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Dedication

The Virginia State University Interdisciplinary Seminar series and its Springer-
published proceedings were inspired by Professor Christiane Rousseau’s mathema-
tical and scientific endeavors :
• Professor of Mathematics, Département de mathématiques et de statistique,

Faculté des arts et des sciences, Université de Montréal, Montréal, Canada
• Member, Scientific Council, UNESCO International Basic Sciences Programme

(2015–2017)
• President, Canadian Mathematical Society (2002–2004)
• Vice-President, International Mathematical Union (2011–2014)
• Member, Executive Committee, International Mathematical Union (2015–2018)

Christiane is a great mathematician and indeed passionate about mathematics,
convinced of its powerful role as a tool to understand our world. She has always
been committed to improving the image of mathematics in the media and in thev



vi Dedication

society as a whole. We present here a collection of quotes : some of them now
well-known, some excerpts from a report by the Québec Science Reporter Mathieu-
Robert Sauvé, with my translation and emphasis.

«C’est un outil indispensable pour comprendre le monde. J’explique à mes
étudiants que, quand on ne comprend pas un phénomène, on doit mettre ses lunettes
mathématiques. Elles permettent de voir différemment le monde qui nous entoure,
au même titre que des lunettes 3D vous permettent de voir les reliefs d’une image»

(Mathematics is an indispensable tool for understanding the world. I explain to
my students that, when faced with the complexity of any phenomenon, one must
put on the mathematical lenses. They indeed allow to see the surrounding world
differently, as 3D lenses allow one to see the many aspects of an image.)

«Pour connaître l’effet des changements climatiques, il faut concevoir des
modèles à partir d’algorithmes. Il faut faire des prévisions économiques, chiffrer
les répercussions sur les populations humaines. Les mathématiques sont au cœur de
l’action humaine»

(In order to understand the effects of climate change, models must be designed
from algorithms. There is a great need of accurate economic forecast accounting for
its impact on human populations. Mathematics is indeed at the heart of all human
endeavors !)

«Des enjeux comme les changements climatiques, le développement durable, les
désastres créés par l’homme, le contrôle des maladies et épidémies, la gestion des
ressources et l’intégration globale sont maintenant à l’avant-scène. Les mathéma-
tiques y jouent un rôle clé, ainsi que dans beaucoup d’autres processus affectant
la planète Terre, tant comme discipline fondamentale que comme composante
essentielle de recherche multidisciplinaire et interdisciplinaire.»

(Challenges such as climate change, sustainable development, man-made disas-
ters, control of diseases and epidemics, management of natural resources and global
integration are now at the forefront. As for many other processes impacting the
planet Earth, Mathematics play indeed a key role, as a fundamental discipline and as
well as an essential component of multidisciplinary and interdisciplinary research.)

«C’est avec de bonnes idées qu’on peut changer le monde»,
(It takes great ideas to positively change the world.)
We dedicate this volume of the STEAM-H series to Professor Christiane

Rousseau.
May many generations of mathematicians and scientists continue to be inspired

by her mathematical and scientific achievements and visions, her professional
probity, and her tireless dedication to mathematics and the sciences.

You, the reader, is hereby kindly invited to share in Professor Rousseau’s
enthusiasm for Mathematics per se as a human knowledge, her vision and passion
for mathematical methods as the ultimate beautiful, elegant, and efficient tool for
addressing all the great challenges of human kind !

Bourama Toni



Foreword

It is hard to believe that, although a young and energetic person, Christiane
Rousseau is celebrating her jubilee. It is a celebration of decades of creative work,
devoted service to the mathematical community, and education at large.

Christiane began her research career under Prof. Dana Schlomiuk at the Uni-
versité de Montréal. Dana is a highly inspired mathematician, and she shared her
inspiration with her student. Christiane started to work independently soon after and
became an expert in the theory of planar differential equations and their bifurcations.
Her best known early works deal with isochronous centers.

The central problem in the theory of planar differential equations is undoubtedly
Hilbert’s 16th problem : what can be said about the number and location of limit
cycles of a planar polynomial vector field with the components of degree n ? The
so-called Hilbert number H(n) is associated to this problem. It is the upper bound
of the numbers of limit cycles of the vector field mentioned above. Nobody knows
whether H(n) exists, even for n D 2.

A fundamental contribution to the study of the existence of H(2) was made
by Dumortier, Roussarie, and Rousseau at the beginning of the 1990s when they
established and pushed forward the so-called 121-program. A prior result is a
finiteness theorem due to R. Bamon (1986) : a quadratic polynomial vector field has
but a finite number of limit cycles. In order to prove this theorem, it is necessary to
check that limit cycles of a quadratic vector field cannot accumulate to a polycycle
(also called graphic or separatrix polygon) of this vector field. There are not that
many graphics that a quadratic vector field may have. Bamon studies 20 polycycles
and proves that none of them may be an accumulation locus for limit cycles.

A similar idea lies at the basis of the 121-program, called programme DDR by
Christiane. One should note however that Bamon’s polycycles have a first return
map, whereas the graphics in the 121-program do not have necessarily such a map,
which is why there exists many more. In order to prove the existence of H(2), that is,
the statement of the uniform boundedness of the number of limit cycles for quadratic
vector fields, one should prove that no polycycle in this family generates an infinite
number of limit cycles. That is, any polycycle has finite cyclicity. But the variety
of graphics that may generate limit cycles is much wider than that of polycycles
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that may be accumulation loci. For quadratic vector fields, this variety contains 121
samples. Up to now, finite cyclicity is proved for almost 80 cases out of 121, and the
contribution of Christiane is crucial for this investigation. This supports the widely
spread belief that H(2) does exist.

The turn of the millennium was also a turn in Christiane’s research interests.
She moved to the study of parabolic germs of maps (C, 0) ! (C, 0) (the germs
that have the identity as linear part) and their unfoldings. The functional invariants
of the analytic classification of such germs were discovered by Birkhoff in 1939,
but he did not prove that they may be actually realized, and his work remained
partly forgotten. In 1981 Ecalle and Voronin proved the realization theorem for these
invariants, completed the analytic classification of the parabolic germs, and found
numerous applications to geometry. Since then, these invariants are called “Ecalle–
Voronin moduli.” After that, the unfolding of parabolic germs was studied. Under a
perturbation, a parabolic fixed point splits into hyperbolic ones. It is an interesting
problem to understand the relation between Sternberg normalizing charts for these
hyperbolic points and Ecalle–Voronin moduli of the unperturbed parabolic point.

Partial progress was accomplished by Glutsyuk and Lavaurs in the 1990s, but
the final step was taken by Rousseau and Christopher. In their seminal paper,
they gave a complete answer to the question stated above. In the early 1980s
Arnold discovered that numerous geometric problems contain “hidden dynamics.”
Consequently, several local classification problems from singularity theory may be
solved with the use of Ecalle–Voronin moduli. Christiane solved several problems of
the kind, including the classification of germs of couples of tangent analytic curves,
the germ being at the tangency point.

The educational activity of Christiane goes far beyond her research domain. Her
work reaches a broad audience of undergraduate students and high school teachers
and even the public. In 2008, she was invited to deliver a “Regular Lecture” at
the ICME11 (International Congress of Mathematical Education) in Monterrey,
Mexico.

The grandfathers of those of us who are now in their 70s were born in the last
decades of the nineteenth century. The only technical miracle at that time was the
steam engine, giving rise to locomotives and steamers. No planes, no cars, no radio !
Within a few generations the world has changed completely. We are now surrounded
by technical miracles. To what extent do they use mathematics ? There is a well-
known opinion that fundamental sciences, mathematics included, have done so
much by creating the theory of electromagnetism and thus completely transforming
our life, that any future support to mathematics is more than well deserved. But what
about the contribution of mathematics to our modern civilization ? Is it comparable
to the contributions of the nineteenth century ?

These questions are important for common people, especially for the high school
and college students. Christiane, together with her colleague Yvan Saint-Aubin,
launched a lecture series at the Université de Montréal open to both undergraduate
mathematics students and future high school teachers. Based on this course, they
wrote a book entitled Mathematics and Technology, a kind of Bible on the modern
applications of mathematics.
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For this book, the authors were awarded the 2009 Adrien Pouliot Prize from
Association mathématique du Québec. The topics cover a wide range of domains :
positioning on Earth and symmetry in arts, robotic motion and gamma-ray surgery,
error-correcting codes and cryptography, mathematical foundations of Google and
image compression, DNA computers, and many others. Note that all are peaceful
applications of mathematics. None of the military kind, even those that are
accessible to the public, are discussed in the book.

Christiane was President of the Canadian Mathematical Society between 2002
and 2004 and a Vice-President of the International Union of Mathematicians, 2010–
2014. Her work at these positions is well characterized by her own words :

In my career, I have managed to combine my teaching, research and training activities with
other activities on the side of promotion of mathematics : popularization of mathematics
with the public, involvement in preservice teacher education, and activities in the schools
with kids and/or school teachers. In Canada, I have been actively involved in bringing the
Canadian community together (learned societies, institutes, MITACS) for the organization
of joint activities : joint meetings including Canada-France congresses, Canada mathema-
tics Education Fora, etc, Canadian bids for ICM 2010 and 2014. I am now coordinating a
North-American thematic year on Mathematics of Planet Earth in 2013.

I have always enjoyed bringing communities to work together. As far as promotion of
mathematics is concerned, there are a lot of benefits working together at the international
level, and I look forward to working with IMU on this aspect. I hope to promote a great
collaboration with ICME on mathematics education matters.

Let us mention only a few of Christiane’s related activities. As a President of the
CMS, she helped launch a Russian study-abroad program called “Math in Moscow.”
This provided Canadian students a chance to do “mathematics in the Russian style”
and experience firsthand Russian culture. The “Nanum” program was also initiated
during Christiane’s tenure as a Vice-President of the IMU ; it is a program offering
financial support for young mathematicians from developing countries, including
graduate students. In particular, the program allowed for hundreds of young people
all over the world to participate to the ICM in Seoul.

Christiane organized and co-organized more than a dozen of scientific confe-
rences and schools. One of them, “Normal forms, bifurcations and finiteness
problems in differential equations” organized in 2002, resulted in a book with the
same title coedited by C. Rousseau, G. Sabidussi, and Yu. Ilyashenko. The school
was a remarkable event that brought together leading experts in the field, as well as
a lot of young participants including undergraduate and graduate students.

Christiane is one of the creators and a member of the Editorial Board of the
popular magazine Accrom˛th, dedicated mainly to “Mathematics of the Planet
Earth.” This publication gathers articles written by mathematicians that bring to
a wide audience the power and beauty of our modern science, in an elementary and
clear way.

There is a famous cross-country skiing tradition in our mathematical community.
For instance, Kolmogorov skied regularly 40 km before beginning his work days.
Christiane keeps this tradition at a very high level. With her husband Serge Robert,
she participates yearly to a two-day marathon in Québec and has won several gold
medals. The distance is 80 km the first day, the night is slept in sleeping bags in
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the snow, all that followed by 80 km the next day. Those who survive get the gold
medal. Christiane loves the countryside. Together with her husband Serge, she built
their permanent house with their own hands. They also built their country house. It is
a three-hour ride from Montréal, located in the wilderness and surrounded by trees.
They refused both gas and electricity, to have a life as close as possible to nature.
Their cooking stove is made of stone and the house is heated by wood burning in a
brick stove. It has a lot of small bedrooms for guests, one extra sign of Christiane’s
everlasting generosity.

This book is a small sign of gratitude of the mathematical and scientific
community to Christiane Rousseau. Many happy returns of the day, Christiane !

Yulij Ilyashenko



Preface

The multidisciplinary STEAM-H series (Science, Technology, Engineering, Agri-
culture, Mathematics, and Health) brings together leading researchers to present
their own work in the perspective to advance their specific fields and in a way to ge-
nerate a genuine interdisciplinary interaction transcending disciplinary boundaries.
All chapters therein were carefully edited and peer-reviewed ; they are reasonably
self-contained and pedagogically exposed for a multidisciplinary readership.

Contributions are by invitation only and reflect the most recent advances
delivered in a high standard, self-contained way. The goals of the series are :

(1) To foster student interest in science, technology, engineering, agriculture,
mathematics and health.

(2) To enhance multidisciplinary understanding between the disciplines by showing
how some new advances in a particular discipline can be of interest to the other
discipline, or how different disciplines contribute to a better understanding of a
relevant issue at the interface of mathematics and the sciences.

(3) To promote the spirit of inquiry so characteristic of mathematics for the
advances of the natural, physical, and behavioral sciences by featuring leading
experts and outstanding presenters.

(4) To encourage diversity in the readers’ background and expertise, while at
the same time structurally fostering genuine interdisciplinary interactions and
networking.

Current disciplinary boundaries do not encourage effective interactions between
scientists ; researchers from different fields usually occupy different buildings on
university campuses, publish in journals specific to their field, and attend different
scientific meetings. Existing scientific meetings usually fall into either small
gatherings specializing on specific questions, targeting specific and small group of
scientists already aware of each other’s work and potentially collaborating, or large
meetings covering a wide field and targeting a diverse group of scientists but usually
not allowing specific interactions to develop due to their large size and a crowded
program. Traditional departmental seminars are becoming so technical as to be
largely inaccessible to anyone who did not coauthor the research being presented.

xi
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Here, contributors focus on how to make their work intelligible and accessible to
a diverse audience, which in the process enforces mastery of their own field of
expertise.

In honor of Professor Rousseau, a pioneer of mathematical approaches to
human earthly challenges, this volume strongly advocates multidisciplinarity with
the goal to generate new interdisciplinary approaches, instruments, and models
including new knowledge, transcending scientific boundaries to adopt a more
holistic approach. For instance, it should be acknowledged, following Nobel
Laureate and President of the UK’s Royal Society of Chemistry, Professor Sir
Harry Kroto, “that the traditional chemistry, physics, biology departmentalised
university infrastructures–which are now clearly out-of-date and a serious hindrance
to progress–must be replaced by new ones which actively foster the synergy
inherent in multidisciplinarity.” The National Institutes of Health and the Howard
Hughes Medical Institute have strongly recommended that undergraduate biology
education should incorporate mathematics, physics, chemistry, computer science,
and engineering until “interdisciplinary thinking and work become second nature.”
Young physicists and chemists are encouraged to think about the opportunities
waiting for them at the interface with the life sciences. Mathematics is playing
an ever more important role in the physical and life sciences, engineering, and
technology, blurring the boundaries between scientific disciplines.

The series is to be a reference of choice for established interdisciplinary scientists
and mathematicians and a source of inspiration for a broad spectrum of researchers
and research students, graduate, and postdoctoral fellows ; the shared emphasis of
these carefully selected and refereed contributed chapters is on important methods,
research directions, and applications of analysis including within and beyond
mathematics. As such, the volume promotes mathematical sciences, physical and
life sciences, engineering, and technology education, as well as interdisciplinary,
industrial, and academic genuine cooperation.

Toward such goals, the following chapters are featured in the current volume.
Chapter 1 by Faina Berezovskaya, studies a FitzHugh model modified to include

a cross-diffusion connection between the potential and recovery variables, investi-
gating successful propagation of an excitable neuron but also propagation failures,
which are extremely important for many applications. The model demonstrates two
types of behaviors, so-called “slow” and “fast” traveling waves.

Chapter 2 by Terence Blows, outlines a simple but imperfect approach to the
study of degenerate foci and uses the method to give an example of a cubic system
with four local limit cycles about a degenerate focus.

In Chap. 3 by Pietro-Luciano Buono and Raluca Eftimie, the authors establish
the applicability of the Lyapunov–Schmidt reduction and the Centre Manifold
Theorem for a class of hyperbolic partial differential equation models with nonlocal
interaction terms describing the aggregation dynamics of animals/cells in a one-
dimensional domain with periodic boundary conditions.

Chapter 4 by Magdalena Caubergh and Robert Roussarie, deals with relaxation
oscillations from a generic balanced canard cycle subjected to three breaking

http://dx.doi.org/10.1007/978-3-319-31323-8_1
http://dx.doi.org/10.1007/978-3-319-31323-8_2
http://dx.doi.org/10.1007/978-3-319-31323-8_3
http://dx.doi.org/10.1007/978-3-319-31323-8_4
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parameters of Hopf or jump type and proves that at most five relaxation oscillations
bifurcate in a rescaled layer of the cycle.

In Chap. 5 by Colin Christopher, Wuria Muhammad Ameen, and Zhaoxia
Wang, the authors first present cases where all integrability conditions are either
uncovered by Darboux method or by a monodromic argument, and then investigate
the integrability of the critical points which do not lie at the origin.

Chapter 6 by Morgan Craig, Mario González-Sales, Jun Li, and Fahima Nekka
is a study to substantiate and situate the use of physiological modeling in phar-
macometrics and provide incentives to continue to improve understanding of the
underlying physiological mechanisms of a given system. It is also a testimony to the
necessity of building bridges between diverse actors from different backgrounds
(pharmaceutical scientists, clinicians, biomathematician, statisticians, engineers,
etc.) in the pharmaceutical community to best serve patients and their needs.

Chapter 7 by Bui Xuan Dieu, Luu Hoang Duc, Stefan Siegmund, and Nguyen
van Minh, is concerned with the strong stability of solutions of a class of non-
autonomous equations with an unbounded operator in a Banach space and almost
periodically time-dependent. A general condition on strong stability is given in
terms of Perron conditions on the solvability of the associated inhomogeneous
equation.

Chapter 8 by Mohamed El Morsalani and Abderaouf Mourtada, presents a new
approach to the problem of limit cycles, which appear near hyperbolic polycycles
of vector fields, upon a small deformation. Namely, the authors show a “preparation
theorem” for quasi-regular functions, which appear as return maps associated to
deformations of hyperbolic polycycles.

Chapter 9 by Raymond Fletcher, studies cubic curves that invert onto themselves,
stemming for an investigation of group circle systems.

Chapter 10 by Lili Guadarrama, presents an emerging technique for noninvasive
imaging with broad application in several disciplines including biomedical imaging
and nondestructive testing. It summarizes different approaches for the imaging
technique of elastography : quasi-static, harmonic, and transient elastography, along
with establishing models for viscoelasticity.

Chapter 11 by Gerard Kientega is a chapter that studies affine completeness of
algebras using a generalized metric to prove an extension theorem leading to new
results such as an answer to a question of Karrli and Pixley.

In Chap. 12 by Bernd Krauskopf and Hinke M. Osinga, the authors review
how a conjectural codimension-four unfolding of the full family of cubic Liénard
equations helps to identify the central singularity as an excellent candidate for the
organizing center that unifies different types of spiking action potentials of excitable
cells. This point of view and the subsequent numerical investigation of the respective
bifurcation diagrams led, in turn, to new insight on how this codimension-four
unfolding manifests itself as a sequence of bifurcation diagrams on the surface of a
sphere.

Chapter 13 by Yu Ilyashenko considers the long and glorious history of the theory
of planar bifurcations which one could initially split into two parts : one part on local
bifurcations such as the Poincaré–Andronov–Hopf bifurcation and another part on

http://dx.doi.org/10.1007/978-3-319-31323-8_5
http://dx.doi.org/10.1007/978-3-319-31323-8_6
http://dx.doi.org/10.1007/978-3-319-31323-8_7
http://dx.doi.org/10.1007/978-3-319-31323-8_8
http://dx.doi.org/10.1007/978-3-319-31323-8_9
http://dx.doi.org/10.1007/978-3-319-31323-8_10
http://dx.doi.org/10.1007/978-3-319-31323-8_11
http://dx.doi.org/10.1007/978-3-319-31323-8_12
http://dx.doi.org/10.1007/978-3-319-31323-8_13
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nonlocal bifurcations dealing with the bifurcations of separatrix polygons and the
polycycles such as separatrix loops of hyperbolic saddles and homoclinic curves
of saddle-nodes. The chapter shows that there is a third part, not yet developed,
that may be called “global bifurcations,” the main features being termed “sparking
bifurcations.” They were discovered by Malta-Palis in the 1980s.

Chapter 14 by Chengzhi Li first introduces some basic concepts about slow-fast
dynamics and its application to a biological model, a predator–prey system with
response functions of Holling type, and a medical model, a SIS epidemic model
with nonlinear incidence.

Chapter 15 by Pavao Mardesic, Dominique Sugny, and Leo van Damme, exposes
the key role played by Abelian integrals in the infinitesimal version of the Hilbert
16th problem, as well as in the study of Hamiltonian monodromy of fully integrable
systems. The authors treat in particular the simplest example presenting nontrivial
Hamiltonian monodromy : the spherical pendulum.

Chapter 16 by Thanh Nguyen, Debarun Kar, Matthew Brown, Arunesh Sinha,
Albert XinJiang, and Milind Tambe, the authors present how security is a critical
concern around the world and computational game theory can help design security
schedules in many domains from counterterrorism to sustainability where limited
security resources prevent full security coverage at all times ; casting the problem
as a Bayesian Stackelberg game, the authors developed new algorithms that are
now deployed over multiple years in multiple applications for security scheduling.
These applications are leading to real-world use-inspired research in the emerging
research area of “security games” ; specifically, the research challenges posed
by these applications include scaling up security games to large-scale problems,
handling significant adversarial uncertainty, dealing with bounded rationality of
human adversaries, and other interdisciplinary challenges.

Chapter 17 by Michael Pohrivchak, John Adam, and Umaporn Nuntaplook starts
off with a nice review discussing some of the seminal advances of the last few
centuries and their relation to electromagnetic radiation scattering off spheres of
varied sizes, and then continues with an investigation of the backscattering of
inhomogeneous spheres with different refractive index profiles, which affect the re-
flection, refraction, and diffraction properties of the spheres, following the approach
of Uslenghi and Weston by making use of a modified Watson transformation.

Chapter 18 by Martha Alvarez Ramirez and Rodríguez José Antonio García,
reviews the relations between Hamiltonian systems and symplectic geometry and
uses these relations to reduce the system degrees of freedom, leading, in particular,
to the solutions of the 2-body problem.

Chapter 19 by Anthony Ruffa, Michael Jandron, and Bourama Toni, presents an
approach that can support a parallelized solution of banded linear systems without
communication between processors using a scheme based on adjoining as many
unknowns as the number of superdiagonals. The chapter also introduces p-adic
computation, a step toward the development and implementation of a full parallel
p-adic linear solver.

In Chap. 20 by Laban Rutto, Vitalis Temu, and Myong-Sook Ansari, the authors
address the question of genetic loss and erosion of indigenous food cultures as

http://dx.doi.org/10.1007/978-3-319-31323-8_14
http://dx.doi.org/10.1007/978-3-319-31323-8_15
http://dx.doi.org/10.1007/978-3-319-31323-8_16
http://dx.doi.org/10.1007/978-3-319-31323-8_17
http://dx.doi.org/10.1007/978-3-319-31323-8_18
http://dx.doi.org/10.1007/978-3-319-31323-8_19
http://dx.doi.org/10.1007/978-3-319-31323-8_20
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a preamble to making a case for investment in research on underutilized and
alternative crops. Here is an area of research that could greatly benefit from an
interdisciplinary approach to include mathematical and statistical models.

Chapter 21 by Mahlet Tadesse, Frederic Mortier, and Stefano Monni, reviews
frequentist and Bayesian methods proposed to address in a unified manner the
problems of cluster identification and cluster-specific variable selection in the
context of mixture of regression models and also in the context of high-dimensional
data analysis. Illustrations of these method performances are taken from ecology
for modeling species-rich ecosystems and from genomic for integrating data from
different genomic sources.

Chapter 22 by Loïc Teyssier addresses more precisely germs of parametric
families of vector fields in the complex plane, with a saddle-node bifurcation and
corresponding to first-order non linear differential equations.

Chapter 23 by Henryk Zoladek presents a new and corrected proof of the
existence of 11 small amplitude limit cycles in a perturbation of some special cubic
plane vector field with center.

The book as a whole certainly enhances the overall objective of the series, that
is, to foster student interest and enthusiasm in the STEAM-H disciplines (Science,
Technology, Engineering, Agriculture, Mathematics, and Health), stimulate gra-
duate and undergraduate research, and generate collaboration among researchers
on a genuine interdisciplinary basis.

The STEAM-H series is hosted at Virginia State University, Petersburg, Virginia,
USA, an area that is socially, economically, intellectually very dynamic, and
home to some of the most important research centers in the USA, including
NASA Langley Research Center, manufacturing companies (Rolls-Royce, Canon,
Chromalloy, Sandvik, Siemens, Sulzer Metco, NN Shipbuilding, Aerojet) and
their academic consortium (CCAM), University of Virginia, Virginia Tech, the
Virginia Logistics Research Center (CCAL), Virginia Nanotechnology Center, The
Aerospace Corporation, C3I Research and Development Center, Defense Advanced
Research Projects Agency, Naval Surface Warfare Center, Thomas Jefferson Natio-
nal Accelerator Facility, and the Homeland Security Institute.

The STEAM-H series, by now well established with a high impact through its
intensive seminars and books published by Springer a world-renown publisher,
is expected to become a national and international reference in interdisciplinary
education and research.

Petersburg, VA, USA Bourama Toni

http://dx.doi.org/10.1007/978-3-319-31323-8_21
http://dx.doi.org/10.1007/978-3-319-31323-8_22
http://dx.doi.org/10.1007/978-3-319-31323-8_23




In Memoriam: Dr. Abderaouf Mourtada

Before the completion of this volume, we learned with great sadness and heavy
heart the passing of Dr. Abderaouf Mourtada on April 13, 2015. He is survived by
his wife Fatima, daughter Rhita, and son Ismail.

Co-author of Chap. 8, he was on the Faculty of the Université de Bourgogne,
Dijon, France.

Dr. Mourtada has many important contributions to mathematics, in particular in
the area of dynamical systems in relation to Hilbert 16th problem. His focus has
been on the hyperbolic polycycles in an effort to develop a final proof for their finite
cyclicity, achieving his goal during the last years. That is, Dr. Mourtada has been
able to find a new strategy to solve the finite cyclicity for hyperbolic polycycles.
This has been done by investigating the action of irreducible derivations on some
Hilbert’s quasi-regular algebras QRH of germs at 0, of local real analytic functions.
He showed that these algebras are finite or locally finite. These new ideas represent
a breakthrough in the field and will certainly provide a most needed new perspective
on the cyclicity problems.

A highly innovative mathematician, Dr. Mourtada was also a humble and kind
person. He will be deeply missed by all who came to know him and will remain
forever in their hearts and minds !

May this book contribute to perpetuate his memory and his passion for mathe-
matics !

Our heartfelt condolences to the family !

xvii
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Chapter 1
Traveling Waves Impulses of FitzHugh Model
with Diffusion and Cross-Diffusion

Faina Berezovskaya

Abstract The FitzHugh equations have been used as a caricature of the
Hodgkin–Huxley equations of neuron firing and to capture, qualitatively, the general
properties of an excitable membrane. The spatial propagation of neuron firing due
to diffusion of the current potential was described by the FitzHugh–Nagumo model.
Assuming that the spatial propagation of neuron firing is caused by not diffusion
but cross-diffusion connection between the potential and recovery variables the
cross-diffusion version of the FitzHugh model gives rise to the typical fast traveling
wave solutions characteristic to the FitzHugh model, and additionally gives rise
to the slow traveling wave solutions exhibited in the diffusion FitzHugh–Nagumo
equations (Berezovskaya et al., Math Biosci Eng 5:239–260, 2008).

In this paper the FitzHugh model with both diffusion and cross-diffusion terms
is studied; it is shown that this new version of spatial FitzHugh model gives rise to
fast and slow traveling impulses.

Keywords FithHugh model • Slow and fast traveling wave solutions • Diffusion
and cross-diffusion

1.1 Introduction

Hodgkin, Huxley, and Katz in the 1940s explored experimentally and mathemat-
ically the nature of nerve impulses. Their work revealed that the electrical pulses
across the membrane arise from the uneven distribution between the intracellular
fluid and the extracellular fluid of potassium (KC), sodium (NaC), and protein
anions (see [1] for details). This entire process of rapid change in potential from
threshold to peak reversal and then back to the resting potential level is called an
action potential, impulse, or spike (see schematic diagram in Fig. 1.1).

The process was mathematically investigated by Hodgkin and Huxley in 1952
with a four-variable model [2]. FitzHugh in 1961 proposed a simplified two-variable
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Fig. 1.1 Neuron spike in the (time-potential) plane obtained from experiments of neuron firing
(see [1, 3] for details)

model of an excitable membrane, which made it possible to illustrate the various
physiological states involved in an action potential (such as resting, active, refrac-
tory, enhanced, and depressed, see Fig. 1.1) in the phase plane (see [3, 4]). The
FitzHugh system captures much of the same dynamical behavior and, in particular,
demonstrates the spike-like behavior (see Sect. 1.2 and Fig. 1.2).

A more realistic model is the one that depends on both space and time since
electric currents cross the membrane of the cell move along its axon lengthwise
inside and outside. This mechanism makes it possible for electrical signals to be
transmitted over long distance and thus propagate throughout the membrane without
ever weakening or decreasing their initial strength. A mathematical model of the
diffusion of current potential was first proposed and studied by FitzHugh in 1961
and 1969 (see [3]), Nagumo et al. in 1962 (see [5]), and many others. This model
and its various modifications became one of the sources of many new methods of
analysis of traveling waves, their stability, shapes and velocity of a propagation ([6–
14], etc.).

Note that the initial FitzHugh and FitzHugh–Nagumo models “phenomenologi-
cally” (in the simplest way) described recovery process in the spike and spike-like
wave propagation.

Recently models have been proposed, where the spatial solutions are conditioned
by the effects of cross-diffusion “control” or “interactions” between components
of the system ([6, 8, 10, 16–24], etc.). From a mathematical point of view
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traveling wave solutions of cross-diffusion systems possess certain properties that
essentially distinguish them from diffusion. Specifically, for some velocities of wave
propagation they “repeat” structures of solutions of the model local system [14,
17, 18, 21]. This property of cross-diffusion systems may explain certain similarity
of dynamics of local FitzHugh model and spatially distributed FitzHugh–Nagumo
model.

Motivated by these works we modified the FitzHugh model to include a cross-
diffusion connection between the potential and recovery variables. We hypothesize
that the cross-diffusion regulation plays an important (perhaps, crucial) role in the
spatial spreading of potential ([17, 25]). This version of the model provides an
avenue both for investigating successful propagation of an excitable neuron and
propagation failures, which are extremely important for many applications (see,
for example, [26], and Sect. 1.4 below). In [17] we studied the “pure” cross-
diffusion modification of FitzHugh model and investigated the characteristics of
the spatial propagation of nerve impulses brought on by changes in the velocity
of propagation and intensity of the cross-diffusion regulation. We showed that this
model demonstrates two types of behaviors, the so-called slow and fast traveling
waves. It was shown recently [8] that some biologically motivated modifications of
the FitzHugh model demonstrate traveling waves even with three different velocities
of their propagation.

The main goal of this paper is to show that at least two types of traveling waves
of FHN-model are presented in generalization of FH-model by cross-diffusion.

The paper is organized as follows. Section 1.2 contains a brief description of
local neuron dynamics within the framework of the FitzHugh model, as well as the
bifurcation portrait of the model. Spatial dynamics of the FitzHugh model using
its wave system, which provides an explanation of spatial regimes, e.g., “traveling
waves,” is given in Sect. 1.3.

Traveling wave solutions of the cross-diffusion modification of the FitzHugh
model are described in Sect. 1.4. We show that for any fixed values of the
cross-diffusion coefficient and other parameters of the model there exists the
critical velocity C* of wave propagation. The system behavior for 0<C<C*(slow
waves) dramatically differs from the case when C>C*(fast waves). In particular,
the traveling spike with “large amplitude” appeared only for C>C*. We present
bifurcation diagrams for both slow and fast waves.

In Sect. 1.5 we consider traveling wave solutions of the FitzHugh model
supplemented by diffusion and cross-diffusion terms. Using the techniques of
the Tikhonov theorem ([27, 28], etc.) we show that some slow traveling wave
solutions of the FitzHugh cross-diffusion model are preserved in the FitzHugh–
Nagumo model. We also describe the computer experiments, which show that the
fast traveling wave solutions of the FitzHugh cross-diffusion model look similar to
those of the FitzHugh–Nagumo model.

Some details of analysis are given in the Appendix.
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1.2 FitzHugh Model

The original FitzHugh model (1.1) describes the time dynamics of the neuron
excitable membrane potential P(t), which is responsible for the rising phase of
neuron firing (see Fig. 1.1), and recovery membrane potential Q(t), which is
responsible for the falling phase of the action potential.

In slightly modified form [14] the FitzHugh model is presented as

ePt D �P3 C P � Q � F1 .P;Q/ ;
Qt D k1P � Q � k2 � F2 .P;Q/

(1.1)

where e, k1, k2 are parameters, reflecting intrinsic characteristics of the modeling
system. The system has from one (a non-saddle, i.e., a node or a spiral or center)
up to three (two non-saddles and a saddle) positive equilibria, (P *, Q *) where
P *, Q * are common roots of F1(P, Q) and F2(P, Q). Thus, the model has domains
of monostability and bistability. FitzHugh’s computer analysis [3, 4] revealed that
the model can also have limit cycles, namely, “small” cycles (containing a unique
equilibrium inside) and “large” one (containing three equilibria inside). FitzHugh
hypothesized that the “large separatrix loop” could be realized in the phase plane of
system (1.1) for certain parameter values; the trajectory corresponding to this loop
was considered as a model of a firing neuron.

The complete analysis of the FitzHugh model was done significantly later ([12,
14], etc.). It was proven in [11] that the principal dynamics of model (1.1) is
described by the bifurcation diagram of the bifurcation “3-multiple neutral singular
point with the degeneration, focus case,” schematically presented in Fig. 1.2 (exact
presentation of the bifurcations of high co-dimensions similar to those of our interest
in this work was given in [13, 29–31]). In our model this bifurcation is realized in
a vicinity of the parameter point M .k1 D 0; k2 D 1; e D 1/. The description of the
bifurcation diagram is given by the following statement [11, 17].

Theorem 1 (i) The space of parameters (k1, k2, e) can be subdivided into 21
domains of topologically different phase portraits of system (1.1). The cut of the
complete parameter portrait to the plane (k1, k2) is topologically equivalent to the
diagram presented in Fig. 1.2a (left) for arbitrary fixed 0 < e < 1 and to the
diagram presented in Fig. 1.2a (right) for arbitrary fixed e > 1.

The parameter boundary surfaces correspond to the following bifurcations in
system (1.1):

SN1, SN2: appearance/disappearance of a pair of equilibria on the phase plane;
H�
1 ; H�

2 = HC
1 ; HC

2 : change of stability of each of the non-saddle singular points
in the Andronov–Hopf supercritical/subcritical bifurcation, respectively;

C: saddle-node bifurcation of a pair of limit cycles;
L1, L2: appearance/disappearance of a small limit cycle in one of two homoclin-

ics of the saddle; and
RC; R�: appearance/disappearance of a large limit cycle in one of two

homoclinics of the saddle.
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Domains in Fig. 1.2 are numerated by integer numbers. Parametric portrait
of system (1.1) possesses certain symmetry. The domains, which have respective
symmetric properties, were numbered by integer with index a, whereas their
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Fig. 1.2 Schematically presented (a) .k1; k2/� cuts of the bifurcation diagram of FitzHugh model
(1.1) for fixed 0 < e < 1 (left) and for e > 1 (right); (b) phase portraits. For any positive e the
model has one stable topological node in domain 1 and three equilibria, two non-saddles, and
a saddle, inside domain bounded by SN1, SN2; boundaries H�

1 ; H�

2 = HC

1 ; HC

2 correspond to
the change of stability of each of the non-saddles in the Andronov–Hopf supercritical/subcritical
bifurcation, respectively; each of these cycles disappears at homoclinics when the parameter
values cross the boundaries L1, L2; two limit cycles appear in the phase plane when the parameter
values cross the boundary C; the model has the large loop of the saddle separatrixes (a “large
homoclinics”) for parameter values on the boundaries R1, R2
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symmetric counterparts have no index in the parameter portraits (Fig. 1.2a) and
corresponding phase behaviors are not presented in Fig. 1.2b.

Let us emphasize that the spike-regime (see Fig. 1.1) can be P-component of
the trajectory fP(t), Q(t)g of the FitzHugh model; this trajectory corresponds to the
phase curve of system (1.1), which is the large separatrix loop containing two equi-
libria inside (see the lower left panel in Fig. 1.3c, where coordinate Ÿ corresponds
to t). The loop is realized with parameter values .k1 < 1; k2; e < 1/ belonging to
the boundaries R1, R2 in the parameter portrait of the model in Fig. 1.2a. When
parameter values crossing this boundary the limit cycle appears/disappears in the
phase plane, its shape is “close” to the shape of the corresponding loop. Remark that
the phase “8-shape” is realized at the parameter “point of intersection” of boundaries
L1, L2, R1, and R2.

1.3 The Wave System for FitzHugh Model

1.3.1 FitzHugh Model with Diffusion and Cross-Diffusion

Spatial generalizations of FitzHugh model take into consideration diffusion pro-
cesses and provide “spread” solutions in a space. Many works were devoted to the
study of FHN dynamics, and in particular, to the investigation of “traveling wave”
solutions ([4, 5, 7–9, 13, 15, 20, 23, 24], etc.). One of the most recent publications
[8] (see also the references therein) describes different time-scale solutions of FHN-
model and developed methods of computations that are related to the singular
perturbation theoretical approach.

The generalized FitzHugh model, which takes into the consideration diffusion
and cross-diffusion, is of the form

ePt D �P3 C P � Q C DPPxx C DQQxx � F1 .P; Q/C DPPxx C DQQxx;

Qt D k1P � Q � k2 � F2 .P; Q/
(1.2)

where t is time, x is a one-dimensional space variable, and non-negative constants
DP, DQ are the diffusion and cross-diffusion coefficients, respectively. For DP >

0;DQ D 0 we get FHN-model, and for DP D 0;DQ ¤ 0 we get the cross-diffusion
spatial modification of FH-model (1.1)

ePt D �P3 C P � Q C DQQxx;

Qt D k1P � Q � k2
(1.3)

which was investigated in [17].
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1.3.2 Wave System of the Model

In what follows, we explore “traveling wave” solutions of system (1.2):

P .x; t/ D P .x C Ct/ � p .�/ ; Q .x; t/ D Q .x C Ct/ � q .�/ ;

where � D x CCt and positive C is the velocity of the wave propagation. We get the
ODE system:

eCp� D �p3 C p � q C DPp�� C DQq�� � F1 .p; q/C DPp�� C DQq�� ;
Cq� D k1p � q � k2 � F2 .p; q/

Differentiating the second equation by �, expressing q�� as

q�� D k1p�=C � q�=C2 D k1p�=C � F2 .p; q/ =C2

and substituting it to the first equation we get finally that (p(�), q(�)) satisfy the
“wave system”:

p� D r
DPr� D r

�
eC2 � DQk1

�
=C � F1 .p; q/C DQF2 .p; q/ =C2

q� D .k1p � q � k2/ =C � F2 .p; q/ =C
(1.4)

It is easy to verify that for DP D 0 the wave system is two-dimensional:

p�
�
eC2 � DQk1

�
=C D F1 .p; q/� DQF2 .p; q/ =C2

q� D F2 .p; q/ =C
(1.5)

Thus, the problem of describing all traveling wave solutions of system (1.2) and
their rearrangements is reduced to the analysis of phase curves and bifurcations
of solutions of three-dimensional wave system (1.4), which has the additional
parameter C. Note that for DP D 0 the wave system (1.5) is two-dimensional; this
circumstance essentially simplifies the problem.

Remark 1 Mathematically, cross-diffusion equations possess some special prop-
erties, which facilitate their investigation [32, 33]; the most important one is
that addition of the cross-diffusion term does not increase the dimensionality of
corresponding wave system [6, 17–19, 21, 22].
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1.3.3 Traveling Waves of Reaction–Diffusion Model
in the Frame of Wave System

Between the bounded traveling wave solutions (p(�), q(�)) of the spatial model
(1.2) and the phase curves of the wave system (1.4) there exists a known (see, for
instance, [13, 15]) correspondence (Fig. 1.3a–c), which we formulate in the most
important cases for p-component p(�). The same statements are clearly valid for
any component of the model.

Proposition 1 (Definitions)

(i) A wave front p(�) of model (1.2) corresponds to the heteroclinic orbit of wave
system (1.5) such that for � ! ˙1 it tends to different in p singular points
(Fig. 1.3a).

(ii) A wave train p(�) of model (1.2) corresponds to the limit cycle of (1.5)
(Fig. 1.3b).

(iii) A wave impulse p(�) of model (1.2) corresponds to the homoclinic orbit of
singular point of (1.5) (Fig. 1.3c).
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Fig. 1.3 Correspondence between the bounded “traveling wave” solutions of system (1.2) and the
phase curves of its wave system (1.5). (a) The wave fronts correspond to the heteroclinic phase
curves, a separatrix from a saddle to a node or to another saddle; (b) the wave train corresponds to
the limit cycle; and (c) the wave impulses correspond to the homoclinic phase curves, small (upper
panel) or large (lower panel) separatrix loops
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By virtue of this statement, the description of all possible wave solutions
of Eq. (1.2), as well as of their changing with variation of parameters of the
reaction functions F1(p, q), F2(p, q), is reduced to the analysis of phase curves and
bifurcations in the wave system (1.5) depending on an additional parameter that is
the propagation velocity C of waves. We will consider the behavior of system (1.4),
(1.5) depending on variation of the parameters.

1.4 Traveling Waves of Cross-Diffusion Model

1.4.1 Behaviors of Wave System

If eC2 ¤ DQk1, then (1.5) can be presented in the form

p� D ˛
�
F1 .p; q/� DQF2 .p; q/ =C2

�

q� D F2 .p; q/ =C;
(1.6˙)

where ˛ D C=
�
eC2 � DQk1

�
; sign “C” in the denotation corresponds to the case

˛ > 0 and the system is denoted as (1.6C), sign “�” corresponds to the case ˛ < 0
and the system is denoted as (1.6�).

It was shown in [17] that the wave system exhibits different behaviors depending
on sign of ˛.

Theorem 2

(i) Let C2e > Dk1 (i.e., ˛ > 0). There exists a neighborhood of the parameter point
M .e D 1; k1 D 0; k2 D 1/, in which the vector field defined by system (1.6C)
has a bifurcation diagram, whose cut to the plane (k1, k2) is topologically equiv-
alent to the one presented in Fig. 1.2. The boundaries in (e, k1, k2)—parameter
space (lines at e—cuts at Fig. 1.2) correspond to the same bifurcations that
have been mentioned in the Theorem 1.

(ii) Let eC2 < Dk1 (i.e., ˛ < 0). There exists a neighborhood of the parameter
point M .e D 1; k1 D 0; k2 D 1/, in which the vector field defined by system
(1.6�) has a bifurcation diagram, whose cut to the plane (k1, k2) is topologically
equivalent to the one presented in Fig. 1.4a for arbitrary fixed positive 0 < e <
1 (left) and for arbitrary fixed e > 1 (right). The boundary surfaces in the
parameter space correspond to the following bifurcations:

SN1, SN2: appearance/disappearance of a pair of equilibria on the phase
plane;

H: change of stability of the non-saddle equilibrium in Andronov–Hopf
subcritical bifurcation;

L1, L2: appearance/disappearance of a small limit cycle in homoclinic
bifurcations of the saddle;

SC1, SC2: upper and lower (respectively) heteroclinics of saddles.



10 F. Berezovskaya

SN2

SN2

SN1
SN1SC1

2 5 7

1

k1 k1

k2 k2

1

1

H-

1

6a

4a
3a

3a

L1

L2

SC1

SC2
SC2

a

2

1 2
3a 4a

5 6a 7

q

p

b

Fig. 1.4 Schematically presented (a) .k1; k2/� cuts of the bifurcation diagram of wave system
(1.6�) of FitzHugh model (1.2) for fixed 0 < e < 1 (left) and for e > 1 (right); (b) phase
portraits of the system. Inside the domain bounded by SN1, SN2 the system has three equilibria,
two saddles, and non-saddle; the boundaries SC1, SC2 correspond to the right and left heteroclinics
of saddles; the boundary H corresponds to changing of stability of the non-saddle in Andronov–
Hopf subcritical bifurcation; each of these cycles disappears at homoclinics (the boundaries L1, L2)

Remark 2 The bifurcation presented in Fig. 1.4 is known as “3-multiple neutral
equilibrium with the degeneration, saddle case.” In the wave systems (1.6�) of
FitzHugh cross-diffusion model (1.3) the bifurcations are realized close to the
parameter point M .e D 1; k1 D 0; k2 D 1/ (see also [31]).

1.4.2 Fast and Slow Wave Solutions of FitzHugh Model
with Cross-Diffusion

According to Theorem 2 system (1.6) exhibits different behaviors depending on sign
of eC2 � DQk1 ¤ 0
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Traveling wave solution of model (1.3) is called the slow wave if its velocity
0 < C <

p
DQk1=e .i:e:; ˛ < 0/ and the fast wave if C >

p
DQk1=e (i.e., ˛ > 0).

Collecting together the statements of Theorems 1, 2, and Proposition 1 and
taking into consideration that only positive values of model parameters k1, k2, e have
biophysical meaning, we arrive at the following description of all possible wave
solutions.

Theorem 3

(1) Model (1.3) has the fast traveling wave solutions of the following types (see
Fig. 1.2 and Fig. 1.3):

the fronts in every Domain of the portraits of Fig. 1.2 except the Domain 1,
13, and 14;

the single train in Domains 3a, 6a, 11, and 14; two trains, differing in
their “amplitudes” in Domains 5a, 7a, 9, 12a, and 13; three different trains
in Domains 8a and 10; and

the impulses on the boundaries L1, L2, and R1.
(2) Model (1.3) has the slow traveling wave solutions of the following types (see

Fig. 1.4 and Fig. 1.3 ):
the fronts in every Domain of the portraits in Fig. 1.4a except the Domain

1; the monotonous fronts with the maximal “amplitude” on the boundary
SC1, SC2;

the trains in the domains 4a, 5; and
the impulses with small amplitudes on the boundaries L1, L2.

The existence and the shapes of wave impulses, which may be different for slow
and fast wave systems, is the problem of our main interest. Figures 1.5 and 1.6
demonstrate some typical phase portraits and solutions for slow wave system (1.6�)
and fast wave system (1.6C) for different parameter values.

1.4.3 Possible Role of Cross-Diffusion Mechanism in Forming
of Traveling Waves

According to Proposition 1, model (1.3) possesses a traveling impulse (spike) if and
only if its wave system has a separatrix loop; the impulse has a large amplitude
(see Figs. 1.1 and 1.3c) if the separatrix loop contains two points inside itself, and a
small amplitude if the separatrix loop contains one point inside itself. Our analysis
revealed that only fast wave system exhibits large separatrix loop, whereas slow
wave system exhibits small separatrix loops only.

In the work [17] we utilized a modified version of the FitzHugh equations to
model the spatial propagation of neuron firing; we assumed that this propagation
is essentially caused by the cross-diffusion connection between the potential
and recovery variables. This modification, which includes the implicit (although
hypothetical) cross-diffusion mechanism, helped explore the effect of a generic drug
in the neuron firing process, and explain other biophysical questions still arising [21,
25, 26].
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Fig. 1.5 .u; �/ ; .v; �/� solutions and .u; v/� phase portraits of slow wave system (1.6�) for
e D :942; k1 D :9;DQ D 2;C D :1 Here u D q C k2; v D k1p � q � k2, where p D p .�/ ; q D
q .�/ are components of system (1.6�). The system has three equilibria, the central equilibrium is
a spiral, and the side equilibria are saddles. (a) k2 D 0, stable equilibrium O is placed inside the
unstable limit cycle that appeared from saddle heteroclinics; (b) k2 D :01, and (c) k2 D �:01. The
system has “left” (b) and “right” (c) unstable limit cycle containing the stable equilibrium inside;
the cycle appears from the saddle homoclinics loop, see the “left” (b) and “right” (c) panels

The mathematical problem of interest was the appearance and transformations
of the traveling wave solutions, which depended on the model parameters, as those
(e, k1, k2) which are “intrinsic” to the local system, the cross-diffusion coefficient
DQ, and the propagation speed C, that characterize the axons’ abilities for the firing
propagation. We studied the wave system of the cross-diffusion version of the model
and explored its bifurcation diagram.

We have shown that the cross-diffusion model possesses a large set of traveling
wave solutions; besides giving rise to the typical “fast” traveling wave solutions
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Fig. 1.6 .u; �/ ; .v; �/� solutions and .u; v/� phase portraits of fast wave system (1.6C) for e D
:09; k1 D :689; k2 D 0;DQ D :3 Here u D q C k2; v D k1p � q � k2 , where p D p .�/ ; q D q .�/
are variables of (1.6C). The system has three equilibria, a saddle, and two spirals. (a) C D 4:1.
The system has a limit cycle which appears from the homoclinics of the saddle separatrices, the
cycle contains inside two spiral equilibria; (b) C D 3:1, limit cycle is destroyed

exhibited in the original “diffusion” FitzHugh–Nagumo equations, it also gives rise
to “slow” traveling wave solutions. This more sophisticated approach indicates that
instead of a “one-parametric” set of waves ordered by the propagation speed C, one
should consider a two-parametric set of traveling wave solutions with parameters
(C, DQ). We then proved that in the parametric space (C, DQ) (under fixed parameter
values e, k1, k2) there exists a parabolic boundary, DQ D KC2, where constant
K D e=k1 separates the domains of existence of the fast and slow waves. The
system behavior qualitatively changes with the intersection of this boundary. Let us
emphasize that the “traveling spike” that we consider as the “normal” propagation of
a nerve impulse is a “fast” traveling wave. Hence, the parabola DQ D KC2 bounds
the area where the “normal” spike propagation is possible. After the intersection of
this boundary, due to a very large cross-diffusion coefficient or too small speed of
impulse propagation, a “normal” propagation of the nerve impulse is impossible and
some violations are inevitable: nerve impulses propagate with decreasing amplitude
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or as damping oscillations. Introducing cross-diffusion regulations in the FitzHugh
model allowed us to observe the propagation of spikes and spike-like oscillations
but restricted their velocities from below or, equivalently, maintained the upper
boundary for the cross-diffusion coefficient. It means that if, for any reason (e.g.,
as a result of the effect of a generic drug), the speed of transmission of a signal
along the axon is reduced, then the “normal” neuron firing propagation in the form
of a traveling spike is impossible. The increase of the cross-diffusion coefficient
beyond the “normal” value implies the same result.

1.5 Traveling Wave Solution of FHN-Model

1.5.1 Slow Waves

Consider more precisely wave system (1.4):

p� D r
DPr� D r

�
eC2 � DQk1

�
=C � F1 .p; q/C DQF2 .p; q/ =C2

q� D .k1p � q � k2/ =C � F2 .p; q/ =C
(1.7)

where F1 .p; q/ D ��p3 C p � q
�
; F2 .p; q/ D k1p � q � k2; e > 0; k1 > 0; k2 � 0.

Suppose that diffusion coefficient DP ! 0. For the limiting system

p� D C
�
F1 .p; q/� DQF2 .p; q/ =C2

�
=
�
eC2 � DQk1

�

q� D .k1p � q � k2/ =C � F2 .p; q/ =C
(1.8)

is equivalent to the wave system (1.5) of cross-diffusion model (1.3).
Following the idea of the Tikhonov theorem [28] and its numerous generaliza-

tions (see, e.g., [27] and references therein) we prove numerically the following
statement.

Statement 1 With parameter values in neighborhood of point M
�
DQe D 1; k1 D 1;

k2 D 0/ and C, DQ such that condition ˛ � C=
�
eC2 � DQk1

�
< 0 holds there

exist area �.p; q/ ; .0; 0/ 2 � in the phase plane (p, q) where the wave profiles
(p(�), q(�)) of system (1.5) approximate two components (p(�), q(�)) of the wave
profiles (p(�), p�(�), q(�)) of system (1.4) for . p0 D p.�0/; q0 D q.�0// 2 �; � 2
.const;1/, including homoclinics of equilibria.

According to this Statement, the slow wave solutions (p(�), q(�)) of model
(1.1) with diffusion and cross-diffusion can be qualitatively approximated by the
solutions of the model with only cross-diffusion term (compare Figs. 1.5 and 1.7).

Thus, the solution of the modification of the FitzHugh model, which accounts
for the cross-diffusion and small diffusion terms, demonstrates the slow traveling
waves (having relatively small velocity of propagation) similarly to the model with
only cross-diffusion term under certain values of the model parameters.
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Fig. 1.7 .u; v/�; .u;w/�; .w; v/� cuts of phase portraits of wave system (1.4). Here u D
q C k2; v D k1p � q � k2; w D v� , where p D p .�/ ; q D q .�/ are variables of system
(1.4). The parameter values are k1 D :9; e D :9335;C D :1;DP D :5;DQ D 1:5. (a) “Symmetric”
case, k2D0. The system demonstrates an unstable limit cycle that arose from “heteroclinics cycle”
composed by separatrixes of the saddle points, the stable equilibrium O is placed inside this
“funnel”(see (w, v)—cut); (b, c) k2 D ˙:005. The system has “homoclinics” cycle containing
stable point O; k2 D :005 at the left and k2 D �:005 at the right panels, correspondingly

1.5.2 Fast Waves

Numerous studies showed that FHN-model possesses spike type “fast” wave
solutions (see, for example, [8] and reference therein).

Our computer experiments revealed that the fast solutions observed in the fast
FH-cross-diffusion wave system (1.5C) have counterparts in the wave system (1.4)
where ˛ � eC2 � DQk1 > 0 (compare Fig. 1.6 and Fig. 1.8a–c. The latter Figure
demonstrates phase curves and trajectories of the model with different values of the
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Fig. 1.8 .u; v/�; .u;w/�; .w; v/� cuts of phase portraits and solutions u(�), v(�), w(�) of wave
system (1.4) in the case when ˛ D �

eC2 � DQk1
�
> 0. Here u D qCk2; v D k1p�q�k2; w D v� ,

where p D p .�/ ; q D q .�/ ; r D r .�/ are variables of system (1.4). Parameters are k1 D
:689; k2 D 0; e D :15;DP D :7;DQ D :5. (a) C D 7. The system has two limit cycles, whose
shapes are close to the small homoclinic loop (see Fig. 1.3c). (b) C D 4:8. The system has a limit
cycle, whose shape is close to the large homoclinic loop (this case is similar to the case that was
presented in Fig. 1.6a); (c) C D 2:5. The limit cycle is destroyed
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Fig. 1.8 (Continued)

speed propagation C but identical values of all other parameters). Notice that the
qualitative behaviors of the model presented in these figures actually do not depend
on cross-diffusion coefficient DQ, in particular, for DQ D 0.

Overall, our investigation of the diffusion—cross-diffusion modification of the
FitzHugh model (the full model for brevity)—reveals an interesting phenomenon:
if we consider the “fast” wave solutions, then the qualitative behavior of the full
system coincides with that of the FH-model accounting for only diffusion term,
but if we consider the “slow” wave solution, then the qualitative behavior of the
full model coincides with that of FH-model accounting only for the cross-diffusion
term. Both types of solutions qualitatively coincide with corresponding solutions of
cross-diffusion wave system.
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A.1 Appendix

A.1.1 Lienard Form of the FitzHugh Model
and Its Wave System

Through the change of variables

.P;Q/ ! .U;V/ W U D Q C k2; V D F2 .P;Q/ � k1P � Q � k2;

.P D .U C V/ =k1; Q D U � k2; k1 ¤ 0/ (1.9)

the local model (1.1) is transformed to the generalized Lienard form:

Ut D V; eVt D .U C V/ =k1 � .U C V/3=k1
3

C k2 � U � f .U/C V .g1.U/C VG.U// � ˆ.U;V/ ; (1.10)

Where

f .u/ D �u3=k21 C u .1 � k1/C k1k2;
g1.u/ D .1 � e/� 3u2=k21;
G .u; v/ D � .3u C v/ =k21

(1.11)

Model (1.2) after transformation (1.10) reads

Ut D V;
eVt D ˆ.U;V/C DPVxx C �

DP C DQk1
�

Uxx
(1.12)

Model (1.3) after transformation (1.10) reads

Ut D V;
eVt D ˆ.U;V/C DQk1Uxx

(1.13)

A traveling wave solution of systems (1.12) and (1.13) is defined as a pair of
bounded functions

U .x; t/ D U .x C Ct/ � u .�/ ; V .x; t/ D V .x C Ct/ � v .�/ ;

where C > 0 is a velocity of propagation.
Let’s now replace the capital letters in (1.9) with small letters, reduce p and q via
p D .u C v/ =k1; q D u � k2; k1 ¤ 0.
Take into the consideration that ut D Cu� ; ux D u� I vt D Cv�; vx D v� I uxx D

u�� D v�=C and put w D v�;w� D v�� we get the wave system of system (1.12) in
the form
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u� D v=C
v� D w

DPw� D .eC � .DP C DQk1/=C/w �ˆ.u; v/
(1.14)

whereˆ.U;V/ D f .U/CV .g1.U/C VG .U;V// and functions f (u), g1(u) , G(u, v)
are given by (1.11).

The wave system of (1.13) takes the form

u� D v=C;
�
eC � DQk1

�
=C
�
v� D ˆ.u; v/

(1.15)

System (1.15) contains the factor 1=˛ � �
eC � DQk1

�
=C
�

which we assumed to

be non-zero.
Behaviors of system (1.15) depend on the sign of parameter ˛. For ˛ > 0 there

exists a parameter domain containing point M .e D 1; k1 D 0; k2 D 1/, where the
vector field defined by system (1.15) is topologically orbitally equivalent to those
defined by local system (1.1). It realizes the bifurcation of co-dimension 4 with
symmetry (“spiral case”) [11]. For ˛ < 0 parameter point M .e D 1; k1 D 0; k2 D 1/

is also the point that corresponds to the bifurcation of co-dimension four with
symmetry but as a “saddle case.” So, behaviors of system (1.15) for ˛ > 0 are
different from those for ˛ < 0 (see details in [17]).
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Chapter 2
Local Limit Cycles of Degenerate Foci
in Cubic Systems

Terence R. Blows

Abstract The problem of determining the stability of a weak focus in a quadratic
or cubic system has been the focus of much research. Here we outline a simple but
imperfect approach to the study of degenerate foci and use the method to give an
example of a cubic system with four local limit cycles about a degenerate focus.

Keywords Cubic system • Limit cycles degenerate focus

2.1 Introduction

From his famous list of problems the second part of Hilbert’s Sixteenth Problem
was the topic of much interest in the 1980s and 1990s. The papers of Shi [1] and
of Chen and Wang [2] which gave examples of quadratic systems with four limit
cycles were a catalyst for this, but a major contributor to the increased work in
this area was the rise of computer algebra systems that allowed lengthy algebraic
manipulations to be carried out by a machine. With advances in bifurcation theory
happening at the same time, see Rousseau [3], this was a rich period for research in
planar polynomial systems.

A fixed point of a planar system of differential equations is called a center if a
neighborhood of the fixed point is filled with closed orbits. Centers can occur in two
ways; as well as the much studied case when the critical point is a weak focus (purely
imaginary eigenvalues) there is the case where the critical point is a degenerate
focus. The simplest type of the latter occurs under certain conditions when the
linearization about the critical point is nilpotent but non-zero. These conditions are
described with proof in Andronov et al. [4] and summarized in Perko [5].

Andronov’s condition for monodromicity does not specify whether the fixed
point is a center or focus, and in this sense the situation is similar to that of a
weak focus. The problem of determining the stability of a weak focus has been
well-studied and dates back to Poincaré. One approach is to construct a Liapunov
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function, and this can be done using an algorithm which is easily implemented using
symbolic computing. See, for example, Blows and Lloyd [6]. Here we use a similar
approach and use a Liapunov function to determine the stability of a degenerate
focus. The method described is imperfect—it does not determine the stability for
every degenerate focus—but we are able to use the method with some success. In
particular we describe and apply the method to degenerate foci of cubic systems and
extend a result of Andreev et al. [7].

It should be noted that another possibility is that the localization about the critical
point has no linear terms. An example of this was studied in Blows and Rousseau
[8] where the localization was about the point at infinity of a cubic system of a
certain type.

2.2 Method

We consider cubic systems that have a degenerate focus at the origin. These may
be written such that the linear part has a canonical form corresponding to a Jordan
block with double zero eigenvalue:

�
x0 D y C P2 .x; y/C P3 .x; y/
y0 D Q2 .x; y/C Q3 .x; y/

(2.1)

Also for monodromicity it is necessary that ([4, 5]) Q2(x, 0) D 0 and Q3(x, 0) < 0.
To study the stability of the origin we seek to construct a Liapunov function of

the form

V .x; y/ D V2 .x; y/C V3 .x; y/C V4 .x; y/C � � � C Vn .x; y/C � � �

where Vk(x, y) is homogeneous of degree k. This gives

V0 D @V2

@x
y C � � �

and to be one-signed we therefore need V2(x, 0) D 0. For V itself to be positive in
a neighborhood of the origin it is therefore necessary that V2(x, y) D cy2 for some
c > 0 and we make the arbitrary and convenient choice c D ½ to get

V2 D 1
2

y2 (2.2)

We have

V0 D
�

@V2

@x
C @V3

@x
C @V4

@x
C � � �

�
.y C P2 .x; y/C P3 .x; y//

C
�

@V2

@y
C @V3

@y
C @V4

@y
C � � �

�
.Q2 .x; y/C Q3 .x; y// ;
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and gathering like terms gives

V0 D �
@V2
@x

�
y

C �
@V3
@x

�
y C �

@V2
@x

�
P2 .x; y/C

�
@V2
@y

�
Q2 .x; y/

C �
@V4
@x

�
y C �

@V3
@x

�
P2 .x; y/C

�
@V3
@y

�
Q2 .x; y/C �

@V2
@x

�
P3 .x; y/

C
�

@V2
@y

�
Q3 .x; y/

C �
@V5
@x

�
y C �

@V4
@x

�
P2 .x; y/C

�
@V4
@y

�
Q2 .x; y/C �

@V3
@x

�
P3 .x; y/

C
�

@V3
@y

�
Q3 .x; y/C � � �

In order to guarantee that the quadratic and cubic terms of V 0 are both zero, the
choice (2.2) then implies that

V3 .x; y/ D �
Z

Q2 .x; y/ dx

Indeed we have V0 � 0 if we can recursively choose Vk such that

�
@Vk
@x

�
y D � � @Vk�1

@x

�
P2 .x; y/�

�
@Vk�1

@y

�
Q2 .x; y/� �

@Vk�2
@x

�
P3 .x; y/

�
�

@Vk�2
@y

�
Q3 .x; y/

for all integers k � 4. However the term on the right-hand side may contain terms of
the form xkC1 and so the best we can do when choosing the Vk is to have

V0 D �5x5 C �6x6 C �7x7 C � � � C �kxk C � � �

If the leading non-zero �k is such that k is even, then V0 is one-signed in a
neighborhood of the origin, and the stability of the origin is determined by the sign
of �k. If all �k terms are zero, then the origin is a center. However if the leading non-
zero �k is such that k is odd, then the construction fails to give a Liapunov function.
Such cases will require a different method. See, for example, Sadovskii [9].

The center problem parallels the case of a weak focus. Although there are an
infinite number of �k, this set has a finite basis which we denote <L(1), L(2),
L(3) : : :L(N)> where the Liapunov numbers L(k) are numbered in order as they
arise from the �k. Calculating the �k and reducing them to a finite set of Liapunov
numbers is a difficult problem, and it is likely, as with the case of a weak focus, that
the full solution to the problem may lie out of reach even with fast computers and
Gröbner basis methods.

Another connection with weak foci lies in the generation of small amplitude limit
cycles by perturbation methods. This is described below in the proof of Theorem 2.
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2.3 Results

Using a judicious linear coordinate change, we may assume without loss of
generality that P3(x, 0) D 0 and Q3(x, 0) D �1 in (2.1). We therefore consider
systems of the form

�
x0 D y C Cx2 C Dxy C Fy2 C Nx2y C Qxy2 C Ry3

y0 D Axy C By2 � x3 C Kx2y C Lxy2 C My3

Applying the algorithm we find that

˜5 D 1=2.A C 2C/.AC C 1/

˜6 D � �5AB C 14BC C 5A2BC C 17ABC2 C 6BC3 C 2AD � 6CD C 5A2CD
C12AC2D C 2K � ACK C 6C2K

�
=6

However the solution to �5 D �6 D 0 is far from simple, and we are already faced
with computational difficulties that we do not wish to get into here. Instead we
make the convenient choice A D C D 0 to easily get �5 D 0. It is easy to see that then
�6 D �K/3. Under the conditions A D C D K D 0 we find using Mathematica 8 that

˜7 D F=4

˜8 D .�19BF C 8DF � 12M � 4Q/ =20

˜9 D �
209B2F � 60D2F C 55FL C 90DM C 40FN C 207BDF

C42BM � 66BQ C 40DQ/ =120

˜10 D � � 1509B3F C 480D3F � 818DFL � 720DFN � 660D2M � 360D2Q

� 3261B2DF C 18B2M C 726B2Q � 1982BD2F C 439BFL � 22BDM

C 1090BFN C 956BDQ C 552LM C 480MN C 264LQ C 240NQ
�
=840

In terms of Liapunov quantities, where L(1) D˜5 and L(2) D �K/3 have been set to
zero, we have

L.3/ D F=4
L.4/ D .3M C Q/ =5
L.5/ D .D C 2B/M=4

We have a choice from L(5): Either DC2B D 0 or M D 0. However, as we show in
the proof of Theorem 1, the latter gives a center. So we assume M is non-zero. We
make the choices F D 0, Q D �3M, and D D –2B to get
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˜10 D 2M .L C N/ =7
˜11 D 3BM

�
2300B2 C 216L C 181N

�
=112

Substituting N D �L from ˜10 gives

L.7/ D 0

If B or M is equal to zero, then, as we show in the proof of Theorem 1, we have a
center. Otherwise

˜12 D �M
�
4436580B4 C 387976B2L � 1504L2 C 263331B2N

� 3968LN � 2464N2
�
=5040

And subbing L D �14B2 and N D 4B2 gives

L.8/ D .108161=560/ B4M

So ˜5 D˜6 D˜7 D˜8 D˜9 D˜10 D ˜11 D ˜12 D 0 implies a center.

Theorem 1 The origin of the system

�
x0 D y C Dxy C Fy2 C Nx2y C Qxy2 C Ry3

y0 D By2 � x3 C Kx2y C Lxy2 C My3

is a center if and only if one of the following two conditions holds:

1
�

K D F D M D Q D 0

2
�

K D F D B D D D 0I Q D �3M;N D �L

Proof Necessity has already been shown. For the sufficiency of 1) note that in this
case the origin is a center due to the symmetry (x, y, t) ! (x, �y, �t). Condition 2)
gives a Hamiltonian system.

In the following theorem we start with the weakest possible degenerate focus,
namely when ˜5 D˜6 D ˜7 D ˜8 D ˜9 D ˜10 D ˜11 D 0 but ˜12 ¤ 0, we may perturb
˜10, ˜8, and ˜6 away from zero in turn to get three local limit cycles in the same
manner as using multiple Hopf bifurcation from a weak focus. We then perturb œ
non-zero to get a fourth in a manner that is new. It is possible that other perturbations
will produce more than one local limit cycle; this would require a complete analysis
of the unfolding of the degenerate critical point in a manner similar to that of
Rousseau and Zhu [10] for an elliptic nilpotent singularity in quadratic systems.
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Theorem 2 The system

�
x0 D y � 2Bxy C Nx2y C .ı � 3M/ xy2 C Ry3

y0 D � .�x C sgn .M/ y/C By2 � x3 C �x2y C Lxy2 C My3

where M ¤ 0;B ¤ 0; ıM < 0;�M > 0; O << j�j << j�j << jıj << j"j << 1
has at least three local limit cycles in a neighborhood of the origin.

Proof With �D�D ıD 0, the origin is a degenerate focus whose stability is given
by the sign of M. The perturbations of ı, and � away from zero in turn each cause
a change in stability and produce local limit cycles. At this point, the origin has
stability given by the sign opposite to M. Finally perturbing � ¤ 0 produces a
strong focus at the origin whose stability is given by the sign of M to produce one
final local limit cycle.

Appendix: Mathematica 8

Mathematica was used interactively to produce the results in Sect. 2.3. Firstly the
base functions are put in place:

P2 D cxO2C Dxy C FO2
Q2 D Axy C ByO2

P3 D NxO2y C QxyO2C RyO3
Q3 D �xO3C KxO2y C LxyO2C MyO3

V2 D 1=2yO2
V3 D �Integrate ŒQ2; x�

After this each iteration of the algorithm has a sequence of similar steps. The first
set is as follows:

T4 D �D ŒV3; x�P2 � D ŒV3; y�Q2 � D ŒV2; x�P3 � D ŒV2; y�Q3

Collect Œ%; fx; yg�
X4 D Coefficient Œ%; xO4�

V5 D Simplify Œ.T4 � X4 xO4/ =y�
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Each X terms give us a focal value ˜, and the V terms give us the homogeneous
pieces of the Liapunov function that we are constructing. We continue through as
many of these steps as is necessary.
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Chapter 3
Lyapunov–Schmidt and Centre Manifold
Reduction Methods for Nonlocal PDEs
Modelling Animal Aggregations

Pietro-Luciano Buono and R. Eftimie

Abstract The goal of this paper is to establish the applicability of the Lyapunov–
Schmidt reduction and the Centre Manifold Theorem (CMT) for a class of
hyperbolic partial differential equation models with nonlocal interaction terms
describing the aggregation dynamics of animals/cells in a one-dimensional domain
with periodic boundary conditions. We show the Fredholm property for the linear
operator obtained at a steady-state and from this establish the validity of Lyapunov–
Schmidt reduction for steady-state bifurcations, Hopf bifurcations and mode inter-
actions of steady-state and Hopf. Next, we show that the hypotheses of the CMT
of Vanderbauwhede and Iooss (Center manifold theory in infinite dimensions.
In: Jones, C., Kirchgraber, U., Walther, H.O. (eds.) Dynamics Reported, vol. 1,
pp. 125–163. Springer, Berlin, 1992) hold for any type of local bifurcation near
steady-state solutions with SO.2/ and O.2/ symmetry. To put our results in context,
we review applications of hyperbolic partial differential equation models in physics
and in biology. Moreover, we also survey recent results on Fredholm properties
and Centre Manifold reduction for hyperbolic partial differential equations and
equations with nonlocal terms.

Keywords Hyperbolic PDE • Animal aggregation • Centre Manifold reduction •
Lyapunov–Schmidt reduction • Symmetry Fredholm property

3.1 Introduction

Collective self-organised behaviour is a phenomenon observed in a variety of organ-
isms. Familiar examples include schooling fish, flocking birds, swarming insects,
aggregating bacteria, etc. The way such aggregations are formed, maintained and
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the transitions between different patterns is a fascinating subject which has been
increasingly studied in the last 25 years. The elegance and beauty of motion in
aggregations are remarked in early writings, going back to antiquity, in Pliny the
Elder’s book The Natural History [59], where collective movement in flocks of
birds is described. Apart from the appeal this problem has for curiosity-driven
research, understanding of collective self-organised motion also has applications to
environmental and societal problems such as the formation and motion of swarms
of locusts [65], which affect rural communities in several locations worldwide,
as well as applications to the small scale phenomenon of cell–cell interactions in
developmental biology or cancer research.

Mathematical modelling has been an important aspect of the study of collective
motion and aggregation using both particle-based and density-based models. Those
models have been used to probe the possible biological mechanisms leading to
the formation and persistence of aggregations, and also as a means to investigate
transient aggregations. Several modelling approaches assume local interactions
with conspecifics [9]. However, in many cases it is preferable for the models to
assume that animals/cells can interact with conspecifics positioned further away
[29, 57, 58, 64, 66]. For instance, in migratory flocks of birds, radar-tracking
observations have shown that individuals 200–300 m apart can fly at the same speed
and in the same direction [49]. Nonlocal interactions are also seen in developmental
biology where collective cell movement results from cell–cell adhesion forces with
an interaction range proportional to cell size [1].

In this study, we focus on density-based models and consider a class of 1D
hyperbolic first-order partial differential equations with nonlocal terms:

@uC

@t
C @gCŒuC; u��uC

@x
D f CŒuC; u��; (3.1a)

@u�

@t
C @g�ŒuC; u��u�

@x
D f �ŒuC; u��: (3.1b)

Such equations could be used, for instance, to model the dynamics of animal
aggregations in 1D (i.e., on domains much longer than wide) [18], and in this case
u˙ describe the densities of left-moving (�) and right-moving (C) animals, g˙
are the (possibly nonlocal) density-dependent speeds, and f ˙ incorporate (possibly
nonlocal) turning behaviour and population dynamics. Moreover, such equations are
known to exhibit a large variety of spatio-temporal patterns, ranging from stationary
aggregations that can be time-variant or time-invariant, to different types of moving
aggregations; see the patterns in [6, 7, 16, 17]. Many of these patterns have complex
dynamical features, which are still not fully understood in terms of invariant sets of
phase space.

One way to determine the phase space origin of many of the patterns exhibited
by these nonlocal hyperbolic models is to determine whether they emerge from a
sequence of bifurcations starting with a homogeneous steady-state solution, as the
main parameters of the system are varied. However, in order to study the unfolding
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of bifurcations near a steady-state solution, it is necessary to find out if Lyapunov–
Schmidt and Centre Manifold reduction methods can be applied to this class of
nonlocal hyperbolic equations.

Our main focus in this paper is to show the applicability of Lyapunov–Schmidt
(LS) and Centre-Manifold (CM) reduction methods near steady-state bifurcation
points of equations such as (3.1). Reduction methods are the first step to investigate
the bifurcation and formation of patterns in mathematical models. While these
methods have been commonly applied to ODEs and parabolic PDEs, their use to
hyperbolic PDEs is still scarce. Moreover, the few analytical results existent in
the literature for these hyperbolic PDEs are mainly applied to models describing
phenomena in physics [8, 11, 24, 52].

Previous studies of nonlocal hyperbolic models for animal aggregations
investigated local bifurcations near codimension-two Steady-state/Hopf [7] and
Hopf/Hopf [6] bifurcation points with O.2/-symmetry using weakly-nonlinear
analysis (WNA) techniques, also known as the method of multiple scales. The
formal equivalence of the reduced equations near bifurcation obtained with WNA
and either LS and CM reduction has not been studied in a systematic way for these
nonlocal models. Nevertheless, comparison between the results of WNA and CM
reductions has been performed only for some specific cases of nonlocal hyperbolic
models of type (3.1); see [7]. Note that such comparisons have been performed
quite often for local fluid models [8, 24]. Moreover, the equivalence between LS
and CM reductions has been investigated by Chossat and Golubitsky [11] in the
context of Hopf bifurcation with symmetry.

In order to establish the validity of LS and CM reductions for nonlocal hyperbolic
models, we first need to understand the linear operators associated with these
models. The investigation of properties of linear operators coming from local
hyperbolic first-order partial differential equations has attracted the attention of
several authors [36, 45, 47]. We review some of these contributions in Sect. 3.3.2.
Moreover, we present some details of the results for Fredholm operators inspired
by integro-differential equations [21] and from functional differential equations
(FDEs), e.g. differential equations on lattices, FDEs of mixed-type [38, 56]. We also
review some Centre Manifold reduction results obtained for hyperbolic first-order
partial differential equations and for general PDE systems, as well as mentioning
recent results from FDE theory. Then, in the context of nonlocal models (3.1), we
show that for the Lyapunov–Schmidt reduction the linear operator at a steady-state
solution is a Fredholm operator of index zero. Moreover, for the Centre Manifold
reduction, we verify that the nonlinear hyperbolic system (3.1) satisfies the condi-
tions of an infinite-dimensional version of the Centre Manifold Theorem (CMT)
of Vanderbauwhede and Iooss [67] (see also Haragus and Iooss [32]). Because
the nonlocal hyperbolic models (3.1) for animal aggregations and movement are
symmetric with respect to a group isomorphic to O.2/, the reduction methods also
respect the symmetry group so that the equations obtained in the reduced space
have the required symmetry properties. In this paper, we do not perform explicit
computations for particular cases of bifurcations arising in the context of nonlocal
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aggregation models such as (3.1). However, our CMT puts on a rigorous footing the
use of WNA computations done in [6, 7].

The content of the paper is organised as follows. We start in Sect. 3.2 with a
short literature review of applications of hyperbolic PDEs to physics and biology.
In particular, in Sect. 3.2.3, we focus on a hyperbolic first-order partial differential
equations model with nonlocal terms for animal aggregation. Then, in Sect. 3.3
we discuss some general results on the Lyapunov–Schmidt and Central Manifold
reductions and state our main results. We return to our nonlocal hyperbolic model
in Sect. 3.4, where we show the main properties of the linear operator of the animal
aggregation model, prove the main results concerning the Fredholm property and the
use of Lyapunov–Schmidt reduction, and the applicability of the CMT. We conclude
with Sect. 3.5, where we discuss some interesting future research directions.

3.2 1D Hyperbolic Models

Before discussing the various reduction methods, we first review briefly some 1D
hyperbolic mathematical models derived to describe phenomena in physics and
biology. This allows us to emphasise the importance of these models, and the lack
of analytical studies to investigate the patterns exhibited by them. Moreover, by
presenting some physics models, it allows us to review the existent analytical results
developed for these models. Since generalisations of 1D hyperbolic models to 2D
are not only more realistic but also more complex, their analytic investigation is
more difficult. For this reason, we ignore them in this study.

3.2.1 Hyperbolic Models in Physics: Laser Models

To understand the complex dynamics of distributed feedback multi-section semi-
conductor lasers, [52] have investigated the following hyperbolic system describing
the forward and backward propagating complex amplitudes of the light (u1; u2),
coupled to an equation for the carrier density (v):

@u

@t
D
�

�@u1
@x
;
@u2
@x

�
C G.x; u.x; t/; v.x; t//; (3.2a)

@v

@t
DI.x; t/CH.x; u.x; t/; v.x; t//C

mX

kD1
bk	Sk .x/

� 1

xk�xk�1

Z

Sk

v.y; t/dy�v.x; t/
�
;

(3.2b)

The model describes the longitudinal dynamics of edge emitting lasers [52], and
thus the 1D domain Œ0;L� D Um

kD1 NSk, which is formed of m sub-sectional intervals
Sk WD .xk�1; xk/, k D 1; : : : ;m. The nonlinear operators G W .0;L/ � C2 � R ! C2
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and H W .0;L/ � C2 � R ! R2 are differentiable with respect to .u; v/, and
measurable and bounded with respect to x 2 Œ0;L�. Because these two operators
have very complex descriptions, we will not show them here. However, for more
examples of such nonlinear operators, see [52, 63]. Model (3.2) was completed with
reflective boundary conditions for u D .u1; u2/

u1.0; t/ D r0u2.0; t/C ˛.t/; u2.L; t/ D rLu1.L; t/;

and initial conditions for both u and v:

u.x; 0/ D u0.x/; v.x; 0/ D v0.x/:

This class of models have been shown to exhibit very rich dynamics: from bifur-
cations to self-pulsations, hysteresis, excitability, frequency synchronisation [52].
While there are many studies that focus on the numerical description of these be-
haviours, only a few studies focus on their analytical investigation; see [52, 62, 63].
The complexity of these equations makes it difficult to show, for example, the
existence and persistence of smooth invariant manifolds for general cases required
for bifurcation results. Fortunately, a CMT and Fredholm properties for equations
similar to (3.2) have been established in [44, 51, 52]. We will return to these results
in Sect. 3.3.2. For more details on modelling of multi-section lasers, see the short
introduction with many references given in Lichtner [51].

3.2.2 Hyperbolic Models in Biology: Predator–Prey Models,
Chemotaxis Models, Aggregation Models,
Age-Dependent Models

The last 20 years have seen an increase in the use of hyperbolic models to
describe various biological phenomena: from self-organised biological aggregations
(i.e., aggregations in the absence of a leader or external stimuli; [17]), to chemotactic
aggregations (i.e., aggregations in the presence of a chemotactic signal produced
by the members of the group; [23, 35, 37]), predator–prey dynamics [2, 3] or age-
structured models [39, 42, 69].

One of the simplest models of type (3.1) with constant speed and constant turning
rates was introduced and discussed extensively in [34, 36, 37]. The general form of
this model for particles/animals aggregations, which includes a turning behaviour
.�˙/ as well as a birth/death processes (h˙.uC; u�/), is given by

@uC

@t
C 


@uC

@x
D f CŒuC; u�� D ��CuC C ��u� C 1

2
hC.uC; u�/; (3.3a)

@u�

@t
� 
 @u�

@x
D f �ŒuC; u�� D �CuC � ��u� C 1

2
h�.uC; u�/: (3.3b)
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Since the change in particles/animals movement directions is not always
constant, but usually depends on (local or nonlocal) interactions with other
particles, Eftimie et al. [18] considered a model of type (3.1) with constant
speed g˙ŒuC; u�� D 
 (constant), nonlocal density-dependent turning rates
f CŒuC; u�� D ��CŒuC; u��uC C ��ŒuC; u��u�, f � D �f C, and no birth/death
dynamics (h˙ D 0). This model was introduced to describe the formation and
movement of self-organised biological aggregations in response to nonlocal social
interactions among group members. Because of the complex spatial and spatio-
temporal dynamics exhibited by this model we will review it in more detail in
Sect. 3.2.3.

The chemotactic movement of animal/cell aggregations can also be described
by (3.1), which is now coupled with an equation for the dynamics of the chemical
c.x; t/ [35]:

@c.x; t/

@t
D p.c; uC; u�/C D

@2c.x; t/

@x2
; (3.4)

where p.c; uC; u�/ describes the production/degradation of this chemical, and
D is its diffusion rate. The chemical can influence the speed of animals/cells
(i.e., gCŒuC; u�; c� in (3.1)), their turning behaviour and even the birth–death
dynamics of the population (i.e., f ˙ŒuC; u�; c� in (3.1)).

The 1D hyperbolic predator–prey models do not usually consider turning
behaviour, i.e., �˙ D 0 (however, the 2D kinetic models can incorporate changes in
movement direction in response to prey/predator behaviour; see [22]). In this case,
the functions f ˙ŒuC; u�� incorporate only the predator–prey dynamics between the
two populations. Usually, this dynamics is described by Lotka–Volterra-type terms
[13], but other terms such as Holling-type functional responses can also be used [2].
Moreover, the interactions between the prey and predator populations can affect the
speed of either prey or predator [13], as the animals speed up to avoid or to catch
up with the other population. Note here that not all 1D predator–prey models are of
the type (3.1). For example, Barbera et al. [2] derived a hyperbolic model where the
hyperbolic equations for the two populations are coupled with transport equations
for the dissipative fluxes.

A final type of hyperbolic model that we would like to mention briefly de-
scribes age-structured populations. The hyperbolic age-structured models (of the
McKendrick–von Foerster type) have the general form [42]

@u.a; t/

@t
C @u.a; t/

@a
D ��.a/u.a; t/; (3.5)

with u.t; a/ representing the density of the population of age a at time t, and
�.a/ describing the mortality rate. The description of the model is completed with
conditions for the initial population u.0; a/ D Q.a/, a � 0, and conditions for the
newborn population:
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u.0; t/ D
Z ˇ

˛

u.x; t/m.x/dx; (3.6)

with m the maternity function.
While all these models can exhibit a large variety of spatial and spatio-

temporal patterns ranging from stationary and moving aggregations of animals/cells
(e.g., stationary pulses, travelling pulses, breathers, ripples, zigzags; see [17])
to networks of cells [23], thorough investigations of these patterns are still not
the common approach in mathematical biology. For a more in-depth review of
pattern formation in hyperbolic models in biology, and the analytical and numerical
techniques available to investigate them, see [15, 68]. Existence of reduction
methods (e.g., Centre Manifold reduction) for local bifurcations of various types of
equations described in this section has been established for parabolic equations [32]
and for hyperbolic age-structured models [54].

Next, we focus on a particular class of nonlocal mathematical models for self-
organised biological aggregations, for which there are a few preliminary studies on
the local bifurcation of patterns near codimension-1 and codimension-2 bifurcation
points [6, 7].

3.2.3 Self-organised Animal Aggregation Models

Here, we present in more detail a class of 1D nonlocal hyperbolic models derived
to describe the formation and movement of various animal, cell and bacterial
aggregations as a result of inter-individual communication [17, 18]. The evolution of
densities of right-moving (uC) and left-moving (u�) individuals, which travel with
constant velocity 
 and change their movement direction from right to left (with
rate �C) and from left to right (with rate ��) [17] is given by

@tu
C.x; t/C @x.
uC.x; t// D ��CŒuC; u��uC.x; t/C ��ŒuC; u��u�.x; t/; (3.7a)

@tu
�.x; t/ � @x.
u�.x; t// D �CŒuC; u��uC.x; t/ � ��ŒuC; u��u�.x; t/; (3.7b)

u˙.x; 0/ D u0̇ .x/: (3.7c)

The turning rates are defined as

�˙ŒuC; u�� D �1 C �2f .yṙ Œu
C; u��� yȧ Œu

C; u��C yȧl Œu
C; u��/; (3.8)

D
�
�1 C �2f .0/

�
C �2

�
f .yṙ � yȧ C yȧl / � f .0/

�
:

The terms �1 C �2f .0/ and �2
�
f .y˙/ � f .0/

�
describe the baseline random turning

rate and the bias turning rate, respectively. The function f is a positive function satu-
rating for large values of its argument (to describe the biologically realistic situation
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Table 3.1 Nonlocal social interaction terms (y˙

j , j 2 fa; al; rg) introduced in [17]

Communic. Interaction terms: attraction (y˙

a ),

Mechanisms models repulsion (y˙

r ), alignment (y˙

al )

Omnidirectional
perception,

M2 y˙

a;r D qr;a

R
1

0 Ka;r.s/
�
u.x ˙ s/� u.x � s/

�
ds

Omnidirectional
emission

y˙

al D qal

R
1

0 Kal.s/
�
u�.x � s/C u�.x ˙ s/

�u˙.x � s/� u˙.x ˙ s/
�
ds

Unidirectional
perception,

M3 y˙

r;a D qr;a

R
1

0 Kr;a.s/u.x ˙ s/ds

Omnidirectional
emission

y˙

al D qal

R
1

0 Kal.s/
�

u�.x ˙ s/� u˙.x ˙ s/
�

ds

Omnidirectional
perception,

M4 y˙

r;a D qr;a

R
1

0 Kr;a.s/
�

u�.x ˙ s/� u˙.x � s/
�

ds

Unidirectional
emission

y˙

al D qal

R
1

0 Kal.s/
�

u�.x ˙ s/� u˙.x � s/
�

ds

Unidirectional
perception,

M5 y˙

a;r D qr;a

R
1

0 Ka;r.s/u�.x ˙ s/ds

Unidirectional
emission

y˙

al D qal

R
1

0 Kal.s/u�.x ˙ s/ds

Constants qa; qal; qr describe the magnitudes of the attractive, alignment and repulsive
interactions, respectively. Kernels Ka;al;r.s/ describe the spatial ranges for each of these
social interactions. Note that u D uC C u�

of bounded turning rates). An example of such function is f .y/ D 0:5C 0:5 tanh.y/;
see [6, 7, 17, 18]. These turning rates are influenced by the social interactions
among individuals: attraction towards far-away neighbours (yȧ ), alignment with
neighbours at intermediate distances (yȧl ) and repulsion from individuals at very
close distances (yṙ ). Moreover, these social interactions depend on the perception
of neighbours, which communicate via different mechanisms involving visual,
sound, tactile or chemical signals. Table 3.1 shows the social interaction terms
yṙ;al;a corresponding to four examples of communication mechanisms introduced
in [17]. Note that in [17] the authors considered also a fifth mechanism (denoted
M1), which combined attraction/repulsion forces as described by M2 and alignment
forces as described by M4. Since this mechanism did not bring any new results in
terms of pattern formation or model symmetry, it was ignored in more recent studies
[6, 7] and thus we ignore it throughout this study too. The parameters qr;a;al are the
magnitudes of the repulsive (r), attractive (a) and alignment (al) interactions. The
kernels Kr;a;al that model long-distance social interactions are given by Gaussian
functions
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Kj.s/ D 1

2�m2
j

e�.s�sj/
2=.2m2j /; with j D r; a; al; and mj D sj=8; (3.9)

with sj, j D r; a; al being the width of the interaction ranges.
The integrals in Table 3.1 can be re-written by defining the operator

Ii̇;`.u
C.x/; u�.x/; s/, with ` D a; r; al, to describe the integrand for model Mi,

i D 2; 3; 4; 5. The superscript ˙ in I˙ corresponds to the superscript in y˙. Thus,
the social interaction terms become

yi̇;`.u.x// WD
Z 1

0

K`.s/Ii̇;`.u
C.x/; u�.x/; s/ ds: (3.10)

Note that I˙ satisfies the following relation:

Ii̇;`.v
C
1 .x/CvC

2 .x/; v
�
1 .x/Cv�

2 .x/; s/ D Ii̇;`.v
C
1 .x/; v

�
1 .x/; s/CIi̇;`.v

C
2 .x/; v

�
2 .x/; s/;

for all i D 2; 3; 4; 5 and ` D a; r; al.

3.2.3.1 Periodic Boundary Conditions

Because numerical simulations of system (3.7) are performed on a finite domain
Œ0;L�, we complete the description of the model by imposing boundary conditions.
For a detailed discussion of biologically realistic boundary conditions for hyperbolic
systems, see [30, 36]. Here, we consider periodic boundary conditions, which
approximate the dynamics on infinite domains:

u˙.0; t/ D u˙.L; t/: (3.11)

Hillen [36] showed the existence of solutions for local hyperbolic systems that
satisfy periodic, homogeneous Dirichlet and homogeneous Neumann boundary
conditions. Since model (3.7) is nonlocal, next we confirm that the integrals (3.10)
are well defined for u˙ satisfying conditions (3.11). First define the space

L2per D fu 2 L2.R/ j u.x/ D u.x C L/ for all x 2 Œ0;L/g:

We now show that for the interaction kernels K.s/ as in (3.9) and for v 2 L2per and

QK˙v.x/ WD
Z 1

0

K.s/v.x ˙ s/ ds; (3.12)

we have QK˙v.x/ 2 L2per. To this end, we write v.x/ D P1
nD�1 cneiknx, where

kn D 2�n=L. Then,
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QKCv.x/ D
Z 1

0

K.s/
1X

nD�1
cneikn.xCs/ ds

D
1X

nD�1
cneiknx

Z 1

0

K.s/eikns ds

D
1X

nD�1
cn OK.n/eiknx:

Here, OK.n/ is the Fourier transform of K.s/, and OK.�/ ! 0 as j�j ! 1
exponentially fast (since K.s/ is Gaussian). Next we know that jcnj2 < 1 if jnj > N
for some N 2 N:

1X

nD0
jcn OK.n/j2 �

NX

nD�N

jcnj2j OK.n/j2 C
�.NC1/X

nD�1
j OK.n/j2 C

1X

nDNC1
j OK.n/j2 < 1:

Thus, QKCv.x/ 2 L2per and the same holds for QK�v.x/.

Remark 1. Note that if we choose to work with functions in C0
per with the sup-norm

jjvjj1 D supfjv.x/j j x 2 Œ0;L�g, it is a straightforward exercise to show that QK˙ is
a bounded operator from C0

per to itself.

3.2.3.2 Reflective Boundary Conditions

Another type of boundary condition that is commonly used for systems of hy-
perbolic models (both in biology and physics; see, for example, [43, 47]) is the
homogeneous Neumann condition. On the domain Œ0;L=2�, this condition reads

uC.0; t/ D u�.0; t/; uC.L=2; t/ D u�.L=2; t/; t � 0: (3.13)

These Neumann (reflective) conditions describe the case where cells/animals cannot
leave the domain and turn around at the boundary [30, 36, 53]. In regard to
the equivalence between periodic and reflective boundary conditions for local
hyperbolic systems, Lutscher [53] and Hillen [36] showed that for solutions that
satisfy the mirror symmetry condition

uC.x/ D u�.L � x/; x 2 Œ0;L�; (3.14)

if one considers w0̇ the initial data on Œ0;L=2� that satisfies the no-flux boundary
conditions (3.13), then it can be shown that

u0̇ .x/ D
(

w0̇ .x/ for x 2 Œ0;L=2�;
w�
0 .L � x/ for x 2 ŒL=2;L�;
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defines initial data on Œ0;L� that satisfies periodic boundary conditions. Moreover,
considering solutions u˙ of a local version of (3.7) with periodic boundary condi-
tions (3.11), one can construct restrictions w˙.x; t/ D u˙.x; t/, for x 2 Œ0;L=2�,
which are solutions of the same system with no-flux boundary conditions (3.13).

The steady-state solutions of nonlocal system (3.7) described below do satisfy
the mirror symmetry condition (3.14). Therefore, the results of the next sections
obtained for periodic (or zero-flux) boundary conditions can be easily generalised
to zero-flux (or periodic) conditions.

3.2.3.3 Symmetry of Hyperbolic Models for Self-organised
Biological Aggregations

Consider functions u.x; t/ D .uC.x; t/; u�.x; t// satisfying the boundary condition
u.0; t/ D u.L; t/. We introduce the translation operator T� with � 2 Œ0;L/, and the
involution  acting on u.x; t/ by

T� :u.x; t/ WD u.x ��; t/ and :.uC.x; t/; u�.x; t// WD .u�.L�x; t/; uC.L�x; t//:
(3.15)

The elements T� generate a group isomorphic to SO.2/ because of the periodic
boundary condition. One can check that T� ı  D  ı T�1

� , and so T� and 
generate a group isomorphic to O.2/. Moreover, it is shown in [7] that system (3.7)
is O.2/-equivariant for any of the models M2, M3, M4, M5 described in Table 3.1;
that is, for any solution u.x; t/ of (3.7), then :u.x; t/ and T� :u.x; t/ are also solutions
of (3.7) for any � 2 Œ0;L/.

Consider now the action of a group � on a vector space V . The isotropy subgroup
of the point v 2 V is

�v WD f� 2 � j �:v D vg:

The symmetry of solutions of (3.7) is encoded in the isotropy subgroup.

3.2.3.4 Steady-State Solutions

Steady-state solutions of (3.7) are found by setting @tu˙ D 0 and solving the
remaining integro-differential system. As shown in [7], by adding the two equations
in (3.7), one notices that steady-state solutions .uC� .x/; u�� .x// satisfy uC� .x/ D
u�� .x/C C, where C is a constant.

For homogeneous steady-state solutions, let us first define the total conserved
population density

A D 1

L

Z L

0

.uC� .x; t/C u�� .x; t// dx:



40 P.-L. Buono and R. Eftimie

Then, the homogeneous steady-state solutions are of the form .uC� .x/; u�� .x// D
.A=2;A=2/ and .uC� .x/; u�� .x// D .A�;A��/, where A� ¤ A�� and A� C A�� D A.
These solutions have isotropy subgroups O.2/ and SO.2/, respectively.

It is also possible to find non-homogeneous symmetric steady-state solutions
with isotropy subgroup Dn. Such solutions for n D 1 and n D 3 are observed
in [7, 48]. It is shown in [7] that if .uC� .x/; u�� .x// has isotropy subgroup† � , then
uC� .x/ D u�� .x/. Therefore, steady-state solutions with isotropy subgroups O.2/ and
Dn have this property, but not steady-state solutions with isotropy subgroup SO.2/.

3.3 Lyapunov–Schmidt and Centre Manifold Reductions

Before discussing the application of the Lyapunov–Schmidt and Centre Manifold
reduction methods to model (3.7), we first present in Sects. 3.3.1 and 3.3.2 some
general results on these methods. Then, in Sect. 3.4 we verify that the reduction
methods can be applied to the nonlocal hyperbolic models (3.7).

3.3.1 General Theory

Let X be a Banach space and L a closed linear operator on X with dense domain
D.L/. Consider a differential equation

d

dt
u D L.u; �/C F.u; �/ WD G.u; �/; (3.16)

where F W D.L/ � R
` ! X is the nonlinear part of the operator which satisfies a

Lipschitz condition, and � is a bifurcation parameter. Suppose that G.u0; �0/ D 0,
and that the point spectrum of L.u0; �0/ has values on the imaginary axis. That is,
.u0; �0/ is a bifurcation point of the � family. Without loss of generality, we can
assume that .u0; �0/ D .0; 0/.

To unfold this bifurcation using the Lyapunov–Schmidt (LS) reduction, the linear
operator

T D d

dt
� L.�; �/

has to be Fredholm over a suitably chosen function space X0. Recall that an operator
T W X0 ! X0 is Fredholm if the range of T is closed, and kerT and cokerT
are finite. The index of T is dim ker T � dim cokerT . Notice that if L.u0; �0/
has only zero eigenvalues on the imaginary axis (in its point spectrum), then the
eigenfunctions do not depend on time, and the time derivative vanishes. Thus, it
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is sufficient to verify the Fredholm property for L only. Typically, X0 is a function
space of 2�-periodic functions (if (3.16) has been suitably rescaled).

The Fredholm property of L enables a splitting X0 D kerLC M D N C cokerL,
where M and N are, respectively, complementary subspaces to kerL and cokerL.
Projection operators exist for each of these subspaces. Then, one can split G into
the operators G1 W kerL � M � R

k ! N and G2 W kerL � M � R
k ! cokerL.

Given coordinates .x1; x2; �/ for kerL � M � R
k, one can solve G1 D 0 using a

properly chosen implicit function theorem (e.g. see Chicone [10]) and obtain x2 D
�.x1; �/ near .u0; �0/ D .x10; x20; �0/. Because L has finite index, this leads to a
finite-dimensional mapping QG2 W kerL � M � R

k ! cokerL which contains the
information about particular types of bifurcating solutions, depending on the choice
of function space X0. A detailed description of the LS reduction can be found in [25]
and in Chossat and Lauterbach [12].

We now briefly discuss the CMT for (equivariant) infinite-dimensional systems
of Vanderbauwhede and Iooss [67]. See also [12] for the CMT in the context
of equivariant systems. Suppose that the linear operator L at .0; 0/ satisfies the
following assumptions:

(A0) The operator L W D.L/ ! X is bounded (in the graph norm).
(A1) For some k � 2, there exists a neighborhood V 	 D.L/ � R

` of .0; 0/ and Y
a Banach space (Y 	 X) such that the nonlinear operator F is Ck.V ;Y/ and
F.0; 0/ D 0 and DF.0; 0/ D 0.

(A2) The spectrum � of L can be decomposed as � D �C [ �0 [ �� where
�C; �� contain, respectively, all � such that Re.�/ > 0 and Re.�/ < 0

while �0 has all eigenvalues � with Re.�/ D 0. There exists ı > 0 such
that inf�2�

C

Re.�/ > ı and sup�2�
�

Re.�/ < �ı. Moreover, �0 consists of a
finite number of eigenvalues with finite algebraic multiplicity.

(A3) Let P0 be the projection onto the generalised eigenspaces of �0 and Lh D
I � P0, where the linear operator Lh is defined as L restricted to D.L/h D
PhD.L/. Then for any � 2 Œ0; ı� and any f 2 C�.R;Yh/ the linear problem

duh

dt
D Lhuh C f .t/

has a unique solution uh D Khf , where Kh is a bounded operator from
C�.R;Yh/ to C�.R;D.L/h/ and C�.R;X / is the space of exponentially
growing functions with the norm

jju.t/jjC� D sup
t2R

e��jtjjju.t/jjX:

The norm of Kh is bounded by a continuous function of � 2 Œ0; ı�.
Then, there exists a parameter-dependent finite-dimensional manifold

M0.�/ D fu0 C‰.u0; �/ j u0 2 E0g;



42 P.-L. Buono and R. Eftimie

where E0 D Ran P0, and such that M0.�/ is locally invariant and contains the set of
all bounded solutions. Letting L0 be the restriction of L to E0, the reduced system
of equations on the centre manifold has the form

du0
dt

D L0u0 C P0F.u0 C‰.u0; �/; �/ WD g.u0; �/:

Moreover, if G is �-equivariant, then � acting on the vector space E0 and M0

can be chosen to be �-invariant. Therefore, g satisfies a �-equivariant condition:
g.
u0; �/ D 
g.u0; �/.

Remark 2. The verification of assumption (A3) is often done by checking an
inequality estimate on the resolvent operator .�I � Lh/

�1. This is illustrated in
several examples in [32]. However, there are cases where the resolvent estimate
does not hold, but (A3) does, see [40]. In our case, we do not attempt to prove
the resolvent estimate due to the complexity of the resolvent operator coming from
the nonlocal nature of the linear operator Lh. Instead, we use the symmetries to
decompose the problem into a family of finite-dimensional systems for which (A3)
is easily satisfied.

We now introduce the function spaces for which we show our results. Recall that
for some � 	 R

n, Wk;p.�;R/ 	 Lp.�;R/ is the Banach space of functions for
which the first k weak derivatives are in Lp.�;R/, and note that W1;2 is a Hilbert
subspace of L2. We let Y D W1;2.Œ0;L�;R2/ and X D L2.Œ0;L�;R2/ and so D.L/ D
f.uC; u�/ 2 Y j u˙.0/ D u˙.L/g. We also define

Yper D f.uC; u�/ 2 W1;2.R;R2/ j u˙.x/ D u˙.x C L/; x 2 Œ0;L/g

and

Xper D f.uC; u�/ 2 L2.R;R2/ j u˙.x/ D u˙.x C L/; x 2 Œ0;L/g:

For time-periodic solutions, we introduce

X2� D fu 2 L2.Œ0;L� � R;R2/ j u.x; t C 2�/ D u.x; t/g;

Y2� D X2� \ W1;2.Œ0;L� � R;R2/

and D.T / D fu D .uC; u�/ 2 Y2� j u˙.0; t/ D u˙.L; t/g. Note that Hilbert
spaces are chosen in order to exploit the orthogonal projection properties when
showing that assumption (A3) of the CMT is satisfied. If one chooses to perform
the analysis using Banach spaces Y D C1.Œ0;L�;R2/ and X D C0.Œ0;L�;R2/ along
with their periodic counterparts, then assumption (A3) of the CM theorem of [67]
becomes much more cumbersome to satisfy as we need to consider explicitly the
resolvent operator .�I � L/�1 in order to define projections using the Dunford
integral formula [19].
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We are now ready to state the main results of this paper. Our first main result is
the following.

Proposition 3 (Fredholm Operators). Let u�.x/ be a steady-state solution of (3.7)
(for any of the models M2,. . . ,M5 described in Table 3.1) and let L be the linearised
operator at u�.x/. Then, L W D.L/ ! X2� and

T D d

dt
� L.�; �/ W D.T / ! X2�

are Fredholm operators of index zero.

A consequence of Proposition 3 is that the Lyapunov–Schmidt procedure can be
performed on the operator L in the context of zero eigenvalues. If L has purely
imaginary eigenvalues (after rescaling) ˙i;˙ik1; : : : ;˙ikm where k1; : : : ; km 2 Z

or a mixture of zero eigenvalues and purely imaginary eigenvalues as above, then
the Lyapunov–Schmidt reduction is performed on T with a function space of
2�-periodic functions. The case of nonresonant purely imaginary eigenvalues is
not easily handled using the Lyapunov–Schmidt reduction because the choice of
Banach space of periodic functions cannot be chosen to simultaneously obtain
all solutions with the two frequencies. Therefore, steady-state, Hopf (including
resonances) and steady-state/Hopf (including resonances) bifurcation problems can
be unfolded with the reduced equations obtained via Lyapunov–Schmidt reduction.
Moreover, if u�.x/ has isotropy subgroup † 	 O.2/, then the reduced equation is
†-equivariant for steady-state bifurcations and is † � S1-equivariant for Hopf and
steady-state/Hopf bifurcation problems, see [25].

The second result of this paper concerns the spectral properties at the linearisa-
tion near a steady-state.

Proposition 4 (Spectral Properties). Let u�.x/ be a steady-state solution of (3.7)
(for any of the models M2,. . . ,M5) and let L be the linearised operator at u�.x/.
Then, the spectrum of L is made up of isolated eigenvalues with finite multiplicity
and with no accumulation point in C. In particular, L can only have a finite number
of eigenvalues with finite multiplicity on the imaginary axis.

Therefore, property (A2) of the CMT of [67] is satisfied. This leads to the following
result.

Proposition 5 (Centre Manifold Theorem). Let u�.x/ be a steady-state solution
of (3.7) (for any of the models M2,. . . ,M5) with isotropy subgroup SO.2/ or O.2/
and suppose that L has a finite number of eigenvalues on the imaginary axis. Then,
assumptions (A0)–(A3) of the CMT of [67] are satisfied by L and F.

The proof of these results is found in Sect. 3.4. In the next section, we describe
recent results on Fredholm properties for linear operators originating from integro-
differential equations and hyperbolic partial differential equations with local and
nonlocal linear terms. We do the same for recent results about the applicability of
Centre Manifold reduction in similar contexts.
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3.3.2 Recent Results for Hyperbolic PDEs and FDEs

We summarise some recent results for FDEs and hyperbolic systems that use the
theory for Lyapunov–Schmidt (LS) and Central Manifold (CM) reductions.

In regard to the LS reductions, it is well known that for ODEs and parabolic
PDEs, the linear operator L is Fredholm [25]. In fact if L is a strongly continuous
linear operator, then it is automatically Fredholm [4, 19]. This includes the case
of FDEs (retarded and neutral) [31] and evolution semigroups [14]. If Eq. (3.16)
has additional properties such as Hamiltonian structure, symmetry (including
reversibility), those are preserved by the LS reduction [25, 28].

There are also several results available for linear operators L that are not strongly
continuous. Mallet-Paret [56] establishes that for mixed-type FDEs

Px D L.�/x� D
NX

jD1
Aj.�/x.� C rj/;

with L.�/ asymptotically hyperbolic, the linear operator .ƒLx/.�/ D x0.�/�L.�/x�
is Fredholm. Moreover, in the case where the linear operator L.�/ admits constant
coefficient asymptotic operators L˙ as � ! ˙1, the index depends only on L˙ and
a formula is given by the spectral flow, which counts the net number of eigenvalue
crossings in the family L.�/ from L� to LC.

This work stimulated several other advances, especially in linking the Fredholm
property to exponential dichotomy of the linear operator [33, 50]. Hupkes and
Verduyn-Lunel [38] provided a direct generalisation of [56] to nonhyperbolic
autonomous linear operators for mixed-type equations and they use their result to
show a CMT for mixed-type FDEs. A more recent development is found in Faye and
Scheel [21]. Here, the authors studied the following class of mixed-type equations
with nonlocal terms, which is commonly used in neural models [20]:

d

d�
U.�/ D

Z

R

K.� � � 0I �/U.� 0/ d� 0 C
X

j2J
Aj.�/U.� � �j/C H.�/;

where U.�/;H.�/ 2 C
n and K.�I �/, Aj.�/ are n � n complex matrices and J is

countable with the shifts satisfying �1 D 0, �k ¤ �k for j ¤ k 2 J . As in [56], the
authors showed that under some assumptions on the asymptotic operators defined
for � ! ˙1, the operator defined by the right-hand side is Fredholm and the index
can also be computed via its spectral flow.

In a different direction, Kmit and Recke [43, 44, 46] established the Fredholm
property for linear operators associated with a class of first-order local hyper-
bolic systems of equations with reflective and Dirichlet boundary conditions. For
example, in [44], they looked at the system of equations

@tu C 
@xu C a.x/u C b.x/v D f .x; t/; (3.17a)

@tv � 
@xv C c.x/u C d.x/v D g.x; t/; (3.17b)
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where x 2 Œ0; 1�, f ; g are 2�-periodic with respect to t, and u; v are 2�-periodic and
satisfy the reflection boundary conditions

u.0; t/ D r0v.0; t/; v.1; t/ D r1u.1; t/:

By letting W
 D H0;
 � H0;
 and V
 .r0; r1/ D f.u; v/ 2 W
 j .@tu C @xu;
@v � @xv/ 2 W
g, they showed that the linear operator on the left-hand side
of (3.17) is Fredholm of index zero from V
 to W
 , for a; d 2 L1.0; 1/ and
b; c 2 BV.0; 1/. This Fredholm result was generalised in [45] to an n-dimensional
system analogous to system (3.26), along with corresponding boundary conditions
where the coefficient functions satisfy weak conditions. The same system was
investigated in [46] but this time with C1 coefficients satisfying some optimal non-
resonance conditions. There, the authors showed that the linear operator is also
Fredholm of index zero, but this time from Cn ! Cn, where Cn is the space of
continuous mappings u W Œ0; 1� � R ! R

n with a sup-norm. The result in [46]
was then used in [47] to show a Hopf bifurcation theorem for semilinear hyperbolic
systems

!@tuj C aj.x; �/@xuj C bj.x; �; u/ D 0; x 2 .0; 1/; j D 1; : : : ; n;

with smooth coefficients aj, bj, where the aj were satisfying some extra nonde-
generacy conditions. Moreover, the authors assumed that the solutions satisfied
uj.x; t C 2�/ D uj.x; t/ for x 2 Œ0; 1�, j D 1; : : : ; n, and the reflection boundary
conditions were chosen to be

uj.0; t/ D Pn
kDmC1 rjkuk.0; t/; j D 1; : : : ;m

uj.1; t/ D Pm
kD1 rjkuk.1; t/; j D m C 1; : : : ; n:

The statement of the Hopf theorem in [47] also depended on the coefficients rjk.
In regard to the Centre Manifold reduction, Renardy [60] proved a version of the

CMT for quasilinear hyperbolic equations, and then applied it to a Bénard problem
describing viscoelastic fluid. On the other hand, Lichtner et al. [52] proved a version
of the CMT for the class of local semilinear hyperbolic systems (3.2) describing
laser dynamics. Here, the authors showed that the spectrum of the infinitesimal
generator of the operator consists only of eigenvalues of finite algebraic multiplicity.
Then, using a spectral gap property, they constructed an exponentially attracting
invariant manifold on which can be defined the flow of the reduced system

@uc

@t
D Uc.v/uc C �Gc.t; v; uc; 
.t; uc; v; �//;

@v

@t
D �F.t; v;B.v/uc C C.v/
.t; uc; v; �/C g.t; v//;

with u D B.v/uc C C.v/us (and B and C smooth bases), B.v/ the spectral
projection for the critical eigenvalues, and us D 
.uc; v; t; �/ the Ck smooth graph
representation of the invariant manifold.
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Moreover, Hillen [36] investigated the existence of solutions for a local, linear
version of the hyperbolic system (3.7) (i.e., �˙ŒuC; u�� D �˙ Dconst.). He showed
that the linear operator L with Neumann or periodic boundary conditions generates
a strongly continuous semigroup on LpŒ0;L� � LpŒ0;L�. Moreover, he calculated
the spectrum of the linear operator for different types of boundary conditions. In
a separate study, Hillen [34] showed the existence of an invariant manifold for the
class of local hyperbolic reaction random-walk systems (3.3).

Finally, we mention the work of Magal and Ruan for hyperbolic semilinear equa-
tions with non-dense domains, which model age-structured populations [54, 55].
In reformulating the equation in operator form, the nonlocal boundary condition
describing the fertility of the population enters the nonlinear terms of the functional
equation. The authors adapted the approach of [67] to the context of integrated
semigroups to prove the existence of centre manifolds near steady-state solutions.
The main difficulty to overcome with non-dense domains was to determine a
spectral decomposition of the whole function space X, while for densely defined
domains of the linear operator, only the decomposition of the domain is necessary.

We can conclude from here that for hyperbolic systems, these reductions have
been applied mainly to local systems. Next, we will focus on applying such results
to nonlocal first-order hyperbolic models.

3.4 Application of LS and CM Reductions to Nonlocal
Hyperbolic Systems for Biological Aggregations

Due to the nonlocal nature of the linear operator associated with system (3.7), the
results of the previous section do not apply directly to the nonlocal hyperbolic
model (3.7). In this section, we discuss the particularities of the Lyapunov–Schmidt
and Centre Manifold reductions for this model. First, we focus on the linear operator
associated with system (3.7), and investigate its compactness. Then, we prove the
Fredholm property for this nonlocal operator. Finally, we discuss the spectrum of
L and the application of the Central Manifold Theorem to model (3.7), therefore
providing proofs of Propositions 3–5.

3.4.1 The Linear Operator

In this section, we extract the linear operator of (3.7) at an equilibrium solution
u�.x/ D .uC� .x/; u�� .x//. We rewrite Eq. (3.7) as

˙@tu
˙ D �
@xu˙ � �C.x/uC C ��.x/u� (3.19)

Consider a small perturbations u˙.x/ D u�̇ .x/ C u1̇ .x/ near u�.x/, where
ju1̇ .x/j << 1, which we substitute in (3.7). Taking a Taylor expansion of �˙ D
�1 C �2f .yṙ � yȧ C yȧl /, we obtain after truncating beyond order one
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�˙ 
 .�1 C �2f .0//C �2f
0.0/.yṙ � yȧ C yȧl /:

Let L1 D �1 C �2f .0/, R1 D �2f 0.0/. Performing a Taylor expansion of (3.19) near
.uC� ; u�� /, and keeping only the linear terms we obtain

��CuC C ��u� D �L1.u
C

1 .x/ � u�

1 .x// � R1u
C

�

.x/KC

i .u1.x// � R1u
C

1 .x/KC

i .u�

.x//
CR1u�

�

.x/K�

i .u1.x//C R1u�

1 .x/K�

i .u�

.x//:

Here, we define Ki̇ .u.x// WD yi̇;aŒu.x/� � yi̇;rŒu.x/� C yi̇;alŒu.x/�: Then, the linear
system is given by

˙@tu1̇ D �
@xu1̇ � L1.u
C
1 � u�

1 / � R1uC� KC
i .u1/

�R1u
C
1 KC

i .u�/C R1u��K�
i .u1/C R1u�

1 K�
i .u�/:

The linear operator on the right-hand side is denoted by L.v; �/, where� is a vector
of parameters—the main ones being qa; qr and qal. We write L D Lu C Lc, where

Lu.v
C; v�/T D

��
@xv
C


@xv
�
�

C
��L1vC

�L1v�
�

and

Lc.v
C; v�; �/TD

 
L1v�
L1vC

!

�R1

 
KC

i .u�/vC � K�
i .u�/v� C uC� KC

i .v/� u�� K�
i .v/

�KC
i .u�/vC C K�

i .u�/v� � uC� KC
i .v/C u��K�

i .v/

!

:

3.4.2 Compactness of Lc

We now show that Lc is a compact operator. It is sufficient to show that QK˙u is
compact as an operator from L2per to itself. We proceed in a standard way (see [61] for
instance) by defining a family of operators with finite range (and therefore compact)
which converges in the L2 norm to the operators QK˙, and thus the limit is also
compact. To this end, we use a windowed orthonormal basis of L2.R/ over intervals
of length L defined by

gn;j.x/ D 1p
L

eiknx	ŒjL;.jC1/L/.x/; (3.20)

where kn D 2�ni=L, 	 is the characteristic function of the interval, and n; j 2 Z.
Then,

K.s/ D
X

n;j2Z
˛n;jgn;j.s/; where

X

n;j2Z
j˛n;jj2 < 1: (3.21)
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Consider the approximations of K.s/ on .0;1/ given by

KN;M.s/ D
MX

jD0

NX

nD�N

˛n;jgn;j.s/

and define the operators KṄ;M W L2per ! L2per by

QKṄ;Mu WD
Z 1

0

KN;M.s/u.x ˙ s/ ds:

Letting u.x/ D P1
`D�1 c`eik`x 2 L2per and substituting (3.20) into QKC

N;Mu gives us

QKC
N;Mu D

Z 1

0

KN;M.s/u.x C s/ ds

D
Z 1

0

MX

jD0

NX

nD�N

˛n;jgn;j.s/
1X

`D�1
c`e

ik`xeik`s ds

D
MX

jD0

Z .jC1/L

jL

NX

nD�N

˛n;j
1p
L

eikns
1X

`D�1
c`e

ik`xeik`s ds

D
MX

jD0

NX

nD�N

1X

`D�1
˛n;jc`

1p
L

eik`x
Z .jC1/L

jL
eiknseik`s ds

D
MX

jD0

NX

nD�N

˛n;jc�n

p
L eik

�nx;

where the last equality comes from the integral being nonzero (and equal to L) if
and only if n D �`. Thus, QKN;M has finite range and so is compact. Consider now

jj QK � QKN;M jj2 D
D sup

jjujj2D1

Z L

0
j.K � KN;M/.u/j2 dx

D sup
jjujj2D1

Z L

0

ˇ
ˇ.K.s/� KN;M.s//u.x C s/ ds

ˇ
ˇ2 dx

� sup
jjujj2D1

Z L

0

�Z
1

0

ˇ̌
.K.s/� KN;M.s//u.x C s/

ˇ̌
ds

�2
dx

D sup
jjujj2D1

1

L

Z L

0

0

@
1X

jDMC1

Z .jC1/L

jL
	ŒjL;.jC1/L/.s/

ˇ̌
ˇ
ˇ
ˇ
ˇ

1X

nDNC1

˛n;je
ikns C ˛n;je

�ikns

ˇ̌
ˇ
ˇ
ˇ
ˇ
ju.x C s/j ds

1

A

2

dx

D sup
jjujj2D1

1

L

Z L

0

1X

jDMC1

0

@
Z L

0
	ŒjL;.jC1/L/.s/

ˇ
ˇ
ˇ
ˇ̌
ˇ

1X

nDNC1

˛n;je
ikns C ˛n;je

�ikns

ˇ
ˇ
ˇ
ˇ̌
ˇ
ju.x C s/j ds

1

A

2

dx
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and using the Cauchy–Schwarz inequality we obtain

jj QK � QKN;Mjj2 �
� sup

jjujj2D1
1

L

Z L

0

1X

jDMC1

Z L

0

	ŒjL;.jC1/L/.s/
1X

nDNC1

ˇ
ˇ˛n;je

iknsC˛n;je
�ikns

ˇ
ˇ2 ds jjujj22 dx

� 1

L

Z L

0

1X

jDMC1

Z L

0

1X

nDNC1
2jRe.˛n;je

iknx/j2 ds dx

� 1

L

Z L

0

Z L

0

1X

jDMC1

1X

nDNC1
2j˛n;jj2 ds dx

D 2L
1X

jDMC1

1X

nDNC1
j˛n;jj2 ! 0

as N;M ! 1 because the series of coefficients in (3.21) is finite. Therefore, QKN;M

converges to QK in the L2-norm, which implies that QK is also a compact operator. The
purely matrix portion of Lc is compact because it has finite range and the sum of
compact operators is compact. We conclude that Lc is a compact operator.

3.4.3 Fredholm Property and the Lyapunov–Schmidt
Reduction

It is shown in [41] (Chap. IV, Theorem 5.26) that if E;F are Banach spaces and
T W E ! F is a closed Fredholm operator and A W E ! F is a compact operator,
then T C A is also Fredholm with the index of T and T C A being equal. We use this
result to show the Fredholm property for L and for the operator

T D d

dt
� L

where T W D.T / ! X and D.T / is a subspace of a space of 2� time periodic
solutions.

As mentioned above, for steady-state bifurcations, it is sufficient to show that L is
Fredholm. For studying Hopf bifurcations (including resonance cases) and steady-
state/Hopf mode-interactions, we need to show that T is a Fredholm operator.

L Operator: We use the splitting L D Lu C Lc above. We show that Lu is
an isomorphism. Our goal is to solve Luv D Qh with v 2 D.L/ and Qh D
.h1.s/; h2.s//> 2 X. Let v.x/ D .vC.x/; v�.x//>, M D 
�1L1

� �1 0
0 1

�
and

h.s/ D 
�1.�h1.s/; h2.s//>. The equation is rewritten as a differential equation
system v0.x/ D Mv.x/C h.s/ and has solution

v.x/ D eMxC C eMx
Z x

0

e�Msh.s/ ds:
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Applying the boundary condition C D v.0/ D v.L/ implies

v.0/ D eMLv.0/C eML
Z L

0

e�Msh.s/ ds:

Because 
�1L1L ¤ 0, then I�eML is invertible and the system has a unique solution
with

v.0/ D .I � eML/�1eML
Z L

0

e�Msh.s/ ds:

Thus, Lu W D.L/ ! X is an isomorphism, and so it is a Fredholm operator of index
0. Because Lc is a compact operator, we conclude that L is also a Fredholm operator
of index zero.

T Operator We proceed in a similar way as for L and use the splitting

T D Tu � Lc WD d

dt
� Lu � Lc:

We show that Tu is an isomorphism when defined with appropriate function spaces
of 2�-time-periodic functions (since we are interested in time-periodic solutions
emerging from Hopf bifurcations). For 2�=!-periodic solutions a time-rescaling
gives a one-to-one correspondence with the 2� periodic solutions, see [25]. Let
h.x; t/ D .h1.x; t/; h2.x; t// 2 X2� and consider the equation Tuv D h where
v 2 D.T /. This equation is transformed into the decoupled transport system

@tv
C C 
@xv

C D �L1v
C C h1.x; t/ (3.22a)

@tv
� � 
@xv

� D �L1v
� C h2.x; t/ (3.22b)

The existence and uniqueness of solutions of (3.22) with periodic boundary
conditions follows the proof in [36]. Thus Tu is an isomorphism and therefore it
is Fredholm of index zero. Again, the compact perturbation preserves the Fredholm
property.

3.4.4 Centre Manifold Theorem

We now show that we can apply the CMT as stated in [32]. We begin by investigating
the spectrum of L in order to show that assumptions (A2) and (A3) of Sect. 3.3.1 are
satisfied. Assumptions (A0) and (A1) are straightforward to verify and are discussed
below.

The operator L W D.L/ 	 Y ! X is a compact perturbation of the closed
differential operator 
.�@x; @x/

T W D.L/ 	 Y ! X. Therefore, they have the
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same essential spectrum (Kato [41], Chap. IV, Theorem 5.35). The differential
operator 
.�@x; @x/ (with periodic boundary conditions) has compact resolvent and
its spectrum is a point spectrum given by

n
2k

�

L
i j k 2 Z

o
;

see Hillen [36]. Therefore, L has empty essential spectrum and so the resolvent
set of L is non-empty. It is straightforward to conclude that L also has compact
resolvent. This is done by noticing that for two invertible operators U;V one can
verify that U�1�V�1 D U�1.V�U/V�1. Choose � in the resolvent set of 
.�@x; @x/

and letting V D �I � 
.�@x; @x/, U D �I � L, then

U�1 D V�1.I � .L � 
.�@x; @x//V
�1/�1

is compact because V�1, L � 
.�@x; @x/ are compact, the product of a compact
operator and a bounded operator is compact [41] (Chap. III, Theorem 4.8), and � is
chosen so that .I � .L� 
.�@x; @x//V�1/�1 exists and is bounded. The spectrum of
L is a point spectrum consisting of isolated eigenvalues with finite multiplicity and
with no accumulation points. Thus, assumption (A2) is automatically satisfied.

We now turn to assumption (A3). We consider only steady-state solutions u�.x/
which have the isotropy subgroups † D SO.2/ and † D O.2/. For a steady-state
solution u�.x/ with isotropy subgroup †, the tangent space to X at u�.x/ (which is
isomorphic to X as a Hilbert space) is †-invariant. Since † 	 O.2/ is a compact
group acting on the separable Hilbert space X, a consequence of the Peter–Weyl
theorem [5] implies that the action of † leads to a decomposition of the space as a
direct sum of finite-dimensional irreducible representations; that is,

X D
1M

kD1
Uk

where Uk, k D 1; 2; : : : are irreducible representations of †. The isotypic decom-
position of X with respect to the † action is obtained by grouping †-isomorphic
representations into the so-called isotypic components QU`, with ` 2 I, where
I is the indexing set for isomorphism classes of irreducible representations of
†; see [26, 27] for details. The cases † D SO.2/ and † D O.2/ have a
countably infinite number of non-isomorphic irreducible representations and are
studied together. The case Dn has a finite number of isomorphism classes which
leads to a decomposition of the tangent space into infinite-dimensional isotypic
blocks. We do not consider this case in this paper.

SO.2/ and O.2/ Symmetric Steady-States Let ej, j D 1; 2, be the standard basis
vectors of C2. The subspaces

Vj
n D ˚

zeje
iknx C c:c: j z 2 C
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are irreducible with respect to the SO.2/ action (3.15) and Vj
n;V

j
m are not isomorphic

if n ¤ m. Thus, we have the decomposition

X D
1M

nD1
V1

n ˚ V2
n

where for all n 2 N, Xn WD V1
n ˚ V2

n are the isotypic components. In the case of
O.2/, the decomposition derived in [7] has the following form:

X D
1M

nD1
Xn; (3.23)

where the subspaces Xn are defined as follows. Let kn D 2�n=L. For all n � 1,

Xn D ˚
aeiknx C c:c: j a D .aC; a�/> 2 C

2
	 	 X;

are isomorphic to C
2, O.2/-invariant, and can be decomposed into isomorphic

irreducible representations. Let f1 D .1; 1/> and f2 D .1;�1/>, then

X1n D f.v0eiknxCv0e�iknx/f1 j v0 2 Cg and X2n D f.v1eiknxCv1e�iknx/f2 j v1 2 Cg;
(3.24)

are real two-dimensional O.2/-irreducible representations (written in complex
notation). The basis is given by feiknxf1; eiknxf2; e�iknxf1; e�iknxf2g. Then, Xn D X1n ˚ X2n ,
and the subspaces Xj are called isotypic components of the O.2/ action on X. The
decomposition (3.23) is called the isotypic decomposition of X.

The inner product on X given by

hv;wi D
Z L

0

.vCwC C v�w�/dx; (3.25)

where v D .vC; v�/ and w D .wC;w�/, is O(2)-invariant O.2/-invariant. Using
this inner product, one can verify that the subspaces Xj;Xk are mutually orthogonal
for all j ¤ k. Let PXk W X ! Xk be the orthogonal projection associated with
Xk. The O.2/-equivariance of L implies a block diagonalisation along the isotypic
decomposition. That is, L.Xk/ 	 Xk and we write Lk WD LjXk . Therefore, L
decomposes as a direct sum of finite-dimensional matrices.

Let �.L/ D �C [ �0 [ �� where �0 has a (nonzero) finite number of elements.
From assumption (A2), we define ı > 0 such that

inf
�2�

C

.Re.�// > ı and .Re.�// sup
�2�

�

< �ı:

For each k, we define the projections Pk;C and Pk;� onto the stable and unstable
subspaces of Lk. Consider the linear system

du

dt
D Lhu C f .t/; (3.26)
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where f 2 C�.R;Yh/ with � 2 Œ0; ı�. We use the isotypic decomposition of X and
write u 2 C�.R;D.L/h/ as

u.t/ D
1X

kD1
ˆk.x/uk.t/;

where ˆk.x/ is the matrix with basis elements of Xk as columns and uk.t/ D
PXku.t/. This leads to the decomposition of (3.26) into an infinite family of finite-
dimensional systems

duk

dt
D Lh;kuk C fk.t/; (3.27)

where fk D PXkf . For isotypic blocks with no eigenvalues on the imaginary axis,
Lh;k D Lk, while for isotypic blocks with spectrum intersecting �0 and at least one
of �C or ��, then Lh;k D Pk;CLk C Pk;�Lk. We denote by �k;˙ the hyperbolic part
of the spectrum in Lh;k.

The system of equations (3.27) has solution

uk.t/ D eLh;ktu0 C eLh;kt
Z t

0

e�Lh;ksfk.s/ ds;

with the constraint jjuk.t/jjC�.R;Xk/ < 1 forcing the unique solution

u0 D �
Z 1

0

e�Lh;ksPk;Cfk.s/ ds C
Z 0

�1
e�Lh;ksPk;�fk.s/ ds;

where the splitting fk.s/ D Pk;Cfk C Pk;�fk guarantees that the integrals are
convergent. The solution can be rewritten uk D Kk;hfk where

.Kk;hfk/.t/ WD eLh;kt

�
�
Z 1

t
e�Lh;ksPk;Cfk.s/ ds C

Z t

�1
e�Lh;ksPk;�fk.s/ ds

�
:

Because of the finite-dimensionality, it is straightforward to check that

Kk;h 2 L .C�.R;Xk/;C�.R;Xk// and jjKk;hjj < Ck.�/;

where Ck is a continuous function of � 2 Œ0; ık� with ık chosen so that

inf
�2�k;C

Re.�/ > ık and sup
�2�k;�

Re.�/ < �ık:

We define

u D Khf WD
1X

kD1
ˆk.x/.Kh;kfk/.t/;

and one can verify that this provides a unique solution of equation (3.26). We now
show that Kh is also a bounded operator; i.e. Kh 2 L .C�.R;Yh/;C�.R;D.Lh// and
that the norm of Kh is bounded by a continuous function of � 2 Œ0; ı�.
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Let f 2 Yh and we write f D P1
kD1 fk, where fk 2 Xk. Then,

jjf jjYh D
Z L

0

jf j2 dx C
Z L

0

ˇ
ˇ
ˇ
ˇ

d

dx
f

ˇ
ˇ
ˇ
ˇ

2

dx D
1X

kD1
.1C k2/jjfkjj2Xk

:

For any � 2 Œ0; ı�, we write jjKhf jjC�.R;D.Lh// D

D sup
t2R

e��jtjjjKhf jjD.Lh/

D sup
t2R

e��jtj
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where � is the Euclidean inner product on R
2. Commuting with the summations and

by linearity, the inner product turns into the inner product on each Xk and the last
line is equal to
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By orthogonality of Xk;Xj for j ¤ k this last line becomes
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where the inequality holds for all � 2 Œ0; ı� because ı � ık for all k D 1; 2; : : :, and
so we can factor out Ck from the summation and drop the index k. Thus, assumption
(A3) is satisfied.

Assumption (A0) is automatically satisfied because L is a closed operator,
see [32], while assumption (A1) is satisfied because of the tanh function in the
definition of (3.7). Therefore, all four assumptions of the CMT of [67] are satisfied
and Proposition 5 is verified.

3.5 Discussion and Generalisation of the Results

In this study, we investigated Lyapunov–Schmidt and Centre Manifold reductions
for a class of nonlocal hyperbolic systems developed to model animal aggregations.
We first presented the general theory behind these reduction methods, and the
application of these results to FDEs and local hyperbolic systems (describing
physical or biological phenomena). This approach allowed us to summarise the
results existent in the literature, and to identify the results that are still missing.
Then, we applied the two reduction methods to our class of nonlocal hyperbolic
models. We showed the compactness of the operator associated with the nonlocal
system, and then proved that the operator is Fredholm—a condition necessary for
Lyapunov–Schmidt reduction. We emphasise here that the Fredholm property for
hyperbolic equations, and in particular for nonlocal hyperbolic equations, has been
less studied compared to the ODE or parabolic PDE models. Hence, our study fills
a gap in the literature about Fredholm operators for nonlocal hyperbolic systems.

In regard to the Central Manifold reduction, we proved that the version of the
CMT described in [32] can be applied to the nonlocal model (3.7), and hence the
CM reduction in [7] is valid near steady-state solutions with isotropy subgroups
SO.2/ and O.2/. The extension to steady-state solutions with isotropy subgroup Dn

would require a different approach than the one presented here.
An interesting consequence of our results in this paper is that they extend

automatically to two or more population models for animal/cellular aggrega-
tions [16]. They also extend to coupled equations of animal/cellular aggregation via
chemotaxis, because the chemotaxis models typically contain a Laplacian operator
and the theory is well known there [32].

It is possible that the LS and CM reductions extend in a straightforward way also
to 2D nonlocal kinetic models (generalisations of the 1D hyperbolic models (3.7);
see [22]). However, it was not the goal of our study to investigate this aspect. Such
an analysis will form the object of a future study.

Another interesting question to be addressed in the future refers to a formal
comparative study of the unfolding and dynamics obtained from Lyapunov–Schmidt
reduction and WNA for arbitrary bifurcation problems.
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Chapter 4
Canard Cycles with Three Breaking
Mechanisms

Magdalena Caubergh and Robert Roussarie

Abstract This article deals with relaxation oscillations from a generic balanced
canard cycle � subject to three breaking parameters of Hopf or jump type. We prove
that in a rescaled layer of � there bifurcate at most five relaxation oscillations.

Keywords Balanced • n-multi-layer canard cycle • Breaking parameter •
Rescaled layer • Cyclicity • Bifurcating limit cycle • Relaxation oscillations

4.1 Introduction

We consider slow fast systems of the form

X�;" W
(

Px D f .x; y; �; "/

Py D "g.x; y; �; "/;
(4.1)

where f ; g are smooth functions. In the study of relaxation oscillations we follow
the general framework as introduced in [2, 3].

Each canard cycle is associated with one or more breaking mechanisms. As
in [5] we consider only canard cycles with n generic breaking mechanisms,
that may be Hopf breaking mechanisms and jump breaking mechanisms. Each
mechanism depends on a so-called breaking parameter, in fact a function a.�/ of
the parameter �: The assumed genericity is that the map � ! .a1.�/; : : : ; an.�//

is a local diffeomorphism. Then, we will suppose that � D a D .a1; : : : ; an/:

The canard cycle exists when a D 0 2 Rn and we want to study the system for
a � 0 2 Rn: A canard cycle with n breaking mechanisms is associated with n
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Fig. 4.1 A planar section of
the bifurcation diagram of a
three-layer canard cycle; in
the bounded region five limit
cycles are found

(horizontal fast) layers. For this reason we call such a canard cycle, indifferently:
n-multi-layer canard cycle or canard cycle with n breaking mechanisms.

Canard cycles with one breaking mechanism were largely investigated and a
general result in finite codimension was obtained in [3]. Canard cycles with two
breaking mechanisms were introduced in [4] and their study was completed in [7].
Canard cycles with an arbitrarily large number n of mechanisms were introduced
in [5]. There it is shown that bounding the limit cycles bifurcating from a generic
balanced canard cycle � with n canard mechanisms in a rescaled layer is reduced
to investigate the fixed points of a composition of translated power functions of the
form

�r
˛.�/ D �rn

˛n
ı �rn�1

˛n�1
ı : : : ı �r1

˛1
.�/; (4.2)

where r D .r1; : : : ; rn/; with ri 2 R n f0g defined in terms of divergence quantities
and ˛ D .˛1; : : : ; ˛n/; with ˛i 2 R obtained by rescaling ai: The �ri

˛i
in (4.2) are

translated power functions given by

�ri
˛i
.�/ D ˛i C �ri ; i D 1; : : : ; n:

The maximal number of limit cycles bifurcating from �; i.e its cyclicity, in a
rescaled layer, is equal to the maximal number of fixed points of �r

˛.�/: For n D 1,
respectively, n D 2; the cyclicity is equal to 2, respectively, 3: This is the bound
expected for an elementary catastrophe (fold resp. cusp catastrophes), although the
catastrophe theory does not apply here. For n D 3 an example by Panazzolo exhibits
on generic sections in parameter space a bifurcation with three cusp points (see
Fig. 4.1; this example was reported in [5]).

In this example one finds values of the parameter with five fixed points for
�r

˛.�/: Therefore, although this family of maps depends on a mere three dimensional
parameter, its bifurcation diagram does not globally reduce to a unique elementary
catastrophe. On the other hand, the cyclicity of � was not obtained for n D 3 in [5].
We obtain such a bound in this paper:

Theorem 1. Let � be a balanced canard cycle with three breaking mechanisms,
verifying the generic condition .G/: Then there bifurcate at most five limit cycles in
any rescaled layer of �:
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What is a balanced canard cycle � is explained in Definition 4, in terms of
the slow divergence integrals (4.4) associated with this canard cycle. The generic
condition .G/ needed in Theorem 1 is specified below in (4.6) in terms of the
divergence quantities (6). What is a rescaled layer is explained in Definition 5. Such
a layer is a neighborhood of order " in the layer variables. These layer variables are
used to parameterize the canard cycles near � as well as the bifurcating limit cycles.
Clearly, a rescaled layer does not cover a whole neighborhood of �I in Sect. 4.4, we
further discuss this restriction.

Taking into account the Panazzolo’s example, we see that the bound obtained in
Theorem 1 is optimal. During the preparation of this paper, Panazzolo communi-
cates us an article in preparation [8], where he announces that Eq. (4.2), for n D 3;

has at most five roots. This implies of course Theorem 1. Nevertheless, the method
which is used in our paper seems to be more simple. The method of Panazzolo [8],
using the Khovanskii theory of fewnomials [6], allows to obtain for an arbitrary n
the following bound:

Mn D 2n.2n�1/.n C 1/2n:

Notice that this general formula does not give the accurate bound M3 D 5; that is
obtained in [8] by a direct study.

4.2 General Setting

Here we recall briefly the general setting for slow fast systems and canard cycles
with an arbitrary number n of breaking mechanisms (see [5]).

4.2.1 Some Basic Definitions

The following assumptions are made on (4.1):

@f

@y
.x; y; �; 0/ ¤ 0;8.x; y; �/;

and

if f .x; y; �; 0/ D @f

@x
.x; y; �; 0/ D 0; then

@2f

@x2
.x; y; �; 0/ ¤ 0:

For " D 0 we obtain the layer equation X�;0. The set L� D ff .x; y; �; 0/ D 0g
is referred to as the slow curve (of the layer equation). By the assumptions
above it follows that the slow curve is a regular curve. Contact points are points
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where the slow curve is tangent to the horizontal direction. Let C� be the set
of these contact points. The set L� n C� is the union of normally hyperbolic
arcs which may be of attracting type or of repelling type. Limit periodic sets
appearing for " ! 0 and not reduced to a singular point are called slow fast
cycles (as they are the union of slow arcs on L� and fast orbits). They are compact
invariant sets of X�;0: Periodic orbits bifurcating from these slow fast cycles are
called relaxation oscillations. A distinction is made between canard and common
relaxation oscillations. The one we are interested in are the canard relaxation
oscillations, which bifurcate from a slow fast cycle containing attracting as well
as repelling slow arcs. Such a slow fast cycle is called canard cycle.

4.2.2 Multi-Layer Canard Cycles

Let us recall that a n-multi-layer canard cycle is a canard cycle with n layers or
indifferently with n breaking parameters. We suppose that the slow dynamics has
no zeros on the slow arcs contained in �:

We have two different types of breaking mechanism:

1. The Hopf mechanism, occurring at degenerate contact point .x0; y0/ where
g.x0; y0; 0; 0/ D 0 but @g

@x .x0; y0; 0; 0/ 6D 0: The breaking parameter is the
displacement of this root of g:

2. The jump mechanism where a fast orbit contained in � jumps from a non-
degenerate contact point to another one. The breaking parameter is the vertical
distance between the two contact points after perturbation.

More details about these two mechanisms can be found in [5].
Now, let T1; � � � ; Tn be the n breaking mechanisms which are labeled in the order

compatible with the orientation of � (each Ti is situated either at a degenerate
contact point or at a fast orbit between two jump points). To each Ti is associated a
breaking function ai.�/; i D 1; : : : ; n: We suppose the generic condition:

The map � ! .a1.�/; � � � ; an.�// is a local diffeomorphism at � D �0: From
now on we will assume that � D .a1; : : : ; an/:

The orientation of � induces a cyclic order on the breaking mechanisms and
related loci; we denote them: T1; � � � ; Ti; � � � ; Tn; where i is a cyclic index which
belongs to Z=nZ:

In between two breaking mechanisms we suppose to have exactly one fast orbit
(in the positive direction) having both as ˛-limit and as !-limit a point in L0 nC0:Of
course such a fast orbit has to belong to a one-parameter family of fast orbits having
both as ˛-limit and as !-limit a point in L0 � C0I we can call it a layer of fast orbits
or fast layer.

In between a fast layer and a breaking mechanism we admit that � consists of a
union of attracting slow curves and fast orbits, called attracting sequence.

A fast orbit in an attracting sequence necessarily has as ˛-limit a (jump) point in
C0; while we require that the !-limit be situated in L0 n C0:
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We also require the same on� when we reverse time, implying similar conditions
on a succession of repelling slow arcs, as we have on a succession of attracting slow
arcs. The related succession of repelling slow curves and intermediate fast orbits
will be called a repelling sequence.

We return now to the layer orbits. As described before, one has a unique layer
orbit li in�; for each i 2 Z=nZ (see the convention for the index i introduced above).
This layer orbit links the repelling sequence Ri to the attracting sequence AiC1: As
already observed, each li belongs to a one-parameter family of such fast orbits (a fast
layer), and as a consequence the canard cycle is a member of an n-parameter family
of similar canard cycles. To make this point more precise, we consider a transverse
section †i to li; transverse to the field X0;0; for each i 2 Z=nZ: Let ui be a smooth
regular parametrization of †i; such that †i \ li corresponds to ui D 0: We choose
the juij sufficiently small, let us say ui 2� � ˇ; ˇŒ for some ˇ > 0 small enough; we
can replace li by li.ui/; the fast orbit passing through the point ui 2 †i (li D li.0/)
(in what follows, we will reduce each†i to its part parameterized by ��ˇ; ˇŒ and we
will write indifferently ui 2 †i or ui 2��ˇ; ˇŒ/: So, we have an n-parameter family
of canard cycles �u; parameterized by u D .u1; � � � ; un/ 2� � ˇ; ˇŒn: The canard �u

is the one containing the fast layer orbits li.ui/; for i 2 Z=nZ: To emphasize the
dependence on ui; we will write ni.ui/;mi.ui/ for the end points of the layer orbit
li.ui/; and also Ai.ui�1/;Ri.ui/ for the attracting and repelling sequences associated
with the transition Ti: We can assume that our canard cycle � is just �0: Parameters
ui are called the layer variables.

4.2.3 Equation of Bifurcating Limit Cycles

Let us consider an open connected arc � 	 L0 n C0: Along such an arc one can
consider the slow divergence integral Int.�/; as defined in [1], for instance. For the
system (4.1) and for an arc �; above an interval Œx1; x2� without zero of g nor contact
point in its interior, we have that

Int.�/ D Int.x1; x2/ D �
Z x2

x1

1

g.x; y.x/; 0; 0/

�@f

@x
.x; y.x/; 0; 0/

�2
dx; (4.3)

where y.x/ is the implicit function defined by f .x; y.x/; 0; 0/ D 0 along �: The end
points x1 and x2 may be contact points.

Let us consider now the 2n integrals Ii;j.uj/; defined for i 2 Z=nZ; j D i; i � 1 W
Ii;i�1.ui�1/ D Int.�.Ai.ui�1//; Ii;i.ui/ D �Int.�.Ri.ui// (4.4)

where �.Ai.ui�1// is the union of the slow arcs which constitute the attracting
sequence Ai.ui�1/ and �.Ri.ui// is the union of the slow arcs which constitute the
repelling sequence Ri.ui/:

Remark 2. For each breaking mechanism Ti we choose one section Ti: For the Hopf
mechanisms, we have to introduce as breaking parameter a rescaled parameter: Nai D
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"�ıai for some ı > 0; in consequence of the blow-up needed at this point. To keep
the notations homogeneous, we will also write Nai for the breaking parameter at a
jump breaking mechanism (i.e., we write ai D Nai for a jump breaking parameter).
We globally write : Na D .Na1; � � � ; Nan/ (see [5] for more details).

We recall now an important definition:

Definition 3. We say that a function f .z; "/; with z 2 Rp for some p; is "-regularly
smooth in z (or "-regularly C1 in z) if f is continuous and all partial derivatives of f
with respect to z exist and are continuous in .z; "/:

We want to recall now from [5] expressions for the transition maps for " > 0;

from the section †i�1 to the section Ti; along the flow of Xa;"; and from †i to Ti

along the flow of �Xa;" (reversing time). There exist functions QIi;j.uj; Na; "/ which are
"-regularly C1 in .uj; Na/; such that

QIi;j.uj; 0; 0/ D Ii;j.uj/ for i 2 Z=nZ; j D i � 1; i

and such that the transition maps have the following expressions:

1. From †i�1 to Ti W ui�1 ! exp
QIi;i�1.ui�1;Na;"/

"
C fi;i�1.Na; "/;

2. From †i to Ti W ui ! exp
QIi;i.ui;Na;"/

"
C fi;i.Na; "/;

with fi;j functions that are "-regularly smooth in Na: One deduces in [5] the following
system of n equations for the limit cycles:

exp
QIi;i�1.ui�1; Na; "/

"
� exp

QIi;i.ui; Na; "/
"

D Nai for i D 1; � � � ; n (4.5)

with new functions QIi;j which differ from the previous ones by terms of order O."/;
which are "-regularly C1 in .u; Na/:

In Figs. 4.2 and 4.3 the transition maps are indicated by dotted lines.

Fig. 4.2 Canards with one breaking parameter; Hopf breaking mechanism on the left, jump
breaking mechanism on the right
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Fig. 4.3 On the left a canard cycle with one breaking mechanism (jump) and exhibiting an
attracting sequence. On the right a canard cycle with three breaking mechanisms (one jump and
two Hopf)

4.2.4 Rescaling Generic Balanced Canard Cycles

Recall � is the canard cycle �u associated with u D 0:

Definition 4. The canard cycle � is said to be balanced if the integrals Ii;j verify
the following conditions:

Ii;i.0/ D Ii;i�1.0/ for i 2 Z=nZ:

Let us suppose that � is a balanced canard cycle. Then � is said to be generic if
it verifies the generic condition

.G/ W
nY

iD1
I0
i;i.0/ 6D

nY

iD1
I0
i;i�1.0/ (4.6)

We assume from now on that � is a generic balanced canard cycle. It is proven
in [5] that there exists an "-regularly function ui.Na; "/ such that

QIi;i.ui.Na; "/; Na; "/ D QIi;i�1.ui�1.Na; "/; Na; "/;
for all " > 0; small enough. We write u.Na; "/ D .u1.Na; "/; : : : ; un.Na; "//:

We can introduce now the rescaled layer variables:

Definition 5. Let us suppose that � is a generic balanced canard cycle and
let u.Na; "/ D .u1.Na; "/; : : : ; un.Na; "// the application defined above. For each
i D 1; � � � ; n; the rescaled layer variable Ui is defined by

ui D ui.Na; "/C "Ui:

Taking Ki > 0; for i D 1; : : : ; n arbitrarily large constants, we define a rescaled
layer by taking Ui 2 Œ�Ki;Ki�; for i D 1; : : : ; n; and " small enough.

Introduce

I0i .Na; "/ D QIi;i.ui.Na; "/; Na; "/ D QIi;i�1.ui�1.Na; "/; Na; "/ and I1i;j D I0
i;j.0/;
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then we have that

QIi;j.uj; Na; "/ D I0i .Na; "/C "I1i;jUj.1C O."//; (4.7)

where O."/ is "-regularly smooth in Uj:

Substituting (4.7) in Eq. (4.5) we obtain, for i D 1; : : : ; n; the rescaled equations:

exp
�

I1i;iUi.1C O."//
�

� exp
�

I1i;i�1Ui�1.1C O."//
�

D ˛i; (4.8)

for rescaled parameter variables ˛i D Nai exp.�I0i .Na; "/="/: To simplify the notation
further, we also write: I1i;i.0/ D �i; I1i;i�1.0/ D �i�1 and ri D �i�1

�i�1
for i 2 Z=nZ: At

the parameter .˛; r/ one associates in [5] the translated power function:

ˆr
˛.�/ D ˛ C �r:

Now, putting � D exp Un; it is proven in [5] that the system of equations (4.8)
reduces to a one-dimensional fixed point equation for a map: � ! 'r

˛.�/ C O."/
where

'r
˛ D �rn

˛n
ı � � � ı �r1

˛1
;

and O."/ is "-regularly smooth in .�; ˛; r/:

4.3 System with Three Breaking Parameters

In this section we particularize the general setting to systems with three breaking
parameter mechanisms. Each of these mechanisms may be of Hopf or jump type.
Figures 4.3 and 4.4 present examples of such system.

