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Foreword

Constantin Carathéodory, 1873–1950, was one of the most important and influential
mathematicians of his era and certainly the preeminent Greek on the scene. His
work combined theory-building with practical applications in a way that is no longer
so common. His career spanned a remarkable range of locations and historical
upheavals, even by today’s standards.

Carathéodory’s accomplishments are too voluminous to describe in balanced
detail, but from a personal perspective, my connection began with his famous
theorem on convex hulls. That result, with major consequences in convex analysis
and optimization technology, confirms that in n-dimensional space, the hull can
be formed by taking convex combinations of just n C 1 elements at a time. His
innovative developments in the calculus of variations, beginning with his doctoral
dissertation and carried on in retirement with his editing of Euler’s works in that
subject, also attracted me early on because of their modern ties to optimization and
control.

Theory-building was certainly the theme in those efforts in the calculus of
variations, influenced by considerations in optics, but even more so in his ground-
breaking axiomatic formulation of thermodynamics. These achievements under-
score the back-and-forth between mathematics and physics that was the centerpiece
of science a century ago but now is just one of many lines of inspiration and
progress. They also reflect Carathéory’s practical bent, having once worked for the
British Colonial Service as an engineer in dam construction in Egypt.

We think it normal now that faculties of universities include multilingual
professors of many nationalities who have lived, studied, and taught in many
places, but that was true in Carathéodory’s time as well. His own life provides an
instructive example which is full of reminders of how world events can intervene.
Born in Berlin of Greek parents in the diplomatic circuit, not for Greece but the
Ottoman Empire (with Constantinople as their home), he grew up in Brussels,
summering on the French Riviera. He went on to Germany as a university student
and eventually to a prominent academic career with posts shifting from Göttingen
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vi Foreword

to Bonn to Hannover to Breslau to Göttingen again and finally to Berlin. World War
I brought him hardships and emptied the universities of colleagues and students of
military age.

In 1920, after a formal invitation from the prime minister of Greece Eleftherios
Venizelos, he moved to Greece in order to oversee the founding of a new university
in Smyrna. However, that came quickly to an abrupt end when the Turks overran the
region and forced the Greeks out. In 1922 he moved to Athens obtaining professorial
positions at the University of Athens and subsequently at the National Technical
University of Athens. In 1924, on the recommendation of A. Sommerfeld, he was
appointed professor at the University of Munich succeeding F. Lindemann. A few
years later, in 1930, Carathéodory was invited yet again by the Greek prime minister
E. Venizelos in order to undertake administrative duties at the University of Athens
as well as at the Aristotle University of Thessaloniki, which he accepted and then
offered his valuable services for the next 2 years.

Carathéodory visited the United States twice and could have accepted an offer
from Stanford, but did not. Then came World War II, which he rode out in Munich.
That marked the demise of Germany’s longtime dominance in mathematics and
other sciences.

The dedication of this volume to Constantin Carathéodory is a fitting tribute to a
great discoverer of facts and ideas which continue to enrich us all.

Seattle, WA, USA R. Tyrrell Rockafellar
November 2015



Preface

This volume consists of scientific articles dedicated to the work of Constantin
Carathéodory. These articles deepen our understanding of some of the current
research problems and theories which have their origin or have been influenced by
Carathéodory.

The presentation of concepts and methods featured in this volume make it an
invaluable reference for teachers and other professionals in Mathematics, who are
interested in pure and applied research.

It is our pleasure to express our warmest thanks to all of the scientists who
contributed to this volume and to Professor R. Tyrrell Rockafellar for writing the
Foreword to this volume. We would also like to acknowledge the superb assistance
that the staff of Springer has provided for this publication.

Gainesville, FL, USA Panos M. Pardalos
Athens, Greece Themistocles M. Rassias
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A. Petruşel, I.A. Rus, and M.-A. Şerban
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Applications of Quasiconvexity

S. Abramovich

In Honor of Constantin Carathéodory

Abstract This survey deals with functions called � -quasiconvex functions and their
relations to convexity and superquadracity.

For � -quasiconvex functions and for superquadratic functions, we get analogs of
inequalities satisfied by convex functions and we get refinements for those convex
functions which are also � -quasiconvex as well as superquadratic.

We show in which cases the refinements by � -quasiconvex functions are better
than those obtained by superquadratic functions and convex functions. The power
functions defined on x � 0 where the power is greater or equal to two are examples
of convex, quasiconvex, and superquadratic functions.

1 Introduction

In this survey we present functions called � -quasiconvex functions and their
relations to convexity and superquadracity.

This survey may serve as introductory work to a book on quasiconvexity by
S. Abramovich, L. E. Persson, J. A. Oguntoase, and S. Samko.

For � -quasiconvex functions and for superquadratic functions, we get analogs of
inequalities satisfied by convex functions and we get refinements for those convex
functions which are also � -quasiconvex as well as superquadratic.

We show in which cases the refinements by � -quasiconvex functions are better
than those obtained by superquadratic functions and convex functions. The power

S. Abramovich (�)
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2 S. Abramovich

functions defined on x � 0, where the power is greater or equal to two, are important
examples of convex, quasiconvex, and superquadratic functions.

We demonstrate the applications of � -quasiconvexity and superquadracity by
putting together some results related mainly to Jensen’s inequality, Hardy’s inequal-
ity, and Average Sums inequalities. We quote here the results obtained in [1–5, 8, 9,
16, 18, 19, 23, 24]. For more on the subjects of superquadracity, � -superquadracity,
and � -quasiconvexity, we refer the reader to the reference list [1–24] and their
references.

We start with some definitions, lemmas, and remarks we used in the proofs of the
results stated in the sequel.

Definition 1 ([4, 5]). A function ' W Œ0; b/ ! R is superquadratic provided that for
all 0 � x < b, there exists a constant C'.x/ 2 R such that

'.y/ � '.x/ � C'.x/ .y � x/C ' .jy � xj/ (1)

for every y, 0 � y < b.

Definition 2 ([1]). A function K W Œ0; b/ ! R that satisfies K .x/ D x�' .x/, � 2 R,
where ' is a superquadratic function, is called � -quasisuperquadratic function.

Definition 3 ([8, 9]). A function K W Œ0; b/ ! R that satisfies K .x/ D x�' .x/,
when � 2 R, and ' is a convex function is called � -quasiconvex function.

Lemma 1 ([5]). Let ' be a superquadratic function with C' .x/ as in Definition 1.
Then:

(i) '.0/ � 0,
(ii) if '.0/ D '0.0/ D 0, then C'.x/ D '0.x/ whenever ' is differentiable at

0 < x < b.
(iii) if ' � 0, then ' is convex and '.0/ D '0.0/ D 0.

Lemma 2 ([5]). Suppose that ' W Œ0; b/ ! R is continuously differentiable and
'.0/ � 0. If '0 is superadditive or '0.x/

x is nondecreasing, then ' is superquadratic.

Lemma 3 ([9]). Let ' W RC ! R be differentiable function x; y 2 RC and � 2 R.
Then

' .x/ .y� � x� /C '0 .x/ y� .y � x/

� �.x' .x// �y��1 � x��1�C .x' .x//0 y��1 .y � x/
�

D y��1'0 .x/ .y � x/2 : (2)

Using Lemma 2 we get:

Lemma 4 ([3]). Let  W Œ0; b/ ! R be 1-quasiconvex function, where  .x/ D x'
.x/, ' is differentiable nonnegative increasing convex function on x � 0 satisfying
' .0/ D 0 D lim x'0 .x/ ;

x!0C

then  is also superquadratic.
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Lemma 5 ([9]). Let 0 < a � xi � 2a, i D 1; : : : ; n; or let ˛i0 � 1
2

be such that
xi0 � xi � 0, i D 1; : : : ; n, 0 � ˛i � 1, i D 1; : : : ; n,

Pn
iD1 ˛i D 1, (for instance,

when n D 2, let ˛1 D ˛2 D 1
2
, x1; x2 > 0). Then jxi � xj � x ” 0 � xi � 2x,

i D 1; : : : ; n when x D Pn
iD1 ˛ixi.

2 Jensen’s Type Inequalities

Jensen’s theorem states that
R
˝
' .f .s// d� .s/ � '

�R
˝

f .s/ d� .s/
�

holds when
' W R ! R is convex, � is a probability measure and f is a �-integrable function
(see, for instance, [23]). In this section we quote theorems that deal with generaliza-
tions and refinements of this very important theorem.

2.1 Jensen’s Type Inequalities for Superquadratic Functions

From the definition of superquadracity, we easily get Jensen’s type inequalities:

Lemma 6 ([5]). The function ' is superquadratic on Œ0; b/, if and only if

1

An

nX

iD1
ai' .xi/ � ' .x/ � 1

An

nX

iD1
ai' .jxi � xj/ ; (3)

holds, where xi 2 Œ0; b/, i D 1; : : : ; n and ai � 0, i D 1; : : : ; n, are such that
An D Pn

iD1 ai > 0, and x D 1
An

Pn
iD1 aixi.

The function ' is superquadratic on Œ0; b/, if and only if

Z

˝

' .f .s// d� .s/ � '
�Z

˝

f .s/ d� .s/

�

�
Z

˝

'

�ˇ̌
ˇ̌f .s/ �

Z

˝

f .�/ d� .�/

ˇ̌
ˇ̌
�

d� .s/ (4)

where f is any nonnegative �-integrable function on a probability measure space
.˝;�/.

The power functions ' .x/ D xp, x � 0 are superquadratic when p � 2 and
subquadratic, that is, �' is superquadratic when 1 � p � 2. When ' .x/ D x2

inequality (1) reduces to equality and therefore the same holds for (3) and (4).
It is obvious that when the superquadratic function is nonnegative on Œ0; b/, then

inequalities (3) and (4) are refinements of Jensen’s inequalities for convex functions.
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2.2 Jensen’s Type Inequalities for �-Quasisuperquadratic
Functions

For � -quasisuperquadratic functions defined in Definition 2 we get:

Lemma 7 ([8]). Let K .x/ D x�' .x/, � 2 RC, where ' is superquadratic on Œ0; b/.
Then, for this � -quasisuperquadratic function K, the inequality

K .y/ � K .x/ � ' .x/ .y� � x� /C C' .x/ y� .y � x/C y�' .jy � xj/ (5)

holds for x 2 Œ0; b/. y 2 Œ0; b/.
Moreover,

NX

iD1
˛iK .yi/ � K

 
NX

iD1
˛iyi

!

� '

0

@
NX

jD1
˛jyj

1

A

0

@
NX

iD1
˛iy

�
i �

0

@
NX

jD1
˛jyj

1

A

�1

A

C C'

0

@
NX

jD1
˛jyj

1

A
NX

iD1
˛iy

�
i

0

@yi �
NX

jD1
˛jyj

1

A

C
NX

iD1
˛iy

�
i '

0

@

ˇ̌
ˇ̌
ˇ̌yi �

NX

jD1
˛jyj

ˇ̌
ˇ̌
ˇ̌

1

A (6)

holds for xi 2 Œ0; b/, yi 2 Œ0; b/, 0 � ˛i � 1, i D 1; : : : ;N, and
PN

iD1 ˛i D 1.
Also

Z

˝

K .f .s// d� .s/ � K

�Z

˝

f .s/ d� .s/

�

�
Z

˝

�
' .x/ .f � .s/ � x� /C C' .x/ f � .s/ .f .s/ � x/

C f � .s/ ' .jf .s/ � xj/� d� .s/ : (7)

holds, where f is any nonnegative �-integrable function on the probability measure
space .˝;�/ and x D R

˝
f .s/ d� .s/ > 0.

If ' is subquadratic, then the reverse inequality of (5)–(7) hold, in particular
Z

˝

K .f .s// d� .s/ � K

�Z

˝

f .s/ d� .s/

�

�
Z

˝

�
' .x/ .f � .s/ � x� /C C' .x/ f � .s/ .f .s/ � x/

C f � .s/ ' .jf .s/ � xj/� d� .s/ : (8)
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Inequalities (5)–(7) are satisfied by the power functions K .x/ D xp, p � � C 2.
For � < p � � C 2, the reverse inequalities hold; in particular (8) holds. They
reduce to equalities for p D � C 2.

The power functions are used to get from Jensen’s type inequalities refined
Hardy’s type inequalities.

Equality (2) Lemmas 3 and 4 help in proving the following Theorem 1 about
Jensen’s type inequalities for � -quasisuperquadratic functions. The results of this
theorem refine Jensen’s type inequalities stated in inequalities (3) and (4) for
superquadratic functions. As nonnegative superquadratic functions (according to
Lemma 1) are convex, Theorem 1 refines also Jensen’s inequalities for these convex
functions which are also superquadratic:

Theorem 1 ([8, Lemma 3.1]). Let K .x/ D x�' .x/ D x��1 .x/, � � 1, where '
is a differentiable nonnegative superquadratic function and  .x/ D x' .x/. Then
the bound obtained for K .x/ D x�' .x/ is stronger than the bound obtained for
K .x/ D x��1 .x/, which means that:

K .y/ � K .x/ � ' .x/ .y� � x� /C '
0

.x/ y� .y � x/C y�' .jy � xj/ (9)

implies that

K .y/ � K .x/

�  .x/
�
y��1 � x��1�C  

0

.x/ y��1 .y � x/C y��1 .jy � xj/
D x' .x/ .x/

�
y��1 � x��1�C .x' .x//

0

y��1 .y � x/C y��1 jy � xj' .jy � xj/ :
(10)

Moreover, if K .x/ D xn' .x/,  k .x/ D xk' .x/, n is an integer, k D 1; 2; : : : ; n, and
' .x/ is nonnegative superquadratic, then the inequalities

Z

˝

K .f .s// d� .s/ � K

�Z

˝

f .s/ d� .s/

�

�
Z

˝

�
' .x/ .f n .s/ � xn/C C' .x/ f n .s/ .f .s/ � x/

C f n .s/ ' .jf .s/ � xj/� d� .s/

�
Z

˝

�
 k .x/

�
f n�k .s/ � xn�k

�C C k .x/ f n�k .s/ .f .s/ � x/

C f n�k .s/  k .jf .s/ � xj/� d� .s/

�
Z

˝

 n .jf .s/ � xj/ d� .s/ D
Z

˝

K .jf .s/ � xj/ d� .s/ � 0 (11)

hold for all probability measure spaces .˝;�/ of �-integrable nonnegative func-
tions f , where x D R

˝
f .s/ d� .s/ > 0.
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Furthermore, if ' is differentiable nonnegative increasing, convex subquadratic,
and ' .0/ D 0 D lim x'0 .x/

x!0C

, then according to Lemma 4, x' .x/ is superquadratic

and for k D 1; : : : ; n

Z

˝

h
' .x/ .f n .s/ � xn/C '

0

.x/ f n .s/ .f .s/ � x/ Cf n .s/ ' .jf .s/ � xj/� d� .s/

�
Z

˝
K .f .s// d� .s/ � K

�Z

˝
f .s/ d� .s/

�

�
Z

˝

h
 1 .x/

�
f n�1 .s/ � xn�1	C  

0

k .x/ f n�1 .s/ .f .s/ � x/

C f n�1 .s/  1 .jf .s/ � xj/
i

d� .s/

�
Z

˝

h
 k .x/

�
f n�k .s/ � xn�k

	
C  

0

k .x/ f n�k .s/ .f .s/ � x/

C f n�k .s/  k .jf .s/ � xj/
i

d� .s/

�
Z

˝
 n .jf .s/ � xj/ d� .s/ D

Z

˝
K .jf .s/ � xj/ d� .s/ � 0: (12)

In particular, if ' .x/ D xp, x � 0, p � 1, then (9)–(11) are satisfied when p � 2 and
(12) is satisfied when 1 � p � 2. When p D 2 equality holds in the first inequality
of (11) and in the first inequality of (12).

2.3 Jensen’s Type Inequalities for �-Quasiconvex Functions

In [1, 8, 9], Jensen’s type inequalities for � -quasiconvex functions (Definition 3) are
derived and discussed.

A convex function ' on Œ0; b/, 0 < b � 1, is characterized by the following
inequality:

'.y/ � '.x/ � C' .x/ .y � x/; 8x; y 2 .0; b�: (13)

In [8] we proved for � -quasiconvex functions K W Œ0; b/ ! R:

Lemma 8 ([8, Lemma 1]). Let K .x/ D x�' .x/, � 2 R, where ' is convex on
Œ0; b/. Then

K .y/ � K .x/ D y�' .y/ � x�' .x/ � ' .x/ .y� � x� /C C' .x/ y� .y � x/ (14)

holds for x 2 Œ0; b/, y 2 Œ0; b/, where C' .x/ is defined by (13). Moreover, the
Jensen’s type inequality



Applications of Quasiconvexity 7

Z

˝

K .f .s// d� .s/ � K

�Z

˝

f .s/ d� .s/

�

D
Z

˝

' .f .s// f � .s/ d� .s/ � ' .x/ x�

�
Z

˝

�
' .x/ .f � .s/ � x� /C C' .x/ f � .s/ .f .s/ � x/

�
d� .s/ (15)

holds, where f is a nonnegative function, x D R
˝

f .s/ d� .s/ > 0, f and K ı f are
�-integrable functions on the probability measure space .˝;�/.

In particular, for � D 1, we get when K D xf that

Z

˝

K .f .s// d� .s/ � K

�Z

˝

f .s/ d� .s/

�

�
Z

˝

�
C' .x/ f .s/ .f .s/�x/

�
d� .s/D

Z

˝

C' .x/ .f .s/�x/2 d� .s/ : (16)

If ' is concave, then the reverse inequalities of (13)–(16) hold. In particular

Z

˝

K .f .s// d� .s/ � K

�Z

˝

f .s/ d� .s/

�

�
Z

˝

�
' .x/ .f � .s/ � x� /C C' .x/ f � .s/ .f .s/ � x/

�
d� .s/

holds.

Example 1. Inequalities (13)–(15) are satisfied by K .x/ D xp, p � � C 1. For
� < p � �C1, the reverse inequalities hold. They reduce to equalities for p D �C1.

From Lemma 8, we get a refinement of Jensen’s inequality:

Theorem 2 ([8, Theorem 1]). Let � 2 RC and f be nonnegative function. Let f
and ' ı f be �-integrable functions on the probability measure space .˝;�/ and
x D R

˝
f .s/ d� .s/ > 0. If ' is a differentiable, nonnegative, convex, increasing

function on Œ0; b/, 0 < b � 1 and ' .0/ D lim z'0
z!0C

.z/ D 0, then the Jensen’s type

inequalities
Z

˝

K .f .s// d� .s/ � K

�Z

˝

f .s/ d� .s/

�

D
Z

˝

' .f .s// f � .s/ d� .s/ � ' .x/ x�

� ' .x/
Z

˝

.f � .s/ � x� / d� .s/C '
0

.x/
Z

˝

f � .s/ .f .s/ � x/ d� .s/ � 0

(17)

hold.
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Furthermore, for an integer n, we get:

Z

˝

' .f .s// f n .s/ d� .s/ � ' .x/ xn

� ' .x/
Z

˝

.f n .s/ � xn/ d� .s/C '
0

.x/
Z

˝

f n .s/ .f .s/ � x/ d� .s/

� x' .x/
Z

˝

�
f n�1 .s/ � xn�1� d� .s/

C .x' .x//
0

Z

˝

f n�1 .s/ .f .s/ � x/ d� .s/

� xk' .x/
Z

˝

�
f n�k .s/ � xn�k

�
d� .s/

C �
xk' .x/

�0

Z

˝

f n�k .s/ .f .s/ � x/ d� .s/

� �
xn�1' .x/

�0

Z

˝

f .s/ .f .s/ � x/ d� .s/

D �
xn�1' .x/

�0

Z

˝

.f .s/ � x/2 d� .s/ � 0; k D 1; : : : ; n � 1: (18)

Remark 1. Note that when n D 0 (17) and the first inequality in (18) coincide with
Jensen’s inequality.

Theorem 2 is used to prove the theorems in Sect. 3 related to Hardy’s inequality.

Corollary 1. By applying (15) with �.s/ D
NP

iD1
aiıi with

NP

iD1
ai D 1 and ıi unit

masses at x D xi, yi D f .xi/, i D 1; : : : ;N, N 2 ZC, we obtain that the following
special case of (15) yields the inequality

NX

iD1
˛iK .yi/ � K

 
NX

iD1
˛iyi

!

� '

0

@
NX

jD1
˛jyj

1

A

0

@
NX

iD1
˛iy

�
i �

0

@
NX

jD1
˛jyj

1

A

�1

A

C C'

0

@
NX

jD1
˛jyj

1

A
NX

iD1
˛iy

�
i

0

@yi �
NX

jD1
˛jyj

1

A ; (19)

which holds for xi 2 Œ0; b/, yi 2 Œ0; b/, 0 � ˛i � 1, i D 1; : : : ;N, and
PN

iD1 ˛i D 1.
Moreover, under the conditions on ' in Theorem 2, as ' is differentiable so that
C' D '0, then the right-hand side of (19) is nonnegative and therefore we get that
(19) is a genuine scale of refined discrete Jensen’s type inequalities.
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The definition of � - quasiconvex function K, K .x/ D x�' .x/ can be meaningful
even if � < 0. We quote for example the following complement of Theorem 2:

Theorem 3 ([9]). Let �1 � � � 0, and let f be nonnegative �-integrable function
on the probability measure space .˝;�/ x D R

˝
f .s/ d� .s/ > 0. If ' is a

differentiable, nonnegative, convex increasing function that satisfies ' .0/ D 0 D
lim z'0 .z/ ;

z!0C

then

Z

˝

' .f .s// .f .s//� d� .s/ � ' .x/ x�

� ' .x/
Z

˝

..f .s//� �x� / d� .s/C'0 .x/
Z

˝

.f .s//� .f .s/�x/ d� .s/ (20)

holds and the right-hand side expression of (20) is nonpositive.

Remark 2. From the case � D �1, it follows that when ' is convex and ' .0/ D
0 D lim

z!0C

.z'0 .z// and '.x/
x is concave, we get a negative lower bound to our

Jensen’s type difference. This important fact is further stated in the next subsection

2.4 Some Two-Sided Reversed Jensen’s Type Inequalities

In [9] we deal with � -quasiconvex functions when �1 � � � 0, from which we
derive some two-sided Jensen’s type inequalities.

The results in this subsection are quoted mainly from that paper. First we state
the following consequence of Theorem 3:

Theorem 4. Let the conditions in Theorem 3 be satisfied and assume in addition
that '.x/x is concave. Then the following two-sided Jensen’s type inequality holds:

' .x/
Z

˝

�
.f .s//�1 � x�1	 d� .s/C '0 .x/

Z

˝

.f .s//�1 .f .s/ � x/ d� .s/

�
Z

˝

' .f .s//

f .s/
d� .s/ � ' .x/

x
� 0:

Corollary 2. Let 0 < p � 1, and let f be a �-measurable and positive function on
the probability measure space .�;˝/ and x D R

˝
f .s/ d� .s/ > 0. Then

�I1 C
�Z

˝

f .s/ d� .s/

�p

�
Z

˝

.f .s//p d� .s/ �
�Z

˝

f .s/ d� .s/

�p

;

where

I1 D p

�Z

˝

f .s/ d� .s/

�p �
1 �

Z

˝

f .s/ d� .s/
Z

˝

.f .s//�1 d� .s/

�
> 0:
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Using (2) in Lemma 3, our next two-sided reversed Jensen’s type inequality
quoted from [9] reads:

Theorem 5. Let f be a nonnegative �-measurable function on the probability
measure space .�;˝/ and x D R

˝
f .s/ d� .s/ > 0. Assume that ' is a differentiable

nonnegative, convex function, ' .0/ D lim
z!0C

z'0 .z/ D 0. Moreover, assume that '.x/x

is concave. Then the following two-sided Jensen’s type inequality holds:

�
�
' .x/

x

�0 Z

˝

.f .s/ � x/2

f .s/
d� .s/ �

Z

˝

' .f .s//

f .s/
d� .s/ � ' .x/

x
� 0:

By applying Theorem 5 with ' .x/ D x1Cp, 0 < p � 1, we get the following
result:

Corollary 3. Let 0 < p � 1, let f be a nonnegative �-measurable function on the
probability measure space .˝;�/ and x D R

˝
f .s/ d� .s/ > 0. Then

�I2 C
�Z

˝

f .s/ d� .s/

�p

�
Z

˝

.f .s//p d� .s/ �
�Z

˝

f .s/ d� .s/

�p

;

where

I2 D p

�Z

˝

f .s/ d� .s/

�p�1 Z

˝

.f .s/ � x/2

f .s/
d� .s/ :

Next we state additional two-sided inequalities:

Theorem 6. Let f be a nonnegative �-measurable function on the probability
measure space .˝;�/ and x D R

˝
f .s/ d� .s/ > 0. Assume that ' is a differentiable

nonnegative function such that ' .0/ D lim
z!0C

z'0 .z/ D 0, '.x/
x2

is convex, and '.x/
x is

concave. Then the following two-sided Jensen’s type inequality holds:

�
' .x/

x2

�0 Z

˝

.f .s/ � x/2 d� .s/ �
Z

˝

' .f .s//

f .s/
d� .s/ � ' .x/

x
� 0:

By applying Theorem 6 with ' .x/ D x1Cp, 0 < p � 1, we obtain the following
Corollary 4:

Corollary 4. Let 0 < p � 1, and let f be a �-measurable function on the
probability measure space .˝;�/ and x D R

˝
f .s/ d� .s/ > 0. Then

�I3 C
�Z

˝

f .s/ d� .s/

�p

�
Z

˝

.f .s//p d� .s/ �
�Z

˝

f .s/ d� .s/

�p

;
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where

I3 D .1 � p/

�Z

˝

f .s/ d� .s/

�p�2 Z

˝

.f .s/ � x/2 d� .s/ :

2.5 Comparing Jensen’s Type Inequalities

Using Lemmas 4 and 5, we compare Jensen’s type inequality obtained by using
the 1-quasiconvexity of  , where  .x/ D x' .x/, ' is differentiable nonnegative
increasing convex function on x � 0 satisfying ' .0/ D lim

x!0C

x'
0

.x/ D 0 and the

superquadracity of the function  . The comparison shows that when � D 1, (17) is
sharper than (4) for the same  , that is:

Theorem 7 ([9]). Let  .x/ D x' .x/, where ' is nonnegative, convex, increasing,
and differentiable function on Œ0; b/, and ' .0/ D 0 D lim x'

0

.x/
x!0C

. Then the

inequalities

mX

jD1
˛j 

�
xj
� �  .x/ �

mX

jD1
˛j'

0 .x/
�
xj � x

�2 �
mX

jD1
˛j 

�ˇ̌
xj � x

ˇ̌� � 0

hold for

xj � 2x; x D
mX

jD1
˛jxj; 0 � ˛j � 1;

mX

jD1
˛j D 1; j D 1; : : : ;m:

In particular, the theorem holds under the conditions stated in Lemma 5.

Similarly we also get that:

Theorem 8. Under the conditions of Theorem 2 for .x/ D x' .x/, the inequalities

Z

˝

 .f .s// d� .s/ �  
�Z

˝

f .s/ d� .s/

�

�
Z

˝

'0
�Z

˝

f .�/ d� .�/

��
f .s/ �

Z

˝

f .�/ d� .�/

�2
d� .s/

�
Z

˝

 

�ˇ̌
ˇ
ˇf .s/ �

Z

˝

f .�/ d� .�/

ˇ̌
ˇ
ˇ

�
d� .s/ � 0;

hold when 0 < a � f .s/ � 2a, s 2 ˝.

Theorem 7 for m D 2 leads to the proofs of Theorems 16 and 19 which deal with
the behavior of averages of An.f / and Bn .f / discussed in Sect. 4.
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3 Hardy’s Type Inequalities Related to Quasiconvexity
and Superquadracity

In 1928 Hardy [16] obtained and proved the inequality

Z 1

0

�
1

x

Z x

0

f .y/ dy

�p

x˛dx �
�

p

p � ˛ � 1
�p Z 1

0

f p .x/ x˛dx (21)

which holds for all measurable and nonnegative functions f on .0;1/ whenever
˛ < p � 1, p � 1. In [24] sufficient conditions for a variant

Z b

0

�
1

x

Z x

0

f .y/ dy

�p

x�1dx �
Z b

0

f p .x/ x�1
 

1 �
� x

b

	 p�˛�1
p

!

dx (22)

of (21) to hold are given for p � 1. In particular it is shown there that inequality
(22) is equivalent to the following variant of (21):

Z b

0

�
1

x

Z x

0

f .y/ dy

�p

x˛dx

�
�

p

p � ˛ � 1
�p Z b

0

f p .x/ x˛
 

1 �
� x

b

	 p�˛�1
p

!

dx (23)

for p � 1, ˛ < p � 1 or p < 0, ˛ > p � 1 and 0 � b � 1.
In 2008 Oguntuase and Persson proved the following refined Hardy’s inequality

with “breaking point” p D 2 (see [18] and also [19]):

Theorem 9. Let p � 1, ˛ < p � 1 and 0 < b � 1. If p � 2, and the function f is
nonnegative and locally integrable on .0; b/ and

R b
0

x˛f p .x/ dx < 1, then

Z b

0

�
1

x

Z x

0

f .y/ dy

�p

x˛dx

C p � 1 � ˛
p

Z b

0

Z b

t

ˇ̌
ˇ
ˇ̌

p

p � ˛ � 1
� t

x

	1� p�˛�1
p

f .t/

�1
x

Z x

0

f .�/ d�

ˇ̌
ˇ̌
p

x˛� p�˛�1
p dx � t

p�˛�1
p �1dt

�
�

p

p � ˛ � 1
�p Z b

0

f p .x/ x˛
 

1 �
� x

b

	 p�˛�1
p

!

dx: (24)

If 1 < p � 2, then (24) holds in the reversed direction. In particular, for p D 2, we
have equality in (24).
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In [2] another theorem about refined Hardy’s inequality with “breaking point” at
p D 2 is proved by using the quasiconvexity of the power functions for p � 2 W
Theorem 10. Let p � 2, k > 1, 0 < b � 1, and let the function f be nonnegative
and locally integrable on .0; b/. Then

� p

k � 1
	p
Z b

0

�
1 �

� x

b

	 k�1
p

�
xp�kf p .x/ dx �

Z b

0

x�k

�Z x

0

f .t/ dt

�p

dx

� .p � 1/
p

.k � 1/
Z b

0

Z b

t

 

f .t/
p

k � 1
� t

x

	1� k�1
p � 1

x

Z x

0

f .�/ d�

!2

�
�
1

x

Z x

0

f .�/ d�

�p�2
x
�
1� k�1

p

	
.pC1/t

k�1
p �1 dx

x2
dt: (25)

Moreover, the double integral of the right-hand side of (25) is nonnegative. If
1 < p � 2, then the inequality (25) holds in reverse direction. Equality holds when
p D 2.

There, in [2] an additional theorem is proved about a “breaking point” at p D 3

for Hardy’s type inequality by using the quasisuperquadracity of the power functions
for p � 3:

Theorem 11. Let p � 3, k > 1, 0 < b � 1, and let the function f be nonnegative
and locally integrable on .0; b/. Then

� p

k � 1
	p
Z b

0

�
1 �

� x

b

	 k�1
p

�
xp�kf p .x/ dx �

Z b

0

x�k

�Z x

0

f .t/ dt

�p

dx

� p � 1
p

.k � 1/
Z b

0

Z b

t

 

f .t/
p

k � 1
� t

x

	1� k�1
p � 1

x

Z x

0

f .�/ d�

!2

�
�
1

x

Z x

0

f .�/ d�

�p�2
x
�
1� k�1

p

	
.pC1/t

k�1
p �1 dx

x2
dt

C
Z b

0

Z b

t

�
f .t/ t1�

k�1
p

	 
ˇ̌
ˇ
ˇ̌f .t/

p

k � 1
� t

x

	1� k�1
p � 1

x

Z x

0

f .�/ d�

ˇ̌
ˇ
ˇ̌

!p�1

�x
�
1� k�1

p

	
pt

k�1
p �1 dx

x2
dt: (26)

Moreover, each double integral of the right-hand side of (26) is nonnegative.
If 1 < p � 3, then the inequality (26) holds in the reverse direction. Equality

holds when p D 3.

Using the � -quasiconvexity of the power function when the power is pC� , p � 1,
� � 0 we get in [8] and Hardy’s type inequality:
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Theorem 12. Let p � 1, k > 1, 0 < b � 1, and � 2 RC, and let the function f be
nonnegative and locally integrable on Œ0; b/. Then

�
p C �

k � 1
�pC� Z b

0

"�
1 �

� x

b

	 k�1
pC�

�
xpC� f pC� .x/ �

�Z x

0

f .t/ dt

�pC�
#

dx

xk

�
�

k � 1
p C �

�Z b

0

Z b

t

  

f .t/
p C �

k � 1
� t

x

	1� k�1
pC�

!�
�
�
1

x

Z x

0

f .�/ d�

��!

�
�
1

x

Z x

0

f .�/ d�

�p

x
�
1� k�1

pC�

	
.pC��1/t

k�1
pC� �1 dx

x2
dt

C p

�
k � 1
p C �

�1�� Z b

0

Z b

t

�
f .t/ t1�

k�1
pC�

	�
 

f .t/
p C �

k � 1
� t

x

	1� k�1
pC�

�1
x

Z x

0

f .�/ d�

��
1

x

Z x

0

f .�/ d�

�p�1

x
�
1� k�1

pC�

	
.pC1/t

k�1
pC� �1 dx

x2
dt � 0:

(27)

holds.
Moreover, when � D 0 (27) coincides with (23) and therefore also with (21).

By using the � -superquadracity, we get for the power function with the power
greater than p C � , p � 2, � � 0 that the following Hardy’s type inequality holds.

Theorem 13 ([1]). Let p � 2, k > 1, 0 < b � 1, and � 2 RC, and let the function
f be nonnegative and locally integrable on .0; b/. Then

�
p C �

k � 1
�pC� Z b

0

"�
1 �

� x

b

	 k�1
pC�

�
xpC� f pC� .x/ �

�Z x

0

f .t/ dt

�pC�# dx

xk

�
�

k � 1
p C �

�Z b

0

Z b

t

  

f .t/
p C �

k � 1
� t

x

	1� k�1
pC�

!�
�
�
1

x

Z x

0

f .�/ d�

��!

�
�
1

x

Z x

0

f .�/ d�

�p

x
�
1� k�1

pC�

	
.pC��1/t

k�1
pC� �1 dx

x2
dt

C
�

k � 1
p C �

�1�� Z b

0

Z b

t

�
f .t/ t1�

k�1
pC�

	�
 

f .t/
p C �

k � 1
� t

x

	1� k�1
pC�

�1
x

Z x

0

f .�/ d�

�
� p

�
1

x

Z x

0

f .�/ d�

�p�1
x
�
1� k�1

pC�

	
.pC1/t

k�1
pC� �1 dx

x2
dt

C
�

k � 1
p C �

�1�� Z b

0

Z b

t

�
f .t/ t1�

k�1
pC�

	�

�
 ˇˇ̌
ˇ̌f .t/

p C �

k � 1
� t

x

	1� k�1
pC� � 1

x

Z x

0

f .�/ d�

ˇ
ˇ̌
ˇ̌

!p

x
�
1� k�1

pC�

	
.pC1/t

k�1
pC� �1 dx

x2
dt:

(28)
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Moreover, if � is a nonnegative integer, then the right-hand side of (28) is
nonnegative. If 1 < p � 2, then inequality (28) is reversed. Equality holds when
p D 2. When � D 0, inequality (28) coincide with (24).

4 Averages

In this section we deal with the lower bounds of differences of averages where the
functions f involved with are quasiconvex.

For a function f and a sequence an, n D 0; 1; : : :, we define

An.f / D 1

an�1

n�1X

iD1
f

�
ai

an

�
; n � 2;

and

Bn .f / D 1

anC1

nX

iD0
f

�
ai

an

�
n � 1:

In [4, Theorems 3.1 and 5.3], the following results concerning averages for
superquadratic functions are proved:

Theorem 14. Let ai, i D 0; 1 : : :, be an increasing sequence with a0 D 0, and
a1 > 0, and let aiC1 � ai be decreasing. Suppose that f is superquadratic and
nonnegative on Œ0; b/. Then, for n � 2

AnC1 .f / � An .f / D 1

an

nX

iD1
f

�
ai

anC1

�
� 1

an�1

n�1X

iD1
f

�
ai

an

�

� 1

anan�1

n�1X

iD1
aif

�ˇ̌
ˇ̌ aiC1
anC1

� ai

an

ˇ̌
ˇ̌
�

C 1

anan�1

n�1X

iD1
.an � ai/ f

�ˇ̌
ˇ̌ ai

an
� ai

anC1

ˇ̌
ˇ̌
�
: (29)

In the special case where ai D i, i D 0; 1 : : :, we get for

An.f / D 1

n � 1
n�1X

rD1
f
� r

n

	
; n � 2
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that if f is superquadratic on Œ0; 1�,then for n � 2

AnC1 .f / � An .f / �
n�1X

rD1

2r

n .n � 1/ f

�
n � r

n .n C 1/

�
:

holds.
Further,

AnC1 .f / � An .f / � f
�
1
3n

�C
n�1X

rD1
�rf .yr/ ;

where �r D 2r
n.n�1/ , yr D j2n�1�3rj

3n.nC1/ , r D 1; : : : ; n � 1.

Moreover if f is superquadratic and nonnegative, then for n � 3

AnC1 .f / � An .f / � f
�
1
3n

�C f
�

16
81.nC3/

	
:

Theorem 15 ([4, Theorems 3.2 and 5.6]). Let ai > 0, and ai � ai�1, i D 1; : : :,
be increasing sequences and let a0 D 0. Suppose that f is superquadratic and
nonnegative on Œ0; b/.

Then,

Bn�1 .f / � Bn .f / D 1

an

n�1X

iD0
f

�
ai

an�1

�
� 1

anC1

nX

iD0
f

�
ai

an

�

� 1

ananC1

n�1X

iD1
aif

�ˇ̌
ˇ
ˇ

ai�1
an�1

� ai

an

ˇ̌
ˇ
ˇ

�

C 1

ananC1

n�1X

iD0
.an � ai/ f

�ˇ̌
ˇ̌ ai

an
� ai

an�1

ˇ̌
ˇ̌
�
; (30)

and in the special case where ai D i, i D 0; 1; : : :, we get for

Bn .f / D 1

n C 1

nX

rD0
f
� r

n

	
; n � 1

that if f is superquadratic on [0,1], then for n � 2

Bn�1 .f / � Bn .f / �
nX

rD1

2r

n .n C 1/
f

�
n � r

n .n � 1/
�
:

holds.
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Further,

Bn�1 .f / � Bn .f / � f
�
1
3n

�C
nX

rD1
�rf .yr/ ;

where �r D 2r
n.nC1/ , yr D j2nC1�3rj

3n.n�1/ , r D 1; : : : ; n.
Moreover, if f is also nonnegative, then for n � 2

Bn�1 .f / � Bn .f / � f
�
1
3n

�C f
�
16
81n

�
:

Using Theorem 7 we get for functions which are simultaneously quasiconvex
and superquadratic functions a better lower bound for the difference AnC1 .f / �
An .f / when we use the quasiconvexity of the function f than when we use its
superquadracity.

To show it we first state results analog to those in Theorem 14, but now instead
of superquadratic functions we deal with quasiconvex functions.

The results quoted below are mainly from [3].

Theorem 16. Let ' W Œ0; b/ ! RC, 0 < b � 1 be differentiable convex increasing
function satisfying ' .0/ D 0 D lim

x!0C

x'
0

.x/, and let f D x'. Let the sequence

ai > 0, i D 1; : : : be such that ai is increasing and aiC1 � ai is decreasing and let
a0 D 0. Then, for n � 2, we get from the quasiconvexity of f that the inequalities

AnC1 .f / � An .f / D 1

an

nX

iD1
f

�
ai

anC1

�
� 1

an�1

n�1X

iD1
f

�
ai

an

�

� 1

an�1

n�1X

iD1
'

0

�
ai .an C aiC1 � ai/

ananC1

� 
.aiC1 � ai/

2 ai .an � ai/

a2na2nC1

!

� 0

(31)

hold, and as '
0

is increasing the inequalities

AnC1 .f / � An .f / D 1

an

nX

iD1
f

�
ai

anC1

�
� 1

an�1

n�1X

iD1
f

�
ai

an

�

� 1

an�1

n�1X

iD1
'

0

�
ai .an C aiC1 � ai/

ananC1

� 
.aiC1 � ai/

2 ai .an � ai/

a2na2nC1

!

� 1

an�1

n�1X

iD1
'

0

�
ai

an

� 
.aiC1 � ai/

2 ai .an � ai/

a2na2nC1

!

� 0

hold.
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From the superquadracity of f D x', we get that

AnC1 .f / � An .f /

� 1

anan�1

n�1X

iD1

�
aif

�
.an � ai/ .aiC1 � ai/

ananC1

�

C .an � ai/ f

�
ai .aiC1 � ai/

an .anC1/

��

D 1

an�1

n�1X

iD1

.aiC1 � ai/ ai .an � ai/

a2nanC1

�
'

�
.an � ai/ .aiC1 � ai/

ananC1

�

C'

�
ai .aiC1 � ai/

an .anC1/

��
� 0: (32)

As ' is convex we get that

AnC1 .f / � An .f /

� 1

an�1

n�1X

iD1

.aiC1 � ai/ ai .an � ai/

a2nanC1

�
'

�
.an � ai/ .aiC1 � ai/

ananC1

�

C'

�
ai .aiC1 � ai/

an .anC1/

��

� 2

an�1a2nanC1

n�1X

iD1
'

�
aiC1 � ai

2anC1

�
.aiC1 � ai/ ai .an � ai/ � 0:

Further, if '
0

is also convex, then

AnC1 .f / � An .f /

�
n�1X

iD1

.aiC1 � ai/
2 ai .an � ai/

an�1a2na2nC1
'

0

 Pn�1
iD1 a2i .an � ai/ .aiC1 � ai/

2

an
Pn�1

iD1 ai .an � ai/ .aiC1 � ai/
2

!

� 0:

Finally, the bound obtained in (31) by the quasiconvexity of f is better than the
bound obtained by its superquadracity in (32) and in (29), that is:

AnC1 .f / � An .f /

� 1

an�1

n�1X

iD1
'

0

�
ai .an C aiC1 � ai/

ananC1

� 
.aiC1 � ai/

2 ai .an � ai/

a2na2nC1

!

� 1

an�1

n�1X

iD1

.aiC1 � ai/ ai .an � ai/

a2nanC1

�
'

�
.an � ai/ .aiC1 � ai/

ananC1

�
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C'

�
ai .aiC1 � ai/

an .anC1/

��

� 2

an�1a2nanC1

n�1X

iD1
'

�
aiC1 � ai

2anC1

�
.aiC1 � ai/ ai .an � ai/ � 0:

Example 2. Let f D x', be quasiconvex function where ' is nonnegative convex
increasing and differentiable function on Œ0; b/, and ' .0/ D 0 D lim

x!0C

x'
0

.x/. Let

ai D i, i D 0; : : : ; n. Then by Theorem 16

AnC1 .f / � An .f / � 1

.n � 1/
n�1X

rD1
'

0

� r

n

	 r .n � r/

n2 .n C 1/2
� 0;

and the lower bound obtained by the quasiconvexity of f is better than the lower
bound obtained by its quasiconvexity, that is:

AnC1 .f / � An .f / � 1

.n � 1/
n�1X

rD1
'

0

� r

n

	 r .n � r/

n2 .n C 1/2

� 1

.n � 1/
n�1X

rD1

2r

n
f

�
n � r

n .n C 1/

�
� 0:

If '
0

is also convex, we get also:

AnC1 .f / � An .f / � 1

6n .n C 1/
'

0

�
1

2

�
� 1

3n
'

�
1

2 .n C 1/

�
� 0:

Now we present results related to the behavior of Bn .f / when n changes.
First we state a theorem about Bn�1 .f / � Bn .f / when the function f is

quasiconvex and f D x':

Theorem 17. Let ' W Œ0; b/ ! RC, 0 < b � 1 be differentiable convex increasing
function and let f D x'. Let the sequence ai > 0, i D 1; : : :, be such that ai � ai�1,
i D 1; : : : is increasing and let a0 D 0. Then, for n � 2

Bn�1 .f / � Bn .f /

D 1

an

n�1X

iD0
f

�
ai

an�1

�
� 1

anC1

nX

iD0
f

�
ai

an

�

� 1

anC1a2na2n�1

n�1X

iD1
.ai � ai�1/2 ai .an � ai/ '

0

�
ai .an C ai�1 � ai/

an

�
� 0:

(33)
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If in addition '
0

is convex on Œ0;1/, then

1

an

n�1X

iD0
f

�
ai

an�1

�
� 1

anC1

nX

iD0
f

�
ai

an

�

�
n�1X

iD1

.ai � ai�1/2 ai .an � ai/ '
0

anC1a2na2n�1

 Pn�1
iD1 a2i .an � ai/ .ai � ai�1/2

an
Pn�1

iD1 ai .an � ai/ .ai � ai�1/2

!

� 0:

We state now a theorem about the superquadratic function f where f D x'.

Theorem 18. Let ' W Œ0; b/ ! RC 0 < b � 1 be differentiable convex increasing
function satisfying ' .0/ D 0 D lim

x!0C

x'
0

.x/ and let f D x'. Let a0 D 0 and ai > 0,

i D 1; : : :, be a sequence for which ai � ai�1 is increasing for i D 1; : : :,. Then

Bn�1 .f / � Bn .f / D 1

an

n�1X

iD0
f

�
ai

an�1

�
� 1

anC1

nX

iD0
f

�
ai

an

�

� 1

anC1

n�1X

iD1

�
ai

an
f

�
.an � ai/ .ai � ai�1/

an�1an

�

C an � ai

an
f

�
ai .ai � ai�1/

an�1an

��

D
n�1X

iD1

.ai � ai�1/ ai .an � ai/

anC1a2nan�1

�
'

�
ai .ai � ai�1/

an�1an

�

C'

�
.an � ai/ .ai � ai�1/

an�1an

��
; (34)

and as ' is also convex we get that

Bn�1 .f / � Bn .f / D 1

an

n�1X

iD0
f

�
ai

an�1

�
� 1

anC1

nX

iD0
f

�
ai

an

�

� 1

anC1

n�1X

iD1

�
ai

an
f

�
.an � ai/ .ai � ai�1/

an�1an

�

Can � ai

an
f

�
ai .ai � ai�1/

an�1an

��
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D
n�1X

iD1

.ai � ai�1/ ai .an � ai/

anC1a2nan�1

�
'

�
ai .ai � ai�1/

an�1an

�

C'

�
.an � ai/ .ai � ai�1/

an�1an

��

�
n�1X

iD1

2ai .an � ai/ .ai � ai�1/
anC1a2nan�1

'

�
.ai � ai�1/
2an�1

�
� 0:

The proof of (35) in Theorem 19 uses Theorem 7 to show that the bound obtained
in (33) is better than the bound obtained in (30) and in (34).

Theorem 19. Let ' W Œ0; b/ ! RC 0 < b � 1 be differentiable convex increasing
function satisfying ' .0/ D 0 D lim

x!0C

x'
0

.x/ and let f D x'. Let a0 D 0 and ai > 0,

i D 1; : : : be a sequence for which ai � ai�1 is increasing for i D 1; : : :,. Then the
inequalities

Bn�1 .f / � Bn .f / D 1

an

n�1X

iD0
f

�
ai

an�1

�
� 1

anC1

nX

iD0
f

�
ai

an

�

�
n�1X

iD1

.ai � ai�1/ .an � ai/ ai

a2n�1a2nanC1
'

0

�
ai .an C ai�1 � ai/

anan�1

�

�
n�1X

iD1

.ai � ai�1/ .an � ai/ ai

an�1a2nanC1

�
'

�
ai .ai � ai�1/

anan�1

�

C'

�
.an � ai/ .ai � ai�1/

anan�1

��
� 0 (35)

hold.

Example 3. Let f D x', then under the conditions of Theorem 19 on ', when
ai D i, i D 0; : : : ; n we get that

Bn�1 .f / � Bn .f / D 1

n

n�1X

rD0
f
� r

n � 1
	

� 1

n C 1

nX

rD0
f
� r

n

	

� 1

.n C 1/ .n � 1/2 n2

nX

rD0
'

0

� r

n

	
r .n � r/

� 2

nX

rD0

r

n
f

�
n � r

n .n � 1/
�

� 0

holds.
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Further, if '
0

is also convex on Œ0;1/, we get that

Bn�1 .f / � Bn .f / � 1

6n .n � 1/'
0

�
1

2

�
� 1

3n
'

�
1

2 .n � 1/
�
:

Similarly, the bounds of the differences

1

2n � 1
nX

iD1
f

�
2i C 1

2n C 1

�
� 1

2n � 3
n�1X

iD1
f

�
2i C 1

2n � 1
�

1

2n � 1
nX

iD1
f

�
2i � 1
2n � 3

�
� 1

2n C 1

n�1X

iD1
f

�
2i � 1
2n � 1

�

obtained by using the quasiconvexity of f are better than the bound obtained by
using superquadracity.

References

1. Abramovich, S., Persson, L.E.: Some new scales of refined Hardy type inequalities via
functions related to superquadracity. Math. Inequal. Appl. 16, 679–695 (2013)

2. Abramovich, S., Persson, L.E.: Some new refined Hardy type inequalities with breaking points
p D 2 or p D 3. In: Proceedings of the IWOTA 2011, Operator Theory: Advances and
Applications, vol. 236, pp. 1–10. Birkhäuser/Springer, Basel/Berlin (2014)

3. Abramovich, S., Persson, L.E.: Inequalities for averages of quasiconvex and superquadratic
functions. Math. Inequal. Appl. 19(2), 535–550 (2016)

4. Abramovich, S., Jameson, G., Sinnamon, G.: Inequalities for averages of convex and
superquadratic functions. J. Inequal. Pure Appl. Math. 5(4), Article 91 (2004)

5. Abramovich, S., Jameson, G., Sinnamon, G.: Refining Jensen’s inequality. Bull. Math. Soc.
Sci. Math. Roumanie (N.S.) 47(95), 3–14 (2004)
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12. Banić, S., Pečarić, J., Varošanec, S.: Superquadratic functions and refinements of some
classical inequalities. J. Korean Math. Soc. 45, 513–525 (2008)
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Taylor’s Formula and Integral Inequalities
for Conformable Fractional Derivatives

Douglas R. Anderson

In Honor of Constantin Carathéodory

Abstract We derive Taylor’s theorem using a variation of constants formula for
conformable fractional derivatives. This is then employed to extend some recent and
classical integral inequalities to the conformable fractional calculus, including the
inequalities of Steffensen, Chebyshev, Hermite–Hadamard, Ostrowski, and Grüss.

1 Taylor Theorem

We use the conformable ˛-fractional derivative, recently introduced in [6, 7, 9],
which for ˛ 2 .0; 1� is given by:

D˛f .t/ WD lim
"!0

f
�
te"t

�˛ � � f .t/

"
; D˛f .0/ D lim

t!0C

D˛f .t/: (1)

Note that if f is differentiable, then

D˛f .t/ D t1�˛f 0.t/; (2)

where f 0.t/ D lim"!0Œf .t C "/ � f .t/�=".
We will consider Taylor’s Theorem in the context of iterated fractional differ-

ential equations. In this setting, the theorem will be proven using the variation of
constants formula, where we use an approach similar to that used for integer-order
derivatives found in [8], and different from that found in Williams [14], where the
Riemann–Liouville fractional derivative is employed. With this in mind, we begin
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this note with a general higher-order equation. For n 2 N0 and continuous functions
pi W Œ0;1/ ! R, 1 � i � n, we consider the higher-order linear ˛-fractional
differential equation:

Ly D 0; where Ly D Dn
˛y C

nX

iD1
piD

n�i
˛ y; (3)

where Dn
˛y D Dn�1

˛ .D˛y/. A function y W Œ0;1/ ! R is a solution of Eq. (3)
on Œ0;1/ provided y is n times ˛-fractional differentiable on Œ0;1/ and satisfies
Ly.t/ D 0 for all t 2 Œ0;1/. It follows that Dn

˛y is a continuous function on Œ0;1/.
Now let f W Œ0;1/ ! R be continuous and consider the nonhomogeneous

equation:

Dn
˛.t/C

nX

iD1
pi.t/D

n�i
˛ y.t/ D f .t/: (4)

Definition 1. We define the Cauchy function y W Œ0;1/ � Œ0;1/ ! R for the
linear fractional equation (3) to be, for each fixed s 2 Œ0;1/, the solution of the
initial value problem:

Ly D 0; Di
˛y.s; s/ D 0; 0 � i � n � 2; Dn�1

˛ y.s; s/ D 1:

Remark 1. Note that

y.t; s/ WD 1

.n � 1/Š
�

t˛ � s˛

˛

�n�1

is the Cauchy function for Dn
˛ D 0, which can be easily verified using (2).

Definition 2. Let ˛ 2 .0; 1� and 0 � a < b. A function f W Œa; b� ! R is
˛-fractional integrable on Œa; b� if the integral

Z b

a
f .t/d˛t WD

Z b

a
f .t/t˛�1dt

exists and is finite.

Theorem 1 (Variation of Constants). Let ˛ 2 .0; 1� and s; t 2 Œ0;1/. If f is
continuous, then the solution of the initial value problem:

Ly D f .t/; Di
˛y.s/ D 0; 0 � i � n � 1

is given by

y.t/ D
Z t

s
y.t; �/f .�/d˛�;

where y.t; �/ is the Cauchy function for (3).
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Proof. With y defined as above and by the properties of the Cauchy function, we
have

Di
˛y.t/ D

Z t

s
Di
˛y.t; �/f .�/d˛� C Di�1

˛ y.t; t/f .t/ D
Z t

s
Di
˛y.t; �/f .�/d˛�

for 0 � i � n � 1, and

Dn
˛y.t/ D

Z t

s
Dn
˛y.t; �/f .�/d˛� C Dn�1

˛ y.t; t/f .t/

D
Z t

s
Dn
˛y.t; �/f .�/d˛� C f .t/:

It follows from these equations that

Di
˛y.s/ D 0; 0 � i � n � 1

and

Ly.t/ D
Z t

s
Ly.t; �/f .�/d˛� C f .t/ D f .t/;

and the proof is complete. ut
Theorem 2 (Taylor Formula). Let ˛ 2 .0; 1� and n 2 N. Suppose f is .n C 1/

times ˛-fractional differentiable on Œ0;1/, and s; t 2 Œ0;1/. Then we have

f .t/ D
nX

kD0

1

kŠ

�
t˛ � s˛

˛

�k

Dk
˛f .s/C 1

nŠ

Z t

s

�
t˛ � �˛
˛

�n

DnC1
˛ f .�/d˛�:

Proof. Let g.t/ WD DnC1
˛ f .t/. Then f solves the initial value problem:

DnC1
˛ x D g; Dk

˛x.s/ D Dk
˛f .s/; 0 � k � n:

Note that the Cauchy function for DnC1
˛ y D 0 is

y.t; s/ D 1

nŠ

�
t˛ � s˛

˛

�n

:

By the variation of constants formula,

f .t/ D u.t/C 1

nŠ

Z t

s

�
t˛ � �˛
˛

�n

g.�/d˛�;
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where u solves the initial value problem:

DnC1
˛ u D 0; Dm

˛ u.s/ D Dm
˛ f .s/; 0 � m � n: (5)

To validate the claim that u.t/ D Pn
kD0 1

kŠ

�
t˛�s˛

˛

�k
Dk
˛f .s/, set

w.t/ WD
nX

kD0

1

kŠ

�
t˛ � s˛

˛

�k

Dk
˛f .s/:

Then DnC1
˛ w D 0, and we have that

Dm
˛w.t/ D

nX

kDm

1

.k � m/Š

�
t˛ � s˛

˛

�k�m

Dk
˛f .s/:

It follows that

Dm
˛w.s/ D

nX

kDm

1

.k � m/Š

�
s˛ � s˛

˛

�k�m

Dk
˛f .s/ D Dm

˛ f .s/

for 0 � m � n. We consequently have that w also solves (5), and thus u � w by
uniqueness. ut
Corollary 1. Let ˛ 2 .0; 1� and s; r 2 Œ0;1/ be fixed. For any t 2 Œ0;1/ and any
positive integer n,

1

nŠ

�
t˛ � r˛

˛

�n

D
nX

kD0

1

kŠ.n � k/Š

�
t˛ � s˛

˛

�k � s˛ � r˛

˛

�n�k

:

Proof. This follows immediately from the theorem if we take f .t/ D 1
nŠ

�
t˛�r˛

˛

�n
in

Taylor’s formula. It can also be shown directly. ut

2 Steffensen Inequality

In this section we prove a new ˛-fractional version of Steffensen’s inequality and of
Hayashi’s inequality. The results in this and subsequent sections differ from those
in [10, 12, 13, 15].

Lemma 1. Let ˛ 2 .0; 1� and a; b 2 R with 0 � a < b. Let A > 0 and let
g W Œa; b� ! Œ0;A� be an ˛-fractional integrable function on Œa; b�. If

` WD ˛.b � a/

A.b˛ � a˛/

Z b

a
g.t/d˛t 2 Œ0; b � a�; (6)
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then
Z b

b�`
A d˛t �

Z b

a
g.t/ d˛t �

Z aC`

a
A d˛t: (7)

Proof. Since g.t/ 2 Œ0;A� for all t 2 Œa; b�, ` given in (6) satisfies

0 � ` D ˛.b � a/

A.b˛ � a˛/

Z b

a
g.t/d˛ t � ˛.b � a/

b˛ � a˛

Z b

a
1 d˛ t D ˛.b � a/

b˛ � a˛
b˛ � a˛

˛
D b � a:

As ˛ 2 .0; 1� we have that t˛�1 is a decreasing function on Œa; b� or .a; b� if a D 0.
Thus using the fact that d˛t D t˛�1dt, we have the following inequalities, which are
average values, namely,

1

`

Z b

b�`
1 d˛t � 1

b � a

Z b

a
1 d˛t � 1

`

Z aC`

a
1 d˛t:

This implies that

Z b

b�`
A d˛t � `

b � a

Z b

a
A d˛t �

Z aC`

a
A d˛t;

which leads to (7) via (6). ut
The next theorem is known as Steffensen’s inequality if A D 1, and for general

A > 0, it is known as Hayashi’s inequality [1].

Theorem 3 (Fractional Hayashi–Steffensen Inequality). Let ˛ 2 .0; 1�, A > 0,
and a; b 2 R with 0 � a < b. Let f W Œa; b� ! R and g W Œa; b� ! Œ0;A� be
˛-fractional integrable functions on Œa; b�.

(i) If f is nonnegative and nonincreasing, then

A
Z b

b�`
f .t/d˛t �

Z b

a
f .t/g.t/d˛t � A

Z aC`

a
f .t/d˛t; (8)

where ` is given by (6).
(ii) If f is nonpositive and nondecreasing, then the inequalities in (8) are reversed.

Proof. For (i), assume f is nonnegative and nonincreasing; we will prove only the
case in (8) for the left inequality; the proof for the right inequality is similar and
relies on (7). By the definition of ` in (6) and the conditions on g, we know that (7)
holds. After subtracting within the left inequality of (8), we see that

Z b

a
f .t/g.t/d˛t � A

Z b

b�`
f .t/d˛t

D
Z b�`

a
f .t/g.t/d˛t �

Z b

b�`
f .t/.A � g.t//d˛t
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�
Z b�`

a
f .t/g.t/d˛t � f .b � `/

Z b

b�`
.A � g.t//d˛t

(7)�
Z b�`

a
f .t/g.t/d˛t � f .b � `/

Z b�`

a
g.t/d˛t

D
Z b�`

a
.f .t/ � f .b � `// g.t/d˛t � 0;

since f is nonincreasing, and f and g are nonnegative. Therefore, the left-hand side
of (8) holds.

For (ii), assume f is nonpositive and nondecreasing; we will prove only the case
in (8) for the reversed right inequality; the proof for the reversed left inequality is
similar and also relies on (7). We see that we have

Z b

a
f .t/g.t/d˛t � A

Z aC`

a
f .t/d˛t

D
Z b

aC`
f .t/g.t/d˛t C

Z aC`

a
f .t/.g.t/ � A/d˛t

�
Z b

aC`
f .t/g.t/d˛t C f .a C `/

Z aC`

a
.g.t/ � A/d˛t

(7)�
Z b

aC`
f .t/g.t/d˛t � f .a C `/

Z b

aC`
g.t/d˛t

D
Z b

aC`
.f .t/ � f .a C `// g.t/d˛t � 0;

since f is nondecreasing and nonpositive, and g is nonnegative. Therefore the right-
hand side of the reversed (8) holds. ut
Remark 2. The requirement in Steffensen’s Theorem 3 that f be nonincreasing
when f is nonnegative is essential. Let a D 0, b D 1 D A, ˛ 2 .0; 1/, g.t/ D t, and
f .t/ D t1�˛ . Then ` D ˛

1C˛ , and if (8) were to hold in this case, we would need

Z 1

1
1C˛

t1�˛d˛t �
Z 1

0

t2�˛d˛t �
Z ˛

1C˛

0

t1�˛d˛t

to hold, that is to say

˛

1C ˛
D 1 � 1

1C ˛
� 1

2
� ˛

1C ˛
:

But this holds only if ˛ D 1, a contradiction even if we reverse the inequalities.
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3 Taylor Remainder

Let ˛ 2 .0; 1� and suppose f is n C 1 times ˛-fractional differentiable on Œ0;1/.
Using Taylor’s Theorem, Theorem 2, we define the remainder function by

R�1;f .�; s/ WD f .s/;

and for n > �1,

Rn;f .t; s/ WD f .s/ �
nX

kD0

Dk
˛f .t/

kŠ

�
s˛ � t˛

˛

�k

D 1

nŠ

Z s

t

�
s˛ � �˛
˛

�n

DnC1
˛ f .�/d˛�: (9)

Lemma 2. Let ˛ 2 .0; 1�. The following identity involving ˛-fractional Taylor’s
remainder holds:

Z b

a

DnC1
˛ f .s/

.n C 1/Š

�
t˛ � s˛

˛

�nC1
d˛s D

Z t

a
Rn;f .a; s/d˛s C

Z b

t
Rn;f .b; s/d˛s:

Proof. We proceed by mathematical induction on n. For n D �1,

Z b

a
D0
˛f .s/d˛s D

Z b

a
f .s/d˛s D

Z t

a
f .s/d˛s C

Z b

t
f .s/d˛s:

Assume the result holds for n D k � 1:

Z b

a

Dk
˛f .s/

kŠ

�
t˛ � s˛

˛

�k

d˛s D
Z t

a
Rk�1;f .a; s/d˛s C

Z b

t
Rk�1;f .b; s/d˛s:

Let n D k. Using integration by parts, we have

Z b

a

DkC1
˛ f .s/

.k C 1/Š

�
t˛ � s˛

˛

�kC1
d˛s D Dk

˛f .b/

.k C 1/Š

�
t˛ � b˛

˛

�kC1

� Dk
˛f .a/

.k C 1/Š

�
t˛ � a˛

˛

�kC1

C
Z b

a

Dk
˛f .s/

kŠ

�
t˛ � s˛

˛

�k

d˛s:
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By the induction assumption,

Z b

a

DkC1
˛ f .s/

.k C 1/Š

�
t˛ � s˛

˛

�kC1
d˛s D

Z t

a
Rk�1;f .a; s/d˛s C

Z b

t
Rk�1;f .b; s/d˛s

C Dk
˛f .b/

.k C 1/Š

�
t˛ � b˛

˛

�kC1

� Dk
˛f .a/

.k C 1/Š

�
t˛ � a˛

˛

�kC1

D
Z t

a
Rk�1;f .a; s/d˛s C

Z b

t
Rk�1;f .b; s/d˛s

C Dk
˛f .b/

kŠ

Z t

b

�
s˛ � b˛

˛

�k

d˛s

� Dk
˛f .a/

kŠ

Z t

a

�
s˛ � a˛

˛

�k

d˛s

D
Z t

a

"

Rk�1;f .a; s/ � Dk
˛f .a/

kŠ

�
s˛ � a˛

˛

�k
#

d˛s

C
Z b

t

"

Rk�1;f .b; s/ � Dk
˛f .b/

kŠ

�
s˛ � b˛

˛

�k
#

d˛s

D
Z t

a
Rk;f .a; s/d˛s C

Z b

t
Rk;f .b; s/d˛s:

This completes the proof. ut
Corollary 2. Let ˛ 2 .0; 1�. For n � �1,

Z b

a

DnC1
˛ f .s/

.n C 1/Š

�
a˛ � s˛

˛

�nC1
d˛s D

Z b

a
Rn;f .b; s/d˛s;

Z b

a

DnC1
˛ f .s/

.n C 1/Š

�
b˛ � s˛

˛

�nC1
d˛s D

Z b

a
Rn;f .a; s/d˛s:

4 Applications of the Steffensen Inequality

Let ˛ 2 .0; 1�. In the following we adapt to the ˛-fractional setting some results
from [5] by applying the fractional Steffensen inequality, Theorem 3.
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Theorem 4. Let ˛ 2 .0; 1� and f W Œa; b� ! R be an n C 1 times ˛-fractional
differentiable function such that DnC1

˛ f is increasing and Dn
˛f is decreasing on

Œa; b�. If

` WD b � a

n C 2
;

then

Dn
˛f .a C `/ � Dn

˛f .a/ � .n C 1/Š
� ˛

b˛ � a˛

	nC1 Z b

a
Rn;f .a; s/d˛s

� Dn
˛f .b/ � Dn

˛f .b � `/:

If DnC1
˛ f is decreasing and Dn

˛f is increasing on Œa; b�, then the above inequalities
are reversed.

Proof. Assume DnC1
˛ f is increasing and Dn

˛f is decreasing on Œa; b�, and let

F WD �DnC1
˛ f :

Because Dn
˛f is decreasing, DnC1

˛ f � 0, so that F � 0 and decreasing on Œa; b�.
Define

g.t/ WD
�

b˛ � t˛

b˛ � a˛

�nC1
2 Œ0; 1�; t 2 Œa; b�; n � �1:

Note that F; g satisfy the assumptions of Steffensen’s inequality (i), Theorem 3, with
A D 1; using (6),

` D ˛.b � a/

b˛ � a˛

Z b

a
g.t/d˛t D b � a

n C 2
;

and

�
Z b

b�`
DnC1
˛ f .t/d˛t � �

Z b

a
DnC1
˛ f .t/

�
b˛ � t˛

b˛ � a˛

�nC1
d˛t � �

Z aC`

a
DnC1
˛ f .t/d˛t:

By Corollary 2 this simplifies to

Dn
˛f .t/jaC`

tDa � .n C 1/Š
� ˛

b˛ � a˛

	nC1 Z b

a
Rn;f .a; t/d˛t � Dn

˛f .t/jbtDb�`:

This completes the proof of the first part. If DnC1
˛ f is decreasing and Dn

˛f is
increasing on Œa; b�, then take F WD DnC1

˛ f . ut
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The following corollary is the first Hermite–Hadamard inequality, derived from
Theorem 4 with n D 0.

Corollary 3 (Hermite–Hadamard Inequality I). Let ˛ 2 .0; 1� and f W Œa; b� ! R

be an ˛-fractional differentiable function such that D˛f is increasing and f is
decreasing on Œa; b�. Then

f

�
a C b

2

�
� ˛

b˛ � a˛

Z b

a
f .s/d˛s � f .b/C f .a/ � f

�
a C b

2

�
:

If D˛f is decreasing and f is increasing on Œa; b�, then the above inequalities are
reversed.

Theorem 5. Let ˛ 2 .0; 1� and f W Œa; b� ! R be an n C 1 times ˛-fractional
differentiable function such that

m � DnC1
˛ f � M

on Œa; b� for some real numbers m < M. Then

m

.n C 2/Š

�
b˛ � a˛

˛

�nC2
C M � m

.n C 2/Š

�
b˛ � .b � `/˛

˛

�nC2
�
Z b

a
Rn;f .a; t/d˛t

� M

.n C 2/Š

�
b˛ � a˛

˛

�nC2
C m � M

.n C 2/Š

�
b˛ � .a C `/˛

˛

�nC2
; (10)

where ` is given by:

` D ˛.b � a/

.b˛ � a˛/ .M � m/

�
Dn
˛f .b/ � Dn

˛f .a/ � m

�
b˛ � a˛

˛

��

Proof. Let

F.t/ WD 1

.n C 1/Š

�
b˛ � t˛

˛

�nC1
;

k.t/ WD 1

M � m

 

f .t/ � m

.n C 1/Š

�
t˛ � a˛

˛

�nC1!
;

G.t/ WD DnC1
˛ k.t/ D 1

M � m

�
DnC1
˛ f .t/ � m

� 2 Œ0; 1�:

Observe that F is nonnegative and decreasing, and

Z b

a
G.t/d˛t D 1

M � m

�
Dn
˛f .b/ � Dn

˛f .a/ � m

�
b˛ � a˛

˛

��
:
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Since F;G satisfy the hypotheses of Theorem 3(i), we compute the various integrals
given in (8), after using (6) to set

` D ˛.b � a/

b˛ � a˛

Z b

a
G.t/d˛t:

We have
Z b

b�`
F.t/d˛t D

Z b

b�`
1

.n C 1/Š

�
b˛ � t˛

˛

�nC1
d˛t D 1

.n C 2/Š

�
b˛ � .b � `/˛

˛

�nC2
;

and

Z aC`

a
F.t/d˛t D 1

.n C 2/Š

"�
b˛ � a˛

˛

�nC2
�
�

b˛ � .a C `/˛

˛

�nC2#
:

Moreover, using Corollary 2, we have

Z b

a
F.t/G.t/d˛t D 1

.M � m/.n C 1/Š

Z b

a

�
b˛ � t˛

˛

�nC1 �
DnC1
˛ f .t/ � m

�
d˛t

D 1

M � m

Z b

a
Rn;f .a; t/d˛t � m

.M � m/.n C 2/Š

�
b˛ � a˛

˛

�nC2
:

Using Steffensen’s inequality (8) and some rearranging, we obtain (10). ut
Corollary 4. Let ˛ 2 .0; 1� and f W Œa; b� ! R be an ˛-fractional differentiable
function such that

m � D˛f � M

on Œa; b� for some real numbers m < M. Then

m

2

�
b˛ � a˛

˛

�2
C M � m

2

�
b˛ � .b � `/˛

˛

�2

�
Z b

a
f .t/d˛t � f .a/

�
b˛ � a˛

˛

�

� M

2

�
b˛ � a˛

˛

�2
C m � M

2

�
b˛ � .a C `/˛

˛

�2
; (11)

where ` is given by:

` D ˛.b � a/

.b˛ � a˛/ .M � m/

�
f .b/ � f .a/ � m

�
b˛ � a˛

˛

��

Proof. Use the previous theorem with n D 0 and Corollary 2. ut
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5 Applications of the Chebyshev Inequality

Let ˛ 2 .0; 1�. We begin with Chebyshev’s inequality for ˛-fractional integrals, then
apply it to obtain a Hermite–Hadamard-type inequality.

Theorem 6 (Chebyshev Inequality). Let f and g be both increasing or both
decreasing in Œa; b�, and let ˛ 2 .0; 1�. Then

Z b

a
f .t/g.t/d˛t � ˛

b˛ � a˛

Z b

a
f .t/d˛t

Z b

a
g.t/d˛t:

If one of the functions is increasing and the other is decreasing, then the above
inequality is reversed.

Proof. The proof is very similar to the classical case with ˛ D 1. ut
The following is an application of Chebyshev’s inequality, which extends a

similar result in [5] for q-calculus to this ˛-fractional case.

Theorem 7. Let ˛ 2 .0; 1�. Assume that DnC1
˛ f is monotonic on Œa; b�. If DnC1

˛ f is
increasing, then

0 �
Z b

a
Rn;f .a; t/d˛t �

�
Dn
˛f .b/ � Dn

˛f .a/

.n C 2/Š

��
b˛ � a˛

˛

�nC1

�
�

DnC1
˛ f .a/ � DnC1

˛ f .b/

.n C 2/Š

��
b˛ � a˛

˛

�nC2
:

If DnC1
˛ f is decreasing, then the inequalities are reversed.

Proof. The situation where DnC1
˛ f is decreasing is analogous to that of DnC1

˛ f
increasing. Thus, assume DnC1

˛ f is increasing and set

F.t/ WD DnC1
˛ f .t/; G.t/ WD 1

.n C 1/Š

�
b˛ � t˛

˛

�nC1
:

Then F is increasing by assumption, and G is decreasing, so that by Chebyshev’s
inequality:

Z b

a
F.t/G.t/d˛t � ˛

b˛ � a˛

Z b

a
F.t/d˛t

Z b

a
G.t/d˛t:

By Corollary 2,

Z b

a
F.t/G.t/d˛t D

Z b

a

DnC1
˛ f .t/

.n C 1/Š

�
b˛ � t˛

˛

�nC1
d˛t D

Z b

a
Rn;f .a; t/d˛t:
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We also have
Z b

a
F.t/d˛t D Dn

˛f .b/ � Dn
˛f .a/;

Z b

a
G.t/d˛t D 1

.n C 2/Š

�
b˛ � a˛

˛

�nC2
:

Thus Chebyshev’s inequality implies

Z b

a
Rn;f .a; t/d˛t � ˛

b˛ � a˛
�
Dn
˛f .b/ � Dn

˛f .a/
� 1

.n C 2/Š

�
b˛ � a˛

˛

�nC2
;

which subtracts to the left side of the inequality. Since DnC1
˛ f is increasing on Œa; b�,

DnC1
˛ f .a/

.n C 2/Š

�
b˛ � a˛

˛

�nC2
�
�

Dn
˛f .b/ � Dn

˛f .a/

.n C 2/Š

��
b˛ � a˛

˛

�nC1

� DnC1
˛ f .b/

.n C 2/Š

�
b˛ � a˛

˛

�nC2
;

and we have

Z b

a
Rn;f .a; t/d˛t �

�
Dn
˛f .b/ � Dn

˛f .a/

.n C 2/Š

��
b˛ � a˛

˛

�nC1

�
Z b

a
Rn;f .a; t/d˛t � DnC1

˛ f .b/

.n C 2/Š

�
b˛ � a˛

˛

�nC2
:

Now Corollary 2 and DnC1
˛ f is increasing imply that

Z b

a

DnC1
˛ f .b/

.n C 1/Š

�
b˛ � t˛

˛

�nC1
d˛t �

Z b

a
Rn;f .a; t/d˛t

�
Z b

a

DnC1
˛ f .a/

.n C 1/Š

�
b˛ � t˛

˛

�nC1
d˛t;

which simplifies to

DnC1
˛ f .b/

.n C 2/Š

�
b˛ � a˛

˛

�nC2
�
Z b

a
Rn;f .a; t/d˛t � DnC1

˛ f .a/

.n C 2/Š

�
b˛ � a˛

˛

�nC2
:

This, together with the earlier lines, gives the right side of the inequality. ut

Corollary 5 (Hermite–Hadamard Inequality II). Let ˛ 2 .0; 1�. If D˛f is
increasing on Œa; b�, then

˛

b˛ � a˛

Z b

a
f .t/d˛t � f .b/C f .a/

2
: (12)

If D˛f is decreasing on Œa; b�, then the inequality is reversed.



38 D.R. Anderson

Remark 3. Combining Corollary 3 with Corollary 5, we can state the following. If
˛ 2 .0; 1� and f W Œa; b� ! R is an ˛-fractional differentiable function such that D˛f
is increasing and f is decreasing on Œa; b�, then

f

�
a C b

2

�
� ˛

b˛ � a˛

Z b

a
f .t/d˛t � f .b/C f .a/

2
:

If ˛ D 1 this is the Hermite–Hadamard inequality:

f

�
a C b

2

�
� 1

b � a

Z b

a
f .t/dt � f .b/C f .a/

2
;

which holds for all convex functions f W Œa; b� ! R. In the ˛-fractional case,
however, the assumption that f is decreasing on Œa; b� seems to be crucial. Let
Œa; b� D Œ0; 1�, ˛ D 1=2, and f .t/ D 2

3
t3=2. Then f is increasing and convex on

Œ0; 1�, but

f

�
a C b

2

�
D f

�
1

2

�
D 2

3

�
1

2

�3=2
>
1

6

D 1

2

Z 1

0

2

3
t3=2t1=2�1dt D ˛

b˛ � a˛

Z b

a
f .t/d˛t:

6 Ostrowski Inequality

In this section we prove Ostrowski’s ˛-fractional inequality using a Montgomery
identity. For more on Ostrowski’s inequalities, see [3] and the references therein.

Lemma 3 (Montgomery Identity). Let a; b; s; t 2 R with 0 � a < b, and let
f W Œa; b� ! R be ˛-fractional differentiable for ˛ 2 .0; 1�. Then

f .t/ D ˛

b˛ � a˛

Z b

a
f .s/d˛s C ˛

b˛ � a˛

Z b

a
p.t; s/D˛f .s/d˛s (13)

where

p.t; s/ WD
(

s˛�a˛

˛
W a � s < t;

s˛�b˛

˛
W t � s � b:

(14)

Proof. Integrating by parts, we have

Z t

a

�
s˛ � a˛

˛

�
D˛f .s/d˛s D t˛ � a˛

˛
f .t/ �

Z t

a
f .s/d˛s
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and

Z b

t

�
s˛ � b˛

˛

�
D˛f .s/d˛s D b˛ � t˛

˛
f .t/ �

Z b

t
f .s/d˛s:

Adding and solving for f yields the result. ut
Theorem 8 (Ostrowski Inequality). Let a; b; s; t 2 R with 0 � a < b, and let
f W Œa; b� ! R be ˛-fractional differentiable for ˛ 2 .0; 1�. Then
ˇ̌
ˇ̌f .t/ � ˛

b˛ � a˛

Z b

a
f .t/d˛t

ˇ̌
ˇ̌ � M

2˛ .b˛ � a˛/

h
.t˛ � a˛/2 C .b˛ � t˛/2

i
; (15)

where

M WD sup
t2.a;b/

jD˛f .t/j :

This inequality is sharp in the sense that the right-hand side of (15) cannot be
replaced by a smaller one.

Proof. Using Lemma 3 with p.t; s/ defined in (14), we see that
ˇ̌
ˇ̌f .t/� ˛

b˛ � a˛

Z b

a
f .s/d˛s

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ ˛

b˛ � a˛

Z b

a
p.t; s/D˛ f .s/d˛s

ˇ̌
ˇ̌

� M˛

b˛ � a˛

�Z t

a

ˇ̌
ˇ
ˇ
s˛ � a˛

˛

ˇ̌
ˇ
ˇ d˛s C

Z b

t

ˇ̌
ˇ
ˇ
s˛ � b˛

˛

ˇ̌
ˇ
ˇ d˛s

�

D M˛

b˛ � a˛

�Z t

a

�
s˛ � a˛

˛

�
d˛s C

Z b

t

�
b˛ � s˛

˛

�
d˛s

�

D M˛

b˛ � a˛

 
1

2

�
s˛ � a˛

˛

�2 ˇ
ˇ̌t

a
� 1

2

�
b˛ � s˛

˛

�2 ˇ
ˇ̌b

t

!

D M

2˛ .b˛ � a˛/

h
.t˛ � a˛/2 C .b˛ � t˛/2

i
:

Now p.t; a/ D 0, so the smallest value attaining the supremum in M is greater than
a. To prove the sharpness of this inequality, let f .t/ D t˛=˛, a D t1, b D t2 D t. It
follows that D˛f .t/ D 1 and M D 1. Examining the right-hand side of (15), we get

M

2˛ .b˛ � a˛/

h
.t˛ � a˛/2 C .b˛ � t˛/2

i
D

�
t˛2 � t˛1

�2

2˛
�
t˛2 � t˛1

� D t˛2 � t˛1
2˛

:

Starting with the left-hand side of (15), we have
ˇ̌
ˇ̌f .t/ � ˛

b˛ � a˛

Z b

a
f .t/d˛t

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ t
˛

˛
� ˛

t˛2 � t˛1

Z t2

t1

t˛

˛
d˛t

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ t
˛

˛
�
�

˛

t˛2 � t˛1

��
t2˛

2˛2

� ˇ̌
ˇ
t2

t1

ˇ̌
ˇ̌



40 D.R. Anderson

D
ˇ̌
ˇ
ˇ
t˛

˛
�
�

1

t˛2 � t˛1

��
t2˛2 � t2˛1
2˛

�ˇ̌
ˇ
ˇ

D
ˇ̌
ˇ̌ t
˛

˛
�
�

t˛2 C t˛1
2˛

�ˇ̌
ˇ̌

D t˛2 � t˛1
2˛

:

Therefore, by the squeeze theorem, the sharpness of Ostrowski’s inequality is
shown. ut

7 Grüss Inequality

In this section we prove the Grüss inequality, which relies on Jensen’s inequality.
Our approach is similar to that taken by Bohner and Matthews [2].

Theorem 9 (Jensen Inequality). Let ˛ 2 .0; 1� and a; b; x; y 2 Œ0;1/. If
w W R ! R and g W R ! .x; y/ are nonnegative, continuous functions withR b

a w.t/d˛t > 0, and F W .x; y/ ! R is continuous and convex, then

F

 R b
a w.t/g.t/d˛t
R b

a w.t/d˛t

!

�
R b

a w.t/F.g.t//d˛t
R b

a w.t/d˛t
:

Proof. The proof is the same as those found in Bohner and Peterson [4, Theo-
rem 6.17] and Rudin [11, Theorem 3.3] and thus is omitted. ut
Theorem 10 (Grüss Inequality). Let a; b; s 2 Œ0;1/, and let f ; g W Œa; b� ! R be
continuous functions. Then for ˛ 2 .0; 1� and

m1 � f .t/ � M1; m2 � g.t/ � M2; (16)

we have

ˇ̌
ˇ̌ ˛

b˛ � a˛

Z b

a
f .t/g.t/d˛t �

� ˛

b˛ � a˛

	2 Z b

a
f .t/d˛t

Z b

a
g.t/d˛t

ˇ̌
ˇ̌

� 1

4
.M1 � m1/.M2 � m2/:

Proof. Initially we consider an easier case, namely, where f D g and

˛

b˛ � a˛

Z b

a
f .t/d˛t D 0:



Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives 41

If we define

v.t/ WD f .t/ � m1

M1 � m1

2 Œ0; 1�;

then f .t/ D m1 C .M1 � m1/v.t/. Since

Z b

a
v2.t/d˛t �

Z b

a
v.t/d˛t D �m1.b˛ � a˛/

˛.M1 � m1/
;

we have

I.f ; f / WD ˛

b˛ � a˛

Z b

a
f 2.t/d˛t �

�
˛

b˛ � a˛

Z b

a
f .t/d˛t

�2

D ˛

b˛ � a˛

Z b

a
Œm1 C .M1 � m1/v.t/�

2 .t/d˛t

� �m1M1 D 1

4

�
.M1 � m1/

2 � .M1 C m1/
2
�

� 1

4
.M1 � m1/

2:

Now consider the case:

r WD ˛

b˛ � a˛

Z b

a
f .t/d˛t 6D 0;

where r 2 R. If we take h.t/ WD f .t/ � r, then h.t/ 2 Œm1 � r;M1 � r� and

˛

b˛ � a˛

Z b

a
h.t/d˛t D ˛

b˛ � a˛

Z b

a
.f .t/ � r/d˛t D r � r˛

b˛ � a˛

Z b

a
d˛t D 0:

Consequently h satisfies the earlier assumptions and so

I.h; h/ � 1

4
ŒM1 � r � .m1 � r/�2 D 1

4
.M1 � m1/

2 :

Additionally we have

I.h; h/ D ˛

b˛ � a˛

Z b

a
.f .t/ � r/2d˛t D �r2 C ˛

b˛ � a˛

Z b

a
f 2.t/d˛t D I.f ; f /:

As a result,

I.f ; f / D I.h; h/ � 1

4
.M1 � m1/

2 :
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Let us now turn to the case involving general functions f and g under assump-
tions (16). Using

I.f ; g/ WD ˛

b˛ � a˛

Z b

a
f .t/g.t/d˛t �

� ˛

b˛ � a˛

	2 Z b

a
f .t/d˛t

Z b

a
g.t/d˛t

and the earlier cases, one can easily finish the proof as in the case with ˛ D 1. See
[2] for complete details to mimic. ut
Corollary 6. Let ˛ 2 .0; 1�, a; b; s; t 2 Œ0;1/, and f W Œa; b� ! R be ˛-fractional
differentiable. If D˛f is continuous and

m � D˛f .t/ � M; t 2 Œa; b�;

then

ˇ
ˇ̌
ˇf .t/ � ˛

b˛ � a˛

Z b

a
f .s/d˛s �



2t˛ � a˛ � b˛

2.b˛ � a˛/

�
Œf .b/ � f .a/�

ˇ
ˇ̌
ˇ

� 1

4

�
b˛ � a˛

˛

�
.M � m/: (17)

for all t 2 Œa; b�.
Proof. Using Lemma 3 Montgomery’s identity, we have

f .t/ � ˛

b˛ � a˛

Z b

a
f .s/d˛s D ˛

b˛ � a˛

Z b

a
p.t; s/D˛f .s/d˛s (18)

for all t 2 Œa; b�, where p.t; s/ is given in (14). Now for all t; s 2 Œa; b�, we see that

t˛ � b˛

˛
� p.t; s/ � t˛ � a˛

˛
:

Applying Theorem 10 Grüss’ inequality to the mappings p.t; �/ and D˛f , we obtain

ˇ̌
ˇ̌ ˛

b˛ � a˛

Z b

a
p.t; s/D˛f .s/d˛s �

� ˛

b˛ � a˛

	2 Z b

a
p.t; s/d˛s

Z b

a
D˛f .s/d˛s

ˇ̌
ˇ̌

� 1

4

�
t˛ � a˛

˛
� t˛ � b˛

˛

�
.M � m/ D 1

4

�
b˛ � a˛

˛

�
.M � m/: (19)

Computing the integrals involved, we obtain

� ˛

b˛ � a˛

	2 Z b

a
p.t; s/d˛s D 2t˛ � a˛ � b˛

2.b˛ � a˛/
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and
Z b

a
D˛f .s/d˛s D f .b/ � f .a/;

so that (17) holds, after using (18) and (19). ut
Compare the following corollary with Corollaries 3 and 5.

Corollary 7 (Hermite–Hadamard III). Let ˛ 2 .0; 1�, a; b; s; t 2 Œ0;1/, and
f W Œa; b� ! R be ˛-fractional differentiable. If D˛f is continuous and

m � D˛f .t/ � M; t 2 Œa; b�;
then

ˇ̌
ˇ̌ f .b/C f .a/

2
� ˛

b˛ � a˛

Z b

a
f .s/d˛s

ˇ̌
ˇ̌ � 1

4

�
b˛ � a˛

˛

�
.M � m/:

for all t 2 Œa; b�.
Proof. Take t D b in the previous corollary. ut
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Sobolev-Type Inequalities on Manifolds
in the Presence of Symmetries and Applications

Athanase Cotsiolis and Nikos Labropoulos

In Honor of Constantin Carathéodory

Abstract In this article, we present some Sobolev-type inequalities on compact
Riemannian manifolds with boundary, the data and the functions being invariant
under the action of a compact subgroup of the isometry group. We investigate the
best constants for the Sobolev, trace Sobolev, Nash, and trace Nash inequalities.
By developing particular geometric properties of the manifold as well as of the
solid torus, we can calculate the precise values of the best constants in the presented
Sobolev-type inequalities. We apply these results to solve nonlinear elliptic, type
Dirichlet and Neumann, PDEs of upper critical Sobolev exponent.

1 Introduction

In this article, we present the most interesting aspects of some Sobolev-type
inequalities, i.e., Sobolev inequalities and Nash inequalities on compact Riemannian
manifolds, from the geometrical point of view. By developing particular geometrical
properties of the manifold, we can calculate the precise values of the best constants
in the presented Sobolev inequalities. The result of this analysis represents an
improvement over the classic analysis and allows us to prove the existence of
solutions for elliptic differential equations of scalar curvature of the generalized
type with supercritical exponents. The Sobolev inequalities first appeared in 1938 by
Sobolev [40] in the case of the whole the Euclidean space. The Nash inequality was
introduced by Nash [39] and was used to prove the Hölder regularity of solutions of
divergence form uniformly elliptic equations.
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The model manifolds studied in determining the best constants in the abovemen-
tioned inequalities are the general case of compact Riemannian manifolds .M; g/
with boundary invariant under the action of a compact subgroup G of the isometry
group I.M; g/ and the case of the solid torus.

We would like at this point to give an explanation as to why we study the
solid torus even giving a special emphasis. In recent years, significant progress
has been made on the analysis of a number of important features of nonlinear
partial differential equations of elliptic and parabolic type. The study of these
equations has received considerable attention, because of their special mathematical
interest and because of practical applications of the torus in scientific research today.
For example, in astronomy, investigators study the torus which is a significant
topological feature surrounding many stars and black holes [22]. In physics, the
torus is being explored at the National Spherical Torus Experiment (NSTX) at
Princeton Plasma Physics Laboratory to test the fusion physics principles for
the spherical torus concept at the MA level [36]. In biology, some investigators
interested in circular DNA molecules detected a large number of viruses, bacteria,
and higher organisms. In this topologically very interesting type of molecule,
superhelical turns are formed as the Watson–Crick double helix winds in a torus
formation [21].

This paper is organized as follows: In Sect. 2, a short survey on known results
about the best constants is presented. Furthermore, a short review of the history and
the development of Sobolev inequalities, presenting the most interesting examples
and the critical role of the geometry in their studying as well as some applications,
are discussed. Section 2.1 is devoted to the presentation of new results concerning
the best constants in Sobolev inequalities on manifolds with boundary in the
presence of symmetries, where the exponents are in the critical of the supercritical
case and to the investigation of the behavior and the existence of positive and
nonradially symmetric solutions to some of the most interesting nonlinear elliptic
problems. In Sect. 2.2, we determine the best constants in Sobolev inequalities on
the solid torus, and consequently we investigate the behavior and the existence
of positive and nonradially symmetric solutions to some problems with Dirichlet
and Neumann conditions as well as to the nonlinear exponential elliptic model
problems. In Sect. 3, a short survey on known results about the best constants of
Nash inequalities, presenting the most interesting results about the best constants, is
presented. The case of a manifold with boundary in the presence of symmetries is
discussed in Sect. 3.1. Section 3.2 is devoted to the case of the solid torus.

2 Sobolev Inequalities and Applications

Let .M; g/ be a compact n-dimensional Riemannian manifold, n � 3, with
boundary. If 1 � p < n, p� D np

n�p and Qp� D .n�1/p
n�p , according to Sobolev’s theorem

(see, for instance, [4]) the embeddings Hp
1.M/ ,! Lq.M/ and Hp

1.M/ ,! LQq.@M/
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are compact for any q 2 Œ1; p�/ and Qq 2 Œ1; Qp�/, respectively, but the embeddings
Hp
1.M/ ,! Lp�

.M/ and Hp
1.M/ ,! LQp�

.@M/ are only continuous. So, there exist
constants A;B and QA; QB such that for all u 2 Hp

1.M/ the following inequalities hold

0

@
Z

M

jujp�

d�g

1

A

1
p�

� A

0

@
Z

M

jrujp d�g

1

A

1
p

C B

0

@
Z

M

jujp d�g

1

A

1
p

(1)

and

0

@
Z

@M

jujQp�

dsg

1

A

1
Qp�

� QA
0

@
Z

M

jrujp d�g

1

A

1
p

C QB
0

@
Z

@M

jujp dsg

1

A

1
p

: (2)

When the compact manifold is without boundary, the best constant in front of the
gradient term in inequality (1) is the same as the best constant for the Sobolev
embedding for M D Rn under the Euclidean metric [2], i.e.,

1

K .n; p/
D inf

u2Lp�.Rn/nf0g
ru2Lp.Rn/

R

Rn
jrujpdx

�R

Rn
jujp�

dx

� p
p�

The value of K.n; p/ was explicitly computed independently by Aubin [1] and
Talenti [41]:

K.n; 1/ D 1

n
n�1

n !
1
n

n�1

K.n; p/ D p � 1
n � p

�
n � p

n.p � 1/
� 1

p

"
	 .n C 1/

!n�1	 . n
p /	 .n C 1 � n

p /

# 1
n

;

where !n�1 is the area of the unit sphere in Rn and 	 is the gamma function.
If .M; g/ is a compact Riemannian manifold with boundary, then we denote

Hp
1.M/ the completion of C1.M/ under the norm

kukH
p
1 .M/

D
0

@
Z

M

jrujp d�g C
Z

M

jujp d�g

1

A

1
p

and Hp
1.M/ ¤ ı

H
p
1.M/. In this case, the critical Sobolev embedding is valid and

therefore concerning the best constants of (1) the same questions are also raised,
except that now we have to consider two distinct Sobolev spaces. When we consider
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(1) on
ı
H

p
1.M/, the same results for best constants on compact manifolds without

boundary described above remain true. On the other hand, if we consider (1) on
Hp
1.M/, Cherrier [12] has shown that the first best constant is 2

1
n K.n; p/.

Lions [37] proved that the best constant in front of the gradient term in
inequality (2) in the Sobolev trace embedding for the Euclidean half-space RnC D
f.x0; t/ W t � 0g, i.e.,

1

QK .n; p/ D inf
u2LQp�.@Rn

C
/nfog; ru2Lp.Rn

C
/

R

Rn
C

jrujpdx

0

@ R

@Rn
C

jujQp�dx0
1

A

p
Qp�

:

Biezuner [9] showed that Lions’s conclusion still remains valid for any smooth,
compact n-dimensional Riemannian manifold, n � 3, with boundary and 1 < p < n.
The explicit value of QK.n; p/ was computed independently by Escobar [25] and
Beckner [8], only in the case p D 2:

QK.n; 2/ D 2

n � 2 !
� 1

n�1

n�1 :

For p ¤ 2, the problem remains still open.
It is well known that Sobolev embeddings can be improved in the presence of

symmetries (see [5, 6, 14–17, 23, 26, 27, 30, 32, 37] and the references therein).
Let G be a compact group of the isometries without finite subgroup and p � 1.

Denote by Hp
1;G.M/ the subspace of Hp

1.M/ of all G-invariant functions. If k denotes
the minimum orbit dimension of G, it’s known (see [31]) that for a G-invariant
manifold .M; g/ without boundary the embeddings Hp

1;G .M/ ,! Lq .M/ are

continuous for any p 2 Œ1; n � k/ and q 2
h
1;

.n�k/p
n�k�p

i
and compact if q 2

h
1;

.n�k/p
n�k�p

	
.

Also, we know [17] that for a G-invariant manifold .M; g/ with boundary, the
embeddings Hp

1;G .M/ ,! Lq .@M/ are continuous for any p 2 Œ1; n � k/ and q 2h
1;

.n�k�1/p
n�k�p

i
and compact if q 2

h
1;

.n�k�1/p
n�k�p

	
.

The following two examples are representative of cases of manifolds which
present symmetries.

Example 1. Let T be the three-dimensional solid torus

T D
�
.x; y; z/ 2 R3 W

�p
x2 C y2 � l

	2 C z2 � r2; l > r > 0


;

with the metric induced by the R3 metric. Let G D O.2/ � I be the group of
rotations around axis z. The G-orbits of T are circles. If P is a point of T , let OP

be its G-orbit. All G-orbits are of dimension 1, and the orbit of minimum volume
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is the circle of radius l � r and of volume 2
.l � r/. Then T is a compact three-
dimensional manifold with boundary, invariant under the action of the subgroup G
of the isometry group O.3/.

Example 2. Let Rn D Rk � Rm, k � 2, m � 1 and ˝ � �
Rknf0g� � Rm. Denote

by Gk;m D O.k/ � Idm, the subgroup of the isometry group O.n/ of the type
.x1; x2/ ! .�.x1/; x2/; � 2 O.k/; x1 2 Rk; x2 2 Rm; and suppose that ˝ is
invariant under the action of Gk;m

�
�.˝/ D ˝;8� 2 Gk;m

�
. Then ˝ is a compact

n-dimensional manifold with boundary, invariant under the action of the subgroup
Gk;m of the isometry group O .n/.

The “best constant problem” consists in finding the smallest A, B and QA, QB,
respectively, such that the inequalities (1) and (2) remain true for all u 2 Hp

1.M/.
Priority is given to the constants A and QA because of its importance. It is well
known that the “best constant problem” is strongly connected with variational type
problems. Knowing the precise value of the smallest A and QA called “first best
constants,” such that the above inequalities remain true for all u 2 Hp

1.M/ allow
us to solve nonlinear elliptic boundary value problems, of the following type:

(P1)

�pu C a.x/up�1 D f .x/uq�1; u > 0 on M; uj
@M D 0;

2n.n�k/
n.n�k/C2k < p < n � k; q D .n�k/p

n�k�p

and
.P2/

�pu C a.x/up�1 D f .x/uq�1; u > 0 on M;

jrujp�2 @u
@n C b.x/up�1 D h.x/uQq�1 on @M;

2n.n�k/
n.n�k/C2k < p < n � k; q D .n�k/p

n�k�p ; Qq D .n�k�1/p
n�k�p ;

where �pu D �divg
�jrujp�2ru

�
is the p-Laplacian and p D 2, �2 D �g is the

Laplace–Beltrami operator.

When p D n it is known [4, 13] that Hn
1.M/ 6� L1.M/ and Hn

1.M/ 6� L1.@M/.
However, when � 2 Hn

1.M/ we have e� 2 L1.M/ and e� 2 L1.@M/. Then, we
have another Sobolev inequalities to this case. More precisely, for any " > 0, there
exist three constants �; �;C > 0 and Q�; Q�; QC > 0, respectively, such that for any
� 2 Hn

1.M/ the following inequalities hold:

Z

M

e�dV � Cexp

0

@.�C "/ kr�kn
n C �

Z

M

�dV

1

A (3)
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and

Z

@M

e�dS � QCexp

0

@. Q�C "/ kr�kn
n C Q�

Z

@M

�dS

1

A : (4)

The “best constants” are the smallest � and Q� such that inequalities (3) and (4),
respectively, are true for any � 2 Hn

1.M/.
Cherrier in [11] proved that �n D .n � 1/n�1n1�2n!�1

n�1 is the smallest possible
� such that (3) remains true for any � 2 Hn

1.M/. Cherrier, also, proved that �n is
attained for the sphere Sn and �2 is attained for compact Riemannian manifolds of
dimension 2.

Aubin [3] proved that for any " > 0, there exists C" > 0, such that for any
� 2 Hn

1.M/ with
R

M �dV D 0

Z

M

e�dV � C"exp
�
.�n C "/ kr�kn

n

�
: (5)

This last result is a better result in the sense that (5) implies (3).
Faget in [28] proved that it is possible to take " D 0 in (5), hence in (3), when M

is locally conformally flat and in [29] she gave the complete answer in this problem.
Cherrier, also, in [11] proved that Q� must be strictly greater than 2�n such that

(4) remains true for any � 2 Hn
1.M/.

When p D n � k, Hn�k
1 .M/ 6,! L1.M/. However, when � 2 Hn�k

1 .M/ we have
that e� 2 L1.M/ and e� 2 L1.@M/.

The precise value of the best constants � and Q�, appears in results of the
existence of nontrivial solutions of exponential elliptic boundary value problems,
of the following type:

.P3/

�n�k� C � D f .x/e� ; � > 0 on M; �j
@M D 0;

and
(P4)

�n�k� C a C fe� D 0; � > 0 on M;

jr�jn�k�2 @�
@n

C b C ge� D 0 on @M;

where �n�k� D �divg.jr�jn�k�2r�/ is the n-Laplacian operator and �; ˛; ˇ 2
R and f ; g are smooth functions. Especially, when n D 2 because of linearity of
the Laplace–Beltrami operator �, the constants �; ˛, and ˇ can be replaced by
smooth functions �.x/; ˛.x/ and ˇ.x/, respectively.
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2.1 Sharp Sobolev Inequalities on Manifolds in the Presence
of Symmetries

In the following, we assume the notations and background material. Given .eM; g/
a Riemannian manifold (complete or not, but connected), we denote by I.eM; g/ its
group of isometries. Let .M; g/ be a compact n-dimensional, n � 3, Riemannian
manifold with boundary G-invariant under the action of a subgroup G of the
isometry group I.M; g/. We assume that .M; g/ is a smooth-bounded open subset
of a slightly larger Riemannian manifold .eM; g/, invariant under the action of a
subgroup G of the isometry group of .eM; g/.

Consider the spaces of all G-invariant functions under the action of the group G:

C1
G .M/ D fu 2 C1.M/ W u ı � D u ; 8 � 2 Gg

C1
0;G.M/ D fu 2 C1

0 .M/ W u ı � D u ; 8 � 2 Gg :

Denote Hp
1.M/ the completion of C1.M/ with respect to the norm:

kukH
p
1 .M/

D
�
krukp

Lp.M/ C kukp
Lp.M/

	 1
p
;

and Hp
1;G.M/ the space of all G-invariant functions of Hp

1.M/.
For reasons of completeness, we cite some background material and results

from [17]:
Let P 2 M and OP D f�.P/; � 2 Gg be its orbit of dimension k, 0 � k < n.

According to ([31, § 9 ] or [26]), the map ˚ W G ! OP, defined by ˚ .�/ D � .P/,
is of rank k, and there exists a submanifold H of G of dimension k with Id 2 H, such
that ˚ restricted to H is a diffeomorphism from H onto its image denoted VP. Let
N be a submanifold of M of dimension .n � k/, such that TP˚ .H/˚ TPN D TPM.
Using the exponential map at P, we build a .n � k/-dimensional submanifold WP of
N, orthogonal to OP at P and such that for any Q 2 WP, the minimizing geodesics
of .M; g/ joining P and Q are all contained in WP.

Let  W H � WP ! M be the map defined by  .�;Q/ D � .Q/. According to
the local inverse theorem, there exists a neighborhood V.Id;P/ � H � WP of .Id;P/
and a neighborhood MP � M such that �1 D .1 � 2/, from MP onto V.Id;P/ is
a diffeomorphism. Up to restricting VP, we choose a normal chart .VP; '1/ around
P for the metric Qg induced on OP, with '1 .VP/ D U � Rk. In the same way, we
choose a geodesic normal chart .WP; '2/ around P for the metric QQg induced on WP,
with '2 .WP/ D W � Rn�k.

By setting �1 D '1 ı ˚ ı 1, �2 D '2 ı 2, � D .�1; �2/ and ˝ D MP, from the
above and from the Lemmas 1 and 2 (see in [32]), the following lemma arises:

Lemma 1 ([17]). Let .M; g/ be a compact Riemannian n-manifold with boundary,
G a compact subgroup of I .M; g/, P 2 M with orbit of dimension k, 0 � k < n.
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Then, there exists a chart .˝; �/ around P such that the following properties are
valid:

1) � .˝/ D U � W, where U � Rk and W � Rn�k.
2) U, W are bounded, and W has smooth boundary.
3) .˝; �/ is a normal chart of M around of P, .VP; '1/ is a normal chart around

of P of submanifold OP and .WP; '2/ is a normal geodesic chart around of P of
submanifold WP.

4) For any " > 0, .˝; �/ can be chosen such that:

1 � " �
q

det
�
gij
� � 1C " on ˝; for 1 � i; j � n

1 � " �
q

det
�Qgij
� � 1C " on VP; for 1 � i; j � k:

For any u 2 C1
G .M/, u ı ��1 depends only on W variables.

We say that we choose a neighborhood of OP when we choose ı > 0 and we
consider OP; ı D fQ 2 eM W d.Q;OP/ < ıg: Such a neighborhood of OP is called
a tubular neighborhood.

Let P 2 M and OP be its orbit of dimension k. Since the manifold M is included
in eM, we can choose a normal chart .˝P; �P/ around P such that Lemma 1 holds
for some "0 > 0. For any Q D �.P/ 2 OP, where � 2 G, we build a chart around
Q, denoted by .�.˝P/; �P ı ��1/ and “isometric” to .˝P; �P/. OP is then covered
by such charts. We denote by .˝P;m/mD1;:::;M a finite extract covering. Then, we
can choose ı > 0 small enough, depending on P and "0 such that the tubular
neighborhood OP; ı , (where d.�;OP/ is the distance to the orbit) has the following
properties: OP; ı is a submanifold of eM with boundary, d2.�;OP/, is a C1 function
on OP; ı and OP; ı is covered by .˝m/mD1;:::;M . Clearly, M is covered by [P2MOP; ı .
We denote by .Oj; ı/jD1;:::;J a finite extract covering of M, where all Oj; ı’s are covered
by .˝jm/mD1;:::;Mj . Then, we will have:

M �
[J

jD1
[Mj

mD1 ˝jm D
[PJ

jD1 Mj

iD1 ˝i:

So, we obtain a finite covering of M consisting of ˝i’s, i D 1; : : : ;
PJ

jD1 Mj. We
choose such a covering in the following way:

.i/ If P lies in the interior of M, then there exist j; 1 � j � J and m; 1 � m � Mj

such that the tubular neighborhood Oj; ı and ˝jm, with P 2 ˝jm, lie entirely in
M’s interior, (that is, if P 2 Mn@M, then Oj;ı � Mn@M and ˝jm � Mn@M).

.ii/ If P lies on the boundary @M of M, then a j; 1 � j � J exists, such that the
tubular neighborhood Oj; ı intersects the boundary @M and an m; 1 � m � Mj

exists, such that ˝jm, with P 2 ˝jm, cuts a part of the boundary @M. Then, the
˝jm covers a patch of the boundary of M, and the whole of the boundary is
covered by charts around P 2 @M.
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We denote N the projection of the image of M, through the charts .˝jm; �jm/,
j D 1; : : : ; J, m D 1; : : : ;Mj, on Rn�k. Then .N; Ng/ is a .n�k/-dimensional compact
submanifold of Rn�k with boundary and N is covered by .Wi/, i D 1; : : : ;

PJ
jD1 Mj,

where Wi is the component of �i.˝i/ on Rn�k for all i D 1; : : : ;
PJ

jD1 Mj. Let p be
the projection of �i.P/;P 2 M on Rn�k. Thus one of the following holds:

.i/ If p 2 Nn@N, then Wi � Nn@N and Wi is a normal geodesic neighborhood with
normal geodesic coordinates .y1; : : : ; yn�k/.

.ii/ If p 2 @N, then Wi is a Fermi neighborhood with Fermi coordinates
.y1; : : : ; yn�k�1; t/.

In these neighborhoods the following inequality holds:

1 � "0 �
q

det
�Ngij
� � 1C "0 on N; for 1 � i; j � n � k;

where "0 can be as small as we want, depending on the chosen covering.

For convenience in the following we set Oj D Oj; ı D fQ 2 eM W d.Q;OPj/ < ıg
We still need the following lemma:

Lemma 2 ([17]).

a) For any � 2 Hp
1;G

�
Oj \ M

�
; � � 0 the following properties are valid:

1) .1 � c"0/Vj
R

N �
p
2d�Ng � R

M �
pdVg � .1C c"0/Vj

R
N �

p
2d�Ng,

2) .1 � c"0/Vj
R

N

ˇ
ˇrNg�2

ˇ
ˇp d�Ng � R

M

ˇ
ˇrg�

ˇ
ˇp dVg � .1C c"0/Vj

R
N

ˇ
ˇrNg�2

ˇ
ˇp d�Ng

b) For any � 2 Hp
1;G

�
Oj \ @M

�
; � � 0 the following property is valid:

.1 � c"0/Vj

Z

@N
�2dsNg �

Z

@M
�dSg � .1C c"0/Vj

Z

@N
�2dsNg;

where Vj D Vol
�
Oj
�
, �2 D � ı ��1 and c is a positive constant.

Theorem 1 ([17]). Let .M; g/ be a smooth, compact n-dimensional Riemannian
manifold, n � 3, with boundary, G-invariant under the action of a subgroup G
of the isometry group I.M; g/. Let k denotes the minimum orbit dimension of G and
V denotes the minimum of the volume of the k-dimensional orbits. Let p 2 .1; n � k/
and Qq D .n�k�1/p

n�k�p . Then for any " > 0, there exist positive constants B" and QB"
depending on p, G and the geometry of .M; g/, such that for all u 2 Hp

1;G .M/ the
following inequalities hold:

0

@
Z

M

jujqdV

1

A

p
q

�
�
2

p
n�k Kp

G C "
	 Z

M

jrujpdV C B"

Z

M

jujpdV (6)
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and

0

@
Z

@M

jujQqdS

1

A

p
Qq

� � QKp
G C "

� Z

M

jrujpdV C QB"
Z

@M

jujpdS; (7)

where KG D K.n�k;p/
V1=.n�k/ and QKG D QK.n�k;p/

V.p�1/=.n�k�1/p .

Moreover, 2
1

n�k KG and QKG are the best constants for these inequalities.

We will use Faget’s inequality (6) and inequality (7) to solve the following problems
.P1/ and .P2/.

Consider the problem

.P1/ �pu C a.x/up�1 D f .x/uq�1; u > 0 on M; uj
@M D 0

2n.n � k/

n.n � k/C 2k
< p < n � k; q D .n � k/p

n � k � p
;

where a, f are G-invariant smooth functions.

Define the functional J.u/ D R
M

�
jrujp C a.x/jujp

	
dV and suppose that the

operator Lp.u/ D �pu C a.x/up�1 is coercive. That is, there exists a real number
� > 0, such that, for all u 2 Hp

1;G.M/ W J.u/ � �
R

M jujpdV .
If we denote

H D
�

u 2 Hp
1;G.M/ ; u > 0 W

Z

M
f .x/uqdV D 1


and � D inf J.u/;

concerning the problem .P1/, for all u 2 H the following theorem holds:

Theorem 2 ([17]). Let a and f be two smooth functions and G-invariant and p, q be
two real numbers defined as in .P1/. Suppose that supx2Mf .x/ > 0 and the operator
Lp is coercive. The problem .P1/ has a positive solution (in Hp

1;G.M/) that belongs

to C1;˛.M/ for some ˛ 2 .0; 1/, if � < K�p
G .sup f /

�p
q .

For the problem

.P2/ �pu C a.x/up�1 D f .x/uq�1; u > 0 on M;

jrujp�2 @u

@n
C b.x/up�1 D h.x/uQq�1 on @M;

2n.n � k/

n.n � k/C 2k
< p < n � k; q D .n � k/p

n � k � p
; Qq D .n � k � 1/p

n � k � p
;

where a, f , b and h are four smooth functions G-invariant, we set:

� D ˚
c D .˛; ˇ/ 2 R2 W ˛ � ˇ � ı; p � ˛ � q; p � ˇ � Qq�
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with ı 2 .0; q � Qq/ D
�
0; p

n � k � p

	
, and for all u 2 Hp

1;G.M/ and for any c 2 �
we define the functionals:

I.u/ D
Z

M
.jrujp C a jujp/ dV C

Z

@M
b jujp dS

and

Ic.u/ D
Z

M
f juj˛ dV C ˛

ˇ

Z

@M
h jujˇ dS;

and suppose that the operator Lp.u/ D �pu C a.x/up�1 is coercive. The functionals
I.u/ and Ic.u/ are well defined because the embeddings of Hp

1;G.M/ onto Lq.M/ and
LQq.M/ are continuous according to the Sobolev theorem.

If we define ˙c D ˚
u 2 Hp

1;G.M/ W Ic.u/ D 1
�
, �c D inf fI.u/ W u 2 ˙cg, c0 D

.q; Qq/ and tC D sup .t; 0/ ; t 2 R, we have the following theorem:

Theorem 3 ([17]). Let a, f , b, and h be four smooth functions, G-invariant and p,
Qp, q, and Qq be four real numbers defined as in .P2/. Suppose that the function f has
constant sign (e.g. f � 0/. The problem .P2/ has a positive solution u 2 C1

G .M/ if
the following inequality holds:

 

sup
M

f

!�
2

p
n�k Kp

G�
C
c0

	 q
2 C q

Qq
�

sup
@M

h

�C � QKp
G�

C
c0

� Qq
2 < 1 (8)

and if:

1) f > 0 everywhere and h arbitrary, or
2) f � 0, h > 0 everywhere and .� infM a/C K < 1, where

K D inf
n
A > 0 W 9 B > 0 s:t: k kp

Lp.M/�A kr kp
Lp.M/CB k kp

Lp.@M/

o
:

2.2 Sharp Sobolev Inequalities on the Solid Torus

In this part of the paper, we present a thorough study devoted on the best constants
in Sovolev-type inequalities in the solid torus, and in the following, we solve
nonlinear elliptic boundary value problems with supercritical exponent (critical of
supercritical). The possibility to solve problems of this type provided to us from the
fact that the solid torus is invariant under the action of the subgroup G D O .2/�I of
rotations of the isometry group O.3/ (see Example 1). The solutions we find are not
radial but invariant under the same group, and this reflects the geometry of the solid
torus. Additionally, we refer that these solutions accurately play the same role for
the torus with those that play the radial solutions in case of the sphere.
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Since the solid torus is invariant under the action of the subgroup G D O .2/ � I
of the isometry group O.3/, for any q 2 Œ1; 2/ real, the embedding Hq

1;G.T/ ,!
Lp

G.T/ is compact for 1 � p < 2q
2�q , while Hq

1;G.T/ ,! L
2q
2�q

1;G .T/, is only continuous.

In addition, for any q 2 Œ1; 2/ real, the embedding Hq
1;G.T/ ,! Lp

G.@T/ is compact

for 1 � p < q
2�q , while Hq

1;G.T/ ,! L
q

2�q

G .@T/, is only continuous.
We need now some notations and some background material.
Let the solid torus be represented by the equation:

T D
n
.x; y; z/ 2 R3 W .

p
x2 C y2 � l/2 C z2 � r2; l > r > 0

o
;

and the subgroup G D O.2/ � I of O.3/. Note that the solid torus T � R3 is
invariant under the group G.

Let, also, A D f.˝i; �i/ W i D 1; 2g be an atlas on T defined by

˝1 D f.x; y; z/ 2 T W .x; y; z/ … HC
XZg; ˝2 D f.x; y; z/ 2 T W .x; y; z/ … H�

XZg

where

HC
XZ D f.x; y; z/ 2 R3 W x > 0 ; y D 0g; H�

XZ D f.x; y; z/ 2 R3 W x < 0 ; y D 0; g
�i W ˝i ! Ii � D; i D 1; 2; with I1 D .0; 2
/; I2 D .�
; 
/;
D D f.t; s/ 2 R2 W t2 C s2 < 1g; @D D f.t; s/ 2 R2 W t2 C s2 D 1g;
�i.x; y; z/ D .!i; t; s/; i D 1; 2 with cos!i D x

p
x2 C y2

; sin!i D y
p

x2 C y2
;

!1 D
8
<

:

arctan y
x ; x ¤ 0



2
; x D 0; y > 0

3

2
; x D 0; y < 0

; !2 D
8
<

:

arctan y
x ; x ¤ 0



2
; x D 0; y > 0

�

2
; x D 0; y < 0

and

t D
p

x2 C y2 � l

r
; s D z

r
; 0 � t; s � 1:

The Euclidean metric g on .˝; �/ 2 A can be expressed as

�p
g ı ��1� .!; t; s/ D r2.l C rt/:

Consider now the spaces C1
0;G.T/ and Hq

1;G.T/ of all G-invariant functions under the

action of the group G D O.2/ � I � O.3/ and denote
ı
H

q
1;G.T/ the completion of

C1
0;G.T/ with respect to the norm kukH

q
1 .T/

.
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If for any G-invariant � we define the functions �.t; s/ D .u ı ��1/.!; t; s/ then
the following formulas hold:

jjujjpLp.T/ D 2
r2
Z

D

j�.t; s/jp.l C rt/ dt ds (9)

jjrujjpLp.T/ D 2
r2�p
Z

D

jr�.t; s/jp.l C rt/ dt ds (10)

jjujjpLp.@T/ D 2
r
Z

@D

j�.t; 0/jp.l C rt/ d�; (11)

Z

T
eudV D 2
r2

Z

D

e�.t;s/.l C rt/ dt ds (12)

jjrujj2L2.T/ D 2


Z

D

jr�.t; s/j2.l C rt/ dt ds (13)

and
Z

@T

eudS D 2
r
Z

@D

e�.t;0/.l C rt/ dt; (14)

where by � we denote the extension of � on @D.
Let K.2; q/ be the best constant [4] of the Sobolev inequality

0

@
Z

R2

j'jp dx

1

A

1
p

� K .2; q/

0

@
Z

R2

jr'jq dx

1

A

1
q

;

for the Euclidean space R2, where 1 � q < 2, p D 2q
2�q and QK.2; q/ be the best

constant [37] in the Sobolev trace embedding

0

@
Z

@R2

j'jQp dx0dt

1

A

1
Qp

� QK .2; q/
0

@
Z

R2

jr'jq dx

1

A

1
q

for the Euclidean half-space R2C, where 1 � q < 2, Qp D q
2�q .

In the following theorem, we determine the best constants of the classical
Sobolev inequality where the exponent p D 2q

2�q is the largest possible exponent
for this inequality and concerns the critical of supercritical and q 2 .1; 2/.
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Theorem 4 ([15]). Let T be the solid torus and p, q be two positive real numbers
such that 1

p D 1
q � 1

2
with 1 � q < 2. Then for all " > 0, there exists a constant

B D B."; q/ such that:

1) For all u 2 ı
H

q
1;G.T/ the following inequality holds:

0

@
Z

T

jujp dV

1

A

q
p

�
  

K.2; q/
p
2
 .l � r/

!q

C "

!Z

T

jrujq dV C B
Z

T

jujq dV

(15)
2) For all u 2 Hq

1;G.T/ the following inequality holds:

0

@
Z

T

jujp dV

1

A

q
p

�
  

K.2; q/
p

 .l � r/

!q

C "

!Z

T

jrujq dV C B
Z

T

jujq dV:

(16)

Moreover, K.2;q/p
2
.l�r/

and K.2;q/p

.l�r/

are the best constants for which the inequalities

(15) and (16) hold for all u 2 ı
H

q
1;G.T/ and u 2 Hq

1;G.T/ respectively.

We need now the definition of the concentration orbit.

Definition 1 (Concentration Orbit [26]). Set OP a G-orbit of T . OP is an orbit
of concentration of the sequence .u˛/ if for any ı > 0, the following holds:
lim˛!1 sup

R
OP;ı

up
˛dv.g/ > 0; where OP;ı D fQ 2 T W d.Q;OP/ < ıg.

Because of the concentration phenomenon on the orbit of a sequence of solutions of
nonlinear deferential equations, the following theorem holds:

Theorem 5 ([15]). Let T be the solid torus and p, q be two positive real numbers
such that 1p D 1

q � 1
2

with 1 < q < 2. Then, there exists B D B.q/ > 0 such that:

1) For all u 2 ı
H

q
1;G.T/

0

@
Z

T

jujp dV

1

A

q
p

�
 

K.2; q/
p
2
 .l � r/

!q Z

T

jrujq dV C B
Z

T

jujq dV (17)

2) For all u 2 Hq
1;G.T/

0

@
Z

T

jujp dV

1

A

q
p

�
 

K.2; q/
p

 .l � r/

!q Z

T

jrujq dV C B
Z

T

jujq dV: (18)



Sobolev-Type Inequalities on Manifolds in the Presence of Symmetries and. . . 59

We give now an application resolving the problem

.P0
1/ �qu C a.x/uq�1 D f .x/up�1; u > 0 on T; uj

@M D 0;

3

2
< q < 2; p D 2q

2 � q

Consider the functional I.u/ D R

T
.jrujq C a.x/jujq/ dV and suppose that the

operator Lq.u/ D �qu C a.x/uq�1 is coercive.
For 3

2
< q < 2; 3C2

3�2 C1 D 6 < p D 2q
2�q and for all u 2 Hp we set� D inf I.u/,

where

Hp D
n
u 2 Hq

1;G.T/; u > 0 W
Z

T

f .x/updV D 1
o
:

Consequently, for the problem .P0
1/ we have the following theorem:

Theorem 6 ([15]). Let T be a solid torus , ˛ and f be two smooth functions
and G-invariant and p, q be two real numbers defined as in .P0

1/. Suppose that
supx2T f .x/ > 0 and the operator Lqu D �qu C ˛uq�1 is coercive. The problem
.P0

1/ accepts a positive solution, that belongs to C1;˛.T/ for some ˛ 2 .0; 1/, if

� <
�

K.2;q/p
2
.l�r/

	�q
.sup f /

�q
p .

