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Abstract In the paper we present the generalized Minkowski functionals. We also
establish some useful properties of the Minkowski functionals, criterium of the
continuity of such functionals, and a generalization of a Kolmogorov result.

1 Introduction

We shall introduce basic ideas, which will be used in the paper.
Let X be a linear topological (Hausdorff) space over the set of real numbers R.

Denote RC D Œ0; 1/, RC D Œ0; 1�. Also 0 � 1 D 1 � 0 D 0. Let A be a subset
of X. As usual for ˛ 2 R,

˛A WD fy 2 XW y D ˛x for x 2 Ag:

We shall call A a symmetric, provided that A D �A. Moreover, a set A � X is said
to be bounded (sequentially) (see [6]) iff for every sequence ftng � R, tn ! 0 as
n ! 1 and every sequence fxng � A, the sequence ftn � xng � X satisfies tn � xn ! 0

as n ! 1.
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We also recall the idea of generalized metric space (briefly gms) introduced by
Luxemburg (see [5] and also [2]). Let X be a set. A function

dW X � X ! Œ0; 1�

is called a generalized metric on X, provided that for all x; y; z 2 X,

(i) d.x; y/ D 0 if and only if x D y,
(ii) d.x; y/ D d.y; x/,

(iii) d.x; y/ � d.x; z/ C d.z; y/,

A pair .X; d/ is called a generalized metric space.
Clearly, every metric space is a generalized metric space.
Analogously, for a linear space X, we can define a generalized norm and a

generalized normed space.
Let’s note that any generalized metric d is a continuous function.
For if xn; x; yn; y 2 .X; d/ for n 2 N (the set of all natural numbers) and

xn ! x; yn ! y as n ! 1
i.e. d.xn; x/ ! 0 and d.yn; y/ ! 0 as n ! 1, then in the case d.x; y/ < 1, we can
prove, in standard way, that

d.xn; yn/ ! d.x; y/ as n ! 1:

But if d.x; y/ D 1, we have for " > 0

d.x; y/ � d.x; xn/ C d.xn; yn/ C d.yn; y/

and, for n > n0, n; n0 2 N

1 D d.x; y/ � d.xn; yn/ C ";

i.e. d.xn; yn/ D 1 for n > n0 and consequently

1 D d.xn; yn/ ! d.x; y/ D 1 as n ! 1;

as claimed.

2 Generalized Minkowski Functionals

Now we shall prove the following basic result.

Theorem 1. Let X be a linear topological (Hausdorff) space over R and let a subset
U of X satisfy the conditions:

(i) U is a convex (nonempty) set,
(ii) U is a symmetric set.
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Then the function pW X ! R
C defined by the formula

p.x/ WD
�

infft > 0W x 2 tUg; x 2 X; if Ax ¤ ;,
1; if Ax D ;,

(1)

where

Ax WD ft > 0W x 2 tUg; x 2 X; (2)

has the properties:

if x D 0; then p.x/ D 0; (3)

p.˛x/ D j˛jp.x/ for x 2 X and ˛ 2 R; (4)

p.x C y/ � p.x/ C p.y/ for x; y 2 X: (5)

Proof. Clearly, p.x/ 2 Œ0; 1� for x 2 X. Since 0 2 U, by the definition (1) we get
(3). To prove (4), consider at first the case ˛ > 0 (if ˛ D 0, the property (4) is
obvious). Assume that p.x/ < 1 for x 2 X. Then we have

˛p.x/ D ˛ inf fs > 0W x 2 sUg D ˛ inf
n t

˛
> 0W x 2 t

˛
U

o

D inf
n t

˛
� ˛ > 0W x 2 t

˛
U

o
D inf

n
t > 0W x 2 t

˛
U

o

D inf ft > 0W ˛x 2 tUg D p.˛x/:

If p.x/ D 1, then ft > 0W x 2 tUg D ;. Therefore,

ft > 0W ˛x 2 tUg D ˛
n t

˛
> 0W ˛x 2 tU

o
D ˛

n t

˛
> 0W x 2 t

˛
U

o
D ;;

and consequently p.˛x/ D 1, i.e. (4) holds true.
Now consider the case ˛ < 0. Taking into account that (ii) implies that also tU

for t 2 R is a symmetric, one gets for x 2 X and p.x/ < 1

p.�x/ D inf ft > 0W �x 2 tUg D inf ft > 0W x 2 tUg D p.x/:

If p.x/ D 1, then

; D ft > 0W x 2 tUg D ft > 0W �x 2 tUg ;

which implies also p.�x/ D 1, and consequently

p.�x/ D p.x/ for any x 2 X: (6)
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Thus, for ˛ < 0, x 2 X and in view of the first part of the proof,

p.˛x/ D p.�˛x/ D �˛p.x/ D j˛jp.x/;

i.e. (4) has been verified.
Finally, if p.x/ D 1 or p.y/ D 1, then (5) is satisfied. So assume that

x; y 2 X and

p.x/ < 1 and p.y/ < 1:

Take an " > 0. From the definition (1), there exist numbers t1 � p.x/ and t2 � p.y/,
t1 2 Ax, t2 2 Ay such that

0 < t1 < p.x/ C 1

2
"; 0 < t2 < p.y/ C 1

2
":

The convexity of U implies that

x C y

t1 C t2
D t1

t1 C t2
� x

t1
C t2

t1 C t2
� y

t2
2 U

and consequently

x C y 2 .t1 C t2/U;

which means that t1 C t2 2 AxCy.
Hence

p.x C y/ � t1 C t2 � p.x/ C 1

2
" C p.y/ C 1

2
" D p.x/ C p.y/ C "

i.e.

p.x C y/ � p.x/ C p.y/ C ";

and since " is arbitrarily chosen, this concludes the proof. ut
Example 1. Consider X D R � R, U D .�1; 1/.

Then

p.x/ D
�

infft > 0W .x; 0/ 2 tUg; for x D .x; 0/,
1; for x D .x1; y1/; y1 ¤ 0,

p.x/ D
� jxj; for x D .x; 0/,

1; for x D .x1; y1/; y1 ¤ 0,

because ft > 0W .x1; y1/ 2 tUg D ; for y1 ¤ 0.
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We see that p is a generalized norm in R
2 D R � R (p takes values in Œ0; 1�).

Remark 1. The function pW X ! R
C defined by (1) we shall call the generalized

Minkowski functional of U (also a generalized seminorm).

Remark 2. Under some stronger assumptions (see e.g. [3]), the function p is called
the Minkowski functional of U.

The next basic property of the functional p is given in

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. If, moreover,
U is bounded (sequentially), then

p.x/ D 0 ) x D 0: (7)

Proof. Assume that p.x/ D 0 for x 2 X. Suppose that x ¤ 0. From the definition of
p.x/ for every "n D 1

n , there exists a tn > 0 such that x 2 tnU, n 2 N and tn < 1
n .

Hence, x D tnxn, xn 2 U for n 2 N and by the boundedness of U, x D tnxn ! 0 as
n ! 1. But clearly x ! x, whence x D 0, which is a contradiction and completes
the proof. ut
Remark 3. Under the assumptions of Theorem 2, the generalized Minkowski
functional is a generalized norm in X.

Let’s note the following useful

Lemma 1. Let U � X be a convex set and 0 2 U. Then

˛U � U (8)

for all 0 � ˛ � 1.

