
Chapter 1
Traveling Waves Impulses of FitzHugh Model
with Diffusion and Cross-Diffusion

Faina Berezovskaya

Abstract The FitzHugh equations have been used as a caricature of the
Hodgkin–Huxley equations of neuron firing and to capture, qualitatively, the general
properties of an excitable membrane. The spatial propagation of neuron firing due
to diffusion of the current potential was described by the FitzHugh–Nagumo model.
Assuming that the spatial propagation of neuron firing is caused by not diffusion
but cross-diffusion connection between the potential and recovery variables the
cross-diffusion version of the FitzHugh model gives rise to the typical fast traveling
wave solutions characteristic to the FitzHugh model, and additionally gives rise
to the slow traveling wave solutions exhibited in the diffusion FitzHugh–Nagumo
equations (Berezovskaya et al., Math Biosci Eng 5:239–260, 2008).

In this paper the FitzHugh model with both diffusion and cross-diffusion terms
is studied; it is shown that this new version of spatial FitzHugh model gives rise to
fast and slow traveling impulses.

Keywords FithHugh model • Slow and fast traveling wave solutions • Diffusion
and cross-diffusion

1.1 Introduction

Hodgkin, Huxley, and Katz in the 1940s explored experimentally and mathemat-
ically the nature of nerve impulses. Their work revealed that the electrical pulses
across the membrane arise from the uneven distribution between the intracellular
fluid and the extracellular fluid of potassium (KC), sodium (NaC), and protein
anions (see [1] for details). This entire process of rapid change in potential from
threshold to peak reversal and then back to the resting potential level is called an
action potential, impulse, or spike (see schematic diagram in Fig. 1.1).

The process was mathematically investigated by Hodgkin and Huxley in 1952
with a four-variable model [2]. FitzHugh in 1961 proposed a simplified two-variable
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Fig. 1.1 Neuron spike in the (time-potential) plane obtained from experiments of neuron firing
(see [1, 3] for details)

model of an excitable membrane, which made it possible to illustrate the various
physiological states involved in an action potential (such as resting, active, refrac-
tory, enhanced, and depressed, see Fig. 1.1) in the phase plane (see [3, 4]). The
FitzHugh system captures much of the same dynamical behavior and, in particular,
demonstrates the spike-like behavior (see Sect. 1.2 and Fig. 1.2).

A more realistic model is the one that depends on both space and time since
electric currents cross the membrane of the cell move along its axon lengthwise
inside and outside. This mechanism makes it possible for electrical signals to be
transmitted over long distance and thus propagate throughout the membrane without
ever weakening or decreasing their initial strength. A mathematical model of the
diffusion of current potential was first proposed and studied by FitzHugh in 1961
and 1969 (see [3]), Nagumo et al. in 1962 (see [5]), and many others. This model
and its various modifications became one of the sources of many new methods of
analysis of traveling waves, their stability, shapes and velocity of a propagation ([6–
14], etc.).

Note that the initial FitzHugh and FitzHugh–Nagumo models “phenomenologi-
cally” (in the simplest way) described recovery process in the spike and spike-like
wave propagation.

Recently models have been proposed, where the spatial solutions are conditioned
by the effects of cross-diffusion “control” or “interactions” between components
of the system ([6, 8, 10, 16–24], etc.). From a mathematical point of view
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traveling wave solutions of cross-diffusion systems possess certain properties that
essentially distinguish them from diffusion. Specifically, for some velocities of wave
propagation they “repeat” structures of solutions of the model local system [14,
17, 18, 21]. This property of cross-diffusion systems may explain certain similarity
of dynamics of local FitzHugh model and spatially distributed FitzHugh–Nagumo
model.

Motivated by these works we modified the FitzHugh model to include a cross-
diffusion connection between the potential and recovery variables. We hypothesize
that the cross-diffusion regulation plays an important (perhaps, crucial) role in the
spatial spreading of potential ([17, 25]). This version of the model provides an
avenue both for investigating successful propagation of an excitable neuron and
propagation failures, which are extremely important for many applications (see,
for example, [26], and Sect. 1.4 below). In [17] we studied the “pure” cross-
diffusion modification of FitzHugh model and investigated the characteristics of
the spatial propagation of nerve impulses brought on by changes in the velocity
of propagation and intensity of the cross-diffusion regulation. We showed that this
model demonstrates two types of behaviors, the so-called slow and fast traveling
waves. It was shown recently [8] that some biologically motivated modifications of
the FitzHugh model demonstrate traveling waves even with three different velocities
of their propagation.

