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Abstract Having in mind Galois connections, we establish several consequences
of the following definitions.

An ordered pair X .�/ D .X ; �/ consisting of a set X and a relation � on X
is called a goset (generalized ordered set).

For any x 2 X and A � X, we write x 2 ubX.A/ if a � x for all a 2 A, and
x 2 intX.A/ if ubX.x/ � A, where ubX.x/ D ubX

�fxg�.
Moreover, for any A � X, we also write A 2 UX if A � ubX.A/, and A 2 TX

if A � intX.A/. And in particular, A 2 EX if intX.A/ ¤ ; .
A function f of one goset X to another Y is called increasing if u � v implies

f .u/ � f .v/ for all u ; v 2 X.
In particular, an increasing function ' of X to itself is called a closure operation

if x � '.x/ and '
�
'.x/

� � '.x/ for all x 2 X.
The results obtained extend and supplement some former results on increasing

functions and can be generalized to relator spaces.

1 Introduction

Ordered sets and Galois connections occur almost everywhere in mathematics [12].
They allow of transposing problems and results from one world of our imagination
to another one.
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In [48], having in mind a terminology of Birkhoff [2, p. 1], an ordered pair
X .�/ D .X ; �/ consisting of a set X and a relation � on X is called a goset
(generalized ordered set) .

In particular, a goset X .�/ is called a proset (preordered set) if the relation �
is reflexive and transitive. And, a proset X .�/ is called a poset (partially ordered
set) if the relation � is in addition antisymmetric.

In a goset X, we may define several algebraic and topological basic tools. For
instance, for any x 2 X and A � X, we write x 2 ubX.A/ if a � x for all a 2 A,
and x 2 intX.A/ if ubX.x/ � A, where ubX.x/ D ubX.fxg/.

Moreover, we write A 2 UX if A � ubX.A/, A 2 TX if A � intX.A/, and
A 2 EX if intX.A/ ¤ ; . However, these families are in general much weaker tools
than the relations ubX and intX which are actually equivalent tools.

In [58], in accordance with [11, Definition 7.23], an ordered pair . f ; g/ of
functions f of one goset X to another Y and g of Y to X is called a Galois
connection if for any x 2 X and y 2 Y we have f .x/ � y if and only if x � g.y/ .

In this case, by taking ' D g ı f , we can at once see that f .u/ � f .v/ ”
u � g

�
f .v/

� ” u � .g ı f /.v/ ” u � '.v/ for all u ; v 2 X . Therefore,
the ordered pair . f ; ' / is a Pataki connection by a terminology of Száz [58].

A function f of one goset X to another Y is called increasing if u � v implies
f .u/ � f .v/ for all u ; v 2 X. And, an increasing function ' of X to itself is called
a closure operation on X if x � '.x/ and '

�
'.x/

� � '.x/ for all x 2 X.
In [53], we have proved that if . f ; ' / is a Pataki connection between the prosets

X and Y , then f is increasing and ' is a closure operation such that f � f ı ' and
f ı ' � f . Thus, f D f ı ' if in particular Y is a poset.

Moreover, we have also proved that a function ' of a proset X to itself is
a closure operation if and only if .' ; ' / is a Pataki connection or equivalently
. f ; ' / is a Pataki connection for some function f of X to another proset Y .

Thus, increasing functions are, in a certain sense, natural generalizations of not
only closure operations but also Pataki and Galois connections. Therefore, it seems
plausible to extend some results on these connections to increasing functions.

For instance, having in mind a supremum property of Galois connections [51],
we shall show that a function f of one goset X to another Y is increasing if and
only if f ŒubX.A/� � ubY

�
f Œ A �

�
for all A � X.

If X is reflexive in the sense that the inequality relation in it is reflexive,
then we may write max instead of ub . While, if X and Y are sup-complete
and antisymmetric and f is increasing, then we can state that supY

�
f ŒA �

� �
f
�
supX.A/

�
.

Here, the relations maxX and supX are defined by maxX.A/ D A\ubX.A/ and
supX.A/ D minX.ubX.A// D ubX.A/ \ lbX.ubX.A// for all A � X. Moreover, the
goset X is called sup-complete if supX.A/ ¤ ; for all A � X.

In particular, we shall show that if ' is a closure operation on a sup-complete,
transitive, and antisymmetric goset X, then '

�
supX.A/

� D '
�
supX

�
' ŒA �

��
for

all A � X. Moreover, if Y D ' Œ X � and A � Y , then supY.A/ D '
�
supX.A/

�
.

In addition to the above results, we shall also show that a function f of one goset
X to another Y is increasing if and only if f ŒclX.A/� � clY

�
f Œ A �

�
for all A � X,

or equivalently f �1Œ B � 2 TX for all B 2 TY if in particular Y is a proset.
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Finally, by writing R and S in place of the inequalities in the gosets X and Y ,
we shall show that a function f of one simple relator space X .R/ to another Y .S/

is increasing if and only if f ı R � S ı f , or equivalently R � f �1ı S ı f .
The latter fact, together with some basic operations for relators [56], allows of

several natural generalizations of the notion of increasingness of functions to pairs
.F ; G / of relators on one relator space .X ; Y /.R / to another .Z ; W /.S /.

Here, a family R of relations on X to Y is called a relator, and the ordered pair
.X ; Y /.R / D �

.X ; Y /; R
�

is called a relator space. Thus, relator spaces are
substantial generalizations of not only ordered sets but also uniform spaces.

Moreover, analogously to Galois and Pataki connections [55, 60], increasing
functions are also very particular cases of upper, lower, and mildly semicontinuous
pairs of relators. Unfortunately, these were not considered in [35, 46, 56] .

2 Binary Relations and Ordered Sets

A subset F of a product set X �Y is called a relation on X to Y . If in particular
F � X 2, with X 2 D X�X, then we may simply say that F is a relation on X. In
particular, �X D f.x ; x/ W x 2 X g is called the identity relation on X.

If F is a relation on X to Y , then for any x 2 X and A � X the sets F.x/ D
f y 2 Y W .x ; y/ 2 Fg and F Œ A � D S

a2A F.a/ are called the images of x and A
under F, respectively. If .x ; y/ 2 F, then we may also write x F y .

Moreover, the sets DF D f x 2 X W F .x/ ¤ ; g and R F D F Œ X � are called the
domain and range of F, respectively. If in particular DF D X, then we say that F
is a relation of X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x 2 Df there
exists y 2 Y such that f .x/ D fyg . In this case, by identifying singletons with
their elements, we may simply write f .x/ D y in place of f .x/ D fyg .

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function � of X 2 to X is called a binary operation on X. And, for any x ; y 2 X,
we usually write x? and x � y instead of ?.x/ and ��

.x ; y/
�
.

If F is a relation on X to Y , then F D S
x2X fxg�F.x/. Therefore, the values

F.x/, where x 2 X, uniquely determine F . Thus, a relation F on X to Y can be
naturally defined by specifying F.x/ for all x 2 X.

For instance, the complement relation F c can be naturally defined such that
F c.x/ D F.x/c D Y n F.x/ for all x 2 X. Thus, it can be shown F c D X�Y n F
and F c ŒA�c D T

a2A F.a/ for all A � X. (See [57].)
Quite similarly, the inverse relation F �1 can be naturally defined such that

F �1.y/ D fx 2 X W y 2 F.x/g for all y 2 Y . Thus, the operations c and �1

are compatible in the sense .F c /�1 D .F �1/c.
Moreover, if in addition G is a relation on Y to Z, then the composition relation

G ı F can be naturally defined such that .G ı F/.x/ D G Œ F.x/ � for all x 2 X.
Thus, we also have .G ı F/ Œ A � D G

�
F Œ A �

�
for all A � X.

While, if G is a relation on Z to W, then the box product relation F �G can be
naturally defined such that .F � G/.x ; z/ D F.x/ � G.z/ for all x 2 X and z 2 Z .
Thus, we have .F � G/Œ A � D G ı A ı F �1 for all A � X�Z . (See [57].)
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Hence, by taking A D f.x ; z/g, and A D �Y if Y D Z, one can see that
the box and composition products are actually equivalent tools. However, the box
product can be immediately defined for an arbitrary family of relations too.

If F is a relation on X to Y , then a subset ˚ of F is called a partial selection
relation of F. Thus, we also have D˚ � DF . Therefore, a partial selection relation
˚ of F may be called total if D˚ D DF .

The total selection relations of a relation F will usually be simply called the
selection relations of F. Thus, the axiom of choice can be briefly expressed by
saying that every relation F has a selection function.

If F is a relation on X to Y and U � DF, then the relation F j U D F \ .U�Y /

is called the restriction of F to U. Moreover, if F and G are relations on X to Y
such that DF � DG and F D G j DF , then G is called an extension of F.

For any relation F on X to Y , we may naturally define two set-valued functions,
F ˘ of X to P .Y / and F ˙ of P .X / to P .Y /, such that F ˘.x/ D F.x/ for all
x 2 X and F ˙.A/ D F Œ A � for all A � X.

Functions of X to P .Y / can be identified with relations on X to Y . While,
functions of P .X / to P .Y / are more general objects than relations on X to Y .
They were called corelations on X to Y in [59].

Now, a relation R on X may be briefly defined to be reflexive if �X � R, and
transitive if R ı R � R . Moreover, R may be briefly defined to be symmetric if
R�1 � R, and antisymmetric if R \ R�1 � �X .

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

For instance, for A � X, the Pervin relation RA D A2 [ Ac �X is a preorder
relation on X. (See [24, 52].) While, for a pseudo-metric d on X and r > 0, the
surrounding Bd

r D ˚
.x ; y/ 2 X2 W d.x ; y/ < r

�
is a tolerance relation on X .

Moreover, we may recall that if A is a partition of X, i. e., a family of pairwise
disjoint, nonvoid subsets of X such that X D S

A , then SA D S
A2A A2 is an

equivalence relation on X, which can, to some extent, be identified with A .
According to algebra, for any relation R on X, we may naturally define R 0 D

�X , and R n D R ı R n�1 if n 2 N . Moreover, we may also naturally define
R 1 D S1

nD0 R n . Thus, R 1 is the smallest preorder relation containing R [16].
Note that R is a preorder on X if and only if R D R 1. Moreover, R 1 D

R 1 1 and .R 1 /�1 D .R�1/1. Therefore, R�1 is also a preorder on X if R is a
preorder on X. Moreover, R 1 is already an equivalence on X if R is symmetric.

According to [48], an ordered pair X .�/ D �
X ; �/, consisting of a set X and a

relation � on X, will be called a generalized ordered set or an ordered set without
axioms. And, we shall usually write X in place of X .�/ .

In the sequel, a generalized ordered set X .�/ will, for instance, be called
reflexive if the relation � is reflexive on X. Moreover, it is called a preordered
(partially ordered) set if � is a preorder (partial order) on X.

Having in mind a widely used terminology of Birkhoff [2, p. 1], a generalized
ordered set will be briefly called a goset. Moreover, a preordered (partially ordered)
set will be call a proset (poset).
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Thus, every set X is a poset with the identity relation �X . Moreover, X is a
proset with the universal relation X 2. And, the power set P.X/ of X is a poset
with the ordinary set inclusion � .

In this respect, it is also worth mentioning that if in particular X a goset, then
for any A ; B � X we may also naturally write A � B if a � b for all a 2 A and
b 2 B . Thus, P .X/ is also a goset with this extended inequality.

Moreover, if X .�/ is a goset and Y � X, then by taking �YD� \Y 2, we can
also get a goset Y .�Y /. This subgoset inherits several properties of the original
goset. Thus, for instance, every family of sets is a poset with set inclusion.

In the sequel, trusting to the reader’s good sense to avoid confusions, for any
goset X .�/ and operation ? on relations on X, we shall use the notation X ? for
the goset X .�? / . Thus, for instance, X �1 will be called the dual of the goset X.

Several definitions on posets can be naturally extended to gosets [48]. And,
even to arbitrary relator spaces [47] which include ordered sets [11], context
spaces [15], and uniform spaces [14] as the most important particular cases.

Moreover, most of the definitions can also be naturally extended to corelator
spaces .X ; Y /.U / D �

.X ; Y /; U
�

consisting of two sets X and Y and a family
U of corelations on X to Y . However, it is convenient to investigate first gosets.

3 Upper and Lower Bounds

According to [48], for instance, we may naturally introduce the following

Definition 1. For any subset A of a goset X, the elements of the sets

ubX .A/ D ˚
x 2 X W A � fxg�

and lbX .A/ D ˚
x 2 X W fxg � A

�

will be called the upper and lower bounds of the set A in X, respectively.

Remark 1. Thus, for any x 2 X and A � X, we have

(1) x 2 ubX .A/ if and only if a � x for all a 2 A ,
(2) x 2 lbX .A/ if and only if x � a for all a 2 A .

Remark 2. Hence, by identifying singletons with their elements, we can see that

(1) ubX .x/ D � .x/ D Œ x; C1 Œ D ˚
y 2 X W x � y

�
,

(2) lbX .x/ D � .x/ D � � 1; x � D ˚
y 2 X W x � y

�
.

This shows that the relation ubX is somewhat more natural tool than lbX .

By using Remark 1, we can easily establish the following

Theorem 1. For any subset A of a goset X, we have

(1) ubX.A/ D lbX �1 .A/,
(2) lbX.A/ D ubX �1 .A/ .
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Proof. If x 2 ubX.A/, then by Remark 1 we have a � x for all a 2 A . This
implies that x ��1 a for all a 2 A . Hence, since X �1 D X.��1 /, we can already
see that x 2 lbX �1 .A/. Therefore, ubX.A/ � lbX �1 .A/.

The converse inclusion can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by taking X �1 in place of X.

Remark 3. This theorem shows that the relations ubX and lbX are equivalent tools
in the goset X.

By using Remark 1, we can also easily establish the following theorem.

Theorem 2. If X is a goset and Y � X, then for any A � Y we have

(1) ubY.A/ D ubX.A/ \ Y,
(2) lbY.A/ D lbX.A/ \ Y.

Concerning the relations ubX and lbX , we can also easily prove the following
theorem.

Theorem 3. For any family .Ai / i2 I subsets of a goset X, we have

(1) ubX

�S

i2 I
Ai

�
D T

i2 I
ubX

�
Ai

�
,

(2) lbX

�S

i2 I
Ai

�
D T

i2 I
lbX

�
Ai

�
.

Proof. If x 2 ubX
�S

i2 I Ai
�
, then by Remark 1 we have a � x for all a 2S

i2 I Ai . Hence, it is clear that we also have a � x for all a 2 Ai with i 2 I .
Therefore, x 2 ubX.Ai/ for all i 2 I, and thus x 2 T

i2 I ubX.Ai/ also holds.
The converse implication can be proved quite similarly by reversing the above

argument. Moreover, (2) can be derived from (1) by using Theorem 1.

From the above theorem, by identifying singletons with their elements, we can
immediately derive the following corollary.

Corollary 1. For any subset A of a goset X, we have

(1) ubX.A/ D T

a2A
ubX.a/,

(2) lbX.A/ D T

a2A
lbX.a/.

Remark 4. Hence, by using Remark 2 and a basic fact on complement relations
mentioned in Sect. 2, we can immediately derive that

(1) ubX.A/ D�c Œ A �c . (2) lbX.A/ D�c Œ A �c .

From Corollary 1, we can also immediately derive the first two assertions of

Theorem 4. If X is a goset, then

(1) ubX.;/ D X and lbX.;/ D X,
(2) ubX.B/ � ubX.A/ and lbX.B/ � lbX.A/ if A � B � X ,

(3)
S

i2 I
ubX

�
Ai

� � ubX

�T

i2 I
Ai

�
and

S

i2 I
lbX

�
Ai

� � lbX

�T

i2 I
Ai

�
if Ai � X for

all i 2 I.
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Proof. To prove the first part of (3), we can note that if Ai � X for all i 2 I,
then

T
i2 I Ai � Ai for all i 2 I . Hence, by using (2), we can already infer that

ubX.Ai/ � ubX
�T

i2 I Ai
�

for all i 2 I, and thus the required inclusion is also
true.

However, it is now more important to note that, as an immediate consequence
of the corresponding definitions, we can also state the following theorem which
actually implies most of the properties of the relations ubX and lbX .

Theorem 5. For any two subsets A and B of a goset X, we have

B � ubX.A/ ” A � lbX.B/ :

Proof. By Remark 1, it is clear that each of the above inclusions is equivalent to the
property that a � b for all a 2 A and b 2 B .

Remark 5. This property can be briefly expressed by writing that A � B, or equi-
valently A�B � �, that is, B 2 UbX.A/, or equivalently A 2 LbX.B/ by the
notations of our former paper [47] .

From Theorem 5, it is clear that in particular we have

Corollary 2. For any subset A of a goset X, we have

(1) ubX.A/ D ˚
x 2 X W A � lbX.x/

�
,

(2) lbX.A/ D ˚
x 2 X W A � ubX.x/

�
.

Remark 6. Moreover, from Theorem 5, we can see that, for any A; B � X, we
have

lbX.A/ ��1 B ” A � ubX.B/ :

This shows that the set-valued functions lbX and ubX form a Galois connection
between the poset P.X/ and its dual in the sense of [11, Definition 7.23], suggested
by Schmidt’s reformulation [36, p. 209] of Ore’s definition of Galois connexions
[30] .

Remark 7. Hence, by taking ˚X D ubX ı lbX , for any A; B � X, we can infer that

lbX.A/ ��1 lbX.B/ ” A � ˚X.B/ :

This shows that the set-valued functions lbX and ˚X form a Pataki connection
between the poset P.X/ and its dual in the sense of [51, Remark 3.8] suggested
by a fundamental unifying work of Pataki [32] on the basic refinements of relators
studied each separately by the present author in [42] .