Corollary 1 ([15]). Let T be a solid torus, and ˛, f be two smooth functions,
G-invariant. Then the problem

�u C a.x/u D f .x/up�1; u > 0 on T; uj
@T D 0; p > 1

accepts a positive solution that belongs to H2
1;G.T/.

In this part, we determine the best constants of the Sobolev trace inequality,
where the exponent Qp D q

2�q is the critical of supercritical of this case and q 2 .1; 2/.
Theorem 7 ([16]). Let T be the solid torus and Qp, q be two positive real numbers
such that Qp D q

2�q with 1 < q < 2. Then for all " > 0 there exists a real number B"
such that for all u 2 Hq

1;G.T/ the following inequality holds:

0

@
Z

@T

jujQpdS

1

A

q
Qp

�
 QKq .2; q/

Œ2
 .l � r/�q�1 C "

!Z

T

jrujqdV C B
Z

@T

jujqdS (19)

In addition,
QKq.2;q/

Œ2
.l�r/�q�1 is the best constant for the above inequality.
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We use the best constant found in the above theorem to solve the following nonlinear
elliptic problem with Neumann type boundary conditions:

.P0
2/ �qu C a.x/uq�1 D �f .x/up�1; u > 0 on T;

jrujq�2 @u

@�
C b.x/uq�1 D �g.x/uQp�1 on @T;

p D 2q

2 � q
> 6; Qp D q

2 � q
> 4;

3

2
< q < 2;

For the problem .P0
2/ we have the following theorem:

Theorem 8 ([16]). Let a, f , b, and g be four smooth functions and G-invariant and
q, p, Qp be three real numbers defined as in .P0

2/. Suppose that the function f has
constant sign (e.g. f � 0/. The problem .P0

2/ has a positive solution u 2 Hq
1;G.T/ if

the following holds:

.sup
T

f /

"
Kq.2; q/�C

c0

Œ
.l � r/�q=2

# p
2

C p

Qp .sup
@T

g/C
"
eKq.2; q/�C

c0

Œ2
.l � r/�q�1

# Qp
2

< 1 (20)

and if

(i) f > 0 everywhere and g is arbitrary, or
(ii) f � 0, g > 0 everywhere and .� infT a/C� < 1, where

� D inffA > 0 W 9 B > 0 s:t: k kq
Lq.T/ � Akr kq

Lq.T/CBk kq
Lq.@T/g (21)

We have proved that for any p 2 Œ1; 2/ real, the embedding Hp
1;G.T/ ,! Lq

G.T/

is compact for 1 � q < 2p
2�p , while the embedding Hp

1;G.T/ ,! L
2p
2�p

G .T/ is only
continuous.

Also, we have proved that for any p 2 Œ1; 2/ real, the embedding Hp
1;G.T/ ,!

Lq
G.@T/ is compact for 1 � q < p

2�p , while the trace embedding Hp
1;G.T/ ,!

L
p

2�p

G .@T/ is only continuous.
Additionally, we observe that if 3

2
< p < 2 then q D 2p

2�p > 6 D 2�3
3�2 and

Qq > p
2�p > 4 D 2.3�1/

3�2 , that is the exponents q and Qq are supercritical.
In this part, we study the exceptional case when p D n � k D 3 � 1 D 2. In

this case, H2
1;G.T/ 6,! L1

G .T/, however, when � 2 H2
1;G.T/ we have e� 2 L1G.T/,

e� 2 L1G.@T/ and the exponent p D 2 is the critical of supercritical.

In the following theorem, we determine the best constants � and Q� in the
exponential Sobolev inequalities (3) and (4) in the case of the solid torus:

Theorem 9 ([19]). Let T be the solid torus, 2
2r2l be the volume of T and 4
2rl
be the volume of @T, then there exists a constant C such that:
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1) For all functions � 2 HG.T/, the following inequality holds:

Z

T

e�dV � Cexp

0

@�kr�k22 C 1

2
2r2l

Z

T

�dV

1

A (22)

2) For all functions � 2 HG.T/, the following inequality holds:

Z

@T

e�dS � Cexp

0

@ Q�kr�k22 C 1

4
2rl

Z

@T

�dS

1

A ; (23)

where, for the first inequality, � D 1
32
2.l�r/

if HG.T/ D ı
H 2

1;G.T/ and � D
1

16
2.l�r/
if HG.T/ D H2

1;G.T/. For the second inequality Q� > 1
8
2.l�r/

for all

� 2 H2
1;G.T/.

Moreover, � and Q� are the best constants for the above inequalities.

Remark 1. In [29] Faget proved that for a compact three-dimensional manifold
without boundary the first best constant for inequality (22) is �3 D 2

81

and the

map: H3
1 3 � ! e� 2 L1 is compact. Clearly, the best constant �3 depends only

on the dimension 3 of the manifold. For the solid torus, we prove that the first best
constant for the same inequality is � D 1

32
2.l�r/
and the map: H2

1;G 3 � ! e� 2 L1G
is compact. In this case, it is proved that the value of the best constant � not only
depends on the dimension but also on the geometry of torus.

Corollary 2 ([19]). For all � 2 ı
H 2
1;G.T/ such that kr�k22 � 2
.l C r/ and for

all ˛ � 4
 the following holds:

Z

T

e˛�
2

dV � C 2
2r2l; (24)

where the constant C is independent of � 2 ı
H 2
1;G.T/.

In addition, the constant ˛ � 4
 is the best one, in the sense that, if ˛ > 4


the integral in the inequality is finite, but it can be made arbitrarily large by an
appropriate choice of � .

Remark 2. Corollary 2 is a special case of the result of Moser [38].

For the problem

.P0
3/ �� C � D f .x/e� ; � > 0 on T; �j

@T D 0:

we have the theorem:

Theorem 10 ([19]). Consider a solid torus T and the function f continuous and
G-invariant.
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Then the problem .P0
3/ accepts a solution that belongs to C1

G , if one of the
following holds:

(a) supT f < 0 if � < 0.
(b)

R
T fdV < 0 and supT f > 0 if � D 0.

(c) supT f > 0 if 0 < � <
8.l�r/

lr2
.

For the problem

.P0
4/ �� C a C fe� D 0; � > 0 on T;

@�

@n
C b C ge� D 0 on @T;

we have the next theorem:

Theorem 11 ([19]). Consider a solid torus T and the smooth functions f , g
G-invariant and not both identical 0. If a; b 2 R and R D 2
2r2la C 4
2rlb;
the problem .P4/ accepts a solution that belongs to C1

G in each one of the following
cases:

.i/ If a D b D 0 the necessary and sufficient condition is f and g not both � 0

and that
R

T fdV C R
@T gdS > 0.

.ii/ If a � 0 and b � 0 , f , g not both � 0 everywhere and 0 < R <

4
2.l � r/: Particularly, if g D 0 we can substitute the last condition with
0 < R < 8
2.l � r/.

.iii/ If R > 0 (respectively R < 0) it is necessary that f , g not both � 0

everywhere (respectively � 0). Then, there exists a solution of the problem in
each one of the following cases:

.a/ a < 0,b > 0,f < 0,g � 0 and b < l�r
lr if g 6� 0 or b < 2.l�r/

lr if g � 0.

.b/ a > 0,b < 0,f � 0,g < 0 and a < 2.l�r/
lr2

.

.c/ a > 0,b < 0,f � 0,g > 0 and a < 2.l�r/
lr2

if g 6� 0 or a < 4.l�r/
lr2

if g � 0.
.d/ a < 0,b > 0,f > 0,g � 0 and b < l�r

lr .

.iv/ If a � 0,b � 0, not both D 0, it is necessary
R

T fdV C R
@T gdS > 0. Then there

exists a nonempty subset Sf ; g of R2� D f.a; b/ ¤ .0; 0/ W a � 0; b � 0g with
the property that if .c; d/ 2 Sf ; g then .c0; d 0/ 2 Sf ; g for any c0 � c, d0 � d and
such that the problem .P0

4/ has a solution if and only if .a; b/ 2 Sf ; g. Sf ; g D R2�
if and only if the functions f , g are 6� 0 and � 0. For all .a; b/ 2 R2� there exist
functions f and g such that

R
T fdV C R

@T gdS > 0 and .a; b/ 62 Sf ; g.

3 Nash Inequalities

We say that the Nash inequality (25) is valid if there exists a constant A > 0 such
that for all u 2 C1

0 .Rn/, n � 2:

�Z

Rn
u2dx

�1C 2
n

� A
Z

Rn
jruj2dx

�Z

Rn
juj dx

� 4
n

: (25)
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Such an inequality first appeared in the celebrated paper of Nash [39], where he
discussed the Hölder regularity of solutions of divergence form in uniformly elliptic
equations. It is a particular case of the Gagliardo–Nirenberg type inequalities

jjujjr � Cjjrujjaq jjujj1�a
s

and it is well known that the Nash inequality (25) and the Euclidian-type Sobolev
inequality are equivalent in the sense that if one of them is valid, the other one is also
valid (i.e., see [7]). It is, also, well known that with this procedure of passing from
the one type of inequalities to the other is impossible to compare the best constants,
since the inequalities under use are not optimal.

As far as the optimal version of Nash inequality (25) is concerned, the best
constant A0.n/, that is

A0 .n/
�1 D inf

8
<

:

R
Rn jruj2 dx

�R
Rn juj dx

� 4
n

�R
Rn u2dx

�1C 2
n

ˇ̌
ˇ̌
ˇ̌ u 2 C1

0 .Rn/ ; u 6� 0

9
=

;
;

has been computed by Carlen and Loss in [10], together with the characterization of
the extremals for the corresponding optimal inequality, as:

A0 .n/ D .n C 2/
nC2

n

2
2
n n�N

1 jBnj 2n
;

where jBnj denotes the euclidian volume of the unit ball Bn in Rn and �N
1 is the first

Neumann eigenvalue for the Laplacian for radial functions in the unit ball Bn.
For an example of application of the Nash inequality with the best constant, we

refer to Kato [35] and for a geometric proof with an asymptotically sharp constant,
we refer to Beckner [8].

For compact Riemannian manifolds, the Nash inequality still holds with an
additional L1-term and that is why we will refer this as the L1-Nash inequality.

Given .M; g/ a smooth compact Riemannian n-manifold, n � 2, we get here the
existence of real constants A and B such that for any u 2 C1.M/:

�Z

M
u2dVg

�1C 2
n

� A
Z

M
jruj2gdVg

�Z

M
juj dVg

� 4
n

C B

�Z

M
juj dVg

�2C 4
n

: (26)

The best constant for this inequality is defined as:

A1opt.M/ D inf fA > 0 W 9 B > 0 s:t: (26) is true 8 u 2 C1 .M/g :

This inequality has been studied completely by Druet, Hebey, and Vaugon in [24].
They proved that A1opt.M/ D A0.n/, and (26) with its optimal constant A D A0.n/ is
sometimes valid and sometimes not, depending on the geometry of M.
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Humbert in [33] studied the following L2-Nash inequality:

�Z

M
u2dVg

�1C 2
n

�
�

A
Z

M
jruj2gdVg C B

Z

M
u2dVg

��Z

M
juj dVg

� 4
n

; (27)

for all u 2 C1 .M/, of which the best constant is defined as:

A2opt.M/ D inf fA > 0 W 9 B > 0 s:t: (27) is true 8 u 2 C1 .M/g :

Contrary to the sharp L1-Nash inequality, in this case, he proved that B always exists
and A2opt.M/ D A0.n/.

We denote RnC D Rn�1 � Œ0;C1/ and @RnC D Rn�1 � f0g. The trace Nash
inequality states that a constant QA > 0 exists such that for all u 2 C1

0 .R
nC/, n � 2

with ru 2 L2.Rn/ and uj@Rn
C

2 L1.@RnC/ \ L2.@RnC/:

 Z

@Rn
C

u2ds

! n
n�1

�eA
Z

Rn
C

jruj2dx

 Z

@Rn
C

juj ds

! 2
n�1

; (28)

where ds is the standard volume element on Rn�1 and the trace of u on @RnC is also
denoted by u.

LeteA0.n/ be the best constant in Nash inequality (28). That is:

eA0 .n/�1 D inf

8
ˆ̂<

ˆ̂:

R
Rn

C

jruj2 dx
�R

@Rn
C

juj ds
	 2

n�1

�R
@Rn

C

u2ds
	 n

n�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
u 2 C1

0

�
RnC
�
; u 6� 0

9
>>=

>>;
:

The computation problem of the exact value ofeA0 .n/ still remains open.
For compact Riemannian manifolds with boundary, Humbert, also, studied in

[34] the trace Nash inequality.
On smooth compact n-dimensional, n � 2, Riemannian manifolds with bound-

ary, for all u 2 C1.M/, consider the following trace Nash inequality:

�Z

@M
u2dSg

� n
n�1

�
�

QA
Z

M
jruj2gdVg C QB

Z

@M
u2dSg

��Z

@M
juj dSg

� 2
n�1

: (29)

The best constant for the above inequality is defined as

eAopt.M/ D inf
˚ QA > 0 W 9 QB > 0 s:t: (29) is true 8 u 2 C1 .M/

�
:

It was proved in [34] that eAopt.M/ D eA0.n/, and (29) with its optimal constant
eA DeA0.n/ is always valid.

In this part of the paper, we prove that, when the functions are invariant under an
isometry group, all orbits of which are of infinite cardinal, the Nash inequalities can
be improved, in the sense that we can get a higher critical exponent.
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More precisely we establish:

(i) The best constant for the Nash inequality on compact Riemannian manifolds
with boundary, invariant under the action of an arbitrary compact subgroup G
of the isometry group Is.M; g/, where all the orbits have infinite cardinal, and

(ii) The best constant for the Trace Nash inequality on compact Riemannian
manifolds with boundary, invariant under the action of an arbitrary compact
subgroup G of the isometry group Is.M; g/, where all the orbits have infinite
cardinal.

These best constants are improvements over the classical cases due to the
symmetries which arise and reflect the geometry of the manifold.

3.1 Sharp Nash Inequalities on Manifolds in the Presence
of Symmetries

Theorem 12 ([18]). Let .M; g/ be a smooth, compact n-dimensional Riemannian
manifold, n � 3, with boundary, G-invariant under the action of a subgroup G of
the isometry group Is.M; g/. Let k denote the minimum orbit dimension of G and V
denote the minimum of the volume of the k-dimension orbits. Then for any " > 0,
there exists a constant B" such that and for all u 2 H2

1;G.M/ the following inequality
holds:

�Z

M
u2dVg

� n�kC2
n�k

�
�
.AG C "/

n�k
n�kC2

Z

M
jruj2gdVg C B"

Z

M
u2dVg

�

�
�Z

M
juj dVg

� 4
n�k

; (30)

where AG D A0.n�k/

V
2

n�k
.

Moreover, the constants AG is the best constant for this inequality.

Theorem 13 ([18]). Let .M; g/ be a smooth, compact n-dimensional Riemannian
manifold, n � 3, with boundary, G-invariant under the action of a subgroup G of
the isometry group Is.M; g/. Let k denote the minimum orbit dimension of G and V
denote the minimum of the volume of the k-dimension orbits. Then for any " > 0,
there exists a constant QB" such that and for all u 2 H2

1;G.M/ the following inequality
holds:

�Z

@M
u2dSg

� n�k
n�k�1

�
�� QAG C "

� n�k�1
n�k

Z

M
jruj2 dVg C QB"

Z

@M
u2dSg

�

�
�Z

@M
jujdSg

� 2
n�k�1

; (31)

where QAG D QA0.n�k/

V
1

n�k�1

.
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Moreover, the constants QAG is the best constant for this inequality.

Corollary 3 ([18]). For any " > 0, there exists a constant C" such that and for all
u 2 H2

1;G.T/ the following inequality holds:

�Z

@T
u2dS

�2
�
 QA0 .2/C "

2
 .l � r/

Z

T
jruj2 dV C C"

Z

@T
u2dS

!�Z

@T
jujdS

�2
(32)

Moreover, the constanteAopt.T/ D QA0.2/
2
.l�r/ is the best constant for this inequality and

verifies:

3
p
3

4
2.l � r/
�eAopt.T/ � 2


2.l � r/
(33)

3.2 Sharp Nash Inequalities on the Solid Torus

In this part, we establish the best constant eAopt.T/ for the trace Nash inequality on
a three-dimensional solid torus T , which is an improvement over the classical case
due to the symmetries which arise and reflect the geometry of torus.

Theorem 14 ([20]). For any " > 0 and for all u 2 H2
1;G.T/, the following inequality

holds:

�Z

@T
u2dS

�2
�
 QA0 .2/C "

2
 .l � r/

Z

T
jruj2 dV C C"

Z

@T
u2dS

!�Z

@T
jujdS

�2
(34)

Moreover, the constant
QA0.2/

2
.l�r/ is the best constant for this inequality.
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Generalized Minkowski Functionals

Stefan Czerwik and Krzysztof Król

In Honor of Constantin Carathéodory

Abstract In the paper we present the generalized Minkowski functionals. We also
establish some useful properties of the Minkowski functionals, criterium of the
continuity of such functionals, and a generalization of a Kolmogorov result.

1 Introduction

We shall introduce basic ideas, which will be used in the paper.
Let X be a linear topological (Hausdorff) space over the set of real numbers R.

Denote RC D Œ0;1/, RC D Œ0;1�. Also 0 � 1 D 1 � 0 D 0. Let A be a subset
of X. As usual for ˛ 2 R,

˛A WD fy 2 XW y D ˛x for x 2 Ag:

We shall call A a symmetric, provided that A D �A. Moreover, a set A � X is said
to be bounded (sequentially) (see [6]) iff for every sequence ftng � R, tn ! 0 as
n ! 1 and every sequence fxng � A, the sequence ftn � xng � X satisfies tn � xn ! 0

as n ! 1.
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We also recall the idea of generalized metric space (briefly gms) introduced by
Luxemburg (see [5] and also [2]). Let X be a set. A function

dW X � X ! Œ0;1�

is called a generalized metric on X, provided that for all x; y; z 2 X,

(i) d.x; y/ D 0 if and only if x D y,
(ii) d.x; y/ D d.y; x/,

(iii) d.x; y/ � d.x; z/C d.z; y/,

A pair .X; d/ is called a generalized metric space.
Clearly, every metric space is a generalized metric space.
Analogously, for a linear space X, we can define a generalized norm and a

generalized normed space.
Let’s note that any generalized metric d is a continuous function.
For if xn; x; yn; y 2 .X; d/ for n 2 N (the set of all natural numbers) and

xn ! x; yn ! y as n ! 1
i.e. d.xn; x/ ! 0 and d.yn; y/ ! 0 as n ! 1, then in the case d.x; y/ < 1, we can
prove, in standard way, that

d.xn; yn/ ! d.x; y/ as n ! 1:

But if d.x; y/ D 1, we have for " > 0

d.x; y/ � d.x; xn/C d.xn; yn/C d.yn; y/

and, for n > n0, n; n0 2 N

1 D d.x; y/ � d.xn; yn/C ";

i.e. d.xn; yn/ D 1 for n > n0 and consequently

1 D d.xn; yn/ ! d.x; y/ D 1 as n ! 1;

as claimed.

2 Generalized Minkowski Functionals

Now we shall prove the following basic result.

Theorem 1. Let X be a linear topological (Hausdorff) space over R and let a subset
U of X satisfy the conditions:

(i) U is a convex (nonempty) set,
(ii) U is a symmetric set.
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Then the function pW X ! R
C defined by the formula

p.x/ WD
�

infft > 0W x 2 tUg; x 2 X; if Ax ¤ ;,
1; if Ax D ;,

(1)

where

Ax WD ft > 0W x 2 tUg; x 2 X; (2)

has the properties:

if x D 0; then p.x/ D 0; (3)

p.˛x/ D j˛jp.x/ for x 2 X and ˛ 2 R; (4)

p.x C y/ � p.x/C p.y/ for x; y 2 X: (5)

Proof. Clearly, p.x/ 2 Œ0;1� for x 2 X. Since 0 2 U, by the definition (1) we get
(3). To prove (4), consider at first the case ˛ > 0 (if ˛ D 0, the property (4) is
obvious). Assume that p.x/ < 1 for x 2 X. Then we have

˛p.x/ D ˛ inf fs > 0W x 2 sUg D ˛ inf
n t

˛
> 0W x 2 t

˛
U
o

D inf
n t

˛
� ˛ > 0W x 2 t

˛
U
o

D inf
n
t > 0W x 2 t

˛
U
o

D inf ft > 0W˛x 2 tUg D p.˛x/:

If p.x/ D 1, then ft > 0W x 2 tUg D ;. Therefore,

ft > 0W˛x 2 tUg D ˛
n t

˛
> 0W˛x 2 tU

o
D ˛

n t

˛
> 0W x 2 t

˛
U
o

D ;;

and consequently p.˛x/ D 1, i.e. (4) holds true.
Now consider the case ˛ < 0. Taking into account that (ii) implies that also tU

for t 2 R is a symmetric, one gets for x 2 X and p.x/ < 1

p.�x/ D inf ft > 0W �x 2 tUg D inf ft > 0W x 2 tUg D p.x/:

If p.x/ D 1, then

; D ft > 0W x 2 tUg D ft > 0W �x 2 tUg ;

which implies also p.�x/ D 1, and consequently

p.�x/ D p.x/ for any x 2 X: (6)
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Thus, for ˛ < 0, x 2 X and in view of the first part of the proof,

p.˛x/ D p.�˛x/ D �˛p.x/ D j˛jp.x/;

i.e. (4) has been verified.
Finally, if p.x/ D 1 or p.y/ D 1, then (5) is satisfied. So assume that

x; y 2 X and

p.x/ < 1 and p.y/ < 1:

Take an " > 0. From the definition (1), there exist numbers t1 � p.x/ and t2 � p.y/,
t1 2 Ax, t2 2 Ay such that

0 < t1 < p.x/C 1

2
"; 0 < t2 < p.y/C 1

2
":

The convexity of U implies that

x C y

t1 C t2
D t1

t1 C t2
� x

t1
C t2

t1 C t2
� y

t2
2 U

and consequently

x C y 2 .t1 C t2/U;

which means that t1 C t2 2 AxCy.
Hence

p.x C y/ � t1 C t2 � p.x/C 1

2
"C p.y/C 1

2
" D p.x/C p.y/C "

i.e.

p.x C y/ � p.x/C p.y/C ";

and since " is arbitrarily chosen, this concludes the proof. ut
Example 1. Consider X D R � R, U D .�1; 1/.

Then

p.x/ D
�

infft > 0W .x; 0/ 2 tUg; for x D .x; 0/,
1; for x D .x1; y1/; y1 ¤ 0,

p.x/ D
� jxj; for x D .x; 0/,

1; for x D .x1; y1/; y1 ¤ 0,

because ft > 0W .x1; y1/ 2 tUg D ; for y1 ¤ 0.
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We see that p is a generalized norm in R
2 D R � R (p takes values in Œ0;1�).

Remark 1. The function pW X ! R
C defined by (1) we shall call the generalized

Minkowski functional of U (also a generalized seminorm).

Remark 2. Under some stronger assumptions (see e.g. [3]), the function p is called
the Minkowski functional of U.

The next basic property of the functional p is given in

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. If, moreover,
U is bounded (sequentially), then

p.x/ D 0 ) x D 0: (7)

Proof. Assume that p.x/ D 0 for x 2 X. Suppose that x ¤ 0. From the definition of
p.x/ for every "n D 1

n , there exists a tn > 0 such that x 2 tnU, n 2 N and tn <
1
n .

Hence, x D tnxn, xn 2 U for n 2 N and by the boundedness of U, x D tnxn ! 0 as
n ! 1. But clearly x ! x, whence x D 0, which is a contradiction and completes
the proof. ut
Remark 3. Under the assumptions of Theorem 2, the generalized Minkowski
functional is a generalized norm in X.

Let’s note the following useful

Lemma 1. Let U � X be a convex set and 0 2 U. Then

˛U � U (8)

for all 0 � ˛ � 1.

The simple proof of this Lemma is omitted here.
Next we prove

Lemma 2. Let U be as in Theorem 1. If, moreover, U does not contain half-lines,
then

p.x/ D 0 ) x D 0:

Proof. For the contrary, suppose that x ¤ 0. By the definition of p.x/ for every
" > 0, there exists a 0 < t < " such that x 2 tU. Take r > 0 and " < 1

r . Clearly,
x
t 2 U. Furthermore,

rx D x

t
.tr/ D ˛

x

t
; where ˛ D tr < 1:
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By Lemma 1, rx D ˛ x
t 2 ˛U � U, which means that there exists an x ¤ 0 such

that for every r > 0, rx 2 U what contradicts the assumptions on U. This yields our
statement. ut
We have also

Lemma 3. Let U be as in Theorem 1. Then

Œp.x/ D 0 ) x D 0� ) U does not contain half-lines. (9)

Proof. For the contrary, suppose that there exists an x ¤ 0 such that for every r > 0
we have rx 2 U. Hence

x 2 1

r
U for r > 0

and therefore

1

r
2 ft > 0W x 2 tUg

which implies that p.x/ D 0. From (9) we get x D 0, which is a contradiction.
Eventually, one gets the implication (9) and this ends the proof. ut

Therefore, Lemmas 2 and 3, we can rewrite as the following

Proposition 1. Let the assumptions of Theorem 1 be satisfied. Then the generalized
Minkowski functional p for U is a generalized norm iff U does not contain half-lines.

3 Properties of the Generalized Minkowski Functionals

In this part we start with the following

Theorem 3. Let X be a linear topological (Hausdorff) space over R and let
f W X ! R

C be any function with properties:

f .˛x/ D j˛jf .x/ for all x 2 X and ˛ 2 R; (10)

f .x C y/ � f .x/C f .y/ for all x; y 2 X: (11)

Define

U WD fx 2 XW f .x/ < 1g: (12)
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Then

a) U is a symmetric set,
b) U is a convex (nonempty) set,
c) f D p, i.e. f is the generalized Minkowski functional of U.

Proof. The conditions a) and b) follow directly from the definition (12) and
properties (10) and (11), respectively. To prove c), assume that x 2 U, thus
f .x/ < 1. Therefore, for t > 0

x 2 tU D tf �1.Œ0; 1// , x

t
2 f �1.Œ0; 1//

, f
�x

t

	
2 Œ0; 1/ , 1

t
f .x/ 2 Œ0; 1/ , f .x/ 2 Œ0; t/;

i.e. x 2 tU , f .x/ 2 Œ0; t/ for t > 0.
Thus

Ax D ft > 0W x 2 tUg D ft > 0W f .x/ 2 Œ0; t/g;

whence

p.x/ D inf Ax D infft > 0W f .x/ 2 Œ0; t/g D f .x/:

Now let f .x/ D 1. For the contrary, assume that p.x/ < 1. Then by the definition
of p,

ft > 0W x 2 tUg ¤ ;;

which implies that there exists t > 0 such that x 2 tU, thus also

x

t
2 U D f �1.Œ0; 1//;

1

t
f .x/ 2 Œ0; 1/

and finally f .x/ 2 Œ0; t/ which is impossible. This completes the proof. ut
The next result reads as follows.

Theorem 4. Let X; f ; U be as in the Theorem 3. If U is sequentially bounded, then
f D p is a generalized norm.

Proof. Assume that f .x/ D p.x/ D 0. One has

p.x/ D infft > 0W x 2 tUg D 0;
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therefore, for every "n D 1
n , n 2 N, there exists 0 < tn <

1
n such that x 2 tnU, i.e.

x D tnun, where un 2 U for n 2 N. Since U is bounded

x D tnun ! 0 as n ! 1;

thus x D 0, as claimed. ut

4 Continuity of the Generalized Minkowski Functionals

Let’s note the following

Theorem 5. Let the assumptions of Theorem 1 be satisfied. Then

p is continuous at zero ) 0 2 int U: (13)

Proof. From the assumption, for 0 < " < 1, there exists a neighbourhood V of zero
such that

p.u/ < " for u 2 V:

But p.u/ < 1 for u 2 V , whence by Lemma 1 u 2 U, and therefore, V � U, which
proves the implication (13). ut

We have also

Theorem 6. Let the assumptions of Theorem 1 be satisfied. Then

0 2 int U ) p is continuous at zero. (14)

Proof. Let U0 be a neighbourhood of zero such that U0 � U. For the contrary,
suppose that there exists an "0 > 0 such that for every neighbourhood V of zero
there exists an x 2 V with p.x/ � "0. Take V D Vn D 1

n U0, n 2 N (clearly Vn is
a neighbourhood of zero). Then there exists an xn 2 1

n U0 � 1
n U, such that

p.xn/ � "0 for n 2 N: (15)

Take n such that 1n < "0. Thus, one has

p.xn/ D infft > 0W xn 2 tUg � 1

n
;
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i.e.

p.xn/ � 1

n
< "0

which contradicts the inequality (15) and completes the proof. ut
We have even more.

Theorem 7. Let the assumptions of Theorem 1 be satisfied. Then

0 2 int U ) p is continuous. (16)

Proof. First of all, observe that since there exists a neighbourhood V of zero,
contained in U, then for x 2 X

1

n
x 2 V for n > n0;

and hence

Ax D ft > 0W x 2 tUg ¤ ; for all x 2 X:

Therefore, we have p.x/ < 1 for any x 2 X. Since p is also convex and, by
Theorem 6, p is continuous at zero, then by the famous theorem of Bernstein–
Doetsch (see e.g. [1]), p is continuous in X, which ends the proof. ut
Remark 4. To see that the condition 0 2 int U is essential in Theorems 5 and 6, the
reader is referred to Example 1.

Eventually, taking into account Theorems 5 and 7, we can state the following
useful result about the continuity of the generalized Minkowski functionals.

Proposition 2. Under the assumptions of Theorem 1, the equivalence

p is continuous , 0 2 int U (17)

holds true.

5 Kolmogorov Type Result

Let X be a linear space (over R or C—the set of all complex numbers) and
a generalized metric space. We say that X is a generalized linear-metric space, if the
operations of addition and multiplication by constant are continuous, i.e. if xn ! x
and yn ! y, then xn Cyn ! xCy and txn ! tx (with respect to a generalized metric
in X).
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For example, if generalized metric is introduced by a generalized norm, then we
get a generalized linear-metric space.

We shall prove the following.

Theorem 8. Let .X; %/ be a generalized linear-metric space over R. Suppose that
U � X is an open, convex and sequentially bounded set. Then there exists a
generalized norm k � k such that the generalized metric induced by this norm is
equivalent to a generalized metric %.

Proof. Take a point x0 2 U, then

V WD .U � x0/ \ .x0 � U/

is an open, convex, symmetric and sequentially bounded subset of X (the details we
omit here).

Define

kxk WD
�

infft > 0W x 2 tVg; x 2 X; if Ax ¤ ;,
1; if Ax D ;.

(18)

By Theorem 2 we see that this function is a generalized norm.
At first we shall show the implication:

%.xn; 0/ ! 0 ) kxnk ! 0: (19)

To this end, take " > 0. Then the set "V is also open: for it, because f .x/ D 1
"
x,

x 2 X, is a continuous function and

f �1.V/ D "V;

we see that also "V is open. Therefore, xn 2 "V for n > n0 and consequently

kxnk < " for n > n0

i.e. (19) is satisfied.
Conversely, assume that kxnk ! 0 as n ! 1. By the definition (18) for every

"n D 1
n , n > n0, there exists tn > 0 such that

kxnk � tn < kxnk C "n and xn 2 tnV:

Let "n ! 0, then tn ! 0 as n ! 1. Also xn
tn

2 V , but since V is bounded, then

tn

�
xn

tn

�
D xn ! 0 as n ! 1

in the generalized metric % thus %.xn; 0/ ! 0, which ends the proof. ut
Remark 5. If % is a metric, from Theorem 7, we get the Kolmogorov result (see [4]).
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A Network Design Model Under Uncertainty

E. D’Amato, E. Daniele, and L. Mallozzi

In Honor of Constantin Carathéodory

Abstract In this paper we present a cooperative game theoretical model for the
well-known problem of network design. There is a multi-commodity network flow
problem for each subset of players, who optimize the design of the network. Each
player receives a return for shipping his commodity, and we consider the possibility
to have uncertainty in this return. A cooperative game under interval uncertainty is
presented for the model, and the existence of core solutions and approximate core
solutions is investigated.

1 Introduction

Design and formation of networks is a topical matter because of the increased
importance that issues as peer-to-peer connections, job-scheduling on computer
cluster, and traffic routing are gaining.
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Regardless of the specific kind of network, a first distinction could be done
by observing the behavior of the agents (or users, player) that operate within the
network.

They could operate in a selfish, or noncooperative way, when they build or
maintain a large network, by paying for available edges, independently of the other
agents. In these cases, it is possible to measure the inefficiency, or suboptimality,
by means of the price of anarchy (POA) based on the ratio between the objective
functions of the worst Nash equilibrium case and the optimal solution [8, 13, 21].

On the other hand, a more realistic behavior for the agents would consider the
change of form coalitions by means of strategic actions that lead to major profit
for all the members of the consortium. In addition to that, a pragmatic policy from
external authorities could be included, such as incentives to agents’ cooperation [4].

Having this in mind, a network design model could be regarded as a cooperative
game model [23] which has been shown to offer a general description for decision-
making process and economic interaction of players, such as those exhibited in, for
example, general welfare and procure-production games, as well as investment-
production and activity selection games. For these activity optimization games,
the natural condition involving the complementarity among the decision variables
of the players causes the game to possess a convex property (also denoted as
supermodularity), which usefulness for problems involving the design of a network
to accommodate multi-commodity flows as been reported in [25].

This case represents the situation for which, through the considered network, the
flow units are not all of the same commodities, thus requiring a balance at node level
between inflow and outflow for each commodity separately. To overcome the single-
commodity case, it required the introduction for each player of a specific origin-
destination pair (denoted with OD in the following, also called source-sink pair).

We focus on network design games, namely, cooperative games, where players
share the profit of shipping some commodity from a given origin to a given
destination. The profit is the revenue minus the cost of installing infrastructures
on edges, in order to ship the commodity. Since the players may use different paths,
there is the possibility to cooperate and design the optimal network satisfying the
requests of all the players and minimizing the cost.

As proved in literature [19, 22, 25], under suitable assumptions, the game is
convex and the core is nonempty. So the proposed solution concept could be the
core. One could consider also other solution concepts, as the Nucleolus or the
Shapley value.

In our paper, we introduce uncertainty in the network design game. More
precisely, as it happened in real situations, players do not know exactly the
revenue they get from shipping, but they can estimate a possible lower bound of
the revenue and a possible upper bound. We present the cooperative interval-valued
network design game.

Several papers about cooperative interval-valued games have appeared recently
[1–3, 5–7]. There is a cooperative game with an interval-valued characteristic
function, i.e., the worth of a coalition is not a real number, but a compact interval of
real numbers.
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This means that one observes a lower bound and an upper bound of the worth of
the considered coalitions. This is very important, for example, from a computational
and algorithmic point of view where the numerical quantities are determined in
terms of lower bounds and upper bounds.

The definition of interval-valued cooperative games has been given in [3],
together with several notions of balancedness and cores by using selections of such
games. In [1, 2, 5, 6], the authors investigate several interval solutions and convexity
properties for the class of interval-valued games.

In this paper we study the cooperative interval-valued network design game,
discussing its properties and some existence results for interval core solutions, as
well as some computational procedures to evaluate numerically the solutions. In
Sect. 2 the crisp model, i.e., the model without uncertainty, is presented, while
in Sect. 3 the model is considered under uncertainty: existence and computational
procedure of the solutions are discussed together with some illustrative examples.
In the concluding section, we summarize the major results and address some future
research developments.

2 The Network Design Model

Let us consider a set of players N D f1; : : : ; ng (n 2 N) and a graph G D .V;E/
where V D f1; : : : ; kg is the finite set of vertexes or nodes and E D f1; : : : ;mg the
set of directed edges (k;m are natural numbers). Each player i 2 N has to ship hi > 0

units of a commodity i between a given ordered pair of nodes .oi; di/with oi; di 2 V ,
for any i 2 N. We denote h D .h1; : : : ; hn/ and OD D �

.o1; d1/; : : : ; .on; dn/
�

the
vectors of Rn and R

2n, respectively.
From the shipment, player i receives a return ri. The initial capacity of each edge

of E for accommodating shipments of the players’ commodities is set at zero, and
there is an investment cost cj.x/ for installing x units of capacity on edge j 2 E. Any
coalition S 	 N of players could construct capacities on the edges of E to create
a capacitated network in which the requirements of any player of S are satisfied
(admissible network). Coalition S chooses the admissible network of minimum cost.
Define for any player i 2 N the set

Pi D fpath connecting oi and dig
and for any edge j 2 E the set

Qj D fpath of edges from E including jg:
A path is the union of consecutive edges (ijk is the path given by edge i, then

edge j, then edge k).
For each player i in the coalition S, fix a path pi 2 Pi; then we consider the

quantity:
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X

j2E

cj

0

@
X

iWi2S;pi2Qj

hi

1

A

that represents the sum of the costs of each edge j by considering all the players of
coalition S that are using that edge j when they choose the paths pi 2 Pi, 8i 2 S.

We denote by r D .r1; : : : ; rn/ the revenue profile vector (ri > 0) and IC D
fc1; : : : ; cmg the installing cost functions (cj W Œ0;C1Œ! Œ0;C1Œ, cj.0/ D 0,
cj increasing in Œ0;C1Œ). We call the tuple .N;G; h;OD; r; IC/ a network design
situation.

Definition 1. Given a network design situation .N;G; h;OD; r; IC/, we define the
network design cooperative game < N; v > where N D f1; : : : ; ng is the set of the
players and v W 2N ! R is the characteristic function such that v.;/ D 0 and for
each coalition S 	 N the worth of the coalition is given by

v.S/ D
X

i2S

ri � c.S/

being c.S/ the cost of the coalition S defined as

c.S/ D min
piWpi2Pi;8i2S

X

j2E

cj

0

@
X

iWi2S;pi2Qj

hi

1

A :

A natural solution concept for this cooperative game is the core [19, 22, 24]. The
core C .v/ of the cooperative game < N; v > is defined by

C .v/ D f.x1; : : : ; xn/ 2 Rn W
X

i2N

xi D v.N/;
X

i2S

xi � v.S/;8 S 	 Ng:

The core of a network design cooperative game may be empty as in the following
example [25].

Example 1. Let us consider a network design situation .N;G; h;OD; r; IC/ where
N D f1; 2; 3g, V D f1; 2; 3; 4; 5; 6; 7g, and E D f1; 2; 3; 4; 5; 6; 7; 8; 9g (with G D
.V;E/), h D .1; 1; 1/, OD D �

.1; 7/; .3; 7/; .5; 7/
�
, r D .3; 2; 4/, cj.x/ D p

x; j 2 E:
In this case (see Fig. 1)

P1 D ˚
18; 67; 123457; 1239

�
; P2 D ˚

2167; 28; 3457; 39
�
; P3 D ˚

57; 49; 432167; 4328
�

Q1 D ˚
18; 123457; 1239; 2167; 432167

�
; Q2 D ˚

123457; 1239; 2167; 28; 432167; 4328
�
;

Q3 D ˚
123457; 1239; 3457; 39; 432167; 4328

�
; Q4 D ˚

123457; 3457; 49; 432167; 4328
�
;

Q5 D ˚
123457; 3457; 57

�
; Q6 D ˚

67; 2167; 432167
�
;

Q7 D ˚
67; 123457; 2167; 3457; 57; 432167

�
; Q8 D ˚

18; 28; 4328
�
; Q9 D ˚

1239; 39; 49
�
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Fig. 1 Scheme for the network described into Example 1 on page 84

and it is easy to compute

c.f1g/ D c.f2g/ D c.f3g/ D 2

c.f1; 2g/ D c.f2; 3g/ D c.f1; 3g/ D 2C p
2

c.f1; 2; 3g/ D 4C p
2:

The characteristic function is

v.f1g/ D 1; v.f2g/ D 0; v.f3g/ D 2

v.f1; 2g/ D 3 � p
2; v.f2; 3g/ D 4 � p

2; v.f1; 3g/ D 5 � p
2

v.f1; 2; 3g/ D 5 � p
2

and the core of this game is empty. If we consider cj.x/ D x2; j 2 E, the
characteristic function is

v.f1g/ D 1; v.f2g/ D 0; v.f3g/ D 2

v.f1; 2g/ D 1; v.f2; 3g/ D 2; v.f1; 3g/ D 3

v.f1; 2; 3g/ D 3

and the vector .1; 0; 2/ is in the core.

In the special case where the following assumption is satisfied

each Pi consists of a single path p0
i .H/
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the characteristic function is

v.S/ D
X

i2S

ri �
X

j2E

cj

0

@
X

iWi2S;p0

i 2Qj

hi

1

A ;

by assuming concave cost functions cj; j 2 E, the cooperative game is a convex
game and there exist core solutions ([25] part (a) of Lemma 2.6.2, Theorem 2.6.4,
and part (b) of Lemma 2.6.1). Recall that a cooperative game < N; v > is convex if

v.S [ T/C v.S \ T/ � v.S/C v.T/; 8S;T 2 2N

and if the game is convex, the core is nonempty [19, 22, 24].

Remark 1. Let us observe that without hypothesis (H) the network design situation,
given the installing cost functions IC and without revenue, is nothing but the conges-
tion situation of Mallozzi [15] and Monderer [17], studied from a noncooperative
point of view: there exists for such games a pure Nash equilibrium, because they are
potential games.

2.1 A Computational Procedure for the Network Design Game

A numerical procedure to compute core solutions, given a network design situation
.N;G; h;OD; r; IC/, can be divided in two phases:

• 2n combinatorial optimization problems must be solved to find the shortest paths
for players, considering all the feasible coalitions;

• once collected all the coalition values, the core can be computed by using a
constrained optimization procedure.

In a network design situation, the weight of each edge is a function of the number
of players passing through it. In this work, an optimization algorithm based on ant
colony paradigm (AC) to solve the shortest path with variable weight on edges has
been developed [11, 16, 20].

Ant colony algorithm is a simulated artificial version of ant social behavior. Ants’
organization and their related interaction rules are replied in a computer system,
and the ability to find shortest paths (or equivalent cost functions) in a well-defined
environment is exploited in a general way.

Let us consider the minimization of a typical N-P hard combinatorial problem.
Artificial ants will construct solutions making random steps on a graph G D .V;E/
where V represents the set of nodes and E the set of edges.

A pheromone trail �j and a heuristics �j can be associated to each edge j whose
endpoints are the nodes aj and bj. The pheromone trail represents a sort of shared
memory for the ant colony, spread over the chosen paths, while the heuristics �j is an
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immutable information. In most cases, �j is strictly connected to the cost function,
giving to the ants a valuable support in choosing the best component routes.

The AC algorithm can be seen as a succession of several procedures. Analo-
gously to other natural algorithms, epochs represent the time base of evolution.
For each epoch, ants concurrently build solutions moving themselves on the
construction graph, on the basis of the pheromone trails and heuristic information.
At each construction step, the ants choose the nodes to switch on, via a probabilistic
choice biased on a proportional-random rule:

pk
j D Œ�j�

˛Œ�j�
ˇ

P
l2LŒ�l�˛Œ�l�ˇ

; (1)

where pk
j is the probability of transition on edge j for the k-th ant via node bj, � is the

pheromone matrix, � is the heuristic information matrix that depends on the specific
problem, exponents ˛ and ˇ are parameters used to bias the influence of pheromone
trail, and L is the set of edges connected to node aj.

An artificial ant is equipped with the following abilities/features:

• Path exploration in searching for the best solution;
• A general-purpose local memory used for: (1) partial route storage, (2) feasible

solution construction, (3) heuristics and objective function evaluation support,
and (4) reverse path reconstruction;

• An initial state and one or more termination rules. Typically, an initial state
consists of a void or a single-element array.

In the state xr D fxr�1; jg, the ant moves to a node j of its neighborhood Nk.xr/

if none of termination rules is verified. When one of termination criteria is met, the
ant stops. This rule may be varied if a different behavior is preferred for the ant, i.e.,
the construction of infeasible solutions is allowed or not. This is simply obtained
modifying the heuristics.

The ant chooses a move using either heuristics or pheromone information
previously deposited onto the tracks by the colony; at the end of its journey, ant
upgrades the pheromone track associated to the connection edges, adding an amount
of pheromone that depends on the length of the path.

It should be remarked that all the ants move in parallel and independently
of one another, except for the pheromone-tracking phase, that is performed in a
synchronous mode. This circumstance can be seen as a sort of shared learning,
where each ant does not adapt itself but adapt the representation of the problem
for the other ones.

Concerning the core solutions, we solve an optimization problem for the payoff
function:

x1 C � � � C xn � v.N/
constrained with 2n � 2 conditions of coalitional core properties

X

i2S

xi � v.S/;8 S � N:
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3 The Model Under Uncertainty

Let us now recall basic definitions of interval analysis [18]. Let IR be the set of real
intervals IR D fŒI; NI� � R; I; NI 2 R; I � NIg. For any I 2 IR, the values I; NI are called
lower and upper bound, respectively, of the interval I. Two intervals are equal if their
respective bounds coincide. For any real number k 2 R, we also denote k D Œk; k�.

Let I; J 2 IR; we consider the following partial order I 
 J iff I � J and NI � NJ.
If I D Œa; a�; a 2 R and J D Œb; b�; b 2 R, we have that I 
 J ” a � b. Remark
that 
 is a partial order relation in IR: for example, Œ0; 2� 
 Œ�1; 2�, but Œ�2; 3� and
Œ�1; 2� are not comparable with respect to �.

The sum operation is defined in IR as follows:

I C J D ŒI C J; NI C NJ�:

The product of an interval I 2 IR times a nonnegative real number ˛ � 0 is
defined as follows:

˛I D Œ˛I; ˛NI�:

We denote by IRC the set of intervals I 
 Œ0; 0� and by IRnC the Cartesian product
IRnC D f.A1; : : : ;An/;Ai 2 IRC; i D 1; : : : ; ng. Interval analysis has been used in
several applicative contexts (see, e.g., [12, 14, 18]); we shall consider this approach
in a game theoretical setting.

A cooperative interval game is an ordered pair < N;w > where N D f1; : : : ; ng
is the set of the players and w W 2N ! IR is the characteristic function such that
w.;/ D Œ0; 0�. We denote by w.S/ D Œw.S/; Nw.S/� the worth of the coalition S. The
border games < N;w >, < N; Nw > and the length game < N; jwj > are classical
TU-games (transferable utility) with characteristic functions w, Nw and jwj D Nw � w,
respectively.

A cooperative interval game < N;w > is convex if it is supermodular, i.e.

w.S [ T/C w.S \ T/ 
 w.S/C w.T/; 8S;T 2 2N ;

and the length game < N; jwj > is also supermodular (convex) in the classical
definition, i.e.

jwj.S [ T/C jwj.S \ T/ � jwj.S/C jwj.T/; 8S;T 2 2N :

A cooperative interval game < N;w > is size monotonic if < N; jwj > is
monotonic, i.e., jwj.S/ � jwj.T/ for any S;T 2 2N with S � T .

If jIj � jJj we define the difference interval I � J D ŒI � J; NI � NJ�.
The definition of interval-valued cooperative games has been given in [3],

together with several notions of balancedness and cores by using selections of such
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games. In [1, 2, 5, 6], the authors investigate several interval solutions for the class
of interval-valued games and convexity properties of such games.

As in the crisp case, we are interested in the core solution concept for the interval
game, namely, the interval core that is defined by

C .w/ D
(

.I1; : : : ; In/ 2 IRn W
X

i2N

Ii D w.N/;
X

i2S

Ii 
 w.S/;8 S 	 N

)

:

The interval core of an interval network design cooperative game may be empty
as in the following example.

Let us consider .N;G; h;OD;R; IC/ a network design situation as in the previous
section except for the revenue vector that in this case will be an interval vector,
namely, we assume that from the shipment player i receives a return that is between
a lower assigned bound ri and an upper bound Nri, and R D �

Œr1; Nr1�; : : : ; Œrn; Nrn�
�
. We

compute the cost c.S/ of any coalition S as in the previous section. We call the tuple
.N;G; h;OD;R; IC/ an interval network design situation.

Definition 2. Given an interval network design situation .N;G; h;OD;R; IC/, we
define the interval network design cooperative game < N;w > where N D
f1; : : : ; ng is the set of the players and w W 2N ! R is the characteristic function
such that w.;/ D Œ0; 0�, and for each coalition S 	 N, the worth of the coalition is
given by

w.S/ D
X

i2S

Œri; Nri� � c.S/ D
"
X

i2S

ri � c.S/;
X

i2S

Nri � c.S/

#

being c.S/ the cost of the coalition S defined as

c.S/ D min
piWpi2Pi;8i2S

X

j2E

cj

0

@
X

iWi2S;pi2Qj

hi

1

A

Note that the operations in the definition of the interval characteristic function
are well defined, since we can always subtract a real number from an interval.

We can prove the existence of interval core solutions under suitable assumptions
specified in the following proposition.

Proposition 1. Let .N;G; h;OD;R; IC/ be an interval network design situation
where cj; j 2 E are concave cost functions. Under assumption (H), the interval
core of the interval cooperative game < N;w > is not empty.

Proof. The border games < N;w > and < N; Nw >, where w.S/ D P
i2S ri � c.S/

and Nw.S/ D P
i2S Nri �c.S/, are convex games as remarked in Sect. 2. Let us consider

.x1; : : : ; xn/ 2 C .w/ and .Nx1; : : : ; Nxn/ 2 C . Nw/: the interval vector .I1; : : : ; In/ D

.Œx1; Nx1�; : : : ; Œxn; Nxn�/ is in the interval core.
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Nevertheless, the interval core can be nonempty if assumption (H) and concavity
of the cost functions are violated as in the following example.

Example 2. Let us consider the interval network design situation .N;G; h;OD;
R; IC/where N D f1; 2; 3g, V D f1; 2; 3; 4; 5; 6; 7g and E D f1; 2; 3; 4; 5; 6; 7; 8; 9g,
h D .1; 1; 1/, OD D �

.1; 7/; .3; 7/; .5; 7/
�
, cj.x/ D p

x; j 2 E, and R is a vector
of real intervals R D �

Œ2; 3:5�; Œ1:5; 2�; Œ2; 4�
�
. By using the interval algebra, the

characteristic function is

w.f1g/ D Œ0; 1:5�;w.f2g/ D Œ�0:5; 0�;w.f3g/ D Œ0; 2�

w.f1; 2g/ D Œ1:5 � p
2; 7:5 � p

2�;w.f2; 3g/ D Œ1:5 � p
2; 4 � p

2�;

w.f1; 3g/ D Œ2 � p
2; 5:5 � p

2�

w.f1; 2; 3g/ D Œ1:5 � p
2; 5:5 � p

2�

and the interval core of this game is empty. If we consider cj.x/ D x2; j 2 E, the
characteristic function is

w.f1g/ D Œ0; 1:5�;w.f2g/ D Œ�0:5; 0�;w.f3g/ D Œ0; 2�

w.f1; 2g/ D Œ�0:5; 1:5�;w.f2; 3g/ D Œ�0:5; 2�;w.f1; 3g/ D Œ0; 3:5�

w.f1; 2; 3g/ D Œ�0:5; 3:5�

and the interval vector
�
Œ0; 1:5�; Œ�0:5; 0�; Œ0; 2�� is in the interval core C .w/.

3.1 A Computational Procedure for the Interval Network
Design Game

The computational procedure presented in Sect. 2 can be easily modified for an
interval network design cooperative game. By using the definition of order relation
between intervals, we consider two inequalities between real numbers to compare
two intervals. The rest is similar to the procedure used in the crisp case.

Example 3. Let .N;G; h;OD;R; IC/ be an interval network design situation (see
Fig. 2) where N D f1; : : : ; 4g, V D f1; : : : ; 12g and E D f1; : : : ; 14g (G D .V;E/),
hi D 1; i 2 N, and

OD D �
.1; 3/; .8; 10/; .9; 12/; .10; 12/

�
;

R D �
Œ4; 4:5�; Œ4; 4�; Œ3; 3:5�; Œ5; 5�

�
;
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Fig. 2 Scheme for the network described into Example 3 on page 90

cj.x/ D x; j 2 E: In this case, one can compute numerically w.N/ D Œ7; 8�, and we
have the following interval core

C .w/ D fŒ2; 2:5�; Œ2; 2�; Œ0; 0:5�; Œ3; 3�g:

In the case where cj.x/ D p
x; j 2 E, the interval core is the following:

C .w/ D fŒ2; 2:5�; Œ2; 2:57�; Œ1:76; 1:69�; Œ3; 3�g:

Note that the worth of the grand coalition in this case is w.N/ D Œ8:76; 9:76�.

4 Conclusions

In this paper we considered a network design problem for which a cooperative game
has been defined and core solutions have been considered. We presented the game
in the case where uncertainty may affect the data of the network design problem, in
line with previous papers [6, 14]. In particular, we consider the possibility that the
revenue of each player Ri can be evaluated with an error, and we know a lower ri and
an upper bound Nri of the value, Ri D Œri; Nri�. By using the interval algebra, we have
defined the interval network design cooperative game, and interval core solutions
have been considered for it. In analogous way, the interval game can be defined also
in the case we have interval uncertainty on the revenue as well as on the costs, i.e.
C.S/ D Œc.S/; Nc.S/�, assuming that jPi2S Rij � jC.S/j for any coalition S. The case
where this assumption is not satisfied needs different interval algebra tools and will



92 E. D’Amato et al.

be investigated in the future. Moreover, from a computational point of view, as done
for noncooperative game models [9, 10], the multiplicity of the core solutions will
be also studied.
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Optimal Rational Approximation Number Sets:
Application to Nonlinear Dynamics in Particle
Accelerators

Nicholas J. Daras and Michael N. Vrahatis

In Honor of Constantin Carathéodory

Abstract We construct optimal multivariate vectors of rational approximation
numbers with common denominator and whose coordinate decimal expansion string
of digits coincides with the decimal expansion digital string of a given sequence of
mutually irrational numbers as far as possible. We investigate several numerical
examples and we present an application in Nuclear Physics related to the beam
stability problem of particle beams in high-energy hadron colliders.

1 Introduction

A central problem in number theory is how to construct “optimal” rational approx-
imants to irrational numbers [49]. In spite of its simple formulation, the fraction
that is closer to an irrational number than any other rational approximant with a
smaller denominator depends strongly on the denominator of the convergent of
the continued fraction expansion of the irrational number [28], and thus, from a
numerical point of view, one might expect that the “optimal” rational approximants
lack most of their practical usefulness appeal.

There is another independent reason advocating for this expectation. It is perhaps
surprising that the “innocent” generalization of this problem to the simultaneous
rational approximants to several mutually irrational numbers is considered a
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difficult, essentially unsolved problem in number theory. The precise generalization
of rational approximants to a single irrational number is to define a sequence:

n
�.k/ D

�
�
.k/
1 ; �

.k/
2 ; : : : ; �

.k/
n

	
2 Q

n; k D 1; 2; : : :
o

of ordered sets of n rational numbers:

�
.k/
j D

�
p.k/j =r.k/

	
; j D 1; 2; : : : ; n;

each set with common denominator r.k/ 2 Z n f0g, which converges to a given
n-vector of mutually irrational numbers a D .a1; a2; : : : ; an/ 2 A

n. In this
direction, S. Kim and S. Ostlund gave ordered sets of two rational approximants
to pairs of mutually irrational numbers [29]. The ordered sets of two rational
approximants generated by their algorithm are in fact the best ordered pairs of
rational approximants relative to a criterion of weak convergence [29]. However,
their algorithm does not always give “optimal” simultaneous rational approxi-
mation to mutually irrational numbers for any n > 2. For n > 2, the only
well-known efficient approximation method reveals the Jacobi–Perron classical
algorithm (JPA) [7]. Under general enough circumstances, this inductive algorithm
generates sequences of optimal n-vectors containing mutually rational numbers with
common denominator and approximating the given n-vector of irrational numbers.
The approximation method is convergent, but the resultant construction depends
strongly on the associated function defining the algorithm’s transformation. So,
numerators and (common) denominator in Jacobi–Perron rational approximation
n-vectors are completely determined by this function, and no freedom is left.

The principal aim of the paper at hand is to show how rational approximation
theory can be cleared of its strong dependence on “optimal” approximants and
reconnected to original ideas of numerical approximation. To do so, we will
investigate multivariate vectors of rational approximation numbers—the so-called
Optimal Rational Approximation NUmber Sets or simply ORANUS—whose deci-
mal expansion string of digits coincides with the decimal expansion digital string
of mutually irrational numbers as far as possible. More precisely, we will look
at a direct numerical construction of simultaneous rational approximations with
arbitrary common denominator. The advantage of these approximants over Jacobi–
Perron approximants lies in the completely free choice of the common denominator
which may lead to a better approximation.

The paper is organized as follows. Section 2 gives a concise overview of JPA’s
classical applications. Section 3 recalls basic results of rational approximation to
analytic functions, while Sect. 4 develops and analyzes the multivariate rational
approximation method of the paper. In Sects. 5 and 6, we study the efficacy of the
method, and in Sect. 7 we give an application related to the beam stability problem
in circular particle accelerators. Finally, Sect. 8 summarizes and gives concluding
remarks.
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2 The Jacobi–Perron Algorithm

Let ha.k/i � �
a.0/; a.1/; : : : ; a.k/; : : :

�
be a sequence of vectors in R

n. Let also ˚ W
R

n ! R
n be any mapping of Rn into R

n such that

˚
�
a.k/

� D b.k/ D
�

b.k/1 ; b
.k/
2 ; : : : ; b

.k/
n

	
H) a.k/1 ¤ b.k/1 .k D 0; 1; 2; : : :/:

Definition 1.

(i) The sequence ha.k/i is called a Jacobi–Perron algorithm (in short JPA) of the
vector a.0/ 2 R

n, if there exists a T-transformation of Rn into R
n such that:

(a) T
�
a.k/

� D a.kC1/ and

(b) T
�
a.k/

� D
�

a.k/1 � b.k/1

	�1 �
a.k/2 � b.k/2 ; : : : ; a

.k/
n � b.k/n ; 1

	
.

In such a case, we shall call the sequence
˝
˚
�
a.k/

�˛ D hb.k/i a T-function.
(ii) The T-function

˝
˚
�
a.k/

�˛ D hb.k/i is said to be P-bounded, if there is a constant

C independent of k and satisfying Perron’s conditions 0 < 1=b.k/n 6 C and
0 6 b.k/i =b.k/n 6 C (for any i D 1; 2; : : : ; n and k D 0; 1; : : :/.

(iii) Define numbers d.j/i as follows:

d.j/i D

8
ˆ̂<

ˆ̂:

d.j/i D ıi;j ; i; j D 0; 1; : : : ; n

d.nC1Ck/
i D

nX

jD0
b.k/j d.kCj/

i .b.k/0 D 1/; i D 0; 1; : : : ; nI k D 0; 1; : : :

where ıi;j denotes the Krönecker’s delta. Then:

(a) The JPA of the vector a.0/ is said to be convergent, if

a.0/i D lim
k!1 d.k/i =d.k/0 ;

whenever i D 1; 2; : : : ; n.
(b) The JPA of the vector a.0/ is said to be ideally convergent, if the sequencesD

d.k/i � a.0/i d..k/0

E
.i D 1; 2; : : : ; n/ are all null sequences. ut

Notation 1. It is clear that a JPA which is ideally convergent is also convergent if

and only if
ˇ
ˇ̌
d.j/0

ˇ
ˇ̌
> 1, for any j > j0. It follows from

ˇ
ˇ̌
d.k/i � a.0/i d.k/0

ˇ
ˇ̌
< " for j > j0."/

that
ˇ̌
ˇ̌
ˇ
a.0/i � d.k/i

d.k/0

ˇ̌
ˇ̌
ˇ
<

"
ˇ
ˇd.k/0

ˇ
ˇ
< " .i D 1; 2; : : : ; n/: ut
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Example 1. Let us consider the special case:

˚
�
a.k/

� � �
a.k/

� WD
�h

a.k/1

i
;
h
a.k/2

i
; : : : ;

�
a.k/n

�	
; k D 0; 1; : : : ;

where Œx� denotes the integer part of x. For n D 2, the JPA with the T-function
˚
�
a.k/

� D b.k/ � �
a.k/

�
becomes the Euclidean algorithm and yields the expansion

of any real number by simple continued fractions. If the JPA of a vector a.0/ 2 R
n

is associated with the T-function ˚
�
a.k/

� � �
a.k/

�
, then

ˇ
ˇ̌
d.j/0

ˇ
ˇ̌
> 1 for any j > n C 1

so that ideal convergence here always implies convergence. But, as the reader can
easily verify, the JPA of a a.0/ 2 R

n with the associated T-function ˚
�
a.k/

� � �
a.k/

�

is always convergent, since in this case a.k/n D
�

a.k�1/
1 � b.k�1/

1

	�1
.k D 1; 2; : : :/

so that b.k/n > 1, and it is also easily verified that 0 6
�

b.k/i =.b
.k/
n

	
< 1 for any

i D 1; 2; : : : ; n and k D 0; 1; 2: : : : But we can also always achieve that b.0/n > 1;

thus, if
h
a.0/n

i
D �l < 0, then, substituting a.0/

0

n D a.0/n C l C 1, we obtain b.0/
0

n D 1;

the same holds for a.0/i .i D 1; 2; : : : ; n � 1/. Since the JPA of a.0/ 2 R
n with the

T-function ˚
�
a.k/

� � �
a.k/

�
is convergent, we obtain for a rational approximation

of the a.0/i :

a.0/i D lim
k!1

d.k/i

d.k/0
; whenever i D 1; 2; : : : n: ut

With the notation of Definition 1, the main convergence criterion of JPA can be
stated as follows.

Theorem 1 ([7]). The JPA of the vector a.0/ 2 R
n is convergent if its T-function˝

˚
�
a.k/

�˛ D hb.k/i is P-bounded. ut

3 Rational Approximation to Analytic Functions

Let F.z/ D P1
vD0 a.F/v zv be a function analytic in the open disk �.0I %/ D

fz 2 C W jzj < %g, and let �F be the C-linear defined on the space P.C/ of all
analytic polynomials by �F.xv/ WD a.F/v .v D 0; 1; 2; : : :/. By density, �F

extends on the space O.�.0I Œ1=%�// of the functions which are analytic in an open
neighborhood of the closed disk �.0I Œ1=%�/ and holds that F.z/ D �F

�
.1 � xz/�1

�

for any z 2 �.0I %/. If pk.x; z/ is the unique Hermite polynomial with degree at
most k, which interpolates .1 � xz/�1 at the .k C 1/ points 
0, 
1; : : :,
k 2 C, then
the expression �F.pk.x; z// is a function with numerator and denominator degrees
at most k and k C 1, respectively. In fact, by setting VkC1.x/ D �

Qk
iD0.x � 
i/
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.� 2 C n f0g/, it is easily seen that Wk.z/ D �F.ŒVkC1.x/ � VkC1.z/� =Œx � z�/ is a
polynomial in z of degree at most k, and we obtain

�F.pk.x; z// D
n
bWk.z/=bVkC1.z/

o
WD ˚

zkWk.z
�1/=zkC1VkC1.z�1/

�
:

This rational function, denoted by .k=.k C 1//F.z/, is characterized by the property
that F.z/ � .k=.k C 1//F.z/ D O

�
zk�1� (as z ! 0) and is known as a Padé-type

approximant to the Taylor series
P1

vD0 a.F/v zv , whereas every polynomial VkC1.x/ is
called a generating polynomial of this approximation [12–15, 25].

Remark 1. It is possible to construct Padé-type approximants with various degrees
in the numerator and in the denominators [12, 13]. ut

A natural problem connected with the choice of the generating polynomials is the
convergence of such a sequence of rational approximants. It has been completely
solved by M. Eiermann.

Theorem 2 ([18, 24]). If the generating polynomials Vk.x/ satisfy

lim
k!1

�
Vk.x/=Vk

�
z�1�� D 0

uniformly on any compact subset of an open set˝ � C
2 containing

˚
.x; 0/ W x 2 C

�
,

then there holds

lim
k!1 .k=.k C 1//F .z/ D F.z/;

uniformly on every compact subset of

�
z 2 C W lim

k!1
�
Vk
�
��1� =Vk

�
z�1�� D 0; 8 � 2 C n�.0I %/


: ut

A second reasonable question concerns the “optimal” choice of the interpolation
points 
0, 
1; : : :, 
k 2 C (equivalently, of the poles of the rational approximants).
Some attempts to solve this problem have been made by Magnus [31]. A general
answer is given in the following results.

Theorem 3 ([19]). Let z 2 �.0I %/ n f0g and let k be a positive integer. If Qpk.x; z/
is the unique polynomial of degree at most k, which interpolates .1 � xz/�1 at the
.kC1/ roots Q
0, Q
1; : : :, Q
k 2 C of the generating polynomialeVkC1.x/ D eV.z/

kC1.x/ D
xkC1 C 1=z.zk � 1/xk, then

(i) jF.z/ ��F. Qpk.x; z//j 6 jF.z/ ��F.pk.x; z//j, for any Hermite polynomial
pk.x; z/ 2 P.C/ in x and any function F analytic in the open disk �.0I %/.

(ii) If moreover k is even and 0 < " < ı < %, then
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��F.z/ ��F. Qpk.x; z//
��ı; "
2

6
��F.z/ ��F.pk.x; z//

��ı; "
2
;

for any Hermite polynomial pk.x; z/ 2 P.C/ in x and any function F analytic

in the open disk �.0I %/. Here, we have used the notation
��g.z/

��ı; "
2

WD
�R

ı6jzj<" jg.z/j2 dz
	1=2

. ut
In spite of these results, there is no analogous possibility to determine an

“optimal” uniform choice for the interpolation system 
0, 
1; : : :, 
k 2 C, since
a minimum for the uniform norm:

��F.z/ � .k=.k C 1//F .z/
��ı; "1 WD sup

ı6jzj<"

ˇ̌
F.z/ � .k=.k C 1//F .z/

ˇ̌
;

of the error on a compact ring �.0I ı; "/ D fz 2 C W ı 6 jzj 6 "g is obtained at the
limit points 
v D 1 .v D 0; 1; : : : ; k � i/ and 
v D 0 .v D k � i C 1; : : : ; k/ for
any i D 0; 1; : : : ; k C 1. In particular, the only feasible optimal interpolation system
is given by 
0 D 
1 D � � � D 
k D 0 [19].

Remark 2. Another way to indicate “optimal” choice of the interpolation points

0, 
1; : : : ; 
k 2 C is by exactness properties of formal orthogonal polynomials
[1–4, 6, 9, 11, 16, 20–23, 27, 30, 32, 33, 38, 41, 48, 50, 51]. ut

4 ORANUS

In this section, we will show how to construct simultaneous rational approximants
to several mutually irrational numbers.

Let a D .a1; a2; : : : ; an/ 2 A
n be an irrational n-vector. Suppose that the

irrational coordinates aj of a are expressed in the decimal system:

aj D a.0/j : a
.1/
j a.2/j a.3/j : : : a.m/j : : : D a.0/j C

�
a.1/j =10

	
C � � � C

�
a.m/j =10m

	
C � � �

.a.0/j 2 N and 0 6 a.v/j 6 9 whenever v D 1; 2; : : : and j D 1; 2; : : : ; n/. The
associated power series with integral coefficients

fj.z/ D
1X

vD0
a.v/j zv D a.0/j C a.1/j z C a.2/j z2 C � � � C a.m/j zm C � � �

converges uniformly on any compact subset of the open unit disk �.0I 1/.
We will approximate fj.z/ by using rational approximants. To do so, let us

consider the C-linear functional defined on the space of all analytic polynomials by
�fj.x

v/ WD a.v/j whenever v D 0; 1; : : : If VkC1.x/ D �
Qk
vD0.x �
v/ .� 2 C n f0g/

for some suitably chosen complex numbers 
0; 
1; : : : ; 
k, the rational map:
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�
.k=.k C 1//f1 .z/; : : : ; .k=.k C 1//fn .z/

� D
 
bW.1/

k .z/

bVkC1.z/
; : : : ;

bW.n/
k .z/

bVkC1.z/

!

;

is a vector rational approximant to the map
�
f1.z/; f2.z/; : : : ; fn.z/

�
with generating

polynomial VkC1.x/ D �
Qk
vD0.x � 
v/. In particular, for z D 10�1, we obtain an

ordered set of n rational numbers:
�
.k=.k C 1//f1 .10

�1/; : : : ; .k=.k C 1//fn .10
�1/
�

D
 

pt1 WD
bW.1/

k .10
�1/

bVkC1.10�1/
; : : : ; ptn WD

bW.n/
k .10

�1/
bVkC1.10�1/

!

with arbitrary common denominator bVkC1.10�1/ and approximating
a D .a1; a2; : : : ; an/ in the sense that

 

a1 �
bW.1/

k .10
�1/

bVkC1.10�1/
; : : : ; an �

bW.n/
k .10

�1/
bVkC1.10�1/

!

D

0

B
@O

�
10�k�1� ; : : : ;O

�
10�k�1�

„ ƒ‚ …
n�times

1

C
A :

This means that the decimal coordinate expression:
�

pt.0/1 : pt.1/1 : : : pt.m1/1 ; pt.0/2 :pt.1/2 : : : pt.m2/2 ; : : : ; pt.0/n :pt.1/n : : : pt.mn/
n

	

of .pt1; pt2; : : : ; ptn/ .D .pt1;k; pt2;k; : : : ; ptn;k// agrees with the decimal coordinate
expression:

�
a.0/1 : a

.1/
1 : : : a.m/1 : : : ; a.0/2 :a

.1/
2 : : : a.m/2 : : : ; : : : ; a.0/n : a

.1/
n : : : a.m/n : : :

	

of .a1; a2; : : : ; an/ up to the k first decimal digits:
�

pt.0/1 : pt.1/1 : : : pt.k/1 ; pt.0/2 :pt.1/2 : : : pt.k/2 ; : : : ; pt.0/n :pt.1/n : : : pt.k/n

	

D
�

a.0/1 : a
.1/
1 : : : a.k/1 ; a

.0/
2 :a

.1/
2 : : : a.k/2 ; : : : ; a

.0/
n :a

.1/
n : : : a.k/n

	
:

Definition 2. The vector:
 

pt1 WD
bW.1/

k

bVkC1
; : : : ; ptn WD

bW.n/
k

bVkC1
;

!

WD
 
bW.1/

k .10
�1/

bVkC1.10�1/
; : : : ;

bW.n/
k .10

�1/
bVkC1.10�1/

!

is said to be an ORANUS (Optimal Rational Approximation Number Set) to the
irrational vector a. It will be denoted by .ORANUS=k /a. The polynomial:

VkC1.x/ D �

kY

vD0
.x � 
v/ .� 2 C n f0g/

is called the generating polynomial of this approximation. ut
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We are thus in position to formulate a first theoretical method for approximating
irrational vectors:

Framework for Approximating Irrational Vectors by ORANUS

1. Given an irrational n-vector:

a D

0

B
@a.0/1 : a

.1/
1 a.2/1 a.3/1 : : :

„ ƒ‚ …
a1

; a.0/2 : a
.1/
2 a.2/2 a.3/2 : : :

„ ƒ‚ …
a2

; : : : ; a.0/n : a
.1/
n a.2/n a.3/n : : :

„ ƒ‚ …
an

1

C
A

2. Let k 2 N.
3. Let 
0; 
1; : : : ; 
k be arbitrarily chosen complex numbers.
4. Put VkC1.x/ D �

Qk
vD0.x � 
v/ .� 2 C n f0g/.

5. Set bVkC1 WD 10�.kC1/VkC1.10/.
6. For each j D 1; 2; : : : ; n and each v D 0; 1; 2; : : :, define

�j.x
v/ WD a.v/j

and

bW.j/
k WD 10�k�j

�
VkC1.x/ � VkC1.10/

x � 10
�
:

7. The ordered set:

.ORANUS=k /a WD
 
bW.1/

k

bVkC1
;
bW.2/

k

bVkC1
; : : : ;

bW.n/
k

bVkC1

!

is a rational n-vector of n rational numbers:

pt1 WD
bW.1/

k

bVkC1
; pt2 WD

bW.2/
k

bVkC1
; : : : ; ptn WD

bW.n/
k

bVkC1

with common denominator bVkC1. The decimal coordinate expansion:

�
pt.0/1 : pt.1/1 : : : pt.m1/1 ; pt.0/2 : pt.1/2 : : : pt.m2/2 ; : : : ; pt.0/n : pt.1/n : : : pt.mn/

n

	

of .ORANUS=k /a matches the decimal coordinate expansion:

�
a.0/1 :a

.1/
1 a.2/1 a.3/1 : : : ; a.0/2 :a

.1/
2 a.2/2 a.3/2 : : : ; : : : ; a.0/n :a

.1/
n a.2/n a.3/n : : :
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of a up to the k first decimal digits:

pt.0/1 : pt.1/1 : : : pt.k/1 D a.0/1 : a
.1/
1 : : : a.k/1 ;

pt.0/2 : pt.1/2 : : : pt.k/2 D a.0/2 : a
.1/
2 : : : a.k/2 ;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

pt.0/n : pt.1/n : : : pt.k/n D a.0/n : a
.1/
n : : : a.k/n :

8. End.

5 Convergence of ORANUS’ Sequences

A main question on ORANUS’ asymptotic behavior is the “optimal” choice of
the interpolation points 
0; 
1; : : : ; 
k. We will study this question in the next
section. Another problem connected with the choice of the 
v’s is the problem
of convergence of a given vector a D .a1; a2; : : : ; an/ of n irrational numbers.
According to Theorem 2, we have:

Theorem 4. If the generating polynomials Vk.x/ D �
Qk�1
vD0.x �
v/ .� 2 C n f0g/

satisfy

lim
k!1

�
Vk.x/=Vk

�
z�1�� D 0;

uniformly on any compact subset of an open set ˝ � C
2 containing

C � f0g [�.0I 1/ � f10�1g;

then it holds

lim
k!1.ORANUS=k /a D lim

k!1

�
bW.1/

k =
bVkC1; : : : ; bW.n/

k =
bVkC1

	
D .a1; : : : ; an/: ut

We shall now give some examples of ORANUS’ sequences and apply Theorem 4
to these special cases.

Example 2. Let the generating polynomials Vk.x/ D �
Qk�1
vD0.x �
v/ .� 2 Cn f0g/

have the form:

Vk.x/ D .x � ˇ/k .ˇ 2 C; k D 0; 1; 2; : : :/:
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If the complex number ˇ is chosen so that

j10 � ˇj > sup
j�j61

j� � ˇj ;

then

lim
k!1.ORANUS=k /a D lim

k!1

�
bW.1/

k =
bVkC1; : : : ; bW.n/

k =
bVkC1

	
D .a1; : : : ; an/: ut

Example 3. Assume that the generating polynomials are given by:

Vk.x/ D
k�1Y

iD0
.x � ˇi/

�
ˇi 2 C; i D 0; 1; 2; : : : ; k � 1�

i.e., the zeroes of Vk do not depend on k. Further, suppose the limit b D limk!1 ˇi

exists, thus:

(i) If b D 0, then limk!1.ORANUS=k /a D .a1; : : : ; an/.
(ii) If b ¤ 0 and <.b/ < 5, then limk!1.ORANUS=k /a D .a1; : : : ; an/. ut
Example 4. Assume that the generating polynomials have the form:

Vk.x/ D
k�1Y

iD0
.x � bi/

k�1; k D 1; 2; : : : :

Suppose further that the sequence .bi; i D 0; 1; 2; : : :/ has k limit points �0; �1; : : : ;
�k�1 approached cyclically, i.e.:

lim
s!1ˇskCj D �j; j D 0; 1; : : : ; k � 1:

We do not require that the limit points �0; �1; : : : ; �k�1 are distinct. Define

qk.x/ D
k�1Y

iD0
.x � �i/:

For each positive number �, let L� denote the interior of the lemniscates with foci
�0; �1; : : : ; �k�1 and radius �, i.e., the set of all points z satisfying the inequality:

jqk.z/j < �:

If

10 … L�0
 

with �0 D sup
j�j61

jqk.�/j
!

;
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then

lim
k!1.ORANUS=k /a D lim

k!1

�
bW.1/

k =
bVkC1; : : : ; bW.n/

k =
bVkC1

	
D .a1; : : : ; an/: ut

Example 5. We choose the zeros of the Chebyshev polynomials as 
0; 
1; : : : ; 
k,
i.e.:

Vk.x/ D
k�1Y

iD0

�
x � cos



2i C 1

2.k C 1/



��
; k 2 N:

Then

lim
k!1.ORANUS=k /a D lim

k!1

�
bW.1/

k =
bVkC1; : : : ; bW.n/

k =
bVkC1

	
D .a1; : : : ; an/: ut

6 Best Choice of ORANUS

A natural question which now arises is the “optimal” choice of an ORANUS. In the
present section, we discuss this problem. Let

a D .a1; : : : ; an/ D

0

B
@a.0/1 : a

.1/
1 a.2/1 a.3/1 : : :

„ ƒ‚ …
a1

; : : : ; a.0/n : a
.1/
n a.2/n a.3/n : : :

„ ƒ‚ …
an

1

C
A 2 A

n:

As usually, for any j D 1; 2; : : : ; n and v D 0; 1; : : :, we set �j.xv/ WD a.v/j and
bW.j/

k WD 10�k�j.ŒVkC1.x/ � VkC1.10/�=Œx � 10�/, where VkC1.x/ D �
Qk

iD0.x �

i/ .� 2 C n f0g/, the 
0; 
1; : : : ; 
k being arbitrarily chosen complex numbers.

Obviously, the coordinate absolute differences
ˇ̌
ˇaj �

h
bW.n/

k =
bVkC1

iˇ̌
ˇ, with bVkC1 D

10�.kC1/VkC1.10/, are the coordinate absolute errors of the considered approxima-
tion. The above asked question can be rephrased in terms of the coordinate absolute
errors as follows. Given a k 2 N, find an

.EORANUS=k /a D
�
ebW.1/

k =
ebVkC1;

ebW.2/
k =
ebVkC1; : : : ;

ebW.n/
k =
ebVkC1

�
;

minimizing all coordinate absolute errors, in the sense that

ˇ
ˇ̌
ˇaj � ebW.j/

k =
ebVkC1

ˇ
ˇ̌
ˇ
ˇ̌
ˇaj � bW.j/

k =
bVkC1

ˇ̌
ˇ ; j D 1; 2; : : : ; n;
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whenever
�
bW.1/

k =
bVkC1; bW.2/

k =
bVkC1; : : : ; bW.n/

k =
bVkC1

	
;

is an ORANUS to a.
Application of Theorem 3 shows that the generating polynomial:

ebVkC1.x/ D xkC1 C 10
�
10�k � 1� xk; k 2 N

leads to the ORANUS:
�
ebW.1/

k =
ebVkC1;

ebW.2/
k =
ebVkC1; : : : ;

ebW.n/
k =
ebVkC1

�
;

minimizing all coordinate absolute errors. Especially, since

ebVkC1 D 10�.kC1/ ebVkC1.10/ D 10�kC2

and

ebW.j/
k D 10�k�j

 
xkC1 C 10

�
10�k � 1� xk � 10kC1 � 10 �10�k � 1� 10k

x � 10

!

D 10�k�j

 �
xkC1 � 10kC1�C 10

�
10�k � 1� �xk � 10k

�

x � 10

!

;

we infer that

ebW.j/
k

ebVkC1
D 1

100
�j

 �
xkC1 � 10kC1�C 10

�
10�k � 1� �xk � 10k

�

x � 10

!

:

So, we have obtained the following:

Theorem 5. An “optimal” ORANUS to an n-vector of mutually irrational numbers
a D .a1; a2; : : : ; an/ 2 A

n is given by:

.EORANUS=k /a D.�1; : : : ; �n/

 �
xkC1 � 10kC1�C10 �10�k � 1��xk � 10k

�

102 Œx � 10�

!

: ut
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7 Application

A very important application of the abovementioned work can be in the field of the
beam stability problem in circular accelerators like the large hadron collider (LHC)
machine at the European Organization for Nuclear Research (CERN). The LHC is
considered “one of the great engineering achievements of mankind” and the largest
and highest-energy particle accelerator in the world. It remains one of the largest
and most complicate experimental machine ever constructed and is expected to
address some of the still unsolved questions of science. Particularly, the application
at hand concerns the stability of particle beams in high-energy hadron colliders,
where symplectic mappings naturally arise due to the periodically repeated (and
of very brief duration) effects of beam-beam collisions or beam passage through
magnetic focusing elements [5, 10, 17, 39, 43, 44, 46, 47]. The main open problems
in such mappings (particularly in the n-dimensional case, n > 2) concern the long-
term stability of orbits, which can slowly diffuse away from the origin through thin
chaotic layers, leading, e.g., to particle loss in the storage rings of an accelerator
or, in similar cases, stars escaping from a galaxy [47]. A well-studied and widely
applied such mapping is the following symplectic mapping T:

T W

0

BB
@

x0
1

x0
2

x0
3

x0
4

1

CC
A D

0

BB
@

cos!1 � sin!1 0 0

sin!1 cos!1 0 0

0 0 cos!2 � sin!2
0 0 sin!2 cos!2

1

CC
A

0

BB
@

x1
x2 C x21 � x23

x3
x4 � 2x1x3

1

CC
A ; (1)

which describes the (instantaneous) effect experienced by a hadronic particle as it
passes through a magnetic focusing element of the FODO cell type [8, 34–36, 42,
44, 46, 47]. The coordinates x1 and x3 represent the particle’s deflections from the
ideal (circular) orbit, in the horizontal and vertical directions, respectively, and x2, x4
are the associated “momenta,” while !1, !2 are related to the accelerator’s betatron
frequencies (or “tunes”) qx, qy by:

!1 D 2
qx; !2 D 2
qy

and constitute the main parameters that can be varied by an experimentalist [47].
In general, the accurate computation of periodic orbits and the knowledge of

their stability properties play a central role for studying the behavior of various such
mappings. We say that x? D .x?1 ; x

?
2 ; : : : ; x

?
n / is a fixed point of a mapping T of order

p or a periodic orbit of period p, if:

x? D Tp.x?/ � T
�

T
�� � � T

�
T.x?/

� � � � �
	

„ ƒ‚ …
p times

; p D 1; 2; 3; : : : :

For efficient methods of computing periodic orbits, we refer the interested reader to
[35, 37, 44–47].
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In previous papers of ours [46, 47], we have studied the structure and breakdown
of invariant tori of the 4-D symplectic mapping (1) which, as we have already
mentioned, arises in a realistic application related to the beam stability problem in
circular particle accelerators. Our original goal was to examine the structure of tori
by approximating them with sequences of periodic orbits whose rational rotation
numbers converge to the pair of irrational rotation numbers of an invariant torus.
Particularly, the sequence of rational rotation numbers:

�
�
.k/
1 ; �

.k/
2

	
D
�

pk

rk
;

qk

rk

�
; k D 0; 1; 2; : : : ; (2)

have been taken to converge, as k ! 1, to a pair of incommensurate irrationals. In
the problem studied in [46, 47], we have chosen the example:

�
�
.k/
1 ; �

.k/
2

	
�!
n!1 .�1; �2/ D

 p
5 � 1
2

;
p
2 � 1

!

D .0:61803 : : : ; 0:41421 : : :/ :

(3)
The choice of �1, �2 is arbitrary, but it may be useful for comparison purposes with
the 2-D case [26]. Next, by selecting linear frequencies qx D 0:61903, qy D 0:4152,
we approximated the .�1; �2/-invariant torus by periodic orbits characterized by
the rotation numbers of the Jacobi–Perron sequence [7, 40] which are recursively
obtained from the relation:

skC1 D lkC1sk C mkC1sk�1 C sk�2; k D 0; 1; : : : ;

.sk D pk; qk; rk/, with the integers lk, mk determined as follows:

�
s.kC1/
1 ; s.kC1/

2

	
D
 (

1

s.k/2

)

;

(
s.k/1
s.k/2

)!

;
�
lkC1; mkC1

� D
 "

1

s.k/2

#

;

"
s.k/1
s.k/2

#!

;

where Œx� and fxg denote to the integer and fractional part of the number x,
respectively, and

�
s01; s02

� D �
�1; �2

�
; .p0; q0; r0/ D .0; 0; 1/; .p�1; q�1; r�1/ D

.1; 0; 0/; .p�2; q�2; r�2/ D .0; 1; 0/:

In Table 1 we exhibit Jacobi–Perron approximates to the irrationals (3), up to
k D 16, cf. (2). Notice that the convergence is rather slow, as one might expect of
quadratic irrationals, like �1, �2.

Using the approach of the paper at hand, we can construct simultaneous rational
approximants to the given pair of irrational numbers:

�1 D
p
5 � 1
2

Š 0:6180339887499 : : : and �2 D p
2 � 1 Š 0:4142135623731 : : :

In fact, let us define the corresponding two C-linear functionals �1 and �2 as they
are exhibited in Table 2.
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Table 1 Rational approximants of the Jacobi–Perron algorithm of the quadratic
irrationals �1 D �p

5�1�=2 and �2 D p
2�1 and the period p of the corresponding

periodic orbit [47]

k pk qk pk=rk � �1 qk=rk � �2 p D rk

4 1 1 �0:11803399 0:85786438 � 10�1 2

5 3 2 0:13196601 0:85786438 � 10�1 4

6 3 2 �0:18033989 � 10�1 �0:14213562 � 10�1 5

7 91 61 �0:31691239 � 10�2 �0:20514002 � 10�2 148

8 94 63 0:38706388 � 10�3 0:26012184 � 10�3 152

9 755 506 0:31162960 � 10�3 0:20085204 � 10�3 1221

10 846 567 �0:64668078 � 10�4 �0:42634689 � 10�4 1369

11 940 630 �0:19524582 � 10�4 �0:12378941 � 10�4 1521

12 8181 5483 0:63527172 � 10�5 0:41606759 � 10�5 13237

13 9027 6050 �0:30396282 � 10�6 �0:22538829 � 10�6 14606

14 9967 6680 �0:21167340 � 10�5 �0:13716371 � 10�5 16127

15 37142 24893 0:18932888 � 10�6 0:12549818 � 10�6 60097

16 83311 55836 0:13587919 � 10�6 0:87478537 � 10�7 134800

Table 2 The corresponding
two C-linear functionals �1

and �2

�1 �2

�1 .1/ D 0 �2 .1/ D 0

�1 .x/ D 6 �2 .x/ D 4

�1

�
x2
� D 1 �2

�
x2
� D 1

�1

�
x3
� D 8 �2

�
x3
� D 4

�1

�
x4
� D 0 �2

�
x4
� D 2

�1

�
x5
� D 3 �2

�
x5
� D 1

�1

�
x6
� D 3 �2

�
x6
� D 3

�1

�
x7
� D 9 �2

�
x7
� D 5

�1

�
x8
� D 8 �2

�
x8
� D 6

�1

�
x9
� D 8 �2

�
x9
� D 2

�1

�
x10
� D 7 �2

�
x10
� D 3

�1

�
x11
� D 4 �2

�
x11
� D 7

�1

�
x12
� D 9 �2

�
x12
� D 3

�1

�
x13
� D 9 �2

�
x13
� D 1

:
:
:

:
:
:

(a) Let us now choose

k D 3 and 
0 D 
1 D 
2 D 0, 
3 D � i
2
.

The corresponding generating polynomial is

V4 .x/ D x4 C i
x3

2
;
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and therefore

bW
.1/

3 D 10�3�1

�
V4 .x/ � V4 .10/

x � 10
�

D 10�3
�
680C i

121

2

�
;

bW
.2/

3 D 10�3�2

�
V4 .x/ � V4 .10/

x � 10
�

D 10�3
�
440C i

81

2

�
;

bV4 D 10�4 V4 .10/ D 10�4
 

104 C i
103

2

!

:

Thus, if � D .�1; �2/, then

.ORANUS=3/� WD
0

@
bW
.1/

3

bV4

;
bW
.2/

3

bV4

1

A

D .0:6813216957606C i0:313216957606;

0:4409226932688C i0:0184538653367/ :

(b) Similarly, for k D 3, we can choose the zeros of the Tchebycheff polynomial:

T4 .x/ D cos .4 arccos x/

divided by
p

 as interpolation nodes, i.e.:


0D 1p



cos
�


7

�
, 
1D 1p



cos

�
3

7

�
, 
2D 1p



cos

�
5

7

�
and 
3D 1p



cos .
/.

The generating polynomial is

V4 .x/ D x4 C 0:282x3 � 0:318x2 � 0:067x � 0:012

and we have

bW
.1/

3 D 10�3�1

�
V4 .x/ � V4 .10/

x � 10
�

D 633:293 � 10�3;

bW
.2/

3 D 10�3�2

�
V4 .x/ � V4 .10/

x � 10
�

D 424:29 � 10�3;

bV4 D 10�4V4 .10/ D 10314:458�10�4:

Thus, if � D .�1; �2/, then

.ORANUS=3/� WD
0

@
bW
.1/

3

bV4

;
bW
.2/

3

bV4

1

A

D .0:6139866971197; 0:4113546247413/ :
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(c) Continuing, we can choose k D 12 and


0 D 
1 D � � � D 
11 D 0; 
12 D �1:

Then the generating polynomial is

V13 .x/ D x13 C x12

and therefore

bW
.1/

12 D 10�12 �1

�
V13 .x/ � V13 .10/

x � 10
�

D 679837387579 � 10�12;

bW
.2/

12 D 10�12 �2

�
V13 .x/ � V13 .10/

x � 10
�

D 455634918610 � 10�12;

bV13 D 10�13 V13 .10/ D 11000000000000 � 10�13:

Thus, if � D .�1; �2/, then

.ORANUS=12/� WD
0

@
bW
.1/

12

bV13

;
bW
.2/

12

bV13

1

A

D .0:6180339887082; 0:4142130169182/ :

(d) Next, we may choose k D 6 and


0 D 
1 D � � � D 
6 D 0:

This choice implies

V7 .x/ D x7

and therefore

bW
.1/

6 D 10�6 �1

�
V7 .x/ � V7 .10/

x � 10
�

D 618053 � 10�6;

bW
.2/

6 D 10�6 �2

�
V7 .x/ � V7 .10/

x � 10
�

D 414213 � 10�6;

bV7 D 10�7 V7 .10/ D 1:
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Thus, if � D .�1; �2/, then

.ORANUS=6/� WD
0

@
bW
.1/

6

bV7

;
bW
.2/

6

bV7

1

A D .0:618033; 0:414213/ :

e) Finally, let k D 4 and let V5 .x/ be the Legendre polynomial:

V5.x/ D 1

8

�
63x5 � 70x3 C 15x

�
:

Then

bW
.1/

4 D 10�4 �1

�
V5 .x/ � V5 .10/

x � 10
�

D 48133 � 10�4;

bW
.2/

4 D 10�4 �2

�
V5 .x/ � V5 .10/

x � 10
�

D 32259:5 � 10�4;

bV5 D 10�5 V4 .10/ D 778768:75 � 10�5:

Thus, if � D .�1; �2/, then

.ORANUS=4/� WD
0

@
bW
.1/

4

bV5

;
bW
.2/

4

bV5

1

A

D .0:6180750062198; 0:4142372174025/ :

Summarizing, it should also be noted that, for small values of k (this means a
few interpolation points 
0; 
1; : : : ; 
k and a low-degree generating polynomial
VkC1 .x/), we can achieve good rational approximations.

We can group the above numerical results in Table 3, which are directly
comparable with those exhibited in Table 1.

8 Epilogue and Synopsis

In the paper at hand, we investigated multivariate rational approximation numbers
whose decimal expansion string of digits coincides with the decimal expansion
digital string of mutually irrational numbers as far as possible. The main advantage
of these approximants over Jacobi–Perron approximants lies in the completely free
choice of their common denominator which may lead to a better and increasingly
rapid approximation.
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A Characterization Theorem for the Best L1
Piecewise Monotonic Data
Approximation Problem

Ioannis C. Demetriou

In Honor of Constantin Carathéodory

Abstract Let a sequence of n univariate data that include random errors be given.
We consider the problem of calculating a best L1 approximation to the data subject
to the condition that the first differences of the approximated values have at most
k�1 sign changes, where k is a prescribed integer. The choice of the positions of sign
changes by considering all possible combinations of positions can be of magnitude
nk�1, so that it is not practicable to test each one separately. We provide a theorem
that decomposes the problem into the best L1 monotonic approximation (case
k D 1) problems to disjoint sets of adjacent data. The decomposition allows the
development of a dynamic programming procedure that provides a highly efficient
calculation of the solution.

1 Introduction

The purpose of this paper is to present a characterization theorem for the following
data approximation problem. Let f�i W i D 1; 2; : : : ; ng be measurements of the real
function values ff .xi/ W i D 1; 2; : : : ; ng, where the abscissae fxi W i D 1; 2; : : : ; ng
are in strictly ascending order. If the measurements are contaminated by random
errors, then it is likely that the sequence of the first differences f�iC1 � �i W i D
1; 2; : : : ; n � 1g contains far more sign changes than the sequence ff .xiC1/� f .xi/ W
i D 1; 2; : : : ; n � 1g. Therefore, for some integer k that is much smaller than n, we
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seek numbers fyi W i D 1; 2; : : : ; ng that make least the sum of absolute changes to
the measurements so that the sequence fyiC1 � yi W i D 1; 2; : : : ; n � 1g changes
sign at most k�1 times. We regard the original measurements and the approximated
data as n-vectors��� and yyy. The constraints on yyy allow at most k sections of monotonic
components, alternately increasing and decreasing, while without loss of generality,
we suppose that the first monotonic section is increasing.

Hence we denote by Y.k; n/ the set of n-vectors yyy whose components satisfy the
piecewise monotonicity constraints

ytj�1 � ytj�1C1 � � � � � ytj ; j is odd
ytj�1 � ytj�1C1 � � � � � ytj ; j is even


; (1)

where the integers ftj W j D 1; 2; : : : ; k � 1g satisfy the conditions

1 D t0 � t1 � � � � � tk D n; (2)

and the optimization calculation seeks a vector y� in Y.k; n/ that minimizes the
objective function

jjy � �jj1 D
nX

iD1
jyi � �ij: (3)

We call y� a best L1 piecewise monotonic, or optimal, approximation to ��� and note
that it need not be unique. Since ftj W j D 1; 2; : : : ; k � 1g are also variables of
the optimization problem, there exist about nk�1 combinations of these integers in
order to find a combination that gives an optimal approximation, which makes an
exhaustive search prohibitively expensive.

However, the following property is considered by Demetriou [5]. It is that if
the integers ftj W j D 1; 2; : : : ; k � 1g are optimal, then an optimal piecewise
monotonic approximation is made up of separate optimal monotonic sections
between adjacent tj. In Sect. 2 we present a characterization theorem that gives an
equivalent formulation of the problem where the main unknowns are the ftjg. The
important consequence of this theorem is that it allows a dynamic programming
procedure to calculate the required least value of the objective function and obtain a
solution in at most n3 C O.kn2/ computer operations [5]. In Sect. 3 we give a brief
summary.

Two related calculations are studied by Demetriou and Powell [7] and Cullinan
and Powell [3], which instead of (3) minimize the sum of squares jjy � �jj22 DPn

iD1.yi��i/
2 and the supremum norm jjy��jj1 D max1�i�n jyi��ij, respectively,

subject to the same constraints on yyy.

2 The Theorem

The reformulation of the problem of Sect. 1 makes use of the highly useful property
of an optimal approximation to be stated. Indeed, if the n-vector y is optimal and
if ftj W j D 1; 2; : : : ; k � 1g are the associated integer variables, then y consists
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of separate optimal monotonic increasing and monotonic decreasing sections of
components between adjacent optimal integer variables that can be calculated
independently of each other. This result is given in the next lemma.

Lemma 1. Let the integer variables ftj W j D 1; 2; : : : ; k � 1g be associated with a
best L1 approximation y from Y.k; n/ to�. Then the components fyi W i D tj�1; tj�1C
1; : : : ; tjg have the values that solve the problem

˛.tj�1; tj/ D min
ytj�1�ytj�1C1�����ytj

tjX

iDtj�1

jyi � �ij; (4)

if j is odd, and solve the problem

ˇ.tj�1; tj/ D min
ytj�1�ytj�1C1�����ytj

tjX

iDtj�1

jyi � �ij; (5)

if j is even. Further, the interpolation equations

ytj D �tj ; j D 1; 2; : : : ; k � 1 (6)

are satisfied.

Proof. For a proof see Lemma 2 of Demetriou [5]. ut
A solution to problem (4) always exists, but it need not be unique. A solution

is called a best L1 monotonic increasing approximation to f�i W i D tj�1; tj�1 C
1; : : : ; tjg. The calculation of this approximation can be solved as a linear program-
ming problem (for a general reference, see Barrodale and Roberts [1]), but there are
special algorithms that are more efficient than general algorithms (see Cullinan and
Powell [3], Menéndez and Salvador [8], and Stout [10]).

The following characterization theorem gives necessary and sufficient conditions
for the vector y� to be a best L1 piecewise monotonic approximation from Y.k; n/
to �. It provides a decomposition of the problem of Sect. 1 into at most best L1
monotonic approximation problems to disjoint subsets of adjacent data.

Theorem 1. Let y� be an n-vector that minimizes the objective function (3) subject
only to the constraints (1), where ftj W j D 1; 2; : : : ; k � 1g are any integers that
satisfy the conditions (2). The vector y� minimizes (3) subject to y 2 Y.k; n/ if and
only if the equation

kX

jD1; j odd

˛.tj�1; tj/C
kX

jD1; j even

ˇ.tj�1; tj/

D min
1Ds0�s1�����skDn

8
<

:

kX

jD1; j odd

˛.sj�1; sj/C
kX

jD1; j even

ˇ.sj�1; sj/

9
=

;
(7)

holds.
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Proof. We prove first that if y� is optimal, namely, if y� minimizes (3) subject to
y 2 Y.k; n/, then Eq. (7) is obtained. In the statement of the theorem, we let ftj W
j D 1; 2; : : : ; k�1g be the values of the integer variables associated with y�. In view

of Lemma 1, the sequence fy�
i W i D tj�1; tj�1 C 1; : : : ; tjg is a best L1 monotonic

increasing approximation to the data f�i W i D tj�1; tj�1 C 1; : : : ; tjg if j is odd
and a best L1 monotonic decreasing approximation if j is even, because otherwise
we can reduce jjy� � �jj1 by replacing fy�

i W i D tj�1; tj�1 C 1; : : : ; tjg by a best
L1 monotonic approximation to the data f�i W i D tj�1; tj�1 C 1; : : : ; tjg, which
preserves y� 2 Y.k; n/. Thus we obtain the relations

tjX

iDtj�1

jy�
i � �ij D

�
˛.tj�1; tj/; j odd
ˇ.tj�1; tj/; j even:

(8)

Furthermore, in view of (6), we have the equations y�
tj D �tj ; j D 1; 2; : : : ; k � 1.

Hence and from (8), the left-hand side of the expression (7) has the value jjy� ��jj1,
or pertaining to notation

kX

jD1; j odd

˛.tj�1; tj/C
kX

jD1; j even

ˇ.tj�1; tj/ D jjy� � �jj1: (9)

Consequently the value jjy� � �jj1 implies the bound on the right-hand side of (7),

min
1Ds0�s1�����skDn

8
<

:

kX

jD1; j odd

˛.sj�1; sj/C
kX

jD1; j even

ˇ.sj�1; sj/

9
=

;
� jjy� � �jj1: (10)

It follows that Eq. (7) is satisfied, provided that we can establish the inequality

jjz� � �jj1 � min
1Ds0�s1�����skDn

8
<

:

kX

jD1; j odd

˛.sj�1; sj/C
kX

jD1; j even

ˇ.sj�1; sj/

9
=

;
; (11)

where z� is any solution of the calculation.
Let fsj W j D 0; 1; : : : ; kg be any integers that satisfy the conditions 1 D s0 �

s1 � � � � � sk D n, and let y� be the n-vector that gives the terms of the expression

jjy� ��jj1 D ˛.s0; s1/C
kX

jD2; j odd

˛.sj�1 C 1; sj/C
kX

jD2; j even

ˇ.sj�1 C 1; sj/; (12)
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where we define ˛.i; j/ and ˇ.i; j/ to be zero if j < i. Hence, we obtain the inequality

˛.s0; s1/C
kX

jD2; j odd

˛.sj�1 C 1; sj/C
kX

jD2; j even

ˇ.sj�1 C 1; sj/

�
kX

jD1; j odd

˛.sj�1; sj/C
kX

jD1; j even

ˇ.sj�1; sj/: (13)

As y� is in Y.k; n/ and z� is optimal, we have jjz� � �jj1 � jjy� � �jj1. The
last inequality, (12) and (13), imply inequality (11). We deduce from (9)–(11) that
Eq. (7) is true.

In order to complete the proof of the theorem, we let the integers ftj W j D
0; 1; : : : ; kg satisfy the conditions (2) and Eq. (7). It suffices to construct a vector that
minimizes (3) subject only to the constraints (1), which is an optimal approximation
to �. In other words, if Oy is this vector, then we prove that Oy minimizes (3) subject
to y 2 Y.k; n/.

As a consequence of Lemma 1, if the values ftj W j D 1; 2; : : : ; k�1g are optimal,
then the least value of the objective function (3) in Y.k; n/ is achieved, and it is the
expression

kX

jD1; j odd

˛.tj�1; tj/C
kX

jD1; j even

ˇ.tj�1; tj/: (14)

We define the n-vector  whose components occur in the definition of
˛.tj�1; tj � 1/ when j is odd in Œ1; k� and in the definition of ˇ.tj�1; tj � 1/ when j
is even in Œ1; k�. It follows that either  tj�1 �  tj or  tj�1 �  tj when j is odd and
similarly when j is even, which implies that  satisfies the piecewise monotonicity
constraints. Since the expression of the left-hand side of (7) is an upper bound on
the sum

k�1X

jD1; j odd

˛.tj�1; tj � 1/C
k�1X

jD1; j even

ˇ.tj�1; tj � 1/C ı.tk�1; tk/; (15)

where ı stands for ˛ if k is odd and for ˇ if k is even, we obtain the inequality

kX

jD1; j odd

˛.tj�1; tj � 1/C
kX

jD1; j even

ˇ.tj�1; tj � 1/C ı.tk�1; tk/

�
kX

jD1; j odd

˛.tj�1; tj/C
kX

jD1; j even

ˇ.tj�1; tj/: (16)
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Since the expression of the left-hand side of (16) is a value of the objective function
that is achieved by the piecewise monotonic vector  , while the expression of the
right-hand side has the value jjz� ��jj1, where z� is any solution of the calculation,
inequality (16) should hold as an equality. Therefore, we have obtained the relations

˛.tj�1; tj � 1/ D ˛.tj�1; tj/; j odd
ˇ.tj�1; tj � 1/ D ˇ.tj�1; tj/; j even


; (17)

where we let tk � 1 D tk.
Taking account of (17), we are going to construct an n-vector that satisfies the

constraints (1) and Eq. (6). Remembering the monotonicity of the components of  
on the interval Œtj�1; tj�1�, when j 2 Œ1; k�1� is odd, we let q D tj�1, and we let p be
an integer such that tj�1 � p � q < tj and  p�1 <  p D  pC1 D � � � D  q D ��,
except that we ignore the inequality  p�1 <  p if p D tj�1, where �� is a real
number that minimizes the expression

Pq
iDp j� � �ij. Then, �� is either a single

value or it belongs to a closed interval of the real line, say it is I.p; q/. Note that ��
is the median of f�p; �pC1; : : : ; �qg. In the following consideration, we assume that
�� 2 I.p; q/, because the case when �� is a single value is treated similarly. Further,
we let f .˛/

i W i D tj�1; tj�1 C 1; : : : ; tjg be components that occur in ˛.tj�1; tj/. In
order to calculate ˛.tj�1; tj/ from ˛.tj�1; tj�1/, if tj > 1, we find that inf I.p; q/ > �tj
would give ˛.tj�1; tj/ > ˛.tj�1; tj � 1/, which contradicts the first line of (17). Thus
inf I.p; q/ � �tj and we proceed by considering the following two cases. In the case
of inf I.p; q/ � �tj � sup I.p; q/, it is straightforward to prove that �tj minimizes

the sum
PqC1

iDp j� � �ij, which implies  .˛/
p D  

.˛/
pC1 D � � � D  

.˛/
q D  

.˛/
qC1 D �tj

and
PqC1

iDp j�tj � �ij D Pq
iDp j�� � �ij. Since the components f .˛/

i D  i W i D
tj�1; tj�1 C 1; : : : ; p � 1g are allowed by conditions ytj�1 � ytj�1C1 � � � � � yp�1
and the inequalities  p�1 < inf I.p; q/ � �tj hold, it follows from the definitions of

f i W i D tj�1; tj�1 C 1; : : : ; tj � 1g and f .˛/
i W i D tj�1; tj�1 C 1; : : : ; tjg that the

components

 
.˛/
i D

�
 i; i D tj�1; tj�1 C 1; : : : ; p � 1
�tj ; i D p; p C 1; : : : ; tj

(18)

can occur in ˛.tj�1; tj/ while the first line of (17) is preserved. In the case of

sup I.p; q/ < �tj , we let .˛/
tj D �tj , which implies tj�1 <  

.˛/
tj and j .˛/

tj ��tj j D 0.

Hence and since the components f .˛/
i D  i W i D tj�1; tj�1 C 1; : : : ; tj � 1g are

allowed by conditions ytj�1 � ytj�1C1 � � � � � ytj�1, it follows that the components

 
.˛/
i D

�
 i; i D tj�1; tj�1 C 1; : : : ; tj � 1
�tj ; i D tj

(19)
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must occur in ˛.tj�1; tj/ while the first line of (17) is preserved. Both the cases, (18)
and (19), give the relations

 
.˛/
tj�1 �  

.˛/
tj D �tj ; j odd (20)

and similarly we deduce from the second line of the Eq. (17) that

 
.ˇ/
tj�1 �  

.ˇ/
tj D �tj ; j even; (21)

where we let f .ˇ/
i W i D tj�1; tj�1 C 1; : : : ; tjg be components that occur in

ˇ.tj�1; tj/, j even.
Next, we continue the proof by establishing the relations

�tj D  
.ˇ/
tj �  

.ˇ/
tjC1; j odd

�tj D  
.˛/
tj �  

.˛/
tjC1; j even

)

: (22)

To this end, we will first show that ˇ.tj; tjC1/ D ˇ.tj C 1; tjC1/. If we remove the
condition ytj � ytjC1 from the calculation of ˇ.tj; tjC1/, where j is odd, the minimum

value of
PtjC1

iDtj
jyi � �ij subject to ytjC1 � ytjC2 � � � � � ytjC1

is not greater than
before, and it is equal to ˇ.tj C 1; tjC1/. Hence we have the inequality ˇ.tj; tjC1/ �
ˇ.tj C 1; tjC1/. Strict inequality would imply �tj <  

.ˇ/
tj , where without loss of

generality, we assume that  .ˇ/
tj has the smallest value if an option exists. Let q be

the greatest integer such that tj < q � tjC1 and  .ˇ/
tj D  

.ˇ/
tjC1 D � � � D  

.ˇ/
q ,  .ˇ/

tj

being the median of f�i W i D tj; tj C 1; : : : ; qg. In view of the median properties,

either there exists an integer � such that tj < � � q and  .ˇ/
� < �� or  .ˇ/

tj D
�tjC1 D �tjC2 D � � � D �q. Now, if  .ˇ/

� < �� , we can increase  .ˇ/
� to �� , which

reduces the value of jjz� � �jj1 and yet, remembering the monotonicity of f .˛/
i W

i D tj�1; tj�1 C 1; : : : ; tjg, the relations (20) and the inequality �tj <  
.ˇ/
tj , allows the

inequalities

 
.˛/
tj�1 � � � � �  

.˛/
tj D �tj <  

.ˇ/
tj D � � � D  

.ˇ/
��1 <  

.ˇ/
� : (23)

Hence by changing tj to the integer �, we can restore the conditions (1) and preserve
the relations (20). Since these remarks contradict the assumption ˇ.tj; tjC1/ > ˇ.tjC
1; tjC1/, the equation ˇ.tj; tjC1/ D ˇ.tj C 1; tjC1/ follows. A similar contradiction is

derived if  .ˇ/
tj D �tjC1 D �tjC2 D � � � D �q upon replacing tj by tj C 1. Hence and

by an argument similar to that given in the paragraph ensuing (17), we obtain the
first line of (22), and similarly we can establish the second line of (22). We deduce
from (20)–(22) that the equations

 
.˛/
tj D �tj D  

.ˇ/
tj ; j 2 Œ1; k � 1� (24)
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hold. Therefore by letting the components of the vector  be

 tj D �tj ; j D 1; 2; : : : ; k � 1 (25)

and

 i D
(
 
.˛/
i ; i D tj�1 C 1; tj�1 C 2; : : : ; tj � 1; j odd
 
.ˇ/
i ; i D tj�1 C 1; tj�1 C 2; : : : ; tj � 1; j even;

(26)

in view of (24), (25), and the monotonicity properties of  .˛/ and  .ˇ/ on the
intervals Œtj�1; tj�, we have the bounds

 tj�1 �  tj �  tjC1; j odd
 tj�1 �  tj �  tjC1; j even


; (27)

for all integers j in Œ1; k � 1�.
Thus, we have constructed a vector  that satisfies the constraints (1) and

provides the least value of jjy � �jj1 in the set Y.k; n/. This construction allows
also the interpolation conditions (25). However, since ftj W j D 1; 2; : : : ; k � 1g
are known,  is a solution of the linear programming problem that minimizes (3)
subject only to (1). Hence, if Oy is any solution of the linear programming problem
that satisfies the same constraints as  , then

jj Oy � �jj1 D jj � �jj1;

which shows that Oy is optimal as required. The proof of the theorem is complete. ut
Theorem 1 is important in both theory and practice. It reduces the combinatorial

optimization problem of Sect. 1 to the equivalent formulation (7) that can be solved
by dynamic programming (for a general reference on dynamic programming, see
Bellman [2]). The procedure of Demetriou and Powell [7] is quite efficient for this
calculation, and subsequently we give a brief description. For any integers m 2 Œ1; k�
and t 2 Œ1; n�, we let Y.m; t/ be the set of t-vectors z with m monotonic sections, we
introduce the notation

�.m; t/ D min
z2Y.m;t/

tX

iD1
jzi � �ij

and we consider the expression

�.m; t/ D min
1Ds0�s1�����skDt

8
<

:

kX

jD1; j odd

˛.sj�1; sj/C
kX

jD1; j even

ˇ.sj�1; sj/

9
=

;
: (28)
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Theorem 1 implies that if ftjg are optimal and k is odd, then the integer tk�1 satisfies
the equation

�.k � 1; tk�1/C ˛.tk�1; n/ D min
1�s�n

Œ�.k � 1; s/C ˛.s; n/� ; k odd: (29)

We see that the least value of the right-hand side of (29) can be found in O.n/
computer operations provided that the sequences f�.k � 1; s/ W s D 1; 2; : : : ; ng
and f˛.s; n/ W s D 1; 2; : : : ; ng are available. Therefore in order to calculate �.k; n/,
which is the least value of (3), we begin with the values �.1; t/ D ˛.1; t/, for t D
1; 2; : : : ; n and proceed by applying the formulae

�.m; t/ D
8
<

:

min
1�s�t

Œ�.m � 1; s/C ˛.s; t/� ; m odd

min
1�s�t

Œ�.m � 1; s/C ˇ.s; t/� ; m even,
(30)

and storing �.m; t/, which is the value of s that minimizes the right-hand term of
expression (30), for t D 1; 2; : : : ; n, for each m D 2; 3; : : : ; k. Then �.k; n/ can be
found in O.kn2/ computer operations in addition to the numerical work required
to calculate the numbers ˛.s; t/ and ˇ.s; t/. At the end of the calculation, m D k
occurs, and the value �.k; n/ is the integer tk�1 that is required in Eq. (29) if k is odd
and analogously if k is even. Hence, we set t0 D 1 and tk D n, and we obtain the
sequence of optimal values ftj W j D 1; 2; : : : ; k � 1g by the backward formula

tj�1 D �.j; tj/, for j D k; k � 1; : : : ; 2: (31)

Finally, the components of y� are obtained by independent monotonic approxima-
tion calculations between adjacent ftjg.

Further considerations on improved versions of this calculation, including the
development of a relevant Fortran software package, are given by the author in [5, 6].
This software is freely available through the CPC Program Library (http://www.cpc.
cs.qub.ac.uk/).

3 Summary

We considered the data smoothing problem that obtains a best L1 approximation
to a set of noisy data subject to the condition that the first differences of the
approximated values have at most k � 1 sign changes, where k is a prescribed
integer. Since there are about O.nk�1/ combinations of positions of sign changes, an
exhaustive search for finding the solution is not practicable. Based on the important
property that the components of the required approximation consist of sections
of separate optimal monotonic approximations, we provided a characterization
theorem that reduces the problem to solving a sequence of separate best L1

http://www.cpc.cs.qub.ac.uk/
http://www.cpc.cs.qub.ac.uk/
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monotonic approximation problems to subranges of data, where each monotonic
problem can be solved as a special linear program. This reformulation allows a
dynamic programming procedure to search for optimal values of the sign change
positions, which provides a highly efficient calculation of the solution.

Besides the benefits that we derive from the use of the L1-norm (see, e.g., Rice
[9]) in our approximation calculation, an advantage of the piecewise monotonicity
constraints to data approximation is that it gives properties that occur in a wide range
of underlying functions. Hence many useful applications in science, engineering,
and social sciences may be developed. In addition, the author has written a software
package that it would be very useful if it tried on real problems.

Acknowledgements The theorem was motivated by an analogous theorem on the least squares
case that had been suggested by my supervisor, the late Professor M.J.D. Powell of Cambridge
University. I am most grateful to him for his invaluable advice and guidance [4].
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Supermeasures Associated to Some Classical
Inequalities

Silvestru Sever Dragomir

In Honor of Constantin Carathéodory

Abstract In this paper we give some examples of supermeasures that are naturally
associated to classical inequalities such as Jensen’s inequality, Hölder’s inequality,
Minkowski’s inequality, Cauchy–Bunyakovsky–Schwarz’s inequality, Čebyšev’s
inequality, Hermite–Hadamard’s inequalities and the definition of convexity prop-
erty. As a consequence of monotonic nondecreasing property of these supermea-
sures, some refinements of the above inequalities are also obtained.

1 Introduction

Let˝ be a nonempty set. A subset A of the power set 2˝ is called an algebra if the
following conditions are satisfied:

(1) ˝ is in A ;
(2) A is closed under complementation, namely, if A 2 A , then ˝ n A 2 A ;
(3) A is closed under union, i.e. if A;B 2 A then, A [ B 2 A .

By applying de Morgan’s laws, it follows that A is closed under intersection,
namely, if A;B 2 A , then A \ B 2 A . It also follows that the empty set ; belongs
to A . Elements of the algebra are called measurable sets. An ordered pair .˝;A /,
where ˝ is a set and A is a algebra over ˝, is called a measurable space.
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The function � W A ! Œ0;1/ is called a measure Œsubmeasure .supermeasure/�
on A if:

(a) For all A 2 A , we have � .A/ � 0 (nonnegativity);
(aa) We have � .;/ D 0 (null empty set);

(aaa) For any A;B 2 A with A \ B D ;, we have

� .A [ B/ D Œ� .�/� � .A/C � .B/ ; (1)

i.e. � is additive [subadditive (superadditive)] on A .

For � as above, we denote by

A� WD fA 2 A j� .A/ > 0g :
If A� D A n f;g, then we say that � is positive on A .

Let A;B 2 A with A � B; then B D A[.B n A/, A\.B n A/ D ; and BnA 2 A .
If � is additive (superadditive), then

� .B/ D � .A [ .B n A// D .�/ � .A/C � .B n A/ � � .A/

showing that � is monotonic nondecreasing on A .
In this paper we give some examples of supermeasures that are naturally

associated to classical inequalities such as Jensen’s inequality, Hölder’s inequality,
Minkowski’s inequality, Cauchy–Bunyakovsky–Schwarz’s inequality, Čebyšev’s
inequality, Hermite–Hadamard’s inequalities and the definition of convexity prop-
erty. As a consequence of monotonic nondecreasing property of these supermea-
sures, some refinements of the above inequalities are also obtained.

2 The Case of Jensen’s Inequality

Let .˝;A ; �/ be a measurable space consisting of a set ˝; a � -algebra A of parts
of˝ and a countably additive and positive measure � on A with values in R[f1g :
For a �-measurable function w W ˝ ! R, with w .x/ � 0 for �-a.e. (almost every)
x 2 ˝; consider the Lebesgue space

Lw .˝; �/ WD f f W ˝ ! R; f is �-measurable and
Z

˝

w .x/ j f .x/j d� .x/ < 1g:

For simplicity of notation, we write everywhere in the sequel
R
˝

wd� instead ofR
˝

w .x/ d� .x/ :
Let also

A� WD fA 2 A j� .A/ > 0g :
For a �-measurable function w W ˝ ! R, with w .x/ > 0 for � -a.e. x 2 ˝, we

consider the functional J .�;wI˚; f / W A� ! Œ0;1/ defined by [8]
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J .A;wI˚; f / WD
Z

A
w .˚ ı f / d� � ˚

�R
A wfd�
R

A wd�

�Z

A
wd� � 0; (2)

where ˚ W Œm;M� ! R is a continuous convex function on the interval of real
numbers Œm;M� ; f W ˝ ! Œm;M� is �-measurable and such that f ; ˚ ı f 2
Lw .˝; �/ :

Theorem 1. Let ˚ W Œm;M� ! R be a continuous convex function on the interval
of real numbers Œm;M� ; f W ˝ ! Œm;M� is �-measurable and such that f ; ˚ ı f 2
Lw .˝; �/ : Then the functional J .�;wI˚; f / defined by (3) is a supermeasure on A� .

Proof. Let A;B 2 A� with A \ B D ;: Observe that

J .A [ B;wI˚; f / (3)

D
Z

A
w .˚ ı f / d� C

Z

B
w .˚ ı f / d�

� ˚
�R

A wfd� C R
B wfd�

R
A wd� C R

B wd�

��Z

A
wd� C

Z

B
wd�

�

D
Z

A
w .˚ ı f / d� C

Z

B
w .˚ ı f / d�

� ˚
0

@

R
A wd�

R
A wfd�R
A wd�

C R
B wd�

R
B wfd�R
B wd�R

A wd� C R
B wd�

1

A
�Z

A
wd� C

Z

B
wd�

�

DW L:

By convexity of the function ˚ W Œm;M� ! R and since
R

A wfd�
R

A wd�
;

R
B wfd�
R

B wd�
2 Œm;M�

we have

˚

0

@

R
A wd�

R
A wfd�R
A wd�

C R
B wd�

R
B wfd�R
B wd�R

A wd� C R
B wd�

1

A

�
R

A wd�˚
�R

A wfd�R
A wd�

	
C R

B wd�˚
�R

B wfd�R
B wd�

	

R
A wd� C R

B wd�
:

Therefore by (3) we have

L �
Z

A
w .˚ ı f / d� C

Z

B
w .˚ ı f / d� (4)

�
R

A wd�˚
�R

A wfd�R
A wd�

	
C R

B wd�˚
�R

B wfd�R
B wd�

	

R
A wd� C R

B wd�

�Z

A
wd� C

Z

B
wd�

�
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D
Z

A
w .˚ ı f / d� �

Z

A
wd�˚

�R
A wfd�
R

A wd�

�

C
Z

B
w .˚ ı f / d� �

Z

B
wd�˚

�R
B wfd�
R

B wd�

�

D J .A;wI˚; f /C J .B;wI˚; f / :

Making use of (3) and (4), we conclude that

J .A [ B;wI˚; f / � J .A;wI˚; f /C J .B;wI˚; f /

for any A;B 2 A� with A \ B D ;; which shows that J .�;wI˚; f / is a supermeasure
on A .

