Taylor’s Formula and Integral Inequalities
for Conformable Fractional Derivatives

Douglas R. Anderson

In Honor of Constantin Carathéodory

Abstract We derive Taylor’s theorem using a variation of constants formula for
conformable fractional derivatives. This is then employed to extend some recent and
classical integral inequalities to the conformable fractional calculus, including the
inequalities of Steffensen, Chebyshev, Hermite—Hadamard, Ostrowski, and Griiss.

1 Taylor Theorem

We use the conformable a-fractional derivative, recently introduced in [6, 7, 9],
which for @ € (0, 1] is given by:

f(e™) —f ()
&

Dof (1) := lim . Dof(0) = 1lim Duf(1). (1)
&> t—0

Note that if f is differentiable, then
Dof (1) = 17" (0). )

where f'(¢) = lima—o[f(t + &) — f(D)]/e.

We will consider Taylor’s Theorem in the context of iterated fractional differ-
ential equations. In this setting, the theorem will be proven using the variation of
constants formula, where we use an approach similar to that used for integer-order
derivatives found in [8], and different from that found in Williams [14], where the
Riemann-Liouville fractional derivative is employed. With this in mind, we begin
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this note with a general higher-order equation. For n € Ny and continuous functions
pi - [0,00) - R, 1 < i < n, we consider the higher-order linear «-fractional
differential equation:

n
Ly=0, where Ly=D)y+ ZpiDg_iy, 3)

i=1

where Dy = D' !(D,y). A function y : [0,00) — R is a solution of Eq.(3)
on [0, 00) provided y is n times «a-fractional differentiable on [0, co0) and satisfies
Ly(f) = O for all ¢ € [0, 00). It follows that D]y is a continuous function on [0, 00).

Now let f : [0,00) — R be continuous and consider the nonhomogeneous
equation:

Dy (1) + Y pi)Dy(0) = f(1). )
i=1

Definition 1. We define the Cauchy function y : [0, 00) x [0,00) — R for the
linear fractional equation (3) to be, for each fixed s € [0, c0), the solution of the
initial value problem:

Ly=0, Diy(s,s)=0, 0<i<n-2, Dg_ly(s,s) = 1.

Remark 1. Note that

1 o — e\
y.5) = (n—l)!( o )

is the Cauchy function for D}, = 0, which can be easily verified using (2).

Definition 2. Let « € (0,1] and 0 < a < b. A function f : [a,b] — R is
a-fractional integrable on [a, b] if the integral

/abf(t)dat = /abf(t)t“‘ldt

exists and is finite.

Theorem 1 (Variation of Constants). Let o € (0,1] and s,t € [0,00). If f is
continuous, then the solution of the initial value problem:

Ly =f(). Diy(s)=0, 0<i<n-—1
is given by

¥() = [ YO (D)dat,

where y(t, T) is the Cauchy function for (3).
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Proof. With y defined as above and by the properties of the Cauchy function, we
have

Diy(t) = [ Diy(t D (D)dat + DI~ y(t. 0F (1) = / Dy (e 1) (1) dat

forO0<i<n-—1,and
t
Diy(r) = / Dy(t.)f (1)dat + D (1, 0 (1)

t
= [ Dyt @de +0.
It follows from these equations that
Dfxy(s)zO, 0<i<n-—1

and
L) = [ Lyt D (D)da +F(0) = F0),

and the proof is complete. O

Theorem 2 (Taylor Formula). Let o € (0,1] and n € N. Suppose f is (n + 1)
times a-fractional differentiable on [0, 00), and s,t € [0, 00). Then we have

n

AN 4 te e\t
0= 5 (55) oo+ [(55F) oo

k=0

Proof. Let g(t) := DT!f(#). Then f solves the initial value problem:
Dgﬂx =g, D];x(s) = D’;f(s), 0<k<n.

Note that the Cauchy function for D**1y = 0 is

1 (% —s*\"
y(t,S) = _' ( ) .
n. o

By the variation of constants formula,

10 =u) + / (’ " ) e(D)dar,
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where u solves the initial value problem:
Dgﬂu =0, Dju(s)=Dyf(s), 0=<m=n. ®))

To validate the claim that u(r) = Y j_o & (’a_“a )k DYf(s), set

o

"1 =\,
w(?) :ZZE( - )D’;f(s).

