Applications of Quasiconvexity
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In Honor of Constantin Carathéodory

Abstract This survey deals with functions called y-quasiconvex functions and their
relations to convexity and superquadracity.

For y-quasiconvex functions and for superquadratic functions, we get analogs of
inequalities satisfied by convex functions and we get refinements for those convex
functions which are also y-quasiconvex as well as superquadratic.

We show in which cases the refinements by y-quasiconvex functions are better
than those obtained by superquadratic functions and convex functions. The power
functions defined on x > 0 where the power is greater or equal to two are examples
of convex, quasiconvex, and superquadratic functions.

1 Introduction

In this survey we present functions called y-quasiconvex functions and their
relations to convexity and superquadracity.

This survey may serve as introductory work to a book on quasiconvexity by
S. Abramovich, L. E. Persson, J. A. Oguntoase, and S. Samko.

For y-quasiconvex functions and for superquadratic functions, we get analogs of
inequalities satisfied by convex functions and we get refinements for those convex
functions which are also y-quasiconvex as well as superquadratic.

We show in which cases the refinements by y-quasiconvex functions are better
than those obtained by superquadratic functions and convex functions. The power
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2 S. Abramovich

functions defined on x > 0, where the power is greater or equal to two, are important
examples of convex, quasiconvex, and superquadratic functions.

We demonstrate the applications of y-quasiconvexity and superquadracity by
putting together some results related mainly to Jensen’s inequality, Hardy’s inequal-
ity, and Average Sums inequalities. We quote here the results obtained in [1-5, 8, 9,
16, 18, 19, 23, 24]. For more on the subjects of superquadracity, y-superquadracity,
and y-quasiconvexity, we refer the reader to the reference list [1-24] and their
references.

We start with some definitions, lemmas, and remarks we used in the proofs of the
results stated in the sequel.

Definition 1 ([4, 5]). A function ¢ : [0, b) — R is superquadratic provided that for
all 0 < x < b, there exists a constant C,(x) € R such that

P — () = Co(x) (v —x) + ¢ (ly—x[) )]

foreveryy,0 <y < b.

Definition 2 ([1]). A function K : [0, b) — R that satisfies K (x) = x"¢ (x), y € R,
where ¢ is a superquadratic function, is called y-quasisuperquadratic function.

Definition 3 ([8, 9]). A function K : [0,b) — R that satisfies K (x) = xV¢ (x),
when y € R, and ¢ is a convex function is called y-quasiconvex function.

Lemma 1 ([S]). Let ¢ be a superquadratic function with C, (x) as in Definition 1.
Then:

(i) ¢(0) =0,
(ii) if p(0) = ¢'(0) = O, then C,(x) = ¢'(x) whenever ¢ is differentiable at
0<x<b.
(iii) if ¢ > 0, then ¢ is convex and ¢(0) = ¢'(0) = 0.
Lemma 2 ([5]). Suppose that ¢ : [0,b) — R is continuously differentiable and
¢(0) < 0. If ¢’ is superadditive or ¢

(x) . . . .
-~ Is nondecreasing, then ¢ is superquadratic.

Lemma 3 ([9]). Let ¢ : R+ — R be differentiable function x,y € R4 and y € R.
Then

P )G —x)+ ¢ X)) (y—x)
— [ @) (7 =27 + (e (1) YT (= )]
=y (x) by —x)*. )

Using Lemma 2 we get:

Lemma 4 ([3]). Let ¥ : [0,b) — R be 1-quasiconvex function, where ¥ (x) = x¢
(x), @ is differentiable nonnegative increasing convex function on x > 0 satisfying
¢ (0) = 0 = limxg’ (x), then v is also superquadratic.

=0t
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Lemma5 ([9)). Let0 < a <x; <2a,i=1,...,n, orlet o, > 5 be such that
Xp=x>0i=1....n,0<a <1i=1,....n Y 0 = 1, (for instance,
whenn = 2, letoy = o = %, x1,% > 0). Then |x; —X| <X <= 0 < x; < 2%,
i=1,....,nwhenX =Y ox.

2 Jensen’s Type Inequalities

Jensen’s theorem states that [, ¢ (f (s))du (s) = ¢ ([, f (s)du (s)) holds when
¢ : R — R is convex, u is a probability measure and f is a pu-integrable function
(see, for instance, [23]). In this section we quote theorems that deal with generaliza-
tions and refinements of this very important theorem.