For some Jensen’s inequality-related functionals and their properties, see [1, 2,
4, 6, 7, 10, 11, 18, 19, 21].

Let ˚ W Œm;M� ! R be a continuous convex function on the interval of real
numbers Œm;M� ; x D .xi/i2N a sequence of real numbers with xi 2 Œm;M� ; i 2 N

and w D .wi/i2N a sequence of positive real numbers.
Let ˝ D N and Pf .N/ be the algebra of finite parts of natural numbers N.

By the monotonicity property of supermeasure on Pf .N/, we have from the above
results that the sequence

Jn .wI˚; x/ WD
 

nX

iD0
wi

!�1 
Pn
iD0 wi˚ .xi/Pn

iD0 wi
� ˚

�Pn
iD0 wixiPn
iD0 wi

��
;

is monotonic nondecreasing, namely,

 
nC1X

iD0
wi

!�1 "PnC1
iD0 wi˚ .xi/
PnC1

iD0 wi

� ˚
 PnC1

iD0 wixi
PnC1

iD0 wi

!#

(5)

�
 

nX

iD0
wi

!�1 
Pn
iD0 wi˚ .xi/Pn

iD0 wi
� ˚

�Pn
iD0 wixiPn
iD0 wi

��

for any n 2 N and

Jn .wI˚; x/ (6)

� max
0�i¤j�n

(
�
wi C wj

��1
"

wi˚ .xi/C wj˚
�
xj
�

wi C wj
� ˚

�
wixi C wjxj

wi C wj

�#)

:
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We also have for n � 1 that

 
2nX

iD0
wi

!�1 "P2n
iD0 wi˚ .xi/
P2n

iD0 wi

� ˚
 P2n

iD0 wixi
P2n

iD0 wi

!#

(7)

�
 

nX

iD0
w2i

!�1 
Pn
iD0 w2i˚ .x2i/Pn

iD0 w2i
� ˚

�Pn
iD0 w2ix2iPn

iD0 w2i

��

C
 

n�1X

iD0
w2iC1

!�1 "Pn�1
iD0 w2iC1˚ .x2iC1/
Pn�1

iD0 w2iC1
� ˚

 Pn�1
iD0 w2iC1x2iC1
Pn�1

iD0 w2iC1

!#

and

 
2nC1X

iD0
wi

!�1 "P2nC1
iD0 wi˚ .xi/
P2n

iD0 wi

� ˚
 P2nC1

iD0 wixi
P2n

iD0 wi

!#

(8)

�
 

nX

iD0
w2i

!�1 
Pn
iD0 w2i˚ .x2i/Pn

iD0 w2i
� ˚

�Pn
iD0 w2ix2iPn

iD0 w2i

��

C
 

nX

iD0
w2iC1

!�1 
Pn
iD0 w2iC1˚ .x2iC1/Pn

iD0 w2iC1
� ˚

�Pn
iD0 w2iC1x2iC1Pn

iD0 w2iC1

��
:

3 The Case of Hölder’s Inequality

Let .˝;A ; �/ be a measurable space consisting of a set ˝; a � -algebra A of parts
of˝ and a countably additive and positive measure � on A with values in R[f1g :
For a �-measurable function w W ˝ ! C, with w .x/ � 0 for �-a.e. (almost every)
x 2 ˝; consider the ˛-Lebesgue space

L˛w .˝; �/ WD f f W ˝ ! C; f is �-measurable and
Z

˝

w j f j˛ d� < 1g;

for ˛ � 1:

The following inequality is well known in the literature as Hölder’s inequality

ˇ̌
ˇ̌
Z

˝

wfgd�

ˇ̌
ˇ̌ �

�Z

˝

w j f j˛ d�

�1=˛ �Z

˝

w jgjˇ d�

�1=ˇ
(9)

where ˛; ˇ > 1 with 1
˛

C 1
ˇ

D 1 and f 2 L˛w .˝; �/ ; g 2 Lˇw .˝; �/ :
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We consider the functional H˛;ˇ .�;wI f ; g/ W A� ! Œ0;1/ defined by

H˛;ˇ .A;wI f ; g/ D
�Z

A
w j f j˛ d�

�1=˛ �Z

A
w jgjˇ d�

�1=ˇ
�
ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌ : (10)

We have:

Theorem 2. Let f 2 L˛w .˝; �/ ; g 2 Lˇw .˝; �/ where ˛; ˇ > 1 with 1
˛

C 1
ˇ

D
1: Then the functional H˛;ˇ .�;wI f ; g/ W A� ! Œ0;1/ defined by (10) is a
supermeasure.

Proof. Let A;B 2 A� with A \ B D ;: Observe that

H˛;ˇ .A [ B;wI f ; g/ (11)

D
�Z

A[B
w j f j˛ d�

�1=˛ �Z

A[B
w jgjˇ d�

�1=ˇ
�
ˇ
ˇ̌
ˇ

Z

A[B
wfgd�

ˇ
ˇ̌
ˇ

D
�Z

A
w j f j˛ d� C

Z

B
w j f j˛ d�

�1=˛ �Z

A
w jgjˇ d� C

Z

B
w jgjˇ d�

�1=ˇ

�
ˇ
ˇ̌
ˇ

Z

A
wfgd� C

Z

B
wfgd�

ˇ
ˇ̌
ˇ

D
 "�Z

A
w j f j˛ d�

�1=˛#˛
C
"�Z

B
w j f j˛ d�

�1=˛#˛!1=˛

�
0

@
"�Z

A
w jgjˇ d�

�1=ˇ#ˇ
C
"�Z

B
w jgjˇ d�

�1=ˇ#ˇ
1

A

1=ˇ

�
ˇ̌
ˇ̌
Z

A
wfgd� C

Z

B
wfgd�

ˇ̌
ˇ̌

WD U:

By the elementary inequality

.a˛ C b˛/1=˛
�
cˇ C dˇ

�1=ˇ � ac C bd;

where a; b; c; d � 0 and ˛; ˇ > 1 with 1
˛

C 1
ˇ

D 1 and the triangle inequality for
modulus, we have

U �
�Z

A
w j f j˛ d�

�1=˛ �Z

A
w j f jˇ d�

�1=ˇ
(12)
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C
�Z

B
w j f j˛ d�

�1=˛ �Z

B
w j f jˇ d�

�1=ˇ
�
ˇ̌
ˇ
ˇ

Z

A
wfgd�

ˇ̌
ˇ
ˇ �

ˇ̌
ˇ
ˇ

Z

B
wfgd�

ˇ̌
ˇ
ˇ

D H˛;ˇ .A;wI f ; g/C H˛;ˇ .B;wI f ; g/ :

By (11) and (12), we get the desired result.

For some Hölder’s inequality-related functionals and their properties, see
[3, 5, 20].

Let ˝ D N and Pf .N/ be the algebra of finite parts of natural numbers N.
By the monotonicity property of supermeasure on Pf .N/, we have from the above
results that the sequence

Hn;˛;ˇ .wI x; y/ WD
 

nX

iD0
wi jxij˛

!1=˛  nX

iD0
wi j yijˇ

!1=ˇ
�
ˇ̌
ˇ̌
ˇ

nX

iD0
wixiyi

ˇ̌
ˇ̌
ˇ

(13)

is monotonic nondecreasing and

Hn;˛;ˇ .wI x; y/

� max
0�i¤j�n

�
�
wi jxij˛ C wj

ˇ̌
xj

ˇ̌˛�1=˛ �
wi j yijˇ C wj

ˇ̌
yj

ˇ̌ˇ	1=ˇ

� ˇ̌wixiyi C wjxjyj

ˇ̌��
: (14)

We also have for n � 1 that

 
2nX

iD0
wi jxij˛

!1=˛  2nX

iD0
wi j yijˇ

!1=ˇ

�
ˇ̌
ˇ̌
ˇ

2nX

iD0
wixiyi

ˇ̌
ˇ̌
ˇ

�
 

nX

iD0
w2i jx2ij˛

!1=˛  nX

iD0
w2i j y2ijˇ

!1=ˇ
�
ˇ̌
ˇ̌
ˇ

nX

iD0
w2ix2iy2i

ˇ̌
ˇ̌
ˇ

C
 

n�1X

iD0
w2iC1 jx2iC1j˛

!1=˛  n�1X

iD0
w2iC1 j y2iC1jˇ

!1=ˇ

�
ˇ̌
ˇ̌
ˇ

n�1X

iD0
w2iC1x2iC1y2iC1

ˇ̌
ˇ̌
ˇ
:

(15)

4 The Case of Minkowski’s Inequality

Let .˝;A ; �/ be a measurable space consisting of a set ˝; a � -algebra A of parts
of˝ and a countably additive and positive measure � on A with values in R[f1g :
For a �-measurable function w W ˝ ! C, with w .x/ � 0 for �-a.e. (almost every)
x 2 ˝; consider the r-Lebesgue space
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Lr
w .˝; �/ WD f f W ˝ ! C; f is �-measurable and

Z

˝

w j f jr d� < 1g;

for r � 1:

The following inequality is well known in the literature as Minkowski’s
inequality:

�Z

˝

w j f C gjr d�

�1=r

�
�Z

˝

w j f jr d�

�1=r

C
�Z

˝

w jgjr d�

�1=r

(16)

for any f ; g 2 Lr
w .˝; �/ :

Consider the functional Mr .�;wI f ; g/ W A� ! Œ0;1/ defined by

Mr .A;wI f ; g/ (17)

WD
"�Z

A
w j f jr d�

�1=r

C
�Z

A
w jgjr d�

�1=r
#r

�
Z

A
w j f C gjr d�:

Theorem 3. Let f ; g 2 Lr
w .˝; �/ for r � 1: Then the functional Mr .�;wI f ; g/ W

A� ! Œ0;1/ defined by (17) is a supermeasure.

Proof. Let A;B 2 A� with A \ B D ;: Observe that

Mr .A [ B;wI f ; g/ (18)

D
"�Z

A[B
w j f jr d�

�1=r

C
�Z

A[B
w jgjr d�

�1=r
#r

�
Z

A[B
w j f C gjr d�

D
"�Z

A
w j f jr d� C

Z

B
w j f jr d�

�1=r

C
�Z

A
w jgjr d� C

Z

B
w jgjr d�

�1=r
#r

�
Z

A
w j f C gjr d� �

Z

B
w j f C gjr d�

D
2

4

 "�Z

A
w j f jr d�

�1=r
#r

C
"�Z

B
w j f jr d�

�1=r
#r!1=r

C
 "�Z

A
w jgjr d�

�1=r
#r

C
"�Z

B
w jgjr d�

�1=r
#r!1=r

3

5

r

�
Z

A
w j f C gjr d� �

Z

B
w j f C gjr d�

DW V:
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By the elementary inequality

.ar C br/1=r C .cr C dr/1=r � Œ.a C c/r C .b C d/r�1=r

that holds for a; b; c; d � 0 and r � 1; we have

h
.ar C br/1=r C .cr C dr/1=r

ir � .a C c/r C .b C d/r : (19)

Applying the inequality (19), we have

2

4
 "�Z

A
w j f jr d�

�1=r
#r

C
"�Z

B
w j f jr d�

�1=r
#r!1=r

(20)

C
 "�Z

A
w jgjr d�

�1=r
#r

C
"�Z

B
w jgjr d�

�1=r
#r!1=r

3

5

r

�
"�Z

A
w j f jr d�

�1=r

C
�Z

A
w jgjr d�

�1=r
#r

C
"�Z

B
w j f jr d�

�1=r

C
�Z

B
w jgjr d�

�1=r
#r

for A;B 2 A� with A \ B D ;:
On making use of (20), we then have

V �
"�Z

A
w j f jr d�

�1=r

C
�Z

A
w jgjr d�

�1=r
#r

�
Z

A
w j f C gjr d�

C
"�Z

B
w j f jr d�

�1=r

C
�Z

B
w jgjr d�

�1=r
#r

�
Z

B
w j f C gjr d�

D Mr .A;wI f ; g/C Mr .B;wI f ; g/ ;

for A;B 2 A� with A \ B D ;:
This completes the proof.

For some Minkowski’s inequality-related functionals and their properties, see
[3, 5, 20].

Let x D .xi/i2N and x D .yi/i2N be sequences of complex numbers and w D
.wi/i2N a sequence of positive real numbers. Let ˝ D N and Pf .N/ be the algebra
of finite parts of natural numbers N. By the monotonicity property of supermeasure
on Pf .N/, we have from the above results that the sequence
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Mn;r .wI x; y/ (21)

WD
2

4
 

nX

iD0
wi jxijr

!1=r

C
 

nX

iD0
wi j yijr

!1=r
3

5

r

�
nX

iD0
wi jxi C yijr

is monotonic nondecreasing and

Mn;r .wI x; y/

� max
0�i¤j�n

n�h�
wi jxijr C wj

ˇ̌
xj

ˇ̌r�1=r C �
wi j yijr C wj

ˇ̌
yj

ˇ̌r�1=r
ir

� wi jxi C yijr � wj

ˇ̌
xj C yj

ˇ̌r	o
: (22)

We have the inequality

2

4

 
2nX

iD0
wi jxijr

!1=r

C
 

2nX

iD0
wi j yijr

!1=r
3

5

r

�
2nX

iD0
wi jxi C yijr

�
2

4

 
nX

iD0
w2i jx2ijr

!1=r

C
 

nX

iD0
w2i j y2ijr

!1=r
3

5

r

�
nX

iD0
w2i jx2i C y2ijr

C
2

4

 
n�1X

iD0
w2iC1 jx2iC1jr

!1=r

C
 

n�1X

iD0
w2iC1 j y2iC1jr

!1=r
3

5

r

�
n�1X

iD0
w2iC1 jx2iC1 C y2iC1jr : (23)

5 The Case of Cauchy–Bunyakovsky–Schwarz’s Inequality

Consider the Hilbert space

L2w .˝; �/ WD f f W ˝ ! C; f is �-measurable and
Z

˝

w j f j2 d� < 1g:

The following inequality is well known in the literature as Cauchy–Bunyakovsky–
Schwarz’s (CBS) inequality:

ˇ̌
ˇ̌
Z

˝

wfgd�

ˇ̌
ˇ̌ �

�Z

˝

w j f j2 d�

�1=2 �Z

˝

w jgj2 d�

�1=2
(24)

where f 2 L2w .˝; �/ ; g 2 L2w .˝; �/ :
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We consider the functional H .�;wI f ; g/ W A� ! Œ0;1/ defined by

H .A;wI f ; g/ D
�Z

A
w j f j2 d�

�1=2 �Z

A
w jgj2 d�

�1=2
�
ˇ̌
ˇ
ˇ

Z

A
wfgd�

ˇ̌
ˇ
ˇ : (25)

Taking into account that H .A;wI f ; g/ D H˛;ˇ .A;wI f ; g/ for ˛ D ˇ D 2, see (10),
we have:

Theorem 4. Let f 2 L2w .˝; �/ ; g 2 L2w .˝; �/, then the functional H .�;wI f ; g/ W
A� ! Œ0;1/ defined by (25) is a supermeasure.

Now, consider the functional L .�;wI f ; g/ W A� ! Œ0;1/ defined by

L .A;wI f ; g/ D
Z

A
w j f j2 d�

Z

A
w jgj2 d� �

ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
2

: (26)

Theorem 5. Let f 2 L2w .˝; �/ ; g 2 L2w .˝; �/. Then for any A;B 2 A� with
A \ B D ;, we have

L .A [ B;wI f ; g/ (27)

� L .A;wI f ; g/C L .B;wI f ; g/

C

0

BBB
@

det

2

666
4

�R
A w j f j2 d�

	1=2 �R
A w jgj2 d�

	1=2

�R
B w j f j2 d�

	1=2 �R
B w jgj2 d�

	1=2

3

777
5

1

CCC
A

2

:

Proof. Let A;B 2 A� with A \ B D ;. Then we have

L .A [ B;wI f ; g/ (28)

D
Z

A[B
w j f j2 d�

Z

A[B
w j f j2 d� �

ˇ
ˇ̌
ˇ

Z

A[B
wfgd�

ˇ
ˇ̌
ˇ

2

D
�Z

A
w j f j2 d� C

Z

B
w j f j2 d�

��Z

A
w jgj2 d� C

Z

B
w jgj2 d�

�

�
ˇ̌
ˇ̌
Z

A
wfgd� C

Z

B
wfgd�

ˇ̌
ˇ̌
2

D
Z

A
w j f j2 d�

Z

A
w jgj2 d� C

Z

A
w j f j2 d�

Z

B
w jgj2 d�

C
Z

B
w j f j2 d�

Z

A
w jgj2 d� C

Z

B
w j f j2 d�

Z

B
w jgj2 d�

�
ˇ̌
ˇ̌
Z

A
wfgd� C

Z

B
wfgd�

ˇ̌
ˇ̌
2

:
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Observe that
ˇ
ˇ̌
ˇ

Z

A
wfgd� C

Z

B
wfgd�

ˇ
ˇ̌
ˇ

2

(29)

D
ˇ̌
ˇ
ˇ

Z

A
wfgd�

ˇ̌
ˇ
ˇ

2

C
ˇ̌
ˇ
ˇ

Z

B
wfgd�

ˇ̌
ˇ
ˇ

2

C 2Re

 Z

A
wfgd�

Z

B
wfgd�

!

�
ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌
2

C 2

ˇ̌
ˇ̌
ˇ

Z

A
wfgd�

Z

B
wfgd�

ˇ̌
ˇ̌
ˇ

D
ˇ
ˇ̌
ˇ

Z

A
wfgd�

ˇ
ˇ̌
ˇ

2

C
ˇ
ˇ̌
ˇ

Z

B
wfgd�

ˇ
ˇ̌
ˇ

2

C 2

ˇ
ˇ̌
ˇ

Z

A
wfgd�

ˇ
ˇ̌
ˇ

ˇ
ˇ̌
ˇ

Z

B
wfgd�

ˇ
ˇ̌
ˇ

�
ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌
2

C 2

�Z

A
w j f j2 d�

�1=2 �Z

A
w jgj2 d�

�1=2

�
�Z

B
w j f j2 d�

�1=2 �Z

B
w jgj2 d�

�1=2
;

where for the last inequality, we used the (CBS) inequality twice.
Making use of (28) and (29), we get

L .A [ B;wI f ; g/ � L .A;wI f ; g/C L .B;wI f ; g/

C
Z

A
w j f j2 d�

Z

B
w jgj2 d� C

Z

B
w j f j2 d�

Z

A
w jgj2 d�

� 2
�Z

A
w j f j2 d�

�1=2 �Z

A
w jgj2 d�

�1=2

�
�Z

B
w j f j2 d�

�1=2 �Z

B
w jgj2 d�

�1=2

and the inequality (27) is proved.

Corollary 1. Let f 2 L2w .˝; �/ ; g 2 L2w .˝; �/. The functional L .�;wI f ; g/ W
A� ! Œ0;1/ defined by (26) is a supermeasure.

Let f 2 L2w .˝; �/ ; g 2 L2w .˝; �/. We can also consider the functional
Q .�;wI f ; g/ W A� ! Œ0;1/ defined by

Q .A;wI f ; g/ D
"Z

A
w j f j2 d�

Z

A
w jgj2 d� �

ˇ
ˇ̌
ˇ

Z

A
wfgd�

ˇ
ˇ̌
ˇ

2
#1=2

(30)

D
p

L .A;wI f ; g/:
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Theorem 6. Let f 2 L2w .˝; �/ ; g 2 L2w .˝; �/, then the functional H .�;wI f ; g/ W
A� ! Œ0;1/ defined by (30) is a supermeasure.

Proof. Let A;B 2 A� with A \ B D ;. Then we have

Q2 .A [ B;wI f ; g/ (31)

D
Z

A[B
w j f j2 d�

Z

A[B
w j f j2 d� �

ˇ̌
ˇ̌
Z

A[B
wfgd�

ˇ̌
ˇ̌
2

D
�Z

A
w j f j2 d� C

Z

B
w j f j2 d�

��Z

A
w jgj2 d� C

Z

B
w jgj2 d�

�

�
ˇ̌
ˇ
ˇ

Z

A
wfgd� C

Z

B
wfgd�

ˇ̌
ˇ
ˇ

2

D
Z

A
w j f j2 d�

Z

A
w jgj2 d� C

Z

A
w j f j2 d�

Z

B
w jgj2 d�

C
Z

B
w j f j2 d�

Z

A
w jgj2 d� C

Z

B
w j f j2 d�

Z

B
w jgj2 d�

�
ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
2

�
ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌
2

� 2Re

�Z

A
wfgd�

Z

B
wfgd�

�

D Q2 .A;wI f ; g/C Q2 .B;wI f ; g/

C
Z

A
w j f j2 d�

Z

B
w jgj2 d� C

Z

B
w j f j2 d�

Z

A
w jgj2 d�

� 2Re

 Z

A
wfgd�

Z

B
wfgd�

!

:

On the other hand, by the arithmetic mean-geometric mean inequality, we have
Z

A
w j f j2 d�

Z

B
w jgj2 d� C

Z

B
w j f j2 d�

Z

A
w jgj2 d� (32)

� 2

sZ

A
w j f j2 d�

Z

A
w jgj2 d�

Z

B
w j f j2 d�

Z

B
w jgj2 d�:

By the CBS integral inequality and the properties of modulus, we also have
sZ

A
w j f j2 d�

Z

A
w jgj2 d�

Z

B
w j f j2 d�

Z

B
w jgj2 d� (33)

�
ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌

D
ˇ
ˇ̌
ˇ

Z

A
wfgd�

Z

B
wfgd�

ˇ
ˇ̌
ˇ � Re

�Z

A
wfgd�

Z

B
wfgd�

�
:
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By (32) and (33), we have

Z

A
w j f j2 d�

Z

B
w jgj2 d� C

Z

B
w j f j2 d�

Z

A
w jgj2 d� (34)

� 2Re

�Z

A
wfgd�

Z

B
wfgd�

�

� 2

 sZ

A
w j f j2 d�

Z

A
w jgj2 d�

Z

B
w j f j2 d�

Z

B
w jgj2 d�

�
ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌
�

� 0:

By the elementary inequality

.ab � cd/2 � �
a2 � c2

� �
b2 � d2

�
; d; b; c; d 2 R;

we have

 sZ

A
w j f j2 d�

Z

A
w jgj2 d�

sZ

B
w j f j2 d�

Z

B
w jgj2 d� �

ˇ
ˇ̌
ˇ

Z

A
wfgd�

ˇ
ˇ̌
ˇ

ˇ
ˇ̌
ˇ

Z

B
wfgd�

ˇ
ˇ̌
ˇ

!2

�
 Z

A
w j f j2 d�

Z

A
w jgj2 d� �

ˇ̌
ˇ
ˇ

Z

A
wfgd�

ˇ̌
ˇ
ˇ

2
!

�
 Z

B
w j f j2 d�

Z

B
w jgj2 d� �

ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌
2
!

and since the term in the left bracket is nonnegative, by taking the square root, we get

sZ

A
w j f j2 d�

Z

A
w jgj2 d�

sZ

B
w j f j2 d�

Z

B
w jgj2 d� (35)

�
ˇ̌
ˇ̌
Z

A
wfgd�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌

�
 Z

A
w j f j2 d�

Z

A
w jgj2 d� �

ˇ
ˇ̌
ˇ

Z

A
wfgd�

ˇ
ˇ̌
ˇ

2
!1=2

�
 Z

B
w j f j2 d�

Z

B
w jgj2 d� �

ˇ̌
ˇ̌
Z

B
wfgd�

ˇ̌
ˇ̌
2
!1=2

D Q .A;wI f ; g/Q .B;wI f ; g/ :
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Finally, by (31)–(35), we have

Q2 .A [ B;wI f ; g/ � Q2 .A;wI f ; g/C Q2 .B;wI f ; g/C 2Q .A;wI f ; g/Q .B;wI f ; g/

D .Q .A;wI f ; g/C Q .B;wI f ; g//2

and the superadditivity of the mapping Q .�;wI f ; g/ is proved.

For some CBS’s inequality-related functionals and their properties, see
[3, 5, 12–14].

Let x D .xi/i2N and x D .yi/i2N be sequences of complex numbers and w D
.wi/i2N a sequence of positive numbers. Let ˝ D N and Pf .N/ be the algebra of
finite parts of natural numbers N. By the monotonicity property of supermeasure on
Pf .N/, we have from the above results that the sequences

Hn .wI x; y/ (36)

WD
 

nX

iD0
wi jxij2

!1=2  nX

iD0
wi j yij2

!1=2
�
ˇ̌
ˇ
ˇ̌

nX

iD0
wixiyi

ˇ̌
ˇ
ˇ̌

and

Ln .wI x; y/ WD
nX

iD0
wi jxij2

nX

iD0
wi j yij2 �

ˇ
ˇ̌
ˇ̌

nX

iD0
wixiyi

ˇ
ˇ̌
ˇ̌

2

(37)

are monotonic nondecreasing and

Hn .wI x; y/ (38)

� max
0�i¤j�n


�
wi jxij2 C wj

ˇ̌
xj

ˇ̌2	1=2 �
wi j yij2 C wj

ˇ̌
yj

ˇ̌2	1=2 � ˇ̌
wixiyi C wjxjyj

ˇ̌�

and

Ln .wI x; y/ (39)

� max
0�i¤j�n

h�
wi jxij2 C wj

ˇ̌
xj

ˇ̌2	 �
wi j yij2 C wj

ˇ̌
yj

ˇ̌2	 � ˇ̌
wixiyi C wjxjyj

ˇ̌2i

for any p � 1:
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Finally, the sequence

Qn .wI x; y/ WD
2

4
nX

iD0
wi jxij2

nX

iD0
wi j yij2 �

ˇ̌
ˇ̌
ˇ

nX

iD0
wixiyi

ˇ̌
ˇ̌
ˇ

2
3

5

1=2

(40)

is also monotonic nondecreasing and we have the bound

Qn .wI x; y/ (41)

� max
0�i¤j�n

h�
wi jxij2 C wj

ˇ̌
xj

ˇ̌2	 �
wi j yij2 C wj

ˇ̌
yj

ˇ̌2	 � ˇ̌
wixiyi C wjxjyj

ˇ̌2i1=2
:

6 The Case of Čebyšev’s Inequality

We say that the pair of measurable functions . f ; g/ is synchronous on ˝ if

. f .x/ � f . y// .g .x/ � g . y// � 0 (42)

for �-a.e. x; y 2 ˝: If the inequality reverses in (42 ), the functions are called
asynchronous on ˝:

If . f ; g/ are synchronous on ˝ and f ; g; fg 2 Lw .˝; �/, then the following
inequality, that is known in the literature as Čebyšev’s Inequality, holds

Z

˝

wd�
Z

˝

wfgd� �
Z

˝

wfd�
Z

˝

wgd�; (43)

where w .x/ � 0 for �-a.e. (almost every) x 2 ˝:
We consider the Čebyšev functional C .�;wI f ; g/ W A� ! Œ0;1/ defined by

C .A;wI f ; g/ WD
Z

A
wd�

Z

A
wfgd� �

Z

A
wfd�

Z

A
wgd�: (44)

The following result is known in the literature as Korkine’s identity:

C .A;wI f ; g/ (45)

D 1

2

Z

A

Z

A
w .x/w . y/ . f .x/ � f . y// .g .x/ � g . y// d� .x/ d� . y/ :

The proof is obvious by developing the right side of (45) and using Fubini’s theorem.

Theorem 7. Let . f ; g/ be synchronous on ˝ and f ; g; fg 2 Lw .˝; �/ : Then the
Čebyš ev functional defined by (44) is a supermeasure on A�:
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Proof. Let A;B 2 A� with A \ B D ;. Then by (45), we have

C .A [ B;wI f ; g/

D 1

2

Z

A[B

Z

A[B
w .x/w . y/ . f .x/ � f . y// .g .x/ � g . y// d� .x/ d� . y/ :

Since

.A [ B/ � .A [ B/ D .A � A/ [ .B � A/ [ .A � B/ [ .B � A/

then
Z

A[B

Z

A[B
D
Z

A

Z

A
C
Z

B

Z

A
C
Z

A

Z

B
C
Z

B

Z

B
:

Therefore

C .A [ B;wI f ; g/ (46)

D C .A;wI f ; g/C C .B;wI f ; g/

C
Z

A

Z

B
w .x/w . y/ . f .x/ � f . y// .g .x/ � g . y// d� .x/ d� . y/

since by symmetry reasons,

Z

A

Z

B
w .x/w . y/ . f .x/ � f . y// .g .x/ � g . y// d� .x/ d� . y/

D
Z

B

Z

A
w .x/w . y/ . f .x/ � f . y// .g .x/ � g . y// d� .x/ d� . y/ :

Now, since . f ; g/ are synchronous on ˝; then

Z

A

Z

B
w .x/w . y/ . f .x/ � f . y// .g .x/ � g . y// d� .x/ d� . y/ � 0

and by (46) we get

C .A [ B;wI f ; g/ � C .A;wI f ; g/C C .B;wI f ; g/

that proves the statement.

For some Čebyšev’s inequality-related functionals and their properties, see
[3, 15].

Let x D .xi/i2N and x D .yi/i2N be synchronous sequences of real numbers
and w D .wi/i2N a sequence of positive real numbers. Let ˝ D N and Pf .N/ be
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the algebra of finite parts of natural numbers N. By the monotonicity property of
supermeasure on Pf .N/, we have from the above results that the sequence

Cn .wI x; y/ WD
nX

iD0
wi

nX

iD0
wixiyi �

nX

iD0
wixi

nX

iD0
wiyi � 0

is monotonic nondecreasing and we have the bound

Cn .wI x; y/ � 1

2
max

0�i¤j�n

˚
wiwj

�
xi � xj

� �
yi � yj

��
:

7 The Case of Hermite–Hadamard Inequalities

Let I be an interval consisting of more than one point and f W I ! R a convex
function. If a; b 2 I with a < b, then we have the well-known Hermite–Hadamard
inequality

f

�
a C b

2

�
� 1

b � a

Z b

a
f .t/ dt � f .a/C f .b/

2
: (47)

For some classical results on Hermite–Hadamard inequality, see the monograph
online [16].

Suppose f W I ! R and for f 2 L Œa; b� define the functionals

H .Œa; b� I f / WD
Z b

a
f .t/ dt � .b � a/ f

�
a C b

2

�

and

L .Œa; b� I f / WD f .a/C f .b/

2
.b � a/ �

Z b

a
f .t/ dt:

We have the following result concerning the properties of these mappings as
functions of interval [17]:

Theorem 8. Let f W I ! R be a convex function. Then

(i) For all a; b; c 2 I with a � c � b; we have

0 � H .Œa; c� I f /C H .Œc; b� I f / � H .Œa; b� I f / (48)

and

0 � L .Œa; c� I f /C L .Œc; b� I f / � L .Œa; b� I f / ; (49)

i.e. the functionals H .�I f / and L .�I f / are superadditive as functions of interval;



Supermeasures Associated to Some Classical Inequalities 145

(ii) For all Œc; d� 	 Œa; b� 	 I; we have

0 � H .Œc; d� I f / � H .Œa; b� I f / (50)

and

0 � L .Œc; d� I f / � L .Œa; b� I f / ; (51)

i.e. the functionals H .�I f / and L .�I f / are monotonic nondecreasing as func-
tions of interval.

Proof. (i) Let c 2 Œa; b� and put ˛ WD .c � a/ = .b � a/ ; ˇ WD .b � c/ = .b � a/ :
We have ˛ C ˇ D 1 with ˛; ˇ � 0 and by the convexity of f , we have with
x D .a C c/ =2; y D .b C c/ =2 2 I that

c � a

b � a
f

�
a C c

2

�
C b � c

b � a
f

�
b C c

2

�

D ˛f .x/C ˇf . y/ � f .˛x C ˇy/

D f

�
c � a

b � a
� a C c

2
C b � c

b � a
� b C c

2

�
D f

�
a C b

2

�
:

Hence

H .Œa; b� I f / � H .Œa; c� I f / � H .Œc; b� I f /

D .c � a/ f

�
a C c

2

�
C .b � c/ f

�
b C c

2

�
� .b � a/ f

�
a C b

2

�
� 0

and the second part of (48) is proved.
Further, since f is convex on Œa; b�, we have for all c 2 Œa; b� that

det

2

66
666
4

1 1 1

a c b

f .a/ f .c/ f .b/

3

77
777
5

� 0;

that is

f .a/ .b � c/ � f .c/ .b � a/C f .b/ .c � a/ � 0:
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Because

L .Œa; b� I f / � L .Œa; c� I f / � L .Œc; b� I f /

D f .a/C f .b/

2
.b � a/ � f .a/C f .c/

2
.c � a/ � f .c/C f .b/

2
.b � c/

D 1

2
Œ f .a/ .b � c/ � f .c/ .b � a/C f .b/ .c � a/�

we have therefore that the second part of (49) holds also.
The first parts of (48) and (49) are obvious by (47) inequality.

(ii) Follows by (i) and we omit the details.

For an arbitrary function f W I ! R, we introduce the mapping

S .Œa; b� I f / WD .b � a/



f .a/C f .b/

2
� f

�
a C b

2

��

where a; b 2 I and a < b:
We have [17]:

Theorem 9. Let f W I ! R a convex function. Then

(i) For all a; b; c 2 I with a � c � b; we have

0 � S .Œa; c� I f /C S .Œc; b� I f / � S .Œa; b� I f / (52)

i.e. the functional S .�I f / is superadditive as function of interval;
(ii) For all Œc; d� 	 Œa; b� 	 I; we have

0 � S .Œc; d� I f / � S .Œa; b� I f / (53)

i.e. the functional H .�I f / is monotonic nondecreasing as function of interval.

The proof is immediate from Theorem 8 observing that

S .Œa; b� I f / D H .Œa; b� I f /C L .Œa; b� I f / :

8 The Case of Convex Functions Defined on Intervals

Consider a convex function f W I � R ! R defined on the interval I of the real
line R and two distinct numbers a; b 2 I with a < b: We denote by Œa; b� the
closed segment defined by f.1 � t/ a C tb, t 2 Œ0; 1�g : We also define the functional
of interval
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f .Œa; b� I t/ WD .1 � t/ f .a/C tf .b/ � f ..1 � t/ a C tb/ � 0 (54)

where a; b 2 I with a < b and t 2 Œ0; 1� :
We have [9]:

Theorem 10. Let f W I � R ! R be a convex function on the interval I. Then for
each a; b 2 I with a < b and c 2 Œa; b�, we have

.0 �/ f .Œa; c� I t/C f .Œc; b� I t/ � f .Œa; b� I t/ (55)

for each t 2 Œ0; 1� ; i.e. the functional f .�I t/ is superadditive as a function of
interval.

If Œc; d� � Œa; b� ; then

.0 �/ f .Œc; d� I t/ � f .Œa; b� I t/ (56)

for each t 2 Œ0; 1� ; i.e., the functional f .�I t/ is nondecreasing as a function of
interval.

Proof. Let c D .1 � s/ a C sb with s 2 .0; 1/ : For t 2 .0; 1/, we have

f .Œc; b� I t/ D .1 � t/ f ..1 � s/ a C sb/C tf .b/ � f ..1 � t/ Œ.1 � s/ a C sb�C tb/

and

f .Œa; c� I t/ D .1 � t/ f .a/C tf ..1 � s/ a C sb/ � f ..1 � t/ a C t Œ.1 � s/ a C sb�/

giving that

f .Œa; c� I t/C f .Œc; b� I t/ � f .Œa; b� I t/ (57)

D f ..1 � s/ a C sb/C f ..1 � t/ a C tb/

� f ..1 � t/ .1 � s/ a C Œ.1 � t/ s C t� b/ � f ..1 � ts/ a C tsb/ :

Now, for a convex function ' W I � R ! R, where I is an interval, and any real
numbers t1; t2; s1 and s2 from I and with the properties that t1 � s1 and t2 � s2, we
have that

' .t1/ � ' .t2/
t1 � t2

� ' .s1/ � ' .s2/
s1 � s2

: (58)

Indeed, since ' is convex on I, then for any a 2 I, the function  W In fag ! R

 .t/ WD ' .t/ � ' .a/
t � a
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is monotonic nondecreasing where it is defined. Utilising this property repeatedly,
we have

' .t1/ � ' .t2/
t1 � t2

� ' .s1/ � ' .t2/
s1 � t2

D ' .t2/ � ' .s1/
t2 � s1

� ' .s2/ � ' .s1/
s2 � s1

D ' .s1/ � ' .s2/
s1 � s2

which proves the inequality (58).
Consider the function ' W Œ0; 1� ! R given by ' .t/ WD f ..1 � t/ a C tb/ : Since

f is convex on I, it follows that ' is convex on Œ0; 1� : Now, if we consider for given
t; s 2 .0; 1/

t1 WD ts < s DW s1 and t2 WD t < t C .1 � t/ s DW s2;

then we have

' .t1/ D f ..1 � ts/ a C tsb/ ; ' .t2/ D f ..1 � t/ a C tb/

giving that

' .t1/ � ' .t2/
t1 � t2

D f ..1 � ts/ a C tsb/ � f ..1 � t/ a C tb/

t .s � 1/ :

Also

' .s1/ D f ..1 � s/ a C sb/ ; ' .s2/ D f ..1 � t/ .1 � s/ a C Œ.1 � t/ s C t� b/

giving that

' .s1/ � ' .s2/
s1 � s2

D f ..1 � s/ a C sb/ � f ..1 � t/ .1 � s/ a C Œ.1 � t/ s C t� b/

t .s � 1/ :

Utilising the inequality (58) and multiplying with t .s � 1/ < 0, we deduce the
inequality

f ..1 � ts/ a C tsb/ � f ..1 � t/ a C tb/

� f ..1 � s/ a C sb/ � f ..1 � t/ .1 � s/ a C Œ.1 � t/ s C t� b/ : (59)

Finally, by (57) and (59), we get the desired result (55).
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Applying repeatedly the superadditivity property, we have for Œc; d� � Œa; b� that

f .Œa; c� I t/C f .Œc; d� I t/C f .Œd; b� I t/ � f .Œa; b� I t/

giving that

0 � f .Œa; c� I t/C f .Œd; b� I t/ � f .Œa; b� I t/ � f .Œc; d� I t/

which proves (56).

For t D 1
2
, we consider the functional

f .Œa; b�/ WD f

�
Œa; b� I 1

2

�
D f .a/C f .b/

2
� f

�
a C b

2

�
;

which obviously inherits the superadditivity and monotonicity properties of the
functional f .�; �I t/ : We are able then to state the following:

Corollary 2. Let f W I � R ! R be a convex function on the interval I and a; b 2 I:
Then we have the bounds

inf
c2Œa;b�



f

�
a C c

2

�
C f

�
c C b

2

�
� f .c/

�
D f

�
a C b

2

�
(60)

and

sup
c;d2Œa;b�



f .c/C f .d/

2
� f

�
c C d

2

��
D f .a/C f .b/

2
� f

�
a C b

2

�
: (61)

Proof. By the superadditivity of the functional f .�; �/, we have for each c 2 Œa; b�
that

f .a/C f .b/

2
� f

�
a C b

2

�

� f .a/C f .c/

2
� f

�
a C c

2

�
C f .c/C f .b/

2
� f

�
c C b

2

�
;

which is equivalent to

f

�
a C c

2

�
C f

�
c C b

2

�
� f .c/ � f

�
a C b

2

�
: (62)

Since the equality case in (62) is realised for either c D a or c D b, we get the
desired bound (60).

The bound (61) is obvious by the monotonicity of the functional f .�/ as a
function of interval.
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Consider now the following functional:

	f .Œa; b� I t/ WD f .a/C f .b/ � f ..1 � t/ a C tb/ � f ..1 � t/ b C ta/ ;

where, as above, f W I � a ! R is a convex function on the interval I and a; b 2 I
with a < b, while t 2 Œ0; 1� :

We notice that

	f .Œa; b� I t/ D 	f .Œa; b� I 1 � t/

and

	f .Œa; b� I t/ D f .Œa; b� I t/C f .Œa; b� I 1 � t/ � 0

for any a; b 2 I with a < b and t 2 Œ0; 1� :
Therefore, we can state the following result as well:

Corollary 3. Let f W I � R ! R be a convex function on the interval I and
t 2 Œ0; 1� : The functional 	f .�I t/ is superadditive and monotonic nondecreasing as
a function of interval.

In particular, if c 2 Œa; b�, then we have the inequality

1

2
Œ f ..1 � t/ a C tb/C f ..1 � t/ b C ta/� (63)

� 1

2
Œ f ..1 � t/ a C tc/C f ..1 � t/ c C ta/�

C 1

2
Œ f ..1 � t/ c C tb/C f ..1 � t/ b C tc/� � f .c/

Also, if c; d 2 Œa; b�, then we have the inequality

f .a/C f .b/ � f ..1 � t/ a C tb/ � f ..1 � t/ b C ta/ (64)

� f .c/C f .d/ � f ..1 � t/ c C td/ � f ..1 � t/ c C td/

for any t 2 Œ0; 1� :
Perhaps the most interesting functional we can consider from the above is the

following one:

�f .Œa; b�/ WD f .a/C f .b/

2
�
Z 1

0

f ..1 � t/ a C tb/ dt (65)

D f .a/C f .b/

2
� 1

b � a

Z b

a
f .s/ ds � 0;
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which is related to the second Hermite–Hadamard inequality.
We observe that

�f .Œa; b�/ D
Z 1

0

f .Œa; b� I t/ dt D
Z 1

0

f .Œa; b� I 1 � t/ dt: (66)

Utilising this representation, we can state the following result as well:

Corollary 4. Let f W I � R ! R be a convex function on the interval I and
t 2 Œ0; 1� : The functional �f .�; �/ is superadditive and monotonic nondecreasing as
a function of interval. Moreover, we have the bounds

inf
c2Œa;b�



1

c � a

Z c

a
f .s/ ds C 1

b � c

Z b

c
f .s/ ds � f .c/

�
D 1

b � a

Z b

a
f .s/ ds

(67)
and

sup
c;d2Œa;b�



f .c/C f .d/

2
� 1

c � d

Z c

d
f .s/ ds

�
(68)

D f .a/C f .b/

2
� 1

b � a

Z b

a
f .s/ ds:

For extension of this section’s results in the case of convex functions defined on
intervals incorporated in convex sets in linear spaces, see [9].
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Abstract During the last five decades, various functional equations possessing
a certain structure popped up in many modern disciplines like queuing theory,
communication and networks. There is no universal solution methodology available
for them, and the closed-form solutions are known only in some particular cases.
We address several issues concerning solutions of one of such functional equations,
arising in a model of the clocked buffered switch that has been represented as a
queueing system.
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1 Introduction

The 2�2 switch is a well-known device used in data-processing networks for routing
messages from one node to another. The switch is simply to handle the messages
from one node to the other. Its function has been modelled as a two-server, time-
slotted, queueing system. In this way, a two-place functional equation (FE) has
been obtained in [5], in which the unknowns are generating functions of the switch
distribution. A solution of the functional equation arising from such an asymmetric
switch has been described there, but not in a closed form as it is given in terms of
infinite products.

Similar equations appear in [7, 9, 11, 13–15, 18, 19]. Some of them have been
solved by techniques involving some tools from the theory of boundary value
problems (extensive treatments of such techniques can be found in, e.g. [4, 6, 12])
and Rouché’s theorem. Usually, the solutions obtained in these ways are not closed-
form solutions.

We address several issues concerning solutions of one of such functional
equations that was introduced in [5]. In particular, we present a description of
solution in the symmetric case of the equation (obtained by assuming the full
symmetry in the system parameters). It is achieved by a reduction to the Riemann–
Hilbert boundary value problem through some conformal mapping.

2 The Functional Equation and Its Solution

The equation arises in [5] from a description of a 2 � 2 clocked buffered switch,
illustrated in Fig. 1; the message handling process of this switch is modelled as
a two-server, time-slotted, queueing process with the state space of the pairs of
numbers of messages .xn; yn/ present at the servers at the end of a time slot.

The probability generating function (PGF) f W D ! C (D denotes the open unit
disc in the complex plane C) of the two-dimensional distribution characterizing the
system fulfils the two-place functional equation

.xy � �.x; y//f .x; y/ D �.x; y/
�
. y � 1/f .x; 0/ (1)

C .x � 1/f .0; y/C .x � 1/. y � 1/f .0; 0/�;

Fig. 1 Asymmetric 2� 2

switch modelled as a
queueing system
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where

�.x; y/ D Œ1 � a1 C a1.r11x C r12y/�Œ1 � a2 C a2.r21x C r22y/�; (2)

a1; a2 are the probability that the arrival stream generated at the start of a slot is of
stream 1; 2, respectively, and ri;j is the probability that i-arrival joins the queue of
the j-th service facility, for i; j D 1; 2. Equation (1) has been solved with the analytic
continuation technique, by locating the zeros and poles of the unknown functions
f .x; 0/; f .0; y/, which eventually has been described by the formulas

f .x; 0/ D f .1; 0/
P.I/.1/P.II/.1/

P.I/.x/P.II/.x/

A.I/.x/A.II/.x/

A.I/.1/A.II/.1/
;

f .0; y/ D f .0; 1/
Q.I/.1/Q.II/.1/

Q.I/. y/Q.II/. y/

	 .I/. y/	 .II/. y/

	 .I/.1/	 .II/.1/
;

for all x; y 2 D, where

f .1; 0/ D 1 � a2r22 � a1r12;

f .0; 1/ D 1 � a1r11 � a2r21;

f .0; 0/ D .1 � a2r22 � a1r12/
Q.I/.1/Q.II/.1/

	 .I/.1/	 .II/.1/
;

and the functions P.I/, P.II/, Q.I/, Q.II/, A.I/, A.II/, 	 .I/ and 	 .II/ are defined in [5]
by some infinite products.

3 General Observations

A very important information that we use in solving Eq. (1) is the fact that the
unknown function f is a PGF of a sequence of nonnegative real numbers pm;n

(m; n D 0; 1; 2; : : :) with the normalization condition

1X

m;nD0
pm;n D 1I (3)

so it has the following form

f .x; y/ D
1X

m;nD0
pm;nxmyn; x; y 2 D: (4)

Clearly, f is analytic with respect to either variable separately in the closed unit
disc D (i.e. it is analytic at every point of D and continuous at every point of D).
Moreover, condition (3) means that

f .1; 1/ D 1: (5)
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The next important information is the observation following from the form of
Eq. (1) that if xy � �.x; y/ D 0 for some x; y 2 D, then also

�.x; y/
�
. y � 1/f .x; 0/C .x � 1/f .0; y/C .x � 1/. y � 1/f .0; 0/� D 0: (6)

So, the problem of finding a solution of the original functional equation (1) is now
reduced to the issue of solving the conditional functional equation

�.x; y/
�
. y � 1/f .x; 0/C .x � 1/f .0; y/C .x � 1/. y � 1/f .0; 0/� D 0; (7)

x; y 2 D; xy D �.x; y/:

Write

K WD f.x; y/ 2 D 2 W �.x; y/ D xyg;
K0 WD fx 2 D W .x; 0/ 2 K g D fx 2 D W �.x; 0/ D 0g;
K 0 WD f y 2 D W .0; y/ 2 K g D f y 2 D W �.0; y/ D 0g:

It is obvious that the function f .x; y/ � 0 is a solution to (1). We will present
several other observations concerning solutions to the equation, which are analytic
or (only) continuous. We assume all the time that the following four hypotheses are
satisfied:

(a) r11 ¤ 0 or a1 ¤ 1.
(b) r21 ¤ 0 or a2 ¤ 1.
(c) r12 ¤ 0 or a1 ¤ 1.
(d) r22 ¤ 0 or a2 ¤ 1.

Certainly, we should supply some comments on those hypotheses. So, to this end
suppose, for instance, that (a) does not hold. Then K0 D D and

�.x; y/ D r12yŒ1 � a2 C a2.r21x C r22y/�; x; y 2 D:

Let f W D 2 ! C be a solution to (1). Clearly, (1) implies that

.x � r12Œ1 � a2 C a2.r21x C r22y/�/f .x; y/ (8)

D r12Œ1 � a2 C a2.r21x C r22y/�
�
. y � 1/f .x; 0/

C .x � 1/f .0; y/C .x � 1/. y � 1/f .0; 0/�; x; y 2 D;

whence, with y ! 0 we get

xf .x; 0/ D 0; x 2 D; (9)
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which means that f .x; 0/ � 0. So, f fulfils the functional equation

.xy � �.x; y// f .x; y/ (10)

D �.x; y/
�
.x � 1/f .0; y/C .x � 1/. y � 1/f .0; 0/�:

It is easily seen that the assumption that one of the hypotheses (b)–(d) is not fulfilled
leads to a similar equation.

We are not going to study those equations here. Let us now return to the general
case of (1).

We have the following simple observation.

Theorem 1. If an analytic (continuous, respectively) function f W D 2 ! C is a
solution to Eq. (1), then there exist analytic (continuous, resp.) functions �; � W D !
C such that �.0/ D �.0/,

. y � 1/�.x/C .x � 1/�. y/C .x � 1/. y � 1/�.0/ D 0 (11)

for .x; y/ 2 K and

f .x; y/ D �.x; y/
�
. y � 1/�.x/C .x � 1/�. y/C .x � 1/. y � 1/�.0/�

xy � �.x; y/ ; (12)

.x; y/ 2 D 2 n K :

Moreover, if hypotheses (a)–(d) hold, then every analytic (continuous, resp.)
function f W D 2 ! C fulfilling (12), with some analytic (continuous, resp.) functions
�; � W D ! C such that �.0/ D �.0/ and condition (11) is satisfied, is a solution
to Eq. (1).

Proof. The reasonings are simple and straightforward, but for the convenience of
readers, we present them here. We consider only the “analytic case”; the “continuous
case” is analogous.

First assume that an analytic function f W D ! C is a solution to Eq. (1). Write

�.x/ WD f .x; 0/; �.x/ WD f .0; y/; x 2 D:

Clearly, �.0/ D f .0; 0/ D �.0/. Next, take .x; y/ 2 K . Then xy � �.x; y/ D 0,
whence

0 D .xy � �.x; y//f .x; y/
D �.x; y/

�
. y � 1/f .x; 0/C .x � 1/f .0; y/C .x � 1/. y � 1/f .0; 0/�

D �.x; y/
�
. y � 1/�.x/C .x � 1/�. y/C .x � 1/. y � 1/�.0/�: (13)

It is easily seen that in the case 0 ¤ xy D �.x; y/, we get (11). So, it remains to
consider the case 0 D xy D �.x; y/. But it is possible when x D 0 or y D 0 and only
for finitely many points. So, by the continuity of f , (11) hold for all .x; y/ 2 K .
Finally, observe that (12) results directly from (1).
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Now, assume that hypotheses (a)–(d) are fulfilled. Let a function f W D ! C

be analytic and (12) hold for some analytic functions �; � W D ! C such that
�.0/ D �.0/ and (11) is valid for all .x; y/ 2 K . We show that f is a solution
to Eq. (1).

It is easily seen that each of the sets K0 and K 0 has at most two elements
(in view of (a)–(d)). Hence, by the continuity of f and � and �, we obtain that
�.x/ D f .x; 0/ and �.x/ D f .0; x/ for each x 2 D.

Take x; y 2 D. If .x; y/ 2 K , then xy � �.x; y/ D 0 and (11) holds, and
consequently

.xy � �.x; y//f .x; y/
D 0 D �.x; y/

�
. y � 1/�.x/C .x � 1/�. y/C .x � 1/. y � 1/�.0/�

D �.x; y/
�
. y � 1/f .x; 0/C .x � 1/f .0; y/C .x � 1/. y � 1/f .0; 0/�:

If .x; y/ 62 K , then (12) implies (1). ut

4 The Issue of Uniqueness of Solutions

One of the important issues in solving a functional equation is how many solutions
it has in a given class of functions. Let us try to address that question in the case
of continuous solutions of Eq. (1), under the assumption that hypotheses (a)–(d)
are valid.

So, suppose that f W D ! C is a continuous solution to (1). Then, as we can see
from the proof of Theorem 1, the functions �; � W D ! C, given by:

�.x/ WD f .x; 0/; �.x/ WD f .0; x/; x 2 D;

satisfy condition (11), which implies that

�.x/

x � 1 C �.0/

2
C �. y/

y � 1 C �.0/

2
D 0; .x; y/ 2 K ; x ¤ 1; y ¤ 1: (14)

Write

�0.x/ WD �.x/

x � 1 C �.0/

2
; �0.x/ WD � �. y/

y � 1 � �.0/

2
; x 2 D; x ¤ 1:

(15)

Then, by (14),

�0.x/ D �0. y/; .x; y/ 2 K ; x ¤ 1; y ¤ 1: (16)
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Let F W C ! C be a continuous function such that F.�0.0// D F.�0.0//, �1 WD
F ı �0 and �1 WD F ı �0. Then �1.0/ D �1.0/ and (16) yields

�1.x/ D �1. y/; .x; y/ 2 K ; x ¤ 1; y ¤ 1: (17)

Define �2; �2 W D n f1g ! C by

�2.x/ WD .x � 1/.�1.x/C z0/; �2.x/ WD .1 � x/.�1.x/C z0/; (18)

x 2 D; x ¤ 1;

with a fixed z0 2 C. It is easily seen that (17) and (18) imply that

�2.x/

x � 1 C �2.0

2
C �2. y/

y � 1 C �2.0

2
D 0; .x; y/ 2 K ; x ¤ 1; y ¤ 1; (19)

which means that

. y � 1/�2.x/C .x � 1/�2. y/C .x � 1/. y � 1/�2.0/ D 0;

.x; y/ 2 K ; x ¤ 1; y ¤ 1: (20)

If F is such that �2 and �2 have finite limits at 1, then we can extend them to that
point and have

. y � 1/�2.x/C .x � 1/�2. y/C .x � 1/. y � 1/�2.0/ D 0; .x; y/ 2 K :

(21)

Consequently, by Theorem 1, each continuous function f2 W D 2 ! C such that

f2.x; y/ WD . y � 1/�2.x/C .x � 1/�2. y/C .x � 1/. y � 1/�2.0/
xy � �.x; y/ ; (22)

.x; y/ 2 D 2 n K ;

is a solution to Eq. (1). If we choose the function F in a suitable way, then the values
of f2 at the points of K are uniquely determined by (22), because that set is nowhere
dense in D 2.

5 The Symmetric Case

Assume full symmetry in the system under study, i.e. let

a1 D a2 DW a; rij D 1=2; i; j D 1; 2:
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So, condition (2) takes the form

�.x; y/ D
h
1 � a C a.x C y/

2

i2
(23)

and

K D
n
.x; y/ 2 D W

h
1 � a C a.x C y/

2

i2 D xy
o
:

Write

K1 WD f.x; y/ 2 K W .x � 1/. y � 1/ ¤ 0g:

Then (7) implies that

f .x; 0/

x � 1 C f .0; y/

y � 1 C f .0; 0/ D 0; .x; y/ 2 K1: (24)

Introduce the function

F.x/ WD f .x; 0/

x � 1 C 1

2
f .0; 0/:

Then Eq. (24) can be rewritten as

F.x/C F. y/ D 0; .x; y/ 2 K1; (25)

where the function F is analytic in D, except possibly at 1, where a simple pole may
occur.

Now, we have reduced the issue of solving the symmetric case of the main
functional equation to the problem of finding solutions to (25).

6 Boundary Value Problem

Now, we will show that the issue of solving (25) can be reduced to a boundary value
problem. Certainly, it can be done in several different ways. We will present a very
simple and natural example of such reduction.

Namely, let

L0 WD fx 2 D W .x; x/ 2 K g;
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where x is the complex conjugate of x. Using this special set, we can derive from
Eq. (25) the following condition

F.x/C F.x/ D 0; x 2 L0; x ¤ 1: (26)

Since the coefficients aij defining the function f are real numbers (see (4)), we have

f .x/ D f .x/; x 2 D:

Consequently (26) yields

<F.x/ D 0; x 2 L0; x ¤ 1; (27)

where <z stands for the real part of the complex number z.
In this way we have obtained the boundary value problem to determine a function

F, which is analytic, except possibly at a simple pole at 1, and satisfies the following
two conditions:

1. <F.z/ D 0 for z 2 L0 n f1g.
2. lim

x!1
.x � 1/F.x/ D f .1; 0/ D 1 � a:

The equality f .1; 0/ D 1 � a has been derived from (1) (with x D y) and the
normalization condition: f .1; 1/ D 1 (which is a consequence of the fact that f is a
PGF).

In order to solve the boundary value problem, described above, we follow the
classical approach (see, e.g. [18]) as follows: let � (see Fig. 2) be the conformal
function (cf., e.g. [1, 2, 8, 17]) that maps the unit disc onto the region bounded by
the curve L, given by

L D f.x; x/ W x 2 L0g
D f.x; x/ W xx � �.x; x/ D 0g
D f.x; x/ W jxj2 D Œ1 � a C a< x�2g;

with the normalization conditions �.0/ D 0, �.1/ D 1. Such a mapping exists by
the Riemann mapping theorem, because the curve L encloses a simply connected
domain. It is easily seen that actually the curve L is an ellipse. Let ˝ denote the
function inverse to �.

We obtain a relatively simple Riemann–Hilbert boundary value problem with
a pole, for H WD F ı � on the unit circle D. Actually, it is a Dirichlet problem
with a pole (see [6, Chap. 1]): to determine the function H, which is analytic on D,
continuous on D n f1g and such that

<H.w/ D 0; w 2 D n f1g;
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L := {(x,x) : xx− f (x,x) = 0}

�

Fig. 2 The conformal mapping from L onto the unit disc and its inverse

lim
w!1

.w � 1/H.w/ D 1 � a

�x.1/
;

where

�x WD d�

dx
:

The solution of this boundary value problem is (see, e.g. [6, Chap. 1])

H.w/ D 1

2

1 � a

�x.1/

w C 1

w � 1 ; w 2 D;

which means that

F.x/ D H.˝.x// D 1

2

1 � a

�x.1/

˝.x/C 1

˝.x/ � 1
inside the curve L. Substitution in the original equation finally yields

f .x; y/ � .1 � a/˝x.1/
.x � 1/. y � 1/�.x; y/
.˝.x/ � 1/.˝. y/ � 1/

˝.x/˝. y/ � 1
xy � �.x; y/ : (28)

The above formula represents a possible solution of the original equation.
It should be yet validated; for instance, it should be checked if it satisfies the
normalization condition, i.e. the equality

f .1; 1/ D 1:

Let us mention yet that it is well known (see, e.g. [10, 16]) that the conformal
mappings used to map an ellipsoid region to the unit disc can be explicitly expressed
in terms of the Jacobi elliptic functions (see, e.g. [3]).
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Hyers–Ulam Stability of Wilson’s Functional
Equation

Elhoucien Elqorachi, Youssef Manar, and Themistocles M. Rassias

In Honor of Constantin Carathéodory

Abstract Given a unitary character � W G ! C and an involution � of a group G,
we study the Hyers–Ulam–Rassias stability of Wilson’s functional equations:

f .xy/C �.y/f .x�.y// D 2f .x/g.y/; x; y 2 G;

f .xy/C �.y/f .x�.y// D 2g.x/f .y/; x; y 2 G:

As a consequence, we find the superstability of d’Alembert’s functional equation:

g.xy/C �.y/g.x�.y// D 2g.x/g.y/; x; y 2 G:

1 Introduction

The following version of d’Alembert’s functional equation

g.xy/C �.y/g.x�.y// D 2g.x/g.y/; x; y 2 G (1)
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respectively, Wilson’s functional equation

f .xy/C �.y/f .x�.y// D 2f .x/g.y/; x; y 2 G (2)

is a generalization of classical d’Alembert’s functional equation

g.xy/C g.xy�1/ D 2g.x/g.y/; x; y 2 G (3)

respectively of Wilson’s classical functional equation

f .xy/C f .xy�1/ D 2f .x/g.y/; x; y 2 G; (4)

where � W G ! C n f0g is a character and � is an involution of G. The nonzero
solutions of Eq. (3) are the normalized traces of certain representation of G on C2.
The result was obtained by Davison via his work [13] on the pre-d’Alembert
functional equation on monoids.

Several authors are interested to study d’Alembert’s and Wilson’s functional
equations on abelian groups, we refer, for example, to the monograph by Aczél [1].
There has been quite a development of the theory of d’Alembert’s functional
equation on non-abelian groups. For more details we refer the reader to [2, 13–
18, 20, 31–35, 41].

The continuous, complex-valued solutions of d’Alembert equation (1) with
�.x/ D x�1, x 2 G are obtained by Stetkaer [35].

The basic link between Wilson’s and d’Alembert’s functional equations was due
to Corovei [12]: Given any group G and the pair .f ; g/ is a solution of Wilson’s
functional equation (4) such that f ¤ 0, then g satisfies d’Alembert long functional
equation: g.xy/C g.yx/C g.xy�1/C g.y�1x/ D 4g.x/g.y/ for all x; y 2 G.

In [37], Stetkaer upgraded the Corovei result and got the following strong result:
if .f ; g/ is a solution of Wilson’s functional equation, (4) such that f ¤ 0, then g
satisfies d’Alembert’s short functional equation (3). Bouikhalene and Elqorachi [9]
extended Stetkaer result’s [37] to Wilson’s functional equation (2) as follows:

Proposition 1 ([9]). If � is an involutive multiplicative automorphism of a monoid
G such that �.x�.x// D 1 for all x 2 G and .f ; g/ W G ! C is a solution of Wilson’s
functional equation (2) such that f ¤ 0, then g is a solution of d’Alembert’s short
functional equation (1).

The stability of d’Alembert’s functional equation (3) and Wilson’s functional
equation (4) and other functional equations has been investigated by several authors;
see, for example, [3, 4, 8, 10, 11, 19, 21–24, 26–30, 36, 42].

In [7], Baker et al. introduced the superstability of the exponential equation f W
X ! R, f .x C y/ D f .x/f .y/, where X is a vector space. The result was generalized
by Baker [6], by replacing the vector space by a semigroup and R by a normed
algebra in which the norm is multiplicative. A different generalization of Baker’s
result [7] was given by Székelyhidi [38–40].

Badora and Ger [5] have improved the superstability of the d’Alembert equa-
tion (3) in the abelian group under the condition jf .x C y/C f .x � y/� 2f .x/f .y/j �
'.x/ or '.y/.
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Kim [25] investigated the stability problem of d’Alembert’s and Wilson’s
functional equations with involution in the abelian groups and improved the
superstability of d’Alembert’s equation under the condition

jf .x C y/C f .x C �.y// � 2f .x/f .y/j �
�
'.x/;
'.y/ and '.x/:

(5)

In [11], Chung and Sahoo extended the superstability result obtained in [25].
Recently, Bouikhalene and Elqorachi [9] studied the Hyers–Ulam stability of

Wilson’s equation (2) and obtained the superstability of d’Alembert’s equation (1).
In this paper, we investigate the Hyers–Ulam–Rassias stability of Wilson’s

functional equations (2) and

f .xy/C �.y/f .x�.y// D 2g.x/f .y/; x; y 2 G (6)

on groups G. As an application, we obtain the superstability of the d’Alembert’s
functional equation (1).

Throughout this paper G denote a group with identity element e, C the set of
complex numbers. Usually we write the group operation multiplicatively, but if the
group is abelian, we mainly use C. We let � W G ! G be an involutive anti-
automorphism, that is, �.xy/ D �.y/�.x/ and �.�.x// D x for all x; y 2 G, and
� W G ! C� be a fixed unitary character on G which satisfies �.x�.x// D 1 for all
x 2 G and ' W G ! RC a mapping. f o

� and f e
� denote the odd and even parts of f ,

respectively, i.e., f o
�.x/ D f .x/ � �.x/f .�.x//

2
, f e
�.x/ D f .x/C �.x/f .�.x//

2
for all

x 2 G.

2 Main Result

In the following theorem, we give the solutions of d’Alembert’s functional equa-
tion (1). The proof of this theorem is based on the same computations used in
the [35, Proposition 5.2 and Theorem 6.1] for the particular case �.x/ D x�1 for
all x 2 G.

Theorem 1. Let G an abelian group. Let � W G ! C� be a character on G and
g W G ! C be a nonzero solution of d’Alembert’s functional equation (1). Then
there exists a character � of G such that

g D �C �� ı �
2

: (7)

The character � in decomposition (7) of g is unique, except � can be replaced
by �� ı � .

Conversely, any function g of the form (7), where � is a character, is a nonzero
abelian solution of (1).

The following theorem gives the solutions of Wilson’s functional equation (2) on
abelian group.
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Theorem 2. Let f ; g W G ! C be solutions of Wilson’s functional equation

f .xy/C �.y/f .x�.y// D 2f .x/g.y/ (8)

for all x; y 2 G and such that f ¤ 0. Then

(1) g satisfies Eq. (1).
(2) When G is an abelian group, then there exists a a character � of G such that

g D �C �� ı �
2

: (9)

(3) If � ¤ �� ı � , then f has the form

f D �1�C �2�� ı � (10)

for some constants �1; �2 2 C.
(4) If � D �� ı � , f has the form

f D �.ı C a.x// (11)

where a W G ! C is an additive function such that a.�.x// D �a.x/ and ı is a
constant in C.

Proof. (1) See Proposition 1.
(2) If � ¤ �� ı � . Putting x D e in (8), we get f e

� D f .e/g. In view of Stetkaer
[35, Theorem 5.1] and Theorem 1, there exists a character � of G and a constant
c1 2 C such that f e

� D c1
�C��ı�

2
.

By simple computations we verify that f o
� satisfies Wilson’s functional equation

with g unchanged, that is,

f o
�.x C y/C �.y/f o

�.x C �.y// D 2f o
�.x/g.y/ (12)

for all x; y 2 G. Interchanging the roles of x and y in (12) and using the invariance
formula f o

�.y/ D ��.y/f o
�.�.y//; y 2 G, we obtain that the pair .f o

�; g/ satisfies the
sine addition formula:

f o
�.xy/ D f o

�.x/g.y/C f o
�.y/g.x/ x; y 2 G: (13)

So, by Theorem 5.1 [35], there exists a character � of G and a constant c2 ¤ 0 such
that f o

� D c2.� � �� ı �/. Since f D f e
� C f o

�, the form of f is given by (10) where
�1 D c1

2
C c2 and �2 D c1

2
� c2. Now, if � D �� ı � , then f e

� D ı� where ı D c1.

We have
f o
�

g is an additive function which satisfies .
f o
�

g /.x/ D 1
2
.

f o
�

g /.x��.x// and the
rest of the proof is obvious.
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Theorem 3. Let G be a group, let � an involution of G, and let � be a unitary
character of G such that �.x�.x// D 1 for all x 2 G. Suppose that f ; g W G ! C
satisfy the inequality

jf .xy/C �.y/f .x�.y// � 2f .x/g.y/j � '.y/ (14)

for all x; y 2 G. Under these assumptions the following statements hold:

(1) If f is bounded and f ¤ 0, then g satisfies

jg.x/j � 1C '.x/

2M
(15)

for all x; y 2 G, where M D supx2G jf .x/j.
(2) If f is unbounded, then g is a solution of d’Alembert’s long equation:

g.xy/C�.y/g.x�.y//C g.yx/C�.y/g.�.y/x/ D 4g.x/g.y/; x; y 2 G: (16)

Furthermore, if there exists a sequence .zn/ 2 G satisfying

jg.zn/j
1C '.zn/C '.znx/C '.xzn/C '.x�.zn//C '.�.zn/x/

! 1 (17)

as n ! 1 for all x 2 G. Then, the pair .f ; g/ satisfies Wilson’s functional
equation (2) and g satisfies d’Alembert’s short functional equation (1).

Proof. First, assume that f is bounded and f ¤ 0. By using triangle inequality
and (14), we have

j2f .x/g.y/j � '.y/C jf .xy/j C j�.y/jjf .x�.y//j � 2M C '.y/; (18)

where M D kf k1. Dividing both sides of (18) by 2M, we get (15). Now, assume
that f is unbounded. Choosing a sequence .zn/n2N 2 G such that jf .zn/j ! 1 as
n ! 1. By using triangle inequality and inequality (14), for all x; y; zn 2 G, one has

2jf .zn/jjg.xy/C �.y/g.x�.y//C g.yx/C �.y/g.�.y/x/� 4g.x/g.y/j
� jf .znxy/C �.xy/f .zn�.y/�.x//� 2f .zn/g.xy/j

Cj�.y/f .znx�.y//C �.y/�.x�.y//f .zny�.x//� 2�.y/f .zn/g.x�.y//j
Cjf .znyx/C �.yx/f .zn�.x/�.y//� 2f .zn/g.yx/j
Cj�.y/f .zn�.y/x/C �.y/�.�.y/x/f .zn�.x/y/� 2�.y/f .zn/g.�.y/x/j
Cjf .znxy/C �.y/f .znx�.y//� 2f .znx/g.y/j
Cjf .znyx/C �.x/f .zny�.x//� 2f .zny/g.x/j
Cj�.y/f .zn�.y/x/C �.y/�.x/f .zn�.y/�.x//� 2�.y/f .zn�.y//g.x/j
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Cj�.x/f .zn�.x/y/C �.x/�.y/f .zn�.x/�.y//� 2�.x/f .zn�.x//g.y/j
C2jg.y/jjf .znx/C �.x/f .zn�.x//� 2f .zn/g.x/j
C2jg.x/jjf .zny/C �.y/f .zn�.y//� 2f .zn/g.y/j:

� '.xy/C j�.y/j'.x�.y//C '.yx/C j�.y/j'.�.y/x/C '.y/C '.x/C j�.y/j'.x/
Cj�.x/j'.y/C 2jg.y/j'.x/C 2jg.x/j'.y/:

Moreover, since f is unbounded, we conclude that g is a solution of Eq. (16).
Assume that (17) holds. By using inequality (14) and triangle inequality for every

x; y; zn 2 G, we have

2jg.zn/jjf .xy/C �.y/f .x�.y// � 2f .x/g.y/j
� jf .xyzn/C �.zn/f .xy�.zn// � 2f .xy/g.zn/j

C j�.y/f .x�.y/zn/C �.y/�.zn/f .x�.y/�.zn// � 2�.y/f .x�.y//g.zn/j
C jf .xyzn/C �.yzn/f .x�.zn/�.y// � 2f .x/g.yzn/j
C j�.zn/f .xy�.zn//C �.zn/�.y�.zn//f .xzn�.y// � 2�.zn/f .x/g.y�.zn//j
C j�.zn/f .x�.zn/y/C �.zn/�.�.zn/y/f .x�.y/zn/ � 2�.zn/f .x/g.�.zn/y/j
C j�.zny/f .x�.y/�.zn//C f .xzny/ � 2f .x/g.zny/j
C j�.zn/f .x�.zn/y/C �.zn/�.y/f .x�.zn/�.y// � 2�.zn/f .x�.zn//g.y/j
C jf .xzny/C �.y/f .xzn�.y// � 2f .xzn/g.y/j
C 2jf .x/jjg.yzn/C �.zn/g.y�.zn//C g.zny/C �.zn/g.�.zn/y/ � 4g.y/g.zn/j
C 2jg.y/jjf .xzn/C �.zn/f .x�.zn// � 2f .x/g.zn/j

� '.zn/C j�.y/j'.zn/C '.yzn/C j�.zn/j'.y�.zn//C j�.zn/j'.�.zn/y/

C '.zny/C j�.zn/j'.y/C '.y/C 2jf .x/j � 0C 2jg.y/j'.zn/:

By using (17), we get that the pair .f ; g/ satisfies Wilson’s functional equation (2),
and this completes the proof of theorem.

As a consequence of Theorem 3, we obtain the superstability of d’Alembert’s
functional equation (1).

Corollary 1. Let G be a group, let � an involution of G, and let � be a unitary
character of G such that �.x�.x// D 1 for all x 2 G. Suppose that f ; g W G ! C
satisfy the inequality

jf .xy/C �.y/f .x�.y// � 2f .x/f .y/j � '.y/ (19)
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for all x; y 2 G. Then either f satisfies

jf .x/j � 1Cp
1C 2'.x/

2
(20)

for all x 2 G or f satisfies d’Alembert’s short functional equation (1).

As a direct consequence of Theorem 3, we get the results obtained in [5, 9, 11, 25].

Corollary 2. Let ı � 0, G a group, � a unitary character of G, and � an involution
of G such that �.x�.x// D 1 for all x 2 G. Suppose that the pair f ; g W G ! C
satisfies

jf .xy/C �.y/f .x�.y// � 2f .x/g.y/j � ı (21)

for all x; y 2 G. Under these assumptions the following statements hold:

(1) If f is unbounded, then g satisfies d’Alembert’s short functional equation (1).
(2) If g is unbounded and f ¤ 0, then the pair .f ; g/ satisfies Wilson’s functional

equation (2) and g satisfies the d’Alembert’s short functional equation (1).

Proof. (2) If g is unbounded and f ¤ 0, then by simple computations we get f
unbounded, so the proof of (2) follows from Theorem 3.

(1) Assume that f is unbounded and then from Theorem 3, g satisfies
d’Alembert’s long functional equation. But we want to prove that g satisfies
d’Alembert’s short functional equation. In this case we refer to the proof given
by Bouikhalene and Elqorachi [9, Proposition 3.7].

Corollary 3. Let G be an abelian group, let � an involution of G, and let � be a
unitary character of G such that �.x C �.x// D 1 for all x 2 G. Let f ; g W G ! C
satisfy the functional inequality

jf .x C y/C �.y/f .x C �.y// � 2f .x/g.y/j � '.y/ (22)

for all x; y 2 G. Then,

(1) if f is a nonzero bounded function, g satisfies

jg.x/j � 1C '.x/

2M
(23)

for all x; y 2 G, where M D kf k1.
(2) If f is unbounded, then g has the form

g.x/ D �.x/C �.x/�.�.x//

2
; x 2 G; (24)
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where � is a character of G. Assume that their exists a sequence .zn/n2N 2 G
which satisfies (17). Then,

(i) if � ¤ �.� ı �/, f has the form

f .x/ D �1�.x/C �2�.x/�.�.x//; x 2 G (25)

where �1; �2 2 C,
(ii) if � D �.� ı �/, f has the form

f .x/ D �.x/.ı C a.x//; x 2 G (26)

where a W G ! C is an additive function such that a.�.x// D �a.x/ for all
x 2 G and ı 2 C.

The following theorem is a generalization of the result obtained in [11].

Theorem 4. Let G be an abelian group, let � an involution of G, and let � be a
unitary character of G such that �.x C �.x// D 1 for all x 2 G. Suppose that
f ; g W G ! C be unbounded functions such that

jf .x C y/C �.y/f .x C �.y// � 2f .x/g.y/j � '.x/ (27)

for all x; y 2 G. Then there exist �1; �2 2 C and a character � W G ! C for which
� ¤ �� ı � such that

f .x/ D �1�.x/C �2�.x/�.�.x//; (28)
ˇ
ˇ̌
ˇg.x/ � �.x/C �.x/�.�.x//

2

ˇ
ˇ̌
ˇ � inf

y2G

'.y/

2jf .y/j (29)

for all x 2 G, or else there exists ı 2 C, a character � W G ! C for which
� D �� ı � , and an additive a W G ! C such that a.�.x// D �a.x/ for all x 2 G
and

f .x/ D �.x/.ı C a.x//; (30)

jg.x/ � �.x/j � inf
y2G

'.y/

2jf .y/j (31)

for all x 2 G. Furthermore if there exists a sequence .zn/n2N 2 G such that

jf .zn/j
1C '.zn/

! 1 (32)
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as n ! 1. Then either there exist �1; �2 2 C and a character � W G ! C such that
� ¤ �� ı � and

f .x/ D �1�.x/C �2�.x/�.�.x//; g.x/ D �.x/C �.x/�.�.x//

2
(33)

for all x 2 G, or else there exist ı 2 C, a character � W G ! C satisfying � D ��ı�
and an additive function a W G ! C such that

f .x/ D �.x/.ı C a.x//; g.x/ D �.x/ (34)

for all x 2 G.

Proof. The proof is closely related to the one used in [11, Theorem 2.7]. Let
.zn/n2N 2 G be a sequence such that jg.zn/j ! 1. Replacing y by zn in (27),
dividing the result obtained by 2jg.zn/j, and letting n ! 1, we have

f .x/ D lim
n!1

f .x C zn/C �.zn/f .x C �.zn//

2g.zn/
(35)

for all x; y 2 G. Replacing y, respectively, by y C zn and by �.y/C zn in (27), using
triangle inequality, dividing the result by 2jg.zn/j and, after rearranging the terms,
we obtain

ˇ
ˇ̌
ˇ
f .x C y C zn/C �.zn/f .x C y C �.zn//

2g.zn/

C�.y/ f .x C �.y/C zn/C �.zn/f .x C �.y/C �.zn//

2g.zn/

�2f .x/
g.zn C y/C �.y/f .zn C �.y//

2g.zn/

ˇ
ˇ̌
ˇ � '.x/C j�.y/j'.x/

2g.zn/

for all x; y; zn 2 G. Letting n ! 1 in the last inequality and using (35), we can see
that the limit

k.y/ D lim
n!1

g.zn C y/C �.y/f .zn C �.y//

2g.zn/
(36)

exists for all y 2 G and the pair .f ; k/ satisfies the following functional equation

f .x C y/C �.y/f .x C �.y// D 2f .x/k.y/ (37)

for all x; y 2 G. Thus, k satisfies d’Alembert’s functional equation (1). Substitut-
ing (37) into (27) and taking the infimum of the right hand side of the result obtained,
we get
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jg.x/ � k.x/j � inf
y2G

'.y/

2jf .y/j (38)

for all x 2 G. Assume that there exist a sequence .zn/n2N 2 G which satisfies the
condition (32). By using (38) we get k.x/ D g.x/ for all x 2 G and then the function
g satisfies d’Alembert’s functional equation (1). So, we get the rest of the proof.

Lemma 1 describes all solutions of Wilson’s functional equation (6) on abelian
group. Its proof is elementary.

Lemma 1. Let G be an abelian group, let � an involution of G, and let � be a
unitary character of G. The solutions f ; g W G ! C of Wilson’s functional equation

f .x C y/C �.y/f .x C �.y// D 2g.x/f .y/; x; y 2 G (39)

can be described as follows:

(i) if f .e/ D 0, then f D 0 and g arbitrary,
(ii) if f .e/ ¤ 0, then there exists a character � of G such that

g.x/ D �.x/C �.x/�.�.x//

2
; f .x/ D f .e/

�
�.x/C �.x/�.�.x//

2

�
(40)

for all x 2 G.

The following lemma is useful for the proof of Theorem 5.

Lemma 2. Let G be a group, let � an involution of G, and � be a unitary character
of G. Assume that f ; g W G ! C satisfies the inequality

jf .xy/C �.y/f .x�.y// � 2g.x/f .y/j � '.x/ (41)

for all x; y 2 G such that f .e/ ¤ 0. Then,

jg.xy/C �.y/g.x�.y// � 2g.x/h.y/j �  .x/C  .xy/C j�.y/j .x�.y//
2

(42)

for all x; y 2 G and where h D f
f .e/ ,  D '

jf .e/j .

Proof. By dividing inequality (41) by jf .e/j, we get

jh.xy/C �.y/h.x�.y// � 2g.x/h.y/j �  .x/ (43)

for all x; y 2 G. Taking y D e in inequality (43) we get

jh.x/ � g.x/j �  .x/

2
(44)
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for all x 2 G. In virtue of inequality (44) and (43), we obtain

jg.xy/C �.y/g.x�.y// � 2g.x/h.y/j
� jh.xy/C �.y/h.x�.y// � 2g.x/h.y/j

Cj.h � g/.xy/j C j�.y/jj.h � g/.x�.y//j

�  .x/C  .xy/C j�.y/j .x�.y//
2

for all x; y 2 G.

Now, we are ready to prove the stability and superstability of Wilson’s functional
equation (6) and d’Alembert’s functional equation (1), respectively.

Theorem 5. Let G be a group. Let � an involution of G and � be a unitary
character of G such that �.x�.x// D 1 for all x 2 G. Suppose that f ; g W G ! C
satisfy the functional inequality

jf .xy/C �.y/f .x�.y// � 2g.x/f .y/j � '.x/ (45)

for all x; y 2 G with f .e/ ¤ 0. Then the pair .f ; g/ satisfies one of the following
statements:

(i) If f is a nonzero bounded function, then g satisfies

jg.x/j � 1C '.x/

2M
(46)

for all y 2 G, where M D kf k1.
(ii) If there exists a sequence .zn/n2N 2 G such that

jg.zn/j
1C '.zn/C '.zny/C '.zn�.y//C '.znx/C '.zn�.x//C '.xzn/C '.x�.zn//

! 1 (47)

as n ! 1 for all x; y 2 G, then h D f
f .e/ satisfies the d’Alembert’s long

functional equation (16), and if f is unbounded, then .f ; g/ satisfies Wilson’s
functional equation (6). Furthermore, if f ¤ 0, then g satisfies the d’Alembert’s
short functional equation (1).

Proof. Let f be a nonzero bounded function. Using triangle inequality (45) and
dividing both sides of the result by 2M, we get inequality (46).

Putting h D f
f .e/ ;  D '

jf .e/j . Dividing both sides of inequality (45) by jf .e/j,
we get

jh.xy/C �.y/h.x�.y// � 2g.x/h.y/j �  .x/ (48)
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for all x; y 2 G. In what follows we will show that h satisfies d’Alembert’s long
functional equation (16). By using the following decomposition

2jg.zn/jjh.xy/C �.y/h.x�.y//C h.yx/C �.y/h.�.y/x/ � 4h.x/h.y/j
� jh.znxy/C �.xy/h.zn�.y/�.x// � 2g.zn/h.xy/j

Cj�.y/h.znx�.y//C �.y/�.x�.y//h.zny�.x// � 2�.y/g.zn/h.x�.y//j
Cjh.znyx/C �.yx/h.zn�.x/�.y// � 2g.zn/h.yx/j
Cj�.y/h.zn�.y/x/C �.y/�.�.y/x/h.zn�.x/y/ � 2�.y/g.zn/h.�.y/x/j
Cjh.znxy/C �.y/h.znx�.y// � 2g.znx/h.y/j (49)

Cjh.znyx/C �.x/h.zny�.x// � 2g.zny/h.x/j
Cj�.y/h.zn�.y/x/C �.y/�.x/h.zn�.y/�.x// � 2�.y/g.zn�.y//h.x/j
Cj�.x/h.zn�.x/y/C �.x/�.y/h.zn�.x/�.y// � 2�.x/g.zn�.x//h.y/j
C2jh.y/jjg.znx/C �.x/g.zn�.x// � 2g.zn/h.x/j
C2jh.x/jjg.zny/C �.y/g.zn�.y// � 2g.zn/h.y/j;

we obtain

2jg.zn/jjh.xy/C �.y/h.x�.y//C h.yx/C �.y/h.�.y/x/ � 4h.x/h.y/j
� 4 .zn/C  .zn�.y//C  .zn�.x//C  .znx/C  .zny/

C2jF.y/j. .zn/C  .znx/C j�.x/j .zn�.x//

2
/

C2jh.x/j. .zn/C  .zny/C j�.y/j .zn�.y//

2
/ (50)

for all zn; x; y;2 G. Since g satisfies (47), then we have

jg.zn/j
1C  .zn/C  .zny/C  .zn�.y//C  .znx/C  .zn�.x//C  .xzn/C  .x�.zn//

! 1 (51)

as n ! 1 for all x; y 2 G. Thus, by using (51), inequality (50) shows that h satisfies
the functional equation (16). Now, we will show that the pair .f ; g/ is a solution of
Wilson’s functional equation (6). Assume that f is unbounded. The conditions (51)
and (44) imply that

jh.zn/j
1C  .zn/C  .zny/C  .zn�.y//C  .znx/C  .zn�.x//C  .xzn/C  .x�.zn//

! 1 (52)
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as n ! 1 holds too. By using (48), triangle inequality, we have

2jh.zn/jjg.xy/C �.y/g.x�.y// � 2g.x/h.y/j (53)

� jh.xyzn/C �.zn/h.xy�.zn// � 2g.xy/h.zn/j
Cj�.y/h.x�.y/zn/C �.y/�.zn/h.x�.y/�.zn// � 2�.y/g.x�.y//h.zn/j
Cjh.xyzn/C �.yzn/h.x�.zn/�.y// � 2g.x/h.yzn/j
Cj�.zn/h.xy�.zn//C �.zn/�.y�.zn//h.xzn�.y// � 2�.zn/g.x/h.y�.zn//j
Cj�.zn/h.x�.zn/y/C �.zn/�.�.zn/y/h.x�.y/zn/ � 2�.zn/g.x/h.�.zn/y/j
Cj�.zny/h.x�.y/�.zn//C h.xzny/ � 2g.x/h.zny/j
Cj�.zn/h.x�.zn/y/C �.zn/�.y/h.x�.zn/�.y// � 2�.zn/g.x�.zn//h.y/j
Cjh.xzny/C �.y/h.xzn�.y// � 2g.xzn/h.y/j
C2jg.x/jjh.yzn/C �.zn/h.y�.zn//C h.zny/C �.zn/h.�.zn/y/ � 4h.y/h.zn/j
C2jh.y/jjg.xzn/C �.zn/g.x�.zn// � 2g.x/h.zn/j

�  .xy/C j�.y/j .x�.y//C  .x/C j�.zn/j .x/C j�.zn/j .x/
C .x/C j�.zn/j .x�.zn//C  .xzn/C 2jg.x/j � 0

C2jh.y/j. .x/C  .xzn/C j�.zn/j .x�.zn//

2
/

for all zn; x; y 2 G. By using (52) we conclude that the pair .g; h/ satisfies Wilson’s
functional equation

g.xy/C �.y/g.x�.y// D 2g.x/h.y/; x; y 2 G: (54)

From Proposition 1, h satisfies d’Alembert’s short functional equation (1), so we
have f .x/ D �.x/f .�.x// for all x 2 G. Putting x D e in (41), we get

jf .y/.1 � g.e//j � '.e/

2
(55)

for all y 2 G. Since f is assumed to be unbounded, we get g.e/ D 1.
Substituting x by e in (54), we have the �-even part of g is equal to h, that is,

h.y/ D g.y/C�.y/g.�.y//
2

. Hence g.y/C�.y/g.�.y//
2

is a solution of the d’Alembert’s short
functional equation (1).

Writing g D ge
� C go

� with ge
� D h and using (48), we obtain

jgo
�.x/f .y/j � '.x/
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for all x; y 2 G. Since f is unbounded, then we get go
�.x/ D 0 for all x 2 G. By a

simple computation, we find that .f ; g/ satisfies the Wilson’s functional equation (6).
This completes the proof of the theorem.

In the following corollary, we present the abelian case of Theorem 5.

Corollary 4. Let G be an abelian group, � an involution on G, and � a unitary
character of G. Assume that f ; g W G ! C satisfies the functional inequality

jf .x C y/C �.y/f .x C �.y// � 2g.x/f .y/j � '.x/ (56)

for all x; y 2 G with f .e/ ¤ 0. Then the pair .f ; g/ satisfies one of the following
statements:

(i) if f is bounded, then g satisfies

jg.y/j � 1C '.y/

2M
(57)

for all y 2 G, where M D supx2G jf .x/j,
(ii) if there exists a sequence .zn/n2N 2 G such that (47), then there exists a

character � of G such that

g.x/ D �.x/C �.x/�.�.x//

2
(58)

for all x 2 G, and if f is unbounded, then f has the form

f .x/ D f .e/

�
�.x/C �.x/�.�.x//

2

�
; x 2 G: (59)

The following corollary follows easily from Theorem 5.

Corollary 5. Let G be a group. Let � an involution of G and � be a unitary
character of G such that �.x�.x// D 1 for all x 2 G. Suppose that the pair .f ; g/
satisfies

jf .xy/C �.y/f .x�.y// � 2f .x/f .y/j � '.x/; x; y 2 G: (60)

Then either f satisfies jf .x/j � 1Cp
1C2'.x/
2

for all x 2 G or f satisfies d’Alembert’s
short functional equation (1).

Next, we will prove a stability theorem where the control function is a function of
the variable y. We start with the following elementary lemma.

Lemma 3. Let G be a group. Let � an involution of G and � a unitary character
of G. Assume that f ; g W G ! C satisfies the inequality

jf .xy/C �.y/f .x�.y// � 2g.x/f .y/j � '.y/ (61)
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for all x; y 2 G with f .e/ ¤ 0. Then

jg.xy/C �.y/g.x�.y// � 2g.x/h.y/j �  .y/C  .e/ (62)

for all x; y 2 G, and where h D f
f .e/ ,  D '

jf .e/j .

Now we prove the following result.

Theorem 6. Let G be a group. Let � an involution of G and � be a unitary
character of G such that �.x�.x// D 1 for all x 2 G. Let f ; g W G ! C satisfies the
functional inequality

jf .xy/C �.y/f .x�.y// � 2g.x/f .y/j � '.y/ (63)

for all x; y 2 G. Then the pair .f ; g/ satisfies one of the following statements:

(i) If f .e/ D 0, then

jf .x/j � '.e/

2
; jg.x/j � inf

y2G

'.y/C '.e/

2jf .y/j (64)

for all x 2 G.
(ii) If f .e/ ¤ 0 and g is bounded, then f satisfies

jf .y/j � jf .e/j C '.y/C '.e/

2M
(65)

for all y 2 G, where M D supx2G jg.x/j.
(iii) If f .e/ ¤ 0 and g is unbounded, then h D f

f .e/ satisfies d’Alembert’s long
functional equation (16), and if there exists a sequence .zn/n2N 2 G such that

jf .zn/j
1C '.zn/C '.yzn/C '.zny/C '.y�.zn//C '.�.zn/y/C '.xzn/C '.x�.zn//

! 1
(66)

as n ! 1 for all x; y 2 G, then the pair .f ; g/ satisfies Wilson’s functional
equation (6). Furthermore, if f ¤ 0, g satisfies d’Alembert’s short functional
equation (1).

Proof. Putting y D e in (63) and dividing the result by 2, we get

jf .x/ � g.x/f .e/j � '.e/

2
(67)

for all x 2 G. First, assume that f .e/ D 0. From (67) we have

jf .x/j � '.e/

2
(68)
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for all x 2 G. Using the triangle inequality, (63) and (68), dividing the resulting by
2jf .y/j, and taking the infimum of the right hand side, we have the second inequality
of (64). Now, we assume that f .e/ ¤ 0 and g is bounded. In view of Lemma 3 and
inequality (62), we obtain (65). By using the decomposition (49), we have

2jg.zn/jjh.xy/C �.y/h.x�.y//C h.yx/C �.y/h.�.y/x/ � 4h.x/h.y/j
�  .xy/C j�.y/j .x�.y//C  .xy/C j�.y/j .�.y/x/C  .y/C  .x/

C j�.y/j .x/C j�.x/j .y/C 2.jh.y/j C jh.x/j/. .x/C  .e//

for all zn; x; y 2 G. Since g is unbounded, then h satisfies d’Alembert’s long
functional equation (16). The decomposition (53) with (66) implies that the pair
.g; h/ satisfies Wilson’s functional equation (2). By following the same arguments
of the proof of Theorem 5, we get the rest of the proof.

The following corollaries are a direct consequence of Theorem 6.

Corollary 6. Let G be a group. Let � an involution of G and � be a unitary
character of G such that �.x�.x// D 1 for all x 2 G. Suppose that the pair
f ; g W G ! C satisfies

jf .xy/C �.y/f .x�.y// � 2g.x/f .y/j � '.x/ and '.y/ (69)

for all x; y 2 G. Then the pair .f ; g/ satisfies the following statements:

(i) If f .e/ D 0, then

jf .x/j � '.e/

2
; jg.x/j � inf

y2G

'.y/C '.e/

2jf .y/j (70)

for all x 2 G.
(ii) If f .e/ ¤ 0 and g is bounded, then f satisfies

jf .y/j � jf .e/j C '.y/C '.e/

2M
(71)

for all y 2 G, where M D supx2G jg.x/j.
(iii) If f .e/ ¤ 0 and g is unbounded, then h D f

f .e/ satisfies d’Alembert’s long
functional equation (16).

(iv) If f is unbounded and f .e/ ¤ 0, then the pair .f ; g/ satisfies Wilson’s functional
equation (6). Furthermore, if f ¤ 0, g satisfies d’Alembert’s short functional
equation (1).

Corollary 7. Let G be an abelian group, � be an involution of G, and � a unitary
character onG. Suppose that f ; g W G ! C satisfy the functional inequality

jf .x C y/C �.y/f .x C �.y// � 2g.x/f .y/j � '.y/ (72)
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for all x; y 2 G with f .e/ ¤ 0. Then the pair .f ; g/ satisfies one of the following
statements:

(i) If f .e/ D 0, then

jf .x/j � '.e/

2
; jg.x/j � inf

y2G

'.y/C '.e/

2jf .y/j (73)

for all x 2 G,
(ii) if f .e/ ¤ 0 and g is bounded, then f satisfies

jf .y/j � jf .e/j C '.y/C '.e/

2M
(74)

for all y 2 G, where M D supx2G jg.x/j,
(iii) if f .e/ ¤ 0 and g is unbounded, then there exists a character � of G such that

f .x/ D f .e/

�
�.x/C �.x/�.�.x//

2

�
; (75)

jg.x/ � �.x/C �.x/�.�.x//

2
j � '.e/

2jf .e/j (76)

for all x 2 G. In particular, if there exists a sequence .zn/n2N 2 G
satisfying (66), then g has the form

g.x/ D �.x/C �.x/�.�.x//

2
; x 2 G: (77)

Corollary 8. Let G be a group. Let � an involution of G and � be a unitary
character of G such that �.x�.x// D 1 for all x 2 G. Suppose that the pair .f ; g/
satisfies

jf .xy/C �.y/f .x�.y// � 2f .x/f .y/j � '.y/; x; y 2 G: (78)

Then either f satisfies jf .x/j � 1Cp
1C2'.x/
2

for all x 2 G or f satisfies d’Alembert’s
short functional equation (1).
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The General Sampling Theory by Using
Reproducing Kernels

Hiroshi Fujiwara and Saburou Saitoh

In Honor of Constantin Carathéodory

Abstract We would like to propose a new method for the sampling theory
which represents the functions by a finite number of point data in a very general
reproducing kernel Hilbert space function space. The result may be looked as
an ultimate sampling theorem in a reasonable sense. We shall give numerical
experiments also as its evidences.

1 Introduction

The Shannon sampling theorem with many related mathematicians is famous and
we have great references, see, for example, [7–9, 13]. However, as we see in the
typical Shannon theorem, the sampling points will be determined with strictly strong
conditions; this viewpoint will be a popular understanding. One more very important
point is as we see from the typical Shannon theorem, the function space, in the
Shannon sampling theorem, the Paley–Wiener space will contain very and very bad
functions such that for any given finite point set, functions taking any given values
exist. So, practically, the sampling theorem is valid among some good functions
only—not mathematically, but numerically, when we calculate and look for the
functions by computers. We will give this meaning more clearly in this paper. So,
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in the sampling theorem, we wish to select sampling points following the function
property that we are concerning, because we wish to collect some useful function
information from the sampling points. In this sense the sampling theory will have
a weak point, because the sampling points are determined by the function spaces,
as in the Paley–Wiener space. We shall give a new sampling theorem overcoming
this weak point that may be looked as an ultimate sampling theorem whose essential
tool is introduced in [2].

The construction of the paper is as follows: In Sect. 2, we shall fix the essences
of the reproducing kernel Hilbert spaces for our purpose. In Sect. 4, as the basic
method, we shall introduce the Aveiro discretization method which means the
general sampling theory and a general discretization for a general linear analytical
problems. In Sect. 5, as the basic reproducing kernel Hilbert spaces, we introduce
Sobolev reproducing kernel Hilbert spaces and the Paley–Wiener spaces. In Sect. 6,
we give numerical experiments as the main results of this paper. In Sect. 7, for the
practical calculation in the Aveiro discretization, we shall introduce the support
vector machine method as a new approach by Mo and Qian [10], and in Sect. 8,
we give the conclusion of the paper.

2 Preliminaries and the Basic Starting Points

First, we shall recall the reproducing kernel Hilbert spaces for their essences [11, 12]
for our purpose.

Let H be a Hilbert (possibly finite-dimensional) space, and consider E to be an
abstract set and h a Hilbert H -valued function on E. Then, we are able to consider
the linear transform

f . p/ D .f;h. p//H ; f 2 H ; (1)

from H into the linear space F .E/ comprising all the complex-valued functions
on E. In order to investigate the linear mapping (1), we form a positive definite
quadratic form function K.p; q/ on E � E defined by

K. p; q/ D .h.q/;h. p//H on E�E: (2)

Then, we obtain the following fundamental results:

Proposition 2.1. (I)The range of the linear mapping (1) by H is characterized
as the reproducing kernel Hilbert space HK.E/ admitting the reproducing kernel
K.p; q/ whose characterization is given by the two properties: .i/ K.�; q/ 2
HK.E/ for any q 2 E and, .ii/ for any f 2 HK.E/ and for any p 2 E,
. f .�/;K.�:p//HK .E/Df .p/.

(II) In general, we have the inequality

kf kHK .E/ � kfkH :
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Here, for any member f of HK.E/, there exists a uniquely determined f� 2 H
satisfying

f . p/ D .f�;h. p//H on E

and

kf kHK .E/ D kf�kH : (3)

(III) In general, we have the inversion formula in (1) in the form

f 7! f� (4)

in .II/ by using the reproducing kernel Hilbert space HK.E/.

The inversion (4) is, in general, very difficult and delicate problems; see the
details and the history, for example, [2, 11, 12].

The next result will show that a reproducing kernel Hilbert space is a good and
natural function space:

Proposition 2.2. For a Hilbert space H comprising of functions f f .p/g on a set E,
the space admits a reproducing kernel if and only if, for any point q 2 E, f ! f .q/
is a bounded linear functional on H. If a function sequence f fng converges to f in
the space H, then it converges to the function, point wisely on E. Furthermore, on a
subset of E where K.p; p/ is bounded, its convergence is uniform.

We shall call a complex-valued function k.p; q/ on a set E � E a positive definite
quadratic form function (or, a positive semi-definite matrix) on the set E when it
satisfies the property: for an arbitrary function X.p/ on E that is zero on E except
for a finite number of points of E,

P
p;q X.p/X.q/k.p; q/ � 0:

As we can see simply, a reproducing kernel K.p; q/ on E is a positive definite
quadratic form function on E, and indeed, its converse statement is very important:

Proposition 2.3. For any positive definite quadratic form function K.p; q/ on
E, there exists a uniquely determined reproducing kernel Hilbert space HK.E/
admitting the reproducing kernel K.p; q/ on E.

For a general reproducing kernel Hilbert space, we see that the space, in general,
contains a great number of functions in the following sense:

For any large number of points f pjgn
jD1 of the set E, we shall assume that, without

loss of generality, fK.p; pj/gn
jD1 are linearly independent in HK.� HK.E//. Then,

for any given values f˛jgn
jD1, there exists a uniquely determined member f 2 HK

satisfying

f . pj/ D ˛j; j D 1; 2; 3; ::; n; (5)

as follows:

f . p/ D
nX

jD1
CjK. p; pj/ (6)
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where the constants fCjgn
jD1 are determined by the equations:

nX

jD1
CjK. pj0 ; pj/ D ˛j0 ; j0 D 1; 2; : : : ; n: (7)

Note that the functions f satisfying (5) are, in general, not uniquely determined,
but the function f given by (6) has the minimum norm among the functions f
satisfying (5).

For any finite number of points f pjgn
jD1 and any given values f˛jgn

jD1, there exists
a function f 2 HK satisfying (5) certainly. However, for many points f pjgn

jD1 and bad
values f˛jgn

jD1, the calculations (7) solving the Eq. (7) will be difficult numerically
and practically. The difficulty to calculate (7) will depend on the given data and
the function space HK . We looked such phenomena for the Paley–Wiener spaces in
some cases [1, 2]; however, to represent such deep and delicate phenomena exactly
will be difficult. However, we may expect that the smoothness property of functions
may be reflected to some properties on a large point set. We shall propose such
method in the next section how to catch such property more clearly.

The goodness of a function in the reproducing kernel HK to solve the Eq. (7) may
be given by:

(1) The number of the points f pjg in (5)
(2) The distributions of the coefficients fCjgn

jD1 (the solutions of the Eq. (6)) and of
the given values f˛jgn

jD1 in (5)

and

(3) The distribution of the points f pjgn
jD1 on the set E.

The factors (1) and (2) may be considered in a general setting; however, (3) will
depend on the reproducing kernel Hilbert space HK .

For the bad functions in the above sense, we will not be able to catch the functions
practically by computers from data on a finite number of points effectively.

3 General Linear Problems and Reproducing Kernels

In general linear problems, for many cases we can formulate them as follows. As a
physical problem, the function space is written by a basic function family f jgn

jD1
with constants fCjgn

jD1 as follows:

f . p/ D
nX

jD1
Cj j. p/
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and we wish to determine the function f satisfying the data in the form (5). For this
problem, we can consider the reproducing kernel in the form

K. p; q/ D
nX

jD1
 j. p/ j.q/:

The important viewpoint is that here the functions f j.p/gn
jD1 may be considered as

arbitrary functions. Therefore, following a physical property, we can consider the
basis f j.p/gn

jD1 and we can apply the theory of reproducing kernels for the basic
problem.

4 Aveiro Discretization Method

Our new idea in [2] is based on the approximate realization of the abstract Hilbert
space HK in Proposition 2.1 by taking a finite number of points of E, because, in
general, the reproducing kernel Hilbert space HK has a complicated structure.

By taking a finite number of points f pjgn
jD1, we set

K. pj; pj0/ WD ajj0 : (8)

Then, if the matrix A WD �
ajj0
�

is positive definite, then, the corresponding norm in
HA comprising the vectors x D .x1; x2; : : : ; xn/

T is determined by

kxk2HA
D x�eAx;

where eA D A�1 D �
fajj0
�

(see [11, p. 250]). This property may, however, be
confirmed directly and easily.

When we approximate the reproducing kernel Hilbert space HK by the vector
space HA, then the following proposition is derived:

Proposition 4.1. In the linear mapping

f . p/ D .f;h. p//H ; f 2 H (9)

for

En D f p1; p2; : : : ; png;

the minimum norm inverse fAn satisfying

f . pj/ D .f;h. pj//H ; f 2 H (10)
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is given by

fAn D
nX

jD1

nX

j0D1
f . pj/fajj0h. pj0/; (11)

where fajj0 are assumed the elements of the complex conjugate inverse of the positive
definite Hermitian matrix An constituted by the elements

ajj0 D .h. pj0/;h. pj//H :

Here, the positive definiteness of An is a basic assumption.

The following proposition deals with the convergence of our approximate
inverses in Proposition 4.1.

Proposition 4.2. Let f pjg1
jD1 be a sequence of distinct points on E, that is the

positive definiteness in Proposition 4.1 for any n and a uniqueness set for the
reproducing kernel Hilbert space HK; that is, for any f 2 HK, if all f .pj/ D 0,
then f � 0. Then, in the space H

lim
n!1 f�

An
D f� (12)

for the given inverse f� which is given by (4) satisfying (3) in Proposition 2.1.

The result is a surprisingly simple and pleasant result; indeed, we can obtain
directly the ultimate realization of the reproducing kernel Hilbert spaces and the
ultimate sampling theory that are very simpler than the known derivation (cf. [11,
pp. 92–96]):

Proposition 4.3 (Ultimate Realization of Reproducing Kernel Hilbert Spaces).
In our general situation and for a uniqueness set f pjg1

jD1 of the set E satisfying the
linearly independence in Proposition 4.1, we obtain

k f k2HK
D kf�k2H D lim

n!1

nX

jD1

nX

j0D1
f . pj/fajj0 f . pj0/: (13)

Here, the limit is determined as the nondecreasing sequence.

Proposition 4.4 (Ultimate Sampling Theory). In our general situation and for
a uniqueness set f pjg1

jD1 of the set E satisfying the linearly independence in
Proposition 4.1, we obtain

f . p/ D lim
n!1.fAn ;h. p//H D lim

n!1

0

@
nX

jD1

nX

j0D1
f . pj/fajj0 h. pj0/;h. p/

1

A

H

(14)

D lim
n!1

nX

jD1

nX

j0D1
f . pj/fajj0 K. p; pj0/:
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Now, our basic idea is as follows: Fujiwara’s multiple-precision arithmetic
environment and high computer ability will be able to calculate the norm (13) for
many cases and practical cases; see the case of numerical and real inversion formula
of the Laplace transform that is a famous difficult case [1, 2, 4–6].

5 Sobolev Spaces and Paley–Wiener Spaces

In order to give numerical experiments, we shall introduce the typical reproducing
kernel Hilbert spaces, Sobolev Hilbert spaces.

Let m >
n

2
be an integer. Denote by mC� the binomial coefficient. Then we have

Wm;2.Rn/ D HKm.R
n/; (15)

where Wm;2.Rn/ denotes the Sobolev space whose norm is given by

k FkWm;2.Rn/ D

vuuut
mX

�D0
mC�

0

@
�X

˛2Zn
C
; j˛j��

�Š

˛Š

Z

R

ˇ
ˇ̌
ˇ
@�F.x/

@x�

ˇ
ˇ̌
ˇ

2

dx

1

A; (16)

and

Km.x; y/ D 1

.2
/n

Z

R

exp.i.x � y/ � �/
.1C j�j2/m d�: (17)

In particular, we note that:

If m >
n

2
, then Wm;2.Rn/ is embedded into BC.Rn/.

A generalization of the above spaces is given by:

Let s >
n

2
. Define

Ks.x; y/ WD 1

.2
/n

Z

Rn
.1C j�j2/�s exp.i.x � y/ � �/ d�: (18)

Then we have

HKs.R
n/ D Hs.R

n/; (19)

where the norm is given by

k f kHs.Rn/ D
�Z

Rn
.1C j�j2/sjF f .�/j2 d�

� 1
2

: (20)
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The simplest example is given by the following:
The space H1.R/ is made up of absolutely continuous functions F on R with the

norm

kFkH1.R/ WD
sZ

R

.F.x/2 C F0.x/2/dx: (21)

The Hilbert space H1.R/ admits the reproducing kernel

K1.x; y/ WD 1

2


Z

R

1

1C �2
exp.i.x � y/�/d� D 1

2
e�jx�yj: (22)

Note that if the factor .1 C j�j2/�s is replaced by the characteristic function on
.�
=h;C
=h/n, h > 0 on R

n, then the space becomes the Paley–Wiener space
comprising of entire functions of exponential type.

Indeed, for n D 1, we shall consider the integral transform, for the functions F
L2.�
=h;C
=h/, h > 0 as

f .z/ D 1

2


Z 
=h

�
=h
F.t/e�iztdt: (23)

In order to identify the image space following the theory of reproducing kernels, we
form the reproducing kernel

Kh.z; u/ D 1

2


Z 
=h

�
=h
e�izte�iutdt

D 1


.z � u/
sin




h
.z � u/: (24)

The image space of (23) is called the Paley–Wiener space W
�


h

�
comprised of

all analytic functions of exponential type satisfying, for some constant C and as
z ! 1

j f .z/j � C exp

�

jzj

h

�

and
Z

R

j f .x/j2dx < 1:
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From the identity

Kh. jh; j0h/ D 1

h
ı. j; j0/

(the Kronecker’s ı), since ı. j; j0/ is the reproducing kernel for the Hilbert space `2,
from the general theory of integral transforms and the Parseval’s identity, we have
the isometric identities in (23)

1

2


Z 
=h

�
=h
j F.t/j2dt D h

1X

jD�1
j f . jh/j2 D

Z

R

j f .x/j2dx:

That is, the reproducing kernel Hilbert space HKh with Kh.z; u/ is characterized as a
space comprising the Paley–Wiener space W

�


h

�
and with the norm squares above.

Here we used the well-known result that f jhg1
jD�1 is a unique set for the Paley–

Wiener space W
�


h

�
; that is, f . jh/ D 0 for all j implies f � 0. Then, the reproducing

property of Kh.z; u/ states that

f .x/ D . f .�/;Kh.�; x//HKh
D h

1X

jD�1
f . jh/Kh. jh; x/

D
Z

R

f .�/Kh.�; x/d�:

In particular, on the real line x, this representation is the sampling theorem which
represents the whole data f .x/ in terms of the discrete data f f . jh/g1

jD�1. For a
general theory for the sampling theory and error estimates for some finite points
fhjgj, see [11].

6 Numerical Experiments

In this section we show some numerical examples in order to look our principle
from the quantitative standpoint. Applications of the proposed sampling theorem
are compared in three function spaces: the Sobolev spaces H1.R/, H2.R/, and the
Paley–Wiener space W.
/. We recall that these function spaces admit reproducing
kernels

K1.x; y/ D 1

2
e�jx�yj 2 C;

K2.x; y/ D 1

4
e�jx�yj�1C jx � yj� 2 C2;
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and

Kh.x; y/ D 1


.x � y/
sin
.x � y/ 2 C! .analytic/;

respectively. All computations presented in the following examples are processed in
600 decimal digit precision by multiple-precision arithmetic library exflib [3]. We
discuss instability of numerical procedures in the latter of this section.

Example 1. We set the target function as

f .x/ D e�x2=
 sin
x:

Sampling points f pjg are uniformly randomly distributed in the interval Œ�5; 5� by
using the random-number generator function in the standard C library.

Figures 1, 2, and 3 show numerical reconstructions by the proposed formula in
H1.R/, H2.R/, and W.
/, respectively. In figures, cross points (�) are sampling
values, dotted curves are the target function f , and solid curves are numerically
reconstructed functions fAn .
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Fig. 1 Reconstruction of an analytic function (Example 1) in H1.R/. (a) Number of sampling
points n D 10. (b) Number of sampling points n D 20. (c) Number of sampling points n D 50.
(d) Number of sampling points n D 100
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Fig. 2 Reconstruction of an analytic function (Example 1) in H2.R/. (a) Number of sampling
points n D 10. (b) Number of sampling points n D 20. (c) Number of sampling points n D 50.
(d) Number of sampling points n D 100

We note that the target function f belongs to H1.R/, H2.R/, and W.
/; thus fAn

in these settings give good approximations to f as the number of sampling points n
is sufficiently large (Proposition 4.2).

Example 2. We consider a piecewise linear function

f .x/ D

8
ˆ̂<

ˆ̂:

x � 1; 1 � x < 2;

3 � x; 2 � x < 3;

0; otherwise:

Sampling points f pjg are chosen in the same manner as Example 1. Figures 4, 5,
and 6 show numerical reconstructions in the space H1.R/, H2.R/, and W.
/,
respectively. We give a remark that f belongs to H1.R/, hence reconstruction gives a
good approximation shown in Fig. 4. On the other hand, f does not belong to W.
/;
thus reconstructed fAn has serious oscillations shown in Fig. 6, and it diverges as n
tends to large (Fig. 7).

Example 3. We apply the proposed procedure to the characteristic function �Œ1;3�.x/.
Figures 8, 9, and 10 show numerically reconstructed fAn . Since the target function is
discontinuous and it does not belong to the considered function spaces, oscillation
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Fig. 3 Reconstruction of an analytic function (Example 1) in W.
/. (a) Number of sampling
points n D 10. (b) Number of sampling points n D 20. (c) Number of sampling points n D 50.
(d) Number of sampling points n D 100

appears in fAn as Figs. 9d and 10. More precisely, reconstruction in W.
/ grows
rapidly as n tends to increase as shown in Fig. 11.

Finally we give a remark on the instability of the proposed algorithm.
The procedure includes calculating the inversion of the matrix constituted by

elements (8). Figure 12 shows the condition numbers of the matrix in 2-norm for
some reproducing kernels. The reproducing kernel K1 is not differentiable and K2
is twice continuously differentiable, and condition numbers corresponding to K2
are larger than those of K1 from Fig. 12a. Moreover, the reproducing kernel of
the Paley–Wiener space is analytic, and corresponding condition numbers shown
in Fig. 12b are larger than those of K2. These numerical results indicate that
smoothness of a function space causes instability of the numerical procedure.

Since the procedure is numerically unstable, the influence of rounding errors
is serious in its numerical computations. Figure 13 shows numerical results with
various computational precisions. Figure 13a, b are results by the standard double
precision (16 decimal digits) and 50 decimal digits. The influence of rounding
errors appears due to lack of computational precision. Multiple-precision arithmetic
enables us to reduce the influence of rounding errors and to obtain reliable numerical
results shown in Fig. 13c, d. It also gives a quantitative viewpoint to check the
influence of rounding errors.
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Fig. 4 Numerical reconstructions for Example 2 in H1.R/. (a) Number of sampling points n D 10.
(b) Number of sampling points n D 20. (c) Number of sampling points n D 50. (d) Number of
sampling points n D 100

The results imply that 200 decimal digit precision is not enough, and almost 300
decimal digits are required to obtain reliable profiles of reconstructed functions by
overcoming the instability.

7 Applications of the Support Vector Machine Method

For the extremal problem (5)–(7), Mo and Qian [10] applied the support vector
machine method and compared with other typical numerical methods in analytical
problems generally; that is, the Aveiro discretization method was compared with
the classical methods: the finite difference method (FDM) and the finite element
method (FEM). Furthermore, they referred to the artificial neural networks (ANNs)
to solve partial differential equations in the discretization method. Meanwhile,
support vector machine (SVM), developed by V. Vapnik and his coworkers in 1995
[14], is based on statistical learning theory which seeks to minimize an upper
bound of the generalization error consisting of the sum of the training error and
a confidence interval. This principle is different from the commonly used empirical
risk minimization (ERM) principle which only minimizes the training error. Based
on this, SVMs usually achieve higher generalization performance than ANNs
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Fig. 5 Numerical reconstructions for Example 2 in H2.R/. (a) Number of sampling points n D 10.
(b) Number of sampling points n D 20. (c) Number of sampling points n D 50. (d) Number of
sampling points n D 100

which implement ERM principle. As a consequence, SVMs can be used wherever
that ANNs can, and usually achieve better results. Another key characteristic of
SVM is that training SVM is equivalent to solve a linearly constrained quadratic
programming problem so that the solution of SVM is unique and global, unlike
ANNs’ training which requires nonlinear optimization with the possibility of getting
stuck into local minima.

Based on the above viewpoints of Mo and Qian [10], the extremal problem
(5)–(7) will be very important and may be related to the support vector machine,
directly. Our numerical calculation for the introduced algorithms requested a
great computer power as in the Fujiwara’s multiple-precision arithmetic strategy
introduced, but the application of the SVMs to the problem may be applied with
a usual level computer power and furthermore may be dealt with erroneous data.
Therefore, the application of the support vector machine to the Aveiro discretization
method will be very interested. The paper [10] is the first challenge for this
approach. See [10] for the detail algorithm and numerical experiments.
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Fig. 6 Numerical reconstructions for Example 2 in W.
/. (a) Number of sampling points n D 10.
(b) Number of sampling points n D 20. (c) Number of sampling points n D 50. (d) Number of
sampling points n D 100
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Fig. 8 Reconstruction of a discontinuous (step) function (Example 3) in H1.R/. (a) Number of
sampling points n D 10. (b) Number of sampling points n D 50. (c) Number of sampling points
n D 100. (d) Number of sampling points n D 200
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Fig. 10 Reconstruction of a discontinuous function (Example 3) in W.
/. (a) Number of sampling
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1e-20

1e-10

1

1e+10

1e+20

1e+30

1e+40

1e+50

1e+60

1e+70

1e+80

-4 -2 0 2 4

ab
so

lu
te

 v
al

ue
 |f

 N
(x

)|

Number of Sampling Points

Kh h=1 N=200
Kh h=1 N=100

Kh h=1 N=50

Fig. 11 Profiles of j fn.x/j (n D 50, 100, and 200) in Example 3 in W.
/



202 H. Fujiwara and S. Saitoh

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10
a

b

 0  10  20  30  40  50  60  70  80  90  100

co
nd

iti
on

 n
um

be
rs

 in
 2

-n
or

m
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Number of Sampling Points

K2
K1

1

1e+50

1e+100

1e+150

1e+200

1e+250

1e+300

 0  10  20  30  40  50  60  70  80  90  100

co
nd

iti
on

 n
um

be
rs

 in
 2

-n
or

m
 (

lo
ga

rit
hm

ic
 s

ca
le

)

Number of Sampling Points

Kh h=2
Kh h=1

Kh h=0.5

Fig. 12 Condition numbers of the matrix
�
K.pi; pj/

�
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8 Conclusion

We showed a general sampling theorem and the concrete numerical experiments
for the simplest and typical examples. We gave the sampling theorem in the
Sobolev Hilbert spaces with numerical experiments. For the Sobolev Hilbert spaces,
sampling theorems seem to be a new concept.

For the typical Paley–Wiener spaces, the sampling points are automatically
determined as the common sense; however, in our general sampling theorem, we
can select the sampling points freely, and so, case by case, following some a priori
information of a considering function, we can take the effective sampling points.
We showed these properties by the concrete examples.
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Fig. 13 Influence of rounding errors in numerical reconstruction by various computational
precision in W.
/with n D 100. (a) The standard double precision. (b) 200 decimal digits. (c) 300
decimal digits. (d) 600 decimal digits
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Kronecker’s Products and Kronecker’s
Sums of Operators

Michael Gil’

In Honor of Constantin Carathéodory

Abstract This chapter is a survey of recent results of the author on operators on
tensor products of Hilbert and Euclidean spaces. We derive norm estimates for the
resolvents of Kronecker’s products of operators, Kronecker’s sums of operators,
and operator pencils on tensor products of Hilbert spaces. By these estimates, we
investigate bounds for spectra of perturbed operators. Applications of our results to
matrix differential and integro-differential operators are also discussed.

1 Introduction and Notations

1.1 Introduction

The present paper is a survey of the recent results of the author on operators on
tensor products of Hilbert spaces.

Operators on tensor products of Hilbert (in particular, Euclidean) spaces arise in
various problems of pure and applied mathematics, for instance, in the theories of
matrix equations [27], system theory [1], and quantum mechanics [34], as well as
in the theories of differential [11], partial integral and integro-differential operators
[10], dynamical systems [33], etc.

In the finite dimensional case, tensor products of spaces are a classical notion
of the multilinear algebra [24]. The theory of linear operators on tensor products
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of Euclidean spaces is well developed; see the well-known books [23, 25, 34].
The infinite-dimensional case is investigated considerably less than the finite
dimensional one.

The classical results on operators on tensor products of Hilbert spaces are
presented in [2, 3, 31, 32]. In particular, Brown and Pearcy [2] investigated the
spectrum of the Kronecker (tensor) product of operators and Ichinose [26] explored
the spectrum of the Kronecker (tensor) sum of operators. The recent results can
be found, in particular, in the papers [28–30] and references therein. In [28] the
author investigates the invariant subspaces of operators on multiple tensor products.
In the paper [30] the authors prove that the weak (strong, uniform) convergence of
sequences of Hilbert space operators is preserved by tensor products. In the case of
convergence to zero, it is shown that the boundedness of one sequence and the weak
(strong, uniform) convergence to zero of the other one suffice to ensure the conver-
gence of their tensor products to zero in the same topology and that the converse
holds for power sequences. They also show that a tensor product of operators is a
unilateral shift if and only if it coincides with a tensor product of a unilateral shift
and an isometry. In the paper [29] the authors investigate the problem of transferring
the Weyl and Browder theorems from operators to their tensor product.