Remark 8. By [53, Theorem 4.7], this fact implies that lbX D lbX ı ˚X , and ˚X

is a closure operation on the poset P .X / in the sense of [2, p. 111] .
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By an observation, attributed to Richard Dedekind by Erné [12, p. 50], this is
equivalent to the requirement that the set function ˚X with itself forms a Pataki
connection between the poset P.X/ and itself.

4 Interiors and Closures

Because of Remark 2, we may also naturally introduce the following

Definition 2. For any subset A of a goset X, the sets

intX.A/ D ˚
x 2 X W ubX .x/ � A

�
and clX.A/ D ˚

x 2 X W ubX .x/\A ¤ ; �

will be called the interior and closure of the set A in X, respectively.

Remark 9. Recall that, by Remark 2, we have ubX.x/ D� .x/ D Œ x; C1 Œ for
all x 2 X.

Therefore, the present one-sided interiors and closures, when applied to subsets
of the real line R, greatly differ from the usual ones.

The latter ones can only be derived from a relator (family of relations) which has
to consist of at least countable many tolerance or preorder relations.

By using Definition 2, we can easily prove the following theorem.

Theorem 6. For any subset A of a goset X, we have

(1) intX.A/ D X n clX.X n A/,
(2) clX.A/ D X n intX.X n A/.

Proof. If x 2 intX.A/, then by Definition 2 we have ub.x/ � A . Hence, we can
infer that ub.x/\.X nA/ D ; . Therefore, by Definition 2, we have x … clX.X nA/,
and thus x 2 X n clX.X n A/. This shows that intX.A/ � X n clX.X n A/.

The converse inclusion can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by writing X n A in place of A,
and applying complementation.

Remark 10. This theorem shows that the relations intX and clX are also equivalent
tools in the goset X.

By using the complement operation C , defined by C .A/ D Ac D X n A for all
A � X, the above theorem can be reformulated in a more concise form.

Corollary 3. For any goset X, we have

(1) intX D �
clX ıC �c D cl c

X ıC ,
(2) clX D �

intX ıC �c D int c
X ıC .

Proof. To prove the second part of (1), note that by the corresponding definitions,
for any A � X, we have

�
clX ıC �c

.A/ D �
clX ıC �

.A/c D clX
�
C .A/

�c D clc
X

�
C .A/

� D �
clc

X ıC �
.A/:
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Now, in contrast to Theorems 1 and 2, we can only state the following two
theorems.

Theorem 7. For any subset A of a goset X, we have

(1) intX �1 .A/ D ˚
x 2 X W lbX .x/ � A

�
,

(2) clX �1 .A/ D˚
x 2 X W lbX .x/ \ A ¤ ; �

.

Theorem 8. If X is a goset and Y � X, then for any A � Y we have

(1) intX.A/ \ Y � intY.A/,
(2) clY.A/ � clX.A/ \ Y.

However, concerning the relations intX and clX , we can also easily prove

Theorem 9. For any family .Ai / i2 I subsets of a goset X, we have

(1) intX
�T

i2 I
Ai

�
D T

i2 I
intX

�
Ai

�
,

(2) clX
�S

i2 I
Ai

�
D S

i2 I
clX

�
Ai

�
.

Proof. If x 2 intX
�T

i2 I Ai
�
, then by Definition 2 we have ubX.x/ � T

i2 I Ai .
Therefore, ubX.x/ � Ai, and thus x 2 intX.Ai/ for all i 2 I . Therefore, x 2T

i2 I intX
�
Ai

�
also holds.

The converse implication can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by using Theorem 6.

Remark 11. This theorem shows that, despite Remark 10, there are cases when the
relation clX is a more convenient tool than intX .

Namely, from assertion (2), by identifying singletons with their elements, we
can immediately derive the following corollary.

Corollary 4. For any subset A of a goset X, we have

clX.A/ D S

a2A
clX.a/ :

Remark 12. Note that, for any x ; y 2 X, we have

y 2 clX.x/ ” ubX.y/ \ fxg ¤ ; ” x 2 ubX.y/ ” y 2 lbX.x/;

and thus also clX.x/ D lbX.x/ . Hence, by using Theorem 1, we can immediately
infer that clX.x/ D ubX �1 .x/ .

Therefore, as an immediate consequence of the above results, we can also state

Theorem 10. For any subset A of a goset X, we have

clX.A/ D S

a2A
lbX.a/ D S

a2A
ubX �1 .a/ :
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Remark 13. Hence, by using Remark 2 and Theorem 1, we can at once see that

clX.A/ D S

a2A
� .a/ D � Œ A� and clX �1 .A/ D S

a2A
� .a/ D � Œ A � :

And thus, by Theorem 6, also intX.A/ D� Œ Ac � c and intX �1 .A/ D� Œ Ac � c .

Now, analogously to Theorem 4, we can also easily establish the following

Theorem 11. If X is a goset, then

(1) clX.;/ D ; and intX.X / D X,
(2) clX.A/ � clX.B/ and intX.A/ � intX.B/ if A � B � X ,

(3) clX
�T

i2 I
Ai

�
� T

i2 I
clX

�
Ai

�
and

S

i2 I
intX

�
Ai

� � intX
�S

i2 I
Ai

�
if Ai � X

for all i 2 I.

However, it is now more important to note that, analogously to Theorem 5, we
also have the following theorem which actually implies most of the properties of the
relations intX and clX .

Theorem 12. For any two subsets A and B of a goset X, we have

B � intX.A/ ” clX �1 .B/ � A :

Proof. If B � intX.A/, then by Definition 2, we have ubX.b/ � A for all b 2 B .
Hence, by Theorem 10, we can already see that clX �1 .B/ D S

b2B ubX.b/ � A .
The converse implication can be proved quite similarly by reversing the above

argument.

Remark 14. Recall that, by Remark 13, we have clX �1 .B/ D� Œ B � . Therefore,
by Theorem 12, the inclusion B � intX.A/ can also be reformulated by stating
that � Œ B � � A, or equivalently � Œ B � \ Ac D ; . That is, B 2 IntX.A/, or
equivalently B … ClX.Ac / by the notations of Száz [47] .

From Theorem 12, it is clear that in particular we have

Corollary 5. For any subset A of a goset X, we have

intX.A/ D ˚
x 2 X W clX �1 .x/ � A

�
:

Remark 15. From Theorem 12, we can also see that, for any A; B � X, we have

clX �1 .A/ � B ” A � intX.B/ :

This shows that the set-valued functions clX �1 and intX form a Galois connec-
tion between the poset P.X/ and itself.
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Remark 16. Thus, by taking ˚X D intX ı clX �1 , for any A; B � X we can state
that

clX �1 .A/ � clX �1 .B/ ” A � ˚X.B/ :

This shows that the set-valued functions clX �1 and ˚X form a Pataki connection
between the poset P.X/ and itself. Thus, clX �1 D cl X �1 ı ˚X , and ˚X is closure
operation on the poset P.X / .

Remark 17. The upper- and lower-bound Galois connection, described in
Remark 6, was first studied by Birkhoff [2, p. 122] under the name polarities.

While, the closure–interior Galois connection, described in Remark 15, has been
only considered in [61] with reference to Davey and Priestly [11, Exercise 7.18] .

5 Open and Closed Sets

Definition 3. For any goset X, the members of the families

TX D f A � X W A � intX.A/
�

and FX D f A � X W clX.A/ � A
�

are called the open and closed subsets of X, respectively.

Remark 18. Thus, by Definition 2 and Theorem 10, for any A � X, we have

(1) A 2 TX if and only if ubX.a/ � A for all a 2 A .
(2) A 2 FX if and only if lbX.a/ � A for all a 2 A .

Namely, by Definition 2, for any a 2 A we have a 2 intX.A/ if and only if
ubX.a/ � A . Moreover, by Theorem 10, we have clX.A/ D S

a2A lbX.a/ .

Remark 19. Because of Remarks 2 and 18, the members of the families TX and
FX may also be called the ascending and descending subsets of X.

Namely, for instance, by the above mentioned remarks, for any A � X we have
A 2 TX if and only if for any a 2 A and x 2 X, with a � x, we also have x 2 A .

Remark 20. Moreover, from Remarks 2 and 18, we can also see that
(1) TX D ˚

A � X W � Œ A � � A
�

. (2) FX D ˚
A � X W � Œ A � � A

�
.

Namely, for instance, by a basic definition on relations and Remark 2, for any
A � X we have � ŒA� D S

a2A � .a/ D S
a2A ubX.a/ .

By using Definition 3 and Theorem 6, we can also easily prove the following
theorem.

Theorem 13. For any goset X, we have

(1) TX D f A � X W Ac 2 FX
�
,

(2) FX D f A � X W Ac 2 TX
�
.
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Proof. If A 2 TX , then by Definition 3 we have we have A � intX.A/ . Hence,
by using Theorem 6, we can infer that clX.Ac/ D intX.A/c � Ac. Therefore, by
Definition 3, the inclusion Ac 2 FX also holds.

The converse implication can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by using Theorem 6.

Remark 21. This theorem shows that the families TX and FX are also equivalent
tools in the goset X.

By using the element-wise complementation, defined by A c D ˚
Ac W A 2 A

�

for all A � P .X /, Theorem 13 can also be reformulated in a more concise form.

Corollary 6. For any goset X, we have

(1) TX D F c
X ,

(2) FX D T c
X .

Now, as an immediate consequence of Remark 20, we can also state the
following theorem which can also be easily proved with the help of Definition 3
and Theorem 12.

Theorem 14. For any goset X, we have

(1) TX D FX �1 ,
(2) FX D TX �1 .

Proof. If A 2 TX , then by Definition 3, we have A � intX.A/ . Hence, by using
Theorem 12, we can infer that clX �1 .A/ � A . Therefore, A 2 FX�1 also holds.

The converse implication can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by writing X �1 in place of X.

Remark 22. Moreover, because of Remark 14 and Theorem 13, for any A � X we
can also state that A 2 TX if and only if A 2 IntX.A/, and A 2 FX if and only if
Ac … ClX.A/ .

By using Definition 3 and Theorem 8, we can easily establish the following
theorem.

Theorem 15. For any subset Y of a goset X, we have

(1) TX \ P.Y / � TY ,
(2) FX \ P.Y / � FY .

Proof. Namely, if, for instance, A 2 TX \ P.Y /, then A 2 TX and A 2 P.Y / .
Therefore, A � intX.A/ and A � Y . Hence, by Theorem 8, we can already see
that A � intX.A/ \ Y � intY.A/, and thus A 2 TY also holds.

Moreover, by using Definition 3 and Theorems 9 and 11, we can also easily
prove the following.
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Theorem 16. For any goset X, the families TX and FX are ultratopologies [10]
(complete rings [1]) in the sense that they are closed under arbitrary unions and
intersections.

Proof. Namely, if, for instance, Ai 2 TX for all i 2 I, then Ai � intX.Ai/ for all
i 2 I . Hence, by using Theorems 9 and 11, we can already infer that

T

i 2 I
Ai � T

i 2 I
intX.Ai/ D intX

� T

i 2 I
A i

�
and

S

i 2 I
Ai � S

i 2 I
intX.Ai/ � intX

� S

i 2 I
A i

�
:

Therefore, the sets
T

i2 I Ai and
S

i2 I Ai are also in TX .

Remark 23. From the above theorem, by taking the empty subfamily of TX and
FX , we can immediately infer that f ;; X g � TX \ FX .

Finally, we note that the following theorem is also true

Theorem 17. For any subset A of a goset X, we have

(1)
S

TX \ P.A/ � intX.A/,
(2) clX.A/ � T

FX \ P�1.A/.

Proof. Define B D S
TX \ P.A/ . Then, we evidently have B � A . Moreover,

by Theorem 16, we can see that B 2 TX . Hence, by using Definition 3 and
Theorem 11, we can already infer that B � intX.B/ � intX.A/ . Therefore, (1)
is true.

Moreover, from (1), by using Theorem 12 and the fact that U 2 P�1.V / if
and only if V � U, we can easily see that (2) is also true.

Example 1. If, for instance, X D R and 	 is a relation on X such that

	 .x/ D fx � 1g [ Œx; C1 Œ

for all x 2 X, then by using Remarks 2 and 18 we can easily see that TX D˚ ;; X
�
, and thus by Corollary 6 also FX D ˚ ;; X

�
.

Namely, if A 2 TX such that A ¤ ;, then there exists x 2 X such that x 2 A,
and thus by the abovementioned remarks 	 .x/ D ubX.x/ � A . Therefore,

fx � 1g [ Œ x; C1 Œ � A :

Hence, we can see that x � 1 2 A . Therefore, 	 .x � 1/ � A, and thus

fx � 2g [ Œ x � 1; C1 Œ � A :

Hence, by induction, it is clear that for any n 2 N we also have

fx � n � 1g [ Œ x � n; C1 Œ � A :
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Thus, by the Archimedean property of N in R, we necessarily have A D X .
Now, by using that FX D ˚ ;; X

�
, we can easily see that

S
FX\P�1.A/ D ; if A D ; and

S
FX\P�1.A/ D X if A ¤ ; :

Moreover, we can also easily see that, for any x ; y 2 X,

y 2 lbX.x / ” x 2 ubX.y / ” x 2� .y / ” x 2 fy � 1g [ Œ y; C 1 Œ

” x D y � 1 or y � x ” y � x or y D x C 1 ” y 2 � � 1; x � [ fx C 1g :

Therefore,

lbX.x/ D � � 1; x � [ fx C 1g :

Thus, by Theorem 10,

clX.A/ D S

a2A
lbX.a/ D S

a2A

�
� � 1; a � [ fa C 1g �

:

for all A � X. Hence, it is clear that equality in the assertion (2) of Theorem 17
need not be true.

Remark 24. This shows that the families TX and FX are, in general, much weaker
tools in the goset X than the relations intX and clX . However, later we see that this
is not the case if X is in particular a proset.

6 Fat and Dense Sets

Note that a subset A of a goset X may be called upper bounded if ubX.A/ ¤ ; .
Therefore, in addition to Definition 3, we may also naturally introduce the
following.

Definition 4. For any goset X, the members of the families

EX D f A � X W intX.A/ ¤ ; �
and DX D f A � X W clX.A/ D X

�

are called the fat and dense subsets of X, respectively.

Remark 25. Thus, by Definition 2, for any A � X, we have

(1) A 2 EX if and only if ubX.x/ � A for some x 2 X.
(2) A 2 DX if and only if ubX.x/ \ A ¤ ; for all x 2 X.
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Remark 26. Moreover, by Remark 13 and Theorem 10, we can also see that

DX D ˚
A � X W X D� Œ A �

� D ˚
A � X W X D S

a2A lbX.a/
�

:

Therefore, for any A � X, we have A 2 DX if and only if for any x 2 X there
exists a 2 A such that x 2 lbX.a/, i. e., x � a .

Remark 27. Because of the above two remarks, the members of the families EX

and DX may also be called the residual and cofinal subsets of X.
Namely, for instance, by Remarks 2 and 25, for any A � X, we have A 2 EX if

and only if there exists x 2 X such that for any y 2 X, with x � y, we have y 2 A .

By using Definition 4 and Theorem 6, we can easily prove the following.

Theorem 18. For any goset X, we have

(1) EX D ˚
A � X W Ac … DX

�
,

(2) DX D ˚
A � X W Ac … EX

�
.

Proof. If A 2 EX , then by Definition 4 we have intX.A/ ¤ ; . Hence, by
Theorem 6, we can infer that clX.Ac/ D X n intX.A/ ¤ X. Therefore, Ac … DX

also holds.
The converse implication can be proved quite similarly by reversing the above

argument. Moreover, (2) can be derived from (1) by using Theorem 6.

Remark 28. This theorem shows that the families EX and DX are also equivalent
tools in the goset X.

By using element-wise complementation, Theorem 18 can also be written in a
more concise form.

Corollary 7. For any goset X, we have

(1) EX D �
P.X / n DX

�c
,

(2) DX D �
P.X / n EX

�c
.

Moreover, concerning the families EX and DX , we can also prove the following.

Theorem 19. For any goset X, we have

(1) EX D ˚
E � X W 8 D 2 DX W E \ D ¤ ; �

,
(2) DX D ˚

D � X W 8 E 2 EX W E \ D ¤ ; �
.

Proof. If E 2 EX , then by Remark 25, there exists x 2 X such that ubX.x/ � E .
Moreover, if D 2 DX , then by Remark 25, we have ubX.x/ \ D ¤ ; . Therefore,
E \ D ¤ ; also holds.

Conversely, if E � X such that E \ D ¤ ; for all D 2 DX , then we can also
easily see that E 2 EX . Namely, if E … EX , then by Theorem 18 we necessarily
have E c 2 DX . Therefore, E \ E c ¤ ; which is a contradiction.

Hence, it is clear that (1) is true. Assertion (2) can be proved quite similarly.
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Now, a counterpart of Theorem 14 is not true. However, analogously to
Theorems 15 and 16, we can also state the following two theorems.

Theorem 20. For any subset Y of a goset X, we have

(1) EX \ P.Y / � EY ,
(2) DX \ P.Y / � DY .

Theorem 21. For any goset X, the families EX and DX are ascending subfamilies
of the poset P.X / such that

(1) TX n f;g � EX,
(2) FX \ DX � fX g.

From this theorem, we can immediately derive the following

Corollary 8. For any subset A of a goset X, the following assertions are true:

(1) If B � A for some B 2 TX n f;g, then A 2 EX .
(2) If A 2 DX, then A n B ¤ ; for all B 2 FX n fX g .

Proof. To check (2), note that if the conclusion of (2) does not hold, then there
exists B 2 FX n fX g such that A n B D ;, and thus A \ Bc D ; . Hence, by
defining C D Bc and using Theorem 13, we can already see that C 2 TX n f;g
such that A \ C D ;, and thus C � Ac . Therefore, by (1), Ac 2 EX , and thus by
Theorem 18, we have A … DX .