2.1 Jensen’s Type Inequalities for Superquadratic Functions

From the definition of superquadracity, we easily get Jensen’s type inequalities:

Lemma 6 ([5]). The function ¢ is superquadratic on [0, b), if and only if
1 O 1 _
T2 @ () =9 @ = = Y ag (v —x)). 3)
" i=1 =1

holds, where x; € [0,b), i = 1,...,nand a; > 0, i = 1,...,n, are such that
Av=Yl_ a;>0and% = - Y a;.
The function @ is superquadratic on [0, b), if and only if

[ovorane - (/ £ () du (s>)
2 2

z/ﬂqﬁ(P(s)—/Qf(O)du(a)

where f is any nonnegative |i-integrable function on a probability measure space
(82, ).

The power functions ¢ (x) = x”, x > 0 are superquadratic when p > 2 and
subquadratic, that is, —¢ is superquadratic when 1 < p < 2. When ¢ (x) = x?
inequality (1) reduces to equality and therefore the same holds for (3) and (4).

It is obvious that when the superquadratic function is nonnegative on [0, b), then
inequalities (3) and (4) are refinements of Jensen’s inequalities for convex functions.

) i (5 @



4 S. Abramovich

2.2 Jensen’s Type Inequalities for y-Quasisuperquadratic
Functions

For y-quasisuperquadratic functions defined in Definition 2 we get:

Lemma 7 ([8]). Let K (x) = x7¢ (x), y € Ry, where ¢ is superquadratic on [0, b).
Then, for this y-quasisuperquadratic function K, the inequality

KG) =K@ Z@@) " —x")+Cp )y (v—x) + Yo (ly—x]) o)

holds for x € [0,b). y € [0, D).
Moreover,

N N
D K () —K (Z ai)’i)
i=1 i=1

ZQ (Z:: Oljyj) (IZ:: ay] — (}Z:: Oljyj) )

N N N
+ G, Z oy; Z aiy! (Yi - Z o;y;
=1 i=1 =1

N N
+ Z%‘yinD ( Vi~ Zaj)’j ) (6)
i=1 =1

holds for x; € [0,b), y; € [0,0),0<qa; <1,i=1,...,N, and vazl o= 1.
Also

/K(f(S))du(S)—K(/f(S)du(S))
2 2

Z/Q[w(X)(fV () =) + Cp ()f7 (5) (f () — %)
+17 () @ (If () —xD]dp (s) . )

holds, where f is any nonnegative [i-integrable function on the probability measure

space (82, 1) and x = [, f (s) dy (s) > 0.
If ¢ is subquadratic, then the reverse inequality of (5)—(7) hold, in particular

[ xGenane —K(/f(S)du(S))
2 2

5/9[<p(x) (" () =) + Cp ()f7 (5) (f () — %)
+7 () @ (If (s) —xD]dp (s) . ®)
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Inequalities (5)—(7) are satisfied by the power functions K (x) = x*, p >y + 2.
Fory < p < y + 2, the reverse inequalities hold; in particular (8) holds. They
reduce to equalities forp =y + 2.

The power functions are used to get from Jensen’s type inequalities refined
Hardy’s type inequalities.

Equality (2) Lemmas 3 and 4 help in proving the following Theorem 1 about
Jensen’s type inequalities for y-quasisuperquadratic functions. The results of this
theorem refine Jensen’s type inequalities stated in inequalities (3) and (4) for
superquadratic functions. As nonnegative superquadratic functions (according to
Lemma 1) are convex, Theorem 1 refines also Jensen’s inequalities for these convex
functions which are also superquadratic:

Theorem 1 ([8, Lemma 3.1]). Let K (x) = x"¢ (x) = x’ "'y (x), y > 1, where ¢
is a differentiable nonnegative superquadratic function and ¥ (x) = x¢ (x). Then
the bound obtained for K (x) = xV¢ (x) is stronger than the bound obtained for
K (x) = x*~ " (x), which means that:

KO)-K®=0® 0" =) +¢ 1)y (—x) +y'¢(y—=x) )
implies that

K () —K(x)
>y @) 0" =N+ 0y T =0y T (ly—x)

=x0 () @) (" =)+ e @) YT =2+ y—xle(ly—x]).
(10)

Moreover, if K (x) = x"¢ (x), ¥ (x) = x*¢ (x), nis an integer, k = 1,2, ..., n, and
¢ (x) is nonnegative superquadratic, then the inequalities