In the present paper, we establish norm estimates for the resolvents of Kro-
necker’s products of operators, Kronecker’s sums of operators, and operator pencils
on tensor products of Hilbert spaces. By these estimates, we investigate bounds for
the spectra of perturbed operators. Applications of our results to matrix differential
and integro-differential operators are also discussed.

Here are a few words about the contents. The paper consists of 13 sections.
In Sect. 2 we collected some results on matrices and operators which are

systematically used in the following sections.
Sections 3–6 are concerned with the Kronecker products of operators; in

particular, norm estimates for the resolvents of Kronecker’s products of operators
in Euclidean and Hilbert spaces are suggested.

Sections 7–10 are devoted to the resolvents and spectrum perturbations of
Kronecker’s sums of operators.

Section 11 deals with operator pencils on tensor products of Hilbert spaces. The
results obtained in Sect. 11 enable us to investigate in Sects. 12 and 13 the spectra
of differential operators with matrix coefficients and integro-differential operators,
respectively.

1.2 Notations

Let E1 and E2 be separable Hilbert spaces with scalar products h:; :i1 and h:; :i2,
respectively, and the norms k:kj D ph:; :ij . j D 1; 2/ and the unit operator I D Ij.

The tensor product H D E1 ˝ E2 of E1 and E2 is defined by the following way.
Consider the collection of all formal finite sums of the form

u D
X

j

yj ˝ hj . yj 2 E1; hj 2 E2/



Kronecker’s Products and Kronecker’s Sums of Operators 207

with the understanding that

�. y ˝ h/ D .�y/˝ h D y ˝ .�h/; . y C y1/˝ h D y ˝ h C y1 ˝ h;

y ˝ .h C h1/ D y ˝ h C y ˝ h1 . y; y1 2 E1I h; h1 2 E2I� 2 C/:

On that collection define the scalar product as

hy ˝ h; y1 ˝ h1iH D hy; y1i1 hh; h1i2 . y; y1 2 E1; h; h1 2 E2/

and take the norm k:kH D ph:; :iH . Then H is the completion of the considered
collection in the norm k:kH . Besides IH D I denotes the unit operator in H .

From the theory of tensor products, we only need elementary facts which can be
found in [3].

For a linear operator A in H , �.A/ is the spectrum; Dom .A/ is the domain;
R�.A/ WD .A � I�/�1 is the resolvent; �k.A/ .k D 1; 2; � � �/ are the eigenvalues
with their multiplicities; co.A/ is the closed convex hull of �.A/; A� is the adjoint
one; Im A D .A � A�/=2i is the imaginary Hermitian component; rs.A/ denotes the
(upper) spectral radius; rlow.A/ is the lower spectral radius: rlow.A/ D inf j�.A/j;
˛ .A/ D sup Re �.A/, ˇ .A/ D inf Re �.A/, and �.A; �/ WD inft2�.A/ jt � �j is
the distance between �.A/ and a � 2 C; �k.A/ are the eigenvalues taken with their
multiplicities; and kAk D kAkH means the operator norm.

By SNp we denote the Schatten–von Neumann ideal of operators K with the finite
norm Np.K/ WD ŒTrace.KK�/�p=2 .p � 1/. So SN2 is the Hilbert–Schmidt ideal.

A linear operator V is said to be quasinilpotent if �.V/ D f0g. V is called a
Volterra operator if it is quasinilpotent and compact.

L.E1;E2/ denotes the set of all bounded operators acting from a space E1 into a
space E2. L.E / denotes the set of all bounded operators in a space E .

Lemma 1. If xn ! x0 in E1 and yn ! y0 in E2, then xn ˝ yn ! x0 ˝ y0.

Proof. With obvious notations, for an � > 0, suppose kx�x0k � � and k y�y0k � �.
The identity

x ˝ y � x0 ˝ y0 D x ˝ . y � y0/C .x � x0/˝ y0

yields the inequalities

kx ˝ y � x0 ˝ y0k � kx ˝ . y � y0/k C k.x � x0/˝ y0k
D kxkk y � y0k C kx � x0kk y0k � �.kxk C k y0k/:

This proves the lemma. Q.E.D.
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2 Preliminaries

2.1 Resolvents of Finite-Dimensional Operators

As it is well-known, by Schur’s theorem [25], for any operator A in Cn, there is
an orthogonal normal basis (Schur’s basis) fekgn

kD1, in which A is represented by a
triangular matrix. That is,

Aek D
kX

jD1
ajkej with ajk D .Aek; ej/ . j D 1; : : : ; n/;

and ajj D �j.A/. So A D DA C VA .�.A/ D �.DA// with a normal (diagonal)
matrix DA defined by DAej D �j.A/ej . j D 1; : : : ; n/ and a nilpotent (strictly
upper-triangular) matrix VA defined by VAek D a1ke1 C � � � C ak�1;kek�1 .k D
2; : : : ; n/;VAe1 D 0: So DA and VA are the diagonal part and nilpotent part of A,
respectively. The Schur basis is not unique.

In the sequel jAj D jAjSb means the operator, whose entries in some of its fixed
Schur basis are the absolute values of the entries of operator A in that basis. We will
call jAj the absolute value of A (with respect to the Schur basis), i.e.,

jAjek D
kX

jD1
jajkjej . j D 1; : : : ; n/:

We write A � 0 if all the entries of A are nonnegative and A � B if A � B � 0. If
A is normal, then jAj � rs.A/I.

The smallest integer �A � n, such that jVAj�A D 0, will be called the nilpotency
index of A.

In the following lemma A;VA and .A � �I/�1 are considered in the same Schur
basis.

Lemma 2. Let A be an n � n-matrix. Then

j.A � �I/�1j �
�A�1X

jD0

1

�jC1.A; �/
jVAjj .� 62 �.A//;

where �.A; �/ D minkD1;:::;n j� � �k.A/j and VA is the nilpotent part of A.

Proof. Due to the triangular representation, we have

A � �I D DA C VA � �I D .DA � �I/.I � Q�/;



Kronecker’s Products and Kronecker’s Sums of Operators 209

where Q� D .DA � �I/�1VA is nilpotent, since VA in Schur’s basis is a nilpotent
triangular matrix and .DA � �I/�1 is a diagonal one. Hence,

.A � �I/�1 D .I � Q�/
�1.DA � �I/�1 .� 62 �.DA//:

But �.A/ D �.DA/ and j.DA � �I/�1j � 1
�.DA;�/

I and therefore jQ�j � 1
�.DA;�/

jVAj.
So Q�A

� D 0 and thus,

.A � �I/�1 D .DA � �I/�1
�A�1X

kD0
Qk
� .� 62 �.A//:

This proves the required result. Q.E.D.

Lemma 3. For any nilpotent operator V 2 L.Cn/, we have

kVjk � Nj
2.V/p

jŠ
. j D 1; : : : ; n � 1/:

For the proof, see [4, Corollary 2.5.2],
Put

g.A/ D .N2
2 .A/ �

nX

kD1
j�k.A/j2/1=2;

u.A/ WD
"

2N2.Im A/ � 2
nX

kD1
jIm �k.A/j2

#1=2
;

and

#.A/ D
"

Tr .A�A � I/ �
nX

kD1
.j�k.A/j2 � 1/

#1=2
;

where �k.A/ are the eigenvalues of A with their multiplicities. Due to Theorem 2.3.1
and Lemma 7.15.2 from the book [4], the following result is true.

Lemma 4. Let A 2 L.Cn/. Then

N2.VA/ D u.A/ D g.A/ D #.A/:

Lemma 5. One has

k.A � �I/�1k �
�A�1X

jD0

gj.A/p
jŠ�jC1.A; �/

.� 62 �.A//:
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Proof. Due to Lemma 3,

kjVAjjk � Nj
2.jVAj/p

jŠ
D Nj

2.VA/p
jŠ

. j D 1; : : : ; �A � 1/:

Now the previous lemma yields the required result. Q.E.D.

The later lemma is a slight refinement of Corollary 2.1.2 from [4].
The following relations are checked in [4, Sect. 1.5]:

g2.A/ � N2
2 .A/ � jTrace A2j; g.A/ � 1p

2
N2.A � A�/

and g.eiaA C zIH/ D g.A/ .a 2 R; z 2 C/; if A is a normal matrix: A�A D AA�, then
g.A/ D 0. If A1 and A2 have a joint Schur’s basis (in particular, they commute), then
g.A1 C A2/ � g.A1/C g.A2/. In addition, by the inequality between the geometric
and arithmetic mean values,

 
1

n

nX

kD1
j�k.A/j2

!n

�
 

nY

kD1
j�k.A/j

!2
:

Hence g2.A/ � N2
2 .A/ � n.det A/2=n.

2.2 Resolvents of Infinite-Dimensional Operators

In this subsection H is an infinite-dimensional separable Hilbert space and
A 2 L.H /.

2.2.1 Resolvents of Hilbert–Schmidt Operators

Theorem 1. Let A 2 SN2 and

g.A/ D
"

N2
2 .A/ �

1X

kD1
j�k.A/j2

#1=2
:

Then

kR�.A/k �
1X

kD0

gk.A/p
kŠ�kC1.A; �/

.� 62 �.A//:
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Moreover,

kR�.A/k � 1

�.A; �/
exp



1

2
C g2.A/

2�2.A; �/

�
.� 62 �.A//:

This result is due to Theorems 6.4.1 and 6.4.2 from [4].
In the infinite-dimensional case, the relations

g2.A/ � N2
2 .A/ � jTrace A2j; g.A/ � 1p

2
N2.A � A�/

are also valid. If A is a normal operator: A�A D AA�, then g.A/ D 0. If A1 and A2
are commuting operators, then g.A1 C A2/ � g.A1/C g.A2/.

2.2.2 Resolvents of Schatten–von Neumann Operators

Theorem 2. Let the condition A 2 SN2p hold for an integer p � 2. Then

kR�.A/k �
p�1X

mD0

1X

kD0

.2N2p.A//pkCm

�pkCmC1.A; �/
p

kŠ
.� 62 �.A//:

Moreover,

kR�.A/k � e1=2
p�1X

mD0

.2N2p.A//m

�mC1.A; �/
exp



.2N2p.A//2p

2�2p.A; �/

�
.� 62 �.A//:

The proof of this theorem can be found in [4, Sects. 6.7 and 6.8]. Put

�
. p/
j D 1

p
Œ j=p�Š

;

where Œx� means the integer part of a real number x. Now the previous theorem
implies

Corollary 1. For an integer p � 2, let A 2 SN2p. Then

kR�.A/k �
1X

jD0

�
. p/
j .2N2p.A//j

�jC1.A; �/
.� 62 �.A//:

Since the condition A 2 SN2p implies A � A� 2 SN2p, one can utilize addi-
tional estimates, presented in Sect. 2.2.4 below. The next result is proved in
[4, Theorem 7.7.1].
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2.2.3 Operators with Hilbert–Schmidt Hermitian Components

Theorem 3. Let A � A� 2 SN2. Then with the notation

u.A/ D
"

2N2
2 .Im A/ � 2

1X

kD1
.Im �k/

2

#1=2

we have

kR�.A/k �
1X

kD0

uk.A/p
kŠ�kC1.A; �/

.� 62 �.A//:

Moreover,

kR�.A/k � 1

�.A; �/
exp



1

2
C u2.A/

2�2.A; �/

�
.� 62 �.A//:

If operators A;B 2 L.H / commute, and A�A�;B�B� 2 SN2, then u.ACB/ �
u.A/C u.B/.

Furthermore, if a unitary operator U commutes with A, and

Im .UA/ WD .UA � .UA/�/=2i 2 SN2;

then the previous theorem is valid with

u.UA/ WD 2

"

N2
2 ..UA/I/ �

1X

kD1
.Im .�k.UA//2

#

instead of u.A/. One can take the operator U defined by the multiplication by eit for
a real t. Then

u2.eitA// D 2N2
2 .Im .eitA// � 2

1X

kD1
.Im .eit�k.A///

2:

2.2.4 Operators with Neumann–Schatten Hermitian Components

Assume that

Im A WD .A � A�/=2i 2 SN2p for some integer p > 1: (1)
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Put

ˇp WD
(
2.1C ctg . 


4p / / if p D 2m�1; m D 1; 2; : : :

2.1C 2p
exp.2=3/ ln 2 / otherwise

:

Theorem 4. Let condition (1) hold. Then

kR�.A/k �
p�1X

mD0

1X

kD0

.ˇpN2p.AI//
kpCm

�pkCmC1.A; �/
p

kŠ
.� 62 �.A//:

Moreover,

kR�.A/k � e1=2
p�1X

mD0

.ˇpN2p.AI//
m

�mC1.A; �/
exp



.ˇpN2p.AI//

2p

�2p.A; �/

�
.� 62 �.A//:

For the proof, see Theorems 7.9.1 and 7.9.2 from [4].

2.2.5 Operators Close to Unitary Ones

Assume that A has a regular point on the unit circle and AA� � I 2 SN1. Put

#.A/ D
"

Tr .A�A � I/ �
1X

kD1
.j�k.A/j2 � 1/

#1=2
;

where �k.A/; k D 1; 2; : : : are the nonunitary eigenvalues with their multiplicities,
that is, the eigenvalues with the property j�k.A/j ¤ 1.

Theorem 5. Let AA� � I 2 SN1 and A have a regular point on the unit circle. Then

kR�.A/k �
1X

kD0

#k.A/p
kŠ�kC1.A; �/

.� 62 �.A//:

Moreover,

kR�.A/k � 1

�.A; �/
exp



1

2
C #2.A/

2�2.A; �/

�
.� 62 �.A//:

For the proof, see [4, Theorem 7.15.1].
If A is a normal operator, then #.A/ D 0. Let A have the unitary spectrum only.

That is, �.A/ lies on the unit circle. Then #.A/ D ŒTr .A�A � I/�1=2. Moreover, if
the condition
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1X

kD1
.j�k.A/j2 � 1/ � 0

holds, then

Tr .A�A � I/ D
1X

kD1
.s2k.A/ � 1/ �

1X

kD1
.j�k.A/j2 � 1/ D Tr .D�D � I/ � 0

and therefore, #.A/ � ŒTr .A�A � I/�1=2.

2.3 Spectral Variations

Definition 1. Let A and B be linear operators in H . Then the quantity

svA.B/ WD sup
�2�.B/

inf
�2�.A/ j� � �j

is called the spectral variation of a B with respect to A. In addition,

hd.A;B/ WD maxfsvA.B/; svB.A/g

is the Hausdorff distance between the spectra of A and B.

We will need the following technical lemma.

Lemma 6. Let A1 and A2 be linear operators in H with the same domain and
q WD kA1 � A2k < 1. In addition, let

kR�.A1/k � F

�
1

�.A1; �/

�
.� 62 �.A1//;

where F.x/ is a monotonically increasing continuous function of a nonnegative
variable x, such that F.0/ D 0 and F.1/ D 1. Then svA1 .A2/ � z.F; q/, where
z.F; q/ is the unique positive root of the equation 1 D qF.1=z/.

For the proof, see [4, Lemma 8.4.2].
Consider the scalar equation

1X

kD1
akzk D 1; (2)
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where the coefficients ak .k D 1; 2; : : :/ have the property

�0 WD 2max
k

k
p

jakj < 1:

We need the following:

Lemma 7. Any root z0 of Eq. (2) satisfies the estimate jz0j � 1=�0.

For the proof, see [4, Lemma 8.3.1].

Lemma 8. The unique positive root za of the equation

p�1X

jD0

1

yjC1 exp



1

2

�
1C 1

y2p

��
D a .a D const > 0I p D 1; 2; : : :/ (3)

satisfies the inequality za � ıp.a/, where

ıp.a/ WD
�

pe=a if a � pe;
Œln .a=p/��1=2p if a > pe

:

The proof of this result can be found in [4, Lemma 8.3.2].

Corollary 2. The unique positive root z.c; d/ of the equation

c

y
exp



b2

y2

�
D 1 .c; d D const > 0/ (4)

satisfies the inequality z.b; c/ � ı.b; c/, where

ı.b; c/ WD
8
<

:

ce1=2 if b
p
2 � ce1=2;

b
p
2
�

ln
�

b
p
2e

c

		�1=2
if b

p
2 > ce1=2

:

Indeed substitute y D b
p
2x into (4), then we obtain

c

b
p
2

1

x
exp Œ1=.2x2/� D 1:

Hence we obtain Eq. (3) with

a D p
2e

b

c
:

Now the previous lemma implies the result.
We need also the following lemma from [12, Lemma 1.6.5] .
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Lemma 9. The unique positive root z0 of the equation

zez D a .a D const > 0/

satisfies the estimate

z0 � ln

"
1

2
C
r
1

4
C a

#

:

If, in addition, the condition a � e holds, then z0 � ln a � ln ln a.

For small a we asymptotically have
p
1C 4a � 1C 2a and

z0 � ln



1

2
.1C p

1C 4a/

�
� ln Œ1C a� � a:

2.4 Additional Perturbation Results

Let X be a Banach space with a norm k:kX .

Lemma 10. Let A and QA be linear operators in X with the same dense domain
Dom.A/, and the operators C D QA � A and Z WD QAC � CA be bounded. In addition,
let � 2 C be a regular point of both operators A and QA. Then

R�. QA/ � R�.A/ D R�. QA/ZR2�.A/ � CR2�.A/: (5)

For the proof, see Lemma 3.1 from [14]. The result similar to the latter lemma for
bounded operators has been proved in [13].

Denote

�.A;C/ WD sup
0�t�1

tk.AC � CA C tC2/R2�.A/kX:

Lemma 11. Let A and QA be linear operators in X with the same dense domain
Dom.A/, and the operators C D QA � A and QAC � CA be bounded. In addition, let
� 2 C be a regular point of A and �.A;C; �/ < 1. Then � 62 �. QA/ and identity (5)
holds. Moreover,

kR�. QA/kX � kR�.A/ � CR2�.A/kX

1 � �.A;C; �/ :

For the proof, see Lemma 3.2 from [14].
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It is clear that �.A;C; �/ � �2X.A;C/kR2�.A/kX , where

�X.A;C/ WD
p

kAC � CAkX C kC2kX:

Now the previous lemma yields the following result.

Corollary 3. Let A and QA satisfy the hypothesis of Lemma 11. Let � 62 �.A/ and
�X.A;C/kR�.A/kX < 1: Then � 62 �. QA/ and relation (5) holds.

Remark 1. The Hilbert identity Rz. QA/� Rz.A/ D �Rz. QA/. QA � A/Rz.A/ implies that
� 62 �. QA/ provided � 62 �.A/ and

kCkXkR�.A/kX < 1: (6)

Thus Corollary 3 improves (6), provided

kAC � CAkX C kC2kX < kCk2X :

This inequality holds, for example, if A and QA are commuting and C is non-normal.

About perturbations of finite and infinite-dimensional operators with simple
spectra via condition numbers, see [16, 18, 21, 22].

We need also the following result proved in [15].

Theorem 6. Let A 2 SN2. Then

1X

kD1
j�k.A/j2 �



N4
2 .A/ � 1

2
N2
2 .A

�A � AA�/
�1=2

:

3 Basic Properties of Kronecker’s Products of Operators

Let E1;E2 be separable Hilbert spaces and H D E1 ˝ E2, again.

Definition 2. The Kronecker product of A 2 L.E1/ and B 2 L.E2/ denoted by A˝B
is defined by

.A ˝ B/. f1 ˝ f2/ D .Af1/˝ .Bf2/ . fl 2 El; l D 1; 2/:

Some very basic properties of the Kronecker product are stated in the following
lemma.

Lemma 12. With obvious notations:

(a) .ACA1/˝B D A˝BCA1˝BI A˝ .B1CB2/ D A˝B1CA˝B2I .�A˝B/ D
�.A ˝ B/I .A ˝ �B/ D �.A ˝ B/ .� 2 C/.

(b) I1 ˝ I2 D IH .
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(c) .A ˝ B/.C ˝ D/ D .AC/˝ .BD/.
(d) .A ˝ B/� D A� ˝ B�.
(e) kA ˝ Bk D kAkkBk.
( f) A ˝ B is invertible if and only if A and B are both invertible,

in which case .A ˝ B/�1 D A�1 ˝ B�1.

Proof.

(a) For example,

..A C A1/˝ B/.x ˝ y/ D .Ax C A1x/˝ By D Ax ˝ By C A1x ˝ By D

.A ˝ B/.x ˝ y/C .A1 ˝ B/.x ˝ y/:

Similarly the other relations from (a) can be proved.
(b) .I � I/.x ˝ y/ D x ˝ y D I.x ˝ y/.
(c) .A ˝ B/.C ˝ D/.x ˝ y/ D .A ˝ B/.Cx ˝ Dy/ D .ACx ˝ BDy/ D Œ.AC/ ˝

.BD/�.x ˝ y/.
(d) h.A ˝ B/�.x ˝ y/; u ˝ vi D hx ˝ y; .Au ˝ Bv/i D hx;Aui1hy;Bvi2 D

hA�x; ui1hB�y; vi2 D hA�x ˝ B�y; u ˝ yi D h.A� ˝ B�/.x ˝ y/; u ˝ yi.
(e) We have

k.A ˝ B/.x ˝ y/k D kAx ˝ Byk D kAxkkByk � kAkkxkkBkk yk:

So kA ˝ Bk � kAkkBk. To prove the reverse inequality, choose sequences
xn 2 E1, yn 2 E2, kxnk D k ynk D 1, and kAxnk ! kAk; kBynk ! kBk. Then

kAxn ˝ Bynk D kAxnkkBynk ! kAkkBk:

Since

kxn ˝ ynk D kxnkk ynk D 1;

we have

k.A ˝ B/.xn ˝ yn/k � kA ˝ Bk

whence

kAkkBk � kA ˝ Bk:

on passing to the limit.
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(f) If A and B are invertible, then .A ˝ B/.A�1 ˝ B�1/ D AA�1 ˝ BB�1 D I and
similarly .A�1 ˝ B�1/.A ˝ B/ D I: Conversely, suppose A ˝ B is invertible.
Since

A ˝ B D .A ˝ I/.I ˝ B/;

it follows that A ˝ I and I ˝ B are also invertible, so it will suffice to show that
the invertibility of A ˝ I implies that of A (the proof for B is similar). We know
that A ˝ I and A� ˝ I are bounded from below, and it will suffice to show that
A and A are bounded from below. Thus we are reduced to showing that the
boundedness from below of A ˝ I implies that of A. By supposition, there exists
an � > 0 such that k.A ˝ I/uk � �kuk for all u 2 H . Then, k.A ˝ I/x ˝ yk �
�kxkk yk for all x 2 E1; y 2 E2, that is, kAx ˝ yk � �kxkk yk whence kAxk �
�kxk (choose any nonzero y, and then cancel). Similarly, kA�xk � �kxk. Q.E.D.

Corollary 4. If A 2 L.E1/ and B 2 L.E2/ are either (a) unitary, (b) self-adjoint, (c)
positive definite, or (d) normal, then so is A ˝ B.

Indeed, for example, let A and B be unitary. Then .A˝B/�.A˝B/ D A�A˝B�B D I
and similarly .A ˝ B/.A ˝ B/� D I.

Similarly the other assertions can be proved.

Theorem 7. The spectrum of A ˝ B is

�.A ˝ B/ D �.A/ � �.B/ D fts W t 2 �.A/; s 2 �.B/g:

For the proof, see [2]. In the finite dimensional case, see [25].
If A and B are finite dimensional operators, then from the latter theorem, it

follows Trace .A ˝ B/ D Trace .A/ Trace .B/. Hence we easily get

Corollary 5. Let A;B 2 SN1. Then Trace .A ˝ B/ D Trace .A/ Trace .B/ .

If A and B are finite dimensional operators, then

.A ˝ B/�.A ˝ B/ D A�A ˝ B�B

and

Œ.A ˝ B/�.A ˝ B/�p D .A�A/p ˝ .B�B/p . p > 0/I

we arrive at the relation

Trace Œ.A ˝ B/�.A ˝ B/�p D Trace .A�A/p Trace .B�B/p:

We thus obtain

Corollary 6. Let A;B 2 SNp .1 � p < 1/. Then Np.A ˝ B/ D Np.A/Np.B/.
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4 Norm Estimates for Resolvents of Kronecker’s
Products in Finite Dimensional Spaces

4.1 Statement of the Result

In this subsection El D Cnl . So H D Cn1 ˝Cn2 and Al 2 L.Cnl/ .nl < 1I l D 1; 2/.
Recall that

g.Al/ D
"

N2
2 .Al/ �

nlX

kD1
j�k.Al/j2

#1=2

and denote

�j.A1;A2/ WD
jX

k1;k2D0
Cj

k1;k2;j�k1�k2
rk1

s .A1/r
k2
s .A2/

gj�k1 .A1/gj�k2 .A2/p
. j � k1/Š. j � k2/Š

;

where

Cj
k1;k2;k3

D jŠ

k1Šk2Šk3Š
:

Note that Cj
k1;k2;j�k1�k2

D 0 if k1 C k2 > j. So one can write

�j.A1;A2/ D
X

0�k1Ck2�j

Cj
k1;k2;j�k1�k2

rk1
s .A1/r

k2
s .A2/

gj�k1 .A1/gj�k2 .A2/p
. j � k1/Š. j � k2/Š

:

If A1 is normal, then g.A1/ D 0 and with g0.A1/ D 1 we have

Cj
k2;j;�k2

D jŠ

k2ŠjŠ.�k2/Š
D 0 for k2 > 0 and Cj

0;j;0 D jŠ

0ŠjŠ0Š
D 1:

Thus, in this case

�j.A1;A2/ D rj
s.A1/g

j.A2/p
jŠ

. j D 0; 1; 2; : : :/:

If both A1 and A2 are normal, then �0.A1;A2/ D 1 and �j.A1;A2/ D 0 for j � 1.
Put �.n1; n2/ D n1 C n2 C minfn1; n2g � 2.

Theorem 8. Let Al 2 L.Cnl/ .l D 1; 2/. Then

k.A1 ˝ A2 � �IH /�1kH �
�.n1;n2/�1X

jD0

�j.A1;A2/

�jC1.A1 ˝ A2; �/
.� 62 �.A1 ˝ A2//; (7)
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where

�.A1 ˝ A2; �/ WD inf
t2�.A1/;s2�.A2/

jts � �j:

With k3 D j � k1 � k2 we have

1

. j � k1/Š. j � k2/Š
D 1

.k1 C k3/Š.k2 C k3/Š
� 1

k1Šk2Šk3Š
D jŠ

jŠk1Šk2Šk3Š
� 3j

jŠ
;

since

.a C b C c/j D
X

k1Ck2Ck3Dj

ak1bk2ck3Cj
k1;k2;k3

.a; b; c D const/:

Thus

�j.A1;A2/ � 3j=2

p
jŠ

jX

k1;k2D0
Cj

k1;k2;j�k1�k2
rk1

s .A1/r
k2
s .A2/g

j�k1 .A1/g
j�k2 .A2/

D 3j=2

p
jŠ
.g.A1/rs.A2/C g.A2/rs.A1/C g.A1/g.A2//

j:

Now Theorem 8 implies

Corollary 7. Let Al 2 L.Cnl/ .l D 1; 2/. Then for all � 62 �.A1 ˝ A2/,

k.A1 ˝ A2 � �IH /�1kH

�
�.n1;n2/�1X

jD0

3j=2.g.A1/rs.A2/C g.A2/rs.A1/C g.A1/g.A2//jp
jŠ�jC1.A1 ˝ A2; �/

:

4.2 Proof of Theorem 8

We need a few technical lemmas.

Lemma 13. Let Wk .k D 1; 2; 3/ be mutually commuting nilpotent operators in
Cn and Wjk

k D 0 for an integer jk � n. Then

.W1 C W2/
j1Cj2�1 D 0 (8)

and

.W1 C W2 C W3/
j1Cj2Cj3�2 D 0: (9)
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Proof. Put OW2 D W1 C W2. We have

OWj1Cj2�1
2 D

j1Cj2�1X

kD0

�
j1Cj2�1
k

	
Wj1Cj2�k�1
1 Wk

2 ;

where .jk/ are the binomial coefficients. Thus either j1Cj2�k�1 � j1 or k � j2. This
proves (8). Furthermore, put OW3 D W1CW2CW3 D OW2CW3. Since OWj1Cj2�1

2 D 0,
replacing in our arguments W1 by OW2 and W2 by W3, we obtain OWj1Cj2Cj3�2

3 D 0 as
claimed. Q.E.D.

Let Vl 2 L.Cnl/ be nilpotent operators and Bl 2 L.Cnl/ be normal ones .l D 1; 2/.

In addition, V1 and B1 have a joint Schur’s basis
n
e.1/k

on1

kD1. Similarly, V2 and B2 have

a joint Schur’s basis
n
e.2/k

on2

kD1.
Consider the operator

W D V1 ˝ B2 C B1 ˝ V2 C V1 ˝ V2: (10)

Then the Schur basis of W is defined as fe.1/j ˝ e.2/k gjD1;:::;n1IkD1;:::;n2 . Recall that
the absolute value of a matrix with respect to a Schur’s basis is defined in Sect. 2.1.
Besides, we put jA1 ˝ A2j D jA1j ˝ jA2j. So if

W
�

e.1/j ˝ e.2/k

	
D

jX

j1D1

kX

k1D1
wj1jk1k

�
e.1/j1

˝ e.2/k1

	
;

then

jWj
�

e.1/j ˝ e.2/k

	
D

jX

j1D1

kX

k1D1
jwj1jk1kj

�
e.1/j1

˝ e.2/k1

	
;

and therefore

jWj � jV1j ˝ jB2j C jB1j ˝ jV2j C jV1j ˝ jV2j:

Lemma 14. Let W be defined by (10). Then W�.n1;n2/ D 0 and

jWjj �
X

k1Ck2Ck3Dj

Cj
k1;k2;k3

rk1
s .B1/r

k2
s .B2/.jV1jk2Ck3 ˝ jV2jk1Ck3 / . j < �.n1; n2//:

Proof. In a Schur’s basis of W, we have

jWj � rs.B1/I ˝ jV2j C jV1j ˝ rs.B2/I C jV1j ˝ jV2j:
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Put W1 D rs.B1/I ˝ jV2j;W2 D jV1j ˝ rs.B2/I; and W3 D jV1j ˝ jV2j. Since they
commute and jVljnl D 0, due to (9) we have jWj�.n1;n2/ D 0. In addition, we can
write

.W1 C W2 C W3/
j D

X

k1Ck2Ck3Dj

Cj
k1;k2;k3

Wk1
1 Wk2

2 Wk3
3

D
X

k1Ck2Ck3Dj

Cj
k1;k2;k3

rk1
s .B1/r

k2
s .B2/.I ˝ jV2jk1 /

.jV1jk2 ˝ I/.jV1jk3 ˝ jV2jk3 /
D

X

k1Ck2Ck3Dj

Cj
k1;k2;k3

rk1
s .B1/r

k2
s .B2/.jV1jk2Ck3 ˝ jV2jk2Ck3 /

as claimed. Q.E.D.

From Lemma 3 we have

kVj
l k � Nj

2.Vl/p
jŠ

. j D 1; : : : ; nl � 1/:

Thus the previous lemma implies

kjWjjk �
X

k1Ck2Ck3Dj

Cj
k1;k2;k3

rk1
s .B1/r

k2
s .B2/

Nk2Ck3
2 .V1/N

k1Ck3
2 .V2/p

.k1 C k3/Š.k2 C k3/Š
:

Moreover, taking into account that k3 D j�k1�k2, from the previous lemma, we get

Corollary 8. Let W be defined by (10). Then W�.n1;n2/ D 0 and

kjWjjk �
jX

k1;k2D0
Cj

k1;k2;j�k1�k2
rk1

s .B1/r
k2
s .B2/

Nj�k1
2 .V1/N

j�k2
2 .V2/p

. j � k2/Š. j � k1/Š

for j < �.n1; n2/.

Furthermore, we need the triangular representations of Al 2 L.El/:

Al D Dl C Vl .�.Al/ D �.Dl/I l D 1; 2/;

where Dl and Vl are the diagonal and nilpotent parts of Al, respectively.
Consequently,

T WD A1 ˝ A2 D DT C VT ; where DT D D1 ˝ D2; and

VT D V1 ˝ D2 C D1 ˝ V2 C V1 ˝ V2: (11)
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Lemma 15. One has

kjVT jjk � �j.A1;A2/ . j < �.n1; n2// and V�.n1;n2/
T D 0:

Proof. Making use of the previous corollary with Bl D Dl, we have W D VT and
therefore, V�.n1;n2/

T D 0, N2.Vl/ D g.Al/, and

kjVT jjk �
jX

k1;k2D0
Cj

k1;k2;j�k1�k2
rk1

s .A2/r
k2
s .A1/

gj�k2 .A1/gj�k1 .A2/p
. j � k2/Š. j � k1/Š

D �j.A1;A2/

as claimed. Q.E.D.

Proof of Theorem 8. From Lemma 2 it follows:

k.T � �I/�1k �
�T �1X

jD0

1

�jC1.T; �/
kjVT jjk:

Now the previous lemma implies the assertion of the theorem. Q.E.D.

4.3 Additional Estimates for the Resolvent

Take into account that D�
l Vl is nilpotent. So Trace.D�

l Vl/ D Trace.DlV�
l / D 0. Now

from (11) it follows:

Trace .V�
T VT/ D Trace .V�

1 ˝ D�
2 C D�

1 ˝ V�
2 C V�

1 ˝ V�
2 /

.V1 ˝ D2 C D1 ˝ V2 C V1 ˝ V2/

D Trace .V�
1 V1 ˝ D�

2D2 C D�
1D1 ˝ V�

2 V2 C V�
1 V1 ˝ V�

2 V2/

D N2
2 .V1/N

2
2 .D2/C N2

2 .V2/N
2
2 .D1/C N2

2 .V1/N
2
2 .V2/:

Consequently,

g2.T/ D Trace .V�
T VT / D g2.A1/N

2
2 .D2/C g2.A2/N

2
2 .D1/C g2.A1/g

2.A2/ D g2.A1;A/;

where

g2.A1;A/ D g2.A1/�
2.A2/C g2.A2/�

2.A1/C g2.A1/g
2.A2/

with

�.Al/ D
"

nlX

kD1
j�k.Al/j2

#1=2
:
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Recall that �.Al/ � N2.Al/. In addition, due to Theorem 6,

�2.Al/ �



N4
2 .Al/ � 1

2
N2
2 .A

�
l Al � AlA

�
l /

�1=2
:

Now Lemmas 2 and 15 imply

Lemma 16. Let Al 2 L.Cnl/ .l D 1; 2/. Then

k.A1 ˝ A2 � �IH /�1kH �
�.n1;n2/�1X

jD0

gj.A1;A2/p
jŠ�jC1.A1 ˝ A2; �/

.� 62 �.A1 ˝ A2//:

Remark 2. Due to Lemma 3, g.A/ D u.A/ D #.A/. So throughout this section, one
can replace g.A/ by u.A/ or #.A/.

About other norm estimates for resolvents of operators on tensor products in
finite dimensional spaces and their applications to the two-parameter problem,
matrix equations, and differential equations, see [19, 20].

5 Resolvents of Kronecker’s Products
in Infinite-Dimensional Spaces

In this section E1 and E2 can be infinite-dimensional spaces. As above Al 2 L.El/

.l D 1; 2/.

5.1 Products with Hilbert–Schmidt Operators

Assume that

Al 2 SN2 .l D 1; 2/: (12)

Recall that g.A/ is defined in Sect. 2.2.1. Again put

�j.A1;A2/ WD
jX

k1;k2D0
Cj

k1;k2;j�k1�k2
rk1

s .A1/r
k2
s .A2/

gj�k1 .A1/gj�k2 .A2/p
. j � k1/Š. j � k2/Š

:
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Theorem 9. Let condition (12) hold. Then

k.A1 ˝ A2 � �IH /�1kH �
1X

jD0

�j.A1;A2/

�jC1.A1 ˝ A2; �/
.� 62 �.A1 ˝ A2//;

where �.A1 ˝ A2; �/ D infs2�.A1/;t2�.A2/ jts � �j.
This result is due to Theorem 8 with n1; n2 ! 1. Q.E.D.

In particular, if A1 is normal, then

k.A1 ˝ A2 � �IH /�1kH �
1X

jD0

rj
s.A1/g

j.A2/

�jC1.A1 ˝ A2; �/
p

jŠ
:

If both A1 and A2 are normal, then

k.A1 ˝ A2 � �IH /�1kH � 1

�.A1 ˝ A2; �/
:

So Theorem 9 is sharp.
Moreover, from Corollary 9 we get

Corollary 9. Let condition (12) hold. Then for all � 62 �.A1 ˝ A2/,

k.A1 ˝ A2 � �IH /�1kH �
1X

jD0

3j=2.g.A1/rs.A2/C g.A2/rs.A1/C g.A1/g.A2//jp
jŠ�jC1.A1 ˝ A2; �/

:

In addition, Lemma 16 implies

Corollary 10. Let condition (12) hold. Then

k.A1 ˝ A2 � �IH /�1kH �
1X

jD0

gj.A1;A2/p
jŠ�jC1.A1 ˝ A2; �/

.� 62 �.A1 ˝ A2//;

where

g.A1;A2/ D Œg2.A1/�
2.A2/C g2.A2/�

2.A1/C g2.A1/g
2.A2/�

1=2

with

�.Al/ D
" 1X

kD1
j�k.Al/j2

#1=2
:

That result is sharper than Corollary 9, provided

g.A1;A2/ < 3
1=2.g.A1/rs.A2/C g.A2/rs.A1/C g.A1/g.A2//:
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As in the finite dimensional case, we can use the Weyl inequality �.Al/ � N2.Al/.
Moreover, Theorem 6 implies

�2.Al/ �



N4
2 .Al/ � 1

2
N2
2 .A

�
l Al � AlA

�
l /

�1=2
:

5.2 Products with Schatten–von Neumann Operators

Let the condition

A1;A2 2 SN2p (13)

hold for an integer p � 2. Take into account that N2p.A1 ˝ A2/ D N2p.A1/N2p.A2/.
Then Theorem 2 implies

Theorem 10. Let condition (13) hold. Then

k.A1 ˝ A2 � �IH /�1kH �
p�1X

mD0

1X

kD0

.2N2p.A1/N2p.A2//pkCm

�pkCmC1.A1 ˝ A2; �/
p

kŠ
.� 62 �.A1 ˝ A2//:

In addition,

k.A1 ˝ A2 � �IH /�1kH

� e1=2
p�1X

mD0

.2N2p.A1/N2p.A2//m

�mC1.A; �/
exp



.2N2p.A1/N2p.A2//2p

2�2p.A1 ˝ A2; �/

�
.� 62 �.A1 ˝ A2//:

Remark 3. Since condition (13) implies

Im .A1 ˝ A2/ D .Im A1/˝ A2 C A1 ˝ .Im A2/ 2 SN2p .Im A D .A � A�/=2i/;

we have

N2p.Im .A1 ˝ A2// � N2p.Im A1/N2p.A2/C N2p.A1/N2p.Im A2/:

So according to Theorem 4 in the previous theorem, one can replace
N2p.A1/N2p.A2/ by

ˇp .N2p.Im A1/N2p.A2/C N2p.A1/N2p.Im A2//:

This replacement improves Theorem 10 for operators close to self-adjoint ones.
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5.3 Kronecker’s Products with Non-compact Operators

Recall that u.A/ and #.A/ are defined in Sects. 2.2.3 and 2.2.4, respectively. Put

Ou.A/ D
8
<

:

g.A/ if A 2 SN2,
u.A/ if Im A 2 SN2,
#.A/ if A�A � I 2 SN1

and

O�j.A1;A2/ WD
jX

k1;k2D0
Cj

k1;k2;j�k1�k2
rk1

s .A2/r
k2
s .A1/

Ouj�k2 .A1/Ouj�k1 .A2/p
. j � k2/Š. j � k1/Š

:

Theorem 11. For each l D 1; 2, let one of the following conditions hold:

.a/ Al 2 SN2; .b/ Im Al 2 SN2; or

.c/ A�
l Al � I 2 SN1 and Al has a regular point on the unit circle : (14)

Then

k.A1 ˝ A2 � �IH /�1kH �
1X

jD0

O�j.A1;A2/

�jC1.A1 ˝ A2; �/
.� 62 �.A1 ˝ A2//:

Proof. Letting n1; n2 ! 1 in Theorem 8 and taking into account Remark 2, we get
the required assertion. Q.E.D.

If both A1 and A2 are normal, then from Theorem 11 it follows,

k.A1 ˝ A2 � �IH /�1kH � 1

�.A1 ˝ A2; �/
:

As it is shown in Sect. 4.1,

1

. j � k1/Š. j � k2/Š
� 3j

jŠ
.k1 C k2 � j/:

Hence, we have

O�j.A1;A2/ � � j.A1;A2/p
jŠ

;
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where

�j.A1;A2/ WD 3j=2.Ou.A1/rs.A2/C Ou.A2/rs.A1/C Ou.A1/Ou.A2//jp
jŠ

:

So we arrive at

Corollary 11. Under the hypothesis of Theorem 11, for all � 62 �.A1 ˝ A2/, one
has

k.A1 ˝ A2 � �IH /�1kH �
1X

jD0

� j.A1;A2/p
jŠ �jC1.A1 ˝ A2; �/

:

6 Spectrum Perturbations of Kronecker’s Products

Let QA be an arbitrary bounded operator in H D E1 ˝ E2 and Al 2 L.El/; l D 1; 2:

Denote q D kA1˝A2� QAk. Then by virtue of Corollary 11, we arrive at the following
result.

Theorem 12. For each l D 1; 2, let Al satisfy one of the conditions (14). Then
svA1˝A2 . QA/ � x1.q/, where x1.q/ is the unique positive root of the equation

1 D q
1X

kD0

�k

p
kŠxkC1 .� D �.A1;A2//:

By the Schwarz inequality,

 1X

kD0

.
p
2�/kp

2kkŠxkC1

!2
�

1X

kD0

1

2k

1X

kD0

2k�2k

kŠx2kC2 D 2

x2
e2.�=x/2 :

So 1 � 2q2 1
x2

e2.�=x/2 . Hence x1.q/ � x0.q/, where x0.q/ is the unique positive root
of the equation

2q2
1

x2
e2.�=x/2 D 1: (15)

Substitute into this equation the equality y D 2.�=x/2. Then we get

yey D �2

q2
:
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Due to Lemma 9, the unique positive root y0 of the latter equation satisfies the
inequality

y0 � ln
h
1=2C

p
1=4C �2=q2

i
:

Consequently,

x0.q/ � ı.�; q/; where ı.�; q/ WD
p
2�

ln1=2


1
2

C
q

1
4

C �2

q2

� :

Now Theorem 12 yields

Corollary 12. For each l D 1; 2, let one of the conditions (14) hold and QA be a
bounded operator in H . Then for any Q� 2 �. QA/, there is a � 2 �.A1 ˝ A2/, such
that j� � Q�j � ı.�; q/ .� D �.A1;A2//.

Note that for small � , we have asymptotically

ı.�; q/ � p
2q:

Moreover, rewrite (15) as

p
2q
1

x
e.�=x/2 D 1:

Then Corollary 2 implies x0.q/ � Oı.�; q/; where

Oı.�; q/ WD
�

q
p
2e if � � qe1=2;p
2.ln .

p
e�=q//�1=2� if � > qe1=2

:

Now Theorem 12 yields

Corollary 13. For each l D 1; 2, let one of the conditions (14) hold and QA be a
bounded operator in H . Then for any Q� 2 �. QA/, there is a � 2 �.A1 ˝ A2/, such
that j� � Q�j � Oı.�; q/ .� D �.A1;A2//.

About the spectrum perturbations of finite dimensional Kronecker’s products, see
[17, Sect. 5].

7 Basic Properties of Kronecker’s Sums of Operators

Definition 3. The Kronecker sum of A1 2 L.E1/ and A2 2 L.E2/ denoted by A1˚A2
is defined by A1 ˚ A2 D A1 ˝ I2 C I1 ˝ A2.
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Some of the basic operations of Kronecker’s sums in Hilbert spaces are summa-
rized in the next lemma. Its proof is straightforward.

Lemma 17. For every ˛; ˇ 2 C, A;A1 2 L.E1/, and B;B1 2 L.E2/:

(a) .˛ C ˇ/.A ˚ B/ D ˛A ˚ ˇB C ˇA ˚ ˛B
(b) .A1 C A/˚ .B1 C B/ D A1 ˚ B1 C A ˚ B
(c) .A1 ˚ B1/.A ˚ B/ D A1 ˝ B C A ˝ B1 C A1A ˚ B1B
(d) .A ˚ B/� D A� ˚ B�
(e) kA ˚ Bk � kAk C kBk

By this lemma

.A ˚ B/�.A ˚ B/ D .A� ˚ B�/.A ˚ B/ D A� ˝ B C A ˝ B� C A�A ˚ B�B

and

.A ˚ B/.A ˚ B/� D .A ˚ B/.A� ˚ B�/ D A ˝ B� C A� ˝ B C AA� ˚ BB�:

Thus A ˚ B is normal if A and B are normal.
If dim El D nl < 1; l D 1; 2, then

Np.A ˚ B/ � Np.A ˝ I2/C Np.I1 ˝ B/

D Np.A/Np.I2/C Np.I1/Np.B/ D p
p

n2 Np.A/C p
p

n1 Np.B/:

Theorem 13. Let Al 2 L.El/. Then

�.A1 ˚ A2/ D fs C t W s 2 �.A1/; t 2 �.A2/g:

For the proof, see [26].

8 Resolvents of Kronecker’s Sums with Finite-Dimensional
Operators

Let Al 2 L.Cnl/ .nl < 1; l D 1; 2/. Put

�j.A1;A2/ WD
jX

kD0
.

j
k/

gk.A1/gj�k.A2/p
. j � k/ŠkŠ

; where .jk/ D jŠ

kŠ. j � k/Š
:

Theorem 14. Let Al 2 L.Cnl/. Then

k.A1 ˚ A2 � �IH /�1kH �
n1Cn2�2X

jD0

�j.A1;A2/

�jC1.A1 ˚ A2; �/
.� 62 �.A1 ˚ A2//:
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Proof. Put A D A1 ˚ A2. Let Dl and Vl be the diagonal and nilpotent parts of Al,
respectively. Then

A D .D1 C V1/˝ I2 C I1 ˝ .D2 C V2/ D DA C VA

with

VA WD V1 ˝ I2 C I1 ˝ CV2; DA D D1 ˝ I2 C I1 ˝ D2:

It is not hard to check that VA is nilpotent. Clearly, A;DA, and VA have the joint
invariant subspaces. So DA and VA is the normal part and nilpotent one of A,
respectively.

Recall that jAlj is the absolute value of Al with respect to its fixed Schur basis.
Besides, we put jA1 ˚ A2j D jA1j ˚ jA2j.

Let W1 D V1 ˝ I2 and W2 D I1 ˝ V2. Since they commute, we have

Vj
A D .W1 C W2/

j D
jX

kD0
.

j
k/W

k
1Wj�k

2 :

Thus we can write

jVAjj �
jX

kD0
.

j
k/jW1jkjW2jj�k:

Due to (8) �A � n1 C n2 � 1. Obviously,

kjVAjjkH �
jX

kD0
.

j
k/kjV1jkk1kjV2jj�kk2 . j < �A/:

Making use of Lemma 3, we obtain kjVljjkl � N
j
2.Vl/p

jŠ
. Thus

kjVAjjkH �
jX

kD0
.

j
k/

Nk
2.V1/N

j�k
2 .V2/p

. j � k/ŠkŠ
:

Hence, applying the equality g.Al/ D N2.Vl/, we get

kjVAjjkH �
jX

kD0
.

j
k/

gk.A1/gj�k.A2/p
. j � k/ŠkŠ

D �j.A1;A2/:
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From Lemma 2 it follows

k.A1 ˚ A2 � �I/�1k �
�A�1X

jD0

1

�jC1.A; �/
kjVAjjk

�
n1Cn2�2X

jD0

�j.A1;A2/

�jC1.A; �/

as claimed. Q.E.D.

Furthermore, since

jŠ

. j � k/ŠkŠ
� 2j .k � j/;

we obtain

�j.A1;A2/ � 2j=2

p
j

jX

kD0
.

j
k/g

k.A1/Ogj�k.A2/ D 2j=2.g.A1/C g.A2//jp
j

:

So we arrive at

Corollary 14. Let Al 2 L.Cnl/; l D 1; 2. Then

k.A1 ˚ A2 � �IH /�1kH �
n1Cn2�2X

jD0

2j=2.g.A1/C g.A2//j

�jC1.A1 ˚ A2; �/
p

j
.� 62 �.A1 ˚ A2//:

Remark 4. Due to Remark 2, g.A/ D u.A/ D #.A/. So in Theorem 14 and
Corollary 14, one can replace g.A/ by u.A/ or #.A/.

9 Resolvents of Kronecker’s Sums with Infinite-Dimensional
Operators

In this section H D E1 ˝ E2, where E1;E2 are separable Hilbert spaces, again.
Due to Theorem 13, �.A1 ˚ A2; �/ D infs2�.A1/;t2�.A2/ jt C s � �j.
Recall that Ou.A/ is defined in Sect. 5. Put

O�j.A1;A2/ WD
jX

kD0
.

j
k/

Ouk.A1/Ouj�k.A2/p
. j � k/ŠkŠ

:
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Theorem 15. For each l D 1; 2, let one of the conditions (14) hold. Then

k.A1 ˝ A2 � �IH/
�1kH �

1X

jD0

O�j.A1;A2/

�jC1.A1 ˝ A2; �/
.� 62 �.A1 ˝ A2//:

Proof. Letting n1; n2 ! 1 in Theorem 14 and taking into account Remark 4,
we get the required assertion. Q.E.D.

In particular, if A1 is normal, then

O�j.A1;A2/ D Ouj.A2/p
j

and thus

k.A1 ˚ A2 � �IH /�1kH �
1X

jD0

Ouj.A2/p
jŠ�jC1.A1 ˚ A2; �/

:

If both A1 and A2 are normal, then

k.A1 ˚ A2 � �IH /�1kH � 1

�.A1 ˚ A2; �/
:

So Theorem 15 is sharp.
As it was mentioned,

jŠ

. j � k/ŠkŠ
� 2j .k � j/;

and thus we obtain

O�j.A1;A2/ � Ogj.A1;A2/p
j

;

where

Og.A1;A2/ WD 2j=2.Ou.A1/C Ou.A2//:

Due to the previous theorem, we arrive at

Corollary 15. For each l D 1; 2, let one of the conditions (14) hold. Then

k.A1 ˚ A2 � �IH /�1kH �
1X

jD0

Ogj.A1;A2/

�jC1.A1 ˚ A2; �/
p

j
.� 62 �.A1 ˚ A2//:
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10 Spectrum Perturbations of Kronecker’s Sums

Let QA be an arbitrary bounded operator in H D E1 ˝ E2. Denote

qC D kA1 ˚ A2 � QAk:

Then by virtue of Lemma 6 and Corollary 15, we arrive at the following result.

Theorem 16. For each l D 1; 2, let Al satisfy one of the conditions (14). Then
svA1˚A2 . QA/ � y1.qC/, where y1.qC/ is the unique positive root of the equation

1 D qC
1X

kD0

Ogk

p
kŠxkC1 .Og D Og.A1;A2//:

Repeating the arguments of Sect. 6, by the Schwarz inequality, we get y1.qC/ �
y0.qC/, where y0.qC/ is the unique positive root of the equation

2q2C
1

x2
e2.Og=x/2 D 1:

Hence, applying Lemma 9, we get

y0.qC/ � ı.Og; qC/ WD
p
2Og

ln1=2
h
1=2C

q
1=4C Og2=.q2C/

i :

Now Theorem 16 yields

Corollary 16. For each l D 1; 2, let one of the conditions (14) hold and QA be a
bounded operator in H . Then for any Q� 2 �. QA/, there is a � 2 �.A1 ˚ A2/, such
that j� � Q�j � ı.Og; qC/ .Og D Og.A1;A2//.
Note that for small Og, we have asymptotically

ı.Og; qC/ � p
2 qC:

Moreover, replacing in Corollary 13 � by Og and q by qC, we get

Corollary 17. For each l D 1; 2, let one of the conditions (5.3) hold and QA be a
bounded operator in H. Then for any Q� 2 �. QA/, there is a � 2 �.A1 ˚ A2/, such
that j� � Q�j � Oı.Og; qC/ .Og D Og.A1;A2//, where

Oı.Og; qC/ WD
�

qC
p
2e if Og � qCe1=2;

Ogp
2.ln .Ogp

e=qC//�1=2 Og if Og > qCe1=2
:
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11 Resolvents of Operator Pencils on Tensor
Products of Spaces

11.1 Preliminaries

In this section X and Y are separable Hilbert spaces with scalar products h:; :iX
and h:; :iY , respectively, and norms k:kX D ph:; :iX ; k:kY D ph:; :iY and
H D X ˝ Y with the scalar product defined by

hx ˝ y; x1 ˝ y1iH D hy; y1iY hx; x1iX . y; y1 2 Y I x; x1 2 X /

and the norm k:kH D ph:; :iH . Let Bk .k D 0; : : : ;m � 1;m < 1/ be bounded
operators acting in Y , Bm D IY D I the unit operator. In addition, S is a positive-
defined Self-adjoint operator acting in X . Our main object in this section is the
operator

B.S/ D
mX

kD0
Bk ˝ Sk with the domain Dom .B.S// D Dom .Sm/˝ Y :

Below we present the relevant examples. Recall that the operator polynomial

mX

kD0
Bk�

k .� 2 C/

is called an operator pencil (of a scalar argument �). Following this definition we
will call B.S/ an operator pencil of an operator argument S.

Let Es .s 2 �.S// be the orthogonal resolution of the identity of S:

S D
Z

�.S/
sdEs

and

B.s/ WD smIY C
m�1X

kD0
Bksk .s � 0/:

Then it is not hard to see that

B.S/ D
Z

�.S/
B.s/˝ dEs;
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where the integral for h D x˝y; g D x1˝y1 with x 2 Dom .Sm/; x1 2 X I y; y1 2 Y
is defined by

hB.S/h; giH D
Z

�.S/
hB.s/y; y1iY dhEsx; x1iX

in the Lebesgue–Stieltjes sense and is linearly extended to the whole Dom .Sm/.
Put S0 D S ˝ IY .

Lemma 18. Let � 2 C be a regular point of B.s/ for all s 2 �.S/ and

�.�; �/ WD sup
s2�.S/

ks�.B.s/ � �IY /
�1kY < 1 (16)

for a � 2 Œ0;m/. Then � is a regular point of B.S/,

.B.S/ � �IH /�1 D
Z

�.S/
.B.s/ � �IY /

�1 ˝ dEs;

and

kS�0.B.S/ � �IH /�1kH � �.�; �/:

Proof. Put

Z.�/ D
Z

�.S/
.B.s/ � �IY /

�1 ˝ dEs:

Clearly,

.B.S/ � �IH /Z.�/ D
Z

�.S/
.B.s/ � �IY /˝ dEs

Z

�.S/
.B.s1/ � �IY /

�1 ˝ dEs1

D
Z

�.S/
.B.s/ � �IY /.B.s/ � �IY /

�1 ˝ dEs

D
Z

�.S/
IY ˝ dEs D IY ˝ IX D IH :

Similarly Z.�/.B.S/ � �IH / D IH . Moreover,

hS�0.B.S/ � �IH /�1h; S�0.B.S/ � �IH /�1hiH
D
Z

�.S/
hs�.B.s/ � �IY /

�1y; s�.B.s/ � �IY /
�1yiY dhEsx; xiX
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for an h D x ˝ y, with x 2 X ; y 2 Y . Hence,

hS�0.B.S/ � �IH /�1h; S�0.B.S/ � �IH /�1hiH � �2.�; �/k yk2Y
Z

�.S/
d.Esx; x/X

D �2.�; �/k yk2Y kxk2X :

Extending linearly this inequality, we prove the lemma. Q.E.D.

For any � 2 C, set �.B.s/; �/ WD infz2�.B.s// jz � �j. Now Lemma 18 implies

Corollary 18. Assume that there is a monotonically increasing continuous function
F defined on the positive half line independent of s, such that F.0/ D 0, F.1/ D 1,
and for all s 2 �.S/, the inequality

k.B.s/ � �IY /
�1kY � F.1=�.B.s/; �// (17)

holds, provided

�.B.S/; �/ WD inf
s2�.S/ �.B.s/; �/ > 0:

Then k.B.S/ � �IH /�1kH � F.1=�.B.S/; �//.

11.2 Bounded Perturbations of Pencils

From Corollary 18 we easily have

Corollary 19. Let QA be a linear operator in H , such that Dom . QA/ D Dom .Sm
0 /.

Let the conditions (17) and

q0 D kQA � B.S/kH < 1 (18)

hold. If, in addition,

q0F.1=�.B.S/; �// < 1;

then � is a regular point for QA, and

k. QA � �IH /�1kH � F.1=�.B.S/; �//

1 � q0F.1=�.B.S/; �//
:

Due to the previous corollary, for any Q� 2 �. QA/, there is some s0 2 �.S/,
such that

q0F.1=�.B.s0/; Q�// � 1:
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This means that for some �.B.s0// 2 �.B.s0//, we have

q0F

�
1

j�.B.s0// � Q�j
�

� 1:

Since F is monotone, it follows

Theorem 17. Let conditions (17) and (18) hold. Then for any Q� 2 �. QA/, there is an
s0 2 �.S/ and a �.B.s0// 2 �.B.s0//, such that j�.B.s0// � Q�j � x.F; q0/, where
x.F; q0/ is the unique positive root of the equation q0F.1=x/ D 1.

According to the definition of the spectral variation, put

svB.S/. QA/ WD sup
�2�.QA/

inf
�2�.B.S// j� � �j:

Then the previous theorem can be reformulated as the following:

Corollary 20. Let conditions (17) and (18) hold. Then svB.S/. QA/ � x.F; q0/.

Note that

rlow.B.S// WD inf j�.B.S//j D inf
s2�.S/ inf j�.B.s//j:

Now Theorem 17 implies

Corollary 21. Under the hypothesis of Theorem 17, one has rlow. QA/ � rlow.B.S//�
x.F; q0/ and therefore QA is invertible, provided rlow.B.S// > x.F; q0/.

We will say that operator QA is stable if ˇ. QA/ D inf Re �. QA/ > 0. Note that
ˇ.B.S// D infs2�.S/ inf Re �.B.s//.

Corollary 22. Under the hypothesis of the previous theorem, one has ˇ. QA/ �
ˇ.B.S// � x.F; q0/, and therefore QA is stable, provided ˇ.B.S// > x.F; q0/.

11.3 Unbounded Perturbations of Pencils

We need the following simple lemma.

Lemma 19. Let condition (16) hold and QA be a linear operator in H satisfying the
conditions Dom . QA/ D Dom .Sm

0 / and

q� WD k. QA � B.S//S��
0 kH < 1: (19)

If, in addition, q��.�; �/ < 1; then � is a regular point for QA, and

k. QA � �IH /�1kH � �.0; �/

1 � q��.�; �/
:



240 M. Gil’

Proof. Since

.B.S/ � �I/�1 � . QA � �I/�1 D .B.S/ � �I/�1. QA � B.S//.B.S/ � �I/�1

D . QA � �I/�1. QA � B.S//S��
0 S�0.B.S/ � �I/�1

it is not hard to check that � is regular for QA, provided

q�kS�0.B.S/ � �I/�1kH < 1:

Besides,

k. QA � �I/�1kH � k.B.S/ � �I/�1kH
1 � q�kS�0.B.S/ � �I/�1kH :

Now Lemma 18 yields the required result. Q.E.D.

Corollary 23. Let B.S/ be invertible and the conditions (16) with � D 0, (19), and
q��.�; 0/ < 1 hold. Then QA is also invertible.

11.4 Pencils with Matrix Coefficients

In this subsection Y D Cn and Bk .k D 0; : : : ;m � 1/ are n � n-matrices. We need
the inequality

k.B.s/ � �IY /
�1kCn �

n�1X

jD0

.
p
2N2.Im B.s///jp
jŠ�jC1.B.s/; �/

.� 62 �.B.s///; (20)

which is due to Lemma 5 and the inequality g.A/ � p
2N2.Im A/.

11.4.1 Bounded Perturbations and the Spectral Variation

In this subsubsection we do not assume that S is invertible, i.e., it can be rlow.S/ D 0.
Assume that the conditions

Bk D B�
k .k D 1; : : : ;m � 1/ (21)

hold. Then Im B.s/ D Im .B0/ and due to (20)

k.B.s/ � �IY /
�1kn �

n�1X

jD0

.
p
2N2.Im B0//jp

jŠ�jC1.B.s/; �/
:
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Let QA satisfy the condition (18). Then Lemma 6 implies svB.S/. QA/ � Qr.q0/, where
Qr0.q0/ is the unique positive root of the equation

1 D q0

n�1X

kD0

.
p
2N2.Im B0//k

ykC1pkŠ
;

which is equivalent to the algebraic equation

yn D q0

n�1X

kD0

.
p
2N2.Im B0//kyn�k�1

p
kŠ

: (22)

We thus arrive at

Corollary 24. Let H D X ˝ Cn and conditions (18) and (21) hold. Then
svB.S/. QA/ � Qr.q0/, where Qr0.q0/ is the unique positive root of (22).

Consider the algebraic equation

zn D
n�1X

kD0
akzn�k:

Recall the well-known inequality for the roots rk; k � n of that equation:

max
j

jrjj � 2 max
kD1;:::;n�1

kC1
p

jakj

cf. [4, Corollary 1.6.2].
Substituting

x D yp
2N2.Im B0/

into (22) and applying the just mentioned inequality, we arrive at the inequality
Qr.q0/ � ın.q0;B0/; where

ın.q0;B0/ D 2

(
q1=n
0 .

p
2N2.Im B0//1�1=n if q0 � p

2N2.Im B0/;
q0 if q0 � p

2N2.Im B0/:

So we arrive at

Corollary 25. Under the hypothesis of Corollary 24, we have svA. QA/ � ın.q0;B0/.
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11.4.2 Unbounded Perturbations of Pencils with Matrix Coefficients

Let m0 .0 � m0 � m � 1/ be the smallest integer, such that

Bk D B�
k .k D m0 C 1; : : : ;m � 1/: (23)

So if for all k � 1, Bk are self-adjoint, then m0 D 0. If all the Bk .k � m � 1/ are
non-self-adjoint, then m0 D m � 1.

In this subsubsection it is assumed that infs2�.S/ jsj > 0. Take � � m0. Note that
the case � D m0 D 0 is considered in the previous subsubsection. Put

��.�/ WD inf
s2�.S/;kD1;:::;n s�� j� � �k.B.s//j:

Due to (20) we have

ks�.B.s/ � �IY /
�1kn D k.s��B.s/ � s���IY /

�1kn �
n�1X

jD0

.s��p2N2.Im B.s///jp
jŠ�jC1

� .�/
;

provided ��.�/ > 0. But

Im B.s/ D
m0X

kD0
skIm Bk

and therefore,

s��p2N2.Im B.s// � �� .s 2 �.S//;

where

�� WD p
2

m0X

kD0
N2.Im Bk/r

k��
low .S/ .� � m0/:

Consequently,

ks�.B.s/ � �IY /
�1kn � �n.�; �/;

where

�n.�; �/ WD
n�1X

jD0

�
j
�p

jŠ�jC1
� .�/

:

Now Lemma 19 implies
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Theorem 18. Let H D Cn ˝Y . For a � 2 C; � ¤ 1, let the conditions (23) and
��.�/ > 0 with � � m0 be fulfilled. Then � is a regular point of B.S/ and

kS�0.B.S/ � �I/�1kH � �n.�; �/:

This theorem and Lemma 18 yield

Corollary 26. Let q� D k. QA � B.S//S��
0 kH < 1 and q��n.�; �/ < 1. Then � is a

regular point for QA, and

k. QA � IH /�1kH � �n.0; �/

1 � q��n.�; �/
:

11.5 Pencils with Hilbert–Schmidt Hermitian Components

If

Im B.s/ 2 SN2 .s � 0/; (24)

then due to Theorem 4, we have

k.B.s/ � �IY /
�1kY � 1

�.B.s/; �/
exp

"
1

2
C .

p
2N2.Im B.s///2

2�2.B.s/; �/

#

.� 62 �.B.s///:
(25)

First consider bounded perturbations. Besides, it can be rlow.S/ D 0. Again assume
that condition (21) holds. Then Im B.s// D Im .B0/ and due to (25) we have

k.B.s/��IY /
�1kY � 1

�.B.s/; �/
exp

"
1

2
C .

p
2N2.Im B0//2

2�2.B.s/; �/

#

.Im B0 2 SN2/:

Let QA satisfy condition (18) and Im .B0/ 2 SN2. Then Corollary 20 implies
svB.S/. QA/ � r2.q0/, where r2.q0/ is the unique positive root of the equation

1 D q0
x

exp

"
1

2
C .

p
2N2.Im B0//2

2x2

#

: (26)

Substituting

x D yp
2N2.Im B0/
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into (26) and applying Lemma 8, we obtain r2.q0/ � ı2.q0/, where

ı2.q0/ WD
�

q0e if
p
2N2.Im B0/ � q0e;p

2N2.Im B0/Œln .
p
2N2.Im B0/=q0/��1=2 if

p
2N2.Im B0/ � q0e.

We thus arrive at

Corollary 27. Let the conditions (18), (21), and Im .B0/ 2 SN2 hold. Then
svB.S/. QA/ � r2.q0/ � ı2.q0/.

Consider now unbounded perturbations. Let the conditions (23) and ��.�/ > 0

hold for a � � m0: Due to (25) we have

ks�.B.s/ � �IY /
�1kY D k.s��B.s/ � s���IY /

�1kY

� 1

��.�/
exp

"
1

2
C .

p
2N2.s��B.s///2

2�2�.�/

#

:

But Im B.s/ D Im B0 C sIm B1 C : : :C sm0Im Bm0 and therefore,

s��p2N2.Im B.s// � �� .s 2 �.S//:

Recall that

�� WD p
2

m0X

kD0
N2.Im Bk/r

k��
low .S/ .� � m0/:

Consequently,

ks�.B.s/ � �IY /
�1kY � �.SN2; �; �/;

where

�.SN2; �; �/ WD 1

��.�/
exp



1

2
C �2�
2�2�.�/

�
:

Now Lemma 18 implies

Theorem 19. For a � 2 C; � ¤ 1, let the conditions (23), Im .Bk/ 2 SN2

.k D 0; : : : ;m0/, and ��.�/ > 0 with � � m0 be fulfilled. Then � is a regular
point of B.S/ and

kS�0.B.S/ � �I/�1kH � �.SN2; �; �/:

This theorem yields
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Corollary 28. Let B.S/ satisfy the hypothesis of the previous theorem and condi-
tion (19) be fulfilled. In addition, let q��.SN2; �; �/ < 1. Then � is a regular point
for QA, and

k. QA � �IH /�1kH � �.SN2; 0; �/

1 � q��.SN2; �; �/
:

11.6 Pencils with Schatten–von Neumann Hermitian
Components

Assume that

Im B.s/ 2 SN2p .s � 0/ (27)

for an integer p � 2. Recall that

ˇp WD 2

�
1C 2p

exp.2=3/ ln 2

�
:

According to Theorem 4, for any regular � of B.s/,

k.B.s/ � �IY /
�1kY �

p�1X

jD0

.ˇpN2p.Im B.s//j

�jC1.B.s/; �/
exp



1

2
C .ˇpN2p.Im B.s//2p

2�2p.B.s/; �/

�
:

(28)

Let us begin with bounded perturbations. Besides, it can be rlow.S/ D 0. Again
assume that condition (21) holds. Then Im B.s/ D Im .B0/ and with Im .B0/ 2
SN2p due to (28), we have

k.B.s/ � �IY /
�1kY �

p�1X

jD0

.ˇpN2p.Im B0//j

�jC1.B.S/; �/
exp



1

2
C .ˇpN2p.Im B0//2p

2�2p.B.S/; �/

�
:

Let QA satisfy condition (18). Then Theorem 17 implies svB.S/. QA/ � Or2p.q0/, where
Or2p.q0/ is the unique positive root of the equation

1 D q0

p�1X

jD0

.ˇpN2p.Im B0//j

xjC1 exp



1

2
C .ˇpN2p.Im B0//2p

2x2p

�
: (29)

Substituting

x D y

ˇpN2p.Im B0/
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into (29) and applying Lemma 8, we obtain Or2p.q0/ � Oı2p.q0/, where

Oı2p.q0/ WD
(

q0pe if ˇpN2p.Im B0/ � q0ep;
ˇpN2p.Im B0/

Œln .ˇpN2p.Im B0/=. pq0//�1=2p if ˇpN2p.Im B0/ � q0ep:

We thus arrive at

Corollary 29. Let the conditions (18), (21), and Im .B0/ 2 SN2p hold. Then

svB.S/. QA/ � Or2p.q0/ � Oı2p.q0/:

Furthermore, consider unbounded perturbations, assuming that the conditions
(23) and ��.�/ > 0 hold for a � � m0. Clearly

ˇps��N2p.Im B.s// � �. p; �;m0/ WD ˇp

m0X

kD0
N2p.Im Bk/r

k��
low .S/ .s � rlow.S/ > 0/:

Due to (28) we have

ks�.B.s/ � �IY /
�1kY � O�.SN2p; �; �/ WD

p�1X

jD0

�j. p; �;m0/

�
jC1
� .�/

exp

"
1

2
C �2p. p; �;m0/

2�
2p
� .�/

#

:

Now Lemma 18 implies

Theorem 20. For a � 2 C; � ¤ 1, let the conditions (23), Im .Bk/ 2 SN2p

.k D 0; : : : ;m0/, and ��.�/ > 0 with � � m0 be fulfilled. Then � is a regular point
of B.S/ and

kS�0.B.S/ � �I/�1kH � O�.SN2p; �; �/:

This theorem and Lemma 19 yield

Corollary 30. Let B(S) satisfy the hypotheses of the previous theorem and condi-
tion (19) be fulfilled. In addition, let q� O�.SN2p; �; �/ < 1. Then � is a regular point
for QA, and

k. QA � �IH /�1kH � O�.SN2p; 0; �/

1 � q� O�.SN2p; �; �/
:

For more details on pencils see [5–9].

12 Differential Operators with Matrix Coefficients

In this section we apply the results of Sect. 11.4 to matrix differential operators.
Besides, X D L2.0; 1/, Y D Cn, and H D X ˝ Y D L2.Œ0; 1�;Cn/.
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12.1 A Second-Order Matrix Operator Without
a Damping Term

On the domain

Dom . QA/ D fu 2 H W u
00 2 H I u.0/ D u.1/ D 0g

consider the operator

QA D � d

dx
a.x/

d

dx
C C.x/ .x 2 .0; 1//; (30)

where a.x/ is a scalar positive function having a continuous derivative and C.x/ is a
variable-bounded n � n-matrix.

To apply our above results, take S D � d
dx a.x/ d

dx with

Dom .S/ D fu 2 L2.0; 1/ W u
00 2 L2.0; 1/I u.0/ D u.1/ D 0g:

In addition S0 D S˝ ICn with Dom .S0/ D Dom . QA/ and B.S/ D S0C IX ˝B0 with
some constant n � n-matrix B0. Then q0 D kB.S/ � QAk D supx kC.x/ � B0kCn and

�.B.S// D f�k.S/C �j.B0/ W k D 1; 2; : : : I j D 1; : : : ; ng:

In the considered case, B.s/ D sIn C B0. Due to Corollaries 24 and 25,

svB.S/. QA/ � Qr.q0/ � ın.q0;B0/:

Thus, the operator QA defined by (30) is invertible, provided either

rlow.B.S// D inffj�k.S/C �j.B0/j W k D 1; 2; : : : I j D 1; : : : ; ng > Qr.q0/

or rlow.B.S// > ın.q0;B0/. Moreover, that operator is stable, provided either

ˇ.B.S// D inff�k.S/C Re �j.B0/ W k D 1; 2; : : : I j D 1; : : : ; ng > Qr.q0/

or ˇ.B.S// > ın.q0;B0/.

12.2 A Second-Order Matrix Operator with a Damping Term

On the same domain

fu 2 H W u
00 2 H I u.0/ D u.1/ D 0g;
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consider the operator

QA1 D � d2

dx2
C C1.x/

d

dx
C C0.x/ .x 2 .0; 1//; (31)

where C1.x/ and C0.x/ are variable n � n-matrices defined and smooth on Œ0; 1�.
In this subsection we take S D � d2

dx2
with the same domain as in the previous

subsection. We have �.S/ D f.
k/2 W k D 1; 2; : : :g. So rlow.S/ D 
2, and
kS�1=2kX D 1=
 . Let ek.x/ D p

2 sin.
kx/. Taking � D 1=2, we obtain

S�1=2h D 1




1X

kD1

1

k
hh; ekiX ek .h 2 X /:

Hence,

�
d

dx
S�1=2h

�
.x/ D p

2

1X

kD1
hh; ekiX cos.
kx/:

So

�
d

dx
S�1=2h;w

�

X

D
1X

kD1
hh; ekiX hp2 cos.
kx/;wiX .h;w 2 X /

and by the Schwarz inequality,

ˇ̌
ˇ̌
�

d

dx
S�1=2h;w

�

X

ˇ̌
ˇ̌
2

�
1X

kD1
jhh; ekiX j2

1X

kD1
jhp2 cos.
kx/;wiX j2 � khk2X kwk2X :

Consequently,

����
d

dx
S�1=2

����
X

D sup

� �
d

dx
S�1=2h;w

�

X

W h;w 2 X I khk2X D kwk2X D 1


� 1;

and
�
���

d

dx
S�1=2
0

�
���
H

� 1. Thus q1=2 D k.B.S/ � QA1/S�1=2
0 kH � Oq;

where

Oq WD sup
x

k.C0.x/�B0/S
�1=2
0 kCn Csup

x
kC1.x/kCn � 1



sup

x
kC0.x/�B0kCn Csup

x
kC1.x/kCn :

In the considered case, m0 D 0, �1=2 D 1



N2.Im B0/, B.s/ D sICn C B0 and
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�1=2.�/ D sup
kD1;2;:::


k

�.B.
2k2/; �/
D sup

kD1;2;:::IjD1;:::;n

k

j
2k2 C �j.B0/ � �j :

In addition,

�n.1=2; �/ WD
n�1X

jD0

�
j
1=2p

jŠ�jC1
1=2 .�/

:

Let � 62 �.B.S// and Oq�n.1=2; �/ < 1. Then by Corollary 26, � is regular for the
operator QA1, defined by (31), and

k. QA1 � �IH /�1kH � �n.0; �/

1 � Oq�n.1=2; �/
:

12.3 A Higher-Order Matrix Differential Operator

On the domain

Dom . QA2/ D fu 2 H D L2.Œ0; 1�;Cn/ W u.k/ 2 H ; W k D 1; : : : ; 2m;

u.2j/.0/ D u.2j/.1/ D 0; j D 0; : : : ;m � 1g;

consider the operator

QA2 D
mX

kD0
.�1/kCk.x/

d2k

dx2k
.Cm.x/ � ICn ; x 2 .0; 1//; (32)

where Ck.x/ are matrix-valued functions defined and smooth on Œ0; 1�. Again take

B.s/ D smI C
m�1X

kD0
Bksk

with constant matrices Bk. Take S as in the previous subsection. As it was mentioned,
�k.S/ D 
2k2 and k D 1; 2; : : :. Without loss of the generality, take m0 D m � 1.
So for � D m � 1 we have

�m�1 D p
2

m�1X

kD0
N2.Im Bk/


2.kC1�m/:
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Under the consideration,

qm�1 D k.B.S/ � QA2/S�mC1
0 k �

m�1X

jD0
sup

x
kBj � Cj.x/kn


2. j�mC1/;

�m�1.�/ D inf
jD1;2;:::;kD1;:::;n

.
2j2/m�1

j� � �k.B.
2j2/j ;

and

�n.m � 1; �/ D
n�1X

jD0

�
j
m�1p

jŠ�jC1
m�1.�/

:

Let � 62 �.A/ and

qm�1�n.m � 1; �/ < 1:

Then by Corollary 26, � is regular for the operator QA2, defined by (32), and

k. QA2 � �IH /�1kH � �n.0; �/

1 � qm�1�n.m � 1; �/ :

13 Integro-Differential Operators

Let ˝ D Œ0; 1� � Œa; b�; where Œa; b� is a finite or infinite real segment. Take
X D L2.0; 1/;Y D L2.a; b/, and H D X ˝ Y D L2.˝/.

Let K0.x; y; s/ be a real function defined on Œ0; 1�� Œa; b�2, such that the operator

u !
Z b

a
K0.x; y; s/u.x; s/ds .x 2 .0; 1/I y 2 .a; b//

is bounded in H . Consider the operator QA defined on the domain

Dom .QA/

D fu.x; y/ 2 L2.˝/ W @2

@x2
u.x; y/ 2 L2.˝/ W u.0; y/ D u.1; y/ D 0; 0 < x < 1I a � y � bg

by the expression

. QAu/.x; y/ D � @2

@x2
u.x; y/C

Z b

a
K0.x; y; s/u.x; s/ds .x 2 .0; 1/I y 2 .a; b//:

(33)
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Take S D � @2

@x2
with the domain

Dom .S/ D fu 2 L2.0; 1/ W u
00 2 L2.0; 1/I u.0/ D u.1/ D 0g:

So the operator S0 D S ˝ IY is defined on Dom .S0/ D Dom . QA/ by

.S0u/.x; y/ D �@
2u.x; y/

@x2
:

Let

.B0w/. y/ D
Z b

a
K1. y; s/w.s/ds .w 2 Y I y 2 Œa; b�/;

where K1.y; s/ is a real function defined on Œa; b�2 and satisfying the condition

N2
2 .Im B0/ D

Z b

a

Z b

a
.K1. y; s/ � K1.s; y//

2ds < 1:

So

..IX ˝ B0/u/.x; y/ D
Z b

a
K1. y; s/u.x; s/ds .u 2 H I x; y 2 ˝/:

Take B.S/ D S0 C IX ˝ B0 and assume that q0 D kIX ˝ B0 � QKkH < 1, where
QK is defined by

. QKu/.x; y/ D
Z b

a
K0.x; y; s/u.x; s/ds .x; y 2 ˝/:

We have �.S/ D f.
k/2 W k D 1; 2; : : :g and

�.B.S// D f.
k/2 C t W k D 1; 2; : : : I t 2 �.B0/g:

In the considered case, B.s/ D sI C B0. Due to Corollary 27,

svB.S/. QA/ � r2.q0/ � ı2.q0/:

Thus, the operator QA defined by (33) is invertible, provided either

rlow.B.S// D inffj
2k2 C tj W k D 1; 2; : : : I t 2 �B0/g > r2.q0/

or rlow.B.S// > ı2.q0;B0/.
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1 Introduction

We consider a two-dimensional composite corresponding to the regular hexagonal
lattice arrangement of ideally conducting (superconducting) cylinders of concen-
tration x embedded into the matrix of a conducting material. The studies of the
effective conductivity �.x/ of regular composites were pioneered by Maxwell [33]
and Rayleigh [40]. The results of this fundamental research remained limited to
the lowest orders in x. Their work was extended in [39], resulting in rather good
numerical solutions valid in much broader concentration intervals.

The effective conductivity �.x/ is an analytic function in x. In general case of a
two-phase composite, the so-called contrast parameter should be also included into
consideration explicitly; see, e.g., [12]. We are interested in the case of high-contrast
regular composites, when the conductivity of the inclusions is much larger than the
conductivity of the host. That is, the highly conducting inclusions are replaced by
the ideally conducting inclusions with infinite conductivity. In this case, the contrast
parameter is equal to unity and remains implicit. The conductivity of the matrix is
normalized by unity as well. From the phase interchange theorem [30], it follows
that in two dimensions, the superconductivity problem is dual to the conductivity
problem and the superconductivity critical index is equal to the conductivity index.

Our study is restricted to the two-dimensional case which is still interesting, both
for practical [3, 9] and physical reasons [39, 44]. Composite materials often consist
of a uniform background-host reinforced by a large number (high concentration) of
unidirectional rod- or fiber-like inclusions with high conductivity [3].

On the other hand, two-dimensional regular hexagonal-arrayed composites [3]
much closer resemble the two-dimensional random composites, than their respective
3D counterparts do [44]. The tendency to order in the two-dimensional random sys-
tem of disks is a crucial feature in the theory of composites at high concentrations.

Most strikingly, it appears that the maximum volume fraction of 
p
12

� 0:9069

is attained both for the regular hexagonal array of disks and for random (irregular)
2D composites [44].

A numerical study of the 2D hexagonal case can be found in [39]. Their final
formula (1)

�.x/ D 1 � 2x
0:075422x6

1�1:06028x12
C x � 1 ; (1)

compares rather well with numerical data of [39]. Note that (1) diverges with critical
exponent s D 1, as x ! 0:922351. This property on one hand makes the formula
more accurate in the vicinity of a true critical point but, on the other hand, makes
any comparison in the critical region meaningless. It remains rather accurate till
x D 0:85, where the error is 0:47%. For x D 0:905, the error is 52%. Expression (1)
was derived using only terms up to the 12th order in concentration. The expansion
of (1) is characterized by a rather regular behavior of the coefficients,
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� reg.x/ D 1C 2x C 2x2 C 2x3 C 2x4 C 2x5 C 2x6

C2:15084x7 C 2:30169x8 C 2:45253x9 C 2:60338x10

C2:75422x11 C 2:90506x12 C O.x13/: (2)

One can, in principle, collect the higher-order terms as well. However, such
derivation of additional terms cannot be considered as consistent since it relies on
the agreement with numerical results. It turns out, though, that (2) compares well
with our results shown below; see (6). Except an immediate vicinity of the critical
point, analytic-numeric approach of [3] is in a good agreement with the numerical
results of [39].

In a different limit of high concentrations, Keller [29] suggested a constructive
asymptotic method for regular lattices, leading to very transparent, inverse square-
root formula for the square array [29]. Berlyand and Novikov [10] extended Keller’s
method to the hexagonal array,

� '
4

p
3
3=2p
2

1
q


p
12

� x
: (3)

Thus, the critical amplitude A (pre-factor) is equal to A � 5:18.
We will examine below this result for the critical amplitude from the perspective

of resummation techniques suggested before for square regular arrays [21]. By
analogy with square lattice [35], we expect a constant correction in the asymptotic
regime,

� '
4

p
3
3=2p
2

1
q


p
12

� x
C B; (4)

where the correction term B cannot be found in the literature, to the best of our
knowledge. It will be calculated below by different methods.

With account for such correction, the final universal formula valid for all possible
concentrations from 0 to 
p

12
has the form

�.x/ D a.x/
P.x/

Q.x/
; (5)

where

a.x/ D 36:1415
q


p
12

� x
C 15:9909

r

p
12

� x � 45:685C 2:46148x;

P.x/ D .0:939152C x/.1:38894 � 2:16685x C x2/

�.2:55367 � 0:836613x C x2/.2:08347C 2:12786x C x2/
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and

Q.x/ D .1:01215C x/.1:61369 � 2:31669x C x2/

�.6:51762 � 0:173965x C x2/.4:88614C 3:28716x C x2/:

The rest of the paper is organized as follows: in Sect. 2, we describe the essentials
of the long series derivation. Section 3 applies various methods to the critical point
calculation and compares the obtained results. In Sect. 4, the critical index and
amplitude A are calculated. In Sect. 5, the most accurate formula for all volume
fractions is derived, comparing the obtained predictions to numerical data. The
amplitude B is calculated. Section 6 is concerned with interpolation with Padé
approximants. Section 7 returns to discussion of the ansatz for construction of the
starting approximation. Section 8 gives unified approach to the square and hexag-
onal lattices. Section 9 considers Dirichlet summation to extract the asymptotic
behavior of series coefficients. Section 10 derives the asymptotic formula by the
use of the lubrication theory. Section 11 considers random composites related to the
hexagonal lattice. Finally, Sect. 12 concludes with a discussion of obtained results.

2 Series for Hexagonal Array of Superconducting Cylinders

We proceed to the case of a hexagonal lattice of inclusions, where rather long
expansions in concentration will be presented and analyzed systematically. The
coefficients an in the expansion of �.x/ D 1 C P1

nD1 anxn are expressed through
elliptic functions by exact formulae from [36, 37]. Below, this expansion is
presented in the truncated numerical form,

�.x/ D 1C 2x C 2x2 C 2x3 C 2x4 C 2x5 C 2x6

C2:1508443464271876x7 C 2:301688692854377x8

C2:452533039281566x9 C 2:6033773857087543x10

C2:754221732135944x11 C 2:9050660785631326x12

C3:0674404324522926x13 C 3:2411917947659736‘x14

C3:426320165504177x15 C 3:6228255446669055x16

C3:8307079322541555x17 C 4:049967328265928x18

C4:441422739726373x19 C 4:845994396051242x20

C5:264540375940583x21 C 5:69791875809444x22

C6:146987621212864x23 C 6:6126050439959x24

C7:135044602470776x25 C 7:700073986554016x26

CO.x27/: (6)
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The first 12 coefficients of (6) and the Taylor expansions of (1) coincide. The next
coefficients can be calculated by exact formulae from [36, 37]. This requires the use
of the double precision and perhaps a powerful computer, not a standard laptop.

Since we are dealing with the limiting case of perfectly conducting inclusions
when the conductivity of inclusions tends to infinity, the effective conductivity is
also expected to tend to infinity as a power law, as the concentration x tends to the
maximal value xc for the hexagonal array,

�.x/ ' A.xc � x/�s C B: (7)

The critical superconductivity index (exponent) s is believed to be 1=2 for all
lattices [10]. For the sake of exploring how consistent are various resummation
techniques, we will calculate the index. The critical amplitudes A and B are unknown
nonuniversal parameters to be calculated below as well.

The problem of interest can be formulated mathematically as follows: given the
polynomial approximation (6) of the function �.x/, to estimate the convergence
radius xc of the Taylor series �.x/ and to determine critical index s and amplitudes
A;B of the asymptotically equivalent approximation (7) near x D xc.

When such extrapolation problem is solved, we proceed to solve an interpolation
problem of matching the two asymptotic expressions for the conductivity and derive
interpolation formula for all concentrations.

3 Critical Point

3.1 Padé Approximants

Probably the simplest and direct way to extrapolate is to apply the Padé approxi-
mants Pn;m.x/, which are nothing else but the ratio of the two polynomials Pn.x/ and
Pm.x/ of the order n and m, respectively. The coefficients are derived directly from
the coefficients of the given power series [6, 41] from the requirement of asymptotic
equivalence to the given series or function f .x/. When there is a need to stress the
last point, we simply write PadeApproximantŒf Œx�; n;m�.

In order to estimate the position of a critical point, let us apply the diagonal Padé
approximants,

P1;1.x/ D m1x C 1

n1x C 1
; P2;2.x/ D m2x2 C m1x C 1

n2x2 C n1x C 1
; : : : (8)

Padé approximants locally are the best rational approximations of power series.
Their poles determine singular points of the approximated functions [6, 41].
Calculations with Padé approximants are straightforward and can be performed
with Mathematica

R	
. They do not require any preliminary knowledge of the critical

index, and we have to find the position of a simple pole. In the theory of periodic
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2D composites [8, 22, 42], their application is justifiable rigorously away from the
square-root singularity and from the high-contrast limit.

There is a convergence within the approximations for the critical point generated
by the sequence of Padé approximants, corresponding to their order increasing:

x1 D 1, x2 D 1, x3 D 1, x4 � n:a:, x5 � n:a:, x6 D 0:945958, x7 D 0:945929,
x8 D 0:947703, x9 D 0:946772, x10 D 0:942378, x11 D 0:945929, x12 D 0:945959,
x13 D 0:920878.

The main body of the approximations is well off the exact value. The percentage
error given by the last/best approximant in the sequence equals to 1:5413%. If only
the first row of the Padé table is studied [41], then the best estimate is equal to
0:929867, close to the estimates with the diagonal sequence.

We suggest that further increase in accuracy is limited by triviality or “flatness”
of the coefficient values in six starting orders of (6). Consider another sequence
of approximants, when diagonal Padé approximants are multiplied with Clausius–
Mossotti-type expression,

Pt
1.x/ D .1 � x/

.1C x/

.1C m1x/

.1C n1x/
I

Pt
2.x/ D .1 � x/

.1C x/

.1C m1x C m2x2/

.1C n1x C n2x2/
; : : : (9)

The transformation which lifts the flatness does improve convergence of the
sequence of approximations for the threshold,

x7 D 0:94568, x8 � n:a:, x9 D 0:948299, x10 D 0:9287, x11 D 0:945681, x12 D
0:89793, x13 D 0:903517. The percentage error given by the last approximant in the
sequence equals �0:373%.

In order to judge the quality of the latter estimate, let us try the highly
recommended D � Log Padé method [6], which also does not require a preliminary
knowledge of the critical index value. One has to differentiate Log of (6), apply the
diagonal Padé approximants, and define the critical point as the position of the pole
nearest to the origin. The best estimate obtained this way is x12 D 0:919304, with
percentage error of 1:368%. One can also estimate the value of critical index as a
residue [6] and obtain rather disappointing value of 0:73355.

3.2 Corrected Threshold

An approach based on the Padé approximants produces the expressions for the cross
properties from “left to right,” extending the series from the dilute regime of small
x to the high-concentration regime of large x. Alternatively, one can proceed from
“right to left,” i.e., extending the series from the large x (close to xc) to small x
[16, 21, 49].

We will first derive an approximation to the high-concentration regime and then
extrapolate to the less concentrated regime. There is an understanding that physics
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of a 2D high-concentration, regular, and irregular composites is related to the so-
called necks, certain areas between closely spaced disks [9, 10, 29].

Assume also that the initial guess for the threshold value is available from
previous Padé estimates and is equal to x6 D 0:945958.

The simplest way to proceed is to look for the solution in the whole region Œ0; xc/,
in the form which extends asymptotic expression from [34], � D ˛1.xc�x/�1=2C˛2.
This approximation works well for the square lattice of inclusions [21].

In the case of hexagonal lattice, we consider its further extension, with higher-
order term in the expansion

� D ˛1.x6 � x/�s C ˛2 C ˛3.x6 � x/s; (10)

where index s is considered as another unknown. All unknowns can be obtained
from the three starting nontrivial terms of (6), namely, � ' 1 C 2x C 2x2 C 2x3.
Thus, the parameters equal ˛1 D 2:24674, ˛2 D �1:43401, ˛3 D 0:0847261,
s D 0:832629.

Let us assume that the true solution � may be found in the same form but with
exact yet unknown threshold Xc,

˙ D ˛1.Xc � x/�s C ˛2 C ˛3.Xc � x/s: (11)

The expression (11) may be inverted and Xc expressed explicitly,

Xc D 2�1=s

 
�p.˛2 �˙/ 2 � 4˛1˛3 � ˛2 C˙

˛3

!
1=s C x: (12)

Formula (12) is a formal expression for the threshold, since ˙.x/ is also
unknown. We can use for ˙ the series in x, so that instead of a true threshold, we
have an effective threshold, Xc.x/, given in the form of a series in x. For the concrete
series (6), the following expansion follows,

Xc.x/ D x6 C 0:0134664x4 C 0:00883052x5

C0:00647801x6 � 0:0709217x7 C 0:0032732x8

C0:00244442x9 C 0:00594779x10 C 0:00482187x11

C0:00413887x12 C � � � ; (13)

which should become a true threshold Xc as x ! Xc.
Moreover, let us apply resummation procedure to the expansion (13) using the

diagonal Padé approximants. Finally, let us define the sought threshold X�
c self-

consistently from the following equations dependent on the approximant order,

X�
c D Pn;n.X

�
c /; (14)

meaning simply that as we approach the threshold, the RHS of (14) should become
the threshold. Since the diagonal Padé approximants of the nth order are defined for
an even number of terms 2n, we will also have a sequence of X�

c;n.
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Solving Eq. (14), we obtain X�
c;4 D 0:930222, X�

c;5 D 0:855009, X�
c;6 D 0:9483,

X�
c;7 D 0:932421, X�

c;8 D 0:946773, X�
c;9 D 0:941391, X�

c;10 D 0:94682, X�
c;11 D

0:932752, X�
c;12 D 0:907423, X�

c;13 D 0:903303. The last two estimates for the
threshold are good.

3.3 Threshold with Known Critical Index

Also, one can pursue a slightly different strategy, assuming that critical index is
known (s D 1=2) and is incorporated into initial approximation. Recalculated
parameters equal ˛1 D 5:12249, ˛2 D �5:74972, ˛3 D 1:52472. For the series (6),
the following expansion follows,

Xc.x/ D x6 � 0:082561x3 C 0:0282108x4 � 0:000383173x5

C0:0228241x6 � 0:0649593x7 C 0:01561635x8

�0:00911151x9 C 0:01874715x10 C 0:00688507x11

C0:0169516x12 C � � � : (15)

Let us apply resummation procedure to the expansion (15) using super-
exponential approximants E�.x/ [48]. Finally, let us define the sought threshold
X�

c self-consistently,

X�
c D 0:945958 � 0:082561x3E�.X�

c /: (16)

Since the super-exponential approximants are defined as E�
k for arbitrary number

of terms k, we will also have a sequence of X�
c;k. For example,

E�
1 D e�0:341697x;

E�
2 D e�0:341697e0:157266xx;

E�
3 D e�0:341697e0:157266e5:28382xxx; : : : ; (17)

and so on iteratively. Solving Eq. (16), we obtain X�
c;1 D 0:901505, X�

c;2 D
0:903321, X�

c;3 D 0:945958, X�
c;4 D 0:903404, X�

c;5 D 0:916641, X�
c;6 D 0:903412,

X�
c;7 D 0:903556, X�

c;8 D 0:903412, X�
c;9 D 0:903412.

There is a convergence in the sequence of approximations for the threshold. The
percentage error achieved for the last point is equal to �0:384537%.

The method of corrected threshold produces good results based only on the
starting 12 terms from the expansion (6), in contrast with the Padé-based approxi-
mations, requiring all available terms to gain similar accuracy. The task of extracting
the threshold, a purely geometrical quantity, from the solution of the physical
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Fig. 1 xc calculated by ratio method, compared with the exact threshold

problem is not trivial and is relevant to similar attempts to find the threshold for
random systems from the expressions for some physical quantities [44].

Instead of the super-exponential approximants, one can exactly as above apply
the diagonal Padé approximants,

X�
c;n D Pn;n.X

�
c /: (18)

Solving Eq. (18), we obtain X�
c;3 D 0:908188, X�

c;4 D 0:889169, X�
c;5 D 0:889391,

X�
c;6 D 0:887983, X�

c;7 D 0:899495, X�
c;11 D 0:903011, X�

c;12 D 0:90296, X�
c;13 D

0:9057. The last value is closest to the exact result.
Ratio method [6] also works well. It evaluates the threshold through the value of

index and ratio of the series coefficients, xc;n D s�1
n C1

an
an�1

. The last point gives rather

good estimate, xc;26 D 0:908801, despite of the oscillations in the dependence on n,
as seen in Fig. 1.

4 Critical Index and Amplitude

The standard way to proceed with critical index calculations when the value of the
threshold is known can be found in [6, 18]. One would first apply the following
transformation:

z D x

xc � x
, x D zxc

z C 1
; (19)

to the series (6) in order to make application of the different approximants more
convenient.
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Then, to such transformed series M1.z/, apply the D�Log transformation and call
the transformed series M.z/. In terms of M.z/, one can readily obtain the sequence
of approximations sn for the critical index s,

sn D lim
z!1.zPadeApproximantŒMŒz�; n; n C 1�/: (20)

Unfortunately, in the case of (6), this approach fails. There is no discernible
convergence at all within the sequence of sn. Also, even the best result s12 D
0:573035 is far off the expected 0:5. Failure of the standard approach underscores
the need for new methods.

4.1 Critical Index with D � Log Corrections

Let us look for a possibility of improving the estimate for the index along the same
lines as were already employed in the case of a square lattice of inclusions [21],
by starting to find a suitable starting approximation for the conductivity and critical
index.

Mind that one can derive the expressions for conductivity from “left to right,”
i.e., extending the series from small x to large x. Alternatively, one can proceed
from “right to left,” i.e., extending the series from large x (close to xc) to small x
[16, 21, 49]. Let us start with defining reasonable “right-to-left” zero approximation,
which extends the form used in [21, 34] for the square arrays.

The simplest way to proceed is to look for the solution in the whole region Œ0; xc/.
As the formal extension of the expansion,

� r�l D ˛1.xc � x/�s C ˛2 C ˛3.xc � x/s C ˛4.xc � x/2s; (21)

All parameters in (21) will be obtained by matching it asymptotically with the
truncated series �4 D 1C 2x C 2x2 C 2x3 C 2x4, with the following result,

� r�l
4 .x/ D 4:69346

.0:9069 � x/0:520766
� 5:86967

C2:53246.0:9069 � x/0:520766 � 0:526588.0:9069 � x/1:04153: (22)

We present below a concrete scheme for calculating both critical index and
amplitude, based on the idea of corrected approximants [17]. We will attempt to
correct the value of s0 D 0:520766 for the critical index by applying D � Log Padé
approximation to the remainder of series (6).

Let us divide the original series (6) by � r�l
4 .x/ given by (22), apply to the newly

found series transformation (19), then apply D � Log transformation, and call the
transformed series K.z/. Finally, one can obtain the following sequence of the Padé
approximations for the corrected critical index,

sn D s0 C lim
z!1.zPadeApproximantŒKŒz�; n; n C 1�/: (23)
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Fig. 2 Critical index s is calculated by D � Log correction method and compared with the exact
value

The following “corrected” sequence of approximate values for the critical index
can be calculated readily: s4 D 0:522573, s5 D 0:518608, s6 D 0:554342, s7 D
0:281015, s8 D �0:209639, s9 D 0:279669, s10 D 0:527055, s11 D 0:518543, and
s12 D 0:488502. The last two estimates surround the correct value.

Generally, one would expect that with adding more terms to the expansion (6),
quality of estimates for s would improve. As was briefly discussed above, for-
mula (1) can be expanded in arbitrary order in x, generating more terms in
expansion (2). Such procedure, of course, is not a rigorous derivation of true
expansion but can be used for illustration of the convergent behavior of sn with
largerv n (Fig. 2).

If �n.z/ D PadeApproximantŒKŒz�; n; n C 1�, then

��
n .x/ D � r�l

4 .x/ exp

 Z x
xc�x

0

�n.z/ dz

!

; (24)

and one can compute numerically corresponding amplitude,

An D lim
x!xc

.xc � x/sn��
n .x/; (25)

with A0 D 4:693. Expressions of the type (24) have more general form than
suggested before in [14, 18, 20], based on renormalization methods.

Convergence for the index above is expected to be supplemented by convergence
in the sequence of approximate values for critical amplitude, but results are still a bit
scattered to conclude about the amplitude value. For the last two approximations,
we find A11 D 4:80599, A12 D 5:38288, signaling possibility of a larger value than
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4:82, originating from multiplication of the critical amplitude for the square lattice
by

p
3, as suggested by O’Brien [39].

To improve the estimates for amplitude A, assume that the value of critical
index s D 1=2 is given and construct �n.z/ to satisfy the correct value at infinity.
There is now a good convergence for the amplitude, i.e., in the highest orders,
A10 D 5:09584, A11 D 5:1329, A12 D 5:14063. Corresponding expression for the
approximant

�12.z/ D b1.z/

b2.z/
; (26)

where

b1.z/ D �0:079533z4 � 0:745717z5 � 2:5712z6

�4:16091z7 � 2:88816z8 C 0:36028z9

C1:74741z10 C 0:951728z11 � 0:0792987z12; (27)

and

b2.z/ D 1C 14:3691z C 94:745z2 C 380:2z3

C1037:51z4 C 2036:14z5 C 2961:45z6

C3238:1z7 C 2667:9z8 C 1641:88z9

C739:461z10 C 235:321z11 C 48:8016z12

C3:81868z13: (28)

Corresponding effective conductivity can be obtained numerically,

��
12.x/ D � r�l

4 .x/ exp

 Z x
xc�x

0

�12.z/ dz

!

; (29)

The maximum error is at x D 0:905 and equals 0:4637%. It turns out that
formula (29) is good.

5 Critical Amplitude and Formula for All Concentrations

For practical applications, we suggest below the particular resummation schemes,
leading to the analytical expressions for the effective conductivity.
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5.1 Correction with Padé Approximants

Let us ensure the correct critical index already in the starting approximation for
� r�l, so that all parameters in (30) are obtained by matching it asymptotically with
the truncated series �3 D 1C 2x C 2x2 C 2x3,

� r�l
3 .x/ D 5:09924

.0:9069 � x/1=2
� 6:67022 (30)

C3:04972.0:9069 � x/1=2 � 0:649078.0:9069 � x/:

To extract corrections to the critical amplitude, we divide the original series (6)
by (30), apply to the new series transformation (19), call the newly found series
GŒz�, and finally build a sequence of the diagonal Padé approximants, so that the
amplitudes are expressed by the formula (˛1 D 5:09924),

An D ˛1 lim
z!1.PadeApproximantŒGŒz�; n; n�/; (31)

leading to several reasonable estimates A7 D 5:26575, A11 D 5:23882, A12 D
5:25781, A13 D 5:25203. Complete expression for the effective conductivity
corresponding to A11 can be reconstructed readily,

��
11.x/ D � r�l

3 .x/C11.x/; (32)

where C11.x/ D c1.x/
c2.x/

,

c1.x/ D 1:15947C 1:13125x C 1:12212x2

C1:1167x3 C 3:8727x4 C 0:824247x5

�2:62954x6 C 1:19135x7 C 1:21923x8 (33)

C1:42832x9 C 1:0608x10 C 1:53443x11I

and

c2.x/ D 1:15947C 1:13125x C 1:12212x2

C1:1167x3 C 3:86892x4 C 0:849609x5

�2:58112x6 C 1:11709x7 C 1:18377x8 (34)

C1:36969x9 C 1:06062x10 C x11:

Formula (32) is practically as good as (29). Maximum error is at the point x D 0:905

and equals 0:563%.
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5.2 Padé Approximants: Standard Scheme

Our second suggestion for the conductivity formula valid for all concentrations is
based on the following conventional considerations [7]. Let us calculate the critical
amplitude A. To this end, let us again apply transformation (19) to the original
series (6) to obtain transformed series M1.z/ and then apply to M1.z/ another
transformation to get yet another series, T.z/ D M1.z/�1=s, in order to get rid of
the square-root behavior at infinity. In terms of T.z/, one can readily obtain the
sequence of approximations An for the critical amplitude A,

An D xs
c lim

z!1.zPadeApproximantŒTŒz�; n; n C 1�/�sI (35)

There are only few reasonable estimates for the amplitude, A6 D 4:55252, A11 D
4:49882, A12 D 4:64665, and A13 D 4:68505. The last value is the best if compared
with the conjectured in [39], A D 4:82231.

Following the prescription, the effective conductivity can be easily reconstructed
in terms of the Padé approximant (corresponding to A12) and compared with the
numerical results in the whole region of concentrations. The maximum error is at
x D 0:905 and equals �5:67482%. On the other hand, if the conjectured value Ab

is enforced at infinity, through the two-point Padé approximant, the results improve,
and the maximum error at the same concentration is �3:18511%. Corresponding
formula for all concentrations, which also respects 24 terms from the series TŒz�, is
given as follows:

��
p .x/ D 1:02555p

0:9069 � x

s
V1.x/

V2.x/
; (36)

where

V1.x/ D �0:927562 � 0:877939x C 0:0406992x2

C0:0440014x3 C 0:0414973x4 C 0:0436199x5

C0:319848x6 C 0:0110109x7 � 0:122646x8 (37)

C0:0351069x9 C 0:0439523x10 C 0:0380654x11

C1:01499x12 C x13

and

V2.x/ D �1:07571C 2:09854x � 2:17187x2

C2:23064x3 � 2:3122x4 C 2:374x5

�2:1397x6 C 1:87791x7 � 1:78516x8 (38)

C1:86446x9 � 1:94838x10 C 2:03264x11

�x12
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Fig. 3 Our formula (44) (solid) is compared with the standard Padé approximant (36) (dotted) and
rational approximation (1) (dashed). The series (6) is shown with dashed line

Various expressions are shown in Fig. 3. Note that significant deviations of
the corrected Padé formula (44) and of the standard Padé formula (36) from the
reference rational expression (1) start around x D 0:85. All formulae start to depart
from the original series around x D 0:8. The two formulae, (44) and (36), happen to
be very close to each other almost everywhere, except in the immediate vicinity of
the critical point.

5.3 Accurate Final Formula

According to our calculations, based on various resummation techniques applied to
the series (6), we conclude that the critical amplitude is in the interval from 5:14 to
5:24, by 6–9 % higher than following naively to O’Brien’s 4:82.

Below, we present an exceptionally accurate and more compact formula for the
effective conductivity (32) valid for all concentrations.

Let us start with modified expression (30) taking into account also the O’Brien
suggestion already in the starting approximation for the amplitude in � r�l. All
remaining parameters in (30) are obtained by matching it asymptotically with the
truncated series �2 D 1C 2x C 2x2,

� r�l
2 .x/ D 4:82231

.0:9069 � x/1=2
� 5:79784

C2:13365.0:9069 � x/1=2 � 0:328432.0:9069 � x/: (39)
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Repeating the procedure developed in Sect. 5.1, we receive several reasonable
estimates for the critical amplitude, A7 D 5:18112, A11 D 5:15534, A12 D 5:19509,
A13 D 5:18766.

Complete expression for the effective conductivity corresponding to the first
estimate for the amplitude is given as follows:

��
7 .x/ D � r�l

2 .x/F7.x/; (40)

and F7.x/ D f1.x/
f2.x/

, where

f1.x/ D 52:0141C 10:3198x � 38:8957x2 C 4:70555x3

C4:89777x4 C 4:6887x5 C 0:476241x6 C 7:49464x7; (41)

and

f2.x/ D 52:0141C 10:3198x � 38:8957x2 C 2:17078x3

C5:80088x4 C 6:03946x5 C 1:80866x6 C x7: (42)

The formulae predict a sharp increase from ��
7 .0:906/ D 166:708 to

��
7 .0:9068/ D 513:352, in the immediate vicinity of the threshold, where other

approaches [3, 9, 39] fail to produce an estimate. At the largest concentration
x D 0:9068993 mentioned in [39], the conductivity is very large, 8375:34. This
formula (40) after slight modifications can be written in the form (5).

Asymptotic expression can be extracted from the approximant (40),

�� ' 5:18112p
0:9069 � x

� 6:229231: (43)

Even closer agreement with numerical results of [39] is achieved with approxi-
mant corresponding to A13.

��
13.x/ D � r�l

2 .x/F13.x/; (44)

where F13.x/ D f1.x/
f3.x/

,

f1.x/ D 1:49313C 1:30576x C 0:383574x2 C 0:467713x3

C0:471121x4 C 0:510435x5 C 0:256682x6

C0:434917x7 C 0:813868x8 C 0:961464x9

C0:317194x10 C 0:377055x11 � 1:2022x12 � 0:931575x13I (45)
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and

f3.x/ D 1:49313C 1:30576x C 0:383574x2 C 0:394949x3

C0:44785x4 C 0:503394x5 C 0:303285x6

C0:271498x7 C 0:732764x8 C 0:827239x9

C0:25509x10 C 0:239752x11 � 1:26489x12 � x13: (46)

It describes even more accurately than (40) the numerical data in the interval
from x D 0:85 up to the critical point. The maximum error for the formula (44) is
truly negligible, �0:042%.

Asymptotic expression can be extracted from the approximant (44),

�� ' 5:18766p
0:9069 � x

� 6:2371: (47)

5.3.1 Role of Randomness

For random two-dimensional composite, we obtained, recently [15], the following
closed-form expression for the effective conductivity:

��.x/ D 0:121708f �
0;r.x/

� exp

0

@ .0:64454x�1:38151/xC0:72278
.x�0:9069/2

r
x.xC0:435329/C0:3582

.x�0:9069/2

� 0:815613 sinh�1
�
2:0171.xC0:494058/

x�0:9069
	
1

A ;

(48)
with

f �
0;r.x/ D .0:419645x C 1/3:45214p

1 � 1:10266x
: (49)

Closed-form expression for the effective conductivity of the regular hexagonal
array of disks is given by (44). Since the two expressions are defined in the
same domain of concentrations, a comparison can explicitly quantify the role of
randomness (irregularity) of the composite. In order to estimate an enhancement
factor due to randomness, we use the ratio of (48) to (44). In particular, the
enhancement factor at x D 0:906 is equal to 104:593. In Fig. 4, such an enhancement
factor is shown in the region of high concentrations. Enhancement factor with
respect to numerical results of Ref. [39] is shown with “fat” dots.



272 S. Gluzman et al.

0.75 0.80 0.85 0.90
x

20

40

60

80

100

R x

Fig. 4 Ratio R.x/ D ��.x/
��

13.x/
of the effective conductivity for the random composite to the effective

conductivity of the hexagonal regular lattice calculated with (48) and (44), respectively

6 Interpolation with High-Concentration Padé
Approximants

When two expansions (6) and (43) are available, the problem of reconstruction
greatly simplifies and can be solved upfront in terms of Padé approximants.

This approach requires as an input at least two parameters from weak- and
strong-coupling (high-concentration) regimes, including the value of amplitude
A D 5:18112 from (43). Similar problem for random composites was considered
in [4].

Assume that the next-order term, B D �6:22923 from (43), is known in advance.
The high-concentration limit, in terms of z-variable (19), the strong-coupling limit,
is simply

� ' Ap
xc

p
z C B C O.z�1=2/: (50)

The Padé approximants all conditioned to give a constant value as z ! 0 are given
below,

p2;1.z/ D ˇ
p

z
�
1Cˇ1 1

p

z
C ˇ2

z

	

1Cˇ3 1
p

z

;

p3;2.z/ D ˇ
p

z
�
1Cˇ1 1

p

z
C ˇ2

z Cˇ3z�3=2
	

1Cˇ5 1
p

z
C ˇ6

z

;

p4;3.z/ D ˇ
p

z
�
1Cˇ1 1

p

z
C ˇ2

z Cˇ3z�3=2C ˇ4
z2

	

1Cˇ5 1
p

z
C ˇ6

z Cˇ7z�3=2
:

(51)
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The unknowns in (51) will be obtained by the asymptotic conditioning to (50)
and (6). In all orders, ˇ D Ap

xc
. Explicitly, in original variables, the following

expressions transpire,

p2;1.x/ D
p

x
0:9069�x C 4:9348

0:9069�x �4:11284p
x

0:9069�x C1:32856 ;

p3;2.x/ D
�
0:608173

p
x

0:9069�x C1:26563
	

xC0:677749p x
0:9069�x C1:13282

�
�
0:747325

p
x

0:9069�x C1
	

xC0:677749p x
0:9069�x C1:13282 ;

p4;3.x/ D 5:4414
p

z.x/
�
1C3:76414 1

p

z.x/
C 7:73681

z.x/ C1:97396z.x/�3=2C 3:76815

z.x/2

	

1C4:90893 1
p

z.x/
C 10:7411

z.x/ C20:504z.x/�3=2
:

(52)

The approximants are strictly nonnegative and respect the structure of (6), e.g.,
for small x,

p4;3.x/ ' 1C 2x C 2x2 C O.x3/; (53)

since all lower-order powers generated by square roots are suppressed by design.
But in higher order, emerging integer powers of roots should be suppressed again
and again, to make sure that only integer powers of x are present. As x ! xc,

p4;3.x/ ' A.xc � x/�1=2 C B C O..xc � x/1=2/; (54)

and only integer powers of a square root appear in higher orders. Both p3;2.x/ and
p4;3.x/ give good estimates for the conductivity, from below and above, respectively.
Their simple arithmetic average works better than each of the approximants. The
bounds hold till the very core of the high-concentration regime, till x D 0:906.

Particularly clear form is achieved for the resistivity, an inverse of conductivity,
r.z/ D .p.z//�1, e.g.,

r3;4.z/ D 3:76815C 1:97396
p

z C 0:902145z C 0:183776z3=2

3:76815C 1:97396
p

z C 7:73681z C 3:76414z3=2 C z2
: (55)

With the variable X D p
z, the resistivity problem is reduced to studying the

sequence of Padé approximants Rn D rn;nC1.X/, n D 1; 2 : : : l=2, with X 2 Œ0;1/,
and analogy with the Stieltjes truncated moment problem [1, 13, 31] is complete
as long as the resistivity expands at X ! 1 in the Laurent polynomial with the
sign-alternating coefficients, coinciding with the “Stieltjes moments” �k (see, e.g.,
[45, 46], where the original work of Stieltjes is explained very clearly).

The moments formally define corresponding Stieltjes integral as X ! 1,

Z 1

0

d�.u/

u C X
�

lX

kD0
.�1/k�kX�k�1 C O.X�l/; (56)

l is even [13], and �k D R1
0

uk d�.u/. Approximant Rn.X/ should match (56)
asymptotically.
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The Stieltjes moment problem can possess a unique solution or multiple solu-
tions, dependent on the behavior of the moments, in contrast with the problem of
moments for the finite interval [8, 22, 42], which is solved uniquely if the solution
exists [47]. The role of variable is played by the contrast parameter, while in our
case of a high-contrast composite, the variable is X.

In our setup, there are just two moments available, and resistivity is reconstructed
using also a finite number of coefficients in the expansion at small X. That is, the
reduced (truncated) two-point Padé approximation is considered, also tightly related
to the moment problem [24, 26, 31]. In fact, even pure interpolation problem can
be presented as a moment problem. We obtain here upper and lower bounds for
resistivity (conductivity) in a good agreement with simulations [39].

It does seem interesting and nontrivial that the effective resistivity (conductivity)
can be presented in the form of a Stieltjes integral [45–47], when the variable (19)
is used.

6.1 Independent Estimation of the Amplitude B

We intend to re-calculate the amplitude B independent on previous estimates. Start
with the choice of the simplest approximant as zero approximation,

p1;0.z/ D ˇ
p

z

 1p
z

ˇ
C 1

!

: (57)

p1;0.x/ D 5:4414

r
x

0:9069 � x
C 1; (58)

The way how we proceeded above was to look for multiplicative corrections to
some plausible “zero-order” approximate solution. We can also look for additive
corrections in a similar fashion. To this end, subtract (58) from (2) to get some new
series g.x/. Change the variable x D y2 to bring the series to a standard form. The
diagonal Padé approximants to the series g.y/ are supposed to give a correction to
the value of 1, suggested by (58). To calculate the correction, one has to find the
value of the corresponding approximant as y ! p

xc. The following sequence of
approximations for the amplitude B can be calculated now readily,

Bn D 1C PadeApproximantŒg.y ! p
xc/; n; n�: (59)

The sequence of approximations is shown in Fig. 5.
There is clear saturation of the results for larger n, and B26 D �5:94966. One can

reconstruct the expression for conductivity corresponding to B26 in additive form

��
26.x/ D p1;0.x/C F26.x/; (60)
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5 10 15 20 25 n
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Fig. 5 Sequence of approximations Bn calculated from (59)

where F26.x/ D F2.x/
F6.x/

,

F2.x/ D �5:71388px

�1:5564x � 0:358877x3=2 � 2:18519x2 C 0:0918426x5=2 � 1:59468x3

�0:149418x7=2 � 1:47691x4 � 0:366848x9=2 � 1:49733x5 � 0:56432x11=2

�1:58738x6 C 0:21344x13=2 � 1:31081x7 � 0:366156x15=2 C 15:1037x8

�15:1703x17=2 � 6:38227x9 C 0:576004x19=2 � 2:5147x10 C 0:715526x21=2

�1:53752x11 C 0:28655x23=2 � 1:19851x12 C 5:9511x25=2 C 0:558011x13 (61)

and

F6.x/ D 1C 0:622415
p

x � 0:27066x C 0:294568x3=2 � 0:00182913x2

C0:0875453x5=2 C 0:0832152x3 C 0:098912x7=2 C 0:114562x4 C 0:116471x9=2

C0:133685x5 C 0:133737x11=2 � 0:0205003x6 C 0:0451001x13=2

C0:134146x7 � 2:77482x15=2 C 1:6976x8 C 3:12806x17=2 � 0:87267x9

C0:16541x19=2 � 0:179645x10 C 0:0404152x21=2 C 0:000620289x11

C0:0514796x23=2 � 0:986857x12 � 0:58415x25=2 C 0:388415x13: (62)

The maximum error for the formula (60) is very small, 0:0824%, only slightly
inferior compared with (44). The amplitude B is firmly in the interval .5:95; 6:22/,
according to our best two formulae.
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7 Discussion of the Ansatz ((21),(30))

In the case of a square lattice of inclusions [2, 21, 27, 28, 39], we looked for the
solution in a simple form,

� r�l
1 D ˛1.xc � x/�1=2 C ˛2; xc D 


4
; (63)

and obtained the unknowns from the two starting terms of the corresponding series,

� ' 1C 2x C 2x2 C 2x3 C 2x4 C � � � (64)

Then, ˛1 D 
3=2

2
� 2:784, ˛2 D .1 � 
/, same form as obtained asymptotically in

[34], with exactly the same value for the leading amplitude as obtained in [29].
Formula (63), despite its asymptotic nature, turned out to be rather accurate in

the whole region of concentrations. We try to understand below why it is so.
Let us subtract the approximant (63) from the series (64) and apply to the

new series transformation (19). Then we apply to such transformed series another
procedure, intended to find corrections to the values of amplitudes ˛1 and ˛2. Such
task is nontrivial, especially when one is interested in analytical solutions. It can be
solved using the general form of root approximants derived in [16, 49],

�add D b0z
2
�
.b1z C 1/ s1 C b2z

2
�

s2 (65)

under asymptotic condition

�add ' d1
p

z C d2; as z ! 1: (66)

Elementary power counting gives s1 D 3=2, s2 D �3=4. All other unknowns can
now be determined uniquely in a standard fashion from the condition of asymptotic
equivalence as z ! 0. Final expression

�add D 0:0556033x2

.0:785398 � x/2
�

3:69302x2

.0:785398�x/2
C �

1:98243x
0:785398�x C 1

�3=2	3=4
; (67)

can be re-expanded in the vicinity of xc with the result

�add ' 0:0184973p
0:785398 � x

� 0:0118315C O.
p

xc � x/; (68)

indicating only small corrections to the values of amplitudes. Such asymptotic
stability of all amplitudes additionally justifies the ansatz, and final corrected
expression � sq D � r�l

1 C �add appears to be just slightly larger than (63). Note that
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modified Padé approximants as described above are only able to produce additive
corrections in the form �add ' d

p
z C O. 1p

z
/ as z ! 1.

In the case of hexagonal lattice, such simple proposition as (63) does not appear
to be stable in the sense described above. We have to try lengthier expressions of the
same type, such as (30).

If we simply expand (30), we find the fifth-order coefficient a5 D 1:99674, in
excellent agreement with exact value of 2.

Let us consider (30) as an initial approximation for the critical index calculation
and calculate corrections by d � Log-Pade technique. As expected, the calculated
values of the corrections are small and when all terms from the expansion are
utilized are equal just (�0:0028).

Additive correction in the form �add D b0z4
�
b2z2 C .b1z C 1/ 3=2

��7=4, or

�add.x/ D 0:00220821x4

.0:9069 � x/4
�

21:8184x2

.0:9069�x/2
C �

3:48493x
0:9069�x C 1

�3=2	7=4
; (69)

leads to the very small, almost negligible asymptotic corrections to the ansatz (30).
For example, the leading amplitude changes to the value of 5:09925. Such asymp-
totic stability of all amplitudes justifies the ansatz. Of course, it also appears to be
reasonable when compared with the whole body of numerical results. The lower
boundD 5:0925, and the upper boundD 5:298, can be found directly from the
corresponding corrected Padé sequences.