Remark 29. The converses of the above assertions need not be true. Namely, if X is
as in Example 1, then TX D f ;; X g, but EX is quite a large subfamily of P.X /.

This shows that there are cases when even the families EX and DX are better
tools in a goset X than TX and FX . However, later we shall see that this is not the
case if X is in particular a proset.

The duality and several advantages of fat and dense sets in relator spaces, over
the open and closed ones, were first revealed by the present author at a Prague
Topological Symposium in 1991 [40]. However, nobody was willing to accept this.

Remark 30. An ascending subfamily A of the poset P.X / is usually called a
stack in X. It is called proper if ; … A or equivalently A ¤ P.X / .

In particular, a stack A in X is called a filter if A; B 2 A implies A \ B 2 A .
And, A is called a grill if A [ B 2 A implies A 2 A or B 2 A . These are
usually assumed to be nonempty and proper.

Several interesting historical facts on stacks, lters, grills and nets can be found in
the works [62, 63] of Thron

Concerning the families EX and DX , we can also easily establish the following
two theorems.

Theorem 22. For any poset X, the following assertions are equivalent :

(1) EX ¤ ;,
(2) X 2 EX,
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(3) ; … DX,
(4) X ¤ ;.

Proof. To prove the equivalence of (1) and (4), note that, by Theorem 21,
assertions (1) and (2) are equivalent. Moreover, by Remark 25, assertion (2) holds
if and only there exists x 2 X such that ubX.x/ � X . That is, (4) holds.

Theorem 23. For any poset X, the following assertions are equivalent :

(1) ; … EX,
(2) DX ¤ ;,
(3) X 2 DX,
(4) X D � Œ X �.

Proof. To prove the equivalence of (1) and (4), note that by Remark 25 assertion
(1) holds if and only if, for any x 2 X, we have ubX.x/ 6� ; . That is, ubX.x/ ¤ ;,
or equivalently � .x/ ¤ ; . That is, the relation � is total in the sense that its
domain is the whole X.

Remark 31. A subset B of a stack A in X is called a base of A if for each
A 2 A there exists B 2 B such that B � A . That is, B is a cofinal subset of the
poset A �1 D A .��1 / D A .
/ .

Note that if B � P.X/, then the family

B� D clP �1 .B / D ˚
A � X W 9 B 2 B W B � A

�

is already a stack in X such that B is a base of B� .

Now, as a more important addition to Theorem 21, we can also easily prove

Theorem 24. For any goset X, the stack EX has a base B with card.B / �
card.X / .

Proof. By Remarks 25 and 31, it is clear that the family BX D ˚
ubX.x/ W x 2 X

�

is a base of EX .
Moreover, we can note that the function f , defined by f .x/ D ubX.x/ for x 2 X,

is onto BX . Hence, by the axiom of choice, the cardinality condition follows.
Namely, now f �1 is a relation of BX to X. Hence, by choosing a selection

function ' of f �1, we can see that ' is an injection of B to X.

Remark 32. Now, a corresponding property of the family DX should, in principle,
be derived from the above theorem by using either Theorem 18 or 19 .

Remark 33. The importance of the study of the cardinalities of the bases of the stack
of all fat sets in a relator space, concerning a problem of mine on paratopologically
simple relators, was first recognized by J. Deák (1994) and G. Pataki (1998). (For
the corresponding results, see Pataki [31].)
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7 Maximum, Minimum, Supremum, and Infimum

According to [48], we may also naturally introduce the following.

Definition 5. For any subset A of a goset X, the members of the sets

maxX.A/ D A \ ubX.A/ and minX.A/ D A \ lbX .A/

are called the maxima and minima of the set A in X, respectively.

Remark 34. Thus, for any subset A of a goset X, we have

(1) ubX.A/ D maxX.A/ if and only if ubX.A/ � A .
(2) lbX.A/ D minX.A/ if and only if lbX.A/ � A .

Moreover, from Definition 5, we can see that the properties of the relations maxX

and minX can be immediately derived from the results of Sect. 3.
For instance, from Theorems 1 and 2 and Corollaries 1 and 2, by using

Definition 5, we can immediately derive the following four theorems.

Theorem 25. For any subset A of a goset X, we have

(1) maxX.A/ D minX �1 .A/,
(2) maxX.A/ D minX �1 .A/.

Remark 35. This theorem shows that the relations maxX and minX are also equi-
valent tools in the goset X.

Theorem 26. If X is a goset and Y � X, then for any A � Y we have

(1) maxY.A/ D maxX.A/,
(2) minY.A/ D minX.A/.

Theorem 27. For any subset A of a goset X, we have

(1) maxX.A/ D T

a2A
A \ ubX.a/,

(2) minX.A/ D T

a2A
A \ lbX.a/.

Theorem 28. For any subset A of a goset X, we have

(1) maxX .A/ D ˚
x 2 A W A � lbX.x/

�
,

(2) minX .A/ D ˚
x 2 A W A � ubX.x/

�
.

Remark 36. By Corollary 2, for instance, we may also naturally define

ub�
X .A/ D ˚

x 2 X W A \ ubX.x/ � lbX.x/
�
;

and also max�
X .A/ D A \ ub�

X .A/ for all A � X.
Thus, for any x 2 X and A � X, we have x 2 ub�

X .A/ if and only if x � a
implies a � x for all a 2 A . Therefore, max�

X .A/ is just the family of all maximal
elements of A.
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The most important theorems on a poset X give some sufficient conditions in
order that the set max� .X / be nonempty. (See, for instance, [18, p. 33] and the
references of [54] .)

Now, by using Definition 5, we may also naturally introduce

Definition 6. For any subset A of a goset X, the members of the sets

supX .A/ D minX
�
ubX.A/

�
and infX .A/ D maxX

�
lbX.A/

�

are called the suprema and infima of the set A in X, respectively.

Thus, by Definition 5, we evidently have the following

Theorem 29. For any subset A of a goset X, we have

(1) supX.A/ D ubX.A/ \ lbX
�
ubX .A/

�
,

(2) infX.A/ D lbX.A/ \ ubX
�
lbX .A/

�
.

Hence, by Theorem 1, it is clear that we also have the following.

Theorem 30. For any subset A of a goset X, we have

(1) supX.A/ D infX �1 .A/,
(2) infX.A/ D supX �1 .A/.

Remark 37. This theorem shows that the relations supX and infX are also equi-
valent tools in the goset X.

However, instead of an analogue of Theorem 2, we can only prove

Theorem 31. If X is a goset and Y � X, then for any A � Y we have

(1) supX.A/ \ Y � supY.A/,
(2) infX.A/ \ Y � infY.A/.

Proof. To prove (1), by using Theorems 2, 4, and, 29 we can see that

supY.A/ D ubY.A/ \ lbY
�
ubY .A/

�

D ubX.A/ \ Y \ lbX
�
ubX .A/ \ Y

� \ ubX.A/ \ Y

D ubX.A/ \ lbX
�
ubX .A/ \ Y

� \ Y 
 ubX.A/ \ lbX
�
ubX .A/

� \ Y

D sup
X

.A/ \ Y:

Remark 38. In connection with inclusion (2), Tamás Glavosits, my PhD student,
showed that the corresponding equality need not be true even if X is a finite poset.

For this, he took X D f a ; b ; c ; d g, Y D X nfbg and A D Y nfag, and consid-
ered the preorder � on X generated by the relation R D f.a ; b/; .b ; c/; .b ; d/g.
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Thus, he could at once see that infY.A/ D maxY
�
lbY.A/

� D maxY
�fag� D fag,

but infX.A/ D maxX
�
lbX.A/

� D maxX
�fa ; bg� D fbg, and thus infX.A/\Y D ; .

Now, by using Theorem 29, we can also easily prove the following theorem
which shows that the relations supX and infX are, in a certain sense, better tools in
the goset X than maxX and minX .

Theorem 32. For any subset A of a goset X, we have

(1) maxX.A/ D A \ supX.A/,
(2) minX.A/ D A \ infX.A/.

Proof. To prove (2), note that by Theorem 29 and Definition 5, we have

A \ infX.A/ D A \ lbX.A/ \ ubX
�
lbX .A/

� D minX.A/ \ ubX
�
lbX .A/

�
:

Moreover, by Definition 5 and Remark 8, we have

minX.A/ � A � ubX
�
lbX .A/

�
; and so minX.A/ \ ubX

�
lbX .A/

� D minX.A/ :

Remark 39. By the above theorem, for any subset A of a goset X, we have

(1) maxX.A/ D supX.A/ if and only if supX.A/ � A .
(2) minX.A/ D infX.A/ if and only if infX.A/ � A .

Moreover, by using Theorem 29, we can also easily prove the following
theorem which will make a basic theorem on supremum and infimum completeness
properties to be completely obvious.

Theorem 33. For any subset A of a goset X, we have

(1) supX.A/ D infX
�
ubX.A/

�
,

(2) infX.A/ D supX

�
lbX.A/

�
.

Proof. To prove (2), note that by Theorem 29 and Remark 8, we have

infX.A/ D ubX
�
lbX .A/

� \ lbX.A/

D ubX
�
lbX .A/

� \ lbX
�
ubX

�
lbX.A/

�� D supX

�
lbX.A/

�
:

Remark 40. Concerning our references to Remark 8 in the proofs of Theorems 32
and 33, note that the assertions

A � ubX
�
lbX .A/

�
and lbX.A/ D lbX

�
ubX

�
lbX.A/

��

can also be easily proved directly, by using Definition 1, without using the corres-
ponding theorems on Pataki connections.

Definition 7. A goset X is called inf-complete (sup-complete) if infX.A/ ¤ ;
.supX.A/ ¤ ;/ for all A � X.
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Remark 41. Quite similarly, a goset X may, for instance, be also naturally called
min-complete if minX.A/ ¤ ; for all nonvoid subset A of X.

Thus, the set Z of all integers is min-, but not inf-complete. While, the extended
real line R D R [ f�1 ; C1g is inf-, but not min-complete.

Now, as an immediate consequence of Theorem 33, we can state the following
straightforward extension of [2, Theorem 3, p. 112] .

Theorem 34. For a goset X, the following assertions are equivalent :

(1) X is inf-complete,
(2) X is sup-complete.

Remark 42. Similar equivalences of several modified inf- and sup-completeness
properties of gosets have been established in [3, 4].

Finally, we note that, by Definition 5 and Theorem 27, we evidently have

Theorem 35. For any subset A of a goset X, we have

(1) infX .A/ D ˚
x 2 lbX.A/ W lbX.A/ � lbX.x/

�
,

(2) supX .A/ D ˚
x 2 ubX.A/ W ubX.A/ � ubX.x/

�
.

Moreover, by using this theorem, we can also easily prove the following.

Theorem 36. For any subset A of a proset X, we have

(1) infX .A/ D ˚
x 2 X W lbX.x/ D lbX.A/

�
,

(2) supX .A/ D ˚
x 2 X W ubX.x/ D ubX.A/

�
.

Proof. Define

˚ .A/ D ˚
x 2 X W lbX.x/ D lbX.A/

�
:

Now, if x 2 ˚.A/, we can see that

(a) lbX.x/ � lbX.A/,
(b) lbX.A/ � lbX.x/.

From (a), since X is reflexive, and thus x � x, i. e., x 2 lbX.x/, we can infer that
x 2 lbX.A/ . Hence, by (b) and Theorem 35, we can already see that x 2 infX.A/ .
Therefore, ˚ .A/ � infX.A/ even if X is assumed to be only a reflexive goset.

Conversely, if x 2 infX.A/, then by Theorem 35 we also have
(c) x 2 lbX.A/, (d) lbX.A/ � lbX.x/ .
From (c), we can infer that x � a for all a 2 A . Hence, by using the transitivity

of X we can easily see that if y 2 lbX.x/, and thus y � x, then y � a also holds
for all a 2 A, and thus y 2 lbX.A/ . Therefore, lbX.x/ � lbX.A/ even if X is
assumed to be only a transitive goset. Hence, by using (d), we can already see that
lbX.x/ D lbX.A/, and thus x 2 ˚.x/ . Therefore, infX.A/ � ˚ .A/ even if X is
assumed to be only a transitive goset.

The above arguments show that (1) is true. Moreover, from (1) by using
Theorems 1 and 30, we can at once see that (2) is also true.
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8 Self-bounded Sets

Analogously to Definition 3, for instance, we may also naturally introduce

Definition 8. For any goset X, the members of the family

UX D f A � X W A � ubX.A/
�

are called the self-upper-bounded subsets of X .

Remark 43. Thus, by the corresponding definitions, for any A � X, we have A 2
UX if and only if x � y for all x ; y 2 A .

Therefore, A 2 UX if and only if A � A or equivalently A2 � � . That is, by
the notations of Száz [47], we have A 2 UbX.A/ or equivalently A 2 LbX.A/ .

Because of the above remark, we evidently have the following three theorems.

Theorem 37. For any goset X, we have UX D UX �1 .

Theorem 38. For any subset Y of goset X, we have UY D UX \ P .Y / .

Theorem 39. For any goset X, we have

UX D ˚
A � X W 8 x ; y 2 A W fx ; yg 2 UX

�
:

Hence, it is clear that, in particular, we also have the following corollary.

Corollary 9. For any goset X, the family UX is a descending subset of the poset
P.X / such that

S
V 2 UX for any chain V in UX .

However, it is now more important to note that, by using the corresponding
definitions, we can also prove the following

Theorem 40. For any subset A of a goset X, the following assertions are equi-
valent :

(1) A 2 UX,
(2) A D maxX.A/,
(3) A � supX.A/,
(4) A � lbX.A/,
(5) A D minX.A/,
(6) A � infX.A/.

Proof. By Definitions 5 and 8, we evidently have

A 2 UX ” A � ubX.A/ ” A � A \ ubX.A/ ” A � maxX.A/ :

Hence, since maxX.A/ � A, it is clear that (1) and (2) are equivalent.
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Moreover, by using Definition 8 and Theorem 5, we can at once see that (1)
and (4) are also equivalent. Hence, by using the inclusion A � ubX

�
lbX.A/

�
and

Theorem 29, we can also easily see that

A 2 UX ” A � lbX.A/ ” A � lbX.A/ \ ubX
�
lbX.A/

� ” A � infX.A/ :

Therefore, (1) and (6) are also equivalent. The proofs of the remaining implica-
tions are quite similar.

Remark 44. This theorem shows that, in a goset X, the family UX is just the
collection of all fixed elements of the set-valued functions maxX and minX .

Now, as some immediate consequences of Theorem 40 and Definition 6, we can
also state

Corollary 10. For any subset A of a goset X, the following assertions are
equivalent :

(1) ubX.A/ 2 UX;
(2) ubX.A/ D supX.A/;
(3) ubX.A/ � ubX

�
ubX.A/

�
;

(4) ubX.A/ � lbX
�

ubX.A/
�
.

Corollary 11. For any subset A of a goset X, the following assertions are
equivalent :

(1) lbX.A/ 2 UX;
(2) lbX.A/ D infX.A/;
(3) lbX.A/ � lbX

�
lbX.A/

�
;

(4) lbX.A/ � ubX
�

lbX.A/
�
.

However, it is now more important to note that, by using Theorem 40, we can
also easily prove the following theorem.

Theorem 41. For any goset X, we have

(1) UX D ˚
maxX.A/ W A � X

�
,

(2) UX D ˚
minX.A/ W A � X

�
.

Proof. If V 2 UX , then by Theorem 40, we have V D maxX.V / . Therefore, V is
in the family A D f maxX.A/ W A � X g .

Conversely, if V 2 A , then there exists A 2 A such that V D maxX.A/ .
Hence, by Definition 5, it follows that V � A and V � ubX.A/ . Now, by Theo-
rem 4, we can also see that ubX.A/ � ubX.V / . Therefore, V � ubX.V /, and thus
V 2 UX also holds.

This proves (1). Moreover, (2) can be derived from (1) by using Theorems 25
and 37.

Remark 45. This theorem shows that, in a goset X, the family UX is just the range
of the set-valued functions maxX and minX .
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By using Remark 43, we can also easily prove the following three theorems.

Theorem 42. For any goset X, the following assertions are equivalent :

(1) X is reflexive,
(2) fxg 2 UX for all x 2 X.

Theorem 43. If X is an antisymmetric goset, then for any A 2 UX we have
card .A/ � 1 .

Proof. If A 2 UX and x ; y 2 A, then by Remark 43 we have x � y and y � x .
Hence, by the assumed antisymmetry of �, it follows that x D y .

Theorem 44. If X is reflexive goset such that card .A/ � 1 for all A 2 UX, then
X is antisymmetric.

Proof. If x; y 2 X such that x � y and y � x, then by taking A D fx ; yg we
can see that A � A, and thus A 2 UX . Hence, by the assumption, it follows that
card .A/ � 1 . Therefore, we necessarily have x D y .

From the latter two theorems, by using Theorem 41, Definition 6 and Theo-
rem 32, we can immediately derive the following two theorems.

Theorem 45. If X is an antisymmetric goset, then under the notation ˚ D maxX,
minX, supX, or infX, for any A � X we have card

�
˚.A/

� � 1 .

Theorem 46. If X is a reflexive goset such that, under the notation ˚ D maxX,
minX, supX, or infX, for any A � X we have card

�
˚.A/

� � 1, then X is
antisymmetric.

Proof. Note that, if, for instance, card
�
supX.A/

� � 1 for all A � X, then
by Theorem 32, we also have card

�
maxX.A/

�
for all A � X. Hence, by using

Theorem 41, we can infer that card .A/ � 1 for all A 2 UX . Therefore, by
Theorem 44, we can state that X is antisymmetric.