The main goal of this paper is to show that at least two types of traveling waves
of FHN-model are presented in generalization of FH-model by cross-diffusion.

The paper is organized as follows. Section 1.2 contains a brief description of
local neuron dynamics within the framework of the FitzHugh model, as well as the
bifurcation portrait of the model. Spatial dynamics of the FitzHugh model using
its wave system, which provides an explanation of spatial regimes, e.g., “traveling
waves,” is given in Sect. 1.3.

Traveling wave solutions of the cross-diffusion modification of the FitzHugh
model are described in Sect. 1.4. We show that for any fixed values of the
cross-diffusion coefficient and other parameters of the model there exists the
critical velocity C* of wave propagation. The system behavior for 0<C<C*(slow
waves) dramatically differs from the case when C>C*(fast waves). In particular,
the traveling spike with “large amplitude” appeared only for C>C*. We present
bifurcation diagrams for both slow and fast waves.

In Sect. 1.5 we consider traveling wave solutions of the FitzHugh model
supplemented by diffusion and cross-diffusion terms. Using the techniques of
the Tikhonov theorem ([27, 28], etc.) we show that some slow traveling wave
solutions of the FitzHugh cross-diffusion model are preserved in the FitzHugh–
Nagumo model. We also describe the computer experiments, which show that the
fast traveling wave solutions of the FitzHugh cross-diffusion model look similar to
those of the FitzHugh–Nagumo model.

Some details of analysis are given in the Appendix.



4 F. Berezovskaya

1.2 FitzHugh Model

The original FitzHugh model (1.1) describes the time dynamics of the neuron
excitable membrane potential P(t), which is responsible for the rising phase of
neuron firing (see Fig. 1.1), and recovery membrane potential Q(t), which is
responsible for the falling phase of the action potential.

In slightly modified form [14] the FitzHugh model is presented as

ePt D �P3 C P � Q � F1 .P; Q/ ;

Qt D k1P � Q � k2 � F2 .P; Q/
(1.1)

where e, k1, k2 are parameters, reflecting intrinsic characteristics of the modeling
system. The system has from one (a non-saddle, i.e., a node or a spiral or center)
up to three (two non-saddles and a saddle) positive equilibria, (P *, Q *) where
P *, Q * are common roots of F1(P, Q) and F2(P, Q). Thus, the model has domains
of monostability and bistability. FitzHugh’s computer analysis [3, 4] revealed that
the model can also have limit cycles, namely, “small” cycles (containing a unique
equilibrium inside) and “large” one (containing three equilibria inside). FitzHugh
hypothesized that the “large separatrix loop” could be realized in the phase plane of
system (1.1) for certain parameter values; the trajectory corresponding to this loop
was considered as a model of a firing neuron.

The complete analysis of the FitzHugh model was done significantly later ([12,
14], etc.). It was proven in [11] that the principal dynamics of model (1.1) is
described by the bifurcation diagram of the bifurcation “3-multiple neutral singular
point with the degeneration, focus case,” schematically presented in Fig. 1.2 (exact
presentation of the bifurcations of high co-dimensions similar to those of our interest
in this work was given in [13, 29–31]). In our model this bifurcation is realized in
a vicinity of the parameter point M .k1 D 0; k2 D 1; e D 1/. The description of the
bifurcation diagram is given by the following statement [11, 17].

Theorem 1 (i) The space of parameters (k1, k2, e) can be subdivided into 21
domains of topologically different phase portraits of system (1.1). The cut of the
complete parameter portrait to the plane (k1, k2) is topologically equivalent to the
diagram presented in Fig. 1.2a (left) for arbitrary fixed 0 < e < 1 and to the
diagram presented in Fig. 1.2a (right) for arbitrary fixed e > 1.