8 Square and Hexagonal United

From the physical standpoint, there is no qualitative difference between the prop-
erties of hexagonal and square lattice arrangements of inclusions. Therefore, one
might expect that a single expression exists for the effective conductivity of the two
cases.

Mathematically, one is confronted with the following problem: for the functions
of two variables �sq.x; x

sq
c / and �hex.x; xhex

c /, to find the transformation or relation
which connects the two functions. (Here, xhex

c � xc.)
The problem is really simplified due to similarity of the leading asymptotic

terms in the dilute and highly concentrated limits. On general grounds, one can
expect that up to some simply behaving “correcting” function of a properly chosen
nondimensional concentration, the two functions are identical. Below, we do not
solve the problem from the first principles but address it within the limits of some
accurate approximate approach.

We intend to express �sq and �hex in terms of the corresponding nondimensional
variables, Zsq D x

x
sq
c �x

and Zhex D x
xhex

c �x
, respectively. Each of the variables is in the

range between 0 and 1.
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Then, we formulate a new ansatz which turns to be good both for square and
hexagonal lattices,

�g D ˛0 C ˛1
4
p
1C ˛2Z C ˛3Z2: (70)

One can obtain the unknowns from the three starting terms of the corresponding
series, which happen to be identical for both lattices under investigation.

Then, the method of Subsection 5.1, when the ansatz (70) is corrected through
application of the Padé approximants, is applied. Emerging diagonal Padé sequences
for critical amplitudes are convergent for both lattices, and good results are simul-
taneously achieved in the same order, employing 22 terms from the corresponding
expansions.

We select from the emerging sequences only approximants which are also
holomorphic functions. Not all approximants generated by the procedure are
holomorphic. The holomorphy of diagonal Padé approximants in a given domain
implies their uniform convergence inside this domain (A.A. Gonchar, see [23]).

Corresponding corrective Padé approximants, Corhex
11 , Corsq

11, are given below in
a closed form. For the hexagonal lattice,

��
hex.Z/ D �g;hex.Z/Corhex

11 .Z/; (71)

and for the square lattice,

��
sq.Z/ D �g;sq.Z/Corsq

11.Z/: (72)

The initial approximation for the hexagonal lattice,

�q;hex.Z/ D �6:44154C 7:44154
4
p
0:265686Z2 C 0:974959Z C 1; (73)

and for the square lattice,

�g;sq.Z/ D �1:79583C 2:79583
4
p
1:41167Z2 C 2:24734Z C 1: (74)

Correction term for the hexagonal lattice has the following form,

Corhex
11 .Z/ D corhex

1 .Z/

corhex
2 .Z/

; (75)

and for the square lattice,

Corsq
11.Z/ D corsq

1 .Z/

corsq
2 .Z/

: (76)
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Numerators and denominators of these expressions are given by polynomials,

corhex
1 .Z/ D 1C 11:8932Z C 64:7366Z2 C 213:169Z3

C474:557Z4 C 755:98Z5 C 884:496Z6 C 760:227Z7

C468:277Z8 C 196:502Z9 C 51:5454Z10 C 7:29645Z11; (77)

corhex
2 .Z/ D 1C 11:8932Z C 64:7366Z2 C 213:169Z3

C474:565Z4 C 756:051Z5 C 884:793Z6 C 760:882Z7

C469:097Z8 C 197:06Z9 C 51:7143Z10 C 7:12936Z11; (78)

corsq
1 .Z/ D 1C 12:211Z C 66:2975Z2 C 212:904Z3 C 451:409Z4

C664:782Z5 C 693:726Z6 C 511:717Z7 C 259:861Z8

C84:9746Z9 C 15:2213Z10 C 0:73003Z11 (79)

corsq
2 .Z/ D 1C 12:211Z C 66:2975Z2 C 212:904Z3 C 451:492Z4

C665:308Z5 C 694:974Z6 C 513:153Z7 C 260:53Z8

C84:8414Z9 C 14:9845Z10 C 0:706023Z11: (80)

The ratio of final expressions for the conductivity of corresponding lattices,
��

hex.Zhex/

��

sq.Zsq/
, can be plotted (as Zhex D Zsq D Z), as shown in Fig. 6.

0.2 0.4 0.6 0.8 1.0 Z
1.1

1.2

1.3

1.4

1.5

1.6

s Zhex

Fig. 6 The ratio of final expressions for the conductivity of corresponding lattices,
��

hex.Zhex/

��

sq.Zsq/
, can

be plotted (as Zhex D Zsq D Z)
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It turns out that the ratio is bounded function of Z and changes monotonously
from 1 (Z D 1) to 1:7352 (Z ! 1). The last number is very close to the O’Brien
suggestion, that the ratio should be equal to

p
3 � 1:73205 [39] and is simply

Ahex

Asq

q
x

sq
c

xhex
c

. Here, Ahex D 5:20709 and Asq D 2:79261 are the critical amplitudes.
We also bring here an accurate and compact enough expression for the effective

conductivity of the square lattice of inclusions, employing 10 terms from the
corresponding expansion for the square lattice,

��
sq.x/ D � sq.x/Corsq

5 .x/; (81)

where

� sq.x/ D 2:79583 4

s
x.2:62925x C 3:10816/C 9:8696

.
 � 4x/2
� 1:79583; (82)

and the correction is given as follows,

Corsq
5 .x/

D x.x.x.x.14:1698x�2:6844/C9:16247/�12:0988/C14:5921/C32:5445
x.x.x.x.1:xC4:34651/C9:16247/�12:0988/C14:5921/C32:5445 :

(83)

It works rather well in the whole interval of concentrations, with maximum error of
0:088%.

As x ! xsq
c , the following expansion for the conductivity follows readily,

��
sq.x/ ' 2:78007

p
x � 


4

� 1:84856C � � � : (84)

The leading critical amplitude equals 2:78, and the next-order amplitude is equal to
�1:849. Both amplitudes are in a good agreement with [34].

From the formula (81), one can readily obtain the higher-order coefficients, not
employed in the derivation. That is, for small x, the following expansion follows:

��
sq.x/ ' 1C 2x C 2x2 C 2x3 C 2x4 C 2:61166x5

C3:22331x6 C 3:83497x7 C 4:44662x8 C 5:27206x9 C 6:28456x10

C7:64531x11 C 9:29831x12 C 11:4116x13 C 13:971x14 C 17:2054x15

C21:169x16 C 26:1655x17 C 32:3365x18 C 40:094x19 C 49:7181x20

C61:7964x21 C 76:8317x22 C 95:6911x23 C 119:229x24 C 148:753x25

C185:673x26: (85)

The computed values of the coefficients are in a fairly good agreement with the
original series (6).
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9 Dirichlet Summation: Large-n Behavior
of Series Coefficients

We will try to evaluate how the coefficients of the series behave at large n. From
the practical viewpoint, it is beneficial to have such information (if available) to be
included into resummation procedure. The so-called Borel summation is known to
render field-theoretical calculations more consistent. With a similar goal, we employ
the ordinary Dirichlet’s series, defined conventionally �.c/ D P1

nD1 ann�c, where
an stands for the coefficients of the original series.

The essential difference distinguishes the general theory of Dirichlet’s series
from the simpler theory of power series. The region of convergence of a power
series is determined by the position of the nearest singular points of the function
which it represents. The circle of convergence extends up to the nearest singular
point. No such simple relation holds in the general case of Dirichlet’s series. When
convergent in a portion of the plane, they only may represent a function regular all
over the plane or in a wider region of it.

However, in an important case relevant to our study, the line of convergence
necessarily contains at least one singularity. It is covered by the following theorem:

Theorem 10 [25]. If all the coefficients of the series are positive or zero, then the
real point of the line of convergence is a singular point of the function represented
by the series.

We conjecture, following [32], that for large n, the sum-function of coefficients,
Sn D a1 C a2 C � � � C an, behaves as follows:

Sn ' ınc1 log".n/: (86)

Then, Dirichlet’s series can be written explicitly in the form [32],

�.c/ D ıc	 ."C 1/ .c � c1/
�"�1 C g.c/; (87)

where g.c/ stands for the regular part and ı is a parameter. This expression is valid
at c > c1, where the Dirichlet’s series are convergent.

In order to return to the physical region of variables x and conductivity, let us
apply the following transformation:

c.x/ D xc.x C xc/

xc � x
; (88)

with the inverse

x.c/ D xcc � xc
2

xc C c
; (89)

with c1 D xc.



282 S. Gluzman et al.

The singular part of the conductivity after such transformation is expressed in the
form

�s.x/ D
2�"�1ı	 ."C 1/.x C xc/

�
xxc

xc�x

	�"

x
; (90)

and we should also set " D �1=2. Parameter ı is simply connected with the critical
amplitude A, ı D Ap

2
xc
.

Finally,

�s.x/ D
A
q

xxc
xc�x .x C xc/

2xxc
: (91)

This expression should also be regularized at small x, so that

�s;r.x/ D �s.x/ � A

2
p

x
: (92)

Close to critical point it can be expanded,

�s;r.x/ ' Ap
xc � x

� A

2
p

xc
� A.�x C xc/

4xc
3=2

C O..xc � x/3=2/: (93)

After extracting the singular part from the series, the regular part expands for
small x into the following expression (only few low-order terms are shown)

g.x/ ' 1 � 3A
p

x

4xc
C 2x � 7Ax3=2

16xc
2

C 2x2 C O.x5=2/; (94)

which is an expansion in
p

x. To this expansion, we apply the diagonal Padé
approximants. The presence of fractional powers can be easily taken into account
by change of variables, x D y2, leading to doubling the number of approximants
which can be constructed, compared with series of only integer powers.

For example, in the lowest orders, in addition to a standard polynomial ratio with

integer highest power, �0:137912x�3:89399pxC1
�0:460544xC0:391414pxC1 , there is another ratio �3:81871pxC1

0:4667
p

xC1 ,
with fractional highest power, which can be considered as a diagonal Padé approxi-
mant too. Only the former-type polynomial ratios will be presented below, since the
latter-type ratios do not bring better results in the current context.

Our goal now is to calculate the second, constant term in expansion close to xc,
denoted above as B. The correction to the constant term in the expansion emerges
directly from the Padé approximant calculated at x D xc,

Bn D � A

2
p

xc
C PadeApproximantŒg.x ! xc/; n; n�: (95)
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Fig. 7 The results for Bn are
shown and compared with the
exact value 50 100 150 200n

0.5

0.4

0.3

0.2

0.1

B

9.1 Test

Consider some text example, when the value of B is known in advance, and the
methodology described above can be tested against it.

The following test function will be considered,

f .x/ D 1

8
�p

1 � x C 1
	

� 4
�p

1 � x C 2
	

x
: (96)

Its low- and high-concentration expansions are similar to the corresponding expan-
sions for conductivity. The coefficients ai can be obtained in arbitrary order from
Taylor expansion and threshold xc D 1. Critical characteristics such as index s D 1

2

and amplitudes A D 1
4

and B D � 1
2
, .B D � 1

2
/ can be recovered from the expansion

in the vicinity of xc.
The results for Bn are shown in Fig. 7 for very large n. The result for sought

amplitude appears to be quite accurate, B200 D �0:49628, and the monotonous
convergence of results should be noted.

9.2 Hexagonal Lattice

Following the same procedure, we obtain several reasonable estimates for the
amplitude B: B5 D �6:40157, B6 D �6:28506, B7 D �6:27028, B8 D �6:33762,
B11 D �6:29595, B12 D �6:29695, and B13 D �6:29842.

Explicitly in the seventh order,

�D
7 D �s;r.x/C PadeApproximantŒgŒx�; 7; 7�: (97)

Corresponding expressions for the singular part of solution,

�s;r.x/ D


�
3
q

1


�2p3x

�
2
p
3x C 


	
� 3p


	

2
p
233=4

p
x

; (98)
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and for the regular part g.x/ D G1.x/
G2.x/

given by the Padé approximant, we find

G1.x/ D 23:7835 � 88:5524px � 39:6443x C 71:3743x3=2

C36:2957x2 � 12:3254x5=2 � 5:54733x3 � 1:28303x7=2

�4:81208x4 � 1:00508x9=2 � 4:36713x5 � 1:3826x11=2

�6:04028x6 C 4:92363x13=2 C 0:518137x7I (99)

G2.x/ D 23:7835C 13:3695
p

x � 29:9175x � 18:0154x3=2

C8:21262x2 C 6:49253x5=2 C 0:387922x3 C 1:2539x7=2

C0:50647x4 C 0:689113x9=2 C 0:505114x5 C 0:554584x11=2

�1:31685x6 � 0:498839x13=2 C x7: (100)

The maximum error for the formula (97) is small, just �0:1602%.
The formulae predict the following values: �D

7 .0:906/ D 166:494,
�D
7 .0:9068/ D 512:7472, and �D

7 .0:9068993/ D 8376:58. These values are very
close to the predictions already presented above.

We conclude that our conjecture concerning the large-n behavior of the sum-
function of the coefficients is in good agreement with available numerical data. Also,
the estimates for B, which stem from the conjecture, are close to other estimates
from the present paper.

Algorithms and mathematical methods used above are based on asymptotic
power series for the effective conductivity and various resummation techniques to
ensure their convergence. Such approach is typical for computational science of
composite materials. It appears to be complementary to classic methodology based
on direct solutions of PDEs.

10 Application of Lubrication Theory

To find the effective conductivity in a classic way, one has to consider the local
problem for Laplace equation describing regular hexagonal lattice of cylindrical
inclusions. Such a study can be based on the lubrication theory [11], applicable for
an asymptotic regime of large, ideally conducting inclusions. It has to be applied
in conjunction with some averaging technique to derive effective conductivity. It is
expedient first to consider inclusions with finite conductivity � and then to consider
the limit � ! 1.

The main idea of the lubrication theory consists in replacing the original
boundary problem with another, corresponding to a simpler geometry (see Fig. 8).
That is, the original hexagonal elementary cell is replaced by a circle of radii b.
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Fig. 8 The hexagonal cell
with the disk of the radius a is
approximated by the circle
cell of the radius b

1

b

a
Ωi

–

Ωi
+

Using so-called “fast” variables .�; �/ and the corresponding local polar coordinates
.r; �/, we arrive at the following problem (for details, see [27, 28]):

@2u

@r2
C 1

r

@u

@r2
C 1

r2
@2u

@�2
D 0; r < a; a < r < b; (101)

uC D u�;
@uC

@r
� �@u�

@r
D .� � 1/.cos � C sin �/; r D a; (102)

u D 0; r D b; (103)

where a is the radius of inclusions. For definiteness, the external flux is taken in
such a way that the macroscopic flow is presented by the potential u0 D .x1; x2/ and
the flux by the vector .1; 1/ (for details, see [27]). The problems (101)–(103) have
the solution

u D
�

N1r cos � C N2r sin �; r � a;
.M1r C K1

r / cos � C .M2r C K2
r / sin �; a � r � b;

(104)

where the constants are determined by the boundary conditions

N1 D N2 D .� � 1/.b2 � a2/

Œb2 C a2 � �.b2 � a2/�
;

M1 D M2 D � .� � 1/a2
Œb2 C a2 � �.b2 � a2/�

;

K1 D K2 D � .� � 1/a2b2
Œb2 C a2 � �.b2 � a2/�

: (105)
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Fig. 9 Approximation of the
hexagonal cell by the circle
cell of the variable radius b.�/

1

a

r = b(ξ)=  1 + ξ2

η

r = b(ξ) = 2   ξ2 –  3 ξ + 1

3

2 ξ

According to the lubrication approach [2, 11], let us consider an external contour
for the cell, as a circle of varying radii

b.�/ D
(
2

q
�2 � p

3� C 1; 0 � � < 

3
;p

�2 C 1; 

3

� � � 

2
;

(106)

Integration is conducted over the quarter of the elementary cell, shown in
Fig. 9. Following general prescriptions of the averaging method, we derive averaged
coefficient

� D 1

j˝j

"Z

˝
C

i

�
1C @u

@�
C @u

@�

�
d�d�C �

Z

˝�

i

�
1C @u

@�
C @u

@�

�
d�d�

#

;

(107)

where j˝j D 2
p
3. The integration is performed to satisfy also the relation (106);

in particular, b.�/ is considered as a corresponding function of varying radius.
After some transformations, we receive the following expression for the effective

conductivity (or thermal conductivity) as the function of the inclusion size a:

�.a/ D
�
2
p
3a2

	
tan�1

� p
3

3
p
1�a2

	

p
1 � a2

C 1

C1

3

�p
3a2

	 

4

� 3

2
sin�1

 p
3

3a

!!

C 4
p
3a2

3
p
1 � a2

�
0

@tan�1
0

@

�p
3a � p

3a2 � 1
	p

1 � a2

a C 1

1

A
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Fig. 10 � calculated by formulae (45) (solid line), by (47) (dotted line), and by (110) (dashed
line)

�1
4

tan�1
0

@
2
�
�p

3a2 � 1C p
3a � 1

	p
1 � a2

p
3a2 � 1

�p
3a C a � 2

	
C
�
1C p

3
	

a
�
1 � p

3a
	

C 2

1

A

� 1

8
tan�1

 
2
p
1 � a2

a

!!

� 1

4
a2 log

 
3a2 C 2

p
3 .3a2 � 1/C 2

4 � 3a2

!

(108)

As the inclusion size tends to its limiting value, a ! 1, the leading term in the
conductivity of the ideally conducting inclusions can be found in the familiar form:

�0 '
q

3
2



p
1 � a

: (109)

When expressed in terms of volume fraction of inclusions (109), it coincides with
Keller’s formula (3).

The first (constant) correction term to the formulae (108) can be also obtained,
leading to “shifted” expression for the conductivity in the critical region,

�1 ' �0 � 5:10217: (110)

Formula (108) works rather well, with accuracy less than 2%, for concentrations as
low as x ' 0:82. Its predictions for concentrations very close to xc are also very
near to predictions from other formulae given above (see Fig. 10). Formula (108)
becomes invalid for x � 0:3023.
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In the case of a square lattice of inclusions, lubrication theory gives the following
asymptotic result [5]:

�.x/ ' 
3=2

2
p



4

� x
� 1: (111)

Formula (111) should be compared with the more accurate result of [34, 35],

�.x/ ' 
3=2

2
p



4

� x
� 
 C 1: (112)

It appears that lubrication theory assumptions, concerning reduction of the
elementary cell to a circle, work better for the hexagonal lattice than for the square
lattice. In both cases, the correction term is overestimated.

Classic approach to PDE’s solution thus is limited to high-concentration asymp-
totic regime with strong interactions between inclusions.

On the other side, the whole well-developed family of self-consistent methods
which include Maxwell’s approach, effective medium approximations, differential
schemes, etc., is valid only for a dilute composites when interactions between
inclusions do not matter [38].

In contrast, computational methods of the present paper are applicable every-
where.

Let us derive an interpolation formula by matching the two limiting expres-
sions, (6) and (110). The method of sewing the two limiting behaviors together
will be chosen to employ the main idea of Sect. 9. First, we assume that the
high-concentration formula (110) holds everywhere and then derive an additive
correction in the form of the diagonal Padé approximants in such a way that
also the low-concentration limit (6) is respected. It turns out that such approach
not only generates another good interpolation formula but also calculates an
additive correction to the amplitude B. Technically, one should only replace the
expression (91) with (110) and extract it from the (6), leading to the new series g.x/
and to corresponding approximations to the sought amplitude,

Bn D �5:10217C PadeApproximantŒg.x ! xc/; n; n�: (113)

We receive several reasonable estimates for the amplitude B: B5 D �6:37811,
B6 D �6:29179, B7 D �6:28019, B8 D �6:42952, B11 D �6:29702, B12 D
�6:29908, and B13 D �6:32249. These results are only slightly higher than
estimates obtained above in Sect. 9. Interpolation formula corresponding to B7 is
as accurate as its counterpart suggested in Sect. 9.
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11 Random Composite from Hexagonal Representative Cell

In the present paper, the numerical computations for random composites are
performed for the hexagonal representative cell. The number of inclusions per cell
can be taken arbitrarily large; hence, the shape of the cell does somewhat influence
the final result.

The hexagonal lattice serves as the domain Q, where random composite is
generated as a probabilistic distribution of disks of radius r (particles), by means
of some Monte Carlo algorithm (protocol) [12]. Below, we outline two different
protocols (algorithms) systematically described in [12].

Algorithm 1, random sequential addition (RSA). The first random point is
randomly distributed in Q. The second point is randomly distributed in Q with
exception of the small circular region of radius r surrounding the first point. Hence,
the distribution of the second random point is conditional and depends on the first
random point. More points, up to some number N, can be generated, conditioned
that circular regions around all previous points are excluded from Q. This joint
random variable for all points correctly determines sought probabilistic distribution.
But the computer simulations work only up to concentrations as high as 0.5773,
hence is the main RSA limitation. To overcome the limitation and to penetrate the
region of larger concentrations, one has to apply some extrapolation technique.

Algorithm 2, random walks (RW) employed also in [15]. N-random points are
generated, at first being put onto the nodes of the hexagonal array. Let each point
move in a randomly chosen direction with some step. Thus each center obtains new
complex coordinate. This move is repeated many times, without particles overlap.
If particle does overlap with some previously generated, it remains blocked at this
step. After a large number of walks, the obtained locations of the centers can be
considered as a sought statistical realization, defining random composite.

RW protocol can be applied for arbitrary concentrations including those very
close to xc, which stands also for the maximum volume fraction of random
composites. At x D xc D 
p

12
, we arrive to the regular hexagonal array of disks.

The effective conductivity of random composite is also expected to tend to
infinity as a power law, as the concentration x tends to the maximal value xc,

�.x/ ' A.xc � x/�s: (114)

The superconductivity critical exponent s believed to be close to 4
3

� 1:3 [43],
much different from the regular case. The critical amplitude A is an unknown
nonuniversal parameter. We demonstrate below that s depends on the protocol and
suggest a simple way to decrease the dependence on protocol. Still, more studies are
needed with different protocols.

Algorithm 2 allows to obtain the following power series in concentration,

�RW D 1C 2x C 2x2 C 4:23721x3 C 6:8975x4: (115)

The higher-order polynomial representations fail to give a non-zero value for the
fourth-order coefficient.
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Reasonable estimate for the critical index s can be obtained already from the
D � Log formula combined with the transformation (19), (20). Namely, the result is
s2 D 1:43811, and for the amplitude, we obtain A D 1:21973.

The algorithm 1 produced the following series in concentration [15],

�RSA D 1C 2x C 2x2 C 5:00392x3 C 6:3495x4: (116)

The coefficients on xk (k D 5; 6; 7; 8) vanish in (116) with the precision 10�10.
A good estimate for the critical index s can be obtained already from the D�Log

formula (20). The results are s2 D 1:28522 for the critical index, and A D 1:57678

for the amplitude.
Ideally, we would like to have s and A to be evaluated independent on protocol,

but can hope only that combining two different protocols can decrease the depen-
dence of s on protocols, because errors of the two protocols can compensate.

Assume that both schemes should lead to the same index, amplitude, and
threshold. Let us form a simple product,

� J D
p
�RW�RSA: (117)

11.1 D-Log Estimates

Apply now the D � Log technique combined with the transformation (19), to the
series (117). The result is s D s2 D 1:34715, better than for each of the individual
components.

Simple addition of (116) and (115) also leads to a good estimate 1:34888, by the
D � Log technique.

A slightly better result is achieved for the geometrical mean of the series,

�M D 2�RW�RSA

�RW C �RSA
; (118)

and s D s2 D 1:34542. The coefficients in the expansion for small x,

�M ' 1C 2x C 2x2 C 4:62056x3 C 6:6235x4; (119)

are formed as a compromise between the two algorithms.
The effective conductivity can be reconstructed [18, 20, 33], from an effective

critical index (or ˇ-function). After some calculations, we obtain

�M� .x/ D 3:24319e0:441389 tan�1.2:18756C 2:43087
x�0:9069 /

�
�

0:9069

0:9069 � x
� 0:515166

�1:33609 �x.x C 0:0245056/C 0:176696

.0:9069 � x/2

�0:00466513
(120)

Also, the critical amplitude evaluates as 1:423. Equation (120) works as good as any
other formula for the effective conductivity obtained in [15].
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11.2 “Single Pole” Approximation

The critical index can be estimated also from a standard representation for the
derivative

Ba.x/ D @x log.�M.x// ' s

xc � x
; (121)

as x ! xc, thus defining critical index as the residue in the corresponding single
pole [6].

Outside of the immediate vicinity of the critical point, a diagonal Padé approx-
imant is assumed for the residue estimation [6], but such approach fails in the
case under study. Let us use another representation, in the form of a factor
approximant [20],

Ba.x/ D 2.b2x C 1/s2

1 � x
xc

; (122)

with the following values for parameters b2 D 7:84091, s2 D �0:140629, found for
the series (118).

Formula (122) leads to the simple expression for the critical index

s D 2xc.b2xc C 1/s2 ; (123)

and to the value s D 1:35129. The effective conductivity can be reconstructed as
follows,

��.x/

D exp

0

@
2


�
.b2xC1/s2C1

2F1

�
1;s2C1Is2C2I 2

p

3.b2xC1/


b2C2
p

3

�
� 2F1

�
1;s2C1Is2C2I 2

p

3


b2C2
p

3

��

.
b2C2
p
3/.s2C1/

1

A ;

(124)

through the hypergeometric function F1. The “single pole” approximation (121) is
in fact equivalent to the particular case of the hypergeometric function.

For the RSA-series (116), the same approach gives s D 1:31786, while for the
RW-series (115), s D 1:37978. The difference between the two algorithms is small
compared to all others methods employed for the index estimations.

11.3 Corrected Index: Scheme 1

We follow below the general idea of Refs. [21, 33], also explained in Sect. 4.1. At
first, one should obtain an approximate solution explicitly as a factor approximant
[19, 50]. Then, we attempt to correct the form of the initial approximation with
additional factor, originated from the part of series which did not participate in the
formation of the initial approximation, following literally the way leading to (24).
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The simplest factor approximant can be calculated,

f0.x/ D .x C 1/1:04882

.1 � 1:10266x/0:862622
: (125)

Such approximant satisfies the two nontrivial starting terms from the series (119)
and incorporates the accepted value of the threshold xc. It predicts for the critical
index the value s0 D 0:862622.

In the next step, we attempt to correct s0 using the D � Log-correction approach
[21, 33], as described also in Sect. 4.1. Let us form the following ratio, �M

f0.x/
.

Repeating the same steps that lead to the corrected expression for the index (23),
we obtain the corrected value s2 D 1:32067. The corresponding amplitude is equal
to 1:48267.

The conductivity can be reconstructed in a closed form. Calculating correspond-
ing integral with ˇ-function[18, 20] P2;3.z/,

P2;3.z/ D 5:71085z2

12:4679z3 C 10:3351z2 C 4:31945z C 1
; (126)

we obtain

��
2 .x/ D 1:77719

.x C 1/1:04882

.1 � 1:10266x/0:862622
e�0:465101 tan�1

�
2:16258xC0:451103

0:9069�x

	

�
�
0:545059x C 0:412586

0:9069 � x

�0:444818 �x2 C 0:0241854x C 0:18073

.0:9069 � x/2

�0:00661298
:

(127)

11.4 Corrected Index: Scheme 2

Let us start from the initial approximation (125) and recast it more generally as

f0.x/ D
�
1 � x

xc

��s0

R.x/; (128)

where R.x/ stands for the regular part of (125). In what follows, we attempt
to correct f0.x/ differently than above, assuming instead of s0 some functional
dependence S.x/.

As x ! xc, S.x/ ! sc, the corrected value. The function S.x/ will be designed in
such a way that it smoothly interpolates between the initial value s0 and the sought
value sc. The corrected functional form for the conductivity is now

f �.x/ D
�
1 � x

xc

��S.x/

R.x/: (129)
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From (129), one can express S.x/ but only formally since f �.x/ is not known. But
we can use its asymptotic form (119), express S.x/ as a series, and apply some
resummation procedure (e.g., Padé technique). Finally, calculate the limit of the
approximants as x ! xc.

In what follows, the ratio C.x/ D �M.x/
R.x/ stands for an asymptotic form of the

singular part of the solution, and as x ! 0,

S.x/ ' log .C.x//

log
�
1 � x

xc

	 ; (130)

which can be easily expanded in powers x, around the value of s0. It appears that
one can construct a single meaningful Padé approximant,

S.x/ D 4:91072x2 C 0:703479x C 0:862622

3:00966x2 C 0:815512x C 1
; (131)

and find the corrected index, sc D S.xc/ D 1:31426. Now, we also possess a
complete expression for conductivity (129).

Scheme 2, due to its simplicity, can always lead to the analytical expression. But
Scheme 1 seems to be the most flexible. It also turns out to be weakly dependent
on the starting approximation f0.x/. Indeed, if another starting approximation is
considered,

f0.x/ D .2x C 1/0:355391

.1 � 1:10266x/1:16919
; (132)

the corrected index remains good, s3 D 1:31094.
The conductivity again can be reconstructed in a closed form. Calculating

corresponding integral with ˇ-function P3;4.z/,

P3;4.z/ D 9:85652z3 C 4:06592z2

69:5337z4 C 35:9326z3 C 20:6483z2 C 6:17673z C 1
; (133)

we obtain a rather lengthy expression,

��
3 .x/ D 1:05615

.2xC1/0:355391
.1�1:10266x/1:16919

� exp
�
0:0615685 tan�1 �2:23114 � 2:10073

0:9069�x

	
� 0:0789727 tan�1 �4:693 � 5:46758

0:9069�x

		

�
�

x.1�0:245701/C0:138583
.0:9069�x/2

	0:081481
=
�

x.xC0:415099/C0:099469
.0:9069�x/2

	0:0106051
:

(134)

The form of expressions (127), (134) is unlikely to be guessed as an independent
approximant.
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12 Conclusion

Based on estimates for the critical amplitudes A and B, we derived an accurate and
relatively compact formula for the effective conductivity (5) (see also asymptotically
equivalent formula (40)) valid for all concentrations, including the most interesting
regime of very high concentrations. For the high-concentration limit, in addition to
the amplitude value of 5:18112, we deduce also that the next-order (constant) term B
equals �6:22923. It is possible to extract more coefficients in the high-concentration
expansion based on the formula (70). Dirichlet summation is suggested to extract
an arbitrary large-n behavior of the coefficients.

When two expansions around different points (6) and (43) are available, the
problem of reconstruction can be solved in terms of high-concentration Padé
approximants, implying that the effective resistivity (conductivity) can be presented

in the form of a Stieltjes integral, in terms of the variable X D
q

x
xc�x . Such Padé

approximants give tight lower and upper bounds for the conductivity, valid up to the
very high x.

Such properties as the superconductivity critical index and threshold for con-
ductivity can be calculated from the series (6). In the case of truncated series, the
standard Padé approximants are not able to describe the correct asymptotic behavior
in the high-concentration limit, where in addition to the leading critical exponent
also a nontrivial sub-leading exponent(s) plays the role [16, 49]. On the other hand,
when such a nontrivial asymptotic behavior is treated separately with different type
of approximants, the Padé approximants are able to account for the correction.
Such patchwork approximations appear to be more accurate and powerful than
approximating conventionally with a single type of approximants.

A simple functional relation between the effective conductivity of the hexagonal
and square lattices is suggested, expressed in terms of some bounded monotonous
function of a nondimensional concentration of inclusions. Getting an accurate
formula in this case means that correct asymptotic behavior (43) indeed can be
extracted from the series (6), and together they determine the behavior in the whole
interval with good accuracy. Neglecting the high-concentration regime dominated
by necks is not admissible.

We also considered a classic approach based on lubrication theory and concluded
that it can be applied strictly within the high-concentration asymptotic regime. In
contrary, the celebrated Maxwell’s approach, effective medium approximations,
and differential schemes are valid only for dilute composites [38]. Computational
approach and results of the present paper are applicable everywhere.

We conclude that approach based on the long power series for the effective
conductivity as a function of particle volume fraction can be consistently applied
in the important case of highly conducting (superconducting) inclusions. Based on
our investigation, we put forward the final formula (5), for the effective conductivity
of the hexagonal array.

Acknowledgements The authors are grateful to Leonid Berlyand for stimulating discussion.
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1 Introduction

The basic result in the field of approximation by linear positive operators starts with
the well-known theorem due to Weierstrass. There are many proofs available in
the literature on this important theorem. The most common proof is based on the
Bernstein polynomials [8], which for f 2 CŒ0; 1� is defined as

Łn. f ; x/ D
nX

kD0

 
n

k

!

xk.1 � x/n�kf .k=n/:

For detailed study on the Bernstein polynomials, we refer the readers to the book
due to Lorentz [33]. In the year 1930, Kantorovich [30] introduced the integral
modification of these operators as

Kn. f ; x/ D
nX

kD0

 
n

k

!

xk.1 � x/n�k
Z .kC1/=.nC1/

k=.nC1/
f .t/dt; x 2 Œ0; 1�:

The operators Kn are defined over a larger class of functions, e.g., f 2 LpŒ0; 1�;

p � 1: In the year 1967, Durrmeyer [10], to approximate functions in LpŒ0; 1�; p � 1;

introduced another important modification of the Bernstein polynomials. But no
much work has been done on these operators for next few years. After the work of
Derriennic [9], it became a topic of interest among researchers, and in the last four
decades, many researchers proposed Durrmeyer-type generalizations of different
operators and developed their approximation properties.

In the present note, we just mention different Durrmeyer-type operators consid-
ered in the last five decades, to the best of our knowledge. There are many other
summation-integral-type operators having defined at f .0/, of genuine type and the q
analogues, etc.; we present here only the Durrmeyer variants.

2 Durrmeyer Operators

In the year 1967, Durrmeyer [10] introduced the integral modification of the
Bernstein polynomials in order to approximate Lebesgue integrable functions on
the interval Œ0; 1� as

An. f ; x/ D .n C 1/

nX

kD0
pn;k.x/

Z 1

0

pn;k.t/f .t/dt; x 2 Œ0; 1�; (1)

where

pn;k.x/ D
 

n

k

!

xk.1 � x/n�k:
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These operators were studied by Derriennic [9], who obtained some direct results in
ordinary and simultaneous approximation. Later Agrawal–Gupta [5] applied linear
combinations to these operators and estimated some direct results in order to achieve
a faster rate of convergence.

Two years later after the work of Derriennic [9], Prasad et al. [37] proposed
Durrmeyer-type hybrid operators containing Szász and Baskakov basis functions
in summation and integration respectively to approximate Lebesgue integrable
functions on Œ0;1/ as

Bn. f ; x/ D .n � 1/
1X

kD0
sn;k.x/

Z 1

0

vn;k.t/f .x C t/dt; x 2 Œ0;1/; (2)

where

sn;k.x/ D e�nx .nx/k

kŠ
; vn;k.t/ D

 
n C k � 1

k

!
tk

.1C t/nCk
:

While studying on this topic, Gupta [14] observed that there were a lot of errors
in the results of Prasad et al. [37] concerning asymptotic approximation and error
estimations. In [14] improved results have been presented.

After a gap of 2 years, in 1985 Mazhar–Totik [35] proposed Szász–Durrmeyer
operators as

Cn. f ; x/ D n
1X

kD0
sn;k.x/

Z 1

0

sn;k.t/f .t/dt; x 2 Œ0;1/; (3)

where

sn;k.x/ D e�nx .nx/k

kŠ
:

Also in the same year, Kasana et al. [31] also introduced Szász–Durrmeyer operators
and estimated some direct results.

In the same year in 1985, Sahai–Prasad [38] proposed independently the
Baskakov–Durrmeyer operators as

Dn. f ; x/ D .n � 1/
1X

kD0
vn;k.x/

Z 1

0

vn;k.t/f .t/dt; x 2 Œ0;1/; (4)

where

vn;k.x/ D
 

n C k � 1
k

!
xk

.1C x/nCk
:
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The operators (4) were termed as modified Lupas operators by Sahai and
Prasad [38]. In the year 1991, Sinha et al. [39] improved the results of Sahai
and Prasad [38] and termed the operators (4) as modified Baskakov operators.

In 1986 Chen proposed Meyer-König–Zeller–Durrmeyer operators in the follow-
ing form:

En. f ; x/ D
1X

kD0

.n C k C 1/.n C k C 3/

.n C 1/
Mmn;k.x/

Z 1

0

Mmn;k.t/f .t/dt; x 2 Œ0; 1�; (5)

where

Mmn;k.x/ D
 

n C k

k

!

xk.1 � x/nC1:

Heilmann [27] in the year 1987 gave general Durrmeyer operators, which include
the above three operators (1), (3), and (4) as special cases. She introduced the
following form

Fn;c. f ; x/ D .n � c/
1X

kD0
pn;k.xI c/

Z

I
pn;k.tI c/f .t/dt; (6)

where

pn;k.xI c/ D .�x/k

kŠ
�.k/n;c.x/:

One has the following special cases:

(a) If �n;c.x/ D e�nx; .c D 0/; x 2 I � Œ0;1/, we get Szász–Durrmeyer operators
[see (3)].

(b) In case �n;c.x/ D .1C cx/�n=c; .c > 0/; x 2 I � Œ0;1/, we get the Baskakov–
Durrmeyer operators [see (4)].

(c) In case �n;c.x/ D .1 � x/n; .c D �1/; x 2 I � Œ0; 1�, with finite sum from 0 to
n, we get the Bernstein–Durrmeyer-type operators [see (1)].

In 1988 Guo [13] introduced a Durrmeyer variant of Meyer-König and Zeller
operators on x 2 Œ0; 1� as

Gn. f ; x/ D
1X

kD1

.n C k � 1/.n C k � 3/

.n � 2/
mn;kC1.x/

Z 1

0
mn�2;k�1.t/f .t/dt; x 2 Œ0; 1� (7)

where

mn;k.x/ D
 

n C k � 1
k

!

xk.1 � x/n:
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Guo [13] studied the rate of convergence for functions of bounded variation. Later
Gupta [16] gave a sharp estimate than the one established by Guo [13].

Another mixed hybrid operator in the year 1993 was proposed by Gupta
and Srivastava [23] with Baskakov and Szász basis functions in summation and
integration, respectively, as

Hn. f ; x/ D n
1X

kD0
vn;k.x/

Z 1

0

sn;k.t/f .t/dt; x 2 Œ0;1/; (8)

where

vn;k.x/ D
 

n C k � 1
k

!
xk

.1C x/nCk
; sn;k.t/ D e�nt .nt/k

kŠ
:

In [23] some direct results in simultaneous approximation have been discussed.
In the year 1994, Gupta [15] proposed the modification of the Baskakov operators

with weights of Beta basis functions in order to approximate Lebesgue integrable
functions of positive real axis as

In. f ; x/ D
1X

kD0
vn;k.x/

Z 1

0

bn;k.t/f .t/dt; x 2 Œ0;1/; (9)

where

vn;k.x/ D
 

n C k � 1
k

!
xk

.1C x/nCk
; bn;k.t/ D 1

B.k C 1; n/

tk

.1C t/nCkC1 :

Gupta [15] observed that this form of integral modification of the Baskakov oper-
ators is capable of providing better approximation. He established an asymptotic
formula and error estimation in simultaneous approximation for the operators In:

After a year in 1995, Gupta and Ahmad [19] considered the reverse form of (9)
by taking the Beta basis in summation and the Baskakov basis in integration, and
they considered the following operators:

Jn. f ; x/ D n � 1
n

1X

kD0
bn;k.x/

Z 1

0

vn;k.t/f .t/dt; x 2 Œ0;1/; (10)

where

bn;k.x/ D 1

B.k C 1; n/

xk

.1C x/nCkC1 ; vn;k.t/ D
 

n C k � 1
k

!
tk

.1C t/nCk
:

They also considered the simultaneous approximation and established the
Voronovskaja-kind formula and error estimation.
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Also Gupta and Srivastava [24] in 1995 considered Beta–Szász operators as

Kn. f ; x/ D
1X

kD0
bn;k.x/

Z 1

0

sn;k.t/f .t/dt; x 2 Œ0;1/; (11)

where

bn;k.x/ D 1

B.k C 1; n/

xk

.1C x/nCkC1 ; sn;k.t/ D e�nt .nt/k

kŠ
:

Later Gupta [17] extended this definition, and while studying the rate of
convergence for absolutely continuous functions having a derivative coinciding
a.e. with a function of bounded variation, Gupta [17] considered the form of the
operators (11) as

Kn;r. f ; x/ D
( P1

kD0 bn;k.x/
R1
0

sn;k.t/f .t/dt; r D 0
.nCr�1/Š
.n�1/Šnr

P1
kD0 bnCr;k.x/

R1
0

sn;kCr.t/f .t/dt; r > 0;

where bn;k.x/andsn;k.t/ are same as considered in (11).
In the same year, i.e., in 1995, Gupta–Sahai–Srivastava [26] considered

the Durrmeyer-type Szász–Beta operators to approximate Lebesgue integrable
functions on Œ0;1/ as

Ln. f ; x/ D
1X

kD0
sn;k.x/

Z 1

0

bn;k.t/f .t/dt; x 2 Œ0;1/; (12)

where

sn;k.x/ D e�nx .nx/k

kŠ
; bn;k.x/ D 1

B.k C 1; n/

xk

.1C x/nCkC1 :

In [26] authors established an asymptotic formula and error estimation in simulta-
neous approximation for the operators Ln:

Next year in 1996, Gupta and Srivastava [25] proposed the general form of the
operators (3) and (9) and suggested the following form while presenting global
direct results:

Mn;c. f ; x/ D
1X

kD0
pn;k.xI c/

Z

I
bn;k.tI c/f .t/dt; (13)

where

pn;k.xI c/ D .�x/k

kŠ
�.k/n;c.x/; bn;k.tI c/ D �.�t/k

kŠ
�.kC1/

n;c .t/:
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One has the following special cases:

(a) If �n;c.x/ D e�nx; .c D 0/; x 2 I � Œ0;1/, we get Szász–Durrmeyer
operators (3).

(b) In case �n;c.x/ D .1C cx/�n=c; .c > 0/; x 2 I � Œ0;1/, we get the Baskakov-
Beta operators (9).

(c) In case �n;c.x/ D .1� x/n; .c D �1/; x 2 I � Œ0; 1�, with a finite sum from 0 to
n, we get the Bernstein–Durrmeyer-type polynomials.

In the year 1999, Agratini [4] proposed the Durrmeyer variant of the Lupas
operators to approximate integrable functions on Œ0;1/ as

Nn. f ; x/ D
1X

kD0

�Z 1

0

ln;k.t/dt

��1
ln;k.x/

Z 1

0

ln;k.t/f .t/dt; (14)

where

ln;k.x/ D 2�nx

 
nx C k � 1

k

!

2�k:

It was observed in [4] that

�Z 1

0

ln;k.t/dt

��1
' 1

n2k:kŠ

kX

iD0
.�1/k�i sk;i:iŠ

2iC1 ;

with sk;i representing the Stirling numbers of first kind. While studying integral
modification of Lupas operators, Agratini [4] estimated some direct results on
Lupas-Kantorovich operators, but till date no proper direct results are available in
the literature for the operators Nn due to its complicated form.

Abel–Gupta–Ivan [2] in the year 2003 proposed the Durrmeyer variant of Meyer-
König and Zeller operators. For functions f 2 L1Œ0; 1�, they defined the operators as

On. f ; x/ D
1X

kD0
mn;k.x/

Z 1

0

qn;k.t/f .t/dt; (15)

where

mn;k.x/ D
 

n C k � 1
k

!

xk.1 � x/n; qn;k.t/ D n

 
n C k

k

!

tk.1 � t/n�1:

Li [32] in the year 2005 proposed the modified form of Baskakov-Beta
operators as

Pn˛. f ; x/ D
1X

kD0
vn;k;˛.x/

Z 1

0

bn;k;˛.t/f .t/dt; x 2 Œ0;1/; (16)



306 V. Gupta et al.

where

vn;k;˛.x/D	 .n=˛ C k/

kŠ	 .n=˛/

.˛x/k

.1C ˛x/n=˛Ck
; bn;k;˛.t/D 1

B.k C 1; n=˛/

.˛t/k

.1C ˛t/n=˛CkC1 :

Here the Baskakov basis function is given by

vn;k.x/ D n.n C 1/.n C 2/ � � � .n C k � 1/
kŠ

xk

.1C x/nCk

which is modified with ˛ > 0 by

vn;k;˛.x/ D n.n C ˛/.n C 2˛/ � � � .n C .k � 1/˛/
kŠ

xk

.1C ˛x/n=˛Ck

D 	 .n=˛ C k/

kŠ	 .n=˛/

.˛x/k

.1C ˛x/n=˛Ck
:

For further studies on the operators Pn˛. f ; x/, we refer the readers [20]. Abel et al.
[2] investigated local approximation properties of the above Durrmeyer variant of
Meyer-König and Zeller operators. They derived sharp estimates of the first and
second central moments. The other results include the rate of convergence by
first modulus of continuity, the Voronovskaja-type formula, and also the rate of
convergence for a Bézier variant of these operators.

Mihesan [36] introduced the generalization of the Baskakov operators depending
on a nonnegative constant a, independent of n as

Ma
n. f ; x/ D

1X

kD0
e� ax

1Cx
Pk.n; a/

kŠ

xk

.1C x/nCk
f .k=n/; x � 0

where Pk.n; a/DPk
iD0

�k
i

�
.n/iak�i; .n/0D1, and .n/i D n.nC1/ � � � .nCi � 1/: In the

year 2011, Erençin [11] proposed a Durrmeyer-type generalization of the operators
Ma

n. f ; x/ but with weights of Beta basis functions. For a nonnegative constant a,
independent of n, the operators considered in [11] are defined as follows:

Qa
n. f ; x/ D

1X

kD0
ea

n;k.x/
Z 1

0

bn;k.t/f .t/dt; x � 0; (17)

where

ea
n;k.x/ D e� ax

1Cx
Pk.n; a/

kŠ

xk

.1C x/nCk
; bn;k.t/ D 1

B.k C 1; n/

tk

.1C t/nCkC1 :
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It can be observed that in case a D 0 these operators reduce to the Baskakov-Beta
operators defined by In above. Erençin [11] obtained some direct results for these
operators. Later Agrawal et al. [7] extended the work and they study simultaneous
approximation results.

Agrawal et al. [6] considered the weights of Szász basis functions in integration
while introducing the Durrmeyer variant of the operators Ma

n. f ; x/ as

Ra
n. f ; x/ D n

1X

kD0
ea

n;k.x/
Z 1

0

sn;k.t/f .t/dt; x � 0; (18)

where

ea
n;k.x/ D e� ax

1Cx
Pk.n; a/

kŠ

xk

.1C x/nCk
; sn;k.t/ D e�nt .nt/k

kŠ
:

Agrawal et al. [6] established the rate of convergence in ordinary and simultaneous
approximation for the operators Ra

n.
Recently Gupta [18] considered the Durrmeyer-type integral modification of

Abel–Ivan operators [1] (which is the modified form of Jain–Pethe operators
[29]) with the weights of Baskakov or Szász basis functions. For c D cn > ˇ

.n D 0; 1; 2; : : :/ for certain constant ˇ > 0, the operators are defined as

Sn;c;d. f ; x/ D .n � d/
1X

kD0
pc

n;k.x/
Z 1

0

bd
n;k.t/f .t/dt; x � 0; (19)

where

pc
n;k.x/ D

�
c

1C c

�ncx
.ncx/k

kŠ
.1C c/�k; bd

n;k.t/ D .�t/k

kŠ
�
.k/
n;d.t/

with .a/k rising factorial and for �n;d.t/ D e�nt; d D 0 Szász basis function, for
�n;d.t/ D .1 C t/�n; d > 0 Baskakov basis functions can be obtained. Gupta
[18] obtained some direct estimates for these operators. Later Govil–Gupta–Soybaş
[12] estimated the rate of convergence for functions having derivatives of bounded
variation.

Stancu [40] introduced a sequence of linear positive operators S.˛/n W CŒ0; 1� !
CŒ0; 1� depending on a nonnegative parameter ˛ given by

S.˛/n . f ; x/ D
nX

kD0

 
n

k

!Qk�1
vD0.x C v˛/

Qn�k�1
�D0 .1 � x � �˛/

Qn�1
�D0.1C �˛/

f .k=n/; x 2 Œ0; 1�:

In case ˛ D 0, these operators reduce to the well-known Bernstein polynomials.
Here the basis function is the Polya distribution. Lupaş–Lupaş [34] considered the
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case ˛ D 1=n; which is important for approximation point of view. Recently Gupta
and Rassias [22] considered the Durrmeyer-type modification of these operators
with weights of Bernstein basis functions as

Tn. f ; x/ D .n C 1/

nX

kD0
p.1=n/

n;k .x/
Z 1

0

pn;k.t/f .t/dt; x 2 Œ0; 1�; (20)

where

p.1=n/
n;k .x/ D

 
n

k

!
2.nŠ/

.2n/Š
.nx/k.n � nx/n�k; pn;k.t/ D

 
n

k

!

tk.1 � t/n�k:

Gupta and Rassias [22] established some direct results for these operators in
ordinary approximation.

With the aim to generalize the classical Szász operators Jain [28], for 0 � ˇ < 1

proposed the operators

Jˇn . f ; x/ D
1X

kD0

nx.nx C kˇ/k�1

kŠ
e�.nxCkˇ/f .k=n/; x 2 Œ0;1/:

Very recently Gupta and Greubel [21] for 0 � ˇ < 1 proposed the following
Durrmeyer variant of the operators Jˇn . f ; x/ in order to approximate integrable
functions as

Uˇ
n . f ; x/ D

1X

kD0

�Z 1

0

L.ˇ/n;k .t/ dt

��1
L.ˇ/n;k .x/

Z 1

0

L.ˇ/n;k .t/f .t/ dt; x � 0 (21)

where the basis function is defined as

L.ˇ/n;k .x/ D nx.nx C kˇ/k�1

kŠ
e�.nxCkˇ/:

As a special case ˇ D 0, these operators reduce to the Szász–Mirakyan–Durrmeyer
operators defined in (3) above. These operators have complicated representation,
and for higher-order moments, still recurrence relation may be considered as an
open problem.

Stancu [40] introduced a sequence of positive linear operators depending on the
parameters ˛ and ˇ; satisfying the condition 0 � ˛ � ˇ; so-called Bernstein–Stancu
operators, as

Bn;˛;ˇ . f I x/ D
nX

kD0
f

�
k C ˛

n C ˇ

�
pn;k .x/ ;
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where pn;k .x/ D �n
k

�
xk .1 � x/n�k and showed that as classical Bernstein operators

Bn . f I x/, Bn;˛;ˇ . f I x/ also converges to f .x/ uniformly on Œ0; 1� for f 2 C Œ0; 1� :
Very recently Acar et al. [3] considered a new type of Bernstein–Durrmeyer
operators, with the purpose of approximating Lebesgue integrable function on the
mobile subinterval of Œ0; 1� for 0 � ˛ � ˇ as

Vn;˛;ˇ . f ; x/ D .n C 1/

�
n C ˇ

n

�2nC1 nX

kD0
Npn;k .x/

Z nC˛
nCˇ

˛
nCˇ

Npn;k .t/ f .t/ dt; (22)

where

Npn;k .x/ D
 

n

k

!�
x � ˛

n C ˇ

�k �n C ˛

n C ˇ
� x

�n�k

:

For these operators authors [3] represented the operators in terms of hypergeometric
series and established local and global approximation results for these operators in
terms of modulus of continuity. In the last section, better error estimation for the
operators using King-type approach has been discussed.

3 Open Problems

While defining the integral modification of the generalized Baskakov operators
Ma

n. f ; x/, Erenc. in [11] and Agrawal et al. [6] considered the Beta and Szász basis
functions, respectively, in integration, which are not the usual Durrmeyer variants
of Ma

n. f ; x/ [see (17) and (18)]. One can consider the same basis in integral, i.e., the
basis ea

n;k.x/; and the operators for nonnegative parameter a, takes the form

Wa
n . f ; x/ D

1X

kD0

�Z 1

0

ea
n;k.t/dt

��1
ea

n;k.x/
Z 1

0

ea
n;k.t/f .t/dt

D
1X

kD0
ea

n;k.x/
< ea

n;k.t/; f .t/ >

< ea
n;k.t/; 1 >

; x � 0; (23)

where

ea
n;k.x/ D e� ax

1Cx
xk

.1C x/nCk

1

kŠ

kX

jD0

 
k

j

!

.n/j ak�j:

In approximation theory to check the convergence theorem, the basic Korovkin’s
conditions must be satisfied, i.e., Wa

n .t
i; x/ ! xi; ; i D 0; 1; 2 for sufficiently large n:

In the case of operators Wa
n . f ; x/; the ratio of the term
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< ea
n;k.t/; t

i >

< ea
n;k.t/; 1 >

is an infinite series and does not have a finite form. So it would be difficult to even
have first- and second-order moments, and it may be considered as an open problem
for the readers.

In (19) the basis in integration is different. In case of a same basis function for
c D cn > ˇ .n D 0; 1; 2; : : :/ for certain constant ˇ > 0, the operators can be
considered as

Xn;c. f ; x/ D
1X

kD0
pc

n;k.x/
�

pc
n;k.t/dt

��1
Z 1

0

pc
n;k.t/f .t/dt; x � 0; (24)

where

pc
n;k.x/ D

�
c

1C c

�ncx
.ncx/k

kŠ
.1C c/�k

with .a/k D a.a C 1/ � � � .a C k � 1/: Actually the basis function pc
n;k.x/ is good for

a discrete case, and integral modification of the form (24) seems not an appropriate
representation as far as approximation properties are concerned. It is also open for
readers to find the Yn;c.ti; x/ for i D 1; 2:

Just like other Durrmeyer operators based on Polya distribution as considered
in (20) with different bases in integration above, one can define with the same basis
under an integral sign as

Yn. f ; x/ D
nX

kD0
p.1=n/

n;k .x/

�Z 1

0

p.1=n/
n;k .t/dt

��1 Z 1

0

p.1=n/
n;k .t/f .t/dt; x 2 Œ0; 1�; (25)

where

p.1=n/
n;k .x/ D

 
n

k

!
2.nŠ/

.2n/Š
.nx/k.n � nx/n�k:

It has the same problems as discussed above for the cases (23) and (24).
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34. Lupaş, L., Lupaş, A.: Polynomials of binomial type and approximation operators. Studia Univ

Babes-Bolyai Math. 32(4), 61–69 (1987)
35. Mazhar, S.M., Totik, V.: Approximation by modified Szász operators. Acta Sci. Math. 49,

257–269 (1985)
36. Mihesan, V.: Uniform approximation with positive linear operators generated by generalized

Baskakov method. Autom. Comput. Appl. Math. 7(1), 34–37 (1998)
37. Prasad, G., Agrawal, P.N., Kasana, H.S.: Approximation of functions on Œ0;1� by a new

sequence of modified Szász operators. Math. Forum VI(2), 1–11 (1983)
38. Sahai, A., Prasad, G.: On simultaneous approximation by modified Lupas operators. J. Approx.

Theory 45(2), 122–128 (1985)
39. Sinha, R.P., Agrawal, P.N., Gupta, V.: On simultaneous approximation by modified Baskakov

operators. Bull. Soc. Math. Belg. Ser. B 43(2), 217–231 (1991)
40. Stancu, D.D.: Approximation of functions by a new class of linear polynomial operators. Rev.

Roum. Math. Pures Appl. 13, 1173–1194 (1968)



On the Imaginary Part of the Nontrivial
Zeros of the Riemann Zeta Function

Mehdi Hassani

In Honor of Constantin Carathéodory

Abstract Based on the recent improved upper bound for the argument of the
Riemann zeta function on the critical line, we obtain explicit sharp bounds for �n,
where 0 < �1 < �2 < �3 < � � � are consecutive ordinates of nontrivial zeros
� D ˇC i� of the Riemann zeta function. Among several bounds, we show validity
of the double-side inequality:

2
n

log n

�
1C 11

12

log log n

log n

	
� �n � 2
n

log n

�
1C 23

12

log log n

log n

	
;

for each n � 3598.

1 Introduction

The Riemann zeta function is defined by �.s/ D P1
nD1 n�s for <.s/ > 1 and

extended by analytic continuation to the complex plane with a simple pole at s D 1.
It is known [7, 13] that

N.T/ WD
X

0<��T
�.ˇCi�/D0

1 D T

2

log

T

2
e
C O.log T/; (1)
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in which the term O.log T/ comes from the approximation of the function S.T/,
which is defined traditionally by

S.T/ D 1



arg �

�1
2

C it
	
;

where the argument is determined via continuous variation along the line segments
connecting 2, 2 C iT and 1

2
C iT , with taking the argument of �.s/ at s D 2 to be

zero. If T is an ordinate of a zero of �.s/, then we set

S.T/ D 1

2
lim
"!0

�
S.T C "/C S.T � "/

	
:

Indeed, the approximation of the function N.T/ related strongly to the approxima-
tion of S.T/. More precisely, for T � 1 it is known (see [15]) that

ˇ̌
ˇ̌N.T/ � T

2

log

T

2
e
� 7

8

ˇ̌
ˇ̌ � jS.T/j C E .T/; (2)

where

E .T/ D 1

4

arctan

1

2T
C T

4

log

�
1C 1

4T2

	
C 1

3
T
:

Conditional approximations of S.T/, assuming the Riemann hypothesis (RH), have
the form

jS.T/j � .C C o.1//
log T

log log T
;

where C is an effective constant and o.1/ refers to a quantity which tends to 0 as T
grows (see [8]). The best known of such conditional approximations asserts that

jS.T/j � 1

4

log T

log log T
C O

� log T log log log T

.log log T/2

	
;

assuming RH, for T sufficiently large (see [3]). Unconditional approximations of
S.T/ usually take the form

jS.T/j � a log T C b log log T C c; (3)

for T � T0 where a, b, c, and T0 are computable constants. The following table
summarizes some known values of a, b, c, and T0 for which the approximation (3)
is valid.

We let �1 D minf� > 0 W �.ˇC i�/ D 0g Š 14:134725142, and more generally,
we set 0 < �1 < �2 < �3 < � � � to be consecutive ordinates of the imaginary parts
of non-real zeros � D ˇ C i� of �.s/. The approximate relation (1) implies that
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�n � 2
n

log n
;

as n ! 1. It is possible to combine the relations (2) and (3) to get an explicit bound
for the function N.T/ and then utilize it to obtain

�n � 2
n

log n

�
1C �

2


log log n

log n

	
; (4)

for n � n�, and

�n � 2
n

log n

�
1C �

2


log log n

log n

	
; (5)

for n � n�. Recently, based on the Rosser’s explicit bound for N.T/ (Theorem 19
of [12]), and unwitting of the recent results of Trudgian [14, 15], we obtained
(see [5]) some bounds for �n as in (4) and (5). Our intention in writing this note
is to obtain some new and shaper explicit bounds based on the most recent result of
Trudgian [15]. More precisely, we prove the following.

Theorem 1. Assume that we choose pairs � and n� from Table 1, and also we
choose pairs � and n� from Table 3. Then, the inequalities (4) and (5) are valid,
respectively, for n � n� and for n � n�.

Table 1 Some known values of a, b, c, and T0 for which the
inequality (3) holds

Author Date a b c T0
Von Mangoldt [16] 1905 0.432 1.917 12.204 28.588

Grossmann [4] 1913 0.291 1.787 6.137 50

Backlund [1] 1914 0.275 0.979 7.446 200

Backlund [2] 1918 0.137 0.443 4.35 200

Rosser [11] 1939 1.12 0 9.5 1450

Rosser [12] 1941 0.137 0.443 1.588 1467

Trudgian [14] 2012 0.17 0 1.998 e

Trudgian [15] 2014 0.112 0.278 2.510 e

Table 2 Some values of �
and n� for which the
inequality (4) is valid for
n � n�

� n� Š � n� Š

 39:2 5.8 281689:7

3
=2 368:2 5.85 762802:6

5
=3 2076:1 5.9 2734673:6

7
=4 9382:8 5.95 15505047:6

9
=5 37888:1 5.99 111747280:4

11
=6 144857:3 6 209209097:8
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Table 3 Some values of � and n� for which the inequality (5) is valid for n � n�

� n� Š � n� Š
5
 1332:6 13
=4 990145917795:7

4
 327934:9 3
 5349674936546058248:1

23
=6 1950923:5 14
=5 31986807300001426933396622571377:7

7
=2 485148930:1 11
=4 19211572570246231288455281380471122965:9

Corollary 1. For each n � 2 we have

�n � 2
n

log n

�
1C 11

12

log log n

log n

	
; (6)

and also, for each n � 3598

�n � 2
n

log n

�
1C 23

12

log log n

log n

	
: (7)

Remark 1. We let n0
� and n0

� be the least positive integers, for which the inequal-
ities (4) and (5) are valid, respectively. The values of n� and n� in the above
tables are not optimal, in the sense of n0

� � n� and n0
� � n�. It is possible, by

computation, to determine the values of n0
� and n0

� for given � and �. For example,
in the above corollary, indeed we have n0

�D11
=6 D 2 and n0
�D23
=6 D 3598. The

truth of Corollary 1.1 of [5] asserts that

�n D 2
n

log n

�
1C .1C o.1//

log log n

log n

	
;

as n ! 1. Assume that ı > 0 is given. Considering the values of n0
�D2
�ı and

n0
�D2
�ı we guess that

B.ı/ WD n0
�D2
�ı

n0
�D2
�ı

! 0;

rapidly.

Our argument to obtain the above results is similar to what we have developed
in [5], as well as we will do several computations running over the numbers �n, all
of which have been done by using Maple software and are based on the tables of
zeros of the Riemann zeta function due to Odlyzko [9].
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2 Some Preliminary Results

Proposition 1. For each T � e we have jN.T/ � F.T/j � R.T/, with

F.T/ D T

2

log

T

2
e
C 7

8
; and R.T/ D 14

125
log T C 139

500
log log T C 2571

1000
:

Proof. We note that the function E .T/ is strictly decreasing for T > 0. Thus, for
T � e, we have E .T/ � E .e/ < 61

1000
. We consider the relation (2), and we recall

the known (see [15]) approximation:

jS.T/j � 14

125
log T C 139

500
log log T C 251

100
;

which is valid for T � e, to get the result.

The above result gives lower and upper bounds for the zero-counting function
N.T/, in terms of T log T , T , log T , and log log T . To accomplish our method, we
need to modify these bounds to include only the terms T log T and T . Thus, we
reform the statement of the above proposition as follows. For the whole text, we set

` D 1

2
; and u D 1

4
:

Lemma 1. Let

L.T/ D 1

2

T log T � `T; and U.T/ D 1

2

T log T � uT: (8)

Then, U.T/ and L.T/ are strictly increasing for T � e2
u�1 Š 1:769676 and
T � e2
`�1 Š 8:512985, respectively. Also, for T � �1 � 10�5, we have

L.T/ � N.T/ � U.T/: (9)

Proof. Monotonicity of the functions U.T/ and L.T/ is straightforward. To get the
inequalities in (9), we utilize Proposition 1 to write

F.T/ � R.T/ � N.T/ � F.T/C R.T/;

for T � e. An easy calculus computation implies that for T � 20:28,
we have F.T/ C R.T/ � U.T/ and consequently N.T/ � U.T/. Since
�2 Š 21:022039639, thus for T < 20:28, we have N.T/ � 1. On the other
hand, since U.T/ is strictly increasing for T � e2
u�1 Š 1:769676, thus
U.T/ � U.�1�10�5/ > 2:4 > 1 � N.T/. This gives the right-hand side of (9).
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Similarly, we observe that for T � 52:16 the inequality L.T/ � F.T/�R.T/, and
consequently L.T/ � N.T/, are valid. Further, we note that �11 Š 52:970321478.
Considering monotonicity of L.T/, and validity of the inequalities L.�n/ < N.�n/ D
n for 1 � n � 11, we deduce the left-hand side of (9) for T < 52:9, too. This
completes the proof.

The following lemma, which its statement and its proof are similar to the
Lemma 2.2 of [5], transfers lower and upper bounds for N.T/ to bounds for �n

in terms of inverses of mentioned bounds for N.T/.

Lemma 2. Assume that L.T/ and U.T/ are defined as in (8), and let us denote by
L�1.T/ and U�1.T/ their inverses, respectively. Then, for each integer n � 1, we
have

U�1.n/ � �n � L�1.n/: (10)

The above lemma gives lower and upper bounds for �n, but in terms of L�1.n/
and U�1.n/. As the following lemma asserts, it is possible to write these inverse
functions in terms of the Lambert W function W.x/, which is defined by the
relation W.x/eW.x/ D x for x 2 Œ�e�1;C1/. The following result, which is indeed
Lemma 2.3 of [5], allows us to find the above required inverses.

Lemma 3. Assume that a and b are some positive real numbers, and let

f .T/ D 1

a
T log T � bT:

We denote the inverse function of f by f �1. Then, for T � eab�1, the function f is
strictly increasing and we have

f �1.T/ D aT

W.ae�abT/
: (11)

In particular, as T ! C1, we obtain f �1.T/ � aT
log T .

The last asymptotic for f �1.T/ in the above lemma comes from the fact that
Lambert W function has the asymptotic expansion W.x/ D log x C O.log log x/ as
x ! 1, (see [10], page 111). Albeit, to get desired explicit bounds concerning
�n, we need some explicit bounds for the Lambert W function. The following
proposition, which is Theorem 2.8 of [6], offers such sharp bounds.

Proposition 2. Assume that ˛ > 0 is real, and let

!˛.x/ WD log x � log log x C ˛
log log x

log x
:
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Then, for each x � e we have

!1
2
.x/ � W.x/ � ! e

e�1
.x/; (12)

with equality only for x D e.

3 Proofs of Theorem 1 and Corollary 1

To prove (4) we let cu D 2
e�2
u. By applying the truth of Lemma 3, considering
the left-hand side of (10), and considering the right-hand side of (12), we obtain

�n � U�1.n/ D 2
n

W.cun/
� 2
n

! e
e�1
.cun/

WD g.n/;

for cun � e and n � 1 or equivalently for n � maxf e
cu
; 1g � 3. We let

h.n/ WD
g.n/ � 2
n

log n
n log log n

log2 n

:

Now, we note that the function h W .e;C1/ �! .�1; 2
/ defined by h.n/ is
continuous and strictly increasing. Moreover, we have

lim
n!eC

h.n/ D �1; and lim
n!C1 h.n/ D 2
:

Therefore, for any real � 2 .�1; 2
/, there exists unique n� 2 .e;C1/ such that
h.n/ � � for n � n� with equality only for n D n�. Hence, for n � n� we obtain

�n � 2
n

log n
C �

n log log n

log2 n
;

which is indeed (4). Table 2 contains some of our computational results, including
some values of � and related n�.

To prove (5) we let c` D 2
e�2
`. We use the truth of Lemma 3, the right-hand
side of (10), and the left-hand side of (12), to get

�n � L�1.n/ D 2
n

W.c`n/
� 2
n

!1
2
.c`n/

WD v.n/;

for c`n � e and n � 1 or equivalently for n � maxf e
c`
; 1g � 11. We let

z.n/ WD
v.n/ � 2
n

log n
n log log n

log2 n

:
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We note that the function y.n/ D 1
z.n/ defined over the interval . 1c` ;C1/ is

continuous and satisfies the limit relation limn!1 y.n/ D 1
2


. Moreover, it is strictly
increasing for n � 4, and y.n/ < 0 for 1

c`
< n � 5. Hence, there exists unique n0

with n0 > 5 such that y.n0/ D 0. By computation, we observe that n0 Š 5:312502.
Now, we note that the function z W .n0;C1/ �! .2
;C1/ defined by z.n/ is
continuous and strictly decreasing, and

lim
n!nC

0

z.n/ D C1; and lim
n!C1 z.n/ D 2
:

Therefore, for any � 2 .2
;C1/, there exists unique n� 2 .n0;C1/ such that
z.n/ � � for n � n� with equality only for n D n�, and consequently, for n � n�
we get

�n � 2
n

log n
C �

n log log n

log2 n
;

which is indeed (5). Table 3 includes some values of � and related values of n�.
To get (6) we utilize Theorem 1, with � D 11
=6, which gives (6) for n �

144858. For 2 � n � 144857 we confirm validity of it by computation. Also, to
prove (7) we apply Theorem 1 with � D 23
=6, which gives (7) for n � 1950924.
For 3598 � n � 1950923 we confirm validity of it by computation.
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Our approach relies on highlighting the intuition behind the appearance of the
Lambert function in the solution to these problems rather than providing fine details
of the solution process, which can be found in the original research works. Our hope
is that our work will be useful to other researchers working in similar problems
serving as a guideline for uncovering a solution to their research problem that
possibly involves the Lambert-W function or it extensions.

1 Introduction

The Lambert-W function is defined as the function W.x/ satisfying the following
functional equation (for functional equations see in [17]):

W.x/eW.x/ D x: (1)

By differentiating Equation (1), we obtain the first order derivative of the
Lambert-W function:

dW.x/

dx
D W.x/

x.1C W.x//
: (2)

The Lambert-W function has appeared in the solutions of problems stemming from
numerous diverse application domains such as electrical and mechanical engineer-
ing, computer network protocols and network design, chemistry and physics as well
as biology. The definitive work on the Lambert-W function and its applications is
the excellent paper [4]. There, the authors give basic and advanced properties of the
Lambert-W function and then describe the results of numerous papers where this
function appears in the solution of problems from a variety of scientific disciplines,
also delineating the solution process as well as how the Lambert-W function arises
in the solution.

Since the publication of [4] more works have appeared in which the Lambert
function plays a central role in the solutions of the problems they study, some
other problems have solutions that involve a natural extension of the Lambert-W
function called Hyper Lambert functions. Our work comes as an extension to [4]
that covers the more recent research results involving the Lambert-W function
and its extensions. We, therefore, refer the reader to the excellent coverage of the
mathematical properties of the function in [4] and concentrate on describing the
target papers’ results and the intuition behind the derivation of the solutions that
involve the Lambert-W function and its extensions.

Thus, in Section 2 we study a differential equation that was derived in [6] in
the theoretical analysis of a randomized, key agreement scheme for distributed
agents. A special case of this differential equation can be transformed into a form
that leads to a solution involving the Lambert-W function while the more general
case is not amenable to such a transformation. However, we describe a strategy
followed in [7, 8] that leads to a solution based on a generalization of the Lambert-
W function, the Hyper Lambert functions, which were defined in [5].
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In Section 3 we study two Resource Allocations Problems in Wireless Networks.
The first one is the Subcarrier Allocation problem in Wireless Mesh Networks and
the second one is the Power Allocation problem in Relay Networks. We define
the problems and show (see [9]) how the solutions to the derived mathematical
expressions involve the Lambert-W function.

In Section 4 we show how the Lambert-W function is involved in the solution
of a problem stemming from the problem of estimating bounds on the function
estimating the distribution of primes and the n-th prime number (see [11]).
Moreover, in this section we show how the Lambert-W function was used in the
analysis of the performance of the quadratic sieve algorithm (see [13]).

In Section 5 we present from [15] the derivation of a solution of a system
of Dynamic Differential Equations that describe glucose-insulin concentration
dynamics in blood as described in [14].

Finally, in Section 6 we summarize our findings and attempt to justify the
ubiquity of the Lambert function based on the surveyed results and its applicability
outreach.

2 Solution of an ODE arising in a Key Agreement Scheme

In this section, the derivation of Lambert-W function closed-form solution of an
ordinary differential equation that arose in the analysis of a key-agreement scheme,
appeared in [7, 8], is presented. In [6], the following ordinary differential equation
arose in the analysis of a key agreement scheme:

dy.t/

dt
D 1

1 � t

"

y.t/k�d k
2 eC1.1 � y.t//d

k
2 e
 

k � 1
d k
2
e � 1

!#

: (3)

The differential equation given by (3) is separable and, thus, its solution can be
found by solving the following equation for y (see, e.g., [1, 2]), with w.y/ D

1

y.t/k�d
k
2 eC1

.1�y.t//d
k
2 e. k�1

d
k
2 e�1

/
and g.t/ D 1

1�t :

Z
dy

w. y/
D
Z

g.t/dt C C: (4)

From (4), we obtain the following:

1
� k�1

d k
2 e�1

�
Z

dy

yk�d k
2 eC1.1 � y/d k

2 e D � ln.1 � t/C C: (5)

For k D 2, Equation (5) becomes as follows:

dy.t/

dt
D �y.t/3 C y.t/2 � y.t/: (6)
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This is an instance of the Abel Equation of the First Kind, which has the following
general form:

dy.t/

dt
D f3.t/y.t/

3 C f2.t/y.t/
2 C f1.t/y.t/C f0.t/ (7)

and was solved in [6] based on a standard methodology for this type of differential
equations (see, e.g., [1, 2]).

However, the connection with the W.x/ function becomes more apparent by
solving Equation (5) for k D 2 directly, without resorting to the methodology for
solving the general Abel equation of the first kind. After computing the integral on
the left-hand side of (5), for k D 2, and exponentiating both sides of the equality we
obtain the following equation:

�
1 � 1

y.t/

�
e1=y.t/ D .1 � t/e�C: (8)

Setting z.t/ D 1=y.t/ � 1 and multiplying both sides with �e�1 we obtain from (8)
the following:

zez D �.1 � t/e�C�1: (9)

Comparing (9) with the definition of the Lambert function, we conclude that its
solution is given by the following:

y.t/ D 1

z.t/C 1
D 1

WŒ�.1 � t/e�C�1�C 1
: (10)

However, for k > 2 the differential equation defined by Equation (3) does not
appear to have a closed-form solution based on the Lambert function. Fortunately,
based on [7, 8], a natural generalization of the Lambert function enables its solution
in a form similar to (10).

The departure point is the computation of the integral on the right-hand side of (5)
for a general value of k. The computation is based on the partial fraction analysis
of the integrand into fractions of the form 1

yi and 1
.1�y/i

. As it was shown in [8], this
integral is equal to the following expression:

1

Ay;1

2

4
d k
2 eCıkX

iD2

Ay;i

.i � 1/yi�1 �
d k
2 eX

iD2

A1�y;i

.i � 1/.1 � y/i�1

3

5

with the Ay;i;A1�y;i constants dependent on k only and ık D 0 if k is odd while ı D 1

if k is even. We set

� D 1

Ay;1

2

4
d k
2 eCıkX

iD2

Ay;i

.i � 1/yi�1 �
d k
2 eX

iD2

A1�y;i

.i � 1/.1 � y/i�1

3

5 :

S D
� k�1

d k
2 e�1

�

Ay;1
.� ln.1 � t/C C/ : (11)
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Then, after integrating and exponentiating, Equation (5) can be rewritten as

y

1 � y
e�� D eS )

�
1 � 1

y

�
e� D e�S: (12)

As in the case k D 2, we set z D 1
y � 1, and obtain the following, where we have

also multiplied by the factor e�1 for similarity with (9):

ze�z�1 D �e�SC1

D �e�1e
.

k�1

d
k
2 e�1

/

Ay;1
Œln.1�t/�C�

D �e�1Œ.1 � t/e�C�

.
k�1

d
k
2 e�1

/

Ay;1 : (13)

where �z is � with y replaced by 1
zC1 .

We observe that for k > 2 it is not possible to transform (13) into a form suitable
for the application of the definition of the W function since, as remarked in [5], the
most general form of equation that can be cast into (1) is azmebzn D g.t/, with m; n
integers, a; b complex numbers, and g.t/ a complex function of t.

However, in [5] a generalization of the W function was proposed, which helped to
write an explicit solution of (13) using this class of generalized Lambert functions.
In what follows, we will describe this class, based on [5].

Definition 1. Let I be an index set and fi W C ! C be arbitrary complex functions
not vanishing identically. Assuming m; n 2 N such that m � n we define Fn;m.z/ W
N
2 � C ! C as follows:

Fn;m.z/ D
�

ez if n D 1

efm�.n�1/.z/Fn�1;m.z/ if n > 1:
(14)

Definition 2. Let fi be as in Definition 1 and z 2 C. Then we define the function G
as G. f1.z/; f2.z/; : : : ; fk.z/I z/ D zFkC1;kC1.z/.

Definition 3. Let fi be as in Definition 1, G as in Definition 2, and y 2 C. Then the
function HW.f figi2I I y/ is the function which satisfies the following equation:

G.f figi2I I HW.f figi2I I y// D y: (15)

Actually, Definition 1 defines a stack of exponents composed of n�1 functions from
the index set I, namely the functions from fm�.n�1/.z/ to fm�1.z/.

For instance, let m D 5; n D 3 with index set

I D f f1.z/; f2.z/; f3.z/; f4.z/; f5.z/; : : :g:
Then

F3;5 D ef3.z/ef4.z/e
z

:
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Based on the general Definition 1, Definition 2 describes a function which “stacks”
a given index set I containing k functions while the whole stack is also multiplied
by the variable z. For instance, for k D 3 we have the following:

G. f1.z/; f2.z/; f3.z/I z/ D zF4;4 D zef1.z/ef2.z/e
f3.z/e

z

:

Finally, Definition 3 defines the generalization of the Lambert function, the Hyper
Lambert function through a functional equation. Observe that Equation (15) reduces
to the definition of the Lambert function for k D 1 and f1.z/ D z

ez .
We will, now, solve (13) using the class of Hyper Lambert functions, as defined

by (15) in Definition 3. Setting f .z/ D �
ez and using the functions defined in

Definition 3 we conclude that the solution to (13) is given by

z.t/ D HW.
�z � 1

ez
I �e�1Œ.1 � t/e�C�

.
k�1

d
k
2 e�1

/

Ay;1 /: (16)

Since z.t/ D 1
y.t/ � 1 and, thus, y.t/ D 1

z.t/C1 , we conclude that

y.t/ D 1

HW.�z�1
ez I �e�1Œ.1 � t/e�C�

.
k�1

d
k
2 e�1

/

Ay;1 /C 1

: (17)

3 Closed-form Solutions of Resource Allocation
Problems in Wireless Networks

Many emerging wireless applications require the involvement of a large number
of small and low cost wireless devices distributed over a wide geographic area.
However, the deployment of such applications is obstructed by hostile environments
as well as the existing resource constraints of the devices, such as limited battery
power and shortage of communication bandwidth, which is shared among large
numbers of devices. These obstructions can be resolved if the users would agree to
share their local resources and cooperate for the transmission of their messages. This
is the basic idea of the cooperative communications concept which has become very
popular in wireless communications as a means of overcoming resource constraints.

Under the various resource constraints of different network topologies, coopera-
tion protocols require certain optimization procedures for managing the allocation of
a resource (e.g. bandwidth). These optimization procedures lead to certain algebraic
expressions that need to be optimized. Usually, the optimization solution is obtained
through numerical methods rather than through closed-form solutions, which are
much harder to derive due to the complexity of the expressions. In [9], however,
the studied optimization problem for resource allocation on various topologies was
amenable to a closed-form solution involving the Lambert-W function. In this
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section we present how the Lambert-W function appears in the obtained closed-
form solutions for two problems (see [9]): (i) the subcarrier allocation problem in
Wireless Mesh Networks, and (ii) the power allocation in relay networks.

In what follows, we focus on these two problems and their solutions involving
the Lambert-W function.

3.1 The Subcarrier Allocation problem in Wireless
Mesh Networks

A Wireless Mesh Network (WMN) (initially deployed for military services) is a
type of wireless adhoc network where each node is capable of relaying messages
for other nodes in the network. The coverage area of the network is the coverage
area of the nodes which, thus, act as a single network. Actually, each node relays
messages using routing protocols which means that a transmitted message can reach
its destination through a multi-hop path. If the nodes can, also, move during their
lifetime, then the WMN can be considered as a Mobile adhoc Network (MANET).
Typically, in such a network, there are three types of devices: the mesh clients
(MCs), the mesh routers (MRs) and the gateways which may, also, be connected
to the internet.

The authors in [9] considered a WMN consisting of one MR, which is also a
gateway, and M MCs. The network system consists of S subcarriers where each
subcarrier has a bandwidth B. If sj is the number of subcarriers assigned to the j-th
MC, where 1 � j � M, then the following constraint holds:

MX

jD1
sj � S: (18)

It is also assumed that the MR knows only the average channel gain of all outgoing
links at the j-th MC, denoted by Gj. An MC j has a minimum transmission rate Rj and
a limit pj on the transmission power which is uniformly distributed to the sj allocated
subcarriers, i.e. the transmission power per link is pj

sj
. If �2n is the power of the

thermal noise and 	 is the Signal to Noise Ratio (SNR) gap related to the required
Bit Error Rate (BER) then the MR determines for every MC the approximate rate
by the equation ([9])

rj.sj/ D sj B log2.1C dj/; (19)

where dj D aj

sj
and aj D Gjpj

	 �2n
. In addition to the constraint (18), the authors added

to their subcarrier allocation model the constraint of the minimum rate. This is used
for OFDMA-based WMNs and it is given by

rj.sj/ � Rj: (20)
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Thus, the subcarrier allocation problem for an MR, as it is formulated in ([9]),
consists in the objective function

max
sj

MX

jD1
rj.sj/; (21)

subject to constraints (18) and (20).
Based on the Lagrange dual approach ([3]), the authors in [9] provided the

Lagrangian of the above optimization problem as

L.sj; u; v/ D
MX

jD1
rj.sj/C

MX

jD1
uj .rj.sj/ � Rj/C v

0

@
MX

jD1
sj � N

1

A ; (22)

where u D .u1; : : : ; uM/ while the Lagrange dual function is

g.u; v/ D max
sj

L.sj; u; v/: (23)

Subsequently, for fixed .u; v/, the derivative of L.sj; u; v/ with respect to sj is taken
and set to zero

ln

�
aj C sj

sj

�
� aj

aj C sj
� v

B
ln 2 .1C uj/

D 0: (24)

By setting q.uj; v/ D v
B

ln 2 .1Cuj/
and z D ajCsj

sj
, Equation (24) becomes

ln.z/C z�1 C .�1 � q.uj; v// D 0: (25)

After some algebraic manipulation of Equation (25), the following equation is
obtained:

� z�1 e�z�1 D �e�1�q.uj;v/: (26)

It is obvious that the left-hand side of Equation (26) has the form of f .z/ D zez,
where its inverse function is the Lambert-W function. Thus, it can be written as

� z�1 D W
��e�1�q.uj;v/

�
: (27)

Substituting z in Equation (27) and solving for sj, the optimal value for the number
of subcarriers for the j-th MC is given by

s�
j D �ajW.�e.�1�q.uj;v///

1C W.�e.�1�q.uj;v///
: (28)

It remains to derive the optimal values u�
j and v�. These values are derived by

substituting sj with s�
j in Equation (22) and then solving the dual problem, which is

now minuj;v L.uj; v/. The problem is solved in [9] by differentiating L.uj; v/ (using
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the first derivative of the Lambert-W function given by Equation (2)), and setting
the first derivative to zero. This leads to the following equation:

f .u�
j / D Rj

aj
; (29)

where f .u�
j / D rwj h.u�

j / with rwj D w�

j

1Cw�

j
, w�

j D W.�e1�q.u�

j ;v// and

h.u�
j / D

 
B

ln 2
C v

.1C u�
j /.1C w�

j /
2

!

ln.�w�
j /C

C v

.1C u�
j /.1C w�

j /
C v2

.1C u�
j /
2.1C w�

j /
2
:

Subsequently, the optimal u�
j is given by

u�
j D f �1

�
Rj

aj

�
: (30)

since the inverse function of f can be proved that it exists.
Having found the optimal value u�

j , the optimal value for v� is found by
substituting uj with u�

j in Equation (28) and using constraint (18). Specifically, the
following equation is obtained:

MX

jD1

�ajW
�
�e.�1�q.u�

j ;v//
	

1C W
�
�e.�1�q.u�

j ;v//
	 D S: (31)

If t.v/ D PM
jD1

�ajW

�
�e

.�1�q.u�

j ;v//
�

1CW

�
�e

.�1�q.u�

j ;v//
� , then the optimal value v� is given by

v� D t�1.S/ (32)

since in [9] it was proved that the inverse function of t exists.

3.2 Power Allocation problem in Relay Networks

A relay network is a network topology widely used by wireless networks. Its
infrastructure consists of relay stations (RS), operated by a service provider, that
can support multihop communication protocols by relaying messages to stations,
which can be either relay stations or mobile stations, on behalf of other stations (see
Figure 1).
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Fig. 1 A simple Relay
Network

RS1 RS2

RS3MS1

MS2

MS3

MS4

MS5

BS

Relay Stations are not directly connected to wired network infrastructure.
Instead, they communicate only to base stations (BS) which may, in turn, be
connected to fixed networks. For formulating the power allocation problem, it is
assumed that a station that relays messages can transmit and receive, simultaneously,
on the same allocated channel. Cooperative communication protocols on relay
network topologies share network resources among users based on the channel state
information (CSI) at each network node.

There are two relay network operating modes, the receiver cooperation mode
where the relay station is near to the receiver and the transmitter cooperation mode,
where the relay station is near to the transmitter. In [9], the receiver cooperation
mode is used for the formulation of the problem. In this case, the receiver has
accurate knowledge of CSI but the transmitter does not have such knowledge
because of the absence of a fast CSI feedback by the receiver. Thus, the authors in [9]
use the ergodic capacity (or Shannon Capacity, see in [10]) in order to characterize
the transmission rate of the channel.

Figure 2 presents the concept of the receiver cooperation mode, where h1; h2
and h3 are the gains of the respective channels. These are independent identically
distributed and normalized random variables that have unit variance. Thus, the chan-
nel power gain is characterized by independent identically distributed, exponential
random variables with unit mean. In the mode of receiver cooperation, g D d�a is
the average channel power gain between the receiver and the relay station, where d
is their distance and a is a path-loss attenuation exponent. In the receiver cooperation
mode, we assume the existence of independent, identically distributed, zero mean
circularly symmetric, complex Gaussian additive noise random variables with unit
variance z and z1 in the receiver and the relay station respectively. Thus, if x and x1
are the messages transmitted by the transmitter and the relay station respectively,
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Fig. 2 Receiver Cooperation
Mode

then the received messages y1 and y at the relay station and the receiver respectively
can be expressed by the following expressions:

y1 D h2x C z1

y D h1x C p
gh3x1 C z (33)

The total power P is allocated between the transmitter and the relay station which
means that EŒjxj2� � b P and EŒjx1j2� � .1 � b/ P, where b is a parameter to be
optimized based on the partial knowledge of CSI and g. Assuming P � 1, the
authors in [9] provide an upper bound to the ergodic capacity Cerg.b/ given by

Cerg D max
0�b�1min.A.b/;D.b// (34)

where A.b/ D EŒlog2.bP.g1 C g2//�, D.b/ D EŒlog2.bPg1 C .1 � b/gPg3//� and
gi D jhij2.

The two terms in the min function, which is the objective function, can be
written as

A.b/ D log2.P/C log2.b/C log2.e
1�� / (35)

D.b/ D log2.P/C g.1 � b/ log2.g.1 � b// � b log2.b/

g.1 � b/ � b
� log2.e

� / (36)

where � is Euler’s constant. Since A is an increasing function of b and D is a
decreasing function of b, the optimal value b� for the maximization problem can
be given by solving equation A.b/ D D.b/ for b. By equating A.b/ and D.b/, the
following equation is derived:

ln.b�/C 1 D g.1 � b�/ ln.g.1 � b�// � b� ln.b�/
g.1 � b�/ � b� : (37)

Equation (37) can be rewritten as,

�b�

g.1 � b�/
e

�b�

g.1�b�/ D �1
e
: (38)
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This is in the form of f .z/ D zez and, consequently, leads to the following equation:

W.�1
e
/ D �b�

g.1 � b�/
: (39)

Thus, the optimal value for b is given by

b� D W.� 1
e /

W.� 1
e /g � 1 : (40)

4 Primes Distribution Upper and Lower Bounds

In [11], the author used the Lambert-W function to study the problem of estimating
the distribution of prime numbers from a new perspective. More specifically, the
author presented some new applications of the Lambert-W function on the problem
of deriving bounds for the prime number counting function 
.n/ and the function
giving the n-th prime number pn.

It is known that the n-th prime, pn, is greater than n ln.n/ i.e. pn > n ln.n/ ([12])
and that n � p
.n/. Consequently, it holds

n � p
.n/ > 
.n/ ln.
.n//: (41)

Since 
.n/ ln.
.n// is monotonically increasing function of n, for n � 2 it holds

n


.n/
> ln.
.n// ) e

n

.n/ > 
.n/ ) e

n

.n/

n


.n/
> n: (42)

Inequality (42) has the form y < f .z/ D zez, where y D n and z D n

.n/ . Based

on the fact that the Lambert-W function is monotonically increasing for n � 2, the
above inequality can be written as follows:

W.n/ <
n


.n/
) 
.n/ <

n

W.n/
: (43)

The Lambert-W function satisfies the equality W.n/eW.n/ D n and, consequently,
Inequality (43) can lead to the following upper bound for the function 
.n/:


.n/ < eW.n/: (44)

With respect to deriving a lower bound for the function 
.n/, the author in [11] used
the following inequalities:

ln.n/ � n�

� e
8� > 0;

pn < n ln.n ln.n// 8n � 6: (45)
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Since the function n ln.n ln.n// is monotonically increasing in n 2 .1;1),
n < p
.n/C1, and based on Inequalities (45), the following inequality is derived:

n < .
.n/C 1/ ln

�
.
.n/C 1/1C�

� e

�

< .
.n/C 1/.1C �/ ln

 
.
.n/C 1/

.� e/
1

1C�

!

: (46)

Inequality (46) can be rewritten so as to obtain an inequality in which a function of
the form f .z/ D zez is on its one side. We, first, obtain the inequality:

n

.
.n/C 1/

1

1C �
< ln

�
.
.n/C 1/ .� e/�

1
1C�

	
(47)

which gives

e
n

.
.n/C1/
1

.1C�/ < .
.n/C 1/ .� e/�
1

1C� : (48)

By multiplying both sides of Inequality (48) with n

.n/C1

1
1C� , an inequality where a

function of the form zez appears on left side is derived:

n

.
.n/C 1/

1

.1C �/
e

n
.
.n/C1/

1
.1C�/ <

n

1C �
.� e/�

1
1C� : (49)

Thus, a lower bound for 
.n/ can be obtained using the Lambert W function, as
follows:

n

.
.n/C 1/

1

.1C �/
< W

�
n

1C �
.� e/�

1
1C�

�
(50)

)
n

.1C�/
W
�

n
1C� .� e/�

1
1C�

	 � 1 < 
.n/: (51)

In [11], upper and lower bounds for 
.n/ were given for various values of �, using
the closed forms of (51) and (44). Moreover, in [11] lower and upper bounds for pn

were given which could be derived similarly using the inequality n > pn
ln.pn/

. More
specifically, the following lower and upper bounds for pn were given:

� .n � 1/ W�1

 

� e
3
2

n � 1

!

< pn < �n W�1
�

�1
n

�
: (52)

Here, W�1.x/ is the real branch of the Lambert W function defined on x 2 Œ� 1
e ; 0/.

The lower bound holds for n � 14 while the upper bound holds for n � 4.



336 C. Katsimpiri et al.

In addition to the above lower and upper bounds for the prime’s distribution,
another interesting result where the Lambert-W function is involved appears in [13]
(Chapter 3). There, a closed-form estimate is presented for a lower bound on the
time complexity of the Quadratic Sieve algorithm, using the Lambert-W function.
Let n be an odd composite integer which is not a power of any natural number. The
Quadratic Sieve algorithm provides nontrivial prime factors of n and it is based on
locating 
.B/ B-smooth integers in the range Œ1; : : : ;X�, where X D 2n

1
2C� and

B D X
1
u for u � 1. An integer m is a B-smooth integer if all its prime factors

are less than or equal to B. Since ln.ln.B// steps are required to test an integer in
m 2 Œ1; : : : ;X� whether it is B-smooth or not, the total time for collecting 
.B/
B-smooth integers is given by

t.X;B; u/ D 
.B/ ln.ln.B//
X

 .X;X
1
u /
; (53)

where  .X;X
1
u / D jfmjm 2 Œ1; : : : ;X� and X

1
u � smoothgj. By setting


.B/ ln.ln.B// D X
1
u and X

 .X;X
1
u /

D uu the following equation is obtained:

t.X; u/ D X
1
u uu: (54)

The optimal performance of the algorithm can be achieved by finding a u that
minimizes the objective function t.X; u/. This is equivalent to finding a u that
minimizes the logarithm of the objective function, which is given by

ln.t.X; u// D 1

u
ln.X/C u ln.u/: (55)

The first order derivative of ln.t.X; u// is given by

d ln.t.X; u//

du
D � 1

u2
ln.X/C ln.u/C 1: (56)

By setting the above first order derivative of ln.t.X; u// to zero we obtain

ln.X/ D u2.ln.u/C 1/ ) ln.X/ D e2 ln.u/ ln.u e/

) ln.X/ e2 D e2 ln.u/C2 ln.u e/

) ln.X/ e2 D e2 ln.u e/ ln.u e/

) 2 ln.X/ e2 D 2 ln.u e/ e2 ln.u e/: (57)

The Equation (57) is of the form z D vev where z D 2 ln.X/ e2 and v D 2 ln.u e/.
Consequently, we can solve it for u as follows:
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W
�
2 ln.X/ e2

� D 2 ln.u e/ ) 1

2
W
�
2 ln.X/ e2

� D ln.u e/

) 1

2
W
�
2 ln.X/ e2

� D ln.u/C 1

) 1

2
W
�
2 ln.X/ e2

� � 1 D ln.u/

) u D e
1
2W.2 ln.X/ e2/�1: (58)

Thus, the right-hand side of Equation (58) provides an expression based on the
Lambert-W function for the calculation of the optimal value of u.

5 A Solution of a System of DEs arising in a Glucose-Insulin
Dynamic System

Time-Delay Systems (TDS) occur often in engineering, biology, chemistry, physics,
and ecology (see [16]). They can be represented by Delay Differential Equations
(DDEs) which have been extensively studied over the past decades [19]. Time
delays in systems can limit and degrade their performance while they may induce
instability. They actually lead to an infinite number of roots of the characteristic
equation, making systems difficult to be analyzed with classical methods, especially
in checking controller stability (see [16, 18]). DDEs are a type of differential
equations where the time derivatives, at the current time instance, depend on the
solution, and possibly its derivatives, at previous time instances [21].

An analytic approach to obtain a complete solution of a system of DDEs based
on the Lambert-W function was presented in [20]. The solution has an analytical
form expressed in terms of the parameters of the DDEs. The advantage of this
approach lies in the fact that the form of the obtained solution of a system of DDEs
is analogous to the general solution form of a system of ODEs. This approach was
applied in [15] to a system of DDEs that represents the glucose-insulin dynamics
presented in [14]. The glucose-insulin dynamic system can be represented by the
following differential equations ([15]):

dG.t/

dt
D �b1G.t/ � b4I.t/G.t/

˛G.t/C 1
C b7

dI.t/

dt
D �b2I.t/C b6G.t � �/: (59)

where G.t/ and I.t/ are the glucose and insulin concentrations, respectively, in blood
at time t with initial conditions G.t/ � G.0/ for all t and I.t/ � I.0/ for all t�Œ��; 0�,
with � denoting the time after which the pancreas responds to changes of glucose in
blood. The parameters ˛ and bi for i D 1; : : : ; 7 are described in [15].
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If .G�; I�/ is the interior equilibrium point, then by substituting G.t/ and I.t/
with u1.t/C G� and u2.t/C I� respectively in Equations (59), the following linear
time-delay system is obtained:

du1.t/

dt
D �

�
b1 C b4I�

.aG� C 1/2

�
u1.t/ � b4G�

aG� C 1
u2.t/

du2.t/

dt
D �b2u2.t/C b6u1.t � �/ (60)

The coefficients of the linear system (60) are functions of the dynamic system
parameters and are organized in matrices as follows:

A D �
"

b1 C b4I�

.aG�C1/2
b4G�

aG�C1
0 b2

#

; B D


0 0

b6 0

�
:

Let y.t/ D fG.t/; I.t/gT be the 2�1 state vector. The glucose-insulin linear dynamic
system can be expressed in the state space as follows:

dy.t/

dt
D Ay.t/C By.t � �/; t > 0

y.t/ D y.0/; t D 0

y.t/ D g.t/; t�Œ��; 0/: (61)

Instead of a simple initial condition, as in ODEs, two initial conditions need to be
specified for DDEs: a preshape function g.t/ for �� � t < 0, where � denotes the
time-delay, and an initial state, y.0/, at t D 0. Function g.t/ actually determines the
system’s behavior before the pancreas reaction. Let a solution of (61) be of the form

y.t/ D eStC (62)

where S is a 2� 2 matrix and C is a 2� 1 constant vector (see [20]). By substituting
y.t/ with eStC into (61) the following equation is obtained:

SeStC � AeStC � BeS.t��/C D .S � A � Be�S� /eStC D 0: (63)

Because the matrix S is an inherent characteristic of the system, and independent
of initial conditions, it follows that for any arbitrary initial condition and for every
time instance t, the following equation holds:

S � A � Be.�S�/ D 0 ) S � A D Be.�S�/: (64)

By multiplying both sides of Equation (64) with �e.S�A/� , the following equation
is obtained,

.S � A/�e.S�A/� D B�e�A� : (65)
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The function on the left-hand side of Equation (65) has the form f .x/ D xex where
x D .S � A/� . Consequently, the Lambert-W function can be used in order to obtain
a closed-form for S as follows:

.S � A/� D W.B�e�A� /: (66)

Then the solution matrix, S, is obtained by solving (66) for S:

S D W.B�e�A� /

�
C A: (67)

The matrix Lambert-W function, Wk.Hk/, is complex valued, with a complex
argument Hk, and it has an infinite number of branches Wk.Hk/, k D
0;˙1;˙2; : : : ;˙1 (see [20, 22]). It satisfies the following condition:

Wk.Hk/e
Wk.Hk/ D Hk: (68)

Corresponding to each branch, k, of the Lambert-W function, denoted by Wk, there
is a solution Qk from

Wk.Hk/e
Wk.Hk/CA� D B�: (69)

and for Hk D B�Qk.
The Jordan canonical form Jk D diag. Jk1 .�1/; Jk2 .�2/; : : : ; Jkp.�p//, where

Jki.�i/ is a 2 � 2 Jordan block, is computed from Hk D ZkJkZk
�1. Thus, the matrix

Lambert-W function can be computed as follows (see [15]):

Wk.Hk/ D Zk D Zk
�1 (70)

where D D diag.W. Jk1 .�1//;W. Jk2 .�2//; :::;W. Jkp.�p///, and

Wk. Jk1 .�i// D
"

Wk.�i/
dWk.�i/

d�i

0 Wk.�i/

#

: (71)

The obtained Qk can be substituted into (67) and the characteristic root Sk is
obtained:

Sk D Wk.B�Qk/

�
C A: (72)

Finally, by substituting Sk into (62), a homogeneous solution to (61) is obtained:

y.t/ D
1X

kD�1
Ck eSkt (73)

where the coefficient matrix Ck is determined numerically from the preshape
function g.t/ and the initial state y.0/.
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6 Conclusions

The Lambert-W function is remarkable in that, since its inception, it keeps appearing
frequently in the solutions of diverse problems from, almost, every scientific field,
from chemistry and physics to computer science and mechanical engineering.

The list of problems in whose solutions the Lambert-W function appears is,
virtually, endless. The most authoritative survey paper on the Lambert-W paper
(see [4]) as well as ours can only give a glimpse of the vast Lambert-W landscape
in science. Thus, our survey paper took some of the latest problems involving
the Lambert-W function as a departure point and attempted to identify patterns
and techniques that have been, successfully, employed in transforming a given
expression appearing in their solutions into one that resembles (after suitable
substitutions) the definition of the Lambert-W function.

As we demonstrated in this survey paper, the general technique involves a
sequence of steps that attempt to gather an unknown to one of the sides of an
equality relation. Then, if the gathered expression has the general form (see [4])
azmebzn D g.t/, with m; n integers, a; b complex numbers, and g.t/ a complex
function of t, a solution can be derived by suitable substitutions of expressions into
the equation that defines the Lambert-W function.

We, also, saw that there may be problems in which expressions arise that
may look like a Lambert-W definition which, however, defy a direct solution
involving this function. Then a natural generalization of the Lambert function,
called the Hyper Lambert functions may provide the solution, as we saw. Thus,
a “closed-form” solution can be derived using these functions in cases where the
Lambert-W function definition cannot be applied. We note that the Lambert-W
function cannot be written in terms of elementary functions (see [4]) and, thus, its
definition, if included in these functions, enriches the class of equations solvable in
“closed-form” with the Hyper Lambert functions providing a broader class of such
equations.

On the other hand, however, a more fundamental question arises beyond the
technical issues involved in “unearthing” a Lambert-W like definition out of a given
expression: “Why is the Lambert-W function ubiquitous? What makes it appearing
in so many diverse application domains and problems?” Our intuition, which has
been formed out of our research as well as after surveying relevant results in the
bibliography, is that the definition of the Lambert-W function must, in fact, describe
a generic dynamic process which may be inherent in a wide range of changing, with
time, physical systems. It is not a coincidence that most cases where the Lambert-W
function arises model a dynamic system, of some kind, that changes according to
certain laws. And the expressions deriving the evolution of such changing processes
appear to involve exponential functions which are the bases of the definition of the
Lambert-W function.

A complete coverage of the applications of the Lambert-W function is rather
impossible today since numerous applications have been studied whose solutions
involve it. In this survey paper we concentrated on how one can manipulate a given
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expression and transform it into a form that resembles the definition of the Lambert-
W function, hoping that this work will prove useful to other researchers, of any
scientific domain, who work in the study of dynamic systems such as the ones we
considered.
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A Computational Approach to the Unwrappings
of the Developable Surfaces

Dimitrios Kodokostas

In Honor of Constantin Carathéodory

Abstract We present a closed-formula description for the unwrappings of the
developable surfaces based on information obtained mainly by plane intersec-
tion curves on them. Among other applications, this description is suitable for
computational implementation in CAD systems, for the construction of visual
pictures of unwrappings onto planes, and for the computer graphic modeling of
the approximations of real-object surfaces via the developable ones.

1 Motivation and Method

The surfaces that can be flattened onto a plane without any stretching or tearing are
called developable. This means that they map isometrically onto some plane image
by a kind of real-life unwrapping, and this makes them suitable candidates for using
in many applications like computer graphics and manufacture, among others.

The developable surfaces have been widely used in engineering [6] and sheet
metal work or texture mappings [2, 10] but less so in computer graphics or
in CAD calculations. There have been proposed many techniques for modeling
developable surfaces [1, 3, 5, 12, 13, 15] mainly via piecewise polynomial surface
approximations, running so to the risk of violating the surfaces’ isometric properties
during flattenings due to the algebraic manipulation of the polynomials.

The developable surfaces are also ruled, meaning they are generated by lines
called rulings. In this article, we deal with C2 developable surfaces. These moreover
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admit a single tangent plane along any given ruling, and they can be flattened out
at least locally on any chosen tangent plane in a real-like manner, the same way
a wrapping is unwrapped from an ice cream cone and is put flat on a table. For
this reason, we are going to call these plane images of the developable surfaces as
unwrappings rather than as flattenings or developments.

We advocate a description for the unwrappings of these surfaces based on
most cases on information extracted from plane intersection curves on them.
This description is presented in Sect. 3 in a closed-formula form rather than as a
numerical solution of a system of differential equations (as is done, e.g., in [11, 14]
where cone approximations of object surfaces are considered). The exact equations
derived here enhance a deeper understanding of the unwrappings and are also
suitable enough for computational implementation and for use in applications like
computer graphic modeling of real-life surfaces approximated by piecewise contin-
uous developable surfaces. This description of the unwrappings is also suitable for
use in a variety of applications based on CAD calculations such as the construction
of visual illustrations of the unwrapped plane images of the developable surfaces
(the so-called developments of these surfaces in descriptive geometry) and for the
computation of areas of regions and lengths of curves in such surfaces.

Although there exists an infinity of distinct kinds of developable surfaces, under
some very mild assumptions, they all consist of consecutive pieces, each being of
just one of a handful of well-known types which can thus be thought of as building
blocks for these surfaces. The analytic equations which we relate in Sect. 3 describe
an unwrapping of some region of a regular point of such a developable surface
depending on the type of the building block of the surface around the given point.
These results arise from work done in [7] where the main goal was to establish a
connection between the centers of curvature of a plane intersection curve and of its
unwrapping at the point under consideration, and the proofs will not be repeated
here.

First we need to clarify the meaning of an unwrapping as this is not an established
notion in the literature. This is done in Sect. 2 where we also provide all other
necessary related definitions and get better acquainted with the developable surfaces
and their isometries.

2 Definitions and Preliminary Results

A ruled surface is a C1 parametrized surface F W x.u; v/ D ˛.u/C vw.u/; u; v 2 R

where a.u/ is a regular curve and the vector w.u/ is normalized to unit length
jw.u/j D 1;8u. F is generated by a one-parameter family of lines `u W y.v/ D
˛.u/Cvw.u/ called the rulings of F. The curve ˛.u/ does not completely determine
by itself the positions of the generating lines in space, but it does so with the
help of the vectors w.u/. In any case, this curve directs in a way the positions in
space through which the generating lines pass, and so we call it the directrix of F.
Although not necessary, the directrix is usually conveniently considered as a plane
curve. This definition of a ruled surface is more or less standard in the literature and
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allows it to contain singular points, that is, points at which xu � xv D 0. This way
generalized cones and tangent surfaces of curves are not excluded from the class
of ruled surfaces. A ruled surface is called a generalized cone whenever it is not
(part of) a plane and all its rulings pass through a common point p called the vertex
of F. Then the cone can be parametrized as F W x.u; v/ D p C v˛.u/; u; v 2 R

and contains p as a singular point. A ruled surface is called the tangent surface of
a regular parametrized curve y.s/ whenever y.s/ is its directrix, and at each one of
its points, the ruling is determined by the tangent vector at that point. We insist that
s is an arc length parameter and demand that there exist no inflection points in the
directrix. The tangent surface of y.s/ is parametrized as F W x.s; v/ D y.s/C vy0.s/
and contains all points of its directrix usually as singular ones.

The subclass of the C2, regular, ruled surfaces with a constant tangent plane
along any ruling are the surfaces called developable. This definition is also more
or less standard in the literature. Notice that the definitions of the ruled and
of the developable surfaces permit self-intersections, and so generalized cones,
tangent surfaces of curves, and generalized cylinders are not automatically excluded
from the class of developable surfaces. Actually, the first two of them are indeed
developable away from their singular points, as are for all their points the planes
and the generalized cylinders which are defined as ruled surfaces F W x.u; v/ D
y.u/C vg; jgj D 1 with rulings of a fixed direction g.

We intend to work only with tame developable surfaces, which we propose to
define as follows:

Definition 1. A developable surface F W x.u; v/ D ˛.u/ C vw.u/; u 2 I; v 2 R is
called tame whenever there exists a partition of I so that the part of F corresponding
to each subinterval of the partition is just a plane, a generalized cylinder, a
generalized cone, or the tangent surface of a curve.

Restricting attention to tame developable surfaces is not a real loss since in
[4] it is shown that all developable surfaces are tame provided some very mild
assumptions hold: it suffices that the derivative of w.u/ and of the striction line
of F have no clustering point for their zeros, where the striction line of F is the
unique curve ˇ.u/ of F so that ˇ0 � w0 D 0;8u [4, 8], defined on those parts of F
corresponding to the subintervals of I for which w0.u/ ¤ 0 throughout.

To proceed we need an exact definition for the unwrappings of a developable
surface.

To begin with, let us observe that their parametrization F W x.u; v/ implies
[4, 9] that any such surface has a Gauss curvature equal to 0, and then by Mindings
Theorem [9] and assuming high enough differentiability (at least C3), we know
that all regular points A on the surface can map some neighborhood U of them
isometrically to a plane (Fig. 1). In [8] this is proved for C2 developable surfaces,
and our results in the next section prove this fact anew. We can considerably improve
this isometry f by making it map the neighborhood U on the tangent plane T of F
at A (a triviality) and more importantly so that it fixes the ruling through A. Indeed:

First compose with a translation � of T so that A is mapped onto itself. The
ruling ` through A is a usual line, which makes it a geodesic of F, and so it has
to be mapped by � f onto a geodesic of T , that is again to a line. Now any point
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A

A A

f2f1

UA

Fig. 1 f1 and f2 are two isometries of UA into the same plane

on ` has to be mapped on an equally distant point from A on the image line � f .`/,
thus composing if necessary with a rotation r of T the resulting isometry r� f fixes
pointwise ` as wanted.

The isometries of developable surfaces onto tangent planes that fix some ruling
are usually referred to as developments in the literature.

A natural observation is that if f is any development of some neighborhood U
around a point A of a developable surface F fixing the ruling `, then its composition
fsym with the reflection on T with respect to ` is another development of U into T
fixing `. It is intuitively clear that the two mappings f ; fsym are the only two possible
developments of U fixing ` and that only one of them looks like an “unwrapping”
of U on the plane T . This one sends all nearby points of U on the two sides of `
to the “correct” half plane of T with respect to `. We suggest that we express this
rigorously as follows:

Definition 2. For an open, connected subset U of a developable surface F, we
call unwrapping of U on the tangent plane T of the surface along a ruling `, any
development f , i.e., isometry (or isometric image if we wish) of U on T which
fixes all points of ` inside U and for which the tangent vector of any curve y.t/ on U
coincides with that of its image curve f .y.t// at their common points y.t0/ D f .y.t0//
on `. For a curve � on U, we call f .�/ as the unwrapping of � by f .

Some topological considerations can convince us [7] that there exist exactly two
developments fixing a ruling (Fig. 2) and that exactly one of them is an unwrapping:

Proposition 1. (a) For any regular point A on a C2 tame developable surface F,
there exists an open neighborhood UA around A for which there exist exactly two
developments of UA on the tangent plane T of F fixing the ruling ` through A. The
images of the two developments are symmetric with respect to `, and exactly one of
them is the unique unwrapping f of UA on T along the ruling `. (b) If V is another
open neighborhood around A, then any unwrapping of V on T along the ruling `
coincides with that of UA in an open neighborhood of A common to both UA and V.
(c) An isometry f from UA to T which fixes ` pointwise is an unwrapping of UA if and
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A
f2

f1

A

T

T

UA UA

Fig. 2 f1 and f2 are the two developments of UA on T along ` (fixing the ruling ` pointwise). f1 is
the unique unwrapping among them

only if the tangent vector of either parameter curve of F W x.u; v/ D ˛.u/C vw.u/
coincides with that of its image curve at their common points on `.

3 A Synoptic Description of the Unwrappings

In this section we consider open neighborhoods UA of regular points A on tame
developable surfaces F, and given a parametrization of UA, we provide an analytic
expression of the unwrapping f of UA on the tangent plane T of F which fixes the
ruling ` through A.

First, recall that by Definition 1, each side of UA with respect to ` is part of a
plane, cylinder, cone, or the tangent plane of a curve. Nevertheless, it will be no
harm to assume that the whole neighborhood UA belongs entirely to the same plane,
cylinder, cone, or the tangent surface of a curve. Since the first case is trivial, we
shall not consider it any further. For the remaining three cases, the details are as
follows:

3.1 Unwrapping Whenever UA Is Part of the Tangent
Surface of a Curve

As initial data let x.s; v/ D y.s/C vy0.s/ be a given parametrization of UA in some
Cartesian coordinate system where s D arc length parameter of the regular curve
c W y.s/, and let ` W y.s0/C vy0.s0/ be the ruling of UA through A.

Call M D y.s0/ the point of c on `. Denote differentiation with respect to s by
primes and set t.s/ D y0.s/ the unit tangent vector of c, n.s/ a choice for the principal
unit normal vector of c.
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c : y(s)

n(s0) = n(s0)

t(s) = y (s)

c : y(s)

f (y(s))

t(s0) = t(s0) A

x(s,v) = y(s)+ vt(s) :UA

T

t(s)
f (UA) : y(s)+ vt(s)

M
y(s0) = y(s0)

Fig. 3 Unwrapping of UA whenever it is part of the tangent surface of a curve

On T consider the curve c W y.s/ for which s is a natural parameter, y.s0/ D
y.s0/ D M, t.s0/ D t.s0/ the tangent vector at s0, n.s0/ D n.s0/ the principal normal
vector at s0, and k.s/ D k.s/ at any s, where k.s/ denotes the signed curvature of c.

Call t.s/ D the unit vector of c at s and shrink UA if necessary so that the
v-parameter curve does not intersect ` in UA for s ¤ s0 in some interval of values
around s0. Consider s close enough to s0 so that .y10; y20/ � .�y200; y100/ ¤ 0 where
y D .y1; y2/ (such an interval of values for s indeed exists), and if necessary shrink
UA so that this condition holds inside UA. Then the unwrapping f of UA on T along
` (Fig. 3) is given by

f .x.s; v// D f . y.s/C vt.s// D y.s/C vt.s/:

3.2 Unwrapping Whenever UA Is Part
of a Generalized Cylinder

As initial data, let x.u; v/ D y.u/ C vg be a given parametrization of UA in some
Cartesian coordinate system where u is not necessary an arc length parameter of
the curve c W y.u/, but where jgj D 1, A D y.u0/ for some u0 2 R, and let ` W
y.u0/C vg; v 2 R be the ruling of UA through A.

Consider an arbitrary plane � W a1x1Ca2x2Ca3x3 D a0 so that A 2 �, T \� ¤ `,
j.a1; a2; a3/j D 1 (thus, e D .a1; a2; a3/ is a unit vector normal to �/ and call
� D UA \ � the section curve of UA with �.
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e2

γ

z(s)
z(s) = f (z(s))

g= e1

n(s0)
n(s0)

ρ

e

T

A
w(s,v) = z(s)+ vg :UA

f (UA) : z(s)+ vg tγ(s0) = t(s0)

z(s0)

γ = f (γ)

Fig. 4 Unwrapping of UA whenever it is part of a generalized cylinder

Then u parametrizes � as � W z.u/ D y.u/C a0 � y.u/ � e

g � e
g. For some interval of

values of u around u0, it is dz
du ¤ 0 and shrinking UA if necessary so that dz

du ¤ 0

for all u for which z.u/ 2 UA reparametrize � as � W z.s/ by arc length s. Now
reparametrize UA as UA W w.s; v/ D z.s/C vg and let A D z.s0/ and ` W z.s0/C vg
be the ruling of UA through A.

Denote differentiation with respect to s by primes and set t� D z0 the unit tangent
vector of � . Introduce a Cartesian coordinate system Ax1x2 on T with e1 D g as the
unit vector along the positive semiaxis Ax1, and choose arbitrarily one of the two
unit normal vectors to e1 as the second unit vector e2 of Ax1x2.

Consider the angle �.s/ D †.g; t� .s// and the curve � W z.s/ D R s
s0
.cos�.�/e1C

sin�.�/e2/d� C z.s0/ on T , and call t D the unit tangent vector of � . The vector
t� .s0/ is equal to t.s0/ or to its symmetric with respect to the line `, depending on
the choice of e2. If necessary, change the direction of e2 so that t.s0/ D t� .s0/.

Consider s close enough to s0 so that g � .�z20; z10/ ¤ 0 where z D .z1; z2/ (such
an interval of values for s indeed exists), and if necessary shrink UA so that this
condition holds inside UA. Then the unwrapping f of UA on T along ` (Fig. 4) is
given by

f .w.s; v// D f .z.s/C vg/ D z.s/C vg:
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3.3 Unwrapping Whenever UA Is Part of a Generalized Cone

As initial data, let x.u; v/ D vy.u/ be a given parametrization of UA in a Cartesian
coordinate system with origin at the vertex of the cone where u is not necessary an
arc length parameter of the curve c W y.u/, A D v0y.u0/ for some u0 2 R; v0 2 R

�
and let ` W vy.u0/; v 2 R be the ruling of UA through A.

Consider an arbitrary plane � W a1x1Ca2x2Ca3x3 D a0 so that A 2 �, T \� ¤ `,
j.a1; a2; a3/j D 1 (thus, e D .a1; a2; a3/ is a unit vector normal to �/ and call
� D UA \ � the section curve of UA with �.

For some interval of values u around u0, it is y.u/�e ¤ 0. Shrink UA (if necessary)
so that this relation holds for all u for which z.u/ 2 UA and parametrize � by u

as � W z.u/ D a0
y.u/ � e

y.u/. Reparametrize UA as UA W h.u; v/ D vz.u/ and let

A D z.u0/.
For some interval of values of u around u0, it is dz

du ¤ 0 and shrinking UA (if
necessary) so that dz

du ¤ 0 for all u for which z.u/ 2 UA) reparametrize � by arc
length as � W z.s/. Now reparametrize UA as UA W w.s; v/ D vz.s/, and let A D z.s0/,
` W vz.s0/ the ruling of UA through A.

Denote differentiation with respect to s by primes and set t� D z0 the unit tangent
vector of � . Introduce a Cartesian coordinate system Ox1x2 on T with origin the

vertex O of the cone, e1 D z.s0/

jz.s0/j as the unit vector of the positive semiaxis Ox1,

and choose arbitrarily one of the two unit normal vectors to e1 as the unit vector e2
of the positive semiaxis Ox2.

Consider the angle �.s/ D †.z.s/; t� .s//. The vector z0.s0/ is equal to
cos.�.s0//e1 C sin.�.s0//e2 or to cos.�.s0//e1 � sin.�.s0//e2 depending on
the choice of e2. If necessary, change the direction of e2 so that z0.s0/ D
cos.�.s0//e1 C sin.�.s0//e2.

Consider s close enough to s0 so that
jz.s0/j
2

< jz.s/j and j sin.�.z//j <

3
j y.z0/j
2

(such an interval of values for s indeed exists), and if necessary shrink

UA so that these conditions hold inside UA. Then the unwrapping f of UA on T along
` (Fig. 5) is given by

f .w.s; v// D vjz.s/j
�

cos

�Z s

s0

sin.�/

jz.s/j d�

�
e1 C sin

�Z s

s0

sin.�/

jz.s/j d�

�
e2

�
:
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Multiple Weighted Orlicz Spaces
and Applications

Jichang Kuang

In Honor of Constantin Carathéodory

Abstract In 2014, author Kuang (Handbook of Functional Equations: Functional
Inequalities, vol. 95, pp. 273–280. Springer, Berlin, 2014) introduced the new
multiple weighted Orlicz spaces; they are generalizations of the variable exponent
Lebesgue spaces. In this paper, we consider further definitions and properties of
these spaces and establish some new interest inequalities on these new spaces. They
are significant generalizations of many known results.