Remark 46. In connection with the above results, it is worth noticing that the goset
X considered in Example 1 is reflexive, but not antisymmetric.

Namely, concerning the relation 	, we can easily see that, for any x ; y 2 X, we
have both x 	 y and y 	 x if and only if x D y or x D y � 1 or y D x � 1 .

Therefore, for any A � X, we have A 2 UX if and only if A D ; or A D fxg
or A D f x; x � 1 g for some x 2 X .

This fact, together with TX D f ;; X g, shows that there are cases when even
the family UX is also a better tool than the family TX .

In the sequel, beside reflexivity and antisymmetry, we shall also need a further,
similarly simple and important, property of gosets.

Definition 9. A goset X will be called linear if for any x ; y 2 X, with x ¤ y, we
have either x � y or y � x .
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Remark 47. If X is a goset, then for any x ; y 2 X ,we may also write x < y if both
x � y and x ¤ y .

Therefore, if the goset X is linear, then for any x ; y 2 X, with x ¤ y, we
actually have either x < y or y < x .

Moreover, as an immediate consequence of the corresponding definitions, we can
also state the following.

Theorem 47. For a goset X, the following assertions are equivalent :

(1) X is reflexive and linear,
(2) For any x ; y 2 X, we have either x � y or y � x,
(3) maxX .A/ ¤ ; .minX .A/ ¤ ;/ for all A � X with 1 � card.A/ � 2.

Proof. To check the implication (3) H) (2), note that if x ; y 2 X, then A D
fx ; yg is a subset of X such that 1 � card .A/ � 2 . Therefore, if (3) holds, then
there exists z 2 X such that z 2 maxX.A/ . Hence, by Definition 5, it follows that
z 2 A and z 2 ubX.A/ . Therefore, we have either z D x or z D y . Moreover, we
have x � z and y � z . Hence, if z D x, we can see that y � x . While, if z D y,
we can see that x � y . Therefore, (2) also holds.

From this theorem, it is clear that in particular we have

Corollary 12. If X is a min-complete (max-complete) goset, then X is reflexive
and linear.

The importance of reflexive, linear, and antisymmetric gosets is also apparent
from the next two simple theorems.

Theorem 48. If X is an antisymmetric goset, then x < y implies y 6� x for all
x ; y 2 X.

Theorem 49. If X is a reflexive and linear goset, then x 6� y implies y < x for all
x ; y 2 X.

Proof. If x ; y 2 X such that x 6� y, then by Theorem 47 we have y � x . Moreover,
by the reflexivity of X, we also have x ¤ y, and hence y ¤ x . Therefore, y < x
also holds.

Remark 48. Therefore, if X is a reflexive, linear, and antisymmetric goset, then for
any x ; y 2 X ,we have

x 6� y ” x <�1 y :

Note that, analogously to the equivalences in Remarks 6 and 15, this is again a
Galois connection property.
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9 The Importance of Reflexivity and Transitivity

Several simple characterizations of reflexivity and transitivity of a goset X, in terms
of the relations ubX and lbX , and their compositions considered in Sect. 7, have
been given in [49].

Now, by using the techniques of the theory of relator spaces, we shall give some
more delicate characterizations of these properties in terms of the relations intX and
clX and the families TX and FX .

Theorem 50. For any goset X, the following assertions are equivalent :

(1) X is reflexive,
(2) x 2 ubX.x/ for all x 2 X,
(3) intX.A/ � A for all A � X,
(4) intX

�
ubX.x/

� � ubX.x/ for all x 2 X.

Proof. By Remark 2, it is clear that (1) and (2) are equivalent. Moreover, if A � X
and x 2 intX.A/, then by Definition 2 we have ubX.x/ � A . Hence, if (2) holds,
we can infer that x 2 A, and thus (3) also holds.

Now, since (3) trivially implies (4), it remains to show only that (4) also implies
(2). However, for this, it is enough to note only that, for any x 2 X, we have
ubX.x/ � ubX.x/, and hence x 2 intX

�
ubX.x/

�
by Definition 2.

From this theorem, by using Theorem 6, we can immediately derive

Corollary 13. For any goset X, the following assertions are equivalent :

(1) X is reflexive,
(3) A � clX.A/ for all A � X.

Proof. For instance, if (1) holds, then by Theorem 50, for any A � X, we
have intX.Ac/ � Ac . Hence, by using Theorem 6, we can already infer that
A � intX.Ac/c D clX.A/ . Therefore, (2) also holds.

From the above results, by Definition 3, it is clear that we also have

Theorem 51. If X is a reflexive goset, then

(1) TX D ˚
A � X W A D intX.A/

�
,

(2) FX D ˚
A � X W A D clX.A/

�
.

Remark 49. This theorem shows that, in a reflexive goset X, the families TX and
FX are just the collections of all fixed elements of the set-valued functions intX
and clX , respectively.

However, it is now more important to note that, in addition to Theorem 50, we
can also prove the following.
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Theorem 52. For any goset X, the following assertions are equivalent :

(1) X is transitive,
(2) ubX.x/ 2 TX for all x 2 X,
(3) intX.A/ 2 TX for all A � X,
(4) intX

�
ubX.x/

� 2 TX for all x 2 X,
(5) x 2 intX

�
intX

�
ubX.x/

��
for all x 2 X.

Proof. If (1) holds, then the inequality relation � in X is transitive. Therefore,
if x 2 X and y 2 ubX.x/, then by Remark 2, for any z 2 ubX.y/ we also have
z 2 ubX.x/ . Hence, we can see that ubX.y/ � ubX.x/, and thus by Definition 2
we have y 2 intX

�
ubX.x/

�
. This shows that ubX.x/ � intX

�
ubX.x/

�
, and thus by

Definition 3 we have ubX.x/ 2 TX . Therefore, (2) also holds.
Conversely, if (2) holds, then by Definition 3, for any x 2 X, we have ubX.x/ �

intX
�
ubX.x/

�
. Therefore, by Definition 2, for any y 2 ubX.x/ we have ubX.y/ �

ubX.x/ . Therefore, z 2 ubX.y/ implies z 2 ubX.x/ . Hence, by Remark 2, it is
clear that the inequality relation � in X is transitive, and (1) also holds.

Next, we show that (2) also implies (3). For this, note that if A � X and
x 2 intX.A/, then by Definition 2 we have ubX.x/ � A . Hence, by using
Theorem 11, we can infer that intX

�
ubX.x/

� � intX.A/ . Moreover, if (2) holds,
then by Definition 3 we also have ubX.x/ � intX

�
ubX.x/

�
. Thus, ubX.x/ � intX.A/

is also true. Hence, by Definition 2, it follows that x 2 intX
�
intX.A/

�
. This

shows that intX.A/ � intX
�
intX.A/

�
, and thus by Definition 3 we also have

intX.A/ 2 TX . Therefore, (3) also holds.
Now, since (3) trivially implies (4), it remains only to show only that (4) implies

(5), and (5) implies (2). For this, note that if (4) holds, then by Definitions
2 and 3, for any x 2 X, we have x 2 intX

�
ubX.x/

� � intX
�
intX

�
ubX.x/

��
.

Therefore, (5) also holds. Moreover, if (5) holds, then by Definition 2, for any
x 2 X, we have ubX.x/ � intX

�
ubX.x/

�
. Therefore, ubX.x/ 2 TX , and thus (2)

also holds.

From this theorem, by using Theorems 6 and 13, we can immediately derive

Corollary 14. For any goset X, the following assertions are equivalent :

(1) X is transitive,
(2) clX.A/ 2 FX for all A � X.

Now, as an immediate consequence of the above results, we can also state

Theorem 53. For a proset X, we have

(1) TX D ˚
intX.A/ W A � X

�
,

(2) FX D ˚
clX.A/ W A � X

�
.

Remark 50. This theorem shows that in a proset X, the families TX and FX are
just the ranges of the set-valued functions intX and clX , respectively.

However, it is now more important to note that, by using Theorems 50 and 52,
we can also easily prove the following.
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Theorem 54. For any goset X, the following assertions are equivalent :

(1) X is reflexive and transitive,
(2) intX.A/ D S

TX \ P.A/ for all A � X,
(3) clX.A/ D T

FX \ P�1.A/ for all A � X.

Proof. Suppose that (1) holds and A � X. Define

B D intX.A/ and C D
[

TX \ P.A/ :

Then, by Theorems 50 and 52, we can see that B � A and B 2 TX , and thus B 2
TX \ P.A/ . Therefore, B � S

TX \ P.A/ D C . Moreover, from Theorem 17,
we can see that C � B is always true. Therefore, (2) also holds.

Conversely, if (2) holds, then for any A � X we evidently have intX.A/ � A .
Thus, by Theorem 50, X is reflexive. Moreover, by Theorem 16, we can see that
intX.A/ 2 TX . Therefore, by Theorem 52, X is also transitive. Thus, (1) also
holds.

Now, to complete the proof, it remains to note only that the equivalence of (2)
and (3) is an immediate consequence of Theorems 6 and 13 .

Remark 51. This theorem shows that in a proset X the relation intX or clX and the
family TX or FX are also equivalent tools.

Now, by using Theorems 50 and 52, we can also easily prove the following.

Theorem 55. For any subset A of a proset X, we have

(1) A 2 EX if and only if B � A for some B 2 TX n f;g,
(2) A 2 DX if and only if A n B ¤ ; for all B 2 FX n fX g.

Proof. According to Remark 31, define B D TX n f;g and A D B�. Then, for
any A � X, we have A 2 A if and only if B � A for some B 2 B .

Now, if A 2 EX , then by Remark 25, there exists x 2 X such that ubX.x/ � A .
Moreover, by Theorems 50 and 52, we have x 2 ubX.x/ and ubX.x/ 2 TX , and
hence ubX.x/ 2 B . Therefore, A 2 A also holds. This shows that EX � A .

Moreover, from Corollary 8, we can see that A � EX is always true. Therefore,
(1) also holds. Now, (2) can be easily derived from (1) by using Theorems 13
and 18.

Remark 52. By Remark 31, assertion (1) means only that, in a proset X, the family
TX n f;g is also a base for the stack EX .

Beside Remark 51, this also shows that, in a proset X, the families TX and FX

are better tools than the families EX and DX .
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10 An Interior Operation and the Preorder Closure

Because of Theorems 50 and 52, in addition to the operations c, �1, and 1
mentioned in Sect. 2, we may also naturally introduce some further unary operations
on relations and thus also on gosets.

For instance, in accordance with [44, Definition 3.1], we may naturally introduce

Definition 10. For any goset X, we define a relation �ı on X such that

�ı .x/ D intX
�
ubX.x/

�

for all x 2 X. Moreover, according to a notation of Sect. 2, we write X ı D X .�ı / .

Remark 53. Thus, by the corresponding definitions, for any x ; y 2 X, we have

x �ı y ” y 2�ı .x/ ” y 2 intX
�
ubX.x/

� ” ubX.y/ � ubX.x/ :

Therefore, �ı is already a preorder relation on X, and thus X ı is a proset.

Moreover, as an immediate consequence of Theorems 50 and 52, we can state

Theorem 56. For any goset X, we have

(1) �ı � � if X is reflexive,
(2) � � �ı if and only if X is transitive.

Proof. To derive (2) from Theorem 52, note that for any x 2 X we have

� .x/ ��ı .x/ ” ubX.x/ � intX
�
ubX.x/

� ” x 2 intX
�
intX

�
ubX.x/

��
:

From this theorem, by Remark 53, it is clear that in particular we also have

Corollary 15. For any goset X, the following assertions are equivalent :

(1) � D �ı ,
(2) X is a proset,
(3) y 2 ubX.x/ ” ubX.y/ � ubX.x/ for all x ; y 2 X.

Remark 54. Note that, analogously to the statements of Remarks 7 and 16,
assertion (3) is again a Pataki connection property.

Concerning assertion (3), it is also worth mentioning that � is an equivalence
relation on X if and only if it is total and, under the notation X D X .�/, for any
x ; y 2 X we have y 2 ubX.x/ if and only if ubX.x/ \ ubX.y/ ¤ ; .

Moreover, from Theorem 56, by using Remark 53 and a basic property of the
relation �1, we can also immediately derive the following.

Theorem 57. For any goset X, we have

(1) �ı � �1 if X is reflexive,
(2) �1 � �ı if and only if X is transitive .

Hence, it is clear that in particular we also have the following.
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Corollary 16. For a reflexive goset X, the following assertions are equivalent :

(1) �ıD�1,
(2) X is transitive.

Remark 55. Now, analogously to Definition 10, for any goset X, we may also
naturally define a relation �� on X such that

�� .x/ D clX
�
ubX.x/

�

for all x 2 X. Moreover, now we may also naturally write X � D X .�� / .
Thus, in addition to the inclusions � � �� and �� � �, we may also naturally

investigate the inclusions �ı � �� and �� � �ı . (See [44].)

However, it now is more important to note that the generated preorder relations
can always be expressed in terms of the Pervin relations of the open sets defined by
the original relations [26, 27] .

Theorem 58. If X is a goset, then for any x 2 X, we have

�1 .x/ D T

A2TX

RA D T ˚
A 2 TX W x 2 A g :

Proof. Recall that, for any A � X, we have RA D A2 [ Ac�X . Therefore,

RA.x/ D A if x 2 A and RA.x/ D X if x 2 Ac :

Hence, we can easily see that x 2 RA.x/ and

�
RA ı RA

�
.x/ D RA Œ RA.x/ � D S

x2A
RA.x/ � RA.x/

for all x 2 X. Therefore, �X � RA and RA ı RA � RA, and thus RA is a preorder
relation on X.

Hence, by a basic theorem on preorder relations, it is clear that S D T
A2TX

RA

is also a preorder relation on X. Moreover, we can note that, for any x 2 X, we
have

S.x/ D
� T

A2TX

RA

�
.x/ D T

A2TX

RA.x/ D T ˚
A 2 TX W x 2 A g :

Furthermore, if x 2 X and y 2 �1 .x/, then by using the inclusion � � �1
and the transitivity of �1, we can also easily see that

ubX.y/ D�X .y/ � � Œ �1 .x/ � � �1 Œ �1 .x/� D ��1 ı �1 �
.x/ � �1 .x/ :
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Therefore, y 2 intX
� �1 .x/

�
. This shows that �1 .x/ � intX

� �1 .x/
�

and
thus �1 .x/ 2 TX . Hence, since x 2�1 .x/ also holds, we can already infer
that S.x/ � �1 .x/ . Therefore, S � �1 is also true.

On the other hand, if A 2 TX , then by Remark 18, for any x 2 A, we have
� .x/ D ubX.x/ � A D RA.x/ . Therefore, � � RA . Hence, since RA is a
preorder relation on X, we can already infer that �1� R 1

A D RA . Therefore,
�1� S, and thus the required assertion is also true.

Remark 56. Note that if X is a goset, then by using Theorem 16 from the above
theorem, we can also see that �1 .x/ 2 TX for all x 2 X.

From Theorem 58, we can also immediately derive the following

Corollary 17. For any goset X, the following assertions are equivalent :

(1) X is proset,
(2) � D T

A2TX
RA.

Now, according to the definitions of [21, 33], we may also have

Definition 11. A goset X is called well-chained if the inequality relation � in it
is well-chained in the sense that �1 D X 2 .

Remark 57. By using the definition of �1, the above property can be reformulated
in a detailed form that for any x ; y 2 X, with x ¤ y, there exists a finite sequence
.xi/

n
iD0 in X, with x0 D x and xn D y, such that xi�1 � xi for all i D

1; 2; : : : ; n .

Remark 58. During the long evolution of the concept of “connected”, the denition
of “chain connectedness”, and also that of “archwise connectedness”, has been
replaced by the present “modern denition of connectedness”. (See Thron [62, p. 29]
and Wilder [66].)

However, in the theory relator spaces, it has turned out that the latter, celebrated
connectedness is a particular case of well-chainedness, and well-chainedness is a
particular case of simplicity. Unfortunately, our fundamental works [20, 21, 31, 33]
on on these subjects were also strongly rejected by the leading topologists working
in the editorial boards of various mathematical journals.

In this respect, it is also worth mentioning that Császár [9] also observed
that “the concept of a connected set belongs rather to the theory of generalized
topological spaces instead of topology in the strict sense.” However, he has not
quoted our former paper [33], despite that he knew that each increasing operation
� on P.X /, with � .X / D X, can be written in the form � D intR with some
nonvoid relator R on X. (For the proof of this and some more general results, see
[41] and the references therein.)
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By using Definition 11, from Theorem 58, we can easily derive the following.

Theorem 59. For a goset X, the following assertions are equivalent :

(1) X is well-chained,
(2) TX D ˚ ;; X

�
,

(2) FX D ˚ ;; X
�
.

Proof. To see that (1) implies (2), note that, by Theorem 58, for any x 2 X, we
have

�1 .x/ D T ˚
A 2 TX W x 2 A g :

Therefore, for any A 2 TX and x 2 A, we have �1 .x/ � A . Moreover, if (1)
holds, then �1D X 2, and thus �1 .x/ D X for all x 2 X . Therefore, if A ¤ ;,
then A D X, and thus (2) also holds.

Remark 59. This theorem shows that, analogously to Example 1, the families TX

and FX in a well-chained goset X are also quite useless tools.

Now, in addition to Theorem 59, we can also easily prove the following.

Theorem 60. For a proset X, the following assertions are equivalent :

(1) X is well-chained,
(2) EX D fX g,
(3) DX D P.X / n f;g.

Proof. If (1) holds, then by Theorems 55 and 59, it is clear that (2) also holds.
(Note that this implication can also be easily proved by using the corresponding
definitions.)

On the other hand, if (2) holds, then by Remark 25, for any x 2 X, we
necessarily have ubX.x/ D X, and thus � .x/ D X . Therefore, �D X 2, and
thus (1) also holds.