Then D*'w = 0, and we have that

n o o\ k—m
Diw(y =Y (k_lm)! (t as ) DEf(s).

k=m

It follows that

n 1 a o\ k—m
Diw) = Y o (o) D0 =D

k=m

for 0 < m < n. We consequently have that w also solves (5), and thus u = w by
uniqueness. O

Corollary 1. Leta € (0, 1] and s, r € [0, 00) be fixed. For any t € [0, 00) and any
positive integer n,

| A "_i 1 o — 5o\ g0 ek
n! o _kzok!(n—k)! o o ’

Proof. This follows immediately from the theorem if we take f(f) = 1 (“=2)" in

Taylor’s formula. It can also be shown directly. O

2 Steffensen Inequality

In this section we prove a new «-fractional version of Steffensen’s inequality and of
Hayashi’s inequality. The results in this and subsequent sections differ from those
in [10, 12, 13, 15].

Lemmal. Leta € (0,1] and a,b € R with 0 < a < b. Let A > 0 and let
g : [a, b] — [0, A] be an a-fractional integrable function on [a, b]. If

_ b
(= “(b—za)/ ¢(f)dat € [0,b —d), 6)

T A(b® —
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then

b b a+t
[ AdO,tf/ 9(1) datff A dyt. )
b—t a a

Proof. Since g(t) € [0, A] for all € [a, b], £ given in (6) satisfies

_alb—a a) _a(b—a)b"‘—a _
0<¢ = = a)/ ()dt< le —— =b-a.

As o € (0, 1] we have that 1*~! is a decreasing function on [a, b] or (a, b] if a = 0.

Thus using the fact that d,t = t*~'dt, we have the following inequalities, which are
average values, namely,

1 b 1 b 1 a+tl
- 1dyt < ldyt < - 1 dgt.
() sy [ransg [

This implies that
b /{ b a+t
/ Adyt < /Adat§/ A dyt,
b—t b—a a a

which leads to (7) via (6). O

The next theorem is known as Steffensen’s inequality if A = 1, and for general
A > 0, it is known as Hayashi’s inequality [1].

Theorem 3 (Fractional Hayashi-Steffensen Inequality). Ler o« € (0,1], A > 0,
and a,b € Rwith0 < a < b. Let f : [a,b] - R and g : [a,b] — [0,A] be
a-fractional integrable functions on [a, b].

(i) Iff is nonnegative and nonincreasing, then

Al s < / F @80t < A / S, ®)
b—L
where £ is given by (6).
(ii) Iff is nonpositive and nondecreasing, then the inequalities in (8) are reversed.

Proof. For (i), assume f is nonnegative and nonincreasing; we will prove only the
case in (8) for the left inequality; the proof for the right inequality is similar and
relies on (7). By the definition of £ in (6) and the conditions on g, we know that (7)
holds. After subtracting within the left inequality of (8), we see that

b b
[ FOgO)dat — A / FO)dat
a b—L

b—{

b
= [ s0soda= [ ro@- o

a
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b—L

b
> [ st — -0 /b A= g0

a
b—{

b—{L
2 fgrdat —f o — ) / g(0)dat

a
b—{

= (f(0) = f(b—0) g(D)dut = 0,

a

since f is nonincreasing, and f and g are nonnegative. Therefore, the left-hand side
of (8) holds.

For (ii), assume f is nonpositive and nondecreasing; we will prove only the case
in (8) for the reversed right inequality; the proof for the reversed left inequality is
similar and also relies on (7). We see that we have

b a+t
/ FOg(O)dat — A [ FO)dat

b a+{

- / FO)g(t)dat + / FO(g(0) — A)dat
a+{ a
b a+t

> [ FO8Odat +f(a + 0) / (8(1) — A)dat
a+t a

%) b b

% / 00t ~fla+0) / £

b
— [ G0 ~fla+ )t =0,
a+t
since f is nondecreasing and nonpositive, and g is nonnegative. Therefore the right-
hand side of the reversed (8) holds. ad

Remark 2. The requirement in Steffensen’s Theorem 3 that f be nonincreasing
when f is nonnegative is essential. Leta = 0,b =1 = A, o € (0, 1), g(¢t) = ¢, and

f(t) =179 Then £ = T+a> and if (8) were to hold in this case, we would need
1 1 4
/ 1%yt < / %yt < / 1'%yt
+= 0 0
to hold, that is to say
o 1 1 o
=1- < -< .
l+o I+ 27 14«

But this holds only if & = 1, a contradiction even if we reverse the inequalities.
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3 Taylor Remainder

Let @ € (0, 1] and suppose f is n + 1 times «-fractional differentiable on [0, 00).
Using Taylor’s Theorem, Theorem 2, we define the remainder function by

R—l,f(" S) Z:f(S),

and forn > —1,

n k o ‘
Ryf(t,s) :=f(s) — Z Dz{!(l) (s - ;a)

k=0

_ 1 s(sa;fa) DI f(1)dyt. ©)

n! J;

Lemma 2. Let @ € (0, 1]. The following identity involving a-fractional Taylor’s
remainder holds:

b Dg+lf(s) (ta — 5

n+1 t b
Y o ) dasz/a‘ R,lf(a,s)das—l—/; Ry p(b, s)dys.

