)

and
����2f

�
xC y

2

�
� f .x/ � f .y/

���� � k� .f .xC y/ � f .x/ � f .y//k ; (8)

where � is a fixed complex number with j�j < 1., and proved the Hyers–Ulam
stability of the additive �-functional inequalities (7) and (8) in complex Banach
spaces by using the direct method.

In [40], Park defined and solved the quadratic �-functional inequalities

kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k (9)

�
�����
�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

����� ;

where � is a fixed complex number with j�j < 1, and

����2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

���� (10)

� k�.f .xC y/C f .x � y/ � 2f .x/ � 2f .y//k;

where � is a fixed complex number with j�j < 1
2
.

Using the direct method, Park [40] proved the Hyers–Ulam stability of the
quadratic �-functional inequalities (9) and (10) in complex Banach spaces.

We recall a fundamental result in fixed point theory.
Let X be a set. A function d W X � X ! Œ0;1� is called a generalized metric on

X if d satisfies

(1) d.x; y/ D 0 if and only if x D y;
(2) d.x; y/ D d.y; x/ for all x; y 2 X;
(3) d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X.

Theorem 1 ([4, 10]). Let .X; d/ be a complete generalized metric space and let
J W X ! X be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x 2 X, either

d.Jnx; JnC1x/ D1
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for all nonnegative integers n, or there exists a positive integer n0 such that

(1) d.Jnx; JnC1x/ <1; 8n � n0;
(2) the sequence fJnxg converges to a fixed point y� of J;
(3) y� is the unique fixed point of J in the set Y D fy 2 X j d.Jn0x; y/ <1g;
(4) d.y; y�/ � 1

1�L d.y; Jy/ for all y 2 Y.

In 1996, Isac and Rassias [21] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with
applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors
(see [5, 6, 8, 30, 33, 37, 38, 42]).

In [25], Kim, Anastassiou, and Park solved the following additive �-functional
inequalities

N.f .xC y/ � f .x/ � f .y/; t/ � N

�
�

�
2f

�
xC y

2

�
� f .x/ � f .y/

�
; t

�
(11)

and

N

�
2f

�
xC y

2

�
� f .x/ � f .y/; t

�
� N.� .f .xC y/ � f .x/ � f .y// ; t/ (12)

in fuzzy normed spaces, where � is a fixed real number with j�j < 1, and proved
the Hyers–Ulam stability of the additive �-functional inequalities (11) and (12) in
fuzzy Banach spaces by using the fixed point method.

In [24], Kim and Park solved the quadratic �-functional inequalities

kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k (13)

�
�����
�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

����� ;

where � is a fixed complex number with j�j < 1, and

����2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

���� (14)

� k�.f .xC y/C f .x � y/ � 2f .x/ � 2f .y//k;

where � is a fixed complex number with j�j < 1
2
, and proved the Hyers–Ulam

stability of the quadratic �-functional inequalities (13) and (14) in complex Banach
spaces by using the fixed point method.

This paper is organized as follows: In Sect. 2, we introduce and solve the three-
variable additive functional inequalities (2)–(4) and prove the Hyers–Ulam stability
of the three-variable additive functional inequalities (2)–(4) in Banach spaces by
using the direct method.
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In Sect. 3, we introduce and solve the additive functional inequalities (5) and (6)
and prove the Hyers–Ulam stability of the additive functional inequalities (5) and (6)
in fuzzy Banach spaces by using the direct method.

In Sect. 4, we introduce and solve the additive �-functional inequalities (7)
and (8) and the quadratic �-functional inequalities (9) and (10) and prove the Hyers–
Ulam stability of the additive �-functional inequalities (7) and (8) and the quadratic
�-functional inequalities (9) and (10) in Banach spaces by using the direct method.

In Sect. 5, we introduce and solve the additive �-functional inequalities (11)
and (12) and the quadratic �-functional inequalities (13) and (14) and prove the
Hyers–Ulam stability of the additive �-functional inequalities (11) and (12) and the
quadratic �-functional inequalities (13) and (14) in fuzzy Banach spaces by using
the fixed point method.

2 Functional Inequalities in Banach Spaces

Throughout this section, assume that X is a normed space and Y is a Banach space.
This section contains the results given in [41].

Proposition 1 ([41, Proposition 2.1]). Let f W X ! Y be a mapping such that

kf .x/C f .y/C f .z/k � k2f

�
xC yC z

2

�
k (15)

for all x; y; z 2 X. Then f is Cauchy additive.

Proof. Letting x D y D z D 0 in (15), we get k3f .0/k � k2f .0/k. So f .0/ D 0.
Letting z D 0 and y D �x in (15), we get

kf .x/C f .�x/k � k2f .0/k D 0

for all x 2 X. Hence, f .�x/ D �f .x/ for all x 2 X.
Letting z D �x � y in (15), we get

kf .x/C f .y/ � f .xC y/k D kf .x/C f .y/C f .�x � y/k � k2f .0/k D 0

for all x; y 2 X. Thus,

f .xC y/ D f .x/C f .y/

for all x; y 2 X, as desired.

Similarly, we can obtain the following propositions.

Proposition 2 ([41, Proposition 2.2]). Let f W X ! Y be a mapping such that

kf .x/C f .y/C f .z/k � kf .xC yC z/k

for all x; y; z 2 X. Then f is Cauchy additive.
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Proposition 3 ([41, Proposition 2.3]). Let f W X ! Y be a mapping such that

kf .x/C f .y/C 2f .z/k �
����2f

�
xC y

2
C z

�����

for all x; y; z 2 X. Then f is Cauchy additive.

We prove the Hyers–Ulam stability of a functional inequality associated with a
Jordan-von Neumann type three-variable Jensen additive functional equation.

Theorem 2 ([41, Theorem 3.1]). Let r > 1 and � be nonnegative real numbers,
and let f W X ! Y be a mapping such that

kf .x/C f .y/C f .z/k �
����2f

�
xC yC z

2

�����C �.kxkr C kykr C kzkr/ (16)

for all x; y; z 2 X. Then there exists a unique Cauchy additive mapping h W X ! Y
such that

����
f .x/ � f .�x/

2
� h.x/

���� �
2r C 2
2r � 2 �kxk

r (17)

for all x 2 X.

Proof. Letting y D x and z D �2x in (16), we get

k2f .x/C f .�2x/k � .2C 2r/�kxkr (18)

for all x 2 X. Replacing x by �x in (18), we get

k2f .�x/C f .2x/k � .2C 2r/�kxkr (19)

for all x 2 X. Let g.x/ WD f .x/�f .�x/
2

. It follows from (18) and (19) that

k2g.x/ � g.2x/k � .2C 2r/�kxkr (20)

for all x 2 X. So
���g.x/ � 2g

� x

2

���� � 2C 2r

2r
�kxkr

for all x 2 X. Hence,

���2lg
� x

2l

�
� 2mg

� x

2m

���� �
m�1X

jDl

���2jg
� x

2j

�
� 2jC1g

� x

2jC1
����

� 2C 2r

2r

m�1X

jDl

2j

2rj
�kxkr (21)
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for all nonnegative integers m and l with m > l and all x 2 X. It follows from (21)
that the sequence f2ng. x

2n /g is a Cauchy sequence for all x 2 X. Since Y is complete,
the sequence f2ng. x

2n /g converges. So one can define the mapping h W X ! Y by

h.x/ WD lim
n!1 2ng.

x

2n
/

for all x 2 X. Moreover, letting l D 0 and passing the limit m ! 1 in (21), we
get (17).

It follows from (16) that

kh.x/C h.y/C h.z/k D lim
n!1 2nkg. x

2n
/C g.

y

2n
/C g.

z

2n
/k

D lim
n!1

2n

2
kf . x

2n
/C f .

y

2n
/C . z

2n
/ � f .

�x

2n
/ � f .

�y

2n
/ � .�z

2n
/k

� lim
n!1

2n

2
k2f .

xC yC z

2n
/ � 2f .

xC yC z

�2n
/k C lim

n!1
2n�

2nr
.kxkr C kykr C kzkr/

D k2h.
xC yC z

2
/k

for all x; y; z 2 X. So

kh.x/C h.y/C h.z/kY � k2h.
xC yC z

2
/kY

for all x; y; z 2 X. By Proposition 1, the mapping h W X ! Y is Cauchy additive.
Now, let T W X ! Y be another Cauchy additive mapping satisfying (17). Then

we have

kh.x/ � T.x/k D 2nkh. x

2n
/ � T.

x

2n
/k

� 2n.kh. x

2n
/ � g.

x

2n
/k C kT. x

2n
/ � g.

x

2n
/k/

� 2.2r C 2/2n

.2r � 2/2nr
�kxkr;

which tends to zero as n! 1 for all x 2 X. So we can conclude that h.x/ D T.x/
for all x 2 X. This proves the uniqueness of h. Thus, the mapping h W X ! Y is a
unique Cauchy additive mapping satisfying (17).

Similarly, we can obtain the following results.

Theorem 3 ([41, Theorem 3.2]). Let r < 1 and � be positive real numbers, and let
f W X ! Y be a mapping satisfying (16). Then there exists a unique Cauchy additive
mapping h W X ! Y such that

k f .x/ � f .�x/

2
� h.x/k � 2C 2r

2 � 2r
�kxkr

for all x 2 X.
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We prove the Hyers–Ulam stability of a functional inequality associated with a
Jordan-von Neumann type three-variable Cauchy additive functional equation.

Theorem 4 ([41, Theorem 4.1]). Let r > 1 and � be nonnegative real numbers,
and let f W X ! Y be a mapping such that

kf .x/C f .y/C f .z/k � kf .xC yC z/k C �.kxkr C kykr C kzkr/ (22)

for all x; y; z 2 X. Then there exists a unique Cauchy additive mapping h W X ! Y
such that

k f .x/ � f .�x/

2
� h.x/k � 2r C 2

2r � 2 �kxk
r

for all x 2 X.

Proof. Letting y D x and z D �2x in (22), we get

k2f .x/C f .�2x/k � .2C 2r/�kxkr (23)

for all x 2 X. Replacing x by �x in (23), we get

k2f .�x/C f .2x/k � .2C 2r/�kxkr (24)

for all x 2 X. Let g.x/ WD f .x/�f .�x/
2

. It follows from (23) and (24) that

k2g.x/ � g.2x/k � .2C 2r/�kxkr

for all x 2 X.
The rest of the proof is the same as in the proof of Theorem 2.

Theorem 5 ([41, Theorem 4.2]). Let r < 1 and � be positive real numbers, and let
f W X ! Y be a mapping satisfying (22). Then there exists a unique Cauchy additive
mapping h W X ! Y such that

k f .x/ � f .�x/

2
� h.x/k � 2C 2r

2 � 2r
�kxkr

for all x 2 X.

We prove the Hyers–Ulam stability of a functional inequality associated with a
Jordan-von Neumann type Cauchy-Jensen functional equation.

Theorem 6 ([41, Theorem 5.1]). Let r > 1 and � be nonnegative real numbers,
and let f W X ! Y be a mapping such that

kf .x/C f .y/C 2f .z/k � k2f .
xC y

2
C z/k C �.kxkr C kykr C kzkr/ (25)
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for all x; y; z 2 X. Then there exists a unique Cauchy additive mapping h W X ! Y
such that

k f .x/ � f .�x/

2
� h.x/k � 2r C 1

2r � 2 �kxk
r

for all x 2 X.

Proof. Replacing x by 2x and letting y D 0 and z D �x in (25), we get

kf .2x/C 2f .�x/k � .1C 2r/�kxkr (26)

for all x 2 X. Replacing x by �x in (26), we get

kf .�2x/C 2f .x/k � .1C 2r/�kxkr (27)

for all x 2 X. Let g.x/ WD f .x/�f .�x/
2

. It follows from (26) and (27) that

k2g.x/ � g.2x/k � .1C 2r/�kxkr

for all x 2 X. So

kg.x/ � 2g.
x

2
/k � 1C 2r

2r
�kxkr

for all x 2 X.
The rest of the proof is similar to the proof of Theorem 2.

Theorem 7 ([41, Theorem 5.2]). Let r < 1 and � be positive real numbers, and let
f W X ! Y be a mapping satisfying (25). Then there exists a unique Cauchy additive
mapping h W X ! Y such that

k f .x/ � f .�x/

2
� h.x/k � 1C 2r

2 � 2r
�kxkr

for all x 2 X.

3 Functional Inequalities in Fuzzy Banach Spaces

Throughout this paper, assume that X is a real vector space and .Y;N/ is a fuzzy
Banach space.

In this section, we investigate the functional inequalities (5) and (6) in fuzzy
normed vector spaces and prove the Hyers–Ulam stability of the functional inequal-
ities (5) and (6) in fuzzy Banach spaces.

This section contains the results given in [28].
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Lemma 1 ([28, Lemma 2.1]). Let .Z;N/ be a fuzzy normed vector space. Let f W
X ! Z be a mapping such that

N.f .x/C f .y/C f .z/; t/ � N
�

f .xC yC z/;
t

2

�
(28)

for all x; y; z 2 X and all t > 0. Then f is Cauchy additive, i.e., f .xCy/ D f .x/Cf .y/
for all x; y 2 X.

Proof. Letting x D y D z D 0 in (28), we get

N.3f .0/; t/ D N
�

f .0/;
t

3

�
� N

�
f .0/;

t

2

�

for all t > 0. By .N5/ and .N6/, N.f .0/; t/ D 1 for all t > 0. It follows from .N2/
that f .0/ D 0.

Letting y D �x and z D 0 in (28), we get

N.f .x/C f .�x/; t/ � N
�

f .0/;
t

2

�
D N

�
0;

t

2

�
D 1

for all t > 0. It follows from .N2/ that f .x/C f .�x/ D 0 for all x 2 X. So

f .�x/ D �f .x/

for all x 2 X.
Letting z D �x � y in (28), we get

N.f .x/C f .y/ � f .xC y/; t/ D N.f .x/C f .y/C f .�x � y/; t/

� N
�

f .0/;
t

2

�
D N

�
0;

t

2

�
D 1

for all x; y 2 X and all t > 0. By .N2/, N.f .x/ C f .y/ � f .x C y/; t/ D 1 for all
x; y 2 X and all t > 0. It follows from .N2/ that

f .xC y/ D f .x/C f .y/

for all x; y 2 X, as desired.

Similarly, we can obtain the following lemma.

Lemma 2 ([28, Lemma 2.2]). Let .Z;N/ be a fuzzy normed vector space. Let f W
X ! Z be a mapping such that

N.f .x/C f .y/C 2f .z/; t/ � N

�
2f

�
xC y

2
C z

�
;
2

3
t

�
(29)
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for all x; y; z 2 X and all t > 0. Then f is Cauchy additive, i.e., f .xCy/ D f .x/Cf .y/
for all x; y 2 X.

Now we prove the Hyers–Ulam stability of the Cauchy functional inequality (3)
in fuzzy Banach spaces.

Theorem 8 ([28, Theorem 2.3]). Let ' W X3 ! Œ0;1/ be a function such that

Q'.x; y; z/ WD
1X

nD0
2�n'.2nx; 2ny; 2nz/ <1 (30)

for all x; y; z 2 X. Let f W X ! Y be an odd mapping such that

lim
t!1 N.f .x/C f .y/C f .z/; t'.x; y; z// D 1 (31)

uniformly on X3. Then L.x/ WD N-limn!1 f .2nx/
2n exists for each x 2 X and defines a

Cauchy additive mapping L W X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C f .z/; ı'.x; y; z// � ˛ (32)

for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

ı

2
Q'.x; x;�2x/

�
� ˛

for all x 2 X.
Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N.f .x/ � L.x/; t Q'.x; x;�2x// D 1 (33)

uniformly on X.

Proof. Since f is an odd mapping, f .�x/ D �f .x/ for all x 2 X and f .0/ D 0.
Given " > 0, by (31), we can find some t0 > 0 such that

N.f .x/C f .y/C f .z/; t'.x; y; z// � 1 � " (34)

for all t � t0. By induction on n, we show that

N

 
2nf .x/ � f .2nx/; t

n�1X

kD0
2n�k�1'.2kx; 2kx;�2kC1x/

!
� 1 � " (35)

for all t � t0, all x 2 X, and all n 2 N.
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Letting y D x and z D �2x in (34), we get

N.2f .x/ � f .2x/; t'.x; x;�2x// � 1 � "

for all x 2 X and all t � t0. So we get (35) for n D 1.
Assume that (35) holds for n 2 N. Then

N

 
2nC1f .x/ � f .2nC1x/; t

nX

kD0
2n�k'.2kx; 2kx;�2kC1x/

!

� min

(
N

 
2nC1f .x/ � 2f .2nx/; t0

n�1X

kD0
2n�k'.2nx; 2nx;�2nC1x/

!
;

N.2f .2nx/ � f .2nC1x/; t0'.2nx; 2nx;�2nC1x//
�

� minf1 � "; 1 � "g D 1 � ":

This completes the induction argument. Letting t D t0 and replacing n and x by p
and 2nx in (35), respectively, we get

N

0

@ f .2nx/

2n � f .2nCpx/

2nCp
;

t0
2nCp

p�1X

kD0
2p�k�1'.2nCkx; 2nCkx;�2nCkC1x/

1

A � 1 � " (36)

for all integers n � 0; p > 0.
It follows from (30) and the equality

p�1X

kD0
2�n�k�1'.2nCkx; 2nCkx;�2nCkC1x/ D 1

2

nCp�1X

kDn

2�k'.2kx; 2kx;�2kC1x/

that for a given ı > 0 there is an n0 2 N such that

t0
2

nCp�1X

kDn

2�k'.2kx; 2kx;�2kC1x/ < ı

for all n � n0 and p > 0. Now we deduce from (36) that

N

�
f .2nx/

2n
� f .2nCpx/

2nCp
; ı

�

� N

 
f .2nx/

2n
� f .2nCpx/

2nCp
;

t0
2nCp

p�1X

kD0
2p�k�1'.2nCkx; 2nCkx;�2nCkC1x/

!

� 1 � "
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for each n � n0 and all p > 0. Thus, the sequence f f .2nx/
2n g is Cauchy in Y . Since Y is

a fuzzy Banach space, the sequence f f .2nx/
2n g converges to some L.x/ 2 Y . So we can

define a mapping L W X ! Y by L.x/ WD N-limn!1 f .2nx/
2n , namely, for each t > 0

and x 2 X, limn!1 N. f .2nx/
2n � L.x/; t/ D 1.

Let x; y; z 2 X. Fix t > 0 and 0 < " < 1. Since limn!1 2�n'.2nx; 2ny; 2nz/ D 0,
there is an n1 > n0 such that t0'.2nx; 2ny; 2nz/ < 2nt

4
for all n � n1. Hence, for each

n � n1, we have

N.L.x/C L.y/C L.z/; t/ � min
n
N
�

L.x/ � 2�nf .2nx/;
t

16

�
;

N
�

L.y/ � 2�nf .2ny/;
t

16

�
;N
�

L.z/ � 2�nf .2nz/;
t

16

�
;

N
�

L.xC yC z/ � 2�nf .2n.xC yC z//;
t

16

�
;

N

�
f .2n.xC yC z// � f .2nx/ � f .2ny/ � f .2nz/;

2nt

4

�
;

N
�

L.xC yC z/;
t

2

�o
:

The first four terms on the right-hand side of the above inequality tend to 1 as n!
1, and the fifth term is greater than

N.f .2n.xC yC z// � f .2nx/ � f .2ny/ � f .2nz/; t0'.2
nx; 2ny; 2nz//;

which is greater than or equal to 1 � ". Thus,

N.L.x/C L.y/C L.z/; t/ � min
n
N
�

L.xC yC z/;
t

2

�
; 1 � "

o

for all t > 0 and 0 < " < 1. So

N.L.x/C L.y/C L.z/; t/ � N
�

L.xC yC z/;
t

2

�

for all t > 0, or

N.L.x/C L.y/C L.z/; t/ � 1 � "

for all t > 0. For the former case, the mapping L W X ! Y is Cauchy additive,
by Lemma 1. For the latter case, N.L.x/ C L.y/ C L.z/; t/ D 1 for all t > 0. So
N.3L.x/; t/ D 1 for all t > 0 and for all x 2 X. By .N2/, L.x/ D 0 for all x 2 X.
Thus, the mapping L W X ! Y is Cauchy additive, i.e., L.xC y/ D L.x/C L.y/ for
all x; y 2 X.
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Now let for some positive ı and ˛ (32) holds. Let

'n.x; y; z/ WD
n�1X

kD0
2�k�1'.2kx; 2ky; 2kz/

for all x; y; z 2 X. Let x 2 X. By the same reasoning as in the beginning of the proof,
one can deduce from (32) that

N

 
2nf .x/ � f .2nx/; ı

n�1X

kD0
2n�k�1'.2kx; 2kx;�2kC1x/

!
� ˛ (37)

for all positive integers n. Let t > 0. We have

N.f .x/ � L.x/; ı'n.x; x;�2x/C t/ � min

	
N

�
f .x/ � f .2nx/

2n
; ı'n.x; x;�2x/

�

N

�
f .2nx/

2n
� L.x/; t

�

(38)

Combining (37) and (38) and the fact that limn!1 N. f .2nx/
2n � L.x/; t/ D 1, we

observe that

N.f .x/ � L.x/; ı'n.x; x;�2x/C t/ � ˛

for large enough n 2 N. Thanks to the continuity of the function N.f .x/ � L.x/; �/,
we see that N.f .x/� L.x/; ı

2
Q'.x; x;�2x/C t/ � ˛. Letting t! 0, we conclude that

N

�
f .x/ � L.x/;

ı

2
Q'.x; x;�2x/

�
� ˛:

To end the proof, it remains to prove the uniqueness assertion. Let T be another
additive mapping satisfying (33). Fix c > 0. Given " > 0, by (33) for L and T , we
can find some t0 > 0 such that

N
�

f .x/ � L.x/;
t

2
Q'.x; x;�2x/

�
� 1 � ";

N
�

f .x/ � T.x/;
t

2
Q'.x; x;�2x/

�
� 1 � "

for all x 2 X and all t � t0. Fix some x 2 X and find some integer n0 such that

t0

1X

kDn

2�k'.2kx; 2kx;�2kC1x/ <
c

2
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for all n � n0. Since
1X

kDn

2�k'.2kx; 2kx;�2kC1x/ D 1

2n

1X

kDn

2�.k�n/'.2k�n.2nx/; 2k�n.2nx/; 2k�n.�2nC1x//

D 1

2n

1X

mD0
2�m'.2m.2nx/; 2m.2nx/; 2m.�2nC1x//

D 1

2n
Q'.2nx; 2nx;�2nC1x/;

we have

N.L.x/ � T.x/; c/

� min

	
N

�
f .2nx/

2n
� L.x/;

c

2

�
;N

�
T.x/ � f .2nx/

2n
;

c

2

�


D minfN.f .2nx/ � L.2nx/; 2n�1c/;N.T.2nx/ � f .2nx/; 2n�1c/g

� min

(
N

 
f .2nx/ � L.2nx/; 2nt0

1X

kDn

2�k'.2kx; 2kx;�2kC1x/
!
;

N

 
T.2nx/ � f .2nx/; 2nt0

1X

kDn

2�k'.2kx; 2kx;�2kC1x/
!)

D minfN.f .2nx/ � L.2nx/; t0 Q'.2nx; 2nx;�2nC1x//;

N.T.2nx/ � f .2nx/; t0 Q'.2nx; 2nx;�2nC1x//g
� 1 � ":

It follows that N.L.x/� T.x/; c/ D 1 for all c > 0. Thus, L.x/ D T.x/ for all x 2 X.

Corollary 1 ([28, Corollary 2.4]). Let � � 0 and let p be a real number with
0 < p < 1. Let f W X ! Y be an odd mapping such that

lim
t!1 N.f .x/C f .y/C f .z/; t�.kxkp C kykp C kzkp// D 1 (39)

uniformly on X3. Then L.x/ WD N-limn!1 f .2nx/
2n exists for each x 2 X and defines a

Cauchy additive mapping L W X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C f .z/; ı�.kxkp C kykp C kzkp// � ˛

for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

2C 2p

2 � 2p
ı�kxkp

�
� ˛

for all x 2 X.
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Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N.f .x/ � L.x/;

2C 2p

2 � 2p
2t�kxkp/ D 1

uniformly on X.

Proof. Define '.x; y; z/ WD �.kxkp C kykp C kzkp/ and apply Theorem 8 to get the
result.

Similarly, we can obtain the following. We will omit the proofs.

Theorem 9 ([28, Theorem 2.5]). Let ' W X3 ! Œ0;1/ be a function such that

Q'.x; y; z/ WD
1X

nD1
2n'

� x

2n
;

y

2n
;

z

2n

�
<1 (40)

for all x; y; z 2 X. Let f W X ! Y be an odd mapping satisfying (31). Then L.x/ WD
N-limn!1 2nf . x

2n / exists for each x 2 X and defines a Cauchy additive mapping
L W X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C f .z/; ı'.x; y; z// � ˛
for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

ı

2
Q'.x; x;�2x/

�
� ˛

for all x 2 X.
Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N.f .x/ � L.x/; t Q'.x; x;�2x// D 1

uniformly on X.

Corollary 2 ([28, Corollary 2.6]). Let � � 0 and let p be a real number with
p > 1. Let f W X ! Y be an odd mapping satisfying (39). Then L.x/ WD N-
limn!1 2nf . x

2n / exists for each x 2 X and defines a Cauchy additive mapping L W
X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C f .z/; ı�.kxkp C kykp C kzkp// � ˛

for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

2p C 2
2p � 2 ı�kxk

p

�
� ˛

for all x 2 X.
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Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N.f .x/ � L.x/;

2p C 2
2p � 2 2t�kxkp/ D 1

uniformly on X.

Proof. Define '.x; y; z/ WD �.kxkp C kykp C kzkp/ and apply Theorem 9 to get the
result.

Finally, we prove the Hyers–Ulam stability of the Cauchy-Jensen functional
inequality (4) in fuzzy Banach spaces.

Theorem 10 ([28, Theorem 2.7]). Let ' W X3 ! Œ0;1/ be a function satisfy-
ing (30). Let f W X ! Y be an odd mapping such that

lim
t!1 N.f .x/C f .y/C 2f .z/; t'.x; y; z// D 1 (41)

uniformly on X3. Then L.x/ WD N-limn!1 f .2nx/
2n exists for each x 2 X and defines a

Cauchy additive mapping L W X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C 2f .z/; ı'.x; y; z// � ˛ (42)

for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

ı

2
Q'.0;�2x; x/

�
� ˛

for all x 2 X.
Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N.f .x/ � L.x/; t Q'.0;�2x; x// D 1 (43)

uniformly on X.

Corollary 3 ([28, Corollary 2.8]). Let � � 0 and let p be a real number with
0 < p < 1. Let f W X ! Y be an odd mapping such that

lim
t!1 N.f .x/C f .y/C 2f .z/; t�.kxkp C kykp C kzkp// D 1 (44)

uniformly on X3. Then L.x/ WD N-limn!1 f .2nx/
2n exists for each x 2 X and defines a

Cauchy additive mapping L W X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C 2f .z/; ı�.kxkp C kykp C kzkp// � ˛

for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

1C 2p

2 � 2p
ı�kxkp

�
� ˛

for all x 2 X.
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Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N

�
f .x/ � L.x/;

1C 2p

2 � 2p
2t�kxkp

�
D 1

uniformly on X.

Proof. Define '.x; y; z/ WD �.kxkpCkykpCkzkp/ and apply Theorem 10 to get the
result.

Similarly, we can obtain the following results. We will omit the proofs.

Theorem 11 ([28, Theorem 2.9]). Let ' W X3 ! Œ0;1/ be a function satis-
fying (40). Let f W X ! Y be an odd mapping satisfying (41). Then L.x/ WD
N-limn!1 2nf . x

2n / exists for each x 2 X and defines a Cauchy additive mapping
L W X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C 2f .z/; ı'.x; y; z// � ˛
for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

ı

2
Q'.0;�2x; x/

�
� ˛

for all x 2 X.
Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N.f .x/ � L.x/; t Q'.0;�2x; x// D 1

uniformly on X.

Corollary 4 ([28, Corollary 2.10]). Let � � 0 and let p be a real number with
p > 1. Let f W X ! Y be an odd mapping satisfying (44). Then L.x/ WD N-
limn!1 2nf . x

2n / exists for each x 2 X and defines a Cauchy additive mapping L W
X ! Y such that if for some ı > 0; ˛ > 0

N.f .x/C f .y/C 2f .z/; ı�.kxkp C kykp C kzkp// � ˛
for all x; y; z 2 X, then

N

�
f .x/ � L.x/;

2p C 1
2p � 2 ı�kxk

p

�
� ˛

for all x 2 X.
Furthermore, the additive mapping L W X ! Y is a unique mapping such that

lim
t!1 N

�
f .x/ � L.x/;

2p C 1
2p � 2 2t�kxkp

�
D 1

uniformly on X.

Proof. Define '.x; y; z/ WD �.kxkpCkykpCkzkp/ and apply Theorem 11 to get the
result.
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4 	-Functional Inequalities in Banach Spaces

Throughout this paper, assume that X is a complex normed space and that Y is a
complex Banach space. Let � be a complex number with j�j < 1.

This section contains the results given in [39, 40].
We solve and investigate the additive �-functional inequality (7) in complex

normed spaces.

Lemma 3 ([39, Lemma 2.1]). A mapping f W X ! Y satisfies

kf .xC y/ � f .x/ � f .y/k �
�����
�
2f

�
xC y

2

�
� f .x/ � f .y/

����� (45)

for all x; y 2 X if and only if f W X ! Y is additive.

Proof. Assume that f W X ! Y satisfies (45).
Letting x D y D 0 in (45), we get kf .0/k � 0. So f .0/ D 0.
Letting y D x in (45), we get

kf .2x/ � 2f .x/k � 0

and so f .2x/ D 2f .x/ for all x 2 X. Thus,

f
� x

2

�
D 1

2
f .x/ (46)

for all x 2 X.
It follows from (45) and (46) that

kf .xC y/ � f .x/ � f .y/k �
�����
�
2f

�
xC y

2

�
� f .x/ � f .y/

�����

D j�jkf .xC y/ � f .x/ � f .y/k

and so

f .xC y/ D f .x/C f .y/

for all x; y 2 X.
The converse is obviously true.

We prove the Hyers–Ulam stability of the additive �-functional inequality (45)
in complex Banach spaces.
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Theorem 12 ([39, Theorem 2.3]). Let ' W X2 ! Œ0;1/ be a function and let
f W X ! Y be a mapping such that

�.x; y/ W D
1X

jD1
2j'

� x

2j
;

y

2j

�
<1; (47)

kf .xC y/ � f .x/ � f .y/k �
�����
�
2f

�
xC y

2

�
� f .x/ � f .y/

�����C '.x; y/ (48)

for all x; y 2 X. Then there exists a unique additive mapping A W X ! Y such that

kf .x/ � A.x/k � 1

2
�.x; x/ (49)

for all x 2 X.

Proof. Letting y D x in (48), we get

kf .2x/ � 2f .x/k � '.x; x/ (50)

for all x 2 X. So
���f .x/ � 2f

� x

2

���� � '
� x

2
;

y

2

�

for all x 2 X. Hence,

���2lf
� x

2l

�
� 2mf

� x

2m

���� �
m�1X

jDl

���2jf
� x

2j

�
� 2jC1f

� x

2jC1
����

�
m�1X

jDl

2j'
� x

2jC1 ;
x

2jC1
�

(51)

for all nonnegative integers m and l with m > l and all x 2 X. It follows from (51)
that the sequence f2kf . x

2k /g is Cauchy for all x 2 X. Since Y is a Banach space, the
sequence f2kf . x

2k /g converges. So one can define the mapping A W X ! Y by

A.x/ WD lim
k!1 2kf

� x

2k

�

for all x 2 X. Moreover, letting l D 0 and passing the limit m ! 1 in (51), we
get (49).
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Now, let T W X ! Y be another additive mapping satisfying (49). Then we have

kA.x/ � T.x/k D
���2qA

� x

2q

�
� 2qT

� x

2q

����

�
���2qA

� x

2q

�
� 2qf

� x

2q

����C
���2qT

� x

2q

�
� 2qf

� x

2q

����

� 2q�
� x

2q
;

x

2q

�
;

which tends to zero as q!1 for all x 2 X. So we can conclude that A.x/ D T.x/
for all x 2 X. This proves the uniqueness of A.

It follows from (47) and (48) that

kA.xC y/ � A.x/ � A.y/k D lim
n!1

����2
n

�
f

�
xC y

2n

�
� f

� x

2n

�
� f

� y

2n

������

� lim
n!1

����2
n�

�
2f

�
xC y

2nC1

�
� f

� x

2n

�
� f

� y

2n

������

C lim
n!1 2n'

� x

2n
;

y

2n

�

D
�����
�
2A

�
xC y

2

�
� A.x/ � A.y/

�����

for all x; y 2 X. So

kA.xC y/ � A.x/ � A.y/k �
�����
�
2A

�
xC y

2

�
� A.x/ � A.y/

�����

for all x; y 2 X. By Lemma 3, the mapping A W X ! Y is additive.

Corollary 5 ([39, Corollary 2.4]). Let r > 1 and � be nonnegative real numbers,
and let f W X ! Y be a mapping such that

kf .x C y/� f .x/� f .y/k �
�����
�
2f

�
x C y

2

�
� f .x/� f .y/

�����C �.kxkr C kykr/ (52)

for all x; y 2 X. Then there exists a unique additive mapping A W X ! Y such that

kf .x/ � A.x/k � 2�

2r � 2kxk
r

for all x 2 X.

Theorem 13 ([39, Theorem 2.5]). Let ' W X2 ! Œ0;1/ be a function and let
f W X ! Y be a mapping satisfying (48) and

�.x; y/ WD
1X

jD0

1

2j
'.2jx; 2jy/ <1
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for all x; y 2 X. Then there exists a unique additive mapping A W X ! Y such that

kf .x/ � A.x/k � 1

2
�.x; x/

for all x 2 X.

Corollary 6 ([39, Corollary 2.6]). Let r < 1 and � be nonnegative real numbers,
and let f W X ! Y be a mapping satisfying (52). Then there exists a unique additive
mapping h W X ! Y such that

kf .x/ � h.x/k � 2�

2 � 2r
kxkr

for all x 2 X.

Remark 1. If � is a real number such that �1 < � < 1 and Y is a real Banach space,
then all the assertions in this section remain valid.

We solve and investigate the additive �-functional inequality (8) in complex
normed spaces.

Lemma 4 ([39, Lemma 3.1]). A mapping f W X ! Y satisfies f .0/ D 0 and

����2f

�
xC y

2

�
� f .x/ � f .y/

���� � k� .f .xC y/ � f .x/ � f .y//k (53)

for all x; y 2 X if and if f W X ! Y is additive.

Proof. Assume that f W X ! Y satisfies (53).
Letting y D 0 in (53), we get

���2f
� x

2

�
� f .x/

��� � 0 (54)

and so f
�

x
2

� � 1
2
f .x/ for all x 2 X.

It follows from (53) and (54) that

kf .xC y/ � f .x/ � f .y/k D
����2f

�
xC y

2

�
� f .x/ � f .y/

����

� j�jkf .xC y/ � f .x/ � f .y/k

and so

f .xC y/ D f .x/C f .y/

for all x; y 2 X.
The converse is obviously true.
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Now, we prove the Hyers–Ulam stability of the additive �-functional inequal-
ity (53) in complex Banach spaces.

Theorem 14 ([39, Theorem 3.3]). Let ' W X2 ! Œ0;1/ be a function and let
f W X ! Y be a mapping satisfying f .0/ D 0 and

�.x; y/ WD
1X

jD0
2j'

� x

2j
;

y

2j

�
<1;

����2f

�
xC y

2

�
� f .x/ � f .y/

���� � k� .f .xC y/ � f .x/ � f .y//k C '.x; y/ (55)

for all x; y 2 X. Then there exists a unique additive mapping A W X ! Y such that

kf .x/ � A.x/k � �.x; 0/

for all x 2 X.

Corollary 7 ([39, Corollary 3.4]). Let r > 1 and � be nonnegative real numbers,
and let f W X ! Y be a mapping satisfying f .0/ D 0 and

����2f

�
xC y

2

�
� f .x/ � f .y/

���� � k�.f .xC y/ � f .x/ � f .y//k

C�.kxkr C kykr/ (56)

for all x; y 2 X. Then there exists a unique additive mapping A W X ! Y such that

kf .x/ � A.x/k � 2r�

2r � 2kxk
r

for all x 2 X.

Theorem 15 ([39, Theorem 3.5]). Let ' W X2 ! Œ0;1/ be a function and let
f W X ! Y be a mapping satisfying f .0/ D 0, (55) and

�.x; y/ WD
1X

jD1

1

2j
'.2jx; 2jy/ <1

for all x; y 2 X. Then there exists a unique additive mapping A W X ! Y such that

kf .x/ � A.x/k � �.x; 0/

for all x 2 X.

Corollary 8 ([39, Corollary 3.6]). Let r < 1 and � be positive real numbers, and
let f W X ! Y be a mapping satisfying f .0/ D 0 and (56). Then there exists a unique
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additive mapping A W X ! Y such that

kf .x/ � A.x/k � 2r�

2 � 2r
kxkr

for all x 2 X.

Remark 2. If � is a real number such that �1 < � < 1 and Y is a real Banach space,
then all the assertions in this section remain valid.

Now, we solve and investigate the quadratic �-functional inequality (9) in
complex normed spaces.

Lemma 5 ([40, Lemma 2.1]). A mapping f W X ! Y satisfies

kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k (57)

�
�����
�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�����

for all x; y 2 X if and only if f W X ! Y is quadratic.

Proof. Assume that f W X ! Y satisfies (57).
Letting x D y D 0 in (57), we get k2f .0/k � j�jk2f .0/k: So f .0/ D 0.
Letting y D x in (57), we get kf .2x/ � 4f .x/k � 0 and so f .2x/ D 4f .x/ for all

x 2 X. Thus,

f
� x

2

�
D 1

4
f .x/ (58)

for all x 2 X.
It follows from (57) and (58) that

kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k

�
�����
�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�����

D j�j
2
kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k

and so

f .xC y/C f .x � y/ D 2f .x/C 2f .y/

for all x; y 2 X.
The converse is obviously true.

We prove the Hyers–Ulam stability of the quadratic �-functional inequality (9)
in complex Banach spaces.
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Theorem 16 ([40, Theorem 2.3]). Let ' W X2 ! Œ0;1/ be a function and let
f W X ! Y be a mapping such that

�.x; y/ WD
1X

jD1
4j'

� x

2j
;

y

2j

�
<1; (59)

kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k (60)

�
�����
�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�����C '.x; y/

for all x; y 2 X. Then there exists a unique quadratic mapping h W X ! Y such that

kf .x/ � h.x/k � 1

4
�.x; x/ (61)

for all x 2 X.

Proof. Letting x D y D 0 in (60), we get k2f .0/k � j�jk2f .0/k. So f .0/ D 0.
Letting y D x in (60), we get

kf .2x/ � 4f .x/k � '.x; x/ (62)

for all x 2 X. So
���f .x/ � 4f

� x

2

���� � '
� x

2
;

x

2

�

for all x 2 X. Hence,

���4lf
� x

2l

�
� 4mf

� x

2m

���� �
m�1X

jDl

���4jf
� x

2j

�
� 4jC1f

� x

2jC1
����

�
m�1X

jDl

4j'
� x

2jC1 ;
x

2jC1
�

(63)

for all nonnegative integers m and l with m > l and all x 2 X. It follows from (63)
that the sequence f4nf . x

2n /g is a Cauchy sequence for all x 2 X. Since Y is complete,
the sequence f4nf . x

2n /g converges. So one can define the mapping h W X ! Y by

h.x/ WD lim
n!1 4nf .

x

2n
/

for all x 2 X. Moreover, letting l D 0 and passing the limit m ! 1 in (63), we
get (61).
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It follows from (59) and (60) that

kh.xC y/C h.x � y/ � 2h.x/ � 2h.y/k

D lim
n!1 4n

����f

�
xC y

2n

�
C f

�x � y

2n

�
� 2f

� x

2n

�
� 2f

� y

2n

�����

� lim
n!1 4nj�j

����2f

�
xC y

2nC1

�
C 2f

�x � y

2nC1
�
� f

� x

2n

�
� f

� y

2n

�����

C lim
n!1 4n'

� x

2n
;

y

2n

�

D j�j
����2h

�
xC y

2

�
C 2h

�x � y

2

�
� h.x/ � h.y/

����

for all x; y 2 X. So

kh.xC y/C h.x � y/ � 2h.x/ � 2h.y/k

�
�����
�
2h

�
xC y

2

�
C 2h

�x � y

2

�
� h.x/ � h.y/

�����

for all x; y 2 X. By Lemma 5, the mapping h W X ! Y is quadratic.
Now, let T W X ! Y be another quadratic mapping satisfying (61). Then we have

kh.x/ � T.x/k D
���4qh

� x

2q

�
� 4qT

� x

2q

����

�
���4qh

� x

2q

�
� 4qf

� x

2q

����C
���4qT

� x

2q

�
� 4qf

� x

2q

����

� 2 � 4q�1�
� x

2q
;

x

2q

�
;

which tends to zero as q! 1 for all x 2 X. So we can conclude that h.x/ D T.x/
for all x 2 X. This proves the uniqueness of h. Thus, the mapping h W X ! Y is a
unique quadratic mapping satisfying (61).

Corollary 9 ([40, Corollary 2.4]). Let r > 2 and � be nonnegative real numbers,
and let f W X ! Y be a mapping such that

kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k (64)

�
�����
�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�����C �.kxkr C kykr/

for all x; y 2 X. Then there exists a unique quadratic mapping h W X ! Y such that

kf .x/ � h.x/k � 2�

2r � 4kxk
r

for all x 2 X.
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Theorem 17 ([40, Theorem 2.5]). Let ' W X2 ! Œ0;1/ be a function with
'.0; 0/ D 0 and let f W X ! Y be a mapping satisfying (60) and

�.x; y/ WD
1X

jD0

1

4j
'.2jx; 2jy/ <1

for all x; y 2 X. Then there exists a unique quadratic mapping h W X ! Y such that

kf .x/ � h.x/k � 1

4
�.x; x/

for all x 2 X.

Corollary 10 ([40, Corollary 2.6]). Let r < 2 and � be positive real numbers, and
let f W X ! Y be a mapping satisfying (64). Then there exists a unique quadratic
mapping h W X ! Y such that

kf .x/ � h.x/k � 2�

4 � 2r
kxkr

for all x 2 X.

Remark 3. If � is a real number such that �1 < � < 1 and Y is a real Banach space,
then all the assertions in this section remain valid.

From now on, assume that � is a fixed complex number with j�j < 1
2
.

Now, we solve and investigate the quadratic �-functional inequality (10) in
complex normed spaces.

Lemma 6 ([40, Lemma 3.1]). A mapping f W X ! Y satisfies

����2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

���� (65)

� k�.f .xC y/C f .x � y/ � 2f .x/ � 2f .y//k

for all x; y 2 X if and only if f W X ! Y is quadratic.

Proof. Assume that f W X ! Y satisfies (65).
Letting x D y D 0 in (65), we get k2f .0/k � j�jk2f .0/k: So f .0/ D 0.
Letting y D 0 in (65), we get

���4f
� x

2

�
� f .x/

��� � 0 (66)

and so f
�

x
2

� D 1
4
f .x/ for all x 2 X.
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It follows from (65) and (66) that

1

2
kf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k

D
����2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

����

� j�jkf .xC y/C f .x � y/ � 2f .x/ � 2f .y/k
and so

f .xC y/C f .x � y/ D 2f .x/C 2f .y/

for all x; y 2 X.
The converse is obviously true.

We prove the Hyers–Ulam stability of the quadratic �-functional inequality (65)
in complex Banach spaces.

Theorem 18 ([40, Theorem 3.3]). Let ' W X2 ! Œ0;1/ be a function and let
f W X ! Y be a mapping satisfying

�.x; y/ WD
1X

jD0
4j'

� x

2j
;

y

2j

�
<1; (67)

����2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

���� (68)

� k� .f .xC y/C f .x � y/ � 2f .x/ � 2f .y//k C '.x; y/
for all x; y 2 X. Then there exists a unique quadratic mapping h W X ! Y such that

kf .x/ � h.x/k � �.x; 0/ (69)

for all x 2 X.

Proof. Letting x D y D 0 in (68), we get k2f .0/k � j�jk2f .0/k. So f .0/ D 0.
Letting y D 0 in (68), we get

���4f
� x

2

�
� f .x/

��� � '.x; 0/ (70)

for all x 2 X. So

���4lf
� x

2l

�
� 4mf

� x

2m

���� �
m�1X

jDl

���4jf
� x

2j

�
� 4jC1f

� x

2jC1
����

�
m�1X

jDl

4j'
� x

2j
; 0
�

(71)
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for all nonnegative integers m and l with m > l and all x 2 X. It follows from (71)
that the sequence f4nf . x

2n /g is a Cauchy sequence for all x 2 X. Since Y is complete,
the sequence f4nf . x

2n /g converges. So one can define the mapping h W X ! Y by

h.x/ WD lim
n!1 4nf .

x

2n
/

for all x 2 X. Moreover, letting l D 0 and passing the limit m ! 1 in (71), we
get (69).

The rest of the proof is similar to the proof of Theorem 16.

Corollary 11 ([40, Corollary 3.4]). Let r > 2 and � be nonnegative real numbers,
and let f W X ! Y be a mapping such that

k2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/k (72)

� k�.f .xC y/C f .x � y/ � 2f .x/ � 2f .y//k C �.kxkr C kykr/

for all x; y 2 X. Then there exists a unique quadratic mapping h W X ! Y such that

kf .x/ � h.x/k � 2r�

2r � 4kxk
r

for all x 2 X.

Theorem 19 ([40, Theorem 3.5]). Let ' W X2 ! Œ0;1/ be a function with
'.0; 0/ D 0 and let f W X ! Y be a mapping satisfying (68) and

�.x; y/ WD
1X

jD1

1

4j
'.2jx; 2jy/ <1

for all x; y 2 X. Then there exists a unique quadratic mapping h W X ! Y such that

kf .x/ � h.x/k � �.x; 0/
for all x 2 X.

Corollary 12 ([40, Corollary 3.6]). Let r < 2 and � be nonnegative real numbers,
and let f W X ! Y be a mapping satisfying (72). Then there exists a unique quadratic
mapping h W X ! Y such that

kf .x/ � h.x/k � 2r�

4 � 2r
kxkr

for all x 2 X.

Remark 4. If � is a real number such that� 1
2
< � < 1

2
and Y is a real Banach space,

then all the assertions in this section remain valid.
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5 	-Functional Inequalities in Fuzzy Banach Spaces

Throughout this section, assume that X is a real vector space and .Y;N/ is a fuzzy
Banach space.

In this section, we prove the Hyers–Ulam stability of the additive �-functional
inequality (11) in fuzzy Banach spaces. Let � be a real number with j�j < 1.

This section contains the results given in [24, 25].
We need the following lemma to prove the main results.

Lemma 7 ([25, Lemma 2.1]). Let .Y;N/ be a fuzzy normed vector space. Let f W
X ! Y be a mapping such that

N.f .xC y/ � f .x/ � f .y/; t/ � N

�
�

�
2f

�
xC y

2

�
� f .x/ � f .y/

�
; t

�
(73)

for all x; y 2 X and all t > 0. Then f is Cauchy additive.

Proof. Assume that f W X ! Y satisfies (73).
Letting x D y D 0 in (73), we get N.f .0/; t/ D N .0; t/ D 1: So f .0/ D 0.
Letting y D x in (73), we get N.f .2x/ � 2f .x/; t/ � N .0; t/ D 1 and so f .2x/ D

2f .x/ for all x 2 X. Thus,

f
� x

2

�
D 1

2
f .x/ (74)

for all x 2 X.
It follows from (73) and (74) that

N.f .xC y/ � f .x/ � f .y/; t/ � N

�
�

�
2f

�
xC y

2

�
� f .x/ � f .y/

�
; t

�

D N .�.f .xC y/ � f .x/ � f .y//; t/

D N

�
f .xC y/ � f .x/ � f .y/;

t

j�j
�

for all t > 0. By .N5/ and .N6/, N.f .x C y/ � f .x/ � f .y/; t/ D 1 for all t > 0. It
follows from .N2/ that

f .xC y/ D f .x/C f .y/

for all x; y 2 X.

Theorem 20 ([25, Theorem 2.2]). Let ' W X2 ! Œ0;1/ be a function such that
there exists an L < 1 with

'.x; y/ � L

2
' .2x; 2y/
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for all x; y 2 X. Let f W X ! Y be an odd mapping satisfying

N .f .xC y/ � f .x/ � f .y/; t/ (75)

� min

	
N

�
�

�
2f

�
xC y

2

�
� f .x/ � f .y/

�
; t

�
;

t

tC '.x; y/



for all x; y 2 X and all t > 0. Then A.x/ WD N-limn!1 2nf
�

x
2n

�
exists for each

x 2 X and defines an additive mapping A W X ! Y such that

N .f .x/ � A.x/; t/ � .2 � 2L/t

.2 � 2L/tC L'.x; x/
(76)

for all x 2 X and all t > 0.

Proof. Letting y D x in (75), we get

N .f .2x/ � 2f .x/; t/ � t

tC '.x; x/ (77)

for all x 2 X.
Consider the set

S WD fg W X ! Yg

and introduce the generalized metric on S:

d.g; h/ D inf

	
� 2 RC W N.g.x/ � h.x/; �t/ � t

tC '.x; x/ ; 8x 2 X;8t > 0



;

where, as usual, inf	 D C1. It is easy to show that .S; d/ is complete (see
[29, Lemma 2.1]).

Now we consider the linear mapping J W S! S such that

Jg.x/ WD 2g
� x

2

�

for all x 2 X.
Let g; h 2 S be given such that d.g; h/ D ". Then

N.g.x/ � h.x/; "t/ � t

tC '.x; x/
for all x 2 X and all t > 0. Hence,

N.Jg.x/ � Jh.x/;L"t/ D N
�
2g
� x

2

�
� 2h

� x

2

�
;L"t

�
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D N

�
g
� x

2

�
� h

� x

2

�
;

L

2
"t

�

�
Lt
2

Lt
2
C ' � x

2
; x
2

� �
Lt
2

Lt
2
C L

2
'.x; x/

D t

tC '.x; x/

for all x 2 X and all t > 0. So d.g; h/ D " implies that d.Jg; Jh/ � L". This means
that

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 S.
It follows from (77) that

N

�
f .x/ � 2f

� x

2

�
;

L

2
t

�
� t

tC '.x; x/
for all x 2 X and all t > 0. So d.f ; Jf / � L

2
.

By Theorem 1, there exists a mapping A W X ! Y satisfying the following:

(1) A is a fixed point of J, i.e.,

A
� x

2

�
D 1

2
A.x/ (78)

for all x 2 X. Since f W X ! Y is odd, A W X ! Y is an odd mapping. The
mapping A is a unique fixed point of J in the set

M D fg 2 S W d.f ; g/ <1g:

This implies that A is a unique mapping satisfying (78) such that there exists a
� 2 .0;1/ satisfying

N.f .x/ � A.x/; �t/ � t

tC '.x; x/
for all x 2 X;

(2) d.Jnf ;A/! 0 as n!1. This implies the equality

N� lim
n!1 2nf

� x

2n

�
D A.x/

for all x 2 X;
(3) d.f ;A/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;A/ � L

2 � 2L
:
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This implies that the inequality (76) holds.
By (75),

N

�
2n
�

f

�
xC y

2n

�
� f

� x

2n

�
� f

� y

2n

��
; 2nt

�

� min

(
N

�
�

�
2nC1f

�
xC y

2nC1
�
� 2nf

� x

2n

�
� 2nf

� y

2n

��
; 2nt

�
;

t

tC ' � x
2n ;

y
2n

�
)

for all x; y 2 X, all t > 0, and all n 2 N. So

N

�
2n
�

f

�
xC y

2n

�
� f

� x

2n

�
� f

� y

2n

��
; t

�

� min

(
N

�
�

�
2nC1f

�
xC y

2nC1
�
� 2nf

� x

2n

�
� 2nf

� y

2n

��
; t

�
;

t
2n

t
2n C Ln

2n ' .x; y/

)

for all x; y 2 X, all t > 0, and all n 2 N. Since limn!1
t
2n

t
2n C Ln

2n '.x;y/
D 1 for all

x; y 2 X and all t > 0,

N .A.xC y/ � A.x/ � A.y/; t/ � N

�
�

�
2A

�
xC y

2

�
� A.x/ � A.y/

�
; t

�

for all x; y 2 X and all t > 0. By Lemma 7, the mapping A W X ! Y is Cauchy
additive, as desired.

Corollary 13 ([25, Corollary 2.3]). Let � � 0 and let p be a real number with
p > 1. Let X be a normed vector space with the norm k � k. Let f W X ! Y be an
odd mapping satisfying

N .f .xC y/ � f .x/ � f .y/; t/

� min

	
N

�
�

�
2f

�
xC y

2

�
� f .x/ � f .y/

�
; t

�
;

t

tC �.kxkp C kykp/




for all x; y 2 X and all t > 0. Then A.x/ WD N-limn!1 2nf . x
2n / exists for each x 2 X

and defines an additive mapping A W X ! Y such that

N .f .x/ � A.x/; t/ � .2p � 2/t
.2p � 2/tC 2�kxkp

for all x 2 X and all t > 0.

Proof. The proof follows from Theorem 20 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X. Then we can choose L D 21�p, and we get the desired result.
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Theorem 21. Let ' W X2 ! Œ0;1/ be a function such that there exists an L < 1

with

'.x; y/ � 2L'
� x

2
;

y

2

�

for all x; y 2 X. Let f W X ! Y be an odd mapping satisfying (75). Then A.x/ WD N-
limn!1 1

2n f .2nx/ exists for each x 2 X and defines an additive mapping A W X ! Y
such that

N .f .x/ � A.x/; t/ � .2 � 2L/t

.2 � 2L/tC '.x; x/ (79)

for all x 2 X and all t > 0.

Proof. Let .S; d/ be the generalized metric space defined in the proof of Theo-
rem 20.

It follows from (77) that

N

�
f .x/ � 1

2
f .2x/;

1

2
t

�
� t

tC '.x; x/

for all x 2 X and all t > 0. So d.f ; Jf / � 1
2
. Hence,

d.f ;A/ � 1

2 � 2L
;

which implies that the inequality (79) holds.
The rest of the proof is similar to the proof of Theorem 20.

Corollary 14 ([25, Corollary 2.5]). Let � � 0 and let p be a real number with
0 < p < 1. Let X be a normed vector space with the norm k � k. Let f W X ! Y be
an odd mapping satisfying

N .f .xC y/ � f .x/ � f .y/; t/

� min

	
N

�
�

�
2f

�
xC y

2

�
� f .x/ � f .y/

�
; t

�
;

t

tC �.kxkp C kykp/




for all x; y 2 X and all t > 0. Then A.x/ WD N-limn!1 1
2n f .2nx/ exists for each

x 2 X and defines an additive mapping A W X ! Y such that

N .f .x/ � A.x/; t/ � .2 � 2p/t

.2 � 2p/tC 2�kxkp

for all x 2 X and all t > 0.

Proof. The proof follows from Theorem 21 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X. Then we can choose L D 2p�1, and we get the desired result.
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Now, we prove the Hyers–Ulam stability of the additive �-functional inequal-
ity (12) in fuzzy Banach spaces.

Lemma 8 ([25, Lemma 3.1]). Let .Y;N/ be a fuzzy normed vector space. A
mapping f W X ! Y satisfies f .0/ D 0 and

N

�
2f

�
xC y

2

�
� f .x/ � f .y/; t

�
� N .� .f .xC y/ � f .x/ � f .y// ; t/ (80)

for all x; y 2 X and all t > 0. Then f is Cauchy additive, i.e., f .xC y/ D f .x/C f .y/
for all x; y 2 X.

Proof. Assume that f W X ! Y satisfies (80).
Letting y D 0 in (80), we get N

�
2f
�

x
2

� � f .x/; t
� � N .0; t/ D 1 and so

f
� x

2

�
D 1

2
f .x/ (81)

for all x 2 X.
It follows from (80) and (81) that

N.f .xC y/ � f .x/ � f .y/; t/ D N

�
2f

�
xC y

2
� f .x/ � f .y/

�
; t

�

� N .�.f .xC y/ � f .x/ � f .y//; t/

D N

�
f .xC y/ � f .x/ � f .y/;

t

j�j
�

for all t > 0. By .N5/ and .N6/, N.f .x C y/ � f .x/ � f .y/; t/ D 1 for all t > 0. It
follows from .N2/ that

f .xC y/ D f .x/C f .y/

for all x; y 2 X.

Theorem 22 ([25, Theorem 3.2]). Let ' W X2 ! Œ0;1/ be a function such that
there exists an L < 1 with

'.x; y/ � L

2
' .2x; 2y/

for all x; y 2 X. Let f W X ! Y be an odd mapping satisfying

N

�
2f

�
xC y

2

�
� f .x/ � f .y/; t

�
(82)

� min

	
N .� .f .xC y/ � f .x/ � f .y// ; t/ ;

t

tC '.x; y/
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for all x; y 2 X and all t > 0. Then A.x/ WD N-limn!1 2nf
�

x
2n

�
exists for each

x 2 X and defines an additive mapping A W X ! Y such that

N .f .x/ � A.x/; t/ � .1 � L/t

.1 � L/tC '.x; 0/
for all x 2 X and all t > 0.

Corollary 15 ([25, Corollary 3.3]). Let � � 0 and let p be a real number with
p > 1. Let X be a normed vector space with the norm k � k. Let f W X ! Y be an
odd mapping satisfying

N

�
2f

�
xC y

2

�
� f .x/ � f .y/; t

�

� min

	
N .� .f .xC y/ � f .x/ � f .y// ; t/ ;

t

tC �.kxkp C kykp/




for all x; y 2 X and all t > 0. Then A.x/ WD N-limn!1 2nf . x
2n / exists for each x 2 X

and defines an additive mapping A W X ! Y such that

N .f .x/ � A.x/; t/ � .2p � 2/t
.2p � 2/tC 2p�kxkp

for all x 2 X and all t > 0.

Proof. The proof follows from Theorem 22 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X. Then we can choose L D 21�p, and we get the desired result.

Theorem 23 ([25, Theorem 3.4]). Let ' W X2 ! Œ0;1/ be a function such that
there exists an L < 1 with

'.x; y/ � 2L'
� x

2
;

y

2

�

for all x; y 2 X. Let f W X ! Y be an odd mapping satisfying (82). Then A.x/ WD N-
limn!1 1

2n f .2nx/ exists for each x 2 X and defines an additive mapping A W X ! Y
such that

N .f .x/ � A.x/; t/ � .1 � L/t

.1 � L/tC L'.x; 0/

for all x 2 X and all t > 0.

Corollary 16. Let � � 0 and let p be a real number with 0 < p < 1. Let X be
a normed vector space with the norm k � k. Let f W X ! Y be an odd mapping
satisfying

N

�
2f

�
xC y

2

�
� f .x/ � f .y/; t

�

� min

	
N .� .f .xC y/ � f .x/ � f .y// ; t/ ;

t

tC �.kxkp C kykp/
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for all x; y 2 X and all t > 0. Then A.x/ WD N-limn!1 1
2n f .2nx/ exists for each

x 2 X and defines an additive mapping A W X ! Y such that

N .f .x/ � A.x/; t/ � .2 � 2p/t

.2 � 2p/tC 2p�kxkp

for all x 2 X.

Proof. The proof follows from Theorem 23 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X.

Then we can choose L D 2p�1, and we get the desired result.

We prove the Hyers–Ulam stability of the quadratic �-functional inequality (13)
in fuzzy Banach spaces. We need the following lemma to prove the main results.

Lemma 9 ([24, Lemma 2.1]). Let f W X ! Y be a mapping such that

N.f .xC y/C f .x � y/ � 2f .x/ � 2f .y/; t/ (83)

� N

�
�

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�
; t

�

for all x; y 2 X and all t > 0. Then f is quadratic.

Proof. Assume that f W X ! Y satisfies (83).

Letting x D y D 0 in (83), we get N.2f .0/; t/ � N .�.2f .0//; t/ D N
�
2f .0/; t

j�j
�

for all t > 0. By .N5/ and .N6/, N.f .0/; t/ D 1 for all t > 0. It follows from .N2/
that f .0/ D 0.

Letting y D x in (83), we get N.f .2x/ � 4f .x/; t/ � N .0; t/ D 1 and so f .2x/ D
4f .x/ for all x 2 X. Thus,

f
� x

2

�
D 1

4
f .x/ (84)

for all x 2 X.
It follows from (83) and (84) that

N.f .xC y/C f .x � y/ � 2f .x/ � 2f .y/; t/

� N

�
�

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�
; t

�

D N

�
1

2
� .f .xC y/C f .x � y/ � 2f .x/ � 2f .y// ; t

�

D N

�
f .xC y/C f .x � y/ � 2f .x/ � 2f .y/;

2t

j�j
�
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for all t > 0. By .N5/ and .N6/, N.f .xC y/C f .x� y/� 2f .x/� 2f .y/; t/ D 1 for all
t > 0. It follows from .N2/ that f .xC y/C f .x� y/ D 2f .x/C 2f .y/ for all x; y 2 X.

Theorem 24 ([24, Theorem 2.2]). Let ' W X2 ! Œ0;1/ be a function such that
there exists an L < 1 with

'.x; y/ � L

4
' .2x; 2y/

for all x; y 2 X. Let f W X ! Y be an even mapping satisfying f .0/ D 0 and

N.f .xC y/C f .x � y/ � 2f .x/ � 2f .y/; t/ (85)

� min

	
N

�
�

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�
; t

�
;

t

tC '.x; y/



for all x; y 2 X and all t > 0. Then Q.x/ WD N-limn!1 4nf
�

x
2n

�
exists for each

x 2 X and defines a quadratic mapping Q W X ! Y such that

N .f .x/ � Q.x/; t/ � .4 � 4L/t

.4 � 4L/tC L'.x; x/
(86)

for all x 2 X and all t > 0.

Proof. Let .S; d/ be the generalized metric space defined in the proof of Theo-
rem 20.

Letting y D x in (85), we get

N .f .2x/ � 4f .x/; t/ � t

tC '.x; x/ (87)

for all x 2 X.
Now we consider the linear mapping J W S! S such that

Jg.x/ WD 4g
� x

2

�

for all x 2 X.
Let g; h 2 S be given such that d.g; h/ D ". Then

N.g.x/ � h.x/; "t/ � t

tC '.x; x/
for all x 2 X and all t > 0. Hence,

N.Jg.x/ � Jh.x/;L"t/ D N
�
4g
� x

2

�
� 4h

� x

2

�
;L"t

�
D N

�
g
� x

2

�
� h

� x

2

�
;

L

4
"t

�

�
Lt
4

Lt
4
C ' � x

2
; x
2

� �
Lt
4

Lt
4
C L

4
'.x; x/

D t

tC '.x; x/
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for all x 2 X and all t > 0. So d.g; h/ D " implies that d.Jg; Jh/ � L". This
means that

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 S.
It follows from (87) that N

�
f .x/ � 4f

�
x
2

�
; L
4
t
� � t

tC'.x;x/ for all x 2 X and all

t > 0. So d.f ; Jf / � L
4
.

By Theorem 1, there exists a mapping Q W X ! Y satisfying the following:

(1) Q is a fixed point of J, i.e.,

Q
� x

2

�
D 1

4
Q.x/ (88)

for all x 2 X. Since f W X ! Y is even, Q W X ! Y is a even mapping. The
mapping Q is a unique fixed point of J in the set

M D fg 2 S W d.f ; g/ <1g:
This implies that Q is a unique mapping satisfying (88) such that there exists a
� 2 .0;1/ satisfying

N.f .x/ � Q.x/; �t/ � t

tC '.x; x/
for all x 2 X;

(2) d.Jnf ;Q/! 0 as n!1. This implies the equality

N� lim
n!1 4nf

� x

2n

�
D Q.x/

for all x 2 X;
(3) d.f ;Q/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;Q/ � L

4 � 4L
:

This implies that the inequality (86) holds.
By (85),

N

�
4n
�

f

�
xC y

2n

�
C f

� x � y

2n

�
� 2f

� x

2n

�
� 2f

� y

2n

��
; 4nt

�

� min

	
N

�
�

�
4n
�
2f

�
xC y

2nC1
�
C 2f

� x � y

2nC1
�
� f

� x

2n

�
� f

� y

2n

���
; 4nt

�
;

t

tC ' � x
2n ;

y
2n

�
)
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for all x; y 2 X, all t > 0, and all n 2 N. So

N

�
4n

�
f

�
xC y

2n

�
C f

�x � y

2n

�
� 2f

� x

2n

�
� 2f

� y

2n

��
; t

�

� min

	
N

�
�

�
4n

�
2f

�
xC y

2nC1

�
C 2f

�x � y

2nC1
�
� f

� x

2n

�
� f

� y

2n

���
; t

�
;

t
4n

t
4n C Ln

4n ' .x; y/

)

for all x; y 2 X, all t > 0, and all n 2 N. Since limn!1
t
4n

t
4n C Ln

4n '.x;y/
D 1 for all

x; y 2 X and all t > 0,

N .Q.xC y/C Q.x � y/ � 2Q.x/ � 2Q.y/; t/

� N

�
�

�
2Q

�
xC y

2

�
C 2Q

�x � y

2

�
� Q.x/ � Q.y/

�
; t

�

for all x; y 2 X and all t > 0. By Lemma 9, the mapping Q W X ! Y is quadratic,
as desired.

Corollary 17 ([24, Corollary 2.3]). Let � � 0 and let p be a real number with
p > 2. Let X be a normed vector space with norm k � k. Let f W X ! Y be an even
mapping satisfying

N.f .xC y/C f .x � y/ � 2f .x/ � 2f .y/; t/

� min

	
N

�
�

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�
; t

�
;

t

tC �.kxkp C kykp/




for all x; y 2 X and all t > 0. Then Q.x/ WD N-limn!1 4nf . x
2n / exists for each x 2 X

and defines a quadratic mapping Q W X ! Y such that

N .f .x/ � Q.x/; t/ � .2p � 4/t
.2p � 4/tC 2�kxkp

for all x 2 X.

Proof. The proof follows from Theorem 24 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X. Then we can choose L D 22�p, and we get the desired result.

Theorem 25 ([24, Theorem 2.4]). Let ' W X2 ! Œ0;1/ be a function such that
there exists an L < 1 with

'.x; y/ � 4L'
� x

2
;

y

2

�
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for all x; y 2 X. Let f W X ! Y be an even mapping satisfying f .0/ D 0 and (85).
Then Q.x/ WD N-limn!1 1

4n f .2nx/ exists for each x 2 X and defines a quadratic
mapping Q W X ! Y such that

N .f .x/ � Q.x/; t/ � .4 � 4L/t

.4 � 4L/tC '.x; x/
for all x 2 X and all t > 0.

Corollary 18 ([24, Corollary 2.5]). Let � � 0 and let p be a real number with
0 < p < 2. Let X be a normed vector space with norm k � k. Let f W X ! Y be an
even mapping satisfying

N.f .xC y/C f .x � y/ � 2f .x/ � 2f .y/; t/

� min

	
N

�
�

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/

�
; t

�
;

t

tC �.kxkp C kykp/




for all x; y 2 X and all t > 0. Then Q.x/ WD N-limn!1 1
4n f .2nx/ exists for each

x 2 X and defines a quadratic mapping Q W X ! Y such that

N .f .x/ � Q.x/; t/ � .4 � 2p/t

.4 � 2p/tC 2�kxkp

for all x 2 X.

Proof. The proof follows from Theorem 25 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X. Then we can choose L D 2p�2, and we get the desired result.

From now on, we prove the Hyers–Ulam stability of the quadratic �-functional
inequality (14) in fuzzy Banach spaces. Let � be a real number with j�j < 1

2
. We

need the following lemma to prove the main results.

Lemma 10 ([24, Lemma 3.1]). Let f W X ! Y be a mapping such that

N

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/; t

�
(89)

� N .� .f .xC y/C f .x � y/ � 2f .x/ � 2f .y// ; t/

for all x; y 2 X and all t > 0. Then f is quadratic.

Proof. Assume that f W X ! Y satisfies (89).

Letting x D y D 0 in (89), we get N.2f .0/; t/ � N .�.2f .0//; t/ D N
�
2f .0/; t

j�j
�

for all t > 0. By .N5/ and .N6/, N.f .0/; t/ D 1 for all t > 0.
It follows from .N2/ that f .0/ D 0.
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Letting y D 0 in (89), we get N
�
4f
�

x
2

� � f .x/; t
� � N .0; t/ D 1 for all t > 0

and so

f
� x

2

�
D 1

4
f .x/ (90)

for all x 2 X.
It follows from (89) and (90) that

N

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/; t

�

D N

�
1

2
f .xC y/C 1

2
f .x � y/ � f .x/ � f .y/; t

�

D N .f .xC y/C f .x � y/ � 2f .x/ � 2f .y/; 2t/

� N .�.f .xC y/C f .x � y/ � 2f .x/ � 2f .y//; t/

D N

�
f .xC y/C f .x � y/ � 2f .x/ � 2f .y/;

t

j�j
�

for all t > 0. By .N5/ and .N6/, N.f .xC y/C f .x� y/� 2f .x/� 2f .y/; t/ D 1 for all
t > 0. It follows from .N2/ that f .xC y/C f .x� y/ D 2f .x/C 2f .y/ for all x; y 2 X.

Theorem 26 ([24, Theorem 3.2]). Let ' W X2 ! Œ0;1/ be a function such that
there exists an L < 1 with

'.x; y/ � L

4
' .2x; 2y/

for all x; y 2 X. Let f W X ! Y be an even mapping satisfying

N

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/; t

�
(91)

� min

	
N .� .f .xC y/C f .x � y/ � 2f .x/ � 2f .y// ; t/ ;

t

tC '.x; y/



for all x; y 2 X and all t > 0. Then Q.x/ WD N-limn!1 4nf
�

x
2n

�
exists for each

x 2 X and defines a quadratic mapping Q W X ! Y such that

N .f .x/ � Q.x/; t/ � .1 � L/t

.1 � L/tC '.x; 0/ (92)

for all x 2 X and all t > 0.

Proof. Letting x D y D 0 in (91), we get N.2f .0/; t/ � N .�.2f .0//; t/ D
N
�
2f .0/; t

j�j
�

for all t > 0. So f .0/ D 0.
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Letting y D 0 in (91), we get

N
�
4f
� x

2

�
� f .x/; t

�
� t

tC '.x; 0/ (93)

for all x 2 X.
Let .S; d/ be the generalized metric space defined in the proof of Theorem 20.
Now we consider the linear mapping J W S! S such that

Jg.x/ WD 4g
� x

2

�

for all x 2 X.
Let g; h 2 S be given such that d.g; h/ D ". Then

N.g.x/ � h.x/; "t/ � t

tC '.x; 0/
for all x 2 X and all t > 0. Hence,

N.Jg.x/ � Jh.x/;L"t/ D N
�
4g
� x

2

�
� 4h

� x

2

�
;L"t

�
D N

�
g
� x

2

�
� h

� x

2

�
;

L

4
"t

�

�
Lt
4

Lt
4
C ' � x

2
; 0
� �

Lt
4

Lt
4
C L

4
'.x; 0/

D t

tC '.x; 0/

for all x 2 X and all t > 0. So d.g; h/ D " implies that d.Jg; Jh/ � L". This means
that

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 S.
It follows from (93) that

N
�

f .x/ � 4f
� x

2

�
; t
�
� t

tC '.x; 0/
for all x 2 X and all t > 0. So d.f ; Jf / � 1.

By Theorem 1, there exists a mapping Q W X ! Y satisfying the following:

(1) Q is a fixed point of J, i.e.,

Q
� x

2

�
D 1

4
Q.x/ (94)

for all x 2 X. Since f W X ! Y is even, Q W X ! Y is an even mapping. The
mapping Q is a unique fixed point of J in the set

M D fg 2 S W d.f ; g/ <1g:
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This implies that Q is a unique mapping satisfying (94) such that there exists a
� 2 .0;1/ satisfying

N.f .x/ � Q.x/; �t/ � t

tC '.x; 0/
for all x 2 X;

(2) d.Jnf ;Q/! 0 as n!1. This implies the equality

N� lim
n!1 4nf

� x

2n

�
D Q.x/

for all x 2 X;
(3) d.f ;Q/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;Q/ � 1

1 � L
:

This implies that the inequality (92) holds.
By (91),

N

�
4n

�
2f

�
xC y

2nC1

�
C 2f

�x � y

2nC1
�
� f

� x

2n

�
� f

� y

2n

��
; 4nt

�

� min

	
N

�
�

�
4n

�
f

�
xC y

2n

�
C f

�x � y

2n

�
� 2f

� x

2n

�
� 2f

� y

2n

���
; 4nt

�
;

t

tC ' � x
2n ;

y
2n

�
)

for all x; y 2 X, all t > 0, and all n 2 N. So

N

�
4n

�
2f

�
xC y

2nC1

�
C 2f

�x � y

2nC1
�
� f

� x

2n

�
� f

� y

2n

��
; t

�

� min

	
N

�
�

�
4n

�
f

�
xC y

2n

�
C f

�x � y

2n

�
� 2f

� x

2n

�
� 2f

� y

2n

���
; t

�
;

t
4n

t
4n C Ln

4n ' .x; y/

)

for all x; y 2 X, all t > 0, and all n 2 N. Since limn!1
t
4n

t
4n C Ln

4n '.x;y/
D 1 for all

x; y 2 X and all t > 0,

N

�
2Q

�
xC y

2

�
C 2

�x � y

2

�
� Q.x/ � Q.y/; t

�

� N .� .Q .xC y/C Q .x � y/ � 2Q.x/ � 2Q.y// ; t/

for all x; y 2 X and all t > 0. By Lemma 10, the mapping Q W X ! Y is
quadratic, as desired.
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Corollary 19 ([24, Corollary 3.3]). Let � � 0 and let p be a real number with
p > 2. Let X be a normed vector space with norm k � k. Let f W X ! Y be an even
mapping satisfying

N

�
2f

�
xC y

2

�
C 2f

�x � y

2

�
� f .x/ � f .y/; t

�

� min

	
N .� .f .xC y/C f .x � y/ � 2f .x/ � 2f .y// ; t/ ;

t

tC �.kxkp C kykp/




for all x; y 2 X and all t > 0. Then Q.x/ WD N-limn!1 4nf . x
2n / exists for each x 2 X

and defines a quadratic mapping Q W X ! Y such that

N .f .x/ � Q.x/; t/ � .2p � 4/t
.2p � 4/tC 2p�kxkp

for all x 2 X.

Proof. The proof follows from Theorem 26 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X. Then we can choose L D 22�p, and we get the desired result.

Theorem 27 ([24, Theorem 3.4]). Let ' W X2 ! Œ0;1/ be a function such that
there exists an L < 1 with

'.x; y/ � 4L'
� x

2
;

y

2

�

for all x; y 2 X. Let f W X ! Y be an even mapping satisfying f .0/ D 0 and (91).
Then Q.x/ WD N-limn!1 1

4n f .2nx/ exists for each x 2 X and defines a quadratic
mapping Q W X ! Y such that

N .f .x/ � Q.x/; t/ � .1 � L/t

.1 � L/tC '.x; 0/
for all x 2 X and all t > 0.

Corollary 20 ([24, Corollary 3.5]). Let � � 0 and let p be a real number with
0 < p < 2. Let X be a normed vector space with norm k � k. Let f W X ! Y be an
even mapping satisfying

N

�
2f

�
xC y

2

�
C f

�x � y

2

�
� f .x/ � f .y/; t

�

� min

	
N .� .f .xC y/C f .x � y/ � 2f .x/ � 2f .y// ; t/ ;

t

tC �.kxkp C kykp/




for all x; y 2 X and all t > 0. Then Q.x/ WD N-limn!1 1
4n f .2nx/ exists for each

x 2 X and defines a quadratic mapping Q W X ! Y such that
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N .f .x/ � Q.x/; t/ � .4 � 2p/t

.4 � 2p/tC 2p�kxkp

for all x 2 X.

Proof. The proof follows from Theorem 27 by taking '.x; y/ WD �.kxkpCkykp/ for
all x; y 2 X. Then we can choose L D 2p�2, and we get the desired result.
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The Maslov Index in PDEs Geometry

Agostino Prástaro

Abstract It is proved that the Maslov index naturally arises in the framework of
PDEs geometry. The characterization of PDE solutions by means of Maslov index
is given. With this respect, Maslov index for Lagrangian submanifolds is given
on the ground of PDEs geometry. New formulas to calculate bordism groups of
.n � 1/-dimensional compact submanifolds bording via n-dimensional Lagrangian
submanifolds of a fixed 2n-dimensional symplectic manifold are obtained too. As
a by-product, it is given a new proof of global smooth solutions existence, defined
on all R3, for the Navier–Stokes PDE. Further, complementary results are given
in Appendices concerning Navier–Stokes PDE and Legendrian submanifolds of
contact manifolds.

1 Introduction

In 1965, V.P. Maslov introduced some integer cohomology classes useful to calcu-
late phase shifts in semiclassical expressions for wave functions and in quantization
conditions [31].1 In the French translation, published in 1972 by the Gauthier-
Villars, there is also a complementary article by V.I. Arnold, where new formulas
for the calculation of these cohomology classes are given [4, 5, 8].2 These studies
emphasized the great importance of such invariants and hence stimulated a lot
of mathematical work focused on characterization of Lagrangian Grassmannian,
namely, the smooth manifold of Lagrangian subspaces of a symplectic space. After

1The Maslov index is the index of a closed curve in a Lagrangian submanifold of a 2n-dimensional
symplectic space V (coordinates .x; y/), calculated in a neighborhood of a caustic. (These are points
of the Lagrangian manifold, where the projection on the x-plane has not constant rank n. Caustics
are also called the projection on the x-plane of the set ˙.V/ 	 V of singular points of V , with
respect to this projection.) See also [25].
2Further reformulations are given by Hormander [23], Leray [27], Lion and Vergue [28], Kashiwara
[24], and Thomas [65].
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the suggestion by Floer to express the spectral flow of a curve of self-adjoint
operators by the Maslov index of corresponding curves of Lagrangian subspaces
(1988), interesting results have been obtained relating to the Maslov index and
spectral flow. (See, e.g., Yoshida [70], Nicolaescu [30], and Cappell, Lee, and Miller
[13].)

In 1980, V.I. Arnold introduced also the notion of Lagrangian cobordism in
symplectic topology [6, 7, 9]. This new notion has been also studied by Y. Eliashberg
and M. Audin in the framework of the algebraic topology [10, 16]. Next this
approach has been generalized to higher-order PDEs by Prástaro [34].3

In this chapter, we give a general method to recognize the “Maslov index” in the
framework of the PDEs geometry. Furthermore, we utilize our algebraic topology
of PDEs to calculate suitable Lagrangian bordism groups in a 2n-dimensional
symplectic manifold.

As a by-product of our geometric methods in PDEs, we get another proof of
existence of global smooth solutions, defined on all R3, for the Navier–Stokes PDE,
.NS/. This proof confirms one on the existence of global smooth solutions for .NS/,
given in some of our previous works [38–41, 45, 53].

Finally remark that we have written this work in an expository style, in order to
be accessible at the most by a large audience of mathematicians and mathematical
physicists.4

The main results are the following: Definitions 13 and 14 encoding Maslov
cycles and Maslov indexes for solutions of PDEs that generalize usual ones;
Theorem 16 giving a relation between Maslov cycles and Maslov indexes for
solutions of PDEs; Theorem 17 recognizing Maslov index for any Lagrangian
manifold, considered as a solution of suitable PDEs of first order; Theorem 18
giving G-singular Lagrangian bordism groups; and Theorem 19 characterizing
closed weak Lagrangian bordism groups. In Appendix B are reproduced similar
results for Legendrian submanifolds of a contact manifold. Theorem A 1 in
Appendix A supports the method, given in Example 12, to build smooth global
solutions of the Navier–Stokes PDEs, defined on all R3.

2 Maslov Index Overview

In this section, we give an algebraic approach to the Maslov index that is more useful
to be recast in the framework of PDEs geometry. This approach essentially follows
the one given by Arnold [4, 8], Kashiwara [24] and Thomas [65].

3See also [11] and references quoted therein.
4For general complementary information on algebraic topology and differential topology, see, e.g.,
[3, 15, 18, 22, 32, 56–64, 66–69].
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Definition 1. Let .V; !/ be a symplectic K�vector space over any field K (with
characteristic 6D 2), where ! is a symplectic form. We denote by Lagr.V; !/ the set
of Lagrangian subspaces, defined in (1):

Lagr.V; !/ D
˚
L < V jL D L?� (1)

with E? D fv 2 V j!.v;w/ D 0; 8w 2 Eg.
Example 1. Let us consider the simplest example of Lagr.V; !/, with V D R

2 and
!..x1; y1/; .x2; y2// D x1y2 � y1x2. Then we get Lagr.V; !/ Š G1;2.R

2/ Š RP1.5

Therefore, Lagr.V; !/ is a compact analytical manifold of dimension 1. If we
consider oriented Lagrangian spaces, we get LC

agr.V; !/ Š GC
1;2.R

2/ Š S1. Since
RP1 Š S1, we get the commutative and exact diagram (2):

L+agr(V, )
det2

S1

Lagr(V, ) RP1

0

w

w

(2)

In (2) det2 denotes the isomorphism L.�/ 7! ei2� , � 2 Œ0; �/. One has the following
cell decomposition into Schubert cells:

Lagr.V; !/ Š R t f1g D C2 t C1; (3)

where C2 is the cell of dimension 1 and C1 is the cell of dimension 0. This allows
us to calculate the (co)homology spaces of Lagr.V; !/ as reported in (4):

Hk.Lagr.V; !/IZ2/ Š Hk.Lagr.V; !/IZ2/ Š
M

Nk

Z2 D
	
Z2 ; 0 � k � 1
0 ; k > 1



; (4)

where Nk is the number of cells of dimension k. We get also the following
fundamental homotopy group for Lagr.V; !/:

�1.Lagr.V; !// Š �1.S1/ Š Z: (5)

5We use notations and results reported in [36] about Grassmann manifolds.
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• The inverse diffeomorphism of det2 is the map ei2� 7! L.�/ identifying the
generator 1 of the isomorphism �1.Lagr.V; !// Š Z.

• The degree of a loop � W S1 ! Lagr.V; !/ Š S1 is the number of elements ��1.L/
for a L 2 Lagr.V; !/.

• Let fe1; e2g D f.1; 0/; .0; 1/g be the canonical basis in R
2. Then we call real

Lagrangian as

R D fxe1 j 8x 2 Rg � R
2

and imaginary Lagrangian as

iR D fye2 j 8y 2 Rg � R
2:

They are complementary: R2 Š R
L

iR.
• Let 	 W R2 ! R be a symmetric bilinear form. One defines graph of .R; 	/, by

the following set:

�.R;	/ D f.x; 	x.1// 2 R
2g � R

2;

where 	x W R! R is the partial linear mapping, identified with a number via the
canonical isomorphism R

� Š R. �.R;	/ is a Lagrangian space of .R2; !/. In fact,
if x0 D �x, we get 	x0.1/ D �	x.1/, for any � 2 R.

• One has the identification of Lagr.V; !/ with a symmetric space (and Einstein
manifold), via the Grassmannian diffeomorphism reported in (6):

Lagr.V; !/ Š GC
1;2.R

2/ Š SO.2/=SO.1/ � SO.1/: (6)

0 0 0

0 SO(n) O(n) det O(1) = S0 0

0 SU(n) U(n) det U(1) = S1 0

0 L+agr(V, ) Lagr(V, ) det2Lagr(R2, ) = Sww w 1 0

0 0 0
(7)
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Example 2. The above considerations can be generalized to any dimension, namely,
considering the symplectic space .V; !/ D .R2n; !/, with

!..x; y/; .x0; y0// D
X

1�j�n

x0
jyj � y0

jxj:

However, LC
agr.V; !/ does not coincide with the Grassmannian space

GC
n;2n.R

2n/ Š SO.2n/=SO.n/ � SO.n/, but one has the isomorphism reported
in (8).6

U.n/=O.n/ Š Lagr.V; !/; A 7! A.iRn/: (8)

Therefore, one has

dim.Lagr.V; !// D n2 � n.n � 1/
2

D n.nC 1/
2

: (9)

• The graph �.Rn; 	/ D f	� D 	 2 Mn.R/g defines a chart at Rn 2 Lagr.V; !/.
• Arnold [4]. The square of the determinant function det2 W Lagr.V; !/ ! S1,

L D A.iRn/ 7! det2.A/, induces the isomorphism

det 2� W �1.Lagr.V; !// Š �1.S1/ Š Z

.� W S1 ! Lagr.V; !// 7! degree. S1
�

�� Lagr.V; !/
det 2

�� S1 /

9
>=

>;
:

(10)

This is a consequence of the homotopy exact sequence of the exact commutative
diagram (7) of fiber bundles. As a by-product, we get the first cohomology group
of Lagr.V; !/, with coefficients on Z:

H1.Lagr.V; !/IZ/ D HomZ.�1.Lagr.V; !//;Z/ Š Z

˛.�/ D degree. S1
�

�� Lagr.V; !/
det 2

�� S1 / 2 Z

9
>=

>;
: (11)

6To fix ideas and nomenclature, we have reported in Table 1 natural geometric structures that can be
recognized on R

2n, besides their corresponding symmetry groups. The complex structure i allows
us to consider the isomorphism R

2n Š C
n, .xj; yj/1�j�n 7! .xj C iyj/1�j�n D .z1; � � � ; zn/. Then

the symmetry group of .R2n; i/ Š C
n is GL.n;C/. Moreover, the symmetry group of .R2n; i; !/ is

Sp.n/
T

GL.n;C/ D U.n/. Therefore, the matrix A in (8) belongs to U.n/ and hence det2.A/ 2 C.
Furthermore, taking into account that A can be diagonalized with eigenvalues fe˙i�1 ; � � � ; e˙i�1g,
it follows that det2.A/ D ei� for some � 2 R. Therefore, det2.A/ 2 S1.
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Table 1 Natural geometric structures on R
2n and corresponding symmetry groups

Name Structure Symmetry group

Euclidean g W R2n � R
2n ! R O.2n/ D fA D .aij/ 2

M2n.R/ j det A 6D 0; A�A D I2ng
g.v; v0/ D P

1�j�n.xjx0

j C yjy0

j/

Symplectic ! W R2n � R
2n ! R Sp.n/ D fA D .aij/ 2

M2n.R/ j det A 6D
0; A�

 
0 In

In 0

!
A D

 
0 In

�In 0

!
g

!.v; v0/ D P
1�j�n.x

0

j yj � xjy0

j/

Hermitian h W R2n � R
2n ! C U.n/ D fA D .aij/ 2

Mn.C/ j det A 6D 0; AA� D Ing
h.v; v0/ D g.v; v0/C i!.v; v0/ DP

1�j�n.xj C iyj/.x0

j C iy0

j/

U.n/ D Sp.n/
T

O.2n/. O.2n/; Sp.n/ 	 GL.2n;R/, closed subgroups
GL.n;C/ is the symmetry group of the complex structure. O.2n/

T
GL.n;C/ D

GL.n;C/
T

Sp.n/ D U.n/
R
2n D f.x; y/ D .x1; � � � ; xn; y1; � � � ; yn/ j xj; yj 2 Rg

A� D .Naji/, if A D .aij/. In the real case A� D .aji/

Example 3. Let .V; �/ be a 2n-dimensional real symplectic vector space, endowed
with a complex structure J W V ! V , such that g W V�V ! R, g.u; v/ D �.J.u/; v/,
is an inner product. Then for any L 2 Lagr.V; �/, the following propositions hold:

(i) One has the diffeomorphism U.V/=O.L/ Š Lagr.V; �/, A 7! A.L/, where

O.L/ D fA 2 U.V/ jA.L/ D Lg:
(ii) One has the isomorphism fL W .R2n; !; i/ Š .V; �; J/, fL.iRn/ D L.

(iii) One has the diffeomorphism

fL W Lagr.R
2n; !/ Š U.n/=O.n/! Lagr.V; �/ Š U.V/=O.L/; � 7! fL.�/:

(iv) If L1; L2 2 Lagr.V; �/, there exists a difference element �ŒL1;L2� 2
Lagr.R

2n; !/, such that �ŒL1;L2� Š iRn � R
2n. Therefore, Lagr.V; �/ has

a Lagr.R
2n; !/-affine structure.

Definition 2. The Witt group of a field K is W.K/ D �0.QC/, where QC
is the category whose objects are quadratic spaces, namely, K�vector spaces
with nondegenerate, symmetric bilinear forms. We say that two quadratic spaces
V1; V2 2 Ob.QC/ are Witt-equivalent if there exists a Lagrangian correspondence
between them, more precisely a morphism f 2 HomQC

.V1;V2/ WD Lagr.Vo
1 ˚ V2/,

called the space of Lagrangian correspondences. There .V; q/o WD .V;�q/, with
q as the quadratic structure. Composition of morphisms is meant in the sense of
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composition of general correspondences. (For example, if f W V1 ! V2 is an
isometry, then the graph �f � Vo

1˚V2 is Lagrangian. Think of composing functions
f W A! B and g W B! C via the subsets of A � B and B � C.)7

Proposition 1. W.K/ is the group whose elements are Witt equivalence classes of
quadratic spaces, with addition induced by direct sum, and the inverse �.V; q/ is
given by �.V; q/ D .V; q/o.

Example 4. Let us consider

.V; q/ D
�
K
2;

�C1 0

0 �1
��

:

• One has the isomorphism W.R/ Š Z that is the index of q, namely, the number
of positive eigenvalues minus the number of negative eigenvalues.

• One has the isomorphism W.C/ Š Z=2Z D Z2 that is the dimension of W.C/.8

Theorem 1. There exists a canonical mapping � W Lagr.V; !/Zr ! W.K/ that we
call Maslov index and that factorizes as reported in the commutative diagram (12):

Lagr(V w

t

, )Zr Ob( +)

W (K)

(12)

Proof. Given a r-tuple L D .L1; � � � ;Lr/ of Lagrangian subspaces of .V; !/, we can
identify a cochain complex (13):

CL = (Li Li+1) i Li VS∂

(13)
where ˙ is the sum of the components and @.a/ D .a;�a/ 2 Li ˚ LiC1,
8a 2 Li

T
LiC1. Then we get a quadratic space .TL; qL/, with TL D ker

P
=im @

and qL.a; b/ D P
i>j !.ai; bj/, (Maslov form), where a; b 2 TL are lifted to the

representative .ai/; .bi/ 2 ˚iLi. Then the Maslov index is defined by (14):

�.L/ D �.L1; � � � ;Lr/ D .TL; qL/ 2 W.K/: (14)

7If f W V1 ! V2 is an isomorphism, then the graph �f 	 Vo
1

L
V2 is Lagrangian. The quadratic

space .V; q/ is equivalent to 0 iff it contains Lagrangian. (For more details on Witt group, see the
following link Wikipedia-Witt-group and references therein.)
8In this chapter, we denote Z=nZ by Zn.

http://en.wikipedia.org/wiki/Witt_group
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One has the following properties:

(a) Isometries: T.L1; � � � ;Lr/ D T.Lr;L1; � � � ;Lr�1/ D T.L1; � � � ;Lr/
o.

(b) Lagrangian correspondences:
T.L1; � � � ;Lr/˚ T.L1;Lk; � � � ;Lr/! T.L1; � � � ;Lr/, k < r.
By considering cell complex CL D C.L1; � � � ;Lr/, as r-gon, with the

face labeled by V , edges labeled by Li, and vertices labeled by Li
T

LiC1,
property (b) allows us to reduce to the case of three Lagrangian subspaces.
Furthermore, Lagrangian correspondences induce cobordism properties. For
example, C.L1;L2;L3;L4/ cobords with C.L1;L2;L3/

S
C.L1;L3;L4/.

(c) Cocycle property:
�.L1;L2;L3/ � �.L1;L2;L4/C �.L1;L3;L4/ � �.L2;L3;L4/ D 0.

Theorem 2 (Leray’s Function).

• (Case K D R).
Let � WDLagr.V; !/ ! Lagr.V; !/ be the universal cover of the Lagrangian

Grassmannian. Then there exists a function ( Leray’s function)

m WDLagr.V; !/
2 ! Z Š W.R/ Š �1.Lagr.V; !//

such that

�.�.eL1/; � � � ; �.eLr// D
X

i2Zr

m.eLi;eLiC1/:

• (Case K general ground field).
Let LC

agr.V; !/ be the set of oriented Lagrangians. There exists a function

m W LC
agr.V; !/! W.K/

such that

�.L1; � � � ;Lr/ D
X

i

m.Li;LiC1/ mod I2

where I D ker.dim W W.K/! Z2/.9

Theorem 3 (Metaplectic Group). The Maslov index allows to identify a central
extension Mp.V/ of the group Sp.V/ that when K D R is the unique double cover
of Sp.V/. (Mp.V/ is called metaplectic group.)

9Lagr.V; !/ has a unique double cover L.2/agr.V; !/. For any pair .eL1;eL2/ with eL1; eL2 2
L.2/agr.V; !/, the number m.eL1;eL2/ is well-defined mod 4.
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Proof. The cocycle property allows to equip Mp1.V/ D W.K/ � Sp.V/, with the
multiplication

.q; g/:.q0; g0/ D .qC q0 C �.L; gL; gg0L/; gg0/: (15)

Thus, Mp1.V/ is a group and gives a central extension

0 W (K) Mp 1(V ) Sp(V ) 1

(16)
Moreover, set

Mp2.V/ D
˚
.m.geL;eL/C q; g/ j q 2 I2; g 2 Sp.V/

� � Mp1.V/ (17)

whereeL 2 
 over L 2 Lagr.V/. Mp2.V/ is a subgroup, giving a central extension

0 I2 Mp 2(V ) Sp(V ) 1

(18)
By quotient I2 by I3, we define a central extension

0 I2/I3 Mp(V ) Sp(V ) 1

(19)
defining Mp.V/, called metaplectic group.

When K D R, I2=I3 Š Z2, so Mp.V/ is the unique double cover of Sp.V/. In this
case, Mp.V/ has four connected components, among which Mp2.V/ is the identity.
Mp2.V/ is the universal covering group of Sp.V/.10

Example 5 (Arnold’s Maslov Index). The cohomology class of the Arnold’s
approach for Maslov index is ˛ 2 H1.Lagr.R

2n; !/IZ/ Š Z, obtained as
the pullback of the standard differential form d� W S1 ! T�S1, via det 2 W
Lagr.R

2n; !/ ! S1. In (20) are summarized the Arnold’s definitions of Maslov
index for L 2 Lagr.R

2; !/11:

�.L.�// D
	
1 � 2�

�
; 0 < � < �

0 ; � D 0
�.L1;L2/ D ��.L2;L1/ D

	
1 � 2.�1��2/

�
; 0 � �1 < �2 < �

0 ; �1 D �2
�.L1;L2;L3/ D �.L1;L2/C �.L2;L3/C �.L3;L1/ 2 f�1; 0; 1g � Z

9
>>>>>=

>>>>>;

: (20)

10One can construct Mp.V/ also by observing that Sp.V/ embeds into Lagr.Vo
L

V/ by g 7!
�g, the graph of g. Then define multiplication on Mp2.V/: .q; g/:.q0; g0/ D .q C q0 C
�.�1; �g; �gg0 /; gg0/. Moreover, �g has a canonical orientation.
11In particular, if 0 � �1 < �2 < �3 < � , then �.L1;L2;L3/ D 1.
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• Any couple .L1;L2/ of Lagrangians in Lagr.R
2; !/ determines a curve �12 W I D

Œ0; 1�! Lagr.R
2; !/, �12.t/ D L..1 � t/�1 C t�2/, connecting L1 and L2.

• A triple .L1;L2;L3/ of Lagrangians in Lagr.R
2; !/ determines a loop �123 D

�12�23�31 W S1 ! Lagr.R
2; !/, with homotopy class the Maslov index of the

triple:

�123 D �.L1;L2;L3/ 2 f�1; 0; 1g � �1.Lagr.R
2; !// Š Z:

In fact, for 0 � �1 < �2 < �3 < � , one has det 2�123 D 1 W S1 ! S1 and
degree.det 2�123/ D 1 D �.L1;L2;L3/ 2 Z.