We will denote by u; v;w the layer variables, by I.u/; J.v/;K.u/;L.w/;M.v/ and
N.w/ the 6 involved slow fast integrals, and by a; b; c the three breaking parameters.
As above, we change the parameter .a; b; c/ for the new parameter .Na; Nb; Nc/ to take
into account the possibility of Hopf type mechanisms (see Remark 2). We assume
that � D .Na; Nb; Nc/ is the whole parameter of X�;":

As a consequence of their basic properties, the slow divergence integrals are
strictly negative and with strictly non-zero derivative:

I0.u/ 6D 0; K0.u/ 6D 0; J0.v/ 6D 0; M0.v/ 6D 0; L0.w/ 6D 0; N0.w/ 6D 0:

We assume that the given canard cycle � is �.0;0;0/; i.e. it corresponds to u D v D
w D 0: It is supposed to be balanced, which here reads as

I.0/ D J.0/; K.0/ D L.0/ and M.0/ D N.0/: (4.9)
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Σ0

Σ− Σ+

u

v
w

− 1
4

0

0− 11 −d d + δ1

J

I

L

K

M N

Fig. 4.4 Canard cycle �uvw for (4.12) with three Hopf breaking parameters

Definition 6. The divergence quantities are the derivatives of the six divergence
integrals, computed along the canard cycle:

(
I1 D I0.0/; J1 D J0.0/;K1 D K0.0/;
L1 D L0.0/;M1 D M0.0/;N1 D N0.0/:

(4.10)

The canard cycle � is also supposed to be generic. This means that it verifies the
property .G/ in (4.6), which here reads as

G D I1L1M1

J1K1N1
6D 1; (4.11)

where G is smooth in �:

4.3.1 An Example

Consider the slow fast system in the Liénard plane

(
Px D y C 1

2
x2 � 1

4
x4

Py D "gdı1ı2.x; a; b; c/;
(4.12)

with

gdı1ı2.x; a; b; c/ D .x � a/.x C 1 � b/.x � 1 � c/.x � d � ı1/.x C d/

1C ı2x
: (4.13)
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We see that the slow curve has two minima at x D �1 and x D 1 and one
maximum at x D 0: The values of the minima is equal to � 1

4
and the value of

the maximum is equal to 0: The breaking parameters are .a; b; c/ and for .a; b; c/ D
.0; 0; 0/we have three Hopf mechanisms of canard cycles. The parameters .d; ı1; ı2/
are constants that have to be chosen such that there exists a generic balanced canard
cycle. We will not give a complete proof of this claim. We content ourselves in
giving some indications which support it.

We write F.x/ D � 1
2
x2 C 1

4
x4: We will choose d 2�0; 1Œ and ı1; ı2 small enough

such that d C ı1 2�0; 1Œ and jı2j < 1: There are two singularities of the slow
dynamics at points .�d;F.d// and .dCı1;F.dCı1// on the interior branches of the
slow curve. The orientation of the slow dynamics is shown in Fig. 4.4. We choose
the three layer sections to be †0 D fx D 0g; †�1fx D �1g and †C D fx D 1g;
with parametrization u; v;w, respectively, being equal to the coordinate y: We take
u 2� � 1

4
; InffF.d/;F.d C ı1/gŒ; v 2�F.d/; 0Œ and w 2�F.d C ı1/; 0Œ: Then, for any

convenient value .u; v;w/ we have a canard cycle �uvw:

We write gdı1ı2.x/ D gdı1ı2.x; 0; 0; 0/: If f .x/ D @F
@x ; we have that

gdı1ı2.x/ D f .x/
.x � d C ı1/.x C d/

1C ı2x

and from (4.3) we obtain the following expression for the slow divergence integral:

Int.x1; x2/ D
Z x2

x1

1C ı2x

.x � d C ı1/.x C d/
f .x/dx: (4.14)

For any y 2� � 1
4
; 0Œ we let �xC.y/ < �x0.y/ < x0.y/ < xC.y/ be the four roots

of the equation fF.x/ D yg: The six slow divergence integrals are given by (see
Fig. 4.4):

I.u/ D Int.�x0.u/;�1/; K.u/ D Int.x0.u/; 1/; J.v/ D Int.�xC.v/;�1/

and

M.v/ D Int.�x0.v/; 0/; L.w/ D Int.xC.w/; 1/; N.w/ D Int.x0.w/; 0/:

We now explain how to find a generic balanced canard cycle. First, for ı1 D ı2 D 0;

the system is symmetric with respect to the Oy-axis. Then the integrals I;K are
identical and also the pairs J;L and M;N: Moreover the four integrals I;K;M;N
vary from �1 to 0 and the two integrals J;L have a bounded variation. Taking, for
instance, any value for v we have a unique value u.v/ such that the symmetric canard
cycle �u.v/vv is balanced. Of course, as this canard cycle belongs to a one-parameter
family of balanced canard cycles, it cannot verify the condition .G/: However, it
seems reasonable to think that there exist choices of the constants .d; ı1; ı2/ which
break this symmetry and for which there exists a generic balanced canard cycle.
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4.3.2 System of Equations for Relaxation Oscillations

The system of governing equations for relaxation oscillations is given by
8
ˆ̂<

ˆ̂
:

exp. QI.u; �; "/="/� exp. QJ.v; �; "/="/ D Na;
exp. QK.u; �; "/="/ � exp. QL.w; �; "/="/ D Nb;

exp. QM.v; �; "/="/� exp. QN.w; �; "/="/ D Nc;
(4.15)

where � D .Na; Nb; Nc/ is near .0; 0; 0/ and the solutions .u; v;w/ that we are looking
for are near .0; 0; 0/: Since � is a generic balanced canard cycle [i.e., we have (4.9)
and (4.11)], there exist "-regularly smooth functions u.�; "/; v.�; "/;w.�; "/; with
u.�; 0/ D v.�; 0/ D w.�; 0/ D 0; such that

QI.u.�; "/; �; "/ � QJ.v.�; "/; �; "/
QK.u.�; "/; �; "/ � QL.w.�; "/; �; "/
QM.v.�; "/; �; "/ � QN.w.�; "/; �; "/:

We introduce the translated layer variables:

Nu D u � u.�; "/; Nv D v � v.�; "/; Nw D w � w.�; "/;

and we can expand

QI.u; �; "/ D QI0.�; "/C QI1.�; "/Nu.1C Nu2/;
and also the other functions QJ; QK; : : : : Let us notice that we have

QI0.�; 0/ D I.0/; QI1.�; 0/ D I1 (4.16)

and similar "-limits for the other functions QJ; QK; : : : : Next we introduce the rescaled
parameter variables

˛ D Na exp.�QI.0; �; "/="/; ˇ D Nb exp.� QK.0; �; "/="/; 
 D Nc exp.� QM.0; �; "/="/;

and we write QI1.�; "/ D QI0.0; �; "/; QJ1.�; "/ D QJ0.0; �; "/; : : : I to simplify reading,
in the sequel we shortly write QI1 D QI1.�; "/; QJ1 D QJ1.�; "/; : : : although they do
depend on .�; "/: Then the system of governing equations for limit cycles (4.15) for
Nu; Nv; Nw ! 0 is reduced to

8
ˆ̂
<

ˆ̂
:

exp
� QI1 Nu.1C O.Nu//="�� exp

� QJ1 Nv.1C O. Nv//="� D ˛;

exp
� QK1 Nu.1C O.Nu//="�� exp

� QL1 Nw.1C O. Nv//="� D ˇ;

exp
� QM1 Nv.1C O. Nv//="�� exp

� QN1 Nw.1C O. Nw//="/ D 
;

(4.17)
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4.3.3 Khovanskii’s Reduction of the System of Equations

To control the number of solutions of (4.17) we use a Khovanskii’s method. This
approach is quite similar to the first step of the method used in [7] for canard cycles
with two breaking parameters. In the system (4.17) we replace one equation by an
equation equivalent to D.Nu; Nv; Nw; �; "/ D 0; where D is the Jacobian determinant of
the left-hand side of (4.17) with respect to .Nu; Nv; Nw/: Since we have

@

@Nu exp
QI1 Nu.1CO.Nu//

"
D

QI1.1CO.Nu//
"

exp
QI1 Nu.1CO.Nu//

"
D

QI1
"

exp
QI1v Qu.1CO.Nu//

"
;

and analogous expressions for the other derivatives, we obtain that

D D
QI1 QL1 QM1

"3
exp

h QI1 Nu.1C O.Nu//C QM1 Nv.1C O. Nv//C QL1 Nw.1C O. Nw//
"

i

�
QJ1 QK1

QN1

"3
exp

h QK1 Nu.1C O.Nu//C QJ1 Nv.1C O. Nv//C QN1 Nw.1C O. Nw//
"

i
;

for Nu; Nv; Nw ! 0: We write QG D QI1 QL1 QM1QJ1 QK1 QN1 D G C O."/; with a term O."/ which is

"-regularly smooth in � and with G as defined in (4.11). If G < 0; the Jacobian
determinant is locally non-zero. Then, the system (4.17) has locally at most one
solution. From now on we will suppose that G > 0: In this case, for k.Nu; Nv; Nw/k ! 0;

the equation D D 0 is equivalent to

. QI1 � QK1/Nu C . QM1 � QJ1/ Nv C . QL1 � QN1/ Nw C " ln QG C O
�
k.Nu; Nv; Nw/k2

�
D 0: (4.18)

Under the generic condition (G), as given in (4.11), at least one of the three
coefficients I1�K1; J1�M1 or L1�N1 is different from 0:Without loss of generality,
we can assume that L1�N1 6D 0: Then, using Implicit Function Theorem, (4.18) can
be solved for Nw: We thus obtain a function Nw; that is "-regularly smooth in .Nu; Nv; �/
and from (4.18) we find for k.Nu; Nv/k ! 0 W

Nw.Nu; Nv; �; "/ D �
QI1 � QK1

QL1 � QN1

Nu �
QM1 � QJ1
QL1 � QN1

Nv � " ln QG C O
�
k.Nu; Nv/k2

�
; (4.19)

In order to simplify the system of equations, we consider a coordinate transforma-
tion of the layer variables

.Nu; Nv/ 7! .Qu; Qv/;
where for Nu; Nv ! 0; Qu D QI1 Nu.1C O.Nu//; Qv D QJ1 Nv.1C O. Nv//; are the arguments of
the exponential functions appearing in the first equation in (4.17). After this change
of variables, the function (4.19) is replaced by the function Qw with

Qw.Qu; Qv; �; "/ D � QI1 � QK1

QL1 � QN1

Qu
QI1

� QM1 � QJ1
QL1 � QN1

Qv
QJ1

�" ln QG CO
�
k.Qu; Qv/k2

�
; k.Qu; Qv/k ! 0:
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The Khovanskii’s method consists in replacing one of the three equations in (4.17),
we choose the last one, by the equation D D 0; which for k.Nu; Nv; Nw/k ! 0 is
equivalent to the equation Nw D Qw.Qu; Qv; �; "/ for k.Qu; Qv/k ! 0: In this way, we can
eliminate Nw in the two first equations of (4.17) to obtain the following system of two
equations in .Qu; Qv/ for k.Qu; Qv/k ! 0;

8
ˆ̂
<

ˆ̂:

exp
Qu
"

� exp
Qv
"

D ˛;

exp
Q� Qu.1C O.Qu//

"
� exp

Q�1 Qu C Q�2 Qv � " ln QG C O.k.Qu; Qv/k2/
"

D ˇ;

(4.20)

where Q�; Q�1; Q�2 are "-regularly functions in � given by

Q� D
QK1

QI1
; Q�1 D �

QL1. QI1 � QK1/

QI1. QL1 � QN1/
; Q�2 D �

QL1. QM1 � QJ1/
QJ1. QL1 � QN1/

:

The system of equations (4.20) counts the number of contact points between the
foliation defined by the last equation in (4.17) and the curves defined by the two
first equations of (4.17). Therefore, for a given value of the parameter .�; "/; the
maximal number of solutions .u; v;w/ of (4.17) is bounded by 1 + the number of
solutions .Qu; Qv/ of (4.20).

Notice that system (4.20) is very similar to the one encountered in [7] for the case
of two breaking parameters. The only difference is that the second term in the second
equation of (4.20) depends on two variables Qu and Qv and not just on the single
variable Qv: This simple fact prevents us to proceed to further steps of Khovanskii’s
method as it was possible in [7]. For this reason we now have to restrict the study to
a rescaled layer.

4.3.4 Rescaled System of Equations

As we announced in Sect. 4.1, the rescaling of Eq. (4.17) reduces the question of
bounding the number of limit cycles bifurcating in a rescaled layer of � to the
question of the number of fixed points for a fewnomial type map, here composed of
three translation power functions:

� 7! �˛ C .ˇ C .�
 C �r1 /r2 /r3 ; (4.21)

where r1 D M1

J1
; r2 D L1

N1
; r3 D I1

K1
: As we commented in Sect. 4.1 a direct approach

of this question is announced in [8], to obtain 5 as bound. In the present paper we
will obtain this bound by rescaling system (4.20). As this system is much simpler
than (4.17), we believe that our proof is also much simpler than a direct study
of (4.21).



74 M. Caubergh and R. Roussarie

We now enter in the proof of Theorem 1. To this end, we rescale the variables
Qu; Qv by

Qu D "U; Qv D "V;

with U;V in arbitrarily large compact intervals. Next, we make the change of
variables

� D exp U; � D exp V;

where now �; � are to be considered in arbitrarily compact intervals in �0;C1Œ:

Recalling the notation of the divergence quantities in (4.10) and (4.16) we write

� D K1
I1
; �1 D �L1.I1 � K1/

I1.L1 � N1/
; �2 D �L1.M1 � J1/

J1.L1 � N1/
I

then system (4.20) reads as
(
� � � D ˛

�� � G�1��1��2 C O."/ D ˇ;
(4.22)

where the uniformity of the term O."/ is relative to the choice of the compact domain
for .�; �; ˛; ˇ/: Moreover this term is "-regularly smooth in .�; �; ˛; ˇ/: Hence, by
substitution of � D � � ˛ in the second equation we obtain a one-dimensional
equation:

�� � G�1��1 .� � ˛/�2 � ˇ C O."/ D 0; (4.23)

where again the term O."/ is uniform with respect to the choice of the compact
domain for .�; ˛; ˇ/ and it is "-regularly smooth in .�; ˛; ˇ/:

Theorem 1 follows from next claim:

Proposition 7. For any fixed .�; �1; �2/ and .˛; ˇ/ 2 R2; the fewnomial type
function

'�;�1;�2.�; ˛; ˇ/ D �� � G�1��1.� � ˛/�2 � ˇ; (4.24)

has at most 4 roots in � counted with their multiplicities in �˛;1Œ\�0;1Œ:

Before proving Proposition 7 we first show how to deduce Theorem 1 from it.
As we are looking for solutions .�; �/ for system (4.22), in some compact set, we
see that we can also restrict .˛; ˇ/ to some compact set of R2: Now the term O."/
in (4.23) is uniform in compact sets for .�; ˛; ˇ/ and "-regularly smooth.

Let A be a compact interval in �0;C1Œ: As the property to have at most four
roots in � counted with their multiplicities is stable under smooth perturbations on
compact domains, it follows that the left-hand side of (4.23) is a function with less
than four roots in A for " small enough. This implies that system (4.22) has less
than four solutions on a given compact domain for " small enough, from which
Theorem 1 is proven.
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Proof of Proposition 7. First we consider the case ˛ D 0: Then

'�;�1;�2 .�; ˛; ˇ/ D �� � G�1��1C�2 � ˇ:

This function has at most two roots counted with their multiplicities if � 6D �1C�2;

and, as G 6D 1; has at most a simple root if � D �1 C �2:

Next we suppose that ˛ 6D 0: To study the zeroes � of (4.24) in function of
.˛; ˇ/; we distinguish the case ˛ > 0 and ˛ < 0: As .�; �1; �2/ is fixed, we denote
the function '�;�1;�2 simply by ':

1. Case ˛ > 0: We introduce the variable � by � D ˛.1 C �/ with � > 0 (since
a� D � � ˛ > 0). Then ' transforms into

'C.�/ � '.˛.1C�/; ˛; ˇ/ D ˛� .1C�/��G�1˛�1C�2��2.1C�/�1�ˇ: (4.25)

To bound the zeroes of 'C we apply a division-derivation algorithm. Hence,

@'C
@�

.�/ D �˛� .1C�/��1�G�1˛�1C�2 Œ�1.1C�/�1�1��2 C�2.1C�/�1��2�1�

and so

.1C �/1��
@'C
@�

.�/ D �˛� � G�1˛�1C�2'1C.�/;

where '1C.�/ D .1C �/1�� Œ�1.1C �/�1�1��2 C �2.1C �/�1��2�1�: Then

@'1C
@�

.�/ D .1C �/�1���1��2�2'2C.�/; where

'2C.�/ D �2.��2�1�1/.1C�/�C�1.���1/�2C�2.1��2/.1C�/2: (4.26)

This last function is a polynomial of degree 2 in �; more precisely:

'2C.�/ D .�1 C �2/.�1 C �2 � �/�2 C �2.2�1 C 2�2 � � � 1/�C �2.�2 � 1/:

The number of positive zeroes� for '2C corresponds to the one for @
2'

C

@�2
:A direct

and easy analysis shows that this polynomial is identically to zero if and only if
the triple .�; �1; �2/ is equal to .�; 0; 0/; .1; 0; 1/ or to .�; �; 0/ for some � 2 R:

In the case .�; 0; 0/; we have that 'C.�/ D ˛� .1C �/� � G�1 � ˇ: In the case
.1; 0; 1/; we have that 'C.�/ D ˛.1 � G�1/�C ˛ � ˇ: In the case .�; �; 0/; we
have that 'C.�/ D .1� G�1/˛� .1C�/� �ˇ: In all three cases the function 'C
has at most a single root, which is simple. As a consequence ' for ˛ > 0 and
ˇ 2 R has at most four zeroes, counted with their multiplicity.
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2. Case ˛ < 0: Consider now the case ˛ < 0 and introduce the variable � D
�˛� D j˛j�: We have that � > 0 for � > 0: Then ' transforms into

'�.�/ D '.j˛j�; ˛; ˇ/ D j˛j��� � G�1j˛j�1C�2.1C �/�2 � ˇ:

The expression for '�.�/ is similar to the one for 'C.�/ in (4.25), up to permu-
tation of � with 1 C �; and replacing ˛ in 'C by j˛j: Then applying to '� two
steps of division-derivation procedure as we did to 'C in the case ˛ > 0 leads to
the quadratic polynomial '2�; defined by '�

2 .�/ D �2.� � 2�1 � 1/�.1C �/C
�1.���1/.1C�/2C�2.1��2/�2;which is similar to (4.26), up to the permutation
of � with 1C �: Therefore, also for ˛ < 0; ˇ 2 R; there are at most four zeroes
� for ':

4.4 Open Questions

(1) Theorem 1 computes the cyclicity of a generic balanced canard cycle � in
restriction to rescaled layers. Such a rescaled layer does not define a whole
neighborhood of �: It remains to compute the true cyclicity of �; i.e. to find
a bound of the number of bifurcating limit cycles in a whole neighborhood
of �: A method for achieving this result would be to blow up the system of
equations (4.17). In such blowing up the rescaled domain may be seen as a
chart of the blown-up space (the so-called family chart). To complete the study
of the cyclicity it thus would remain to study the blown-up system in the other
charts (the parameter charts). This does not seem to be a too difficult task.

(2) In [7], the genericity is not assumed and a result was obtained for any finite
codimension for canard cycles with two breaking mechanisms (besides the two
breaking parameters one considers other parameters to unfold the situation).
Moreover the result was obtained in a whole neighborhood (and not just in
rescaled layers), by using the Khovanskii’s method directly for the non-rescaled
system. The idea was to “reduce the number of exponentials.” Using this
procedure for canard cycles with any number of breaking mechanisms, the
first step works, as it produces an equation, Det D 0; without exponentials.
Unfortunately, the number of exponentials does not decrease at the second step,
as soon as there are more than three breaking mechanisms. It would be very
interesting to find a general method to tackle the system of equations (4.5) in
non-generic cases and for an arbitrarily number of equations.
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Chapter 5
On the Integrability of Lotka–Volterra
Equations: An Update

Colin Christopher, Wuria M.A. Hussein, and Zhaoxia Wang

To Christiane—with thanks for being able to share in your
mathematical interests in a small way.

Abstract In 2004, Christopher and Rousseau considered various results around the
integrability of the origin for the Lotka–Volterra equations

Px D x.1C ax C by/; Py D y.��C cx C dy/;

for rational values of �. In particular, for � D p=q with p C q � 12, they showed
that all the integrability conditions were given by either the Darboux method or a
monodromy argument.

In this paper we consider the integrability of the critical points which do not lie
at the origin. For those on one of the axes, we classify all integrable critical points
with ratio of eigenvalues �p0=q0 with p0 Cq0 � 17; and for those not on the axes, we
consider all critical points with ratio of eigenvalues �p00=q00 with p00 C q00 � 10. We
also extend the classification of integrable critical points at the origin for pCq � 20.

In all these cases, we are able to show that the monodromy method is sufficient to
prove integrability except when �abC.1��/ad �cd D 0, for which the system has
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an invariant line. However, to do this, we need to extend the monodromy method to
include the monodromy about some of the invariant algebraic curves of the system
as well as the axes.

Keywords Lotka-Volterra equations • Monodromy method • Integrable critical
points • Invariant algebraic curves • Darboux method

5.1 Introduction

In [2] the authors considered various results around the integrability and lineariz-
ability of the origin for the Lotka–Volterra equations

Px D x.1C ax C by/; Py D y.��C cx C dy/; (5.1)

for rational values of �.
In particular, for � D p=q with p C q � 12 they showed that all the integrability

conditions were generated by two mechanisms. First, when

�ab C .1� �/ad � cd D 0; (5.2)

there is an invariant line L D 0. Using the classical theory of Darboux, a first integral
of the form xpyqL˛ could be found. Furthermore, the conditions for linearizability
can be given explicitly.

Second, the integrability of the origin could be explained by a monodromy
argument. That is, the ratio of eigenvalues of the critical points on the axes and the
line at infinity implied that the monodromy map around the origin was linearizable,
and hence the critical point was in fact integrable. When (5.2) does not hold, it was
shown that the conditions for integrability automatically imply linearizability.

Several results for more general values of � were given. In addition, by
comparison with the results of Moulin-Ollagnier [5] on Liouvillian integrability of
Lotka–Volterra systems, two exceptional cases were found when � D 8=7 and 13=7
which turned out to support invariant algebraic curves and were hence solvable by
the Darboux method. Some further results were announced in [4] and [3].

Our aim in this paper is to extend this investigation to the critical points of (5.1)
which do not lie at the origin. In particular, if the critical point with ratio of
eigenvalues �p=q lies on one of the axes (the “side” case) we have show that
for p C q � 17 the critical point is integrable if either there is an invariant line
passing through the point (and the system is reducible to the conditions found
above via a projective transformation) or there is a monodromy argument involving
the monodromy group of the axes and the line at infinity and possibly an invariant
algebraic curve passing through the critical point.

If, on the other hand, the critical point does not lie on the axes (the “face” case)
we have shown that for p C q � 10 the critical point is integrable if either there is
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an invariant line passing through the point (and again the system is reducible to the
conditions found in [2]) or there is a monodromy argument involving an invariant
algebraic curve passing through the critical point.

We also return to the origin case considered in [2] and extend the classification to
p C q � 20. We have shown that no new cases appear, and furthermore, that the two
exceptional cases mentioned above can be considered as arising from monodromy
arguments involving the invariant curves and the axes.

The paper is arranged as follows. In the next section we give a brief summary
of the monodromy method in the form that we use here. We will also explain how
we can extend the monodromy method to some of the invariant algebraic curves
found by Moulin-Ollagnier. The geometric classification of these curves and their
singularities is part of a more extensive investigation to be published elsewhere [1].
Here, however, we want to show that the monodromy method can still be applied in
some cases where the invariant curve has singularities.

Finally, in Sect. 5.3, we state our results. Since the computation of integrability
conditions is now a well-trodden area, we do not give extensive sets of conditions,
but merely indicate the classes of systems involved and state the examples arising
from invariant algebraic curves.

5.2 The Monodromy Method

Recall that a polynomial vector field,

Px D P.x; y/; Py D Q.x; y/;

gives rise to an analytic foliation (with singularities)

P.x; y/ dy � Q.x; y/ dx D 0:

Such a foliation extends in a natural way to P2.C/. If P and Q have degree n, then
the line at infinity is invariant if xQn � yPn ¤ 0, where Pn and Qn are the terms of
highest degree in P and Q, respectively.

For the Lotka–Volterra system (5.1) we therefore have three invariant lines: the x
and y-axes and the line at infinity. Since we work over P2.C/, these lines are really
copies of the Riemann Sphere.

In the neighbourhood of each line we can consider the monodromy group as
follows. We fix a family of transversals to the line which pass through all points on
the line which are non-singular points of the vector field (call this set of points S).
We also fix a point p 2 S on the line and denote its transversal by †.

For each closed path, 
 , starting at p and each point, q, on † sufficiently close
to p we can lift the path to a unique curve on the leaf of the foliation through q.
On returning to † this curve will intersect † at a new point q0. If we are given a
local parameter z for † with z.p/ D 0, then the map from q to q0 will define the
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germ of a local analytic function M
 W .C; 0/ 7! .C; 0/. This map is called the
monodromy map associated with the path 
 . The map M
 only depends on the path
up to homotopy in S. Furthermore, a change in the transversal or its parameterization
will give a monodromy map conjugate to the original one. Finally, the monodromy
map for a composition of paths is just the compositions of the monodromies
(M˛ıˇ D M˛ ı Mˇ).

It is well known that there is a close connection between the conjugacy class
of the monodromy map about a path surrounding a single critical point and the
analytic classification of the critical point itself. In particular, a critical point which
is of saddle type is integrable (i.e. can be orbitally linearized) if and only if
the monodromy map is linearizable. The monodromy method consists of finding
simple conditions which guarantee that the monodromy around a critical point is
linearizable by considering the monodromy maps of the other points on the line.

Since we are working on the Riemann Sphere, the monodromy M1 about a
critical point, c1, is just the inverse of the composition of the monodromies, Mk,
about the other critical points, ck, on the sphere. Thus, if M2 is linearizable and
Mk is the identity map for k > 2, then it is clear that M1 is also linearizable and
hence the critical point c1 must be integrable.

The power of the method lies in the fact that in many cases it is easy to give
conditions for a critical point to have identity or linearizable monodromy.

Consider a critical point on the Riemann Sphere whose ratio of eigenvalues is
� (calculated so that the eigenvalue associated with the tangential space of the
Riemann Sphere forms the denominator). If � is a positive rational number which is
not an integer or the reciprocal of an integer, then the critical point is a linearizable
node, and hence has linearizable monodromy.

In the case when � or 1=� is a positive integer, then the node may have at
most one resonant term. If this resonant term is zero, the node must be linearizable
as above. This can be established by a simple computation. However, in most cases
the linearizability can be seen geometrically: if the node is resonant, then there is
no analytic separatrix passing through the critical point tangent to the eigenvector
with smaller (in absolute terms) eigenvalue. Thus, if � is a positive integer greater
than one, then the fact that Riemann Sphere itself is such a separatrix shows that the
node must be resonant, and the monodromy just the identity. Similarly, if the node
occurs at the crossing of two invariant lines, it must also be non-resonant.

What we have said about lines will also work for any smooth invariant curve of
genus 0 (i.e. conics). More generally, since the monodromy only “sees” the branches
of the curve, we can also apply the method to genus 0 curves whose singularities
only have smooth branches (that is, the curve has at most ordinary multiple points).

If the curve has singularities, then a further investigation needs to take place.
However, for our investigation we need only consider one such case: when the curve
has a cusp and the associated vector field is non-degenerate at this point. In this case,
the associated critical point at the cusp is a node with ratio of eigenvalues 2=3. Since
such a node is linearizable, we can locally find an analytic transformation bringing
it to the form Px D 2x; Py D 3y with invariant curve y2 D x3. The monodromy
can be calculated directly from the parameterization of a loop around the critical
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point, .x; y/ D .e2i� ; e3i� /, which shows that the monodromy is in fact the identity.
Alternatively, and more geometrically, the monodromy will be preserved under
blowing up. If we blow up the cusp singularity, we get a smooth branch with ratio
of eigenvalues 2. We can therefore conclude that the monodromy is the identity.

In what follows, we shall say that we can apply the monodromy method if all
linearizability and identity monodromies are deduced in exactly the ways described
above.

We now give the details of the five cases of invariant curve which appear in
our classification. Since the integrability of a critical point is independent of a
projective transformation of P2.C/, it is sufficient to present the examples in just one
projectively equivalent configuration. That is, each example can be transformed by
any projective transformation which maps the axes and the line at infinity between
themselves.

5.2.1 Case A

Here, we have an invariant cubic curve (Case 11 in [5]). Figure 5.1 shows the
geometric behaviour of the system in one choice of projective coordinates. The
eigenvalue ratios of the critical points on the smooth branches of the curve are 2,
3, 6, and �8. There is also a cusp with eigenvalue ratio 2=3 but, as explained above,
this has identity monodromy. Thus, the critical point with eigenvalue ratio �8 must
be integrable. It also follows that the critical point at P4 must also be integrable by
considering the monodromy on the x-axis.

5.2.2 Case B

Here, we have an invariant quartic curve (Case 15 in [5]). Figure 5.2 shows
the geometric behaviour of the system in one choice of projective coordinates. The
dotted curve represents complex branches through the critical points. The eigenvalue
ratios of the critical points on the smooth branches of the curve are 2, 2, 3, 6,
and �7. There is also a cusp with eigenvalue ratio 2=3 but, as explained above,
this has identity monodromy. Thus, the critical point with eigenvalue ratio �7 must
be integrable. It follows that the critical point at P4 must also be integrable by
considering the monodromy on the line at infinity. Finally, the critical point at P3
must also be integrable.

5.2.3 Case C

Here, we have an invariant conic (Case 4 in [5]). Figure 5.3 shows the geometric
behaviour of the system in one choice of projective coordinates. The eigenvalue
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Fig. 5.1 Case A

ratios of the critical points on the smooth branches of the curve are 2, 2, ˛, and �˛.
If ˛ is positive but not the reciprocal of a positive integer, then the critical point
at Pf has linearizable monodromy and hence the critical point at P2 is integrable.
Conversely, if �˛ is positive but not the reciprocal of a positive integer, then the
critical point at P2 has linearizable monodromy and hence the critical point at Pf is
integrable.

5.2.4 Case D

Here, we have an invariant cubic curve (Case 5 in [5]). Figure 5.4 shows the
geometric behaviour of the system in one choice of projective coordinates. The
dotted curve represents complex branches through the critical points. The eigenvalue
ratios of the critical points on the smooth branches of the curve are 1=2, 2, 3, 3
and �3=2 (not a cusp). Thus the critical point with eigenvalue ratio �3=2 must be
integrable.
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Fig. 5.2 Case B

5.2.5 Case E

Here, we have an invariant quartic curve (Case 6 in [5]). Figure 5.5 shows the
geometric behaviour of the system in one choice of projective coordinates. The
dotted curve represents complex branches through the critical points. The eigenvalue
ratios of the critical points on the smooth branches of the curve are 1/3, 3, 2, 2, 4
and �4=3. Thus the critical point with eigenvalue ratio �4=3 must be integrable.

5.3 Results for Lotka–Volterra Systems

Now, we return to consider the Lotka–Volterra equation in P2.C/. On each invariant
line (including the one at infinity) we have three critical points. If one of these
critical points has identity monodromy and the other monodromy is linearizable, we
can conclude that the third critical point also has linearizable monodromy and is
hence integrable.

In more elaborate cases we might need to iterate this construction. That is, we
apply the monodromy method on a line to show that a certain critical point has
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Fig. 5.3 Case C

linearizable monodromy, and then use this knowledge to apply the monodromy
method on a second line on which the critical point lies. In the “side” case mentioned
below, a third iteration is sometimes needed.

We now describe our results. We will split our consideration into three cases.
The first considers the integrability of a saddle critical point at the origin. This is
the case considered in [2]. For each p; q > 0 with p C q � 20, we take the general
Lotka–Volterra system with a saddle of ratio of eigenvalues �p=q and calculate the
first three resonant terms of the normal form. From these calculations we obtain
necessary conditions for integrability of the saddle. We then prove the sufficiency
of these conditions: either by showing that (5.2) holds and hence there is a Darboux
first integral, or by establishing that the critical point is integrable by a monodromy
argument. The same technique is then applied to the cases where the critical point
considered is on an axis but not at the origin and finally the case where the critical
point is not on either axis. Our results are given below.

As an indicative example of the monodromy arguments used we consider the
following case, which falls under Theorem 2 (2),

Px D x.1 � x C 9y/; Py D .�7=12C x C 7y/: (5.3)
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Fig. 5.4 Case D

The line at infinity has ratio of eigenvalues 1=2, 4 and �7=2. The critical point with
eigenvalue ratio 1=2 also lies on the x-axis and therefore has two analytic sepa-
ratrices and hence has linearizable monodromy. The critical point with eigenvalue
ratio 4 clearly has identity monodromy and hence the critical point with eigenvalue
ratio �7=2 must be integrable. This critical point also lies on the y-axis. With
respect to this axis it has eigenvalue ratio �2=7, and the other two critical points
have eigenvalue ratios of 3 and �12=7. Thus, the critical point with eigenvalue
ratio �12=7, which lies at the origin, must also be integrable. Finally, along the
x-axis, the critical point has ratio of eigenvalues �7=12 (the origin), �5=12 and 2
(at infinity). This shows that the critical point with eigenvalue ratio �5=12 on the
x-axis is integrable.

Theorem 1. If a Lotka–Volterra system has an integrable saddle at the origin with
ratio of eigenvalues �p=q with p C q � 20, then it falls into one of the following
categories:

1. The condition (5.2) holds and the system has a Darboux first integral.
2. The monodromy method can be applied using one or two of the axes of the system.
3. We have p=q D 8=7 or 7=8 and we use the monodromy method about the

invariant cubic described in Case A.
4. We have p=q D 13=7 or 7=13 and we use the monodromy method about the

invariant quartic described in Case B.
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Fig. 5.5 Case E

Remark 1. 1. A more detailed enumeration of all the possible types of monodromy
argument can be found in [2], where they were given the names .An/; : : : ; .Hn;m/.
The same list is valid here.

2. The final two cases were found in [2], where it was shown that they gave Darboux
first integrals. However, in the light of the other results below, it is probably better
to consider them as examples of the monodromy method.

The second case is where the critical point lies on one of the invariant lines but
not at the origin. We proceed as above and find the following result.

Theorem 2. If a Lotka–Volterra system has an integrable saddle on one of its axes
but not at the origin with ratio of eigenvalues �p0=q0 with p0 C q0 � 17 then it falls
into one of the following categories:

1. The condition (5.2) holds and the system has a Darboux first integral.
2. The monodromy method can be applied using one, two, or three of the invariant

lines of the system.
3. The monodromy method can be applied using the invariant conic given in Case

C (˛ < 0).
4. We have p0=q0 D 1=8 or 8 and we use the monodromy method about the invariant

cubic described in Case A.
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5. We have p0=q0 D 1=7 or 7 (or 6=13 or 13=6) and we use the monodromy method
about the invariant quartic described in Case B.

Remark 2. 1. It is possible to need monodromy arguments around all three invari-
ant lines, as shown in the system (5.3) above. This also can arise because a critical
point on two axes with an integer ratio of eigenvalues contributes an identity
monodromy to one axis, but only a linearizable monodromy to the other axis.

2. It will be seen from Fig. 5.2 that the ratio of eigenvalue 6=13 or 13=6 is also a
possibility. We have included it in the statement of the theorem although it lies
outside the p0 C q0 � 17 threshold.

Finally, we consider the case where the saddle is not on the axes. In this case we
find the following result.

Theorem 3. If a Lotka–Volterra system has an integrable saddle which does not lie
on one of its axes with ratio of eigenvalues �p00=q00 with p00 C q00 � 10, then it falls
into one of the following categories:

1. The condition (5.2) holds and the system has a Darboux first integral.
2. The monodromy method can be applied using the invariant conic given in Case

C (˛ > 0), or by using an invariant line passing through the critical point.
3. We have p00=q00 D 3=2 or 2=3 and we use the monodromy method about the

invariant cubic described in Case D.
4. We have p00=q00 D 3=4 or 4=3 and we use the monodromy method about the

invariant quartic described in Case E.

Remark 3. We believe that the results of Theorems 1, 2 will hold for all rational
ratios of eigenvalues but were not able to establish this yet. We also conjecture the
same is true for Theorem 3. However, for higher values of p00 C q00 it is necessary
to add special cases for p00=q00 D 6=5; 5=6; 6=7 and 7=6 which arise from invariant
curves (cases 7, 10, 12, 13 and 14 of [5]).
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Chapter 6
Impact of Pharmacokinetic Variability
on a Mechanistic Physiological
Pharmacokinetic/Pharmacodynamic Model:
A Case Study of Neutrophil Development,
PM00104, and Filgrastim

Morgan Craig, Mario González-Sales, Jun Li, and Fahima Nekka

Abstract Interindividual variability (IIV) is considered a crucial factor for the
general use of mathematical modelling in physiology. However, mechanistic models
of physiological systems are commonly built for an average patient, raising
the question of their applicability at the population level. Using our previously
developed physiological model of neutrophil regulation, which accounts for the
detailed hematopoietic mechanisms as well as the pharmacokinetics (PKs) of
a chemotherapeutic agent (PM00104) and a granulostimulant (filgrastim), we
incorporated the reported population pharmacokinetic (PopPK) models of each
drug to investigate the impact of PK variability on fully mechanistic models. A
variety of scenarios, including multiple doses of PM00104, were simulated for
cohorts of 500 in silico patients to analyse the model’s predictability in terms
of several pharmacological indicators, such as the time to neutrophil nadir, the
value of the nadir, and the area under the effect curve. Our results indicate the
robustness of our model’s predictions in all considered scenarios. Based on our
findings, we conclude that for drugs with short-lived PKs in comparison with
their pharmacodynamics (PDs), models that “sufficiently” account for physiological
mechanisms inherently assimilate PK deviations, making the further inclusion of PK
variability unnecessary.

Keywords Physiological modelling • Interindividual variability • Neutropenia •
Pharmacometrics
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6.1 Introduction

One of the most important considerations in modern pharmacometrics is the
determination of the dose–response relationship. This can be obtained through
data-driven models [13, 14, 18] but can also be achieved through techniques
stemming from mathematical biology using physiologically driven mechanistic
modelling [2, 5, 6, 9, 10, 12]. While both approaches use mathematics to describe
the disposition of drugs in the body, each handles the problem from a unique vantage
point. On the one hand, data-driven models are based on various components:
the structural model (typically compartmental), a set of statistical models (with
assumptions for probabilistic distributions around model parameters as well as error
structure), and covariate models (when relevant). To this end, population phar-
macokinetic/pharmacodynamic (Pop-PK/PD) modelling is the most representative
approach and is now widely used in drug research and development. Even so,
the construction of data-driven models highly depends on the available data and
the required statistical optimisation procedures. The poor quality of data can induce
model misspecification and hamper the generalisability of the models outside of the
context in which they were built.

On the other hand, mechanistic models of human processes tackle the problem
using the so-called bottom-up strategy. These models are constructed directly
from the system being studied by applying the available physiological knowledge to
drive their predictions. During this process, a number of hypotheses are generated
and translated using various mathematical techniques. Generally, the model param-
eters are derived or estimated from experimentally determined values available from
a diverse cross-section of fields (physiological, chemical, physical, etc.), and utilise
patients’ average values [3]. Physiological models are used to explore a variety
of complex situations. For example, the model of neutrophil development studied
herein can be applied in oncological settings or in the study of hereditary disorders
like cyclical neutropenia. Mechanistic models are useful for explaining an observed
effect in relation to its components as a result of their physiologically detailed
construction. However, constructing a physiological model can be time-consuming
and requires advanced mathematical knowledge to ensure the models’ validity. This
complexity makes this approach more popular in academia but work still needs to
be done to expand its use in routine data analysis.

Since physiological models are frequently developed for an average patient,
an investigation of the impact of PK variability on their predictions is crucial
to extend their applicability to patient populations. Considering the complexity
of these models, testing their robustness by simulating credible scenarios of
patient variability will determine their suitability for general use. For instance,
it is pertinent to know whether drug regimens identified for an average patient
through these models can be extended to the population level. We have previously
published a physiological model of granulopoiesis [6], with integrated PK models
of both PM00104 [18] and filgrastim (adjuvant recombinant human granulocyte
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colony-stimulating factor (G-CSF), used to increase neutrophil counts to prevent
and/or recover from neutropenia) [14], which studied the impact of the time of
administration of supportive filgrastim during chemotherapy. Using published or
well-derived parameters from the literature for an average patient, our model
successfully predicted clinical data and identified beneficial regimens. Therein, we
determined that delaying the administration of rhG-CSF after PM00104 by 7 days
mitigated the neutropenic impact of anti-cancer treatment, resulting in a reduction
from ten administrations per cycle to 3 or 4 and a reduction in the burden to the
patient [6]. The current study will address the extendibility of this regimen to a
population by investigating the impact of PK interindividual variability (IIV), and
of the reported interoccasion variability (IOV) of PM00104, on relevant indicators,
such as the time to neutrophil nadir and the nadir level.

From a systems pharmacology point of view, the PKs of the previously men-
tioned drugs are short-lived in comparison with their PDs. Indeed, the PK half-lives
of both PM00104 and filgrastim are on the order of hours (24 and from 6–10,
respectively) whereas it can take several days to observe their effects on cells in
circulation due to the production time of neutrophils in the bone marrow (up to 14
days) [6, 18]. In the current work, we focused on the impact that IIV components of
the data-driven models of [14, 18] can have on our physiological model [6]. Based
on numerical simulations, the sensitivity of the physiological model to the impact
of IIV was quantified and statistically analysed. Using a variety of scenarios that
cover a large number of clinical situations, our physiological PK/PD model, though
developed for an average patient, proved to be robust in terms of PK IIV when
clinically relevant PD criteria are tested, advocating its general applicability to a
large population.

6.2 A Hypothesis-Driven Physiological/PK/PD Model
of Granulopoiesis During Chemotherapy
with Supportive Adjuvant

A mechanistic physiological model of myelopoiesis was constructed [6] by ex-
tending the previous work of Brooks et al. [2], Colijn and Mackey [5], Foley
and Mackey [9], and Foley et al. [10] through the addition of neutrophil reservoir
pools in the bone marrow and other tissues, and then subsequently incorporating
comprehensive PK/PD models for PM00104 (Zalypsis®), a chemotherapeutic drug,
and filgrastim (rhG-CSF), a supportive adjuvant, to determine dosing schemes
that provide the most benefit (least harm) for patients. The physiological model
translates the physiological mechanisms of neutrophil production mathematically
using delay differential equations (DDEs) to characterise the cellular transition
delays.

The neutrophil model is a three-dimensional set of DDEs with variable aging
rate and general delays obtained from an age-structured partial differential equation
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model with appropriate boundary conditions. A schematic diagram of the model
is given in Fig. 1 in [6]. Beginning in a quiescent state, a hematopoietic stem cell
(HSC-population Q.t/ in units 106 cells=kg), which is capable of self-renewal at
rate ˇ.Q/ (in units days�1) and which is subject to apoptosis at rate 
S (in units
days�1), undergoes differentiation into one of three blood cell lines. In this model,
we consider any differentiation into the erythrocyte or platelet lineages to occur at
rate ı (in units days�1) whereas differentiation into the neutrophil line occurs at
rate N.N/ (in units days�1). Note that while ı is taken herein to be constant, the
rate of entry of the HSCs into the neutrophil lineage depends on the concentration of
circulating neutrophils (population N.t/ in units 109 cells=kg). Once committed to
the neutrophil line, cells undergo proliferation—a period of successive divisions—
at a rate of �NP (in units days�1) for a total of �NP days. Cells then cease division
and mature at a velocity of VN (in units days�1) for a total of �NM.t/ days. During
this maturation period, cells are subject to random cell death at a rate of 
NM

(in units days�1). Newly mature neutrophils are then sequestered within the bone
marrow in the mature neutrophil reservoir (population Nr.t/ in units 109 cells=kg).
These reserved cells are mobilised from the bone marrow into circulation at a rate
of ftrans.G.t// (in units days�1) or, failing to reach the circulation, die from the
reservoir at rate 
r (in units days�1). The mature pool is a crucial aspect of the
neutrophil lineage, as it contains ten times the number of circulating neutrophils
and is necessary for the rapid restocking of the blood neutrophils in case of
falling ANCs or infection [11, 21]. Cells reaching the circulation subsequently
disappear from the blood at a rate of 
N (in units days�1). Beginning with a
quiescent hematopoietic stem cell (HSC) differentiating into the neutrophil lineage,
we model the proliferation and maturation of neutrophilic cells in the bone marrow.
The mature neutrophils then settle into the marrow reservoir before appearing
in circulation (release from the reservoir can be steady, or homeostatic, or rapid
mobilisation in the case of emergency). Once a mature neutrophil reaches the
circulation, it disappears fairly rapidly (half-life of around 7 h) through apoptosis
or margination into the tissues. Equations (6.1)–(6.3) below highlight the primary
model equations.

dQ.t/

dt
D � .N.N.t//C ı C ˇ.Q.t///Q.t/C AQ.t/ˇ .Q.t � �S//Q.t � �S/

(6.1)

dNr.t/

dt
DAN.t/N.N.t � �N//Q.t � �N/

�
VN.G.t//

VN.G.t � �NM.t//

�
(6.2)

dN.t/

dt
Dftrans.G.t//Nr.t/ � 
NN.t/: (6.3)

Delays are indicated by t � � , where � is a physiologically present delay in the
system (time of HSC self-renewal, time of proliferation, time of maturation, time of
residence in the marrow reservoir, and the total time it takes to produce a neutrophil
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from differentiation to appearance in the circulation). Equations (6.1)–(6.3) are
subject to the initial condition of homeostasis (Q.t/ D Qhomeo, Nr.t/ D Nhomeo

r ,
N.t/ D Nhomeo, for all t � t0, where t0 marks the beginning of treatment). In [6],
parameter estimation for an average patient was carried out in a consistent way
using data available in the literature. Typical values of the PK models of PM00104
and G-CSF were adapted from [18] and [14], respectively. In this study, IIV and
IOV components of the PK parameters were added where necessary. All parameter
values in the current work were kept as in [6] and any exceptions will be indicated
explicitly below. Particular attention was paid to capturing the dominant processes
implicated in the development of a circulating neutrophil within the bone marrow.

As in our previous work, multiplying N.t/ by the fraction of circulating cells
is necessary for comparison to data since N.t/ herein represents the total blood
neutrophil pool (TBNP). The HSC’s feedback rate and amplification rates of both
the HSCs and the blood neutrophils are modelled as

ˇ.Q/ D fQ
�

s2
2

.�
s2
2 C Qs2/

(6.4)

N.N/ D fN
�

s1
1

.�
s1
1 C Ns1 /

(6.5)

AQ.t/ D 2 exp



�
Z t

t��S


S.s/ds

�
(6.6)

AN.t/ D exp

"Z t��N .t/C�NP

t��N .t/
�NP.s/ds �

Z t

t��N .t/C�NP


NM.s/ds

#

: (6.7)

The entire process of neutrophil development is regulated by the concentration
of G-CSF, G.t/ in units ng=ml, which acts in negative feedback with the blood
neutrophil numbers in that its concentration falls when neutrophil numbers increase
and vice versa. G-CSF acts during the entire neutrophil development cycle to
maintain neutrophil counts at homeostatic levels. It is implicated in the recruitment
of HSCs into the neutrophil line, in the regulation of the rates of proliferation and
maturation, and controls the release of mature neutrophils from the bone marrow
reservoir into circulation [9]. Details on the PD effects modelled herein are given in
Fig. 6.1 and in the following sections.

6.3 Pharmacokinetics and Pharmacodynamics of PM00104

The pharmacokinetics of PM00104 were characterised using a catenary four com-
partment disposition model with linear elimination [18]. The differential equations
describing the system were as follows:
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3

Reservoir

Circulating
neutrophils

Regulates
proliferation

Regulates
maturation

Regulates
exit from reservoir

Regulates
concentration

Regulates HSC death rate/differentiation

Increases HSC death rate/
Decreases rate of proliferation

Zal1

Zal4

Zal2

Zal3

G-CSF SC

Fig. 6.1 Schematic representation of the effects of PM00104 (solid/dotted lines) and G-CSF
(dashed). Model summary as in Fig. 1 in [6] in Sect. 6.2. PM00104 (Zal) acts to disrupt cellular
division resulting in a higher rate of death out of the hematopoietic stem cell (HSC) compartment,
and a decrease in the rate of neutrophil proliferation in the bone marrow. G-CSF acts throughout
the neutrophil lineage to stabilise the numbers of circulating neutrophils by regulating their exit
out of the marrow reservoir, their proliferation, and their maturation. Concurrently, it acts upon
the HSCs by regulating their differentiation into the neutrophil lineage and their death rate (to
stabilise their population numbers). The complete model is taken from [6]. HSC: hematopoietic
stem cells at rest, 1: dividing HSCs, 2: proliferating marrow neutrophils, 3: maturing marrow
neutrophils, 4: other blood cell lines, Reservoir: mature marrow neutrophil reservoir, Zal1: central
compartment of PM00104, Zal2: second compartment of PM00104, Zal3: third compartment of
PM00104, Zal4: fourth compartment of PM00104, G-CSF: granulocyte colony-stimulating factor,
SC: subcutaneous pool
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dA1
dt

D �
�

CL

V1
C Q2

V1
C Q3

V1

�
A1 C Q2

V2
A2 C Q3

V3
A3 (6.8)

dA2
dt

D �Q2

V2
A2 � Q4

V2
A2 C Q2

V1
A1 C A4

V4
A4 (6.9)

dA3
dt

D �Q3

V3
A3 C Q3

V1
A1 (6.10)

dA4
dt

D �Q4

V4
A4 C Q4

V2
A2; (6.11)

where A1, A2, A3 and A4 represent the amount of PM00104 in compartments
1, 2, 3, and 4, CL represents the clearance (in units L/h), Q2 is the intercom-
partmental clearance between compartments 1 and 2 (in units L/h), Q3 is the
intercompartmental clearance between compartments 1 and 3 (in units L/h), Q4,
is the intercompartmental clearance between compartments 2 and 4 (in units L/h),
V1 is the volume of distribution in the central compartment (in units L), V2 is
the volume of distribution in compartment 2 (in units L), V3 is the volume of
distribution in compartment 3 (in units L), and V4 is the volume of distribution
in compartment 4 (in units L). Concentrations in each compartment are given by
dividing the amount of the drug Aj .j D 1; : : : ; 4/ by the volume in the respective
compartment Vj .j D 1; : : : ; 4/.

The above model and results of González-Sales et al. [13] and Pérez-Ruixo
et al. [18] were incorporated into [6] in a physiologically consistent way. The
main function of a chemotherapeutic agent is to quell the uncontrolled division
of cells by reducing/destroying their ability to replicate. In the blood system,
the effects of this reproductive cessation are assumed to be twofold: first, the
HSCs experience an increase in the rate of cell death in the proliferative phase
(effectively reducing their proliferative capabilities) and second, the rate at which
the neutrophils undergo successive divisions is greatly reduced. These two effects
are modelled, respectively, as


 chemo
S .Cp.t// D 
homeo

S C hSCp; (6.12)

where Cp is the concentration of PM00104 in the first, or plasmatic, compartment,

 chemo

S is the rate of apoptosis of the proliferative HSCs during chemotherapy, 
homeo
S

is their rate of apoptosis at homeostasis. Due in large part to the absence of data
relating the effects of chemotherapy on the HSCs, we took a linear effect from
chemotherapy upon 
S, modulated by the effects parameter hS, and

�chemo
NP .Cp.t// D �homeo

NP

 
.EC50/

h

.EC50/
h C �

Cp.t/
�h

!

: (6.13)

Here �chemo
NP is the rate of neutrophil proliferation during chemotherapeutic treat-

ment, �homeo
NP is the homeostatic rate of proliferation, EC50 is the usual half-effect

constant and h is the Hill coefficient of the effect.
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6.4 Pharmacokinetic and Pharmacodynamic
Model of G-CSF

As previously alluded to, G-CSF is an endogenous cytokine which stimulates the
production of neutrophils. It is also used in an exogenous form as an adjuvant to
help patients with low neutrophil counts rescue their circulating ANCs [9]. In terms
of its PK properties, G-CSF is believed to have a constant production rate [14]
and to have two modes of elimination, namely an unsaturable process from renal
elimination, and a saturable process driven by internalisation by the neutrophils [15].
Accordingly, as in [6], we model the endogenous concentration of G-CSF as:

dG

dt
D Gprod � krenG � 	kint

G2

G2 C k2d
N; (6.14)

where Gprod is the endogenous constant production rate of G-CSF (in units
ng=ml=day, kren is the rate of renal elimination (in units days�1), kint is the rate
of internalisation by the neutrophils (in units days�1), kd is the usual dissociation
constant (in units ng=ml), and 	 is a scaling factor to correct for the units of
Eq. (6.14). The choice of Hill coefficient is due to the 2:2 stoichiometry of G-CSF
binding to its G-CSFR receptor on the neutrophils [16]. When G-CSF is given
exogenously, primarily in subcutaneous form, we model its administration as in [6],
and originally in [14] as

dG

dt
D F.Dose/ka

Vd
e�kat C Gprod � krenG � 	kint

G2

G2 C k2d
N; (6.15)

where F is the bioavailable fraction, Dose is the administered subcutaneous dose
(in ng), ka is the rate of absorption from the subcutaneous pool (in units days�1),
and Vd is the volume of distribution (in units ml).

The pharmacodynamic action of G-CSF is multifaceted. From the beginning of
a neutrophil as a stem cell, G-CSF reduces the rate of cell death in the proliferating
HSC compartment (decreasing 
S), increases the rate of neutrophil proliferation
in the bone marrow (increases �NP), increases the speed of neutrophil maturation
(increases VN.N/ or, equivalently, decreases �NM [21]), decreases neutrophil death
out of the marrow maturation compartment (decreases 
NM), and modulates the rate
of transfer between the mature neutrophil reservoir and the circulation in function
of the ANC (modulates ftrans) [2, 9, 14, 20]. These effects are modelled as follows,
with bi; i D S;N;NP;V the parameters relating the half-maximal concentration of
G-CSF. In the HSC compartment,


S.G.t/;Cp.t/// D 
min
S � .
min

S � 
 chemo
S /bS

G.t/ � Ghomeo C bs
; (6.16)

where 
min
S is the minimal rate of apoptosis in the HSCs proliferative phase. Note

that the rate of cell death of the HSCs is dependent both on the concentration of
G-CSF and on the concentration of the chemotherapeutic agent. The details of the
latter dependency are given in Eq. (6.18) below.
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Neutrophils undergoing proliferation are also subject to the effects of chemother-
apeutic drugs (Eq. (6.13) and details above) and to the concentration of G-CSF

�NP.G.t/;Cp.t// D �chemo
NP .Cp.t//

C .�max
NP � �chemo

NP .Cp.t///.G.t/ � Ghomeo/

G.t/ � Ghomeo C bNP
(6.17)


NM.G.t// D 
min
NM � .
min

NM � 
homeo
NM /bNM

G.t/ � Ghomeo C bNM
: (6.18)

Here �max
NP is the maximal proliferation rate of the neutrophils and 
min

NM is the minimal
rate of random cell loss of the maturing neutrophils.

When G-CSF concentrations are high, the speed with which the neutrophils in
the marrow age increases, thereby decreasing the time they spend maturing. These
simultaneous effects are given by

VN.G.t// D 1C .Vmax � 1/
G.t/ � Ghomeo

G.t/ � Ghomeo C bV
; (6.19)

where Vmax is the maximal aging velocity of the maturing neutrophils, and

d�N.t/

dt
D d�NM.t/

dt
D 1 � VN.G.t//

VN.G.t � �NM.t///
: (6.20)

The details of the derivation of Eq. (6.20) are given in full in [6].
Finally, the recruitment of a reserved neutrophil to the blood given as

ftrans.G.t// D transhomeo transratio.G.t/ � Ghomeo/C bG

G.t/ � Ghomeo C bG
; (6.21)

where transhomeo relates the homeostatic rate of transit from the neutrophil bone
marrow reservoir into the circulation, and transratio D transmax

transhomeo is an empirically
determined ratio modulating the fraction of neutrophils released from the reservoir
[22, 25].

6.5 Incorporating Variability into the Physiological PK/PD
Model

By incorporating the PK variability reported for PM00104 and filgrastim in [18] and
[14] into our average patient model [6], we now study the impact of PK variability
on our model’s predictions. In the case of PM00104, the fixed effects were assumed
to follow a lognormal distribution according to the following equation:

Pj;k D P�e�j�k ; (6.22)
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Table 6.1 Summary of the PopPK model parameters of PM00104 reported
in [18]

Parameter (units) Interpretation Estimate %RSE

Fixed effect �

Cl (L/h) Clearance 43.7 3.43

V1 (L) Volume of central compartment 32.7 12.4

Q2 (L) Transit rate (compartments 1 and 2) 123 5.76

V2 (L) Volume of second compartment 162 8.33

Q3 (L/h) Transit rate (compartments 1 and 3) 11.3 13.2

V3 (L) Volume of third compartment 388 11.8

Q4 (L/h) Transit rate (compartments 2 and 4) 62.3 9.00

V4 (L) Volume of fourth compartment 239 9.00

Interindividual CV%

variability

Cl IIV of Cl 34.1 24.6

V1 IIV of V1 82.5 37.7

V2 IIV in V2 65.1 41.8

Q3 IIV of Q3 87.7 31.2

V3 IIV of V3 52.0 25.2

(Cl;V2) Correlation between Cl and V2 0.555 78.6

(Cl;Q3) Correlation between Cl and Q3 0.572 33.6

(V2;Q3) Correlation between V2 and Q3 0.522 84.0

Interoccasion CV%

variability

Cl IOV of Cl 14.1 96.0

Interindividual variability (IIV), correlations between interindividual random
effects, and interoccasion variability (IOV) were reported as percentage of
coefficient of variation (CV)

where Pj;k is the individual jth PK parameter for the kth occasion, P� is the typical
value of the parameter of interest, and �j and �k are independent and normally
distributed interindividual and interoccasion (IOV) random variables with zero-
mean and variance !2p and �2p , respectively. The magnitude of the IIV and the IOV
were expressed as coefficient of variation (CV). The parameter estimates and their
associated precisions, measured as percentage of relative standard error (%RSE),
are presented in Table 6.1.

The filgrastim model used in this study is given by Eq. (6.15) in Sect. 6.4.
Table 6.2 summarises the estimated model parameters of filgrastim and their
associated precisions, expressed as %RSE.

As we were primarily concerned with PK variability, and owing to the differences
in the current model’s PD effects [Eqs. (6.16)–(6.21)], the IIV reported by the SC50,
Smax1 , and NB0 parameters were not considered in the present analysis.
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Table 6.2 Summary of the PopPK/PD model parameters of filgrastim, adapted from [14]

Parameter (units) Interpretation Estimate %RSE

Fixed effect �

kel (h�1) Rate of renal elimination 0.152 16.6

Vd (L) Volume of distribution 2.42 6.8

� (fg/cell) Proportionality constant 0.181 45.5

([GCSFR] per neutrophil)

NB0 ( cells=—L) Initial number of blood neutrophils 1.55 17.9

SC50 (ng/ml) Serum concentration eliciting 3.15 21.0

50 % of the maximal effect

Smax1 Maximum effect 34.7 36.0

Interindividual variability !2

kel IIV of kel 0.194 33.1

Vd IIV of Vd 0.138 25.9

� IIV of � 5.87�10�2 65.6

SC50 IIV of SC50 0.764 25.0

Smax1 IIV of Smax1 1.88�10�4 133

NB0 IIV of NB0 0.109 29.1

Interindividual variability (IIV) was reported as variances. Only those values which were
found to be impacted by IIV are reported

6.6 Quantification of the Impact of IIV Using
Computer Simulation

To rigorously quantify the impact of IIV on the physiological granulopoiesis model,
in silico simulations of 500 patients were performed. All simulations were carried
out in Matlab 2013a [17]. The physiological model of neutrophil production,
consisting of a three-dimensional system of DDEs, and the associated PK/PD
models were previously implemented using the ddesd solver in Matlab as described
in [6]. To incorporate the IIV of the PK models provided in Tables 6.1 and 6.2,
each parameter value subject to a random effect was sampled from a normal or
multivariate normal distribution and a simulation was performed for these values.
This sampling technique was performed 500 times to simulate 500 patients in each
scenario. Parameter values were sampled using the normrnd and mvnrnd functions
in Matlab. The following variability scenarios were covered:

(a) 6.892 mg (1 h infusion) PM00104 alone with variability.
(b) 350 mg filgrastim alone with variability.
(c) 6.892 mg (1 h infusion) PM00104 with variability and 350 mg filgrastim without

variability.
(d) 6.892 mg (1 h infusion) PM00104 without variability and 350 mg filgrastim with

variability.
(e) 6.892 mg (1 h infusion) PM00104 and 350 mg filgrastim, both with variability.
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The additional considered scenario without any variability was previously treated
in [6] and serves as a reference in the present analysis.

6.6.1 Statistical Analyses

For each variability scenario, a hypothesis test was carried out in Matlab using the
ttest function; one-sample Student t-tests about the mean time to nadir (TNad), mean
ANC nadir (Nad), and mean area under the effect curve (AUEC) were performed.
These three metrics were chosen as evaluation criteria for the determination of
optimal regimens, as previously carried out in [6, 24]. Further, the 95 % asymptotic
confidence interval (CI) of the mean differences between the model with (test)
and without (reference) variability was computed to check the narrowness of the
CI. The mean difference is then judged significant if 0 is outside of CI, implying
the null hypothesis (H0) cannot be rejected. Finally, in a manner analogous to a
bioequivalence trial, the ratios of the test to the reference for the mean TNad, mean
Nad, and AUEC were computed. Accordingly, if the ratio was within the range of
80–125 % [4], both models were considered equivalent implying no difference was
observed in terms of this indicator.

6.7 Results

6.7.1 No Statistically Significant Differences in Time to Nadir
Between the Model With and Without Variability

Visually, the five simulated scenarios produced TNads close to the mean for most,
if not all, of the 500 in silico patients (Fig. 6.2). Indeed, no significant difference
in the time to nadir was found when testing for differences in the means between
the test and reference models. While the mean TNad varies owing to the particular
drug combination being tested, all five of the scenarios examined herein produced no
difference to the time to the nadir onset and the asymptotic 95 % CI of the difference
in each case was narrow and always included H0 (see Table 6.3). Further, all ratios of
the test model (with IIV) to the reference model (without IIV) were within the 80 %
and 125 % range in every scenario. Consequently, the test models can be considered
equivalent to the reference model (see Table 6.3).
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Fig. 6.2 Time to nadir results of each in silico patient in each scenario: (a) PM00104 alone
with variability, (b) Filgrastim alone with variability, (c) PM00104 with variability with filgrastim
without variability, (d) PM00104 without variability and filgrastim with variability, (e) PM00104
and filgrastim, both with variability. Solid horizontal lines represent the mean of each scenario

6.7.2 No Statistically Significant Differences in the Value of the
Nadir Between the Models With or Without Variability

On the other hand, and similar to the time to nadir, both visually (Fig. 6.3) and
statistically speaking, no significant differences were found in the nadir values. In
all scenarios, the asymptotic 95 % CI of the difference remains narrow, indicating
small standard errors, as seen in Table 6.4. In addition, the calculated ratios of the
nadir value of the test models versus the reference model were within the interval
of 80–125 % and, accordingly, the models with variability were equivalent to the
reference model.
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Table 6.3 Results of the test for significance in the time to nadir of each of the
studied scenarios: (a) PM00104 alone with variability, (b) Filgrastim alone with
variability, (c) PM00104 with variability with filgrastim without variability, (d)
PM00104 without variability and filgrastim with variability, (e) PM00104 and
filgrastim, both with variability

Mean TNadref Mean TNadtest Ratio 95 % CI of

Scenario (days) (days) .%/ difference

(a) 11:47 11:47 100:0 10�4�([�1.77, 1.77])

(b) 6:26 5:77 92:1 10�2�([�3.90, 3.90])

(c) 6:79 6:56 96:7 10�4�([�4.93, 4.93])

(d) 6:79 6:57 96:8 10�3�([�7.30, 7.30])

(e) 6:79 6:58 96:9 10�2�([�2.07, 2.07])

Ratios computed as (test/reference)�100. In all cases, differences were deter-
mined to be statistically insignificant at the ˛ D 5% level (all p-values were 1).
TNadref : time to nadir of the reference model, TNadtest: time to nadir of the test
model, CI: confidence interval

6.7.3 No Statistically Significant Differences in the Area Under
the Effects-Time Curve Between the Model With or
Without Variability

Furthermore, no statistically significant differences in the AUECs were found.
While the previous tests of the time to nadir and the nadir value decomposed the
results into one direction at a time (x and y, respectively), the AUEC metric provides
insight into the simultaneous xy-behaviour of the predictions. Further, as we are no
longer simply looking a single nadir point but over the entire 50 simulated days,
this last measure synthesises the full temporal nature of the simulated solutions.
In the case of the AUECs, as in the previous two tests, all the asymptotic 95 %
CI of the difference included 0. Finally, all ratios were within the 80 % and 125 %
range and can therefore be considered equivalent (Table 6.5). Figure 6.4 reveals the
consistency of the statistical analysis of the AUEC values. That being said, in each
scenario involving the full variability model for filgrastim, AUEC values are less
uniform. Indeed, because the AUEC investigation shifts the focus to the full time-
course studied, the longer-term effects of G-CSF serving to replenish the neutrophil
reservoir, such as increased speed of maturation (VN), increased rate of neutrophil
proliferation (�NP), and increased rate of differentiation from the HSCs (N), can be
seen.

6.7.4 Full Time Courses of Neutrophil Counts

The full time courses of each patient’s ANCs over 50 days were simulated and
the results presented in Fig. 6.5. Each subfigure corresponds to one of the five
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Fig. 6.3 Nadir value per in silico patient in each scenario: (a) PM00104 alone with variability,
(b) Filgrastim alone with variability, (c) PM00104 with variability with filgrastim without
variability, (d) PM00104 without variability and filgrastim with variability, (e) PM00104 and
filgrastim, both with variability. Solid horizontal lines represent the mean of each scenario

different scenarios used to discern the influence of IIV on the prediction. As is
consistent with the previously presented results, variability in filgrastim leads to
larger variations in the ANC compared to variability in PM00104, which does not
cause deviations on the same scale due to its limited involvement in neutrophil
development. PM00104 disrupts cellular transcription in a variety of ways, leading
to apoptosis through the arrest of the S-phase [19]. We therefore consider that
those cells that are no longer dividing, notably neutrophils that have finished
proliferation (postmitotic-maturing neutrophils, neutrophils in the marrow reservoir,
and circulating and/or marginated neutrophils), are no longer subject to its effects.
Accordingly, since these nondividing cells constitute the bulk of the neutrophils in
the lineage (postmitotic neutrophils are estimated to be about 77 % of the marrow
neutrophils [7]), the PDs of PM00104 will have a more limited role on neutrophils
developing in the marrow.
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Table 6.4 Results of the test for significance in the nadir value of each of the
studied scenarios: (a) PM00104 alone with variability, (b) Filgrastim alone with
variability, (c) PM00104 with variability with filgrastim without variability, (d)
PM00104 without variability and filgrastim with variability, (e) PM00104 and
filgrastim, both with variability

Mean Nadref of Mean Nadtest Ratio 95 % CI of

Scenario (109 cells/L) (109 cells/L) .%/ difference

(a) 4.08 4.08 100:7 10�3�([�1.60, 1.60])

(b) 6.88 6.35 92:4 10�2�([�4.72, 4.72])

(c) 4.04 4.14 102:3 10�4�([�8.04, 8.04])

(d) 4.04 4.10 101:5 10�2�([�1.20, 1.20])

(e) 4.04 4.11 101:7 10�2�([�1.28, 1.28])

Ratios computed as (test/reference)�100. In all cases, differences were deter-
mined to be statistically insignificant at the ˛ D 5% level (all p-values were
1). Nadref : nadir of the reference model, Nadtest: nadir of the test model, CI:
confidence interval

Table 6.5 Results of the test for significance in the area under the effects curve (AUEC) of
each of the studied scenarios: (a) PM00104 alone with variability, (b) Filgrastim alone with
variability, (c) PM00104 with variability with filgrastim without variability, (d) PM00104
without variability and filgrastim with variability, (e) PM00104 and filgrastim, both with
variability

Mean AUECref Mean AUECtest Ratio 95 % CI of

Scenario [(109 cells/L) days] [(109 cells/L) days] .%/ difference

(a) 404.30 404.30 100:0 10�2�([�1.74, 1.74])

(b) 501.25 478.80 95:5 10�1�([�6.91, 6.91])

(c) 432.73 428.52 99:0 10�2�([�2.39, 2.39])

(d) 432.73 429.92 99:4 10�1�([�4.07, 4.07])

(e) 432.73 429.68 99:3 10�1�([�4.08, 4.08])

Ratios computed as (test/reference)�100. In all cases, differences were determined to be
statistically insignificant at the ˛ D 5% level (all p-values were 1). AUECref : area under
the effect-time curve of the reference model, AUECtest: area under the effect-time curve of
the test model, CI: confidence interval

6.7.5 Assessing the Impact of PK Variability on Regimens
Identified by the Physiological Model

The value of the neutrophil nadir following the administration of PM00104 was
previously used in [6] to determine those regimens which best mitigated neutropenia
and which reduced the number of administrations of filgrastim per 21-day periodic
cycle over six cycles. Although the nadir is not affected by the PK IIV, as shown
for the single dose scenario reported above, the presence of IOV was reported for
PM00104 [18], which may have an impact on dosing regimen decisions. Hence, to
extend our findings to the optimal regimens we previously reported, we investigated
the impact of IOV on the physiological model by simulating three cycles of 21-day
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Fig. 6.4 Area under the effect curve (AUEC) results per in silico patient in each scenario:
(a) PM00104 alone with variability, (b) Filgrastim alone with variability, (c) PM00104 with
variability with filgrastim without variability, (d) PM00104 without variability and filgrastim with
variability, (e) PM00104 and filgrastim, both with variability. Solid horizontal lines represent the
mean of each scenario

periodic administration of 6.892 mg (1 h infusion) of PM00104 with both IIV and
IOV models as in [18] for another group of in silico patients. However, no significant
impact on the model’s predictions could be observed with this additional source of
variability (not shown). Since all clinical markers used in this study are in fact not
affected by the presence of PK IIV, and IOV did not have significant impact on the
prediction of nadir, it is reasonable for us to extend the regimens identified for the
average patient using the physiological model to the population as reported in [18].
Consequently, in line with the findings of [6], it may be prudent to delay the first
administration of filgrastim after the administration of chemotherapy to lessen the
impact of the anti-cancer drug(s) on the neutrophil lineage.
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Fig. 6.5 Absolute neutrophil counts of each in silico patient in the five studied scenarios:
(a) PM00104 alone with variability, (b) Filgrastim alone with variability, (c) PM00104 with
variability with filgrastim without variability, (d) PM00104 without variability and filgrastim with
variability, (e) PM00104 and filgrastim, both with variability
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6.8 Discussion

Physiological modelling is increasingly in-demand as a means to deepen our
understanding of the mechanisms underlying drug fate and effects and to allow
for an increased incorporation of physiology beyond the more popular data-driven
physiologically-based models. Although the most widespread model evaluation
criteria are based on the goodness of fit of the model to data, this approach can
overlook subtle mechanisms behind the physiological system that may be essential
to explain outcomes. When these mechanisms become the key to ensuring the
model’s generalisability, concerns could be raised about the transferability of the
model’s findings and its applicability to a variety of situations. To bridge this gap, it
is natural to incorporate first principles modelling rooted in the most contemporary
scientific knowledge; this mechanistic methodology ultimately leads to increases
in our understanding of the principle processes of the systems under study.
Physiological PK/PD models use rigorous mathematical expressions to characterise
processes on the causal path between xenobiotics, the body, and pathologies, and
are intended to improve our capacity for extrapolation and prediction [8]. As a
result of the complexity of this tri-relationship, these kinds of models frequently
use an average representation to reconstruct the entire process. While one can admit
that this average portrayal greatly serves to demystify the physiological mechanisms
being studied in addition to their interactions with drugs and diseases, its application
to a population can be challenged by the presence of different sources of variability.
The robustness of these physiological PK/PD models to IIV, a pervasive concern in
PopPK/PD, has to be investigated to ensure clinical applicability.

This is precisely the objective of the current study; herein, we were concerned
by the impact of IIV on the predictive quality of a physiological PK/PD model
that we previously developed to study the production of neutrophils for use in
chemotherapeutic contexts [6]. This model was predicated upon detailed hematopoi-
etic mechanisms and incorporated the pharmacokinetics of a chemotherapeutic
agent (PM00104) and a granulostimulant (filgrastim) to successfully reproduce the
behaviour of this lineage with respect to a variety of oncological protocols. In this
study, we have added the reported IIV of the PopPK models of the two previously
considered drugs, PM00104 [18] and filgrastim [14], to investigate the impact of
IIV on this model. Five variability scenarios were considered to assess the impact of
IIV for each separate drug model in addition to combinations thereof. First, single
doses of PM00104 and filgrastim were administered alone to two separate cohorts
of 500 in silico patients using each drug’s respective variability model. Second,
both drugs were administered together to two other sets of 500 in silico patients
taking into account just the fixed effects of one drug, and the fixed and random
effects of the other. Last, the variability models of both drugs were applied together
to another set of 500 patients to evaluate the full impact of the IIV of both drugs.
In all situations, no significant impact of IIV was observed on any chosen clinical
indicator, namely the time to ANC nadir, the mean ANC value of the nadir, and
the mean AUEC, nor did IOV significantly impact the predictions. These findings
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confirm the applicability of the physiological PK/PD neutrophil model beyond
the case of an average patient. For example, on the basis of our current findings,
the administration regimen previously judged to be optimal to avoid moderate to
severe neutropenia during 21-day periodic administration of PM00104 over 6 cycles
(G-CSF given on days 7 through 10 following the administration of PM00104)
can now be extended beyond the average patient to a population of patients [6].
We attribute the robustness of the model’s predictions to pharmacokinetic IIV to
the fact that both drugs (PM00104 and filgrastim) have short elimination half-lives
in comparison with the lifespan of the neutrophils they affect, a factor inherently
incorporated into the physiological model. Since the physiological PK/PD model
was built to reproduce the sequential events leading to the formation of neutrophils
(recruitment of HSCs into the neutrophil line, proliferation, maturation, and release
of mature neutrophils into circulation) and specifically identifies where each drug
has an effect on the appearance of a neutrophil in the blood stream, the model is able
to directly relate each drug’s concentration in the plasma with the chain of events it
will induce over the course of a neutrophil’s lifespan. Thus, because both PM00104
and filgrastim have shorter PK timespans than their PDs, the magnitude of their IIV
is also shorter lived and these differences will only marginally influence the effects
on the physiology.

The results presented in this work provide evidence that physiological modelling
is a valuable alternative to the widely used data-driven modelling approach. Once
their general applicability has been proved, as it is the case for the present model,
physiological models can even transcend the means for which they are intended,
thereby justifying the effort required for their construction. A large number of phys-
iological models have been developed for which a combination with PK/PD models
can be envisaged. It would be advisable to systematically submit these models to
a “variability screening test” to guarantee their general applicability prior to any
clinical validation. Designing such standard tests remains a challenge that has to be
addressed. Indeed, the National Institutes of Health (NIH) in the USA has identified
quantitative systems pharmacology (QSP) as ideally situated to develop quantitative
and predictive methods able to identify the impact of individual variability [23].
Fortunately, system biologists and pharmacologists have access to a variety of
databases [1] which facilitate both the formation/instatement and the evolution of
standardised variability screening tests. Ultimately, a concerted and coordinated
effort between industry, academia, and regulatory agencies, as exemplified by the
partnership between the NIH and the Food and Drug Administration (FDA), is
required to ensure that variability is addressed when performing QSP approaches.

In conclusion, this study not only substantiates and situates the use of physiologi-
cal modelling in pharmacometrics, it provides incentives to continue to improve our
understanding of the underlying physiological mechanisms of a given system. In a
broader sense, this work testifies to the necessity of building bridges between diverse
actors from different backgrounds (pharmaceutical scientists, clinicians, biomathe-
maticians, statisticians, engineers, etc.) in the pharmacometrics community to best
serve patients and their needs.
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Notes

This work makes up a portion of the doctoral thesis of MC.
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Chapter 7
Asymptotic Behavior of Linear Almost Periodic
Differential Equations
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Abstract The present paper is concerned with strong stability of solutions of non-
autonomous equations of the form Pu.t/ D A.t/u.t/, where A.t/ is an unbounded
operator in a Banach space depending almost periodically on t. A general condition
on strong stability is given in terms of Perron conditions on the solvability of the
associated inhomogeneous equation.
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7.1 Introduction

In this paper we consider the asymptotic behavior of solutions of evolution equations
of the form

dx

dt
D A.t/x; t 2 R; (7.1)

in terms of the existence and uniqueness of bounded solutions to the inhomogeneous
equations

dx

dt
D A.t/x C f .t/; t 2 R; (7.2)

where A.t/ is a family of unbounded linear operators on a (complex) Banach space
X that depends almost periodically on t, and f is an almost periodic function taking
values in X. Throughout the paper we assume that the homogeneous equation (7.1)
generates an almost periodic evolutionary process .U.t; s/t�s/ (see Definition 2.5).
If (7.1) is autonomous (that is, A.t/ D A for all t), and dim.X/ < 1, the
classical Lyapunov Theorem states that (7.2) is strongly stable if all real parts of the
eigenvalues of A are negative. In the infinite dimensional case this condition is no
longer valid. In fact, one needs more conditions to guarantee the (strong) stability of
solutions to (7.1). We refer the reader to [3, 5, 9, 26, 28] and the references therein. If
A.t/ depends on t, the spectra �.A.t//, in general, do not play any role in determining
the behavior of solutions to (7.1). If A.t/ depends periodically on t with period � ,
the period map P WD U.�; 0/ can be used to study the problem via discrete analogs,
results that can be found in [1, 21, 25].

The problem becomes much more complicated when A.t/ depends on t almost
periodically (but not periodically). The idea of linear skew products has been used
extensively to study the stability and exponential dichotomy of non-autonomous
equations (see, e.g., [10, 13, 22] and the references therein). In this direction,
the concept of evolution semigroups, as a variation of the aforementioned idea,
proves to be a very effective analytic tool (see [4, 8, 27]). However, since typically
evolution semigroups are considered in the function spaces Lp.X/;C0.X/ or AP.X/,
the spectrum of the evolution semigroup associated with (7.1) is too coarse to
characterize finer properties of the system like strong stability. Indeed, the spectrum
of the generator of the evolution semigroup associated with an evolution equation in
one of these function spaces consists of a union of vertical strips in the complex
plane, hence the imaginary axis is either contained completely in the spectrum
or does not intersect it. On the other hand, the well-known ABLV Theorem (see
Theorem 2.4) for stability of C0-semigroups allows the generator’s spectrum to
intersect the imaginary axis.

The main purpose of this paper is to provide a setting in which the idea
of evolution semigroups combined with the spectral theory of functions can be
further used to study the asymptotic behavior of solutions of (7.1). We consider
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the evolution semigroup associated with (7.1) in the smallest invariant subspace
of the space of all almost periodic functions AP.X/ which we call minimal
evolution semigroup of (7.1). In general, this smallest invariant function space is
determined by the Bohr spectrum of the coefficient operator A.t/. The main results
(cf. Theorem 3.6) we obtain in the paper are extensions of results known in the
autonomous and periodic cases. Our conditions for strong stability are stated in
terms of Perron conditions which are very popular in recent studies on stability and
dichotomy (see, for example, [18–20, 23, 24, 27]). We analyze some particular cases
as examples of how the obtained results can be applied to equations with almost
periodic coefficients.

7.2 Preliminaries

7.2.1 Almost Periodic Functions

In this paper we use the concept of almost periodicity in Bohr’s sense. The reader
is referred to [3, 14] for some standard definitions and properties of almost periodic
functions taking values in a Banach space X.

Definition 2.1. A bounded and continuous function g W R ! X is said to be almost
periodic in the sense of Bohr (or simply almost periodic) if for each given sequence
f�ng1

nD1 	 R there exists a subsequence f�nk g1
kD1 such that the limit

lim
k!1 g.t C �nk/

exists uniformly in t 2 R.

Given an almost periodic function g, for each � 2 R the following is shown to exist
(see [14])

M�;g WD lim
T!1

1

2T

Z T

�T
e�i�tg.t/dt:

And, except for at most a countable set �b.g/ of values of �, this limit M�;g is always
equal to zero.

Definition 2.2. Let T 	 R. The semi-module generated by T, denoted by sm.T/, is
the set of all real numbers � of the form

� WD n1�1 C n2�2 C � � � C nk�k

where k is a positive integer, �1; �2; : : : ; �k 2 T, and n1; n2; : : : ; nk are non-negative
integers.

Note that by this definition 0 2 sm.T/.
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Let �b.A/ be the Bohr spectrum of the almost periodic A W R ! X. We
will denote the semi-module generated by this spectrum by ƒ WD sm.�b.A//. We
introduce the following notation

APƒ.X/ WD fg 2 AP.X/ W �b.g/ 	 ƒg:

Note that APƒ.X/ is a closed subspace of AP.X/ (see [7, Lemma 2.1]).
Let A be a closed operator in a Banach space X, and let A generate a uniformly

bounded C0-semigroup of linear operators .T.t//t�0, i.e., supt�0 kA.t/k < 1. The
following lemma is proved in [6, p. 2073].

Lemma 2.3. Let x 2 X be fixed, then the map

R W fRe� > 0g ! X; � 7! R.�;A/x

is holomorphic. Furthermore, denote by �u.A; x/ the local unitary spectrum of x,
i.e. the set of points � 2 iR to which R cannot be extended holomorphically. Then
�u.A; x/ 	 �.A/ \ iR, and

�.A/ \ iR D [
x2X�u.A; x/:

We also restate a well-known result from [6, Theorem 3.4].

Theorem 2.4 (ABLV Theorem). Suppose .T.t//t�0 is a bounded C0-semigroup in
a Banach space X with generator A, x 2 X is fixed. Denote by �u.A; x/ the set
of iˇ 2 iR such that the local resolvent, R.˛ C iˇ;A/x; ˛ > 0, does not extend
analytically in some neighborhood of iˇ. If

(i) �u.A; x/ is countable,
(ii) lim

˛#0
˛R.˛ C iˇ;A/x D 0; for all ˇ with iˇ 2 �u.A; x/,

then

lim
t!1 kT.t/xk D 0:

7.2.2 Evolution Semigroups Associated with Evolutionary
Processes

Definition 2.5. A two-parameter family .U.t; s//t�s of bounded linear operators
acting in a Banach space X is said to be an evolutionary process if the following
conditions are satisfied:

(i) U.t; t/ D Id, for all t 2 R, where Id is the identity operator of X,
(ii) U.t; r/U.r; s/ D U.t; s/ for all s � r � t,
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(iii) There are non-negative numbers M; ˛ such that kU.t; s/k � Me˛.t�s/ for
all t � s,

(iv) The map .t; s/ 7! U.t; s/x is continuous for each x 2 X.

An evolutionary process .U.t; s//t�s in a Banach space X is said to be almost
periodic if

(v) for each x 2 X; s 2 R the function R 3 t 7! U.t C s; t/x 2 X is almost periodic.

Definition 2.6. Given a function space F as a subspace of BC.R;X/. Assume that
.U.t; s//t�s is an almost periodic evolutionary process generated by (7.1) and, for
each h � 0 and g 2 F, the function R 3 t 7! U.t; t � h/g.t � h/ belongs to F.
Then, the evolution semigroup .Th/h�0 associated with (7.1) in the function space F
is defined as the family of bounded operators Th; h � 0, defined by

ŒThg�.t/ D U.t; t � h/g.t � h/; g 2 F; t 2 R; h � 0:

From our assumption that .U.t; s//t�s is almost periodic evolutionary process, the
function R 3 t 7! U.t; t � h/g.t � h/ belongs to AP.X/ for every g 2 AP.X/ (see
[4, Lemma 3]). Hence by choosing F WD AP.X/ in the worst case, we see that the
evolution semigroup .Th/h�0 associated with (7.1) is well defined.

7.3 Asymptotic Behavior of Solutions

Consider evolution equations of the form

Px D ŒA0 C A.t/�x; t 2 R; x 2 X; (7.3)

where A0 generates a C0-semigroup denoted by etA0 ; t � 0, and A W R ! L.X/ is
almost periodic in the norm topology.

To Eq. (7.3) we associate the following integral equation

x.t/ D e.t�s/A0x.s/C
Z t

s
e.t��/A0A.�/x.�/d�; t � sI t; s 2 R: (7.4)

Every continuous function x.�/ on an interval J, which is of the form Œa; b�, .a; b�,
.a; b/ or Œa; b/, is said to be a mild solution of (7.3) on J.

It is well known that (7.3) generates an evolutionary process in X which is
determined by the integral equation (7.4). The following theorem shows that this
process is almost periodic, and its associated evolution semigroup .Th/h�0 in AP.X/
leaves the function space APƒ.X/ invariant, whereƒ is the semi-module generated
by the Bohr spectrum of A W R ! L.X/.
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Theorem 3.1. Under the above assumptions and notation, the evolution semigroup
associated with Eq. (7.3) in the function space APƒ.X/ is well defined as a C0-
semigroup.

Proof. First, note that the evolution semigroup associated with the evolution
equation Px D A0x is well defined as a C0-semigroup in APƒ.X/. In fact, this follows
from the fact that ehA0g.�/ is in AP.X/ whenever g is in AP.X/ and h is fixed.
Moreover, �b.ehAg.�// 	 �b.g/. Next, since A.�/ is almost periodic in the norm
topology, in AP.X/ we can define the operator MA of multiplication by A.t/, that is,

MA W AP.X/ 3 g 7! A.�/g.�/ 2 AP.X/:

Note that MA leaves APƒ.X/ invariant. In fact, this can be checked by using the
Approximation Theorem of almost periodic functions [12, Theorem 1.19, p. 27]
as follows. Since g 2 APƒ.X/, there is a sequence of trigonometric polynomials
gn with exponents in ƒ that approximates g. Similarly, we construct a sequence
of trigonometric polynomials An.�/ that approximates A.�/ in norm topology with
exponents also in ƒ. Then, An.�/gn.�/ approximates A.�/g.�/. As ƒ is the semi-
module generated by �b.A.�// we get that the exponents of An.�/gn.�/ lie in ƒ.

Let GA0 be the generator of the evolution semigroup .Th
0 / associated with Px D A0x

in APƒ.X/. Then, since MA is a bounded linear operator in APƒ.X/, GA0 C MA

generates a C0-semigroup in APƒ.X/. We now show that this semigroup in APƒ.X/
is nothing but the evolution semigroup of (7.4) in APƒ.X/ associated with Eq. (7.3).
In fact, let us denote by .Sh/ the semigroup that is generated by GA0CMA in APƒ.X/.
Then, this semigroup .Sh/ satisfies the equation

Shv D Th
0 v C

Z h

0

Th��
0 MAS�vd�; for all h � 0; v 2 APƒ.X/:

Therefore, for each t 2 R, by the definition of the evolution semigroup .Th
0 /

associated with the equation Px D A0x, we have

ŒShv�.t/ D .Th
0 v/.t/C

Z h

0

.Th��
0 .MAS�v//.t/d�

D T0.h/v.t � h/C
Z h

0

T0.h � �/.MAS�v/.t � h C �/d�:

Since h and t are arbitrary, we may set h D t � s, so the above equation becomes

ŒSt�sv�.t/ D T0.t � s/v.s/C
Z h

0

T0.t � s � �/.MAS�v/.s C �/d�

D T0.t � s/v.s/C
Z t

s
T0.t � �/.MAS��sv/.�/d�:
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Define w.t/ WD ŒSt�sv�.t/, then w is the unique solution of the equation

w.t/ D T0.t � s/v.s/C
Z h

0

T0.t � s � �/A.s C �/S�v.s C �/d�

D T0.t � s/x C
Z t

s
T0.t � �/A.�/w.�/d�:

However, this is the equation that defines U.t; s/x. Therefore, we have for all t � s,
v 2 APƒ.X/

ŒSt�sv�.t/ D U.t; s/v.s/:

In particular, when h WD t � s we have that Shv D U.t; t � h/v.t � h/ for all
h � 0; t 2 R; v 2 APƒ.X/, i.e., .Sh/h�0 is the evolution semigroup .Th/h�0 for each
h � 0. This completes the proof of Theorem. ut
Definition 3.2. The evolution semigroup .Th/h�0 associated with (7.3) in the func-
tion space APƒ.X/ is called the minimal evolution semigroup associated with (7.3)
and G WD GA0 C MA is called the infinitesimal generator of Th.

Definition 3.3. A well-posed equation Eq.(7.1) is said to be strongly stable if the
evolution process .U.t; s//t�s associated with it satisfies:

lim
t!1 U.t; s/x D 0 (7.5)

for all fixed x 2 X and s 2 R.

If A.t/ is independent of t and generates a C0-semigroup, the strong stability of the
evolution equation (7.1) means that limt!1 T.t/x D 0 for all x 2 X.

Theorem 3.4. Equation (7.3) is strongly stable if its minimal evolution semigroup
.Th/h�0 is strongly stable.

Proof. Let 0 6D x0 2 X. Define g.t/ D x0 for all t 2 X. Obviously, g 2 APƒ.X/
because �b.g/ 	 f0g. Since .Th/h�0 is strongly stable,

lim
h!1 Thz D 0

for each z 2 APƒ.X/. In particular,

lim
h!1 Thg D 0:

That means,

0 D lim
h!1 sup

t2R
kU.t; t � h/x0k � lim

h!1 kU.h; 0/x0k � 0:

Therefore, every mild solution of (7.3) is convergent to the origin, proving strong
stability of (7.3). ut
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Definition 3.5. Let us denote by† the following set

† WD �.G/ \ iR;

and call it the spectrum of equation (7.3).

It can be checked (see, e.g., [16]) that the generator G WD GA0 C MA is well
defined. The domain D.G/ of G consists of all functions u in APƒ.X/ such that
there exists a function f 2 APƒ.X/ for which

u.t/ D U.t; s/u.s/C
Z t

s
U.t; �/f .�/d�; for all t � s; t; s 2 R; f 2 APƒ.X/:

And, in this case, for such f and u, Gu D �f . In the same way, u 2 D.GA0 / and
GA0u D �f if and only if for all t � s, t; s 2 R, f 2 APƒ.X/

u.t/ D T0.t � s/u.s/C
Z t

s
T0.t � �/f .�/d�:

The operator G � � generates a semigroup .Rh/ in APƒ.X/ which is uniquely
determined by the equation

Rhv D Thv C
Z h

0

Th�� .��/R�vd�; h � 0; v 2 APƒ.X/:

Without difficulty we can check that Rh D e��hTh which is exactly the evolution
semigroup associated with the process V.t; s/ WD e��.t�s/U.t; s/. Therefore,
u 2 D.G � �/ and .G � �/u D �f if and only if

u.t/ D e��.t�s/U.t; s/u.s/C
Z t

s
e��.t��/U.t; �/u.�/d�; .t � s/:

Therefore, � belongs to �.G/ if and only if for each f 2 APƒ.X/ there is a unique
solution u�;f to the equation

u�;f .t/ D e��.t�s/U.t; s/u�;f .s/C
Z t

s
e��.t��/U.t; �/f .�/d� (7.6)

for all t; s 2 R with t � s.
With this preparation we are ready to prove the main result of the paper.

Theorem 3.6. Assume that

sup
t�s

kU.t; s/k < 1; (7.7)
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and for all � 2 iR but at most a countable set †, Eq. (7.6) has a unique solution
u�;f for each given f 2 APƒ.X/. Moreover, assume that for each � 2 † and each
fixed f 2 APƒ.X/,

lim
˛#0

˛u�C˛;f D 0: (7.8)

Then Eq. (7.3) is strongly stable.

Proof. First, by (7.7) the semigroup .Th/ is uniformly bounded. By the Spectral
Inclusion of C0-semigroups (see Pazy [17]), �.G/ 	 fz 2 C W Rez � 0g. Since
Re.˛ C �/ D ˛ > 0, by Lemma 2.3, ˛ C � 2 �.G/, and thus, (7.8) makes
sense. Since † is countable, also �u.G; u/ is countable. The theorem is obtained
by applying directly the ABLV Theorem 2.4 to the evolution semigroup .Th/ in
APƒ.X/. In fact, as shown above, (7.8) is exactly the condition that

lim
˛#0

˛R.˛ C �;G/u D 0

for each u 2 APƒ.X/, � 2 †. This means that the evolution semigroup .Th/ is
strongly stable in APƒ.X/. By Theorem 3.4, this yields the strong stability of (7.3).ut

7.3.1 Special Cases of Theorem 3.6

Below we will discuss several special cases of the above theorem.

Example 3.7. If A.t/ D 0 for all t, thenƒ D f0g. Therefore, APƒ.X/ is nothing but
the space of all constant functions, hence it can be identified with X. The evolution
semigroup associated with (7.3) is actually the semigroup etA0 generated by the
operator A0.

Therefore, the following corollary is obvious, and is the ABLV Theorem.

Corollary 3.8. Let A0 generate a uniformly bounded semigroup T.t/, and let
�.A0/ \ iR be countable. Moreover, let for each i� 2 �.A0/ \ iR and x 2 X

lim
˛#0

˛R.i�C ˛;A0/x D 0:

Then, Eq. (7.3) is strongly stable.

Example 3.9. Consider the linear evolution equation

dx

dt
D A.t/x;

where x 2 X, A.t/ is a (not necessarily bounded) linear operator acting on X for
every fixed t and A.tC1/ D A.t/. Suppose further that the semi-module generated by
Bohr spectrum of A.�/ is actually a module. Then APƒ.X/ is nothing but the space
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of all 1-periodic functions, and the process .U.t; s//t�s is 1-periodic (see [16] for
related concepts and results). By [16, Proposition 1] Eq. (7.6) has a unique solution
in APƒ.X/ if and only if 1 2 �.e��U.1; 0//, or equivalently, e� 2 �.U.1; 0//. Let
us denote by P the monodromy operator U.1; 0/. It is well known that the strong
stability of the 1-periodic evolutionary process .U.t; s//t�s can be studied via the
stability of its monodromy operator P (see, for example, [21]). A discrete version of
the ABLV Theorem on stability of individual orbits of the monodromy operator P is
given in [25, Corollary 3.3]. We now show that the conditions of [25, Corollary 3.3]
actually yield the conditions of our Theorem 3.6. In fact, the countability of†[(7.3)]
follows from the countability of �.P/\� , where � is the unit circle of the complex
plane. Next, let i�0 2 † (7.3). Then, z0 WD ei�0 2 �.P/ \ � . Therefore,

lim
z#z0
.z � z0/R.z;P/x0 D 0: (7.9)

We will show that (7.9) yields (7.8). By the definition of limit (7.9) in [25], (7.9) can
be re-written as

lim
˛#0
.ei�0C˛ � ei�0 /R.ei�0C˛;P/x0 D 0:

Or equivalently,

lim
˛#0
.e˛ � 1/R.ei�0C˛;P/x0 D 0;

and hence,

lim
˛#0

˛R.ei�0C˛;P/x0 D 0:

Let f 2 APƒ.X/, that is, f is an arbitrary continuous 1-periodic function taking
values in X. Then, let

x0 WD
Z 1

0

e�.i�0C˛/.1��/U.1; �/f .�/d�:

And let ui�0C˛;f be the unique solution to Eq. (7.6). Then, it is easy to check that

ui�0C˛;f .0/ D R.ei�0C˛;P/x0:

Therefore, by the definition of the evolutionary process,

kui�0C˛;f k WD sup
t2R

kui�0C˛;f .t/k D sup
0�t�1

kui�0C˛;f .t/k

D Meˇkui�0C˛;f .0/k
� MeˇkR.ei�0C˛;P/x0k;
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where the positive numbers M; ˇ depend only on the process .U.t; s//t�s (see
Definition 2.5). This shows that (7.9) yields (7.8), and thus, the following result
is a corollary to Theorem 3.6.

Corollary 3.10. Let the monodromy operator P of the 1-periodic evolutionary
process .U.t; s//t�s be a power bounded operator, i.e. supn2N kPnk < 1, such that
�.P/ \ � is a countable set. Moreover, assume that for each �0 2 �.P/ \ � the
following holds for each x0 2 X

lim
�#�0

.� � �0/R.�;P/x0 D 0:

Then, for every x0 2 X and for every s 2 R,

lim
t!1 U.t; s/x0 D 0:

In summary, Theorem 3.6 covers two well-known special cases of non-
autonomous equations, including the autonomous and periodic cases. For the
general case of non-autonomous equations the generator G of the evolution
semigroup may have a more complicated spectrum, and we will discuss this topic
in the next section.

7.4 Analysis of the Spectrum of the Generator G

As shown in the previous section, the spectrum of the generator G of the evolution
semigroup .Th/h�0 plays an important role in studying the asymptotic behavior of
the equations. Moreover, in the autonomous and periodic cases this spectrum may
not be the whole vertical strips. In this section we will give a detailed analysis of
the spectrum of the generator G of the evolution semigroup associated with certain
non-periodic equations and applications of the results obtained from the previous
section.

Proposition 4.1. Let .Th/ be the minimal evolution semigroup associated
with (7.3), and G be its generator. Assume further that the semi-module generated
by the set of frequencies of the function A.�/ is actually a module. Then, for each
� 2 ƒ

i�C �.G/ 	 �.G/

i�C �.G/ 	 �.G/:

Proof. Let � 2 ƒ. The above inclusions are actually equivalent to the claim that
� 2 �.G/ if and only if i�C� 2 �.G/. By the argument that precedes Theorem 3.6,
� 2 �.G/ if and only if for each f 2 APƒ.X/ the integral equation

x.t/ D e��.t�s/U.t; s/x.s/C
Z t

s
e��.t��/U.t; �/f .�/d� .t � s/ (7.10)
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has a unique solution in APƒ.X/, denoted by u�;f . Since ƒ is assumed to be a
module, u�;f 2 APƒ.X/ if and only if the function v W R ! R; t 7! ei�tu�;f , belongs
to APƒ.X/. Moreover, u�;f is the unique solution of (7.10) if and only if v is the
unique solution of the equation

y.t/ D e�.i�C�/.t�s/U.t; s/y.s/C
Z t

s
e�.i�C�/.t��/U.t; �/f .�/d� .t � s/;

that is, i�C � 2 �.G/. ut
In order to analyze the spectrum of the generator G of the minimal evolution

semigroup associated with (7.3), in case the non-autonomous term A.t/ is small, it
is useful to consider the generator G0;ƒ of the evolution semigroup .Th

0;ƒ/ associated
with the equation Pu D A0u in the function space APƒ.X/.

Lemma 4.2. Assume that A0 is a sectorial operator, and the semi-module ƒ is a
closed subset of the real line. Under the above assumption and notation,

�.G0;ƒ/ D �.A0/� iƒ:

Proof. By the main results of [15],

� 2 �.G0;ƒ/ , �.A0 � �/\ iƒ D ;:

This condition means there are no complex numbers � 2 �.A0/ and � 2 ƒ such that
� � � D i�, or, � cannot be expressed as � D � � i� with � 2 �.A0/ and � 2 ƒ.
In turn, this yields that � 62 �.A0/ � iƒ, or, � 2 Cn.�.A0/ � iƒ/. This proves the
proposition. ut
Recall that we are denoting by G the generator of the evolution semigroup associated
with Eq. (7.3).

Proposition 4.3. Assume that A0 is a sectorial operator, and the semi-moduleƒ is
a closed subset of the real line. Then, for each compact subset

K 	 �.G0;ƒ/ D Cn.�.A0/ � iƒ/

there exists a number ı0 > 0 such that if

sup
t2R

kA.t/k < ı0;

then

�.G/ \ K D ;: (7.11)
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Proof. Since K is a compact subset of �.G0;ƒ/

sup
�2K

kR.�;G0;ƒ/k D � < 1:

Let A denote the operator of multiplication by A.t/ in APƒ.X/. Note that this
multiplication operator is well defined in APƒ.X/, and moreover, this operator is
bounded. Therefore, there exists a positive ı0 such that the operator

.I � R.�;G0;ƒ/A/�1

whenever kAk < ı0 and � 2 K. Next, we can show that for each � 2 K

.I � R.�;G0;ƒ/A/�1R.�;G0;ƒ/ D R.�;G0;ƒ C A/ D R.�;G/:

In fact, set

U WD .I � R.�;G0;ƒ/A/�1R.�;G0;ƒ/:

With this notation we have

.I � R.�;G0;ƒ/A/U D R.�;G0;ƒ/:

Therefore,

U D R.�;G0;ƒ/C R.�;G0;ƒ/AU;

and hence,

.� � G0;ƒ/U D I C AU:

This yields

.� � G0;ƒ/U � AU D I;

that is,

.� � G0;ƒ � A/U D .� � G/U D I:

In other words, U D R.�;G/ whenever � 2 K and kAk < ı0. This yields (7.11).
The proposition is proved. ut
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7.5 Examples

Consider the equation

dx

dt
D a.t/x;

where a.t/ is a numerical almost periodic function taking values in X WD R. Define
the operator G D �d=dt C a.t/. We will describe the part of spectrum �.G/ \ iR.

Theorem 5.1. Suppose that

(i) the semi-module generated by the Bohr spectrum of a.t/, i.e. ƒ WD sm.�b.a//,
is a discrete countable set and

(ii) 0 62 �b.a/.

Then † is also a discrete countable set. Moreover

† 	 �iƒ[ iƒ:

In order to prove Theorem 5.1, we need the following two lemmas.

Lemma 5.2. Let f 2 AP.R/ such that j�nj � M > 0 for all �n 2 �b.f /. Then
g.�/ WD R �

0
f .s/ds 2 AP.R/ and �b.g/ 	 �b.f /[ f0g.

Proof. This Lemma is a direct consequence of [11, Theorem 4.12] and [11,
Theorem 5.2]. Indeed, [11, Theorem 4.12] stated that g.t/ D R t

0
f .s/ds is an

almost periodic function. Therefore g.t/ is an almost periodic solution to equation
x0.t/ D f .t/, and by [11, Theorem 5.2], �b.g/ 	 �b.f / [ f0g. ut
Lemma 5.3. e

R
�

0 a.s/ds 2 APƒ.R/.

Proof. First, note that if we replace sm.�b.a// with m.�b.a//—the module gener-
ated by �b.a/, then the claim is clear from [11, Theorem 1.9, p.5]. However, in
general sm.�b.a// may differ from m.�b.a//. Since sm.�b.a// is a discrete set, so
is �b.a/. From the assumption 0 62 �b.a/, we get that �b.a/ is bounded away from
zero. Applying Lemma 5.2,

g.�/ WD
Z �

0

a.t/dt 2 APƒ.R/:

We have

eg.t/ D 1C g.t/C g2.t/

2
C g3.t/

3Š
C � � � C gn.t/

nŠ
C � � �
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Since g 2 APƒ.R/we have that g is bounded, so the above infinite sum is uniformly
convergent. Also gn 2 APƒ.R/ due to the fact that APƒ.R/ is closed under products
(see [11, Theorem 1.9, p. 5]) and �b.gn/ 2 ƒ as an application of the Approximation
Theorem. Since the uniform limit of a sequence of almost periodic functions is also
an almost periodic function, eg.�/ 2 AP.R/. On the other hand, APƒ.R/ is a closed
subspace of AP.R/. Therefore, eg.�/ 2 APƒ.R/. ut
Proof of Theorem 5.1. It is sufficient to prove that for every real number
� 62 �ƒ [ƒ, the equation

dx

dt
D .a.t/ � i�/x C f .t/ (7.12)

has a unique solution x 2 APƒ.R/ for every f 2 APƒ.R/.
Let y.t/ D ei�tx.t/ or x.t/ D e�i�ty.t/, then (7.12) becomes

dy

dt
D a.t/y C ei�tf .t/; (7.13)

which has a general solution

y.t/ D e
R t
0 a.s/ds

�Z t

0

ei�� f .�/e� R �
0 a.s/dsd� C C0

�
:

By applying Lemma 5.3, one has f .�/e� R
�

0 a.s/ds 2 APƒ.R/. Now suppose that

�n 2 �b

�
ei�� f .�/e� R �

0 a.s/ds
�
;

then �n D �C�n for some �n 2 ƒ. Since � 62 �ƒ, it follows that �n ¤ 0 for all n.
Because ƒ is a discrete set, ei�� f .�/e� R �

0 a.s/ds is an almost periodic function with
Bohr spectrum bounded away from zero.

By applying Lemma 5.2, it follows that G.�/ D R �
0

ei�� f .�/e� R �
0 a.s/dsd� 2 AP.R/.

In fact G 2 APƒCf�g.R/, whereƒC f�g is the set of all real numbers � of the form

� WD m C �; m 2 ƒ:

Therefore the unique solution in APƒ.R/ of (7.12) is

x.t/ D e�i�ty0.t/;

where

y.t/ D e
R t
0 a.s/ds

Z t

0

ei�� f .�/e� R �
0 a.s/dsd� .C0 D 0/:

ut
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Remark 5.4. The condition 0 62 �b.a/ is essential. Otherwise the solution

y.t/ D e
R t
0 a.s/ds

�Z t

0

ei�� f .�/e� R �
0 a.s/dsd� C C0

�

is even unbounded. For instance, choose a.t/ WD 1C eit, then
R t
0

a.s/ds D t C eit

i is
unbounded.

Example 5.5. Consider the equation

dx.t/

dt
D .eit C ei

p
2t/x.t/; x.t/ 2 C; t 2 R: (7.14)

The frequencies of a.t/ WD .eit C ei
p
2t/ are f1;p2g. The semi-module generated

by the set of frequencies of a.t/ is the set N0 C p
2N0. With the operator G D

�d=dt C a.t/ one gets

�.G/\ iR 	 �i.N0 C N0

p
2/ [ i.N0 C N0

p
2/;

where N0 D f0; 1; 2; : : :g. In this example U.t; s/ D e
R t

s a.�/d� , so all solutions x.t/ D
U.t; s/x.s/ are almost periodic, and therefore bounded.

Remark 5.6. Theorem 5.1 holds not only for one dimensional case, but also for
finite dimensional case, i.e., for equation

dx

dt
D A.t/x;

where A.t/ is an almost periodic matrix and X D Rn or Cn.

Example 5.7. In the following we give a numerical example to illustrate the
conditions required in our Theorem 3.6. The equation we consider is of the form

dx.t/

dt
D .cos t C cos t

p
2 � 2/x.t/; x.t/ 2 R; t 2 RC: (7.15)

The frequencies of a.t/ WD cos tCcos t
p
2�2 are f0;�1; 1;�p

2;
p
2g, therefore

ƒ WD sm.�b.a// D m.�b.a// D Z C Z
p
2. We will show that

† D iƒ:

We have M0;a WD lim
T!1

1
T

R T
0

a.t/dt D �2, so ReM0;a D �2 6D 0. It is shown in

[11, Theorem 6.6] that for all � 62 ƒ, the equation

dx

dt
D .a.t/ � i�/x C f .t/;
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or with y D ei�tx,

dy

dt
D a.t/y C ei�tf .t/

has a unique bounded solution

y.t/ D �
Z 1

t
e
R t

s a.�/d�ei�sf .s/ds

which is almost periodic and in APƒC�.X/. It yields that † 	 iƒ. We now verify
the condition (7.8). Since U.t; s/ D e

R t
s a.�/d� , (7.6) becomes (for s D 0)

u�;f D e��te
R t
0 a.�/d�u.0/C

Z t

0

e��.t��/e
R t
� a.�/d� f .�/d�:

Therefore for each i� 2 †,

u˛Ci�;f D e�.˛Ci�/te
R t
0 a.�/d�u.0/C

Z t

0

e�.˛Ci�/.t��/e
R t
� a.�/d� f .�/d�

D e�.2C˛/te�i�tCsin tC sin
p

2t
p

2



u.0/C

Z t

0

e
i���sin �� sin

p

2�
p

2 f .�/e2�d�

�

Since e
�i�tCsin tC sin

p

2t
p

2 and e
i���sin �� sin

p

2�
p

2 f .�/ are almost periodic in t and �,
respectively, there exist positive constants M and N such that

je�i�tCsin tC sin
p

2t
p

2 j � M; jei���sin �� sin
p

2�
p

2 f .�/j � N:

We have

ju˛Ci�;f j � e�.2C˛/tM


ju0j C N

Z t

0

e.2C˛/�d�
�

� e�.2C˛/tMju0j C e�.2C˛/tMN
e.2C˛/t � 1
2C ˛

� Mju0j C MN
1 � e�.2C˛/t

2C ˛

� Mju0j C MN

2C ˛
:

Therefore lim
˛#0

˛u˛Ci�;f D 0. Obviously, the set † is countable, so according to

Theorem 3.6, Eq. (7.15) is strongly stable.
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Example 5.8. In the following we give an example in the infinite dimensional case
in which the spectrum of the generator of the evolution semigroup is a countable set,
so it is possible to apply our result in the paper. Assume that A0 is the generator of
an analytic semigroup in a complex Banach space X (so, it is a sectorial operator),
and a.t/ WD eit C ei

p
2t is a numerical function. Consider the evolution equation

du.t/

dt
D A0u.t/C a.t/u.t/; u.t/ 2 X; t 2 R: (7.16)

We define ƒ WD N0 C p
2N0. And as in the previous examples and results we

know that an evolution semigroup associated with this equation is well defined and
strongly continuous in the function space APƒ.X/. Let us consider the multiplica-
tion operator MA as defined in the proof of Theorem 3.1, that is, MA W APƒ.X/ !
APƒ.X/ defined as MAf .t/ D a.t/f .t/ for all t 2 R. By using the spectral estimates
of commuting operators developed in [2] it is easy to see that in this case the
spectrum of the generator of the evolution semigroup �d=dt C MA C A0 in APƒ.X/
can be estimated as

�.�d=dt C MA C A0/ 	 �.�d=dt C MA/C �.A0/: (7.17)

If we assume that �.A0/ 	 iR is countable, then by the result in the previous
example, we have

�i.�d=dt C MA C A0/ 	 N0 C p
2N0 C �.A0/ (7.18)

is countable. Therefore, the imaginary spectrum of the generator of the minimal
evolution semigroup is countable.
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Chapter 8
A Preparation Theorem for a Class
of Non-differentiable Functions
with an Application to Hilbert’s 16th Problem

Mohamed El Morsalani and Abderaouf Mourtada

Abstract We consider a class of unfoldings of quasi-regular functions. We assume
that such perturbations have asymptotic developments which depend on many
unfoldings of the logarithm function. We prove a preparation theorem for such
functions; namely, they are “conjugated” to a finite principal part via a “pseudo-
isomorphism”. This finite principal part is polynomial in the phase variable and
these unfoldings of the logarithm function. As an application there exists a uniform
bound in the parameter of the numbers of zeros of such class of non-differentiable
functions. A finiteness result of the number of the limit cycles bifurcating from a
perturbed hyperbolic polycycle is obtained too.

Keywords Hilbert 16th problem • Malgrange preparation theorem • Quasi-
regular function • Pseudo-isomorphism • Chebychev expansion • Hyperbolic
saddle point

8.1 Introduction

The Malgrange Preparation theorem, in its elementary form, says that if ı.x; �/ is
smooth with respect to the phase variable x and the parameter � and if it satisfies
ı.x; �0/ D xkg.x/ with g.0/ ¤ 0 i.e. x D 0 is a regular zero of ı.x; �0/ of order
k then there exist a neighborhood V of .0; �0/ and smooth functions u; ai where
u.x; �/ ¤ 0 such that

ı.x; �/ D u.x; �/.xk C ak�1.�/xk�1 C � � � C a0.�// (8.1)
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Such theorem plays an important role in the theory of bifurcations. In this paper we
show an equivalent preparation theorem for a class of non-differentiable functions
which are unfoldings of the class of quasi-regular functions QR.

Definition 1.1. Let g.x/ W Œ0; x0� �! R be an analytic function for x > 0 and
continuous at x D 0. we say that g is quasi-regular if:
(QR1) g.x/ has a formal expansion of Dulac type. This means that there exists a

formal series:

Og.x/ D
1X

iD0
xˇi Pi.ln x/

where ˇi is strictly increasing sequence of positive real numbers 0 < ˇ0 <
ˇ1 : : : tending to infinity and for i, Pi is a polynomial and Og is a formal
expansion of g.x/ in the following sense:

8n � 0 g.x/�
nX

iD0
xˇi Pi.ln x/ D 0.xˇn/:

(QR2) Let G.�/ D g.exp�� / for � 2 Œ�0 D � ln x0;1Œ. Then G has a bounded
holomorphic extension in a complex domain�.C/ D f� D �Ci�I �4 �
C.1C �2/g for some C > 0.

We begin by defining the class of functions we will study. Let ı be defined on
Œ0; x0� � W into Œ0; y0� where x0; y0 > 0 and W is a neighborhood of � D 0 in Rƒ.
Then ı is an unfolding of a quasi-regular function if it satisfies the following:
.H1/ It is analytic on .0; x0� � W, only continuous at x D 0 and ı.x; �/ D 0 8�.
.H2/ It has asymptotic developments that are unfoldings of Dulac’s formal

expansions. Let !i.x; �/ be the unfolding of the logarithm function

!i.x; �/ D
(

x��i �1
�i

if �i ¤ 0

� ln x if �i D 0
(8.2)

where �i is a coordinate of the multi-parameter �. The asymptotic develop-
ments are defined as follows: for any k 2 N� there exists a neighbourhood
Wk 	 W of 0 2 Rƒ and a set I D Œ0; �� for some � > 0 such that

ı.x; �/ D ık.x; �/C xkRk.x; �/

with (8.3)

ık.x; �/ D
X

0�iCP jl�k


ij1:::jm xiZ
j1
1 � � � Zjm

m

where

Zi.x; �i/ D x!i
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and Rk is analytic on .0; �� and satisfies the following property .I1
0 / which

was introduced in [11]:

.I1
0 / 8� 2 N lim

x!0
x�
@�Rk

@x�
.x; �/ D 0 uniformly in � 2 Wk:

.H3/ There exists an integer n D n0Cn1C� � �Cnm (the nontriviality order) such
that

ı.x; �0/ D cx.n0Cn1C���Cnm/.ln x/.n1C���Cnm/ C h:o:t c ¤ 0 (8.4)

this means that for � D �0 D 0 the function ı is not formally flat.
We need to introduce some notations before stating the main theorem for this class
of non-differentiable functions. For � > 0 the set S� is defined by

S� D fu C p�1vI 0 < u < �; jvj < �jujg:
A map f W X �! Y is said to be of finite degree if there exists d 2 N such that for
any y 2 Y we have Cardff �1.y/g � d.

Theorem 1.2 (Main Theorem). There exist an integer N depending on n D n0 C
n1 C � � � C nm, a neighbourhood WN 	 W of 0 2 Rƒ, a set I D Œ0; �� for some � > 0
and a map, which we call a “pseudo-isomorphism”,ˆN W I � WN �! S� � WN of
finite degree such that

ı D ıN ıˆN ; (8.5)

where

ˆN.x; �/ D .'N.x; �/; �/ D .x.1C �.x; �//; �/ (8.6)

and

lim
x!0

�.x; �/ D 0 uniformly in�

Corollary 1.3 (Main Corollary). If ı satisfies .H1/, .H2/ and .H3/, then there
exists a uniform bound in the parameter � for the number of isolated zeros of the
equation ı.x; �/ D 0.

Remark. Joyal has published a preparation theorem for non-differentiable functions
having a certain type of expansion called Chebychev expansions [9]. The class of
functions we consider in this work is more general.

This work has its first motivations in Hilbert’s 16th problem for polynomial vector
fields [5]:

Find the maximum number H.n/ and relative positions of limit cycles of a system
(

Px D P.x; y/

Py D Q.x; y/
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of degree n D sup.degP; degQ/. The existential part of the problem is to prove that
H.n/ is finite.

We begin by giving some definitions:
– The Hausdorff distance between compact sets of the sphere S2 is defined by

dH.A;B/ D sup
.x;y/2A�B

fdist.x;B/; dist.A; y/g

– A compact set � 	 S
2 is a limit periodic set (l.p.s) of a vector field X�0 if there

is a sequence .�i/i�1 ! �0 in the parameter space P, with a limit cycle 
i for
each X�i such that: .
i/ ! � for dH.

– A limit periodic set � of X�0 has finite cyclicity if there exist N 2 N; �; ı > 0

such that any X� with j� � �0j < ı has at most N limit cycles 
i satisfying
dH.
i; �/ < �. The minimum of such N when �; ı ! 0 is called the cyclicity
of � in the family X�.

– A singular point of a vector field is said elementary if it has at least one
non-zero eigenvalue. It is hyperbolic (respectively semi-hyperbolic) if the two
eigenvalues are non-zero (respectively one eigenvalue is zero).

– The hyperbolicity ratio of a hyperbolic saddle is the ratio r D �˛1
˛2

, where
˛1 < 0 < ˛2 are the two eigenvalues. The hyperbolic saddle is attracting
(respectively repelling, neutral) if r > 1 (respectively r < 1, r D 1).

– A graphic [4] is formed by singular points p1; � � � ; pm; pmC1 D p1 and oriented
regular orbits s1; � � � ; sm connecting them so that sj is an unstable characteristic
orbit of pj and a stable characteristic orbit of pjC1, and normal orientations nj of
the regular orbits are coherent in the sense that if sj�1 has left-hand orientation
then so does sj. Graphics may or may not have a return map. Polycycles are
graphics with a return map.

– A graphic is called elementary if all its singular points are elementary.
In studying this problem it is natural to compactify the phase space to the

Poincaré sphere. The parameter space can be compactified as well. We obtain a
family X�, � 2 ƒ of analytic vector fields defined on a compact phase space and
depending on parameters� varying in a compact setƒ. Using a compacity argument
Roussarie [14] showed that to prove the existential part of Hilbert’s 16th problem
for polynomial vector fields it is sufficient to prove that any limit periodic set in the
family X� has finite cyclicity, i.e. can give rise to uniformly bounded number of limit
cycles in any perturbation inside X� [1]. In this context, we give a first application of
the theory developed in the first part of this paper: uniform finiteness of the number
of limit cycles which bifurcate from a degenerate hyperbolic 2-polycycle. The main
theorem in the application is

Theorem 1.4. Let X0 be an analytic vector field on the plane which has a
hyperbolic polycycle � with two vertices such that their ratios of hyperbolicity are
rational different from 1 and their product is 1. If the polycycle is non-identical, then
there exists an integer N depending only on the germ of X0 along � such that the
number of limit cycles bifurcating from � in any analytic deformation is bounded
by N.
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Another problem is treated in our work, namely the degeneracy of Khovansii
procedure as used by Ilyashenko and Yakovenko to prove the following theorem:

Theorem 1.5 ([8]). For any n 2 N there exists a number E.n/ such that an
elementary polycycle appearing in a generic n-parameter family of smooth vector
fields generate no more than E.n/ limit cycles. The number E.n/ may be effectively
estimated by some primitive recursive function of n.

One of the important steps to prove this theorem is the called Khovanskii procedure.
One result of our paper is to show how this Khovanskii procedure used by
Ilyashenko and Yakovenko degenerates when we study perturbations of a “generic”
hyperbolic 2-polycycle. It follows that one has to impose strong conditions to get the
finite cyclicity. To overcome such difficulties, we think that these new ideas which
were elaborated in the preparation theorem for unfoldings of quasi-regular functions
will be of great help.

Many questions are still open: what about the properties of the “pseudo-
isomorphism”. We could not answer this question yet. But an answer will be of
great progress towards a best knowledge of the bifurcation diagram of ı.x; �/ D 0.

To make our proofs understandable we show our main theorem for the case mD3
meaning we work with three Zi D x!i. The proofs are technical but constructive.
The paper is organized as follows: in the second section we show that the equation
ı.x; �/ D ıN.'N.x; �/; �/ is equivalent to an analytic functional equation in the
unknown function �

hN.x; �; �/ D
C1X

lD1
Oal.x; �/�

l � xNRN.x; �/ D 0 (*)

where

Oal.x; �/ D 1

lŠ

@ıN

@xl
.x; �/:

To show that the functional equation (*) has a solution, we will study the “ideal” I0
generated by the germs of the functions Oan on .RC; 0/�.RƒC3; 0/. This “ideal” will
be the set obtained as a restriction of a certain ideal, in the ring of analytic germs
.RC; 0/� .RƒC3; 0/, on the graphs given by zi D Zi.x; �i/. The key theorem will be

Theorem 1.6. There exists an integer m 2 N such that xm.1Cr1Cr2Cr3/ is in I0 where
ri D 1 � �i and �i is the parameter in (8.2) and the integer m can be explicitly
computed.

The next section will be devoted to prove this theorem. This is done in progressive
steps. We will study the properties of monomials appearing in the asymptotic
developments in (H3). These monomials are  ij1 j2j3 D xiZj1

1 Zj2
2 Zj3

3 . We introduce
a derivation operator L D x @

@x which will be applied in an elimination algorithm to
show that there exists a function h in this “ideal” such that
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h.x; �/ D
X

iCj1Cj2Cj3Dn


ij1j2j3 .�/ ij1j2j3

and h.x; 0/ is not equivalent to zero. Thanks to some linear algebra, differential
calculus and analytic geometry like the idea of using the coefficient ideal associated
with a perturbation of an analytic function on an interval, we succeed to prove that
a function b.�/x�.�/ is in this “ideal” but we could not say anything about the germ
of b.�/ in � D .�1; �2; �3/ D 0. After some preparatory work we show the last
theorem and later on we construct the function �. The key idea is to notice that
when one chooses an integer N sufficiently large then xNRN.x; �/ in expression (*)
is in this “ideal” which is finitely generated. Tools from complex analysis like the
fact that the ring of analytic germs at a certain point is noetherin, some compacity
arguments as theorem of Rouché, formula of Jensen will be used. Moreover the
theory of Khovanskii as in [13] will be applied to prove the main corollary. The
last part will be devoted to the application. In Sect. 8.5, we will recall some known
results about transition maps near a hyperbolic saddle point of finite order, i.e. it is
not formally linearisable. In the Sect. 8.6, we show the theorem:

Theorem 1.7. Let X0 be an analytic vector field on the plane which has a
hyperbolic polycycle � with two vertices such that their ratios of hyperbolicity are
rational and their product is 1. If the polycycle is non-identical satisfying some
conditions which will be exhibited later on and if one of its vertices has finite order
then there exists an integer N depending only on the germ of X0 along � such that
the cyclicity of � in any C1-deformation is bounded by N.

The proof uses an adequate definition of the displacement map associated with the
perturbed polycycle. For this displacement map, one can apply the pfaffian equation
satisfied by the Dulac map of one of the saddle vertices. This yields a simplified
equation which can be completely studied. The last section contains the proof of the
main theorem in the application mentioned previously. There we use the preparation
theorem after reducing the displacement map by a new one by means of generalized
Rolle’s lemma and some differential analysis: change of variables, introduction of
new compensators.

8.2 Reduction of the Equation • D •N ı ˆN

to a Functional Equation

For any sufficiently small x0 2 .0; �/ the functions ı and ıN are analytic on
�0; 2x0� � WN . Furthermore these functions can be holomorphically continued on
sectors S.�/ D fz 2 QCI 0 < jzj < �.�/; jArg.z/j < �g where �.�/ ! 0 if � ! 1
and QC is the universal covering of C�. This property is satisfied by Dulac maps of
hyperbolic saddle points and their unfoldings [3]. It follows that for any � 2 WN the
radius of convergence of their power series expansion in .x � x0/ is jx0j. Let
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'N.x; �/ D x.1C �.x; �// (8.7)

ıN.'N.x; �/; �/ D
C1X

lD0

1

lŠ
xl @

lıN

@xl
.x; �/�l

D
C1X

lD0
Oal.x; �/�

l (8.8)

where we defined

Oal.x; �/ D 1

lŠ
xl @

lıN

@xl
.x; �/: (8.9)

The previous series converges for j�j < 1 and for any .x; �/ 2 I � WN .
Using the expressions (8.7) and (8.8), the equation ı.x; �/ D ıN.'N.x; �/; �/ is

equivalent to

ıN.x; �/C xNRN.x; �/ D
C1X

lD0
Oal.x; �/�

l (8.10)

as Oa0.x; �/ D ıN.x; �/ we obtain the following lemma

Lemma 2.1. The functional equation ı.x; �/ D ıN.ˆN.x; �/; �/ is equivalent to
the following functional equation which is analytic in � and is given by

HN.x; �; �/ D
C1X

lD1
Oal.x; �/�

l � xNRN.x; �/ D 0 (*)

To show that the functional equation (*) has a solution, we will study the “ideal”
generated by the germs of the functions Oal in .RC; 0/ � .RƒC3; 0/ as it will be
explained later on.

From now on we will work with an expansion of ı written with three compen-
sators !1; !2; !3. The general case is proved in the same way. The function

Oa0.x; �/ D ıN.x; �/ D OP0.x;Z1;Z2;Z3; �/
D

X

0�iCjlCj2Cj3�N


ij1j2 j3 .�/x
iZj1
1 Zj2

2 Zj3
3

where OP0 is obviously a polynomial in the variables .x; z1; z2; z3/ of degree N with
analytic coefficients in �.

Recall that the parameter �i was introduced in (8.2) and define ri D 1 � �i then
@Zi
@x D riZi�x

x . As the function Oa1.x; �/ D x @ıN
@x .x; �/ we obtain

Oa1.x; �/ D x
@ OP0
@x
.x;Z1;Z2;Z3; �/C

3X

iD1
.riZi � x/

@ OP0
@zi

.x;Z1;Z2;Z3; �/ (8.11)



140 M. El Morsalani and A. Mourtada

It is easy to see that we can find a polynomial OP1 in the variables .x; z1; z2; z3/ of
degree N and analytic in � such that Oa1.x; �/ D OP1.x;Z1;Z2;Z3; �/. This fact can be
generalized easily for any n 2 N

Oan.x; �/ D OPn.x;Z1;Z2;Z3; �/ (8.12)

Define the following sequence of functions a0.x; �/ D ıN.x; �/ and

an.x; �/ D L.n/a0.x; �/; (8.13)

for the derivation operator

L D x
@

@x
:

It follows that the same conclusions for Oan are true for an, i.e. there exists a
polynomial Pn in the variables .x; z1; z2; z3/ of degree N and analytic in � such that

an.x; �/ D Pn.x;Z1;Z2;Z3; �/: (8.14)

Let I (respectively OI be the ideal generated by the germs of the polynomials .Pn/n�1
(respectively by . OPn/n�1) in .x; z1; z2; z3; �/ D .0; 0; 0; 0; 0/ 2 RƒC4 in the ring O of
the analytic germs. Let I0 (respectively OI0 be the set (“ideal” in this sense) obtained
as a restriction of I (respectively OI) on the graphs zi D Zi.x; �i/:

Lemma 2.2. The “ideals” I0 and OI0 satisfy I0 D OI0.
Easy algebraic and derivation computations give the result above. Indeed for the
first three functions we have

a1.x; �/ D La0.x; �/ D x
@a0
@x
.x; �/ D Oa1.x; �/

a2.x; �/ D La1.x; �/ D x
@xa0

0

@x
.x; �/ D Oa1.x; �/C Oa2.x; �/

where f 0 stand for @f
@x . Define the following “zero sets”

Z.I0/ D f.x; �/I 8n � 1 an.x; �/ D 0g
Z.I/ D f.x; z1; z2; z3; �/I 8n � 1Pn.x; z1; z2; z3; �/ D 0g (8.15)

Theorem 2.3. There exists an integer m 2 N such that xm.1Cr1Cr2Cr3/ is in I0.

The next section will be devoted to show this assertion which is important to
solve Eq. (*).
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8.3 A Constructive Proof of Theorem 1.6

This proof is constructive because we can give the value of the integer m defined in
Theorem 1.6 as a function of the nontriviality order n D n0 C n1 C n2 C n3 defined
in (H3). The proof is very technical and could not be avoided.

8.3.1 Existence of a Function b.�/x�.�/ in the “Ideal” I0

Recall that

ıN.x; 0/ � xn.ln x/n1Cn2Cn3 (8.16)

and we write

ıN.x; �/ D
NX

iD0
pi.x;Z1;Z2;Z3; �/ (8.17)

where the pi, for 1 � i � N, is a homogeneous polynomial in the variables
.x; z1; z2; z3/ of degree i and analytic in �.

Lemma 3.1. The ideal I contains a function h which is homogeneous polynomial
in the variables .x; z1; z2; z3/ and analytic in � such that

h.x; z1; z2; z3; �/ D
X

iCj1Cj2Cj3Dn


ij1j2j3 .�/Mij1 j2j3 (8.18)

where

Mij1 j2j3 D xizj1
1 zj2
2 zj3
3 (8.19)

and furthermore we have


n000.�/ � 1 (8.20)

This means that the restriction of the function h on the graphs zi D Zi.x; �i/ is in
the “ideal” I0, restriction of the ideal I on the graphs zi D Zi.x; �i/.

Proof. First of all one has the following property

OLMij1j2j3 D .i C j1r1 C j2r2 C j3r3/Mij1 j2j3

� j1MiC1j1�1j2j3 � j2MiC1j1j2 � j3MiC1j1j2j3�1
(8.21)

where for g, a polynomial in the variables .x; z1; z2; z3/ and analytic in �, we defined

OL.g/ D x
@g

@x
C

3X

iD1
.rizi � x/

@g

@zi
(8.22)
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By construction the ideal I is stable under the operator OL and this operator satisfies

L.g.x;Z1;Z2;Z3; �// D OL.g/.x;Z1;Z2;Z3; �/ (8.23)

So it is not ambiguous when we apply the operator L directly on L0. All the
properties of the ideal L are inherited automatically by the “ideal” L0, i.e. stability
with respect to addition, multiplication, etc.

The proof is based on “elimination algorithm”. Indeed we will eliminate all the
monomials  ij1 j2j3 .x; �/ D Mij1j2j3 .x;Z1;Z2;Z3; �/ such that i C j1 C j2 C j3 ¤ n in
ıN.x; �/.

Take such a monomial then one can write:

ıN.x; �/ D Q.x;Z1;Z2;Z3; �/C 
ij1j2j3 ij1 j2j3 .x; �/ (8.24)

We apply the derivation operator L and the result of (8.21) to obtain

LıN.x; �/ D LQ.x;Z1;Z2;Z3; �/C 
ij1j2j3 Œ

.i C j1r1 C j2r2 C j3r3/ ij1 j2j3

� j1 iC1j1�1j2j3 � j2 iC1j1j2 � j3 iC1j1j2j3�1�:

(8.25)

Subtracting

.i C j1r1 C j2r2 C j3r3/ıN.x; �/� LıN.x; �/ D Q1.x;Z1;Z2;Z3; �/

where on the one hand Q1 does not contain any more the monomial  ij1 j2j3 and
on the other hand the function .i C j1r1 C j2r2 C j3r3/ıN.x; �/ � LıN.x; �/ is still
in the ideal I0. This procedure permits to eliminate all the monomials  ij1 j2j3 with
i C j1 C j2 C j3 ¤ n. At each step we get functions in the “ideal” I0. At the end of
this procedure, we obtain a function h.x;Z1;Z2;Z3; �/ such that for � D 0 we have

h.x;� ln x;� ln x;� ln x; 0/ 6� 0:

Using the properties of the L, there exists p 2 N such that Lph.1; 0; 0; 0; 0/ ¤ 0.
Up to a division by a non-zero coefficient, one can replace h by Lph to get a new
function denoted again by h as described in (8.18) with new functions 
ij1j2j3 .�/

which we still denote as those of the beginning and satisfying (8.20). ut
We cannot apply the same procedure above to the function h, otherwise we lose
the control on our nontriviality order, i.e. it will be multiplied by a function which
vanishes for � D 0 (the function h and all of its monomials satisfy a differential
equation which has for � D 0 a unique eigenvalue D n). So we apply some
techniques from the linear algebra and differential calculus.

Let N0 be the cardinal of the set containing all the monomials  ij1 j2j3 such that
i C j1 C j2 C j3 D n; the value of N0 is

N0 D .N C 3/

3ŠnŠ
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and let J be the set f.i; j1; j2; j3/I i C j1 C j2 C j3 D n; .j1; j2; j3/ ¤ 0g. We apply the
derivation operator .N0 � 1/ times to the function h of (8.18). We obtain then

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

h D P
J 
ij1j2j3 ij1 j2j3 C xn

L.h/ D P
J 
ij1j2j3L. ij1 j2j3 /C L.xn/

:::
:::

LN0�1.h/ D P
J 
ij1j2j3LN0�1. ij1j2j3 /C LN0�1.xn/

(8.26)

This system can be transformed in the following one

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

P
J 
ij1j2j3 ij1 j2j3 C .xn � h/ D 0

P
J 
ij1j2j3L. ij1 j2j3 /C .L.xn/ � L.h// D 0

:::
:::

P
J 
ij1j2j3LN0�1. ij1j2j3 /C .LN0�1.xn/� LN0�1.h// D 0

(8.27)

The system (8.27) can be seen as a linear system of N0 equations with coefficients
Ll. ij1 j2j3 / and .Ll.xn/ � Ll.h//; .i; j1; j2; j3/ 2 J and 0 � l � N0 � 1. It has a
non-trivial solution

..
ij1j2 j3 /J ; 1/

where the monomials ij1 j2j3 are ordered by the lexicographical order denoted �. So
the determinant of the system must be zero.

0 D det

0

B
B
B
@

� � �  ij1j2j3 � � � xn � h
� � � L. ij1 j2j3 / � � � L.xn/� L.h/
:::

:::
:::

:::

� � � LN0�1. ij1j2 j3 / � � � LN0�1.xn/� LN0�1.h/

1

C
C
C
A

(8.28)

with .i; j1; j2; j3/ 2 J . Using the multi-linearity of the determinant, we obtain

�.x; �/ D det

0

BB
B
@

� � �  ij1 j2j3 � � � xn

� � � L. ij1 j2j3 / � � � L.xn/
:::

:::
:::

:::

� � � LN0�1. ij1j2 j3 / � � � LN0�1.xn/

1

CC
C
A

D det

0

B
B
B
@

� � �  ij1 j2j3 � � � h
� � � L. ij1 j2j3 / � � � L.h/
:::

:::
:::

:::

� � � LN0�1. ij1j2 j3 / � � � LN0�1.h/

1

C
C
C
A

(8.29)
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where � D .�1; �2; �3/. The “ideal” I0 is stable under the action of L and h is
in this “ideal” then the second determinant in expression (8.29) is also an element
of the “ideal” I0. Consequently the determinant � is in I0. The next step is to
compute this determinant.

Lemma 3.2. There exist two analytic functions b and � of � such that

�.x; �/ D b.�/x�.�/

b.�/ D �.1; �/

�.�/ D
0

@
.n�1/X

iD0
.n � i/

.i C 1/.i C 2/

2

1

A .1C r1 C r2 C r3/

(8.30)

Proof. Apply the operator derivation L on � which is a determinant of functions.
For any .i; j1; j2; j3/ with iC j1C j2C j3 D n, call Cij1 j2j3 the .ij1j2j3/th column vector
in �. It is under the form

Cij1 j2j3 D

0

B
B
B
@

 ij1 j2j3

L. ij1 j2j3 /
:::

LN0�1. ij1 j2j3 /

1

C
C
C
A

(8.31)

Now we have � D det.Cij1j2 j3 /iCj1Cj2Cj3Dn and it follows

L.�.x; �// D
X

iCj1Cj2Cj3Dn

�ij1j2j3 (8.32)

where�ij1j2j3 stands for the determinant obtained from the matrix Clk1k2k3 , .l C k1 C
k2 C k3 D n/, where we applied the derivation operator to and only to the elements
of the .ij1j2j3/th column vector. We set

�ij1j2j3 D i C j1r1 C j2r2 C j3r3 (8.33)

Using the result about the derivation operator L in expression (8.21) we obtain

L.Cij1 j2j3 / D

0

B
B
B
@

L. ij1 j2j3 /

L.L. ij1 j2j3 //
:::

LN0�1.L. ij1 j2j3 //

1

C
C
C
A

D �ij1j2j3Cij1j2 j3 � j1CiC1j1�1j2j3 � j2CiC1j1j2�1j3

� j3CiC1j1j2 j3�1

(8.34)



8 A Preparation Theorem for a Class of Non-differentiable Functions. . . 145

Thanks to the multilinearity and the properties of the determinant, we find

�ij1j2j3 .x; �/ D .i C j1r1 C j2r2 C j3r3/�.x; �/ (8.35)

this gives

L.�/ D
X

iCj1Cj2Cj3Dn

.i C j1r1 C j2r2 C j3r3/�

D �.�/�

�.�/ D
0

@
.n�1/X

iD0
.n � i/

.i C 1/.i C 2/

2

1

A .1C r1 C r2 C r3/

(8.36)

The definition of L shows that � satisfies the differential equation

x
@�

@x
.x; �/ D �.�/�.x; �/:

One solves it and we obtain the result. ut

8.3.2 Proof of Theorem 1.6

We cannot yet assert that x�.�/ is in the “ideal” I0 because we know only that
b.�/x�.�/ is in I0 and we have no information about the germ of b.�/ in � D 0. So
we need some extra preparatory work to show the assertion of Theorem (1.6).

Lemma 3.3. The monomials  ij1 j2j3 D xiZj1
1 Zj2

2 Zj3
3 , i C j1 C j2 C j3 D n, satisfy the

following differential equation

LN0 . / D
.N0�1/X

iD1
ci.�/Li. / (8.37)

where ci are analytic functions of �.

Proof. We show the lemma in four steps. The first three steps will be devoted to
prove the assertion for x�ij1j2 j3 , �ij1j2j3 D i C j1r1 C j2r2 C j3r3. In the fourth step we
show the assertion for any monomial  ij1 j2j3 using the fact that it can be written as a
linear combination of x�ij1j2 j3 .

1. Let  be any x�ij1j2 j3 for i C j1 C j2 C j3 D n. Let us define a .N0 C 1/� .N0 C 1/

matrix .C; QCij1 j2j3 /.iCj1Cj2Cj3Dn/ defined as follows:
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QCij1 j2j3 D

0

B
B
B
BB
@

x�ij1j2 j3

L.x�ij1 j2j3 /
:::

LN0�1.x�ij1j2 j3 /

LN0 .x�ij1j2 j3 /

1

C
C
C
CC
A

and C D

0

B
B
B
BB
@

 

L. /
:::

LN0�1. /
LN0 . /

1

C
C
C
CC
A

(8.38)

The properties of the determinant yield

E. / D det.C; QCij1 j2 j3 /.iCj1Cj2Cj3Dn/ � 0

So we can write

E. / D det

0

BB
B
B
B
@

 � � � x�ij1j2 j3 � � � xn

L. / � � � L.x�ij1 j2j3 / � � � L.xn/
:::

:::
:::

:::

LN0�1. / � � � LN0�1.x�ij1j2 j3 / � � � LN0�1.xn/

LN0 . / � � � LN0 .x�ij1j2 j3 / � � � LN0 .xn/

1

CC
C
C
C
A

(8.39)

Develop this determinant with respect to the first column. Then we obtain the
following differential equation satisfied by  which is written

�N0LN0 . /C � � � C�iLi. /C � � � C�0L0. / D 0 (E)

where �i stands for the determinant obtained from the matrix . QCij1 j2j3 / where
.i C j1 C j2 C j3 D n/, without the ith row. The 0th row is the first row of the
matrix.

2. Let us calculate the determinant �N0 . An easy computation shows that for any
integer p

Lp.x�ij1j2 j3 / D �
p
ij1j2j3

x�ij1j2 j3 (8.40)

then the determinant�N0 becomes

�N0 D
Y

iCj1Cj2Cj3Dn

x�ij1j2 j3 det

0

B
B
B
@

� � � 1 � � � 1

� � � �ij1j2j3 � � � n
:::

:::
:::

:::

� � � �N0�1
ij1j2j3

� � � nN0�1

1

C
C
C
A

(8.41)

Due to the fact that the determinant in expression (8.41) is a Vandermond
determinant

�N0.x; �/ D bN0.�/x
�� (8.42)
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where

bN0 .�/ D
Y

i C j1 C j2 C j3 D kCl1 C l2 C l3 D n

.i; j1; j2; j3/ � .k; l1; l2; l3/

.�ij1j2j3 � �kl1l2l3 /

3. for i ¤ 0, we can apply the same computations to obtain the determinant �i.
We find

�i.x; �/ D bi.�/x
�� (8.43)

where

bi.�/ D det

0

B
B
B
BB
B
B
B
B
BB
B
B
@

� � � 1 � � � 1

� � � �ij1 j2j3 � � � n
:::

:::
:::

:::

� � � � i�1
ij1 j2j3

� � � ni�1
� � � � iC1

ij1 j2j3
� � � niC1

:::
:::

:::
:::

� � � �N0�1
ij1 j2j3

� � � nN0�1
� � � �N0

ij1 j2j3
� � � nN0

1

C
C
C
CC
C
C
C
C
CC
C
C
A

If we let two columns be the same which means to take �ij1j2j3 D �kl1l2l3 , then
bi.�/will be zero. This fact implies that �ij1j2 j3��kl1 l2l3 divides this determinant in
the ring of polynomials RŒ�ij1j2j3 � for all .i; j1; j2; j3/ satisfying iC j1C j2C j3 D n.
Consequently there exist polynomials ci in the ring RŒ�� such that

bi.�/ D ci.�/bN0 .�/: (8.44)

Replace each �i by its value in equation (E). Then this equation can be
desingularized

LN0 . /C � � � C ciLi. /C � � � C c0L0. / D 0 (8.45)

4. Easy computations show that the monomials  ij1 j2j3 can be written as a linear
combination of the functions x�ij1j2 j3 . Indeed

�iZi D x.x��i � 1/ D xri � x (8.46)

which yields

�
j1
1 �

j2
2 �

j3
3  ij1j2 j3 D xi.xr1 � x/j1 .xr2 � x/j2 .xr3 � x/j3 (8.47)
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So for any � … F D f�I Q3
iD1 �i D 0g, the monomials satisfy the differential

equation (8.45). For �0 2 F then Zi and Lp.Zi/ converge to �x ln x and
Lp.�x ln x/ when � ! �0 and � 62 F uniformly for x 2 I. Then for such �0
the monomials  ij1 j2j3 satisfy also the differential equation.

ut
Recall that from expression (8.29) we have got

�.x; �/ D det

0

BB
B
@

� � �  ij1 j2j3 � � � h
� � � L. ij1 j2j3 / � � � L.h/
:::

:::
:::

:::

� � � LN0�1. ij1 j2j3 / � � � LN0�1.h/

1

CC
C
A

(8.48)

We compute the determinant of the matrix by developing with respect to the last
right column containing the coefficients Li.h/. Then we obtain

�.x; �/ D b.�/x�.�/

D
N0�1X

iD0
Di.x; �/Li.h/.x; �/

(8.49)

where the Di are the determinants of .N0 � 1/ � .N0 � 1/ matrices obtained from

.Cij1j2j3 /.iCj1Cj2Cj3Dn/

by eliminating the vector column Cn000 and the ith row.
The last step to prove the Theorem (1.6) consists in showing that Di.:; �/ D

di.�/b.�/ where di will be described later. Besides, the Lemma (8.18) the key idea
is to use the coefficient ideal as in [15]. For instance, take a function ı.:; �/ analytic
in .x; �/. For x0 2 .0; �/ the function ı is analytic at the variables .x; �/. Take its
power expansion series at .x � x0/

ı.x; �/ D
1X

iD0
gi.�; x0/.x � x0/

i

for x close to x0. Consider the ideal Jx0 generated by the germs of functions gi at
� D 0. The ideal Jx0 does not depend on x0 ¤ 0. This ideal will be the coefficient
ideal associated with ı in the ring of analytic germs at � D 0.

Let us associate with Di, for a fixed i W 0 � i � N0 �1, its coefficient ideal. Then
there exist some generators of this ideal and quasi-regular functions such that

Di.x; �/ D
X

finite

�ji.�/gij.x; �/:
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The coefficient ideal does not depend on x then we can calculate its generators for
x D 1. Take u close to 0 then we can write

Di.1C u; �/ D
1X

lD0

1

lŠ
ul @

lDi

@xl
.1; �/ (8.50)

As a consequence of Lemma (2.2), it is sufficient to compute LlDi.1; �/ because
@lDi
@xl .1; �/ depends linearly, with coefficients in R, on LjDi.1; �/ for 1 � j � l. Let

us proceed by steps again.
– It is easy to see that

 ij1 j2j3 .1; �/ D 0 8.j1; j2; j3/ ¤ 0 (8.51)

– For any integer k define the following row vectors:

Lk D .� � � ;Lk. ij1 j2j3 /; � � � / .i; j1; j2; j3/ 2 J (8.52)

then

Dj D det.L0;L1; � � � ;Lj�1;LjC1; � � � ;LN0�1/:

– For any k and j integers such that 0 � j � N0 � 1,

Lk.Dj/ D
N0�1X

iD0
fjki.�/Di (8.53)

Indeed let us make a recurrence on k. For k D 1 we have

L.Dj/ D det.L1;L1; � � � ;Lj�1;LjC1; � � � ;LN0�1/

C det.L0;L2; � � � ;Lj�1;LjC1; � � � ;LN0�1/

C � � � C det.L0;L1; � � � ;Lj�1;LjC1; � � � ;LN0�2;LN0 /

(8.54)

Thanks to the Lemma (3.3) we know that

LN0 D .� � � ;LN0 . ij1 j2j3 /; � � � /

D .� � � ;
N0�1X

lD1
cl.�/Ll. ij1 j2j3 /; � � � /

D
N0�1X

lD1
cl.�/Ll

(8.55)

The previous expression and the multilinearity of the determinant give
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L1.Dj/ D
N0�1X

iD0
fj1i.�/Di

Suppose that the recurrence is true for any integer � k. Then we obtain

LkC1.Dj/ D
N0�1X

iD0
fjki.�/L.Di/

D
N0�1X

iD0
fjki.�/

N0�1X

lD0
fi1l.�/.Dl/

An easy computation gives that

LkC1.Dj/ D
N0�1X

iD0
fjkC1i.�/Di

– An easy remark is the following:

Di.1; �/ D 0 8 i 1 � i � N0 � 1 (8.56)

Indeed

L0 D .� � � ;  ij1 j2j3 ; � � � / i C j1 C j2 C j3 D nI .j1; j2; j3/ ¤ 0

as it was noticed before  ij1j2 j3 .1; �/ D 0 when .j1; j2; j3/ ¤ 0 so Di.1; �/ D
det.L0; � � � / D 0.