The parameter boundary surfaces correspond to the following bifurcations in
system (1.1):

SN1, SN2: appearance/disappearance of a pair of equilibria on the phase plane;
H�

1 ; H�
2 = HC

1 ; HC
2 : change of stability of each of the non-saddle singular points

in the Andronov–Hopf supercritical/subcritical bifurcation, respectively;
C: saddle-node bifurcation of a pair of limit cycles;
L1, L2: appearance/disappearance of a small limit cycle in one of two homoclin-

ics of the saddle; and
RC; R�: appearance/disappearance of a large limit cycle in one of two

homoclinics of the saddle.
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Domains in Fig. 1.2 are numerated by integer numbers. Parametric portrait
of system (1.1) possesses certain symmetry. The domains, which have respective
symmetric properties, were numbered by integer with index a, whereas their
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Fig. 1.2 Schematically presented (a) .k1; k2/ � cuts of the bifurcation diagram of FitzHugh model
(1.1) for fixed 0 < e < 1 (left) and for e > 1 (right); (b) phase portraits. For any positive e the
model has one stable topological node in domain 1 and three equilibria, two non-saddles, and
a saddle, inside domain bounded by SN1, SN2; boundaries H�

1 ; H�

2 = HC

1 ; HC

2 correspond to
the change of stability of each of the non-saddles in the Andronov–Hopf supercritical/subcritical
bifurcation, respectively; each of these cycles disappears at homoclinics when the parameter
values cross the boundaries L1, L2; two limit cycles appear in the phase plane when the parameter
values cross the boundary C; the model has the large loop of the saddle separatrixes (a “large
homoclinics”) for parameter values on the boundaries R1, R2
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symmetric counterparts have no index in the parameter portraits (Fig. 1.2a) and
corresponding phase behaviors are not presented in Fig. 1.2b.

Let us emphasize that the spike-regime (see Fig. 1.1) can be P-component of
the trajectory fP(t), Q(t)g of the FitzHugh model; this trajectory corresponds to the
phase curve of system (1.1), which is the large separatrix loop containing two equi-
libria inside (see the lower left panel in Fig. 1.3c, where coordinate Ÿ corresponds
to t). The loop is realized with parameter values .k1 < 1; k2; e < 1/ belonging to
the boundaries R1, R2 in the parameter portrait of the model in Fig. 1.2a. When
parameter values crossing this boundary the limit cycle appears/disappears in the
phase plane, its shape is “close” to the shape of the corresponding loop. Remark that
the phase “8-shape” is realized at the parameter “point of intersection” of boundaries
L1, L2, R1, and R2.

1.3 The Wave System for FitzHugh Model

1.3.1 FitzHugh Model with Diffusion and Cross-Diffusion

Spatial generalizations of FitzHugh model take into consideration diffusion pro-
cesses and provide “spread” solutions in a space. Many works were devoted to the
study of FHN dynamics, and in particular, to the investigation of “traveling wave”
solutions ([4, 5, 7–9, 13, 15, 20, 23, 24], etc.). One of the most recent publications
[8] (see also the references therein) describes different time-scale solutions of FHN-
model and developed methods of computations that are related to the singular
perturbation theoretical approach.

The generalized FitzHugh model, which takes into the consideration diffusion
and cross-diffusion, is of the form

ePt D �P3 C P � Q C DPPxx C DQQxx � F1 .P; Q/ C DPPxx C DQQxx;

Qt D k1P � Q � k2 � F2 .P; Q/
(1.2)

where t is time, x is a one-dimensional space variable, and non-negative constants
DP, DQ are the diffusion and cross-diffusion coefficients, respectively. For DP >

0; DQ D 0 we get FHN-model, and for DP D 0; DQ ¤ 0 we get the cross-diffusion
spatial modification of FH-model (1.1)

ePt D �P3 C P � Q C DQQxx;

Qt D k1P � Q � k2

(1.3)

which was investigated in [17].
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1.3.2 Wave System of the Model

In what follows, we explore “traveling wave” solutions of system (1.2):