The simple proof of this Lemma is omitted here.
Next we prove

Lemma 2. Let U be as in Theorem 1. If, moreover, U does not contain half-lines,
then

p.x/ D 0 ) x D 0:

Proof. For the contrary, suppose that x ¤ 0. By the definition of p.x/ for every
" > 0, there exists a 0 < t < " such that x 2 tU. Take r > 0 and " < 1

r . Clearly,
x
t 2 U. Furthermore,

rx D x

t
.tr/ D ˛

x

t
; where ˛ D tr < 1:
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By Lemma 1, rx D ˛ x
t 2 ˛U � U, which means that there exists an x ¤ 0 such

that for every r > 0, rx 2 U what contradicts the assumptions on U. This yields our
statement. ut
We have also

Lemma 3. Let U be as in Theorem 1. Then

Œp.x/ D 0 ) x D 0� ) U does not contain half-lines. (9)

Proof. For the contrary, suppose that there exists an x ¤ 0 such that for every r > 0

we have rx 2 U. Hence

x 2 1

r
U for r > 0

and therefore

1

r
2 ft > 0W x 2 tUg

which implies that p.x/ D 0. From (9) we get x D 0, which is a contradiction.
Eventually, one gets the implication (9) and this ends the proof. ut

Therefore, Lemmas 2 and 3, we can rewrite as the following

Proposition 1. Let the assumptions of Theorem 1 be satisfied. Then the generalized
Minkowski functional p for U is a generalized norm iff U does not contain half-lines.

3 Properties of the Generalized Minkowski Functionals

In this part we start with the following

Theorem 3. Let X be a linear topological (Hausdorff) space over R and let
f W X ! R

C be any function with properties:

f .˛x/ D j˛jf .x/ for all x 2 X and ˛ 2 R; (10)

f .x C y/ � f .x/ C f .y/ for all x; y 2 X: (11)

Define

U WD fx 2 XW f .x/ < 1g: (12)
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Then

a) U is a symmetric set,
b) U is a convex (nonempty) set,
c) f D p, i.e. f is the generalized Minkowski functional of U.

Proof. The conditions a) and b) follow directly from the definition (12) and
properties (10) and (11), respectively. To prove c), assume that x 2 U, thus
f .x/ < 1. Therefore, for t > 0

x 2 tU D tf �1.Œ0; 1// , x

t
2 f �1.Œ0; 1//

, f
�x

t

�
2 Œ0; 1/ , 1

t
f .x/ 2 Œ0; 1/ , f .x/ 2 Œ0; t/;

i.e. x 2 tU , f .x/ 2 Œ0; t/ for t > 0.
Thus

Ax D ft > 0W x 2 tUg D ft > 0W f .x/ 2 Œ0; t/g;

whence

p.x/ D inf Ax D infft > 0W f .x/ 2 Œ0; t/g D f .x/:

Now let f .x/ D 1. For the contrary, assume that p.x/ < 1. Then by the definition
of p,

ft > 0W x 2 tUg ¤ ;;

which implies that there exists t > 0 such that x 2 tU, thus also

x

t
2 U D f �1.Œ0; 1//;

1

t
f .x/ 2 Œ0; 1/

and finally f .x/ 2 Œ0; t/ which is impossible. This completes the proof. ut
The next result reads as follows.

Theorem 4. Let X; f ; U be as in the Theorem 3. If U is sequentially bounded, then
f D p is a generalized norm.

Proof. Assume that f .x/ D p.x/ D 0. One has

p.x/ D infft > 0W x 2 tUg D 0;
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therefore, for every "n D 1
n , n 2 N, there exists 0 < tn < 1

n such that x 2 tnU, i.e.
x D tnun, where un 2 U for n 2 N. Since U is bounded

x D tnun ! 0 as n ! 1;

thus x D 0, as claimed. ut

4 Continuity of the Generalized Minkowski Functionals

Let’s note the following

Theorem 5. Let the assumptions of Theorem 1 be satisfied. Then

p is continuous at zero ) 0 2 int U: (13)

Proof. From the assumption, for 0 < " < 1, there exists a neighbourhood V of zero
such that

p.u/ < " for u 2 V:

But p.u/ < 1 for u 2 V , whence by Lemma 1 u 2 U, and therefore, V � U, which
proves the implication (13). ut