– It remains to compute D0. Take the determinant �.1; �/ which has the
following expression

�.1; �/ D det

0

B
B
B
@

� � � 0 � � � 1

� � � L. ij1 j2 j3 /.1; 0/ � � � n
:::

:::
:::

:::

� � � LN0�1. ij1 j2j3 /.1; 0/ � � � nN0�1

1

C
C
C
A

Develop�.1; �/with respect to the first row where all the coefficients are zero
except the last which is 1. It follows that

�.1; �/ D D0.1; �/ D b.�/ (8.57)

As Dj D det.L0;L1; � � � ;Lj�1;LjC1; � � � ;LN0�1/ and using (8.53) we can infer
that b.�/ divides all the Lk.Dj/.1; �/ which is also true for @nDi

@xn .1; �/. Then
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we apply this result to the generators of the coefficients ideal associated with
each Di to obtain

Di.x; �/ D b.�/di.x; �/ (8.58)

where di.x; �/ is a quasi-analytic function which is bounded and converges to
0 when x tends to 0 uniformly in the parameter.

– The last step to show the Theorem (1.6) goes as the following. In expres-
sion (8.49) we can simplify by b.�/ and we get

x�.�/ D
N0�1X

iD0
di.x; �/Li.h/.x; �/

Consequently

x�.�/ 2 I0 �

8.4 Construction of the “Pseudo-Isomorphism” ˆ

8.4.1 The Existence of a Map � Solving (*)

In this section we will solve the functional equation

HN.x; �; �/ D
C1X

lD1
Oal.x; �/�

l � xNRN.x; �/ D 0 (*)

We have shown in the two last sections that there exists an integer N1 such that

xN1.1Cr1Cr2Cr3/ 2 I0 (8.59)

As said along this article the “ideal” I0 is defined as restriction of the ideal I on the
graphs zi D Zi.x; �i/. Let fP1; � � � ;PLg be a system of analytic generators of I such
that their restrictions on the graphs zi D Zi.x; �i/ are Oaj defined in (8.9). Then there
exist some functions Ohi which are quasi-regular in x and analytic in � satisfying

xN1.1Cr1Cr2Cr3/ D
LX

iD1
Ohi.x; �/Oai.x; �/ (**)

Remark. A first consequence of the equality (**) is that the multiplicity of an
isolated zero of ı� (or of ıN;�) which is different from 0 is bounded by L uniformly
in � 2 WN . In the case of analytic deformations of regular germs in 0, this property
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implies the local uniform finiteness of the number of the isolated zeros. We will
show that it is the case also here.

The equality (**) implies that, for N > 5N1, the function xNRN.x; �/ can be written

�xNRN.x; �/ D
LX

iD1
gi.x; �/Oai.x; �/ (8.60)

where the functions gi satisfy the property I1
0 and precisely

gi D RNO.xN�N1.1Cr1Cr2Cr3// (8.61)

This property follows after multiplying (**) by xN�N1.1Cr1Cr2Cr3/RN . Let us con-
sider, for j D 1; � � � ; l the sets

Vj D f.x; �/ 2 I � WN I jOaj.x; �/j > 1

2
jOal.x; �/j for l D 1; � � � ;Lg (8.62)

It is easy to see that [L
jD1Vj D I � WN . Let us make the following remark: if

Oai.x; �/ D 0 for l D 1; � � � ;L, then according to (**), we get that x D 0. Let us
set

�.0; �/ � 0 (8.63)

Let us define �.x; �/ for .x; �/ 2 I � WN where I D�0; ��. Take .x; �/ in VL for
instance, then the functions el D Oal

OaL
are analytic and bounded: jelj < 2. Let .x; �/

be fixed then using the same arguments as in [15] and a theorem of Hervé applied
to the extensions of functions Oal in the complex plane [15], we can write the seriesP1

lD1 Oal�
l as follows:

1X

lD1
Oal�

l D
LX

lD1
Oal�

l C �LC1
LX

lD1
elfl (8.64)

where the functions fl are analytic functions in .x; �// 2 I � WN and holomorphic in
� for j�j � 1

2
and there exist constants cl such that

kflkI�WN �B.O; 12 /
� cl:

Let e D .e1; � � � ; eL�1/ then for any .x; �/ in VL, Eq. (*) is equivalent to the
following one:

QH.x; �; e; �/ D
LX

lD1
elgl C

LX

lD1
el�

l C �LC1
LX

lD1
elfl D 0 (***)

with eL D 1 and e is a supplementary parameter which varies in the compact
Œ�2; 2�L�1. We will solve Eq. (***) in the neighbourhood of each point in the
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compact Œ�2; 2�L�1 and after we conclude by a compacity argument. Let us begin
by the point e D .0; � � � ; 0/ to show how the resolution is done. Denote

G.x; �; e; �/ D �L C �LC1
LX

lD1
elfl D 0 (8.65)

then for each j�j � �; where � > 0 and close to zero, we have

1

2
j�jL < jGj < 3

2
j�jL (8.66)

Up to a reduction of the interval I (take a smaller �) and for small kek, we have

j QH � GjD.O;�/ < jGjD.O;�0/ (8.67)

where D.O; �/ denotes a polydisk. The expression (8.67) implies two things:

1. Using the theorem of Rouché, Eq. (***) has exactly L roots .�i/ and at least one
on the ball D.O; �/.

2. Using the formula of Jensen, there exists c > 0 such that

LY

iD1
j�ij < cj

LX

lD1
elglj (8.68)

Take for the value of �.x; �/ the root of Eq. (***) which has the smaller module, a
positive imaginary part (this exists as Eq. (***) has real coefficients) and the smaller
real part. Then the formula (8.68) implies that � D O.x/.

For any other point e 2 Œ�2; 2�L�1, we consider the integer l0 such that el0 ¤ 0.
On VL we repeat the same procedure to define the function �.x; �/. The properties
announced above for the roots �i for .x; �/ 2 I � WN assure that limx!0 �.x; �/ D 0

uniformly in �. Now it is clear that the procedure works on any Vl.

8.4.2 The Uniform Finiteness of the Degree of the Map '

In this section we will show the second part of our main theorem, namely the
existence of a uniform bound for the degree of ' D x.1C �/.

Lemma 4.1. Denote '� D '.:; �/ then for any w 2

S� D fw D u C iv 2 CI 0 < jvj < u < �g

and for any � in WN
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Cardf��1
� .w/g � L (8.69)

Proof. Let x1 and x2 be in I such that '�.x/ D '�.x1/ then we write

x1 D x.1C �.x; �// (8.70)

with �.x; �/ D O.jxj/ and � is a real function. Furthermore according to the
definition of �, we obtain that ı.x; �/ D ı.x1; �/. Then the same arguments as for �
in the previous sections yield that � satisfies a differential equation

G.x; �; �/ D
1X

lD1

1

lŠ
xl @

lı

@xl
.x; �// D 0 (8.71)

which we will solve using the same arguments as those used to solve (*). Let us
denote Al.x; �/ D 1

lŠx
l @lı
@xl .x; �// then we have for any l integer

Al D Oal C xNRNl (8.72)

where RNl satisfies the property I1
0 . Recall that there exists c1 > 0 such that for any

j the function Oaj is written

Oaj.x; �/ D
LX

lD1
fjl.x; �/Oal.x; �/ (8.73)

and

kfjlk � c1kOajlk:
Furthermore if we put g.x; �/ D xNRN.x; �/ we get

g.x.1C �/; �/ D
1X

lD0
tl.x; �//x

l�l (8.74)

where the series converges for j�j < 1. Let �0 2�0; 1�, the theory of holomorphic
functions with one variable gives the following estimate

jtl.x; �//j � c0
xl�l

0

sup
j�D�0j

jg.x.1C �/; �/j: (8.75)

Now supj�D�0j jg.x.1C �/; �/j � c1xN where c0 and c1 are independent of l and �0.
Let �0 tend to 1 then we obtain

jxltl.x; �//j � c2x
N (8.76)

so we can write
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g.x.1C �/; �/ D
1X

lD0
xNRNl.x; �//�

l (8.77)

with

kRNlk � c2:

The same arguments applied to the function ıN show that there exists c3 > 0 such
that for any j, kOajk � c3. Furthermore the relation (**) shows that for each j we can
write

xNfjN D xn1

LX

lD1
gjl Oal (8.78)

where kgjlk � c2 and n1 > 0. Let A be the L � L matrix such that
0

B
@

A1
:::

AL

1

C
A D

0

B
@

Oa1
:::

OaL

1

C
A (8.79)

We have that det A.0; �/ D 1 while A.0; �/ � Id, so for � sufficiently small, we get
kBljk � c4 where .Blj/1�j;l�L is the inverse matrix of A. So for any l we can write

Al D
LX

jD1
OgjlAj

with kOgjlk � c5. This shows that we can sum up the series as the following:

G.x; �; �/ D
LX

lD1
Al�

l C �LC1
LX

jD1
Alhl (8.80)

where the functions are analytic in � on B.O; 1/ and bounded on I � WN � B.O; 1/.
The previous expression looks like (***) and we can solve G.x; �; �/ D 0 in the
same fashion. This ensures our assertion for small �, i.e. the equation G.x; �; �/ D 0

has at most L nonzero roots �.x/ for fixed �. As a consequence we get the local and
uniform finiteness of Cardfı� D 0g. ut

8.4.3 Proof of the Main Corollary

Let us show now the result of uniform finiteness of the number of the zeros for the
equation ıN.w; �/ D 0 where w is an element of the following sector

S�1�2 D fw D u C iv 2 CI 0 < u < �1; 0 < jvj < �2ug
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and � is in WN . Put x1 D u and x2 D v
u , then for w 2 S�1�2 we have that 0 < x1 < �1,

jx2j < �2 and w D x1.1C ix2/ where i2 D �1. Let us evaluate the functions Zl.w; �/
for l D 1; 2; 3. Recall that

!l.w; �/ D 1

�l
Œx��l
1 .1C ix2/

��l � 1� (8.81)

X2l D .1C ix2/��l � 1
�l

(8.82)

.1C ix2/
��l D 1C �lX2l (8.83)

and X2l is holomorphic in x2 for jx2j < �2 < 1. Denote !1l D x
��l
1 �1
�l

then one gets

!l.w; �/ D 1

�l
Œ.1C �l!1l/.1C �lX2l/ � 1� D !1l C X2l C !1lX2l (8.84)

If we set OZ1l D x1!1l, then

Zl.!; x/ D OZ1l.1C �lX2l/.1C ix2/C x1.1C ix2/X2l: (8.85)

The graph Vl for l D 1; 2; 3 of OZll.x1; �/ is tangent to the kernel of the real 1-form

O�l D xdzl � .rlzl � x1/dx1

furthermore X2l satisfies

.1C ix2/
@X2l

@x2
D �i.�lX2l C 1/

We have seen that ıN.!; �/ D P0.!;Z1.!; �/;Z2.!; �/;Z3.!; �/; �/ where P0 is a
polynomial in .!; z1; z2; z3/ of degree n and analytic in �. Then

ıN.!; �/ D Q.x1; x2; OZ1.x1; �/; OZ2.x1; �/;Z3.x1; �/; �/ (8.86)

where Q is polynomial in .x1; z1; z2; z3/ and analytic in .x2; �/. So we obtain that

Cardf! 2 S�1�2 I ıN.x; �/ D 0g D CardfQ.x1; x2; z1; z2; z3; �/ D 0g \ \3
lD1Vl

(8.87)

Applying the theorem 2 of [13]

Theorem. Let X be a semi-analytic set of Rn and .Vk; �k;M/ for k D 1; 2; � � � ; q
be separating hypersurfaces. If M is relatively compact, then the number of the
connected components of X \ V1 \ V2 � � � \ Vq is finite.
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shows that there exists an integer N1 such that

CardfQ.x1; x2; z1; z2; z3; �/ D 0g \ \3
lD1Vl � N1

for any � 2 WN . This proves the uniform finiteness for fı� D 0g.

8.5 Transition Maps Near a Hyperbolic Saddle Point

We call hyperbolic polycycles any graphic whose singular points are saddle points.
We want to prove that some hyperbolic polycycles have finite cyclicity. To establish
these results, we will use some basic properties of the transition map near a
hyperbolic saddle point and we will exhibit the pfaffian differential equation verified
by a such map.

8.5.1 Transition Map Near a Hyperbolic Saddle

Let X� be a C1 ƒ-parameter family of vector fields defined in a neighbourhood of
hyperbolic saddle. Since we are interested in the germ of the family at the point
.P0; �0/, without loss of generality, we can suppose that the vector field X� is
defined in a neighbourhood V0 of P0 D .0; 0/ 2 R2, for parameter values � in a
neighbourhood W of 0 2 Rƒ. We can suppose also that the coordinate axes are the
invariant manifolds near the saddle point P0. Finally we suppose that P0 is the only
singular point of X�.

Using the theory of normal forms, we can write some explicit expressions of the
vector field X� up to Ck-equivalence, for k 2 N. These results have been known for
vector fields, without parameters, since Poincaré. We will refer more to the work
of Ilyashenko and Yakovenko [7]. Let r0 D r.0/ be the ratio of hyperbolicity of X0
in P0.

– If r.0/ is irrational, then for any k a fixed integer, the vector field X�, for � in
some neighbourhood Wk, is Ck-equivalent to

(
Px D x

Py D r.�/y
(8.88)

where r.�/ denotes the ratio of hyperbolicity of X� in P0.
– If r.0/ D p

q is rational, then for any k a fixed integer, the vector field X�, for �

in some neighbourhood Wk, is Ck-equivalent to
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(
Px D x

Py D y.�r0 CPN.k/
iD0 ˛iC1.�/.xpyq/i/:

(8.89)

where N.k/ is an integer depending on k.
In the following, we suppose that the vector field X� is given by one of the
expressions (8.88) or (8.89). Let � and � be segments transverse to the vector
field X�. They are defined by

� D f.x; y/I jxj � 2; y D 1g and � D f.x; y/I jyj � 2; x D 1g

The flow of X� induces a transition map D� D D.:; �/, also called the Dulac map:

D.:; �/ W �0; x0� !�0; y0� � 2 Wk:

which can be extended continuously by D.0; �/ � 0 for all � 2 Wk.
The Dulac map D� is C1 for x ¤ 0. To know much more about its behaviour

near x D 0, we have the following theorem due to Mourtada [11]:

Theorem 5.1. The Dulac map D� associated with systems (8.88) and (8.89) can be
written as follows:

D�.x/ D D.x; �/ D xr.�/Œ1C �.x; �/� 8.x; �/ 2 Œ0; x0Œ�W; (8.90)

where � is C1 for .x; �/ 2 Œ0; x0Œ�W; furthermore, � has the following prop-
erty .I1

0 /:

.I1
0 / W 8n 2 N lim

x!0
xn @

n�

@xn
.x; �/ D 0 uniformly in � 2 W; (8.91)

– If r0 is irrational, then � is identically equal to zero.
– If r0 D p

q , p ^ q D 1, then the expression (8.90) is not sufficient to overcome
some of the problems we will study after.

The following theorem has been proved by El Morsalani in [2], it will permit us to
define for the Dulac map well ordered expansions:

For a family X� as in (8.89), we define the following unfolding of the logarithm:

!.x; �/ D
(

x�˛1.�/�1
˛1.�/

if ˛1.�/ ¤ 0

� ln x if ˛1.�/ D 0
(8.92)

with

˛1.�/ D r.0/ � r.�/
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Theorem 5.2 ([2]). For any k 2 N, there exists a neighbourhood Wk of � D 0 in
Rƒ, some transverse segments � and � to the vector field X� parametrized in class
Ck, respectively, by x and y in Œ0; �Œ and C1 functions ˛ij W Wk ! R such that
the Dulac map for the vector field given by the expression (8.89) has the equivalent
forms:

8
<

:
y D D�.x/ D xr0 C ˛1xr0! CP

1�j�i�K.k/ ˛ijx.iqC1/r0!j C  k.x; �/

D xr.�/
�
1CP

1�j�i�K.k/�1 ˛ijx.iq/r0!j C  k.x; �/
� (8.93)

where ˛ij and ˛ij are polynomials in ˛1; ˛2; � � � ; ˛i of expression (8.89). The
functions  k and  k are Ck functions k-flat with respect to x D 0 and they can
be written:

 k.x; �/ D xkRk.x; �/

 k.x; �/ D xkRk.x; �/

where Rk and Rk satisfy the property I1
0 .

We introduce a partial order between the monomials which corresponds to the
flatness order in x D 0 and � D 0

xlCn˛1!m � .less flat/ xl0Cn0˛1!m0 ,

8
ˆ̂<

ˆ̂
:

l < l0

or

l D l0; n D n0 and m > m0

8.5.2 Pfaffian Equation Near a Hyperbolic Saddle Point

Let P0 be a hyperbolic saddle of a vector field X� as in the previous paragraph. Let
k be an integer which will be fixed in this paragraph. So, up to Ck-equivalence, the
family X� can have one of the expressions given by (8.88) and (8.89). Let y D D�.x/
be the graph of the Dulac map near the hyperbolic saddle point P0.

Lemma 5.3. The graph y D D�.x/ is an orbit of one of the following differential
equations

xdy � r.�/ydx D 0 if r0 62 Q (8.94)

or

qxF.xp; �/dy C yF.yq; �/Œ�r0 C F.xp; �/�dx D 0 if r0 D p

q
2 Q (8.95)
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where

F.u; �/ D
N.k/X

iD0
˛iC1.�/ui: (8.96)

Proof. The first assertion of the lemma is easy to prove. In this case, the Dulac map
has a simple expression:

y D D�.x/ D xr.�/:

To prove the second assertion, consider the family X� given by the expression (8.89):

X�

(
Px D x

Py D y.�r0 CPN.k/
iD0 ˛iC1.�/.xpyq/i/:

(8.97)

Let us perform the change of variables:
(

x D x

y D xr0u

The system (8.97) is then transformed to the following polynomial system with
separated variables

X�

(
Px D x

Pu D PN.k/
iD0 ˛iC1.�/u1Ciq D uF.uq; �/:

(8.98)

The second equation of the system (8.98) can be written under the following form:

du

uF.uq; �/
D dt (8.99)

where t is the time variable. One has to remark that uj� D xr0 and uj� D y, moreover
� ln x is the necessary time to go from x 2 � to � . Integrating Eq. (8.99), we obtain

Z y

xr0

du

uF.uq; �/
D
Z � ln x

0

dt (8.100)

G.x; �/ be a primitive function of let G.x; �/ be a primitive function of du
uF.uq;�/

then
the expression (8.100) can be written:

G.y; �/ � G.xr0 ; �/ D � ln x (8.101)

After, a differentiation with respect to the variables x and y, we get

y

yF.yq; �/
dy � r0

xF.xqr0 ; �/
dx C 1

x
dx D 0

After some calculations, we obtain the result of the lemma. ut



8 A Preparation Theorem for a Class of Non-differentiable Functions. . . 161

Definition 5.4. If r0 is rational, then we say that the saddle point P0 is of finite
order (or non-formally linearizable) if there exists an integer k such that for � D 0

the family X� given by the expression (8.89) is not reduced to the system:

(
Px D x

Py D �r0y

It follows then that there exists an integer m such that the polynomial F.:; �/ has the
following form

F.u; 0/ D ˛um C o.um/ and ˛ ¤ 0; m � 1:

We call the integer m the order of the resonant saddle point P0.

In [7], the authors have proved that if the hyperbolic saddle point P0 has a finite order
m then the perturbation X�, for any integer k � 2m is Ck-equivalent to a polynomial
family of vector fields with a degree independent of k. This degree is 2m. So, in this
case, the family can be written:

(
Px D x

Py D y.�r0 C F.xpyq; �//
(8.102)

where

F.u; �/ D
m�1X

iD0
˛iC1.�/ui C ˛.�/um.1C ˛2mC1.�/um/

with ˛.0/ ¤ 0 and ˛i.0/ D 0. This special expression will be used to prove one
of our theorems. In the other cases, we will use the well-ordered expansions of the
Dulac map near a hyperbolic saddle point.

8.6 Degeneracy of Khovanskii Procedure

In this paragraph we want to prove the following theorem:

Theorem 6.1. Let X0 be an analytic vector field on the plane which has a
hyperbolic polycycle � with two vertices such that the ratios of hyperbolicity are
rational and their product is 1. If the polycycle is non-identical (i.e. its return map
is non-identically the identity map), satisfying some genericity conditions which will
be exhibited later on and if one of its vertices has finite order, then there exists an
integer N depending only on the germ of X0 along � such that the cyclicity of � in
any C1-deformation is bounded by N.
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8.6.1 Displacement Map

Let X� be a family of sufficiently differentiable vector fields on the plane, � 2 Rƒ.
For � D 0, X0 has a polycycle �0 as described above with two vertices P1 and P2
satisfying r1.0/:r2.0/ D 1 and r1.0/ 2 Q W r1.0/ D p

q with p ^ q D 1:

Therefore for any integer K sufficiently large, there exists a neighbourhood UK

of 0 in Rƒ and local charts AK
1 , AK

2 around, respectively, P1 and P2 such that X� is
defined by two families X1� and X2� in the following way:

(1) In AK
1 of local coordinates .x1; y1/, P1 is the only singular point of X1� and the

vector field is written:

X1� W
8
<

:
Px1 D x1

Py1 D y1
�
�r1.�/CPN1.k/

iD0 ˛iC1.�/.xp
1y

q
1/

i
� (8.103)

where the ˛i are sufficiently differentiable functions on UK ! R that depend
on K but their values for � D 0 depend only on X0.

(2) In AK
2 of local coordinates .x2; y2/, P2 is the only singular point of X2� and the

vector field .�X2�/ is written:

.�X2�/ W
8
<

:
Px2 D �x2

�
s2.�/CPN2.k/

iD0 ˇiC1.�/.xq
2y

p
2/

i
�

Py2 D y2
(8.104)

where s2.�/ is the ratio of hyperbolicity 0f .�X2�/ in P2 and it fulfils s2.�/ D
1=r2.�/, the functions ˇi.�/ are sufficiently differentiable and their values in
� D 0 depend only on X0.

Remark. s2.0/ D r1.0/ D p
q . From now on, we note s2.�/ D s.�/, r1.�/ D r.�/

and r0 D r.0/. Up a scale, we can suppose that the two local charts contain the balls

f.xi; yi/I k.xi; yi/k � 2g

In the local charts AK
i , the flow of Xi

� defines the Dulac maps between the segments
�i D fyi D 1g and �i D fxi D 1g. Now, let us define the “displacement map”
ı.:; �/ W �C

2 ! �2 by

ı.y2; �/ D �h.y2; �/C D2;� ı S2;�.y2/ (8.105)

where y2 is the parameter of �C
2 and

h.y2; �/ D R1;� ı D1;�.y2/

S2;� D R�1
2;�

(8.106)
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where the functions Ri;� are the regular transition maps defined on the segments �i:

Ri;�.yi/ D
KX

jD0
cij.�/y

j
i C o.yK

i / (8.107)

The following change of coordinates on �2

y2 D R.x; �/ D c1.�/C o.x/; c1.�/ ¤ 0 (8.108)

transforms the regular map S2;� into a genuine translation:

S2;�.y2/ D y2 C b.�/

where b.�/ D S2;�.0/. So the map ı has a new expression in the new parameter x as
follows:

ı.x; �/ D H.x; �/� D2;�.x C b.�// (8.109)

Lemma 6.2. For any K 2 N�, the map H.x; �/ admits well-ordered expansions of
order K which are written:

H.x; �/ D
X

0 � j �i � Kq C 1

m � 0I ir0 C m � Kq C 1


ijm.�/x
ir0Cm!j C xK�1;K.x; �/ (8.110)

where 
ijm are functions of cij and ˛i while ! is the compensator introduced above
for the Dulac map D2;� and �1;K is a function CK, K-flat with respect to x D 0 and
satisfies the property I1

0 . In the previous development, the monomials xir0Cm!j are
ordered by their order of flatness with respect to x D 0 when � D 0.

The lemma is proved as theorem 1.1 [2].

Remark. To simplify the proof of Theorem 6.1, we will show it for the case r1.0/ D
r2.0/ D 1.

As discussed in Sect. 8.2, the graph y D D2;�.x C b/ is an orbit of the differential
1-form:

� D .x C b/F.x C b; �/dy C yF.y; �/.�1C F.x C b; �//dx D 0; (8.111)

where F is the polynomial function:

F.u; �/ D
m�1X

iD0
ˇiC1.�/ui C ˇ.�/um.1C ˇ2mC1.�/um/ (8.112)

with ˇi.0/ D 0 for 1 � i � m and ˇ.0/ ¤ 0. The integer m is the order of the saddle
point P2. Without loss of generality, we suppose that ˇ.0/ D 1.
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Remark. We will work in some large class of differentiability.

The equation ı.x; �/ D 0 is equivalent to the following system:
(

H.x; �/� y D 0

D2;�.x C b/� y D 0
(8.113)

As y D H.x; �/ is a connected graph the generalized Rolle’s lemma (Khovanskii
procedure) allows to assert that the number of solutions of the system (8.113) is at
most 1 plus the number of the solution of the following system:

(
H.x; �/� y D 0

� ^ D.H.x; �/� y/ D 0
(8.114)

where D.H/ represents the total differential of H. The last system is equivalent to

8
ˆ̂
<

ˆ̂
:

0 D det

 
Dx.H.x; �/� y/ Dy.H.x; �/� y/

yF.y; �/.�1C F.x C b; �// .x C b/F.x C b; �/

!

y D H.x; �/

(8.115)

An easy computation yields the following system:
(
0 D .x C b/F.x C b; �/H0.x; �/C yF.y; �/.�1C F.x C b; �//

y D H.x; �/
(8.116)

Substituting y D H.x; �/ yields a new equivalent equation:

ı1.x; �/ D .x C b/F.x C b; �/H0.x; �/

C H.x; �/F.H.x; �/; �/.�1C F.x C b; �//

D 0

(8.117)

The number of isolated roots of ı1.x; �/ D 0 plus one bounds the number of isolated
roots of ı.x; �/ D 0.

8.6.2 Nontriviality Order

To show Theorem 6.1 and to see how degenerate is the Khovanskii procedure, we
will study the behaviour of the nontriviality order of ı0 under this procedure. We
suppose that ı.x; 0/ 6� 0 and this corresponds to �0 is a non-identical polycycle.
A result of Ilyashenko [6] ensures that in such case ı.x; 0/ is not infinitely flat and
consequently ı.x; 0/ � xk lnm x for some k 2 QC and m 2 N [2]. The degeneracy of
Khovanskii procedure happens in case 2.c below.
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For � D 0, the map ı1.x; 0/ is reduced to the following expression:

ı1.x; 0/ D .x/F.x; 0/H0.x; 0/C H.x; 0/F.H.x; 0/; 0/.�1C F.x; 0// (8.118)

where

(
F.x; 0/ D xm C ˇ2mC1x2m

H.x; 0/ D 
10.0/x CP
2�j�i 
ji.0/xi.� ln x/j

(8.119)

All the hypotheses introduced in this part depend only on the germ of X0 along the
polycycle�0. We will denote, in what follows, the coefficients 
ij.0/ simply by 
ij.

1. (Hyperbolic case) If ı.x; 0/ is equivalent to x which corresponds to 
10 ¤ 1,
then ı1.x; 0/ is equivalent to xmC1. Indeed put H.x; 0/ D 
10x C h.x/ where
h.x/ contains all the terms of H.x/ which are flatter than x. Then the function
ı1.x; 0/ is written:

ı1.x; 0/ D .
10x C xh0.x//.xm C ˇ2mC1x2m/

C .
10x C h.x//
�
.
10x C h.x//m C ˇ2mC1.
10x C h.x//2m

�

� .�1C xm C ˇ2mC1x2m/
(8.120)

As h.x/ is at least equivalent to x2 ln x we find that ı1.x; 0/ is

ı1.x; 0/ D 
10.1 � 
m
10/x

mC1 C o.xmC1/ (8.121)

where o.xmC1/ is a function satisfying limx!0
o.xmC1/

xmC1 D 0.
2. When 
10 D 1 then the function h has the following form:

h.x/ D axn lnp x C o.xn lnp x/with p D 0 or1 and a ¤ 0 (8.122)

Let us recall that for � D 0 the displacement map is written:

ı.x; 0/ D H.x; 0/� D2;0.x/ (8.123)

So we have the following subcases:
2.a. If 2 � n < m C 1 which corresponds to

ı.x; 0/ D axn lnp x C o.xn lnp x/ (8.124)

then we obtain

ı1.x; 0/ D .n � m � 1/xnCm lnp x C o.xnCm lnp x/ (8.125)

that shows that the function ı1.x; 0/ is not infinitely flat in 0.
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2.b If m C 1 < n � 1 which corresponds to

ı.x; 0/ D xmC1 ln x C o.xmC1 ln x/ (8.126)

then the function ı1.x; 0/ has the form:

ı1.x; 0/ D .x2mC1 ln x C o.x2mC1 ln x/ (8.127)

in this case h.x/ can be eventually infinitely flat when n D 1.
2.c If n D m C 1 (i.e. the saddle points have the same order), then we have to

discuss two subcases. Let us begin by developing more the functions h.x/ and
D2;0. Indeed they can have the following form:

h.x/ D axmC1 ln x C cxmC1 C o.xmC1/

D2;0.x/ D x � xmC1 ln x C o.xmC1 ln x/
(8.128)

If

a C 1 ¤ 0which is equivalent to say that ı.x; 0/ � xmC1 ln x (8.129)

then

ı1.x; 0/ � x2mC1 ln x (8.130)

it follows that ı1 is not infinitely flat.
If a C 1 D 0 and c ¤ 0, then one has to impose some new “generic

conditions” to ensure that ı1.x; 0/ is not infinitely flat. It is so surprising
that such degeneracy occurs when the two saddle points have the same finite
order and the polycycle is not identical. That shows that this case can become
completely “degenerate” under the Khovanskii procedure even if it is “strongly
generic”.

Our theorem is then

Theorem 6.3. Let X0 be any analytic vector field on the plane which has a
hyperbolic polycycle �0 with two vertices such that their ratios of hyperbolicity
are rational and their product is 1. If the polycycle is non-identical and satisfies one
of the conditions 1., 2.a., 2.b., and 2.c. (the subcase aC1 D 0 in 2.c. is not included)
and if one of its vertices has finite order, then there exists an integer N depending
only on the germ of X0 along �0 such that the number of limit cycles bifurcating
from �0 in any analytic deformation is bounded by N.

Proof. After multiplication by a monomial xI!J , for some fixed integers I and J,
the functions ı1.x; �/ have the following form:

ı1.x; �/ D
X

.i;j/2S

�ij.�/x
i!j C �.�/xN!p.1C �.x; �/ (8.131)
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where

S D f.i; j/I j � I �ij.0/ D 0g

is a finite set and �.0/ ¤ 0 and the function � satisfies the property I1
0 .

The equation ı1.x; �/ D 0 is studied in El Morsalani [2] where the author showed
that there exists a uniform bound for the number of its isolated zeros. ut

8.7 Finiteness Cyclicity of Hyperbolic 2-Polycycle
When r1.0/:r2.0/ D 1, r1.0/ ¤ 1 and r1.0/ 2 Q

In this paragraph we will announce our general theorem in the case: the two ratios
of hyperbolicity are rational different from 1 and the polycycle is not identical.

8.7.1 Nice Asymptotic Developments

Let X� be an analytic unfolding of the polycycle �0. The limit cycles of X� close to
the polycycle �0 correspond to the isolated solutions of the following system

(
S2;�.y/ D D1;�.x/ .1/

S1;�.x/ D D2;�.y/ .2/
(8.132)

In the plane .x; y/, Eqs. (1) and (2) represent curves C1 and C2 which are graphs in
the variables .x; y/. So between two intersections of C1 and C2 there exists a point
q D .x; y/ 2�q1; q2Œ	 C1 where a vertical translation of the curve C2 cut tangentially
the curve C1 and this contact is isolated because the two curves are analytic for x > 0
and y > 0. Hence the number of isolated solutions of the system (8.132) is bounded
by the number of solutions of the following system plus one:

(
S2;�.y/ D D1;�.x/ .1/
@D1;�
@x .x/ @D2;�

@y .y/ � @S1;�
@x .x/

@S2;�
@y .y/ D 0 .3/

(8.133)

For a fixed k 2 N we write the Dulac maps as in expression (8.12) in which appear
the compensators !i, i D 1; 2 associated with each saddle point. As the ratios
of hyperbolicity are different from 1 for the parameter � D 0 then Eq. (3) in the
previous system is equivalent to the following equation:

Y D y.1C  2;k.y; �// D A.�/xr.�/.1C  1;k.x; �// (8.134)
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with r.�/ D 1�r1.�/
r2.�/�1 , r.0/ D p

q and A.0/ > 0. As proved in [11] the equation

Y D y.1C  2;k.y; �// (8.135)

is equivalent to

y D Y.1C  2;k.Y; �// (8.136)

The function  2;k has the same expression as  2;k.
The system (8.133) is equivalent to the equation:

ı.x; �/ D S2;�.y/� D1;�.x/ D 0 (8.137)

where y D Y.1C 2;k.Y; �// and Y D A.�/xr.�/.1C 1;k.x; �//. Moreover the map
ı.x; 0/ is not identically zero. Using formula (8.93) it can be seen that

 1;k.x; �/ D
X

1�iCj�K.k/

˛ij.�/x
iZj
1 C xkR1;k.x; �/ (8.138)

with Z1 D x!1.x; �/ and

 2;k.Y; �/ D
X

1�iCj�K.k/

ˇij.�/Y
iZj
2 C YkR2;k.Y; �/ (8.139)

with Z2 D Y!2.Y; �/. Recall that !i, i D 1; 2 are independent compensators as the
one defined in expression (8.11) and functions Ri;k satisfy the property I1

0 .
Let us introduce �.�/ D r.0/� r.�/ and the compensator

!3.x; �/ D
(

x��.�/�1
�.�/

if �.�/ ¤ 0

� ln x if �.�/ D 0:
(8.140)

We introduce Z3 D x!3.x; �/. We can always suppose that r.0/ D r1.0/ D p
q > 1.

This allows to write

Y D A.�/x
p�q

q .x C �.�/Z3.x; �//.1C  1;k.x; �// (8.141)

Indeed

Y D A.�/xr.�/.1C  1;k.x; �//

D A.�/xr0��.�/.1C  1;k.x; �//

D A.�/xr0.1C �.�/!3/.1C  1;k.x; �//

D A.�/xr0�1.x C �.�/Z3.x; �//.1C  1;k.x; �//

(8.142)
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The computation of Z2.Y; �/ as a function of x requires the introduction of a new
compensator

!4.x; �/ D
(

x�ˇ.�/�1
ˇ.�/

if ˇ.�/ ¤ 0

� ln x if ˇ.�/ D 0:
(8.143)

where ˇ.�/ D .r2.0/� r2.�//r.�/. Introducing Z4 D x!4, we then have

Z2.Y; �/ D
X

0�iCjCmCn�K.k/

�ijmn.�/x
i
q Zj

1Z
m
3 Zn

4 C xkRk.x; �/ (8.144)

where Z2 D Y!2.Y; �/ with

!2.x; �/ D
(

x�ˇ1.�/�1
ˇ.�/

if ˇ1.�/ ¤ 0

� ln x if ˇ1.�/ D 0:
(8.145)

where ˇ1.�/ D r2.0/� r2.�/. To prove the nice expansion in (8.144) we replaced Y
by its first expression in (8.142) and we put it in !2. We obtained then

!2.Y; �/ D .A.�//�ˇ1.�/x�ˇ1r.�/.1C  1;k.x; �//�ˇ1 � 1

ˇ1
(8.146)

Now as in [2, Lemma 6.2], there exist an analytic function C.�/ and a function
 1.x; �/ with the same properties as  1.x; �/ such that .A.�//�ˇ1 D 1 � ˇ1C.�/,
x�ˇ1r.�/ D 1 C ˇ.�/!4.x; �/ and .1 C  1;k.x; �//�ˇ1 D 1 � ˇ1.�/ 1.x; �/.
Straightforward calculations give the result.

From above we obtain the following proposition:

Proposition 7.1. For any k 2 N there exist an integer K.k/, a neighbourhood Wk 	
W of 0 2 R� and a set I D Œ0; �� for some � > 0 such that

ı.x; �/ D ık.x; �/C xkRk.x; �/

ık.x; �/ D
X

0�iCjCmCn�K.k/


ijmn.�/x
i
q Zj

1Z
m
3 Zn

4
(8.147)

In this part we want to study the equation ı.x; �/ D 0 in (8.147). Up a coordinate
change

X D x
1
q

and new notations we can suppose that under the hypothesis of Proposition 7.1.

ık.x; �/ D
X

0�iCjCmCn�K.k/


ijmn.�/x
iZj
1Z

m
2 Zn

3 (8.148)
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where Zi D x!i, I D 1; 2; 3 with !i are independent compensators:

!i.x; �/ D
(

x��i.�/�1
�i.�/

if �i.�/ ¤ 0

� ln x if �i.�/ D 0:

Moreover it is easy to see that ı.; :0/ is not formally flat, i.e. its formal expansion
in x and ln x is not identically zero. This fact follows from the condition that the
polycycle �0 is not identical and all the operations which have been accomplished
do not destroy this property. Consequently, the map ı.x; �/ satisfies the properties
required to apply the preparation theorem and using the main corollary one obtains
the following theorem:

Theorem 7.2. Let X0 be any analytic vector field on the plane which has a
hyperbolic polycycle �0 with two vertices such that their ratios of hyperbolicity are
rational different from 1 and their product is 1. If the polycycle is non-identical, then
there exists an integer N depending only on the germ of X0 along �0 such that the
number of limit cycles bifurcating from �0 in any analytic deformation is bounded
by N.

8.8 Mourtada New Results

In the last years Mourtada has extended the results we exposed in this article [12].
In the following we will give a summary of these results.

Let �p be a hyperbolic polycycle with p singularities and tangent to a real analytic
vector field X0 defined in a neighbourhood U0 of �p. The fundamental theorem
proved in this work is the following:

Theorem 8.1. Let X� be an analytic unfolding of X0 with q parameters. Then there
exist some integers N and L and some neighbourhoods �p 	 U 	 U0 and V
neighbourhood of 0 2 Rq such that

(i) for all � 2 V, the number of limit cycles of X� in U is bounded above by N.
(ii) The multiplicity of each limit cycle is bounded above by L.

The result is very strong as it handles all the different cases of hyperbolic polycycles:
identical or non-identical. The major idea is like the one we demonstrated here:
the return map of the deformed polycycle will be “conjugated” via preparation
procedure to a some finite jet which is a fewnomial. Khovanskii theory for
fewnomials [10] can be applied in this case to these finite jets. In the next part
we will give a summary of the basic ideas of Mourtada proof.
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8.8.1 Local Algebras and Derivations

Let .x; ˛/ D .x1; : : : ; xp; ˛1; : : : ; ˛q/ be some local analytic coordinates on
..RC�/p � Rq; 0/ and let Bp D fx1 � : : : � xp D 0g. Let B � Rfx; ˛g be a local ring
of germs of analytic functions on ..RC�/p � Rq; 0/ and continuous on .Bp; 0/. Let
	 be a germ of vector fields at 0 with its components in the local algebra B. The
vector field 	 acts infinitesimally as a derivation on B. The derivations of interest
fulfil the following properties:

(1) 	.B/ 	 B
(2) The set of singularities of 	 satisfies Sing.	/ 	 .Bp; 0/

(3) .Bp; 0/ is invariant by the flow '	.

A big part of the work of Mourtada is dedicated to show topological and algebraic
finiteness properties of the elements of the local algebra B relatively to the action of
the derivation 	 on ..RC�/p � Rq; 0/.

Consider U 	 ..RC�/p � Rq; 0/ an open set on which acts the derivation 	.
Using the flow '	;U associated with 	 on U we can define the integral projection
map along the orbits of 	:

�	;U W U ! QU D U='	;U (8.149)

In the following we introduce some definitions that play a major role:
– A germ f 2 B at 0 2 ..RC�/p � Rq is said to be 	-regular if there exists an

open set U, like the one defined above, such that the degree of �	;U restricted
to the zero set of f in U is finite.

– For f 2 B the differential ideal I	;f is the ideal generated by h	nf I n 2 Ni in
the ring B.

– f is said to be 	-finite if it is 	-regular and its differential ideal I	;f is noetherian
in a star extension of B.

– f is said to be locally 	-finite if it is 	-regular and there exists a finite
subdivision .Ui/ of U invariant by 	 and such that each restriction ideal I	;f jUi

is noetherian in a star extension of the restriction ring BjUi .
– A sub-algebra or a sub-class of B is said to be 	-finite (respectively locally
	-finite) if each of its elements is 	-finite (respectively, locally 	-finite).

8.8.2 Main Base Lemmas

The first lemma is fundamental as it describes the finiteness properties of “well
prepared” germs.

Lemma 8.2 (Lemma of ¦-Finiteness). Let B0 	 B be a 	-finite algebra (respec-
tively, locally 	-finite) on U0 	 ..RC�/p � Rq; 0/ where U0 is invariant by 	.
We suppose that B0 is 	-stable (	.B0/ 	 B0). Let M be the maximal ideal of B
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and M0 	 M a stable ideal. Let NU0 	 B be the ideal of germs that are zero on
.U0; 0/. Then the class

CB0;M0 D ff 2 g C M0I	;g C NU0 I g 2 B0g 	 B

is 	-finite on U0 (respectively, locally 	-finite).

In this case the functions g and f are said to be 	-equivalent and one can speak of
	-equivalent algebras or classes.

We need the following definition before announcing the second lemma. An open
U 2 ..RC�/p � Rq; 0/ is said to be admissible if it satisfies:

– 	 can be extended continuously to U and the singular set of 	 in U is contained
in @0U D Bp \ U.

– @0U is a union of 	-orbits in U.
U0 is an elementary semi-analytic subset of B if there exist V 2 .U; 0/ containing
U0 and some germs f1; � � � ; fn; g1; � � � ; gm 2 B defined on V such that

U0 D fy 2 V W f1.y/ > 0; � � � ; fn.y/ > 0; g1.y/ D 0; � � � ; gm.y/ D 0g

U0 is said to be semi-analytic of B if it is a finite union of elementary semi-analytic
sets of B.

The second lemma gives a way to construct 	-finite algebras.

Lemma 8.3 (Lemma of Tougeron Extension). Let B0 be a 	-stable sub-algebra
of B. We suppose that

(i) The semi-analytic sets described by B0 have a finite number of connected
components

(ii) The ring B0 is noetherian in B.
(iii) There exist .p C q � 1/ 1-forms �j D PpCq

iD1 aijdyi with aij 2 B0 and
an admissible open set U such that every orbit of 	 in U is a transverse
intersection of separating solutions of �j.

Then the algebra B0 is 	-finite.

For the next lemma we need to introduce I	;f ŒU� the differential sheaf of f 2 B
defined on U, an admissible open set. Its fibre I	;f ;m (or equivalently I	;f .m/) at a
point m 2 U is the differential ideal I	m ;fm 	 Bm D Rfy � ymg where 	m and fm are
the germs of 	 and f at m. Moreover y � ym are local coordinates at m.

Lemma 8.4 (Coherence Lemma). The sheaf I	;f ŒU� is coherent: precisely, for all
m 2 U, there exist an open set Vm and an integer lm such that at every point m0 2 Vm

the fibre I	;f .m0/ is generated by the germs at m0 of hf ; 	f ; � � � ; 	lm f i. Furthermore
if the fibre at 0 I	;f .0/ D I	;f is noetherian in B, then there exists an open set
V 	 .U; 0/ subset of U such that the sheaf I	;f ŒU [ @0V� is coherent.

The next lemma connects the previous defined sheaf and the projection �	;U .
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Lemma 8.5 (Roussarie Isomorphy Lemma). The differential sheaf I	;f is com-
patible with the projection �	;U in the following way: if 
 is an orbit of 	 in U
and if m1;m2 2 
 , then the fibres I	;f .m1/ and I	;f .m2/ are isomorphic, with the
isomorphism being the germ of the flow '	;U in the neighbourhood of m1 and m2.

Let 
 be a regular orbit of 	 in U and �m 	 U is a transversal segment to 
 at m.
Let i�m W �m ! U be the canonical injection then we can define a star morphism by
i��m

W f 2 B ! i��m
.f / D f ı i�m . The 	-transverse ideal along 
 is defined as:

J	;f ;
 D i��m
.I	;f .m// D I	;f .m/j�m 	 Rfˇg 8m 2 


where the analytic coordinates ˇ on �m are first integrals of 	 along the orbit 
 .

Lemma 8.6 (Saturation Lemma). For all m 2 
 we have

I	;f .m/ D ��
	m
.J	;f ;
 /

The transverse lemma is linked to the coefficient ideal we introduced in the proof of
the Theorem (1.6).

A natural question that arises: when 
 adheres to 0, what is the link between the
differential fibre and the saturation of the transverse ideal? It turns out that this link
will be the strongest when the orbit is principal in U.

Definition 8.7. Let 
 be an orbit of 	 in U. 
 is said to be principal if

(i) It adheres to 0
(ii) It has a an analytic transversal segment �0 	 U that intersects in at most one

point each orbit of 	 in U.
(iii) for every analytic transversal segment � 	 �0 the saturation

'	;U.:; �/ D ��1
	;U.�	;U.�//

is a neighbourhood of 0 in U.

The ideal I..Bp; 0// is principal generated by � D Qp
jD1 xj. Then the link between

the differential fibre and the saturation of the transverse ideal will be expressed in
general as a double inclusion relaxing the equality along 
 . Indeed we have a sort
of Nullstellensatz of Hilbert

.�n/��
	m
.J	;f ;
 / 	 I	;f 	 ��

	m
.J	;f ;
 / (*)

The smallest n of these integers satisfying the inclusion above is the multiplicity
m	.f / of f relatively to 	. If the ring B has an asymptotic structure, then the defined
multiplicity is closely linked to the algebraic multiplicity ma	.f / which is defined
as the stationarity index of an ascending chain of transverse ideals that converge
to J	;f ;
 . Therefore studying the action of 	 on the finite jets of f and using the
double inclusion (*) Mourtada were able to show that f is 	-equivalent to its jet
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of order ma	.f /. Applying the finiteness lemma above yields the desired finiteness
properties.

8.8.3 A Small Sketch of the Tools Used in the Proof

The germ of the Dulac map of a hyperbolic saddle point and its unfoldings belong
to some algebras QRH1;: defined as follows.

Definition 8.8. The Hilbert quasi-regular algebra QRHp;q is defined in the fol-
lowing way. Let q D .q1; q2/ 2 N2 and ˛ D .�; �/ be some coordinates
on Rq1 � Rq2 . Define the elementary functions as zi;0.xi/ D xi log.xi/ and their
unfoldings zi;j.xi; �j/ D xiLd.xi; �j/. Recall that Ld.y; ˇ/ D .yˇ � 1/=ˇ for
ˇ ¤ 0 and Ld.y; 0/ D log.y/ is the Ecalle–Roussarie compensator. We will
use the following notations: Xi D .xi; zi;0; zi;1; � � � ; zi;q1 /, X D .X1; � � � ;Xp/ and
Oxi D .x1; � � � ; xi�1; xiC1; � � � ; xp/. We will apply the following immersions too
ci.x; ˛/ D .Xi; Oxi; ˛/ and c.x; ˛/ D .X; ˛/. Let QRH0;q D Rf˛g. Now we can define
the Hilbert quasi-regular algebra QRHp;q.x; ˛/ 	 AQp;jqj.x; ˛/ as the set of germs
f with an asymptotic development of “Hilbert type”: for each i D 1; � � � ; p, there
exist a sequence .Gi;m/m in QRHp�1;q.Oxi; ˛/ŒXi� of homogeneous polynomials in the
variable Xi of degree m such that for any n 2 N, f .x; ˛/ D Pn

mD0 Gi;mıci.x; ˛/Cxnhn

with hn 2 SBp;jqj and converging to 0 in each �-sector when w ! 1.

Let „ŒQRHp;q� be the QRHp;q-module of germs at 0 of vector fields with compo-
nents in QRHp;q and that keep the algebra QRHp;q invariant. This module contains
the sub-module generated by the elementary derivations xj

@
@xj

for j D 1; � � � ; p. We
will be interested in a particular sub-class of„ŒQRHp;q� that appears under a certain
desingularization that is linked with the geometry of unfolded polycycle. This sub-
class is denoted „HŒQRHp;q� and is defined as follows: let k � p and rj D 1C �j

for j D 1; � � � ; k � 1, x D .x1; � � � ; xk/ and x0 D .xkC1; � � � ; xp/. The elements
of „HkŒQRHp;q� are the germs at 0 of the vector fields 	 satisfying the following
conditions:

(a) if k D 1 then „H1ŒQRHp;q� D fx1
@
@x1
; � � � ; xp

@
@xp

g.

(b) if k > 1 then 	x1 D Qk
jD1 xj and 	 has as first integrals the coordinate functions

˛0 D .x0; ˛/ and .k � 1/ germs gj.xj; xjC1; ˛0/ D dj.xj; ; ˛
0/ � xjC1 with dj D

x
rj

j .1C Dj/ and Dj D O.xj/ 2 QRHp�kC1;q.xj; x0; ˛/.

The integer k � 1 is called the non-triviality dimension of 	 and the germs gj are
said to be the non-trivial first integrals of 	. This permits to define

„HŒQRHp;q� D [p
kD1„HkŒQRHp;q�
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Let 	 be a Hilbert derivation in „Hk defined on an open set Uk 2 ..RC�/k � Rq; 0/

and its non-triviality dimension is k � 1. It acts on the algebra QRHk;: and it has a
principal orbit in Uk. Then the main theorem is a consequence of the following one:

Theorem 8.9. The algebra QRHk;: is locally 	-finite and satisfies the double
inclusion (*) locally.

To obtain the previous result above one has to desingularize a given 	. Indeed there
exists a desingularization .�k;Nk/ described entirely by the algebras QRHk;: and
such that the reduced singularities of 	 are under the following form

	l D �
@

@�
�

lX

jD1
sjuj

@

@uj

for l D 0; � � � ; k � 1. Theorem 8.9 is then a consequence of the study of the action
of the reduced derivations 	l on the algebras QRHp;:.�; �0; :/ with p � q. Now, a
derivation 	l on an open Up admits a principal orbit if and only if p D 1. This yields
to the following principal results.

Theorem 8.10. The algebra QRH1;:.�; :/ is 	0-finite and satisfies the double
inclusion (*).

Recall that 	0 D � @
@�

. This theorem leads to the other theorems. If we denote

QRH1;:
cvg as the restriction of the analytic ring Rf:g to the graph of elementary

functions of the corresponding algebra QRH1;:. Its 	-finiteness is a consequence
of classical analytic geometry and the theory of Khovanskii–Tougeron [10, 16].

Theorem 8.11. For every l, the algebra QRH1;:
cvg satisfies the double inclusion (*)

relatively to 	l.

Theorem 8.12. For every l, QRH1;:.�; :/ is locally 	l-finite and satisfies locally the
double inclusion (*).

The proof of the Theorem 8.9 is based on the three theorems above and the
principal lemmas. Let Dk be the exceptional divisor of the morphism .�k;Nk/ of
the desingularization of 	. Let f 2 QRHk;: and let Qf and Q	 be the preimages of f
and 	 by �k. The goal is to prove that the sheaf I Q	;Qf ŒDk� is locally Q	-finite. The
derivation Q	 has a unique singularity a0 on Dk. Let 
1 	 Dk be an orbit of Q	 and
a1 D 
1 \ @D. Using the compacity of Dk, it is sufficient to show that the sheaf
I Q	;Qf Œa0
1a1� is locally Q	-finite.

The orbit 
0 D ��1
k .
/ is principal in a neighbourhood U1;a0 of a0. Therefore

the result at a0 is a consequence of the fundamental Theorem 8.12. At every point
a 2 
1, a representative of the germ .
1; a/ is principal in a neighbourhood U1;a

of a; however, it is included in the boundary of U1;a. Thanks to the coherence
lemma, the results of Theorem 8.12 at a0 can be germified at any point a 2 
1
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sufficiently close to a0: the germ at a of Qf is Q	 -equivalent to an element ga of a
convergent algebra QRH1;:

cvg which satisfies the fundamental Theorem 8.11. As Qf
can be extended above 
1 to a function g whose germs belong to a convergent
algebra. The isomorphy lemma applies to the sheaves of this algebra along the orbits
included in the boundary. A gluing of the ideals of g and Qf gives the results above 
1.
At a1 Mourtada uses a recurrence argument on the non-triviality dimension of the
Hilbert derivation and applies again the fundamental theorems and the principal
lemmas.

The Dulac map of each singularity of X� is induced by an element of an
algebra QRH1;:. The cycle limits of X� correspond to the isolated intersections of
orbits of Hilbert derivation 	 2 „Hk and the fibres of a germ f 2 QRHk;:. Then
Theorem 8.1 is a simple consequence of Theorem 8.9. Indeed, the property (1) is
equivalent to the 	-regularity of f and the property (2) is a consequence of the fact
that the differential ideal I	;f is noetherian or local noetherian.
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Chapter 9
Self-Inversive Cubic Curves

Raymond R. Fletcher

Abstract Let ” denote an irreducible nonsingular cubic curve which inverts onto
itself with respect to a circle ¨ with center X. Depending on the type of ”, we show
that ” inverts onto itself via a second circle orthogonal to ¨ or that ” inverts onto
itself via two additional circles ¤, ˜ with ¨,¤,˜mutually orthogonal. To accomplish
this an algebra (”,•) with a ternary operation • is defined on the points of ” by
setting •(a,b,c) equal to the fourth point, counting multiplicities, on circle (a,b,c)
and on ”. If * is the binary operation defined on the points of ” by setting a*b
equal to the third point, counting multiplicities, on the line [a,b] and on ”, we show
that •(a,b,c) D X*((X*a)*(b*c)). This equation is used extensively to determine
automorphisms of (”,•) and to discuss subalgebras.

Keywords Cubic curve • Inversion • Ternary operation • Circle chain • Triple
system • Automorphism • Subalgebra • Perfect polygon

9.1 Introduction

We present here a study of cubic curves which invert onto themselves. This topic
arose naturally from an investigation of group circle systems. If G is an abelian
group and g 2 G, then a (G,g) circle system is defined as follows. Let ¥: G !… be an
injective mapping from G into the projective plane… such that no five points in ¥(G)
are cocyclic. If for every four element subset fa,b,c,dg of G with a C b C c C d D g,
the corresponding points f¥(a), ¥(b), ¥(c), ¥(d)g are cocyclic or collinear, we call
the set of points¥(G) and the corresponding circles or lines, a (G,g) circle system. To
avoid repeated use of the expression “cocyclic or collinear,” we coin the terms cirkle
and cocyklic to embrace both possibilities. We found that the points (or vertices) of
a group circle system lie on a self-inversive algebraic curve, and that such systems
can be constructed on any irreducible nonsingular self-inversive cubic curve. In
particular, for a (Z,0) circle system, there exists a circle ¨ which inverts each pair
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of vertices of the form fq,�qg. We will show that the same circle ¨ also inverts
the algebraic curve ” which serves as an envelope for the vertices of the system. In
case ” is a cubic we obtain two orthogonal circles or even three mutually orthogonal
circles which invert ” onto themselves. We begin with the development of a formula
for an irreducible self-inversive cubic. The polar version of this formula is quadratic
in r, and thus provides an efficient means for graphing and investigating properties
of such curves.

9.2 The Equation of a Self-Inversive Cubic Curve

Let ” be a nonsingular irreducible cubic curve which inverts onto itself via a circle
¨. By translation and dilation, we can assume that ¨ is the unit circle with center
O at the origin and radius 1. If P is a point in the Euclidean plane different from
O, then the inverse of P wrt ¨ is the point P0 on ray OP such that (OP)(OP0) D 1. If
P D (a,b), then we find that P0 D (a/(a2 C b2),b/(a2 C b2)). There is a point at infinity
on ” whose inverse wrt to ¨ can be naturally defined to be the center O of ¨. Thus
the center (0,0) of ¨ must lie on ”, and so the constant term in the equation of ” is
0. The equation of a general cubic ” with constant term zero is given by

ax3 C bx2y C cxy2 C dy3 C ex2 C fxy C gy2 C hx C ky D 0: (9.1)

We obtain the inverse ”0 of ” by substituting x/(x2 C y2) for x and y/(x2 C y2) for y
in (9.1). If we then clear fractions by multiplying by (x2 C y2)3 we obtain

ax3 C bx2y C cxy2 C dy3 C �
x2 C y2

� �
ex2 C fxy C gy2

�

C �
x2 C y2

�2
.hx C ky/ D 0: (9.2)

In order for ”0 to be identical with ” they must both have degree 3. This can
be achieved if (i) e D f D g D h D k D 0, or (ii) x2 C y2 occurs as a factor of
ax3 C bx2y C cxy2 C dy3. In case (ii) x2 C y2 can be factored out of (9.2), leaving
a cubic. In case (i) the equation of ” reduces to ax3 C bx2y C cxy2 C dy3 D 0.
Since we are assuming that ” is irreducible, it must be that a, d are nonzero,
otherwise, either y or x would be a factor. Dividing by a and renaming the remaining
coefficients, we obtain x3 C bx2y C cxy2 C dy3 D 0 as the equation of ”. Let q be
a real number and divide x3 C bx2y C cxy2 C dy3 by x C qy to obtain quotient:
x2 C (b � q)xy C (c � bq C q2)y2, and remainder: (d � cq C bq2 � q3)y3. The cubic
equation d � cq C bq2 � q3 D 0 has at least one real solution for q, and consequently
x3 C bx2y C cxy2 C dy3 has a linear factor. Since this contradicts the irreducibility
of ”, we conclude that case (i) is inadmissible. So we must have case (ii), i.e., x2 C y2

must be a factor of ax3 C bx2y C cxy2 C dy3. Dividing ax3 C bx2y C cxy2 C dy3

by x2 C y2 gives a quotient: ax C by and a remainder: (c � a)xy2 C (d � b)y3.
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The remainder must be identically 0, so we must have c D a and d D b. Equation
(9.2) reduces to

�
x2 C y2

�
.ax C by/C �

x2 C y2
� �

ex2 C fxy C gy2
�C �

x2 C y2
�2
.hx C ky/ D 0:

(9.3)

Now factoring out x2 C y2 we obtain the cubic:

hx3 C kx2y C hxy2 C ky3 C ex2 C fxy C gy2 C ax C by D 0: (9.4)

By comparing (9.1) and (9.4) we see that we must have h D a and k D b. Then, after
factoring out x2 C y2 (9.3) reduces to

.ax C by/
�

x2 C y2 C 1
�C �

ex2 C fxy C gy2
� D 0: (9.5)

This is our final version for the equation of an irreducible cubic curve which inverts
onto itself via the unit circle. To insure that (9.5) represents a cubic, one of a,b must
be nonzero, and we must also assume that the coefficients a,b,e,f,g are chosen so that
(9.5) remains irreducible. For the purpose of efficient graphing, the polar version of
(9.5) is very useful. Substituting x D r cos ™ and y D r sin ™ into (9.5) and factoring
out r we obtain

.a cos ™C b sin ™/
�
r2 C 1

�C r
�
ecos2™C f sin ™ cos ™C gsin2™

� D 0: (9.6)

Dividing (9.6) by a cos ™C b sin ™ we obtain

r2 C rf .™/C 1 D 0 where

f .™/ D �
ecos2™ C f sin ™ cos ™ C gsin2™

�
= .a cos ™ C b sin ™/ : (9.7)

Solving (9.7) for r, we obtain r D
�

�f .�/˙
q
.f .�//2 � 4

�
=2, and it is not

difficult to show that the full graph of ” is obtained by

r D
�f .�/C

q
.f .�//2 � 4

2
: (9.8)

The homogenization of (9.5) is

.ax C by/
�

x2 C y2 C z2
�C �

ex2 C fxy C gy2
�

z D 0: (9.9)

To find the points at infinity on ”, we set z D 0 in (9.9) to obtain (ax C by)(x2 C
y2) D 0. Since (0,0,0) is not a point in the projective plane, we must have
ax C by D 0. If b is nonzero, we obtain the point (1, �a/b, 0), and if b D 0, we
obtain the point (0,1,0), i.e., the point at infinity on vertical lines. Thus there is a
unique point at infinity on ” and we will designate it henceforth by the symbol 1.
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9.3 The (Z,0) Circle System

The purpose of this section is to show that a (Z,0) circle system exists and can be
constructed on any irreducible nonsingular self-inversive cubic curve ”. Suppose
� is a (Z,0) circle system and consider the cirkles (1,�1,2,�2), (1,�1,3,�3),
(2,�2,3,�3) of �. (Note that for ease of notation we refer to the vertices of �
by their integer labels.) These cirkles must occur in one of two possible orientations
indicated in Figs. 9.1 and 9.2. In Fig. 9.1 the radical center R of the three circles

Fig. 9.1 Impossible
orientation for three circles of
a (Z,0) circle system

R -3
3

2

-2

-1

1

Fig. 9.2 For a (Z,0) circle
system there exists a circle w
which inverts every pair of
points of the form fq,�qg

w

0

R

1

-1

3

-3

-2

2
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occurs in the interior of each circle, and in Fig. 9.2 the radical center occurs in the
exterior of all three circles. Since 5 collinear points are not allowed, at most one of
the three cirkles can be a line L. In this case the intersection of L with the line joining
the contact points of the remaining two circles is R. No matter how the six labels
˙1, ˙2, ˙3 are assigned to the points in Fig. 9.1, the cirkles (1,2,�3), (�1,�2,3)
are disjoint. However, in �, the cirkles (1,2,�3,0), (�1,�2,3,0) are obviously not
disjoint. We conclude that our three topical cirkles must occur in the orientation
illustrated in Fig. 9.2. As in Fig. 9.2, let R denote the radical center and let w be a
circle with center R which is orthogonal to circle (1,�1,2,�2). Then f1,�1g, f2,�2g,
f3,�3g must all be inverse pairs wrt w. If q 2 Z and q ¤ 0, ˙1, ˙2, ˙3, then the
similar set of cirkles: (1,�1,q,�q), (1,�1,2,�2), (2,�2,q,�q) must also have R as
the radical center. As a consequence every pair of points fq,�qg is an inverse pair
wrt w, and every circle of � with the form (s,�s,q,�q) is orthogonal to w. The
cirkles (1,2,�3,0), (�1,�2,3,0) are inverse wrt w, so their common point 0 must lie
on w. We have proved:

Theorem 1. Let ˝ be a (Z,0) circle system. Then there exists a circle ! which
contains vertex 0 and which inverts every pair of points of the form fq,�qg. �

For the construction of a (Z,0) circle system we need the following results, the
proof of which can be found in [1].

Lemma 2. Any five of the cirkles (A,B,C,D), (E,F,G,H), (A,B,F,E), (B,C,G,F),
(C,D,H,G), and (D,A,E,H) imply the sixth. (See Fig. 9.3.) �

We will refer to this configuration of six cirkles as a circle chain. The following
is a related result involving tangent cirkles.

Lemma 3. If (C,B,F,G), (B,A,D,F), (F,G,E,D), and (C,A,E,G) are cirkles, then
cirkles (A,B,C), (A,D,E) are tangent at A. (See Fig. 9.4.) �

E                     F
A      B
D      C

H                    G

H
G

F

A B

E

C

D

Fig. 9.3 Circle chain
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Fig. 9.4 Circle chain with
tangent circles

E                           D
A       A
C       B

G                           F

C

F

B

D
G

A

A

Lemma 3 is a consequence of Theorem 4. Figures 9.3 and 9.4 also include a
schematic representation of the circle chains which will be useful in applying these
theorems. The inner and outer squares of points represent cirkles, and the four points
on each of the adjacent parallel sides of these squares represent the remaining four
cirkles.

Theorem 4. Let ! be a circle and put vertex 0 on !. Choose distinct vertices 1,
2 in the plane not on ! so that 1,2 are not inverses with respect to !, and let
�1, �2 be the inverses of 1, 2, respectively, wrt !. Let vertex �3 lie on cirkle
(0,1,2) and not on !, and let vertex 3 be the inverse of �3 wrt !. In general,
if k is a positive integer and vertices f�k C 1, : : : , k � 1g have been defined, let
�k D (0,1,k � 1) \ (�1,2,k � 1), and let vertex k be the inverse of �k wrt !. Let
˝ denote the set of integer labeled points defined in this way. We assume that the
generators f1,2,3g of ˝ have been chosen so that no two points in ˝ have been
labeled with the same integer. Then ˝ is a (Z,0) circle system.

Proof. It must be shown that every four element subset fa,b,c,dg of Z with
a C b C c C d D 0 corresponds to four cocyklic points. We find it useful
to show simultaneously that if (a,b,c), (d,e,f) are two cirkles such that
a C b C c D d C e C f D m, then these cirkles are tangent at vertex �m. We observe
that if (a,b,c,d) is a circle, then so is (�a,�b,�c,�d) since inversion maps circles to
circles. If m is any positive integer, then circle (0,m,�m) is inverted onto itself and
so is orthogonal to ¨. If (0,k,�k) is a second such circle, then it must be tangent to
(0,m,�m) at vertex 0. We will proceed by induction on k (k > 0) by showing that all
four element subsets of the form f�k, a,b,cg such that a C b C c D k and such that
a,b,c are distinct integers which lie properly between �k and k correspond to four
cocyklic points. We call these cirkles and their inverses the circles of level k. We will
also show that all cirkles f(�k,s,k � 2s): k ¤ 3s, s 2 f1,2, : : : , k � 2gg are tangent at
s to every cirkle of the form (�q, s, q � 2s) with 0 � q < k. We call these tangencies
and their inverses the tangencies at level k. To inaugurate the induction we find it
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useful to prove by hand all cirkles and tangencies of levels 4,5. Since vertex �4 is
defined to be the intersection point, besides 3, of cirkles (0,1,3), (�1,2,3) we have
the cirkles (�4,0,1,3), (�4,2,3,�1) and their inverses (4,0,�1,�3), (4,�2,�3,1).
This accounts for all cirkles of level 4. The circle chains:

�2
1

4

� 3

2

� 1
0

�1

1

�3
3

� 1
4

� 2

0

�2

account for all tangencies at level 4. We have defined vertex �5 to be the intersection
point, besides 4, of cirkles (0,1,4), (�1,2,4), so we have the cirkles (�5,0,1,4),
(�5,�1,2,4) and their inverses (5,0,�1,�4) and (5,1,�2,�4). The two remaining
level 5 cirkles with �5 are (�5,0,2,3) and (�5,3,4,�2). The following two circle
chains prove these cirkles:

�1
2

�4
3

�5
4

0

1

0

3

�1
� 2

�5
2

4

�1

These two cirkles and their inverses account for all level 5 cirkles. To prove the
level 5 tangencies, it suffices to show that cirkles (�5,1,3), (�2,1,0) are tangent at
vertex 1; cirkles (�5,2,1), (�3,2,�1) are tangent at vertex 2, and cirkles (�5,3,�1),
(�4,3,�2) are tangent at vertex 3. These are proved by the following circle chains:

0

4

�2
� 2

�5
1

3

1

�1
4

�3
0

�5
2

1

2

�2
4

�4
2

�5
3

�1
3

Now suppose k � 6 and assume inductively that all cirkles and tangencies for every
level less than k have been proved. To complete the induction we must prove all
cirkles and tangencies of level k. There are three phases in the induction; in the first
phase, we will prove all level k cirkles which contain vertices f�k, 0g. We have
by definition the cirkles (�k, 0, 1, k � 1), (�k, �1, 2, k � 1), and so we have their
inverses (k,0,�1, �k C 1), (k,1,�2,�k C 1). The circle chains:

1

0

�k C 1

k � 2
�k

k � 1
2

�1

0

1

�k C 2

k � 3

�k
k � 1

2

�1
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prove the cirkles (�k,0,2,k � 2), (�k,1,2,k � 3). Note that since k � 6, these cirkles
involve four distinct points. Also note that all entries in these circle chains, except
for �k, lie properly between �k and k. Now assume inductively (this is an induction
within an induction!) that we have proved the cirkles (�k,0, t, k � t), (�k,1, t,
k � t � 1) for some t 2 f2,3,4, : : : , mg where we take m D �1 C ((k � 1)/2) if k is
odd and m D �1 C ((k � 2)/2) if k is even. The circle chains:

0

k � t
�t � 1

� k C 2t C 1

�k
t

k � t � 1

1

�k C 2t C 1

k � t � 1
�2t � 1

t C 1

�k
k � t

0

t

prove cirkles (�k, k � t, k � t � 1, �k C 2t C 1) and (�k, 0, t C 1, k � t � 1), then
the circle chain:

t
1

�k C 1

k � t � 2
�k

k � t � 1

t C 1

0

proves cirkle (�k, 1, t C 1, k � t � 2) and so completes the inner induction. We
thus obtain all level k cirkles which contain vertex 0. In the second phase of the
induction we prove the remaining level k cirkles. First consider cirkles of the form
(k,�s,�r,t) where 0 < s < r < k; k C t D s C r, and t 2 f1,2, : : : , k � 3g. This accounts
for all cirkles at level k which contain two positive values k, t. The circle chain:

�k C s
�s

k � t
t

k
0

�r
�k C r

proves the cirkle (k, �s, �r, t). Note that the cirkles (k, 0, �r, �k C r), (k, 0, �s,
�k C s) exist by the first phase of the induction. It remains to prove cirkles of the
form (k,�s,�t,�r) where 0 < t < s < r < k, and k D s C t C r. The circle chain:

s � 1

�s
t C 1

� t
k

� k C 1

�r
r � 1

contains cirkles (k, �r, r � 1, �k C 1), (k, �s, s � 1, �k C 1) each of which contains
two positive entries, fk, r � 1g and fk, s � 1g. Since these have been proved by the
previous circle chain, the present circle chain proves the cirkle (k, �s, �t, �r). The
second phase of the induction is now complete; we have proved all level k cirkles.



9 Self-Inversive Cubic Curves 187

Since tangencies at lower levels have been used to prove level k cirkles, we must,
in phase 3, prove all level k tangencies in order to complete the induction. Let Us

denote the cirkle (�k, s, k � 2s) where k ¤ 3s and s 2 f1,2, : : : , k � 2g. Then the
circle chain:

1 � s
k � 1

�1 � s
2s � k C 1

�k
s

k � 2s
s

shows that Us is tangent at vertex s to the cirkle (s, 1 � s, �1 � s), and thus is tangent
at s to all cirkles (s, q, �q � 2s) with vertices which lie properly between �k and k.
The induction is now complete, and the theorem is proved. �

The construction of Theorem 4 is illustrated in Fig. 9.5. It is very interesting that
such a construction is possible, and perhaps even more striking that the vertices of
a (Z,0) circle system appear to lie on a closed curve. We will, in fact, show that they
lie on an algebraic curve with maximum degree 6.

w
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Fig. 9.5 Construction of (Z,0) circle system



188 R.R. Fletcher

9.4 The (Z,0) Geometric Triple System

Let (G,C) be an abelian group and g 2 G. Let ‰: G !… be an injective mapping
from G into the projective plane such that no four points in ‰(G) are collinear. If
for each three element subset fa,b,cg of G with a C b C c D g, the corresponding
points f‰(a), ‰(b), ‰(c)g are collinear, then we call the set of points ‰(G) and the
associated collinear triples, a (G,g) geometric triple system, or simply a (G,g) triple
system. Suppose � is a (Z,0) circle system and we invert by a circle ¨ with center
at vertex 0 to obtain a collection of points �0. All circles in � of the form (a,b,c,0)
are inverted into lines [a,b,c] with a C b C c D 0 in �0. Pairs fq,�qg of points in �
form mutually parallel lines in�0. We regard the point at infinity on this set of lines
to be the inverse of 0, and thus we obtain all lines f[q, �q, 0]: q 2 Z, q ¤ 0g in �0.
In short, �0 is a (Z,0) triple system. In fact, �0 is also a (Z,0) circle system since
inversion maps cirkles to cirkles. This connection between � and �0 will explain
the appearance of a curve containing the points of a (Z,0) circle system.

If ” is an irreducible cubic curve, then a binary operation * can be defined on the
nonsingular points of ” by setting a*b equal to the third point on line [a,b] and on ”.
Here we use the fact that every line which meets ” in two points, also meets ” in a
third point, counting multiplicities. The product a*a refers to the third point besides
a which lies on ” and on the tangent to ” at a. In case a*a D a, the point a is called
a flex. Nonsingular irreducible cubic curves are known to have three collinear flexes
in the projective plane. The following is a well known result which can be found in
[2].

Theorem 5. If 
 is an irreducible cubic curve, then a binary operation * can be
defined on the nonsingular points of 
 by setting a*b equal to the third point on
line [a,b] and on 
 . The following identities are satisfied by *: (i) a*b D b*a; (ii)
a*(a*b) D b; and (iii) (a*b)*(c*d)D (a*c)*(b*d). �

The commutative and absorptive identities (i) and (ii) are obvious, but identity
(iii) is a remarkable property of irreducible cubic curves. We shall call (iii) the
hypercommutative property, and the collection of algebras satisfying (i), (ii), and
(iii), the binary hypercommutative variety. Besides the cubic curve model given in
Theorem 5, we can obtain members of this variety by taking any abelian group
(G,C) and any fixed element g of G, and defining a*b D g � (a C b). We want to
show that the vertices of a (Z,0) triple system lie on an irreducible cubic curve. To
accomplish this, the following lemma is essential. If T is a (G,t) triple system, then
a t-square for T is a 3 � 3 matrix with entries from G such that each row and each
column represents a triple belonging to T.

Lemma 6. Let T be a (G,t) triple system. If eight of the entries of a t-square for T
lie on an irreducible cubic curve 
 , then so does the ninth.
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Proof. Let

ˇ
ˇ
ˇ̌
ˇ
ˇ

a b c
d e f
g h k

ˇ
ˇ
ˇ̌
ˇ
ˇ

be a t-square for T. Since the rows and columns of a t-square

can be permuted independently without affecting the row or column sums, we
can suppose that vertex a is the only element of G not known to lie on ”. Then
the second two rows and columns represent triples of T. Thus the (*) product
of any two of these elements is the third element of the triple. So we have
b*c D (e*h)*(f*k)D (e*f)*(h*k)D d*g. Consequently b*c D d*g is a point q on ”
which must lie on both lines [b,c], [d,g]. But then q D [b,c] [ [d,g] D a lies on ”.
�

The following construction of a (Z,0) triple system can be found in Fletcher R
(Geometric Triple Systems, unpublished).

Theorem 7. A (Z,0) triple system exists, and its vertices must lie on an irreducible
cubic curve.

Proof. The starting configuration S for our construction involves the nine points
f0,˙1,˙2,˙3,4,�5g and is illustrated by the bold lines in Fig. 9.6. Any nine points
in the projective plane lie on some cubic curve, so let ” denote a cubic which
contains these nine points. No three lines cover all the points in S so ” cannot
consist of three lines. The removal of any line from S, except for [3,0,�3], leaves a
configuration which still contains three collinear points. This configuration cannot
be covered by any conic since no line can meet a conic in more than two points.
There is a unique conic which contains the five points f˙1,˙2,�5g. If we select
vertex 4 on line [�1,�3] so that it does not lie on this conic, then also in case
we cover f3,0,�3g with a line, the remaining six points of S cannot be covered
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Fig. 9.6 (Z,0) triple system
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by a conic. So we can suppose that ” is irreducible, and since every point in S
lies on a line with two other points of S, we can also suppose that each of the
nine points in S is a nonsingular point of ”. (A line through a singular point of a
cubic cannot meet the cubic in two additional points.) Define �4 D [1,3] [ [0,4] and
5 D [0,�5] [ [�2,�3]. The 0-squares:

ˇ
ˇ
ˇ̌
ˇ
ˇ

�4 1 3

4 �3 �1
0 2 �2

ˇ
ˇ
ˇ̌
ˇ
ˇ
;

ˇ
ˇ
ˇ̌
ˇ
ˇ

5 �2 �3
� 5 3 2

0 �1 1

ˇ
ˇ
ˇ̌
ˇ
ˇ

imply by Lemma 6 that �4 and 5 lie on ”. Now suppose k � 5 and assume
inductively that points f0, ˙1, ˙2, ˙3, : : : , ˙kg have been defined and
shown to lie on ”. Define vertices ˙ (k C 1) by �k � 1 D [1,k] [ [2,k � 1] and
k C 1 D [�1,�k] [ [�2,�k C 1]. Then the 0-squares:

ˇ
ˇ̌
ˇ
ˇ
ˇ

�k � 1 1 k
2 0 �2

k � 1 �1 �k C 2

ˇ
ˇ̌
ˇ
ˇ
ˇ
;

ˇ
ˇ̌
ˇ
ˇ
ˇ

k C 1 �1 �k
� 2 0 2

� k C 1 1 k � 2

ˇ
ˇ̌
ˇ
ˇ
ˇ

imply, by Lemma 6, that the points ˙(k C 1) lie on ”. It now follows by induction
that every integer has been assigned to a point in the plane which lies on ”. It
remains to show that the resulting configuration is a (Z,0) triple system. Suppose
k � 5, 0 < p < q < k, and p C q D k. Assume inductively that if jaj, jbj, ja C bj < k,
then we have a*b D �a � b. We have k D [�1, �k C 1] [ [�2,�k C 2] by definition
and also (0*p) D �p by the inductive hypothesis. Consequently:

k  �p D .�1  �k C 1/  .0  p/ D .0  �k C 1/  .p  �1/
D .k � 1/  .�p C 1/ D p–k D �q:

Note that j�k C 1j, jp � 1j, jp � kj, and jk � pj are all less than k so this equation
is legitimate due to the inductive hypothesis. So we have k D �p * �q. For
negative values of k we can proceed as follows. Consider: 0*0 D (1 * �1)*(2*�2)
D (1*2)*(�1 * �2) D (�3 * 3) D 0. We will use this result to show that �k D 0*k
for every positive integer k. Assume inductively that this holds for all
positive integers less than k. Consider: �k D (1 * (k � 1)) D (0*�1)*(0 * �k C 1)
D (0*0)*(�1 * (�k C 1)) D 0*k. Again suppose 0 < p < q < k and p C q D k. Now
we want to show that �k D p*q. Consider: �k D 0*k D (0*0)*(�p * �q) D
(0*�p)*(0*�q)D p*q. We can now conclude that a * b D �a � b for all a, b 2 Z with
a, b, �a � b distinct, and thus our construction results in a (Z,0) triple system. �
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Fig. 9.7 Inverse of a (Z,0) circle system by circle w with center at vertex 4

In Fig. 9.6 we illustrate the construction of a (Z,0) triple system described in
Theorem 7.

Theorem 8. The vertices of a (Z,0) circle system lie on an algebraic curve with
degree � 6 which is the inverse of an irreducible self-inversive cubic curve.

Proof. Let � be a (Z,0) circle system and let ¨ be a circle with center at vertex 4
of �. If p is a vertex of�, let p0 denote the inverse of p wrt ¨ and let �0 denote the
inverse of � wrt ¨ as in Fig. 9.7. Then �0 is a (Z,�4) triple system. By adding 1
to each point of �0 we obtain a (Z,0) triple system. By Theorem 7, there exists an
irreducible cubic curve ” which contains all the vertices of�0. By Theorem 1, there
exists a circle ¤ which contains vertex 0 of �, and which inverts � onto itself. If
¤0 denotes the circle which is the inverse of ¤ wrt ¨, then ¤0 inverts �0 onto itself
and it inverts the cubic envelope ” onto itself. Thus ” is an irreducible self-inversive
cubic curve. If ”0 is the inverse of ” wrt ¨, then ”0 contains all the vertices of �
and, as it is the inverse of a cubic, its degree cannot exceed 6. Note that ¤0 inverts
all pairs of points of the form fq0, �q0g, and since �0 is a (Z,�4) triple system, all
the lines [q0, �q0] contain the point �40. Thus �40 is the center of ¤0. �

9.5 Ternary Hypercommutativity

We now describe an algebraic system which is an analog of the above mentioned
binary hypercommutative variety, but which involves a ternary operation. Let S be
a set and • a ternary operation defined on S. If the axioms:
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(i) •(a,b,c) is invariant under any permutation of the three variables;
(ii) •(a, b, •(a,b,c)) D c; and

(iii) •(•(a,b,c), •(d,e,f), •(g,h,k)) is invariant under any permutation of the nine
variables;

are satisfied for all elements a,b,c, : : : , k of S, then (S,•) is a ternary hyper-
commutative algebra (THA). Axiom (i) is ternary commutativity; axiom (ii) is
ternary absorption, and axiom (iii) is ternary hypercommutativity. The collection of
all algebras satisfying these three axioms comprise the ternary hypercommutative
variety. Let G be an abelian group and g a fixed element of G. If we define •:
G ! G by •(a,b,c) D g � (a C b C c), then (G,•) is a member of this variety. If ” is a
nonsingular irreducible self-inversive cubic curve, then any circle ¤ which meets ”
in three points must also meet ” in a fourth point. This is so since the equation for ¤
can be solved for x2 C y2 to obtain x2 C y2 D sx C ty C r and this linear expression
can be substituted for x2 C y2 in Eq. (9.5) to obtain

.ax C by/ . sx C ty C r C 1/C �
ex2 C fxy C gy2

� D 0: (9.10)

In (9.10) y2 can be replaced by �x2 C sx C ty C r leaving an equation which we can
solve for y to obtain

y D Ax2 C Bx C C

Dx C E
: (9.11)

for some real numbers A,B,C,D,E. Now using (9.11) to substitute for y in the
equation of the circle ¤, and clearing fractions, we obtain P(x) D 0 where P is
a degree 4 polynomial in x. Since we are assuming that ¤ meets ” three times,
counting multiplicities, P(x) D 0 has three real solutions. Since complex solutions
must occur in conjugate pairs, it must be that P(x) D 0 has a fourth real solution.
So, on ” we can define a ternary operation by setting •(a,b,c) equal to the unique
fourth point on ” which also lies on circle (a,b,c). It is our intention to show that
the resulting algebra (”,•) is a THA. Here •(a,a,b) denotes the fourth point on the
circle which is tangent to ” at a and contains the point b of ”, and •(a,a,a) denotes
the fourth point on ” and on the circle which meets ” at a with multiplicity 3. This is
the osculating circle at point a. We will show that ” contains ı-idempotent elements,
i.e., points x which satisfy •(x,x,x) D x. The osculating circle at such a point x
intersects ” with multiplicity 4 at x. A similar ternary operation • can be defined
on the points of a noncircular conic ’ by setting •(a,b,c) equal to the fourth point on
circle (a,b,c) and on ’. The resulting algebra (’,•) is shown to be a THA in [3].

Let ” be an irreducible, nonsingular, self-inversive cubic curve. We can suppose
that ” inverts onto itself via the unit circle ¨. In accordance with [2], ” may be one
of two types: Type 1 consists of those irreducible nonsingular cubics which can be
transformed into a cubic with equation: y2 D x(x2 C kx C 1) where �2 < k < 2, and
Type 2 cubics are those which can be transformed to y2 D x(x � 1)(x � w) where
w > 1. Type 1 cubics consist of a single connected component, and Type 2 cubics
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have two disjoint connected components, the bell and the oval, when regarded in
the projective plane. The bell of a Type 2 cubic is a subalgebra of the binary
hypercommutative algebra (”,*), and the oval is an anticlosed subset of ”, i.e., if
a,b 2 oval, then a*b 2 bell. If x 2 ”, then

p
x denotes the set fa 2 ”: a*a D xg. If ” is

Type 1, then
p

x contains exactly two elements for each x 2 ”. If ” is Type 2, thenp
x is empty if x 2 oval, and

p
x has exactly four elements if x 2 bell, two of these on

the oval and two on the bell. If a*a D a, then a is called a flex; ” has three collinear
flexes. A Type 1 cubic has exactly one point at infinity, and a Type 2 cubic can have
as many as three points at infinity, but if ” is self-inversive, we have seen that ”
contains a unique point (1) at infinity. We start by considering a Type 1 cubic.

Theorem 9. Let 
 be a nonsingular irreducible cubic curve of Type 1 which inverts
onto itself via a circle !. Define a ternary operation ı on the points of 
 , by setting
ı(a,b,c) equal to the fourth point on 
 and on the circle (a,b,c). In case a,b,c are
collinear, set ı(a,b,c) D 1. Then (
 ,ı) is a THA.

Proof. Let £ be a circle with center T not on ”, and which is orthogonal to ¨. Let
”0 denote the inverse of ” wrt £, as illustrated in Fig. 9.8. The curve ”0 is a bounded
algebraic curve of degree 4 which inverts onto itself via ¨. We will construct a (Z,0)
circle system � on ”0 by following the prescription given in Theorem 4. Let P be a
point of contact of ¨ and ”0 and let P be vertex 0 of �. Choose vertex 1 on ”0 close
to P, and let vertex �1 be the inverse of vertex 1 wrt ¨. Choose vertex 2 on ”0 close
to vertex 1, and so vertices 0, 1, 2 occur in order along ”0, and let vertex �2 be the
inverse of vertex 2 wrt ¨. Put vertex 3 at the intersection of circle (0,�1,�2) and
”0, and let vertex �3 be the inverse of vertex 3 wrt ¨. Let vertex 4 be the unlabeled
intersection of circles (0,�1,�3), (1,�2,�3), and shift vertex 2 on ”0 until vertex 4
lies on ”0. Let vertex �4 be the inverse of vertex 4 wrt ¨, and follow the prescription
given in Theorem 4 to complete the construction of�. By Theorem 8 we know that
the vertices of � lie on an algebraic curve Ÿ which is the inverse of a self-inversive
cubic curve Ÿ0. We know that Ÿ has the nine points f0, ˙1, ˙2, ˙3, ˙4g in common
with ”0, and Ÿ0 has nine points in common with ”, namely the inverses of f0, ˙1,
˙2, ˙3, ˙4g wrt £. Since � inverts onto itself via ¨, we know that Ÿ0 also inverts
onto itself wrt ¨. We may suppose that ¨ is the unit circle and thus both Ÿ0 and
” have equations of the form given in Eq. (9.5). Both curves contain the origin,
and by the self-inversive nature of (9.5), if q is a point on either curve, then �q,
the inverse of q wrt ¨, will automatically satisfy (9.5). But we shall argue that the
points f1,2,3,4g, or rather their inverses wrt £, completely determine an irreducible
cubic which self-inverts through the unit circle. From (9.5) we see that we cannot
have both coefficients b, g equal to zero since otherwise x would be a factor and
(9.5) would not represent an irreducible cubic. If b ¤ 0, then we can divide (9.5) by
b to obtain an equivalent equation with only four coefficients. Substituting for x and
y the coordinates for points 1,2,3,4 we obtain four homogeneous linear equations in
the four remaining coefficients, and thus the curve Ÿ0 is completely determined, and
must be identical with ”. It then follows that ŸD ”0, so all the points of� lie on ”0.

The vertices of � form a THA (�,•) with •(a,b,c) D �(a C b C c), which occurs
as a subset of ”0. We want to show that this algebra can be extended to the
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entire curve ”0. For this purpose we adopt the following analytical argument. For
a,b,c 2 ”0, we define •(a,b,c) to be the fourth point on ”0 and on circle (a,b,c).
Since ”0 is the inverse of the self-inversive cubic for which the analogously defined
ternary operation is well defined, • is well defined and identities (i) and (ii) of
the ternary hypercommutative variety are satisfied. We need only to demonstrate
hypercommutativity. For the sake of a little simplification, we observe that the
hypercommutative axiom is a consequence (in the presence of axioms (i) and (ii))
of the seven variable identity:

• .• .a; b; c/ ; • .d; e; f/ ; q/ D • .• .a; b; d/ ; • .c; e; f/ ; q/ : (9.12)

Define a function f: ”0 ! ”0 by f(x,y,z,u,v,w,q)D •(•(x,y,z), •(u,v,w), q). This
function is continuous in each of its seven variables, and since the points of ”0 form
a compact set, it is uniformly continuous. So, given " > 0, there exists a positive real
number ˜ such that if points fx0, y0, z0, u0, v0, w0, q0g lie on ”0, and jx � x0j < ˜,
jy � y0j < ˜, : : : ,jq � q0j < ˜, then jf(x,y,z,u,v,w,q)� f(x0,y0,z0,u0,v0,w0,q0)j < "/2,
and jf(x,y,u,z,v,w,q)� f(x0,y0,u0,z0,v0,w0,q0)j < "/2. Now in our construction of
Fig. 9.8, by shifting vertex 1 (and then adjusting vertex 2 suitably) we can
make vertex 20 and vertex �20 coincide at the second contact point M of
¨ and ”0. When this occurs, we obtain a (Z40, 0) circle system on ”0. By
moving vertex 1 closer and closer to P we can make vertex n and vertex �n
coincide at point M for arbitrarily large n, and thus construct a (Z2n, 0) cir-
cle system �2n on ”0. Let �2n denote the maximum distance (in the usual
Euclidean metric) between consecutive points of �2n. By choosing n sufficiently
large, we can make �2n < ˜. Thus if a,b,c,d,e,f,q are any seven points on ”0,
we can find points a0,b0,c0,d0,e0,f0,q0 of �2n such that ja � a0j < ˜, jb � b0j < ˜,
: : : „, jq � q0j < ˜. Then we have jf(a,b,c,d,e,f,q)� f(a0,b0,c0,d0,e0,f0,q0)j < "/2, and
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jf(a,b,d,c,e,f,q)� f(a0,b0,d0,c0,e0,f0,q0)j < "/2. Since (�2n,•) is a THA, we have
f(a0,b0,c0,d0,e0,f0,q0) D f(a0,b0,d0,c0,e0,f0,q0) D m0 for some point m0 on ”0. Then

jf .a; b; c; d; e; f; q/� f .a; b; d; c; e; f; q/j
D jf .a; b; c; d; e; f; q/� m0 C m0 � f .a; b; d; c; e; f; q/j
� j f .a; b; c; d; e; f; q/� m0j C jm0 � f .a; b; d; c; e; f; q/j < ©=2C ©=2 D ©:

Since "> 0 is arbitrary, we obtain f(a,b,c,d,e,f,q)D f(a,b,d,c,e,f,q), and thus identity
(9.12) holds for all points a,b,c,d,e,f,q on ”0. Since inversion maps circles to circles,
the same identity holds for points on ”, and thus (”,•) is a THA. �

In case ” is a Type 2 self-inversive cubic curve, we also obtain that (”,•) is a THA.
There is only a slight difference in the way a (Z,0) circle system is constructed on ”.

Theorem 10. Let 
 be a Type 2 cubic curve which inverts onto itself via circle !
which has nonempty intersection with 
 . Define a ternary operation ı on the points
of 
 , by setting ı(a,b,c) equal to the fourth point on 
 and on the circle (a,b,c). In
case a,b,c are collinear, set ı(a,b,c) D 1. Then (
 ,ı) is a THA.

Proof. Let £ be a circle with center T not on ”, and which is orthogonal to ¨. Then
the inverse ”0 of ” wrt £ also inverts onto itself wrt ¨. Let p be a point of contact
of ¨ and ” and suppose p lies on the oval as in Fig. 9.9. Then ¨ must invert the
oval onto itself and the bell onto itself, and so must also meet the bell at a point q.
Similarly, if we assume that p lies on the bell, then ¨ must meet the bell at a point
q. So we can assume, without loss of generality, that ¨ meets the oval at p and the
bell at q. Let p0 denote the inverse of p wrt £, and let q0 denote the inverse of q wrt
£. Note that ”0 consists of two bounded components, the inverse (oval)0 of the oval,
and the inverse (bell)0 of the bell wrt £. The point p0 lies on (oval)0 and q0 lies on
(bell)0. Now we construct a (Z,0) circle system� on ”0 by first choosing q0 as vertex
0, and then putting vertex 1 on (oval)0 near p0. Let vertex �1 be the inverse of vertex
1 wrt ¨, and put vertex 2 on (bell)0 near vertex 0. Now the construction of � on ”0
proceeds as in Theorem 9. All the even vertices of � will lie on (bell)0 and all the
odd vertices of � will lie on (oval)0. The remainder of the proof is identical with
Theorem 9. �

In the next section we will show that every Type 2 self-inversive cubic curve ”
actually inverts onto itself through three mutually orthogonal circles, two of which
have nonempty intersection with ”. So Theorem 10 actually applies to every Type 2
self-inversive cubic.

9.6 Self-Inversion Through Orthogonal Circles

This section contains our intended main geometric results concerning a self-
inversive cubic curve ”. We start by developing a simple formula which relates the
ternary operation • and the binary operation *, defined in Theorems 5 and 9 on the
points of ”.
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Theorem 11. Let 
 be a nonsingular irreducible cubic curve which inverts onto
itself through a circle ! with center X. Then ı(a,b,c) D X*f(X*a)*(b*c)g holds for
all points a,b,c on 
 .

Proof. We have X*X D 1, and if a,b,c are three collinear points on ”, we define
•(a,b,c) D •(a,b,a*b) D 1. This is a natural definition, since if we move c along ”
closer and closer to a*b, then the radius of the circle (a,b,c) gets large without bound
and the point •(a,b,c) moves towards the point (1) at infinity on ”. We then obtain
immediately: •(a,b,1) D a*b for all points a,b on ”. In particular: •(a,X,1) D a*X;
•(b,c,1) D b*c, and

.X  a/  .b  c/ D • .a;X;1/  • .b; c;1/ D • .• .a;X;1/ ; • .b; c;1/ ;1/ :

(9.13)

Now by applying identity (9.12) we obtain

.X  a/  .b  c/ D • .• .a; b; c/ ; • .X;1;1/ ;1/

D • .• .a; b; c/ ;X  1;1/ D • .• .a; b; c/ ;X;1/ : (9.14)
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But then we obtain (X*a)*(b*c)D X*•(a,b,c), and thus •(a,b,c) D X*f(X*a)*(b*c)g
as desired. �

If ” is a nonsingular irreducible curve with flex f, then we can define an addition
on the points of ” by p C q D (p*q)*f. It is well known (see [2]) that (C) is
an associative binary operation and that (”,C) is an abelian group G” with f as
identity element and �p D f*p. In terms of the group operation p*q D �p � q. The
representation in the following lemma of •(a,b,c) in terms of the group operation
will simplify some of the following results.

Lemma 12. Let 
 be a nonsingular irreducible cubic curve which inverts onto
itself through a circle ! with center X. Then in terms of the group operation in G


we have ı(a,b,c) D 1 � a � b � c for any points a,b,c of 
 , where 1 denotes the
point at infinity on 
 .

Proof. Let f be a flex of ”. Consider: 1 C (�a) C (�b) C (�c) D f(1 * �a)*fg C
f(�b * �c)*fg D [f(1 * �a)*fg * f(�b * �c)*fg]*fD [f(1 * �a)*(�b * �c)g*(f*f)]*
f D (1 * �a)*(�b * �c) D f(X*X)*(a*f)g* f(b*f)*(c*f)gD f(X*a)*(X*f)g* f(b*c)
*fg D f(X*f)*fg*f(X*a)*(b*c)gD X * f(X*a)*(b*c)gD •(a,b,c). �

Theorem 13. Let 
 be a Type 1 cubic curve which inverts onto itself through a
circle ! with center X, and let (
 ,ı) denote the THA defined on the points of 
 . Then
there exists a second circle ¤, orthogonal to !, which also inverts 
 onto itself.

Proof. Let p,q denote the two points of contact of ” and ¨, and let Y D p*q as in
Fig. 9.10. Note that since p*p D q*q D X, the tangents to ” at p, q contain X. If Y
were to lie on segment [p,q] in the interior of ¨, then ” would have to cross this
segment at a second point in the interior of ”. But then the line [p,q] would intersect
the cubic ” in more than three points, which is impossible. So Y must lie on ” and in
the exterior of circle¨. As a consequence we can find a circle ¤with center Y which
is orthogonal to ¨. Note that Y*Y D (p*q)*(p*q)D (p*p)*(q*q)D X*X D 1, so
we could also define Y as the second element, besides X, in

p 1. Now let a
be any point on ” different from 1 and consider circle ˜D (a,p,q). Since Y, p,
q are collinear and p,q lie on ¨, and ¤ is orthogonal to ¨, it must be that p,q
are inverses wrt ¤, and thus ˜ is orthogonal to ¤. From Theorem 11 we have
•(a,p,q) D X*f(X*a)*(p*q)gD X*f(X*a)*YgD X*f(X*a)*(Y*1)gD X*f(X*1)*
(Y*a)g D X*fX*(Y*a)gD Y*a. Since ˜ is orthogonal to ¤, and a, Y*a lie on ˜,
it follows that Y*a is the inverse of a wrt ¤. As a was chosen arbitrarily on ”, it
follows that circle ¤ inverts ” onto itself. �

Proofs of the following three lemmas can be found in [4].

Lemma 14. Let p,q,r,s be four points in the Euclidean plane such that fp,qg
and fr,sg are inverse pairs wrt circle �, and fp,sg, fq,rg are inverse pairs wrt
circle ¤. Then !D (p,q,r,s) is a circle. Circles �,¤,! are mutually orthogonal, and
W D [p,r] \ [q,s] is the radical center of �,¤,!. �

Lemma 15. Let !,¤ be orthogonal circles with centers X, Y, respectively, and let
�X, �Y , denote inversion mappings wrt !,¤, respectively. Then �X�Y D�X�Y . �



198 R.R. Fletcher

Fig. 9.10 Orthogonal circles
which invert Type 1 cubic ”
onto themselves
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If Ÿ is a circle with center W, and p is a point in the plane different from W, then
we define the antiinverse p# of p wrt Ÿ to be the reflection of the inverse p0 of p
across the center W of Ÿ. If r is the radius of Ÿ, then [p,W][p#,W] D r2 similar to
the defining formula for the inverse p0 but now W lies in the interior of the segment
[p, p#].

Lemma 16. Let !,¤,� be three mutually orthogonal circles with centers X,Y,Z,
respectively, and let �X, �Y , �Z denote the corresponding inversion mappings. Let
W denote the radical center of !,¤,�. Then there exists a circle � with center W
which antiinverts each of the circles !,¤,� onto themselves. If �W(p) denotes the
antiinverse of a point p wrt �, then �W D�X�Y�Z. �
Theorem 17. Let 
 be a Type 2 cubic curve which inverts onto itself via a circle !.
Then there exist circles ¤,� which also invert 
 onto themselves; the circles 
 ,¤,�
are mutually orthogonal, and there exists a fourth circle � which antiinverts 
 onto
itself.

Proof. First we assume that ¨ has nonempty intersection with ”. Then the
center X of ¨ must lie on the bell, and we may suppose, as in Fig. 9.11, that
¨\ ”D fp,q,r,sg where p,s lie on the bell and q,r lie on the oval. Then we have
p*p D q*q D r*r D s*s D X, and X*X D 1. The points p*s, q*r must both lie on
the bell in the exterior of ¨ and both square to 1. The bell contains exactly two
points which square to 1, one of which is X. Since X lies in the interior of ¨, it
must be that p*s and q*r both equal the remaining point on the bell which squares
to 1. Let Y represent this point, so we have p*s D q*r D Y, and Y*Y D 1. Let ¤
denote the circle with center Y which is orthogonal to ¨. We can then argue, as
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Fig. 9.11 Three mutually orthogonal circles invert self-inversive Type 2 cubic onto itself

in the previous theorem, that ¤ inverts ” onto itself. The points p*q, s*r, s*q, p*r
must lie on the oval and in the section of the plane which lies between the tangent
lines [X,q], [X,r], and consequently p*q, s*r must lie in the exterior of ¨, and s*q,
p*r must lie in the interior of ¨. All four of these points square to 1, but there
are exactly two points, say, Z, W on the oval which lie in

p1. If Z lies in the
exterior of ¨, and W in the interior of ¨, then we must have p*q D s*r D Z and
p*r D s*q D W. Let ˜ be the circle with center Z which is orthogonal to ¨. Again
we can argue as in Lemma 12 that ˜ inverts ” onto itself. It follows from Lemma 14
that circles ˜,¤ are orthogonal and that W is the radical center of ¨,¤,˜. By Lemma
16, there exists a circle Ÿ with center W which antiinverts each of the mutually
orthogonal circles ¨,¤,˜ onto themselves. It remains to show that Ÿ antiinverts
the cubic curve ” onto itself. Let a be a point on ” different from W. Consider:
•(a,q,s)DX*f(X*a)*(s*q)gD (X*1)*f(X*a)*WgD fX*(X*a)g*(W*1)D a*W, so
the points a,s,q,W*a lie on a circle �. Segments [s,q], [a, a*W] meet at point W in
the interior of �. Since Ÿ antiinverts¨ onto itself, and s,q are points of ¨ with s,q,W
collinear, the points s,q form an antiinverse pair wrt Ÿ. It follows that Ÿ antiinverts
circle � onto itself, when we can conclude that a, a*W form an antiinverse pair
wrt Ÿ.

Now suppose that ¨\ ” is empty as in Fig. 9.12, then the center X of ¨
lies on the oval and ¨ inverts the oval onto the bell and the bell onto the
oval. Let Y be one of the points on the bell which satisfies Y*Y D 1, and let
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Fig. 9.12 Type 2 cubic ” which inverts onto itself via a circle w which has empty intersection
with ”

a be a point on the oval which satisfies a*a D Y. If q is any point on ”, then
•(q,a,a) D X*f(X*q)*(a*a)gD X*f(X*q)*YgD (X*1)*f(X*q)*YgD fX*(X*q)g*
(Y*1) D q*Y. Thus the circle ’ through q and tangent to ” at a also contains the
point q*Y. Let ¤ denote the circle with center Y and point a. Since a*a D Y, the line
[a,Y] is tangent to ” at a, and also tangent to ’ at a. As a consequence circles ’,¤
are orthogonal, and it must be that the points q, Y*q are inverses wrt ¤. Since q
was chosen arbitrarily on ”, it follows that ¤ inverts the entire curve ” onto itself.
So there always exists a circle which inverts ” onto itself, and which has nonempty
intersection with ”, and thus the proof is complete by the first paragraph. �

9.7 Automorphisms

Let ” be an irreducible nonsingular cubic curve which inverts onto itself through a
circle ¨ with center X, and let (”,•) denote the ternary hypercommutative algebra
defined on the points of ”. A translate of 
 is a mapping ¥P: ”! ” defined by
¥P(x) D P*x where P is a fixed point of ”. For each P 2 ”, the mapping ¥P is a bijec-
tion. Consider: ¥X(•(a,b,c)) D X*fX*((X*a)*(b*c))gD (X*a)*(b*c), and •(¥X(a),
¥X(b), ¥X(c)) D •(X*a, X*b, X*c) D X*f(X*(X*a))* ((X*b)*(X*c))gD X*
fa*((X*X)*(b*c))gD fX*(X*X)g * fa * ((X*X)*(b*c))gD (X*a)*(b*c). So we see
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that for each point X on ” which serves as the center of a circle which inverts ” onto
itself, the translate ¥X is an automorphism of (”,•). In our next result we determine
all translates of ” which are automorphisms of (”,•).

Theorem 18. Let 
 be an irreducible nonsingular cubic curve which inverts onto
itself via a circle with center X. Then the translate �P is an automorphism of (
 ,ı)
iff P 2

pp1  1.

Proof. Consider: ¥P is an automorphism of (”,•) iff ¥P (•(a,b,c)) D •(¥P(a), ¥P(b),
¥P(c)) for any points a,b,c of ”. This holds iff P * •(a,b,c) D •(P*a, P*b, P*c). By
Lemma 12 this is equivalent to �P � (1 � a � b � c) D 1 � (�P � a) � (�P � b)
� (�P � c), i.e., 4P D �1 � 1. This is equivalent, in turn, to (P*P)*(P*P)D1 * 1,
i.e., P 2

pp1  1. �

If ” is Type 1, then
p1  1 D f1, X*Yg where X are the cen-

ters of the pair of orthogonal circles which invert ” onto themselves. Sopp1  1 is the union of the sets
p1,

p
X  Y D fX,Yg,

p
X  Y. Ifp

X D fp,qg and
p

Y D fs,rg as in Fig. 9.13, then p*q D Y and r*s D X.
Consider: p*s D (q*Y)*(r*X)D (q*X)*(r*Y)D q*r, and similarly s*q D p*r. Let
UDp*sDq*r, and let VDs*q D p*r. Then U*U D (p*s)*(p*s)D (p*p)*(s*s) D X*Y,
and V*V D (p*r)*(p*r)D (p*p)*(r*r)D X*Y. Thus

p
X  Y D fV,Ug, andpp1  1 D fX,Y,U,Vg. These points and their relationships are illustrated

in Fig. 9.13. Now suppose ” is Type 2 as in Fig. 9.14. The equation
(P*P)*(P*P) D 1*1 implies P*P 2 f1, X*Yg, where X, Y are the centers of
orthogonal circles ¨, ¤, respectively, which invert ” onto themselves, and which
lie on the bell. Then P lies in the union of the sets

p1,
p

X  Y D fX,Y,Z,Wg,p
X  Y. In Fig. 9.14 we have

p
X D fp,q,r,sg with p,s 2 bell and q,r 2 oval and

p*q D s*r D Z; s*p D q*r D Y, and p*r D s*q D W. Also in Fig. 9.14 we havep
Y D fg,h,k,jg with g,j on the bell and h,k on the oval and h*k D g*j D X. Con-

sider: g*q D (X*j)*(Y*r)D (X*r)*(Y*j) D r*j D (Z*s)*(Y*j) D (Y*s)*(Z*j) D p*k
D (X*p)*(Y*k)D (X*k)*(Y*p)D h*s, and similarly k*s D h*p D j*q D g*r;
k*r D h*q D g*s D j*p, and g*p D j*s D h*r D k*q. If we set R D k*p; S D k*s;
T D k*r, and U D k*q, then

p
X  Y D fR,S,T,Ug. These points and their

relationships are illustrated in Fig. 9.14.

Theorem 19. Let 
 be a nonsingular irreducible self-inversive cubic curve and let
A
 denote the group of automorphisms of (
 ,ı) generated by the set of translate
automorphisms. Then A
 is isomorphic to the octic group D4 if 
 is Type 1, and A

is isomorphic to the group Z2 � D4 if 
 is Type 2.

Proof. First suppose ” is Type 1. The conditions: jaj D 4; jbj D 2, and aba D b
completely determine the dihedral group D4, also known as the octic group. In the
notation of Theorem 18, let a D¥X¥U, and b D¥U. Then we have immediately:
b2 D I, and aba D¥X¥U¥U¥X¥U D¥U D b, so it remains only to show that a4 D I,
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Fig. 9.14 Centers of translate automorphisms on Type 2 cubic
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i.e., that (¥X¥U)4 D i. Since (¥X¥Y)2 D i, it suffices to show (¥X¥U)2 D¥X¥Y.
Consider:

.¥X¥U/
2 D ¥X¥Y $ ¥U¥X¥U D ¥Y $ ¥X¥U D ¥U¥Y $ ¥X¥U .a/ D ¥U¥Y .a/

$ X  .U  a/ D U  .Y  a/ $ fs  .X  s/g 
n
.p  s/  a

�o
D .p  s/

 .Y  a/ $ .s  a/  f.X  s/  .p  s/g D .s  a/  .p  Y/ $ .X  s/  .p  s/
D p  Y $ .X  p/  .s  s/ D p  Y:

Since the last equation is true, the proof is complete in case ” is Type 1. Now
suppose ” is Type 2. In the notation of the previous theorem A
 is generated by
the translates f¥X, ¥Y, ¥Z, ¥W, ¥R, ¥S, ¥T, ¥Ug. By Lemmas 15 and 16, the eight
elements: fi, ¥X, ¥Y, ¥Z, ¥W, ¥X¥Y, ¥X¥Z, ¥X¥Zg form commutative subgroup of
A
 , where ¥W D¥X¥Y¥Z. The group Z2 � D4 is generated by the three elements
f(0,a), (1,a), (0,b)g where j(0,a)j D 4; j(0,b)j D 2. If we let A D (0,a); B D (0,b),
and C D (1,a), then Z2 � D4 is completely determined by the relations: (1) jAj D 4;
(2) jBj D 2; (3) ABA D B; (4) C2 D A2; (5) AC D CA; and (6) CAB D BCA. An
isomorphism‰: Z2 � D4 ! A
 is obtained by setting ‰(A) D¥X¥R;‰(C) D¥Z¥R,
and ‰(B) D¥Z. To establish this claim we need the following results:

(i) ¥R¥X D¥Y¥R. Consider: ¥R¥X(a) D R*(X*a) D (p*k)*(X*a), and ¥Y¥R(a)
D Y*(R*a) D ((Y*X)*X)*((p*k)*a)D f(Y*X)*(p*k)g*(X*a)Df(X*p)*(Y*k)g
*(X*a) D (p*k)*(X*a).

(ii) ¥R¥Z D¥W¥R. Consider: ¥W¥R(a) D W*(R*a) D f(W*Z)*Zg*f(p*k)*agD
f(W*Z)*(p*k)g*(a*Z)D f((p*r)*(p*q))*(p*k)g*(a*Z)D f((p*p)*(r*q))*(p*k)g
*(a*Z) D f((X*Y)*(p*k))g*(a*Z)D ((X*p)*(Y*k))*(a*Z)D (p*k)*(a*Z)
D R*(Z*a) D¥R¥Z(a).

Note that (i) and (ii) immediately imply

(iii) ¥X¥R D¥R¥Y

(iv) ¥Z¥R D¥R¥W

Similarly, we obtain the identities:

(v) ¥Z¥R D¥Y¥T

(vi) ¥S¥Y D¥Y¥R

(vii) ¥Y¥U D¥T¥Y

The elements ¥X¥R, ¥Z¥R, ¥Z are generators for A
 since

¥Z .¥Z¥R/ D ¥R; .¥X¥R/ ¥R D ¥X; ¥X¥Y¥Z D ¥W;

.¥X¥R/ .¥Z¥R/ ¥Z D .¥X¥R/ .¥R¥W/ ¥Z D ¥X¥W¥Z D ¥X¥X¥Y¥Z¥Z

D ¥Y¥Z¥Z D ¥Y;

and the identities (v), (vi), and(vii) allow us to obtain ¥S, ¥T, ¥U. To complete the
proof we must show that
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j¥X¥Rj D 4 (9.15)

j¥Zj D 2 (9.16)

.¥X¥R/ ¥Z .¥X¥R/ D ¥Z (9.17)

.¥Z¥R/ .¥Z¥R/ D .¥X¥R/ .¥X¥R/ (9.18)

.¥X¥R/ .¥Z¥R/ D .¥Z¥R/ .¥X¥R/ (9.19)

.¥Z¥R/ .¥X¥R/ ¥Z D ¥Z .¥Z¥R/ .¥X¥R/ (9.20)

To show (9.15), consider: (¥X¥R)(¥X¥R) D (¥X¥R)(¥R¥Y) by (iii), which,
in turn, equals ¥X¥Y which has order 2, and thus j¥X¥Rj D 4. Consider:
(¥Z¥R)(¥Z¥R) D (¥Z¥R)(¥R¥W) by (iv), and (¥Z¥R)(¥R¥W) D¥Z¥W D¥Z¥X¥¥

Y¥Z D¥X¥Y, and so ¥Z¥R also has order 4. To show (9.17), consider: (¥X¥R)
¥Z(¥X¥R) D (¥R¥Y) ¥Z(¥X¥R) D¥R¥W¥R D¥Z¥R¥R D¥Z where we have used
(iii) and (iv) again. To show (9.18), consider: (¥Z¥R)(¥Z¥R) D (¥Z¥R)(¥R¥W) D¥Z

¥W D¥X¥Y D (¥X¥R)(¥R¥Y) D (¥X¥R)(¥X¥R), and to show (9.19), con-
sider: (¥X¥R)(¥Z¥R) D (¥X¥R)(¥R¥W) D¥X¥W D¥Y¥Z D¥Z¥Y D (¥Z¥R)(¥R¥Y)
D (¥Z¥R)(¥X¥R). Finally, to show (9.20), consider: (¥Z¥R)(¥X¥R) ¥Z D¥Z

(¥R¥X)¥R¥Z D¥Z(¥Y¥R)¥R¥Z by (i), which, in turn, equals ¥Z¥Y¥Z D¥Y, and
¥Z(¥Z¥R)(¥X¥R) D¥R¥X¥R D¥Y¥R¥R D¥Y. �

It is an open question as to whether A
 comprises the full set of automorphisms
of (”,•).

9.8 Subalgebras

The subalgebras of (”,•) and their realization as group circle systems is an extensive
topic we shall only introduce here primarily as an application of the foregoing
results. We begin by identifying the •-idempotent elements and showing that they
form a subalgebra. This is our first example of a root subalgebra. In general, a

subalgebra of (”,•) of the form
p

P,
pp

P, : : : , n
p

P where P 2 ”, we call a root
subalgebra.
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Theorem 20. Let 
 be an irreducible nonsingular self-inversive cubic curve. The
set I of ı-idempotent elements of (
 ,ı) consists precisely of the set of points inpp1.

Proof. Suppose X 2 ”, X*X D 1, and
p

X is nonempty. If p 2 p
X, then

•(p,p,p) D X*f(X*p)*(p*p)gD X*fp*(p*p)gD X*p D p, so p 2 I. Conversely, if
•(p,p,p) D p, then X*f(X*p)*(p*p)gD p implies (X*p)*(p*p)D X*p, p*p D (X*p)*
(X*p) D (X*X)*(p*p)D 1*(p*p), and thus (p*p)*(p*p)D 1, i.e., p 2

pp1. �
If S is a subalgebra of (”,•) and there exists an abelian group G; an element g 2 G,

and a bijection ¥: S ! G such that the points in S form a (G,g) circle system under
the labeling determined by ¥, then we say that S can be realized as a (G,g) circle
system.

Theorem 21. Let 
 be an irreducible nonsingular self-inversive cubic curve. The
set I of ı-idempotent elements of (
 ,ı) forms a subalgebra of (
 ,ı). If 
 is Type 1,
then I can be realized as a (Z2 � Z2, (0,0)) circle system, and if 
 is Type 2, then I
can be realized as a (Z2 � Z4, (0,0)) circle system.

Proof. Let p,q,r 2 I, then •(p,q,r) D •(•(p,p,p),•(q,q,q),•(r,r,r))D •(•(p,q,r),•(p,q,r),
•(p,q,r)) which implies •(p,q,r) 2 I. In the last equation we have used ternary
hypercommutativity. The realization of I as a (Z2 � Z4, (0,0)) circle system on a
Type 2 cubic is indicated in Fig. 9.15. �

L

S = X1,3

U = X0,1

R = X1,1

W = X1,2

p = (0,0)

g = (0,1) h = (1,3)

k = (1,1)

Z = X1,0

X = X0,0

q = (1,0)

r = (1,2)

s = (0,2)

Fig. 9.15 The subalgebra I of idempotents realized as a (Z2 � Z4, (0,0)) circle system
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Let G be an abelian group and §: G !… an injective mapping from G into the
projective plane such that no four points in §(G) are collinear. For each g 2 G, let
Wg D f[a,b]: a C b D gg. If for each g the lines in Wg are concurrent, then we call the
set of points §(G) and the associated lines, a perfect polygon with base G, or simply
a perfect G-gon. The theory of perfect polygons is given in [4]. Let Xg denote the
point where the lines in Wg concur, then the set of points fXg: g 2 Gg is called the
set of perspective points of the perfect G-gon. A (G,g) circle system is a special type
of perfect G-gon as we show next.

Theorem 22. Let ˝ be a (G,g) circle system with cubic envelope 
 , and suppose 

is an irreducible nonsingular cubic curve which inverts onto itself via a circle with
center X. Then ˝ is a perfect G-gon.

Proof. Suppose a,b,c,d 2 G with a C b D c C d D q. Then •(0,a,b) D g � (a C b) D g
� (c C d) D •(0,c,d). Thus, X*f(X*0)*(a*b)gD X*f(X*0)*(c*d)g which implies, by
cancellation, that a*b D c*d. If we set a*b D c*d D Xq, then it follows that every
line in Wq D f[a,b]: a C b D qg contains the point Xq. Consequently � is a perfect
G-gon. �

In Fig. 9.15 we see that the points of I form a perfect Z2 � Z4 – gon whose
perspective set consists precisely of the eight points fX,Y,Z,W,R,S,T,Ug which we
have previously identified as the centers of the eight translation automorphisms of
(”,•), when ” is Type 2. We note that since automorphisms preserve subalgebras,
every automorphism of (”,•) must permute the one-element subalgebras, i.e.,
the •-idempotents, and thus the subalgebra I is fixed under the action of any
automorphism.

We will now extend the algebra of Fig. 9.15 to a subalgebra of (”,•) which is
double in size. First we identify the points P on ” with the property that

p
P is a

subalgebra of (”,•).

Theorem 23. Let 
 be a nonsingular irreducible cubic which inverts onto itself via
a circle with center X, and let P be a point on 
 . Then

p
P is a subalgebra of (
 ,ı)

iff P 2
pp1  1.

Proof. Let a,b,c 2 p
P, so a*a D b*b D c*c D P, or in terms of the group

operation on ”, �2a D �2b D �2c D P. Consider:
p

P is a subalgebra of
(”,•) $ •(a,b,c) * •(a,b,c) D P $ (1 � a � b � c) * (1 � a � b � c) D P $ �1 � 1
C 2a C 2b C 2c D P $ 4P D �1 � 1 $ P 2

pp1  1 �
By comparing Theorems 18 and 23, we see that

p
P is a subalgebra of (”,•) iff

the translate ˆP is an automorphism of (”,•).
Now let ” be a Type 2 self-inversive cubic curve. Then, in the notation of

Theorem 18,
pp1  1 consists of the points fX,Y, U,Tg, and the subalgebra:

rqp1  1 D fp; q; r; s; g; h; k; j; a; b; c; d; e; f;m; ng
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L

X0,7

Z = X1,0

n = (0,3)

b = (1,5)

U = X0,2

R = X1,2

k = (1,2)

g = (0,2)
S = X1,6

h = (1,6) e = (1,3)
c = (0,1)

f = (1,7)

a = (1,1) k

W = X1,4

X = X0,0

p= (0,0)
q= (1,0)

r = (1,4)

s = (0,4)

Fig. 9.16 (Z2 � Z8, (0,0)) circle system

is illustrated in Fig. 9.16, where we indicate that it can be realized as a (Z2 � Z8,
(0,0)) circle system. Theorem 23 is generalized as follows. For ease of notation
we define a mapping —: ”! ” by —(x) D x*x. This mapping, and thus —n, is an
endomorphism of (”,*) as well as (”,C).

Theorem 24. Let 
 be a nonsingular irreducible self-inversive cubic curve and let

P 2 
 . Then n
p

P is a subalgebra of (
 ,ı) iff P 2
qp

�n .1/.

Proof. Let a,b,c 2 n
p

P, so —n(a) D —n(b) D —n(c) D P. Then n
p

P is a subalgebra
of (”,•) iff P D —n(•(a,b,c)) D —n(1 � a � b � c) D —n(1) � —n(a) � —n(b) � —n(c) D —n

(1) � 3P iff 4P D —n(1) iff P 2
qp

—n .1/. �

Now suppose n D 2 in Theorem 24, and ” is Type 2. The equation
(P*P)*(P*P) D (1*1)*(1*1) is satisfied by P D 1 and P D X*Y where X,Y
are the points on the bell which serve as centers of the two orthogonal circles
which invert ” onto itself, and P 2 bell \ p

Q where Q is the element besides

1*1 which lies in bell \p.1  1/  .1  1/. If P D 1, then
pp

P D I, and
if P D X*Y, then

p
P \ bell D fU,Tg, in terms of the notation of Theorem 18,

and
pp

P D p
U [ p

T is a subalgebra of
qpp1  1 which can be realized

as a (Z2 � Z4, (0,2)) circle system, as in Fig. 9.17. In Fig. 9.18 we illustrate the

subalgebra
pp

P that results if we choose P 2 bell \ p
Q. (Of the two points in

bell \ p
Q, only one: P D X(0,0) is illustrated.) It can be realized as a (Z2 � Z4, (0,1))
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Fig. 9.17
qp

X � Y realized as a (Z2 � Z4, (0,2)) circle system

γ

(¥*¥)*(¥*¥)
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X1,3

(0,2)

(1,1)

X0,0

Q

(0,3)

(0,1)

(0,0)

(1,2)

Fig. 9.18
qp

P realized as a (Z2 � Z4, (0,1)) circle system

circle system. Next we develop a simple result which allows us to build larger
subalgebras from a given subalgebra of (”,•).

Theorem 25. Let 
 be a nonsingular irreducible cubic curve which inverts onto
itself via a circle with center X, and let ˝ be a subalgebra of (
 ,ı). If a,b,c 2˝ ,
then a*(b*c) 2˝ .
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Proof. Since � is a subalgebra, the element d D •(a,b,c) lies in �. Then we
have d D X*f(X*a)*(b*c)g$ X*d D f(X*a)*(b*c)g$ b*c D (X*d)*(X*a). Thus,
a*(b*c)Da*f(X*d)*(X*a)gDfa*(a*a)g*f(X*d)*(X*a)gDfa*(X*a)g*f(X*d)*(a*a)g
D X*f(X*d) *(a*a)gD •(d,a,a) 2�. �

We call a*(b*c) a triple product, and say� is closed under taking triple products.
As an immediate consequence we obtain a result similar to the theorem of Lagrange
in the theory of groups.

Theorem 26. Let 
 be a nonsingular irreducible cubic curve which inverts
onto itself via a circle with center X, and let ˝ be a subalgebra of (
 ,ı). Let
Z D˝*˝D fa*b: a,b 2˝g and let � be a subalgebra of (˝ ,ı). Then the distinct
sets in the collection fg*� : g 2 Zg form a partition of ˝ . If ˝ is finite, then j� j
divides j˝j.
Proof. Let g,h 2 Z and suppose g*� \ h*� is nonempty. Then 9 s,t 2� such
that g*s D h*t. Suppose p 2 g*� , then p D g*a for some a 2� and we obtain
pDfs*(h*t)g*aDfs*(h*t)g*ft*(a*t)gDf(h*t)*tg*fs*(a*t)gDh*fs*(a*t)g2 h*� since
� is closed under triple product by Theorem 25. Thus g*�� h*� , and similarly
h*�� g*� , so g*�D h*� . Thus the sets fg*�: g 2 Zg are either identical or
disjoint. Note that g*��� since x 2 g*� implies x D (c*d)*s is a triple product
with c,d,s in �. Let a 2�, let s 2� , and let g D a*s. Then g 2�*� and a 2 g*� .
The sets g*� are all translates of � , so jg*�j D j�j, and if j�j is finite, it must
follow that j�j divides j�j. �

Let a0 be a fixed point of�, and suppose a,b 2�. Then a*bDa0*fa0*(a*b)g 2a0*�
since � is closed under taking triple products. Consequently �*�D a0*�, and
j�*�j D ja0*�j D j�j. We call �*� the perspective set of �. We have shown that
the perspective set of � has the same cardinality as �. If g lies in the perspective
set of �, then the collection of sets …g D ffa, a*gg: a 2�g form a partition of �.
The perspective set of � thus resembles the perspective set of a perfect G-gon, the
difference being that the elements of � have not been labeled with elements from
an abelian group. In the above examples we see that each root subalgebra can be
realized as a group circle system, and consequently as a perfect G-gon for some
abelian group G. An important open question is whether every subalgebra, or at
least every finite subalgebra of (”,•), can be realized as a group circle system. Our
next result gives a method for building a larger subalgebra from a given subalgebra
of (”,•).

Theorem 27. Let 
 be a nonsingular irreducible cubic curve which inverts onto
itself via a circle with center X, and let˝ be a subalgebra of (
 ,ı). Then˝ [ (X*˝)
is also a subalgebra of (
 ,ı).

Proof. The mapping ¥X, introduced in Sect. 9.7, is an automorphism of (”,•),
and thus X*� is a subalgebra of (”,•) isomorphic to �. Let a,b,c 2�[ (X*�).
If a,b,c 2�, or a,b,c 2 X*�, then •(a,b,c) 2�\ (X*�) as desired. So suppose
a,b 2�, and c 2 X*�, then •(a,b,c) D •(a,b, X*c0) for some c0 2�. Then
•(a,b,c) D X*f(X*(X*c0))*(a*b)gD X*fc0*(a*b)g2 X*�, since c0*(a*b) is a triple
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Fig. 9.19 (Z2 � Z8, (0,2)) circle system

product of elements from �. The remaining possibility to consider is a 2� and
b,c 2 X*�. In this case •(a,b,c) D •(a, X*b0, X*c0) for some b0, c0 2�. Then,
•(a,b,c) D X*f(X*(X*b0))*(a*(X*c0))g D X*fb0*(a*(X*c0))g D fc0*(X*c0)g* fb0*
(a*(X*c0))g D a* (c0*b0) which is a triple product and so lies in �. �

Let � denote the (Z2 � Z4, (0,1)) circle system constructed after Theorem 24 and
illustrated in Fig. 9.18. Then by Theorem 27, � [ (X*�) is also a subalgebra of
(”,•). In Fig. 9.19 this subalgebra is realized as a (Z2 � Z8, (0,2)) circle system. We

will show that it can also be represented as the root subalgebra

rqp
.X  Y/  1.

An important result which we will make use of is the following. The proof, for the
special case G D Zn, can be found in Fletcher R (Perfect Polygons, unpublished).

Theorem 28. Let � be a perfect G-gon with nonsingular irreducible cubic
envelope 
 , and let � G denote the set fXg: g 2 Gg of perspective points of � . Then, if
no three points of � G are collinear, � G is also a perfect G-gon, i.e., for each g 2 G,
the set of lines f[Xa, Xb]: a C b D gg is concurrent at a point Wg. If � G contains
three collinear points, say, Xa, Xb, Xc, then � G is a (G, m) triple system where
m D a C b C c. �

Proof. Let s,t,p,q 2 G with s C t D p C q. Then Xs*Xt D (p*(s � p))*(0*t) D (p*0)*
((s � p)*t) D Xp*Xq. Thus, if g 2 G, all lines of the form f[Xs,Xt]: s C t D gg
meet at the same point Wg. We then obtain, with the further provision, that no
three perspective points of � are collinear, that �G is a perfect G-gon under the
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identification g $ Xg. Now suppose �G contains three collinear points: Xa, Xb, Xc,
so Xb * Xc D Xa, and suppose s,t,p 2 G with s C t C p D a C b C c. We want to show
Xs*Xt D Xp. Consider: Xs*Xt D (a*(s � a))*(0*t) D (a*0)*((s� a)*t) D Xa*XsCt�a

D (Xb * Xc)*XbCc�p D (Xb * Xc)*(b*(c � p)) D (Xb*b)*(Xc*(c � p)) D 0*p D Xp. It
now follows that �G is a (G,m) triple system with m D a C b C c. �

From this theorem we might say that a geometric triple system is a degenerate
perfect polygon. Now when the points of the (Z2 � Z4, (0,1)) circle system � of
Fig. 9.16 are relabeled as in Fig. 9.19, we have (0,0)*(0,0)D (0,4)*(0,4)D X(0,0),
and (0,2)*(0,2)D (0,6)*(0,6)D X(0,4). In accordance with Theorem 27, we have

X(0,0)*X(0,0) D X(0,4)*X(0,4) D W(0,0) where W(0,0) 2
qp

�2 .1/. Let V(0,0) D W(0,0)*

W(0,0), then V(0,0) 2p�2 .1/\ bell D f1*1, (X*Y)*1g, and since V(0,0) ¤ 1*1,

we have V(0,0) D (X*Y)*1. Note that�D
qp

W.0;0/ D f(0,0),(0,2),(0,4),(0,6),(1,0),

(1,2),(1,4),(1,6)g. Now consider the subalgebra �\ (X*�) constructed after The-

orem 26. We want to show that �[ (X*�) D
rqp

V.0;0/ D
rqp

.X  Y/  1.

We define the points in X*� by (0,1) D X*(0,4); (0,3) D X*(0,2); (0,5) D X*(0,0);
(1,1) D X*(1,4); (1,3) D X*(1,2); (1,5) D X*(1,0); (1,7) D X*(1,6). Suppose
t 2 f1,3,5,7g, then (0,t)*(0,t) D (X*(0, 5 � t))* (X*(0, 5 � t)) D 1*X(0, 2�2t), and
—2((0,t)) D (1*1)*W(4�4t). Finally, —3((0,t)) D —2(1) * V(8�8t) D —2(1) * V(0,0)

D (V(0,0)*V(0,0))*V(0,0) D V(0,0). So (0,t) 2
rqp

V.0;0/ and similarly (1,t) 2
rqp

V.0;0/ for each t 2 f1,3,5,7g.

In our final result we present yet another way to build subalgebras of (”,•).

Theorem 29. Let 
 be a nonsingular irreducible cubic curve which inverts onto
itself via a circle with center X, and let ˝ be a subalgebra of (
 ,ı). Then

p
� �

is also a subalgebra of (
 ,ı).

Proof. Let a,b,c 2p
� �, then a*a D s1*s2; b*b D t1*t2; and c*c D q1*q2, where

s1,s2, t1,t2, q1,q2 2�. Then •(a,b,c) * •(a,b,c) D (X*X)*ff(X*X)*(a*a)g*f(b*b)*
(c*c)gg as in the proof of Theorem 22. Thus •(a,b,c) * •(a,b,c) D (X*X)*ff(X*X)*
(s1*s2)g*f(t1*t2)*(q1*q2)gg D •(s1, t1,t2) * •(s2, q1,q2) 2�*�. �

In Fig. 9.20 we have constructed a (Z2 � Z12, (0,0)) circle system on a self-
inversive Type 2 cubic curve ” by extending a (Z6, 0) circle system. If � denotes
the subalgebra of (”,•) determined by the (Z6, 0) circle system, then the (Z2 � Z12,
(0,0)) circle system represents the subalgebra

p
� �. The vertices of � have

been relabeled according to the formula x ! (0,2x) for x 2 f0,1,2,3,4,5g, then the
remaining labels are assigned to realize

p
� � as a (Z2 � Z12, (0,0)) circle system.
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(1,3)
(1,2)

(1,4)

(1,1)

(1,10)

(1,5)

(0,7)

(0,9)

(0,3)

(0,11)

(0,1)

(0,5)

(0,10)

(0,2)

(0,8)

(0,4)

X(0,6)

(0,6)

(0,0)

(1,11)

(1,0)

Fig. 9.20 (Z2 � Z12, (0,0)) circle system

9.9 Conclusion

We have used the theory of geometric triple systems (Fletcher R. Geometric Triple
Systems, unpublished) and group circle systems to determine properties of a self-
inversive cubic curve ”. The key result involves the creation of an algebra (”,•)
with a single ternary operation • defined on the points of ”. Group circle systems
reemerge in the study of finite subalgebras of (”,•), leading to a major open question
which we state as a Conjecture:

Conjecture. Let 
 be an irreducible nonsingular self-inversive cubic curve. Then
every finite subalgebra of (
 ,ı) can be realized as a group circle system (G,g) for
some abelian group G and some g 2 G.

If it is shown that the vertices of a given (G,g) circle system must lie on a self-
inversive cubic curve ”, then the limitations imposed by the structure of ” limit
the possibilities for G and g. It can be shown, for example, that the THAs with
base group Z2 � Z8 and ternary operations defined by •(a,b,c) D (1,0) � a � b � c
or •(a,b,c) D (1,2) � a � b � c cannot be realized as group circle systems on a self-
inversive cubic. In accordance with the opening paragraph of Sect. 9.4, an inversion
can be used to convert a given group circle system into a geometric triple system.
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So the determination of exactly which abelian groups can be used as a basis for a
circle system is relayed to the same question for geometric triple systems. This latter
question is a main topic in (Fletcher R. Geometric Triple Systems, unpublished),
which is still unfinished at this writing. It appears that the groups Zn, Z2 � Zn,
Z2 � Z2 � Z2, Zn, Z2 � Zn can all serve as bases for group circle systems. The
THA (Z2 � Z2 � Z2, •) with •(a,b,c) D (0,0,0) � (a C b C c) cannot exist on a self-
inversive cubic since all eight points are •-idempotent, but the •-idempotent points
on a Type 2 cubic form the subalgebra I which is realized as a (Z2 � Z4, (0,0)) circle
system in Theorem 21.

Addendum
Here we include an alternative proof of Theorems 9 and 10 suggested by the referee.

Theorem 30. Let 
 be a nonsingular irreducible cubic curve in the real projective
plane which contains the points I D (1,i,0) and J D (1,�i,0) in the complex projective
plane and also the point T D (0,1,0) at infinity on vertical lines. Then we can define
a ternary operation ı on set the points of 
 by setting ı(a,b,c) equal to the unique
fourth point on 
 and on circle (a,b,c). In case a,b,c are collinear set ı(a,b,c) D T.
Then (
 ,ı) is a THA.

Proof. Using the group structure on ” let d D T � a � b � c for any points a,b,c
of ”, and suppose O is a flex of ” and the group operation on ” is defined by
a C b D O*(a*b). Since I,J lie on the vertical line x D 1, we have I*J D T, and thus
a C b C c C d C I C J D T C I C J D T C (O*(I*J)) D T C (O*T) D T C (�T) D O.
Now, in accordance with Exercise 14.12 in [2], the six points a,b,c,d,I,J lie on a
unique complex curve ¡ of degree 2. This curve has the form:

Ax2 C Bxy C Cy2 C Dxz C Eyz C Fz2 D 0: (9.21)

Since ¡ contains the points I,J we must have A C Bi � C D 0 and A � Bi � C D 0,
and thus A D C and B D 0. So (9.21) reduces to

Ax2 C Ay2 C Dxz C Eyz C Fz2 D 0: (9.22)

Since the coefficients of x2 and y2 are identical, (9.22) represents the equation
of a circle if the points a,b,c are noncollinear. In this case •(a,b,c) D d.
If a,b,c are collinear, then (9.22) must represent the product of two lines,
and we set •(a,b,c) D T. Note that if a,b,c are collinear, then b*c D a and
d D T � a � b � c D (T C (�a)) C (�b C �c) D (O*(T*�a)) C (O*(�b * �c)) D (O*
(T*(O*a)))C (O*((O*b)*(O*c)))D (O*O)*(T*(O*a))C (O*((O*O)*(b*c)))D (O*
T) *a C (b*c) D a*(O*T) C a D O*(a*(a*(O*T)))D T, so in all cases •(a,b,c) D T �
a � b � c.

Then •(•(a,b,c),•(d,e,f),q)DT� (T�a�b�c)� (T � d � e � f) � q D �T � q C a
C b C c C d C e C f, and •(•(a,b,d),•(c,e,f),q)D T � (T � a � b � d) � (T � c � e � f)
� q D �T � q C a C b C c C d C e C f.

The identity (9.12) thus holds, and it follows that (”,•) is a THA. �
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Theorem 30 does not represent a generalization of Theorems 9 and 10 as we
will now show. Let ” denote the nonsingular irreducible cubic of Theorem 30. The
homogenized version of a general cubic is given by

ax3 C bx2y C cxy2 C dy3 C ex2z C fxyz C gy2z C hxz2 C kyz2 C jz3 D 0

(9.23)

Now suppose (9.23) represents the equation of ”. Since T D (0,1,0) lies on ”,
we must have d D 0, and since I,J lie on ” we must have a C bi � c D 0 and
a � bi � c D 0 which yields a D c and b D 0. So (9.23) reduces to

ax
�
x2 C y2

�C ex2z C fxyz C gy2z C hxz2 C kyz2 C jz3 D 0; (9.24)

and the restriction to the Euclidean plane is

ax
�
x2 C y2

�C ex2 C fxy C gy2 C hx C ky C j D 0: (9.25)

The equation:

.ax C by/
�
x2 C y2 C z2

�C �
ex2 C fxy C gy2

�
z D 0: (9.26)

is the homogenized version of (9.5) which represents our general equation for an
irreducible cubic curve which inverts onto itself via the unit circle. We showed in
Sect. 9.2 that this curve has exactly one point at infinity. We may rotate (9.26) so that
T D (0,1,0) is the unique point at infinity, while remaining self-inversive through the
unit circle. But T lies on the curve with Eq. (9.26) iff b D 0, so (9.26) reduces to

ax
�
x2 C y2 C z2

�C �
ex2 C fxy C gy2

�
z D 0; (9.27)

with restriction to the Euclidean plane given by

ax
�
x2 C y2 C 1

�C �
ex2 C fxy C gy2

� D 0; (9.28)

We then recognize that (9.25) is just a translation, or a dilation followed by a
translation, of (9.28). Since neither of these transformations spoils the self-inversive
property of the curve, we conclude that the curve in Theorem 30 is self-inversive
and thus Theorem 29 does not represent a generalization of our Theorems 9 and 10.
In Fig. 9.21 we illustrate a cubic curve ” of the type described in Theorem 30 where
T denotes the point at infinity on ”. The points a,b,c are any points on ”, and it can
be seen that T � a � b � c is the fourth point on ” and on the circle (a,b,c). We have
also indicated two orthogonal circles c1 and c2 which invert ” onto itself.
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c2

c1

T-a-b-c

-b*-c

T*-a

-b

b

-a

-c
a

c

O

Fig. 9.21 •(a,b,c) D T � a � b � c
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Chapter 10
Elasticity Imaging

Lilí Guadarrama

Abstract This chapter is devoted to summarize different approaches for the
imaging technique of elastography: Quasi-Static, Harmonic and Transient elastog-
raphy, Models for viscoelasticity. This promising technique is a good example of
interdisciplinary mathematical research and applications.

Keywords Tissue motion • Palpation • Elastography • Sonoelasticity • Hookian
materials • Bulk waves and modulus • Shear waves and modulus • Young’s
modulus • Lamé parameters • Magnetic resonance imaging • Acoustic radiation
force impulse • Shear wave elasticity imaging • Supersonic shear imaging •
Optical coherence tomography • Crawling wave imaging • Helmholtz equation •
Aixplorer • Rayleigh damping model • Voigt model • Ultrasound methods •
Fibroscan • Phase-contrast method

10.1 Introduction

The aim of this chapter is to provide a survey to the different approaches to assess
mechanical properties of biological tissues. The motivation for looking at these
properties is because physicians can detect changes in the mechanical properties
in tissues due to pathologies in a palpation examination. The elastography is a
promising imaging technique that aims to take the palpation examination to the next
level. In the last two decades, a lot of work has been done in theoretical research
using different approaches of this technique, in optimization methods and even the
development of technology that has been used in clinical trials.

The principle of elastography is the following, a mechanical excitation (quasi-
static compression, harmonic or transient vibration) is generated (externally or
internally) in the tissue. Then the resulting tissue displacements are measured by
different imaging modalities (MRI or ultrasound) and from this information the
mechanical properties are estimated.
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For each approach to elastography we will discuss about the way mechanical
excitation is generated, the methods for measuring the displacements induced, signal
processing and the different inversion schemes for estimating the elastic properties.

The chapter is organized as follows. Section 10.2 is a brief presentation of the
different techniques that study the tissue motions. We present the relations that
govern displacement and motion principles of tissues in Sect. 10.3. Section 10.4
is dedicated to quasi-static elastography. Section 10.5 is devoted to harmonic
modalities. The transient elastography is presented in Sect. 10.6. In each of these
sections we will present a review of inverse reconstruction schemes to estimate the
elastic parameters and how they have been used in actual clinical situations. In the
last section Sect. 10.7 some more complex models for elastography are presented as
well as some direction for future work.

10.2 Overview Studies of Tissue Motion

Palpation has been used by physicians for diagnosing diseases or illness in patients.
Although it is considered as an effective method for detecting tumors and other
pathologies, palpation has several important limitations as qualitative information
of the stiffness of tissues or the physical limitation to reach and palpate them. One
alternative to address these limitations is the use of elastography, it is an imaging
technique that maps the elastic parameters of soft tissue.

Elastography is a field that has evolved during the past two decades, many
approaches have been developed and studied. To mention some of them we have
vibration elastography imaging, compression elastography, magnetic resonance
elastography (MRE), shear wave imaging, transient elastography, acoustic radiation
force imaging, crawling wave imaging, spatially modulated ultrasound radiation
force. Some of these techniques have been commercialized as FibroScan by
EchoSens, Aixplorer by Supersonic Imagine, Acuson S2000/S3000 by Siemens,
Hitachi EUB-8500 by Hitachi, Sonix Elastography by BK Ultrasound and others.

The use of ultrasound in medical imaging was first applied in the late 1940s
but it was not used in the study of tissue motions until the beginning of the 1980s
where Dickinson and Hill [23], Wilson and Robinson [98] studied the displacement
and deformation of tissue near blood vessels due to the cardiac contractions and
pulsation of blood flow to estimate elastic parameters. They used M-modes and
A-scans analysis, respectively, to obtain a rough estimation of the elastic parameters.
Following this technique, Tristan et al. [91] studied the correlation between normal
and cancerous liver. In this decade, studies to estimate qualitatively the stiffness of
fetal lungs were made by using B-scans and M-modes [1, 12]. Doppler ultrasound
was also used to measure tissue elasticity [21, 36, 48].

Fatemi and Greenleaf [30] presented an ultrasound imaging technique, based
on oscillatory radiation force, to map the acoustic response of tissues, that they
called ultrasound-stimulated vibro-acoustic spectrography. They reported promising
results in calcification within the arteries.
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In the late 1980s Lerner and Parker [51] presented a method in which external
mechanical excitation is generated and the resulting tissue displacements are
measured by Doppler ultrasound detection, they called it sonoelasticity. They
were able to obtain real-time images and by the beginning of 1990s they could
measure the shear speed of sound in the tissue and estimate the elastic param-
eters [67]. A couple of years later a theoretical model of sonoelasticity was
proposed by Gao et al. in [32]. Further approaches to sonoelasticity were made
in [37–39, 53, 89, 100, 101].

The name of elastography is due to Ophir et al. [64]. They present a method
to imaging strain and elastic modulus, this technique is also called strain imaging
or compression imaging. In this technique the displacements are obtained by
comparing the data of B-scan ultrasound before and after compression tissue. The
strain is then estimated from the derivative of the displacements.

The waves in an elastic material have two components, bulk and shear waves,
both of them are used in medical images; the bulk waves have been used for more
than half a century, the B-mode imaging is an example of the use of this type
waves. In the past two decades the use of shear waves in imaging techniques has
increased. In [76] they discuss the differences between these two basic modes of
waves in medical imaging. Since shear waves have a larger dynamical range than
bulk waves a better characterization of tissues can be done, most of the modalities
of elastography use shear wave imaging.

In the next sections will refer as quasi-static elastography the techniques that have
quasi-static compression as mechanical excitation and as dynamic elastography
those that have harmonic or transient vibration.

10.3 Governing Principles

The most common mathematical model for soft tissues is the model for Hookian
materials, that is, it is assumed soft tissues have linear, isotropic, purely elastic
mechanical behavior. However this model is not appropriate for some type of
tissues, we will discuss other models in Sect. 10.7.

There are quantities used to characterize Hookian materials such as the Young ’s
modulus (E) which measures the stiffness of an elastic material. Young’s modulus
is the ratio of stress to strain. The bulk modulus (K) is the resistance to uniform
compression, the shear modulus (�) is the ratio of shear stress over the shear strain.
The Young’s modulus is three times the shear modulus. Another physical property
is Poisson’s ratio (�) which is the negative ratio of transverse to axial strain; for
soft tissues, it is in the range of 0.490–0.499, which is very close to the water [55].
All these parameters are related and any two of them can be calculated from the
knowledge of the other two.

The constitutive equations of the relationship between the stress .� D f�ijg/ and
strain .� D f�ijg/ tensor under these assumptions are

� D E� (10.1)
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which is equivalent to

�ij D 2��ij C �ıijr � u (10.2)

where ıij is the Kronecker’s delta, u is the displacement vector in Rn.n D 2; 3/,
and �;� are the Lamé parameters. Lamé’s first parameter � is related to the shear
modulus and the bulk modulus by the equation � D 3K�2�

3
.

In practice stress cannot be measured, but instead we measure the displacement u.
The strain tensor is then related to u by the equation,

�ij D 1

2
.@xj ui C @xi uj/

where @xj ui denotes @ui
@xj

. Then the equilibrium equations (10.2) are given in terms of
the displacement by

r � �ru C r.�C �/r � u D �@2t u (10.3)

where � is the density of the material, t is the time, and @2t D @2

@t@t . The inverse
problem of elastography is to estimate �; �; � from the measurement of the
displacement vector u.

By considering different modalities, Eq. (10.3) take specific forms, in the case of
quasi-static elastography they are reduced to

r � �ru C r.�C �/r � u D 0 (10.4)

while for harmonic modalities we get

r � �ru C r.�C �/r � u D �!2u (10.5)

In the case of harmonic motion, the Lamé parameters are complex quantities.
On the other hand, the direct problem of equations (10.3) models the wave

propagation in an elastic material. As we mentioned before, there are two types
of elastic body waves, the shear waves and the bulk waves and they both obey the
Helmholtz equation [90]

@2t v D c2i�v i D s; p (10.6)

where cs; cp are the shear and bulk wave speed, respectively, and they are given by

cs D
r
�

�
cp D

s
.�C 2�/

�

Imaging technologies use these two types of waves. Historically the bulk waves
were the first ones to be used for imaging biological materials, an example of this
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is B-mode imaging which is the basic ultrasound method; this imaging technique is
based on the differences in the acoustic impedance I, which is related with the bulk
wave speed by

I D �cp;

In it, ultrasound pulses are sent into the tissue and from the resulting echoes from
the scattering anomalies a tomographic image is done.

One of the advantages of working with shear waves is that they have a
larger dynamical range than bulk waves (for a compendium of the variation of
compressional and shear wave speeds in biological tissue, see [76]). Because of
this variability a better characterization of tissues can be done and the modalities
of elastography that use shear wave imaging have a better quantification of the
elastic parameters. The optimal would be to work with both waves, however the big
difference of order of magnitude � >> � makes it very difficult to estimate both
parameters �;� at the same time.

Usually quasi-static and harmonic elastography assume local homogeneity which
considerably simplifies their numerical implementation. On the downside, we do not
get accurate estimations near boundaries. However, there are techniques such as the
ones that use radiation force to induce the displacement, that can estimate the elastic
parameters without the knowledge of the values in the boundaries. Since biological
tissues are not entirely homogeneous there have been efforts to avoid assuming
local homogeneity, however the results obtained so far have a high computational
cost [92].