1 Introduction

Throughout this paper, we write

k f kp;! D
 Z

R
n
C

j f .x/jp!.x/dx

!1=p

;

R
nC D fx D .x1; x2; : : : ; xn/ W xk � 0; 1 � k � ng;

Lp.!/ D f f W f is measurable; andk f kp;! < 1gI kxk D
 

nX

kD1
jxkj2

!1=2
:

If the measurable function p W Rn ! Œ1;1/ as exponential function, by Lp.�/.Rn/,
we denote the Banach function space of the measurable function f W R

n ! R
1

such that
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k f kp.�/ D inf

(

� > 0 W
Z

Rn

ˇ̌
ˇ̌ f .x/
�

ˇ̌
ˇ̌
p.x/

dx � 1

)

< 1:

For the basic properties of spaces Lp.�/.Rn/, we refer to [1–6]. For example, the
generalized Hölder inequality: For all f 2 Lp.�/.Rn/ and g 2 Lq.�/.Rn/, we have

Z

Rn
j f .x/g.x/jdx �

�
1C 1

p�
� 1

pC

�
k f kp.�/kgkq.�/; (1)

where 1 < p.x/ < 1; 1
p.x/ C 1

q.x/ D 1; x 2 R
n; p� D essinff p.x/ W x 2 R

ng;
pC D esssupf p.x/ W x 2 R

ng; 1 < p� � pC < 1:

The variable Sobolev space Wk;p.�/.Rn/ is the space of all measurable functions f
satisfying that f 2 Lp.�/.Rn/ and its weak derivatives

D˛f 2 Lp.�/.Rn/ for all ˛ D .˛1; ˛2; : : : ; ˛n/ 2 Nn with j˛j D
nX

jD1
˛j � k:

Wk;p.�/.Rn/ is Banach space with the norm defined by

k f kp.�/;k D
X

j˛j�k

kD˛f kp.�/:

Here D˛f D f if ˛ D .0; 0; : : : ; 0/:

The variable exponent Lebesgue spaces Lp.�/.Rn/ and the corresponding variable
Sobolev spaces Wk;p.�/.Rn/ are of interest for their applications to fluid dynamics,
elasticity, modeling problems in physics, and to the study calculus of variations
and partial differential equations with nonstandard growth conditions. In the past
20 years, the theory of these spaces has made progress rapidly (see, e.g., [7–14]
and the references cited therein). It is well known that the Orlicz spaces are the
generalizations of Lp spaces and play an important role in mathematical physics. In
2014, the author Kuang [15] introduced the new multiple weighted Orlicz spaces;
they are generalizations of the variable exponent Lebesgue spaces Lp.�/.RnC/. The
aim of this paper is to consider further definitions and properties of these spaces and
establish some new interest inequalities on these new spaces. They are significant
generalizations of many known results.

2 Multiple Weighted Orlicz Spaces

Definition 1 (See [16–19]). We call ' a Young’s function if it is a nonnegative
increasing convex function on .0;1/ with '.0/ D 0; '.u/ > 0; u > 0, and

lim
u!0

'.u/

u
D 0; lim

u!1
'.u/

u
D 1:
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To Young’s function ', we can associate its convex conjugate function denoted
by  D '� and defined by

 .v/ D '�.v/ D supfuv � '.u/ W u � 0g; v � 0:

We note that  D '� is also a Young’s function and  � D .'�/� D ': From the
definition of  D '�, we get Young’s inequality

uv � '.u/C  .v/; u; v > 0: (2)

Let '�1 be inverse function of ', we have

v � '�1.v/ �1.v/ � 2v; v � 0: (3)

Definition 2 (See [15]). Let ' be a Young’s function on .0;1/; for any measurable
function f and nonnegative weight function ! on R

nC, the multiple weighted
Luxemburg norm is defined as follows:

k f k';! D inf

(

� > 0 W
Z

R
n
C

'

� j f .x/j
�

�
!.x/dx � 1

)

: (4)

The multiple weighted Orlicz space is defined as follows:

L'.!/ D f f W k f k';! < 1g: (5)

In particular, if '.u/ D up.x/, then L'.!/ is the weighted variable exponent
Lebesgue spaces Lp.�/.!/; if the exponents p.x/ and q.x/ are constants, for example,
'.u/ D up; 1 < p < 1; then L'.!/ is the weighted Lebesgue spaces Lp.!/ on
R

nC; if '.u/ D u.log.u C c//q; q � 0; c > 0; then L'.!/ is the weighted spaces
L.!/.log L.!//q on R

nC.

Definition 3 ([16, 18]). We call the Young’s function ' on .0;1/ sub-multipli-
cative, if

'.uv/ � '.u/'.v/ (6)

for all u; v � 0.

Remark 1. If ' satisfies (6), then ' also satisfies Orlicz r2 condition; that is, there
exists a constant c > 1 such that

'.2u/ � c'.u/

for all u � 0.

We also define the weighted Orlicz sequence space l'.!/.

Definition 4. Let x D .x1; x2; : : : ; xn; : : :/;8xk 2 R
1, ' W .0;1/ ! .0;1/ be a

Young’s function, ! D .!1; !2; : : : ; !n; : : :/ with !k D !.k/ � 0.8k 2 N/ be a
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weight sequence, the weighted Luxemburg norm is defined as follows:

kxk';! D inf

(

� > 0 W
1X

kD1
'

� jxkj
�

�
!k � 1

)

: (7)

The weighted Orlicz sequence space is defined as follows:

l'.!/ D fx D .x1; x2; : : : ; xn; : : :/ W kxk';! < 1g:
In particular, if '.u/ D up.x/, then l'.!/ is the weighted variable exponent Lebesgue
sequence space lp.�/.!/; if the exponent p.x/ is constant, for example , '.u/ D
up; 1 < p < 1 , then l'.!/ is the weighted Lebesgue sequence spaces lp.!/:

lp.!/ D fx D .x1; x2; : : : ; xn; : : :/ W kxkp;! < 1g;

where kxkp;! D .
P1

kD1 jxkjp!k/
1=p.

Definition 5. Let x D .x1; x2; : : : ; xn/; xj D .xj;1; : : : ; xj;m; : : :/; 1 � j � n;8xj;kj 2
R
1 , ' W .0;1/ ! .0;1/ be a Young’s function, ! W Nn ! .0;1/ be a weight

sequence, the weighted Luxemburg norm is defined as follows :

kxk';! D inf

8
<

:
� > 0 W

1X

k1D1
� � �

1X

knD1
'

� jx1;k1 j C � � � C jxn;kn j
�

�
!.k1; : : : ; kn/ � 1

9
=

;
:

The multiple weighted Orlicz sequence space is defined as follows:

l'.!/ D fx D .x1; x2; : : : ; xn/; xj D .xj;1; : : : ; xj;m; : : :/; 1 � j � n W kxk';! < 1g:

3 Some New Basic Inequalities on the Multiple Weighted
Orlicz Spaces

In this section, we establish some new basic inequalities on these new spaces.

Theorem 1. Let the conjugate Young’s functions '; on .0;1/ be sub-multipli-
cative and K.kxk; k yk/ be a nonnegative measurable function on R

nC � R
nC and

satisfies

K.kxk; k yk/ D k yk��2K.kxk�1 � k yk��2 ; 1/; (8)

where �1 and �2 are real numbers and �1 � �2 ¤ 0. Let f 2 L'.!1/, g 2 L .!2/
and k f k';!1 > 0; kgk ;!2 > 0, where

!1.x/ D kxk��1C .n�1/
�2 ; !2. y/ D k yk��2C .n�2/

�1 :
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If

c1 D 
n=2

2n�1	 .n=2/�2
�
Z 1

0

K.u; 1/ �1.u/u�
�

n
�2

�
du < 1I (9)

c2 D 
n=2

2n�1	 .n=2/�1
�
Z 1

0

K.u; 1/ 

�
1

'�1. �1.u//

�
� u

�
n
�1

�
�1du < 1; (10)

then
Z

R
n
C

Z

R
n
C

K.kxk; k yk/ � f .x/g. y/dxdy � c.';  /k f k';!1kgk ;!2 ; (11)

where c.';  / D c1 C c2 is defined by (9) and (10).

In particular, if n D 1, in Theorem 1, then
Z 1

0

Z 1

0

K.x; y/f .x/g. y/dxdy � .c1 C c2/k f k';!1kgk ;!2 ; (12)

where

c1 D 1

�2
�
Z 1

0

K.u; 1/ �1.u/u�
�
1
�2

�
du < 1; (13)

c2 D 1

�1
�
Z 1

0

K.u; 1/ 

�
1

'�1. �1.u//

�
� u

�
1
�1

�
�1du < 1: (14)

Theorem 2. Let the conjugate Young’s functions '; on .0;1/ be sub-
multiplicative and K.kxk; k yk/ be a nonnegative measurable function on R

nC � R
nC

and satisfies

K.kxk; k yk/ D k yk��K.kxk � k yk�1; 1/; (15)

where � is real number. Let f 2 L'.!/, g 2 L .!/ and k f k';! > 0; kgk ;! > 0 ,
where !.x/ D kxkn�� . If

c1 D 
n=2

2n�1	 .n=2/
�
Z 1

0

K.u; 1/ �1.u/u��n�1du < 1; (16)

c2 D 
n=2

2n�1	 .n=2/
�
Z 1

0

K.u; 1/ 

�
1

'�1. �1.u//

�
un�1du < 1; (17)

then
Z

R
n
C

Z

R
n
C

K.kxk; k yk/f .x/g. y/dxdy � c.';  /k f k';!kgk ;!; (18)

where c.';  / D c1 C c2 is defined by (16) and (17).
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In particular, if n D 1 in Theorem 2, then

Z 1

0

Z 1

0

K.x; y/f .x/g. y/dxdy � .c1C2/k f k';!kgk ;!; (19)

where !.x/ D x1�� , and

c1 D
Z 1

0

K.u; 1/ �1.u/u��2du < 1; (20)

c2 D
Z 1

0

K.u; 1/ 

�
1

'�1. �1.u//

�
du < 1: (21)

4 Proofs of Theorems

We require the following Lemmas to prove our results:

Lemma 1 ([20]). If ak; bk; pk > 0, 1 � k � n, f be a measurable function on
.0;1/, then

Z

R
n
C

f

 
nX

kD1

�
xk

ak

�bk
!

xp1�1
1 � � � xpn�1

n dx1 � � � dxn

D
Qn

kD1 apk
kQn

kD1 bk
�
Qn

kD1 	 .
pk
bk
/

	
�Pn

kD1
pk
bk

	 �
Z 1

0

f .t/t
�Pn

kD1
pk
bk

�1
	

dt:

We get the following Lemma 2 by taking ak D 1; bk D 2; pk D 1; 1 � k � n, in
Lemma 1.

Lemma 2. Let f be a measurable function on .0;1/, then

Z

R
n
C

f .kxk2/dx D 
n=2

2n	 .n=2/

Z 1

0

f .t/t.n=2/�1dt; (22)

Proof (Proof of Theorem 1). Applying (3) and Young’s inequality (2), we obtain

Z

R
n
C

Z

R
n
C

K.kxk; k yk/ � f .x/g. y/dxdy

�
Z

R
n
C

Z

R
n
C

fj f .x/j'�1.K.kxk; k yk//gfjg. y/j �1.K.kxk; k yk//gdxdy

D
Z

R
n
C

Z

R
n
C

fj f .x/j'�1.K.kxk; k yk//'�1. �1.kxk�1 � k yk��2//g
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�
�

jg. y/j �1.K.kxk; k yk// 1

'�1. �1.kxk�1 � k yk��2//


dxdy

�
Z

R
n
C

Z

R
n
C

'fj f .x/j'�1.K.kxk; k yk//'�1. �1.kxk�1 � k yk��2//gdxdy

C
Z

R
n
C

Z

R
n
C

 

�
jg. y/j �1.K.kxk; k yk// 1

'�1. �1.kxk�1 � k yk��2//


dxdy

D I1 C I2: (23)

Since ' on .0;1/ is sub-multiplicative, we have

'fj f .x/j'�1.K.kxk; k yk// � '�1. �1.kxk�1 � k yk��2//g
� '.j f .x/j/'f'�1.K.kxk; k yk// � '�1. �1.kxk�1 � k yk��2//g
� '.j f .x/j/K.kxk; k yk/ �  �1.kxk�1 � k yk��2/: (24)

Then, we have

I1 �
Z

R
n
C

Z

R
n
C

'.j f .x/j/ � K.kxk; k yk/ �  �1.kxk�1 � k yk��2/dxdy

D
Z

R
n
C

'.j f .x/j/
( Z

R
n
C

k yk��2K.kxk�1k yk��2 ; 1/ �1.kxk�1k yk��2/dy

)

dx:

(25)

By (22), we have
Z

R
n
C

k yk��2K.kxk�1 � k yk��2 ; 1/ �  �1.kxk�1 � k yk��2/dy

D 
n=2

2n	 .n=2/

Z 1

0

t�
�2
2 K

�
kxk�1 � t�

�2
2 ; 1

	
�  �1 �kxk�1 � t�

�2
2

	
t.n=2/�1dt:

(26)

Let u D kxk�1 � t�
�2
2 ; and by (25), (26) and (9), we get

I1 � 
n=2

2n�1	 .n=2/�2

Z

R
n
C

Z 1

0
'.j f .x/j/kxk��1C n�1

�2 K.u; 1/ �1.u/u� n
�2 dudx

D 
n=2

2n�1	 .n=2/�2

�Z 1

0
K.u; 1/ �1.u/u� n

�2 du

 ( Z

R
n
C

'.j f .x/j/kxk
�
��1C n�1

�2

	

dx

)

D c1

Z

R
n
C

'.j f .x/j/!1.x/dx: (27)
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Similarly, we have

 

�
jg. y/j �1.K.kxk; k yk// � 1

'�1. �1.kxk�1 � k yk��2//



�  .jg. y/j/K.kxk; k yk/ �  
�

1

'�1. �1.kxk�1 � k yk��2//



D  .jg. y/j/k yk��2K.kxk�1 � k yk��2 ; 1/ 
�

1

'�1. �1.kxk�1 � k yk��2//


:

(28)

By (22), we have

Z

R
n
C

k yk��2K.kxk�1 � k yk��2 ; 1/ �  
�

1

'�1. �1.kxk�1 � k yk��2//


dx

D k yk��2
n=2

2n	 .n=2/

Z 1

0

K.t
�1
2 k yk��2 ; 1/ 

(
1

'�1. �1.t.
�1
2 /k yk��2//

)

t
n
2�1dt:

(29)

Let u D t
�
�1
2

	

� k yk��2 ,and by (28), (29), and (10), we get

I2 D
Z

R
n
C

Z

R
n
C

 

�
jg. y/j �  �1.K.kxk; k yk// � 1

'�1. �1.kxk�1 � k yk��2//


dxdy

� 
n=2

2n�1	 .n=2/�1

Z 1

0

K.u; 1/ �  
�

1

'�1. �1.u//


u.

n
�1
/�1du

�
Z

R
n
C

 .jg. y/j/k yk
�
��2C n�2

�1

	

dy

D c2

Z

R
n
C

 .jg. y/j/!2. y/dy: (30)

Thus, by (27) and (30), we obtain

Z

R
n
C

Z

R
n
C

K.kxk; k yk/ � f .x/g. y/dxdy

� c1

Z

R
n
C

'.j f .x/j/!1.x/dx C c2

Z

R
n
C

 .jg. y/j/!2. y/dy:



Multiple Weighted Orlicz Spaces and Applications 361

It follows that
Z

R
n
C

Z

R
n
C

K.kxk; k yk/ �
�

f .x/

k f k';!1

��
g. y/

kgk ;!2

�
dxdy

� c1

Z

R
n
C

'

� j f .x/j
k f k';!1

�
!1.x/dx C c2

Z

R
n
C

 

� jg. y/j
kgk ;!2

�
!2. y/dy

� c1 C c2 D c.';  /:

Hence,

Z

R
n
C

Z

R
n
C

K.kxk; k yk/ � f .x/g. y/dxdy � c.';  /k f k';!1kgk ;!2 :

The proof is complete.

We can similarly prove Theorem 2; the details will be omitted.

5 Some Applications

As applications, a large number of known and new results have been obtained by
proper choice of kernel K. In this section we present some model applications which
display the importance of our results.

Corollary 1. Let f ; g; ';  ; �1; �2; !1, and !2 satisfy the conditions of Theorem 1;
then

Z

R
n
C

Z

R
n
C

log
� kxk�1

k yk�2
	

kxk�1 � k yk�2 f .x/g. y/dxdy � .c1 C c2/k f k';!1kgk ;!2 ; (31)

where

c1 D 
n=2�1

2n�1	 .n=2/�2

Z 1

0

log u

u�1 � 1 
�1.u/u�

�
n
�2

�
du < 1I (32)

c2 D 
n=2

2n�1	 .n=2/

Z 1

0

log u

u�1 � 1 
�

1

'�1. �1.u//

�
u
�

n
�1

�
�1du < 1: (33)

If n D 1 in Corollary 1 , then

Z 1

0

Z 1

0

log. x�1
y�2
/

x�1 � y�2
f .x/g. y/dxdy � .c1 C c2/k f k';!1kgk ;!2 ; (34)
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where

c1 D �1

�2

Z 1

0

log u

u�1 � 1 
�1.u/u�

�
1
�2

�
du < 1I (35)

c2 D
Z 1

0

log u

u�1 � 1 
�

1

'�1. �1.u//

�
u
�
1
�1

�
�1du < 1: (36)

Corollary 2. Let f ; g; ';  ; �, and ! satisfy the conditions of Theorem 2. If

c1 D 
n=2

2n�1	 .n=2/

Z 1

0

1

ju � 1j�  
�1.u/u��n�1du < 1I

c2 D 
n=2

2n�1	 .n=2/

Z 1

0

1

ju � 1j�  
�

1

'�1. �1.u//

�
un�1du < 1;

then
Z

R
n
C

Z

R
n
C

f .x/g. y/

jkxk � k ykj� dxdy � .c1 C c2/k f k';!kgk ;!: (37)

If n D 1 in Corollary 2, then

Z 1

0

Z 1

0

1

jx � yj� f .x/g. y/dxdy � .c1 C c2/k f k';!kgk ;!; (38)

where !.x/ D x1��, and

c1 D
Z 1

0

1

ju � 1j�  
�1.u/u��2du < 1; (39)

c2 D
Z 1

0

1

ju � 1j�  
�

1

'�1. �1.u//

�
du < 1: (40)

We obtain the following Corollaries 3 and 4 by taking '.u/ D up.x/;  .v/ D
vq.x/, in Theorems 1 and 2, where 1 < p.x/ < 1; 1

p.x/ C 1
q.x/ D 1; x 2 R

nC and
p� D essinff p.x/ W x 2 R

nCg,pC D esssupf p.x/ W x 2 R
nCg,1 < p� � pC < 1.

Corollary 3. Let K; �1; �2; !1, and !2 satisfy the conditions of Theorem 1. If
f 2 Lp.�/.!1/; g 2 Lq.�/.!2/, then

Z

R
n
C

Z

R
n
C

K.kxk; k yk/f .x/g. y/dxdy � c. p; q/k f kp.�/;!1kgkq.�/;!2 ; (41)

where
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c. p; q/ D 
n=2

2n�1	 .n=2/

�
1

�2

�Z 1

0

K.u; 1/u

�
1

q
C

� n
�2

�
du C

Z 1

1

K.u; 1/u
�

1
q�

� n
�2

�
du

�

C 1

�1

�Z 1

0

K.u; 1/u
�

� 1
p�

C n
�1

�1
�
duC

Z 1

1

K.u; 1/u

�
� 1

p
C

C n
�1

�1
�
du

�
:

(42)

In particular, if n D 1 , in Corollary 3, then

Z 1

0

Z 1

0

K.x; y/f .x/g. y/dxdy � c. p; q/k f kp.�/;!1kgkq.�/;!2 ; (43)

where !1.x/ D x��1.1���1
2 / , !2.y/ D y��2.1���1

1 /, and

c. p; q/ D 1

�2

�Z 1

0

K.u; 1/u

�
1

q
C

� 1
�2

�
du C

Z 1

1

K.u; 1/u
�

1
q�

� 1
�2

�
du

�

C 1

�1

�Z 1

0

K.u; 1/u�
�

1
p�

� 1
�1

C1
�
du C

Z 1

1

K.u; 1/u
�
�

1
p
C

� 1
�1

C1
�
du

�
:

(44)

If K.x; y/ D
log

�
x�1

y�2

�

x�1�y�2
in (43), then

Z 1

0

Z 1

0

log
�

x�1
y�2

	

x�1 � y�2
f .x/g. y/dxdy � c. p; q/k f kp.�/;!1kgkq.�/;!2 ; (45)

where

c. p; q/ D �1

�2

�Z 1

0

log u

u�1 � 1u

�
1

q
C

� 1
�2

�
du C

Z 1

1

log u

u�1 � 1u
�

1
q�

� 1
�2

�
du

�

C
�Z 1

0

log u

u�1 � 1u�
�

1
p�

� 1
�1

C1
�
du C

Z 1

1

log u

u�1 � 1u
�
�

1
p
C

� 1
�1

C1
�
du

�
:

(46)

Corollary 4. Let � and ! satisfy the conditions of Corollary 2. If f 2 Lp.�/.!/;
g 2 Lq.�/.!/, and maxfn � 1

pC

; n � 1
qC

g < � < 1; n > maxf 1
p�

; 1
q�

g, then

Z

R
n
C

Z

R
n
C

f .x/g. y/

jkxk � k ykj� dxdy � .c1 C c2/k f kp.�/;!kgkq.�/;!; (47)
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where !.x/ D kxkn�� , and

c1 D 
n=2

2n�1	 .n=2/

�
B

�
1 � �; �C 1

qC
� n

�
C B

�
1 � �; n � 1

q�

�
; (48)

c2 D 
n=2

2n�1	 .n=2/

�
B

�
1 � �; n � 1

p�

�
C B

�
1 � �; �C 1

pC
� n

�
; (49)

and B.˛; ˇ/ is the Beta function.

We obtain the following Corollaries 5 and 6 by taking '.u/ D up;  .v/ D vq,
1 < p; q < 1; 1p C 1

q D 1, in Corollaries 3 and 4:

Corollary 5. Let K; �1; �2; !1, and !2 satisfy the conditions of Theorem 1. If
f 2 Lp.!1/,g 2 Lq.!2/, then

Z

R
n
C

Z

R
n
C

K.kxk; k yk/f .x/g. y/dxdy � c. p; q/k f kp;!1kgkq;!2 ; (50)

where

c. p; q/ D 
n=2

2n�1	 .n=2/

�
1

�2

Z 1

0

K.u; 1/u
�
1
q � n

�2

�
du

C 1

�1

Z 1

0

K.u; 1/u
�

� 1
p C n

�1
�1
�
du


: (51)

In particular, if n D 1, in Corollary 5, then

Z 1

0

Z 1

0

K.x; y/f .x/g. y/dxdy � c. p; q/k f kp;!1kgkq;!2 ; (52)

where !1.x/ D x��1.1���1
2 /, !2.y/ D y��2.1���1

1 / , and

c. p; q/ D 1

�2

Z 1

0

K.u; 1/u
�
1
q � 1

�2

�
du

C 1

�1

Z 1

0

K.u; 1/u�
�
1
p � 1

�1
C1
�
du: (53)

If K.x; y/ D log
�

x�1

y�2

�

x�1�y�2
in (52), and 1

�1

�
1
q � 1

�2
C 1

	
> 0; 1

�1

�
1
�1

� 1
p

	
> 0, then

Z 1

0

Z 1

0

log
�

x�1
y�2

	

x�1 � y�2
f .x/g. y/dxdy � c. p; q/k f kp;!1kgkq;!2 ;



Multiple Weighted Orlicz Spaces and Applications 365

where

c. p; q/ D 1

�1�2

 



sin 1
�1

�
1
q � 1

�2
C 1

�



!2
C 1

�21

0

@ 


sin
� p��1

p�21

�



1

A

2

: (54)

In particular, if �1 D �2 D 1, then

Z 1

0

Z 1

0

log.x=y/

x � y
f .x/g. y/dxdy � 2

�



sin.
=p/

�2
k f kpkgkq:

Corollary 6. Let f 2 Lp.!/; g 2 Lq.!/, !.x/ D kxkn��, 1 < p < 1; .1=p/ C
.1=q/ D 1, and maxfn � .1=p/; n � .1=q/g < � < 1, then

Z

R
n
C

Z

R
n
C

1

jkxk � k ykj� f .x/g. y/dxdy � .c1 C c2/k f kp;!kgkq;! ;

where

c1 D 
n=2

2n�1	 .n=2/

�
B

�
1 � �; �C 1

q
� n

�
C B

�
1 � �; n � 1

q

�
;

c2 D 
n=2

2n�1	 .n=2/

�
B

�
1 � �; n � 1

p

�
C B

�
1 � �; �C 1

p
� n

�
:

In particular, n D 1, then

Z 1

0

Z 1

0

f .x/g. y/

jx � yj� dxdy � c. p; q/k f kp;!kgkq;! ;

where !.x/ D x1�� , and

c. p; q/DB

�
1��; ��1

p

�
CB

�
1��; 1

p

�
CB

�
1��; 1

q

�
CB

�
1��; � � 1

q

�
:

(55)

Equation (55) reduces to Theorem 4.5 in [18]. Hence, Corollary 6 is the multidi-
mensional generalization of the corresponding results in [18].

We can obtain the corresponding series form of the above results, such as by
taking f and g :

f .x/ D am.m � 1 � x < m/I g. y/ D bn.n � 1 � y < n/;

and by Theorems 1 and 2 and Corollaries 1–6, we get
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Corollary 7. Let K; ';  ; �1, and �2 satisfy the conditions of Theorem 1. If

a D famg 2 l'.!1/, b D fbng 2 l .!2/, !1.m/ D m��1C. �1�2 /, !2.n/ D n��2C. �2�1 /,
then

1X

mD1

1X

nD1
K.m; n/ambn � c.';  /kak';!1kbk ;!2 ; (56)

where c.';  / D c1 C c2 is defined by (13) and (14).

If K.m; n/ D log
�

m�1

n�2

�

m�1�n�2
in (56), then

1X

mD1

1X

nD1

log
�

m�1
n�2

�

m�1 � n�2
ambn � c.';  /kak';!1kbk ;!2 ; (57)

where c.';  / D c1 C c2 is defined by (35) and (36) .

Corollary 8. Let �1; �2; p.�/, and q.�/ satisfy the conditions of Corollary 3. If

a D famg 2 lp.�/.!1/, b D fbng 2 lq.�/.!2/, !1.m/ D m��1C. �1�2 /, !2.n/ D n��2C. �2�1 /,
then

1X

mD1

1X

nD1
K.m; n/ambn � c. p; q/kakp.�/;!1kbkq.�/;!2 ; (58)

where c.p; q/ is defined by (44).

If K.m; n/ D log
�

m�1

n�2

�

m�1�n�2
in (58) , then

1X

mD1

1X

nD1

log
�

m�1
n�2

�

m�1 � n�2
ambn � c. p; q/kakp.�/;!1kbkq.�/;!2 ; (59)

where c.p; q/ is defined by (46).
If �1 D �2 D 1 in (59), then

1X

mD1

1X

nD1

log.m
n /

m � n
ambn � c. p; q/kakp.�/kbkq.�/;

where

c. p; q/ D
�Z 1

0

log u

u � 1u

�
1

q
C

�1
�
du C

Z 1

1

log u

u � 1u
�

1
q�

�1
�
du

�

C
�Z 1

0

log u

u � 1u�
�

1
p�

�
du C

Z 1

1

log u

u � 1u
�
�

1
p
C

�
du

�
:
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Corollary 9. Let K; �1; �2; !1, and !2 satisfy the conditions of Corollary 5. If a D
famg 2 lp.!1/; b D fbng 2 lq.!2/ ,1 < p < 1; 1p C 1

q D 1, then

1X

mD1

1X

nD1
K.m; n/ambn � kakp;!1kbkq;!2 ; (60)

where c.p; q/ is defined by (53).

If K.m; n/ D log
�

m�1

n�2

	

m�1�n�2
in (60), and 1

�1

�
1
q � 1

�2
C 1

	
> 0; 1

�1

�
1
�1

� 1
p

	
> 0 , then

1X

mD1

1X

nD1

log
�

m�1
n�2

	

m�1 � n�2
ambn � c. p; q/kakp;!1kbkq;!2 ; (61)

where c.p; q/ is defined by (54). If �1 D �2 D 1 in (61), then

1X

mD1

1X

nD1

log.m=n/

m � n
ambn � 2

�



sin.
=p/

�2
kakpkbkq:

Corollary 10. Let K; ';  , and � satisfy the conditions of Theorem 2. If a D famg 2
l'.!/, b D fbng 2 l .!/ , !.m/ D m1��, then

1X

mD1

1X

nD1
K.m; n/ambn � c.';  /kak';!kbk ;!; (62)

where c.p; q/ D c1 C c2 is defined by (20) and (21) .

If K.m; n/ D 1

jm�nj� in (62), then

1X

mD1

1X

nD1

1

jm � nj� ambn � c.';  /kak';!kbk ;!; (63)

where c.';  / D c1 C c2 is defined by (39) and (40).

Corollary 11. Let �; p.�/, and q.�/ satisfy the conditions of Corollary 4. If a D
famg 2 lp.�/.!/ , b D fbng 2 lq.�/.!/, !.n/ D n1��, and maxf1 � 1

qC

; 1 � 1
pC

g <
� < 1 , then

1X

mD1

1X

nD1

1

jm � nj� ambn � .c1 C c2/kakp.�/;!kbkq.�/;!;
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where

c1 D B

�
1 � �; �C 1

qC
� 1

�
C B

�
1 � �; 1 � 1

q�

�
;

c2 D B

�
1 � �; 1 � 1

p�

�
C B

�
1 � �; �C 1

pC
� 1

�
:

Corollary 12. Let �; p; q, and! satisfy the conditions of Corollary 6; if a D famg 2
lp.!/ ,b D fbng 2 lq.!/ , then

1X

mD1

1X

nD1

1

jm � nj� ambn � c. p; q/kakp;!kbkq;! ;

where c.p; q/ is defined by (55) .

6 Further Results

When the integral kernels K.kxk; k yk/ do not satisfy the conditions (8) and (15), we
can similarly prove the corresponding results. For example,

Theorem 3. Let the conjugate Young’s functions '; on .0;1/ be sub-
multiplicative. Let f 2 L'.!/, g 2 L .!/ , and k f k';! > 0; kgk ;! > 0 ,
where !.x/ D kxkn�� and �; ˛; ˇ are real numbers. If

c1 D 
n=2

2n�1	 .n=2/

Z 1

0

1

ju � 1j��˛�ˇ  
�1.u/u��n�1du < 1; (64)

c2 D 
n=2

2n�1	 .n=2/

Z 1

0

1

ju � 1j��˛�ˇ  
�

1

'�1. �1.u//

�
un�1du < 1; (65)

then
Z

R
n
C

Z

R
n
C

f .x/g. y/

kxk˛ � k ykˇjkxk � k ykj��˛�ˇ dxdy � c.';  /k f k';!kgk ;!; (66)

where c.';  / D c1 C c2 is defined by (64) and (65).

In particular, if n D 1 in Theorem 3, then

Z 1

0

Z 1

0

f .x/g. y/

x˛yˇjx � yj��˛�ˇ dxdy � .c1 C c2/k f k';!kgk ;!;
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the corresponding series form is

1X

mD1

1X

nD1

ambn

m˛nˇjm � nj��˛�ˇ � kak';!kbk ;!;

where !.x/ D x1�� and

c1 D
Z 1

0

1

ju � 1j��˛�ˇ  
�1.u/u��2du < 1; (67)

c2 D
Z 1

0

1

ju � 1j��˛�ˇ  
�

1

'�1. �1.u//

�
du < 1: (68)

In the following , we still set 1 < p.x/ < 1; 1
p.x/ C 1

q.x/ D 1; x 2 R
nC , and

p� D essinff p.x/ W x 2 R
nCg, pC D esssupf p.x/ W x 2 R

nCg, 1 < p� � pC < 1.

Corollary 13. Let !.x/ D kxkn�� and n > max
n
1

p�

; ˛ C ˇ C 1
q�

o
;

max
n
n � 1

qC

; n C ˛ C ˇ � 1
pC

o
< � < 1 C ˛ C ˇ. If f 2 Lp.�/.!/; g 2 Lq.�/.!/ ,

then
Z

R
n
C

Z

R
n
C

f .x/g. y/

kxk˛ � k ykˇjkxk � k ykj��˛�ˇ dxdy � .c1Cc2/k f kp.�/;!kgkq.�/;!; (69)

where

c1 D 
n=2

2n�1	 .n=2/

�
B

�
1C ˛ C ˇ � �; �C 1

qC
� n

�

C B

�
1C ˛ C ˇ � �; n � ˛ � ˇ � 1

q�

�
;

c2 D 
n=2

2n�1	 .n=2/

�
B

�
1C ˛ C ˇ � �; n � 1

p�

�

C B

�
1C ˛ C ˇ � �; �C 1

pC
� n � ˛ � ˇ

�
:

If n D 1 in (69), then

Z 1

0

Z 1

0

f .x/g. y/

x˛yˇjx � yj��˛�ˇ dxdy � .c1 C c2/k f kp.�/;!kgkq.�/;!; (70)

the corresponding series form is

1X

mD1

1X

nD1

ambn

m˛nˇjm � nj��˛�ˇ � .c1 C c2/kakp.�/;!/kbkq.�/;! ; (71)
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where

c1 D B

�
1C ˛ C ˇ � �; �C 1

qC
� 1

�
C B

�
1C ˛ C ˇ � �; 1 � ˛ � ˇ � 1

q�

�
;

c2 D B

�
1C ˛ C ˇ � �; 1 � 1

p�

�
C B

�
1C ˛ C ˇ � �; � � ˛ � ˇ C 1

pC
� 1

�
:

In particular, if p.�/ are q.�/ are constants, that is, if f 2 Lp.!/; g 2 Lq.!/,
1 < p < 1; 1p C 1

q D 1 , maxf 1p ; ˛ C ˇ C 1
q g < � < 1 C ˛ C ˇ < 1 C 1

p ,
then

Z 1

0

Z 1

0

f .x/g. y/

x˛yˇjx � yj��˛�ˇ dxdy � .c1 C c2/k f kp;!kgkq;! ; (72)

the corresponding series form is

1X

mD1

1X

nD1

ambn

m˛nˇjm � nj��˛�ˇ � .c1 C c2/kakp;!kbkq;! ; (73)

where

c1 D B

�
1C ˛ C ˇ � �; � � 1

p

�
C B

�
1C ˛ C ˇ � �; 1

p
� ˛ � ˇ

�
;

c2 D B

�
1C ˛ C ˇ � �; 1

q

�
C B

�
1C ˛ C ˇ � �; � � ˛ � ˇ � 1

q

�
:

Equations (72) and (73) are the Hardy–Littlewood inequalities (see [19]).
Hence, (66) and (69) are new significant extensions of the Hardy–Littlewood
inequality on the multiple weighted Orlicz spaces and the variable Lebesgue spaces.

Theorem 4. Let the conjugate Young’s functions '; on .0;1/ be sub-

multiplicative. Let !1.x/ D kxk� .n�1/
�2 , !2.y/ D k yk� .n�2/

�1 , where �1 and �2
are real numbers and �1 � �2 ¤ 0. Let f 2 L'.!1/,g 2 L .!2/ and
k f k';!1 > 0; kgk ;!2 > 0. If

c1 D 
n=2

2n�1	 .n=2/�2

Z 1

0

1

eu � 1 
�1.u/u.

n
�2
/�1du < 1I (74)

c2 D 
n=2

2n�1	 .n=2/�1

Z 1

0

1

eu � 1 
�

1

'�1. �1.u//

�
u.

n
�1
/�1du < 1; (75)

then
Z

R
n
C

Z

R
n
C

1

exp.kxk�1 � k yk�2/ � 1 f .x/g. y/dxdy � c.';  /k f k';!1kgk ;!2 ; (76)

where c.';  / D c1 C c2 is defined by (74) and (75) .
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Corollary 14. Let �1; �2; !1, and !2 satisfy the conditions of Theorem 4. If f 2
Lp.�/.!1/; g 2 Lq.�/.!2/,then

Z

R
n
C

Z

R
n
C

1

exp.kxk�1 � k yk�2/ � 1 f .x/g. y/dxdy � c. p; q/k f kp.�/;!1kgkq.�/;!2 ;

(77)
where

c. p; q/ D 
n=2

2n�1	 .n=2/

(
1

�2

 Z 1

0

1

eu � 1u

�
1

q
C

C n
�2

�1
�
du C

Z 1

1

1

eu � 1u
�
1

q�
C n
�2

�1
�
du

!

C 1

�1

 Z 1

0

1

eu � 1u
�
� 1

p�
C n
�1

�1
�
du C

Z 1

1

1

eu � 1u

�
� 1

p
C

C n
�1

�1
�
du

!)

: (78)

In particular, if n D 1, in Corollary 14, then

Z 1

0

Z 1

0

1

exp.x�1 � y�2/ � 1 f .x/g. y/dxdy � c. p; q/k f kp.�/;!1kgkq.�/;!2 ; (79)

the corresponding series form is

1X

mD1

1X

nD1

1

em�1n�2 � 1ambn � c. p; q/kakp.�/;!1kbkq.�/;!2 ; (80)

where !1.x/ D x�. �1�2 / , !2.y/ D y�. �2�1 / , and

c. p; q/ D 1

�2

�Z 1

0

1

eu � 1u

�
1

q
C

C 1
�2

�1
�
du C

Z 1

1

1

eu � 1u
�

1
q�

C 1
�2

�1
�
du

�

C 1

�1

�Z 1

0

1

eu � 1u
�

� 1
p�

C 1
�1

�1
�
du C

Z 1

1

1

eu � 1u

�
� 1

p
C

C 1
�1

�1
�
du

�
:

(81)

Corollary 15. Let �1; �2; !1, and !2 satisfy the conditions of Theorem 4. If
f 2 Lp.!1/; g 2 Lq.!2/ , 1p C 1

q D 1 , 0 < 1
p < minf1; n

�2
; n
�1

� 1g , then

Z

R
n
C

Z

R
n
C

1

exp.kxk�1 � k yk�2/ � 1 f .x/g. y/dxdy � c. p; q/k f kp;!1kgkq;!2 ;
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where

c. p; q/ D 
n=2

2n�1	 .n=2/

n
1
�2
�
�

n
�2

C 1
q

	
	
�

n
�2

C 1
q

	

C 1
�1
�
�

n
�1

� 1
p

	
	
�

n
�1

� 1
p

	o
;

and

�.˛/ D
1X

kD1

1

k˛
.˛ > 1/; 	 .ˇ/ D

Z 1

0

tˇ�1e�tdt .ˇ > 0/

are the Riemann–Zeta function and the Gamma function, respectively.

In particular, if �1 D �2 D 1 and n D 2 in Corollary 15, then

Z

R
2
C

Z

R
2
C

1

exp.kxk � k yk/ � 1 f .x/g. y/dxdy � c. p; q/k f kp;!1kgkq;!2 ;

where !1.x/ D kxk2; !2.y/ D k yk�2 and

c. p; q/ D 


2
� 	

�
1C 1

q

���
1C 1

q

�
�

�
2C 1

q

�
C �

�
1C 1

q

�
:

If �1 D �2 D 1; n D 2 and p D q D 2 in Corollary 15, then

Z

R
2
C

Z

R
2
C

1

exp.kxk � k yk/ � 1 f .x/g. y/dxdy

� 
3=2

4

�
3

2
�

�
5

2

�
C �

�
3

2

�  Z

R
2
C

j f .x/j2kxk2dx

!1=2  Z

R
2
C

jg. y/j2k yk�2dy

!1=2
:

Theorem 5. Let the conjugate Young’s functions '; on .0;1/ be sub-

multiplicative. Let !1.x/ D kxk� .n�1/
�2 , !2.y/ D k yk� .n�2/

�1 , where �1 and �2
are real numbers and �1 � �2 ¤ 0. Let f 2 L'.!1/; g 2 L .!2/ and
k f k';!1 > 0; kgk ;!2 > 0. If

c1 D 
n=2

2n�1	 .n=2/�2

Z 1

0

csc h.u/ �1.u/u
�

n
�2

�
�1du < 1I (82)

c2 D 
n=2

2n�1	 .n=2/�1

Z 1

0

csc h.u/ 

�
1

'�1. �1.u//

�
u
�

n
�1

�
�1du < 1; (83)
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then
Z

R
n
C

Z

R
n
C

csc h.kxk�1 � k yk�2/f .x/g. y/dxdy � c.';  /k f k';!1kgk ;!2 ; (84)

where c.';  / D c1 C c2 is defined by (82) and (83) , and

csc h.x/ D 2

ex � e�x

is the hyperbolic cosecant function.

We obtain the following Corollary 16 by taking '.u/ D up;  .v/ D vq, 1 < p;
q < 1; .1=p/C .1=q/ D 1 , in Theorem 5.

Corollary 16. Let �1; �2; !1, and !2 satisfy the conditions of Theorem 5, and 1 <
p < 1; 1p C 1

q D 1, 1p < minf n
�2
; n
�1

� 1g. If f 2 Lp.!1/; g 2 Lq.!2/, then

Z

R
n
C

Z

R
n
C

csc h.kxk�1 � k yk�2/f .x/g. y/dxdy � c. p; q/k f kp;!1kgkq;!2 ; (85)

where

c. p; q/ D 
n=2

2n�2	 .n=2/

�
1

�2
	

�
1

q
C n

�2

��
1 � 2�

�
1
q C n

�2

��
�

�
1

q
C n

�2

�

C 1

�1
	

�
�1

p
C n

�1

��
1 � 2

�
1
p � n

�1

��
�

�
�1

p
C n

�1

�
: (86)

Proof. By (82) and (83) , we have

c. p; q/ D 
n=2

2n�1	 .n=2/

�
1

�2

Z 1

0

csc h.u/u
�
1
q C n

�2
�1
�
du

C 1

�1

Z 1

0

csc h.u/u
�

� 1
p C n

�1
�1
�
du


: (87)

We compute

Z 1

0

csc h.u/u
�
1
q C n

�2
�1
�
du D

Z 1

0

2

eu � e�u
u
�
1
q C n

�2
�1
�
du

D 2

Z 1

0

e�u

1 � e�2u
u
�
1
q C n

�2
�1
�
du

D 2

Z 1

0

 1X

kD0
e�.2kC1/u

!

u
�
1
q C n

�2
�1
�
du:
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By the Lebesgue term-by-term integral theorem, and setting t D .2k C 1/u, we get

Z 1

0

csc h.u/u
�
1
q C n

�2
�1
�
du D 2

1X

kD0

�
1

2k C 1

�� 1
q C n

�2

�
Z 1

0

t
�
1
q C n

�2

�
�1e�tdt

D 2	

�
1

q
C n

�2

� 1X

kD0

�
1

2k C 1

�� 1
q C n

�2

�

:

We know that

1X

kD0

1

.2k C 1/˛
D

1X

kD1

1

k˛
�

1X

kD1

1

.2k/˛
D
�
1 � 1

2˛

�
�.˛/;

where �.˛/.˛ > 1/ is the Riemann–Zeta function. Hence, we have

Z 1

0

csc h.u/u
�
1
q C n

�2
�1
�
du D 2	

�
1

q
C n

�2

��
1 � 2�

�
1
q C n

�2

��
�

�
1

q
C n

�2

�
:

(88)

By the same way, we get

Z 1

0

csc h.u/u
�

� 1
p C n

�1
�1
�
du D 2	

�
�1

p
C n

�1

��
1 � 2

�
1
p � n

�1

��
�

�
�1

p
C n

�1

�
:

(89)

By (88), (89), and (87), we obtain (86). The proof is complete.

In particular, if �1 D �2 D n D 1 in Corollary 16, then

Z 1

0

Z 1

0

csc h.xy/f .x/g. y/dxdy � c. p; q/k f kp;!kgkq;! ;

The corresponding series form is

1X

mD1

1X

nD1
csc h.mn/ambn � c. p; q/kakp;!kbkq;! ;

where !.x/ D x�1 , and

c. p; q/ D 2

�
	

�
1

q
C 1

��
1 � 2�

�
1
q C1

��
�

�
1

q
C 1

�
C 	

�
1

q

��
1 � 2�

�
1
q

��
�

�
1

q

�
:
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Hyers–Ulam–Rassias Stability on Amenable
Groups
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In Honor of Constantin Carathéodory

Abstract In this chapter, we study the Ulam–Hyers–Rassias stability of the
generalized cosine-sine functional equation:

Z

K

Z

G
f .xtk � y/d�.t/dk D f .x/g. y/C h. y/; x; y 2 G;

where f , g, and h are continuous complex valued functions on a locally compact
group G, K is a compact subgroup of morphisms of G, dk is the normalized Haar
measure on K, and � is a complex measure with compact support. Furthermore, we
prove a stability theorem in the case where G is amenable, K is a finite subgroup
of the automorphisms of G, and � is a finite K-invariant complex measure, and
we obtain also the Hyers–Ulam–Rassias stability of the generalized cosine-sine
functional equation:

f .xy/C f .x�. y// D 2f .x/g. y/C 2h. y/; x; y 2 G;

where G is amenable, � is an involution of G.
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1 Introduction

In 1940 the following stability problem for group homomorphisms was raised by
Ulam [34]: Given a group G1 and a metric group G2 with metric d.:; :/ and a
positive number � greater than zero, does there exist a positive number ı greater
than zero such that if a function f W G1 �! G2 satisfies the functional inequality
d. f .xy/; f .x/f .y// � ı for all x; y 2 G1, then there exists a group homomorphism
h W G1 �! G2 with d. f .x/; h.x// � � for all x 2 G1?

The first affirmative answer was given in 1941 by Hyers [19] on Banach spaces.
In 1950 Aoki [1] provided a generalization of the Hyers’ theorem for additive

mappings, and in 1978 Rassias [26] generalized the Hyers’ theorem for linear
mappings by considering an unbounded Cauchy difference for sum of powers of
norms �.kxkp C k ykp/. Rassias’ theorem has been generalized by Gǎvruta [18] who
permitted the Cauchy difference to be bounded by a general control function. Since
then, the stability problems for several functional equations have been extensively
investigated by a number mathematicians (cf. [8, 9, 12, 17, 21, 22, 25, 27, 28, 30,
31, 33, 35]). The terminology Hyers–Ulam–Rassias stability originates from these
historical backgrounds. This terminology can also be applied to the case of other
functional equations. For more detailed definitions of such terminologies, we can
refer to [16, 20, 23, 24, 29, 32].

The stability of functional equations highlighted a phenomenon which is usually
called superstability. Consider the functional equation E. f / D 0, and assume we are
in a framework where the notion of boundedness of f and of E. f / makes sense. We
say that the equation E. f / D 0 is superstable if the boundedness of E. f / implies
that either f is bounded or f is a solution of E. f / D 0 . This property was first
observed and was proved by Baker et al. [6] in the following theorem

Theorem 1. Let V be a vector space. If a function f : V ! R satisfies the inequality

j f .x C y/ � f .x/f . y/j � �

for some � > 0 and for all x; y 2 V: Then either f is bounded on V or f .x C y/ D
f .x/f .y/ for all x; y 2 V:

The result was generalized by Baker [5], by replacing V by a semigroup and R by a
normed algebra E in which the norm is multiplicative, i.e., kuvk D kukkvk for all
u; v 2 E.

Badora [2] proved the Hyers–Ulam stability on abelian groups of the functional
equation

Z

K
f .x C k � y/dk D f .x/g. y/; x; y 2 G

and the superstability of the spherical function

Z

K
f .x C k � y/dk D f .x/f . y/; x; y 2 G:
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In 2012, Badora [3] studied the Hyers–Ulam stability of the generalized cosine-sine
functional equation:

1

jKj
X

k2K

f .x C k � y/ D
Z

K
f .x C k � y/dk D g. y/f .x/C h. y/; x; y 2 G

and

1

jKj
X

k2K

f .x C k � y/ D g.x/f . y/C h.x/; x; y 2 G;

where G is an abelian group and K is a finite subgroup of the automorphism of G
with order jKj.

Recently, Bouikhalene and Elqorachi [7] obtained the Hyers–Ulam stability of
the generalized Wilson’s functional equation

Z

G

Z

K
f .xtk � y/d�.t/dk D f .x/g. y/; x; y 2 G

and the superstability of Badora’s functional equation

Z

G

Z

K
f .xtk � y/d�.t/dk D f .x/f . y/; x; y 2 G; (1)

where K is a compact subgroup of morphisms of G and � is a K-invariant complex
measure with compact support and f ; g; h are continuous complex valued functions.
We refer also to [10, 11, 13–15].

The main purpose of this chapter is to investigate the Hyers–Ulam–Rassias
stability of the generalized cosine-sine functional equation:

Z

K

Z

G
f .xtk � y/d�.t/dk D f .x/g. y/C h. y/; x; y 2 G; (2)

where K is a compact subgroup of morphisms of G and � is a K-invariant complex
measure with compact support and f ; g; h are continuous complex valued functions.

Our results are organized as follows. In Theorem 2 we prove the Hyers–
Ulam–Rassias stability of Eq. (2) when f is bounded. In Theorem 3 we prove a
superstability result of Eq. (2) in more general case. In Theorems 4 and 5, under
the additional conditions that K is a finite group of automorphisms of G and � is
a finite K-invariant measure, we prove the Hyers–Ulam–Rassias stability of Eq. (2)
in amenable groups. In Theorem 6 we obtain a stability theorem of a generalized
cosine-sine functional equation on amenable groups.

Notations. Throughout this paper G is a Hausdorff locally compact group, e its
identity element. K is a compact subgroup of the group Mor.G/ D Aut.G/[Ant.G/:
The group of all mappings k of G onto itself are either automorphisms and
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homeomorphisms (k 2 Aut.G/) or anti-automorphisms and homeomorphisms (k 2
Ant.G/). The action of k 2 K on x 2 G will be denoted by k � x: So if k 2 Aut.G/,
we have k � .xy/ D k � xk � y for all x; y 2 G, and if k 2 Ant.G/ k � .xy/ D k � yk � x
for all x; y 2 G: M.G/ is the algebra of all bounded complex measures on G: For
� 2 M.G/, k�k denote the norm of �. That is, k�k D max

k f k�1;f 2Cb.G/
j < �; f > j,

where Cb.G/ is the Banach algebra of all bounded and continuous functions on G
and k f k D supx2Gj f .x/j. For � 2 M.G/, k 2 K; and f 2 Cb.G/, the measure k � �
is defined by < k � �; f >D< �; k � f >, where k � f .x/ D f .k�1 � x/ for all x 2 G. A
measure � is said to be a K-invariant measure if k �� D � for all k 2 K. A group G
is an amenable group if there exists a linear continuous mapping m on Cb.G/ which
satisfies inf f .G/ � m.G/ � sup f .G/, for all f 2 Cb.G;R/ and m. fa/ D m. f /,
m.af / D m. f / for all f 2 Cb.G/ and for all a 2 G, where fa.x/ D f .xa/ and
af .x/ D f .ax/ for all x 2 G: Finally, � : G �! G is said to be an involution of G if
�.xy/ D �.y/�.x/ and �.�.x// D x for all x; y 2 G:

2 Hyers–Ulam–Rassias Stability of a Generalized
Cosine-Sine Functional Equation

In this section, we study the Hyers–Ulam–Rassias stability of the functional
equation (2). We start by proving some results that we will use later.

Theorem 2. Let f , g, h: G �! C be continuous functions on a group G. ' and  
are mappings from G �! R. K is a compact subgroup of the group Mor.G/. If the
functional inequality holds

ˇ
ˇ̌
ˇ

Z

K

Z

G
f .xtk � y/d�.t/dk � f .x/g. y/ � h. y/

ˇ
ˇ̌
ˇ � min.'.x/;  . y// (3)

for all x; y 2 G and with f bounded on G W max
x2G

j f .x/j � M for some M 2 R. Then

there exist F, H: G ! C solutions of equation:

Z

K

Z

G
F.xtk � y/d�.t/dk D F.x/g. y/C H. y/; x; y 2 G (4)

such that

j f .x/ � F.x/j � M

and

jh.x/ � H.x/j � min.'.x/;  .x//C Mk�k C Mjg.x/j

for all x 2 G.
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Proof. f is assumed to be bounded, so j f .x/j � M, for all x 2 G and for some
M 2 R.

If h is bounded, then we take F D 0 and H D 0. If h is unbounded, since, the pair
. f ; g/ satisfies (3), so if f D 0 then we have jh.y/j � '.x/; for all x; y 2 G, which
is not true, because h is assumed to be unbounded. Thus, we have f ¤ 0, so there
exists x0 2 G such that f .x0/ ¤ 0 and the inequality (3) can be written as follows:

ˇ̌
ˇ̌ 1

f .x0/

Z

K

Z

G
f .x0tk � y/d�.t/dk � g. y/ � h. y/

f .x0/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌'.x0/

f .x0/

ˇ̌
ˇ̌ :

which implies that g is unbounded. Let .yn/ be a sequence in G such that jh.yn/j !
1 as n �! 1: Since jh.yn/j

j f .x0/j

D
ˇ̌
ˇ̌h. yn/

f .x0/
C g. yn/ � 1

f .x0/

Z

K

Z

G
f .x0tk � yn/d�.t/dk

C 1

f .x0/

Z

K

Z

G
f .x0tk � yn/d�.t/dk � g. yn/

ˇ̌
ˇ
ˇ

� '.x0/

j f .x0/j C
ˇ̌
ˇ̌ 1

f .x0/

Z

K

Z

G
f .x0tk � yn/d�.t/dk

ˇ̌
ˇ̌C jg. yn/j

� '.x0/

j f .x0/j C Mk�k C jg. yn/j:

Then, we obtain jg.yn/j ! 1 as n �! 1. In the other hand, by using inequality (3)
and for a; b 2 G, we have jg.yn/f .a/ C h.yn/j � '.a/ C Mk�k and jg.yn/f .b/ C
h.yn/j � '.b/C Mk�k. Then, by triangle inequality, we get jg.yn/. f .a/� f .b//j �
'.a/C '.b/C 2Mk�k: Since jg.yn/j ! 1 as n �! 1, then necessarily we have
f .a/ � f .b/ D 0: So, f is constant, i.e., f D c; with c 2 C. Then we can take F D c
and H D �cgCc < �;G >. Finally we obtain F, H: G �! C solutions of equation:

Z

K

Z

G
F.xtk � y/d�.t/dk D F.x/g. y/C H. y/; x; y 2 G

and such that

jh.x/ � H.x/j D jc < �;G > �cg.x/ � h.x/j

D
ˇ̌
ˇ
ˇ

Z

K

Z

G
f .xtk � x/d�.t/dk � h.x/ � f .x/g.x/

ˇ̌
ˇ
ˇ

� min.'.x/;  .x//C Mk �k C Mjg.x/j

for all x 2 G: This ends the proof.

The following lemma will be helpful in the proof of Theorem 3:



382 M. Akkouchi et al.

Lemma 1 ([7]). Let f : G �! C be a continuous function. Let � be a complex
measure with compact support and which is K-invariant. Then

Z

G

Z

K

Z

K

Z

G
f .zth � .k � ysx//d�.t/dhdkd�.s/

C
Z

G

Z

K

Z

K

Z

G
f .zth � .xsk � y//d�.t/dhd�.s/dk

D
Z

G

Z

K

Z

K

Z

G
f .ztk � ysh � x/d�.t/dhdkd�.s/

C
Z

G

Z

K

Z

K

Z

G
f .zth � xsk � y/d�.t/dhdkd�.s/

for all x; y; z 2 G:

Theorem 3. Let ' be a continuous mapping: G ! R, K a compact subgroup of the
morphisms of G, � 2 M.G/ is a K-invariant measure with compact support. If the
continuous complex valued functions f g, h satisfy

ˇ̌
ˇ
ˇ

Z

K

Z

G
f .xtk � y/d�.t/dk � f .x/g. y/ � h. y/

ˇ̌
ˇ
ˇ � '. y/ (5)

for all x; y 2 G with f unbounded on G. Then:

(1) The function g satisfies the functional equation:

Z

K

Z

G
g.xtk � y/d�.t/dk C

Z

K

Z

G
g.k � ytx/d�.t/dk D 2g.x/g. y/ (6)

for all x; y 2 G:
(2) Furthermore, if K 	 Aut.G/ then g satisfies Eq. (1).
(3) If K D f I; �g, where I denotes the identity map and � an involution of G, then

g satisfies the d’Alembert’s long functional equation:

g.xy/C g. yx/C g.x�. y//C g.�. y/x/ D 4g.x/g. y/; x; y 2 G: (7)

Proof. (1) Let f ; g; and h satisfy the inequality (5). Let x; y; z 2 G. By using
Lemma 1, we have

jf .z/j
ˇ̌
ˇ̌
Z

K

Z

G
g.xtk � y/d�.t/dk C

Z

K

Z

G
g.k � ytx/d�.t/dk � 2g.x/g. y/

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌ f .z/

Z

K

Z

G
g.xtk � y/d�.t/dk C

Z

K

Z

G
h.xtk � y/d�.t/dk

�
Z

K

Z

G

Z

K

Z

G
f .zsk0 � .xtk � y//d�.t/d�.s/dkdk0

ˇ̌
ˇ̌
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C
ˇ̌
ˇ̌f .z/

Z

K

Z

G
g.k � ytx/d�.t/dk C

Z

K

Z

G
h.k � ytx/d�.t/dk

�
Z

K

Z

G

Z

K

Z

G
f .zsk0 � .k � ytx//d�.t/d�.s/dkdk0

ˇ̌
ˇ
ˇ

C
ˇ̌
ˇ̌
Z

K

Z

G

Z

K

Z

G
f .zsk0 � xtk � y/d�.t/d�.s/dkdk0

�g. y/
Z

K

Z

G
f .ztk � x/d�.t/dk � h. y/

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌g. y/

�Z

K

Z

G
f .ztk � x/d�.t/dk � g.x/f .z/ � h.x/

�
C h.x/g. y/C h. y/

ˇ̌
ˇ̌

C
ˇ
ˇ̌
ˇ

Z

K

Z

G

Z

K

Z

G
f .zsk0 � ytk � x/d�.t/d�.s/dkdk0

�g.x/
Z

K

Z

G
f .zsk0 � y/d�.s/dk0 � h.x/

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌g.x/

�Z

K

Z

G
f .ztk � y/d�.t/dk � g. y/f .z/ � h. y/

�
C h.x/C h. y/g.x/

ˇ̌
ˇ̌

�
Z

K

Z

G
'.xtk � y/dj�j.t/dk C

Z

K

Z

G
'.k � ytx/dj�j.t/dk

C g. y/.'.x/C jh.x/j/C jh. y/j C g.x/.'. y/C jh. y/j/C jh.x/j

C k�k.'. y/C '.x//C
Z

K

Z

G
jhj.xtk � y/dj�j.t/dk

C
Z

K

Z

G
jhj.k � ytx/dj�j.t/dk

Since f is unbounded, then we get the case (1).
(2) Let K 	 Aut.G/. For all x; y; z 2 G, we have

j f .z/j
ˇ̌
ˇ̌
Z

K

Z

G
g.xtk � y/d�.t/dk � g.x/g. y/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌ f .z/

Z

K

Z

G
g.xtk � y/d�.t/dk � g.x/f .z/g. y/

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌f .z/

Z

K

Z

G
g.xsk0 � y/d�.s/dk0

�
Z

K

Z

K

Z

G

Z

G
f .ztk � .xsk

0 �y//d�.t/d�.s/dkdk
0

ˇ
ˇ̌
ˇ

C
ˇ̌
ˇ
ˇ

Z

K

Z

K

Z

G

Z

G
f .ztk � .xsk

0 �y//d�.t/d�.s/dkdk
0�g.x/f .z/g. y/

ˇ̌
ˇ
ˇ :
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Since
ˇ̌
ˇ̌
Z

K

Z

G
f .ztk � y/d�.t/dk � f .z/g. y/ � h. y/

ˇ̌
ˇ̌� '. y/

we obtain
ˇ̌
ˇ̌ f .z/

Z

K

Z

G
g.xsk

0 � y/d�.s/dk
0 �

Z

K

Z

K

Z

G

Z

G
f .ztk � .xsk

0 � y//d�.t/d�.s/dkdk
0

ˇ̌
ˇ̌

�
Z

K

Z

G

�ˇˇ̌
h.xsk

0 � y/
ˇ
ˇ̌C

ˇ
ˇ̌
'.xsk

0 � y/
ˇ
ˇ̌	

d j�j .s/dk
0

On the other hand, by using K 	 Aut.G/, the K-invariance of � and the
invariance of the Haar measure dk, we have

Z

K

Z

K

Z

G

Z

G
f .ztk � .xsk0 � y//d�.t/dkd�.s/dk0

D
Z

K

Z

K

Z

G

Z

G
f .ztk � xsk0 � y/d�.t/dkd�.s/dk0:

So, we get

ˇ
ˇ̌
ˇ

Z

K

Z

K

Z

G

Z

G
f .ztk � xsk

0 �y/d�.t/d�.s/dkdk
0�g.x/f .z/g. y/

ˇ
ˇ̌
ˇ

�
ˇ̌
ˇ
ˇ

Z

K

Z

K

Z

G

Z

G
f .ztk � xsk

0 �y/d�.t/d�.s/dkdk
0

�g. y/
Z

K

Z

G
f .ztk � x/d�.t/dk � h. y/

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌g. y/


Z

K

Z

G
f .ztk � x/d�.t/dk � g.x/f .z/ � h.x/

�
Ch. y/C g. y/h.x/

ˇ̌
ˇ̌

� '. y/ k�k C jg. y/j .j'.x/j C jh.x/j/C jh. y/j :

Since f is assumed to be unbounded, we obtain that g satisfies the functional
equation (1). This is case (2).

(3) is a particular case of (1) and this completes the proof of theorem.

Theorem 4. Let G be an amenable group, K is finite and K 	 Aut.G/, � D
˙i2I˛iıti is a discrete normalized and K-invariant measure on G, where ˛i 2 C
and ıti , i 2 I are Dirac measures. Let ': G ! R be a function. If f , g, h: G ! C
are functions which satisfy

ˇ̌
ˇ̌
Z

K

Z

G
f .xtk � y/d�.t/dk � f .x/g. y/ � h. y/

ˇ̌
ˇ̌ � '. y/ (8)
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for all x; y 2 G and such that f is unbounded on G, then, there exists a function H:
G ! C which satisfies the functional equation:

Z

K

Z

G
H.xtk � y/d�.t/dk D H.x/g. y/C H. y/ (9)

for all x; y 2 G and

jh.x/ � H.x/j � '.x/ (10)

for all x 2 G:

Proof. Let x be fixed in G: The new function

z 7! 1

jKj
X

k2K

X

i2I

˛i ftik�x.z/ � f .z/g.x/

is bounded by '.x/Cjh.x/j. Let m be the invariant measure (relating to z) on B.G;C/
and define the mapping H W G ! C by

H.x/ D m

 
1

jKj
X

k2K

X

i

˛i ftik:x � fg.x/

!

; x 2 G

From inequality (8) and the definition of H, we have

jh. y/�H. y/j D
ˇ̌
ˇ̌
ˇ
m

 
1

jKj
X

k2K

X

i

˛i ftik�y � fg. y/

!

� h. y/

ˇ̌
ˇ̌
ˇ

� sup
x2G

ˇ
ˇ̌
ˇ̌
1

jKj
X

k2K

X

i

˛i ftik�y.x/ � f .x/g. y/ � h. y/

ˇ
ˇ̌
ˇ̌

� '. y/:

for all y 2 G: By using the definition of H, we obtain

Z

K

Z

G
H.xs��y/d�.s/d� D 1

jKj
X

�2K

X

j2I

˛jH.xtj� � y/

D 1

jKj
X

�2K

X

j2I

˛jm

"
1

jKj
X

k2K

X

i2I

˛iftik�.xtj��y/ � fg.xtj� � y/

#

:

Since K � Aut.G/, � is K-invariant, and dk is a Haar measure, m is a linear map,
and from Theorem 3, we get
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1

jKj
X

�2K

X

j2I

˛jH.xtj�:y/

Dm

2

4 1

jKj2
X

�2K

X

k2K

X

i2I

X

j2I

˛i˛jftik�xtj��y � f
1

jKj
X

�2K

X

j2I

˛jg.xtj�:y/

3

5

Dm

0

@ 1

jKj2
X

�2K

X

k2K

X

i2I

X

j2I

˛i˛jftik:xtj�:y � fg.x/g. y/

1

A

Dm

0

@ 1

jKj
X

k2K

X

i2I

˛i

 
1

jKj
X

�2K

X

j2I

˛jftik�xtj��y�f tik�xg. y/

!

C
 
1

jKj
X

k2K

X

i2I

˛iftik�x � fg.x/

!

g. y/

!

Dm

0

@ 1

jKj
X

k2K

X

i2I

˛i

0

@ 1

jKj
X

�2K

X

j2I

˛j. f tj��y/tik�x�. fg. y//tik�x

1

AC H.x/g. y/

D 1

jKj
X

k2K

X

i2I

˛im

0

@ 1

jKj
X

�2K

X

j2I

˛jftj��y � fg. y/

1

A

tik�x
CH.x/g. y/:

Since m is invariant, then we have

1

jKj
X

�2K

X

j2I

˛jH.xtj� � y/ D
"
1

jKj
X

k2K

X

i2I

˛i

#

H. y/C H.x/g. y/:

By using < �;G >D P

i2I
˛i D 1, we get 1

jKj
P

k2K

P

i2I
˛iD 1 and then

Z

K

Z

G
H.xs� � y/d�.s/d� D H. y/C H.x/g. y/

for all x; y 2 G: This ends the proof of theorem.

Theorem 5. Let G be an amenable group, K is a finite subgroup of Aut.G/, and
� D ˙i2I˛iıti is a discrete normalized and K-invariant measure on G. Let ': G �!
R be a function. If f , g, h W G �! C satisfy the inequality

ˇ̌
ˇ̌
Z

K

Z

G
f .xtk � y/d�.t/dk � f .x/g. y/ � h. y/

ˇ̌
ˇ̌ � '. y/ (11)
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for all x; y 2 G and such that f is unbounded, then there exist F, H W G ! C which
satisfy

Z

K

Z

G
F.xtk � y/d�.t/dk D F.x/g. y/C H. y/; x; y 2 G; (12)

Z

K

Z

G
H.xtk � y/d�.t/dk D H.x/g. y/C H. y/; x; y 2 G; (13)

Z

K

Z

G
g.xtk � y/d�.t/dk D g.x/g. y/; x; y 2 G; (14)

ˇ̌
ˇ̌
Z

G

Z

K
f .tk � x/dkd�.t/ � F.x/

ˇ̌
ˇ̌ � 2'.x/; x 2 G (15)

and

jh.x/ � H.x/j � '.x/; x 2 G (16)

Proof. By using Theorem 4, there exists H: G ! C such that

Z

K

Z

G
H.xtk � y/d�.t/dk D H.x/g. y/C H. y/

for all x; y 2 G and

jh.x/ � H.x/j � '.x/

for all x 2 G. Putting x D e in (11), we obtain

ˇ
ˇ̌
ˇ

Z

K

Z

G
f .tk � y/d�.t/dk � f .e/g. y/ � h. y/

ˇ
ˇ̌
ˇ � '. y/:

So, if we take F D cg C H , where c D f .e/, we get

kF.x/ �
Z

G

Z

K
f .tk � x/dkd�.t/j D

ˇ̌
ˇ̌cg.x/C H.x/ �

Z

G

Z

K
f .tk � x/dkd�.t/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌cg C h �

Z

G

Z

K
f .tk � x/dkd�.t/C H � h

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌cg C h �

Z

G

Z

K
f .tk � x/dkd�.t/jCjH � h

ˇ̌
ˇ̌

� 2'.x/
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for all x 2 G. From Theorem 3, (2) g satisfies Eq. (1), so for all x; y 2 G, we have

Z

K

Z

G
F.xtk � y/d�.t/dk D c

Z

K

Z

G
g.xtk � y/d�.t/dkC

Z

K

Z

G
H.xtk � y/d�.t/dk

D cg.x/g. y/C H.x/g. y/C H. y/

D F.x/g. y/C H. y/:

This completes the proof of theorem.

In the following corollary, we generalized a result obtained by Badora in [3].

Corollary 1. Let G be an amenable group, K is a finite subgroup of Aut.G/, and
� D ıe is a dirac measure concentrated at the identity element e of G. Let ':
G �! R be a function. If f , g, h W G �! C satisfy the inequality

ˇ̌
ˇ̌
Z

K
f .xk � y/dk � f .x/g. y/ � h. y/

ˇ̌
ˇ̌ � '. y/ (17)

for all x; y 2 G and such that f is unbounded, then there exist F, H W G ! C which
satisfy

Z

K
F.xk � y/dk D F.x/g. y/C H. y/; (18)

Z

K
H.xtk � y/dk D H.x/g. y/C H. y/; (19)

Z

K
g.xk � y/dk D g.x/g. y/ (20)

for all x; y 2 G and

ˇ̌
ˇ̌
Z

K
f .k � x/dk � F.x/

ˇ̌
ˇ̌ � 2'.x/; (21)

jh.x/ � H.x/j � '.x/ (22)

for all x 2 G.

In the following corollary, we obtain a generalization of a result obtained recently
by Badora et al. [4].

Corollary 2. Let G be an amenable group, K D f Ig. Let ': G �! R be a function.
If f , g, h W G �! C satisfy the inequality

j f .xy/ � f .x/g. y/ � h. y/j � '. y/ (23)
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for all x; y 2 G and such that f is unbounded, then there exist F, H W G ! C which
satisfy

F.xy/ D F.x/g. y/C H. y/; (24)

H.xy/ D H.x/g. y/C H. y/; (25)

g.xy/ D g.x/g. y/; (26)

for all x; y 2 G and

j2f .x/ � F.x/j � 2'.x/; (27)

and

jh.x/ � H.x/j � '.x/ (28)

for all x 2 G:

Corollary 3. Let G be an amenable group; let K D f I; �g, where � is a
homomorphism involutive of G. Let ': G �! R be a function. If f ; g; h satisfy
the inequality

j f .xy/C f .x�. y// � 2f .x/g. y/ � 2h. y/j � '. y/ (29)

for all x; y 2 G and such that f is unbounded, then there exist F, H W G ! C which
satisfy

F.xy/C F.x�. y// D 2F.x/g. y/C 2H. y/; (30)

H.xy/C H.x�. y// D 2H.x/g. y/C 2H. y/; (31)

g.xy/C g.x�. y// D 2g.x/g. y/; (32)

for all x; y 2 G and

j f .x/C f .�.x// � 2F.x/j � 4'.x/; (33)

jh.x/ � H.x/j � '.x/ (34)

for all x 2 G:

Theorem 6. Let G be an amenable group; let K D f I; �g, where � is an involution
of G. Let ': G �! R be a function. If f ; g; h satisfy the inequality

j f .xy/C f .x�. y// � 2f .x/g. y/ � 2h. y/j � '. y/ (35)
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for all x; y 2 G and such that f is unbounded, then there exist F, H W G ! C which
satisfy

F.xy/C F. yx/C F.x�. y//C F.�. y/x/

D 2F.x/g. y/C 2F. y/g.x/C 2H.x/C 2H. y/; x; y 2 G; (36)

H.xy/C H. yx/C H.x�. y//C H.�. y/x/

D 2H.x/C 2H. y/C 2g. y/H.x/C 2g.x/H. y/; (37)

g.xy/C g. yx/C g.x�. y//C g.�. y/x/ D 4g.x/g. y/

for all x; y 2 G and

j f .x/C f .�.x// � 2F.x/j � 4'.x/; (38)

jh.x/ � H.x/j � '.x/ (39)

for all x 2 G:

Proof. For x fixed in G, the function z 7! . fx C f�.x//.z/ � 2f .z/g.x/ is bounded by
'.x/C jh.x/j. Let H.x/ D m. fx C f�.x/ � 2fg.x//, x 2 G. Since m is additive and g
satisfies Eq. (7), we have

H.xy/C H.x�. y//C H. yx/C H.�. y/x/

D mŒ fxy C f�. y/�.x/ � 2fg.xy/�C mŒ fx�. y/ C fy�.x/ � 2fg.x�. y//�

C mŒ fyx C f�.x/�. y/ � 2fg. yx/�C mŒ f�. y/x C f�.x/y � 2fg.�. y/x/�

D mŒ fxy C f�. y/�.x/ C fx�. y/ C fy�.x/ C fyx C f�.x/�. y/ C f�. y/x C f�.x/y � 8fg.x/g. y/�

D mŒ. fy/x C . f�. y//x � 2fxg. y/C . f�.x//�. y/ C . fx/�. y/ � 2f�. y/g.x/

C . f�.x//y C . fx/y � 2fyg.x/C . f�. y//�.x/ C . fy/�.x/ � 2f�.x/g. y/

C 2Œ fx C f�.x/ � 2fg.x/�g. y/C 2Œ fy C f�. y/ � 2fg. y/�g.x/

D mŒ. fy/x C . f�. y//x � 2fxg. y/�C mŒ. f�.x//�. y/ C . fx/�. y/ � 2f�. y/g.x/�

C mŒ. f�.x//y C . fx/y � 2fyg.x/�C mŒ. f�. y//�.x/ C . fy/�.x/ � 2f�.x/g. y/�

C 2g. y/mŒ fx C f�.x/ � 2fg.x/�C 2g.x/mŒ fy C f�. y/ � 2fg. y/�

D H. y/C H.x/C H.x/C H. y/C 2g. y/H.x/C 2g.x/H. y/

D 2H.x/C 2H. y/C 2g. y/H.x/C 2g.x/H. y/;

where the last identity is due to our assumption that m is linear and invariant.
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Now, if we take F D cg C H, where c D f .e/, then

kF.x/ � 1

2
. f .x/C f .�.x///j D

ˇ
ˇ
ˇ̌cg.x/C H.x/ � 1

2

�
f .x/C f .�.x//

�
ˇ
ˇ
ˇ̌

D
ˇ
ˇ
ˇ̌cg.x/C h.x/ � 1

2

�
f .x/C f .�.x//

�C H.x/ � h.x/

ˇ
ˇ
ˇ̌

�
ˇ
ˇ̌
ˇcg.x/C h.x/ � 1

2

�
f .x/C f .�.x//

�
ˇ
ˇ̌
ˇCjH.x/ � h.x/j

� '.x/C '.x/=2

for all x 2 G: Since g satisfies Eq. (7) and H satisfies Eq. (37), then for all x; y 2 G,
we have

F.xy/C F. yx/C F.x�. y//C F.�. y/x/

D cŒg.xy/C g. yx/C g.x�. y//C g.�. y/x/�

C H.xy/C H. yx/C H.x�. y//C H.�. y/x/

D c4g.x/g. y/C 2H.x/g. y/C 2H. y/g.x/C 2H. y/C 2H.x/

D 2F.x/g. y/C 2F. y/g.x/C 2H. y/C 2H.x/:

This completes the proof of theorem.
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Closed-Form Solution of a LAN Gateway
Queueing Model

Hamed Nassar and El-Sayed El-Hady

In Honor of Constantin Carathéodory

Abstract In a recent article, an interesting back-to-back queueing model is
developed for a gateway linking two LANs. The model ends up with a two-variable
functional equation defining the two-dimensional probability generating function
(PGF) of the distribution of the gateway occupancy. Unfortunately, however, the
article leaves the equation unsolved, citing the traditional difficulty to attack such
equations mathematically.

In this chapter, we manage to solve the functional equation for the unknown PGF,
utilizing to a great extent the knowledge of the physical properties of the underlying
gateway. The closed-form solution obtained for the PGF is validated in several
ways, both mathematical and physical. Furthermore, we derive expectations for the
gateway occupancy and also validate them both mathematically and physically.

1 Introduction

There are advantages to install several gatewayed local area networks (LANs)
instead of installing a single large LAN having the same number of nodes [1]. The
gatewaying approach is most fruitful when the nodes can be divided into groups
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Fig. 1 Gateway modeled as two back-to-back interfering queues

such that a node in a group communicates more often with nodes of the same group
than with nodes of another group. The nodes of each group can then be integrated
in one LAN, with each two such LANs linked by a gateway. Traffic emanating from
a certain node can now be classified as either internal or external, according as the
receiving node belongs to the same LAN or a different LAN.

The present gateway model, depicted in Fig. 1 was first introduced in [2]. In this
model, the function of the gateway is to handle the external traffic between the two
LANs. Specifically, if the gateway links LANs I and II, as shown in Fig. 1, it moves
to LAN II the traffic destined to it from LAN I and vice versa. As a consequence,
the gateway should be able to distinguish external from internal traffic. Basically, if
the gateway recognizes an external packet on either LAN, it will copy it in a buffer
and then transmit it to the other LAN when transmission is possible.

The two LANs on the sides of the gateway are assumed to operate as follows:

• Nodes exchange data as packets of fixed size.
• Time is slotted, with the slot length equal to the transmission time of one packet.
• A packet may be transmitted only at the start of a slot.
• Only one packet may be transmitted on a LAN at any given time.

Many LANs satisfy these characteristics such as the slotted CSMA and slotted
token ring networks [1].

Clearly, the gateway should have two buffers, one to queue packets going from
LAN I to LAN II and one in the other direction, as shown in Fig. 1. It acts as a
normal node when seen from any of the two LANs. If it identifies a packet, say, on
LAN I destined to LAN II, it will copy it using its LAN I interface and protocol
and later sends it onto LAN II using its LAN II interface and protocol. The two
LANs as well as the gateway are synchronized, i.e., have the same slot length and
boundaries. We will call a LAN active in a given slot if it carries in that slot a packet
sent by one of its nodes. A LAN that is not active in a slot is called inactive. When
a LAN is active, the packet it is carrying is either internal or external, according as
the destination node is in the same or the other LAN.
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Let r1 denote the probability that LAN I is active in each slot. Thus, r1 D 1 � r1
is the probability that LAN I is inactive in each slot. Similarly, let r2 and r2 D 1� r2
denote the probabilities that LAN II is active and inactive, respectively, in each
slot. Furthermore, let s1 denote the probability that if LAN I is active in a certain
slot, then the packet being transmitted is external. Thus, s1 D 1 � s1 denotes the
probability that if LAN I is active in a certain slot, then the packet being transmitted
is internal. And similarly, let s2 and s2 D 1� s2 denote the probabilities that if LAN
II is active in a certain slot, then the packet being transmitted is external and internal,
respectively.

External packets of LAN I will be stored in Queue I of the gateway, whereas
those of LAN II will be stored in Queue II. The packet at the head of each queue
will be transmitted to the destination LAN when the latter is inactive. This means
that priority on each LAN is given to its own traffic.

In view of these assumptions, the gateway can be modeled as two back-to-back,
coupled (interfering or mutually dependent) queues shown in Fig. 1. Each queue is
single server with infinite calling population and infinite waiting room. The coupling
of the two queues is due to the fact that one queue cannot have a departure when the
other has an arrival. This coupling is signified in the model by the two switch-like
mechanisms.

Let �1 denote the probability that LAN I is externally active, i.e., active with
a packet destined for LAN II. Note that �1 also represents the packet arrival rate
(packets per slot) into Queue I, with mean 1=�1 slots. This implies that the packet
interarrival time into Queue I is geometrically distributed. Using our conventions,
then �1 D 1 � �1 D 1 � r1s1 D r1 C r1s1 denotes the probability that LAN I is not
externally active, i.e., either inactive or internally active. In a similar manner, let �2
and �2 D 1 � �2 D 1 � r1s1 D r1 C r1s1 denote the probabilities that LAN II is
and is not, respectively, externally active. And, again we note that �2 also represents
the packet arrival rate into Queue II (packets per slot). This implies that the packet
interarrival time into Queue II is geometrically distributed with mean 1=�2 slots.

Of interest is the steady state distribution of the gateway occupancy given by

pm;n D Pr [X D m;Y D n],

where X and Y are the number of packets in Queue I and Queue II, respectively, in
steady state. In [2] an attempt was made to find for this distribution its probability
generating function (PGF) defined by

P.x; y/ D
1X

mD0

1X

nD0
pm;nxmyn; jxj; j yj � 1: (1)

The attempt ended with only the following functional equation [3, 4] which defines
the required PGF
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P.x; y/ D 1

xy � M.x; y/

�
. y � 1/.M.x; 0/C r1�2xy/P.x; 0/

C.x � 1/.M.0; y/C r2�1xy/P.0; y/C .x � 1/. y � 1/M.0; 0/P.0; 0/
	
;

(2)

where

M.x; y/ D .r1 C r1s1y C �1xy/.r2 C r2s2x C �2xy/: (3)

This equation has not been solved, though, and hence is the present chapter.
The present chapter is organized as follows. In Sect. 2 we introduce some

preliminary results which offer a great help in the solution of the functional
equation, in Sect. 3 we introduce a solution of the functional equation (2), and
in Sect. 4 the solution is validated through several tests, not only to ascertain its
correctness but also to gain some insights. In Sect. 5 the expected value of the total
occupancy of the gateway is calculated. It is again used to validate the solution. In
Sect. 6 we validate the obtained occupancy. Then Sect. 7 focuses on the special case
when the operational parameters of the two LANs are identical, resulting in two
statistically identical queues in the gateway. The results of Sects. 5 and 7 are used in
Sect. 8 to generate numerical values which are plotted and discussed. Finally, Sect. 9
gives the concluding remarks.

2 Preliminaries

In this section we will derive some properties which will help solve the functional
equation (2). To that end it is worthwhile to recall the PGF definition (1) in its
expanded form, namely,

P.x; y/ D
1X

mD0

1X

nD0
pm;nxmyn

D p0;0 C p1;0x C p2;0x
2 C p3;0x

3 C � � � ;
Cp0;1y C p0;2y

2 C p0;3y
3 C � � � ;

Cp1;1xy C p1;2xy2 C p2;1x
2y C p2;2x

2y2 C � � � : (4)

From (4), we see that the partial PGF P.x; 0/ is defined by

P.x; 0/ D
1X

mD0
pm;0x

m; jxj � 1

D p0;0 C p1;0x C p2;0x
2 C p3;0x

3 C � � � ; (5)
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and that the partial PGF P.0; y/ is defined by

P.0; y/ D
1X

nD0
p0;nyn; j yj � 1

D p0;0 C p0;1y C p0;2y
2 C p0;3y

3 C � � � : (6)

It is also worthwhile to recall from single, discrete queueing theory [5, 6] that
for a geo=geo=1 queue with arrival rate � and service rate �, the PGF P.z/ of its
occupancy distribution pi; i D 0; 1; 2; : : : ; is given by

P.z/ D �.�C �z/

�� � ��z
p0; (7)

where

p0 D � � �
�

: (8)

And for such a queue, the expected occupancy EŒP� is given by

EŒP� D dP.z/

dz

ˇ̌
ˇ̌
zD1

D ��

� � � . (9)

Further, we will call a LAN inactive if it is idle all the time. If a queue is not inactive,
then it is active. For example LAN I is inactive if r1 D 0 and is active otherwise.
Also, we will call a LAN externally inactive if it is active but with no packets going
to the other LAN (through the gateway.) For example, LAN II is externally inactive
if s2 D 0 and is externally active otherwise. Finally, we will call a queue in the
double-queue gateway system inactive if it is empty all the time. If a queue is not
inactive, then it is active. For example, Queue I is inactive if �1 D 0 (i.e., r1 D 0 or
s1 D 0).

With the above definitions in mind, and by considering the gateway model
depicted in Fig. 1, together with its assumptions, we will derive the following
properties.

Property 1. If s1 D 0, then P.x; y/ D P.y/
If s1 D 0, the arrival rate into Queue I �1 D r1s1 is zero, which means that Queue

I is inactive. Then the two-queue gateway model of Fig. 1 reduces to a one-queue
system, namely, that of Queue II. Let pj, j D 0; 1; 2; : : : be the distribution of the
occupancy of that queue. As Queue I is inactive, it follows that

pi;j D
�
0; i > 0; j � 0

pj; i D 0; j � 0
: (10)
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Let P.z/ be the PGF of pj, j D 0; 1; 2; : : :. That is,

P.z/ D
1X

nD0
pnzn jzj � 1: (11)

Then using (4), (10), and (11), we get

P.x; y/js1D0 D
1X

nD0
p0;nynjs1D0

D
1X

nD0
pnyn

D P. y/: (12)

Property 2. If s1 D 0, then P.x; 0/ D p0
From (5) and (10), it follows that

P.x; 0/js1D0 D p0;0js1D0 D p0:

Property 3. If s1 D 0, then P.0; y/ D P.y/
Using (4), (10), and (11), we get

P.0; y/js1D0 D
1X

nD0
p0;nynjs1D0

D
1X

nD0
pnyn

D P. y/;

Property 4. If s2 D 0, then P.x; y/ D P.x/

The reasoning here is along the same lines as in Property 2.

Property 5. If s2 D 0, then P.0; y/ D p0

The reasoning here is along the same lines as in Property 3.

Property 6. If s2 D 0, then P.x; 0/ D P.x/
The reasoning here is along the same lines as in Property 4.

Property 7. When LAN I is externally inactive, Queue II behaves as a geo=geo=1
queue with arrival rate �2 and service rate r1:

This is evident from the gateway model depicted in Fig. 1 in light of the
assumptions of Sect. 1. In each slot, a packet arrives into Queue II with probability
�2 and thus does not arrive with probability �2. This implies that the interarrival
time is geometrically distributed with mean 1=�2. On the output side, if the queue
is nonempty, in each slot a packet departs with probability r1 (when LAN I is
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inactive) and thus does not depart with probability r1: This implies that the service
time is geometrically distributed with mean 1=r1. These are the characteristics of a
geo=geo=1 queue. We can also prove the property mathematically, by substituting
s1 D 0 which indicates that LAN I is externally inactive and hence that Queue I is
inactive. In that case, the two-queue gateway model of Fig. 1 reduces to a one-queue
system, namely, Queue II. Let pj be the probability that Queue II has j packets,
j D 0; 1; 2; : : : : and P.z/ be its generating function defined by

P.z/ D
1X

nD0
pnzn jzj � 1 (13)

By Property 1, we have

P.x; y/js1D0 D P. y/: (14)

And by Property 2, we have

P.x; 0/js1D0 D p0: (15)

And by Property 4, we have

P.0; y/js1D0 D P. y/: (16)

Finally, from (3) we have

M.x; y/js1D0 D .r2 C r2x C r2s2xy/.r1 C r1y/; (17)

M.x; 0/js1D0 D r1.r2 C r2s2x/; (18)

M.0; y/js1D0 D r2.r1 C r1y/; (19)

and

M.0; 0/js1D0 D r1r2: (20)

Using (14)–(20) into (2) yields

P.x; y/js1D0;xDy D P. y/

D p0. y � 1/.r1.r2 C r2s2y/C r1�2y2/C . y � 1/r1r2 C . y � 1/r2.r1 C r1y/P. y/

y2 � .r1 C r1y/.r2 C r2s2y C �2y2/

Solving for P.y/, performing in the process some straightforward, yet tedious,
manipulations, we get

P. y/ D . y � 1/yr1.�2 C �2y/p0
y. y C �2 � �2y � r1�2 C r1�2y C r1�2y � �2r1y2 � 1 � r1y C r1/

D r1.�2 C �2y/

r1�2 � r1�2y
p0; (21)

which is identical to (7), noting that �2 in (21) is � in (7) and r1 in (21) is � in (7).
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Property 8. When Queue II is inactive, Queue I behaves as a geo=geo=1 queue
with arrival rate �1 and service rate r2:

The reasoning here is along the same lines as in Property 7.

Property 9. If s1 D 0; then

P.0; y/js1D0 D .�2 C �2y/.r2 � �1/
r1�2 � r1�2y

(22)

From Property 3 we have

P.0; y/js1D0 D P. y/;

and using Property 7 we have

P.0; y/js1D0 DP. y/

D r1.�2 C �2y/

r1�2 � r1�2y
p0

substituting for P0 to get that

P.0; y/js1D0 D r1.�2 C �2y/

r1�2 � r1�2y
� r1 � �2

r1

D .�2 C �2y/.r2 � �1/
r1�2 � r1�2y

Property 10. If x D 1; y D 0; then P.x; y/ D r1��2
r1

By Property 9, if s1 D 0, such that �1 D 0, then Queue I will be inactive and
Queue II will be active, behaving as a geo=geo=1 queueing system with arrival rate
�1 and service rate r2. Now, if we substitute x D 1 in (5), we get

P.1; 0/ D p0;0 C p1;0 C p2;0 C p3;0 C � � �
D PrŒY D 0�.

That is, P.1; 0/ is the marginal probability that Queue II of the gateway is inactive
(empty). Since Queue II when isolated from the gateway operates as a geo=geo=1
system with arrival rate �2 and service rate r1 and since p0 then would be as given
by (8), then

P.1; 0/ D r1 � �2
r1

: (23)

Property 11. If x D 0; y D 1; then

P.x; y/jxD0;yD1 D r2 � �1
r2

: (24)

The reasoning here is along the same lines as in Property 12.
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Property 12. If x D y; then P.x; y/ represents the PGF of the distribution of the
total gateway occupancy.

From (4) we get

P.x; x/ D
1X

mD0

1X

nD0
pm;nxmCn; jxj � 1

D p0;0 C p1;0x C p2;0x
2 C p3;0x

3 C � � �
Cp0;1x C p0;2x

2 C p0;3x
3 C � � �

Cp1;1x
2 C p1;2x

3 C p2;1x
3 C p2;2x

4 C � � �
D p0;0 C . p0;1 C p1;0/ x C . p0;2 C p1;1 C p2;0/ x2

C . p0;3 C p1;2 C p2;1 C p3;0/ x3 C � � �

D
1X

mD0
qmxm DW Q.x/

where qm D Pm
iD0 pi;m�i; m D 0; 1; : : : ; is the distribution of gateway occupancy

(both queues) and Q.x/ is its PGF.

3 Solution of Functional Equation

In this section we will solve the two-dimensional functional equation (2) for
the generating function P.x; y/. It is worth mentioning that such equations arise
naturally when trying to analyze two-queue systems using a PGF approach. In these
systems, the two queues can be either physical or logical. An example of the latter
is a single physical queue that receives customers of two classes, e.g., high and low
priority. It should be noted that the literature in the past four decades has witnessed
many equations similar to (2).

In [7] an equation arises when considering two queues in a system where the
customer on arrival joins the shorter queue. In [8] it arises when considering two
interfering queues in a packet radio network consisting of two nodes that transmit
their packets over a common channel to a central station. In [9] it arises when
analyzing a two-queue system that results from arriving customers simultaneously
placing two demands handled independently by two servers. In [10] it arises from
a queueing model with applications in databases. In [11] it arises when considering
a system of two parallel queues with infinite capacities. In [12] it arises when
considering a two-queue system with two types of customers. In [13] it arises when
modeling a clocked-buffered 2 � 2 switch with two parallel servers and two types of
customers (jobs). In [14] it arises when modeling a multimedia multiplexer handling
traffic of two classes, real-time traffic and non-real time. In [15] it arises when
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analyzing the performance of a space division output-buffered switch. In [16] it
arises when considering a two-stage tandem queue, where customers (jobs) arrive
demanding service at both queues before leaving the system. In [17] it arises when
analyzing the occupancy of a discrete time priority queue. In [18] it arises when
analyzing the delay of an ATM multiplexer (server) handling multimedia traffic
of two classes: real time and non-real time. In [19] it arises when analyzing the
performance of an output-buffered multichannel switch receiving traffic of two
classes.

In all of the above cited works, no closed-form solution has been given for the
resulting functional equation. Typically, either an open-form solution, containing
summations or products, or a solution for a special case of the equation is given. In
the sequel, we will proceed to tackle our two-dimensional functional equation (2),
exploiting the knowledge we have about the system it represents, ending with a
closed-form solution that is validated in many ways.

By investigating (2), it can be seen that there are three unknowns: the function
P.x; 0/, the function P.0; y/, and the constant P.0; 0/. If found they can be plugged
into the functional equation (2) and the solution is obtained. It can be seen that the
two unknown functions have three requirements:

• The function P.0; y/ should satisfy (22) at s1 D 0, hence �1 D 0 (i.e., only Queue
II is active)

P.0; y/js1D0 D p0;0 C p0;1y C p0;2y
2 C p0;3y

3 C � � � js1D0;

D .�2 C �2y/.r1 � �2/
r1�2 � r1�2y

(25)

• The function P.x; 0/ should satisfy at s2 D 0, hence �2 D 0 (i.e., only Queue I is
active)

P.x; 0/js2D0 D p0;0 C p1;0x C p2;0x
2 C p3;0x

3 C � � � js2D0

D .�1 C �1x/.r2 � �1/
r2�1 � r2�1x

(26)

• The function P.x; 0/ should satisfy (23) at x D 1:

P.1; 0/ D PrŒY D 0� D r1 � �2
r1

: (27)

• The function P.0; y/ should satisfy (24) at y D 1:

P.0; 1/ D PrŒX D 0� D r2 � �1
r2

: (28)

• Both P.x; 0/ and P.0; y/ should be equal at x D y D 0:
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P.x; 0/jxD0 D P.0; y/jyD0 (29)

It can be easily shown that the two functions

P.x; 0/ D .�1 C �1x/.r1 � �2/.r2 � �1/
r1.r2�1 � r2�1x/

(30)

and

P.0; y/ D .�2 C �2y/.r1 � �2/.r2 � �1/
r2.r1�2 � r1�2y/

(31)

satisfy the five conditions (25)–(29):

• At s1 D 0, hence �1 D 0; we have

P.0; y/j�1D0 D .�2 C �2y/.r1 � �2/.r2 � �1/
r2.r1�2 � r1�2y/

j�1D0

D .�2 C �2y/.r1 � �2/
r1�2 � r1�2y

which satisfies (25).
• At s2 D 0, hence �2 D 0; we have

P.x; 0/js2D0 D .�1 C �1x/.r1 � �2/.r2 � �1/
r1.r2�1 � r2�1x/

js2D0

D .�1 C �1x/.r2 � �1/
r2�1 � r2�1x

which satisfies (26)
• At x D 1 we have

P.x; 0/jxD1 D .�1 C �1x/.r1 � �2/.r2 � �1/
r1.r2�1 � r2�1x/

jxD1

D .r1 � �2/.r2 � �1/
r1.1 � r2 � �1 C r2�1 � r2�1/

D r1 � �2
r1

which satisfies (27)
• At y D 1 we have
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P.0; y/jyD1 D .�2 C �2y/.r1 � �2/.r2 � �1/
r2.r1�2 � r1�2y/

jyD1

D .r1 � �2/.r2 � �1/
r2.1 � r1 � �2 C r1�2 � r1�2/

D r2 � �1
r1

which satisfies (28).
• At x D 0 Eq. (30) and at y D 0 Eq. (30), both give the same value, namely,

P.x; 0/jxD0 D P.0; y/jyD0 D .r1 � �2/.r2 � �1/
r1r2

(32)

which satisfies (29).

When substituting (30)–(32) in (2), we get

P.x; y/ D 1

xy � M.x; y/

(

. y � 1/.M.x; 0/C r1�2xy/
.�1 C �1x/.r1 � �2/.r2 � �1/

r1.r2�1 � r2�1x/

C.x � 1/.M.0; y/C r2�1xy/
.�2 C �2y/.r1 � �2/.r2 � �1/

r2.r1�2 � r1�2y/

C.x � 1/. y � 1/M.0; 0/ .r1 � �2/.r2 � �1/
r1r2


: (33)

From (3), we get

M.x; 0/ D r1.r2 C r2s2x/; (34)

M.0; y/ D r2.r1 C r1s1y/; (35)

and

M.0; 0/ D r1r2: (36)

Substituting (34)–(36) into (33), we get the final solution of (2) as follows

P.x; y/ D ˛1˛2
. y � 1/.r2 C r2s2x C �2xy/.�1 C �1x/

.xy � M.x; y// .r2�1 � r2�1x/

C˛1˛2 .x � 1/.r1 C r1s1y C �1xy/.�2 C �2y/

.xy � M.x; y// .r1�2 � r1�2y/

C˛1˛2.x � 1/. y � 1/
.xy � M.x; y//

; (37)

where
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˛1 D r2 � �1; ˛2 D r1 � �2: (38)

Now that we have obtained P.x; y/, we can prove the correctness of the assumption
of the two functions (30) and (31) simply by substituting y D 0 and x D 0,
respectively, in (2), to get back (30) and (31). (The details of these substitutions
are given in the next section.)

4 Validation of the Solution

In this section, we will validate (37) as a solution of (2). Just as we did with
the functional equation (2), we will validate the PGF (37) using two approaches:
mathematical and physical.

4.1 Mathematical Validation

Here, we will operate on the PGF (37) as a mathematical entity.

4.1.1 Obtaining P.x; 0/

If we put y D 0 in (37), we should get (30). Indeed,

P.x; 0/ D ˛1˛2
.�1/.r2 C r2s2x/.�1 C �1x/

.�M.x; 0// .r2�1 � r2�1x/
C ˛1˛2

.x � 1/.r1/.�2/
.�M.x; 0// .r1�2/

C ˛1˛2.x � 1/.�1/
.�M.x; 0//

:

D ˛1˛2
.r2 C r2s2x/.�1 C �1x/

M.x; 0/.r2�1 � r2�1x/
;

but since from (3) we get

M.x; 0/ D r1.r2 C r2s2x/:

also using (38) so that

P.x; 0/ D ˛1˛2
.�1 C �1x/

r1.r2�1 � r2�1x/

D .r2 � �1/.r1 � �2/.�1 C �1x/

r1.r2�1 � r2�1x/

which is identical to (30).
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4.1.2 Obtaining P.0; y/

If we put x D 0 in (37), we should get (31). Indeed,

P.0; y/ D ˛1˛2
. y � 1/.r2/.�1/
.�M.0; y// .r2�1/

C ˛1˛2
.�1/.r1 C r1s1y/.�2 C �2y/

.�M.0; y// .r1�2 � r1�2y/

C˛1˛2.�1/. y � 1/
.�M.0; y//

;

which can be rewritten as follows:

P.0; y/ D ˛1˛2
. y � 1/

.�M.0; y//
C ˛1˛2

.�1/.r1 C r1s1y/.�2 C �2y/

.�M.0; y// .r1�2 � r1�2y/

C˛1˛2.�1/. y � 1/
.�M.0; y//

;

D ˛1˛2
.r1 C r1s1y/.�2 C �2y/

M.0; y/.r1�2 � r1�2y/
:

But from (3) we get

M.0; y/ D r2.r1 C r1s1y/;

using (38) to get

P.0; y/ D ˛1˛2
.r1 C r1s1y/.�2 C �2y/

r2.r1 C r1s1y/.r1�2 � r1�2y/
;

D .r1 � �2/.r2 � �1/.�2 C �2y/

r2.r1�2 � r1�2y/
; (39)

which is identical to (31).

4.1.3 Obtaining P.0; 0/

If we put x D y D 0 in (37), we should get (32). Indeed, using (37), we have

P.0; 0/ D ˛1˛2
.�1/.r2/.�1/

.�M.0; 0// .r2�1/
C ˛1˛2

.�1/.r1/.�2/
.�M.0; 0// .r1�2/

C˛1˛2.�1/.�1/
.0 � M.0; 0//

:
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which can be rewritten as

P.0; 0/ D ˛1˛2

M.0; 0/
:

But from (3) we get

M.0; 0/ D r1r2;

using (38)

P.0; 0/ D .r1 � �2/.r2 � �1/
r1r2

; (40)

which is identical to (32).

4.1.4 Obtaining P.x; 0/ at r1 D 0

Going back to the definition (5) of P.x; 0/, we note that when r1 D 0 then P.x; 0/ D
p0;0, i.e., the probability that the gateway is empty. Since if r1 D 0, then Queue I
is necessarily empty, and the double queue system of the gateway reduces to single
queue (Queue II in which case p0;0 becomes equivalent to the probability that Queue
II is empty, given that its arrival rate is �1 and its service rate is r1 D 1. For such
single queue, using (23), the latter probability is 1 � �2. Sure enough, from (30)
we get

P.x; 0/ D .r2 � �1/.r1 � �2/.�1 C �1x/

r1.r2�1 � r2�1x/
;

and if we put r1 D 0 in the above equation, we get

P.x; 0/jr1D0 D r2.1 � �2/
r2

D 1 � �2: (41)

which is what we expect.

4.1.5 Obtaining P.0; y/ at r2 D 0

In a manner similar to that in the previous section, from (31) we get

P.0; y/ D .r1 � �2/.r2 � �1/.�2 C �2y/

r2.r1�2 � r1�2y/
;
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and if we put r2 D 0 in the above equation, we get

P.0; y/jr2D0 D r1.1 � �1/
r1

D 1 � �1; (42)

which is what we expect.

4.1.6 Obtaining P.1; 0/

If we put x D 1; y D 0 in (37), we should get (23). Indeed, using (37), we have

P.1; 0/ D ˛1˛2
.�1/.r2 C r2s2/.�1 C �1/

.�M.1; 0// .r2�1 � r2�1/
:

By using (3) we get

M.1; 0/ D r1.r2 C r2s2/;

also from (38) so that

P.1; 0/ D ˛1˛2

.r1/ .r2�1 � r2�1/

D r1 � �2
r1

; (43)

which is identical to (23).

4.1.7 Obtaining P.0; 1/

If we put x D 0; y D 1 in (37), we should get (28). Indeed, using (37), we have

P.0; 1/ D ˛1˛2
.�1/.r1 C r1s1/.�2 C �2/

.�M.0; 1// .r1�2 � r1�2/

and by using (3) we get

M.0; 1/ D r2.r1 C r1s1/;

also from (38) so that

P.0; 1/ D ˛1˛2

r2.r1�2 � r1�2/

D r2 � �1
r2

; (44)

which is identical to (28).
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4.1.8 Normalization Condition

If (37) is a proper solution to (2), i.e., if it is a PGF, it must satisfy

P.1; 1/ D 1:

From (37) we get

P.1; 1/ D lim
x!1

P.x; x/

D lim
x!1

˛1˛2
.x � 1/.r2 C r2s2x C �2x2/.�1 C �1x/

.x2 � M.x; x// .r2�1 � r2�1x/

C lim
x!1

˛1˛2
.x � 1/.r1 C r1s1x C �1x2/.�2 C �2x/

.x2 � M.x; x// .r1�2 � r1�2x/

C lim
x!1

˛1˛2.x � 1/2
.x2 � M.x; x//

;

D 0

0
:

By applying de l’Hospital’s rule, we get

P.1; 1/ D ˛1˛2 lim
x!1

d=dx
�
.x � 1/.r2 C r2s2x C �2x2/.�1 C �1x/

	

d=dx
�
.x2 � M.x; x// .r2�1 � r2�1x/

	

C˛1˛2 lim
x!1

d=dx
�
.x � 1/.r1 C r1s1x C �1x2/.�2 C �2x/

	

d=dx
�
.x2 � M.x; x// .r1�2 � r1�2x/

	

C˛1˛2 lim
x!1

d=dx.x � 1/2
d=dx .x2 � M.x; x//

;

which can be rewritten as follows:

P.1; 1/ D ˛1˛2 lim
x!1

.r2 C r2s2x C �2x2/.�1 C �1x/

.2x � Mx.x; x// .r2�1 � r2�1x/

C˛1˛2 lim
x!1

.r1 C r1s1x C �1x2/.�2 C �2x/

.2x � Mx.x; x// .r1�2 � r1�2x/

C˛1˛2 lim
x!1

2.x � 1/
.2x � Mx.x; x//

:
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So that after applying de l’Hospital’s rule we get

P.1; 1/ D ˛1˛2
1

.2 � Mx.1; 1// .r2�1 � r2�1/
C ˛1˛2

1

.2 � Mx.1; 1// .r1�2 � r1�2/
;

which can be rewritten as follows:

P.1; 1/ D ˛1˛2

.2 � Mx.1; 1//

�
1

.r2 � �1/ C 1

.r1 � �2/
�

D ˛1˛2

.2 � Mx.1; 1//

�
.r1 � �2/C .r2 � �1/
.r2 � �1/.r1 � �2/

�

D .r1 � �2/C .r2 � �1/
.2 � Mx.1; 1//

then

P.1; 1/ D 2 � r1 � �1 � r2 � �2
2 � Mx.1; 1/

: (45)

But since from (3) we get

M.x; x/ D .r1 C r1s1x C �1x
2/.r2 C r2s2x C �2x

2/;

so that

Mx.x; x/ D d

dx
M.x; x/

D .r1s1 C 2�1x/.r2 C r2s2x C �2x
2/C .r1 C r1s1x C �1x

2/.r2s2 C 2�2x/;

then

Mx.1; 1/ D r1 C �1 C r2 C �2:

Substituting into (45) to get

P.1; 1/ D 2 � r1 � �1 � r2 � �2
2 � .r1 C �1 C r2 C �2/

D 1; (46)

as it should.



Closed-Form Solution of a LAN Gateway Queueing Model 411

4.2 Physical Validation

In this subsection we will exploit our knowledge of the gateway queueing model and
try to prove that (37) is a proper solution to (2) and really represents the gateway
system of Fig. 1.

4.2.1 Gateway Empty When Both LANs Are Inactive

If both LANs are inactive, no packets will enter the gateway and it will then be
inactive with probability 1. Thus, if we substitute r1 D r2 D 0 into (32), we should
get 1. Indeed, if

r1 D r2 D 0;

then

�1 D �2 D 0:

By substituting these values into (32), we get

P.0; 0/ jr1Dr2D0D
.r1 � �2/.r2 � �1/

r1r2
jr1Dr2D0D 1; (47)

as it should.

4.2.2 Gateway Empty When Both LANs Are Externally Inactive

If both LANs are externally inactive, no packets will enter the gateway and it will
then be inactive with probability 1. Thus, if we substitute s1 D s2 D 0 into (32), we
should get 1. Indeed, if

s1 D s2 D 0;

then

�1 D �2 D 0:

By substituting these values into (32), we get

P.0; 0/ js1Ds2D0D
.r1 � �2/.r2 � �1/

r1r2
js1Ds2D0D 1; (48)

as it should.
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4.2.3 Only Queue II Active When LAN I Is Externally Inactive

If LAN I is externally inactive, no packets will enter Queue I and the gateway will
then have only Queue II active. Thus, if we substitute s1 D 0 into (37), we should get
the PGF (7) of a geo=geo=1 queue, with arrival rate �2 and service rate r1. Indeed, if
s1 D 0, then

�1 D r1s1 D 0: (49)

Let pj be the probability that Queue II has j packets, j D 0; 1; 2; : : : and that P.z/ is
its generating function defined by

P.z/ D
1X

nD0
pnzn jzj � 1

From the assumption that Queue I is inactive, it follows that

pi;j D
�
0; i > 0
pj; i D 0

:

Using (4) we get

P.x; y/js1D0 D
1X

nD0
p0;nynjs1D0

D p0;0 C p0;1y C p0;2y
2 C p0;3y

3 C � � � js1D0
D p0 C p1y C p2y

2 C p3y
3 C � � �

D P. y/:

Also in this case we note after using (5) and (6) that

P.x; 0/js1D0 D p0;0js1D0 D r1 � �2
r1

D PrŒY D 0�; (50)

P.0; y/js1D0 D P. y/: (51)

By using (3), (49) we note that

M.x; y/js1D0 D .r2 C r2x C r2s2xy/.r1 C r1y/; (52)

M.x; 0/js1D0 D r1.r2 C r2s2x/; (53)

M.0; y/js1D0 D r2.r1 C r1y/; (54)

M.0; 0/js1D0 D r1r2; (55)
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by using (49), (51), and (55). Equation (37) will take the form

P.x; y/js1D0 D ˛1˛2
. y � 1/.r2 C r2s2x C �2xy/

.xy � ..r2 C r2x C r2s2xy/.r1 C r1y/// .r2/

C˛1˛2 .x � 1/.r1 C r1y/.�2 C �2y/

.xy � ..r2 C r2x C r2s2xy/.r1 C r1y/// .r1�2 � r1�2y/

C ˛1˛2.x � 1/. y � 1/
.xy � ..r2 C r2x C r2s2xy/.r1 C r1y///

:

which after using (38) can be rewritten as follows:

P.x; y/js1D0 D .r2/.r1 � �2/ . y � 1/.r2 C r2s2x C �2xy/

.xy � ..r2 C r2x C r2s2xy/.r1 C r1y/// .r2/

C.r2/.r1 � �2/ .x � 1/.r1 C r1y/.�2 C �2y/

.xy � ..r2 C r2x C r2s2xy/.r1 C r1y/// .r1�2 � r1�2y/

C .r2/.r1 � �2/.x � 1/. y � 1/
.xy � ..r2 C r2x C r2s2xy/.r1 C r1y///

Since

P.0; y/js1D0 D P. y/

D .r1 � �2/.�2 C �2y/

.r1�2 � r1�2y/
;

so that after putting y D x we get

P. y/ D .r1 � �2/ . y � 1/.r2 C r2s2y C �2y2/

. y2 � ..r2 C r2y C r2s2y2/.r1 C r1y///

C r2. y � 1/.r1 C r1y/P. y/

. y2 � ..r2 C r2y C r2s2y2/.r1 C r1y///

C .r2/.r1 � �2/. y � 1/2
. y2 � ..r2 C r2y C r2s2y2/.r1 C r1y///

:

Solving for P.y/; we get

P. y/

�
1 � r2. y � 1/.r1 C r1y/

. y2 � ..r2 C r2y C r2s2y2/.r1 C r1y///

�

D .r1 � �2/ . y � 1/.r2 C r2s2y C �2y2/

. y2 � ..r2 C r2y C r2s2y2/.r1 C r1y///

C r2.r1 � �2/. y � 1/2
. y2 � ..r2 C r2y C r2s2y2/.r1 C r1y///

:
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After some tedious manipulations, we get

P. y/ D ��2 C r1�2 C �22 C �2y � r1�2y � �22y C 1 � r1 � �2
.1 � �2 C r1�2 � r1�2y � r1/

D r1.�2 C �2y/

r1�2 � r1�2y
p0: (56)

which is the single queue equation (7) where p0 D r1��2
r1
:

4.2.4 Only Queue II Active When LAN I Is Inactive

If LAN I is inactive, no packets will enter Queue I and the gateway will then have
only Queue II active. Thus, if we substitute r1 D 0 into (37), we should get the PGF
of a geo=geo=1 queue with arrival rate �2 and service rate r1 D 1. Indeed, if r1 D 0,
then

�1 D r1s1 D 0: (57)

Let pj be the probability that Queue II has j packets, j D 0; 1; 2; : : : and that P.z/ is
its generating function defined by

P.z/ D
1X

nD0
pnzn; jzj � 1

From the assumption that Queue I is inactive, it follows that

pi;jjr1D0 D
�
0; i > 0
pj; i D 0

Using this, we get from (4), we get

P.x; y/ D
1X

mD0

1X

nD0
pm;nxmyn; jxj ; j yj � 1

D p0;0 C p1;0x C p2;0x
2 C p3;0x

3 C � � � ;
Cp0;1y C p0;2y

2 C p0;3y
3 C � � � ;

Cp1;1xy C p1;2xy2 C p2;1x
2y C p2;2x

2y2 C � � � ; (58)

Substituting into (58) to get

P.x; y/jr1D0 D p0;0 C p0;1y C p0;2y
2 C p0;3y

3 C � � � ;

D
1X

nD0
p0;nyn; j yj � 1

D P. y/
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from (5) we get

P.x; 0/jr1D0 D p0;0;

D 1 � �2;
D �2:

From (31) we get

P.0; y/ D .�2 C �2y/.r1 � �2/.r2 � �1/
r2.r1�2 � r1�2y/

;

from which we get

P. y/ D P.0; y/jr1D0

D .�2 C �2y/.1 � �2/.r2/
r2.�2/

D .�2 C �2y/: (59)

By using (57), (3) we get

M.x; y/jr1D0 D r2 C r2s2x C �2xy; (60)

M.x; 0/jr1D0 D r2 C r2s2x; (61)

M.0; y/jr1D0 D M.0; 0/jr1D0 D r2; (62)

when putting these values into (37) we get

P.x; y/jr1D0 D P. y/

D .r2/.1 � �2/ . y � 1/.r2 C r2s2x C �2xy/

.xy � .r2 C r2s2x C �2xy// .r2/

C.r2/.1 � �2/ .x � 1/.�2 C �2y/

.xy � .r2 C r2s2x C �2xy// .�2/

C .r2/.1 � �2/.x � 1/. y � 1/
.xy � .r2 C r2s2x C �2xy///

which can be rewritten as

P. y/ D .1 � �2/ . y � 1/.r2 C r2s2y C �2y2/

. y2 � .r2 C r2s2y C �2y2//

C.r2/ . y � 1/.�2 C �2y/

. y2 � .r2 C r2s2y C �2y2//

C .r2/.1 � �2/. y � 1/2
. y2 � .r2 C r2s2y C �2y2//

;
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also by using (59) the above equation can be rewritten as follows:

P. y/ D .1 � �2/ . y � 1/.r2 C r2s2y C �2y2/

. y2 � .r2 C r2s2y C �2y2//

C.r2/ . y � 1/P. y/

. y2 � .r2 C r2s2y C �2y2//
C .r2/.1 � �2/. y � 1/2
. y2 � .r2 C r2s2y C �2y2//

:

Solving for P.y/; we get

P. y/

�
1 � . y � 1/r2

. y2 � M. y; y//

�
D . y � 1/.r2 C r2s2y C �2y2/.1 � �2/

. y2 � M. y; y//

C .1 � �2/r2. y � 1/2
. y2 � M. y; y//

;

After some tedious manipulations, we get

P. y/ D �2. y � 1/y �2 C �2y

. y � 1/. y C 1 � r2 � �2y/ � . y � 1/.1 � r2/

D �2 C �2y; (63)

which is identical to the single queue equation (7), when p0 D �2 D P0;0: Note
that (63) could have been obtained from (41) by substituting r1 D 0 in the latter.

5 Total System Occupancy

In this section we will find the total system occupancy, i.e., the number of packets
in both queues of the gateway. Let us denote this number by the random variable Q
and its distribution by qi; i D 0; 1; 2; : : :. By Property 12, we have

Q.x/ D P.x; x/

Then, from (37) when putting y D x, we get

Q.x/ D P.x; y/jxDy

D ˛1˛2

x2 � M.x; x/

 
.x � 1/.r2 C r2s2x C �2x2/.�1 C �1x/

.r2�1 � r2�1x/

C .x � 1/.r1 C r1s1x C �1x2/.�2 C �2x/

.r1�2 � r1�2x/
C .x � 1/2

!

:
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Now, the average gateway occupancy EŒQ� will be found using the fact

EŒQ� D dQ.x/

dx
jxD1:

After some heavy manipulation, involving applying de l’Hospital’s rule three times,
we get

EŒQ� D r1�2˛1
A˛2

C r2�1˛2
A˛1

C �1.r1 C �1/C �2.r2 C �2/

A
; (64)

where ˛1 D r2 � �1; ˛2 D r1 � �2 and A D ˛1 C ˛2.

6 Validation of Total System Occupancy

Here, we will validate the total system occupancy (64).

6.1 Zero Occupancy When Both LANs Are Inactive

If both LANs are externally inactive, no packets will enter the gateway and it will
then have no packets. Thus, if we substitute r1 D r2 D 0 into (64), we should get 0.
Indeed, if

r1 D r2 D 0;

then

�1 D �2 D 0:

Using, (64) to get

EŒQ�jr1Dr2D0 D 0.1C 0/C 0.1C 1/

1C 1
C 0.1 � 0/2 C 0.1 � 0/2

.1C 1/

D 0

as it should. so that we can conclude that (64) is a possible expression for the system
occupancy.
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6.2 Zero Occupancy When Both LANs Are Externally Inactive

If both LANs are externally inactive, no packets will enter the gateway and it will
then have no packets. Thus, if we substitute s1 D s2 D 0 into (64), we should get 0.
Indeed, if

s1 D s2 D 0;

then

�1 D �2 D 0:

Using, (64) to get

EŒQ�js1Ds2D0 D 0˛1

A˛2
C 0˛2

A˛1
C 0.r1 C �1/C 0.r2 C �2/

A

D 0;

as it should. so that we can conclude that (64) is a possible expression for the system
occupancy when s1 D s2 D 0:

6.3 Total Occupancy When Only LAN I Is Inactive

By putting r1 D 0 so that �1 D 0 by putting these values into (64), we get

EŒQ�jr1D0 D �2
.r2 C �2/

1C r2 � �2

D �2
.r2 C �2/

.r2 C �2/

D �2; (65)

which is the expected number of packets in queue II. This result confirm the well-
known occupancy of the single queue system when the service rate r1 D 1: If we do
the opposite, i.e., consider LAN II inactive, we would find

EŒQ�jr2D0 D �1:
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6.4 Total Occupancy When LAN I Is Externally Inactive

By putting s1 D 0; r1 ¤ 0 ! �1 D 0 by putting these values into (64), we get
.r2 � �1/; ˛2 D .r1 � �2/

EŒQ�js1D0 D r1�2˛1
A˛2

C 0C 0C �2.r2 C �2/

A

D �2�2

r1 � �2 (66)

which is the system occupancy when s1 D 0: This occupancy is correct since it is
identical to the occupancy of a geo=geo=1 single queueing system with arrival rate
�2 and service rate r1.

6.5 Total Occupancy When LAN II Is Externally Inactive

By putting s2 D 0; r2 ¤ 0 ! �2 D 0 by putting these values into (64), we get

EŒQ�js2D0 D �1.r1 C �1/C 0.r2 C �2/

r1 � �1 C r2 � 0 C 0.r2 � �1/2 C r2�1.r1 � 0/2
.r1 � �1 C r2 � 0/.r2 � �1/.r1 � 0/

D �1�1

r2 � �1 (67)

which is the system occupancy when s2 D 0. This occupancy is correct since it is
identical to the occupancy of a geo=geo=1 single queueing system with arrival rate
�1 and service rate r2.

7 Total Occupancy When LANs Are Identical

Here, we assume that the two LANs have the same operational parameters, i.e.,

r1 D r2 D r; s1 D s2 D s;

in (64) noting that then �1 D �2 D � . During the next two subsections, we will derive
an expression for the total system occupancy when the two LANs are identical. One
way directly from the system occupancy equation and the other way from the PGF
noting that the two expressions must be identical.
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7.1 Derivation from System Occupancy Equation

In this section we will find a special case from (64), and this will be done by
substituting

r1 D r2 D r; s1 D s2 D s;

in (64) noting that �1 D �2 D � . This gives

EŒQ�jr1Dr2Dr;s1Ds2Ds D �.r C �/C �.r C �/

r � � C r � � C r�.r � �/2 C r�.r � �/2
.r � � C r � �/.r � �/.r � �/

D �
1C �

r � � ; (68)

Also, we can arrive at the same result from the other form as follows.

EŒQ� D r1�2˛21 C r2�1˛22 C .�1ˇ1 C �2ˇ2/˛1˛2

˛1˛
2
2 C ˛21˛2

D �
1C �

r � � (69)

7.2 Derivation Directly from PGF

In Sect. 7.1 above, we derived the expected occupancy of the gateway by substituting

r1 D r2 D r; s1 D s2 D s; �1 D �2 D �;

in (64). In this Section, we will derive the same quantity but from the PGF directly.
Needless to say, we should end up with the same result. For Identical LANS, we
should assume that

r1 D r2 D r; (70)

s1 D s2 D s; (71)

�1 D �2 D �; (72)

when using these assumptions, Eq. (2) will take the form

P.x; y/ D 1

xy � M.x; y/
.. y � 1/.M.x; 0/C r�xy/P.x; 0/

C.x � 1/.M.0; y/C r�xy/P.0; y/C .x � 1/. y � 1/M.0; 0/P.0; 0// ;
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when y ! x, the above equation will take the form

P.x; x/ D 1

x2 � M.x; x/

�
.x � 1/.M.x; 0/C r�x2/P.x; 0/

C.x � 1/.M.0; x/C r�x2/P.0; x/C .x � 1/2M.0; 0/P.0; 0/� ; (73)

we note that by using (70)–(72)

P.x; 0/jr1Dr2;s1Ds2 D P.0; x/;

M.x; 0/jr1Dr2;s1Ds2 D M.0; x/:

So that Eq. (73) will be of the form

P.x; x/ D 1

x2 � M.x; x/

�
2.x � 1/.M.x; 0/C r�x2/P.x; 0/C .x � 1/2M.0; 0/P.0; 0/� :

(74)
Now by using (3), so that

M.x; 0/jr1Dr2Dr;s1Ds2Ds D r.r C rsx/; (75)

M.0; 0/jr1Dr2Dr;s1Ds2Ds D r2 (76)

M.x; x/jr1Dr2Dr;s1Ds2Ds D .r C rsx C �x2/2; (77)

so that after using (75)–(77) Eq. (74) will be

P.x; x/ D 1

x2 � M.x; x/

�
2.x � 1/.r.r C rsx/C r�x2/P.x; 0/C .x � 1/2r2P.0; 0/� ;

now by using (30), (32), the above equation will be of the form

P.x; x/

D 1

x2 � M.x; x/

 
2.x � 1/.r.r C rsx/C r�x2/.r � �/2.� C �x/

r.r� � r�x/
C .x � 1/2.r � �/2

!