[ KG6nane —K(/f(S)dM(S))
2 2
> [9 [6.() (" () = &) + Cp ()" () (F (5) — )
) 0 (1 () —xD]dp ()
> /ﬂ [V () (7" (5) — %) + Cye @ "4 (5) (£ (5) — )
17 ) 9 (1 () — ] e (5)
z[ wn(lf(S)—xI)du(S)=[K(lf(S)—xI)d/L(S)EO (an
2 2

hold for all probability measure spaces (§2, L) of -integrable nonnegative func-
tions f, where x = [, f (s)dp (s) > 0.
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Furthermore, if ¢ is differentiable nonnegative increasing, convex subquadratic,
and ¢ (0) = 0 = limx¢’ (x), then according to Lemma 4, x¢ (x) is superquadratic

x—0+
andfork=1,...,n

[ L@@ 0= +0' 0 060 =0 + 00 (70 =Dl )

= [ keonane & ([ roao)
2 2

= [ [ (-7 s nwr T ¢ e -
2
+ 79 (O —xD] dr )

= [ [ (0= @ 6 66—
+ O Y f ) =) | dia ()

= [ ©=ane = [ Ko -shdue =0, (12)
2 2

In particular, if o (x) = X, x > 0, p > 1, then (9)—(11) are satisfied when p > 2 and

(12) is satisfied when 1 < p < 2. When p = 2 equality holds in the first inequality
of (11) and in the first inequality of (12).

2.3 Jensen’s Type Inequalities for y-Quasiconvex Functions

In [1, 8, 9], Jensen’s type inequalities for y-quasiconvex functions (Definition 3) are
derived and discussed.

A convex function ¢ on [0,b), 0 < b < 00, is characterized by the following
inequality:

9(y) —@(x) = Cp (x) (y —x), Vx,y € (0,h]. 13)

In [8] we proved for y-quasiconvex functions K : [0, ) — R:

Lemma 8 ([8, Lemma 1]). Let K (x) = x¢ (x), y € R, where ¢ is convex on
[0, D). Then

KG)—K@x) =y9o()—x9x) =90 —x")+C )y (y—x) (14)

holds for x € [0,b), y € [0,b), where C, (x) is defined by (13). Moreover, the
Jensen’s type inequality
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/K(f(S))dM(S)—K(/f(S)du(S))
2 2
- /ﬂ o (FO)F () dpt (5) — g ()57
> [Q [0 (F () =) + C, OF () F ) =] dps)  (5)

holds, where f is a nonnegative function, x = [, f (s)du (s) > 0, f and K o f are
u-integrable functions on the probability measure space (52, |1).
In particular, for y = 1, we get when K = xf that

/K(f(s))du(s)—K(/f(S)du(S))
2 2

> / [Cy O () (F (5) —0)] dpt (5) = / Co () (F ()~ dit (5). (16)
2 2

If ¢ is concave, then the reverse inequalities of (13)—(16) hold. In particular

[keeane —K(/f(s)du(s))
2 2

< [_Q [0 () =) + Cp @F () (F (5) — 0] dpt ()

holds.

Example 1. Inequalities (13)—(15) are satisfied by K (x) = x”, p > y + 1. For
y < p < y+1, the reverse inequalities hold. They reduce to equalities forp = y +1.

From Lemma 8, we get a refinement of Jensen’s inequality:

Theorem 2 ([8, Theorem 1]). Let y € R4 and f be nonnegative function. Let f
and ¢ o f be u-integrable functions on the probability measure space (§2, ) and
x = [of(s)du(s) > 0. If ¢ is a differentiable, nonnegative, convex, increasing
function on [0,D), 0 < b < 0o and ¢ (0) = limzg’ (z) = 0, then the Jensen’s type

=0t
inequalities

/K(f(S))du(S)—K(/f(S)du(S))
2 2

- /9 0 (F O (8)du () — ¢ (x) 37

> 6 (1) /Q 7 () =) dp () + ¢ () /ﬂ () (F () —x) dpe () = 0
a7

hold.
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Furthermore, for an integer n, we get:
/Q 0 (F ()" (5) dp (s) — (1) "
> o (1) / " (5) =) dp (5) + ¢ () / £(5) (F () —x) dpt )
2 2
> xp (1) [Q (7 (5) = 2" d (s)
g ()] /Q £ ¢ (5) = x) d (s)
> ¥ () / (7 (5) — ") da (s)
2
() [ FE ) (F (5) — ) dia (s)
2
> (¢p () [ £6) (¢ (5) =0 dpa (s)
2
=(x"_1(p(x))// (f (s) —x)*du (s) = 0, k=1,...,n—1. (18)
2
Remark 1. Note that when n = 0 (17) and the first inequality in (18) coincide with

Jensen’s inequality.