10.4 Quasi-Static Elastography

In 1991 Ophir et al. [64] presented a method for imaging the elasticity of biological
tissues that they called elastography. Basically the method is described as follows:
A transducer is coupled to the body to acquire an echo signal for a given time period,
then the transducer is pressed into the body and another echo signal is recorded.
The displacements in the tissue are then estimated from these two echo signals
(ultrasound B-scans), then using the relation (10.3) between strain and displacement
the longitudinal strain is calculated and so a strain image is formed. This technique
was conceptualized through the use of springs, the stiffest spring will compress the
least.

For measuring displacements using magnetic resonance there are two methods,
saturation tagging and phase-contrast. In 1995, Fowlkes et al. [31] presented an
approach to MRE using the saturation tagging method to measure displacement. At
the same time Plewes et al. [71] studied MRE that uses a phase-contrast imaging
method. The approaches of quasi-static elastography using magnetic resonance
imaging have longer acquisition times than ultrasound approaches, up to 15 times
more, but the images obtained show better contrast.
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In general, in quasi-static approaches by ultrasound methods, one measures the
axial strain induced by an external, quasi-static source. The displacements are of
order 2% of the axial dimension, and they are measured using cross-correlation
from echo signals before and after the compression [26]. To map the strain from the
displacement a finite difference or a least-squares strain estimator is used [43], this
gray-scale strain images are called elastograms.

To compute the elastic parameters there are two principal inversion schemes,
the direct and the iterative inversion. We begin with the direct ones, in 1994
Raghavan and Yagle [73] derived a linear system rearranging the equation of
the forward problem which includes the hydrostatic pressure and they solved the
inverse problem using LU decomposition, which is faster than the iterative methods
presented in [82]. To solve the linear system, the shear modulus and the hydrostatic
pressure must be known at the boundary, but in practice there is a complication
since hydrostatic pressure at the boundary cannot be measured. In order to eliminate
the hydrostatic pressure of the linear system an analytic method was used by
Skovoroda et al. [82], which is independent of global boundary conditions. The
resulting system can be solved if the shear modulus is known at the boundary of
the region of interest, it can be computed by the stress-continuity properties of soft
tissues. A disadvantage of this system is that it contains high order derivatives that
amplify the measurement noise. However, they designed a reconstruction procedure,
which they called hybrid, that considerably reduces the artifacts in elastograms thus
obtained. We will treat this artifacts further along. Studies on phantoms and an ex
vivo kidney were performed using this inversion scheme by MRE [20] to show its
performance.

Sumi et et al. [86] proposed a direct inversion solution, in which the system to
solve has the spatial derivatives of Young’s modulus as the unknowns and has the
strain and their spatial derivatives as coefficients. The effectiveness of this method
was verified in agar phantoms and in liver carcinoma [84].

The iterative inversion schemes propose to optimize a functional which min-
imizes the difference between measured displacement and the ones obtained by
solving the forward problem, by iterative techniques [96]. We can classify these
techniques [24] in the following, the Hessian base method which was used by Kallel
and Bertrand [42], Doyley et al. [25], and Richards et al. [74], Harrigan el al. [35]
each of them used different regularization methods to ameliorate the behavior of the
ill-conditioned Hessian matrix. It has been reported that for clinical purposes the use
of the FMINCON function, MATLAB solver for optimization problems, has been
very useful [41] so the design of an iterative inversion scheme custom-made can
be avoided. Another type of iterative inversion is the gradient optimization method
where it is used the adjoint method to compute the gradient of the objective function,
Oberai et al. [63] were the first to used this inversion. Among the noniterative
inversion schemes we can mention the genetic algorithms used by Zhang et al. [103].

There are artifacts in elastograms that are well identified [83], an example is
the darkening in central or brightening in boundary area of compression due to non
uniform stress distribution that may compromise the diagnosis [47]. The assumption
of that the internal stress distribution, � , is constant (see Eq. (10.1)) produces
another artifact called target hardening, which is the darkening of deep areas and
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is dependent on the external source [72]. Quasi-static methods need knowledge of
boundary conditions outside of the region under investigation, strain image may
exhibit significant artifacts due to global boundary conditions [82]. In addition to
the artifacts presented in elastograms, quasi-static elastography has the disadvantage
that deeper organs cannot be reached with this technique and sometimes the section
under investigation moves out of plane during compression.

Doyley et al. [27] studied the quality of modulus elastograms by solving directly
the inverse elasticity problem and in that way avoid the mechanical artifacts caused
by the assumption of stress uniformity and compared them with the ones computed
on the assumption. The evaluation of the elastograms was made by the contrast-to-
noise ratio and the contrast transfer efficiency performance metrics, they found that
the elastograms were statistically equivalent in both evaluators but at high modulus,
contrast-to-noise ratio of elastograms by solving the inverse elasticity problem was
superior.

Some studies to improve the displacement estimations are done [40, 69, 105] but
the computational cost is high. Improvements in signal processing have been done,
examples of them are the strain filter which is a nonlinear filtering process [95],
the multidimensional autocorrelation method and the multidimensional Doppler
method [85], the combined autocorrelation method [79], to mention some of them.
In fact the world’s first commercialized equipment for elastography, Hitachi EUB-
8500 is based on the last method mentioned and it was released on the market in
2003 [78].

The uniqueness of the solition of the inverse problem in quasi-static elastic
modulus imaging in two dimension was estudied by Barbone and Bamber [10].
This problem consists in the following given the equilibrium strain field in an
incompressible elastic material, determine the shear modulus. They showed that
in order to estimate the elastic parameters either the stress distribution or the
elastic stiffness must be measured along a sufficient portion of the boundary, the
knowledge of the displacement field everywhere and the displacement boundary
conditions are not enough to determine the shear modulus. They also found that
stress boundary conditions give more quantitative reconstructions than displacement
boundary conditions.

Despite the disadvantages discussed here, it has been shown that this approach
of elastography gives a relative good estimation of the elastic parameters [44] and it
has been used for many applications, an example of this is the application of MRE
to strain measurements in the carotid arteries and aortic wall strain measurements
[46, 60].

10.5 Harmonic Elastography

Study of this elastography modality began with the ultrasound methods presented
by Lerner et al. [51, 52] and Yamakoshi et al. [101]. This modality consists of a low-
frequency acoustic wave that is induced in tissues through a sinusoidal mechanical
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source, the displacements are observed by Doppler or MR imaging. In order to
estimate the elastic parameters harmonic modality uses propagating mechanical
waves rather than quasi-static stress to excite the tissue so it is not necessary
knowledge of the static stress distribution.

MRE is the most studied approach to harmonic elastography, although is more
expensive and has an acquisition time longer than ultrasound approaches. MRE has
the advantage that it measures all three spatial componets of the tissue displacements
with high accuracy, precision and resolution, while ultrasound approaches only
measure the axial component of the displacements in a plane, and in some
cases the lateral component with very poor accuracy. The displacement patterns
corresponding to harmonic shear waves have amplitudes of microns or less and
it is difficult for ultrasound methods to measure these small quantities; all these
advantages give MRE a promising potential for a quantitative estimation of the
elastic parameters [55]. As we mentioned before in magnetic resonance approaches
there are two methods to measure the induced tissue motion, saturation tagging and
phase contrast method.

From the phase and amplitude of the shear waves, an estimation of the shear
modulus, �, can be computed from following the relation between shear velocity
(cs), shear modulus and density of the tissue (�),

cs D
r
�

�

The most used model for harmonic elastography is the system (10.5), neverthe-
less sometimes it is considered that longitudinal wave varies slowly so r � u D 0,
then the model simplifies to the Helmholtz equation,

��u D ��!2u (10.7)

In 1995, Muthupillai et al. [59] were the first to present a method of magnetic
resonance elasticity where a harmonic mechanical source was coupled to the surface
to induce shear waves in the tissue. They used the phase contrast imaging method to
measure displacement. Estimation of shear stiffness of liver tissue using this method
was compared with the estimates in the literature with good results [49]. Also in [50]
it is presented a study where estimates of the shear modulus of human cerebral tissue
in vivo were made.

Sinkus et al. [80] presented also an approach to MRE using the phase contrast
imaging method. They used a direct inversion scheme to estimate the shear modulus,
they inverse a linear system of partial differential equations with regularization
techniques. In this system the spatial derivatives of the displacement appear as
coefficients. This technique is very sensitive to noise. For validation of the approach,
finite element simulations and phantom experiments were performed [81].

Manduca et al. [56] presented an approach to MRE also using a phase-contrast
MRI technique and a direct inversion scheme that they called algebraic inversion of
differential equation (AIDE), the equation could be solved separately at each pixel
using only data from a local neighborhood to estimating local derivatives. Because
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of the big difference in magnitude of the Lamé parameters, it was considered the
Eq. (10.7). Using AIDE � was estimated from single polarization of motion by

� D �!
ui

�ui

Studies on phantoms and animal and human tissue using this technique were
presented.

Park and Maniatty [66] proposed a shear modulus reconstruction for time
harmonic excitation in a nonhomogeneous medium. This finite element based
method is a direct inversion. They computed both the shear modulus and the
hydrostatic stress distribution. No boundary conditions are required but it is required
the derivatives of the displacements. They present some numerical examples of
shear modulus reconstruction from MR measured data.

It is important to notice that both the direct inversion and the AIDE require data
smoothing and the calculation of second derivatives from the noisy data.

Weaver et al. [97] presented an approach to MRE using the phase contrast
imaging method and an iterative inversion technique to estimating the shear modulus
where no displacements differentiation are required, but this approach has a high
computational cost because they solved the three-dimensional inverse problem on a
highly resolved finite element mesh.

Van Houten et al. [93] showed that the displacement by an oscillation excitation
cannot be accurately characterized using two-dimensional approximation, without
symmetries the three-dimensional case cannot be approximated by an ultrasound
method. They presented finite element based method using an iterative inversion
technique. In order to solve the full 3D elasticity problem at high resolution MR
data, they divided the reconstruction field of view into a series of overlapping
subzones and minimized over all the subzones an optimization operator. The
subzones are deployed in a random and overlapping manner. This method is
relatively slow because it is needed the full three-dimensional forward solution in
each iteration and requires boundary condition for the forward solution step. This
technique was parallelized by Doyley et al. [26].

Doyley et al. [28] showed that subzone based reconstruction algorithm increase
linearly with the increases of subzones. Study in vivo of breast tissue was performed
to compare the elastic parameters obtained by this technique and those reported in
literature [94], with satisfactory results.

Doyley et al. [29] presented a study where it is evaluated the clinical efficacy
of breast MRE under the assumption that soft tissues exhibit a Hookian material
behavior. They used linear elastic MR reconstruction methods applied to phantoms
that were fabricated using viscoelastic materials. They showed that although small
viscoelastic inclusion can be detected, artifacts that degrade spatial and contrast
resolution will be incurred when viscoelastic materials such as breast tissues are
reconstructed using linear elastic reconstruction methods. They suggested that
improvements in both the accuracy and quality of MR elastograms of the breast
will be performed if other constitutive laws are considered.
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Barbone and Gokhale [11] studied the uniqueness in two dimensions of the linear
elastic form of the inverse problem for dynamic sinusoidal excitation cases, that is
given determine the shear modulus given the displacement field in an incompressible
linear elastic solid throughout a region. They presented the condition for uniqueness
and give several examples of nonuniqueness. They found that with two displacement
fields given, the shear modulus distribution is determined uniquely with four or
fewer a priori known values of the shear modulus. With four different displacement
fields, the shear modulus is determined uniquely up to a multiplicative constant.

Ammari et al. [8] presented stability results for the mathematical model for MRE,
they considered the Stokes system for this analysis as a simplification of the time-
harmonic system.

10.6 Transient Elastography

In this section we review the approaches to transient elastography, in this modality
the mechanical excitation is produced by an impulsive or short time lasting burst.
An interesting approach to assessing elasticity is to use the acoustic radiation force
of an ultrasonic focused beam to remotely generate mechanical vibrations in organs
[34]. The acoustic force is generated by the momentum transfer from the acoustic
wave to the medium. The radiation force essentially acts as a dipolar source. See
[68], Fig. 12 for a graphic representation of radiation force excitation.

Nightingale et al. [61] were the first using radiation force in medical images.
They presented experimental result in breast tissue phantoms of the technique called
remote palpation. A single transducer was used both to generate radiation force
and to record the resulting tissue displacements. They found that the displacement
images they obtained had higher contrast than the corresponding B-mode images.
They presented the remote palpation method as similar to elastography (quasi-static
elastography) but emphasized the advantage of the internal localized application of
the excitation versus the global external compression and the real-time implemen-
tation.

Nightingale et al. [62] studied the liver fibrosis with a method also based on
acoustic radiation, acoustic radiation force impulse (ARFI), that consists in focusing
an ultrasonic beam deep in tissues for short durations, the resulting displacements
at focus are measured by ultrasonic correlation-based techniques.

Sarvazyan et al. [75] proposed a method based on acoustic radiation force to
generate shear waves, the shear wave elasticity imaging (SWEI). This technique
consists in focusing an ultrasonic beam deep in tissues, the high attenuation of
shear waves induces mechanical oscillations within a very limited area of tissue.
Nightingale et al. [61] studied this technique experimentally. Application on liver
[65], prostate [102], cardiac tissue [15] was performed.
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Catheline et al. [18] devised a low frequency (50 Hz) external mechanical
vibrator integrated with an ultrasound M-mode system. The Fibroscan manufactured
by Echosense is based on this technique. The procedure with the Fibroscan takes
around 3 min and has been very useful in studying liver diseases.

One of the disadvantages of the radiation force techniques is the weak effect in
the induced displacements, these are of order of dozen of microns (�10�m). To
overcome this difficulty, Bercoff et al. [13] present an ultrasound-based technique
that they called supersonic shear imaging (SSI), this technique generates two
plane shear waves by the multiple ARFIs moving at a supersonic speed, the
displacements are recorded by an ultra-fast scanner, 5000 frames/s. They reported
with this technique mechanical displacements of order 100�m in phantoms and
40�m in vivo. Inversion algorithms are used to estimate the elastic parameter.
A spatio-temporal sequence of the propagation of the induced transient wave can
be acquired, leading to a quantitative estimation of the viscoelastic parameters of
the studied medium in a source-free region [13, 14]. One of the strengths of SSI is
the acquisition time, a mapping of the tissue elasticity is done in less than 30 ms.
This technique has been used in experimental studies in breast [9, 88], muscle [22],
liver [58]. This technique was implemented in the Aixplorer by Supersonic imagine.

Ammari et al. [2, 3, 33] presented a series of theoretical and numerical studies
for the reconstruction of small anomalies. They designed an asymptotic imaging
method leading to a quantitative estimation of physical and geometrical parameters
of the anomaly. They used Helmholtz equation and quasi-incompressible elasticity
model. Different algorithms were proposed to locate the anomaly such as Back-
propagation, Kirchhoff, time-reversal, MUSIC. These algorithms are simple and do
not require significant computational resources. In [4] it is presented topological
derivative detection algorithm which is more robust with respect to the noise than
the algorithms mentioned before, numerical examples are presented. The results
were very promising.

In the recent book by Ammari et al. [6], they present a deep analysis exclusively
of elastic and viscoelastic equation. They study the elasticity imaging of cracks and
inclusions (small and extended anomalies) with boundary or internal data. They
discuss the location algorithms mentioned before and also present a mathematical
analysis of topological derivative based imaging and propose modifications of this
algorithm in order to ameliorate its performance, they present numerical examples.

McLaughlin and Yoon [57] investigated the role of the boundary conditions in
determining the uniqueness of the compressible form of the elastography inverse
problem for transient approaches. They found that there exist at most one pair (�,�)
if � is given on the boundary. This result is obtained with a single interior time
dependent displacement measurement.
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10.7 Models for Viscoelasticity, Related Techniques,
and Future Direction

Elastography is an imaging technique that is continuously evolving. In the last
sections we cover the elastography where the model for Hookian materials is used
and the displacement measurements are made by ultrasound or magnetic resonance
imaging. In this section we present a brief review of the different models, techniques
to measure the displacement and other types of tissue excitation. We mention also
some related techniques to elastography.

Petrov et al. [70] studied elastographic brain imaging in vivo, they proposed a
parametric identification approach to estimate the elastic parameters. They used
Rayleigh damping (RD) model, which is an alternative model for soft tissue
attenuation for elastic materials. The results indicated limited applicability of the
parametric RD model to accurately characterize viscoelastic properties of the brain
tissue, nevertheless the values obtained are in agreement with literature.

Another model that has been considered to describe the viscoelastic properties of
tissues is the Voigt model. Chateline et al. [19] have shown that this model is well
adapted to describe the viscoelastic response of tissue to low frequency excitation.
Ammari et al. [5] presented a mathematical analysis of time reversal algorithm for
viscoelastic model and presented numerical results.

Bretin et al. [16] presented an explicit expression for the Green function in a
viscoelastic medium. To model the viscoelastic properties they used the power law
model described by Szabo and Wu [87], which is a generalization of the Voigt
model. They presented numerical reconstruction of the Green function. Using this
function, localization and estimation of the elastic parameters of a small anomaly in
a visco-elastic medium can be performed following the work presented by Ammari
et al. [2, 3, 33]

Optical coherence tomography (OCT) is an imaging technique that uses light to
capture micrometer resolution. It uses a relatively long wavelength light that allows
penetration into the tissue. Penetration in tissue of the optical wavelengths is limited
but the resolution achieved is very high (sub-micrometer). Schmitt [77] presented a
quasi-static elastography by OCT. Studies of OCT in the characterization of tissue
have been done [45, 54]. Ammari et al. [7] presented a mathematical analysis of
OCT in elastography using as model the Stoke system in heterogeneous medium.
They presented a reconstruction algorithm and numerical experiments.

Wu et al. [99] presented a method called crawling wave imaging, where
sonoelastography is used to image slowly moving interference patterns produced
by two opposing shear vibration sources with a slight difference in frequency or
phase. This technique has been used in vivo and ex vivo experiments of hepatic
lesions and prostate [17, 104].
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Chapter 11
Affine Complete Algebras

Gérard Kientega

Abstract We study affine completeness of algebras. In the first part of the work,
we use a generalized metric to prove an extension theorem. This extension theorem
plays a key role in proving new results. In the second part, we show that in some
situations, we can skip the extension theorem. This idea allows us to answer a
question of Karrli and Pixley.

Keywords Algebra • Compatible operation • Affine completeness • Generalized
metric • Congruence lattice • Torsion free module

11.1 Introduction

Jawhari, Misane, and Pouzet [1] introduced the notion of a generalized metric and
found an extension theorem applicable in languages, ordered sets, and graph theory.
However, it needs hyperconvexity, a very restrictive hypothesis and in many cases
infinite family of balls are used. Although that generalized metric spaces are not
essentially of topological nature certain similarities with the usual metric spaces are
useful. Kaarli [2] gave an extension theorem based on the arithmetical properties
of the lattice of the equivalence relations and a new affine completeness result.
Following his ideas we define a generalized metric applicable in universal algebra.
This leads to new proofs of some affine completeness results. In the last part of
this work, we give an answer to a problem raised by Kaarli and Pixley [3]. For this
purpose we skip using the extension theorem that was useful in other contexts.

Definition 1. Let V D hV; C, 0,�, �i where

(i) hV; C, 0i is a monoïd (not necessarily commutative), with the neutral
element 0,
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(ii) � is a (partial) order on V compatible with C (i.e., p C r � q C r and
r C p � r C q whenever p � q) such that 0 is the least element of V (i.e.,
0 � p for all p 2 V), and

(iii) p ! p is an involutive automorphism of the order � (i.e., p D p and p � q
whenever p � q).

A V-metric space or a V-metric is a pair (E,d) where E is a set and d: E2 ! V is
a map such that for all x, y, z 2 E:

.d1/ d .x; y/ D 0 () x D y;

.d2/ d .x; y/ D d .y; x/ ;

.d3/ d .x; y/ � d .x; z/C d .z; y/ .the triangle inequality/ :

We call symmetric a V-metric provided d(x,y) D d(y,x) for all x,y 2 E. Notice
that the usual metric space is a symmetric V-metric space for V D hRC; C, 0,�, �i
where RC is the set of nonnegative reals with the usual sum and order and r D r for
all r 2 RC. For another natural example consider V D hV, o, �, �1, �i where V is a
set of binary reflexive relations on a set E such that:

(1) V is closed under arbitrary intersections, contains�D f(x,x) : x 2 Eg and whose
union is E2,

(2) ros is the relational product f(x,y) 2 V : (x,z) 2 r, (z,y) 2 s for some z 2 Vg, r �1

is the converse f(y,x) : (x,y) 2 rg, and � is the set theoretical intersection, and
(3) V is closed under o and �1.

Then define d: E2 ! V by setting d(x,y) D \ fr 2 V : (x,y) 2 rg.
In the sequel V will be fixed. Let (E,d) be a V-metric space. By a V-ball with

radius r and center x we mean the set B(x,r) D fy 2 E : d(x,y) � rg. Let (E’,d’) be
also a V-metric space. A function f: E’ ! E is nonexpansive if d(f(x), f(y)) � d’(x,y)
for each pair (x,y) in E2. The V-metric space (E,d) is convex if for any x, y in E and r,
s in V, the relation d(x,y) � r C s implies the existence of z in E such that d(x,z) � r
and d(z,y) � s. The 2-Helly property (respectively, the 2-Helly property for finite
families of balls) means that each family (respectively, finite family) of V-balls has
a nonempty intersection as soon as any pair of them has a nonempty intersection [1]
§II.2. Let F be a subset of E’ and f: F ! E be nonexpansive. The function f is said
to have the one-point extension property if for each x 2 E’\F there is a nonexpansive
extension of f on F[fxg. When the last property is satisfied for all subsets F of E’,
all V-metric spaces (E’,d’), and all nonexpansive f: F ! E, the space (E,d) is called
a hyperconvex space. The V-metric space (E,d) has the finite extension property if
for every V-metric space (E’,d’) and each finite subset F of E’, every nonexpansive
function from (F,d’) to (E,d) has the one-point extension property. According to [1]
§ II.2 hyperconvexity is equivalent to convexity and the 2-Helly property.
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11.2 The Finite Extension Theorem

In this section the order of V is a join semilattice on V with a least element 0 and
whose join operation is denoted _. Now, let (E,d) be a V-metric space. The join
operation is not necessarily the addition C of V but we always have x_y � x C y for
all x, y 2 E since x C y � x C 0 D x and similarly x C y � y. For each natural number
n � 1, define a V-metric dn on En by the formula

dn ..x1; : : : ; xn/ ; .y1; : : : ; yn// D d .x1; y1/ _ � � � _ d .xn; yn/ :

Definition 2. Let E be a set and X a subset of E. An a-function on X is a ternary
function fX: X3 ! E such that for all x, y in X, fX(x,y,y) D fX(x,y,x) D fX(y,y,x)D x.
An m-function on X is a ternary function mX: X3 ! E such that for all x,y in
X mX(x,x,y) D mX(x,y,x)D mX(y,x,x) D x. The V-metric space (E,d) has the a-
property (respectively, the m-property) if for each finite subset X of E there
exists a nonexpansive a-function (respectively, a nonexpansive m-function) f: (X3,
d3) ! (E,d) on X.

A symmetric V-metric space (E,d) is ultrametric if for all x,y, and z in E we have

./ d .x; y/ � d .x; z/ _ d .z; y/ :

In this case (E,d) is also a V’-metric space where V’ D hV; _, 0, idV, �i and the
triangle inequality is the above inequality.

Remark 1. Let E be a set and let Eqv(E) denote the set of equivalence relations on
E. Let V be a subset of Eqv(E) such that

(i) � D f.x; x/ W x 2 Eg 2 V;
(ii) V is closed under arbitrary intersections and the join _ of equivalence relations,

and
(iii) E2 D [V:

Now let V D hV; _,�, idV,�i and define d: E2 ! V by setting d(x,y) D \ fr 2 V :
(x,y) 2 rg for all x,y 2 E. Clearly the V-metric space Veq D (E,d), which is implicit
in Kaarli [3], is ultrametric.

Lemma 2.1. Let (E,d) be a V-metric space. If for each subset X of E such that
jXj D min(3,jEj) there exists a nonexpansive a-function on X, then (E,d) is an
ultrametric. In particular, (E,d) is an ultrametric if it has the a-property.

Proof. Since the case jE j D 1 is trivial, we may suppose that jE j � 2. Let x, y, z
be elements of E, X consists of x,y,z, and let fX be a nonexpansive a-function on X.
Then

d .x; y/ D d .fX .y; y; x/ ; fX .y; x; x// � d3
�
.y; y; x/ ;

�
y; x; x

��
: D

d .y; y/ _ d .y; x/_ d .x; x/ D d .y; x/
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showing that d(x,y) � d(y,x). By symmetry d(y,x) � d(x,y) and thus, d(x,y) D d(y,x)
proving the symmetry. For the inequality (*)

d .x; y/ D d .fX .z; z; x/ ; fX .y; x; x// � d3
�
.z; z; x/ ;

�
y; x; x

��
D

d .z; y/ _ d .z; x/_ d .x; x/ D d .x; z/ _ d .z; y/ : �

Let En denote the nth power of E and set

Dn D f.x1; : : : ; xn/ 2 En W x1 D � � � D xi-1 D xiC1 D xn for some 1 � i � n � 1g

Lemma 2.2. Let (E, d) be a V-metric. If (E,d) is ultrametric, then the ternary
function f: D3 ! E defined by setting f(x,x,y) D f(y,x,y)D f(y,x,x)D y for all x,y
in E is a nonexpansive map from (D3,d3) into (E,d).

Proof. Let x D (x1, x2, x3) and y D (y1,y2,y3) be two elements of D3. We have two
cases.

(1) Suppose f(x) D xi and f(y) D yi for some i, l � i � 3.
Then d(f(x), f(y)) D d(xi,yi) � d3(x, y) D d(x1,y1) _ d(x2,y2) _ d(x3,y3).

(2) Suppose xi D xj and yj D yk where fi,j,kg D f1,2,3g.
Then f(x) D xk and f(y) D yi and d(f(x),f(y)) D d(xk,yi) � d(xk,yk)_d(yk,yi) D
d(xk,yk)_d(yj,yi) � d(xk,yk)_d(yj,xj)_d(xj,yi) D d(xk,yk) _ d(xj,yj) _ d(xi,yi) D
d3(x, y) using the symmetry and the fact that xi D xj and yj D yk. This shows
that f is nonexpansive. �

Theorem 2.3. (The Finite Extension Theorem): Let the order � of V be a join
semilattice such that 0 is the least element of �. The following conditions (i)–(iii)
are equivalent for a V-metric space (E,d):

(i) The space (E,d) has the finite extension property,
(ii) The space (E,d) is convex and has the m-property,

(iii) The space (E,d) is convex and possesses the 2-Helly property for finite families
of V-balls. Moreover, if (E,d) is an ultrametric space, then the conditions (i)–
(iii) are equivalent to

(iv) The space (E,d) is convex and has the a-property.

Proof. (i) ) (ii) Suppose that (E,d) has the finite extension property. The con-
vexity follows easily by the same argument as in [1] Thm II.2.1. Now, let
X be a finite subset of E. On Y D D3 \ X3 define the function f by setting
f(x,x,y) D f(x,y,x)D f(y,x,x)D x for all x, y in X. We show that f is a nonex-
pansive map from (Y,d3) to (E,d). Let x D (x1, x2, x3) and y D (y1,y2,y3) be
arbitrary elements of Y. Then f(x) D xi and f(y) D yi for some 1 � i � 3. Furthermore
d(f(x),f(y)) D d(xi, yi) � d(x1,y1)_d(x2,y2)_d(x3,y3) D d3(x, y).

Then, by the finite extension property there exists a nonexpansive extension m of
f on X3. Clearly the function m is an m-function on X.
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(ii) ) (iii) Suppose that (E,d) is convex and has the m-property. By induction
on n D 2,3, : : : we prove the following statement Sn: Let fB(xi,ri): l � i � ng be a
set of V-balls satisfying the condition: if B(xi,ri)\B(xj,rj) ¤ Ø for all l � i < j � n,
then B(x1,r1)\ : : :\B(xn,rn) ¤ Ø. Since S2 is true, we suppose that Sn holds for
some n � 2. Let us prove the result for n C 1. Let fB(x1,r1), : : : ,B(xnC1,rnC1)g
be a set of pairwise intersecting V-balls on E. For j D 1,2,3 there exists
yj 2 B(x1,r1)\ : : :\B(xj-1,rj�1)\B(xjC1,rjC1)\ : : :\B(xnC1,rnC1).

Set X D fx1, : : : ,xnC1,y1,y2,y3g. By the m-property there exists a nonexpansive
m-function m from (X3,d3) into (E,d). We show that u D m(y1,y2,y3) is an element of
the intersection of all the n C 1 balls. We have d(x1,u) D d(m(y1,x1,x1)),m(y1,y2,y3))
� d3((y1,x1,x1),(y1,y2,y3)) D d(y1,y1)_d(x1,y2)_d(x1,y3) � r1_r1 D r1 and by
symmetry d(x2,u) � r2 and d(x3,u) � r3. Now for j > 3, d(xj,u) D d(m(xj,xj,xj),
m(y1,y2,y3)) � d3 ((xj,xj,xj), (y1,y2,y3)) D d(xj,y1)_d(xj,y2)_d(xj,y3) � rj since each
yk for k D 1,2,3 belongs to the ball of center xj and radius rj. This proves that u is in
the intersection of the n C 1 balls and (iii).

(iii) ) (i) Suppose that (iii) holds for a V-metric space (E,d) and let (E’,d’) be a
V-metric space. We prove (i) by induction on the size n of a finite subset X of E’.

1. Let n D 1; i.e., X D fxg. Let f:fxg ! E. Clearly the constant map f1:E’ ! E with
value f(x) is nonexpansive and so the statement holds for n D 1.

2. Suppose that (i) holds for some n � 1 such that n C 1 < ÍE’Í. Let fx1, : : : ,xnC2g � E’
and let g be a nonexpansive map from (fx1, : : : ,xnC1g, d’) to (E,d). For
i D 1, : : : ,n C 1 set xi’ D g(xi), ri D d’(xi, x n C 2) and denote the balls B(xi’,ri)
(of (E,d)) by Bi. For 1 � i < j � n C 1 the balls Bi and Bj intersect. Indeed
d(xi’,xj’) � d’(xi,xj) � d’(xi,xnC2) C d’(xnC2,xj) D ri C rj and so by convexity
there exists u 2 E with d(xi’,u) � ri, d(u, xj’) � rj proving u 2 Bi \Bj. By the 2-
Helly property there exists v 2 B1\ : : : Bn C 1. Extend g to g1: fx1, : : : ,xnC2g ! E
by setting g1(xnC2) D v. For i D 1, : : : , n C 1 from v 2 B1\ : : : BnC1 and the
definition of ri clearly d(g1(xi), g1(xn C 2)) D d(xi’,v) � ri D d’(xi, xnC2) proving
that g1 is indeed nonexpansive. This concludes the induction and hence (i) holds.

Let the space (E,d) be ultrametric. By Lemma 2.2 clearly (i) ) (iv). We prove
that (iv) ) (ii). Let X be a finite subset of E and let fX be an a-function on X. We
define Y D im (fX). Then X � Y and Y is finite. The function m defined on Y3 by
m(x,y,z) D fX(x,fX,(x,y,z),z) is an m-function on Y and hence also on X.

The last theorem is a generalization of a result of Kaarli [2] Theorem 3. In fact,
Kaarli’s proof can be used when the metric (E,d) is symmetric and the semilattice
hV;�i has a special structure as is shown in the following proposition. Call an
element r of V idempotent if r C r D r.

Proposition 2.4. Let the order of V be a meet semilattice whose meet is denoted ^.
Suppose that for all that u, v, and w in V we have u^(v C w) D (u^v) C (u^w) (i.e.,
^ distributes over C). If (E,d) is a symmetric and convex V-metric space, then it
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possesses the 2-Helly property for finite families of balls whose radii are idempotent.
In particular, if all elements of V are idempotent, then (E,d) has the finite extension
property.

Proof. A direct adaptation of the proof of the Theorem 3 of Kaarli [2].

Definition 3. A V-metric space (E,d) is quasi-compact if every family of V-balls
with empty intersection contains a finite subfamily with empty intersection.

We are now able to characterize hyperconvex spaces.

Theorem 2.5. A V-metric space is hyperconvex if and only if it is quasi-compact
and has the finite extension property.

Proof. ()) Clear.
(() Let (E,d) be a quasi-compact V-metric space with the finite extension

property. To show that it is hyperconvex, let (E’,d’) be a V-metric and let f:
(F,d’) ! (E,d) a nonexpansive map where F is a subset of E’. Consider the set =
of pairs (X,g) where each X is a subset of E’ containing F and g is a nonexpansive
map (X,d’) ! (E,d) which is an extension of f. Clearly = is nonempty. The set =
is (partially) ordered by setting (X,g) � (X’,g’) if X � X’ and g’ is an extension
of g to X’. We show that the order � is inductive. Let T D f(Xi,gi); i 2 Ig be a
totally ordered subset of =. Set X D [ fXi : i 2 Ig and define g from (X,d’) to
(E,d) as the map whose restriction to each Xi coincides with gi. Clearly (X,g) is
the least upper bound of T in =. By Zorn’s lemma there exists a maximal element
(Y,h) of =. We show that Y D E’. If not, choose x in E’\Y and consider the set
fB(h(y),ry): y 2 Yg where ry D d’(y,x). Let Yk D fy1, : : : ,ykg be a finite subfamily
of Y and let hk be the restriction of h to Yk. By the finite extension property there
exists a nonexpansive extension hk of h to Yk [fxg. Clearly for j D 1, : : : ,k, d(f(yj),
hk (x)) D d(hk (yj), hk (x)) � rj. This shows that hk (x) is in the intersection of the
balls fB(h(yj), ryj ); j D 1, : : : ,kg. Thus any finite subset of the V-balls fB(h(y),ry);
y 2 Yg has a nonempty intersection. By the quasi-compactness of the space (E,d)
the V-balls fB(h(y),ry); y 2 Yg have a nonempty intersection. Let a be an element of
this intersection. Clearly we may extend the map h to a nonexpansive map h’: (Y
[fxg,d’) ! (E,d) by setting h’(x) D a and h’(y) D h(y) for each y in Y. The pair (Y
[fxg, h’) is a strict majorant of (Y,d) in = which is a contradiction. Hence Y D E’
and by [1] Theorem II.2.1 clearly (E,d) is an hyperconvex space.

11.3 Generalized Metrics and Equivalence Relations

Let d be a V-metric on a set E. For each v 2 V we define the binary relation
(d)v D f(x,y) 2 E2 : d(x,y) � vg. We recall that for n � 1 an n-ary operation on E
is a function f: En ! E. For n D 0 a 0-ary operation on E is a constant of E.

Definition 4. A (nonindexed universal) algebra on E is a pair A D hE,Ci where C
is a nonempty set of operations on E.
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The elements of C are the fundamental operations of the algebra A. A subset F of
E is closed with respect to the n-ary operation p of A if for all x1, : : : ,xn 2 F we have
that p(x1, : : : ,xn) 2 F. In the event that p is a constant, this means that F is closed
with respect to p if and only if p 2 F

Definition 5. A subuniverse of an algebra A on E is a nonempty subset S of E
closed with respect to each fundamental operation of the algebra A. A subalgebra
of the algebra A D hE,Ci is an algebra B D hS,C’i where S is a subuniverse of A and
C’ consists of the restrictions of the functions of C to S.

Let m � 1 and let p be an n-ary fundamental operation of A D hE,Ci. We define
an n-ary operation pm on Em by setting for all a1 D (a11, : : : , a1m), : : : , an D (an1, : : : ,
anm) 2 Em, pn(a1, : : : , an) D (p(a11, : : : , an1), : : : ,(a1m, : : : , amn)).

Let Cm D fpm; p 2 Cg. By the m-th power Am of A we mean the algebra
hEm, Cmi.

Definition 6. For n � 1 an n-ary relation on E is a nonempty subset of En. The n-ary
relation r is compatible with the operation f if r is a subuniverse of hEn,ffgi.

We need the following useful result.

Theorem 3.1. (Pouzet–Rosenberg [6], Lemma I-3.) Let C be a nonempty set of
operations on E. For each V-metric space (E,d) the following two propositions are
equivalent:

1. For every v 2 V the binary relation (d)v is a subuniverse of A2;
2. For all n � 1 each n-ary operation from C is a nonexpansive map from (E,dn) into

(E,d).

Of particular interest is the next corollary.

Corollary 2. Let the order of V be a join semilattice, let (E,d) be a V-metric space,
and let X � En where n � 1. Suppose that the metric of En is dn. A map f from (X,dn)
into (E,d) is nonexpansive if and only if for each v 2 V the function f is compatible
with the binary relation (d)v.

Proof. (() Suppose that f is compatible with the binary relation (d)v for
each v in V. Let x D (x1, : : : ,xn) and y D (y1, : : : ,yn) be elements of X. Set
v D dn(x,y) D d(x1,y1) _ : : :_d(xn,yn). Then (xi,yi)2(d)v for i D l, : : : ,n. Since f
is compatible with (d)v, clearly (f(x), f(y)) 2 (d)v, that is, d(f(x),f(y))� v D dn(x,y)
proving that f is nonexpansive.

()) Suppose that f is nonexpansive and let v 2 V. Let (xi,yi) 2 (d)v and for
i D l, : : : ,n, set x D (x1, : : : ,xn) and y D (y1, : : : yn). Since f is nonexpansive, we have

d .f .x/ ; f .y// � dn .x; y/ D d .x1; y1/ _ � � � _ d .xn; yn/ � v:

Thus (f(x),f(y)) 2 (d)v. �
Lemma 3.3. Let (E,d) be a V-metric space and (u,v) in V2. If the metric d is convex,
we have (d)uo(d)v D (d)u C v. If it is also symmetric, then (d)vo(d)u D (d)uo(d)v.
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Proof. We prove that (d)uo(d)v D (d)u C v when d is convex. Suppose (x,y)2(d)uC v,
that is, d(x,y) � u C v. Then by convexity there exists z in E such that d(x,z) � u and
d(z,y) � v. We thus have (x,z) 2 (d)u and (z,y) 2 (d)v proving that (x,y) 2 (d)uo(d)v.
The reverse inclusion is immediate by the triangle inequality. For the equality
(d)vo(d)u D (d)uo(d)v it is sufficient to prove one inclusion. We prove the inclusion
(d)vo(d)u � (d)uo(d)v. Let (x,y) 2 (d)vo(d)u. Then there exists z in E such that
(x,z) 2 (d)v and (z,y) 2 (d)u. This means d(x,z) � v and d(z,y) � u which implies
d(x,y) � v C u by the triangle inequality. By the symmetry of d we also have
d(y,x) � v C u. Now by the convexity of d, there exists t 2 E such that d(y,t) � v
and d(t,x) � u. By symmetry we obtain d(x,t) � u and d(t,y) � v. Hence (x,t) 2 (d)u

and (t,y) 2 (d)v proving that (x,y)2(d)uo(d)v. �

For some spaces, we have a partial converse to Lemma 3.3.

Lemma 3.4. The space VEq D (E,d) from the remark in §2 is convex if and only if
the elements of V are pairwise permuting equivalence relations on E.

Proof. ()) Let (E,d) be convex. Observe that (d)v D v for each v in V. Since by
the remark in §2 an ultrametric space is symmetric, Lemma 3.3 implies that the
elements of V are pairwise permuting equivalence relations on E.

(() Suppose that the elements of V are pairwise permuting equivalence
relations. Let x, y 2 E and r,s 2 V be such that d(x,y) � r_s. Since, as it is well
known, r_s D ros, there exists z in E such that (x,z) 2 r and (z,y) 2 s. This shows
that d(x,z) � r and d(z,y) � s. �

Definition 7. We say that a V-metric space (E,d) has the 3-set extension property if
for every V-metric space (F,d’), every subset X of F with jXj � min(3, jEj), and every
x2F\X any nonexpansive function f: (X,d’) ! (E,d) has a nonexpansive extension
to X[fxg.

Theorem 3.5. Let the order of V be a join semilattice. If (E,d) is a symmetric V-
metric space with 3-set extension property, then for all u,v,w 2 V we have

(i) .d/vo.d/u D .d/uo.d/v:
(ii) .d/uo ..d/v \ .d/w/ D ..d/uo.d/v/ \ ..d/uo.d/w:/

Proof. Since the 3-set extension property implies convexity [1] Thm II.2.1, clearly
(i) follows by Lemma 3.4. For (ii), it is clear that for every (u,v,w) 2 V3,

.d/uo ..d/v \ .d/w/ � ..d/uo.d/v/\ ..d/uo.d/w/

In order to prove the reverse inclusion, let (x,y) 2 ((d)uo(d)v)\((d)uo(d)w). There
exist p,q 2 E such that (x,p) 2 (d)u, (p,y) 2 (d)v and (x,q) 2 (d)u, (q,y) 2 (d)w.
Set X D f(x,x), (y,q), (p,y)g � E2. Define f:X ! E by setting f((x,x)) D x and
f((y,q))D f((p,y))D y. It is immediate that f is a nonexpansive map from (X,d2)
into (E,d). By the 3-set extension property, there exists a nonexpansive extension
g:X[f(p,q)g! E of f. Set h D g((p,q)). A simple verification shows that (x,h) 2 (d)u

and (h,y) 2 (d)v\(d)w and thus (x,y) 2 (d)uo((d)v \ (d)w). �
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This result uses essentially the same method of proof as Kaarli [2] with the
transitivity replaced by the triangle inequality.

Let L D hL; �i be a sublattice of hEqv(E); �i, the lattice of all equivalence
relations on E. The set L is inf-complete if the intersection of every nonvoid family
of elements of L belongs to L. Recall that L is arithmetical if its elements pairwise
permute with respect to the product of relations and if for all ™, ˆ,‰ 2 L the
distributivity law ™ \ (ˆo‰) D (™\ˆ)o(™\§) holds.

The next theorem gives a link between extension theorem and arithmetical
algebras.

Theorem 3.6. Let E be a set and L D hL; �i be an inf-complete sublattice of the
lattice hEqv(E); �i of equivalence relations on E such that [L D E2. Then L is
arithmetical if and only if for each finite subset X of E, there exists an a-function on
X, compatible with L.

Proof. ()) Let L be arithmetical and V D hL; o, M, idL, �i. By the remark in §2
the function d: E2 ! L such that d(x,y) D \f™ j (x,y)2™g is a V-ultrametric on E.
As it was mentioned in the proof of Lemma 3.4, we have (d)v D v for each v 2 L.
Since the elements of L permute, (E,d) is convex by Lemma 3.4. Also (E,d) has the
2-Helly property for finite families of balls by Proposition 2.4 since the elements
of L are idempotent. Since it is an ultrametric space by Theorem 2.3 (ii) ) (iv), it
has the a-property; i.e., for each finite subset X of E, there exists a nonexpansive
a-function on X compatible with L.

(() It follows directly from Proposition 2.4 since for each v 2 L we have that
(d)v D v as already observed in the proof of Lemma 3.4. �

11.4 Strictly Locally Affine Complete Algebras

Let A D hE Ci be an algebra. Denote by Con(A) the set of the congruences of the
algebra A. We recall that a congruence of A is an element of Eqv(E) compatible
with every fundamental operation of A. This implies that each congruence of A
is a subalgebra of A2 [3]. The set Con(A), ordered by inclusion of relations, is a
complete sublattice of Eqv(E) containing � and E2 and closed with respect to the
join operation _ [4]. Set V D hCon(A); _,�, id, �i where id is the identity function
in Con(A). Then by the remark in §2 we obtain a V-ultrametric on E by setting for
every pair (x,y) of E

dA .x; y/ D \
n
™ 2 Con.A/

ˇ
ˇ
ˇ .x; y/ 2 ™

o
:

Definition 8. An algebra A D hE; Ci is called affine complete if every operation
on E compatible with Con(A) is a polynomial of A. The algebra A is called strictly
locally affine complete if for each positive integer n and each finite subset X of E,
every function f: Xn ! E compatible with Con(A) is a restriction of a polynomial
of A.
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Theorem 4.1. Let A D hE; Ci be a strictly locally affine complete algebra and X a
finite subset of E. Then there exists a polynomial pX of A whose restriction to X is
an a-function.

Proof. Consider the ultrametric dA on E. Denote by d’ the ultrametric induced by
V in E3. Let X be a finite subset of E. By Lemma 2.2 there exists a nonexpansive
map f from (D3\X3, d’) into (E,dA) by setting f(x,x,y)D f(y,x,y)D f(y,y,x)D y for
all x, y 2 X. By Theorem 3.1 the map f is compatible with Con(A). Since the algebra
A is locally affine complete, there exists a polynomial pX of A whose restriction to
D3\X3 is equal to f. The restriction of pX to X is clearly an a-function on X. �
Corollary 4.2. (Hageman & Hermann [5]) A strictly locally affine complete
algebra is arithmetical.

Proof. It follows easily from the above theorem and Theorem 3.6. �

Corollary 4.3. If A is a strictly locally affine complete algebra, then any reflexive
subuniverse of A2 is a congruence of A.

Proof. By Theorem 4.1 we know that for each finite subset X of E there is an
a-function on X. Let ™ be a reflexive subuniverse of A2. We first prove that ™ is
a symmetric relation. Let (x,y) be an element of ™ and set X D fx,yg. Then there
exists a polynomial pX of A whose restriction to X is an a-function. Since pX is
a polynomial, it preserves ™. Clearly (x,x), (x,y), and (y,y) are elements of ™ and
hence (pX(x,x,y), pX(x,y,y))D (y,x) 2 ™. For the transitivity of ™ let (x,y) and (y,z) be
elements of ™. As (x,y), (y,y), and (y,z) are in ™, clearly (pX(x,y,y), pX(y,y,z))D (x,z)
is in ™. This completes the proof. �

To prove the main result in this section, we need the following lemma that
generalizes a result of Baker–Pixley [5].

Definition 9. Let C be a clone on E and k a positive integer. An n-ary operation f
on E is k-interpolable by C if for any k-element subset U of En there exists g 2 C
agreeing with f on U.

Lemma 4.4. Let C be a clone on E such that for each finite subset X of E the clone
C contains a ternary function mX whose restriction to X is an m-function on X. If
an n-ary operation f on E is 2-interpolable by C, then f is k-interpolable by C for
any k > 2.

Proof. We proceed by induction on k > 1. For k D 2 this is the hypothesis. Suppose
that f is k-interpolable by C for some 2 � k < ÍEÍ. Let X D fa1, : : : ,akC1g be a subset
of En. For i D 1,2,3 let fi be the interpolation of f on X\faig. Define g: En ! E by
setting

g .x1; : : : ; xn/ D mX .f1 .x1; : : : ; xn/ ; f2 .x1; : : : ; xn/ ; f3 .x1; : : : ; xn// :
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Since mX, f1, f2, f3, are all elements of C, it follows that g is in C. Now we prove
that g agrees with f on X. Let am 2 X where 1 � m � k C 1. Since X has at least
three elements, there exists 1 � i < j � k C 1 such that ai ¤ am ¤ aj. This means that
am belongs to the intersection of X\faig and X\fajg. Hence fi(am) D fj(am) D f(am)
and g(am) D mX (f1 (am),f2(am),f3(am)) D f(am). �

The following lemma is well known and easy to prove.

Lemma 4.5. Let A D hE,Fi be an algebra and X D f(a1,b1), : : : (an, bn)g be a subset
of E2. Denote by R(X) the reflexive subuniverse of A2 generated by X. Then the
pair (a,b) 2 R(X) if and only if there exists an n-ary polynomial f of A such that
f(a1, : : : an) D a and f(b1, : : : bn) D b.

Definition 10. Let A D hE,Fi be an algebra and h an integer with h > 2. Let ¡ be
an h-ary relation on A and 1 � i < j � h. We call prij¡D f(xi,xj) : (x1, : : : ,xh) 2 ¡g a
binary projection of ¡. We say that A has the property B2 if the subuniverses ¡ and
¢ of Ah are equal whenever prij¡D prij¢ for all 1 � i < j � h.

We are now ready to prove the main result in this section.

Theorem 4.6. For any algebra A on a base set E the following propositions are
equivalent:

(i) A is strictly locally affine complete.
(ii) For each finite subset X of E there exists a ternary polynomial pX of A whose

restriction to X is an a-function on X.
(iii) Each reflexive subuniverse of A2 is a congruence of the algebra A and for each

finite subset X of A there exists a ternary polynomial mX of A whose restriction
to X is an m-function on X.

(iv) Each reflexive subuniverse of A2 is a congruence of A and the algebra AC D hE,
Pol(A)i has the property B2.

Proof. (i) ) (ii). Theorem 4.1
(ii) ) (iii). The fact that any reflexive subuniverse of A2 is a congruence of A is

already proved in Corollary 4.3. Now let X be any finite subset of E and pX: E3 ! E
a ternary polynomial of A whose restriction to X is an a-function on X. Define
m: E3 ! E by setting m(x,y,z) D pX(x,pX (x,y,z),z) for all x,y,z in E. Then m is a
polynomial of A whose restriction to X is an m-function on X.

(iii) ) (iv). Theorem of Rosenberg and Schweigert [7] Theorem 2.20.
(iv) ) (i). By [7] Theorem 2 for every finite subset X of E there exists a ternary

term function mX whose restriction to X is an m-function on X. To prove that
A is strictly locally affine complete let f be an n-ary operation on E compatible
with Con(A). We show that f is 2-interpolable by Pol A. Let a D (a1, : : : ,an) and
b D (b1, : : : ,bn) be arbitrary elements of En and let ™ denote the reflexive subuniverse
of A generated by f(a1,b1), : : : ,(an,bn)g. By (iv) clearly ™ is a congruence of A and so
(f(a),f(b)) belongs to ™. Moreover, by Lemma 4.5 there exists an n-ary polynomial
g of A such that g(a) D f(a) and g(b) D f(b). This proves that f is 2-interpolable
by Pol A. From Lemma 4.4 we obtain that f is k-interpolable by Pol A for every
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k > 2. Finally, let X be an arbitrary finite subset of E of cardinality m. As f is mn-
interpolable by Pol A, there exists an n-ary polynomial of A agreeing with f on X.
This proves that A is strictly locally affine complete. �

We immediately obtain a fundamental result of Kaarli [2] Corollary 4.8.

Corollary 4.7. (Kaarli [2]) Any arithmetical affine complete algebra that is
denumerable or whose congruence lattice is finite is strictly locally affine complete.

The following result yields examples of algebras that are not strictly locally affine
complete.

Corollary 4.8. Any algebra A whose square contains a reflexive subuniverse that
is not a congruence of A is not strictly locally affine complete. In particular, any
algebra compatible with a nontrivial order is not strictly locally affine complete.

Proof. This follows easily by (iii). �

11.5 Affine Completeness of Modules

The question of affine completeness of modules over commutative rings has been
studied by many authors. The case of abelian groups is well known thanks to W.
Nöbauer, K. Kaarli, and A. Saks (see [8]). As pointed out in [4], most of the results
on the affine completeness of abelian groups can be generalized to modules over
commutative principal ideal domains because the abelian groups and these modules
are similar due to the fact that the underlying ring structure of the ring of integers is
that of a commutative principal ideal domain. According to K. Kaarli and A. Pixley,
there is only one exception. Indeed, when proving that an abelian group of rank one
with bounded torsion part is not affine complete, one relies on the countability of
the ring of integers [4, Theorem 5.2.22]. This argument does not hold if it has to do
with a ring which is uncountable. This leads to the following problem raised in [4,
Problem 5.2.29].

Problem. Does there exist an affine complete torsion free module of rank 1 over a
commutative principal ideal domain?

In this part we will answer this question and moreover, we will generalize some
other theorems from abelian group’s affine completeness theory to modules over
a commutative domain. Throughout this part R will designate a commutative ring
with 1, and A a left module over R. For any a in A, the annihilator of a is designated
by fr 2 R : ra D 0gand denoted by Ann(a). It is clear that Ann(a) is an ideal of R as
well as Ann(A) D \a 2 A Ann(a). An element a of A for which Ann(a) is nontrivial
will be said to be a torsion element of A. Clearly the set T of torsion elements of A
is a submodule of A. The module A is bounded if Ann(A) is nontrivial and in this
case any nonzero element of Ann(A) is called an exponent of A. Otherwise we say
that it is unbounded.
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For a subset X of the R-module M we denote by <X> the submodule of M
generated by X. As noted in [5], the compatibility criterion takes the following
form in the case of modules. An n-ary operation f on the R-module M is
compatible with Con(M) if and only if f(a) � f(b)2 < a1 � b1, : : : ,an � bn > for all
a D (a1, : : : ,an), b D (b1, : : : ,bn) 2 An. Clearly this means that for a D (a1, : : : ,an),
b D (b1, : : : ,bn) 2 An there exist s1, : : : ,sn 2 R depending on a and b, such that
f(a) � f(b) D s1(a1 � b1) C � � � C sn(an � bn). An n-ary function f: Mn ! M is zero
preserving if f(0, : : : ,0) D 0. Obviously every Con(M)-compatible operation of the
R-module M can be represented as a sum of a zero preserving function and a
constant function. Also, if f is an n-ary zero preserving Con(M) compatible function
on an R-module M and (a1, : : : ,an) 2 Mn, then there exist r1, : : : ,rn in R such
that f(a1, : : : ,an) D r1a1 C � � � C rnan where the coefficients ri depend on the n-tuple
(a1, : : : ,an).

Besides the notion of a strictly locally affine complete algebra is the notion of a
locally affine complete algebra. For every n 2 N, an n-ary function f on an algebra
A is said to be a local polynomial of A if it can be interpolated by a polynomial
operation on every finite subset X of An, that is, there exists a polynomial operation
g: An ! A whose restriction to X is equal to f. An algebra A is said to be locally
affine complete if every Con(A)-compatible function on A is a local polynomial
of A.

Remark 3. It is clear from the above definition that an affine complete algebra is
locally affine complete. It is easy to see, as noted in [1], that for an R-module A an
n-ary polynomial operation on A is an operation f: An ! A satisfying the following
property: there exists r0 2 A, r1, : : : ,rn 2 R such that the following equality holds:
f(x1, : : : ,xn) D r1x1 C � � � C rnxn C r0 for all (x1, : : : ,xn)2An.

Remark 4. It is important to notice that r0, : : : ,rn do not depend on the n-tuple
(x1, : : : ,xn).

Since constant operations are polynomials, it follows that when studying affine
completeness of modules, we may restrict to the case of zero preserving functions.

Remark 5. Polynomial operations on modules are just the linear functions. We
recall here the well known notion of semisimple modules and a result on affine
complete modules that will be used below. An R-module A is called semisimple if
it satisfies the following equivalent conditions:

1. A is a direct sum of simple R-modules;
2. Every submodule of A is a direct summand.

The following theorem will be used. We skip its proof.

Theorem 3.9. [1] A semisimple R-module A is locally affine complete if and only if
it has no simple homogeneous component.
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11.5.1 Affine Completeness of Free Modules of Rank 1

We will now give a proof of [4, Theorem 5.2.22] which avoids the use of the
compatible function extension property. We first recall that if A is a bounded abelian
group, then Ann(A) is generated by a unique positive element e called the exponent
of A.

Theorem 5.1. An abelian group of rank 1 with a bounded torsion part is not locally
affine complete.

Proof. Let A be an abelian group of rank 1. We suppose that it is locally affine
complete. We will construct a unary function on A, compatible with Con(A), and
which cannot be interpolated by a polynomial operation in a specified finite subset
of A. We will hence obtain a contradiction. Let T be the torsion part of A so that
A/T is a torsion free group of rank 1; it then has a basis over the ring of integers Z
with one element. Let fa C Tg be a basis of A/T over Z. Define the function g:
A/T ! A/T by setting g(k(a C T)) D k2a C T, for each k 2Z It is easy to see that g
is a zero preserving function on A/T which is Con(A/T)-compatible. Now, since
T is bounded, let exp(T) D e be its exponent. It follows that e(x C t) D ex for all
(x,t) 2 A � T. Hence e(x C T) is the set fexg for every x 2 A. This fact allows us
to define a function f: A ! A by sending x to the unique element of e(g(x C T)).
For simplicity, we choose f(x) D e(g(x C T)). This function is a zero preserving
function and it induces a function eg on the quotient group A/T. If ka C T is an
element of A/T, then eg(ka C T) D ek2a C T. So if f were a local polynomial on
A, then eg would be a local polynomial on A/T. Let X D fx1 C T, : : : ,xn C Tg
be a finite subset of A/T with n > 0. Since f is a local polynomial then there
exists an integer s in R such that the restriction of the polynomial operation
y ! sy to QX D fx1, : : : ,xngis equal to f on QX. For i D 1, : : : ,n, we therefore have
eg(xi C T) D eki

2 .a C T/ D ski
2 .a C T/ D skia C T, where xi C T D kia C T.

Taking QX D fkajk D 0,1,2g we obtain sk(a C T) D ek2(a C T), k 2 f0,1,2g. Since
a C T is an element of infinite order, the latter equality would imply that s D e and
2s D 4e, which is clearly absurd since e is a nonzero integer. It now remains to prove
that f is a Con(A)-compatible function on A. Let b, c 2 A and g(b C T) D b1 C T,
g(c C T) D c1 C T with b1, c1 2 A. Then f(b) D eb1 and f(c) D ec1. Since g is
Con(A)-compatible and zero preserving, there exists an integer r such that
g(b C T) � g(c C T) D r(b � c C T). Consequently there also exists t 2 T such
that b1 � c1 D r(b � c) C t. Then f(b) � f(c) D e(r(b � c) C t) D er(b � c) 2 <b � c>
proving that f is Con(A)-compatible. �

We will use the idea of the above proof in other situations below.

Theorem 5.2. A torsion free module of rank 1 over a commutative domain is not
locally affine complete.

Proof. Again we proceed by contradiction. Let A be a torsion free module of rank
1 over a commutative domain R. Since by [4, Theorem 5.2.9] any 1-dimensional
vector space is not affine complete, we can suppose that R is not the field with two
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elements. Let (x) be a basis of A. Then each element a 2 A has the form a D rx for
some r 2 R. Let us define the unary function f: A ! A, rx ! r2x. Then f is Con(A)-
compatible on A. Indeed if a1 D r1x and a2 D r2x are elements of A, then

f .a1/� f .a2/ D r1
2x � r2

2x D .r1 C r2/ .a1 � a2/ 2< a1 � a2 > :

Let us assume that A is locally affine complete, which implies that f is a local
polynomial on A. Since R is not the field with two elements we choose ’2 R\f0,1g
and consider the finite set X D f0, x, ’xg. Since f is interpolated by a polynomial
operation on X, we can find s, t 2 R such that f(a) D sa C t for all a 2 X. Therefore

8
<

:

f .0/ D t D 0

f .x/ D sx C t D x
f .˛x/ D s˛2x C t D ˛2x

Putting t D 0 and using the fact that (x) is a basis, we have s D 1 and therefore
’D’2. Now since R is a domain it follows that ’D 0 or ’D 1, which yields a
contradiction. �

Corollary 5.3. A torsion free module of rank 1 over a commutative domain is not
affine complete.

Proof. A direct application of Theorem 5.2. �
Remark 6. Actually, we do not need the compatible function extension property to
prove that torsion free abelian groups of rank 1 are not locally affine complete. This
is one of the main results we obtain in this work. This property is relevant because
the compatible function extension property was originally introduced in order to
prove that a free abelian group of rank 1 is not affine complete. Now [4, Problem
5.2.29] is solved by the above theorem. We will now prove the following theorem
that gives a more general result about local affine completeness of modules with one
generator.

Theorem 5.4. A nontrivial cyclic module over a commutative principal ideal
domain R is not locally affine complete.

Proof. Let A be a nontrivial cyclic module over a commutative principal ideal
domain R. Then the R-module A is isomorphic to R/(r) for some r 2 R, and
is generated by x D 1 C (r). Let us define f: A ! A by setting f(a) D s2x where
a D s C (r) D s(1 C (r)) D sx and s 2 R. We will show by contradiction that f is
Con(A)-compatible but is not a local polynomial of A. The compatibility of f with
Con(A) is straightforward. To show that f is not a local polynomial, let us first
assume that there exists an element ’2 R such that ’(’� 1) 62 R. Set X D f0, x, ’xg
and suppose that f is a local polynomial on A. Then there exist t1, t2 2 R such that
f(a) D t1a C t2 for all a 2 X. It is clear that we must have t2 D 0, so that f(x) D t1x D x
and f(’x) D ’2x D t1’x. Hence ’x D’2x and ’�’2 2 (r) which is a contradiction.
To complete this proof, we now suppose that for every ’2 R we have ’(’� 1) 2 (r).
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Let r D p1“1 : : : pn
“n be the factorization of r into irreducible elements. Suppose that

“i > 1 for some i 2 f1, : : : ,ng. Then, since pj(pj � 1) 2 (r) for all j 2 f1, : : : ,ng, there
exists ti 2 R such that pi(pi � 1) D rti. But r D piu where u D p1“1 : : : pi

“i�1 : : : pn
“n .

This yields pi(pi � 1) D piuti. Consequently pi � 1 D uti and thus pi is not a factor of
u, which contradicts the assumption that “i > 1. Therefore, the factorisation of r is
of the form r D p1 � � � pn. This factorisation implies that R/(r) D R/(p1) ˚ � � � ˚ R/(pn)
which proves that A is a semisimple module with simple homogeneous components.
Hence A cannot be locally affine complete [4, Theorem 5.2.13]). �

The next question is what concerns modules of rank 1 whose torsion part is
bounded. The answer is given by the following theorem which generalizes [4,
Theorem 5.2.22] to modules over a commutative domain. We will use the same
idea as in the proof of Theorem 5.1.

Theorem 5.5. Let A be a module of rank 1 over a commutative domain with a
nonzero torsion part T such that Ann(T) is nontrivial. Then A is not locally affine
complete.

Proof. We will construct a Con(A)-compatible unary function on A which is not
a local polynomial. First, R is not a field with two elements since a vector space
has no nontrivial torsion part. Denoting by T the torsion part of the R-module A,
then A/T is a torsion free R-module of rank 1. Let (a C T) be a basis of A/T over
R, and define f: A/T ! A/T by setting f(ka C T) D k2a C T, k 2 R. Then f is clearly
Con(A/T)-compatible. Let r 2 Ann(T) be nonzero. Then for all x in A and t in T, we
have r(x C t) D rt, so that r(x C T) is a well defined element of A. We may hence
define a function g: A ! A by the formula g(x) D r(f(x C T)). This function induces
a function rf on the quotient A/T. Indeed if g were a local polynomial on A, then rf
would be a local polynomial on A/T. Since f is Con(A/T)-compatible rf is Con(A/T)-
compatible and g is Con(A)-compatible. Suppose that A is locally affine complete.
Then choose ’2 R such that ’ 62 f0,1g and set X D fT,a C T,’a C Tg. By the local
affine completeness of A, rf can be interpolated by a polynomial operation on X, so
there exists s 2 R such that rk2(a C T) D sk(a C T), for k D 0,1,’. Since a C T is not
a torsion element, this implies that r D s and r’2 D s’, thus r D 0. This is impossible
since we have assumed that r ¤ 0. �

11.5.2 Affine Completeness of Modules of Rank Greater
than One

In this section we generalize some affine completeness results for modules of rank
1 over a commutative domain to modules over a commutative domain. We first give
preliminary lemmas that we will need for our main result given by Theorem 5.9.

Lemma 5.6. Let A be a module over a ring R. Assume that for any d in A the
annihilator of the quotient A/Rd is the same as the annihilator of A. Then A is affine
complete if and only if any unary Con(A)-compatible function on A is a polynomial.
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Proof. We only have to prove that binary Con(A)-compatible operations on A are
polynomials [4, Theorem 5.2.3]. Let f be a binary Con(A)-compatible operation.
Without loss of generality, we may assume that f(0,0) D 0. Since unary Con(A)-
compatible operations are polynomials, for each x, y 2 A there exist some elements
of R, ky, lx, by, cx such that

˚
f .x; y/ D kyx C by (11.1)

ff .x; y/ D lxy C cx (11.2)

Since f(0,0) D 0, we must have b0 D c0 D 0. This shows that f(x,0) D cx D k0x and
f(0,y) D by D l0y for all x, y in A. From (11.1) and (11.2) we obtain the equality:

�
ky � k0

�
x D .lx � l0/ y: (11.3)

We want to prove that the both sides of Eq. (11.3) are 0. Suppose that this condition
is not satisfied, then, for example, the left side is not identically zero. Therefore there
exists d in A such that the left side of (11.3) is not 0. Thus kdx ¤ k0x for some x.
In A/Rd the right side of (11.3) vanishes and the left side must also vanish. This
shows that kd � k0 is in the annihilator of A/Rd. By hypothesis this annihilator is the
same as the annihilator of A which contradicts the fact that the left side of (11.3) is
nontrivial for x ¤ d. �

Lemma 5.7. Let A be a module over a commutative domain R. If A contains a free
submodule of rank � 2, then A is affine complete if and only if each unary Con(A)-
compatible function on A is a polynomial.

Proof. We only need to prove that for each d in A the annihilator of A is the same
as the annihilator of A/Rd, that is, they are all trivial. Let a be an element of the
annihilator of A/Rd. Choose a free pair fx,yg in A. We have ax D td and ay D sd for
some t and s in R. Clearly sax � tay D 0. Hence, due to the freeness of fx,yg we have
ta D sa D 0. Observe that, since R is a domain, then a ¤ 0 implies that t D s D 0. We
conclude that ax D 0 which is absurd. Hence a D 0 and this leads to the result that
the annihilator of A/Rd is trivial. �

The next corollary is direct consequence of Lemma 5.7.

Corollary 5.8. Let A be a module over a commutative domain R. If A contains
a free submodule of rank �2, then every quotient of A by a cyclic submodule is
unbounded.

We are now able to prove a general result about modules containing submodules
of rank greater than 2. It shows also that modules of rank greater than 2 are affine
complete.

Theorem 5.9. Let A be a module over a commutative domain. If A contains a free
direct summand of rank �2, then A is affine complete.
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Proof. Suppose that A has a free direct summand of rank at least 2. Then A contains
a submodule of rank at least 2. Hence A satisfies the hypothesis of Lemma 5.7; so
it is sufficient to prove that every unary function on A, compatible with Con(A),
is a polynomial operation. From the hypothesis we know that A D A1 ˚ F where
F is a free module with rank �2. By the compatibility of f with Con(A), there are
functions g: A1 ! A1 and h: F ! F compatible with Con(A1) in A1 and with Con(F)
in F, respectively, such that

f .x C y/ D g .x/C h .y/ (11.4)

for every x 2 A1 and y 2 F. We may also suppose that f is zero preserving, which
is the case for g and h. But F is affine complete by [5, Theorem 5.2.8], hence
there exists r in R such that h(y) D ry for every y in F. Moreover, the compatibility
of f and g, respectively, with Con(A) and Con(A1) implies that, for every x 2 A1

and y 2 F, there exists sx C y, tx 2 R such that f(x C y) D sx C y(x C y), g(x) D txx.
Equation (11.4) thus implies that sx C yx D txx, sxCyy D ry for all x 2 A1 and y 2 F.
Taking y as a nonzero element we see that sx C y D r for all x 2 A1 and y 2 F. We
hence get that f(x C y) D r(x C y) for all x 2 A1 and y 2 F.
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Chapter 12
A Codimension-Four Singularity with Potential
for Action

Bernd Krauskopf and Hinke M. Osinga

Abstract We review how a conjectural codimension-four unfolding of the full
family of cubic Liénard equations helped to identify the central singularity as an
excellent candidate for the organizing center that unifies different types of spiking
action potentials of excitable cells. This point of view and the subsequent numerical
investigation of the respective bifurcation diagrams led, in turn, to new insight on
how this codimension-four unfolding manifests itself as a sequence of bifurcation
diagrams on the surface of a sphere.

Keywords Cubic Lienard equations • Spiking action potentials • Unfolding •
Codimension-four singularity • Pseudo-plateau bursting • Bogdanov–Takens
bifurcation • Homoclinic bursting

In 1952, Hodgkin and Huxley [9] formulated the first realistic mathematical model
describing the flow of electric current through the surface membrane of a squid
giant axon. Their system produces a sequence of single action potentials, which
are equivalent to the relaxation oscillations generated by a simple RCL-circuit
(involving a resistor, capacitor, and inductor) such as the Van der Pol oscillator
[19, 20]. Electrically excitable cells can exhibit many other bursting patterns, which
can loosely be interpreted as a series of spikes (action potentials) modulated by
a slower relaxation oscillation. The bursting is related to and controlled by ionic
currents through channels in the cell wall, which evolve on much slower time scales.
Rinzel [15, 16] was the first to explain such bursting patterns mathematically in
terms of an underlying bifurcation diagram with a hysteresis loop, which is traversed
by one or more slowly varying parameters; see also [10].

The bursting pattern one finds depends on the codimension-one bifurcations
that are encountered, that is, on the relative positions of saddle-node bifurca-
tions, Hopf bifurcations, and homoclinic bifurcations that are crossed by the
slowly varying parameter. These occur naturally near codimension-two Bogdanov–
Takens bifurcations in two-parameter bifurcation diagrams of planar systems which,
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therefore, arise as “minimal models” of bursting patterns of action potentials. The
classification of bursting patterns was formalized further by studying the transitions
between them via parameter dependence of the underlying bifurcation diagram.
In particular, the organization of the two-parameter bifurcation diagram under
consideration changes when the Bogdanov–Takens bifurcation itself undergoes a
bifurcation, which is an event of codimension-three where a higher-order normal-
form term vanishes. This realization is behind the work of Bertram et al. [2], who
presented many known bursting patterns as generated by horizontal parameter paths
through a two-parameter bifurcation diagram of the Chay–Cook model, which is a
paradigm model that retains many physiological features and is representative for a
large class of realistic models of neuronal spiking. They realized that this bifurcation
diagram of the Chay–Cook model can be found as a slice in the three-parameter
unfolding of the degenerate Bogdanov–Takens singularity of focus type (or nilpotent
cusp of order three)—one of the classic codimension-three bifurcations, with a two-
dimensional center manifold, whose unfolding in planar vector fields was presented
in [6]; see already case (M) of Fig. 12.1. This point of view was made explicit
in the paper by Golubitsky et al. [7], who proposed a classification of bursting
patterns in terms of the smallest codimension of a singularity in whose unfolding
it can be generated (via a path of one or more slow parameters). In particular, they
showed that the so-called fold/homoclinic or square-wave bursting, which involves
a hysteresis loop generated by a saddle-node and homoclinic bifurcation, requires an
underlying codimension-three singularity, such as the degenerate Bogdanov–Takens
singularity of focus type considered in [2].

It emerged that one type of bursting, called pseudo-plateau bursting—first
analyzed in [17] and also known as fold/subHopf bursting—could not be found
in the unfolding of this codimension-three singularity. This was puzzling because,
for biological reasons, it was considered to be related to fold/homoclinic bursting,
which is part of the patterns found in [2]. Recent work by Osinga et al. [14] showed
that all the relevant types of bursting, including fold/subHopf and fold/homoclinic
bursting, can be found near a doubly degenerate Bogdanov–Takens singularity,
whose conjectural unfolding was presented in 1998 by Khibnik et al. [11]. As a
result, this codimension-four singularity and its unfolding has enjoyed particular
interest from mathematical biologists. Quite amazingly, it emerged as a natural
organizing center that unifies an entire class of different bursting patterns of
electrically excitable cells.

We now proceed in Sect. 12.1 by recalling the candidate unfolding of the doubly
degenerate Bogdanov–Takens bifurcation from [11] and review in Sect. 12.2 the
results from [14] on the identification of fold/subHopf bursting near this singularity.
Section 12.3 then presents numerical results on the nature of the codimension-four
unfolding in terms of bifurcation diagrams on spheres. In particular, we show that
all topologically different bifurcation diagrams can be found readily on spheres
of appropriate radii; this point of view is particularly helpful for identifying two-
parameter sections that feature certain bursting patterns of interest. We summarize
and draw some conclusions in Sect. 12.4.
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Fig. 12.1 Sketch of the suggested transition with increasing �4 between codimension-three
unfoldings on a sphere in .�1; �2; �3/-space of (12.1); the associated phase portraits can be
found in Fig. 12.2. Reproduced with permission from [11]. ©1998 IOP Publishing & London
Mathematical Society. All rights reserved

12.1 Candidate Four-Parameter Unfolding

In the final section of the paper [11] the four-parameter planar vector field

� Px D y;
Py D �1 C �2x C �3y C �4xy � x3 � x2y;

(12.1)
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was considered. It represents a candidate unfolding that provides a connection
between two codimension-three bifurcations: the case �4 D 0, which was the main
subject of study in [11], and the case of sufficiently large�4, when (12.1) represents
a nilpotent focus of codimension-three as studied in [6]. In fact, when the four
parameters �i are allowed to vary over the reals, (12.1) represents the full family
of cubic Liénard equations.

The point of view taken in [11] was to consider the transition of the three-
parameter bifurcation diagram of (12.1) in .�1; �2; �3/-space as the parameter �4
is varied between these two known cases of �4 D 0 and �4 sufficiently large.
The respective three-parameter bifurcation diagram for a given value of �4 can be
represented conveniently on the surface of a sphere in .�1; �2; �3/-space (due to
cone structure of the unfolding); it changes qualitatively on the sphere at non-generic
values of �4, which include different types of codimension-three singularities.
Importantly, there are also quite a number of events of codimension “one-plus-two,”
where a bifurcation curve moves over a codimension-two bifurcation point on the
sphere.

Figure 12.1 reproduces from [11] the respective series of sketched bifurcation
diagrams (A) to (M) on the sphere (represented in stereographic projection),
and Fig. 12.2 reproduces the associated phase portraits. The starting point is the
reflectionally symmetric bifurcation diagram (A) for �4 D 0; details and the proof
of correctness can be found in [11]. There is then a first event of codimension
“one-plus-two,” when the curve D of double (or saddle-node) limit cycles crosses
over the Bogdanov–Takens bifurcation point BTl, yielding bifurcation diagram (B).
At (C) there is a cuspidal loop formed by the separatrices of a Bogdanov–Takens
point, which then gives bifurcation diagram (D). The curve D then moves up and
at (F) there is a limit cycle of multiplicity four; it is unfolded by a swallow tail
yielding (G). In a sequence of events of codimension “one-plus-two” the curve H of
Hopf bifurcation then moves past the Bogdanov–Takens bifurcation BTl and beyond
to give bifurcation diagram (H), and then the degenerate Hopf point on H moves
across the saddle-node bifurcation curve Sl to result in (I). Then there is a cusp of
order three, yielding (K), after which the cusp point on D moves over Sl to yield
bifurcation diagram (L). Finally, there is a homoclinic loop of order three and the
final result is bifurcation diagram (M), which is that of the nilpotent focus; compare
with [1, 6].

This sequence of unfoldings (A)–(M) in Fig. 12.1 takes into account the in-
formation available at the time, especially that on different codimension-three
bifurcations. The existence of the cuspidal loop had been studied in [22] and, except
for the limit cycle of multiplicity four, the stated codimension-three bifurcations
had been noted explicitly in [3]; moreover, rigorous numerics in [8, 13] showed the
existence of a small region with four limit cycles. The overall unfolding of (12.1) in
Fig. 12.1 was constructed abstractly in [11] in the spirit of a “minimal model” and
it is, hence, conjectural, specifically in terms of the exact sequence of codimension-
three and codimension-one-plus-two bifurcations.
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Fig. 12.2 Phase portraits of (12.1) in the open regions of the bifurcation diagrams in Fig. 12.1;
adding a 0 to the number corresponds to a rotation of the phase portrait by � . Reproduced with
permission from [11]. ©1998 IOP Publishing & London Mathematical Society. All rights reserved

12.2 Identification of Fold/Sub-Hopf Bursting

Bertram et al. [2] considered a two-parameter slice near the degenerate Bogdanov–
Takens singularity of focus type, where the two saddle-node curves are parallel
vertical lines. This corresponds to the .�1; �3/-plane with �2 D const < 0 and
�4 sufficiently large in (12.1); see case (M) in Fig. 12.1. The different bursters
were identified as different horizontal parameter paths in this parameter plane, along
which �1 changes back and forth slowly.

In a similar spirit, Osinga et al. [14] were guided by the bifurcation diagrams
in Fig. 12.1 and presented the fold/subHopf or pseudo-plateau burster by a suit-
able horizontal path on the relevant bifurcation diagram on the unit sphere in
.�1; �2; �3/-space for �4 D 0:75. Figure 12.3 reproduces from [14] the bifurcation
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diagram and the path on the unit sphere, as well as the time series and phase-space
representation of the ensuing fold/subHopf bursting. More specifically, the path is
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parameterized by �1 2 Œ�0:38; 0:38�, with �2 D
q
1 � �21 � �23, �3 D 0:1 and

�4 D 0:75. System (12.1) exhibits along this path the saddle-node bifurcation of
equilibria Sl, the homoclinic bifurcation Lr , the subcritical Hopf bifurcation H, and
the other saddle-node bifurcation of equilibria Sr. For consistency of presentation,
images from [14] are reproduced here with parameters and notation as used in [11].
In fact, in [14] �3 D �, �4 D b, and �1 has the opposite sign; moreover,
the curves Sl, Sr, H, D, Ll, Lb, and Lr here are referred to in [14] as SNl,
SNr, Hl or Hr, SNP, HCl, HCc, and HCr, respectively. The relevant features of
the bifurcation diagram on the sphere in Fig. 12.3a correspond qualitatively to a
situation in between cases (G) and (H) in Fig. 12.1; a difference is that (G) and (H)
feature a cusp bifurcation point on the curve D of double limit cycles in Fig. 12.3.

The bursting pattern is generated by introducing a slow variable defined by

z.t/ D ��1.t/ WD �0:38 sin ." t/;

where the time-scale separation parameter " D 0:1 > 0 is small (but not so
small that delayed bifurcation phenomena are encountered). The x-coordinate of
system (12.1) represents the membrane potential, and it exhibits the particular
bursting pattern known as fold/subHopf or pseudo-plateau bursting [17]; its time
series is shown in Fig. 12.3b together with the time series of the slow variable
z.t/ D ��1.t/.

The biologically distinguishing aspects of fold/subHopf bursting are its relatively
short period and the small amplitudes of the spikes on the plateau [17]; see also
[12, 18, 21]. In contrast to fold/homoclinic or square-wave bursting, the spikes are
not stable oscillations but rather transient oscillations that damp down to an upper
steady state. Hence, if the time-scale separation parameter is too small, the time
series will consist of relaxation oscillations instead. Fold/subHopf bursting only
arises if the contraction to the upper steady states is weak relative to the speed of the
slow variable.

Figure 12.3c shows the underlying periodic oscillation overlayed onto the
bifurcation diagram in the .z; x/-plane. As can be checked, fold/subHopf bursting
cannot be generated by any path on the two-parameter bifurcation diagram in [2].

Indeed, it has been argued in [14] that fold/subHopf or pseudo-plateau bursting
can only be generated in the vicinity of a codimension-four singularity, such
as that in system (12.1). However, the bursting patterns of fold/subHopf and
fold/homoclinic bursting are considered very similar and it is often hard to
distinguish the two types in experiments. Indeed fold/homoclinic or square-wave
bursting was found in [2] near the degenerate Bogdanov–Takens singularity of focus
type, that is, in system (12.1) for sufficiently large �4. Hence, it seems natural to
expect the existence of a parameter path in the full four-dimensional parameter space
of system (12.1) that generates fold/homoclinic bursting. Furthermore, it should be
possible to deform and/or move this path such that the type of bursting changes
to fold/subHopf bursting. In order to find such a transition, the four-dimensional
.�1; �2; �3; �4/-space of system (12.1) was explored in [14] by setting �4 D 0:75
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and considering horizontal or vertical sections chosen appropriately relative to the
bifurcation diagram on the sphere. The section for �2 D 0:0675 (not shown;
see [14]) gives an associated bifurcation diagram in the .�1; �3/-plane that is exactly
the one near the degenerate Bogdanov–Takens singularity of focus type presented
in [2].

Furthermore, the choice �3 D �0:09 gives a bifurcation diagram in the
.��1; �2/-plane that features paths for both fold/subHopf and fold/homoclinic
bursting, thus, providing the sought connection between the two. This is illustrated
in Fig. 12.4 reproduced from [14] (with ��1 along the horizontal axis, owing to
the mentioned sign change). Panel (a) shows the section for �3 D �0:09 relative
to the unit sphere for �4 D 0:75; panel (b) shows the corresponding bifurcation
diagram in the .��1; �2/-plane together with the paths for fold/subHopf and
fold/homoclinic bursting; and panel (c) is an enlargement to highlight the transition
to fold/homoclinic bursting. An important observation in Fig. 12.4b is the presence
of two codimension-two Bogdanov–Takens points, denoted BTr and BTfar

r , on the
saddle-node bifurcation curve SNr. The point BTfar

r has the same local unfolding as
BTr in Fig. 12.3, but the Hopf bifurcation in the local unfolding of BTr in Fig. 12.4b
is supercritical. This implies that the bifurcation diagram on a sphere of sufficiently
small radius R � 1 in Fig. 12.4a is, in fact, topologically that near the degenerate
Bogdanov–Takens singularity of focus type, that is, case (M) of Fig. 12.1.

12.3 Transitions of Bifurcation Diagram on a Sphere

The analysis in [14] started with the hypothesis that there exists a bifurcation
diagram on the unit sphere for a suitable choice of �4 in system (12.1) such that
both fold/subHopf and fold/homoclinic bursting could be generated by paths on this
sphere. As we argued above, this is not actually the case. Moreover, these initial
investigations indicated that the transition from case (A) to case (M) does exist,
but that the sequence of codimension-three bifurcations on a sphere in .�1; �2; �3/-
space is not exactly as proposed in [11] and shown in Fig. 12.1. In particular, it seems
that there is no cusp point on the curve D of double limit cycles that disappears in a
codimension-three singularity on Lb in between case (L) and case (M) in Fig. 12.1.

As was mentioned at the end of Sect. 12.2, the bifurcation diagram on the
sphere changes topologically when its radius is decreased. We now consider this
aspect of the codimension-four unfolding in more detail. As was already known
from [11], for sufficiently large �4 the bifurcation diagram on a sphere with a fixed
radius is that of the nilpotent focus of codimension-three as presented in [6]. Here
sufficiently large �4 means sufficiently large relative to �1, �2, and �3. Hence, for
any given value of �4 > 0 this is satisfied on any sphere with sufficiently small

radius R D
q
�21 C �22 C �23, which has the following interesting consequence.

Suppose one considers a sphere of a given fixed radius, say, with R D 1, with
the bifurcation diagram of case (A) in Fig. 12.1 on it. As soon as �4 > 0, then
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bifurcation diagram (M) of the nilpotent focus of codimension three can already
be found inside this given sphere on a sufficiently small sphere close to the central
singularity! This observation means, in particular, that one finds the entire transition
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of bifurcation diagrams from case (A) to case (M) on nested spheres when one
reduces the radius R down to zero.

Of course, it is also natural to keep the radius of the chosen sphere of interest
constant, say, again at R D 1. As �4 is increased from 0, case (M) can be found
on larger and larger spheres until it can be found on the chosen sphere. Hence, the
entire transition is “pushed through” the chosen sphere. In other words, increasing
�4 while considering a sphere of a given radius is equivalent in this sense with
decreasing the radius of the sphere considered while keeping �4 > 0 constant.

Another consequence of this observation is the following. For �4 D 0 the
bifurcation diagram in .�1; �2; �3/-space has cone structure, so is topologically
the same on any sphere. For �4 > 0 it also has cone structure, but only in a
small neighborhood of the origin, meaning that one finds case (M) of Fig. 12.1,
the unfolding of the nilpotent focus of codimension three, on any sufficiently small
sphere. Any of the other bifurcation diagrams (B) to (L) in Fig. 12.1, on the other
hand, do not correspond to bifurcation diagrams in .�1; �2; �3/-space that have
cone structure. In particular, this means that the exact sequence of transitions one
finds from case (A) to case (M) depends on the properties of the family of closed
convex surfaces around the origin (such as spheres, ellipses, or parallelepipeds).

Since it is arguably the most natural choice, we consider in what follows the
bifurcation diagram on a sphere in .�1; �2; �3/-space, where we concentrate on the
transition from about case (G) to case (M) in system (12.1); this corresponds to the
transition from the sphere in Fig. 12.3, where fold/subHopf bursting was found, to
the limiting case of the degenerate Bogdanov–Takens singularity of focus type.

We first present in Fig. 12.5 topological sketches of this transition, as observed
numerically via the computation of bifurcation diagrams on spheres that will be
presented next. In the topological sketches in Fig. 12.5 the projections are reflected
with respect to the vertical axis when compared with Fig. 12.1; in other words,
the view is from outside the sphere, so that the projections better resemble the
bifurcation diagrams on the sphere shown in Figs. 12.3 and 12.4, and in similar
figures below. The starting point in Fig. 12.5 is case (G’), which is as the bifurcation
diagram in Fig. 12.3a. Case (G’) lies “in between” cases (G) and (H) in Fig. 12.1
as far as the position of the Hopf curve H is concerned, but notice the absence of
a cusp point on curve D. The curve H then crosses the end points of the curves Lb

and Lr on Sl, yielding cases (H’) and (I’) of Fig. 12.5, respectively. Subsequently,
there is a sign-change in the higher-order terms of the Bogdanov–Takens bifurcation
BTr to give case (K’), where the relative position of the curves H and Lr changes
locally near BTr. An important aspect is that there are now three degenerate Hopf
bifurcation points on the curve H. The one inside the area bounded by Sl, and Sr

then moves through Sl to give case (K”). The associated curve D of double periodic
orbits then disappears when the respective two degenerate Hopf points that bound it
come together and disappear; this codimension-three doubly degenerate Hopf point
does not seem to involve additional bifurcations, but its further analysis is beyond
the scope of this contribution. The final result is case (M), the bifurcation diagram
of the degenerate Bogdanov–Takens singularity of focus type.
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Fig. 12.5 Transition for increasing �4 as found numerically for system (12.1); shown are
projections of unfoldings on a sphere in .�1; �2; �3/-space for fixed �4

Figure 12.6 presents numerical evidence of the transition in the form of images
of computed bifurcation diagrams of system (12.1) for �4 D 1 on spheres of radius
R D 1, R D 0:7, R D 0:5, and R D 0:2; these computations were performed with
the packages MATCONT [4] and AUTO [5]. The bifurcation diagram in Fig. 12.6a
for R D 1 is as case (H’) in Fig. 12.5. Figure 12.6b shows the bifurcation diagram
on the sphere of radius R D 0:7, where the Hopf curve H has dipped below the end
point of Lr on Sl, as is sketched in case (I’) of Fig. 12.5. Figure 12.6c for R D 0:5 is
past the type change of the Bogdanov–Takens point BTr; moreover, the associated
curve D is already quite short and lies entirely outside the region bounded by Sl,
and Sr , as in case (K”) of Fig. 12.5. Finally, for R D 0:2, as shown in Fig. 12.6d, we
find case (M).

For illustration purposes, each sphere in Fig. 12.6 was rendered at the same size,
irrespective of its actual radius. Figure 12.7, on the other hand, shows how the
respective bifurcation diagrams are nested by rendering all four computed spheres
in .�1; �2; �3/-space in one and the same image. Also shown is the vertical line of
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cusp bifurcations and the curve of Bogdanov–Takens bifurcations, which meet in
a tangency at the origin, that is, at the nilpotent focus of codimension three (since
�4 D 1 > 0). Taken together, Figs. 12.6 and 12.7 constitute numerical evidence in
support of the revised transition presented in Fig. 12.5.

12.4 Conclusions

Unfoldings of codimension-four singularities of vector fields are sometimes seen as
quite esoteric. The conjectural unfolding of codimension-four that was originally
presented in 1998 was almost a bit of an afterthought in the paper [11], which
deals with a codimension-three singularity that gives rise to symmetric bifurcation
diagrams in planar sections nearby that had been found in numerous applications.
Quite a number of years later, in 2012, it provided the solution presented in [14]
to the question of where pseudo-plateau or fold/subHopf bursting can be found and
whether and how it is connected to fold/homoclinic bursting.

The important aspect here is that the conjectural unfolding was presented in [11]
as a sequence of bifurcation diagrams on spheres that constitutes the transition from
the codimension-three unfolding considered in [11] to the well-known degenerate
Bogdanov–Takens bifurcation of focus type that was known from [6]. As a result
of the renewed interest in this transition we realized that the transition is, in some
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sense, not so well defined. More specifically, the bifurcation diagrams found in the
transition on convex surfaces (such as spheres or ellipses) are not uniquely defined
due to the lack of cone structure. On the other hand, it is quite natural to consider
spheres in parameter space, in which case an amended sequence of transitions can be
determined with the help of numerical continuation tools. The associated bifurcation
diagrams are encountered on nested spheres as soon as �4 > 0 in (12.1), rather like
Russian dolls. As �4 is increased they emerge one-by-one on a chosen fixed sphere,
such as the unit sphere in .�1; �2; �3/-space.

We presented here only the part of the codimension-four unfolding that is relevant
for generating the different types of bursting action potentials considered in [14].
Indeed, the complete transition between the codimension-three singularity for �4 D
0 and the degenerate Bogdanov–Takens bifurcation of focus type can be represented
in the same spirit in terms of bifurcation diagrams on nested spheres for�4 D 1. The
overall sequence of bifurcation diagrams, to be presented elsewhere, will shed light
on the manifestation of the relevant bifurcations known from [11] and the study [3]
of an alternative parameterization.
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Chapter 13
Towards the General Theory of Global Planar
Bifurcations
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Abstract This is an outline of a theory to be created, as it was seen in April
2015. An addendnum to the proofs at the end of the chapter describes the recent
developments.

Keywords Global bifurcations • Generic families • Large bifurcation supports •
Polycycles

Theory of planar bifurcations has a long and glorious history. It may be split into two
parts: local and nonlocal bifurcations. Local bifurcations appeared first in the works
of Poincaré. The most famous of them is the Poincaré–Andronov–Hopf bifurcation.
The second part deals with the bifurcations of separatrix polygons, the polycycles.
The simplest ones are separatrix loops of hyperbolic saddles and homoclinic curves
of saddle-nodes. This part may be also called “semilocal bifurcations” because the
perestroikas occur in arbitrary narrow neighborhoods of the polycyles. After the first
founding works of Andronov and his school, this part started to develop intensively
since 1980s. We plan to show that there is a third part, not yet developed, that may
be called “global bifurcations.” The main new effect in this theory may be called
“sparking saddle connections.” They were discovered by Malta–Palis in the early
1980s and described below.

This survey is aimed to outline the first steps in the development of this theory.
All the new theorems below are “theorems”: the proofs are not yet written.
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13.1 Global Bifurcations in Generic One-Parameter Families

13.1.1 Basic Definitions

In 1985 Arnold suggested a program of development of the global bifurcation theory
in the plane. Begin with some classical notions necessary to understand his text
quoted below.

Definition 1. Let M be a manifold, not necessary closed, and B be a parameter
space, a ball in Rk. Two families of vector fields fv"g; fw"g on M with the parameter
space B 3 " are topologically equivalent provided that there exists a skew product
homeomorphism

H W B � M ! B � M;

."; x/ 7! .h."/;H."; x//;

where h is a homeomorphism B ! B, such that for any " 2 B the homeomorphism
H."; �/ is an orbital topological equivalence between the vector fields v" and wh."/.

Definition 2. Two families above are weakly equivalent if in the previous definition
H is no more a homeomorphism . Namely, H is no more continuous in ", remaining
a homeomorphism of M to M for any fixed ".

Definition 3. A local family of vector fields on M is a germ on M � f0g of families
fv".x/g; x 2 M; " 2 .B; 0/. That is, the base B is replaced by a germ of a base
.B; 0/. Local topological equivalence and weak equivalence of local families is a
correspondent equivalence of some representatives of these families provided that
the corresponding homeomorphism of the bases brings the critical parameter value
zero of one base to that of another.

Definition 4. A local family of vector fields on M is globally (weakly) structurally
stable provided that it is (weakly) topologically equivalent to all the nearby families.
The term globally may be omitted. It recalls that the family is considered in the
whole phase space.

13.1.2 Arnold’s Program

The text in this subsection, except for the last sentence is a quotation from the survey
[1].

Although even local bifurcations is high codimensions (at least three) on a
disc are not fully investigated, it is natural to discuss nonlocal bifurcations in
multiparameter families of vector fields on a two-dimensional sphere. For their
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description, it is necessary to single out the set of trajectories defining perestroikas
in these families.
Definitions and Examples (V.I. Arnol’d 1985)

Definition 5. A finite subset of the phase space is said to support a bifurcation if
there exists an arbitrarily small neighborhood of this subset and a neighborhood
of the bifurcation values of the parameter (depending on it) such that, outside this
neighborhood of the subset, the deformation (at values of the parameter from the
second neighborhood ) is topologically trivial.

Example 1. Any point of a saddle connection (including both saddles) supports a
bifurcation, even if one adds to it any other points. In a system with two saddle
connections an interior point on one connection supports a bifurcation only with a
point on the other connection.

Definition 6. The bifurcation support of a bifurcation is the union of all minimal
sets supporting a bifurcation (“minimal” means not containing a proper subset that
supports a bifurcation).

Example 2. In a system with one saddle connection (bifurcating in a standard
way), the support coincides with the saddle connection, including its endpoints, the
saddles.

Definition 7. Two deformations of vector fields with bifurcation supports †1 and
†2 are said to be equivalent on their supports if there exist arbitrarily small
neighborhoods of the supports, and neighborhoods of the bifurcation values of the
parameters depending on them, such that the restrictions of the families to these
neighborhoods of the supports are topologically equivalent, or weakly equivalent,
over these neighborhoods of bifurcation values.

Example 3. All deformations of vector fields with a simple saddle connection are
equivalent to each other, independent of the number of hyperbolic equilibria or
cycles in the system as a whole.

Example 4. Four-parameter deformations of a vector field close to a cycle of
multiplicity four are weakly topologically equivalent, but, generally, not equivalent:
the classification of such deformations with respect to topologically equivalence
involves functional invariants.

Conjecture (V.I. Arnol’d 1985). For a generic l-parameter family of vector fields
on S2:

1) On their supports, all deformations are equivalent to a finite number of
deformations (the number depends only upon l).

2) Any bifurcation diagram is (locally) homeomorphic to one of a finite number
(depending only upon l) of generic examples.

3) There exist versal and weakly structurally stable deformations.
4) The family is globally weakly structurally stable.
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5) The bifurcation supports consist of a finite number (depending only upon l) of
(singular) trajectories.

6) The number of points in a minimal supporting set is bounded by a constant
depending only on l.

Certainly proofs or counterexamples to the above conjectures are necessary for
investigating nonlocal bifurcations in generic l-parameter families.

The bifurcation supports defined in this subsection will be sometimes called
small supports, because large supports will be defined below.

13.1.3 Sparking Saddle Connections

The key feature of the global planar bifurcations are the connections named in the
title.

The simplest example of sparking saddle connections occurs for one semistable
cycle, with two hyperbolic saddles: one inside and one outside the cycle. The
following theorem appears first in [16]; we quote it from [7].

Theorem 1. Suppose that a vector field X in the plane contained in a generic one-
parameter family X".X0 D X/ has a semistable limit cycle L. Let this field has two
hyperbolic saddles: one inside and the other outside the cycle. Suppose that the
separatrix of one saddle winds to the cycle as t ! C1 and the separatrix of the
other one does not the same as t ! �1. Then on one side of " D 0, there exist two
limit cycles that tend to L as " ! 0: one is stable and the other is unstable. For "
on the other side of " D 0, there exist no limit cycles near L. Moreover, there exists
a sequence of parameter values of the form

"n D 1

n2
.c C o.1//; c ¤ 0;

such that the field X"n has a saddle connection for any n large enough.

The bifurcation diagram is not an isolated point (as it happens in all the
classical examples of generic one-parameter families), but rather a sequence of
points converging to the critical parameter values. Subsequent points in this
sequence are marked by subsequent natural numbers: "m; "mC1; : : : . The vector field
corresponding to "n has a saddle connection that makes n circuits around the interior
saddle, before closure.

13.1.4 Another Kind of Sparking Saddle Connections

Breaking of a homoclinic loop of a saddle may also generate sparking saddle
connections.
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Fig. 13.1 Two phase
portraits of a separatrix loop
with a saddle inside
corresponding to the critical
parameter values; the sinks
inside the loops are not shown

Theorem 2. Suppose that a planar vector field X met in a generic one-parameter
family has a separatrix loop, and the saddle value (trace of the linearization) is
negative. Suppose that this vector field has a unique saddle inside the separatrix
loop, with one or two incoming separatrixes winding towards the separatrix loop of
the first saddle in the negative time, and exactly two other singular points, a sink and
a source, inside the loop, see Fig. 13.1. Then on one side of the critical parameter
value the field has a stable hyperbolic cycle with one saddle inside and one outside.
On the other side of the critical value there is a countable number of bifurcation
points related to saddle connections between the two saddles mentioned above. The
number of circuits of these connections around the interior saddle tends to infinity
as the parameter tends to the critical value.

13.1.5 The Definitions Revisited

Let us describe the bifurcation support of the Malta–Palis bifurcation. A minimal
set supporting the bifurcation consists of one point on the semistable cycle. Indeed,
for any neighborhood of this point there exists a neighborhood of the critical
parameter value such that for any non-zero bifurcation parameter value from the
second neighborhood the corresponding sparkling saddle connections cross the first
neighborhood . The representative of the local Malta–Palis family having the second
neighborhood as the base, with the first neighborhood deleted from the phase space,
is topologically trivial.

The union of all the minimal sets supporting the bifurcation, that is, the
bifurcation support, is the semistable cycle only. In its small neighborhood sparkling
saddle connections are not visible at all. So the bifurcations in this neighborhood do
not describe the bifurcations in the Malta–Palis family.

Consider another example, namely, a vector field with a homoclinic trajectory of
a saddle-node of multiplicity two in assumption that this field occurs in a typical
one-parameter family. The minimal set supporting the bifurcation is unique in this
case. It is the saddle-node singular point itself. Indeed, the vector field in any
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domain that contains this point is structurally unstable. On the other hand, the
same vector field in the domain with a neighborhood of the saddle-node deleted
is structurally stable because it is met in a typical one-parameter family and thus
has no more degeneracies. Hence, the bifurcation support consists of one point, the
saddle-node itself. Yet, the bifurcation, the generation of a limit cycle, happens in a
neighborhood of the whole homoclinic curve. The bifurcation support is not relevant
to this bifurcation.

This is a reason to introduce new definitions.
Below we give a definition of a large bifurcation support. It is motivated by the

following natural question: what does it mean that two bifurcations in two local
families of vector fields on the 2-sphere are essentially the same? The answer: the
local families are weakly equivalent makes no sense. We may extend two phase
portraits with the same bifurcation by different structurally stable elements, and
the local families would become nonequivalent.

The definition of the large bifurcation support below is aimed to answer the
question above. It is adjusted, in particular, to the bifurcations of sparking saddle
connections and homoclinic curves of saddle-nodes. We deal first with nonlocal
families, then with local ones.

Definition 8. Consider a family of vector fields on a sphere S2 with a parameter
base B. Let D 	 B be the bifurcation diagram of the family. A closed set C 	 D�S2

is called a bifurcation carrier if for any neighborhood U of C and for any point
b 2 D the corresponding local family on .B; b/ � S2 n U is topologically trivial;
moreover, the carrier is the minimal closed set with this property.

Example 5. A bifurcation carrier in the Malta–Palis bifurcation is a countable set
having exactly one point on each of the sparkling separatrixes, and one point of the
semistable cycle.

Definition 9. A large bifurcation support of type one for a nonlocal family is a
minimal closed set that contains all the carriers of the bifurcations in the family.

Example 6. The large bifurcation support of type one in the Malta–Palis family
consists of all the sparkling saddle connections with the saddles included, plus the
semistable cycle, all located in D � S2 over the corresponding bifurcation values.
This support consists of an infinite number of the phase curves in the family.

We do not define the large bifurcation support of type two for nonlocal families,
and pass to local families instead.

Definition 10. A large bifurcation support of type one for a local family with zero
critical value of the parameter is a minimal closed set † 	 f0g � S2 with the
following properties. For any neighborhood U of† in S2 there exists a neighborhood
V of 0 in B such that the large bifurcation support of the representative of the local
family with the base V belongs to V � U.

Example 7. The large bifurcation support of type one in the local Malta–Palis
family consists of the semistable cycle and the separatrixes that wind to and from
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it, the corresponding saddles included. This support consists of a finite number of
orbits, namely, five: two saddles, two separatrixes, and a cycle.

Example 8. There are two different large bifurcation supports of type one for the
local family described in Theorem 2. They are shown in Fig. 13.1.

This is the first part of the definition of the large bifurcation support. The second
part is the following:

Definition 11. A singular curve of a vector field on a two sphere is a curve for
which the phase portrait of the field in any neighborhood of the closure of the curve
is topologically nonequivalent to that for any other phase curve with a nearby initial
condition.

Example 9. A separatrix of a hyperbolic saddle, or a boundary curve of a parabolic
sector of a saddle-node, is a singular curve.

Definition 12. Consider a local family and take all the non-hyperbolic singular
points of the critical vector field. Consider all the sequences of cycles and singular
curves in the product B � S2 that correspond to the parameter values converging
to zero, and whose distance to at least one of these singular points tends to zero.
The upper topological limit of these sequences (the set of all points whose arbitrary
neighborhoods intersect infinitely many terms of the sequence) constitutes the large
bifurcation support of type two.

Example 10. The large bifurcation support of type two for the polycycles apple and
halfapple shown in Fig. 13.7 below consists of these polycycles.

Definition 13. A large bifurcation support for a local family is the union of the
corresponding large bifurcation supports of type one and type two.

Definition 14. The bifurcations in two local families are called equivalent, if these
families are weakly equivalent in some neighborhoods of their large bifurcation
supports, and the linking homeomorphism over each base point is an isotopy, that
is, may be extended to the homeomorphism of the whole sphere.

Problem 1. Prove that for any k there is an open and dense set in the space of
k-parameter local families of vector fields in the two sphere such that for any
fixed family from this set the following holds. There exists a neighborhood of the
fixed family such that for any two local families from this neighborhood the week
topological equivalence of these two families in some neighborhoods of their large
supports implies the same equivalence of the families on the whole sphere, provided
that the vector fields corresponding to the critical parameter values are orbitally
topologically equivalent.

Theorem 3. All the bifurcations that occur in generic nonlocal one-parameter
families of vector fields on the two sphere have at most countable bifurcation
carriers.
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Fig. 13.2 Different locations of Cherry cells

Theorem 4. All the generic local one-parameter families of vector fields in S2 have
large bifurcation supports that consist of a finite number of phase curves.

Theorem 5. There are exactly two classes of topological equivalence of bifurca-
tions in the local families described in Theorem 2. Their large bifurcation supports
are shown in Fig. 13.1.

13.1.6 Classification of Global Bifurcations in the Local
One-Parameter Families on the Sphere

In all the classification theorems below the bifurcations in local families are
considered in some neighborhood of their large supports.

Theorem 6. There are exactly six generic one-parameter families in the plane, up
to topological equivalence, whose “small” representatives, that is nonlocal families
corresponding to sufficiently small neighborhoods of the critical parameter value,
have finite carriers. These carriers consist of exactly one point.

These six bifurcations are all classical:
– breaking of a saddle-node singular point having no homoclinic loop;
– breaking of a saddle-node singular point having a homoclinic loop;
– Andronov–Hopf bifurcations ;
– vanishing or splitting of a semistable limit cycle;
– breaking of a separatrix loop of a hyperbolic saddle;
– breaking of a saddle connection of two different saddles.
All other bifurcations occur due to sparkling saddle connections.
Note that an arbitrary finite number of saddles may be involved in the formation

of sparking saddle connections related both to semistable cycles and to saddle
connections. So, an infinite number of pairwise topologically nonequivalent generic
1-parameter families occurs, see Fig. 13.3.
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Fig. 13.3 Complicated large
bifurcation supports

Theorem 7. There is an infinite number of local one-parameter families of vector
fields on the two sphere pairwise topologically nonequivalent on their large
supports. There are two classes of them having an infinite bifurcation diagram:
those that correspond to semistable cycle and to a separatrix loop with sparkling
saddle connections. The large supports of the corresponding bifurcation consist
of the cycle (in the first case), the separatrix loop (in the second case), and the
separatrixes of the hyperbolic saddles that wind onto them either in the positive,
or in the negative time, in both cases. Two local one-parameter families of vector
fields on a two sphere whose large bifurcation support contains a separatrix loop
are topologically equivalent if the large supports of the corresponding bifurcations
are isotopic: may be transformed one into another by a homeomorphism of the
ambient sphere, and the vector fields corresponding to the critical parameter values
are orbitally topologically equivalent.

There is but a finite number of classes of topological equivalence of local one-
parameter families whose large bifurcation supports contain a semistable limit
cycle and are isotopic, provided that the vector fields corresponding to the critical
parameter values are orbitally topologically equivalent.

The large supports in the theorem above always consist of a finite number of
phase curves. Examples are shown in Fig. 13.3. The combinatorics of these supports
may be very complicated. May be, it might be described by some oriented graphs.

Example 11. The large support of the bifurcation in the Malta–Palis family consists
of the semistable cycle and the separatrixes of two saddles that wind onto it from
inside and from outside. Four different cases occur, see Fig. 13.2.

Note that Cherry cells enter the game, and their different location corresponds to
topologically nonequivalent families.

We conclude this section by the following:

Conjecture 1. If two generic one-parameter local families of vector fields on the
two sphere are equivalent in the neighborhoods of their large supports, then they are
also equivalent in the basins of the attraction/repulsion of their (small) supports.
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13.2 Bifurcations in Two-Parameter Families

13.2.1 Local Bifurcations

There is one (and only one!) local bifurcation in the two-parameter families that
is quite new in comparison with those previously studied. This is the Bogdanov–
Takens bifurcation. Its investigation was a revolution in the bifurcation theory, and
opened a new period of its development.

Note that other famous two-parameter families in the plane:
the families investigated by Zoladek;
the so-called resonances 1W2; 1W3 investigated by Horozov;
the resonance 1W4, investigated by many authors but not yet fully studied,

are factorizations of higher dimensional problems, and do not belong to the subject
of our survey.

More traditional are problems that occur in codimension 1, but have supple-
mentary degeneracies. These are bifurcations of saddle-nodes and Andronov–Hopf
bifurcations. Nothing interesting occurs in these families with two parameters.
Three singular points may be generated in the first family instead of two. Two limit
cycles occur in the second family instead of one.

Let us say a few words about the multiparameter case. Floris Takens investigated
generation of limit cycles in the unfolding of a vector fields

v.z/ D iz C azkC1zk C : : : ; a ¤ 0 (13.1)

written in its resonant normal form. Such a field occurs in generic k-parameter
families. Its unfolding generates no more than k limit cycles.

An unfolding of a vector field on a line

v.x/ D axkC1 C : : : ; a ¤ 0

that occurs in generic k-parameter families can generate no more that k C 1 singular
points.

The phase portraits of these families in both cases are easily investigated.
A striking discovery was made by Roussarie: topological classification of these

families has functional moduli provided that the number of parameters is high
enough: three for the Andronov–Hopf family and four for the bifurcation of a
multiple limit cycle.

Theorem 8 (Roussarie [18]). For a generic three-parameter unfolding of a vector
field (13.1) with k D 3 there exists a functional invariant of topological classifica-
tion. This invariant is a one-parameter family of diffeomorphisms of a cycle.

On the other hand, any generic unfolding of a germ (13.1) is weakly topologically
equivalent to one of a finite number of “standard” local families. So in what follows
we speak about weak equivalence only.
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Fig. 13.4 A rigged loop: a
separatix loop of a hyperbolic
saddle with a zero saddle
value (trace of eigenvalues)

Fig. 13.5 A lune (left); a
heart (right)

Fig. 13.6 An eight shaped
figure (collection of three
polycyles: two separatrix
loops and their union)

Fig. 13.7 An “apple and
halfapple”

13.2.2 Semilocal Bifurcations in Two-Parameter Families

At the end of 1980s a Moscow graduate student Anna Kotova collected a “zoo”
of all polycycles that may occur in generic two- and three-parameter families [14].
There are “individual polycycles” (separatrix polygons homeomorphic to a circle),
“collections of polycycles” (finite unions of individual polycycles), and one “en-
semble”: a continuous family of polycycles that occur in a generic three-parameter
family. We postpone the description of this ensemble to the next section.

Later on, S. Trifonov investigated the cyclicity of all individual polycyles in the
“Kotova zoo,” [22].

Here we present these results for codimension two. All the polycycles below
have there own names. They are shown in Figs. 13.4, 13.5, 13.6, 13.7, 13.8, 13.9
and listed in the figure captions.

Trifonov proved that no polycycle in this list has cyclicity larger than 2. On
the other hand, my former student Grozovski investigated the bifurcations of the
collection “apple,”and found that three limit cycles may be generated by a two-
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Fig. 13.8 Boundary
homoclinic loop of a
saddle-node

Fig. 13.9 Twin saddle-nodes

parameter unfolding of this collection. This is the simplest case when the number of
cycles generated is larger than the number of parameters.

Let us say a few words about the bifurcations of a separatrix loop. It is
investigated now in full generality for the families with an arbitrary number of
parameters. In modern terms the result is the following:

Theorem 9. A separatrix loop that occurs in a generic k-parameter family may
generate no more than k limit cycles.

This result was obtained by Andronova–Leontovich in the late 1940s; the sketch
of the proof with the main ideas was published in [15]. Unfortunately, she never
published the full proof. A complete proof of this result was obtained by Roussarie
(an upper estimate) [17]. In [8] its sharpness was proved.

13.2.3 Polycycles and Sparkling Separatrixes

Conjecture 2. Sparkling separatrixes may occur for all the polycyles listed above,
except for the twin saddle-node.

Problem 2. Describe the corresponding global bifurcations. In particular, are
Arnold’s Conjectures 3 and 4 true for two-parameter families?

13.2.4 Synchronized Sparkling Saddle Connections

Consider a semistable limit cycle with two saddle separatrixes winding on it from
outside and two winding from inside, Fig. 13.10.

The question is: when two saddle connections may occur simultaneously under
the bifurcation in this family?

As proved in [16], this cannot happen in generic one-parameter families. But it
can happen in two-parameter ones [7, 9]. Let us describe this bifurcation in more
detail.
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Fig. 13.10 Large bifurcation
support for a family with
synchronized saddle
connections

Consider the parameter depending Poincaré map P of the semistable cycle
corresponding to some transversal � . Denote the two parameters by "; ı. Then the
Poincaré map will be P.x; "; ı/; x 2 � . Suppose that " is “responsible” for the
breaking of the semistable cycle: the semistable cycle corresponds to " D 0 and
vanishes for " > 0. By Ilyashenko and Yakovenko [10], there exists a vector field
w";ı on � that generates P.�; "; ı/ as a time one phase flow transformation in the
domain " � 0, where the cycle vanishes. Moreover, the coordinate x on � and the
parameters may be so chosen that

w";ı.x/ D x2 C "

1C a."; ı/x
:

Let Ej."; ı/ and Ij."; ı/ be the x-coordinates of the intersections of the separatrixes
with � , continuous in "; ı. Separatrixes passing through Ej."; ı/ andIj."; ı/ coincide
iff for some natural k,

Pk.Ej."; ı/; "; ı/ D Ij."; ı/:

This is equivalent to

gk
w";ı
.Ej."; ı// D Ij."; ı/: (13.2)

If this happens simultaneously for j D 1 and 2, then the two separatrixes coincide
simultaneously, they “meet” after k turns from Ej to Ij. Consider a “time function”
corresponding to the field w";ı (x0 2 � is arbitrary):

T.x; "; ı/ D
Z x

x0

d.�/

w";ı.�/
(13.3)

Equation (13.2) is equivalent to
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Fig. 13.11 The bifurcation
diagram in a family with two
synchronized saddle
connections

T.Ij."; ı/; "; ı/� T.Ej."; ı/; "; ı/ D k: (13.4)

If these equalities hold for a sequence ."k; ık/ ! 0 as k ! 1, we have
a sequence of simultaneous (twin) saddle connections corresponding to ."k; ık/;
the number of winds of this connections near the cycle that have vanished is k.
Equation (13.4) for j D 1 and 2, imply

T.E1."k; ık/; "k; ık/�T.E2."k; ık/; "k; ık/ D T.I1."k; ık/; "k; ık/�T.I2."k; ık/; "k; ık/:

Passing to the limit, as " ! 0; ı ! 0, we get

T.E1; 0; 0/� T.E2; 0; 0/ D T.I1; 0; 0/� T.I2; 0; 0/:

Consider a function

S."; ı/ D ŒT.E1; ."; ı/; "; ı/ � T.E2."; ı/; "; ı/� � ŒT.I1."; ı/; "; ı/ � T.I2."; ı/; "; ı/�:

(13.5)

The previous equality implies

S.0; 0/ D 0:

Let @S
@"
.0; 0/ ¤ 0. Then the “synchronization curve” S D 0 is transversal to

" D 0. Hence, the synchronization curve intersects transversally the curves of saddle
connections between E1 and I1 making k turns, k ! 1. The intersection points
correspond to synchronized connections between E2; I2 and E1; I2. The bifurcation
diagram is shown in Fig. 13.11.

We will turn back to this bifurcation in the study of quasigeneric families.

13.2.5 Sparkling Saddle Connections for Two Semistable
Cycles

In two-parameter families two semistable cycles may occur. Any finite number of
saddles may be added “for free.” Consider first the bifurcation with two separate
semistable cycles and four saddles involved, see Fig. 13.12.
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Fig. 13.12 Two separate
semistable cycles

Fig. 13.13 Bifurcation
diagram in a family with two
separate semistable cycles,
domain " � 0; ı � 0

Fig. 13.14 Two semistable
cycles, one inside another

Let " D 0 correspond to the left semistable cycle, and ı D 0 to the right one. The
bifurcation diagram in the domain " � 0; ı � 0 is shown in Fig. 13.13.

Second, consider two semistable cycles one inside another, with two saddles, one
outside the larger one, another inside the smaller one. Sparkling saddle connections
will occur when both cycles disappear, Fig. 13.14.

13.2.6 Synchronized Connections and Complicated
Bifurcation Diagrams in Two-Parameter Families

Consider now a more complicated case: two semistable cycles one inside another,
with a saddle I inside, E outside, and B between them.

The large bifurcation support of this family is schematically shown in Fig. 13.15.
The bifurcation diagram is presented in Fig. 13.15 too.

The “horizontal” curves correspond to connections between the saddles I and
B. Black vertical curves correspond to connections between B and E that involve
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Fig. 13.15 More complicated location of saddles and bifurcation diagram in the domain
" � 0; ı � 0

Fig. 13.16 Simultaneous
saddle connections in the
family considered

the lower separatrix L of B; the red ones correspond to those that involve the upper
separatrix U.

Any of these lines is marked by an integer number: a number of full turns
made by the connection around the interior saddle I. The intersections between
vertical and horizontal curves correspond to simultaneous saddle connections, see
Fig. 13.16.

There are three connections in Fig. 13.16: one between I and B, one between B
and E, and the third is a compound connection between I and E, the union of the
previous two.

There are also hyperbola-shaped arcs in the bifurcation diagram that correspond
to the connections between E and I. They are marked by the number n of full circuits
that they make around I. These curves pass through the points of synchronized
connections with indexes k and m; in this case, n D k C m. We call them “arcs
of long connection.”

There are alternating thick and thin arcs on the horizontal curves. Thin ones
correspond to the case when the unstable separatrix of E enters the interior domain
of the (vanished) small semistable cycle; thick ones correspond to the case when
this separatix enters the Cherry cell of B, see Fig. 13.17.
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Fig. 13.17 Role of Cherry
cells

Fig. 13.18 Infinite series of
large supports that correspond
to an infinite set of
topologically nonequivalent
germs of bifurcation diagrams

13.2.7 An Infinite Number of Samples of the Bifurcation
Diagrams

Theorem 10. There exists an infinite number of topologically nonequivalent germs
of bifurcation diagrams in generic two-parameter families of vector fields in the two
sphere.

Sketch of the Proof. As an example one may suggest a series of local families with
the large bifurcation supports consisting of two semistable cycle, one saddle I inside
both, one in between, and j saddles outside both cycles. The large support of the
corresponding bifurcation is shown in Fig. 13.18.

We claim that the germs of the bifurcation diagrams for these families are
topologically nonequivalent for different values of j. In more detail, denote the
saddle inside the inner cycle by I, the one between the cycles by B, and the saddles
outside both cycles, by E1; : : : ;Ej. Let "; ı be the parameters of the family such
that " D 0 .ı D 0/ corresponds to the presence of the larger (respectively, smaller)
semistable cycle. Then, in the domain " > 0; ı > 0, there are two sequences
of pairwise disjoint “vertical” and “horizontal” curves. The first sequence tends
to " D 0 and corresponds to the sparkling saddle connections between B and Ej
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that occur when the larger semistable cycle vanishes. The second sequence tends to
ı D 0 and corresponds to sparkling saddle connections between I and B.

The two sequences together form sort of a grid †, with the rectangle-like cells.
It is similar to the one shown in Fig. 13.13, but a bit more complicated. The nodes
of this grid correspond to simultaneous saddle connection, see Fig. 13.16.

A third family ƒ of bifurcation curves occurs. It corresponds to saddle connec-
tions between I and Ej. The bifurcation curves of this family are similar to those
shown in Fig. 13.14. But they are dashed because of the presence of the Cherry cells
between two cycles, see Fig. 13.15, left.

The whole bifurcation diagram is similar to the one shown in Fig. 13.15, right,
but more complicated. There is an infinite number of cells of the grid † that tend to
zero and intersect exactly j arcs of the third familyƒ. No cell intersects more than j
arcs.

This number j is a topological invariant of the bifurcation diagram constructed.
Thus a countable number of germs of pairwise topologically nonequivalent germs
of bifurcation diagrams in generic two-parameter families on the sphere occurs.

This completes the sketch of the proof of Theorem 10. ut

13.2.8 Quasigeneric Families with a Continuum
of Topologically Nonequivalent Bifurcation Diagrams

Intuitively speaking, a quasigeneric family is a “corrupted generic family”: one (and
exactly one) genericity condition is violated.

Theorem 11. There exists a class of quasigeneric two-parameter families whose
bifurcation diagram has a numeric modulus of the topological classification.
Consequently, for this class of local families there exists a continual set of pairwise
topologically nonequivalent germs of bifurcation diagrams .

Sketch of the Proof. Consider a two-parameter family with two separate semistable
cycles and six saddles involved, see Fig. 13.19.

Fig. 13.19 Large support of
a quasigeneric family whose
bifurcation diagram has
numeric modulus of
topological classification
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Fig. 13.20 Bifurcation
diagram with a numeric
modulus of topological
classification

Let the saddles depend on the parameters "; ı, as well as the “first” intersection
points of the separatrixes winding to and from the first cycle. Denote these points
by E1."; ı/ and E2."; ı/ for exterior saddles, I1."; ı/ and I2."; ı/ for interior saddles.
Let w";ı be the same as in Sect. 13.2.4, and S be the synchronization function (13.5).
One of the genericity assumptions for the family is

S.0; 0/ … Z:

In this case, the bifurcation diagram in the family is like the diagram in Fig. 13.13.
Suppose now that the genericity assumption above fails; for instance,

S.0; 0/ D 0:

In a quasigeneric family the curve �:

S."; ı/ D 0

is transversal both to " D 0 and ı D 0 at zero. The bifurcation diagram for this
family is a combination of two: the one shown in Fig. 13.11, and the other from
Fig. 13.13. It is plotted in Fig. 13.20.

Roughly speaking, the slope of the curve � at zero is a topological invariant of
the bifurcation diagram described above.

Let us make a precise statement. Let T.x; "; ı/ be the time function corresponding
to the Poincaré map of the first cycle, see (13.3), and R.x; "; ı/ be the similar
function for the second cycle. Let us make a parameter change:

ˆ W .RC; 0/ � .RC; 0/ ! .RC;1/ � .RC;1/

defined as follows:

."; ı/ 7! �."; ı/; �."; ı/;

where

�."; ı/ D T.E1."; ı/; "; ı/� T.I1."; ı/; "; ı/;

�."; ı/ D R.E."; ı/; "; ı/� R.I."; ı/; "; ı/;

The saddle connections between E1 and I1 that intersect�1 kC1 times correspond
to the line � D k. Similar connections between E and I correspond to � D k. So the
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bifurcation diagram of the family contains the grid:

� 2 Z
C C k0; � 2 Z

C C m0

for some k0;m0 2 ZC.
The numbering of the lines of the grid is defined up to adding O.1/. So the curve

ˆ.�/ may be given by a function

� D '.�/:

It is easy to prove that there exists a limit

! D lim
�!1

'.�/

�
:

We claim that this limit is an invariant of the topological classification of the
bifurcation diagrams of the class considered. Indeed, for any integral value � D k >
0, the integer part of '.k/ is the number m of the horizontal line such that ˆ.�/
intersects the segment

f.�; �/j� D k; � 2 Œm;m C 1�g:

This number is topologically well-defined modulo an additional term O.1/ non
depending on m. Then ' C O.1/ is well defined topologically. Hence, the limit
! is topologically well defined. In other words, ! is a topological invariant of the
bifurcation diagram of the family. This completes the sketch of the proof of the
theorem. ut

13.3 Global Bifurcations in Generic Three-Parameter
Families

As of now, this subject is almost untouched. An exclusion is the so-called ensemble
“lips,” a continual set of polycycles that occurs in generic three-parameter families.

13.3.1 Ensemble “Saddle Lips”

Consider a vector field v0 with the following three degeneracies: v0 has two saddle-
nodes whose parabolic sectors are turned “face to face”: a continuum of the phase
curves that emerge one sector enter the other one; moreover, the separatrixes of the
hyperbolic sectors of the saddle-nodes coincide, see Fig. 13.21.
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The field v0 has a continual family of polycycles: they all contain a mutual
separatrix of the two saddle-nodes , the saddle-nodes included, and the phase curves
that emerge one saddle-node and enter the other one, one curve for each polycycle.

This family of polycycles is bounded by the separatrixes of two saddles: E lying
outside the polycycles described above, and I lying inside. The large bifurcation
support for the unfolding of the ensemble “saddle lips” is the union of all the
polycycles of the ensemble.

The bifurcation diagrams of this family may be unboundedly complicated.
Namely, for a graph � of any generic monotonic function Œ0; 1� ! Œ0; 1� there
exists a vector field v0 in the class described above, with the following property.
The bifurcation diagram of a generic unfolding of v0 is a surface with singularities.
It contains a surface homeomorphic to a cone over the Legendre transformation of
� , see Fig. 13.22.

This surface may have an arbitrary large number of self intersections. Thus, there
exists an infinite number of bifurcation diagrams for such families; these diagrams
are pairwise topologically nonequivalent [14].

Bifurcations in the ensemble “lips” without two saddles E and I is studied
in [14]. Bifurcations in the same ensemble with the saddle E included and I deleted
is studied in [20]. The global bifurcations in the ensemble described are not yet
studied. In particular, it is unclear, whether this ensemble admits sparkling saddle
connections, whatever it means.

In the English translation of Arnold et al. [1] there is a remark made by Arnold
that follows the text quoted above:

Recently A. Kotova and V. Stanzo found a counterexample to Conjecture 2. Little is now
known: even for families of structurally stable and quasigeneric vector fields, Conjectures 3
and 4 (the only nontrivial in this case) are unproved.

In what follows, we will discuss these conjectures in full generality, not only for
families of structurally stable and quasigeneric vector fields.

Fig. 13.21 Ensemble
saddle—lips
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Fig. 13.22 A piece of a
bifurcation diagram for the
ensemble “saddle—lips”

Fig. 13.23 An ensemble “shark”

13.3.2 Ensemble “Shark”

In three-parameter families a new kind of sparkling saddle connections may occur.
Consider a polycycle with at least one saddle-node singular point on it. Suppose that
a separatrix of some saddle enters the parabolic sector of this saddle-node. Then,
after the saddle-node disappears, the separatrix may start to wind in a neighborhood
of a polycycle that have vanished, and produce a variety of saddle connections with
the other separatrixes.

As an illustration consider an ensemble “shark,” see Fig. 13.23. The name comes
from the figure that resembles the mouth full of teeth. When both saddle-nodes
disappear, an enormous variety of saddle connections may occur. It is unclear
whether or not the generic unfolding of such ensembles is structurally stable.
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Fig. 13.24 A collection
“apple-loop”

Fig. 13.25 Large bifurcation
support with the “apple-loop”
collection as a subset: vector
field v0

13.3.3 Extended Collection “Half-Apple and Loop”

A collection of polycycles named in the title may occur in a generic three-parameter
family. It is shown in Fig. 13.24. There are three degeneracies for the field v0 with
such a collection:

– a separatrix loop of a hyperbolic saddle E;
– a saddle-node S;
– a connection between S and E: the separatrix of the hyperbolic sectors of the

saddle-node coincides with the incoming separatrix of S.
Note that the outcoming separatrix of E may enter the parabolic sector of the saddle-
node S without increasing the rate of degeneracy.

Separatrixes of hyperbolic saddles winding from the saddle loop inside it do not
increase the rate of degeneracy, see Fig. 13.25.

The same holds true for the separatrixes that enter the saddle-node S from outside
the polycycle . When the saddle-node disappears, and the connections are broken, a
lot of sparkling saddle connections may occur, see Fig. 13.26.

Problem 3. Are the generic unfoldings of the ensemble “shark” or a polycycle
“halfapple and loop” with extra saddles structurally stable?

The abundance of saddle connections that may occur makes the positive answer
very plausible.
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Fig. 13.26 A possible phase portrait in the unfolding of the field v0 from the previous picture

13.3.4 Kotova Zoo Revisited

A polycycle that may occur in a generic k-parameter family is defined not only by its
geometry. For instance, the first polycycle in the Kotova zoo for the two-parameter
families is a separatrix loop with a zero saddle value, see Fig. 13.4.

Definition 15. A rigged polycycle is a polycycle with some additional restrictions
on the jets of the corresponding vector field at the vertexes or at the edges of the
polycycle.

We mention here some rigged polycycles from the Kotova zoo for three-parameter
families.

– A separatrix loop with a zero saddle value and zero Melnikov integral:

I D
Z




div v dt;

where 
 is the separatrix loop, t its time parametrization.
– An eight shaped figure, see Fig. 13.6, with a zero saddle value.

Definition 16. A large support that contains rigged polycycles is called rigged large
supports

Definition 17. Two rigged large supports are equivalent if they are isotopic, and
the isotopy respects the rigging relations: these relations are the same for the phase
curves of two supports that are mapped to each other by the isotopy.

These definitions will be used in the next section.
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13.4 Global Bifurcations with Many Parameters

No results are known to the author in general theory of global planar bifurcations
with the number of parameters greater than three. Here we state some problems
only.

13.4.1 Supports and Their Basins

Definition 18. A basin of an invariant set A of a planar vector field is the set of all
points whose ˛- or !-limit sets belong to A.

Example 12. All the phase curves that wind to or from a semistable cycle belong to
the basin of this cycle. Their union equals this basin.

Problem 4. Is it true that the large bifurcation support of a local finite-parameter
family belongs to the basin of the small bifurcation support?

Conjecture 3. The answer is “yes” for generic one-parameter families.

By definition, two local families are weakly equivalent when they are equivalent in
some neighborhoods of their large bifurcation supports. The following problem is
aimed to increase the domain where two families are equivalent.

Problem 5. Is it correct that two weakly equivalent local families are in fact weakly
equivalent in the basins of their large bifurcation supports?

Again, the answer seems to be affirmative for the generic one-parameter families.

13.4.2 Bifurcational Stability

Recall our main result about generic one-parameter families.
Two local one-parameter families are topologically equivalent iff the large sup-

ports of the corresponding bifurcations are isotopic and do not contain semistable
cycles; moreover, vector fields corresponding to zero parameter value are orbitally
topologically equivalent, see Theorem 7.

This property gives rise to the following definition:

Definition 19. A class of local families is (strongly) bifurcationally stable provided
that the following holds. Two local families of this class are topologically equivalent
iff their large supports of the corresponding bifurcations are isotopic, and vector
fields corresponding to zero parameter values are orbitally topologically equivalent.
The latter assumption is required in two definitions to follow. This class is
bifurcationally stable if the equivalence above follows from the isotopy of the rigged
large supports. This class is weakly bifurcationally stable if the isotopy class of the
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rigged large support corresponds to a finite number of topological types of local
families.

Problem 6. Describe (strongly and weakly) bifurcationally stable classes of local
families.

We expect that the “majority” of local families are not bifurcationally stable in any
sense. The more interesting are the classes that are bifurcationally stable.

Conjecture 4. The following local families are bifurcationally stable:
k-parameter families with a rigged separatrix loop that may be met in generic
k-parameter but not in .k � 1/-parameter families;
k-parameter families with a homoclinic curve of a saddle-node of the
multiplicity k.

Problem 7. What may be said about the bifurcational stability of local families
whose small supports are rigged polycycles met in generic two-parameter families?

In contrast to the global bifurcation theory of k-parameter families, the semilocal
one, related to bifurcations of polycycles, is more elaborated.

13.5 Bifurcations of Polycycles

This is a rich theory, and we discuss here only a few results from it. We start with
the polynomial case.

13.5.1 Bifurcational Approach to the Hilbert’s 16th Problem

This approach is due to Roussarie. It is related to the following form of Hilbert’s
16th problem:

Problem 8. Prove that for any n there exists H.n/, a Hilbert number, such that a
planar polynomial vector field of degree no greater than n can have no more than
H.n/ limit cycles.

For what follows, we recall some well-known definitions.
An oriented polycycle is a finite union of cyclically enumerated singular points

(the vertexes) and phase curves that connect the vertexes (the edges) with the
following properties:

– the vertexes with the different numbers may coincide; the edges may not;
– the edge number j connects the vertexes Oj and OjC1;
– the time orientation of the edge number j is from Oj to OjC1;
– the first vertex (edge) follows the last one (cyclicity of the enumeration).
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Semilocal bifurcations are considered in the neighborhoods of the polycycles. Two
semilocal bifurcations of polycycles are equivalent if there exists two neighborhoods
of the polycycle where two local families are weakly topologically equivalent.

Definition 20. A limit cycle is generated by an unfolding of a polycycle if there
exists a family of limit cycles depending on the parameter of the unfolding such that
the limit cycles of the family tend to the polycycle in sense of the Hausdorff distance
as the parameter tends to the critical value.

Definition 21. The cyclicity of a polycycle in a family is the maximal number of
limit cycles that may be generated by this polycycle in this family.

Conjecture 5 (Roussarie, [19]). Any polycycle that occurs in a family of planar
polynomial vector fields of degree no greater than given n has a finite cyclicity.

Theorem 12 ([19]). The above conjecture implies the existence of Hilbert number
H.n/ for any n.

13.5.2 The Dumortier–Roussarie–Rousseau Program

In [2] the authors listed all the rigged polycycles that may occur in the family of the
quadratic vector fields. Their number appeared to be 121. It is sufficient to prove
the finite cyclicity of any of them in the family of quadratic vector fields , in order
to prove the existence of H.2/. Up to now more than 80 polycycles are studied and
their finite cyclicity is proved. This partial success is a strong indication that H.2/
really exists.

13.5.3 The Arnold’s Program for the Polycycles

It seems that the Arnold’s program is perfectly adjusted to the study of bifurcations
of polycycles . But the problem seems to be very difficult. Indeed, the Conjecture 2:
Any bifurcation diagram is (locally) homeomorphic to one of a finite number
(depending only upon l) of generic examples is closely related to the following:

Conjecture 6 (Hilbert–Arnold Conjecture, [6]). For any k, a polycycle met in a
typical k-parameter family, has but a finite cyclicity.

13.5.4 Present Status of the Hilbert–Arnold Conjecture

The conjecture is proved for the so-called elementary polycycles: those that have
vertexes as singular points whose eigenvalues are not simultaneously zero.
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Theorem 13 ([10]). Elementary polycycles met in a typical k-parameter families
have but a finite cyclicity.

Later on this cyclicity was estimated by V. Kaloshin, [12, 13]

Theorem 14 ([11]). The cyclicity of an elementary polycycle met in a typical k-
parameter family is no greater than 225k2 .

Kaloshin suggested to estimate the cyclicity of polycycles with a fixed number n
of vertices that may be met in generic k-parameter families. Kaleda and Schurov
obtained this estimate.

Theorem 15 ([11]). The cyclicity of an elementary polycycle with n vertexes met
in a typical k-parameter family is no greater than C.n/k3n.

13.5.5 Finiteness Theorem for Generic k-Parameter Families

There’s no doubt that the following theorem is true:

Theorem 16. A vector field met in typical k-parameter family has but a finite
number of limit cycles .

Yet the theorem remains unproved.

13.5.6 Back to the Hilbert–Arnold Problem

One of the equivalent forms of the finiteness theorem for limit cycles is the following
nonaccumulation theorem:

Theorem 17 ([3, 5]). Limit cycles of an analytic vector field cannot accumulate to
a polycycle of this field.

Classical Seidenberg–Lefshez–Bendixson–Dumortier theorem reduces this state-
ment to the case when the polycycle in the theorem is elementary.

The question arises: may the general Hilbert–Arnold problem be reduced to
Theorem 13 by sort of desingularization in the families?

13.5.7 Desingularization in the Families

The question above was investigated by S. Trifonov.

Definition 22. Say that a family of vector fields is quasielementary if any field
of the family either has but a finite number of singular points and they are all
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elementary (such fields are called elementary) or has a whole curve of singular
points, and becomes elementary after a division of its components by a common
non-invertible analytic factor.

Theorem 18 ([21]). Any analytic finite-parameter family of vector fields, after a
special desingularization process, may be transformed to a quasielementary family
of vector fields.

13.5.8 Trifonov Phenomenon

Note that a quasielementary family may not be equivalent to a family of elementary
vector fields. Indeed, a vector field with a curve of singular points may correspond to
an isolated parameter value. This particular vector field may be transformed into an
elementary one by the division by a non-invertible function. But the nearby vector
fields have no common factor of their components. Thus the whole quasielementary
family cannot be transformed into an elementary one. This effect called the Trifonov
phenomenon prevents the reduction of the general Hilbert–Arnold problem to
Theorem 13.

13.5.9 Back to the Arnold’s Program

Definition 23. A nest of a planar vector field with a finite number of singular points
in an open subset Z in the phase plane such that

– Z is homeomorphic to an annulus;
– the boundary curves of the annulus Z are limit cycles;
– Z contains no singular points of the field.

A nest is said to be maximal if it is not a proper subset of another nest.

Definition 24. Consider vector fields v1 and v2. Let Zj be the union of maximal
nests of vj, j D 1; 2. We say that v1 and v2 are equivalent modulo limit cycles if the
restriction of v1 to R n Z1 is orbitally topologically equivalent to the restriction of
v2 to R2 n Z2 (the bar denotes the closure of the set).

Definition 25. Two families fv"g and fw"g of vector fields in the total spaces B �M
and B0 � M0 are weakly equivalent modulo limit cycles , if there exists a map

H W B � M ! B0 � M; ."; x/ 7! .'."/; h".x//;

where h" is a homeomorphism M ! M0 not necessary continuous in ", such that h"
is a topological equivalence of v" and w'."/, modulo limit cycles .

The following problem is inspired by Arnold’s conjectures from Sect. 13.1.2:
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Problem 9. Is it correct that for any k there is but a finite number of pairwise
topologically nonequivalent generic k-parameter unfoldings of polycycles in their
neighborhoods modulo limit cycles?

Addendum. In a recent preprint: Yu. Ilyashenko, Yu. Kudryashov , I. Schurov,
An open set of structurally unstable families of vector fields in the two-sphere,
arXiv:1506.06797 [math.DS], an open set of three parameter families named in the
title was constructed.
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Chapter 14
Slow-Fast Dynamics and Its Application
to a Biological Model

Chengzhi Li

Abstract In this article we introduce some basic concepts about slow-fast
dynamics and its application to a biological model, that is a predator–prey system
with response functions of Holling type. The relevant studies were collaborated with
Kening Lu in Li and Lu (J Differ Equ 257:4437–4469, 2014) and with Huiping Zhu
in Li and Zhu (J Differ Equ 254:879–910, 2013). Another application to a medical
model, especially a SIS epidemic model with nonlinear incidence, was published
in Li et al. (J Math Anal Appl 420:987–1004, 2014), collaborated with Jiaquan
Li, Zhien Ma, and Huiping Zhu. The studies are based on singular perturbation
theory developed by F. Dumortier, R. Roussarie, and P. De Maesschalck, see, for
example, Dumortier and Roussarie (Mem Am Math Soc 121(577):1–100, 1996),
Dumortier and Roussarie (J Differ Equ 174:1–29, 2001), Dumortier and Roussarie
(Discrete Continuous Dyn Syst Ser S 2:723–781, 2009), De Maesschalck and
Dumortier (Trans Am Math Soc 358(5):2291–2334, 2006), De Maesschalck and
Dumortier (Proc R Soc Edinb A 138(2):265–299, 2008), De Maesschalck et al.
(Indag Math 22:165–206, 2011), and De Maesschalck et al. (C R Math Acad Sci
Paris 352(4):317–320, 2014).

Keywords Singular perturbation • Slow-fast cycle and its cyclicity • Slow
divergence integral • Predator–prey system

14.1 Singular Perturbation

Slow-fast dynamics appears in many problems and models with different time-
scales or different space-scales. Usually, the problems are expressed by differential
equations with a critical set of singularities, forming a curve, a surface, or a man-
ifold, and the most singularities on the critical set can be removed by perturbation
with a small parameter and some complex phenomenon happens. This is called the
singular perturbation.
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We consider the planar system

dx
dt D f .x; y; "/;
dy
dt D "g.x; y; "/;

(14.1)

where .x; y/ 2 R2, 0 < " � 1, f and g are Ck-functions with k � 3. If we divide the
second equation by ", and let � D "t, then the time t in the first equation and the time
� in the second equation have very different scales, since " is small. Hence, t is called
the fast time while � is called the slow time. We can expect that the movement is
very fast along x-direction and quite slow along y-direction. Using time � Eq. (14.1)
can be changed to

" dx
d� D f .x; y; "/;
dy
d� D g.x; y; "/:

(14.2)

If we let u D "x then system (14.2) becomes

du
d� D f . u

"
; y; "/;

dy
d� D g. u

"
; y; "/:

(14.3)

The scales of the space variables on the right-hand side are very different.
To study the behavior of the orbits for 0 < " � 1, we first consider the limiting

case " D 0. Then, (14.1) becomes the fast subsystem (the so-called layer equation)

dx
dt D f .x; y; 0/;
dy
dt D 0;

(14.4)

and (14.2) becomes the low subsystem (the so-called reduced equation)

0 D f .x; y; 0/;
dy
d� D g.x; y; 0/:

(14.5)

The set of singularities of system (14.4) is formed by

S D f.x; y/ j f .x; y; 0/ D 0g;
which is the phase space of (14.5). Usually S is a curve or a manifold in R2, and
is called a slow curve or slow manifold. We suppose that the critical curve S can
be expressed by y D '.x/ and has one or two non-degenerate fold point(s), that is,
' 0 D 0 and ' 00 ¤ 0 at the point(s). In this case S is called U-shaped or S-shaped,
shown in Fig. 14.1a and b, respectively, where the fast orbits of (14.4) are sketched
by solid lines and the slow curve is shown by dotted line.

By Fenichel theory [17], along the compact part of S where (14.4) is normally
hyperbolic, it is perturbed to a nearby invariant manifold S" of (14.1) for 0 < " � 1.
However, if S has a non-normally hyperbolic point (this happens at a fold point of
S) then the geometric singular perturbation theory does not apply. In a pioneering
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Fig. 14.1 The slow curve S. (a) U-shaped; (b) S-shaped

work [14], Dumortier and Roussarie first used the blow-up technique at fold
points, combined with the center manifold theory globally, successfully studied the
singular perturbations of van der Pol equation. They (also with P. De Maesschalck)
generalized their method and results to wide classes of systems, see, for example,
[10–13, 15, 16]. Krupa and Szmolyan [21, 22] used the blow-up method, provided
in [14], combined with Fenichel theory, also studied the singular perturbations of
planar systems, and give a standard form near a non-degenerate canard point. Let us
briefly introduce a part of their results, which will be used below.

We suppose that a fold point of S is located at p D .0; '.0// D .0; 0/, and
' 0.0/ D 0, ' 00.0/ > 0. To see the slow movement, restricted to the slow curve S,
from the second equation of (14.5) we have

' 0.x/
dx

d�
D g.x; '.x/; 0/: (14.6)

In fact, the point .x; y; "/ D .x; '.x/; 0/, x ¤ 0, is a normally hyperbolic singular
point of the vector field (14.1)+0 @

@"
. Hence, near the critical curve, outside a small

neighbourhood of the fold point .0; 0/, center manifolds are given by

y D '.x/C "h.x/C O."2/;

where the function h can be easily found. Now the equations in system (14.1) imply
that the dynamics inside such center manifolds can be given by

dx

dt
D "

�
g.x; '.x/; 0/

' 0.x/
C O."/

�
:

Dividing this equation by ", using � D "t, and letting " go to 0, we can find the slow
dynamics (14.6) for x ¤ 0.

If g.0; 0; 0/ ¤ 0, for example, g.0; 0; 0/ < 0, since ' 0.x/ D x' 00.0/C O.x2/, the
movement on slow curve for " D 0 is shown in Fig. 14.2a, and the perturbation of
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a b

Fig. 14.2 Behavior of the slow curve near a jump point for: (a) " D 0; (b) 0 < " 	 1

a b1 b2 b3

Fig. 14.3 Behavior of the slow curve near a canard point for: (a) " D 0; (b) 0 < " 	 1

the slow curve near the fold point for 0 < " � 1 is shown in Fig. 14.2b, see [14]
or [21, 22]. In this case the fold point is called a jump point.

If g.0; 0; 0/ D 0, for example, g.x; '.x/; 0/ D x C O.x2/, then along the slow
curve we have

dx

d�
D 1C O.x/

' 00.0/C O.x/
;

the movement on slow curve for " D 0 is shown in Fig. 14.3a, and the perturbation
of the slow curve near the fold point for 0 < " � 1 is shown in Fig. 14.3b1–b3,
see [14] or [21, 22]. In this case, the fold point is called a canard point, and it is
necessary to introduce one more parameter � D �."/ ! 0 as " ! 0, the middle
case (b2) of Fig. 14.3 corresponds to some function � D �c.

p
"/, see Theorem 3.2

of [22].
Now we consider a limit periodic set or slow-fast cycle, consisting of compact

pieces of slow curve and some compact parts of fast orbits for " D 0, that forms
a loop � , the orientation of the flow on � is counterclockwise (or clockwise if we
change some signs in above conditions), uniformly for all parts. We want to study
for 0 < " � 1 is there a periodic orbit 
" of the system (14.1) such that 
" ! �

(in Hausdorff distance) as " ! 0 ? and how many such 
" for a given � ? Roughly
speaking, the cyclicity of � is the maximal number of such 
" (see Definition 1.1).

It is clear from above analysis that if the slow curve is U-shaped and the unique
fold point is a jump point, then there is no such a slow-fast cycle in a neighborhood
of the fold point. In S-shaped case, if the two fold points are both jump points, the
only possible slow-fast cycle � is shown in Fig. 14.4a, and after perturbation the
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Γ γε

a b

Fig. 14.4 The relaxation oscillation: (a) " D 0; (b) 0 < " 	 1

a b c

Fig. 14.5 The slow-fast cycle. (a) without a head; (b) in transitory case; (c) with a head

only possible periodic orbit 
" is shown in Fig. 14.4b, and it is called relaxation
oscillation. Note that in this case, a singularity of the slow movement appears on
the middle part of the slow curve, denoted in Fig. 14.4 by a black point.

Appearance of a canard point is the most interesting case. We consider the
S-shaped case with a canard point (at the origin) and with a jump point. From
the cases (b1), (b2), and (b3) of Fig. 14.3, we may regard the slow-fast cycles
as Fig. 14.5a, b, and c, respectively. Of course, we suppose that there are no any
singularities of the slow movement on � (the canard point becomes a singularity
of system (14.1) after perturbation, surrounded by a possible limit cycles 
"). The
authors of [11] discussed the case if a singularity appears at a “corner” of � .

If the slow arcs, contained in a slow-fast cycle � , are all normally attracting
or all normally repelling, like in Fig. 14.4a, then � is called a common slow-fast
cycle. Otherwise, like anyone in Fig. 14.5, � is called a canard slow-fast cycle, see
Definition 5 of [12]. The cases in Fig. 14.5a and c are called canard slow-fast cycle
without a head and canard slow-fast cycle with a head, respectively, and Fig. 14.5b
is the critical case, it is called a transitory canard cycle, see [13].

For simplicity of notations we rewrite systems (14.1) as

X";� W

8
ˆ̂
<

ˆ̂:

dx

dt
D f .x; y; �; "/;

dy

dt
D "g.x; y; �; "/;

(14.7)
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where " � 0 is a small parameter, � D .�; N�/ is a multi-dimensional parameter
in a compact subset of R1 � Rp, �0 D .0; N�0/, f and g are Ck functions with
k � 3. Besides, for " D 0 the system has a U-shaped or S-shaped slow curve
f.x; y/jf .x; y; �0; 0/ D 0g with an equation y D '.x/, and the point .0; '.0// D
.0; 0/ is a canard point. In S-shaped case, one more fold point at the maximum
.x2; '.x2// is a jump point (x2 > 0 and '.x2/ > 0). In U-shaped case S D
Sl [ f.0; 0/g [ Sr and in S-shaped case S D Sl [ f.0; 0/g [ Sm [ f.x2; '.x2//g [ Sr,
see Fig. 14.1a and b.

To keep the normally hyperbolic property outside the fold points we assume that
for .�; "/ D .�0; 0/

(A1) In U-shaped case @f
@x < 0 on Sl and @f

@x > 0 on Sr; In S-shaped case @f
@x < 0 on

Sl [ Sr and @f
@x > 0 on Sm.

To keep the generic property of the canard point .0; 0/ and the jump point
.x2; '.x2//, we assume

(A2) @2f
@x2

¤ 0 and @f
@y ¤ 0 at both .0; 0; �0; 0/ and .x2; '.x2/; �0; 0/;

g.0; 0; �0; 0/ D 0, @g
@x .0; 0; �0; 0/ ¤ 0 and @g

@�
.0; 0; �0; 0/ ¤ 0;

g.x2; '.x2/; �0; 0/ ¤ 0.

Note that paper [10] discussed some non-generic cases. As we mentioned before,
to keep the fold points to be non-degenerate, we assume

(A3) '.0/ D ' 0.0/ D 0; ' 00.0/ > 0; '.x2/ D ' 0.x2/ D 0; ' 00.x2/ < 0.