We have also

Theorem 6. Let the assumptions of Theorem 1 be satisfied. Then

0 2 int U ) p is continuous at zero. (14)

Proof. Let U0 be a neighbourhood of zero such that U0 � U. For the contrary,
suppose that there exists an "0 > 0 such that for every neighbourhood V of zero
there exists an x 2 V with p.x/ � "0. Take V D Vn D 1

n U0, n 2 N (clearly Vn is
a neighbourhood of zero). Then there exists an xn 2 1

n U0 � 1
n U, such that

p.xn/ � "0 for n 2 N: (15)

Take n such that 1
n < "0. Thus, one has

p.xn/ D infft > 0W xn 2 tUg � 1

n
;
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i.e.

p.xn/ � 1

n
< "0

which contradicts the inequality (15) and completes the proof. ut
We have even more.

Theorem 7. Let the assumptions of Theorem 1 be satisfied. Then

0 2 int U ) p is continuous. (16)

Proof. First of all, observe that since there exists a neighbourhood V of zero,
contained in U, then for x 2 X

1

n
x 2 V for n > n0;

and hence

Ax D ft > 0W x 2 tUg ¤ ; for all x 2 X:

Therefore, we have p.x/ < 1 for any x 2 X. Since p is also convex and, by
Theorem 6, p is continuous at zero, then by the famous theorem of Bernstein–
Doetsch (see e.g. [1]), p is continuous in X, which ends the proof. ut
Remark 4. To see that the condition 0 2 int U is essential in Theorems 5 and 6, the
reader is referred to Example 1.

Eventually, taking into account Theorems 5 and 7, we can state the following
useful result about the continuity of the generalized Minkowski functionals.

Proposition 2. Under the assumptions of Theorem 1, the equivalence

p is continuous , 0 2 int U (17)

holds true.

5 Kolmogorov Type Result

Let X be a linear space (over R or C—the set of all complex numbers) and
a generalized metric space. We say that X is a generalized linear-metric space, if the
operations of addition and multiplication by constant are continuous, i.e. if xn ! x
and yn ! y, then xn Cyn ! xCy and txn ! tx (with respect to a generalized metric
in X).
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For example, if generalized metric is introduced by a generalized norm, then we
get a generalized linear-metric space.

We shall prove the following.

Theorem 8. Let .X; %/ be a generalized linear-metric space over R. Suppose that
U � X is an open, convex and sequentially bounded set. Then there exists a
generalized norm k � k such that the generalized metric induced by this norm is
equivalent to a generalized metric %.

Proof. Take a point x0 2 U, then

V WD .U � x0/ \ .x0 � U/

is an open, convex, symmetric and sequentially bounded subset of X (the details we
omit here).

Define

kxk WD
�

infft > 0W x 2 tVg; x 2 X; if Ax ¤ ;,
1; if Ax D ;.

(18)

By Theorem 2 we see that this function is a generalized norm.
At first we shall show the implication:

%.xn; 0/ ! 0 ) kxnk ! 0: (19)

To this end, take " > 0. Then the set "V is also open: for it, because f .x/ D 1
"
x,

x 2 X, is a continuous function and

f �1.V/ D "V;

we see that also "V is open. Therefore, xn 2 "V for n > n0 and consequently

kxnk < " for n > n0

i.e. (19) is satisfied.
Conversely, assume that kxnk ! 0 as n ! 1. By the definition (18) for every

"n D 1
n , n > n0, there exists tn > 0 such that

kxnk � tn < kxnk C "n and xn 2 tnV:

Let "n ! 0, then tn ! 0 as n ! 1. Also xn
tn

2 V , but since V is bounded, then

tn

�
xn

tn

�
D xn ! 0 as n ! 1

in the generalized metric % thus %.xn; 0/ ! 0, which ends the proof. ut
Remark 5. If % is a metric, from Theorem 7, we get the Kolmogorov result (see [4]).
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