P .x; t/ D P .x C Ct/ � p .�/ ; Q .x; t/ D Q .x C Ct/ � q .�/ ;

where � D x C Ct and positive C is the velocity of the wave propagation. We get the
ODE system:

eCp� D �p3 C p � q C DPp�� C DQq�� � F1 .p; q/ C DPp�� C DQq�� ;

Cq� D k1p � q � k2 � F2 .p; q/

Differentiating the second equation by � , expressing q�� as

q�� D k1p�=C � q�=C2 D k1p�=C � F2 .p; q/ =C2

and substituting it to the first equation we get finally that (p(�), q(�)) satisfy the
“wave system”:

p� D r
DPr� D r

�
eC2 � DQk1

�
=C � F1 .p; q/ C DQF2 .p; q/ =C2

q� D .k1p � q � k2/ =C � F2 .p; q/ =C
(1.4)

It is easy to verify that for DP D 0 the wave system is two-dimensional:

p�

�
eC2 � DQk1

�
=C D F1 .p; q/ � DQF2 .p; q/ =C2

q� D F2 .p; q/ =C
(1.5)

Thus, the problem of describing all traveling wave solutions of system (1.2) and
their rearrangements is reduced to the analysis of phase curves and bifurcations
of solutions of three-dimensional wave system (1.4), which has the additional
parameter C. Note that for DP D 0 the wave system (1.5) is two-dimensional; this
circumstance essentially simplifies the problem.

Remark 1 Mathematically, cross-diffusion equations possess some special prop-
erties, which facilitate their investigation [32, 33]; the most important one is
that addition of the cross-diffusion term does not increase the dimensionality of
corresponding wave system [6, 17–19, 21, 22].
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1.3.3 Traveling Waves of Reaction–Diffusion Model
in the Frame of Wave System

Between the bounded traveling wave solutions (p(�), q(�)) of the spatial model
(1.2) and the phase curves of the wave system (1.4) there exists a known (see, for
instance, [13, 15]) correspondence (Fig. 1.3a–c), which we formulate in the most
important cases for p-component p(�). The same statements are clearly valid for
any component of the model.

Proposition 1 (Definitions)

(i) A wave front p(�) of model (1.2) corresponds to the heteroclinic orbit of wave
system (1.5) such that for � ! ˙1 it tends to different in p singular points
(Fig. 1.3a).

(ii) A wave train p(�) of model (1.2) corresponds to the limit cycle of (1.5)
(Fig. 1.3b).

(iii) A wave impulse p(�) of model (1.2) corresponds to the homoclinic orbit of
singular point of (1.5) (Fig. 1.3c).
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Fig. 1.3 Correspondence between the bounded “traveling wave” solutions of system (1.2) and the
phase curves of its wave system (1.5). (a) The wave fronts correspond to the heteroclinic phase
curves, a separatrix from a saddle to a node or to another saddle; (b) the wave train corresponds to
the limit cycle; and (c) the wave impulses correspond to the homoclinic phase curves, small (upper
panel) or large (lower panel) separatrix loops
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By virtue of this statement, the description of all possible wave solutions
of Eq. (1.2), as well as of their changing with variation of parameters of the
reaction functions F1(p, q), F2(p, q), is reduced to the analysis of phase curves and
bifurcations in the wave system (1.5) depending on an additional parameter that is
the propagation velocity C of waves. We will consider the behavior of system (1.4),
(1.5) depending on variation of the parameters.

1.4 Traveling Waves of Cross-Diffusion Model

1.4.1 Behaviors of Wave System

If eC2 ¤ DQk1, then (1.5) can be presented in the form

p� D ˛
�
F1 .p; q/ � DQF2 .p; q/ =C2

�

q� D F2 .p; q/ =C;
(1.6˙)

where ˛ D C=
�
eC2 � DQk1

�
; sign “C” in the denotation corresponds to the case

˛ > 0 and the system is denoted as (1.6C), sign “�” corresponds to the case ˛ < 0

and the system is denoted as (1.6�).
It was shown in [17] that the wave system exhibits different behaviors depending

on sign of ˛.