Theorem 2 is used to prove the theorems in Sect. 3 related to Hardy’s inequality.
N N
Corollary 1. By applying (15) with u(s) = Y a;8; with Y a; = 1 and §; unit
i=1 i=1
masses atx = x;, y; = f(x;), i = 1,...,N, N € Z4, we obtain that the following
special case of (15) yields the inequality

N N

Z oK (y) — K (Z aiyi)

i=1 i=1

¥

N N N
=g | Doy || Dol — [ D
= i=1 =1

N N N
+C, Zaj)’j Z%’yl}'/ yi_zajyj ; (19)
=1 i=1 =1

which holds for x; € [0,b), y; € [0,b),0 <o; < 1,i=1,...,N, and va=1 o = 1.
Moreover, under the conditions on ¢ in Theorem 2, as ¢ is differentiable so that
C, = ¢, then the right-hand side of (19) is nonnegative and therefore we get that
(19) is a genuine scale of refined discrete Jensen’s type inequalities.
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The definition of y- quasiconvex function K, K (x) = x"¢ (x) can be meaningful
even if y < 0. We quote for example the following complement of Theorem 2:

Theorem 3 ([9]). Let —1 < y <0, and let f be nonnegative [i-integrable function
on the probability measure space ($2,11) x = [of(s)du(s) > 0. If ¢ is a
differentiable, nonnegative, convex increasing function that satisfies ¢ (0) = 0 =

limzg' (z), then
=0t

[Q 0 (F () (5 dpi (5) — p (1)

> ¢ () /Q ((F (5)) —x) dpt (5) +¢' (3) /Q (F ) (F (5) =) dpi (5) (20)

holds and the right-hand side expression of (20) is nonpositive.

Remark 2. From the case y = —1, it follows that when ¢ is convex and ¢ (0) =
0 = lim+ (z¢' (z)) and @ is concave, we get a negative lower bound to our
z—0

Jensen’s type difference. This important fact is further stated in the next subsection

2.4 Some Two-Sided Reversed Jensen’s Type Inequalities

In [9] we deal with y-quasiconvex functions when —1 < y < 0, from which we
derive some two-sided Jensen’s type inequalities.

The results in this subsection are quoted mainly from that paper. First we state
the following consequence of Theorem 3:

Theorem 4. Let the conditions in Theorem 3 be satisfied and assume in addition
that ‘”(X) is concave. Then the following two-sided Jensen’s type inequality holds:

oo [ ((f(s))_l—x‘l)du(s)er’(X) /Q (6™ (5) ~0) du o)

JUCIC
=) e MY

Corollary 2. Let 0 < p < 1, and let f be a ju-measurable and positive function on
the probability measure space (i, $2) and x = [, f (s) dp (s) > 0. Then

P p
~I + (/Qf(s)du(s)) S/Q(f(s))pd/L(S) < (/Qf(s)dﬂ (S)) ;

where
V4
—p(fﬂf(S)dM(S)) (1—/Qf(s)du(s)/ﬂ(f(s))_ldu(s)) -0
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Using (2) in Lemma 3, our next two-sided reversed Jensen’s type inequality
quoted from [9] reads:

Theorem 5. Let f be a nonnegative [1-measurable function on the probability

measure space (i, $2) andx = [, f (s) dp (s) > 0. Assume that ¢ is a differentiable

nonnegative, convex function, ¢ (0) = hm+z(p (z) = 0. Moreover, assume that (/)(X)
0

Z—>
is concave. Then the following two-sided Jensen’s type inequality holds:

dp (s) < dp(s) — —— < 0.
x x

B (§0 (x))/ (f (s) —x)° @ (f (s) @ (x)
e f@©) o f(s)

By applying Theorem 5 with ¢ (x) = x'™”, 0 < p < 1, we get the following
result:

Corollary 3. Let 0 < p < 1, let f be a nonnegative pi-measurable function on the
probability measure space (§2, ) and x = fo (s)du (s) > 0. Then

ot ([reran (s>)p < [eoras =([roa (s))p,

where
.
(/f(s)du(s)) /(”;)() ).