In (21) are summarized the Arnold’s definitions of Maslov index for L 2
Lagr.R

2n; !/, n > 1. There˙ei�1 ; � � � ;˙ei�n denote the eigenvalues of the matrix
A 2 U.n/, such that A.iRn/ D L:

�.L/ DP1�j�n.1 � 2�j

�
/ 2 R; 0 � �j < �

�.L1;L2/ D ��.L2;L1/ D
( P

1�j�n.1 � 2.�1j��2j/

�
; 0 � �1j < �2j < �

0 ; �1j D �2j

�.L1;L2;L3/ D �.L1;L2/C �.L2;L3/C �.L3;L1/ 2 f�1; 0; 1g � Z

9
>>>=

>>>;
:

(21)

• (Arnold) [4]. The Poincaré dual D˛ of ˛ 2 H1.Lagr.R
2n; !/IZ/ Š Z is called the

Maslov cycle, and it results to

D˛ D fL 2 Lagr.R
2n; !/ jL

\
iRn 6D f0gg (22)

with

ŒD˛� 2 H .nC2/.n�1/
2

.Lagr.R
2n; !/IZ/: (23)

Example 6 (The Wall Nonadditivity Invariant as Maslov Index). Let .V; !/ be
a symplectic space and .L1;L2;L3/ a triple of Lagrangian subspaces. The Wall
nonadditivity invariant w.L1;L2;L3/ D �.W;  /, i.e., the signature of the non-
singular symmetric form

 W W �W ! R; �.x1; x2; x3; y1; y2; y3/ D !.x1; y2/
with

W D f.x1; x2; x3/ 2 L1 ˚ L2 ˚ L3 j x1 C x2 C x3 D 0g
im.L1

T
L2 C L2

T
L3 C L3

T
L1/

:

• (Wall [67]) w.L1;L2;L3/ can be identified with the defect of the Novikov
additivity for the signature of the triple union of a 4k-dimensional manifold with
boundary .X; @X/:
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w.L1;L2;L3/ D �.X1/C �.X1/C �.X2/C �.X3/ � �.X/ 2 Z

where X D X1
S

X2
S

X3 and Xi, i D 1; 2; 3 are codimension 0 manifolds
with boundary meeting transversely as pictured in (25). One has a non-singular
symplectic intersection form on H2k�1.X1

T
X2
T

X3IR/ 12 and the following
Lagrangian subspaces:

L1 D im.H2k�1.X2
T

X3IR/! H2k�1.X1
T

X2
T

X3IR//
L2 D im.H2k�1.X1

T
X3IR/! H2k�1.X1

T
X2
T

X3IR//
L3 D im.H2k�1.X1

T
X2IR/! H2k�1.X1

T
X2
T

X3IR//

9
=

; : (24)

• (Cappell et al. [13]) The Maslov index of the triple .L1;L2;L3/ coincides with
the Wall nonadditivity invariant of .L1;L2;L3/.13

�.L1;L2;L3/ D w.L1;L2;L3; g/:

X1 X X2 X
X1 X2

X3

X3 X

∂∂

∂

(25)

3 Integral Bordism Groups in PDEs

The definition of Maslov index can be recast in the framework of the PDEs
geometry. In fact the metasymplectic structure of the Cartan distribution of k-jet-
spaces Jk

n.W/ over a fiber bundle, � W W ! M, dim W D nCm, dim M D n, allows
us to recognize the “Maslov index” associated to n-dimensional integral planes of
the Cartan distribution of Jk

n.W/ and by restriction on any PDE Ek � Jk
n.W/. In

12The intersection form of a 2n-dimensional topological manifold with boundary .M; @M/
is .�1/n-symmetric form � W Hn.M; @MIZ/=Tor � Hn.M; @MIZ/=Tor ! Z, �.x; y/ D
hx
S

y; ŒM�i 2 Z. The signature �.M/ of 4k-dimensional manifold .M; @M/ is �.M/ D �.�/ 2 Z.
13A more recent different proof has been given by A. Ranicki (1997). (See in [56].)
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the following, we shall give a short panorama on the geometric theory of PDEs
and on the metasymplectic structure of the Cartan distribution and its relations with
(singular) solutions of PDEs. (For more information, see also [29, 39].)14

Let W be a smooth manifold of dimension m C n. For any n-dimensional
submanifold N � W, we denote by ŒN�ka the k-jet of N at the point a 2 N, i.e.,
the set of n-dimensional submanifolds of W that have in a a contact of order k.
Set Jk

n.W/ 

S

a2W Jk
n.W/a, Jk

n.W/a 
 fŒN�kaja 2 Wg. We call Jk
n.W/ the space

of all k-jets of submanifolds of dimension n of W. Jk
n.W/ has the following natural

structures of differential fiber bundles: �k;s W Jk
n.W/ ! Js

n.W/, s � k, with affine
fibers Jk

n.W/Nq, where Nq 
 ŒN�k�1
a 2 Jk�1

n .W/, a 
 �k;0.Nq/, with associated vector
space Sk.T�

a N/˝ �a, �a 
 TaW=TaN: For any n-dimensional submanifold N � W,
one has the canonical embedding jk W N ! Jk

n.W/, given by jk W a 7! jk.a/ 
 ŒN�ka.
We call jk.N/ 
 N.k/ the k-prolongation of N. In the following, we shall also assume
that there is a fiber bundle structure on W, � W W ! M, where dim M D n: Then
there exists a canonical open bundle submanifold Jk.W/ of Jk

n.W/ that is called
the k-jet space for sections of � . Jk.W/ is diffeomorphic to the k-jet-derivative
space of sections of � , JD k.W/ [33]. Then, for any section s W M ! W, one has
the commutative diagram (26), where Dks is the k-derivative of s and jk.s/ is the
k-jet-derivative of s. If s.M/.k/ � Jk

n.W/ is the k-prolongation of s.M/ � W, then
one has jk.s/.M/ Š s.M/.k/ Š s.M/ Š M. Of course there are also n-dimensional
submanifolds N � W that are not representable as image of sections of � . As a
consequence, in these cases, N.k/ Š N is not representable in the form jk.s/.M/
for some section s of � . The condition that N is an image of some (local) section s
of � is equivalent to the following local condition: s� 
 s�dx1 ^ � � � ^ dxn 6D 0,
where .x˛; yj/1�˛�n;1�j�m are fibered coordinates on W, with yj vertical coordinates.
In other words, N � W is locally representable by equations yj D yj.x1; : : : ; xn/.
This is equivalent to saying that N is transversal to the fibers of � or that the tangent
space TN identifies a horizontal distribution with respect to the vertical one vTWjN
of the fiber bundle structure � W W ! M. Conversely, a completely integrable
n-dimensional horizontal distribution on W determines a foliation of W by means
of n-dimensional submanifolds that can be represented by images of sections of � .
The Cartan distribution of Jk

n.W/ is the distribution Ek
n.W/ � TJk

n.W/ generated by
tangent spaces to the k-prolongation N.k/ of n-dimensional submanifolds N of W:

J k(W ) Jk(W ) Jkn(W )

k

M

Dks

jk(s p)

(26)

14For general information on PDEs geometry, see [12, 14, 19, 20, 26, 36].
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Theorem 4 (Metasymplectic Structure of the Cartan Distribution). There
exists a canonical vector-fiber-valued 2-form on the Cartan distribution Ek

n.W/,
called metasymplectic structure of Jk

n.W/.

Proof. The metasymplectic structure of the Cartan distribution Ek
n.W/ � TJk

n.W/ is
a section

˝k W Jk
n.W/! ŒSk�1.��/˝ ��

O

2.Ek

n.W/
�/;

where Sk�1.��/ 
 S
q2Jk

n.W/
Sk�1.��/q, with Sk�1.��/q 
 Sk�1.T�

a N/, � 
S
q2Jk

n.W/
�q, with �q 
 .TaW=TaN/, ŒN�ka D q, such that the following diagram

Sk−1( ∗)q ⊗ q TqJkn(W )/Ek
n(W )q

Tq̄Jk−1
n (W

t

)/Lq −1
k,k−1∗(Tq̄J

k−1
n (W ))/ −1

k,k−1∗(Lq)

n

p p

is commutative, for all q 2 Jk
n.W/, Nq 
 �k;k�1.q/, a 
 �k;0.q/, where Lq �

TNqJk�1
n .W/ is the integral vector space canonically identified by q. Then, for the

metasymplectic structure ˝Ek
n.W/

of Ek
n.W/; we have

˝k.q/ 
 ˝Ek
n.W/

.q/ 2 ŒTqJk
n.W/=Ek

n.W/q�
N

2.Ek

n.W/
�
q /

Š ŒSk�1.��/q ˝ �q�
N

2.Ek

n.W/
�
q /:

(27)

More precisely, ˝k D d!f jEk
n.W/

, where !f D h!; f i D hf ; .	k/�i 2 ˝1.Jk
n.W//,

are the Cartan forms corresponding to smooth functions:

f W Jk
n.W/! �k WD

[

q2Jk
n.W/

�k
q; �

k
q D TNqJk�1

n .W/=Lq:

	k is a canonical morphism of vector bundles over Jk
n.W/, defined by the exact

sequence (28):

0 Ek
n(W ) TJkn(W )

k
k 0

Jkn(W )

n
f

(28)
For duality, one has also the exact sequence (29):
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0 Ek
n(W )∗ T ∗Jkn(W ) ( k)∗

( k)∗
0

Jkn(W )

n
f

(29)
Therefore, we get also a smooth section

! W Jk
n.W/! �k

O
T�Jk

n.W/;

given by h!; f i D hf ; .	k/�i D f ı 	k, for any smooth section f 2 C1..�k/�/.
It results

Ek
n.W/ D

[

f 2C1..�k/�/

ker.!f /: (30)

Furthermore, for any Qq 2 ��1
kC1;k.q/ � JkC1

n .W/, q D ŒN�ka 2 Jk
n.W/, one has the

following splitting:

Ek
n.W/q Š LQq

M
ŒSk.T�

a N/˝ �a�: (31)

The splitting (31) allows us to give the following evaluation of ˝k.q/.�/, for any
q 2 Jk

n.W/ and � 2 Sk�1.TaN/˝ ��
a :

˝k.q/.�/.X;Y/ D 0; 8X;Y 2 LQq; �kC1;k.Qq/ D qI
˝k.q/.�/.�1; �2/ D 0; 8�1; �2 2 Sk.T�

a N/˝ �aI
˝k.q/.�/.X; �/ D h�;Xcı�i; 8X 2 LQq; � 2 Sk.T�

a N/˝ �a

9
=

; ; (32)

where ı is the morphism in the exact sequence (33).
If there is a fiber bundle structure ˛ W W ! M, dim M D n, for the metasym-

plectic structure of JD k.W/, one has˝k.q/ 2 
2.Ek
n.W/

�
q /
N

Sk�1.T�
b M/

N
vTaW

with a 
 �k;0.q/ 2 W, b 
 �k.q/ 2 M. If ˛ is a trivial bundle ˛ W W 
 M�F! M,
then one has ˝k.q/ 2 
2.Ek

n.W/
�
q /
N

Sk�1.T�
b M/

N
Tf F, 8a 
 .b; f /.

Definition 3. • We say that vectors X;Y 2 Ek
n.W/q are in involution if

˝k.q/.�/.X;Y/ D 0; 8� 2 Sk�1.TaN/
O

��
a :

• A subspace P � Ek
n.W/q is called isotropic if any two vectors X;Y 2 P are in

involution.
• We say that a subspace P � Ek

n.W/q is a maximal isotropic subspace if P is not
a proper subspace of any other isotropic subspace:
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0

[Sm(T ∗
a N) a]

T ∗
a N [Sm−1(T ∗

a N) a]

2(TL

L

∗
a N) [Sm−2(T ∗

a N) a]

· · ·

n(T ∗
a N) [Sm−n(T ∗

a N) a]

0

n
d

d

d

d

n

n

n

(33)

Theorem 5 (Structure of Maximal Isotropic Subspaces). Any maximal isotropic
subspace P � Ek

n.W/q is one tangent at q D ŒN�ka to a maximal integral manifold
V of Ek

n.W/. These are of dimension m
�pCk�1

k

� C n � p, such that n � p D
dim.�k;0�.TqV// � dim TaN D n. Then one says that V is of type n � p. In
particular, if p D 0, then LQq Š TqV Š TaN. In the exceptional case, i.e., m D n D 1,
maximal integral manifolds are of dimension 1 having eventual subsets belonging
to the fibers of �k;k�1 W Jk

n.W/! Jk�1
n .W/.

Proof. The degeneration subspace of ˝k.q/.�/, for any � 2 Sk�1.TaN/˝ ��
a , is the

subspace P � Ek
n.W/q given in (34):

P 

n
hxC �ijx 2 Ann.$/ � TaN; � 2 Sk.$/

O
�a � Sk.T�

a N/
O

�a

o
;

(34)
where $ is a p-dimensional subspace of T�

a N.
Let, now, N � W be an n-dimensional submanifold of W and let N0 � N be a

submanifold in N. Set

N.k/
0 .N/ 


n
q 2 Jk

n.W/ j�k;k�1.q/ 2 N.k�1/
0 ; Lq � T�k;k�1.q/N

.k�1/
0

o

where N.k�1/
0 
 ˚

ŒN�k�1
a j a 2 N0

� � Jk�1
n .W/. Then the tangent planes to N.k/

0 .N/
coincide with the maximal involutive subspaces described in (34). Therefore,
N.k/
0 .N/ is a maximal integral manifold of the Cartan distribution:
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0

gm(q)

T ∗
a N gm−1(q)

2(T ∗
a N) gm−2(q)

· · ·

n(T ∗
a N) gm−n(q)

0

d

d

d

d

L

L

(35)

Definition 4 (Partial Differential Equation for Submanifolds). A partial dif-
ferential equation (PDE) for n-dimensional submanifolds of W is a submanifold
Ek � Jk

n.W/.
15 A (regular) solution of Ek is a (regular) solution of Jk

n.W/ that
is contained into Ek. In particular, if Ek � Jk.W/ � Jk

n.W/, we can talk about
PDE for sections of � W W ! M. The prolongation of order l of Ek � Jk

n.W/
is the subset .Ek/Cl � JkCl

n .W/ defined by .Ek/Cl 
 Jl
n.Ek/ \ JkCl

n .W/. A PDE
Ek � Jk

n.W/ is called formally integrable if for all l � 0 the prolongations .Ek/Cl

are smooth submanifolds and the projections �kClC1;kCl W .Ek/C.lC1/ ! .Ek/Cl,
�k;0 W Ek ! W are smooth bundles. The symbol of the PDE Ek � Jk

n.W/ at the point
q 
 ŒN�ka 2 Ek is defined to be the following subspaces: gk.q/ 
 Tq.Ek/ \ Tq.FNq/,
where Nq 
 �k;k�1.q/ and ��1

k;k�1.Nq/ D FNq � Jk
n.W/. Using the affine structure

on the fiber FNq, we can identify the symbol gk.q/ with a subspace in Sk.T�
a N/˝ �a:

gk.q/ � Sk.T�
a N/˝�a. Suppose that all prolongations .Ek/Cl are smooth manifolds,

then their symbols at points Mq 
 ŒN�kCl
a are lth prolongations of the symbol gk.q/;

hence, gkCl.Mq/ D gkCl.q/ � SkCl.T�
a N/˝ �a and ı.gkCl.Mq// � gkC.l�1/.q/˝ T�

a N,
l D 1; 2; : : : where by ı W SkCl.T�

a N/˝ �a ! T�
a N˝ SkCl�1.T�

a N/˝ �a, we denote
ı-Spencer operator. Therefore, at each point q 2 Ek, the ı-Spencer complex is
defined, where m � k. We denote by Hm�j;j.Ek; q/ the cohomologies of this complex
at the term 
j.T�

a N/ ˝ gm�j.q/. They are called ı-Spencer cohomologies of PDE

15In this chapter, for the sake of simplicity, we shall consider only smooth PDEs. For information
on the geometry of singular PDEs, see the following references [2, 41, 47, 49, 53].
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at the point q 2 Ek. We say that gk is involutive if the sequences (35) are exact and
that gk is r-acyclic if Hm�j;j.Ek; q/ D 0 for m � j � k, 0 � j � r. If Ek � Jk

n.W/
is a 2-acyclic PDE , i.e., Hj;i.Ek; q/ D 0, 8q 2 Ek, 0 � j � 2, m � j � k, and
�kC1;k W E.1/k ! Ek, �k;0 W Ek ! W are smooth bundles, then Ek is formally
integrable.

Definition 5. We say that Ek � Jk
n.W/ is completely integrable if for any point

q 2 Ek, it passes a (local) solution of Ek and hence an n-dimensional manifold
V � Ek, with q 2 V and V D N.k/. This implies that the following sequence

(Ek)+r
k+r,k+r−1

Ek+r−1 0
p

is exact for any r � 1. (This is equivalent to saying that �kCr;kCr�1j.Ek/Cr is
surjective.)

Proposition 2. In the category of analytic manifolds (i.e., manifolds of class C!),
the formal integrability implies the complete integrability.

Definition 6. A Cartan connection on Ek is an n-dimensional subdistribution H �
Ek such that T.�k;k�1/.Hq/ D Lq 
 T�k;k�1.q/N

.k�1/, ŒN�kq 
 q; 8q 2 Ek.16 We
call curvature of the Cartan connection H on Ek � Jk

n.W/ the field of geometric
objects on Ek:

˝H W q 7! 
2.H�
q /
N
ŒSk�1.TaN/˝ ��

a =Ann.gk�1/��
Š 
2.T�

a N/
N
ŒSk�1.TaN/˝ ��

a =Ann.gk�1/��
(36)

obtained by restriction on H of the metasymplectic structure on the distribution Ek
n.

Proposition 3. In any flat Cartan connection H � Ek, i.e., a Cartan connection
having zero curvature:˝H D 0, any two vector X;Y 2 Hq, q 2 Ek are in involution.

Definition 7. Let us assume that .Ek/C1 ! Ek is a smooth subbundle of
JkC1

n .W/! Jk
n.W/. Then any section e W Ek ! .Ek/C1 is called a Bott connection.

Theorem 6.

1) A Cartan connection H is a Bott connection iff ˝H D 0.17

2) A Cartan connection H gives a splitting of the Cartan distribution

Ek
n Š gk

M
H:

16As dim.Lq/ D n D dim Hq, then there exists an n-dimensional submanifold X 	 W such that
TqX.k/ D Hq, with ŒX�ka D q, ŒX�k�1

a D ŒN�k�1
a , T�k;k�1.q/X

.k�1/ D Lq.
17If .Ek/C1 ! Ek is a smooth subbundle of JkC1

n .W/ ! Jk
n.W/, then a flat Cartan connection

is also an involutive distribution. On the other hand, a Bott connection identifies an involutive
distribution iff it is a flat connection. (For more details on .k C 1/-connections on W, see [39].)
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Two Cartan connections H, H0 on Ek identify a field of geometric objects � on
Ek called soldering form: � 
 �H;H0 W Ek ! H�N gk, �.q/ 2 T�

a N ˝ gk.q/.
One has:

• ˝H0 D ˝H C ı�.
• (Bianchi identity) ı˝H D 0,

˝H.q/mod ı.T�
a N ˝ gk.q// 2 Hk�1;2.Ek/q:

We call such ı-cohomology class of ˝H the Weyl tensor of Ek at q 2 Ek:
Wk.q/ 
 Œ˝H.q/�. Then, there exists a point u 2 .Ek/C1 over q 2 Ek iff
Wk.q/ D 0.

3) Suppose that gkC1 is a vector bundle over Ek � Jk
n.W/. Then, if the Weyl tensor

Wk vanishes, the projection �kC1;k W .Ek/C1 ! Ek is a smooth affine bundle.
4) If gkCl are vector bundles over Ek and WkCl D 0, l � 0, then Ek is formally

integrable.
5) If the system Ek is of finite type, i.e., gkCl.q/ D 0,8q 2 Ek, l � l0, then WkCl D 0,
0 � l � l0 is a sufficient condition for integrability.

Theorem 7. Given a Cartan connection H on Ek, for any regular solution N.k/ �
Ek, we identify a section Hr 2 C1.T�N

N
gk/ called covariant differential of H

of the solution N. Furthermore, for any vector field � W N ! TN, we get a section
Hr� 2 C1.gkjN.k/ /:
Theorem 8 (Characteristic Distribution of PDE). Let Ek � Jk

n.W/ be a PDE
such that .Ek/C1 ! Ek is a smooth subbundle of JkC1

n .W/ ! Jk
n.W/. Then, for

any Qq 2 .Ek/C1, the set Char.Ek/q of vectors in the splitting .Ek/q Š LQq
L
.gk/q,

� D v C � , such that vcı.�/ D 0, for any � 2 .gk/q, is called the space of
characteristic vectors at q 2 Ek. Char.Ek/ is an involutive subdistribution of the
Cartan distribution Ek.

• Char.Ek/ D Ek
T

s.Ek/, where s.Ek/is the space of infinitesimal symmetries
of Ek, namely, the set of vector field on Ek whose flows preserve the Cartan
distribution.

Proof. See [39].

Definition 8. We call a PDE Ek � Jk
n.W/ degenerate at the point q 2 Ek if there is

a p-dimensional (0 < p � n), subspace $q � T�
a N, such that

.gk/q � ŒSk.$q/
O

�a�:

Theorem 9. Char.Ek/q 6D 0 iff Ek is a degenerate PDE at the point q 2 Ek. The
subspace

$q D Ann..�k;0/�.Char.Ek/q//

is the subspace of degeneration of Ek at the point q 2 Ek.
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• Let Ek � Jk
n.W/ be a PDE such that the following conditions hold:

(i) �kC1;k W .Ek/C1 ! Ek and �k;k�1 W Ek ! Jk�1
n .W/ are smooth bundles.

(ii) $ D S
q2Ek

$q is a smooth vector bundle, where $q is a space of
degeneration of Ek at the point q 2 Ek. Then, Char.Ek/ is a smooth
distribution on Ek and solutions of Ek can be formulated by the method of
characteristics.18

In this section, we shall classify global singular solutions of PDEs by means of
suitable bordism groups.

Definition 9 (Generalized Singular Solutions of PDE). Let Ek � Jk
n.W/ be a

PDE. We call bar singular chain complex, with coefficients into an abelian group
G, of Ek the chain complex:

f NCp.EkIG/; N@g;

where NCp.EkIG/ is the G-module of formal linear combinations, with coefficients
in G,

P
�ici, where ci is a singular p-chain f W �p ! Ek that extends on a

neighborhood U � R
pC1, such that f on U is differentiable and Tf .

�p
/ � Ek.

Denote by NHp.EkIG/ the corresponding homology (bar singular homology with
coefficients in G) of Ek.

A G-singular p-dimensional integral manifold of Ek � Jk
n.W/ is a bar singular

p-chain V with p � n and coefficients into an abelian group G, such that V � Ek.
Set NB
.EkIG/ 
 im .N@/, NZ
.EkIG/ 
 ker.N@/. Therefore, one has the exact

commutative diagram (37):

0 0

0 B•(Ek;G) Z•(Ek;G) H•(Ek;G) 0

C•(Ek;G) C•(Ek;G)

0 G Ek•,sW Bor•(Ek;G) Cyc•(Ek;G) 0

0 0
(37)

18In other words, the method of characteristics allows us to solve Cauchy problems in Ek, namely,
to build a solution V containing a fixed .n � 1/-dimensional integral manifold N0: N0 	 V . In fact,
if � W Ek ! TEk is a characteristic vector field of Ek, transverse to N0, then V D S

t 	t.N0/ is a
solution of Ek, if @	 D �.
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Table 2 Legend for the commutative exact diagram (37)

Name Definition Properties

Bordism group NBor�.EkI G/ b 2 GŒa�Ek 2 NBor�.EkI G/ ) 9c 2 NC�.EkI G/ W N@c D a � b

Cyclism group NCyc�.EkI G/ b 2 GŒa�Ek 2 NCyc�.EkI G/ ) N@.a � b/ D 0

Closed bordism group G˝
Ek
�;s b 2 GŒa�Ek 2 G˝

Ek
�;s )

( N@a D N@b D 0

a � b D N@c

)

In Table 2 are given some more explicit properties about the symbols involved
in (37).

Theorem 10 (Integral Singular Bordism Groups of PDE).

• One has the following canonical isomorphism:

G˝Ek
;s Š NH
.EkIG/:

• If G˝
Ek
;s D 0, one has NBor
.EkIG/ Š NCyc
.EkIG/.

• If NCyc
.EkIG/ is a free G-module, then the bottom horizontal exact sequence, in
the above diagram, splits and one has the isomorphism

NBor
.EkIG/ Š G˝.Ek/
;s
M NCyc
.EkIG/:

Remark 1. By considering the dual complex

f NCp.EkIG/ 
 HomZ. NCp.EkIZ/IG/; Nıg (38)

and NHp.EkIG/, the associated homology spaces (bar singular cohomology, with
coefficients into G of Ek), we can talk also of singular cobordism groups with
coefficients in G. These are important objects, but in this chapter, we will skip on
these aspects.

Definition 10. A G-singular p-dimensional quantum manifold of Ek is a bar
singular p-chain V � Jk

n.W/, with p � n, and coefficients into an abelian group G,
such that @V � Ek. Let us denote by G˝p;s.Ek/ the corresponding (closed) bordism
groups in the singular case. Let us denote also by GŒN�Ek

the equivalence classes of
quantum singular bordisms, respectively.19

Remark 2. Let us emphasize that a G-singular solution V � Ek can be written as
an n-chain V D P

i aiui, where ai 2 G and ui W �n ! Ek, such that ui.�
n/ is

19These bordism groups can be called also G-singular p-dimensional integral bordism groups
relative to Ek 	 Jk

n.W/. They play an important role in PDE algebraic topology. For more details,
see [37, 39, 44, 46–49].
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an integral manifold of Ek.20 In particular a G-singular solution V of Ek can have
tangent spaces TqV in some points q 2 V such that TqV is a n-dimensional integral
plane, i.e., an n-dimensional subspace of .Ek/q � TqEk of the type LQq, for some
Qq 2 .Ek/C1, or admitting the splitting

TqV D Vk
q

M
V0

q

where Vk
q D TqV

T
.gk/q � Vq

T
ŒSk.T�

a N/
N
�a� and V0

q � LQq, V0
q Š .�k;0.Vq// �

TaN, dim V0
q D type.V/ D n� p. .gk/q is the unique maximal isotropic subspace of

dimension equal to m
�pCk�1

k

�
(and type 0). Therefore, under the condition (39)

m

 
pC k � 1

k

!
� n (39)

a singular solution of Ek can contain pieces of type 0. We say that a singular solution
is completely degenerate if it is an integral n-chain of type 0, namely, completely
contained in the symbol .gk/q, for some q 2 Ek. In general, a singular solution can
contain completely degenerate pieces. When the set ˙.V/ � V of singular points
of a singular solution V � Ek is nowhere dense in V , therefore dim˙.V/ < n,
then we say that in V there are Thom-Boardman singularities. In such points q 2 V ,
one has dimŒTqV

T
.gk/q� D p, with 0 < p < n. This is equivalent to state that

dimŒ.�k;0/�.TqV/� D n � p or that q is a point of Thom-Boardman-degeneration.
Finally when ˙.V/ D ¿, and there are not completely degenerate points in V , we
say that V is a regular solution. In such a case, V is diffeomorphic to its projection
X D �k;0.V/ � W, or equivalently �k;0jV W V ! W is an embedding.

Theorem 11 (Cauchy Problems in PDE). If Ek is a completely integrable PDE,
and dim.gk/C1 � n, given a .n � 1/-dimensional regular integral manifold N,
contained in Ek, there exists a solution V � Ek, such that V � N.

Proof. In fact, since N is regular, it identifies a .n� 1/-manifold in W, say N0 � W.
Let Y � W be an n-dimensional manifold containing N0. Then taking into account
that Ek is completely integrable, we can assume that the .k C 1/-prolongation
Y.kC1/ � JkC1

n W of Y is such that Y.kC1/T.Ek/C1 D N.1/
0 ; namely, it coincides

with an .n � 1/-dimensional integral manifold that projects on Ek. We call N.1/
0 the

first prolongation of N0. Now taking into account that .Ek/C1 is the strong retract
of JkC1

n .W/, we can retract map Y.kC1/ into .Ek/C1, via the retraction, obtaining
a solution V 0 � .Ek/C1 of .Ek/C1 passing for N.1/

0 . By projecting V 0 into Ek, we
obtain a solution V containing N. Since dim.gk/C1 � n, the solution V 0 does not
necessitate to be regular, but can have singular points.

20In such a category, they can be considered also as so-called neck-pinching singular solutions that
are very important whether from a theoretical point of view as well as in applications. (See, e.g.,
[50, 51].)
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Example 7. Let E2 � JD2.W/, be an analytic dynamic equation of a rigid system
with n-degree of freedoms. Let ft; qi:Pqi; Pqig be local coordinates on JD2.W/. Such
an equation is completely integrable. A Cauchy problem there is encoded by a point
q0 2 E2 and hence for that point passes a unique solution V, i.e., an integral curve
contained into E2. Let us, however, try to apply the proceeding of the proof of
Theorem 11. This is strictly impossible! In fact the symbol of such an equation
is necessarily zero, dim.g2/q D 0, for any q 2 E2.21 On the other hand, we can
consider a point Qq0 belonging to .E2/C1 and such that �3;2.Qq0/ D q0 and �2;0.Qq0/ D
a 2 W, and we can assume that there exists an integral curve Y � JD3.W/
passing for Qq0, but when we retract such a curve into .E2/C1, we get the unique
curve � passing for Qq0 contained into .E2/C1. This curve does not necessarily pass
for the point Nq0 D V.1/

T
��1
3;2 .q0/, since the first prolongation V.1/ of V does

not necessarily coincide with � . Thus, the proceeding considered in the proof of
Theorem 11 does not apply to PDEs (or ODEs), having zero symbols g2 D 0. In
other words, for such PDEs, despite �2;0.q0/ D �2;0.q0/ D a 2 W, we cannot
connect two regular solutions corresponding to two different initial conditions q0
and q0, with a completely degenerate piece, or a Thom-Boardman-singular piece.
However, a more general concept of solutions can be considered also when gk D 0.
In fact, weak solutions include solutions with discontinuity points.22

Remark 3. Weak solutions are of great importance and must be included in a
geometric theory of PDEs too.

Definition 11. Let ˝Ek
n�1 (resp. ˝Ek

n�1;s, resp. ˝Ek
n�1;w) be the integral bordism group

for .n � 1/-dimensional smooth admissible regular integral manifolds contained in
Ek, bounding smooth regular integral manifold solutions23 (resp. piecewise-smooth
or singular solutions, resp. singular-weak solutions) of Ek.

Theorem 12. Let � W W ! M be a fiber bundle with W and M smooth manifolds,
respectively, of dimension mCn and n. Let Ek � Jk

n.W/ be a PDE for n-dimensional
submanifolds of W. One has the following exact commutative diagram relating the
groups ˝Ek

n�1, ˝
Ek
n�1;s, and ˝Ek

n�1;w:

21In general, such dynamical equations have zero symbol since they are encoded by n analytic
differential equations of the second order, where n is the degree of freedoms.
22It is worth to emphasize that weak solutions can be considered equivalent to solutions having
completely degenerated pieces; in fact, their projections on the configuration space W are the
same. However, a weak solution can exist also with trivial symbol gk D 0, while solutions with
completely degenerated pieces can exist only if dim gk � n. Furthermore, under this circumstance,
namely, under condition (39), a continuous weak solution, i.e., a weak solution having completely
degenerate pieces, can be deformed into solutions with Thom-Boardman singular points.
23This means that N1 2 ŒN2� 2 ˝

Ek
n�1, iff N.1/

1 2 ŒN.1/
2 � 2 ˝

E1

n�1. (See [42, 53] for notations.)
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0 0 0

0 KEk
n−1,w/(s,w) KEk

n−1,w KEk
n−1,s,w 0

0 KEk
n−1,s

Ek
n−1

Ek
n−1,s 0

0 Ek
n−1,w

Ek
n−1,w 0

0 0

W W

W W

(40)
and the canonical isomorphisms reported in (41).

KEk
n�1;w=.s;w/ Š KEk

n�1;s
˝

Ek
n�1=KEk

n�1;s Š ˝Ek
n�1;s

˝
Ek
n�1;s=KEk

n�1;s;w Š ˝Ek
n�1;w

˝
Ek
n�1=KEk

n�1;w Š ˝Ek
n�1;w

9
>>>=

>>>;
: (41)

• In particular, for k D1, one has the canonical isomorphisms reported in (42):

KE1

n�1;w Š KE1

n�1;s;w
KE1

n�1;w=.s;w/ Š KE1

n�1;s Š 0
˝

E1

n�1 Š ˝E1

n�1;s
˝

E1

n�1=KE1

n�1;w Š ˝E1

n�1;s=KE1

n�1;s;w Š ˝E1

n�1;w

9
>>>=

>>>;
: (42)

• If Ek is formally integrable, then one has the isomorphisms reported in (43):

˝
Ek
n�1 Š ˝E1

n�1 Š ˝E1

n�1;s: (43)

Proof. The proof follows directly from the definitions and standard results of
algebra. (For more details, see [39, 45].)

Theorem 13. Let us assume that Ek is formally integrable and completely inte-
grable and such that dim Ek � 2nC 1. Then, one has the canonical isomorphisms
reported in (44):

˝
Ek
n�1;w Š

M

rCsDn�1
Hr.WIZ2/˝Z2 ˝s Š ˝Ek

n�1=KEk
n�1;w Š ˝Ek

n�1;s=KEk
n�1;s;w: (44)
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where ˝s denotes the s-dimensional unoriented smooth bordism group.

• Furthermore, if Ek � Jk
n.W/ has nonzero symbols, gkCs 6D 0, s � 0 (this excludes

those that can be k D1), then KEk
n�1;s;w D 0; hence, ˝Ek

n�1;s Š ˝Ek
n�1;w.

Proof. It follows from the above theorem and results in [42]. Furthermore, if gkCs 6D
0, s � 0, we can always connect two branches of a weak solution with a singular
solution of Ek. (For more details, see [42].)

4 Maslov Index in PDEs and Lagrangian Bordism Groups

In order to consider “Maslov index” canonically associated to PDEs, we fol-
low a strategy to recast Arnold–Kashiwara–Thomas algebraic approach, resumed
in Sect. 2, by substituting the Grassmannian of Lagrangian subspaces with the
Grassmannian of n-dimensional integral planes, namely, n-dimensional isotropic
subspaces of the Cartan distribution of a PDE. These are tangent to solutions of
PDEs. In this way, we are able to generalize the “Maslov index” for Lagrangian
submanifolds as introduced by V.I. Arnold, to any solution of PDEs. Really
Lagrangian submanifolds of symplectic manifolds can be encoded as solutions of
suitable first-order PDEs.

As a by-product, we get also a new proof for existence of the Navier–Stokes
PDEs global smooth solutions, defined on all R3. (Example 12.)

In this section, we shall calculate also Lagrangian bordism groups in a 2n-
dimensional symplectic manifold .W; !/, where ! is a nondegenerate, close,
differentiable 2-differential form on W. In [34], we have calculated the Lagrangian
bordism groups in the case that ! is exact. This has been made by generalizing
to higher-order PDE, a previous approach given by Arnold [4, 8] and Eliashberg
[16]. Now we give completely new formulas, without assuming any restriction on
! and following our algebraic topology of PDEs. (See [33–37, 39, 41–54]. See also
[1, 2, 29, 55].)

In this section, our main results are Theorems 16–19. The first is devoted to the
relation between Maslov indexes and Maslov cycles for solutions of PDEs. The
second characterizes such invariants for Lagrangian submanifolds of symplectic
manifolds, by means of suitable formally integrable and completely integrable first-
order PDEs. The other two theorems characterize Lagrangian bordism groups in
such PDEs.

Theorem 14 (Grassmannian of n-Dimensional Integral Planes of Jk
n.W/). Let

Ik.W/q be the Grassmannian of n-dimensional integral planes at q 2 Jk
n.W/, namely,

the set of isotropic n-dimensional subspaces of the Cartan distribution Ek.W/q. One
has the following properties:

(i) One has the natural fiber bundle structure Ik.W/ D S
q2Jk

n.W/
Ik.W/q !

Jk
n.W/.



The Maslov Index in PDEs Geometry 335

(ii) In general an integral n-plane L 2 Ik.W/q is projected via .�k;0/� onto an
.n � l/-dimensional subspace of TaN, q D ŒN�ka.

(iii) The set of n-integral planes such that dim.�k;0/�.L/ D n D dim.TaN/ (namely,
with l D 0) is identified with the affine fiber ��1

kC1;k.q/ � JkC1
n .W/. These

integral planes are called regular integral planes.
(iv) In general, an n-integral plane L 2 Ik.W/q admits the following splitting:

L Š Lo

M
Lv (45)

where Lo (horizontal component) is contained in some regular plane LQq for
some Qq 2 ��1

kC1;k.q/ � JkC1
n .W/. Furthermore, Lv (vertical component)

is contained in the vector space Tq�
�1
k;k�1.Nq/ Š Sk.T�

a N/
N
�a, with Nq D

�k;k�1.q/ 2 Jk�1
n .W/.

(v) Two different splittings, L Š Lo
L

Lv and L Š L0
o

L
L0
v , of an n-integral

plane L � Ek.W/q, q D ŒN�ka 2 Jk
n.W/ are related by a fixed subspace V �

Sk.T�
a N/

N
�a. More precisely, one has

Lo D L0
o

M
VI L0

v D Lv
M

V: (46)

• (Cohomology ring H
.Ik.W//). One has the following isomorphisms:

H
.Ik.W/IZ2/ Š H
.Jk
n.W/IZ2/˝Z2 H
.Fk.W/IZ2/

Š H
.WIZ2/˝Z2 H
.Fk.W/IZ2/


; (47)

where Fk.W/ is the fiber of Ik.W/ over Jk
n.W/. One has the following ring

isomorphism:

H
.Fk.W/IZ2/ Š Z2Œw
.k/
1 ; � � � ;w.k/n �;

where deg.w.k/i / D i. Such generators coincide with Stiefel-Whitney classes
of the tautological bundle E./! Ik.W/.

Proof. Let us only explicitly consider that the first part of the formula (47) follows
from a direct application of some results about spectral sequences and their relations
with fibration (Leray-Hirsh theorem). For more details, see Theorem 3 in [35].

Theorem 15 (Grassmannian of n-Dimensional Integral Planes of PDE). Let

I.Ek/ D
[

q2Ek

I.Ek/q

be the Grassmannian of n-dimensional integral planes of Ek. One has a natural
fiber bundle structure I.Ek/! Ek. Then each singular solution V � Ek identifies a
mapping iV W V ! I.Ek/, given by iV.q/ D TqV 2 I.Ek/q. Then one has an induced
morphism:
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i�V W Hi.I.Ek/ W Z2/! Hi.VIZ2/; ! 7! i�V!: (48)

i�V! is the characteristic class of V corresponding to !.

• If Ek is a strong retract of Jk
n.W/, then H
.I.Ek/IZ2/ is an algebra over

H
.EkIZ2/. More precisely, one has

Hi.I.Ek/IZ2/ Š
M

rCsDi

Hr.EkIZ2/
O

Z2

Hs.FkIZ2/;

where Fk is the fiber of I.Ek/ over Ek.
• Furthermore, the ring H
.FkIZ2/ is isomorphic up to n to the ring

Z2Œ!
.k/
1 ; � � � ; !.k/n / of polynomials in the generator !.k/i , degree.!.k/i / D i. These

generators can be identified with the Stiefel-Whitney classes of the tautological
bundle E./! I.Ek/.

• If Ek is a formally integrable PDE, then

H
.I.EkC1/IZ2/ Š H
.IkC1.W/IZ2/
Š H
.WIZ2//NZ2

H
.FkC1.W/IZ2/
Š H
.WIZ2//NZ2

Z2Œ!
.kC1/
1 ; � � � ; !.kC1/

n /

9
>=

>;
: (49)

• If V is a non-singular solution of Ek, then all its characteristic classes are zero
in dimension � 1.

Proof. After Theorem 14, let us only explicitly consider when Ek is a strong retract
of Jk

n.W/. This fact implies the homotopy equivalence Ek w Jk
n.W/. Then we can

state also the homotopy equivalence between the corresponding integral planes fiber
bundles I.Ek/ w Ik.W/. In fact, we use the following lemmas:

Lemma 1. If A � X is a strong retract, then the inclusion i.A; x0/ ,! .X; x0/ is a
homotopy equivalence, and hence i��n.A; x0/ ! �n.X; x0/ is an isomorphism for
all n � 0.

Proof. This is a standard result. See, e.g., [41]. (This lemma is the inverse of the
Whitehead’s theorem.)

Lemma 2. For a space B let F .B/ be the set of fiber homotopy equivalence classes
of fibrations E! B. A map f W B1 ! B2 induces f � W F .B2/! F .B1/, depending
only on the homotopy class of f . If f is a homotopy equivalence, then f � becomes a
bijection: f � W F .B2/$ F .B1/.

Proof. This is a standard result. See, e.g., [21].

From the above two lemmas, we can state that also I.Ek/ is a strong retract of
Ik.W/; therefore, one has the following exact commutative diagram of homotopy
equivalences:
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0 I(Ek)
∼ Ik(W )

0 Ek
∼ Jkn(W )

0 0
(50)

This induces the following commutative diagram of isomorphic cohomologies:

H•(I(Ek);Z2)
∼ H•(Ik(W );Z2)

H•(Ek;Z2) Z2
H•(Fk;Z2)

∼ H•(Jkn(W );Z2) Z2
H•(Fk(W );Z2)

(51)
Since

H
.EkIZ2/ Š H
.Jk
n.W/IZ2/ Š H
.WIZ2/

and

H
.FkIZ2/ Š H
.Fk.W/IZ2/ Š Z2Œ!
.k/
1 ; � � � ; !.k/n �;

we get

H
.I.Ek/IZ2/ Š H
.WIZ2/
O

Z2

Z2Œ!
.k/
1 ; � � � ; !.k/n �:

Therefore, H
.I.Ek/IZ2/ is an algebra over H
.WIZ2/ isomorphic to Z2

Œ!
.k/
1 ; � � � ; !.k/n �. Finally if Ek is formally integrable, then its r-prolongations

.Ek/Cr are strong retract of JkCr
n .W/, for r � 1. Thus, we can repeat the above

considerations by working on each .Ek/Cr and obtain

H
.I..Ek/Cr/IZ2/ Š H
.WIZ2/
O

Z2

Z2Œ!
.kCr/
1 ; � � � ; !.kCr/

n �;

for r � 1.

Remark 4. It is worth to emphasize the comparison between metasymplectic
structure on Jk

n.W/ and the symplectic structure in a symplectic vector space
.V; !/. According to the definition given in the proof of Theorem 4, we can define
metasymplectic orthogonal of a subspace P G Ek.W/q, by the set
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P? D f� 2 Ek.W/q j˝k.�/.�; �/ D 0; 8� 2 P; 8� 2 Sk�1.TaN/˝ ��
a g

DT�2Sk�1.TaN/˝��

a
ker.˝k.�/.�;P//

)
:

(52)

One has the following properties:

(a) .P?/? D P;
(b) P?

1

T
P?
2 D .P1 C P2/?;

(c) .P1
T

P2/? D .P1/? C .P2/?.

Then one can define P metasymplectic-isotropic if P � P?. Furthermore, we
say that P is metasymplectic-Lagrangian if P D P?. Maximal metasymplectic-
isotropic spaces are metasymplectic-isotropic spaces that are not contained into
larger ones. There any two vectors are an involutive couple. With respect to the
above remarks, in Table 3, we have made a comparison between definitions related
to the metasymplectic structure and symplectic structure. Let us underline that
the metasymplectic structure considered is not a trivial extension of the canonical
symplectic structure that can be recognized on any vector space E, of dimension n.
In fact, it is well known that V D E

L
E� has the canonical symplectic structure

�..v; ˛/; .v0; ˛0// D h˛; v0i � h˛0; vi, called the natural symplectic form on E.
Instead the metasymplectic structure arises from the differential of Cartan forms.

Definition 12 (Lagrangian Submanifolds of Symplectic Manifold). Let .W; !/
be a symplectic manifold, that is, W is a 2n-dimensional manifold with symplectic
2-form ! W W ! 
0

2.W/ (hence, ! is closed: d! D 0). We call a Lagrangian
manifold an n-dimensional submanifold V � W, such that !jV D 0.24

Example 8 ([4]). A Lagrangian submanifold of the symplectic space .R2n; !/ is an
n-dimensional submanifold V � R

2n, such that for any p 2 V , TpV � TpR
2n Š R

2n

is a Lagrangian subspace of R2n. This is equivalent to say that the symplectic 2-
form � D P

1�r<s�2n �rsd�r ^ d�s, with �rs D !rs and .�r/1�r�2n D .xj; yj/1�j�n,
annihilates on V: � jV D 0. The tangent space TV , classified by the first classifying
mapping f W V ! BO.n/, is the pullback of the tautological bundle E./ over
Lagr.R

2n; !/ or equivalently the pullback of E./ via the second classifying mapping
� W V ! Lagr.R

2n; !/, �.p/ D TpV Š R
2n. In fact, one has the exact commutative

diagram (53):

24The tangent space TpW, 8p 2 W, identifies a symplectic space via the 2-form !.p/ 2 
2.T�

p W/.
Therefore, an n-dimensional submanifold V of a 2n-symplectic manifold W is Lagrangian iff TpV
is a Lagrangian subspace of TpW, 8p 2 V .
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Table 3 Comparison between metasymplectic structure of Jk
n.W/ and symplectic

structure of symplectic space .V; !/

.Ek.W/q ; ˝k.�// .V; !/

dim.Ek.W/q/ D m
�

kCn�1
k

�C n,
dim W D n C m

dim V D 2n

P G Ek.W/q E G V

P? D f� 2 GEk.W/q j˝k.�/.�; �/ D
0; 8� 2 P; 8� 2 Sk�1.TaN/˝ ��

a g
E? D fv 2 V j!.v; u/ D
0; 8u 2 Eg

P metasymplectic-isotropic iff P 	 P?. E is symplectic-isotropic iff
E 	 E?

Œdim P � P?� Œdim E � n�

P is metasymplectic-Lagrangian iff P D P?. E is symplectic-Lagrangian
iff E D E?

Œdim P D P?� Œdim E D n�

P is maximal metasymplectic-isotropic iff
P 6	 Q 	 Q?.

E is symplectic-co-isotropic
iff E � E?

Œdim P D m
�

pCk�1
k

�C n � p, 0 � p � n� Œdim E � n�

Œtype.P/ D n � p�

A metasymplectic-isotropic space is metasymplectic-involutive
A metasymplectic-Lagrangian space is metasymplectic-involutive
A symplectic-Lagrangian space is maximally symplectic-isotropic
A symplectic-isotropic (or symplectic-co-isotropic) space E with dim E D n is
symplectic-Lagrangian
A line (hyperplane) is symplectic-isotropic (symplectic-co-isotropic)
A maximal metasymplectic-isotropic space of type n has dimension n
A maximal metasymplectic-isotropic space of type 0 has dimension
m
�

nCk�1
k

� D dimŒSk.T�

a N/˝ �a�

TM ∼= f ∗E( ) ∼= ∗E( ) E( ) E( )

V

f

L hagr(R2n, ) BO(n)

0 0 0

hh h hz

z
w

(53)

• The Maslov index class of V is defined by �.V/ D ��.˛/ 2 H1.VIZ/, where
˛ 2 H1.Lagr.R

2n; !/IZ/ Š Z is the generator.
• The Maslov cycle of V is defined by

˙.V/ D fp 2 V j dim.ker.T.�/jTpV// > 0g;
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where � W R2n Š R
n
L

iRn ! R
n. Therefore, ˙.V/ Š TpV

T
iRn 6D f0g. The

homology class Œ˙.V/� 2 Hn�1.VIZ/ is the Poincaré dual of the Maslov index
class �.V/ 2 H1.VIZ/:

Œ˙.V/� D D�.V/:

Therefore, one can state that �.V/ measures the failure of the morphism �jV W
V ! R

n to be a local diffeomorphism.

Example 9. C
n is a symplectic manifold. Any n-dimensional subspace is a

Lagrangian submanifold.

Example 10. Any 1-dimensional submanifold of a 2-dimensional symplectic man-
ifold is Lagrangian.25

Example 11. The cotangent space T�M of an n-dimensional manifold M is a
symplectic manifold, and each fiber T�

p M of the fiber bundle � W T�M ! M is
a Lagrangian submanifold.

• Let V � T�M be a Lagrangian submanifold of T�M. Let us consider the fiber
bundle

Lagr.T
�M/ D

[

q2T�M

Lagr.T
�M/q; (54)

where Lagr.T�M/q is the set of Lagrangian subspaces of Tq.T�M/. One has a
canonical mapping

� W V ! Lagr.T
�M/; q 7! TqV:

Then, if ˛ 2 H1.T�MIZ/ Š Z is the generator, we get ��˛ 2 H1.VIZ/ is the
Maslov index class of V . The Maslov cycle of V is defined by the set

˙.V/ D fq 2 V j dim.ker.T.�/jTqV > 0; � W T�M ! Mg:

Therefore, ˙.V/ Š fq 2 V jTqV
T
vTq.T�M/ 6D f0g. Here vTq.T�M/ denotes

the vertical tangent space at q 2 T�M, with respect to the projection � W T�M !
M. The homology class Œ˙.V/� 2 Hn�1.VIZ/ is the Poincaré dual of the Maslov
index class �.V/ 2 H1.VIZ/. Œ˙.V/� D D�.V/. Therefore, �.V/ measures the
failure of the mapping �jV W V ! M to be a local diffeomorphism.

25For example, any curve in S2 is a Lagrangian submanifold.
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Definition 13 (Maslov Cycles of PDE Solution). We call i-Maslov cycle, 1 � i �
n � 1, of a solution V � Ek � Jk

n.W/, the set ˙i.V/ of singular points q 2 V , such
that dim.ker..�k;0/�/jTqV/// D n � i.

Definition 14 (Maslov Index Classes of PDE Solution). We call i-Maslov index
class, 1 � i � n � 1, of a solution V � Ek � Jk

n.W/,

�i.V/ D .iV/�!.k/i 2 Hi.VIZ2/;

where !.k/i is the ith generators of the ring Z2Œ!
.k/
1 ; � � � ; !.k/n � Š H
.Fk;Z2/ and

iV W V ! I.Ek/ is the canonical mapping, iV W q 7! TqV .

Theorem 16 (Maslov Indexes and Maslov Cycles Relations for Solution of
PDE).

• Let Ek � Jk
n.W/ be a strong retract of Jk

n.W/ and then the homology class,
Œ˙i.V/� 2 Hn�i.VIZ/, 1 � i � n � 1, is the Poincaré dual of the Maslov index
class �i.V/ 2 Hi.VIZ/. Formula (55) holds:

Œ˙i.V/� D D�i.V/; 1 � i � n � 1: (55)

Therefore, f�i.V/g1�i�n�1, measure the failure of the mapping �k;0 W V ! W to
be a local embedding.

• Let Ek � Jk
n.W/ be a formally integrable PDE. Then one can characterize each

solution V on the first prolongations .Ek/C1 � JkC1
n .W/, by means of i-Maslov

indexes and i-Maslov cycles, as made in above point.

Proof. Let us consider Ek a strong retract of Jk
n.W/. Then we can apply Theorem 15.

In particular, we get the following isomorphisms:

H
.Ek/ Š H
.Jk
n.W//

Š H
.W/
H
.I.Ek// Š H
.Ik.W//

9
=

; : (56)

Let us more explicitly calculate these cohomologies. Start with the case i D 1. One
has the following isomorphisms:

H1.I.Ek/IZ2/ Š H1.EkIZ2/˝Z2 H0.FkIZ2/LH0.EkIZ/˝Z2 H1.FkIZ2/
Š H1.EkIZ2/˝Z2 Z2

L
Z2 ˝Z2 Z2Œ!

.k/
1 �

Š H1.EkIZ2/LZ2Œ!
.k/
1 �:

9
>=

>;
:

(57)
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Therefore, one has the following exact commutative diagram:

0 Z2[
(k)
1 ]

(iV )∗=(iV )∗|
Z2[

(k)
1 ]

H1(I(Ek);Z2)

(iV )∗

H1(Ek;Z2) 0

H1(V ;Z2)

0

w

w

(58)
Then the mapping iV W V ! I.Ek/ induces the following morphism:

.iV/� D .iV/�jZ2Œ!.k/1 �
W Z2Œ!.k/1 �! H1.VIZ2/:

Set ˇ1.V/ D .iV/�.!.k/1 /. Here we suppose that V is compact (otherwise we shall
consider cohomology with compact support). Now we get

ˇ1.V/
\
ŒV� D Œ˙1.V/�: (59)

In (62) ŒV� denotes the fundamental class of V that there exists also whether V is
non-orientable. (For details, see, e.g. [41].)

We can pass to any degree, 1 � i � n � 1, by considering the following
isomorphisms:

Hi.I.Ek/IZ2/ Š Hi.EkIZ2/L
1�p�i�1 Hi�p.EkIZ2/˝Z Hp.FkIZ2/L
Z2Œ!

.k/
1 ; � � � ; !.k/i �

9
>=

>;
: (60)

One has the following exact commutative diagram:

0 Z2[
(k)
1 , · · · , (k)

i ]

(iV )∗

Hi(I(Ek);Z2)

(iV )∗

Hi(Ek;Z2)/Z2[
(k)
1 , · · · , (k)

i ] 0

Hi(V ;Z2)

0

w w w w

(61)
Then the map iV W V ! I.Ek/ induces the following morphism:

.iV/� W Z2Œ!.k/1 ; � � � ; !.k/i �! Hi.VIZ2/; 1 � i � n � 1:
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Set ˇi.V/ D .iV/�.!.k/i /. We get

ˇi.V/
\
ŒV� D Œ˙i.V/�: (62)

For the case where Ek is formally integrable, we can repeat the above proceeding
applied to the first prolongation .Ek/C1 of Ek that is a strong retract of JkC1

n .W/. In
this way, we complete the proof.

Example 12 (Navier–Stokes PDEs and Global Space-Time Smooth Solutions). The
non-isothermal Navier–Stokes equation can be encoded in a geometric way as a
second-order PDE .NS/ � J2

4.W/, where � W W D JD.M/ �M T00M �M T00M Š
M � I � R

2 ! M is an affine bundle over the 4-dimensional affine Galilean
space-time M. There I � M represents a 3-dimensional affine subspace of the 4-
dimensional vector space M of free vectors of M. A section s W M ! W is a triplet
s D .v; p; �/ representing the velocity field v, the isotropic pressure p, and the
temperature � . In [39] it is reported the explicit expression of .NS/, formulated just
in this geometric way. Then one can see there that .NS/ is not formally integrable,
but one can canonically recognize a sub-equation b.NS/ � .NS/ � J2

4.W/ that is
so and also completely integrable. Furthermore, .NS/ is a strong deformed retract
of J24.W/, over a strong deformed retract .C/ of J14.W/. In other words, one has the
following commutative diagram of homotopy equivalences:

(NS) ∼ J24 (W )

(C) ∼ J14 (W )

0 0
(63)

Since J24.W/ and J14.W/ are affine spaces, they are topologically contractible to a
point; hence, from (63), we are able to calculate the cohomology properties of .NS/,
as reported in (64):

H0..NS/IZ2/ D Z2

Hr..NS/IZ2/ D 0; r > 0



: (64)
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We get the cohomologies of I.NS/, as reported in (65):

Hr.I.NS/IZ2/ DLpCqDr Hp..NS/IZ2/˝Z2 Hq.F2IZ2/

D H0..NS/IZ2/˝Z2 Hr.F2IZ2/

D Z2 ˝Z2 Z2Œ!
.2/
1 ; � � �!.2/r �

D Z2Œ!
.2/
1 ; � � �!.2/r �; 1 � r � 4

9
>>>=

>>>;
: (65)

Therefore, (66) are the conditions that V � b.NS/ � .NS/ must satisfy in order
to be without singular points:

0 D i�V!
.2/
i 2 Hi.VIZ2/; 1 � i � 4: (66)

In particular, if

V D D2s.M/ � b.NS/ � .NS/ � JD2.W/ � J2
4.W/

where s W M ! W is a smooth global section, since Hi.VIZ2/ D 0, 8i > 0, we get
that all its characteristic classes i�V!

.2/
i are zero. Therefore, V cannot have singular

points on V; namely, it is a global smooth solution on all the space time. Such global
solutions certainly exist for .NS/. In fact, a constant section s W M ! W is surely
a solution for .NS/, localized on a equipotential space region. In fact, such solution
satisfies b.NS/ iff Eq. (67) are satisfied:

vkGj
jk D 0

vk.@x˛:G
j
jk/ D 0

vsRj
s C �.@xi:f /gij D 0

vkvpWkp D 0

9
>>>=

>>>;
: (67)

We have adopted the same symbols used in [39]. Then, by using global Cartesian
coordinates (this is possible for the affine structure of J24.W/), we get that gij D ıij,
Rj

s D 0 and Wkp D 0. Therefore, Eq. (67) reduce to �.@xk:f / D 0. This means that
such constant solutions exist iff they are localized in a equipotential space region.

Such constant global smooth solutions, even if very simple, can be used to
build more complex ones, by using the linearized Navier–Stokes equation at such
solutions. Let us denote by .NS/Œs� � JD2.s�vTW/ such a linearized PDE at the
constant solution s. Similarly to the nonlinear case, we can associate to .NS/Œs�

a linear sub-PDE b

.NS/Œs� � .NS/Œs� that is formally integrable and completely

integrable. Then in a space-time neighborhood of a point q 2 b.NS/Œs�, we can

build a smooth solution, say � W M ! s�vTW. Since solutions of b.NS/Œs� locally
transform solutions of b.NS/ into other solutions of this last equation, we get that the
original constant solution s can be transformed by means of the perturbation � into
another global solution s0 W M ! W, the perturbation being only localized into a
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Fig. 1 Global space-time smooth solution representation V 0 	 b.NS/, obtained by means of a

localized, space-time smooth perturbation of a constant global smooth solution V 	 b.NS/. The
perturbation, localized in the compact space-time region D 	 V of the smooth global constant

solution V , is a smooth solution of the linearized equation b.NS/Œs�. The vertical arrow denotes
the local perturbation of the solution V , generating the non-constant global smooth solution V 0 	
J24.W/

local space-time region. In this way, we are able to obtain global space-time smooth
solutions V 0 � .NS/. (See Fig. 1.) Since V and V 0 are both diffeomorphic to M, via
the canonical projection �2 W J24.W/ ! M, their characteristic classes are all zero:

i�V!
.2/
i D i�V0!

.2/
i D 0, i 2 f1; 2; 3; 4g. Really Hi.V 0IZ2/ D 0 D Hi.V 0IZ2/, 8i > 0.

In the words of Theorem 16, we can say that in these global solutions V , one has

˙i.V/K D ¿; 8i 2 f1; 2; 3g (68)

for any compact domain K � V . In (68) ˙i.V/K denotes the i-Maslov cycle
of V inside the compact domain K � V . (For more details on the existence
of such smooth solutions, built by means of perturbations of constant ones, see
Appendix A.)26

26It is clear that whether we work with the constant solution with zero flow, we get a non-constant
global solutions V 0 necessarily satisfying the following Clay–Navier–Stokes conditions:

1. v.x; t/ 2 �
C1.R3 � Œ0;1//

�3
; p.x; t/ 2 C1.R3 � Œ0;1//

2. There exists a constant E 2 .0;1/ such that
R
R3

jv.x; t/j2dx < E. For more details on
the Navier–Stokes Clay-problem, see the following reference: [17]. Therefore, this is another
way to prove existence of global smooth solutions when one aims to obtain solutions defined
on all the space R

3. Really, by varying the localized perturbation, one can obtain different
initial conditions and, as a by-product, global smooth solutions. Such global solutions do not
necessitate to be stable at short times, since the symbol of the Navier–Stokes equation is not

zero. However, by working on the infinity prolongation b.NS/C1 	 J1

4 .W/, all smooth

solutions can be stabilized at finite times, since for b.NS/C1, one has .g2/C1 D 0. Their
average stability can be studied with the geometric methods given by A. Prástaro, also for
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Theorem 17 (Maslov Index for Lagrangian Manifolds). For n-Lagrangian sub-
manifolds of a 2n-dimensional symplectic manifold .W; !/, we recognize i-Maslov
indexes ˇi.V/ and i-Maslov cycles ˙i.V/, 1 � i � n � 1. For i D 1, we recover the
Maslov index defined by Arnold.

Proof. After recognizing the Maslov index for solutions of PDEs (Theorem 16), the
first step to follow is to show that Lagrangian submanifolds of W are encoded by a
suitable PDE. Let fx˛; yjg1�˛; j�n be local coordinates in a neighborhood of a point
a 2 W. In this way, an n-dimensional submanifold N � W, passing for a, can be
endowed with local coordinates fx˛g1�˛�n. Let us represent ! in such a coordinate
system:

! D
X

1�˛<ˇ�n

!˛ˇdx˛ ^ dxˇ C
X

1�˛;j�n

N!˛jdx˛ ^ dyj C
X

1�i<j�n

O!ijdyi ^ dyj: (69)

Then the restriction of ! on an n-dimensional submanifold N � W, with local
coordinate fx˛g, gives the formula (70).

!jN D
X

1�˛<ˇ�n

Œ!˛ˇ C
X

1�j�n

. N!˛jy
j
ˇ � N!ˇjy

j
˛/C

X

1�i<j�n

O!ij.y
i
˛yj
ˇ � yi

ˇyj
˛/�dx˛ ^ dxˇ:

(70)
Therefore, by imposing that they must be !jN D 0, we see that we can encode n-
dimensional Lagrangian submanifolds N �W by means of solutions, of the PDE
L1 reported in (71):

L1 � J1n.W/ W
(
!rs.x/CP1�j�n. N!rj.x/yj

s � N!sj.x/yj
r/

CP1�i<j�n.y
i
ry

j
s � yj

ry
i
s/ O!ij.x/ D 0

)

1�r<s�n

: (71)

There !rs and O!ij are nondegenerate skew-symmetric n � n matrices and N!rs is a
n � n matrix, all being analytic functions of fx˛g.27 One can prove that E1 is a
formally integrable and completely integrable PDE. In fact, one can see that �r�1;r W
.E1/Cr ! .E1/C.r�1/ are subbundles of �rC1;r W JrC1

n .W/! Jr
n.W/, 8r � 1. Really,

for r D 1, we get

dim.L1/C1 D nC n .C2/.nC1/
2

� n.n�1/
2
� n2.n�1/

2

dim.L1/ D nC n.nC 1/ � n.n�1/
2

dim.g1/C1 D n2.nC1/
2
� n2.n�1/

2

dim.L1/C1 D dim.L1/C dim.g1/C1

9
>>>=

>>>;
: (72)

global solutions defined on all the space, assuming perturbations with compact support. (See
[45–49, 53].)

27Let us emphasize that the coefficients !rs, O!ij, and N!rs are related by some first-order constraints
coming from the condition that d! D 0. However, for the formal integrability of Eq. (71), these
constraints can be ruled out.
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This is enough to state that the short sequence

(73)

is exact for r D 1. Since this process can be iterated for any r > 1, we can state that
one can arrive to a certain prolongation where the symbol is involutive. Hence, the
PDE L1 is formally integrable. Since it is analytic, it is also completely integrable.
Then we can apply Theorem 16 to L1 � J1n.W/, to state that there exists Maslov
cycles and Maslov indexes for any solution V � .L1/C1, on the first prolongation
of L1. One has the following commutative diagram where all the vertical lines are
surjectives:

( )+1 J

p

p

p

2
n (W )

2,0

2,1

J1n (W )

1,0

W W

0 0

1

12,0 ( )+1
p

1

2,1 ( )+1
p

1

p1,0 1

(74)

.L1/C1 is a strong retract of J2n.W/; hence, one has the homotopy equivalence,

.L1/C1 ' J2n.W/;

that induces isomorphisms on the corresponding cohomology spaces. Therefore, we
can recognize i-Maslov index classes and i-Maslov cycle classes on each solution
V � .L1/C1.

As a by-product, we can apply these results to the symplectic space .R2n; !/,
to recover the same results given by V.I Arnold. (See Example 8.) This justifies
our Definitions 13 and 14 that can be recognized suitable generalizations, in PDEs
geometry, of analogous definitions given by V.I. Arnold.

Theorem 18 (G-Singular Lagrangian Bordism Groups). Let W be a symplectic
2n-dimensional manifold. Let G be an abelian group. Then the G-singular bordism
group of .n � 1/-dimensional compact submanifolds of W, bording by means of
n-dimensional Lagrangian submanifolds of W, is given in (75):

G˝L1
;s Š NH
.L1IG/: (75)
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• If G˝
L1
;s D 0, one has NBor
.L1IG/ Š NCyc
.L1IG/.

• If NCyc
.L1IG/ is a free G-module, one has the isomorphism

NBor
.L1IG/ Š G˝.L1/
;s
M NCyc
.L1IG/:

Proof. It is enough to applying Theorems 10 and 17 to get formula (75).

Theorem 19 (Closed Weak Lagrangian Bordism Groups). Let W be a sym-
plectic 2n-dimensional manifold. Let G be an abelian group. Then the weak
.n � 1/-bordism group of closed compact .n � 1/-dimensional submanifolds of W,
bording by means of n-dimensional Lagrangian submanifolds of W, is given in (76).

˝
L1

n�1;w Š
M

rCsDn�1
Hr.WIZ2/˝Z2 ˝s Š ˝L1

n�1=KL1

n�1;w Š ˝L1

n�1;s=KL1

n�1;s;w: (76)

Furthermore, since L1 � J1n.W/ has nonzero symbols, g1Cs 6D 0 and s � 0, then
KL1

n�1;s;w D 0; hence, ˝L1

n�1;s Š ˝L1

n�1;w.

Proof. From the proof of Theorem 18 and by using Theorem 13, we get directly the
proof.

Warning Lagrangian bordism considered in this paper, namely, Theorems 18
and 19, adopts a point of view that is directly related to one where compact
(closed) manifolds bording by means of Lagrangian manifolds must be Lagrangian
manifolds too. This is, for example, the Lagrangian bordism considered in [11].
Really these authors work on a manifold W D R

2 � M, where M is a (compact)
2m-dimensional symplectic manifold .M; O!/, and R

2 is endowed with the canonical
symplectic form !R2 D dx ^ dy. Thus, W is a 2.m C 1/-dimensional symplectic
manifold with symplectic form ! D O! ˚ !R2 . Therefore, one has a natural trivial
fiber bundle structure � W W ! R

2, with fiber the symplectic manifold M. Then one
considers bordisms of (closed) compact Lagrangian m-dimensional submanifolds
of M, bording by means of .m C 1/-dimensional Lagrangian submanifolds of W.
In such a situation, with respect to the framework considered in Theorems 18 and
19, one should specify that n D mC 1 and that the n � 1 D m compact manifolds
bording with .n D m C 1/-Lagrangian submanifolds of W must be Lagrangian
submanifolds of M. In other words, the Lagrangian bordism groups considered
in [11] are relative Lagrangian bordism groups, with respect to the submanifold
M � W, in our formulation. However, since .m C 1/-dimensional Lagrangian
submanifolds V of W must necessarily be transverse to the fibers of � W W ! R

2,
except in the singular points, it follows that the compact (closed) m-dimensional
manifolds N1 and N2 that they bord, namely, @V D N1 t N2, must necessarily be
submanifolds of M: N1; N2 � M. Furthermore, by considering that !jV D 0, it
follows that O!jN1 D O!jN2 D 0; hence, N1 and N2 must necessarily be Lagrangian
submanifolds of .M; O!/, as considered in [11]. Therefore, our point of view is more
general than the one adopted in [11] and recovers this last one when the structure of
the symplectic manifold .W; !/ is of the type .M � R

2; O! ˚ !R2 /.
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Appendices

Appendix A: On Global Smooth Solutions
of the Navier–Stokes PDEs

In this appendix, we shall explicitly prove a theorem that one has implicitly used in
Example 12.

Theorem A 1. Any constant smooth solution s of the Navier–Stokes equation
.NS/ � JD2.W/ � J2

4.W/ admits perturbations that identify smooth, nonconstant
solutions of .NS/ � JD2.W/ � J2

4.W/.

Proof. We shall use a surgery technique in order to prove this theorem. Let us divide
the proof in some lemmas.

Lemma A 1. Given a smooth constant solution s of .NS/ � JD2.W/, we can
identify a smooth solution with boundary diffeomorphic to S3 and a compact
smooth solution with boundary diffeomorphic to S3 again, such that their canonical
projections on M identify an annular domain in M.

Proof. Let us consider a compact domain D � M identified with a 4-dimensional
disk D4. Set @D4 D S3. By fixing a constant solution s of .NS/ � JD2.W/, let us
denote by N the image into b.NS/ of S3 by means of D W N D D2s.S3/ � b.NS/ �
J24.W/. Set V D D2s.M/ � b.NS/ and set

eV D .V n D2s.D4//
[

N � b.NS/: (77)

Then eV is a smooth solution of b.NS/ with boundary @eV D N Š S3.
Let p0 2 D4 be the center of the disk. Since b.NS/ � JD2.W/ is completely

integrable, we can build a smooth (analytic) solution s0 in a neighborhood U0 � D4

of p0, such that bV D D2s0.U/ � b.NS/. We can assume that s0 does not coincide
with s. (Otherwise, we could take a different constant value from s.) Let us consider
in U0 a disk D4

0 centered on p0. Set

N0 D D2s0.@Dk
0/ � bV � b.NS/: (78)

Let us consider

ebV D .bV n D2s0.D
4
0//
[

N0 � b.NS/: (79)

http://arxiv.org/abs/1503.07851
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Then ebV is a smooth solution of b.NS/ with boundary @ebV D N0 Š S3. Of course,
the projections of N and N0 on M via the canonical projection �2 W JD2.W/ ! M
identify an annular domain in M.

Lemma A 2. The solutions eV and ebV considered in Lemma 1 identify a connected
smooth solution of .NS/ � J2

4.W/.

Proof. Since both eV and ebV are smooth solutions, we can consider their 1-
prolongations and look to them inside b.NS/C1. Now their boundaries are both

diffeomorphic to S3, and therefore there must exist a smooth solution
1
V �

b.NS/C1 � J1
4 .W/ such that @

1
V D NC1

S
.N0/C1. In fact, from the commutative

diagram (40) and Theorem 13, we get the exact commutative diagram (80).

0 0

K(NS)
3 0

0 K(NS)
3,s

(NS)
3

(NS)
3,s 0

0 3

0 0

WW

W

(80)

where K
b.NS/
3 Š K

b.NS/
3;s distinguishes between non-diffeomorphic closed

3-dimensional integral smooth submanifolds of b.NS/. In fact ˝
b.NS/
3;s Š ˝3 D 0.28

Since the Cartan distribution E1 � T b.NS/C1 is 4-dimensional, it follows that
1
V

smoothly solders with the solutions
1
V ,eV , and ebV . In this way,

X D eVC1
[

NC1

1
V

[

.N0/C1

ebVC1 (81)

28This is related to the fact that the Navier–Stokes equation is an extended 0-crystal PDE. (See [46–
49, 51, 53, 54].) In Table 4 are reported some unoriented smooth bordism groups ˝n, 0 � n � 3,

useful to calculate ˝c.NS/
3;s , according to Theorem 13.
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Table 4 Unoriented smooth
bordism groups ˝n,
0 � n � 3

n ˝n

0 Z2

1 0

2 Z2

3 0

is a smooth solution of b.NS/C1, hence of .NS/.

To conclude the proof, let us assume that
1
V can be realized by means of a section s1

of � W W ! M, namely,
1
V D D1.s1/.A/, where A is the annular domain above

considered. Thus, we can say that the solution X D D1Ns.M/ for some smooth
global section Ns of � W W ! M. Then taking into account of the affine structure of
W, we can state that Ns D s C �, where � is a smooth perturbation of s on the disk
D4, such that �jS3 D 0 and

lim
p!S3 (from inside)

�.p/ D 0; �j{D4 D 0: (82)

In other words, the perturbation is of the type pictured in Fig. 1.
So we have proved the following lemma.

Lemma A 3. When perturbations of b.NS/ are realized by means of smooth solu-

tions of the corresponding linearized Navier–Stokes PDE, b.NS/Œs� � JD2.s�vTW/,
the completely integrable part of .NS/Œs�, then the identified solutions of .NS/ �
J2

4.W/ are also smooth solutions of .NS/ � JD2.W/ � J2
4.W/; namely, they are

identified with smooth sections of � W W ! M.

Whether, instead,
1
V is a smooth solution that cannot be globally represented by

means of a section of � W W ! M, then it means that there are in
1
V , and hence

in its projection into W, some pieces that climb on the fibers of � W W ! M. In
such a case, we can continue to state that X is obtained by a perturbation of V inside
the compact domain D, but the perturbation is a singular solution of the linearized
Navier–Stokes PDE at the constant section s. Therefore, in such a case, it should
not be possible to represent X as a smooth section of � W W ! M. This shows the
necessity to realize the perturbation of s by means of a smooth solution � of the

linearized equation b.NS/Œs� � JD2.s�vTW/, such that �jS3 D 0 and �j{D4 D 0, in
order that the perturbed solution X should be identified with a global nonconstant
section of � W W ! M.

On the other hand, since eVC1 and ebVC1 are both regular solutions with respect
to the canonical projection �1 W JD1.W/! M, and .NS/ � JD2.W/ is an affine
fiber bundle over its projection at the first order, with nonzero symbol, it follows that
we can deform any eventual piece climbing on the fibers in such a way to obtain a
regular solution with respect to the projection � W W ! M. Therefore, the projection
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Fig. A.1 Deformation of a smooth solution (Y) of b.NS/ 	 J24.W/, climbing along the fibers of

�2 W b.NS/ ! M, into a smooth solution (eY) of b.NS/ 	 JD2.W/ 	 J24.W/. This is possible since
the Navier–Stokes PDE is an affine fiber bundle over .C/, and its symbol is not zero: dim.g2/q D
46, 8q 2 .NS/, dim.bg2/q D 42, 8q 2 b.NS/. In the picture, Z D �2;0.bV/ 	 W

Y � b.NS/ of
1
V into b.NS/ can be eventually deformed into a regular solution,eY , with

respect to the projection �2. (See Fig. A.1.) In this way, the projection of eY into W
smoothly relates regular smooth submanifolds that project on two domains of M
that are outside the annular domain A, but that are disconnected each other. Thus,
eY identifies a smooth 4-dimensional manifold transverse to the fibers of � W W !
M. By conclusion eYC1 is necessarily a regular solution of b.NS/C1 � JD1.W/.
Therefore, it can be obtained by a perturbation of the constant solution s, by means

of a smooth solution of b.NS/Œs� � JD2.s�vTW/. (See Fig. 1.)

Appendix B: On the Legendrian Bordism

Similarly to the way we considered Lagrangian bordism in this chapter, we can also
formulate Legendrian bordism. Let us in this appendix recall some basic definitions
and sketch only some steps. Really on a .2nC1/-dimensional manifold W, endowed
with a contact structure, namely, a 1-differential form �, such that �.p/^ d�.p/n 6D
0, 8p 2 W, there exists a characteristic vector field v W W ! TW, i.e., the generator
of the 1-dimensional annihilator of d�: vcd� D 0 and vc� D 1. Furthermore on
W there exists also a contact distribution, namely, a 2n-dimensional distribution
B DSp2W Bp, Bp D ker.�.p// � TpW. One has the following properties.

Proposition B 1. The following propositions hold.

(bi) d�.p/jBp , 8p 2 W, is nondegenerate, i.e., if d�.�; �/ D 0, 8� 2 Bp, and
8� 2 Bp, then � D 0.

(bii) TW D B
Lhvi.
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(biii) (Darboux’s theorem) B ! W is a symplectic vector bundle with symplectic
form d�jB.

(biv) With respect to local coordinates fx˛; y˛; zg on W, � assumes the following
form29:

� D dz � y˛dx˛: (83)

Proposition B 2. Integral manifold of a contact structure .W; �/ is a submanifold
N � W, such that �jN D 0 (or equivalently TpN � Bp, 8p 2 N). One has

dim N <
1

2
.2nC 1/: (84)

• Legendrian submanifolds of .W; �/ are integral submanifolds N of maximal
dimension: dim N D n.

Definition B 1. A Legendrian bundle � W W ! M is a fiber bundle with dim W D
2nC1, dim M D nC1 and endowed with a contact structure .W; �/, such that each
fiber Wp is a Legendrian submanifold, namely, �jWp D 0, 8p 2 M.

• If L � W is a Legendrian submanifold of W, (�jL D 0, dim L D n), its front
is �.L/ D X � M. Singularities of �jL W L ! M are called Legendrian
singularities. The front X of a Legendrian submanifold is an n-dimensional
submanifold of M, with eventual singularities.

Similarly to the Lagrangian submanifolds of symplectic manifolds, we can charac-
terize Legendrian submanifolds of a contact manifold by means of suitable PDEs.
In fact we have the following:

Theorem B 1. Given a contact structure on a .2n C 1/-dimensional manifold
.W; �/, its Legendrian submanifolds are solutions of a first-order, involutive,
formally integrable, and completely integrable PDE.

i-Maslov indexes and i-Maslov cycles, 1 � i � n� 1, can be recognized for such
solutions.

Proof. Let fx˛; y˛; zg1�˛�n be local coordinates on W. Then Legendrian submani-
folds of W are the n-dimensional submanifolds of W that satisfy the PDE reported
in (85):

L eg � J1n.W/ W fzˇ � yˇ D 0g (85)

29All contact structure forms on W are locally diffeomorphic.
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where fx˛; y˛; z; y˛ˇ; zˇg1�˛;ˇ�n are local coordinates on J1n.W/. The first prolonga-
tion of L eg is given in (86).30

L egC1 � J2n.W/ W
	

zˇ � yˇ D 0
zˇ� � yˇ� D 0



: (86)

Then one can see that

Œdim.L egC1/ D nC1
2
.n2 C 2nC 2/� D Œdim.L eg/ D .nC 1/2�

CŒdim..g1/C1/ D .nC1/n2
2

�

)
: (87)

Therefore, one has the surjectivity L egC1 ! L eg. Furthermore, one can see that
the symbol g1 is involutive. In fact one has

Œdim...g1/C1// D n2.nC1/
2
D Œdim.g1/ D n2�C Œdim.g.1/1 / D n2 � n/�

C Œdim.g.2/1 / D n2 � 2n/�

C � � � C Œdim.g.n�1/
1 / D n2 � n.n � 1/�

D n2.nC1/
2

9
>>>=

>>>;
: (88)

We have used the formula 1C 2C 3C � � � C .n � 1/ D n.n�1/
2

. This is enough
to state that L eg is formally integrable, and being analytic, it is also completely
integrable.

Let us also remark that L eg is a strong retract of J1n.W/; therefore, one has
the homotopic equivalence J1n.W/ ' L eg that induces isomorphisms between the
corresponding cohomology groups. Then by using Theorem 16, we can state that
on each solution of L eg we are able to recognize i-Maslov indexes and i-Maslov
cycles.

Definition B 2. Let W be a .2nC 1/-dimensional contact manifold .W; �/. A Leg-
endrian bordism is an n-dimensional Legendrian submanifold bording compact
.n � 1/-dimensional integral submanifolds of W.

Example B 1. Let M be an n-dimensional manifold. The derivative space

JD.M;R/ Š T�M � R

has a canonical contact form � D dy � y˛dx˛ , where x˛ are local coordinates on
M and y is a coordinate on R. This is just the Cartan form on the derivative space
JD.E/, E D M � R, with respect to the fibration � W E ! M. The corresponding

30Let us note that the equations of second order in (86) are not all linearly independent. In fact, by
considering that they must be zˇ� D z�ˇ , we get, by difference of the equations, zˇ� � yˇ� D 0

and z�ˇ � y�ˇ D 0: �yˇ� C y�ˇ D 0; namely, it must hold the symmetry under the exchange of

indexes in y�ˇ . Therefore, the number of independent equations for L egC1 is .n C n.nC1/

2
/.
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contact distribution coincides with the Cartan distribution E1.E/ � TJD.E/. Every
solution is a Legendrian submanifold. Therefore, in such a case, Legendrian bordism
are identified with solutions bording .n � 1/-dimensional integral submanifolds.

Remark B 1. From the above results, we can directly reproduce results similar to
Theorems 18 and 19 also for singular Legendrian bordism groups. More precisely,
one has the exact commutative diagram reported in (89), where the top horizontal
line is an homotopy equivalence:

∼ J1n (W )

W W

0 0

eg

(89)
We get the following isomorphisms:

H1.I.L eg/IZ2/ Š H1.WIZ2/LZ2Œ!
.1/
1 �

Hi.I.L eg/IZ2/ Š Hi.WIZ2/L
1�p�i�1 Hi�p.WIZ2/NZ2

Hp.F1IZ2/L
Z2Œ!

.1/
1 ; � � � ; !.1/i �

9
>>>=

>>>;
: (90)

Then the map iV W V ! I.L eg/ induces the following morphism:

.iV/� W Z2Œ!.1/1 ; � � � ; !.1/i �! Hi.VIZ2/; 1 � i � n � 1: (91)

Set ˇi.V/ D .iV/�.!.1/i / that is the i-Maslov index of the Legendrian manifold V .
We get ˇi.V/

T
ŒV� D Œ˙i.V/� that relates the i-Maslov index of V with its i-Maslov

cycle.

Theorem B 2 (G-Singular Legendrian Bordism Groups). Let W be a contact
.2n C 1/-dimensional manifold. Let G be an abelian group. Then the G-singular
bordism group of .n�1/-dimensional compact submanifolds of W, bording by means
of n-dimensional Legendrian submanifolds of W, is given in (92):

G˝
L eg
;s Š NH
.L egIG/: (92)

• If G˝
L eg
;s D 0; one has: NBor
.L egIG/ Š NCyc
.L egIG/.

• If NCyc
.L egIG/ is a free G-module, one has the isomorphism:

NBor
.L egIG/ Š G˝.L eg/
;s
M NCyc
.L egIG/:
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Theorem B 3 (Closed Weak Legendrian Bordism Groups). Let W be a contact
.2nC 1/-dimensional manifold. Let G be an abelian group. Then the weak .n� 1/-
bordism group of closed compact .n � 1/-dimensional submanifolds of W, bording
by means of n-dimensional Legendrian submanifolds of W, is given in (93):

˝
L eg
n�1;w Š

M

rCsDn�1
Hr.WIZ2/˝Z2 ˝s Š ˝L eg

n�1 =KL eg
n�1;w Š ˝L eg

n�1;s=KL eg
n�1;s;w: (93)

Furthermore, since L eg � J1n.W/ has nonzero symbols, then KL eg
n�1;s;w D 0; hence,

˝
L eg
n�1;s Š ˝L eg

n�1;w.
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On the Infimum of Certain Functionals

Biagio Ricceri

Abstract Here is a particular case of our main result: Let X be a real Banach space,
' W X ! R a nonzero continuous linear functional and  W X ! R a nonconstant
Lipschitzian functional with Lipschitz constant equal to k'kX� . Then, we have

max

	
inf
x2X
.'.x/C  .x//; inf

x2X
.'.x/ �  .x//




D inf
x2X
.'.x/C j .x/j/ D lim inf

kxk!C1
.'.x/C j .x/j/

Here and in what follows, X is a real Banach space, ' W X ! R is a nonzero
continuous linear functional, and  W X ! R is a nonconstant Lipschitzian
functional with Lipschitz constant L. From Proposition 2.1 of [2], we know that,
when L < k'kX� , the functional ' C  is unbounded below. When, to the
contrary, L � k'kX� , this is no longer true. That is, the same functional can be
bounded below. The simplest examples are provided by taking  .x/ D j'.x/j or
 .x/ D k'kX�kxk. The aim of this very short paper is to study the infimum of that
functional just when L D k'kX� .

So, from now on, we assume that

L D k'kX� :

Our basic result is as follows:

Theorem 1. Let Œa; b� be a closed interval contained in Œ�1; 1� and let
� W Œa; b�! R be a convex and lower semicontinuous function.

Then, one has

max

	
inf
x2X
.'.x/C a .x//� �.a/; inf

x2X
.'.x/C b .x//� �.b/



D inf

x2X
sup
�2Œa;b�

.'.x/C � .x/� �.�// :
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Our proof of Theorem 1 is based on the use of the following result (Theorem 5.9
and Remark 5.10 of [3]):

Theorem A. Let S be a topological space, I � R a compact interval, and f W
S�I ! R a function which is lower semicontinuous in X and upper semicontinuous
and quasi-concave in I. Moreover, assume that there exists a set D � I dense in I
such that, for each � 2 D and r 2 R, the set

fx 2 S W f .x; �/ < rg
is connected.

Then, one has

sup
�2I

inf
x2S

f .x; �/ D inf
x2S

sup
�2I

f .x; �/ :

To be able to use Theorem A, we first have to establish the following result:

Theorem 2. For each � 2� � 1; 1Œ and r 2 R, the set .' C � /�1.� �1; r�/ is a
retract of X.

Proof. First, consider the multifunction G W R! 2X defined by

G.t/ D '�1.� �1; t�/
for all t 2 R. Let us check that

dH.G.t/;G.s// � jt � sj
k'kX�

: (1)

for all t; s 2 R, dH being the usual Hausdorff distance. For instance, assume that
t < s. Consequently

G.t/ � G.s/ : (2)

Now, fix x 2 G.s/ n G.t/. Consequently

t < '.x/ � s :

In view of the classical formula giving the distance of a point from a closed
hyperplane, we have

dist.x;G.t// � dist.x; '�1.t// D '.x/ � t

k'kX�

� s � t

k'k�X
:

So

sup
x2G.s/

dist.x;G.t// � s � t

k'k�X
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which together with (2) gives (1). Now, consider the multifunction F W X ! 2X

defined by

F.x/ D G.r � � .x//
for all x 2 X. For each x; y 2 X, we have

dH.F.x/;F.y// � 1

k'kX�

j�jj .x/ �  .y/j � j�jkx � yk :

Hence, since j�j < 1, F is a multivalued contraction with closed and convex values.
Then, in view of [1], the set Fix.F/ WD fx 2 X W x 2 F.x/g is a retract of X.
To complete the proof, simply observe that Fix.F/ D .' C � /�1.� �1; r�/. �

Proof of Theorem 1. Consider the function f W X � Œa; b�! R defined by

f .x; �/ D '.x/C � .x/ � �.�/
for all .x; �/ 2 X � Œa; b�. Clearly, f is continuous in X, while it is upper
semicontinuous and concave in Œa; b�. Fix � 2�a; bŒ and r 2 R. Of course, we have

fx 2 X W f .x; �/ < rg D
[

s<r

fx 2 X W f .x; �/ � sg :

On the other hand, by Theorem 2, the sets of the family ffx 2 X W f .x; �/ � sggs<r

are connected (being retracts of X) and pairwise non-disjoint. Consequently, the
set fx 2 X W f .x; �/ < rg is connected too. Therefore, we can apply Theorem A.
It ensures that

sup
�2Œa;b�

inf
x2X
.'.x/C � .x/ � �.�// D inf

x2X
sup
�2Œa;b�

.'.x/C � .x/ � �.�// :

Now, observe that, since infx2X.'.x/C � .x// D �1 for all � 2� � 1; 1Œ, we have

sup
�2Œa;b�

inf
x2X
.'.x/C � .x/� �.�// D max

	
inf
x2X
.'.x/C a .x//� �.a/; inf

x2X
.'.x/C b .x//� �.b/




and the conclusion follows.
�

A consequence of Theorem 1 is as follows:

Theorem 3. Let Œa; b� be a closed interval contained in Œ�1; 1� and let � W Œa; b�!
R be a continuous function which is derivable in �a; bŒ. Assume that � 0 is strictly
increasing in �a; bŒ. Set

A D
	

x 2 X W  .x/ � inf
�a;bŒ

� 0


;

B D
(

x 2 X W  .x/ � sup
�a;bŒ

� 0
)
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and

C D
(

x 2 X W inf
�a;bŒ

� 0 <  .x/ < sup
�a;bŒ

� 0
)
:

Finally, denote by  the inverse of the function � 0.
Then, one has

max

	
inf
x2X
.'.x/C a .x// � �.a/; inf

x2X
.'.x/C b .x// � �.b/




D min

	
inf
x2A
.'.x/C a .x// � �.a/; inf

x2B
.'.x/C b .x//

��.b/; inf
x2C
.'.x/C . .x// .x/ � �.. .x////



:

Proof. Let f be as in the proof of Theorem 1. Fix x 2 X. Clearly, f .x; �/ is concave
in Œa; b�. Moreover, according to the sign of its derivative, the function f .x; �/ is
nonincreasing (resp. nondecreasing) in Œa; b� if x 2 A (resp. x 2 B). If x 2 C, the
derivative of f .x; �/ vanishes at the point . .x//, and so, by concavity, such a point
is the global maximum of f .x; �/ in Œa; b�. Summarizing, we have

sup
�2Œa;b�

f .x; �/ D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

'.x/C a .x/ � �.a/ if x 2 A

'.x/C b .x/ � �.b/ if x 2 B

'.x/C . .x// .x/ � �.. .x/// if x 2 C ,

and the conclusion clearly follows in view of Theorem 1.
�

In turn, by applying Theorem 3, we obtain the following result:

Theorem 4. We have

max

	
inf
x2X
.'.x/C  .x//; inf

x2X
.'.x/ �  .x//



D inf

x2X
.'.x/C j .x/j/ (3)

and

lim inf
kxk!C1

.'.x/C j .x/j/ D inf
x2X
.'.x/C j .x/j/ : (4)
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Proof. First, we want to prove that

max

	
inf
x2X
.'.x/C  .x//; inf

x2X
.'.x/ �  .x//



D inf

x2X
.'.x/C j .x/j C e�j .x/j/ :

(5)

Consider the function � W Œ�1; 1�! R defined by

�.�/ D

8
ˆ̂<

ˆ̂:

.1 � j�j/ log.1 � j�j/C j�j if j�j < 1

1 if j�j D 1 .

Clearly, � is continuous in Œ�1; 1�, is derivable in � � 1; 1Œ, � 0 is strictly increasing
and � 0.� � 1; 1Œ/ D R. Moreover, , the inverse of � 0, is given by

.�/ D

8
ˆ̂<

ˆ̂:

j�j
�
.1 � e�j�j/ if � ¤ 0

0 if � D 0 .

So, for each x 2 X n  �1.0/, we have

. .x// .x/� �.. .x/// D j .x/j.1� e�j .x/j/� .�e�j .x/jj .x/j C 1� e�j .x/j/

D j .x/j C e�j .x/j � 1 :

Clearly, these equalities hold also if  .x/ D 0. Consequently, by Theorem 2, after
observing that C D X, we have

max

	
inf
x2X
.'.x/ �  .x// � 1; inf

x2X
.'.x/C  .x// � 1



D inf

x2X
.'.x/C . .x// .x//

��.. .x////
D inf

x2X
.'.x/C j .x/j

Ce�j .x/j/ � 1

which yields (5). Since

max

	
inf
x2X
.'.x/C  .x//; inf

x2X
.'.x/ �  .x//



� inf

x2X
.'.x/C j .x/j/

� inf
x2X
.'.x/C j .x/j C e�j .x/j/ ;
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from (5), we obtain both (3) and

inf
x2X
.'.x/C j .x/j/ D inf

x2X
.'.x/C j .x/j C e�j .x/j/ : (6)

Finally, let us prove (4). Arguing by contradiction, assume that

inf
x2X
.'.x/C j .x/j/ < lim inf

kxk!C1
.'.x/C j .x/j/ :

Fix � satisfying

inf
x2X
.'.x/C j .x/j/ < � < lim inf

kxk!C1
.'.x/C j .x/j/ : (7)

So, there is some ı > 0 such that

'.x/C j .x/j > � (8)

for all x 2 X satisfying kxk > ı. Now, in view of (6), we can fix a sequence fxng in
X such that

lim
n!1.'.xn/C j .xn/j C e�j .xn/j/ D inf

x2X
.'.x/C j .x/j/ : (9)

Clearly

lim
n!1.'.xn/C j .xn/j/ D inf

x2X
.'.x/C j .x/j/ : (10)

In view of (7), there is � 2 N such that

'.xn/C j .xn/j < �

for all n > �. Thus, by (8), we have

sup
n>�
kxnk � ı :

Then, since  is Lipschitzian, the sequence f .xn/g is bounded too. But, (9)
and (10) imply that

lim
n!1 e�j .xn/j D 0

which leads to a contradiction. The proof is complete.
�

We conclude with a consequence of Theorem 4.
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Proposition 1. Assume that  is Gâteaux differentiable and that both ' and �' do
not belong to  0.X/.

Then, for every r 2 R, the functional x! '.x/Cj .x/�rj has no global minima
in X.

Proof. Arguing by contradiction, assume that there is x0 2 X such that

'.x0/C j .x0/ � rj D inf
x2X
.'.x/C j .x/ � rj/ :

Then, by Theorem 4 (applied to  � r) , x0 would be a global minimum either of
'C or of '� . Accordingly, we would have either  0.x0/ D �' or  0.x0/ D ',
contrary our assumption.

�

Remark 1. Of course, if k 0.x/kX� < L for all x 2 X, then both ' and �' do not
belong to  0.X/.
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The Algebra of Gyrogroups: Cayley’s Theorem,
Lagrange’s Theorem, and Isomorphism
Theorems

Teerapong Suksumran

Abstract Using the Clifford algebra formalism, we show that the unit ball of a real
inner product space equipped with Einstein addition forms a uniquely 2-divisible
gyrocommutative gyrogroup or a B-loop in the loop literature. One notable result is
a compact formula for Einstein addition in terms of Möbius addition. In the second
part of this paper, we show that the symmetric group of a gyrogroup admits the
gyrogroup structure, thus obtaining an analog of Cayley’s theorem for gyrogroups.
We examine subgyrogroups, gyrogroup homomorphisms, normal subgyrogroups,
and quotient gyrogroups and prove the isomorphism theorems. We prove a version
of Lagrange’s theorem for gyrogroups and use this result to prove that gyrogroups
of particular order have the Cauchy property.

1 Introduction

It is my pleasure to contribute a paper to this volume dedicated to the memory
of Vladimir Arnold who made significant contributions in several fields, including
dynamical systems theory, topology, algebraic geometry, differential equations, and
classical mechanics. One of the remarkable results of Arnold’s work is the theorem
that bears his name, the Kolmogorov–Arnold–Moser theorem.

This expository paper grew from our three research papers [60–62]. Let c be
a positive constant representing the speed of light in vacuum, and let R3c denote
the c-ball of relativistically admissible velocities, R3c D fv 2 R

3W kvk < cg. In [69],
Einstein velocity addition˚E in the c-ball is given by the equation

u˚E v D 1

1C hu;vi
c2

	
uC 1

�u
vC 1

c2
�u

1C �u
hu; viu



;
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where �u is the Lorentz factor or gamma factor given by �u D 1
q
1 � kuk2

c2

.

The system .R3c ;˚E/ does not form a group since ˚E is neither associative
nor commutative. Nevertheless, Ungar showed that .R3c ;˚E/ is rich in structure
and encodes a group-like structure, namely, the gyrogroup structure. He introduced
space rotations gyrŒu; v�, called gyroautomorphisms, to repair the lack of associa-
tivity in .R3c ;˚E/:

u˚E .v˚E w/ D .u˚E v/˚E gyrŒu; v�w

.u˚E v/˚E w D u˚E .v˚E gyrŒv;u�w/

for all u; v;w 2 R
3
c . The resulting system forms a gyrocommutative gyrogroup,

called the Einstein gyrogroup.
There are close connections between the Einstein gyrogroup and the Lorentz

transformations, as described in [68] and [70, Chap. 11]. A Lorentz transformation
without rotation is called a Lorentz boost. Let L.u/ and L.v/ denote the Lorentz
boosts parameterized by u and v in R

3
c . The composite of two Lorentz boosts is not

a pure Lorentz boost, but a Lorentz boost followed by a space rotation:

L.u/ ı L.v/ D L.u˚E v/ ı GyrŒu; v�; (1)

where GyrŒu; v� is a rotation of spacetime coordinates induced by the Einstein
gyroautomorphism gyrŒu; v�.

Another example of a gyrogroup is the Möbius gyrogroup, which consists of the
complex unit disk D D fz 2 CW jzj < 1g with Möbius addition

a˚M b D aC b

1C Nab
(2)

for a; b 2 D. The Möbius gyroautomorphisms are given by

gyrŒa; b�z D 1C aNb
1C Nab

z; z 2 D: (3)

The gyrogroup .D;˚M/ bears the name “Möbius” because for each a 2 D, the map
�aW z 7! a ˚M z defines a Möbius transformation or conformal mapping of D. The
gyrogroup of qubit density matrices is presented in [37].

Einstein and Möbius gyrogroups play a major role in gyrogroup theory as they
provide concrete models for the abstract theory. See, for instance, [1, 14, 18, 38, 58,
62, 69–71, 73].

Gyrogroup theory is related to various fields, including mathematical physics,
non-Euclidean geometry, group theory, loop theory, and abstract algebra. For
instance, the gyrogroup structure appears as an algebraic structure that encodes
Einstein’s velocity addition law [69, 72]. It is also an algebraic structure that
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underlies the qubit density matrices, which play an important role in quantum
mechanics [37, 39, 66]. For a connection to Thomas precession, see [74].

Certain gyrogroups give rise to vector space-like structures, called gyrovector
spaces, which form the algebraic setting for hyperbolic geometry of Bolyai and
Lobachevsky just as vector spaces form the algebraic setting for Euclidean geometry
[70, 73, 75]. More precisely, the Möbius gyrovector space is associated with the
Poincaré model of conformal geometry on the open unit ball in n-dimensional
Euclidean space R

n [11, 38], and the Einstein gyrovector space is associated
with the Beltrami–Klein model of hyperbolic geometry on the unit ball in R

n

[38, 52, 53, 59, 63].
As noted above, a gyrogroup is a group-like structure, but not a group since

its binary operation is neither associative nor commutative, in general. How-
ever, gyrogroups share remarkable analogies with groups. Indeed, any group
may be viewed as a gyrogroup with trivial gyroautomorphisms. Gyrogroups
abound in group theory. For example, every gyrogroup is a twisted subgroup, and,
under certain conditions, twisted subgroups are gyrocommutative gyrogroups [21].
Further, any group � can be turned into a left gyrogroup [22, Theorem 3.4], and
this associated left gyrogroup forms a gyrogroup if and only if � is central by a
2-Engel group [22, Theorem 3.7]. The study of left gyrogroups in connection with
near subgroups can be found in [13]. The study of right gyrogroups in connected
Hausdorff topological groups can be found in [42]. The study of gyrogroups in
connection with the Lorentz group is presented in [9, 58].

The study of gyrogroups is linked to that of Bol loops since every gyrogroup
forms a left Bol loop with the A`-property and vice versa [55]. Furthermore,
gyrocommutative gyrogroups and Bruck loops (also called K-loops) are equivalent
[36, p. 72]. For links between gyrogroups and loops, see [34–36, 41, 44, 45]. For
applications of gyrogroup theory in analysis and signal processing, see [15, 17].