Proof. We proceed by mathematical induction on n. For n = —1,

/ab Dof (5)das = /abf(s)das = /atf(S)das + /tbf(s)das.

Assume the result holds forn = k — 1:

b Dkf(s) (1% — @\ * ' b
/ D"]S( ) ( ) daS = / Rk—l,f(av S)daS + / Rk—l-f(b’ S)das'
a . a !

o

Let n = k. Using integration by parts, we have

bDl(;+lf(S) P k'Hd 3 D](;f(b) L k+1
/a ( @ ) “S‘(k+1)!( )

k + 1)! o
D’(;f(a) 2 — g\t
C(k+ 1) ( o )

bk a _ a\k
+ [ _Daf(s) L= dys.
a k! o
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By the induction assumption,

b Dk'Hf(s) (la _ Sa)k-H /t b
a dos = [ Ricry(as)das + / Ricr (b, 5)das
AERE . Y , !

N Dl(;f(b) (ta _ba)k-i-l

(k+ 1) o
Dif(a) (1 —a* ket
k1) ( « )

t b
= / Rk_lf(a, §)dys + / Rk_lf(b, §)dgys
a t

t s o k
| DAF®) (s _b ) hos

k! b o
- Dif(a) ['(s* —a” kd i
k', o *

t k a ¢ — gv k
= / |:Rk_1f(a, S) - D“I];( ) ( o ) i| daS
b k a _ pa\k
[ [pevieo 20 (2 o

t b
= / Rig(a.s)dos + / Rip(b. 5)dys.

a t

This completes the proof. O

Corollary 2. Leta € (0,1]. Forn > —1,

b pn+l o _ o\ ntl b
ARI0) (a s) dos = / Ry (b, $)das,

. (m+ 1! o
b Dn+1f(s) pe — s n+1 b
a ( ) dys = / R, s(a,s)dys.
« (m+1)! o PR

4 Applications of the Steffensen Inequality

Let @ € (0, 1]. In the following we adapt to the a-fractional setting some results
from [5] by applying the fractional Steffensen inequality, Theorem 3.
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Theorem 4. Let o € (0,1] and f : [a,b] — R be an n + 1 times a-fractional
differentiable function such that DV\f is increasing and D!f is decreasing on
[a. b]. If

then

" b
D'f(a+ ) —D'f(a) < (n+ 1)!(baiaa) +1/ Ry (a, s)dys

< Dof(b) = Df (b = ©).

If D'YIf is decreasing and D\f is increasing on [a, b], then the above inequalities
are reversed.

Proof. Assume D"*1f is increasing and D!'f is decreasing on [a, b], and let
. +1
F:=-D)"'f.

Because D} f is decreasing, DZH f < 0, so that F > 0 and decreasing on [a, b].
Define

be — n+1
g(t) = (b"‘ —a"‘) e[0,1], te€la,b], n>-1.

Note that F, g satisfy the assumptions of Steffensen’s inequality (i), Theorem 3, with
A = 1; using (6),

alb—a) [ b—a
(= —— Ddyt = ——,
el

and

b b b — ¥ n+1 a+t
- [ ot < - [ o ( ) dt == [ DL
b —a a

) a b

By Corollary 2 this simplifies to

o
be — q»

n b
DIF(H)|“Et < (n + 1)!( ) i / Rup(a.0dot < DD, .

This completes the proof of the first part. If D'T!f is decreasing and Df is
increasing on [a, b], then take F := D!'t!f. O
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The following corollary is the first Hermite—Hadamard inequality, derived from
Theorem 4 with n = 0.

Corollary 3 (Hermite—-Hadamard Inequality I). Lera € (0, 1] andf : [a,b] - R
be an a-fractional differentiable function such that D,f is increasing and f is
decreasing on [a, b]. Then

a+b a+b
(“50) = i [ r0s <0 5@ -5 (50,

If Dyf is decreasing and f is increasing on [a, D], then the above inequalities are
reversed.