Near the non-degenerate canard point .x; y/ D .0; 0/, X";� can be transformed to
the form (see Sect. 3.2 of [22]):

Px D �yh1 C x2h2 C "h3;

Py D "Œxh4 � �h5 C yh6�;
(14.8)

where hj D hj.x; y; �; "/ D 1CO.x; y; �; "/, for j D 1; 2; 4; 5, h3 D h3.x; y; �; "/ D
O.x; y; �; "/, and h6 D h6.x; y; �; "/, and the above-mentioned critical function
�c.

p
"/ has the expansion

�c.
p
"/ D �� "C O."3=2/; (14.9)

which is Ck-smooth in
p
" and where

�� D


1

8

@.h1 � 3h2 � 4h3 C 2h4/

@x
� h6
4

�ˇˇ
ˇ
ˇ
.x;y;�;"/D.0;0;0;0/

: (14.10)

Now we consider the two types of slow-fast cycles, shown in Fig. 14.6.

Definition 1.1. For fixed �0 D .0; N�0/ and s > 0, if there are � > 0 and "0 > 0,
such that for each " 2 .0; "0/, the system (14.7) with � D .�; N�/ has a limit cycle


�
" in the �-neighborhood of the slow-fast cycle �.s/, corresponding to ."; �/ D
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Fig. 14.6 The limit period set (slow-fast cycle) (a) �.s/; (b) Q�.s/

.0; �0/, and 
�" ! �.s/ (in Hausdorff distance) as " ! 0, then 
�" is called a canard
cycle, bifurcating from �.s/. The maximal number of such canard cycles, taking
into account of their multiplicities, is called the cyclicity of �.s/ for system (14.7)
at ."; �/ D .0; �0/ and is denoted by Cycl.X";�; �.s/; .0; �0//:

Remark 1.1. The above definition is about the cyclicity of the slow-fast cycle �.s/
without a head. If we change �.s/ to Q�.s/, then we obtain the definition of cyclicity
for the slow-fast cycle with a head.

Remark 1.2. It was proved in Theorems 3.3 and 3.5 of [22] that for the existence of
canard cycles if

A D


@.�h1 C 3h2 � 2h4/

@x
� 2h6

�ˇˇ
ˇ
ˇ
.x;y;�;"/D.0;0;0;0/

¤ 0; (14.11)

then the parameter � D �.s;
p
"/ is Ck-smooth in .s;

p
"/ and satisfies

j�.s;p"/� �c.
p
"/j � e�K="; (14.12)

for a constant K > 0, where �c.
p
"/ is given in (14.9).

An important problem is how to determine the cyclicity of a given slow-fast
cycle �.s/ or Q�.s/. The following slow divergence integral is a crucial tool for this
purpose (see, for example, [11, 14, 15, 22]).

For �.s/ W I.s; �0/ D
Z ˛s

!s

@f

@x
.x; '.x/; �0; 0/

' 0.x/
g.x; '.x/; �0; 0/

dxI (14.13)

For Q�.s/ W QI.s; �0/ D
Z ˛s

!M

@f

@x
.x; '.x/; �0; 0/

' 0.x/
g.x; '.x/; �0; 0/

dx

C
Z x2

!0

s

@f

@x
.x; '.x/; �0; 0/

' 0.x/
g.x; '.x/; �0; 0/

dx:

(14.14)
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Definition 1.2. A slow-fast cycle � is called non-degenerate, if all of its extreme
(fold) points are non-degenerate, and it is not a transitory canard cycle.

For more explanation about transitory canard cycles, see the recent work [13].

Theorem 1.1. If a slow-fast cycle is non-degenerate, then the following statements
hold (see [11, 15] for example):

(I) If I.s; �0/ ¤ 0, then Cycl.X";�; �.s/; .0; �0// � 1. Besides, if I.s; �0/ < 0 (or
> 0) then the perturbed canard limit cycle from �.s/ is stable (or unstable).

(II) If I.s; �0/ D 0 and @I
@s .s; �0/ ¤ 0, then Cycl.X";�; �.s/; .0; �0// � 2.

(III) If I.s; �0/ D 0 and .s; �0/ is a zero point of @I
@s with multiplicity m, then

Cycl.X";�; �.s/; .0; �0// � 2C m.

Remark 1.3. If the slow-fast cycle contains two extreme points, and we change
I.s; �0/ and �.s/ in above statements to QI.s; �0/ and Q�.s/, respectively, then
Theorem 1.1 is also true.

Remark 1.4. It was proved in [13] that for the transitory slow-fast cycle of case I,
shown in Fig. 14.5b, its cyclicity is at most 1 if the slow divergence integral along it
is non-zero, and its cyclicity is at most 2 if the integral is zero.

14.2 A New Formula of Slow Divergence Integral

If the slow curve is U-shaped, for each x 2 Œ!s; 0� we define �.x/ 2 Œ0; ˛s� by

'.x/ D '.�.x//; (14.15)

Hence for x 2 Œ!s; 0/ we have that

� 0.x/ D ' 0.x/
' 0.�.x//

< 0: (14.16)

Similarly, if the slow curve is S-shaped (see Fig. 14.6b), for each x 2 Œ!M ; 0� we
define �1.x/ 2 Œ0; x2� and �2.x/ 2 Œx2; x0� by

'.x/ D '.�j.x//; j D 1; 2; (14.17)

and for x ¤ !M; x ¤ 0 we have that

� 0
1.x/ D ' 0.x/

' 0.�1.x//
< 0; � 0

2.x/ D ' 0.x/
' 0.�2.x//

> 0: (14.18)

Let

h.x/ D
@f
@x .x; '.x/; �0; 0/

g.x; '.x/; �0; 0/
; (14.19)
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and let x D '�1.y/ be the single-valued inverse function of y D '.x/ for x 2 Œ!s; 0�

in U-shaped case or for x 2 Œ!M ; 0� for S-shaped case. Then we have

Theorem 2.1. The slow divergence integrals (14.13) and (14.14) can be changed,
respectively, to

I.s; �0/ D
Z s

0

Œh.�.x// � h.x/�jxD'�1.y/dy; (14.20)

and

QI.s; �0/ D
Z s

0

Œh.�1.x//� h.x/�jxD'�1.y/dy C
Z sM

s
Œh.�2.x//� h.x/�jxD'�1.y/dy;

(14.21)

where sM D '.x2/ is the local maximum value at the jump point .x2; '.x2//.

Remark 2.1. The proof of Theorem 2.1 can be found in [26] or [24], where the
results were generalized to the case when the slow curve has more than two fold
points.

Remark 2.2. The formulas (14.20) and (14.21) for system (14.7) need certain
conditions, especially the orientation of the vector field along the slow-fast cycle
is counterclockwise. If we change some signs on the conditions such that the orien-
tation is clockwise, then for the same function h the formulas (14.20) and (14.21)
should be changed, respectively, to

I.s; �0/ D
Z s

0

Œh.x/� h.�.x//�jxD'�1.y/dy; (14.22)

and

QI.s; �0/ D
Z s

0

Œh.x/� h.�1.x//�jxD'�1.y/dy C
Z sM

s
Œh.x/� h.�2.x//�jxD'�1.y/dy:

(14.23)

See system (2.1), formulas (2.7) and (2.10) of [25].

14.3 Predator–Prey Systems with Response Functions
of Holling Type

14.3.1 Introduction

The classical predator–prey systems with a response function p.x/ of Holling type
can be written in the form
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8
ˆ̂<

ˆ̂
:

Px D rx.1 � x

K
/� yp.x/ D p.x/.F.x/� y/;

Py D y.�d C cp.x//;

x.0/ � 0; y.0/ � 0;

(14.24)

where x � 0 and y � 0 denote the number or density of the prey and predator
populations, respectively, r, K, d, and c are positive constants, and F.x/ D rx.1 �
x
K /=p.x/.

For predator and prey, a functional response is the intake rate of a predator as a
function of prey density. Following Holling [19, 20], the functional responses were
classified into three types, which are called Holling type I, II, and III, respectively,
with p.x/ D mx, p.x/ D mx

bCx , and p.x/ D mx2

aCx2
, where m; a; b > 0. The following

response function:

p.x/ D mx2

ax2 C bx C 1
; b > �2pa (14.25)

is called generalized Holling type III, and

p.x/ D mx

ax2 C bx C 1
; b > �2pa (14.26)

is called Holling type IV response function by Colling [9], and it is also called
Monod–Haldane function (see Andrews [2]).

In all cases p.x/ > 0 for x > 0, and the behavior of p.x/ is shown in Fig. 14.7 for
different Holling types.

With Holling type I functional response the system (14.24) is the well-known
Lotka–Volterra model. In the Holling type II functional response, the function is
increasing and saturates, i.e., has a finite positive limit as x approaches infinity.

For the generalized response function of Holling type III, for x sufficiently large,
p.x/ resembles the Holling type II model, the effect of inhibition is seen, although
p.x/ has a local maximum if �2pa < b < 0. However, for x small the behavior
of p.x/ is different from Holling type II model.

The response function of Holling type IV increases to a maximum and then
decreases, approaching zero as x approaches infinity, is used to model the situation

x x
x

p(x) p(x) p(x)

0 0 0

−2
√

a < b < 0

−2
√ a

<
b
<
0

b
>
0

b > 0

I II

a b c

Fig. 14.7 Holling type functional responses. (a) Types I and II; (b) generalized type III; (c) type IV
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where the prey can better defend or disguise themselves when their population
becomes large enough, a phenomenon called group defence [18]. For x small p.x/
resembles the Holling type II model if b > 0 and resembles the generalized Holling
type III model if �2pa < b < 0.

The predator–prey system (14.24) with Holling type of functional responses
has been extensively studied by many authors, including the studies by May [27],
Cheng [8], Chen and Jing [6], Cheng and Zhang [7], Wolkowicz [31], Wrzosek [32],
Rothe and Shafer [29], Ruan and Xiao [30], Zhu, Campbell, and Wolkowicz [34],
Xiao and Zhu [33], Broer et al. [4, 5], Lamontagne et al. [23], and recent work by
Li and Zhu [25]. The readers can find an extended list of references in the papers
[33, 34], and in the book [3] by Bazykin, where contains the description of some
models accounting the Allee effect. In all of these studies, the existence and number
of limit cycles are important topics in the bifurcation study of the predator–prey
systems for a better understanding of many real world oscillatory phenomena in
nature [1, 27, 28].

It was proved that the system (14.24) has at most one limit cycle for Holling
type II functional response by Cheng [8] and Chen and Jing [6], and for original
Holling type III functional response by Chen and Zhang [7]; the system (14.24) can
have codimension 2 (and at most codimension 2) Hopf bifurcation for generalized
Holling type III by Lamontagne et al. [23] and for Holling type IV by Xiao and Zhu
[33]; the system (14.24) can have codimension 3 Bogdanov–Takens bifurcation for
generalized Holling type III by Lamontagne et al. [23] and Holling type IV by Broer
et al. [4, 5].

Note that in system (14.24) the parameter d is the death rate of the predator
while c is the efficiency of the predator to convert prey into predators. In biology
and ecology, it is also interesting to investigate the case when d and c are small. For
example, the larger animals like lions or wolves do not need to prey so frequently. In
this case the slow-fast dynamics occur. Li and Zhu [25] studied this case for response
functions of all Holling types II, generalized III and IV. It was shown that at most
two limit cycles bifurcate from the slow-fast cycles of U-shaped and at most one
from S-shaped. Unlike the Hopf bifurcation or Bogdanov–Takens bifurcations, the
limit cycles may appear in a large region in the phase space. Also, the codimension
two Hopf bifurcation can be seen as a limit case of the slow-fast cycle bifurcation
of order two when the slow-fast cycle shrinks to a canard point.

The study for system (14.24) with response function of Holling types II is
relatively simple, the study in [25] was mainly for Holling type IV, and briefly
for generalized Holling type III. As an example of the application of slow-fast
dynamics, in this article we will introduce the study of system (14.24) with response
functions of generalized Holling type III. The treatment is a little different from [25],
especially the orientation of slow-fast cycles is counterclockwise, in order to use the
formulas (14.20) and (14.21) directly. Of course, the results are the same as in [25].

Thus, we suppose that in system (14.24) the parameters d and c are small, and
the function p.x/ is given in (14.25), i.e.,
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p.x/ D m x2

ax2 C bx C 1
; F.x/ D r

mx
.ax2 C bx C 1/.1� x

K
/; b > �2pa;K > 0:

We eliminate a;m, and r by scaling of phase variables, time, and parameters. For
this purpose, we let

.x; y; t/ D
�
1p
a

Nx; NrNy;
p

a

mNr Nt
�
;

and

.r;K; b; d; c/ D
�

mp
a

Nr; 1p
a

NK;pa Nb; mNrp
a

Nd;pa Nr Nc
�
:

Removing all bars, we obtain the same form (14.24) with a D m D r D 1, i.e.,
system (14.24) becomes

Px D p.x/.F.x/� y/; Py D y.�d C c p.x//; (14.27)

where

p.x/ D x2

x2 C bx C 1
; F.x/ D 1

x
.x2 C bx C 1/

�
1 � x

K

�
; b > �2;K > 0:

(14.28)

Since p.x/ > 0 for x > 0, we divide the two equations in (14.27) by p.x/, and still
use dt for p.x/dt. Besides let d D "; c D ˛", where " � 0 small, then system (14.27)
becomes

dx

dt
D F.x/� y;

dy

dt
D "y

�
˛ � 1

p.x/

�
; (14.29)

where ˛ D ˛."/ will be chosen later. Hence, the slow curve is given by y D F.x/.

14.3.2 The Existence of Fold (Extreme) Points on Slow Curve

Let � D .b;K/, then the non-degenerate fold points are given by Fx D 0 and
Fxx ¤ 0. Since Kx > 0 it is easy to find that Fx D 0 is equivalent to

	.x; �/ D 2x3 C .b � K/x2 C K D 0; (14.30)

which has always a negative root, because K > 0. On the other hand, Fxx D 0

is equivalent to x3 � K D 0. Removing x from these two equations we find that
Fx D Fxx D 0 is given by the curve

C1 W C1.�/ D .K � b/3 � 27K D 0; (14.31)
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Fig. 14.8 (a) The behavior of C1; (b) The values x1 < x2; (c) The behavior of F.x; �/ for � 2 U

which is a third order parabola and is tangent to the straight line L W fb D �2g at
the point A.�2; 1/, see Fig. 14.8a. If � D .b;K/ is located right to C1, then (14.30)
has only a negative root, hence F.x; �/ is monotone for x > 0, there is no slow-fast
cycle. If � is located in the narrow region below C1, right to L and above fK D 0g,
then both of two positive zeros of (14.30) are greater than K, hence F is negative at
these values, we do not need to consider. It is clear that only in the region above C1,
that is,

U W f� D .b;K/ j C1.�/ > 0; b C 2 > 0 and K > 1g;
Equation (14.30) has two zeros x1 and x2 satisfying 0 < x1 < x2 < K and F00.xj/ ¤
0 for j D 1; 2.

Note that 	x.x; �/ D 2Œ3x � .K � b/�x and 	.0; �/ D 	.K�b
2
; �/ D K > 0 (see

Fig. 14.8b), and from (14.31) it is obvious that K > b for � 2 U because K > 0, we
have that

0 < x1 <
K � b

3
< x2 <

K � b

2
; � 2 U: (14.32)

Lemma 3.1. Only for � D .b;K/ 2 U the slow curve y D F.x/ has a unique local
(non-degenerate) minimum point at .x1;F.x1// and a unique local (non-degenerate)
maximum point at .x2;F.x2//, shown in Fig. 14.8c.

14.3.3 The Existence of Slow-Fast Cycles for " D 0

We consider that .xj;F.xj// is a canard point, where j D 1 or j D 2, then, from the
condition for Eq. (14.8), we need choose ˛ D 1

p.xj/
� N�, where N� D N�."/ ! 0 as

" ! 0, and system (14.29) takes the form



314 C. Li

dx

dt
D F.x/� y;

dy

dt
D "y

"

�.x/
x � xj

x2j x2
� N�

#

D "g.x; y; N�/; (14.33)

where �.x/ D .1C bxj/x C xj. Since F00.x1/ > 0 and F00.x2/ < 0, to guarantee the
existence of a slow-fast cycle around the point .xj;F.xj// for j D 1; 2, we need a
condition

�.xj/ D .1C bxj/xj C xj D .2C bxj/xj > 0; for � 2 U:

If b � 0 we certainly have .2Cbxj/ > 0; if b 2 .�2; 0/, we first consider the critical
case .2C bxj/ D 0, which gives by (14.30) that

	

�
�2

b
; �

�
D .b � 2/.b C 2/.Kb C 4/

b3
; b 2 .�2; 0/:

From (14.31) we find

C1.�/jKD� 4
b

D .b2 C 16/.b2 � 2/2
.�b/3

> 0; b 2 .�2; 0/:

Hence in .b;K/-plane .2C bxj/ D 0 is given by the following curve:

C2 W C2.�/ D bK C 4 D 0 for b 2 .�p
2; 0/:

Besides, C2 is tangent to C1 at the point P.�p
2; 2

p
2/, and divide U into U1, U2,

and U3, see Fig. 14.9a.
We denote the part of C2 below P by C0

2 and the part above P still by C2. It is
easy to check that .2 C bxj/ > 0 for j D 1; 2 and � 2 U2, and .2 C bx1/ > 0 but
.2 C bx2/ < 0 when � crosses C2 into U1, and .2 C bxj/ < 0 for j D 1; 2 when �
crosses C0

2 into U3. Now let

V1 D U1 [ C2 [ U2; V2 D U2 	 V1: (14.34)
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Fig. 14.9 The regions Vj
1, Vj

2, and W. (a) V1 D U1 [ C2 [ U2, V2 D U2. (b) S1 divides V1, S2
divides V2. (c) Shaded region W
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Lemma 3.2. A slow-fast cycles appear around .x1;F.x1// only if � 2 V1, and a
slow-fast cycles appear around .x2;F.x2// only if � 2 V2.

14.3.4 The Existence of a Saddle Point on a Slow-Fast Cycle

We consider the possibility that a saddle point appears on a slow-fast cycle. For
a slow-fast cycle �1 around .x1;F.x1//, since �.x/ is linear in x and �.0/ >

0; �.x1/ > 0, a saddle point on �1 must appear from the upper-right corner, that
is �.x2/ � 0, and the critical case is �.x2/ D 0. Similarly, a critical case for a saddle
point appearing on a slow-fast cycle �2 around .x2;F.x2// is �.x�/ D 0, for the
positions of x1, x2, and x�, see Fig. 14.8c. Thus the critical conditions for appearing
of a saddle point on �1 and �2 are, respectively,

.1C bx1/x2 C x1 D 0; b 2 .�2; 0/ (14.35)

and

.1C bx2/x
� C x2 D 0; b 2 .�2; 0/: (14.36)

From F.x/ � F.x1/ D .x�x1/2.x��x/
Kx and F0.x2/ D 0 we find x�, and similarly to find

Ox, see Fig. 14.8c:

x� D 2.x2/2

x1 C x2
; Ox D 2.x1/2

x1 C x2
: (14.37)

Substituting the expression of x� in (14.36), we find

.3C 2bx2/x2 C x1 D 0; b 2 .�2; 0/: (14.38)

Eliminating x1 from (14.35) and (14.30) with x D x1, and eliminating x2 from
the resulting equation and (14.30) with x D x2, we obtain a curve

S1 W f� 2 V1 j .b2 � 1/bK C b2 C 2 D 0; b 2 .�p
2;�1/;K > 2

p
2g;

which is strictly monotone. Since S1.�/jKD� 4
b

D 3.2 � b2/, S1 is located entirely

left to C2 for b > �p
2, and as b ! �p

2 the two curves S1 and C2 have the same
end-point P 2 C1, shown in Fig. 14.9b.

Similarly, eliminate x1 from (14.38) and (14.30) with x D x1, then eliminate x2
from the resulting equality and (14.30) with x D x2, we obtain
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I-1 I-2 I-3 I-4 I-5

II-1 II-2 II-3 II-4 II-5

III-1 III-2 III-3 III-4 III-5

Fig. 14.10 The different types of slow-fast cycles for generalized Holling type III response
function

b2.b2 � 1/K5 C b.4b4 C 3b2 � 6/K4 C .6b6 � 12b4 C 32b2 � 9/K3

Cb.4b6 C 12b4 � 132b2 C 209/K2 C .b8 � 3b6 C 32b4 � 209b2 C 343/K
Cb3.b2 � 3/2 D 0;

which defines a monotone curve S2 for � 2 Œ�p
2; 0/ (as well as some extra curves).

S2 is right to C2 for b > �p
2, and the two curves have the same end-point P 2 C1.

For j D 1 or j D 2 the curve Sj divides the region Vj into two disjoint parts: V1
j on

the right and V2
j on the left, see Fig. 14.9b. Note that .V1

2 [ S2 [ V2
2 / 	 V1

1 .

Lemma 3.3. For j D 1 or 2 if � 2 V1
j then there is no saddle point on a slow-fast

cycle around the fold point .xj;F.xj//; if � 2 V2
j [ Sj then there is a saddle point on

any slow-fast cycle around the fold point .xj;F.xj//, and in the critical case � 2 Sj

the saddle point is located at the upper-right corner of the slow-fast cycle for j D 1

or at the lower-right corner of the slow-fast cycle for j D 2, see I-4 and II-4 of
Fig. 14.10, respectively.

14.3.5 Main Results

We will show that there are two monotone curves C0 D f� 2 V1 j b2 � bK � 6 D 0g
and 
 , both are located between C2 and S1, having the common end-point at P, and

 is located between C0 and S1. Denote the region between C0 and 
 by W, see
Fig. 14.9c. We list some possible slow-fast cycles in Fig. 14.10.

Theorem 3.1. For system (14.33) the following statements hold, where � D
�."; b;K/ for small " > 0, and the different types of slow-fast cycles are shown
in Fig. 14.10:

(A) The cyclicity is at most one for a slow-fast cycle of type
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(a) I-2, if .b;K/ 2 V1, especially I-3, I-4, or I-5, if .b; k/ 2 V1
1 ; S1, or V2

1 ,
respectively;

(b) II-2, if .b;K/ 2 V2, especially II-3, II-4, or II-5, if .b; k/ 2 V1
2 ; S2, or V2

2 ,
respectively;

(c) III-1, if .b;K/ 2 V1
1 � V2;

(d) III-2 or III-3, if .b;K/ 2 V1
2 ;

(e) III-4, if .b;K/ 2 S2;
(f) III-5, if .b;K/ 2 V2

2 .

(B) The cyclicity is at most two for a slow-fast cycle of type

(a) I-2, if .b;K/ 2 W;
(b) I-3, if .b;K/ 2 
 .

(C) There is no slow-fast cycle with cyclicity three or higher than three, except for
the cases I-1 and II-1.

Remark 3.1. From this theorem we see that for system (14.33) with 0 < " � 1 at
most two limit cycles can be bifurcated from a U-shaped slow-fast cycle around the
fold point .x1;F.x1//, and at most one limit cycle can be bifurcated from a U-shaped
slow-fast cycle around the fold point .x2;F.x2//, or from a S-shaped slow-fast cycle
related to these two fold points.

Remark 3.2. For the cases I-1 and II-1 in Fig. 14.10 we need to find the maximal
number of small limit cycles born from a singular point by perturbations, and this
cannot be studied only by slow divergence integral, see, for example, [16]. In the
paper [23] by Lamontagne et al. (Propositions 6.8, 6.9 and Theorem 6.1), it was
shown that for the general system (14.27) the Hopf bifurcation has codimension at
most two, and the codimension two happens exactly when .b;K/ 2 C0. In fact, by a
change of variables .x; y; t/ 7! .Kx; cKy; t

cK2
/, the system (14.27) is transformed to

system (1.3) of [23] with ˛ D K2; ˇ D bK, � D 1
cK2

, and ı D d
cK2

, and the equation
of C0 W b2 D bKC6 becomes ˇ2 D ˛.ˇC6/, which is the expression (6.15) of [23],
corresponding to Hopf bifurcation of codimension two. This hints a fact that for
system (14.33) at most two small limit cycles can be bifurcated from a singular point
for .b;K/ 2 C0. The problem is that we need to prove the uniformity with respect to
small ". We also remark that the point P in Fig. 14.9, with .b;K/ D .�p

2; 2
p
2/,

corresponds to the point Sd with .˛; ˇ/ D .8;�4/ of [23], at this point an attracting
Bogdanov–Takens bifurcation of codimension 3 occurs (Theorem 5.2 of [23]).

Remark 3.3. The cases I-3 and II-3 in Fig. 14.10 correspond to a transitory slow-fast
cycle of Type I, defined in [13]. It was proved in [13] that for this type of slow-fast
cycle the cyclicity is one if I ¤ 0 and is two if I D 0, where I is the corresponding
slow divergence integral. We will prove that I D 0 in case I-3 if .b;K/ 2 
 , and
I ¤ 0 for other cases. This implies the results of Theorem 3.1 for these cases.

Remark 3.4. In cases I-4, I-5, II-4, II-5, III-4, and III-5 in Fig. 14.10, a saddle point
appears on a corner of the slow-fast cycle. We will prove that in these cases the
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corresponding slow divergence integral is not equal to zero, hence by Theorem 2.22
of [11], we obtain that the cyclicity is also at most one.

14.3.6 Proof of Theorem 3.1

We will study the slow divergence integral in form (14.20) or (14.21), then use
Theorem 1.1 to give a proof, except for cases I-1, II-1, and I-3, II-3 in Statements
(A) and (B), as we explained in Remarks 3.2 and 3.3.

We first consider the cyclicity of a U-shaped slow-fast cycle around the canard
point .x1;F.x1//. Since F0.x1/ D 0, we have

F0.x/ D F0.x/� F0.x1/ D K.x C x1/ � 2.xx1/2

K.xx1/2
.x � x1/:

Then by the formula (14.19) from system (14.33) with j D 1 and N�.0/ D 0 we
obtain

h.x/ D K.x C x1/ � 2.xx1/2

KF.x/Œ.1C bx1/x C x1�
:

By formula (14.20) we need to study the slow divergence integral

I.s; �/ D
Z s

Y1

'.x.y/; �/  .x.y/; �/ dy; � 2 V1; (14.39)

where s 2 .Y1;Y2/, Y1 D F.x1.�// and Y2 D F.x2.�//, x.y/ D F�1.y/ 2 .Ox; x1/ for
y 2 .Y1; s/, and

'.x; �/ D x21.�.x/ � x/

KF.x/Œ.1C bx1/x C x1�Œ.1C bx1/�.x/C x1�
> 0;

 .x; �/ D �2.bx1 C 1/x�.x/ � 2x1.x C �.x// � bK:

(14.40)

where �.x/ 2 .x1; x2/ is defined by F.x/ D F.�.x// for x 2 .Ox; x1/ as in Sect. 14.2.

Remark 3.5. In [25] we consider system in form (2.11) of that paper, the orientation
of a slow-fast cycle is clockwise, but here we use the form (14.33) directly, and the
orientation of a slow-fast cycle is counterclockwise, so the slow divergence integral
has a different sign, see Remark 2.2. Especially, the function '.x; �/ above has a
different sign from [25].

We need to study the number of zero of I.s; �/ in s 2 .Y1;Y2/ for � 2 V1. For
this purpose, a crucial step is to study the number of zeros of  .x; �/ for x 2 .Ox; x1/
and � 2 V1. We make a change of .x; �.x// to .�; �/ as follows
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� D �.x/C x; � D �.x/x; (14.41)

It is obviously that for x 2 .Ox; x1/ the minimum and maximum values of � are

�1m D 2x1; �1M D Ox C x2 D 2x21 C x1x2 C x22
x1 C x2

: (14.42)

From F.�.x// D F.x/ we find

Œ.K � b/� .x C �.x//�x�.x/ D K: (14.43)

Lemma 3.4. For � 2 V1 and x 2 .Ox; x1/ we have that (1) K � b � � > 0 and (2)
d�
dx < 0.

In fact, if � 2 V1 and � near the curve C1 then by (14.32) � near 2x1 � 2.K�b/
3

,
hence K � b � � > 0 for � near �1m; from (14.43) we see that Œ.K � b/ � �� keeps
a same sign for all � 2 V1, which proves the statement (1) of Lemma 3.4. We note
that

d�

dx
D 1C � 0.x/ D F0.�.x//C F0.x/

F0.�.x//
:

It is obviously F0.�.x// > 0 and computation gives

F0.x/C F0.�.x// D 2Œ.K � b/� .x C �.x//�.x�.x//2 � K.x2 C �2.x//

K.x�.x//2
:

By using (14.43) we immediately get

F0.x/C F0.�.x// D � .�.x/ � x/2

.x�.x//2
< 0:

The statement (2) of Lemma 3.4 is verified.
By using (14.41), (14.43) and Lemma 3.4 (1) we have

� D K

K � b � �
: (14.44)

Substituting (14.41) and (14.44) in the second equality of (14.40), we find

 .x; �/ D  1.�; �/

K � b � � ; (14.45)

where

 1.�; �/ D 2x1�
2 C ŒbK � 2x1.K � b/�� � KŒb.K � b/C 2.1C bx1/�: (14.46)
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By Lemma 3.4 (2), instead to study the number of zeros of  .x; �/ for x 2 .Ox; x1/ it
is enough to study the number of zeros of  1.�; �/ for � 2 .�1m; �1M/.

From (14.46), (14.42) and (14.30) with x D x1 we obtain

 1.�1m; �/ D 8.x1/
3C4.b�K/.x1/

2CK.b2�Kb�2/ D K.b2�bK �6/: (14.47)

We define a curve

C0 W f� 2 V1 j b2 � bK � 6 D 0; b 2 .�p
2; 0/;K > 2

p
2g: (14.48)

It is not hard to check that the curve C0 is located strictly between S1 and C2 and has
the same end-point at P as b ! �p

2, see Fig. 14.9c. Thus, we have the following
result:

Lemma 3.5.  1.�1m; �/ > 0, D 0 or < 0 if � 2 V1 is left, on or right to C0,
respectively.

From (14.46) and (14.42) we find  1.�1M; �/ D �.�/

.x2Cx1/2
, where

�.�/ D 2x1Œ4.x1/4 C 4.x1/3x2 C 5.x1/2.x2/2 C 2x1.x2/3 C .x2/4�

C2.b � K/Œ2.x1/4 C 3.x1/3x2 C 2.x1/2.x2/2 C x1.x2/3�

CK.b2 � bK � 2/.x1 C x2/2 � bK.x1/2x2:

(14.49)

Eliminating x1 from (14.49) and (14.30) with x D x1, then eliminating x2 from the
resulting equality and (14.30) with x D x2, we obtain

.b2 � bK � 6/ Œ.K � b/3 � 27K� Œ.b3 � b/K C b2 C 2� D 0:

This means that a necessary condition for  1.�/ D 0 is � 2 C0 [ C1 [ S1. It can be
checked that  1.�/ < 0 if � 2 C0 [ C1 and  1.�/ D 0 only if � 2 S1, so we have
the following result:

Lemma 3.6.  1.�1M; �/ > 0, D 0 or < 0 if � 2 V1 is left, on or right to S1
respectively.

Since  1.�; �/ is a quadratic polynomial in �, by Lemmas 3.5 and 3.6 it is easy
to obtain the next Lemma.

Lemma 3.7. For � D .b;K/ 2 V1, the following statements hold:

(1)  1.�; �/ > 0 for all � 2 .�1m; �1M/ if � is located left to the curve S1;
(2)  1.�; �/ < 0 for all � 2 .�1m; �1M/ if � is located right to the curve C0;
(3) For each � between S1 and C0, there is a unique ��

� 2 .�1m.�/; �1M.�//,
continuous in �, such that  1.��

� ; �/ D 0, and

.� � ��
� / 1.�; �/ < 0; for � 2 .�1m.�/; �1M.�// n f��

� g:



14 Slow-Fast Dynamics and Its Application to a Biological Model 321

Moreover, lim�!C0 �
�
� D �1m; lim�!S1 �

�
� D �1M:

Since d�
dx < 0 and dy

dx D F0.x/ < 0 for x 2 .Ox; x1/, by (14.40) and (14.45) we can
transform Lemma 3.7 to the following form:

Lemma 3.8. For � D .b;K/ 2 V1, the following statements hold:

(1)  .x.y/; �/ > 0 for all y 2 .Y1;Y2/ if � is located left to the curve S1;
(2)  .x.y/; �/ < 0 for all y 2 .Y1;Y2/ if � is located right to the curve C0;
(3) For each � between S1 and C0, there is a unique y�

� 2 .Y1;Y2/, continuous in �,
such that  .x.y�

�/; �/ D 0, and

.y � y�
�/ .x.y/; �/ < 0; for y 2 .Y1;Y2/ n fy�

�g: (14.50)

Moreover, lim�!C0 y�
� D Y1; lim�!S1 y�

� D Y2:

By (14.39), (14.40) and statements (1) and (2) of Lemma 3.8 we obtain that
I.s; �/ > 0 for all s 2 .Y1;Y2/ if � 2 V1 is located left to the curve S1; and
I.s; �/ < 0 for all s 2 .Y1;Y2/ if � 2 V1 is located right to the curve C0. Hence
in these cases, by Theorem 1.1, the cyclicity of possible slow-fast cycles around the
canard point .x1;F.x1// is at most one.

It remains to consider the case � 2 G, which is the region between the curves S1
and C0, expressed, respectively, by b D bs.K/ and b D b0.K/ for K > 2

p
2, see

Fig. 14.9c.
Let s`.�/ D Y1C` .Y2�Y1/, ` 2 .0; 1/. Recall that Y1 D Y1.�/ and Y2 D Y2.�/,

and the slow-fast cycles �.Y1/; �.s`/, and �.Y2/ look like, respectively, I-1, I-2, and
I-3 of Fig. 14.10.

Lemma 3.9. The following statements hold:

(a) For each K > 2
p
2 and ` 2 .0; 1/, there is a unique b D b`.K/ 2

.bs.K/; b0.K// such that I.s`.�K;`/; �K;`/ D 0 and dI
ds .s`.�K;`/; �K;`/ ¤ 0 with

�K;` D .b`.K/;K/. That is, the cyclicity of �.s`.�K;`// is at most two.
(b) For any fixed ` 2 .0; 1/, the set 
` D f� D �K;`; K > 2

p
2g forms a curve

in G, and limK!2
p
2.b`.K/;K/ D P for all ` 2 .0; 1/. Moreover, b0.K/ D

lim`!0C0 b`.K/, i.e., 
0 D C0, and b1.K/ D lim`!1�0 b`.K/ 2 .bs.K/; b0.K//,
i.e., 
 D f.b1.K/;K/ W K > 2

p
2g is located strictly between C0 and S1, see

Fig. 14.9c.
(c) The curves f
` W 0 � ` � 1g give a foliation of the region W 	 G, where the

corresponding slow-fast cycle �.s`.�K;`// has cyclicity at most two.

To verify statement (a), we first choose b 2 .bs.K/; b0.K// to be very close
to bs.K/, such that y�

� > s`.�/. By Lemma 3.8(3) this is possible, and by
formulas (14.39), (14.40), and (14.50), we have I.s`.�/; �/ > 0, since ' > 0 and
 > 0 for y 2 .Y1; s`.�//. We next increases b along the segment .bs.K/; b0.K/,
such that y�

� < s`.�/ (by Lemma 3.8(3), this is also possible), then
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I.s`.�/; �/ D
Z y�

�

Y1.�/
'.x.y/; �/  .x.y/; �/dy C

Z s`.�/

y�

�

'.x.y/; �/  .x.y/; �/dy:

The first integral is positive while the second negative, see (14.50). If we continu-
ously increases b along the segment .bs.K/; b0.K//, then y�

� ! Y1.�/ as b ! b0.K/,
hence the first integral goes to zero. On the other hand, .s`.�/�y�

�/ ! .s`.�/�Y1/ >
0 as b ! b0.K/. Therefore, I.s`.�/; �/ < 0 for 0 < b0.K/ � b � 1, hence
I.s`.�/; �/ has a odd number of zeros for b 2 .bs.K/; b0.K//.

Suppose that b`.K/ 2 .bs.K/; b0.K// is such a zero point, i.e., I.s`.�K;`/; �K;`/D0
with �K;` D .b`.K/;K/. Then by the uniqueness of zero of  .x.y/; �/ in y we
immediately get  .s`.�K;`// ¤ 0, hence dI

ds .s`.�K;`/; �K;`/ ¤ 0, and this also
implies that I.s`.�/; �/ has a unique zero for b 2 .bs.K/; b0.K//.

The proofs of statements (b) and (c) are simple, we omit them here. From
statement (b) we see that for � 2 G n fW [ 
g the cyclicity of any slow-fast cycles
is at most one.

We next consider the U-shaped slow-fast cycle around .x2;F.x2//. Since the
discussion is very similar to above, we only indicate the differences. Instead
of (14.39) we need to consider the slow divergence integral

I.s; �/ D
Z Y2

s
'.x.y/; �/  .x.y/; �/ dy; � 2 V2; (14.51)

where the functions ' and  have similar expression (14.40) but change x1, x, and
�.x/ in the right-hand sides to x2, �1.x/, and �2.x/, respectively, with Ox < x < x1 <
�1.x/ < x2 < �2.x/ < x�, see Fig. 14.8c.

Instead of (14.41) we let

� D �1.x/C �2.x/; � D �1.x/�2.x/:

Note that V2 	 V1, F.�j.x// D F.x/ for j D 1; 2, hance d�
dx D F0.x/ŒF0.�1.x//CF0.�2.x//�

F0.�1.x//F0.�2.x//
,

F0.x/ < 0;F0.�1.x// > 0;F0.�2.x// < 0, and

F0.�1.x//C F0.�2.x// D � .�2.x/� �1.x//2

�1.x/�2.x/
< 0:

Hence, Lemma 3.4 is still true for � D �1.x/C �2.x/; � D �1.x/�2.x/, and � 2 V2.
Thus, if we replace x1 by x2 then obtain the same expression (14.46), and denote

it by  2.�; �/. We also have �x < 0 for x 2 .Ox; x1/ as in Lemma 3.4 (2), but instead
of (14.42) we have that the minimum and maximum values for � are, respectively,

�2m D x1 C x� D .x1/2 C x1x2 C 2.x2/2

x2 C x1
; �2M D 2x2: (14.52)

Similarly to obtain (14.47) we find
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 2.�2M; �/ D  2.2x2; �/ D K.b2 � bK � 6/: (14.53)

Since V2 is located entirely right to the curve C0, we have  2.�2M ; �/ < 0 for all
� 2 V2. Let us show that  2.�2m; �/ < 0 for � 2 V2, hence  2.�; �/ < 0 for all � 2
.�2m; �2M/ and � 2 V2, because  2 is a quadratic polynomial in � and the coefficient
of �2 is positive, and this implies that I.s; �/ < 0 for all s 2 .Y1.�/;Y2.�// and
� 2 V2, i.e., the cyclicity of the corresponding slow-fast cycles is at most one.

The expression of  2.�2m; �/ is the same as  1.�1M; �/, exchanging x1 and
x2. Hence, by the same procedure we obtain that a necessary condition for
 2.�2m; �/D0 is � 2 C0 [ C1 [ S1, but V2 \ fC0 [ C1 [ S1g D ;, hence  2.�2m; �/

has a fixed sign for all � 2 V2. Choosing a special value � 2 V2, we can find that
 1.�m; �/ < 0 for � 2 V2.

At last we consider the S-shaped slow-fast cycle Q� with .x1;F.x1// and
.x2;F.x2// as two fold points. As we discussed above that this is possible only
for � 2 V2 	 V1. We only study the types III-1 and III-2 in Fig. 14.10, because the
proof for type III-3 is completely the same as for type III-1, and types III-4 and III-5
are similar to III-2 and III-1, respectively, having a saddle point at the lower-right
corner of Q� , by Theorem 2.22 of [11] the conclusion is the same, because we will
prove that the slow divergence integral is non-zero.

Now we use Q�.s/ and QI.s; �/ to denote the slow-fast cycle and the corresponding
slow divergence integral. If s D 0 then it is type III-2 and if s 2 .0;Y2/ it is type
III-1, see Fig. 14.6b. The type III-2 is a common slow-fast cycle, and its cyclicity is
at most one, see [12]. In fact it is easily to check directly by the formula (14.21) that
QI.0; �/ < 0 for all � 2 V2. When s D Y2, we have the critical case-transitory slow-
fast cycles, see Fig. 14.5b and [13]. Since the region V2 is right to the curve C0, by
Lemma 3.8(2), (14.39) and ' > 0 we have QI.Y2; �/ < 0 for all � 2 V2. Therefore,
by the following lemma we immediately get QI.s; �/ < 0 for all s 2 .0;Y2/ and
� 2 V2, which gives a proof for type III-1.

Lemma 3.10. For all � 2 V2 and s 2 .0;Y2/ we have dQI
ds .s; �/ > 0.

To prove this fact, we note that for a type III-1 slow-fast cycle, the point .x1;F.x1//
is a canard point while .x2;F.x2// is a jump point, shown in Fig. 14.6b. Hence

g.�j.x/;F.�j.x//; 0/ > 0; j D 1; 2; (14.54)

where g.x; y; �/ appears in the second equation of (14.33). By formula (14.21)

QI.s; �/ D
Z s

0

Œh.�1.x// � h.x/�jxDF�1.y/dy C
Z Y2

s
Œh.�2.x//� h.x/�jxDF�1.y/dy;
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where x D F�1.y/ 2 .Ox; x1/ is the inverse function of y D F.x/ 2 .Y1;Y2/, note that
s D 0 corresponds to y D Y1. Hence

dQI
ds
.s; �/ D h.�1.x//� h.�2.x//jxDF�1.s/ : (14.55)

By (14.19)

h.�j.x// D F0.�j.x//

g.�j.x/;F.�j.x//; 0/
; j D 1; 2;

and it is obvious F0.�1.x// > 0 and F0.�2.x// < 0. Hence from (14.54) and (14.55),
we obtain dQI

ds .s; �/ > 0 for any s 2 .0;Y2/ and � 2 V2.
Thus, the proof of Theorem 3.1 is finished.
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Chapter 15
Abelian Integrals: From the Tangential 16th
Hilbert Problem to the Spherical Pendulum

Pavao Mardešić, Dominique Sugny, and Léo Van Damme

Dedicated to Christiane Rousseau for her mathematical and
non-mathematical impact

Abstract In this chapter we deal with abelian integrals. They play a key role in the
infinitesimal version of the 16th Hilbert problem. Recall that 16th Hilbert problem
and its ramifications is one of the principal research subject of Christiane Rousseau
and of the first author. We recall briefly the definition and explain the role of abelian
integrals in 16th Hilbert problem. We also give a simple well-known proof of a
property of abelian integrals. The reason for presenting it here is that it serves as
a model for more complicated and more original treatment of abelian integrals in
the study of Hamiltonian monodromy of fully integrable systems, which is the main
subject of this chapter. We treat in particular the simplest example presenting non-
trivial Hamiltonian monodromy: the spherical pendulum.
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15.1 Infinitesimal 16th Hilbert Problem

15.1.1 Abelian Integrals

Consider a polynomial vector field X D P.x; y/ @
@x C Q.x; y/ @

@y in the real plane,
P;Q 2 RŒx; y�. Its trajectories are solutions of the system of differential equations

Px D P.x; y/
Py D Q.x; y/:

(15.1)

Its trajectories are curves in the real plane. We will be interested in periodic
trajectories. A periodic trajectory is isolated if it is not approached by a continuous
family of periodic orbits. In that case, we say that it is a limit cycle.

The famous 16th Hilbert problem asks to give a bound H.n/ for the number
of limit cycles in the polynomial system (15.1) in function of the degree of the
system. Very recently a full solution of this problem is announced in a preprint by
Llibre and Pedregal [29], but the paper still has to undergo serious verification by
the mathematical community. After this chapter was submitted the authors of [29]
recognized a mistake in their proof.

A vast project for proving the existence of such a bound H.n/ for n D 2 has been
launched in [14] by Dumortier, Roussarie, and Rousseau.

The difficulty of this problem led to many weakened versions of this problem.
In particular the infinitesimal version of the 16th Hilbert problem formulated by
Arnol’d [3].

Given a polynomial function F.x; y/ 2 RŒx; y�, its associated Hamiltonian vector
field XF is given by

XF D �@F

@y

@

@x
C @F

@x

@

@y
: (15.2)

Its trajectories belong to level curves of F. If some are periodic, they are non-
isolated. Hence, there are no limit cycles in the system (15.2).

Consider now a small polynomial deformation

XF C �Y; (15.3)

of the Hamiltonian vector field, where Y is a polynomial vector field and � 2 R

a small parameter. Normally, the majority of periodic trajectories will be broken,
for � ¤ 0 small. However, some periodic trajectories can survive and become
isolated. This means that limit cycles can be created. Infinitesimal 16th Hilbert
problem asks for a bound h.n/ on the number of such limit cycles created in small
deformations (15.3) in function of the degree n of the deformation.
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Assume that there exists a family 
.h/ 	 F�1.h/ of periodic orbits of the
Hamiltonian vector field XF. In order to examine if some of these orbits survive
in the deformation (15.3), we take a transversal segment † to the family 
.h/
parametrized by the values h of F. We consider the first return (or Poincaré) map
P�.h/ of the deformed family. Periodic orbits correspond to fixed points of the
Poincaré map. Limit cycles correspond to isolated fixed points of the Poincaré map.

Given a vector field Y D A.x; y/ @
@x C B.x; y/ @

@y , its dual one-form !Y is the form
!Y D B.x; y/dx � A.x; y/dy. In particular, one-form dual to a Hamiltonian vector
field XF is the exact form dF D @F

dx dxC @F
dy dy. The Poincaré map of (15.3) starts with

the identity. The principal part of the Poincaré map minus identity is well known
since Poincaré and Pontryaguin. Indeed,

P�.h/ D h � �I.h/C o.�/; (15.4)

where

I.h/ D
Z


.h/
!Y : (15.5)

Here o.�/ denotes a function depending on � and h, such that o.�/
�

tends to zero,
for � tending to zero. The proof is easy. Let 
�.h/ be the deformed (not necessarily
closed) trajectory of (15.3) starting at S \ F�1.h/. This means that

Z


�.h/
dF C �!Y � 0:

By the definition of Poincaré map, it then follows that

P�.h/� h D ��
Z


�.h/
!Y D ��

Z


.h/
Co.�/:

The function I.h/ is an abelian integral, meaning the integral of a polynomial
(or rational) differential one-form along a one-cycle belonging to a solution of a
polynomial (or rational) equation. We call displacement function �� the difference
between the Poincaré map and identity. In the region where the Poincaré map is
differentiable, so implicit function theorem can be applied, simple zeros of the
abelian integral give rise to simple zeros of the displacement function�� .

For that reason, the infinitesimal 16th Hilbert problem is closely related to the
tangential 16th Hilbert problem, asking for the bound A.n/ for the number of zeros
of abelian integrals associated to degree n deformations (15.3).

The existence of such a bound A.n/ has been proved for any n by Khovanskii [27]
and Varchenko [34] and improved by Binyamini et al. [8]. It is trivial that A.n/ D 0,
for n D 0; 1. A highly non-trivial result that A.2/ D 3 was proved in a sequence of
papers considering different cases. Let us cite here only the paper of Gavrilov [22],
treating the generic cases. An explicit bound is not known for any other value of n.
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Let us note that the two versions (infinitesimal and tangential) of the 16th Hilbert
problem are not equivalent precisely because the Poincaré map is not differentiable
in a neighborhood of a polycycle (bounding a family of periodic orbits). It has been
proved by Dumortier and Roussarie in [13] that there exist zeros of the displacement
function (and limit cycles) of a small deformation (15.3) of a Hamiltonian system,
which do not correspond to zeros of the abelian integrals. Dumortier and Roussarie
call these cycles alien cycles. Also the study of the points of loss of differentiability
of abelian integrals gives the clue to the study of their zeros (see, e.g., [26]).

15.1.2 Monodromy of Abelian Integrals

We give here a simple result, whose method of proof will be used also in the second
part of this chapter.

We say that a critical point of F is a Morse critical point, if by a local analytic
complex change of coordinates in the .x; y/-plane, the function F can be brought to
the form u2 C v2. If we permit only real changes of coordinates, a Morse critical
point can be brought to the form u2 C v2 (center type) of u2 � v2 (saddle type).

Proposition 1.1. Consider a center c0 of a Hamiltonian vector field XF. Let 
.h/ be
the family of periodic orbits of XF surrounding the center c0. Suppose that the basin
of the center is bounded by a polycycle formed of saddle-points sj, j D 1; : : : ; k, and
their separatrices (see Fig. 15.1). We can suppose that F.c0/ D 0 and F.pj/ D h0.

Fig. 15.1 Cycle 
.h/
surrounding a center c0 near a
polycycle and complex cycles
ıj surrounding saddles sj
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Consider the abelian integral I.h/ (15.5) associated to the deformation (15.3). Then,
the abelian integral I.h/ can be written in the form

I.h/ D f .h/C log.h � h0/g.h/; (15.6)

where f .h/ and g.h/ are analytic functions in a neighborhood of h0. Moreover,
g.h0/ D 0.

The proof of the proposition is geometric and is essentially the Picard–Lefschetz
formula. We present the proof here, because it will serve as the model for the proofs
of results about Hamiltonian monodromy and in particular the study of the spherical
pendulum.

Let us first consider a special situation. Consider the polynomial function
f .x; y/ D x2 C y2 in CŒx; y�. For each t 2 C n f0g, the Riemann surface f �1.t/ is
a tube (i.e., a sphere from which two points have been deleted). This can be seen
from the equation y D p

t � x2 in the following way. If t � x2 ¤ 0, then there are
two solutions for y (see Fig. 15.2). One should imagine that there is a cut along the
curve connecting the two ramification points. Moreover, the rear side of the upper
slit is glued with the front side of the lower slit and the front side of the upper slit
is glued with the rear side of the lower slit. This gives us a tube, i.e., a sphere from
which two points (corresponding to infinity in upper and lower branch) are deleted.
This can be visualized by flipping the lower leaf before glueing.

For each one of the two points xj D p
t, j D 1; 2, there is only one corresponding

value y. These two points are called ramification points, since in them the two
branches of the Riemann surface meet together. Note that when performing a full
turn in the x-plane, the two solutions y exchange. This is so, because any solution is
multiplied by a square root of e2� i, which is �1. We can identify a cycle ı0 going
around the throat of the tube. If t goes to zero, then the two ramification points
merge. The cycle ı0 vanishes in a singular point.

Consider now a relative cycle connecting the two points at infinity on the tube
for t ¤ 0. It starts on one branch and we can choose it to pass through one of the
ramification points. We can follow the cycles for nearby values of t, just slightly
modifying the ramification points. What happens with this cycle if the value t
performs a full turn around the origin? Well, then each of the two ramification
points x1.t/ and x2.t/ will perform half a turn and ultimately the two points will
be exchanged. Looking carefully, we see that the cycle ı1 has been transformed to
itself plus the vanishing cycle ı0 (see Fig. 15.3).

In fact, the whole phenomenon is purely local and everything happens exactly
in the same way for any cycle in a neighborhood of a Morse singular point. More
precisely, let ı0 be a vanishing cycle at a Morse singular point. A relative cycle
ı1 defined in a neighborhood of the Morse singular point will be transformed by
monodromy around the critical value of the Morse point to

M.ı1/ D ı1 C .ı1; ı0/ı0; (15.7)
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Fig. 15.2 Regular fiber
f �1.t/, for f .x; y/ D x2 C y2

x1(t) x2(t)

where .ı1; ı0/ is the intersection number between the two cycles. This is the famous
Picard–Lefschetz formula describing the action of the Gauss–Manin monodromy M
on cycles.

Proof of the Proposition. Note that in the abelian integral the form we integrate is
univalued. Hence, all the multivaluedness of the abelian integral I.h/ D R

ı.h/ !

comes from the multivaluedness of the cycles which we just studied. Let us
complexify and follow the cycle of integration ı.h/ as h performs a full turn around
h D h0. By the Picard–Lefschetz formula, the cycle will be deformed to itself plus a
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Fig. 15.3 Monodromy M.
/
of a relative cycle 
 in a
neighborhood of a Morse
singular point

δ
0γ

M(δ
0
)

M(γ)

sum of one vanishing cycle ıj.h/, for each (Morse) singular point pj in the boundary
of the polycycle. From the univaluedness of the form ! it now follows:

M.I/.h/ D I.h/C
kX

jD1

Z

ıj.h/
!: (15.8)

Note that each one of the integral functions
R
ıj.h/

! is univalued in a neighborhood
of h D h0 and moreover tends to zero for h D h0, as the cycle ıj.h/ vanishes to the
singular point pj. Consider now the monodromy of the function

I.h/�
kX

jD1

log.h � h0/

2�i

Z

ıj.h/
! (15.9)

around h D h0. The function is univalued, since the multivaluedness of the two
terms cancels. It is not difficult to see that h D h0 is a removable singularity of an
analytic function f .h/. Putting

g.h/ D
kX

jD1

1

2�i

Z

ıj.h/
!;

which is an analytic function vanishing at h D h0, proves the proposition. ut
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15.2 Hamiltonian Monodromy of the Spherical Pendulum

15.2.1 Introduction

Hamiltonian monodromy is nowadays a well-recognized topological property of
Hamiltonian integrable systems [9] both in mathematics [10] and in physics [15].
For a dynamical system with a finite number of degrees of freedom, Hamiltonian
monodromy is the simplest topological obstruction to the existence of global action-
angle variables [12, 30]. A comprehensive introduction can be found in standard
textbooks such as [10, 15]. To be more precise, let us consider an integrable system
with two degrees of freedom defined by an energy-momentum map. Let R be
the set of regular values of the image of this map. From the Liouville–Arnold
theorem [2], the preimage of a point of R, which is assumed to be compact, is a
torus. We define the monodromy map by associating to a loop of R a monodromy
matrix characterizing the rotation of the action-angle coordinates along this loop.
If this 2 by 2 matrix is different from the identity then the monodromy is said
to be non-trivial and it is not possible to define global action-angle coordinates.
Due to its topological character, monodromy can be non-trivial if R is not simply
connected. The simplest example of non-trivial monodromy is given by an energy-
momentum map with an isolated singularity. The preimage of this singular point is a
single or a multiple pinched torus [10, 15]. Hamiltonian monodromy has also some
profound implications in quantum mechanics since it is a topological obstruction
to the existence of global quantum numbers [36]. The semi-classical limit allows to
establish a clear relationship between classical and quantum monodromy [1, 25, 36].
From a historical point of view, non-trivial Hamiltonian monodromy has been
first exhibited in the case of a spherical pendulum [12], but is now found in a
variety of physical systems [5, 11, 17, 19, 21, 24, 37]. The notion of Hamiltonian
monodromy has known recently important developments with the introduction of
fractional monodromy [16, 20, 23, 31] and bidromy [18, 32] phenomena. In these
generalized versions of Hamiltonian monodromy, we consider loops of the energy-
momentum diagram which can cross lines of weak singular values of R. In the
case of fractional monodromy, this line corresponds to a line a curled tori. For the
bidromy phenomenon, this line is a set of points which lift in the original phase
space to bitori. In this case, the procedure is more complex since a bipath formed of
two closed paths has to be considered. This specificity is related to the two leaves
of R which is characteristic of the bidromy topological character. In particular,
when the path crosses transversally the line of bitori, each of the two paths lies
in a different leaf.

Hamiltonian monodromy has been described from a real point of view in
these preceding works. Some papers have tried in the past few years to describe
this concept from complex geometry [4, 28, 38] and the Picard–Lefschetz theory
[6, 7, 35]. Two different approaches can be roughly considered. The first one is based
on a complexification of the initial Hamiltonian system and on the computation
of the monodromy matrix of the complexified system. This method is in general
difficult to apply due to the dimension of the dynamical complex system obtained.
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In addition, all the information achieved regarding the monodromy of the homology
group of the complex torus is not relevant from a real point of view. In a second
approach that some of the authors introduced in [33], we assume that the momentum
map of the energy-momentum diagram is defined through a global S1-action.
A quotient of the initial phase space by this action leads to the reduced phase space
whose coordinates are the invariant polynomials [10]. The idea is then to complexify
only the reduced phase space and to use this complexification not to compute a
complex monodromy but the real one. In other words, this complexification can be
viewed here as a new way to define Hamiltonian monodromy and to compute the
corresponding monodromy matrix. This method has been introduced in [33] and
used to define and compute fractional monodromy for m W �n resonant systems.
After this first initial attempt, it is clear that a lot of work remains to be done in this
direction in order to construct a robust mathematical framework for this approach
and to understand its limit and its domain of application. One open question is,
for instance, its relation with the other complex approach. In this context, one of
the goals of this chapter is to give a complete overview of this complex method
by considering the historical problem for which Hamiltonian monodromy has been
computed for the first time, that is the spherical pendulum.

The organization of this second part of the chapter is as follows. We first consider
the spherical pendulum in the real case in Sect. 15.2 and we recall the standard way
to obtain the monodromy matrix. We use this example to demonstrate the efficiency
of our complex approach in Sect. 15.2.3. Concluding remarks and prospective views
are given in Sect. 15.2.4.

15.2.2 Hamiltonian Monodromy of the Spherical Pendulum
in the Real Case

15.2.2.1 The Spherical Pendulum

A spherical pendulum is a mechanical system which consists in a mass moving
without friction on a sphere. The mass is only subject to a constant gravity field
along the z-direction [10]. The Hamiltonian of the system can be written on the
tangent space TR3 as:

H D 1

2
.p2x C p2y C p2z /C z; (15.10)

where .x; y; z; px; py; pz/ are coordinates of TR3. The pendulum is constrained to
move on a sphere, i.e., such that x2 C y2 C z2 D 1 and xpx C ypy C zpz D 0. The
phase space of the system is the tangent bundle TS2 of the sphere. The Hamiltonian
H is Liouville integrable since it Poisson commutes with the momentum J given by:

J D xpy � ypx; (15.11)
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Fig. 15.4 Energy-
momentum diagram of the
spherical pendulum. The
parameters .h; j/ represent,
respectively, the values of the
Hamiltonian H and of the
momentum J. The black dot
displays the position of the
singular point. The region in
gray corresponds to the
regular values of the
energy-momentum map EM.
A loop � is depicted in
dashed lines

h

j

which is the z-component of the kinetic momentum. The topological properties
of this Hamiltonian can be investigated by introducing the following energy-
momentum map:

EM W z 2 TS2 ! .H.z/; J.z// 2 R
2: (15.12)

The image of the energy-momentum map called the bifurcation diagram or the
energy-momentum diagram is displayed in Fig. 15.4. The energy-momentum map
has only one non-trivial singular point where the differentials dH and dJ are not
linearly independent. This point of coordinates .j D 0; h D 1/ lifts in the original
phase space to a two-dimensional pinched torus [15]. The topology of the singular
torus can be determined from the singular reduction techniques [10].

We consider a singular reduction with respect to the S1-action of J in order
to decrease the dimension of the problem. We introduce the algebra of invariant
polynomials which is generated by the following six polynomials [10]:

�1 D zI �2 D pzI �3 D p2x C p2y C p2z I
�4 D xpx C ypyI �5 D x2 C y2I �6 D xpy � ypx:

These polynomials form a basis of the polynomials which Poisson-commute with
J. In particular, note that J D �6 and H D �3=2C �1, which shows that fJ;Hg D 0.
The generators �i satisfy the relations:

�3.1 � �21 / D �22 C j2; (15.13)
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Fig. 15.5 Intersections of the
reduced phase space M0 (in
large solid lines) with the
level sets H0 D h with h > 1,
h D 1 and h < 1
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for a given value j of J and the constraints �21 � 1 and �3 � �22 . The reduced
phase space is a semialgebraic variety defined by Mj D J�1.j/=S1 and this variety
is explicitly given in the space R

3 D .�1; �2; �3/ by Eq. (15.13). The topology of a
given torus characterized by a regular value of .h; j/ can be obtained by considering
the intersection of the reduced phase space Mj with the level set Hj D h. Here,
we introduce the reduced Hamiltonian Hj, which is a map from Mj to R sending
a point of Mj to H.�1; �3/. In a regular case, this intersection is a circle which
lifts in the original phase space to a two-dimensional torus. However, the flow of
J defines an S1-action on the phase space, but this action is not regular since the
points .0; 0;˙1; 0; 0; 0/ are fixed. For such points j D 0 and the corresponding
reduced phase space M0 has two singular points at .˙1; 0; 0/. The projections of
the reduced phase space M0 and of the level set H D h onto the plane .�1; �3/
are displayed in Fig. 15.5. Figure 15.5 shows that one of the singular points of the
reduced phase space belongs to the level set H0 D 1. Since this point does not lift
to a circle but to a point in the initial phase space, we deduce that the singular torus
is pinched in this point.

15.2.2.2 The Monodromy Matrix

In this paragraph, we recall some basic facts about the monodromy phenomenon
and the computation of the monodromy matrix. The first step consists in defining
a 2-torus bundle over the regular values of the image of the energy-momentum
map, denoted R. This bundle is locally trivial and the monodromy is the simplest
obstruction for it to be globally trivial [12]. An explicit construction of the
monodromy matrix can be made as follows. We consider a loop � along R and we
fix a point of this loop. For this point .h; j/ of � , we define a basis of the homology
group H1.T2.h; j/;Z/. Deforming continuously this basis along � , it may have
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changed when we come back to the original point, which leads to the monodromy
matrix. Note that this matrix only depends on the homotopy class of the loop � .
There exists a natural and straightforward way to define the basis of the homology
group by using the flow of the vector fields associated with H and J. The momentum
J generates an S1-action on the regular torus. Let � be an angle conjugated to J. The
flow of H from a point of this circle defines an orbit which intersects at a time T the
flow of J. The two points of intersection of the two flows define two angles �i and
�f and a twist‚ D �f ��i. It can be shown that the two functions T.h; j/ and‚.h; j/
allow us to completely reconstruct the basis of the homology group [10, 15]. The
two cycles of the basis are associated, respectively, with the flow of the vector fields
X1 D 2�XJ and X2 D �‚.h; j/Xj C T.h; j/Xh. In addition, the monodromy matrix
is related to the behavior of the functions‚ and T along the considered loop of R.

A standard result in this direction is the fact that after a counterclockwise loop
around an isolated singular point (which lifts to a singular pinched torus), the
rotation angle ‚ increases by 2� , while T remains unchanged. The corresponding
monodromy matrix M is then:

M D
�
1 0

�1 1
�
:

We finish this section with the expressions of ‚ and T as a function of
the invariant polynomials. We refer the interested reader to [15] for the explicit
derivation of these relations. Let .h; j/ be a regular value of the energy-momentum
diagram, the functions‚ and T can be expressed in the invariant polynomials basis
as follows:

‚ D 2j
Z �

C

1

��

1

d�1
.1 � �21 /Q.�1/

; (15.14)

and

T.h; j/ D 2

Z �
C

1

��

1

d�1
Q.�1/

; (15.15)

where

Q.�1/ D
q
2.h � �1/.1 � �21 /� j2: (15.16)

�1̇ are the two roots of Q in the interval Œ�1; 1� (see below for details).
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15.2.3 Hamiltonian Monodromy of the Spherical Pendulum
in the Complex Case

15.2.3.1 Complexification of the Spherical Pendulum

The goal of this section is to apply the complex approach introduced in [33] to
the spherical pendulum. We complexify the coordinates of the reduced phase space
.�1; �2; �3; j/ and we set y D �2 and x D �1. Using the fact that h D �3=2C x, the
relation (15.13) becomes

y2 D 2.h � x/.1 � x2/� j2; (15.17)

which defines a Riemann surface for fixed values of h and j, similarly as in
Sect. 15.1. This surface has three ramification points, denoted x0, xC, and x�. Note
that x˙ are the complexifications of the roots �1̇ of Q. The Riemann surface defined
by (15.17) is schematically represented in Fig. 15.9. In the reduced phase space Mj,
the original torus projects to a cycle ı.h; j/, .h; j/ 2 R, which is delimited by ��

1

and �C
1 , the two roots of Q in the interval Œ�1; 1�. Returning back to the Riemann

surface, the cycle ı.h; j/ is represented by a real oval from x� to xC. To be coherent
with the real approach, we assume that the cycle is oriented from x� to xC in the
upper leaf and from xC to x� in the lower one. All these notations are displayed in
Fig. 15.9.

We pursue the complex approach by introducing the complex continuation of the
functions‚ and T, which are now interpreted as abelian integrals over the loop ı of
the Riemann surface:

‚.h; j/ D j
Z




dx

.1� x2/y
(15.18)

T.h; j/ D
Z




dx

y
: (15.19)

Note that the positive and the negative determinations of the square root y have been
chosen, respectively, for the upper and the lower leaves of the Riemann surface. We
have also added a factor 1=2 in the definition of the two integrals to coincide with
the real case.

Let � be a small real loop around the singular point .h D 1; j D 0/. In the real
case, we recall that the computation of the monodromy matrix associated with � is
based on the variation of the function‚ along this loop, the variation of the function
T being equal to zero. This variation is denoted ��‚. The last step of the method
consists in computing��‚ by using the extension of‚ to the complex domain. For
that purpose, we introduce a Gauss–Manin connection along the loop � [38] and
we use this connection to make the parallel transport of ı along � . This will lead
to the monodromy of ı and to the variation of ‚. The Gauss–Manin connection
is determined by following the motion of the ramification points of the Riemann
surface. This motion is analyzed in the next section.
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Fig. 15.6 Local bifurcation
diagram in the neighborhood
of the singular value
.j D 0; h D 1/. This point is
represented by a full dot. The
dashed line depicts the loop
� used to calculate the
Gauss–Manin monodromy

h

j

15.2.3.2 Local Computation of the Ramification Points

The determination of the Gauss–Manin monodromy requires the knowledge of the
evolution of the ramification points of the Riemann surface along the loop � . To
simplify the computation, we consider a small loop around the singular value .j D
0; h D 1/.

For this singular value, the polynomial Q has three roots x� D �1 and x0 D
xC D 1. Let ıh, ıj, and ıx be the small variations with respect to the energy,
momentum, and roots, respectively. A first numerical examination of the roots
shows that they collide with the poles 1 and �1 of the integral ‚ on the vertical
line of equation j D 0. We have therefore to determine their behavior around this
line. To simplify the computation, we will consider a loop such that 1 >> ıh >> ıj.
This loop is schematically represented in Fig. 15.6.

We first consider the case where h D 1 C ıh and x D 1 C ıx. The roots of the
polynomial Q satisfy:

2.ıh � ıx/.�2ıx � ıx2/ � ıj2 D 0: (15.20)

A direct expansion of the left-hand side leads to:

�4ıhıx � 2ıhıx2 C 4ıx2 C 2ıx3 � ıj2 D 0: (15.21)

Using a Newton diagram, we can neglect the terms ıhıx2 and ıx3 with respect to ıx2.
One finally arrives to the condition:

4ıx2 � 4ıhıx � ıj2 D 0: (15.22)

The two roots are given by the following expressions:

xC D 1C ıh �p
ıh2 C ıj2

2

x0 D 1C ıh Cp
ıh2 C ıj2

2
;
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with the convention that xC � 1 and x0 � 1. Using the relations 1 � ıh � ıj, we
finally get

xC D 1C .ıh � jıhj � ıj2

2jıhj/=2

x0 D 1C .ıh � jıhj C ıj2

2jıhj/=2;

which simplifies into:

xC D 1� ıj2

4ıh

x0 D 1C ıh C ıj2

4jıhj ;

for ıh > 0 and

xC D 1 � jıhj � ıj2

4jıhj

x0 D 1C ıj2

4jıhj :

for ıh < 0. The same work can be made for the x� root and we obtain

x� D �1C ıj2

8
: (15.23)

15.2.3.3 Gauss–Manin Monodromy

In this section, following [33], we reformulate the notion of Hamiltonian mon-
odromy in the complex domain. The starting point of this approach is to interpret
the integral expression of the function ‚ as a real integral on a Riemann surface
defined by (15.18). This allows us to use the topological properties of this Riemann
surface along a complex loop in a complexified energy-momentum diagram. This
loop is depicted in Fig. 15.7 where two bypasses around the line j D 0 can be seen.
We denote the two semi-circles by �C and ��, for h > 1 and h < 1, respectively.
In this work, we have considered deformations of the real loop in the half-plane
=Œj� > 0 but they could be equivalently done in the half-plane =Œj� < 0. We then
define a Gauss–Manin connection along the loop � by following the motion of the
ramification points of the Riemann surface. By using the results of Sect. 15.2.3.2,
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Fig. 15.7 Complex loop
used to compute the
Gauss–Manin monodromy in
the space .<Œj�;=Œj�; h/. The
gray plane indicates the
position of the real
bifurcation diagram. The two
semi-circles of the loop �
around the line j D 0 are in
the half-plane =Œj� > 0

hℜ[j]

ℑ
[j]

it is straightforward to deduce this behavior along the two bypasses. Note that along
the rest of the loop, the evolution of the three ramification points is trivial, i.e., we
have �1 < x� < xC < 1 and x0 > 1. We parameterize the two arcs of circle
�C and �� by h D h0 and j D j0eit with t 2 Œ0; �� if h0 > 1 and t 2 Œ�; 0� for
h0 < 1. There is a qualitative difference in the motion of the ramification points
according to the value of h0. Using the asymptotic expressions of Sect. 15.2.3.2, we
observe that x� turns around the pole in �1 for the two bypasses, while xC and
x0 turn around the one in x D 1 only for h0 > 1 and h0 < 1, respectively. From
this information, it is now straightforward to transport the cycle ı along �C and
��. In accordance with the Picard–Lefschetz theory [38], we see that this cycle is
transformed into itself plus some vanishing cycles around the poles in x D �1 and
x D 1. The parallel transport of the cycle ı is summarized in Fig. 15.8 for h0 > 1

and in Fig. 15.9 for h0 < 1.
We have now all the tools in hand to transport the cycle ı along the loop � and to

deduce the corresponding Gauss–Manin monodromy. We compute this monodromy
from a base point .h0; j0/, with h0 > 0 and j0 > 0, but this computation is
independent of the chosen base point. We first observe that the contribution of the
two vanishing cycles arising from the motion of x� cancels each other. We then
deduce that:

��‚ D
Z

ı0.h0>1;j0>0/
j0

dx

.1 � x2/y
; (15.24)

where ı0 is the vanishing cycle around the pole in x D 1. This expression can be
explicitly computed from a residue:

��‚ D 2 � 2�ij0Res.
1

.1 � x2/y
; x D 1/: (15.25)
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Fig. 15.8 Transport of the cycle ı along the semi-circle �
C

. The crosses indicate the position of
the poles in x D ˙1. The solid lines without arrows represent arbitrary branch cuts of the Riemann
surfaces and the full dots, the ramification points (see the text for details). The parts in solid and
dashed lines of the loop lie, respectively, in the upper and lower leaves of the Riemann surface. For
the first figure, the ramification points are from left to right, x

�
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Fig. 15.9 Same as Fig. 15.8 but for the semi-circle �
�
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Note that the first factor two comes from the fact that the contribution of the two
leaves has been added. We finally arrive to:

��‚ D 2�; (15.26)

which is exactly the result obtained in the real case [10, 12].

15.2.4 Conclusion and Prospective Views

In the second part of this chapter, we have reviewed in the case of a spherical
pendulum a complex approach to compute the Hamiltonian monodromy by using a
complex extension of the bifurcation diagram. This allows us to compute straightfor-
wardly the monodromy matrix from the determination of a simple residue. We have
also given a clear evidence of the relationship that can exist between Hamiltonian
monodromy and its complexified counterpart, the Gauss–Manin monodromy. This
work can also be viewed as a first step in the use of complex geometry and
abelian integrals to solve standard mechanical problems. We hope that the methods
presented in this chapter could stimulate some works in this direction both in physics
and in mathematics.
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Chapter 16
Towards a Science of Security Games

Thanh Hong Nguyen, Debarun Kar, Matthew Brown, Arunesh Sinha,
Albert Xin Jiang, and Milind Tambe

Abstract Security is a critical concern around the world. In many domains from
counter-terrorism to sustainability, limited security resources prevent full security
coverage at all times; instead, these limited resources must be scheduled, while
simultaneously taking into account different target priorities, the responses of the
adversaries to the security posture and potential uncertainty over adversary types.

Computational game theory can help design such security schedules. Indeed,
casting the problem as a Bayesian Stackelberg game, we have developed new
algorithms that are now deployed over multiple years in multiple applications
for security scheduling. These applications are leading to real-world use-inspired
research in the emerging research area of “security games”; specifically, the research
challenges posed by these applications include scaling up security games to large-
scale problems, handling significant adversarial uncertainty, dealing with bounded
rationality of human adversaries, and other interdisciplinary challenges.

Keywords Security games • Bayesian Stackelberg games • Game theory •
Scalability • Uncertainty • Bounded rationality

16.1 Introduction

Security is a critical concern around the world that arises in protecting our ports,
airports, transportation and other critical national infrastructure from adversaries, in
protecting our wildlife and forests from poachers and smugglers, and in curtailing
the illegal flow of weapons, drugs, and money; and it arises in problems ranging
from physical to cyber-physical systems. In all of these problems, we have limited
security resources which prevent full security coverage at all times; instead, security
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resources must be deployed intelligently taking into account differences in priorities
of targets requiring security coverage, the responses of the attackers to the security
posture, and potential uncertainty over the types, capabilities, knowledge, and
priorities of attackers faced.

Game theory, which studies interactions among multiple self-interested agents,
is well-suited to the adversarial reasoning required for security resource allocation
and scheduling problems. Casting the problem as a Bayesian Stackelberg game,
we have developed new algorithms for efficiently solving such games that provide
randomized patrolling or inspection strategies. These algorithms have led to some
initial successes in this challenging problem arena, leading to advances over
previous approaches in security scheduling and allocation, e.g., by addressing
key weaknesses of predictability of human schedulers. These algorithms are now
deployed in multiple applications: ARMOR has been deployed at the Los Angeles
International Airport (LAX) since 2007 to randomize checkpoints on the roadways
entering the airport and canine patrol routes within the airport terminals [17];
IRIS, a game-theoretic scheduler for randomized deployment of the US Federal Air
Marshals Service (FAMS) requiring significant scale-up in underlying algorithms,
has been in use since 2009 [17]; PROTECT, which schedules the US Coast Guard’s
(USCG) randomized patrolling of ports using a new set of algorithms based on
modeling bounded-rational human attackers, has been deployed in the port of
Boston since April 2011 and is in use at the port of New York since February
2012 [39], and is headed for nationwide deployment; another application for
deploying escort boats to protect ferries has been deployed by the USCG since
April 2013 [10]; and TRUSTS [51] has been evaluated in field trials by the Los
Angeles Sheriffs Department (LASD) in the LA Metro system and a nationwide
deployment is now being evaluated at TSA. Most recently, PAWS—another game-
theoretic application using a Bayesian distribution of boundedly rational attackers
was tested by rangers in Uganda for protecting wildlife in Queen Elizabeth National
Park (QENP) in April 2014 [49]; MIDAS which is based on modeling behaviors
of attackers combined with the robust approach is in use by USCG for protecting
fisheries [14]. These initial successes point the way to major future applications in
a wide range of security domains; with major research challenges in scaling up our
game-theoretic algorithms, in addressing human adversaries’ bounded rationality
and uncertainties in action execution and observation, as well as in multiagent
learning.

Given many game-theoretic applications for solving real-world security prob-
lems, this book chapter will provide an overview of the models and algorithms,
key research challenges and a brief description of our successful deployments with
emphasis on three key lessons: (1) computational game theory-based decision aids
are in daily use by security agencies due to their capability for optimizing limited
security resources against strategic adversaries; (2) these applications provide fun-
damental research challenges, leading to an (emerging) science of security games,
including the challenge of massive scale games which cannot fit into memory and
the challenge of modeling many different forms of uncertainty in outcomes and
preferences, action execution, and human decision-making; and (3) current security
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game applications for solving green security games such as protecting wildlife and
the environment are challenging for AI; these are important global problems that
provide open research problems to integrate AI research (including planning and
learning) in security games.

16.2 Stackelberg Security Games

Stackelberg security games (SSGs) were first introduced to model leadership and
commitment [44], and are now used to study security problems ranging from
“police and robbers” scenario [12], computer network security [29], missile defense
systems [5], and terrorism [38]. Models for arms inspections and border patrolling
have also been modeled using inspection games [3], a related family of Stackelberg
games.

This section provides details on this use of Stackelberg games for modeling
security domains. We first give a generic description of security domains followed
by security games, the model by which security domains are formulated in the
Stackelberg game framework.

16.2.1 Security Domain Description

In a security domain, a defender must perpetually defend a set of targets using a
limited number of resources, whereas the attacker is able to surveil and learn the
defender’s strategy and attack after careful planning. This fits precisely into the
description of a Stackelberg game if we map the defender to the leader’s role and
the attacker to the follower’s role [3, 6]. An action, or pure strategy, for the defender
represents deploying a set of resources on patrols or checkpoints, e.g., scheduling
checkpoints at the LAX airport or assigning federal air marshals to protect flight
tours. The pure strategy for an attacker represents an attack at a target, e.g., a flight.
The strategy for the leader is a mixed strategy, a probability distribution over the
pure strategies of the defender. Additionally, with each target are also associated a
set of payoff values that define the utilities for both the defender and the attacker
in case of a successful or a failed attack. These payoffs are represented using the
security game model, described next.

16.2.2 Definition of SSGs

A key assumption of security games is that the payoff of an outcome depends
only on the target attacked, and whether or not it is covered by the defender [25].
The payoffs do not depend on the remaining aspects of the defender allocation.
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Table 16.1 Example of a
security game with two
targets

Defender Attacker

Target Covered Uncovered Covered Uncovered

t1 10 0 �1 1

t2 0 �10 �1 1

For example, if an adversary succeeds in attacking target t1, the penalty for the
defender is the same whether the defender was guarding target t2 or not.

This allows us to compactly represent the payoffs of a security game. Specifi-
cally, a set of four payoffs is associated with each target. These four payoffs are the
rewards and penalties to both the defender and the attacker in case of a successful or
an unsuccessful attack, and are sufficient to define the utilities for both players for
all possible outcomes in the security domain. Table 16.1 shows an example security
game with two targets: t1 and t2. In this example game, if the defender was covering
(protecting) target t1 and the attacker attacked t1, the defender would get 10 units of
reward whereas the attacker would receive �1 units. We make the assumption that
in a security game it is always better for the defender to cover a target as compared
to leaving it uncovered, whereas it is always better for the attacker to attack an
uncovered target. This assumption is consistent with the payoff trends in the real-
world. A special case is zero-sum games, in which for each outcome the sum of
utilities for the defender and attacker is zero, although in general security games are
not necessarily zero-sum.

In the above example, all payoff values are exactly known. In practice, we often
have uncertainty over the payoffs and preferences of the players. Bayesian games
are a well-known game-theoretic model in which such uncertainty is modeled using
multiple types of players, with each associated with its own payoff values. For
security games of interest, the main source of payoff uncertainty is regarding the
attacker’s payoffs. In the resulting Bayesian Stackelberg game model, there is only
one leader type (e.g., only one police force), although there can be multiple follower
types (e.g., multiple attacker types trying to infiltrate security) [35]. Each follower
type is represented using a different payoff matrix. The leader does not know the
follower’s type, but knows the probability distribution over them. The goal is to find
the optimal mixed strategy for the leader to commit to, given that the defender could
be facing any of the follower types.

16.2.3 Solution Concept: Strong Stackelberg Equilibrium

The solution to a security game is a mixed strategy for the defender that maximizes
the expected utility of the defender, given that the attacker learns the mixed strategy
of the defender and chooses a best response for himself. This solution concept is
known as a Stackelberg equilibrium [27].
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The most commonly adopted version of this concept in related literature is called
strong Stackelberg equilibrium (SSE) [4, 9, 35, 45]. An SSE for security games is
informally defined as follows (the formal definition of SSE is not introduced for
brevity, and can instead be found in [25]):

Definition 1. A pair of strategies form a SSE if they satisfy

1. The defender plays a best response, that is, the defender cannot get a higher
payoff by choosing any other strategy.

2. The attacker plays a best response, that is, given a defender strategy, the attacker
cannot get a higher payoff by attacking any other target.

3. The attacker breaks ties in favor of the leader.

The assumption that the follower will always break ties in favor of the leader
in cases of indifference is reasonable because in most cases the leader can induce
the favorable strong equilibrium by selecting a strategy arbitrarily close to the
equilibrium that causes the follower to strictly prefer the desired strategy [45].
Furthermore an SSE exists in all Stackelberg games, which makes it an attractive
solution concept compared to versions of Stackelberg equilibrium with other tie-
breaking rules. Finally, although initial applications relied on the SSE solution
concept, we have since proposed new solution concepts that are more robust against
various uncertainties in the model [1, 37, 50] and have used these robust solution
concepts in some of the later applications.

16.3 Deployed Real-World Security Applications

In this section, we describe several deployed and emerging applications of the
Stackelberg game framework in different real-world domains. Besides describing
successful transitions of research, our aim is to set the stage for later sections in
which we discuss the research challenges that arise.

16.3.1 ARMOR for Los Angeles International Airport

Los Angeles International Airport (LAX) is the largest destination airport in the
USA and serves 60–70 million passengers per year. The LAX police use diverse
measures to protect the airport, which include vehicular checkpoints, police units
patrolling the roads to the terminals, patrolling inside the terminals (with canines),
and security screening and bag checks for passengers. The application of our
game-theoretic approach is focused on two of these measures: (1) placing vehicle
checkpoints on inbound roads that service the LAX terminals, including both
location and timing, and (2) scheduling patrols for bomb-sniffing canine units at the
different LAX terminals. The eight different terminals at LAX have very different
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Fig. 16.1 LAX checkpoints are deployed using ARMOR

characteristics, like physical size, passenger loads, international versus domestic
flights, etc. These factors contribute to the differing risk assessments of these
eight terminals. Furthermore, the numbers of available vehicle checkpoints and
canine units are limited by resource constraints. Thus, it is challenging to optimally
allocate these resources to improve their effectiveness while avoiding patterns in the
scheduled deployments.

The ARMOR system (Assistant for Randomized Monitoring over Routes) focuses
on two of the security measures at LAX (checkpoints and canine patrols) and
optimizes security resource allocation using Bayesian Stackelberg games. Take the
vehicle checkpoints model as an example. Assuming that there are n roads, the
police’s strategy is placing m < n checkpoints on these roads where m is the
maximum number of checkpoints. ARMOR randomizes allocation of checkpoints
to roads. The adversary may conduct surveillance of this mixed strategy and may
potentially choose to attack through one of these roads. ARMOR models different
types of attackers with different payoff functions, representing different capabilities
and preferences for the attacker. ARMOR uses DOBSS (Decomposed Optimal
Bayesian Stackelberg Solver) [35] to compute the defender’s optimal strategy.
ARMOR has been successfully deployed since August 2007 at Fig. 16.1.

16.3.2 IRIS for US FAMS

The US FAMS allocates air marshals to flights originating in and departing from
the USA to dissuade potential aggressors and prevent an attack should one occur.
Flights are of different importance based on a variety of factors such as the numbers
of passengers, the population of source and destination, and international flights
from different countries. Security resource allocation in this domain is significantly
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more challenging than for ARMOR: a limited number of air marshals need to be
scheduled to cover thousands of commercial flights each day. Furthermore, these air
marshals must be scheduled on tours of flights that obey various constraints (e.g.,
the time required to board, fly, and disembark). Simply finding schedules for the
marshals that meet all of these constraints is a computational challenge. Our task
is made more difficult by the need to find a randomized policy that meets these
scheduling constraints, while also accounting for the different values of each flight.

Against this background, the IRIS system (Intelligent Randomization In Schedul-
ing) has been developed and deployed by FAMS since October 2009 to randomize
schedules of air marshals on international flights. In IRIS, the targets are the set of
n flights and the attacker could potentially choose to attack one of these flights. The
FAMS can assign m < n air marshals that may be assigned to protect these flights.
Since the number of possible schedules exponentially increases with the number
of flights and resources, DOBSS is no longer applicable to the FAMS domain.
Instead, IRIS uses the much faster ASPEN algorithm [16] to generate the schedule
for thousands of commercial flights per day.

16.3.3 PROTECT for USCG

The USCG’s mission includes maritime security of the US coasts, ports, and inland
waterways; a security domain that faces increased risks due to threats such as
terrorism and drug trafficking. Given a particular port and the variety of critical
infrastructure that an attacker may attack within the port, USCG conducts patrols to
protect this infrastructure; however, while the attacker has the opportunity to observe
patrol patterns, limited security resources imply that USCG patrols cannot be at
every location 24/7. To assist the USCG in allocating its patrolling resources, the
PROTECT (Port Resilience Operational/Tactical Enforcement to Combat Terrorism)
model has been designed to enhance maritime security. It has been in use at the port
of Boston since April 2011, and is also in use at the port of New York since February
2012 (Fig. 16.2). Similar to previous applications ARMOR and IRIS, PROTECT uses
an attacker–defender Stackelberg game framework, with USCG as the defender
against terrorists that conduct surveillance before potentially launching an attack.

The key idea in PROTECT is also that unpredictability creates situations of
uncertainty for an enemy and can be enough to deem a target less appealing. While
randomizing patrol patterns is key, PROTECT also addresses the fact that the targets
are of unequal value, understanding that the attacker will adapt to whatever patrol
patterns USCG conducts. The output of PROTECT is a schedule of patrols which
includes when the patrols are to begin, what critical infrastructure to visit for each
patrol, and what activities to perform at each critical infrastructure.

While PROTECT builds on previous work, it offers key innovations. First, this
system is a departure from the assumption of perfect attacker rationality noted in
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Fig. 16.2 USCG boats patrolling the ports of Boston and NY. (a) PROTECT is being used in
Boston. (b) Extending PROTECT to NY

previous work, relying instead on a quantal response model [31] of the attacker’s
behavior. Second, to improve PROTECT’s efficiency, a compact representation of the
defender’s strategies is used by exploiting equivalence and dominance. Finally, the
evaluation of PROTECT for the first time provides real-world data: (1) comparison
of human-generated vs PROTECT schedules, and (2) results from an Adversarial
Perspective Team’s (APT) (human mock attackers) analysis. The PROTECT model
has now been extended to other US ports like Los Angeles/Long Beach and is
moving towards nationwide deployment.

16.3.4 Ferry Protection for the USCG

Another problem that USCG faces is the protection of ferries, including the Staten
Island Ferry in New York, from potential terrorist attacks from water. We developed
a game-theoretic system for scheduling escort boat patrols to protect ferries, and
this has been deployed at the Staten Island Ferry since 2013 [10] (Fig. 16.3).
The key research challenge is the fact that the ferries are continuous moving in a
continuous domain, and the attacker could attack at any moment in time. This type
of moving targets domain leads to game-theoretic models with continuous strategy
spaces, which presents computational challenges. Our theoretical work showed that
while it is safe to discretize the defender’s strategy space, discretizing the attacker’s
strategy space would result in loss of utility. We developed a novel algorithm that
uses a compact representation for the defender’s mixed-strategy space while being
able to exactly model the attacker’s continuous strategy space. The implemented
algorithm, running on a laptop, is able to generate daily schedules for escort boats
with guaranteed expected utility values.
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Fig. 16.3 Escort boats protecting the Staten Island Ferry use strategies generated by our system

Fig. 16.4 TRUSTS for transit systems. (a) Los Angeles Metro. (b) Barrier-free entrance to transit
system

16.3.5 TRUSTS for Security in Transit Systems

Urban transit systems face multiple security challenges, including deterring fare
evasion, suppressing crime and counter-terrorism. In particular, in some urban
transit systems, including the Los Angeles Metro Rail system, passengers are legally
required to purchase tickets before entering but are not physically forced to do so
(Fig. 16.4). Instead, security personnel are dynamically deployed throughout the
transit system, randomly inspecting passenger tickets. This proof-of-payment fare
collection method is typically chosen as a more cost-effective alternative to direct
fare collection, i.e., when the revenue lost to fare evasion is believed to be less
than what it would cost to directly preclude it. In the case of Los Angeles Metro,
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with approximately 300,000 riders daily, this revenue loss can be significant; the
annual cost has been estimated at $5.6 million [13]. The Los Angeles Sheriffs
Department (LASD) deploys uniformed patrols on board trains and at stations
for fare-checking (and for other purposes such as crime prevention). The LASD’s
current approach relies on humans for scheduling the patrols, which places a
tremendous cognitive burden on the human schedulers who must take into account
all of the scheduling complexities (e.g., train timings, switching time between trains,
and schedule lengths).

The TRUSTS system (Tactical Randomization for Urban Security in Transit
Systems) models the patrolling problem as a leader–follower Stackelberg game [51].
The leader (LASD) pre-commits to a mixed-strategy patrol (a probability distribu-
tion over all pure strategies), and riders observe this mixed strategy before deciding
whether to buy the ticket or not. Both ticket sales and fines issued for fare evasion
translate into revenue for the government. Therefore the utility for the leader is the
total revenue (total ticket sales plus penalties). The main computational challenge
is the exponentially many possible patrol strategies, each subject to both the spatial
and temporal constraints of travel within the transit network under consideration.
To overcome this challenge, TRUSTS uses a compact representation of the strategy
space which captures the spatiotemporal structure of the domain.

The LASD conducted field tests of this TRUSTS system in the LA Metro in
2012, and one of the feedback comments from the officers was that patrols are
often interrupted due to execution uncertainty such as emergencies and arrests.
Utilizing techniques from planning under uncertainty [in particular Markov Deci-
sion Processes (MDPs)], we proposed a general approach to dynamic patrolling
games in uncertain environments, which provides patrol strategies with contingency
plans [20]. This led to schedules now being loaded onto smartphones and given
to officers. If interruptions occur, the schedules are then automatically updated on
the smartphone app. The LASD has conducted successful field evaluations using
the smartphone app, and the TSA is currently evaluating it towards nationwide
deployment.

Crime presents a serious problem in transit systems like LA Metro. Furthermore,
unlike terrorists that strategically plans an attack, criminals are often opportunistic,
in that their decisions are based on the available opportunities encountered. For
the crime problem, we developed a new game-theoretic model that utilizes recent
advances in criminology on modeling opportunistic criminals, and novel efficient
algorithms that achieve speed-ups by exploiting the spatiotemporal structure of the
domain [53].

16.3.6 Fishery Protection for USCG

Fisheries are a vital natural resource from both an ecological and economic
standpoint. However, fish stocks around the world are threatened with collapse due
to illegal, unreported, and unregulated (IUU) fishing. In the USA, the Coast Guard
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(USCG) is tasked with the responsibility of protecting and maintaining the nation’s
fisheries. To this end, the USCG deploys resources (both air and surface assets) to
conduct patrols over fishery areas in order to deter and mitigate IUU fishing. Due
to the large size of these patrol areas and the limited patrolling resources available,
it is impossible to protect an entire fishery from IUU fishing at all times. Thus, an
intelligent allocation of patrolling resources is critical for security agencies like the
USCG.

The MIDAS algorithm was developed to address the types challenges faced in
natural resource conservation domains such as fishery protection. In stark contrast
to counter-terrorism settings, there is frequent interaction between the defender
and attacker in these resource conservation domains. This distinction is important
for three reasons. First, due to the comparatively low stakes of the interactions,
rather than a handful of persons or groups, the defender must protect against
numerous adversaries (potentially hundreds or even more), each of which may
behave differently. Second, frequent interactions make it possible to collect data
on the actions of the adversaries actions over time. Third, the adversaries are
less strategic given the short planning windows between actions. Combining these
factors, MIDAS models a population of boundedly rational adversaries and utilizes
available data to learn the behavior models of the adversaries using the subjective
utility quantal response (SUQR) model in order to improve the way the defender
allocates its patrolling resources.

MIDAS has been successfully deployed and evaluated by the USCG in the Gulf of
Mexico. Historical data on fish stock densities, USCG air and surface patrols, as well
as IUU sightings and interdictions was used to construct the game model. Between
July and September 2014, six aircraft patrols were generated weekly to protect a
80 by 60 nautical mile area on the US–Mexico border off the coast of Texas. This
region represents a critical fishery for red snapper, a species that is highly lucrative
to fish, and as such observes a high volume of IUU fishing. This evaluation period
in the Gulf of Mexico represents the most sophisticated real-world deployment of
security games to date. MIDAS is currently under review by the USCG and is being
considered for further deployment in the Gulf of Mexico as well as in other fisheries
nationwide.

16.4 Emerging Real-World Security Applications

16.4.1 Networked Domains

Beyond the deployed applications above, there are a number of emerging application
areas. One such area of great importance is securing urban city networks, trans-
portation networks, computer networks, and other network centric security domains.
For example, after the terrorist attacks in Mumbai of 2008 [8], the Mumbai police
have started setting up vehicular checkpoints on roads. We can model the problem
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faced by the Mumbai police as a security game between the Mumbai police and an
attacker. In this urban security game, the pure strategies of the defender correspond
to allocations of resources to edges in the network—for example, an allocation of
police checkpoints to roads in the city. The pure strategies of the attacker correspond
to paths from any source node to any target node—for example, a path from a
landing spot on the coast to the airport. The strategy space of the defender grows
exponentially with the number of available resources, whereas the strategy space
of the attacker grows exponentially with the size of the network. In addressing this
computational challenge, novel algorithms based on incremental strategy generation
have been able to generate randomized defender strategies that scale up to the entire
road network of Mumbai [19].

The Stackelberg game framework can also be applied to adversarial domains that
exhibit “contagious” actions for each player. For example, word-of-mouth advertis-
ing/viral marketing has been widely studied by marketers trying to understand why
one product or video goes “viral” while others go unnoticed. Counter-insurgency is
the contest for the support of the local leaders in an armed conflict and can include a
variety of operations such as providing security and giving medical supplies. These
efforts carry a social effect beyond the action taken that can cause advantageous
ripples through the neighboring population. Moreover, multiple intelligent parties
attempt to leverage the same social network to spread their message, necessitating
an adversary-aware approach to strategy generation. Game-theoretic approaches can
be used to generate resource-allocations strategies for such large-scale, real-world
networks [41, 42]. This interaction can be modeled as a graph with one player
attempting to spread influence while another player attempts to stop the probabilistic
propagation of that influence by spreading their own influence. This “blocking”
problem models situations faced by governments/peacekeepers combatting the
spread of terrorist radicalism and armed conflict with daily/weekly/monthly visits
with local leaders to provide support and discuss grievances [15].

Game-theoretic methods are also appropriate for modeling resource allocation
in cyber-security such as packet selection and inspection for detecting potential
threats in large computer networks. The problem of attacks on computer systems and
corporate computer networks gets more pressing each year. A number of intrusion
detection and monitoring systems are being developed, e.g., deep packet inspection
method that periodically selects a subset of packets in a computer network for
analysis. The attacking/protecting problem can be formulated as a game between
two players: the attacker (or the intruder) and the defender (the detection system).
The actions of the attacker can be seen as sending malicious packets from a
controlled computer to vulnerable computers. The objective of the defender is to
prevent the intruder from succeeding by selecting the packets for inspection and
subsequently thwarting the attack. However, packet inspections cause unwanted
latency and hence the defender has to decide where and how to inspect network
traffic. The computational challenge is efficiently computing the optimal defending
strategies for such network scenarios [43].
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Fig. 16.5 Examples of illegal activities in green security domains. (a) An illegal trapping tool.
(b) Illegally cutting trees.

16.4.2 Green Security Domains

A number of our newer applications are focused on resource conservation through
suppression of environmental crime. One area is protecting forests [22], where
we must protect a continuous forest area from extractors by patrols through the
forest that seek to deter such extraction activity (Fig. 16.5). With limited resources
for performing such patrols, a patrol strategy will seek to distribute the patrols
throughout the forest, in space and time, in order to minimize the resulting amount
of extraction that occurs or maximize the degree of forest protection. This problem
can be formulated as a Stackelberg game and the focus is on computing optimal
allocations of patrol density [22].

Endangered species poaching is reaching critical levels as the populations of
these species plummet to unsustainable numbers. The global tiger population, for
example, has dropped over 95 % from the start of the 1900s and has resulted in
three out of nine species extinctions. Depending on the area and animals poached,
motivations for poaching range from profit to sustenance, with the former being
more common when profitable species such as tigers, elephants, and rhinos are
the targets. To counter poaching efforts and to rebuild the species’ populations,
countries have set up protected wildlife reserves and conservation agencies tasked
with defending these large reserves. Because of the size of the reserves and the
common lack of law enforcement resources, conservation agencies are at a signif-
icant disadvantage when it comes to deterring and capturing poachers. Agencies
use patrolling as a primary method of securing the park. Due to their limited
resources, however, patrol managers must carefully create patrols that account for
many different variables (e.g., limited patrol units to send out, multiple locations
that poachers can attack at varying distances to the outpost). Our proposed system
Protection Assistant for Wildlife Security (PAWS) aims to assist conservation
agencies in their critical role of patrol creation by predicting where poachers will
attack and optimizing patrol routes to cover those areas.
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16.5 Scale Up to Real-World Problem Sizes

The wide use of Stackelberg games has inspired theoretical and algorithmic progress
leading to the development of fielded applications, as described in Sect. 16.3. For
example, DOBSS [35], an algorithm for solving Bayesian Stackelberg games, is
central to the fielded application ARMOR in use at the Los Angeles International
Airport [17]. Conitzer and Sandholm [9] gave complexity results and algorithms
for computing optimal commitment strategies in Bayesian Stackelberg games,
including both pure- and mixed-strategy commitments.

These early works assumed that the set of pure strategies for the players are given
explicitly. Many real-world problems, like the FAMS and urban road networks,
present billions of pure strategies to both the defender and the attacker. Such large
problem instances cannot even be represented in modern computers, let alone solved
using previous techniques. We have proposed models and algorithms that compute
optimal defender strategies for massive real-world security domains [16, 18].

16.5.1 Scale Up with Defender Pure Strategies

In this section, we describe one particular algorithm ASPEN, that computes SSE
in domains with a very large number of pure strategies (up to billions of actions)
for the defender [16]. ASPEN builds on the insight that in many real-world game-
theoretic problems, there exist solutions with small support sizes, which are mixed
strategies in which only a small set of pure strategies are played with positive
probability [28]. ASPEN exploits this by using a strategy generation approach for
the defender, in which defender pure strategies are iteratively generated and added
to the optimization formulation.

As an example, let us consider the problem faced by the FAMS. There are
currently tens of thousands of commercial flights flying each day, and public
estimates state that there are thousands of air marshals that are scheduled daily
by the FAMS [24]. Air marshals must be scheduled on tours of flights that obey
logistical constraints (e.g., the time required to board, fly, and disembark). An
example of a schedule is an air marshal assigned to a round trip from Los Angeles
to New York and back.

ASPEN [16] casts this problem as a security game, where the attacker can choose
any of the flights to attack, and each air marshal can cover one schedule. Each
schedule here is a feasible set of targets that can be covered together; for the
FAMS, each schedule would represent a flight tour which satisfies all the logistical
constraints that an air marshal could fly. A joint schedule then would assign every
air marshal to a flight tour, and there could be exponentially many joint schedules
in the domain. A pure strategy for the defender in this security game is a joint
schedule. As mentioned previously, ASPEN employs strategy generation since all
the defender pure strategies cannot be enumerated for such a massive problem.
ASPEN decomposes the problem into a master problem and a slave problem, which



16 Towards a Science of Security Games 361

Fig. 16.6 Strategy generation employed in ASPEN: the schedules for a defender are generated
iteratively. The slave problem is a novel minimum-cost integer flow formulation that computes the
new pure strategy to be added to P; J4 is computed and added in this example

are then solved iteratively. Given a number of pure strategies, the master solves for
the defender and the attacker optimization constraints, while the slave is used to
generate a new pure strategy for the defender in every iteration.

The iterative process is graphically depicted in Fig. 16.6. The master operates
on the pure strategies (joint schedules) generated thus far, which are represented
using the matrix P. Each column of P, Jj, is one pure strategy (or joint schedule).
An entry Pij in the matrix P is 1 if a target ti is covered by joint-schedule Jj, and 0
otherwise. The objective of the master problem is to compute x, the optimal mixed
strategy of the defender over the pure strategies in P. The objective of the slave
problem is to generate the best joint schedule to add to P. The best joint schedule
is identified using the concept of reduced costs, which measures if a pure strategy
can potentially increase the defender’s expected utility (the details of the approach
are provided in [16]). While a naïve approach would be to iterate over all possible
pure strategies to identify the pure strategy with the maximum potential, ASPEN

uses a novel minimum-cost integer flow problem to efficiently identify the best pure
strategy to add. ASPEN always converges on the optimal mixed strategy for the
defender.

Employing strategy generation for large optimization problems is not an “out-of-
the-box” approach, the problem has to be formulated in a way that allows for domain
properties to be exploited. The novel contribution of ASPEN is to provide a linear
formulation for the master and a minimum-cost integer flow formulation for the
slave, which enables the application of strategy generation techniques. Additionally,
ASPEN also provides a branch-and-bound heuristic to reason over attacker actions.
This branch-and-bound heuristic provides a further order of magnitude speed-up,
allowing ASPEN to handle the massive sizes of real-world problems.
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Fig. 16.7 Strategy
generation employed in
RUGGED: the pure strategies
for both the defender and the
attacker are generated
iteratively

16.5.2 Scale Up with Defender and Attacker Pure Strategies

In domains such as the urban network security setting described in Sect. 16.4, the
number of pure strategies of both the defender and the attacker are exponentially
large. In this section, we describe the RUGGED algorithm [18], which generates
pure strategies for both the defender and the attacker.

RUGGED models the domain as a zero-sum game, and computes the minimax
equilibrium, since the minimax strategy is equivalent to the SSE in zero-sum games.
Figure 16.7 shows the working of RUGGED: at each iteration, the minimax module
generates the optimal mixed strategies hx; ai for the two players for the current
payoff matrix, the Best Response Defender module generates a new strategy for the
defender that is a best response against the attacker’s current strategy a, and the
Best Response Attacker module generates a new strategy for the attacker that is a
best response against the defender’s current strategy x. The rows Xi in the figure
are the pure strategies for the defender, they would correspond to an allocation of
checkpoints in the urban road network domain. Similarly, the columns Aj are the
pure strategies for the attacker, they represent the attack paths in the urban road
network domain. The values in the matrix represent the payoffs to the defender. The
algorithm stops when neither of the generated best responses improve on the current
minimax strategies.

The contribution of RUGGED is to provide the mixed-integer formulations
for the best response modules which enable the application of such a strategy
generation approach. RUGGED can compute the optimal solution for deploying up
to 4 resources in real-city network with as many as 250 nodes within a reasonable
time frame of 10 h (the complexity of this problem can be estimated by observing
that both the best response problems are NP-hard themselves [18]). More recent
work [19] builds on RUGGED and proposes SNARES, which allows scale-up to the
entire city of Mumbai, with 10–15 checkpoints.
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16.5.3 Scale Up with Mobile Resources and Moving Targets

In this section, we describe the CASS (Solver for Continuous Attacker Strategy)
algorithm [10] for solving security problems where the defender has mobile
patrollers to protect a set of mobile targets against the attacker who can attack
these moving targets at any time during their movement. In these security problems,
the sets of pure strategies for both the defender and attacker are continuous w.r.t
the continuous spatial and time components of the problem domain. The CASS
algorithm attempts to compute the optimal mixed strategy for the defender without
discretizing the attacker’s continuous strategy set; it exactly models this set using
sub-interval analysis which exploits the piecewise-linear structure of the attacker’s
expected utility function. The insight of CASS is to compactly represent the
defender’s mixed strategies as a marginal probability distribution, overcoming the
short-coming of an exponential number of pure strategies for the defender.

As a domain example, in the problem of protecting ferries described in
Sect. 16.3.4, there are a number of ferries carrying hundreds of passengers in
many waterside cities. These ferries are attractive targets for an attacker who can
approach the ferries with a small boat packed with explosives at any time; this
attacker’s boat may only be detected when it comes close to the ferries. Small, fast,
and well-armed patrol boats can provide protection to such ferries by detecting
the attacker within a certain distance and stop him from attacking with the armed
weapons. However, the numbers of patrol boats are often limited, thus the defender
cannot protect the ferries at all times and locations.

CASS casts this problem as a zero-sum security game in which targets move
along a one-dimensional domain, i.e., a straight line segment connecting two
terminal points. This one-dimensional assumption is valid as in real-world domains
such as ferry protection, ferries normally move back-and-forth in a straight line
between two terminals (i.e., ports) around the world. Although the targets’ locations
vary w.r.t time changes, these targets have a fixed daily schedule, meaning that
determining the locations of the targets at a certain time is straightforward. The
defender has mobile patrollers (i.e., boats) that can move along between two
terminals to protect the targets. While the defender is trying to protect the targets,
the attacker will decide to attack a certain target at a certain time. The probability
that the attacker successfully attacks depends on the positions of the patroller at that
time. Specifically, each patroller possesses a protective circle of radius within which
she can detect and try to intercept any attack, whereas she is incapable of detecting
the attacker prior to that radius.

In CASS, the defender’s strategy space is discretized and her mixed strategy is
compactly represented using flow distributions. Figure 16.8 shows an example of a
ferry transition graph in which each node of the graph indicates a particular pair of
(location and time step) for the target. Here, there are three location points, namely
A, B, and C on a straight line where B lies between A and C. Initially, the target
is at one of these location points at the 5-min time step. Then the target moves to
the next location point which is determined based on the connectivity between these
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Fig. 16.8 An example of a ferry transition graph

points at the 10-min time step, and so on. For example, if the target is at the location
point A at the 5-min time step, denoted by (A, 5 min) in the transition graph, it can
move to the location point B or stay at location point A at the 10-min time step.
The defender follows this transition graph to protect the target. A pure strategy for
the defender is defined as a trajectory of this graph, e.g., the trajectory including
(A, 5 min), (B, 10 min), and (C, 15 min) indicates a pure strategy for the defender.
One key challenge of this representation for the defender’s pure strategies is that
the transition graph consists of an exponential number of trajectories, i.e., O.NT /

where N is the number of location points and T is the number of time steps. To
address this challenge, CASS proposes a compact representation of the defender’s
mixed strategy. Instead of directly computing a probability distribution over pure
strategies for the defender, CASS attempts to compute the marginal probability that
the defender will follow a certain edge of the transition graph, e.g., the probability of
being at the node (A, 5 min) and moving to the node (B, 10 min). CASS shows that
any strategy in full representation can be mapped into a compact representation
as well as compact representation does not lead to any loss in solution quality.
This compact representation allows CASS to reformulate the resource-allocation
problem as computing the optimal marginal coverage of the defender over a number
of O.NT/ the edges of the transition graph.

16.5.4 Scale Up with Continuous Domains and Boundedly
Rational Attacker

As discussed in Sect. 16.3, natural resource conservation domains such as fishery
protection introduce a unique set of challenges which must be addressed, namely
scalability and robustness. For scalability, the defender is responsible for protecting
a large patrol area and therefore must consider a large strategy space. Even if the
patrol area is discretized into a grid or graph structure, the defender must still
reason over an exponential number of patrol strategies. For robustness, the defender
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Fig. 16.9 Overview of the
multiple iterative process
within the MIDAS algorithm

must protect against multiple boundedly rational adversaries. Bounded rationality
models, such as the quantal response (QR) model [31] and the SUQR model [32],
introduce stochastic actions, relaxing the strong assumption in classical game theory
that all players are perfectly rational and utility maximizing. These models are able
to better predict the actions of human adversaries and thus lead the defender to
choose strategies that perform better in practice. However, both QR and SUQR are
non-linear models resulting in a computationally difficult optimization problem for
the defender.

Previous work on boundedly rational adversaries has considered the challenges
of scalability and robustness separately, in [47, 48] and [14, 49], respectively. The
MIDAS algorithm was introduced to merge these two research threads for the first
time by addressing scalability and robustness simultaneously. Figure 16.9 provides
a visual overview of how MIDAS operates as an iterative process. Given the sheer
complexity of the game being solved, the problem is decomposed using a master–
slave formulation. The master utilizes multiple simplifications to create a relaxed
version of the original problem which is more efficient to solve. First, a piecewise-
linear approximation of the security game is taken to make the optimization problem
both linear and convex. This is a modified version of the approach in [47], replacing
the QR model of the adversary with SUQR and considering a robust maximin
formulation over a set of boundedly rational adversaries. Second, the complex
spatiotemporal constraints associated with patrols are initially ignored and then
incrementally added back using cut generation.

Due to the relaxations, solving the master produces a marginal strategy x which
is a probability distribution over targets. However, the defender ultimately needs a
probability distribution over patrols. Additionally, since not all of the spatiotemporal
constraints are considered in the master, the relaxed solution x may not be a feasible
solution to the original problem. Therefore, the slave checks if the marginal strategy
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x can expressed as a linear combination, i.e., probability distribution, of patrols by
computing a one-norm minimization. If the one-norm distance is zero, the marginal
distribution can be translated to a feasible pure strategy distribution which is in fact
the optimal solution to the original problem. Otherwise, the marginal distribution
is infeasible for the original problem. However, given the exponential number of
patrol strategies, even performing this optimality check is intractable. Thus, column
generation is used within the slave where only a small set of patrols is considered
initially in the optimality check and the set is expanded over time. Much like
previous examples of column generation in security games, e.g., [16], new patrols
are added by solving a minimum-cost network flow problem using reduced cost
information from the optimality check. If the optimality check fails, then the slave
generates a cut which is returned to refine and constrain the master, incrementally
bringing it closer to the original problem. The entire process is repeated until an
optimal solution is found.

16.6 Address Uncertainty in Real-World Problems

Addressing uncertainty is a key challenge of solving real-world security problems.
Traditional SSGs often assume that the defender has perfect information about the
game payoff matrix as well as the attacker’s behaviors. Moreover, she is supposed
to be capable of exactly executing her patrolling strategy. However, due to limited
data, the defender cannot precisely estimate such aspects, i.e., the payoff matrix
or attacker’s behaviors. Also, there is no guarantee that the defender can exactly
follow the patrolling schedule as a result of unseen events that could change her
patrolling strategy. These types of uncertainty could deteriorate the effectiveness
of the defender’s strategy and thus it is important for the defender to address them
when generating strategy. This section of the book chapter describes several game-
theoretic solutions to deal with uncertainty in SSGs.

16.6.1 Security Patrolling with Dynamic
Execution Uncertainty

In security problems such as fare inspections in the Los Angeles Metro Rail system
as described in Sect. 16.3.5, the targets, e.g., trains normally follow predetermined
schedules, thus timing is an important aspect which determines the effectiveness of
the defender’s patrolling schedules (the defender needs to be at the right location
at a specific time in order to protect these moving targets). However, as a result
of execution uncertainty (e.g., emergencies or errors), the defender could not carry
out her planned patrolling schedule in later time steps. For example, in real-world
trials for TRUSTS carried out by Los Angeles Sheriff’s Department (LASD), there
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is interruption (due to writing citations, felony arrests, and handling emergencies)
in a significant fraction of the executions, causing the officers to miss the train they
are supposed to catch as following the pre-generated patrolling schedule.

In this section, we present the Bayesian Stackelberg game model for security
patrolling with dynamic execution uncertainty introduced by Jiang et al. [20] in
which the uncertainty is represented using MDPs. The key advantage of this game-
theoretic model is that patrol schedules which are computed based on Stackelberg
equilibrium have contingency plans to deal with interruptions and are robust against
execution uncertainty. Specifically, the security problem with execution uncertainty
is represented as a two-player Bayesian Stackelberg game between the defender
and the attacker. The defender has multiple patrol units while there are also multiple
types of attackers which are unknown to the defender. A (naive) patrol schedule
consists of a set of sequenced commands in the following form: at time t, the patrol
unit should be at location l, and execute patrol action a. This patrol action a will
take the unit to the next location and time if successfully executed. However, due to
execution uncertainty, the patrol unit may end up at a different location and time.
Figure 16.10 shows an example of execution uncertainty in a transition graph where
if the patrol unit is currently at location A at the 5-min time step, she is supposed to
take the on-train action to move to location B in the next time step. However, unlike
CASS for ferry protection in which the defender’s action is deterministic, there is
a 10 % chance that she will still stay at location A due to execution uncertainty.
These interactions of the defender with the environment when executing patrol can
be represented as an MDP.

A key challenge of computing the SSE for this type of security problem is that
the dimension of the space of mixed strategies for the defender is exponential in
the number of states in terms of the defender’s times and locations. Nevertheless, in
many domains, the utilities have additional separable structure that the defender
can exploit to efficiently compute an SSE of patrolling games with execution
uncertainty. Specifically, when there exist unit utilities such as that both players’
utilities can be represented as a linear combination of these unit utilities, the
defender’s Markov strategy can be obtained based on the marginal probabilities of

Fig. 16.10 An example of execution uncertainty in a transition graph
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Fig. 16.11 Uncertainty space and algorithms

each patrolling unit reaching a state s D .t; l/, and taking action a. Here, the unit
utilities only depend on a certain patrolling unit’s state and action and a certain type
of attacker. Therefore, instead of directly computing the mixed strategy, the defender
attempts to compute the marginal probabilities which have dimensions polynomial
in the sizes of the MDPs (the details of this approach are provided in [20]).

16.6.2 Security Patrolling with Unified Uncertainty Space

In this section, we present the two leading approaches for addressing uncertainty in
security games in which the timing is not taken into account (which is different from
the MDP-based approach described in the previous section). We first summarize the
major types of uncertainties in security games as a three-dimensional uncertainty
space with the following three dimensions (Fig. 16.11): (1) uncertainty in the
adversary’s payoff; (2) uncertainty related to the defender’s strategy (includ-
ing uncertainty in the defender’s execution and the attacker’s observation); and
(3) uncertainty in the adversary’s rationality. These dimensions refer to three key
attributes which affect both players’ utilities. The origin of the uncertainty space
corresponds to the case with no uncertainty. Figure 16.11 also shows existing algo-
rithms for addressing uncertainty in SSGs which follow the two main approaches:
(1) modeling uncertainties based on Bayesian Stackelberg game models and (2)
applying robust-optimization techniques. For example, BRASS [36] is a robust
algorithm that only addresses attacker-payoff uncertainty while URAC (Unified
Robust Algorithmic framework for addressing unCertainties) [33] is a unified robust
algorithm that handles all types of uncertainty. In addition, HUNTER (Handling
UNcerTainty Efficiently using Relaxation) [52] is a Bayesian-based algorithm that
addresses all types of uncertainty except for the attacker-rationality uncertainty.
While the Bayesian-based approach assumes a known distribution of uncertainties
beforehand, the robust approach does not assume such prior knowledge.
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Fig. 16.12 Branch-and-bound depth first search

In the following, we will describe the two algorithms which are representatives
of these two approaches: HUNTER (based on the Bayesian-based approach) and
URAC (based on the robust approach).

16.6.2.1 Bayesian Approach

Overall, HUNTER is a novel algorithm for solving Bayesian Stackelberg games
that can be used together with sample average approximation technique to solve
Stackelberg games with uncertainty in the defender’s execution and the attacker’s
observation [52]. Specifically, HUNTER attempts to compute the optimal mixed
strategy for the defender against multiple attacker types with a prior distribution
over the types. By exploiting the fact that the attacker is a perfectly rational player
who will attack the optimal target with highest utility, HUNTER applies a best-first
search for efficiently pruning the search tree that results from assigning attacker
types to pure strategies as shown in Fig. 16.12. In other words, HUNTER first
constructs the search tree by iteratively searching through all attacker types and
all corresponding pure strategies for that attacker type. At each leaf node, the linear
program at that node provides an optimal strategy for the defender such that the
attacker’s best response for every attacker type is the chosen target at that leaf node.
Moreover, at internal nodes of the search tree (which corresponds to a partial
assignment in which responses of a subset of attacker types are fixed), upper bounds
and lower bounds of the optimal SSG solution are computed, which are then used to
prune the search tree. As the size of the search tree is exponential in the number of
targets and number of attacker types, finding tight upper bounds and lower bounds
at internal nodes are essential in order to efficiently prune the search tree.

The key idea of HUNTER is to provide a tractable linear relaxation of Bayesian
Stackelberg games that provides an upper bound efficiently at each of HUNTER’s
internal nodes based on finding a convex hull of all feasible solutions of the
corresponding linear program at internal nodes. Figure 16.13 illustrates an example
of constructing a convex hull of feasible solution regions of a two-target Bayesian
security game with two attacker types. In Fig. 16.13a, each square corresponds to a
partial assignment of an attacker type to a pure strategy, i.e., attacked target. The set
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Fig. 16.13 An example of constructing a convex hull of feasible solution regions of a two-target
Bayesian security games with two attacker types. HUNTER

of feasible solutions for the defender is the union of four disjoint green regions. As
the optimal solution of a linear program is an extreme point of its feasible region,
the linear program w.r.t the green regions is equivalent to a linear program with
the same objective but w.r.t the convex hull of these four regions. However, the
number of the disjoint regions is exponential in the number of targets and number of
attacker types, finding a convex hull for these regions is computational. Therefore,
HUNTER derives the relaxation of a Bayesian Stackelberg game by considering
simpler convex hulls (of a small number of disjoint sets) (the blue and yellow regions
shown in Fig. 16.13b) of which intersection is a super set of the convex hull of green
regions. By solving this relaxation problem, HUNTER obtains an upper bound for
the optimal solution of the Bayesian security game.

16.6.2.2 Robust Approach

In this section, we present the robust URAC algorithm for addressing a combination
of all uncertainty types [33]. Consider an SSG where there is uncertainty in the
attacker’s payoff, the defender’s strategy (including the defender’s execution and
the attacker’s observation), and the attacker’s behavior, URAC represents all these
uncertainty types (except for the attacker’s behaviors) using uncertainty interval.
Instead of knowing exactly values of these game attributes, the defender only has
prior information w.r.t the upper bounds and lower bounds of these attributes. For
example, the attacker’s reward if successfully attacking a target t is known to lie
within the interval Œ1; 3�. Furthermore, URAC assumes the attacker monotonically
responds to the defender’s strategy. In other words, the higher the expected utility of
a target, the more likely that the attacker will attack that target; however, the precise
attacking probability is unknown for the defender. This monotonicity assumption is
motivated by the Quantal Response model—a well-known human behavioral model
for capturing the attacker’s decision making [31].

Based on these uncertainty assumptions, URAC attempts to compute the optimal
strategy for the defender by maximizing her utility against the worst-case scenario
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of uncertainty. The key challenge of this optimization problem is that it involves
several types of uncertainty, resulting in multiple minimization steps for determining
the worst-case scenario. Nevertheless, URAC introduces a unified representation of
all these uncertainty types as a uncertainty set of attacker’s responses. Intuitively,
despite of any type of uncertainty mentioned above, what finally affects the
defender’s utility is the attacker’s response, which is unknown to the defender due
to uncertainty. As a result, URAC can represent the robust-optimization problem as
a single maximin problem.

However, the infinite uncertainty set of the attacker’s responses depends on the
planned mixed strategy for the defender, making this maximin problem difficult to
solve if directly applying the traditional method (i.e., taking the dual maximization
of the inner minimization of maximin and merging it with the outer maximization—
maximin now can be represented a single maximization problem). Therefore, URAC
proposes a divide-and-conquer method in which the defender’s strategy set is
divided into subsets such that the uncertainty set of the attacker’s responses is the
same for every defender strategy within each subset. This division leads to multiple
sub-maximin problems which can be solved by using the traditional method. The
optimal solution of the original maximin problem is now can be computed as a
maximum over all the sub-maximin problems.

16.7 Current Research

In this section we highlight several areas that we are actively doing research on, and
point out some of the open research challenges.

16.7.1 Scalability

Driven by the growing complexity of applications, a sequence of algorithms for
solving security games have been developed including DOBSS [35], ERASER [25],
ASPEN [16], and RUGGED [18]. However, existing algorithms still cannot scale up
to very large-scale domains. While RUGGED/SNARES computes optimal solutions
much faster than any of the previous approaches, much work remains to be done for
it to be applicable to complex heterogenous settings on large networks.

Besides strategy generation, another approach for dealing with an exponential
number of pure strategies is to compactly represent mixed strategies as marginal
probabilities of coverage on each of the targets. Because of the utility structure of
security games, such marginal probabilities are sufficient to express the expected
utility of the defender. Kiekintveld et al. [25] used this approach in ERASER

to formulate the problem of computing SSE as a compact mixed-integer linear
program. However, this approach is unable to deal with complex constraints on
the defender resources [26]. Nevertheless, we have recently been able to use this
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approach for certain patrolling domains, including fare-enforcement patrols in urban
transit systems [51] and boat patrols for protecting ferries [10]. In these domains a
pure strategy is a patrol of a certain time duration over a set of locations, and the
number of such pure strategies grow exponentially in the time duration. We were
able to compactly represent mixed strategies as fractional flows on the transition
graph, in which vertices are time–location pairs and arcs represent possible actions.
This allowed us to formulate the optimization problems compactly which led to
improved scalability. An open problem is to find other types of security domains
in which the strategy space can be compactly represented. Another is to develop a
hybrid approach that combines marginals and strategy generation.

16.7.2 Robustness

Classical game theory solution concepts often make assumptions on the knowledge,
rationality, and capability (e.g., perfect recall) of players. Unfortunately, these
assumptions could be wrong in real-world scenarios. Algorithms for the defender’s
optimal strategy have been proposed to take into account various uncertainties
faced in the domain, including payoff noise [52], execution/observation error [50],
and uncertain capability [1]. However, previous works assumed that the attacker
knows (or with a small noise) the defender’s mixed strategy. Recently An et al. [2]
proposed a formal framework to model the attacker’s belief update process as he
observes instantiations of the defender’s mixed strategy. The resulting optimization
problem for the defender is non-linear and scalable computation remains an
open issue. Furthermore, maximin is one of the leading robust method which is
widely applied for addressing uncertainty in security games, which is known to be
overly conservative. Minimax regret—an alternative less conservative robust criteria
has just been applied recently to address payoff uncertainty [34]. The resulting
optimization problem for using minimax regret is non-linear non-convex in both
the defender strategy and the attacker’s payoff and is thus computationally difficult.
Moreover, addressing a combination of uncertainty using minimax regret has not
been solved.

16.7.3 Adversary Modeling

One required research direction is addressing bounded rationality of human ad-
versaries. This is a fundamental problem that can affect the performance of our
game-theoretic solutions, since algorithms based on the assumption of the perfectly
rational adversary are not robust to deal with deviations of the adversary from
the optimal response. Recently, there has been some research on applying ideas
from behavioral game theory (e.g., prospect theory [23] and quantal response [30])
within security game algorithms. One line of approaches is based on the quantal
response model to predict the behaviors of the human adversary, and then to
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Fig. 16.14 Interface of the Guards and Treasures game to simulate the LAX security scenario

compute optimal defender strategies against such behavior of the adversary. These
include BRQR [46] which follows the logit quantal response (QR) [30] model,
and subsequent work on SUQR models [32]. The parameters of these models are
estimated by experimental tuning. Figure 16.14 shows the interface of an interactive
game used in our human subject experiments, based on the security scenario at the
LAX airport. The source code is available here. 1 Given the details for each target,
the participants playing this game were asked to choose a target to attack. Data from
a large set of participants on the Amazon Mechanical Turk (AMT) were collected
and used to learn the parameters of the behavioral models to predict future attacks.

Experiments with the Guards and Treasures game were conducted only as a
single-shot game where the adversary would observe the defender’s strategy and
then choose a target to attack and then the game would be over. While this may be
true for domains like counter-terrorism, in other real-world domains like fisheries
protection, or wildlife crime, there are repeated interactions between the defender
and the adversary, where the game progresses in “rounds.” We call this a Repeated
SSG (RSSG) where in each round the defender would play a particular strategy
and the adversary would observe that strategy and act accordingly. In order to
simulate this scenario and conduct experiments to identify adversary behavior in
such repeated settings, an online RSSG game was developed (shown in Fig. 16.15)
and deployed.

1http://teamcore.usc.edu/projects/BGT/experiment.html.

http://teamcore.usc.edu/projects/BGT/experiment.html
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Fig. 16.15 Interface of the Wildlife Poaching game to simulate an RSSG

In our game, human subjects play the role of poachers looking to place a snare
to hunt a hippopotamus in a protected wildlife park. The portion of the park shown
in the map is actually a Google Maps view of a portion of the QENP in Uganda.
The region shown is divided into a 5 � 5 grid, i.e., 25 distinct cells. Overlaid on the
Google Maps view of the park is a heat-map, which represents the rangers’ mixed
strategy x—a cell i with higher coverage probability xi is shown more in red, while
a cell with lower coverage probability is shown more in green. As the subjects play
the game and click on a particular region on the map, they were given detailed
information about the poacher’s reward, penalty, and coverage probability at that
region. However, the participants are unaware of the exact location of the rangers
while playing the game, i.e., they do not know the pure strategy that will be played
by the rangers, which is drawn randomly from mixed strategy x shown on the game
interface. In our game, there were nine rangers protecting this park, with each ranger
protecting one grid cell. Therefore, at any point in time, only 9 out of the 25 distinct
regions in the park are protected. A player succeeds if he places a snare in a region
which is not protected by a ranger, else he is unsuccessful. Similar to the Guards and
Treasures game, here also we recruited human subjects on AMT and asked them to
play this game repeatedly for a set of rounds with the defender strategy changing per
round based on the behavioral model being used to learn the adversary’s behavior.

While behavioral models like (QR) [30] and SUQR [32] assume that there is a
homogeneous population of adversaries, in the real-world we face heterogeneous
populations of adversaries. Therefore Bayesian SUQR was proposed to learn the
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behavioral model for each attack [49]. PAWS is an application which was originally
created using Bayesian SUQR. However, in real-world security domains, we may
have very limited data, or may only have some limited information on the biases
displayed by adversaries. An alternative approach is based on robust optimization:
instead of assuming a particular model of human decision making, try to achieve
good defender expected utility against a range of possible models. One instance of
this approach is MATCH [37], which guarantees a bound for the loss of the defender
to be within a constant factor of the adversary loss if the adversary responds non-
optimally. Another robust solution concept is monotonic maximin [21], which tries
to optimize defender utility against the worst-case monotonic adversary behavior,
where monotonicity is the property that actions with higher expected utility is played
with higher probability. Recently, there has been attempts to combine such robust-
optimization approaches with available behavior data [14] for RSSGs. However, an
open question of research is how these proposed models and algorithms will fare
against human subjects in RSSGs. Furthermore, since real-world human attackers
are sometimes distributed coalitions of socially, culturally, and cognitively biased
agents, we may need significant interdisciplinary research to build in social, cultural,
and coalitional biases into our adversary models.

16.7.4 Multi-Objective Optimization

In existing applications such as ARMOR, IRIS, and PROTECT, the defender is trying
to maximize a single objective. However, there are domains where the defender
has to consider multiple objectives simultaneously. Multi-objective security games
(MOSGs) have been proposed to address the challenges of domains with multiple
incomparable objectives [7]. In an MOSG, the threats posed by the attacker types are
treated as different objective functions which are not aggregated, thus eliminating
the need for a probability distribution over attacker types. Unlike Bayesian security
games which have a single optimal solution, MOSGs have a set of Pareto-optimal
(non-dominated) solutions which is referred to as the Pareto frontier. By presenting
the Pareto frontier to the end-user, they may be able to better understand the structure
of their problem as well as the trade-offs between different security strategies.

16.7.5 Evaluations: Lab Evaluation via Simulation
and Field Evaluation

Evaluation in itself is a major challenge given the real-world deployment of these
systems. It is difficult to define a baseline for the purpose of evaluation in security
applications, as safety often trumps costs. Our evaluation focuses on presenting the
benefit of our approach over prior approaches to security. We have conducted a
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Fig. 16.16 Field evaluation

Fig. 16.17 ARMOR evaluation results

number of such evaluations: simulations, human subjects in the lab, assessment
by domain experts internal and external to agencies deploying these applications,
data from deployments (such as number of citations to fare-evaders), and adversary
perspective teams (mock attacker teams) before and after deployment have all been
used. We have already discussed simulations and human subject experiments in
other parts of this chapter. Moreover, there are other evaluation approaches that we
have tried, which are summarized in Fig. 16.16. In the following, we will discuss
two of these approaches.

1. Data from deployment: data from the field, before and after deployment,
supports our claim about improved security with our game-theoretic approach.
Figure 16.17 shows the number of detected violations after ARMOR was
deployed at LAX airport. As can be seen, the number of detected violations
increased after our deployment and decreased in later years, suggesting better
detection and deterrence effect of our approach. The patrol schedule for Boston
port before and after our deployment of PROTECT (Fig. 16.18) clearly shows
that there was a definite pattern in the patrols before PROTECT. In particular,
there was low patrol for all targets on day 2, which could have been exploited
by an attacker. In contrast, PROTECT provides almost the same level of patrol
every day, with higher value targets patrol more often.
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Fig. 16.18 PROTECT evaluation results: pre deployment (left) and post deployment patrols
(right)

2. Mock attacker team: The USCG created an APT, a mock attacker team, to better
understand the adversaries view of targets in the Boston port. This team, in
addition to understanding the adversary’s viewpoint, also gauged the effective-
ness of patrol activities before and after deployment of PROTECT. The APT
incorporates the adversary’s known intent, capabilities, skills, commitment,
resources, and cultural influences. In addition, it helps in identifying the level
of deterrence projected at and perceived by the adversary. This analysis led to
the conclusion that the effectiveness of deterrence increased from the before to
after PROTECT deployment.

More detailed evaluations are discussed in the publications on the applica-
tions [11, 17, 39, 51], and more of these are discussed in [40].

16.8 Conclusion

Security is recognized as a world-wide challenge and game theory is an increasingly
important paradigm for reasoning about complex security resource allocation.
While the deployed game-theoretic applications have provided a promising start,
very significant amount of research remains to be done. These are large-scale
interdisciplinary research challenges that call upon multiagent researchers to work
with researchers in other disciplines, be “on the ground” with domain experts, and
examine real-world constraints and challenges that cannot be abstracted away.
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Chapter 17
Scattering of Plane Electromagnetic Waves
by Radially Inhomogeneous Spheres:
Asymptotics and Special Functions
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Abstract A brief historical introduction to the visual and wave-theoretic
consequences of high frequency electromagnetic scattering by large spheres is
given, with special emphasis on backscattering. Exact electromagnetic solutions for
radially inhomogeneous dielectric lenses are unavailable for many functional depen-
dences of the refractive index on the radial distance, so the high-frequency behavior
based on an asymptotic analysis of the exact solution has been obtained in very few
cases. In this chapter existing results for the asymptotic behavior of backscattered
radiation are extended to a broader class of refractive index profiles. Additionally, by
exploiting some known results from quantum mechanics, asymptotic solutions for
two scalar problems (decoupled from the electromagnetic cases) are derived for the
case of small variations in the refractive index across the scattering sphere. By using
a Liouville transformation the electromagnetic wavenumber-dependent scattering
potential is converted to a wavenumber-independent form, and the resulting inverse
problem is solved for several refractive index profiles.
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17.1 Historical Introduction

(i) General
When light (or electromagnetic radiation in general) is deflected in some

manner from its direction of travel, it is said to be scattered. There are
several mechanisms that contribute to the scattering of light by particles in
the atmosphere: reflection, refraction, and diffraction being the most common,
though they are not mutually exclusive effects. The size of the particles
determines which mechanism is the predominant one. The optical aspects
are complicated because of the range of particle sizes compared with the
wavelengths of visible light: approximately 400–700 nm. A convenient measure
of relative size is the radius-to-wavelength ratio. When this ratio is at least about
ten, the particles are considered to be large, and it is convenient to regard light
in terms of rays. This is the domain of geometrical optics, although all three
processes mentioned above can occur. Light rays can be partially reflected
from the surface of the particles, refracted on passing through its interior, or
diffracted (“bent”) around the edges. All three mechanisms are exhibited in
the phenomenon of the rainbow so we shall start this review by discussing
rainbow formation. It is well known that light is refracted and reflected by
raindrops to produce this beautiful colored arc in the sky. Less familiar is
the third important mechanism—diffraction—a consequence of the wavelike
properties of light. This is responsible for some of the more subtle rainbow
features—pale fringes below the top of the bow (called supernumerary bows),
and also iridescence in clouds near the sun, and concentric colored rings around
the moon. To understand the phenomenon of scattering from a more analytic
point of view we need to recall some basic physics. An electromagnetic wave
has, not surprisingly, both an electric and magnetic field that are functions of
time and space as it propagates. The direction of propagation and the directions
of these fields form a mutually orthogonal triad, and when an electromagnetic
field encounters an electron bound to a molecule, the electron is accelerated by
the electric field of the wave. It’s a type of “chicken and egg” situation, because
an accelerated electron will also radiate electromagnetic energy in the form
of waves in all directions (to some extent), and this is the scattered radiation,
components of which will be discussed in this chapter.

It has been said that “Descartes knew where to hang the rainbow in the sky,
but only Newton could paint it.” But by the middle of the eighteenth century,
the contributions of Descartes and Newton notwithstanding, observations of
supernumerary bows were a persistent reminder of the inadequacy of current
theories of the rainbow. By focusing attention on the light wavefronts incident
on a spherical drop, rather than the rays normal to them, it is easier to appreciate
the self-interference of such a wave as it becomes “folded” onto itself as a
result of refraction and reflection within the drop, the true extent of the rainbow
is revealed. The primary rainbow is in fact the first interference maximum
in an oscillatory pattern, the second and third maxima being the first and



17 Scattering of Plane Electromagnetic Waves by Radially Inhomogeneous. . . 385

second supernumerary bows, respectively (and so on). The angular spacing of
these bands depends on the size of the droplets producing them. The width of
individual bands and the spacing between them decrease as the drops get larger.
If drops of many different sizes are present, these supernumerary arcs tend to
overlap somewhat and smear out what would have been obvious interference
bands for droplets of uniform size. This is why these pale blue or pink or
green bands are then most noticeable near the top of the rainbow: it is the near-
sphericity of the smaller drops that enable them to contribute to this part of the
bow; larger drops are distorted from sphericity by the aerodynamic forces acting
upon them. Nearer the horizon a wide range of drop size contributes to the bow,
but at the same time it tends to blur the interference bands. In principle, similar
interference effects also occur above the secondary rainbow, though they are
very rare. “Thus the supernumerary rainbows proved to be the midwife that
delivered the wave theory of light to its place of dominance in the nineteenth
century” [1].

It is important to recognize that not only were the Cartesian and Newtonian
theories unable to account for the presence of supernumerary bows, but also
they both predicted an abrupt transition between regions of illumination and
shadow (as at the edges of Alexander’s dark band, when rays only giving rise
to the primary and secondary bows are considered). In the wave theory of
light such sharp boundaries are softened by diffraction, which occurs when
the normal interference pattern responsible for rectilinear propagation of light
is distorted in some way. Diffraction effects are particularly prevalent in the
vicinity of caustics. In 1835 Potter showed that the rainbow ray may be
interpreted as a caustic, i.e. the envelope of the system of rays constituting
the rainbow. The word caustic means “burning,” and caustics are associated
with regions of high intensity illumination (with geometrical optics predicting
an infinite intensity there). Thus the rainbow problem is essentially that of
determining the intensity of (scattered) light in the neighborhood of a caustic.
This was exactly what Airy attempted to do several years later in 1838.
The principle behind Airy’s approach was established by Huygens in the
seventeenth century: Huygens’ principle regards every point of a wavefront as
a secondary source of waves, which in turn defines a new wavefront and hence
determines the subsequent propagation of the wave. Airy reasoned that if one
knew the amplitude distribution of the waves along any complete wavefront
in a raindrop, the distribution at any other point could be determined by
Huygens’ principle. Using the standard assumptions of diffraction theory, he
formulated the local intensity of scattered light in terms of a “rainbow integral,”
subsequently renamed the Airy integral in his honor; it is related to the now
familiar Airy function. It is analogous to the Fresnel integrals which also arise
in diffraction theory. There is a natural and fundamental parameter, the size
parameter, ˇ, which is useful in determining the domain of validity of the Airy
approximation; it is defined as the ratio of the droplet circumference to the
wavelength � of light. In terms of the wavenumber k this is ˇ D 2�r=�, r
being the droplet radius. Typically, for sizes ranging from fog droplets to large
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raindrops, ˇ ranges from about 100 to several thousand. Airy’s approximation
is a good one only for ˇ & 5000 and angles sufficiently close to that of the
rainbow ray (the ray of minimum deviation from the direction of incidence).
On the other hand, the “why is the sky blue?” scattering problem—Rayleigh
scattering—requires only one term because the scatterers are molecules which
are much smaller than a wavelength of light, so the simplest truncation—
retaining only the first term—is perfectly adequate.

Airy theory has been called the incomplete “complete” answer. It did go
beyond the models of the day in that it quantified the dependence upon the rain-
drop size of (1) the rainbow’s angular width, (2) its angular radius, and (3) the
spacing of the supernumerary bows. Also, unlike the models of Descartes
and Newton, Airy’s predicted a non-zero distribution of light intensity in
Alexander’s dark band (the darker region between the primary and secondary
bows), and a finite intensity at the angle of minimum deviation (as noted above,
the earlier theories predicted an infinite intensity there). However, spurred on by
Maxwell’s recognition that light is part of the electromagnetic spectrum, and the
subsequent publication of his mathematical treatise on electromagnetic waves,
several mathematical physicists sought a more complete theory of scattering,
because it had been demonstrated by then that the Airy theory failed to predict
precisely the angular position of many laboratory-generated rainbows. Among
them were the German physicist Gustav Mie who published a paper in 1908 on
the scattering of light by homogeneous spheres in a homogeneous medium, and
Peter Debye who independently developed a similar theory for the scattering
of electromagnetic waves by spheres. Mie’s theory was intended to explain
the colors exhibited by colloidally dispersed metal particles, whereas Debye’s
work, based on his 1908 thesis, dealt with the problem of light pressure on a
spherical particle. In fact, Ludvig Lorenz, a Danish theorist, preceded Mie by
about 15 years in the treatment of the scattering of electromagnetic waves by
spheres. The resulting body of knowledge is usually referred to as Mie theory,
and typical computations based on it are formidable compared with those based
on Airy theory, unless the drop size is sufficiently small. A similar (but scalar)
formulation arises in the scattering of sound waves by an impenetrable sphere,
studied by Lord Rayleigh and others in the nineteenth century. Mie theory
is based on the solution of Maxwell’s equations of electromagnetic theory
for a monochromatic plane wave from infinity incident upon a homogeneous
isotropic sphere of radius r. The surrounding medium is transparent (as the
sphere may be), homogeneous, and isotropic. The incident wave induces forced
oscillations of both free and bound charges in synchrony with the applied
field, and this induces a secondary electric and magnetic field, each of which
has components inside and outside the sphere. Of crucial importance in the
theory are what are termed the scattering amplitudes for the two independent
polarizations, � being the angular variable; these amplitudes can be expressed
as an infinite sum called a partial wave expansion. Each term (or “partial wave”)
in the expansion is defined in terms of combinations of Legendre functions of
the first kind, Riccati–Bessel and Riccati–Hankel functions [2, 3].



17 Scattering of Plane Electromagnetic Waves by Radially Inhomogeneous. . . 387

Although in principle the rainbow problem can be “solved” with enough
computer time and resources, numerical solutions by themselves offer little or
no insight into the physics of the phenomenon. However, there was a significant
mathematical development in the early twentieth Century that eventually had
a profound impact on the study of scalar and vector scattering: The Watson
transform, originally introduced in 1918 by Watson in connection with the
diffraction of radio waves around the earth [4] 1 (and subsequently modified by
several mathematical physicists in studies of the rainbow problem), is a method
for transforming the slowly converging partial-wave series into a rapidly
convergent expression involving an integral in the complex angular-momentum
plane. This allows the above transformation to effectively “redistribute” the
contributions to the partial wave series into a few points in the complex plane—
specifically poles (called Regge poles in elementary particle physics) and
saddle-points. Such a decomposition means that instead of identifying angular
momentum with certain discrete real numbers, it is now permitted to move
continuously through complex values. However, despite this modification, the
poles and saddle points have profound physical interpretations in the rainbow
problem ([5] and the references therein).

(ii) The Backscattering Problem
The backscattering problem refers to a special case of the Mie solution

for which the radiation is scattered in a direction 180ı from the direction
of the incident field. Kerker [6] gave a detailed account of backscattering
from dielectric spheres (including coated spheres). The topic is naturally of
fundamental importance in radar techniques. Targets include cloud droplets,
rain, snow, hail, flocks of birds or insections, weather formations (e.g., thunder-
storms, tornados), aircraft, satellites, even the moon and planets. The following
quote from a paper by Inada and Plonus [7] (see also [8]) is quite illuminating
(citations for the papers by Rubinow and Nussenzveig have been added):

The exact solution to the scattering of a plane electromagnetic wave by a dielectric
sphere was obtained by Mie in 1908. The Mie solution: : :given in the form of an infinite
series, has a limitation in that it converges very slowly when the radius of the sphere
exceeds a few wavelengths. This difficulty was overcome by Watson: : :in 1918 for the
problem of wave propagation around the earth. The method is to transform the slowly
convergent Mie series into a rapidly convergent series. This treatment is known as the
Watson transformation. Unlike the problem of the perfectly conducting sphere: : :, the
scattering problem is not as well understood. The methods of correcting geometrical
optics for the perfectly conducting sphere are not applicable in the case of dielectric (or
penetrable) spheres. The problem of backscattering is further complicated by the waves
existing inside the sphere which could contribute significantly. Among several studies
on dielectric spheres, Rubinow [9]: : : and Nussenzveig [10]: : :investigated the problem
of scattering of a scalar wave from a penetrable sphere at high frequencies. The scalar
case has many common features with : : : quantum mechanics problems: : : We know that
by applying the Watson transformation to the exact Mie series for a perfectly conducting
sphere, the scattered fields are given as a sum of optics and residue contributions.

1It is interesting to note that Watson mentions possible communication with inhabitants of Mars!
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The question that now arises [for a dielectric sphere] is the following: How do the
residue contributions affect the backscattering fields?: : :[They] are physically connected
with two different types of surface waves; one type is a “creeping wave” analogous to
that of a perfectly conducting sphere, which encircles the dielectric sphere, and the other
type is a wave which enters the sphere and then emerges as a surface wave. The latter is
unique to a dielectric sphere: : :

One of the most mathematically sophisticated studies of backscattering (for
a specific power-law-dependent class of dielectrics) can be found in the 1974
Ph.D. dissertation of Brockman [11]. He investigated high frequency far field
backscattering of a plane time harmonic monochromatic electromagnetic wave by a
class of radially inhomogeneous spheres (this is also known as the high-frequency
backscattered field). He applied a Watson transformation on the high frequency
exact solution, thereby converting the Mie series to a contour integration in the
complex frequency plane. By deforming the contour, various contributions were
extracted from the segments on the contour, including residue series that converge
rapidly at high frequencies, as well as several line integrations. However, Brockman
found it helpful to examine the geometrical optics regime as well (see also [12]).
This enabled him to identify possible ray contributions to backscattering, such as
the front axial directly reflected ray, the rear axial ray, glory rays (rays entering the
sphere that exit in the backscatter direction without experiencing any surface wave
behavior), and the backscattered rainbow ray (or stationary glory ray). In addition
to these, Brockman applied the ray technique to the creeping waves (these travel
along the outer surface of the sphere), whispering gallery modes (traveling around
the inside surface of the sphere) and what he referred to as partial surface waves: a
hybrid combination of geometric optics rays and creeping waves.

17.2 Theory

The main goal in this section is to determine the leading order estimate of the
far backscattered electromagnetic field at short wavelengths for a rather more
general class of refractive index profiles than was considered in the seminal (but
very succinct) paper by Uslenghi and Weston [13]. The mathematical details they
provided were very sparse, and required a great deal of effort to derive [14], so in and
of itself the authors believe this is a significant contribution to the subject, especially
since the available class of refractive index profiles to which this is applicable has
been expanded considerably. The far backscattered field is given by an infinite series
which converges slowly at short wavelengths. The Watson transformation will be
employed to speed up the convergence of this series by converting the series to
a contour integral. Once this is done, the radial eigenfunctions will be derived
for fields of magnetic- and electric-type. These eigenfunctions are necessary in
order to calculate the asymptotic expansions for the transverse electric (TE) and
transverse magnetic (TM) modes. Once these expansions are obtained, the Mie
solutions [15] will be calculated which will allow for the determination of the high-
frequency backscattered field. Consider, then an incident plane electromagnetic
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wave propagating in the positive z-direction with the free space wavenumber k,
whose electric vector

Einc: D Qeeikz (17.1)

has unit amplitude and is polarized in the direction of the constant unit vector Qe. We
note that k D 2�=�; where � is the wavelength of the incident plane wave given
by Eq. (17.1). After interacting with the scattering particle (a sphere of radius Oa/ it
produces the far backscattered field (which corresponds to a linear combination of
outgoing spherical waves) [13]
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where the prime indicates differentiation with respect to the argument. The functions
 n.kOa/ and �n.kOa/ are the Riccati–Bessel functions. It should be noted that the
subscript n appearing in the above equations is not the refractive index profile;
it represents the separation constant. The refractive index profile will be denoted
by the function R.x/; where x D r=Oa is the radial distance from the center
r D 0 of the sphere, normalized to the radius Oa of the sphere. The functions Mn

and QMn are known as the transverse electric (TE) and transverse magnetic (TM)
modes, respectively. With respect to the TE/TM modes, there is no electric/magnetic
field in the direction of wave propagation, respectively. As a result, the functions
Sn.x/ appearing in Eq. (17.6a) are known as the radial eigenfunctions for fields of
magnetic-type. Similarly, the functions Tn.x/ appearing in Eq. (17.6b) are known
as the radial eigenfunctions for fields of electric-type. In order for the leading order
estimate of the far backscattered field to be calculated for short wavelengths, the Mie
coefficients which are given by Eqs. (17.3) and (17.4) must be determined. Before
this can be accomplished, the asymptotic expansions for the TE and TM modes
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must be calculated using Eqs. (17.6a) and (17.6b). This requires the determination
of the radial eigenfunctions for fields of magnetic- and electric-type, respectively.
The radial eigenfunctions S.1/n .x/ and T.1/n .x/ are those particular solutions of the
radial differential equations
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Note that the radial eigenfunctions will be required to be finite over the interval
0 � x � 1 for the refractive index profiles considered here.

17.2.1 Profile 1

Consider first the refractive index profile given by

R.x/ D c0x.˛=2/�1

1C x˛
: (17.9)

17.3 Converting the Sum to a Contour Integral

The high-frequency backscattered field that is given by Eq. (17.2) converges ex-
tremely slowly in the limit kOa ! 1; in other words, for short wavelengths. As a
result, we will utilize the Watson transformation which replaces a slowly converging
series with a contour integral. This integral converges at a much faster rate than the
series. Let d0 D 2=˛: If we consider � D n C 1=2 as a complex number, then, using
the definition in Eq. (17.10), which will be required later,


˙ D 1

2

r

1˙ 2

˛
C 4

˛2
�2; (17.10)

we see that 
� has branch points at

� D ˙ 1

d0

p
d0 � 1 (17.11)

and 
C at

� D ˙i

p
d0 C 1

d0
: (17.12)



17 Scattering of Plane Electromagnetic Waves by Radially Inhomogeneous. . . 391

Fig. 17.1

As a result of the location of the poles of the integrand, we choose the branch
cuts in the complex �-plane along the real axis between �1=2 and C1=2:Along the
imaginary axis, we choose the branch cuts between

�i

p
d0 C 1

d0
and C i

p
d0 C 1

d0
:

Now we will replace the summation in Eq. (17.2) with a line integral taken along
the clockwise contour C of Fig. 17.1, which encloses those poles of the integrand
that are located at � D p C 1=2; where p is a positive integer.