In this paper, we study gyrogroups from the abstract point of view. The power
of the abstract point of view lies in the fact that results for all concrete gyrogroups
are obtained by proving a single result for the abstract gyrogroup. In the first part of
this paper, we give an algebraic proof that an Einstein gyrogroup on the open unit
ball in a real inner product space does form a uniquely 2-divisible gyrocommutative
gyrogroup using the Clifford algebra formalism. This results in a compact formula
for Einstein addition in terms of Möbius addition; see Eq. (43). A Clifford algebra
approach to study Möbius and Einstein gyrogroups is very fruitful [14, 16, 18, 19,
44, 59, 62].

In the second part of this paper, we study gyrogroups from the algebraic point
of view. In Sect. 5, we exhibit the gyrogroup of permutations and derive Cayley’s
theorem for gyrogroups. In Sect. 6, we provide the notion of subgyrogroups.
In Sect. 7, we examine gyrogroup homomorphisms, normal subgyrogroups, and
quotient gyrogroups and prove the isomorphism theorems. In Sect. 8, we prove an
analog of Lagrange’s theorem for gyrogroups using an important result in the theory
of Bruck loops [3]. In Sect. 9, we apply Lagrange’s theorem and results from loop
theory to prove that gyrogroups of particular order have the Cauchy property.
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2 Gyrogroups and Loops

In this section, we give the relevant definitions, summarize elementary properties
of gyrogroups, and indicate certain connections between gyrogroups, quasigroups,
and loops. Much of this section can be found in [67, 70, 73].

A pair .G;˚/ consisting of a nonempty set G and a binary operation ˚ on G
is called a magma. Let .G;˚/ be a magma. A bijection from G to itself is called
an automorphism of G if '.a ˚ b/ D '.a/ ˚ '.b/ for all a; b 2 G. The set of all
automorphisms of G is denoted by Aut .G;˚/. It is straightforward to check that
Aut .G;˚/ forms a group under function composition.

The formal definition of a gyrogroup, introduced by Ungar, is modeled on the
key features of the relativistic ball in R

3 with Einstein addition of relativistically
admissible velocities and the complex unit disk with Möbius addition.

Definition 1 (Gyrogroups). A magma .G;˚/ is a gyrogroup if its binary operation
satisfies the following axioms:

(G1) 90 2 G8a 2 G, 0˚ a D a;
(G2) 8a 2 G 9b 2 G, b˚ a D 0;
(G3) 8a; b 2 G 9gyrŒa; b� 2 Aut .G;˚/8c 2 G,

a˚ .b˚ c/ D .a˚ b/˚ gyrŒa; b�cI

(G4) 8a; b 2 G, gyrŒa; b� D gyrŒa˚ b; b�.

Let us denote by idX the identity map on a set X and by �a the left inverse of an
element a in a gyrogroup. The axioms in Definition 1 imply the right counterparts.

Theorem 1 ([70]). A magma .G;˚/ forms a gyrogroup if and only if it satisfies the
following properties:

(g1) 90 2 G8a 2 G; 0˚ a D a and a˚ 0 D a; (two-sided identity)
(g2) 8a 2 G9b 2 G; b˚ a D 0 and a˚ b D 0. (two-sided inverse)

For a; b; c 2 G, define

gyrŒa; b�c D �.a˚ b/˚ .a˚ .b˚ c//; (gyrator identity)

then
(g3) gyrŒa; b� 2 Aut .G;˚/; (gyroautomorphism)
(g3a) a˚ .b˚ c/ D .a˚ b/˚ gyrŒa; b�c; (left gyroassociative law)
(g3b) .a˚ b/˚ c D a˚ .b˚ gyrŒb; a�c/; (right gyroassociative law)
(g4a) gyrŒa; b� D gyrŒa˚ b; b�; (left loop property)
(g4b) gyrŒa; b� D gyrŒa; b˚ a�. (right loop property)

By the previous theorem, any gyrogroup contains the unique two-sided identity 0,
and each element of the gyrogroup possesses a unique two-sided inverse. The map
gyrŒa; b� is called the gyroautomorphism generated by a and b and is completely
determined by its generators via the gyrator identity. The gyroautomorphisms play a
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central role in the study of gyrogroups as they remedy the breakdown of associativity
and commutativity in gyrogroups. The gyroautomorphisms of a gyrogroup G are
even,

gyrŒ�a;�b� D gyrŒa; b�; (4)

and inversive symmetric,

gyr�1Œa; b� D gyrŒb; a� (5)

for all a; b 2 G.
In general, gyrogroups do not satisfy the associative law, but they satisfy the left

and right gyroassociative laws (g3a) and (g3b) instead. Note that every group is a
gyrogroup by defining the gyroautomorphisms to be the identity map. As we will
see, gyrogroups are a natural generalization of groups. Gyrogroups that generalize
abelian groups are given a name:

Definition 2 (Gyrocommutative Gyrogroups). A gyrogroup G with the addi-
tional property that

a˚ b D gyrŒa; b�.b˚ a/ (gyrocommutative law)

for all a; b 2 G is called a gyrocommutative gyrogroup.

It is known that a gyrogroup G is gyrocommutative if and only if G satisfies the
automorphic inverse property, that is,

� .a˚ b/ D �a� b (6)

for all a; b 2 G [70, Theorem 3.2].
Gyrogroups share algebraic properties with groups, and many of group-theoretic

theorems are extended to the case of gyrogroups with the aid of gyroautomor-
phisms [61, 67, 70]. For example, the gyrogroup counterpart of the group identity
.g�1h/.h�1k/ D g�1k is described by

.�a˚ b/˚ gyrŒ�a; b�.�b˚ c/ D �a˚ c; (7)

and the gyrogroup counterpart of the group identity .gh/�1 D h�1g�1 is
described by

� .a˚ b/ D gyrŒa; b�.�b� a/ (8)

for all elements a; b; c of a gyrogroup.
Let G be a gyrogroup. To solve linear equations in G, Ungar introduced the

gyrogroup cooperation, �, defined by

a � b D a˚ gyrŒa;�b�b; a; b 2 G: (9)
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Like groups, every linear equation in G possesses a unique solution in G.

Theorem 2 ([70]). Let G be a gyrogroup and let a; b 2 G. The unique solution to
the equation a˚ x D b in the variable x is x D �a˚ b, and the unique solution to
the equation x˚ a D b in the variable x is x D b � .�a/.

The following cancellation laws in gyrogroups are derived as a consequence of
Theorem 2:

Theorem 3. Let G be a gyrogroup. For all a; b; c 2 G,

1. a˚ b D a˚ c implies b D c; (general left cancellation law)
2. �a˚ .a˚ b/ D b; (left cancellation law)
3. .b� a/� a D b; (right cancellation law I)
4. .b � .�a//˚ a D b. (right cancellation law II)

By Theorem 3, if a is an element of G, then left and right gyrotranslations by a,

LaW x 7! a˚ x and RaW x 7! x˚ a; (10)

are permutations of G. Furthermore, one has the composition law

La ı Lb D La˚b ı gyrŒa; b� (11)

for all a; b 2 G. Accordingly, gyrogroups are special loops.

Quasigroups and Loops

This subsection gives a very brief account of quasigroups and loops. For complete
accounts, the reader is referred to [5, 36, 51]. A magma .L; �/ is called a quasigroup
if for each a 2 L, left multiplication by a, LaW x 7! a � x, and right multiplication by
a, RaW x 7! x � a, are permutations of L. Equivalently, L is a quasigroup if and only
if equations a � x D b and x � a D b for the unknown x have unique solutions in L
for all a; b 2 L. A magma L is said to be uniquely 2-divisible if the squaring map
x 7! x � x is a bijection from L to itself. A quasigroup that has an identity element is
called a loop.

Suppose that L is a loop and let a and b be arbitrary elements of L. The left inner
mapping or precession map generated by a and b is defined by

`.a; b/ D L�1
a�b ı La ı Lb: (12)

We say that a loop L:

• Has the A`-property if `.a; b/ is an automorphism of L for all a; b 2 L.
• Has the automorphic inverse property if every element of L has a unique inverse

and
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.a � b/�1 D a�1 � b�1

for all a; b 2 L.
• Is a left Bol loop if

a � .b � .a � c// D .a � .b � a// � c (left Bol identity)

for all a; b; c 2 L.
• Is a right Bol loop if

..a � b/ � c/ � b D a � ..b � c/ � b/ (right Bol identity)

for all a; b; c 2 L.
• Is a K-loop or Bruck loop if it is a left Bol loop satisfying the automorphic inverse

property.
• Is a B-loop if it is a uniquely 2-divisible K-loop.
• Is a Moufang loop if

.a � b/ � .c � a/ D .a � .b � c// � a (Moufang identity)

for all a; b; c 2 L.

It follows from (10) and (11) that every gyrogroup is a loop with the A`-property,
where the gyroautomorphisms correspond to left inner mappings. Sabinin et al. [55]
showed that the left loop property (G4) is equivalent to the left Bol identity, so
every gyrogroup is a left Bol-A`-loop under the same operation and vice versa.
From this the results involving gyrogroups can be recast in the framework of left
Bol loops with the A`-property. By (6), every gyrocommutative gyrogroup is a K-
loop. In fact, it is known in the loop literature that gyrocommutative gyrogroups
and K-loops are equivalent. The term “K-loop” was coined by Ungar in 1989 [64],
as explained in [36, pp. 169–170], and the early history of K-loops is described
in [56, pp. 141–142]. Table 1 summarizes transitions between terminology in
gyrogroup theory and loop theory.

We end this section with the duality between left Bol loops and right Bol loops.
Given a loop L with multiplication �, the dual loop of L consists of the underlying
set L with the dual operation a 	 b WD b � a for a; b 2 L. Note that L and the dual

Table 1 Terminology in gyrogroup theory and loop theory

Gyrogroup theory Loop theory

Gyrogroup Left Bol loop with the A`-property

Gyrocommutative gyrogroup K-loop, Bruck loop

Uniquely 2-divisible gyrocommutative gyrogroup B-loop

Gyroautomorphism Left inner mapping, precession map
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of L share the same identity. Furthermore, b is an inverse of an element a of L with
respect to � if and only if b is an inverse of a with respect to 	. Note also that the
double dual of L is itself. It is routine to check that L is a right Bol loop if and only
if the dual of L is a left Bol loop and that L has the automorphic inverse property
if and only if the dual of L has the automorphic inverse property. Actually, left Bol
and right Bol loops share the same algebraic properties, and a left Bol loop can be
obtained from a right Bol loop by taking the dual of the right Bol loop. In what
follows, by Bol loops we mean left Bol or right Bol loops.

3 Quadratic Spaces and Clifford Algebras

In this section, we review the basic theory of quadratic spaces and Clifford algebras.
For complete accounts of the theory, we refer the reader to [10, 27, 31, 47]. As we
will see in the next section, Clifford algebras prove useful in the study of Möbius
and Einstein gyrogroups.

3.1 Quadratic Spaces

Let V be a vector space over a field F of characteristic different from 2. A quadratic
form on V is a map QWV ! F such that:

1. Q.�v/ D �2Q.v/ for all � 2 F, v 2 V , and
2. the map BWV � V ! F defined by

B.u; v/ D 1

2

�
Q.uC v/ � Q.u/ � Q.v/

�

is a symmetric bilinear form on V .

Note that any symmetric bilinear form B on V gives rise to a quadratic form Q by
defining

Q.v/ D B.v; v/; v 2 V: (13)

Thus, if the characteristic of F is not equal to 2, then the notions of quadratic forms
and symmetric bilinear forms are equivalent.

A symmetric bilinear form B on V is said to be nondegenerate if for each
u 2 V , B.u; v/ D 0 for all v 2 V implies u D 0. A quadratic space is a
vector space together with a quadratic form on which the associated bilinear form
is nondegenerate. Let .V;Q/ be a quadratic space with the corresponding bilinear
form B. By u ? v we mean B.u; v/ D 0 and by v ? V we mean v ? w for all
w 2 V . In the case where V is of finite dimension, a basis fe1; e2; : : : ; eng of V is
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said to be orthogonal if ei ? ej for i ¤ j. Let fv1; v2 : : : ; vng be a basis for V .
Set bij D B.vi; vj/ for 1 � i; j � n and define the matrix of B relative to fvig as
bB WD Œbij�. It is proved in [31, Chap. 2] that any two representing matrices of B have
the same rank. Hence, the rank of B, written rank.B/, can be defined as the rank of
a representing matrix of B. The following theorem guarantees the existence of an
orthogonal basis:

Theorem 4 ([31]). If B is a symmetric bilinear form on a finite-dimensional vector
space V, then V has an orthogonal basis fe1; e2; : : : ; eng, relative to which B has
diagonal representing matrix

2

6666666664

b1
: : : 0

br

0

0
: : :

0

3

7777777775

with all bi ¤ 0; r D rank.B/, and ferC1; : : : ; eng a basis for rad.V/ D
fv 2 VW v ? Vg.

Note in particular that if V is a finite-dimensional quadratic space, then V has an
orthogonal basis with respect to its symmetric bilinear form. In this case, rad.V/ is
trivial, whence r D n and Q.ei/ D bi ¤ 0 for i D 1; 2; : : : ; n.

3.2 Clifford Algebras

A Clifford algebra is defined for a vector space with a symmetric bilinear form.
It contains both the underlying vector space and the base field. Any rotation of the
vector space can be expressed in a simple form by using Clifford algebra operations.
Further, conjugation and norm remain valid in the Clifford algebra. Clifford algebras
have a wide application both in mathematics and in physics [27, 28, 32, 47].

There are several definitions of a Clifford algebra such as Clifford’s original
definition, definition by generators and relations, definition by the universal prop-
erty, and so on [47, Chap. 14]. We follow [31] for the formal definition of a Clifford
algebra by the universal property.

Let .V;Q/ be a quadratic space over a field F of characteristic different from 2.
An associative F-algebra A with unity 1A is said to be compatible with Q if there is
a linear transformation TWV ! A such that

.Tv/2 D Q.v/1A; v 2 V: (14)
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Definition 3 (Clifford Algebras). A Clifford algebra for a quadratic space .V;Q/
is a pair .C; i/ of a unital associative algebra C and a linear transformation iWV ! C
such that C is compatible with Q via i and such that the following universal property
is satisfied. Given a unital associative algebra A compatible with Q via a linear
transformation TWV ! A, there exists a unique algebra homomorphism eTWC! A
making the following diagram commutative:

V C

˚
A

i

T eT

A Clifford algebra for a quadratic space .V;Q/ is unique up to an F-algebra
isomorphism and always exists. Set V0 D F and let Vk denote the k-fold tensor
product of V , that is, Vk D V ˝ V ˝ � � � ˝ V„ ƒ‚ …

k copies

. Let T.V/ denote the direct sum of

V0;V1;V2; : : : , that is,

T.V/ D
1M

kD0
Vk:

In [31], Grove showed that T.V/ forms a unital associative algebra, called the tensor
algebra of V . This algebra is used to construct a Clifford algebra for V .

Theorem 5 ([31]). Suppose that .V;Q/ is a quadratic space. Let T.V/ be the tensor
algebra of V and I the two-sided ideal of T.V/ generated by the set

fv ˝ v � Q.v/1T.V/W v 2 Vg:

Then the quotient algebra T.V/=I along with the canonical projection v 7! v C I,
v 2 V, forms a Clifford algebra for V.

Accordingly, it makes sense to speak of the Clifford algebra of .V;Q/, which
will be denoted by C`.V;Q/. The underlying vector space V is naturally embedded
into its Clifford algebra by v 7! v C I. Henceforth, we make the identification
v $ v C I and regard V as a subspace of C`.V;Q/. By compatibility (14), one has
the following fundamental relations in C`.V;Q/:

uv C vu D 2B.u; v/1 and v2 D Q.v/1 (15)

for all u; v 2 V . Here, 1 stands for the unity of C`.V;Q/.
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3.2.1 Bases and Dimension

Given a finite-dimensional quadratic space .V;Q/, one can find an orthogonal basis
fe1; : : : ; eng for V (Theorem 4). This basis is used to construct a natural basis of
the Clifford algebra of V . For convenience, we use the following notation: for
I D fi1; i2; : : : ; ik 2 NW k 2 N; 1 � i1 < i2 < � � � < ik � ng, define eI D ei1ei2 � � � eik ,
where the product on the right-hand side is taken in C`.V;Q/. We also define
e; D 1, the unity of C`.V;Q/. The following theorem is based on relations
e2i D Q.ei/1 and eiej D �ejei for i ¤ j in C`.V;Q/:

Theorem 6 ([31]). If fe1; e2; : : : ; eng is an orthogonal basis for a quadratic space
.V;Q/, then the set

feI W I D ; or I D f1 � i1 < i2 < � � � < ik � ngg

is a spanning set for C`.V;Q/ as a vector space. Thus, dim C`.V;Q/ � 2n.

The dimension of C`.V;Q/ is indeed 2n [31, Theorem 8.12], so the spanning set
given in Theorem 6 becomes a basis for C`.V;Q/ as a vector space. We remark that
the finiteness of the dimension of V is a crucial hypothesis.

3.2.2 Three Standard Maps of C` .V; Q/

Let A and B be unital associative algebras. A map 'WA ! B is called an algebra
antihomomorphism if ' is linear and preserves unity, and '.ab/ D '.b/'.a/ for all
a; b 2 A. A bijective algebra antihomomorphism from A to itself is called an algebra
antiautomorphism of A. A map 'WX ! X, where X is a nonempty set, is said to be
involutive if '2 WD ' ı ' D idX .

There are three standard maps of the Clifford algebra of a quadratic space.
One is an involutive algebra automorphism, and the others are involutive algebra
antiautomorphisms. The proof of the following two theorems relies on the universal
property of a Clifford algebra; see, for instance, [31]:

Theorem 7. There is a unique algebra antiautomorphism of C`.V;Q/, denoted by
�, such that �.v/ D v for every v 2 V and �2 D idC` .V;Q/. In other words, � is an
involutive algebra antiautomorphism of C`.V;Q/.

The map � is referred to as the reversion of C`.V;Q/. The image of an element
a of C`.V;Q/ under � will be sometimes denoted by Qa for convenience. In this
notation, Theorem 7 says that

Qv D v; eab D QbQa; QQa D a (16)

for all v 2 V and a; b 2 C`.V;Q/.



380 T. Suksumran

Theorem 8. There is a unique algebra automorphism of C`.V;Q/, denoted by � ,
such that �.v/ D �v for every v 2 V and �2 D idC` .V;Q/. In other words, � is an
involutive algebra automorphism of C`.V;Q/.

The map � is referred to as the grade involution of C`.V;Q/. The image of an
element a of C`.V;Q/ under � will be sometimes denoted by Oa. In this notation,
Theorem 8 says that

Ov D �v; bab D OaOb; OOa D a (17)

for all v 2 V and a; b 2 C`.V;Q/.
The composite � D � ı � is an algebra antiautomorphism of C`.V;Q/. Hence,

�2 is an algebra automorphism of C`.V;Q/ that leaves V fixed pointwise. It follows
from the universal property that �2 must be the identity map, and we have the
following proposition:

Proposition 1. � is an algebra antiautomorphism of C`.V;Q/ such that
�.v/ D �v for every v 2 V and �2 D idC` .V;Q/. In other words, � is an involutive
algebra antiautomorphism of C`.V;Q/.

Corollary 1. The maps � and � commute, that is, � ı � D � ı �.

Proof. � ı � D � D ��1 D .� ı �/�1 D ��1 ı ��1 D � ı �. ut
Corollary 2. Any two maps of �; � , and � commute.

Proof. A direct computation gives �ı� D �ı.�ı�/ D � and �ı� D .� ı�/ı� D � .
Hence, � ı � D � ı �. One obtains similarly that � ı � D � D � ı � . ut

The map � is referred to as the Clifford conjugation or just conjugation. The
image of an element a of C`.V;Q/ under � will be sometimes denoted by Na. In this
notation, Proposition 1 and Corollary 1 say that

Nv D �v; ab D NbNa; NNa D a; Na D QOa D OQa (18)

for all v 2 V and a; b 2 C`.V;Q/.

Table 2 lists basic properties of three standard maps of a Clifford algebra.

Table 2 Three standard
maps of C`.V;Q/

Map Type On V

Reversion �.a/ D Qa Antiautomorphism idV

Grade involution �.a/ D Oa Automorphism �idV

Clifford conjugation �.a/ D Na Antiautomorphism �idV
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3.2.3 Clifford–Lipschitz Groups

In this subsection, we introduce an important subgroup of the group C`�.V;Q/ of
units of C`.V;Q/. This subgroup is known as the Clifford group or Lipschitz group
and is used for studying orthogonal transformations of a quadratic space.

The Clifford group of C`.V;Q/, denoted by � .V;Q/, is defined via the grade
involution as

� .V;Q/ D fg 2 C`�.V;Q/W 8v 2 V; Ogvg�1 2 Vg: (19)

Each element g of � .V;Q/ induces an injective linear transformation TgW v 7!
Ogvg�1, which will become a linear automorphism of V if V is finite dimensional.
The map � that sends g to Tg defines a group homomorphism from � .V;Q/
to GL .V/, so � is a linear representation of � .V;Q/, known as the twisted
adjoint representation. In addition, the grade involution descends to a group
automorphism of � .V;Q/, while the reversion and Clifford conjugation descend
to group antiautomorphisms of � .V;Q/. Henceforth, we assume that .V;Q/ is a
finite-dimensional quadratic space unless otherwise stated.

Proposition 2. For each g 2 � .V;Q/, the map Tg defined by

Tgv D Ogvg�1; v 2 V;

is a linear automorphism of V.

Proof. Tg is linear since multiplication of C`.V;Q/ is bilinear. Since g is invertible
and the grade involution is an algebra automorphism, Og is invertible. It follows that
Tgv D Ogvg�1 D 0 implies v D 0, which proves that Tg is injective. Since dim V <

1, Tg is also surjective and hence is a linear automorphism of V . ut
Proposition 3. � .V;Q/ is a subgroup of the group of units of the Clifford algebra.

Proof. For all g; h 2 � .V;Q/; v 2 V , we have bghv.gh/�1 D Og.Ohvh�1/g�1 2 V
since Ohvh�1 2 V . This proves gh 2 � .V;Q/.

Let g 2 � .V;Q/ and v 2 V . As Tg is surjective, Tgw D v for some w 2 V .

Hence, v D Ogwg�1. It follows that bg�1v.g�1/�1 D .Og/�1vg D w 2 V . Since v is
arbitrary, g�1 2 � .V;Q/. ut
Proposition 4. Let � .V;Q/ be the Clifford group of C`.V;Q/. Then T1 D idV and
Tg ı Th D Tgh for all g; h 2 � .V;Q/.
Proof. This follows directly from the definition of � .V;Q/. ut
Corollary 3. The map � W g 7! Tg is a group homomorphism from � .V;Q/ to
GL .V/. In other words, � is a linear representation of � .V;Q/.

Proposition 5. The Clifford group is invariant under the reversion, grade
involution, and Clifford conjugation.
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Proof. Let g 2 � .V;Q/. For each v 2 V , we have

�.�.g//v�.g/�1 D �.�.g//�.�v/�.g�1/

D �.�.g/.�v/g�1/

D �.�.g/.�v/g�1/

D �.g/vg�1:

We obtain the third equation since �.g/.�v/g�1 2 V and �.w/ D �w if w 2 V . This
proves that �.g/ 2 � .V;Q/. Hence, �.� .V;Q// � � .V;Q/. We apply the same
arguments again, with � in place of � , to obtain �.� .V;Q// � � .V;Q/. We also
have �.� .V;Q// � � .V;Q/ since � D � ı � . ut

The following theorem says that the grade involution descends to a group
automorphism of � .V;Q/ and that the reversion and Clifford conjugation descend
to group antiautomorphisms of � .V;Q/:

Theorem 9. The restriction of � to � .V;Q/ is an involutive group automorphism.
The restriction of � to � .V;Q/ is an involutive group antiautomorphism.

Proof. By Proposition 5, the restriction �
ˇ̌
� .V;Q/ is an injective group homomor-

phism of � .V;Q/. For each h 2 � .V;Q/, �.h/ 2 � .V;Q/ and �.�.h// D h.
Hence, the restriction is surjective. That �

ˇ̌
� .V;Q/ is involutive is clear. The same

reasoning applies to the case of �
ˇ̌
� .V;Q/. ut

Corollary 4. The restriction of � to � .V;Q/ is an involutive group antiautomor-
phism.

Proof. From Proposition 5, we have �
ˇ̌
� .V;Q/ D �

ˇ̌
� .V;Q/ ı �

ˇ̌
� .V;Q/. ut

Next, we will see that the twisted adjoint representation maps the Clifford group
onto the orthogonal group of the quadratic space. Let B be the associated symmetric
bilinear form of .V;Q/. The orthogonal group, O.V;B/, consists of all the linear
automorphisms of V that preserve B:

O.V;B/ D fT 2 GL .V/W 8u; v 2 V; B.Tu;Tv/ D B.u; v/g: (20)

If T 2 O.V;B/, then Q.Tv/ D B.Tv;Tv/ D B.v; v/ D Q.v/ for all v 2 V .
Conversely, if T is a linear automorphism of V and if Q.Tv/ D Q.v/ for all v 2 V ,
then the definition of B and the linearity of T together imply B.Tu;Tv/ D B.u; v/
for all u; v 2 V . This proves that

O.V;B/ D fT 2 GL .V/W 8v 2 V; Q.Tv/ D Q.v/g: (21)

Note that the grade involution of C`.V;Q/ fixes F1 WD f�1W� 2 Fg pointwise.
In view of the twisted adjoint representation � , any nonzero scalar multiple of unity
acts trivially on V . In other words, F�1 � ker� . The following proposition shows
that the kernel of the twisted adjoint representation is indeed F

�1; its proof can be
found in [46, p. 14]:
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Proposition 6. In a finite-dimensional quadratic space, the kernel of the twisted
adjoint representation is F�1 D f�1W� 2 F; � ¤ 0g.

The Clifford conjugation is used to define a group homomorphism of � .V;Q/,
which is an analog of the complex modulus. Let  be the map defined by

.a/ D aNa; a 2 C`.V;Q/: (22)

Note that .� .V;Q// � � .V;Q/ because � .V;Q/ is invariant under the Clifford
conjugation. Note also that if v is a vector in V , then, by (15),

.v/ D v Nv D �v2 D �Q.v/1: (23)

Proposition 7.  maps the Clifford group to F
�1, that is, .� .V;Q// � F

�1.

Proof. The key idea of the proof is to show that if g is in � .V;Q/, then � sends
.g/ to the identity transformation of V . Thus, .g/ belongs to ker� D F

�1. Let
g 2 � .V;Q/. For each v 2 V , Qgv Ng�1 D ONgv Ng�1 2 V since Ng 2 � .V;Q/. Hence

Qgv Ng�1 D �.ONgv Ng�1/ D �.Ng/�1�.v/�.Qg/ D Og�1vg:

It follows that �..g//v.g/�1 D �.gNg/v.gNg/�1 D OgONgv Ng�1g�1 D Og.Qgv Ng�1/g�1 D
v, whence �..g// D T.g/ D idV . ut

In the case where the base field F is an ordered field in which every positive
element has a square root (e.g., F D R), we adopt the following notation:

jaj D
p
.a/ D paNa (24)

whenever .a/ is in F1 and .a/ � 0.
Let .V;Q/ be a quadratic space. A nonzero vector v in V is said to be nonisotropic

or anisotropic if Q.v/ ¤ 0. A nonzero vector v in V is isotropic if it is not
nonisotropic, that is, Q.v/ D 0. Since .v/ D �Q.v/1 for all v 2 V , a nonzero
vector v is nonisotropic if and only if .v/ ¤ 0.

Proposition 8. A nonzero vector v in V is nonisotropic if and only if v 2 � .V;Q/.

Proof. If Q.v/ ¤ 0, then v
� v

Q.v/

�
D v2

Q.v/
D 1 D

� v

Q.v/

�
v. Hence, v=Q.v/ is

an inverse of v and so v 2 C`�.V;Q/.
From (15), we have

�vuv�1 D u � .uv C vu/v�1 D u � .2B.u; v/1/

�
v

Q.v/

�
D u � 2B.u; v/

Q.v/
v;

which implies Ovuv�1 D �vuv�1 2 V for all u 2 V . This proves v 2 � .V;Q/.
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Conversely, if v 2 � .V;Q/, then v�1 exists. This implies Q.v/ ¤ 0; otherwise,
we would have v2 D Q.v/1 D 0 and have v D v2.v�1/ D 0, a contradiction. ut

In light of the proof of Proposition 8, if v is a nonisotropic vector, then Tv is
nothing but the reflection about the hyperplane orthogonal to v, given by

Tv.u/ D u � 2B.u; v/

Q.v/
v; u 2 V: (25)

Note that Tv.v/ D �v and if u ? v, then Tv.u/ D u.

Proposition 9. The restriction W� .V;Q/ ! F
�1 is a group homomorphism. The

map  is multiplicative over the set of products of vectors in V:

.v1v2 � � � vk/ D .v1/.v2/ � � � .vk/

for all v1; v2; : : : ; vk 2 V.

Proof. The first statement is a consequence of Proposition 7. For v1; v2; : : : ; vk 2 V ,
we compute

.v1v2 � � � vk/ D v1v2 � � � vkv1v2 � � � vk D .v1v2 � � � vk/.vk vk�1 � � � v1/ D
kY

iD1
.vi/:

We obtain the last equation because v Nv D .v/ 2 F1 for all v 2 V . ut
Note that .Og/ D .g/ and .Ng/ D .Qg/ for all g 2 � .V;Q/. Also, if ˛ 2 F

�1
and g 2 � .V;Q/, then .˛g/ D ˛2.g/. This implies that

.Ng/ D ..g/g�1/ D .g/2.g/�1 D .g/:

We have proved the following proposition:

Proposition 10. For each g 2 � .V;Q/, .Og/ D .Ng/ D .Qg/ D .g/.

Corollary 5. If g 2 � .V;Q/, then g�1 D Ng
.g/

.

Proof. This is because g

� Ng
.g/

�
D 1 and

� Ng
.g/

�
g D .Ng/

.g/
D 1. ut

To show that Einstein gyroautomorphisms represent rotations of the open unit
ball in a real inner product space, we will make use of the following theorem:

Theorem 10. The twisted adjoint representation maps the Clifford group to the
orthogonal group of V. In particular, Tg is an orthogonal transformation of V for
all g 2 � .V;Q/.
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Proof. Suppose that g 2 � .V;Q/ and let v 2 V . We will show that Q.Tgv/ D Q.v/.
This is clear if v D 0, so we may assume that v ¤ 0.

In the case Q.v/ ¤ 0, v belongs to � .V;Q/ by Proposition 8. It follows that

Q.Tgv/1 D Q.Ogvg�1/1 D �.Ogvg�1/ D �.g/.v/.g/�1 D �.v/ D Q.v/1;

whence Q.Tgv/ D Q.v/. We obtain the second equation since Ogvg�1 2 V , the
third equation since  is a group homomorphism, and the fourth equation since
.g/ 2 F

�1.
In the case Q.v/ D 0, we will prove the contrapositive: Q.Tgv/ ¤ 0 ) Q.v/

¤ 0. Suppose that Q.Tgv/ ¤ 0. Thus, Tgv ¤ 0 and hence Tgv is a nonisotropic
vector in V . This implies that Ogvg�1 D Tgv belongs to � .V;Q/, say Ogvg�1 D h.
It follows that v D Og�1hg 2 � .V;Q/, so Q.v/ ¤ 0. This completes the proof. ut

By the Cartan–Dieudonné theorem (see Theorem 2.7 in [46]), any orthogonal
transformation T of V can be expressed as a product of reflections

T D Tv1 ı Tv2 ı � � � ı Tvk ;

where v1; v2; : : : ; vk are nonisotropic vectors and k � dim V . Thus, �.v1v2 � � � vk/ D
T and so the twisted adjoint representation is surjective.

3.2.4 Elements of the Form 1 C uv

In this subsection, we provide a necessary and sufficient condition for invertibility
of elements of the form 1C uv, where u and v are vectors in a quadratic space. Let
.V;Q/ be a quadratic space with the corresponding bilinear form B. From now on,
the term “vector” is reserved for the elements of V .

Lemma 1. If u; v and w are vectors, then so are uvu and uvwC wvu.

Proof. According to (15), if u; v 2 V , then uv C vu D 2B.u; v/1. A direct
computation gives uvu D Œ2B.u; v/1�vu�u D 2B.u; v/u�vu2 D 2B.u; v/u�Q.u/v,
which implies uvu 2 V . Similarly, one can check that

uvwC wvu D 2B.u; v/wC 2B.w; v/u � 2B.w; u/v;

so uvwC wvu 2 V . ut
Proposition 11. If u and v are vectors, then either:

1. 1C uv is a product of vectors or
2. 1C uv belongs to � .V;Q/ and .1C uv/ D 1.

Proof. Recall that if w is a nonisotropic vector, then w is invertible, and w�1 D
w=Q.w/ is again a vector.
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Case 1. u is nonisotropic. Then 1C uv D u.u�1 C v/ is a product of vectors.
Case 2. u is isotropic. In this case, Q.u/ D 0:

Subcase 2.1. v is nonisotropic. Then 1C uv D .v�1C u/v is a product of
vectors.
Subcase 2.2. v is isotropic. If u 6? v, then Q.u C v/ D 2B.u; v/ ¤ 0.
Hence, u C v is nonisotropic and we have .1 C uv/.u C v/ D u C v C
2B.u; v/u. This implies 1Cuv D .uCvC2B.u; v/u/.uCv/�1 is a product
of vectors. If u ? v, then .1C uv/ D 1C 2B.u; v/1C Q.u/Q.v/1 D 1.
By the lemma,

�.1Cuv/w.1Cuv/�1 D .1C Ou Ov/w.1Cvu/ D wCwvuCuvwCuvwvu

belongs to V for all w 2 V . Hence, 1C uv 2 � .V;Q/. ut
Proposition 12. For all u; v 2 V, 1C uv 2 � .V;Q/ if and only if .1C uv/ ¤ 0.

Proof. ()) If 1Cuv 2 � .V;Q/, then .1Cuv/ 2 F
�1 by Proposition 7. Hence,

.1C uv/ ¤ 0.
(() Suppose that .1 C uv/ ¤ 0. By Proposition 11, either 1 C uv already

belongs to � .V;Q/ or 1 C uv is a product of vectors. In the latter case,
1C uv D w1w2 � � �wk for some w1;w2; : : : ;wk 2 V . By Proposition 9,

0 ¤ .1C uv/ D .w1w2 � � �wk/ D .w1/.w2/ � � � .wk/;

which implies that none of .wi/ are zeros. Thus, w1;w2; : : : ;wk are all
nonisotropic vectors and hence 1C uv belongs to � .V;Q/. ut

3.2.5 Negative and Paravector Spaces

In this subsection, we develop the structure that we will use in the next section in
connecting Möbius and Einstein gyrogroups on the open unit ball of a real inner
product space.

Let V be an n-dimensional real inner product space with a positive inner product
h�; �i and the corresponding norm k�k. The negative space of V consists of the vector
space V together with the nondegenerate symmetric bilinear form

B.u; v/ D �hu; vi; u; v 2 V: (26)

Its associated quadratic form is given by the equation

Q.v/ D �kvk2; v 2 V: (27)

It is clear that .V;Q/ forms a quadratic space and that B is negative definite.
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For simplicity, let C`0;n denote the Clifford algebra of negative space of V , and
let �0;n denote the Clifford group of C`0;n. Let fe1; e2; : : : ; eng be an orthonormal
basis of V , that is, hei; eji D 0 for i ¤ j and keik D 1 for i D 1; 2; : : : ; n. From now
on, we identify elements of R1 with real numbers, r1$ r for r 2 R.

Proposition 13. In the Clifford algebra C`0;n, the following hold:

1. uvC vu D �2hu; vi for all u; v 2 V;
2. v2 D �kvk2 for all v 2 V;
3. e2i D �1, eiej D �ejei for 1 � i; j � n and i ¤ j;
4. 1 � uv 2 �0;n and

.1 � uv/�1 D 1 � vu
.1 � uv/

for all u; v 2 V with kukkvk ¤ 1;

5. .w.1 � uv/�1/ D .w/
.1 � uv/

for all u; v;w 2 V with kukkvk ¤ 1.

Proof. Item 1 follows from (15) and (26). Setting u D v in Item 1, we obtain Item
2. Since feig is an orthonormal basis of V , we obtain Item 3.

The Cauchy–Schwarz inequality gives

.1 � uv/ D .1 � uv/.1 � uv/

D 1 � .uvC vu/C uv2u

D 1C 2hu; vi C kuk2kvk2
� 1 � 2kukkvk C kuk2kvk2
D .1 � kukkvk/2:

It follows that if u; v 2 V with kukkvk ¤ 1, then .1 � uv/ > 0, and hence 1 � uv
belongs to �0;n by Proposition 12. Since 1 � uv 2 �0;n, we have from Corollary 5

that .1 � uv/�1 D 1 � uv
.1 � uv/

D 1 � vu
.1 � uv/

. This proves Item 4.

Let u; v;w 2 V with kukkvk ¤ 1. If w D 0, equality holds trivially, so we may
assume w ¤ 0. Hence, w 2 �0;n. By Item 4, 1 � uv 2 �0;n, and so

.w.1 � uv/�1/ D .w/..1 � uv/�1/ D .w/
.1 � uv/

since  is a group homomorphism of �0;n. This proves Item 5. ut
In light of the proof of Proposition 13 (4), if u and v are vectors in V , then

.1� uv/ represents a real number, and .1� uv/ � 0 so that the notation j1� uvj
is unambiguous. Note that jvj Dp.v/ D kvk for all vectors v in V .
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Paravector Spaces

In the Clifford algebra C`0;n, one can construct the subspace W D R ˚ V of
paravectors, called the paravector space of V . A typical element of W is of the
form w D w0Cw with w0 in R and w in V . By definition of , if w D w0Cw, then

.w/ D w20 C kwk2: (28)

Thus, .w/ � 0 and the notation jwj is unambiguous whenever w is a paravector in

W. Further, if w is a nonzero paravector, then w is invertible and w�1 D Nw
.w/

since

.w/ D . Nw/.
Let u D u0 C u and v D v0 C v be paravectors. After a direct calculation, one

finds

1

2

�
.uC v/ � .u/ � .v/

�
D u0v0 C hu; vi: (29)

Hence, B.u; v/ D 1=2 ..uC v/ � .u/ � .v// defines a nondegenerate sym-
metric bilinear form on W, and .W; / is a quadratic space. Indeed, W is a real
inner product space with inner product defined by (29).

Proposition 14. Let W be the paravector space of V. Then W forms a real inner
product space with inner product

hu; vi D 1

2

�
u Nv C v Nu

�
; u; v 2 W: (30)

Proof. Write u D u0 C u and v D v0 C v. A direct computation gives

1

2

�
u Nv C v Nu

�
D u0v0 C hu; vi:

From this it is clear that (30) defines a positive definite inner product on W. ut
Note that W is an extension of V in the sense that (30) reduces to the inner product

of V if u and v are paravectors with a zero scalar component.

4 Möbius and Einstein Gyrogroups

In this section, we extend the results of Suksumran and Wiboonton [62] to an
arbitrary real inner product space. Let V be an n-dimensional real inner product
space with a positive definite inner product h�; �i and the corresponding norm k � k.
Let Vt denote the open t-ball of V:

Vt D fv 2 VW kvk < tg:
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In [71], Möbius addition (2) on the complex unit disk is extended to the t-ball of V:

u˚M v D .1C 2
t2
hu; vi C 1

t2
kvk2/uC .1 � 1

t2
kuk2/v

1C 2
t2
hu; vi C 1

t4
kuk2kvk2 : (31)

With the help of computer algebra, Ungar asserted that .Vt;˚M/ forms a gyrocom-
mutative gyrogroup, called a Möbius gyrogroup. Later, Lawson [44] and Ferreira
and Ren [18] proved this result using the Clifford algebra formalism.

Let Bt denote the open ball of radius t in the paravector space W D R˚ V:

Bt D fw 2 WW kwk < tg:

In [18, Sect. 4], Ferreira and Ren established that

.1C 2
t2
ha; bi C 1

t2
kbk2/aC .1 � 1

t2
kak2/b

1C 2
t2
ha; bi C 1

t4
kak2kbk2 D .aC b/

�
1C Nab

t2

��1
(32)

for all a; b 2 Bt, where the product and inverse on the right-hand side are performed
in the Clifford algebra C`0;n. Further, they proved that Bt with operation defined by

a˚M b D .aC b/

�
1C Nab

t2

��1
(33)

forms a gyrocommutative gyrogroup.

Theorem 11 ([18]). Bt with Möbius addition defined by (33) is a gyrocommutative
gyrogroup. Its gyroautomorphisms are given by

gyrŒa; b�c D qcQq; q D t2 C aNb
jt2 C aNbj :

A Euclidean version of Theorem 11 was proved by Lawson in [44].
For convenience, we will consider the case t D 1. Let B denote the open unit ball

of V , B D fv 2 VW kvk < 1g. Viewing any vector in B as a paravector in B1 with a
zero scalar component, we have B � B1 so that Eq. (31) reduces to

u˚M v D .uC v/ .1 � uv/�1 (34)

since Nv D �v for all v 2 V . By Proposition 13 (5), Eq. (34) implies

.u˚M v/ D .uC v/
.1 � uv/

(35)

for all u; v 2 B.
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The next theorem shows that .B;˚M/ forms a subgyrogroup of .B1;˚M/. For
the precise definition of a subgyrogroup, see Sect. 6.

Theorem 12. The Möbius gyrogroup .B;˚M/ forms a subgyrogroup of .B1;˚M/.
In particular, .B;˚M/ is a gyrocommutative gyrogroup.

Proof. If v 2 B, then�Mv 2 B since�Mv D �v. Let u; v 2 B. From (32), we have

u˚M v D .1C 2hu; vi C kvk2/uC .1 � kuk2/v
1C 2hu; vi C kuk2kvk2 ;

so u˚M v 2 V . Note that 0 < .1CQ.u//.1CQ.v// D 1CQ.u/CQ.v/CQ.u/Q.v/.
Thus,�Q.uCv/ D �2B.u; v/�Q.u/�Q.v/ < 1�2B.u; v/CQ.u/Q.v/. It follows
that .uC v/ D �Q.uC v/ < 1 � 2B.u; v/C Q.u/Q.v/ D .1 � uv/, whence

0 � .u˚M v/ D .uC v/
.1 � uv/

< 1:

Since .u˚M v/ D ku˚M vk2, we also have ku˚M vk < 1. Hence, u˚M v 2 B. ut
In [69], Ungar extended Einstein addition of relativistically admissible velocities

to the case of a real inner product space:

u˚E v D 1

1C hu;vi
t2

	
uC 1

�u
vC 1

t2
�u

1C �u
hu; viu



; u; v 2 Vt; (36)

where �u is the Lorentz factor or gamma factor given by

�u D 1
q
1 � kuk2

t2

: (37)

Ungar declared that .Vt;˚E/ forms a gyrocommutative gyrogroup, called an
Einstein gyrogroup, where the gyrogroup axioms can be checked using computer
algebra. In this section, we will give an algebraic proof that .B;˚E/ does form a
uniquely 2-divisible gyrocommutative gyrogroup, which is sometimes referred to
as a B-loop. In order to do so, we employ the following theorem, which enables
us to impose the gyrogroup structure on any set that has the same cardinality as a
gyrogroup:

Theorem 13 ([16]). Let .G;˚/ be a gyrogroup, let X be a set, and let 	WX ! G
be a bijection. Then X endowed with the induced operation

a˚X b WD 	�1.	.a/˚ 	.b//; a; b 2 X;

becomes a gyrogroup.
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According to the proof of this theorem in [16], the identity of the induced
gyrogroup X is indeed 	�1.0/, and the inverse of an element a of X is indeed
	�1.�	.a//. The induced gyroautomorphisms of X are given by

gyrXŒa; b� D 	�1 ı gyrŒ	.a/; 	.b/� ı 	: (38)

By construction, 	.a ˚X b/ D 	.	�1.	.a/ ˚ 	.b/// D 	.a/ ˚ 	.b/ for all
a; b 2 X. Hence, 	 acts as a gyrogroup isomorphism so that G and X are isomorphic
gyrogroups. From an algebraic point of view, G and X have the same properties.

We say that a gyrogroup G is uniquely 2-divisible if for each a 2 G, there exists
a unique b 2 G for which b˚ b D a. This definition is equivalent to saying that the
doubling map a 7! a˚ a is a bijection from G to itself.

Proposition 15. Let G and X be as in Theorem 13. If G is gyrocommutative, then
so is X. If G is uniquely 2-divisible, then so is X.

Proof. Suppose that G is gyrocommutative. Let a; b 2 X. We have

gyrXŒa; b�.b˚X a/ D 	�1.gyrŒ	.a/; 	.b/�	.b˚X a//

D 	�1.gyrŒ	.a/; 	.b/�.	.b/˚ 	.a///
D 	�1.	.a/˚ 	.b//
D a˚X b:

Hence, X is gyrocommutative.
Let DG and DX denote the doubling maps of G and X, respectively. Suppose that

G is uniquely 2-divisible, that is, DG is bijective. For all a 2 X,

DX.a/ D a˚X a D 	�1.	.a/˚ 	.a// D 	�1.DG.	.a/// D .	�1 ı DG ı 	/.a/;

whence DX D 	�1 ı DG ı 	. It follows that DX is bijective and hence X is uniquely
2-divisible. ut

For the remainder of this section, we work in the Clifford algebra of negative
space of V , C`0;n. In light of Theorem 13, we express Einstein addition via Möbius
addition to deduce that .B;˚E/ forms a uniquely 2-divisible gyrocommutative
gyrogroup.

For each v 2 B, set

rv D 1

1Cp1 � kvk2 : (39)

It is not hard to see that rv D 1 �p1 � kvk2
kvk2 and rv D 1

1Cp1C v2
in C`0;n. In

terms of the Lorentz factor (37) normalized to t D 1, rv can be rewritten as
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rv D 1

1C ��1
v
D �v

1C �v
:

It follows that 0 < rv < 1. Further, it is straightforward to check that rv is a solution
to the quadratic equation kvk2x2 � 2xC 1 D 0 in the variable x. Since v2 D �kvk2,
we have

2rv

1 � r2vv2
D 1: (40)

Let � be the map defined by

�.v/ D rvv; v 2 B: (41)

Since 0 < rv < 1, we obtain k�.v/k D krvvk D rvkvk < 1. Hence, � maps B to
B. Let ˚ denote the doubling map of Möbius gyrogroup .B;˚M/, that is,

˚.v/ D v˚M v: (42)

From Eq. (34), we have

˚.v/ D 2v
1 � v2

D 2v
1C kvk2 :

If kvk < 1, then k˚.v/k D
����

2v
1C kvk2

���� D
2

1
kvk C kvk

< 1 since
1

kvk C kvk > 2.

Hence, ˚ maps B to B.
The doubling map ˚ is of importance for the study of Möbius and Einstein

gyrogroups. For instance, ˚ is used in proving that the Poincaré metric on the unit
ball in R

n is twice the rapidity metric of the Möbius gyrogroup [38, Theorem 3.7]
and in proving that the Cayley–Klein metric on the unit ball in R

n agrees with the
rapidity metric of the Einstein gyrogroup [38, Theorem 3.9].

Proposition 16. The maps � and ˚ are bijections from B onto itself and are
inverses of each other.

Proof. Let v 2 B. Since 1�k˚.v/k2 D 1� 4kvk2
.1C kvk2/2 D

�
1 � kvk2
1C kvk2

�2
, we have

1C
p
1C ˚.v/2 D 1C

p
1 � k˚.v/k2 D 1C 1 � kvk2

1C kvk2 D
2

1C kvk2 D
2

1 � v2
:
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This implies .� ı˚/.v/ D �.˚.v// D r˚.v/˚.v/ D 1

1Cp1C ˚.v/2
2v

1 � v2
D v.

From (40), we have .˚ ı �/.v/ D ˚.�.v// D 2�.v/
1 � �.v/2 D

2rv

1 � r2vv2
v D v. This

proves that � ı ˚ D idB and ˚ ı � D idB. Hence, ˚ and � are bijections from B

onto B, ˚�1 D � , and ��1 D ˚ . ut
Corollary 6. The Möbius gyrogroup .B;˚M/ is uniquely 2-divisible.

Proof. Since the doubling map ˚ is bijective, the corollary follows. ut
Proposition 17. The unit ball B with the induced addition given by

u˚B v D ��1.�.u/˚M �.v//; u; v 2 B;

forms a uniquely 2-divisible gyrocommutative gyrogroup.

Proof. Applying Theorem 13 with .B;˚M/ in place of G and � in place of 	, we
obtain that .B;˚B/ forms a gyrogroup. By Theorem 12 and Corollary 6, .B;˚M/ is
a uniquely 2-divisible gyrocommutative gyrogroup, and by Proposition 15, .B;˚B/

is a uniquely 2-divisible gyrocommutative gyrogroup. ut
The induced addition ˚B in Proposition 17 is nothing but Einstein addition, as

shown in the following theorem:

Theorem 14. For all u; v 2 B, u ˚B v D u ˚E v. In particular, .B;˚E/ forms a
uniquely 2-divisible gyrocommutative gyrogroup. In terms of the Clifford algebra
C`0;n, Einstein addition can be rewritten as

u˚E v D 2.ruu˚M rvv/
�
1 � .ruu˚M rvv/2

��1
(43)

and the Einstein gyroautomorphisms are given by

gyrŒu; v�w D qwQq; q D 1 � rurvuv
j1 � rurvuvj :

Proof. Since ��1 D ˚ , we have

u˚B v D ˚.�.u/˚M �.v// D 2 .�.u/˚M �.v//

1 � .�.u/˚M �.v//
2
:

Equations (34) and (35) and Proposition 13 together imply

u˚B v D 2 .�.u/˚M �.v//
1C .�.u/˚M �.v//



394 T. Suksumran

D
2
�
.�.u/C �.v// .1 � �.u/�.v//�1

�

1C .�.u/C�.v//
.1��.u/�.v//

D 2 .�.u/C �.v// .1 � �.v/�.u//
.�.u/C �.v//C .1 � �.u/�.v// : (44)

Since 1� r2uu2 � r2vv2C r2uu2r2vv2 D .1� r2uu2/.1� r2vv2/ D .2ru/.2rv/ D 4rurv,
we have

.�.u/C �.v//C .1 � �.u/�.v//
D �.�.u/C �.v//2 C .1 � �.u/�.v//.1 � �.v/�.u//
D 1 � �.u/2 � �.v/2 C �.u/2�.u/2 � 2.�.u/�.v/C �.v/�.u//
D 1 � r2uu2 � r2vv2 C r2uu2r2vv2 C 4rurvhu; vi
D 4rurv.1C hu; vi/: (45)

We also have

1

2rurv

�
�.u/C �.v/

��
1 � �.v/�.u/

�

D 1

2rurv

�
ruuC rvv

��
1 � rurvvu

�

D 1

2rurv

�
ruu � r2urvuvuC rvv � rur2vv2u

�

D u
2rv
� ru

2
uvuC v

2ru
� rv

2
v2u

D 1

2

�
1

rv
� rvv2

�
u � ru

2
.uvC vu/uC 1

2

�
ruu2 C 1

ru

�
v

D uC �u

1C �u
hu; viuC 1

�u
v: (46)

We obtain the fifth equation because
1

rw
D 1C

p
1 � kwk2 D 1C 1

�w
and

rww2 D 1 �p1 � kwk2
kwk2 .�kwk2/ D

p
1 � kwk2 � 1 D 1

�w
� 1

for all w 2 B.
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Combining Eqs. (44)–(46) gives

u˚B v D
4rurv

n
uC �u

1C�u
hu; viuC 1

�u
v
o

4rurv.1C hu; vi/

D 1

1C hu; vi
	

uC 1

�u
vC �u

1C �u
hu; viu




D u˚E v:

Let us temporarily denote by gyrEŒu; v� an Einstein gyroautomorphism and by
gyrMŒu; v� a Möbius gyroautomorphism. Since ˚B and ˚E agree on B, we have
from the gyrator identity (see Theorem 1) that gyrEŒu; v� coincides with the induced
gyroautomorphism gyrBŒu; v�. It follows from Eq. (38) that

gyrEŒu; v� D ˚ ı gyrMŒ�.u/; �.v/� ı ˚�1:

Because ˚ is the doubling map of .B;˚M/ and gyrMŒ�.u/; �.v/� preserves˚M , ˚
and gyrMŒ�.u/; �.v/� commute. Hence,

gyrEŒu; v� D gyrMŒ�.u/; �.v/�:

By Theorems 11 and 12, gyrMŒ�.u/; �.v/�w D qwQq, where

q D 1C �.u/�.v/
j1C �.u/�.v/j D

1 � �.u/�.v/
j1 � �.u/�.v/j D

1 � rurvuv
j1 � rurvuvj :

ut
Theorem 15. Let q be as in Theorem 14. Then q 2 �0;n, and the restriction of Tq to
B equals the Einstein gyroautomorphism generated by u and v. Consequently, any
Einstein gyroautomorphism represents a rotation of the unit ball.

Proof. Let u; v 2 B. Since �.u/; �.v/ 2 B, Proposition 13 (1) implies that q
belongs to �0;n. Furthermore,

.q/ D 
�
1 � �.u/�.v/
j1 � �.u/�.v/j

�
D .1 � �.u/�.v//
j1 � �.u/�.v/j2 D 1:

From (16)–(18), we have Oq D q and Nq D Qq, which gives

Tqw D Oqwq�1 D qw
Nq

.q/
D qwQq
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for all w 2 V . Hence, Tq and gyrEŒu; v� agree on B. By Theorem 10, Tq defines an
orthogonal transformation of .V;B/. Furthermore, Tq preserves the inner product of
V since B.u; v/ D �hu; vi. This completes the proof. ut

From Proposition 17 and Theorem 14, we have a strong connection between
Einstein addition and Möbius addition:

u˚E v D ��1.�.u/˚M �.v//:

Using the principle of special relativity, Friedman and Scarr established this relation
as well; see [24, Chap. 2].

Equation (41) shows a close relationship between elements of Einstein and
Möbius gyrogroups. This result is stated by Ungar [70, Eq. (6.297)] and by Ferreira
[16, Proposition 6]. In terms of Einstein scalar multiplication, defined by

r˝E v D .1C kvk/r � .1 � kvk/r
.1C kvk/r C .1 � kvk/r

v
kvk

D tanh
�
r tanh�1.kvk/�

�
v
kvk

�
;

where r 2 R; v 2 B; v ¤ 0, and r ˝E 0 D 0 (see [67, p. 194]), Eqs. (41) and (42)
can be rewritten as

�.v/ D 1

2
˝E v and ˚.v/ D 2˝E v;

which reflects the fact that � and ˚ are inverses of each other.
In terms of the Clifford algebra C`0;n, the Einstein gyroautomorphism generated

by u and v has a compact formula:

gyrEŒu; v�w D qwQq; q D 1 � rurvuv
j1 � rurvuvj : (47)

An Einstein gyroautomorphism is known in mathematical physics as a Thomas
gyration, which is the mathematical abstraction of the relativistic effect known as
Thomas precession [48, 65, 74]. Geometrically, it represents a rotation of the unit
ball. For a deep discussion of Einstein gyroautomorphisms, see [70, Sect. 10.3].

As noted in the introduction to this paper, gyrogroups can be studied from
the abstract point of view. The remainder of this paper is devoted to the study
of gyrogroups in a general setting. Following the modern treatment of abstract
algebra, we study subgyrogroups, normal subgyrogroups, quotient gyrogroups, and
gyrogroup homomorphisms. Further, we show that several well-known results in
group theory continue to hold for gyrogroups. In particular, we extend the results
of Suksumran and Wiboonton [60, 61] by including more details and adding some
new results.
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5 Cayley’s Theorem

Recall that any Möbius transformation of C is a map that can be expressed in the
form

z 7! azC b

czC d
; (48)

where z is a complex variable and a; b; c and d are complex constants with
ad � bc ¤ 0. Note that one needs the one-point compactification of C, bC D
C [ f1g, to solve the problem of division by zero in (48).

In view of (48), any Möbius transformation of C can be associated with a 2 � 2
invertible matrix in the general linear group over C, GL2.C/, by defining

� W
�

a b
c d

�
7! f ; f .z/ D azC b

czC d
: (49)

In fact, (49) defines a group homomorphism from the general linear group over C
to the group of Möbius transformations of C.

Theorem 16 ([4]). The map � is a surjective group homomorphism from GL2.C/
onto the group of Möbius transformations of C whose kernel is

	�
� 0

0 �

�
W� 2 C; � ¤ 0



:

Denote the open unit disk of C by D and denote the unit circle of C by S1:

D D fz 2 CW jzj < 1g; S1 D fz 2 CW jzj D 1g:

There are two important types of Möbius transformations preserving the complex
unit disk:

1. Möbius Translations. For a 2 D, let �a be the Möbius transformation induced by

�
1 a
Na 1
�
; �a.z/ D zC a

1C Naz
:

By Lemma 6.2.2 of [29], �a is indeed a conformal self-map of D. Also, �a is a
left gyrotranslation of the complex Möbius gyrogroup, �a.z/ D a˚M z.

2. Rotations. For ! 2 S1, let �! be the Möbius transformation induced by

�
! 0

0 1

�
; �!.z/ D !z:
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It is clear that �! represents a rotation of the complex unit disk.

The Möbius transformations of the complex unit disk are completely characterized
by �a and �! , with a in D and ! in S1, as shown in the following theorem:

Theorem 17 ([29]). A holomorphic function f WD ! D is a conformal self-map of
D if and only if there are complex numbers a 2 D and ! 2 S1 such that f D �! ı �a.

Note that ��1
! D �! and �!1 ı �!2 D �!1!2 for all !;!1; !2 2 S1. This means

that the set of rotations, f�! W! 2 S1g, forms a group under function composition,
and this group is isomorphic to the group of unit complex numbers via ! 7! �! .
In contrast, the set of Möbius translations, f�aW a 2 Dg, does not form a group under
function composition.

Let a; b 2 D. A direct computation gives

"
1 a
Na 1

#"
1 b
Nb 1

#
D
"
1C ab 0

0 1C ab

#"
1 aCb

1Cab
aCb
1Cab

1

#"
1Cab
1Cab 0

0 1

#
: (50)

By Theorem 16, the matrix equation (50) reads

�a ı �b D �a˚Mb ı �!; (51)

where a ˚M b D aC b

1C Nab
and ! D 1C ab

1C ab
. In view of (51), the set of Möbius

translations is not closed under function composition and hence cannot be a group.
However, the set of Möbius translations is a gyrogroup under the operation �a˚�b D
�a˚Mb. This gyrogroup is isomorphic to the complex Möbius gyrogroup via a 7! �a.
From (3) and (51), we derive the composition law of Möbius translations:

�a ı �b D �a˚Mb ı gyrŒa; b�: (52)

In this section, we abstract the composition law of Möbius translations. Further,
we prove that if G is an arbitrary gyrogroup, then the set of left gyrotranslations of G
admits the gyrogroup structure induced by G. The gyrogroup of left gyrotranslations
is isomorphic to the underlying gyrogroup G. This results in a version of Cayley’s
theorem for gyrogroups [61].

Theorem 18. Let G be an arbitrary gyrogroup.

1. For each a 2 G, the left gyrotranslation, LaW x 7! a˚ x, is a permutation of G.
2. Denote the set of all left gyrotranslations of G by G. The map  WG! G defined

by  .a/ D La is bijective. The inverse map 	 WD  �1 fulfills the condition in
Theorem 13. In this case, the induced operation˚G is given by

La ˚G Lb D La˚b

for all a; b 2 G.
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3. For all a; b; c 2 G,

La ı Lb D La˚b ı gyrŒa; b� (53)

and

gyrGŒLa;Lb�Lc D LgyrŒa;b�c: (54)

Proof.

(1) That La is injective follows from the general left cancellation law. That La is
surjective follows from Theorem 2.

(2) Clearly,  is surjective. If  .a/ D  .b/, then a D La.0/ D Lb.0/ D b. Hence,
 is injective. By Theorem 13, the induced operation is given by

La˚GLb D 	�1.	.La/˚	.Lb// D  . �1.La/˚ �1.Lb// D  .a˚b/ D La˚b:

Note that the identity element of G is idG since 	�1.0/ D L0 D idG and that
the inverse of La in G is L�a since La ˚G L�a D La˚.�a/ D L0 D L.�a/˚a D
L�a ˚G La.

(3) By the left cancellation law, La ı L�a D idG D L�a ı La. Hence, the inverse
map of La with respect to ı is indeed L�a. In other words, L�1

a D L�a for
all a 2 G. By the gyrator identity, gyrŒa; b� D L�.a˚b/ ı La ı Lb and hence
gyrŒa; b� D L�1

a˚b ı La ı Lb. It follows that La ı Lb D La˚b ı gyrŒa; b�. Applying
the gyrator identity, we obtain

gyrGŒLa;Lb�Lc D �G.La ˚G Lb/˚G .La ˚G .Lb ˚G Lc//

D L�.a˚b/˚.a˚.b˚c//

D LgyrŒa;b�c:

ut
Remark 1. For simplicity, we will not distinguish between the notation for induced
and usual gyroautomorphisms. Hence, Eq. (54) reads gyrŒLa;Lb�Lc D LgyrŒa;b�c for
all a; b; c 2 G.

Note that the composition law (53) is an abstract version of the composition
law (52) of Möbius translations. Also, (53) is in some sense related to the
composition law (1) of Lorentz boosts. The importance of the composition law lies
in the fact that it relates the group operation ı and the gyrogroup operation ˚ in a
natural way.

Let G be a gyrogroup. Let Stab.0/ denote the set of permutations of G leaving
the gyrogroup identity fixed:

Stab.0/ D f� 2 Sym .G/W �.0/ D 0g:
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It is clear that Stab.0/ is a subgroup of the symmetric group, Sym .G/, and we have
the following inclusions:

fgyrŒa; b�W a; b 2 Gg � Aut .G/ 6 Stab.0/ 6 Sym .G/:

The next two propositions show that the induced gyrogroup G is a twisted
subgroup of Sym .G/ and that G is a transversal of Stab.0/ in Sym .G/. Recall that
a subset K of a group � is a twisted subgroup of � [21] if

1. 1� 2 K, 1� being the identity element of � , and
2. x; y 2 K implies xyx 2 K.

A subset B of � is a (left) transversal of a subgroup $ of � if every g 2 � can be
written uniquely as g D bh, where b 2 B and h 2 $ [21, p. 30].

Proposition 18. Let G be a gyrogroup. Then G is a twisted subgroup of Sym .G/.

Proof. The first condition for a twisted subgroup holds: idG D L0 2 G.
Let a; b 2 G. By Theorem 3 (4), c D .a ˚ b/ � a is such that c � a D a ˚ b.

Applying the left and right loop properties, we have

gyrŒa; b� D gyrŒa˚ b; b�

D gyrŒc� a; b�

D gyrŒc� a;�a˚ .c� a/�

D gyrŒc� a;�a�

D gyrŒc;�a�:

It follows that La ıLb D La˚b ıgyrŒa; b� D Lc�a ıgyrŒc;�a� D Lc ıL�a D Lc ıL�1
a ,

which implies La ı Lb ı La D Lc belongs to G. Hence, the second condition for a
twisted subgroup holds. ut
Proposition 19. Let G be a gyrogroup. For each � 2 Sym .G/, � can be written
uniquely as � D La ı �, where a 2 G and � 2 Stab.0/. In other words, G is a
transversal of Stab.0/ in Sym .G/.

Proof. Suppose that La ı � D Lb ı , where a; b 2 G and �;  2 Stab.0/. Then
a D .La ı �/.0/ D .Lb ı /.0/ D b, which implies La D Lb. This in turn implies
� D . Hence, the factorization, when it exists, is unique.

Let � be an arbitrary permutation of G. Choose a D �.0/ and set � D L�a ı � .
Note that �.0/ D L�a.a/ D �a˚a D 0. Hence, � lies in Stab.0/. Since L�a D L�1

a ,
we have � D La ı �. This proves the existence of factorization. ut

The normalizer of G in Stab.0/ is equal to the automorphism group of G, as
shown in the following proposition. For � 2 Sym .G/, let �G��1 denote the set
f� ı La ı ��1W a 2 Gg.
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Proposition 20. Let � 2 Stab.0/. Then � normalizes G, that is, �G��1 D G, if and
only if � 2 Aut .G/.

Proof. Note that ��1.0/ D 0.
To prove the “only if” part, we need only assume that �G��1 � G. Let a; b 2 G.

Since � ı La ı ��1 2 �G��1, we have � ı La ı ��1 D Lc for some c 2 G. In fact,
c D Lc.0/ D .� ı La ı ��1/.0/ D �.a/. Hence, � ı La D L�.a/ ı �. It follows
that �.a˚ b/ D .� ı La/.b/ D .L�.a/ ı �/.b/ D �.a/˚ �.b/, which proves � is an
automorphism of G.

Suppose conversely that � 2 Aut .G/. For a; x 2 G, we have

.� ı La ı ��1/.x/ D �.a˚ ��1.x// D �.a/˚ x D L�.a/.x/:

Hence, � ı La ı ��1 D L�.a/. This implies �G��1 � G since a is arbitrary. For each
b 2 G, there is an element a of G such that �.a/ D b. Since Lb D L�.a/ D �ıLaı��1,
we have Lb 2 �G��1. This proves G � �G��1 and so equality holds. ut

In light of the proof of Proposition 20, one has

� ı La D L�.a/ ı � (55)

whenever � is an automorphism of G. The commutation relation (55) determines
how to commute a left gyrotranslation and an automorphism of G. It is worth
pointing out that Proposition 19 has an analogous result in loop theory; see, for
instance, [40, Sect. 2]. We next see how the gyrogroup structure appears in the
symmetric group of a gyrogroup.

Gyrogroups of Permutations

Let G and H be gyrogroups. A map 'WG ! H such that '.a˚ b/ D '.a/˚ '.b/
for all a; b 2 G is called a gyrogroup homomorphism. A bijective gyrogroup
homomorphism is called a gyrogroup isomorphism. We say that G and H are
isomorphic gyrogroups if there is a gyrogroup isomorphism between them.

Let G be a gyrogroup. Proposition 19 enables us to introduce a binary operation
˚ on the symmetric group of G so that Sym .G/ equipped with ˚ becomes a
gyrogroup containing an isomorphic copy of G. This results in Cayley’s theorem
for gyrogroups [61].

Let � and � be arbitrary permutations of G. By Proposition 19, � and � have
factorizations � D La ı � and � D Lb ı ı, where a; b 2 G and �; ı 2 Stab.0/. Define
an operation ˚ on Sym .G/ by

� ˚ � D La˚b ı .� ı ı/: (56)
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Because of the uniqueness of factorization, ˚ is a binary operation on Sym .G/. In
fact, .Sym .G/;˚/ forms a gyrogroup.

Theorem 19. Let G be a gyrogroup. Then Sym .G/ with operation defined by (56)
is a gyrogroup and

La ˚ Lb D La˚b D La ˚G Lb

for all a; b 2 G. In particular, the map a 7! La defines an injective gyrogroup
homomorphism from G into Sym .G/.

Proof. Suppose that � D La ı � , � D Lb ı ı, and � D Lc ı �, where a; b; c 2 G and
�; ı; � 2 Stab.0/.

(G1) idG acts as a left identity of Sym .G/ with respect to˚:

idG ˚ � D L0˚a ı .idG ı �/ D La ı � D �:

(G2) L�aı��1 is a left inverse of � : .L�aı��1/˚� D .L�a˚a/ı.��1ı�/ D idG.
(G3) Define a map gyrŒ�; � �WSym .G/! Sym .G/ by

gyrŒ�; ��� D .gyrŒLa;Lb�Lc/ ı � D LgyrŒa;b�c ı �: (57)

Suppose �0 D Lc0 ı �0 is such that gyrŒ�; � �� D gyrŒ�; � ��0. Then LgyrŒa;b�c ı
� D LgyrŒa;b�c0 ı �0 and, by Proposition 19, LgyrŒa;b�c D LgyrŒa;b�c0 and � D �0.
Thus, c D c0 and hence � D �0. This proves that gyrŒ�; � � is injective.
For Ly ı � 2 Sym .G/, we can choose Lx in G such that gyrŒLa;Lb�Lx D Ly

since gyrŒLa;Lb� is surjective. Because gyrŒ�; � �.Lx ı �/ D .gyrŒLa;Lb�Lx/ı
� D Ly ı �, gyrŒ�; � � is surjective.
For any � D Lc ı �; & D Ld ı � 2 Sym .G/, we have

.gyrŒ�; � ��/˚ .gyrŒ�; � �&/ D .LgyrŒa;b�c ı �/˚ .LgyrŒa;b�d ı �/
D LgyrŒa;b�c˚gyrŒa;b�d ı .� ı �/
D LgyrŒa;b�.c˚d/ ı .� ı �/
D gyrŒ�; � �.�˚ &/:

This proves that gyrŒ�; � � defines an automorphism of .Sym .G/;˚/. To
prove that the left gyroassociative law holds in Sym .G/, we compute

� ˚ .� ˚ �/ D La˚.b˚c/ ı .� ı .ı ı �//
D L.a˚b/˚gyrŒa;b�c ı ..� ı ı/ ı �/
D .� ˚ �/˚ .LgyrŒa;b�c ı �/
D .� ˚ �/˚ .gyrŒ�; � ��/:
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(G4) To prove that the left loop property holds in Sym .G/, we compute

gyrŒ� ˚ �; ��� D .gyrŒLa ˚G Lb;Lb�Lc/ ı � D .gyrŒLa;Lb�Lc/ ı � D gyrŒ�; ���:

Since � is arbitrary, we have gyrŒ� ˚ �; �� D gyrŒ�; ��. ut
By Theorem 19, the following version of Cayley’s theorem for gyrogroups is

immediate:

Corollary 7 (Cayley’s Theorem). Every gyrogroup is isomorphic to a sub-
gyrogroup of the gyrogroup of permutations.

Proof. The map a 7! La defines a gyrogroup isomorphism from G onto G, and G is
a subgyrogroup of Sym .G/. ut

6 Subgyrogroups

The following definition of a subgyrogroup first appeared in [14, Sect. 4] with the
term “gyro-subgroup”:

Definition 4 (Subgyrogroups). Let G be a gyrogroup. A nonempty subset H of G
is a subgyrogroup, written H 6 G, if H is a gyrogroup under the operation inherited
from G and the restriction of gyrŒa; b� to H becomes an automorphism of H for all
a; b 2 H.

Remark 2. Let G be a gyrogroup and let H be a subgyrogroup of G.

1. If 0H is an identity element of H, then 0H must equal the identity element of G.
This is because 0H ˚ 0H D 0H D 0H ˚ 0 and hence 0H D 0.

2. For each a 2 H, if b is an inverse of a in H, then b must equal the inverse of a
in G. This is because a˚ b D 0H D 0 D a� a, whence b D �a.

Proposition 21 (The Subgyrogroup Criterion). A nonempty subset H of G is a
subgyrogroup if and only if a 2 H implies�a 2 H and a; b 2 H implies a˚ b 2 H.

Proof. The “only if” part follows from the definition of a subgyrogroup and
Remark 2. To prove the “if” part, suppose that the two conditions hold. Since H ¤ ;,
there is an element a 2 H so that 0 D �a˚ a 2 H, and axiom (G1) holds. Axiom
(G2) holds by the first condition. Axiom (G4) holds trivially.

Let a; b 2 H. By the gyrator identity, gyrŒa; b�c D �.a ˚ b/ ˚ .a ˚ .b ˚ c//,
and by the second condition, gyrŒa; b�c 2 H for all c 2 H. Hence, gyrŒa; b�.H/ � H.
Likewise, gyrŒb; a�.H/ � H. For each d 2 H, choose c 2 G such that gyrŒa; b�c = d.
Since c D gyr�1Œa; b�d D gyrŒb; a�d 2 H, we have d D gyrŒa; b�c 2 gyrŒa; b�.H/.
This proves H � gyrŒa; b�.H/ and so equality holds. It follows that the restriction of
gyrŒa; b� to H is an automorphism of H and hence axiom (G3) holds. ut



404 T. Suksumran

If H is a finite nonempty subset of G, then it suffices to check that H is closed
under the gyrogroup operation.

Proposition 22. A nonempty finite subset H of a gyrogroup G is a subgyrogroup if
and only if a˚ b 2 H for all a; b 2 H.

Proof. Suppose that H ¤ ;. To complete the proof, we need only check that �a 2
H for all a 2 H. For each a 2 H, define recursively the following sequence:

a0 D 0; an D a˚ .an�1/; n � 1:

By induction, an 2 H for all n � 0 since H is closed under ˚. Because H is
finite, there must be repetitions among a0; a1; a2; : : :, say am D an with m < n.
Applying the general left cancellation law repeatedly, we obtain an�m D 0. Hence,
a� a D 0 D a˚ an�m�1, which implies�a D an�m�1 2 H. ut

As proved in Theorem 12, the Möbius gyrogroup .B;˚M/ forms a subgyrogroup
of .B1;˚M/. Other examples of subgyrogroups are given in the following example:

Example 1. By using the duality between right Bol and left Bol loops, the right
Bol loop 8.3.2.1 satisfying the automorphic inverse property in [49] can be turned
into a gyrocommutative gyrogroup, called G8 D f0; 1; : : : ; 7g, whose addition table
is presented in Table 3. In G8, there is only one nonidentity gyroautomorphism,
denoted by A, whose transformation is given by (58):

0 7! 0 4 7! 6

1 7! 1 5 7! 7

2 7! 2 6 7! 4

3 7! 3 7 7! 5

(58)

The gyration table for G8 is presented in Table 4. By Proposition 22, H D f0; 7g,
H1 D f0; 3g, H2 D f0; 1; 2; 3g, and H3 D f0; 3; 4; 6g are easily seen to be
subgyrogroups of G8.

Table 3 Addition table for
the gyrocommutative
gyrogroup G8

˚ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 3 0 2 7 4 5 6

2 2 0 3 1 5 6 7 4

3 3 2 1 0 6 7 4 5

4 4 5 7 6 3 2 0 1

5 5 6 4 7 2 0 1 3

6 6 7 5 4 0 1 3 2

7 7 4 6 5 1 3 2 0
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Table 4 Gyration table for
G8. There are two
gyroautomorphisms of G8.
One is the identity
automorphism I and the other
is the automorphism A given
by (58)

gyr 0 1 2 3 4 5 6 7

0 I I I I I I I I

1 I I I I A A A A

2 I I I I A A A A

3 I I I I I I I I

4 I A A I I A I A

5 I A A I A I A I

6 I A A I I A I A

7 I A A I A I A I

6.1 Subgroups of a Gyrogroup

Subgyrogroups that arise as groups with respect to the gyrogroup operation are
of great importance in the study of gyrogroups. Such subgyrogroups are called
subgroups [21].

Definition 5 (Subgroups). A nonempty subset X of a gyrogroup G is a subgroup
if it is a group under the operation on G restricted to X.

Indeed, any subgroup of a gyrogroup is simply a subgyrogroup with trivial
gyroautomorphisms.

Proposition 23. A nonempty subset X of a gyrogroup G is a subgroup if and only
if it is a subgyrogroup of G and the restriction of gyrŒa; b� to X equals the identity
map on X for all a; b 2 X.

Proof. ()) Suppose that X is a subgroup of G. The general left cancellation law
implies that the group identity of X and the gyrogroup identity of G coincide. Also,
if b is a group inverse of a in X, then b D �a. Hence, X 6 G. For all a; b; x 2 X,
we have .a˚ b/˚ x D a˚ .b˚ x/ D .a˚ b/˚ gyrŒa; b�x, whence gyrŒa; b�x D x.
This proves gyrŒa; b�

ˇ̌
X D idX .

(() Since X ¤ ;, there exists an element a of X so that 0 D �a˚ a 2 X, and 0
acts as a group identity of X. For each x 2 X, �x acts as a group inverse of x in X.
By hypothesis, a˚ .b˚ x/ D .a˚ b/˚ gyrŒa; b�x D .a˚ b/˚ x for all a; b; x 2 X.
Hence, the associative law holds in X, and X becomes a group. ut
Example 2. Let B denote the open unit ball of a real Hilbert space H. Recall
that B, equipped with the Möbius addition defined by (31) with t D 1, is a
gyrogroup. According to Eq. (12) of [14], the Möbius gyroautomorphisms are given
by gyrŒu; v�w D ˛uC ˇvC w, where

˛ D 2.hv;wi.1C 2hu; vi/ � hu;wikvk2/
1C 2hu; vi C kuk2kvk2 and ˇ D � 2.hu;wi C hv;wikuk

2/

1C 2hu; vi C kuk2kvk2 :
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For a fixed ! 2 fv 2 HW kvk D 1g, Proposition 6 of [14] states that

L! D ft!W �1 < t < 1g and D! D fv 2 BW hv; !i D 0g

are subgyrogroups of B. Note that if s and t are real numbers with �1 < s; t < 1,

then
1C s!t!

j1C s!t!j D
1C st

j1C stj D 1. By Theorem 11, gyrŒu; v� D idB for all u; v 2 L! .

Hence, by Proposition 23, L! is a subgroup of B.

Foguel and Ungar [21] formulated the definition of a normal subgroup of
a gyrogroup. They showed that any normal subgroup gives rise to a quotient
gyrogroup of left cosets and that every gyrogroup contains a normal subgroup. For
more information about quotient gyrogroups, see Sect. 7.

Definition 6 (Normal Subgroups). A subgroup X of a gyrogroup G is normal if

1. gyrŒa; x� D idG for all x 2 X, a 2 G;
2. gyrŒa; b�.X/ � X for all a; b 2 G;
3. a˚ X D X ˚ a for all a 2 G.

We remark that condition 2 in Definition 6 implies the reverse inclusion, as shown
in the following proposition:

Proposition 24. Let G be a gyrogroup and let X � G. The following are
equivalent:

1. gyrŒa; b�.X/ � X for all a; b 2 G;
2. gyrŒa; b�.X/ D X for all a; b 2 G.

Proof. Suppose that Item 1 holds. Let a; b 2 G and let d 2 X. Choose c 2 G such
that gyrŒa; b�c D d. By (5), c D gyr�1Œa; b�d D gyrŒb; a�d and, by assumption,
c 2 X. Hence, d D gyrŒa; b�c 2 gyrŒa; b�.X/, and we have X � gyrŒa; b�.X/. ut
Example 3. By Proposition 23, the subgyrogroups H1 and H2 in Example 1 are
easily seen to be subgroups of G8. Furthermore, one can check by inspection that
H1 forms a normal subgroup of G8.

Let H be a subgyrogroup of a gyrogroup G. For a 2 G, define

a˚ H D fa˚ hW h 2 Hg and H ˚ a D fh˚ aW h 2 Hg;

called a left coset and a right coset of H in G, respectively. The set of left cosets of
H in G is denoted by G=H and is referred to as the coset space.

Theorem 20 ([21]). If X is a normal subgroup of a gyrogroup G, then the coset
space G=X is a gyrogroup with operation defined by

.a˚ X/˚ .b˚ X/ D .a˚ b/˚ X:
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In Sect. 7, we weaken the hypothesis of Theorem 20 by replacing a normal
subgroup by a normal subgyrogroup. In Sect. 8, we will make use of the following
theorem, due to Foguel and Ungar, to prove an analog of Lagrange’s theorem for
gyrogroups:

Theorem 21 ([21]). If G is a gyrogroup, then G has a normal subgroup N such that
G=N is a gyrocommutative gyrogroup.

6.2 Subgyrogroups Generated by Subsets of a Gyrogroup

In full analogy with groups, we examine the subgyrogroup generated by a subset
of a gyrogroup, in particular, the cyclic subgyrogroup generated by one element.
Many of the results in this subsection are proved by techniques similar to those used
in the theory of groups, where the gyroautomorphisms play a major role and the
associative law is replaced by the gyroassociative law.

Proposition 25. Let G be a gyrogroup and let A be a nonempty collection of

subgyrogroups of G. Then the intersection
\

H2A
H forms a subgyrogroup of G.

Proof. This follows directly from the subgyrogroup criterion. ut
Proposition 26. Let A be a nonempty subset of a gyrogroup G. There exists a
unique subgyrogroup of G, denoted by hAi, such that

1. A � hAi, and
2. if H 6 G and A � H, then hAi � H.

Proof. Set A D fHWH 6 G and A � Hg. Then hAi WD
\

H2A
H is a subgyrogroup of

G satisfying the two conditions. The uniqueness of hAi follows from condition 2.
ut

The unique subgyrogroup in Proposition 26 is called the subgyrogroup generated
by A. It is the smallest subgyrogroup of G containing A in the sense of being the
minimal element of the set of all subgyrogroups of G containing A, partially ordered
by inclusion. The subgyrogroup generated by one-element set fag is called the cyclic
subgyrogroup generated by a, which will be denoted by hai instead of the more
cumbersome hfagi. Also, the subgyrogroup generated by fa1; a2; : : : ; ang will be
denoted by ha1; a2; : : : ; ani.

Next, we will give an explicit description of hai. Let G be a gyrogroup and let a
be an element of G. For m 2 Z, define recursively the following notation:

0 �a D 0; m �a D a˚ ..m�1/ �a/; m � 1; m �a D .�m/ � .�a/; m < 0: (59)
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We also define the right counterparts:

a �0 D 0; a �m D .a � .m�1//˚a; m � 1; a �m D .�a/ � .�m/; m < 0: (60)

Since gyrŒa; 0� D idG and gyr�1Œa; b� D gyrŒb; a� for all a; b 2 G, one can prove
by induction that gyrŒa; a � m� D idG and gyrŒa � m; a� D idG for all a 2 G and all
m � 0. Combining this with the right gyroassociative law gives a �m D m � a for all
m 2 Z. If m < 0, a direct computation gives

gyrŒa; a � m� D gyrŒa; .�m/ � .�a/�

D gyrŒa˚ ..�m/ � .�a//; .�m/ � .�a/�

D gyrŒ.�m � 1/ � .�a/;�a˚ .�m � 1/ � .�a/�

D gyrŒ.�m � 1/ � .�a/;�a�

D idG:

We have the second and fourth equations from the left and right loop properties and
the third equation from the left cancellation law. Thus, we have proved the following
lemma:

Lemma 2. Let G be a gyrogroup. For any element a of G,

gyrŒa � m; a� D gyrŒm � a; a� D gyrŒa;m � a� D gyrŒa; a � m� D idG

for all m 2 Z.

Using Lemma 2, one can prove that

.m � a/˚ .k � a/ D .mC k/ � a (61)

for all a 2 G and all m; k � 0. In fact, (61) holds for all integers m and k.

Theorem 22. Let a be an element of a gyrogroup. For all m; k 2 Z,

.m � a/˚ .k � a/ D .mC k/ � a:

Proof. In the case k D 0, the statement is clear, so assume that k ¤ 0. If m � 0 and
k > 0, the statement holds by (61). Furthermore, if m < 0 and k < 0, then

.m � a/˚ .k � a/ D ..�m/ � .�a//˚ ..�k/ � .�a// D .�m� k/ � .�a/ D .mC k/ � a:

Note that a˚ .n � a/ D .nC 1/ � a for all n 2 Z.
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If m � 0 and k < 0, we proceed by induction on m. Assume inductively that the
statement is true for m > 0. Then

..mC 1/ � a/˚ .k � a/ D .a˚ .m � a//˚ .k � a/
D a˚ ..m � a/˚ gyrŒm � a; a�.k � a//
D a˚ ..m � a/˚ .k � a//
D a˚ ..mC k/ � a/
D .mC 1C k/ � a;

which completes the induction.
If m < 0 and k > 0, then

.m � a/˚ .k � a/ D ..�m/ � .�a//˚ ..�k/ � .�a// D .�m� k/ � .�a/ D .mC k/ � a

since �m > 0 and �k < 0. ut
The following theorem gives an explicit description of the cyclic subgyrogroup

generated by one element of a gyrogroup:

Theorem 23. Let G be a gyrogroup and let a 2 G. Then

hai D fm � aWm 2 Zg:

In particular, hai is a subgroup of G.

Proof. Set H D fm � aWm 2 Zg. For each m 2 Z, .�m/ � a is such that

..�m/ � a/˚ .m � a/ D 0 � a D 0 D .m � a/˚ ..�m/ � a/:

Hence,�.m�a/ D .�m/�a 2 H. By Theorem 22, .m�a/˚.k�a/ D .mCk/�a 2 H for
all m; k 2 Z. This proves H 6 G. Since a 2 H, we have hai � H by the minimality
of hai. By the closure property of subgyrogroups, H � hai and so equality holds.

Note that .m � a/˚ ..n � a/˚ .k � a// D .mC nC k/ � a D ..m � a/˚ .n � a//˚
.k � a/ for all m; n; k 2 Z. Hence, gyrŒm � a; n � a�ˇ̌hai D idhai for all m; n 2 Z. By
Proposition 23, hai is a subgroup of G. ut
Theorem 24. Let G be a gyrogroup. For any element a of G,

gyrŒm � a; n � a� D idG

for all m; n 2 Z.

Proof. First, we will show that Lm�a D Lm
a for all a 2 G and all m � 0. This is clear

if m is zero. Assume inductively that Lm�a D Lm
a for m 2 N. Lemma 2 implies
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LmC1
a D La ı Lm

a D La ı Lm�a D La˚m�a ı gyrŒa;m � a� D L.mC1/�a;

which completes the induction.
As proved in Theorem 18 (2), L�1

a D L�a for all a 2 G. Hence, if m < 0, then

Lm�a D L.�m/�.�a/ D L�m�a D .L�1
a /�m D Lm

a :

This proves that Lm�a D Lm
a for all a 2 G and all m 2 Z.

From the composition law (53), we have

gyrŒm � a; n � a� D L�.mCn/�a ı Lm�a ı Ln�a D L�.mCn/
a ı Lm

a ı Ln
a D idG

for all m; n 2 Z. ut
Recall that a loop L is said to be left power alternative if every element a in L

has a unique inverse and if Lm
a D Lam for all m 2 Z, where the notation am is defined

by (59) with operation written multiplicatively [36, p. 65]. In light of the proof of
Theorem 24, if G is a gyrogroup, then Lm

a D Lm�a for all a 2 G and all m 2 Z.
Hence, we obtain the following corollary:

Corollary 8. Gyrogroups are left power alternative.

Proposition 27. If a is an element of a gyrogroup, then hai is a cyclic group with
generator a under the gyrogroup operation.

Proof. By Theorem 23, hai is a group under the gyrogroup operation. By induction,
m � a D am for all m � 0, where the notation am is used as in group theory. If m < 0,
one obtains similarly that m � a D am. Hence, hai is a cyclic group with generator a.

ut
Corollary 9. Any gyrogroup generated by one element is a cyclic group.

Recall that a loop L is said to be power associative if every element of L is
contained in a cyclic subgroup of L [36, p. 67]. In light of Proposition 27, we obtain
the following corollary:

Corollary 10. Gyrogroups are power associative.

Theorem 23 prompts us to define the order of an element in a gyrogroup.

Definition 7 (Order of an Element). Let G be a gyrogroup and let a 2 G. The
order of a, denoted by jaj, is defined to be the cardinality of hai if hai is finite. In
this case, we will write jaj < 1. If hai is infinite, the order of a is defined to be
infinity, and we will write jaj D 1.

Because the gyrogroup order of a coincides with the group order of a, we obtain
the following results:
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Theorem 25. Let G be a gyrogroup and let a 2 G.

1. If jaj <1, then jaj is the smallest positive integer such that jaj � a D 0.
2. If jaj D 1, then m � a ¤ 0 for all m ¤ 0 and m � a ¤ k � a for all m ¤ k in Z.

Proof.

(1) Suppose that jaj <1. Let n be the smallest positive integer such that n � a D 0.
Since hai is finite, such an integer n exists by the well-ordering principle. We
claim that 0 � a; 1 � a; : : : ; .n � 1/ � a are all distinct. In fact, if m � a D k � a for
some m; k with 0 � m < k < n, then .k�m/ �a D .k �a/� .m �a/ D 0, contrary
to the minimality of n. Note that f0 � a; 1 � a; : : : ; .n � 1/ � ag � hai.

For any m 2 Z, write m D nkC r for some k 2 Z and 0 � r < n. It follows
that m�a D ..nk/ � a/˚.r �a/. By the choice of n, .nk/�a D 0. Hence, m�a D r �a,
which implies hai � f0 � a; 1 � a; : : : ; .n � 1/ � ag and so equality holds. This
proves jaj D jhaij D n and jaj � a D 0.

(2) Suppose that jaj D 1. If there were a nonzero integer m such that m � a D 0,
then we would find a positive integer n such that n � a D 0 and would have
jaj <1, contrary to assumption. Hence, m � a ¤ 0 for all m ¤ 0. If there were
integers m ¤ k such that m � a D k � a, then .m � k/ � a D 0, contradicting what
we have just proved. ut

Corollary 11. Let a be an element of a gyrogroup. If a is of finite order n, then

hai D f0 � a; 1 � a; : : : ; .n � 1/ � ag:

Proof. This is an immediate consequence of Theorem 25 (1). ut
Proposition 28. Let a be an element of a gyrogroup and let m 2 Z n f0g.
1. If jaj D 1, then jm � aj D 1.

2. If jaj <1, then jm � aj D jaj
gcd .jaj;m/ .

Proof. Item 1 follows from Theorem 25 (2). As hai is a cyclic group with generator
a and the gyrogroup order of a equals the group order of a, we have Item 2. ut

6.3 L-Subgyrogroups

Recall that if � is a (finite) group and $ is a subgroup of � , then the relation
 defined by g  h if and only if g�1h 2 $ is an equivalence relation on � . The
equivalence class of g is indeed the left coset g$ so that the coset space fg$ W g 2 � g
forms a disjoint partition of � . Because any left coset of $ has the same cardinality
as $ , the order of $ divides the order of � . This is Lagrange’s theorem familiar
from abstract algebra.
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Let G be a gyrogroup and let H be a subgyrogroup of G. In contrast to groups,
the relation

a  b if and only if � a˚ b 2 H (62)

does not, in general, define an equivalence relation on G. To see this, consider the
gyrogroup G8 and its subgyrogroup H D f0; 7g (see Example 1). Note that�6˚2 D
7 belongs to H, whereas �2 ˚ 6 D 5 does not. In other words, 6  2 but 2 6 6.
This means that the relation is not symmetric and hence cannot be an equivalence
relation on G8. Nevertheless, we can modify (62) to obtain an equivalence relation
on G. From this point of view, any subgyrogroup of G partitions G. This leads to the
introduction of L-subgyrogroups.

Let G be a gyrogroup and let H be a subgyrogroup of G. Define a relation H on
G by letting

a H b if and only if � a˚ b 2 H and gyrŒ�a; b�.H/ D H: (63)

In order to prove that (63) defines an equivalence relation on G, we need the
following lemma:

Lemma 3. Let A be a nonempty set, let B � A, and let f be a bijection from A to
itself. If f .B/ D B, then f �1.B/ D B, where f �1 denotes the inverse map of f .

Proof. The proof is straightforward. ut
Theorem 26. The relation H defined by (63) is an equivalence relation on G.

Proof. Reflexive. Let a 2 G. Then �a˚ a D 0 2 H. By the left cancellation law,
gyrŒ�a; a� equals idG. Hence, gyrŒ�a; a�.H/ D H, which proves a H a.

Symmetric. Let a; b 2 G. Suppose that a H b. By (8),

gyrŒ�a; b�.�b˚ a/ D �.�a˚ b/:

It follows that �b ˚ a D gyr�1Œ�a; b�.�.�a˚ b//, which implies �b˚ a 2 H
since gyr�1Œ�a; b�.H/ D H by Lemma 3. According to (4) and (5), we have

gyrŒ�a; b� D gyrŒ�a;�.�b/� D gyrŒa;�b� D gyr�1Œ�b; a�:

Hence, gyrŒ�b; a� D gyr�1Œ�a; b�. By the same lemma, gyrŒ�b; a�.H/ D H, which
proves b H a.

Transitive. Let a; b; c 2 G. Suppose that a H b and b H c. By (7),

�a˚ c D .�a˚ b/˚ gyrŒ�a; b�.�b˚ c/

and so �a˚ c 2 H. By the composition law (53), gyrŒ�b; c� D L�1�b˚c ı L�b ı Lc.
Hence, Lc D Lb ı L�b˚c ı gyrŒ�b; c�. To complete the proof, we compute
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gyrŒ�a; c�

D L�.�a˚c/ ı L�a ı Lc

D L�1�a˚c ı L�a ı Lb ı L�b˚c ı gyrŒ�b; c�

D L�1�a˚c ı L�a˚b ı gyrŒ�a; b� ı L�b˚c ı gyrŒ�b; c�

D L�1�a˚c ı L�a˚b ı LgyrŒ�a;b�.�b˚c/ ı gyrŒ�a; b� ı gyrŒ�b; c�

D L�1�a˚c ı L�a˚c ı gyrŒ�a˚ b; gyrŒ�a; b�.�b˚ c/� ı gyrŒ�a; b� ı gyrŒ�b; c�

D gyrŒ�a˚ b; gyrŒ�a; b�.�b˚ c/� ı gyrŒ�a; b� ı gyrŒ�b; c�: (64)

We obtain the third and fifth equations from (53) and the fourth equation from (55).
It follows from (64) that gyrŒ�a; c�.H/ D H, which proves a H c. ut

Let H be a subgyrogroup of a gyrogroup G. For each a 2 G, let Œa� denote the
equivalence class of a determined by H , that is,

Œa� D fx 2 GW x H ag: (65)

Since any equivalence relation on G induces a partition of G, Theorem 26 implies
that the set of equivalence classes, fŒa�W a 2 Gg, is a partition of G. Furthermore, the
equivalence class with representative a is contained in the left coset a˚ H.

Proposition 29. For each a 2 G, Œa� � a˚ H.

Proof. Assume that x 2 Œa�. Then a H x and by (63), �a˚ x 2 H. It follows that
x D a˚ .�a˚ x/ 2 a˚ H. This proves Œa� � a˚ H. ut
Remark 3. To see that the inclusion in Proposition 29 may be proper, let G and H
be as in Example 1. Note that �4 ˚ x is in H if and only if x D 4 or 1. Since
gyrŒ�4; 1�.H/ D f0; 5g ¤ H, we have 4 6H 1. Thus, 1 does not belong to Œ4� and
hence Œ4� D f4g � 4˚ H.

Proposition 29 suggests the following definition of an L-subgyrogroup:

Definition 8 (L-subgyrogroups). A subgyrogroup H of a gyrogroup G is said to
be an L-subgyrogroup, denoted by H 6L G, if gyrŒa; h�.H/ D H for all a 2 G and
h 2 H.

We remark that the definition of an L-subgyrogroup is symmetric in the sense that
if gyrŒa; h�.H/ D H with a in G and h in H, then gyrŒh; a�.H/ D H as well. This
is because gyrŒh; a� D gyr�1Œa; h� and so Lemma 3 applies. The importance of an
L-subgyrogroup lies in its property: if H is an L-subgyrogroup of G, then Œa� D
a˚ H for all a 2 G. As a consequence, if G is a finite gyrogroup, then the order of
H divides the order of G.
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Example 4. According to Example 1, the gyroautomorphism A of G8 has cycle
decomposition .4 6/.5 7/. From this it is clear that H1 and H2 are L-subgyrogroups
of G8, whereas H is not.

Example 5. According to Theorem 19, if � D La ı � and � D Lb ı ı, then

gyrŒ�; � �Lc D LgyrŒa;b�c

for all c 2 G. Hence, gyrŒ�; � �.G/ � G. By Proposition 24, gyrŒ�; � �.G/ D G, which
implies that G is an L-subgyrogroup of Sym .G/.

Example 6. Recall that L! and D! in Example 2 are subgyrogroups of the Möbius
gyrogroup. However, D! is not an L-subgyrogroup. Specifically, if 0 ¤ v D w 2
D! and u D !, then, since D! D L?

! ,

hgyrŒu; v�w; !i D h˛uC ˇvC w; !i D ˛ D 2kvk2
1C kvk2 ¤ 0:

Thus, gyrŒu; v�w 62 D! and hence gyrŒu; v�.D!/ ¤ D! .

Proposition 30. Let G be a gyrogroup. Then

H D fx 2 GW 8a; b 2 G; gyrŒa; b�x D xg

forms an L-subgyrogroup of G.

Proof. H ¤ ; since 0 2 H. If x 2 H, then gyrŒa; b�.�x/ D �gyrŒa; b�x D �x for
all a; b 2 G. Hence, �x 2 H. If x; y 2 H, then gyrŒa; b�.x˚ y/ D .gyrŒa; b�x/ ˚
.gyrŒa; b�y/ D x˚ y for all a; b 2 G. Hence, x˚ y 2 H. This proves H 6 G. Since
gyrŒa; b�.H/ � H for all a; b 2 G, H forms an L-subgyrogroup of G. ut
Proposition 31. Let G be a gyrogroup and let a 2 G. If H 6L G, then Œa� D a˚H.

Proof. Assume that H 6L G. By Proposition 29, Œa� � a ˚ H. If x D a ˚ h for
some h 2 H, then �a˚ x D h is in H. The left and right loop properties together
imply gyrŒ�a; x� D gyrŒ�a˚ x; x� D gyrŒh; a˚ h� D gyrŒh; a� D gyr�1Œa; h�. By
assumption, gyrŒa; h�.H/ D H and by Lemma 3, gyrŒ�a; x�.H/ D gyr�1Œa; h�.H/ D
H. Hence, a H x or, equivalently, x 2 Œa� and we have the reverse inclusion. ut
Theorem 27. If H is an L-subgyrogroup of a gyrogroup G, then the coset space
fa˚ HW a 2 Gg is a disjoint partition of G.

Proof. Since H is an equivalence relation on G, the set fŒa�W a 2 Gg is a partition
of G. By Proposition 31, Œa� D a˚ H, which completes the proof. ut

Recall that a loop L is said to have a left coset expansion modulo its subloop Y
provided that the left cosets of Y in L partition L [5, p. 92]. Theorem 27 says that any
(finite or infinite) gyrogroup has a left coset expansion modulo its L-subgyrogroup.
Further, we have a version of Lagrange’s theorem for L-subgyrogroups.
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Lemma 4. Let G be a gyrogroup and let a 2 G. If H 6 G, then H and a˚ H have
the same cardinality.