Theorem 5. Let o € (0,1] and f : [a,b] — R be an n + 1 times a-fractional
differentiable function such that

m<Df <M

on [a, b] for some real numbers m < M. Then

m b —a*\""? M-—m [b*— (b—0) nt2 b
< Rn £l da
(n+2)!( o ) +(n+2)!( o ) —/a 7(@. 0 dat

.M (b“‘—a“)"+2+ m—M (b“—(a—i—ﬁ)"‘)”“ a0
~ (n+2)! a (n+2)! o ’

where £ is given by:

o

=)

alb—a)
(b —a) (M -

1 be — n+1
F(t)'z(n+1)!( p ) ’

o n+1
Ko = (f() o (550 )

G(t) := DM k(1) = Aﬁ (DL*'f() —m) € [0.1].

{ =

(DZf(b) DIf(@) —m (
o

Proof. Let

Observe that F' is nonnegative and decreasing, and

o

/” G(t)dyt = ﬁ (Dgf(b) —D'f(a)—m (b ;a)) .
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Since F, G satisfy the hypotheses of Theorem 3(i), we compute the various integrals
given in (8), after using (6) to set

alb—a) [°
{= m/a G(t)dyt.
We have

b Y Y i L S 1 e CEt i Y
[Lrowr= [ (507) wr=m (e )

and
a+t 3 1 b — g n+2 b — (a + Z)a n+2
/a F)dat = (n +2)! [( « ) a (T) } '

Moreover, using Corollary 2, we have

b 1 by _ o\t "
F()G(t)d,t = D! 1) — m) dyt
[ Focods = Gt [ (F27) - @tro-m)
1 b m b —a*\"t?
= — | Rys(a,t)dyt — .
M—m/,; 7(@: 1)de (M—m)(n+2)!( o )
Using Steffensen’s inequality (8) and some rearranging, we obtain (10). O

Corollary 4. Let o € (0,1] and f : [a,b] — R be an a-fractional differentiable
Sfunction such that

m<Dy,f <M

on [a, b for some real numbers m < M. Then
m [(b* —a® 2+M—m b — (b —0)*\?
2 o 2 o
b bY — a%
< [ rodr g0 (“5)

a a2 _ o a2
<g(b a)+m M(b (a—i—ﬁ))’ (11

-2 o 2 o

where £ is given by:

a(b—a) b* —a*
O —a) (M —m) (f(b) _f(“)_’"( e ))

Proof. Use the previous theorem with n = 0 and Corollary 2. O

{ =
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5 Applications of the Chebyshev Inequality

Let o € (0, 1]. We begin with Chebyshev’s inequality for ¢-fractional integrals, then
apply it to obtain a Hermite—Hadamard-type inequality.

Theorem 6 (Chebyshev Inequality). Let f and g be both increasing or both
decreasing in [a, b], and let o € (0, 1]. Then

b b b
/a syt = / F(t)dyt / ¢()dat.

If one of the functions is increasing and the other is decreasing, then the above
inequality is reversed.

Proof. The proof is very similar to the classical case with ¢ = 1. O

The following is an application of Chebyshev’s inequality, which extends a
similar result in [5] for g-calculus to this a-fractional case.

Theorem 7. Let o € (0, 1]. Assume that D"*'f is monotonic on [a, b]. If D"T'f is
increasing, then

’ M " o _ N+l
0= / Ry p(a, )dyt — (D"‘f(b) _Daf(a)) (b a )

(n+ 2)! P

_ (D@ - Dyt B) (b —a* "
T |G

If DT 'f is decreasing, then the inequalities are reversed.

Proof. The situation where D'*!f is decreasing is analogous to that of Dt!f
increasing. Thus, assume D"*!f is increasing and set

1 b g n+1
F@) = D@, G = (n+1)z( @ ) '

Then F is increasing by assumption, and G is decreasing, so that by Chebyshev’s
inequality:

b b b
/ F(t)G(t)dyt < bﬂtiaa / F(t)dyt / G(t)dyt.