By following a transformation of the type of Watson’s, the line integral along C
is replaced by the sum of:

– A line integral whose contour consists of a path C1 extending from the fourth
through the first to the second quadrant, plus the arc of a circle of large radius
with center at � D 0 extending from the second through the first to the fourth
quadrant, and

– A residue series due to the poles of the integrand which lie in the first quadrant.
The contour C1 crosses the real �-axis between 1=2 and 3=2 and the imaginary
�-axis above Ci

�p
d0 C 1

�
=d0; avoiding the branch cuts. The result obtained

thus far is still exact. Hence, upon using the Watson transformation, we
determine that the high-frequency backscattered field is given by

Eb:s: � �Qe eikr

2kr

Z

C1

�

cos��

�
a�� 1

2
� b�� 1

2

�
d�; .d0kOa � 1/: (17.13)
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Figure 17.1 illustrates the branch cuts and the contours that will be used to
evaluate Eq. (17.13). The quantity .a�� 1

2
� b�� 1

2
/ in Eq. (17.13) must now

be evaluated for j�j D O
�
.kOa/1=2C�� where � is an arbitrarily small positive

number. Before this can be accomplished, the radial eigenfunctions for fields
of magnetic- and electric-type have to be computed. Next the asymptotic
expansions for the TE and TM modes must be determined. Once this is
done, the Mie solutions can be evaluated and, as a result, the high-frequency
backscattered field can be calculated.

17.4 Radial Eigenfunctions for Fields of Magnetic-Type

First consider fields of magnetic-type. From Westcott [16], the radial eigenfunctions
for the refractive index profile R.x/ in Eq. (17.9) are given by

u.r/ D Œb
1
˛

0 r�
1C.c�1/˛

2 .1C b0r
˛/

A
2 2F1.a; bI cI �b0r

˛/; (17.14)

where 2F1.a; bI cI z/ is the hypergeometric function. Writing this in terms of x and
renaming the function S.1/n .x/, it is found (after much algebra, Pohrivchak [14]) that

S.1/n .x/ D x
1C.c�1/˛

2 .1C x˛/
A
2 2F1.a; bI cI �x˛/; (17.15)

where

a D ˇ C 2

˛
�; ˇ D A

2
:

In due course, the solution (17.15) can be rewritten as

S.1/n .x/ D x�C 1
2 .1C x˛/ˇ2F1.ˇ C 2

˛
�; ˇI 1C 2

˛
�I �x˛/: (17.16)

17.5 Radial Eigenfunctions for Fields of Electric-Type

For fields of electric-type, the radial eigenfunctions for the refractive index profile
R.x/ in Eq. (17.9) are given by Westcott [16]

u.r/ D Œb
1
˛

0 r�
1C.c�1/˛

2 .1C b0r
˛/

a�bC1
2 2F1.a; c � bI cI �b0r

˛/: (17.17)

Again, after much algebraic manipulation, this can be written as

T.1/n .x/ D x˛
�

C ˛
2 � 1

2 .1C x˛/ˇ�1
2F1.ˇ C 
� C 
C; ˇ C 
� � 
CI 1C 2
�I �x˛/:

(17.18)
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17.6 Asymptotic Expansions for the TE Modes

We will now use the expression for the radial eigenfunctions for fields of magnetic-
type given by Eq. (17.16) to calculate the asymptotic expansions for the TE modes.
To that end, we must determine Mn which is given by Eq. (17.6a). Again, most of
the technical details will be omitted. They may be found in [14]. From Eq. (17.6a),
we find that the TE modes are given by

Mn D 1

kOa

"
˛ˇ C 2.� C 1

2
/

2
� ˛ˇ.ˇ C 2

˛
�/

1C 2
˛
�

2F1.ˇ C 2
˛
� C 1; ˇ C 1I 2C 2

˛
�I �1/

2F1.ˇ C 2
˛
�; ˇI 1C 2

˛
�I �1/

#

D 1C ˛ˇ C 2�

2kOa � ˛ˇ.ˇ C 2
˛
�/

kOa.1C 2
˛
�/

2F1.ˇ C 2
˛
� C 1; ˇ C 1I 2C 2

˛
�I �1/

2F1.ˇ C 2
˛
�; ˇI 1C 2

˛
�I �1/ :

(17.19)

Eventually we arrive at the result that

2F1.ˇ C 2
˛
� C 1; ˇ C 1I 2C 2

˛
�I �1/

2F1.ˇ C 2
˛
�; ˇI 1C 2

˛
�I �1/

D 1C 2
˛
�

2ˇ

2

6
41 �

. 1
˛
� � ˇ

2
/�. 1

˛
� � ˇ

2
/�
�
1C 2

˛ �Cˇ
2

�

. 1
˛
� C ˇ

2
/�. 1

˛
� C ˇ

2
/�
�
1C 2

˛ ��ˇ
2

�

3

7
5 : (17.20)

Hence

M�� 1
2

D 1

2kOa

"

1C ˛. 2
˛
� � ˇ/�. 1

˛
� � ˇ

2
/�. 1

˛
� C 1Cˇ

2
/

�. 1
˛
� C ˇ

2
/�. 1

˛
� C 1�ˇ

2
/

#

: (17.21)

From the following formula

�.z C a/

�.z C b/
� za�b

1X

kD0

Gk.a; b/

zk
� za�b



G0.a; b/C G1.a; b/

z
C G2.a; b/

z2
C O.z�3/

�
;

(17.22)
where

G0.a; b/ D 1I G1.a; b/ D 1

2
.a � b/.a C b � 1/I

G2.a; b/ D 1

12

�
a � b
2

�

3.a C b � 1/2 � .a � b C 1/

�
;
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we are able eventually to determine that

M�� 1
2

�
�
1 � d0

2
� i

�
C
�
3

4
� 1

2d0

�
.kOa/�1

C i

2

� �
kOa
�2 C

�
2 � d0 � 4i

16d20

�
.kOa/�2 C i

8

� �
kOa
�4

CO



�

.kOa/3
�

C O



�3

.kOa/4
�

C O
h
.kOa/�3

i
: (17.23)

17.7 Asymptotic Expansions for the TM Modes

We will now use the expression for the radial eigenfunctions for fields of electric-
type given by Eq. (17.18) to calculate the asymptotic expansions for the TM modes.
To that end, we must determine QMn which is given by Eq. (17.6b). This is an even
more complicated task than for the TE modes. First, we must obtain an expression
for the derivative of the radial eigenfunctions for fields of electric-type. If we define

P D 2F1.ˇ C 
� C 
C C 1; ˇ C 
� � 
C C 1I 2C 2
�I �1/
2F1.ˇ C 
� C 
C; ˇ C 
� � 
CI 1C 2
�I �1/ ; (17.24)

then it is found that

QMn D ˛

"
ˇ � 1C 2
�

2kOa C 1 � 1
˛

2kOa � Œ.ˇ C 
�/2 � 
2C�
kOa.1C 2
�/

P

#

: (17.25)

After some manipulation of the hypergeometric functions, we are able to rewrite the
expression for P in a slightly more useful form:

P D 2F1.ˇ C 
� C 
C C 1; 1 � ˇ C 
� C 
CI 2C 2
�I 1
2
/

2 � 2F1.ˇ C 
� C 
C; 1 � ˇ C 
� C 
CI 1C 2
�I 1
2
/
: (17.26)

The integral representation in Magnus et al. [17]

2F1.b; �I CI h

z
/ D z�

�.�/

Z 1

0

t��1e�zt
1F1.bI CI ht/dt; (17.27)

which is valid for

Re z > Re h > 0; Re � > 0;
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may be applied to Eq. (17.26). Letting b D ˇ C 
� C 
C C 1; � D 1 � ˇ C 
� C

C;C D 2C 2
�; h D 1; and z D 2 in the numerator of Eq. (17.26) yields

2F1.ˇ C 
� C 
C C 1; 1 � ˇ C 
� C 
CI 2C 2
�I 1
2
/

D 21�ˇC

�

C

C

�.1� ˇ C 
� C 
C/

1Z

0

t
�

C

C

�ˇe�2t
1F1.ˇ C 
� C 
C C 1I 2C 2
�I t/dt:

(17.28)

Similarly, letting b D ˇC
� C
C; � D 1�ˇC
� C
C;C D 1C2
�; h D 1;

and z D 2 in the denominator of Eq. (17.26) gives us the result

2F1.ˇ C 
� C 
C; 1 � ˇ C 
� C 
CI 1C 2
�I 1
2
/

D 21�ˇC

�

C

C

�.1� ˇ C 
� C 
C/

1Z

0

t
�

C

C

�ˇe�2t
1F1.ˇ C 
� C 
CI 1C 2
�I t/dt:

(17.29)

Hence

P D

1R

0

t
�

C

C

�ˇe�2t
1F1.ˇ C 
� C 
C C 1I 2C 2
�I t/dt

2
1R

0

t
�

C

C

�ˇe�2t
1F1.ˇ C 
� C 
CI 1C 2
�I t/dt

: (17.30)

In the notation of the Digital Library of Mathematical Functions (http://dlmf.nist.
gov/)

1F1.aI bI z/ � M.a; b; z/:

This is also known as Kummer’s function. The closely related Olver’s function is
denoted by M.a; b; z/; where

M.a; b; z/ D �.b/M.a; b; z/ D ezM .b � a; b;�z/ I (17.31a)

M.a; b;�z/ D z
1
2 .1�b/

�.a/

1Z

0

e�� �a� 1
2 b� 1

2 Jb�1.2
p

z�/d�: (17.31b)

Combining Eqs. (17.31a) and (17.31b), it follows that

M.a; b; z/ D ezz
1
2 .1�b/�.b/

�.b � a/

1Z

0

e�� �
1
2 .b�1/�aJb�1.2

p
z�/d�: (17.32)

http://dlmf.nist.gov/
http://dlmf.nist.gov/
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In view of this we can write

1F1.ˇ C 
� C 
C C 1I 2C 2
�I t/

D ett� 1
2�


��.2C 2
�/
�.1 � ˇ C 
� � 
C/

1Z

0

e�� ��ˇ�

C

� 1
2 J1C2


�

.2
p

t�/d�: (17.33)

In a similar fashion it can be determined that

1F1.ˇC
�C
CI 1C2
�I t/ D ett�
��.1C 2
�/
�.1 � ˇ C 
� � 
C/

1Z

0

e�� ��ˇ�

C J2


�

.2
p

t�/d�:

(17.34)
The integral representations in these last two equations are valid provided

kOa � j�j � 1: (17.35)

Proceeding on this basis equation (17.30) may be rewritten as

P D
�
1

2
C 
�

�

8
ˆ̂
<̂

ˆ̂̂
:

1R

0

t
C

�ˇ� 1
2 e�tdt

1R

0

e�� ��ˇ�

C

� 1
2 J1C2


�

.2
p

t�/d�

1R

0

t
C

�ˇe�tdt
1R

0

e�� ��ˇ�

C J2


�

.2
p

t�/d�

9
>>>=

>>>;

: (17.36)

In Eq. (17.36), we make the change of variables

t D u2 D kOa�2; � D w2 D kOa�2; (17.37)

and then apply Sommerfeld’s integral representation for a Bessel function of the
first kind of order �;

J�.2uw/ D 1

2�

Z

†

d�ei���2iuw sin � (17.38)

where the contour† begins at � D ��C i1 and ends at � D �C i1:After several
intermediate steps we find that

P D
 
1
2

C 

�

kOa
!
R

†

d�ei.1C2

�

/�
1R

0

d�e�kOa�2�.2

C

C2ˇ/ ln�
1R

0

d�e�kOa�2�2ikOa�� sin �C.2

C

�2ˇ/ ln �

R

†

d�e2i

�

�
1R

0

d�e�kOa�2�.2

C

C2ˇ�1/ ln�
1R

0

d�e�kOa�2�2ikOa�� sin �C.2

C

�2ˇC1/ ln �

:

(17.39)
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This result is exact and valid for j�j D O
h
.kOa/ 12C�

i
: We can asymptotically

evaluate the integrals by using the method of steepest descents. It is found
(for c0 D 2)

P � �
�
1=2C 
�

d0kOa
�
Œ1C tan f .�/�

�
1C O

� �
kOa
�

C O



�3

.kOa/2
�

C O

�
1

kOa
��

;

(17.40)
where

f .�/ D �

4
� �

2
d0kOa C �
� � 1

2
arctan

1

2
: (17.41)

After all this analysis the asymptotic expansions for the TM modes are given by

QM�� 1
2

�


1 � d0

2
C tan f .�/

� �
1C O

� �
kOa
�

C O



�3

.kOa/2
�

C O

�
1

kOa
��

: (17.42)

17.8 The High-Frequency Backscattered Field

We have calculated the asymptotic expansions for the TE and TM modes in the
previous two sections. We are now in a position to determine the difference of
the Mie solutions, given by an � bn; which appears in the expression of the high-
frequency backscattered field given by Eq. (17.13). Once this is accomplished, we
will be able to achieve the main objective of this chapter and determine the leading
order estimate of the high-frequency backscattered field for a specific value of the
positive real constant d0: The Debye asymptotic expansions are used for the Bessel
functions appearing in

.a�� 1
2

� b�� 1
2
/:

In particular, for j�j D O

.kOa/1=2C�� ; we will use the asymptotic relations

H.1/
� .kOa/ �

s
2

��kOa
�
1C O

�
1

kOa
�

C O



�2

.kOa/3
��

(17.43)

and

H.1/0

� .kOa/ �
s

2

��kOa
�

i C O

�
1

kOa
�

C O


� �
kOa
�2��

; (17.44)

where

� D exp



i

�
�� C �

2
� 2kOa � �2

kOa
���

1C O


� �
kOa
�2�C O



�4

.kOa/3
��
: (17.45)
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The contour integral in the high-frequency backscattered field is now given by

Z

C1

�

cos��

�
a�� 1

2
� b�� 1

2

�
d� D 2

Z

C1

�e�i��

1C e�2i��

�
a�� 1

2
� b�� 1

2

�
d�; .d0kOa � 1/:

(17.46)
Noting that � D n C 1=2 it follows (eventually) that

a��1=2�b��1=2 D an�bn D .Mn � QMn/. n�
0
n �  0

n�n/

.� 0
n � Mn�n/.� 0

n � QMn�n/
D i.Mn � QMn/

.� 0
n � Mn�n/.� 0

n � QMn�n/
:

(17.47)
Hence asymptotically

an � bn � 1� i tan f .�/

.� 0
n � Mn�n/.� 0

n � QMn�n/



1C O

� �
kOa
�

C O

�
1

kOa
��
: (17.48)

After much algebra equation (17.46) may be written as

Z

C1

�

cos��

�
a�� 1

2
� b�� 1

2

�
d�

� e�2ikOa

.d0=4 � 1=2C i/

Z

C1

�e�i�2=kOa

1C e�2i��

�
1 � i tan f .�/

1C i .1 � d0=2/C i tan f .�/



1C O

� �
kOa
�

C O

�
1

kOa
���

d�: (17.49)

For simplicity we will only consider the case where
– the optical rays do not make more than one turn about the center of the lens

and
– at least one ray emerges in the backscattering direction.
These considerations yield the following bounds on d0:

1 � d0 � 2:

It transpires from detailed calculations that the contributions to the backscattered
field arising from the poles enclosed by the contour C1 and by the semicircle at
infinity cannot be neglected when compared with the contour integral contribution
if d0 < 2: This means that the dominant term in the high-frequency backscattered
field does not arise from specular reflection as in the case of a “lens” for which
d0 D 2: Therefore the dominant term in the high-frequency backscattered field is
not obtainable by evaluating the contour integral by the saddle point method in this
case: We will now turn our attention to the evaluation of the integral in Eq. (17.49)
when d0 D 2: This will allow for the determination of the leading order estimate of
the high-frequency backscattered field by using Eq. (17.13). Hence
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Eb:s � �Qe eikr

2ikr
e�2ikOa

�
Z

C1

�

1C e�2i��
e�i �

2

kOa

�
1 � i tan f .�/

1C i tan f .�/

�

1C O

� �
kOa
�

C O

�
1

kOa
��

d�:

(17.50)

Now after some rearrangements

1 � i tan f .�/

1C i tan f .�/
D �ie2i�kOa�2i�


�

Ci arctan.1=2/:

Using this result in Eq. (17.50) provides the high-frequency backscattered field
when d0 D 2 as

Eb:s � Qe eikr

2kr
eiŒ2kOa.��1/Carctan.1=2/��

Z

C1

�
e�i.�2=kOaC2�


�

/

1C e�2i��



1C O

� �
kOa
�

C O

�
1

kOa
��

d�:

(17.51)
To proceed, let M be a positive number, large compared with unity but independent
of kOa: In other words, M can be described as follows:

M � 1; lim
kOa!1

M

kOa D 0:

When d0 D 2; it can be shown that the line integral along the arc of the circle
vanishes as the radius tends to infinity. Also, the contributions to the backscattered
field due to the poles in the first quadrant may be neglected because we only want
the dominant term of the high-frequency backscattered field, and this arises from
an asymptotic estimate of the line integral along the contour C1: Next we can split
the contour C1 into three parts, by singling out the portion near � D 0 along which
j�j < M (see Fig. 17.1). Along this central portion, we have that

e�i�2=kOa � 1; .j�j < M/

so that the corresponding integral is O.1/; whereas the integral along the entire
contour C1 is O.kOa/: Since what is required is only the leading term in the
asymptotic estimate, we may neglect the central portion of C1: Along the remaining
part of the contour, it is determined that


� � �; .j�j > M/:

We find that

Z

C1

d�
�e�i �

2

kOa

1C e�2i��
�
Z

C2

d�
�e�i �

2

kOa

1C e�2i��
C O.1/;
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where the contour C2 in the uncut � plane consists of that portion of C1 along which
j�j > M; plus the dashed line of Fig. 17.1. This results in the following modification
of Eq. (17.51):

Eb:s � �Qe eikr

2kr
eiŒ2kOa.��1/Carctan.1=2/�

�
8
<

:

Z

C2

�
e�i�2=kOa

1C e�2i��



1C O

� �
kOa
�

C O

�
1

kOa
��

d� C O .1/

9
=

;
: (17.52)

Now
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C2
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�e�i �
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kOa

1C e�2i��



1C O

� �
kOa
�

C O

�
1

kOa
��

�
Z

C2

�e�i�2=kOa

1C e�2i��
d�

C
Z

C2

�2

kOa e�i�2=kOa

1C e�2i��
d� C 1

kOa
Z

C2

�e�i�2=kOa

1C e�2i��
d�

� I1 C I2 C 1

kOa I1: (17.53)

It may be shown that

I1 � �kOa
2

e�i�=2: (17.54)

Similarly

I2 � �kOa
2

e�i �2 O..kOa/� 1
2 /: (17.55)

Hence the terms containing integrals in the backscattered field reduce to

�kOa
2

e�i�=2
h
1C O..kOa/� 1

2 /C O..kOa/�1/
i

� �kOa
2

e�i�=2
h
1C O..kOa/� 1

2 /
i
:

(17.56)
Finally then, the leading order estimate of the high-frequency backscattered field is
found to be

Eb:s � Qe Oa
4r

eiŒkrC2kOa.��1/��=2Carctan 1
2 �
n
1C OŒ.kOa/� 1

2 �
o
: (17.57)
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It should be possible to consider other refractive index profiles that are based
on the hypergeometric equation and to derive, as above the radial eigenfunctions
for fields of magnetic- and electric-type. Two possibilities will be mentioned briefly
here; more details may be found in [14]. The first is given (in terms of x D r=Oa) by

R2 .x/ D c0
x .1C x˛/

; (17.58)

and the second is

R3.x/ D c0
x
p
1C x˛

: (17.59)

As above, the results of Westcott [16] may be used in each case to determine the
radial eigenfunctions for fields of magnetic-type and electric-type in terms of the
original physical parameters for each system. Rather than so doing here, we provide
below the comprehensive (and previously unpublished) details for the formulation
of the radial “Schrödinger-type” equations, stated originally in [16].

17.9 Verification of Solutions from [16]

In that paper the author provides solutions for several wavenumbers m.r/ in the
medium to the differential equation

d2u

dr2
C
�

m2
eff .r/ � n.n C 1/

r2

�
u D 0; (17.60)

where

m2
eff .r/ D m2.r/ for fields of magnetic-type, and

(17.61a)

m2
eff .r/ D m2.r/ � m.r/

d2

dr2

�
1

m.r/

�
for fields of electric-type. (17.61b)

Note that m.r/ D kQn.r/; where k is the free space wavenumber and Qn.r/ is the
refractive index profile. In this section we will verify that the solutions given by
Westcott satisfy Eq. (17.60). Since many of the second derivative calculations of
the provided solutions are rather long, here we only summarize the results for the
second derivative that were derived. We denote solutions of Eq. (17.60) for fields of
electric-type by uE.r/ and for fields of magnetic-type by uM.r/:
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17.10 Profile Based on Bessel’s Equation

Consider first the wavenumber

m.r/ D arb; (17.62)

where a and b are constants. With this wavenumber equation (17.60) has solution

u.r/ / r
1
2 Z�.z/; (17.63)

where Z� denotes any solution of Bessel’s equation of order � and

z D a

1C b
rbC1:

Hence

u00 .r/ / r�2


.b C 1/2�2 � .b C 1/2z2 � 1

4

�
u.r/: (17.64)

The order � is different for fields of electric- and magnetic-type.

17.10.1 Fields of Electric-Type

For this case

�2 D b

1C b
C
�
2n C 1

2.1C b/

� 2
: (17.65)

Using Eq. (17.61b) it follows that

m2
eff .r/ D a2r2b � b.b C 1/

r2
: (17.66)

Using Eqs. (17.64) and (17.65), it is found that

u00
E.r/ D r�2Œb.b C 1/C n.n C 1/� a2r2.bC1/�uE.r/;

It is readily shown from this that Eq. (17.60) is satisfied.
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17.10.2 Fields of Magnetic-Type

For this case

� D n C 1
2

b C 1
; (17.67)

with

m2
eff .r/ D m2.r/ D a2r2b: (17.68)

Hence

u00
M.r/ D r�2Œn.n C 1/� a2r2.bC1/�uM.r/: (17.69)

From this it is easy to verify that Eq. (17.60) is satisfied once again.

17.11 Profiles Based on Whittaker’s Equation

Westcott [16] considered two wavenumber profiles in this context.

17.11.1 Profile 1

Now let

m.r/ D a

r ln br
; (17.70)

where a and b are constants. For fields of electric-type, independent solutions are
given in [16] as

uE.r/ / r
1
2 W˙c;df˙.2n C 1/ ln brg; (17.71)

where

c D �.2n C 1/�1; d D
r
1

4
� a2;

and W˙c;d.z/ is Whittaker’s function. Hence (after some algebra)

u00
E.r/ D r�2



1

ln br
� a2

.ln br/2
C n.n C 1/

�
uE.r/:
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Given that

m2
eff .r/ D a2

r2.ln br/2
� 1

r2 ln br
;

it follows that Eq. (17.60) is satisfied. For fields of magnetic-type independent
solutions are given by

uM.r/ / .r ln br/
1
2Z�

�
˙i

�
n C 1

2

�
ln br

�
; (17.72)

with � D d (above). Since

u00
M.r/ / Œ�a2.r ln br/�2 C n.n C 1/r�2�uM.r/;

and

m2
eff .r/ D a2.r ln br/�2

it follows again that Eq. (17.60) is satisfied.

17.11.2 Profile 2

Now, consider the wavenumber

m.r/ D a

r
p

ln br
; (17.73)

where a and b are constants. For fields of electric-type, the independent solutions of
Eq. (17.60) for this wavenumber are [16]

uE.r/ / r
1
2 W˙c;0f˙.2n C 1/ ln brg; (17.74)

where

c D a2 � 1
2

2n C 1
: (17.75)

Again, since

u00
E.r/ / 1

r2

(
. 1
2

� a2/

ln br
� 1

4.ln br/2
C n.n C 1/

)

uE.r/;
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and

m2
eff .r/ D 1

r2

�
a2

ln br
� 1

2 ln br
C 1

4.ln br/2

�
;

we deduce that Eq. (17.60) is satisfied.
For fields of magnetic-type, the independent solutions corresponding to those in

Eq. (17.74) are

uM.r/ / r
1
2 W˙c; 12

f˙.2n C 1/ ln brg; (17.76)

with

c D a2

2n C 1
: (17.77)

We find that

u00
M.r/ / 1

r2

�
� a2

ln br
C n.n C 1/

�
uM.r/:

Given that

m2
eff .r/ D m2.r/ D a2

r2 ln br

Eq. (17.60) is once again satisfied.

17.12 Profiles Based on the Hypergeometric Equation

For each of the three profiles that we will consider in this section, independent
solutions for Eq. (17.60) for fields of electric- and magnetic-type, respectively, may
be written as (where z D �ˇr˛ with the constants ˛ and ˇ) [16]

uE.r//
n
a1r

1C.c�1/˛
2 .1�z/

a�bC1
2 2F1.a; c�bI cI z/Ca2r

1�.c�1/˛
2 .1�z/

a�bC1
2 2F1.1Ca�c; 1�bI 2�cI z/

o
I

(17.78a)

uM.r/ /
n
a1r

1C.c�1/˛
2 .1�z/

A
2 2F1.a; bI cI z/Ca2r

1�.c�1/˛
2 .1�z/

A
2 2F1.1Ca�c; 1Cb�cI 2�cI z/

o
; (17.78b)
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where a1 and a2 are constants and 2F1.a; bI cI z/ is Gauss’s hypergeometric function.
We note that the constants a; b; and c will be different for each profile. Let

L D c

2
� c2

4
I M D A

2
� A2

4
I N D 1

2
cA � abI A D a C b � c C 1: (17.79)

The constants a; b; and c in Eqs. ((17.78a)) and ((17.78b)) may be determined by
Eq. (17.79) and another set of equations for L;M; and N that will be different for
each profile. For future reference we note that

u00

E .r/ / r�2uE.r/

( �
N � 1

2

�
˛2 C 1

2

�
z C �

1
4

� M
�
˛2 � 1

4

�
z2 � �

L � 1
4

�
˛2 C 1

4

�

.1� z/2

)

I (17.80a)

u00

M.r/ / r�2uM.r/

�
.N � M/ ˛2z2 � N˛2z

.1� z/2
C
�
1

4
� L

�
˛2 � 1

4

�
: (17.80b)

We will now consider three profiles and prove that the solutions of Eq. (17.60) are
given by Eqs. ((17.78a)) and ((17.78b)) for fields of electric- and magnetic-type,
respectively.

17.12.1 Profile 1

First, consider the wavenumber

m.r/ D a0
r.1C ˇr˛/

; (17.81)

where a0 is a constant. For fields of electric-type with this wavenumber profile,

L D



a20 � 1

4
.2n C 1/2

�
˛�2 C 1

4
I M D �3

4
� ˛�1 � 1

4
.2n C 1/2 ˛�2I

N D �1
2
.2n C 1/2 ˛�2 � 1

2
� ˛�1: (17.82)

Hence, because

m2
eff .r/ D a20

r2.1 � z/2
C ˛.˛ C 1/z

r2.1 � z/
; (17.83)

(recall that z D �ˇr˛) it follows that

u00
E.r/C



m2

eff .r/ � n.n C 1/

r2

�
uE.r/ / 0: (17.84)

For fields of magnetic-type L is the same as in Eq. (17.82), and

M D a20˛
�2I N D 2a20˛

�2: (17.85)
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Furthermore

m2
eff .r/ D a20

r2.1 � z/2
; (17.86)

so

u00
M.r/C



m2

eff .r/ � n.n C 1/

r2

�
uM.r/ / 0: (17.87)

17.12.2 Profile 2

Next, we consider

m.r/ D a0r
˛
2 �1

1C ˇr˛
; (17.88)

where a0 is a constant. For fields of electric-type

L D 1

2
˛�1 � 1

4
.2n C 1/2˛�2I M D �1

2
˛�1 � 1

4
.2n C 1/2˛�2I

N D



a20ˇ
�1 � 1

2
.2n C 1/2

�
˛�2: (17.89)

After some manipulation, we find that

u00
E.r/ / r�2uE.r/

(
1

4
˛2 C n.n C 1/C a20ˇ

�1z
.1 � z/2

�
1
2
˛.1C z/

1 � z

)

; (17.90)

and

m2
eff .r/ D r�2

�
� a20ˇ

�1z
.1 � z/2

� 1

4
˛2 C ˛

2

.1C z/

1 � z

�
: (17.91)

Once more, as required,

u00
E.r/C



m2

eff .r/ � n.n C 1/

r2

�
uE.r/ / 0: (17.92)

For fields of magnetic-type

L D 1

4
� 1

4
.2n C 1/2˛�2I M D N D �a20ˇ

�1˛�2: (17.93)
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Upon using these definitions it is found that

u00
M.r/ / r�2uM.r/



a20ˇ

�1z
.1 � z/2

C n.n C 1/

�
; (17.94)

and

m2
eff .r/ D a20r

˛r�2

.1� z/2
D � a20ˇ

�1z
.1 � z/2

r�2: (17.95)

Hence, it is determined that

u00
M.r/C



m2

eff .r/ � n.n C 1/

r2

�
uM.r/ / 0: (17.96)

17.12.3 Profile 3

Finally, consider the wavenumber profile

m.r/ D a0

r
p
1C ˇr˛

; (17.97)

where a0; ˛; and ˇ are constants. For fields of electric-type

L D



a20 � 1

4
.2n C 1/2

�
˛�2 C 1

2
I M D �1

4
.2n C 1/2˛�2 � 1

2
˛�1I

N D



a20 � 1

2
.2n C 1/2

�
˛�2 � 1

2
˛�1: (17.98)

Using the above definitions (again, after much algebra) we find that

u00
E.r/ / r�2uE.r/

(

� a20
1 � z

C n.n C 1/�
1
2
˛z

1 � z
C

1
4
˛2z2 � 1

2
˛2z

.1 � z/2

)

(17.99)

and

m2
eff .r/ D r�2

(
a20
1 � z

C
1
2
˛z

1 � z
C

1
2
˛2z � 1

4
˛2z2

.1 � z/2

)

; (17.100)
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whence

u00
E.r/C



m2

eff .r/ � n.n C 1/

r2

�
uE.r/ / 0: (17.101)

For fields of magnetic-type

L D 1

4
C
�

a20 � 1

4
.2n C 1/2

�
˛�2I M D 0I N D a20˛

�2: (17.102)

Again, it is found that

u00
M.r/ / r�2uM.r/

�
� a20
1 � z

C n.n C 1/

�
(17.103)

and

m2
eff .r/ D m2.r/ D a20r

�2

1 � z
; (17.104)

so that

u00
M.r/C



m2

eff .r/ � n.n C 1/

r2

�
uM.r/ / 0: (17.105)

17.13 A Further Quantum Mechanical Connection

Aspects of plane wave electromagnetic scattering by a radially inhomogeneous
sphere are discussed. The vector problem is reduced to two scalar radial
“Schrödinger-like” equations, and a connection with time-independent potential
scattering theory is exploited to draw several conclusions about specific refractive
index profiles [18].

The refractive index n.r/ (which may be complex) is a function of the radial
coordinate only, and the sphere has radius a. For r > a; n.r/ � 1: A time-harmonic
dependence of the field quantities, exp.�i!t/ is assumed throughout. The governing
equation for the electric field E .r; �; �/ is

r � r � E � k2n2 .r/E D 0: (17.106)

The wavenumber k is 2�=�; � being the wavelength. As shown in [19], the solution
may be found by expanding the electric field in terms of vector spherical harmonics
in terms of the so-called transverse electric (TE) and transverse magnetic (TM)
modes, respectively:

Ml;m .r; �; �/ D eim�

kr
Sl .r/Xl;m .�/ ; (17.107a)

Nl;m .r; �; �/ D eim�

k2n2 .r/



1

r

dTl .r/

dr
Yl;m .�/C Tl .r/

r2
Zl;m .�/

�
: (17.107b)
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The vector angular functions in Eqs. (17.107a), (17.107b) are defined in a spherical
coordinate system as

Xl;m .�/ D h0; i�l;m .�/ ;��l;m .�/i ; (17.108a)

Yl;m .�/ D h0; �l;m .�/ ;�i�l;m .�/i ; (17.108b)

Zl;m .�/ D ˝
l .l C 1/Pm

l .cos �/ ; 0; 0
˛
; (17.108c)

where Pm
l .cos �/ is an associated Legendre polynomial of degree l and order m: The

corresponding scalar angular functions are defined as

�l;m .�/ D m

sin �
Pm

l .cos �/ ; (17.109a)

�l;m .�/ D dPm
l .cos �/

d�
: (17.109b)

The functions Sl .r/ and Tl .r/ are called the radial Debye potentials, and they
respectively satisfy the equations

d2Sl .r/

dr2
C



k2n2 .r/� l.l C 1/

r2

�
Sl .r/ D 0; (17.110a)

d2Tl .r/

dr2
�
�
2

n.r/

dn.r/

dr

�
dTl .r/

dr
C



k2n2 .r/ � l.l C 1/

r2

�
Tl .r/ D 0: (17.110b)

In addition to the appropriate matching conditions at r D a these potentials must
also satisfy the boundary conditions Sl .0/ D 0 and Tl .0/ D 0: Equation (17.110b)
may be rewritten in terms of the dependent variable Ul .r/ ; where Tl .r/ D
n .r/Ul .r/ to become

d2Ul .r/

dr2
C



k2n2 .r/� n.r/
d2

dr2

�
1

n.r/

�
� l.l C 1/

r2

�
Ul .r/ D 0: (17.111)

Provided that n .0/ ¤ 0; Ul .0/ D 0: Both Eqs. (17.110a) and (17.111) may be
placed in the form of the canonical time-independent Schrödinger equation, namely

d2Sl .r/

dr2
C



k2 � VS.r/ � l.l C 1/

r2

�
Sl .r/ D 0; (17.112a)

d2Ul .r/

dr2
C



k2 � VU.r/ � l.l C 1/

r2

�
Ul .r/ D 0; (17.112b)
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where the k-dependent “scattering potentials” VS.r/ and VU.r/ are defined, respec-
tively, in Œ0; a� as

VS.r/ D k2

1 � n2 .r/

�
; (17.113a)

VU.r/ D k2


1� n2 .r/C n .r/

k2
d2

dr2

�
1

n.r/

��
: (17.113b)

for the TE and TM modes, respectively (the potentials are both identically zero for
r > a). These potentials are identical for the case of a uniform refractive index.
VU.r/ will be regarded as a small perturbation of the potential VS.r/; so we also
define

" .r/ � VU.r/ � VS.r/ D n .r/
d2

dr2

�
1

n.r/

�
: (17.114)

It is a standard result for potentials vanishing sufficiently fast at infinity [2–4] that
as r ! 1

Sl .r/ � sin

�
r � �l

2
C ıS

l .k/

�
; (17.115a)

Ul .r/ � sin

�
r � �l

2
C ıU

l .k/

�
: (17.115b)

Here ıS
l .k/ and ıU

l .k/ are the phase shifts induced by each potential, respectively.
Multiplying Eqs. (17.7a) and (17.7b) by Ul .r/ and Sl .r/, respectively, subtracting
and integrating we obtain

Ul .r/
dSl .r/

dr
� Sl .r/

dUl .r/

dr
D �

Z r

0

" .�/ Sl .�/Ul .�/ d�: (17.116)

Utilizing the asymptotic expressions in (17.115a), (17.115b), we have, in the limit
as r ! 1;

k sin

ıU

l .k/ � ıS
l .k/

� D �
Z 1

0

" .r/ Sl .r/Ul .r/ dr D �
Z ka

0

" .r/ Sl .r/Ul .r/ dr;

(17.117)
since n .r/ is constant for r > ka (or r > a/: Thus far this equation is exact.
If we now consider " .r/ to be sufficiently small that Ul .r/ 
 Sl .r/ ; thenˇ̌
ıU

l .k/ � ıS
l .k/

ˇ̌
<< 1 and we have the relation

ıU
l .k/ 
 ıS

l .k/˙ 1

k

Z ka

0

" .r/ ŒSl .r/�
2 dr: (17.118)
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Whether ıU
l .k/ > ıS

l .k/ or not clearly depends on the concavity of n.r/: A further
approximation can be made if the scattering potential VS.r/ is constant (specifically,
VS D k2

�
1 � N2

�
for n D N; r � a), for then the solution for Eq. (17.112a) can be

expressed in terms of a Riccati–Bessel function of the first kind, i.e.

Sl .r/ D
�
�Nkr

2

�1=2
JlC1=2 .Nkr/ : (17.119)

Then we have that

ıU
l .k/ 
 ıS

l .k/˙ �N

2

Z a

0

�
n .r/

d2

dr2

�
1

n.r/

�� 
JlC1=2 .Nkr/

�2
rdr

� ıS
l .k/˙ �N

2
I .a/ : (17.120)

In the case of a small perturbation about VS D 0; i.e. for which n D N D 1; the term
ıS

l .k/ in Eq. (17.120) is zero, and the resulting approximation for ıU
l .k/ is related

to the first Born approximation in quantum scattering theory [20]. In particular, if
" .r/ D Dr�s; D being some constant, a closed form solution for I can be found as
a ! 1 [21], namely

I .1/ D
Z 1

0


JlC1=2 .Nkr/

�2
r1�sdr D 1

2

�
Nk

2

�s�2 � .s � 1/� �l � 1
2
s C 3

2

�


�
�
1
2
s
��2
�
�
l C 1

2
s C 1

2

� ;

(17.121)
provided s > 1 and 2l > s � 3: The question may be asked: what n .r/ profiles give
rise to " .r/ D Dr�s (where D > 0)? Writing p.r/ D Œn .r/��1 we are led to consider
solutions of the equation

rs d2p.r/

dr2
� Dp .r/ D 0: (17.122)

The general solution to this equation may be expressed in terms of modified Bessel
functions, but we do not pursue this direction here.

17.14 A Liouville Transformation

As defined in Eqs. (17.113a) and (17.113b), the “potentials” VS.r/ and VU.r/ are
also k-dependent, which is not the case in potential scattering theory [22]. This
has an important consequence: unlike the quantum mechanical case, here pure
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“bound state” solutions, that is, real square-integrable solutions corresponding to
k2 < 0 (Im k > 0/ do not exist. It can be readily proven [23] for the TE mode
[Eq. (17.112a)] that

Z 1

0

"ˇ
ˇ̌
ˇ
dSl .r/

dr

ˇ
ˇ̌
ˇ

2

C l.l C 1/

r2
jSl .r/j2

#

dr D k2
Z 1

0

n2 .r/ jSl .r/j2 dr: (17.123)

This cannot be satisfied for k2 < 0 for a real and positive refractive index
n .r/ : In [24] the corresponding result is established from Eq. (17.112b) for Ul .r/ :
Furthermore, a Liouville transformation may be used to define a new k-independent
potential. Using the following simultaneous changes of independent and dependent
variables in Eq. (17.110a)

r ! � W � .r/ D
Z r

0

n.s/ds; (17.124a)

ul !  l W  l .�/ D .n.r//1=2 ul .r/ : (17.124b)

Clearly n.r/ must be integrable and non-negative (in naturally occurring circum-
stances n � 1 and n.r/ D 1 for r > a); also � .0/ D 0: It is easy to establish the
following results:

.i/ � .r/ D �0 C r � a; r � a;where�a D
Z a

0

n.s/dsI

.ii/ � .r/ � r; r ! 1I

.iii/ r .�/ D
Z �

0

ds

v .s/
;wherev .�/ D n .r .�// :

Furthermore, by applying (17.124a) and (17.124b) to Eq. (17.112a) we find that



d2

d�2
� l .l C 1/

R2 .�/
C k2

�
 l .r/ D V .�/  l .�/ ; (17.125)

where

R.�/ D v .�/ r .�/ � n .0/ �; � ! 0; andV .�/ D Œv .�/��1=2
d2

d�2
Œv .�/�1=2 :

(17.126)
Clearly v .�/ should be at least twice differentiable. Now the new “potential”

V .�/ is independent of the wavenumber k: Note also that V .�/ D 0 for � > �a: It
is of interest to determine the “shape” of the potential V .�/ by inverting � .r/ for
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various choices of physical n.r/ profiles for r 2 Œ0; a� (with n.0/ D n0; n.a/ D na

and n.r/ D 1 for r > a). In what follows only the non-zero potential shapes with be
stated (corresponding to � 2 Œ0; �a� : Thus [24] for

n.r/ D na



1 � c2

� r � a

a

�2��1
I V .�/ D c2

n2a
> 0; (17.127a)

where c is a real constant, i.e. the potential is a spherical barrier. For the profile [25]

n.r/ D .A C Br/�1 ;A D n�1
0 ;B D n0 � na

an0na
I V .�/ D B2

4
> 0; (17.127b)

also a barrier. For the important Maxwell Fish-Eye profile [26],

n.r/ D n0
�
1C Br2

��1
;B D n0 � na

a2na
I V .�/ D � B

n20
: (17.127c)

In this case, the new potential is a spherical well or barrier as n0 > na or n0 < na,
respectively. In the latter case the singularity occurring in n.r/ is moot since it
arises for r > a: In all the other cases investigated thus far [27], including
n.r/ D n0 exp.�˛r/I n0 cos˛r and n0 cosh˛r, the potentials V .�/ are rather
complicated functions, and there are no significant advantages to using the Liouville
transformation in these cases. It is therefore of interest to examine what profiles
n.r/ give rise to constant potentials V .�/ : In Eq. (17.126) let y .�/ D Œv .�/�1=2 and
V .�/ D V0; where V0 is a constant of either sign. Then it follows that

d2y

d�2
� V0y D 0; (17.128)

the general solution being expressible in terms of real or complex exponential
functions as V0 > 0 (potential barrier) or V0 < 0 (potential well), respectively.
In r-space, V0 < 0 corresponds to a constant refractive index n D N D
�
1C jV0j k�2�1=2 > 1; so we proceed with this physically realistic case. Writing

the general solution of Eq. (17.128) as

y .�/ D C cos
�
jV0j1=2 �C �

�
; (17.129)

where C and � are constants, it follows that

r .�/ D
Z �

0

ds

v .s/
D
�

C2 jV0j1=2
��1 h

tan
�
jV0j1=2 �C �

�
� tan �

i
: (17.130)
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This can be inverted to yield

� .r/ D
Z r

0

n.s/ds D jV0j�1=2
n
arctan

h
C2 jV0j1=2 r C tan �

i
� �

o
: (17.131)

Therefore

n.r/ D �0 .r/ D C

1C ŒBr C tan ��2
; (17.132a)

where C D n0 sec2 � and � can be determined from the requirement that n.a/ D
na: This is a generalization of the Maxwell Fish-Eye profile in Eq. (17.127c). The
corresponding result for V0 > 0 is

n.r/ D C

1 � ŒBr C tanh ��2
: (17.132b)

Note that in this case a singularity exists for r > 0 at r D B�1 .1 � tanh �/ :

17.15 Summary

Aside from a historical introduction to the visual consequences of electromagnetic
scattering by large spheres in general, and backscattering in particular, a major
contribution of this paper to the literature is to provide derivations of several results
stated therein but with no or limited details provided. A second contribution is the
extension of these same results to other refractive index profiles (in the case of
electromagnetic backscattering). Since exact electromagnetic solutions for radially
inhomogeneous dielectric lenses are available only for few functional dependences
of the refractive index on the radial distance, the high-frequency behavior based
on an asymptotic analysis of the exact solution has been obtained in very few cases.
This article based on [13] has extended the range of possible profiles by generalizing
the parameters of the original mathematical model. When an exact solution is not
available, a high-frequency estimate may be obtained by performing an asymptotic
analysis of the differential equations satisfied by the radial eigenfunctions. But even
when an exact solution is available, it may be easier to proceed directly with an
asymptotic solution of the differential equation [28]. Additionally, by exploiting
some known results from quantum mechanics, we are able to derive asymptotic
solutions for two scalar problems (decoupled from the electromagnetic cases) for the
case of small variations in the refractive index across the scattering sphere. Finally,
by using a Liouville transformation we are able to convert the electromagnetic
wavenumber-dependent scattering potential to a wavenumber-independent one, and
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solve the resulting inverse problem for several refractive index profiles. The reader
interested in further details for both the historical and mathematical aspects of this
chapter should consult references [29] and [30], respectively.
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Chapter 18
An Introduction to Symplectic Coordinates

M. Aĺvarez-Ramírez and Rodríguez José Antonio García

Abstract In this paper we review the relations between Hamiltonian systems and
the symplectic geometry in a simple context. We use them to reduce the degrees
of freedom of the system. In particular they are used to obtain the solutions of the
two-body problem.

Keywords Symplectic geometry • Hamiltonian function • Mathieu
transformation

18.1 Introduction

A practical difficulty that arises in many problems of mechanics is the selection
of a good system of coordinates. Each one has its own advantages and drawbacks,
and thus there is not a best one; moreover, changing systems of coordinates usually
involves several and difficult computations. However there is a consensus on the
preference of systems that preserve symplectic structures and reflect the symmetries
of the specific problem. In this paper, we shall examine some basic properties of the
symplectic geometry and use it in a classical example in celestial mechanic in order
to persuade the reader of this claim.

This example is the two-body problem, where the orbits of two particles in
R2, subject to their mutual gravitational interaction, are studied. The underlying
symplectic properties will provide us with a clean way to analyze this dynamical
system, and they are going to be used along this paper to obtain the solution.

The analysis of the two-body problem starts with the choice of the vector space
R8 of positions and momenta of the two particles as the phase space, and the
construction of a symplectic structure where the energy is the Hamiltonian of the
system. The two-body problem preserves the center of mass, the linear and angular
momenta, and the energy; the next steps will use them to reduce the complexity of
the problem, and finally to give the general solution.
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The current work is presented as follows. Section 18.2 has a brief introduction to
Hamiltonian systems and the two-body problem is presented. Section 18.3 provides
some elements of symplectic geometry such as the definition of symplectic spaces
and symplectic changes of coordinates.

There is a discussion of several relations between Hamiltonian systems and
symplectic geometry in Sect. 18.4. Poisson brackets, integrals, and Liouville inte-
grability are introduced here, along with the statements of the theorems of Liouville
and Noether.

Section 18.5 deals with the Mathieu transformation. This will allow us to reduce
the degrees of freedom in a Hamiltonian system. Finally, Sect. 18.6 provides the
reader with some comments and references that are helpful to extend the knowledge
about the symplectic geometry and some related topics.

18.2 Hamiltonian Systems

In order to avoid the complications of the more general definition, we start with a
simple definition of a Hamiltonian system, see [1, 3] for more general but abstract
definitions.

Let H W O 	 R
2n ! R, or H.q;p/ in its arguments, q D .q1; : : : qn/, p D

.p1; : : : pn/ 2 R
n, be a smooth function. Then the dynamical system

Pqi D @H

@pi
; Ppi D �@H

@qi
i D 1; 2; : : : ; n (18.1)

is a Hamiltonian system, and the function H.q;p/ is the Hamiltonian of the system.
The vector field in the right side of Eq. (18.1) is known as a Hamiltonian vector
field. We will sometimes denote it by XH. We will also write by 'H.t;q0;p0/ the
solution such that q.0/ D q0 and p.0/ D p0, and call it a Hamiltonian flow or the
flow of the Hamiltonian.

The vector q comprises the configuration variables of the system, and p their
canonically conjugate momenta. Each component of q has as conjugate momentum
a component of p. Loosely speaking, q describes the position of the system, and
p the rate of change. The number n is the number of degrees of freedom of the
Hamiltonian system. Then the phase space is 2n-dimensional.

The Hamiltonian can be thought as the energy of the system. In fact, the law of
the conservation of energy is expressed as

d

dt
H .q.t/;p.t// D 0: (18.2)

Hence the orbits are constrained in a single level set of the Hamiltonian.
If z D .q;p/, the system (18.1) can be written as

Pz D XH.z/ D JrH.z/; J D
�

0 I
�I 0

�
; (18.3)
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where J is a square matrix of order 2n, formed by 4 square matrices of order n, I
and 0 are the identity and zero matrix, respectively. The matrix J satisfies JT D �J,
J2 D �I, and the det.J/ D 1.

Example 2.1. Here we study the motion of two particles which are moving in a
plane and attracting each other following the Newton laws. Let mk, qk, and pk be
the mass, position, and momentum of the kth particle, without loss of generality we
assume that m1Cm2 D 1 and the universal gravitational constant is set to one. Then
the motion equation is

Pq1 D @H

@p1
D 1

m1

p1; Pp1 D � @H

@q1
D m1m2

q2 � q1
jq2 � q1j3

;

Pq2 D @H

@p2
D 1

m2

p2; Pp2 D � @H

@q2
D m1m2

q1 � q2
jq2 � q1j3

:

The solutions of this system are of the form

.q1.t/;q2.t/;p1.t/;p2.t// 2 R
8:

This equation is a four degrees of freedom Hamiltonian system with Hamiltonian

H .q1;q2;p1;p2/ D p1 � p1
2m1

C p2 � p2
2m2

� m1m2

jq2 � q1j : (18.5)

18.3 Symplectic Geometry

In this section we introduce some basic tools of symplectic geometry.

Definition 3.1. A symplectic form is a bilinear form ! on a vector space V of
dimension even, such that

1. (skew-symmetric) For all v;w 2 V such that !.v;w/ D �!.w; v/:
2. (nondegenerate) If for every w 2 V such that !.v;w/ D 0, then v D 0.

The vector space V is a symplectic vector space.

Example 3.2. The canonical example of a symplectic vector space is R2n with the
bilinear form !.u; v/ D Ju � v D utJv, where ut denotes the transpose of u.

It is usual to identify the vector space V with R2n by picking a basis B D
fe1; : : : e2ng, and the symplectic form with the matrix A D .aij/, where aij D
!.ei; ej/. If this associated matrix is J, then B is a symplectic basis. A basic fact
is that any symplectic vector space has a symplectic basis.
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Definition 3.3. Let .V; !/ be a symplectic space of dimension 2n, a Lagrangian
subspace W 	 V is a linear subspace of V of dimension n such that for all v,
w 2 W: !.v;w/ D 0.

Example 3.4. If B D fe1; : : : e2ng is a symplectic basis, then W1 D he1; : : : eni and
W2 D henC1; : : : e2ni are Lagrangian subspaces and V D W1 ˚ W2.

Example 3.5. Using the notation of Example 2.1, if z D .q1;q2;p1;p2/ and Z D
.Q1;Q2;P1;P2/ 2 R8, then the canonical symplectic form is

Jz � Z D q1 � P1 C q2 � P2 � Q1 � p1 � Q2 � p2:

Definition 3.6. Let .V; !/ be a symplectic vector space. A linear map T W V ! V
is called a linear symplectic transformation if

!.Tu;Tv/ D !.u; v/:

The matrix A associated with T in a symplectic basis is called a symplectic matrix.

We observe that T is a linear symplectic transformation if and only if any associated
symplectic matrix A satisfy AtJA D J.

Symplectic matrices have several nice properties. For instance, their determinant
is equal to one, their eigenvalues occur in quadruples f�; ��1; N�; N��1g, and their
transposes are also symplectic.

The set of symplectic matrices of R2n, denoted by Sp.n/, is a Lie group. It is
easy to see that Sp.1/ D Sl.2/, the Lie group of square matrices of order two with
determinant equal to one. For bigger degrees of freedom we only have the proper
inclusion.

Example 3.7. Let us continue with Example 3.4. The subspaces W1 and W2 are
isomorphic to Rn. Let S W W1 ! W1 be a linear isomorphism and let B be the
associated matrix. If B�t D .Bt/

�1, thus

A D
�

B 0
0 B�t

�

is the associated matrix in the symplectic basis of a symplectic linear transformation
defined in V .

Now we extend the concept of symplectic transformation to nonlinear functions.
Let O be an open set in R2n and � W O 	 R2n ! R2n be a smooth function. Then

�.z/ is a symplectic change of coordinates is a diffeomorphism (i.e., �.z/ is one
to one and smooth, and its inverse is also one to one and smooth) and its derivate
DŒ�.z/� is a linear symplectic transformation.

In other words, the derivate DŒ�.z/� satisfies

DŒ�.z/� J DŒ�.z/�t D J: (18.6)
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Let us observe that if T W V ! V is a linear symplectic transformation then it is
also a symplectic change of coordinates.

It is usual to write the property (18.6) using differential forms. Let Q D Q.q;p/
and P D P.q;p/ be a change of variables defined in a simple connected open set
of Rn. The change of variable is symplectic if and only if

nX

kD1
dqk ^ dpk D

nX

kD1
dQk ^ dPk:

This is equivalent to the exactness of the differential one-form

! D
nX

iD1
pidqi � PidQi:

18.4 Symplectic Geometry and Hamiltonians

In this section we discuss several relations between the symplectic structure of R2n

and the Hamiltonian equations.
A basic fact of the symplectic geometry is that it preserves the Hamiltonians.

That is, if z D �.u/ is a symplectic change of coordinates, then Eq. (18.3) becomes
the Hamiltonian equation:

Pu D JrG.u/; where G D H ı �:

In other words, the Hamiltonian obtained after a symplectic transformation is the
one formed by replacing the old coordinates by the new ones. In addition, the
Poincaré maps of Hamiltonian systems are symplectic changes of coordinates: if
'H.t; z/ is a Hamiltonian flow, then the time t0-map given by P.z/ D 'H.t0; z/ is a
symplectic change of coordinates.

Some deeper relations between Hamiltonian systems and symplectic maps are
expressed through the Poisson bracket defined by

fF;Gg D rF � JrG D
nX

kD1



@F

@qk

@G

@pk
� @F

@pk

@G

@qk

�
;

where F;G W R2n ! R are smooth functions.
The following properties are easily seen from the definition of the Poisson

bracket.
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– Skew-symmetric:

fF;Gg D �fG;Fg:

In particular, this implies that fF;Fg D 0.
– Linearity:

f˛F C ˇG;Hg D ˛fF;Hg C ˇfG;Hg; for all ˛; ˇ 2 R:

– Jacobi identity:

fF; fG;Hgg C fG; fH;Fgg C fH; fF;Ggg D 0:

The Poisson brackets provide us with an effective tool to study the integrals and
other things related with Hamiltonians and symplectic geometry.

For the flow 'H.t; z/ of (18.3) we have

d

dt
FŒ'.t; z/� D rF � d

dt
'.t; z/

D rF � JrH .'.t; z// D fF;Hg Œ'.t; z/� : (18.7)

Hence the fF;Hg is the rate of change of the function F along the solutions of
the Hamiltonian system associated with H. Since the Poisson bracket is skew-
symmetric then fF;Hg is also the negative of the rate of change of the function
H along the solutions of the Hamiltonian system associated with F. In addition, the
Poisson brackets are preserved by symplectic transformations.

An integral is a smooth function F W R2n ! R which is constant along the
solutions of (18.3); i.e., F.'.t// D F.z/ is constant for all t 2 R. The following
theorem gives us some relations between the Poisson bracket and the integrals of a
Hamiltonian system.

Theorem 4.1. Let F, G, and H smooth functions be defined in the same subset of
R2n. Then

1. F is an integral for (18.3) if and only if fF;Hg D 0.
2. H is an integral for (18.3).
3. If F and G are integrals for (18.3), then fF;Gg D 0.

It is easy to determine if a given function F is an integral of a Hamiltonian system
by computing its Poisson bracket with the Hamiltonian function; if it is identically
zero, then F is an integral. However the selection of the possible candidates is very
tricky. As an example the identity (18.2) reveals us that the Hamiltonian itself is an
integral.
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Now let us assume that the Hamiltonian function does not contain q1, then
dp1
dt

D 0, which means that p1 is constant along the orbits of the system, in other

words, p1 is an integral of the Hamiltonian. In addition, the rest of the system can
be thought as a system with a one less degree of freedom and a parameter p1.

Other way to see the previous discussion is that the Lie group of displacements
in the variable q1 does not affect the Hamiltonian system, and it is related to the
existence of the integral p1. Let us note that this group is generated by the flow of
the Hamiltonian F.q1; : : : ; p1; : : : / D p1.

The variables such as q1 in the previous example that are not in the Hamiltonian
are called cyclic and allow a reduction of the number of degrees of freedom.

Two integrals are in involution if their Poisson bracket is zero. The Liouville
theorem essentially states that a Hamiltonian dynamical system of n degrees of
freedom and with n functions Fi in involution, and linearly independent (their
gradients are linearly independent) can be solved by quadratures.

Theorem 4.2 (Liouville). Suppose that we are given n functions in involution on a
symplectic 2n-dimensional phase space

F1; : : : ;Fn; fFi;Fjg D 0:

Consider a level set of the functions Fi given by

Mc D f.q;p/ 2 M 	 R
2n W Fi D ci; i D 1; : : : ng:

Assume that the n functions Fi are independent of Mc . In other words, the gradients
DFi are linearly independent at each point of Mc. Then

1. Mc is a smooth manifold, invariant under the flow with H D H.Fi/.
2. If the manifold M is compact and connected, then it is diffeomorphic to the n-

dimensional torus Tn D f.�1; : : : ; �n/ mod 2�g:
3. The phase flow with the Hamiltonian function H determines a conditionally

periodic motion on Mc , i.e. in angular variables

d�i

dt
D ˛i; ˛i D ˛i.Fj/:

We end this section with a brief discussion of the Noether theorem in the context
of Hamiltonian systems. This theorem states that every conservation law or integral
in Hamiltonian systems comes from a symmetry: The conservation of energy comes
from the invariance of the Hamiltonians with respect to time. The invariance of a
Hamiltonian with respect to spatial translations implies the conservation of linear
momentum, and a rotational invariance implies the conservation of the angular
momentum.
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Let F W D 	 R2n ! R be a Hamiltonian with flow  .t; z/. It is well known that
the flow is a local action of group in D 	 R2n, thus:

–  .0; z/ D z.
–  .t C s; z/ D  .t;  .s; z//, for all t and s where this expression is defined.

The flow  .t; z/ is a symplectic symmetry of the Hamiltonian H W D 	 R2n ! R if

H.z/ D H . .t; z// forallt 2 Randz 2 D: (18.8)

Theorem 4.3 (Noether). If .t; z/ is a symplectic symmetry of the the Hamiltonian
H W D 	 R

2n ! R, then F is an integral of the Hamiltonian system (18.3).

18.5 The Mathieu Transformation

In this section we study a special type of symplectic transformation introduced by
E. Mathieu. It is a generalization of Example 3.7, see [5, 9].

We start with a diffeomorphism f W D 	 Rn ! Rn, defined in an open and simple
connected set D. The Mathieu transformation is

Q D f .q/; P D .Df /�tp; (18.9)

where the Jacobian matrix is Df and .Df /�t denotes its inverse transposed matrix.
The Mathieu transformation coincides with the original diffeomorphism f .q/ in the
configuration space, and is extended to the momenta variables with the aim to obtain
a symplectic change of coordinates. There are several possible extensions, but the
Mathieu transformation is the simpler.

The rest of this section will be devoted to apply the Mathieu transformation to
the two-body problem. We start by introducing the change of coordinates

Q1 D m1 q1 C m2 q2; Q2 D q2 � q1:

Hence the Mathieu transformation becomes completed with

P1 D p1 C p2; P2 D � m2 p1 C m1 p2:

The inverse transformation is given by

q1 D Q1 � m2 Q2; q2 D m1 Q2 C Q1;

p1 D m1 P1 � P2; p2 D P2 C m2 P1:

Then the Hamiltonian (18.5) in the new coordinates becomes

H.Q1;Q2;P1;P2/ D 1

2
P1 � P1

„ ƒ‚ …
H1.Q1;P1/

C 1

2m1m2

P2 � P2 � m1m2

jQ2j„ ƒ‚ …
H2.Q2;P2/

;
(18.10)

and the system equations yields
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PQ1 D P1; PP1 D0; (18.11a)

PQ2 D 1

m1m2

P2; PP2 D � m1m2

Q2

jQ2j3
: (18.11b)

The system has been simplified in several ways, first of all the new Hamiltonian is
a sum of two independent functions H1.Q1;P1/ and H2.Q2;P2/. This fact produces
two independent Hamiltonian equations, each one of two degrees of freedom.

Equation (18.11a) has a very simple solution: Q1 D c1t C c2, P1 D c1. The
reason of this simplicity is that we use an integral of the problem as the definition
of Q1.

In order to solve Eq. (2.1) it suffices to solve the Hamiltonian equation (18.11b),
called the Kepler problem. Therefore the problem has been reduced from a four
degrees of freedom problem into one with only two degrees of freedom. To simplify
the notation from here on we omit the subindex “2” in all the variables of the Kepler
Hamiltonian. Thus the Hamiltonian associated with system (18.11b) takes the form
H.Q;P/ D 1

2m1m2
P � P � m1m2jQj and has a rotational symmetry. The best way to take

advantage of this fact is to use polar coordinates.
Let Q D .r cos �; r sin �/, and using the Mathieu transformation we obtain

P D R.cos �; sin �/ C ‚
r .� sin �; cos �/, where ‚ is the angular momentum and

is conjugate to � , and R is the conjugate momentum of r. Then the Hamiltonian is

H.r; �;R; ‚/ D 1

2m1m2

.R2 C ‚2

r2
/� m1m2

r
: (18.12)

Let us remark that the variable � is cyclic, thus‚ D c is constant. The equations
of motion are

Pr DR; PR D ‚2

2m1m2r3
� m1m2

r2
; (18.13a)

P� D‚

r2
; P‚ D 0: (18.13b)

Hence (18.13a) is the following one degree Hamiltonian equation parametrized by
the constant c:

Rr D PR D c2

2m1m2r3
� m1m2

r2
: (18.14)

If we assume that c ¤ 0, then the motion is not collinear. Making the change of
variable u D 1=r and rescaling the time by dt D .r2=c/d� , it becomes

u00 C u D m1m2

c2
; (18.15)

where 0 D d=d� . It is just a nonhomogeneous harmonic oscillator with general
solution
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u D m1m2

c2
.1C e cos f /; (18.16)

where e and g are constants and f D � � g. Substituting back for r we have

r D c2=�

1C e cos f
; (18.17)

which is the general equation of a conic in polar coordinates, with a focus at the
origin, � D m1m2, e is the eccentricity, and c2=� is the semilatus rectum. The four
possible conics are: circle if e D 0, an ellipse 0 < e < 1, a parabola e D 1, and
e > 1 for a hyperbola. The angle f is called the true anomaly, � the true longitude
and g the argument of the perihelio (perigee).

18.6 Recommendations for Further Reading

The object of study of this paper has a long history that goes back to Newton and
has the names of Lagrange, Poincaré, and many others attached to it.

Nowadays symplectic coordinates is a wide area of research that that links many
disciplines of mathematics and physics. The reference [6] is similar in level and
scope to this work and is the natural choice to continue studying.

There is an alternative way to proceed by using calculus of variations. This field
of mathematics studies methods for finding functions that minimize functionals
defined by integrals. The basic one is analogous in infinite dimensions to the first
derivative test and is known as the Euler–Lagrange equation.

Equation (18.3) is the Euler–Lagrange equation of the so-called action func-
tional. Hence the orbits are extremals of it. This is the “principle of least action.”
Lagrangian mechanics is a formulation of the mechanics using this principle.
It is not completely equivalent to the Hamiltonian mechanics, but there are many
important facts that intertwine both. The references [1, 2] contain a discussion of
this facts.

On the other hand, an important topic is the study of the symmetries of
Hamiltonian or Lagrangian systems. It is expressed in the Lie groups theory and
the Noether theorem. It can be reviewed in the reference [7].

We strongly suggest readers to look at [3] for a well-written explanation on
symplectic geometry. This book assumes the reader has only a general background
in analysis and familiarity with linear algebra, and includes extensive appendices
which provide background material on vector bundles, on cohomology, and on Lie
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groups and Lie algebras and their representations. It starts with the basics of the
geometry of symplectic vector spaces, and then, symplectic manifolds are defined
and explored.

Finally, the references [4, 8, 9] are classic books but offer a nice presentation
of the analytical mechanics, as well as the application of variational methods and
dynamic systems in the study of mechanical systems, in particular of the n-body
problem.
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Chapter 19
Parallelized Solution of Banded Linear Systems
with an Introduction to p-adic Computation

Anthony A. Ruffa, Michael A. Jandron, and Bourama Toni

Abstract We present an approach that supports a parallelized solution of banded
linear systems without communication between processors. We do this by adding
unknowns to the system equal to the number of superdiagonals q. We then perform
r forward substitution processes in parallel (where r is the number of nonzero terms
in the right-hand side vector), and superimpose the resulting solution vectors. This
leads to the determination of the extra unknowns, and by extension, to the overall
solution. However, some systems exhibit exponential growth behavior during the
forward substitution process, which prevents the approach from working. We
present several modifications to address this, extending the approach (in a modified
form) to be used for general systems. We also extend it to block banded systems.
Numerical results for well-behaved test systems show a speedup of 20–80 over
conventional solvers using only 8 processors. Theoretical estimates assuming q
processors demonstrated a speedup of a factor exceeding 300 for 105 unknowns
when q D 2000; for 109 unknowns, the speedup exceeds a factor of 104 when
q D 45;000. We also introduce some fundamentals of p-adic computation and
modular arithmetic as the basis of the development and implementation of a fully
parallel p-adic linear solver, which allows error-free computation over the rational
numbers, and is better suited to control coefficient growth.
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19.1 Introduction

There is a great need to solve larger linear systems. Although advancements in
computer hardware have supported a tremendous growth in the size of systems that
can be solved, scientists and engineers continue to develop larger and higher fidelity
models. It is not uncommon to develop models that cannot be solved with existing
solvers, or models that can be solved, but the computation time is so large that they
become impractical as a design tool.

One potential approach to meet the increasing need for larger models involves
the development of methods that can support parallel computing. However, common
solvers for tridiagonal systems (the simplest banded systems resulting from physics-
based models) use a variant of Gaussian elimination combined with backward
substitution (e.g., LU decomposition [1, 2]) that does not support full parallelization
[3–6].

We take an alternative approach. Instead of attempting to develop methods to par-
allelize existing approaches on general matrices, we limit our focus to Hessenberg
and banded systems. We show that the simplest such system, a tridiagonal system,
can be solved in a fully parallel manner (i.e., without any communication between
processors) by adding an unknown to the system [7].

We also break up the right-hand side (RHS) vector into r vectors, each limited
to one nonzero term. In a further step that seems counterintuitive, we compute a
solution vector corresponding to each of the r RHS vectors by assuming a value for
the first term and then computing the remaining terms (including the extra added
term) via forward substitution. Finally, we superimpose all of the solution vectors,
leading to an equation to determine the extra introduced unknown, and by extension,
to determine the solution to the overall system.

We can extend this approach to banded systems having an arbitrary number of
superdiagonals q by adding q unknowns. For well-behaved test systems, we have
shown that this approach can lead to a significant speedup over existing solvers.
Theoretical estimates of the number of operations indicate potential speedups
of O.102/ to O.104/ over present solvers under ideal conditions [8]. However,
not all systems are well-behaved. The solution vectors for some systems exhibit
exponential growth behavior when computed via forward substitution that requires
a modification to the approach. Here we will outline the original approach and
modifications that address the observed exponential growth behavior. We also
extend the approach to block banded systems that arise from the finite element
method.

The next section discusses tridiagonal systems, along with a summary of theoret-
ical concepts supporting the approach and its implementation, considering systems
exhibiting, respectively, non-exponential and exponential behavior. In Sect. 19.3,
we consider pentadiagonal systems, again for both non-exponential and exponential
behavior. That section also discusses the modular solution and its application to
active vibration suppression. Section 19.4 presents periodic systems, in particular a
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one-dimensional Helmholtz problem with periodic boundary conditions. General
banded systems and block banded systems are covered in Sects. 19.5 and 19.6,
respectively. In Sect. 19.7, we develop the p-adic method for a parallel linear solver,
to include basic notions and examples of p-adic analysis. We finally conclude with
Sect. 19.8.

19.2 Tridiagonal Systems

Tridiagonal systems provide a good starting point to demonstrate the approach and
illustrate some of the issues that arise when implementing it. We will begin with
“well-behaved” tridiagonal systems and then investigate systems that are not as
well-behaved, in the sense that the forward substitution process leads to exponential
growth behavior. We will then develop variants to the algorithm to solve the more
general systems.

19.2.1 Tridiagonal Systems Exhibiting Non-exponential
Behavior

19.2.1.1 Theory

Let

Ax D d; (19.1)

where

A D

2

6
6
6
66
6
6
4

b1 c1 0 � � � 0

a2 b2 c2
: : :

:::

0 a3 b3
: : : 0

:::
: : :

: : :
: : : cn�1

0 � � � 0 an bn

3

7
7
7
77
7
7
5

2 R
n�n

is a general nonsingular tridiagonal matrix with ck ¤ 0 8 k 2 Œ1; n � 1�, x D
Œx1; x2; : : : ; xn�

T 2 R
n, and RHS vector d D Œd1; d2; : : : ; dn�

T 2 R
n. The approach

here follows that developed by Ruffa [7] and Jandron et al. [8].
We first summarize the theoretical concepts supporting a rigorous validation of

the computational approach. In order to prepare for parallelization we consider an
auxiliary system whose range includes, as a subset, the range R.A/ of system (19.1).
For such a general nonsingular system, there exists a unique solution x 2 R

n given
by x D A�1d; i.e., d 2 R.A/: We write the auxiliary system as

By D Qb; (19.2)
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where B is n � m; m > n; mapping Rm into Rn: The auxiliary system is consistent
iff Qb 2 R.B/ D span.col.B//; where col.B/ denotes the subspace of the column
vectors of B: To recover the original solution from a consistent auxiliary system
requires R.A/ 	 R.B/, i.e., the range R.A/ decomposes into

R.B/ D R.A/C C (19.3)

for C a complementary subset to R.A/ in Rn; i.e., dim R.A/ C dim C D dim R.B/:
This leads to seeking an appropriate augmented matrix QA in the form

QA D 
A Qe� (19.4)

whose range R.B/ D R.A/C span.Qe/: The dimension of span.Qe/ is ad hoc, e.g., in
the tridiagonal case, dim span.Qe/ D 1; with Qe sets to Qe D Qei any of the basis vector,
without loss of generality. Here we actually set Qe D Qen; the augmented matrix QA is
n � .n C1/mapping RnC1 to Rn: That is, the solution vector x of the original system
is the projection of the solution

y D



x
˛

�
(19.5)

for an arbitrary ˛ 2 R:Additional requirements follow in order for the original RHS
vector d to be in R. QA/; i.e., we take Qb D d C ˛Qe:

19.2.1.2 Implementation

Following [8], we add an unknown ˛ 2 R to x and a column Nen 2 Rn to A where
Nen D Œ0; : : : ; 0; 1�T to obtain an equivalent system to (19.1), i.e.,


A Nen

� 
x
˛

�
D d C ˛Nen: (19.6)

We decompose (19.6) into two independent sub-systems, i.e.,


A Nen

� 
 u
˛1

�
D d; (19.7)


A Nen

� 
 v
˛2

�
D Nen; (19.8)

where u D Œu1; u2; : : : ; un�
T 2 Rn, v D Œv1; v2; : : : ; vn�

T 2 Rn, and ˛1; ˛2 2 R, and
we write the solution of (19.6) in the following form:



x
˛

�
D



u
˛1

�
C ˛

2

4
v

˛2

3

5 : (19.9)

The solution to (19.7)–(19.8) can be determined with a forward substitution
approach [8], and the last row in (19.9) can then be used to determine ˛, i.e.,
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˛ D ˛1

1 � ˛2 ; (19.10)

where ˛2 ¤ 1. Substitution of ˛ into (19.9) leads to the solution to (19.1).
The number of calculations is bounded by 5n (i.e., for optimal parallelization)

and 12n (i.e., for sequential execution) [8]. Numerical experiments demonstrated
a speedup of 20–80 over the PARDISO solver [9–11] (depending on n) for the
tridiagonal Toeplitz system having row structure Œ1;�2; 1�.

19.2.2 Tridiagonal Systems Exhibiting Exponential Behavior

This approach will not work for all systems. For example, consider a tridiagonal
Toeplitz system having row structure Œ1;�3; 1�. The forward substitution approach
will lead to solution vectors dominated by exponential growth behavior so that the
magnitude of individual terms can reach 10300 when n D O.103/. This will prevent
the approach from working.

This behavior has been previously observed [12–16]. To understand the under-
lying mechanisms, we will focus on tridiagonal Toeplitz systems, which admit
an analytical solution. We can find the analytical solution by observing that
the tridiagonal Toeplitz system with row structure Œ1;�3; 1� can result from the
discretization of a continuous system, e.g., one having the form

˚.z � h/� 3˚.z/C ˚.z C h/ D 0; (19.11)

when the continuous independent variable z is discretized with equal spacing h. We
can assume solutions to (19.11) having the form

˚.z/ D Ae�z: (19.12)

This leads to

e�.z�h/ � 3e�z C e�.zCh/ D 0; (19.13)

or

e��h � 3C e�h D 0: (19.14)

The roots are

�h D ˙0:9624: (19.15)

Since h is arbitrary, we choose h D 1 for simplicity. Now consider a tridiagonal
Toeplitz system Ax D d with row structure Œ1;�3; 1� and a single nonzero RHS
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term dm. The solution is

xk D vkdm

vmC1 � 3vm C vm�1
; (19.16)

where

vk D e�.k�m/I k � m; (19.17)

vk D e�.m�k/I k � m: (19.18)

This solution is valid unless m 
 1 or m 
 n. Since our purpose is to use the
analytical solution to understand the exponential behavior exhibited in the numerical
solution, we will intentionally avoid those cases. (We could compute them, but they
are more complicated.) With these restrictions, vk depends only on k �m, regardless
of n or m (Fig. 19.1). The error is O.10�16/. It is similar to the solution developed by
Meek [17] that uses ratios of determinants having terms derived from the difference
equation corresponding to the Toeplitz system. However, we use a different notation
that is more appropriate for use with a RHS vector that has a single nonzero term.

The forward substitution process cannot capture (19.18), i.e., the exponential
decay component of the solution. However, the exponential growth behavior
exhibited in the solution vector is in agreement with (19.17) for k � m, indicating
that it is an exact solution. As a result, we can conclude that the exponential
behavior is not due to numerical stability issues, but is a consequence of the forward
substitution approach.
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Fig. 19.1 Analytical solution of the Œ1;�3; 1� Toeplitz system (normalized to 1)
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The analytical solution suggests a modification to the numerical approach: for-
ward and backward substitution. Here the forward substitution process is executed
for 1 � k � m � 1 and the backward substitution process assumes that xn D 1 and
then is executed for mC1 � k � n. The exponential growth behavior exhibited in the
forward substitution process becomes exponential decay behavior when backward
substitution is performed, so that the problem resolves itself.

Implementing this involves splitting the system and performing a forward
substitution from k D Œ1;m� and a backward substitution from k D Œm; n�, where m
is the split point. The forward substitution and backward substitution operations can
be performed in parallel.

Although this approach will work for any tridiagonal system, it can only
accommodate one nonzero RHS term for each solution vector when exponential
growth is present. Solving a system with an arbitrary RHS vector would require
breaking it up into r RHS vectors (each having one nonzero term), solving them in
parallel (ideally with r processors), and then obtaining the solution by superposition.

We can adapt the approach developed by Jandron et al. [8] to decompose (19.1)
into two sub-systems at k D m for arbitrary k. We require ck ¤ 0 8 k 2 Œ1;m � 1�

and ak ¤ 0 8 k 2 Œm C 1; n� and decompose the problem as follows:

A.1/


v.1/

˛.1/

�
D 0; (19.19)

A.2/


˛.2/

v.2/

�
D 0: (19.20)

where v.1/ D Œv
.1/
1 ; v

.1/
2 ; : : : ; v

.1/
m�1�T 2 R

m�1, v.2/ D Œv
.2/
mC1; v

.2/
mC2; : : : ; v

.2/
n �T 2

Rn�m, ˛.1/; ˛.2/ 2 R, and

A.1/ D

2

66
6
6
6
6
6
4

b1 c1 0 � � � 0 0

a2 b2 c2
: : :

:::
:::

0 a3 b3
: : : 0 0

:::
: : :

: : :
: : : cm�2 0

0 � � � 0 am�1 bm�1 cm�1

3

77
7
7
7
7
7
5

2 R
.m�1/�m; (19.21)

and

A.2/ D

2

6
6
66
6
6
6
4

amC1 bmC1 cmC1 0 � � � 0

0 amC2 bmC2 cmC2
: : :

:::

0 0 amC3 bmC3
: : : 0

0
:::

: : :
: : :

: : : cn�1
0 0 � � � 0 an bn

3

7
7
77
7
7
7
5

2 R
.n�m/�.n�mC1/: (19.22)



438 A.A. Ruffa et al.

We assume that v.1/1 D 1 and v.2/n D 1 and solve for v.1/ D Œv
.1/
1 ; v

.1/
2 ; � � � ; v.1/m�1�T

and v.2/ D Œv
.2/
mC1; v

.2/
mC2; : : : ; v

.2/
n �T using forward and backward substitution,

respectively. For continuity, we normalize Œv.1/; ˛.1/�T and Œ˛.2/; v.2/�T to ensure
˛.1/ D ˛.2/ D 1. The solution is

x D

2

6
66
6
6
4

v.1/

˛.1/
� dm

˛3
dm

˛3
v.2/

˛.2/
� dm

˛3

3

7
77
7
7
5
; (19.23)

where ˛3 D am � v
.1/
m�1
˛.1/

C bm C cm � v
.2/
mC1
˛.2/

.

19.3 Pentadiagonal Systems

Extending the algorithm to pentadiagonal systems is straightforward when expo-
nential behavior is not present [8]. Pentadiagonal systems exhibiting exponential
behavior will require additional modifications to the algorithm.

19.3.1 Pentadiagonal Systems Exhibiting Non-exponential
Behavior

Consider the pentadiagonal linear system

Ax D f ; (19.24)

where A 2 Rn�n is a general nonsingular pentadiagonal system, x; f 2 Rn, and

A D

2

6
66
6
6
6
66
6
6
4

c1 d1 e1 0 � � � 0

b2 c2 d2 e2
: : :

:::

a3 b3 c3 d3
: : : 0

0 a4 b4
: : :

: : : en�2
:::
: : :
: : :
: : : cn�1 dn�1

0 � � � 0 an bn cn

3

7
77
7
7
7
77
7
7
5

; (19.25)
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where ek ¤ 0. Following [8], we add two unknowns, ˛1; ˛2 2 R, to x, i.e.,


A Nen�1 Nen

�
2

4
x
˛1

˛2

3

5 D f C ˛1 Nen�1 C ˛2 Nen; (19.26)

where Nen�1; Nen 2 Rn represent the n�1 and n basis vectors, respectively. We then
decompose (19.26) into three linear independent sub-systems, i.e.,


A Nen�1 Nen

�

2

6
4
v.1/

˛
.1/
1

˛
.1/
2

3

7
5 D f ; (19.27)


A Nen�1 Nen

�

2

6
4
v.2/

˛
.2/
1

˛
.2/
2

3

7
5 D Nen�1;


A Nen�1 Nen

�

2

6
4
v.3/

˛
.3/
1

˛
.3/
2

3

7
5 D Nen:

where v.1/ D Œv
.1/
1 ; v

.1/
2 ; : : : ; v

.1/
n �T 2 Rn, v.2/ D Œv

.2/
1 ; v

.2/
2 ; : : : ; v

.2/
n �T 2 Rn, and

v.3/ D Œv
.3/
1 ; v

.3/
2 ; : : : ; v

.3/
n �T 2 Rn, and all ˛ terms 2 R. Superposition leads to
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5 D
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4
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1
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1
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7
5C˛2

2

6
4
v.3/

˛
.3/
1

˛
.3/
2

3

7
5 : (19.28)

Note that the last two equations in (19.28) support the determination of ˛1 and
˛2, leading to the solution to (19.24).

19.3.2 Pentadiagonal Systems Exhibiting Exponential
Behavior

Pentadiagonal systems can also exhibit exponential growth behavior. However,
splitting the system and performing forward substitution from k D Œ1;m� and
backward substitution from k D Œm; n� will lead to solution vectors but will not
satisfy three of the equations, i.e., those corresponding to m�1 � k � mC1.
These equations can be satisfied by allowing the associated RHS terms to remain
unconstrained; however, some means must then be developed to remove two of the
three RHS terms in order to make the approach general.
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To illustrate such an approach, we will focus on a pentadiagonal system
that exhibits exponential behavior, specifically, a system resulting from a finite
difference analysis of the beam vibration problem. This system has two roots that
lead to exponential behavior and two that lead to oscillatory behavior. As a result,
the forward/backward substitution approach developed for tridiagonal systems will
emphasize the exponential behavior at the expense of the oscillatory behavior,
preventing it from being applicable to general pentadiagonal systems. In addition to
the problem of the three unconstrained RHS terms, this is the primary complication
that can arise when extending the approach from tridiagonal to pentadiagonal
systems, so methods that successfully address these complications will be valid for
general pentadiagonal systems.

The beam vibration problem is governed by the Euler–Bernoulli equation, i.e.,

EI
@4Y

@s4
C�	@

2Y

@t2
D W: (19.29)

In this example, E D 2�1011 GPa is the Young’s modulus, I is the moment of
inertia, � D 8000 kg/m2 is the density, 	 is the cross-sectional area, W is the applied
load, s and t are the independent spatial and temporal coordinates, respectively, and
Y is the transverse displacement. A harmonic time dependence is assumed, i.e.,
Y.s; t/ D Y.s/ei!t, and a finite difference approximation is used, i.e.,

d4Y

ds4

 xn�2�4xn�1C6xn�4xnC1CxnC2

�s4
: (19.30)

This leads to

xn�2�4xn�1C6xn�4xnC1CxnC2
�s4

�!
2�	

EI
xn D 0: (19.31)

The beam is pinned on both ends, leading to the following boundary conditions:

x0 D 0I (19.32)

d2x0
ds2


 2x0�5x1C4x2�x3
�s2

D 0I (19.33)

xnC1 D 0I (19.34)

d2xnC1
ds2


 2xnC1�5xnC4xn�1�xn�2
�s2

D 0: (19.35)

Consider a square beam with a length of 0:1m on each side (with �s D
0:0301m) and vibrating at 100Hz. The finite difference discretization length is
�=100 (where � is the wavelength), and n D 3901, so the beam effectively contains
39 wavelengths. The RHS vector is zero except for the term fm, where m D 1951

(i.e., at the center of the beam).
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Equations (19.31)–(19.35) the boundary conditions are also part of the system
represents a pentadiagonal Toeplitz system (except for the first and last equations)
with a row structure of [1, �4, 6C
 , �4, 1], where 
 D �!2�	�s4=.EI/.
An analytical solution can be developed by finding the roots of the characteristic
polynomial, leading to

xk D C1e
�kCC2e

��kCC3cos.�k/CC4sin.�k/; (19.36)

where � D 0:0628 based on the parameters given. Denoting (19.31)–(19.35) as
Ax D f , the coefficient matrix A 2 Rn�n is

2
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6
66
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66
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6
6
66
6
6
6
6
66
6
6
6
4

�5 4 �1 0 � � � � � � � � � � � � � � � 0

�4 .6C
/ �4 1 0
: : :

: : :
: : :

: : :
:::

1 �4 .6C
/ �4 1 0
: : :

: : :
: : :

:::

0 1 �4 .6C
/ �4 1 0
: : :

: : :
:::

::: 0 1 �4 .6C
/�4 1 0
: : :

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

: : :
: : :

: : : 1 �4 .6C
/ �4 1 0
:::

: : :
: : :

: : : 0 1 �4 .6C
/ �4 1
:::

: : :
: : :

: : :
: : : 0 1 �4 .6C
/�4

0 � � � � � � � � � � � � � � � 0 �1 4 �5

3

7
7
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7
7
7
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7
7
7
77
7
7
7
7
77
7
7
7
5

: (19.37)

The forward and backward substitution approach applied to the pentadiagonal
beam problem leads to the result shown in Fig. 19.2. The first two terms in (19.36)
dominate the solution for large systems. The three remaining equations are as
follows:

x1948�4x1949C.6C
/x1950�4x1951Cx1952 D f1950I (19.38)

x1949�4x1950C.6C
/x1951�4x1952Cx1953 D f1951I (19.39)

x1950�4x1951C.6C
/x1952�4x1953Cx1954 D f1952: (19.40)

Equations (19.38)–(19.40) lead to f1951 D 0:2510 and f1950 D f1952 D �0:1257
(Fig. 19.3). The error is O.10�15/. However, an approach is needed to remove f1950
and f1952.

One such approach involves the use of adjacent solutions that have overlapping
RHS terms. For example, consider two additional solutions, centered at m D 1950

and m D 1952 (these can be computed in parallel).
These solutions can be appropriately superimposed to obtain a new solution with

f1950 D f1952 D 0 by taking advantage of the overlapping RHS terms. This leaves
f1949, f1951, and f1953 as the only nonzero RHS terms. This strategy can be repeated,
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Fig. 19.2 Initial forward/backward substitution solution to the beam vibration problem. Note that
the exponential behavior dominates and the oscillatory behavior is not evident

each time with three solutions, appropriately centered, and with the same spacing as
the central solution, so that two RHS terms on either side overlap with those of the
central solution. This would in effect double the separation between the central RHS
term and that on each side for each iteration. The idea is to progressively move the
extra RHS terms towards m D 1 and m D n, finally removing them. For example,
the RHS terms for tenth iteration (Fig. 19.4) have a spacing of 1024 terms, and the
solution (Fig. 19.5) is dominated by the oscillatory component. This was unexpected
because the solution in Fig. 19.5 is the sum of evanescent responses (Fig. 19.2), just
centered at different values of m.

The procedure to remove the RHS terms as they approach m D 1 and m D n is
doable but tedious, but fortunately there is a better way. The approach to subtract out
the unwanted RHS terms can be generalized by computing n solutions in parallel
(one centered at each value of m) and then performing a weighted sum so that
all of the RHS terms sum to zero except for f1951. There are three RHS terms for
each individual solution (two for the solutions centered at m D 1 and m D n),
so this leads to a tridiagonal system to compute the weights. The weights have an
oscillatory nature (Fig. 19.6) resembling the solution itself.
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Fig. 19.3 The three source terms generated by the initial forward/back substitution solution
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Fig. 19.4 RHS terms after the tenth iteration
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Fig. 19.5 Solution after the tenth iteration
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Fig. 19.6 Weights to obtain the required RHS vector for the beam vibration problem
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Specifically, we compute OAw D f , where w D Œw1;w2; : : : ;wn�
T 2 Rn and

OA D

2

6
6
66
6
6
6
66
6
6
6
6
66
6
6
6
66
6
6
6
4

f .1/1 f .2/1 0 0 � � � � � � � � � � � � � � � 0

f .1/2 f .2/2 f .3/2 0 0
: : :

: : :
: : :

: : :
:::

0 f .2/3 f .3/3 f .4/3 0 0
: : :

: : :
: : :

:::

0 0 f .3/4 f .4/4 f .5/4 0 0
: : :

: : :
:::

::: 0 0 f .4/5 f .5/5 f .6/5 0 0
: : :

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::
: : :

: : :
: : : 0 f .n�4/

n�3 f .n�3/
n�3 f .n�2/

n�3 0 0
:::
: : :

: : :
: : : 0 0 f .n�3/

n�2 f .n�2/
n�2 f .n�1/

n�2 0
:::
: : :

: : :
: : :

: : : 0 0 f .n�2/
n�1 f .n�1/

n�1 f .n/n�1
0 � � � � � � � � � � � � � � � 0 0 f .n�1/

n f .n/n
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2 R
n�n: (19.41)

where the f .m/ terms represent the unconstrained RHS terms resulting from solving
the problem via forward and backward substitution processes that meet at k D m.
The solution to this system leads to the weights w that support a superposition
process leading to any specified RHS vector f and the associated solution x, i.e.,

fk D
nX

mD1
wmf .m/k ; (19.42)

xk D
nX

mD1
wmx.m/k : (19.43)

19.3.2.1 Modular Solution

We can also create a solution so that xk ¤ 0 for a limited range of values of k, and
xk D 0 otherwise. For example, introducing fictitious RHS terms at k D 1751 and
k D 2151 in the beam vibration example can lead to xk ¤ 0 for 1753 � k � 2149,
and xk D 0 for all other values of k. Methods can then be developed to remove the
introduced RHS terms to solve the original posed problem. Consider the following
equation:

x1749�4x1750C.6C
/x1751�4x1752Cx1753 D f1751: (19.44)

Introducing f1751 allows us to set xk D 0 for k < 1753 by setting x1753 D f1751. We
can then continue with the forward substitution process with �4x1753Cx1754 D 0;
.6C
/x1753�4x1754Cx1755 D 0; �4x1753C.6C
/x1754�4x1755Cx1756 D 0, etc.
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Likewise, we can set x2149 D f2151, and by extension, set xk D 0 for k > 2149

using the following equation:

x2149�4x2150C.6C
/x2151�4x2152Cx2153 D f2151: (19.45)

In the same way, we can perform the backward substitution process with x2148�
4x2149 D 0; x2147�4x2148C.6C
/x2149 D 0; x2146�4x2147C.6C
/x2148�4x2149 D
0, etc.

Within the “module,” forward substitution is then performed for 1753 � k �
1951 and backward substitution is performed for 1951 � k � 2149. These two
solutions are then matched at k D m D 1951, which requires two independent
solutions for both 1753 � k � m and m � k � 2149. For the second solution, we
can use the evanescent solution shown in Fig. 19.2.

A set of four equations can then be developed to match the forward and backward
solutions with four unknowns, i.e., �1, �2, �1, and �2, which govern the contributions
of the forward and backward solution vectors uf , vf , and ub and vb. The equations
are as follows:

�1u
f
1951C�2vf

1951 D �1u
b
1951C�2vb

1951I (19.46)

�1u
f
1948C�2vf

1948�4.�1uf
1949C�2vf

1949/C.6C
/.�1uf
1950C�2vf

1950/

�4.�1ub
1951C�2vb

1951/C�1ub
1952C�2vb

1952 D 0I
(19.47)

�1u
f
1949C�2vf

1949�4.�1uf
1950C�2vf

1950/C.6C
/.�1uf
1951C�2vf

1951/

�4.�1ub
1952C�2vb

1952/C�1ub
1953C�2vb

1953 D f1951I
(19.48)

�1u
f
1950C�2vf

1950�4.�1uf
1951C�2vf

1951/C.6C
/.�1ub
1952C�2vb

1952/

�4.�1ub
1953C�2vb

1953/C�1ub
1954C�2vb

1953 D 0:
(19.49)

This leads to the solution (Fig. 19.7) and the associated source terms (Fig. 19.8).
The error is O.10�12/. We can thus perform the solution in sections (or “modules”)
in parallel and assemble them to obtain the overall solution. We can make each
module sufficiently small to prevent the exponential behavior from dominating the
solution. Finally, we can develop a system of equations to solve for the weights for
each solution to remove the introduced RHS terms, similar to the procedure in the
last section. The size of this system to determine the weights will be smaller than
the original problem size by a factor equal to the module length.

19.3.3 Active Vibration Suppression

The modular solution leads to a novel approach for active vibration suppression.
The introduced RHS terms in the modular solution (Fig. 19.8) can be interpreted
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Fig. 19.7 Solution confined to 1751 � k � 2151 for the beam vibration problem

0 500 1000 1500 2000 2500 3000 3500 4000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In
tr

od
uc

ed
 R

H
S

 te
rm

s

Node number

Fig. 19.8 Source terms for the confined solution

as applied harmonic forces that can confine the vibrational energy to a region of
an arbitrary size (Fig. 19.7). Figure 19.9 shows the solution without the introduced
RHS terms. Since the RHS source terms can be introduced anywhere in the system,
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Fig. 19.9 Solution without the introduced RHS terms f1751 and f2151

it follows that vibrational energy can be confined to any region on the beam. Outside
of the applied forces, the oscillatory vibrational energy is exactly zero; only the
evanescent energy remains.

In practice, sensors on the beam (e.g., accelerometers) can detect a single noise
source (or multiple noise sources) that will be confined. Based on the input data for
these noise sources, a model of the beam is run with RHS terms simulating those
noise sources. Other sources that surround the noise sources are then introduced
on the beam. The model will determine the magnitude and phase of the introduced
sources that will isolate the remainder of the beam from the noise sources. Finally,
actuators mounted on the beam at the locations corresponding to those in the model
can be driven to the prescribed levels to cancel the noise.

In this example the noise sources all had the same phase, so all of the RHS terms
were real. This will not be true in general, which will mean that the introduced
RHS terms will be complex, meaning that each will have a computed amplitude and
phase.

Note that each set of noise sources can be isolated individually or all of them
can be isolated with just two introduced sources, as long as the vibrations are linear
(so that superposition holds). Although just using two introduced sources is simpler,
multiple sets of introduced sources may lead to better results when the noise sources
that need to be suppressed are distributed over most of the beam.
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19.4 Periodic Systems

Periodic systems are often employed as an idealized model for some physics-based
systems, e.g., for wave propagation problems. For example, a one-dimensional
Helmholtz problem with periodic boundary conditions is governed by the following
equations:

d2P

ds2
C2P D 0; (19.50)

P.L/ D P.0/eiLI dP.L/

ds
D dP.0/

ds
eiL: (19.51)

This will lead to a tridiagonal system with off-diagonal terms as follows:

2

6
6
6
6
6
66
6
6
6
66
6
6
6
66
6
6
6
6
66
4

eiL 0 0 0 � � � � � � � � � � � � 0 �1
eiL �eiL 0 0 0

: : :
: : :

: : : �s ��s

1 .�2Cı/ 1 0 0 0
: : :

: : :
: : :

:::

0 1 .�2Cı/ 1 0 0 0
: : :

: : :
:::

::: 0 1 .�2Cı/ 1 0 0 0
: : :

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

: : :
: : :

: : : 1 .�2Cı/ 1 0 0 0
:::

: : :
: : :

: : : 0 1 .�2Cı/ 1 0 0
:::

: : :
: : :

: : :
: : : 0 1 .�2Cı/ 1 0

0 � � � � � � � � � � � � � � � 0 �1 .�2Cı/ 1
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7
7
7
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:

(19.52)

Here ı D 2�s2 (where  is the wavenumber), �s is the finite difference
discretization length along the s coordinate, and L is the length of the problem
domain. We can solve this system by assuming x1 D x2 D 1, which leads to the
determination of xn�1 and xn. We can then find the remaining unknowns via forward
substitution, leaving the last two equations unsatisfied. Adding two unknowns in the
same way that they are added in pentadiagonal systems allows these equations to be
satisfied. So even though the diagonals have spacings of n�1 and n�2 from the
three central diagonals, the procedure is similar to that for pentadiagonal systems.
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19.5 Banded Systems

Jandron et al. [8] extended the algorithm to general banded systems. For systems
that do not exhibit exponential behavior, the optimal computational expense scales
with 2npC2nqCnC2q3C4q2, where p is the lower bandwidth and q is the
upper bandwidth when solved using q processors and where vectorization can
be completed across n processors to have a negligible expense [8]. In contrast,
sequential LU decomposition requires 2npqC2npC2nq calculations when n � 1.
When p D q, the speedup scales with [8]

n�.2q2C4q/

n�.4qC1/C2q3C4q2
: (19.53)

Figure 19.10 shows the speedup for different cases of processor availability. The
optimal case, i.e., qjn-proc, refers to q-processors for the q asynchronous forward
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Fig. 19.10 Expected speedup (X) relative to sequential banded LU decomposition from [8].
(a) and (c) use optimal q-processors for the asynchronous forward substitution calls with n and
1 processor used, respectively, for the final vectorized superposition. Note that in (c) the limit as
q ! n is X ! 1 where the q�q system dominates the expense. (b) and (d) use non-optimal cases
of 1 and 8 processors which could represent solver performance on a standard workstation
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Table 19.1 Theoretical
optimal speedups over
sequential banded LU
decomposition from [8]

n q q=n .%/ Speedup

1 �101 3 30 1.364

1 �102 13 13 3.764

1 �103 43 4:3 11.40

1 �104 140 1:4 35.58

1 �105 446 0:446 112.0

1 �106 1413 0:1413 353.8

1 �107 4470 0:0447 1118

1 �108 14,140 0:0141 3536

1 �109 44,720 0:0045 11,180

Fig. 19.11 The structure of
the nonzero terms of the
upper portion of the
coefficient matrix resulting
from a finite element analysis
of the beam vibration
problem
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substitution steps and n-processors for the final vectorized superposition. The qj1-
proc refers to the same except only one processor is used for the superposition step.

Table 19.1 shows the theoretical optimal speedups when p D q. In particular,
a system with n D 1�109 and q D p D 44;720 (i.e., a bandwidth of 89,441)
shows a speedup of 11,180 times over the sequential banded LU decomposition
algorithm. This assumes that the algorithm can asynchronously execute 44,720
threads with negligible latency. However, we do not yet have speedup results for
systems exhibiting exponential behavior.

19.6 Block Banded Systems

Finite element approaches typically lead to block banded systems. Figure 19.11
shows the structure of the nonzero terms in the upper portion of the coeffi-
cient matrix for the beam vibration problem resulting from a finite element mesh.
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Fig. 19.12 The structure of
the nonzero terms of the
lower portion of the
coefficient matrix resulting
from a finite element analysis
of the beam vibration
problem
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The forward substitution process can be performed on this problem, as it does not
exhibit exponential growth behavior (this is a surprise: the finite difference version
leads to significant exponential growth behavior). We assume v.1/1 D v

.1/
2 D 1 and

otherwise follow the procedure outlined for tridiagonal or pentadiagonal systems,
except that a series of 2�2 systems are solved to obtain the terms in the solution
vector.

Figure 19.12 shows the lower portion of the coefficient matrix. After completing
the forward substitution process by solving 2�2 systems, there is one remaining
equation to compute xn, with two equations not satisfied. We can add two column
vectors just as in the pentadiagonal problem, or add unknowns that will lead to a
2�2 matrix (Table 19.2).

19.7 Towards a p-adic Parallel Linear Solver

The purpose of this section is to provide an introduction to the theory of p-adic
matrix computation and related parallel p-adic algorithms in the form of a survey
of existing methods and their evolution. The ultimate goal is to fully develop an
exact p-adic parallel solver for very large banded linear systems, bypassing, in the
process, the so-called Bellman’s (1961) Curse of Dimensionality [18].

The idea is to use p-adic arithmetic which operates over the field of rational
numbers, to perform exact computations. The p-adic representation of these rational
numbers is given by the so-called Hensel Codes [19–23]. The section is self-
contained in terms of notations. That is, for the sake of completeness and clarity,
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Table 19.2 Nomenclature for Sects. 19.1–19.6

Symbol Usage

A Coefficient matrix
OA Coefficient matrix used to compute weights
QA Augmented matrix

A.1/ Upper part of the tridiagonal coefficient matrix

A.2/ Lower part of the tridiagonal coefficient matrix

ai Diagonal term

˛ Added unknown

˛.1/ Added unknown

˛.2/ Added unknown

˛.3/ Added unknown

˛1 Scale factor

˛2 Scale factor

˛3 Scale factor
Qb RHS vector

bi Diagonal term

B Coefficient matrix

ci Diagonal term

C1 Arbitrary constant

C2 Arbitrary constant

C3 Arbitrary constant

C4 Arbitrary constant

	 Cross-sectional area

d Tridiagonal RHS vector

di Diagonal term

ı 2�s2

ei Diagonal term

Ne Added column vector

Qe Added column vector

E Young’s modulus

�1 Unknown governing the contribution of ub

�2 Unknown governing the contribution of vb

f Pentadiagonal RHS vector


 �!2�	�s4=.EI/

k Index associated with the forward/backward substitution process

 Wavenumber

� Wavelength

h Discretization length

i
p�1

I Moment of inertia

L Periodic length

m Index of the single nonzero RHS term

(continued)



454 A.A. Ruffa et al.

Table 19.2 (continued)

Symbol Usage

n Number of unknowns

˚ Continuous dependent variable

! Angular frequency

P Continuous dependent variable in Helmholtz equation

p Number of subdiagonals

q Number of superdiagonals

r Number or nonzero RHS terms

� Density

s Continuous independent spatial variable

� Roots of the characteristic polynomial

t Continuous independent temporal variable

u Solution vector

uf Forward solution vector

ub Backward solution vector

v Solution vector

vf Forward solution vector

vb Backward solution vector

v.1/ Solution vector

v.2/ Solution vector

v.3/ Solution vector

W Applied load

w Weights used for superposition

x Solution vector

X Expected speedup

y Solution vector

Y Transverse displacement in the beam vibration problem

�1 Unknown governing the contribution of uf

�2 Unknown governing the contribution of vf

z Continuous independent variable

� Roots of the characteristic polynomial

most of the nomenclature is specific to the topic, and not carrying any additional
meaning from previous sections.

19.7.1 p-adic Numbers

p-adic numbers, ultrametric spaces, non-Archimedean numbers, and isosceles
spaces all express the same idea [20, 24]. Kurt Hensel, who initiated the p-adic
analysis in 1898, considered number as analytic functions on some affine scheme
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Spec.Z/ whose points are the prime ideals pZ; for p D 0 or p a prime, acting as
a “local coordinate,” so that a number n is “locally” represented as a unique power
series expansion

Z 3 n D
1X

kD0
nkpk (19.54)

finite for natural numbers, and with coefficients nk 2 f0; 1; 2; : : : ; p�1g: The length
of the common initial sequence defined the p-adic metric, i.e.,

jn�mjp D p�d; (19.55)

when m D n0C� � �Cnd�1pd�1Cmdpd C� � � and md ¤ nd: Such a metric is an
ultrametric in the sense it satisfies the strong inequality

jxCyjp � max.jxjp; jyjp/ (19.56)

with equality for jxjp ¤ jyjp: That is, all triangles are isosceles under such a metric.
Equivalently, the underlying valuation is given by

j0jp D 0I jnjp D p�k (19.57)

from the factorization n D n0pk with n0 and p relatively prime. And for a rational
number in the normalized form r D a

b pk; b ¤ 0 with gcd.a; b/ D 1 D gcd.a; p/ D
gcd.b; p/;we have jrjp D p�k: This actually defined the p-adic norm on Q; with the
associated metric �.x; y/ D jx�yjp:

Moreover the allowed infinite expansion leads to completion with respect to the
ultrametric with the completed space denoted Zp; the space of p-adic integers with
the usual integers set Z as a dense subset, and with no zero divisors, p being prime.
The field of fractions which contains densely the usual set Q of rational numbers is
denoted Qp the space of p-adic numbers described as

Qp D fr D
1X

kD�N

rkpkj rk 2 f0; 1; : : : ; p�1gg (19.58)

with Zp D fx 2 QpI jxjp � 1g the compact p-adic unit disk. Qp is locally com-
pact, totally disconnected, allowing calculus to be performed but no “reasonable”
analyticity is expected. The real numbers line gives a natural geometric ordering
for the usual Euclidean metric, whereas a hierarchical tree offers a natural ordering
in the ultrametric case. The completion of the algebraic closure Qa

p of Qp is the
space Cp of p-adic complex numbers, also totally disconnected, and not even locally
compact, and its unit disk and projective line are not compact. The value groups
are, respectively, jQ�

p j D pZ and jC�
p j D pQ: A p-adic number x 2 Qa

p is said
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to be ramified if jxjp … pZ; and unramified otherwise. Notably the above properties
suggest that any “reasonable” analytic work is better done in some larger space such
as Berkovich spaces; see [25, 26].

Given an infinite p-adic expansion of x D x0C� � �Cxn�1pn�1Chigher order
terms, or written as

x D x0C� � �Cxn�1pn�1CO.pn/;

its p-adic approximation is given by Nx D x0C� � �Cxn�1pn�1; i.e., x � Nx mod pn:

Indeed we have

jx�Nxj � p�n

ensuring convergence. n is the order or absolute precision of Nx: The relative
precision is given by n�minfi 2 Z; ai ¤ 0g: The p-adic precision arithmetic goes
as follows:

1. .aCO.pk1//C.bCO.pk1// D aCbCO.pmin.k1;k2//. That is, p-adic errors do not
add, a great advantage over real precision with roundoff errors accumulating.

2. .aCO.pk1//�.bCO.pk1// D a�bCO.pmin.k1Cvp.b/;k2Cvp.a///; where vp.:/ indi-
cates the corresponding p-adic valuation. That is, vp.x/ WD maxfr 2 Z W prjxg:

Note also that Qp carries a measure, the Haar measure dx; normalized to give a
volume of 1 to the unit disk Zp:

p-adic matrix computation involves the so-called Hensel codes as defined by
Krishnamurty, originated from the following Hensel Lemma: [21, 22, 27, 28].

Lemma 1 (Basic Hensel’s Lifting Lemma). Let f .x/ 2 ZpŒx� be an n-tuple
polynomial in the variables x D .x1; : : : ; xn/ with coefficients in Zp: Let a 2 Zn

p

such that .1/ f .a/ � 0 mod p and .2/ det. @f
@x .a// 6� 0 mod p: (Invertible Jacobian)

Then there exists a unique root b of f “near a,” i.e., f .b/ D 0 and b � a mod p:

Note the similarity with Newton’s Method in Real Analysis.

Example 1. Take f .x/ D x2�7 and p D 3: We get f .1/ D �6 � 0 mod 3, and
f 0.1/ D 2 6� 0 mod 3. So, by Hensel Lemma, there exists a unique 3-adic integer n
such that n2�7 D 0; and n � 1mod 3. There are many approximations to n such as

n �1C3 mod 32

�1C3C32 mod 33

�1C3C32C2:34 mod 35

(19.59)

That is, a root 1 of f .x/ mod 3 is lifted to a root in Z3:

Note, however, that not all solutions modulo p lift to p-adic solutions, For
instance, the equation x2�5 converts to x2C1 D 0 modulo 2; and this has the
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solution x D 1 modulo 2: But due to the fact that any 2-adic unit (i.e., u � 1 mod 2)
is a square iff u � 1 mod 8, (see [29, 30]), the equation has no solution in Z2:

19.7.1.1 Some Examples

1. 199 D 1244 in 5-ary (base 5) but 199 D 0:4421 in 5-adic.
2. For p D 5; we have

(a) 13:41 D 1�5�2C3�5�1C4�50C1�51 D 241
25

(b) 0:1341 D 1�50C3�51C4�52C1�53 D 241

(c) 0:01341 D 0�50C1�51C3�52C4�53C1�54 D 1205

3. x D P1
0 pn D 1

1�p D �1
p�1 : Consequently �1 D .p�1/P1

0 pn:

For instance, �1 D .3�1/P1
iD0 3i � � � 2222 in Z3:

4. For x D P1
iDn xipi; we have �x D P1

iDn yipi; where yn D p�xn; yi D .p�1/�
xi; for i > n:

For instance: 1
3

D 0:2313131 � � � and � 1
3

D 0:3131313 � � �

19.7.2 p-adic Solver Preliminary

Matrix computations include solving a linear system, finding the inverse or gen-
eralized inverse of a matrix, reducing a matrix to a specific canonical form (e.g.,
triangular), and determining the characteristic equation [19, 22, 31]. In the conven-
tional n-ary or floating-point arithmetic roundoff errors are allowed to accumulate
rending the results oftentimes totally unreliable. For rational matrices one could use
either of the so-called Rational or Residue Arithmetics. The former is very expensive
and laborious with the rational add/subtract and multiplication/division operations
with reduction to lowest form. (See Knuth.) In the latter, also called Modular
Arithmetic, a rational r D a

b with b ¤ 0; 0 � a; b � p�1; is uniquely written
as r D a�b�1 modulo p; and the multiplicative inverses in the Galois finite field
Fp D f0; 1; 2; : : : ; p�1g under the binary operations “addition and multiplication
modulo p.” Here computational complexity may increases proportionally to p,
e.g., multiplication complexity of order O.N2CN

2
/ for p with N binary digits (its

precision). Reduction of the complexity by using multiple prime moduli was
suggested; see Young and Gregory, Rao et al. in [21, 23, 28, 31].

For an integer linear system, using the Chinese Remainder Theorem (CRT) in
the modular approach allows to avoid the growth of the coefficients. Combining the
p-adic method with linear lifting allows to avoid both the growth of the coefficients
as well as the growth of the number of modules. It has been known that the p-adic
method initiated by Dixon in the 1980s is the best method both theoretically and
practically, in particular for large-scale systems, in part because the procedure
to reconstruct a quotient is more complicated than that of the numerator and
denominator separately.
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p-adic methods have been considered many times to obtain the exact rational
solution to a nonsingular system Ax D d of linear equations, mostly with integer
coefficients; see Krishnamurty et al, Dixon, Sjogren et al. For example, exact
rational solutions are sought out for systems so ill-conditioned that the usual
floating-point calculations are inadequate. Exact solutions could be obtained by
direct methods as well as by congruence techniques.

Gaussian elimination, as the premier direct method, combined with multiple-
precision arithmetic is often used to find exact solutions to a system of integer or
rational linear equations. However, generating truncation error is the major draw-
back of any algorithm based on the floating-point system, making computational
results for large systems unreliable and unacceptable.

It is therefore necessary to design an error-free rational computation. Over the
years residue and p-adic-based efficient sequential algorithms and software for
solving linear equations have been designed and implemented, along with, recently
related parallel algorithms for exact solution.

The fact that computing each modulus can be done separately makes multiple
moduli congruence and p-adic expansion algorithms more adequate for parallelism.
This step is completely parallel and no communication is required among the pro-
cessors. The single-radix or mixed-radix conversion algorithms, both parallelizable
to some degree, are then used to combine the solutions for each of the moduli.

A brief comparison of direct methods utilizing the multi-precision arithmetic
versus the p-adic methods is given in [28, 30, 32], where the execution times with
respect to the upper bound on the matrix entries are also analyzed.

19.7.3 Hensel Code Arithmetic

Consider the infinite p-adic expansion of a rational number

x D
1X

kD�m

xkpk

represented symbolically as

x D x�m : : : x�1�x0x1 : : : xn : : :

The p-adic approximation Nx is given by

Nx D
nX

kD�m

xkpk D x�m : : : x�1�x0x1 : : : xn

This finite sequence defines the so-called Hensel code of x denoted H.p; r; x/ where
r D mCnC1 is the number of digits with the radix point as in the expansion. In the
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mantissa-exponent form, we write H.p; r; x/ D .mx; ex/: Using the rational x in the
form

x D a

b
D c

d
pm; gcd.c; d/ D 1 D gcd.c; p/ D gcd.d; p/;

mx WD mantissa D cd�1 mod pr and ex WD exponent D �m:
For example, take x D 7

15
; that is, x D 7�3�1�5�1: For p D 5; r D 4; H.5; 4; x/

is obtained as follows, modulo 54 D 625

mx D7�3�1

D7�417 .417 D 3�1 mod 625/

D419 D 0:4313

ex D�1

Importantly we have: let N D b
q

pr�1
2

c: Then every rational number x D a
b ; b ¤ 0

such that 0 � jaj; b � N has a unique Hensel code H.p; r; x/: The Hensel codes are
closed with respect to the basic arithmetic operations (add/subtract/multiply/divide)
within the range condition. See more details in Krishnamurty, including the basic
arithmetic operations. The following conversion process codes any rational number
x D a

b D c
d pm into an infinite expansion; see Sjogren et al. in [32]

Conversion Process
Step 1: x mod p D x0
Step 2: x D .x�1/=p; go to Step 1 to get x1
Continue Step 1 and Step 2 to get xi

Finally, x D pn
P1

iD0 xipi D P1
iDn xi�npi:

19.7.4 Single Modulus: Dixon’s Algorithm
and Its Parallelization

Given a linear system

Ax D d (19.60)

with an integer matrix A 2 Zn�n nonsingular modulo p prime, an integer vector d 2
Zn�1; computation of the exact rational solution x 2 Qn�1 using Dixon’s Algorithm
consists in three main steps: see [23, 27, 33, 34].

1. Inversion Step : Compute the inverse of the matrix A modulo p.
2. Iteration Step: Obtain the solution Nx of ANx D b mod pm is by iteration.
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3. Euclidean Step: Recover the rational solution using the Extended Euclidean
Algorithm.

From the p-adic expansion x D P1
iD1; we write x D NxCO.pm/; where Nx D Pm�1

iD1 ;
and m the so-called absolute precision of x: Algorithmically these steps break down
as: (See [33].)

Dixon’s Algorithm (A; b; p;m)
Step 1 (Inversion): C D A�1 mod p ;
Step 2 (Iteration): b0 D b ;
for i D 1 to m
xi D Cbi mod p
biC1 D p�1.bi�Axi/
end
Nx D Pm�1

iD1 xipi

Step 3 (Euclidean): for j D 1 to n ;
u�1.j/ D pm; u0.j/ D Nx.j/
v�1.j/ D 0; v0.j/ D 1

while ui.j/ < pm=2

qi.j/ D bui�1.j/=ui.j/c
uiC1.j/ D ui�1.j/�qi.j/ui.j/
viC1.j/ D vi�1.j/Cqi.j/vi.j/
end
end
x.j/ D ..�1/�iui.j/=vi.j//I 1 � j � nI (Rational solution)

19.7.5 Parallel Chinese Algorithm

19.7.5.1 Chinese Remainder Theorem

Theorem 1. (CRT) Let r1; r2; : : : ; rs be a sequence of residues of an integer n with
respect to the moduli p1; p2; : : : ; ps where gdc.pi; pj/ D 1 for i ¤ j: Define p DQs

iD1 pi; and Qpi by p
pi

Qpi � 1 mod pi: Then n is given by

n �
sX

iD1

p

pi
Qpiri mod p

To wit we use the following example from Sjogren et al.:

n � 2 mod 3

n � 3 mod 4

n � 4 mod 5
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Then p D 60; and Qp1 D 2; Qp2 D 3; Qp3 D 3 leading to n � 59(mod 60). If jnj < 1
2
p

is desired, then n D �1:
One notes then that the CRT convert large integers into sequence of small

integers. An extended version, denoted E-CRT, as given in Kornerup et al. convert a
fractional number with large numerator and/or denominator into a sequence of small
integers as well [30, 32, 34].

19.7.5.2 Decoding Algorithm

We present an algorithm proposed in Sjogren et al. to decode from the E-CRT,
based also on Dixon’s work, in which the following is proved: For a rational a

b
with gcd.a; b/ D 1 and ı D max.a; b/: If ı � �

p
p; with �2C��1 D 0; that is,

� D 0:618 � � � the decoding algorithm below gets the rational back.
Decoding Algorithm
Step 1: Chinese remainder theorem
p D Qs

iD1 pi

For i D 1 to s
Using extended Euclidean Algorithm to find
Qp by p

pi
Qpi � 1 (mod pi:)

End
Nx D n � Ps

iD1
p
pi

Qpiri mod p
Step 2: Euclidean Algorithm
u1 D p; u0 D Nx
v1 D 0; v0 D 1

i D �1
While ui <

p
p

qi D bui�1=uic
uiC1 D ui�1�qiui

viC1 D vi�1Cqivi

i++
End
Rational solution
x D ..�1/iui=vi/

19.7.6 Multiple p-adic Arithmetic

The combination of the Extended Chinese Remainder Theorem (E-CRT) with p-
adic arithmetic results in an algorithm called the Multiple p-adic Algorithm (MPAA)
in Morrison [30].
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19.7.6.1 Application of the MPAA

Consider the rational matrix

A D
2

4
1 2
1
3
1
4

5 6

3

5

and compute the generalized inverse Ag of A on a 64-bit CPU architecture, with a
p-adic length r D 2: Choose a prime number set of the largest primes smaller thanp
264 to get

p1 D 2147483647I p2 D 2147483629I p3 D 2147483587:

Upon parallel calculation of each pi under p-adic arithmetic and decoding from the
E-CRT, we obtain

Ag D
"� 3

5
24
5
0

4
5

� 12
5
0

#

That is,

AAg D


1 0

0 1

�
:

Remark 1. Parallel computation is a natural medium to perform the Multiple p-adic
Arithmetic by the mere structure of the Extended Chinese Theorem.

To ensure overflow protection, it has been recommended to choose the prime
numbers pi such that pi � 46337 for a 32-bit CPU architecture and pi �
2147483647 on a 64-bit architecture [31–33].

19.8 Conclusion

We have introduced a solver for banded linear systems that involves adding a
number of unknowns p equal to the number of superdiagonals. This allows us to
compute solution vectors in parallel via a forward substitution process without any
communication between processors. For the ideal case (i.e., q D p processors), the
theoretical speedup can exceed a factor of 10;000 when n D 109 for well-behaved
systems. This represents the upper limit of performance. More realistic systems are
not always well-behaved, in the sense that they exhibit exponential growth behavior
as a result of the forward substitution process so that the magnitude of individual
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terms can reach 10300 for n D O.103/. This prevents the approach from working, but
there are several ways to address it, e.g., a forward/backward substitution approach
for tridiagonal systems, and a modular solution approach. We have also introduced
an approach based on p-adic analysis to be applied to Banded Linear Systems
with the goal to develop a related p-adic parallel solver with Matlab and/or SAGE
implementation, taking advantage of its potential for “Error-free Computation.”
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Chapter 20
Genetic Vulnerability and Crop Loss: The Case
for Research on Underutilized
and Alternative Crops

Laban K. Rutto, Vitalis W. Temu, and Myong-Sook Ansari

Abstract The confluence of global climate change and population growth has
brought to greater focus the question of how to satisfy future demand for food and
fiber necessary to sustain current standards of living. Inevitably, agriculture will
be called upon to do more at a time when established crops and cropping systems
must confront new environmental and socio-economic challenges. Current efforts to
preserve and characterize crop wild relatives and other genetic resources that could
help crops meet future biotic and abiotic challenges are a direct response to the
question. This chapter not only reiterates the importance of in situ and ex situ genetic
conservation, it draws attention to the urgent need for investment in research on
underutilized and alternative crops. The urgency relates directly to the fact that most
of these crops are found in global biodiversity hotspots that are currently undergoing
rapid environmental and socio-economic change.

Keywords Plant breeding and selection • Genetic vulnerability • Underutilized
species • Crop wild relatives

20.1 Introduction

The concentration of modern agriculture on a few high yielding and universally
accepted crops has resulted in two distinct phenomena:

(i) Hybrid crop varieties with narrow genetic bases relative to their wild relatives.
(ii) Declining food diversity among different cultures and communities as indige-

nous foods and practices are abandoned in favor of alternatives from (i) above.

Potential for worsening genetic vulnerability associated with a narrowing of
the genetic base of economically important crops has been acknowledged and
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gene banks in developed and middle income countries are working to broaden the
diversity of genetic material in their repositories. However, it is only recently that
the erosion of cultures and loss of indigenous knowledge have been recognized as
threats to genetic diversity and remedial measures proposed.

Globally, the conveniences of vertically integrated food systems are driving
consumers to neglect local foods, some of which were traditionally sourced from
the wild [1]. This chapter will address the question of genetic loss, and erosion of
indigenous food cultures as a preamble to making a case for investment in research
on underutilized and alternative crops.

20.2 Genetic Loss Through Selection and Breeding

The transition by the human race from hunter-gatherer to a sedentary lifestyle
marked the advent of managed crop production. These early beginnings of modern
agriculture were characterized by selection and domestication of wild plants with
desirable traits, e.g., precocity, high yield, compact growth, and other positive
attributes. Through repeated selection from this initial population of domesticated
species, early agriculturalists isolated the genetic pools that now represent crops of
economic importance. Table 20.1 summarizes the chronology of events marking this
process and the fate of plant genetic diversity thereafter [2].

Although the initial isolation of a few species through selection and domes-
tication may have resulted in the preservation of certain traits at the expense of
others, the most significant genetic loss can be traced to the pressures imposed on
plant genetic diversity by modern plant breeding. As demonstrated by Tanksley and
McCouch [3] in Fig. 20.1, domestication and breeding have served as bottlenecks
to genetic transfer that in the long term have resulted in a drastic narrowing of the
genetic base of most crops.

Modern plant breeding has contributed to genetic loss by selecting parental lines
from a small number of highly productive varieties to which a majority of improved

Fig. 20.1 Genetic bottlenecks imposed on crop plants during domestication and through modern
plant-breeding practices. Boxes represent allelic variations of genes originally found in the wild,
but gradually lost through domestication and breeding. Such lost alleles can be recovered only by
going back to the wild ancestors of our crop species (Source: Tanksley and McCough, 1997)
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lines among cultivated crops can be traced. This narrowing of the genetic base
has rendered most crops vulnerable to biotic and abiotic pressures and jeopardized
the potential for future genetic improvement of economically important crops. A
number of studies on the extent of genetic loss in crops of economic importance
have been carried out with varying results. For example, Fu and Somers [4] link
widespread allelic gene reduction in Canadian hard spring wheat starting from the
1930s to pressures exerted by modern plant breeding, while Duvick [5] noting an
improvement in the genetic base of field crops in the USA in 1981 relative to 1970
concluded at the time that genetic vulnerability was not a major threat to US field
crops.

In the case of soybean, it has been found that although the genetic bottlenecks
imposed by breeding and selection have negatively impacted the genetic base, the
most significant reduction in genetic diversity occurred at domestication when the
low sequence diversity present in wild species was halved and 81 % of rare alleles
lost [6]. Jordan et al. [7] report that selection for resistance to sorghum midge
(Stenodiplosis sorghicola) in Australia had been achieved at the expense of diversity,
a situation that may lead to genetic vulnerability, and in future, impact the rate of
progress in breeding for yield. It is for the same reasons that Hammons [8] has
proposed breeding strategies for widening the genetic base and increasing genotypic
diversity of economically dominant peanut (Arachis hypogea) cultivars in the USA.

As a general theme, the various studies emphasize the dangers of genetic loss
and identify mechanized monoculture as a major contributor to genetic erosion.
In a review of the Indian green revolution, Safeeulla [9] associates the shift from
traditional crops and age-old practices to high yielding varieties with increased
vulnerability and potential for future crop epidemics. Jacques and Jacques [10] echo
the same concerns about the dangers of mechanized monoculture both from the
perspective of genetic loss and in terms of its contribution to the erosion of social
and cultural diversity.

20.3 Genetic Loss Through Crop Loss

Most of what are considered lost crops comprise of species native to tropical and
sub-tropical regions of Africa and Latin America that were the pre-colonial staple
foods of indigenous communities. One of the pervasive consequences of colonialism
was the introduction of food crops from the northern hemisphere and sequestration
of land for large-scale production of industrial crops like rubber, sugarcane, and
cotton. These activities diminished the stature of native crops and began a process
of neglect and genetic loss from which native food crops are yet to recover. An
excerpt from the introduction to the “Lost Crops of the Incas” notes how at the time
of Spanish conquest, the locals cultivated a large number of diverse crops:

On mountainsides up to 4 km high, along the spine of a whole continent, and in climates
varying tropical to polar, they grew a wealth of roots, grains, legumes, vegetables, fruits and
nuts [11].
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The book identifies a significant number of Inca root and tuber crops, fruits, and
some grains, legumes, vegetables, and nuts that would benefit from research and
development to facilitate introduction and commercial production in regions beyond
their centers of origin. The US National Research Council has also published three
volumes on the Lost Crops of Africa covering grains, vegetables, and fruits. Among
grains, the authors single out fonio (Digitaria exilis) and tef (Eragrostis tef ) as
consumed solely by Africans. Other species addressed include African rice (Oryza
glaberrima), a number of millets and sorghums, and other wild and cultivated
grains [12]. The edition on vegetables discusses 18 species of which some, e.g.,
Okra (Abelmoschus esculentus) and Cowpea (Vigna unguiculata) are cultivated
worldwide but originated from Africa where there remains a large selection of
uncharacterized germplasm [13]. The companion volume on fruits lists 10 cultivated
and 14 wild species that according to the authors have virtually not been touched by
science [14].

Although the most important indigenous crops have been identified and their
cultural and economic value acknowledged, the threat of extinction still exists.
In the current era, the loss of native species including indigenous crops can be
linked to environmental pressures exerted by population growth as documented
by Cincotta et al. [15] and others like Maurer [16] who has demonstrated a
direct relationship between the increasing fraction of solar energy consumed by
humans and loss in biodiversity. Furthermore, human activities common to many
developing countries, e.g., uncontrolled logging, unregulated mining, slash and burn
agriculture, overgrazing, and commercial hunting can lead to ecosystem degradation
and species loss even in the absence of widespread human settlement.

Climate change is another factor that is contributing to habitat loss and a shift in
species composition. For example, climate models predict a 51–65 % loss of the
Fynbos biome in South Africa by 2050, an event that would result in complete
dislocation of up to 10 % of Proteaceae endemic to the region [17]. This observation
underlines the need for urgent intervention measures particularly in developing
countries with limited infrastructure for tracking and reporting changes in climate
and biodiversity.

20.4 Global Response to Genetic Vulnerability
and Crop Loss

In the nineteenth century Vavilov identified the main areas of origin and genetic
diversity of cultivated plants and highlighted the potential of wild relatives as
sources of genetic material for improving modern crops [18]. His work and
other events including the Southern corn leaf blight epidemic of 1970–1971 [19]
motivated the collection of races and species related to cultivated plants and the
establishment of gene banks.
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Currently, collection, cataloging, and preservation of germplasm are widespread
and well-coordinated with most nations maintaining repositories for economically
important crop accessions and landraces. In the USA, the system established by
congress after the 2nd World War to maintain and distribute plant genetic resources
has grown into a National Plant Germplasm System consisting of 26 repositories
with more than half a million individual collections [20]. Another notable initiative
in the effort to preserve plant genetic diversity is the Svalbard Global Seed Vault
in Norway. Established by Cary Fowler jointly with the Consultative Group on
International Agricultural Research (CGIAR), the vault is serving as a repository
for duplicate copies of seeds held in gene banks worldwide with more than 840,000
samples from 4000 distinct species secured by the year 2015.

The science of conservation spearheaded largely by international agencies like
the Food and Agriculture Organization (FAO) of the United Nations, Bioversity
International, and the International Plant Genetic Resources Institute (IPGRI) has
progressed apace. Together with other agencies and institutions of higher learning,
they have generated considerable knowledge and information on the science and
practice of conservation, characterization, and sharing of genetic material. Good
examples include a manual for in situ conservation of crop wild relatives released
by Bioversity International in 2011 [21], and the recently published revision to gene
bank standards for plant genetic resources [22].

Hammer [23] examines what he finds to be defining shifts in the field of plant
genetic resources driven largely by scientific advancements starting from the 1990s.
These changes include:

(i) Increasing emphasis on in situ as opposed to ex situ conservation, against
which he recommends a judicious and balanced approach.

(ii) A shift in priority from major cultivated species to underutilized and neglected
crops as a means of maintaining species diversity. This change is motivated by
the realization that of the more than 7000 cultivated plants, only 100 account
for a majority of holdings in gene banks worldwide.

(iii) Utilization of emerging tools including genetic analysis to expand on existing
collection strategies by examining landrace populations and their potential
productive components in order to optimally conserve genetic diversity.

(iv) Exploration of approaches for decreasing gene erosion by increasing participa-
tion in maintenance and use beyond the gene bank. Others including Tanksley
and McCouch [3] and Wright [24] have previously called for policy and
technical changes to optimize the utilization of genetic material already at the
disposal of gene banks.

(v) Greater emphasis on molecular tools for the evaluation of gene bank material.
Here too Hammer [23] warns against wholesale neglect of traditional methods
and recommends measured application of both new and old technologies.

(vi) Recognition of the need for a strategy on large-scale reproduction and replace-
ment of ex situ accessions before loss of viability.

In conclusion, Hammer [23] puts forward the idea of an integrated gene bank
that combines the new aspects of molecular biology and biodiversity with classical
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conservation, evaluation, and utilization tasks while staying abreast of in situ and
other dynamic conservation strategies.

However, as observed by Ledig [25], the technical aspects of gene preservation
ex situ in seed banks and arboreta or in situ in reserves or special management areas
are fairly simple. It is ecosystem level processes, e.g., the roles that co-evolution
and adapted gene complexes play in the preservation of genetic diversity that
still pose difficult research questions. Furthermore, as noted in his examination of
strategies for conserving forest genetic resources, socio-economic factors associated
with land as an economic resource may be the greatest challenge to genetic
conservation in situ, an observation supported by Zimmer [26] who found that the
value of native crops in the southern Peruvian highlands was impacted by shifts
in access to land, labor, and capital, the socio-cultural value of the crop, and the
biogeographic patterning of cultivars. For this reason, he recommends that in situ
conservation programs be pursued only after fully understanding conditions upon
which continued production of target crops is contingent.

Genetic erosion through neglect or loss of indigenous crops and knowledge
has not received as much attention as genetic loss due to selection and breeding.
Interest in indigenous plants with economic or cultural value started in the 1950s
and continues to increase but the many works on ethnobotany and ethnomedicine
(Fig. 20.2) largely document novel and historical usage. It is only in the 1980s
that serious effort to characterize, conserve, and improve indigenous crops and
other neglected species started with the formation of the International Center for
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Fig. 20.2 Number of articles with ethnobotany, or either ethnomedicine or ethnopharmacology, in
the title that were published in peer-reviewed periodicals between 1954 and 2013 (Source: Scopus,
http://www.scopus.com/home.url)
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Underutilized Crops (ICUC), an independent research institute that supported and
coordinated research programs to increase productivity and use of neglected and
underutilized crops. Renamed Crops for the Future (CFF) after merging with the
Global Facilitation Unit for Underutilized Species (GFU) in 2009, the organiza-
tion continues to coordinate and conduct research on underutilized crops. Other
organizations including FAO, Bioversity International, IPGRI, and international
development agencies like the Department for International Development-DFID
(United Kingdom) and the German Deutsche Gesellschaft für Technische Zusam-
menarbeit (GTZ) are also involved in research and development on indigenous crops
and other underutilized species.

Review of literature suggests that the effort is starting to bear fruit. A sampling
from an emerging stream of peer-reviewed work on indigenous crops and other
underutilized species research shows activity in diverse areas including conservation
and use [27–29], climate change [15, 17, 30], agronomy [31], genotyping [32],
breeding [33], human nutrition [34–37], and market research [38–41]. Meetings
dedicated solely to underutilized species have also been convened, e.g., by the
American Society for Horticultural Science [42], the International Atomic Energy
Agency [43], the International Society for Horticultural Science [44–46], and
Bioversity International [47]. However, there remains a lot of ground to be covered
before a fully functional research and development framework for underutilized
plant species can be realized [48, 49].

20.5 Research on Underutilized and Alternative Crops

As mentioned in the introduction, limited research and development on neglected
and underutilized species is a contributor to gene erosion and food insecurity. Most
of such species are to be found among indigenous communities where they are
grown or harvested for food, medicine, or cultural purposes. For example, van
Andel [50] found that descendants of enslaved Africans in Suriname still grow
African rice (Oryza glaberrima) for food and ritual. The same applies to most
cultivated/harvested species native to Africa that are discussed in the volumes on
lost grains, vegetables, and fruits published by the US National Research Council
[11–14].

A defining quality of these species that arises directly from limited genetic
manipulation is strong adaptability and resilience. A majority of the plants are
produced in low-intensity, low input systems, and some survive in the wild. Most
of them are also highly efficient in resource utilization and show a high tolerance
for regional biotic and abiotic stresses. The trend to direct attention away from
major cultivated crops to underutilized species reported by Hammer [23] as among
paradigm shifts informing the field of plant genetic resource conservation is driven
in part by the realization that some underutilized species possess genes and traits
that may be useful for future crop improvement and global food security.

The fact that a large number of indigenous crops and other plants of economic im-
portance native to the tropical and sub-tropical belt have not received commensurate
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scientific attention is a major obstacle to their preservation and commercialization.
They are not yet optimized for large-scale production and postharvest processing,
and are vulnerable to displacement by introduced species including newly developed
genetically modified strains. Limited scientific testing also means that the responses
of most native germplasm to ecological shifts associated with global climate change
remain unknown. In their totality, these circumstances preface potential widespread
decline in genetic diversity and crop loss that in Africa and other regions presently
witnessing rapid urbanization and other social change will have serious implications
for food security and socio-economic sustainability.

Furthermore, it must not be assumed that neglect of species with economic
potential is limited to the regions addressed in the four cited volumes published
by the US National Research Council. The highly evolved food production and
distribution systems common to the USA and other developed countries ensure
that consumers have year-round access to a limited variety of fresh produce and no
longer have to eat according to season, or live off the land. For this reason, a number
of edible plants originally grown as niche crops or foraged from the wild are no
longer consumed and have fallen into neglect. For example, in a survey of Virginia
flora, we found more than 500 wild and cultivated species with an edibility or
medicinal rating higher than 3 (max 5) as ranked by the Plants for a Future database
(Fig. 20.3). We also found that about half of species rated 5 either for edibility or
medicinal value were introduced (Table 20.2), confirming their importance to earlier
settlers [51]. Similarly, Stamp et al. [52] observe that a majority of underutilized
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Table 20.2 Wild and cultivated edible and medicinal plants found in Virginia

Common name Botanical name Ediblea Medicinala Originb

Marsh Mallow Althaea officinalis 5 5 Not specified
Stinging Nettle Urtica dioica 5 5 Introduced
Wild Leek Allium ampeloprasum 5 3 Introduced
Winter Squash Cucurbita maxima 5 3 Introduced
Squash Cucurbita moschata 5 3 Introduced
Fennel Foeniculum vulgare 5 3 Introduced
Peach Prunus persica 5 3 Introduced
Raspberry Rubus idaeus 5 3 Native
Sassafras Sassafras albidum 5 3 Native
Small Reed Mace Typha angustifolia 5 3 Native
Reedmace Typha latifolia 5 3 Native
Sweet Violet Viola odorata 5 3 Introduced
Nodding Onion Allium cernuum 5 2 Native
Chives Allium schoenoprasum 5 2 Introduced
Hawthorn Hybrid Crataegus missouriensis 5 2 Native
Goumi Elaeagnus multiflora 5 2 Introduced
Elaeagnus Elaeagnus pungens 5 2 Introduced
Sunflower Helianthus annuus 5 2 Introduced
Common Day Lily Hemerocallis fulva 5 2 Introduced
Musk Mallow Malva moschata 5 2 Introduced
Common Reed Phragmites australis 5 2 Not specified
Plum Prunus domestica 5 2 Introduced
Ramanas Rose Rosa rugosa 5 2 Introduced
American Persimmon Diospyros virginiana 5 1 Native
Duck Potato Sagittaria latifolia 5 1 Native
Hop Humulus lupulus 4 5 Introduced
Balsam Fir Abies balsamea 3 5 Introduced
Lesser Burdock Arctium minus 3 5 Introduced
Shatavari Asparagus racemosus 3 5 Introduced
Lemon Balm Melissa officinalis 3 5 Introduced
Evening Primrose Oenothera biennis 3 5 Native
Sage Salvia officinalis 3 5 Introduced
Milk Thistle Silybum marianum 3 5 Introduced
Comfrey Symphytum officinale 3 5 Introduced
Slippery Elm Ulmus rubra 2 5 Native
Agnus-Castus Vitex agnus-castus 2 5 Introduced
Echinacea Echinacea purpurea 1 5 Introduced
Witch Hazel Hamamelis virginiana 1 5 Native
German Camomile Matricaria recutita 1 5 Introduced

aEdibility and medicinal ratings courtesy of Plants for a Future (http://pfaf.org/)
bInformation on origin obtained from the Digital Atlas of the Virginia Flora (http://
vaplantatlas.org/)

http://pfaf.org/
http://vaplantatlas.org/
http://vaplantatlas.org/
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crops that were once widely grown in Europe are no longer suitable for today’s
agriculture and call for long-term breeding programs and other initiatives to stem
the erosion of biodiversity.

20.6 Conclusion

Conservation, improvement, and commercialization of indigenous and underutilized
crops demand urgent and coordinated effort on a scale similar to that invested
in ex situ preservation of genetic diversity. This is necessitated by global climate
change, human encroachment, and other socio-economic factors that cumulatively
threaten biodiversity. According to Williams and Haq [47], there is still a lot of
work that remains to be done. In their assessment of the state of global research
on underutilized crops, they found that despite resurgent interest in underutilized
crops as well as recognition of the interconnection between agriculture and the
environment, policies supportive of underutilized crops remain underdeveloped.

Furthermore, this field of research is unlikely to attract private investment
because underutilized crops are generally unsuited to modern agriculture [52]. As
observed by Rubenstein et al. [53], private investment in conservation often falls far
short of public objectives even for established crops because plant genetic resources
are considered a public good. This puts the onus on governments to enact favorable
policies, and to dedicate resources in support of work on underutilized and other
alternative crops.
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Chapter 21
Uncovering Cluster Structure and
Group-Specific Associations: Variable Selection
in Multivariate Mixture Regression Models

Mahlet G. Tadesse, Frédéric Mortier, and Stefano Monni

Abstract Variable selection for mixture of regression models has been the focus of
much research in recent years. These models combine the ideas of mixture models,
regression models, and variable selection to uncover group structures and key
relationships between data sets. The objective is to identify homogeneous groups
of objects and determine the cluster-specific subsets of covariates modulating the
outcomes. In this chapter we review frequentist and Bayesian methods we have
proposed to address in a unified manner the problems of cluster identification and
cluster-specific variable selection in the context of mixture of regression models.
These methods have a wide range of applications, in particular in the context of
high-dimensional data analysis. We illustrate their performance in two diverse areas:
one in ecology for modeling species-rich ecosystems and the other in genomics for
integrating data from different genomic sources.
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21.1 Introduction

Mixtures of regression models provide an effective tool to understand structures
and relationships in complex systems, by identifying clusters of objects that behave
similarly and fitting regression models specific to each cluster. When faced with a
large number of covariates, as often happens in practice, it is also necessary to select
the relevant predictors for each cluster. Such selection improves the identification
of homogeneous groups and provides a better understanding of the underlying
processes generating the data. A unified method that simultaneously uncovers
clusters and selects group-specific relevant covariates has several advantages over
a two-stage approach that first clusters the objects and then performs variable
selection within each cluster. In particular, the latter would ignore the uncertainty in
estimating the cluster allocations, thus introducing bias in the variable selection and
estimation procedures.

In mixture of multivariate regression models, the data consist of n independent
samples with p covariates, X1; : : : ;Xp, and q outcomes, Y1; : : : ;Yq. That is, the
observations .xi; yi/iD1;:::;n are realizations of the pair of random variables .X;Y/
with X 2 R

p and Y 2 R
q. The goal is to cluster objects with similar profiles con-

ditional on their identical dependence on a subset of covariates. In our applications
of interest, we want to cluster the outcome variables rather than the subjects. For
example, in the ecological application we consider in Sect. 21.4.1, the goal is to
cluster q species for each of which n trees are measured. In the genomic application
of Sect. 21.4.2, we want to cluster the expression phenotypes of q genes with each
gene expression measured on n independent samples. The mixture regression model
for outcome j .j D 1; : : : ; q/ is then given by

f .yjjx;�/ D
KX

kD1
�kf .yjjx;�k/ D

KX

kD1
�k

nY

iD1
f .yjijxi;�k/ (21.1)

where the number of components K is unknown and needs to be determined,
�k corresponds to the mixture weights, f .:/ denotes the probability density/mass
function (Gaussian, Poisson, binomial, etc.) defined for the k-th component in terms
of the relevant covariates and component parameters �k, and n corresponds to the
sample size for each object j such that yj D .yj1; : : : ; yjn/. In Gaussian mixture
regressions, �k D .ˇk; �k/, while in other mixtures of generalized linear models
(GLM) �k D ˇk, the component-specific regression parameters. Various frequentist
and Bayesian methods have been proposed to fit this model. The former mostly rely
on penalized maximum likelihood estimation using the expectation–maximization
(EM) algorithm. The latter use stochastic search techniques within a Markov chain
Monte Carlo (MCMC) framework.

This chapter is organized as follows. In Sect. 21.2, we present penalized mixture
of regression models with an emphasis on a method we have proposed for variable
selection in mixtures of multivariate GLM in the context of Gaussian, Poisson, and
Bernoulli outcomes. Section 21.3 focuses on Bayesian methods and, in particular,
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a computationally efficient stochastic partitioning method we have proposed for
uncovering clusters and identifying cluster-specific relevant covariates. Section 21.4
presents applications of these models to two real data examples, one in ecology and
the other in genomics. We conclude the paper with some discussion in Sect. 21.5.

21.2 Penalized Mixture Regressions

In the frequentist setting, variable selection and estimation of the mixture compo-
nents’ regression parameters are accomplished using penalized maximum likelihood
methods. Khalili and Chen [5] proposed an EM algorithm for variable selection
using lasso penalty in mixtures of univariate linear regression models under the
standard assumption that the dimension p of the feature space is smaller than the
sample size. Städler et al. [10] further studied the properties of lasso for these models
in the context of high-dimensional data .p � n/.

In Mortier et al. [9], we extended these penalized methods to mixtures of
multivariate generalized linear regression models. This allows us to consider
multiple outcomes simultaneously, as well as to move beyond Gaussian models
and handle categorical outcomes (binary or count data). Taking the product of the
mixture distribution in Eq. (21.1) over the q objects, the incomplete data likelihood
becomes

L.� jY/ D
qY

jD1

"
KX

kD1
�k

nY

iD1
f .yjijxi;�k/

#

and the incomplete data log-likelihood is given by

l.� jY/ D
qX

jD1
log

"
KX

kD1
�k

NY

iD1
f .yjijxi;�k/

#

(21.2)

where f .�/ is the appropriate Gaussian, Poisson, or Bernoulli probability den-
sity/mass function. In order to identify the component-specific relevant covariates,
we used the adaptive lasso approach [11]. The model parameters � are estimated by
maximizing the penalized log-likelihood function

O� D argmax
�

fl.�jY/ � P.�/g ; P.�/ D
KX

kD1
�k�k

pX

rD1

j�krj
j O�krj

(21.3)

where P.�/ corresponds to the adaptive lasso penalty, �kr is the r-th element of
�k, j O�krj is the maximum likelihood estimator of �kr, and �k is a tuning parameter
selected via cross-validation.
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The maximization is accomplished using an EM algorithm. The data are
augmented by introducing cluster allocation indicator variables zjk .j D 1; : : : ; q/,
such that zjk D 1 if outcome j is from component k. The mixture distribution for yj

arising from cluster k can then be written as

f .yjjx;�/ D �k � f .yjjx;�k; zjk D 1/ D
KY

kD1


�kf .yjjx;�k; zjk/

�zjk

and the complete-data likelihood becomes

L.�jY;Z/ D
qY

jD1

KY

kD1


�kf .yjjx;�k; zjk/

�zjk
:

The complete-data log-likelihood is therefore given by

l.�jY;Z/ D
qX

jD1

KX

kD1
zjk log

"

�k

nY

iD1
f .yjijxi;�k/

#

: (21.4)

The E-step consists in taking the expectation of the complete-data log-likelihood
and provides the posterior probability of assigning outcome j to component k. At
iteration t of the algorithm, we estimate

w.t/jk D P
�

zjk D 1jyj; xi;�
.t�1/
k

�
D

�
.t�1/
k

Qn
iD1 f

�
yjijxi;ˇ

.t�1/
k

�

PK
lD1 �

.t�1/
l

Qn
iD1 f

�
yjijxi;ˇ

.t�1/
l

� (21.5)

and we adopt the approximation used in [5] to update the mixing proportions �k

�
.t/
k D 1

nq

qX

jD1

nX

iD1
w.t/jk :

In the M-step, the expectation of the penalized complete log-likelihood is maxi-
mized for each component separately using the posterior allocation probabilities as
weights

ˇ
.t/
k D argmax

ˇk

8
<

:

qX

jD1

nX

iD1
w.t/jk log f .yjijxi;ˇk/� �

.t/
k �k

jˇkj
j Ǒ

kj

9
=

;
: (21.6)

We determine the number of components K using the integrated completed
likelihood (ICL) criterion [1]. This criterion is similar in spirit to AIC or BIC
and consists of introducing in the maximized log-likelihood a penalty term for
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the number of parameters estimated in a model. It has the advantage of being
specifically developed for mixture models and takes into account the quality of
classifications. The proposed multivariate mixture of GLM with variable selection
is fit for varying number of components, K, and the value that minimizes the ICL is
chosen.

21.3 Bayesian Variable Selection in Mixture Regressions

In the Bayesian framework, variable selection is typically performed by introducing
a latent binary indicator, 
r .r D 1; : : : ; p/, taking value 1 if the corresponding
covariate Xr is included in the model and 0 otherwise [2]. This latent vector is used
to search the model space. In the context of mixture of regressions, this latent vector
can be introduced for each component k .k D 1; : : : ;K/, resulting in a K�p indicator
matrix. The problem of variable selection is much more challenging in this context
compared to standard regression model settings because the membership of objects
to the different components is not known and needs to be learned simultaneously
with the search of component-specific predictors. Another complication is that the
number of components K is unknown. Gupta and Ibrahim [4] proposed, for fixed
K, an MCMC algorithm that iterates between the following steps: (1) the binary
variable selection indicator matrix, � , is updated using an evolutionary Monte Carlo
method; (2) the cluster allocation vector z is updated from its full conditional
distribution via Gibbs sampling; (3) the component parameters, �2k ;ˇk; �k, are
updated from their posterior distributions. This MCMC procedure is repeated for
varying values of K and the best value is determined by comparing the different
models using Bayes factors evaluated via importance sampling procedures.