Proof. The restriction of La to H is a bijection from H to a˚ H. ut
Theorem 28 (Lagrange’s Theorem for L-subgyrogroups). In a finite gyrogroup
G, if H 6L G, then jHj divides jGj.
Proof. Being a finite gyrogroup, G has a finite number of left cosets, namely, a1˚H,
a2 ˚ H, : : : , an ˚ H. By Lemma 4, jai ˚ Hj D jHj for i D 1; 2; : : : ; n. It follows
that

jGj D
ˇ̌
ˇ

n[

iD1
ai ˚ H

ˇ̌
ˇ D

nX

iD1
jai ˚ Hj D njHj;

which completes the proof. ut
We will prove in Sect. 8 that Lagrange’s theorem holds for finite gyrogroups, that

is, if H is an arbitrary subgyrogroup of a finite gyrogroup G, then the order of G is
divisible by the order of H.

Let H be a subgyrogroup of a gyrogroup G. As in group theory, the index of H
in G, written ŒGWH�, is defined to be the cardinality of the coset space G=H if G=H
has a finite number of left cosets. If G=H has infinitely many left cosets, the index
ŒGWH� is defined to be infinity, and we will write ŒGWH� D1.

Corollary 12. In a finite gyrogroup G, if H 6L G, then jGj D ŒGWH�jHj.
Proof. See the calculation in the proof of Theorem 28. ut

For a non-L-subgyrogroup K of a gyrogroup G, it is no longer true that the left
cosets of K partition G. To see this, consider the gyrogroup G8 in Example 1. One
can check by inspection that 1˚H D f1; 6g and 4˚H D f1; 4g. Hence, 1˚H and
4 ˚ H have nonempty intersection. Moreover, the formula jGj D ŒGWK�jKj is not
true, in general.

7 Gyrogroup Homomorphisms and Normal Subgyrogroups

In this section, we examine gyrogroup homomorphisms, normal subgyrogroups, and
quotient gyrogroups, in full analogy with group theory. The main goal of this section
is to prove the isomorphism theorems for gyrogroups [61].
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7.1 Gyrogroup Homomorphisms

Let G and H be gyrogroups. A map 'WG! H is called a gyrogroup homomorphism
if '.a˚b/ D '.a/˚'.b/ for all a; b 2 G. A bijective gyrogroup homomorphism is
called a gyrogroup isomorphism. We say that G and H are isomorphic gyrogroups,
written G Š H, if there exists a gyrogroup isomorphism from G to H. Of course,
isomorphic gyrogroups are essentially the same, differing only in the notation for
the elements.

Proposition 32. Let 'WG! H be a homomorphism of gyrogroups.

1. '.0/ D 0.
2. '.�a/ D �'.a/ for all a 2 G.
3. '.gyrŒa; b�c/ D gyrŒ'.a/; '.b/�'.c/ for all a; b; c 2 G.
4. '.a � b/ D '.a/� '.b/ for all a; b 2 G.

Proof. Item 1 follows from the left cancellation law. Item 2 follows from the
uniqueness of an inverse in a gyrogroup. Item 3 follows from the gyrator identity.
To prove Item 4, we compute

'.a � b/ D '.a˚ gyrŒa;�b�b/ D '.a/˚ gyrŒ'.a/;�'.b/�'.b/ D '.a/� '.b/:

ut
The proof of the following two propositions is routine, using the subgyrogroup

criterion and the definition of an L-subgyrogroup:

Proposition 33. Let 'WG ! H be a gyrogroup homomorphism. If K 6 G, then
'.K/ 6 H. If K 6L G and if ' is surjective, then '.K/ 6L H.

Proposition 34. Let 'WG ! H be a gyrogroup homomorphism. If K 6 H, then
'�1.K/ 6 G. If K 6L H, then '�1.K/ 6L G.

Let G and H be gyrogroups and let 'WG ! H be a gyrogroup homomorphism.
Define the kernel of ' to be the set

fa 2 GW'.a/ D 0g:

In other words, ker' D '�1.f0g/. By Proposition 34, the kernel of ' is a
subgyrogroup of G. Indeed, it is an L-subgyrogroup of G.

Proposition 35. If 'WG ! H is a gyrogroup homomorphism, then the kernel of '
is an L-subgyrogroup of G.

Proof. For all a; b 2 G, c 2 ker',

'.gyrŒa; b�c/ D gyrŒ'.a/; '.b/�'.c/ D gyrŒ'.a/; '.b/�0 D 0:



The Algebra of Gyrogroups: Cayley, Lagrange, and Isomorphism Theorems 417

Hence, gyrŒa; b�.ker'/ � ker'. By Proposition 24, gyrŒa; b�.ker'/ D ker'. This
proves ker' 6L G. ut

In light of the proof of Proposition 35, the kernel of ' is invariant under all the
gyroautomorphisms of G. Hence, the relation (63) becomes

a ker' b if and only if � a˚ b 2 ker' (66)

for all a; b 2 G. More precisely, we have the following proposition:

Proposition 36. Let 'WG ! H be a homomorphism of gyrogroups. For all
a; b 2 G, the following are equivalent:

1. a ker' b;
2. �a˚ b 2 ker';
3. '.a/ D '.b/;
4. a˚ ker' D b˚ ker'.

Proof. By Proposition 32 (2), �a˚ b 2 ker' if and only if '.�a˚ b/ D 0 if and
only if '.a/ D '.b/. Since ker' is an equivalence relation on G and ker' 6L G,
a ker ' b if and only if Œa� D Œb� if and only if a˚ ker' D b˚ ker'. ut

Proposition 36 allows us to define an operation on the coset space G= ker' in the
following natural way:

.a˚ ker'/˚ .b˚ ker'/ D .a˚ b/˚ ker'; a; b 2 G: (67)

This operation is independent of the choice of representatives for the left cosets, that
is, it is a well-defined operation. Specifically, let c 2 a˚ ker' and d 2 b˚ ker'.
Then c D a˚ k1 and d D b˚ k2 for some k1; k2 2 ker'. Since

'.c˚ d/ D '.a˚ k1/˚ '.b˚ k2/ D '.a/˚ '.b/ D '.a˚ b/;

it follows from Proposition 36 that .a˚ b/˚ ker' D .c˚ d/˚ ker'. In fact, the
coset space G= ker' forms a gyrogroup, called a quotient gyrogroup.

Theorem 29. If 'WG ! H is a gyrogroup homomorphism, then G= ker' with
operation defined by (67) is a gyrogroup.

Proof. Set K D ker'.

(G1) The coset 0˚K is a left identity: .0˚K/˚.a˚K/ D .0˚a/˚K D a˚K.
(G2) Let a˚ K 2 G=K. The coset .�a/˚ K is a left inverse of a˚ K:

..�a/˚ K/˚ .a˚ K/ D .�a˚ a/˚ K D 0˚ K:

(G3) For X D a˚ K;Y D b˚ K 2 G=K, define

gyrŒX;Y�.c˚ K/ D .gyrŒa; b�c/˚ K; c˚ K 2 G=K:
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If d 2 c˚ K, then d D c˚ k with k in K. Note that

'.gyrŒa; b�d/ D '.gyrŒa; b�c/˚ '.gyrŒa; b�k/ D '.gyrŒa; b�c/:

Hence, .gyrŒa; b�d/ ˚ K D .gyrŒa; b�c/ ˚ K, which proves gyrŒX;Y� is well
defined.
Let d ˚ K be an arbitrary coset of G=K. Choose c 2 G such that gyrŒa; b�c D d.
Since gyrŒX;Y�.c˚ K/ D .gyrŒa; b�c/˚ K D d˚ K, gyrŒX;Y� is surjective.
Since

gyrŒX;Y�.c ˚ K/ D gyrŒX;Y�.d ˚ K/ ) .gyrŒa; b�c/˚ K D .gyrŒa; b�d/˚ K

) '.gyrŒa; b�c/ D '.gyrŒa; b�d/

) gyrŒ'.a/; '.b/�'.c/ D gyrŒ'.a/; '.b/�'.d/

) '.c/ D '.d/

) c ˚ K D d ˚ K;

gyrŒX;Y� is injective. Furthermore, gyrŒX;Y� preserves ˚:

gyrŒX;Y�..c˚ K/˚ .d˚ K// D .gyrŒa; b�.c˚ d//˚ K

D .gyrŒa; b�c˚ K/˚ .gyrŒa; b�d˚ K/

D gyrŒX;Y�.c˚ K/˚ gyrŒX;Y�.d˚ K/:

This proves gyrŒX;Y� is an automorphism of G=K.
(G4) For X D a˚ K;Y D b˚ K;Z D c˚ K 2 G=K,

gyrŒX ˚ Y;Y�Z D .gyrŒ.a˚ b/˚ K; b˚ K�Z

D .gyrŒa˚ b; b�c/˚ K

D .gyrŒa; b�c/˚ K

D gyrŒX;Y�Z:

Hence, gyrŒX ˚ Y;Y� D gyrŒX;Y�, and the left loop property holds. ut
The map ˘ WG ! G= ker' given by ˘.a/ D a ˚ ker' defines a surjective

gyrogroup homomorphism, which will be referred to as the canonical projection.
Since a˚ ker' D 0˚ ker' if and only if a 2 ker', we have ker˘ D ker'.

As the coset space G= ker' forms a gyrogroup, it is reasonable to speculate that
the isomorphism theorems hold for gyrogroups. The following theorem shows that
this is the case:

Theorem 30 (The First Isomorphism Theorem). If 'WG ! H is a gyrogroup
homomorphism, then G= ker' Š '.G/ as gyrogroups.
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Proof. Set K D ker'. Define 	WG=K ! '.G/ by 	.a ˚ K/ D '.a/. By
Proposition 36, 	 is well defined and injective. A direct computation gives

	..a˚ K/˚ .b˚ K// D 	.a˚ K/˚ 	.b˚ K/

for all a; b 2 G. Hence, 	 is a gyrogroup isomorphism from G=K onto '.G/. ut
Proposition 37. Let 'WG! H be a gyrogroup homomorphism.

1. ' is injective if and only if ker' D f0g.
2. ŒGW ker'� D j'.G/j.
Proof. Item 1 follows from Propositions 32 (1) and 36. Item 2 is an immediate
consequence of the first isomorphism theorem. ut

Before stating the remaining isomorphism theorems for gyrogroups, we need to
introduce the notion of normal subgyrogroups. Recall that a subgroup $ of a group
� is normal if and only if g$g�1 D $ for all g 2 � . A normal subgyrogroup
cannot be defined in this way because of the lack of associativity in a gyrogroup.
However, one can define a normal subgyrogroup using another characterization of a
normal subgroup.

7.2 Normal Subgyrogroups

It is known in the literature that a subgroup of a group is normal if and only if it is
the kernel of some group homomorphism; see, for instance, [12, Proposition 7]. This
characterization of a normal subgroup allows us to define a normal subgyrogroup in
a similar fashion, as follows.

Definition 9 (Normal Subgyrogroups). A subgyrogroup N of a gyrogroup G is
normal in G, written N E G, if it is the kernel of a gyrogroup homomorphism of G.

Let G be a gyrogroup. By Theorem 29, any normal subgyrogroup N of G gives
rise to the quotient gyrogroup G=N. Furthermore, the relation (63) becomes

a N b , �a˚ b 2 N , a˚ N D b˚ N (68)

for all a; b 2 G. By Proposition 35, N is an L-subgyrogroup of G so that if G is
finite, then jGj D ŒGWN�jNj. This index formula will be useful for proving that finite
gyrogroups satisfy the Lagrange property in the next section.

By Theorem 20, if X is a normal subgroup of a gyrogroup G, then G=X is a
gyrogroup. Since X equals the kernel of the canonical projection ˘ WG ! G=X,
X is also a normal subgyrogroup of G. Therefore, Theorem 29 is an extension of
Theorem 20.

The following theorem gives a characterization of normal subgyrogroups, in full
analogy with its group counterpart:
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Theorem 31. Let H be a subgyrogroup of a gyrogroup G. Then H E G if and only
if the operation on the coset space G=H given by

.a˚ H/˚ .b˚ H/ D .a˚ b/˚ H (69)

is well defined.

Proof. The “only if” part is clear. In order to prove the “if” part, we must define the
gyroautomorphisms of G=H.

Note that a 2 H if and only if a˚ H D 0˚ H. We first prove gyrŒa; b�.H/ � H
for all a; b 2 G. By Proposition 24, this implies gyrŒa; b�.H/ D H for all a; b 2 G.
Let a; b 2 G and let h 2 H. A direct computation gives

.�.a ˚ b/˚ .a ˚ .b ˚ h///˚ H D .�.a ˚ b/˚ H/˚ ..a ˚ H/˚ ..b ˚ h/˚ H//

D .�.a ˚ b/˚ H/˚ ..a ˚ b/˚ H/

D 0˚ H:

According to the gyrator identity, gyrŒa; b�h D �.a˚b/˚ .a˚ .b˚h// 2 H. Since
h is arbitrary, gyrŒa; b�.H/ � H.

For X D a˚ H;Y D b˚ H, let us define

gyrŒX;Y�.c˚ H/ D .gyrŒa; b�c/˚ H; c˚ H 2 G=H:

To prove that gyrŒX;Y� is well defined, suppose that c˚H D d˚H. Hence, d D c˚h
for some h 2 H. It follows that

.gyrŒa; b�d/˚ H D ..gyrŒa; b�c/˚ H/˚ ..gyrŒa; b�h/˚ H/ D .gyrŒa; b�c/˚ H;

noting that gyrŒa; b�h 2 H and so .gyrŒa; b�h/˚ H D 0˚ H.
Suppose that gyrŒX;Y�.c˚ H/ D gyrŒX;Y�.d˚ H/. By definition of gyrŒX;Y�,

.gyrŒa; b�.�c˚ d//˚ H D 0˚ H;

which implies gyrŒa; b�.�c˚ d/ 2 H. Since gyrŒa; b�.H/ D H, we have �c˚ d D
h1 for some h1 2 H. Thus, d D c ˚ h1. If x 2 d ˚ H, then x D d ˚ h2, with
h2 2 H. Hence, x D .c ˚ h1/ ˚ h2 D c ˚ .h1 ˚ gyrŒh1; c�h2/ 2 c ˚ H. This
proves d ˚ H � c ˚ H. Likewise, c D d ˚ h3 for some h3 2 H, which implies
c˚ H � d˚ H, and so equality holds. This proves gyrŒX;Y� is injective.

The rest of the proof that G=H forms a gyrogroup runs as in the proof of
Theorem 29, with K replaced by H. Hence, ˘ W a 7! a ˚ H defines a surjective
gyrogroup homomorphism from G to G=H with kernel H, so H E G. ut

The following proposition provides a sufficient condition for normality of a
subgyrogroup:



The Algebra of Gyrogroups: Cayley, Lagrange, and Isomorphism Theorems 421

Proposition 38. Let G be a gyrogroup. If H is a subgyrogroup of G such that

1. gyrŒh; a� D idG for all h 2 H; a 2 G;
2. gyrŒa; b�.H/ � H for all a; b 2 G; and
3. a˚ H D H ˚ a for all a 2 G,

then H E G.

Proof. To complete the proof, we must verify that the operation given by (69) is
well defined. By condition 1, H is an L-subgyrogroup of G. From (63) and the left
loop property, we have a˚ H D b˚ H if and only if�a˚ b 2 H for all a; b 2 G.

Suppose that a1 2 a˚ H and b1 2 b˚ H. Then a1 D a˚ h1 and b1 D b˚ k1
for some h1; k1 2 H. By condition 3, h1 ˚ b D b ˚ h2 with h2 2 H. Set k2 D
gyrŒa˚ h1; b�k1 and k3 D gyrŒgyrŒa; b�h2; a˚ b�k2. By condition 2, k2; k3 2 H. The
left and right loop properties imply a1˚b1 D .a˚b/˚ ..gyrŒa; b�h2/˚k3/. Hence,
�.a˚b/˚ .a1˚b1/ D .gyrŒa; b�h2/˚k3 2 H and so .a˚b/˚H D .a1˚b1/˚H.

ut
Proposition 39. Let G be a gyrogroup. If N E G, then a ˚ N D N ˚ a for all
a 2 G.

Proof. By assumption, N D ker', where ' is a gyrogroup homomorphism of G.
Let a 2 G and let y 2 N ˚ a. Then y D n ˚ a with n 2 N. By Theorem 2,
n1 D �a ˚ .n ˚ a/ is a solution to the equation n ˚ a D a ˚ x in the variable x.
Since

'.n1/ D '.�a˚ .n˚ a// D '.�a/˚ '.a/ D 0;

n1 belongs to N, and hence y D n˚a D a˚n1 2 a˚N. This proves N˚a � a˚N.
Similarly, a˚ N � N ˚ a and so equality holds. ut

As an example of the use of Proposition 39, we find that the cyclic subgyrogroup
h5i is not normal in G8 since 2˚ h5i D f2; 6g, whereas h5i ˚ 2 D f2; 4g. This also
shows that subgyrogroups of a gyrocommutative gyrogroup need not be normal in
that gyrogroup.

Proposition 40. Let G be a gyrogroup. If N E G, then

.a˚ b/˚ N D a˚ .N ˚ b/ D N ˚ .a˚ b/ D .a˚ N/˚ b (70)

for all a; b 2 G.

Proof. Let N D ker'. The verification of the first two equalities follows the same
steps as in the proof of Proposition 39. Next, we prove that a˚.N˚b/ D .a˚N/˚b.
For each n 2 N, by Theorem 2, x D .a˚ .n˚ b//�.�b/ is such that a˚.n˚b/ D
x˚ b. A direct computation gives

'.x/ D '..a˚ .n˚ b//� .�b// D .'.a/˚ '.b//� .�'.b// D '.a/:



422 T. Suksumran

Hence,�a˚x 2 N and so x 2 a˚N. This implies a˚.n˚b/ D x˚b 2 .a˚N/˚b
and so a ˚ .N ˚ b/ � .a ˚ N/ ˚ b. Conversely, y D �a ˚ ..a˚ n/˚ b/ is
such that .a ˚ n/ ˚ b D a ˚ y. Since y D .�a˚ .a˚ n// ˚ gyrŒ�a; a˚ n�b D
n ˚ gyrŒ�a; a˚ n�b, we have '.y/ D gyrŒ�'.a/; '.a/�'.b/ D '.b/. Hence, y 2
b˚N D N˚ b. It follows that .a˚ n/˚ b D a˚ y 2 a˚ .N˚ b/, and the reverse
inclusion holds. ut

It is worth pointing out that (70) is a characteristic property of normal sub-
gyrogroups, as shown in the following theorem:

Theorem 32. Let H be a subgyrogroup of a gyrogroup G. Then H E G if and
only if

a˚ .H ˚ b/ D .a˚ b/˚ H D .a˚ H/˚ b

for all a; b 2 G.

Proof. The “only if” part follows from Proposition 40. To prove the “if” part,
we show that the operation given by (69) is well defined. Setting b D 0 in the
hypothesis, we find that a˚H D H˚a for all a 2 G. Suppose that a˚H D a1˚H
and b˚ H D b1 ˚ H. Then

.a1 ˚ b1/˚ H D a1 ˚ .H ˚ b1/

D a1 ˚ .H ˚ b/

D .a1 ˚ H/˚ b

D .a˚ H/˚ b

D .a˚ b/˚ H:

This proves the operation (69) is well defined and by Theorem 31, H E G. ut

7.3 Isomorphism Theorems

In Sect. 7.1, we proved the first isomorphism theorem for gyrogroups (Theorem 30).
In this subsection, we prove the remaining isomorphism theorems. The isomorphism
theorems are extremely useful in the study of the structure of a gyrogroup. For
instance, the second isomorphism theorem and the lattice isomorphism theorem
are used in proving that finite gyrogroups have the Lagrange property. For more
information about this, see the next section.

Lemma 5. Let G be a gyrogroup. If A 6 G and B E G, then

A˚ B WD fa˚ bW a 2 A; b 2 Bg
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forms a subgyrogroup of G.

Proof. By assumption, B D ker	, where 	 is a gyrogroup homomorphism of G.
From Proposition 39, we have B˚ a D a˚ B for all a 2 G.

Let x D a˚b, with a 2 A, b 2 B. Since 	.gyrŒa; b��a/ D gyrŒ	.a/; 0�	.�a/ D
	.�a/, we have gyrŒa; b��a D �a ˚ b1 for some b1 2 B. Set b2 D gyrŒa; b��b.
Since b2 2 B and B ˚ .�a/ D .�a/ ˚ B, there is an element b3 2 B for which
b2 � a D �a˚ b3. It follows that

�x D �.a˚ b/

D gyrŒa; b�.�b� a/

D b2 ˚ .�a˚ b1/

D .b2 � a/˚ gyrŒb2;�a�b1

D .�a˚ b3/˚ gyrŒb2;�a�b1

D �a˚ .b3 ˚ gyrŒb3;�a�.gyrŒb2;�a�b1//

belongs to A˚ B.
For x; y 2 A˚ B, we have x D a˚ b and y D c˚ d for some a; c 2 A, b; d 2 B.

Since 	.b˚ gyrŒb; a�.c˚ d// D 	.b/˚ gyrŒ	.b/; 	.a/�.	.c/˚ 	.d// D 	.c/, we
have b˚ gyrŒb; a�.c˚ d/ D c˚ b1 for some b1 2 B. It follows that

x˚ y D a˚ .b˚ gyrŒb; a�.c˚ d// D a˚ .c˚ b1/ D .a˚ c/˚ gyrŒa; c�b1 (71)

belongs to A˚ B. Hence, A˚ B 6 G. ut
Corollary 13. Let G be a gyrogroup. If A 6 G and B E G, then A˚ B D B˚ A
and B˚ A forms a subgyrogroup of G.

Proof. Since B E G, B˚ a D a˚ B for all a 2 G. This implies B˚ A D A˚ B.
Hence, B˚ A 6 G.

Theorem 33 (The Second Isomorphism Theorem). Let G be a gyrogroup and let
A;B 6 G. If B E G, then A \ B E A and .A˚ B/=B Š A=.A \ B/ as gyrogroups.

Proof. As in Lemma 5, B D ker	. Note that A \ B E A since ker	
ˇ̌
A D A \ B.

Hence, A=.A \ B/ admits the quotient gyrogroup structure.
Define 'WA ˚ B ! A=.A \ B/ by '.a ˚ b/ D a ˚ .A \ B/ for a 2 A and

b 2 B. To see that ' is well defined, suppose that a˚ b D a1 ˚ b1, where a; a1 2 A
and b; b1 2 B. Note that b1 D �a1 ˚ .a ˚ b/ D .�a1 ˚ a/ ˚ gyrŒ�a1; a�b. Set
b2 D �gyrŒ�a1; a�b. Then b2 2 B and b1 D .�a1˚ a/� b2. The right cancellation
law I gives

�a1 ˚ a D b1 � b2 D b1 ˚ gyrŒb1;�b2�b2;

which implies �a1 ˚ a 2 A \ B. By Proposition 36, a1 ˚ .A \ B/ D a˚ .A \ B/.
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As we computed in (71), if a; c 2 A and b; d 2 B, then

.a˚ b/˚ .c˚ d/ D .a˚ c/˚ gyrŒa; c�Qb

for some Qb 2 B. Hence,

'..a˚ b/˚ .c˚ d// D '..a˚ c/˚ gyrŒa; c�Qb/
D .a˚ c/˚ A \ B

D .a˚ .A \ B//˚ .c˚ .A \ B//

D '.a˚ b/˚ '.c˚ d/:

This proves that 'WA˚ B ! A=.A \ B/ is a surjective gyrogroup homomorphism
whose kernel is fa˚ bW a 2 A; b 2 B; a 2 A \ Bg D B. Thus, B E A˚B and by the
first isomorphism theorem, .A˚ B/=B Š A=.A \ B/. ut
Corollary 14. Let A and B be finite subgyrogroups of G. If B E G, then

jA˚ Bj D jAjjBjjA \ Bj :

Proof. Since B E A˚B, jA˚Bj D ŒA˚BWB�jBj. Similarly, jAj D ŒAWA\B�jA\Bj.
Combining these with the fact that .A˚B/=B Š A=.A\B/ gives the desired equality.

ut
Theorem 34 (The Third Isomorphism Theorem). Let G be a gyrogroup and let
H;K be normal subgyrogroups of G such that H � K. Then K=H E G=H and
.G=H/=.K=H/ Š G=K as gyrogroups.

Proof. Let 	 and  be gyrogroup homomorphisms of G such that ker	 D H and
ker D K. Define 'WG=H ! G=K by '.a˚H/ D a˚ K for a 2 G. To see that '
is well defined, suppose that a˚H D b˚H. Hence,�a˚b 2 H. Since H � K, we
have�a˚b 2 K and so a˚K D b˚K. That ' preserves the gyrogroup operations is
clear. Thus, 'WG=H ! G=K is a surjective gyrogroup homomorphism whose kernel
is fa˚ HW a 2 G; a˚ K D 0˚ Kg D fa˚ HW a 2 Kg D K=H. Hence, K=H E
G=H and by the first isomorphism theorem, .G=H/=.K=H/ Š G=K. ut
Theorem 35 (The Lattice Isomorphism Theorem). Let G be a gyrogroup and
let N E G. Then there is a bijection ˚ from the set of subgyrogroups of G
containing N onto the set of subgyrogroups of G=N. The bijection ˚ has the
following properties:

1. A � B if and only if ˚.A/ � ˚.B/;
2. A 6L G if and only if ˚.A/ 6L G=N;
3. A E G if and only if ˚.A/ E G=N

for all subgyrogroups A and B of G containing N.
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Proof. Set S D fK � GWK 6 G and N � Kg. Let T denote the set of sub-
gyrogroups of G=N. Define a map ˚ by ˚.K/ D K=N for K 2 S . By
Proposition 33, ˚.K/ D K=N D ˘.K/ is a subgyrogroup of G=N, where
˘ WG! G=N is the canonical projection. Hence, ˚ maps S to T .

Assume that K1=N D K2=N, with K1;K2 in S . For a 2 K1, a˚N 2 K2=N implies
a˚ N D b˚ N for some b 2 K2. Hence,�b˚a 2 N. Since N � K2,�b˚a 2 K2,
which implies a D b˚ .�b˚ a/ 2 K2. This proves K1 � K2. By interchanging the
roles of K1 and K2, one obtains similarly that K2 � K1. Hence, K1 D K2 and ˚ is
injective.

Let Y be an arbitrary subgyrogroup of G=N. By Proposition 34,

˘�1.Y/ D fa 2 GW a˚ N 2 Yg

is a subgyrogroup of G containing N for a 2 N implies a˚N D 0˚N 2 Y . Because
˚.˘�1.Y// D Y , ˚ is surjective. Hence, ˚ defines a bijection from S onto T .

The proof of Item 1 is straightforward. From Propositions 33 and 34, we have
Item 2. Specifically, if A 6L G, then ˚.A/ D A=N D ˘.A/ 6L G=N. Conversely,
if ˚.A/ D A=N 6L G=N, then ˘�1.A=N/ 6L G. Since ˚.˘�1.A=N// D A=N D
˚.A/, we obtain ˘�1.A=N/ D A. Hence, A 6L G.

To prove Item 3, suppose that A E G. Then A D ker , where  WG ! H is a
gyrogroup homomorphism. Define 'WG=N ! H by '.a˚ N/ D  .a/. To see that
' is well defined, suppose that a˚ N D b˚ N. Then �a˚ b 2 N. Since N � A,
�a˚ b 2 A and so  .a/ D  .b/. Since  is a gyrogroup homomorphism, so is '.
Since ker' D A=N, we have A=N E G=N.

Suppose conversely that ˚.A/ E G=N. Then A=N D ker	, where 	 is a
gyrogroup homomorphism of G=N. Set ' D 	 ı ˘ . Thus, ' is a gyrogroup
homomorphism of G with kernel A. This proves A E G. ut

The lattice isomorphism theorem gives a one-to-one correspondence between the
subgyrogroups of G containing N and the subgyrogroups of G=N. In particular, it
says that any subgyrogroup of G=N is of the form H=N, where H is a subgyrogroup
of G containing N. The proof of the lattice isomorphism theorem motivates the
following result, which determines when a gyrogroup homomorphism of G factors
through N:

Theorem 36 (Factorization of Homomorphisms). Let G be a gyrogroup and let
N E G. Given a gyrogroup homomorphism 'WG ! H, there is a gyrogroup
homomorphism Q'WG=N ! H making the following diagram commutative if and
only if N � ker':

G G=N

˚
H

˘

' Q'



426 T. Suksumran

Proof.

()) Suppose that Q' is such that Q' ı˘ D '. If x 2 N, then x˚ N D 0˚ N. By
Proposition 32 (1), '.x/ D Q'.x ˚ N/ D Q'.0 ˚ N/ D 0. Hence, x 2 ker'
and we have N � ker'.

(() Suppose that N � ker'. Define Q' by Q'.a˚N/ D '.a/. The same argument
as in the proof of the lattice isomorphism theorem shows that Q' is well
defined. That Q' preserves the gyrogroup operations is clear. By construction,
Q' ı˘ D ', which completes the proof. ut

8 The Lagrange Property

Lagrange’s theorem (that the order of any subgroup of a finite group � divides
the order of � ) is well known in group theory and has impact on several branches
of mathematics, especially finite group theory, number theory, and combinatorics.
Lagrange’s theorem proves useful for unraveling mathematical structures. For
instance, it implies that any finite field must have prime power order [33, Theo-
rem 6.12]. Certain classification theorems of finite groups arise as an application
of Lagrange’s theorem [25, 26, 43, 57]. Further, Fermat’s little theorem and Euler’s
theorem may be viewed as a consequence of this theorem. Also relevant are the
orbit-stabilizer theorem familiar from abstract algebra and the Cauchy–Frobenius
lemma (or Burnside’s lemma) familiar from combinatorics. A history of Lagrange’s
theorem on groups can be found in [54].

In loop theory, the Lagrange property becomes a nontrivial issue. For example,
whether Lagrange’s theorem holds for Moufang loops was an open problem in
the theory of Moufang loops for more than four decades [8, p. 43]. This problem
was answered in the affirmative by Grishkov and Zavarnitsine [30]. In fact, not
every loop satisfies the Lagrange property as one can construct a loop of order 5
containing a subloop of order 2 (see Example 7). Nevertheless, certain loops satisfy
the Lagrange property.

Baumeister and Stein [3] proved a version of Lagrange’s theorem for Bruck loops
by studying in detail the structure of a finite Bruck loop. Foguel et al. [23] proved
that left Bol loops of odd order satisfy the strong Lagrange property. It is, however,
still an open problem whether or not finite Bol loops satisfy the Lagrange property
[20, p. 592]. In Sect. 6.3, we proved that the order of a finite gyrogroup is divisible
by the order of an L-subgyrogroup. In this section, we extend this result by proving
that the order of a gyrogroup is divisible by the order of any subgyrogroup.

Once Lagrange’s theorem for gyrogroups is established [60], certain structure
theorems for finite gyrogroups arise naturally as a consequence of this theorem.
For instance, Lagrange’s theorem implies that any gyrogroup of prime order must
be a cyclic group. Furthermore, any gyrogroup of order pq, where p and q are
distinct primes, is generated by two elements; one is of order p and the other is
of order q. One of the remarkable consequences of Lagrange’s theorem is that some
finite gyrogroups have the Cauchy property.
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Table 5 Multiplication table
for the loop L in Example 7

� 1 2 3 4 5

1 1 2 3 4 5

2 2 1 5 3 4

3 3 4 2 5 1

4 4 5 1 2 3

5 5 3 4 1 2

Example 7. Let L D f1; 2; : : : ; 5g be a loop with multiplication table presented in
Table 5. Since Y D f1; 2g is closed under loop multiplication of L, Y is a subloop of
L of order 2. This example shows that Lagrange’s theorem fails for general loops.

Recall that a finite loop L has the weak Lagrange property if for each subloop Y
of L, the order of Y divides the order of L. It has the strong Lagrange property if
every subloop of L has the weak Lagrange property [8, p. 74]. In gyrogroup theory,
one need not distinguish between the “weak” and “strong” Lagrange property since
the weak Lagrange property implies the strong Lagrange property. More precisely, if
every gyrogroup has the weak Lagrange property, then any gyrogroup has the strong
Lagrange property since any subgyrogroup of a gyrogroup is again a gyrogroup.

Throughout this section, all gyrogroups are finite.

Definition 10 (The Lagrange Property). A finite gyrogroup G is said to have the
Lagrange property if for each subgyrogroup H of G, the order of H divides the order
of G.

The next proposition shows that the Lagrange property is an invariant property
of gyrogroups.

Proposition 41. Let G and H be gyrogroups. If G Š H, then G has the Lagrange
property if and only if H has the Lagrange property.

Proof. Let 	WG! H be a gyrogroup isomorphism. It suffices to prove that if G has
the Lagrange property, then so has H. This is because the inverse map 	�1WH ! G
is also a gyrogroup isomorphism. Suppose that G has the Lagrange property. Let
B 6 H. Since 	�1.B/ 6 G, j	�1.B/j divides jGj. Since j	�1.B/j D jBj and jHj D
jGj, jBj divides jHj. This proves that H has the Lagrange property. ut

A version of the following proposition for loops was proved by Bruck in [5]. Its
proof emphasizes the importance of isomorphism theorems.

Proposition 42. Let H be a subgyrogroup of a gyrogroup G and let B be a normal
subgyrogroup of H. If B and H=B have the Lagrange property, then so has H.

Proof. Suppose that A 6 H. By the second isomorphism theorem, A \ B E A and
A˚ B=B Š A=A \ B. Assume that jA˚ B=Bj D jA=A \ Bj D m and jA \ Bj D n.
By the lattice isomorphism theorem, B 6 A ˚ B 6 H implies A ˚ B=B 6 H=B.
Since H=B has the Lagrange property, jA˚ B=Bj divides jH=Bj. Thus, jH=Bj D ms
for some s 2 N. Since A \ B E A, we have jAj D ŒAWA \ B�jA \ Bj D mn. Since
A \ B 6 B and B has the Lagrange property, jBj D nt for some t 2 N. Since
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jHj D ŒHWB�jBj D .ms/.nt/ D jAj.st/;

it follows that jAj divides jHj, which completes the proof. ut
The following corollary indicates that the structure of a gyrogroup G is reflected

in the structure of the quotient gyrogroups and the subgyrogroups of G:

Corollary 15. Let N be a normal subgyrogroup of a gyrogroup G. If N and G=N
have the Lagrange property, then so has G.

Proof. Applying the proposition to the case where H is the entire gyrogroup G, we
obtain the corollary. ut

Recall that any gyrogroup G has a normal subgroup N such that G=N is a
gyrocommutative gyrogroup (Theorem 21). If all gyrocommutative gyrogroups
have the Lagrange property, then Lagrange’s theorem for gyrogroups will follow
immediately from Corollary 15. This is the case, as shown by Baumeister and Stein
in [3, Theorem 3] in the language of Bruck loops.

Proposition 43. Let X be a subgroup of a gyrogroup G. If H 6 X, then jHj
divides jXj. In other words, every subgroup of G has the Lagrange property.

Proof. Suppose that H 6 X. Since gyrŒa; b�
ˇ̌
H D idH for all a; b 2 H, H forms a

subgroup of G. By definition, X is a group and hence H becomes a subgroup of X.
By Lagrange’s theorem for groups, jHj divides jXj. ut
Theorem 37. In a gyrocommutative gyrogroup G, if H 6 G, then jHj divides jGj.
Proof. Let H 6 G. By using the equivalence of gyrocommutative gyrogroups and
Bruck loops, G is a Bruck loop, and H becomes a subloop of G. By Theorem 3 of
[3], jHj divides jGj. ut

We are now in a position to prove an analog of Lagrange’s theorem for
gyrogroups.

Theorem 38 (Lagrange’s Theorem). If H is a subgyrogroup of a gyrogroup G,
then jHj divides jGj. In other words, every gyrogroup has the Lagrange property.

Proof. Let G be a gyrogroup. By Theorem 21, G has a normal subgroup N such that
G=N is gyrocommutative. As noted in Sect. 7.2, N is a normal subgyrogroup of G.
By Proposition 43 and Theorem 37, N and G=N have the Lagrange property. By
Corollary 15, G has the Lagrange property. ut

We now give some applications of Lagrange’s theorem. Other applications to
proving theorems about the Cauchy property appear in the next section.

Proposition 44. If G is a gyrogroup and a 2 G, then jaj divides jGj. In particular,
jGj � a D 0.



The Algebra of Gyrogroups: Cayley, Lagrange, and Isomorphism Theorems 429

Proof. By definition, jaj D jhaij. By Lagrange’s theorem, jaj divides jGj. Write
jGj D jajk with k 2 N. We have jGj �a D .jajk/ �a D jaj � a˚ � � � ˚ jaj � a„ ƒ‚ …

k copies

D 0: ut

By a result of Burn [6, Corollary 2], every left Bol loop of prime order is a cyclic
group. Although this result implies that every gyrogroup of prime order is a cyclic
group, we present the following theorem as a consequence of Lagrange’s theorem:

Theorem 39. If G is a gyrogroup of prime order p, then G is a cyclic group of order
p under the gyrogroup operation.

Proof. Let a be a nonidentity element of G. Then jaj ¤ 1 and jaj divides p. Thus,
jaj D p and hence G D hai since G is finite. By Proposition 27, hai is a cyclic group
of order p, which completes the proof. ut

9 The Cauchy Property

It is well known that finite groups have the Cauchy property, that is, if p is a prime
dividing the order of a group � , then � has an element of order p. In contrast,
general loops fail to have the Cauchy property. Foguel et al. proved that left Bol
loops of odd order have the Cauchy property [23, Theorem 6.2]. However, not every
Bol loop has the Cauchy property as Nagy proves the existence of a simple right
Bol loop of exponent 2 and of order 96 [50, Corollary 3.7]. This example of a loop
also ends the speculation on whether all gyrogroups satisfy the Cauchy property.

Recall that a loop L has exponent 2 if 2 is the smallest positive integer such that
a2 D 1 for all a 2 L. Note that if L is a Bol loop of exponent 2, then a D a�1 for all
a 2 L. Hence, .a � b/�1 D a � b D a�1 � b�1 for all a; b 2 L. This shows in particular
that Bol loops of exponent 2 have the automorphic inverse property. Thus, every
left Bol loop of exponent 2 is a Bruck loop or, equivalently, a gyrocommutative
gyrogroup. As we described in the end of Sect. 2, the dual loop of Nagy’s loop
mentioned above forms a gyrocommutative gyrogroup of order 96 in which every
nonidentity element has order 2. This means that Cauchy’s theorem does not hold
for finite gyrogroups.

Using Lagrange’s theorem and results from loop theory, we show that gyrogroups
of particular order satisfy the Cauchy property. Throughout this section, all
gyrogroups are finite.

Definition 11 (The Weak Cauchy Property, WCP). A gyrogroup G is said to
have the weak Cauchy property if for every prime p dividing jGj, G has an element
of order p.

Definition 12 (The Strong Cauchy Property, SCP). A gyrogroup G is said to
have the strong Cauchy property if every subgyrogroup of G has the weak Cauchy
property.
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It is clear that the strong Cauchy property implies the weak Cauchy property. The
Cauchy property is an invariant property of gyrogroups, as shown in the following
proposition:

Proposition 45. Let 	WG! H be a gyrogroup isomorphism.

1. If G has the weak Cauchy property, then so has H.
2. If G has the strong Cauchy property, then so has H.

Proof. To prove Item 1, it suffices to prove that j	.a/j D jaj for all a 2 G. By
induction, 	.n � a/ D n � 	.a/ for all a 2 G and n 2 N. Let a 2 G and let jaj D n.
Since n � a D 0, we have n � 	.a/ D 	.n � a/ D 	.0/ D 0. If there were a positive
integer m < n such that m � 	.a/ D 0, then m would satisfy 	.m � a/ D 0, and so
m � a D 0, contrary to the minimality of n. This proves n is the smallest positive
integer such that n � 	.a/ D 0. By Theorem 25 (1), j	.a/j D n D jaj.

To prove Item 2, let B 6 H. Set A D 	�1.B/. Hence, A 6 G and by assumption,
A has the WCP. Since 	

ˇ̌
A is a gyrogroup isomorphism from A to B, B has the WCP

by Item 1. ut
Remark 4. In proving that j	.a/j D jaj, we used only the fact that 	 was an
injective gyrogroup homomorphism.

Corollary 16. If G and H are isomorphic gyrogroups, then G has the weak (resp.
strong) Cauchy property if and only if H has the weak (resp. strong) Cauchy
property.

Proof. This is because if 	WG ! H is a gyrogroup isomorphism, then so is its
inverse 	�1WH ! G. ut
Theorem 40. Let H be a subgyrogroup of a gyrogroup G and let B be a normal
subgyrogroup of H.

1. If B and H=B have the weak Cauchy property, then so has H.
2. If B and H=B have the strong Cauchy property, then so has H.

Proof. Suppose that p is a prime dividing jHj. Since jHj D ŒHWB�jBj, p divides jBj
or jH=Bj. If p divides jBj, by assumption, B has an element of order p and we are
done. We may therefore assume p − jBj. Hence, p divides jH=Bj. By assumption,
H=B has an element of order p, say a˚B. By induction, n�.a˚B/ D .n�a/˚B for all
n � 0. Hence, by Theorem 25 (1), p is the smallest positive integer such that p�a 2 B.
In particular, a 62 B. Note that gcd .jaj; p/ D 1 or p. If gcd .jaj; p/ D 1 were true,

we would have jp � aj D jaj
gcd .jaj; p/ D jaj and would have a 2 hai D hp � ai 6 B, a

contradiction. Hence, gcd .jaj; p/ D p, which implies p divides jaj. Write jaj D mp.

We have jm � aj D jaj
gcd .jaj;m/ D p, which finishes the proof of Item 1.

Suppose that B and H=B have the SCP. Let A 6 H. By assumption, A\B has the
WCP. Since A˚ B=B 6 H=B, A˚ B=B has the WCP. Since A=A \ B Š A˚ B=B,
A=A \ B has the WCP. By Item 1, A has the WCP. ut
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The following corollary shows that information about a gyrogroup G can be
obtained from information on a normal subgyrogroup N and on the quotient G=N:

Corollary 17. Let N be a normal subgyrogroup of a gyrogroup G. If N and G=N
have the weak (strong) Cauchy property, then so has G.

Proof. Taking H D G in the theorem, the corollary follows easily. ut
It is proved in Theorem 6.2 of [23] that every left Bol loop of odd order has the

weak Cauchy property. Further, it is proved in Theorem 4 of [6] that a right Bol loop
of order 2p, with p a prime, is a group. Using the duality between left Bol and right
Bol loops, we deduce that every left Bol loop of order 2p, with p a prime, is a group.
We use these results to prove that if p and q are primes, then gyrogroups of order pq
have the strong Cauchy property.

Theorem 41. Let p and q be primes. Every gyrogroup of order pq has the strong
Cauchy property.

Proof. If pq is odd, by Theorem 6.2 of [23], G has the WCP. By Lagrange’s theorem,
any subgyrogroup of G is of order 1; p; q or pq. Hence, every subgyrogroup of G also
has the WCP. This proves that G has the SCP. If pq is even, at least one of p or q
must be 2. Hence, G is of order 2Qp, with Qp a prime. As noted above, G is a group
and hence has the SCP. ut
Theorem 42. Let p and q be primes and let G be a gyrogroup of order pq. If p D q,
then G is a group. If p ¤ q, then G is generated by two elements; one has order p
and the other has order q.

Proof. In the case p D q, G is a left Bol loop of order p2 and hence must be a group
by a result of Burn [6, Theorem 5].

Suppose that p ¤ q. By Theorem 41, there exist elements a and b of G of order
p and q, respectively. We claim that hai \ hbi D f0g. In fact, if x 2 hai \ hbi, then
jxj divides both p and q. Thus, jxj D 1 and hence x D 0. For all m; n; s; t 2 Z, if
.m � a/˚ .n � b/ D .s � a/˚ .t � b/, then

�.s˚ a/˚ .m � a/ D .t � b/� .�.n � b// D .t � b/� .n � b/

belongs to hai\hbi. It follows that�.s˚a/˚.m �a/ D 0 and that .t �b/�.n �b/ D 0.
Hence, m � a D s � a and n � b D t � b. This proves that the set

f.m � a/˚ .n � b/W 0 � m < p; 0 � n < qg

contains pq distinct elements of G. Since G has order pq, it follows that

G D f.m � a/˚ .n � b/W 0 � m < p; 0 � n < qg D ha; bi:

ut
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Table 6 Addition table for the gyrocommutative gyrogroup G15

˚ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 0 4 6 11 3 14 13 7 8 12 5 10 9

2 2 0 1 6 3 12 4 9 10 14 13 5 11 8 7

3 3 4 5 7 8 9 13 0 1 2 12 6 14 11 10

4 4 10 8 11 13 1 5 6 14 0 7 2 9 12 3

5 5 14 12 9 7 8 2 11 0 10 3 4 6 1 13

6 6 11 4 13 10 3 14 8 12 1 2 9 7 5 0

7 7 8 9 0 1 2 11 3 4 5 14 13 10 6 12

8 8 13 6 10 11 0 12 4 5 3 9 7 2 14 1

9 9 5 11 14 0 6 7 10 2 12 1 3 13 4 8

10 10 3 13 12 5 14 8 2 9 6 11 0 1 7 4

11 11 12 7 1 14 4 9 13 6 8 0 10 3 2 5

12 12 6 3 8 9 7 10 1 11 13 5 14 4 0 2

13 13 7 14 2 12 10 1 5 3 4 6 8 0 9 11

14 14 9 10 5 2 13 0 12 7 11 4 1 8 3 6

In general, a gyrogroup of order pq, where p and q are distinct primes not equal
to 2, need not be a group. This is a situation where gyrogroups are different from
Moufang loops. Recall that a loop L is dissociative if the subloop generated by a and
b is an associative subloop (hence, a group) for all a; b 2 L [51, p. 11]. As Moufang
loops are dissociative [7, p. 33], any Moufang loop generated by two elements must
be a group. This implies that if p and q are primes, then every Moufang loop of order
pq is a group [7, Proposition 3]. The following example shows that a gyrogroup of
order pq, where p ¤ q and p; q ¤ 2, need not be a group:

Example 8. By translating from a right Bol loop to a left Bol loop, the loop
15.10.1.1 in [49] can be turned into a gyrocommutative gyrogroup of order 15,
called G15 D f0; 1; 2; : : : ; 14g, whose addition table is presented in Table 6. The
gyration table for G15 is presented in Table 7. In cyclic notation, four nonidentity
gyroautomorphisms of G15 can be expressed as in (72):

A D .1 7 5 10 6/.2 3 8 11 14/
B D .1 6 10 5 7/.2 14 11 8 3/
C D .1 10 7 6 5/.2 11 3 14 8/
D D .1 5 6 7 10/.2 8 14 3 11/:

(72)

The gyrogroup G15 is not a group since it has four nonidentity gyroautomorphisms.
Note that, by Theorem 42, G15 D h1; 4i because j1j D 3 and j4j D 5.

Let G be a finite nongyrocommutative gyrogroup. By Theorem 21, G has a
normal subgroup N such that G=N is gyrocommutative. Because G is nongyro-
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Table 7 Gyration table for G15. Here, I denotes the identity automorphism of
G15; A;B;C, and D are given by (72)

gyr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 I I I I I I I I I I I I I I I

1 I I I A A B C D D B A C C D B

2 I I I D B D B A B A C A D C C

3 I B C I B A C I D A D B D C A

4 I B A A I B B B A I B A I I A

5 I A C B A I B C I B D A C D D

6 I D A D A A I B C B C B C D I

7 I C B I A D A I A B B D C D C

8 I C A C B I D B I A A D D C B

9 I A B B I A A A B I A B I I B

10 I B D C A C D A B B I I C D A

11 I D B A B B A C C A I I D C D

12 I D C C I D D D C I D C I I C

13 I C D D I C C C D I C D I I D

14 I A D B B C I D A A B C D C I

commutative, we have N is nontrivial, since otherwise ˘ WG ! G=N would be a
gyrogroup isomorphism and G and G=N would be isomorphic gyrogroups. From
this we can deduce the following results:

Theorem 43. Let p be a prime. Every nongyrocommutative gyrogroup of order p3

has the strong Cauchy property.

Proof. Let G be a nongyrocommutative gyrogroup of order p3. As noted above, G
has a nontrivial normal subgroup N. By Lagrange’s theorem, jNj D p; p2, or p3. If
jNj D p3, then G D N is a group and has the SCP. If jNj D p, then jG=Nj D p2 and
if jNj D p2, then jG=Nj D p. In any case, N and G=N form groups. Hence, N and
G=N have the SCP. By Corollary 17, G has the SCP. ut
Theorem 44. Let p; q and r be primes. Every nongyrocommutative gyrogroup of
order pqr has the strong Cauchy property.

Proof. Let G be a nongyrocommutative gyrogroup of order pqr. As in the proof of
Theorem 43, jNj D p; q; r; pq; pr; qr or pqr. If jNj D pqr, then G D N is a group
and has the SCP. If jNj 2 fp; q; r; pq; pr; qrg, then jG=Nj 2 fp; q; r; pq; pr; qrg. In
all cases, N and G=N have the SCP, which implies that G has the SCP. ut

In [2], Aschbacher formulated the definition of a solvable loop. Here, we modify
the definition as follows.

Definition 13 (Solvable Gyrogroups). A (finite or infinite) gyrogroup G is called
solvable if there exists a series
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f0g D G0 6 G1 6 � � � 6 Gn D G

of subgyrogroups with Gi E GiC1 and GiC1=Gi an abelian group.

In Example 3, we showed that H1 D f0; 3g is a normal subgroup of G8. Since
G8=H1 has order 4, it must be a group. As any group of order 4 is abelian, G8=H1

is an abelian group. Hence, the series f0g 6 H1 6 G8 satisfies the condition in
Definition 13, and so G8 is solvable. Finite solvable gyrogroups have the strong
Cauchy property, as shown in the following proposition:

Proposition 46. Every solvable gyrogroup has the strong Cauchy property.

Proof. We proceed by induction on the number n of subgyrogroups in a subnormal
series. For n D 1, G0 D f0g;G1 D G and G Š G=G0 are an abelian group. Hence,
G has the SCP. Assume inductively that if G is a solvable gyrogroup with series
f0g D G0 6 G1 6 � � � 6 Gn D G, then G has the SCP. Let G be a solvable
gyrogroup with series f0g D G0 6 G1 6 � � � 6 Gn 6 GnC1 D G. Since Gn is a
solvable gyrogroup with series f0g D G0 6 G1 6 � � � 6 Gn, Gn has the SCP. Since
G=Gn is an abelian group, G=Gn has the SCP. It follows from Corollary 17 that G
has the SCP, which completes the induction. ut

The next result gives a connection between simple gyrogroups and gyrogroups
satisfying the Cauchy property. As in group theory, we define a simple gyrogroup
as follows.

Definition 14 (Simple Gyrogroups). A (finite or infinite) gyrogroup G is called
simple if jGj > 1 and the only normal subgyrogroups of G are f0g and G.

Theorem 45. Let F be a family of finite gyrogroups such that

1. G 2 F and N E G implies N 2 F;
2. G 2 F and N E G implies G=N 2 F;
3. every simple gyrogroup in F has the weak Cauchy property.

Then G 2 F implies G has the weak Cauchy property.

Proof. We proceed by induction on the order of G. In the case jGj D 1, the statement
is clear. Assume that the statement holds for every gyrogroup of order less than n.
Let G 2 F be a gyrogroup of order n. If G is simple, by condition 3, G has the WCP.
If G is not simple, there exists a normal subgyrogroup N such that f0g < N < G. By
condition 1, N 2 F and by inductive hypothesis, N has the WCP. By condition 2,
G=N 2 F . By inductive hypothesis, jG=Nj D jGj=jNj < jGj implies G=N has the
WCP. Since N and G=N have the WCP, so has G. This completes the induction. ut
Corollary 18. Let F be a family of finite gyrogroups such that

1. G 2 F and H 6 G implies H 2 F;
2. G 2 F and N E G implies G=N 2 F;
3. every simple gyrogroup in F has the weak Cauchy property.

Then every gyrogroup in F has the strong Cauchy property.
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Proof. By assumption, every gyrogroup in F has the WCP. Let G 2 F . If H 6 G,
by condition 1, H 2 F . Hence, H has the WCP. This proves G has the SCP. ut
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Mild Continuity Properties of Relations
and Relators in Relator Spaces

Árpád Száz and Amr Zakaria

Abstract In this paper, we establish several useful consequences of the following,
and some other closely related, basic definitions introduced in some former papers
by the first author.

A family R of relations on one set X to another Y is called a relator on X to Y .
Moreover, the ordered pair .X ; Y /.R / D �.X ; Y /; R

�
is called a relator space.

A function � of the class of all relator spaces to the class of all relators is called
a direct unary operation for relators if, for any relator R on X to Y , the value R � D
R �X Y D �

�
.X; Y /.R /

�
is also relator on X to Y .

If .X ; Y /.R / and .Z ; W /.S / are relator spaces and � is a direct unary
operation for relators, then a pair .F ; G / of relators F on X to Z and G on Y to W
is called mildly �–continuous if, under the elementwise inversion and compositions

of relators, we have
�
.G � /�1ı S � ı F � �� � R � �.

1 Introduction

In this paper, we continue the investigations initiated by the first author in [28, 31,
33, 41, 42, 50, 51] on the basic continuity properties of a single relation, and also of
a pair of relations, on one relator (generalized uniform) space to another.

Meantime, we have observed that, much more generally, the corresponding, and
some other, continuity properties of pairs of relators (families of relations) can also
be naturally investigated [55, 57].

Here, a family R of relations on one set X to another Y is called a relator on X to
Y , and the ordered pair .X ;Y /.R / D �.X ;Y /; R� is called a relator space. Thus,
relator spaces are common generalizations of ordered sets [3], formal contexts [10],
and uniform spaces [9].
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Note that even on the real line R, we already have two natural relators. Namely,
R D f� g where � is the usual ordering on R, and S D fBr W r > 0g where
Br D fx 2 R

2 W j x1 � x2 j < rg. Thus, birelator spaces should also be studied.
In a recent paper [57], to motivate the definitions of the corresponding continuity

properties of pairs of relators on one relator space to another, the first author offered
the following motivating arguments.

Example 1. Suppose that X D X .�X/ and Y D Y .�Y/ are generalized ordered sets
in the sense that �X and �Y are arbitrary relations on the sets X and Y , respectively.

Then, a function f of X to Y may be naturally called increasing, with respect to
the inequalities �X and �Y , if for every u ; v 2 X

u �X v H) f .u/ �Y f .v/ :

Now, by using the more convenient notations R D�X and S D�Y , the above
implication can be reformulated in the form that

u R v H) f .u/ S f .v/ ;

or equivalently

.u ; v / 2 R H) �
f .u/; f .v/

� 2 S :

Example 2. Suppose that X D X .dX/ and Y D Y .dY/ are generalized metric spaces
in the sense that dX and dY are arbitrary functions of X 2 and Y 2 to Œ 0 ; C1 �,
respectively.

Then, a function f of X to Y may be naturally called uniformly continuous, with
respect to the distance functions dX and dY , if for each s > 0 there exists r > 0 such
that for every u ; v 2 X

dX.u ; v / < r H) dY

�
f .u/ f .v/

�
< s :

Now, by using the surroundings

R D B dX
r D

˚
x 2 X 2 W dX.x1 ; x2/ < r

�

and

S D B dY
s D

˚
y 2 Y 2 W dX.y1 ; y2/ < s

�
;

the above implication can be reformulated in the form that

.u ; v / 2 R H) �
f .u/; f .v/

� 2 S :
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The above examples clearly reveal that the seemingly quite different algebraic
and topological notions such as “increasingness” and “uniform continuity” are
essentially equivalent.

Moreover, they naturally lead us to the following simple unifying

Definition 1. Assume that X D X .R/ and Y D Y .S/ are relational spaces in the
sense that R and S are arbitrary relations on X and Y , respectively.

Then, a function f of X to Y will be called increasing or continuous, with respect
to the relations R and S, if

.u ; v / 2 R H) �
f .u/; f .v/

� 2 S

for all u ; v 2 X. That is, the function f is, in a certain sense, relation preserving.

Now, by using this definition, we can easily prove the following theorem of [57]
presented partly also in [56].

Theorem 1. For any function f of one relational space X.R/ to another Y.S/, the
following assertions are equivalent:

(1) f is increasing (continuous),
(2) f ı R � S ı f ,
(3) R � f �1 ı S ı f ,
(4) f ı R ı f �1 � S,
(5) R ı f �1� f �1ı S.

Proof. By the corresponding definitions, it is clear that the following assertions are
equivalent:

(a) f ı R � S ı f ,
(b) 8 u 2 X : . f ı R/.u/ � .S ı f /.u/,
(c) 8 u 2 X : f ŒR.u/ � � S

�
f .u/

�
,

(d) 8 u 2 X : 8 v 2 R.u/ W f .v/ 2 S
�
f .u/

�
,

(e) 8 u ; v 2 X W �
.u ; v / 2 R H) �

f .u/; f .v/
� 2 S

�
.

Therefore, assertions (2) and (1) are equivalent.
The proofs of the remaining equivalences depend on the increasingness and

associativity of composition, and the inclusions

�X � f �1ı f and f ı f �1 � �Y ;

where �X and �Y are the identity functions of X and Y , respectively.

Remark 1. The latter inclusions indicate that assertions (2)–(5) need not be equi-
valent for an arbitrary relation f on X.R/ to Y.S/. Therefore, they can be used to
define different increasingness or continuity properties of relations.
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Remark 2. In [53], having in mind set-valued functions, a relation F on a gener-
alized ordered set X.�/ to a set Y has been called increasing if u � v implies
F.u/ � F.v/ for all u ; v 2 X.

Thus, it can be easily shown that the relation F is increasing if and only if its
inverse F �1 is ascending-valued in the sense that F �1.y/ is an ascending subset of
X.�/ for all y 2 Y .

By using the more convenient notation R D� , the latter statement can be
reformulated in the form that R Œ F �1.y/ � � F �1.y/ for all y 2 Y . That is,
R ı F �1 � F �1.

The latter inclusion can be reformulated in the form that R ı F �1 � F �1ı �Y .
This shows that the R D �X and S D �Y particular cases of Theorem 1 may also
be of some interest.

In [57], it has been proved that, under the notations of Definition 1, we have
F ıR ıF �1 � S if and only if, for every u ; v 2 X, we have F.u/ S F.v/ in the sense
that y S z for all y 2 F.u/ and z 2 F.v/.

However, it is now more important to note that, by using the corresponding
particular cases of the plausible operations, defined by R�1 D fR�1 W R 2 R g,

R � D ˚ S � X�Y W 9 R 2 R W R � S
�
;

and S ıR D ˚ S ı R W R 2 R; S 2 S
�

for any relators R on X to Y and S on
Y to Z, Theorem 1 can be reformulated in the following more instructive form.

Theorem 2. If f is a function of one relational space X.R/ to another Y.S/, then
under the notations

F D f f g; R D fRg and S D fSg;

the following assertions are equivalent:

(1) f is increasing (continuous),
(2)

�
S �ıF ���� �F �ıR ���,

(3)
��

F ���1ıS �ıF �
��� R ��,

(4) S ���
�
F �ıR � ı �F ���1

��
,

(5)
��

F ���1ıS �
���

�
R �ı �F ���1

��
.

Hint. The proof of the equivalences of the assertions (2)–(5) of this theorem to
those of Theorem 1 depends on the fact that 	 is an inversion and composition
compatible closure operation for relators in the sense that:

(a)
�
R � ��1 D �R�1 �� for any relator R on X to Y ,

(b) R � � S � is equivalent to R � S� for any relators R and S on X to Y ,
(c)

�
S ıR ��D �S ıR � �� D �S � ı R ��

for any relators R on X to Y and S
on Y to Z.
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Now, the Pexiderizations of the inclusions in Theorem 2, and an abstraction
of the operation 	, naturally lead us to the following straightforward extension of
[42, Definition 4.1].

Definition 2. Suppose that .X ; Y /.R / and .Z ; W /.S / are relator spaces, F is a
relator on X to Z, and G is a relator on Y to W.

Moreover, assume that � is a direct unary operation for relators in the sense
that it is function of the class of all relator spaces to the class of all relators such
that, for any relator R on X to Y , the value R � D R �X Y D �

�
.X; Y /.R /

�
is

also a relator on X to Y .
Then, we say that the ordered pair

(1) .F ; G / is upper �–continuous with respect to the relators R and S if

�
S � ı F �

�� �
�
G � ı R �

��
;

(2) .F ; G / is mildly �–continuous with respect to the relators R and S if

��
G � ��1ı S � ı F �

�� � R � �;

(3) .F ; G / is vaguely �–continuous with respect to the relators R and S if

S � � �
�
G � ıR � ı �F � ��1��

;

(4) .F ; G / is lower �–continuous with respect to the relators R and S if

��
G � ��1ı S �

�� �
�
R � ı �F � ��1��

:

Remark 3. To keep in mind the above assumptions, for any R 2 R, S 2 S , F 2 F
and G 2 G , we can use the diagram:

X
F

Z

R S

Y
G

W

Moreover, to clarify the notion of a direct unary operation for relators, we can
note that 	 is a direct, but �1 is a non-direct unary operation for relators. Of course,
if we restrict ourself to relator spaces of the simpler type X.R / D .X ; X /.R /, then
the latter inconvenience does not occur.

Now, since there is a great number of important direct unary operations for
relators, the investigation of the above continuity properties and their relationships
to each other offer an exhausting work for hundreds of mathematicians.
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In this paper, to let the reader feel the main directions in the abovementioned
investigations, we shall only point out some basic facts concerning the various mild
continuities of relators, relations, and functions.

For instance, we shall prove the following two basic theorems.

Theorem 3. If in particular � is an inversion and composition compatible closure
operation for relators, then the following assertions are equivalent:

(1) .F ; G / is mildly �–continuous with respect to the relators R and S ,
(2) .F ; G / is properly mildly continuous with respect to the relators R � and S

in the sense that G �1 ı S ıF � R �,
(3) .F ; G / is elementwise mildly �–continuous with respect to the relators R

and S in the sense that, for any F 2 F and G 2 G , the pair .F ; G/, i.e.,�fFg ; fGg�, is mildly �–continuous with respect to the relators R and S .

Theorem 4. For any F 2 F and G 2 G , the following assertions are equivalent:

(1) G�1 ı S ı F � R �,
(2) .F ; G/ is mildly 	–continuous,
(3) for each S 2 S there exists R 2 R such that R � G�1 ı S ı F,
(4) for each S 2 S there exists R 2 R such that for every x 2 X and y 2 R.x/ we

have G.y/ \ S ŒF.x/ � ¤ ;,
(5) for each S 2 S there exists R 2 R such that for every x 2 X and y 2 R.x/

there exist z 2 F.x/ and w 2 G.y/ such that w 2 S.z/.

In this respect, it is also worth noticing that, by using the notations

R # D ˚ S � X�Y W 8 A � X W 9 R 2 R W R ŒA � � S ŒA �
�

for any relator R on X to Y , and

IntR.B/ D
˚

A � X W 9 R 2 R W R ŒA � � B
�

and

ClR.B/ D
˚

A � X W 8 R 2 R W R ŒA � \ B ¤ ; �

for any B � Y , we can also prove the following.

Theorem 5. For any F 2 F and G 2 G , the following assertions are equivalent:

(1) G�1 ı S ı F � R #,
(2) .F ; G/ is mildly #–continuous,
(3) A 2 ClR.B/ implies F ŒA � 2 ClS .G ŒB � /,
(4) F ŒA � 2 IntS

�
D/ implies A 2 IntR

�
G�1 ŒD �

�
.

Remark 4. Because of Example 2 and Theorem 5, the pair .F ; G/ may be natu-
rally called uniformly (proximally) mildly continuous if it is mildly 	–continuous
(#–continuous).
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Unfortunately, the uniform continuity of .F ; G/ can only be characterized in
terms of the convergence (adherence) of one preordered net of sets to another, which
is already a rather difficult notion.

In the subsequent preparatory sections, we shall list some basic facts on relations
and relators, and structures and unary operations for relators, which are possibly
unfamiliar to the reader. The proofs will be frequently omitted.

2 A Few Basic Facts on Relations

A subset F of a product set X�Y is called a relation on X to Y . Thus, the empty
relation ; is the smallest and the universal relation X�Y is the largest relation on X
to Y . Moreover, P.X�Y/ is the family of all relations on X to Y .

If in particular F � X 2, with X 2 D X�X, then we may simply say that F is a
relation on X. In particular, �X D f.x ; x/ W x 2 X g is called the identity relation
and its complement �c

X D X 2 n�X is called the diversity relation on X.
If F is a relation on X to Y , then by the above definitions we can at once see that

F is also a relation on X [ Y . However, for our subsequent purposes, the latter view
of the relation F would be quite unnatural.

If F is a relation on X to Y , then for any x 2 X and A � X, the sets F.x/ D f y 2
Y W .x ; y/ 2 Fg and F ŒA � D S

a2A F.a/ are called the images of x and A under
F. If .x ; y/ 2 F, then we may also write x F y.

Moreover, the sets DF D f x 2 X W F .x/ ¤ ;g and R F D F ŒX � are called the
domain and range of F. If in particular DF D X, then we say that F is a relation of
X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x 2 Df there
exists y 2 Y such that f .x/ D fyg. In this case, by identifying singletons with their
elements, we may simply write f .x/ D y in place of f .x/ D fyg.

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function 	 of X 2 to X is called a binary operation on X. Moreover, for any x ; y 2 X,
we usually write x? and x 	 y instead of ?.x/ and 	�.x ; y/

�
.

If F is a relation on X to Y , then F D S
x2X fxg�F.x/. Therefore, the values

F.x/, where x 2 X, uniquely determine F . Thus, a relation F on X to Y can also be
naturally defined by specifying F.x/ for all x 2 X.

For instance, the complement relation F c can be naturally defined such that
F c.x/ D F.x/c D Y n F.x/ for all x 2 X. Thus, we also have F c D X�Y n F.
Moreover, it noteworthy that F c ŒA �c DTa2A F.a/ for all A � X. (See [52].)

Quite similarly, the inverse relation F �1 can be naturally defined such that
F �1.y/ D fx 2 X W y 2 F.x/g for all y 2 Y . Thus, we have F �1 ŒB � D fx 2
X W F.x/ \ B ¤ ;g for all B � Y , and hence in particular DF D F �1 ŒY �.

Moreover, if in addition G is a relation on Y to Z, then the composition relation
GıF can be naturally defined such that .GıF/.x/ D G ŒF.x/ � for all x 2 X. Thus,
we also have .G ı F/ ŒA � D G

�
F ŒA �

�
for all A � X.
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While, if G is a relation on Z to W, then the box product relation F � G can be
naturally defined such that .F � G/.x ; z/ D F.x/ � G.z/ for all x 2 X and z 2 Z.
Thus, we have .F � G/ŒA � D G ı A ı F �1 for all A � X�Z. (See [52].)

Hence, by taking A D f.x ; z/g, and A D �Y if Y D Z, one can at once see that
the box and composition products are actually equivalent tools. However, the box
product can be immediately defined for an arbitrary family of relations too.

If F is a relation on X to Y , then a function f of DF to Y is called a selection of
F if f � F, i.e., f .x/ 2 F.x/ for all x 2 DF. Thus, by the axiom of choice, every
relation has a selection. Moreover, it is the union of its selections.

For any relation F on X to Y , we may naturally define two set-valued functions,
F B of X to P .Y / and F I of P .X / to P .Y /, such that F B.x/ D F.x/ for all
x 2 X and F I.A/ D F ŒA � for all A � X.

Functions of X to P .Y / can be identified with relations on X to Y . While,
functions of P .X / to P .Y / are more general objects than relations on X to Y .
They were briefly called corelations on X to Y in [54].

Now, a relation R on X may be briefly defined to be reflexive if �X � R and
transitive if R ı R � R. Moreover, R may be briefly defined to be symmetric if
R�1 � R and antisymmetric if R \ R�1 � �X .

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. Moreover, a symmetric (antisymmetric) preorder relation may
be called an equivalence (partial order) relation.

For instance, for A � X, the Pervin relation RA D A2 [ Ac�X is a preorder
relation on X. (See [17] and [47].) While, for a pseudo-metric d on X and r > 0, the
surrounding B d

r D
˚

x 2 X 2 W d.x1 ; x2/ < r
�

is a tolerance relation on X .
Moreover, we may recall that if A is a partition of X, i.e., a family of pairwise

disjoint, nonvoid subsets of X such that X D S
A , then SA D S

A2A A2 is an
equivalence relation on X, which can, to some extent, be identified with A .

According to algebra, for any relation R on X, we may naturally define R 0 D �X ,
and R n D R ı R n�1 if n 2 N. Moreover, we may also naturally define R 1 DS1

nD0 R n . Thus, R 1 is the smallest preorder relation containing R [11].
Now, in contrast to .F c /c D F and .F �1 /�1 D F, we have .R 1 /1 D R 1.

Moreover, analogously to .F c /�1 D .F �1 /c, we also have .R 1 /�1 D .R�1 /1.
Thus, in particular R�1 is also a preorder on X if R is a preorder on X.

3 A Few Basic Facts on Relators

A family R of relations on one set X to another Y is called a relator on X to Y .
Moreover, the ordered pair .X; Y /.R / D �

.X; Y /; R
�

is called a relator space.
(For the origins, see [31, 37, 43, 45] and the references in [31].)

If in particular R is a relator on X to itself, then we may simply say that R is
a relator on X. Moreover, by identifying singletons with their elements, we may
naturally write X.R/ in place of .X ; X /.R /, since .X; X / D ffX gg.
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Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets [3] and uniform spaces [9]. However, they are insufficient for
some important purposes. (See, for instance, [10] and [42].)

A relator R on X to Y , or a relator space .X; Y/.R/, is called simple if there
exists a relation R on X to Y such that R D fRg [24]. In this case, by identifying
singletons with their elements, we may write .X; Y/.R/ in place of .X; Y/

�fRg�.
According to Száz [44], a simple relator space X .R/ may be called a goset

(generalized ordered set). Moreover, by Ganter and Wille [10, p. 17], a simple
relator space

�
X ; Y

�
.R/ may be called a formal context or context space.

A relator R on X, or a relator space X.R/, may, for instance, be naturally called
reflexive if each member of R is reflexive. Thus, we may also naturally speak of
preorder, tolerance, and equivalence relators.

For instance, for any family A of subsets of X, the family RA D fRA W A 2
A g, where RA D A2 [ Ac�X, is a preorder relator on X. Such relators were first
used by Davis [4] and Pervin [27].

While, for any family D of pseudo-metrics on X, the family RD D fB d
r W r >

0 ; d 2 Dg, where B d
r D

˚
x 2 X 2 W d.x1 ; x2/ < r

�
, is a tolerance relator on X.

Such relators were first considered by Weil [59].
Moreover, if S is a family of partitions of X, then the family RS D f SA W

A 2 S g, where SA DSA2A A2, is an equivalence relator on X. Such practically
important relators were first investigated by Levine [16].

A function � of the class of all relator spaces to the class of all relators is called
a direct (indirect) unary operation for relators if, for any relator R on X to Y , the
value R � D R �X Y D �

�
.X; Y /.R /

�
is a relator on X to Y (on Y to X).

More generally, a function F of the class of all relator spaces to some other
class is called a structure for relators if, for any relator R on X to Y , the value
FR D FX Y

R D F
�
.X; Y /.R /

�
is in a power set depending only on X and Y .

In accordance with [54], for a structure F for relators, we say that:

(1) F is quasi-increasing if FfRg � FR for any relator R on X to Y and R 2 R,
(2) F is increasing if FR � FS for any two relators R and S on X to Y with

R � S ,
(3) F is union preserving if FS

i2I R i D
S

i2 I FR i for any family
�
R i
�

i2 I of
relators on X to Y .

Thus, “union preserving” ) “increasing” ) “quasi-increasing”. Moreover, it
can be shown that F is union preserving if and only if FR D S

R2R FfRg for any
relator R on X to Y . Here, we may again write R instead of fRg .

A unary operation � for relators is called extensive, intensive, involutive, and
idempotent if for any relator R on X to Y we have R � R �, R � � R, R � � D
R, and R � � D R �, respectively.

In particular, an increasing idempotent operation for relators is called a modi-
fication operation [21]. While, an extensive (intensive) modification operation for
relators is called a closure (interior) operation.
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Moreover, an increasing extensive (intensive) operation is called a preclosure
(preinterior) operation. While, an extensive (intensive) idempotent operation is
called a semiclosure (semiinterior) operation.

For instance, the functions c and �1, defined by

R c D ˚R c W R 2 R
�

and R�1 D ˚R�1 W R 2 R
�

for any relator R on X to Y , are increasing involution operations for relators such
that

�
R c

��1 D �R�1�c
. Thus, the operation c is inversion compatible.

Moreover, the functions1 and @, defined by

R 1 D ˚R 1 W R 2 R
�

and R @ D ˚S � X 2 W S 1 2 R
�

for any relator R on X, are modification operations for relators such that, for any
two relators R and S on X, we have

R 1 � S ” R � S @ :

Therefore, the operations 1 and @ form a Galois connection [3, p. 155]. Thus, in
particular1 @ is a closure operation for relators such that1D1 @1.

To investigate inclusions between generalized topologies derived from relations
and relators, the operations1 and @ were first introduced by Mala [19] and Pataki
[25], respectively. Moreover, by using several more powerful structures derived
from relators, Száz [38] and Pataki [25] defined a great abundance of important
closure operations for relators. Some of them were already considered by Kenyon
[14] and H. Nakano and K. Nakano [22].

Beside the abovementioned unary operations, we may also naturally introduce
several important binary operations for relators. For instance, for any two relators
R on X to Y and S on Y to Z, we may naturally define

S ıR D ˚S ı R W R 2 R ; S 2 S
�
:

Hence, by using that .SıR/�1 D R�1ı S�1 for all R 2 R and S 2 S , we can easily
see that .S ı R/�1 D R�1ı S �1. Moreover, it can also be easily seen that the
composition of relators is also associative.

4 Some Important Structures for Relators

If R is a relator on X to Y , then for any A � X, B � Y and x 2 X we write:

(1) A 2 IntR .B/ if R ŒA � � B for some R 2 R,
(2) A 2 ClR .B/ if R ŒA � \ B ¤ ; for all R 2 R,
(3) x 2 intR.B/ if fxg 2 IntR.B/,
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(4) x 2 clR.B/ if fxg 2 ClR.B/,
(5) B 2 ER if intR .B/ ¤ ;,
(6) B 2 DR if clR .B/ D X .

Moreover, if in particular R is a relator on X , then for any A � X we also write:

(7) A 2 �R if A 2 IntR .A/,
(8) A 2 �-R if Ac … ClR .A/,
(9) A 2 TR if A � intR .A/,

(10) A 2 FR if clR .A/ � A.

The relations IntR and intR are called the proximal and topological interiors
induced by R, respectively. While, the members of the families, �R, TR and ER
are called the proximally open, topologically open, and fat subsets of the relator
spaces X .R / and .X ; Y /.R /, respectively.

The origins of the relations ClR and IntR go back to Efremović’s proximity ı [6]
and Smirnov’s strong inclusion b [29], respectively. The families �R and ER were
first explicitly used by the first author [37]. In particular, the practical notation �-R
has been suggested by János Kurdics [15].

Because of the above definitions, for any relator R on X to Y and B � Y , we
have

ClR.B/ DP.X/ n IntR
�
Bc
�

and clR.B/ D X n intR
�
Bc /;

and

DR D
˚

D � Y W Dc … ER
� D ˚D � Y W 8 E 2 ER W E \ D ¤ ; � :

Moreover, if in particular, R is a relator on X, then we also have

�-R D
˚

A � X W Ac 2 �R

�
and FR D

˚
A � X W Ac 2 TR

�
:

In this respect, it is also worth mentioning that, for any relator R on X to Y , we
have

ClR�1 D Cl�1
R and IntR�1 D CY ı Int�1

R ıCX;

where CX.A/ D X n A for all A � X. Moreover, in particular, for any relator R on
X, we have �-R D �R �1 . Therefore, the proximal closures and proximally open sets
are usually more convenient tools than the topological closures (proximal interiors)
and topologically open sets, respectively.

The fat sets are frequently also more convenient tools than the topologically open
sets [35]. For instance, if � is a certain order relation on X , then T� and E� are
just the families of all ascending and residual subsets of the ordered set X .�/,
respectively.
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To clarify the advantage of fat sets over the open ones, we can also note that if in
particular X D R, and R is a relation on X such that

R.x/ D f x � 1 g [ Œ x ; C1 Œ

for all x 2 X, then TR D f; ; X g, but ER is quite large family. Namely, the supersets
of each R.x/, with x 2 X, are also in ER.

If R is a relator on X to Y , and ˚ and � are relations on a relator space � .U /

to X and Y , respectively, then by using the relation .˚ ˝ � /, defined such that

.˚ ˝ � /.� / D ˚.�/ � �.�/

for all � 2 � , we may also define

(11) ˚ 2 LimR .� / if .˚ ˝ � /�1ŒR � 2 EU for all R 2 R,
(12) ˚ 2 AdhR .� / if .˚ ˝ � /�1ŒR � 2 DU for all R 2 R.

Now, for any A � X, we may also naturally write:

(13) A 2 limR.� / if A� 2 LimR.� /,
(14) A 2 adhR.� / if A� 2 AdhR.� /,

where A� is a relation on � to X such that A� .�/ D A for all � 2 � .
The big limit relation LimR, suggested by Efremović and Švarc [7], is, in general,

a much stronger tool in the relator space .X; Y /.R / than the big closure and
interior relations ClR and IntR suggested by Efremović [6] and Smirnov [29].

Namely, it can be shown that, for any A � X and B � Y , we have A 2 ClR.B/ if
and only if there exist a preordered set � .�/ and functions ' and  of � to A and
B, respectively, such that ' 2 LimR. /

�
' 2 AdhR. /

�
.

To check the less obvious part of this statement, note that if A 2 ClR.B/, then
for each R 2 R, we have R ŒA � \ B ¤ ;. Therefore, there exist xR 2 A and yR 2 B
such that yR 2 R.xR /.

Now, by defining '.R/ D xR and  .R/ D yR for all R 2 R, and moreover
R1 � R2 if R1 ; R2 2 R such that R2 � R1, we can easily see that R.�/ is a
partially ordered set, and in addition to '.R/ D xR 2 A and  .R/ D yR 2 B, we
also have

.' ˝  /.R/ D �'.R/;  .R/� D .xR ; yR / 2 R ;

and thus R 2 .' ˝  /�1ŒR � for all R 2 R.
Therefore, if R 2 R, then for every S 2 R, with S � R, i.e. S � R, we have

S 2 .' ˝  /�1 Œ S � � .' ˝  /�1 ŒR � ;

and thus ŒR ; C1 Œ� .'˝ /�1 ŒR �. This shows that .'˝ /�1 ŒR � is a residual,
i.e., a fat subset of R.�/. Thus, by the definition of the relation LimR, we have
' 2 LimR. /.
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Note that, to prove the corresponding statement for the relation AdhR, we have
to define R1 � R1 for all R1 ; R2 2 R. Therefore, for our present purposes, partially
ordered sets are not, in general, sufficient.

Finally, we note that if R is a relator on X to Y , then according to [43] for any
A � X, B � Y , x 2 X, and y 2 Y , we may also naturally write:

(a) B 2 UbR .A/ and A 2 LbR.B/ if A�B � R for some R 2 R,
(b) y 2 ubR.A/ if fyg 2 UbR.B/,
(c) x 2 lbR.B/ if fxg 2 LbR.A/,
(d) A 2 UR if ubR.A/ ¤ ;,
(e) B 2 LR if lbR.B/ ¤ ;.

Moreover, in particular R is a relator on X, and then for any A � X, we may also
naturally define:

(f) maxR.A/ D A \ ubR.A/,
(g) minR.A/ D A \ lbR.A/,
(h) MaxR.A/ DP.A/ \ UbR.A/,
(i) MinR.A/ DP.A/ \ LbR.A/,

and thus also

(j) supR.A/ D minR
�
ubR.A/

�
,

(k) infR.A/ D maxR

�
lbR.A/

�
.

(l) SupR.A/ D MinR

�
UbR.A/

�
,

(m) InfR.A/ D MaxR

�
LbR.A/

�
.

Now, analogously to the families �R and TR, we may also naturally define:

(n) A 2 uR if A 2 UbR.A/,
(o) A 2 UR if A � ubR.A/,
(p) A 2 LR if A � lbR.A/.

Thus, for instance, it can be shown that

A 2 uR ” A 2 LbR.A/ ” A 2 MinR.A/ ” A 2 InfR.A/;

and uR D MinR

�
P.X/

� D MaxR

�
P.X/

�
. Moreover, LbR D UbR�1 D Ub�1

R .
However, the above algebraic structures are not independent of the former

topological ones. Namely, if R is a relation on X to Y , then for any A � X and
B � Y we have

A�B � R ” 8 a 2 A W B � R.a/ ” 8 a 2 A W R.a/ c � B c

” 8 a 2 A W R c.a/ � B c ” R c ŒA � � B c:
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Therefore, if R is a relator on X to Y , then by the corresponding definitions, for any
A � X and B � Y , we also have

A 2 LbR.B/ ” A 2 IntR c.Bc/ ” A 2 �IntR cıCY
�
.B/ :

Hence, we can already infer that

LbR D IntR cıCY ; and IntR D LbR cıCY :

Therefore, in contrast to a common belief, some algebraic and topological structures
are just as closely related to each other by the above equalities, and their particular
cases

lbR D intR cıCY ; and intR D lbR cıCY ;

as the exponential and the trigonometric functions are by the celebrated Euler
formulas [30, p. 227].

5 Increasingly Regular Structures for Relators

According to [55], we shall also use the following.

Definition 3. If F is a structure and � is a direct unary operation for relators, then,
we say that:

(1) F is increasingly upper �–regular if FR � FS implies R � S � for any
two relators R and S on X to Y ,

(2) F is increasingly lower �–regular if R � S � implies FR � FS for any
two relators R and S on X to Y .

Remark 5. Now, the structure F may be naturally called increasingly �–regular if
it is increasingly both upper and lower �–regular.

Moreover, for instance, F may also be naturally called increasingly regular if it
is increasingly �–regular for some operation � for relators.

Remark 6. If F is an increasingly �–regular structure for relators, then because of
the fundamental work of Pataki [25], we may also say that the pair .F ; �/ is an
increasing Pataki connection for relators.

In the theory of relators, increasing Pataki connections can also be most naturally
obtained from the increasing Galois ones according to [46].

Definition 4. For any structure F for relators, we define a unary operation �F for
relators such that

R �F D ˚ S � X�Y W FS � FR

�

for any relator R on X to Y .
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Remark 7. Note that if in particular the structure F is increasing, then by the above
definition the operation �F is also increasing.

The appropriateness of Definition 4 is also apparent from the following exten-
sions and supplements of the corresponding results of Pataki [25], which were
mainly proved in [55]. The proofs will only be included here for the reader’s
convenience.

Theorem 6. If F is a structure and � is an operation for relators such that F is
increasingly �–regular, then � D �F.

Proof. By the corresponding definitions, we have

S 2 R � ” fSg  R � ” FfSg  FR ” FS  FR ” S 2 R �F

for any relator R and relation S on X to Y .

From this theorem, we can immediately derive the following three corollaries.

Corollary 1. If F is a structure for relators, then there exists at most one operation
� for relators such that F is increasingly �–regular.

Corollary 2. If F is an increasingly regular structure for relators, then � D �F is
the unique operation for relators such that F is increasingly �–regular.

Corollary 3. A structure F for relators is increasingly regular if and only if it is
increasingly �F–regular.

Theorem 7. If F is a quasi-increasing structure for relators, then

(1) F is increasingly upper �F–regular,
(2) � F is extensive .

Proof. If R and S are relators on X to Y such that FR � FS , then by the quasi-
increasingness of F, for any R 2 R, we also have FR � FS . Hence, by Definition 4,
we can already infer that R 2 S �F . Therefore, R � S �F . Thus, by Definition 3,
assertion (1) is true.

Now, from the inclusion FR � FR, by using (1), we can infer that R � R �F .
Therefore, (2) is also true.

From this theorem, by using Corollary 3 and Remark 7, we can immediately
derive the following two corollaries.

Corollary 4. A quasi-increasing structure F for relators is increasingly regular if
and only if it is increasingly lower �F–regular.

Corollary 5. If in particular F is an increasing structure for relators, then �F is
already preclosure operation.
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Theorem 8. If F is an union-preserving structure for relators, then

(1) F is increasingly �F–regular,
(2) � F is a closure operation .

Proof. Suppose that R and S are relators on X to Y such that R � S �F , and
˝ 2 FR. Then, since FR D S

R2R FR, there exists R 2 R such that ˝ 2 FR.
Now, since R � S �F , we also have R 2 S �F . Hence, by Definition 4, we can
infer that FR � FS . Therefore, we also have ˝ 2 FS . Consequently, FR � FS .
This shows that F is increasingly lower �F–semiregular. Hence, by Theorem 7, we
can see that (1) is true.

Now, assertion (2) will follow from (1) by the forthcoming Theorem 10.

Thus, in particular, we also have the following.

Corollary 6. Every union-preserving structure F for relators is increasingly
regular.

In [55], by using the arguments of [48], we have also proved the following three
theorems.

Theorem 9. If F is an increasingly �–regular structure for relators, then

(1) � is extensive,
(2) F is increasing,
(3) FR D FR� for any relator R on X to Y.

Proof. If R is a relator on X to Y , then from the inclusion R � � R �, by using
the increasing lower �–regularity of F, we can infer that FR � � FR.

On the other hand, from the inclusion FR � FR, by using the increasing upper
�–regularity of F, we can infer that R � R �. Therefore, (1) is true.

Now, if S is a relator on X to Y such that R � S , then by using (1) we can see
that R � S � also holds. Hence, by using the increasing lower �–regularity of F,
we can infer that FR � FS . Therefore, assertion (2) is also true.

Now, from the inclusion R � R �, by using (2), we can infer that FR � FR � .
Therefore, assertion (3) is also true.

From this theorem, by using Theorem 8, we can immediately derive

Corollary 7. If F is a union-preserving structure for relators, then FR D F
R �F

for any relator R on X to Y.

Theorem 10. For an operation � for relators, the following assertions are equi-
valent:

(1) � is a closure operation
(2) � is increasingly �–regular,
(3) there exists an increasingly �–regular structure F for relators.
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Proof. To prove the implication (3) H) (1), note that if (3) holds, then by
Theorem 9 the operation � is extensive. Moreover, for any relator R on X to
Y , we have FR � D FR. Hence, by taking R � in place of R, we can see
that FR � � D FR � , and thus FR � � D FR also holds. Hence, by using the
increasing upper �–regularity of F, we can already infer that � is increasingly
upper semiidempotent in the sense that R � � � R �. Now, by the extensivity of
�, it is clear that the corresponding equality is also true. That is, � is idempotent.

Thus, to obtain (1), it remains only to show that � is also increasing. For this,
note that if R and S are relators on X to Y such that R � S , then by Theorem 9 we
also have FR � FS . Moreover, we have FR D FR� , and thus also FR � � FS .
Hence, by using the increasing upper �–regularity of F, we can already infer that
R � � S �.

From this theorem, by Theorem 6, it is clear that in particular we also have

Corollary 8. If ˙ is a closure operation for relators, then ˙ D �˙.

Moreover, from Theorem 10, by using Definition 3, we can immediately derive

Corollary 9. For a structure F and an operation � for relators, the following
assertions are equivalent:

(1) F is increasingly �–regular,
(2) � is a closure operation, and for any two relators R and S on X to Y, we have

FR � FS if and only if R � � S �.

Theorem 11. For a structure F and an operation � for relators, the following
assertions are equivalent:

(1) F is increasingly �–regular,
(2) F is increasing, and for every relator R on X to Y, S D R � is the largest

relator on X to Y such that FS � FR.

Proof. If (1) holds, then by Theorem 9 the structure F is increasing, and for any
relator R on X to Y , we have FR � D FR. Moreover, if S is a relator on X to Y
such that FS � FR, then by using the upper �–regularity of F we can see that
S � R �. Thus, in particular, (2) also holds.

On the other hand, if (2) holds, and R and S are relators on X to Y such that
FS � FR, then from the assumed maximality property of R � we can see that
S � R �. Therefore, F is upper �–regular.

Conversely, if R and S are relators on X to Y such that S � R �, then by
using the assumed increasingness of F we can see that FS � FR � . Hence, by the
assumed inclusion FR � � FR, it follows that FS � FR. Therefore, F is also lower
�–regular, and thus (1) also holds.

From this theorem, by Theorem 9, it is clear that we also have

Corollary 10. If F is a �–regular structure for relators, then for any relator R on
X to Y, S D R � is the largest relator on X to Y such that FS D FR.
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Now, by Theorem 6, it is clear that in particular we also have

Corollary 11. If F is a regular structure for relators, then for any relator R on X
to Y, S D R �F is the largest relator on X to Y such that FS � FR

�
FS D FR

�
.

Hence, by Theorem 8, it is clear that more specially we also have

Corollary 12. If F is a union-preserving structure for relators, then for any relator
R on X to Y, S D R �F is the largest relator on X to Y such that FS � FR

�
FS D

FR

�
.

Finally, we note that, analogously to [25, Theorem 1.5], the following theorem is
also true.

Theorem 12. For a direct unary operation � for relators, the following assertions
are equivalent:

(1) � is a semiclosure ,
(2) for every relator R on X to Y, S D R � is the largest relator on X to Y such

that R � D S �,
(3) there exists a structure F for relators such that, for every relator R on X to Y,

S D R � is the largest relator on X to Y such that FR D FS .

Remark 8. If F is a structure for relators, then two relators R and S on X to Y are
called F–equivalent if FR D FS .

Moreover, the relator R is called F-simple if it is F–equivalent to a singleton
relator. And, in particular, R is called properly simple if it is F-simple with F being
the identity operation for relators.

6 Some Important Unary Operations for Relators

Definition 5. For any relator R on X to Y , the relators

R � D ˚
S � X�Y W 9 R 2 R W R � S

�
;

R # D ˚
S � X�Y W 8 A � X W 9 R 2 R W R ŒA � � S ŒA �

�
;

R ^ D ˚
S � X�Y W 8 x 2 X W 9 R 2 R W R .x/ � S .x/

�
;

and

R M D ˚
S � X�Y W 8 x 2 X W 9 u 2 X W 9 R 2 R W R .u/ � S .x/

�

are called the uniform, proximal, topological, and paratopological closures (refine-
ments) of the relator R, respectively.

Remark 9. Thus, we evidently have

R � R � � R # � R ^ � R M :
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Moreover, if in particular R is a relator on X, then we can easily see that

R 1 � R � 1 � R 1� � R � :

Remark 10. However, it is now more important to note that, because of the corres-
ponding definitions of Sect. 4, we also have

R # D ˚
S � X�Y W 8 A � X W A 2 IntR

�
S ŒA �

� �
;

R ^ D ˚
S � X�Y W 8 x 2 X W x 2 intR

�
S.x/

��
;

R M D ˚
S � X�Y W 8 x 2 X W S.x/ 2 ER

�
:

Now, by using this remark and Definition 4, we can easily prove the following

Theorem 13. For any relator R on X to Y, we have

(1) R # D R � Int ,
(2) R ^ D R � int ,
(3) R M D R �E ,

Proof. We shall only prove that R � Int � R #. The proof of the converse inclusion,
and those of (2) and (3), will be left to the reader.

For this, we can note that if S 2 R � Int , then by Definition 4 S is a relation on X
to Y such that IntS � IntR, and so IntS.B/ � IntR.B/ for all B � Y .

Thus, in particular, for any A � X, we have IntS
�
S ŒA �

� � IntR
�
S ŒA �

�
. Hence,

by using that A 2 IntS
�
S ŒA �

�
, we can already infer that A 2 IntR

�
S ŒA �

�
.

Therefore, by Remark 10, S 2 R # also holds.

From this theorem, by using Theorem 8, we can immediately derive

Theorem 14. # ; ^, and M are closure operations for relators.

Proof. By the corresponding definitions, it is clear that

IntR D S
R2R

IntR ; intR D S
R2R

intR ; and ER D S
R2R

ER

for any relator R on X to Y .
Therefore, the structures Int, int, and E are union preserving. Thus, by Theo-

rem 8, the operations � Int, � int, and �E are closures. Therefore, by Theorem 13,
the required assertions are also true.

Remark 11. By using the definition of the operation 	, we can easily see that 	 is
also a closure operation for relators.

It can actually be derived from the structures Lim and Adh. While, the structures
lim and adh lead only to the operation ^.
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Now, by using Remark 9 and Theorem 14, we can also easily prove

Theorem 15. For any relator R on X to Y, we have

(1) R # D �R ��# D �R #
��

,

(2) R ^ D �R ˙�^ D �R ^�˙ with ˙ D 	 or #,

(3) R M D �R ˙�M D �R M�˙ with ˙ D 	 ; #, or ^.

Proof. To prove (1), note that, by Remark 9 and Theorem 14, we have

R # � �R #
�� � R # # D R # and R # � R �# � R # # D R # :

Therefore, the corresponding equalities are also true.

Remark 12. By using Remark 9 and we can also easily prove that

(1) R �1 D R 1� 1,
(2) R 1� D R � 1�.

However, it is now more important to note that, by using Theorems 13, 8, and 10,
and Corollary 12, we can also easily establish the following two theorems.

Theorem 16. For any two relators R and S on X to Y, we have

(1) S � R # ” S # � R # ” IntS � IntR ” ClR � ClS ,
(2) S � R ^ ” S ^ � R ^ ” intS � intR ” clR � clS ,
(3) S � R M ” S M � R M ” ES � ER ” DR � DS .

Corollary 13. For any two relators R and S on X,

(1) S � R # H) �S � �R ” �-S � �-R,
(2) S � R ^ H) TS � TR ” FS � FR,

Theorem 17. For any relator R on X to Y,

(1) S D R # is the largest relator on X to Y such that IntS � IntR
�

IntS D
IntR

�
, or equivalently ClR � ClS

�
ClR D ClS

�
,

(2) S D R ^ is the largest relator on X to Y such that intS � intR
�

intS D
intR

�
, or equivalently clR � clS

�
clR D clS

�
,

(3) S D R M is the largest relator on X to Y such that ES � ER
�
ES D ER

�
,

or equivalently DR � DS

�
DR D DS

�
.

Corollary 14. For any relator R on X, we have

(1) �R D �R # ,
(2) TR D TR^ .

Remark 13. To prove the above two theorems and their corollaries, recall that

ClR D �
IntR ıCY

� c
; clR D �

intR ıCY

� c
; and DR D ˚

B  Y W Bc … ER
�
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for any relator R on X to Y , and in particular

�-R D
˚

A � X W Ac 2 �R
�

and FR D
˚

A � X W Ac 2 TR

�

for any relator R on X.

Concerning the operations ^ and M, we can also prove the following straightfor-
ward extensions of [31, Theorem 6.7] and [26, Theorem 5.16].

Theorem 18. If R is a nonvoid relator on X to Y and B � Y , then

(1) IntR^ .B/ DP
�
intR .B/

�
,

(2) ClR^ .B/ DP
�
clR .B/c

�c
.

Proof. To prove the less obvious part of (1), note that if A 2 P
�
intR .B/

�
, i.e.,

A � intR .B/, then for each x 2 A there exists Rx 2 R such that Rx .x/ � B.
Hence, by defining S.x/ D Rx.x/ if x 2 A, and S .x/ D Y if x 2 Ac , we can see
that S 2 R ^ and S ŒA � � B. Therefore, A 2 IntR^ .B/ also holds.

Note that if R is not supposed to be nonvoid, then instead of (1) we can only
prove that P

�
intR .B/

� D IntR^ .B/ [ f;g.
Corollary 15. If R is a nonvoid relator on X, then

(1) �R ^ D TR,
(2) �-R ^ D FR.

Corollary 16. If R is a nonvoid relator on X, then

(1) TR D S
R2R ^

TR,

(2) FR D S
R2R ^

FR.

Remark 14. Note that if in particular R is a relator on X such that R D ;, then by
the definition of TR we have TR D f;g.

Moreover, if in addition X ¤ ;, then by the definition of R ^ we also have
R ^ D ;. Thus,

S
R2R ^ TR D ;.

Therefore, if R D ;, but X ¤ ;, then the equalities stated in Corollary 16, and
thus also those stated in Corollary 15 and Theorem 18, do not hold.

Theorem 19. If R is a nonvoid relator on X to Y and B � Y, then

(1) IntRM .B/ D f;g if B … ER and IntRM .B/ DP .X / if B 2 ER,
(2) ClRM .B/ D ; if B … DR and ClRM .B/ DP .X / n f;g if B 2 DR.

Proof. If A 2 IntRM .B/, then there exists S 2 R M such that S ŒA � � B. Therefore,
if A ¤ ;, then there exists x 2 X such that S .x/ � B. Hence, since S .x/ 2 ER, it is
clear that B 2 ER. Therefore, the first part of (1) is true.

To prove the second part of (1), it is enough to note only that if B 2 ER, then
R D X�B 2 RM such that R ŒA � � B, and thus A 2 IntRM .B/ for all A � X.
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Corollary 17. If R is a nonvoid relator on X to Y and B � Y, then

(1) clRM .B/ D ; if B … DR and ClRM .B/ D X if B 2 DR ,
(2) intRM .B/ D ; if B … ER and intRM .B/ D X if B 2 ER.

Corollary 18. If R is a nonvoid relator on X , then

(1) �RM D TRM D ER [ f;g,
(2) �-RM D FRM D �P .X / n DR

� [ fX g.
Proof. To check the first part of (1), because of Corollary 15 and Theorem 15, we
can also note that �RM D �RM^ D TRM .