This shows that (1) and (2) are equivalent. Moreover, by Theorem 19, it is
clear that (2) and (3) are always equivalent.

Remark 60. In [33], as a consequence of some other results, we have proved that
if X D X.R / is a relator space with R ¤ ; and card.X / > 1, then X is
paratopologically well-chained if and only if EX D fX g .

Moreover, X is paratopologically connected if and only if EX � DX . Therefore,
the “hyperconnectedness,” introduced by Levine [22] and studied by several further
authors, is a particular case of our paratopological connectedness.
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11 Comparisons of Inequalities

Because of the inclusion � � �1, it is also of some interest to prove the following.

Theorem 61. For any two gosets X1 D X .�1 / and X2 D X .�2 /, the following
assertions are equivalent :

(1) �1 � �2,
(2) ubX 1 � ubX 2 ,
(3) lbX1 � lbX2 .

Proof. If (1) holds, then by Remark 2, we have ubX1 .x/ D�1 .x/ � �2 .x/ D
ubX2 .x/ for all x 2 X . Hence, by using Corollary 1, we can already infer that

ubX 1 .A/ D T

a2A
ubX 1 .a/ � T

a2A
ubX 2 .a/ D ubX 2 .A/

for all A � X. Therefore, (2) also holds.
Conversely, if (2) holds, then in particular, we have

ubX 1 .x/ D ubX 1

�fxg� � ubX 2

�fxg� D ubX 2 .x/;

and hence �1 .x/ � �2 .x/ for all x 2 X. Therefore, (1) also holds.
This shows that (1) and (2) are equivalent. Hence, by using Theorem 1, we can

easily see that (1) and (3) are also equivalent.

From this theorem, by Definition 8, it is clear that in particular we also have

Corollary 18. For any two gosets X1 D X.�1 / and X2 D X.�2 /, with �1 � �2,
we have UX 1 � UX 2 .

Proof. Namely, if A 2 UX 1 , then by Definition 8 we have A � ubX 1 .A/ .
Moreover, by Theorem 61, now we also have ubX 1 .A/ � ubX 2 .A/ . Therefore,
A � ubX 2 .A/, and thus A 2 UX 2 also holds.

Remark 61. Note if X is a reflexive and antisymmetric goset, then by Theorems 42
and 43 we have UX D ff;gg [ ffxggx2X .

Therefore, the converse of the above corollary need not be true even if in parti-
cular X1 D X.�1 / and X2 D X.�2 / are posets.

However, by using Theorem 61, we can also easily prove the following.

Theorem 62. For any two gosets X1 D X.�1 / and X2 D X.�2 /, the following
assertions are equivalent :

(1) �1 � �2,
(2) intX 2 � intX 1 ,
(3) clX 1 � clX 2 .



584 Á. Száz

Proof. If A � X and x 2 intX 2 .A/, then by Definition 2 we have ubX 2 .x/ � A .
Moreover, if (1) holds, then by Theorem 61 we also have ubX 1 .x/ � ubX 2 .x/ .
Therefore, ubX 1 .x/ � A, and thus x 2 intX 1 .A/ is also true. This, shows that
intX 2 .A/ � intX 1 .A/ for all A � X. Therefore, (2) also holds.

Moreover, if (2) holds, then by using Theorem 6 we can easily see that (3) also
holds. Therefore, we need only show that (3) also implies (1). For this, note that
if (3) holds, then in particular by Remark 12 we have

lbX 1 .x/ D clX 1

�fxg� � clX 2

�fxg� D lbX 2 .x/

for all x 2 X. Hence, by using Corollary 1, we can see that lbX 1 .A/ � lbX 2 .A/

for all A � X . Therefore, lbX 1 � lbX 2 , and thus by Theorem 61 assertion (1) also
holds.

From this theorem, by Definitions 3 and 4, it is clear that we also have

Corollary 19. For any two gosets X1 D X.�1 / and X2 D X.�2 /, with �1 � �2,
we have

(1) TX 2 � TX 1 ,
(2) FX 2 � FX 1 ,
(3) EX 2 � EX 1 ,
(4) DX 1 � DX 2 .

Proof. For instance, if A 2 DX 1 , then by Definition 4 we have X D clX 1 .A/.
Moreover, by Theorem 62, now we also have clX 1 .A/ � clX 2 .A/ . Therefore,
X D clX 2 .A/, and thus A 2 DX 2 also holds. Therefore, (4) is true.

Now, by using the above results and Theorems 17 and 54, we can also prove

Theorem 63. For any goset X1 D X.�1 / and proset X2 D X.�2 /, the following
assertions are equivalent :

(1) �1 � �2,
(2) TX 2 � TX 1 ,
(3) FX 2 � FX 1 .

Proof. If (1) holds, then by Corollary 19 assertion (2) also holds. Conversely, if
(2) holds, then by Theorems 17 and 54 we have

intX 2 .A/ D
[

TX 2 \ P.A/ �
[

TX 1 \ P.A/ � intX 1 .A/

for all A � X. Therefore, intX 2 � intX 2 , and thus by Theorem 62 assertion (1)
also holds.

This shows that (1) and (2) are equivalent. Moreover, by Theorem 13, it is clear
that (2) and (3) are always equivalent.

However, concerning fat and dense sets, we can only prove the following.



Generalized Ordered Sets 585

Theorem 64. For any two gosets X1 D X.�1 / and X2 D X.�2 /, the following
assertions are equivalent :

(1) EX 1 � EX 2 ,
(2) DX2 � DX 1 ,
(3) There exists a function ' of X to itself such that �2 ı ' � �1,
(4) There exists a relation R of X to itself such that �2 ı R � �1.

Proof. By Remarks 2 and 25, for any x 2 X, we have �1 .x/ 2 EX 1 . Therefore,
if (1) holds, then we also have �1 .x/ 2 EX 2 . Hence, by using Remarks 2 and 25,
we can infer that there exists y 2 X such that �2 .y/ � �1 .x/ .

Hence, by the axiom of choice, it is clear that there exists a function ' of X to
itself such that �2

�
'.x/

� � �1 .x/, and thus .�2 ı ' /.x/ � �1 .x/ for all
x 2 X . Therefore, (3) also holds.

On the other hand, if (3) holds, then by Remark 2 for any x 2 X, we have
ubX 2

�
'.x/

� D�2

�
'.x/

� � �1 .x/ D ubX 1 .x/ . Hence, by Remark 25, it is clear
that (1) also holds.

Now, since (3) trivially implies (4), and (3) follows from (4) by choosing a
selection function ' of R, it remains only to note that, by Theorem 18, assertions
(1) and (2) are also equivalent.

Finally, we note that, by using the above theorem, we can also easily prove the
following theorem whose converse seems not to be true.

Theorem 65. If X1 D X.�1 / and X2 D X.�2 / are gosets, with �1 � �2, such
that either EX 1 � EX 2 or DX 2 � DX 1 , then there exists a function ' of X to
itself such that �1 D �1 ı ' 1 .

Proof. Now, by Theorem 64, there exists a function ' of X to itself such that
�2 ı ' � �1 . Hence, by using that �1 � �2, we can already infer that

�1 ı ' � �2 ı ' � �1 � �2; and thus �1 ı ' 2 � �2 ı ' � �1 :

Hence, by induction, it is clear that we actually have �1 ı ' n � �1 for all n 2 N .
Moreover, we can also note that �1 ı ' 0 D �1 ı �X D �1 .

Hence, by using a basic theorem on relations, we can infer that

�1 ı ' 1 D �1 ı
1S

nD0

' n D
1S

nD0

�1 ı ' n �
1S

nD0

�1 D�1 :

Thus, since �1 D�1 ı ' 0 � �1 ı ' 1, the required equality is also true.
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12 The Importance of the Preorder Closure
and Complementation

From the inclusion � � �1, by using Theorems 61 and 62 and the notation X 1 D
X .�1 /, we can immediately derive the following.

Theorem 66. For any goset X, we have

(1) ubX � ubX 1 ,
(2) lbX � lbX 1 ,
(3) intX 1 � intX ,
(4) clX � clX 1 .

Moreover, by using Corollary 19, Remark 56, and Theorem 13, we can also
prove the following.

Theorem 67. For any goset X, we have

(1) TX D TX 1 ,
(2) FX D FX 1 ,
(3) EX 1 � EX ,
(4) DX � DX 1 .

Proof. From Corollary 19, we can at once see that the inclusions (3), (4), and
TX 1 � TX are true.

On the other hand, if A 2 TX , then by Theorem 58 we have �1 .x/ � A for all
x 2 A . Hence, by Remark 18, we can see that A 2 TX 1 . Therefore, TX 1 � TX ,
and thus (1) is also true. Hence, by Theorem 13, it is clear that (2) is also true.

Remark 62. Note that if X is as in Example 1, then TX D f ;; X g, and thus by
Theorems 59 and 60, we have EX 1 D fX g. However, because of Remark 25, EX

is quite a large subfamily of P.X / . Therefore, the equalities in (3) and (4) need
not be true.

Now, by using Theorems 63 and 67 and Corollary 18, we can also prove

Theorem 68. For any two gosets X1 D X.�1/ and X2 D X.�2/, the following
assertions are equivalent :

(1) TX 2 � TX 1 ,
(2) FX 2 � FX 1 ,
(3) �1 � �1

2 ,
(4) �1

1 � �1
2 .

Proof. If (1) holds, then by Theorem 67 we can see that TX 1

2
� TX 1 also holds.

Hence, by using Theorem 63, we can already infer that (3) also holds.
Moreover, if (3) holds, then by using the corresponding properties of the

operation 1, we can also easily see that �1
1 � �1 1

2 D�1
2 , and thus (4) also

holds.
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On the other hand, if (4) holds, then because of �1 � �1
1 it is clear that (3)

also holds. Moreover, if (3) holds, then by using Theorem 67 and Corollary 19, we
can see that TX 2 D TX 1

2
� TX 1 , and thus (1) also holds. Now, to complete the

proof, it remains only to note that, by Theorem 13, assertions (1) and (2) are also
equivalent.

Remark 63. From this theorem, we can at once see that, for any two gosets X1 D
X.�1/ and X2 D X.�2/, we have

TX 1 ��1 TX 2 ” X1 � X 1
2 ;

in the sense that �1� �1
2 .

This shows that, analogously to Remarks 7 and 16, the set-valued functions T
and 1 also form a Pataki connection.

Thus, the counterparts of the corresponding parts of Remarks 8 and 16 can also
be stated. However, it would be more interesting to look for a generating Galois
connection.

Now, by Theorems 64 and 65, we can also state the following two theorems.

Theorem 69. For any goset X, the following assertions are equivalent :

(1) EX � EX 1 ,
(2) DX 1 � DX ,
(3) there exists a function ' of X to itself such that �1 ı ' � �,
(4) there exists a relation R of X to itself such that �1 ı R � �.

Remark 64. Note that, by Theorem 67, we may write equality in the assertions (1)
and (2) of the above theorem and also in the conditions of the following.

Theorem 70. If X is a goset, such that EX � EX 1 , or equivalently DX 1 � DX,
then there exists function ' of X to itself such that � D � ı ' 1 .

Finally, we note that, by using the notation X c D X .�c /, we can also prove the
following particular case of [47, Theorem 4.11], which in addition to the results of
[17, 57] also shows the importance of complement relations.

Theorem 71. For any goset X, we have

(1) lbX D �
clX c

� c
,

(2) clX D �
lbX c

� c
.

Proof. By using Remarks 4 and 13, instead of Corollary 1 and Theorem 10, we can
at once see that

lb c
X.A/ D lbX.A/c D �c Œ A � D clX c.A/

for all A � X. Therefore, lb c
X D clX c , and thus (1) is also true.

Now, (2) can be immediately derived from (1) by writing X c in place of X and
applying complementation.
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Remark 65. This theorem shows that the relations lbX and clX are also equivalent
tools in the goset X.

Hence, by Remarks 3 and 10, it is clear that the relations ubX and intX are also
equivalent tools in the goset X.

Remark 66. By using Theorem 1 and Corollary 3, and the corresponding proper-
ties of inversion and complementations, the assertions (1) and (2) of Theorem 71
can be reformulated in several different forms.

For instance, as an immediate consequence of Theorem 71 and Corollary 3, we
can at once state the following.

Corollary 20. For any goset X, we have

(1) lbX D intXc ıC ,
(2) intX D lbXc ıC .

Remark 67. Analogously to Theorem 10, the above results also show that, despite
Remark 2, there are cases when the relation lbX is a more convenient tool in the
goset X than ubX .

13 Some Further Results on the Basic Tools

As some converses to Theorems 3, 9, 16, and 24, we can also easily prove the
following theorems.

Theorem 72. If ˚ is a relation on P.X/ to X, for some set X, such that

˚
�S

i2 I
Ai

�
D T

i2 I
˚

�
Ai

�

for any family .Ai / i2 I subsets of X, then there exists a relation � on X such that,
under the notation X D X .�/, we have ˚ D ubX .˚ D lbX/ .

Proof. For any x ; y 2 X, define x � y if y 2 ˚.x/, where ˚.x/ D ˚
�fxg� .

Then, by Remark 2, we have ˚.x/ D ubX.x/ for all x 2 X. Hence, by using the
assumed union-reversingness of ˚ and Corollary 1, we can already see that

˚ .A/ D T

a2A
˚.a/ D T

a2A
ubX.a/ D ubX.A/

for all A � X. Therefore, ˚ D ubX is also true.
This proves the first statement of the theorem. The second statement can be

derived from the first one by using Theorem 1.

Theorem 73. If � is a relation on P.X/ to X, for some set X, such that

�
�S

i2 I
Ai

�
D S

i2 I
�

�
Ai

�
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for any family .Ai / i2 I subsets of X, then there exists a relation � on X such that,
under the notation X D X.�/, we have � D clX .

Proof. For any x ; y 2 X, define x � y if x 2 �.y/, where �.y/ D �.fyg/ .
Then, by Remark 2, we have lbX.y/ D �.y/ for all y 2 X. Hence, by using the
assumed union preservingness of � and Theorem 10, we can already see that

� .A/ D S

a2A
�.a/ D S

a2A
lbX.a/ D clX .A/

for all A � X. Therefore, the required equality is also true.

From this theorem, by using Corollary 3, we can easily derive the following.

Corollary 21. If ˚ is a relation on P.X/ to X, for some set X, such that

˚
�T

i2 I
Ai

�
D T

i2 I
˚

�
Ai

�

for any family
�
Ai

�
i2 I of subsets of X, then there exists a relation � on X such

that, under the notation X D X.�/, we have ˚ D intX .

Proof. Define � D .˚ ı C /c . Then, by using the assumed intersection-
preservingness of ˚ and De Morgan’s law, we can see that � is an
union-preserving relation on P.X / to X. Therefore, by Theorem 73, there
exists a relation � on X such that in the goset X D X .�/ we have
� D clX . Hence, by using the definition of � and Corollary 3, we can see
that ˚ D �

� ı C
�c D �

clX ıC �c D intX also holds.

Theorem 74. If A is a family of subsets of a set X such that A is closed under
arbitrary unions and intersections, then there exists a preorder relation � on X
such that, under the notation X D X .�/, we have A D TX .A D FX / .

Proof. Define

� D T

A2A
RA where RA D A2 [ Ac � X :

Then, from the proof of Theorem 58, we know that � is a preorder relation on X
such that, under the notation X D X .�/, for any x 2 X we have

ubX .x/ D� .x/ D T ˚
A 2 A W x 2 A

�
:

Hence, since A is closed under arbitrary intersections, it is clear that ubX.x/ 2
A for all x 2 X. Moreover, we can also note that x 2 ubX.x/ for all x 2 X.

Therefore, if V 2 TX , that is, by Remark 18 we have ubX.x/ � V for all
x 2 V , then we necessarily have V D S

x2V ubX.x/ . Hence, since A is also
closed under arbitrary unions, it is clear that V 2 A . Therefore, TX � A .
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Conversely, if V 2 A , then for any x 2 V we have

ubX.x/ D
\ ˚

A 2 A W x 2 A
� � V :

Therefore, by Remark 18, we have V 2 TX . Thus, A � TX also holds.
This proves that A D TX , and thus the first statement of the theorem is true.

The second statement of the theorem can be derived from the first one by using
Theorem 14.

Remark 68. In principle, the first statement of the above theorem can also be proved
with the help of Corollary 21 . However, this proof requires an intimate connection
between interior operations and families of sets.

For this, one can note that if ˚ is a relation on P .X/ to X such that

˚ .B/ D
[ �

A \ P.B/
�

for all B � X, then by this definition and the assumed union property of A , we
have

(a) A D ˚
B � X W B D ˚.B/

�
, (b) ˚.B/ 2 A \P.B/ for all B � X.

Moreover, by using (b), the assumed intersection property of A and the
definition of ˚ , we can see that ˚ is union preserving.

However, it is now more important to note that, analogously to Theorem 74, we
also have the following.

Theorem 75. If A is a nonvoid stack in X, for some set X, having a base B
with card.B / � card.X /, then there exists a relation � on X such that, under the
notation X D X .�/, we have A D EX .

Proof. Since card.B / � card.X /, there exists an injective function ' of B onto
a subset Y of X. Choose B 2 B and define a relation � on X such that

� .x/ D ' �1.x/ if x 2 Y and � .x/ D B if x 2 Y c:

Then, under the notation X D X .�/, we evidently have

B D ˚
ubX.x/ W x 2 X

�
:

Hence, since B is a base of A , we can already infer that

A D ˚
A � X W 9 x 2 X W ubX.x/ � A

� D EX :

Remark 69. Now, a corresponding theorem for the family DX should, in principle,
be derived from the above theorem by using either Theorem 18 or 19 .