D .r � �/2

 
2.x � 1/.r.r C rsx/C r�x2/.� C �x/

r.r� � r�x/ .x2 � M.x; x//
C .x � 1/2

.x2 � M.x; x//

!

:

Let us now assume that

Q.x/ D P.x; x/;



422 H. Nassar and E.-S. El-Hady

so that

Q.x/ D .r � �/2
 
2.x � 1/.r.r C rsx/C r�x2/.� C �x/

r.r� � r�x/ .x2 � M.x; x//
C .x � 1/2
.x2 � M.x; x//

!

;

from which we get that

d

dx
Q.x/ D .r � �/2

 

2
d

dx

.x � 1/.r.r C rsx/C r�x2/.� C �x/

.r� � r�x/ .x2 � M.x; x//
C d

dx

.x � 1/2
.x2 � M.x; x//

!

;

so that

EŒQ� D d

dx
Q.x/jxD1

D .r � �/2
 

2
d

dx

.x � 1/.r C rsx C �x2/.� C �x/

.r� � r�x/ .x2 � M.x; x//
jxD1 C d

dx

.x � 1/2
.x2 � M.x; x//

jxD1

!

:

After some heavy manipulations, we obtain

EŒQ� D .r � �/2
 

2
Œ2.r � �/2�Œ2.r C �/C 2�� � Œ2.r � �/Œ1 � .r C �/2 � 2� � 2r���

2Œ2.r � �/2�2

C Œ2.r � �/�Œ2�
2Œ2.r � �/�2

!

D �
1C �

r � � (78)

which is identical to (68), which is the total system occupancy when assuming full
identity on the given system.

7.2.1 Zero Identical System Occupancy When Both LANs Are Inactive

When both LANs are inactive, the gateway should be empty all the time. Let us now
put r D 0 so that � D 0 by using these values into (78), we get

EŒQ�jrD0 D 0
1C 1

1 � 0
D 0; (79)
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7.2.2 Zero Identical System Occupancy When Both LANs
Are Externally Inactive

When both LANs are externally inactive, the gateway should be empty all the time.
Let us now put s D 0 so that � D 0 into (78) to get

EŒQ�j�D0 D 0
1C �

r � � ;

D 0; (80)

8 Numerical Results and Discussions

In this section we will generate numerical results for the gateway model. Basically
we will calculate the average total gateway occupancy for different operating
parameters. It can be easily seen that the gateway operation is controlled by four
parameters: r1; s1; r2; s2. Once values for these parameters are assumed, the gateway
occupancy can be calculated using (64), and for the special case when the two LANs
are identical, r1 D s1 D s; r2 D s2 D s, using (64).

EŒQ� D �1.
˛2

r1A
C 1

˛1
/C �2.

˛1

r2A
C 1

˛2
/�.�1 � �2/2 1

A

where ˛1 D r2 � �1; ˛2 D r1 � �2; and A D ˛1 C ˛2.
When identical:

EŒQ� D �
1C �

r � � : (81)

Comparing this occupancy with that of two identical (i.e., arrival rate � and service
rate r) but non-interfering queues, we find that the former is greater. Specifically,
utilizing (81), we find that

EŒQ� D �
1C �

r � � >
2��

r � �
This makes perfect sense as the interference between the two queues of the gateway
should make departure from them more difficult, hence retaining more packets in
the gateway. The extra occupancy � added by the interference can be calculated as
follows:

� D �
1C �

r � � � 2��

r � �

D �2

r � � : (82)
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For our gateway, if we define the percentage occupancy interference factor, � , as
100 times the extra occupancy �, as given by (9), divided by the occupancy of two
identical but non-interfering queues, we get

� D 100
�2

r � � =
2��

r � �

D 50�

�
: (83)

This factor gives a measure of the impact of the interference between the two queues
on the expected gateway occupancy.

Being probabilities, the parameters r1; s1; r2; s2 can assume values between 0
and 1. However, due to practical considerations, there are some restrictions on those
values. We note, for example, that a high value of r1 will result in a high arrival rate
into Queue I, but at the same time a low service rate for Queue II. Thus, if r2 is also
given a high value, increasing the arrival rate of Queue II to the point that it exceeds
its service rate, the whole gateway system will be then unstable. Thus, for a stable
gateway, the parameters: r1; s1; r2; s2 should satisfy

r1s1 D �1 < 1 � r2; (84)

r2s2 D �2 < 1 � r1; (85)

For the general case, we can focus on the gateway from either side, studying only
one queue, since it is symmetrical. We arbitrarily focus here on the LAN I side, i.e.,
the queue to be studied is Queue I. Specifically, we will study the growth of Queue I
as its arrival rate from LAN I increases, for different values of r2 (which immediately
determines the service rate of Queue I.) We will keep s2 D 1 throughout this study
as this value has no impact on the performance of Queue I.

In the identical case, where r1 D r2 D r, s1 D s2 D r, �1 D �2 D � , we note the
following. Once r is chosen, � can be changed from 0 upwards, depending on the
value assigned to s. However, � cannot exceed r, i.e.,

� � r; (86)

since 0 � s � 1 and by definition we have � D rs. Furthermore, the arrival rate �
cannot exceed the service rate r, i.e.,

� < 1 � r (87)

to ensure stability. Then, to find the maximum value � can assume, regardless of the
value of r, we substitute in (87) for r by its minimum value which from (86) is � ,
getting

� < 1 � �; (88)
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Fig. 2 Gateway occupancy vs. arrival rate for identical LANs

which implies that

� < 0:5: (89)

Thus, in selecting values for r and s in the identical case, they should be such that
rs < 0:5.

To produce Fig. 2, a 7-column table was constructed, the first for � and the
remaining six for the expected occupancy at six different activity rates r (from 0:4 to
0:9). To produce the first column, instead of assuming r and then s to get the value
of � , the column is directly filled up with values for � ranging from 0 up to 0:49,
regularly spaced at 0.01. Then for each column (corresponding to a given r) in the
subsequent six columns, the expected gateway occupancy is calculated using (81).
Clearly, the value of s would be different for each entry of the column, depending
on the corresponding value of � . It should be noted that the six columns are not
equal in length. For example, the first of them (r D 0:4) stops exactly at the entry
� D 0:4, according to (87). The second column (r D 0:5) stops at � D 0:49,
according to (89). As r increases above 0:5, the corresponding columns decrease in
length according to (88). For example, the column corresponding to r D 0:6 stops
at the entry � D 0:39 and that corresponding to r D 0:7 stops at � D 0:29 and so on.
These varying lengths in the table are reflected in the length of the curves of Fig. 2.

We should point out that we focus in Fig. 2 on only LAN activity rates r D
0:4, for better visualization. For smaller values of r, e.g., r D 0:3 and lower, the
occupancy is very small and if plotted would not be noticeable. The reason why
the occupancy is small is that the arrival rate � D rs, being less than or equal to r,
is also small, while the service rate, being the complement of r, is large. Actually,
the occupancy starts building up at r D 0:4 and beyond, where the arrival rate
gets higher while the service rate gets lower. We notice from the graph that the total
gateway occupancy increases almost linearly with the arrival rate until the difference
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Fig. 3 Identical LANs: percentage occupancy interference factor vs. arrival rate

between the arrival rate � and the service rate r becomes small enough at which
point the occupancy increases suddenly dramatically. This is the typical behavior of
queues in general (see Woodward [5, Chap. 4].)

In Fig. 3, we turn the attention to the impact of the interference between the two
queues on the expected gateway occupancy, when the two LANs are still operated
with identical parameters. The figure shows the relationship between the percentage
interference factor s, calculated using (83), and the arrival rate � and reveals two
interesting observations. First, the relationship is nonlinear, which is understandable
given that the relationship between the expected occupancy of queues and their
arrival rates is generally nonlinear. Second, the interference factor has a maximum
value of 50. That is, the expected occupancy of the two interfering queues of the
gateway is at most 50 higher than the expected occupancy of two identical but non-
interfering queues. This limit is actually imposed by the maximum value of the
arrival rate � , which as explained earlier should be less than 0:5.

9 Conclusions

In this chapter, we have completed the study of a gateway linking two LANs,
solving a challenging two-variable functional equation defining the PGF of the joint
distribution of the gateway occupancy. The knowledge of the physical properties
of the gateway has to a great extent been utilized to obtain the solution, as it
is extremely difficult to solve such functional equations using only mathematical
tools. The solution is validated using both mathematical and physical techniques.
Finally, and for further validation of the solution, expectations are obtained for the
gateway occupancy. The results are verified by comparison with anticipated and
known results.
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Some Quantum Hermite–Hadamard-Type
Inequalities for General Convex Functions

Muhammad Aslam Noor and Themistocles M. Rassias

In Honor of Constantin Carathéodory

Abstract In this chapter, we derive some quantum Hermite–Hadamard type
inequalities for general convex functions. A new integral identity for q-differentiable
functions is derived, and with the help of this, we obtain some new Hermite–
Hadamard-type inequalities for q-differentiable convex functions.

1 Introduction

In recent years, quantum calculus or q-calculus has received special interest by many
researchers. However, we would like to point out that the study of quantum calculus
was started by Euler (1707–1783), who first introduced the q in tracks of Newton’s
infinite series. Basically, quantum calculus deals with q-analogues of mathematical
objects which can be recaptured as q ! 1. For some more details on quantum
calculus, see [3–8, 10, 11, 18, 22–24].

Tariboon et al. [23, 24] introduced and investigated the concepts of quantum
calculus on finite interval. For further information on quantum calculus on finite
intervals, see [17, 23, 24].

It is well known that the function f on the interval Œa; b� is a convex function, if
and only if, the function f satisfies the inequality
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f

�
a C b

2

�
� 1

b � a

bZ

a

f .x/dx � f .a/C f .b/

2
:

This inequality is called the Hermite–Hadamard inequality. For the applications
and other aspects of Hermite–Hadamard inequalities, see [? ]. We would like
to emphasize that the concept of convex functions has been extended in several
directions using some novel and innovative ideas. An important and useful class
of convex functions, which was introduced by Noor [12] relative to an arbitrary
function. This class of convex functions is nonconvex and is known as general
convex functions. Motivated and inspired by the recent activities in this field,
we derive some new quantum Hermite–Hadamard inequalities for general convex
functions. Our results represent refinement and significant improvement of the
known results.

2 Basic Concepts

We now recall some basic concepts of quantum calculus on finite intervals. These
results are mainly due to Tariboon et al. [23, 24].

Let J D Œa; b� 	 R be an interval and 0 < q < 1 be a constant. The q-derivative
of a function f W J ! R at a point x 2 J on Œa; b� is defined as follows.

Definition 1. Let f W J ! R be a continuous function and let x 2 J . Then
q-derivative of f on J at x is defined as

Dqf .x/ D f .x/ � f .qx C .1 � q/a/

.1 � q/.x � a/
; x ¤ a: (1)

A function f is q-differentiable on J if Dqf .x/ exists for all x 2 J .

Remark 1. Let f W J ! R is a continuous function. Let us define the second-
order q-derivative on interval J , which is denoted by D fqf , provided Dqf is q-
differentiable on J with D f 2q f D Dq.Dqf / W J ! R. Similarly, one can define
higher-order q-derivative on J , Dn

q W Jk ! R.

Let us elaborate above definitions with the help of an example.

Example 1. Let x 2 Œg.a/; b� and 0 < q < 1. Then, for x ¤ a, we have

Dqx2 D x2 � .qx C .1 � q/a/2

.1 � q/.x � a/

D .1C q/x2 � 2qax � .1 � q/x2

x � a

D .1C q/x C .1 � q/a:



Some Quantum Hermite–Hadamard-Type Inequalities for General Convex Functions 431

Definition 2. Let f W J ! R is a continuous function. A second-order q-derivative
on J , which is denoted as D2

q f , provided Dqf is q-differentiable on J is defined
as D2

q f D Dq.Dqf / W J ! R. Similarly higher-order q-derivative on J is defined
by Dn

q f DW Jk ! R.

Lemma 1. Let ˛ 2 R. Then

Dq.x � a/˛ D
�1 � q˛

1 � q

	
.x � a/˛�1:

Definition 3 ([23, 24]). Let f W I � R ! R be a continuous function. Then
q-integral on I is defined as

xZ

a

f .t/adqt D .1 � q/.x � a/
1X

nD0
qnf .qnx C .1 � qn/a/; (2)

for x 2 J .

Lemma 2. Let ˛ 2 R n f�1g. Then

xZ

a

.t � a/˛dqt D
� 1 � q

1 � q˛C1
	
.x � a/˛C1:

We now recall the concept of general convex sets and general convex functions,
respectively, which are mainly due to Noor [12].

Definition 4 ([12]). The set Kg in a real Hilbert space H is said to be general
convex with respect to an arbitrary function g W H ! H such that

.1 � t/g.u/C tv 2 Kg; 8u; v 2 H W g.u/; v 2 Kg; t 2 Œ0; 1�:

If g D I, the identity function, then, we have classical convex set.
Clearly every convex set is a general convex set, but the converse is not true [12].

Definition 5 ([12]). A function f W Kg ! H is said to be general convex, if there
exists an arbitrary function g W H ! H such that

f ..1 � t/g.u/C tv/ � .1 � t/f .g.u//C tf .v/;

8u; v 2 H W g.u/; v 2 Kg; t 2 Œ0; 1�: (3)

Definition 6. The function f W Kg ! H is said to be general quasi convex, if there
exists an arbitrary function g W H ! H such that

f ..1 � t/g.u/C tv/ � maxf f .g.u//; f .v/g;
8u; v 2 H W g.u/; v 2 Kg; t 2 Œ0; 1�: (4)
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Definition 7. A function f on the general set Kg is said to be general log-convex
function, if there exists an arbitrary function g W H ! H, such that

f ..1 � t/g.u/C tv/ � f 1�t.g.u//f t.v/;

8u; v 2 H W g.u/; v 2 Kg; t 2 Œ0; 1�:

Noor [12] has shown that u 2 H W g.u/ 2 Kg is a minimum of the differentiable
general convex function f , if and only if u 2 H W g.u/ 2 Kg satisfies

hf 0.g.u//; v � g.u/i � 0; 8v 2 K;

where f 0 is the Frechet derivative of f . This above inequality is called the general
variational inequality which was introduced and studied by Noor [12] in 1988. For
applications, numerical methods, sensitivity analysis, and other aspects of general
variational inequalities, see [1, 2, 9, 13, 15, 16, 19–21] and the references therein.

3 Quantum Hermite–Hadamard Inequalities

In this section, we establish some quantum analogues of Hermite–Hadamard-type
inequalities for general convexity, essentially using the techniques of Noor et al.
[17] and Tariboon et al. [22–24]. We include all the details to convey the main idea
and techniques.

Theorem 1. Let f W J D Œg.a/; b� ! R be general convex continuous function on
J with respect to an arbitrary function g W H ! H. Then for 0 < q < 1, we have

f

�
g.a/C b

2

�
� 1

b � g.a/

bZ

g.a/

f .t/dqt � qf .g.a//C f .b/

1C q
: (5)

Proof. Let f be a general convex function on Œg.a/; b�. Then by taking q-integration
with respect to t on Œ0; 1�, we have

f

�
g.a/C b

2

�
D

1Z

0

f

�
.1 � t/g.a/C tb C tg.a/C .1 � t/b

2

�
dqt

� 1

2

2

4
1Z

0

f ..1 � t/g.a/C tb/dqt C
1Z

0

f .tg.a/C .1 � t/b/dqt

3

5
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D 1

b � g.a/

bZ

g.a/

f .t/dqt D
1Z

0

f ..1 � t/g.a/C tb/dqt

� f .g.a//

1Z

0

.1 � t/dqt C f .b/

1Z

0

t dqt D qf .g.a//C f .b/

1C q
:

This completes the proof. �

Note that when g D I, the identity function, our result coincides with Theo-
rem 3.2 [24].

Theorem 2. Let f ;w W I D Œg.a/; b� ! R be general convex functions, then

1

b � g.a/

bZ

g.a/

f .g.x//w.g.x//dqx

�
�

q.1C q2/

.1C q/.1C q C q2/

�
f .g.a//w.g.a//C

�
q2

.1C q/.1C q C q2/

�
N.g.a/; b/

C
�

1

1C q C q2

�
f .b/w.b/;

where

N.g.a/; b/ D f .g.a//w.b/C f .b/w.g.a//:

Proof. Since f and w are general convex functions, then

f ..1 � t/g.a/C tb/ � tf .g.a//C .1 � t/f .b/;

w..1 � t/g.a/C tb/ � tw.g.a//C .1 � t/w.b/:

Multiplying above inequalities and taking q-integral of both sides of above inequal-
ity with respect to t on Œ0; 1�, we have

1Z

0

f ..1 � t/g.a/C tb/w..1 � t/g.a/C tb/dqt

� f .g.a//w.g.a//

1Z

0

.1 � t/2dqt C f f .g.a//w.b/C f .b/w.g.a//g
1Z

0

t.1 � t/dqt

Cf .b/w.b/

1Z

0

t2dqt:
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This implies that

1

b � g.a/

bZ

g.a/

f .g.x//w.g.x//dqx

�



q.1C q2/

.1C q/.1C q C q2/

�
f .g.a//w.g.a//

C



q2

.1C q/.1C q C q2/

�
f f .g.a//w.b/C f .b/w.g.a//g

C



1

1C q C q2

�
f .b/w.b/:

This completes the proof. �

Theorem 3. Let f and w be general convex functions. Then

2f

�
g.a/C b

2

�
w

�
g.a/C b

2

�
� 2q2M.g.a/; b/C .1C 2q C q3/N.g.a/; b/

2.1C q/.1C q C q2/

� 1

.b � g.a//

bZ

g.a/

f .g.x//w.g.x//dqx;

where M.g.a/; b/ D f .g.a//w.g.a// C f .b/w.b/ and N.g.a/; b/ D f .g.a//w.b/ C
f .b/w.g.a//.

Proof. Since f and w are general convex function, so

f

�
g.a/C b

2

�
w

�
g.a/C b

2

�

� 1

4

"

f ..1 � t/g.a/C tb/w..1 � t/g.a/C tb/

C f .tg.a/C .1 � t/b/w.tg.a/C .1 � t/b/

C Œ f .g.a//w.g.a//C f .b/w.b/�f2t.1 � t/g

C Œ f .g.a//w.b/C f .b/w.g.a//�ft2 C .1 � t/2g
#

:
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Applying q-integration with respect to t on Œ0; 1�, we have

f

�
g.a/C b

2

�
w

�
g.a/C b

2

�

� 1

4

" 1Z

0

Œ f ..1 � t/g.a/C tb/w..1 � t/g.a/C tb/

C f .tg.a/C .1 � t/b/w.tg.a/C .1 � t/b/� dqt

C Œ f .g.a//w.g.a//C f .b/w.b/�

1Z

0

f2t.1 � t/gdqt

C Œ f .g.a//w.b/C f .b/w.g.a//�

1Z

0

ft2 C .1 � t/2gdqt

#

D 1

2.b � g.a//

bZ

g.a/

f .g.x//w.g.x//dqx

C 1

4



2q2f f .g.a//w.g.a//C f .b/w.b/g

.1C q/.1C q C q2/

C .1C 2q C q3/Œ f .g.a//w.b/C f .b/w.g.a//�

.1C q/.1C q C q2/

�
:

This completes the proof. �

Using the technique of Noor et al. [17], we derive the following auxiliary result
which plays an important role in our coming results.

Lemma 3. Let f W I D Œg.a/; b� � R ! R be a q-differentiable function on the
interior Iı of I with Dq be continuous and integrable on I, where 0 < q < 1, then

1

b � g.a/

bZ

g.a/

f .g.x//dqx � qf .g.a//C f .b/

1C q

D q.b � g.a//

1C q

1Z

0

.1 � .1C q/t/Dqf ..1 � t/g.a/C t.b// dqt:

Theorem 4. Let f W I D Œg.a/; b� � R ! R be a q-differentiable function on the
interior Iı of I with Dq be continuous and integrable on I, where 0 < q < 1. If
jDqf jr, r � 1 is general convex function, then
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ˇ̌
ˇ
ˇ̌

1

b � g.a/

bZ

g.a/

f .g.x//dqx � qf .g.a//C f .b/

1C q

ˇ̌
ˇ
ˇ̌

� q.b � g.a//

1C q

 
q.2C q C q3/

.1C q/3

!1� 1
r

�
"

q.1C 4q C q2/

.1C q C q2/.1C q/3
jDqf .g.a//jr C q.1C 3q2 C 2q3/

.1C q C q2/.1C q/3
jDqf .b/jr

# 1
r

:

Proof. Using Lemma 3 and power mean inequality, we have
ˇ
ˇ̌
ˇ̌

1

b � g.a/

bZ

g.a/

f .g.x//dqx � qf .g.a//C f .b/

1C q

ˇ
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ
q.b � g.a//

1C q

1Z

0

.1 � .1C q/t/Dqf ..1 � t/g.a/C t.b// dqt

ˇ̌
ˇ̌
ˇ

� q.b � g.a//

1C q

 1Z

0

j1 � .1C q/tj dqt

!1� 1
r

�
 1Z

0

j1 � .1C q/tjjDqf ..1 � t/g.a/C t.b//jr dqt

! 1
r

� q.b � g.a//

1C q

 
q.2C q C q3/

.1C q/3

!1� 1
r

�
 1Z

0

j1 � .1C q/tjŒ.1 � t/jDqf .g.a//jr C tjDqf .b/jr� dqt

! 1
r

D q.b � g.a//

1C q

 
q.2C q C q3/

.1C q/3

!1� 1
r

�
"

q.1C 4q C q2/

.1C q C q2/.1C q/3
jDqf .g.a//jr C q.1C 3q2 C 2q3/

.1C q C q2/.1C q/3
jDqf .b/jr

# 1
r

:

This completes the proof. �
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Theorem 5. Let f W I D Œg.a/; b� � R ! R be a q-differentiable function on the
interior Iı of I with Dq be continuous and integrable on I, where 0 < q < 1. If
jDqf jr is quasi general convex function where p; r > 1, 1p C 1

r D 1, then
ˇ̌
ˇ̌
ˇ
qf .a/C f .b/

1C q
� 1

b � a

bZ

a

f .g.x//dqx

ˇ̌
ˇ̌
ˇ

� q.b � a/

1C q

 
q.2C q C q3/

.1C q/3

! 1
p

�
 

q.2C q C q3/

.1C q/3

h
supfjDqf .a/j; jDqf .b/jg

i!
1
r

:

Proof. Using Lemma 3, Holder’s inequality, and the fact that jDqf jr is quasi general
convex function, we have

ˇ̌
ˇ̌
ˇ
qf .a/C f .b/

1C q
� 1

b � a

bZ

a

f .g.x//dqx

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
q.b � a/

1C q

1Z

0

.1 � .1C q/t/aDqf ..1 � t/g.a/C t.b//dqt

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ
q.b � a/

1C q

1Z

0

.1 � .1C q/t/1� 1
r .1 � .1C q/t/

1
r aDqf ..1 � t/g.a/C t.b//dqt

ˇ̌
ˇ̌
ˇ

� q.b � a/

1C q

 1Z

0

j1 � .1C q/tjdqt

! 1
p

�
 1Z

0

j1 � .1C q/tjjaDqf ..1 � t/g.a/C t.b//jrdqt

! 1
r

D q.b � a/

1C q

 
q.2C q C q3/

.1C q/3

! 1
p

�
 

q.2C q C q3/

.1C q/3

h
supfjDqf .a/j; jDqf .b/jg

i
! 1

r

:

This completes the proof. �
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Theorem 6. Let f W I D Œg.a/; b� � R ! R be a q-differentiable function on the
interior Iı of I with Dq be continuous and integrable on I where 0 < q < 1. If If
jDqf jr is quasi general convex function where r > 1, then

ˇ̌
ˇ̌
ˇ
qf .a/C f .b/

1C q
� 1

b � a

bZ

a

f .g.x//dqx

ˇ̌
ˇ̌
ˇ

� q2.b � a/.2C q C q3/

.1C q/4

 

supfjDqf .a/j; jDqf .b/jg
! 1

r

:

Proof. Using Lemma 3, power mean inequality, and the fact that jDqf jr is quasi
general convex function, we have

ˇ̌
ˇ
ˇ̌
qf .a/C f .b/

1C q
� 1

b � a

bZ

a

f .g.x//dqx

ˇ̌
ˇ
ˇ̌

D
ˇ̌
ˇ̌
ˇ
q.b � a/

1C q

1Z

0

.1 � .1C q/t/aDqf ..1 � t/g.a/C t.b//dqt

ˇ̌
ˇ̌
ˇ

� q.b � a/

1C q

 1Z

0

j1 � .1C q/tjdqt

!1� 1
r

�
 1Z

0

j1 � .1C q/tjjaDqf ..1 � t/g.a/C t.b//jrdqt

! 1
r

D q2.b � a/.2C q C q3/

.1C q/4

 

supfjDqf .a/j; jDqf .b/jg
! 1

r

:

This completes the proof. �

4 Quantum Ostrowski-Type Inequalities

In this section, we derive some Ostrowski-type inequalities for q-differentiable
convex functions. Using the technique of Noor et al. [18], one can prove following
auxiliary result. This result plays significant role in our coming result.

Lemma 4. Let f W I D Œg.a/; b� � R ! R be a q-differentiable function on Iı (the
interior of I) with Dq be continuous and integrable on I where 0 < q < 1. Then
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f .x/� 1

b � g.a/

bZ

g.a/

f .u/dqu

D q.x � g.a//2

b � g.a/

1Z

0

tDqf .tx C .1� t/g.a//0dqt C q.b � x/2

b � g.a/

1Z

0

tDqf .tx C .1� t/b/0dqt

Theorem 7. Let f W I D Œg.a/; b� � R ! R be a q-differentiable function on Iı
(the interior of I) with Dq be continuous and integrable on I where 0 < q < 1. If
jDqf j is general convex function and jDqf .x/j � M, then

ˇ
ˇ̌
ˇ̌ f .x/ � 1

b � g.a/

bZ

g.a/

f .u/dqu

ˇ
ˇ̌
ˇ̌ � qMŒ.x � g.a//2 C .b � x/2�

.b � g.a//.1C q/
:

Proof. Using Lemma 4 and the fact that jDqf j is general convex function, we have

ˇ
ˇ̌
ˇ
ˇ
f .x/� 1

b � g.a/

bZ

g.a/

f .u/dqu

ˇ
ˇ̌
ˇ
ˇ

D
ˇ̌
ˇ̌
ˇ
q.x � g.a//2

b � g.a/

1Z

0

tDqf .tx C .1� t/g.a//0dqt C q.b � x/2

b � g.a/

1Z

0

tDqf .tx C .1� t/b/0dqt

ˇ̌
ˇ̌
ˇ

� q.x � g.a//2

b � g.a/

1Z

0

tjDqf .tx C .1� t/g.a//j0dqt C q.b � x/2

b � g.a/

1Z

0

tjxDqf .tx C .1� t/b/j0dqt

� q.x � g.a//2

b � g.a/

1Z

0

tŒtjDqf .x/j C .1� t/jDqf .g.a//j�0dqt

C q.b � x/2

b � g.a/

1Z

0

tŒtjxDqf .x/j C .1� t/jxDqf .b/j�0dqt

� qMŒ.x � g.a//2 C .b � x/2�

.b � g.a//.1C q/
:

This completes the proof. �

Theorem 8. Let f W I D Œg.a/; b� � R ! R be a q-differentiable function on Iı
(the interior of I) with Dq be continuous and integrable on I where 0 < q < 1. If
jDqf jr is general convex function and jDqf .x/j � M, then for p; r > 1, 1p C 1

r D 1,
we have

ˇ̌
ˇ̌
ˇ
f .x/ � 1

b � g.a/

bZ

g.a/

f .u/dqu

ˇ̌
ˇ̌
ˇ

� qMŒ.x � g.a//2 C .b � x/2�

.b � g.a//

� 1 � q

1 � qpC1
	 1

p
:
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Proof. Using Lemma 4, Holder’s inequality, and the fact that jDqf jr is general
convex function, we have

ˇ
ˇ̌
ˇ
ˇ
f .x/� 1

b � g.a/

bZ

g.a/

f .u/dqu

ˇ
ˇ̌
ˇ
ˇ

D
ˇ̌
ˇ̌
ˇ
q.x � g.a//2

b � g.a/

1Z

0

tDqf .tx C .1� t/g.a//0dqt C q.b � x/2

b � g.a/

1Z

0

tDqf .tx C .1� t/b/0dqt

ˇ̌
ˇ̌
ˇ

� q.x � g.a//2

b � g.a/

� 1Z

0

tp
0dqt

	 1
p
� 1Z

0

jDqf .tx C .1 � t/g.a//jr0dqt
	 1

r

Cq.b � x/2

b � g.a/

� 1Z

0

tp
0dqt

	 1
p
� 1Z

0

jxDqf .tx C .1 � t/b/jr0dqt
	 1

r

� q.x � g.a//2

b � g.a/

� 1 � q

1 � qpC1
	 1

p
� 1Z

0

ŒtjDqf .x/jr C .1 � t/jDqf .g.a//jr�0dqt
	 1

r

Cq.b � x/2

b � g.a/

� 1 � q

1 � qpC1
	 1

p
� 1Z

0

ŒtjDqf .x/jr C .1 � t/jDqf .b/jr�0dqt
	 1

r

� qMŒ.x � g.a//2 C .b � x/2�

.b � g.a//

� 1 � q

1 � qpC1
	 1

p
:

This completes the proof. �
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General Harmonic Convex Functions
and Integral Inequalities
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and Sabah Iftikhar

In Honor of Constantin Carathéodory

Abstract In this chapter, we introduce the notion of general harmonic convex
functions using an arbitrary auxiliary function g W R ! R. We obtain several new
integral inequalities for general harmonic convex functions. Special cases which can
be derived from our main results are also discussed.

1 Introduction

In recent years, theory of convexity has experienced significant development due
to its applications for solving a large number of problems which arise in various
branches of pure and applied sciences. Consequently, the classical concepts of
convex sets and convex functions have been extended and general in various
directions using novel and innovative ideas; see [1, 2, 4, 7, 8, 10? –14]. Iscan [4]
introduced and investigated the notion of harmonic convex functions. For some
recent studies on harmonic convex functions and on its variant forms, see [4–6, 10–
12, 14? ]. An important fact which makes theory of convexity more attractive to
researchers is its close relationship with theory of inequalities. Many inequalities
known in the literature are proved for convex functions; see [3]. Iscan [4] derived
Hermite–Hadamard-type inequality for the class of harmonic convex functions,
which reads as:

M.A. Noor (�) • K.I. Noor • M.U. Awan • S. Iftikhar
COMSATS Institute of Information and Technology, Park Road, Islamabad, Pakistan
e-mail: noormaslam@gmail.com; khalidanoor@hotmail.com; awan.uzair@gmail.com;
sabah.iftikhar22@gmail.com

© Springer International Publishing Switzerland 2016
P.M. Pardalos, T.M. Rassias (eds.), Contributions in Mathematics and Engineering,
DOI 10.1007/978-3-319-31317-7_22

443

mailto:noormaslam@gmail.com
mailto:khalidanoor@hotmail.com
mailto:awan.uzair@gmail.com
mailto:sabah.iftikhar22@gmail.com


444 M.A. Noor et al.

Let f W Ih � Rnf0g ! R be a harmonic convex function with a < b and a; b 2 Ih,
then

f

�
2ab

a C b

�
� ab

b � a

bZ

a

f .x/dx � f .a/C f .b/

2
: (1)

Recently, much attention has been given to derive variant forms of Hermite–
Hadamard-type inequalities; see [3].

Motivated by the recent research going on in this field, we introduce and study a
new class of harmonic convex functions, which is called general harmonic convex
functions. We derive several new Hermite–Hadamard-type integral inequalities for
general harmonic convex functions. Several special cases which can be derived from
or main results are also discussed.

2 Preliminaries

In this section, we discuss some preliminary concepts which will be helpful in
obtaining our main results.

Definition 1. A set Hg � R n f0g is said to be general harmonic convex, if there
exists an arbitrary function g W R ! R, such that

g.x/y

tg.x/C .1 � t/y
2 Hg; 8x; y 2 Hg; t 2 Œ0; 1�: (2)

Note that if g D I where I is the identity function, then we have the definition of
classical harmonic convex set; see [13].

Definition 2. A function f W Hg ! R is said to be general harmonic convex, if
there exists an arbitrary function g W R ! R, such that

f

�
g.x/y

tg.x/C .1 � t/y

�
� .1� t/f .g.x//C tf . y/; 8g.x/; y 2 Hg; t 2 Œ0; 1�: (3)

If g D I where I is the identity function, then we have the definition of classical
harmonic convex function; see [4].

Definition 3. A function f W H ! RC is said to be general log-harmonic convex,
if there exists an arbitrary function g W R ! R, such that

f

�
g.x/y

tg.x/C .1 � t/y

�
� f 1�t.g.x//f t. y/; 8g.x/; y 2 Hg; t 2 Œ0; 1�: (4)
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If g D I where I is the identity function, then we have the definition of classical
harmonic log-convex function; see [9].

Definition 4. A function f W H ! RC is said to be general quasi-harmonic
convex, if there exists an arbitrary function g W R ! R, such that

f

�
g.x/y

tg.x/C .1 � t/y

�
� supf f .g.x//; f . y/g; 8g.x/; y 2 Hg; t 2 Œ0; 1�: (5)

If g D I where I is the identity function, then we have the definition of classical
quasi-harmonic convex function; see [14].

3 Integral Inequalities

In this section, we derive Hermite–Hadamard-type inequalities for general harmonic
convex functions.

From now onward, we take Ih D Œg.a/; b�, unless otherwise specified.

Theorem 1. Let f W Ih D Œg.a/; b� � R n f0g �! R be general harmonic convex
function. If f 2 LŒg.a/; b�; then

f

�
2g.a/b

g.a/C b

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx � f .g.a//C f .b/

2
: (6)

Proof. Let f be general harmonic convex function, we have

f

�
2g.a/b

g.a/C b

�
�1
2



f

�
g.a/b

tg.a/C .1 � t/b

�
C f

�
g.a/b

.1 � t/g.a/C tb

��

D1

2


 Z 1

0

f

�
g.a/b

tg.a/C .1 � t/b

�
dt C

Z 1

0

f

�
g.a/b

.1 � t/g.a/C tb

�
dt

�

D g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

D
Z 1

0

f

�
g.a/b

tg.a/C .1 � t/b

�
dt

�
Z 1

0

�
.1 � t/f .g.a//C tf .b/

�
dt

D



f .g.a//
Z 1

0

.1 � t/dt C f .b/
Z 1

0

tdt

�

D f .g.a//C f .b/

2
:

This completes the proof. ut
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Note that if g D I the identity function, then Theorem 1 reduces to (1).

Theorem 2. Let f W Ih D Œg.a/; b� � R n f0g ! R be general harmonic convex
function, then

f

�
2g.a/b

g.a/C b

�
� 1

2



f

�
4g.a/b

g.a/C 3b

�
C f

�
4g.a/b

3g.a/C b

��

� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx � 1

2



f

�
2g.a/b

g.a/C b

�
C f .g.a//C f .b/

2

�

� 1

2
Œ f .g.a//C f .b/�:

Proof. By applying the Hermite–Hadamard inequality (6) on each of the interval�
g.a/; 2g.a/b

g.a/Cb

�
and

�
2g.a/b
g.a/Cb ; b

�
, we get

f

�
4g.a/b

g.a/C 3b

�
� 2g.a/b

b � g.a/

Z 2g.a/b
g.a/Cb

g.a/

f .x/

x2
dx � 1

2



f .g.a//Cf

�
2g.a/b

g.a/C b

��
; (7)

and

f

�
4g.a/b

3g.a/C b

�
� 2g.a/b

b � g.a/

Z b

2g.a/b
g.a/Cb

f .x/

x2
dx � 1

2



f

�
2g.a/b

g.a/C b

�
C f .b/

�
: (8)

Summing up (7) and (8), we have

f

�
2g.a/b

g.a/C b

�

� 1

2



f

�
4g.a/b

g.a/C 3b

�
C f

�
4g.a/b

3g.a/C b

��

� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

� 1

2



f

�
2g.a/b

g.a/C b

�
C f .g.a//C f .b/

2

�

� 1

2
Œ f .g.a//C f .b/�:

This completes the proof. ut
Now we derive an auxiliary result which will be helpful in our coming result.

Lemma 1. Let f W Ih � R n f0g �! R be a differentiable function on the interior I0h
of Ih. If f 0 2 LŒg.a/; b� and � 2 Œ0; 1�, then
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.1 � �/f
�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

D g.a/b.b � g.a//

2


 Z 1
2

0

2t � �
A2t

f 0
�

g.a/b

At

�
dt C

Z 1

1
2

2t � 2C �

A2t
f 0
�

g.a/b

At

�
dt

�
;

where

At D tg.a/C .1 � t/b:

Proof. Let

I D g.a/b.b � g.a//

2


 Z 1
2

0

2t � �
A2t

f 0
�

g.a/b

At

�
dt C

Z 1

1
2

2t � 2C �

A2t
f 0
�

g.a/b

At

�
dt

�

D g.a/b.b � g.a//

2

Z 1
2

0

2t � �
A2t

f 0
�

g.a/b

At

�
dt

C g.a/b.b � g.a//

2

Z 1

1
2

2t � 2C �

A2t
f 0
�

g.a/b

At

�
dt

D I1 C I2:

Now

I1 D g.a/b.b � g.a//

2

Z 1
2

0

2t � �
A2t

f 0
�

g.a/b

At

�
dt

D 1

2

ˇ̌
ˇ̌.2t � �/f

�
g.a/b

At

�ˇ̌
ˇ̌
1
2

0

�
Z 1

2

0

f

�
g.a/b

At

�
dt

D .1 � �/
2

f

�
2g.a/b

g.a/C b

�
C �

2
f .g.a// � g.a/b

b � g.a/

Z 2g.a/b
g.a/Cb

g.a/

f .x/

x2
dx:

Similarly, we can show that

I2 D g.a/b.b � g.a//

2

Z 1

1
2

2t � 2C �

A2t
f 0
�

g.a/b

At

�
dt

D 1

2

ˇ̌
ˇ̌.2t � 2C �/f

�
g.a/b

At

�ˇ̌
ˇ̌
1

1
2

�
Z 1

1
2

f

�
g.a/b

At

�
dt

D �

2
f .b/C .1 � �/

2
f

�
2g.a/b

g.a/C b

�
� g.a/b

b � g.a/

Z b

2g.a/b
g.a/Cb

f .x/

x2
dx:
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Thus

I1 C I2

D .1 � �/
2

f

�
2g.a/b

g.a/C b

�
C �

2
f .g.a// � g.a/b

b � g.a/

Z 2g.a/b
g.a/Cb

g.a/

f .x/

x2
dx

C�

2
f .b/C .1 � �/

2
f

�
2g.a/b

g.a/C b

�
� g.a/b

b � g.a/

Z b

2g.a/b
g.a/Cb

f .x/

x2
dx

D .1 � �/f
�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx;

which is the required result. ut
We now discuss some special cases which can be obtained from Lemma 1.

If � D 0; 1; 1
2

and 1
3
, then Lemma 1 reduces to the following results, respectively.

Lemma 2. Let f W Ih � R n f0g �! R be a differentiable function on the interior I0h
of Ih. If f 0 2 LŒg.a/; b�, then

f

�
2g.a/b

g.a/C b

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx D g.a/b.b � g.a//

Z 1

0

�.t/

A2t
f 0
�

g.a/b

At

�
dt;

where

�.t/ D
�

t; t 2 Œ0; 1
2
/

t � 1; t 2 Œ 1
2
; 1�:

Lemma 3. Let f W Ih � R n f0g �! R be a differentiable function on the interior I0h
of Ih. If f 0 2 LŒg.a/; b�, then

f .g.a//C f .b/

2
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx D g.a/b.b � g.a//

2

Z 1

0

2t � 1
A2t

f 0
�

g.a/b

At

�
dt:

Lemma 4. Let f W Ih � R n f0g �! R be a differentiable function on the interior I0h
of Ih. If f 0 2 LŒg.a/; b�, then

1

4



f .g.a//C 2f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

D g.a/b.b � g.a//
Z 1

0

�.t/

A2t
f 0
�

g.a/b

At

�
dt;

where

�.t/ D
�

t � 1
4
; t 2 Œ0; 1

2
/

t � 3
4
; t 2 Œ 1

2
; 1�:
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Lemma 5. Let f W Ih � R n f0g �! R be a differentiable function on the interior I0h
of Ih. If f 0 2 LŒg.a/; b�, then

1

6



f .g.a//C 4f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

D g.a/b.b � g.a//
Z 1

2

0

�.t/

A2t
f 0
�

g.a/b

At

�
dt;

where

�.t/ D
�

t � 1
6
; t 2 Œ0; 1

2
/

t � 5
6
; t 2 Œ 1

2
; 1�:

Using Lemma 1, we now derive some new inequalities for general harmonic convex
functions.

Theorem 3. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
q � 1 and � 2 Œ0; 1�, then

ˇ
ˇ̌
ˇ.1 � �/f

�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//

2

�
.�1.�I g.a/; b//1�

1
q .�3.�I g.a/; b/j f 0.g.a//jq

C�5.�I g.a/; b/j f 0.b/jq/ 1q

C.�2.�I b; g.a///1�
1
q .�6.�I b; g.a//j f 0.g.a//jq C �4.�I b; g.a//j f 0.b/jq/ 1q �;

where

�1.�I g.a/; b/ D
Z 1

2

0

j2t � �j
A2t

dt;

�2.�I b; g.a// D
Z 1

1
2

j2t � 2C �j
A2t

dt;

�3.�I g.a/; b/ D
Z 1

2

0

j2t � �j.1 � t/

A2t
dt;

�4.�I b; g.a// D
Z 1

1
2

j2t � 2C �jt
A2t

dt;
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�5.�I g.a/; b/ D
Z 1

2

0

j2t � �jt
A2t

dt;

�6.�I b; g.a// D
Z 1

1
2

j2t � 2C �j.1 � t/

A2t
dt:

Proof. Using Lemma 1 and the power mean inequality, we have

ˇ̌
ˇ̌.1� �/f

�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ̌

� g.a/b.b � g.a//

2


 Z 1
2

0

j2t � �j
A2t

ˇ
ˇ̌
ˇ f 0

�
g.a/b

At

�ˇˇ̌
ˇdt C

Z 1

1
2

j2t � 2C �j
A2t

ˇ
ˇ̌
ˇ f 0

�
g.a/b

At

�ˇˇ̌
ˇdt

�

� g.a/b.b � g.a//

2


�Z 1
2

0

j2t � �j
A2t

dt

�1� 1
q
�Z 1

2

0

j2t � �j
A2t

ˇ
ˇ̌
ˇ f 0

�
g.a/b

At

�ˇˇ̌
ˇ

q

dt

� 1
q

C
�Z 1

1
2

j2t � 2C �j
A2t

dt

�1� 1
q
�Z 1

1
2

j2t � 2C �j
A2t

ˇ̌
ˇ
ˇ f 0

�
g.a/b

At

�ˇ̌
ˇ
ˇ

q

dt

� 1
q
�

� g.a/b.b � g.a//

2


�Z 1
2

0

j2t � �j
A2t

dt

�1� 1
q
�Z 1

2

0

j2t � �j�.1� t/j f 0.g.a//jq C tj f 0.b/jq�
A2t

dt

� 1
q

C
�Z 1

1
2

j2t � 2C �j
A2t

dt

�1� 1
q
�Z 1

1
2

j2t � 2C �j�.1� t/j f 0.g.a//jq C tj f 0.b/jq�
A2t

dt

� 1
q
�

D g.a/b.b � g.a//

2


�Z 1
2

0

j2t � �j
A2t

dt

�1� 1
q
�Z 1

2

0

j2t � �j.1� t/

A2t
j f 0.g.a//jqdt

C
Z 1

2

0

j2t � �jt
A2t

j f 0.b/jqdt

� 1
q C

�Z 1

1
2

j2t � 2C �j
A2t

dt

�1� 1
q

�Z 1

1
2

j2t � 2C �j.1� t/

A2t
j f 0.g.a//jqdt C

Z 1

1
2

j2t � 2C �jt
A2t

j f 0.b/jqdt

� 1
q
�

D g.a/b.b � g.a//

2

�
.�1.�I g.a/; b//1�

1
q .�3.�I g.a/; b/j f 0.g.a//jq C �5.�I g.a/; b/j f 0.b/jq/ 1q

C.�2.�I b; g.a///1�
1
q .�6.�I b; g.a//j f 0.g.a//jq C �4.�I b; g.a//j f 0.b/jq/ 1q �;

which is the required result. ut
Corollary 1. Under the conditions of Theorem 3, if q D 1, then, we have

ˇ̌
ˇ̌.1 � �/f

�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ̌

� g.a/b.b � g.a//

2
Œ�3.�I g.a/; b/j f 0.g.a//j C �5.�I g.a/; b/j f 0.b/j�

CŒ�6.�I b; g.a//j f 0.g.a//j C �4.�I b; g.a//j f 0.b/j�;
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where

�3.�I g.a/; b/ D
Z 1

2

0

j2t � �j.1 � t/

A2t
dt;

�4.�I b; g.a// D
Z 1

1
2

j2t � 2C �jt
A2t

dt;

�5.�I g.a/; b/ D
Z 1

2

0

j2t � �jt
A2t

dt;

�6.�I b; g.a// D
Z 1

1
2

j2t � 2C �j.1 � t/

A2t
dt:

If � D 0, then Theorem 3 reduces to the following result.

Corollary 2. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
q � 1, then
ˇ
ˇ̌
ˇ f

�
g.a/C b

2

�
� g.a/b

.b � g.a//

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a// � �.�1.0I g.a/; b//1�
1
q .�3.0I g.a/; b/j f 0.g.a//jq

C�5.0I g.a/; b/j f 0.b/jq/ 1q

C.�2.0I b; g.a///1�
1
q .�6.0I b; g.a//j f 0.g.a//jq C �4.0I b; g.a//j f 0.b/jq/ 1q �;

where

�1.0I g.a/; b/ D
Z 1

2

0

t

A2t
dt

D �1
.g.a/ � b/.g.a/C b/

C 1

.g.a/ � b/2
ln

�
g.a/C b

2b

�
;

�2.0I b; g.a// D
Z 1

1
2

jt � 1j
A2t

dt

D 1

.g.a/ � b/.g.a/C b/
C 1

.g.a/ � b/2
ln

�
g.a/C b

2g.a/

�
;

�3.0I g.a/; b/ D
Z 1

2

0

t.1 � t/

A2t
dt

D �.3g.a/C b/

2.g.a/C b/.g.a/ � b/2
C .g.a/C b/

.g.a/ � b/3
ln

�
g.a/C b

2b

�
;
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�4.0I b; g.a// D
Z 1

1
2

jt � 1jt
A2t

dt

D �.g.a/C 3b/

2.g.a/C b/.g.a/ � b/2
� .g.a/C b/

.g.a/ � b/3
ln

�
g.a/C b

2g.a/

�
;

�5.0I g.a/; b/ D
Z 1

2

0

t2

A2t
dt

D .g.a/C 3b/

2.g.a/C b/.g.a/ � b/2
� b

.g.a/ � b/3
ln

�
.g.a/C b/2

4b2

�
;

�6.0I b; g.a// D
Z 1

1
2

jt � 1j.1 � t/

A2t
dt

D .3g.a/C b/

2.g.a/C b/.g.a/ � b/2
C g.a/

.g.a/ � b/3
ln

�
.g.a/C b/2

4g.a/2

�
:

If � D 1, then Theorem 3 reduces to the following result.

Corollary 3. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
q � 1, then

ˇ̌
ˇ̌ f .g.a//C f .b/

2
� g.a/b

.b � g.a//

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ̌

� g.a/b.b � g.a//

2
� �.�1.1I g.a/; b//1�

1
q .�2.1I g.a/; b/j f 0.g.a//jq

C�3.1I b; g.a//j f 0.b/jq/ 1q �;
where

�1.1I g.a/; b/ D
Z 1

0

j2t � 1j
A2t

dt

D 1

g.a/b
� 2

.b � g.a//2
ln

�
.g.a/C b/2

4g.a/b

�
;

�2.1I g.a/; b/ D
Z 1

0

j2t � 1j.1 � t/

A2t
dt

D 1

b.g.a/ � b/
� .3g.a/C b/

.g.a/ � b/3
ln

�
.g.a/C b/2

4g.a/b

�
;
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�3.1I b; g.a// D
Z 1

0

j2t � 1jt
A2t

dt

D �1
g.a/.g.a/ � b/

C .g.a/C 3b/

.g.a/ � b/3
ln

�
.g.a/C b/2

4g.a/b

�
:

If � D 1
2
, then Theorem 3 reduces to the following result, which appears to be new

one.

Corollary 4. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
q � 1, then

ˇ
ˇ̌
ˇ
1

4



f .g.a//C 2f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//� �
.�1.1=2I g.a/; b//1�

1
q .�3.1=2I g.a/; b/j f 0.g.a//jq

C�5.1=2I g.a/; b/j f 0.b/jq/ 1q

C.�2.1=2I b; g.a///1�
1
q .�6.1=2I b; g.a//j f 0.g.a//jq C �4.1=2I b; g.a//j f 0.b/jq/ 1q �;

where

�1.1=2I g.a/; b/ D
Z 1

2

0

ˇ̌
t � 1

4

ˇ̌

A2t
dt

D 1

4b.g.a/C b/
� 1

.g.a/ � b/2
ln

�
.g.a/C 3b/2

8b.g.a/C b/

�
;

�2.1=2I b; g.a// D
Z 1

1
2

ˇ̌
t � 3

4

ˇ̌

A2t
dt

D 1

4g.a/.g.a/C b/
� 1

.g.a/ � b/2
ln

�
.3g.a/C b/2

8g.a/.g.a/C b/

�
;

�3.1=2I g.a/; b/ D
Z 1

2

0

ˇ̌
t � 1

4

ˇ̌
.1 � t/

A2t
dt

D g.a/

4b.g.a/ � b/
� .5g.a/C 3b/

4.g.a/ � b/3
ln

�
.g.a/C 3b/2

8b.g.a/C b/

�
;

�4.1=2I b; g.a// D
Z 1

1
2

ˇ̌
t � 3

4

ˇ̌
t

A2t
dt

D �b

4g.a/.g.a/ � b/
C .3g.a/C 5b/

4.g.a/ � b/3
ln

�
.g.a/C 3b/2

8g.a/.g.a/C b/

�
;
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�5.1=2I g.a/; b/ D
Z 1

2

0

ˇ̌
t � 1

4

ˇ̌
t

A2t
dt

D �1
4.g.a/C b/.g.a/ � b/

C .g.a/C 7b/

4.g.a/ � b/3
ln

�
.g.a/C 3b/2

8b.g.a/C b/

�
;

�6.1=2I b; g.a// D
Z 1

1
2

ˇ
ˇt � 3

4

ˇ
ˇ.1 � t/

A2t
dt

D 1

4.g.a/C b/.g.a/ � b/
� .7g.a/C b/

4.g.a/ � b/3
ln

�
.3g.a/C b/2

8g.a/.g.a/C b/

�
:

If � D 1
3
, then Theorem 3 reduces to the following result.

Corollary 5. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
q � 1, then

ˇ
ˇ̌
ˇ
1

6



f .g.a//C 4f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

.b � g.a//

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//� �
.�1.1=3I g.a/; b//1�

1
q .�3.1=3I g.a/; b/j f 0.g.a//jq

C�5.1=3I g.a/; b/j f 0.b/jq/ 1q

C.�2.1=3I b; g.a///1�
1
q .�6.1=3I b; g.a//j f 0.g.a//jq C �4.1=3I b; g.a//j f 0.b/jq/ 1q �;

where

�1.1=3I g.a/; b/ D
Z 1

2

0

ˇ
ˇt � 1

6

ˇ
ˇ

A2t
dt

D .g.a/� 3b/

6b.g.a/C b/.g.a/� b/
� 1

.g.a/� b/2
ln

�
.g.a/C 5b/2

18b.g.a/C b/

�
;

�2.1=3I b; g.a// D
Z 1

1
2

ˇ̌
t � 5

6

ˇ̌

A2t
dt

D .3g.a/� b/

6g.a/.g.a/C b/.g.a/� b/
� 1

.g.a/� b/2
ln

�
.5g.a/C b/2

18g.a/.g.a/C b/

�
;

�3.1=3I g.a/; b/ D
Z 1

2

0

ˇ
ˇt � 1

6

ˇ
ˇ.1� t/

A2t
dt

D g.a/3 C b3 C 3g.a/b2 � 5g.a/2b

6b.g.a/C b/.g.a/� b/3
� .7g.a/C 5b/

6.g.a/� b/3
ln

�
.g.a/C 5b/2

18b.g.a/C b/

�
;

�4.1=3I b; g.a// D
Z 1

1
2

ˇ
ˇt � 5

6

ˇ
ˇt

A2t
dt

D � g.a/3 C b3 C 3g.a/2b � 5g.a/b2

6g.a/.g.a/C b/.g.a/� b/3
C .5g.a/C 7b/

6.g.a/� b/3
ln

�
.5g.a/C b/2

18g.a/.g.a/C b/

�
;
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�5.1=3I g.a/; b/ D
Z 1

2

0

ˇ̌
t � 1

6

ˇ̌
t

A2t
dt

D 2b

3.g.a/C b/.g.a/� b/2
C .g.a/C 11b/

6.g.a/� b/3
ln

�
.g.a/C 5b/2

18b.g.a/C b/

�
;

�6.1=3I b; g.a// D
Z 1

1
2

ˇ̌
t � 5

6

ˇ̌
.1� t/

A2t
dt

D 2g.a/

3.g.a/C b/.g.a/� b/2
� .11g.a/C b/

6.g.a/� b/3
ln

�
.5g.a/C b/2

18g.a/.g.a/C b/

�
:

Theorem 4. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1 and � 2 Œ0; 1�, then

ˇ̌
ˇ
ˇ.1 � �/f

�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ
ˇ

� g.a/b.b � g.a//

2



.�7.�; pI g.a/; b//

1
p

� j f 0.g.a//jq C j f 0� 2g.a/b
g.a/Cb

�jq
4

� 1
q

C.�8.�; pI b; g.a///
1
p

� j f 0� 2g.a/b
g.a/Cb

�jq C j f 0.b/jq
4

� 1
q
�
;

where

�7.�; pI g.a/; b/ D
Z 1

2

0

j2t � �jp
A2p

t

dt;

�8.�; pI b; g.a// D
Z 1

2

0

j2t � 2C �jp
A2p

t

dt:

Proof. Using Lemma 1, inequalities (7), (8), and the Holder’s integral inequality,
we have

ˇ
ˇ̌
ˇ.1� �/f

�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//

2


 Z 1
2

0

ˇ̌
ˇ
ˇ
2t � �

A2t

ˇ̌
ˇ
ˇ

ˇ̌
ˇ
ˇ f 0

�
g.a/b

At

�ˇ̌
ˇ
ˇdt C

Z 1

1
2

ˇ̌
ˇ
ˇ
2t � 2C �

A2t

ˇ̌
ˇ
ˇ

ˇ̌
ˇ
ˇ f 0

�
g.a/b

At

�ˇ̌
ˇ
ˇdt

�

� g.a/b.b � g.a//

2


�Z 1
2

0

ˇ̌
ˇ
ˇ
2t � �

A2t

ˇ̌
ˇ
ˇ

p

dt

� 1
p
�Z 1

2

0

ˇ̌
ˇ
ˇ f 0

�
g.a/b

At

�ˇ̌
ˇ
ˇ

q

dt

� 1
q

C
�Z 1

1
2

ˇ̌
ˇ̌ 2t � 2C �

A2t

ˇ̌
ˇ̌
p

dt

� 1
p
�Z 1

1
2

ˇ̌
ˇ̌ f 0

�
g.a/b

At

�ˇ̌
ˇ̌
q

dt

� 1
q
�
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D g.a/b.b � g.a//

2


�Z 1
2

0

j2t � �jp
A2p

t

dt

� 1
p
�

g.a/b

b � g.a/

Z 2g.a/b
g.a/Cb

g.a/

j f 0.x/jq
x2

dx

� 1
q

C
�Z 1

1
2

j2t � 2C �jp
A2p

t

dt

� 1
p
�

g.a/b

b � g.a/

Z b

2g.a/b
g.a/Cb

j f 0.x/jq
x2

dx

� 1
q
�

� g.a/b.b � g.a//

2


�Z 1
2

0

j2t � �jp
A2p

t

dt

� 1
p
� j f 0.g.a//jq C j f 0

� 2g.a/b
g.a/Cb

�jq
4

� 1
q

C
�Z 1

1
2

j2t � 2C �jp
A2p

t

dt

� 1
p
� j f 0

� 2g.a/b
g.a/Cb

�jq C j f 0.b/jq
4

� 1
q
�

D g.a/b.b � g.a//

2



.�7.�; pI g.a/; b//

1
p

� j f 0.g.a//jq C j f 0
� 2g.a/b

g.a/Cb

�jq
4

� 1
q

C.�8.�; pI b; g.a///
1
p

� j f 0
� 2g.a/b

g.a/Cb

�jq C j f 0.b/jq
4

� 1
q
�
;

which is the required result. ut
If � D 0, then Theorem 4 reduces to the following result.

Corollary 6. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then

ˇ̌
ˇ̌ f

�
g.a/C b

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ̌

� g.a/b.b � g.a//



.�7.0; pI g.a/; b//

1
p

� j f 0.g.a//jq C j f 0� 2g.a/b
g.a/Cb

�jq
4

� 1
q

C.�8.0; pI b; g.a///
1
p

� j f 0� 2g.a/b
g.a/Cb

�jq C j f 0.b/jq
4

� 1
q
�
;

where

�7.0; pI g.a/; b/ D
Z 1

2

0

jtjp
A2p

t

dt;

�8.0; pI b; g.a// D
Z 1

2

0

jt � 1jp
A2p

t

dt:

If � D 1, then Theorem 4 reduces to the following result.

Corollary 7. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then
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ˇ
ˇ̌
ˇ
f .g.a//C f .b/

2
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//

2



.�7.1; pI g.a/; b//

1
p

� j f 0.g.a//jq C j f 0� 2g.a/b
g.a/Cb

�jq
4

� 1
q

C.�8.1; pI b; g.a///
1
p

� j f 0� 2g.a/b
g.a/Cb

�jq C j f 0.b/jq
4

� 1
q
�
;

where

�7.1; pI g.a/; b/ D
Z 1

2

0

j2t � 1jp
A2p

t

dt;

�8.1; pI b; g.a// D
Z 1

2

0

j2t � 1jp
A2p

t

dt:

If � D 1
2
, then Theorem 4 reduces to the following result, which appears to be a

new one.

Corollary 8. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then

ˇ̌
ˇ̌1
4



f .g.a//C 2f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ̌

� g.a/b.b � g.a//



.�7.1=2; pI g.a/; b//

1
p

� j f 0.g.a//jq C j f 0� 2g.a/b
g.a/Cb

�jq
4

� 1
q

C.�8.1=2; pI b; g.a///
1
p

� j f 0� 2g.a/b
g.a/Cb

�jq C j f 0.b/jq
4

� 1
q
�
;

where

�7.1=2; pI g.a/; b/ D
Z 1

2

0

jt � 1
4
jp

A2p
t

dt;

�8.1=2; pI b; g.a// D
Z 1

1
2

jt � 3
4
jp

A2p
t

dt:

If � D 1
3
, then Theorem 4 reduces to the following result.

Corollary 9. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then
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ˇ
ˇ̌
ˇ
1

6



f .g.a//C 4f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//



.�7.1=3; pI g.a/; b//

1
p

� j f 0.g.a//jq C j f 0� 2g.a/b
g.a/Cb

�jq
4

� 1
q

C.�8.1=3; pI b; g.a///
1
p

� j f 0� 2g.a/b
g.a/Cb

�jq C j f 0.b/jq
4

� 1
q
�
;

where

�7.1=3; pI g.a/; b/ D
Z 1

2

0

jt � 1
6
jp

A2p
t

dt;

�8.1=3; pI b; g.a// D
Z 1

1
2

jt � 5
6
jp

A2p
t

dt:

Theorem 5. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1 and � 2 Œ0; 1�, then

ˇ̌
ˇ
ˇ.1 � �/f

�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ
ˇ

� g.a/b.b � g.a//

4.2. p C 1//
1
p

� .�pC1 C .1 � �/pC1/
1
p

�
.1 � q/.1 � 2q/.b � g.a//2

� 1
q

�
.�9.qI g.a/; b/j f 0.g.a//jq

C�11.qI g.a/; b/j f 0.b/jq/ 1q C .�12.qI b; g.a//j f 0.g.a//jq

C�10.qI b; g.a//j f 0.b/jq/ 1q �;

where

�9.qI g.a/; b/ D

�

g.a/C b

2

�1�2q

3g.a/ � b

2
C q.b � g.a//

�

Cb1�2qŒb � 2g.a/ � 2q.b � g.a//�

�
; (9)

�10.qI b; g.a// D

�

g.a/C b

2

�1�2q

3b � g.a/

2
C q.g.a/ � b/

�

Cg.a/1�2qŒg.a/ � 2b � 2q.g.a/ � b/�

�
; (10)
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�11.qI g.a/; b/ D

�

g.a/C b

2

�1�2q

�



g.a/ � 3b

2
C q.b � g.a//

�
C b2�2q

�
; (11)

�12.qI b; g.a// D

�

g.a/C b

2

�1�2q



b � 3g.a/

2
C q.g.a/ � b/

�
C g.a/2�2q

�
: (12)

Proof. Using Lemma 1 and the Holder’s integral inequality, we have

ˇ
ˇ̌
ˇ.1� �/f

�
2g.a/b

g.a/C b

�
C �

�
f .g.a//C f .b/

2

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//

2


 Z 1
2

0

ˇ
ˇ2t � �

ˇ
ˇ
ˇ̌
ˇ̌ 1
A2t

f 0

�
g.a/b

At

�ˇ̌
ˇ̌dt

C
Z 1

1
2

ˇ
ˇ2t � 2C �

ˇ
ˇ
ˇ̌
ˇ̌ 1
A2t

f 0

�
g.a/b

At

�ˇ̌
ˇ̌dt

�

� g.a/b.b � g.a//

2


�Z 1
2

0

ˇ
ˇ2t � �

ˇ
ˇpdt

� 1
p
�Z 1

2

0

ˇ̌
ˇ̌ 1
A2t

f 0

�
g.a/b

At

�ˇ̌
ˇ̌
q

dt

� 1
q

C
�Z 1

1
2

ˇ̌
2t � 2C �

ˇ̌p
dt

� 1
p
�Z 1

1
2

ˇ
ˇ̌
ˇ
1

A2t
f 0

�
g.a/b

At

�ˇˇ̌
ˇ

q

dt

� 1
q
�

D g.a/b.b � g.a//

2


�Z 1
2

0

ˇ̌
2t � �

ˇ̌p
dt

� 1
p
�Z 1

2

0

1

A2q
t

ˇ
ˇ̌
ˇ f 0

�
g.a/b

At

�ˇˇ̌
ˇ

q

dt

� 1
q

C
�Z 1

1
2

ˇ̌
2t � 2C �

ˇ̌p
dt

� 1
p
�Z 1

1
2

1

A2q
t

ˇ̌
ˇ
ˇ f 0

�
g.a/b

At

�ˇ̌
ˇ
ˇ

q

dt

� 1
q
�

� g.a/b.b � g.a//

2


�Z 1
2

0

ˇ̌
2t � �

ˇ̌p
dt

� 1
p

�
�Z 1

2

0

1

A2q
t

�
.1� t/j f 0.g.a//jq C tj f 0.b/jq�dt

� 1
q

C
�Z 1

1
2

ˇ̌
2t � 2C �

ˇ̌p
dt

� 1
p
�Z 1

1
2

1

A2q
t

�
.1� t/j f 0.g.a//jq C tj f 0.b/jq�dt

� 1
q
�

D g.a/b.b � g.a//

2


�
�pC1 C .1� �/pC1

2. p C 1/

� 1
p

�
�Z 1

2

0

.1� t/

A2q
t

j f 0.g.a//jqdt C
Z 1

2

0

t

A2q
t

j f 0.b/jqdt

� 1
q

C
�
�pC1 C .1� �/pC1

2. p C 1/

� 1
p
�Z 1

2

.1� t/

A2q
t

j f 0.g.a//jqdt C
Z 1

1
2

.1� t/

A2q
t

j f 0.b/jqdt

� 1
q
�
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D g.a/b.b � g.a//

2

�
�pC1 C .1� �/pC1

2. p C 1/

� 1
p

�

�Z 1

2

0

.1� t/

A2q
t

j f 0.g.a//jq C
Z 1

2

0

t

A2q
t

j f 0.b/jq
� 1

q

C
�Z 1

1
2

.1� t/

A2q
t

j f 0.g.a//jq C
Z 1

1
2

t

A2q
t

j f 0.b/jq
� 1

q
�

D g.a/b.b � g.a//

4.2. p C 1//
1
p

.�pC1 C .1� �/pC1/
1
p

�
.1� q/.1� 2q/.b � g.a//2

� 1
q

��.�9.qI g.a/; b/j f 0.g.a//jq C �11.qI g.a/; b/j f 0.b/jq/ 1q

C.�12.qI b; g.a//j f 0.g.a//jq C �10.qI b; g.a//j f 0.b/jq/ 1q �;

which is the required result. ut
If � D 0, then Theorem 5 reduces to the following result.

Corollary 10. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then

ˇ
ˇ̌
ˇ f

�
g.a/C b

2

�
� g.a/b

.b � g.a//

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//

2.2pC1. p C 1//
1
p

� 1
�
.1� q/.1� 2q/.b � g.a//2

� 1
q

�
.�9.qI g.a/; b/j f 0.g.a//jq

C�11.qI g.a/; b/j f 0.b/jq/ 1q C .�12.qI b; g.a//j f 0.g.a//jq C �10.qI b; g.a//j f 0.b/jq/ 1q �;

where �9; �10; �11; and �12 are given by (9)–(12).

If � D 1, then Theorem 5 reduces to the following result.

Corollary 11. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then

ˇ̌
ˇ̌ f .g.a//C f .b/

2
� g.a/b

.b � g.a//

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ̌

� g.a/b.b � g.a//

4.2. p C 1//
1
p

� 1
�
.1� q/.1� 2q/.b � g.a//2

� 1
q

�
.�9.qI g.a/; b/j f 0.g.a//jq

C�11.qI g.a/; b/j f 0.b/jq/ 1q C .�12.qI b; g.a//j f 0.g.a//jq C �10.qI b; g.a//j f 0.b/jq/ 1q �;

where �9; �10; �11; and �12 are given by (9)–(12).
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If � D 1
2
, then Theorem 5 reduces to the following result, which appears to be new

one.

Corollary 12. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then

ˇ
ˇ̌
ˇ
1

4



f .g.a//C 2f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ
ˇ̌
ˇ

� g.a/b.b � g.a//

2.4pC1. p C 1//
1
p

� .2/
1
p

�
.1� q/.1� 2q/.b � g.a//2

� 1
q

�
.�9.qI g.a/; b/j f 0.g.a//jq

C�11.qI g.a/; b/j f 0.b/jq/ 1q C .�12.qI b; g.a//j f 0.g.a//jq C �10.qI b; g.a//j f 0.b/jq/ 1q �;

where �9; �10; �11; and �12 are given by (9)–(12).

If � D 1
3
, then Theorem 5 reduces to the following result.

Corollary 13. Let f W Ih � R n f0g �! R be a differentiable function on the interior
I0h of Ih. If f 0 2 LŒg.a/; b� and j f 0jq is general harmonic convex function on Ih for
p; q > 1; 1p C 1

q D 1, then
ˇ̌
ˇ
ˇ
1

6



f .g.a//C 4f

�
2g.a/b

g.a/C b

�
C f .b/

�
� g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

ˇ̌
ˇ
ˇ

� g.a/b.b � g.a//

2.6pC1. p C 1//
1
p

� .1C 2pC1/
1
p

�
.1 � q/.1 � 2q/.b � g.a//2

� 1
q

�
.�9.qI g.a/; b/j f 0.g.a//jq

C�11.qI g.a/; b/j f 0.b/jq/ 1q C .�12.qI b; g.a//j f 0.g.a//jq

C�10.qI b; g.a//j f 0.b/jq/ 1q �;
where �9; �10; �11; and �12 are given by (9)–(12).

4 Inequalities for General Harmonic log-Convex Functions

In this section, we derive Hermite–Hadamard inequalities for general harmonic log-
convex functions

Theorem 6. Let f W Ih � R n f0g �! R be an increasing general harmonic log-
convex function. If f 2 LŒg.a/; b�, then
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f

�
2g.a/b

g.a/C b

�
L. f .g.a//; f .b//

� g.a/b

8.b � g.a//

Z b

g.a/

f 4.x/

x2
dx

C 1

8

f .g.a//2 C f .b/2

2

f .g.a//C f .b/

2

f .b/ � f .g.a//

log f .b/ � log f .g.a//
C 1:

Proof. Let f be general harmonic log-convex functions. Then

f

�
g.a/b

t.g.a//C .1 � t/b

�
� Œ f .g.a//�1�tŒ f .b/�t:

Now using the identity

8xy � x4 C y4 C 8; x; y 2 R:

Thus,

8f

�
g.a/b

t.g.a//C .1 � t/b

�
Œ f .g.a//�1�tŒ f .b/�t

� f 4
�

g.a/b

t.g.a//C .1 � t/b

�
C Œ f .g.a//�4.1�t/Œ f .b/�4t C 8:

Integrating over Œ0; 1�; we have

8

Z 1

0

f

�
g.a/b

t.g.a//C .1 � t/b

�
Œ f .g.a//�1�tŒ f .b/�tdt

�
Z 1

0

f 4
�

g.a/b

t.g.a//C .1 � t/b

�
dt C

Z 1

0

Œ f .g.a//�4.1�t/Œ f .b/�4tdt C 8:

Since f is increasing function, we have

8

Z 1

0

f

�
g.a/b

t.g.a//C .1 � t/b

�
dt
Z 1

0

Œ f .g.a//�1�tŒ f .b/�tdt

�
Z 1

0

f 4
�

g.a/b

t.g.a//C .1 � t/b

�
dt C

Z 1

0

Œ f .g.a//�4.1�t/Œ f .b/�4tdt C 8:

From the above inequality, it is easy to observe that

f

�
2g.a/b

g.a/C b

�
L. f .g.a//; f .b//

� g.a/b

8.b � g.a//

Z b

g.a/

f 4.x/

x2
dx

C1

8
K2. f .g.a//; f .b//A. f .g.a//; f .b//L. f .g.a//; f .b//C 1
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D g.a/b

8.b � g.a//

Z b

g.a/

f 4.x/

x2
dx

C1

8

f .g.a//2 C f .b/2

2

f .g.a//C f .b/

2

f .b/ � f .g.a//

log f .b/ � log f .g.a//
C 1;

which is the required result. ut
Theorem 7. Let f ; g W I D Œg.a/; b� � Rnf0g �! R be increasing general harmonic
log-convex functions. If f 2 LŒg.a/; b�, then

g.a/b

b � g.a/

Z b

g.a/

f 2.x/

x2
dx C A. f .g.a//; f .b//L. f .g.a//; f .b//C  .g.a/; b/

� f

�
2g.a/b

g.a/C b

�
L. f .g.a//; f .b//C 2A. f .g.a//; f .b//L. f .g.a//; f .b//

�L2. f .g.a//; f .b//
f .g.a//g.a/2b

.b � g.a//2

Z b

g.a/

.b � x/f .x/

x3
dx

C f .b/g.a/b2

.b � g.a//2

Z b

g.a/

.x � g.a//f .x/

x3
dx;

where

 .g.a/; b/ D f 2.g.a//C f .g.a//f .b/C f 2.b/

3
:

Proof. Let f ; g be general harmonic log-convex functions on I, we have that

f

�
g.a/b

t.g.a//C .1 � t/b

�
� Œ f .g.a//�1�tŒ f .b/�t � .1 � t/f .g.a//C tf .b/:

Using the elementary inequality

xy C yz C zx � x2 C y2 C z2; .x; y; z 2 R/:

We observe that

f 2
�

g.a/b

t.g.a//C .1 � t/b

�
C Œ f .g.a//�2.1�t/Œ f .b/�2t

C.1 � t/2f 2.g.a//C t2f 2.b/C 2t.1 � t/f .g.a//f .b/

� f

�
g.a/b

t.g.a//C .1 � t/b

�
Œ f .g.a//�1�tŒ f .b/�t

C.1 � t/Œ f .g.a//�2�tŒ f .b/�t C tŒ f .g.a//�1�tŒ f .b/�1Ct

Cf .g.a//.1 � t/f

�
g.a/b

t.g.a//C .1 � t/b

�
C f .b/tf

�
g.a/b

t.g.a//C .1 � t/b

�
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Integrating this inequality over t on Œ0; 1�, we deduce that

Z 1

0
f 2
�

g.a/b

t.g.a//C .1� t/b

�
dt C

Z 1

0
Œ f .g.a//�2.1�t/Œ f .b/�2tdt

Cf 2.g.a//

Z 1

0
.1� t/2 C f 2.b/

Z 1

0
t2dt C f .g.a//f .b/

Z 1

0
2t.1� t/dt

�
Z 1

0
f

�
g.a/b

t.g.a//C .1� t/b

�
Œ f .g.a//�1�tŒ f .b/�tdt

C
Z 1

0
.1� t/Œ f .g.a//�2�tŒ f .b/�tdt C

Z 1

0
tŒ f .g.a//�1�tŒ f .b/�1Ctdt

Cf .g.a//

Z 1

0
.1� t/f

�
g.a/b

t.g.a//C .1� t/b

�
dt C f .b/

Z 1

0
tf

�
g.a/b

t.g.a//C .1� t/b

�
dt:

As it is easy to see that

Z 1

0

f 2
�

g.a/b

t.g.a//C .1 � t/b

�
dt D g.a/b

b � g.a/

Z b

g.a/

f 2.x/

x2
dx:

By substituting 2t D u, it is easy to observe that
Z 1

0

Œ f .g.a//�2.1�t/Œ f .b/�2tdt D f 2.g.a//
Z 1

0

�
f .b/

f .g.a//

�2t

dt

D 1

2
f 2.g.a//

Z 2

0

�
f .b/

f .g.a//

�u

du

D 1

2

f 2.b/ � f 2.g.a//

log f .b/ � log f .g.a//

D . f .g.a//C f .b//. f .b/ � f .g.a///

2 log f .b/ � log f .g.a//

D A. f .g.a//; f .b//L. f .g.a//; f .b//:

And using increasing of f and the left half of the Hermite–Hadamard inequality for
general harmonic convex function, we get

Z 1

0

f

�
g.a/b

t.g.a//C .1 � t/b

�
Œ f .g.a//�1�tŒ f .b/�tdt

�
Z 1

0

f

�
g.a/b

t.g.a//C .1 � t/b

�
dt
Z 1

0

Œ f .g.a//�1�tŒ f .b/�tdt

D g.a/b

b � g.a/

Z b

g.a/

f .x/

x2
dx

f .b/ � f .g.a//

log f .b/ � log f .g.a//

� f

�
2g.a/b

g.a/C b

�
L. f .g.a//; f .b//:
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By applying simple integration by parts formula, it is easy to observe that
Z 1

0

.1 � t/Œ f .g.a//�2�tŒ f .b/�tdt

D f 2.g.a//
Z 1

0

.1 � t/

�
f .b/

f .g.a//

�2t

dt

D �f 2.g.a//

log f .b/
f .g.a//

C f .g.a//f .b/ � f 2.g.a//
�

log f .b/
f .g.a//

�2 ;

and
Z 1

0

tŒ f .g.a//�1�tŒ f .b/�1Ctdt

D f .g.a//f .b/
Z 1

0

t

�
f .b/

f .g.a//

�t

dt

D f 2.b/

log f .b/
f .g.a//

� f 2.b/ � f .g.a//f .b/
�

log f .b/
f .g.a//

�2 :

And by substituting g.a/b
t.g.a//C.1�t/b D x, it is easy to observe that

f .g.a//
Z 1

0

.1 � t/f

�
g.a/b

t.g.a//C .1 � t/b

�
dt D g.a/2bf .g.a//.b � x/

.b � g.a//2

Z b

g.a/

f .x/

x3
dx

f .b/
Z 1

0

tf

�
g.a/b

t.g.a//C .1 � t/b

�
dt D g.a/b2f .b/.x � g.a//

.b � g.a//2
f .x/

x3
dx:

This implies

g.a/b

b � g.a/

Z b

g.a/

f 2.x/

x2
dx C A. f .g.a//; f .b//L. f .g.a//; f .b//C  .g.a/; b/

� f

�
2g.a/b

g.a/C b

�
L. f .g.a//; f .b//C 2A. f .g.a//; f .b//L. f .g.a//; f .b//

�L2. f .g.a//; f .b//
f .g.a//g.a/2b

.b � g.a//2

Z b

g.a/

.b � x/f .x/

x3
dx

C f .b/g.a/b2

.b � g.a//2

Z b

g.a/

.x � g.a//f .x/

x3
dx;

which is the required result. ut
Theorem 8. Let f ; g W Ih � Rnf0g �! R be general harmonic log-convex functions.
If fg 2 LŒg.a/; b�, then
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g.a/b

b � g.a/

Z b

g.a/

�
f .x/

x2

�
Œg.g.a//�

g.a/.x�b/
x.g.a/�b/ Œg.b/�

b.g.a/�x/
x.g.a/�b/ dx

C g.a/b

b � g.a/

Z b

g.a/

�
g.x/

x2

�
Œ f .g.a//�

g.a/.x�b/
x.g.a/�b/ Œ f .b/�

b.g.a/�x/
x.g.a/�b/ dx

� g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x2

�
dx C 1

2
M.g.a/; b/:

Proof. Let f and g be general harmonic log-convex functions. Then

f

�
g.a/b

t.g.a//C .1 � t/b

�
� Œ f .g.a//�1�tŒ f .b/�t;

g

�
g.a/b

t.g.a//C .1 � t/b

�
� Œg.g.a//�1�tŒg.b/�t:

Now, using hx1 � x2; x3 � x4i � 0; .x1; x2; x3; x4 2 R/ and x1 < x2; x3 < x4, we
have

f

�
g.a/b

t.g.a//C .1� t/b

�
Œg.g.a//�1�tŒg.b/�t C g

�
g.a/b

t.g.a//C .1� t/b

�
Œ f .g.a//�1�tŒ f .b/�t

� f

�
g.a/b

t.g.a//C .1� t/b

�
g

�
g.a/b

t.g.a//C .1� t/b

�
C Œ f .g.a//�1�tŒ f .b/�tŒg.g.a//�1�tŒg.b/�t:

Integrating over Œ0; 1�, we get

Z 1

0

f

�
g.a/b

t.g.a//C .1 � t/b

�
Œg.g.a//�

g.a/.x�b/
x.g.a/�b/ Œg.b/�

b.g.a/�x/
x.g.a/�b/ dt

C
Z 1

0

g

�
g.a/b

t.g.a//C .1 � t/b

�
Œ f .g.a//�

g.a/.x�b/
x.g.a/�b/ Œ f .b/�

b.g.a/�x/
x.g.a/�b/ dt

�
Z 1

0

f

�
g.a/b

t.g.a//C .1 � t/b

�
g

�
g.a/b

t.g.a//C .1 � t/b

�
dt

C
Z 1

0

Œ f .g.a//�1�tŒ f .b/�tŒg.g.a//�1�tŒg.b/�tdt:

From the above inequality, it follows that

g.a/b

b � g.a/

Z b

g.a/

�
f .x/

x2

�
Œg.g.a//�

g.a/.x�b/
x.g.a/�b/ Œg.b/�

b.g.a/�x/
x.g.a/�b/ dx

C g.a/b

b � g.a/

Z b

g.a/

�
g.x/

x2

�
Œ f .g.a//�

g.a/.x�b/
x.g.a/�b/ Œ f .b/�

b.g.a/�x/
x.g.a/�b/ dx

� g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x2

�
dx C L.G2. f .g.a//; g.g.a///;G2. f .b/; g.b///
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� g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x2

�
dx C A.G2. f .g.a//; g.g.a///;G2. f .b/; g.b///

D g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x2

�
dx C 1

2
M.g.a/; b/;

which is the required result.

Theorem 9. Let f ; g W Ih � R n f0g �! R be increasing general harmonic log-
convex functions. If fg 2 LŒg.a/; b�, then

f

�
2g.a/b

g.a/C b

�
LŒg.g.a//; g.b/�C g

�
2g.a/b

g.a/C b

�
LŒ f .g.a//; f .b/�

� g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x

�
dx C LŒ f .g.a//g.g.a//; f .b/g.b/�:

� g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x2

�
dx C f .g.a//g.g.a//C f .b/g.b/

2
:

Proof. Let f ; g be general harmonic log-convex functions. Then

f

�
g.a/b

t.g.a//C .1 � t/b

�
� Œ f .g.a//�1�tŒ f .b/�t:

g

�
g.a/b

t.g.a//C .1 � t/b

�
� Œg.g.a//�1�tŒg.b/�t:

Now, using hx1 � x2; x3 � x4i � 0; .x1; x2; x3; x4 2 R/ and x1 < x2, x3 < x4, we get

f

�
g.a/b

t.g.a//C .1� t/b

�
Œg.g.a//�1�tŒg.b/�t C g

�
g.a/b

t.g.a//C .1� t/b

�
Œ f .g.a//�1�tŒ f .b/�t

� f

�
g.a/b

t.g.a//C .1� t/b

�
g

�
g.a/b

t.g.a//C .1� t/b

�
C Œ f .g.a//�1�tŒ f .b/�tŒg.g.a//�1�tŒg.b/�t:

Integrating over Œ0; 1� and get

Z 1

0

f

�
g.a/b

t.g.a//C .1� t/b

�
Œg.g.a//�1�t Œg.b/�tdt C

Z 1

0

g

�
g.a/b

t.g.a//C .1� t/b

�
Œ f .g.a//�1�t Œ f .b/�tdt

�
Z 1

0

f

�
g.a/b

t.g.a//C .1� t/b

�
g

�
g.a/b

t.g.a//C .1� t/b

�
dt C

Z 1

0

Œ f .g.a//�1�t Œ f .b/�t Œg.g.a//�1�t Œg.b/�tdt:

Now, since f ; g are increasing functions, we have

Z 1

0

f

�
g.a/b

t.g.a//C .1� t/b

�
dt

Z 1

0

Œg.g.a//�1�t Œg.b/�tdt C
Z 1

0

g

�
g.a/b

t.g.a//C .1� t/b

�
dt

Z 1

0

Œ f .g.a//�1�t Œ f .b/�tdt

�
Z 1

0

f

�
g.a/b

t.g.a//C .1� t/b

�
g

�
g.a/b

t.g.a//C .1� t/b

�
dt C

Z 1

0

Œ f .g.a//�1�t Œ f .b/�t Œg.g.a//�1�t Œg.b/�tdt:
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From the above inequality, it follows that

f

�
2g.a/b

g.a/C b

�
LŒg.g.a//; g.b/�C g

�
2g.a/b

g.a/C b

�
LŒ f .g.a//; f .b/�

� g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x2

�
dx C LŒ f .g.a//g.g.a//; f .b/g.b/�

� g.a/b

b � g.a/

Z b

g.a/

�
f .x/g.x/

x2

�
dx C f .g.a//g.g.a//C f .b/g.b/

2
;

which is the required result.

Theorem 10. Let f ; g W Ih � R n f0g �! R be general harmonic log-convex
functions. If fg 2 LŒg.a/; b�, then

g.a/2b

.b � g.a//2

Z b

g.a/

.b � x/

x3
Œlog f .g.a// log g.x/C log g.g.a// log f .x/�dx

C g.a/b2

.b � g.a//2

Z b

g.a/

.x � g.a//

x3
Œlog f .b/ log g.x/C log g.b/ log f .x/�dx

� 1

3
Œlog f .g.a// log g.g.a//C log f .b/ log g.b/�C 1

6
Œlog f .g.a//g.b/C log f .b/g.g.a//�

C g.a/b

b � g.a/

Z b

g.a/

log f .x/ log g.x/

x2
dx:

Proof. Let f ; g be general harmonic log-convex functions. Then

log f

�
g.a/b

t.g.a//C .1 � t/b

�
� .1 � t/ log f .g.a//C t log f .b/:

log g

�
g.a/b

t.g.a//C .1 � t/b

�
� .1 � t/ log g.g.a//C t log g.b/:

Now, using hx1 � x2; x3 � x4i � 0; .x1; x2; x3; x4 2 R/ and x1 < x2, x3 < x4, we
have

log f

�
g.a/b

t.g.a//C .1 � t/b

�
Œ.1 � t/ log g.g.a//C t log g.b/�

C log g

�
g.a/b

t.g.a//C .1 � t/b

�
Œ.1 � t/ log f .g.a//C t log f .b/�

� log f

�
g.a/b

t.g.a//C .1 � t/b

�
log g

�
g.a/b

t.g.a//C .1 � t/b

�

CŒ.1 � t/ log f .g.a//C t log f .b/�Œ.1 � t/ log g.g.a//C t log g.b/�:

we obtain
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log g.g.a//.1� t/ log f

�
g.a/b

t.g.a//C .1� t/b

�
C log g.b/t log f

�
g.a/b

t.g.a//C .1� t/b

�

C log f .g.a//.1� t/ log g

�
g.a/b

.1� t/g.a/C tb

�
C log f .b/t log g

�
g.a/b

t.g.a//C .1� t/b

�

� log f

�
g.a/b

t.g.a//C .1� t/b

�
log g

�
g.a/b

t.g.a//C .1� t/b

�

CŒ.1� t/ log f .g.a//C t log f .b/�Œ.1� t/ log g.g.a//C t log g.b/�:

Integrating over Œ0; 1�, we get

log g.g.a//
Z 1

0

.1 � t/ log f

�
g.a/b

t.g.a//C .1 � t/b

�
dt

C log g.b/
Z 1

0

t log f

�
g.a/b

t.g.a//C .1 � t/b

�
dt

C log f .g.a//
Z 1

0

.1 � t/ log g

�
g.a/b

t.g.a//C .1 � t/b

�
dt

C log f .b/
Z 1

0

t log g

�
g.a/b

.1 � t/g.a/C tb

�
dt

�
Z 1

0

log f

�
g.a/b

t.g.a//C .1 � t/b

�
log g

�
g.a/b

t.g.a//C .1 � t/b

�
dt

C log f .g.a// log g.g.a//
Z 1

0

.1 � t/2 C log f .b/ log g.b/
Z 1

0

t2dt

CŒlog f .g.a//g.b/C log f .b/g.g.a//�
Z 1

0

t.1 � t/dt:

Now after simple integration, we have

g.a/2b

.b � g.a//2

Z b

g.a/

.b � x/

x3
Œlog f .g.a// log g.x/C log g.g.a// log f .x/�dx

C g.a/b2

.b � g.a//2

Z b

g.a/

.x � g.a//

x3
Œlog f .b/ log g.x/C log g.b/ log f .x/�dx

� 1

3
Œlog f .g.a// log g.g.a//C log f .b/ log g.b/�C 1

6
Œlog f .g.a//g.b/

C log f .b/g.g.a//�

C g.a/b

b � g.a/

Z b

g.a/

log f .x/ log g.x/

x2
dx;

which is the required result. ut
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Theorem 11. Let f ; g W I D Œg.a/; b� � R n f0g �! R be general harmonic convex
functions. If fg 2 LŒg.a/; b�; then

f

�
2g.a/b

g.a/C b

�
g

�
2g.a/b

g.a/C b

�
g.a/2b2

.b � g.a//2

Z b

g.a/

log g.x/

x2
dx
Z b

g.a/

log f .x/

x2
dx

� exp



g.a/b

2.b � g.a//

Z b

g.a/

log f .x/ log g.x/

x2
dx C 1

12
M.g.a/; b/C 1

6
N.g.a/; b/

C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

��
:

Proof. Let f ; g be general harmonic log-convex functions with t D 1
2
, then

log f

�
2g.a/b

g.a/C b

�
� 1

2



log f

�
g.a/b

t.g.a//C .1 � t/b

�
C log f

�
g.a/b

.1 � t/g.a/C tb

��
:

log g

�
2g.a/b

g.a/C b

�
� 1

2



log g

�
g.a/b

t.g.a//C .1 � t/b

�
log g

�
g.a/b

.1 � t/g.a/C tb

��
:

Now, using hx1 � x2; x3 � x4i � 0; .x1; x2; x3; x4 2 R/ and x1 < x2, x3 < x4, we get

1

2
log f

�
2g.a/b

g.a/C b

�

log g

�
g.a/b

t.g.a//C .1� t/b

�
C log g

�
g.a/b

.1� t/g.a/C tb

��

C 1

2
log g

�
2g.a/b

g.a/C b

�

log f

�
g.a/b

t.g.a//C .1� t/b

�
C log f

�
g.a/b

.1� t/g.a/C tb

��

� 1

4



log f

�
g.a/b

t.g.a//C .1� t/b

�
C log f

�
g.a/b

.1� t/g.a/C tb

��

log g

�
g.a/b

t.g.a//C .1� t/b

�

C log g

�
g.a/b

.1� t/g.a/C tb

��
C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

�

D 1

4



log f

�
g.a/b

t.g.a//C .1� t/b

�
log g

�
g.a/b

t.g.a//C .1� t/b

�

C log f

�
g.a/b

.1� t/g.a/C tb

�
log g

�
g.a/b

.1� t/g.a/C b

�

C log f

�
g.a/b

t.g.a//C .1� t/b

�
log g

�
g.a/b

.1� t/g.a/C tb

�
C log f

�
g.a/b

.1� t/g.a/C tb

�

log g

�
g.a/b

t.g.a//C .1� t/b

��
C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

�

� 1

4



log f

�
g.a/b

t.g.a//C .1� t/b

�
log g

�
g.a/b

t.g.a//C .1� t/b

�

C log f

�
g.a/b

.1� t/g.a/C tb

�
log g

�
g.a/b

.1� t/g.a/C b

�

CŒ.1� t/ log f .g.a//C t log f .b/�Œt log g.g.a//C .1� t/ log g.b/�
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CŒt log f .g.a//C .1� t/ log f .b/�Œ.1� t/ log g.g.a//C t log g.b/�

�

C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

�

� 1

4



log f

�
g.a/b

t.g.a//C .1� t/b

�
log g

�
g.a/b

t.g.a//C .1� t/b

�

C log f

�
g.a/b

.1� t/g.a/C tb

�
log g

�
g.a/b

.1� t/g.a/C b

�

C2t.1� t/Œlog f .g.a// log g.g.a//C log f .b/ log g.b/�

CŒlog f .g.a// log g.b/C log f .b/ log g.g.a//�Œt2 C .1� t/2�

�

C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

�

Integrating over [0, 1] and get

1

2
log f

�
2g.a/b

g.a/C b

�Z 1

0



log g

�
g.a/b

t.g.a//C .1� t/b

�
C log g

�
g.a/b

.1� t/g.a/C tb

��
dt

C 1

2
log g

�
2g.a/b

g.a/C b

�Z 1

0



log f

�
g.a/b

t.g.a//C .1� t/b

�
C log f

�
g.a/b

.1� t/g.a/C tb

��
dt

� 1

4


 Z 1

0
log f

�
g.a/b

t.g.a//C .1� t/b

�
log g

�
g.a/b

t.g.a//C .1� t/b

�
dt

C
Z 1

0
log f

�
g.a/b

.1� t/g.a/C tb

�
log g

�
g.a/b

.1� t/g.a/C b

�
dt

C2Œlog f .g.a// log g.g.a//C log f .b/ log g.b/�

Z 1

0
t.1� t/dt

CŒlog f .g.a// log g.b/C log f .b/ log g.g.a//�

Z 1

0
Œt2 C .1� t/2�dt

�

C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

�Z 1

0
dt

D 1

4


 Z 1

0
log f

�
g.a/b

t.g.a//C .1� t/b

�
log g

�
g.a/b

t.g.a//C .1� t/b

�
dt

C
Z 1

0
log f

�
g.a/b

.1� t/g.a/C tb

�
log g

�
g.a/b

.1� t/g.a/C b

�
dt

C 1

3
Œlog f .g.a// log g.g.a//C log f .b/ log g.b/�

C 2

3

�
log f .g.a// log g.b/C log f .b/ log g.g.a//

��

C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

�
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From the above inequality, it follows that

f

�
2g.a/b

g.a/C b

�
g

�
2g.a/b

g.a/C b

�
g.a/2b2

.b � g.a//2

Z b

g.a/

log g.x/

x2
dx
Z b

g.a/

log f .x/

x2
dx

� exp



g.a/b

2.b � g.a//

Z b

g.a/

log f .x/ log g.x/

x2
dx C 1

12
M.g.a/; b/C 1

6
N.g.a/; b/

C log f

�
2g.a/b

g.a/C b

�
log g

�
2g.a/b

g.a/C b

��
;

which is the required result. ut
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Extension Operator Method for the Exact
Solution of Integro-Differential Equations

I.N. Parasidis and E. Providas

In Honor of Constantin Carathéodory

Abstract An exact method for the solution of the linear Fredholm integro-
differential equations is proposed. The method is based on the correct extensions
of minimal operators in Banach spaces. The integro-differential operator B is
formulated as an extension of a minimal operator A0 and as a perturbation of a
correct differential operatorbA. If the operator B is correct, then the unique solution
of the integro-differential equation is obtained in closed form. The method can be
easily programmed in a computer algebra system. Since there are not any general
exact methods for solving integro-differential equations, the present approach can
form the base for further study in this direction.

1 Introduction

Integro-differential equations appear in the mathematical modeling and simulation
in several areas such as epidemics [24], astrophysics [36], theory of elasticity [9],
biomedicine [22], neural networks [16], image processing [32], and finance [31] to
mention but a few. For more applications and other details, one can look in the books
[17, 25].

Since there is a variety of integro-differential equations, the methods available
for determining their solutions vary considerably depending on their origin and
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structure, the limits of integration, the boundedness of the kernel, and the linearity
property. In some rather simple situations, it is possible to obtain a solution directly
[35], whereas in other cases, for example, in problems involving nonlinear integro-
differential equations under the Carathéodory-type conditions (e.g., see [8]), it is
very difficult to get a solution. In general, numerical techniques are employed to
solve the integro-differential equations. There are many such methods and a plethora
of publications describing them. For a survey of the numerical methods available,
one can look in the book [1]. Recent advances in numerical techniques for solving
Fredholm integro-differential equations can be found in the following papers and
the references therein: The Legendre polynomial and variational iteration methods
[2], the Galerkin method [5], the Tau method [12], the interpolation collocation
method [13], the Taylor expansion method [14], the Chebyshev series method [20],
the wavelet Galerkin method [23], the B-spline collocation method [30], and the
homotopy perturbation method [37].

The present work is concerned with the exact solution of the linear Fredholm
integro-differential equations. Our approach, inspired by the work [27], is based
on the correct extensions of minimal operators for solving initial and boundary
value problems containing differential or integro-differential equations. The theory
of extensions of densely defined minimal operators was initiated by [21, 33, 34] and
[3] and developed further by [4, 6, 7, 10, 11, 18, 19, 28, 29] and others.

The paper is organized as follows. In Sect. 2 we quote some definitions and
notations. Next we present the extension operator method in a general form, and
then in Sect. 4, we focus on its application for solving linear Fredholm integro-
differential equations. In Sect. 5 several example problems are solved to demonstrate
the efficiency of the method. Finally in Sect. 6, some conclusions and future
directions are quoted.

2 Definitions and Notations

Let X be a complex Banach space and X� its adjoint space, i.e., the set of all
complex-valued linear and bounded functionals on X. If u; v 2 X and  2 X�,
then

 .a1u C a2v/ D a1 .u/C a2 .v/ ; (1)

where a1 and a2 are complex numbers, and there exists k 2 RC such that

j .u/j � kjjujj ; for all u 2 X : (2)

The following Banach spaces and notations are used throughout the paper:
C0Œa; b� or CŒa; b� or C is the space of all continuous complex-valued functions

on Œa; b� with the norm

jjujjC D max
t2Œa;b� ju.t/j:
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CnŒa; b� or Cn is the space of all complex-valued functions on Œa; b� with continuous
derivatives of order n and the norm

jjujjCn D jjujjC C jju0jjC C � � � C jju.n/jjC D
nX

iD0
jju.i/jjC:

L2.a; b/ or L2 is the space of all Lebesgue integrable functions with the norm

jjujjL2 D
�Z b

a
ju.t/j2dt/

� 1
2

:

Wn
2 .a; b/ or Wn

2 is the Sobolev space, i.e., the space all functions u 2 L2.a; b/ with
u.i/ 2 L2.a; b/, i D 1; : : : ; n and the norm

jjujjWn
2

D
�Z b

a

�ju.t/j2 C ju0.t/j2 C � � � C ju.n/.t/j2� dt

� 1
2

:

Note L2 � W1
2 � � � � � Wn

2 ; Wi
2 � Ci; i D 1; : : : ; n and L2 � C � C1 � � � � � Cn;

for their adjoint spaces hold ŒL2�� � ŒW1
2 �

� � � � � � ŒWn
2 �

�; ŒWi
2�

� � ŒCi��; i D
1; : : : ; n and ŒL2�� � C� � ŒC1�� � � � � � ŒCn��.

Let X; Y be complex Banach spaces and A W X ! Y an operator with D.A/
and R.A/ indicating the domain and the range of the operator A, respectively. An
operator A is called closed if for every sequence xn in D.A/ converging to x0 with
Axn ! y0; y0 2 Y , it follows that x0 2 D.A/ and Ax0 D y0. A closed operator A
is called maximal if R.A/ D Y and ker A ¤ f0g. A closed operator A0 W X ! Y is
called minimal if R.A0/ ¤ Y and its inverse A�1

0 exists on R.A0/ and is continuous.
An operatorbA W X ! Y is called correct if R.bA/ D Y and its inversebA�1 exists and
is continuous. Let the operators A1;A2 W X ! Y; the operator A2 is said to be an
extension of A1, or A1 is a restriction of A2, in symbol A1 � A2, if D.A1/ 	 D.A2/
and A1x D A2x, for all x 2 D.A1/. An operatorbA is called a correct extension (resp.
restriction) of the minimal (resp. maximal) operator A0 (resp. A) if it is a correct
operator and A0 �bA (resp.bA � A).

Let  i 2 X�; i D 1; : : : ;m ,  Dcol. 1; : : : ;  m/ denotes the column matrix
of  i; i D 1; : : : ;m and .u/ Dcol. 1.u/; : : : ;  m.u// denotes the values of  at
u 2 X. In addition, let qj 2 X; j D 1; : : : ; n and q D .q1; : : : ; qn/ be a vector of
Xn. Denote by .q/ the m � n matrix whose ijth entry is the value of functional
 i on element qj: It is easy to verify that if C is a n � k constant matrix, then
.qC/ D .q/C: Finally, denote by Im the m � m identity matrix.

3 Extension Operator Method

Let X and Y be complex Banach spaces andbA W X ! Y a linear correct, generally
unbounded, operator with D.bA/ � Z 	 X, where Z is a Banach space, usually a
Sobolev space Wn

2 or Cn: Consider the perturbed problem:
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Bu DbAu � g.u/ D f ; D.B/ D D.bA/; f 2 Y ; (3)

where the inner vector product g.u/ of the vector g D .g1; : : : ; gm/ 2 Ym and the
column vector  D col. 1; : : : ;  m/ 2 .Z�/m is a perturbation. The operator B is
an extension of the minimal operator A0 defined by

A0u DbAu; D.A0/ D fu 2 D.bA/ W .u/ D 0g: (4)

We prove that if g and  satisfy certain necessary and sufficient conditions, the
operator B is correct. Then we find the solution of the problem (3) by using the
solution of the correct problem:

bAu D f ; f 2 Y: (5)

Theorem 1. Let X, Y, and Z be complex Banach spaces and bA W X ! Y a linear
correct operator with D.bA/ � Z 	 X. Further, let the vector g D .g1; : : : ; gm/ 2 Ym

and the column vector  D col. 1; : : : ;  m/, where  1; : : : ;  m 2 Z� and their
restrictions on D.bA/ are linearly independent. Then:

(i) The operator B defined by

Bu DbAu � g.u/ D f ; D.B/ D D.bA/; f 2 Y ; (6)

is correct if and only if

det W D det
h
Im � .bA�1g/

i
¤ 0: (7)

(ii) If B is correct, then for any f 2 Y, the unique solution of (6) is given by

u D B�1f DbA�1f C .bA�1g/
h
Im � .bA�1g/

i�1
.bA�1f /: (8)

Proof. (i) and (ii). Suppose B is a correct operator and det W D 0. Since the operator
bA is correct, then there exists the inverse operator bA�1. By applying the inverse
operatorbA�1 on both sides of (6), we get

u �bA�1g.u/ DbA�1f : (9)

Applying next the column vector  on (9), that is, evaluating each of  1; : : : ;  m at
u in Eq. (9), we have

.u/ � 
�
bA�1g.u/

	
D .bA�1f /;

.u/ � .bA�1g/.u/ D .bA�1f /;
h
Im � .bA�1g/

i
.u/ D .bA�1f /;

W.u/ D .bA�1f / 8f 2 Y; (10)



Extension Operator Method for the Exact Solution of Integro-Differential Equations 477

where W D
h
Im � .bA�1g/

i
is a m � m matrix. Because of the hypothesis

det W D 0, we suppose that rank W D k < m and that the first k lines of the matrix
W are linearly independent. Also, since the components of the vector  are linearly
independent on D.bA/, then there exists a biorthogonal set t1; : : : ; tm 2 D.bA/ such that
 i.tj/ D ıij; i; j D 1; : : : ;m; where ıij is the Kronecker symbol. Taking f D bAtkC1
and substituting into the system (10), we have W.u/ D .tkC1/, where because
of the orthogonality, all elements of the right hand side are zero except the k C 1

element which is 1. This means that the rank of the augmented matrix ŒW; .tkC1/�
is greater than that of W and therefore the system (10) has no solution (e.g., see
[26]). In consequence Bu DbAtkC1 has no solution and R.B/ ¤ Y: Hence, B is not a
correct operator which contradicts our assumption. Therefore (7) is true.

Conversely, suppose now det W ¤ 0. Working as above we obtain (9) and (10).
Then

.u/ D ŒIm � .bA�1g/��1.bA�1f / (11)

is uniquely defined for any f 2 Y . Substituting (11) into (9) and considering (6), we
get

u D B�1f DbA�1f C .bA�1g/
h
Im � .bA�1g/

i�1
.bA�1f / (12)

which is the unique solution of (6) for any f 2 Y . This proves the existence of
the inverse B�1 and that R.B/ D Y: It remains to show that the operator B�1 is
continuous. Let for convenience W�1 D D D .dij/; i; j D 1; : : : ;m: Note that since
 j are bounded functionals, there exist constants kj > 0 such that j j.bA�1f /j �
kjjjbA�1f /jjX; j D 1; : : : ;m. Also, the boundedness ofbA�1 implies the existence of a
constant ı > 0 such that jjbA�1f jjX � ıjj f jjY for all f 2 Y: Then from (12) we have

jjB�1f jjX � jjbA�1f jjX C jj
mX

iD1
di1bA�1gijjX � j 1.bA�1f /j C � � �

Cjj
mX

iD1
dimbA�1gijjX � j m.bA�1f /j

� jjbA�1f jjX C
2

4
mX

jD1

 

jj
mX

iD1
dijbA�1gijjX

!

kj

3

5 jjbA�1f jjX

�
8
<

:
1C

2

4
mX

jD1

 

jj
mX

iD1
dijbA�1gijjX

!

kj

3

5

9
=

;
ıjj f jjY

� cjj f jjY ; (13)
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where

c D
8
<

:
1C

2

4
mX

jD1

 

jj
mX

iD1
dijbA�1gijjX

!

kj

3

5

9
=

;
ı > 0:

This proves that B�1 is bounded and hence continuous. Therefore the operator B is
correct. This completes the proof. ut

4 Fredholm Integro-Differential Equations

The method presented in the previous section can be applied to several classes of
problems. Here, we concentrate on the application of the method to linear Fredholm
integro-differential equations.

Consider a standard general form of the linear Fredholm integro-differential
equations given by

nX

kD0
Pk.x/u

.k/.x/ D f .x/C �

lX

jD0

Z b

a
Kj.x; t/u

. j/.t/dt; x 2 Œa; b�; (14)

with the initial conditions

u.k/.a/ D ak; 0 � k � n � 1; (15)

or under the boundary conditions

u.k/.a/ D ak; u.l/.b/ D bl; 0 � k; l � n � 1; 0 � k C l � n � 1; (16)

where � is a known parameter, Pk.x/; k D 0; : : : ; n, f .x/ and the kernels
Kj.x; t/; j D 1; : : : ; l � n are given functions satisfying certain conditions such that
Eq. (14) along with (15) or (16) has a unique solution, ak and bl are given constants
that define the initial or boundary conditions, and u.x/ is an unknown function to be
determined. Without loss of generality, we consider the case where all conditions
are initial conditions. Boundary conditions can be treated in a similar manner.
Also, we assume that the initial conditions are homogeneous, i.e., u.k/.a/ D 0,
k D 0; : : : ; n � 1. Observe that by means of the transformation,

v.x/ D u.x/ �
n�1X

kD0

ak

kŠ
.x � a/k; (17)

Eq. (14) accompanied by the nonhomogeneous conditions (15) can be changed
to an integro-differential equation with v.x/ being the unknown function and the
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homogeneous conditions v.k/.a/ D 0, k D 0; : : : ; n � 1. In addition, we assume the
kernels Kj.x; t/ are separable which can be expressed as finite sums of the form

Kj.x; t/ D
mX

iD1
gij.x/hij.t/; j D 0; : : : ; l; (18)

or even more interestingly

Kj.x; t/ D
mX

iD1
gi.x/hij.t/; j D 0; : : : ; l; (19)

where the functions gij.x/ D gi.x/, i D 1; : : : ;m are common for all kernels Kj.x; t/,
j D 0; : : : ; l. Then Eq. (14) subjected to initial conditions (15) is written

nX

kD0
Pk.x/u

.k/.x/ D f .x/C �

mX

iD1
gi.x/

Z b

a

lX

jD0
hij.t/u

. j/.t/dt;

u.k/.a/ D 0; 0 � k � n � 1; x 2 Œa; b�: (20)

When � D 0, Eq. (14) reduces to an nth order differential equation with varying
coefficients:

nX

kD0
Pk.x/u

.k/.x/ D f .x/

u.k/.a/ D 0; 0 � k � n � 1; x 2 Œa; b�: (21)

If the functions Pk.x/; k D 0; : : : ; n and f .x/ are continuous on Œa; b�, then the
problem defined by (21) has a unique solution u.x/ on Œa; b� (e.g., see [15]). In the
following, we assume that Pk.x/; k D 0; : : : ; n and f .x/ are continuous on Œa; b�:

Let now X D Y D CŒa; b�, Z D CnŒa; b� and define the operatorbA W X ! Y by

bAu D
nX

kD0
Pk.x/u

.k/.x/ D f .x/;

D.bA/ D fu 2 CnŒa; b� W u.a/ D u0.a/ D � � � D u.n�1/.a/ D 0g: (22)

The operator bA is a correct operator. In the particular case where bA D u.n/.x/, the
following theorem holds.

Theorem 2. Let the operatorbA W CŒa; b� ! CŒa; b� defined by

bAu D u.n/.x/ D f .x/;

D.bA/ D fu 2 CnŒa; b� W u.a/ D u0.a/ D : : : D u.n�1/.a/ D 0g (23)
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and f .x/ 2 CŒa; b�. Then, the problem (23) is correct and its unique solution is
given by

u.x/ DbA�1f D 1

.n � 1/Š
Z x

a
.x � t/n�1f .t/dt: (24)

Next, we define the minimal operator A0 as follows:

A0u D bAu D f .x/;

D.A0/ D fu 2 D.bA/ W
Z b

a

lX

jD0
hij.t/u

. j/.t/dt D 0; i D 1; : : : ;mg (25)

Finally, we let � D 1 and define the operator B by

Bu D
nX

kD0
Pk.x/u

.k/.x/ �
mX

iD1
gi.x/

Z b

a

lX

jD0
hij.t/u

. j/.t/dt D f .x/;

D.B/ D D.bA/: (26)

Note that the operator B is an extension of the minimal operator A0 and a
perturbation of the operatorbA. We write Eq. (20) in the form as in (6) of Theorem 1,
namely,

Bu DbAu � g.u/ D f ; D.B/ D D.bA/; f 2 Y ; (27)

where

g D .g1; : : : ; gm/ D .g1.x/; : : : ; gm.x// ; gi.x/ 2 Y;

.u/ D col. 1.u/; : : : ;  m.u//

D col

0

@
Z b

a

lX

jD0
h1j.t/u

. j/.t/dt; : : : ;
Z b

a

lX

jD0
hmj.t/u

. j/.t/dt

1

A : (28)

The functionals  1; : : : ;  m defined in (28) are linear and bounded on Z. This is
proved by the following theorem.

Theorem 3. Let u 2 Z D Wl
2.a; b/, hj.t/ 2 L2.a; b/; j D 0; 1; : : : ; l; b1 � b and

the functional

 .u/ D
Z b1

a
Œ

lX

jD0
u. j/.t/hj.t/�dt: (29)
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Then  .u/ is linear and bounded on Z, i.e.,  2 ŒWl
2.a; b/�

� and hence  2�
ClŒa; b�

��
:

Proof. It is easy to show that the functional  defined by (29) satisfies Eq. (1) and
therefore is linear. Next we prove that Eq. (2) is also fulfilled. By using consecutively
Hölder inequality, Minkowski inequality, and the inequality

lX

jD0

p
aj � p

l C 1

vuu
t

lX

jD0
aj; aj � 0; j D 0; : : : ; l ; (30)

we have

j .u/j �
Z b1

a
j

lX

jD0
u. j/.t/hj.t/jdt

�
lX

jD0

Z b

a
ju. j/.t/hj.t/jdt

�
lX

jD0

�Z b

a
jhj.t/j2dt

�1=2 �Z b

a
ju. j/.t/j2dt

�1=2

� c
lX

jD0

�Z b

a
ju. j/.t/j2dt

�1=2

� c
p

l C 1

0

@
lX

jD0

Z b

a
ju. j/.t/j2dt

1

A

1=2

D c
p

l C 1jjujjWl
2
; (31)

where

c D max
j

(�Z b

a
jhj.t/j2dt

�1=2)

; j D 0; : : : ; l:

Equation (31) proves that  2 ŒWl
2.a; b/�

�: Since ŒWl
2.a; b/�

� � �
ClŒa; b�

��
, it

follows that  2 �ClŒa; b�
��

. This completes the proof. ut
It remains to examine if the functionals  1; : : : ;  m defined in (28) are linearly
independent. This can be done by applying the following proposition.
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Proposition 1. Let the functionals  1; : : : ;  n 2 Z�: Then  1; : : : ;  n are linearly
independent elements if there exist a set of linearly independent z1; : : : ; zn 2 Z such
that

det

0

B
@

 1.z1/ : : :  n.z1/
::: � � � :::

 1.zn/ : : :  n.zn/

1

C
A ¤ 0: (32)

5 Illustrative Example Problems

Here we implement the extension operator method for solving initial and boundary
value problems involving a linear Fredholm integro-differential equation. All
examples are taken from the literature on the subject.

Problem 1. Consider first the following integro-differential equation:

u0.x/ D �10x C
Z 1

�1
.x � t/u.t/dt ; u.0/ D 1 ; x 2 Œ�1; 1�: (33)

By making the substitution

v.x/ D u.x/ � 1; (34)

Eq. (33) is written

v0.x/ D �8x C x
Z 1

�1
v.t/dt �

Z 1

�1
tv.t/dt; v.0/ D 0; x 2 Œ�1; 1�; (35)

where now the initial condition is homogeneous. Let X D Y D CŒ�1; 1�, Z D
C1Œ�1; 1� and the operator B W X ! Y defined by

Bv D v0.x/ � x
Z 1

�1
v.t/dt C

Z 1

�1
tv.t/dt D �8x;

D.B/ D fv 2 C1Œ�1; 1� W v.0/ D 0g: (36)

We express Eq. (36) in the form as in (6), namely,

Bv DbAv � g.v/ D f ; D.B/ D fv 2 C1Œ�1; 1� W v.0/ D 0g ; (37)

where

bAv D v0.x/ ; D.bA/ D D.B/ (38)

and

g D .g1; g2/ D .x; �1/;

.v/ D col . 1.v/;  2.v// D col

�Z 1

�1
v.t/dt;

Z 1

�1
tv.t/dt

�
;

f D �8x: (39)
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By Theorem 3 the functionals  1;  2 2 �
C1Œ�1; 1���, while by Proposition 1, they

are linearly independent. From Theorem 2 the differential equation problem

bAv.x/ D v0.x/ D f ; v.0/ D 0 (40)

is correct and its solution is given by

v.x/ DbA�1f D
Z x

0

f .t/dt: (41)

By using the inverse operatorbA�1 and Eq. (39), we have

bA�1g D
�
bA�1g1; bA�1g2

	
D �

x2=2; �x
�
;

.bA�1g/ D
 
 1.bA�1g1/  1.bA�1g2/
 2.bA�1g1/  2.bA�1g2/

!

D
�
1=3 0

0 �2=3
�

(42)

and thus

det W D det
h
I2 � .bA�1g/

i
D 10

9
¤ 0 : (43)

In addition we get

bA�1f D
Z x

0

.�8t/dt D �4x2;

.bA�1f / D col
�
 1.bA�1f /;  2.bA�1f /

	
D .�8=3; 0/ : (44)

Then, from Theorem 1 and Eq. (43) it follows that the operator B is correct and the
unique solution of Eq. (37) is given by (8). Substitution of (42) and (44) into (8)
yields the exact solution of (37), viz.,

v.x/ D �6x2: (45)

Consequently, by means of (34), the solution of the integro-differential equation (33)
is obtained in closed form:

u.x/ D 1 � 6x2: (46)

Problem 2. Solve the following third-order integro-differential equation:

u000.x/ D e � 2 � x C ex.3C x/C
Z 1

0

.x � t/u.t/dt;

u.0/ D 0; u0.0/ D 1; u00.0/ D 2; x 2 Œ0; 1�: (47)
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By using the transformation

v.x/ D u.x/ � x2 � x; (48)

Eq. (47) is written

v000.x/ D e � 31

12
� x

6
C ex.3C x/C x

Z 1

0

v.t/dt �
Z 1

0

tv.t/dt;

v.0/ D v0.0/ D v00.0/ D 0; x 2 Œ0; 1�; (49)

where now the initial conditions are homogeneous. Let X D Y D CŒ0; 1�, Z D
C3Œ0; 1� and the operator B W X ! Y defined by

Bv D v000.x/ � x
Z 1

0

v.t/dt C
Z 1

0

tv.t/dt D e � 31

12
� x

6
C ex.3C x/;

D.B/ D fv 2 C3Œ0; 1� W v.0/ D v0.0/ D v00.0/ D 0g; (50)

We write Eq. (50) in the form as in (6), specifically

Bv D bAv � g.v/ D f ;

D.B/ D fv 2 C3Œ0; 1� W v.0/ D v0.0/ D v00.0/ D 0g; (51)

where

bAv.x/ D v000.x/; D.bA/ D D.B/ (52)

and

g D .g1; g2/ D .x; �1/;

.v/ D col. 1.v/;  2.v// D col

�Z 1

0

v.t/dt;
Z 1

0

tv.t/dt

�
;

f D e � 31

12
� x

6
C ex.3C x/: (53)

By Theorem 3 the functionals  1;  2 2 �C3Œ0; 1�
��

, whereas by Proposition 1, they
are linearly independent. From Theorem 2 it follows that the differential equation
problem

bAv.x/ D v000.x/ D f ; v.0/ D v0.0/ D v00.0/ D 0; f 2 CŒ0; 1� (54)

is correct and its solution is given by

v.x/ DbA�1f D 1

2

Z x

0

.x � t/2f .t/dt: (55)
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By using the inverse operatorbA�1 and Eq. (53), we get

bA�1g1 D 1

2

Z x

0

.x � t/2tdt D x4

24
;

bA�1g2 D 1

2

Z x

0

.x � t/2.�1/dt D �x3

6
;

bA�1g D .bA�1g1; bA�1g2/ D
�

x4

24
; �x3

6

�
(56)

and

 1.bA�1g1/ D 1

24

Z 1

0

t4dt D 1

120
;  1.bA�1g2/ D �1

6

Z 1

0

t3dt D � 1

24
;

 2.bA�1g1/ D 1

24

Z 1

0

t5dt D 1

144
;  2.bA�1g2/ D �1

6

Z 1

0

t4dt D � 1

30
;

.bA�1g/ D
 
 1.bA�1g1/  1.bA�1g2/
 2.bA�1g1/  2.bA�1g2/

!

D
 

1
120

� 1
24

1
144

� 1
30

!

(57)

and hence

det W D det
h
I2 � .bA�1g/

i
D det

 
119
120

1
24

� 1
144

31
30

!