Theorem 2

(i) Let C2e > Dk1 (i.e., ˛ > 0). There exists a neighborhood of the parameter point
M .e D 1; k1 D 0; k2 D 1/, in which the vector field defined by system (1.6C)
has a bifurcation diagram, whose cut to the plane (k1, k2) is topologically equiv-
alent to the one presented in Fig. 1.2. The boundaries in (e, k1, k2)—parameter
space (lines at e—cuts at Fig. 1.2) correspond to the same bifurcations that
have been mentioned in the Theorem 1.

(ii) Let eC2 < Dk1 (i.e., ˛ < 0). There exists a neighborhood of the parameter
point M .e D 1; k1 D 0; k2 D 1/, in which the vector field defined by system
(1.6�) has a bifurcation diagram, whose cut to the plane (k1, k2) is topologically
equivalent to the one presented in Fig. 1.4a for arbitrary fixed positive 0 < e <

1 (left) and for arbitrary fixed e > 1 (right). The boundary surfaces in the
parameter space correspond to the following bifurcations:

SN1, SN2: appearance/disappearance of a pair of equilibria on the phase
plane;

H: change of stability of the non-saddle equilibrium in Andronov–Hopf
subcritical bifurcation;

L1, L2: appearance/disappearance of a small limit cycle in homoclinic
bifurcations of the saddle;

SC1, SC2: upper and lower (respectively) heteroclinics of saddles.
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Fig. 1.4 Schematically presented (a) .k1; k2/ � cuts of the bifurcation diagram of wave system
(1.6�) of FitzHugh model (1.2) for fixed 0 < e < 1 (left) and for e > 1 (right); (b) phase
portraits of the system. Inside the domain bounded by SN1, SN2 the system has three equilibria,
two saddles, and non-saddle; the boundaries SC1, SC2 correspond to the right and left heteroclinics
of saddles; the boundary H corresponds to changing of stability of the non-saddle in Andronov–
Hopf subcritical bifurcation; each of these cycles disappears at homoclinics (the boundaries L1, L2)

Remark 2 The bifurcation presented in Fig. 1.4 is known as “3-multiple neutral
equilibrium with the degeneration, saddle case.” In the wave systems (1.6�) of
FitzHugh cross-diffusion model (1.3) the bifurcations are realized close to the
parameter point M .e D 1; k1 D 0; k2 D 1/ (see also [31]).

1.4.2 Fast and Slow Wave Solutions of FitzHugh Model
with Cross-Diffusion

According to Theorem 2 system (1.6) exhibits different behaviors depending on sign
of eC2 � DQk1 ¤ 0
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Traveling wave solution of model (1.3) is called the slow wave if its velocity
0 < C <

p
DQk1=e .i:e:; ˛ < 0/ and the fast wave if C >

p
DQk1=e (i.e., ˛ > 0).

Collecting together the statements of Theorems 1, 2, and Proposition 1 and
taking into consideration that only positive values of model parameters k1, k2, e have
biophysical meaning, we arrive at the following description of all possible wave
solutions.

Theorem 3

(1) Model (1.3) has the fast traveling wave solutions of the following types (see
Fig. 1.2 and Fig. 1.3):

the fronts in every Domain of the portraits of Fig. 1.2 except the Domain 1,
13, and 14;

the single train in Domains 3a, 6a, 11, and 14; two trains, differing in
their “amplitudes” in Domains 5a, 7a, 9, 12a, and 13; three different trains
in Domains 8a and 10; and

the impulses on the boundaries L1, L2, and R1.
(2) Model (1.3) has the slow traveling wave solutions of the following types (see

Fig. 1.4 and Fig. 1.3 ):
the fronts in every Domain of the portraits in Fig. 1.4a except the Domain

1; the monotonous fronts with the maximal “amplitude” on the boundary
SC1, SC2;

the trains in the domains 4a, 5; and
the impulses with small amplitudes on the boundaries L1, L2.

The existence and the shapes of wave impulses, which may be different for slow
and fast wave systems, is the problem of our main interest. Figures 1.5 and 1.6
demonstrate some typical phase portraits and solutions for slow wave system (1.6�)
and fast wave system (1.6C) for different parameter values.