However, it would now be even more interesting to prove a counterpart of
Theorems 74 and 75 for the family UX .
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14 Increasing Functions

Increasing functions are usually called isotone, monotone, or order-preserving in
algebra. Moreover, in [11, p. 186] even the extensive maps are called increasing.
However, we prefer to use the following terminology of analysis [38, p. 128].

Definition 12. If f is a function of one goset X to another Y , then we say that :

(1) f is increasing if u � v implies f .u/ � f .v/ for all u ; v 2 X.
(2) f is strictly increasing if u < v implies f .u/ < f .v/ for all u ; v 2 X.

Remark 70. Quite similarly, the function f may, for instance, be called decreasing
if u � v implies f .v/ � f .u/ for all u ; v 2 X.

Thus, we can note that f is a decreasing function of X to Y if and only if it is an
increasing function of X to the dual Y�1 of Y .

Therefore, the study of decreasing functions can be traced back to that of the
increasing ones. The following two obvious theorems show that almost the same is
true in connection with the strictly increasing ones.

Theorem 76. If f is an injective, increasing function of one goset X to another Y,
then f is strictly increasing.

Remark 71. Conversely, we can at once see that if f is a strictly increasing function
of an arbitrary goset X to a reflexive one Y , then f is increasing.

Moreover, we can also easily prove the following

Theorem 77. If f is a strictly increasing function of a linear goset X to an arbit-
rary one Y, then f is injective.

Proof. If u ; v 2 X such that u ¤ v, then by Remark 47 we have either u < v

or v < u . Hence, by using the strict increasingness of f , we can already infer that
either f .u/ < f .v/ or f .v/ < f .u/, and thus f .u/ ¤ f .v/ .

Now, as an immediate consequence of the above results, we can also state

Corollary 22. For a function f of a linear goset X to a reflexive one Y, the follo-
wing assertions are equivalent :

(1) f is strictly increasing,
(2) f is injective and increasing.

In this respect, the following is also worth proving.

Theorem 78. If f is a strictly increasing function of a linear goset X onto an
antisymmetric one Y, then f �1 is a strictly increasing function of Y onto X.

Proof. From Theorem 77, we know that f is injective. Hence, since f Œ X � D Y ,
we can see that f �1 is a function of Y onto X. Therefore, we need only show that
f �1 is also strictly increasing.
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For this, suppose that z ; w 2 Y such that z < w . Define u D f �1.z/ and
v D f �1.w/ . Then, u ; v 2 X such that z D f .u/ and w D f .v/ . Hence, since
z ¤ w, we can also see that u ¤ v . Moreover, by Remark 47, we have either
u < v or v < u . However, if v < u, then by the strict increasingness of f we
also have f .v/ < f .u/, and thus w < z . Hence, by using the inequality z < w and
the antisymmetry of Y , we can already infer that z D w . This contradiction proves
that u < v, and thus f �1.z/ < f �1.w/ .

Hence, by using Theorem 76 and Remark 71, we can immediately derive

Corollary 23. If f is an injective, increasing function of a reflexive, linear goset
X onto an antisymmetric one Y, then f �1 is an injective, increasing function of Y
onto X.

Analogously to [58], we shall now also use the following.

Definition 13. If ' is an unary operation on a goset X, then we say that :

(1) ' is extensive (intensive) if �X � '
�
' � �X

�
.

(2) ' is upper (lower) semi-idempotent if ' � ' 2
�
' 2 � '

�
.

Remark 72. Moreover, ' may be naturally called upper (lower) semi-involutive if
' 2 is extensive (intensive). That is, �X � ' 2 .' 2 � �X / .

Remark 73. In this respect, it is also worth noticing that ' is upper (lower)
semi-idempotent if and only if its restriction to its range is extensive (intensive).
Therefore, if ' is extensive (intensive), then ' is upper (lower) semi-idempotent.

The importance of extensive operations is also apparent from the following.

Theorem 79. If ' is a strictly increasing operation on a min-complete, antisym-
metric goset X, then ' is extensive.

Proof. If ' is not extensive, then the set A D fx 2 X W x 6� '.x/g is not void.
Thus, by the min-completeness of X, there exists a 2 minX.A/ . Hence, by the
definition of minX , we can see that a 2 A and a 2 lbX.A/ . Thus, in particular,
by the definition of A, we have a 6� '.a/ . Hence, by using Corollary 12 and
Theorem 49, we can infer that '.a/ < a . Thus, since ' is strictly increasing,
we also have '

�
'.a/

�
< '.a/ . Hence, by using Theorem 48, we can infer that

'.a/ 6� '
�
'.a/

�
. Thus, by the definition of A, we also have '.a/ 2 A . Hence, by

using that a 2 lbX.A/, we can infer that a � '.a/ . This contradiction shows that
' is extensive.

Remark 74. To feel the importance of extensive operations, it is also worth noticing
that if ' is an extensive operation on an antisymmetric goset, then each maximal
element x of X is already a fixed point of ' in the sense that '.x/ D x .

This fact has also been strongly emphasized by Brøndsted [6] . Moreover,
fixed point theorems for extensive maps (which are sometimes called expansive,
progressive, increasing, or inflationary) were also proved in [19], [11, p. 188], and
[29] .



Generalized Ordered Sets 593

The following theorem shows that, in contrast to the injective, increasing
functions, the inverse of an injective, extensive operation need not be extensive.

Theorem 80. If ' is an injective, extensive operation on an antisymmetric goset
X such that X D ' Œ X � and ' �1 is also extensive, then ' D �X .

Proof. By the extensivity of ' and ' �1, for every x 2 X, we have x � '.x/

and '.x/ � ' �1
�
'.x/

�
. Hence, by noticing that ' �1

�
'.x/

� D x and using the
antisymmetry of X, we can already infer that '.x/ D x, and thus '.x/ D �X.x/ .
Therefore, the required equality is also true.

From this theorem, by using Theorems 78 and 79, we can immediately derive

Corollary 24. If ' is a strictly increasing operation on a min-complete, antisym-
metric goset X such that X D ' Œ X �, then ' D �X .

Proof. Now, from Corollary 12 and Theorem 78, we can see that ' �1 is also strictly
increasing. Thus, by Theorem 79, both ' and ' �1 are extensive. Therefore, by
Theorem 80, the required equality is also true.

In general, the idempotent operations are quite different from both upper and
lower semi-idempotent ones. However, we may still naturally have the following.

Definition 14. An increasing, extensive (intensive) operation is called a preclosure
(preinterior) operation. And, a lower semi-idempotent (upper semi-idempotent)
preclosure (preinterior) operation is called a closure (interior) operation.

Moreover, an extensive (intensive) lower semi-idempotent (upper semi-
idempotent) operation is called a semiclosure (semi-interior) operation. While,
an increasing and upper (lower) semi-idempotent operation is called an upper
(lower) semimodification operation.

Remark 75. Thus, ' is, for instance, an interior operation on a goset X if and only
if it is a closure operation on the dual X �1 of X.

15 Algebraic Properties of Increasing Functions

Concerning increasing functions, we can also prove the following.

Theorem 81. For a function f of one goset X to another Y, the following
assertions are equivalent :

(1) f is increasing,
(2) f Œ ubX.x/ � � ubY

�
f .x/

�
for all x 2 X,

(3) f Œ ubX.A/ � � ubY
�
f Œ A �

�
for all A � X.

Proof. If A � X and y 2 f Œ ubX.A/ �, then there exists x 2 ubX.A/ such that
y D f .x/ . Thus, for any a 2 A, we have a � x . Hence, if (1) holds, we can infer
that f .a/ � f .x/, and thus f .a/ � y . Therefore, y 2 ubY

�
f Œ A �

�
, and thus (3) also

holds.
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The remaining implications (3) H) (2) H) (1) are even more obvious.

From this theorem, by using Definition 8, we can immediately derive

Corollary 25. If f is an increasing function of one goset X to another Y, then for
any A 2 UX we have f Œ A � 2 UY .

Proof. Namely, if A 2 UX , then by Definition 8, we have A � ubX.A/ . Hence,
by using Theorem 81, we can infer that f Œ A � � f Œ ubX.A/ � � ubY

�
f Œ A �

�
. Thus,

by Definition 8, we also have f Œ A � 2 UY .

Moreover, by using Theorem 81, we can also prove the following.

Theorem 82. If f is an increasing function of one goset X onto another Y, then
for any B � Y we have

ubX
�
f �1 Œ B �

� � f �1 Œ ubY.B/ � :

Proof. Now, by Theorem 81 and a basic theorem on relations, we have

f
�

ubX
�
f �1 Œ B �

� � � ubY
�
f

�
f �1 Œ B �

� � D ubY
��

f ı f �1
�

Œ B �
�

:

Moreover, by using that Y is the range of f , we can easily see that �Y � f ı f �1.
Hence, we can immediately infer that B � �

f ı f �1
�

Œ B �, and thus also

ubY
��

f ı f �1
�

Œ B �
� � ubY.B/ :

Therefore, we actually have f
�

ubX
�
f �1 Œ B �

� � � ubY.B/, and thus also

�
f �1ı f

� �
ubX

�
f �1 Œ B �

� � D f �1
�

f
�

ubX
�
f �1 Œ B �

� � � � f �1 Œ ubY.B/ � :

Moreover, since X is the domain of f , we can note that �X � f �1ı f , and thus

ubX
�
f �1 Œ B �

� � �
f �1ı f

� �
ubX

�
f �1 Œ B �

� �
:

Therefore, the required inclusion is also true.

Now, as a partial converse to this theorem, we can also prove the following.

Theorem 83. If f is an injective function of one goset X to another Y such that

ubX
�
f �1 Œ B �

� � f �1 Œ ubY.B/ �

for all B � X, then f is increasing.

Proof. Now, by some basic theorems on relations, for any B � Y , we also have

f
�

ubX
�
f �1 Œ B �

� � � f
�

f �1 Œ ubY.B/ �
� D �

f ı f �1
�

Œ ubY.B/ � :



Generalized Ordered Sets 595

Moreover, since f is a function, we also have f ı f �1 � �X , and thus also
�
f ı

f �1
�

Œ ubY.B/ � � ubY.B/ . Therefore, we actually have

f
�

ubX
�
f �1 Œ B �

� � � ubY.B/ :

Hence, it is clear that, for any A � X, we have

f
�

ubX
��

f �1ı f
�

Œ A �
� � D f

�
ubX

�
f �1

�
f Œ A �

� � � � ubY
�
f Œ A �

�
:

Moreover, by using that f is injective, we can note that f �1 ı f � �X , and thus
also

�
f �1ı f

�
Œ A � � A . Hence, we can infer that ubx.A/ � ubX

��
f �1ı f

�
Œ A �

�
,

and thus also

f Œ ubX.A/ � � f
�

ubX
��

f �1ı f
�

Œ A �
� �

:

Therefore, we actually have

f Œ ubX.A/ � � ubY
�
f Œ A �

�
:

Hence, by Theorem 81, we can already see that f is increasing.

Remark 76. Note that f is an increasing function of X to Y if and only if it is an
increasing function of X �1 to Y�1.

Therefore, in the above theorems, we may write lb in place of ub . However,
because of Theorems 29 and 4, we cannot write sup instead of ub .

Despite this, by using Theorem 81, we can also prove the following.

Theorem 84. For a function f of a reflexive goset X to an arbitrary one Y, the
following assertions are equivalent :

(1) f is increasing,
(2) f Œ maxX.A/ � � ubY

�
f Œ A �

�
for all A � X,

(3) f Œ maxX.A/ � � maxY
�
f Œ A �

�
for all A � X,

(4) f Œ maxX.A/ � � ubY
�
f Œ A �

�
for all A � X with card.A/ � 2.

Proof. If (1) holds, then by Theorem 81 and a basic theorem on relations, for any
A � X, we have

f Œ maxX.A/ � D f Œ A \ ubX.A/ � � f Œ A � \ f Œ ubX.A/ �

� f Œ A � \ ubY
�
f Œ A �

� D maxY
�
f Œ A �

�
:

Therefore, (3) also holds even if X is not assumed to be reflexive.
Thus, since the implication (3) H) (2) H) (4) trivially hold, we need only

show that (4) also implies (1). For this, note that if u ; v 2 X such that u � v, then
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by taking A D fu ; v g and using the reflexivity of X we can see that v 2 ubX.A/,
and thus

v 2 A \ ubX.A/ D maxX.A/ :

Hence, if (4) holds, we can infer that

f .v / 2 f ŒmaxX.A/� � ubY
�
f Œ A �

� D ubY
�f f .u/; f .v/ g�

:

Thus, in particular f .u/ � f .v/, and thus (1) also holds.

Now, as a useful consequence of this theorem, we can also easily prove

Corollary 26. If f is a function on a reflexive goset X to an arbitrary one Y such
that

f Œ supX.A/ � � supY

�
f Œ A �

�

for all A � X with card.A/ � 2, then f is already increasing.

Proof. If A is as above, then by Theorems 29 and 32 we have

f Œ maxX.A/ � � f Œ supX.A/ � � supY

�
f Œ A �

� � ubY
�
f Œ A �

�
:

Therefore, by Theorem 84, the required assertion is also true.

Because of Theorems 29 and 4, a converse of this corollary is certainly not true.
However, by using Theorem 81, we can also prove the following two theorems.

Theorem 85. If f is an increasing function of one goset X to another Y, then for
any A � X we have

lbY
�
ubY

�
f Œ A �

�� � lbY . f Œ ubX.A/� / :

Proof. Now, by Theorem 81, we have f Œ ubX.A/ � � ubY
�
f Œ A �

�
. Hence, by using

Theorem 4, we can immediately derive the required inclusion.

Theorem 86. If f is an increasing function of one sup-complete, antisymmetric
goset X to another Y, then for any A � X we have

supY

�
f ŒA �

� � f
�
supX.A/

�
:

Proof. If ˛ D supX.A/, then by Theorems 29 and 45 and, and the usual
identification of singletons with their elements, we also have ˛ 2 ubX.A/, and
thus f .˛/ 2 f Œ ubX.A/� . Hence, by using Theorem 81, we can already infer that
f .˛/ 2 ubY

�
f Œ A �

�
.
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While, if ˇ D supY

�
f ŒA �

�
, then by Theorems 29 and 45, and the usual

identification of singletons with their elements, we also have ˇ 2 lbY
�
ubY

�
f ŒA �

��
.

Hence, by using that f .˛/ 2 ubY
�
f Œ A �

�
, we can already infer that ˇ � f .˛/, and

thus the required equality is also true.

By using the dual of Theorem 81 mentioned in Remark 76, we can quite similarly
prove the following theorem which can also be derived from Theorem 86 by
dualization.

Theorem 87. If f is an increasing function of one inf-complete, antisymmetric
goset X to another Y, then for any A � X we have

f
�
infX.A/

� � infY
�
f ŒA �

�
:

Remark 77. Note that, by Theorem 34, in the latter theorem we may also write
sup-complete instead of inf-complete.

Therefore, as an immediate consequence of Theorems 86 and 87, we can state

Corollary 27. If f is an increasing function of a sup-complete, antisymmetric goset
X to a sup-complete, transitive and antisymmetric goset Y, and A is a nonvoid
subset of X such that f

�
infX.A/

� D f
�
supX.A/

�
, then

infY
�
f ŒA �

� D f
�
infX.A/

�
and supY

�
f ŒA �

� D f
�
supX.A/

�
:

16 Topological Properties of Increasing Functions

In principle, the following theorem can be derived from the dual Theorem 81 by
using Theorem 71. However, it is now more convenient to give a direct proof.

Theorem 88. For a function f of one goset X to another Y, the following
assertions are equivalent :

(1) f is increasing,
(2) f Œ clX.A/ � � clY

�
f Œ A �

�
for all A � X,

(3) clX
�
f �1 Œ B �

� � f �1 ŒclY.B/� for all B � B � Y,
(4) f �1 Œ intY.B/ � � intX

�
f �1 Œ B �

�
for all B � Y.

Proof. If A � X and y 2 f Œ clX.A/ �, then there exists x 2 clX.A/ such that
y D f .x/ . Thus, by Definition 2, we have ubX.x/ \ A ¤ ; . Therefore, there
exists a 2 A such that a 2 ubX.x/, and thus x � a . Hence, if (1) holds, we
can infer that f .x/ � f .a/, and thus f .a/ 2 ubY

�
f .x/

� D ubY.y/ . Now, since
f .a/ 2 f Œ A � also holds, we can already see that f .a/ 2 ubY.y/ \ f Œ A �, and thus
ubY.y/ \ f Œ A � ¤ ; . Therefore, by Definition 2, we also have y 2 clY

�
f Œ A �

�
.

This shows that f Œ clX.A/ � � clY
�
f Œ A �

�
, and thus (2) also holds.



598 Á. Száz

While, if B � Y , then f �1Œ B � � X. Therefore, if (2) holds, then we have

f
�
clX. f �1ŒB �/

� � clY
�
f

�
f �1Œ B �

� � D clY
��

f ı f �1
�

Œ B �
�

:

Moreover, since f is a function, we can easily see that f ı f �1 � �Y , and thus�
f ı f �1

�
Œ B � � B . Hence, by using Theorem 11, we can infer that

clY
��

f ı f �1
�

Œ B �
� � clY.B/ :

Therefore, we actually have f
�

clX
�
f �1Œ B �

� � � clY.B/, and thus also

�
f �1ı f

� �
clX

�
f �1Œ B �

� � D f �1
�

f
�

clX
�
f �1Œ B �

� � � � f �1
�

clY.B/
�

:

Moreover, since X is the domain of f , we can note that �X � f �1ı f , and thus

clX
�
f �1Œ B �

� � �
f �1ı f

� �
clX

�
f �1Œ B �

� �
:

Therefore, we actually have clX
�
f �1 Œ B �

� � f �1 Œ clY.B/ �, and thus (3) also holds.
On the other hand, if B � Y , then by using Theorem 6 and a basic fact on

inverse images, we can also see that

f �1 Œ intY.B/ � D f �1
�

clY.Bc /c
� D f �1

�
clY.Bc /

� c
:

Moreover, if (3) holds, then we can also see that clX
�
f �1 Œ B c �

� � f �1 Œ clY.B c / �,
and thus

f �1Œ clY.Bc /
�c � clX

�
f �1 Œ Bc �

�c D clX
�
f �1 Œ B � c

�c D intX
�
f �1 Œ B �

�
:

This shows that f �1 Œ intY.B/ � � intX
�
f �1 Œ B �

�
, and thus (4) also holds.