Remark 15. Note that if in particular R is a relator on X such that R D ;, then by
the definition of ER we have ER D ;. Moreover, if in addition X ¤ ;, then we also
have R M D ;. Hence, by the definition of �R, we can again see that �R^ D ;.

Therefore, if R D ;, but X ¤ ;, then the assertions (1) and (2) of Corollary 18,
and thus also those of Corollary 17 and Theorem 19, do not hold.

However, the second equalities in the assertions (1) and (2) of Corollary 18 do
not require relator R to be nonvoid. Moreover, we can also prove the following.

Theorem 20. If R is a total relator on X , then

(1) ER D TRM n f;g,
(2) DR D F c

RM [ fX g.
Remark 16. A relator R on X to Y is called total if each member R of R is a total
relation in the sense that the whole X is the domain of R.

By using the corresponding definitions, it can be easily seen that the relator R is
total if and only if ; … ER . Y 2 DR/, or equivalently DR ¤ ; .ER ¤P .Y//.

In this respect, it is also noteworthy that conversely we have ; … DR . Y 2 ER/,
or equivalently ER ¤ ; .DR ¤P .Y//, if and only if X ¤ ; and R ¤ ;.

7 Some Further Important Unary Operations for Relators

In addition to Theorem 17, we can also prove the following.

Theorem 21. If R is a relation on X, then S D R 1 is the largest relation on X such
that �R � � S

�
�R D � S

�
, or equivalently �-R � �-S

�
�-R D �-S

�
.

Proof. If A 2 �R 1 , then by the corresponding definitions we have R 1 ŒA � � A.
Hence, by using that R � R 1, and thus R ŒA � � R 1 ŒA �, we can already infer that
R ŒA � � A. Therefore, A 2 �R also holds.

While, if A 2 �R holds, then we have R ŒA � � A. Hence, by induction, we can
see that R n ŒA � � A for all n 2 N. Now, since R 0 ŒA � D �X ŒA � D A, we can
already state that
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R 1 ŒA � D
� 1S

nD0
R n

�
ŒA � D

1S
nD0

R n ŒA � �
1S

nD0
A D A :

Therefore, A 2 �R 1 also holds.
The above arguments show that �R D �R 1 . Therefore, to complete the proof of

the first statement of the theorem, it remains to show only that if S is a relation on X
such that �R � � S, then we necessarily have S � R 1.

For this, note that if x 2 X, then because of the inclusion R � R 1 and the
transitivity of R 1 we have

R Œ R 1.x/ � � R 1 Œ R 1.x/ � D �R 1 ı R 1 �
.x/ � R 1.x/ :

Therefore, R 1.x/ 2 �R. Hence, by using the assumption �R � �S, we can already
infer that R 1.x/ 2 � S, and thus S ŒR 1.x/ � � R 1.x/. Now, by using the reflexivity
of R 1, we can see that S.x/ � R 1.x/ also holds.

Remark 17. This theorem, and the fact that

R 1.x/ DT ˚
A 2 �R W x 2 A

�

for all x 2 X, was first proved by Mala [19].
Hence, we can immediately infer that

R 1 DT ˚
RA W A 2 �R

�
; where RA D A2 [ Ac�X :

Now, as an immediate consequence of Theorem 21, we can also state

Corollary 19. For any relator R on X, we have

(1) �R D �R1 ,
(2) �-R D �-R1 .

Proof. By the corresponding definitions, we have R 1 D fR 1 W R 2 Rg,

�R D S
R2R

�R ; and �-R D S
R2R

�-R :

for any relator R on X. Thus, Theorem 21 can be applied to get the required equa-
lities.

However, it now more important to note that, in addition to Theorem 13, we can
also prove the following.

Theorem 22. For any relator R on X to Y, we have

R � � D R # @ :
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Proof. If S 2 R # @, then by the definition of the operation @ we have S 1 2 R #.
Hence, by using Theorem 21 and Corollary 13, we can already see that
� S D � S 1 � �R. Therefore, by Definition 4, S 2 R � � also holds.

Conversely, if S 2 R � � , then Definition 4 S is a relation on X to Y such that
� S � �R. Therefore, A 2 � S implies A 2 �R.

On the other hand, if A � X, then, by using that S � S 1 and S 1 is transitive,
we can note that

S
�

S 1 ŒA �
� � S 1 �

S 1 ŒA �
� D �S 1 ı S 1 �

ŒA � � S 1 ŒA � ;

and thus S 1ŒA � 2 � S.
Therefore, by the inclusion � S � �R, for any A � X, we also have S1ŒA � 2 �R,

and thus IntR
�
S 1ŒA �

�
. Hence, by using that A � S 1 ŒA �, we can infer that

A 2 IntR
�
S 1 ŒA �

�
also holds. Therefore, by Remark 10, S 1 2 R #, and thus

S 2 R # @ also holds.

Now, by using Theorems 22, 8, and 10, and Corollary 12, we can easily establish
the following counterparts of Theorems 14, 16, and 17.

Theorem 23. The following assertions are true:

(1) # @ is a closure operation for relators ,
(2) for any two relators R and S on X, we have

S � R # @ ” S # @ � R # @ ” �S � �R ” �-S � �-R ;

(3) for any relator R on X, S D R # @ is the largest relator on X such that
�S � �R

�
�S D �R

�
, or equivalently �-S � �-R

�
�-S D �-R

�
.

Remark 18. The above two theorems and the next theorem were first proved by
Pataki [25] and Mala [19], respectively, in somewhat different forms.

Theorem 24. The following assertions are true:

(1) #1 is a modification operation for relators ,
(2) for any two relators R and S on X, we have

�S � �R ” �-S � �-R ” S 1 � R # ” S # 1 � R #

” S # 1 � R # 1:

(3) for any relator R on X, S D R # 1 is the largest preorder relator on X such
that �S � �R

�
�S D �R

�
or equivalently �-S � �-R

�
�-S D �-R

�
.

Proof. If R and S are relators on X, then by Theorem 23 and the definition of the
operation @, we have
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�S � �R ” S � R # @ ” S 1 � R # :

Moreover, from Corollary 14, we can see that �S D �S # . Therefore, we also have

�S � �R ” �S # � �R ” S # 1 � R # :

Furthermore, since1 is modification operation, we can note that

S # 1 � R # H) S # 1 1 � R # 1 H) S # 1 � R # 1 :

Moreover, by using Remark 9 and Theorem 15, we can also easily that

S # 1 � R # 1 H) S # 1 � R # � H) S # 1 � R # :

Therefore, assertion (2) is true.
On the other hand, if R is a relator on X and S D R # 1, then from

Corollaries 19 and 14 we can see that �S D �R. Hence, by using assertion (2),
we can infer that S # 1 D R # 1, and thus

�
R # 1 �# 1 D R # 1. Thus, since the

operation # and1 are increasing, assertion (1) is also true.
Now, to prove the first part assertion (3), it remains only to note only that R is

an arbitrary and S is a preorder relator on relator on X such that �S � �R, then by
assertion (2) we have S D S 1 � R #, and thus also S D S 1 � R # 1.

Remark 19. In this respect, it is worth noticing that, for any relator R on X, the
following assertions are also equivalent:

(1) S # @ � R # @,
(2) S # 1 � R # 1,
(3) S 1 # � R 1 #.

The advantage of the modification operations #1 and 1 # over the closure
operation # @ lies mainly in the fact that, in contrast to # @, they are stable in the
sense that they leave the relator fX 2 g fixed for any set X.

Now, in addition to Theorem 22, we can also prove the following

Theorem 25. For any relator R on X to Y, we have

R �T D R ^ @ :

Proof. If R ¤ ;, then by the corresponding definitions, Corollary 15 and
Theorems 23 and 15, it is clear that

S 2 R �T ” TS  TR ” � S  �R^ ” S 2 R ^ # @ ” S 2 R ^ @ :
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While, if R D ;, then by using the corresponding definitions we can see that

R �T D ; if X ¤ ; and R �T D f;g if X D ;

and

R ^ @ D ; if X ¤ ; and R ^ @ D f;g if X D ; :
Therefore, the required equality is again true.

Unfortunately, by the following example, the structures T and F are not union
preserving.

Example 3. For any set X, with card .X/ > 2, there exists an equivalence relator
R D fR1 ; R2g on X such that TR ¤ TR 1 [TR 2 and FR ¤ FR 1 [FR 2 .

Namely, if x1 2 X and x2 2 X n f x1 g, then by defining

R i D f x i g2 [
�
X n f x i g

�2

for all i D 1; 2 we can see that f x1 ; x2 g 2 TR n
�
TR 1 [TR 2

�
.

Therefore, because of Theorems 25 and 7 and Corollary 5, we can only state the
following

Theorem 26. The following assertions are true:

(1) ^ @ is a preclosure operation for relators ,
(2) for any two relators R and S on X, we have

TS � TR ” FS � FR H) S ^ � R ^ @ H) S ^ @ � R ^ @ :

Remark 20. If X is a set with card.X/ > 2, then by using the equivalence relator
R D˚X 2

�
, considered first by Mala [19, Example 5.3], it can be shown that the

operation ^ @ is not idempotent [25, Example 7.2].
Therefore, by Theorems 10 and 6, the structure T is not regular. Moreover, by

Theorem 12, there does not exist a structure F for relators such that, for every relator
R on X, S D R ^ @ is the largest relator on X such that FS D FR.

However, from Theorem 24, by using Corollary 15, we can easily derive the
following theorem of Mala [19].

Theorem 27. The following assertions are true:

(1) ^1 is a modification operation for relators ,
(2) for any two relators R and S on X, we have

TS  TR ” FS  FR ” S ^ 1  R ^ ” S ^ 1  R ^ 1 :

(3) for any relator R on X, S D R ^ 1 is the largest preorder relator on X such
that TS � TR

�
TS D TR

�
, or equivalently FS � FR

�
FS D FR

�
.
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Remark 21. Note that if X and R are as in Remark 20, then by [19, Example 5.3]
there does not exist a largest relator S on X such that TS D TR.

In the light of the several disadvantages of the structure T , it is rather curious
that most of the works in topology and analysis are based on open sets suggested by
Tietze [58] and standardized by Bourbaki [2] and Kelley [13].

Moreover, it also a striking fact that, despite the results of Pervin [27], Fletcher
and Lindgren [9], and Száz [47], generalized topologies and minimal structures are
still intensively investigated by a great number of mathematicians.

8 Some Further Results on Unary Operations for Relators

In the sequel, we shall also use the following terminology of Pataki [25].

Definition 6. For any two unary operations � and ˙ for relators, we say that � is
˙–dominating, ˙–invariant, ˙–absorbing, and ˙–compatible if, for any relator
R on X to Y , we have

R ˙  R �; R � D R � ˙ ; R � D R ˙ � ; and R � ˙ D R ˙ �;

respectively.

Remark 22. Thus, the operation � is extensive if and only if it dominates the
identity operation for relators. Moreover, � is idempotent if and only if it is �–
invariant (�–absorbing).

In this respect, it is also worth mentioning that the operation � is ˙–invariant
(�–absorbing) if and only if R � is ˙–invariant (R and R ˙ are �–equivalent)
for every relator R on X to Y .

Remark 23. From Theorem 15, we can see that if } ; � 2 f 	 ; # ; ^ ; M g such
that } precedes � in the above list, then � is both }–invariant and }–absorbing.
Thus, in particular it is also ˙–compatible.

By using Definition 6, somewhat more generally, we can also state the following

Theorem 28. If ˙ is an extensive and � is a ˙–dominating idempotent operation
for relators, then � is ˙–invariant. Moreover, if in addition � is increasing, then
� is ˙–absorbing and ˙–compatible.

Remark 24. In this respect, it is also worth mentioning that if ˙ is an extensive and
� is a ˙–dominating operation for relators, then � is also extensive.

Moreover, if ˙ is an increasing and � is an extensive operation for relators such
that R � ˙ � R � for every relator R on X to Y , then � is ˙–dominating.
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The importance of the compatibility property of operations lies mainly in

Theorem 29. If � and ˙ are compatible closure (modification) operations for
relators, then � ˙ is also a closure (modification) operation for relators.

Proof. By using the associativity of composition, and the idempotency and compa-
tibility of the operations � and ˙, we can see that

� ˙ � ˙ D ˙ � � ˙ D ˙ � ˙ D � ˙ ˙ D � ˙ :

Therefore, the operation � ˙ is also idempotent.

Remark 25. In this respect, it is also worth noticing that the composition of two
union-preserving operations is also union preserving.

It can be easily seen that the operations c, �1,1, @, and 	 are union preserving.
Thus, their compositions are also union preserving.

However, the important closure operations #, ^, and M are not union preserving.
Concerning them, we can only prove the following.

Theorem 30. If � is a closure operation for relators, then for any family
�
R i
�

i2 I
of relators on X to Y, we have

�[

i2 I

R i

�� D
�[

i2 I

R �
i

��
:

Proof. If R D S
i2 I R i, then for each i 2 I we have R i � R. Hence, by

using the increasingness of �, we can infer that R �
i � R �. Therefore, we haveS

i2 I R
�

i � R �. Hence, by using the increasingness and the idempotency of �,

we can already infer that
�S

i2 I R
�

i

�� � R � � D R �.
On the other hand, by the extensivity of �, for each i 2 I we have R i � R �

i ,
and hence also R i � S i2 I R

�
i . Therefore, R D S

i2 I R i � S i2 I R
�

i . Hence,

by using the increasingness of �, we can already infer that R � � �S i2 I R
�

i

��
.

Therefore, the required equality is also true.

Remark 26. Hence, we can see that
�S

i2 I R i
�� D S

i2 I R
�

i if and only the
relator

S
i2 I R

�
i is �–invariant.

Now, analogously to Theorem 30, we can also prove the following.

Theorem 31. If � is a closure operation for relators, then for any family
�
R i
�

i2 I
of relators on X to Y, we have

\

i2 I

R �
i D

�\

i2 I

R �
i

��
:
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Proof. Now, we evidently have
�T

i2 I R i
�� �T i2 I R

�
i . Hence, by taking R �

i
in place of R i, we can easily see that the required equality is also true.

Remark 27. Hence, we can see that the relator
T

i2 I R
�

i is always �–invariant.
Moreover, if each R i is �-invariant, then the relator

T
i2 I R i is also �–invariant.

Remark 28. Note that the proofs of the above three theorems also yield some useful
statements for preclosure, semiclosure, and modification operations.

Analogously to the equivalence of the assertions (1) and (2) in Theorem 10, we
can also prove the following.

Theorem 32. For a unary operation � for relators, the following assertions are
equivalent:

(1) � is an increasing involution ,
(2) for any two relators R and S on X to Y, we have

R � � S ” R � S � :

Proof. If (1) holds, then for any two relators R and S on X to Y

R � � S H) R � � � S � H) R � S � H) R � � S � �

H) R � � S :

Therefore, (2) also holds.
Conversely, if (2) holds, then for any relator R on X to Y

R � � R � H) R � R � � ; R � � � R H) R D R � �:

Therefore, � is involutive. Thus, for any two relators R and S on X to Y

R � S H) R � � � S � � H) R � � S � � � H) R � � S �:

Therefore, � is increasing, and thus (1) also holds.

Now, in addition Theorem 29, we can also prove the following.

Theorem 33. If � is a closure (modification) and ˘ is an increasing involution
operation for relators, then ˙ D ˘�˘ is also a closure (modification) operation
for relators.

Proof. By using the associativity of composition, the involutiveness of ˘, and the
idempontency of �, we can see that

˙ ˙ D .˘�˘/.˘�˘/ D .˘�/
�
.˘˘/.�˘/�

D .˘�/
�
�.�˘/� D .˘�/

�
�˘/ D ˘�.� �/˘� D ˘.�˘/ D ˙ ;
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where � is the identity operation for relators. Therefore, ˙ is also idempotent.

Because of this theorem, we may also naturally introduce the following.

Definition 7. For any unary operation � for relators, we write

�� D c � c and � D �1 � � 1 :

Remark 29. Thus, by Theorem 33, for instance, ~ and � are also closure opera-
tions for relators.

However, this also quite obvious from the fact that, by the corresponding
definitions, for any relator R on X to Y , we have

(1) R � D R �,
(2) R ~ DSR2R P .R/.

Namely, if, for instance, S 2 R ~, then S 2 R c�c, and thus Sc 2 R c �.
Therefore, there exists R 2 R such that R c � Sc. Hence, it follows that S � R,
and thus S 2P .R/. Therefore, S 2SR2R P .R/ also holds.

Now, to clear up the importance of Theorem 33 and Definition 7, we can also
prove the following.

Theorem 34. For any relator R on X to Y, we have

(1) R #� D R � Lb ,
(2) R �̂ D R � lb .

Proof. By using the corresponding definitions, Theorem 13, and the equality
LbR D IntR cıC , we can easily that, for any relation S on X to Y , we have

S 2 R �Lb ” LbS � LbR ” IntS cıC � IntR cıC
” IntS c � IntR c ” Sc � S c# ” R � S c#c

” R � S #� :

Therefore, assertion (1) is true. The proof of assertion (2) is quite similar.

By the corresponding definitions, it is clear that LbR DSR2R LbR and lbR DS
R2R lbR for any relator R on X to Y .
Therefore, analogously to Theorems 14, 16, and 17, we can also easily establish

the following three theorems.

Theorem 35. #� and �̂ are closure operations for relators.

Theorem 36. For any two relators R and S on X to Y, we have

(1) S � R #� ” S #� � R #� ” LbS � LbR,
(2) S � R �̂ ” S �̂ � R �̂ ” lbS � lbR.
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Theorem 37. For any relator R on X to Y,

(1) S D R #� is the largest relator on X to Y such that LbS � LbR,
�
LbS D

LbR

�
,

(2) S D R �̂ is the largest relator on X to Y such that lbS � lbR

�
lbS D

lbR

�
.

Remark 30. If R is a relator on X to Y , then in addition to Theorem 34, we can also
state that

(1) R � Ub D R #�,

(2) R � ub D R
�̂

.

Namely, if S is a relation on X to Y , then by using the equalities

UbR D LbR�1 D Lb�1
R and ubR D lbR�1 ;

and Theorem 36, we can easily see that

S 2 R � Ub ” UbS � UbR ” Lb�1
S � Lb�1

R

” LbS � LbR ” S 2 R #�

and

S 2 R � ub ” ubS � ubR ” lbS �1 � lbR�1

” S�1 2 R�1�̂ ” S 2 R�1�̂�1 ” S 2 R
�̂
:

In this respect, it is also worth noticing that, by the associativity of composition
and the inversion compatibility of c, we also have

�̂ D �1 �̂ � 1 D �1 c ^ c � 1 D c � 1 ^ �1 c D c ^ c D �̂ :

9 Inversion Compatible Operations for Relators

According to Definition 6, we may naturally have the following.

Definition 8. A unary operation � for relators is called inversion compatible if for
any relator R on X to Y we have

�
R � ��1 D �R�1 ��

:

Now, by using this definition, we can easily prove the following.
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Theorem 38. For a unary operation � on relators, the following assertions are
equivalent:

(1) � is inversion compatible ,

(2)
�
R � ��1 � �R�1 ��

for any relator R on X to Y,

(3)
�
R�1 �� � �R � ��1 for any relator R on X to Y.

Proof. Note that if, for instance, (2) holds, then for any relator R on X to Y we also

have
��
R�1 ��

��1� R �, and hence also
�
R�1 �� � �R � ��1.

Hence, by using Definition 7, we can immediately derive the following.

Theorem 39. For a unary operation � for relators, the following assertions are
equivalent:

(1) � is inversion compatible ,
(2) R � D R � for any relator R on X to Y.
(3) R � � R �

�
R � � R � � for any relator R on X to Y.

However, it is now more important to note that, by using the corresponding
definitions, we can also easily prove the following.

Theorem 40. If � is a union-preserving operation for relators, then the following
assertions are equivalent:

(1) � is inversion compatible ,

(2)
�fRg� ��1 D ˚R�1��

for any relation R on X to Y.

Proof. To prove that (2) also implies (1), note that the operation �1 is union
preserving. Therefore, for any relator R on X to Y , we have

�
R � ��1 D

� [

R2R

fRg�
��1 D

[

R2R

�fRg� ��1

D S
R2R

˚
R�1�� D

� S
R2R

˚
R�1�

�� D �R�1 �� :

Now, analogously to Theorem 39, we can also state the following.

Corollary 20. If � is a union-preserving operation for relators, then the following
assertions are equivalent:

(1) � is inversion compatible ,

(2)
�fRg� ��1 � ˚R�1��

for any relator R on X to Y,

(3)
˚

R�1�� � �fRg� ��1
for any relator R on X to Y.

However, this corollary cannot actually be used to simplify the proof of
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Theorem 41. The operations c,1, @, and 	 are inversion compatible.

Proof. By the corresponding definitions, it is clear that 1 is a union-preserving
operation for relators. Moreover, for any relation R on X, we have

�
R 1 ��1 D

� 1S
nD0

R n

��1
D

1S
nD0
�
R n
��1 D

1S
nD0
�
R�1 �n D �R�1 �1

:

Therefore, by Theorem 40, the operation1 is inversion compatible.
Now, to prove the inversion-compatibility of the operation @, it is enough to note

only that, for any relator R and relation S on X, we have

S 2 �R�1�@ ” S 1 2 R�1 ” �
S 1��12 R

” �
S�1 �1 2 R ” S�1 2 R @ ” S 2 �R @

��1
:

Now, by using Theorem 38 and our former results on the structure Int, we can
also prove the following.

Theorem 42. The operation # is also inversion compatible.

Proof. If R is a relator on X to Y , then by [36, Theorem 1.2] and Theorem 17 we
have

Cl .R # /�1 D
�
ClR #

��1D �ClR
��1D ClR�1 :

Hence, by using Theorem 16, we can already infer that
�
R #

��1 � �
R�1 �#

.
Therefore, by Theorem 38, the corresponding equality is also true.

Remark 31. Unfortunately, the operations ^ and M are not inversion compatible.
Therefore, we have also to consider the operations _ and O defined by R _ D�
R ^ ��1

and R O D �R M ��1
for every relator R on X to Y .

However, these operations already have some very curious properties [20]. For
instance, the operations __ and OO already coincide with the extremal closure
operations � and �, defined for any relator R on X to Y such that

R 
 D ˚ ıR
��
; where ıR D

\
R ;

and

R � D R if R D ˚X�Y
�

and R � D P .X�Y / if R ¤ ˚X�Y
�
:

Note that � is the ultimate stable unary operation for relators.

The usefulness of inversion compatible operations is apparent from the following
simple theorems of [55].
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Theorem 43. If � is an inversion compatible operation for relators, then for any
relator R on X to Y the following assertions are equivalent:

(1) R is �–invariant ,
(2) R�1 is �–invariant .

Definition 9. If � is a unary operation for relators, then a relator R on X is called
�–symmetric if

�
R � ��1 D R � :

Remark 32. Now, the relator R may, for instance, be naturally called properly,
uniformly, proximally, topologically, and paratopologically symmetric if it is �–
symmetric with � D � ; 	 ; # ; ^, and M, respectively.

Theorem 44. If R is a properly symmetric relator on X, then R is �–symmetric
for every inversion compatible operation � for relators.

Theorem 45. If � is an inversion compatible operation for relators, then for any
relator R on X the following assertions are equivalent:

(1) R or R�1 is �–symmetric,
(2) R and R�1 are �–equivalent.

Remark 33. In this respect, it is also worth noticing that if � is an unary operation
for relators and R is a �–symmetric relator on X to Y such that R and R�1 are

�–equivalent, then
�
R � ��1 D R � D �R�1 ��

.

However, it is now more important to note that, in addition to Theorem 45, we
can also prove the following.

Theorem 46. If � is an inversion compatible closure operation for relators, then
for any relator R on X the following assertions are equivalent:

(1) R is �–symmetric ,
(2) R�1 � R �;

(3) R � �R�1��
,

(4) R is �-equivalent to a properly symmetric relator S on X.

Proof. If (1) holds, then by the extensivity of �, it is clear that R�1 � �R ���1 D
R �. Therefore, (2) also holds.

Moreover, if (2) holds, then we can see that R � �
R � ��1 D �

R�1 ��
.

Therefore, (3) also holds.
While, if (3) holds, then we can quite similarly see that (2) also holds. From (2)

and (3), by using Theorem 10, we can infer that
�
R�1 �� � R � � �R�1 ��

, and

thus R � D �R�1 ��
. Therefore, by Theorem 45, (1) also holds.
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On the other hand, if (1) holds, then R � is properly symmetric. Hence, since

R � D �R � ��, we can already see that (4) holds with S D R �.

Conversely, if (4) holds, then it is clear that
�
R � ��1 D �

S � ��1 D
�
S �1 �� D S � D R �. Therefore, (1) also holds.

From this theorem, by using Theorem 8, we can immediately derive

Corollary 21. If F is a union-preserving structure for relators such that the induced
operation �F is inversion compatible, then for any relator R on X the following
assertions are equivalent:

(1) R is �F–symmetric,
(2) FR�1 � FR;
(3) FR � FR�1 .

Remark 34. Note that the theorems proved in this section can be generalized by
using an arbitrary increasing involution operation ˘ for relators instead of the
inversion �1.

10 Composition Compatible Operations for Relators

Composition compatibility properties of operations for relators have formerly been
considered only in [50] and [55].

Definition 10. For a direct unary operation � for relators, we say that:

(1) � is left composition compatible if
�
S ıR �� D �

S ıR � ��
for any two

relators R on X to Y and S on Y to Z,

(2) � is right composition compatible if
�
S ıR �� D �S � ı R ��

for any two
relators R on X to Y and S on Y to Z.

Remark 35. Now, the operation � may be naturally called composition compatible
if it is both left and right composition compatible.

Note that, this is also very weak composition compatibility property. However,
because of the following theorems, it will be sufficient for our subsequent purposes.

Theorem 47. If � is a left (right) composition compatible unary operation for
relators, then � is, in particular, idempotent.

Proof. If � is left composition compatible, then for any relator R on X to Y

R � � D �R � �� D �f�Yg ıR � �� D �f�Yg ıR
�� D R � :
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Theorem 48. If � is a composition compatible unary operation for relators, then
for any two relators R on X to Y and S on Y to Z we have

�
S ıR �� D �S � ı R � ��

:

Proof. Namely, we have
�
S ıR �� D �S ıR � �� D �S � ı R � ��

.

Remark 36. Note that, in this case, we also have
�
S � ı R �� D �S ıR � ��

.

From Theorem 48, by using the associativity of composition, we can derive

Corollary 22. If � is a composition compatible unary operation for relators, then
for any three relators R on X to Y, S on Y to Z, and T on Z to W we have

�
T ıS ıR �� D �T � ı S � ı R � ��

:

Proof. By using Theorem 48, we can see that

�
T ı �S ıR ��� D

�
T � ı �S ıR �� �� D

�
T � ı �S � ı R � ���

:

Remark 37. In this case, by using Definition 10, we can also prove that

�
T ıS ıR �� D �T � ıS ıR �� D �T ıS � ıR �� D �T ıS ıR � ��

:

However, it is now more important to note that, by using the corresponding
definitions, we can also easily prove the following.

Theorem 49. If � is a preclosure operation for relators, then for any two relators
R on X to Y and S on Y to Z we have

(1)
�
S ı R �� � �S ı R � �� � �S � ı R � ��

,

(2)
�
S ı R �� � �S � ı R �� � �S � ı R � ��

.

Proof. By the extensivity of �, we have R � R �. Hence, by the increasingness of
the elementwise composition of relators, we can see that S ıR � S ıR �. Thus,

by the increasingness of �, we also have
�
S ı R �� � �

S ı R � ��
. Hence,

by writing S � in place of S , we can see that
�
S � ı R �� � �

S � ı R � ��
.

Therefore, the first part of (1) and the second part of (2) are true.

From this theorem, by using Definition 10, we can immediately derive

Corollary 23. If � is a preclosure operation for relators, then

(1) � is left composition compatible if and only if .S ı R � �� � �
S ıR ��

for any two relators R on X to Y and S on Y to Z,

(2) � is right composition compatible if and only if .S � ı R �� � �S ıR ��

for any two relators R on X to Y and S on Y to Z.
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Hence, by Theorem 10, it is clear that in particular we also have

Corollary 24. If � is a closure operation for relators, then

(1) � is left composition compatible if and only if S ıR � � �S ıR ��
for any

two relators R on X to Y and S on Y to Z,

(2) � is right composition compatible if and only if S � ı R � �
S ıR ��

for
any two relators R on X to Y and S on Y to Z.

Remark 38. In addition to the above results, it is also worth noticing that an
involution operation � for relators is left composition compatible if and only if
S ıR D S ıR � for any two relators R on X to Y and S on Y to Z.

Moreover, since S ı R D S
S2S S ı R, we can also at once state that an

involution operation � for relators is left composition compatible if and only if
S ıR D S ıR � for any relator R on X to Y and relation S on Y to Z.

Now, by using Corollary 24 and Theorem 30, we can also prove the following.

Theorem 50. If � is a closure operation for relators, then

(1) � is left composition compatible if and only if S ıR � � �S ıR ��
for any

relator R on X to Y and relation S on Y to Z,

(2) � is right composition compatible if and only if S � ı R � �
S ı R

��
for

any relation R on X to Y and relator S on Y to Z.

Proof. If � is left composition compatible, then by Corollary 24, for any relator R

and relation S on Y to Z, we have fSg ıR � � �fSg ıR ��
, and thus S ıR � �

�
S ıR ��

. Therefore, the “only if part” of (1) is true.
Conversely, if R is a relator on X to Y and S is a relator on Y to Z, and the

inclusion S ıR � � �S ıR ��
holds for any relation S on Y to Z, then by using the

corresponding definitions and Theorem 30 we can see that

S ıR � D
[

S2S

S ıR � �
[

S2S

�
S ıR ��

�
� [

S2S

�
S ıR ��

��
D
� [

S2S

S ıR
��
D �S ıR ��

:

Therefore, by Corollary 24, the “if part” of (1) is also true.

By using this theorem, we can somewhat more easily establish the composition
compatibility properties of the basic closure operations considered in Sect. 6.

Theorem 51. The operations 	 and # are composition compatible.

Proof. To prove right composition compatibility of #, by Theorem 50, it is enough
to prove only that, for any relation R on X to Y and relator S on Y to Z, we have
S # ı R � �S ı R

�#
.
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For this, suppose that W 2 S # ı R and A � X. Then, there exists V 2 S # such
that W D V ı R. Moreover, there exists S 2 S such that S

�
R ŒA �

� � V
�

R ŒA �
�
,

and thus .S ı R/ŒA � � .V ı R/ŒA � D W ŒA �. Hence, by taking U D S ı R, we can
see that U 2 S ı R such that U ŒA � � W ŒA �. Therefore, W 2 �S ı R

�#
also

holds.

Theorem 52. The operations ^ and M are left composition compatible.

Proof. To prove left composition compatibility of M, by Theorem 50, it is enough
to prove only that, for any relator R on X to Y and relation S on Y to Z, we have

S ı R M � �S ı R �M
.

For this, suppose that W 2 S ıR M and x 2 X. Then, there exists V 2 R M such
that W D S ı V . Moreover, there exist u 2 X and R 2 R such that R.u/ � V.x/.
Hence, we can infer that

.S ı R/.u/ D S
�

R.u/
� � S

�
V.x/

� D .S ı V /.x/ D W.x/ :

Now, by taking U D S ı R, we can see that U 2 S ı R such that U.u/ � W.x/.

Therefore, W 2 �S ı R
�M

also holds.

Instead of the right composition compatibility of the operations ^ and M, we can
only prove the following.

Theorem 53. For any two relators R on X to Y and S on Y to Z, we have

(1)
�
S ıR �^ D �S # ı R �^

, (2)
�
S ıR �M D �S # ı R �M

.

Proof. By the extensivity of #, we have S � S #. Hence, by the elementwise
definition of composition of relators, we can see that S ıR � S # ıR. Thus, by
the increasingness of ^, we also have

�
S ıR �^ � �S # ı R �^

.
To get the converse inclusion, by Theorem 16, it is now enough to prove only

that S# ıR � �S ıR �^
. For this, suppose that W 2 S# ıR and x 2 X. Then, there

exists V 2 S # and R 2 R such that W D V ıR. Moreover, there exists S 2 S , such
that S

�
R.x/

� � V
�

R.x/
�
, and thus .S ı R/.x/ � .V ı R/.x/ D W.x/. Hence, by

taking U D S ı R, we can see that U 2 S ıR such that U.x/ � W.x/. Therefore,
W 2 �S ı R �^

also holds.
Thus, we have proved (1). Assertion (2) can now be immediately derived from

(1) by using that U ^M D U M for any relator U on X to Z.

From this theorem, by using Theorem 52, we can immediately derive

Corollary 25. For any two relators R on X to Y and S on Y to Z, we have

(1)
�
S ıR �^ D �S # ı R ^ �^

,

(2)
�
S ıR �M D �S # ı R M �M.

Remark 39. By using Theorem 50, we can also somewhat more easily prove that
the operation ~, considered in Remark 29, is also composition compatible.
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11 Reflexive, Topological, and Proximal Relators

The subsequent definitions and theorems have been mainly taken from [34]. (For
some closely related results, see [32] and [39].)

Definition 11. A relator R on X is called reflexive if each member R of R is a
reflexive relation on X.

Remark 40. Thus, for a relator R on X, the following assertions are equivalent:

(1) R is reflexive,
(2) x 2 R.x/ for all x 2 X and R 2 R,
(3) A � R ŒA � for all A � X and R 2 R.

The importance of reflexive relators is also apparent from the following two
obvious theorems.

Theorem 54. If R is relator on X , then the following assertions are equivalent:

(1) R is reflexive ,
(2) A � clR .A/ for all A � X ,
(3) intR .A/ � A for all A � X .

Hint. To prove the implication (3) H) (1), note that, for any x 2 X and R 2 R,
we have R.x/ � R.x/, and thus x 2 intR

�
R.x/

�
.

Remark 41. In addition to Remark 40 and Theorem 54, it is also worth mentioning
that the relator R is reflexive if and only if the relation ıR D T

R is reflexive.
Namely, if R is a relator on X to Y , then by using the closure formula clR.B/ DT

R2R�1 ŒB �, it can be easily seen that clR.y/ D clR
�fyg� D ı�1

R .y/.

Theorem 55. If R is relator on X , then the following assertions are equivalent:

(1) R is reflexive ,
(2) A 2 IntR .B/ implies A � B for all A ; B � X ,
(3) A \ B ¤ ; implies A 2 ClR .B/ for all A ; B � X .

Remark 42. In addition to the above two theorems, it is also worth mentioning that
if R is a reflexive relator on X, then

(1) IntR is a transitive relation on P .X / ,
(2) intR

�
A n intR.A/

� D ; D intR
�
clR.A/ n A

�
for all A � X .

Thus, for instance, for any A � X we have A 2 FR if and only if clR.A/nA 2 TR.

Definition 12. For a relator R on X, we say that:

(1) R is quasi-topological if x 2 intR
�
intR

�
R .x/

��
for all x 2 X and R 2 R,

(2) R is topological if for any x 2 X and R 2 R there exists V 2 TR such that
x 2 V � R .x/.
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The appropriateness of these definitions is already quite obvious from the
following three theorems.

Theorem 56. If R is relator on X , then the following assertions are equivalent:

(1) R is quasi-topological ,
(2) intR

�
R .x/

� 2 TR for all x 2 X and R 2 R,
(3) intR .A/ 2 TR

�
clR .A/ 2 FR

�
for all A � X .

Theorem 57. If R is relator on X , then the following assertions are equivalent:

(1) R is topological,
(2) R is reflexive and quasi-topological.

Theorem 58. If R is relator on X , then the following assertions are equivalent:

(1) R is topological ,
(3) intR .A/ DS TR \P .A/ for all A � X ,
(3) clR .A/ DT FR \P�1 .A/ for all A � X .

Remark 43. By Theorem 56, the relator R may be called weakly (strongly) quasi-
topological if clR .x/ 2 FR

�
R.x/ 2 TR

�
for all x 2 X and R 2 R.

Moreover, by Theorem 57, the relator R may be called weakly (strongly)
topological if it is reflexive and weakly (strongly) quasi-topological.

However, it is now more important to note that, as a immediate consequence of
the above theorems, we can also state

Corollary 26. If R is a topological relator on X , then for any A � X

(1) A 2 ER if and only if there exists V 2 TR n f;g such that V � A,
(2) A 2 DR if and only if for all W 2 FR n fX g we have A nW ¤ ;.
Theorem 59. If R is relator on X , then the following assertions are equivalent:

(1) R is topological ,
(2) R is topologically equivalent to R ^1,
(3) R is topologically equivalent to a preorder relator on X .

Proof. For instance, we shall show that (1) H) (3) H) (2). Namely, (2)
trivially implies (3). Moreover, the proof of the implication (3) H) (1) is quite
straightforward.

For this, note that if (1) holds, then by Definition 12, for any x 2 X and R 2 R,
there exists V 2 TR such that x 2 V � R.x/.

Hence, by considering the Pervin relator

S D RTR D
˚

RV W V 2 TR

�
; where RV D V 2 [ V c�X;

we can note that R � S ^, and thus R ^ � S ^^ D S ^.
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Moreover, since

RV.x/ D V if x 2 V and RV.x/ D X if x 2 V c;

we can also note that S � R ^, and thus S ^ � R ^^ D R ^.
Therefore, we actually have R ^ D S ^, and thus R is topologically equivalent

to S . Hence, since S is a preorder relator on X, we can already see that (3) also
holds.

On the other hand, if S is a preorder relator on X such that R ^ D S ^, then we
can easily see S � R ^ and thus S D S 1 � R ^1. Therefore, we also have
R ^ D S ^ � �R ^1 �^

.
Moreover, by using Remark 9 and Theorem 15, we can can also easily see that

R ^1 � R ^� D R ^, and thus
�
R ^1 �^ � R ^^ D R ^. Therefore, we

actually have R ^ D �R ^1 �^
, and thus (2) also holds.

Definition 13. For any relator R on X, we say that:

(1) R is quasi-proximal if A 2 IntR
�
�R \ IntR

�
R Œ A �

� �
for all A � X and

R 2 R,
(2) R is proximal if for any A � X and R 2 R there exists V 2 �R such that

A � V � R ŒA �.

Remark 44. Note that thus, for any relator R on X, the following assertions are
equivalent:

(1) R is quasi-proximal ,
(2) for any A � X and R 2 R, there exists V 2 �R such that A 2 IntR.V / and

V 2 IntR
�
R ŒA �

�
.

The appropriateness of the above definitions is already quite obvious from the
following analogues of Theorems 57, 58, and 59.

Theorem 60. If R is relator on X , then the following assertions are equivalent:

(1) R is proximal,
(2) R is reflexive and quasi-proximal.

Theorem 61. If R is relator on X , then the following assertions are equivalent:

(1) R is proximal ,
(2) IntR .A/ DP

�
�R \ P .A/

�
for all A � X ,

(3) for any B 2 IntR .A/, there exists V 2 �R such that B � V � A.

Theorem 62. If R is relator on X , then the following assertions are equivalent:

(1) R is proximal ,
(2) R is proximally equivalent to R 1 or R #1,
(3) R is proximally equivalent to a preorder relator on X .
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In principle, each theorem on topological and quasi-topological relators can be
immediately derived from a corresponding theorem on proximal and quasi-proximal
relators by using the following two theorems.

Theorem 63. For a nonvoid relator R on X , the following assertions are equi-
valent:

(1) R is quasi-topological,
(2) R ^ is quasi-proximal.

Proof. Note that if (2) holds, then in particular, for any x 2 X and R 2 R, we have

fxg 2 IntR^

�
�R^ \ IntR^

�
R Œ fxg � � � � IntR^

�
IntR^

�
R.x/

� �
:

Therefore, there exists V 2 IntR^

�
R.x/

�
such that fxg 2 IntR^.V /. Hence, by

using Theorem 18, we can infer that x 2 intR.V / and V � intR
�
R.x/

�
. Therefore,

x 2 intR
�
intR

�
R.x/

��
also holds, and thus R is quasi-topological.

To prove the converse implication, assume now that (1) holds and A � X and
S 2 R ^. Define V D intR

�
S ŒA �

�
. Then, by Theorem 56 and Corollary 15, we

have V 2 TR D �R^ . Moreover, since V � intR
�
S ŒA �

�
, by Theorem 18 we also

have V 2 IntR^

�
S ŒA �

�
. Therefore, V 2 �R^ \ IntR^

�
S ŒA �

�
.

On the other hand, since S 2 R ^ and S ŒA � � SŒA �, we can also note that A 2
IntR^

�
S ŒA �

�
. Hence, by using Theorem 18, we can infer that A � intR

�
S ŒA �

� D
V . Moreover, since V 2 �R^ , we can also note that V 2 IntR^.V /. Hence, since
A � V , we can infer that A 2 IntR^.V /. Therefore, since V 2 �R^\IntR^

�
S ŒA �

�
,

we also have A 2 IntR
�
�R \ IntR

�
R Œ A �

� �
. This shows that (2) also holds.

Remark 45. From the above proof, we can see that, for a relator R on X, the
following assertions are also equivalent:

(1) R is quasi-proximal ,
(2) fxg 2 IntR^

�
IntR^

�
R.x/

� �
for all x 2 X and R 2 R,

(3) A 2 IntR^

�
IntR^

�
S ŒA �

� �
for all A � X and S 2 R ^ .

Theorem 64. For any relator R on X , the following assertions are equivalent:

(1) R is topological,
(2) R ^ is proximal.

Proof. If (1) holds, then by Theorem 57 the relator R is reflexive and quasi-
topological. Hence, by the corresponding definitions, it is clear that the relator R ^
is also reflexive. Moreover, if R ¤ ;, then from Theorem 62 we can see that R ^
is quasi-proximal. Thus, by Theorem 60, assertion (2) also holds.

Quite similarly, we can also see that (2) implies (1) whenever R ¤ ;. The case
R D ; has to be treated separately by using that R ^ D ; if R D ; and X ¤ ;.
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12 The Main Definitions of Mild Continuities

Notation 1. In the sequel, we shall assume that:

(1) � is a direct unary operation for relators ,
(2) .X ; Y /.R / and .Z ; W /.S / are relator spaces ,
(3) F is a relator on X to Z and G is a relator on Y to W .

Remark 46. Now, to keep in mind the above assumptions, for any R 2 R, S 2 S ,
F 2 F and G 2 G , we can use the diagram:

X
F

Z

R S

Y
G

W

Moreover, by Definition 2, we may naturally consider the following.

Definition 14. Under the above assumptions, we say that the pair .F ; G / of
relators is mildly �–continuous, with respect to the relators R and S , if

��
G � ��1 ı S � ı F �

�� � R � � :

Remark 47. Thus, the pair .F ; G / may be naturally called properly mildly conti-
nuous if it is mildly �–continuous with � being the identity operation for relators.
That is, G �1 ı S ıF � R.

Remark 48. Moreover, the pair .F ; G / may, for instance, be naturally called
uniformly, proximally, topologically, and paratopologically mildly continuous if it
is mildly �–continuous with � D 	 ; # ; ^, and M, respectively.

Remark 49. And, the pair .F ; G / may, for instance, be naturally called quasi-
topologically and ultra-topologically mildly continuous if it is mildly �–continuous
with � D ^1 and ^ @, respectively.

Remark 50. Moreover, the pair .F ; G / may, for instance, be naturally called
infinitesimally and ultimately mildly continuous if it is �–mildly continuous with
� D � and �, respectively.

Now, by specializing Definition 14, we may also naturally have the following.

Definition 15. For any F 2 F and G 2 G , the pair .F ; G/ of relations is called
mildly �–continuous, with respect to the relators R and S , if the pair

�fFg ; fGg�
of relators has the same property.

Remark 51. To apply this definition, note that if in particular � D # or ^, then for
any F 2 F and G 2 G we have
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fFg� D fFg� and
�fGg� ��1D �fGg� ��1D ˚G�1��

:

However, in contrast to the above equalities, for instance, we already have

fFgM D �F ı X X
��

and
�fGgM��1D

��
G ı Y Y

����1D
��

Y Y
��1ı G�1��

:

Now, by using Definition 15, we may also naturally introduce the following.

Definition 16. Under the assumptions of Notation 1, we say that the pair .F ; G /
of relators is elementwise mildly �–continuous, with respect to the relators R and
S , if for any F 2 F and G 2 G the pair .F ; G/ of relations is mildly �–
continuous with respect to the relators R and S .

Remark 52. Thus, the pair .F ; G / may, for instance, be naturally called element-
wise topologically mildly continuous if it is elementwise mildly �–continuous with
� D ^.

Now, as a natural extension of [42, Definition 4.6], we may also naturally have

Definition 17. Under the assumptions of Notation 1, we say that the pair

(1) .F ; G / is lower selectionally mildly �–continuous if for any F 2 F and
G 2 G and any selection f of F the pair . f ; G/ is mildly �–continuous,

(2) .F ; G / is upper selectionally mildly �–continuous if for any F 2 F and
G 2 G and any selection g of G the pair .F ; g/ is mildly �–continuous .

Remark 53. Now, the pair .F ; G / may also be naturally called selectionally
mildly �–continuous if it is both lower and upper selectionally mildly �–
continuous.

Remark 54. Moreover, the pair .F ; G / may also be naturally called doubly
selectionally mildly �–continuous if for any F 2 F and G 2 G and for any
selections f of F and g of G, the pair . f ; g/ is mildly �–continuous.

Remark 55. Finally, we note that, in the X D Y and Z D W particular case, the
relator F and a relation F 2 F may, for instance, be naturally called mildly �–
continuous if the pairs .F ; F / and .F ; F /, respectively, have the same property.

13 Reduction Theorems for Mild Continuities

Remark 56. If in particular the operation � is idempotent, then by the corres-
ponding definitions it is clear that the following assertions are equivalent:

(1) .F ; G / is mildly �–continuous,

(2)
��
G � ��1ı S � ı F �

��� R �.
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Moreover, by using Theorems 10 and 32, we can easily prove the following two
theorems.

Theorem 65. If in particular � is a closure operation, then the following asser-
tions are equivalent:

(1) .F ; G / is mildly �–continuous,

(2)
�
G � ��1 ı S � ıF � � R � .

Proof. Note that now, by the idempotency of � and Theorem 10, for any two
relators U and V on X to Y we have

V � � U � � ” V � � U � ” V � U � :

Theorem 66. If in particular � is an increasing involution, then the following
assertions are equivalent:

(1) .F ; G / is mildly �–continuous,

(2)
�
G � ��1 ı S � ıF � � R �,

(3)
��

G � ��1 ı S � ı F �
�� � R.

Proof. Note that now, by the involutiveness of � and Theorem 32, for any two
relators U and V on X to Y we have

V � � U � � ” V � � U ” V � U � :

Now, as an immediate consequence of the above two theorems and Remark 47,
we can also state

Corollary 27. If in particular � is either a closure operation or an increasing
involution, then the following assertions are equivalent:

(1) .F ; G / is mildly �–continuous with respect to R and S ,
(2)

�
F � ; G � � is properly mildly continuous with respect to R � and S � .

However, it is now more important to note that, by using Theorem 47 and
Corollary 22, we can easily prove the following.

Theorem 67. If in particular � is inversion and composition compatible, then the
following assertions are equivalent:

(1) .F ; G / is mildly �–continuous,

(2)
�
G �1 ı S ıF �� � R � .

Proof. Note that now, by the assumed compatibilities of � and Corollary 22,

��
G � ��1ı S �ıF �

�� D
��
G �1 ��ı S �ıF �

�� D �G �1 ı S ı F ��
:



484 Á. Száz and A. Zakaria

Moreover, by Theorem 47, we now also have R � � D R �.

From this theorem, by Theorem 10, it is clear that in particular we also have

Theorem 68. If in particular � is an inversion and composition compatible closure
operation, then the following assertions are equivalent:

(1) .F ; G / is mildly �–continuous,
(2) G �1 ı S ıF � R � .

Hence, by using Remark 47, we can immediately derive the following.

Corollary 28. Under the above assumptions on �, the following assertions are
also equivalent:

(1) .F ; G / is mildly �–continuous with respect to R and S ,
(2)

�
F ; G

�
is properly mildly continuous with respect to R � and S .

However, it is now more important to note that, by using Theorem 68, we can
also easily prove the following two theorems.

Theorem 69. If in particular � is an inversion and composition compatible closure
operation, dominating another such operation ˙ for relators, then the mild ˙–
continuity of .F ; G / implies the mild �–continuity of .F ; G /.

Proof. If the pair .F ; G / is mildly ˙–continuous, then by Theorem 68 we have
G �1 ı S ıF � R ˙. Hence, by using the inclusion R ˙ � R �, we can infer that
G�1 ı S ı F � R �. Therefore, by Theorem 68, the pair .F ; G / is also mildly
�–continuous.

Remark 57. From this theorem, by Theorems 14, 41, and 51, it is clear that, for
instance, the “proper mild continuity of .F ; G /”) the “uniform mild continuity
of .F ; G /”) the “proximal mild continuity of .F ; G /.”

Theorem 70. If in particular � is an inversion and composition compatible closure
operation, then the following assertions are equivalent:

(1) .F ; G / is mildly �–continuous ,
(2) .F ; G / is elementwise mildly �–continuous .

Proof. By Theorem 68 and the corresponding definitions, it is clear that

.1/ ” G �1 ı S ı F � R �

” 8 F 2 F W 8 G 2 G W G�1 ı S ı F � R � ” .2/ :

Remark 58. Unfortunately, this theorem cannot also be applied to the operations ^
and M.

Therefore, it is worth noticing that the implication (1) H) (2) is already true if
� is only increasing.
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For this, it is convenient to prove first a more general theorem.

Theorem 71. If in particular � is increasing and .F ; G / is mildly �–continuous,
then for any F1 � F and G1 � G the pair .F1 ; G1/ is also mildly �–continuous.

Proof. Because of the assumed increasingness of �, we have

F �
1 � F � ; and thus also

�
G �
1

��1 � �
G � ��1

:

Hence, by using the increasingness of composition of relators, we can infer that

�
G �
1

��1 ı S � ı F �
1 �

�
G � ��1 ı S � ı F � :

Thus, again by the increasingness �, we also have

��
G �
1

��1 ı S � ı F �
1

�� �
��
G � ��1 ı S � ı F �

��
:

Therefore, by Definition 14, the mild �–continuity of .F ; G / implies that of�
F1 ; G1

�
.

Hence, by letting F1 and G1 to be singletons, we can immediately derive

Corollary 29. If in particular � is increasing and .F ; G / is mildly �–
continuous, then .F ; G / is elementwise mildly �–continuous.

14 Some Further Theorems on Mild Continuities

By using the corresponding definitions, we can also easily prove the following.

Theorem 72. If in particular � is ˙–absorbing, for some direct unary operation
˙ for relators, then the following assertions are equivalent:

(1) .F ; G / is mildly �–continuous with respect to R and S ,
(2)

�
F ˙ ; G ˙ � is mildly �–continuous with respect to R ˙ and S ˙.

Proof. By the corresponding definitions, it is clear that

.1/ ”
��
G � ��1 ı S � ı F �

�� � R � �

”
���

G ˙ ��
��1 ı �S ˙ �� ı �F ˙ ��

�� � �R ˙ �� � ” .2/ :

From this theorem, by letting ˙ D � , we can immediately derive
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Corollary 30. If in particular � is idempotent, then the following assertions are
equivalent:

(1) .F ; G / is mildly �–continuous with respect to R and S ,
(2)

�
F � ; G � � is mildly �–continuous with respect to R � and S � .

Now, as an extension of Theorem 71, we can also easily prove the following

Theorem 73. If in particular � is increasing and ˙–absorbing, for some direct
unary operation ˙ for relators, and the pair .F ; G / is mildly �–continuous, then
for any F1 � F ˙ and G1 � G ˙ the pair

�
F1 ; G1

�
is also mildly �–continuous.

Proof. Because of the above assumptions, we have

F �
1 � F ˙ � D F � ; and thus also

�
G �
1

��1 � �G � ��1
:

Hence, as in the proof of Theorem 71, we can already infer that

��
G �
1

��1 ı S � ı F �
1

�� �
��
G � ��1 ı S � ı F �

��
:

Therefore, by Definition 14, the mild �–continuity of .F ; G / implies that of�
F1 ; G1

�
.

Remark 59. In this theorem, instead of the ˙–absorbingness of �, it is enough to
assume only that U ˙ � � U � for every relator U .

However, if in particular ˙ is extensive, then because of the assumed increa-
singness of � the corresponding equality is also true.

A simple application of the ˙ D 	 particular cease of Theorem 73 to singleton
relators gives the following.

Corollary 31. If in particular � is an increasing, 	–absorbing operation, and F 2
F and G 2 G such that the pair .F ; G/ is mildly �–continuous, then for any
F1 2 F and G1 2 G , with F � F1 and G � G1, the pair .F1 ; G1 / is also mildly
�–continuous.

Proof. By the above assumptions on F1 and G1, and the definition of 	, we have
fF1g � fFg� and fG1g � fGg�. Therefore, by Theorem 73, the mild �–continuity
of
�fFg ; fGg� implies that of

�fF1g ; fG1 g
�
. Thus, by Definition 15, the mild �–

continuity of .F ; G/ also implies that of .F1 ; G1/.

By using Theorem 65, we can also easily prove the following.

Theorem 74. If in particular � is a ˙–invariant closure operation for some
closure operation ˙ for relators, then the following assertions are equivalent:

(1) .F ; G / is mildly �–continuous with respect to R and S ,
(2)

�
G � ; F � � is mildly ˙–continuous with respect to R � and S � .
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Proof. By Theorem 65 and the corresponding definitions, it is clear that

.1/ ” �
G � ��1 ı S � ı F � � R �

”
��
G � �˙

��1 ı �S � �˙ ı �F � �˙ � �
R � �˙ ” .2/ :

Now, in additions to Theorems 74 and 72, we can also easily prove

Theorem 75. If in particular � is a ˙–compatible closure operation, for some
closure operation ˙ for relators, then the following assertions are equivalent:

(1) .F ; G / is mildly � ˙–continuous with respect to R and S ,
(2)

�
F � ; G � � is mildly ˙–continuous with respect to R � and S � ,

(3)
�
G ˙ ; F ˙ � is mildly �–continuous with respect to R ˙ and S ˙ .

Proof. From Theorem 29, we know that � ˙ is also a closure operation for relators.
Hence, by Theorem 65 and the corresponding definitions, it is clear that

.1/ ” �
G �˙ ��1 ı S �˙ ı F �˙ � R �˙

”
��

G � �˙
��1 ı �S � �˙ ı �F � �˙ � �

R � �˙ ” .2/ :

Now, since �˙ D ˙�, it is clear that assertions (1) and (3) are also equivalent.

Remark 60. From the latter two theorems, by letting ˙ to be the identity operation
for relators, we can also immediately derive the “closure operation part” of
Corollary 31.

However, it is now more important to note that by using the corresponding
definitions, we can also easily prove the following

Theorem 76. If in particular � is inversion compatible, then the following asser-
tions are equivalent:

(1) .F ; G / is mildly �–continuous with respect to R and S ,
(2) .G ; F / is mildly �–continuous with respect to R�1 and S �1 .

Proof. By Definition 14 and an inversion property of composition, it is clear that

.1/ ”
��
G � ��1 ı S � ıF �

�� � �
R � ��

”
���

G � ��1 ı S � ıF �
�� ��1

�
��
R � ��

��1

”
���

G � ��1 ı S � ıF �
��1 ��

�
��
R � ��1 ��
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”
��
F � ��1 ı �S � ��1 ı G �

�� �
��
R � ��1 ��

”
��
F � ��1 ı �S �1 �� ı G �

�� �
��
R�1 ��

�� ” .2/ :

Remark 61. Unfortunately, concerning the elementwise complementation of rela-
tors, we cannot prove a similar theorem.

15 Detailed Reformulations of Proper, Uniform,
and Proximal Mild Continuities

Recall that if in particular � is an inversion and composition compatible closure
operation, then by Theorem 70, instead of the mild �–continuity of the pair
.F ; G /, it is enough to investigate only that of the pair .F ; G/ for all F 2 F
and G 2 G .

Therefore, concerning proper, uniform, and proximal mild continuities, we shall
only prove here some very particular theorems.

Theorem 77. For any F 2 F and G 2 G , the following assertions are equivalent:

(1) .F ; G/ is properly mildly continuous,
(2) G�1ıS ı F � R,
(3) clF �G .S / � R.

Proof. From Remark 47, we know that (1) and (2) are equivalent. Moreover, by [52,
Theorem 4.3], for any F 2 F , G 2 G , and S 2 S we have

G�1ı S ı F D �F �1 � G�1�Œ S � D .F � G/�1 Œ S � D clF �G .S/ :

Therefore, because of the plausible notation

clF �G .S / D ˚ clF �G .S/ W S 2 S
�
;

assertions (2) and (3) are also equivalent.

Now, by using this theorem, we can also easily prove the following.

Theorem 78. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is properly mildly continuous ,
(2) for each S 2 S there exists R 2 R such that R D G�1 ı S ı F,
(3) for each S 2 S there exists R 2 R such that for every x 2 X and y 2 Y we

have y 2 R.x/ if and only if G.y/ \ S ŒF.x/ � ¤ ;,
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(4) for each S 2 S there exists R 2 R such that for every x 2 X and y 2 Y
we have y 2 R.x/ if and only if there exist z 2 F.x/ and w 2 G.y/ such that
w 2 S.z/.

Proof. By Theorem 77 and the corresponding definitions, it is clear that

.1/ ” G�1ıS ı F � R ” 8 S 2 S W G�1ı S ı F 2 R

” 8 S 2 S W 9 R 2 R W R D G�1ı S ı F :

Moreover, we can note that

R D G�1ı S ı F ” 8 x 2 X W 8 y 2 Y W
�

y 2 R.x/ ” y 2 �G�1ı S ı F
�
.x/
�
:

Furthermore, by using some basic facts on relations, we can also easily see that

y 2 �G�1ı S ı F
�
.x/ ” y 2 G�1 � S ŒF.x/ �

� ” G.y/ \ S ŒF.x/ � ¤ ;
” 9 w 2 G.y/ W w 2 S ŒF.x/ �

” 9 w 2 G.y/ W 9 z 2 F.x/ W w 2 S.z/ :

Therefore, assertions (1)–(4) are also equivalent.

Analogously to Theorem 77, we can also easily prove the following.

Theorem 79. For any F 2 F and G 2 G , the following assertions are equivalent:

(1) .F ; G/ is uniformly mildly continuous,
(2) G�1ıS ı F � R �,
(3) clF �G .S / � R �.

Proof. By Remark 11, Theorems 41 and 51, 	 is an inversion and composition
compatible closure operation for relators. Therefore, by Theorem 68 and Remark 48,
(1) and (2) are equivalent. Moreover, from the proof of Theorem 77, it is clear that
(2) and (3) are also equivalent.

From this theorem, by Theorem 77, it is clear that we also have

Corollary 32. For any F 2 F and G 2 G , the following assertions are equi-
valent:

(1) .F ; G/ is uniformly mildly continuous with respect to R and S ,
(2) .F ; G/ is properly mildly continuous with respect to R � and S .

Moreover, by using Theorem 79, we can also easily prove the following.



490 Á. Száz and A. Zakaria

Theorem 80. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is uniformly mildly continuous ,
(2) for each S 2 S there exists R 2 R such that R � G�1 ı S ı F,
(3) for each S 2 S there exists R 2 R such that for every x 2 X and y 2 R.x/ we

have G.y/ \ S ŒF.x/ � ¤ ;,
(4) for each S 2 S there exists R 2 R such that for every x 2 X and y 2 R.x/

there exist z 2 F.x/ and w 2 G.y/ such that w 2 S.z/.

Proof. By Theorem 79 and the corresponding definitions, it is clear that

.1/ ” G�1ıS ı F � R � ” 8 S 2 S W G�1ı S ı F 2 R �

” 8 S 2 S W 9 R 2 R W R � G�1ı S ı F :

Moreover, as in the proof of Theorem 78, we can note that

R � G�1ı S ı F ” 8 x 2 X W R.x/ � �G�1ı S ı F
�
.x/

” 8 x 2 X W 8 y 2 R.x/ W y 2 �G�1ı S ı F
�
.x/ :

Furthermore, from the proof of Theorem 78, we know that

y 2 �G�1ı S ı F
�
.x/ ” G.y/ \ S ŒF.x/ � ¤ ;
” 9 w 2 G.y/ W 9 z 2 F.x/ W w 2 S.z/ :

Therefore, assertions (1)–(4) are also equivalent.

Analogously to Theorem 79, we can also easily prove the following.

Theorem 81. For any F 2 F and G 2 G , the following assertions are equivalent:

(1) .F ; G/ is proximally mildly continuous,
(2) G�1ıS ı F � R #,
(3) clF �G .S / � R #.

Remark 62. From Theorems 77, 79, and 81, by the inclusions R � R � � R #,
it is also clear that “the proper mild continuity of .F ; G/” ) “the uniform mild
continuity of .F ; G/”) “the proximal mild continuity of .F ; G/.”

Moreover, from the abovementioned theorems and the equality R # D �
R #

��
,

it is clear that we also have

Corollary 33. For any F 2 F and G 2 G , the following assertions are equi-
valent:
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(1) .F ; G/ is proximally mildly continuous with respect to R and S ,
(2) .F ; G/ is properly or uniformly mildly continuous with respect to R # and S .

Now, by using Theorem 81, we can also easily prove the following.

Theorem 82. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is proximally mildly continuous ,
(2) for each A � X and S 2 S there exists R 2 R such that R ŒA � �

G�1 � S
�

F ŒA �
� �

,
(3) for each A � X and S 2 S there exists R 2 R such that for every x 2 A and

y 2 R.x/ we have G.y/ \ S
�

F ŒA �
� ¤ ;,

(4) for each A � X and S 2 S there exists R 2 R such that for every x 2 X and
y 2 R.x/ there exist u 2 A and z 2 F.u/ and w 2 G.y/ such that w 2 S.z/.

Proof. By Theorem 81 and the corresponding definitions, it is clear that

.1/ ” G�1ıS ı F � R # ” 8 S 2 S W G�1ı S ı F 2 R #

” 8 S 2 S W 8 A � X W 9 R 2 R W R ŒA � � �
G�1ı S ı F

�
ŒA � :

Moreover, since R ŒA � DSx2A R.x/, we can also note that

R ŒA �  �
G�1ı S ı F

�
ŒA � ” 8 x 2 A W R.x/  �

G�1ı S ı F
�
ŒA �

” 8 x 2 A W 8 y 2 R.x/ W y 2 �
G�1ı S ı F

�
ŒA � :

Furthermore, by using some basic facts on relations, we can also easily see that

y 2 �G�1ı S ı F
�
ŒA � ” y 2 G�1 � S

�
F ŒA �

� �

” G.y/ \ S
�

F ŒA �
� ¤ ;

” 9 w 2 G.y/ W w 2 S
�

F ŒA �
�

” 9 w 2 G.y/ W 9 z 2 F ŒA � W w 2 S.z/

” 9 w 2 G.y/ W 9 u 2 A W 9 z 2 F.u/ W w 2 S.z/ :

Therefore, assertions (1)–(4) are also equivalent.

16 Detailed Reformulations of Topological Mild Continuity

By using Theorem 68, we can easily establish the following.

Theorem 83. The following assertions are equivalent:
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(1) .F ; G / is topologically mildly continuous with respect to R and S ,
(2) .F^ ; G ^ / is properly, uniformly, or proximally mildly continuous with

respect to R ^ and S ^.

Proof. From Remark 11 and Theorems 14, 15, and 51, we know that 	, #, and ^
are closure operations for relators such that ^ is both 	– and #–invariant. Therefore,
by Theorem 68, assertion (1) is equivalent to both “the uniformly and proximally
part” of (2). Moreover, from Corollary 27, we know that (1) is also equivalent to
“the properly part” of (2).

From this theorem, by using Theorem 70, we can immediately derive

Corollary 34. The following assertions are equivalent:

(1) .F ; G / is topologically mildly continuous with respect to R and S ,
(2) .F^ ; G ^ / is elementwise properly, uniformly, or proximally mildly conti-

nuous with respect to R ^ and S ^.

Remark 63. This corollary shows that, instead of the topological mild continuity of
the pair .F ; G / with respect to the relators R and S , it is enough to investigate
only the proper, uniform, or proximal mild continuity of the pair .F ; G/ with
respect to the relators R ^ and S ^ for all F 2 F^ and G 2 G ^.

Thus, since F and G were quite arbitrary relators in Notation 1, it is actually
enough to prove the following.

Theorem 84. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is topologically mildly continuous with respect to R and S ,
(2) .F ; G/ is properly, uniformly, or proximally mildly continuous with respect to

R ^ and S ^.

Proof. By Definition 15, assertion (1) is equivalent to the statement that:

(a)
�fFg ; fGg� is topologically mildly continuous with respect to R and S .

Moreover, by Theorem 83, assertion (a) is equivalent to the statement that:
(b)

�fFg^ ; fGg^ � is properly, uniformly, or proximally mildly continuous with
respect to R ^ and S ^.

Now, by Remark 51, we can see that assertion (b) is equivalent to the
statement that:

(c)
�fFg� ; fGg� � is properly, uniformly, or proximally mildly continuous with

respect to R ^ and S ^.
Moreover, since ^ is 	–invariant, we can see that assertion (c) is equivalent

to the statement that:
(d)

�fFg� ; fGg� � is properly, uniformly, or proximally mildly continuous with
respect to

�
R ^ �� and

�
S ^ ��.
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Now, we may recall that the operations 	 and # are 	–absorbing, Therefore,
by Theorem 72, “the uniformly or proximally part” of assertion (d) is equivalent
to the statement that:

(e)
�fFg ; fGg� is uniformly or proximally mildly continuous with respect to R ^
and S ^.

Moreover, we can note that 	 is an inversion and composition compatible
closure operation. Therefore, by Corollary 28, “the uniformly part” of assertion
(e) is equivalent to the statement that:

(f)
�fFg ; fGg� is properly mildly continuous with respect to

�
R ^ �� and S ^.

However, since
�
R ^ �� D R ^, assertion (f) is equivalent to the statement

that:
(g)

�fFg ; fGg� is properly mildly continuous with respect to R ^ and S ^.
Now, by Definition 15, we can see that assertion (e) is equivalent to the

statement that:
(h) .F ; G/ is uniformly or proximally mildly continuous with respect to R ^ and

S ^.
Moreover, assertion (g) is equivalent to the statement that:

(i) .F ; G/ is properly mildly continuous with respect to R ^ and S ^.

Hence, it is clear that assertions (1) and (2) are also equivalent.

Now, from the “properly part” of this theorem, by using Theorem 77, we can
immediately derive the following.

Theorem 85. For any F 2 F and G 2 G , the following assertions are equivalent:

(1) .F ; G/ is topologically mildly continuous,
(2) G�1ıS ^ ı F � R ^,
(3) clF �G .S

^ / � R ^.

Moreover, from the “uniform part” of Theorem 84, by using Theorem 80, we can
easily derive the following.

Theorem 86. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is topologically mildly continuous ,
(2) for each x 2 X and V 2 S ^ there exists R 2 R such that R.x/ �

G�1�V ŒF.x/ �
�
,

(3) for each x 2 X and V 2 S ^ there exists R 2 R such that for every y 2 R.x/
we have G.y/ \ V ŒF.x/ � ¤ ;,

(4) for each x 2 X and V 2 S ^ there exists R 2 R such that for every y 2 R.x/
there exist z 2 F.u/ and w 2 G.y/ such that w 2 V.z/.

Proof. By the “uniform part” of Theorem 84, assertion (1) is equivalent to the
statement that:
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(a)
�
F ; G/ is uniformly mildly continuous with respect to R ^ and S ^.
Moreover, by Theorem 80, assertion (a) is equivalent to the statements that:

(b) for each V 2 S ^ there exists U 2 R ^ such that U � G�1 ı V ı F,
(c) for each V 2 S ^ there exists U 2 R ^ such that for every x 2 X and y 2 U.x/

we have G.y/ \ V ŒF.x/ � ¤ ;,
(d) for each V 2 S ^ there exists U 2 R ^ such that for every x 2 X and y 2 U.x/

there exist z 2 F.x/ and w 2 G.y/ such that w 2 V.z/.

Therefore, to complete the proof, we need to only show that each of assertions
(b)–(d) is equivalent to the corresponding assertion of the theorem. For this, for
instance, we shall show that assertions (c) and (3) are equivalent.

Note that if (c) holds, then for each V 2 S ^ there exists U 2 R ^ such that
U � G�1 ı V ı F, and thus also U.x/ � G�1�V ŒF.x/ �

�
for all x 2 X. Moreover,

by the definition of R ^, for each x 2 X there exists R 2 R such that R.x/ � U.x/,
and thus also R.x/ � G�1�V ŒF.x/ �

�
. Therefore, (3) also holds.

Conversely, if (3) holds, then for each x 2 X and V 2 S ^ there exists Rx 2 R
such that Rx.x/ � G�1�V ŒF.x/ �

�
. Hence, by defining a relation U on X to Y

such that U.x/ D Rx.x/ for all x 2 X, we can at once see that U 2 R ^ such that
U.x/ D Rx.x/ � G�1�V ŒF.x/ �

�
for all x 2 X. Therefore, U � G�1 ı V ı F, and

thus (c) also holds.

Now, from Theorem 85, by letting F to be a function, we can easily derive

Theorem 87. If f 2 F and G 2 G such that f is a function, then the following
assertions are equivalent:

(1) . f ; G/ is topologically mildly continuous,
(2) G�1ıS ı f � R ^,
(3) cl f �G .S / � R ^.

Proof. From Theorem 85, we know that assertion (1) is equivalent to the statement
that: (a) G�1ıS ^ ı f � R ^.

Moreover, by the inclusion S � S ^ and the increasingness of composition, it
is clear that (a) implies (2). Therefore, to prove the equivalence of (1) and (2), we
need only show that (2) also implies (a).

For this, we can note that if x 2 X and V 2 S ^, then by the assumption that
card

�
f .x/

� � 1 and the definition of S ^ there exists S 2 S such that S Œ f .x/ � �
V Œ f .x/ �. Hence, we can already infer that

�
G�1ı S ı f

�
.x/ D G�1� S Œ f .x/ �

� � G�1�V Œ f .x/ �
� D �G�1ı V ı f

�
.x/ :

Moreover, if (2) holds, then G�1ı S ı f 2 R ^. Therefore, there exists R 2 R such
that R.x/ � �G�1ı S ı f

�
.x/, and thus R.x/ � �G�1ı V ı f

�
.x/. This shows that

G�1ı V ı f 2 R ^, and thus (a) also holds.
Now, to complete the proof, it remains to note only that, by Theorem 77,

assertions (2) and (3) are also equivalent.
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Remark 64. From this theorem, by using the inclusion R # � R ^ and Theorem 74,
we can at once see that “the proximal mild continuity of . f ; G/” implies “the
topological mild continuity of . f ; G/”.

Moreover, from Theorem 87, by using Theorems 77, 79, and 81, we can also
easily derive

Corollary 35. Under the assumptions of Theorem 87, the following assertions are
also equivalent:

(1) . f ; G/ is topologically mildly continuous with respect to R and S ,
(2) . f ; G/ is properly, uniformly or proximally mildly continuous with respect to

R ^ and S .

On the other hand, from the proof of Theorem 87, it is clear that, as a consequence
of Theorem 86, we can also state the following.

Theorem 88. If f 2 F and G 2 G such that f is a function, then the following
assertions are equivalent:

(1) . f ; G/ is topologically mildly continuous ,
(2) for each x 2 X and S 2 S there exists R 2 R such that R.x/ �

G�1� S Œ f .x/ �
�
,

(3) for each x 2 X and S 2 S there exists R 2 R such that for every y 2 R.x/ we
have G.y/ \ SŒ f .x/ � ¤ ;,

(4) for each x 2 X and S 2 S there exists R 2 R such that for every y 2 R.x/
there exists w 2 G.y/ such that w 2 S Œ f .x/ �.

Remark 65. Note that if in particular the whole X is the domain of f , then in the
above assertions we may write S

�
f .x/

�
instead of S Œ f .x/ �.

17 Detailed Reformulations of Paratopological Mild
Continuity

By using Theorem 74 and Corollary 27, analogously to Theorem 83, we can also
easily prove the following.

Theorem 89. The following assertions are equivalent:

(1) .F ; G / is paratopologically mildly continuous with respect to R and S ,
(2) .FM ; GM / is properly, uniformly, proximally, or topologically mildly

continuous with respect to R M and S M.
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Hence, by using Theorem 70, we can only derive the following.

Corollary 36. The following assertions are equivalent:

(1) .F ; G / is paratopologically mildly continuous with respect to R and S ,
(2) .FM ; GM / is elementwise properly, uniformly, or proximally mildly continu-

ous with respect to R M and S M.

Remark 66. This corollary shows that, instead of the paratopological mild conti-
nuity of the pair .F ; G / with respect to the relators R and S , it is enough to
investigate only the proper, uniform, or proximal mild continuity of the pair .F ; G/
with respect to the relators R M and S M for all F 2 FM and G 2 GM.

However, instead of an analogue of Theorem 84, we can now only prove

Theorem 90. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is paratopologically mildly continuous with respect to R and S ,
(2)

�
F ı X X ; G ı Y Y

�
is properly, uniformly, proximally, or topologically mildly

continuous with respect to R M and S M.

Proof. By Definition 15, assertion (1) is equivalent to the statement that:

(a)
�fFg ; fGg� is paratopologically mildly continuous with respect to R and S .

Moreover, by Theorem 89, assertion (a) is equivalent to the statement that:
(b)

�fFgM ; fGgM / is properly, uniformly, proximally, or topologically mildly
continuous with respect to R M and S M.

Now, by Remark 51, we can see that assertion (b) is equivalent to the
statement that:

(c)
��

F ı X X
��
;
�
G ı Y Y

�� �
is properly, uniformly, proximally, or topologically

mildly continuous with respect to R M and S M.
Moreover, since M is 	–invariant, we can see that assertion (c) is equivalent

to the statement that:
(d)

��
F ı X X

��
;
�
G ı Y Y

�� �
is properly, uniformly, proximally, or topologically

mildly continuous with respect to
�
R M �� and

�
S M ��.

Now, we may recall that the operations 	, #, and ^ are 	–absorbing.
Therefore, by Theorem 72, the “uniformly, proximally, or topologically part”
of assertion (d) is equivalent to the statement that:

(e)
�
F ıX X ; GıY Y

�
is uniformly, proximally, or topologically mildly continuous

with respect to R M and S M.
Moreover, we may recall that 	 is an inversion and composition compatible

closure operation. Therefore, by Corollary 28, “the uniformly part” of assertion
(e) is equivalent to the statement that:

(f)
�
F ı X X ; G ı Y Y

�
is properly mildly continuous with respect to

�
RM ��

and S M.
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However, since
�
RM �� D RM, assertion (f) is equivalent to the statement

that:
(g)

�
F ıX X ; G ı Y Y

�
is properly mildly continuous with respect to R M and S M.

Hence, it is clear that assertions (1) and (2) are also equivalent.

From this theorem, by using Theorem 70, we can immediately derive

Corollary 37. For any F 2 F and G 2 G , the following assertions are equi-
valent:

(1) .F ; G/ is paratopologically mildly continuous with respect to R and S ,
(2)

�
F ı ' ; G ı  / is properly, uniformly, or proximally mildly continuous with

respect to R M and S M for all ' 2 X X and  2 Y Y.

Remark 67. Hence, it is clear that if in particular X D Z and Y D W, then the
following assertions are equivalent:

(1) .�X ; �Y / is paratopologically mildly continuous with respect to R and S ,
(2) .' ;  / is properly, uniformly, or proximally mildly continuous with respect to

R M and S M for all ' 2 X X and  2 Y Y .

Moreover, from Corollary 37, by using Theorem 68, we can also easily derive

Theorem 91. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is paratopologically mildly continuous with respect to R and S ,
(2) .' ;  / is properly, uniformly, or proximally mildly continuous with respect to

R M and G�1 ıS M ı F for all ' 2 X X and  2 Y Y.

Proof. By “ the properly part” of Corollary 37, assertion (1) is equivalent the
statement that:

(a) .G ı  /�1 ıS M ı .F ı ' / � R M for all ' 2 X X and  2 Y Y .
However, by the corresponding properties of composition, we have

 �1 ı �G�1 ıS M ı F
� ı ' D .G ı  /�1 ıS M ı .F ı ' /

for all ' 2 XX and  2 YY .
Therefore, assertion (a) is equivalent to the statement that:

(b)  �1 ı �G�1 ıS M ı F
� ı ' � R M for all ' 2 X X and  2 Y Y .

However, by the corresponding definitions, this means only that:
(c) .' ;  / is properly mildly continuous with respect to R M and G�1 ıS M ı F

for all ' 2 XX and  2 YY .

Moreover, we can note that RM D �
R M�˙ for ˙ D 	 and #. Therefore,

assertion (b) is equivalent to the statement that:

(d)  �1 ı �G�1 ıS M ı F
� ı ' � �R M �˙ for all ' 2 XX and  2 YY .
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However, by Theorem 68, assertion (d) is equivalent to the statement that:
(e) .' ;  / is mildly ˙–continuous with respect to R M and G�1 ıS M ı F for all

' 2 XX and  2 YY .

Hence, it is clear that assertions (1) and (2) are also equivalent.

Because of Corollary 37, it is also worth proving here the following analogue of
[42, Theorem 6.1].

Theorem 92. For any F 2 F and G 2 G , the following assertions are equivalent:

(1) .F ; G/ is properly, uniformly, or proximally mildly continuous with respect to
RM and S ,

(2) G�1ıS ı F � R M,
(3) G�1� S ŒF.x/ �

� 2 ER for all x 2 X and S 2 S ,
(4) for each x 2 X and S 2 S there exist u 2 X and R 2 R such that R.u/ �

G�1� S ŒF.x/ �
�
,

(5) for each x 2 X and S 2 S there exist u 2 X and R 2 R such that for any
y 2 R.u/ we have G.y/ \ S ŒF.x/ � ¤ ;,

(6) for each x 2 X and S 2 S there exist u 2 X and R 2 R such that for any
y 2 R.u/ there exist z 2 F.x/ and w 2 G.y/ such that w 2 S.z/.

Proof. By Remark 47, it is clear that the “properly part” of (1) is equivalent to

(2). Moreover, we can note that R M D �
R M�˙ for ˙ D 	 and #. Therefore, by

Theorem 68, “the uniformly or proximally parts” of (1) are also equivalent to (2).
Furthermore, if (1) holds, by the corresponding definitions, for each S 2 S , we

have G�1ı S ı F 2 R M. Thus, by the definition of R M, for each x 2 X there exist
u 2 X and R 2 R such that R.u/ � �

G�1 ı S ı F
�
.x/, and thus also R.u/ �

G�1� S ŒF.x/ �
�
. Therefore, (4), and thus (3) also holds. Now, by using the latter

argument, we can also easily see that (3) also implies (1).
Moreover, from the proofs of Theorems 78 and 80, it is clear that the equivalences

(4)” (5)” (6) are also true.

Remark 68. Note that, by Theorem 80, assertion (1) is, for instance, also equivalent
to the statement that:

(3’) for each S 2 S there exists U 2 R M such that U � G�1ıS ı F.

However, it is now, more important to note that, analogously to [42, Theorem 6.3],
now we can now also prove the following

Theorem 93. If f is a function on X onto Z and G 2 G , then under the addition
assumption S ¤ ; the following assertions are equivalent:

(1) . f ; G/ is properly, uniformly, or proximally mildly continuous with respect to
R M and S ,

(2) . f ; G/ is properly, uniformly, or proximally mildly continuous with respect to
R M and S M.



Mild Continuities 499

Proof. From Theorem 92, we can see that assertion (1) is equivalent to the statement
that:

(a) for each x 2 X and S 2 S there exist u 2 X and R 2 R such that R.u/ �
G�1� S Œ f .x/ �

�
.

Moreover, assertion (2) is equivalent to the statement that:
(b) for each x 2 X and V 2 S M there exist u 2 X and R 2 R such that for

R.u/ � G�1�V Œ f .x/ �
�
.

Hence, since S � S M, it is clear that (b) implies (a), and thus (2) implies (1).
Therefore, we need only show that (a) also implies (b), and thus (1) also implies (2) .

For this, assume that (a) holds, and x 2 X and V 2 S M. Now, if in particular
x 2 f �1ŒZ �, then since f is a function we can see that f .x/ 2 Z. Therefore, by
the definition of S M, there exists z 2 Z and S 2 S such that S.z/ � V

�
f .x/

�
.

Moreover, since Z D f ŒX �, there exists t 2 X such that z D f .t/. Thus, we also
have S

�
f .t/

� � V
�
f .x/

�
. Hence, we can see that S Œ f .t/ � � V Œ f .x/ �, and thus also

G�1� S Œ f .t/ �
� � G�1�V Œ f .x/ �

�
. Moreover, by using (a), we can see that there

exist u 2 X and R 2 R such that R.u/ � G�1� S Œ f .t/ �
�
. Thus, we also have

R.u/ � G�1�V Œ f .t/�
�
.

On the other hand, if x 2 X n f �1ŒZ �, then by taking S 2 S and using (a) we
can see that there exist u 2 X and R 2 R such that R.u/ � G�1Œ S Œ f .x/ �

�
. Hence,

since f .x/ D ;, we can infer that R.u/ � ;. Therefore, R.u/ � G�1�V Œ f .x/ �
�

also
holds.

18 Characterizations of Proximal Mild Continuity

The subsequent theorems have also been mainly taken from [31, 34].

Theorem 94. For any F 2 F and G 2 G , the following assertions are
equivalent:

(1) .F ; G/ is proximally mildly continuous ,
(2) A 2 ClR.B/ implies F ŒA � 2 ClS .G ŒB � / for all A � X and B � Y,
(3) F ŒA � 2 IntS

�
D/ implies A 2 IntR

�
G�1 ŒD �

�
for all A � X and D � W.

Proof. Define U D G�1 ı S ı F. Then, by Theorems 81 and 16, we have

.1/ ” U � R # ” ClR � ClU

” �
A 2 ClR.B/ H) A 2 ClU .B/

�
:

Therefore, to prove the equivalence of (1) and (2), we need only show that, for
any A � X and B � Y , we have

A 2 ClU .B/ ” F ŒA � 2 ClS .G ŒB � / :
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For this, by the corresponding definitions and some basic theorems on relations,
it is enough to note only that, for any S 2 S , we have

�
G�1 ı S ı F

�
ŒA � \ B ¤ ;

” G�1� S ŒF ŒA �
� \ B ¤ ; ” S

�
F ŒA �

� \ G ŒB � ¤ ; :

Finally, to complete the proof, we note that the equivalence of (2) and (3) can
be proved by using the relationships between the structures Cl and Int and the
inclusions

G�1 �G ŒB � c
� � Bc and G

�
G�1 ŒD � c

� � Dc

with B � Y and D � W. (To check the latter one, instead of a direct proof, one can
note that G�1 ŒD � c D clG.D/c D intG.Dc/ and G Œ intG.Dc/ � � Dc.)

Namely, if (2) holds, then, by the abovementioned results, it is clear that for any
A � X and D � W

F ŒA � 2 IntS .D/ H) F ŒA � … ClS
�
Dc
� H) F ŒA � … ClS

�
G
�

G�1 ŒD � c
� �

H) A … ClR
�
G�1 ŒD � c

� H) A 2 IntR
�
G�1 ŒD �

�
:

Thus, (3) also holds.
While, if (3) holds, then again by the above mentioned results, it is clear that for

any A � X and B � Y

F ŒA � … ClS
�
G ŒB �

� H) F ŒA � 2 IntS
�
G ŒB � c

�

H) A 2 IntR
�
G�1 �G ŒBc �

� �

H) A 2 IntR
�
Bc
� H) A … ClR.B/ :

Therefore, (2) also holds.

Now, by using the above theorem, we can also easily prove the following.

Theorem 95. If F 2 F and g 2 G such that g is a function and Y D g�1 ŒW �,
then the following assertions are equivalent:

(1) .F ; g/ is proximally mildly continuous ,
(2) A 2 ClR

�
g�1 ŒD �

�
implies F ŒA � 2 ClS .D/ for all A � X and D � W.

Proof. If (1) holds and A � X and D � W, then by Theorem 89 and the inclusion
g
�

g�1 ŒD �
� � D it is clear that

A 2 ClR
�
g�1 ŒD �

� H) F ŒA � 2 ClS
�
g
�

g�1 ŒD �
� � H) F ŒA � 2 ClS .D/ :

Therefore, (2) also holds.
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While, if (2) holds, and A � X and B � Y , then by using the inclusion B �
g�1� g ŒB �

�
and assertion (2) we can see that

A 2 ClR.B/ H) A 2 ClR
�
g�1� g ŒB �

� � H) F ŒA � 2 ClS
�
g ŒB �

�
:

Therefore, by Theorem 94, assertion (1) also holds.

Remark 69. More exactly, we can also state that (1) implies (2) if g is a function,
and (2) implies (1) if Y D g�1 ŒW �.

Moreover, by using Theorem 94, we can also easily prove the following two
theorems.

Theorem 96. If F 2 F and G 2 G such that G�1 is a function and G ŒY � D W,
then the following assertions are equivalent:

(1) .F ; G/ is proximally mildly continuous ,
(2) F ŒA � 2 IntS .G ŒB� / implies A 2 IntR.B/ for all A � X and B � Y.

Remark 70. More exactly, we can also state that (1) implies (2) if G�1 is a function,
and (2) implies (1) if G ŒY � D W.

Theorem 97. If f 2 F and G 2 G such that f is a function and X D f �1ŒZ �, then
the following assertions are equivalent:

(1) . f ; G/ is proximally mildly continuous ,
(2) C 2 IntS .D/ implies f �1 ŒC � 2 IntR

�
G�1 ŒD �

�
for all C � Z and D � W.

Remark 71. More exactly, we can also state that (1) implies (2) if f is a function,
and (2) implies (1) if X D f �1 ŒY �.

Now, by using Theorem 97, we can also easily prove the following.

Theorem 98. If f 2 F and g 2 G such that f and g are functions and X D f �1 ŒZ �
and Y D g�1 ŒW �, then the following assertions are equivalent:

(1) . f ; g/ is proximally mildly continuous ,
(2) f �1 ŒC � 2 ClR

�
g�1 ŒD �

�
implies C 2 ClS .D/ for all C � Z and D � W.

Remark 72. More exactly, we can also state that (1) implies (2) if f and g are
functions, and (2) implies (1) if X D f �1 ŒZ � and Y D g�1 ŒW �.

Moreover, by using Theorems 96 and 97, we can also easily prove

Theorem 99. If f 2 F and G 2 G such that f and G�1 are functions and X D
f �1ŒZ � and G ŒY � D W, then the following assertions are equivalent:

(1) . f ; G/ is proximally mildly continuous ,
(2) C 2 IntS .G ŒB � / implies f �1 ŒC � 2 IntR.B/ for all B � Y and C � Z.

Remark 73. More exactly, we can also state that (1) implies (2) if f and G�1 are
functions, and (2) implies (1) if X D f �1 ŒZ � and G ŒY � D W.
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19 Characterizations of Topological Mild Continuity

From the results of Sect. 18, by using Theorems 84 and 18, we can easily derive
several criteria for topological mild continuity.

However, for this, we have to assume tacitly throughout this section that the
relators R and S , considered in Notation 1, are nonvoid.

Theorem 100. If F 2 F and G 2 G , then the following assertions are
equivalent:

(1) .F ; G/ is topologically mildly continuous ,
(2) F ŒA � � intS .D/ implies A � intR

�
G�1 ŒD �

�
for all A � X and D � W,

(3) A \ clR.B/ ¤ ; implies F ŒA � \ clS .G ŒB � / ¤ ; for all A � X and
B � Y.

Proof. From Theorem 84, we can see that assertion (1) is equivalent to the statement
that:

(a) .F ; G/ is proximally mildly continuous with respect to the relators R ^
and S ^.

Moreover, from Theorem 94, we can see that assertion (a) is equivalent to
the statement that:

(b) F ŒA � 2 IntS ^.D/ implies A 2 IntR ^

�
G�1 ŒD �

�
for all A � X and

D � W.
Furthermore, from Theorem 18, we can see that assertion (b) is equivalent to

assertion (2).

Finally, we note that the equivalence of assertions (2) and (3) can be proved by
using the relationship between the structures cl and int.

Remark 74. Note that if (1) holds, then by Theorem 85 we have

G�1ıS ^ ı F � R ^ :

Moreover, if, for instance, R D ;, but X ¤ ;, then by the definition of R ^ we
have R ^ D ;. Therefore, we necessarily have S ^ D ;, and thus also S D ;.

Hence, by the definition of int, we can see that intS .D/ D ; and quite similarly
intR

�
G�1 ŒD �

� D ; for all D � W. Therefore, assertion (2) fails to hold if X ¤
F �1ŒZ �.

However, it is now more important to note that the above theorem can be
reformulated in the following more concise form.

Corollary 38. Under the conditions of Theorem 100, the following assertions are
equivalent:

(1) .F ; G/ is topologically mildly continuous ,
(2) clR.B/ � F �1 � clS .G ŒB � /

�
for all B � Y,

(3) intR
�
G�1 ŒD �

�c � F �1� intS .D/c
�

for all D � W.



Mild Continuities 503

Proof. By using that FŒA � D S
x2A F.x/ for all A � X, we can see that assertion

(2) of Theorem 100 is equivalent to the statement that:

(a) F.x/ � intS .D/ implies x 2 intR
�
G�1 ŒD �

�
for all x 2 X and D � W.

Moreover, we can note that, for any x 2 X, we have

F.x/ � intS .D/ ” F.x/ \ intS .D/
c D ;

” x … F �1 � intS .D/
c
� ” x 2 F �1� intS .D/

c
�c
:

Therefore, the assertion (a) is equivalent to the statement that:
(b) F �1� intS .D/c

�c � intR
�
G�1 ŒD �

�
for all D � W.

And, this is evidently equivalent to the assertion (3) of the present corollary.

Now analogously to Theorem 100 and Corollary 38, we can also easily prove the
following theorems.

Theorem 101. If F 2 F and g 2 G such that g is a function and Y D g�1 ŒW �,
then the following assertions are equivalent:

(1) .F ; g/ is topologically mildly continuous ,
(2) clR

�
g�1 ŒD �

� � F �1 � clS .D/
�

for all D � W,
(3) A \ clR

�
g�1 ŒD �

� ¤ ; implies F ŒA � \ clS .D/ ¤ ; for all A � X and
D � W.

Theorem 102. If F 2 F and G 2 G such that G�1 is a function and G ŒY � D W,
then the following assertions are equivalent:

(1) .F ; G/ is topologically mildly continuous ,
(2) intR.B/c � F �1� intS .G ŒB� /c � for all B � Y,
(3) F ŒA � � intS .G ŒB� / implies A � intR.B/ for all A � X and B � Y.

Theorem 103. If f 2 F and G 2 G such that f is a function and X D f �1ŒZ �,
then the following assertions are equivalent:

(1) . f ; G/ is topologically mildly continuous ,
(2) f �1 Œ intS .D/ � � intR

�
G�1 ŒD �

�
for all D � W,

(3) C � intS .D/ implies f �1ŒC � � intR
�
G�1 ŒD �

�
for all C � Z and D � W.

Theorem 104. If f 2 F and g 2 G such that f and g are functions and f �1 ŒZ � D
X and Y D g�1 ŒW �, then the following assertions are equivalent:

(1) . f ; g/ is topologically mildly continuous ,
(2) f

�
ClR

�
g�1 ŒD �

� � � ClS .D/ for all D � W,
(3) f �1 ŒC � \ ClR

�
g�1 ŒD �

� ¤ ; implies C � ClS .D/ for all C � Z and
D � W.
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Theorem 105. If f 2 F and G 2 G such that f and G�1 are functions and X D
f �1ŒZ � and G ŒY � D W, then the following assertions are equivalent:

(1) . f ; G/ is topologically mildly continuous ,
(2) f �1 Œ intS .G ŒB � / � � intR.B/ for all B � Y,
(3) C � intS .G ŒB � / implies f �1ŒC �/ � intR.B/ for all C � Z and B � Y.

20 Fatness and Denseness Preserving and Reversing
Relations

The following definition has been first introduced in [42].

Definition 18. For any G 2 G , we say that the relation

(1) G is fatness preserving, with respect to the relators R and S , if E 2 ER

implies G ŒE � 2 ES ,
(2) G is denseness preserving, with respect to the relators R and S , if D 2 DR

implies G ŒD � 2 DS .

Remark 75. Recall that, by the corresponding definitions and some basic theorems
on fat and dense sets, we have

(1) DR D
˚

D � Y W 8 R 2 R W X D R�1 ŒD �
�
,

(2) ER D fE � Y W 9 x 2 X W 9 R 2 R W R.x/ � E
�
,

(3) DR D
˚

D � Y W Dc … ER
� D ˚D � Y W 8 E 2 ER W D \ E ¤ ; �,

(4) ER D
˚

E � Y W E c … DR

� D ˚E � Y W 8 D 2 DR W D \ E ¤ ; �.
Now, by using Definition 18 and Remark 75, we can easily prove the following

theorem of [42].

Theorem 106. For any G 2 G , the following assertions are equivalent:

(1) G is denseness preserving,
(2) G�1 is fatness preserving.

Proof. Suppose that (1) holds and E 2 ES . Then, by Definition 18, for any D 2 DR

we have G ŒD � 2 DS . Moreover, by Remark 75, we can state that E \ G ŒD � ¤
;, and thus G�1 .E/ \ D ¤ ;. Hence, by Remark 75, we can already infer that
G�1 ŒE � 2 ER. Thus, (2) also holds.

The converse implication (2) H) (1) can be proved quite similarly.

Moreover, by using this theorem, we can also easily prove the following
reformulation of [51, Theorem 11.3].
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Theorem 107. For any G 2 G , the following assertions are equivalent:

(1) G is denseness preserving ,
(2) G�1 Œ S.z/ � 2 ER for all z 2 Z and S 2 S ,
(3) for any z 2 Z and S 2 S there exist x 2 X and R 2 R such that

R.x/ � G�1 Œ S.z/ �,
(4) for any z 2 Z and S 2 S there exist x 2 X and R 2 R such that for any

y 2 R.x/ we have G.y/ \ S.z/ ¤ ;.
Proof. If z 2 Z and S 2 S , then S.z/ 2 ES . Hence, if (1) holds, by using
Theorem 106, we can infer that G�1 Œ S.z/ � 2 ER. Therefore, there exist x 2 X
and R 2 R such that R.x/ � G�1 Œ S.z/ �. Thus, for any y 2 R.x/, we have y 2
G�1 Œ S.z/ �, and so G .y/ \ S .z/ ¤ ;.

Hence, it is clear that (1) H) (2) H) (3) H) (4) . The converse implications
can be proved quite similarly.

From the above theorem, it is clear that more specially we also have

Corollary 39. If in particular X D Z, then the following assertions are equi-
valent:

(1) G is denseness preserving with respect to R and S ,
(2) .�X ; G/ is properly mildly continuous with respect to RM and S .

Proof. To check this, note that now, by Remark 10, the assertion (2) of Theorem 107
can be written in the shorter form that G�1ıS ı�X D G�1ıS � R M.

However, it now more important to note that, by using Theorems 106 and 92, we
can also easily prove the following improvement of [42, Theorems 6.5].

Theorem 108. If F 2 F and G 2 G such that F is total and G is denseness
preserving, then the pair .F ; G/ is properly, uniformly, and proximally mildly
continuous with respect to the relators R M and S .

Proof. If x 2 X and S 2 S , then since F.x/ ¤ ; we have S ŒF.x/ � 2 ES . Hence,
by using Theorem 106, we can infer that G�1� S ŒF.x/ �

� 2 ER. Therefore, by
Theorem 92, the required assertion is also true.

From this theorem, by using Theorem 93, we can immediately derive

Corollary 40. If f is a function of X onto Z and G 2 G such that G is denseness
preserving, and S ¤ ;, then the pair . f ; G/ is properly, uniformly, and proximally
mildly continuous with respect to the relators R M and S M.

Moreover, by using Theorems 106 and 92, we can also easily prove the following
improvement of [42, Theorems 6.4].

Theorem 109. If G 2 G such that there exists a function f on X onto Z such that
the pair .f ; G/ is properly, uniformly, or proximally mildly continuous with respect
to the relators R M and S , then G is denseness preserving.
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Proof. By Theorem 106, it suffices to show that G�1 is fatness preserving. For this,
note that if E 2 ES , then by Remark 75 there exist z 2 Z and S 2 S such that
S.z/ � E. Moreover, since Z D f ŒX �, there exists x 2 X such that z D f .x/.
Therefore, we also have S

�
f .x/

� � E, and hence G�1 � S
�
f .x/

� � � G�1ŒE �.
Moreover, by Theorem 92, we have G�1 � S

�
f .x/

� � 2 ER. Therefore, G�1ŒE � 2
ER also holds.

Now, as an immediate consequence of Theorems 108 and 109, we can also state

Corollary 41. For any function f of X onto Y and G 2 G , the following assertions
are equivalent:

(1) G is denseness preserving,
(2) . f ; G/ is properly, uniformly, or proximally mildly continuous with respect to

R M and S .

Moreover, in addition Theorem 109, we can also prove the following improve-
ment of [26, Theorem 9.17].

Theorem 110. If G 2 G such that there exists F 2 F such that the pair .F ; G/
is properly, uniformly, or proximally mildly continuous with respect to the relators
R M and S M and moreover either F ¤ ; or X ¤ ; and R is total, then G is
denseness preserving.

Proof. By Theorem 106, it suffices to show that G�1 is fatness preserving. For this,
note that if E 2 ES , then by Remark 10 the relation V D X�E is in S M. Therefore,
if the pair .F ; G/ is properly mildly continuous with respect to the relators R M

and S M, then the relation U D G�1ı V ı F is in R M. Thus, by Remark 10, for any
x 2 X, we have U.x/ 2 ER.