1.4.3 Possible Role of Cross-Diffusion Mechanism in Forming
of Traveling Waves

According to Proposition 1, model (1.3) possesses a traveling impulse (spike) if and
only if its wave system has a separatrix loop; the impulse has a large amplitude
(see Figs. 1.1 and 1.3c) if the separatrix loop contains two points inside itself, and a
small amplitude if the separatrix loop contains one point inside itself. Our analysis
revealed that only fast wave system exhibits large separatrix loop, whereas slow
wave system exhibits small separatrix loops only.

In the work [17] we utilized a modified version of the FitzHugh equations to
model the spatial propagation of neuron firing; we assumed that this propagation
is essentially caused by the cross-diffusion connection between the potential
and recovery variables. This modification, which includes the implicit (although
hypothetical) cross-diffusion mechanism, helped explore the effect of a generic drug
in the neuron firing process, and explain other biophysical questions still arising [21,
25, 26].
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Fig. 1.5 .u; �/ ; .v; �/ � solutions and .u; v/ � phase portraits of slow wave system (1.6�) for
e D :942; k1 D :9; DQ D 2; C D :1 Here u D q C k2; v D k1p � q � k2, where p D p .�/ ; q D
q .�/ are components of system (1.6�). The system has three equilibria, the central equilibrium is
a spiral, and the side equilibria are saddles. (a) k2 D 0, stable equilibrium O is placed inside the
unstable limit cycle that appeared from saddle heteroclinics; (b) k2 D :01, and (c) k2 D �:01. The
system has “left” (b) and “right” (c) unstable limit cycle containing the stable equilibrium inside;
the cycle appears from the saddle homoclinics loop, see the “left” (b) and “right” (c) panels

The mathematical problem of interest was the appearance and transformations
of the traveling wave solutions, which depended on the model parameters, as those
(e, k1, k2) which are “intrinsic” to the local system, the cross-diffusion coefficient
DQ, and the propagation speed C, that characterize the axons’ abilities for the firing
propagation. We studied the wave system of the cross-diffusion version of the model
and explored its bifurcation diagram.

We have shown that the cross-diffusion model possesses a large set of traveling
wave solutions; besides giving rise to the typical “fast” traveling wave solutions
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Fig. 1.6 .u; �/ ; .v; �/ � solutions and .u; v/ � phase portraits of fast wave system (1.6C) for e D
:09; k1 D :689; k2 D 0; DQ D :3 Here u D q C k2; v D k1p � q � k2, where p D p .�/ ; q D q .�/

are variables of (1.6C). The system has three equilibria, a saddle, and two spirals. (a) C D 4:1.
The system has a limit cycle which appears from the homoclinics of the saddle separatrices, the
cycle contains inside two spiral equilibria; (b) C D 3:1, limit cycle is destroyed

exhibited in the original “diffusion” FitzHugh–Nagumo equations, it also gives rise
to “slow” traveling wave solutions. This more sophisticated approach indicates that
instead of a “one-parametric” set of waves ordered by the propagation speed C, one
should consider a two-parametric set of traveling wave solutions with parameters
(C, DQ). We then proved that in the parametric space (C, DQ) (under fixed parameter
values e, k1, k2) there exists a parabolic boundary, DQ D KC2, where constant
K D e=k1 separates the domains of existence of the fast and slow waves. The
system behavior qualitatively changes with the intersection of this boundary. Let us
emphasize that the “traveling spike” that we consider as the “normal” propagation of
a nerve impulse is a “fast” traveling wave. Hence, the parabola DQ D KC2 bounds
the area where the “normal” spike propagation is possible. After the intersection of
this boundary, due to a very large cross-diffusion coefficient or too small speed of
impulse propagation, a “normal” propagation of the nerve impulse is impossible and
some violations are inevitable: nerve impulses propagate with decreasing amplitude
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or as damping oscillations. Introducing cross-diffusion regulations in the FitzHugh
model allowed us to observe the propagation of spikes and spike-like oscillations
but restricted their velocities from below or, equivalently, maintained the upper
boundary for the cross-diffusion coefficient. It means that if, for any reason (e.g.,
as a result of the effect of a generic drug), the speed of transmission of a signal
along the axon is reduced, then the “normal” neuron firing propagation in the form
of a traveling spike is impossible. The increase of the cross-diffusion coefficient
beyond the “normal” value implies the same result.