Now, it remains to show that (4) also implies (1). For this, note that, by
Definition 2, for any x 2 X we have f .x/ 2 intY

�
ubY

�
f .x/

��
, and thus

x 2 f �1
�
f .x/

� � f �1
�

intY
�
ubY

�
f .x/

�� �
:

Moreover, if (4) holds, then we also have

f �1
�

intY
�
ubY

�
f .x/

�� � � intX
�
f �1 Œ ubY

�
f .x/

�
�
�

:

This shows that x 2 intX
�
f �1 Œ ubY

�
f .x/

�
�
�
, and thus by Definition 2 we have

ubX.x/ � f �1 Œ ubY
�
f .x/

�
� . Hence, we can already infer that

f Œ ubX.x/ � � f
�

f �1 Œ ubY
�
f .x/

�
� D �

f ı f �1
�

Œ ubY
�
f .x/

�
� � ubY

�
f .x/

�
:

Therefore, by Theorem 81, assertion (1) also holds.
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From this theorem, by using Definition 3, we can immediately derive

Corollary 28. If f is an increasing function of one goset X to another Y, then

(1) B 2 TY implies f �1 ŒB� 2 TX ,
(2) B 2 FY implies f �1 ŒB� 2 FX .

Proof. If B 2 TY , then by Definition 3 we have B � intY.B/ . Hence, by using
Theorem 88 and the increasingness of f , we can already infer that

f �1 Œ B � � f �1 Œ intY.B/ � � intX
�
f �1 Œ B �

�
:

Therefore, by Definition 3, we also have f �1 Œ B � 2 TX .
This shows that (1) is true. Moreover, by using Theorem 13, we can easily see

that (1) and (2) are equivalent even if f is not assumed to be increasing.
For instance, if B 2 FY , then by Theorem 13, we have Bc 2 TX . Hence, if

(1) holds, we can infer f �1 Œ Bc � 2 TX . Now, by using that f �1 Œ Bc � D f �1 Œ B �c,
we can already see that f �1 Œ B �c 2 TX , and thus by Theorem 13 we also have
f �1 Œ B � 2 FX . Therefore, (2) also holds.

Remark 78. Moreover, if f is as in the above corollary, then by using the assertion
(2) of Theorem 88 we can immediately see that if A � X such that f Œ A � 2 FY ,
then f Œ clX.A/ � � f Œ A � . Note that this fact can also be derived from Corollary 28.

However, it is now more important to note that, in addition to the Corollary 28,
we can also prove the following.

Theorem 89. For a function f of a goset X to a proset Y, the following assertions
are equivalent :

(1) f is increasing,
(2) B 2 TY implies f �1 Œ B � 2 TX,
(3) B 2 FY implies f �1 Œ B � 2 FX.

Proof. Now, by Corollary 28 and its proof, we need actually show only that (3) also
implies (1). For this, note that if B � Y , then by Corollary 14 we have clY.B/ 2
FY . Hence, if (3) holds, we can infer that f �1 ŒclY.B/� 2 FX . Therefore, by
Definition 3, we have

clX
�
f �1 Œ clY.B/ �

� � f �1 Œ clY.B/ � :

Moreover, by Corollary 13, now we also have B � clY.B/, and thus also
f �1 Œ B � � f �1 Œ clY.B/ � . Hence, by using Theorem 11, we can infer that

clX
�
f �1 Œ B �

� � clX
�
f �1 Œ clY.B/ �

�
:
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This shows that

clX
�
f �1 Œ B �

� � f �1 Œ clY.B/ � :

Therefore, by Theorem 88, assertion (1) also holds.

Remark 79. Note that the assertion (2) of Theorem 88, and the assertions (3) of
Theorems 81 and 84, are more natural than the assertions (3) and (4) of Theorem 88
and the assertions (2) and (3) of Theorem 89.

Namely, the assertion (2) of Theorem 88, in a detailed form, means only that, for
any A � X, the inclusion x 2 clX..A/ implies f .x/ 2 clY.f Œ A �

�
. That is, if x is

“near” to A in X, then f .x/ is also “near” to f Œ A � in Y .
Actually, the nearness of one set to another is an even more natural concept than

that of a point to a set. Note that, according to a general definition of Száz [47],
for any two subsets A and B of a goset X, we have B 2 ClX.A/ if and only if
clX.A/ \ B ¤ ; .

Now, by using Theorem 88, we can also prove the following.

Theorem 90. If f is an increasing function of one goset X onto another Y, then

(1) A 2 DX implies f Œ A � 2 DY ,
(2) B 2 EY implies f �1 Œ B � 2 EX.

Proof. If A 2 DX , then by Definition 4 we have X D clX.A/. Hence, by using
Theorem 88 and our assumptions on f , we can already infer that

Y D f Œ X � D f Œ clX.A/ � � clY
�
f Œ A �

�
;

and thus Y D clY
�
f Œ A �

�
. Therefore, by Definition 4, we also have f Œ A � 2 DY .

This shows that (1) is true. Moreover, by using Theorem 19, we can easily see
that (1) and (2) are equivalent even if f is not assumed to be increasing and onto Y .

For instance, if A 2 DX and (1) holds, then f Œ A � 2 DY . Therefore, if
B 2 EY , then by Theorem 19 we have f Œ A � \ B ¤ ; . Hence, it follows that
A \ f �1 Œ B � ¤ ; . Therefore, by Theorem 19, we have f �1 Œ B � 2 EX , and thus
(2) also holds.

Remark 80. Moreover, if f is as in the above theorem, then by using the assertion
(3) of Theorem 88 we can also easily see that if B � Y such that f �1 Œ B � 2 DX ,
then B 2 DY . However, this fact can be more easily derived from Theorem 90.

17 Algebraic Properties of Closure Operations

Theorem 91. If ' is a closure operation on an inf-complete, antisymmetric goset
X, then for any A � X we have

infX
�
' ŒA �

� D '
�
infX

�
' Œ A �

��
:
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Proof. Now, by Theorem 87, we have '
�
infX.A/

� � infX
�
' ŒA �

�
. Hence, by

writing ' Œ A � in place of A, we can see that

'
�
infX

�
' Œ A �

�� � infX .' Œ ' Œ A � � / :

Moreover, by using the antisymmetry of X, we can see that ' is now idempotent.
Therefore, ' Œ ' Œ A � � D .' ı '/ Œ A � D ' 2 Œ A � D ' Œ A � . Thus, we actually have

'
�
infX

�
' Œ A �

�� � infX .' Œ A � / :

Moreover, by extensivity of ', the converse inequality is also true. Hence, by using
the antisymmetry of X, we can see that the required equality is also true.

Remark 81. It can be easily seen that an operation ' on a set X is idempotent if
and only if ' Œ X � is the family of all fixed points of ' .

Namely, ' 2 D ' if and only if ' 2.x/ D '.x/, i. e., '
�
'.x/

� D '.x/ for all
x 2 X . That is, '.x/ 2 Fix.'/ for all x 2 X, or equivalently ' Œ X � � Fix.'/ .
Thus, since the converse inclusion always holds, the required assertion is also true.

Therefore, by using Theorem 91, we can also prove the following.

Corollary 29. Under the conditions of Theorem 91, for any A � ' ŒX �, we have

infX
�
A/ D '

�
infX.A/

�
:

Proof. Now, because of the antisymmetry of X, the operation ' is idempotent.
Thus, by Remark 81, we have '.y/ D y for all y 2 ' Œ X � . Hence, by using the
assumption A � ' Œ X �, we can see that ' Œ A � D A . Thus, Theorem 91 gives the
required equality.

Remark 82. Note that if ' is an extensive, idempotent operation on a reflexive,
antisymmetric goset X, then ' Œ X � is also the family of all elements x of X which
are '-closed in the sense that '.x/ � x.

Therefore, if in addition to the conditions of Theorem 91, X is reflexive, then the
assertion of Corollary 29 can also be expressed by stating that the infimum of any
family of '-closed elements of X is also '-closed.

Now, instead of an analogue of Theorem 91 for supremum, we can only prove

Theorem 92. If ' is a closure operation on a sup-complete, transitive, and
antisymmetric goset X, then for any A � X we have

'
�
supX.A/

� D '
�
supX

�
' ŒA �

��
:

Proof. Define ˛ D supX .A/ and ˇ D supX

�
' ŒA �

�
. Then, by Theorem 86, we

have ˇ � '.˛/ . Hence, since ' is increasing, we can infer that '.ˇ/ � '
�
'.˛/

�
.

Moreover, since ' is now idempotent, we also have '
�
'.˛/

� D '.˛/ . Therefore,
'.ˇ/ � '.˛/ .

On the other hand, since ' is extensive, for any x 2 A we have x � '.x/ .
Moreover, since ˇ 2 ubX

�
' ŒA �

�
, we also have '.x/ � ˇ . Hence, by using the
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transitivity of X, we can infer that x � ˇ . Therefore, ˇ 2 ubX.A/ . Now, by using
that ˛ 2 lbX

�
ubX.A/

�
, we can see that ˛ � ˇ . Hence, by using the increasingness

of ', we can infer that '.˛/ � '.ˇ/ . Therefore, by the antisymmetry of X, we
actually have '.˛/ D '.ˇ/, and thus the required equality is also true.

From this theorem, we only get the following counterpart of Theorem 91.

Corollary 30. Under the conditions of Theorem 92, for any A � X, the following
assertions are equivalent :

(1) supX

�
' ŒA �

� D '
�
supX.A/

�
,

(2) supX

�
' ŒA �

� D '
�
supX

�
' ŒA �

��
.

Now, in addition to Theorems 26 and 31, we can also prove

Theorem 93. If ' is a closure operation on an inf-complete, antisymmetric goset
X and Y D ' ŒX �, then for any A � Y we have

infY.A/ D infX.A/ :

Proof. If ˛ D infX.A/, then by Corollary 29 we have ˛ D '.˛/, and hence
˛ 2 Y . Therefore, under the usual identification of singletons with their elements,
˛ D infX.A/ \ Y also holds.

On the other hand, by Theorem 31, we always have infX.A/ \ Y � infY.A/ .
Therefore, ˛ 2 infY.A/ also holds. Hence, by using Theorem 45, we can already
see that ˛ D infY.A/ is also true.

From this theorem, it is clear that in particular we also have

Corollary 31. Under the conditions of Theorem 93, the subgoset Y is also inf-
complete.

Remark 83. Hence, by Theorem 34, we can see that the subgoset Y is also sup-
complete.

Now, instead of establishing an analogue of Theorem 93 for supremum, it is
convenient to prove first some more general theorems.

Theorem 94. If ' is an idempotent operation on a goset X and Y D ' Œ X �, then
for any A � Y we have

ubY.A/ � ' Œ ubX.A/ � :

Proof. If ˇ 2 ubY.A/, then by Theorem 2 we have ˇ 2 Y and ˇ 2 ubX.A/ .
Hence, by Remark 81, we can see that ˇ D '.ˇ/, and thus ˇ 2 ' Œ ubX.A/ � .
Therefore, the required inclusion is also true.

Remark 84. By dualization, it is clear that in the above theorem we may also write
lb in place of ub .
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However, it is now more important to note that we also have the following.

Theorem 95. If ' is an extensive operation on a transitive goset X and Y D
' Œ X �, then for any A � Y we have

' Œ ubX.A/ � � ubY.A/ :

Proof. If ˇ 2 ubX.A/, then because of ˇ � '.ˇ/ and the transitivity of X, we
also have '.ˇ/ 2 ubX.A/ . Hence, since '.ˇ/ 2 Y , we can already see that '.ˇ/ 2
ubX.A/ \ Y D ubY.A/, and thus the required inclusion is also true.

Now, as an immediate consequence of the above two theorems, we can also state

Corollary 32. If ' is a semiclosure operation on a transitive, antisymmetric goset
X and Y D ' Œ X �, then for any A � Y we have

ubY.A/ D ' Œ ubX.A/ � :

However, it is now more important to note that, in addition to Theorem 95, we
can also prove the following.

Theorem 96. If ' is a lower semimodification operation on a transitive goset X
and Y D ' Œ X �, then for any A � Y we have

'
�

lbX
�
ubX.A/

� � � lbY
�
ubY.A/

�
:

Proof. Suppose that ˇ 2 lbX
�
ubX.A/

�
. If v 2 ubY.A/, then by Theorem 2 we

have v 2 Y and v 2 ubX.A/ . Hence, by using the assumed property of ˇ, we can
infer that ˇ � v . Now, since ' is increasing, we can also state that '.ˇ/ � '.v/ .

Moreover, since v 2 Y , we can see that there exists u 2 X such that v D '.u/ .
Hence, by using that ' is lower semi-idempotent, we can infer that

'.v/ D '
�
'.u/

� D ' 2.u/ � '.u/ D v :

Now, by using the transitivity of X, we can also see that '.ˇ/ � v . Therefore,
'.ˇ/ 2 lbX

�
ubY.A/

�
. Hence, since '.ˇ/ 2 Y also holds, we can already infer that

'.ˇ/ 2 lbY
�
ubY.A/

�
. Therefore, the required inclusion is also true.

Now, by using Theorems 95 and 96, we can also prove the following.

Theorem 97. If ' is a closure operation on a transitive goset X and Y D ' Œ A �,
then for any A � Y we have

' Œ supX.A/ � � supY.A/ :
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Proof. By Theorems 29, 95, and 96, and a basic fact on relations, we have

' Œ supX.A/ � D ' Œ ubX.A/ \ lbX
�
ubX.A/

�
�

� ' Œ ubX.A/ � \ '
�

lbX
�
ubX.A/

� � � ubY.A/ \ lbY
�
ubY.A/

� D supY.A/ :

Hence, it is clear that, analogously to Corollary 31, we can also state

Corollary 33. If in addition to the conditions of Theorem 97, the goset X sup-
complete, then the subgoset Y is also sup-complete.

From Theorem 97, by using Theorem 45, we can also immediately derive the
following counterpart of Theorem 93 and Corollary 29.

Theorem 98. If ' is a closure operation on a sup-complete, transitive, and
antisymmetric goset X and Y D ' Œ A �, then for any A � Y we have

supY.A/ D '
�
supX.A/

�
:

18 Generalizations of Increasingness to Relator Spaces

A family R of relations on one set X to another Y is called a relator on X to Y .
And, the ordered pair .X; Y /.R / D �

.X; Y /; R
�

is called a relator space. (For
the origins, see [65], [28], [14], [39], and the references therein.)

If in particular R is a relator on X to itself, then we may simply say that R is a
relator on X. And, by identifying singletons with their elements, we may naturally
write X.R/ in place of .X ; X /.R / , since .X ; X / D ffX g; fX ; X gg D ffX gg .

Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets [11] and uniform spaces [14] . However, they are insufficient
for several important purposes. (See, for instance, [15, 46] .)

A relator R on X to Y , or a relator space .X; Y/.R/ is called simple if there
exists a relation R on X to Y such that R D fRg. In this case, by identifying
singletons with their elements, we may write .X; Y/.R/ in place of .X; Y/.fRg/.

According to our former definition, a simple relator space X .R/ may be called
a goset (generalized ordered set). Moreover, by Ganter and Wille [15, p. 17], a
simple relator space

�
X ; Y

�
.R/ may be called called a formal context or context

space.
A relator R on X, or a relator space X.R/, may, for instance, be naturally

called reflexive if each member of R is a reflexive relation on X. Thus, we may
also naturally speak of preorder, tolerance, and equivalence relators.

For any family A of subsets of X, the family RA D f RA W A 2 A g is a
preorder relator on X . While, for any family D of pseudo-metrics on X, the family
RD D f B d

r W r > 0; d 2 D g is a tolerance relator on X.
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Moreover, if S is a family of partitions of X, then RS D f SA W A 2 S g is
an equivalence relator on X. Uniformities generated by such practically important
relators seem to have been investigated only by Levine [23] .

Now, according to Definition 12, a function f of one simple relator space X .R/

to another Y .S/ may be naturally called increasing if for any u ; v 2 X

u R v H) f .u/ S f .v/ :

Hence, by noticing that

u R v ” v 2 R.u/ ” .u ; v / 2 R;

and

f .u/ S f .v/ ” f .v/ 2 S
�
f .u/

� ” �
f .u/; f .v/

� 2 S;

that is,

f .u/S f .v/ ” f .v/ 2 .S ı f /.u/ ” . f � f /.u ; v / 2 S;

we can easily establish the following.

Theorem 99. For a function f of one simple relator space X .R/ to another Y .S/,
the following assertions are equivalent :

(1) f is increasing,
(2) f ı R � S ı f ,
(3) . f � f / Œ R � � S,
(4) f ı R ı f �1 � S,
(5) R � . f � f /�1 Œ S �,
(6) R � f �1 ı S ı f .