Next we state additional two-sided inequalities:

Theorem 6. Let f be a nonnegative [-measurable function on the probability
measure space (82, 1) andx = [, f (s) dp (s) > 0. Assume that ¢ is a differentiable

nonnegative function such that ¢ (0) = lir(1)1 ¢’ (z) =0, ‘ﬂ( ) is convex, and @ is
=04

concave. Then the following two-sided Jensen’s type lnequallty holds:

(sO(X))/(f(S) e = [ 20y, 20 <

By applying Theorem 6 with ¢ (x) = x'™”, 0 < p < 1, we obtain the following
Corollary 4:

Corollary 4. Let 0 < p < 1, and let f be a p-measurable function on the
probability measure space (§2, ) and x = fo (s)du (s) > 0. Then

-+ (f f(s)du(S))pf [oerane = ([ roan (s))p,
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where

p—2
L=(1-p) (/Qf(s)du(s)) [RECEERC

2.5 Comparing Jensen’s Type Inequalities

Using Lemmas 4 and 5, we compare Jensen’s type inequality obtained by using

the 1-quasiconvexity of ¥, where ¥ (x) = x¢ (x), ¢ is differentiable nonnegative

increasing convex function on x > 0 satisfying ¢ (0) = 1im+x<p/ (x) = 0 and the
x—>0

superquadracity of the function 1. The comparison shows that when y = 1, (17) is
sharper than (4) for the same v, that is:

Theorem 7 ([9]). Let ¢ (x) = x¢ (x), where ¢ is nonnegative, convex, increasing,

and differentiable function on [0,b), and ¢ (0) = 0 = limxg (x). Then the
x—0Tt
inequalities

SNy () - v @ =D o’ @ (5-3 Za, (g —x) =
j=1

J=1

hold for
X <2%, X= Z wr, 0<e<1, Y ey=1 j=1...m

In particular, the theorem holds under the conditions stated in Lemma 5.
Similarly we also get that:

Theorem 8. Under the conditions of Theorem 2 for  (x) = x¢ (x), the inequalities

[vonane-v (/f(S)du(S))
2 2

2
> [Q o ( /Q f(G)d/L(O)) (f<s)— [Q f(0)du (o)) i (s)
z/ w(p(@—[f(o)du(o)
2 2

hold when 0 < a < f(s) <2a, s € 2.

)du«(s)EO,

Theorem 7 for m = 2 leads to the proofs of Theorems 16 and 19 which deal with
the behavior of averages of A, (f) and B, (f) discussed in Sect. 4.
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3 Hardy’s Type Inequalities Related to Quasiconvexity
and Superquadracity

In 1928 Hardy [16] obtained and proved the inequality

[e] 1 X p p 14 e}
/ (— [ror0) v < (—) £ (@) < @)
0 X Jo p—oa—1 0

which holds for all measurable and nonnegative functions f on (0, co) whenever
o < p—1,p > 1.In [24] sufficient conditions for a variant

/Ob G [ro dy)px_ldx < /Obf" @ x! (1 - (;ﬁ)") @)

of (21) to hold are given for p > 1. In particular it is shown there that inequality
(22) is equivalent to the following variant of (21):

[ ([ rora) e
0 \XJo
() [roe (e

forp>l,a<p—lorp<0,a>p—1land0 <b < o0.
In 2008 Oguntuase and Persson proved the following refined Hardy’s inequality
with “breaking point” p = 2 (see [18] and also [19]):

Theorem 9. Letp > 1,0 <p—1and 0 < b < oo. If p > 2, and the function f is
nonnegative and locally integrable on (0, b) and fob X*fP (x) dx < oo, then

[ froo)es

l_p—a—l

—1l—a [ [P t
e A e C R0
P o Ji [p—a—1\x
l X P p—a—1 p—a—1__
——/f(r)dr T det e
X Jo

< (#)p L Ny (1 = (g)") dx. 24)

If 1 < p <2, then (24) holds in the reversed direction. In particular, for p = 2, we
have equality in (24).
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In [2] another theorem about refined Hardy’s inequality with “breaking point™ at

p = 2 is proved by using the quasiconvexity of the power functions for p > 2 :

Theorem 10. Letp > 2,k > 1, 0 < b < oo, and let the function f be nonnegative
and locally integrable on (0, b). Then

k

<k'+1>” [CGrr ) [ (froa) o
(k—l)/ / ((r)— (%) _k”]—)—lcfoxﬂo)do)z

( /f(a)da) x(*k_‘)(pm u_ldxdt (25)

Moreover, the double integral of the right-hand side of (25) is nonnegative. If
1 < p < 2, then the inequality (25) holds in reverse direction. Equality holds when
p=2.