When there is a large number of objects to cluster, updating the cluster allocation
for each object using Gibbs sampling becomes computationally burdensome. In
addition, the update of the variable selection indicator vector �k for each of
the K components can be quite expensive when K is large. Finally, fitting the
model with different values of K to determine the number of components can be
computationally expensive and fails to capture the uncertainty on the number of
clusters. In Monni and Tadesse [7], we proposed a stochastic partitioning method
that overcomes these limitations by constructing a Markov chain in the space of
pairwise partitions of the set of regressors, X, into possibly non-disjoint subsets and
of the set of responses, Y, into disjoint subsets. Each response Yj is assigned to
exactly one component, whereas a predictor Xr may belong to many components
if it has a differential association with the outcomes in several components or may
belong to no component if it is associated with no outcome.
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21.3.1 Stochastic Partitioning Method

We denote a partition of the data into K components by

S1 ˚ : : :˚ SK D .XI1 ;YJ1 /˚ : : :˚ .XIK ;YJK / (21.7)

where Ik 	 f1; : : : ; pg with 0 � jIkj D pk � p; Jk 	 f1; : : : ; qg with 0 �
jJkj D qk � q and

PK
kD1 qk D q. The ˚ symbol is used to indicate that the

union of variables is disjoint for the Y and not necessarily so for the X variables.
The distribution for each element of the qk outcomes YJk of component Sk is
assumed to be

YjijSk
iid� N .˛j C �k; �

2
k /; j 2 Jk; jJkj D qk; i D 1; : : : ; n (21.8)

where �k D gk.Xs1 ; : : : ;Xspk
/ D XIk ˇk captures the association between the pk

covariates and qk outcomes in component Sk.
We consider conjugate priors for the component parameters and exploit the

conjugacy for computational efficiency by integrating them out. For the .qk C pk/-
vector of regression coefficients �T

k D .˛t1 ; : : : ; ˛tqk
; ˇs1 ; : : : ; ˇspk

/ we take

�k � N .�0k;H0�
2
k / (21.9)

where H0 D diag.h01qk ; h1pk/ with 1n an n-vector with all components equal to one.
We specify an inverse-gamma prior for the component variances

�2k � IG.�20 ; �/: (21.10)

H0 controls the strength of the prior information on the regression coefficients
with larger values of h0 and h corresponding to a wider spread around �0k. After
integrating out the model parameters, the marginalized likelihood for a component
with pk covariates and qk outcomes reduces to a multivariate t-distribution of
dimension nqk. Finally, to each configuration we assign a prior that penalizes large
components with stronger penalty for smaller values of � .0 < � < 1/

�.S1 ˚ : : :˚ SK/ /
KY

kD1
�pk �qk : (21.11)

We sample from the posterior probability distribution using an MCMC algorithm
that moves in the space of possible configurations by merging two components or
splitting one component into two. In order to ensure adequate mixing of the sampler
among both the regressors and the response variables, we designed the MCMC
algorithm to iterate between two steps, each focusing on splitting/merging different
types of components:

(1) add/remove a regressor in a component: we randomly pick a component and
we propose to either add to it a covariate uniformly selected among those not
already in the component or remove one of its X variables;
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(2) split/merge components both in the X and Y spaces: for the split move, we
randomly pick a component and randomly split its outcomes into two new
components. A subset of its X variables is assigned to the two new components
to account for covariates shared by components while the remaining covariates
are placed in one or the other component. For the merge move, two randomly
selected components are combined into one.

We use the Metropolis acceptance function [6] to determine the acceptance prob-
ability of a proposed move. Furthermore, in order to increase the mixing of the
sampler and limit the possibility for it to be trapped in local modes of the posterior
density, we implement a parallel tempering scheme [3].

For posterior inference, we average over the configurations visited by the MCMC
sampler and consider the p � q matrix of posterior probabilities of association
between a covariate Xr and an outcome Yj, the p � p matrix of pairwise posterior
probabilities that the pair .Xr;Xr0/ of covariates is selected in the same component,
and the q � q matrix of posterior pairwise probabilities that the pair .Yj;Yj0/ of
outcomes is allocated to the same component.

21.4 Applications

In this section, we illustrate applications of the methods in two different areas. We
apply the frequentist method to an ecology problem and the Bayesian method to a
genomic study.

21.4.1 Modeling Dynamic Processes in Species-Rich
Ecosystems

In ecological applications, understanding how environmental factors impact popu-
lation dynamics is of primary importance for animal and plant species conservation.
One challenge in modeling species-rich ecosystems, such as tropical rain forests,
is their high biodiversity resulting in many species having limited number of
samples, which hinders the development of species-specific models. This can be
circumvented by identifying species with similar dynamics and modeling them at
the cluster level. In addition, species respond differently to environmental stress
or human pressure and there is interest in determining the cluster-specific relevant
predictors.

We illustrate the multivariate penalized mixture GLM models on three different
demographic processes—growth (Gaussian), mortality (Bernoulli), and recruitment
(Poisson)—using data from the M’Baïki experimental site established in 1982 in
the Central African Republic tropical rainforest in partnership with the Centre
de coopération Internationale en Recherche Agronomique pour le Développement
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(CIRAD). The site consists of permanent sample plots covering an area of 40
hectares with varying disturbances applied to different blocks: some plots were
left as controls, others were selectively logged in 1984 by harvesting commercial
trees with diameter at breast height greater than 80 cm, and a subset of the logged
plots were further thinned in 1986 by poison girdling and by removing all lianas
to increase light penetration. The M’Baïki site has been inventoried annually since
1982, thus providing a large amount of data to explore the dynamics of species
demographic processes across a wide range of disturbances. The data consist of
q D 230 species with more than

Pq
jD1 nj D 37;000 trees monitored over a period of

18 years. Several environmental variables are considered. In order to fit the model
and evaluate its predictive performance, we split the data into a training and a
validation sets.

The models were fit for each demographic process using K D 1; : : : ; 10 groups.
This was repeated ten times with different starting points for each K and the
model with smallest ICL was chosen. Group structures for the different processes
were successfully identified: six groups were uncovered for the growth process
nested within four recruitment groups, and there were three mortality groups. The
crossing of these classifications resulted in 15 non-empty clusters, each containing
between one and 24 species. As shown in Fig. 21.1, the species groups plotted along

Regeneration
guild

Fig. 21.1 Ecologic application: projection of the uncovered species clusters on the two axes
corresponding to the maximum growth rate and the maximum diameter. The labels gxrymz

correspond to the identified species groups. Each symbol corresponds to the dominant regeneration
guild of each group and its size is proportional to the number of species in the group. NPLD
nonpioneer light demander, SB shade bearer, P pioneer
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Fig. 21.2 Ecologic application: density (number of trees per hectare) in the simulated/predicted
forest (solid line) and observed stand in 2012 (dashed line) for the validation data

their maximum growth rate and their maximum diameter represent biologically
meaningful groupings in terms of regeneration guild. Furthermore, the predicted
states for the validation set matched the observed measurements. Figure 21.2 shows
the predicted asymptotic tree density (solid line) and the observed stand in 2012
(dashed line). The model was also successful in predicting the reconstitution rate of
the basal area after a simulated disturbance designed to replicate the one realized
in 1984 at M’Baïki in terms of lost basal area. The predicted dynamics following
a 28-year wait after disturbance of the asymptotic state in the logged plots of the
validation data matched the observed dynamics between 1982 and 2012 (Fig. 21.3).

21.4.2 Integrative Genomic Analysis

In genomic applications, there is a growing interest in relating data sets from various
genome-wide technologies to better understand molecular processes underlying
various phenotypes. Here, we illustrate the method using genotype and gene
expression data collected on the same individuals. The goal is to identify genes
with similar expression patterns and determine DNA sequence variations that
modulate the clustered expression profiles. Genes with similar expression patterns
are believed to share similar regulatory mechanisms. Thus, co-expressed genes
would be co-regulated and share the same regression relationships, whereas genes
in different clusters would have different regression models.



490 M.G. Tadesse et al.

25

B
as

al
 a

re
a 

(m
2 

ha
-1

)

1985 1990 1995
Time (Years)

2000 2005 2010

30

35

40

Fig. 21.3 Ecologic application: predicted dynamics of the basal area after disturbance of the
asymptotic state depicted in Fig. 21.2 (dotted lines) and observed dynamics (solid line) between
1982 and 2012 in the validation set

We illustrate the stochastic partitioning method on an expression quantitative trait
loci (eQTL) application, where the goal is to relate gene expression and genotype
data. We used the data presented in Morley et al. [8], which consist of single
nucleotide polymorphism (SNP) markers and gene expression levels collected on
n D 56 unrelated individuals from 14 CEPH (Centre d’Etude du Polymorphisme
Humain) families. We removed markers with minor allele frequencies less than 5 %
and missing genotypes in more than a quarter of the individuals, leaving p D 2455

SNPs for analysis. For the gene expression data, q D 3554 of the most variable
probe sets were considered for analysis. The MCMC sampler was run for 50 million
iterations with ten steps for the parallel tempering implementation. For posterior in-
ference, we focused on the last 15 million iterations and subsampled configurations
every 20,000 scans. At each MCMC iteration, the stochastic partitioning method
yields a partition of the data in the form of Eq. (21.7). We average over these
visited configurations and estimate the pairwise posterior probability of two gene
expression phenotypes being allocated to the same component by the proportion
of configurations that have these outcomes in the same component. Similarly, to
estimate the posterior probability of association between a SNP marker and a gene
expression outcome, we calculate the proportion of visited configurations having
the corresponding variables in the same component.

The sampler mixed well over the number of components and visited models
with 250–270 components with stronger support for configurations with around
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Fig. 21.4 Genomic application: histogram of number of components in visited configurations

260 components (Fig. 21.4). We computed the 2455 � 3554 matrix of posterior
probabilities that each SNP be associated with each probe set. Several SNP markers
appeared to be associated with the mRNA transcript abundance of multiple genes.
There were 363 SNP markers associated to gene expression changes with at least
one pairwise posterior probability greater than 0.7. Table 21.1 lists examples
of markers that exhibit strong association with a few expression phenotypes. In
some cases, such as the set of genes from chromosome X found to be related
to rs1859674, changes in expression levels can be explained by the variation of
markers located on the same chromosome. Markers can also be associated with
genes mapping to a different chromosome but localized in a specific region. For
instance, rs533569 located on chromosome 11 appears to be related to several genes
found in the small histone gene cluster on chromosome 6p21.3. This is also the
case for marker rs1429309 located on chromosome 2, which is strongly associated
with several genes mapping to chromosome Yq11. Rather than focusing on specific
markers, one could consider particular gene expression phenotypes and examine
the corresponding columns of the p � q matrix of marginal probabilities to locate
its related markers. Figure 21.5 gives the marginal posterior probability plots for
some of the genes listed in Table 21.1. For instance, HDHD1A which maps to
chromosome X appears to be most strongly associated with a marker located in the
same region. Gene expression changes in HIST1H3H, on the other hand, are found
to be related to variations of several markers scattered on various chromosomes.

The model captures correlated outcomes through their dependence on the same
set of regressors. Genes with similar expression profiles can thus be located based
on their association with the same set of markers. As an alternative, one could
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Table 21.1 Genomic
application: example of
markers and associated gene
expressions with marginal
posterior probability greater
than 0.7

SNP Gene expression

Marker Location (Mbp) Name Location

rs1859674 Chr X (116.29) HDHD1A Xp22.32

UTX Xp11.2

U2AF1L2 Xp22.1

XIST Xq13.2

rs1429309 Chr 2 (57.18) RPS4Y1 Yp11.3

EIF1AY Yq11.222

DDX3Y Yq11

USP9Y Yq11.2

SMCY Yq11

rs127503 Chr 6 (108.59) SLC4A2 7q35

CDK10 16q24

LCAT 16q22.1

CYP4F12 19p13.1

rs533569 Chr 11 (93.70) HIST1H3H 6p21.3

HIST1H2BF 6p21.3

HIST1H2BE 6p21.3

H2BFS 21q22.3

HIST1H2BC 6p21.3

HIST1H2AC 6p21.3
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Fig. 21.5 Genomic application: marginal posterior probabilities of association across markers for
four expression phenotypes
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Fig. 21.6 Genomic application: network representation of some gene expressions with pairwise
posterior probability of occurring in same components P.yj D yj0 / � 0:7

examine the 3554 � 3554 matrix of pairwise posterior probabilities that two probe
sets be allocated to the same component and view the entries as similarity metrics
for grouping expression phenotypes. One possible display of the results is in the
form of a network representation, where gene expressions define the nodes and the
pairwise probabilities correspond to edge weights. Figure 21.6 shows a sample of
expression phenotypes that occur in the same component with pairwise posterior
probability greater than 0.7. The expression levels across the 56 individuals for
the genes in the smaller cliques are presented in Fig. 21.7. We note that genes
with similar expression profiles are successfully identified in separate groups. For
example, the set of genes in Fig. 21.7a corresponds to a cluster of genes mapping
to chromosome Y. As expected, they have high transcript abundance among males
and lower expression in females. The genes in Fig. 21.7b belong to the small histone
gene cluster mentioned above.

21.5 Conclusion

Mixtures of multivariate regressions combined with variable selection provide
a flexible method to model complex data by uncovering cluster structures and
identifying relevant covariates for each group. In this chapter, we have presented
frequentist and Bayesian methods to fit these models in a unified framework. The
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Fig. 21.7 Genomic application: expression profiles for genes forming smaller cliques in the
network representation of Fig. 21.6. (a) RPS4Y1-chrYp11.3; EIF1AY-chrYq11.222; DDX3Y
chrYq11; USP9Y-chrYq11.2; SMCY-chrYq11. (b) HIST1H2BC-chr6p21.3; HIST1H3Hchr6p22-
p21.3; HIST1H2BF-chr6p21.3; HIST1H2BE-chr6p21.3; H2BFS-chr21q22.3; HIST1H2AC-
chr6p21.3. (c) GBP2-chr1p22.2; MNDA-chr1q22. (d) EYA2-chr20q13.1; EEF1A2-chr20q13.3;
GPR25-chr1q32.

frequentist method has the advantage of being computationally less intensive and
not requiring the specification of tuning parameters. The Bayesian method, on
the other hand, is computationally more expensive and requires the elicitation
of prior distributions, which guide the exploration of the posterior model space.
However, the Bayesian method has the advantage of visiting a larger portion of the
configuration space and providing a posterior distribution over the entire space of
partitions. This allows the uncertainties in the cluster structure and in the association
between X and Y variables to be captured.

There are a number of possible future directions to extend these models to
overcome some assumptions. In the models we have described, the correlation
between outcomes in the same component is captured through their identical
dependence on the same predictors. Conditional on the component-specific relevant
covariates, the outcomes in a component are assumed to be independent. However,
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it is unlikely that all important covariates are considered and thus there may still
be dependence between the outcomes that needs to be taken into account. Another
extension would be to model temporal dependence explicitly by including random
effects when dealing with observations that are measured over time as in the
ecological application we considered. When working with count data, zero-inflated
distributions are often used to account for the large number of zeroes than can be
accommodated with the Poisson distribution. The challenge of using zero-inflated
models in the context of model-based clustering is the complexity of nesting two
levels of mixtures: one corresponding to the mixture of a point mass at zero and a
Poisson distribution and the other corresponding to the mixture of distributions used
to identify groups of objects. In the stochastic partitioning method, the marginaliza-
tion over the model parameters provides a substantial gain in computational speed
and efficiency. If one chooses to use non-conjugate priors or considers non-Gaussian
outcomes, the model parameters would need to be updated in the MCMC procedure
and appropriate reallocations would need to be devised at each split/merge moves.
Finally, the Bayesian approach presents challenges in effectively summarizing the
results. In the genomic application, we used pairwise posterior probabilities to
identify SNPs associated with gene expressions and to locate expression phenotypes
allocated to the same component. An alternative would be to report the maximum
a posteriori configuration, which provides important information on higher order
relationships between variables, but it neglects additional information coming from
potentially very different configurations with similar posterior probabilities. Yet
another possibility would be to consider the most likely models by locating different
modes of the posterior distribution.
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Chapter 22
Coalescing Complex Planar Stationary Points

Loïc Teyssier

Abstract Among all bifurcation behaviors of analytic parametric families of real
planar vector fields, those that stand out most prominently are confluences of distinct
stationary points. The qualitative change is so drastic that in some classes of families
(e.g., fold-like bifurcations) the stationary points leave the real plane altogether
and slip into the complex plane. Although they disappear from the real domain
they continue to organize the dynamics, and studying complex planar vector fields
becomes a necessity even for real bifurcations. Our main concern is to describe à la
Martinet-Ramis the analytical classification of generic holomorphic families unfold-
ing a saddle-node vector field, and to relate this classification both to the dynamics
of individual members of the family and to analytic properties of the saddle-
node. For instance the problem of the existence of an analytic center-manifold for
the saddle-node is characterized in terms of persistence (as the parameter tends
to the bifurcation value) of heteroclinic connections between stationary points.
We emphasize the geometric aspect of the classification. Complex trajectories are
connected real surfaces allowing for richer geometric constructions as compared
to 1-dimensional real trajectories. The trajectories are split by a finite collection
of open “fibred squid sectors,” attached by spirals to stationary points within their
adherence. The sectors are carved in such a way that one can construct an analytic
and bounded conjugacy between the vector field and its formal normal form. The
invariants of classification are obtained as transition maps of overlapping such
normalization charts. Since we can perform this sectorial normalization analytically
in the parameter, by restricting its values to “cells” covering the parameter space
minus the bifurcation value, the resulting finite collection of functional invariants
is analytic on parameter cells and continuous on their adherence. In that sense it
“unfolds” Martinet-Ramis invariant of the saddle-node. The inverse problem (or
realization) is addressed in the case of a persistent heteroclinic connections and
provides unique normal forms (universal family for the analytic classification). We
particularly show that in general the invariant cannot depend holomorphically on
the parameter over a full neighborhood of the bifurcation value.
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a b c

Fig. 22.1 Typical members of the simplest saddle-node bifurcation. (a) � < 0; (b) � D 0;
(c) � > 0

Keywords Saddle-node bifurcation • Normal forms • Holomorphic vector
fields • Unfolding of singularities • Modulus space • Inverse problem

Among all bifurcation behaviors of parametric families of real planar vector fields
Z
 D .Z�/�2#, those that stand out most prominently are confluences of distinct
stationary points. The qualitative change is so drastic that in some classes of families
(e.g., fold-like bifurcations) the stationary points generically annihilate each other
in the process (Sotomayor’s theorem) (Fig. 22.1).

The simplest example of such a behavior, an instance of saddle-node bifurcation,
is the polynomial family

�
X1
�

�
�2R given in the canonical basis of R2 by

X1
� .x; y/ WD



x2 C �

y

�
: (22.1)

The bifurcation value occurs at � D 0: for negative �, the system has two stationary

points located at
�
˙p��; 0

�
which collide as � reaches 0, while none remain for

� > 0. The stationary points have left the real plane, true enough, but only to
slip into the complex domain. Let us elaborate a bit on this observation in order
to motivate the need for complexifying the whole setting, even in the context of real
dynamics.

The trajectories t 7! .x .t/ ; y .t// of X1
� appear naturally as solutions of the

autonomous flow-system of X1
� :

(
Px .t/ D x .t/2 C �

Py .t/ D y .t/

and can be implicitly expressed by solving the associated non-autonomous
differential equation. This equation is obtained by eliminating the time in the
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flow-system using the rule Py
Px D dy

dx :

�
x2 C �

�
y0 .x/ D y .x/ :

Separation of variables yields multivalued complex solutions

y� W z 7�!c

 
z � i

p
�

z C i
p
�

! 1

2i
p
�

; c 2 C : (22.2)

On the one hand, if � < 0 real solutions are given on appropriate intervals by

y� W x 7�!c

ˇ
ˇ
ˇ
ˇ̌
x � p��
x C p��

ˇ
ˇ
ˇ
ˇ̌

1

2
p��

; c 2 R ; (22.3)

from which we deduce that
�
�p��; 0

�
is a saddle-point and

�p��; 0
�

a node-

point. On the other hand, for � > 0 we have

y� W x 7�!c exp

�
1p
�

arctan
xp
�

�
; c 2 R : (22.4)

The latter is a perfectly honest real-analytic function on R. One might wonder why,
despite the fact of being so regular a function, its Taylor expansion at 0 does not have
infinite convergence radius instead of

p
�. One can explain the discrepancy by, say,

direct use of Cauchy–Hadamard formula, although one cannot understand its source
without noticing the imaginary singularities ˙i

p
� quietly sitting on the boundary

of the disk of convergence. Also it is hard to understand why, when playing the
movie backwards starting form positive values of � and reaching negative ones, a
stationary point somehow pops out of nowhere. One can see the singularity coming
only when looking along the imaginary axis.

At a less commonplace level, when � < 0 both stationary points organize the
dynamics of X1

� and there is no reason why they should stop when � > 0, or even
when � is not real, and we will present how.

22.1 Class of Parametric Families

The present chapter deals with germs of a parametric family of vector fields
in the complex plane, enjoying a saddle-node bifurcation of codimension 1 and
corresponding to first-order non-linear differential equations. The basic examples
addressed by the text are affine families perturbing X1
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X
 W X� .x; y/ WD



x2 C �

y � �
x2 C �

�
a� .x/

�
; (22.5)

where .�; x/ 7�! a� .x/ is a given analytic function near the origin of C2. Although
for such elementary families all computations can be performed explicitly (variation
of constant), some natural questions and non-trivial answers arise already in this
case-study. Generalizing the constructions and objects introduced in that simple
situation to arbitrary bifurcation-preserving analytic perturbations of the model
family X1
 is the main concern of the rest of the text.

Reducing the setting to analytic parametric families may seem rather restrictive.
Yet the geometric approach we present here could be inherited by less regular
situations, or could give insights as to where sources of peculiar behavior may lie.
On the other end of the argument, the obvious added benefit stemming from this
restriction is the rigidity of holomorphic functions and diffeomorphisms of complex
(compact) manifolds. Also the analytic class comprises polynomial vector fields, of
special interest for planar vector fields, e.g., regarding Hilbert’s 16th problem on the
number/position of limit cycles, or Poincaré’s problem on the existence of rational
first integrals.

22.2 Scope of the Study

In the sequel we investigate the links between local dynamics on the one hand,
local classification (i.e., up to local changes of analytic coordinates and parameters)
on the other hand, while at the same time hinting at how they can help measuring
divergence of some class of “summable” power series. We particularly explain the
role of complex geometry and analysis in understanding saddle-node bifurcations.
We wish to underline that the two objects Z0 and .Z�/�¤0 are intertwined, as
dynamical properties for one can be deduced from studying objects attached to the
other and vice versa.

Rousseau has pioneered the classification of some non-linear (discrete or con-
tinuous) dynamical systems having a saddle-node bifurcation [19, 24–28]. She has
also contributed to the study of families of vector fields corresponding to linear
differential systems in finite-dimensional complex linear spaces, with Fuchsian
singularities merging to an irregular singularity [12, 13, 15–17]. The Stokes matrix
of the irregular system is recovered as the limit of well-chosen monodromy matrices
of the Fuchsian systems. The linear/non-linear and discrete/continuous settings all
share the same basic idea, which can be summarized as the following recipe:
• find a finite decomposition of both parameter space and dependent-variable space

in “sectors” over which the family is conjugate to some known, simple normal
form;

• form the classification invariants as transition maps between overlapping normal-
ization sectors.
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We do not wish to emphasize too much the link between local orbital clas-
sification of Z
 and local classification of its strong holonomy h
, the family
of holomorphic first-return map of Z� on a fixed horizontal disc which crosses˚
x2 C � D 0

	
. The connection is very clearly explained by Rousseau, for instance,

in [24] for saddle-node bifurcations, or again in [26] for deformations of a resonant
saddle stationary point. Although both objects encode somehow the same dynamics,
and are classified by the same invariants under local analytic equivalence and change
of parameters, we take advantage of the extra dimension the complex planeC2 offers
to deploy more geometrical constructions à la Martinet–Ramis [21, 31]. Instead of
simply deducing the classification of vector fields from that of holonomies, which
would frankly spoil all the fun, the present text is focused on building objects
specifically from the continuous nature of the dynamics of Z�. Although both moduli
spaces end up with the same presentation, some formulations for vector fields yield
different characterizations of, e.g., the “compatibility condition” as compared to
holonomies [27].

A by-product of that approach is an explicit family of normal forms for
bifurcations Z
 having persistent heteroclinic connections, generalizing [30] to the
case � ¤ 0 as done in [29]. There is as yet no such known explicit universal family
for holonomies h
 (not even for h0).

22.3 Contents Description

The text begins with two preliminary sections devoted to covering basic examples,
objects and tools, as well as fixing notations.

• The example of affine families (22.5) is presented in Sect. 22.4. The thread of the
exposition is the link existing between the (lack of) analytic center manifold of X0

and the (lack of) persistence of heteroclinic connections in the family X
. In the
process of revealing this bond through the use of elementary complex analysis, we
perform the analytical classification of all affine families and present a collection
of normal forms.

• The other sections are framed in a geometric setting, with its own standard
terminology. We present in Sect. 22.5 basic objects attached to singular holomor-
phic vector fields: directional derivative, flow, change of coordinates, and most
importantly singular foliations, first integrals, leaves space, and normal forms. We
recall related basic results of differential geometry. Readers familiar with these
concepts should skim briefly through this section mainly to fix notations.

The next six sections form a survey on formal and analytical classification of
saddle-node vector field bifurcations. The choice has been made to focus mainly on
precise constructions, while providing sketches of proof whenever doing so helps
the exposition. The missing technical details are to be found mostly in [28, 29].

• Section 22.6 is devoted to an introductory text, giving a brief historical overview
of the emergence of moduli à la Martinet–Ramis for saddle-node vector fields
and their deformations. The dynamical nature of these invariants is explained
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from their very construction as transition maps of a rigid analytic atlas of the
corresponding leaves space.

• We present a more detailed account of the formal and local classifications
in Sect. 22.7, where the main theorems are stated and the structure of the
construction is presented. Each one of subsequent sections develops a particular
aspect.

– The formal normalization is performed in Sect. 22.8 by reducing the problem
to solving a couple of well-chosen cohomological equations.

– Sections 22.9 and 22.10 contain the precise construction of the normalization
sectors in parameter-space and dependent-variable-space, respectively. Ascer-
taining the rigidity of the corresponding leaves space atlas is literally what
shapes the normalization sectors.

– Section 22.11 contains the material needed to perform the sectorial normaliza-
tion, by solving on such sectors the cohomological equations. The classification
theorem is finally proven: to each family Z
 D .Z�/� corresponds a functional
invariant m .Z
/, and the fiber of m over m .Z
/ consists precisely of the
conjugacy class of Z. The general inverse problem (to determine the range
of m) is still open.

The rest of the chapter is mostly concerned with the inverse problem and its
dynamical ramifications. The last two sections involve more recent (and perhaps
more difficult) material, coming with full proofs.

• Section 22.12 is concerned with the dynamical interpretation of the invariant
of classification m .Z
/, from which is formulated the “orbital compatibility
condition”. This condition is expected to solve the orbital inverse problem. The
fact that (the orbital part of) m is not onto the natural candidate is established. The
proof is based on the characterization of those Z
 for which m .Z
/ is analytic in
the parameter, which turns out to seldom happen.

• Section 22.13 is concerned by partial answers to the inverse problem. First
we formulate the “temporal compatibility condition” and prove it completely
characterizes the range of m for given orbital part, hence describing the mod-
uli space of saddle-node bifurcations inducing the same given bifurcation of
foliations. At last we provide analytical normal forms in the case of persistent
heteroclinic connections. The combination of both temporal and orbital com-
patibility conditions is proved to solve the inverse problem completely in that
(non-generic) case.

22.4 Affine Saddle-Node Bifurcations

The study of affine saddle-node vector fields was initiated in the second half of
the nineteenth century by Bouquet and Briot [3], starting with a collection of
examples of invariant manifolds existing at a formal level but not at an analytic
one, generalizing the famous behavior displayed by Euler’s differential equation
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Fig. 22.2 Solutions
of x2y0 D y

x2y0 D y � x. Their first significant result is the existence of a formal weak
separatrix for X0, that is an invariant formal curve fy D Os .x/g with Os 2 C ŒŒx��. They
obtained an explicit criterion for convergence of Os in terms of the Taylor coefficients
of a0, which we recover in Proposition 3 after a study aimed at understanding how
the trajectories of X�, � ¤ 0, evolve into those of X0 (Fig. 22.2).

We begin our study of the affine collection Affine .1/, whose members are given
by (22.5), by presenting the easiest instance a
 WD 0. Standard results describing
the regularity of parametric solutions state that solutions y� in (22.3) and (22.4)
converge to corresponding solutions for � D 0

x2y0 .x/ D y .x/ (22.6)

y0 W x 7�! c exp

�
�1

x

�
; c 2 C

uniformly on compact subsets of R¤0 as � ! 0 (it suffices to wait until the
stationary points have left the compact set). Now, can we say something about
the convergence near 0? Obviously the question only makes sense for families of
solutions bounded near 0 as � ! 0. For � D 0 the limiting objects are center
manifolds of the saddle-node stationary point .0; 0/ of X1

0 . As a real vector field
X1
0 has infinitely many center manifolds passing through .0; 0/, each one given by

the graph fy D s .x/g of the smooth (meaning C1) function

s W R �! R

x � 0 7�! 0

x > 0 7�! c exp

�
�1

x

�

for arbitrary c 2 R. Those are the only bounded solutions of (22.6) at 0. Only
one of them is analytic there, namely S0 WD fy D 0g, all others being non-zero flat
functions. This property identifies uniquely a distinguished center manifold, called
the weak separatrix of X1

0 , with the most regular dynamics. The weak separatrix
is the limiting curve of the family .S�/� collecting the only smooth integral curve
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connecting both stationary points
�
˙p��; 0

�
for � < 0. In this simple situation

the only such heteroclinic integral curve is S� D fy D 0g, since y� in (22.3) is not

of class CrC1 at the node, r WD
l

1

2
p��

m
, save for c D 0.

Consider next a quadratic perturbation of X1
 , the Euler family

E� .x; y/ WD



x2 C �

y � �
x2 C �

�
�

(22.7)

whose stationary points are again located at .˙s; 0/where, for the sake of simplicity,
we set:

s WD
p

�� :

This is a special member of Affine .1/ obtained by setting a
 WD 1, yet we are to
prove that together with X1
 they somehow span all possible behaviors for members
of the whole collection.

For � D 0 infinitely many smooth center manifolds persist through .0; 0/, given
by the graphs of

s0 W R �! R (22.8)

x < 0 7�! exp

�
�1

x

�Z 0

x
exp

�
1

u

�
du

0 7�! 0

x > 0 7�! exp

�
�1

x

��
c C

Z 1

x
exp

�
1

u

�
du

�
:

A standard calculus exercise consists in checking for the smoothness of s0. Yet none
of these functions can be analytic, as if one were it would possess a convergent
Taylor series Os at 0 solving

x2 Os0 .x/ D Os .x/� x2 : (22.9)

A straightforward computation yields the unique formal power series

Os .x/ D x
X

n�0
nŠxnC1 ; (22.10)

which has null radius of convergence. We say in that case that we encounter a
divergent weak separatrix. It is worth mentioning that the Taylor expansion of
each s0 at 0 is Os.

Here we cannot distinguish a preferred center manifold in the class of analytic
objects at .0; 0/. Although the divergence of the weak separatrix can be explained
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computationally for the Euler family, the generic perturbation X
 2 Affine .1/ is
impossible to deal with this way since no reasonable closed-form formulas for the
coefficients of Os exist in general. Even so the basic formal approach, computing
coefficients of Os one after the other, cannot prove nor disprove the power series
convergence in finite time. We propose a dynamical approach instead to trace back
the source of the divergence (Theorem 1), which leads to the semi-decidability of
the convergence of Os: there exists an algorithm taking a “computable” a
 as input
and stopping in finite time if and only if Os diverges. The key is to check whether the
complex contour integral

'n
0 WD 1

2i�

I

rS1
a0 .z/

�
z C s

z � s

� 1
2s

dz 2 C

vanishes (meaning convergence), for r > 0 small enough. This viewpoint also
allows us to find a complete collection of normal forms (Theorem 2).

When � < 0write S�
� the (analytic) stable manifold of the saddle-point located at

.�s; 0/ and, when it exists, SC
� the (analytic) unstable manifold of the node-point at

.s; 0/. What happens in the Euler family is that no heteroclinic connection between
stationary points takes place: S�

� does not coincide with SC
� . We aim at establishing

this property has a predominant bearing on the convergence of the weak separatrix.

Theorem 1. Consider a family X
 2 Affine .1/ as in (22.5). The implications
(1))(2))(3) hold, and if moreover @a�

@�
D 0 then (3))(1).

1. The vector field X� has a heteroclinic connection for all � < 0 sufficiently close
to 0.

2. The vector field X� has a heteroclinic connection for values of � < 0

accumulating on 0.
3. The vector field X0 admits a convergent weak separatrix (that is, an analytic

center manifold).

Remark 1.

1. In each item of the theorem the corresponding property is equivalent to the
existence of an open interval I 3 0 such that the differential equation

�
x2 C �

�
y0 .x/ D y .x/� �

x2 C �
�

a� .x/ (22.11)

admits a solution analytic on I, for every corresponding values of �. The solution
is necessarily unique.

2. The practical usefulness of the theorem is by contraposition: if we happen to
know that X0 has a divergent weak separatrix, then any unfolding X
 2 Affine .1/
of X0 eventually sheds all heteroclinic connections as � goes to 0.

We prove this theorem for the Euler family E
 in the next Sect. 22.4.1 for (2))(3)
and Sect. 22.4.2 for (3))(1). After that step there are two ways to process the
general case. On the one hand, the proof performed in Euler’s case could be
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adapted straightforwardly to fit the more general setting. On the other hand, we can
provide a collection of normal forms X
 for Affine .1/ on which the validity of the
equivalences is easily read. This approach brings also the benefit of characterizing
completely situations for which (3))(1) holds.

Theorem 2. Consider a family X
 2 Affine .1/ as in (22.5).

1. There exists a unique

 2 N WD Z�0 [ f1g

such that X
 is conjugate to one of the models X


X
� .x; y/ WD



x2 C �

y � � �x2 C �
�
�

where we conventionally identify �1 with 0. This conjugacy can be chosen
fibered in the variables x and �. Moreover families X
 are mutually orbitally
non-equivalent for differing values of .

2. The implication (3))(1) in Theorem 1 holds if and only if  2 f0;1g. Notice
that the condition @a�

@�
D 0 implies  2 f0;1g.

This theorem, proved in Sect. 22.4.3 below, discriminates all three possible qualita-
tive dynamical behaviors occurring in Affine .1/.

 D 0 Pure divergence. For every � ¤ 0 sufficiently close to 0 the vector
field X� has no heteroclinic connection while X0 has a divergent weak
separatrix.

 2 N>0 Sly convergence. For every � ¤ 0 sufficiently close to 0 the vector field
X� has no heteroclinic connection although X0 has a convergent weak
separatrix.

 D 1 Pure convergence. For every � ¤ 0 sufficiently close to 0 the vector
field X� has a heteroclinic connection so that X0 has a convergent weak
separatrix.

Here the modulus space N for analytical orbital classification is discrete. The
property no longer persists for families unfolding a more degenerate saddle-node,
i.e. the coalescence of k C 1 stationary points with k > 1. We refer to [28] for this
more involved situation.

22.4.1 From Heteroclinic Connections to Convergence

Forget for now that Euler’s series (22.10) is divergent. We want to recover its
divergence at � D 0 by dynamical properties arising in the family when � 2
.C; 0/ n f0g. This story is told during the next two Sects. 22.4.1 and 22.4.2.
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First, we must exclude values of the parameter � for which there are no analytic
unstable manifold through the node of the Euler vector field E�. Although this
phenomenon is not generic, it still turns up for an infinite discrete set of parameters
accumulating on 0. The stable manifold is always unique, and the variation of
parameters yields that it is given by the graph of

s�
� W � � s; sŒ �! R

x 7�!
�

s � x

s C x

�1=2s Z �s

x

�
s C u

s � u

�1=2s

du : (22.12)

Proposition 1.

1. E� admits a (unique) analytic unstable manifold SC
� if and only if

� 2 O# WD R<0n �1
4N2

:

2. There exists a unique function c W
p

� O# ! R such that for all � 2 O# the
manifold SC

� coincides with the graph of

sC
� W � � s; sŒ �! R

x 7�!
�

s � x

s C x

�1=2s
 

c .s/C
Z 0

x

�
s C u

s � u

�1=2s

du

!

:

3. c is analytic.

Proof. First notice that whatever the value of c .s/ may be, the graph of sC
� is an

integral curve of E� even when � … O#. Swapping the order of summation and
integration operations in the expansion

.u C s/
1
2s DW

1X

nD0
˛C

n .s/ .u � s/n ;

which converges uniformly on compact subsets of �� s; 3sŒ, we isolate the candidate
singular term of sC

� at s:

sC
� .x/ D

�
s � x

s C x

� 1
2s

0

@c .s/ �
X

nC1¤ 1
2s

˛C
n .s/ .�1/n

snC1� 1
2s

n C 1 � 1
2s

� ˛� .s/ ln
s � x

s

1

A

C .analytic at s/

where

˛� .s/ WD
(
0 if 1

2s … N

1 otherwise
:



508 L. Teyssier

Notice that .s � x/
1
2s cancels out the non-integral exponent in the power series of

the right-hand side. If 1
2s 2 N, no choice of c .s/ 2 C may yield an analytic sC

� . On

the contrary for � 2 O# we can only have

c .s/ D
1X

nD0
˛C

n .s/ .�1/n
snC1� 1

2s

n C 1 � 1
2s

;

which is an analytic function of s 2
p

�b#. ut
A consequence of the proposition is the following: if 1

2s 2 N, there is no

heteroclinic connection, while a heteroclinic connection for � 2 O# occurs exactly if

s�
� .0/ D sC

� .0/ ;

that is, if

' .s/ WD c .s/C
Z 0

�s

�
s C u

s � u

�1=2s

du

vanishes.

Corollary 1. If ' vanishes on a set accumulating on 0, then Os converges.

The proof requires our switching to complex analysis in order to use compactness of
normal families of holomorphic functions. The main ingredient is therefore to show
that

�
s�
�

�
�1<�<0 extends to a uniformly bounded family of analytic functions on the

slit unit disc

fz 2 CnŒs;1Œ W jzj < 1g :
We need to slit the disc because the complex (multivalued) extension of s�

� is given
by taking path integrals in the variation of constant method

s�
� .z/ D

�
s � z

s C z

�1=2s Z


.z/

�
s C u

s � u

�1=2s

du (22.13)

where 
 is a piecewise smooth path linking z ¤ s to �s. We choose the
determination of the logarithm in such a way that s�

� .z/ coincides with (22.12) on
� � s; sŒ.

Remark 2. We will discuss the relevance of the multivaluedness of s�
� regarding the

question of convergence of Os in the next section, when proving the converse of the
corollary.

Lemma 1. There exists C > 0 such that for every .�; z/ 2� � 1; 0Œ� �S1n f1g�
we have

js�
� .z/j � C :
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Proof. Let us build an adequate integration path 
 .z/ for which bounds are easily
obtained.

• When = .z/ < 0 we first follow the shortest anticlockwise arc 
� .z/ of S1

joining z to �1, then the interval

I� W D Œ�1;�s� :

• Otherwise we follow the shortest clockwise arc 
C .z/ of S1 joining z to �1
before I�.

For u 2 I� we have 0 < uCs
u�s < 1 so that

Z �s

�1

�
u C s

u � s

�1=2s

du � .1 � s/ :

Moreover there exists C1 � 0 for which

js�
� .z/j �

ˇ
ˇ
ˇ
ˇ

s � z

s C z

ˇ
ˇ
ˇ
ˇ

1=2s
 

.1 � s/C
Z


˙.z/

ˇ
ˇ
ˇ
ˇ
s C u

s � u

ˇ
ˇ
ˇ
ˇ

1=2s

du

!

� C1 .1 � s/C �

because, on the one hand,
ˇ
ˇ sCu

s�u

ˇ
ˇ �

ˇ
ˇ
ˇ sCz

s�z

ˇ
ˇ
ˇ when z 2 S1 and u 2 
˙ .z/, while, on the

other hand,
ˇ̌
ˇ sCz

s�z

ˇ̌
ˇ � 1Cs

1�s and lims!0

�
1Cs
1�s

� 1
2s D e. ut

We get on now with proving Corollary 1.

Proof. Each function s�
� , holomorphic on the slit unit disc, can be analytically

extended to the whole D precisely when it is analytic near s. This happens precisely
when the stable manifold of the node is analytic, in other words when ' .s/ D 0. Let
˝ 	 '�1 .0/ be a set accumulating on 0. Because of Lemma 1 and of the maximum
principle we know that s�

� is bounded on D uniformly in �1 < � < 0, i.e. the
family

�
s�
�

�
�2˝ is normal. Thus by Montel’s theorem we can consider an adherence

value (for uniform convergence on compacts sets of D) which must be a solution of
Euler’s equation (22.9) with analytic Taylor expansion at 0. But there is only one
such formal power series solving Euler’s equation, namely Os. ut
Remark 3. We can give a series representation for ' using the expansions

.s ˙ u/˙
1
2s DW

1X

nD0
˛ṅ .s/ .u � s/n

where the determination of the logarithm on the left-hand side is chosen in such a
way that the function is real on � � s; sŒ. In particular

˛C
n .�s/ D .�1/ 12s ˛�

n .s/ D ˛�
n .s/ exp

i�

2s
:
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In that setting

c .s/ WD
1X

nD0

˛C
n .s/

n C 1 � 1
2s

.�1/n snC1� 1
2s

and it is easy to compute

Z 0

�s

�
s C u

s � u

� 1
2s

du D
1X

nD0

˛�
n .s/

n C 1C 1
2s

.�1/n snC1C 1
2s D �c .�s/ ;

therefore

' .s/ D c .s/ � c .�s/ : (22.14)

22.4.2 From Convergence to Heteroclinic Connections

We just observed that if s�
� is uniform (that is, not multivalued) then Os converges.

We want to establish the converse statement in the following way. When the
formal solution of (22.9) converges it defines a real, entire holomorphic function,
in particular for given x� > s

.x�; y�/ WD .x�; Os .x�//

is a well-defined point in R2. Consider the solution y� of (22.11) with a D 1 and
initial value .x�; y�/, and perform its local analytic (i.e. multivalued) continuation
over

D� WDDn f˙sg :

We are more particularly interested in the analytic continuation of y� along the
unit circle, which can be performed in the universal cover of Dn Œ�s; s� as we
explain below. We identify the action of the deck transform of this covering with
the symbolic multiplication of z by exp 2i� , so that the analytic continuation of
y� along S1 can be conveniently written y� .x� exp 2i�/. Because .y�/� converges
uniformly on compact subsets of the preimage of S1 in the universal cover as � !

<
0,

if Os converges then its sum y0 is uniform and we must have

lim
�!
<
0

y� .x� exp 2i�/ D y� :

Let us see how this observation relates to the persistence of heteroclinic connections.



22 Coalescing Complex Planar Stationary Points 511

Proposition 2. For every � 2 O# and .x�; y/ 2 R>s � R write z 7! y� .z; y/ the
solution of (22.11) with initial value .x�; y/. The local analytic continuation of
y� .�; y/ over S1 follows the rule

y� .x� exp 2i�; y/ D y � 2i

�
x� � s

x� C s

� 1
2s
' .s/ sin

�

2s
;

where ' is defined by (22.14). In particular

lim
�!
<
0

y� .x� exp 2i�/ D y�

if and only if

lim
s!0

' .s/ sin
�

2s
D 0 :

Remark 4. Notice that when y 2 R and � 2 O# the continued value y� .x� exp 2i�; y/

is never real since
�

x
�

�s
x

�

Cs

� 1
2s
' .s/ sin �

2s 2 R.

In order to establish the proposition we need to understand the monodromy of

Ogs W z ¤ ˙s 7�!
�

s C z

s � z

� 1
2s
:

We fix a determination Og�
s of Ogs on

�
DnR

�
[� � s; sŒ in such a way that Og�

s j��s;sŒ

coincides with the canonical real determination used previously. For any path 
 ,
starting from 0 with image included in D�, we define

Ogs .
/ WD Og�
s .0/ exp

Z




du

u2 C �
:

Fix a system 
˙ of generators of �1
�
D�; 0

�
whose index around ˙s is 1 and 0

around the other point as in Fig. 22.3. The monodromy of Ogs is multiplicative and
given by

Fig. 22.3 Generators of
�1
�
D�; 0

�

s−s

γ+

0

γ−
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Ogs
�

˙


� D Ogs .
/ exp
I


˙

du

u2 C �
D Ogs .
/ exp

˙i�

s
;

according to the residue formula and the identity

�1
z2 C �

D 1

2s

�
1

s C z
C 1

s � z

�
:

In particular

Ogs
�

�
C


� D gs .
/

so that Og�
s is actually holomorphically extendable to Dn Œ�s; s�, as claimed. We prove

now the proposition.

Proof. The method of variation of parameters yields the following expression for
the monodromy

y� .x� exp 2i�; y/� y D � 1

Og�
s .x�/

I

S1

Og�
s .u/ du :

It can be computed by deforming S
1 into the concatenation 
�
C of generators of

�1

�
D�; 0

�
given by


� W t 2 Œ0; 1� 7�! �s C s exp .2i�t/


C W t 2 Œ0; 1� 7�! s � s exp .2i� .t � 1//

using the relation

I

S1

Og�
s .u/ du D

Z


�

Ogs .u/ du C
Z


C

Ogs .u/ du

(notice that we do not use the symbol
H

for the paths 
˙ because the integration
is actually performed in the universal cover of D� and the lift of 
˙ is not a loop).
Using the notations and formulas presented in Remark 3 we compute

Z


�

Ogs .u/ du D
1X

nD0

˛�
n .s/

n C 1C 1
2s



znC1C 1

2s

�s exp 2i�

s

D
�
1 � exp

i�

s

�
c .�s/
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with z WD u C s, then

Z


C

Ogs .u/ du D
1X

nD0

˛C
n .s/ .�1/nC1

n C 1 � 1
2s



znC1� 1

2s

�s

s exp.�2i�/

D
�

exp
i�

s
� 1

�
c .s/

with z WD s � u. The conclusion follows from

1

Og�
s .x�/

D
�

x� � s

x� C s

� 1
2s

exp
�i�

2s

and from (22.14). ut
We end the story by an explicit computation which settles the question of the

divergence of Os.

Lemma 2. For every � 2 O# we have

' .s/ sin
�

2s
D � :

Proof. We just proved

' .s/ sin
�

2s
D � � exp

�i�

2s
� 1

2i�

I

S1

Og�
s .u/ du

D � � 1

2i�

I

S1

�
u C s

u � s

� 1
2s

du :

The latter integral can be evaluated using the residue formula at 1 since z 7!
�

zCs
z�s

� 1
2s is holomorphic at this point. Setting w WD 1

u we compute

�
z C s

z � s

� 1
2s D

�
1C ws

1 � ws

� 1
2s D 1C w C o .w/

and

1

2i�

I

S1

�
u C s

u � s

� 1
2s

du D 1

2i�

I

S1

exp .w C o .w//
dw

w2
D 1 :



514 L. Teyssier

22.4.3 Normal Forms

We just established the equivalence in the Euler family between

• divergence of Os,
• absence of heteroclinic connections (non-vanishing of '),
• non-vanishing of the integral

'n
s WD 1

2i�

I

S1

�
u C s

u � s

� 1
2s

du D 1

�
' .s/ sin

�

2s
D 1 :

Remark 5. Be careful that the exponent “n” refers to “node”, and is not meant to be
thought of as a variable. The terminology choice will be explained in the next part
of the chapter.

In order to establish the classification Theorem 2 we need to find an (almost)
invariant quantity under changes of coordinates. This invariant turns out to be 'n
.
One can argue that it suffices to consider ' instead, which is somehow nicer because
of its dynamical flavor. Yet ' is afflicted of serious drawbacks:

• ' presents an accumulation of poles as s �!
>

0, and there is no hope of

extending it analytically at 0,
• ' is not even: there is no hope of extending it holomorphically on any open

annulus surrounding 0 as a function of �.

None of these shortcomings hinder 'n
, even in the more general setting of affine
unfoldings.

Proposition 3. For X
 2 Affine .1/ as in (22.5) we may find � > 0 such that
.�; x/ 7! a� .x/ is holomorphic on (a neighborhood of) �2D � �D. For s 2 �Dn f0g
define

'n
s WD 1

2i�

I

�S1
a�s2 .u/

�
u C s

u � s

� 1
2s

du : (22.15)

1. The holomorphic mapping s 7! 'n
s can be continued to an even germ of a

holomorphic function at 0 satisfying

'n
0 D 1

2i�

I

S1

a0 .u/ exp
1

u
du :

2. Write a� .x/ D P1
nD0 �n .�/ xn. Then for s 2 �Dn f0g

'n
s D

1X

nD0

�n
��s2

�

.n C 1/Š
� 1

2n

X

pCqDn

 
n

p

!
pY

jD1
.1C 2sj/

qY

jD1
.1 � 2sj/ ;



22 Coalescing Complex Planar Stationary Points 515

with limit

'n
0 D

1X

nD0

�n .0/

.n C 1/Š
:

3. The formal solution Os with Os .0/ D 0 of

x2y0 .x/ D y .x/ � x2a0 .x/

converges if and only if 'n
0 D 0.

The third statement of the proposition is actually Briot–Bouquet’s result [3].

Remark 6. We deduce the determination of gs WD �
Cs

�s

� 1
2s from that of the function

Ogs built in Sect. 22.4.2 by setting

gs WD Ogs exp
�i�

2s
:

The multiplicative monodromy of gs is the same as that of Ogs.

Proof.

1. Although it is a consequence of 2, we can prove directly the property. First notice
that 'n�s D 'n

s . Also z 7! a�s2 .z/ gs .z/ converges uniformly to z 7! a0 .z/ exp 1
z

on �S1 as s ! 0, so that s 7! 'n
s is bounded on a pointed neighborhood of 0.

Riemann’s removable singularity theorem yields the conclusion. This is a trick
used extensively in this text.

2. For n 2 Z�0 let us evaluate

ts .n/ WD 1

2i�

I

S1

ungs .u/ du :

The residue formula used in Lemma 2 to compute ts .0/ sure works here, yet
one would have to formally derive a closed-form for the Taylor coefficients of
z 7! gs .z/ at 1, which is no trivial task. We relate instead the computation
at hands to the Beta function, more precisely its integral representation along a
Pochhammer contour around 0 and 1. Introduce first the contour around �s and s

P WD 
C
� �
C��1 .
�/�1 (22.16)

where 
˙ are generators of �1
�
Dn f˙sg ; 0

�
as described in Fig. 22.3. The

identity

I

P
ungs .u/ du D

�
exp

�i�

s
� 1

�I

S1

ungs .u/ du
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holds because the value of gs above 
C
� is multiplied by exp �i�
s as compared

to that above
�

C��1 .
�/�1.

We invoke now the standard formula

.1 � exp 2ia�/ .1 � exp 2ib�/B .a; b/ D
I

OP
za�1 .1 � z/b�1 dz ; (22.17)

where OP is a Pochhammer contour around 0 and 1. We can take for OP the image
of P under the change of variable

z WD 1

2s
.s � u/

which transforms u � s into �2sz (maps s on 0) and u C s into 2s .1 � z/ (maps
�s on 1). It is therefore relevant to work with the expansion

un D 1

2n

X

pCqDn

 
n

p

!

.u C s/p .u � s/q :

From (22.17) we compute, for p C q D n non-negative integers,

tp;q WD
I

S1

.u C s/pC 1
2s .u � s/q� 1

2s du

D 1

exp �i�
s � 1

I

P
.u C s/pC 1

2s .u � s/q� 1
2s du

D .2s/nC1

1 � exp �i�
s

.�1/q exp
�i�

2s

I

OP
.1 � z/pC 1

2s zq� 1
2s dz

D .�1/q .2s/nC1

1� exp �i�
s

exp
�i�

2s

�
1 � exp

�i�

s

��
1 � exp

i�

s

�

� B

�
1C q � 1

2s
; 1C p C 1

2s

�

D .�1/q 2i .2s/nC1 sin
�

2s
B

�
1C q � 1

2s
; 1C p C 1

2s

�

D .�1/q 2i

.n C 1/Š
.2s/nC1 sin

�

2s
�

�
1C q � 1

2s

�
�

�
1C p C 1

2s

�
:

Since � .z C 1/ D z� .z/ and � .1 � z/ � .z/ D �
sin�z we deduce finally
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tp;q D 2i�

.n C 1/Š

pY

jD1
.1C 2sj/

qY

jD1
.1 � 2sj/

and

ts .n/ D 1

2n .n C 1/Š

X

pCqDn

 
n

p

!
pY

jD1
.1C 2sj/

qY

jD1
.1 � 2sj/ :

Because 'n
s is obtained by integrating a holomorphic 1-form on a compact loop

we can swap the order of summation operators:

I

S1

a�s2 .u/ gs .u/ du D
1X

nD0
�n
��s2

�
ts .n/ :

3. After applying a convenient linear scaling of the x-coordinate we can assume that
a0 is holomorphic on D. For z 2 Dn Œ0; 1� consider a path 
 .z/ joining 0 directly
to �1, then reaching z within the domain. The function

s�
0 W z 2 Dn Œ0; 1� 7�! exp

�1
z

Z


.z/
a0 .u/ exp

1

u
du

is well defined and holomorphic on Dn Œ0; 1�. It is the only solution of the
equation which tends to 0 at 0 over R<0. It must therefore coincide with Os when
one of the two objects represents a holomorphic function on D. The conclusion
follows from the fact that 'n

0 embodies the monodromy of the multivalued
continuation of s�

0 on Dn f0g.
ut

Let us present now the classification theorem.

Theorem 3. Take two families X
 and eX
 of Affine .1/. The following properties
are equivalent.

1. There exists a germ of a holomorphic function � 7! c .�/ with c .0/ ¤ 0 such
that for all s sufficiently close to 0

Q'n
s D c

��s2
�
'n

s :

2. X
 andeX
 are conjugate.

Any conjugacy between the two families must fix �, and in that case a change of
coordinates $
 such that $�
 X
 D eX
 exists in the form

.�; x; y/ 7�! .� ; x ; yc .�/C �� .x// :
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Proof.

1. ) 2. We find a germ of a holomorphic function .s; x/ 7!  s .x/ such that

$�s2 .x; y/ WD �
x; yc

��s2
�C  s .x/

�

satisfies $�
�s2

X�s2
D eX�s2 . We prove next that s 7!  s is even, so that there

exists a holomorphic function .�; x/ 7! �� .x/ with ��s2 D  s. By definition we
need to solve the equation

D$�
�
X�

� D eX� ı $�
where � WD �s2, that is

z2 0
s .z/ D  s .z/ � ı� .z/

�
z2 C �

�

where

ı� .z/ WD Qa� .z/ � c .�/ a� .z/ :

Without loss of generality we can assume that c is holomorphic on D. Suppose
first that 0 < s < 1. The method of variation of the constant yields

 s .z/ D 1

gs .z/

Z �s

z
ı� .u/ gs .u/ du ;

which is holomorphic on Dn Œs; 1�. Because Q'n
s D c

��s2
�
'n

s the function  s

extends to a uniform (holomorphic) function on Dn fsg. As in Lemma 1 it is
easy to prove that  s is bounded on S1 (uniformly in s). Using the maximum
modulus principle and Riemann’s removable singularity theorem we deduce that
 s extends holomorphically to D. Montel’s theorem ensures that . s/s converges
uniformly on D to some function  0 for which $�

0 X0 D eX�.
The above construction can be holomorphically continued for all s 2 DnR , in

that case the graph of  s coincides with the invariant manifold of the collection
�
 2 Affine .1/,

�� .x; y/ WD



x2 C �

y � ı� .x/
�
x2 C �

�
�
;

passing through the hyperbolic point .�s; 0/ and transverse to the line fz D �sg.
This manifold is unique, as other non-vertical trajectories of�� are multivalued.
This property guarantees that a heteroclinic connection occurs in ��, otherwise
 s would not be uniform near .s; 0/. Therefore the local graph of s near .s; 0/ D
.� .�s/ ; 0/ coincides with that of  �s. From the analytic continuation principle
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we derive  �s D  s for s 2 DnR, which allows to extend holomorphically
.s; x/ 7!  s .x/ to D � D to an even function of s, as expected.

2. )1. Take an orbital equivalence

$ W .�; x; y/ 7�! .� .�/ ; $� .x; y// 2 Diff
�
C
3; 0
�

between X
 and eX
. Assuming that $ is holomorphic on D � D � D does not
lessen the generality of our argument. We prove that � D Id. The key ingredient
is the following classical fact.

Lemma 3. Take p 2 C
2 a stationary point of a holomorphic vector field X, and

consider the linear part of X at p, i.e. the linear mapping DX .p/. Let Lp .X/
denote the equivalence class of its spectrum under the equivalence

f�1; �2g !
nQ�1; Q�2

o
() �9c 2 C¤0

� W f�1; �2g D c
nQ�1; Q�2

o
:

Then Lp .X/ is invariant under orbital equivalence.

In our situation for given � the diffeomorphism $� maps p˙ WD
�
˙p��; 0

�
to

Qp˙ D
�
˙ .�1/`p�� .�/; 0

�
for some integer `. Because the spectrum of the

linearization of X� at p˙ is
n
˙2p��; 1

o
we must have

8
ˆ̂
<

ˆ̂
:

p�� D p�� .�/ .�1/`
or

1 D p��p�� .�/ .�1/`
:

The former identity yields � D � .�/ while the latter �� .�/ D 1 cannot hold
on a neighborhood of 0. Also $� must fix each stationary point .˙s; 0/. We will
not prove that $� can be taken to act identically on the x-variable, although it
is the case (see, e.g., [28, 29]). The other claims can be recovered by a formal
computation.

ut
Corollary 2. For X
 2 Affine .1/ there exists a unique

 2 N WD Z�0 [ f1g

such that X
 is conjugate to one of the models X


X
� .x; y/ WD



x2 C �

y � �
�
x2 C �

�
�

where we conventionally identify �1 with 0. Moreover families X
 are mutually
orbitally non-equivalent for differing values of .
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Proof. There exists a unique  such that

'n
s D s2

c .�s2/

for a germ c of a holomorphic function at 0 satisfying c .0/ ¤ 0. Observe that
the invariant Q'n

s associated with X
� equals s2 . Using Theorem 3 we obtain the

first claim. The theorem also implies that if X
 is orbitally equivalent to XQ
 then
�Q D �c .�/ for some holomorphic function c with c .0/ ¤ 0 and every � close
enough to 0. Therefore  D Q. ut

22.5 Basic Objects and Notations

22.5.1 Standard Notations

In this paragraph n is a positive integer. All rings are commutative and unital.

• We conventionally use N WD f1; 2; : : :g. By putting expressions as index of N,
Z, Q, R, or C we build subsets of the space satisfying said expressions, e.g.
R<�1 D�1;�1Œ or Z�0 D f0g [ N.

• The open unit disc of C is written

D WD fz 2 C W jzj < 1g

and we denote by D WD adh .D/ the closed unit disc. Also

S
1 W D DnD D @D D fz 2 C W jzj D 1g

stands for the unit circle of the complex line.
• A complex number z 2 C has real part < .z/ and imaginary part = .z/.
• The standard Riemann sphere is written C WD C [ f1g.
• The multiplicative group of invertible elements of a ring R is written R�.
• The ring of polynomials in the multi-variable

�
zj
�
1�j�n

over a ring R is written

R Œz1; : : : ; zn� ;

while for ? 2 f<;�;D;�; >g and d 2 N the notation R Œz1; : : : ; zn�?d stands for
the set of such polynomials of homogeneous degree ı satisfying ı ? d.

• The ring of all formal power series in the variables
�
zj
�
1�j�n

over R is written

R ŒŒz1; : : : ; zn�� :

• For p 2 Cn the notation

.Cn; p/
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should stand for the set of domains of Cn containing p, but by a standard and
convenient abuse of notations we actually write .Cn; p/ to mean some small
enough such domain, much like the usage for Landau’s o .�/ and O .�/ notations.

• The algebra of holomorphic functions on an open set U 	 Cn is written Holo .U/.
We say that a function is holomorphic on A 	 Cn if it belongs to some Holo .U/
for A 	 U . The algebra of all such germs of a function is denoted by Holo .A/.

• In the special case A D fpg 	 Cn we more conventionally refer to Holo .fpg/ as

Holo .Cn; p/ ;

the algebra of germs at p of a holomorphic functions. The group Holo .Cn; p/�
consists of all germs U 2 Holo .Cn; p/ such that U .p/ ¤ 0.

• If moreover p D 0, we identify Holo .Cn; 0/ with the sub-algebra

C fz1; : : : ; zng

of C ŒŒz1; : : : ; zn�� consisting in formal power series which are absolutely conver-
gent on a neighborhood of 0.

• For a domain D 	 CnC1 of the form
S

s2˙ fsg � Ds with ˙ 	 C and Ds 	 Cn

we define the functional space

Holoc .D/ WD ˚
f
 2 C0 .adh .D// W f
 2 Holo .D/ ; .8s 2 adh .˙// fs 2
Holo .Ds/g :

• The Holo .U/-module of all holomorphic vector fields on U is written X .U/. The
Holo .Cn; p/-module of all germs at p of a holomorphic vector field is written

X .Cn; p/ :

• The set of biholomorphic mappings U ! QU from an open set U 	 C
n onto

another one QU is written Diff
�
U ! QU�. As before this construction can be

germified near any A; QA 	 Cn, yielding the set Diff
�
A ! QA� whose elements

$ belong to some Diff
�
U ! QU� with A 	 U , QA 	 QU , and $ .A/ D QA.

• In the special case A D fpg and QA D fQpg we conventionally write
Diff ..Cn; p/ ! .Cn; Qp// instead. If moreover p D Qp, we name

Diff .Cn; p/

the (pseudo)group of germs of a diffeomorphism fixing p.
• A tuple of power series $ D �

$j
�
1�j�n 2 C ŒŒz1; : : : ; zn��

n is a formal
diffeomorphism when $ .0/ D 0 and $ is invertible for the composition of
formal power series (that is, D$ .0/ 2 GLn .C/). The group of all such formal
diffeomorphisms is written

bDiff .Cn; 0/ :
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22.5.2 Lie Derivative

Till the end of Sect. 22.5 we are given a vector field Z ¤ 0 holomorphic on a domain
U 	 C2, which we understand as a section

U �! TU D U � C
2

p 7�! .p ; Z .p//

of the tangent bundle of U . We write vector fields Z D



A
B

�
as derivations expressed

in the canonical basis
�
@
@x ;

@
@y

�
, say

Z D A
@

@x
C B

@

@y

for two functions A; B 2 Holo .U/ not both identically zero.

Example 1. The simplest saddle-node encountered in (22.1) can be written

X1
0 .x; y/ D x2

@

@x
C y

@

@y
:

The associated Lie (directional) derivative on functions f (or formal power series)
is defined by

Z � f WD A
@f

@x
C B

@f

@y
:

Considering Z .p/ as an element of the tangent space of U at p we have

.Z � f / .p/ D Dpf .Z .p// :

The Lie bracket of two vector fields X and Y is the vector field whose action by
derivation is

ŒX;Y� � f WD X � Y � f � Y � X � f :

We write for short ŒX;Y� D X � Y � Y � X, which makes sense component-wise and
endows the space of vector fields with a Lie algebra structure. When ŒX;Y� D 0 we
say that X and Y commute.

We define inductively for m 2 Z�0

Z �0 f WD f

Z�mC1 WD Z � .Z �m f / :
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The action is extended component-wise to vectors or matrices of functions.
Any holomorphic function H 2 Holo .U/ such that

Z � H D 0

is called a first integral of Z.

Example 2. The function H W .x; y/ 7! y exp 1
x is a first integral of the saddle-node

X1
0 on C� � C.

22.5.3 Flow, Integral Curves and Singularities

The local flow of Z at p 2 U is the germ of a mapping

˚

Z W �C2; p� � .C; 0/ �! C

2

.x; y; t/ 7�! ˚ t
Z .x; y/

defined as the unique local solution of the flow-system of Z

d˚ t
Z .x; y/

dt
D Z ı ˚ t

Z .x; y/

˚0
Z .x; y/ D .x; y/ :

The Lie formula gives a series expansion, normally convergent near p � f0g, in the
form

˚ t
Z D

1X

mD0

tm

mŠ
Z �m Id ; (22.18)

where Id W .x; y/ 7! .x; y/ is the identity of the complex plane. More generally for
any G 2 Holo .U/ the Lie identity holds (locally for all t 2 .C; 0/)

G ı ˚ t
Z D

1X

mD0

tm

mŠ
Z �m G : (22.19)

In particular G is a first integral of Z if and only if G is constant along every integral
curves of Z. If 0 2 U , the formula also holds for any formal power series G 2
C ŒŒx; y��, the right-hand side belonging to C ŒŒx; y; t��.

Example 3. We compute easily

˚ t
X1

0
.x; y/ D

1X

nD0

tn

nŠ

�
nŠxnC1 ; y

� D
� x

1 � tx
; y exp t

�
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For fixed p we perform the maximal analytic continuation of t 7! ˚ t
Z .p/ by

patching in the appropriate fashion well-chosen solutions to nearby flow systems.
The result is a curve parameterization˚


Z .p/ W Sp ! U from a connected Riemann
surface Sp onto the integral curve of Z passing through p. One encounters also the
terminology «orbit of p under (the flow of) Z», which is not used as such here but
helps explaining some terminology we employ below for changes of coordinates.
The parameterization itself may be referred to as the trajectory of Z passing through
p. It is the natural parameterization of the integral curve by the time of Z. Two vector
fields Z and X on U have same integral curves if and only if

Z D UX

for some U 2 Holo .U/�.
Notice that according to (22.19) the following identity holds (locally for all t 2

.C; 0/)

Z � ˚ t
Z D Z ı ˚ t

Z :

A singularity (or stationary point) of Z is a point p 2 U such that Z .p/ D 0.
The set of singular points of Z is written Sing .Z/. Outside Sing .Z/ we say that Z is
regular. Singularities of Z are the only constant trajectories.

Example 4. The only singularity of X1
0 is located at 0. It is therefore isolated. Any

other integral curve, distinct from fx D 0 ; y ¤ 0g, coincides with a level fH D cstg
of the first integral H W .x; y/ 2 C� � C 7! y exp 1

x . For arbitrary p D .x; y/ 2 C2,
the trajectory of the integral curve passing through p is defined for times belonging
to Sp D Cn ˚ 1x

	
. See also Example 3.

22.5.4 Holomorphic Foliations

We wish to describe the holomorphic singular foliation F D FZ associated with Z
on U . Roughly speaking it is the partition of U into singular points and leaves, the
latter corresponding to non-constant integral curves (without referring to a particular
parameterization). There is a small catch, though, when Z is singular at p but the
singularity is not isolated. In that case we can factor out a greatest common divisor
in the components of Z, yielding a (local) decomposition Z D UX, where U 2
Holo

�
C2; p

�
vanishes at p and X 2 X

�
C2; p

�
either is regular or has an isolated

singularity at p. All such eventually isolated singularities p 2 Sing .X/ form the
singular set Sing .F/ of F. By each point p … Sing .F/ passes a unique leaf Lp

of the foliation, which is the maximal connected smooth complex curve tangent to
Z and containing p. It is obtained by gluing integral curves of corresponding local
vector fields X.
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Fig. 22.4 Some leaves of the
foliation induced by X1

0 on
R
2. Mixed saddle (left) and

node (right) behaviors are
apparent

Two foliations FZ and FX are identical if and only if there exist V; W 2
Holo .U/ n f0g such that VZ D WX. If Z has only isolated singularities in U then
the conditions boils down to Z D UX for some U 2 Holo .U/�.

The restriction of F to a subdomain V 	 U is the foliation

FjV
of V , with singularities located at points of V \ Sing .F/ and whose leaves are the
connected components of V \ Lp for each p 2 V .

Example 5. Take U WD C2 and Z W .x; y/ 7! yX1
0 .x; y/. The vector field Z has the

line fy D 0g for singular set. Yet FZ D FX1

0
has only one singularity at 0, all other

leaves are either of the form
˚
y D h exp �1

x ; x ¤ 0
	

for some h 2 C or coincide
with fx D 0 ; y ¤ 0g. See Fig. 22.4.

Some leaves play a special role for the foliation. A separatrix of F at the singularity
p 2 U is a leaf whose adherence in U is perhaps a singular analytic curve
containing p.

Example 6. The foliation induced by X1
0 on

�
C2; 0

�
has exactly two separatrices,

which are the connected components of fxy D 0g n f0g.

22.5.5 Changes of Coordinates

We define the action of Diff
� QU ! U

�
by change of coordinates on vector fields.

On the source space U of the vector field, $ 2 Diff
� QU ! U

�
acts as a usual

mapping by composition. The action on the range space T QU is induced by the direct
product $ ˚ D$ , sending .p; v/ 2 QU � C

2 to .$ .p/ ;D$ .p/ .v//. We write $�Z
the element of X .U/ defined in such a way that the following diagram commutes



526 L. Teyssier

that is

$�Z D .D$/�1 .Z ı $/ : (22.20)

The vector field $�Z is called the pullback of Z by $ . In that situation trajectories
of $�Z are mapped to trajectories of Z, leaving the natural time unchanged (locally
for all t 2 .C; 0/):

$ ı ˚ t
$�Z D ˚ t

Z ı $ : (22.21)

We say that Z 2 X .U/ and QZ 2 X
� QU� are analytically conjugate if there

exists $ 2 Diff
� QU ! U

�
such that QZ D $�Z. This is equivalent to the conjugacy

equation

QZ � $ D Z ı $ (22.22)

being satisfied.
We say that Z and QZ are analytically orbitally equivalent when there exists

QU 2 Holo
� QU�� such that Z is conjugate to QU QZ. This means that Z is conjugate to

a vector field with same integral curves as QZ, in other words that integral curves of
QZ are mapped under $ onto integral curves of Z, yet the natural time changes in
general.

Naturally all these notions can be germified. We then speak of local conjugacy
and local orbital equivalence. If (22.22) holds at a formal level for some $ 2
bDiff

�
C2; 0

�
, then Z is formally conjugate to QZ. If Z is formally conjugate to some

QU QZ with QU 2 C ŒŒx; y���, then Z is formally orbitally equivalent to QZ.
In case Z is (analytically, locally) orbitally equivalent to QZ, a bijection$ realizing

the equivalence maps Sing
�
FQZ
�

onto Sing .FZ/ and sends each leaf ofFQZ onto a leaf
of FZ . We say the foliations FZ and FQZ are (analytically, locally) conjugate and
define

$�FZ WD F$�Z :

We extend the terminology in the obvious way for formal diffeomorphisms,
speaking of formal conjugacy between foliations.

Example 7. If one lets b$ be .x; y/ 7! .x; y � Os .x//, where Os is the formal solution
of (22.9), then E0 D b$�X1

0 since
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a b

Fig. 22.5 Real foliation of the vector field Z when l 2 R
�. (a) A node (l > 0); (b) a saddle (l < 0)

X1
0 ı b$ .x; y/ D x2

@

@x
C .y � Os .x// @

@y

E0 � b$ .x; y/ D x2
@

@x
C �

y � x2 Os0 .x/� x2
� @
@y
:

22.5.6 Leaves Spaces

The leaves space of F on U is, as a set, the quotient

˝F WD .UnSing .F//=F

where two points of UnSing .F/ are equivalent when they belong to the same leaf
of F . It is endowed with the quotient topology, which (generally) is non-Hausdorff
(Fig. 22.5).

Example 8. Take U WD C2 and the linear vector field Z W .x; y/ 7! lx @
@x C y @

@y

with l 2 C�. Both components of fxy D 0g n f0g is a separatrix of FZ; set Lx WD
fx D 0 ; y ¤ 0g and Ly WD fx ¤ 0 ; y D 0g. The foliation FZ has a singularity at 0,
whose dynamical type and leaves space structure depend on the rationality of l.

l D p
q 2 Q>0: resonant node. Each leaf corresponds to a level fH D cstg of the

rational first integral H W .x; y/ 2 Un f0g 7! xqy�p (which is a
connected complex curve). The leaves space ˝ is homeomorphic to
the Riemann sphere H .U/ D C, where Lx corresponds to 0 and
Ly to 1. Taking U D �

C
2; 0
�

instead of the whole plane does not
change˝ .

l 2 R>0nQ: quasi-resonant node. The vector field Z has no meromorphic first
integral, although the multivalued function H W .x; y/ 7! xy�l
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satisfies Z � H D 0 algebraically. Apart from Lx and Ly, each leaf
corresponds to a “level” fH .x; y/ D hg of H, h 2 C�, which cannot
be closed in Un f.0; 0/g. The leaves space˝ is homeomorphic to the
quotient of C by the action of the irrational rotation h 7! h exp 2i�l,
whose orbits are dense in circles fjhj D cstg. The quotient cannot be
Hausdorff, and actually no two leaves in the same circle fjhj D cstg
can have separating neighborhoods in˝ . TakingU D �

C2; 0
�

instead
of the whole plane does not change˝ .

l D � p
q 2 Q<0: resonant saddle. Each leaf corresponds to a level of the polyno-

mial first integral H W .x; y/ 2 U 7! xqyp (which is a connected
complex curve) save for H�1 .0/ D f0g [ Lx [ Ly. The leaves space
˝ is isomorphic as a set to the punctured line C� joined to two
abstract points

˚
0x; 0y

	
. As a topological space it is homeomorphic

to C� [ ˚0x; 0y
	

equipped with the following topology: a non-empty
subset U 	 C� [ ˚

0x; 0y
	

is open if and only if U 	 C� or U \ C�
is an open, punctured neighborhood of 0 2 C. This space is not
Hausdorff as 0x and 0y have no separating neighborhoods. Taking
U D �

C2; 0
�

results in a smaller leaves space˝ where the role played
by C� is replaced by .C; 0/ n f0g.

l 2 R<0nQ: quasi-resonant saddle. It is a composite situation that can be ob-
tained from resonant saddles by quotienting out the action of the
irrational rotation, as for quasi-resonant nodes. Details are left to the
reader.

l … R: hyperbolic singularity. Apart from Lx and Ly, each leaf corresponds to
a “level”

˚
xy�l D h

	
, h 2 C�, whose adherence in Un f0g contains

Lx [Ly. The punctured leaves space˝n ˚Lx ; Ly
	

is homeomorphic
to the quotient of C� by the action of the linear map h 7! h exp 2i�l,
which is a torus. Yet ˝ is not Hausdorff as Lx and Ly cannot be
separated from any other leaf. Taking U D �

C2; 0
�

instead of the
whole plane does not change˝ .

It is not always possible to endow the leaves space with an analytic atlas, although
˝ is locally homeomorphic to an open set of C. Indeed around a regular point
p … Sing .F/ we can apply the rectification theorem to some regular X 2 X

�
C2; p

�

defining the foliation: there exists a local diffeomorphism $ W �C2; 0� ! �
C2; p

�

such that $�X D @
@x . Hence the leaves of Fj.C2;p/ are images of small “horizontal”

discs included in fy D cstg. A pair .D; $/ of a domain D D �
C2; 0

�
and a map

$ 2 Diff .D ! .Cn; p// sending X to @
@x is called a rectifying chart (or flow-box)

for F. Since level sets of

H W $ .D/ �! C

$ .x; y/ 7�! y

coincide with leaves of Fj$.D/, the local leaves space has a holomorphic parame-
terization
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˝Fj$.D/
' H .$ .D// D .C; 0/ :

Yet transition maps between two rectifying charts may fail to be either bijective or
holomorphic.

Instead of trying to force a superfluous analytic structure on ˝F , it will be
sufficient for our purposes to use the sheaf FirstIntegral .�/ of first integrals of F.
Any holomorphic function H 2 Holo .V/ on a subdomain V 	 U , which is a first
integral of any vector field locally defining F, is called a first integral of F on
V . Level sets of H are saturated by FjV . When a connected level set of a non-
constant first integral H does not contain a singularity of F then it coincides with
a single leaf of FjV . We say that H has connected fibers when it is non-constant
and every level set is connected. (Notice this property is fulfilled and used in the
previous Example 8.) First integrals with connected fibers will play a central role in
the sequel, as the algebra FirstIntegral .V/ is functionally generated by some (and
in fact any) first integral H with connected fibers. The mapping

Holo .H .V// �! FirstIntegral .V/

f 7�! f ı H

is indeed bijective: any first integral factors uniquely and holomorphically
through H.

Example 9. The function H .x; y/ WD xy2 is a first integral of the resonant linear
saddle X .x; y/ WD 2x @

@x � y @
@y . Its fibers are the connected Riemann surfaces

˚
xy2 D c

	
, c 2 C. Notice that the two branches of fxy D 0g are disconnected when

the singularity 0 is removed from them.
The equation X�F D 0 has formal solutions F .x; y/ D P

n;m�0 fn;mxnym satisfying
fn;m D 0 if 2n ¤ m, while each fn;2n is free to chose in C. Therefore F .x; y/ DP

n�0 fn;2n
�
xy2
�n D f

�
xy2
�

where f .t/ WD P
n�0 fn;2ntn.

22.5.7 Moduli Spaces, Normal Forms

The local rectification theorem asserts the existence of a single equivalence class
for local conjugacy near a regular point. One important goal in the theory of
vector fields is therefore to understand qualitative behaviors near singular points
up to diverse conjugacy notions (and their orbital counterparts for foliations). This
means to describe the quotients, called moduli spaces, of X

�
C2; 0

�
under the

action by conjugacy of Diff
�
C2; 0

�
or bDiff

�
C2; 0

�
, respectively, i.e. to perform the

(local, formal) classification by identifying a complete set of objects invariant under
conjugacy. We call such objects (local, formal) invariants.
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An important invariant is the following. Take p 2 Sing .Z/ and consider the linear
part of Z at p, i.e. the linear mapping DZ .p/. Then its spectrum, written Spec .Z; p/
for the sake of simplicity, is invariant under formal conjugacy:

8$ 2 Diff ..Cn; Qp/ ! .Cn; p// Spec
�
$�Z; Qp� D Spec .Z; p/ :

Besides, let #.Z; p/ be the equivalence class of Spec .Z; p/ under

fl1; l2g !
˚Ql1; Ql2

	 () �9c 2 C
�� W fl1; l2g D c

˚Ql1; Ql2
	
:

Then#.Z; p/ is invariant under formal orbital equivalences.

Remark 7. The quotient space is naturally isomorphic to the double cover of P1 .C/
ramified over Œ1 W 1� and Œ�1 W 1�, obtained under the obvious Z

2Z
-action Œl1 W l2� 7!

Œl2 W l1� in homogeneous coordinates. The quotient is a smooth, compact Riemann
surface of genus 0 parameterized by Œl1 W l2� 7! 

l21 C l22 W l1l2
�
, therefore itself a

conformal projective line P1 .C/.

Generically this is the only invariant, as if l1l2 ¤ 0 and l1
l2

… R then the vector field is
hyperbolic and Poincaré’s theorem guarantees that Z is locally linearizable: there
exists $ 2 Diff

�
C
2; 0
�

such that $�Z D l1x
@
@x C l2y

@
@y . This particularly means that

the local leaves space near a hyperbolic singularity is a conformal torus with two
points in the adherence of every others, corresponding to the two local separatrices
passing through p (see Example 8).

To be altogether correct, we need to mention that the group bDiff
�
C
2; 0
�

does

not really act on X
�
C2; 0

�
. If $ 2 bDiff

�
C2; 0

�
and Z 2 X

�
C2; 0

�
, there is no

reason why$�Z should be a holomorphic vector field, even though (22.20) defines a
perfectly valid vector field with formal power series components. Yet being formally
conjugate defines an equivalence relation, and we write resulting quotients as if they
were quotients of a group action, for convenience sake.

The complete invariants we seek should differ in nature from simply stating “the
equivalence class in the quotient”. We particularly wish to build non-trivial bijective
mappings between the various flavors of moduli spaces and some functional spaces.
Classifying vector fields is out of reach in such a general form, although it can be
carried out for smaller classes of vector fields. We take F 	 X

�
C2; 0

�
and write

respectively

Modloc .F/ WD F=Diff
�
C
2; 0
�

Modfor .F/ WD F=bDiff
�
C2; 0

�

the corresponding moduli spaces. Since formal conjugacy is weaker than local
conjugacy there is a canonical onto mapping Modloc .F/ � Modfor .F/, and
this is why in practice we fix a formal equivalence class within which the local
classification is conducted. The notation
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ŒZ�? 2 Mod? .F/ ; ? 2 ffor; locg

stands for the equivalence class of Z 2 F with respect to corresponding class of
conjugacy.

Let Mod? .F/ D F=G stand for one of the above quotients and let ˝ be a set.
We call

• an injective mapping C W Mod? .F/ ! ˝ a classification of Mod? .F/ (it is
complete when surjective),

• a surjective mapping R W ˝ ! Mod? .F/ a realization of Mod? .F/ .

The best way to realize a moduli space Mod? .F/ in a concrete form is to find a
collection of (local, formal) normal forms NF? .F/ 	 F satisfying the first two
following properties:

Versality The natural map NF? .F/=G ! F=G is bijective

Uniqueness There exist � 2 N and a smooth C�-action on NF? .F/ such that for
any Z 2 NF? .F/ the whole equivalence class ŒZ� 2 Mod? .F/ is
included in a single orbit.

Simplicity Although the notion of “simple” expression is primarily opinion-
based, it is generally expected that elements of NF? .F/ have “sim-
ple” expressions in some “natural” basis of the tangent bundle.

Remark 8. The clause of uniqueness states that a normal form Z 2 NF? .F/ is
unique “up to a finite-dimensional space”. A notion of smoothness on spaces of
germs (endowed with a convenient locally convex topology) adapted to this context
can be found, for instance, in [34]. Once these normal forms are given it is in general
straightforward to refine the study and pinpoint unique representatives for a given
equivalence class. This work can be messy, though in practice seldom reaching
further than linear algebra. In this text we stick to finite-dimensional uniqueness.

Example 10. Let H WD ˚
Z 2 X

�
C2; 0

� W Z be hyperbolic at 0
	
. Then

Cloc W Modloc .H/ �! .C�/2= Z

2Z

ŒZ�loc 7�! Spec .Z; 0/

is a classification for local conjugacy, which is not complete. Injective realizations
are given by

Rloc W .CnR/ � C
� �! Modloc .H/

.�; l2/ 7�!



l2�x
@

@x
C l2y

@

@y

�

loc
:
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Normal forms are given by

NFloc .H/ WD
�

l1x
@

@x
C l2y

@

@y
W .l1; l2/ 2 �C��2 ; l1

l2
… R

�
:

Example 11. Theorem 2 asserts

Modloc .Affine .1// ' N

with normal forms

NFloc .Affine .1// WD
n
X
 W  2 N

o
:

22.6 General Saddle-Node Bifurcations

From now on we deal with the general case of a holomorphic germ of a planar
saddle-node bifurcation. For the bifurcation value of the parameter � 2 #, which
we conveniently locate at the origin of a complex affine space of which # is a
(sufficiently small) domain, the vector field Z0 is of saddle-node type near, say, the
origin of C2, that is:

• 0 is an isolated singularity of Z0,
• the differential at 0 of the vector field has exactly one non-zero eigenvalue

or, with notations introduced earlier, Spec .Z; 0/ D f0; l2g for some l2 2 C
�

(the singularity is elementary degenerate).

To stick to general terminology, a (holomorphic germ of a) parametric family of
(germs at 0 2 C2 of) vector fields Z
 D .Z�/�2# is called a holomorphic germ of an
unfolding of Z0. We study in detail only “generic” unfoldings, those which possess
the “right number” of parameters to encode the bifurcation structure. Let us be more
specific.

Definition 1. Let k 2 N be given. A generic unfolding of codimension k is a germ
of an unfolding Z
 for which the following conditions hold.

• There exist # D �
Ck; 0

�
and U D �

C2; 0
�

such that .�; x; y/ 7! Z� .x; y/ is
holomorphic on # � U , and the vector field Z0 has only one singularity in U .

• For a dense open set b# 	 # and all � 2 b# the vector field Z� has exactly
k C 1 (distinct) singularities in U , which are all hyperbolic and merge to 0 as
� ! 0.

• � 2 b# 7! Sing .Z�/ is injective.

The limiting saddle-node Z0 has codimension k.

Families with Qk > k parameters can be dealt with by changing the parameters (say,
using the implicit function theorem, after desingularization if need be) in such a way
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that the first k components govern the location of the singularities, while the rest
(seen as extra parameters) do not move them around. To be more specific, we mean
that each fiber of � 2 b# 7! Sing .Z�/ is included in a single fiber of the natural
projection on the first k components. All results presented here hold also for these
extra-parametric generic unfoldings, as it will appear clearly that the constructions
depend holomorphically on extraneous parameters.

Families
� QZQ�

�
Q�2 Q# having singularities either generically elementary degenerate

(e.g., coalescing saddle-nodes) or non-degenerate but reached multiple times can
be studied through (extra-parametric) generic unfoldings .Z�/�2# by specializing

values � D �
� Q�
�

.

We postpone a formal definition of conjugacy/orbital equivalence between
unfoldings till the end of this section. Just keep in mind that we do not allow
parameter changes involving the spatial coordinates .x; y/ :

Affine unfoldings, as detailed in Sect. 22.4, suggest that dynamical questions
regarding saddle-node bifurcations can be understood from the local classification
of generic unfoldings. The classification of unfoldings contains the classification of
Z0 by specialization, which is why we deliberately elude presenting this degenerate
situation in detail. Yet as the strategies adopted to address saddle-node singularities
will serve us well, we present them briefly as a steppingstone to the unfolded case.
We refer the reader to the works cited below for a comprehensive study of the
subject.

The analytic unstable manifold of Z0, tangent at 0 to the eigenspace associated
with l2, is called the strong separatrix. The other eigenspace corresponds to a
“formal separatrix” called the weak separatrix (generically divergent [23], always
summable in the sense of Borel [11]). We say that a saddle-node is convergent or
divergent according to the nature of its weak separatrix.

The formal orbital classification was performed by Poincaré and Dulac [6, 7],
yielding polynomial normal forms. It was known from the very beginning that
the formal conjugacy cannot always converge, and as a matter of fact divergence
is the rule. After some inspiring works by Birkhoff [1] on local classification of
resonant diffeomorphisms, a complete local orbital classification was achieved in
the early 1980s by Martinet and Ramis [21]. At about the same time Bruno [4]
presented formal normal forms for saddle-node vector fields. These works were
complemented with a complete local classification in the early 2000s simultaneously
by Meshcheryakova and Voronin [36] (k D 1) and by Teyssier [31] for the general
case. These studies reveal that classifying vector fields can be dissociated into two
independent process:

1. classify the orbital part (the foliation),
2. classify the “time” (the vector field for fixed foliation).

Item (2) is a linear problem, simpler to deal with. Hence in the current introduction
we only present how orbital classification is achieved. Also, for the sake of keeping
notations light, only the case k D 1 is presented below.

The foundational viewpoint introduced in [21] bridges the gaps between classi-
fication on the one hand, dynamical and analytical properties on the other hand.
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In geometrical space In leaves space

Fig. 22.6 The sectorial decomposition of a saddle-node of codimension 1. The white invariant
curve in the saddle-part (sectorial separatrix) is mapped to 0 in leaves space

It consists in interpreting the orbital invariants as transition maps defining a
holomorphic atlas of some analytic space ˝0 closely related to the space of leaves
of FZ0 . The conformal class of ˝0 is reasonably a complete orbital invariant of Z0.
As illustrated in Fig. 22.6, this space is obtained by a conformal gluing between
two Riemann spheres ˝sn

0 and ˝ns
0 . The spheres correspond to a decomposition of

�
C2; 0

�
in two overlapping fibered sectors. Each ˝]

0 is the union of C, the range
of a holomorphic sectorial first integral with connected fibers, and 1, standing for
the strong separatrix. It can be arranged that the first integral maps the sectorial
weak separatrix of Z0 to 0. The transition map near 0 (resp. 1) is a germ of
diffeomorphism s

0 (resp. a translation  n) induced by the inclusions of the sectors
in
�
C2; 0

�
. The resulting complex 1-manifold is Martinet–Ramis’s chapelet de

sphères, which we rather refer to as the orbital necklace of Z0.

Remark 9. The necklace ˝0 is not exactly the space of leaves b̋
0 of FZ0 . For

one thing, most leaves accumulate on the strong separatrix so that b̋0 is far from
being Hausdorff: 1 is not topologically separable from any other point of b̋0.
Secondly b̋0 is obtained from˝0 by modding out the action of the global (analytic)
monodromy of the necklace  n

0 ı  s
0. This fact is explained in detail later on for

unfoldings (Sect. 22.12).

That the pair of transition maps
�
 s
0;  

n
0

�
classifies, up to a finite dimensional

space, the foliation FZ0 is a consequence of the conformal rigidity of orbital
necklaces: their group of diffeomorphisms is small (the automorphism group of C is
PGL2 .C/ acting by homography). Since any conjugacy between foliations induces
a diffeomorphism between the respective necklaces, corresponding transition maps
must be C�-conjugate. Indeed, with the choice of leaves for 0 and 1, and yet



22 Coalescing Complex Planar Stationary Points 535

ψG
Ω−

Ω+

first integral first integral

D−

D+

In leaves space

In geometrical space

iR

Fig. 22.7 The Glutsyuk connection

another canonical normalization, the only remaining degree of freedom for the
choice of

�
 s
0;  

n
0

�
is the linear action of C�, simultaneously on all spheres.

The first technique based on a deformation of a saddle-node vector field in order
to recover Martinet–Ramis invariants was presented in the early 2000s, after an
analogous work by Martinet [9, 20] for unfoldings of parabolic diffeomorphisms.
Glutsyuk [10] embedded Z0 in a generic unfolding of codimension 1. Restricting �
to b#, so that both singularities are hyperbolic, he let the singularities merge as � !
0. He proved that the domains D�̇ of linearization of Z� (near the respective singular
point ˙p��) overlap and their union D� contains a domain

�
C2; 0

�
independent

on �. The “orbital link” of FZ� jD� is built by gluing the two spaces of leaves ˝�̇

of FZ� jD˙

�
, which are (rigid) conformal tori C

�
=Z (see Example 8), through the

Glutsyuk connection  G
� coming from the inclusions D�̇ ,! D�, as summarized in

Fig. 22.7.
When � ! 0 each torus gets pinched more and more sharply along a meridian,

converging towards a sphere C with the points 0 and 1 identified. This continuous
process lifts to the family of connections

�
 G
�

�
�2b#: Martinet–Ramis transition maps�

 s
0;  

n
0

�
can be recovered from the limiting Glutsyuk connection  G

0 . We refer to
Fig. 22.8.

The natural continuation of Glutsyuk’s use of the saddle-node bifurcation would
be to classify all generic unfoldings. Yet this approach is doomed to fail, because b#
is not connected. Glutsyuk’s construction critically depends on the local behavior
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0, ∞

Fig. 22.8 Transition from Glutsyuk’s torus to Martinet–Ramis’s sphere at the limit � ! 0

of hyperbolic singularities, and as such cannot be extended to #nb#. Indeed most
(resonant) saddle points are not linearizable and, even if they were, their local
leaves space would be a conformal disc, which is not rigid: the automorphism
group of germs at 0 of conformal discs coincides with the infinite dimensional
group Diff .C; 0/. Roughly speaking, one cannot turn a saddle or node singularity
into a hyperbolic singularity. But one can the converse, as done by C. Rousseau
and L. Teyssier [28]. By cutting “sectors” attached to hyperbolic points with a
special, asymptotically spiraling shape, the restricted foliation can be forced to
behave locally very much like a node or a saddle. The process yields an orbital
necklace ˝� obtained exactly in the same way as for � D 0, with an additional
linear identification. This approach allows to cover the whole parameter space. The
conformal structure of the necklace ˝� depends locally analytically on � and is
continuous as � ! 0 (in particular sectors for Z� converge toward standard sectors
for Z0 in the Hausdorff distance). Therefore unfoldings of foliations are locally
classified by families of gluing mappings unfolding the local orbital invariants of Z0.

The problem of giving a complete local classification of generic unfoldings
(identifying the total image of the classification) is still open, except for the case
k D 1 if one compiles the results of [24, 27]. The realization problem is double:

1. realize, for fixed �, a given necklace as the leaves space of some Z�,
2. glue all Z� for � 2 # to form an unfolding of Z0.

Item (1) poses no specific problem and can be dealt with in the usual manner
using tools borrowed from complex geometry, by building an abstract almost-
complex realization, then invoking Newlander–Nirenberg theorem to incarnate it
as a germ of a foliated analytic manifold. On the contrary Item (2) is linked with
the combinatorial structure of the covering of the parameter space by (contractible)
open cells on which the invariants � 7! m� of the unfoldings are holomorphic.
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This decomposition is not trivial: it is indeed impossible to perform the previous
sectorial decomposition uniformly for all values of �. The reason is the following:
the transfiguration of a saddle point into a sectorial saddle-like hyperbolic point
cannot be pursued after a certain point, corresponding to parameter values for which
a saddle-like singularity tends to a genuine node. A node cannot be tricked into
believing it behaves like a saddle. One must therefore deal with finite families�
.m�/�2#`

�
`

of unfoldings of invariants of Z0, where # D S
` adh

�
#`
�
. On neigh-

boring intersections#`\# Q̀ all singularities are hyperbolic and the configuration is
that of a Glutsyuk deformation. The invariants m`
 and m

Q̀

 must relate to Glutsyuk

tori decomposition, since all three objects encode the same leaves space and the
same underlying dynamics. Expressing this identity yields necessary compatibility
conditions (Sect. 22.12.3) that m`
 and m

Q̀

 must obey, as explained clearly in [26].

In the case k D 1 the compatibility conditions guarantee that Newlander–Nirenberg
theorem applies in parameter space. Corresponding conditions for k > 1 have not
been written down and proved sufficient, although there is little doubt that they are.
We do not present further details of this approach.

Another way of achieving a complete classification would be to describe a
collection of normal forms for generic unfoldings. Normal forms have been devised
recently by Schäfke and Teyssier [30] for convergent saddle-nodes. These families
can be unfolded to families of normal forms [29], in the case of pure convergence:
every member Z� of the unfolding has a heteroclinic connection or, equivalently,
sectorial weak separatrices patch continuously for all � 2 .C; 0/. This method
leaves open the generic case where there are no homoclinic connection in the
unfolding, although general normal forms are expected to be worked out soon.

To conclude this introduction we give a precise definition of what changes of
variables and parameters we allow between unfoldings. Section 22.5 recalled the
diverse notions of (formal, local) conjugacy and orbital equivalence between vector
fields in X

�
C2; 0

�
. We need to precise the corresponding notions for unfoldings in

order to perform their classification.

Definition 2. We say that two unfoldings .Z�/�2# and
�
eZ Q�
�

Q�2 Q# of codimension
k are (formally, locally) conjugate (resp. orbitally equivalent) if there exists an
association

$ W .�; x; y/ 7�! .� .�/ ; $� .x; y//

in the corresponding regularity class, such that:

1. � 2 �Ck; 0
� 7! Q� D � .�/ has invertible derivative at 0,

2. the identityeZ�.�/ �$� D Z� ı$� is satisfied at a formal level. When $ is analytic
this is equivalent to the property that, for each � 2 �Ck; 0

�
, the component $� is

a conjugacy (resp. orbital equivalence) between Z� andeZ�.�/.

If the above conditions are fulfilled, we write

$� .Z�/� D �eZ Q�
�

Q� :
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We wish to describe the (formal, local) classification in the set

SNU .1/ WD f.Z�/� W .Z�/� generic unfolding of multiplicity 1g :

Definition 3. We use the notations Modfor .1/ and Modloc .1/ to stand for the
moduli spaces of SNU .1/ under corresponding conjugacy. The orbital moduli
spaces under orbital equivalence is written Modorb

for .1/ and Modorb
loc .1/, respectively.

The same notational convention is used for the class of an unfolding:

Œ.Z�/��
]
? 2 Mod]? .1/ :

We need to slacken a little the clause of uniqueness for normal forms: we require
that there exists � 2 N such that the equivalence class of ŒZ��

]
? is contained in the

orbit of a C f�g�-action.

22.7 Every Step of the Way

For the sake of clarity we present only the case of codimension k D 1. Unlike
saddle-node singularities, where a general complete classification is not harder to
obtain than for k D 1, unfoldings for k > 1 are more difficult to deal with this
way, due to the need of splitting the parameter space into many cells. The specific
problems and corresponding results are detailed in [28].

Let us summarize the different steps leading to the classification of generic
saddle-node unfoldings Z
 of codimension 1. The section ends by the statement
of the main theorems. Most important items in the list below are developed later
on in the course of the chapter. There we will outline the precise setting of and
problems occurring in the upcoming constructions, while referring to [28] for all
details concerning actual proofs.

22.7.1 Preparation of the Family (Sect. 22.8.1)

We can choose local conformal coordinates .�; x; y/ in which Z
 can be put under
prepared form

Z� D U�

�
X1
� C .� � � / @

@y

�

where X1
 , called the orbital model, is formally orbitally equivalent to Z
, the no-
tation .� � � / @

@y denotes a transverse holomorphic perturbation and U
 2 C f�; x; yg�.
Moreover the singularities of Z� are located at points in fy D 0g corresponding to
the roots of the polynomial
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Fig. 22.9 A sectorial decomposition of the x-variable when k D 1 for three values of the
parameter. (a) � D �1; (b) � D exp �i�

8
; (c) � D exp i�

8

P� .x/ WD x2 C � : (22.23)

A formal conjugacy between prepared unfoldings must fix the parameter �: it is a
formal invariant. In the sequel we only consider prepared unfoldings, which allows
us to work for fixed �. To lighten notations we omit to mention the subscript “�” in
all the following items.

22.7.2 Sectorial Decomposition (Sect. 22.10)

The local invariants of Z
 are built by comparing transition maps between two
neighboring normalizing charts. By this we mean to cut

�
C2; 0

� nP�1 .0/ up into
two overlapping open canonical sectors Vns and V sn on every one of which Z is
orbitally equivalent to the model X1. The canonical sectors are fibered over squid
sectors V] in the x-variable, displayed in Fig. 22.9. The intersection Vns \ Vsn has
three components:

• a saddle-part Vs having only ss in its adherence,
• a node-part Vn having only sn in its adherence,
• a gate-part Vg having both points in its adherence.

We write

V] WD V] � .C; 0/ ; ] 2 fn ; ns ; s ; sn ; gg
the corresponding fibered sectors. There are two transitions to consider for orbital
equivalence (happening in the saddle- and node-part), and one more to account for
conjugacy (over the saddle-part).

We denote by F the (germ of a) singular foliation induced by Z. Each canonical
sector is attached to both singular points sn and ss. The boundary of a sector is carved
in such a way that the leaves of FjV] near sn behave like those of a node: every
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Fig. 22.10 Modulus of the
y-component of a leaf over a
sector V] in the x-variable
represented as a height map
in real 3-space

sn
ss

leaf accumulates on the singular point. Near ss the foliation is similar to a saddle:
every leaf but one (the local invariant manifold) stays far away from the singular
point (Fig. 22.10). This topological configuration allows us to mimic constructions
performed in Sect. 22.4 for affine unfoldings. In particular the sectorial space of
leaves is a conformal line

˝] D H]
�
V]
� D C ;

where H] 2 Holo
�
V]
�

is the canonical first integral of FjV] , having connected
fibers.

22.7.3 Straightening of the Weak Separatrices

If a singularity p of X is not a node, there exists only one integral curve with
smooth analytic closure passing through p (a separatrix, or invariant manifold) and
transverse to the vertical lines fx D cstg. It is given by the graph of a holomorphic
function x 7! s .x/, with holomorphic continuation over every canonical sector.
We call such an analytic continuation a sectorial weak separatrix. It corresponds
to the level 0 of the canonical first integral H]. In particular both sectorial weak
separatrices coincide in saddle- and gate-parts.

Applying the change of coordinates  W .x; y/ 7! .x; y C s .x// to Z straightens
the sectorial weak separatrix into fy D 0g. Notice that s cannot (in general) be
analytically continued on a whole neighborhood of the other singularity, as a given
sectorial weak separatrix may not coincide with the other one when continued (the
typical s is multivalued). When s does extend holomorphically on a neighborhood of
all singular points we say that a heteroclinic connection occurs between ss and sn.
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22.7.4 Normalization Strategy (Sect. 22.8.2)

After straightening, we can write:

Z D UX

X D X1 C yR
@

@y

for some (sectorial) holomorphic functions U and R. It turns out the conjugacy
equation O�X1 D X is equivalent to the following orbital cohomological
equation

X � O D �R (22.24)

if one seeks a conjugacy in the form

O .x; y/ D .x; y exp O .x; y// :

Also the conjugacy equation T �X D UX takes the form of a temporal cohomolog-
ical equation

X � T D 1

U
� 1 (22.25)

for changes of coordinates

T .x; y/ D ˚
T.x;y/
X .x; y/

obtained by taking a dependent time in the flow ˚ t
X .x; y/ of X. Therefore the

normalization process has been reduced to solving two cohomological equations.

22.7.5 Formal Classification (Sect. 22.8.3)

The straightening step can be realized at a formal level. The orbital cohomological
equation (22.24) can be solved formally, more or less by construction of the model
X1 and of the prepared form. The temporal cohomological equation (22.25) needs
some adjustment since 1

U � 1 may not belong to the image of the Lie derivative
associated with X. We can find an affine function u 2 C Œx��1, relatively prime with
P, such that 1

U � 1
u

belongs to that image. Hence uX1 is formally conjugate to Z,
finally yielding a polynomial formal model

Zu WD uX1 :

This complete formal classification of generic unfoldings ranges in the space of
germs C f�g3.
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Fig. 22.11 An asymptotic
cycle and its projection on the
x-variable (Modulus of the
y-coordinate of the leaf as a
height-map)

sn

ss

V nsn

γ(p)

p

22.7.6 Local Classification (Sect. 22.11)

The normalizing cohomological equations (22.24) and (22.25) admit a bounded
solution on each canonical sector. They are obtained by integrating the right-hand
side against dx

P along asymptotic paths tangent to F, ending at the point .x; y/ and
accumulating on sn in backward time. The node-like nature of sn guarantees that
every point in the sector can be reached by asymptotic paths, and that both solutions
coincide in the node- and gate-part.

Therefore Z is conjugate to the formal model Zu on each canonical sectors. The
local class of Z
 is thus completely determined by the following data.

• Its orbital class ' WD �
'n; 's

�
, obtained by comparing:

– the sectorial weak separatrices in the node-part, measuring how far the
vector field is from having a heteroclinic connection and encoded in a
translation h 7! h C 'n,

– the sectorial solutions to (22.24) in the saddle-part, measuring how far the
continued sectorial solution of the orbital cohomological equation is from
uniformity (that is, continuity).

• Its temporal class f , encoded by comparing the sectorial solutions to (22.25)
in the saddle-part.

In both cases where cohomological equations are involved, comparing sectorial
solutions means to consider the period
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g .p/ WD 1

2i�

Z


.p/
G

dx

P

of the right-hand side G along an asymptotic cycle 
 .p/ circling around ss and
tending asymptotically to sn both in forward and backward time, while passing
through p 2 V s, as displayed in Fig. 22.11. This gives an integral representation of
the invariants over the saddle-part (Sect. 22.11.5.2). The value of the integral does
not depend on the choice of p in a fixed leaf of the restriction of F to the sector

Vnsn WD �
C
2; 0
�n �Vn [ Vg

�

because the leaf is simply connected. Hence g is a first integral of X and for that
matter factors as a (germ of a) holomorphic function of the canonical first integral
Hns, holomorphic on Vns:

g D TX
 .G/ ı Hns ; TX
 .G/ 2 hC fhg :

Remark 10. For the period TX
 .G/ to be well defined, we need to mod it out by the
degree of freedom in the choice of the sectorial first integrals Hns. This freedom
results from a faithful action of C� by linear changes of variables h 7! ch. We leave
such essentially irrelevant technicalities out till subsequent sections.

For a fixed formal model we finally obtain a local classification ranging in a
functional space

Œ.Z�/��loc 7�! .� 7! m�/ ; m� D �
'n
�; '

s
�; f�

� 2 C � hC fhg � hC fhg :

Notice how cowardly we shied away from discussing the dependence in the
parameter � until now. The result to come, proved in Sects. 22.11 and 22.13.1, gives
a precise description of that dependence.

Theorem 4. There exists a cover of .C; 0/ by the adherence of two germs of
sectors#C; #� attached to 0 (called cells), for which we can find a complete
local classification of generic unfoldings of codimension 1 with fixed formal class,
ranging in the space of those collections

�
m�
 ;mC


�
satisfying:

• .�; h/ 2 #˙ � .C; 0/ 7! m�̇ .h/ is holomorphic with continuous extension to
adh

�
#˙� � .C; 0/, and m�̇ is holomorphic for every � 2 @#˙,

• m�̇ 2 C � hC fhg � hC fhg,
• the compatibility condition, given explicitly in Definitions 16 and 17.

By construction the model u
X1
 has local class m
̇ D 0.
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22.7.7 Normal Forms for Pure Convergence (Sect. 22.13.2)

When 'n
 D 0 (we say the unfolding is purely convergent) we provide normal
forms for Z
. Remark both sectorial separatrices glue to form a holomorphic weak
separatrix (heteroclinic connection) and therefore purely convergent unfoldings are
locally conjugate to prepared unfoldings for which fy D 0g is a leaf, and vice versa.

Theorem 5. Let Convergent .1/ be the space of all purely convergent, generic
unfoldings of codimension 1. Define

� WD
(
0 if �0 … R�0
1C b��0c otherwise

Section .1; �/ WD x�C1yC f�; x�yg :

Then the collection
�

u

1C u
Q


�
X1
 C yR


@

@y

�
W Q
; R
 2 Section .1; �/

�

is a family of normal forms for Convergent .1/.
More precisely, two unfoldings in that form for .Q
;R
/ and

�eQ
;eR

�

are locally
analytically conjugate if there exists c
 2 C f�g� such that

(
R� .x; y/ DeR� .x; c�y/

Q� .x; y/ D eQ� .x; c�y/
;

amounting to a linear C f�g�-action.

22.8 Preparation and Formal Classification

22.8.1 Preparation

Theorem 6. There exists local conformal coordinates .�; x; y/ in which Z
 has the
following prepared form

Z� D U�X�

X� .x; y/ D P� .x/
@

@x
C .y .1C ��x/C P� .x/R� .x; y//

@

@y
(22.26)
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where

8
ˆ̂̂
<̂

ˆ̂̂
:̂

� 2 .C; 0/
�
 2 C f�g
R
 2 C f�; x; yg
U
 2 C f�; x; yg�

are arbitrary.

Notice that every prepared form is a generic unfolding of codimension 1, for
Sing .X�/ D fy D 0g \ P�1

� .0/. It turns out that formal changes of coordinates
fixing the general form of the family (22.26) must leave the parameter � invariant.
This parameter therefore plays a special role for the unfolding, and we call it the
canonical parameter. It thus suffices to work with fixed � in order to perform the
local classification.

22.8.2 From Normalization to Cohomological Equations

The whole procedure relies on writing the conjugacy equation $�Z D eZ as
cohomological equations

Z � F D G (22.27)

for well-chosen right-hand sides. The key computation is the following proposition.

Proposition 4. Let X and Y be two germs of a holomorphic vector field on a domain
U such that ŒX;Y� D 0. If f is holomorphic on U (resp. a formal power series at some
point p 2 U), then

$ .x; y/ WD ˚
f .x;y/
Y .x; y/

has same regularity as f , and satisfies

$�X D X � X � f

1C Y � f
Y :

In particular, the following properties hold.

1. (Temporal conjugacy) UZ is conjugate to VZ by ˚T
UZ if and only if

Z � T D 1

U
� 1

V
:
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2. (Orbital conjugacy) Assume X t Y. Then X is conjugate to X C RY by ˚O
Y if

and only if

X � O D R :

Proof. It is sufficient to perform computations at a formal level. We use Lie
formula (22.19) so that, because X � Y D Y � X,

X ı $ D
X

n�0

f n

nŠ
Y �n .X � Id/

D
X

n�0

f n

nŠ
X � .Y �n Id/ :

Besides

D$ .X � RY/ D .X � RY/ � $

D
X

n�0
.X � RY/ �

�
f n

nŠ
Y �n Id

�

D .X � RY/ � f �
X

n�0

f n

nŠ
Y �nC1 Id C

X

n�0

f n

nŠ
.X � RY/ � Y �n Id

D X ı $ C .X � f � R .1C Y � f // � Y ı $ :

Therefore

R D X � f

1C Y � f
:

To prove 1. it suffices to take X WD UZ and Y WD UZ. ut
By taking .Zs/s in prepared form (22.26) we can write

Z� D U�X�

X� D
�

X1
� C P�R�

@

@y

�

X1
� WD P�

@

@x
C y .1C ��x/

@

@y
:

Notice that



X1
� ; y

@

@y

�
D 0
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so we can apply Proposition 4 Item (2), as soon as Rs can be factored by y, that is
once the weak separatrix is straightened into fy D 0g.

22.8.3 Formal Classification

The strategy is the following.

• There exists a unique weak separatrix family, that is a formal family of curves
fy � s� .x/ D 0g such that

P� .x/ Os0
� .x/ D Os� .x/ .1C ��x/C P� .x/R� .x; Os� .x// ; Os
 2 C ŒŒ�; x; y�� :

• After applying the change of coordinates .x; y/ 7! .x; y � Os� .x// to X� we
obtain the formal vector field

bX� D X1
� C P�bR�y

@

@y

where

bR� .x; y/ WD R� .x; y C Os� .x// � R� .x; Os� .x//
y

: (22.28)

• The cohomological equation

bX� � bO� D �P�bR�

admits a unique formal family of solutions bO
 2 C ŒŒ�; x; y�� such that
bO� .0/ D 0. Therefore X1
 is orbitally formally conjugate to bX
 by

bO
 WD ˚
bO

�

y @
@y
;

thus formally conjugate to X
 by a .�; x/-fibered formal conjugacy. Remark
that the previous cohomological equation is equivalent to one involving X� in
the original coordinates:

X� � O� D �P�
R� .x; y/� R� .x; Os� .x//

y � Os� .x/ : (22.29)

• The cohomological equation with u
 2 C ŒŒ�; x���

X� � bT� D 1

U�

� 1

u�
(22.30)
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admits a formal solution if and only if

U� .x; y/ D u� .x/C O
�
x2
�C O .y/

where u� is relatively prime with P� in the factorial ring C ŒŒ�; x; y��. The
holomorphic germ u
 can therefore be taken as the remainder of the Euclidean
division of U� .x; 0/ by P� .x/. In particular for each value of the parameter u�
is affine. Because bO� is x-fibered, the vector field u�X1

� is formally conjugate
to u�X�, thus to Z�.

The last two claims derive from the following easy computational lemma.

Lemma 4. [29] Let bG
 2 C ŒŒ�; x; y�� be given. The cohomological equation

X� � bF� D bG�

admits a formal solution bF
 2 C ŒŒ�; x; y�� if and only if bG� D O .P� .x// C O .y/.
This family of solution is unique up to the addition with an arbitrary formal power
series belonging to C ŒŒ���, corresponding to the choice of the value bF� .0/.

Discounting additional straightforward computations, we just established a formal
classification with normal forms.

Theorem 7. [29] We have complete classifications

Modfor .1/ ' C fœg Œx���1 � Modorb
for .1/

Modorb
for .1/ ' C fœg

with normal forms

NFfor .1/ WD C f�g Œx���1 NForb
for .1/

NForb
for .1/ WD

�
P
 .x/

@

@x
C y .1C �
x/

@

@y
W �
 2 C f�g

�
:

Definition 4. An unfolding bZ
 in NForb
for .1/ is now fixed, corresponding to the

choice of the holomorphic germs �
 W � 7! �� and u
 W .�; x/ 7! u� .x/.
It is referred to as the model.

The local classification is obtained by repeating the construction on sectors over
which bO� and bT� have holomorphic “sums”. The local invariant measures how far
from converge these power series are.
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sn

ss

V ns

V sn

V nV s

V g

sn

ss

V ns

V sn

V nV s
V g

Σ

−s

s

Fig. 22.12 Two non-equivalent decompositions by squid sectors with the same value of the
parameter � D �s2. Notice that the nature of the singular points (node- or saddle-like) swaps
from one configuration to the other

22.9 Parameter Space

To carry out the construction of the sectorial decomposition we need to follow
singularities as � varies. Although the set Sing .Z�/ depends continuously on �, it is
not possible to mark and follow continuously singularities, as these get exchanged
by turning around the bifurcation value of � (corresponding to P0 .x/ D x2). This
phenomenon has a prominent bearing on the construction of sectors, since for the
same value of � one obtains dynamically non-equivalent coverings, as illustrated in
Fig. 22.12. We resolve the ambiguity in the labeling of the singularities by using the
two-fold branched covering

bP
 W s 2 C 7�! .x � s/ .x C s/

and take s, which determines completely the position of the roots ˙s, as new
parameter for the constructions.

Definition 5. Let us call Param .1/ the complex line C viewed as the s-space.
The branched covering

� W Param .1/ �! C

s 7�! � .s/ WD �s2 ;

satisfying the identity

P�.s/ D bPs ;
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is called the canonical re-parameterization. We will actually use only strict
subsectors of Param .1/, given for � > 0 by

˙ WD
�

s W 0 < jsj < � ; jarg sj < 2�

3

�

(where the principal determination of the argument on CnR�0 is used). For each
s 2 Param .1/ let us define

sn WD .s; 0/

ss WD .�s; 0/ ;

which are the singularities of X�.

Remark 11. Notice that � .˙ [ f0g/ D .C; 0/ so every original parameter is
covered this way. The explanation as to why we cannot take ˙ [ f0g D .C; 0/

will be given in the course of the upcoming sections (especially Sect. 22.10.3).

The next properties will be used without explicitly referencing the trivial lemma
beneath.

Lemma 5.

1. The automorphism group of the covering � is isomorphic to Z

2Z
.

2. The critical set � of � is the origin.
3. A (germ of a) holomorphic function Of W Param .1/ ! C factors as f ı � with f

holomorphic if and only if Of is even (i.e., Z

2Z
-invariant).

Definition 6. In all the remaining text, we make the following notational conven-
tions:

• when an object ˝ is subscripted with “s” we imply s 7! ˝s depends on s in a
(holomorphic, continuous) way on ˙ ,

• when an object Q̋ is subscripted with “�” we imply � 7! Q̋
� depends

(formally, holomorphically, continuously) on � 2 .C; 0/.

22.10 Canonical Sectors

22.10.1 Splitting Vector Fields

The boundary of a squid sector will be defined by real trajectories of vector fields

&s .x/ WD #P� .x/
@

@x

for some suitable choice of a direction # D # .s/ 2 S1. In order to ensure the
upcoming construction matches our needs, we must ensure that the vector field is
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sufficiently generic. Let us explain what we mean by describing some dynamical
data attached to the planar real-analytic foliation F induced by &s on C. The most
complete reference on the subject is [2].

• Sing .F/ D P�1
� .0/, in particular F is regular near 1. We call local

separatrix of &s any one of the two leaves of Fj.C;1/nf1g accumulating on

1. We call separatrix the corresponding leaf in FjC.
• Because &s is holomorphic, F is free from limit (poly)cycles. Therefore the

fate of a non-singular trajectory � of &s can only be one of the following
(Bendixon–Poincaré theorem).

– � is a separatrix and its adherence connects 1 to either a singular point
˙s of &s, or 1. In the former case we say that � lands at ˙s. In the latter
case we say � is a homoclinic connection (happening exactly when the
continuations of both local separatrices meet en route).

– � connects (asymptotically) both singular points s and �s.
– � is a non-isolated simple loop. In that case both ˙s are center points.

Definition 7. Take s 2 Param .1/. We say that &s is splitting if it admits no
homoclinic connection.

Lemma 6. The following conditions are equivalent.

1. &s is splitting.
2. There exists a leaf connecting s and �s.
3. #P0

� .˙s/ … iR.

Let us briefly explain why this lemma holds. When s ¤ 0 the vector field &s

is locally linearizable around each root ˙s of P�, and its linear part is given by
#P0

� .˙s/ .x � s/ @
@x . Therefore #P0

� .˙s/ is purely imaginary (non-zero) if and only
if ˙s is a center point of &s.

• When ˙s is a center, it lies within an open basin B˙ of periodic trajectories. In
particular no leaf can connect s and �s. Moreover @B˙ must be a homoclinic
connection, and &s is not splitting.

• When ˙s is not a center, it is either a focus or a sink. In any case it lies within
an open basin of attraction B˙ (respectively in forward or backward time) and
any integral curve of &s crossing the basin must accumulate on ˙s one way
or the other. There are no trajectory accumulating on s (or on �s) in both
directions.

22.10.2 Transvestite Hyperbolic Points

For l 2 C
� we consider the linear vector field (Fig. 22.13)

W .x; y/ WD lx
@

@x
C y

@

@y
:
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Fig. 22.13 A leaf of a
node-like foliation over a slit
disc, cut out from a
hyperbolic singularity
(modulus represented as a
height-map, argument as
colors in the base) (Color
figure online)

Save for the separatrix fx D 0g, the leaves of FW are included in level sets of the (in
general) multivalued first integral

H .x; y/ WD yx� 1
l :

As explained already in Example 8, the space of leaves of FW is the quotient

˝W WD C
�
=Z [ ˚

0x; 0y
	
;

where 0x and 0y represent the branches of fxy D 0g n f0g. The quotient corresponds
to the multiplicative action of Z on the space of initial values C�

y 7�! y exp �2i�n
l ; n 2 Z ;

encoding the monodromy of H.
Choose # 2 S1 and pick a real-time trajectory of # lx @

@x , given by

t 2 R 7�! x .t/ WD x� exp .# lt/ ; x� 2 C
� :

We can lift this path into FW through the projection

˘ W .x; y/ 7�! x ;

starting from some .x�; y�/ 2 C� � C. We obtain the path tangent to W

t 2 R 7�! .x .t/ ; y .t// ; y .t/ D y� exp .# t/

satisfying the identity H .x .�/ ; y .�// D cst.
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Notice that

lim
t!˙1 x .t/ D 0 () ˙< .# l/ < 0

lim
t!˙1 y .t/ D 0 () ˙< .#/ < 0 or y� D 0 :

Definition 8. For given l 2 C� we say that # 2 S1 is a saddle-direction (resp.
node-direction) for l if:

• < .#/ > 0,
• < .# l/ < 0 (resp. < .# l/ > 0).

Remark 12. Just pointing out the obvious.

1. l admits a saddle-direction if and only if l … R>0 (i.e., W is not a node).
2. l admits a node-direction if and only if l … R<0 (i.e., W is not a saddle).

For such a choice of # , the curve t 7! x .t/ is a spiral (specializing to a straight line
when # l 2 R). Consider the domain

V WD Cn exp
�
# lR

�

obtained by slitting the complex line along the adherence � of a real integral curve
of # lx @

@x , and build the fibered domain of the complex plane

V WD V � C :

Then FW jV is saddle-like (resp. node-like) in the sense that only one (resp. every)
leaf accumulates on 0. Notice that a saddle-like (resp. node-like) singularity is
reached in positive (resp. negative) time. Also, (any determination of) the first
integral H on V is holomorphic. The following properties are immediate to establish.

Lemma 7.

1. FW jV is saddle-like if and only if for every U D �
C2; 0

�
we have H .U \ V/ D

.C; 0/ and its diameter goes to 0 as that of U does.
2. FW jV is node-like if and only if for every U D �

C2; 0
�

we have H .U \ V/ D C.

22.10.3 Sectorial Decomposition

We work here within a fixed formal class �
. We find a covering of .C; 0/ n f˙sg
by two squid sectors Vns

s and Vsn
s attached to ˙s, such that near sn D .s; 0/ (resp.

ss D .�s; 0/) the linear part of X� defines a node-like (resp. saddle-like) foliation
over both sectors, except for forbidden values of s we shall describe afterward.
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The linear part of X� at the singularity .˙s; 0/ is

˙2s .x � s/
@

@x
C y .1˙ ��s/

@

@y
;

while its local analytic invariant is given by

lṡ WD ˙2s

1˙ ��s
: (22.31)

Both functions s 7! lṡ are holomorphic on .C; 0/. Notice that

lCs D l��s

and, when s ¤ 0,

1

lCs
C 1

l�s
D �� :

Definition 9. The curves
˚
s ¤ 0 W ˙lṡ < 0

	

are called the forbidden curves associated with �
. Values of the parameter for
“C” (resp. “�”) correspond to configurations where X� is a saddle at sn (resp. a
node at ss).

Till the end of the section we consider the principal determination of the argument
on CnR�0. For each s 2 ˙ set

# .s/ WD exp
�i arg s

2
: (22.32)

Since

lṡ �0 ˙2s

the following lemma holds (Fig. 22.14).

Lemma 8. There exists � > 0 so that for all s 2 ˙
ˇ
ˇarg

�
# .s/ lCs

�ˇˇ <
3�

8
(22.33)

ˇ
ˇarg

�
# .s/ l�s

�ˇˇ >
5�

8
:
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Fig. 22.14 The typical leaf above a slit disc (modulus represented as a height-map, argument as
colors in the base) (Color figure online)

V ns

V sn

V s V n

sn

ss V g

ss

sn

V ns

V s V n

V g
s0

s1
n0

n1

g

C

a b

Fig. 22.15 (a) A sectorial covering by squid sectors. (b) Structure of a single squid sector. White
squares represent construction points of Vns

s , while unfilled squares do those of Vsn
s

In particular # .s/ is a node-direction (resp. a saddle-direction) for lCs (resp. l�s ),
and˙ meets no forbidden curve.

Definition 10. We refer to Fig. 22.15b. Let r > 2� > 0 and s 2 ˙ [ f0g. We recall
the vector field
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&s D # .s/P�
@

@x

where # is given by (22.32). The squid sector Vns
s of radius r is the domain

bounded by

• the forward trajectory of P0
@
@x starting from n0 WD r exp �i�

8
till it reaches 2 jsj

at a point n1, then the complete forward trajectory of &s,
• the backward trajectory of P0

@
@x starting from s0 WD r exp 9i�

8
till it reaches

2 jsj at a point s1, then the complete backward trajectory of &s,
• the integral curve of &s passing through the “outward” point of intersection

g between the perpendicular bisector of Œ�s; s� and a circle of radius small
enough not to meet the already built paths (of the order of jsj .1C cos arg s/),

• the circular arc C WD r exp i
� i�

8
; 9i�
8

�
.

The squid sector Vsn
s of radius r is built in much the same way, replacing the

circular arc C by r exp i
� 9i�

8
; i�
8

�
.

We mention without proof the next descriptive lemma.

Lemma 9. (See [28])

1. The intersection Vns
s \ Vsn

s has three components if s 2 ˙:

• a saddle-part Vs
s having only ss in its adherence,

• a node-part Vn
s having only sn in its adherence,

• and if s ¤ 0, a gate-part Vg
s having both points in its adherence.

When s D 0 we define the saddle- or node-part as the components crossing
R<0 or R>0, respectively.

2. As s ! 0 in ˙ , the squid sectors V]
s tend (for the Hausdorff distance) to the

sector V]
0 associated with the saddle-node Z0.

3. The length of @V]
s is uniformly bounded for s 2 ˙ .

Remark 13. Item (3) above is really important in order to get uniform bounds in
s 2 ˙ for functions obtained by integrating over spirals included in V]

s , which
includes almost all the upcoming material.

22.11 Local Classification

We work here within a fixed formal class �
. We take r; r0 > 0 and � > 0

sufficiently small so that

˙ � U WD
�

s W 0 < jsj < � ; jargsj < 2�

3

�
� �rD � r0

D
�

is a domain on which:

• every data appearing in the preparation Theorem 6 is holomorphic and
bounded,
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• .s; x/ 7! P�.x/
1C��x is holomorphic and bounded,

• Lemma 8 holds.

The actual values of �; r; r0 may be implicitly decreased finitely many times in the
course of the construction. For any s 2 ˙ we denote V]

s the squid sector of radius r
associated with s built in Definition 10. We follow now the strategy introduced for
the formal classification, only on canonical sectors

V]s 	 V]
s � r0

D ; ] 2 fn ; ns ; s ; sn ; gg :
Before building the sectors, let us first introduce the space

Holoc .D/ WD ˚
f
 2 C0 .adh .D// W f
 2 Holo .D/ ; .8s 2 adh .˙// fs 2
Holo .Vs/g (22.34)

where D is a subdomain˙ � Cn of the form

D D
[

s2˙
fsg � Vs :

The key point is to provide weak sectorial separatrices s
]

 and solutions F]
 to

cohomological equations (22.27) which belong to Holoc
�
D]
�

and Holoc
�
D]
�
,

respectively, with

D] WD
[

s2˙
fsg � V]

s ; (22.35)

D] WD
[

s2˙
fsg � V]s :

22.11.1 Sectorial Weak Separatrices

Theorem 8 (See [28]). Up to decrease �; r; r0 there exist two unique families of
functions s

]

 2 Holoc

�
D]
�
, called in the following sectorial (weak) separatrices,

such that for any s 2 ˙ [ f0g:

1.
n
y D s

]
s .x/

o
	 V]

s � r0D is an integral curve of X�,

2. limx!˙s s
]
s .x/ D 0,

3. sns
s .x/ D ssn

s .x/ for all x 2 Vg
s [ Vs

s .

The work of Klimeš [14] offers an other, less geometric (but worth mentioning) ap-
proach to the question, based on Borel–Laplace transform of the formal normalizing
series.
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22.11.2 Asymptotic Paths and Canonical Sectors

Definition 11. Let s 2 ˙ [ f0g. An asymptotic path over V]
s ending at p 2

U \
�

V]
s � C

�
is a regular, smooth curve 
 W R�0 ! V]

s � C meeting the next

requirements.

• 
 .0/ D p.
• P
 D cX� ı 
 for some smooth function c. In other words, 
 is tangent to X� or,

equivalently, its image is contained in a single leaf of F�.
• limt!�1 
 .t/ D sn.

We abusively write 
 W �
sn ! p

�
or
�
sn ! p

�
to stand for such an asymptotic

path ending at p.

Theorem 9 (See [28]). Up to decrease �; r; r0 the following properties hold for
s 2 ˙ [ f0g.

1. The sets (called canonical sectors)

V]s WD ˚
p 2 U \ �

V]
s � C

� W 9 �sn ! p
�	

; ] 2 fns ; sng

are domains containing smaller sectors V]
s � QrD with Qr > 0 independent on s.

The union

Vs WD Vns
s [ V sn

s

is a pointed neighborhood of fx D ˙sg \ U .
2. Each leaf of F�jV]s is simply connected, and if 
 and Q
 are two asymptotic paths

ending at p 2 V]s , then the asymptotic cycle

�
 Q
 WD
(

t � 0 7�! Q
 .t/
t � 0 7�! 
 .�t/

is trivial, in the sense that there exists an asymptotic tangential homotopy
h W Œ�1; 0� � R ! V]s between 
�1 Q
 and sn, a mapping such that:

• h is uniformly continuous,
• h .0; �/ D 
�1 Q
 ,
• h .�1; �/ D sn,
• for every t real h .�; t/ W sn ! h .0; t/,
• for every � negative real h .�; �/ W sn ! p.

3. Take p 2 Vns
s \ V sn

s and consider an asymptotic cycle 
 .p/ obtained by
concatenating two asymptotic paths ending at p, one of which lies in Vns

s and
the other one in V sn

s .
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a. If p 2 Vg
s [ Vn

s , then 
 .p/ is trivial.
b. If p 2 V s

s , then 
 .p/ is trivial if and only if p belongs to the sectorial
weak separatrix. Two such asymptotic cycles 
 .p/ and Q
 .Qp/ are tangentially
homotopic if (and only if) p and Qp are in the same (sectorial) leaf.

Proof.

1. Straighten the sectorial weak separatrix to fy D 0g by applying $s W .x; y/ 7!�
x; y C s

]
s .x/

�
beforehand. Along the real trajectories t � 0 7�! .x .t/ ; y .t//

of # .s/ $�
s X�, a direct variational computation shows that � .t/ WD jy .t/j2 D

y .t/ y .t/ satisfies the differential relation

P� D 2�< .1C � � � / > 0 ; (22.36)

where .� � � / stand for a term smaller than 1
2

in modulus. Actually � is exponen-
tially increasing therefore t 7! y .t/ tends to 0 as t ! �1. By construction of
the squid sectors t 7! x .t/ converges towards sn. The argument works well if x
remains in a bounded region, which may not be always the case. This is countered
by altering slightly # .s/.

2. Because of the previous variational estimate, we can prove that homotopies in
the x-space along the flow of �# .s/P�

@
@x lift in the leaf through the projection

˘ W .x; y/ 7! x. Indeed the only obstructions preventing the lift is the
tangency between X� and ˘�1 .cst/, which does not happen close to 0. Since
� is decreasing the trajectory remains close to 0. As in [35], it is then possible
to prove that any sectorial asymptotic cycle is trivial, by deforming it using such
contracting homotopies.

3. The argument is similar to (2) save for the fact that the flow of �# .s/P�
@
@x always

drive the x-coordinate away while crossing saddle parts. Therefore candidate
trivializing homotopies of 
 .p/ in the x-variable cannot be lifted all the way
if p 2 V s

s .

22.11.3 Sectorial Solutions to Cohomological Equations

Theorem 10 (See [28]). For s 2 ˙ define

Vnsn
s WD Vsn

�
Vg

s [ Vn
s

�

Dnsn WD
[

s2˙
fsg � Vnsn

s

and take G
 2 Holoc .Dnsn/ such that .s; x/ 7! Gs.x;0/
P�.x/

is bounded. For s 2 ˙ and

p 2 V]s define
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F]s .p/ WD
Z

.sn!p/
Gs

dx

P�

where
�
sn ! p

�
is an asymptotic path of X
 ending at p. The following properties

hold.

1. F]s .p/ is an absolutely convergent integral.
2. F]
 is the unique family of solutions of the cohomological equation X
 � F
 D

G
 which belongs to Holoc
�
D]
�

and vanishes at each sn. Another such solution
differs from F
 by the addition of a function f
 2 Holoc .˙/.

3.

Fsn
s .p/� Fns

s .p/ D
(
0 if p 2 Vn

s [ Vg
s

R

.p/ Gs

dx
P�

if p 2 V s
s

where 
 .p/ is an asymptotic cycle passing through p.
4. The following properties are equivalent.

a. There exists F
 2 Holoc .Ds/ such that X
 � F
 D G
.
b. For all s 2 ˙ and p 2 V s

s

Z


.p/
Gs

dx

P�
D 0 :

Proof.

1. This follows from the estimate (22.36) since for t � 0 close to 1
dx .t/

P� .x .t//
D # .s/ dt

x .t/ D sn C O

�
1

t

�

y .t/ D O .exp t/ :

2. The fact that F]s is a solution of the cohomological equation can be understood
by covering

�
sn ! p

�
with flow-boxes. In such a local rectifying chart$ W D !�

C2; 
 .t/
�

one has to solve

@F]s ı $
@x

D G� ı $

so that for p�; q� 2 D in the same leaf of F @
@x

jD we have
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F]s ı $ .q�/ � F]s ı $ .p�/ D
Z

p
�

!q
�

G� ı $dx

and vice versa.
3. By construction Fsn

s .p/ � Fns
s .p/ D R


.p/ Gs
dx
P�

. Since all asymptotic cycles are

trivial when p 2 Vn
s [ Vg

s (Theorem 9) then the integral
R

.p/ Gs

dx
P�

vanishes
because of Cauchy formula.

4. As a consequence of the previous items,
R

.p/ Gs

dx
P�

encodes the additive mon-

odromy of the analytic continuation of F]s so that (a))(b) Riemann’s removable
singularity theorem yields the converse implication.

22.11.4 Sectorial Normalization and Space of Leaves

From Theorem 8 and Proposition 4 we obtain a vector field Xs and a right-hand side
Gs WD �P�R]s with

R]s W .x; y/ 2 V]s 7�!
R� .x; y/� R�

�
x; s]s .x/

�

y � s
]
s .x/

(22.37)

satisfying the hypothesis of Theorem 10. The orbital normalization equation (22.29)
therefore admits solutions O]


 2 Holoc
�
D]
�
. The situation is the same for the

temporal normalization with bXs WD X� and G� WD 1
U�

� 1
u�

, and (22.30) admits

solutions T]
 2 Holoc
�
D]
�
.

Corollary 3. Z
 is conjugate to its formal model u
X1
 on D]. It is orbitally
conjugate to X1
 by .�; x/-fibered transformations.

The model X1
� has a first integral H1;]

� 2 Holo
�
V]
�

with connected fibers

H1;]

� .x; y/ WD yP
���
2

� .x/

�
x C s

x � s

� 1
2s

; s ¤ 0

H1;]
0 .x; y/ WD yx�� exp

1

x
;

with lim�!0 H1;]

� D H1;]
0 uniformly on compact subsets; for the remaining of the

section, we only deal with s ¤ 0 to lighten notations, although everything is valid
for s D 0 by continuity. Recalling notations and conventions of Sect. 22.4.3, we
choose determinations of the multivalued functions involved above:
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•
�
Cs


�s

� 1
2s D g� coincides with the principal determination on Vn

s (the one given in
Remark 6 for real s); note that g� 2 Holo

�
CnVg

s
�
,

• P
���
2

� agrees with the principal determination on Vn
s .

Invoking Corollary 3 above and formulas given in Sect. 22.8.3, we obtain canonical
sectorial first integrals with connected fibers

H]
s .x; y/ WD H1;]

�

�
x;
�
y � s]s .x/

�
exp O]

s .x; y/
�

(22.38)

D �
y � s]s

�
P

���
2

� .x/ g� .x/ exp O]
s .x; y/ :

The next result can be proved by studying the linearized system on squid sectors as
in Lemma 7.

Theorem 11 (See [28]). For s 2 ˙ define the sectorial spaces of leaves as

˝]
s WD H]

s

�
V]s
�

; ] 2 fns ; sng
˝[

s WD Hns
s

�
V[s
�

; [ 2 fn ; g ; sg :

1. ˝n
s D ˝ns

s D ˝sn
s D ˝

g
s D C, the sectorial weak separatrices corresponding

to 0.
2. ˝s

s D .C; 0/, the sectorial weak separatrices corresponding to 0. The size of ˝s
s

goes to 0 as r or r0 does.

22.11.5 Classification

22.11.5.1 Orbital Necklace

Take s 2 ˙ [f0g. A given point p 2 Vns
s \V sn

s corresponds to a point hns 2 ˝ns
s and

a point hsn 2 ˝sn
s . These points must be identified in order to encode the local orbital

class of X�. Because each H]
s has connected fibers, the (holomorphic) identifications

must be injective (Fig. 22.16).

• If s ¤ 0 and p 2 Vg
s , then every function involved in (22.38) for ] D ns and

] D sn coincides at p except g�P
���
2

� . The monodromy of g�P
���
2

� around sn

acts as

hsn D hns exp i�

�
1

s
C ��

�
DW  g

s

�
hns
�
:

• If p 2 Vn
s , then every function involved in (22.38) for ] D ns and ] D sn

coincides at p except s]s . Because˝n
s D C the mapping n

s must be affine, and
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ψs

ψn

0 0

ΩnsΩsn

ψg

Fig. 22.16 Orbital sectorial identifications

it is not hard to check it is a translation:

hsn D hns C 'n
s DW  n

s

�
hns
�
: (22.39)

• If p 2 V s
s , then every function involved in (22.38) for ] D ns and ] D sn

coincides at p except P
���
2

� exp O]
s . Because 0 corresponds to both sectorial

weak separatrices, and because those two functions agree on Vs
s the mapping

 s
s must fix the point 0:

hsn D hns exp 2i��� C o
�
hns
� DW  s

s

�
hns
� 2 Diff .C; 0/ : (22.40)

Definition 12. Let �
 2 C f�g be given.

1. Take

'
 WD �
'n
; 's


� 2 Holoc .˙/ � Holoc .˙ � .C; 0//

with 's
 .0/ D 0. We call orbital necklace associated with '
 (and �
 implicitly)
the complex manifold ˝ .'
/ obtained by the analytic atlas consisting in two
copies˝ns and ˝sn of .˙ [ f0g/ � C, with transition maps

 n
 W ˝ns �! ˝sn

.s; h/ 7�! �
s; h C 'n

s

�

 s
 W �˝ns; 0
� �! �

˝sn; 0
�
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.s; h/ 7�! �
s; h exp

�
2i��� C 's

s .h/
��
:

2. A diffeomorphism between two necklaces ˝ .'
/ and ˝ . Q'
/ is the data�
$ ns
 ; $ sn


�
of s-fibered injective, holomorphic mappings inducing a conjugacy

between atlases:

$ ns
 ı  [
 D Q [
 ı $ sn
 ; [ 2 fn ; sg

and such that for s ¤ 0

$ ns
 ı  g

 D  

g

 ı $ sn
 (22.41)

where

 g
s .h/ WD h exp i�

�
1

s
C ��

�
:

We say that the necklaces are analytically conjugate.
3. Let Z
 be a generic unfolding of formal orbital class �
 as in Theorem 7. We call

orbital class of Z
 the necklace Orb .Z
/ WD ˝ .'
/ where '
 is built from the
mappings (22.39) and (22.40).

Remark 14. We do not take the gate-part identification into account to build the
necklace because the construction does not make it at the limit. It is not needed
anyway to perform the local classification, because both sectorial normalizing maps
always glue on Vg

s . However the actual space of leaves ˝s on Vs is the quotient of
the corresponding s-fiber of Orb .Z
/ by  g

s for s ¤ 0. This is why we must include
the condition (22.41) to capture all information relating to orbital conjugacy.

Because holomorphic automorphisms of the complex line are rigid there are not
many necklaces diffeomorphisms. Hence the orbital necklace of an unfolding is
nearly a local invariant, and we prove in the section that it suffices to characterize
its local class.

Lemma 10.
�
$ ns
 ; $ sn


�
is a diffeomorphism of necklaces if and only if there exists

c
 2 Holoc .˙/
� such that $]

s .h/ D csh.

Proof. One direction is trivial. Assume then that
�
$ ns
 ; $ sn


�
is a diffeomorphism

between necklaces. For each s 2 ˙ [ f0g the mapping $]
s is biholomorphic, thus

an invertible linear map h 7! c]sh. The conjugacy equation $ ns
s ı  g

s D  
g
s ı $ sn

s
implies cns

s D csn
s for s ¤ 0, thus also for s D 0 by continuity. ut
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22.11.5.2 Integral Representation of the Saddle Orbital Invariant

Thanks to Theorem 8 we know the sectorial separatrices s]s glue to a holomorphic
function snsn

s on Vnsn
s , therefore so does R]s appearing in (22.37), yielding a function

Rnsn
 2 Holoc .Dnsn/.

Proposition 5. Let G
 2 Holoc .Dnsn/ such that .s; x/ 7! Gs.x;0/
P�.x/

is bounded, and let
Orb .X
/ be the orbital necklace of X
. The mapping (given in the chart ˝ns)

T
 .G
/ W .Orb .X
/ ; 0/ �! C

.s; h/ 7�! 1

2i�

Z


.p/
Gs

dx

P�
;

where 
 .p/ is an asymptotic cycle defined in Theorem 9 Item (2). such that
Hns

s .p/ D h, is well defined and vanishes along fh D 0g. This mapping defines
the (linear) period operator

T
 W G
 7�! T
 .G
/ 2 Holoc .Orb .X
/ ; 0/ :

Proof. Because X� � Fns
s D X� � Fsn

s D G� the difference Fsn
s � Fns

s is a first integral
of X�, and therefore factors as a map �s defined on the sectorial space of leaves ˝s

s .
This can also be seen from Theorem 9. Indeed the value of the integral depends only
on the asymptotic tangential homotopy class of 
 .p/, as an asymptotic tangential
homotopy is uniformly continuous. Hence only asymptotic cycles with p 2 V s

s
contribute to the period, and the value of the integral only depends on the sectorial
leafF�jVs

s
, since there is at most one non-trivial homotopy class of asymptotic cycles

per leaf. The same argument shows that �s .0/ D 0, for any asymptotic cycle within
the sectorial separatrix is trivial. ut

The transition map  s
 of the orbital necklace of X
 obeys the identity

Hsn
s .p/ D  s

s

�
Hns

s .p/
�

while at the same time

H]
s .p/ D H1;]

s .p/ exp O]
s .p/ ;

following (22.38). For p 2 V s
s we have H1;sn

s .p/ D H1;ns
s .p/ exp 2i��� so that

Hsn
s .p/ D Hns

s .p/ exp
�
2i��� C Osn

s .p/� Ons
s .p/

�
:

Recalling how we just defined the period operator, we obtain an integral representa-
tion for the saddle-part of the orbital invariant.
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Corollary 4. Let˝
�
'n
; 's


�
be the orbital necklace of X
. Then for all s 2 ˙ � f0g

's
s D �2i�Ts

�
P
Rnsn


�
:

22.11.5.3 Temporal Invariant

Definition 13. Let �
 2 C f�g and u
 2 C f�g Œx���1 be given.

1. The data of an orbital necklace˝ .'
/ and

f
 2 Holoc .˝ .'
/ ; 0/

with f
 .0/ D 0 is called temporal necklace.
2. A diffeomorphism between two temporal necklaces .'
; f
/ and

� Q'
; Qf

�

is the
data

�
$ ns
 ; $ sn


�
of a diffeomorphism between corresponding orbital necklaces

and satisfying:

f
 D Qf
 ı $ sn
 :

We say that the necklaces are analytically conjugate.
3. Let Z
 D U
X
 be a generic unfolding under prepared form (22.26) with formal

invariants .�
; u
/ as in Theorem 7. We call local class of Z
 the temporal
necklace

Class .Z
/ WD
�

Orb .X
/ ;T

�
1

U

� 1

u


��

where the period operator T
 is defined in Proposition 5.

22.11.5.4 Classification Theorem

As prompted by Lemma 10 we define the action of c
 2 C f�g� on functions f
 2
Holoc .˙ � .C; 0// by

c�
 f
 W .s; x; y/ 7�! fs .x; c�y/ :

The action is extended component-wise to tuples of functions.

Theorem 12 (See [28]). Two generic unfoldings of codimension 1 in the same
formal class .�
; u
/ 2 C f�g � C f�g Œx���1 are locally (resp. orbitally) equivalent
if and only if their temporal (resp. orbital) necklaces are analytically conjugate. In
other words we have local classifications

Orb W Modorb
loc .1/�! Holoc .˙/� Holoc .̇ � .C; 0//=C f�g�
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Class W Modloc .1/�! Holoc .˙/� Holoc .̇ � .C; 0//� Holoc .̇ � .C; 0//=C f�g� :

Proof. Let us present only the orbital part of the proof, the temporal part being
easier according to Theorem 10 Item (4). and Proposition 4 Item (1). One way
is clear: if Z
 and eZ
 are locally orbitally conjugate by $ , then the conjugacy
factors as a diffeomorphism

�
$ ns
 ; $ sn


�
between the orbital necklaces Orb .Z
/ and

Orb
�
eZ

�
. Because the conjugacy is analytic in � the induced linear change of

coordinate h 7! c
h in leaves space is also analytic in �. Conversely, assume the
existence of a diffeomorphism

�
$ ns
 ; $ sn


�
conjugating the necklaces Orb .Z
/ and

Orb
�
eZ

�
. Invoking Lemma 10 we can apply the rescaling .s; x; y/ 7! .s; x; csy/ toeZ.

Without changing notations, in the new coordinates we must have $]
s D Id for each

s 2 ˙[f0g. This particularly implies the identities '[s D Q'[s for [ 2 fn; sg. But these
quantities measure the obstruction to glue over Vns

s \ V sn
s the transitions between

corresponding sectorial normalization mappings Y]
s WD QO]

s ı
�
O]

s

�ı�1
. Hence

$sjVns
s

WD Yns
s and $sjVsn

s
WD Ysn

s defines a holomorphic conjugacy between X� and
eX� on Vs D Vns

s [V sn
s . This mapping is bounded, thus extends biholomorphically to

adh .Vs/ by Riemann’s removable singularity theorem.
To conclude the proof we only need to check that $s D $�s. Define Ss WD

$ ı�1
s ı $�s which, by construction, is a symmetry of X�, that is S�

s X� D X�. A
direct computation at a formal level on Ss .x; y/ D �

x ; y CP
nCm>1 Sn;m .s/ xnym

�

establishes Ss D Id. ut
The classification presented above cannot be complete, as we explain in the

upcoming Sect. 22.12.4.

22.12 Dynamical Interpretation of the Orbital Necklace

We describe the relationship between the actual dynamics of X� (the holonomy of
the underlying foliation F�) and what could be called the necklace dynamics. We
define in the first place what we mean by “the dynamics of X�” in Sect. 22.12.1.
It encodes the “monodromy” of the canonical first integrals H]

s , which really is
what the orbital necklace is all about. As X� does not depend on the choice of
s or �s, the splitting of U into squid sectors is artificially superimposed on the
dynamics. By rewording this fact as a relationship between orbital necklaces˝ .'s/

and ˝ .'�s/, we derive the orbital compatibility condition in Sect. 22.12.3. The
temporal compatibility condition will be derived while performing the temporal
realization in Sect. 22.13.1.

We finally use the compatibility condition to characterize even necklaces,
corresponding to invariants '
 D �

'n
; 's

�

holomorphic as a function of the
parameter �. We show this configuration to be very rare, underlying the lack of
completeness of the classification provided by Theorem (12).
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22.12.1 Weak Holonomy

Fix once and for all x� 2 Vn
s n�D (by construction of the squid sector in Definition 10

this domain is independent on s 2 ˙) and a transverse disc

T WD fx D x�g \
\

s2˙
V s

s D fx�g � .C; 0/ :

Because X� is in the prepared form (22.26) its integral curves are everywhere
transverse to the fibers of the natural projection

˘ W .x; y/ 7�! x

outside P�1
� .0/. As a consequence we can lift (smooth) paths in the punctured base


 W Œ0; 1� ! D�,

D� WD rDnP�1
� .0/ ;

through ˘ into leaves of F� and starting from points in T. More precisely, being
given p� WD .x�; y�/ 2 T there exists a unique (germ at 0 of a) solution

t 7�! 
p
�

.t/ D .
 .t/ ; y .t//

to the constrained flow-system

P
p
�

D P

P� ı 
 X� ı 
p

�

; 
p
�

.0/ D p� :

Notice that the image of 
p
�

is included in a single leaf of F�. Of course if 
 is “too
long” then 
p

�

may eventually escape from U . On the contrary if 
p
�

is defined on
the whole Œ0; 1� we call

h



� .p�/ WD 
p
�

.1/

the image of p� by the holonomy h
 of F� along the path 
 . The holonomy h



� is
holomorphic and locally invertible. When 
 is a loop the holonomy defines a germ
of a biholomorphic self-map .T; p�/ ! �

T; h
� .p�/
�

of the transversal (Fig. 22.17).
We are particularly interested in the case where 
 is a generator 
s or � of the

fundamental group �1 .D�; x�/ when s ¤ 0.

Definition 14. Let s 2 ˙ . Consider a system f�; 
sg of generators of �1 .D�; x�/
such that � D jx�jS1 and 
s winds directly once around s and does not around �s.
The holonomy

hn
s WD h


s
�
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Fig. 22.17 Generators of
�1 .D�; x�

/ for s 2 ˙

x∗

s

−s

γs

Γ

is called the (weak) nodal holonomy. Similarly we name (weak) holonomy the
mapping h�� .

We state a consequence of Theorem 8.

Lemma 11. The nodal holonomy hn
s is an injective holomorphic map on a subdo-

main Ts of T containing both points of intersection of T with the sectorial weak
separatrices

˚
y D sns

s .x/
	 [ ˚

y D ssn
s .x/

	
.