1.5 Traveling Wave Solution of FHN-Model

1.5.1 Slow Waves

Consider more precisely wave system (1.4):

p� D r
DPr� D r

�
eC2 � DQk1

�
=C � F1 .p; q/ C DQF2 .p; q/ =C2

q� D .k1p � q � k2/ =C � F2 .p; q/ =C
(1.7)

where F1 .p; q/ D ��p3 C p � q
�

; F2 .p; q/ D k1p � q � k2; e > 0; k1 > 0; k2 � 0.
Suppose that diffusion coefficient DP ! 0. For the limiting system

p� D C
�
F1 .p; q/ � DQF2 .p; q/ =C2

�
=

�
eC2 � DQk1

�

q� D .k1p � q � k2/ =C � F2 .p; q/ =C
(1.8)

is equivalent to the wave system (1.5) of cross-diffusion model (1.3).
Following the idea of the Tikhonov theorem [28] and its numerous generaliza-

tions (see, e.g., [27] and references therein) we prove numerically the following
statement.

Statement 1 With parameter values in neighborhood of point M
�
DQe D 1; k1 D 1;

k2 D 0/ and C, DQ such that condition ˛ � C=
�
eC2 � DQk1

�
< 0 holds there

exist area � .p; q/ ; .0; 0/ 2 � in the phase plane (p, q) where the wave profiles
(p(�), q(�)) of system (1.5) approximate two components (p(�), q(�)) of the wave
profiles (p(�), p� (�), q(�)) of system (1.4) for . p0 D p.�0/; q0 D q.�0// 2 �; � 2
.const; 1/, including homoclinics of equilibria.

According to this Statement, the slow wave solutions (p(�), q(�)) of model
(1.1) with diffusion and cross-diffusion can be qualitatively approximated by the
solutions of the model with only cross-diffusion term (compare Figs. 1.5 and 1.7).

Thus, the solution of the modification of the FitzHugh model, which accounts
for the cross-diffusion and small diffusion terms, demonstrates the slow traveling
waves (having relatively small velocity of propagation) similarly to the model with
only cross-diffusion term under certain values of the model parameters.
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Fig. 1.7 .u; v/ �; .u; w/ �; .w; v/ � cuts of phase portraits of wave system (1.4). Here u D
q C k2; v D k1p � q � k2; w D v� , where p D p .�/ ; q D q .�/ are variables of system
(1.4). The parameter values are k1 D :9; e D :9335; C D :1; DP D :5; DQ D 1:5. (a) “Symmetric”
case, k2D0. The system demonstrates an unstable limit cycle that arose from “heteroclinics cycle”
composed by separatrixes of the saddle points, the stable equilibrium O is placed inside this
“funnel”(see (w, v)—cut); (b, c) k2 D ˙:005. The system has “homoclinics” cycle containing
stable point O; k2 D :005 at the left and k2 D �:005 at the right panels, correspondingly

1.5.2 Fast Waves

Numerous studies showed that FHN-model possesses spike type “fast” wave
solutions (see, for example, [8] and reference therein).

Our computer experiments revealed that the fast solutions observed in the fast
FH-cross-diffusion wave system (1.5C) have counterparts in the wave system (1.4)
where ˛ � eC2 � DQk1 > 0 (compare Fig. 1.6 and Fig. 1.8a–c. The latter Figure
demonstrates phase curves and trajectories of the model with different values of the
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Fig. 1.8 .u; v/ �; .u; w/ �; .w; v/ � cuts of phase portraits and solutions u(�), v(�), w(�) of wave
system (1.4) in the case when ˛ D �

eC2 � DQk1

�
> 0. Here u D qCk2; v D k1p�q�k2; w D v� ,

where p D p .�/ ; q D q .�/ ; r D r .�/ are variables of system (1.4). Parameters are k1 D
:689; k2 D 0; e D :15; DP D :7; DQ D :5. (a) C D 7. The system has two limit cycles, whose
shapes are close to the small homoclinic loop (see Fig. 1.3c). (b) C D 4:8. The system has a limit
cycle, whose shape is close to the large homoclinic loop (this case is similar to the case that was
presented in Fig. 1.6a); (c) C D 2:5. The limit cycle is destroyed
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Fig. 1.8 (Continued)

speed propagation C but identical values of all other parameters). Notice that the
qualitative behaviors of the model presented in these figures actually do not depend
on cross-diffusion coefficient DQ, in particular, for DQ D 0.