There, in [2] an additional theorem is proved about a “breaking point” atp = 3
for Hardy’s type inequality by using the quasisuperquadracity of the power functions
for p > 3:

Theorem 11. Letp > 3,k > 1, 0 < b < o0, and let the function f be nonnegative
and locally integrable on (0, b). Then

() /0 ’ (1 _ (g)k‘p‘) 7HP () de — /0 ( /O” o) d,)”dx
—1 X 2
>—(k—1)/ / ((r)— =) —%/Of(o)da)

B (i /:f(d) do)p x( e+ 7_1;i§dt

=1 . —1
* /ob[,b (ro=7) (P(r} T (fc)l_T - %/0 f(0)do )p
_dx

w155 S 26)

Moreover, each double integral of the right-hand side of (26) is nonnegative.
If 1 < p < 3, then the inequality (26) holds in the reverse direction. Equality
holds when p = 3.

Using the y-quasiconvexity of the power function when the poweris p+y,p > 1,
y > 0 we get in [8] and Hardy’s type inequality:
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Theorem 12. Letp > 1, k> 1,0 < b < o0, and y € Ry, and let the function f be
nonnegative and locally integrable on [0, b). Then

() [0 G- ]
G (o @) (o))
x G /Oxf (0) da)px("%)(”*y")tﬁ—l gdt
() [ ey i ()™
—é/oxf(a)da) G /Oxf(o)da)p_lx(l B oD - I%drzo.

27

holds.
Moreover, when y = 0 (27) coincides with (23) and therefore also with (21).

By using the y-superquadracity, we get for the power function with the power
greater than p + y, p > 2, y > 0 that the following Hardy’s type inequality holds.

Theorem 13 ([1]). Letp > 2, k> 1,0 < b < o0, and y € Ry, and let the function
f be nonnegative and locally integrable on (0, b). Then

(Iljc—_i_i’)’””’/ |:( ( )p+y)xp+yfp+y () — (/‘ f(t)dt) +y:|§
£ + 1pk—y 14 | ,
>(p+y (<()u X +) —(;/Oﬂo)do))
X(;/ f(U)do) (1-54 ) o+r- l)tm_ldxdt
0
[y ™
_)_lc [xf(U)da) p(% /Xf(g)dg)p_lx(l ,,+y)(1>+1) 7_1d &,
(p+y)l y/ [ f(f)l‘ I’+y 1
<P()m(;)]_m_}c/:f(0)do

p
k=l k=1 _ydx
) H=F8) e+ i .

X

(28)
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Moreover, if y is a nonnegative integer, then the right-hand side of (28) is
nonnegative. If 1 < p < 2, then inequality (28) is reversed. Equality holds when
p = 2. When y = 0, inequality (28) coincide with (24).

4 Averages

In this section we deal with the lower bounds of differences of averages where the
functions f involved with are quasiconvex.
For a function f and a sequence a,, n = 0, 1, ..., we define

n—1
1 a;
) = - 1Zf(a—), nz2,

and

=Y (%) nz
i=0

Ap+1 2 n

In [4, Theorems 3.1 and 5.3], the following results concerning averages for
superquadratic functions are proved:

Theorem 14. Let a;, i = 0,1..., be an increasing sequence with ay = 0, and
a; > 0, and let a;+1 — a; be decreasing. Suppose that [ is superquadratic and
nonnegative on [0, b). Then, forn > 2

n n—1
1 a; 1 a;
Actt () =4 () = — - — Y (%
+1) » () ap izlf(an+1) ap—1 izlf(an)
[ aiv1 G

v

apdn—1 Zalf (

i=1

)

a; a;
— - D . 29)
a

n An+1

Ap+1 ay

1 n—1
+ Aty Z (an - ai)f(

i=1

In the special case where a; = i,i = 0, 1..., we get for

n—1

M= () 0=



16 S. Abramovich

that if f is superquadratic on [0, 1],then forn > 2

n—1

2r n—r
An+1 (f)_A'l(f) z ;n(i’l_ l)f (I’l(l’l+ 1)) '

holds.
Further,
n—1
A1 () = A () = (%) + Y Af O0) .
r=1
where A, = n(nzil), y, = |23';(_n1_:13)r|, r=1,...,.n—1.

Moreover if f is superquadratic and nonnegative, then forn > 3

An+1 (f) _An (f) Ef(%) +f (%) .

Theorem 15 ([4, Theorems 3.2 and 5.6]). Leta; > 0, and a; —a;—1, i = 1,...,
be increasing sequences and let ay = 0. Suppose that f is superquadratic and

nonnegative on [0, b).
Then,

Bn—l(f)—Bn(f)=—Z (_) +Z ()

1 ! ( ai— a; )
> af -
apdn+1 ; ap—1 apy
n—1 a a
" Z(an—ai)f( a_al),
apdp41 o ay ap—1
and in the special case where a; = i,1 =0, 1,..., we get for
1 - r
B = (—) . n> 1
() n+1 ;f n -

that if f is superquadratic on [0,1], then forn > 2

" 2r n—r
Bu-1 (f) = Bu (f) _gn(n+l)f(”(”—l))'

holds.