By Corollary 2,

b B bDZ—Hf(t) b — n+1 B b
/QF(I)G(t)dat— ’ (n+l)!( " ) dat_[a R, s(a, t)dyt.
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We also have

. ) ) b ~ 1 e n+2
/a F(l‘)dat = Daf(b) - Daf(a)v /a G(t)dat - (n + 2)! ( o ) '

Thus Chebyshev’s inequality implies

, - n+2
/ R’Lf(a’ t)d“t = be iaa (Dgf(b) - Dgf(a)) (l’l —i 2)' ( o - ) ’

which subtracts to the left side of the inequality. Since D"t !f is increasing on [a, b],
Dg“f(a) b — g n+2 - Dgf(b) _sz(a) b — a“ n+1
(n+2)! o (n+2)! o

_ D) (b —a "
- (n+2)!( o ) '

and we have

b n _D'f(a Ot_aa el
/ Rnf(a,t)dat—(D“f(b) DJ()) (b )

(n+2)! o
. Dby (b —a\"T?
2/ Rup(a. t)dat — (;: +f2()!) ( O‘a ) |

Now Corollary 2 and D" If is increasing imply that

b prtlecp Y — n+1 b
a J( )( ) datZ/ Ry s(a, Ddyt
.« (m+ 1! o P

>

b pn+1 _ n+1
DY@ (b =\
v e

which simplifies to

DiFYf(b) (b —a* " _ (P Dit'f(a) (b —a*\""?
(n+2)! ( o ) Z/a Rl Dot = 20700 ( o ) ‘

This, together with the earlier lines, gives the right side of the inequality. O

Corollary 5 (Hermite—-Hadamard Inequality II). Ler « € (0,1]. If Dyf is
increasing on [a, b), then

o

b()(_a()l

&) +/@
e

b
/ f)dyt < (12)

If Dyf is decreasing on [a, b), then the inequality is reversed.
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Remark 3. Combining Corollary 3 with Corollary 5, we can state the following. If
a € (0,1] andf : [a, b] — R is an «-fractional differentiable function such that D,f
is increasing and f is decreasing on [a, b], then

ate o« F(b) +f(@)
f( 2 )Sba_aa/a.f(t)datST.

If o« = 1 this is the Hermite—Hadamard inequality:

f(a—l—b)<;/bf(t)dt§f(b);f(a)’

2 “b—a
which holds for all convex functions f : [a,b] — R. In the a-fractional case,

however, the assumption that f is decreasing on [a, b] seems to be crucial. Let
[a.b] = [0,1], @ = 1/2, and f(t) = %£*/%. Then f is increasing and convex on

[0, 1], but
a+b 1 2 /1% 1
(457)=r(2)-30) -3

1 ['2 b
=—/ prpmig - /f(t)dat.

2 0 3 b¥ — a%

6 Ostrowski Inequality

In this section we prove Ostrowski’s a-fractional inequality using a Montgomery
identity. For more on Ostrowski’s inequalities, see [3] and the references therein.

Lemma 3 (Montgomery Identity). Let a,b,s,t € Rwith 0 < a < b, and let
f i [a, b] = R be a-fractional differentiable for « € (0, 1]. Then

o b o b
£ = / F()dus + / p(t. )Daf (5)das (13)
be — g® B b* — g® B
where
fod < g <t
ts)i=1{ o =70 14
p(t.s) {S;b r<s<b (14)

Proof. Integrating by parts, we have

/ I (sa - “a) Daf (5)dus = “—“ () — / ' F5)dus
a a a

o
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and

b o _ pu bY — @ b
[ (555 Do = =550 [ ronds
' o o '

Adding and solving for f yields the result. O

Theorem 8 (Ostrowski Inequality). Let a,b,s,t € Rwith 0 < a < b, and let
f :la, b] = R be a-fractional differentiable for a € (0, 1]. Then

M a o2 o 02
S a0 a9)

where

M := sup |Dy,f(1)].
t€(a,b)

This inequality is sharp in the sense that the right-hand side of (15) cannot be
replaced by a smaller one.

Proof. Using Lemma 3 with p(t, s) defined in (14), we see that

b
p(t)— s [ 1

b
e | PP s

bot
M t b
“ ( / dus + / das)
b* —a* a t
Ma [' 5% —a® 4 +/1’ b* — 5% 4
s oS
b* —a* \J, o f o
Mo 1 (s —a*\* 1 1 [b*—s*\?p
T —a E( o ) a_i( o ) t
M
(=) + b = )]
Now p(t,a) = 0, so the smallest value attaining the supremum in M is greater than

20 (b* — a%) [
a. To prove the sharpness of this inequality, let (1) = t*/a,a =t1,b =t =t. It
follows that D,f(#) = 1 and M = 1. Examining the right-hand side of (15), we get

s — g §4 — p

IA

o a2 o oz (tal_tcl)[)2 _tg_t(i‘(
[ —ar v o -] = s =

M
200 (b* — a%)

Starting with the left-hand side of (15), we have
a g
g e
1 o 2
a (t% - r?) (ﬂ)

5]

13|
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I 1 65— 13"
E‘(t%—rf)( 2a )‘
* 41

5_( 2« )‘

n-4

2

Therefore, by the squeeze theorem, the sharpness of Ostrowski’s inequality is
shown. O

7 Griiss Inequality

In this section we prove the Griiss inequality, which relies on Jensen’s inequality.
Our approach is similar to that taken by Bohner and Matthews [2].