Overall, our investigation of the diffusion—cross-diffusion modification of the
FitzHugh model (the full model for brevity)—reveals an interesting phenomenon:
if we consider the “fast” wave solutions, then the qualitative behavior of the full
system coincides with that of the FH-model accounting for only diffusion term,
but if we consider the “slow” wave solution, then the qualitative behavior of the
full model coincides with that of FH-model accounting only for the cross-diffusion
term. Both types of solutions qualitatively coincide with corresponding solutions of
cross-diffusion wave system.
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A.1 Appendix

A.1.1 Lienard Form of the FitzHugh Model
and Its Wave System

Through the change of variables

.P; Q/ ! .U; V/ W U D Q C k2; V D F2 .P; Q/ � k1P � Q � k2;

.P D .U C V/ =k1; Q D U � k2; k1 ¤ 0/ (1.9)

the local model (1.1) is transformed to the generalized Lienard form:

Ut D V; eVt D .U C V/ =k1 � .U C V/3=k1
3

C k2 � U � f .U/ C V .g1.U/ C VG.U// � ˆ .U; V/ ; (1.10)

Where

f .u/ D �u3=k2
1 C u .1 � k1/ C k1k2;

g1.u/ D .1 � e/ � 3u2=k2
1;

G .u; v/ D � .3u C v/ =k2
1

(1.11)

Model (1.2) after transformation (1.10) reads

Ut D V;

eVt D ˆ .U; V/ C DPVxx C �
DP C DQk1

�
Uxx

(1.12)

Model (1.3) after transformation (1.10) reads

Ut D V;

eVt D ˆ .U; V/ C DQk1Uxx
(1.13)

A traveling wave solution of systems (1.12) and (1.13) is defined as a pair of
bounded functions

U .x; t/ D U .x C Ct/ � u .�/ ; V .x; t/ D V .x C Ct/ � v .�/ ;

where C > 0 is a velocity of propagation.
Let’s now replace the capital letters in (1.9) with small letters, reduce p and q via
p D .u C v/ =k1; q D u � k2; k1 ¤ 0.
Take into the consideration that ut D Cu� ; ux D u� I vt D Cv� ; vx D v� I uxx D

u�� D v�=C and put w D v�; w� D v�� we get the wave system of system (1.12) in
the form
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u� D v=C
v� D w

DPw� D .eC � .DP C DQk1/=C/w � ˆ.u; v/

(1.14)

where ˆ .U; V/ D f .U/CV .g1.U/ C VG .U; V// and functions f (u), g1(u) , G(u, v)
are given by (1.11).

The wave system of (1.13) takes the form

u� D v=C;
�
eC � DQk1

�
=C

�
v� D ˆ .u; v/

(1.15)

System (1.15) contains the factor 1=˛ � �
eC � DQk1

�
=C

�
which we assumed to

be non-zero.
Behaviors of system (1.15) depend on the sign of parameter ˛. For ˛ > 0 there

exists a parameter domain containing point M .e D 1; k1 D 0; k2 D 1/, where the
vector field defined by system (1.15) is topologically orbitally equivalent to those
defined by local system (1.1). It realizes the bifurcation of co-dimension 4 with
symmetry (“spiral case”) [11]. For ˛ < 0 parameter point M .e D 1; k1 D 0; k2 D 1/

is also the point that corresponds to the bifurcation of co-dimension four with
symmetry but as a “saddle case.” So, behaviors of system (1.15) for ˛ > 0 are
different from those for ˛ < 0 (see details in [17]).
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