22.12.2 Necklace Holonomy

While walking along a loop 
 W Œ0; 1� ! D� and lifting it in the foliation F� to
build the holonomy h




�, one may follow what happens in the orbital necklace. More
precisely, since the image of 
 in the (global) leaves space corresponds with just
a point, one may wish to understand the “trajectory” induced by 
 in the orbital
necklace ˝ .'
/. We recall that a base-point x� D 
 .0/ is fixed once and for all
now. The restriction of the canonical first integral to the transverse disc T induces
an invertible mapping

Hs W .x�; y/ 2 Ts 7�! Hns
s .x�; y/ 2 �˝ns; 0

�

whose image contains
˚
0; 'n

s

	
(Lemma 11). Starting from h0 WD Hs .p�/ we build a

sequence of points .hn/0�n�2d such that h2m 2 ˝ns
s and h2mC1 2 ˝sn

s , the connection

between hn�1 and hn being given by the action of
�
 [n

�ı˙1
for [n 2 fn; g; sg

corresponding to the connected component V[
s being crossed by 
 , the sign being

determined by whether the path leaves Vns
s (“C”) or enters it (“�”), as long as the

partial lift of 
 in F� is defined. We name�

s the necklace holonomy

�

s W h0 7�! h2d :

The maps�

s and h
 represent the same dynamics since they are conjugate:
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x∗γ

Γ

ng
s

Hns

Hns

ψs

ψg

ψn

h0δ
h1 := ψg(h0)

0 0

δ = (ψn)◦−1 ◦ ψg

ψs

ψg

ψn

h0Δ
h1 := ψs(h)

0 0

Δ = (ψn)◦−1 ◦ ψs

Ωns

Ωns

Ωsn

Ωsn

n−1s

n−1g

h2

h2

s

−s

Fig. 22.18 The dynamics induced by the weak holonomies in the orbital necklace

H�
s �



s D h




� : (22.42)

We refer to Fig. 22.18 for a depiction of this construction in the case of the weak
holonomies hn

s and h�� .
Let us generalize the construction to abstract orbital necklaces˝ .'
/. Let W be

the free group on the letters fn; g; sg. For every s 2 ˙ there exists a group morphism

ws W �1 .D�; x�/ �! W


 7�! [
�1
1 ı � � � ı [�2d

2d ; [j 2 fn; g; sg ; �j 2 f˙1g

defined in such a way that
�
[j; �j

�
j�2d

is the sequence obtained as before: [j

corresponds to the connected component V
[j
s currently crossed by 
 , the sign being

determined by whether the path leaves Vns
s or enters it. For instance,

ws .
s/ D n�1g DW O

ws .� / D n�1s DW b� :

We omit the proof of the following lemma.

Lemma 12.

1. For every 
 2 �1 .D�; x�/ the word ws .
/ has the form
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ws .
/ D
dY

jD1
[�1

j;1 [j;0 :

2. The image W of ws is generated by the words n�1g and n�1s:

W D
D
O
 ; b�

E
:

3. The mapping ws W �1 .D�; x�/ ! W is bijective. For any s 2 ˙ we write

ps W W �! �1 .D�; x�/

O
 7�! 
s

b� 7�! �

its inverse.

Definition 15. Being given an orbital necklace ˝ .'
/ we build a dynamics in the
following manner. Take s 2 ˙ and w D [

�1
1 ı � � � ı [�2d

2d 2 W, then denote 
 WD
ps .w/. We define the necklace holonomy associated with 
 (or w) as the following
symbolic expression

�

s WD �1�j�2d

�
 
[j
s

�ı�j

:

Depending on 
 the expression �


s may not represent an actual germ of a

diffeomorphism, because h



� may not be geometrically defined. For that reason
the map �


s ranges in the pseudogroup of local diffeomorphisms of ˝ns
s . The

necklace holonomy representation is the collection �
 D .�s/s2˙ of (pseudo-)
group morphisms

�s W w 2 W 7�! �s .w/ WD �ps.w/
s :

22.12.3 Orbital Compatibility Condition

Define

˙\ WD ˙ \ .�˙/
D fs 2 ˙ W �s 2 ˙g
D ˙C [˙�

˙˙ WD ˙\ \ f˙= .s/ > 0g
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x∗
n−s

g−s

s−s

ns

gs

ss

γs

Γ

γ−s

s

Fig. 22.19 Comparing the necklace dynamics

the union of two domains on which we can compare the necklace dynamics for s and
�s. According to (22.42) and Fig. 22.19 we have for s 2 ˙\ the identities between
actual diffeomorphisms

8
ˆ̂
<

ˆ̂:

H�
s �s

�
n�1g

� D H��s��s
�
g�1s

�
if s 2 ˙C

H�
s �s

�
n�1g

� D H��s��s
�
n�1sg�1n

�
if s 2 ˙�

H�
s �s

�
n�1s

� D H��s��s
�
n�1s

�
: (22.43)

In order to motivate the definition of compatibility condition, we must explicit
the bridge between relations on ˙C and on ˙�. We obtain this connection by
rewording algebraically the topological fact that � D 
�s
s if s 2 ˙C while
� D 
s
�s if s 2 ˙�. The monomorphism
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� W W �! W

O
 7�! O
�1b�

b� 7�! b�

with inverse

�ı�1 W W �! W

O
 7�! b� O
�1

b� 7�! b�

satisfies

ps D p�s ı �ı˙1 for s 2 ˙˙ :

The system (22.43) expresses that the necklace holonomy associated with an actual
unfolding is compatible with the latter identity. Yet the system explicitly involves
the sectorial first integrals Hns
 and is therefore not intrinsic to the orbital necklace.
The key to resolve this issue is to observe that for s 2 ˙C the mapping

��s
�
g�1s

� 2 Diff .C; 0/

is hyperbolic and therefore locally analytically linearizable near the fixed-point 0.
There exists only one such analytic linearization with prescribed linear part. Because
�s
�
n�1g

�
is an affine map the invertible function

�s WD Hs ı Hı�1�s (22.44)

is a holomorphic linearization of ��s
�
g�1s

�
. Hence �s can be recovered uniquely,

up to its linear part, from the knowledge of the orbital necklace.

Definition 16. For an orbital necklace ˝ .'
/ recall the symbolic holonomy
representation�
. We say that the orbital necklace ˝ .'
/ is a compatible orbital
necklace when there exists �
 2 Holoc

�
˙\ � .C; 0/� such that for every s 2 ˙C

(resp. s 2 ˙�) the mapping �s is a local linearization of ��s
�
g�1s

�
(resp.

��s
�
n�1sg�1n

�
satisfying the next properties.

• For every s 2 ˙\

�0
s .0/ D 1 :

• For every s 2 ˙\

�s ı ��s D Id :
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• For every s 2 ˙\

��
s �s

�
n�1s

� D ��s
�
n�1s

�
;

which is equivalent to the conjugacy of the whole dynamics: ��
s �s D ��s ı

�ı˙1 for all s 2 ˙˙.

22.12.4 Characterization of Even Purely Convergent
Unfoldings

For the sake of concision we only deal with the case �
 D 0.

Proposition 6. Take a purely convergent generic unfolding of codimension 1 with
� D 0, i.e. its orbital necklace '
 satisfies 'n
 D 0. There exist p 2 N and ˛
 2 C f�g
such that

's
 .h/ D �1
p

log .1C ˛
hp/

if and only if 's
 D 's�
.

Remark 15. A generalization of this result for general �
 is performed in [29]. In
that case the existence of a non-zero, even 's
 forces �
 to be a rational constant
belonging to p�1Z.

Because the local classification for saddle-node vector fields is complete, and since
'
 extends continuously at s D 0, the configuration presented in the proposition
is rather rare. As a consequence the classification presented in Theorem 12 is not
complete.

We also mention that such unfoldings are locally orbitally conjugate to a normal
form (Theorem 5)

X1
 C �xpC2ypC1 @
@y

;  2 N :

As in [33] it is indeed possible to show that for the above normal form one has

's
 .h/ D �1
p

log
�
1 � 2i��T
 .xyp/ .h/

�
;

where the period operator is the one associated with the model X1
 . The explicit
computations done in Corollary 6 therefore prove our claim, as well as one direction
of the proposition since the period T
 .xyp/ is actually even.

Let us prove the other direction. If 's
 is even, then the orbital compatibility
condition writes

��
s  

s
s D  s

s
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for some �s tangent-to-identity. Therefore
˝
�s;  

s
s

˛
< Diff .C; 0/ is Abelian. Since

�s and  s
s are tangent-to-identity there consequently exists [18] a formal tangent-

to-identity change �s in the variable h, unique d 2 N, � 2 C and t 2 Cn f0g such
that

O�s WD ��
s �s D ˚1

Z.d;�/

O s
s WD ��

s  
s
s D ˚ t

Z.d;�/

Z .p; �/ WD hpC1

1C �hp

@

@h
:

Observe that for all t 2 C the diffeomorphism

˚ t
Z.p;0/ .h/ D h

.1 � pthp/1=p

is a ramification of homography, therefore we aim at showing � D 0. This is
ultimately done by applying the next lemma.

Lemma 13. [5, Assertions 1.1–1.4]In the following � is a formal diffeomorphism
in the variable h at 0.

1. Let Z; eZ be formal vector fields in the variable h at 0. If ��˚1
Z D ˚1

eZ , then

��Z DeZ (the converse is trivial).
2. Assume that ��Z .p; �/ D aZ .p; �/ with a ¤ 1. Then � D 0 and � is a

ramification of homography (in particular analytic).

Show now that � D 0 and �s itself is a ramification of homography, forcing  s
s to

be also one. Taking into account the fact that �s linearizes ��s
�
g�1s

� D `s 
s
s for

`s WD exp i�
s , we obtain the relation

L�
s O�s D

� O s
s

�ı�1 ı O�s D ˚1�t
Z.p;�/

where

Ls WD �ı�1
s ı .`s�s/ :

We apply the lemma with � WD Ls and a WD 1 � t ¤ 1. Hence � D 0 and Ls is a
ramification of homography.
�s is a formal linearization of Ls which is tangent-to-identity. For values � of

the parameter corresponding to `s … R (say = .`s/ > 0) the fix-point 0 of Ls is
hyperbolic: the map �s is locally holomorphic at 0, unique and therefore given by

�s WD lim
n!1

Lın
s

`�n
s
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uniformly on a neighborhood of 0. Since for every n 2 N the map Lın
s
`�n

s
is a

ramification of homography the result folds by taking the limit n ! 1.

Remark 16. In the coordinate induced by �s the subgroup
˝
�s;  

s
s

˛
is given by

bG WD
*

h

.1C �
hp/
1
p

;
h

.1C ˛
hp/
1
p

+

DW
D
O�
; O s


E

for ˛
; �
 2 C f�g. Hence Ls must be of the form

Ls .h/ D `
h

.1C ıshp/
1
p

;

and we deduce

�
 D ˛

1 � `p


: (22.45)

In this specific configuration we observe explicitly that the transition mapping �s

cannot be defined for all values of s 2 ˙ save when ˛
 D 0, because of (22.45).

22.13 Instances of Complete Classifications

22.13.1 Complete Temporal Classification

We first describe the range of the period operator (Proposition 5). The next theorem
is showed in Sect. 22.13.1.1.

Theorem 13. For a generic unfolding X
 of codimension 1 we recall its orbital
necklace Orb .X
/ D ˝ .'
/ and associated transition map �
 as in (22.44).

1. Let f
 2 Holoc .Orb .X
/ ; 0/ such that f
 .0/ D 0. There exists G
 2
Holoc

�
˙ � �C2; 0�� with G
 D O .P
/C O .y/ such that T
 .G
/ D f
.

2. We can find such a function G
 satisfying G
 D G�
 on˙\ if, and only if

�8s 2 ˙C�
1X

nD0
fs ı�s

��
g�1s

�n
�

ı �s D
1X

nD0
f�s ı��s

��
s�1g

�n
�
:

(22.46)

Notice that because�s
�
g�1s

�
and��s

�
s�1g

�
are tangent to exp i�

�� 1
s C ��

�
Id

and exp i�
�� 1

s � ��
�

Id respectively, both sums converge geometrically.
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Definition 17. Let .'
; f
/ be a temporal necklace (Definition 13). We say that it is
a compatible temporal necklace if ˝ .'
/ is a compatible orbital necklace and if
f
 fulfills the condition (22.46). This is equivalent to the following statement: for s 2
˙C let �˙s denote the unique solution vanishing at 0 of the discrete cohomological
equations

(
�s � �s ı�s

�
g�1s

� D fs

��s � ��s ı��s
�
s�1g

� D f�s

;

then

��
s �s D ��s :

Remark 17. It is sufficient to ensure the relation holds on ˙C because the orbital
necklace is compatible. We refer to Remark 18 for more details.

Corollary 5. Being given X
 define

Fol .X
/ WD
n
U
X
 W U
 2 Holo

�
C
3; 0
��o

and

Compat .X
/ WD ff
 2 Holoc .˙ � .C; 0// W f
 satisfies (22.46)g :

1. We have a complete classification

Modloc .Fol .X
// ' Compat .X
/=C f�g� :

2. If X
 D X1
 we have normal forms

NFloc

�
Fol

�
X1


�� WD
�

u

1C u
Q


W u
 2 C f�g Œx���1 ; Q
 2 Section .1;fi/

�
X1


where

� WD
(
0 if �0 … R�0
1C ���0

kC1
˘

otherwise

Section .1; �/ WD xP��yC f�;P��yg :

Item (1) is a direct restatement of Theorem 13, Theorem 12 and Definition 13
Item (3). We give the proof of Item (2) in Sect. 22.13.1.2, based on the explicit
computation of the period operator for the formal model in terms of the Gamma
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function. The dominant terms are � .1C m .� .k C 1/C �
// for m 2 Z�0: the
presence of the monomial x� helps keeping far away from poles for small jsj.

22.13.1.1 Range of the Period Operator (Proof of Theorem 13)

The proof relies on solving two Cousin problems, one in .x; y/-space and the other
one in s-space.

Lemma 14. Recall the total sectorial spaces D] as in (22.35). Given ı
 2
Holoc .Orb .X
/ ; 0/ such that s 7! ıs

s is bounded, there exist two functions F]
 2
Holoc

�
D]
�

such that

Fsn
s � Fns

s D
(
ıs ı Hns

s on V s
s

0 on Vg
s [ Vn

s

:

Proof. This is a slight variation on the classical Cauchy–Heine transform.
See Fig. 22.20a. For .x; y/ 2 V]s we set

F]s .x; y/ WD 1

2i�

Z

�
]

s

ıs ı Hns
s .z; y/

z � x
dz ;

which by hypothesis defines an element of Holoc
�
D]
�

if � ]
s is deformed slightly to

lie outside adh
�

V]
s

�
. The rest follows from Cauchy’s formula. ut

V ns

V sn

V s V n

sn

ss V g

Γsn

Γns

−Σ Σ

Σ+ Γ−Γ+

Σ−

a b

Fig. 22.20 The contour used for the Cauchy–Heine transforms. (a) Spatial contours. (b) Paramet-
ric contours
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The same construction applies for the parametric Cousin problem, using the
corresponding contours given in Fig. 22.20b.

Lemma 15. Given d
 2 Holoc
�
˙C � U

�
such that s 7! ds

s is bounded, there exists
a function D
 2 Holoc .˙ � U/ such that for all s 2 ˙C we have Ds � D�s D ds.

Proof. For s 2 ˙ simply set

Ds WD 1

2i�

Z

�C

dz

z � s
dz C 1

2i�

Z

��

dz

z C s
dz :

ut
Let us proceed now with the proof of Theorem 13. Lemma 14, applied to the

temporal invariant ıs WD fs, yields two sectorial functions F]s with prescribed
difference over the saddle sector. Because Fsn

s � Fns
s is a first integral of X� the

function defined by

Gs WD
(

X� � Fns
s on Vns

s

X� � Fsn
s on V sn

s

is holomorphic and bounded on Vs, therefore extends holomorphically to U . By
construction its period coincides with fs. Because F]s has bounded derivatives [28],
G
 2 Holoc .˙ � U/ is of the desired form:

Gs .x; y/ D Ps .x/

 
@F]s
@x

C R� .x; y/
@F]s
@y

!

C y .1C ��x/
@F]s
@y

:

This proves Item (1).
In general there is no reason for Gs D G�s to hold when s 2 ˙\. We must

therefore modify G
 by adding to it a function of the form X
 � D
 with D
 2
Holoc .˙ � U/, in such a way that eG
 WD G
 C X
 � D
 be even. The equation
eG�s D eGs reads

Gs � G�s D X� � .D�s � Ds/ :

According to Theorem 10 Item (4). we need the identity

fs D Ts .Gs/ D Ts .G�s/

to hold for s 2 ˙\. We prove below the hypothesis of Theorem 13 Item (2)
guarantees that very property. Taking this fact for granted, we deduce the existence
of d
 such that Gs � G�s D X� � ds for all s 2 ˙C using Theorem 10 Item (4)
again. This function can be so chosen that lims!0 ds D 0, in which case s 7! ds

s is
bounded. Then Lemma 15 yields the expected D
, completing the proof of Item (2).



580 L. Teyssier

Remark 18. From Theorem 10 Item (4) we know that Ts .Gs � G�s/ D 0 for all
s 2 ˙C if and only if T�s .Gs � G�s/ D 0 for all s 2 ˙C. Therefore fs D Ts .G�s/

for all s 2 ˙\ if and only if the equality holds merely on˙C.

Proposition 7. 1. For all s 2 ˙C we have

��
s

1X

nD0
Ts .G�s/ ı�s

��
g�1s

�n
�

D
1X

nD0
f�s ı��s

��
s�1g

�n
�
:

2. f
 D T
 .G�
/ if and only if condition (22.46) holds.

Proof. Set �s WD P1
nD0 fs ı �s

��
g�1s

�n�
, ��s WD P1

nD0 f�s ı ��s
��

s�1g
�n�

and
Q�s WD P1

nD0 Ts .G�s/ ı�s
��

g�1s
�n�

.

1. Take p� 2 T. Any asymptotic cycle 
 .p�/, used to compute the period in
Proposition 5, is tangentially asymptotically homotopic to the lift in F� of the
limit of nested cycles limm!1 
m


m WD p�s

��
s�1g

��m �
n�1s

� �
s�1g

�m
�

W Œ�m;m� �! D� (22.47)


mC1jŒ�m;m� D 
m :

We let Q
m be the lift of 
m in F� with Q
m .0/ D p�. The quantity Fns�s . Q
m .�m//CR
Q
m

G�s
dx
P�

represents the analytic continuation of Fns�s along Q
m. By construction
the additive monodromy of the continuation of Fns�s is given by the period f�s

when turning around the saddle-like singularity of Vns�s. Hence

Z

Q
m

G�s
dx

P�
C Fns�s . Q
m .�m// � Fns�s . Q
m .m// D

 
mX

nD0
f�s ı��s

��
s�1g

��n
�

�
mX

nD1
f�s ı��s

��
s�1g

��n
n�1s

�!

ı Hns�s .p�/ :

Because Fns�s extends continuously to fx D sg and limn!1 Q
n .˙n/ D .s; 0/,
taking the limit we obtain in the chart ˝ns�s

Ts .G�s/ ı �s D ��s � ��s ı��s
�
s�1gn�1s

�
:

According to Definition 16, for s2˙C the identity ��
s �s

�
g�1s

�D��s
�
s�1gn�1s

�

holds, so that summing over all terms ��
s

�
Ts .G�s/ ı�s

��
g�1s

�n��
for n 2 Z�0

yields the expected result:

��
s

Q�s D ��s :
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2. The direct implication is trivial. Assume conversely that ��
s �s D P1

nD0 f�s ı
��s

��
s�1g

�n�
, i.e. �s D Q�s. Because �s � �s ı �s

�
g�1s

� D fs and Q�s � Q�s ı
�s
�
g�1s

� D Ts .G�s/ we recover fs D Ts .G�s/.
ut

22.13.1.2 Computation of the Period of the Model X1�

Below we compute periods explicitly, extending the calculation of Sect. 22.4.3.

Proposition 8. Let Gn;m .x; y/ WD xnym, m 2 N, and X
 WD X1
 . Then for all s 2 ˙
we have (in the chart˝ns

s )

Ts .Gn;m/ .h/ D hm � .�m/nCm��

� .n C m��/
� t�;n;m � Ts;m

t�;n;m WD 1

2n

X

pCqDn

 
n

p

!
p�1Y

jD0

�
1 � s

�
�� C 2j

m

�� q�1Y

jD0

�
1C s

�
�� C 2j

m

��

Ts;m WD
�� 2s

m

�m��

1C s��
� �

�� m
2s C m��

2

�

�
�� m

2s � m��
2

� :

For given s small enough, the period is zero if and only if n C m�� 2 Z�0. The
period is a holomorphic function of � if and only if m�
 2 Z (in which case � is a
rational constant).

Remark 19. 1. Notice that taking the limit s ! 0 in ˙ leads to

lim
s!0

Ts;m D lim
�!0

t�;n;m D 1

recovering classical computations [8, 32, 33] performed for � D 0.
2. The eventual lack of evenness of the period comes from the term Ts;m. Since it is

independent on n, any period T
 .ymg .x//, g 2 C f�; xg, is even in s if and only
if m� 2 Z.

Proof. We perform the computation over Vnsn
s D D�n

�
Vg

s [ Vn
s

�
. Because

Hs .x; y/ WD y .x � s/�
1
2s � �l

2 .x C s/
1
2s � �l

2

is constant on the leaves of F� we can parameterize an asymptotic path as

x 2 
1 7�!
�

x; h .x � s/
1
2s C �l

2 .x C s/�
1
2s C �l

2

�
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where h D Hns
s .p�/ and 
1 D limp!1 
p [as in (22.47)] is the projection on

fy D 0g of the asymptotic cycle 
 .p�/. This projection does not depend on the
choice of p� 2 T.

Remembering the computations performed in Proposition 3, we introduce the
Pochhammer contour Ps 2 �1 .D�; x�/ whose encoding in the dynamics necklace is
given by

ws .Ps/ D n�1gs�1ng�1s :

For h 2 �
˝ns

s ; 0
�

let QPs .h/ be the lift in F� of Ps starting from p� 2 T with

h D Hs .p�/. Both necklace holonomies�s . O
/ and �s

�
b�
�

are linear in the same

coordinate HsjT , and therefore commute. Because the Pochhammer contour is a
commutator we have

�s
�
n�1gs�1ng�1s

� D Id :

Hence QPs .h/ is a (non-trivial) element of the fundamental group of the correspond-
ing leaf of F�. As a matter of consequence

I

QPs.h/
Gn;m

dx

P�
D Ts .Gn;m/� Ts .Gn;m/ ı�s

�
g�1s

�
:

Summing over the forward orbit of �s
�
g�1s

�
we obtain

Ts .Gn;m/ .h/ D
1X

`D0

I

QPsı�s

�
.g�1s/

`
�
.h/

Gn;m
dx

P�

D
1X

`D0

0

@
�s

��
g�1s

�`�
.h/

h

1

A

m I

QPs.h/
Gn;m

dx

P�

D 1

1 � exp im�
�� 1

s C ��
�
I

QPs.h/
Gn;m

dx

P�

because
I

QPs.h/
Gn;m

dx

P�
D hm

I

Ps

xn .x � s/
m
2s C m��

2 �1 .x C s/�
m
2s C m��

2 �1 dx :

We recognize the integral representation of the Beta function. Up to the presence of
�� and m, the remaining computations are done identically to those in Proposition 3.

The function is even if and only if Ts;m D T�s;m. Using the reflection formula we
find



22 Coalescing Complex Planar Stationary Points 583

Ts;m

T�s;m
D .�1/m�� sin

�
� m
2s C �

m��
2

�

sin
�
� m
2s � �

m��
2

� D exp
�
i�m

�
1
2s C ��

�� � exp
�� i�m

2s

�

exp
�
i�m

�
1
2s � ��

�� � exp
�� i�m

2s

� :

This quantity equals 1 if and only if m�� 2 Z. ut
Remark 20. The fact that the complete invariant 'n
 introduced in Sect. 22.4.3 for
affine unfoldings is obtained from the above proposition for �
 WD 0 and m WD �1
is not fortuitous and can be explained very much like in [33]. The best heuristics is
the relation

X� D X1
� � a�P�

@

@y
D X1

� � a�P�
y

� y
@

@y

so that locally conjugating X1
 to X
 is somehow equivalent to solving analytically

X1
� � F� D a�P�

y
:

A more precise approach would require to study the generic saddle-node unfolding
near .0; 0;1/ whose node- and saddle-parts correspond to saddle- and node-parts
near .0; 0; 0/.

We deduce from this proposition the following result, concluding the proof of
Corollary 5.

Corollary 6. Recall the notations of Corollary 5. The operator

Section .1; �/ �! ff
 2 Holoc .˙ � C; 0/ W f
 .0/ D 0g
Q
 7�! T
 .Q
/

is bijective.

In the next paragraph we generalize this result for all purely convergent unfoldings.

Proof. This is a consequence of the following two facts:

• the period operator sends ymxn to some monomial hmTs;n;m,
• Ts;n;m D 0 for s 2 .˙; 0/ if and only if T0;n;m D 0, that is n C m�� 2 Z�0.

The choice of � prevents Ts;m�.kC1/;m to vanish so that the operator is formally
invertible. The fact that the inverse operator maps convergent power series f
 to
convergent power series is a consequence of lims!0 Ts;1C�.kC1/m;m D T0;1C�m;m ¤ 0

and of estimates established in [33] for T0;1Cm�;m. ut
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22.13.2 Normal Forms for Pure Convergence

Here we assume that Z
 is a generic unfolding of codimension 1 whose orbital
invariant has null node-part:

'n
 D 0 :

We say that the unfolding is purely convergent. For � 2 Z�0 define

Convergent .1; �/ WD fZ
 W 'n
 D 0 ; �0 … R��g

and let

Convergent .1/ WD
[

��0
Convergent .1; �/

the set of all convergent unfoldings.

Theorem 14. Recall the definition of Section .1; �/ given in Corollary 5 Item (2).
The collection

NFloc .Convergent .1;fi// WD
�

u

1Cu
Q


�
X1
 C yR


@

@y

�
W Q
; R
 2 Section .1; �/

�

is a family of normal forms for Convergent .1; �/. Two vector fields in normal forms
are locally analytically conjugate if and only if there exists c
 2 C f�g� such that

(
eR� .x; y/ D R� .x; c�y/

Q� .x; y/ D Q� .x; c�y/
:

Remark 21.

1. Notice that the normal forms are not in prepared form (22.26).
2. This collection of normal forms depends analytically on the parameter, hence we

have a presentation

Modloc .Convergent .1// ' Section .1; �/ � Section .1; �/=C f�g�

where the invariants (the functions Q
 and R
) depend analytically on the
parameter. This is very much the opposite case of Theorem 12 (compare with
Sect. 22.12.4).

We show this result in two steps, following the strategy presented in [29, 30] for
� D 0. For the sake of clarity we only deal here with the case < .�0/ > 0,
particularly implying � D 0.
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The initial data is a formal class .�
; u
/ and a compatible temporal necklace
.'
; f
/, as in Definition 17, with 'n
 D 0.

Proposition 9. One can find r0 > 0 and a covering of .Cn f˙sg/ � r0D into
two modified, infinite canonical sectors V]s , ] 2 fns; sng, such that the following
properties hold.

1. There exists a unique collection of holomorphic vector fields X
 2
X .˙ � C � r0D/ of the form

Xs D X1
� C yxRs

@

@y
; R
 2 Holoc

�
˙ � r0

D
�
; (22.48)

and such that the associated canonical first integrals H]

 2 Holo

�
D]
�

have
connected fibers and satisfy Hsn

s D '[s ı Hns
s for [ 2 fn; g; sg and s 2 ˙ .

2. The action of holomorphic automorphisms of the orbital necklace˝ .'
/ by h 7!
c
h induces an action

c�
 W R
 7�! R
 ı .c
Id/ :

In other words, two vector fields as above are locally orbitally conjugate for all
� 2 # if and only ifeR
 .y/ D R
 .c
y/ for some c
 2 C f�g�.

It might happen that R
 ¤ R�
 in Item (1), preventing X
 to be a generic unfolding.
The compatibility condition precisely guarantees that R
 D R�
 so that X1
 C yxR

is the expected normal form in that case. The following lemma hence completes
orbital realization with normal forms.

Lemma 16. Let X
 be a collection of vector fields in the form (22.48), with
associated orbital necklace ˝ .'
/. Then R
 D R�
 if and only if ˝ .'
/ is
compatible.

The temporal realization is a straightforward consequence of the next concluding
result, as was done to prove Corollary 5. This is a generalization of Corollary 6 to
generic unfoldings under normal forms.

Proposition 10. Let X
 be a generic unfolding of codimension 1 in normal form of
Theorem (14). The operator

Section .1; �/ �! ff
 2 Holoc .˙ � C; 0/ W f
 .0/ D 0g
Q
 7�! T
 .Q
/

is bijective.
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ss

sn

Γns

Γsn

V ns

V sn

V s
V n

V g

Fig. 22.21 The modified (unbounded) squid sectors and associated Cauchy–Heine contours

22.13.2.1 Orbital Realization on † (Proof of Proposition 9)

The proof is achieved by iterating a Cauchy–Heine integral transformation solving
a certain sectorial Cousin problem, like in Lemma 14, to obtain H]
. In fact we seek
two functions O]


 such that

H]
 WD H1;]
 exp
�
O]

�

as in (22.38).

Definition 18. Take �; r > 0 such that r < 1
j��j for every jsj < �. We refer to

Fig. 22.21.

1. The modified squid sector Vns
s is obtained from the union of a squid sector of

radius r as in Definition 10 and the half-rays exp �i�
8
R�r and exp 9i�

8
R�r. The

construction is analogous for Vsn
s , as well as their saddle-, gate-, and node-parts.

2. Let r0 > 0 be given. We call modified canonical sector V]s the product V]
s � r0D.

3. We say that a triple
�
r0;Osn
 ;Ons


�
, with O]
 2 Holoc

�
D]
�
, is adapted to a domain

˝ D .C; 0/ if Hns
s

�
V s

s

� 	 ˝ for all s 2 ˙ .

The next result is the basis of the construction. We omit the proof, which is a
straightforward generalization of its counterpart in [30] for s D 0 and can be found
in [29]. Instead we focus on the constructions involved, stressing the few steps where
the case s D 0 does not extend straightforwardly.
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Theorem 15. Consider some
�
r0;Osn
 ;Ons


�
adapted to ˝ . Take any f
 2

Holoc .˙ �˝/ vanishing along fh D 0g and with bounded derivative f 0
 D @f
�

@h

on ˙ [ f0g, then define F]
 by

F]s .x; y/ WD 1

2i�

Z

�
]

s

fs
�

H]
s .z; y/

�

z � x
dz ; s 2 ˙ ; .x; y/ 2 V]s ; (22.49)

where the paths were described in Definition 18. The following properties hold.

1. F]
 2 Holoc
�
D]
�
.

2. Fsn
s � Fns

s D fs ı Hns
s on V s

s and vanishes on Vn
s [ Vg

s .
3. For jsj < � one has estimates

a.

sup
V]s

ˇ
ˇF]s
ˇ
ˇ � r0K sup

˝

ˇ
ˇ
ˇf

0

s

ˇ
ˇ
ˇ exp sup

V]s

ˇ
ˇO]

s

ˇ
ˇ

b.

sup
V]s

ˇ̌
ˇ
ˇ
ˇ
y
@F]s
@y

ˇ̌
ˇ
ˇ
ˇ

� r0K sup
˝

ˇ
ˇ
ˇf

0

s

ˇ
ˇ
ˇ exp sup

V]s

ˇ
ˇO]

s

ˇ
ˇ
 

1C sup
V]s

ˇ̌
ˇ
ˇ
ˇ
y
@O]

s

@y

ˇ̌
ˇ
ˇ
ˇ

!

c.

sup
V]s

ˇ̌
ˇ
ˇ
ˇ
x
@F]s
@x

ˇ̌
ˇ
ˇ
ˇ

� r0K sup
˝

ˇ
ˇ
ˇf

0

s

ˇ
ˇ
ˇ exp sup

V]s

ˇ
ˇO]

s

ˇ
ˇ
 

1C sup
V]s

ˇ̌
ˇ
ˇ
ˇ
x
@O]

s

@x

ˇ̌
ˇ
ˇ
ˇ

!

with some constant K > 0 depending only on �0, � and r.

Remark 22. We mention the fact that the assumption < .��/ > 0 guarantees the

convergence of the integrals near 1, since fs
�

H]
s .z; y/

�
�1 Cz��� for fixed

y 2 r0D.

For r0 > 0 and O WD �
Osn
 ;Ons


�
adapted to ˝ , we write E .O/ the pair

�
Fns
 ;Fsn


�

built in the previous theorem for f
 WD 's
. Define the recursive sequence .On/n22Z
�0

starting with O0 WD .0; 0/ and

OnC1 WD E .On/ ; n � 0 : (22.50)

Show it converges in the Banach space H WD Holoc .Dns/ � Holoc .Dsn/ (equipped
with the sup-norm). For the sake of clarity we write Hn the canonical first integral
Hns

s built from Ons
s . We can assume that all 's

s are holomorphic and have bounded
derivatives on some disc �D D .C; 0/. Then we choose
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� � �

M
exp

 

� �

M
K sup

�D

ˇ
ˇ̌
ˇ
d's

s

dh

ˇ
ˇ̌
ˇ

!

where

M D M .�
/ WD sup
jsj<� ; z2Vs

s

ˇ̌
ˇ
ˇP

���
2

� gs

ˇ̌
ˇ
ˇ exp 2� j��j ;

and K is the constant appearing in Theorem 15. We wish to ensure that

.8s 2 ˙/ .8n 2 N/
�8y 2 r0

D
� �8z 2 Vs

s

� jHn .z; y/j � � : (22.51)

By construction of Hn we have for .z; y/ 2 Vns
s

jHn .z; y/j � r0M exp sup
Vns

s

ˇ
ˇOns

s

ˇ
ˇ :

Therefore if for some n 2 N we have supVns
s

ˇ
ˇOns

n

ˇ
ˇ � 2�

M �K sup�D

ˇ
ˇ
ˇ d's

s
dh

ˇ
ˇ
ˇ then we first

find that

jHn .z; y/j < r0M exp

 
�

M
K sup

�D

ˇ
ˇ
ˇ̌d'

s
s

dh

ˇ
ˇ
ˇ̌
!

D �;

i.e., .r0;On/ is adapted to �D and then, using Theorem 15 Item (4a), we obtain

sup
Vns

s

ˇ
ˇOns

nC1
ˇ
ˇ � r0K sup

�D

ˇ
ˇ
ˇ̌d'

s
s

dh

ˇ
ˇ
ˇ̌ exp sup

Vns
s

ˇ
ˇOns

n

ˇ
ˇ

� �

M
K sup

�D

ˇ̌
ˇ
ˇ
d's

s

dh

ˇ̌
ˇ
ˇ :

These estimates show by induction on n that, with the above choice of r0, the
relation (22.50) defines a bounded sequence .On/n 	 H. It so happens that the com-
ponents of the sequence .On/n converge for the Krull topology in Holoc

�
D]
�
ŒŒy��,

almost by construction, hence we can ensure it converges in the space Holoc
�
D]
�

by borrowing the argument of [30].

Lemma 17. [30] Let D be a domain in Cm and consider a bounded sequence�
fp
�

p2N of Holoc .D/ satisfying the additional property that there exists some point

z0 2 D such that the corresponding sequence of Taylor series
�
Tp
�

p2N at z0
is convergent in C ŒŒz � z0�� (for the projective topology). Then

�
fp
�

p
converges

uniformly on compact sets of D towards some f1 2 Holoc .D/.
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The cited reference likewise provides the remaining claims of the upcoming
proposition.

Proposition 11. Let ˝ D .C; 0/ be a domain and a collection 's
 2
Holoc .˙ �˝/ be given. Then there exists

�
r0;Osn
 ;Ons


� 2 R>0 � H adapted
to ˝ such that

1.

Hsn
s D Hns

s exp
�
2i��� C 's

s

�
Hns

s

��
;

2.

sup
V]s

ˇ
ˇ̌
ˇ
ˇ
y
@O]

s

@y

ˇ
ˇ̌
ˇ
ˇ
< 1 ; sup

V]s

ˇ
ˇ̌
ˇ
ˇ
x
@O]

s

@x

ˇ
ˇ̌
ˇ
ˇ
< 1:

We can now complete the proof of the first item of Proposition 9.

Corollary 7. Let r0 > 0 and O]
 be given by Proposition 11.

1. For s 2 ˙ the vector field

X]s WD X1
s � y

X1
s � O]

s

1C y @O
]
s

@y

@

@y
; ] 2 fns; sng

is holomorphic on V]s and admits H]
s as first integral.

2. The vector fields X]s are restrictions to the sectors V]s of a vector field

Xs .x; y/ D X1
s .x; y/C Rs .y/ y

@

@y

R
 2 Holoc
�
˙ � r0

D
�
; R
 .0/ D 0 :

Proof. Define

R]s WD � X1
s � O]

s

1C y @O
]
s

@y

: (22.52)

1. It is a straightforward consequence of Proposition 11.
2. On the one hand, we have

X]s � Hsn
s D X]s � �Hsn

s exp
�
2i��� C 's

s

�
Hsn

s

��� D 0 :
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On the other hand, a short calculation shows that

X]s � Hsn
s D Hsn

s

�
X1

s � Osn
s C

�
1C y

@Osn
s

@y

�
Rns

s

�
:

Therefore the functions R]s glue other the intersection of canonical sectors to a
holomorphic function bRs on .Cn f˙sg/ � r0D, bounded near fx D ˙sg. Hence
bRs is holomorphic on C � r0D by Riemann’s removable singularity theorem.
From (22.52) follows, for jxj > 1,

ˇ
ˇ
ˇbRs

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇP�

x � x @O
]
s

@x

ˇ
ˇ
ˇC .1C j��xj/

ˇ
ˇ
ˇy @O

]
s

@y

ˇ
ˇ
ˇ

1 �
ˇ
ˇ
ˇy @O

]
s

@y

ˇ
ˇ
ˇ

� C jxj

for some constant C > 0 whose existence is guaranteed by Proposition 11
Item (2). Therefore for any fixed y 2 r0D the partial function x 7! bRs .x; y/ is
affine. A change of coordinates of the form

.�; x; y/ 7�! .�; x; y exp N� .y//

allows to get rid of the term bRs .0; y/, so we may as well assume that Rs only
depends on y, concluding the proof.

ut
So far we have proven Proposition 9 Item (1). The second item can be shown in

exactly the same way as in [29, 30], so we shall skip additional details.

22.13.2.2 Gluing Antipodal Realizations (Proof of Lemma 16)

Assume that R� is holomorphic with respect to �. The orbital necklace ˝ .'
/ is
compatible: �
 WD H
 ı H�
 conjugates the necklace dynamics�
 and ��
, while
�ı�1
 D ��
.

Conversely, if ˝ .'
/ is compatible, then  
 WD Hı�1
 ı �
 ı H�
 is a self-map
of T conjugating the holonomy representation of R
 and R�
 on T. This map is
tangent-to-identity in the y-variable. Because the union of leaves Lp of Fs for p 2 T

contains a uniform, connected neighborhood bU of f.˙s; 0/g, there exists a family of
paths 
 .x/ linking x to x� so that h
.x/s .x; y/ 2 T for every .x; y/ 2 bU . The map built
à la Mattei–Moussu [22]

$s W .x; y/ 7�!
�

x ; h�
.x/
s ı  s ı h
.x/s .x; y/

�
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is therefore well defined, biholomorphic, and locally conjugates X
 and X�
. The
conclusion follows from the uniqueness clause of Proposition 9 Item (1), as the
linear part of $s in the y-variable is 1. More details can be found in [29].

22.13.2.3 A Section to the Period Operator (Proof of Proposition 10)

This is really Theorem 15. Being given X
 2 Holoc .˙ � C � r0D/ in normal form,
the functions F]
 of (22.49) induce a function Q
 WD X
 � F]
 2 Holoc .˙ � C � r0

D/

with prescribed period as in Sect. 22.13.1.1. Applying again the arguments of
Corollary 7 Item (2), we can give a polynomial bound on the growth of x 7!
Qs .x; y/, so that it must be of the expected form after a final correction in the y-
variable to normalize Qs .0; y/ D 0. The claim follows from the same reasoning as
in Theorem 13 in order to perturb Q
 so that the resulting function is even in s and
has same period.
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Chapter 23
The CD45 Case Revisited

Henryk Żoła̧dek

Abstract In Żoła̧dek (Nonlinearity 8:843–860, 1995) the existence of 11 small
amplitude limit cycles in a perturbation of some special cubic plane vector field
with center was demonstrated. Here we present a new and corrected proof of that
result.

Keywords Center • Limit cycle • Melnikov integral

2000 Mathematics Subject Classification. Primary 34C05; Secondary 58F21

23.1 Introduction

The center variety of polynomial vector fields in R
2 of degree n consists of vector

fields, of degree n; with a center, a singular point surrounded by a family of closed
phase curves. When we consider only elementary centers (with the linear part
having eigenvalues ˙i
/ then we get a semi-algebraic variety consisting of several
irreducible components. However, only for n � 2 we know completely the structure
of the corresponding center variety: there is one component for n D 1 and four
components for n D 2 (see [11]).

It is conjectured that for n D 3 all components of the center variety are
divided into two groups: rationally reversible and Darboux integrable. A rationally
reversible center of a vector field V is obtained by a pull-back of a polynomial vector
field W by means of a rational map ‰ with a fold singularity; the center of V is a
preimage of a tangency point of a phase curve of W to the curve of critical values
of ‰: Vector fields with center of the second class have Darboux type first integral
F D Fa1

1 : : :F
ak
k ;with polynomials Fj of degrees dj and constants aj: For more details

we refer the reader to [12, 14], where preliminary lists of reversible (denoted CRj/
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and Darboux (denoted CDd1;:::;dk ) components are given. 1 Plausibly these lists are
not complete; this follows from numerical investigations of H. C. Graf von Bothmer
[7, 8] (who has moved some components CRj into the Darboux side).

In what follows we adopt the language of Pfaff equations � D 0; instead of
vector fields: if the vector field is V D P@=@x C Q@=@y, then� D Qdx � Pdy is the
corresponding 1-form.

Another important problem associated with the center problem is the question
of cyclicity of singular points of center or focus type for polynomial vector fields.
One asks about the number of limit cycles appearing near the singular point after
perturbation�" D 0 of a given Pfaff equation�0 D 0; with�0 and�" of degree n:
This constitutes an important element of the bifurcational approach to the 16th
Hilbert problem (about the number of limit cycles of polynomial vector fields). 2

In the case n D 3 the space of vector fields has dimension 20. On this space
the group of affine automorphisms of R2 and time rescaling acts; this group has
dimension 7. Therefore each component of the center variety and dimension � 7

(and codimension � 13/: But the experience shows that each component of the
center variety (and for any degree n/ has a continuous modulus, its dimension is
> 7. 3 Therefore, in order to get an example of a singular point of large cyclicity for
n D 3 one should take a component of the center variety of maximal codimension,
equal 12, and generate 11 limit cycles in some its perturbation. This was the main
idea of the work [13].

The chosen component of the cubic center variety was CD4;5: In some coordi-
nates one has a first integral of the form

F D F.x; yI a/ D F�5
1 F42 (23.1)

where F1 D F1.x; yI a/ and F2 D F2.x; yI a/ are some polynomials in x; y and a is a
parameter; the precise formulas are given in the next section. One has

dF D M�; (23.2)

where M D �20F=.F1F2/ is an integrating factor and � D �.x; yI a/ is a cubic
1-form (corresponding in natural way to a cubic vector field). The component CD4;5

is obtained by applying the changes F 7�! ˛ˆ�F (or � 7�! ˛ˆ��/, with ˛ 2
RŸ0 and with affine diffeomorphismsˆ of the plane.

1When n > 3 there exist reversible centers but not rationally, only algebraically, i.e., with algebraic
map ‰ (see [3]). Also the class Darboux type integrals should be replaced the with so-called
Liouvillian first integrals of the form

R
M�; where M is an integrating multiplier of the Darboux

form and � is a polynomial 1-form associated with the vector field.
2More precisely, by estimating the cyclicity of the so-called limit sets (like a center or a focus or
a polycycle) one can prove the existence of an upper bound for the number of limit cycles for any
vector field of degree n/: Their details are in [4].
3This is not the case for the so-called p W �q resonant complex center problem. For p D 1; q D 2

and n D 2 some components of the corresponding center variety are without moduli (see [6]).
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A generic 12-parameter perturbed vector field corresponds to a Pfaff equation of
the form

�C
12X

lD1
"l�l D 0; (23.3)

where "l are small parameters, �l are generators of the normal space N�CD4;5 D
R12=T�CD4;5; to the component CD4;5 (in terms of 1-forms). After rewriting the
latter equation,

dF C
X

"lM�l D 0;

and integrating it along a part �".t/ of phase curve (a segment between two
consecutive intersections with a Poincaré section and with initial value F D t) one
gets the formula

�F D 20
X

"l

Z

�".t/

F

F1F2
�l (23.4)

for the increment of the first integral along �".t/: Approximating the curve �".t/ by
a corresponding oval �.t/ D �0.t/ 	 fF D tg around a center of � D 0 we arrive
at the condition

X
"lI�l.t/ D 0; (23.5)

I�.t/ D
I

�.t/

�

F1F2
D
I

�.t/

Q�; (23.6)

for bifurcation of a limit cycle from the oval �.t/: The corresponding integrals I�
are known as the first order Melnikov integrals. If the 12 functions I�l.�/ were inde-
pendent, then the corresponding equation would have 11 solutions corresponding to
11 limit cycles after bifurcation.

But the functions I�l are not independent. The reason for this is a deformation
Fı D Fı.x; yI a/; ı 2 .R; 0/ ; of the function F of the form Fı D F�4

1;ıF52;ı; with
suitable polynomials F1;ı and F2;ı; such that

dFı D Mı

�
�C ı�12 C ı2�0

�
; (23.7)

where �12 is a cubic 1-form (corresponding to I�12 � 0/, �0 is a quartic 1-form and
Mı D �20Fı= .F1;ıF2;ı/ is an integrating multiplier. This implies that the increment
�F corresponding to the Pfaff equation�C ı�12 D 0 equals

20ı2 � t � I�0.t/; (23.8)

where the factor ı2I�0 is the second order Melnikov integral; we prove this formula
in Appendix.
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So, we should study the function t 7�! P11
lD0 "lI�l.t/: Besides the small

parameters "l (with "0 D ı2/ this function contains another parameter, aI moreover,
the functions I�l D I�l.tI a/ depend analytically on .t; a/ ; i.e., outside a critical
curve in C2: A natural strategy, used also in [13], is to prolong these functions to a
value of a such that the function Fa.x; y/ is “simple”; a D 0 is such a value. Then
the corresponding critical point is a saddle, but the cycles �.t/ are continuously
deformed and become cycles vanishing at this saddle point.

Unfortunately, it turns out that the 12 functions Il.tI 0/ are linearly dependent
(see Sect. 23.4.5). Some combination Q D = .F1F2/ of the forms �l= .F1F2/ can be
written as Q D dH C KdF, with rational functions H and K; and this leads to a third
order Melnikov integral of the form

I�.t/ D
I

�.t/

�; � D HdK: (23.9)

The main result of the paper is following.

Theorem 1. For a D 0 the Melnikov functions I�l ; l D 0; 1; : : : ; 11; and I� span a
space of dimension 12.

This implies that, for typical a and any collection ft1; : : : ; t11g of values of F;
there exists a perturbation�C �! D 0 (with a cubic form !) of the Pfaff equation
� D 0 with limit cycles ��.tj/; j D 1; : : : 11; such that ��.tj/ ! �.tj/ as � ! 0: In
particular, at least 11 limit cycles can bifurcate from the center after suitable cubic
perturbation of the equation� D 0.

The above result was stated in [13] but its proof contained several technical mis-
takes. Firstly, the basis (denoted f!1; : : : ; !11gin [13]) of the space N�CD4;5=R�12
was chosen incorrectly; some combination of the integrals I!l vanishes (see
Remark 1).

Next, vanishing of a combination of first and of second order Melnikov functions
for a D 0 was observed in [13]. But, instead of considering a third order
Melnikov integral, like in Eq. (23.9), the derivative with respect to a was applied
(see Remark 4). Moreover, no geometrical reasons for such relations were provided.

There were also some mistakes in analysis of the topology of the family of
Riemann surfaces …t D fF D tg (see Remark 2).

Moreover, it seems that the analysis of the expansions of the integrals along �.t/
for t near the critical values of F was done with insufficient care and details.

Finally, there appeared the paper [10] of P. Yu and M. Han where the Poincaré–
Lyapunov focus quantities in the second order with respect to the small parameter
" were calculated and only nine small amplitude limit cycles were detected in
this way. This does not contradict Theorem 1 because we do not say about the
Taylor expansion of the Melnikov integrals at the critical value corresponding to
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the center. 4 The Yu–Han’s work was my main motivation to review my previous
analysis of the Melnikov integrals in the case CD4;5:

Some useful lesson can be extracted from the below research of the case CD4;5:

New mechanisms for vanishing of the Melnikov type integrals, i.e., of a rational
1-form along cycles in complex levels of rational functions in C2; are revealed. The
vanishing of I�12.t/ follows from the fact that the perturbing form �12 is tangent to
a component of a quartic center variety (although �12 is cubic). Next, the vanishing
of I.t/ follows from the property that the perturbing form  can be split into a
sum of two rational forms, each tangent to different components (with Darboux first
integrals) of a center variety in a space of rational Pfaff equations (see Remark 3).

23.2 The Component CD4;5 and Its Perturbations

Recall that the first integral in the case CD4;5 equals F D F�5
1 F42 (see Eq. (23.1))

where

F1 D x4 C 4x2 C 4y; F2 D x5 C 5x3 C 5xy C 5x=2C a: (23.10)

We have dF D �20F�6
1 F32� (see Eq. (23.2)) where

� D �
ax3 � 6x2y C 3x2 � 4y2 � 2y C 2ax

�
dx C �

x3 C xy C 5x=2C a
�

dy:
(23.11)

The function F has the critical point

p0 D .�a=2;�a2=4� 1=2/; t0 D F.p0/ D �a=2: (23.12)

If jaj > 25=4, then p0 is a local extremum (minimum for a < �25=4 and maximum
for a > 25=4/ and the corresponding singular point of the Pfaff equation is a center;
for jaj < 25=4 it is a saddle. For jaj > 25=4 the ovals �.t/ 	 R2 of the levels
fF.x; y/ D tg for t close to t0 are closed curves used in definition of the Melnikov
integrals in Eq. (23.6).

The perturbation Fı D F�5
1;ıF42;ı is defined by

4In [10] the authors refer to the paper [11] as the one where the case CD4;5 is studied; they evidently
have mixed up two my papers. They make calculations with the help of some computer programs.
But their result contradicts analogous computer calculations of the focus quantities in first order
with respect to " made (but not published) by C. Christopher; he found ten small amplitude limit
cycles.

In [13] I analyzed the Melnikov integrals using only pen and a sheet of paper, here the MAPLE
program has turned out useful.

We note also that Christopher in [2] studied Poincaré–Lyapunov quantities in second order with
respect to parameters for perturbations of another component CD4;6 of the cubic center variety; he
has found 11 cycles. In [9] an example of a cubic family with 13 limit cycles is presented.
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F1;ı D x5C5x3C5xyC5x=2CaC5ıx2y C 5ıy; F2;ı D x4 C 4x2 C 4y C 4ıxy:
(23.13)

We have dFı D Mı

�
�C ı�12 C ı2�0

�
(see Eq. (23.7)) with

�12 D
�

�7xy2 C 21

2
xy C ay

�
dx C

�
2x2y � 3

2
x2 C ax C y

�
dy; (23.14)

�0 D y2.5 � 3x2/dx C xy.x2 C 1/dy: (23.15)

The variety CD4;5 arises from (23.11) by applying the affine changes of variables.
Therefore the tangent space T�CD4;5 to CD4;5 at� is spanned by the tangent vectors
to the curves induced by the following 1–parameter changes:

1: a ! a C � I 2: x ! x C � I 3: y ! y C � I 4: x ! .1C �/xI
5: y ! .1C �/yI 6: t ! .1C �/tI 7: x ! x C �yI 8: y ! y C �x:

It follows that this space is generated by the following forms:

�1 D .x3 C 2x/dx C dy;
�2 D .3ax2 � 12xy C 6x C 2a/dx C .3x2 C y C 5=2/dy;
�3 D �.6x2 C 8y C 2/dx C xdy;
�4 D .4ax3 � 18x2y C 9x2 � 4y2 � 2y C 4ax/dx C .3x3 C xy C 5x=2/dy;
�5 D .�6x2y � 8y2 � 2y/dx C x3 C 2xy C 5x=2C ady;
�6 D �

ax3 � 6x2y C 3x2 � 4y2 � 2y C 2ax
�

dx C �
x3 C xy C 5x=2C a

�
dy D �;

�7 D .3ax2y � 12xy2 C 6xy C 2ay/dx C .ax3 � 3x2y C 3x2 � 3y2 C y=2C 2ax/dy;
�8 D .�5x3 � 7xy C x=2C a/dx C x2dy:

The corresponding Melnikov integrals I�j vanish identically. Recall also that the
form �12 (see Eq. (23.14)) lies outside of the space T�CD4;5, but the corresponding
integral I�12 also vanishes:

Lemma 1. The 11 forms

�1 D dy; �2 D ydx; �3 D x2dx; �4 D x3dx; �5 D y2dx; �6 D xydx;

�7 D x2ydx; �8 D xy2dx; �9 D y3dx; �10 D xy2dy; �11 D y3dy

form a basis of the space N�CD4;5=R�12:

Proof. The idea of the proof is to represent the right-hand sides of the formulas for
�j’s and for �l’s (with respect to the monomial basis) in form of a bloc-triangular
matrix.

Observe that the forms �11 D y3dy, �10 D xy2dy and �9 D y3dx do not appear in
the above formulas for �j:

The forms �8 D xy2dx; y2dy and x2ydy appear only in the expressions for �7 and
�12; moreover, in regular way; we choose �8:
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Next, the forms xydy; x3dy; �5 D y2dx and �7 D x2ydx appear in �4; �5 and �6
(besides �7 and �9/: Moreover,

1

2
�4 D 6�7 � x3dy C other terms,

�5 D 4y2dx � xydy C other terms,

Q�6 D �6 � �5 � 1

2
�4 (23.16)

D �1
2

ax3dx � 3x2dx C 2ydx � 3axdx � 5

2
xdy � a

2
dy D other terms.

We choose �7 and �5:
The forms ydy; x2dy, and �6 D xydx appear in the formulas for �2 and �8 and we

choose �6:
The forms dx; xdy, and xdx appear in �3, Q�6, and �1 with nondegenerate triangular

matrix; so, these forms can be deleted.
There remain the forms �4 D x3dx; �3 D x2dx; �2 D ydx, and �1 D dy. ut

Remark 1. In [13] another system of forms was chosen: !1 D dx; !2 D xdx; !3 D
x2dx; !4 D x3dx; !5 D �

18x2 C 18y C 5
�

dx, and !l D �l for l � 6 (�0 was denoted
as !12 in [13]). That choice was wrong, because of the relation

a!4 � !5 D Q�6 � 5

2
�3 C 3a

2
�1

where Q�6 is given in Eq. (23.16). Thus aI!4.t/ � I!5.t/:

23.3 Geometry of the Phase Portrait for a D 0

Recall that in the case a D 0 the singular point p0 D .0;�1=2/ is an integrable
saddle. It is a critical point of F with the critical value t0 D 0: One can join the
point a D 0 with a D �4 (when p0 is a center) in the complex domain avoiding
the bifurcational values of the parameter (which correspond to a4 D 32/: Then the
cycles �.t/ D ��4.t/; i.e., ovals of the curve fF.x; yI �4/ D tg 	 R2 with t > t0; are
deformed continuously to a suitable cycles �.t/D�0.t/ 	 …tD fF.x; yI 0/Dtg 	 C2

(with t close to t0 D 0/:

The reasons why we devote our energy to the case a D 0 is the relative simplicity
of the family of level surfaces of the function

F.x; y/ D F.x; yI 0/ D F42
F51

D x4
�
x4 C 5x2 C 5y C 5=2

�4

.x4 C 4x2 C 4y/5
: (23.17)
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23.3.1 The Phase Portrait

The critical level fF D 0g of the function (23.17) consists of two algebraic curves
fx D 0g and

˚
x4 C 5x2 C 5y C 5=2 D 0

	
: Besides the saddle point p0 there are

other five singular points of the Pfaff equation � D 0 at this level; they are nodes
p1; : : : ; p5 in the intersection of the curves fF1 D 0g and fF2 D 0g I but they are
irrelevant in our analysis.

Other critical values of F are t1 D 1 and t2 D 1: The level fF D 1g contains
the line at infinity, besides the finite part, with two critical points of the equation
� D 0 W p6 D .1 W 0 W 0/ and p7 D .0 W 1 W 0/ (in the homogeneous coordinates
.x1 W x2 W x3/ of CP2/: The point p6 is a 1 W �5 resonant saddle (F �1 
 20x53x2) and
the point p7 is highly degenerate.

The level fF D 1g is the curve fF1 D 0g :

23.3.2 Normalization Near p0

The normal form for a nondegenerate critical point of saddle type of a function is
Cx1x2; where fx1 D 0g and fx2 D 0g are the local separatrices. In the case of the
singular point p0 D .0;�1=2/ the considered function is

.�F/1=4 D x
�
x4 C 5x2 C 5y C 5=2

� ��x4 � 4x2 � 4y
��5=4

with one separatrix fx D 0g : Therefore we put x1 D x and denote x2 by z; which
equals

z D

�

y C 1

2

�
C x2 C 1

5
x4
�

�


1 � 2

�
y C 1

2

�
� 2x2 � 1

2
x4
��5=4

I (23.18)

we have also C D 5 � 2�5=4: Introducing the notation

r D ��255�4t
�1=4

(23.19)

we rewrite the equation F.x; y/ D t as follows:

xz D r: (23.20)

Below we need expansion of y in powers of x and z: For this we use the relation
(equivalent to Eq. (23.18))

y C 1

2
D �x2 � 1

5
x4 C z



1 � 2

�
y C 1

2

�
� 2x2 � 1

2
x4
�5=4

:

We expand the 5=4 power term in powers of x and yC 1
2

and solve the above equation
by iterations.
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Lemma 2. We have

y D �1
2

Cz�x2� 5
2

z2C 55

8
z3� 1

5
x4�20z4� 1

8
x4zC 7735

128
z5C 3

8
x4z2� 3003

16
z6C: : :
(23.21)

where the dots mean term of degree � 7:

The continuation of the ovals around the center (say, for a D �4/ to the value
a D 0 leads to the following cycle:

�.t/ D ˚
.x; z/ D �

r1=2ei� ; r1=2e�i�
� W 0 � � � 2�

	
(23.22)

D
�

x D r1=2ei� ; y D �1
2

C r1=2e�i�

�
; r D const � t1=4:

23.3.3 New Variables

We introduce new variables u and v by the formulas

x D t1=4

u
; y D v4

4u4
� t1=2

u2
� t

4u4
: (23.23)

From this we get the following characterization of the level curves of the function F:

G.u; v/ WD 10u4 � 4v5 C 5v4 D t: (23.24)

Indeed, since v4 D 4u4
�
y C x2 C x4=4

� D u4F1 we get F1 D v4=u4 and F2 D
t1=4F5=41 D t1=4v5=u5: But F2 D x

�
F1 C x2 C y C 5=2

�
which yields the relation

t1=4v5=u5 D �
t1=4=u

� 
v4=u4 C t1=2=u2 C v4=.4u4/� t1=2=u2 � t=.4u4/C 5=2

�
;

equivalent to Eq. (23.24).
Equations (23.23) define a family of maps (morphisms or four-to-one ramified

coverings)

‚t W †t 7�! …t (23.25)

between the algebraic curves 5

5We can describe the formulas (23.23)–(23.24) in terms of some algebraic correspondence. In
the space C

5 D C
2 � C

2 � C; with the coordinates .u; v/ ; .x; y/ and t, we define a complex
algebraic surface S by the formulas: F.x; y/ D t; .ux/4 D t; .vx/4 D t

�
x4 C 4x4 C 4y

�
: Then the

intersections St of S with the hyperplanes ft D constg define a family of correspondences between
the curves †t and …t via the projections of the curves St to the corresponding two-dimensional
spaces C2u;v and C

2
x;y: This correspondence is a morphism (in one direction) although the analogous

correspondence defined by the same projections of S to C2u;v and C2x;y is not a morphism.
Moreover, change (23.23) applies to the general case, i.e., for arbitrary a; as well. Then

Eq. (23.24) is replaced with 10u4 � 4v5 C 5v4 C 4at�1=4u5 D t:
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†t D fG.u; v/ D tg and…t D fF.x; y/ D tg :

Note also that the complex curves †t are the Riemann surfaces of the algebraic
function

u D 4

r
2

5
v5 � 1

2
v4 C t

10
DW .P.vI t//1=4 D 4

p
P.v/: (23.26)

We denote the projection .u; v/ 7�! v by �:

23.3.4 Topological Properties of the Function G

The function G has two finite critical points:

Qp0 D .0; 0/ ; t0 D G.Qq0/ D 0;

Qp1 D .u; 1/ ; t1 D G.Qq1/ D 1:

The point Qp0 corresponds to the saddle point p0 of � D 0 (see below) and the point
Qp1 corresponds to the line at infinity (with two singular points p6 D .1 W 0 W 0/ and
p7 D .0 W 1 W 0/ of� D 0/:

The complex levels †t D fG.u; v/ D tg 	 C2 are open Riemann surfaces;
after adding one point at infinity, .1 W 0 W 0/ one gets closed Riemann surfaces. The
topology of these surfaces can be studied in two ways.

Firstly, we have G.u; v/ D Q.u/ C R.v/: Thus, by a theorem of Thom and
Sebastiani (see [1, 15]) we have the following expression of the first homology group
of these surfaces:

H1.†t;Z/ ' QH0.ˆq;Z/˝ QH0.‰r;Z/;

where ˆq D fQ.u/ D qg and ‰r D fR.v/ D rg ; q C r D t and QH0 denotes the
reduced zeroth homology group (the sum of coefficients is zero). Moreover, we
assume that t 6D 0; 1; q 6D 0 and r 6D 0; 1:

Let ˆq D fu1; : : : ; u4g ; uj D const � q1=4e2� ij=4; and ‰q D fQv1; : : : ; Qv5g : Then
the generators of QH0.ˆq;Z/ can be chosen as fu2g � fu1g WD 2 � 1; fu3g � fu2g DW
3 � 2; fu4g � fu3g DW 4 � 3 and the generators of QH0.‰r;Z/ are of the form f Qv2g �
f Qv1g WD 2 � 1; : : : ; f Qv5g � f Qv4g DW 5 � 4: Therefore

�
j0 � j

�˝ �
k0 � k

�
; j0 D j C 1; k0 D k C 1;

generate H1.†t;Z/ ' Z12:

The function Q.u/ has one critical point u D 0, with the critical value q D 0; and
the cycles j0 � j; j0 D j C 1, vanish for q ! 0: The function R.v/ has two critical
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points v D 0; with the critical value r D 0; and v D 1 with the critical value r D 1:

We can order the points Qvk such that Qv1; Qv2; Qv3; Qv4 ! 0 ( Qvk 
 const � e2� ik=4 � r1=4)
and Qv5 ! 5=4 as r ! 0 and Qv4; Qv4 ! 1 as r ! 1 (after prolongation for r 2 .0; 1//I
then the cycles 2 � 1; 3 � 2, and 4 � 3 vanish as r ! 0 and the cycle 5 � 4 vanishes
as r ! 1: It follows that the cycles .j0 � j/ ˝ .k0 � k/ ; j D 1; 2; 3; k D 1; 2; 3

vanish for t D 0 and the cycles .j0 � j/˝ .5 � 4/ ; j D 1; 2; 3; vanish for t D 1:

Now, let us look at the complex curve†t as the Riemann surface of the algebraic
function .P.vI t//1=4 (see Eq. (23.26)), with the branching points vk D vk.t/; k D
1; : : : ; 5:

Lemma 3. The cycles .j0 � j/ ˝ .k0 � k/ can be represented as suitable lifts of
the loops ‡k in the v–plane surrounding the points vk0 D vkC1 and vk in different
directions: ‡k form the shape of the digit eight with vkC1 surrounded in negative
direction and with values of u above the intersection point being uj0 D ujC1 D iuj

and uj.

Proof. This can be seen after deforming the loops‡k to collection of four segments
joining the point v D 0 with vk and vk�1 and a suitable choice of the branch
of the function .P.v/1=4 above each segment. The result is the “wedge product”˚
uj; ujC1

	 ^ fvk; vkC1g : We also use the fact that, after surrounding a ramification
point vj in positive (respectively, negative) direction, the argument of P.v/1=4

increases (respectively, decreases) by �=4:
There are four lifts of one loop ‡k but only three of them are homologically

independent. ut
Let us localize the cycle �.t/ from Eq. (23.22) in the new coordinates. Thus we

consider a loop Q�.t/ in ‚�1
t .�.t// : From Eq. (23.22) we find that, as t D const �

r4 ! 0;we have u D const � t1=4= �r1=2ei�
� D const � t1=8e�i� and v 
 �

4yt=x4
�1=4 


const � r1=2e�i� along Q�.t/: We get

Q� D Q�.t/ D ˚
u D const � t1=8e�i� ; v 
 const � t1=8e�i� W 0 � � � 2�

	
: (23.27)

This implies the following result.

Lemma 4. The loop Q�.t/ 	 ‚�1
t .�.t// in the .u; v/-space is a lift to the Riemann

surface of the function P1=4.v/ of the loop �
� Q�.t/� in the v-plane which surrounds

(in the negative direction) the four ramification points v1; : : : ; v4 which vanish at
v D 0 as t ! 0: Moreover, the map‚tj Q�.t/ W Q�.t/ 7�! �.t/ is one-to-one.

In fact, there are four such lifts, Q�1; Q�2; Q�3; Q�4, such that

uj Q�kC1
D i � uj Q�k

;

and Q�.t/ D Q�1 is one of them. We see also that Q�.t/ vanishes at the critical point
Qq0: Q�.t/ can be expressed in the basis .j0 � j/˝.k0 � k/ ; j; k D 1; 2; 3; of vanishing
cycles at Qq0; but we do not need it.
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We should say few words about the action of the monodromy group on
H1 .†t

�

;Z/ ; t� 6D 0; 1. It is induced by the monodromy diffeomorphisms of the
fixed fibre †t

�

of the Milnor bundle G W C2 n G�1f0; 1g ! C n f0; 1g. There are
two monodromy operators M0 and M1 corresponding to variation of the value of
t around t D 0 and t D 1. They act on the corresponding groups of vanishing
cycles at the points Qp0 and Qp1. By the Thom–Sebastiani theorem (see [1, 15]) these
operators are of the form MQ

j ˝ MR
j ; j D 0; 1: Here MQ

0 D MQ
1 is induced by the

cyclic permutation of the set f1; 2; 3; 4g ; MR
0 is induced by the cyclic permutation

of f1; 2; 3; 4g (while 5 is fixed) and MR
1 is induced by the transposition .4; 5/ (while

1; 2; 3 are fixed). More precisely, we have

M0

�
j � j00�˝ �

k � k00� D �
j0 � j

�˝ �
k0 � k

�
; (23.28)

j; k D 1; 2; 3; 4; j0 D jC1; j00 D j�1; k0 D kC1; k00 D k�1 (where 5 D 1; 0 D 4;

etc.);

M1

�
j � j00�˝ .5 � 4/ D � �j0 � j

�˝ .5 � 4/ ; (23.29)

j D 1; 2; 3; j0 D j C 1; j00 D j � 1:
From Lemma 4 it follows that the cycle Q�.t/ from Eq. (23.27) is invariant with

respect M0: To see the action of the second monodromy operator on it we note that
it has one point of transversal intersection with one of the cycles .j0 � j/˝ .5 � 4/ ;
realized as one of the lifts to the Riemann surface †t of the eight shape loop ‡4
around the branching points v4 and v5I we can assume that the latter loop is

� D �.t/ D .2 � 1/˝ .5 � 4/ : (23.30)

Similarly, the cycles .j0 � j/ ˝ .5 � 4/ intersect some cycles vanishing at Qp0: An
analogue of the Picard–Lefschetz formula [1, 15] implies the following formulas:

M1
Q� D Q� C .2 � 1/˝ .5 � 4/ ;

M0

�
j0 � j

�˝ .5 � 4/ D �
j0 � j

�˝ .5 � 4/C �
j0 � j

�˝ .4 � 1/ :

The above implies the following result which we use in the sequel.

Lemma 5. We have

(a) M0
Q� D Q�;

(b) M1
Q� D Q� C�;

(c) M4n
1

Q� D Q� C 2n � .2 � 1 C 4 � 3/˝ .5 � 4/ ;
(d) M4n

0 � D � � n„; where n D 0; 1; 2; : : : and

„ D .2 � 1/˝ .1 � 4/C .3 � 2/˝ .2 � 1/C .4 � 3/˝ .3 � 2/
C .1 � 4/˝ .4 � 3/ D Q�1 � Q�4: (23.31)
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The second equality in Eq. (23.31) can be seen after applying M4
0 to �: The

corresponding variation is a loop which “begins” and “ends” at v4 and runs twice
around the points v1; v2; v3 in opposite directions; it is Q�1 � Q�4; where uj Q�k

D
ik�1 � uj Q�:

23.3.5 Normalizations for t ! 1

In this subsection we are interested in the behavior of the cycles �.t/; Q�.t/, and
�.t/ as t ! 1: The first becomes large (and we describe it in the .x; y/-coordinates)
and the second vanishes at Qq1 W u D 0; v D 1:

The equation F.x; y/ D 1 takes the form F51 � F42 D 0: Near “infinity” we find

F51 � F42 D 20x14y C 10x12y2 C : : :

where the dots denote lower order terms with respect to deg x C 2 deg y: We put

t D 1C 10s (23.32)

and assume the following normalization:

x D X=s1=4; y D Y=s1=2: (23.33)

Lemma 6. As s ! 0 the curve F.x; y/ D t becomes

2X2Y C Y2 C X8 D O.s1=4/:

This implies that the cycle �.t/; with t like in Eq (23.32), behaves like some cycle in
the hyperelliptic curve

�
Y C X2

�2 D X4.1 � X8/I (23.34)

the projection of this cycle onto the X-plane is a loop with vertex at X D 0 which
runs around the point X D 1, it can also be taken as the part of the real curve
defined in Eq. (23.34) which lies in the half-plane fX � 0g :
Proof. The first statement follows directly from the formulas (23.32)–(23.33).

To determine the behavior of the cycle �.t/ near infinity, we use its description
before Lemma 5 (i.e., for the cycle Q�.t/ in the .u; v/-coordinates).

Recall that Q�.t/ has one-point intersection with the cycle �.t/; vanishing at the
point Qq1 W u D 0; v D 1 (which corresponds to the point p1 D .1 W 0 W 0/ at infinity).
Near this point we have the equation:

u4 � .v � 1/2 .1C : : :/ D s
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(see Eq. (23.35) below). The projection �.�.t// onto the v-plane is the loop ‡4
with the eight digit shape around the points v4 
 1 � s1=2 and v5 
 1 C s1=2:
These points correspond to u D 0: The point v D 1 in ‡4 corresponds to two points
u D s1=4; v D 1 and u D �is1=4; v D 1 in �.t/: The part of the cycle Q�.t/ near
�.t/ has projection onto the v-plane such that it passes through the point v D 1

and intersects the segment

1 � s1=2; 1C s1=2

�
transversally at the point v D 1: Q�.t/

passes only through one of the two points
�
s1=4; 1

�
and

��is1=4; 1
�

above v D 1; it
is the point

�
s1=4; 1

�
:

By Eqs. (23.23) we have x 
 1=u D 1=s1=4 and hence X D sH1=4x 
 1. There-
fore, in the .X;Y/-coordinates, the corresponding loop in the X-plane surrounds only
one point X D 1 (out of four).

Of course, the cycle �.t/ contains also a finite part, i.e., in the .x; y/-space, which
we do not claim to control. ut

Consider now a neighborhood of the point Qq1 W u D 0; v D 1: Here the normal
form for the function G is the following:

G D 10
�
u4 � w2

�C 1: (23.35)

The cycle�.t/ can be defined via the Riemann surface of the function

w D
p

u4 � s; (23.36)

which follows from the equations G.u; v/ D t D 1C 10s: �.t/ is a lift of a loop in
the u-plane which surrounds the ramification points u D s1=4 and u D is1=4:

The variable v, as a function of w, is calculated as follows. Putting v D 1C z we
get 5v4 � 4v5 D 1 � 10z2

�
1C 2z C 3

2
z2 C 2

5
z3
�

(see Eq. (23.24)), i.e.,

z D w

�
1C 2z C 3

2
z2 C 2

5
z3
��1=2

:

We expand the latter power term and solve the obtained equation by iterations. The
result is the following.

Lemma 7. We have

v D 1C w � w2 C 7

4
w3 � 37

10
w4 C 1379

160
w5 C O.w6/: (23.37)

Moreover, the vanishing cycle �.t/; t D 1C 10s; is a lift to the Riemann surface of
the function (23.36) of a loop in the u-plane which surrounds the ramification points
u D s1=4 and u D is1=4. 6

6One can notice that, in our analysis, we have not considered one more cycle on the curve …t

(in the x; y coordinates); namely, a cycle vanishing (for t ! 1/ at the point p6 D .1 W 0 W 0/ at
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23.3.6 Normalization for t ! 1

Since here u and v are large, the normal form for G is the following:

G D 10u4 � 4w5 (23.38)

where 4w5 D 4v5 � 5v4:
Lemma 8. We have

v D w C a0 C a�1
1 w C : : : (23.39)

as v ! 1 (for some constants aj). Moreover, as t ! 1 the cycle Q�.t/ is a suitable

lift to the Riemann surface of the function u D ��
t C 4w5

�
=10

�1=4
of a loop in the

w-plane which surrounds four (out of five) consecutive ramification points wj D
e2� ij=5 � .�t=4/1=5 ; j D 1; : : : ; 4:

23.4 Expansions of the Melnikov Integrals
at the Critical Values

23.4.1 General Properties of the Melnikov Integrals

Firstly, we use the fact that the four-to-one map ‚t W †t 7�! …t, restricted to the
loop Q�.t/; is one-to-one (see Lemma 4). This implies the identity

I�.t/ D
I

Q�.t/
‚�

t
Q�; (23.40)

where

Q� D �= .F1F2/

(see Eq. (23.6)). (Below we usually denote the forms and functions by their old
names (without‚�

t ), when expressed in the u; v variables).
From Eqs. (23.23) we get

dx D �t1=4
du

u2
; dy D v3

u4
dv � v4

u5
du C 2t1=2

du

u3
C t

du

u5
(23.41)

infinity. Indeed, with t D 1C 10s from Eq. (23.32) we find the local equation for …t of the form
2x14y D sx20 C : : : ; i.e., x53 .2x2 C : : :/ D s (where x D x1=x3 and y D x2=x3/: The corresponding
vanishing cycle is fx3 D s1=8ei� ; x2 � 1

2
s3=8e�5i� W 0 � � � 2�g; i.e., fx D s�1=8e�i� ; y �

1
2
s1=4e�6i�g: In the u; v coordinates we get

˚
u D s1=8ei� ; v � 1C s1=4e2i�

	
:

We see that the projection of this cycle onto the v-plane surrounds two times the ramification
points v4;5 � 1˙ s1=2: Therefore, this cycle is a combination of the cycles .j0 � j/˝ .5 � 4/ :
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and F1 D v4

u4
; F2 D t1=4F5=41 D t1=4 v

5

u5
: Therefore

Q� D �

F1F2
D t�1=4

u9

v9
�: (23.42)

We can express the latter forms as linear combinations of the monomial forms

ujvkdu; ujvkdv:

Using the integration by parts and the relations

u4 D 2

5
v5 � 1

2
v4 C t

10
; 2u3du D v4dv � v3dv; (23.43)

which follow from the equations G.u; v/ D t and dG.u; v/ D 0; we get the
following basic integrals:

I
ujvkdv;

I
vk du

u
I

above the range of the powers k and l can be restricted (due to Eqs. (23.43)), but in
not unique way (we skip the details).

For further use we introduce a Z2-grading for the monomial forms as follows.
We say that the form ujvkdv is odd if j D 1 .mod 2/ and is even otherwise; the
form vkdu=u is even. 7

By Lemma 1 and formulas (23.23), (23.41), and (23.42) the forms Q�j D
�j= .F1F2/ are also homogeneous with respect to the Z2 grading.

Lemma 9. The forms Q�l; l D 1; 4; 6; 8; 11, are odd and the forms Q�l; l D
0; 2; 3; 5; 7; 9; 10; are even.

If a form Q�l is odd, then we can represent it as follows:

Q�l D u�1'l.v/dv C u l.v/dv D Q�l;� C Q�l;C; (23.44)

with Laurent polynomials 'l and  l: If Q�l is even then we rewrite it as follows:

Q�l D f	l.v/dv C �l.v/du=ug C u2�.v/dv D Q�l;0 C Q�l;2: (23.45)

For a cycle ƒ in †t and a form Q� we define the integral

JƒQ� D JƒQ� .t/ D
I

ƒ

Q�I (23.46)

thus I�.t/ D J Q�
Q� : The integrals of even (odd) forms are called even (odd) integrals.

7This grading reflects the anti-symmetry of the unperturbed form � with respect to the reflection
x 7�! �x:
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Let us now study the monodromy properties of the Melnikov integrals.
Firstly, Lemma 5(a) implies that the integrals I�.t/ are single valued functions of

r; as t D const � r4 ! 0 and have Taylor expansions. In fact, the coefficients of
these Taylor series are directly related with the saddle analogues of the Poincaré–
Lyapunov quantities.

Next, we recall that the cycles .j0 � j/ ˝ .5 � 4/ ; j0 D j C 1; vanishing at Qp1;
are lifts to the Riemann surface of the function 4

p
P.v/ of the loop ‡4 (surrounding

the ramification points v4 and v5 in opposite directions). Thus the values of u at
different lifts differ by suitable powers of i D p�1:

If Q�l D Q�l;� C Q�l;C is odd, then

J.j
0�j/˝.5�4/

Q�l;˙
D .˙i/j�1 J�Q�l;˙

;

where� D .2 � 1/˝ .5 � 4/. Hence

J.2�1/˝.5�4/
Q�l

C J.4�3/˝.5�4/
Q�l

D J�Q�l
C .˙i/2 J�Q�l

D 0: (23.47)

If Q�l D Q�l;0 C Q�l;2 is even, then the integrals JƒQ�l;0
are calculated via residua (see

Sect. 23.4.4); hence, they are algebraic functions of t: Moreover,

J.2�1/˝.5�4/
Q�l;2

C J.4�3/˝.5�4/
Q�l;2

D 2J�Q�l;2
:

By Lemma 5 we find that the monodromy changes M1 (corresponding to the
change t 7�! 1C e2� i .t � 1/) of the integrals are the following:

M1 W J Q�
Q� 7�! J Q�

Q� C J�Q� ;

M1 W J.j�j00/˝.5�4/
Q� 7�! �J.j

0�j/˝.5�4/
Q� ; (23.48)

M4n
1 W J

Q�
Q� 7�! J

Q�
Q� C 2n

�
J.2�1/˝.5�4/

Q� C J.4�3/˝.5�4/
Q�

�

(with j0 D j C 1 and j00 D j � 1/:

If Q�l is odd, then the latter equations and Eq. (23.47) imply that J Q�
Q� .t/ and J�Q� .t/

have algebraic singularities at t D 1. 8 If Q� D Q�l;2 is even, then J Q�
Q�l;2

has a logarithmic

singularity at t D 1:

J
Q�
Q�l;2

D 1

2�i
J�Q�l;2

� ln s C‰l.s/ (23.49)

with J�Q�l;2
and ‰ single valued functions of s1=4 D ..t � 1/ =10/1=4 :

8One can check directly that the functions I Q�
Q�l;˙

C 1
2
.1 ˙ i/I�

Q�l;˙
are single valued near f D 1 and

the functions I�
Q�

are holomorphic in s1=4 D ..f � 1/ =10/
1=4
:
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On the other hand, the odd function J�Q�l
(when nonzero) has a non-algebraic

singularity at t D 0: Indeed, by Lemma 5(d) we have

M4n
0 W J�Q�l

7�! J�Q�l
� nJ„Q�l

:

It means that, for t D const � r1=4; we have

J�Q�l
D const � J„�l

� ln r Cˆl.r/ (23.50)

with J„�l
D J

Q��Q�4
Q�l

and ˆ single valued functions of r:

Let us summarize the above.

Lemma 10. (a) As r D const�t1=4 ! 0 any function I�l.t/ admit Taylor expansions
in r:

(b) After surrounding the value t D 1 one gets (from I�l/ the function I�l C J�Q�l
:

(c) If �l is odd, then I�l and J�Q�l
have algebraic singularities at t D 1:

(d) If Q�l D Q�l;0 C Q�l;2 is even, then the function J Q�
Q�l;0

is algebraic and J Q�
Q�l;2

has a

logarithmic singularity at t D 1 of the form (23.49).
(c) If Q�l is odd, then one summand J�Q�l

.t/ of I�l.t/; obtained as result of turning

around t D 1; has a logarithmic singularity of the form (23.50).
(d) As t ! 1 the functions JƒQ� .t/ admit Laurent expansions in powers of t�1=20.

Item (d) of the latter lemma follows from the fact that the monodromy operator
M1 D M0M1; associated with a loop around t D 1; is a tensor product of two
operators corresponding to cyclic permutations of two sets of cardinality 4 and 5.

Remark 2. In [13, Lemma 1] it was stated that formula (23.49) holds true for any
form Q�l; even or odd. The mistake followed from a mistake in analysis of the
monodromy operator M1I the sign � in Eq. (23.48) was overlooked.

23.4.2 Behavior of the Integrals I� as t ! 1

Recall that, as t ! 1 and s ! 0; the cycle �.t/ contains a “finite” part and a part
near infinity (i.e., near the point p1 D .1 W 0 W 0// which is controlled in Lemma 6.

Since x � s�1=4; dx � s�1=4; y � s�1=2; dy � s�1=2 and F1F2 
 x9 � s�9=4
(see Eqs. (23.10)), from Lemma 1 we get that

Q�l D �l= .F1F2/ � O.s1=4/I
the highest growth is achieved for �11 D y3dy: Therefore the integrals I�l.t/ are finite
for s ! 0 (t ! 1/: For this reason we do not compute the values I�l.1/ (as we do
not control the finite’ part of �.t//:
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Instead, we compute the derivatives of these integrals using the below Gelfand–
Leray formula, but only in the cases when the corresponding integral is divergent as
s ! 0:

We have

d

dt
I�.t/ D I0

� D
I

FDt

d. Q�/
dF

D
I

d. Q�/
dx ^ dy

dx

@F=@y
: (23.51)

Moreover, @F=@y D �20F�6
1 F32.x

2 C y C 5=2/x 
 �20s3=2X�8.X2 C Y/ D
�20s3=2X�8Z; where

Z D Y C X2

satisfies the equation Z2 D X4.1 � X4/ and X � 0: Since practically we can take
d
�
x�9�

�
instead of d. Q�/ in Eq. (23.51), we find that the following derivatives are

potentially divergent:

I0
�11


 9

20
s�3=4

I
Y3dX

X2Z
D 9

20
s�3

I
3X8 � 4X4

Z
dX;

I0
�10

D 8

20
s�1=2

I
Y2dX

XZ
C O.1/ D 8

20
s�2

I
2X3 � X7

Z
dX C O.1/;

I0
�9

D 3

20
s�1=2

I
Y2dX

XZ
C O.1/;

I0
�0

D � 1

20

I
d
�
x�6ydy � 3x�7y2dx

�

dx ^ dy

x8dx

x2 C y
C O.1/ D O.1/;

I0
�8


 1

10
s�1=4

I
YdX

Z
D � 1

10
s�1=4

I
X2dX

Z
:

The fact that the next term in I0
�10
; I0

�9
, and I0

�0
is finite (not O.s�1=4// follows from

a corresponding quasi-homogeneity property of the polynomials F1 and F2 and of
the form �0; where deg x D 1 and deg y D 2: After expressing the corresponding
integrals via the Euler Beta function, we get

I0
�11


 � 9

20

13

14
B

�
5

4
;
1

2

�
s�3=4;

I0
�10


 8

20

1

3
B

�
1;
1

2

�
s�1=2

3I0
�10

� 8I0
�9

D O.1/;

I0
�8


 � 1

10

1

2
B

�
3

4
;
1

2

�
s�1=4:
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We summarize this subsection as follows.

Lemma 11. As t D 1C 10s ! 1 we have

I�l D Al C O.s/; l D 0; : : : ; 7;

I�8 D A8 C B8s
3=4 C O.s/;

I�9 D A9 C B9s
1=2 C O.s/;

I�10 D A10 C B10s
1=2 C O.s/;

I�11 D A11 C B11s
1=4 C O.s3=4/;

where Al are some constants, Bl are nonzero constants such that 3B10 D 8B9: This
means that the generators of the space of Melnikov integrals can be chosen as

I�0 ; : : : ; I�9 ; I�11 ; I� ;

where

� WD 3�10 � 8�9 D 3xy2dy � 8y3dx

and I�8 ; I�9 , and I�11 are independent between themselves and of the integrals
I�0 ; : : : ; I�7 ; I� .

Finally, we note that the above expansions are the same as expansions of the
analytic terms ‰l.s/ from Eq. (23.49).

23.4.3 Even Differential Forms in the u; v Variables

Let us rewrite the even forms Q�l D �l= .F1F2/ in the u; v variables. We use
Eqs. (23.23)–(23.24), u4 D P.vI t/, du4 D 2v3.v � 1/dv C dG

10
; integration by parts

and often we write G D G.u; v/ in place of t:
We begin with the even forms which consist of two summands: Q�l D Q�l;0 C Q�l;2 or

� D �0 C �2: We have

Q�0;0 D � 9
16
�C d

˚� 1
4v

C 7G
8v4

� 9G
20v5

	C ˚� 7
8v4

C 9
20v5

� 7G
40v9

	
dG;

Q�2;0 D � 1
8

dv
v

C 1
8
d
˚� 1

v
� G

v4
C 4G

5v5

	C 1
160

˚
20
v4

� 17
v5

C 16 G
v9

	
dG;

Q�3;0 D 0;

Q�5;0 D �1
16
�C d

˚
G
8v4

� G
10v5

	C ˚� 1
2v4

C 2
5v5

� G
10v9

	
dG;

Q�7;0 D d
˚� G

8v4
C G

10v5

	C ˚
1
8v4

� 1
10v5

C G
40v9

	
dG;

Q�0 D � 9
64
�C d

n
� 3G
5v5

� 1 1
64v9u4

�
G � v4

�3oC
n
3
5v5

C 3
64v9u4

�
G � v4�2

o
dG

(23.52)
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where

� D �
t � v4�2 du

v9u
; � D .t � v4/3 dv

v10u4
; (23.53)

and

Q�0;2 D 9
32
�0 � 3

2
�1 C 9

5
�2 C d

n
G1=2

�
u2

5v5
C 1

32u2v9
.G � v4/2

�o

C
n
� u2

10v5
� 1

64u2v9

�
G � v4

� �
5G � v4

�o
dG

G1=2
;

Q�2;2 D 1
2
�3;

Q�3;2 D � 1
2
�3;

Q�5;2 D � 1
4
�1 C 1

4
�2;

Q�7;2 D 1
8
�1 � 1

8
�2;

Q�2 D � 27
16
�0 � �1 C d

n
� 3G1=2

16u2v9

�
G � v4

�2o

C 3
32u2v9

�
G � v4� �5G � v4

�
dG

G1=2
;

(23.54)

where

�0 D t1=2
�
t � v4

�2 dv

v10u2
; �1 D t3=2

du2

v9
; �2 D t1=2

du2

v5
; �3 D t1=2

u4du2

v9
:

(23.55)

23.4.4 Algebraic Parts of the Even Melnikov Integrals

Here we are interested in the algebraic parts of the corresponding Melnikov
integrals, i.e., in J Q�

Q�l;0
. Recall also that the contour Q� is such that its projection onto

the v-plane surrounds four ramification points v1; : : : ; v4 of the algebraic function
P.vI t/1=4 (in negative direction) and avoids the fifth point

v5 DW �: (23.56)

Note that t D 5�4 � 4�5 and

du

u
D du4

4u4
D dP

4P
D P0

vdv

4P
C 1

40u4
dG; (23.57)

where P0
v D 2v3.v � 1/: Therefore our integrals can be expressed via the residua at

v D 0; or at v D � and at v D 1: Moreover, the residua at v D 1 turn out equal
to zero.
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We have

H
vk du

u D � i
2
� k; k < �1I

H
u4mvkdv D �2�i � resvD0Pm.v/vkdv; m � 0I

H
vk

u4
dv D 2�i �k

P0

v.�/
D �i �

k�3

��1 ; k < 4:

(23.58)

It gives the following result.

Lemma 12. The algebraic parts of the integrals I�l for even forms �l (and of �8) are
the following:

J Q�
Q�0;0 D �9�i

2

.� � 1/2

�
DW �9

2
K.t/; J Q�

Q�2;0 D ��i

2
; J Q�

Q�3;0 � 0;

J
Q�
Q�5;0 D �1

2
K.t/; J

Q�
Q�7;0 � 0; J

Q�
Q�0 D 9K.t/:

More precisely, we have the relation (which follows from Eq. (23.57))

8�C � D d

�
�10G2

9v9
C 4G

5v5
� 10

v

�
C
�

1

5v9u4
�
G � v4

�2 C 20G

9v9
� 4

v5

�
dG:

(23.59)

between the forms from Eqs. (23.53), which explains the relation between the
integrals J Q�

Q�0;0 and J Q�
Q�0 .

23.4.5 Third Order Melnikov Integral

Recall that, by Lemma 11 the logarithmic behavior of the integrals near t D 1 occurs
only in the case of even forms Q�l and take the form 2

� i J
�
Q�l;2

ln .t � 1/ (see Eq. (23.49)).

Therefore we should consider the integrals J�Q�l;2
.t/: By Lemma 12 it is enough to

consider integrals associated with the four forms

Q�0;2 W D 2 Q�0;2 C Q�2 � �9
8
�0 � 4�1 C 18

5
�2;

Q�5;2 W D 18 Q�5;2 C Q�2 � �27
16
�0 � 11

2
�1 C 9

2
�2;

Q�3;2 � � 1
2
�3 and Q�7;2 � 1

8
�1� 1

8
�2 (where the relation � means that equality modulo

exact forms and modulo dG:
The following result follows from Eqs. (23.43).
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Lemma 13. We have the relation 5�1 � 9�2 C 30�3 D dG1=2
n
16u2

v5
� 20u2

v4

o
C

n
10

G1=2v4
� 8

G1=2v5
C 4G1=2

v9

o
u2dG:Thus

Q�3 D 1

12
�1 � 3

20
�2 C dG1=2u2

�
1

3v4
� 4

15v5

�
(23.60)

C
�

� 1

6G1=2v4
C 2

15G1=2v5
� G1=2

15v9

�
u2dG:

Note now that the above four forms Q�0;2; Q�5;2; Q�3;2, and Q�7;2 are expressed via
three forms �0; �1, and �2, i.e., when taking into account the relation � : Define the
form

Q D = .F1F2/ D 3 Q�0 � 2 Q�5 C 12 Q�3 D 6 Q�0 C 12 Q�3 � 36 Q�5 C Q�; (23.61)

where Q�0 D 2 Q�0 C �; Q�5 D 18�5 C � and  D ��9x2y2 C 12x2 � 8y3 C 13y2
�

dx C
3xy

�
x2 C y C 1

�
dy (when expressed in the x; y coordinates. We have Q � 0, i.e.,

I.t/ D J Q�
Q .t/ � 0;

but we need a more subtle statement.
We have

Q D dH C KdG; (23.62)

where

H D
�

� 3

32v
C 3G

4v4
C 111G

80v5
C 5G2

32v9
� 1

64v9u4
�
G � v4

�3
�

C p
Gu2

�
4

v4
� 2

v5

�

D H0 C H2;

K D
�
179G

80v9
C 51

4v4
� 843

80v5
C 3

160v9u4
�
G � v4

�2
�

C
�
1

v5
� 2

v4
� 4G

5v9

�
u2p

G

D K0 C K2:

Remark 3. From Eqs. (23.23) and (23.42) we find u D t1=4=x; v4 D tF1=x4 and
1
v9

D 1
t2

t9=4

u9

�
t�1=4 u9

v9

�
D x9

t2F1F2
:(i.e., for F.x; y/ D G.u:v/ D t/: This implies 1

v
D

v8 1
v9

D xF1
F2
; t
v4

D x4

F1
; t
v5

D t2 v
4

t
1
v9

D x5

F2
; t2

v9
D x9

F1F2
; t1=2u2

v5
D 1

x2
t
v5

D x3

F2
, and

.t�v4/3
v9u4

D ��4t
�
y C x2

�
=x4
�3 1

v9
x4

t D �64 x.yCx2/
3

F1F2
: Therefore we get the function

H expressed in the x; y variables: H D x
F1F2

f� 3
32

F21 C 3
4
x3F2 C 3

10
x4F1 C 5

32
x8 C

6
5
x2F1 C �

y C x2
�3g: Together with the fact that �=.F1F2/ D 1

5
d ln F2 � 1

4
d ln F1,
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we find that the perturbation � C "1 D 0; with small " and 1 D F1F2dH, has
first integral of the form of a logarithm of a generalized Darboux function: 1

5
ln F2�

1
4

ln F1 C "H:
On the other hand, the perturbation � C "2 D 0; with 2 D F1F2KdF has

rational first integral F (with a rational integrating multiplier).

In such situation it is natural to consider the following higher order Melnikov
integral:

I�.t/ WD J
Q�
� .t/ D

I

Q�.t/
HdKI (23.63)

it is a coefficient in the next term of the expansion of the expansion of the Poincaré
return map (see [5]). The form � WD HdK is even and can be written as � D �0C�2;

where �2 D H0dK2 C H2dK0 and

�0 D H0dK0 C H2dK2: (23.64)

(The form � replaces, in a sense, the form Q�3/: The integrations of �0 gives an
algebraic function of t:

Lemma 14. We have

I�.t/ D �27
80

.� � 1/ .37� � 49/

�6

where � is the same as in Eq. (23.56). This function is independent of the functions
appearing in the thesis of Lemma 12.

Proof. As in the previous section we use the residuum theorem with G replaced

with the constant t. It is rather easy that
I

H2dK2 � 0: Let us write H0 D A.v/ �
1
64

B.v/=u4 and K0 D C.v/C 3
160

D.v/=u4; where B D �
t � v4�D D �

t � v4
�3
=v9:

Again we have
I

AdC � 0:

Next, the integration by parts leads to the integration of the following forms:

3
160

Ad D
u4

� 1
64

B
u4

dC D � .t�v4/
2

u4v9

n
3
160

dA C t�v4
64

dC
o

,

�3
160�64

B
u4

d D
u4

D � 3
5�210

.t�v4/4
u8v15

dv:

Like in the proof of Lemma 12 we calculate the residua of these forms at v D �:

In calculation of the residuum of the first form we use Eqs. (23.58). In calculation
of the residuum of the second form we use the expansions

u�8 D 
2�3.� � 1/.v � �/

��2 f1 � ..4� � 3/ = .� .� � 1/// .v � �/C : : :g ;
�
t � v4�4 D 

4�4.� � 1/
�4 f1C .4= .� .� � 1/// .v � �/C : : :g ;

v�15 D ��15 f1 � 15 .v � �/ =� C : : :g ;
as v � � ! 0. ut
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Remark 4. In [13, Lemma 3] a vanishing of some Melnikov integral, like I.t/;
was also observed. But, instead of considering higher order Melnikov function (like
above), the derivative @

@a I jaD0 of the latter integral with respect to the parameter a
was analyzed. That approach seems to be not the best one, because one can imagine
a situation when a relation between basic Melnikov functions exists for all values of
a and, moreover, with coefficients depending on this parameter.

Note that we could use also the part �2 D H0dK2 C H2dK0 of the form �: But the
corresponding integral is not an algebraic function and one should rather integrate it
over the cycle �.t/ (vanishing at .u; v/ D .0; 1//; like in the next section. We have
chosen the algebraic part.

23.4.6 Logarithmic Part of Even Integrals at t D 1

Recall that, by Lemma 10 the logarithmic behavior of the integrals near t D 1 occurs
only in the case of even forms Q�l and take the form 2

� i J
�
Q�l;2

ln .t � 1/ (see Eq. (23.49).

Here we expand the integrals J��k
.t/; k D 0; 1; 2; in powers of s D .t � 1/=10: In

fact, we shall expand the integrals of the forms �0; �1, and �2 from Eq. (23.55).
With the normal form (23.35), i.e., u4 � w2 D s, where w is defined via

Eq. (23.37), we make the following substitutions:

u2 D 1

2x

�
x2 C s

�
; w D 1

2x

�
x2 � s

�
: (23.65)

We have

dw

u2
D du2

w
D dx

x
:

Then the corresponding integrals are equal 2�i times the residuum of the corre-
sponding form at x D 0:

We arrive at the following:

Lemma 15. As s ! 0 we have

1

2�i
J��0 D �8s � 12s2 C 16 811

32
s3 C : : : ;

1

2�i
J��1 D �9

2
s � 5409

32
s2 � 34 749

512
s3 C : : : ;

1

2�i
J��2 D 5

2
s C 315

32
s2 � 84 185

512
s3 C : : : :

Therefore the above three functions are independent and hence the corresponding
functions J Q�

Q�0 ; J Q�
Q�5 , and J Q�

Q�7 are independent.
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23.4.7 Logarithmic Parts of the Odd Integrals Near t D 0

For the odd forms we have the following formulas, with � meaning the equivalence
modulo exact forms and modulo dG:

Q�1 � 18

7
�1 C 9

5
�2; Q�4 � �9

5
�2; Q�6 � �9

5
�2 � 3

4
�3 C 5

12
�4; (23.66)

where

�1 D t1=4u7dv
v10

� � 7xdx
9F1F2

; �2 D t3=4u5dv
v10

� � 5x3dx
9F1F2

;

�3 D t5=4u3dv
v10

� � x5dx
3F1F2

; �4 D t1=4u3dv
v6

� � 3xF1dx
5F1F2

(23.67)

(compare Remark 3).
Recall that the logarithmic singularity at t D 0 holds for the parts J�Q�l

of I�

which appear after turning around t D 1 (see); we have J� D � 1
2� i J

„ ln t1=4 C
.regular part/ : Here we calculate initial terms of the Taylor expansions of J„Q�l

.t/ at

t D 0:

Since „ D Q� � Q�4 and uj Q�4 D �i � uj Q�; we have to compute the integrals

.1 � i/
I

Q�
�1 D 7 .1 � i/

9

I

�

xdx

F1F2
; .1C i/

I

Q�
�2 D 5 .1C i/

9

I

�

x3dx

F1F2
;

.1 � i/
I

Q�
�3 D �1 � i

9

I

�

x5dx

F1F2
; .1 � i/

I

Q�
�4 D �3 .1 � i/

5

I

�

xF1dx

F1F2
:

By the analysis of Sect. 23.3.2 the (complex) levels …t D fF D tg of the first
integral near the critical point p0 W x D 0; y D �1=2 can be written in the form

xz D r; where r D ��25t�1=4 =5 and z D F2= .5x/ � .�F1=2/
�5=4 D y C 1

2
C : : : (see

Eqs. (23.18)–(23.20)). Moreover, the cycle �.t/ is a lift to†t of a small loop around
x D 0 in the x-plane. It follows that

J
Q�
Q� .t/ D 2�i � resxD0 Q�jzDr=x: (23.68)

So, our aim is to express the forms �l and the factor .F1F2/
�1 as depending on x and

r (with dr D 0/:

We have

F1F2 D �10xz .�F1=2/
9=4 D �10r

�
1 � 2 .y C 1=2/� 2x2 � x4=4

�9=4
:
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Moreover, we have formula (23.21) for y as a function of x and z: We put x Dp
rw; z D p

r=w and we get

y D �1
2

C 1

w
r1=2 �

�
5

2w2
C w2

�
r C 55

8w3
r
3
2 �

�
20

w4
C 1

5
w4
�

r2

�
�
1

8
w3 � 7735

128w5

�
r
5
2 C

�
3

8
w2 � 3003

16w6

�
r3 C : : : ;

�10r .F1F2/
�1 D 1 � 2

w
r1=2 C 5

w2
r � 55

4w3
r3=2 C

�
40

w4
C 3

20
w4
�

r2

C
�
1

4
w3 � 7735

64w5

�
r3=2 �

�
3

4
w2 � 3003

8w6

�
r3 C : : :

This allows to compute the residua from Eq. (23.68) with the following result.

Lemma 16. As t D const � r4 ! 0 we have

10

2�i
J„Q�1 D 10 .1 � i/ r C 40.1C i/r3 C O.r5/;

10

2�i
J„Q�4 D �40.1C i/r3 C O.r5/;

10

2�i
J„Q�6 D 7 .i � 1/ r C

�
1001

32
.1 � i/ � 40 .1C i/

�
r3 C O.r5/:

23.4.8 Behavior of Odd Integrals as t ! 1 via Euler
Beta Integrals

Recall that we are left with the forms Q�1; Q�4, and Q�6 expressed via the forms �j

(see Eqs. (23.66)). Recall also that the Riemann surface †t; for large jtj and large
juj C jvj ; is equivalent to

˚
10u4 � 4w5 D f

	
with w D v C O.1/ (see Lemma 8).

Let us describe more precisely the cycle Q�.t/ for large and real t:When 0 < t < 1
the function 4

p
P.vI t/ has three real ramification points, v2 < 0 < v4 < 1 < v5 and

two non-real ones, v1 and v3I the projection �. Q�/ of the cycle Q�.t/ surrounds the
points v1; : : : ; v4 in negative direction. When t avoids the critical value t1 D 1 along
small semicircle (in C) from above, and next moves along the half-line ft > 1g ; the
points v4 and v5 become non-real: Im v4 D � Im v5 > 0: For large real t we get
v4 � .f=4/1=5 �; v1 � .f=4/1=5 �3; v2 � � .f=4/1=5 ; v3 � .f=4/1=5 ��3; v5 �
.f=4/1=5 ��1; where

� D e� i=5
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and the loop �. Q�/ surrounds the points v4; v1; v2, and v3: We deform the latter
loop to a collection of arcs of circles of small radii around v4; v1; v2, v3, and v D 0

and of segments along radii fargv D �=5; 3�=5; �;�3�=5g joining corresponding
arcs.

When calculating a leading term of corresponding integrals, which are integrals
of monomial forms, we make the following substitutions:

v 
 w D .t=4/1=5 ei�jV1=5; u D .t=10/1=5 
j .1 � V/1=4 ; (23.69)

where �j D �=5; 3�=5; �; �3�=5 and 
j are suitable powers of i D ei�=2:We keep
in mind the fact that u > 0 at the lower ridge of the segment Œ0; v4� :

We arrive at Euler type integrals
R

V˛�1 .1 � V/ˇ�1 dV along the contour just
defined. Here the numbers ˛ and ˇ are non-integer and we can use analytic
continuation of such integrals as functions of the parameters ˛ and ˇ (one begins
with the situation when Re ˛ > 0 and Reˇ > 0/: The result is const �B.˛; ˇ/;where
B.˛; ˇ/ D �.˛/�.ˇ/=�.˛ C ˇ/ is the Euler Beta function.

For example, in calculation of L1.t/ D
I
�2 we get

L2 � �t3=4 � 1
5

� t

4

��9=5 � t

10

�5=4

���9 .1 � i/
�
1C �

i�2
�C �

i�2
�2 C �

i�2
�3�

B

�
9

4
;�9
5

�

D Ct1=5 � 10�5=4 sin .9�=5/

sin .9�=20/
B

�
9

4
;�9
5

�
;

where the minus comes from the negative direction of �. Q�/ and C D
p
2
5
49=5e3i�=10:

Analogously, we calculate other integrals Lj D
I
�j; j D 1; 3; 4; and we get the

following result.

Lemma 17. As t ! 1 we have

L1 
 �Ct1=5 � 10�7=4 sin.�=5/

sin .�=20/
B

�
11

4
;�9
5

�

 18:679 � Ct1=5;

L2 
 �1:0922 � Ct1=5;

L3 
 �Ct1=5 � 10�3=4 sin.�=5/

sin .�=20/
B

�
7

4
;�9
5

�

 �0:53368 � Ct1=5;

L4 D O.1/:

This, together with Lemma 16, implies that the functions I�1.t/; I�4.t/, and I�6.t/ are
independent and are independent on the even integrals.
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The second statement of the latter lemma involves calculation of the determinant
of a corresponding 3 � 3 matrix.

Corollary 1. The functions I�0 ; : : : ; I�11 ; I� span a space of dimension 12.

23.4.9 Proof of Theorem 1

We have two possibilities: either the 12 functions I�0 ; : : : ; I�11 (from the second order
analysis) are independent for a typical value of the parameter a or not.

In the first case, by a variation of the coefficients "l in the Melnikov functionP11
lD0 "lI�l.t/ we can localize its zeroes (maybe not all) in any fixed collection

ft1; : : : ; t11g of points. By suitable application of Implicit Function Theorem to the
Poincaré return map, i.e., for a typical collection ft1; : : : ; t11g ; we get a family of
limit cycles �".tj/ ! �.tj/ as j"j ! 0:

In the second case we have I.tI a/ � 0 for a linear combination  D  .x; yI a/ of
the forms �0; : : : ; �11 (with coefficients depending on a/: In such a case there exists
a general formula for a next order Melnikov function

M.tI a/ D
I

�.t/

H
d Q
dF
; (23.70)

where Q D = .F1F2/ ;

H.P/ D
Z P

P0

Q

and the integration runs along a path in …t from a fixed point P0 to P D .x; y/ : For
a D 0 integral (23.70) reduces to the function I�.t/ from Eq. (23.63).

Now, the function M.tI a/ depends (locally) analytically on .t; a/ : By Corol-
lary 1, for a D 0; the functions I�0.t/; : : : ; I�11.t/ and I�.t/ span a 12-dimensional
space (of functions of t/: Therefore for generic a the corresponding space also has
dimension 12.

The further proof is standard and we skip it. ut

Appendix: Proof of Formula (23.8)

Recall that Eq. (23.8) calculates the increment�F of the first integral along the part
�ı.t/ of the phase curve (between two consecutive intersections with a Poincaré
section and with initial value t of the F) of the Pfaff equation�C ı�12 D 0:
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Since dF D M�; M D �20M=.F1F2/; we have dF C ıM�12 � 0 along �ı.t/
and hence �F D �ı R M�12, with the integral along �ı.t/ which is close to …t D
fF D tg I dist .�ı.t/;…t/ D O.ı/.

On the other hand, we have the relation dFı D Mı

�
�C ı�12 C ı2�0

�
(see

Eq. (23.7)) which means that the phase curves of the Pfaff equation � C ı�12 C
ı2�0 D 0 lie in…ı;t:We have dist .�ı.t/;…ı;t/ D O.ı2/; where…ı;t D fFı D tg are
the levels of the perturbed first integral Fı which means that

Z

�ı.t/
M�12 D

Z

FıDt
M�12 C O.ı2/:

But Eq. (23.7) implies that

Z

FıDt
M
�
�C ı�12 C ı2�0

� D
Z

FıDt
MM�1

ı dFı D 0:

We have also
Z

FıDt
M� D

I

FıDt

dF D 0:

Therefore

�F D �ı
I

FıDt

M�12 C O.ı3/

D �
I

FıDt

M
�
�C ı�12 C ı2�0

�C ı

I

FıDt

M�C ı2
I

FıDt

M�0 C O.ı3/

D ı2
I

FıDt

M�0 C O.ı3/ D ı2
I

FDt

M�0 C O.ı3/:
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A
Abelian integrals, 16th Hilbert problem

alien cycles, 330
displacement function, 329
Hamiltonian vector field, 328
limit cycle, 328
monodromy (see Hamiltonian monodromy)
periodic orbits, 329
Poincaré map, 329
polynomial deformation, 328

Acoustic radiation force impulse (ARFI), 226,
227

Adaptive lasso approach, 483
Affine complete algebras

finite extension theorem
a-and m-function, 237–238
equivalence relations, 237
Kaarli theorem, 239–240
nonexpansive m-function, 239
property, 236

generalized metrics and equivalence
relations

compatible operation, 241
extension theorem and arithmetical

algebras, 243
n-ary relation, 241
nonindexed universal algebra, 240–241
reverse inclusion, 242
subuniverse, 241
3-set extension property, 242
triangle inequality, 242

hyperconvex space, 236
locally affine complete

arithmetical., 244
congruence lattice, 244–246

k-interpolable, 244
polynomial, 244

of modules
rank 1, 248–250
of rank greater than one, 250–252
torsion free module, 246–247

one-point extension property, 236
2-Helly property, 236
V-metric space/V-metric, 236

Aixplorer, 227
Algebraic inversion of differential equation

(AIDE), 224–225
Area under the effects curve (AUEC), 104,

106
ARMOR system. See Assistant for

Randomized Monitoring over
Routes (ARMOR) system

Arnold’s program, 270–272, 295, 297–298
Assistant for Randomized Monitoring over

Routes (ARMOR) system, 351–352,
376

Asymptotic behavior
Approximation Theorem, 118
evolution semigroup, 117–119
minimal evolution semigroup, 119
1-periodic evolutionary process, 123
spectrum of equation, 120
strong stability, 121
uniformly bounded semigroup, 121–123

Asymptotic expansions
for TE modes, 393–394
for TM modes

asymptotic expansions, 397
Bessel function, 396
hypergeometric functions, 394
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Asymptotic expansions (cont.)
Kummer’s function, 395
Sommerfeld’s integral representation,

396
Automorphisms

elements, 203–204
translate of g, 200
translation, type 1 and 2 cubic, 201–202

B
Back-scattering

dielectric spheres, 387
high-frequency

Debye asymptotic expansions, 397
magnetic-type and electric-type, 401
Mie solutions, 397
saddle point method, 398

Mie solution, 387
power-law-dependent class of dielectrics,

388
Watson transformation, 388
weather formations, 387

Banded linear systems
block banded systems

coefficient matrix nomenclature,
452–454

finite element approaches, 451
forward substitution process, 452

exponential growth behavior, 432
finite element analysis, 450, 451
Hessenberg and banded systems, 432
optimal computational expense scales, 450
pentadiagonal systems (see Pentadiagonal

systems)
periodic (see Periodic systems)
sequential LU decomposition, 450
theoretical optimal speedups, 450, 451
tridiagonal systems (see Tridiagonal

systems)
Bayesian Stackelberg games

applications, 348
DOBSS algorithm, 360
inspection strategies, 348
optimal commitment strategies, 360
pure- and mixed-strategy commitments,

360
randomized patrolling, 348

Bayesian variable selection
MCMC procedure, 485
stochastic partitioning method, 486–487

Behavioral game theory, 372–373
Behavioral modeling, 370, 373–375

Bessel’s equation
fields of electric-type, 402
fields of magnetic-type, 403

Bifurcation diagram, 336
Blow-up technique, 303
Bogdanov-Takens bifurcations, 253
Borel–Laplace transform, formal normalizing

series, 557
Bounded rationality, 348, 365
.n/ Breaking mechanisms, 61–62
Bulk waves, 219

C
Canard cycles

bifurcation diagram, 62
general setting

bifurcating limit cycles, 65–67
definitions, 63
multi-layer canard cycles, 64–65
rescaling generic balanced canard

cycles, 67–68
generic condition, 62–63
Khovanskii theory, 63
layer variables, 63
n breaking mechanisms, 61–62
rescaled layer, 62
three breaking parameters, 61

Hopf breaking parameters, 67–69
jump type, 68
Khovanskii’s reduction method, 72–73
negative and non-zero derivative, 68
relaxation oscillations, 71
rescaled system of equations, 73–76
slow divergence integral, 70
slow dynamics, 69, 70
symmetric canard cycle, 70

Canard slow-fast cycle, 305
Canonical sectors

sectorial decomposition
forbidden curves, 553–554
local analytic invariants, 554
squid sectors, 555, 556

splitting vector fields, 550–551
transvestite hyperbolic points, 551–553

Cauchy–Hadamard formula, 499
CD4;5

bloc-triangular matrix, 600
closed phase curves, 595
level curve characterization, 603
limit cycle, 598, 623
normalization near p0, 602–603
normalizations, t ! 1, 607–608
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perturbations, 599
Pfaff equation, 599
phase portrait, 602
topological properties, function G; 604–607

Center
Darboux integrable, 595
generic 12-parameter, 597
polynomial vector fields, 596
rationally reversible, 595

Centre de coopération Internationale en
Recherche Agronomique pour le
Développement (CIRAD), 487–488

Centre-Manifold (CM) reduction methods
CMT, 43
continuous function, 41
1D hyperbolic models

age-structured models, 33, 34
aggregation models, 33–35
chemotaxis models, 33, 34
laser models, 32–33
predator-prey models, 33, 34
self-organised animal aggregation (see

Self-organised animal aggregation
models)

Dunford integral formula, 42
Fredholm operator, 43
Fredholm property, 40–41
function spaces, 42
hyperbolic PDEs and FDEs, 31, 44–46
inequality estimation, 42
integro-differential equations and FDE, 31
method of multiple scales, 31
modelling approaches, 30
nonlocal hyperbolic models, 30–31
nonlocal hyperbolic systems

compact and bounded operator, 51
differential operator, 51
Fredholm property, 49–50
isotypic components, 51
Lc compactness, 47–49
linear operator, 46–47
SO(2)and O(2) symmetric steady-states,

51–55
phase origin, 30
spectral properties, 43
time-periodic solutions, 42

Centre manifold theorem (CMT), 43
Chay-Cook model, 254
Chebychev expansions, 135
Chinese Remainder theorem (CRT), 460–461
(Z,0) Circle system

circle chain, 183–187
construction, 187

interior and exterior radical center, 182–183
inversion maps circles, 184
of level k, 184
tangencies at level k, 184

Codimension-four singularity
bifurcation diagram

Fold/subHopf bursting, 258, 261, 262
MATCONT and AUTO packages, 263
topological sketches, 262, 263
transition, 255, 260, 263–266

bursting pattern, 253–254
Chay-Cook model, 254
fold/homoclinic/square-wave bursting, 254
fold/sub-hopf bursting, 257–261
four-parameter planar vector field, 255–257
planar vector fields, 254, 255

Complex planar stationary points
canonical re-parameterization, 549–550
classification invariants, 500
conformal coordinates, local, 538
coordinates change, vector fields, 525–527
formal classification, 547–548
formal conjugacy, 526
formal diffeomorphism, 521
Fuchsian systems, 500
generic unfoldings, formal classification,

541
heteroclinic connections, 501, 540
holomorphic singular foliation, 524–525
hyperbolic singularity, 530
integral curves, 523–524
(local, formal) invariants, 529–532
leaves space

hyperbolic singularity, 528
quasi-resonant node, 527–528
resonant node, 527, 528
Riemann surfaces, 529

Lie derivative, 522–523
local classification

asymptotic paths and canonical sectors,
558–559

asymptotic tangential homotopy, 558
classification theorem, 566–567
diffeomorphism, 564
holomorphic and bounded, 556, 557
orbital necklace, 562–564
orbital sectorial identifications, 563
sectorial normalization, 561–562
sectorial (weak) separatrices, 557
sectorial solutions to cohomological

equations, 559–561
space of leaves, 561–562
temporal necklace, 566
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Complex planar stationary points (cont.)
local flow, 523
local orbital equivalence, 526
moduli spaces, 529–532
non-trivial bijective mappings, 530
normal forms, pure convergence, 544
normalization strategy, 541
orbital model, 538
parameter space, 549–550
parametric family of vector fields, 499–500
Poincaré’s theorem, 530
preparation

canonical parameter, 545
cohomological equations, 545
local conformal coordinates, 544
orbital conjugacy, 546
temporal conjugacy, 545

real foliation, vector field, 526, 527
sectorial decomposition, 539–540
sectorial weak separatrices, 540
singularities, 524
standard notations, 520–521
transverse holomorphic perturbation,

538
Computational game theory, 348
Constructive proof of theorem 1.6

analytic functions, 144
derivation operator, 142–143
determinants, 144
elimination algorithm, 142
homogeneous polynomial, 141
ideal and quasi-regular functions, 148
k and j integers, 149–150
lexicographical order, 143
monomial, 142
multilinearity and properties, 145
steps, 145–148
transformation, 143
Vandermond determinant, 146

Crawling wave imaging, 228
Crop wild relatives

climate change, 470, 473
colonialism, 469
cultural and economic value, 470
gene preservation ex situ, 472
genetic erosion, 472
genetic material, 470
genetic resources, 471
germplasm, 471
socio-economic factors, 472

Cubic Lienard equations, 256
Cubic systems

Andronov’s condition, monodromicity, 21

computational difficulties, 24
computer algebra systems, 21
cubic systems, 22
Hamiltonian system, 25
Hopf bifurcation, 25
Liapunov function, 23
linear coordinate change, 24
perturbation methods, 23
quadratic systems, 25
symbolic computing, 21

D
Darboux method, 80
Delay differential equations (DDEs), 93
Density-based models, 30
Diffusion and cross-diffusion

fast and slow wave solutions, 7–8
mathematical model, 2
model local system, 3
nerve impulses, 1
neuron spike, (time-potential) plane, 2
traveling waves
FitzHugh equations, 11
spatial propagation of neuron firing, 11
wave system, FitzHugh model, 6

Digital Library of Mathematical Functions,
395

Doppler ultrasound, 219
Dumortier-Roussarie-Rousseau program,

295

E
Elasticity imaging

crawling wave imaging, 228
elastographic brain imaging in vivo, 228
governing principles, 219–221
harmonic elastography, 223–226
Hookian materials, 228
in vivo and ex vivo experiments, 228
OCT, 228
palpation, 217
quasi-static elastography, 221–223
RD model, 228
tissue motion, 218–219
transient elastography, 226–227
viscoelastic properties, 228

Elastography. See Elasticity imaging
Electromagnetic (EM) scattering

Airy’s approach, 385, 386
Cartesian and Newtonian theories, 385
diffraction theory, 385
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Huygens’ principle, 385
magnetic- and electric-type, 390
Maxwell’s equations, 386
Mie solutions, 392
numerical solutions, 387
radial eigenfunctions, 388
rainbow formation, 384
refractive index profiles, 388, 390, 401
Regge poles in elementary particle physics,

387
Riccati–Bessel functions, 386, 389
Riccati-Hankel functions, 386
supernumerary bows, 384
TE modes, 388
TM modes, 388
Watson transformation, 390, 391

Energy momentum diagram, 336
Expectation–maximization (EM) algorithm.,

482
Expression quantitative trait loci (eQTL)

application, 490
Extended Chinese remainder theorem

(E-CRT), 461, 462

F
Fast-slow waves. See Traveling wave solutions,

slow and fast
FibroScan, 218
Filgrastim model, 100, 101
Finite extension theorem

a-and m-function, 237–238
equivalence relations, 237
Kaarli theorem, 239–240
nonexpansive m-function, 239

Finiteness theorem, 296
Fishery Protection, USCG, 356–357
FitzHugh model

bifurcation diagram, 4, 5
computer analysis, 4
cross-diffusion modification, 3
FHN-model, 3
large separatrix loop, 6
Lienard form, 18–19
neuron excitable membrane potential, 4
symmetric properties, 5
wave system, 6–9

FitzHugh-Nagumo (FHN) models, 2, 3
slow waves, 14–15
spike type “fast” wave solutions, 15–17

FMINCON function, 222
Functional differential equations (FDE), 31

G
Game theory

adversary modeling
BRQR models, 373
Guards and Treasures game, 373
logit quantal response (QR) models,

373
optimal response, 372
security game algorithms, 372–373
SUQR models, 373, 375
Wildlife Poaching game, 374

attacking/protecting problem, 358
endangered species poaching, 359
lab evaluation, simulation and field

evaluation, 376–377
law enforcement resources, 359
multi-objective optimization, 375
optimal defending strategies, 358
packet selection and inspection, 358
patrol density, 359
resource-allocations strategies, 358
robustness, 372
scheduling problems, 348
security resource allocation, 348

Generalized Holling type III, 310–311
Generalized saddle-node bifurcation, 4
Generic k-parameter families, 296
Genetic vulnerability

crop loss, 469–473
selection and breeding, 466–469
underutilized and alternative crops,

473–476
(Z,0) Geometric triple system

binary hypercommutative property, 188
by circle W, 191
commutative and absorptive identity, 188
construction, 189, 191
hypercommutative property, 188
inductive hypothesis, 190
t-square, 188–189

Global planar bifurcations
classification theorems, 276–277
equivalent, 275
in generic one-parameter families

Arnold’s program, 270–272
definitions, 270
separatrix loop, 273
sparking saddle connections, 272

in generic three-parameter families
ensemble saddle lips, 288–290
ensemble shark, 290
Kotova zoo revisited, 292
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Global planar bifurcations (cont.)
large bifurcation support, 273–276
Malta-Palis bifurcation, 273
with parameters

bifurcational stability, 293–294
supports and basins, 293

polycycles
Arnold’s program, 295, 297–298
desingularization, 297
Dumortier-Roussarie-Rousseau

program, 295
finiteness theorem, 296
Hilbert-Arnold conjecture, 296
Hilbert’s 16th problem, 294–295
Trifonov phenomenon, 297

polycycles apple and halfapple, 275, 279
in two-parameter families

infinite number of samples, 283–286
local bifurcations, 278
polycycles and sparkling separatrixes,

280
semilocal bifurcation, 279–280
synchronized connections and

complicated bifurcation diagrams,
283–285

synchronized sparkling saddle
connections, 280–282

topologically nonequivalent bifurcation
diagrams, 286–288

for two semistable cycles, 282–283
Glutsyuk connection, 535
Gröbner basis methods, 23
Group circle systems, 179, 212
Group-specific associations, 482

H
Hamiltonian monodromy

Gauss-Manin monodromy M, 332
Morse singular point, 331
Picard-Lefschetz formula, 331
polycycle and complex cycles, 330
Proof of Proposition, 332–333
ramification points, 331
regular fiber, 331, 332
relative cycle g, 331, 333
spherical pendulum

complex geometry and Picard-Lefschetz
theory, 334

complexification, 339, 343
energy-momentum map, 334, 336
fractional monodromy and bidromy

phenomena, 334
Gauss-Manin monodromy, 341–344

initial phase space, 335
monodromy matrix, 337–338
ramification points, local computation

of, 340–341
reduced phase space, 337
semi-classical limit, 334

Hamiltonian system
conservation law, 425
conservation of energy, 420
definition, 420
gravitational constant, 421
Jacobi identity, 424
linearity, 424
Noether theorem, 425
Poisson bracket, 423, 424
skew-symmetric, 424
symplectic 2n-dimensional phase space,

425
symplectic structure, 423

Handling UNcerTainty Efficiently using
Relaxation (HUNTER), 368

Harmonic elastography, 223–226
Hilbert-Arnold conjecture, 296
Hilbert-Arnold problem, 296
Hilbert’s 16th problem, 294–295
Holling type I functional response, 310
Holling type II functional response, 310–311
Holling type IV functional response, 310–311
Holomorphic vector fields, 519, 521, 530, 545,

585
Homoclinic and heteroclinic cycles, 8, 9, 12,

15
Homoclinic bifurcations, 253
Hookian materials, 219, 228
Hopf bifurcations, 253
Hopf/Bogdanov-Takens bifurcations, 311
Hopf breaking mechanisms, 61, 67–69
Hyperbolic first-order partial differential

equations model, 32
Hyperbolic saddle point

Pfaffian equation, 159–161
transition map, 157–159

Hypergeometric equation
electric-type, 406, 407–408
magnetic-type, 406, 407, 409

I
Integrated completed likelihood (ICL)

criterion, 484
Integrative genomic analysis

application
components and visited models, 490,

491
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expression phenotypes, 493
expression profiles for genes, 494
marginal posterior probabilities, 491,

492
markers and associated gene

expressions, 491, 492
network representation, 493
Poisson distribution, 495

clustered expression profiles, 489
DNA sequence variations, 489
eQTL, 490
MCMC iteration, 490
molecular processes, 489
SNP markers, 490

Intelligent Randomization In Scheduling
(IRIS) system, 352–353

Interindividual variability (IIV)
filgrastim, 101
normrnd and mvnrnd functions, 101
physiological granulopoiesis model, 101
PM00104, 100, 101
statistical analyses, 102
variability scenarios, 101

Interoccasion variability (IOV), 93, 95
IRIS for US FAMS. See Intelligent

Randomization In Scheduling
(IRIS) system

J
Jump breaking mechanisms, 61, 68

K
Khovanskii procedure, 136–137

displacement map, 162–164
nontriviality order, 164–167

Khovanskii theory, 63

L
Lamé parameters, 220
Limit cycles, degenerate foci

in cubic systems
Andronov’s condition, monodromicity,

21
computational difficulties, 24
computer algebra systems, 21
cubic systems, 22
Hamiltonian system, 25
Hopf bifurcation, 25
Liapunov function, 23
linear coordinate change, 24
perturbation methods, 23

quadratic systems, 25
symbolic computing, 21

Hilbert’s 16th problem, 500
Linear almost periodic differential equations

ABLV theorem, 114
almost periodic functions, 115–116
asymptotic behavior

Approximation Theorem, 118
evolution semigroup, 117–119
minimal evolution semigroup, 119
1-periodic evolutionary process ., 123
spectrum of equation, 120
strong stability, 121
uniformly bounded semigroup, 121–123

bounded solutions, 114
classical Lyapunov theorem, 114
evolutionary process, 116–117
examples, 126–130
generator G spectrum, 123–125
minimal evolution semigroup, 115
non-autonomous equations, 114
Perron conditions, 115

Linear elastic MR reconstruction methods, 225
Liouville transformation

Maxwell Fish-Eye profile, 414
real square-integrable solutions, 412–413
scattering theory, 412

Los Angeles International Airport (LAX)
ARMOR system, 351–352
security scenario, 373

Lotka-Volterra equations
Darboux method, 80
invariant algebraic curves, 80, 81
monodromy method

identity/linearizable monodromy, 82
integrable critical points, 86, 87–89
invariant conic curve, 83–84, 86
invariant cubic curve, 83, 84, 87
invariant quartic curve, 83, 85, 88
line at infinity, 81, 87
monodromy map, 81–82
Riemann Sphere, 82
x and y-axis, 81, 87

origin, 80
Lyapunov-Schmidt (LS) methods

CMT, 43
continuous function, 41
Dunford integral formula, 42
Fredholm operator, 43
Fredholm property, 40–41
function spaces, 42
hyperbolic PDEs and FDEs, 31, 44–46
inequality estimation, 42
integro-differential equations and FDE, 31
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Lyapunov-Schmidt (LS) methods (cont.)
method of multiple scales, 31
modelling approaches, 30
nonlocal hyperbolic models, 30–31
nonlocal hyperbolic systems

compact and bounded operator, 51
differential operator, 51
Fredholm property, 49–50
isotypic components, 51
Lc compactness, 47–49
linear operator, 46–47
SO(2)and O(2) symmetric steady-states,

51–55
1D hyperbolic models

age-structured models, 33, 34
aggregation models, 33–35
chemotaxis models, 33, 34
laser models, 32–33
predator-prey models, 33, 34
self-organised animal aggregation (see

Self-organised animal aggregation
models)

phase origin, 30
spectral properties, 43
time-periodic solutions, 42

M
Magnetic resonance elastography (MRE),

221–225
Magnetic resonance imaging, 221
Malgrange preparation theorem

bifurcations theory, 134
Chebychev expansions, 135
coefficient ideal, 138
constructive proof of theorem 1.6

analytic functions, 144
derivation operator, 142–143
determinants, 144
elimination algorithm, 142
homogeneous polynomial, 141
ideal and quasi-regular functions, 148
k and j integers, 149–150
lexicographical order, 143
monomial, 142
multilinearity and properties, 145
steps, 145–148
transformation, 143
Vandermond determinant, 146

definition, 134–135
displacement map, 138
elementary, 136
functional equation, 138–140

generalized Rolle’s lemma and differential
analysis, 138

Hilbert’s 16th problem, 135
hyperbolicity ratio, 136
hyperbolic 2-polycycle, finiteness cyclicity

of, 167–170
hyperbolic saddle point

Pfaffian equation, 159–161
transition map, 157–159

Khovanskii procedure, 136–137
displacement map, 162–164
nontriviality order, 164–167

monomials properties, 137
Mourtada results

coherence lemma, 172
Dulac map, 174–176
I-finiteness, 171–172
local algebras and derivations, 171
Roussarie isomorphy lemma, 173
saturation lemma, 173–174
Tougeron extension, 172

pseudo-isomorphism
corollary, 155–157

map j, uniform finiteness, 153–155
map r solving (*), 151–153

Markov chain Monte Carlo (MCMC)
framework, 482

Martinet–Ramis invariants, 535, 536
Mathematica, 26–27
Mathematical modelling approaches, 30
Mathieu transformation, 426–428
Maxwell Fish-Eye profile, 414
Mechanistic models, 92
Melnikov integral

algebraic parts, 615–616
differential forms, u; v variables, 614–615
Euler Beta integrals, 621–623
first order Melnikov integrals, 597
integrals I� , 612–614
logarithmic behavior

of even integrals, 619
of odd integrals, 620–621

Pfaff equation, 623, 624
properties

monomial forms, 610
non-algebraic singularity, 612
Taylor expansions, 611, 612

second order integral, 597–598
third order integral, 616–619

MIDAS algorithm, 357
Mixture regression models

adaptive lasso approach, 483
Bayesian variable selection, 485–487
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Bernoulli probability density/mass
function, 483

complete-data log-likelihood, 484
cross-validation, 484
data log-likelihood, 483
ecological application, 482
Gaussian probability density/mass function,

483
group-specific relevant covariates, 482
homogeneous groups, 482
penalized log-likelihood function, 483
Poisson probability density/mass function,

482, 483
univariate linear, 483

Modern agriculture
food diversity, 465
genetic vulnerability, 465–466
hybrid crop varieties, 465

Monodromy map, 81–82
Monodromy method

identity/linearizable monodromy, 82
integrable critical points, 86, 87–89
invariant conic curve, 83–84, 86
invariant cubic curve, 83, 84, 87
invariant quartic curve, 83, 85, 88
line at infinity, 81, 87
monodromy map, 81–82
Riemann Sphere, 82
x and y-axis, 81, 87

Multi-layer canard cycles, 64–65
Multi-objective security games (MOSGs), 375
Multiple p-adic algorithm (MPAA), 461, 462
Multivariate outcomes. See Mixture regression

models

N
Necklace (orbital) dynamics

analytic linearization, 573
necklace holonomy, 569–571
orbital compatibility condition, 571–574
purely convergent generic unfolding,

574–576
squid sectors, 567
temporal compatibility, 567
weak holonomy, 568–569

Nerve impulses propagation, 13–14
Neuronal spiking, 254
Neutrophil model, 93–94
Newlander–Nirenberg theorem, 536
Noether theorem, 425
Nonlocal hyperbolic systems

compact and bounded operator, 51

differential operator, 51
Fredholm property, 49–50
isotypic components, 51
Lc compactness, 47–49
linear operator, 46–47
Lyapunov–Schmidt and Centre Manifold

reduction methods, 30–31
SO(2)and O(2) symmetric steady-states,

51–55
Normal forms

antipodal realizations, pure convergence
bounded sequence, 588–589
holomorphic function, 590
Krull topology, 588
modified squid sector, 586
recursive sequence, 587

pure convergence
Cauchy–Heine contours, 586
infinite canonical sectors, 585
modified (unbounded) squid sectors,

586
orbital realization, 586–590
period operator, 591
temporal realization, 585
vector fields, 584

saddle-node bifurcation
analytic continuation principle,

518–519
classification theorem, 517–518
Euler family, 514
holomorphic function, 517, 520
holomorphic mapping, 514
linear mapping, 519
Pochhammer contour, 516
Taylor coefficients, 515

O
1D hyperbolic models

age-structured models, 33, 34
aggregation models, 33–35
chemotaxis models, 33, 34
laser models, 32–33
predator-prey models, 33, 34
self-organised animal aggregation models

isotropy subgroup, 39
periodic boundary conditions, 37–38
reflective boundary conditions, 38–39
social interaction terms, 36–37
steady-state solutions, 39–40
turning rates, 35

Optical coherence tomography (OCT), 228
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Orbital necklace
complex planar stationary points, 562–564
dynamical interpretation (see Necklace

dynamics)

P
Palpation, 217, 218
Parallel Chinese algorithm

CRT, 460–461
decoding algorithm, 461

Parallel solver, p-adic
Dixon’s algorithm, 459–460
“Error-free Computation”, 463
Euclidean metric, 455
Hensel Code arithmetic, 452, 456,

458–459
hierarchical tree, 455
matrix computation, 456
multiple p-adic arithmetic, 461–462
parallel Chinese algorithm, 460–461
parallel p-adic algorithms
single modulus, 459–460
solver preliminary, 457–458

Pentadiagonal systems
active vibration suppression, 446–448
exponential behavior

beam vibration problem, 440
coefficient matrix, 441
Euler–Bernoulli equation, 440
finite difference discretization length,

441
forward and backward substitution

approach, 442, 443, 445
growth behavior, 439
modular solution, 445–446
oscillatory behavior, 440
RHS vector, 442–444
Young’s modulus, 440

non-exponential behavior, 438–439
Periodic systems

forward substitution, 449
physics-based systems, 449
tridiagonal system, 449

Pfaff equation, 598
Pharmacodynamic (PD) model

G-CSF, 98–99
granulopoiesis, 93–96
incorporating variability, 99–101
of PM00104, 95, 97

Pharmacokinetic (PK) model
G-CSF, 98–99
granulopoiesis, 93–96
incorporating variability, 99–101

of PM00104, 95, 97
Phase-contrast method, 221
Physiological models

absolute neutrophil counts, 104–105, 108
AUEC, 104, 106
bottom-up strategy, 92
IIV, impact of

filgrastim, 101
normrnd and mvnrnd functions, 101
physiological granulopoiesis model,

101
PM00104, 100, 101
statistical analyses, 102
variability scenarios, 101

mathematical techniques, 92
PK/PD model

G-CSF, 98–99
granulopoiesis, 93–96
incorporating variability, 99–101
of PM00104, 95, 97

PK variability, impact of, 92, 106, 107
QSP approaches, 110
time-consuming and advanced

mathematical knowledge,
92

time-nadir results, 102–104
variability screening test, 110

Picard-Lefschetz theory, 334
Plant breeding and selection

domestication, crop plants, 466
dominant peanut (Arachis hypogea)

cultivars, 469
genetic resources, development and

exchange, 466, 467–468
human race, 466
social and cultural diversity erosion, 469

Poincaré–Lyapunov focus quantities, 598
Poincaré map, 329
Polycycles

Arnold’s program, 295, 297–298
desingularization, 297
Dumortier-Roussarie-Rousseau program,

295
finiteness theorem, 296
Hilbert-Arnold conjecture, 294–296
Trifonov phenomenon, 297

Population pharmacokinetic/pharmacodynamic
(Pop-PK/PD) modelling, 92

Predator-prey systems
fold (extreme) points, 312–313
generalized Holling type III, 310–311
Holling type I functional response, 310
Holling type II functional response,

310–311
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Holling type IV functional response,
310–311

Hopf/Bogdanov-Takens bifurcations, 311
phase variables, time, and parameters, 312
Proof of Theorem 3.1, 318–324
results, 316–318
saddle point, 313–316
slow-fast cycles, 313–316
U-shaped slow-fast cycle, 318

Proof of Theorem 3.1
generalized Holling type III response

function, 316, 321
minimum and maximum values, 322
proofs of statements, 319–322
shaded region W; 314, 321
slow divergence integral, 318
type III-1 slow-fast cycle, 323
type III-2 slow-fast cycle, 323
U-shaped slow-fast cycle, 318, 322

Protection Assistant for Wildlife Security
(PAWS), 359

PROTECT model, 353–354, 377
Pseudo-isomorphism, 135, 137

corollary, 155–157
map j, uniform finiteness, 153–155
map r solving (*), 151–153

Pseudo-plateau bursting, 254

Q
Quantitative systems pharmacology (QSP),

110
Quantum mechanical connection

Born approximation, 412
Legendre polynomial, 410
phase shifts, 411
plane wave electromagnetic scattering, 409
quantum scattering theory, 412
Riccati–Bessel function, 412
“Schrödinger-like” equations, 409
TE modes, 409, 411
TM modes, 409

Quasi-static elastography, 221–223
Quasi-static methods, 223

R
Radial Debye potentials

electric-type, 392
magnetic-type fields, 392

Rayleigh damping (RD) model, 228
Relaxation oscillation, 304–305

Remote palpation method, 226
Rescaling generic balanced canard cycles,

67–68
Riccati–Bessel functions, 386, 389

S
Saddle-node bifurcation

autonomous flow-system, 498
bifurcation behaviors, 498
Cauchy–Hadamard formula, 499
compatibility conditions, 537
conjugacy/orbital equivalence, 533
convergence to heteroclinic connections

canonical real determination, 511
holomorphic function, 510
method of variation, 512

divergent weak separatrix, 504, 505
dynamical ramifications, 502
Euler family, 505
Euler’s differential equation, 502–503
formal and analytical classification, 501,

502
generic unfolding of codimension, 532
generic unfoldings, 536
Glutsyuk connection, 535
heteroclinic connections to convergence

analytic Taylor expansion, 509
Euler’s equation, 509–510
Euler’s series, 506, 507
holomorphic functions, 508
Montel’s theorem, 509

heteroclinic integral curve, 504
invariant manifolds, 502
local orbital classification, 533
Martinet–Ramis invariants, 534–536
modulus space, 506
multivalued complex solutions, 499
Newlander–Nirenberg theorem, 536
normal forms

analytic continuation principle,
518–519

classification theorem, 517–518
Euler family, 514
holomorphic function, 517, 520
holomorphic mapping, 514
linear mapping, 519
Pochhammer contour, 516
Taylor coefficients, 515

orbital invariant, integral representation,
565–566

orbital moduli spaces, 538
parabolic diffeomorphisms, 534, 535
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Saddle-node bifurcation (cont.)
qualitative dynamical behaviors

pure convergence, 505
pure divergence, 505
sly convergence, 505

real-analytic function, 499
resonant diffeomorphisms, 533
sectorial decomposition, 534
strong separatrix, 533
Taylor series, 503, 504
weak separatrix, 503, 533

Saddle-node bifurcations, 253
Saturation tagging method, 221
Scalability

attacker pure strategies, 362
with continuous domains and boundedly

rational attacker, 364–366
defender pure strategies, 360–362
with mobile resources and moving targets,

363–364
security games algorithms

ASPEN, 371
defender resources, 371
DOBSS, 371
ERASER, 371
marginal probabilities, 371
RUGGED, 371

Scattering potentials, of EM. See EM scattering
Security games

applications
Green security domains, 359
networked domains, 357–358

computational game theory-based decision,
348

cyber-physical systems., 347
green security games, 348–349
human decision-making, 348–349

Self-inversive cubic curves
automorphisms

elements, 203–204
translate automorphisms, type 1 and 2

cubic, 201–202
translate of g, 200

(Z,0) circle system
circle chain, 183–187
circles of level k, 184
construction of, 187
interior and exterior radical center,

182–183
inversion maps circles, 184
tangencies at level k, 184

cocyclic/collinear, 179
cubic curve g, 214–215

(Z,0) geometric triple system
binary hypercommutative property, 188
by circle W, 191
commutative and absorptive identity,

188
construction, 189, 191
hypercommutative property, 188
inductive hypothesis, 190
t-square, 188–189

group circle systems, 179, 212
nonsingular irreducible cubic curve,

180–181
subalgebra

(Z2 xZ4, (0,1)) circle system, 207–208
(Z2 xZ4, (0,2)) circle system, 207–208
(Z2 xZ8, (0,0)) circle system, 206–207
(Z2xZ8, (0,2)) circle system, 210
(Z2xZ12, (0,0)) circle system, 211–212
ı-idempotent elements, 205–206
Lagrange theorem, 209
polygon degeneration, 211
root subalgebra, 204

ternary hypercommutativity
analytical argument, 194
(Z,0) circle system, 195, 196
inverse of, 193, 194
inversion maps circles, 195
osculating circle point, 192
types, 192–193

type 2
intersection with g, 199–200
invert type 1 cubic g, 197–198
nonsingular irreducible curve, 196,

197
three mutually orthogonal circles,

198–199
Self-organised animal aggregation models

isotropy subgroup, 39
periodic boundary conditions, 37–38
reflective boundary conditions, 38–39
social interaction terms, 36–37
steady-state solutions, 39–40
turning rates, 35

Shear wave elasticity imaging (SWEI), 226
Shear waves, 219
Single nucleotide polymorphism (SNP)

markers, 490
Singular perturbation

blow-up technique, 303
canard point, 304
definition, 301
fast subsystem, 302
fast time .t/; 302
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jump point, 304
limit period set (slow-fast cycle), 304–307
low subsystem, 302
predator-prey systems

fold (extreme) points, 312–313
generalized Holling type III, 310–311
Holling type I functional response, 310
Holling type II functional response,

310–311
Holling type IV functional response,

310–311
Hopf/Bogdanov-Takens bifurcations,

311
phase variables, time, and parameters,

312
Proof of Theorem 3.1, 318–324
results, 316–318
saddle point, 313–316
slow-fast cycles, 313–316
U-shaped slow-fast cycle, 318

relaxation oscillation, 304–305
slow curve/manifold, 302
slow divergence integral, 307–309
slow time (E), 302
transitory canard cycles, 307
U-shaped/S-shaped, 302–303

16th Hilbert problem.
abelian integrals

alien cycles, 330
displacement function, 329
Hamiltonian vector field, 328
limit cycle, 328
monodromy (see Hamiltonian

monodromy)
periodic orbits, 329
Poincaré map, 329
polynomial deformation, 328

Sonoelasticity, 219
Species-rich ecosystems, dynamic processes

demographic process, 488
ecologic application, 488, 489
GLM models, 487

Spherical pendulum
complex geometry and Picard-Lefschetz

theory, 334
complexification, 339, 343
energy-momentum map, 334
fractional monodromy and bidromy

phenomena, 334
Gauss-Manin monodromy, 341–344
initial phase space, 335

ramification points, local computation of,
340–341

real case
energy momentum diagram, 336
monodromy matrix, 337–338
reduced phase space, 337

semi-classical limit, 334
Stackelberg security games (SSGs)

ARMOR system, 351–352
arms inspections, 349
border patrolling, 349
computer network security, 349
definition, 350–351
Ferry Protection, USCG, 354, 355
Fishery Protection, USCG, 356–357
IRIS for US FAMS, 352–353
missile defense systems, 349
optimal commitment strategies, 360
“police and robbers” scenario, 349
PROTECT for USCG, 353–354
real-world security domains, 360–364
security domain description, 349
terrorism, 349
TRUSTS for transit systems, 355–356

Stochastic partitioning method, 486–487
Subalgebra

(Z2 xZ4, (0,1)) circle system, 207–208
(Z2 xZ4, (0,2)) circle system, 207–208
(Z2 xZ8, (0,0)) circle system, 206–207
(Z2xZ8, (0,2)) circle system, 210
(Z2xZ12, (0,0)) circle system, 211–212
degenerate perfect polygon, 211
ı-idempotent elements, 205–206
Lagrange theorem, 209
root subalgebra, 204

Subjective utility quantal response (SUQR)
model, 357

Supersonic shear imaging (SSI), 227
Symplectic coordinates

advantages and drawbacks, 419
analytical mechanics, 429
Euler–Lagrange equation, 428
gravitational interaction, 419
and Hamiltonians, 423–426
Hamiltonian system, 420–421
Mathieu transformation, 426–428
symplectic geometry, 421–423
two-body problem, 419

Symplectic geometry
linear transformation, 422–423
vector space, 421
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T
Tactical Randomization for Urban Security

in Transit Systems (TRUSTS),
355–356

Ternary hyper-commutative algebra (THA),
192

Ternary hypercommutativity
analytical argument, 194
(Z,0) circle system, 195, 196
inverse of, 193, 194
inversion maps circles, 195
osculating circle point, 192
types, 192–193

Three breaking parameter mechanisms, 61
Hopf breaking parameters, 67–69
jump type, 68
Khovanskii’s reduction method, 72–73
negative and non-zero derivative, 68
relaxation oscillations, 71
rescaled system of equations, 73–76
slow divergence integral, 70
slow dynamics, 69, 70
symmetric canard cycle, 70

Tikhonov theorem, 3
Tissue motion, 218–219
Torsion free module, 246–247
Transient elastography, 226–227
Transverse electric (TE)/magnetic (TM) modes

asymptotic expansions, 393–394, 393–397
Bessel function, 396
EM scattering, 388
hypergeometric functions, 394
Kummer’s function, 395
quantum mechanical connection, 409, 411
Sommerfeld’s integral representation, 396

Traveling wave solutions, slow and fast
behaviors, 9–10
bifurcation diagram, 9, 10
cross-diffusion

of FitzHugh Model, 10–11
FitzHugh–Nagumo equations, 12–13
mathematical problem, 11, 12
“normal” neuron firing propagation, 14
separatrix loop, 11

of FHN-model, 14–17
Tridiagonal systems

exponential behavior
analytical solution, 435, 436
backward substitution approach, 437,

438
forward substitution approach, 436, 437
numerical stability issues, 436

non-exponential behavior
implementation, 434–435
theory, 433–434
Toeplitz system, 435

Trifonov phenomenon, 297
TRUSTS. See Tactical Randomization for

Urban Security in Transit Systems
(TRUSTS)

Type 2 self-inversive cubic curves
intersection with g, 199–200
invert type 1 cubic g, 197–198
nonsingular irreducible curve, 196, 197
three mutually orthogonal circles, 198–199

U
Ultrasound imaging technique, 219
Uncertainty, security patrolling

Bayesian approach, 369
Bayesian-based approach, 369–370
Bayesian Stackelberg game models, 368
dynamic execution uncertainty, 366–368
HUNTER, 368–369
MDP-based approach, 368
robust approach, 370–371
robust-optimization techniques, 368
space and algorithms, 368

Underutilized species
adaptability and resilience, 473
biodiversity erosion, 476
wild and cultivated, edible and medicinal

plants, 474, 475
Unfolding of singularities, complete temporal

classification
Cauchy–Heine transforms, 578
compatible temporal necklace, 577
computation of the period, 581–583
normal forms, pure convergence, 584–591
parametric Cousin problem, 579
period operator range, 578–581
saddle-like singularity, 580
transition map, 576

Unified Robust Algorithmic framework for
addressing unCertainties (URAC),
368

USCG
Ferry Protection, 354, 355
PROTECT, 353–354

V
Voigt model, 228
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W
Wave system, FitzHugh model

cross-diffusion equations, 7
with diffusion and cross-diffusion, 6
phase curves and bifurcation analysis, 7
reaction–diffusion model, 8–9

Weakly-nonlinear analysis (WNA) techniques,
31, 32

Whittaker’s equation
electric-type, 403–404
magnetic-type independent solutions, 404,

405

Y
Young’s modulus, 219
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