Theorem 9 (Jensen Inequality). Ler « € (0,1] and a,b,x,y € [0,00). If
w:R—>Rand g : R — (x,y) are nonnegative, continuous functions with
fah w(t)dyt > 0, and F : (x,y) — R is continuous and convex, then

o (L O80dat [ wOF(g(0)dot
fabw(t)dat B fa” w(t)dyt

Proof. The proof is the same as those found in Bohner and Peterson [4, Theo-
rem 6.17] and Rudin [11, Theorem 3.3] and thus is omitted. O

Theorem 10 (Griiss Inequality). Let a,b,s € [0,00), and let f, g : [a,b] — R be
continuous functions. Then for o € (0, 1] and

my < f(t) < My, my < g(t) < Ma, (16)

‘f / F0)gt)dat = (o— / f(t)dyt [ g(1)dat

< Z(Ml —my)(M; — my).

we have

Proof. Initially we consider an easier case, namely, where f = g and
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If we define
Z‘ —
v(t) := [h—m [0, 1],
—m

then f(t) = m; + (M; — my)v(¢). Since

b b o o
/ vz(t)datff v(z)dat:%,

we have

2

b b
100 = 52— | f2(t)dar—(bafaa [ f(t)dat)

b
__ /[m1+(M1—m1)v(t)12(r>dat

b® —a®

1
< —-mM; = 7 [(My —m1)* — (M) + my)?]

1
< Z(Ml —my)*.

Now consider the case:

o
b — qv

ri=

b
/ F)dat £ 0.

where r € R. If we take h(¢) := f(f) — r, then h(?) € [my —r,M; — r] and

o b o b o b
ba—aa/; h(t)dat:b“—a"‘/a (f(t)_r)dat:r_b“—a“/a d,t = 0.

Consequently / satisfies the earlier assumptions and so

I(h,h) < i[M1 —r—(m - = %(M1 —m)?.

Additionally we have

o

ba_aa

I(h, h) =

o b 2 _
= [ Pode=16..

b
[o0-rran=-rs+ =

As a result,

IG.) = I(h.h) < i My —m)’.



42 D.R. Anderson

Let us now turn to the case involving general functions f and g under assump-

tions (16). Using
— /f(t)d t/ g(Ddyt

and the earlier cases, one can easily finish the proof as in the case with « = 1. See
[2] for complete details to mimic. O

Corollary 6. Leta € (0,1], a,b,s,t € [0,00), and f : [a,b] — R be a-fractional
differentiable. If D,f is continuous and

I(f,g) =

m < Dyf(t) <M, tE€la,b],

then

2t —a* - b*
| | @ st

Sl(b"—“ )(M—m). (17)
4 o

o

forallt € [a, b].

Proof. Using Lemma 3 Montgomery’s identity, we have

e / p(t, s)Dyf (s)dys (18)
for all ¢ € [a, b], where p(z, s) is given in (14). Now for all t, s € [a, b], we see that
o © g
=p(t.s) = -

Applying Theorem 10 Griiss’ inequality to the mappings p(, -) and D,f, we obtain

ia“ /abp(t, $)Dof (5)dys — (baaﬁ)z/ahl’(fs s)das/abDJ(s)das

<1(ta_aa—ta_ba)(M—m)zl(ba_“a)(M—m). (19)
o 4 o

o

Computing the integrals involved, we obtain

a N2 [ 2 — ¥ — b
fs)dys = =2 7
(ba—aa> /ap( Mas = =
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and

b
/ Daf (5)dus = f(B) — f (),

a

so that (17) holds, after using (18) and (19). O

Compare the following corollary with Corollaries 3 and 5.

Corollary 7 (Hermite-Hadamard III). Let ¢ € (0,1], a,b,s,t € [0,00), and

f : [a, b] = R be a-fractional differentiable. If Df is continuous and
m < D,f(t) <M, t¢€]a,b],
then
4@ / o] = | ( . ) o,
forallt € [a,b].
Proof. Take t = b in the previous corollary. O
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