(30)
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Further,
Byt () —Bu () = f (5 +Zk,f(yr
r=1
_ 2r _ |2n+1-37] _
where Ar — n(n+1)’ Yr = 3n(n—1) ° r=1

Moreover, if f is also nonnegative, then forn > 2

Bioi () —Bu () =/ () +/ (32).-

Using Theorem 7 we get for functions which are simultaneously quasiconvex
and superquadratic functions a better lower bound for the difference A,+; (f) —
A, (f) when we use the quasiconvexity of the function f than when we use its
superquadracity.

To show it we first state results analog to those in Theorem 14, but now instead
of superquadratic functions we deal with quasiconvex functions.

The results quoted below are mainly from [3].

Theorem 16. Let ¢ : [0,b) — R4, 0 < b < 00 be differentiable convex increasing
function satisfying ¢ (0) = 0 = 1im+x<p/ (x), and let f = x@. Let the sequence
x—>0

a; > 0,i=1,... be such that a; is increasing and a;+| — a; is decreasing and let
ag = 0. Then, for n > 2, we get from the quasiconvexity of f that the inequalities

A1 (F) — A, (f) = Zf(a+1) P 1Zf(az)

i=1

. Z‘p (dl (an + aig1 — a)) ((ai+1 —Ziz)zdi (an _ai)) =0

an 1 i—1 apQn+1 n n+1

€1y

hold, and as ¢’ is increasing the inequalities
-1
Ant1 () =40 () = Zf (am) art 21: ( )
1 HX_E‘P/ (ai (an + aiy1 — ai)) ((ai+1 — ai)’ ai (a — ai))
ap_1 4 7

ApQp+1 arzzan—i-l

-
1 nx:(p' (ﬂ) (a1 — i)zzai (an — a;) =0
an—1 = an aay

v

hold.
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From the superquadracity of f = x¢, we get that

Apt1 (F) = Ax (f)
- (an — ai) (ajy1 — a;)
apdny—1 ; (alf ( apdn+1 )

+(ay—ap f (di (@it+1 —ai)))

v

ay (an—i-l)
_ 1 % (ai+1 — a;) a; (an — a;) (an — a;) (ai+1 — a;)
ap—1 P aﬁan+1 v apQp+1
+¢ (M)) > 0. (32)
ay (an-H)

As @ is convex we get that

Ant1 () = Au ()

—1
! «— (@ir1 —ap) a; (an —a;) (an — a;) (aiv1 — a;)
“a Z ata, ¢ ana
n—1 i=1 n4n+1 ntn+1
@ (ai (@it —Cli)))
apn (@n+1)
2 ! a a
i+1 — dj
> o(“ )(a»ﬂ — @) a(an—a) > 0.
An—1a2an+1 ; ( 20,41 ' v

Further, if go/ is also convex, then

Ant1 (f) = Au (f)
. nX_l: (ai+1 — a))* a; (a, — a;) o ( Yol a? (an— a) (a1 — @)’ )

2 1 2
an—lazzﬂn+1 ay Z?:l a; (a, — a;) (ai+1 — a;)

>0

i=1

Finally, the bound obtained in (31) by the quasiconvexity of f is better than the
bound obtained by its superquadracity in (32) and in (29), that is:

Apt1 () — An (f)
1 & (a (an + aiv1 — a;) (ait1 — a)* a; (a, — @)
=3 ( ) >
n—1 = apQp+1 anan+1

n—1

- 1_1 Z (ai+1 — a;) a; (a, — a;) ((p ((an —a;) (ai+1 — ai))

=1 a%an-i-l AnQp+1

A%
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+o (ai (ait1 — ai)))
an (Ant1)
2 =L /a a
i+1 — Ui
>——>Y ¢ (—) (aiy1 —ai) ai (an — a;) = 0.
-1, +1 = 20,41

Example 2. Let f = x¢, be quasiconvex function where ¢ is nonnegative convex
increasing and differentiable function on [0, b), and ¢ (0) = 0 = 1im+x<p/ (x). Let
x—>0

a; =1,i = 0,...,n. Then by Theorem 16

1 2L r(m—n)
Apr1 (f) — A () = = 1)§<ﬂ (;)—nz(n+1)220,

and the lower bound obtained by the quasiconvexity of f is better than the lower
bound obtained by its quasiconvexity, that is:

n—1

1 ' (n—r)
— 1);¢(£)rn r2

n?(n+1)

| n—r
= (n—l)rg;;f(n(n—kl)) =0

If (p/ is also convex, we get also:

1 1 1 1
A () — A(f)_m (—)EESO(W)EO-

Now we present results related to the behavior of B, (f) when n changes.
First we state a theorem about B,—; (f) — B, (f) when the function f is
quasiconvex and f = xg:

Apy1 () —An () =

Theorem 17. Let ¢ : [0,b) — R4, 0 < b < oo be differentiable convex increasing

function and let f = x¢@. Let the sequence a; > 0, i = 1, ..., be such that a; — a;_,
i=1,...isincreasing and let ay = 0. Then, forn > 2
By (f) — B, (f)
a;
() T (%)
an IX(; ap—1 Ap+1 2 Z

v

a; —ai—1)" a; (a, — q; a; (a, + ai—1 — a;) -
Z( ) a; (ay— ap) ¢’

an_Hana ay

n—1 ;=1

(33)
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If in addition (p/ is convex on [0, 00), then

() (2)

2 -
Ant1a50, Yoimiai(an —a;) (ai—ai—1)2

i=1

>"2_:(a, ai1)? ai(an—a) ¢’ ( Sl @ (a, — @) (@ — aimy)? )

> 0.

We state now a theorem about the superquadratic function f where f = x¢.

Theorem 18. Let ¢ : [0,b) — Ry 0 < b < o0 be differentiable convex increasing
Sfunction satisfying ¢ (0) = 0 = lim+xg0/ (x) and let f = x¢. Let ay = 0 and a; > 0,
x—>0

i=1,... beasequence for which a; — a;—, is increasing fori = 1, ...,. Then
a;
B,_ —B
=B = zf( ) ()

1

1 (ai,((an—a) (@ —ai)
> —_
- ap+1 ; (anf( ap—1ay

a, — a; a;\a; — a—

n f( ( 1)))

Ay ap—1dy
Z (a; — ai—1) a; (an — a;) a; (a; — a;j—1)
i=1 an+1a ap—1 ¢ ap—1ay

1o ((an—ai) (ai_ai—l)))’ (34)
ap—1ap

and as @ is also convex we get that

B, (f) = B, (f) = 72 (an 1) anl_H Zf (Z_Ii)

i=0

- 1 ’f: aif (an — a;) (@i —ai—1)
- ap+1 i=1 ay ap—10an

+an — a,-f (ai ((1,’ — a,-_l)))
Ay ap—1ay
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n—1

_ Z (ai —ﬂi—l)lei (an, — a;) ((p (ai (a; —ai—l))

i=1 Ap+10a;,Ap—1 ay—1ay

(an — a;) (a; — aj—1)
e ( Aap—1dn ))

n—1

. Z 2a; (an — a;) (a; — ai—l)(p ((ai - ai—l)) > 0.
i=1

An+1 a%an—l 2an—l

The proof of (35) in Theorem 19 uses Theorem 7 to show that the bound obtained
in (33) is better than the bound obtained in (30) and in (34).

Theorem 19. Let ¢ : [0,b) — Ry 0 < b < o0 be differentiable convex increasing
Sfunction satisfying ¢ (0) = 0 = lim+xg0, (x) and let f = x@. Let ay = 0 and a; > 0,
x—>0

i = 1,... be a sequence for which a; — a;—; is increasing for i = 1,...,. Then the
inequalities

b5 = L5 () - +Z (3)

An i=0
> Z (al_al l) (an a)az / (ai (an+ai—1 _ai))
- an la ap+1 apQp—1
(ai — ai—1) (a, — a;) a; a;i (a; — ai—1)
> Z ¢
a,— 161 api apdp—1
+¢((an_ai) (ai—di—l))) >0 (35)
apdn—|

hold.

Example 3. Let f = x¢, then under the conditions of Theorem 19 on ¢, when
a;=1i,i=0,...,nwe get that

- ()

r=0

n—1
B (D -8 () = f (-
r=0

1
RCEDITET ZZ(’) (G)ro=n

ZZ (n(n—1>)>°

holds.
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Further, if ¢ is also convex on [0, 00), we get that

1 1 1 1
Bu—1 (f) — Bn(f)_mfﬂ (§)Z§¢(m)

Similarly, the bounds of the differences

n

1 2i+ 1 o241
2n lgf(Zn—f-l) 2n — Zf( )

L () s ()
2n—1 2n—73 2n+1 2n—1

obtained by using the quasiconvexity of f are better than the bound obtained by
using superquadracity.
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