Proof. By the above argument and the corresponding definitions, it is clear that

.1/ ” 8 .u ; v / 2 R W . f � f /.u ; v / 2 S ” .3/

and

.1/ ” 8 u 2 X W 8 v 2 R.u/ W f .v/ 2 .S ı f /.u/

” 8 u 2 X W f ŒR.u/� � .S ı f /.u/

” 8 u 2 X W �
f ı R

�
.u/ � .S ı f /.u/ ” .2/ :

Moreover, if (2) holds, then by using that f ı f �1 � �Y we can see that

f ı R ı f �1 � S ı f ı f �1 � S ı �Y D S;

and thus (4) also holds.
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Conversely, if (4) holds, then by using that �X � f �1ı f we can similarly see
that

f ı R D f ı R ı �X � f ı R ı f �1ı f � S ı f ;

and thus (2) also holds. Therefore, (2) and (4) are also equivalent.
Now, it is enough to prove only that (3) and (2) are also equivalent to (5) and

(6), respectively.
For this, it is convenient to note that if ' is a function of one set U to another

V , then because of the inclusions �U � ' �1 ı ' and ' ı ' �1 � �V , for any
A � U and B � Y , we have

'Œ A � � B ” A � ' �1Œ B �:

That is, the set functions ' and ' �1 also form a Galois connection.
Namely, if, for instance, (2) holds, then for any x 2 X we have

f ŒR.x/� D . f ı R/.x/ � .S ı f /.x/:

Hence, by using the abovementioned fact, we can already infer that

R.x/ � f �1 Œ .S ı f /.x/ � D �
f �1 ı S ı f

�
.x/ :

Therefore, (6) also holds. While, if (6) holds, then by using a reverse argument,
we can quite similarly see that (2) also holds.

From Theorem 99, by using the uniform closure operation � defined by

R � D ˚
S � X�Y W 9 R 2 R W R � S

�

for any relator R on X to Y , we can immediately derive the following.

Corollary 34. For a function f of one simple relator space X .R/ to another Y .S/,
the following assertions are equivalent :

(1) f is increasing,
(2) S ı f 2 ˚

f ı R
��

,

(3) S 2 ˚
. f � f /Œ R �

��
,

(4) S 2 ˚
f ı R ı f �1

��
,

(5) . f � f /�1Œ S � 2 f Rg�,
(6) f �1 ı S ı f 2 f Rg�.
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Remark 85. Now, by using the notations F D f f g, R D fRg and S D fSg,
instead of (2) we may also write the more instructive inclusions

S ı F � �
F ı R /�;

�
S � ı F

�
� � �

F ı R �

�
�

;
�
S � ı F �

�
� � �

F � ı R �

�
�

:

The second one, whenever we think arbitrary relators in place of R and S , already
shows the �-invariance of the increasingness of F with respect to those relators.

From Corollary 34, by using the following obvious extensions of the operations
�1 and ı from relations to relators, defined by

R�1 D ˚
R�1 W R 2 R

�
and S ı R D ˚

S ı R W R 2 R; S 2 S
�

for any relator R on X to Y and S on Y to Z, we can easily derive the
following generalization of [46, Definition 4.1], which is also closely related to
[60, Definition 15.1] .

Definition 15. Let .X; Y /.R / and .Z; W /.S / be relator spaces, and suppose that
� is a direct unary operation for relators. Then, for any two relators F on X to Z
and G on Y to W, we say that the pair

(1)
�
F ; G / is mildly �-increasing if

��
G �

��1 ı S � ı F �
�� � R � :

(2)
�
F ; G

�
is upper �-semi-increasing if

�
S � ı F �

�� �
�
G � ı R �

��
:

(3)
�
F ; G

�
is lower �-semi-increasing if

��
G �

��1 ı S �
�� �

�
R � ı

�
F �

��1 ��
:

Remark 86. A function � of the class of all relator spaces to that of all relators is
called a direct unary operation for relators if, for any relator space .X; Y /.R /, the
value �

�
.X; Y /.R /

�
is a relator on X to Y .

In this case, trusting to the reader’s good sense to avoid confusions, we shall
simply write R � instead of R �X Y D �

�
.X; Y /.R /

�
. Thus, � is a direct, while

�1 is a non-direct unary operation for relators.
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19 Some Useful Simplifications of Definition 15

The rather difficult increasingness properties given in Definition 15 can be greatly
simplified whenever the operation � has some useful additional properties.

For instance, by using an analogue of Definition 14, we can easily establish

Theorem 100. If in addition to the assumptions of Definition 15, � is a closure
operation for relators, then

(1)
�
F ; G / is mildly �-increasing if and only if

�
G �

��1 ı S � ı F � � R � :

(2)
�
F ; G

�
is upper �-semi-increasing if and only if

S � ı F � �
�
G � ı R �

��
:

(3)
�
F ; G

�
is lower �-semi-increasing if and only if

�
G �

��1 ı S � �
�
R � ı

�
F �

��1 ��
:

Remark 87. To check this, note that an operation � for relators is a closure
operation if and only if, for any two relators R and S on X to Y , we have

U � � V � ” U � V � :

That is, the set functions � and � form a Pataki connection.

Now, by calling an operation � for relators to be inversion and composition
compatible if

�
R � ��1 D �

R�1
��

and
�
S ı R

�� D �
S � ı R

�� D �
S ı R � ��

for any relators R on X to Y and S on Y to Z, we can also easily establish

Theorem 101. If in addition to the assumptions of Definition 15, � is an inversion
and composition compatible operation for relators, then

(1)
�
F ; G / is mildly �-increasing if and only if

�
G �1ı S ı F

�� � R � :
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(2)
�
F ; G

�
is upper �-semi-increasing if and only if

�
S ı F

�� � �
G ı R

��
:

(3)
�
F ; G

�
is lower �-semi-increasing if and only if

�
G �1 ı S

�� � �
R ı F�1

��
:

Remark 88. To check this, note that if � is a composition compatible operation for
relators, then for any three relators R on X to Y , S on Y to Z, and T on Z to
W, we have

�
S ı R

�� D �
S � ı R �

��
and

�
T ı S ı R

�� D �
T � ı S � ı R �

��
:

From the above theorem, it is clear that in particular we also have

Corollary 35. If in addition to the assumptions of Definition 15, � is an inversion
and composition compatible closure operation for relators, then

(1)
�
F ; G / is mildly �-increasing if and only if

G �1ı S ı F � R � :

(2)
�
F ; G

�
is upper �-semi-increasing if and only if

S ı F � �
G ı R

��
:

(3)
�
F ; G

�
is lower �-semi-increasing if and only if

G �1 ı S � �
R ı F�1

��
:

Concerning inversion compatible operations, we can also prove the following.

Theorem 102. If in addition to the assumptions of Definition 15, � is an inversion
compatible operation for relators, then

(1)
�
F ; G / is mildly �-increasing with respect to the relators R and S if

and only if
�
G ; F / is mildly �-increasing with respect to the relators R�1

and S �1 .
(2)

�
F ; G / is upper �-semi-increasing with respect to the relators R and S

if and only if
�
G ; F / is lower �-semi-increasing with respect to the relators

R�1 and S �1 .
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Proof. To prove the “only if part” of (2), note that by the assumed inversion
compatibility of � and a basic inversion property of the element-wise composition
of relators, we have

��
S � ı F �

�� ��1 D
��

S � ı F �
��1 ��

D
��

F �
��1 ı

�
S �

��1 ��

D
��

F �
��1 ı �

S �1
�� ��

;

and quite similarly

��
G � ı R �

�� ��1 D
��
R�1

�� ı
�
G �

��1 ��
:

Therefore, if
�
S � ı F � �� � �

G � ı R� �
holds, then we also have

��
F �

��1 ı �
S �1

�� �� �
��
R�1

�� ı
�
G �

��1 ��
:

Remark 89. Such types of arguments indicate that we actually have to keep in mind
only the definition of upper �-semi-increasingness, since the other two ones can be
easily derived from this one under some simplifying assumptions.

Remark 90. Unfortunately, Theorems 102 and 101 have only a limited range of
applicability since several important closure operations on relators are not inversion
or composition compatible.

Remark 91. However, it can be easily seen that a union-preserving operation �
for relators is inversion compatible if and only if f R�1 g� � �fRg� ��1

for any
relation R on X to Y .

Moreover, a closure operation � for relators is composition compatible if and
only if

S ı R � � �
S ı R

��
and S � ı R � �

S ı R
��

for any two relators R on X to Y and S on Y to Z .

Remark 92. By using the latter facts, one can more easily see that, for instance, the
uniform closure operation � is inversion and composition compatible.
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20 Some Further Important Unary Operations for Relators

In addition to the operation �, the functions #, ^, and M, defined by
R # D ˚

S � X�Y W 8 A � X W 9 R 2 R W R Œ A � � S Œ A �
�
,

R ^ D ˚
S � X�Y W 8 x 2 X W 9 R 2 R W R .x/ � S .x/

�
,

and
R M D ˚

S � X�Y W 8 x 2 X W 9 u 2 X W 9 R 2 R W R .u/ � S .x/
�

for any relator R on X to Y , are also important closure operations for relators.
Thus, we evidently have R � R � � R # � R ^ � R M for any relator R on

X to Y . Moreover, if in particular X D Y , then in addition to the above inclusions
we can also easily prove that R 1 � R � 1 � R 1 � � R �, where

R 1 D ˚
R 1 W R 2 R

�
:

In addition to 1, it is also worth considering the operation @, defined by

R @ D ˚
S � X 2 W S 1 2 R

�

for any relator R on X. Namely, for any two relators R and S on X, we have

R 1 � S ” R � S @ :

This shows that the set functions 1 and @ also form a Galois connection.
Therefore, 1 D 1 @ 1, and 1 @ is also closure operation for relators.

Moreover, for any relator R on X to Y , we may also naturally define

R c D ˚
R c W R 2 R

�
;

where R c D X �Y n R . Thus, for instance, we may also naturally consider the
operation ~ D c � c which seems to play the same role in order theory as the
operation � does in topology.

Unfortunately, the operations ^ and M are not inversion Compatible; therefore,
in addition to these operations we have also to consider the operations _ D ^ � 1

and O DM �1, which already have very curious properties.
For instance, the operations __ and OO coincide with the extremal closure

operations � and �, defined by

R � D ˚
ıR

��
; where ıR D

\
R;

and

R � D R if R D ˚
X�Y

�
and R � D P .X�Y / if R ¤ ˚

X�Y
�
:
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Because of the above important operations for relators, Definition 15 offers an
abundance of natural increasingness properties for relations. Moreover, from the
results of Sects. 15 and 16, one can also immediately derive several reasonable
definitions for the increasingness of relations.

However, in [58], a relation F on a goset X to a set Y has been called
increasing if the induced set-valued function F˘ is increasing. That is, u � v

implies F.u/ � F.v / for all u ; v 2 X. Thus, it can be easily seen that F is
increasing if and only if F �1 is ascending valued in the sense that F �1.y/ is an
ascending subset of X for all y 2 Y .

If R is a relator on X to Y , then by extending the corresponding parts of
Definitions 1 and 2 ,we may also naturally define

LbR.B/ D ˚
A � X W 9 R 2 R W A�B � R

�
and lbR.B/ D X \ LbR.B/;

and

IntR.B/ D ˚
A � X W 9 R 2 R W R ŒA � � B

�
and intR.B/ D X \ IntR.B/

for all B � Y . However, these relations are again not independent of each other.
Namely, by the corresponding definitions, it is clear that

A�B � R ” 8 a 2 A W B � R.a/ ” 8 a 2 A W R.a/c � Bc

” 8 a 2 A W Rc.a/ � Bc ” Rc Œ A � � Bc:

Therefore, we have

A 2 LbR.B/ ” A 2 IntRc.Bc/ ” A 2 �
IntRcıC �

.B/ :

Hence, we can already see that

LbR D IntRcıC ; and thus also lbR D intRcıC :

These formulas, proved first in [47], establish at least as important relationship
between order and topological theories as the famous Euler formulas do between
exponential and trigonometric functions [38, p. 227] .

To see the importance of the operations # and #�=c # c, by using Pataki
connections on power sets [50], it can be shown that, for any relator R on X to Y ,
S D R #

�
S D R #� �

is the largest relator on X to Y such that IntS D IntR�
LbS D LbR

�
.

Concerning the operations ^ and �̂=c ^ c, we can quite similarly see that
S D R^ �

S D R�̂ �
is the largest relator on X to Y such that intS D intR�

lbS D lbR

�
. Moreover, if in particular R is a relator on X, then some similar

assertions holds for the families

�R D ˚
A � X W A 2 IntR.A/

�
and `R D ˚

A � X W A 2 LbR.A/
�

:
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However, if R is a relator on X, then for the families

TR D ˚
A � X W A � intR.A/

�
and LR D ˚

A � X W A � lbR.A/
�

there does not exist a largest relator S on X such that TS D TR

�
LS D LR

�
.

In the light of this and some other disadvantages of the family TR, it is rather
curious that most of the works in topology and analysis have been based on open
sets suggested by Tietze [64] and standardized by Bourbaki [5] and Kelley [18] .

Moreover, it also a striking fact that, despite the results of Pervin [34], Fletcher
and Lindgren [14], and the present author [52], topologies and their generaliza-
tions are still intensively investigated, without generalized uniformities, by a great
number of mathematicians.

The study of the various generalized topologies is mainly motivated by some
recent papers of Á. Császár. For instance, the authors of [7, 25] write that : “The
theory of generalized topological spaces, which was founded by Á. Császár, is one
of the most important developments of general topology in recent years.”

For any relator R on X to Y , we may also naturally define

ER D ˚
B � Y W intR.B/ ¤ ; �

and ER D ˚
B � Y W lbR.B/ ¤ ; �

:

In a relator space X.R /, the family ER of all fat sets is frequently a more
important tool than the family TR of all topologically open sets. Namely, if R is
a relator on X to Y , then it can be shown that S D R M is the largest relator on
X to Y such that ES D ER .

Moreover, if R is a relator on X to Y , then for any goset � , and nets x 2 X �

and y 2 Y � ,we may naturally define x 2 LimR .y/ if the net .x ; y/ is eventually
in each R 2 R in the sense that .x ; y/�1 Œ R � 2 E� . Now, for any a 2 X, we may
also naturally write a 2 limR .y/ if .a/ 2 LimR .y/, where .a/ is an abbreviation
for the constant net .a/� 2� D � � fag .

In a relator space .X; Y /.R /, the convergence relation LimR, suggested by
Efremović and Šwarc [13], is a much stronger tool than the proximal interior
relation IntR suggested by Smirnov [37] . If R is a relator on X to Y , then it can
be shown that S D R � is the largest relator on X to Y such that LimS D LimR .

Now, following the ideas of Császár [8], for any relator R on X to Y , we may
also naturally consider the hyperrelators

HR D ˚
IntR W R 2 R

�
and KR D ˚

LimR W R 2 R
�

:

By the corresponding definitions, it is clear that

IntR D S

R2R

IntR and LimR D T

R2R

LimR :

Therefore, the above hyperrelators are much stronger tools in the relator space
.X; Y /.R / than the relations IntR and LimR .
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For instance, a net y 2 Y � may be naturally called convergence Cauchy with
respect to the relator R if limR .y/ ¤ ; for all R 2 R. Hence, since

limR .y/ D T

R2R

limR .y/;

we can at once see that a convergent net is convergence Cauchy, but the converse
statement need not be true.

However, it can be shown that the net y is convergent with respect to the relator
R if and only if it convergence Cauchy with respect to the topological closure R ^
of R . (See [43].) Therefore, the two notions are in a certain sense equivalent.

The same is true in connection with the notions adherent and adherence Cauchy,
which are defined by using D� instead of E� . Moreover, it is also noteworthy that
a similar situation holds in connection with the concepts compact and precompact .
(See [45].)

Now, according to the ideas of Száz [59], we may also naturally consider
corelator spaces, mentioned in Sect. 2, instead of relator spaces. However, the
increasingness properties (1) and (3) considered in Definition 15 cannot be imme-
diately generalized to such spaces. Namely, in contrast to relations, the ordinary
inverse of a correlation is usually not a correlation.

Finally, we note that, in addition to the results of Sect.17, it would also be
desirable to to establish some topological properties of closure operations by
supplementing the results of Sect. 16. Moreover, it would be desirable to extend
the notion of closure operations to arbitrary relator spaces.

However, in this direction, we could only observe that a unary operation ' on a
simple relator space X.R/ is extensive if and only if ' � R . Moreover, ' is lower
semi-idempotent if and only if ' j ' Œ X � � R�1 .

Acknowledgements The work of the author was supported by the Hungarian Scientific Research
Fund (OTKA) Grant K-111651.

References

1. Birkhoff, G.: Rings of sets. Duke Math. J. 3, 443–454 (1937)
2. Birkhoff, G.: Lattice Theory, vol. 25. Amer. Math. Soc. Colloq. Publ., Providence, RI (1967)
3. Boros, Z., Száz, Á.: Finite and conditional completeness properties of generalized ordered sets.

Rostock. Math. Kolloq. 59, 75–86 (2005)
4. Boros, Z., Száz, Á.: Infimum and supremum completeness properties of ordered sets without

axioms. An. St. Univ. Ovid. Constanta 16, 1–7 (2008)
5. Bourbaki, N.: General Topology, Chaps. 1–4. Springer, Berlin (1989)
6. Brøndsted, A.: Fixed points and partial orders. Proc. Am. Math. Soc. 60, 365–366 (1976)
7. Cao, C., Wang, B., Wang, W.: Generalized topologies, generalized neighborhood systems, and

generalized interior operators. Acta Math. Hungar. 132, 310–315 (2011)
8. Császár, Á.: Foundations of General Topology. Pergamon Press, London (1963)
9. Császár, Á.: �-Connected sets. Acta Math. Hungar. 101, 273–279 (2003)



Generalized Ordered Sets 615

10. Császár, Á.: Ultratopologies generated by generalized topologies. Acta Math. Hungar. 110,
153–157 (2006)

11. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press,
Cambridge (2002)

12. Denecke, K., Erné, M., Wismath, S.L. (eds.): Galois Connections and Applications. Kluwer
Academic Publisher, Dordrecht (2004)
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