Moreover, we can note that U.x/ D G�1 �V ŒF.x/ �
�
, and thus

U.x/ D G�1 ŒE � if x 2 DF and U.x/ D ; if x 2 D c
F:

Hence, if F ¤ ;, and thus DF ¤ ;, by choosing x 2 DF, we can see that G�1ŒE � D
U.x/ 2 ER. If R is total, then by Remark 16 we have ; … ER. Hence, we can
see that DF D X, and thus F is also total. Therefore, DF ¤ ;, and thus F ¤ ;,
whenever X ¤ ; also holds. Thus, by the former case, G�1ŒE � 2 ER again holds.

Now, because of Corollary 40 and Theorem 110, we can also state

Corollary 42. If X ¤ ; and S ¤ ;, then for any function f of X onto Y and G 2 G
the following assertions are equivalent:

(1) G is denseness preserving ,
(2) . f ; G/ is properly, uniformly, or proximally mildly continuous with respect to

the relators R M and S M.

Moreover, by using Theorem 110 and Corollary 37, we can also easily prove
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Theorem 111. If G 2 G such that there exists F 2 F such that the pair .F ; G/ is
paratopologically mildly continuous, and moreover X ¤ ; and R is total, then the
relation G ı  is denseness preserving for all  2 Y Y.

Proof. Now, by Corollary 37, the pair
�
F ı' ; G ı / is properly mildly continuous

with respect to the relators R M and S M for all ' 2 X X and  2 Y Y . Hence, by
Theorem 110, we can already see that the required assertion is also true.

Remark 76. To see the usefulness of denseness preserving relations, we can also
note that if R is total, then Y 2 DR. Therefore, if G 2 G such that G is denseness
preserving, then G ŒY � 2 ES .

Hence, we can infer that W 2 DS , and thus S is also total. Moreover, if in
particular Z D W and G ŒY � 2 FS , then W D Z D clS

�
G ŒY �

� � G ŒY � � W,
and thus G ŒY � D W also holds.

In [42], having in mind the definition of contra continuous functions [5, 23], the
first author also introduced following

Definition 19. For any G 2 G , we say that the relation

(1) G is fatness reversing, with respect to the relators R and S , if E 2 ER implies
G ŒE � 2 DS ,

(2) G is denseness reversing, with respect to the relators R and S , if D 2 DR

implies G ŒD � 2 ES .

Now, by using some similar arguments as above, we can also easily prove the
following two theorems of [42].

Theorem 112. For any G 2 G , the following assertions are equivalent:

(1) G is fatness (denseness) reversing ,
(2) G�1 is fatness (denseness) reversing .

Remark 77. Note that the implication (2) H) (1) can now be derived from the
converse implication by using the fact that G D �G�1 /�1.

Moreover, it is also worth noticing that “the fatness reversing part” of the above
theorem can be more easily proved with the help of the following theorem.

Theorem 113. Under the notation F D X � Z, for any G 2 G , the following
assertions are equivalent:

(1) G is fatness reversing,
(2) S �1ı fGg ıR � fFg,
(3) Z D S�1 � G

�
R.x/ �

�
for all x 2 X, R 2 R, and S 2 S .

Proof. If x 2 X and R 2 R, then by Remark 75 we have R.x/ 2 ER. Hence, if
assertion (1) holds, we can infer that G ŒR.x/ � 2 DS . Therefore, by Remark 75, we
have Z D S�1 � G

�
R.x/

� �
for all S 2 S , and thus assertion (3) also holds.
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While, if E 2 ER, then by Remark 75, there exist x 2 X and R 2 R such that
R.x/ � E, and thus S�1 � G ŒR.x/ �

� � S�1 � G ŒE �
�

for all S 2 S . Hence, if
assertion (3) holds, we can infer that Z D S�1 � G ŒE �

�
for all S 2 S . Therefore,

by Remark 75, we also have G ŒE � 2 DS , and thus assertion (1) also holds.
The equivalence of assertions (2) and (3) is immediate from the corresponding

definitions.

Remark 78. Note that if in particular the relators R and S are nonvoid, then instead
of (2) we may also write that fFg D S �1ı fGg ıR.

Moreover, it is also worth noticing that

clS
�
G
�

R.x/ �
� D S�1 � G

�
R.x/ �

� D �S�1ı G ı R
�
.x/ D clR�S

�fGg�.x/

for all x 2 X, R 2 R and S 2 S .

Now, as a detailed reformulation of Theorem 113, we can also state

Corollary 43. For any G 2 G , the following assertions are equivalent:

(1) G is fatness reversing ,
(2) S.z/ \ G ŒR.x/ � ¤ ; for all x 2 X, z 2 Z, R 2 R and S 2 S ,
(3) for any x 2 X, z 2 Z, R 2 R, and S 2 S , there exist y 2 R.x/ and w 2 S.z/

such that w 2 G.y/.

However, it is now more important to note that, as an immediate consequence
of Theorems 50 and 68, and the fact that, under the notation F D X�Z, we have
fFg D fFg˙ for any stable unary operation ˙ for relators, we can also state

Theorem 114. If in particular � is a stable, inversion and composition compatible
closure operation, then under the notation F D X�Z, for any G 2 G , the following
assertions are equivalent:

(1) G is fatness reversing with respect to R and S ,
(2) .R ; S / is mildly �–continuous with respect to fFg and fGg.
Remark 79. Note that now, under the notation F D X�Z, for any R 2 R and S 2 S ,
we have to consider the diagram:

X
R

Y

F G

Z
S

W

Remark 80. In addition to the fatness and denseness preserving and reversing
relations, the proximal and topological openness and closedness preserving and
reversing relations should also be investigated.

However, by the results of [51], these relations are rather connected with the
proximally and topologically lower and upper continuous relations than with the
proximally and topologically mildly continuous ones.
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Surprisingly enough, in the context of topological spaces and their obvious
generalizations, functions and relations with topological openness and closedness
reversing inverses, under the name “contra-continuous functions and upper and
lower contra-continuous multifunctions,” have also been intensively investigated by
a great number of mathematicians. (See, for instance, [1, 5, 8, 12, 18, 23].)
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Contraction Maps in Pseudometric Structures

Mihai Turinici

Abstract In Sect. 1, an extension to semigroup couple metric spaces is given for the
fixed point result in Matkowski (Diss Math 127:1–68, 1975). In Sect. 2, we show that
the simulation-type contractive maps in quasi-metric spaces introduced by Alsulami
et al. (Discrete Dyn Nat Soc 2014, Article ID 269286, 2014) are in fact Meir–Keeler
maps. Finally, in Sect. 3, the Brezis–Browder ordering principle (Adv Math 21:355–
364, 1976) is used to get a proof, in the reduced axiomatic system (ZF-AC+DC), of
a fixed point result [in the complete axiomatic system (ZF)] over Cantor complete
ultrametric spaces due to Petalas and Vidalis (Proc Am Math Soc 118:819–821,
1993). The methodological approach we chose consisted in treating each section
from a self-contained perspective; so, ultimately, these are independent units of the
present exposition.

1 Matkowski-Type Contractions in Semigroup Couple
Metric Spaces

1.1 Introduction

Let X be a nonempty set. Call the subset Y of X, almost singleton (in short:
asingleton), provided [y1; y2 2 Y implies y1 D y2], and singleton if, in addition,
Y is nonempty; note that in this case Y D fyg, for some y 2 X. Further, let
d W X � X ! RC WD Œ0;1Œ be a metric over it; the couple .X; d/ will be termed a
metric space. Finally, let T 2 F .X/ be a selfmap of X. [Here, for each couple A;B
of nonempty sets, F .A;B/ stands for the class of all functions from A to B; when
A D B, we write F .A/ in place of F .A;A/.] Denote Fix.T/ D fx 2 XI x D Txg;
each point of this set is referred to as fixed under T . In the metrical fixed point theory,
such points are to be determined according to the context below, comparable with
the one in Rus [59, Chap. 2, Sect. 2.2]:
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(pic-1) We say that T is a Picard operator (modulo d) if, for each x 2 X, the
iterative sequence .TnxI n � 0/ is d-convergent; and a globally Picard
operator (modulo d) if, in addition, Fix.T/ is an asingleton

(pic-2) We say that T is a strong Picard operator (modulo d) if, for each x 2 X,
.TnxI n � 0/ is d-convergent with limn.Tnx/ 2 Fix.T/; and a globally
strong Picard operator (modulo d) if, in addition, Fix.T/ is an asingleton
(hence, a singleton).

Sufficient conditions for such properties will be stated in the class of “functional”
metric contractions. Call T , .dI'/-contractive (for some ' 2 F .RC/), when

(a01) d.Tx;Ty/ � '.d.x; y//, for all x; y 2 X.

The functions to be considered here are as follows. Let us say that ' 2 F .RC/ is
increasing, in case [t1 � t2 implies '.t1/ � '.t2/]; the class of all these will be
denoted as F .in/.RC/. Further, call ' 2 F .in/.RC/, regressive in case '.0/ D 0

and ['.t/ < t, 8t > 0]; the subclass of all these will be denoted as F .in; re/.RC/.
Finally, we shall say that ' 2 F .in; re/.RC/ is Matkowski admissible, provided

(a02) 'n.t/! 0 as n!1, for all t 2 RC.

[Here, for each n � 0, 'n stands for the n-th iterate of '.] The following fixed point
result in Matkowski [44] is then available.

Theorem 1. Suppose that T is .dI'/-contractive, for some Matkowski admissible
function ' 2 F .in; re/.RC/. In addition, let X be d-complete. Then, T is globally
strong Picard (modulo d); precisely,

Fix.T/ D fzg and Tnx
d�! z, for each x 2 X.

Note that, when ' is linear, i.e.,

(a03) '.t/ D ˛t, t 2 RC, for some ˛ 2 Œ0; 1Œ,
then all regularity properties above hold, and the contractive condition becomes

(a04) d.Tx;Ty/ � ˛d.x; y/, for all x; y 2 X

[referred to as T is .dI˛/-contractive]; the corresponding version of Theorem 1
is just the 1922 Banach contraction mapping principle [4]. On the other hand,
Theorem 1 has certain overlaps with the 1969 fixed point result in Boyd and Wong
[8]; however, a complete identification of these is not possible. A similar conclusion
is to be derived with respect to the related statement in Leader [43], based on
contractive conditions like

(a05)  .d.Tx;Ty// � d.x; y/, for all x; y 2 X;

where  2 F .RC/ is endowed with certain regularity properties; we do not give
further details.
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By the discussed relationships and its simple construction, Matkowski’s fixed
point result found a multitude of applications in operator equations theory; so, it
was the subject of various extensions. From the perspective of this exposition, the
following ones are of interest.

(I) Contractive extensions: the contractive property is to be taken as

(a06) F.d.Tx;Ty/; d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.y;Tx// � 0,
for all x; y 2 X with xRy,

where F W R6C ! R is a function and R � X � X is a relation over X. When
R D X�X (the trivial relation over X), a large list of such metrical contractions
may be found in the 1977 survey paper by Rhoades [57]. On the other hand, if

(a07) R is reflexive, transitive, antisymmetric (hence, a (partial) order),

an extension of Matkowski’s theorem was carried out in the 1986 paper
by Turinici [67]. (Note that, two decades later, these results have been
rediscovered—at the level of Banach contractive maps—by Ran and Reurings
[56]; see also Nieto and Rodriguez-Lopez [51].) Finally, a functional extension
of the linear-type results we just quoted was performed in Agarwal et al. [1];
and, since then, the number of such papers increased rapidly.

(II) Conical extension: the co-domain RC of d.:; :/ is to be taken as a (convex)
cone P of a topological vector space .Y;T /. The pioneering results in this
direction are contained in the 2007 paper due to Huang and Zhang [31] (where
a vectorial generalization of Banach’s theorem is being obtained) and the 2008
contribution in Di Bari and Vetro [19] (devoted to a corresponding extension
of Matkowski’s theorem). This line of research was then developed in the
next years by many authors; for a large list of their contributions, we refer
to the 2011 survey paper by Janković et al. [35]. However, according to this
exposition—as well as the related ones in Du [21] and Khamsi [39]—most
of these vector statements are in fact reducible to their “scalar” versions. So,
we may ask whether this conclusion remains true beyond the topological vector
space setting. It is our aim in the following to give a (partial) negative answer to
this, in the realm of (ordered) semigroup couple metric spaces. Further aspects
will be delineated in a separate paper.

1.2 Preliminaries

Throughout our exposition, the ambient axiomatic system is Zermelo–Fraenkel’s
(abbreviated: ZF). In fact, the reduced system (ZF-AC+DC) will suffice; here, (AC)
stands for the Axiom of Choice, and (DC) is the Dependent Choice Principle. The
notations and basic facts to be used in this reduced system are standard. Some
important ones are described below.
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(A) Let X be a nonempty set. By a relation over X, we mean any nonempty part
R of X � X. For simplicity, we sometimes write .x; y/ 2 R as xRy. Note that
R may be regarded as a mapping between X and 2X (D the class of all subsets
in X). In fact, denote for x 2 X:

X.x;R/ D fy 2 XI xRyg (the section of R through x);

then, the desired mapping representation is .R.x/ D X.x;R/I x 2 X/. A basic
example of such object is

I D f.x; x/I x 2 Xg [the identical relation over X].

Given the relations R, S over X, define their product R ıS as

.x; z/ 2 R ıS , if there exists y 2 X with .x; y/ 2 R, .y; z/ 2 S .

Also, for each relation R in X, denote

R�1 D f.x; y/ 2 X � XI .y; x/ 2 Rg (the inverse of R).

Finally, given the relations R and S on X, let us say that R is coarser than S
(or equivalently: S is finer than R), provided

R � S ; i.e., xRy implies xS y.

Given a relation R on X, the following properties are to be discussed here:

(P1) R is reflexive: I � R.
(P2) R is irreflexive: R \I D ;.
(P3) R is transitive: R ıR � R.
(P4) R is symmetric: R�1 D R.
(P5) R is antisymmetric: R�1 \R � I .

This yields the classes of relations to be used; the following ones are important for
our developments:

(C0) R is trivial (i.e., R D X � X).
(C1) R is a (partial) order (reflexive, transitive, antisymmetric).
(C2) R is a strict order (irreflexive and transitive).
(C3) R is a quasi-order (reflexive and transitive).
(C4) R is an equivalence (reflexive, transitive, symmetric).

A basic ordered structure is .N;�/; here, N D f0; 1; : : :g is the set of natural
numbers and .�/ is defined as

m � n iff mC p D n, for some p 2 N.

In fact, .N;�/ is well ordered; i.e., any (nonempty) subset of N has a first element.
By a sequence in X, we mean any mapping x W N ! X. For simplicity reasons,
it will be useful to denote it as .x.n/I n � 0/, or .xnI n � 0/; moreover, when no
confusion can arise, we further simplify this notation as .x.n// or .xn/, respectively.
Also, any sequence .yn WD xi.n/I n � 0/ with

.i.n/I n � 0/ is divergent (in the sense: i.n/!1 as n!1)
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will be referred to as a subsequence of .xnI n � 0/.
(B) Let P be a nonempty set and .�/ be a (partial) order (i.e., reflexive, transitive,

antisymmetric relation) over it, fulfilling

(f-ele) P has a first element, � (i.e., � � t, 8t 2 P);

note that � is uniquely determined in this way. Let also .</ denote the relation
over X attached to .�/, according to

.</ D .�/ nI (or equivalently: x < y iff x � y and x ¤ y);

it is irreflexive and transitive—hence, a strict order. Further, take a binary
operation .t; s/ 7! tC s over P; the following conditions are to be considered

(bop-1) (zero element): t D � C t D tC � , 8t 2 P (hence, � C � D �)
(bop-2) (monotone): t1 � t2, s1 � s2 H) t1 C s1 � t2 C s2.

Finally, let us introduce a strict order .�/ over P and a (nonempty) subset Q of
P0 WD P n f�g, subjected to the conditions

(osc-1) .�/ is coarser than .�/: x� y implies x � y.
(osc-2) .�;�/ is transitive: x � y, y� z imply x� z.
(osc-3) Q is small (8q 2 Q, 9r 2 Q: rC r� q), hence, (� � q, 8q 2 Q).
(osc-4) .�/ is right translative: r; q 2 Q, t 2 P, r� q H) rC t� qC t.
(osc-5) Q is uniformly-dense: t; s 2 P, [t� qC s, 8q 2 Q] H) t � s.

(Hence, in particular, Q is zero-dense: t 2 P, [t� q, 8q 2 Q]H) t D � .)

When all these conditions (f-ele), (bop-1)+(bop-2), and (osc-1)-(osc-5) are holding,
then .PI �;�ICIQ/ will be called an ordered semigroup couple.

Suppose in the following that we introduced such a structure. Define a zero
(sequential) convergence .!/ over P as: we say that the sequence .tnI n � 0/ in
P, converges to � 2 P (and we write tn ! � ), iff

(z-conv) 8q 2 Q, 9n.q/ � 0: n � n.q/ H) tn � q.

Some basic properties of this convergence are collected in

Lemma 1. Under these conventions, we have

(zc-1) the constant sequence .tn D � I n � 0/ fulfills tn ! �

(zc-2) if tn ! � , then sn ! � , for each subsequence .sn/ of .tn/
(zc-3) .sn � tn;8n/ and tn ! � imply sn ! �

(zc-4) sn ! � , tn ! � imply sn C tn ! � .

Proof. (zc-1): Let q 2 Q be arbitrary fixed. By the small property of Q, there
exists (an associated element) r 2 Q, with

.� �/rC r� q; hence � � q.

(zc-2): Evident.
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(zc-3): Let q 2 Q be arbitrary fixed. As tn ! � , there exists n.q/ � 0, such that
n � n.q/ implies tn � q. This, along with (hypothesis and) the transitive
property, gives sn � q, 8n � n.q/, and the conclusion follows.

(zc-4): Let q 2 Q be arbitrary fixed and r 2 Q be given by the small property
of Q. By the imposed hypotheses, there must be some n.r/ � 0 such that
(taking the coarser property into account)

n � n.r/ implies sn � r, tn � r (hence, sn � r, tn � r).

Combining with the monotone property of our binary operation, we get (for the
same n): snC tn � rC r. This, along with rC r� q, yields (again by means of the
transitive property)

sn C tn � q; 8n � n.r/;

and the assertion follows.

Finally, note that all these facts are holding as well over partially ordered
semigroups taken as in Bourbaki [7, Chap. 3, Sect. 2]. Further aspects may be found
in the 1968 contribution due to Popa [55].

(C) Let .P;�;�ICIQ/ be an ordered semigroup couple and X be a nonempty set.
We say that the map d W X � X ! P is a P-metric on X, provided

(b01) d is reflexive sufficient: x D y iff d.x; y/ D �
(b02) d is symmetric: d.x; y/ D d.y; x/, 8x; y 2 X
(b03) d is triangular: d.x; z/ � d.x; y/C d.y; z/, 8x; y; z 2 X.

In this case, .X; d/ will be referred to as a P-metric space.

Given this space, we may introduce a (sequential) d-convergence and d-Cauchy
structure on X, as below. Let us say that the sequence .xnI n � 0/ in X, d-converges

toward the point x 2 X (and write: xn
d�! x), if

d.xn; x/! � as n!1;

or equivalently (by definition)

(b04) 8q 2 Q, 9n.q/ � 0: n � n.q/ H) d.xn; x/� q.

The set of all such x will be denoted as limn.xn/. Some basic facts about this concept
are being collected in

Lemma 2. The introduced convergence .
d�!/ has the properties

(conv-1) (reflexive)

(8u 2 X): .xn D uI n � 0/ fulfills xn
d�! u

(conv-2) (hereditary)

if xn
d�! x, then yn

d�! x, for each subsequence .yn/ of .xn/;
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so, it fulfills the general requirements in Kasahara [38]. Moreover, the convergence
in question has the property

(conv-3) (separated)
limn.xn/ is an asingleton, for each sequence .xnI n � 0/ in X.

[This will be also referred to as d is separated.]

Proof. (conv-1), (conv-2): Evident.

(conv-3): Suppose that the sequence .xn/ fulfills xn
d�! u, xn

d�! v, and let
q 2 Q be arbitrary fixed. By the small property of Q, there exists r 2 Q such that

.r �/rC r� q, hence, r� q.

On the other hand, from the convergence hypothesis above, there must be some rank
n.r/ � 0 such that

n � n.r/ H) d.xn; u/; d.xn; v/� r:

This, along with the triangular inequality, gives

d.u; v/ � d.xn; u/C d.xn; v/ � rC r.� q/;

whence (by the transitive property) d.u; v/ � q. As q 2 Q was arbitrarily taken,
one must have (as Q is zero-dense) d.u; v/ D � , hence u D v.

Let .xnI n � 0/ be a sequence in X. If limn.xn/ is nonempty, the underlying
sequence will be referred to as d-convergent. By the (last part of the) preceding
result, this is equivalent with fzg D limn.xn/ (for some z 2 X); as usually, this is to
be written as z D limn.xn/.

Further, let us say that .xnI n � 0/ is d-Cauchy, provided

d.xn; xm/! � as n;m!1, n � m,

or equivalently (by definition)

(b05) 8q 2 Q, 9n.q/ � 0: n.q/ � n � m H) d.xn; xm/� q.

Note that, by the small property of Q, each d-convergent sequence is d-Cauchy. The
reciprocal is not in general true, as simple examples show. Concerning this aspect,
call the sequence .xnI n � 0/ in X, d-semi-Cauchy, provided

d.xn; xnC1/! � as n!1,

or equivalently (by definition)

(b06) 8q 2 Q, 9n.q/ � 0: n.q/ � n H) d.xn; xnC1/� q.

Clearly, each d-Cauchy sequence is d-semi-Cauchy too; the reciprocal inclusion is
not in general true.
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1.3 Statement of the Problem

Let .PI �;�ICIQ/ be an ordered semigroup couple (see above). Further, let X be
a nonempty set. Take a P-metric d W X � X ! P on it, and let .�/ be a quasi-order
(i.e., reflexive and transitive relation) over X; the triple .X; d;�/ will be referred
to as a quasi-ordered P-metric space. Call the subset Y of X, .�/-almost-singleton
(in short: .�/-asingleton), provided [y1; y2 2 Y , y1 � y2 H) y1 D y2]; and
.�/-singleton when, in addition, Y is nonempty. Finally, let T be a selfmap of X.
We have to determine circumstances under which Fix.T/ WD fx 2 XI x D Txg
is nonempty; and, if this holds, to establish whether T is fix-.�/-asingleton (i.e.,
Fix.T/ is .�/-asingleton) or equivalently T is fix-.�/-singleton (in the sense: Fix.T/
is .�/-singleton). To do this, we start from the hypotheses

(c01) T is .�/-semi-progressive [X.T;�/ WD fx 2 XI x � Txg ¤ ;].
(c02) T is .�/-increasing [x � y implies Tx � Ty].

In this setting, the basic directions under which the investigations be conducted
are described by the list below, comparable with the one in Turinici [71]:

(spic-1) We say that T is a Picard operator (modulo .d;�/) if, for each x 2
X.T;�/, .TnxI n � 0/ is d-convergent; and a globally Picard operator
(modulo .d;�/) if, in addition, T is fix-.�/-asingleton

(spic-2) We say that T is a strong Picard operator (modulo .d;�/) when, for each
x 2 X.T;�/, .TnxI n � 0/ is d-convergent with limn.Tnx/ belonging to
Fix.T/; and a globally strong Picard operator (modulo .d;�/) when, in
addition, T is fix-.�/-asingleton (hence, fix-.�/-singleton)

(spic-3) We say that T is a Bellman Picard operator (modulo .d;�/) when, for
each x 2 X.T;�/, .TnxI n � 0/ is d-convergent with Tnx � limn.Tnx/ 2
Fix.T/, for all n; and a globally Bellman Picard operator (modulo .d;�/)
when, in addition, T is fix-.�/-asingleton (hence, fix-.�/-singleton).

The sufficient (regularity) conditions for such properties are being founded on
ascending orbital concepts (in short: (a-o)-concepts). Namely, call the sequence
.znI n � 0/ in X, .�/-ascending if zi � zj, for i � j; and T-orbital when it is a
subsequence of .TnxI n � 0/, for some x 2 X; the intersection of these is just the
precise notion.

(sreg-1) Call X, (a-o,d)-complete provided (for each (a-o)-sequence): d-Cauchy
H) d-convergent.

(sreg-2) We say that T is (a-o,d)-continuous, if [.zn/ D (a-o)-sequence and zn
d�!

z] imply Tzn
d�! Tz.

(sreg-3) Call .�/, (a-o,d)-selfclosed when [.zn/ D (a-o)-sequence, zn
d�! z]

imply [zn � z, 8n]; or, in other words: the d-limit of each d-convergent
(a-o)-sequence in X is an upper bound of it.

When .�/ is the trivial relation over X, these conventions are comparable with
the ones in Rus [59, Chap. 2, Sect. 2.2], because, in this case, X.T;�/ D X.
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As a completion of these, we must now describe the contractive conditions to be
used. Denote, for x; y 2 X

M1.x; y/ D d.x; y/, M2.x; y/ D d.x;Tx/, M3.x; y/ D d.y;Ty),
M4.x; y/ D d.Tx; y/, M D fM1;M2;M3;M4g.

Note that each nonempty subset H of M may be written as

H D fMiI i 2 Ig, where ; ¤ I � f1; 2; 3; 4g;
in this case, denote

H .x; y/ D fMi.x; y/I i 2 Ig, x; y 2 X.

Let .�/ stand for the strict quasi-order attached to .�/, as

x � y iff x � y and x ¤ y.

[Clearly, the underlying relation is irreflexive (x � x is impossible, 8x 2 X), but not
in general transitive.] Given a nonempty subset H of M and a mapping ' 2 F .P/,
call T 2 F .X/, .d;�I';H /-contractive provided

(c03) d.Tx;Ty/ � '.H .x; y//, 8x; y 2 X, x � y.

(Here, given the couple U;V 2 2X , we put

U � V iff 8u 2 U, 9v 2 V: u � v;

this relation is reflexive and transitive, but not in general antisymmetric.) The
functions ' 2 F .P/ appearing here are subjected to regularity conditions like

(rc-1) ' is increasing (on P): t1 � t2 H) '.t1/ � '.t2/.
(rc-2) ' is regressive (on P): '.�/ D � and '.t/ < t, 8t 2 P0 D P n f�g.
(rc-3) ' is Matkowski (on P): 'n.t/! � , for each t 2 P.
(rc-4) ' is strongly regressive on Q (8q 2 Q, 9r 2 Q: rC '.q/� q).

Note that the last condition above has a strong connection with the small property
of Q; we do not give details.

1.4 Main Result

Let .PI �;�ICIQ/ be an ordered semigroup couple; this, by definition, means

(osc-1) .�/ is a (partial) order on P with respect to which P has a first element,
� ; in addition, the binary operation .C/ has � as null element and is
monotone.

(osc-2) .�/ is a strict order on P and Q is a (nonempty) subset of P0 WD P n f�g,
with: .�/ is coarser than .�/, .�;�/ is transitive, and Q is small.

(osc-3) .�/ is right translative and Q is uniformly dense (hence, zero-dense).
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Further, let .X; d;�/ be a quasi-ordered P-metric space, and take a selfmap T of
X, supposed to be .�/-semi-progressive and .�/-increasing. The basic directions
and regularity conditions under which the problem of determining fixed points of T
is to be solved were already listed, and the contractive-type framework was settled.

The first main result of this exposition is

Theorem 2. Suppose that T is .d;�I';H /-contractive, where ; ¤ H � M
and ' 2 F .P/ is increasing, regressive, Matkowski (on P), and strongly regressive
on Q. In addition, let the ambient space X be (a-o,d)-complete. Then,

I-a) T is a strong Picard operator (modulo .d;�/) when, in addition, T is
assumed to be (a-o,d)-continuous.

I-b) T is a Bellman Picard operator (modulo .d;�/) when, in addition, .�/ is
taken as (a-o,d)-selfclosed.

Proof. Clearly, without loss, one may assume (via ' D increasing) that H D M .
There are some general and specific steps to be passed.

Step-gen 1. Let us prove the .�/-asingleton property of Fix.T/. Take a couple of
points z1; z2 2 Fix.T/ with z1 � z2, and assume by contradiction that
z1 ¤ z2; hence, z1 � z2, t WD d.z1; z2/ > � . By definition,

d.z1; z2/ D t; d.z1;Tz1/ D d.z2;Tz2/ D � � t; d.Tz1; z2/ D d.z1; z2/ D t:

In this case, the contractive condition yields (as ' D increasing)

t D d.Tz1;Tz2/ � '.t/; impossible, as ' is regressive,

wherefrom the claim follows.
Step-gen 2. We now establish the useful evaluation

d.Tx;T2x/ � '.d.x;Tx//; whenever x � Tx;Tx � T2x: (1)

In fact, let x 2 X be as in the premise above; hence, in particular,
d.x;Tx/ > � , d.Tx;T2x/ > � . By definition,

M .x;Tx/ D fd.x;Tx/; d.Tx;T2x/; �gI

so, from the contractive condition, the alternatives below hold:

d.Tx;T2x/ � '.d.x;Tx//; i.e., the desired conclusion
d.Tx;T2x/ � '.d.Tx;T2x//; impossible, via ' D regressive
d.Tx;T2x/ � '.�/ D � ; impossible, via d.Tx;T2x/ > � ,

hence the conclusion.

It remains now to establish the strong/Bellman Picard property (modulo .d;�/).
Fix x0 2 X.T;�/ and put .xn D Tnx0I n � 0/; this is an ascending orbital sequence
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in X. If xk D xkC1, for some k � 0, we are done (in view of xk 2 Fix.T/); so, it
remains to discuss the opposite case; i.e., for all n � 0,

(d01) xn ¤ xnC1, hence, xn � xnC1, �n WD d.xn; xnC1/ > � .

There are several (specific) steps to be passed.

Step 1. From the preceding (general) step, it follows that

�nC1 � '.�n/ < �n; 8n: (2)

This firstly tells us that .�nI n � 0/ is strictly descending in P0 D P n f�g.
Secondly, as ' is increasing, one gets (by a repeated application of ' to
the above evaluation)

�n � 'n.�0/; for all n: (3)

This, combined with the Matkowski property (over P), gives

�n WD d.xn; xnC1/! � as n!1; (4)

i.e., .xnI n � 0/ is a d-semi-Cauchy sequence in X.
Step 2. Suppose that

(d02) there exist i; j 2 N such that i < j, xi D xj.

This yields xiC1 D xjC1; so that, �i D �j. On the other hand, by the strict
descending property above, one has �i > �j; in contradiction with the
previous relation. Hence, our working hypothesis cannot hold, wherefrom

for all i; j 2 N: i < j implies xi � xj; hence, d.xi; xj/ > � . (5)

Step 3. We now show that .xnI n � 0/ is d-Cauchy. Let q 2 Q be arbitrary fixed.
As ' is strictly regressive on Q, there exists r 2 Q such that

.r �/rC '.q/� q, hence, r� q. (6)

By (4), there exists for this r, some rank n.r/ � 0, in such a way that

d.xn; xnC1/� r; 8n � n.r/: (7)

We now claim that the following property holds

.8i � 0/ W d.xn; xnCi/� q; 8n � n.r/; (8)

wherefrom the d-Cauchy property of .xnI n � 0/ follows. A verification of this
assertion is to be made via (ordinary) induction. The case i D 0 is clear, via
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(Q D small), and the case i D 1 follows via (6)+(7). Assume that (8) holds for
all i 2 f1; : : : ; jg, where j � 1; we have to verify that it holds as well for i D jC 1.
So, let n � n.r/ be arbitrary fixed. By the inductive hypothesis and (7),

d.xn; xnCj/; d.xnC1; xnCj/� q;
d.xn; xnC1/; d.xnCj; xnCjC1/� r.� q/:

By the preceding step, the contractive condition applies to .xn; xnCj/ and yields (via
' D increasing)

d.xnC1; xnCjC1/ D d.Txn;TxnCj/ � '.d.xn; xnCj// � '.q/:

This, finally combined with (6), yields (by the triangular inequality)

d.xn; xnCjC1/ � d.xn; xnC1/C d.xnC1; xnCjC1/ � rC '.q/.� q/;

and conclusion follows (by the transitive property).

Step 4. As X is (a-o,d)-complete, xn
d�! z, for some (uniquely determined) z 2 X.

If there exists a sequence of ranks .i.n/I n � 0/with i.n/!1 as n!1
such that

(xi.n/ D z, 8n), hence, (xi.n/C1 D Tz, 8n)

then, as .xi.n/C1I n � 0/ is a subsequence of .xnI n � 0/, one gets

xi.n/C1
d�! z; whence (as d D sufficient), z D Tz. So, in the following, we

may assume that the opposite alternative is true:

(d03) 9h D h.z/ � 0: n � h H) xn ¤ z.

There are two cases to be discussed.

Case 1. Suppose that T is (a-o,d)-continuous. Then

yn WD Txn
d�! Tz as n!1.

On the other hand, .yn D xnC1I n � 0/ is a subsequence of .xnI n �
0/, whence (by the hereditary property), yn

d�! z; and this yields
(as d D separated), z D Tz.

Case 2. Suppose that .�/ is (a-o,d)-selfclosed; note that, as a direct consequence
of the convergence property above, xn � z, 8n. We show that b WD
d.z;Tz/ > � yields a contradiction. Let q 2 Q be arbitrary fixed and
r 2 Q be such that

.r �/rC '.q/� q; hence r� q.

Given this r, there must be some rank n.r/ � h, such that (by the convergence
property and previous facts) we have, for all n � n.r/
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M1.xn; z/ D d.xn; z/ � r; M2.xn; z/ D d.xn;Txn/ D d.xn; xnC1/ � r;
M3.xn; z/ D d.z;Tz/ D b; M4.xn; z/ D d.Txn; z/ D d.xnC1; z/ � r:

Remember that, in view of ' D increasing, one may take H D M . From the
contractive property, one derives (for the same ranks n)

d.xnC1;Tz/ D d.Txn;Tz/ � '.r/, or d.xnC1;Tz/ D d.Txn;Tz/ � '.b/.

The former case gives, by the triangular inequality,

b � d.z; xnC1/C d.xnC1;Tz/ � rC '.r/ � rC '.q/ � .rC '.q//C '.b/;
hence; b � .rC '.q//C '.b/:

Since rC '.q/� q, the right translative property of .�/ yields

.rC '.q//C '.b/� qC '.b/I

so that (taking the previous relation into account)

b� qC '.b/ (for all q 2 Q): (9)

On the other hand, the latter case gives (again by the triangular inequality)

b � d.z; xnC1/C d.xnC1;Tz/ � rC '.b/I hence; b � rC '.b/:

Since r� q, the right translative property of .�/ yields

rC '.b/� qC '.b/I

so that (taking the previous relation into account) (9) is again valid. But, the
underlying relation yields (via Q D uniformly dense), b � '.b/, in contradiction
with (the working upon b condition and) regressiveness of '. Hence, necessarily,
b D � , i.e., z D Tz. The proof is complete.

Note that further extensions of these facts are possible, in the realm of triangular
P-symmetric spaces, taken as in Hicks and Rhoades [29], or in the setting of partial
P-metric spaces, introduced under the lines in Matthews [46]. We shall discuss all
these elsewhere.

1.5 Particular Aspects (Conical Metrics)

Let Y be a (real) vector space. In particular, this shows that .Y;C/ is an Abelian
group; so that, if � stands for the zero element of Y , we have
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y D yC � D � C y; 8y 2 YI
.C/ is commutative and associativeI
8y 2 Y; 9.�y/ 2 Y W yC .�y/ D .�y/C y D �:

(10)

(A) Call the (nonempty) subset P of Y a (convex) cone of it, when

(e01) ˛PC ˇP � P, for all ˛; ˇ 2 RC.

Fix in the following such an object, P; endowed with the properties

(e02) P is proper (P ¤ Y) and nondegenerate (P ¤ f0g).
(e03) P is pointed (P \ .�P/ D f0g).
In this case, the relation (over Y)

y1 �P y2 iff y2 � y1 2 P

(denoted simply as .�/, when P is understood) is reflexive, transitive, and
antisymmetric—hence, a (partial) order—on Y . Moreover, .�/ is compatible
with the linear space structure (of Y):

u � v H) uC z � v C z; �u � �v; 8z 2 Y; 8� 2 RC: (11)

(B) We say that c 2 P is an algebraic interior (or internal) point of P, when

(e04) 8u 2 Y , 9� D �.u/ 2�0; 1Œ, with cC �.u � c/ 2 P.

Note that, by the convexity of P, this may be also written as

8u 2 Y , 9� D �.u/ 2�0; 1Œ, with cC �.u � c/ 2 P, 8� 2 Œ0; ��.
And this, passing to the c-symmetric point v D 2c � u, is equivalent with the
usual definition of the concept in question

(e05) 8u 2 Y , 9� D �.u/ 2�0; 1Œ, such that cC�.u� c/ 2 P, 8� 2 Œ��; ��.
The class of all such points will be denoted aint.P/ (the algebraic interior of
P). Clearly, � 2 Y is not an element of aint.P/; for, otherwise, as P is cone, the
former definition above yields P D Y contradiction. Further properties of this
set are contained in

Lemma 3. Under these notations, we have

i) aint.P/ D �aint.P/, for each � > 0.
ii) aint.P/C P � aint.P/, hence, aint.P/C aint.P/ � aint.P/.

Proof. i): Let � > 0 and c 2 aint.P/ be arbitrary fixed. For each v 2 Y , there must
be some point � > 0 such that

cC �.u � c/ 2 P, where u D .1=�/v,
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and this (via P D cone) yields

�cC �.v � �c/ D �cC �.�u � �c/ 2 P:

As v 2 Y was arbitrarily fixed, one gets �c 2 aint.P/; wherefrom the right to
left inclusion follows. The converse inclusion is now a consequence of the first
part (applied to � WD 1=�) and

aint.P/ D �Œ�aint.P/� � �aint.P/:

ii): Let c 2 aint.P/ and b 2 P be arbitrary fixed. Again by definition, for each
u 2 Y , there exists � > 0 with cC �.u � b � c/ 2 P, wherefrom (as P D cone)

cC bC �.u � .cC b// 2 P;

which tells us that cC b 2 aint.P/. This proves the first half of our conclusion.
The second one is immediate, in view of aint.P/ � P.

(C) In the following, two specific additional hypotheses involving our (convex)
cone P are formulated. The former of these writes

(e06) P is algebraically solid [aint.P/ ¤ ;].
Note that, as a consequence of the above developments, the relation .�/ over
Y introduced as

(e07) y1 � y2 iff y2 � y1 2 aint.P/

is irreflexive (y� y is false, for each y 2 Y) and transitive; hence, it is a strict
order on Y . On the other hand, .�/ is coarser than .�/ (since aint.P/ � P)
and compatible with the linear space operations:

x� y implies xC z� yC z, �x� �y, 8z 2 Y , 8� > 0. (12)

The latter specific condition to be imposed upon our (convex) cone may be
expressed as

(e08) P is Archimedean: [y 2 Y , c 2 P, y � �c, 8� > 0] H) y � � ;

cf. Cristescu [17, Chap. 5, Sect. 1]. Technically speaking, these additional
conditions allow us to conclude that .PI �;�ICIQ/ (where Q WD aint.P/)
is an ordered semigroup couple (according to our general convention). The
following density statement involving these data is a basic step toward this
assertion.

Proposition 1. Let the general conditions upon P be accepted, as well as the
specific ones (P is algebraically solid and Archimedean). Then,
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(den-1) y 2 Y, [y � q, 8q 2 Q] imply y � � .
(den-2) y 2 Y, [y� q, 8q 2 Q] imply y � � .
(den-3) y 2 P, [y � q, 8q 2 Q] imply y D � .
(den-4) y 2 P, [y� q, 8q 2 Q] imply y D � .
(den-5) y; z 2 P, y � qC z, 8q 2 Q imply y � z.
(den-6) y; z 2 P, y� qC z, 8q 2 Q imply y � z.

Proof. (den-1): Let y 2 Y be as in the premise above and fix r 2 Q. By
a previous fact, f�rI� > 0g � Q; so that, by the underlying
premise, y � �r, for each � > 0. The obtained relation yields
(as P DArchimedean), y � 0; and we are done.

(den-2): Evident, via [y� q H) y � q].
(den-3), (den-4): Evident, via [y 2 P, y � � H) y D � ].
(den-5), (den-6): Evident, by a simple translation.

Summing up these developments, we arrived at the following synthetic result.

Proposition 2. Let the (convex) cone P of Y be endowed with the properties: proper,
nondegenerate, pointed, algebraically solid, and Archimedean. Further, let .�/ be
the (partial) order on Y induced by P and .�/ stand for the strict order on Y
induced by its algebraic interior Q WD aint.P/. Then, .PI �;�ICIQ/ is an ordered
semigroup couple (see above).

Proof. The desired conclusion is ultimately obtainable from the preceding facts.
However, for completeness, we shall provide an appropriate argument for it.

Step 1. By definition, � (D the null element of Y) is the first element of .P;�/.
Moreover, the binary operation .C/ is monotone, in the sense

y1 � y2 and z1 � z2 imply y1 C z1 � y2 C z2. (13)

In fact, by the compatible relation, we have

y1 C z1 � y1 C z2 � y2 C z2;

and, from this, all is clear.
Step 2. As already precise, Q WD aint.P/ is a subset of P0 WD Pn f�g; in addition,

Q ¤ ; (as P is algebraically solid). On the other hand, its associated strict
order .�/ is coarser than .�/, and (by a previous auxiliary fact)

[x � y, y� z or [x� y, y � z] imply x� z;

hence, both .�;�/ and .�;�/ are transitive. Further, we claim that Q
is small. Indeed, let q 2 Q be arbitrary fixed and put r D ıq, where
0 < ı < 1=3. Then (as 0 < 2ı < 1), r C r D 2ıq � q and the claim
follows.
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Step 3. By the compatible relations between .�/ and linear space operations,

x� y, z 2 Y implies .zC x D/xC z� yC z.D zC y/;

hence, .�/ is right (and left) translative. Finally, by the above density
result, Q is uniformly dense (hence, zero-dense).
Putting these together yields all conclusions in the statement.

(D) Let again P be a (convex) cone of Y , supposed to be proper, nondegenerate,
pointed, algebraically solid, and Archimedean. By the above result, .P;�;�
ICIQ/ is an ordered semigroup couple, where Q D aint.P/ and .�/ is the
attached strict order. Further, let X be a nonempty set. We say that the map
d W X � X ! P is a P-metric on X, provided

(pm-1) d is reflexive sufficient: x D y iff d.x; y/ D �
(pm-2) d is symmetric: d.x; y/ D d.y; x/, 8x; y 2 X
(pm-3) d is triangular: d.x; z/ � d.x; y/C d.y; z/, 8x; y; z 2 X.

In this case, .X; d/ will be referred to as a P-metric space. [Clearly, this concept is
just the one we already introduced in a previous place.] Let also .�/ be a quasi-order
(i.e., reflexive and transitive relation) over X; the triple .X; d;�/ will be referred to
as a quasi-ordered P-metric space. Remember that the subset U of X is .�/-almost-
singleton (in short: .�/-asingleton), provided [u1; u2 2 U, u1 � u2 H) u1 D u2],
and .�/-singleton when, in addition, U is nonempty. Letting T be a selfmap of
X, we have to determine circumstances under which Fix.T/ WD fx 2 XI x D Txg
is nonempty; and, if this holds, to establish whether T is fix-.�/-asingleton (i.e.,
Fix.T/ is .�/-asingleton) or equivalently T is fix-.�/-singleton (in the sense: Fix.T/
is .�/-singleton). To do this, we start from the hypotheses

(e09) T is .�/-semi-progressive [X.T;�/ WD fx 2 XI x � Txg ¤ ;]
(e10) T is .�/-increasing [x � y implies Tx � Ty].

The Picard-type concepts and regularity conditions to be used here are the ones we
just defined in our general setting. As a completion of these, we must now describe
the contractive conditions to be used. Denote, for x; y 2 X

M1.x; y/ D d.x; y/, M2.x; y/ D d.x;Tx/, M3.x; y/ D d.y;Ty),
M4.x; y/ D d.Tx; y/, M D fM1;M2;M3;M4g.

Note that each nonempty subset H of M may be written as

H D fMiI i 2 Ig, where ; ¤ I � f1; 2; 3; 4g;
in this case, denote

H .x; y/ D fMi.x; y/I i 2 Ig, x; y 2 X.

Let .�/ stand for the strict quasi-order attached to .�/, as

x � y iff x � y and x ¤ y.
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[Clearly, the underlying relation is irreflexive (x � x is impossible, 8x 2 X), but not
in general transitive.] Given a nonempty subset H of M and a mapping ' 2 F .P/,
call T 2 F .X/, .d;�I';H /-contractive provided

(e11) d.Tx;Ty/ � '.H .x; y//, 8x; y 2 X, x � y.

According to the same general theory, the functions ' 2 F .P/ to be considered
here are subjected to regularity conditions like

(rc-1) ' is increasing (on P): t1 � t2 H) '.t1/ � '.t2/
(rc-2) ' is regressive (on P): '.�/ D � and '.t/ < t, 8t 2 P0 D P n f�g
(rc-3) ' is Matkowski (on P): 'n.t/! � , for each t 2 P
(rc-4) ' is strongly regressive on Q (8q 2 Q, 9r 2 Q: rC '.q/� q).

The natural question to be posed here is that of giving a characterization (imposed
by our specific framework) of the strong regressive property listed above. As we
shall see, this is realizable under the (apparently weaker) condition

(rc-5) ' is nearly regressive on Q: '.q/� q, for each q 2 Q.

In fact, these conditions are equivalent to each other; as results from

Lemma 4. Let ' 2 F .P/ be increasing, regressive, and Matkowski (on P). Then,

(j) If ' is nearly regressive on Q, then ' is strongly regressive on Q.
(jj) If ' is strongly regressive on Q, then ' is nearly regressive on Q.

(jjj) [' is strongly regressive on Q] iff [' is nearly regressive on Q].

Proof. (j): Suppose that ' is nearly regressive on Q, and let q 2 Q be arbitrary
fixed. By definition, we have

'.q/� q; hence, s WD q � '.q/ 2 Q.

By a previous result, r WD .1=2/s 2 Q; we claim that this is our desired
element so as to satisfy the strong regressive property. In fact, r � s; so that,
by the right translative property, rC '.q/� sC '.q/ D q, hence the claim.

(jj): Suppose that ' is strongly regressive on Q, and let q 2 Q be arbitrary fixed.
By hypothesis. there must be some r 2 Q with rC'.q/� q. Combining with

'.q/ D � C '.q/ � rC '.q/;
one gets (as .�;�/ is transitive), '.q/� q, and the assertion follows.

(jjj): Evident, by the above.

Having these precise, we may now pass to the second main result of this
exposition. Let P be a convex cone of the (real) linear space Y , supposed to be
proper, nondegenerate, pointed, algebraically solid, and Archimedean (see above);
and .�/ stand for the associated (partial) order (on Y). Denote Q D aint.P/ (hence,
Q ¤ ;), and let .�/ stand for its associated strict order (on Y). Further, let X be a
nonempty set, d W X �X ! P be a P-metric on it and .�/ stand for a quasi-order on
X. Finally, let T 2 F .X/ be a selfmap of X, supposed to be .�/-semi-progressive
and .�/-increasing.
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Theorem 3. Suppose that T is .d;�I';H /-contractive, where ; ¤ H � M
and ' 2 F .P/ is increasing, regressive, Matkowski (on P), and strongly regressive
on Q. In addition, let the ambient space X be (a-o,d)-complete. Then,

II-a) T is a strong Picard operator (modulo .d;�/) when, in addition, T is
(a-o,d)-continuous.

II-b) T is a Bellman Picard operator (modulo .d;�/) when, in addition, .�/ is
(a-o,d)-selfclosed.

The following topological version of this result is useful in practice. Let .Y;T /

be a (real) topological vector space; note that its (linear) topological properties
(modulo T ) are ultimately characterized via

V .�/ D the neighborhood filter of (the null element) � 2 Y .

Further, let P be a (convex) cone in Y; endowed with the properties

(e12) P is proper, nondegenerate, pointed
(e13) P is solid (int.P/ ¤ ;) and closed (P D cl.P/).

[Here, int and cl are the interior and closure (D adherence) operator, (modulo
T ), respectively.] Note that, from the closed property, it easily follows that P
is Archimedean; we do not give details. It remains to show that, from the solid
property, P is algebraically solid. In fact, a more precise conclusion is to be derived;
but, prior to this, some preliminary facts are needed.

Let A be some part of Y with

(e14) A is absorbent (� 2 aint.A/) and convex.

The attached Minkowski functional

(e15) MA.y/ D inff� > 0I y 2 �Ag, y 2 Y

is well defined (from Y to RC), and

MA.y1 C y2/ � MA.y1/CMA.y2/; 8y1; y2 2 Y (14)

MA.�y/ D �MA.y/; 8� 2 RC;8y 2 YI (15)

(i.e., y 7! MA.y/ is sublinear). Moreover, the following inclusions hold

aint.A/ � fy 2 YIMA.y/ < 1g � A � fy 2 YIMA.y/ � 1g: (16)

The verification is immediate; see, for instance, Zălinescu [79, Chap. 1, Sect. 1.1].

Lemma 5. Let the precise conditions about P be admitted. Then

int.P/ D aint.P/I hence aint.P/ ¤ ;: (17)
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Proof. Fix some a 2 int.P/ (nonempty, by hypothesis), and put G D P � a. Hence,
� 2 int.G/; we claim that, in such a case, aint.G/ � int.G/. For the moment, G is
absorbent convex and contains � 2 Y (as interior point). Let b 2 aint.G/ be arbitrary
fixed. By (16), we therefore have

MG.b/ < 1; hence MG.�b/ < 1, for some � > 1,

which, again by (16), tells us that c WD �b is an element of G. But then,
b D .1=�/c 2 int.G/ (cf. Cristescu [17, Chap. 1, Sect. 2.4]); and the written
inclusion follows. The proof is complete.

Summing up, the second main result is applicable to this topological setting.
Note that the linear topology T on Y endowed with such properties of the (convex)
cone P is normable; see, for instance, the survey paper by Janković et al. [35]. This
topological version of the quoted result includes a related statement in Di Bari and
Vetro [19], proved via different methods. In particular, when

' is linear: '.y/ D �y, y 2 P, for some � 2 Œ0; 1Œ
the corresponding version of our second main result includes a related contribution
due to Huang and Zhang [31]. Further aspects may be found in Choudhury and
Metiya [13]; see also Pathak and Shahzad [53].

2 Meir–Keeler Maps in Quasi-Metric Spaces

2.1 Introduction

Let X be a nonempty set. Call the subset Y of X, almost singleton (in short:
asingleton), provided [y1; y2 2 Y implies y1 D y2], and singleton if, in addition,
Y is nonempty; note that in this case Y D fyg, for some y 2 X. Take a metric
d W X � X ! RC WD Œ0;1Œ over X; the couple .X; d/ will be then referred to as a
metric space. Finally, let T 2 F .X/ be a selfmap of X. [Here, for each couple A;B of
nonempty sets, F .A;B/ denotes the class of all functions from A to B; when A D B,
we write F .A/ in place of F .A;A/.] Denote Fix.T/ D fx 2 XI x D Txg; each point
of this set is referred to as fixed under T . The determination of such points is to
be performed in the context below, comparable with the one in Rus [59, Chap. 2,
Sect. 2.2]:

(pic-1) We say that T is a Picard operator (modulo d) if, for each x 2 X, the
iterative sequence .TnxI n � 0/ is d-convergent; and a globally Picard
operator (modulo d) if, in addition, Fix.T/ is an asingleton.

(pic-2) We say that T is a strong Picard operator (modulo d) if, for each x 2 X,
.TnxI n � 0/ is d-convergent with limn.Tnx/ 2 Fix.T/; and a globally
strong Picard operator (modulo d) if, in addition, Fix.T/ is an asingleton
(hence, a singleton).
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The basic result in this area is the 1922 one due to Banach [4]. Call the selfmap
T , .dI˛/-contractive (where ˛ � 0), if

(a01) d.Tx;Ty/ � ˛d.x; y/, for all x; y 2 X.

Theorem 4. Assume that T is .dI˛/-contractive, for some ˛ 2 Œ0; 1Œ. In addition,
let .X; d/ be complete. Then, T is globally strong Picard (modulo d).

This result (referred to as Banach’s fixed point theorem) found some basic
applications to the operator equations theory. As a consequence, a multitude of
extensions for it were proposed. From the perspective of this exposition, the implicit
ones are of interest. These, roughly speaking, may be written as

(a02) .d.Tx;Ty/; d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.Tx; y// 2M ,
for all x; y 2 X,

where M � R6C is a (nonempty) subset. In particular, when M is the zero-section
of a certain function F W R6C ! R; i.e.,

(a03) M D f.t1; : : : ; t6/ 2 R6CIF.t1; : : : ; t6/ � 0g,
the implicit contractive condition above has the familiar form:

(a04) F.d.Tx;Ty/; d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.Tx; y// � 0,
for all x; y 2 X.

For the explicit case of it, characterized as

(a05) d.Tx;Ty/ � G.d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.Tx; y//,
for all x; y 2 X

(where G W R5C ! RC is a function), some consistent lists of such contractions may
be found in the survey papers by Rhoades [57], Collaco and E Silva [16], Kincses
and Totik [42], as well as the references therein. And, for the implicit setting above,
certain technical aspects have been considered by Leader [43] and Turinici [65].

A basic particular case of the implicit contractive property above is

(a06) .d.Tx;Ty/; d.x; y// 2M , for all x; y 2 X,

where M � R2C is a (nonempty) subset. The classical example in this direction is
due to Meir and Keeler [47]. Further refinements of the method were proposed by
Matkowski [45]; see also Cirić [14] and Jachymski [34].

Recently, an interesting contractive condition of the type (a06) was introduced
by Khojasteh et al. [41]. The so-called simulation contractive methods proposed
there were appreciated as interesting enough to be used in various fixed point or
coincidence point problems involving univalued and multivalued maps; see, for
example, Du and Khojasteh [22]. On the other hand, certain efforts have been made
toward a (technical) extension of these results; an outstanding contribution is the
quasi-metric one due to Alsulami et al. [2]. Having these precise, it is natural to
ask about the effectiveness of such methods with respect to the old ones we just
sketched. A partial negative answer to this was given, in the metric framework, by
Găvruţa et al. [27], where it has been shown that the simulation-type contractions
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over metrical spaces are in fact Meir–Keeler maps. In this exposition, we bring the
discussion a bit further, by establishing that the simulation-type contractions over
quasi-metric spaces are also Meir–Keller maps over metric spaces. Further aspects
will be delineated in a separate paper.

2.2 Meir–Keeler Contractions

In the following, the concept of Meir–Keeler contraction is introduced, and a fixed
point theorem involving such maps is given.

Let X be a nonempty set. By a sequence in X, we mean any mapping x W N ! X,
where N WD f0; 1; : : :g is the set of natural numbers. For simplicity reasons, it will
be useful to denote it as .x.n/I n � 0/ or .xnI n � 0/; moreover, when no confusion
can arise, we further simplify this notation as .x.n// or .xn/, respectively. Also, any
sequence .yn WD xi.n/I n � 0/ with .i.n/I n � 0/ being divergent [i.n/ ! 1 as
n!1] will be referred to as a subsequence of .xnI n � 0/.

Let d.:; :/ be a metric over X; the couple .X; d/ will be then referred to as a

metric space. Define a sequential d-convergence .
d�!/ on X, according to: for each

sequence .xnI n � 0/ in X and each x 2 X, xn
d�! x iff d.xn; x/! 0; i.e.,

8" > 0, 9i."/, such that i."/ � n H) d.xn; x/ � ";
referred to as: x is the d-limit of .xnI n � 0/. Denote by limn.xn/ the set of all such
elements; if it is nonempty, then .xnI n � 0/ is called d-convergent.

The basic properties of our convergence structure are

(cv-1) .
d�!/ is reflexive:

8u 2 X, the constant sequence .xn D uI n � 0/ fulfills xn
d�! u.

(cv-2) .
d�!/ is hereditary:

xn
d�! x implies yn

d�! x, for each subsequence .yn/ of .xn/.

(cv-3) .
d�!/ is separated (also referred to as d is separated):

xn
d�! x, xn

d�! y imply x D y.

Note that, by the first and second properties above, .
d�!/ fulfills all general

requirements (for a sequential convergence) imposed by Kasahara [38]. On the other
hand, from the third property, limn.xn/ is an asingleton, for each sequence .xn/ in X.
In particular, when .xn/ is d-convergent, we have

lim
n
.xn/ is a singleton, fzg (where z 2 X);

for simplicity, we write this as limn.xn/ D z.
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Further, call the sequence .xnI � 0/ in X, d-Cauchy, when d.xm; xn/ ! 0 as
m; n!1, m < n, i.e.,

8" > 0, 9j."/, such that j."/ � m < n H) d.xm; xn/ � ".
The class of all these will be indicated as Cauchy.X; d/; some basic properties of it
are described below:

(Cau-1) (inclusion of constant sequences):
8u 2 X, the constant sequence .xn D uI n � 0/ is d-Cauchy.

(Cau-2) (the hereditary property):
.xnI n � 0/ is d-Cauchy implies .ynI n � 0/ is d-Cauchy,
for each subsequence .ynI n � 0/ of .xnI n � 0/.

A weaker form of this concept is the following: call .xnI n � 0/, d-semi-Cauchy
when d.xn; xnC1/! 0 as n!1. In fact,

(8 sequence): d-Cauchy H) d-semi-Cauchy;

but the converse relation is not in general true.
Concerning the relationships between these two concepts, note that (by the

properties of d), we have

.X; d/ is regular: any d-convergent sequence is d-Cauchy.

The reciprocal is not in general true; but, if it holds too [any d-Cauchy sequence is
d-convergent], then .X; d/ is called complete.

Having these precise, take some T 2 F .X/. We say that T is Meir–Keeler
d-contractive if

(b01) x ¤ y implies d.Tx;Ty/ < d.x; y/.
expressed as: T is strictly nonexpansive (modulo d)

(b02) 8" > 0, 9ı > 0: [" < d.x; y/ < "C ı] H) d.Tx;Ty/ � ";
expressed as: T has the Meir–Keeler property (modulo d).

Note that, by the former of these, the Meir–Keeler property may be written as

(b03) 8" > 0, 9ı > 0: [0 < d.x; y/ < "C ı] H) d.Tx;Ty/ � ".
Moreover, by the same property, T is d-nonexpansive:

(b04) d.Tx;Ty/ � d.x; y/, 8x; y 2 X,

whence T is d-continuous on X. This, along with the obtained conclusion, tells us
that the Meir–Keeler property may be also written, in a complete form, as

(b05) 8" > 0, 9ı > 0: d.x; y/ < "C ı H) d.Tx;Ty/ � ".
The following technical aspects of the introduced convention must be noted.

(I) Call T 2 F .X/, original Meir–Keeler d-contractive, provided
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(b06) 8" > 0, 9ı > 0: [" � d.x; y/ < "C ı] H) d.Tx;Ty/ < ".

The motivation of this convention comes from the fact that it is exactly the
contractive condition in the 1969 paper by Meir and Keller [47]. The relationship
with the Meir–Keller contractive condition we just introduced is characterized by
the following auxiliary fact.

Proposition 3. Under these conventions, the generic inclusion is valid (for all
selfmaps T 2 F .X/):

original Meir–Keeler d-contractive H) Meir–Keeler d-contractive. (18)

Proof. Suppose that T 2 F .X/ is original Meir–Keeler d-contractive. Then,

(MK-1) If x; y 2 X are such that d.x; y/ > 0, then with " D d.x; y/ (and ı > 0

taken by the underlying property),

" � d.x; y/ < "C ı, whence, d.Tx;Ty/ < " D d.x; y/,

which tells us that T is strictly nonexpansive (modulo d).
(MK-2) Let " > 0 be given, and ı > 0 be assured by the original Meir–Keeler d-

contractive property. If x; y 2 X are such that " < d.x; y/ < "Cı then (as
" � d.x; y/ < "Cı) we have (by the underlying condition) d.Tx;Ty/ < ";
hence d.Tx;Ty/ � "; and this tells us that T is Meir–Keeler contractive
(modulo d).

Putting these together, it results that our assertion is true.

(II) Call T 2 F .X/, Cirić d-contractive [14], provided

(b07) 8" > 0, 9ı > 0: [" < d.x; y/ < "C ı] H) d.Tx;Ty/ � ".
Clearly, this is nothing else than the Meir–Keeler property (modulo d) from our
Meir–Keeler d-contractive condition. Hence, we have the generic inclusion

(8T 2 F .X/): Meir–Keeler d-contractive H) Cirić d-contractive. (19)

Moreover, according to Cirić [14], this contractive condition imposed by him will
suffice for deducing a (globally strong) Picard property for the considered class of
selfmaps. As a consequence, the strict nonexpansive property (modulo d) we added
in our convention seems to be superfluous for getting the same conclusion. However,
as proved in Jachymski [34], the situation is exactly opposite; a verification of this
fact is ultimately assured by the developments below.

Remember that Fix.T/ D fx 2 XI x D Txg denotes the class of fixed points
of T in X. The determination of such elements is to be performed in the Picard
context we just exposed. We may now ask whether the introduced Meir–Keeler d-
contractive condition may give us conclusions like in Banach’s fixed point principle.
The answer is positive; in fact, the following result (referred to as Meir–Keeler fixed
point theorem) is holding (under the described setting).
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Theorem 5. Suppose that T is Meir–Keeler d-contractive. In addition, let .X; d/ be
complete. Then, T is a globally strong Picard operator (modulo d).

Proof. By the strict nonexpansive condition, Fix.T/ is an asingleton; so, it remains
to establish that T is a strong Picard operator (modulo d). Fix some x0 2 X, and put
.xn D Tnx0I n � 0/. If xk D xkC1 for some k � 0, we are done; so, without loss, one
may assume that

xn ¤ xnC1 (i.e., �n WD d.xn; xnC1/ > 0), for all n.

The argument will be divided into several steps.

Part 1. Again by the strict nonexpansive condition, �nC1 < �n, for all n � 0,
wherefrom .�nI n � 0/ is a strictly descending sequence in R0C WD�0;1Œ.
As a consequence, � WD limn �n exists in RC, and �n > �, 8n. Assume that
� > 0 and let � > 0 be the number given by the Meir–Keeler property. By
definition, there exists a rank n.�/ such that

n � n.�/ H) � < �n D d.xn; xnC1/ < �C �:

This, by the quoted condition, yields (for the same n)

.� </ �nC1 D d.Txn;TxnC1/ � �

contradiction. Hence, � D 0; so that, .xnI n � 0/ is a d-semi-Cauchy
sequence.

Part 2. Let " > 0 be arbitrary fixed and ı > 0 be the number associated by the
Meir–Keeler property; without loss, one may assume that ı < ". By the
obtained d-semi-Cauchy property, there exists a rank n.ı/ � 0 such that

d.xn; xnC1/ < ı=2; for all n � n.ı/: (20)

We claim that

8i � 1 W Œd.xn; xnCi/ < "C ı=2; 8n � n.ı/�I (21)

wherefrom the d-Cauchy property of .xnI n � 0/ is clear. To do this, an
induction argument upon i � 1 will be used. The case i D 1 is evident, by
the choice of n.ı/. Assume that our relation holds for all i 2 f1; : : : ; pg,
where p � 1; we must establish that it holds as well for i D pC 1. So, let
n � n.ı/ be arbitrary fixed. From the inductive hypothesis,

d.xn; xnCp/ < "C ı=2 < "C ı:

Combining with the (complete form of) Meir–Keeler property gives

d.xnC1; xnCpC1/ D d.Txn;TxnCp/ � ":
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This, along with the triangular inequality, yields

d.xn; xnCpC1/ � d.xn; xnC1/C d.xnC1; xnCpC1/ < "C ı=2;

and the assertion is retainable.
Part 3. By the completeness assumption, xn

d�! z as n!1, for some (uniquely

determined) z 2 X. As T is d-continuous (see above), yn WD Txn
d�! Tz.

On the other hand, .yn D xnC1I n � 0/ is a subsequence of .xn/; whence

yn
d�! z; and this yields (as d D separated), z D Tz; i.e., z 2 Fix.T/. The

proof is complete.

Note that further extensions of this result are available; see, for instance,
Jachymski [33] or Samet et al. [60]. But, for the objectives of our exposition, this
will suffice.

2.3 Quasi-Metric Structures

Let X be a nonempty set. By a quasi-metric on X, we mean any map b W X�X ! RC
with the properties

(qm-1) x D y iff b.x; y/ D 0 (reflexive sufficient)
(qm-2) b.x; z/ � b.x; y/C b.y; z/, 8x; y; z 2 X (triangular);

in this case, .X; b/ will be referred to as a quasi-metric space. Given such an object,
b.:; :/, let c W X � X ! RC stand for its conjugate

(c01) c.x; y/ D b.y; x/, x; y 2 X.

Clearly, c.:; :/ is again a quasi-metric on X. Moreover, the attached map

(c02) d.x; y/ D maxfb.x; y/; c.x; y/g, x; y 2 X (in short: d D max.b; c/)

is a (standard) metric on X; we do not give details.
The concept of quasi-metric seems to have a long tradition in metrical spaces

theory. For example, in his 2001 PhD Thesis, Hitzler [30, Chap. 1, Sect. 1.2]
introduced such a notion as a useful tool for performing a topological study of logic
semantics. Later, in a 2004 paper, Turinici [69] used the same concept—referred
to as “reflexive triangular sufficient pseudometric”—with the aim of establishing
a Caristi-Kirk fixed point theorem over such structures. From a “purely” fixed
point perspective, the quasi-metric techniques have been used in 2012 by Jleli and
Samet [36]. Further aspects of this theory—related to simulation method—were
developed in a recent 2014 contribution due to Alsulami et al. [2].

In the following, some convergence and Cauchy structures are introduced over
quasi-metric spaces. Let X be a nonempty set. Take a quasi-metric b.:; :/ on X, and
let c.:; :/ stand for its conjugate map; remember that c.:; :/ is a quasi-metric too and
d D max.b; c/ is a (standard) metric on X.
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Let .xn/ be a sequence in X and x be some point of X. Define xn
b�! x as

b.xn; x/! 0 as n!1, i.e.,

for each " > 0, there exists i."/, such that n � i."/ H) b.xn; x/ � ".
The set of all such x will be denoted as b � limn.xn/; when it is nonempty, we say
that .xn/ is b-convergent. Further, a corresponding property is to be defined for the

conjugated quasi-metric c.:; :/. Namely, for the same .xn/ and x, define xn
c�! x as

c.xn; x/! 0 as n!1, i.e.,

for each " > 0, there exists i."/, such that n � i."/ H) c.xn; x/ � ".
The set of all such x will be denoted as c � limn.xn/; when it is nonempty, we say
that .xn/ is c-convergent. Note, at this moment, that

xn
d�! x iff [xn

b�! x and xn
c�! x]. (22)

The set of all these points will be denoted as d � limn.xn/; when it is nonempty, we
say that .xn/ is d-convergent. Clearly, the generic property is valid

(8 sequence): d-convergent H) [b-convergent and c-convergent]. (23)

Let .xn/ be a sequence in X; we call it b-Cauchy, provided b.xm; xn/ ! 1, as
m; n!1, m � n, i.e.,

8" > 0, there exists j."/, such that j."/ � m � n H) b.xm; xn/ � ".
Accordingly, we say that the sequence .xn/ is c-Cauchy, provided c.xm; xn/ ! 1,
as m; n!1, m � n, i.e.,

8" > 0, there exists j."/, such that j."/ � m � n H) c.xm; xn/ � ".
By this very definition, the generic property is valid

(8 sequence): d-Cauchy ” [b-Cauchy and c-Cauchy]. (24)

Finally, remember that (the metric space) .X; d/ is complete, when each d-Cauchy
sequence is d-convergent.

A basic example of quasi-metric structure is to be given as below. Let X be a
nonempty set. By a Mustafa-Sims metric (in short: MS-metric) on X, we mean any
map G W X � X � X ! RC, with

(ms-1) D.x; y; z/ D D.x; z; y/ D D.y; x; z/ D D.y; z; x/ D
D.z; x; y/ D D.z; y; x/, 8x; y; z 2 X (symmetric)

(ms-2) .x D y D z/ H) D.x; y; z/ D 0 (reflexive)
(ms-3) G.x; x; y/ D 0 implies x D y (plane sufficient)
(ms-4) G.x; x; y/ � G.x; y; z/, 8x; y; z 2X, y ¤ z (MS-property)
(ms-5) G.x; y; z/ � G.x; u; u/C G.u; y; z/, 8x; y; z; u 2 X (MS-triangular);
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in this case, the couple .X;G/ will be referred to as a Mustafa-Sims metric space (in
short: MS-metric space).

The introduction of such objects, performed by Mustafa and Sims [50], is
related to the necessity of correcting some technical drawbacks of Dhage metrical
structures [18]. However, as established in Jleli and Samet [36], a fixed point theory
over Mustafa-Sims metric spaces is pseudometric in nature. This is essentially
deductible from the construction and auxiliary statement below.

Let .X;G/ be a Mustafa-Sims metric space. Define a quadruple of maps b; c; d; e W
X � X ! RC according to: for each x; y 2 X,

(c03) b.x; y/ D G.x; y; y/, c.x; y/ D G.x; x; y/ D b.y; x/
(c04) d.x; y/ D maxfb.x; y/; c.x; y/g, e.x; y/ D b.x; y/C c.x; y/.

Proposition 4. Under the above notations,

K-1) The mappings b.:; :/ and c.:; :/ are triangular and reflexive sufficient; hence,
these are quasi-metrics on X.

K-2) The mappings d.:; :/ and e.:; :/ are triangular, reflexive sufficient, and
symmetric; hence, these are (standard) metrics on X.

Proof. K-1): It will suffice establishing the assertions concerning the map b.:; :/.
The reflexive sufficient property is a direct consequence of symmetric,
reflexive, and plane sufficient properties of G. On the other hand, the
triangular property is a direct consequence of the MS-triangular property
of G. In fact, by this condition, we have (taking z D y)

G.x; y; y/ � G.x; u; u/C G.u; y; y/I

and, from this, we are done.
K-2): Evident, by the involved definition.

Note, finally, that by the second part of this statement, we may ask whether
the fixed point theory over Mustafa-Sims metric spaces is metrical in nature. A
(positive) partial answer to this may be found in An et al. [3]; see also Turinici [73].

2.4 Main Result

Let X be a nonempty set. Take a quasi-metric b.:; :/ on X, and let c.:; :/ stand for its
conjugate map; remember that c.:; :/ is a quasi-metric too and d D max.b; c/ is a
(standard) metric on X.

Let ˝ � R0C � R0C be a relation over R0C; as usually, we write .t; s/ 2 ˝ as t˝s.
Call this object, Meir–Keeler normal provided

(d01) t; s 2 R0C and t˝s imply t < s
(referred to as ˝ is upper diagonal)
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(d02) there are no sequences .tnI n � 0/ and .snI n � 0/ in R0C and no elements
� 2 R0C, with (tn˝sn, for all n � 0) and (tn ! �C, sn ! �C)
(referred to as ˝ has the asymptotic Meir–Keeler property).

Here, given a sequence .rnI n � 0/ in R and an element r 2 R, define

rn ! rC provided (rn > r, 8n), and rn ! r.

Given the relation ˝ over R0C, call the selfmap T of X, .bI˝/-contractive, if

(d03) b.Tx;Ty/˝b.x; y/, 8x; y 2 X, x ¤ y, Tx ¤ Ty.

(Clearly, x ¤ y follows from Tx ¤ Ty; but, this is not important for us.) Note that,
by simply interchanging x with y, this relation also writes

(d04) c.Tx;Ty/˝c.x; y/, 8x; y 2 X, x ¤ y, Tx ¤ Ty,

or, in other words, T is .cI˝/-contractive as well.
Our main result in this exposition is

Theorem 6. Assume that T is .bI˝/-contractive, for some Meir–Keeler normal
relation ˝ over R0C. In addition, let .X; d/ be complete. Then

I) T is Meir–Keeler d-contractive.
II) T is a globally strong Picard operator (modulo d).

Proof. I): There are two steps to be passed.

Step 1. Let x; y 2 X be such that
x ¤ y; hence, b.x; y/; c.x; y/; d.x; y/ > 0.

If Tx D Ty, then d.Tx;Ty/ D 0 < d.x; y/; so, we may assume that
Tx ¤ Ty, whence b.Tx;Ty/; c.Tx;Ty/; d.Tx;Ty/ > 0.

As ˝ is upper diagonal, we get (by the contractive condition applied
to b and c)

b.Tx;Ty/ < b.x; y/; c.Tx;Ty/ < c.x; y/, whence d.Tx;Ty/ < d.x; y/.

This, by the arbitrariness of .x; y/ (taken as before), assures us that T
is strictly nonexpansive (modulo d).

Step 2. Assume by contradiction that T does not have the Meir–Keeler
property (modulo d); i.e., for some " > 0,

for each ı > 0, there exists .xı; yı/ 2 X � X, such that
d.xı; yı/ < "C ı, d.Txı;Tyı/ > ".

Taking a zero converging sequence .ınI n � 0/ in R0C, we get a couple of sequences
.xnI n � 0/ and .ynI n � 0/ in X, so as

.8n/ W d.xn; yn/ < "C ın; d.Txn;Tyn/ > "I (25)
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or equivalently (by the symmetry of d.:; :/)

.8n/ W d.yn; xn/ < "C ın; d.Tyn;Txn/ > ": (26)

Denote, for simplicity,

Nb D fn 2 NI d.Txn;Tyn/ D b.Txn;Tyn/g,
Nc D fn 2 NI d.Txn;Tyn/ D c.Txn;Tyn/g.

As N D Nb [ Nc, at least one of these subsets is infinite. Without loss, one may
assume that Nb is infinite; otherwise, if Nc is infinite, we have

d.Tyn;Txn/ D b.Tyn;Txn/; 8n 2 NcI

so, by simply passing to the pairs ..yn; xn/I n � 0/, we fall [via (26)] within the
preceding alternative. By the imposed condition, Nb D fi.n/I n � 0g, where n 7!
i.n/ is strictly ascending. So, if we put

un D xi.n/, vn D yi.n/, n � 0,

one gets, via (25) above, for all n � 0,

b.un; vn/ � d.un; vn/ < "C ıi.n/; b.Tun;Tvn/ > ": (27)

Note that, as a consequence of the second relation, we must have, for all n,

un ¤ vn, Tun ¤ Tvn .hence;b.un; vn/ > 0, b.Tun;Tvn/ > 0).

By the contractive condition, we therefore get

b.Tun;Tvn/˝b.un; vn/; 8nI (28)

so that, by the super-diagonal property of ˝ and (27),

" < b.Tun;Tvn/ < b.un; vn/ < "C ıi.n/; 8n � 0;

wherefrom (by a limit process)

b.Tun;Tvn/! "C , b.un; vn/! "C , as n!1. (29)

This, along with (28), contradicts the asymptotic Meir–Keeler property of ˝ and
proves that T has the Meir–Keeler property (modulo d).

II): By the preceding fact, the Meir–Keeler fixed point theorem is applicable to our
data; and from this, we derive all desired conclusions.
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2.5 Particular Aspects

In the following, a basic example of such contractions will be considered.
Given the sequence .tnI n � 0/ in R, define

lim infn.tn/ D supk infftk; tkC1; : : :g, lim supn.tn/ D infk supftk; tkC1; : : :g.
By definition, we have (for any such sequence)

lim inf
n

.tn/ � lim sup
n

.tn/I

when equality occurs, the common value of these, t say, is denoted as limn.tn/,
and we indicate this in the usual way: tn ! t (as n ! 1). [Clearly, the case of
t 2 f�1;1g cannot be avoided; but, if t … f�1;1g, we say that .tnI n � 0/ is
convergent.] A basic circumstance when this limit property holds (in a generalized
sense) is characterized as

.tnI n � 0/ is monotone (ascending or descending).

Then, by the definitions above,

limn.tn/ D supn.tn/; when .tnI n � 0/ is ascending:
limn.tn/ D infn.tn/; when .tnI n � 0/ is descending:

Since the verification is almost immediate, we do not give details.
Let the function ' 2 F .RC/ be arbitrary for the moment. We say that � W R0C �

R0C ! R is a '-simulation function, provided

(e01) �.:; :/ is strict '-nonexpansive:
�.t; s/ < '.s/ � '.t/, for all t; s 2 R0C.

(e02) �.:; :/ is separable:
if .tn/ and .sn/ are sequences in R0C and � is an element in R0C with
(tn ! �C, sn ! �C), then lim supn �.tn; sn/ < 0.

The following auxiliary fact establishes the necessary connections with our
previous developments.

Proposition 5. Let � W R0C � R0C ! R be a '-simulation function, for some ' 2
F .RC/ endowed with the property

(e03) ' is increasing on R0C.

Then, the relation ˝ on R0C introduced as

(e04) t˝s iff �.t; s/ � 0
is Meir–Keeler normal (see above).
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Proof. There are two steps to be checked.

Step 1. Let t; s 2 R0C be such that t˝s. Combining with the strict '-nonexpansive
property of �.:; :/, we have

0 � �.t; s/ < '.s/ � '.t/.
This yields '.t/ < '.s/, wherefrom (as ' is increasing), t < s. From the
arbitrariness of couple .t; s/, we then get that ˝ is upper diagonal.

Step 2. Suppose that there exists a couple of sequences .tn/ and .sn/ in R0C and an
element � in R0C, such that

(tn˝sn, for all n); (tn ! �C and sn ! �C as n!1).

By the very definition of our relation ˝, the former condition yields

0 � �.tn; sn/ < '.sn/ � '.tn/, 8n.

Combining with the convergence-type conditions involving our sequences, one
derives [via limn '.tn/ D limn '.sn/ D '.�C/]

0 � lim sup
n

�.tn; sn/ � '.�C/ � '.�C/ D 0; whence lim sup
n

�.tn; sn/ D 0;

in contradiction with the separable property of �.:; :/. Hence, ˝ has the asymptotic
Meir–Keeler property, and the proof is complete.

Now, by simply combining this with our main result, we get the following
practical statement. Let X be a nonempty set. Take a quasi-metric b.:; :/ on X, and
let c.:; :/ stand for its conjugate map; remember that c.:; :/ is a quasi-metric too
and d D max.b; c/ is a (standard) metric on X. Further, let T 2 F .X/ be a map
and � W R0C � R0C ! R be a function. We say that T is .bI �/-contractive, provided

(e05) �.b.Tx;Ty/; b.x; y// � 0, 8x; y 2 X, x ¤ y, Tx ¤ Ty.

Note that, by simply passing to .y; x/, this relation also writes

(e06) �.c.Tx;Ty/; c.x; y// � 0, 8x; y 2 X, x ¤ y, Tx ¤ Ty;

or, in other words: T is .cI �/-contractive.

Theorem 7. Suppose that T is .bI �/-contractive, for some '-simulation function
� W R0C � R0C ! R, where ' 2 F .RC/ is increasing on R0C. In addition, let .X; d/
be complete. Then, T is a globally Picard operator (modulo d).

In particular, when

'.t/ D t, t 2 RC (i.e., ' D the identical function of F .RC/),

this result is just the one in Alsulami et al. [2]. Further aspects may be found in Du
and Khojasteh [22]; see also Roldan et al. [58].

Finally, it is worth noting that, in the metric structure .X; d/, the program of
reducing different classes of contractions to the Meir–Keeler ones includes
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(i) the Matkowski-type d-contractions [44]

(M-con) d.Tx;Ty/ � '.d.x; y//, 8x; y 2 X,
where ' 2 F .RC/ is an (increasing regressive) Matkowski function

(ii) the Dutta-Choudhury d-contractions [23]

(DC-con)  .d.Tx;Ty// �  .d.x; y// � '.d.x; y//, 8x; y 2 X,
where . ; '/ is a couple of generalized altering functions in
F .RC/

(iii) the Wardowski-type d-contractions [77]

(W-con) C F.d.Tx;Ty// � F.d.x; y//, 8x; y 2 X, x ¤ y, Tx ¤ Ty,
where  > 0 is a constant and F W R0C ! R is increasing

The first reducing question was clarified in Jachymski [33], and the second one
is worked out in Turinici [74]. Concerning the last problem, some partial answers
were obtained by Turinici [72]. However, it is not hard to see that, under the accepted
conditions, the relation ˝ over R0C introduced as

(e07) (t; s 2 R0C): t˝s iff C F.t/ � F.s/

is Meir–Keeler normal. As a consequence, any Wardowski-type d-contraction is
Meir–Keeler d-contractive; so that the reducing program involving this class is
clarified too. Further aspects will be delineated elsewhere.

3 Ultrametric Fixed Points in Reduced Axiomatic Systems

3.1 Introduction

Throughout this exposition, the axiomatic system in use is Zermelo–Fraenkel’s
(in short: ZF), as described by Cohen [15, Chap. 2]. The notations and basic facts
about its axioms are more or less usual.

Remember that, an outstanding part of it is the Axiom of Choice (abbreviated:
AC), which, in a convenient manner, may be written as

(AC) For each nonempty set X, there exists a (selective) function
f W .2/X ! X with f .Y/ 2 Y , for each Y 2 .2/X .

[Here, .2/X denotes the class of all nonempty parts in X.] There are many logical
equivalents of (AC); see, for instance, Moore [49, Appendix 2]. A basic one is the
Zorn–Bourbaki Maximal Principle (in short: ZB), expressed as

(ZB) Let the partially ordered set .X;�/ be inductive [any totally ordered part C
of X is bounded above: C � b (i.e., x � b, 8x 2 C), for some b 2 X]. Then,
for each (starting) u 2 X, there exists a maximal element v 2 X
(in the sense: v � z 2 X implies v D z), with u � v;
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for a direct proof of this (avoiding transfinite induction), see Bourbaki [6].
Let X be a nonempty set. By a sequence in X, we mean any mapping x W N ! X,

where N WD f0; 1; : : :g is the set of natural numbers. For simplicity reasons, it will
be useful to denote it as .x.n/I n � 0/ or .xnI n � 0/; moreover, when no confusion
can arise, we further simplify this notation as .x.n// or .xn/, respectively. Also, any
sequence .yn WD xi.n/I n � 0/ with

.i.n/I n � 0/ is divergent [i.e.: i.n/!1 as n!1]

will be referred to as a subsequence of .xnI n � 0/. Call the subset Y of X, almost
singleton (in short: asingleton) provided [y1; y2 2 Y implies y1 D y2]; and singleton
if, in addition, Y is nonempty; note that in this case, Y D fyg, for some y 2 X.
Further, let d W X � X ! RC WD Œ0;1Œ be a metric over X; the couple .X; d/ will
be termed a metric space. Finally, let T 2 F .X/ be a selfmap of X. [Here, for each
couple A;B of nonempty sets, F .A;B/ stands for the class of all functions from A
to B; when A D B, we write F .A/ in place of F .A;A/.] Denote Fix.T/ D fx 2
XI x D Txg; each point of this set is referred to as fixed under T . In the metrical
fixed point theory, such points are to be determined according to the context below,
comparable with the one described in Rus [59, Chap. 2, Sect 2.2]:

(pic-1) We say that T is a Picard operator (modulo d) if, for each x 2 X, the
iterative sequence .TnxI n � 0/ is d-convergent.

(pic-2) We say that T is a strong Picard operator (modulo d) if, for each x 2 X,
.TnxI n � 0/ is d-convergent with limn.Tnx/ 2 Fix.T/.

(pic-3) We say that T is fix-asingleton (resp., fix-singleton) if Fix.T/ is asingleton
(resp., singleton).

In this perspective, a basic answer to the posed question is the 1922 one due to
Banach [4]. Given ˛ � 0, let us say that T is .dI˛/-contractive, provided

(a01) d.Tx;Ty/ � ˛d.x; y/, for all x; y 2 X.

Theorem 8. Suppose that T is .dI˛/-contractive, for some ˛ 2 Œ0; 1Œ. In addition,
let .X; d/ be complete. Then, T is a strong Picard operator (modulo d) and fix-
asingleton (hence, fix-singleton).

This result—referred to as Banach’s contraction principle—found a multitude of
applications in operator equations theory; so, it was the subject of many extensions.
A natural way of doing this is by considering “functional” contractive conditions

(a02) d.Tx;Ty/ � F.d.x; y/; d.x;Tx/; d.y;Ty/; d.x;Ty/; d.y;Tx//,
for all x; y 2 X,

where F W R5C ! RC is a function. Some important results in the area have been
established by Boyd and Wong [8], Matkowski [44], and Leader [43]. For more
details about other possible choices of F, we refer to the 1977 paper by Rhoades
[57]; some extensions of these to quasi-ordered structures may be found in Turinici
[66]. Further, a natural extension of the contractive condition above is

(a03) (T is d-strictly nonexpansive):
d.Tx;Ty/ < d.x; y/, for all x; y 2 X, x ¤ y.
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Note that a fixed point for such maps is to be reached when .X; d/ is a compact
metric space; cf. Edelstein [24]. Another circumstance when this conclusion holds
is that of .X; d/ being a (transfinite) Cantor complete ultrametric space; see, for
instance, Petalas and Vidalis [54]. In this last case, a basic tool used in authors’
proof is (ZB) (D the Zorn–Bourbaki maximal principle) or equivalently (see above)
(AC) (D the Axiom of Choice); hence, this fixed point result is valid in the
complete Zermelo–Fraenkel system (ZF). However, since all arguments used there
are countable in nature, it is highly expectable that a denumerable version of (ZB)
should suffice for the result’s conclusion to hold. It is our aim in the present
exposition to prove that this is indeed the case. Precisely, we show that the Zorn–
Bourbaki maximal principle appearing there may be replaced with a countable
version of it—namely, the Brezis–Browder ordering principle [9]—to solve the
posed fixed point question; hence, the Petalas-Vidalis result is ultimately deductible
in the reduced Zermelo–Fraenkel system (ZF-AC+DC), where (DC) is the principle
of dependent choices. Note that the proposed reasoning is applicable as well to many
other statements of this type, such as the ones due to Mishra and Pant [48]. Further
aspects will be delineated in a separate paper.

3.2 Brezis–Browder Principles

Let M be a nonempty set. Take a quasi-order .�/ on M, i.e.,

.�/ is reflexive (x � x, 8x 2 X)

.�/ is transitive (x � y, y � z H) x � z);

the pair .M;�/ will be then referred to as a quasi-ordered structure. Let also ' W
M ! RC be a function. Call the point z 2 M, .�; '/-maximal when z � w 2 M
implies '.z/ D '.w/. A basic result about such points is the 1976 Brezis–Browder
ordering principle [9] (in short: BB).

Proposition 6. Suppose that the quasi-ordered structure .M;�/ and the function '
(taken as before) fulfill

(b01) .M;�/ is sequentially inductive:
each ascending sequence has an upper bound (modulo .�/)

(b02) ' is .�/-decreasing (x � y H) '.x/ � '.y/).
Then, for each u 2 M, there exists a .�; '/-maximal v 2 M with u � v.

(A) In particular, assume that (in addition)

.�/ is antisymmetric (x � y and y � x imply x D y).

We then say that .�/ is a (partial) order on M and the pair .M;�/ will be called a
(partially) ordered structure. In this case, by an appropriate choice of our structure
(related to existence of functions ' W M ! RC fulfilling strict versions of (b02)),



548 M. Turinici

one gets a countable variant of the Zorn–Bourbaki maximal principle [6]. Some
conventions are needed. Let .</ stand for the associated relation

x < y iff x � y and x ¤ y

Clearly,

.</ is irreflexive (x < x is false, 8x 2 M)

.</ is transitive (x < y and y < z imply x < z);

as a consequence of this, .</ will be referred to as the strict order attached to .�/.
Call the point z 2 M, .�/-maximal, provided

(b03) w 2 M, z � w H) z D w
or equivalently M.z; </.WD fx 2 MI z < xg/ is empty.

The following (Zorn–Bourbaki) maximal version of (BB) (denoted, for simplic-
ity, as (BB-Z)) is now available.

Proposition 7. Suppose that the (partially) ordered structure .M;�/ is such that

(b04) .M; </ is sequentially inductive:
each .</-ascending sequence in M has an upper bound in M (modulo .</).

(b05) .M; </ is admissible:
there exists at least one function ' W M ! RC with the .</-decreasing
property (x < y H) '.x/ > '.y/).

Then, .�/ is a Zorn order, in the sense: for each u 2 M, there exists a .�/-maximal
v 2 M with u � v.

Proof. There are two steps to be passed.

Step 1. We claim that, under these conditions, .M;�/ is sequentially inductive.
In fact, let .xnI n � 0/ be a .�/-ascending sequence in M. If the alternative
below is in force,

there exists k � 0, such that xk D xn, for all n > k,

we are done, because y WD xk is an upper bound of .xnI n � 0/. Suppose
that the opposite alternative is true:

for each k � 0, there exists h > k with xk < xh.

In this case, we get a .</-ascending sequence of ranks .i.n/I n � 0/,
such that the subsequence .yn WD xi.n/I n � 0/ is .</-ascending. By the
admitted hypothesis, there exists y 2 M such that yn < y, for all n. This,
along with the .�/-ascending property of .xnI n � 0/, gives xn < y, for
each n, and the claim follows.

Step 2. As .M; </ is admissible, there exists at least one function ' W M !
RC with the .</-decreasing property: x < y H) '.x/ > '.y/. Note
that, by the very definition of our strict order .</, we have the (converse)
representation formula



Contraction Maps in Pseudometric Structures 549

x � y iff either x < y or x D y.

As a direct consequence of this, one gets that

' is .�/-decreasing (x � y H) '.x/ � '.y/).

Putting these together, (BB) is applicable to .M;�/ and '. From this principle, we
are assured that, given u 2 M, there exists a .�; '/-maximal v 2 M with u � v.
Suppose by contradiction that v < w, for some w 2 M. As ' is .</-decreasing, this
gives '.v/ > '.w/, in contradiction with the .�; '/-maximal property of v. Hence,
v is .�/-maximal; and we are done.

Note that, for the moment, (BB) H) (BB-Z) in the strongly reduced axiomatic
system (ZF-AC). On the other hand, this statement includes (see below) Ekeland’s
variational principle [25] (in short: EVP). As a consequence, many extensions
of (BB) were proposed; see, for instance, Hyers et al. [32, Chap. 5]. For each
(countable) variational principle (VP) of this type, one therefore has (VP)H) (BB)
H) (EVP); so, we may ask whether these inclusions are effective. As we shall see,
the answer to this is negative.

(B) Let M be a nonempty set and R � M � M be a (nonempty) relation over M;
for simplicity, we sometimes write .x; y/ 2 R as xRy. Note that R may be
viewed as a mapping between M and 2M (D the class of all subsets in M). In
fact, denote for each x 2 M

M.x;R/ D fy 2 MI xRyg (D the section of R through x);

then, the mapping representation of R is .R.x/ D M.x;R/I x 2 M/.

Call the relation R over M, proper when

(b06) M.c;R/ is nonempty, for each c 2 M.

Clearly, R may be then viewed as a mapping between M and .2/M (D the class of
all nonempty subsets in M).

The following “principle of dependent choices” (in short: DC) is in effect for our
future developments.

Proposition 8. Suppose that R is a proper relation over M. Then, for each a 2 M,
there exists a sequence .xnI n � 0/ in M with x0 D a and xnRxnC1, for all n.

This principle, due to Bernays [5] and Tarski [63], is deductible from AC (D
the Axiom of Choice), but not conversely; cf. Wolk [78]. Moreover, the reduced
axiomatic system (ZF-AC+DC) seems to be comprehensive enough for a large part
of the “usual” mathematics; see Moore [49, Appendix 2, Table 4].

As an illustration of this assertion, we show that, ultimately, (BB) is contained in
the underlying reduced system.

Proposition 9. We have (DC) H) (BB) in the strongly reduced system (ZF-AC);
hence, (BB) is deductible in the reduced system (ZF-AC+DC).
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Proof. Let the premises of (BB) be admitted; i.e., the quasi-ordered structure .M;�/
is sequentially inductive and the function ' W M ! RC is .�/-decreasing. Define
the function ˇ W M ! RC as

ˇ.v/ WD infŒ'.M.v;�//�, v 2 M.

Clearly, ˇ is increasing and

'.v/ � ˇ.v/, for all v 2 M. (30)

Moreover, (' D decreasing) yields a characterization of maximal elements like

v is .�; '/-maximal iff '.v/ D ˇ.v/. (31)

Now, assume by contradiction that the conclusion in this statement is false, i.e., [in
combination with (30)+(31)], there must be some u 2 M such that

(b07) for each v 2 Mu WD M.u;�/, one has '.v/ > ˇ.v/.

Consequently (for all such v),

'.v/ > .1=2/.'.v/C ˇ.v// > ˇ.v/I

hence

v � w and .1=2/.'.v/C ˇ.v// > '.w/, (32)

for at least one w (belonging to Mu). The relation R over Mu introduced via (32) is
proper on Mu, i.e.,

Mu.v;R/ ¤ ;, for all v 2 Mu.

So, by (DC), there must be a sequence .un/ in Mu with u0 D u and

un � unC1, .1=2/.'.un/C ˇ.un// > '.unC1/, for all n. (33)

We have thus constructed an ascending sequence .un/ in Mu for which the positive
(real) sequence .'.un// is (via (b07)) strictly descending and bounded below; hence
� WD limn '.un/ exists in RC. As .M;�/ is sequentially inductive, .un/ is bounded
from above in M: there exists v 2 M such that un � v, for all n (whence, v 2 Mu).
Moreover, since (' D decreasing), we must have (by the properties of ˇ)

j) '.un/ � '.v/, 8n; jj) '.v/ � ˇ.v/ � ˇ.un/, 8n.
The former of these relations gives � � '.v/ (passing to limit as n ! 1). On

the other hand, the latter of these relations yields (via (33))

.1=2/.'.un/C ˇ.v// > '.unC1/, for all n.
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Passing to limit as n!1 gives

.'.v/ �/ˇ.v/ � �I

so, combining with the preceding one,

'.v/ D ˇ.v/.D �/ contradiction.

Hence, (b07) cannot be accepted; and the conclusion follows.

Note that a slightly different proof of this may be found in the 2007 monograph
by Cârjă et al. [12, Chap. 2, Sect. 2.1]. Further metrical aspects of it may be found
in Turinici [68].

(C) In the following, the relationships between (BB) and Ekeland’s variational
principle [25] (in short: EVP) are discussed.

Let .M; d/ be a metric space and ' W M ! RC be a function. Assume that

(b08) .M; d/ is complete (each d-Cauchy sequence in M is d-convergent)

(b09) ' is d-lsc: lim infn '.xn/ � '.x/, whenever xn
d�! x;

or, equivalently: fx 2 MI'.x/ � tg is d-closed, for each t 2 R.

Proposition 10. Let these conditions hold. Then, for each (starting point) u 2 M,
there exists (another point) v 2 M with

d.u; v/ � '.u/ � '.v/ (hence '.u/ � '.v/) (34)

d.v; x/ > '.v/ � '.x/, for each x 2 M n fvg. (35)

Proof. Let .�/ stand for the relation (over M):

x � y iff d.x; y/ � '.x/ � '.y/.
Clearly, .�/ acts as a (partial) order on M; note that, as a consequence of this, its
associated relation

x � y iff 0 < d.x; y/ � '.x/ � '.y/
is a strict order on X. We claim that conditions of (BB-Z) are fulfilled on .M;�/. In
fact, by this very definition, ' is .�/-decreasing on M, so that .M;�/ is admissible.
On the other hand, let .xn/ be a .�/-ascending sequence in M:

(b10) 0 < d.xn; xm/ � '.xn/ � '.xm/, if n < m.

The sequence .'.xn// is strictly descending and bounded from below, hence a
Cauchy one. This, along with our working hypothesis, tells us that .xn/ is a d-Cauchy
sequence in M; wherefrom by completeness,

xn
d�! y as n!1, for some y 2 M.
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Passing to limit as m!1 in the same working hypothesis, one derives

d.xn; y/ � '.xn/ � '.y/, (i.e., xn � y), for all n.

This, combined with .xnI n � 0/ being .�/-ascending, gives xn � y, for all n and
shows that .M;�/ is sequentially inductive. From (BB-Z), it then follows that, for
the starting u 2 M, there exists some v 2 M with

h) u � v; hh) v � x 2 M implies v D x.
The former of these is just (34) and the latter one gives at once (35).

This principle found some basic applications to control and optimization,
generalized differential calculus, critical point theory, and global analysis; we refer
to the quoted paper for a survey of these. So, it cannot be surprising that, soon
after its formulation, many extensions of (EVP) were proposed. For example, the
dimensional way of extension refers to the ambient positive halfline RC of '.M/
being substituted by a convex cone of a (topological or not) vector space. An account
of the results in this area is to be found in the 2003 monograph by Goepfert et al. [28,
Chap. 3]; see also Turinici [68]. On the other hand, the (pseudo) metrical one
consists in the conditions imposed to the ambient metric over M being relaxed.
Some basic results in this direction were obtained by Kang and Park [37]; see also
Tataru [64].

(D) By the developments above, we therefore have the implications:

(DC) H) (BB) H) (BB-Z) H) (EVP).

So, we may ask whether these may be reversed. Clearly, the natural setting for
solving this problem is (ZF-AC), referred to (see above) as the strongly reduced
Zermelo–Fraenkel system.

Let X be a nonempty set and .�/ be a (partial) order on it. We say that .�/ has
the inf-lattice property, provided:

x ^ y WD inf.x; y/ exists, for all x; y 2 X.

Remember that z 2 X is a .�/-maximal element if X.z;�/ D fzg; the class of all
these points will be denoted as max.X;�/. Call .�/, a Zorn order when

max.X;�/ is nonempty and cofinal in X
(for each u 2 X, there exists a .�/-maximal v 2 X with u � v).

Further aspects are to be described in a metric setting. Let d W X � X ! RC be a
metric over X and ' W X ! RC be some function. Then, the natural choice for .�/
above is

x �.d;'/ y iff d.x; y/ � '.x/ � '.y/,
referred to as the Brøndsted order [10] attached to .d; '/. Denote

X.x; �/ D fu 2 XI d.x; u/ < �g, x 2 X, � > 0
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[the open sphere with center x and radius �]. Call the ambient metric space .X; d/,
discrete when

for each x 2 X, there exists � D �.x/ > 0 such that X.x; �/ D fxg.
Note that, under such an assumption, any function  W X ! R is continuous over X.
However, the (global) d-Lipschitz property of the same

j .x/ �  .y/j � Ld.x; y/, x; y 2 X, for some L > 0

cannot be assured, in general.
Now, the statement below is a particular case of (EVP):

Proposition 11. Let the metric space .X; d/ and the function ' W X ! RC satisfy

(b11) .X; d/ is discrete bounded and complete.
(b12) .�.d;'// has the inf-lattice property.
(b13) ' is d-nonexpansive and '.X/ is countable.

Then, .�.d;'// is a Zorn order.

We shall refer to it as the discrete Lipschitz countable version of EVP (in short:
(EVP-dLc)). Clearly, (EVP) H) (EVP-dLc). The remarkable fact to be added is
that this last principle yields (DC); so, it completes the circle between all these.

Proposition 12. The inclusion below is holding (in the strongly reduced Zermelo–
Fraenkel system): (EVP-dLc) H) (DC). So (by the above),

i) The maximal/variational principles (BB), (BB-Z), and (EVP) are all equivalent
with (DC); hence, mutually equivalent.

ii) Each “intermediary” maximal/variational statement (VP) with (DC) H) (VP)
H) (EVP) is equivalent with both (DC) and (EVP).

For a complete proof, see Turinici [70]. In particular, when the discrete, bounded,
inf-lattice, and nonexpansive properties are ignored in (EVP-dLc), the last result
above reduces to the one in Brunner [11]. Note that, in the same particular setting, a
different proof of (EVP)H) (DC) was provided in Dodu and Morillon [20]. Further
aspects may be found in Schechter [62, Chap. 19, Sect. 19.51].

3.3 Cantor Complete Ultrametrics

Let X be a nonempty set. By an ultrametric (or non-Archimedean metric) on X, we
mean any mapping d W X � X ! RC with the properties:

(c01) x D y iff d.x; y/ D 0 (reflexive sufficient)
(c02) d.x; y D d.y; x/, 8x; y 2 X (symmetric)
(c03) d.x; z/ � maxfd.x; y/; d.y; z/g, 8x; y; z 2 X (ultra-triangular);

in this case, the pair .X; d/ will be referred to as an ultrametric space. Note that any
ultrametric is a (standard) metric (on X), because
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d.x; z/ � maxfd.x; y/; d.y; z/g � d.x; y/C d.y; z/; 8x; y; z 2 XI

but, the converse is not in general valid. The class of these ultrametrics is nonempty.
In fact, the discrete metric on X introduced as: for each x; y 2 X

d.x; y/ D 1 if x ¤ y; d.x; y/ D 0, if x D y,

is an ultrametric, as it can be directly seen. Further examples may be found in Rooij
[75, Chap. 3].

Let in the following .X; d/ be an ultrametric space. Note that the presence
of ultra-triangular inequality induces a lot of dramatic changes with respect to
the standard metrical case; some basic ones will be shown below. [These were
stated without proof in Khamsi and Kirk [40, Chap. 5, Sect. 5.7]; see also Rooij
[75, Chap. 2]; however, for completeness reasons, we shall provide a proof of them.]

Lemma 6. Let x; y; z 2 X be such that d.x; y/ ¤ d.y; z/. Then, necessarily,

d.x; z/ D maxfd.x; y/; d.y; z/gI

hence, either d.x; z/ D d.x; y/ or d.x; z/ D d.y; z/. In other words: each triangle
.x; y; z/ in X is d-isosceles.

Proof. Suppose by contradiction that

d.x; z/ < maxfd.x; y/; d.y; z/g.
We have two alternatives to consider:

i) Suppose that d.x; y/ < d.y; z/. By the working hypothesis, we then have
d.x; z/ < d.y; z/. In this case, the ultra-triangular inequality gives

d.y; z/ � maxfd.x; y/; d.x; z/g < d.y; z/; contradiction:

ii) Suppose that d.y; z/ < d.x; y/. By the working hypothesis, we then have
d.x; z/ < d.x; y/; so, again from the ultra-triangular inequality,

d.x; y/ � maxfd.x; z/; d.y; z/g < d.x; y/I contradiction:

Having discussed all possible alternatives, we are done.

By definition, any set of the form

(c04) XŒa; r� D fx 2 XI d.a; x/ � rg, a 2 X, r 2 RC,

will be referred to as a d-closed sphere with center a 2 X and radius r 2 RC; note
that this is a nonempty subset of X, in view of a 2 XŒa; r�. In the following, some
results involving the family of all d-closed spheres

M D fXŒa; r�I a 2 X; r 2 RCg � .2/X
will be discussed.
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Lemma 7. Let M1 WD XŒa1; r1�, M2 WD XŒa2; r2� be a couple of non-disjoint d-
closed spheres in X. Then,

(i) M1 � M2, whenever r1 � r2
(ii) M1 D M2, whenever r1 D r2.

Proof. As M1 \M2 ¤ ;, there exists at least one element b 2 M1 \M2.

i) Assume that r1 � r2 and let x 2 M1 be arbitrary fixed. From the ultra-triangular
inequality, we have

d.x; b/ � maxfd.x; a1/; d.b; a1/g � r1I

and this in turn yields (by the same procedure)

d.x; a2/ � maxfd.x; b/; d.b; a2/g � maxfr1; r2g D r2I i.e., x 2 M2:

As x 2 M1 was arbitrarily chosen, one derives M1 � M2.
ii) Evident, by the preceding step.

Lemma 8. Let a; b 2 X and s � 0 be such that a 2 XŒb; s�. Then,

XŒa; r� � XŒb; s�, for each r 2 Œ0; s�. (36)

Proof. Let r 2 Œ0; s� be arbitrary fixed. By the imposed hypothesis,

a 2 XŒa; r� \ XŒb; s�, whence XŒa; r� \ XŒb; s� ¤ ;;

and then, from the previous result, we are done.

The next statement is, in a certain sense, a reciprocal of the previous one. Denote

(Y1;Y2 2 2X): Y1 � Y2 iff Y1 � Y2 and Y1 ¤ Y2.

Clearly, .�/ is nothing else than the strict order (i.e., irreflexive and transitive
relation) attached to the usual (partial) order .�/ over 2X .

Lemma 9. Let M1 WD XŒa1; r1�, M2 WD XŒa2; r2� be two d-closed balls in X. Then,

M1 � M2 H) r1 < r2: (37)

Proof. Suppose that M1 � M2; but (contrary to the conclusion) r2 � r1. As M1 \
M2 D M1 ¤ ;, one has by a preceding result (and the working hypothesis)

M2 � M1 � M2, contradiction.

This proves our assertion.
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We are now introducing a basic notion. Call the ultrametric space .X; d/, Cantor
strongly complete (in short: Cantor s-complete), provided

(c05) each .�/-ascending sequence .Mn WD XŒan; rn�I n � 0/ in M
has a nonempty intersection.

A (formally) weaker variant of this definition is as follows. Call the ultrametric
space .X; d/, Cantor complete, provided

(c06) each .�/-ascending sequence .Mn WD XŒan; rn�I n � 0/ in M
has a nonempty intersection.

Clearly, we have

(8 ultrametric structure): Cantor s-complete H) Cantor complete. (38)

The reciprocal inclusion is also true, as results from

Lemma 10. For each ultrametric structure .X; d/, we have

Cantor complete H) Cantor s-complete;
hence, Cantor complete ” Cantor s-complete.

(39)

Proof. Suppose that the ultrametric space .X; d/ is Cantor complete; and let .Mn WD
XŒan; rn�I n � 0/ be a .�/-ascending sequence in M . If one has that

9.i � 0/, 8.j > i/: Mi D Mj,

we are done, because\fMnI n � 0g D Mi. Suppose now that the opposite alternative
is holding:

8.i � 0/, 9.j > i/: Mi � Mj.

There exists then a strictly ascending sequence of ranks .i.n/I n � 0/, such that the
subsequence .Ln WD Mi.n/I n � 0/ of .MnI n � 0/ fulfills

.Ln/ is .�/-ascending: p < q H) Lp � Lq.

By the imposed hypothesis, L WD \fLnI n � 0g is nonempty. This, along with
L D \fMnI n � 0g, ends the argument.

Denote, for simplicity

� D X � RC; hence, � D f.a; �/I a 2 X; � 2 RCg.
A natural relation to be introduced here is the following:

.a; �/ � .b; �/ iff XŒa; �� � XŒb; ��.

Clearly, .�/ is irreflexive and transitive, hence, a strict order on � . Let .�/ stand
for the associated (partial) order

.a; �/ � .b; �/ iff either .a; �/ � .b; �/ or .a; �/ D .b; �/.
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Having these precise, let us introduce the function

(' W � ! RC): '.a; �/ D �, .a; �/ 2 � .

By a previous result, we have

' is .�/-decreasing: .a; �/ � .b; �/ H) '.a; �/ > '.b; �/.

This tells us that, necessarily,

.�;�/ is admissible, hence, so is .�;�/, where ; ¤ � � � . (40)

As a consequence, the following (relative) maximal result is available.

Proposition 13. Let the (nonempty) subset � of � be such that

.�;�/ is sequentially inductive:
each .�/-ascending sequence in � is bounded above in � (modulo .�/).

Then, .�/ is a Zorn order on �; i.e., for each (starting element) .a; �/ 2 �, there
exists (another element) .b; �/ 2 �, with

i) .a; �/ � .b; �/, i.e., either .a; �/ � .b; �/ or .a; �/ D .b; �/
ii) .b; �/ � .c; �/ is impossible, for each .c; �/ 2 �.

Proof. By the admissible property for � , we have (see above)

(the strictly ordered structure) .�;�/ is admissible.

Combining with the admitted hypothesis, it results that the sequential-type maximal
result (BB-Z) is applicable to .�;�/; and, from this, we are done.

3.4 Application (Fixed Point Theorems)

In the following, an application of the above developments is given to the ultrametric
fixed point theory.

Let .X; d/ be an ultrametric space. We say that the selfmap T 2 F .X/ is d-strictly
nonexpansive, provided

(d01) d.Tx;Ty/ < d.x; y/, 8x; y 2 X, x ¤ y.

Note that, in particular, T is d-nonexpansive:

(d02) d.Tx;Ty/ � d.x; y/, for all x; y 2 X.

The following fixed point theorem over ultrametric spaces is available.

Theorem 9. Suppose that T is d-strictly nonexpansive (see above). In addition, let
.X; d/ be Cantor complete. Then, T is fix-singleton; whence it has a unique fixed
point in X.
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Proof. There are several steps to be followed.

Step 1. By the d-strict nonexpansive property, we have

Fix.T/ is asingleton; i.e., T is fix-asingleton.

So, all we have to establish is that Fix.T/ appears as nonempty.
Step 2. Remember that, over � WD X � RC, we introduced the strict ordering

.a; �/ � .b; �/ iff XŒa; �� � XŒb; ��

as well as the associated ordering

.a; �/ � .b; �/ iff either .a; �/ � .b; �/ or .a; �/ D .b; �/.
Moreover, we have that

.�;�/ is admissible, hence, so is .�;�/, where ; ¤ � � � . (41)

Step 3. Denote, for simplicity

� D f.a; d.a;Ta//I a 2 Xg;
this is a nonempty subset of � . By a previous relation, we have that

(the strictly ordered structure) .�;�/ is admissible. (42)

Moreover, we claim that the structure .�;�/ is sequentially inductive. In fact, let
..an; d.an;Tan//I n � 0/ be a .�/-ascending sequence in �; i.e.,

Mi � Mj, for i < j; where .Mn WD XŒan; d.an;Tan/�I n � 0/.
As .X; d/ is Cantor complete, it follows that

L WD \fMnI n � 0g is nonempty;

let b 2 L be some point of it. By the very definition above (and the d-nonexpansive
property of T)

d.Tb;Tan/ � d.b; an/ � d.an;Tan/; 8n � 0:

Combining with the ultra-triangular inequality, one gets (for the same ranks)

d.b;Tb/ � maxfd.b; an/; d.an;Tan/; d.Tan;Tb/g � d.an;Tan/I

and this, by a previous auxiliary fact, yields

XŒan; d.an;Tan/� � XŒb; d.b;Tb/�, for all n;
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or equivalently (by definition)

.an; d.an;Tan// � .b; d.b;Tb// 2 �, for all n,

which proves the desired fact.

Step 4. Putting these together, it follows that the previous maximal principle is
applicable to .�;�/. So, for the starting element .u; d.u;Tu// in �, there
exists another element .v; d.v;Tv// in �, with

i) .u; d.u;Tu// � .v; d.v;Tv//
ii) for each w 2 X, .v; d.v;Tv// � .w; d.w;Tw// is impossible.

Suppose by contradiction that

d.v;Tv/ > 0, hence, d.Tv;T2v/ < d.v;Tv/.

We claim that

.v; d.v;Tv// � .Tv; d.Tv;T2v//;
and this, by the previous maximal property of .v; d.v;Tv//, yields a contradiction.
The desired relation may be written as

XŒv; d.v;Tv/� � XŒTv; d.Tv;T2v/�;

to establish it, we may proceed as follows.

I) Let y 2 XŒTv; d.Tv;T2v/� be arbitrary fixed; hence,

d.y;Tv/ � d.Tv;T2v/.< d.v;Tv//.

By the ultra-triangular inequality,

d.y; v/ � maxfd.y;Tv/; d.v;Tv/g D d.v;Tv/;

whence, y 2 XŒv; d.v;Tv/�; this, by the arbitrariness of y, gives

XŒTv; d.Tv;T2v/� � XŒv; d.v;Tv/�:

II) From the working assumption about v, one must have

(v 2 XŒv; d.v;Tv/� and) v … XŒTv; d.Tv;T2v/�;

hence, the above inclusion is strict. The proof is thereby complete.

By the argument above, this fixed point result is a consequence of the Brezis–
Browder ordering principle [9]; hence, ultimately, it is deductible in the reduced
Zermelo–Fraenkel system (ZF-AC+DC). Note that similar conclusions are to be
derived for the related fixed point results over ultrametric spaces due to Gajić
[26] and Pant [52]; see also Wang and Song [76]. Further aspects of this theory
concerning fuzzy ultrametric spaces may be found in Sayed [61].
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27. Găvruţa, L., Găvruţa, P., Khojasteh, F.: Two classes of Meir-Keeler contractions. Arxiv 1405-

5034-v1, 20 May 2014
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Novel Tools to Determine Hyperbolic
Triangle Centers

Abraham Albert Ungar

In Honor of Vladimir Arnold

Abstract Recently discovered tools to study analytic hyperbolic geometry in terms
of analogies with analytic Euclidean geometry are presented and employed. Special
attention is paid to the study of two novel hyperbolic triangle centers that we call
hyperbolic Cabrera points of a hyperbolic triangle and to the way they descend to
their novel Euclidean counterparts. The two novel hyperbolic Cabrera points are the
(1) Cabrera gyrotriangle ingyrocircle gyropoint and the (2) Cabrera gyrotriangle
exgyrocircle gyropoint. Accordingly, their Euclidean counterparts to which they
descend are the two novel Euclidean Cabrera points, which are the (1) Cabrera
triangle incircle point and the (2) Cabrera triangle excircle point.

1 Introduction

There are many excellent books on plane Euclidean geometry, exploring the subject
at various levels. A recently published book by S.E. Louridas and M.Th. Rassias,
Problem-Solving and Selected Topics in Euclidean Geometry, adds yet another facet
to this colorful subject. This delightful book presents a collection of problems in
plane Euclidean geometry in the spirit of mathematical Olympiads. One of the
problems, attributed to Roberto B. Cabrera, is presented in the book without a
solution as follows [30, p. 84]:

Let A1A2A3 be a triangle with side midpoints M12, M13, M23, and let T1, T2, T3
be the points of tangency of the incircle of the medial triangle M12M13M23 with
sides M12M13, M12M23, M13M23, as shown in Fig. 15, p. 658. Cabrera proposed the
problem of proving that the lines A1T1, A2T2, and A3T3 are concurrent.

Since Cabrera’s problem is about a new triangle center, it naturally attracts the
attention of triangle center hunters. Moreover, hyperbolic geometers may raise
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the question as to whether the resulting Cabrera point of a triangle possesses a
counterpart in the hyperbolic geometry of Lobachevsky and Bolyai as well.

Accordingly, Cabrera’s problem suggests the following formal definition.

Definition 1 (Cabrera Incircle Point). Let A1A2A3 be a triangle in a Euclidean
plane R

2 with side midpoints M12, M13, M23, and let F1, F2, F3 be the points of
tangency of the incircle of the medial triangle M12M13M23 with its sides M12M13,
M12M23, M13M23. The point of concurrency, F, of the lines A1F1, A2F2, A3F3 is the
Cabrera incircle point of triangle A1A2A3, shown in Fig. 16, p. 659.

Definition 1, in turn, naturally suggests the following definition of a second
triangle Cabrera point in which the incircle of a medial triangle is replaced by the
excircles of the medial triangle.

Definition 2 (Cabrera Excircle Point). Let A1A2A3 be a triangle in a Euclidean
plane R

2 with side midpoints M12, M13, M23, and let H1, H2, H3 be the points of
tangency of the excircles of the medial triangle M12M13M23 with its sides M12M13,
M12M23, M13M23. The point of concurrency, H, of the lines A1H1, A2H2, A3H3 is the
Cabrera excircle point of triangle A1A2A3, shown in Fig. 16, p. 659.

It is anticipated in each of Definitions 1–2 that given three lines are concurrent.
We will see in this article that this is, indeed, the case.

The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry,
resulting in a repertoire of about six thousand triangle centers, each of which can be
determined by its barycentric coordinate representation with respect to the vertices
of its reference triangle [27].

The hunt for hyperbolic triangle centers is initiated in [53–56], where barycentric
coordinates, commonly used as a tool in Euclidean geometry, are adapted for use as
a tool in hyperbolic geometry as well.

The aim of this article is to present in detail the mathematical tools that enable the
hyperbolic Cabrera points to be defined and determined. These mathematical tools
prove useful for a general study of hyperbolic geometry in terms of novel analogies
with Euclidean geometry, as demonstrated in [55, 56, 61]. However, we employ
them in this article solely for the determination of the hyperbolic Cabrera points
in the Beltrami–Klein model of hyperbolic geometry. Finally, in terms of Euclidean
limits, we discover how the hyperbolic Cabrera points descend to their Euclidean
counterparts.

Remarkably, our main tool in the study of hyperbolic geometry is the famous Ein-
stein addition law of relativistically admissible velocities that Einstein introduced
in his 1905 paper [15] that founded the special theory of relativity. Here Einstein
addition proves useful due to the algebraic objects, gyrogroups and gyrovector
spaces, to which it gives rise. It turns out that Einstein gyrovector spaces form
the algebraic setting for the Beltrami–Klein model of hyperbolic geometry, just
as vector spaces form the algebraic setting for the standard model of Euclidean
geometry.



Hyperbolic Triangle Centers 565

The Beltrami–Klein model of hyperbolic geometry is becoming known as the
relativistic model of hyperbolic geometry [2, 5, 34, 37, 41, 45, 56]. Naturally, the
story of the relativistic model of hyperbolic geometry begins with Einstein addition,
the binary operation that expresses the Einstein composition law of relativistically
admissible velocities that Einstein introduced in his 1905 paper [15, 16, 29].

2 Einstein Velocity Addition

Let c be any positive constant and let .Rn;C; �/ be the Euclidean n-space, n 2 N,
equipped with the common vector addition,C, and inner product, �. Furthermore, let

R
n
c D fv 2 R

n W kvk < cg (1)

be the c-ball of all relativistically admissible velocities of material particles. It is the
open ball of radius c, centered at the origin of Rn, consisting of all vectors v in R

n

with magnitude kvk smaller than c. Rn is said to be the ambient space of the ball Rn
c .

Einstein velocity addition is a binary operation, ˚, in the c-ball R
n
c of all

relativistically admissible velocities, given by the equation [47], [35, Eq. 2.9.2],
[31, p. 55], [24], v

u ˚ v D 1

1C u � v
c2

	
uC 1

�u
vC 1

c2
�u

1C �u
.u � v/u



(2)

for all u; v 2 R
n
c , where �u is the gamma factor given by the equation

�u D
1

r
1 � kuk

2

c2

: (3)

Here u � v and kvk are the inner product and the norm in the ball, which the ball
R

n
c inherits from its space R

n, kvk2 D v � v D v2. A nonempty set with a binary
operation is called a groupoid so that, accordingly, the pair .Rn

c ;˚/ is an Einstein
groupoid.

In the Newtonian/Euclidean limit of large c, c ! 1, the ball Rn
c expands to the

whole of its ambient space R
n, as we see from (1), and Einstein addition ˚ in R

n
c

descends to the ordinary vector addition C in R
n, as we see from (2) and (3).

Einstein addition and the gamma factor are related by the gamma identity,

�u˚v D �u�v

�
1C u � v

c2

�
; (4)

u; v 2 R
n
c . It can be written, equivalently, as

��u˚v D �u�v

�
1 � u � v

c2

�
; (5)

by replacing u by �u D �u.
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A frequently used identity that follows immediately from (3) is

v2

c2
D kvk

2

c2
D �2v � 1

�2v
(6)

and, similarly, a useful identity that follows immediately from (5) is

u � v
c2
D 1 � ��u˚v

�u�v
: (7)

3 Einstein Addition Vs. Vector Addition

Vector addition, C, in R
n is both commutative and associative, that is,

uC v D vC u Commutative Law

uC .vC w/ D .uC v/C w Associative Law
(8)

for all u; v;w 2 R
n. In contrast, Einstein addition, ˚, in R

n
c is neither commutative

nor associative.
In order to measure the extent to which Einstein addition deviates from asso-

ciativity, we introduce gyrations, which are maps that are trivial in the special cases
when the application of ˚ is associative. For any u; v 2 R

n
c the gyration gyrŒu; v� is a

map of the Einstein groupoid .Rn
c ;˚/ onto itself. Gyrations gyrŒu; v� 2 Aut.R3c ;˚/,

u; v 2 R
3
c , are defined in terms of Einstein addition by the equation

gyrŒu; v�w D �.u ˚ v/˚ fu ˚ .v ˚ w/g (9)

for all u; v;w 2 R
3
c , and they turn out to be automorphisms of the Einstein groupoid

.R3c ;˚/.
We recall that an automorphism of a groupoid .S;˚/ is a one-to-one map f of

S onto itself that respects the binary operation, that is, f .a ˚ b/ D f .a/ ˚ f .b/
for all a; b 2 S. The set of all automorphisms of a groupoid .S;˚/ forms a group,
denoted Aut.S;˚/. To emphasize that the gyrations of an Einstein groupoid .R3c ;˚/
are automorphisms of the groupoid, gyrations are also called gyroautomorphisms.

A gyration gyrŒu; v�, u; v 2 R
3
c , is trivial if gyrŒu; v�w D w for all w 2 R

3
c .

Thus, for instance, the gyrations gyrŒ0; v�, gyrŒv; v�, and gyrŒv;�v� are trivial for all
v 2 R

3
c , as we see from (9).

Einstein gyrations possess their own rich structure. Moreover, they measure the
extent to which Einstein addition deviates from commutativity and associativity as
we see from the gyrocommutative and the gyroassociative laws of Einstein addition
in the following identities [47, 48, 50]:

u ˚ v D gyrŒu; v�.v ˚ u/ Gyrocommutative Law

u ˚ .v ˚ w/ D .u ˚ v/˚ gyrŒu; v�w Left Gyroassociative Law

.u ˚ v/˚ w D u ˚ .v ˚ gyrŒv;u�w/ Right Gyroassociative Law
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gyrŒu ˚ v; v� D gyrŒu; v� Gyration Left Reduction Property

gyrŒu; v ˚ u� D gyrŒu; v� Gyration Right Reduction Property

gyrŒ�u;�v� D gyrŒu; v� Gyration Even Property

.gyrŒu; v�/�1 D gyrŒv;u� Gyration Inversion Law

a � b D gyrŒu; v�a � gyrŒu; v�b Inner Product Gyroinvariance
(10)

for all u; v;w; a;b 2 R
n
c .

The reduction properties in (10) present important gyration identities since they
trigger remarkable reduction in complexity as, for instance, in the transition from
Item (4) to Item (5) of (54), p. 578. These two gyration identities are, however,
just the tip of a giant iceberg. Many other useful gyration identities are studied, for
instance, in [47, 48, 50] and will be studied in the sequel.

The gyrocommutative-gyroassociative laws of Einstein addition were discovered
in 1988 [42]. Euclidean geometry is very different from hyperbolic geometry, so
that it was not clear before 1988 that lessons from Euclidean geometry would
routinely translate into hyperbolic geometry. Recently, following the appearance
of [47, 48, 50, 52, 55, 56, 61], along with the present article, the gamble has paid
off owing to the gyrovector space structure that Einstein addition encodes. It is now
clear that the Einstein gyrovector space approach to relativistic hyperbolic geometry
is fully analogous to the standard vector space approach to Euclidean geometry. The
resulting analogies allow, in particular, the adaptation of tools that are commonly
used in Euclidean geometry for use in hyperbolic geometry as well.

In particular, barycentric coordinates, which are commonly used as a tool in
Euclidean geometry, are adapted for use as a tool in hyperbolic geometry as well,
where they are naturally called gyrobarycentric coordinates [55]. The latter will
prove useful in the sequel.

In order to emphasize analogies with Euclidean geometry, the mathematical
language that we use in the study of hyperbolic geometry, called gyrolanguage,
involves the prefix gyro. In gyrolanguage we prefix a gyro to any term that describes
a concept in Euclidean geometry and in associative algebra to mean the analogous
concept in hyperbolic geometry and nonassociative algebra. The prefix “gyro” stems
from “gyration,” which is the mathematical abstraction of the special relativistic
effect known as “Thomas precession,” studied in [61, Chap. 13].

The resulting group-like and vector-space-like structures that Einstein addition
encodes are naturally called gyrocommutative gyrogroups and gyrovector spaces.
Authors who apply the gyroformalism of gyrogroups and gyrovector spaces to
deal with hyperbolic geometry may enrich gyrolanguage from time to time by
contributing their own gyro-vocabulary. Thus, for instance, in a paper titled
Gyrolayout: A Hyperbolic Level-of-Detail Tree Layout [62], Urribarri, Castro, and
Martig employ the two-dimensional and three-dimensional Einstein gyrovector
spaces to develop their computer hyperbolic visualization, thus introducing the new
term “gyrolayout” into gyrolanguage. The history of gyrolanguage encompasses
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the history of gyrogroups and gyrovector spaces, unfolded in the seven books
[47, 48, 50, 52, 55, 56, 61] on analytic hyperbolic geometry. A brief early history of
gyrolanguage is presented in [50, Sect. 1.2] and [47, Remark 6.12, pp. 207–210].

In gyrolanguage, the hyperbolic counterparts of Definitions 1 and 2 of the
two triangle Cabrera points give the following definitions of the two gyrotriangle
Cabrera gyropoints.

Definition 3 (Cabrera Ingyrocircle Gyropoint). Let A1A2A3 be a gyrotriangle
in an Einstein gyrovector plane R

2
s with gyroside gyromidpoints M12, M13, M23,

and let F1, F2, F3 be the gyropoints of tangency of the ingyrocircle of the
gyromedial gyrotriangle M12M13M23 with its gyrosides M12M13, M12M23, M13M23.
The gyropoint of concurrency, F, of the gyrolines A1F1, A2F2, A3F3 is the Cabrera
ingyrocircle gyropoint of gyrotriangle A1A2A3, shown in Fig. 14, p. 652.

Definition 4 (Cabrera Exgyrocircle Gyropoint). Let A1A2A3 be a gyrotriangle
in an Einstein gyrovector plane R

2
s with gyroside gyromidpoints M12, M13, M23,

and let H1, H2, H3 be the gyropoints of tangency of the exgyrocircles of the
gyromedial gyrotriangle M12M13M23 with its gyrosides M12M13, M12M23, M13M23.
The gyropoint of concurrency, H, of the gyrolines A1H1, A2H2, A3H3 is the Cabrera
exgyrocircle gyropoint of gyrotriangle A1A2A3, shown in Fig. 14, p. 652.

It is anticipated in each of Definitions 3 and 4 that given three gyrolines are
concurrent. We will see in this article that this is, indeed, the case.

4 Gyrations

The extension by abstraction of the special relativistic effect known as “Thomas
precession” [61, Chap. 13] gives rise to gyrations which, in turn, result from the
nonassociativity of Einstein addition.

Due to its nonassociativity, Einstein addition gives rise in (9) to gyrations

gyrŒu; v� W Rn
c ! R

n
c (11)

for any u; v 2 R
n
c in an Einstein groupoid .Rn

c ;˚/. Gyrations, in turn, regulate Ein-
stein addition, endowing it with the rich structure of a gyrocommutative gyrogroup,
as we will see in Sect. 5, and a gyrovector space, as we will see in Sect. 13. Clearly,
gyrations measure the extent to which Einstein addition is nonassociative, where
associativity corresponds to trivial gyrations.

An explicit presentation of the gyrations of Einstein groupoids .Rn
c ;˚/ is,

therefore, desirable. Indeed, the gyration equation (9) can be manipulated into the
equation

gyrŒu; v�w D wC AuC Bv
D

(12)
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where

A D � 1
c2

�2u
.�u C 1/

.�v � 1/.u � w/C 1

c2
�u�v .v � w/

C 2

c4
�2u�

2
v

.�u C 1/.�v C 1/
.u � v/.v � w/

B D � 1
c2

�v

�v C 1
f�u.�v C 1/.u � w/C .�u � 1/�v .v � w/g

D D �u�v .1C
u � v
c2

/C 1 D �u˚v C 1 > 1

(13)

for all u; v;w 2 R
n
c . Allowing w 2 R

n � R
n
c in (12)–(13), gyrations gyrŒu; v� are

expendable from maps of Rn
c to linear maps of Rn for all u; v 2 R

n
c .

In each of the three special cases when (1) u D 0, (2) v D 0, or (3) u and v are
parallel in R

n, ukv, we have AuC Bv D 0 so that gyrŒu; v� is trivial. Thus, we have

gyrŒ0; v�w D w

gyrŒu; 0�w D w

gyrŒu; v�w D w; ukv ;
(14)

for all u; v 2 R
n
c , and all w 2 R

n.
It follows from (12) that

gyrŒv;u�.gyrŒu; v�w/ D w (15)

for all u; v 2 R
n
c , w 2 R

n, so that gyrations are invertible linear maps of Rn, the
inverse, gyr�1Œu; v�, of gyrŒu; v� being gyrŒv;u�. We thus have the gyration inversion
property

gyr�1Œu; v� D gyrŒv;u� (16)

for all u; v 2 R
n
c .

Gyrations keep the inner product of elements of the ball Rn
c invariant, that is,

gyrŒu; v�a � gyrŒu; v�b D a � b (17)

for all a;b;u; v 2 R
n
c . Hence, gyrŒu; v� is an isometry of Rn

c , keeping the norm of
elements of the ball Rn

c invariant,

kgyrŒu; v�wk D kwk : (18)

Accordingly, gyrŒu; v� represents a rotation of the ball Rn
c about its origin for any

u; v 2 R
n
c .
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The invertible self-map gyrŒu; v� of Rn
c respects Einstein addition in R

n
c ,

gyrŒu; v�.a ˚ b/ D gyrŒu; v�a ˚ gyrŒu; v�b (19)

for all a;b;u; v 2 R
n
c , so that gyrŒu; v� is an automorphism of the Einstein groupoid

.Rn
c ;˚/.

5 From Einstein Velocity Addition to Gyrogroups

Taking the key features of the Einstein groupoid .Rn
c ;˚/ as axioms, and guided

by analogies with groups, we are led to the formal gyrogroup definition in which
gyrogroups turn out to form a most natural generalization of groups. Definitions
related to groups and gyrogroups thus follow.

Definition 5 (Groups). A groupoid .G; C/ is a group if its binary operation
satisfies the following axioms. In G there is at least one element, 0, called a left
identity, satisfying

(G1) 0C a D a
for all a 2 G. There is an element 0 2 G satisfying axiom .G1/ such that for
each a 2 G there is an element �a 2 G, called a left inverse of a, satisfying

(G2) �aC a D 0
Moreover, the binary operation obeys the associative law

(G3) .aC b/C c D aC .bC c/
for all a; b; c 2 G.

Groups are classified into commutative and noncommutative groups.

Definition 6 (Commutative Groups). A group .G; C/ is commutative if its binary
operation obeys the commutative law

(G6) aC b D bC a

for all a; b 2 G.

Definition 7 (Subgroups). A subset H of a subgroup .G;C/ is a subgroup of G if
it is nonempty, and H is closed under group compositions and inverses in G, that is,
x; y 2 H implies xC y 2 H and �x 2 H.

Theorem 1 (The Subgroup Criterion). A subset H of a group G is a subgroup if
and only if (1) H is nonempty, and (2) x; y 2 H implies x � y 2 H.

For a proof of the subgroup criterion, see any book on group theory.

Definition 8 (Gyrogroups). A groupoid .G;˚/ is a gyrogroup if its binary opera-
tion satisfies the following axioms. In G there is at least one element, 0, called a left
identity, satisfying
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(G1) 0˚ a D a
for all a 2 G. There is an element 0 2 G satisfying axiom .G1/ such that for
each a 2 G there is an element �a 2 G, called a left inverse of a, satisfying

(G2) �a ˚ a D 0 :
Moreover, for any a; b; c 2 G, there exists a unique element gyrŒa; b�c 2 G
such that the binary operation obeys the left gyroassociative law

(G3) a ˚ .b ˚ c/ D .a ˚ b/˚ gyrŒa; b�c :
The map gyrŒa; b� W G! G given by c 7! gyrŒa; b�c is an automorphism of
the groupoid .G;˚/, that is,

(G4) gyrŒa; b� 2 Aut.G;˚/ ;
and the automorphism gyrŒa; b� of G is called the gyroautomorphism, or the
gyration, of G generated by a; b 2 G. The operator gyr W G�G! Aut.G;˚/
is called the gyrator of G. Finally, the gyroautomorphism gyrŒa; b� generated
by any a; b 2 G possesses the left reduction property

(G5) gyrŒa; b� D gyrŒa ˚ b; b� :

The gyrogroup axioms (G1)–(G5) in Definition 8 are classified into three
classes:

(1) The first pair of axioms, .G1/ and .G2/, is a reminiscent of the group axioms.
(2) The last pair of axioms, .G4/ and .G5/, presents the gyrator axioms.
(3) The middle axiom, .G3/, is a hybrid axiom linking the two pairs of axioms in

(1) and (2).

As in group theory, we use the notation a � b D a ˚ .�b/ in gyrogroup theory
as well.

In full analogy with groups, gyrogroups are classified into gyrocommutative and
nongyrocommutative gyrogroups.

Definition 9 (Gyrocommutative Gyrogroups). A gyrogroup .G;˚/ is gyrocom-
mutative if its binary operation obeys the gyrocommutative law

(G6) a˚ b D gyrŒa; b�.b˚ a/
for all a; b 2 G.

In order to capture analogies with groups, we introduce into the abstract
gyrogroup .G;˚/ a second binary operation, �, called the gyrogroup cooperation,
or coaddition.

Definition 10 (The Gyrogroup Cooperation (Coaddition)). Let .G;˚/ be a
gyrogroup. The gyrogroup cooperation (or coaddition), �, is a second binary
operation in G related to the gyrogroup operation (or addition), ˚, by the equation

a � b D a ˚ gyrŒa;�b�b (20)

for all a; b 2 G.
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Naturally, we use the notation a ˇ b D a � .�b/ where �b D �b, so that

a ˇ b D a � gyrŒa; b�b : (21)

Being a natural extension of the algebra of groups, the algebra of gyrogroups
has been explored and employed by several authors; see, for instance, [1–7, 13, 14,
17–22, 28, 33, 34, 36–40, 62], and [41, 43, 44, 46, 49, 58–60]. We realize that, as
noted in [11, p. 523], the computation language that Einstein addition encodes plays
a universal computational role, which extends far beyond the domain of special
relativity.

It is clear how to define a right identity and a right inverse in a gyrogroup.
However, as in group theory, the existence of such elements is not presumed. Indeed,
the existence of a unique identity and a unique inverse, both left and right, is a
consequence of the gyrogroup axioms, as the following theorem shows, along with
other immediate results.

Theorem 2 (First Gyrogroup Properties). Let .G; ˚/ be a gyrogroup. For any
elements a; b; c; x 2 G, we have:

1. If a ˚ b D a ˚ c, then b D c (general left cancellation law; see item (9) below).
2. gyrŒ0; a� D I for any left identity 0 in G.
3. gyrŒx; a� D I for any left inverse x of a in G.
4. gyrŒa; a� D I
5. There is a left identity which is a right identity.
6. There is only one left identity.
7. Every left inverse is a right inverse.
8. There is only one left inverse, �a, of a, and �.�a/ D a.
9. The left cancellation law:

� a ˚ .a ˚ b/ D b (22)

10. The gyrator identity:

gyrŒa; b�x D �.a ˚ b/˚ fa ˚ .b ˚ x/g (23)

11. gyrŒa; b�0 D 0 :
12. gyrŒa; b�.�x/ D �gyrŒa; b�x :
13. gyrŒa; 0� D I :

Proof. 1. Let x be a left inverse of a corresponding to a left identity, 0, in G. We
have x˚.a˚b/ = x˚.a˚c/, implying .x˚a/˚gyrŒx; a�b = .x˚a/˚gyrŒx; a�c
by left gyroassociativity. Since 0 is a left identity, gyrŒx; a�b D gyrŒx; a�c. Since
automorphisms are bijective, b D c.

2. By left gyroassociativity we have for any left identity 0 of G, a˚x = 0˚ .a˚x/
= .0 ˚ a/ ˚ gyrŒ0; a�x = a ˚ gyrŒ0; a�x. Hence, by item 1 above we have x D
gyrŒ0; a�x for all x 2 G so that gyrŒ0; a� D I.
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3. By the left reduction property and by item 2 above, we have gyrŒx; a� D gyrŒx ˚
a; a� D gyrŒ0; a� D I.

4. Follows from an application of the left reduction property and item 2 above.
5. Let x be a left inverse of a corresponding to a left identity, 0, of G. Then, by left

gyroassociativity and item 3 above, x˚.a˚0/ = .x˚a/˚gyrŒx; a�0 D 0˚0 D
0 D x ˚ a. Hence, by (1), a ˚ 0 D a for all a 2 G so that 0 is a right identity.

6. Suppose 0 and 0� are two left identities, one of which, say 0, is also a right
identity. Then 0 D 0� ˚ 0 D 0�.

7. Let x be a left inverse of a. Then x˚.a˚x/ = .x˚a/˚gyrŒx; a�x = 0˚x D x D
x ˚ 0, by left gyroassociativity, (G2) of Definition 8 and items 3, 5, 6 above. By
item 1 we have a ˚ x D 0 so that x is a right inverse of a.

8. Suppose x and y are left inverses of a. By item 7 above, they are also right
inverses, so a ˚ x D 0 D a ˚ y. By item 1, x D y. Let �a be the resulting
unique inverse of a. Then �a ˚ a D 0 so that the inverse �.�a/ of �a is a.

9. By left gyroassociativity and by 3, we have

� a ˚ .a ˚ b/ D .�a ˚ a/˚ gyrŒ�a; a�b D b (24)

10. By an application of the left cancellation law in item 9 to the left gyroassociative
law (G3) in Definition 8, we obtain the result in item 10.

11. We obtain item 11 from item 10 with x D 0.
12. Since gyrŒa; b� is an automorphism of .G;˚/, we have from item 11

gyrŒa; b�.�x/˚ gyrŒa; b�x D gyrŒa; b�.�x ˚ x/ D gyrŒa; b�0 D 0 (25)

and hence the result.
13. We obtain item 13 from item 10 with b D 0 and a left cancellation, item 9. �

6 Elements of Gyrogroup Theory

Einstein gyrogroups .G;˚/ possess the gyroautomorphic inverse property, accord-
ing to which �.a ˚ b/ D �a � b for all a; b 2 G. In general, however,
�.a˚b/ ¤ �a�b in other gyrogroups. Hence, the following theorem is important.

Theorem 3 (Gyrosum Inversion Law). For any two elements a; b of a gyrogroup
.G;˚/, we have the gyrosum inversion law

� .a ˚ b/ D gyrŒa; b�.�b � a/ : (26)
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Proof. By the gyrator identity in Theorem 2(10) and a left cancellation,
Theorem 2(9), we have

gyrŒa; b�.�b � a/ D �.a ˚ b/˚ .a ˚ .b ˚ .�b � a///

D �.a ˚ b/˚ .a � a/

D �.a ˚ b/ ;

(27)

as desired. �

Theorem 4. For any two elements, a and b, of a gyrogroup .G;˚/, we have

gyrŒa; b�b D �f�.a ˚ b/˚ ag ;
gyrŒa;�b�b D �.a � b/˚ a

(28)

Proof. The first identity in (28) follows from Theorem 2(10) with x D �b, and
Theorem 2(12), and the second part of Theorem 2(8). The second identity in (28)
follows from the first one by replacing b by �b. �

A nested gyroautomorphism is a gyration generated by gyropoints that depend on
another gyration. Thus, for instance, some gyrations in (29)–(31) below are nested.

Theorem 5. Any three elements a; b; c of a gyrogroup .G; ˚/ satisfy the nested
gyroautomorphism identities

gyrŒa; b ˚ c�gyrŒb; c� D gyrŒa ˚ b; gyrŒa; b�c�gyrŒa; b� (29)

gyrŒa ˚ b;�gyrŒa; b�b�gyrŒa; b� D I (30)

gyrŒa;�gyrŒa; b�b�gyrŒa; b� D I (31)

and the gyroautomorphism product identities

gyrŒ�a; a ˚ b�gyrŒa; b� D I (32)

gyrŒb; a ˚ b�gyrŒa; b� D I : (33)

Proof. By two successive applications of the left gyroassociative law in two
different ways, we obtain the following two chains of equations for all a; b; c; x 2 G,

a ˚ .b ˚ .c ˚ x// D a ˚ ..b ˚ c/˚ gyrŒb; c�x/

D .a ˚ .b ˚ c//˚ gyrŒa; b ˚ c�gyrŒb; c�x
(34)
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and

a ˚ .b ˚ .c ˚ x// D .a ˚ b/˚ gyrŒa; b�.c ˚ x/

D .a ˚ b/˚ .gyrŒa; b�c ˚ gyrŒa; b�x/

D ..a ˚ b/˚ gyrŒa; b�c/˚ gyrŒa ˚ b; gyrŒa; b�c�gyrŒa; b�x

D .a ˚ .b ˚ c//˚ gyrŒa ˚ b; gyrŒa; b�c�gyrŒa; b�x :
(35)

By comparing the extreme right sides of these two chains of equations, and by
employing the left cancellation law, Theorem 2(1), we obtain the identity

gyrŒa; b ˚ c�gyrŒb; c�x D gyrŒa ˚ b; gyrŒa; b�c�gyrŒa; b�x (36)

for all x 2 G, thus verifying (29).
In the special case when c D �b, (29) reduces to (30), noting that the left side

of (29) becomes trivial owing to items (2) and (3) of Theorem 2.
Identity (31) results from the following chain of equations, which are numbered

for subsequent derivation:

I
.1/‚…„ƒDDD gyrŒa ˚ b; �gyrŒa; b�b�gyrŒa; b�

.2/‚…„ƒDDD gyrŒ.a ˚ b/� gyrŒa; b�b;�gyrŒa; b�b�gyrŒa; b�

.3/‚…„ƒDDD gyrŒa ˚ .b � b/;�gyrŒa; b�b�gyrŒa; b�

.4/‚…„ƒDDD gyrŒa;�gyrŒa; b�b�gyrŒa; b� :

(37)

Derivation of the numbered qualities in (37) follows:

(1) Follows from (30).
(2) Follows from Item (1) by the left reduction property.
(3) Follows from Item (2) by the left gyroassociative law. Indeed, an application

of the left gyroassociative law to the first entry of the left gyration in Item (3)
gives the first entry of the left gyration in Item (2), that is, a ˚ .b � b/ D
.a ˚ b/� gyrŒa; b�b.

(4) Follows from Item (3) immediately, since b � b D 0.

To verify (32) we consider the special case of (29) when b D �a, obtaining

gyrŒa;�a ˚ c�gyrŒ�a; c� D gyrŒ0; gyrŒa;�a�c�gyrŒa;�a� D I (38)

where the second identity in (38) follows from items (2) and (3) of Theorem 2.
Replacing a by �a and c by b in (38), we obtain (32).



576 A.A. Ungar

Finally, (33) is derived from (32) by an application of the left reduction property
to the first gyroautomorphism in (32) followed by a left cancellation, Theorem 2(9).
Accordingly,

I D gyrŒ�a; a ˚ b�gyrŒa; b�

D gyrŒ�a ˚ .a ˚ b/; a ˚ b�gyrŒa; b�

D gyrŒb; a ˚ b�gyrŒa; b� ;

(39)

as desired. �

The nested gyroautomorphism identity (31) in Theorem 5 allows the equation
that defines the coaddition � to be dualized with its corresponding equation in
which the roles of the binary operations � and ˚ are interchanged, as shown in the
following theorem:

Theorem 6. Let .G;˚/ be a gyrogroup with cooperation � given in Definition 10,
p. 571, by the equation

a � b D a ˚ gyrŒa;�b�b (40)

Then

a ˚ b D a � gyrŒa; b�b : (41)

Proof. Let a and b be any two elements of G. By (40) and (31) we have

a � gyrŒa; b�b D a ˚ gyrŒa;�gyrŒa; b�b�gyrŒa; b�b

D a ˚ b
(42)

thus verifying (41). �

We naturally use the notation

a ˇ b D a � .�b/ (43)

in a gyrogroup .G;˚/, so that, by (43), (40) and Theorem 2(12),

a ˇ b D a � .�b/

D a ˚ gyrŒa; b�.�b/

D a � gyrŒa; b�b

(44)
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and, hence,

a ˇ a D a � a D 0 (45)

as it should. Identity (45), in turn, implies the equality between the inverses of a 2 G
with respect to ˚ and �,

ˇ a D �a (46)

for all a 2 G.

Theorem 7. Let .G;˚/ be a gyrogroup. Then

.�a ˚ b/˚ gyrŒ�a; b�.�b ˚ c/ D �a ˚ c (47)

for all a; b; c 2 G.

Proof. By the left gyroassociative law and the left cancellation law, and using the
notation d D �b ˚ c, we have,

.�a ˚ b/˚ gyrŒ�a; b�.�b ˚ c/ D .�a ˚ b/˚ gyrŒ�a; b�d

D �a ˚ .b ˚ d/

D �a ˚ .b ˚ .�b ˚ c//

D �a ˚ c ;

(48)

as desired. �

Theorem 8 (The Gyrotranslation Theorem, I). Let .G;˚/ be a gyrogroup. Then

� .�a ˚ b/˚ .�a ˚ c/ D gyrŒ�a; b�.�b ˚ c/ (49)

for all a; b; c 2 G.

Proof. Identity (49) is a rearrangement of Identity (47) obtained by a left cancella-
tion. �

The importance of Identity (49) lies in the analogy it shares with its group
counterpart, �.�aC b/C .�aC c/ D �bC c in any group .Group;C/.

The identity of Theorem 7 can readily be generalized to any number of terms, for
instance,

.�a ˚ b/˚ gyrŒ�a; b�f.�b ˚ c/˚ gyrŒ�b; c�.�c ˚ d/g D �a ˚ d (50)

which generalizes the obvious group identity .�aC b/C .�bC c/C .�cC d/ D
�aC d in any group .Group;C/.
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7 The Two Basic Equations of Gyrogroups

The two basic equations of gyrogroup theory are

a ˚ x D b (51)

and

x ˚ a D b (52)

a; b; x 2 G, each for the unknown x in a gyrogroup .G;˚/.
Let x be a solution of the first basic equation, (51). Then we have by (51) and the

left cancellation law, Theorem 2(9),

� a ˚ b D �a ˚ .a ˚ x/ D x : (53)

Hence, if a solution x of (51) exists, then it must be given by x D �a ˚ b, as we see
from (53).

Conversely, x D �a ˚ b is, indeed, a solution of (51) as we see by substituting
x D �a˚b into (51) and applying the left cancellation law in Theorem 2(9). Hence,
the gyrogroup equation (51) possesses the unique solution x D �a ˚ b.

The solution of the second basic gyrogroup equation, (52), is quite different from
that of the first, (51), owing to the noncommutativity of the gyrogroup operation. Let
x be a solution of (52). Then we have the following chain of equations, which are
numbered for subsequent derivation:

x
.1/‚…„ƒDDD x ˚ 0

.2/‚…„ƒDDD x ˚ .a � a/

.3/‚…„ƒDDD .x ˚ a/˚ gyrŒx; a�.�a/

.4/‚…„ƒDDD .x ˚ a/� gyrŒx; a�a

.5/‚…„ƒDDD .x ˚ a/� gyrŒx ˚ a; a�a

.6/‚…„ƒDDD b � gyrŒb; a�a

.7/‚…„ƒDDD b ˇ a :

(54)
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Derivation of the numbered equalities in (54) follows:

(1) Follows from the existence of a unique identity element, 0, in the gyrogroup
.G;˚/ by Theorem 2.

(2) Follows from the existence of a unique inverse element �a of a in the gyrogroup
.G;˚/ by Theorem 2.

(3) Follows from Item (2) by the left gyroassociative law in Axiom (G3) of
gyrogroups in Definition 8, p. 570.

(4) Follows from Item (3) by Theorem 2(12).
(5) Follows from Item (4) by the left reduction property (G5) of gyrogroups in

Definition 8.
(6) Follows from Item (5) by the assumption that x is a solution of (52).
(7) Follows from Item (6) by (44).

Hence, if a solution x of (52) exists, then it must be given by x D b ˇ a, as we
see from (54).

Conversely, x D bˇa is, indeed, a solution of (52), as we see from the following
chain of equations:

x ˚ a
.1/‚…„ƒDDD .b ˇ a/˚ a

.2/‚…„ƒDDD .b � gyrŒb; a�a/˚ a

.3/‚…„ƒDDD .b � gyrŒb; a�a/˚ gyrŒb;�gyrŒb; a��gyrŒb; a�a

.4/‚…„ƒDDD b ˚ .�gyrŒb; a�a ˚ gyrŒb; a�a/

.5/‚…„ƒDDD b ˚ 0

.6/‚…„ƒDDD b :

(55)

Derivation of the numbered equalities in (55) follows:

(1) Follows from the assumption that x D b ˇ a.
(2) Follows from Item (1) by (44).
(3) Follows from Item (2) by Identity (31) of Theorem 5, according to which the

gyration product applied to a in (3) is trivial.
(4) Follows from Item (3) by the left gyroassociative law. Indeed, an application of

the left gyroassociative law to (4) results in (3).
(5) Follows from Item (4) since �gyrŒb; a�a is the unique inverse of gyrŒb; a�a.
(6) Follows from Item (5) since 0 is the unique identity element of the gyrogroup

.G;˚/.
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Formalizing the results of this section, we have the following theorem:

Theorem 9 (The Two Basic Gyrogroup Equations). Let .G;˚/ be a gyrogroup,
and let a; b 2 G. The unique solution of the equation

a ˚ x D b (56)

in G for the unknown x is

x D �a ˚ b (57)

and the unique solution of the equation

x ˚ a D b (58)

in G for the unknown x is

x D b ˇ a : (59)

Let .G;˚/ be a gyrogroup, and let a 2 G. The maps �a and �a of G, given by

�a W G ! G; �a W g 7! a ˚ g ;

�a W G ! G; �a W g 7! g ˚ a ;
(60)

are called, respectively, a left gyrotranslation of G by a and a right gyrotranslation
of G by a. Theorem 9 asserts that each of these transformations of G is bijective,
that is, it maps G onto itself in a one-to-one manner.

8 The Basic Gyrogroup Cancellation Laws

The basic cancellation laws of gyrogroup theory are obtained in this section from
the basic equations of gyrogroups solved in Sect. 7. Substituting the solution (57)
into its Eq. (56), we obtain the left cancellation law

a ˚ .�a ˚ b/ D b (61)

for all a; b 2 G, already verified in Theorem 2(9).
Similarly, substituting the solution (59) into its Eq. (58), we obtain the first right

cancellation law

.b ˇ a/˚ a D b (62)
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for all a; b 2 G. The latter can be dualized, obtaining the second right cancella-
tion law

.b � a/� a D b (63)

for all a; b 2 G. Indeed, (63) results from the following chain of equations

b D b ˚ 0

D b ˚ .�a ˚ a/

D .b � a/˚ gyrŒb;�a�a

D .b � a/˚ gyrŒb � a;�a�a

D .b � a/� a

(64)

where we employ the left gyroassociative law, the left reduction property, and the
definition of the gyrogroup cooperation. Identities (61)–(63) form the three basic
cancellation laws of gyrogroup theory.

9 Commuting Automorphisms with Gyroautomorphisms

In this section we will find that automorphisms of a gyrogroup commute with its
gyroautomorphisms in a special, interesting way.

Theorem 10. For any two elements a; b of a gyrogroup .G; ˚/ and any automor-
phism A of .G;˚/, A 2 Aut.G;˚/,

AgyrŒa; b� D gyrŒAa;Ab�A : (65)

Proof. For any three elements a; b; x 2 .G; ˚/ and any automorphism A 2
Aut.G; ˚/, we have by the left gyroassociative law

.Aa ˚ Ab/˚ AgyrŒa; b�x D A..a ˚ b/˚ gyrŒa; b�x/

D A.a ˚ .b ˚ x//

D Aa ˚ .Ab ˚ Ax/

D .Aa ˚ Ab/˚ gyrŒAa;Ab�Ax :

(66)

Hence, by the left cancellation in Theorem 2(1),

AgyrŒa; b�x D gyrŒAa;Ab�Ax

for all x 2 G, implying (65). �
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Theorem 11. Let a; b be any two elements of a gyrogroup .G; ˚/ and let A 2
Aut.G/ be an automorphism of G. Then

gyrŒa; b� D gyrŒAa;Ab� (67)

if and only if the automorphisms A and gyrŒa; b� are commutative.

Proof. If gyrŒAa;Ab� D gyrŒa; b�, then by Theorem 10 the automorphisms gyrŒa; b�
and A commute, AgyrŒa; b� D gyrŒAa;Ab�A D gyrŒa; b�A. Conversely, if gyrŒa; b�
and A commute, then by Theorem 10 gyrŒAa;Ab� D AgyrŒa; b�A�1 D gyr
Œa; b�AA�1 D gyrŒa; b�, as desired. �

10 The Gyrosemidirect Product

Definition 11 (Gyroautomorphism Groups, Gyrosemidirect Product). Let G D
.G; ˚/ be a gyrogroup, and let Aut.G/ D Aut.G; ˚/ be the automorphism group of
G. A gyroautomorphism group, Aut0.G/, of G is any subgroup of Aut.G/ containing
all the gyroautomorphisms gyrŒa; b� of G, a; b 2 G. The gyrosemidirect product
group

G�Aut0.G/ (68)

of a gyrogroup G and any gyroautomorphism group, Aut0.G/ of G, is a group
of pairs .x; X/, where x 2 G and X 2 Aut0.G/, with operation given by the
gyrosemidirect product

.x; X/.y; Y/ D .x ˚ Xy; gyrŒx;Xy�XY/ : (69)

It is anticipated in Definition 11 that the gyrosemidirect product set (68) of
a gyrogroup and any one of its gyroautomorphism groups is a set that forms a
group with group operation given by the gyrosemidirect product (69). The following
theorem shows that this is indeed the case.

Theorem 12. Let .G; ˚/ be a gyrogroup, and let Aut0.G; ˚/ be a gyroautomor-
phism group of G. Then the gyrosemidirect product G�Aut0.G/ is a group, with
group operation given by the gyrosemidirect product (69).

The proof of Theorem 12 is found in [56, Sect. 1.11].
The gyrosemidirect product group enables problems in gyrogroups to be con-

verted to the group setting, thus gaining access to the powerful group theoretic
techniques.
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11 Basic Gyration Properties

The most important basic gyration properties that we establish in this section are the
gyration even property

gyrŒ�a;�b� D gyrŒa; b� (70)

and the gyroautomorphism inversion law

gyr�1Œa; b� D gyrŒb; a� (71)

for any two elements a and b of a gyrogroup .G;˚/, where gyr�1Œa; b� D
.gyrŒa; b�/�1 is the inverse of the gyration gyrŒa; b�.

Theorem 13 (Gyrosum Inversion, Gyroautomorphism Inversion). For any two
elements a; b of a gyrogroup .G;˚/, we have the gyrosum inversion law

� .a ˚ b/ D gyrŒa; b�.�b � a/ (72)

and the gyroautomorphism inversion law

gyr�1Œa; b� D gyrŒ�b;�a� : (73)

Proof. Let Aut0.G/ be any gyroautomorphism group of .G;˚/, and let G�Aut0.G/
be the gyrosemidirect product of the gyrogroup G and the group Aut0.G/ according
to Definition 11. Being a group, the product of two elements of the gyrosemidirect
product group G�Aut0.G/ has a unique inverse. This inverse can be calculated in
two different ways.

On the one hand, the inverse of the left side of the gyrosemidirect product

.a; I/.b; I/ D .a ˚ b; gyrŒa; b�/ (74)

in G�Aut0.G/ is

.b; I/�1.a; I/�1 D .�b; I/.�a; I/

D .�b � a; gyrŒ�b;�a�/ :
(75)

On the other hand, noting the gyrosemidirect product inversion law

.a;A/�1 D .�A�1a;A�1/ ; (76)

the inverse of the right side of the product (74) is, by (76),

.�gyr�1Œa; b�.a ˚ b/; gyr�1Œa; b�/ (77)
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for all a; b 2 G. Comparing corresponding entries in (75) and (77), we have

� b � a D �gyr�1Œa; b�.a ˚ b/ (78)

and

gyrŒ�b;�a� D gyr�1Œa; b� : (79)

Eliminating gyr�1Œa; b� between (78) and (79), we have

� b � a D �gyrŒ�b;�a�.a ˚ b/ (80)

Replacing .a; b/ by .�b;�a/, (80) becomes

a ˚ b D �gyrŒa; b�.�b � a/ : (81)

Identities (81) and (79) complete the proof. �

The gyrosum inversion law (72) is verified here as a by-product along with the
gyroautomorphism inversion law (73) in Theorem 13 in terms of the gyrosemidirect
product group. A direct proof of (72) is, however, simpler as we see in Theorem 3,
p. 573.

Theorem 14. Let .G;˚/ be a gyrogroup. Then for all a; b 2 G

gyr�1Œa; b� D gyrŒa;�gyrŒa; b�b� (82)

gyr�1Œa; b� D gyrŒ�a; a ˚ b� (83)

gyr�1Œa; b� D gyrŒb; a ˚ b� (84)

gyrŒa; b� D gyrŒb;�b � a� (85)

gyrŒa; b� D gyrŒ�a;�b � a� (86)

gyrŒa; b� D gyrŒ�.a ˚ b/; a� : (87)

Proof. Identity (82) follows from (31).
Identity (83) follows from (32).
Identity (84) results from an application to (83) of the left reduction property

followed by a left cancellation.
Identity (85) follows from the gyroautomorphism inversion law (73) and

from (83),

gyrŒa; b� D gyr�1Œ�b;�a� D gyrŒb;�b � a� : (88)



Hyperbolic Triangle Centers 585

Identity (86) follows from an application, to the right side of (85), of the left
reduction property followed by a left cancellation.

Identity (87) follows by inverting (83) by means of the gyroautomorphism
inversion law (73). �

Theorem 15 (Gyration Inversion Law and Gyration Even Property). The
gyroautomorphisms of any gyrogroup .G;˚/ obey the gyration inversion law

gyr�1Œa; b� D gyrŒb; a� (89)

and possess the gyration even property

gyrŒ�a;�b� D gyrŒa; b� (90)

satisfying the four mutually equivalent nested gyroautomorphism identities

gyrŒb;�gyrŒb; a�a� D gyrŒa; b�

gyrŒb; gyrŒb;�a�a� D gyrŒa;�b�

gyrŒ�gyrŒa; b�b; a� D gyrŒa; b�

gyrŒgyrŒa;�b�b; a� D gyrŒa;�b�

(91)

for all a; b 2 G.

Proof. By the left reduction property and (84), we have

gyr�1Œa ˚ b; b� D gyr�1Œa; b�

D gyrŒb; a ˚ b�
(92)

for all a; b 2 G. Let us substitute a D c ˇ b into (92), so that by a right cancellation
a ˚ b D c, obtaining the identity

gyr�1Œc; b� D gyrŒb; c� (93)

for all c; b 2 G. Renaming c in (93) as a, we obtain (89), as desired.
Identity (90) results from (73) and (89),

gyrŒ�a;�b� D gyr�1Œb; a�

D gyrŒa; b� :
(94)

Finally, the first identity in (91) follows from (82) and (89).
By means of the gyroautomorphism inversion law (89), the third identity in (91)

is equivalent to the first one.
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The second (fourth) identity in (91) follows from the first (third) by replacing
a by �a (or, alternatively, by replacing b by �b), noting that gyrations are even
by (90). �

The left gyroassociative law and the left reduction property of gyrogroups admit
right counterparts, as we see from the following theorem.

Theorem 16. For any three elements a, b, and c of a gyrogroup .G;˚/, we have

(i) .a ˚ b/˚ c D a ˚ .b ˚ gyrŒb; a�c/ Right Gyroassociative Law,

(ii) gyrŒa; b� D gyrŒa; b ˚ a� Right Reduction Property.

Proof. The right gyroassociative law follows from the left gyroassociative law and
the gyration inversion law (89) of gyroautomorphisms,

a ˚ .b ˚ gyrŒb; a�c/ D .a ˚ b/˚ gyrŒa; b�gyrŒb; a�c

D .a ˚ b/˚ c :
(95)

The right reduction property results from (84) and the gyration inversion law (89),

gyrŒb; a ˚ b� D gyr�1Œa; b�

D gyrŒb; a� :
(96)

�

A right and a left reduction give rise to the identities in the following theorem.

Theorem 17. Let .G;˚/ be a gyrogroup. Then

gyrŒa ˚ b;�a� D gyrŒa; b� ;

gyrŒ�a; a ˚ b� D gyrŒb; a� ;
(97)

for all a; b 2 G.

Proof. By a right reduction, a left cancellation, and a left reduction, we have

gyrŒa ˚ b;�a� D gyrŒa ˚ b;�a ˚ .a ˚ b/�

D gyrŒa ˚ b; b�

D gyrŒa; b�

(98)

thus verifying the first identity in (97). The second identity in (97) follows from the
first one by gyroautomorphism inversion, (89). �
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12 Gyrocommutative Gyrogroups

Definition 12 (Gyroautomorphic Inverse Property). A gyrogroup .G;˚/ pos-
sesses the gyroautomorphic inverse property if for all a; b 2 G,

� .a ˚ b/ D �a � b : (99)

Theorem 18 (The Gyroautomorphic Inverse Property). A gyrogroup is
gyrocommutative if and only if it possesses the gyroautomorphic inverse property.

Proof. Let .G;˚/ be a gyrogroup possessing the gyroautomorphic inverse property.
Then the gyrosum inversion law (26), p. 573, specializes, by means of Theorem
2(12), p. 572, to the gyrocommutative law .G6/ in Definition 9, p. 571,

a ˚ b D �gyrŒa; b�.�b � a/

D gyrŒa; b�f�.�b � a/g
D gyrŒa; b�.b ˚ a/

(100)

for all a; b 2 G.
Conversely, if the gyrocommutative law is valid, then by Theorem 2(12) and the

gyrosum inversion law, (26), p. 573, we have

gyrŒa; b�f�.�b � a/g D �gyrŒa; b�.�b � a/ D a ˚ b D gyrŒa; b�.b ˚ a/ (101)

so that by eliminating the gyroautomorphism gyrŒa; b� on both extreme sides
of (101) and inverting the gyro-sign, we recover the gyroautomorphic inverse
property,

� .b ˚ a/ D �b � a (102)

for all a; b 2 G. �

Theorem 19 (The Gyrotranslation Theorem, II). Let .G;˚/ be a gyrocommuta-
tive gyrogroup. For all a; b; c 2 G,

�.a ˚ b/˚ .a ˚ c/ D gyrŒa; b�.�b ˚ c/

.a ˚ b/� .a ˚ c/ D gyrŒa; b�.b � c/ :
(103)

Proof. The first identity in (103) follows from the Gyrotranslation Theorem 8,
p. 577, with a replaced by �a. Hence, it is valid in nongyrocommutative gyrogroups
as well. The second identity in (103) follows from the first by the gyroautomorphic
inverse property of gyrocommutative gyrogroups, Theorem 18, p. 587. Hence, it is
valid in gyrocommutative gyrogroups. �
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13 Einstein Scalar Multiplication and Gyrovector Spaces

Definition 13 (Einstein Scalar Multiplication and Einstein Gyrovector Spaces).
An Einstein gyrovector space .Rn

s ;˚;˝/ is an Einstein gyrogroup .Rn
s ;˚/ with

scalar multiplication ˝ given by

r ˝ v D s

�
1C kvk

s

�r

�
�
1 � kvk

s

�r

�
1C kvk

s

�r

C
�
1 � kvk

s

�r
v
kvk

D s tanh.r tanh�1 kvk
s
/

v
kvk

(104)

where r is any real number, r 2 R, v 2 R
n
s , v ¤ 0, and r ˝ 0 D 0 and with which

we use the notation v ˝ r D r ˝ v.

Example 1 (The Einstein Half). In the special case when r D 1=2, (104) reduces to

1
2

˝ v D �v

1C �v
v (105)

so that

�v

1C �v
v ˚ �v

1C �v
v D v : (106)

Einstein gyrovector spaces are studied in [50, Sect. 6.18]. Einstein scalar multi-
plication does not distribute with Einstein addition, but it possesses other properties
of vector spaces. For any positive integer k, and for all real numbers r; r1 ; r2 2 R

and v 2 R
n
s , we have

k ˝ v D v ˚ � � �˚ v k terms

.r1 C r2 /˝ v D r1 ˝ v ˚ r2 ˝ v Scalar Distributive Law

.r1r2 /˝ v D r1 ˝ .r2 ˝ v/ Scalar Associative Law

(107)

in any Einstein gyrovector space .Rn
s ;˚;˝/.

Additionally, Einstein gyrovector spaces possess the scaling property

jrj˝ a
kr ˝ ak D

a
kak (108)
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a 2 R
n
s ; a ¤ 0; r 2 R; r ¤ 0, the gyroautomorphism property

gyrŒu; v�.r ˝ a/ D r ˝ gyrŒu; v�a (109)

a;u; v 2 R
n
s , r 2 R, and the identity gyroautomorphism

gyrŒr1 ˝ v; r2 ˝ v� D I (110)

r1 ; r2 2 R, v 2 R
n
s .

Any Einstein gyrovector space .Rn
s ;˚;˝/ inherits an inner product and a norm

from its vector space R
n. These turn out to be invariant under gyrations, that is,

gyrŒa;b�u � gyrŒa;b�v D u � v

kgyrŒa;b�vk D kvk
(111)

for all a;b;u; v 2 R
n
s .

Unlike vector spaces, Einstein gyrovector spaces .Rn
s ;˚;˝/ do not possess the

distributive law since, in general,

r ˝ .u ˚ v/ ¤ r ˝ u ˚ r ˝ v (112)

for r 2 R and u; v 2 R
n
s . However, a weak form of the distributive law does exist,

as we see from the following theorem:

Theorem 20 (The Monodistributive Law). Let .Rn
s ;˚;˝/ be an Einstein

gyrovector space. Then,

r ˝ .r1 ˝ v ˚ r2 ˝ v/ D r ˝ .r1 ˝ v/˚ r ˝ .r2 ˝ v/ (113)

for all r; r1; r2 2 R and v 2 R
n
s .

Proof. By the scalar distributive and associative laws, (107), we have

r ˝ .r1 ˝ v ˚ r2 ˝ v/ D r ˝ f.r1 C r2/˝ vg
D .r.r1 C r2//˝ v

D .rr1 C rr2/˝ v

D .rr1/˝ v ˚ .rr2/˝ v

D r ˝ .r1 ˝ v/˚ r ˝ .r2 ˝ v/

(114)

as desired. �

Since scalar multiplication in Einstein gyrovector spaces does not distribute with
Einstein addition, the following theorem is interesting.
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Theorem 21 (The Two-Sum Identity). Let u; v be any two gyropoints of an
Einstein gyrovector space .Rn

s ;˚;˝/. Then

2˝ .u ˚ v/ D u ˚ .2˝ v ˚ u/ (115)

Proof. Employing the right gyroassociative law in (10), the identity gyrŒv; v� D I,
Theorem 2(4), the left gyroassociative law, and the gyrocommutative law in (10),
we have the following chain of equations:

u ˚ .2˝ v ˚ u/ D u ˚ ..v ˚ v/˚ u/

D u ˚ .v ˚ .v ˚ gyrŒv; v�u//

D u ˚ .v ˚ .v ˚ u//

D .u ˚ v/˚ gyrŒu; v�.v ˚ u/

D .u ˚ v/˚ .u ˚ v/

D 2˝ .u ˚ v/

(116)

which gives (115). �

14 The Euclidean Line

We introduce Cartesian coordinates into R
n in the usual way in order to specify

uniquely each point P of the Euclidean n-space R
n by an n-tuple of real numbers,

called the coordinates, or components, of P. Cartesian coordinates provide a method
of indicating the position of points and rendering graphs on a two-dimensional
Euclidean plane R

2 and in a three-dimensional Euclidean space R
3.

As an example, Fig. 1 presents a Euclidean plane R
2 equipped with an unseen

Cartesian coordinate system ˙ . The position of points A and B and their midpoint
mAB with respect to ˙ are shown. The missing Cartesian coordinates in Fig. 1 are
shown in Fig. 3.

The set of all points

AC .�AC B/t (117)

t 2 R, forms a Euclidean line. The segment of this line, corresponding to 1 � t �
1, and a generic point P on the segment are shown in Fig. 1. Being collinear, the
points A;P, and B obey the triangle equality d.A;P/ C d.P;B/ D d.A;B/, where
d.A;B/ D k � AC Bk is the Euclidean distance function in R

n.
Figure 1 demonstrates the use of the standard Cartesian model of Euclidean

geometry for graphical presentations. In a fully analogous way, Fig. 2 demonstrates
the use of the Cartesian–Beltrami–Klein model of hyperbolic geometry.
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Fig. 1 The Euclidean line. The line A C .�A C B/t, t 2 R, in a Euclidean plane is shown. The
points A and B correspond to t D 0 and t D 1, respectively. The point P is a generic point on
the line through the points A and B lying between these points. The Euclidean sum, C, of the
distance from A to P and from P to B equals the distance from A to B, so that distance along a line
is additive. The point mA;B is the midpoint of the points A and B, corresponding to t D 1=2. This
figure sets the stage for its hyperbolic counterpart, shown in Fig. 2

15 Gyrolines: The Hyperbolic Lines

Let A;B 2 R
n
s be two distinct gyropoints of the Einstein gyrovector space

.Rn
s ;˚;˝/, and let t 2 R be a real parameter. Then, in full analogy with the

Euclidean line (117), the graph of the set of all gyropoints

A ˚ .�A ˚ B/˝ t (118)

t 2 R, in the Einstein gyrovector space .Rn
s ;˚;˝/ is a chord of the ball R

n
s ,

shown in Fig. 2. As such, it is a geodesic line of the Cartesian–Beltrami–Klein
ball model of hyperbolic geometry, shown in Fig. 2 for n D 2. The geodesic
line (118) is the unique geodesic passing through the gyropoints A and B. It passes
through the gyropoint A when t D 0 and, owing to the left cancellation law, (22),
it passes through the gyropoint B when t D 1. Furthermore, it passes through
the gyromidpoint mA;B of A and B when t D 1=2. Accordingly, the gyrosegment
that joins the gyropoints A and B in Fig. 2 is obtained from gyroline (118) with
0 � t � 1.

Each gyropoint of gyroline (118) with 0 < t < 1 is said to lie between gyropoints
A and B. Thus, for instance, the gyropoint P in Fig. 2 lies between the gyropoints A
and B. As such, the gyropoints A, P, and B obey the gyrotriangle equality according
to which d.A;P/ ˚ d.P:B/ D d.A;B/, in full analogy with Euclidean geometry.
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Fig. 2 Gyroline, the hyperbolic line. The gyroline A ˚ .�A ˚ B/ ˝ t, t 2 R, in an Einstein
gyrovector space .Rn

s ;˚;˝/ is a geodesic line in the Beltrami–Klein ball model of hyperbolic
geometry, fully analogous to the straight line A C .�A C B/t, t 2 R, in the Euclidean geometry
of Rn. The gyropoints A and B correspond to t D 0 and t D 1, respectively. The gyropoint P is a
generic gyropoint on the gyroline through the gyropoints A and B lying between these gyropoints.
The Einstein sum, ˚, of the gyrodistance from A to P and from P to B equals the gyrodistance from
A to B, so that gyrodistance along a gyroline is gyroadditive. The gyropoint mA;B is the gyromidpoint
of the gyropoints A and B, corresponding to t D 1=2. The analogies between lines and gyrolines,
as illustrated in Figs. 1 and 2, are obvious

Fig. 3 The Cartesian
coordinates for the Euclidean
plane R

2, .x1; x2/,
x21 C x22 < 1, unseen in
Fig. 1, are shown here. The
points A and B are given, with
respect to these Cartesian
coordinates by
A D .�0:60;�0:15/ and
B D .0:18; 0:80/
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Fig. 4 The Cartesian
coordinates for the unit disc
in the Euclidean plane R

2,
.x1; x2/, x21 C x22 < 1, unseen
in Fig. 2, are shown here. The
gyropoints A and B are given,
with respect to these
Cartesian coordinates by
A D .�0:60;�0:15/ and
B D .0:18; 0:80/

The gyropoints in Fig. 2 are drawn with respect to an unseen Cartesian coordinate
system. The missing Cartesian coordinates for the hyperbolic disc in Fig. 2 are
shown in Fig. 4.

The introduction of Cartesian coordinates .x1; x2; : : : ; xn/, x21Cx22C: : :Cx2n <1
into the Euclidean n-space R

n, along with the common vector addition in Cartesian
coordinates, results in the Cartesian model of Euclidean geometry. The latter, in
turn, enables Euclidean geometry to be studied analytically. In full analogy, the
introduction of Cartesian coordinates .x1; x2; : : : ; xn/, x21 C x22 C : : :C x2n < s2 into
the s-ball Rn

s of the Euclidean n-space Rn, along with the common Einstein addition
in Cartesian coordinates, results in the Cartesian model of hyperbolic geometry. The
latter, in turn, enables hyperbolic geometry to be studied analytically. Indeed, Figs. 3
and 4 indicate the way we study analytic hyperbolic geometry, guided by analogies
with analytic Euclidean geometry.

In Figs. 3 and 4, the Cartesian coordinates of A and B are equal. Yet, A and B
in Fig. 3 are points of the Euclidean plane R

2, while the same A and B in Fig. 4
are gyropoints of the hyperbolic gyroplane R

2
s . Accordingly, for instance, in the

Euclidean limit

lim
s!1.�A ˚ B/ D �AC B (119)

A and B on the left side represent gyropoints of the ball Rn
s , while A and B on the

right side represent points of the ambient space R
n.

Ambiguously, it is convenient to use the same notation for both a12 D �A1 ˚ A2
and a12 D �A1 C A2, where it is always clear from the context whether a12 is
the Euclidean difference between points or the hyperbolic gyrodifference between
gyropoints. Hence, accordingly, we may write the Euclidean limit

lim
s!1 ka12k D ka12k (120)
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where it is understood that ka12k D k�A1˚A2k on the left side is the gyrodistance
between the gyropoints A1 and A2 in the ball Rn

s , while ka12k D k�A1CA2k on the
right side is the distance between the points A1 and A2 in the ambient space R

n of
the ball. This ambiguous notation will prove useful in the transition from hyperbolic
geometry to Euclidean geometry in Sects. 41–42.

16 The Euclidean Group of Motions

The Euclidean group of motions of R
n consists of the commutative group of all

translations of Rn and the group of all rotations of Rn about its origin.
For any x 2 R

n, a translation of Rn by x 2 R
n is the map Lx W Rn ! R

n given by

Lxv D xC v (121a)

for all v 2 R
n.

A rotation R of Rn about its origin is an element of the group SO.n/ of all n�n
orthogonal matrices with determinant 1. The rotation of v 2 R

n by R 2 SO.n/ is
given by Rv. The map R 2 SO.n/ is a linear map of Rn that keeps the inner product
invariant, that is

R.uC v/ D RuC Rv

Ru � Rv D u � v
(121b)

for all R 2 R
n and u; v 2 R

n.
The Euclidean group of motions is the semidirect product group

R
n � SO.n/ (122)

of the Euclidean commutative group R
n D .Rn;C/ and the rotation group SO.n/.

It is a group of pairs .x;R/, x 2 .Rn;C/, R 2 SO.n/, acting on elements v 2 R
n

according to the equation

.x;R/v D xC Rv (123)

The group operation of the semidirect product group (122) is given by action
composition. The latter, in turn, is determined by the following chain of equations,
in which we employ the associative law:
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.x1;R1/.x2;R2/v D .x1;R1/.x2 C R2v/

D x1 C R1.x2 C R2v/

D x1 C .R1x2 C R1R2v/

D .x1 C R1x2/C R1R2v

D .x1 C R1x2;R1R2/v

(124)

for all v 2 R
n.

Hence, by (124), the group operation of the semidirect product group (122) is
given by the semidirect product

.x1;R1/.x2;R2/ D .x1 C R1x2;R1R2/ (125)

for any .x1;R1/; .x2;R2/ 2 R
n � SO.n/.

Definition 14 (Covariance). An identity in R
n that remains invariant in form under

the action of the Euclidean group of motions of Rn is said to be covariant.

Euclidean barycentric coordinate representations of points of Rn are covariant,
as stated in Theorem 24, p. 605.

17 The Hyperbolic Group of Motions

The hyperbolic group of motions of Rn
s consists of the gyrocommutative gyrogroup

of all left gyrotranslations of Rn
s and the group of all rotations of Rn

s about its center.
For any x 2 R

n
s , a left gyrotranslation of Rn

s by x 2 R
n
s is the map Lx W Rn

s ! R
n
s

given by

Lxv D x ˚ v (126a)

for all v 2 R
n
s .

The group of all rotations of the ball R
n
s about its center is SO.n/. Follow-

ing (121b) we have

R.u ˚ v/ D Ru ˚ Rv

Ru � Rv D u � v
(126b)

for all R 2 SO.n/ and u; v 2 R
n.

The hyperbolic group of motions is the gyrosemidirect product group

R
n
s � SO.n/ (127)
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of the Einsteinian gyrocommutative gyrogroup R
n
s D .Rn

s ;˚/ and the rotation
group SO.n/. It is a group of pairs .x;R/, x 2 .Rn

s ;˚/, R 2 SO.n/, acting on
elements v 2 R

n
s according to the equation

.x;R/v D x ˚ Rv : (128)

The group operation of the gyrosemidirect product group (127) is given by action
composition. The latter, in turn, is determined by the following chain of equations,
in which we employ the left gyroassociative law:

.x1;R1/.x2;R2/v D .x1;R1/.x2 ˚ R2v/

D x1 ˚ R1.x2 ˚ R2v/

D x1 ˚ .R1x2 ˚ R1R2v/

D .x1 ˚ R1x2/˚ gyrŒx;R1x2�R1R2v

D .x1 ˚ R1x2; gyrŒx;R1x2�R1R2/v

(129)

for all v 2 R
n
s .

Hence, by (129), the group operation of the gyrosemidirect product group (127)
is given by the gyrosemidirect product

.x1;R1/.x2;R2/ D .x1 ˚ R1x2; gyrŒx;R1x2�R1R2/ (130)

for any .x1;R1/; .x2;R2/ 2 R
n
s � SO.n/. Indeed, the gyrosemidirect product is a

group operation, as demonstrated in Sect. 10, p. 582.

Definition 15 (Gyrocovariance). An identity in R
n
s that remains invariant in form

under the action of the hyperbolic group of motions of Rn
s is said to be gyrocovariant.

We will see that hyperbolic barycentric (i.e., gyrobarycentric) coordinate repre-
sentations of gyropoints of Rn

s are gyrocovariant, by the Gyrobarycentric Coordinate
Representation Gyrocovariance Theorem 25, p. 609. A deeper study of Euclidean
and hyperbolic motion groups in terms of analogies they share is presented in [61,
Sects. 3.9–3.12].

18 Lorentz Transformation and Minkowski’s Four-Velocity

Barycentric coordinates are commonly used as a tool in the study of Euclidean
geometry. The notions of Lorentz transformation and relativistic velocity-dependent
mass enable the adaptation of barycentric coordinates for use as a tool in hyperbolic
geometry as well.
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Einstein addition underlies the Lorentz transformation group of special relativity.
A Lorentz transformation is a linear transformation of spacetime coordinates that
fixes the spacetime origin. A Lorentz boost, L.v/, is a Lorentz transformation
without rotation, parametrized by a velocity parameter v D .v1; v2; v3/ 2 R

3
c .

Being linear, the Lorentz boost has a matrix representation Lm.v/, which turns
out to be [31],

Lm.v/ D

0

BBBBBBB@

�v c�2�vv1 c�2�vv2 c�2�vv3

�vv1 1C c�2 �2v
�v C1v

2
1 c�2 �2v

�v C1v1v2 c�2 �2v
�v C1v1v3

�vv2 c�2 �2v
�v C1v1v2 1C c�2 �2v

�v C1v
2
2 c�2 �2v

�v C1v2v3

�vv3 c�2 �2v
�v C1v1v3 c�2 �2v

�v C1v2v3 1C c�2 �2v
�v C1v

2
3

1

CCCCCCCA

: (131)

Employing the matrix representation (131) of the Lorentz transformation boost,
the Lorentz boost application to spacetime coordinates takes the form

L.v/
�

t
x

�
D Lm.v/

0

BBBB@

t

x1

x2

x3

1

CCCCA
DW

0

BBBB@

t0

x0
1

x0
2

x0
3

1

CCCCA
D
 

t0

x0

!
(132)

where v D .v1; v2; v3/
t 2 R

3
c , x D .x1; x2; x3/t 2 R

3, x0 D .x0
1; x

0
2; x

0
3/

t 2 R
3, and

t; t0 2 R, where exponent t denotes transposition.
In our approach to special relativity, analogies with classical results form the right

tool. Hence, we emphasize that in the Newtonian/Euclidean limit of large vacuum
speed of light c, c!1, the Lorentz boost L.v/, (131)–(132), reduces to the Galilei
boost G.v/, v D .v1; v2; v3/ 2 R

3,

G.v/
�

t
x

�
D lim

c!1 L.v/
�

t
x

�

D

0

BBBB@

1 0 0 0

v1 1 0 0

v2 0 1 0

v3 0 0 1

1

CCCCA

0

BBBB@

t

x1

x2

x3

1

CCCCA

D

0

BBBB@

t

x1 C v1t
x2 C v2t
x3 C v3t

1

CCCCA
D
�

t
xC vt

�

(133)

where x D .x1; x2; x3/t 2 R
3 and t 2 R.
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As we see from (132)–(133), our spacetime coordinates are .t; x/t, and, as a
result, the Lorentz boost matrix representation Lm.v/ in (131) is nonsymmetric for
c ¤ 1. In contrast, some authors present spacetime coordinates as .ct; x/t, resulting
in a symmetric Lorentz boost matrix representation found, for instance, in [25,
Eq. (11.98), pp. 541].

Since in our approach to special relativity analogies with classical results from
the right tool, the representation of spacetime coordinates as .t; x/t is more advan-
tageous than its representation as .ct; x/t. Indeed, unlike the latter representation,
the former representation of spacetime coordinates allows one to recover the Galilei
boost from the Lorentz boost by taking the Newtonian/Euclidean limit of large speed
of light c, as shown in the transition from (132) to (133).

As a result of adopting .t; x/t rather than .ct; x/t as our four-vector that represents
four-position, our four-velocity is given by .�v ; �v v/ rather than .�v c; �v v/, v 2 R

3
c .

Similarly, our four-momentum is given by
 

p0

p

!
D
 

E
c2

p

!
D m

 
�v

�v v

!
(134)

rather than the standard four-momentum, which is given by .p0;p/t = .E=c;p/t =
.m�v c;m�v v/t, as found in most relativity physics books. According to (134) the
relativistically invariant mass (i.e., rest mass) m of a particle is the ratio of the
particle’s four-momentum .p0;p/t to its four-velocity .�v ; �v v/t.

For the sake of simplicity, and without loss of generality, some authors normalize
the vacuum speed of light to c D 1 as, for instance, in [23]. We, however, prefer to
leave c as a free positive parameter, enabling related modern results to be reduced
to classical ones under the limit of large c, c!1 as, for instance, in the transition
from a Lorentz boost into a corresponding Galilei boost in (131)–(133).

The Lorentz boost (131)–(132) can be written vectorially in the form

L.u/
�

t
x

�
D
0

@
�u.tC 1

c2
u � x/

�u utC xC 1
c2

�2u
1C�u

.u � x/u

1

A : (135)

Being written in a vector form, the Lorentz boost in (135) survives unimpaired
in higher dimensions. Rewriting (135) in higher dimensional spaces, with x D vt,
u; v 2 R

n
c � R

n, we have

L.u/
�

t
vt

�
D
0

@
�u.tC 1

c2
u � vt/

�u utC vtC 1
c2

�2u
1C�u

.u � vt/u

1

A

D
0

@
�u˚v
�v

t

�u˚v
�v
.u ˚ v/t

1

A :

(136)
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Equation (136) reveals explicitly the way Einstein velocity addition underlies the
Lorentz boost. The second equation in (136) follows from the first by (4), p. 565,
and (2), p. 565.

The special case of t D �v in (136) proves useful, giving rise to the elegant
identity

L.u/
�
�v

�v v

�
D
 

�u˚v

�u˚v.u ˚ v/

!
(137)

of the Lorentz boost of four velocities, u; v 2 R
n
c . Since in physical applications

n D 3, in the context of n-dimensional special relativity, we call v a three-vector
and .�v ; �v v/t a four-vector.

The four-vector m.�v ; �v v/t is the four-momentum of a particle with invariant
mass (or rest mass) m and velocity v relative to a given inertial rest frame ˙0. Let
˙�u be an inertial frame that moves with velocity �u D �u relative to the rest
frame ˙0, u; v 2 R

n
c . Then, the particle with velocity v relative to ˙0 has velocity

u ˚ v relative to the frame ˙�u. In full agreement and, owing to the linearity of the
Lorentz boost, it follows from (137) that the four-momentum of the particle relative
to the frame ˙�u is

L.u/m
�
�v

�v v

�
D mL.u/

�
�v

�v v

�

D m

 
�u˚v

�u˚v.u ˚ v/

!
:

(138)

It follows from the linearity of the Lorentz boost and from (137) that

L.w/
NX

kD1
mk

 
�vk

�vk
vk

!
D

NX

kD1
mkL.w/

 
�vk

�vk
vk

!

D
NX

kD1
mk

 
�w˚vk

�w˚vk
.w ˚ vk/

!

D
 PN

kD1 mk�w˚vk

PN
kD1 mk�w˚vk

.w ˚ vk/

!
:

(139)

The chain of Eqs. (139) reveals the interplay of Einstein addition, ˚, in the ball
R

n
c and vector addition, C, in the ambient space R

n that appears implicitly in the
˙ -notation for scalar and vector addition. This harmonious interplay between ˚
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andC, which is crucially important in our mission to determine hyperbolic triangle
centers, reveals itself in (139) where Einstein’s three-vector formalism of special
relativity meets Minkowski’s four-vector formalism of special relativity.

The (Minkowski) norm of a four-vector is Lorentz transformation invariant. The
norm of the four-position .t; x/t is

����
�

t
x

����� D
s

t2 � kxk
2

c2
(140)

and, accordingly, the norm of the four-velocity .�v ; �v v/t is

����
�
�v

�v v

����� D �v

����
�
1

v

����� D �v

s

1 � kvk
2

c2
D 1 : (141)

19 Invariant Mass of a System of Particles

In obtaining the result in (138), we exploit the linearity of the Lorentz boost. We will
now further exploit that linearity, demonstrated in (139), to obtain the relativistically
invariant mass of a system of particles. Being invariant, we refer the Newtonian,
rest mass, m, to as the (relativistically) invariant mass, as opposed to the common
relativistic mass, m�v , which is velocity dependent.

Let

S D S.mk; vk; ˙0; k D 1; : : : ;N/ (142)

be an isolated system of N noninteracting material particles the kth particle of which
has invariant mass mk > 0 and velocity vk 2 R

n
c relative to an inertial frame ˙0,

k D 1; : : : ;N.
Classically, the Newtonian mass mnewton of the system S equals the sum of the

Newtonian masses of its constituent particles, that is

mnewton D
NX

kD1
mk ; (143)

and it forms the total mass of the system. Relativistically, however, this need not be
the case since dark matter may emerge, as we will see in Theorem 22 of Sect. 20.

Accordingly, we wish to determine the relativistically invariant mass m0 of the
system S and the velocity v0 relative to ˙0 of a fictitious inertial frame, called the
center of momentum frame, relative to which the three-momentum of S vanishes.

Assuming that the four-momentum is additive, the sum of the four-momenta of
the N particles of the system S gives the four-momentum .m0�v0 ;m0�v0v0/

t of S.
Accordingly,
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NX

kD1
mk

 
�vk

�vk
vk

!
D m0

 
�v0

�v0v0

!
; (144)

where

1. the invariant masses mk > 0 and the velocities vk 2 R
n
c , k D 1; : : : ;N, relative to

˙0 of the constituent particles of S are given
2. the invariant mass m0 of S and the velocity v0 of the center of momentum frame

of S relative to˙0 are to be determined uniquely by the Resultant Relativistically
Invariant Mass Theorem, which is Theorem 22 in Sect. 20.

If m0 > 0 and v0 2 R
n
c that satisfy (144) exist, then, as anticipated, the three-

momentum of the system S relative to its center of momentum frame vanishes since,
by (138) and (144), the four-momentum of S relative to its center of momentum
frame is given by

L.�v0/
NX

kD1
mk

 
�vk

�vk
vk

!
D L.�v0/m0

 
�v0

�v0v0

!

D m0

 
��v0˚v0

��v0˚v0 .�v0 ˚ v0/

!
D m0

 
1

0

!
;

(145)

noting that ��v0˚v0 D �0 D 1.

20 The Resultant Relativistically Invariant Mass Theorem

Einstein velocity addition law (2), p. 565, admits the following theorem that involves
expressions, in (148)–(150) below, which are covariant under left gyrotranslations
(and, hence, are gyrocovariant).

Theorem 22 (Resultant Relativistically Invariant Mass Theorem). Let .Rn
c ;˚/

be an Einstein gyrogroup, and let mk 2 R and vk 2 R
n
c , k D 1; 2; : : : ;N, be N real

numbers and N elements of Rn
c satisfying

NX

kD1
mk�vk

¤ 0 (146)

Furthermore, let

NX

kD1
mk

 
�vk

�vk
vk

!
D m0

 
�v0

�v0v0

!
(147)

be an .nC 1/-vector equation for the two unknowns m0 2 R and v0 2 R
n.



602 A.A. Ungar

Then (147) possesses a unique solution .m0; v0/, m0 ¤ 0, v0 2 R
n
c , satisfying

the following three identities for all w 2 R
n
c (including, in particular, the interesting

special case of w D 0):

w ˚ v0 D
PN

kD1 mk�w˚vk
.w ˚ vk/

PN
kD1 mk�w˚vk

(148)

�w˚v0 D
PN

kD1 mk�w˚vk

m0

(149)

�w˚v0 .w ˚ v0/ D
PN

kD1 mk�w˚vk
.w ˚ v0/

m0

(150)

where

m0 D

vuuuut

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��.w˚vj/˚.w˚vk/
� 1/ : (151)

The proof of Theorem 22 is found in [56, Sect. 3.4].
It follows from (151) that the relativistically invariant mass m0 of a particle

system is greater than the sum
PN

kD1 mk of the Newtonian Masses of its constituents.
The excessive mass, m0 � PN

kD1 mk, is dark in the sense that (1) it is generated
by internal relative velocities between the constituents of the particle system and
that (2) it reveals its presence only gravitationally, since it emits no radiation and
it involves no collisions [51, 57]. Interestingly, the relativistically invariant mass
m0 of a particle system in (151) is precisely what we need in order to adapt the
Euclidean notion of barycentric coordinates for use in hyperbolic geometry without
losing covariance.

To appreciate the power and elegance of Theorem 22 in relativistic mechanics in
terms of novel analogies that it shares with familiar results in classical mechanics,
we present below the classical counterpart, Theorem 23, of Theorem 22. The latter
is obtained from the former by approaching the Newtonian/Euclidean limit when
c tends to infinity. The resulting Theorem 23 is immediate, and its importance
in classical mechanics is well known. Like Theorem 22, Theorem 23 involves an
expression, in (154) below, which is covariant under translations.

Theorem 23 (Resultant Newtonian Invariant Mass Theorem). Let .Rn;C/ be a
Euclidean n-space, and let mk 2 R and vk 2 R

n, k D 1; 2; : : : ;N, be N real numbers
and N elements of Rn satisfying

NX

kD1
mk ¤ 0 (152)
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Furthermore, let

NX

kD1
mk

 
1

vk

!
D m0

 
1

v0

!
(153)

be an .nC 1/-vector equation for the two unknowns m0 2 R and v0 2 R
n.

Then (153) possesses a unique solution .m0; v0/, m0 ¤ 0, satisfying the following
equations for all w 2 R

n (including, in particular, the interesting special case of
w D 0):

wC v0 D
PN

kD1 mk.wC vk/PN
kD1 mk

(154)

and

m0 D
NX

kD1
mk : (155)

The proof of Theorem 23 is immediate.
Unlike Identity (154) of Theorem 23, which is immediate, its counterpart in

Theorem 22, Identity (148), is not immediate. Yet, in full analogy with Theorem 23,
the validity of Identity (148) in Theorem 22 for all w 2 R

n
c is geometrically

important. This geometric importance of Identity (148) lies on its implication that
the velocity v0 of the center of momentum frame of a particle system relative to a
given inertial rest frame in relativistic mechanics is independent of the choice of the
origin of the relativistic velocity space R

n
c with its underlying Cartesian–Beltrami–

Klein ball model of hyperbolic geometry.
Not unexpectedly, the Newtonian mass m0 in (155) of a particle system plays an

important role in Theorem 24, p. 605, on the covariance of barycentric coordinates
under the motions of Euclidean geometry, which are translations and rotations.
Remarkably, the relativistic invariant mass m0 in (151) of a particle system plays
an analogous important role in Theorem 25, p. 609, on the gyrocovariance of
gyrobarycentric coordinates under the gyromotions of hyperbolic geometry, which
are left gyrotranslations and rotations. Left gyrotranslations, in turn, will play in
the sequel an important role in the application of gyrobarycentric coordinates for
determining the gyrotriangle Cabrera gyropoint.

21 Euclidean Barycentric Coordinates

The notion of barycentric coordinates dates back to Möbius. The use of barycentric
coordinates in Euclidean geometry is described in [64], and the historical contri-
bution of Möbius’ barycentric coordinates to vector analysis is described in [12,
pp. 48–50].
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In this section we set the stage for the introduction in Sect. 22 of barycentric
coordinates into hyperbolic geometry by illustrating the way Theorem 23, p. 602,
suggests the introduction of barycentric coordinates into Euclidean geometry.

For any positive integer N, let mk 2 R be N given real numbers such that

NX

kD1
mk ¤ 0 (156)

and let Ak 2 R
n be N given points in the Euclidean n-space R

n, k D 1; : : : ;N.
Theorem 23, p. 602, states the trivial, but geometrically significant, result that the
equation

NX

kD1
mk

 
1

Ak

!
D m0

 
1

P

!
(157)

for the unknowns m0 2 R and P 2 R
n possesses the unique solution given by

m0 D
NX

kD1
mk (158)

and

P D
PN

kD1 mkAkPN
kD1 mk

(159)

satisfying for all X 2 R
n,

X C P D
PN

kD1 mk.X C Ak/PN
kD1 mk

: (160)

We view (159) as the representation of a point P 2 R
n in terms of its barycentric

coordinates mk, k D 1; : : : ;N, with respect to the set of points S D fA1; : : : ;ANg.
Identity (160), then, insures that the barycentric coordinate representation (159) of
P with respect to the set S is covariant (or invariant in form) in the following sense.
The point P and the points of the set S of its barycentric coordinate representation
vary together under translations. Indeed, a translation X C Ak of Ak by X, k D
1; : : : ;N, in (160) results in the translation X C P of P by X.

In order to insure that barycentric coordinate representations with respect to a set
S are unique, we require S to be pointwise independent.

Definition 16 (Euclidean Pointwise Independence). A set S of N points S D
fA1; : : : ;ANg in R

n, n � 2, is pointwise independent if the N � 1 vectors �A1 C Ak,
k D 2; : : : ;N, are linearly independent.
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Definition 17 (Barycentric Coordinates). Let

S D fA1; : : : ;ANg (161)

be a pointwise independent set of N points in R
n. The real numbers m1; : : : ;mN ,

satisfying

NX

kD1
mk ¤ 0 (162)

are barycentric coordinates of a point P 2 R
n with respect to the set S if

P D
PN

kD1 mkAkPN
kD1 mk

: (163)

Barycentric coordinates are homogeneous in the sense that the barycentric
coordinates .m1; : : : ;mN/ of the point P in (163) are equivalent to the barycentric
coordinates .�m1; : : : ; �mN/ for any real nonzero number � 2 R, � ¤ 0. Since
in barycentric coordinates only ratios of coordinates are relevant, the barycentric
coordinates .m1; : : : ;mN/ are also written as .m1 W : : : WmN/.

Barycentric coordinates that are normalized by the condition

NX

kD1
mk D 1 (164)

are called special barycentric coordinates.
Equation (163) is said to be the (unique) barycentric coordinate representation of

P with respect to the set S.

Theorem 24 (Covariance of Barycentric Coordinate Representations). Let

P D
PN

kD1 mkAkPN
kD1 mk

(165)

be the barycentric coordinate representation of a point P 2 R
n in a Euclidean

n-space R
n with respect to a pointwise independent set S D fA1; : : : ;ANg � R

n.
The barycentric coordinate representation (165) is covariant, that is,

X C P D
PN

kD1 mk.X C Ak/PN
kD1 mk

(166)
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for all X 2 R
n, and

RP D
PN

kD1 mkRAkPN
kD1 mk

(167)

for all R 2 SO.n/.

Proof. The proof is immediate, noting that rotations R 2 SO.n/ of R
n about its

origin are linear maps of Rn. �

Following the vision of Felix Klein in his Erlangen Program [8, 32], it is owing to
the covariance with respect to translations and rotations that barycentric coordinate
representations possess geometric significance. Indeed, translations and rotations in
Euclidean geometry form the group of motions of the geometry, studied in Sect. 16,
and according to Felix Klein’s Erlangen Program, a geometric property is a property
that remains invariant in form under the motions of the geometry.

22 Gyrobarycentric Coordinates

Guided by analogies with Sect. 21, in this section we introduce barycentric coor-
dinates into hyperbolic geometry [53], where they are called gyrobarycentric
coordinates. Gyrobarycentric coordinates prove useful in the determination of
various gyrotriangle gyrocenters, just as barycentric coordinates prove useful in the
determination of various triangle centers.

For any positive integer N, let mk 2 R be N given real numbers, and let Ak 2 R
n
s

be N given gyropoints in an Einstein gyrovector space .Rn
s ;˚;˝/, k D 1; : : : ;N,

satisfying,

NX

kD1
mk�vk

> 0 (168)

Theorem 22, p. 601 presents the result that the equation

NX

kD1
mk

 
�Ak

�Ak
Ak

!
D m0

 
�P

�P P

!
(169)

for the unknowns m0 2 R and P 2 R
n
s possesses the unique solution given by

m0 D

vuuuut

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��Aj˚Ak
� 1/ (170)
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m0 > 0, satisfying

m0 D

vuuuut

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��.X˚Aj/˚.X˚Ak/
� 1/ (171)

for all X 2 R
n
s , and

P D
PN

kD1 mk�Ak
Ak

PN
kD1 mk�Ak

(172)

satisfying

X ˚ P D
PN

kD1 mk�X˚Ak
.X ˚ Ak/

PN
kD1 mk�X˚Ak

(173)

for all X 2 R
n
s .

Furthermore, Theorem 22, p. 601, also states that P and m0 satisfy the two
identities

�P D
PN

kD1 mk�Ak

m0

(174)

and

�P P D
PN

kD1 mk�Ak
Ak

m0

(175)

and, more generally,

�X˚P D
PN

kD1 mk�X˚Ak

m0

(176)

and

�X˚P.X ˚ P/ D
PN

kD1 mk�X˚Ak
.X ˚ Ak/

m0

(177)

for all X 2 R
n
s .

We view (172) as the representation of a gyropoint P 2 R
n
s in terms of its

hyperbolic barycentric coordinates mk, k D 1; : : : ;N, with respect to the set of
gyropoints S D fA1; : : : ;ANg. Naturally in gyrolanguage, hyperbolic barycentric
coordinates are called gyrobarycentric coordinates. Identity (173) insures that the
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gyrobarycentric coordinate representation (172) of P with respect to the set S
is gyrocovariant in the sense of Definition 15, p. 596, as shown in Theorem 25
below. The gyropoint P and the gyropoints of the set S of its gyrobarycentric
coordinate representation vary together under left gyrotranslations. Indeed, a left
gyrotranslation X ˚ Ak of Ak by X, k D 1; : : : ;N in (173) results in the left
gyrotranslation X ˚ P of P by X.

In order to insure that gyrobarycentric coordinate representations with respect to
a set S are unique, we require S to be hyperbolically pointwise independent.

Definition 18 (Hyperbolic Pointwise Independence). A set S of N gyropoints
S D fA1; : : : ;ANg in R

n
s , n � 2, is gyropointwise independent if the N � 1

gyrovectors in R
n
s , �A1˚Ak, k D 2; : : : ;N, considered as vectors in R

n, are linearly
independent.

We are now in the position to present the formal definition of gyrobarycentric
coordinates, that is, hyperbolic barycentric coordinates, as motivated by mass and
center of momentum velocity of Einsteinian particle systems.

Definition 19 (Gyrobarycentric Coordinates). Let

S D fA1; : : : ;ANg (178)

be a gyropointwise independent set of N gyropoints in R
n
s . The real numbers

m1; : : : ;mN , satisfying

NX

kD1
mk�Ak

> 0 (179)

are gyrobarycentric coordinates of a gyropoint P 2 R
n
s with respect to the set S if

P D
PN

kD1 mk�Ak
Ak

PN
kD1 mk�Ak

: (180)

Gyrobarycentric coordinates are homogeneous in the sense that the gyrobarycen-
tric coordinates .m1; : : : ;mN/ of the gyropoint P in (180) are equivalent to the
gyrobarycentric coordinates .�m1; : : : ; �mN/ for any real nonzero number � 2 R,
� ¤ 0. Since in gyrobarycentric coordinates only ratios of coordinates are relevant,
the gyrobarycentric coordinates .m1; : : : ;mN/ are also written as .m1 W : : : WmN/.

Gyrobarycentric coordinates that are normalized by the condition

NX

kD1
mk D 1 (181)

are called special gyrobarycentric coordinates.
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Equation (180) is said to be the gyrobarycentric coordinate representation of P
with respect to the set S.

Finally, the constant of the gyrobarycentric coordinate representation of P
in (180) is m0 > 0, given by

m0 D

vuuuut

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��Aj˚Ak
� 1/ : (182)

Theorem 25 (Gyrocovariance of Gyrobarycentric Coordinate Representations).
Let

P D
PN

kD1 mk�Ak
Ak

PN
kD1 mk�Ak

(183a)

be a gyrobarycentric coordinate representation of a gyropoint P 2 R
n
s in an Einstein

gyrovector space .Rn
s ;˚;˝/ with respect to a gyropointwise independent set S D

fA1; : : : ;ANg � R
n
s .

Then

�P D
PN

kD1 mk�Ak

m0

(183b)

and

�P P D
PN

kD1 mk�Ak
Ak

m0

(183c)

where m0, given by

m0 D

vuuuut

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��Aj˚Ak
� 1/ ; (183d)

m0 > 0, is the constant of the gyrobarycentric coordinate representation (183a).
Furthermore, the gyrobarycentric coordinate representation (183a) and its

associated identities in (183b)–(183d) are gyrocovariant, that is,

X ˚ P D
PN

kD1 mk�X˚Ak
.X ˚ Ak/

PN
kD1 mk�X˚Ak

(184a)
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�X˚P D
PN

kD1 mk�X˚Ak

m0

(184b)

�X˚P.X ˚ P/ D
PN

kD1 mk�X˚Ak
.X ˚ Ak/

m0

(184c)

m0 D

vuuuut

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��.X˚Aj/˚.X˚Ak/
� 1/ (184d)

for all X 2 R
n
s , and

RP D
PN

kD1 mk�RAk
RAk

PN
kD1 mk�RAk

(185a)

�RP D
PN

kD1 mk�RAk

m0

(185b)

�RP.RP/ D
PN

kD1 mk�RAk
.RAk/

m0

(185c)

m0 D

vuuuut

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��.RAj/˚.RAk/
� 1/ (185d)

for all R 2 SO.n/.

The proof of Theorem 25 is found in [56, Sect. 4.2].
Following the vision of Felix Klein in his Erlangen Program [8, 32], it is

owing to the gyrocovariance, that is, covariance with respect to left gyrotranslations
and rotations, that gyrobarycentric coordinate representations are geometrically
significant. Indeed, left gyrotranslations and rotations in hyperbolic geometry form
the group of motions of the geometry, studied in Sect. 17, and according to Felix
Klein’s Erlangen Program, a geometric property is a property that remains invariant
in form under the motions of the geometry.

The following two corollaries of Theorem 25 prove useful.

Corollary 1. Let S D fA1; : : : ;ANg � R
n
s be a gyropointwise independent set of N

gyropoints in R
n
s , and let

P D
PN

kD1 mk�Ak
Ak

PN
kD1 mk�Ak

(186)
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be a gyrobarycentric coordinate representation of a gyropoint P 2 R
n with respect

to the set S. Furthermore, let m0 be the representation constant, given by

m2
0 D

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��Aj˚Ak
� 1/ : (187)

Then, the point P lies in the ball Rn
s , P 2 R

n
s , if and only if m2

0 > 0 (in other words,
the point P is a gyropoint if and only if m2

0 > 0).

The proof of Corollary 1 is found in [56, Corollary 4.9].

Corollary 2. Let S D fA1; : : : ;ANg � R
n
s be a gyropointwise independent set of N

gyropoints in R
n
s , and let

P D
PN

kD1 mk�Ak
Ak

PN
kD1 mk�Ak

(188)

be a gyrobarycentric coordinate representation of a point P 2 R
n with respect to

the set S, with positive gyrobarycentric coordinates mk > 0, k D 1; : : : ;N. Then,
P 2 R

n
s . Moreover, P lies on the convex span of S if and only if mk > 0, k D 1; : : : ;N.

Proof. The gyrobarycentric coordinate representation (188) possesses the constant
m0 in (187). This representation constant is positive since mk > 0, k D 1; : : : ;N and
since the gamma factors in (187) are greater than 1. Hence, by Corollary 1, P 2 R

n
s .

The gyrobarycentric combination (188) is positive if all the coefficients mk, k D
1; : : : ;N are positive. The set of all positive gyrobarycentric combinations of the
points of the set S is the convex span of S. By convexity considerations, it is a subset
of Rn

s . Hence, P lies on the convex span of S if and only if mk > 0, k D 1; : : : ;N.
Owing to the homogeneity of gyrobarycentric coordinates, it is agreed that if all the
gyrobarycentric coordinates of a point have equal signs, then the signs are selected
to be positive. �

23 Uniqueness of Gyrobarycentric Coordinate
Representations

Theorem 26 (Uniqueness of Gyrobarycentric Coordinate Representations). A
gyrobarycentric coordinate representation of a gyropoint in an Einstein gyrovector
space .Rn

s ;˚;˝/ with respect to a gyropointwise independent set S D fA1; : : : ;ANg
is unique.

The proof of Theorem 26 is found in [56, Sect. 4.3].
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Remark 1 (Gyrobarycentric Coordinates and Quantum Field Theory). The out-
standing book [9] studies the geometry of classical quantum states by means of
barycentric coordinates of probability simplices, where barycentric coordinates are
interpreted as probabilities [9, pp. 3–5, 235]. Suggestively, relativistic quantum
states may be studied by means of gyrobarycentric coordinates of gyroprobability
gyrosimplices, where gyrobarycentric coordinates are interpreted as gyroprobabil-
ities [59]. Gyrosimplices, the hyperbolic counterparts of simplices, are studied in
[61]. Accordingly, the study of relativistic quantum mechanics, known as Quantum
Field Theory, can be based on gyrobarycentric coordinates of gyroprobability
gyrosimplices, just as the study of quantum mechanics in [9] is based on barycentric
coordinates of probability simplices. The suitability of Bayesian probabilities for
use in quantum mechanics is known [10]. Following Einstein addition, Bayesian
probabilities form the appropriate interpretation for gyrobarycentric coordinates of
probability simplices in quantum field theory.

24 Triangle Centroid

The triangle centroid is located at the intersection of the triangle medians. In this
section we demonstrate the use of barycentric coordinates by determining the
triangle centroid in R

n.
Let A1A2A3 be a triangle with vertices A1;A2, and A3 in a Euclidean n-space R

n,
and let G be the triangle centroid, as shown in Fig. 5 for n D 2. Then, G is given
by its barycentric coordinate representation (163), p. 605, with respect to the set
fA1;A2;A3g,

G D m1A1 C m2A2 C m3A3
m1 C m2 C m3

(189)

where the barycentric coordinates m1;m2, and m3 of G in (189) are to be determined
in (195).

Fig. 5 The triangle medians
and centroid in a Euclidean
plane R

2. The centroid G is
the point of concurrency of
the triangle medians. The
midpoints M12, M13, and M23

of the three sides, A1A2, A1A3,
and A2A3 of triangle A1A2A3
in a Euclidean n-space R

n are
shown here for n D 2, along
with its medians
A1M23;A2M13;A3M12, and its
centroid G. This figure sets
the stage for its hyperbolic
counterpart, shown in Fig. 7,
p. 617
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The midpoint M12 of side A1A2, shown in Fig. 5, is given by

M12 D A1 C A2
2

(190)

so that an equation of the line L123 through the points M12 and A3 is given by

L123.t1/ D A3 C .�A3 C A1 C A2
2

/t1 (191)

with the parameter t1 2 R.
The line L123.t1/ contains one of the three medians of the sides of triangle

A1A2A3. Equations of the lines L123, L231, and L312 that contain, respectively,
the three triangle medians are therefore obtained from (191) by index cyclic
permutations,

L123.t1/ D t1
2

A1 C t1
2

A2 C .1 � t1/A3

L231.t2/ D t2
2

A2 C t2
2

A3 C .1 � t2/A1

L312.t3/ D t3
2

A3 C t3
2

A1 C .1 � t3/A2

(192)

t1; t2; t3 2 R.
The triangle centroid G, shown in Fig. 5, is the point of concurrency of the three

lines in (192). It is found by solving the equation L123.t1/ D L231.t2/ D L312.t3/ for
the unknowns t1; t2; t3 2 R, obtaining t1 D t2 D t3 D 2=3. Hence, G is given by the
equation

G D A1 C A2 C A3
3

(193)

as we see by substituting t1 D t2 D t3 D 2=3 into (192).
Comparing (193) with (189) we find that the special barycentric coordinates

.m1;m2;m3/ of G with respect to the set fA1;A2;A3g are given by

m1 D m2 D m3 D 1

3
: (194)

Accordingly, convenient barycentric coordinates .m1 W m2 W m3/ of G are

.m1 W m2 W m3/ D .1 W 1 W 1/ (195)

as it is well known in the literature; see, for instance, [26, 27].
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25 Gyromidpoint

In this section we demonstrate the use of gyrobarycentric coordinates by determin-
ing the gyromidpoints of gyrosegments in Einstein gyrovector spaces. Gyromid-
points, in turn, play an important role in the definitions of gyromedial gyrotriangles
and Cabrera gyropoints, shown in Fig. 16, p. 659.

Let A1A2 be a gyrosegment in an Einstein gyrovector space .Rn
s ;˚;˝/, n � 1,

formed by two distinct gyropoints A1;A2 2 R
n
s . The gyromidpoint M12 of gyroseg-

ment A1A2 in Fig. 6 is the gyropoint of the gyrosegment that is equigyrodistant from
A1 and A2, that is,

k� A1 ˚ M12k D k� A2 ˚ M12k : (196)

In order to determine the gyromidpoint M12 of gyrosegment A1A2, let M12 be
given by its gyrobarycentric coordinate representation (180) with respect to the set
S D fA1;A2g,

Fig. 6 The Einstein Gyromidpoint. The Einstein gyromidpoint M12 of a gyrosegment A1A2 in an
Einstein gyrovector space .Rn

s ;˚;˝/ is shown for n D 2, along with several useful identities that
the gyromidpoint possesses
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M12 D
m1�A1

A1 C m2�A2
A2

m1�A1
C m2�A2

; (197)

where the gyrobarycentric coordinates m1 and m2 are to be determined in (205)
below.

The constant m0 of the gyrobarycentric coordinate representation (197) of M12

turns out to be

m0 D
q
.m1 C m2/2 C 2m1m2.�12 � 1/ (198)

according to (182).
Following the gyrocovariance of gyrobarycentric coordinate representations,

Theorem 25, we have from (184a) with X D �A1 and X D �A2, respectively,

�A1 ˚ M12 D
m1��A1˚A1

.�A1 ˚ A1/C m2��A1˚A2
.�A1 ˚ A2/

m1��A1˚A1
C m2��A1˚A2

D m2�12a12
m1 C m2�12

�A2 ˚ M12 D
m1��A2˚A1

.�A2 ˚ A1/C m2��A2˚A2
.�A2 ˚ A2/

m1��A2˚A1
C m2��A2˚A2

D m1�12a21
m1�21 C m2

(199)

where, as shown in Fig. 6, we use the convenient index notation

a12 D �A1 ˚ A2; a12 D ka12k; �12 D �a12 ;

a21 D �A2 ˚ A1; a21 D ka21k; �21 D �a21 :
(200)

We note that a12 D a21, �12 D �21, and �0 D 0, while, in general, a21 ¤ a12 since,
by the gyrocommutative law, a21 D gyrŒ�A2;A1�a12.

Taking magnitudes of the extreme sides of each of the two equations in (199),
we have

k� A1 ˚ M12k D m2

m1 C m2�12
�12a12

k� A2 ˚ M12k D m1

m1�12 C m2

�12a12

(201)

so that by (201) and (196) we have

m1

m1�12 C m2

D m2

m1 C m2�12
(202)

implying m1 D ˙m2.
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For m1 D m2 DW m, the constant mM12
of the gyrobarycentric representation (197)

of M12 is given by

m2
M12
D .m1 C m2/

2 C 2m1m2.�12 � 1/ D 2m2.�12 C 1/ > 0 (203)

so that, being positive, m2
0 is acceptable.

In contrast, for m1 D �m2 DW m, the constant m0 of the gyrobarycentric
coordinate representation (197) of M12 is given by

m2
M12
D .m1 C m2/

2 C 2m1m2.�12 � 1/ D �2m2.�12 � 1/ < 0 (204)

so that, being negative, m2
0 is rejected. Indeed, if m2

0 < 0, then m0 is purely imaginary
so that, by (169), p. 606, also �P is purely imaginary, implying that while M12 lies in
R

n, it does not lie in the ball, M12 … R
n
s . Hence, the solution m1 D �m2 of (202) is

rejected, allowing the unique solution m1 D m2.
The unique solution for the gyrobarycentric coordinates of the gyromidpoint M12

(modulo a multiplicative normalization constant) is, therefore, .m1 W m2/ D .m W m/
or, equivalently,

.m1 W m2/ D .1 W 1/: (205)

Substituting the gyrobarycentric coordinates (205) into (197), we, finally, express
the gyromidpoint M12 in terms of its vertices A1 and A2 by the equation

M12 D
�A1

A1 C �A2
A2

�A1
C �A2

: (206)

Following (203) and (205)–(206), the constant m0 of the gyrobarycentric coordi-
nate representation of the gyromidpoint M12 in (206) is

mM12
D
q
2.�12 C 1/: (207)

Hence, by the Gyrobarycentric Coordinate Representation Gyrocovariance
Theorem 25, p. 609, the gyromidpoint M12 possesses the following three identities:

X ˚ M12 D
�X˚A1

.X ˚ A1/C �X˚A2
.X ˚ A2/

�X˚A1
C �X˚A2

(208a)

�X˚M12
D �X˚A1

C �X˚A2p
2

q
�12 C 1

(208b)

�X˚M12
.X ˚ M12/ D

�X˚A1
.X ˚ A1/C �X˚A2

.X ˚ A2/
p
2

q
�12 C 1

(208c)

for all X 2 R
n
s .
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Following (208a) with X D �A1, by Einstein half (105), p. 588, we have

� A1 ˚ M12 D
��A1˚A2

.�A1 ˚ A2/

1C ��A1˚A2

D �12
1C �12

a12 D 1
2

˝ a12 (209)

so that by the scaling property (108), p. 588,

k� A1 ˚ M12k D k 12 ˝ a12k D 1
2

˝ ka12k D 1
2

˝ a12 : (210)

Similarly, following (208b)–(208c) with X D �A1, we have

��A1˚M12
D 1C ��A1˚A2p

2

q
1C �12

D 1C �12p
2

q
1C �12

a D
q
1C �12p
2

(211)

and

��A1˚M12
.�A1 ˚ M12/ D

��A1˚A2
.�A1 ˚ A2/

p
2

q
1C �12

D �12a12p
2

q
1C �12

: (212)

Hence, by (210) and (211),

�1
2

˝ a12
D
q
1C �12p
2

(213)

and, by (209)–(210) and (212),

�1
2

˝ a12
. 1
2

˝ a12/ D �12a12p
2

q
1C �12

: (214)

As shown in Fig. 2, p. 592, the gyromidpoint M12 in (206) can be written as

M12 D A1 ˚ .�A1 ˚ A2/˝ 1
2
: (215)

26 Gyrotriangle Gyrocentroid

The hyperbolic triangle centroid is called, in gyrolanguage, the gyrotriangle gyro-
centroid.
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Fig. 7 The gyrotriangle gyromedians and gyrocentroid in an Einstein gyrovector plane
.R2s ;˚;˝/. The gyrocentroid G is the gyropoint of concurrency of the gyrotriangle gyromedians.
The gyromidpoints M12, M13, and M23 of the three gyrosides, A1A2, A1A3, and A2A3, of
gyrotriangle A1A2A3 in an Einstein gyrovector space .Rn

s ;˚;˝/ are shown here for n D 2, along
with its gyromedians A1M23;A2M13;A3M12, and its gyrocentroid G. The Euclidean counterpart of
this figure is shown in Fig. 5, p. 612

In this section we demonstrate the use of gyrobarycentric coordinates by
determining the gyrotriangle gyrocentroid in Einstein gyrovector spaces.

Definition 20 (Gyromedians, Gyrotriangle Gyrocentroids). A gyromedian of a
gyrotriangle in an Einstein gyrovector space is the gyrosegment joining a vertex
of the gyrotriangle with the gyromidpoint of the opposing gyroside, shown in
Fig. 7. The gyrocentroid, G, of a gyrotriangle is the gyropoint of concurrency of
the gyrotriangle gyromedians, shown in Fig. 7.

Let A1A2A3 be a gyrotriangle in an Einstein gyrovector space .Rn
s ;˚;˝/, and let

the gyromidpoints of its gyrosides be M12, M13 and M23, as shown in Fig. 7. Hence,
by (206), M12 and, in a similar way, M13 and M23, are given by the equations
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M12 D
�

A1
A1 C �A2

A2

�
A1
C �

A2

M13 D
�

A1
A1 C �A3

A3

�
A1
C �

A3

M23 D
�

A2
A2 C �A3

A3

�
A2
C �

A3

:

(216)

The three gyromedians of gyrotriangle A1A2A3 in Fig. 7 are the gyrosegments
A1M23, A2M13, and A3M12. Since gyrosegments in Einstein gyrovector spaces
coincide with Euclidean segments, one can employ methods of linear algebra to
determine the gyropoint of concurrency, that is, the gyrocentroid, of the three
gyromedians of gyrotriangle A1A2A3 in Fig. 7.

The details of the use of methods of linear algebra for the determination of the
gyrobarycentric coordinates of the gyrotriangle gyrocentroid in Einstein gyrovector
spaces are presented below.

In order to determine the gyrobarycentric coordinates of the gyrotriangle gyro-
centroid in Einstein gyrovector spaces, we begin with some gyroalgebraic manipu-
lations that reduce the task we face to a problem in linear algebra.

Let the gyrocentroid G of gyrotriangle A1A2A3 in an Einstein gyrovector space
.Rn

s ;˚;˝/, shown in Fig. 7, be given by its gyrobarycentric coordinate represen-
tation, (180), p. 608, with respect to the set S D fA1;A2;A3g of the gyrotriangle
vertices,

G D
m1�A1

A1 C m2�A2
A2 C m3�A3

A3

m1�A1
C m2�A2

C m3�A3

; (217)

where the gyrobarycentric coordinates .m1;m2;m3/ of G in (217) are to be
determined in (240) below.

Left gyrotranslating gyrotriangle A1A2A3 by �A1, the gyrotriangle becomes
gyrotriangle O.�A1 ˚ A2/.�A1 ˚ A3/, where O D �A1 ˚ A1 is the arbitrarily
selected origin of the Einstein gyrovector space R

n
s , so that

O D 0 D .0; : : : ; 0/ (218)

with respect to the Cartesian coordinates of Rn
s .

Following the left gyrotranslation by �A1, the gyrotriangle gyroside gyromid-
points M12, M13, and M23 become, respectively, �A1 ˚ M12, �A1 ˚ M13, and
�A1 ˚ M23. These are calculated in (219) below by employing the gyrocovariance
of gyrobarycentric coordinate representations, Theorem 25, p. 609.
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Accordingly, we obtain from (184a), p. 609, with X D �A1 the following left
gyrotranslation by �A1 of the gyromidpoints M12, M13, and M23 in (216):

�A1 ˚ M12 D �A1 ˚
�

A1
A1 C �A2

A2

�
A1
C �

A2

D
�

�A1˚A2
.�A1 ˚ A2/

1C �
�A1˚A2

D �12a12
�12 C 1

�A1 ˚ M13 D �A1 ˚
�

A1
A1 C �A3

A3

�
A1
C �

A3

D
�

�A1˚A3
.�A1 ˚ A3/

1C �
�A1˚A3

D �13a13
�13 C 1

�A1 ˚ M23 D �A1 ˚
�

A2
A2 C �A3

A3

�
A2
C �

A3

D
�

�A1˚A2
.�A1 ˚ A2/C �

�A1˚A3
.�A1 ˚ A3/

�
�A1˚A2

C �
�A1˚A3

D �12a12 C �13a13
�12 C �13

:

(219)

As in (200), in (219) we use the convenient notation

aij D �Ai ˚ Aj; aij D kaijk; �ij D �aij ; (220)

i; j D 1; 2; 3, noting that aij D aji, �ij D �ji.
Note that, by Definition 19, p. 608, the set of gyropoints S D fA1;A2;A3g is

gyropointwise independent in an Einstein gyrovector space .Rn
s ;˚;˝/. Hence, the

two gyrovectors a12 D �A1 ˚ A2 and a13 D �A1 ˚ A3 in R
n
s � R

n in (219),
considered as vectors in R

n, are linearly independent in R
n.

Similarly to the gyroalgebra in (219), under a left gyrotranslation by �A1, the
gyrocentroid G in (217) becomes

�A1 ˚ G D
m2�

�A1˚A2
.�A1 ˚ A2/C m3�

�A1˚A3
.�A1 ˚ A3/

m1 C m2�
�A1˚A2

C m3�
�A1˚A3

D m2�12a12 C m3�13a13
m1 C m2�12 C m3�13

:

(221)

The gyromedian of the left gyrotranslated gyrotriangle O.�A1˚ A2/.�A1˚ A3/
that joins the vertex

� A1 ˚ A1 D O D 0 (222)

with the gyromidpoint of its opposing gyroside, as calculated in (219),

� A1 ˚ M23 D �12a12 C �13a13
�12 C �13

(223)

is contained in the Euclidean line

L1 D OC .�OC f�A1 ˚ M23g/t1 D �12a12 C �13a13
�12 C �13

t1 (224)
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where t1 2 R is the line parameter. This line passes through the point O D 0 2
R

n
s � R

n when t1 D 0, and it passes through the point

� A1 ˚ M23 D �12a12 C �13a13
�12 C �13

2 R
n
s � R

n (225)

when t1 D 1.
Similarly to (222)–(224), the gyromedian of the left gyrotranslated gyrotriangle

O.�A1 ˚ A2/.�A1 ˚ A3/ that joins the vertex

� A1 ˚ A2 D a12 (226)

with the gyromidpoint of its opposing gyroside, as calculated in (219),

� A1 ˚ M13 D �13a13
�13 C 1

(227)

is contained in the Euclidean line

L2 D a12 C .�a12 C f�A1 ˚ M13g/t2 D a12 C .�a12 C �13a13
�13 C 1

/t2 (228)

where t2 2 R is the line parameter. This line passes through the point a12 2 R
n
s � R

n

when t2 D 0, and it passes through the point �A1˚M13 D �13a13=.�13C1/ 2 R
n
s �

R
n when t2 D 1.
Similarly to (222)–(224), and similarly to (226)–(228), the gyromedian of the

left gyrotranslated gyrotriangle O.�A1 ˚ A2/.�A1 ˚ A3/ that joins the vertex

� A1 ˚ A3 D a13 (229)

with the gyromidpoint of its opposing gyroside, as calculated in (219),

� A1 ˚ M12 D �12a12
�12 C 1

(230)

is contained in the Euclidean line

L3 D a13 C .�a13 C f�A1 ˚ M12g/t3 D a13 C .�a13 C �12a12
�12 C 1

/t3 (231)

where t3 2 R is the line parameter. This line passes through the point a13 2 R
n
s � R

n

when t3 D 0, and it passes through the point �A1˚M12 D �12a12=.�12C1/ 2 R
n
s �

R
n when t3 D 1.
Hence, if the gyrocentroid G exists, its left gyrotranslated gyrocentroid, �A1˚G,

given by (221), is contained in each of the three Euclidean lines Lk, k D 1; 2; 3,
in (224), (228), and (231). Formalizing, if G exists, then the point P in (221),
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P D �A1 ˚ G D m2�12a12 C m3�13a13
m1 C m2�12 C m3�13

; (232)

lies on each of the lines Lk, k D 1; 2; 3. Imposing the normalization condition m1C
m2 C m3 D 1 of special gyrobarycentric coordinates, (232) can be simplified by
means of the resulting equation m1 D 1 � m2 � m3, obtaining

P D �A1 ˚ G D m2�12a12 C m3�13a13
1C m2.�12 � 1/C m3.�13 � 1/

: (233)

Since the point P lies on each of the three lines Lk, k D 1; 2; 3, there exist values
tk;0 of the line parameters tk, k D 1; 2; 3, respectively, such that

P � �12a12 C �13a13
�12 C �13

t1;0 D 0

P � a12 � .�a12 C �13a13
�13 C 1

/t2;0 D 0

P � a13 � .�a13 C �12a12
�12 C 1

/t3;0 D 0 :

(234)

The kth equation in (234), k D 1; 2; 3, is equivalent to the condition that point P lies
on line Lk.

The system of Eqs. (234) was obtained by methods of gyroalgebra and will be
solved below by a common method of linear algebra.

Substituting P from (233) into (234), and rewriting each equation in (234) as
a linear combination of a12 and a13 equals zero, one obtains the following linear
homogeneous system of three gyrovector equations

c11a12 C c12a13 D 0

c21a12 C c22a13 D 0

c31a12 C c32a13 D 0

(235)

where each coefficient cij, i D 1; 2; 3, j D 1; 2, is a function of �12, �13, �23, and the
five unknowns m2, m3, and tk;0, k D 1; 2; 3.

Since the set S D fA1;A2;A3g is gyropointwise independent, the two gyrovectors
a12 D �A1˚A2 and a13 D �A1˚A3 in R

n
s , considered as vectors in R

n, are linearly
independent. Hence, each coefficient cij in (235) equals zero. Accordingly, the three
gyrovector equations in (235) are equivalent to the following six scalar equations,

c11 D c12 D c21 D c22 D c31 D c32 D 0 (236)

for the five unknowns m2;m3, and tk;0, k D 1; 2; 3.
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Explicitly, the six scalar equations in (236) are equivalent to the following six
equations:

Œ1C m2.�12 � 1/C m3.�13 � 1/�t1;0 � m2.�12 C �13/ D 0
Œ1C m2.�12 � 1/C m3.�13 � 1/�t1;0 � m3.�12 C �13/ D 0
Œ1C m2.�12 � 1/C m3.�13 � 1/�t2;0 � m3.�13 C 1/ D 0
Œ1C m2.�12 � 1/C m3.�13 � 1/�t2;0 � m3.�13 � 1/C m2 � 1 D 0
Œ1C m2.�12 � 1/C m3.�13 � 1/�t3;0 � m2.�12 C 1/ D 0
Œ1C m2.�12 � 1/C m3.�13 � 1/�t3;0 � m2.�12 � 1/C m3 � 1 D 0:

(237)

The unique solution of (237) is given by

t1;0 D �12 C �13
�12 C �13 C 1

; t2;0 D �13 C 1
�12 C �13 C 1

; t3;0 D �12 C 1
�12 C �13 C 1

;

(238)

and

m2 D m3 D 1

3
(239)

so that by the normalization condition m1 C m2 C m3 D 1, also m1 D 1=3.
Hence, the special gyrobarycentric coordinates of the gyrocentroid of a gyrotri-

angle A1A2A3 with respect to the gyropointwise independent set fA1;A2;A3g in an
Einstein gyrovector space .Rn

s ;˚;˝/, shown in Fig. 7, are given by .m1;m2;m3/ D
. 1
3
; 1
3
; 1
3
/, so that convenient gyrobarycentric coordinates of the gyrotriangle gyro-

centroid are

.m1 W m2 W m3/ D .1; 1; 1/ : (240)

Finally, following (240) and (217), the gyrocentroid of a gyrotriangle A1A2A3 in
an Einstein gyrovector space .Rn

s ;˚;˝/, shown in Fig. 7, is given by the equation

G D
�

A1
A1 C �A2

A2 C �A3
A3

�
A1
C �

A2
C �

A3

(241)

The similarity between the gyrotriangle gyrocentroid G of gyrotriangle A1A2A3
in (241) and the gyromidpoint M12 of gyrosegment A1A2 in (216) is remarkable.
The extension to higher dimensions is now obvious. Indeed, the gyrocentroid Gt of
an .N � 1/-gyrosimplex SN WD A1 : : :AN , N � 2, in an Einstein gyrovector space
.Rn

s ;˚;˝/, n � N�1, is given by its gyrobarycentric representation [50, Eq. 6.338],
[61, Eq. 10.31],

Gt D
PN

iD1 �Ai
Ai

PN
iD1 �Ai

: (242)
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27 Gyrodistance Between Gyropoints

Let P and P0 be two gyropoints in an Einstein gyrovector space .Rn
s ;˚;˝/ with

gyrobarycentric coordinate representations

P D
PN

kD1 mk�Ak
Ak

PN
kD1 mk�Ak

P0 D
PN

kD1 m0
k�Ak

Ak
PN

kD1 m0
k�Ak

(243)

with respect to the set of gyropoints S D fA1; : : : ;ANg.
By the gyrocovariance in (184b), p. 610, of �P , with X D �P0, and follow-

ing (243), we obtain the two gamma factors in (244)–(245):

��P0˚P D
PN

jD1 mj��P0˚Aj

m0

D
PN

jD1 mj��Aj˚P0

m0

(244a)

where, following (170), p. 606, m0 > 0 is given by

m2
0 D

 
NX

kD1
mk

!2
C 2

NX

j;kD1
j<k

mjmk.��Aj˚Ak
� 1/ (244b)

and

��Aj˚P0 D
PN

kD1 m0
k��Aj˚Ak

m0
0

(245a)

where, as in (244b), m0
0 > 0 is given by

.m0
0/
2 D

 
NX

kD1
m0

k

!2
C 2

NX

j;kD1
j<k

m0
jm

0
k.��Aj˚Ak

� 1/ : (245b)

Note that while, in general, �P0 ˚ Aj ¤ �Aj ˚ P0, their norms are equal, k� P0 ˚
Ajk D k � Aj ˚ P0k, implying the equality of their gamma factors, thus justifying
the second equation in (244a).
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Substituting (245a) into the extreme right side of (244a), we obtain the gamma
factor of �P0 ˚ P in terms of the parameters of the gyrobarycentric coordinate
representations (243), according to the following theorem:

Theorem 27 (Gyrodistance Between Gyropoints). Let P and P0 be two gyro-
points in an Einstein gyrovector space .Rn

s ;˚;˝/ with gyrobarycentric coordinate
representations (243)–(244) with respect to the set of gyropoints S D fA1; : : : ;ANg.

Then, the squared gyrodistance between the gyropoints P and P0 is given by the
equation

k� P0 ˚ Pk2 D s2
�2�P0˚P � 1
�2�P0˚P

(246)

where

��P0˚P D
1

m0m0
0

NX

jD1

NX

kD1
mjm

0
k��Aj˚Ak

D 1

m0m0
0

8
ˆ̂<

ˆ̂:

NX

j;kD1
j<k

mjm
0
k��Aj˚Ak

C
NX

j;kD1
j>k

mjm
0
k��Aj˚Ak

C
NX

j;kD1
jDk

mjm
0
k��Aj˚Ak

9
>>=

>>;

D 1

m0m0
0

8
ˆ̂<

ˆ̂:

NX

j;kD1
j<k

.mjm
0
k C m0

jmk/��Aj˚Ak
C

NX

iD1
mim

0
i

9
>>=

>>;
:

(247)

Proof. The gamma factor ��P0˚P is obtained by substituting (245a) into the extreme
right side of (244a). The resulting gyrodistance k� P0 ˚ Pk, in (246), between the
gyropoints P and P0 is obtained from the gamma factor ��P0˚P in (247) by means
of Identity (6), p. 566. �

28 The Law of Gyrocosines

Let �A ˚ B and �A ˚ C be two gyrovectors that form two sides of gyrotriangle
ABC and include the gyrotriangle gyroangle ˛ in an Einstein gyrovector space
.Rn

s ;˚;˝/, as shown in Fig. 8 for n D 2.
By the Gyrotranslation Theorem 8, p. 577,

� .�A ˚ B/˚ .�A ˚ C/ D gyrŒ�A;B�.�B ˚ C/ : (248)
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Fig. 8 Gyrotriangle ABC, along with its standard notation, in an Einstein gyrovector space. The
notation that we use with a gyrotriangle ABC, its gyrovector sides, and its gyroangles in an Einstein
gyrovector space .Rn

s ;˚;˝/ is shown here for the Einstein gyrovector plane .R2s ;˚;˝/

Since gyrations preserve the norm, (18), p. 569,

k� .�A ˚ B/˚ .�A ˚ C/k D kgyrŒ�A;B�.�B ˚ C/k D k� B ˚ Ck : (249)

In the notation of Fig. 8 for gyrotriangle ABC, (249) is written as

k� c ˚ bk D kak (250)

implying

��c˚b D �a D �a : (251)

By (5), p. 565, we have

��c˚b D �b�c.1 � b � c
s2
/ : (252)
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In full analogy with Euclidean geometry, the gyrocosine of gyroangle ˛ D †BAC
of gyrotriangle ABC in Fig. 8 is given by

cos˛ D �A ˚ B

k� A ˚ Bk � �A ˚ C

k� A ˚ Ck D
c
c

� b
b
: (253)

Hence,

b � c
s2
D bc

s2
cos˛ D bscs cos˛ (254)

where bs D b=s, etc.
Following (251)–(254) we have

�a D �b�c.1 � bscs cos˛/ (255)

where a; b; c are the gyroside-gyrolengths of gyrotriangle ABC in an Einstein
gyrovector space .Rn

s ;˚;˝/, as shown in Fig. 8 for n D 2.
Identity (255) is the law of gyrocosines in the gyrotrigonometry of Einstein

gyrovector spaces. As in trigonometry, it is useful for calculating one side, a, of
a gyrotriangle ABC, shown in Fig. 8, when the gyroangle ˛ opposite to gyroside a
and the other two gyrosides (i.e., their gyrolengths), b and c, are known.

Remarkably, in the Euclidean limit of large s, s ! 1, gamma factors tend to 1
and the law of gyrocosines (255) reduces to the trivial identity 1 D 1. Hence, (255)
has no immediate Euclidean counterpart, thus presenting a disanalogy between
hyperbolic and Euclidean geometry. As a result, each of Theorems 28 and 29 has no
Euclidean counterpart as well.

29 The SSS to AAA Conversion Law

Let ABC be a gyrotriangle in an Einstein gyrovector space .Rn
s ;˝;˚/ with its

standard notation in Fig. 8. According to (255) the gyrotriangle ABC possesses the
following three identities, each of which represents its law of gyrocosines,

�a D �b�c.1 � bscs cos˛/

�b D �a�c.1 � ascs cosˇ/

�c D �a�b.1 � asbs cos �/ :

(256)

Like Euclidean triangles, the gyroangles of a gyrotriangle are uniquely deter-
mined by its gyrosides. Solving the system (256) of three identities for the three
unknowns, cos˛, cosˇ, and cos � , and employing (6), p. 566, we obtain the
following theorem:



628 A.A. Ungar

Theorem 28 (The Law of Gyrocosines: The SSS to AAA Conversion Law). Let
ABC be a gyrotriangle in an Einstein gyrovector space .Rn

s ;˚;˝/. Then, in the
gyrotriangle notation in Fig. 8,

cos˛ D ��a C �b�c

�b�cbscs
D ��a C �b�cq

�2b � 1
p
�2c � 1

cosˇ D ��b C �a�c

�a�cascs
D ��b C �a�cp

�2a � 1
p
�2c � 1

cos � D ��c C �a�b

�a�basbs
D ��c C �a�b
p
�2a � 1

q
�2b � 1

:

(257)

The identities in (257) form the SSS (Side-Side-Side) to AAA (gyroAngle-
gyroAngle-gyroAngle) conversion law in Einstein gyrovector spaces. This law is
useful for calculating the gyroangles of a gyrotriangle in an Einstein gyrovector
space when its gyrosides (i.e., its gyroside-gyrolengths) are known.

In full analogy with the trigonometry of triangles, the gyrosine of a gyrotriangle
gyroangle ˛ is nonnegative, given by the equation

sin˛ D
p
1 � cos2 ˛ � 0 : (258)

Hence, it follows from Theorem 28 that the gyrosines of the gyrotriangle gyroangles
in that Theorem are given by

sin˛ D
q
1C 2�a�b�c � �2a � �2b � �2c

q
�2b � 1

p
�2c � 1

sinˇ D
q
1C 2�a�b�c � �2a � �2b � �2c

p
�2a � 1

p
�2c � 1

sin � D
q
1C 2�a�b�c � �2a � �2b � �2c

p
�2a � 1

q
�2b � 1

:

(259)

Any gyrotriangle gyroangle ˛ satisfies 0 < ˛ < � , so that sin˛ > 0 for any
gyrotriangle gyroangle. Following (259) we have the inequality

1C 2�a�b�c � �2a � �2b � �2c > 0 (260)

for any gyrotriangle in an Einstein gyrovector space, in the notation of Theorem 28
and Fig. 8.
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Identities (259) immediately give rise to the law of gyrosines

sin˛
p
�2a � 1

D sinˇ
q
�2b � 1

D sin �
p
�2c � 1

: (261)

30 The AAA to SSS Conversion Law

Unlike Euclidean triangles, the gyroside-gyrolengths of a gyrotriangle are uniquely
determined by its gyroangles, as the following theorem demonstrates.

Theorem 29 (The AAA to SSS Conversion Law I). Let ABC be a gyrotriangle
in an Einstein gyrovector space .Rn

s ;˚;˝/. Then, in the gyrotriangle notation
in Fig. 8,

�a D cos˛ C cosˇ cos �

sinˇ sin �

�b D cosˇ C cos˛ cos �

sin˛ sin �

�c D cos � C cos˛ cosˇ

sin˛ sinˇ

(262)

where, following (258), the gyrosine of the gyrotriangle gyroangle ˛, sin˛, is given
by the nonnegative value of

p
1 � cos2 ˛, and similarly for ˇ and � .

Proof. Let ABC be a gyrotriangle in an Einstein gyrovector space .Rn
s ;˝;˚/ with

its standard notation in Fig. 8. It follows straightforwardly from the SSS to AAA
conversion law (257) that

�
cos˛ C cosˇ cos �

sinˇ sin �

�2
D .cos˛ C cosˇ cos �/2

.1 � cos2 ˇ/.1 � cos2 �/
D �2a (263)

implying the first identity in (262). The remaining two identities in (262) are
obtained from (257) in a similar way by vertex cyclic permutations. �

The identities in (262) form the AAA to SSS conversion law. This law is useful
for calculating the gyrosides (i.e., the gyroside-gyrolengths) of a gyrotriangle in
an Einstein gyrovector space when its gyroangles are known. Thus, for instance,
�a is obtained from the first identity in (262), and a is obtained from �a by
Identity (6), p. 566.
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Solving the third identity in (262) for cos � , we have

cos � D � cos˛ cosˇ C �c sin˛ sinˇ

D � cos.˛ C ˇ/C .�c � 1/ sin˛ sinˇ
(264)

implying

cos � D cos.� � ˛ � ˇ/C .�c � 1/ sin˛ sinˇ : (265)

In the Euclidean limit of large s, s ! 1, �c tends to 1, so that the gyrotrigono-
metric identity (265) in hyperbolic geometry reduces to the trigonometric identity

cos � D cos.� � ˛ � ˇ/ .Euclidean Geometry/ (266)

in Euclidean geometry. The latter, in turn, is equivalent to the familiar result,

˛ C ˇ C � D � .Euclidean Geometry/ (267)

of Euclidean geometry, according to which the triangle angle sum is � .

31 Right Gyrotriangles

Theorem 30 (The Einstein–Pythagoras Theorem). Let ABC be a gyrotriangle in
an Einstein gyrovector space .Rn

s ;˚;˝/. It is right gyroangled with legs a and b
and hypotenuse c, shown in Fig. 9, if and only if

�a �b D �c : (268)

Proof. Let ABC be a right gyrotriangle in an Einstein gyrovector space .Rn
s ;˚;˝/

with the right gyroangle � D �=2, as shown in Fig. 9 for n D 2. It follows
from (262) with � D �=2 that the gyrosides a; b, and c of gyrotriangle ABC in Fig. 9
are related to the acute gyroangles ˛ and ˇ of the gyrotriangle by the equations

�a D
cos˛

sinˇ
; �b D

cosˇ

sin˛
; �c D

cos˛ cosˇ

sin˛ sinˇ
: (269)

The identities in (269) imply the Einstein–Pythagoras identity (268) for a right
gyrotriangle ABC with hypotenuse c and legs a and b in an Einstein gyrovector
space, shown in Fig. 9. The converse statement is obvious owing to the one-to-one
correspondence between gyrotriangle gyroangles and gyroside-gyrolengths. �
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A

B

C

a

b

c

α

β

γ = π/2

a= B⊕C a= a

b= C⊕A b= b

c= A⊕B c= c

sinα =
γaa
γcc

,

sinβ =
γbb
γcc

,

γc = γaγb

cosα =
b
c
=

b·c
bc

,

cosβ =
a
c
=

a·c
ac

,

sin2 α + cos2 α = 1

sin2 β + cos2 β = 1

Fig. 9 Gyrotrigonometry in an Einstein gyrovector plane .R2s ;˚;˝/. Here sin˛ and cos˛ are
two elementary gyrotrigonometric functions of a gyrotriangle ˛, called gyrosine and gyrocosine.
The use of the same notation for both elementary trigonometric functions and elementary
gyrotrigonometric functions emphasizes the obvious analogies that gyrotrigonometry shares with
trigonometry

It follows from (268) that �2a�
2
b D �2c D .1� c2s /

�1, implying that the gyrolength
of the hypotenuse is given by the equation

cs D
q
�2a�

2
b � 1

�a�b
: (270)

32 Gyrotrigonometry

Right-angled triangles in Euclidean geometry along with the Pythagorean identity
that each right triangle obeys are useful for the presentation of the elementary
trigonometric functions. In full analogy, right-gyroangled gyrotriangles in the
hyperbolic geometry of Einstein gyrovector spaces along with the two Einsteinian–
Pythagorean identities that each right gyrotriangle obeys are useful for the presen-
tation of the elementary gyrotrigonometric functions, as shown below.

Let a; b, and c be the respective gyrolengths of the two legs a and b and
the hypotenuse c of a right gyrotriangle ABC in an Einstein gyrovector space
.Rn

s ;˚;˝/, shown in Fig. 9. By (6), p. 566, and (269) we have
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�a

c

�2 D .�2a � 1/=�2a
.�2c � 1/=�2c

D cos2 ˇ

�
b

c

�2
D .�2b � 1/=�2b
.�2c � 1/=�2c

D cos2 ˛

(271)

where �a , �b , and �c are related by (268).
Similarly, by (6), p. 566, and (269), we also have

�
�aa

�cc

�2
D �2a � 1
�2c � 1

D sin2 ˛

�
�bb

�cc

�2
D �2b � 1
�2c � 1

D sin2 ˇ :

(272)

Identities (271) and (272) imply

�a

c

�2 C
�
�bb

�cc

�2
D 1

�
�aa

�cc

�2
C
�

b

c

�2
D 1

(273)

so that, as shown in Fig. 9,

cos˛ D b

c

cosˇ D a

c

(274)

and

sin˛ D �aa

�cc

sinˇ D �bb

�cc
:

(275)

Interestingly, we see from (274)–(275) that the gyrocosine function of an acute
gyroangle of a right gyrotriangle in an Einstein gyrovector space has the same form
as its Euclidean counterpart, the cosine function. In contrast, it is only modulo
gamma factors that the gyrosine function has the same form as its Euclidean
counterpart.
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Identities (273) give rise to the following two distinct Einsteinian-Pythagorean
identities,

a2 C
�
�b

�c

�2
b2 D c2;

�
�a

�c

�2
a2 C b2 D c2; (276)

for a right gyrotriangle with hypotenuse c and legs a and b in an Einstein
gyrovector space. The two distinct Einsteinian-Pythagorean identities in (276) that
each Einsteinian right gyrotriangle obeys converge in the Newtonian/Euclidean limit
of large s, s!1, to the single Pythagorean identity

a2 C b2 D c2 .Euclidean Geometry/ (277)

that each Euclidean right-angled triangle obeys.
Some explorers believe that “in the hyperbolic model the Pythagorean theorem

is not valid” [63, p. 363], so that “the Pythagorean theorem is strictly Euclidean.”
It is therefore interesting to realize that while Euclidean geometry possesses a
single Pythagorean identity, (277), hyperbolic geometry possesses two Pythagorean
identities, (276), that capture the missing analogy.

33 In-Exgyrocircle Tangency Gyropoints

Theorem 31 (Ingyrocircle Tangency Gyropoints). Let A1A2A3 be a gyrotriangle
in an Einstein gyrovector space R

n
s and let Tk, k D 1; 2; 3, be the gyropoint in

which the ingyrocircle of the gyrotriangle meets the opposite gyroside of Ak, shown
in Fig. 10. A gyrotrigonometric gyrobarycentric coordinate representation of each
gyropoint Tk is given by

T1 D
tan ˛2

2
�

A2
A2 C tan ˛3

2
�

A3
A3

tan ˛2
2
�

A2
C tan ˛3

2
�

A3

T2 D
tan ˛1

2
�

A1
A1 C tan ˛3

2
�

A3
A3

tan ˛1
2
�

A1
C tan ˛3

2
�

A3

T3 D
tan ˛1

2
�

A1
A1 C tan ˛2

2
�

A2
A2

tan ˛1
2
�

A1
C tan ˛2

2
�

A2

:

(278)

Theorem 31 and its proof are presented in [56, Sect. 7.14, pp. 191–194] in
an equivalent form (noting that gyrobarycentric coordinates are homogeneous).
This theorem proves useful in the determination of the tangency gyropoints Tk,
k D 1; 2; 3, shown in Fig. 10, and, consequently, in the determination of the Cabrera
gyropoint C of gyrotriangle A1A2A3, shown in Fig. 12, p. 648.
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I

A1

A2

A3

a12 = A1⊕A2, a12 = a12 , γ12 = γa12 , etc.

a13

a
23

T1

T2

T3
α1

α2

α3

Fig. 10 The ingyrocircle of gyrotriangle A1A2A3 is shown along with its gyrocenter I and its
gyrotangency gyropoints Tk, k D 1; 2; 3, in an Einstein gyrovector plane R

2
s . The gyropoint Tk is

the gyropoint in which the ingyrocircle of the gyrotriangle meets the gyrotriangle gyroside opposite
to gyrovertex Ak. The gyrotriangle gyroangle at gyrovertex Ak is ˛k

Theorem 32 (Exgyrocircle Tangency Gyropoints). Let A1A2A3 be a gyrotriangle
in an Einstein gyrovector space Rn

s , and let Hk, k D 1; 2; 3, be the gyropoint in which
an exgyrocircle of the gyrotriangle meets the opposite gyroside of Ak, as shown in
Fig. 14, p. 652. A gyrotrigonometric gyrobarycentric coordinate representation of
each gyropoint Hk is given by

H1 D
cot ˛2

2
�

A2
A2 C cot ˛3

2
�

A3
A3

cot ˛2
2
�

A2
C cot ˛3

2
�

A3

H2 D
cot ˛1

2
�

A1
A1 C cot ˛3

2
�

A3
A3

cot ˛1
2
�

A1
C cot ˛3

2
�

A3

H3 D
cot ˛1

2
�

A1
A1 C cot ˛2

2
�

A2
A2

cot ˛1
2
�

A1
C cot ˛2

2
�

A2

:

(279)

Theorem 32 and its proof are presented in [56, Sect. 8.13, pp. 246–248] in an
equivalent form (noting that gyrobarycentric coordinates are homogeneous). This
theorem proves useful in the determination of the tangency gyropoints Hk, k D
1; 2; 3, shown in Fig. 14, and, consequently, in the determination of the Cabrera
exgyrocircle gyropoint H of gyrotriangle A1A2A3, shown in Fig. 14, p. 652.
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Fig. 11 The incircle of
triangle A1A2A3 is shown
along with its center I and its
tangency points Tk,
k D 1; 2; 3, in a Euclidean
plane R2. The point Tk is the
point in which the incircle of
the triangle meets the triangle
side opposite to vertex Ak.
The triangle angles are ˛k

I

A1

A2

A3

a12 = −A1+A2, a12 = a12 , etc.

a 13

a
23

T1

T2

T3
α1

α2

α3

34 Incircle Points of Tangency

It should be noted that, owing to our notation that emphasizes analogies, in the
Euclidean limit

lim
s!1

tan ˛1
2
�

A1
A1 C tan ˛2

2
�

A2
A2

tan ˛1
2
�

A1
C tan ˛2

2
�

A2

D tan ˛1
2

A1 C tan ˛2
2

A2
tan ˛1

2
C tan ˛2

2

; (280)

Ak, k D 1; 2, are gyropoints on the left side, and the same Ak are points on the right
side. Similarly, tan.	k=2/ on the left side is the gyrotangent of a gyroangle 	k=2/,
while the same tan.	k=2/ on the right side is the tangent of an angle 	k=2/, as shown
in Figs. 10 and 11.

Figure 11 is the Euclidean counterpart of Fig. 10 and, correspondingly, Theo-
rem 33 below is the Euclidean counterpart of Theorem 31.

Theorem 33. Let A1A2A3 be a triangle in a Euclidean vector space R
n, and let Tk,

k D 1; 2; 3, be the point in which the incircle of the triangle meets the opposite side
of Ak, shown in Fig. 11. A trigonometric barycentric representation of each point Tk

is given by

T1 D
tan ˛2

2
A2 C tan ˛3

2
A3

tan ˛2
2
C tan ˛3

2

T2 D
tan ˛1

2
A1 C tan ˛3

2
A3

tan ˛1
2
C tan ˛3

2

T3 D
tan ˛1

2
A1 C tan ˛2

2
A2

tan ˛1
2
C tan ˛2

2

:

(281)
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The results of Theorem 33 are the Euclidean limit of corresponding results of
Theorem 31, noting that in the Euclidean limit, s ! 1, gamma factors tend to 1
and gyrotriangle gyroangles ˛i tend to corresponding triangle angles, also denoted
by ˛i, i D 1; 2; 3. Theorem 33 proves useful in the determination of the tangency
points Tk, k D 1; 2; 3, shown in Fig. 11, and, consequently, in the determination of
the Cabrera point C, shown in Fig. 15, p. 658.

35 Gyromedial Gyrotriangle

Let A1A2A3 be a gyrotriangle in an Einstein gyrovector space .Rn
s ;˚;˝/, and let

M12, M13 and M23 be the gyromidpoints of gyrosides A1A2, A1A3, and A2A3 of the
gyrotriangle, respectively, as shown in Fig. 12.

Following (206)–(207), p. 616, M12 possesses the gyrobarycentric representation

M12 D
�A1

A1 C �A2
A2

�A1
C �A2

(282)

with respect to the set fA1;A2g, and the constant of the gyrobarycentric representa-
tion (282) is

mM12
D
q
2.�12 C 1/: (283)

Furthermore, the gamma factor of M12 is, by (208b),

�M12
D �A1

C �A2

mM12

: (284)

Thus, by cyclic gyrovertex permutations of gyrotriangle A1A2A3, we have

Mij D
�Ai

Ai C �Aj
Aj

�Ai
C �Aj

mMij
D
q
2.1C �ij /

�Mij
D
�Ai
C �Aj

mMij

D
�Ai
C �Ajq

2.1C �ij /
;

(285)

i; j D 1; 2; 3; i < j.
In order to determine the gyrodistance between the gyromidpoints M12 and

M23, we represent these two gyropoints gyrobarycentrically with respect to the set
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fA1;A2;A3g, obtaining by means of (282),

m12 D
m1�A1

A1 C m2�A2
A2 C m3�A3

A3

m1�A1
C m2�A2

C m3�A3

m23 D
m0
1�A1

A1 C m0
2�A2

A2 C m0
3�A3

A3

m0
1�A1
C m0

2�A2
C m0

3�A3

(286)

where

m1 D 1; m2 D 1; m3 D 0

m0
1 D 0; m0

2 D 1; m0
3 D 1 :

(287)

Then, by Theorem 27, p. 625, the gamma factor ��M12˚M23
of the gyrodistance

k� M12 ˚ M23k between the gyromidpoints M12 and M23 is given by

��M12˚M23
D 1

mM12
mM23

f.m0
1m2 C m1m

0
2/�12 C .m0

1m3 C m1m
0
3/�13

C .m0
2m3 C m2m

0
3/�23 C .m0

1m1 C m0
2m2 C m0

3m3/g

D 1

mM12
mM23

.1C �12 C �13 C �23/:

(288)

Hence, by (288) and (283), and by cyclic gyrovertex permutations of gyrotriangle
A1A2A3, we have

�12 WD ��M13˚M23
D 1C �12 C �13 C �23
2

q
.1C �13/.1C �23/

�13 WD ��M12˚M23
D 1C �12 C �13 C �23
2

q
.1C �12/.1C �23/

�23 WD ��M12˚M13
D 1C �12 C �13 C �23
2

q
.1C �12/.1C �13/

:

(289)

Here, �12, �13, and �23 are, respectively, the gamma factors of gyrosides M13M23,
M12M23, and M12M13 of the gyromedial gyrotriangle M12M13M23 of gyrotriangle
A1A2A3, shown in Fig. 12.



638 A.A. Ungar

Remark 2. If the gyromedial gyrotriangle M12M13M23 of gyrotriangle A1A2A3,
shown in Fig. 12, is right gyroangled, say ˇ3 D �=2, then, by the Einstein–
Pythagoras identity (268), p. 630, we have

�13�23 D �12 (290)

or equivalently, by (289),

� �12 C �13 C �23 � 1 D 0 : (291)

Indeed, (291) insures that cosˇ3 D 0, as we see from (294), p. 639.

36 Gyromedial Gyrotriangle Gyroangles

Let ˇ1, ˇ2, and ˇ3 be the gyroangles of the gyromedial gyrotriangle M12M13M23 of
gyrotriangle A1A2A3, shown in Fig. 12. By the SSS to AAA conversion law (257)–
(259), p. 628, we have

cosˇ1 D ��23 C �12�13q
�212 � 1

q
�213 � 1

cosˇ2 D ��13 C �12�23q
�212 � 1

q
�223 � 1

cosˇ3 D ��12 C �13�23q
�213 � 1

q
�223 � 1

(292)

and

sinˇ1 D
q
1C 2�12�13�23 � �212 � �213 � �223q

�212 � 1
q
�213 � 1

sinˇ2 D
q
1C 2�12�13�23 � �212 � �213 � �223q

�212 � 1
q
�223 � 1

sinˇ3 D
q
1C 2�12�13�23 � �212 � �213 � �223q

�213 � 1
q
�223 � 1

:

(293)
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Substitutions from (289) into (292)–(293) yield the equations

cos2 ˇ1 D .1C �12 C �13 C �23/2.�12 C �13 � �23 � 1/2
D2
1

cos2 ˇ2 D .1C �12 C �13 C �23/2.�12 � �13 C �23 � 1/2
D2
2

cos2 ˇ3 D .1C �12 C �13 C �23/2.��12 C �13 C �23 � 1/2
D2
3

(294)

and

sin2 ˇ1 D 8.1C 2�12�13�23 � �212 � �213 � �223/
D2
1

.1C �23/

sin2 ˇ2 D 8.1C 2�12�13�23 � �212 � �213 � �223/
D2
2

.1C �13/

sin2 ˇ3 D 8.1C 2�12�13�23 � �212 � �213 � �223/
D2
3

.1C �12/ ;

(295)

where

D2
1 D f.�212 � 1/C .�213 � 1/C .�223 � 1/C 2.�12�13 � �23/g2

� f2.�12�23 � �13/ � 2.�13�23 � �12/g2

D2
2 D f.�212 � 1/C .�213 � 1/C .�223 � 1/C 2.�12�23 � �13/g2

� f2.�12�13 � �23/ � 2.�13�23 � �12/g2

D2
3 D f.�212 � 1/C .�213 � 1/C .�223 � 1/C 2.�13�23 � �12/g2

� f2.�12�13 � �23/ � 2.�12�23 � �13/g2 :

(296)

In order to see that D2
k > 0, k D 1; 2; 3, it is useful to rewrite D2

k equivalently in
the following form:
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D2
1 D .1C �12 C �13 C �23/2.�12 C �13 � �23 � 1/2

C 8.1C 2�12�13�23 � �212 � �213 � �223/.1C �23/

D2
2 D .1C �12 C �13 C �23/2.�12 � �13 C �23 � 1/2

C 8.1C 2�12�13�23 � �212 � �213 � �223/.1C �13/

D2
3 D .1C �12 C �13 C �23/2.��12 C �13 C �23 � 1/2

C 8.1C 2�12�13�23 � �212 � �213 � �223/.1C �12/ :

(297)

Indeed, it follows from (297) and Inequality (260), p. 628, that

D2
k > 0 ; (298)

k D 1; 2; 3, as expected from (294)–(295).

Owing to (298), Dk D
q

D2
k > 0. Hence, by Inequality (260), (294)–(295) can

be written conveniently as

cosˇ1 D 1C �12 C �13 C �23
D1

.�12 C �13 � �23 � 1/

cosˇ2 D 1C �12 C �13 C �23
D2

.�12 � �13 C �23 � 1/

cosˇ3 D 1C �12 C �13 C �23
D3

.��12 C �13 C �23 � 1/

(299)

�1 < cosˇk < 1, k D 1; 2; 3, and

sinˇ1 D
q
8.1C 2�12�13�23 � �212 � �213 � �223/

D1

q
1C �23 > 0

sinˇ2 D
q
8.1C 2�12�13�23 � �212 � �213 � �223/

D2

q
1C �13 > 0

sinˇ3 D
q
8.1C 2�12�13�23 � �212 � �213 � �223/

D3

q
1C �12 > 0

(300)

where Dk > 0, k D 1; 2; 3, are given by (297) or, equivalently, by (296).
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If we use the notation

A D 1C �12 C �13 C �23

B D
q
8.1C 2�12�13�23 � �212 � �213 � �223/

(301)

then

cotˇ1 D A.�12 C �13 � �23 � 1/
B
q
1C �23

1

sinˇ1
D D1

B
q
1C �23

:

(302)

We now employ the trigonometric/gyrotrigonometric identity

cot
ˇ1

2
D cotˇ1 C 1

sinˇ1
; (303)

obtaining the equation

cot
ˇ1

2
D D1 C A.�12 C �13 � �23 � 1/

B
q
1C �23

: (304)

Finally, it follows from (297), (301), and (304) along with cyclic gyrovertex
permutations of gyrotriangle A1A2A3 that

cot
ˇ1

2
D D1 C A.�12 C �13 � �23 � 1/

B
q
1C �23

cot
ˇ2

2
D D2 C A.�12 � �13 C �23 � 1/

B
q
1C �13

cot
ˇ3

2
D D3 C A.��12 C �13 C �23 � 1/

B
q
1C �12

(305)
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where

A D 1C �12 C �13 C �23

B2 D 8.1C 2�12�13�23 � �212 � �213 � �223/
(306)

and

D2
1 D A2.�12 C �13 � �23 � 1/2 C B2.1C �23/

D2
2 D A2.�12 � �13 C �23 � 1/2 C B2.1C �13/

D2
3 D A2.��12 C �13 C �23 � 1/2 C B2.1C �12/ ;

(307)

B > 0, Dk > 0, k D 1; 2; 3.

37 Gyromedial Gyrotriangle Ingyrocircle
Tangency Gyropoints

By Theorem 31, p. 633, the tangency gyropoint T3 in Fig. 12, p. 648, is given by

T3 D
m1�M23

M23 C m2�M13
M13

m1�M23
C m2�M13

(308)

where

m1 D tan
ˇ1

2

m2 D tan
ˇ2

2

(309)

where, by (305),

tan
ˇ1

2
D

B
q
1C �23

D1 C A.�12 C �13 � �23 � 1/

tan
ˇ2

2
D

B
q
1C �13

D2 C A.�12 � �13 C �23 � 1/

tan
ˇ3

2
D

B
q
1C �12

D3 C A.��12 C �13 C �23 � 1/

(310)
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and where, by (285), p. 636,

Mij D
�Ai

Ai C �Aj
Aj

�Ai
C �Aj

�Mij
D

�Ai
C �Ajq

2.1C �ij /
;

(311)

i; j D 1; 2; 3, i < j.
Substituting (309)–(311) into (308), we obtain T3 in (314a).
The remaining tangency gyropoints T1 and T2 that are shown in Fig. 12, p. 648,

are derived from T3 in (314a) by cyclic gyrovertex permutations of gyrotriangle
A1A2A3, obtaining

T1 D
m11�A1

A1 C m21�A2
A2 C m31�A3

A3

m11�A1
C m21�A2

C m31�A3

(312a)

m11 D D2 C D3 C 2A.�23 � 1/ D m21 C m31

m21 D D2 C A.�12 � �13 C �23 � 1/

m31 D D3 C A.��12 C �13 C �23 � 1/

(312b)

T2 D
m12�A1

A1 C m22�A2
A2 C m32�A3

A3

m12�A1
C m22�A2

C m32�A3

(313a)

m12 D D1 C A.�12 C �13 � �23 � 1/

m22 D D1 C D3 C 2A.�13 � 1/ D m12 C m32

m32 D D3 C A.��12 C �13 C �23 � 1/

(313b)

T3 D
m13�A1

A1 C m23�A2
A2 C m33�A3

A3

m13�A1
C m23�A2

C m33�A3

(314a)

m13 D D1 C A.�12 C �13 � �23 � 1/

m23 D D2 C A.�12 � �13 C �23 � 1/

m33 D D1 C D2 C 2A.�12 � 1/ D m13 C m23 :

(314b)
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A left gyrotranslation of gyrotriangle A1A2A3 by �A1 results in the �A1-left
gyrotranslated gyrotriangle

.�A1 ˚ A1/.�A1 ˚ A2/.�A1 ˚ A3/ D O.�A1 ˚ A2/.�A1 ˚ A3/ D 0a12a13;

(315)

where O D �A1 ˚ A1 is the arbitrarily selected origin of the Einstein gyrovector
space R

n
s , that is,

O D 0 D .0; : : : ; 0/ 2 R
n (316)

with respect to the Cartesian coordinates of Rn
s , and where we use the convenient

index notation

a12 D �A1 ˚ A2; a12 D ka12k; �21 D �12 D �a12 D �a12 ;

a13 D �A1 ˚ A3; a13 D ka13k; �31 D �13 D �a13 D �a13 ;

a23 D �A2 ˚ A3; a23 D ka23k; �32 D �23 D �a23 D �a23 :

(317)

Following the left gyrotranslation by �A1 of gyrotriangle A1A2A3, the tangency
gyropoints Tk in (312)–(314), k D 1; 2; 3, become �A1 ˚ Tk. Employing the
Gyrobarycentric Coordinate Representation Gyrocovariance Theorem 25, p. 609,
we have from (312)–(314),

� A1 ˚ T1

D m11��A1˚A1 .�A1 ˚ A1/C m21��A1˚A2 .�A1 ˚ A2/C m31��A1˚A3 .�A1 ˚ A3/

m11��A1˚A1 C m21��A1˚A2 C m31��A1˚A3

D m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

;

(318)

noting the trivial equations �A1 ˚ A1 D 0 D .0; : : : ; 0/ and �0 D 1.
Similarly, �A1 ˚ Tk, k D 1; 2; 3, are given by

�A1 ˚ T1 D m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

�A1 ˚ T2 D m22�12a12 C m32�13a13
m12 C m22�12 C m32�13

�A1 ˚ T3 D m23�12a12 C m33�13a13
m13 C m23�12 C m33�13

:

(319)
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The gyroline L1 that passes through the gyropoints �A1 ˚ A1 D 0 and �A1 ˚ T1
is contained in the Euclidean line

L1 W 0C .�0C Œ�A1 ˚ T1�/t1 D m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

t1 (320)

where t1 2 R is the line parameter.
The gyroline L2 that passes through the gyropoints �A1˚A2 D a12 and �A1˚T2

is contained in the Euclidean line

L2 W a12 C .�a12 C Œ�A1 ˚ T2�/t2 D a12.1 � t2/C m22�12a12 C m32�13a13
m12 C m22�12 C m32�13

t2

(321)

where t2 2 R is the line parameter.
Similarly, the gyroline L3 that passes through the gyropoints �A1 ˚ A3 D a13

and �A1 ˚ T3 is contained in the Euclidean line

L3 W a13 C .�a13 C Œ�A1 ˚ T3�/t3 D a13.1 � t3/C m23�12a12 C m33�13a13
m13 C m23�12 C m33�13

t3

(322)

where t3 2 R is the line parameter.
The three lines Lk, k D 1; 2; 3, will prove useful in the study of the Cabrera

ingyrocircle gyropoint.

38 Cabrera Ingyrocircle Gyropoint

Let the gyropoint of concurrency, C, of gyrolines A1T1, A2T2, and A3T3, as shown
in Figs. 12 and 13, be given by its gyrobarycentric representation with respect to the
set fA1;A2;A3g,

C D
m1c�A1

A1 C m2c�A2
A2 C m3c�A3

A3

m1c�A1
C m2c�A2

C m3c�A3

; (323)

where the gyrobarycentric coordinates mic, i D 1; 2; 3, of C are to be determined.
Employing the Gyrobarycentric Coordinate Representation Gyrocovariance

Theorem 25, p. 609, we find that the �A1 left gyrotranslated concurrency gyropoint
C is given gyrobarycentrically by
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P W D �A1 ˚ C

D m1c��A1˚A1 .�A1 ˚ A1/C m2c��A1˚A2 .�A1 ˚ A2/C m3c��A1˚A3 .�A1 ˚ A3/

m1c��A1˚A1 C m2c��A1˚A2 C m3c��A1˚A3

D m2c�12a12 C m3c�13a13
m1c C m2c�12 C m3c�13

;

(324)

noting the trivial equations �A1 ˚ A1 D 0 D .0; : : : ; 0/ and �0 D 1.
We assume that gyropoint C lies on each of the three gyrolines A1T1, A2T2, and

A3T3, as shown in Fig. 12. This assumption implies that the gyropoint P lies on each
of the three lines Lk, k D 1; 2; 3 in (320)–(322). Hence, there exist values tk0 of the
line parameters tk, k D 1; 2; 3, respectively, such that

P � m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

t10 D 0

P � a12.1 � t20/ � m22�12a12 C m32�13a13
m12 C m22�12 C m32�13

t20 D 0

P � a13.1 � t30/ � m23�12a12 C m33�13a13
m13 C m23�12 C m33�13

t30 D 0;

(325)

where the gyrobarycentric coordinates mij in (325) are given in (312)–(314).
The kth equation in (325) expresses the condition that point P lies on line Lk,

k D 1; 2; 3.
The system of Eqs. (325) was obtained by methods of gyroalgebra and will be

solved below by a common method of linear algebra.
Substituting P from (324) into (325), and rewriting each equation in (325) as

a linear combination of a12 and a13 equals zero, one obtains the following linear
homogeneous system of three gyrovector equations

c11a12 C c12a13 D 0

c21a12 C c22a13 D 0

c31a12 C c32a13 D 0;

(326)

where each coefficient cij, i D 1; 2; 3, j D 1; 2, is a function of �12, �13, �23, and the
six unknowns mkc and tk0, k D 1; 2; 3.

Since the set S D fA1;A2;A3g is gyrobarycentrically independent, the two
gyrovectors a12 D �A1 ˚ A2 and a13 D �A1 ˚ A3 in R

n
s , considered as vectors in

the ambient space R
n, are linearly independent. Hence, each coefficient cij in (326)

equals zero. Accordingly, the three gyrovector equations in (326) are equivalent to
the following six scalar equations,

c11 D c12 D c21 D c22 D c31 D c32 D 0 (327)

for the six unknowns mkc and tk0, k D 1; 2; 3.
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The six scalar equations in (327) are not independent. For convenience one may
initially select m1c D 1 and obtain a unique solution for the remaining unknowns.
Finally, owing to the homogeneity of the gyrobarycentric coordinates mkc, one can
multiply each of them by a convenient nonzero common factor, obtaining

m1c D D1 C A.�12 C �13 � �23 � 1/

m2c D D2 C A.�12 � �13 C �23 � 1/

m3c D D3 C A.��12 C �13 C �23 � 1/ :

(328)

It is clear from the definition of Dk, k D 1; 2; 3, in (307), p. 642, that these terms
satisfy the inequalities

D1 > Aj�12 C �13 � �23 � 1j
D2 > Aj�12 � �13 C �23 � 1j
D3 > Aj � �12 C �13 C �23 � 1j :

(329)

Hence, all the gyrobarycentric coordinates mkc, k D 1; 2; 3, in (328) of Cabrera
ingyrocircle gyropoint C in (323) are positive so that, by Corollary 2, p. 611, Cabrera
ingyrocircle gyropoint always lies on the interior of its reference gyrotriangle
A1A2A3. However, it need not lie on the interior of its gyromedial gyrotriangle, as
we see from Figs. 12 and 13.

Formalizing the main result of this section, we have the following theorem.

Theorem 34 (Cabrera Ingyrocircle Gyropoint). The Cabrera ingyrocircle gyro-
point C of a gyrotriangle A1A2A3 in an Einstein gyrovector space .Rn

s ;˚;˝/, shown
in Figs. 12 and 13, lies on the interior of its reference gyrotriangle A1A2A3. It is
given by its gyrobarycentric representation with respect to the set fA1;A2;A3g,

C D
m1c�A1

A1 C m2c�A2
A2 C m3c�A3

A3

m1c�A1
C m2c�A2

C m3c�A3

(330)

where

m1c D D1 C A.�12 C �13 � �23 � 1/

m2c D D2 C A.�12 � �13 C �23 � 1/

m3c D D3 C A.��12 C �13 C �23 � 1/ :

(331)
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I
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β3
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σ13 σ23
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T3

A1
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A3

M12

M13
M23

M12 =
γ
A1

A1+γ
A2

A2

γ
A1

+γ
A2

M13 =
γ
A1

A1+γ
A3

A3

γ
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+γ
A3

M23 =
γ
A2

A2+γ
A3

A3

γ
A2

+γ
A3

σ12 = γ M13⊕M23
, etc.

Fig. 12 Cabrera gyropoint. The gyromidpoints of the gyrosides of gyrotriangle A1A2A3 are M12,
M13, and M23. The gyromedial gyrotriangle of gyrotriangle A1A2A3 in an Einstein gyrovector plane
.R2;˚;˝/ is M12M13M23. The gyroangles of the gyromedial gyrotriangle are ˇ1, ˇ2, and ˇ3, its
ingyrocenter is I, and its ingyrocircle gyrotangency gyropoints are T1, T2, and T3. The gamma
factors of the gyromedial gyrotriangle gyrosides are �12, �13, and �23. The gyrolines A1T1, A2T2,
and A3T3 are concurrent. The concurrency gyropoint, C, is the Cabrera gyropoint of gyrotriangle
A1A2A3, determined gyrobarycentrically in Theorem 34, p. 647

where

A D 1C �12 C �13 C �23

B2 D 8.1C 2�12�13�23 � �212 � �213 � �223/
(332)

and

D2
1 D A2.�12 C �13 � �23 � 1/2 C B2.1C �23/

D2
2 D A2.�12 � �13 C �23 � 1/2 C B2.1C �13/

D2
3 D A2.��12 C �13 C �23 � 1/2 C B2.1C �12/ ;

(333)

B > 0, Dk > 0, k D 1; 2; 3.
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I

C

T1
T2

T3

A1

A2

A3

M
12

M13

M23

Fig. 13 Contrasting Fig. 12, the Cabrera ingyrocircle gyropoint, C, of a gyrotriangle A1A2A3,
which does not lie on the interior of the gyromedial gyrotriangle of the reference gyrotriangle
A1A2A3, is shown

39 Gyromedial Gyrotriangle Exgyrocircles Tangency
Gyropoints

This section is similar to Sect. 37. By Theorem 32, p. 634, the tangency gyropoint
H3 is given by

H3 D
m1�M23

M23 C m2�M13
M13

m1�M23
C m2�M13

(334)

where

m1 D cot
ˇ1

2

m2 D cot
ˇ2

2

(335)

where cot.ˇk=2/, k D 1; 2; 3, are given by (305)–(307) and where Mij and �Mij
,

i; j D 1; 2; 3, i < j, are given by (311).
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Expressing H3 in terms of D1, D2, A, B, and �ij by means of (335), (305)–(307),
and (311), we obtain H3 in (338a).

The remaining tangency gyropoints H1 and H2 that are shown in Fig. 12, p. 648,
are derived from H3 by cyclic gyrovertex permutations of gyrotriangle A1A2A3,
obtaining

H1 D
m11�A1

A1 C m21�A2
A2 C m31�A3

A3

m11�A1
C m21�A2

C m31�A3

(336a)

m11 D m21 C m31

m21 D .D3 C A.��12 C �13 C �23 � 1//.1C �13/

m31 D .D2 C A.�12 � �13 C �23 � 1//.1C �12/

(336b)

H2 D
m12�A1

A1 C m22�A2
A2 C m32�A3

A3

m12�A1
C m22�A2

C m32�A3

(337a)

m12 D .D3 C A.��12 C �13 C �23 � 1//.1C �23/

m22 D m12 C m32

m32 D .D1 C A.�12 C �13 � �23 � 1//.1C �12/

(337b)

H3 D
m13�A1

A1 C m23�A2
A2 C m33�A3

A3

m13�A1
C m23�A2

C m33�A3

(338a)

m13 D fD2 C A.�12 � �13 C �23 � 1/g.1C �23/

m23 D fD1 C A.�12 C �13 � �23 � 1/g.1C �13/

m33 D m13 C m23 :

(338b)

A left gyrotranslation of gyrotriangle A1A2A3 by �A1 results in the �A1-left
gyrotranslated gyrotriangle

.�A1˚A1/.�A1˚A2/.�A1˚A3/ D O.�A1˚A2/.�A1˚A3/ D 0a12a13; (339)

where O D �A1 ˚ A1 is the arbitrarily selected origin of the Einstein gyrovector
space R

n
s .

Following the left gyrotranslation by �A1 of gyrotriangle A1A2A3, the tangency
gyropoints Hk in (336)–(338), k D 1; 2; 3, become �A1 ˚ Hk. Employing the
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Gyrobarycentric Coordinate Representation Gyrocovariance Theorem 25, p. 609,
we have from (336)–(338),

� A1 ˚ H1

D m11��A1˚A1
.�A1 ˚ A1/C m21��A1˚A2

.�A1 ˚ A2/C m31��A1˚A3
.�A1 ˚ A3/

m11��A1˚A1
C m21��A1˚A2

C m31��A1˚A3

D m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

;

(340)
noting the trivial equations �A1 ˚ A1 D 0 D .0; : : : ; 0/ and �0 D 1.

Similarly, �A1 ˚ Hk, k D 1; 2; 3, are given by

�A1 ˚ H1 D m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

�A1 ˚ H2 D m22�12a12 C m32�13a13
m12 C m22�12 C m32�13

�A1 ˚ H3 D m23�12a12 C m33�13a13
m13 C m23�12 C m33�13

:

(341)

The gyroline L1 that passes through the gyropoints �A1˚A1 D 0 and �A1˚H1

is contained in the Euclidean line

L1 W 0C .�0C Œ�A1 ˚ H1�/t1 D m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

t1 (342)

where t1 2 R is the line parameter.
The gyroline L2 that passes through the gyropoints �A1˚A2 D a12 and �A1˚H2

is contained in the Euclidean line

L2 W a12 C .�a12 C Œ�A1 ˚ H2�/t2 D a12.1 � t2/C m22�12a12 C m32�13a13
m12 C m22�12 C m32�13

t2

(343)
where t2 2 R is the line parameter.

Similarly, the gyroline L3 that passes through the gyropoints �A1 ˚ A3 D a13
and �A1 ˚ H3 is contained in the Euclidean line

L3 W a13 C .�a13 C Œ�A1 ˚ H3�/t3 D a13.1 � t3/C m23�12a12 C m33�13a13
m13 C m23�12 C m33�13

t3

(344)
where t3 2 R is the line parameter.

The three lines Lk, k D 1; 2; 3, will prove useful in the study of the Cabrera
exgyrocircle gyropoint.
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40 Cabrera Exgyrocircle Gyropoint

This section is similar to Sect. 38. Let the gyropoint of concurrency, H, of gyrolines
A1H1, A2H2, and A3H3, as shown in Fig. 14, be given by its gyrobarycentric
representation with respect to the set fA1;A2;A3g,

H D
m1h�A1

A1 C m2h�A2
A2 C m3h�A3

A3

m1h�A1
C m2h�A2

C m3h�A3

; (345)

where the gyrobarycentric coordinates mih, i D 1; 2; 3, of H are to be determined.
Employing the Gyrobarycentric Coordinate Representation Gyrocovariance The-

orem 25, p. 609, we find that the �A1 left gyrotranslated concurrency gyropoint H
is given gyrobarycentrically by

F

H

β1

β2

β3

E0

E1

E2

E3

F1

F2
F3

H1

H2

H3

A1

A2

A3

M
12

M13

M23

Fig. 14 Cabrera in-exgyrocircle gyropoints. The gyromidpoints, M12, M13, of the gyrosides of
gyrotriangle A1A2A3 form the gyrovertices of the gyromedial gyrotriangle of gyrotriangle A1A2A3
in an Einstein gyrovector plane .R2s ;˚;˝/. The gyroangles of the gyromedial gyrotriangle are
ˇ1, ˇ2, and ˇ3. The ingyrocenter of gyrotriangle A1A2A3 is E0 and its exgyrocenters are E1,
E2, and E3. The tangency gyropoints where the ingyrocircle meets the gyrosides of gyrotriangle
A1A2A3 are Tk and the tangency gyropoints where the exgyrocircles meet the gyrosides of the
gyrotriangle are Hk, k D 1; 2; 3. The gyrolines A1F1, A2F2, and A3F3 are concurrent, the
concurrency gyropoint being the Cabrera ingyrocircle gyropoint, F, of gyrotriangle A1A2A3.
Similarly, the gyrolines A1H1, A2H2, and A3H3 are concurrent, the concurrency gyropoint being the
Cabrera exgyrocircle gyropoint, H, of gyrotriangle A1A2A3. The Cabrera ingyrocircle gyropoint
is determined gyrobarycentrically in Theorem 34, p. 647. Similarly, the Cabrera exgyrocircle
gyropoint is determined gyrobarycentrically in Theorem 35, p. 654
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P WD �A1 ˚ H

D m1h��A1˚A1 .�A1 ˚ A1/C m2h��A1˚A2 .�A1 ˚ A2/C m3h��A1˚A3 .�A1 ˚ A3/

m1h��A1˚A1 C m2h��A1˚A2 C m3h��A1˚A3

D m2h�12a12 C m3h�13a13
m1h C m2h�12 C m3h�13

;

(346)

noting the trivial equations �A1 ˚ A1 D 0 D .0; : : : ; 0/ and �0 D 1.
We assume that gyropoint H lies on each of the three gyrolines A1H1, A2H2, and

A3H3, as shown in Fig. 14. This assumption implies that the gyropoint P lies on each
of the three lines Lk, k D 1; 2; 3 in (342)–(344). Hence, there exist values tk0 of the
line parameters tk, k D 1; 2; 3, respectively, such that

P � m21�12a12 C m31�13a13
m11 C m21�12 C m31�13

t10 D 0

P � a12.1 � t20/ � m22�12a12 C m32�13a13
m12 C m22�12 C m32�13

t20 D 0

P � a13.1 � t30/ � m23�12a12 C m33�13a13
m13 C m23�12 C m33�13

t30 D 0 ;

(347)

where the gyrobarycentric coordinates mij in (347) are given in (336)–(338).
The kth equation in (347) expresses the condition that point P lies on line Lk,

k D 1; 2; 3.
The system of Eqs. (347) was obtained by methods of gyroalgebra and will be

solved below by a common method of linear algebra.
Substituting P from (346) into (347), and rewriting each equation in (347) as

a linear combination of a12 and a13 equals zero, one obtains the following linear
homogeneous system of three gyrovector equations

c11a12 C c12a13 D 0

c21a12 C c22a13 D 0

c31a12 C c32a13 D 0 ;

(348)

where each coefficient cij, i D 1; 2; 3, j D 1; 2, is a function of �12, �13, �23, and the
six unknowns mkh and tk0, k D 1; 2; 3.

Since the set S D fA1;A2;A3g is gyrobarycentrically independent, the two
gyrovectors a12 D �A1 ˚ A2 and a13 D �A1 ˚ A3 in R

n
s , considered as vectors in

the ambient space R
n, are linearly independent. Hence, each coefficient cij in (348)

equals zero. Accordingly, the three gyrovector equations in (348) are equivalent to
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the following six scalar equations,

c11 D c12 D c21 D c22 D c31 D c32 D 0 (349)

for the six unknowns mkh and tk0, k D 1; 2; 3.
The six scalar equations in (349) are not independent. For convenience one may

initially select m1h D 1 and obtain a unique solution for the remaining unknowns.
Finally, owing to the homogeneity of the gyrobarycentric coordinates mkh, one
can multiply each of them by a convenient nonzero common factor, obtaining the
following gyrobarycentric coordinates:

m1h D 1C �23
D1 C A.�12 C �13 � �23 � 1/

m2h D 1C �13
D2 C A.�12 � �13 C �23 � 1/

m3h D 1C �12
D3 C A.��12 C �13 C �23 � 1/

:

(350)

As in Sect. 38, it is clear that all the gyrobarycentric coordinates mkh, k D 1; 2; 3,
in (350) of Cabrera exgyrocircle gyropoint H in (345) are positive so that, by
Corollary 2, p. 611, Cabrera exgyrocircle gyropoint always lies on the interior of
its reference gyrotriangle A1A2A3.

Formalizing the main result of this section, we have the following theorem.

Theorem 35 (Cabrera Exgyrocircle Gyropoint). The Cabrera exgyrocircle gyro-
point H of a gyrotriangle A1A2A3 in an Einstein gyrovector space .Rn

s ;˚;˝/, shown
in Fig. 14, lies on the interior of its reference gyrotriangle A1A2A3. It is given by its
gyrobarycentric representation with respect to the set fA1;A2;A3g,

H D
m1h�A1

A1 C m2h�A2
A2 C m3h�A3

A3

m1h�A1
C m2h�A2

C m3h�A3

; (351)

where

m1h D 1C �23
D1 C A.�12 C �13 � �23 � 1/

D 1C �23
m1c

m2h D 1C �13
D2 C A.�12 � �13 C �23 � 1/

D 1C �13
m2c

m3h D 1C �12
D3 C A.��12 C �13 C �23 � 1/

D 1C �12
m3c

:

(352)
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where, as in (332)–(333),

A D 1C �12 C �13 C �23

B2 D 8.1C 2�12�13�23 � �212 � �213 � �223/
(353)

and

D2
1 D A2.�12 C �13 � �23 � 1/2 C B2.1C �23/

D2
2 D A2.�12 � �13 C �23 � 1/2 C B2.1C �13/

D2
3 D A2.��12 C �13 C �23 � 1/2 C B2.1C �12/ ;

(354)

B > 0, Dk > 0, mkh > 0, k D 1; 2; 3.

Interestingly, B2=8 in (353) can be written as the determinant of an elegant 3� 3
gamma matrix �3,

�3 D
0

@
1 �12 �13
�12 1 �23
�13 �23 1

1

A : (355)

Indeed,

Det�3 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 �12 �13

�12 1 �23

�13 �23 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D 1C 2�12�13�23 � �212 � �213 � �223 > 0 : (356)

The extension of the gamma matrix �3 of order 3 � 3 to gamma matrices �N of
any order N � N, N 2 N, is obvious. These matrices, in turn, along with their
determinants and cofactors, play an important role in analytic hyperbolic geometry
in N dimensions, as demonstrated in [61, Chap.10].

41 Useful Euclidean Limits

In order to extract the Cabrera point of Euclidean geometry from the Cabrera
gyropoint of hyperbolic geometry, in (330)–(333), we need several Euclidean limits,
where s!1. Since gamma factors tend to 1 as s approaches infinity, we have the
following trivial Euclidean limits of expressions that appear in (331)–(333),

lim
s!1.1C �ij / D 2 ; (357)
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i; j D 1; 2; 3, i < j, and by (332),

lim
s!1 A D lim

s!1.1C �12 C �13 C �23/ D 4 : (358)

Additionally, we need the nontrivial Euclidean limits that are presented in (369).
Following [61, Eq. (7.148)], we have the Euclidean limit

lim
s!1 s2.�ij � 1/ D 1

2
a2ij ; (359)

where aij D k � Ai C Ajk are the side lengths of triangle A1A2A3 in a Euclidean
plane, as shown in Fig. 15.

Hence, by (359) we have

lim
s!1 s2.�12 C �13 � �23 � 1/ D lim

s!1 s2f.�12 � 1/C .�13 � 1/ � .�23 � 1/g

D 1
2
.a212 C a213 � a223/ ;

(360)
so that, similarly,

lim
s!1 4s4.��12 C �13 C �23 � 1/2 D .�a212 C a213 C a223/

2

lim
s!1 4s4.�12 � �13 C �23 � 1/2 D .a212 � a213 C a223/

2

lim
s!1 4s4.�12 C �13 � �23 � 1/2 D .a212 C a213 � a223/

2 :

(361)

Following [61, Eq. (7.156)], we have the Euclidean limit

lim
s!1 4s4.1C 2�12�13�23 � �212 � �213 � �223/ D E2 ; (362)

where

E2 WD .a12Ca13Ca23/.�a12Ca13Ca23/.a12�a13Ca23/.a12Ca13�a23/: (363)

By Heron’s formula

E D 4jA1A2A3j ; (364)

where jA1A2A3j is the area of triangle A1A2A3.
Hence, by (332), (357), and (362),

lim
s!1 s4B2.1C �ij / D 2 lim

s!1 4s4.1C 2�12�13�23 � �212 � �213 � �223/ lim
s!1.1C �ij /

D 4E2 :
(365)
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Hence, by (333), (357)–(358), (361) and (365),

lim
s!1 s4D2

1 D lim
s!1

A2

4
lim

s!1 4s4.�12 C �13 � �23 � 1/2 C lim
s!1 s4B2 lim

s!1.1C �23/

D 4.a212 C a213 � a223/
2 C 4E2 :

(366)
Hence, similarly,

lim
s!1 s2D1 D 2

q
.a212 C a213 � a223/

2 C E2

lim
s!1 s2D2 D 2

q
.a212 � a213 C a223/

2 C E2

lim
s!1 s2D3 D 2

q
.�a212 C a213 C a223/

2 C E2 :

(367)

Hence, by means of (331), (367), (332) and (360), we have

lim
s!1 s2m1c D lim

s!1 s2D1 C lim
s!1 A lim

s!1 s2.�12 C �13 � �23 � 1/

D 2
q
.a212 C a213 � a223/

2 C E2 C 2.a212 C a213 � a223/ :
(368)

so that, similarly,

lim
s!1

s2

2
m1c D

q
.a212 C a213 � a223/

2 C E2 C a212 C a213 � a223

lim
s!1

s2

2
m2c D

q
.a212 � a213 C a223/

2 C E2 C a212 � a213 C a223

lim
s!1

s2

2
m3c D

q
.�a212 C a213 C a223/

2 C E2 � a212 C a213 C a223:

(369)

Furthermore, in a similar way, by means of (352), we have the Euclidean limits

lim
s!1

1

s2
m1h D 1

q
.a212 C a213 � a223/

2 C E2 C a212 C a213 � a223

lim
s!1

1

s2
m2h D 1

q
.a212 � a213 C a223/

2 C E2 C a212 � a213 C a223

lim
s!1

1

s2
m3h D 1

q
.�a212 C a213 C a223/

2 C E2 � a212 C a213 C a223

:

(370)



658 A.A. Ungar

42 Cabrera In-Excircle Points

The Cabrera incircle point C0 is shown in Fig. 15, where it is denoted by C, and in
Fig. 16, where it is denoted by F. the Cabrera excircle point H0 is shown in Fig. 16,
where it is denoted by H.

Due to their homogeneity, the barycentric coordinates .m1c W m2c W m3c/ of the
Cabrera ingyrocircle gyropoint C in Theorem 34 are equivalent to the barycentric
coordinates ..s2=2/m1c W .s2=2/m2c W .s2=2/m3c/. The latter, in turn, have the
advantage of possessing the Euclidean limits in (369).

The Cabrera incircle point, C0 (C in Fig. 15) is the Euclidean limit of its
hyperbolic counterpart in Theorem 34. Hence, following the Euclidean limits
in (369), C0 is given by its barycentric representation with respect to the set
fA1;A2;A3g of the vertices of the reference triangle A1A2A3,

C0 D m0
1cA1 C m0

2cA2 C m0
3cA3

m0
1c C m0

2c C m0
3c

(371)

where its barycentric coordinates are given by

m0
1c D lim

s!1
s2

2
m1c D

q
.a212 C a213 � a223/

2 C E2 C a212 C a213 � a223

m0
2c D lim

s!1
s2

2
m2c D

q
.a212 � a213 C a223/

2 C E2 C a212 � a213 C a223

m0
3c D lim

s!1
s2

2
m3c D

q
.�a212 C a213 C a223/

2 C E2 � a212 C a213 C a223;

(372)

Fig. 15 Cabrera incircle point. The midpoints of the sides of triangle A1A2A3 are M12, M13,
and M23. The medial triangle of triangle A1A2A3 in a Euclidean plane R

2 is M12M13M23. The
angles of the medial triangle are ˇ1, ˇ2, and ˇ3, its incenter is I, and its incircle tangency points
are T1, T2 and T3. The lines A1T1, A2T2 and A3T3 are concurrent. The concurrency point, C, is the
Cabrera incircle point of triangle A1A2A3, determined barycentrically in Theorem 36, p. 660
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E 2
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F1

F2

F3

H1

H2

H3

A1

A2

A3

M12

M
13

M23

Fig. 16 Cabrera in-excircle points. The midpoints, M12, M13, of the sides of triangle A1A2A3 form
the vertices of the medial triangle of triangle A1A2A3 in a Euclidean plane R

2. The incenter of
triangle A1A2A3 is E0 and its excenters are E1, E2, and E3. The tangency points where the incircle
meets the sides of triangle A1A2A3 are Tk and the tangency points where the excircles meet the sides
of the triangle are Hk, k D 1; 2; 3. The lines A1F1, A2F2, and A3F3 are concurrent, the concurrency
point being the Cabrera incircle point, F, of triangle A1A2A3. Similarly, the lines A1H1, A2H2, and
A3H3 are concurrent, the concurrency point being the Cabrera excircle point, H, of triangle A1A2A3.
The Cabrera incircle point F and the Cabrera excircle point H are determined barycentrically in
Theorem 36, p. 660

where aij are the side lengths of the reference triangle A1A2A3 and where E2 is given
by (363).

In a similar manner, following the Euclidean limits in (370), the Cabrera excircle
point H0 (H in Fig. 16) is given by its barycentric representation with respect to the
set fA1;A2;A3g of the vertices of the reference triangle A1A2A3,

H0 D m0
1hA1 C m0

2hA2 C m0
3hA3

m0
1h C m0

2h C m0
3h

(373)
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where its barycentric coordinates are given by

m0
1h D

1
q
.a212 C a213 � a223/

2 C E2 C a212 C a213 � a223

m0
2h D

1
q
.a212 � a213 C a223/

2 C E2 C a212 � a213 C a223

m0
3h D

1
q
.�a212 C a213 C a223/

2 C E2 � a212 C a213 C a223

:

(374)

Formalizing the two main results of this section, we obtain the following
theorem.

Theorem 36 (Cabrera In-Excircle Points). The Cabrera incircle point F and the
Cabrera excircle point H of a triangle A1A2A3 in a Euclidean plane lie on the
interior of their reference triangle A1A2A3.

1. The Cabrera incircle point F, shown in Fig. 16, is given by its barycentric
representation with respect to the set fA1;A2;A3g,

F D m1A1 C m2A2 C m3A3
m1 C m2 C m3

; (375)

2. and the Cabrera excircle point H, shown in Fig. 16, is given by its barycentric
representation with respect to the set fA1;A2;A3g,

H D m�1
1 A1 C m�1

2 A2 C m�1
3 A3

m�1
1 C m�1

2 C m�1
3

; (376)

where

m1 D
q
.a212 C a213 � a223/

2 C E2 C a212 C a213 � a223

m2 D
q
.a212 � a213 C a223/

2 C E2 C a212 � a213 C a223

m3 D
q
.�a212 C a213 C a223/

2 C E2 � a212 C a213 C a223 :

(377)
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