D 88561

86400
¤ 0: (58)

Furthermore, we have

bA�1f D 1

2

Z x

0

.x � t/2



e � 31

12
� t

6
C et.3C t/

�
dt

D xex � x
�
x3 C 2x2.31 � 12e/C 144x C 144

�

144
;

.bA�1f / D col. 1.bA�1f /;  2.bA�1f //

D col

�
60e C 83

1440
;
4464e � 11537

4320

�
: (59)

Then, from Theorem 1 and Eq. (58), it follows that the operator B is correct and
the solution of the problem (51) is given by (8). Substitution of (56), (57), and (59)
into (8) yields the exact solution:

v.x/ D xex � x2 � x: (60)
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Substituting this into (48), the solution of the integro-differential equation (47) is
obtained in closed form:

u.x/ D xex: (61)

Problem 3. Find the exact solution of the following third-order integro-differential
equation:

u000.x/ D ex C x.127 � 69e/

20
C x

Z 1

0

t2u.t/dt C 2x
Z 1

0

tu0.t/dt C 2x
Z 1

0

u00.t/dt;

u.0/ D 0; u0.0/ D 0; u00.0/ D 0; x 2 Œ0; 1�: (62)

Let X D Y D CŒ0; 1�, Z D C3Œ0; 1� and the operator B W X ! Y defined by

Bu D u000.x/ � x
Z 1

0

t2u.t/dt � 2x
Z 1

0

tu0.t/dt � 2x
Z 1

0

u00.t/dt

D ex C x.127 � 69e/

20
;

D.B/ D fu 2 C3Œ0; 1� W u.0/ D 0; u0.0/ D 0; u00.0/ D 0g: (63)

We formulate Eq. (63) as in (6), that is, to say

Bu D bAu � g.u/ D f ;

D.B/ D fu 2 C3Œ0; 1� W u.0/ D u0.0/ D u00.0/ D 0g; (64)

where

bAu.x/ D u000.x/; D.bA/ D D.B/ (65)

and

g D x;

.u/ D
Z 1

0

Œt2u.t/C 2tu0.t/C 2u00.t/�dt;

f D ex C x.127 � 69e/

20
: (66)

By Theorem 3 the functional  2 �
C3Œ0; 1�

��
. From Theorem 2 the differential

equation problem

bAu.x/ D u000.x/ D f ; u.0/ D u0.0/ D u00.0/ D 0; (67)
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is correct and its solution is given by

u.x/ DbA�1f D 1

2

Z x

0

.x � t/2f .t/dt: (68)

By using the inverse operatorbA�1 and Eq. (66), we get

bA�1g D 1

2

Z x

0

.x � t/2tdt D x4

24
;

.bA�1g/ D
Z 1

0

�
1

24
t6 C 1

3
t4 C t2

�
dt D 341

840
(69)

and therefore

det W D det
h
1 � .bA�1g/

i
D 499

840
¤ 0: (70)

Also, we have

bA�1f D 1

2

Z x

0



.x � t/2

�
et C 127 � 69e

20
t

��
dt

D ex � 1

480

�
x4.60e � 127/C 240x2 C 480x C 480

�
;

.bA�1f / D 1100e � 2963
1120

C 227 � 60e

300
C 60e � 113

60

D 499.60e � 127/
16800

: (71)

Then, from Theorem 1 and Eq. (70), it follows that the operator B is correct and the
solution of (64) is given by (8). Substituting (69) and (71) into (8), the solution of
the integro-differential equation (62) is obtained in closed form:

u.x/ D ex � 1

2
.x2 C 2x C 2/: (72)

Problem 4. Consider the following third-order integro-differential equation:

u000.x/ D sin x � x �
Z 
=2

0

xtu0.t/dt;

u.0/ D 1; u0.0/ D 0; u00.0/ D �1; x 2 Œ0; 
=2� : (73)

By making the substitution

v.x/ D u.x/C 1

2
x2 � 1; (74)
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the integro-differential equation (73) is written

v000.x/ D sin x � x

�
1 � 
3

24

�
� x

Z 
=2

0

tv0.t/dt;

v.0/ D v0.0/ D v00.0/ D 0 (75)

where now the initial conditions are homogeneous. Let X D Y D CŒ0; 
�, Z D
C3Œ0; 
� and the operator B W X ! Y defined by

Bv D v000.x/C x
Z 
=2

0

tv0.t/dt D sin x � x

�
1 � 
3

24

�
;

D.B/ D fv 2 C3Œ0; 
� W v.0/ D v0.0/ D v00.0/ D 0g: (76)

We express Eq. (76) in the operator form as in (6), namely,

Bv D bAv � g.v/ D f ;

D.B/ D fv 2 C3Œ0; 
� W v.0/ D v0.0/ D v00.0/ D 0g (77)

where

bAv.x/ D v000.x/; D.bA/ D D.B/ (78)

and

g D �x; .v/ D
Z 
=2

0

tv0.t/dt; f D sin x � x

�
1 � 
3

24

�
: (79)

From Theorem 3 it follows that the functional  2 �
C3Œ0; 
�

��
. According to

Theorem 2, the differential equation problem

bAv.x/ D v000.x/ D f ; v.0/ D v0.0/ D v00.0/ D 0 (80)

is correct and its solution is given by

v.x/ DbA�1f D 1

2

Z x

0

.x � t/2f .t/dt: (81)

Utilizing the inversebA�1 and Eq. (79), we get

bA�1g D 1

2

Z x

0

.x � t/2.�t/dt D � x4

24
;

.bA�1g/ D
Z 
=2

0

t.bA�1g/0dt D �1
6

Z 
=2

0

t4dt D � 
5

960
(82)
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and hence

det W D det
h
Im � .bA�1g/

i
D 960C 
5

960
¤ 0: (83)

Furthermore, we have

bA�1f D 1

2

Z x

0

.x � t/2



sin t � t.1 � 
3

24
/

�
dt

D cos x C x4.
3 � 24/C 288x2 � 576
576

;

.bA�1f / D
Z 
=2

0

t.bA�1f /0dt D 
8 � 24
5 C 960
3 � 23040
23040

: (84)

Then, from Theorem 1 and Eq. (83), it follows that the operator B is correct and the
unique solution of (77) is given by (8). Substitution of (82) and (84) into (8) yields
the exact solution of equation (77), viz.,

v.x/ D cos x C .x2 � 2/=2: (85)

Substituting this into (74), the solution of the integro-differential equation (73) is
obtained in closed form:

u.x/ D cos x: (86)

Problem 5. Solve the following integro-differential equation:

u0.x/ D cos x C x
Z 


0

u.t/ sin 2tdt C 2x
Z 


0

u0.t/ cos 2tdt;

u.0/ D 0; x 2 Œ0; 
�: (87)

We can write (87) conveniently as follows:

u0.x/ D cos x C x
Z 


0

Œu.t/ sin 2t C 2u0.t/ cos 2t�dt;

u.0/ D 0; x 2 Œ0; 
�: (88)

Let X D Y D CŒ0; 
�, Z D C1Œ0; 
� and the operator B W X ! Y defined by

Bu D u0.x/ � x
Z 


0

�
u.t/ sin 2t C 2u0.t/ cos 2t

�
dt D cos x;

D.B/ D fu 2 C1Œ0; 
� W u.0/ D 0g: (89)
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We express Eq. (89) in the operator form as in (6), viz.,

Bu DbAu � g.u/ D f ; D.B/ D fu 2 C1Œ0; 
� W u.0/ D 0g; (90)

where

bAu D u0.x/; D.bA/ D D.B/ (91)

and

g D x; .u/ D
Z 


0

�
u.t/ sin 2t C 2u0.t/ cos 2t

�
dt; f D cosx: (92)

By Theorem 3 the functional  2 �C1Œ0; 
�
��

. Theorem 2 states that the differential
equation problem

bAu.x/ D u0.x/ D f ; u.0/ D 0 (93)

is correct and its solution is given by

u.x/ DbA�1f D
Z x

0

f .t/dt: (94)

By using the inversebA�1 and Eq. (92), we obtain

bA�1g D
Z x

0

tdt D x2

2
;

.bA�1g/ D
Z 


0



t2

2
sin 2t C 2t cos 2t

�
dt D �


2

4
(95)

and thus

det W D det
h
1 � .bA�1g/

i
D 1C 
2

4
¤ 0: (96)

In addition, we get

bA�1f D
Z x

0

cos tdt D sin x;

.bA�1f / D
Z 


0

Œsin t sin 2t C 2.sin t/0 cos 2t�dt D 0: (97)

From Theorem 1 and Eq. (96), it follows that the operator B is correct and the unique
solution is given by (8). Substitution of (95) and (97) into (8) yields the solution of
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the integro-differential equation (87) in closed form:

u.x/ D sin x: (98)

Problem 6. Find the exact solution of the following first-order integro-differential
equation:

u0.x/ � u.x/ D � cos.2
x/ � 2
 sin.2
x/ � 1

2
sin.4
x/

C
Z 1

0

sin.4
x C 2
 t/u.t/dt; u.0/ D 1; x 2 Œ0; 1�: (99)

By considering the transformation

v.x/ D u.x/ � 1 (100)

and since
R 1
0

sin.4
x C 2
 t/dt D 0 Eq. (99) is written

v0.x/� v.x/ D 1� cos.2
x/� 2
 sin.2
x/� 1

2
sin.4
x/

C sin.4
x/

Z 1

0

cos.2
 t/v.t/dt C cos.4
x/

Z 1

0

sin.2
 t/v.t/dt;

v.0/ D 0: (101)

Let X D Y D CŒ0; 1�, Z D C1Œ0; 1� and the operator B W X ! Y defined by

Bv D v0.x/� v.x/� sin.4
x/

Z 1

0

cos.2
 t/v.t/dt � cos.4
x/

Z 1

0

sin.2
 t/v.t/dt;

D 1� cos.2
x/� 2
 sin.2
x/� 1

2
sin.4
x/;

D.B/ D fv 2 C1Œ0; 1� W v.0/ D 0g: (102)

We formulate Eq. (102) as in (6), namely,

Bv DbAv � g.v/ D f ; D.B/ D fv 2 C1Œ0; 1� W v.0/ D 0g; (103)

where

bAv D v0.x/ � v.x/; D.bA/ D D.B/ (104)

and

g D .g1; g2/ D .sin.4
x/; cos.4
x// ;

.v/ D col. 1.v/;  2.v// D col

�Z 1

0

cos.2
 t/v.t/dt;
Z 1

0

sin.2
 t/v.t/dt

�
;

f D 1 � cos.2
x/ � 2
 sin.2
x/ � 1

2
sin.4
x/: (105)
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According to Theorem 3, the functionals  1;  2 2 �
C1Œ0; 1�

��
, while by

Proposition 1, they are linearly independent. The differential equation problem
(e.g., see [15])

bAv D v0.x/ � v.x/ D f .x/; v.0/ D 0; (106)

is correct and its solution is given by

v.x/ DbA�1f D
Z x

0

f .t/ex�tdt: (107)

Utilizing the inverse operatorbA�1 and Eq. (105), we get

bA�1g1 D
Z x

0

sin.4
 t/ex�tdt D 4
ex

16
2 C 1
� 4
 cos.4
x/C sin.4
x/

16
2 C 1
;

bA�1g2 D
Z x

0

cos.4
 t/ex�tdt D ex

16
2 C 1
� cos.4
x/ � 4
 sin.4
x/

16
2 C 1
;

bA�1g D .bA�1g1; bA�1g2/ (108)

and

 1.bA�1g1/ D
Z 1

0

cos.2
 t/bA�1g1dt D 4
k;

 1.bA�1g2/ D
Z 1

0

cos.2
 t/bA�1g2dt D k;

 2.bA�1g1/ D
Z 1

0

sin.2
 t/bA�1g1dt D �8
2k;

 2.bA�1g2/ D
Z 1

0

sin.2
 t/bA�1g2dt D �2
k;

.bA�1g/ D
�
4
k k

�8
2k �2
k

�
; (109)

where

k D e � 1
.4
2 C 1/.16
2 C 1/

:

Consequently we compute the determinant

det W D det
h
I2 � .bA�1g/

i
D det

�
1 � 4
k �k
8
2k 1C 2
k

�
D 1 � 2
k ¤ 0

(110)
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and the inverse matrix

h
I2 � .bA�1g/

i�1 D 1

1 � 2
k

�
1C 2
k k
�8
2k 1 � 4
k

�
: (111)

In addition, we have

bA�1f D
Z x

0



1 � cos.2
 t/ � 2
 sin.2
 t/ � 1

2
sin.4
 t/

�
ex�tdt

D 4
 cos.4
x/C sin.4
x/C 2.16
2 C 1/.cos.2
x/ � 1/ � 4
ex

2.16
2 C 1/

 1.bA�1f / D
Z 1

0

cos.2
 t/bA�1fdt D 1

2
� 2
k;

 2.bA�1f / D
Z 1

0

sin.2
 t/bA�1fdt D 4
2k;

.bA�1f / D col.
1

2
� 2
k; 4
2k/: (112)

From Theorem 1 and Eq. (110), it follows that the operator B is correct and the
solution of (103) is given by (8). Substitution of (108), (111), and (112) into (8)
yields the exact solution of (103), viz.,

v.x/ D cos.2
x/ � 1: (113)

Substituting this into (100), the solution of the integro-differential equation (99) is
obtained in closed form:

u.x/ D cos.2
x/: (114)

Problem 7. Solve the following second-order integro-differential boundary value
problem:

u00.x/ D ex � .2e � 7/x2 C 6x C 4x2
Z 1

0

u.t/dt;

u.0/ D u.1/ D 0; x 2 Œ0; 1�: (115)

Let X D Y D CŒ0; 1�, Z D C2Œ0; 1� and the operator B W X ! Y defined by

Bu D u00.x/ � 4x2
Z 1

0

u.t/dt D ex � .2e � 7/x2 C 6x;

D.B/ D fu 2 C2Œ0; 1� W u.0/ D u.1/ D 0g: (116)
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We express Eq. (116) in the operator form as in (6), specifically

Bu DbAu � g.u/ D f ; D.B/ D fu 2 C2Œ0; 1� W u.0/ D u.1/ D 0g; (117)

where

bAu D u00.x/; D.bA/ D D.B/ (118)

and

g D 4x2; .u/ D
Z 1

0

u.t/dt; f .x/ D ex � .2e � 7/x2 C 6x: (119)

By Theorem 3 the functional  2 �
C2Œ0; 1�

��
. The second-order differential

boundary value problem (e.g., see [15])

bAu D u00.x/ D f .x/; u.0/ D u.1/ D 0; (120)

is correct and its solution is given by

u.x/ DbA�1f D
Z x

0

.x � t/f .t/dt � x
Z 1

0

.1 � t/f .t/dt: (121)

By making use of the inverse operatorbA�1 and Eq. (119), we have

bA�1g D
Z x

0

.x � t/4t2dt � x
Z 1

0

.1 � t/4t2dt D .x4 � x/

3
;

.bA�1g/ D 1

3

Z 1

0

.t4 � t/dt D � 1

10
: (122)

and thus

det W D det
h
Im � .bA�1g/

i
D 11

10
¤ 0: (123)

In addition, we get

bA�1f D
Z x

0

.x � t/Œet � .2e � 7/t2 C 6t�dt � x

Z 1

0

.1� t/Œet � .2e � 7/t2 C 6t�dt

D ex C x4.2e � 7/� 12x3 C x.10e C 7/C 12

12
;

.bA�1f / D
Z 1

0

bA�1f .t/dt D 11.2e � 7/

40
: (124)
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From Theorem 1 and Eq. (123), it follows that the operator B is correct and the
solution of the boundary value problem (117) is given by (8). Substituting the values
computed in (122) and (124) into (8), the unique solution of the boundary value
problem (115) is obtained in closed form:

u.x/ D ex C x3 � xe � 1: (125)

6 Conclusions

In this work, we developed and applied an exact extension operator method for
solving the Fredholm type linear integro-differential equations. Several example
problems from the literature have been solved and the effectiveness of the method
in producing the exact solution has been proved. The method is simple and easy
to implement. In particular, it can be programmed handily in a modern computer
algebra system (CAS) and to become thus a useful tool for scientists and engineers
not necessarily familiar with the subject. It is also possible to extend the application
of the method presented to singular integro-differential equations, to systems
of integro-differential equations, to partial integro-differential equations, and to
differential equations with weights.
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Fixed Point Structures, Invariant Operators,
Invariant Partitions, and Applications
to Carathéodory Integral Equations

A. Petruşel, I.A. Rus, and M.-A. Şerban

In Honor of Constantin Carathéodory

Abstract The aim of this paper is to present the technique of the fixed point
partition with respect to an operator and a fixed point structure, to study the data
dependence of the fixed points, Ostrowski property and well posedness of the fixed
point problem.

An application to a class of Carthéodory integral equation is given. Some
research directions are also presented.

1 Introduction

Let X be a nonempty set and A W X ! X an operator. We denote by FA the fixed
point of A, FA WD fx 2 X j A.x/ D xg: If .X;!/ is an L-space, then A is weakly
Picard operator if An.x/ ! x�.x/ 2 FA as n ! 1 for all x 2 X. By FA D fx�g we
understand that A has a unique fixed point and we denote it by x�. If A is weakly
Picard operator and FA D fx�g, then by definition A is Picard operator. The theorem
of equivalent statements in the weakly Picard operator theory is well known (see
[36, 40, 45]; see also [20, 53]).

Theorem 1. Let X be a nonempty set and A W X ! X an operator. The following
statements are equivalent:

(i) FA D FAn ¤ ;; 8 n 2 N
�.
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(ii) There exists a partition of X, X D
[

�2�
X� such that:

(a) A.X�/ � X�; 8 � 2 �
(b) 8 � 2 � there exists x�

� 2 X� such that FAn \ X� D fx�
�g, 8 n 2 N

�.

(iii) There exists an L-space structure on X, !, such that A W .X;! / ! .X;!/ is
a weakly Picard operator.

(iv) There exists an L-space structure on X and a partition of X, X D
[

�2�
X� such

that:

(a) A.X�/ � X�; 8 � 2 �
(b) A

ˇ̌
ˇ
X�

W X� ! X� is Picard operator for all � 2 �.

(v) There exist l 2�0; 1Œ, a complete metric d on X and a partition of X, X D
[

X�
such that:

(a) A.X�/ � X�, FA \ X� D fx�
�g, 8 � 2 �.

(b) A
ˇ̌
ˇ
X�

W X� ! X� is an l-contraction w.r.t. the metric d, for all � 2 �.

(vi) There exist a metric d on X and a partition of X, X D
[

�2�
X� such that:

(a) A.X�/ � X�, FA \ X� D fx�
�g, 8 � 2 �.

(b) A
ˇ̌
ˇ
X�

W X� ! X� is a contraction w.r.t. the metric d.

It is clear that the above statements are equivalent to the following:
(vii) There exists an invariant partition of X, X D

[

�2�
X� such that for each � 2 �,

there exists a complete metric d� on X� with respect to which A
ˇ̌
ˇ
X�

W X� ! X�

is a contraction.

There are also many situations in which appear invariant partitions w.r.t. an
operator (see [2–52, 55, 57–59]). In Theorem 1 these partitions are, in principle,
w.r.t. the fixed point structure of contractions (see [41]; see also Sect. 3 of this paper).
All these suggest the following notion.

Definition 1. Let X be a nonempty set, .X; S.X/;M/ be a fixed point structure on
X, Y � X a nonempty subset of X, and A W Y ! Y an operator. By definition a
partition of Y , Y D

[

�2�
Y� is a fixed point partition of Y w.r.t. the operator A and

.X; S.X/;M/ if:

(a) A.Y�/ � Y�, 8 � 2 �, i.e., Y D
[

�2�
Y� is an invariant partition w.r.t. the

operator A.
(b) Y� 2 S.X/; 8 � 2 �.
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(c) A
ˇ̌
ˇ
Y�

2 M.Y�/; 8 � 2 �.

The aim of this paper is to present a theory of the fixed point partitions
with respect to an operator and a fixed point structure, composed, at least, by
the following elements: data dependence of the fixed points, Ostrowski property,
and well posedness of the fixed point problem. Some applications to a class of
Carathéodory integral equations are also given.

The structure of our paper is the following:

1. Introduction
2. Preliminaries
3. Fixed point structures
4. Invariant operator of an operator
5. Fixed point partitions w.r.t. an operator and a fixed point structure
6. Carathéodory integral equations
7. Some research directions

References

2 Preliminaries

2.1 Generalized Contractions: Example of Picard Operators

Let A W X ! X be an operator. Then A0 WD 1X; A1 WD A; : : : ;AnC1 D A ı An; n 2 N

denote the iterate operators of A. By I.A/ we will denote the set of all nonempty
invariant subsets of A, i.e., I.A/ WD fY � XjA.Y/ 	 Yg. We also denote by
FA WD fx 2 Xj x D A.x/g the fixed point set of the operator A. By FA D fx�g,
we understand that A has a unique fixed point and we denote it by x�.

Let X be a nonempty set. Denote by�.X/ the diagonal of X�X. Also, let s.X/ WD
f.xn/n2N jxn 2 X; n 2 Ng. Let c.X/ � s.X/ a subset of s.X/ and Lim W c.X/ ! X an
operator. By definition the triple .X; c.X/;Lim/ is called an L-space (Fréchet [14])
if the following conditions are satisfied:

(i) If xn D x; for all n 2 N, then .xn/n2N 2 c.X/ and Lim.xn/n2N D x.
(ii) If .xn/n2N 2 c.X/ and Lim.xn/n2N D x, then for all subsequences, .xni/i2N , of

.xn/n2N we have that .xni/i2N 2 c.X/ and Lim.xni/i2N D x.

By definition an element of c.X/ is a convergent sequence, x WD Lim.xn/n2N is
the limit of this sequence, and we also write xn ! x as n ! C1:

In what follows we denote an L-space by .X;!/.
Recall now the following important abstract concept.

Definition 2 (Rus [40]). Let .X;!/ be an L-space. An operator A W X ! X is, by
definition, a Picard operator if:

(i) FA D fx�g.
(ii) .An.x//n2N ! x� as n ! 1; for all x 2 X.
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Definition 3 (Rus [36]). Let .X;!/ be an L-space. An operator A W X ! X is, by
definition, a weakly Picard operator if, for all x 2 X, we have that .An.x//n2N !
x�.x/ 2 FA as n ! 1.

If A is weakly Picard operator, then we consider the operator A1 W X ! X

A1 .x/ WD lim
n!C1 An .x/ :

In particular, since any metric space .X; d/ is an L-space, the above concepts
can be considered in this context too. In this case, several classical results in fixed
point theory can be easily transcribed in terms of (weakly) Picard operators; see
[36, 53, 54].

Moreover, a Picard operator for which there exists Qc > 0, such that

d.x; x�/ � Qcd.x;A.x//; for all x 2 X;

is called a Qc-Picard operator. More generally, a Picard operator for which there exists
a function  W RC ! RC which is increasing, continuous in 0, and satisfying
 .0/ D 0, such that

d.x; x�/ �  .d.x;A.x//; for all x 2 X;

is called a  -Picard operator.
For example, Hardy–Rogers’ fixed point theorem [17] can be represented, in

terms of Picard operators, as follows.

Theorem 2. Let .X; d/ be a complete metric space and A W X ! X be an operator
for which there exist a; b; c; e; f 2 RC with a C b C c C e C f < 1 such that, for all
x; y 2 X, we have

d.A.x/;A.y// � ad.x; y/C bd.x;A.x//C cd.y;A.y//C ed.x;A.y//C fd.y;A.x//:

Then, A is a Qc-Picard operator, with Qc WD 1
1�ˇ , where ˇ WD minf aCbCe

1�c�e ;
aCcCf
1�b�f g < 1.

Another general result was given by Rus (see [38]), as follows.

Theorem 3. If .X; d/ is a complete metric space and A W X ! X is an operator for
which there exists a generalized strict comparison function ' W R5C ! RC (which
means that ' is increasing in each variable and the function  W RC ! RC defined
by  .t/ WD '.t; t; t; t; t/ satisfies the conditions that  n.t/ ! 0 as n ! C1, for all
t > 0 and t �  .t/ ! C1 as t ! C1) such that, for all x; y 2 X, we have

d.A.x/;A.y// � '.d.x; y/; d.x;A.x//; d.y;A.y//; d.x;A.y//; d.y;A.x///;

then A is a  -Picard operator.

For the case of RmC-metric spaces (also called generalized metric spaces in the
sense of Perov), we have the following fixed point theorem of Perov; see [29].
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Theorem 4. Let .X; d/ be a complete R
mC-metric space and let A W X ! X be

an operator with the property that there exists a matrix S 2 Mm .RC/ convergent
toward zero such that

d .A .x/ ;A .y// � Sd .x; y/ ; for all x; y 2 X:

Then, A is a Picard operator and

d
�
x; x�� � Sn .I � S/�1 d.x;A.x//I

For more considerations on -weakly Picard operator theory, see [6, 31, 38, 51, 54].
In Rus [40] the basic theory of Picard operators in the context of L-spaces is

presented.

2.2 Applications of the Picard Operator Theory
in a Metric Space

We will present in this section some important applications of the Picard operator
theory. For this purpose, let .X; d/ be a metric space and A W X ! X be an operator.
Then:

(i) The fixed point equation

x D A.x/; x 2 X

is called well posed if FA D fx�
Ag and for any xn 2 X, n 2 N a sequence in X

such that

d.xn;A.xn// ! 0 as n ! 1;

we have that

xn ! x�
A as n ! 1:

(ii) The operator A has the Ostrowski property (or the operator A has the limit
shadowing property) if FA D fx�g and for any xn 2 X, n 2 N a sequence in X
such that

.d.xnC1;A.xn// ! 0 as n ! 1;

we have that

xn ! x� as n ! 1:

(iii) The fixed point equation

x D A.x/; x 2 X
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has the data dependence property if FA D fx�
Ag and for any operator B W X ! X

such that there exists � > 0 with

d.A.x/;B.x// � �; 8 x 2 X;

we have that

x�
B 2 FB implies d.x�

A; x
�
B/ �  .�/ & 0 as � & 0;

where  W RC ! RC is increasing, continuous in zero, and  .0/ D 0.

For example, for the data dependence problem, we have the following general
abstract result in terms of Picard operators.

Theorem 5. Let .X; d/ be a metric space and A W X ! X be a  -Picard operator,
such that FA D fx�

Ag. Let B W X ! X be an operator such that there exists � > 0

such that

d.A.x/;B.x// � �; 8 x 2 X:

Then, for any x�
B 2 FB, we have that d.x�

A; x
�
B/ �  .�/:

3 Fixed Point Structures

Following [41, 47], we shall present some basic notions and examples for the fixed
point structure theory.

Let C be a class of structured sets and Set� be the class of nonempty set. We
shall use the following notations:

For X 2 Set�, P.X/ WD fY � X j Y ¤ ;g; P.C / WD fU 2 P.X/ j X 2 C g;
M.U;V/ WD ff W U ! V j f an operatorg; M.U/ WD M.U;U/;
S W C ( Set� is a multivalued operator such that X ( S.X/ � P.X/;
M W DM � P.C /� P.C / ( M.P.C /;P.C // is a multivalued operator such that
.U;V/ ( M.U;V/ � M.U;V/.

The basic notions of this theory is the following.

Definition 4. By a fixed point structure (f.p.s.) on a structured set X 2 C , we
understand a triple .X; S.X/;M/ with the following properties:

(a) U 2 S.X/ implies .U;U/ 2 DM .
(b) U 2 S.X/, f 2 M.U/ implies Ff ¤ ;.
(c) the operator M is such that:

.Y;Y/ 2 DM , Z 2 P.Y/ with .Z;Z/ 2 DM imply
M.Z/ � ff jZ j f 2 M.Y/g.
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Example 1 (The Fixed Point Structure of Contractions). Let C be the class of
complete metric spaces and X 2 C . If S.X/ WD Pcl.X/ WD fY 2 P.X/ j Y is closedg,
DM WD P.X/ � P.X/ and M.Y/ WD ff W Y ! Y j f is a contractiong, then
.X; S.X/;M/ is a f.p.s.

Example 2 (The Fixed Point Structure of Nonlinear Contractions). Let C be the
class of complete metric spaces and X 2 C . If S.X/ WD Pcl.X/, DM WD P.X/ �
P.X/ and M.Y/ WD ff W Y ! Y j , there exists a comparison function ' W RC !
RC such that f is a '-contraction g, then .X; S.X/;M/ is a f.p.s.

Example 3 (The Fixed Point Structure of Perov). Let C be the class of complete
R

mC-metric spaces and X 2 C . If S.X/ WD Pcl.X/, DM WD P.X/� P.X/ and M.Y/ WD
ff W Y ! Y j , there exists a matrix A convergent to zero, such that d.f .x/; f .y// �
A � d.x; y/;8x; y 2 Yg, then .X; S.X/;M/ is a f.p.s.

Example 4 (The First Fixed Point Structure of Schauder). Let C be the class of
Banach spaces and X 2 C . If S.X/ WD Pcp;cv.X/, DM WD P.X/� P.X/ and M.Y/ WD
C.Y;Y/, then .X; S.X/;M/ is a f.p.s.

Example 5 (The Second Fixed Point Structure of Schauder). Let C be the class of
Banach spaces and X 2 C . If S.X/ WD Pb;cl;cv.X/, DM WD P.X/�P.X/ and M.Y/ WD
ff W Y ! Y j f is a complete continuous g, then .X; S.X/;M/ is a f.p.s.

4 Invariant Operator of an Operator

Let X and Y be two nonempty sets and A W X ! X an operator. By definition (see
[4, 9, 28, 32, 49]), an operator ˚ W X ! Y is invariant with respect to A (or is
invariant operator of A) if ˚ ı A D ˚ .

Example 6. Let X WD CŒ0; 1� and A W CŒ0; 1� ! CŒ0; 1� be an increasing linear
operator such that A.ei/ D ei, i D 0; 1, where ei.x/ D xi, x 2 Œ0; 1�. Then it is well
known that (see [34, 46])

A.f /.0/ D f .0/ and A.f /.1/ D f .1/; 8 f 2 CŒ0; 1�:

Let us take Y WD R
2 and ˚ W CŒ0; 1� ! R

2 be defined by ˚.f / D .f .0/; f .1//. It is
clear that ˚ is an invariant operator of A.

Example 7. Let X WD R
m and A W Rm ! R

m be a positive stochastic operator (see
[32]) and Y WD R. Then the functional ˚ W Rm ! R defined by

˚.x1; : : : ; xm/ D
mX

kD1
xk

is an invariant functional of A.
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Example 8. Let X WD CŒa; b� and A W X ! X be defined by

Ax.t/ WD x.a/C
Z t

a
K.t; s; x.s//ds; t 2 Œa; b�;

where K 2 C.Œa; b� � Œa; b� � R/. Then, the functional ˚ W X ! R, ˚.x/ WD x.a/ is
an invariant functional of A.

Example 9. Let X WD CŒa � h; b� (where a < b and h > 0) and A W X ! X be
defined by

Ax.t/ WD
�

x.a/C R t
a K.t; s; x.s/; x.s � h//ds; t 2 Œa; b�

x.t/; t 2 Œa � h; a�;

where K 2 C.Œa; b��Œa; b��R�R/. Then, the operator˚ W CŒa�h; b� ! CŒa�h; a�,
˚.x/ WD xjŒa�h;a� is an invariant operator of A.

Example 10. Let .X;!/ be an L-space and A W X ! X be a weakly Picard operator.
Then, the operator ˚ WD A1 W X ! Ff is an invariant operator of A.

Let X be a nonempty set and A W X ! X an operator. By definition, a partition of
X (i.e., X D

[

�2�
X�, X� ¤ ¿, 8� 2 � and �, � 2 �, � ¤ � implies X� \ X� D ¿)

is an invariant partition of X with respect to the operator A if A.X�/ � X�, 8 � 2 �.

Remark 1. Each surjective invariant operator ˚ W X ! Y of an operator A W X ! X
generates an invariant partition of X w.r.t. the operator.

Indeed, for y 2 Y , let Xy WD fx 2 X j A.x/ D yg. Then X D
[

y2Y

Xy is an invariant

partition of X w.r.t. the operator A. Moreover if in addition .X;!/ and .Y;!/ are
L-spaces and ˚ is continuous, then Xy D Xy, 8 y 2 Y .

For example, in the case of Example 6, we consider X D CŒ0; 1�; Y WD
R
2; Xy WD ff 2 CŒ0; 1� j f .0/ D y1; f .1/ D y2g; y D .y1; y2/. Then CŒ0; 1� D[

y2R2
Xy is an invariant partition of CŒ0; 1� w.r.t. the operator A and Xy D Xy, 8 y 2 Y .

5 Fixed Point Partitions with Respect to an Operator
and a Fixed Point Structure

Following [48, 49], we give the following notion.

Definition 5. Let X be a nonempty set and A W X ! X an operator with FA ¤ ;.
By definition a partition of X, X D

[

x�2FA

Xx� is a fixed point partition of X w.r.t. the

operator A if:
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(i) A.Xx�/ � Xx� ; 8 x� 2 FA.
(ii) FA \ Xx� D fx�g; 8 x� 2 FA.

By Definition 1 we extended this notion to the notion: fixed point partition with
respect to an operator and a f.p.s.

In the case of f.p.s. of contraction, we have the following results.

Theorem 6. Let .X; d/ be a complete metric space and .X;Pcl.X/;M/ be the f.p.s.
of contraction. Let Y � X, A W Y ! Y an operator and Y D

[

�2�
Y� a fixed point

partition of Y w.r.t. A and .X;Pcl.X/;M/. Then we have:

(1) Y� D Y�; 8 � 2 �.

(2) A
ˇ̌
ˇ
Y�

is an l�-contraction.

(3) FA \ Y� D fx�
�g; 8 � 2 �, i.e., Y D

[
Y� is a fixed point partition of Y w.r.t.

the operator A.
(4) An.x/ ! x�

� as n ! 1, 8 x 2 Y�, 8 � 2 �.

(5) d.x; x�
�/ � 1

1 � l�
d.x;A.x//; 8 x 2 Y�, � 2 �.

(6) � 2 �, yn 2 Y�, n 2 N, d.ynC1;A.yn// ! 0 as n ! 1 imply that yn ! x�
� as

n ! 1.
(7) � 2 �, yn 2 Y, d.yn;A.yn// ! 0 as n ! 1 imply that yn ! x�

� as n ! 1.

Proof. Y D
[

�2�
Y� is a fixed point partition of Y w.r.t. A, and .X;Pcl.X/;M/, the

f.p.s. of contraction, so Y� 2 Pcl.X/ and A
ˇ̌
ˇ
Y�

is an l�-contraction. The conclusions

(3)–(7) follow from the properties of contractions (for details see [43, 54]). For .6/
see also [51, 53] and for .7/: [35, 42, 53]. ut
New some remarks on Theorem 6:

(a) Conclusion (6) suggests us the following notion.

Definition 6. Let .X; d/ be a metric space, A W X ! X an operator with FA ¤ ;
and X D

[
X� a fixed point partition of X w.r.t. the operator A. By definition, the

operator A has the Ostrowski property if the following implication holds:

� 2 �; xn 2 Y�; n 2 N; d.xnC1;A.xn// ! 0 as n ! 1
implying that xn ! x�

� as n ! 1, where FA \ X� D fx�
�g, for each � 2 �.

(b) Conclusion (7) suggests us the following notion.

Definition 7. Let .X; d/ be a metric space, A W X ! X an operator with FA ¤ ;,
and X D

[

�2�
X� a fixed point partition of X w.r.t. the operator A. By definition, the

fixed point problem for the operator A is well posed if the following implication
holds:

� 2 �; xn 2 X�; n 2 N; d.xn;A.xn// ! 0 as n ! 1
implying that xn ! x�

� as n ! 1, where FA \ X� D fx�
�g, for each � 2 �.
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Theorem 7. Let .X; d/ be a complete metric space and .X;Pcl.X/;M/ be the f.p.s.
of contraction.

Let Y � X, A;B W Y ! Y be two operators and Y D
[

�2�
Y� a fixed point partition

of Y w.r.t. the operator A and .X;Pcl.X/;M/. In addition we suppose that:

(i) There exists on X a fixed point structure .X; S.X/;M1/ such that Y D
[

�2�
Y� is

a fixed point partition of Y w.r.t. the operator B and .X; S.X/;M1/.
(ii) 8 � 2 � there exists �� > 0 such that

d.A.x/;B.x// � ��; 8 x 2 Y�:

Let l� be the contraction constant of A
ˇ̌
ˇ
Y�

W Y� ! Y� and x�
� the unique fixed

point of A in Y�.
Then we have

d.x�
�; y

�
�/ � ��

1 � l�
; 8 y�

� 2 FB\Y� ; 8 � 2 �:

Proof. Let � 2 � and y�
� 2 FB\Y� . Then

d
�
x�
�; y

�
�

� � d
�
A
�
x�
�

�
;A
�
y�
�

��C d
�
A
�
y�
�

�
;B
�
y�
�

��

� l�d
�
x�
�; y

�
�

�C ��

and we get the conclusion. ut
Theorem 8. Let .X; d/ be a complete R

mC-metric space and .X;Pcl.X/;M/ be the

f.p.s. of Perov. Let Y � X, A W Y ! Y an operator and Y D
[

�2�
Y� a fixed point

partition of Y w.r.t. A and .X;Pcl.X/;M/. Then we have:

(1) Y� D Y�; 8 � 2 �.

(2) A
ˇ̌
ˇ
Y�

W Y� ! Y� is an S�-contraction.

(3) FA \ Y� D fx�
�g, 8 � 2 �, i.e., Y D

[

�2�
Y� is a fixed point partition of Y w.r.t.

the operator A.
(4) An.x/ ! x�

� as n ! 1, 8 x 2 Y�, 8 � 2 �.
(5) d.x; x�

�/ � .I � S�/�1d.x;A.x//; 8 x 2 Y�, 8 � 2 �.
(6) The operator A has the Ostrowski property.
(7) The fixed point problem for the operator A is well posed.

Proof. The proof is similar with the proof of Theorem 6; Y D
[

�2�
Y� is a fixed

point partition of Y w.r.t. A and .X;Pcl.X/;M/, the f.p.s. of Perov, so Y� 2 Pcl.X/

and A
ˇ̌
ˇ
Y�

is an S�-contraction. The conclusions (3)–(7) follow from the properties of

Perov contractions (for details see [54]). ut
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Theorem 9. Let .X; d/ be a complete R
mC-metric space and .X;Pcl.X/;M/ be the

f.p.s. of Perov. Let Y � X, A;B W Y ! Y be two operators and Y D
[

�2�
Y� a fixed

point partition of Y w.r.t. the operator A and .X;Pcl.X/;M/. In addition we suppose
that:

(i) There exists on X a fixed point structure .X; S.X/;M1/ such that Y D
[

�2�
Y� is

a fixed point partition of Y w.r.t. the operator B and .X; S.X/;M1/.
(ii) 8 � 2 � there exists �� 2 R

mC such that

d.A.x/;B.x// � ��; 8 x 2 Y�:

Let S� be the contraction matrix of A
ˇ̌
ˇ
Y�

W Y� ! Y� and x�
� the unique fixed point

of A in Y�.
Then we have

d.x�
�; y

�
�/ � .I � S�/

�1��; 8 y�
� 2 FB\Y� ; 8 � 2 �:

Proof. Let � 2 � and y�
� 2 FB\Y� . Then

d
�
x�
�; y

�
�

� � d
�
A
�
x�
�

�
;A
�
y�
�

��C d
�
A
�
y�
�

�
;B
�
y�
�

��

� S�d
�
x�
�; y

�
�

�C ��

and we get the conclusion. ut
Theorem 10. Let .X; d/ be a complete metric space and .X;Pcl.X/;M/ be the f.p.s.
of nonlinear contraction. Let Y � X, A W Y ! Y be an operator and Y D

[

�2�
Y� a

fixed point partition of Y w.r.t. A and .X;Pcl.X/;M/. Then we have:

(1) Y� D Y�; 8 � 2 �.

(2) A
ˇ̌
ˇ
Y�

is an '�-contraction.

(3) FA \ Y� D fx�
�g; 8 � 2 �, i.e., Y D

[
Y� is a fixed point partition of Y w.r.t.

the operator A.
(4) An.x/ ! x�

� as n ! 1, 8 x 2 X�, 8 � 2 �.
(5) If .X;Pcl.X/;M/ is the f.p.s. of nonlinear contraction with the property that

M.Y/ WD ff W Y ! Y j there exists a strict comparison

function ' W RC ! RC such that f is a '-contraction g

then

d.x; x�
�/ �  '� .d.x;A.x/// ; 8 x 2 Y�; � 2 �;
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where  '� W RC ! RC,  '� .t/ WD sup fs j s � '� .s/ � tg.
(6) If .X;Pcl.X/;M/ is the f.p.s. of nonlinear contraction with the property that

M.Y/ WD ff W Y ! Y j there exists a strong subadditive comparison function

' W RC ! RC such that f is a '-contraction g
then the operator A has the Ostrowski property.

(7) If .X;Pcl.X/;M/ is the f.p.s. of nonlinear contraction as in .5/, then the fixed
point problem for the operator A is well posed.

Proof. The conclusions (3)–(7) follow from the properties of '-contractions (for
details see [43, 51]). ut
Theorem 11. Let .X; d/ be a complete metric space and .X;Pcl.X/;M/ be the f.p.s.
of nonlinear contraction with the property that

M.Y/ WD ff W Y ! Y j there exists a strict comparison function

' W RC ! RC such that f is a ' � contraction g:

Let Y � X, A;B W Y ! Y be two operators and Y D
[

�2�
Y� a fixed point partition

of Y w.r.t. the operator A and .X;Pcl.X/;M/. In addition we suppose that:

(i) There exists on X a fixed point structure .X; S.X/;M1/ such that Y D
[

�2�
Y� is

a fixed point partition of Y w.r.t. the operator B and .X; S.X/;M1/.
(ii) 8 � 2 � there exists �� > 0 such that

d.A.x/;B.x// � ��; 8 x 2 Y�:

Let '� be the strict comparison function such that A
ˇ̌
ˇ
Y�

W Y� ! Y� is a '�-

contraction and x�
� the unique fixed point of A in Y�.

Then we have

d.x�
�; y

�
�/ �  '� .��/ ; 8 y�

� 2 FB\Y� ; 8 � 2 �:

Proof. Let � 2 � and y�
� 2 FB\Y� . Then

d
�
x�
�; y

�
�

� � d
�
A
�
x�
�

�
;A
�
y�
�

��C d
�
A
�
y�
�

�
; y�
�

�

� '�
�
d
�
x�
�; y

�
�

��C d
�
A
�
y�
�

�
;B
�
y�
�

��

� '�
�
d
�
x�
�; y

�
�

��C ��

so

d
�
x�
�; y

�
�

� �  '� .��/ :

ut
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6 Carathéodory Integral Equations

Let .B;C;R; j�j/ be a Banach space. By definition (see [1, 11, 16, 33, 56]) and
operator, f W ŒaI b� � B !B is a Carathéodory operator if:

(1) f .t; �/ W B !B is continuous for a.e. t 2 ŒaI b�.
(2) f .�; u/ W ŒaI b� ! B is strongly measurable for all u 2 B.
(3) For every r > 0, there exists hr 2 L1 ŒaI b� such that

u 2 B; juj � r H) jf .t; u/j � hr .t/ ; for a.e. t 2 ŒaI b� :

Let us consider the following integral equations.

x.t/ D g.t; x.t/; x.a//C
Z t

a
f .s; x.s//ds; t 2 ŒaI b� : (1)

In what follows we suppose that:

(i) f W ŒaI b� � B !B is a Carathéodory operator.
(ii) There exists lf 2 L1 ŒaI b� such that

jf .t; u/ � f .t; v/j � lf .t/ ju � vj ;8u; v 2 B; and a.e. t 2 ŒaI b� :

(iii) g 2 C .ŒaI b� � B � B;B/ :

(iv) There exists lg 2�0I 1Œ such that

jg .t; u; �/ � g .t; v; �/j � lg ju � vj ; 8t 2 ŒaI b� ; u; v; � 2 B:

Let X D .C .ŒaI b� ;B/ ; k�k� / the Banach space where

kxk� WD max
t2ŒaIb�

 

jx .t/j e
��

tR

a
lf .s/ds

!

and

A .x/ .t/ D g.t; x.t/; x.a//C
Z t

a
f .s; x.s//ds; t 2 ŒaI b� :

Let

Y� D fx 2 X j x .a/ D �g :
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It is clear that X D S

�2B
Y� is a partition of X.

Corresponding to Eq. (1), we consider the equation in � 2 B:

� D g .a; �; �/ (2)

and we denote by Sg the solution set of (2).

Theorem 12. We suppose that the conditions .i/–.iv/ are satisfied. Then we
have:

(1) A
ˇ̌
ˇ
Y�

is an l�-contraction for all � 2 Sg.

(2) FA \ Y� D fx�
�g; 8 � 2 Sg, i.e., Y D

[

�2Sg

Y� is a fixed point partition of Y w.r.t.

the operator A.
(3) An.x/ ! x�

� as n ! 1, 8 x 2 Y�, 8 � 2 Sg.

(4) d.x; x�
�/ � 1

1 � l�
d.x;A.x//; 8 x 2 Y�, � 2 Sg.

(5) � 2 Sg, yn 2 Y�, n 2 N, d.ynC1;A.yn// ! 0 as n ! 1 imply that yn ! x�
� as

n ! 1.
(6) � 2 Sg, yn 2 Y, d.yn;A.yn// ! 0 as n ! 1 imply that yn ! x�

� as n ! 1.

Proof. If f is a Carathéodory operator, then A W X ! X.
It is easy to see that if x is a solution of (1), then x .a/ 2 Sg, so FA \Y� ¤ ¿ ”

� 2 Sg. This implies that card FA D card Sg. Also, it is clear that if � 2 Sg, then
Y� 2 I .A/ and Y� 2 Pcl .X/.

Let � 2 Sg and x; y 2 Y� and then

jA .x/ .t/ � A .y/ .t/j �
�

lg C 1

�

�
kx � yk� e

�
tR

a
lf .s/ds

;

so

kA .x/ � A .y/k� �
�

lg C 1

�

�
kx � yk�

Since lg < 1 then we can choose � big enough such that lg C 1
�
< 1; therefore A

ˇ̌
ˇ
Y�

is an l�-contraction for � 2 Sg, where

l� D lg C 1

�
:
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This proves that A
ˇ̌
ˇ
Y�

is an l�-contraction for all � 2 Sg, so Y D
[

�2Sg

Y� is a fixed

point partition of Y w.r.t. the operator A and .X;Pcl.X/;M/ the f.p.s. of contractions.
The conclusion is obtained from Theorem 6. ut

7 Some Research Directions

7.1 A Technique for a New Fixed Point Theorem

Let .X; S .X/ ;M/ be a f.p.s., Y � X a nonempty subset of X, A W Y ! Y an operator,
and ˚ W X ! � an surjective invariant operator of A. Let

X� D fx 2 X j ˚ .x/ D �g ; � 2 �:
Let

�1 D f� 2 � j X� \ Y ¤ ¿g
and Y� D X� \ Y . Then:

(a) Y D S

�2�1
Y� is an invariant partition of Y w.r.t. the operator A.

(b) If Y� 2 S .X/ and A
ˇ
ˇ̌
Y�

2 M .Y�/, then Y D S

�2�1
Y� is a fixed point partition of

Y w.r.t. the operator A and the f.p.s. .X; S .X/ ;M/, i.e., FA \ Y� ¤ ¿.

The problem is to give new fixed point theorems using the above scheme.
For example, let X be a Banach space, .X;Pb;cl;cv .X/ ;M/ the Schauder f.p.s.,

Y 2 Pb;cl .X/, A W Y ! Y a complete continuous operator, and ˚ W X ! R a
nontrivial continuous linear functional which is invariant for A. Let X D S

�2R
X� be

the partition of X generated by ˚ . If Y \ X� is convex, then FA ¤ ¿. Moreover, if
X� \ Y ¤ ¿, then FA \ .X� \ Y/ ¤ ¿.

References: [26, 36, 39].

Example 11. Let X D R
2 and Y � R

2 be defined by the polygon P1P2P3P4P5P6
where P1 .�1; 3/, P2 .3;�1/, P3 .1;�1/, P4 .1;�4/, P5 .�2;�1/, and P6 .�1;�1/.
Let A W Y ! Y be defined by

A .x1; x2/ D
�

x1
2
;

x1 C 2x2
2

�
:

The operator ˚ W R2 ! R defined by

˚ .x1; x2/ D x1 C x2

is a linear functional which is invariant for A.
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X D R
2 D S

�2R
X� is the partition of X generated by ˚ .

Then FA \ .X� \ Y/ ¤ ¿ for all � 2 Œ�3I 2�.
Proof. Notice that Y 2 Pb;cl

�
R
2
�

and Y is not a convex set.
For .x1; x2/ 2 R

2, we have

˚ .A .x1; x2// D x1
2

C x1 C 2x2
2

D x1 C x2 D ˚ .x1; x2/ ;

so ˚ W R2 ! R is a linear functional invariant for A.
Y� D X� \ Y 2 Pb;cl;cv .X/ and we have that

�1 D f� 2 R j X� \ Y ¤ ¿g D Œ�3I 2�;

so FA \ Y� ¤ ¿ for all � 2 Œ�3I 2�. By computation it is easy to see that FA \ Y� D
f.0; �/g for � 2 Œ�3I 2� (Fig. 1) ut

7.2 The Case of the Banach Space C
�
˝

�

Let ˝ � R
m be an open convex subset, X WD C

�
˝
�

the Banach space with max
norm, and A W C

�
˝
� ! C

�
˝
�

a continuous linear operator. The problem is to give
examples of invariant operators ˚ W C

�
˝
� ! � invariant w.r.t. the operator A.

References: [28, 32, 40].

Fig. 1 The set Y from
Example 11
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7.3 The Case of the Ordered Sets

Let .X;�/ be an ordered set, in which conditions there exists a surjective operator
˚ W X ! � such that .X�;�/ is a complete lattice.

Another problem is to give new fixed point theorems on the way as in Sect. 7.1.
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7. Cătinaş, T., Otrocol, D.: Iterates of Bernstein type operators on a square with one curved side
via contraction principle. Fixed Point Theory 13(1), 97–106 (2012)
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31. Petruşel, A., Rus, I.A., Şerban, M.-A.: The role of equivalent metrics in fixed point theory.
Topol. Meth. Nonlinear Anal. 41(1), 85–112 (2013)
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On the Best Hyers–Ulam Stability Constants
for Some Equations and Operators

Dorian Popa, Georgiana Pugna, and Ioan Raşa

In Honor of Constantin Carathéodory

Abstract In this paper we review some existing results on the best constant
in Hyers–Ulam stability of some classical functional equations and some linear
operators in approximation theory. We also present some new proofs of these results
and some remarks on this topic.

1 Introduction

In 1940, S.M. Ulam posed the following problem [36]: Let .G; �; d/ be a metric
group and " a positive number. Does there exist a positive constant k such that for
every f W G ! G satisfying

d. f .xy/; f .x/f . y// � "; 8 x; y 2 G (1)

there exists a homomorphism g W G ! G of the group G with the property

d. f .x/; g.x// � k � "; 8 x 2 G‹ (2)

If such a constant k exists, we say that the equation of the homomorphism

f .xy/ D f .x/ � f . y/ (H)
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is stable. The first answer to Ulam’s question was given a year later, for the Cauchy
functional equation, by Hyers [8]. Generally we say that a functional equation is
stable in Hyers–Ulam sense if for every solution of the perturbed equation (called
approximate solution), there exists a solution of the equation (exact solution) near
it. For more details, approaches, and results on Hyers–Ulam stability, we refer the
reader to [2–5, 9, 13–15, 21–23, 28–33].

The number k from Ulam’s problem is called a Hyers–Ulam constant of the
equation (H) (briefly, HUS-constant), and the infimum of all HUS-constants of
the equation (H) is denoted by KH; generally KH is not a HUS-constant of the
equation (H) (see [6]). In case when KH is a HUS-constant for the equation (H),
it is called the best HUS-constant of (H). The problem of studying the best HUS-
constant was first posed in [27].

In the literature there are just a few results on the best constant in Hyers–Ulam
stability of equations and operators, and we mention here the characterization of the
stability of linear operators and the representation of their best constants obtained
by Miura, Takahashi et al. [6, 7]. In [10, 11] the stability of operators is studied with
applications to nonlinear analysis; some open problems are also posed there.

In this paper we review some existing results (see [23–26]) and present some new
facts concerning the best HUS-constant.

2 Best Constants of Cauchy, Jensen, and Quadratic
Equations

Let X be a normed space and Y a Banach space over R. We obtain the best HUS-
constant for some classical functional equations: Cauchy, Jensen, and Quadratic
equations, i.e.,

f .x C y/ D f .x/C f . y/ (C)

f

�
x C y

2

�
D f .x/C f . y/

2
(J)

f .x C y/C f .x � y/ D 2f .x/C 2f . y/ (Q)

with the unknown f W X ! Y .
The first result on the stability of Cauchy’s equation, given in the next theorem,

was obtained by Hyers in 1941 [8].

Theorem 1. Let " be a positive number. Then for every function f W X ! Y
satisfying

k f .x C y/ � f .x/ � f . y/k � "; x; y 2 X (3)



On the Best Hyers–Ulam Stability Constants 519

there exists a unique additive function a W X ! Y with the property

k f .x/ � a.x/k � "; x 2 X: (4)

The first result on Hyers–Ulam stability of the Jensen equation was given by
Kominek [16], but our approach will be based on a result given by Lee and Jun on
generalized stability of equation (J) (see Theorem 1.2 in [17] for p D 0).

Theorem 2. Let " > 0. Then for every f W X ! Y satisfying the relation

�
��� f

�
x C y

2

�
� f .x/C f . y/

2

�
��� � "; x; y 2 X (5)

there exists a unique additive mapping a W X ! Y such that

k f .x/ � a.x/ � f .0/k � 2"; x 2 X: (6)

For more results on the stability of the equation (J), we refer the reader to [12].
The solutions of the equation (Q) are called quadratic functions. A function f W

X ! Y is quadratic if and only if there exists a unique symmetric and biadditive
function B W X � X ! Y such that

f .x/ D B.x; x/; x 2 X:

A first result on Hyers–Ulam stability of the equation (Q) was obtained by Skof
and generalized later by Cholewa; for more details, see [9, p. 45]. The result of Skof
and Cholewa is contained in the next theorem.

Theorem 3. Let " > 0 and f W X ! Y be a function satisfying

k f .x C y/C f .x � y/ � 2f .x/ � 2f . y/k � "; 8 x; y 2 X: (7)

Then there exists a unique quadratic function q W X ! Y with the property

k f .x/ � q.x/k � "

2
; 8 x 2 X: (8)

Let us denote in what follows by KC, KJ , and KQ the best constants for the
equations (C), (J), and (Q), respectively. For the next theorem contained in [26], we
will give a new proof without using the unicity of the additive/quadratic function in
Theorems 1–3.

Theorem 4. The following relations hold:

1) KC D 1.
2) KJ D 2.
3) KQ D 1

2
.
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Proof. 1) Suppose that Cauchy’s equation (C) has a HUS-constant k < 1. Let u 2
Y , kuk D 1. Consider the function f W X ! Y , f .x/ D u, x 2 X. The function
f satisfies .3/ with " D 1, and consequently there exists an additive function
a W X ! Y such that

k f .x/ � a.x/k � k; x 2 X:

This entails ku � a.nx/j � k for every x 2 X and for every n 2 N, where
N D f1; 2; : : :g is the set of all positive integers.

We get

���
u

n
� a.x/

��� � k

n
; x 2 X; n 2 N:

Letting n ! 1 in the previous relation, we get a.x/ D 0, x 2 X, i.e.,

1 D kuk � k < 1;

a contradiction. We conclude that Cauchy’s equation cannot have a HUS-
constant smaller than 1, thus KC D 1.

2) Suppose that Jensen’s equation has a HUS-constant k < 2. Let H be a closed
hyperplane in X containing the origin and HC, H� the two open half-spaces
determined by H. Let u 2 Y , kuk D 2.

Consider the function f W X ! Y ,

f .x/ D
(

u; x 2 HC;
0; otherwise:

It is easy to check that
�
��� f

�
x C y

2

�
� f .x/C f . y/

2

�
��� � 1; 8x; y 2 X:

According to Theorem 2 with " D 1, there exists an additive function a W
X ! Y such that k f .x/ � a.x/ � f .0/k � k, 8x 2 X. Let x 2 HC and n 2 N.

Then k f .nx/ � a.nx/k � k, which entails
��
� f .nx/

n � a.x/
��
� � k

n , 8n 2 N.

Letting n ! 1, we get a.x/ D 0, and so 2 D kuk D k f .x/k � k < 2, a
contradiction.

3) Suppose that the quadratic equation has a HUS-constant k < 1
2
. Let u 2 Y ,

kuk D 1
2
, and consider the function f W X ! Y , f .x/ D u, x 2 X. Then (7) is

satisfied for " D 1; therefore there exists a quadratic function q W X ! Y such
that

ku � q.x/k � k; x 2 X:
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On the other hand, there exists a symmetric and biadditive function B W X � X !
Y such that

q.x/ D B.x; x/; x 2 X:

It follows

ku � B.nx; nx/k � k; x 2 X; n 2 N;

which is equivalent to

���
u

n2
� B.x; x/

��� � k

n2
; x 2 X; n 2 N:

Letting n ! 1, we get B.x; x/ D 0, x 2 X, which entails

1

2
D kuk � k <

1

2
;

contradiction. We conclude that KQ D 1
2
. ut

Remark 1. The above result concerning Jensen’s equation corrects the earlier
version from [26].

3 Hyers–Ulam Stability of Linear Operators

Let A and B be normed spaces and consider a mapping T W A ! B. The following
definition can be found in [35].

Definition 1. We say that T has the Hyers–Ulam stability property (briefly, T is
HU-stable) if there exists a constant K > 0 such that:

(i) For any g 2 T.A/, " > 0 and f 2 A with kTf � gk � ", there exists an f0 2 A
with Tf0 D g and k f � f0k � K � ".
The number K is called a Hyers–Ulam stability constant (briefly HUS-constant)

and the infimum of all HUS-constants of T is denoted by KT ; generally, KT is not a
HUS-constant of T (see [6, 7]).

Suppose now that T is a bounded linear operator and let N.T/ and R.T/ be its
kernel and range, respectively.

Define the one-to-one operatoreT W A=N.T/ ! R.T/ by

eT. f C N.T// D Tf ; f 2 A (9)

and leteT�1 W R.T/ ! A=N.T/ be the inverse ofeT .
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Theorem 5. ([35]) Let A and B be Banach spaces and T W A ! B a bounded linear
operator. The following statements are equivalent:

(a) T is HU-stable.
(b) R.T/ is closed.
(c) eT�1 is bounded.

Moreover, if one of the conditions (a)–(c) is satisfied, then

KT D keT�1k: (10)

A result on Hyers–Ulam stability of the product of two linear operators is given
in the next theorem.

Theorem 6. [24] Let X, Y, and Z be normed spaces and A W Y ! Z and B W X ! Y
two linear operators which are HU-stable with HUS-constants K1, respectively K2.
If N.A/ � R.B/, then AB W X ! Z is HU-stable with HUS-constant K1K2.

Proof. Let x 2 X, kABxk � 1. Then there exists a 2 N.A/ such that kBx � ak � K1.
According to the hypothesis, a D Bc for some c 2 X. Thus kB.x � c/k � K1, which
entails the existence of b 2 N.B/ such that kx � c � bk � K1K2.

Since AB.b C c/ D ABc D Aa D 0, we conclude that b C c 2 N.AB/, and so AB
is HU-stable with HUS-constant K1K2. ut

A question arises naturally. If A and B have the best constants KA and KB, is
KAKB the best constant for A � B? The following example shows that the answer to
this question can be negative.

Example 1. Let a; b 2 R, a < b, and p 2 CŒa; b� such that m D min p, M D max p,
0 < m < M. Consider the linear operators A;B W CŒa; b� ! CŒa; b� given by

Af D p � f ; Bf D f

p
; f 2 CŒa; b�:

Then KAB D 1, KA D 1
m , KB D M.

Indeed, we have AB D BA D I; therefore KAB D 1.
On the other hand A and B are bijective operators, so according to Theorem 5,

KA D �
�A�1�� D 1

m

KB D ��B�1�� D M:

It follows KAKB D M
m > 1 D KAB. It is easy to verify that 1

m and M are HUS-
constants; therefore KA and KB are the best HUS-constants.
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4 Hyers–Ulam Stability of Some Classical Operators
from Approximation Theory

The main results used in our approach for obtaining, in some concrete cases, the
explicit value of KT are the formula (10) and a result by Lubinsky and Ziegler [18]
concerning coefficient bounds in the Lorentz representation of a polynomial.

Let P 2 ˘n, where ˘n is the set of all polynomials of degree at most n with real
coefficients. Then P has a unique representation of the form

P.x/ D
nX

kD0
ckxk.1 � x/n�k (11)

where ck 2 R, k D 0; 1; : : : ; n. Let Tn denote the Chebyshev polynomial of the first
kind. The following representation holds

Tn.2x � 1/ D
nX

kD0
dn;k.�1/n�kxk.1 � x/n�k (12)

where

dn;k WD
minfk;n�kgX

jD0

 
n

2j

! 
n � 2j

k � j

!

4j; k D 0; 1; : : : ; n: (13)

The authors of the present article proved in [24] that

dn;k D
 
2n

2k

!

; k D 0; 1; : : : ; n; (14)

therefore

Tn.2x � 1/ D
nX

kD0

 
2n

2k

!

.�1/n�kxk.1 � x/n�k: (15)

Theorem 7 (Lubinsky and Ziegler [18]). Let P have the representation (11) and
let 0 � k � n. Then

jckj � dn;k � k Pk1

with equality if and only if P is a constant multiple of Tn.2x � 1/.
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(i) Stancu Operators

Let CŒ0; 1� be the linear space of all continuous functions f W Œ0; 1� ! R, endowed
with the supremum norm denoted by k � k, and a and b real numbers, 0 � a � b.
The Stancu operator [34] Sn W CŒ0; 1� ! ˘n is defined by

Snf .x/ D
nX

kD0
f

�
k C a

n C b

� 
n

k

!

xk.1 � x/n�k; f 2 CŒ0; 1�:

We have

N.Sn/ D
�

f 2 CŒ0; 1� W f

�
k C a

n C b

�
D 0; 0 � k � n


;

which is a closed subspace of CŒ0; 1�, and R.Sn/ D ˘n. The operator eSn W
CŒ0; 1�=N.Sn/ ! ˘n is bijective andeS�1

n W ˘n ! CŒ0; 1�=N.Sn/ is bounded since
dim˘n D n C 1, so according to Theorem 5, the operator Sn is HU-stable (see
also [24]).

Theorem 8 ([25]). For n � 1, we have

KSn D
 
2n

2
�

n
2

�

!

=

 
n
�

n
2

�

!

:

Proof. Let p 2 ˘n, k pk � 1, p.x/ D
nX

kD0
ck.p/x

k.1 � x/n�k.

Consider the piecewise affine function fp 2 CŒ0; 1� defined by

fp.t/ D c0. p/; t 2


0;

a

n C b

�

fp.t/ D cn. p/; t 2



n C a

n C b
; 1

�

fp

�
k C a

n C b

�
D ck. p/=

 
n

k

!

; 0 � k � n:

Then Snfp D p andeS�1
n .p/ D fp C N.Sn/.

As usual, the norm ofeS�1
n W ˘n ! CŒ0; 1�=N.Sn/ is defined by

keS�1
n k D sup

k pk�1
keS�1

n . p/k D sup
k pk�1

inf
h2N.Sn/

k fp C hk:
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Clearly

inf
h2N.Sn/

k fp C hk D k fpk D max
0�k�n

jck. p/j=
 

n

k

!

:

Therefore

keS�1k D sup
k pk�1

max
0�k�n

jck. p/j=
 

n

k

!

� sup
k pk�1

max
0�k�n

dn;k � k pk=
 

n

k

!

D max
0�k�n

dn;k=

 
n

k

!

:

On the other hand, let q.x/ D Tn.2x � 1/, x 2 Œ0; 1�.
Then kqk D 1 and jck.q/j D dn;k, 0 � k � n, according to Theorem 7.

Consequently

keS�1
n k � max

0�k�n
jck.q/j=

 
n

k

!

D max
0�k�n

dn;k=

 
n

k

!

and so

keS�1
n k D max

0�k�n

dn;k 
n

k

! D max
0�k�n

 
2n

2k

!

 
n

k

! :

Let

ak D
 
2n

2k

!

=

 
n

k

!

; 0 � k � n:

Then

akC1
ak

D 2n � 2k � 1
2k C 1

; 0 � k � n:

The inequality
akC1
ak

� 1 is satisfied if and only if k �



n � 1
2

�
; therefore

max
0�k�n

ak D aŒ n�1
2 �C1 D

(
aŒ n

2 �
; n even

aŒ n
2 �C1; n odd:
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Since aŒ n
2 �C1 D aŒ n

2 �
if n is an odd number, we conclude that

KSn D keS�1
n k D

 
2n

2
�

n
2

�

!

=

 
n
�

n
2

�

!

:

The theorem is proved. ut
Remark 2. KSn does not depend on a and b. For a D b D 0, the Stancu operator
reduces to the classical Bernstein operator. Therefore the infimum of the HUS-
constants of the Bernstein operator is

KBn D
 
2n

2
�

n
2

�

!

=

 
n
�

n
2

�

!

:

(ii) Kantorovich Operators

Let X D f f W Œ0; 1� ! R j f is bounded and Riemann integrable} be endowed with
the supremum norm denoted by k � k.

The Kantorovich operators [1] are defined by

Knf .x/ D .n C 1/

nX

kD0

 Z kC1
nC1

k
nC1

f .t/dt

! 
n

k

!

xk.1 � x/n�k

for f 2 X and x 2 Œ0; 1�. The kernel of Kn is given by

N.kn/ D
(

f 2 X W
Z kC1

nC1

k
nC1

f .t/dt D 0; 0 � k � n

)

and N.Kn/ is a closed subspace of X.
The operators Kn are HU-stable since their ranges are finite dimensional spaces

(see also [24]).

Theorem 9 ([25]). The following relation holds

KKn D
 
2n

2
�

n
2

�

!

=

 
n
�

n
2

�

!

:

(iii) An Extremal Property of KBn

We consider a class of generalized positive linear operators defined on CŒ0; 1�
endowed with the supremum norm k � k. Let Ln W CŒ0; 1� ! ˘n be defined by
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Lnf .x/ WD
nX

kD0
An;k. f /

 
n

k

!

xk.1 � x/n�k; f 2 CŒ0; 1�

where An;k W CŒ0; 1� ! R, n 2 N [ f0g, 0 � k � n are positive linear functionals
satisfying An;k.1/ D 1, 0 � k � n. Suppose that the range of Ln is ˘n. Then it
follows easily that

N.Ln/ D f f 2 CŒ0; 1� W An;k. f / D 0; 0 � k � ng

andeLn W CŒ0; 1�=N.Ln/ ! ˘n is a bijective operator. The operator Ln is HU-stable
since the operatoreL�1

n is bounded. The following result is proved in [25].

Theorem 10 ([25]). The following inequality holds

KLn � KBn :

Related results can be found in [19, 20].
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23. Popa, D., Raşa, I.: The Fréchet functional equation with applications to the stability of certain
operators. J. Approx. Theory 164, 138–144 (2012)
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More on the Metric Projection onto a Closed
Convex Set in a Hilbert Space

Biagio Ricceri

In Honor of Constantin Carathéodory

Abstract Let H be a real Hilbert space and X a nonempty compact convex subset
of H, with 0 62 X. For each x 2 H, denote by P.x/ the unique point of X such
that kx � P.x/k D dist.x;X/. For each r > 0, set �.r/ D infkxk2Dr kx � P.x/k2.
Moreover, for each � > 1, denote by Ou� the unique fixed point of the map 1

�
P. In

this paper, in particular, we highlight the following facts: the function � ! h.�/ WD
kOu�k2 is decreasing in �1;C1Œ and its range is �0; kP.0/k2Œ ; the function � is C1,
decreasing and strictly convex in �0; kP.0/k2Œ, and one has � 0.r/ D �h�1.r/ for all
r 2�0; kP.0/k2Œ .

Here and in what follows, .H; h�; �i/ is a real Hilbert space and X is a nonempty
closed convex subset of H. For each x 2 H, we denote by P.x/ the metric projection
of x on X, that is, the unique global minimum of the restriction of the functional
y ! kx�yk to X. There is no doubt that the map P is among the most important and
studied ones within convex analysis, functional analysis, and optimization theory.
For the above reason, we think that it is of interest to highlight some properties of P
which do not appear in the wide literature concerning P. We collect such properties
in Theorems 1, 2, and 3 below. First, we fix some notations. For each r > 0, we put

Br D fx 2 H W kxk2 � rg
and

Sr D fx 2 H W kxk2 D rg :
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Moreover, for each x 2 X, we set

J.x/ D 1

2
.kxk2 � kx � P.x/k2 C kP.0/k2/ :

Furthermore, for each r > 0, we put

�.r/ D inf
x2Sr

kx � P.x/k2 :

Finally, since P is nonexpansive in H, for each � 2� � 1; 1Œ, the map �P is a
contraction and hence has a unique fixed point that we denote by Oy�.

Theorem 1. Assume that 0 62 X.
Then, the following assertions hold:

.c1/ The function � ! g.�/ WD J.Oy�/ is increasing in � � 1; 1Œ and its range is
� � kP.0/k2; kP.0/k2Œ .

.c2/ For each r 2�� kP.0/k2; kP.0/k2Œ, the point Oxr WD Oyg�1.r/ is the unique point
of minimal norm of J�1.r/ toward which every minimizing sequence in J�1.r/,
for the norm, converges .

.c3/ The function r ! Oxr is continuous in � � kP.0/k2; kP.0/k2Œ .

.c4/ The function � ! h.�/ WD kOy 1
�
k2 is decreasing in �1;C1Œ and its range is

�0; kP.0/k2Œ .
.c5/ For each r 2�0; kP.0/k2Œ, the point Ovr WD Oy 1

h�1.r/
is the unique global

maximum of JjSr toward which every maximizing sequence for JjSr converges .
.c6/ The function r ! Ovr is continuous in �0; kP.0/k2Œ .

Assuming, in addition, that X is compact, the following assertions hold:
.c7/ The function � is C1, decreasing and strictly convex in �0; kP.0/k2Œ .
.c8/ One has

P. Ovr/ D �� 0.r/ Ovr

for all r 2�0; kP.0/k2Œ .
.c9/ One has

� 0.r/ D �h�1.r/

for all r 2�0; kP.0/k2Œ.
Proof. Clearly, the set of all fixed points of P agrees with X. Now, fix u 2 H and
� < 1. We show that

P.u C �.P.u/ � u// D P.u/ : (1)

If u 2 X, this is clear. Thus, assume u 62 X and hence P.u/ ¤ u. Let ' W H ! R be
the continuous linear functional defined by

'.x/ D hP.u/ � u; xi
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for all x 2 H. Clearly, k'kH� D kP.u/ � uk. We have

dist.u C �.P.u/ � u/; '�1.'.P.u/// D j'.u C �.P.u/ � u// � '.P.u//j
k'kH�

D .1 � �/kP.u/ � uk : (2)

Moreover, by a classical result [6, Corollary 25.23], we have

hP.u/ � u;P.u/ � xi � 0

for all x 2 X, that is,

X 	 '�1.Œ'.P.u//;C1Œ/ : (3)

Also, notice that

dist.u C �.P.u/ � u/; '�1.'.P.u//// D dist.u C �.P.u/ � u/; '�1.Œ'.P.u//;C1Œ//:

(4)

Indeed, otherwise, it would exist w 2 H, with '.w/ > '.P.u//, such that

ku C �.P.u/ � u/ � wk < dist.u C �.P.u/ � u/; '�1.'.P.u/// :

Then, since '.uC�.P.u/�u// < '.P.u// (indeed '.uC�.P.u/�u//�'.P.u// D
.� � 1/kP.u/ � uk2), by connectedness and continuity, in the open ball centered at
uC�.P.u/�u/, of radius dist.uC�.P.u/�u/; '�1.'.P.u///, it would exist a point
at which ' takes the value '.P.u//, which is absurd. So, (4) holds. Now, from (2),
(3), and (4), it follows that

.1 � �/kP.u/ � uk � dist.u C �.P.u/ � u/;X/ � ku C �.P.u/ � u/ � P.u/k
D .1 � �/kP.u/ � uk

which yields (1). From (1), in particular, we infer that P.0/ D P.�P.0//. On the
other hand, if Qx 2 H is such that Qx D �P.Qx/, then, applying (1) with u D Qx and
� D 1

2
, we get P.0/ D P.Qx/ and so Qx D �P.0/. Therefore, �P.0/ is the unique fixed

point of �P. Now, let us recall that J is a Fréchet differentiable convex functional
whose derivative is equal to P ([1], Proposition 2.2). This allows us to use the results
of Ricceri [3]. Therefore, .c1/, .c2/, and .c3/ follow, respectively, from .a1/, .a2/,
and .a3/ of Theorem 3.2 of [3], since (with the notation of that result) we have
�1 D J.�P.0// D �kP.0/k2 and �1 D infX J D kP.0/k2, while .c4/, .c5/, and .c6/
follow, respectively, from .b1/, .b2/, and .b3/ of Theorem 3.3 of [3], since �2 D
kP.0/k2. Now, assume that X is also compact. Then, J turns out to be sequentially
weakly continuous ([5], Corollary 41.9). Moreover, J has no local maxima since P
has no zeros. At this point, .c7/, .c8/, and .c9/ follow, respectively, from .b4/, .b5/,
and .b6/ of Theorem 3.3 of [3], since, for a constant k0, we have
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sup
Sr

J D �1
2
�.r/C k0

for all r > 0. The proof is complete. 4
Theorem 2. Let Q W H ! H be a continuous and monotone potential operator
such that

lim
kxk!C1

I.x/ WD
Z 1

0

hQ.sx/; xids D C1 :

Set

�� D inf
r>infH I

inf
x2I�1.��1;rŒ/

J.x/ � infy2I�1.��1;r�/ J.y/

r � I.x/
:

Then, the equation

P.x/C �Q.x/ D 0

has a solution in H for every � > ��. Moreover, when �� > 0, the same equation
has no solution in H for every � < ��.

Proof. Since Q is a monotone potential operator, the functional I turns out to be
convex of class C1 and its derivative agrees with Q. Now, the conclusion follows
from Theorem 2.4 of [2], since, by convexity, the solutions of the equation P.x/C
�Q.x/ D 0 are exactly the global minima in H of the functional J C �I. 4
Theorem 3. Let .T;F ; �/ be a measure space, with 0 < �.T/ < C1, and assume
that 0 62 X.

Then, for every � 2 L1.T/, with � � 0, for every r 2�0; kP.0/k2Œ and for every
p � 2, if we put

U�;r D
�

u 2 Lp.T;H/ W
Z

T
�.t/ku.t/k2d� D r

Z

T
�.t/d�


;

we have

inf
u2U�;r

Z

T
�.t/ku.t/ � P.u.t//k2d� D inf

x2Sr
kx � P.x/k2

Z

T
�.t/d� (5)

and

sup
u2U�;r

Z

T
�.t/ku.t/ � P.u.t//k2d� D sup

x2Sr

kx � P.x/k2
Z

T
�.t/d� : (6)
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Proof. Applying Theorem 5 of [4] to J and �J, respectively, we obtain

inf
u2V�;r

Z

T
�.t/J.u.t//d� D inf

Sr
J
Z

T
�.t/d� (7)

and

sup
u2V�;r

Z

T
�.t/J.u.t//d� D sup

Sr

J
Z

T
�.t/d� ; (8)

where

V�;r D
�

u 2 Lp.T;H/ W
Z

T
�.t/ku.t/k2d� � r

Z

T
�.t/d�


:

Now, observe that JjSr has a global minimum. Indeed, since J is weakly lower
semicontinuous and Br is weakly compact, JjBr has a global minimum, say Owr.
Notice that Owr 2 Sr, since, otherwise, P. Owr/ D 0 which is impossible since 0 62 X.
So, Owr is a global minimum of JjSr . Furthermore, from Theorem 1, we know that JjSr

has a global maximum, say Ovr. Denote by the same symbols the constant functions
(from T into Y) taking, respectively, the values Owr and Ovr. Since �.T/ < C1, we
have Owr; Ovr 2 U�;r. So, from (7) and (8), it follows, respectively,

inf
u2V�;r

Z

T
�.t/J.u.t//d� D

Z

T
J. Owr/�.t/d� � inf

u2U�;r

Z

T
�.t/J.u.t//d�

and

sup
u2V�;r

Z

T
�.t/J.u.t//d� D

Z

T
J. Ovr/�.t/d� � sup

u2U�;r

Z

T
�.t/J.u.t//d� :

Therefore

inf
Sr

J
Z

T
�.t/d� D 1

2
.r C kP.0/k2 � sup

x2Sr

kx � P.x/k2/
Z

T
�.t/d�

D 1

2
inf

u2U�;r

Z

T
�.t/.ku.t/k2 � ku.t/ � P.u.t//k2 C kP.0/k2/d�

D 1

2
.r C kP.0/k2/

Z

T
�.t/d� � 1

2
sup

u2U�;r

Z

T
�.t/ku.t/ � P.u.t//k2d�

which yields (6). Likewise

sup
Sr

J
Z

T
�.t/d� D 1

2
.r C kP.0/k2 � inf

x2Sr
kx � P.x/k2/

Z

T
�.t/d�

D 1

2
sup

u2U�;r

Z

T
�.t/.ku.t/k2 � ku.t/ � P.u.t//k2 C kP.0/k2/d�
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D 1

2
.r C kP.0/k2/

Z

T
�.t/d� � 1

2
inf

u2U�;r

Z

T
�.t/ku.t/

�P.u.t//k2d�

which yields (5). 4
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Carathéodory Functions in Partial Differential
Equations

Martin Schechter

In Honor of Constantin Carathéodory

Abstract We show how Carathéodory functions can be used in solving problems
in partial differential equations.

1 Carathéodory’s Theorem

1.1 Carathéodory Functions

In extending Peano’s theorem for ordinary differential equations, Carathéodory [1]
proved the following:

Theorem 1. Let f(t,x) be a function defined on

R W jt � � j � a; jx � �j � b; (1)

where .�; �/ is a fixed point in the (t,x) plane, and a and b are positive real numbers.
Assume that f .x; t/ is continuous in t for a.e. x and measurable in x for every t.
Assume that there is an integrable function m(t) in jt � � j � a such that

jf .t; x/j � m.t/; .t; x/ 2 R: (2)

Then there exists an absolutely continuous function u(t) on some interval jt�� j � ˛

such that
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u0.t/ D f .t; u.t// a:e: in jt � � j � ˛; u.�/ D �: (3)

In Peano’s theorem, f .t; x/ was assumed continuous in both variables, and m.t/ was
assumed bounded. Then u.t/ is continuously differential and satisfies (3) every-
where. In order to allow solutions that are only absolutely continuous, Carathéodory
needed functions f .t; x/ such that f .t; u.t// is measurable for all continuous u.t/:
Functions described in the theorem, i.e., functions f .x; t/ continuous in t for a.e. x
and measurable in x for every t, fit the bill. They are now known as Carathéodory
functions. In the study of partial differential equations, it is required that f .t; u.t// be
measurable for all measurable u.t/. Carathéodory functions accomplish this as well.

2 Semilinear Boundary Value Problems

2.1 Introduction

Many elliptic semilinear problems can be described in the following way. Let ˝
be a domain in R

n, and let A be a self-adjoint operator on L2.˝/. We assume that
A � �0 > 0 and that

C1
0 .˝/ � D WD D.A1=2/ � Hm;2.˝/ (4)

for some m > 0, where C1
0 .˝/ denotes the set of test functions in˝ (i.e., infinitely

differentiable functions with compact supports in ˝) and Hm;2.˝/ denotes the
Sobolev space. If m is an integer, the norm in Hm;2.˝/ is given by

kukm;2 WD
0

@
X

j�j�m

kD�uk2
1

A

1=2

: (5)

Here D� represents the generic derivative of order j�j and the norm on the right-
hand side of (5) is that of L2.˝/. We shall not assume that m is an integer.

Let q be any number satisfying

2 � q � 2n=.n � 2m/; 2m < n

2 � q < 1; n � 2m

and let f .x; t/ be a Carathéodory function on ˝ � R. This means that f .x; t/ is
continuous in t for a.e. x 2 ˝ and measurable in x for every t 2 R. We make
the following assumptions:

(A) The function f .x; t/ satisfies

jf .x; t/j � V.x/q.jtjq�1 C W.x// (6)
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and

f .x; t/=V.x/q D o.jtjq�1/ as jtj ! 1; (7)

where V.x/ > 0 is a function in Lq.˝/ such that

kVukq � CkukD; u 2 D (8)

and W is a function in L1.˝/. Here

kukq WD
�Z

˝

ju.x/jqdx

�1=q

; (9)

kukD WD kA1=2uk (10)

and q0 D q=.q�1/. If˝ and V.x/ are bounded, then (8) will hold automatically
by the Sobolev inequality. However, there are functions V.x/ which are
unbounded and such that (8) holds even on unbounded regions ˝. With the
norm (10), D becomes a Hilbert space. Define

F.x; t/ WD
Z t

0

f .x; s/ds (11)

and

G.u/ WD kuk2D � 2
Z

˝

F.x; u/ dx: (12)

We want G.u/ to be defined for all u 2 D: For this purpose we need F.x; u.x//
and f .x; u.x// to be measurable for all measurable u.x/: This follows from the
fact that f .x; t/ is a Carathéodory function. Once we know that such functions are
measurable, we can obtain integrability by means of estimates. We shall show that
G is a continuously differentiable functional on the whole of D. First we note

Lemma 1. Under hypothesis (A), F.x; u.x// and v.x/f .x; u.x// are in L1.˝/
whenever u; v 2 D.

Proof. By (6) and (11), we have

jF.x; u/j � C.jVujq C jVqujW/: (13)

Since Vu 2 Lq.˝/ and Vq�1 2 Lq0

.˝/, the right-hand side is in L1.˝/. Similarly

jvf .x; u/j � jVvj.jVujq�1 C Vq�1W/: (14)

Since Vu and Vv are in Lq.˝/, the same reasoning applies.

Next we have
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Lemma 2. G.u/ has a Fréchet derivative G0.u/ on D given by

.G0.u/; v/D D 2.u; v/D � 2.f .�; u/; v/: (15)

Proof. We have by (12)

G.u C v/ � G.u/ � 2.u; v/D C 2.f .u/; v/

D kvk2D � 2
Z

˝

ŒF.x; u C v/ � F.x; u/ � vf .x; u/�dx: (16)

The first term on the right-hand side of (16) is clearly o.kvkD/ as kvkD ! 0. Since

F.x; u C v/ � F.x; u/ D
Z 1

0

ŒdF.x; u C �v/=d��d�

D
Z 1

0

f .x; u C �v/vd�;

the integral in (16) equals
R
˝

R 1
0
Œf .x; uC�v/�f .x; u/�vd�dx. By Hölder’s inequality,

this is bounded by

�Z

˝

Z 1

0

jV�1Œf .x; u C �v/ � f .x; u/�jq0

d�dx

�1=q0

kVvkq: (17)

In view of (16), the lemma will be proved if we can show that the expression (17)
is o.kvkD/. By (8) the second factor is O.kvkD/. Hence it suffices to show that the
first factor in (17) is o.1/. The integrand is bounded by

.jV.u C �v/jq�1 C jVujq�1 C 2Vq�1W/q0 � C.jVujq C jVvjq C VqW/: (18)

If the first factor in (17) did not converge to 0 with kvkD, then there would be a
sequence fvkg � D such that kvkkD ! 0, while

Z

˝

Z 1

0

jV�1Œf .x; u C �vk/ � f .x; u/�jq0

d�dx � � > 0: (19)

In view of (8), kVvkkq ! 0. Thus there is a renamed subsequence such that Vvk !
0 a.e. But by (18), the integrand of (19) is majorized by

C.jVujq C jVvkjq C VqW/

which converges in L1.˝/ to

C.jVujq C VqW/:

Moreover, the integrand converges to 0 a.e. Hence the left-hand side of (19)
converges to 0, contradicting (19). This proves the lemma.
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Lemma 3. The derivative G0.u/ given by (15) is continuous in u.

Proof. By (15), we have

.G0.u1/ � G0.u2/; v/D D 2.u1 � u2; v/D � 2
Z

˝

vŒf .x; u1/ � f .x; u2/�dx

� 2ku1 � u2kDkvkD

C2kVvkq

�Z

˝

jV�1Œf .x; u1/ � f .x; u2/�jq0

dx

�1=q0

:

Thus

kG0.u1/ � G0.u2/kD � 2ku1 � u2kD

C C

�Z

˝

jV�1Œf .x; u1/ � f .x; u2/�jq0

dx

�1=q0

: (20)

Reasoning as in the proof of Lemma 2, we show that the right-hand side of (20)
converges to 0 as u1 ! u2 in D.

2.2 Mountain Pass Geometry

We now add hypotheses to obtain the simplest configuration leading to a solution of

Au D f .x; u/; u 2 D: (21)

By a solution of (21), we shall mean a function u 2 D such that

.u; v/D D .f .�; u/; v/; v 2 D: (22)

If f .x; u/ is in L2.˝/, then a solution of (22) is in D.A/ and solves (21) in the
classical sense. Otherwise we call it a weak (or semistrong) solution.

We add the following to the hypotheses of Sect. 1:

(B) If �0 is in the spectrum of A, then it is an isolated eigenvalue, with its eigenspace
finite dimensional and contained in L1.˝/. If q D 2 in (6), then multiplication
by V.x/ is a compact operator from D to L2.˝/.

(C) There is a ı > 0 such that

2F.x; t/ � �0t
2; jtj � ı:

We have the following.
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Lemma 4. Under hypotheses (A)–(C), the following alternative holds. Either:

(a) there is an infinite number of y.x/ 2 D.A/ n f0g such that

Ay D f .x; y/ D �0y (23)

or
(b) for each � > 0 sufficiently small, there is an � > 0 such that

G.u/ � �; kukD D �: (24)

Proof. Let �1 > �0 be the next point in the spectrum of A, and let N0 denote the
eigenspace of �0. We take M D N?

0 \ D. By hypothesis (B), there is a � > 0 such
that

kykD � � ) jy.x/j � ı=2; y 2 N0:

Now suppose u 2 D satisfies

kukD � � and ju.x/j � ı (25)

for some x 2 ˝. We write

u D w C y; w 2 M; y 2 N0: (26)

Then for those x 2 ˝ satisfying (25), we have

ı � ju.x/j � jw.x/j C jy.x/j � jw.x/j C .ı=2/:

Hence

jy.x/j � ı=2 � jw.x/j; (27)

and consequently,

ju.x/j � 2jw.x/j (28)

for all such x. Now we have by (6) and (21)

G.u/ � kuk2D � �0
Z

juj<ı
u2dx � C

Z

juj>ı
.jVujq C jVqujW/ dx

� kuk2D � �0kuk2 � C0
Z

juj>ı
jVujqdx

� kwk2D � �0kwk2 � C00
Z

2jwj>ı
jVwjqdx



Carathéodory Functions in Partial Differential Equations 541

in view of the fact that kyk2D D �0kyk2 and (28) holds. We shall show that

Z

2jwj>ı
jVwjqdx=kwk2D ! 0 as kwkD ! 0: (29)

Assuming this for the moment, we see that

G.u/ �
�
1 � �0

�1
� o.1/

�
kwk2D; kukD � �: (30)

Now suppose alternative (b) of the lemma did not hold. Then there would be a
sequence such that

G.uk/ ! 0; kukkD D �: (31)

If � is taken sufficiently small, (30) implies that kwkkD ! 0. Consequently,
kykkD ! �: Since N0 is finite dimensional, there is a renamed subsequence such
that yk ! y0 in N0. Thus we have

ky0k D �; G.y0/ D 0; jy0.x/j � ı=2; x 2 ˝:

Consequently, hypothesis (C) implies

2F.x; y0.x// � �0y0.x/
2; x 2 ˝: (32)

Since
Z

˝

f�0y0.x/2 � 2F.x; y0.x//g dx D G.y0/ D 0

and the integrand is � 0 a.e. by (32), we see that

2F.x; y0.x// � �0y0.x/
2; x 2 ˝:

Let '.x/ be any function in C1
0 .˝/. Then for t > 0 sufficiently small

t�1Œ2F.x; y0 C t'/ � �0.y0 C t'/2 � 2F.x; y0/C �0y
2
0� � 0:

Taking the limit as t ! 0, we have

.f .x; y0/ � �0y0/'.x/ � 0; x 2 ˝:

Since this is true for every ' 2 C1
0 .˝/, we see that

f .x; y0.x// � �0y0.x/; x 2 ˝:
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Since y0 2 N0, it follows that (23) holds. Thus the lemma will be proved once we
have established (29). First assume that q > 2. Then we have

Z
jVwjqdx � Ckwkq

D D o.kwk2D/

by (8). Next assume that q D 2 and there is a sequence fwkg such that
Z

2jwkj>ı
jVwkj2dx=kwkk2D � � > 0 (33)

while �k D kwkkD ! 0. Let Qwk D wk=�k. Then k QwkkD D 1. Let �k.x/ be the
characteristic function of the set of those x 2 ˝ such that 2jwk.x/j � ı. Then (33)
becomes

Z

˝

jV Qwkj2�k.x/ dx � �: (34)

But

�k.x/ D 1 when 2j Qwk.x/j � ı=�k ! 1
D 0 when 2j Qwk.x/j < ı=�k:

Hence �k.x/ ! 0 a.e. Since q D 2, we know that there is a renamed subsequence
such that V Qwk converges in L2.˝/. But

V.x/2 Qwk.x/
2�k.x/ � V.x/2 Qwk.x/

2;

and the right-hand side converges in L1.˝/. Since the left-hand side converges a.e.
to 0, we see that

Z
jV.x/ Qwk.x/j2�k.x/ dx ! 0:

Hence there cannot exist an � > 0 such that
Z

2jwkj>ı
jV Qwkj2dx � �:

This completes the proof of (29) and of the lemma.

2.3 Finding a Critical Sequence

Under the hypotheses of Lemma 4, we see that if (22) does not have a solution,
then (23) holds. We want to find a sequence fukg � D such that

G.uk/ ! c; � � c � 1; kG0.uk/k=.1C kukkD/ ! 0: (35)

For this purpose we shall make use of
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Lemma 5. Assume that there is a ı > 0 such that

G.0/ < ˛ � G.u/; u 2 @Bı (36)

and that there is a '0 2 @B1 such that

G.R'0/ � mR; R > R0; (37)

where

@Bı D fu 2 H W kukH D ıg:

If

mR=RˇC1 ! 0 as R ! 1 (38)

for some ˇ � 0, then there is a sequence fukg � E such that

G.uk/ ! c; ˛ � c � 1; G0.uk/=.kukk C 1/ˇ ! 0: (39)

The simplest hypotheses that will guarantee this are:

(D) The point �0 is an eigenvalue of A with a corresponding eigenfunction '0 � 0.
(E) There are functions W0.x/ 2 L1.˝/; h.t/ locally bounded such that

2F.x; t/ � �0t
2 � W0.x/h.t/; x 2 ˝; t > 0 (40)

and

h.t/=t2 ! 0 as t ! 1:: (41)

We have

Lemma 6. Under hypotheses .A/–.E/, there is a sequence satisfying (35).

Proof. Under hypotheses .A/–.C/, Lemma 4 shows us that (36) holds. We must
show that (37) and (38) hold as well under the additional assumptions .D/and.E/.
By (40) we have

G.R'0/ � R2.k'0k2D � �0k'0k2/C
Z

˝

W0.x/h.R'0.x// dx

since '0 � 0. Hence

G.R'0/=R2 �
Z

˝

W0.x/Œh.R'0/=R2'20 �'
2
0dx:: (42)
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Now for any � > 0, there is a t0 such that

jh.t/j=t2 � � for t > t0

and since h.t/ is locally bounded,

jh.t/j � K; 0 � t � t0:

Thus the integral on the right-hand side of (42) is bounded by

�

Z

R'0>t0

W0.x/'0.x/
2dx C K

Z

R'0�t0

W0.x/ dx=R2:

This shows that

G.R'0/=R2 ! 0 as R ! 1: (43)

Hence the hypotheses of Lemma 5 are satisfied and our lemma follows.

2.4 Obtaining a Solution

Now that we have a critical sequence, i.e., a sequence satisfying

G.uk/ ! c; G0.uk/=.1C kukkD/
ˇ ! 0; (44)

we would like to know when such a sequence leads to a solution of (21). For this
purpose we assume only the assumptions made in Sect. 1, i.e., that A is a self-adjoint
operator on L2.˝/;A � �0 > 0 and (4) holds for some m > 0. Moreover, f .x; t/ is
a Carathéodory function on ˝ � R satisfying hypothesis .A/. This is all we assume
concerning A and f .x; t/ in the present section. We have

Lemma 7. Let A and f .x; t/ satisfy the hypotheses stated above, and assume that
there is a sequence fukg � D satisfying (44) with

� 1 � c � 1; �1 < ˇ < 1: (45)

If

kukkD � C; (46)

then c is finite and there is a u 2 D such that

G.u/ D c; G0.u/ D 0: (47)
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Proof. It follows from (46) that there is a subsequence which converges weakly in
D to a limit u. For any compact subset K � ˝, the imbedding of Hm

0 .˝/ in L2.K/
is compact. Thus we can find a subsequence which converges to u in L2.K/. We
can then find a subsequence of this subsequence which converges to u a.e. in K.
By taking a set of compact subsets of ˝ which exhaust ˝, we can find a renamed
subsequence which not only converges to u weakly in D, but strongly in L2.K/ for
each compact subset K of˝ and also a.e. in˝. For such a subsequence I claim that

Z

˝

F.x; uk.x// dx !
Z

˝

F.x; u.x// dx (48)

Z

˝

f .x; uk.x//v.x/ dx !
Z

˝

f .x; u.x//v.x/ dx; v 2 D (49)

and
Z

˝

f .x; uk.x//uk.x/ dx !
Z

˝

f .x; u.x//u.x/ dx: (50)

To see this, let wr.t/ be the continuous function defined by

wr.t/ D t; jtj � r

D r; t > r

D �r; t < �r:

Let � > 0 be given and pick r so large that

jf .x; t/j � �V.x/qjtjq�1; jtj � r (51)

and

jF.x; t/ � F.x;wr.t//j � �V.x/qjtjq; jtj � r: (52)

This can be done by (7). Now

Z

˝

ŒF.x; uk/ � F.x; u/�dx D
Z

jukj>r
ŒF.x; uk/ � F.x;wr.uk//�dx

C
Z

˝

ŒF.x;wr.uk// � F.x;wr.u//�dx

C
Z

juj>r
ŒF.x;wr.u// � F.x; u/�dx: (53)

In view of (52), the first integral on the right-hand side can be estimated by

�

Z
jVukjqdx � �Ckukkq

D � �C1
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and by (8) and (46). A similar estimate holds for the third integral. On the other
hand, the integrand in the middle integral converges to 0 a.e. in ˝. Moreover, it is
majorized by

C.jVwr.uk/jq C jVwr.uk/jW C jVwr.u/jq C jVwr.u/jW/ � 2C.Vqrq C VrW/

which is a function in L1.˝/. Thus the middle integral converges to 0 as k !
1. Hence the left-hand side of (53) can be made as small as desired by taking k
sufficiently large. This shows that (48) holds. One proves (49) and (50) in a similar
way using (51). Once we have (49), we see that

.G0.uk/; v/ D 2.uk; v/D � 2
Z

˝

f .x; uk/vdx

! 2.u; v/D � 2
Z

f .x; u/vdx

D .G0.u/; v/:

Hence u is a solution of the second equation in (47). Since

kukk2D �
Z

˝

f .x; uk/ukdx D .G0.uk/; uk/=2 ! 0;

we see by (50) that

kukk2D !
Z

˝

f .x; u/udx D kuk2D:

This implies that uk ! u strongly in D. Consequently the first equation in (47) holds
as well, showing in particular that c is finite. This proves the lemma.

2.5 Solving the Problem

Lemma 6 gives us sufficient conditions for the functional G to have a critical
sequence. Lemma 7 tells us that a bounded critical sequence produces a solution.
In this section we give additional conditions which will imply that (46) holds. We
will then be assured that we indeed have a solution of (21). We assume:

(F) There are functions V1;W1 2 L2.˝/ such that multiplication by V1 is compact
from D to L2.˝/, and

jf .x; t/j � V2
1 jtj C V1W1; x 2 ˝; t 2 R (54)

and



Carathéodory Functions in Partial Differential Equations 547

f .x; t/=t ! ˛˙.x/ as ! ˙1 a.e. (55)

(G) The only solution of

Au D ˛CuC � ˛�u�; u 2 D (56)

is u � 0, where u˙ D maxf˙u; 0g. We have

Lemma 8. Under hypotheses .B/; .F/, and .G/, every sequence satisfying (44) with
ˇ � 1 is bounded in D.

Proof. Suppose there were a renamed subsequence such that

�k D kukkD ! 1: (57)

Define

Quk D uk=�k:

Then

kQukkD D 1: (58)

It therefore follows that there is a renamed subsequence converging weakly to a
function Qu 2 D and such that V1 Quk converges strongly to V1 Qu in L2.˝/ and a.e. in
˝. Then by (54)

jf .x; uk/Qukj=�k � jV1 Qukj2 C jV1 QukjW1=�k ! jV1 Quj2 in L1.˝/: (59)

If Qu.x/ ¤ 0, then

f .x; uk/Quk=�k D Œf .x; uk/=uk�Qu2k ! ˛˙.x/ŒQu.x/˙�2 a:e: (60)

by (55). If Qu.x/ D 0, then (60) holds by (59). Hence (59) and (60) imply

��1
k

Z

˝

f .x; uk/Qukdx !
Z

˝

f˛C.QuC/2 C ˛�.Qu�/2g dx: (61)

By (44)

.G0.uk/; Quk/=2�k D kQukk2D � ��1
k .f .uk/; Quk/ ! 0 (62)

since ˇ � 1. By (58) and (61), this implies
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Z

˝

f˛C.QuC/2 C ˛�.Qu�/2g dx D 1: (63)

In particular, we see that Qu 6� 0. Moreover, for any v 2 D, we have by (44)

.G0.uk/; v/=2�k D .Quk; v/D � ��1
k .f .uk/; v/ ! 0: (64)

But

jf .x; uk/vj=�k � jV QukjjVvj C jVvjW=�k ! jV QujjVvj in L1.˝/ (65)

and

f .x; uk/v=�k D Œf .x; �k Quk/=�k Quk�Qukv ! Œ˛C QuC � ˛� Qu��v a:e: (66)

if Qu ¤ 0. If Qu.x/ D 0, (66) follows from (65). Thus (64)–(66) imply

.Qu; v/D D .˛C QuC � ˛� Qu�; v/; v 2 D:

Since A is self-adjoint and Qu 2 L2.˝/, we see that Qu is a solution of (56). Hypothesis
.G/ says that Qu must therefore be 0. But this contradicts (63). Hence (57) cannot
hold, and the lemma is proved.

We can now summarize the conclusions of Lemmas 6–8.

Theorem 2. Let A be a self-adjoint operator in L2.˝/ such that A � �0 > 0 and (4)
holds for some m > 0. Assume that �0 is an eigenvalue of A with eigenfunction
'0 � 0 in L1.˝/. Assume also

2F.x; t/ � �0t
2; jtj � ı for some ı > 0 (67)

2F.x; t/ � �0t
2 � W0.x/h.t/; t > 0; x 2 ˝; (68)

where W0 2 L1.˝/ and h.t/ is a locally bounded function satisfying

h.t/=t2 ! 0 as t ! 1: (69)

Assume that f .x; t/ is a Carathéodory function on ˝ � R satisfying hypotheses .F/
and .G/. Then (21) has a solution u ¤ 0.

Proof. Hypotheses (A)–(G) are satisfied. If (23) has a solution, then (21) does
indeed have a solution y ¤ 0. Otherwise (24) holds for some � > 0 and � > 0

by Lemma 4. By Lemma 6 there is a critical sequence satisfying (35) with ˇ D 1.
Lemma 8 guarantees that this sequence is bounded, and Lemma 7 shows that this
leads to a solution of (47). But G0.u/ D 0 is equivalent to (22). Hence u is a solution
of (21). Moreover, since c � � > 0 by (35) and G.0/ D 0, we see that u ¤ 0, and
the proof is complete.
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Basic Tools, Increasing Functions, and Closure
Operations in Generalized Ordered Sets

Árpád Száz

In Honor of Constantin Carathéodory

Abstract Having in mind Galois connections, we establish several consequences
of the following definitions.

An ordered pair X .�/ D .X ; �/ consisting of a set X and a relation � on X
is called a goset (generalized ordered set).

For any x 2 X and A 	 X, we write x 2 ubX.A/ if a � x for all a 2 A, and
x 2 intX.A/ if ubX.x/ 	 A, where ubX.x/ D ubX

�fxg�.
Moreover, for any A 	 X, we also write A 2 UX if A 	 ubX.A/, and A 2 TX

if A 	 intX.A/. And in particular, A 2 EX if intX.A/ ¤ ; .
A function f of one goset X to another Y is called increasing if u � v implies

f .u/ � f .v/ for all u ; v 2 X.
In particular, an increasing function ' of X to itself is called a closure operation

if x � '.x/ and '
�
'.x/

� � '.x/ for all x 2 X.
The results obtained extend and supplement some former results on increasing

functions and can be generalized to relator spaces.

1 Introduction

Ordered sets and Galois connections occur almost everywhere in mathematics [12].
They allow of transposing problems and results from one world of our imagination
to another one.
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In [48], having in mind a terminology of Birkhoff [2, p. 1], an ordered pair
X .�/ D .X ; �/ consisting of a set X and a relation � on X is called a goset
(generalized ordered set) .

In particular, a goset X .�/ is called a proset (preordered set) if the relation �
is reflexive and transitive. And, a proset X .�/ is called a poset (partially ordered
set) if the relation � is in addition antisymmetric.

In a goset X, we may define several algebraic and topological basic tools. For
instance, for any x 2 X and A 	 X, we write x 2 ubX.A/ if a � x for all a 2 A,
and x 2 intX.A/ if ubX.x/ 	 A, where ubX.x/ D ubX.fxg/.

Moreover, we write A 2 UX if A 	 ubX.A/, A 2 TX if A 	 intX.A/, and
A 2 EX if intX.A/ ¤ ; . However, these families are in general much weaker tools
than the relations ubX and intX which are actually equivalent tools.

In [58], in accordance with [11, Definition 7.23], an ordered pair . f ; g/ of
functions f of one goset X to another Y and g of Y to X is called a Galois
connection if for any x 2 X and y 2 Y we have f .x/ � y if and only if x � g.y/ .

In this case, by taking ' D g ı f , we can at once see that f .u/ � f .v/ ”
u � g

�
f .v/

� ” u � .g ı f /.v/ ” u � '.v/ for all u ; v 2 X . Therefore,
the ordered pair . f ; ' / is a Pataki connection by a terminology of Száz [58].

A function f of one goset X to another Y is called increasing if u � v implies
f .u/ � f .v/ for all u ; v 2 X. And, an increasing function ' of X to itself is called
a closure operation on X if x � '.x/ and '

�
'.x/

� � '.x/ for all x 2 X.
In [53], we have proved that if . f ; ' / is a Pataki connection between the prosets

X and Y , then f is increasing and ' is a closure operation such that f � f ı' and
f ı ' � f . Thus, f D f ı ' if in particular Y is a poset.

Moreover, we have also proved that a function ' of a proset X to itself is
a closure operation if and only if .' ; ' / is a Pataki connection or equivalently
. f ; ' / is a Pataki connection for some function f of X to another proset Y .

Thus, increasing functions are, in a certain sense, natural generalizations of not
only closure operations but also Pataki and Galois connections. Therefore, it seems
plausible to extend some results on these connections to increasing functions.

For instance, having in mind a supremum property of Galois connections [51],
we shall show that a function f of one goset X to another Y is increasing if and
only if f ŒubX.A/� 	 ubY

�
f ŒA �

�
for all A 	 X.

If X is reflexive in the sense that the inequality relation in it is reflexive,
then we may write max instead of ub . While, if X and Y are sup-complete
and antisymmetric and f is increasing, then we can state that supY

�
f ŒA �

� �
f
�
supX.A/

�
.

Here, the relations maxX and supX are defined by maxX.A/ D A\ubX.A/ and
supX.A/ D minX.ubX.A// D ubX.A/\ lbX.ubX.A// for all A 	 X. Moreover, the
goset X is called sup-complete if supX.A/ ¤ ; for all A 	 X.

In particular, we shall show that if ' is a closure operation on a sup-complete,
transitive, and antisymmetric goset X, then '

�
supX.A/

� D '
�
supX

�
' ŒA �

��
for

all A 	 X. Moreover, if Y D ' ŒX � and A 	 Y , then supY.A/ D '
�
supX.A/

�
.

In addition to the above results, we shall also show that a function f of one goset
X to another Y is increasing if and only if f ŒclX.A/� 	 clY

�
f ŒA �

�
for all A 	 X,

or equivalently f �1ŒB � 2 TX for all B 2 TY if in particular Y is a proset.
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Finally, by writing R and S in place of the inequalities in the gosets X and Y ,
we shall show that a function f of one simple relator space X .R/ to another Y .S/
is increasing if and only if f ı R 	 S ı f , or equivalently R 	 f �1ı S ı f .

The latter fact, together with some basic operations for relators [56], allows of
several natural generalizations of the notion of increasingness of functions to pairs
.F ; G / of relators on one relator space .X ; Y /.R / to another .Z ; W /.S /.

Here, a family R of relations on X to Y is called a relator, and the ordered pair
.X ; Y /.R / D �

.X ; Y /; R
�

is called a relator space. Thus, relator spaces are
substantial generalizations of not only ordered sets but also uniform spaces.

Moreover, analogously to Galois and Pataki connections [55, 60], increasing
functions are also very particular cases of upper, lower, and mildly semicontinuous
pairs of relators. Unfortunately, these were not considered in [35, 46, 56] .

2 Binary Relations and Ordered Sets

A subset F of a product set X �Y is called a relation on X to Y . If in particular
F 	 X 2, with X 2 D X�X, then we may simply say that F is a relation on X. In
particular, �X D f.x ; x/ W x 2 X g is called the identity relation on X.

If F is a relation on X to Y , then for any x 2 X and A 	 X the sets F.x/ D
f y 2 Y W .x ; y/ 2 Fg and F ŒA � D S

a2A F.a/ are called the images of x and A
under F, respectively. If .x ; y/ 2 F, then we may also write x F y .

Moreover, the sets DF D f x 2 X W F .x/ ¤ ; g and R F D F ŒX � are called the
domain and range of F, respectively. If in particular DF D X, then we say that F
is a relation of X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x 2 Df there
exists y 2 Y such that f .x/ D fyg . In this case, by identifying singletons with
their elements, we may simply write f .x/ D y in place of f .x/ D fyg .

Moreover, a function ? of X to itself is called a unary operation on X. While, a
function  of X 2 to X is called a binary operation on X. And, for any x ; y 2 X,
we usually write x? and x  y instead of ?.x/ and �.x ; y/

�
.

If F is a relation on X to Y , then F D S
x2X fxg�F.x/. Therefore, the values

F.x/, where x 2 X, uniquely determine F . Thus, a relation F on X to Y can be
naturally defined by specifying F.x/ for all x 2 X.

For instance, the complement relation F c can be naturally defined such that
F c.x/ D F.x/c D Y n F.x/ for all x 2 X. Thus, it can be shown F c D X�Y n F
and F c ŒA�c D T

a2A F.a/ for all A 	 X. (See [57].)
Quite similarly, the inverse relation F �1 can be naturally defined such that

F �1.y/ D fx 2 X W y 2 F.x/g for all y 2 Y . Thus, the operations c and �1
are compatible in the sense .F c /�1 D .F �1/c.

Moreover, if in addition G is a relation on Y to Z, then the composition relation
G ı F can be naturally defined such that .G ı F/.x/ D G ŒF.x/ � for all x 2 X.
Thus, we also have .G ı F/ ŒA � D G

�
F ŒA �

�
for all A 	 X.

While, if G is a relation on Z to W, then the box product relation F �G can be
naturally defined such that .F � G/.x ; z/ D F.x/� G.z/ for all x 2 X and z 2 Z .
Thus, we have .F � G/ŒA � D G ı A ı F �1 for all A 	 X�Z . (See [57].)
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Hence, by taking A D f.x ; z/g, and A D �Y if Y D Z, one can see that
the box and composition products are actually equivalent tools. However, the box
product can be immediately defined for an arbitrary family of relations too.

If F is a relation on X to Y , then a subset ˚ of F is called a partial selection
relation of F. Thus, we also have D˚ 	 DF . Therefore, a partial selection relation
˚ of F may be called total if D˚ D DF .

The total selection relations of a relation F will usually be simply called the
selection relations of F. Thus, the axiom of choice can be briefly expressed by
saying that every relation F has a selection function.

If F is a relation on X to Y and U 	 DF, then the relation F j U D F \ .U�Y /
is called the restriction of F to U. Moreover, if F and G are relations on X to Y
such that DF 	 DG and F D G j DF , then G is called an extension of F.

For any relation F on X to Y , we may naturally define two set-valued functions,
F ˘ of X to P .Y / and F ˙ of P .X / to P .Y /, such that F ˘.x/ D F.x/ for all
x 2 X and F ˙.A/ D F ŒA � for all A � X.

Functions of X to P .Y / can be identified with relations on X to Y . While,
functions of P .X / to P .Y / are more general objects than relations on X to Y .
They were called corelations on X to Y in [59].

Now, a relation R on X may be briefly defined to be reflexive if �X 	 R, and
transitive if R ı R 	 R . Moreover, R may be briefly defined to be symmetric if
R�1 	 R, and antisymmetric if R \ R�1 	 �X .

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

For instance, for A 	 X, the Pervin relation RA D A2 [ Ac �X is a preorder
relation on X. (See [24, 52].) While, for a pseudo-metric d on X and r > 0, the
surrounding Bd

r D ˚
.x ; y/ 2 X2 W d.x ; y/ < r

�
is a tolerance relation on X .

Moreover, we may recall that if A is a partition of X, i. e., a family of pairwise
disjoint, nonvoid subsets of X such that X D S

A , then SA D S
A2A A2 is an

equivalence relation on X, which can, to some extent, be identified with A .
According to algebra, for any relation R on X, we may naturally define R 0 D

�X , and R n D R ı R n�1 if n 2 N . Moreover, we may also naturally define
R 1 D S1

nD0 R n . Thus, R 1 is the smallest preorder relation containing R [16].
Note that R is a preorder on X if and only if R D R 1. Moreover, R 1 D

R 1 1 and .R 1 /�1 D .R�1/1. Therefore, R�1 is also a preorder on X if R is a
preorder on X. Moreover, R 1 is already an equivalence on X if R is symmetric.

According to [48], an ordered pair X .�/ D �
X ; �/, consisting of a set X and a

relation � on X, will be called a generalized ordered set or an ordered set without
axioms. And, we shall usually write X in place of X .�/ .

In the sequel, a generalized ordered set X .�/ will, for instance, be called
reflexive if the relation � is reflexive on X. Moreover, it is called a preordered
(partially ordered) set if � is a preorder (partial order) on X.

Having in mind a widely used terminology of Birkhoff [2, p. 1], a generalized
ordered set will be briefly called a goset. Moreover, a preordered (partially ordered)
set will be call a proset (poset).
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Thus, every set X is a poset with the identity relation �X . Moreover, X is a
proset with the universal relation X 2. And, the power set P.X/ of X is a poset
with the ordinary set inclusion 	 .

In this respect, it is also worth mentioning that if in particular X a goset, then
for any A ; B 	 X we may also naturally write A � B if a � b for all a 2 A and
b 2 B . Thus, P .X/ is also a goset with this extended inequality.

Moreover, if X .�/ is a goset and Y 	 X, then by taking �YD� \Y 2, we can
also get a goset Y .�Y /. This subgoset inherits several properties of the original
goset. Thus, for instance, every family of sets is a poset with set inclusion.

In the sequel, trusting to the reader’s good sense to avoid confusions, for any
goset X .�/ and operation ? on relations on X, we shall use the notation X ? for
the goset X .�? / . Thus, for instance, X �1 will be called the dual of the goset X.

Several definitions on posets can be naturally extended to gosets [48]. And,
even to arbitrary relator spaces [47] which include ordered sets [11], context
spaces [15], and uniform spaces [14] as the most important particular cases.

Moreover, most of the definitions can also be naturally extended to corelator
spaces .X ; Y /.U / D �

.X ; Y /; U
�

consisting of two sets X and Y and a family
U of corelations on X to Y . However, it is convenient to investigate first gosets.

3 Upper and Lower Bounds

According to [48], for instance, we may naturally introduce the following

Definition 1. For any subset A of a goset X, the elements of the sets

ubX .A/ D ˚
x 2 X W A � fxg� and lbX .A/ D ˚

x 2 X W fxg � A
�

will be called the upper and lower bounds of the set A in X, respectively.

Remark 1. Thus, for any x 2 X and A 	 X, we have

(1) x 2 ubX .A/ if and only if a � x for all a 2 A ,
(2) x 2 lbX .A/ if and only if x � a for all a 2 A .

Remark 2. Hence, by identifying singletons with their elements, we can see that

(1) ubX .x/ D � .x/ D Œ x; C1 Œ D ˚
y 2 X W x � y

�
,

(2) lbX .x/ D � .x/ D � � 1; x � D ˚
y 2 X W x � y

�
.

This shows that the relation ubX is somewhat more natural tool than lbX .

By using Remark 1, we can easily establish the following

Theorem 1. For any subset A of a goset X, we have

(1) ubX.A/ D lbX �1 .A/,
(2) lbX.A/ D ubX �1 .A/ .
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Proof. If x 2 ubX.A/, then by Remark 1 we have a � x for all a 2 A . This
implies that x ��1 a for all a 2 A . Hence, since X �1 D X.��1 /, we can already
see that x 2 lbX �1 .A/. Therefore, ubX.A/ 	 lbX �1 .A/.

The converse inclusion can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by taking X �1 in place of X.

Remark 3. This theorem shows that the relations ubX and lbX are equivalent tools
in the goset X.

By using Remark 1, we can also easily establish the following theorem.

Theorem 2. If X is a goset and Y 	 X, then for any A 	 Y we have

(1) ubY.A/ D ubX.A/ \ Y,
(2) lbY.A/ D lbX.A/ \ Y.

Concerning the relations ubX and lbX , we can also easily prove the following
theorem.

Theorem 3. For any family .Ai / i2 I subsets of a goset X, we have

(1) ubX

�S

i2 I
Ai

	
D T

i2 I
ubX

�
Ai
�
,

(2) lbX

�S

i2 I
Ai

	
D T

i2 I
lbX
�
Ai
�
.

Proof. If x 2 ubX
�S

i2 I Ai
�
, then by Remark 1 we have a � x for all a 2S

i2 I Ai . Hence, it is clear that we also have a � x for all a 2 Ai with i 2 I .
Therefore, x 2 ubX.Ai/ for all i 2 I, and thus x 2 T i2 I ubX.Ai/ also holds.

The converse implication can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by using Theorem 1.

From the above theorem, by identifying singletons with their elements, we can
immediately derive the following corollary.

Corollary 1. For any subset A of a goset X, we have

(1) ubX.A/ D T

a2A
ubX.a/,

(2) lbX.A/ D T

a2A
lbX.a/.

Remark 4. Hence, by using Remark 2 and a basic fact on complement relations
mentioned in Sect. 2, we can immediately derive that

(1) ubX.A/ D�c ŒA �c . (2) lbX.A/ D�c ŒA �c .

From Corollary 1, we can also immediately derive the first two assertions of

Theorem 4. If X is a goset, then

(1) ubX.;/ D X and lbX.;/ D X,
(2) ubX.B/ 	 ubX.A/ and lbX.B/ 	 lbX.A/ if A 	 B 	 X ,

(3)
S

i2 I
ubX

�
Ai
� 	 ubX

�T

i2 I
Ai

	
and

S

i2 I
lbX
�
Ai
� 	 lbX

�T

i2 I
Ai

	
if Ai 	 X for

all i 2 I.
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Proof. To prove the first part of (3), we can note that if Ai 	 X for all i 2 I,
then

T
i2 I Ai 	 Ai for all i 2 I . Hence, by using (2), we can already infer that

ubX.Ai/ 	 ubX
�T

i2 I Ai
�

for all i 2 I, and thus the required inclusion is also
true.

However, it is now more important to note that, as an immediate consequence
of the corresponding definitions, we can also state the following theorem which
actually implies most of the properties of the relations ubX and lbX .

Theorem 5. For any two subsets A and B of a goset X, we have

B 	 ubX.A/ ” A 	 lbX.B/ :

Proof. By Remark 1, it is clear that each of the above inclusions is equivalent to the
property that a � b for all a 2 A and b 2 B .

Remark 5. This property can be briefly expressed by writing that A � B, or equi-
valently A�B 	 �, that is, B 2 UbX.A/, or equivalently A 2 LbX.B/ by the
notations of our former paper [47] .

From Theorem 5, it is clear that in particular we have

Corollary 2. For any subset A of a goset X, we have

(1) ubX.A/ D ˚
x 2 X W A 	 lbX.x/

�
,

(2) lbX.A/ D ˚
x 2 X W A 	 ubX.x/

�
.

Remark 6. Moreover, from Theorem 5, we can see that, for any A; B 	 X, we
have

lbX.A/ 	�1 B ” A 	 ubX.B/ :

This shows that the set-valued functions lbX and ubX form a Galois connection
between the poset P.X/ and its dual in the sense of [11, Definition 7.23], suggested
by Schmidt’s reformulation [36, p. 209] of Ore’s definition of Galois connexions
[30] .

Remark 7. Hence, by taking ˚X D ubX ı lbX , for any A; B 	 X, we can infer that

lbX.A/ 	�1 lbX.B/ ” A 	 ˚X.B/ :

This shows that the set-valued functions lbX and ˚X form a Pataki connection
between the poset P.X/ and its dual in the sense of [51, Remark 3.8] suggested
by a fundamental unifying work of Pataki [32] on the basic refinements of relators
studied each separately by the present author in [42] .

Remark 8. By [53, Theorem 4.7], this fact implies that lbX D lbX ı˚X , and ˚X

is a closure operation on the poset P .X / in the sense of [2, p. 111] .
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By an observation, attributed to Richard Dedekind by Erné [12, p. 50], this is
equivalent to the requirement that the set function ˚X with itself forms a Pataki
connection between the poset P.X/ and itself.

4 Interiors and Closures

Because of Remark 2, we may also naturally introduce the following

Definition 2. For any subset A of a goset X, the sets

intX.A/ D ˚
x 2 X W ubX .x/ 	 A

�
and clX.A/ D ˚

x 2 X W ubX .x/\A ¤ ; �

will be called the interior and closure of the set A in X, respectively.

Remark 9. Recall that, by Remark 2, we have ubX.x/ D� .x/ D Œ x; C1 Œ for
all x 2 X.

Therefore, the present one-sided interiors and closures, when applied to subsets
of the real line R, greatly differ from the usual ones.

The latter ones can only be derived from a relator (family of relations) which has
to consist of at least countable many tolerance or preorder relations.

By using Definition 2, we can easily prove the following theorem.

Theorem 6. For any subset A of a goset X, we have

(1) intX.A/ D X n clX.X n A/,
(2) clX.A/ D X n intX.X n A/.

Proof. If x 2 intX.A/, then by Definition 2 we have ub.x/ 	 A . Hence, we can
infer that ub.x/\.X nA/ D ; . Therefore, by Definition 2, we have x … clX.X nA/,
and thus x 2 X n clX.X n A/. This shows that intX.A/ 	 X n clX.X n A/.

The converse inclusion can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by writing X n A in place of A,
and applying complementation.

Remark 10. This theorem shows that the relations intX and clX are also equivalent
tools in the goset X.

By using the complement operation C , defined by C .A/ D Ac D X n A for all
A 	 X, the above theorem can be reformulated in a more concise form.

Corollary 3. For any goset X, we have

(1) intX D �
clX ıC �c D cl c

X ıC ,
(2) clX D �

intX ıC �c D int c
X ıC .

Proof. To prove the second part of (1), note that by the corresponding definitions,
for any A 	 X, we have

�
clX ıC �c

.A/ D �
clX ıC �.A/c D clX

�
C .A/

�c D clc
X

�
C .A/

� D �
clc

X ıC �.A/:
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Now, in contrast to Theorems 1 and 2, we can only state the following two
theorems.

Theorem 7. For any subset A of a goset X, we have

(1) intX �1 .A/ D ˚
x 2 X W lbX .x/ 	 A

�
,

(2) clX �1 .A/ D˚x 2 X W lbX .x/ \ A ¤ ; �.
Theorem 8. If X is a goset and Y 	 X, then for any A 	 Y we have

(1) intX.A/ \ Y 	 intY.A/,
(2) clY.A/ 	 clX.A/ \ Y.

However, concerning the relations intX and clX , we can also easily prove

Theorem 9. For any family .Ai / i2 I subsets of a goset X, we have

(1) intX
�T

i2 I
Ai

	
D T

i2 I
intX

�
Ai
�
,

(2) clX
�S

i2 I
Ai

	
D S

i2 I
clX
�
Ai
�
.

Proof. If x 2 intX
�T

i2 I Ai
�
, then by Definition 2 we have ubX.x/ 	 T

i2 I Ai .
Therefore, ubX.x/ 	 Ai, and thus x 2 intX.Ai/ for all i 2 I . Therefore, x 2T

i2 I intX
�
Ai
�

also holds.
The converse implication can be proved quite similarly by reversing the above

argument. Moreover, (2) can be derived from (1) by using Theorem 6.

Remark 11. This theorem shows that, despite Remark 10, there are cases when the
relation clX is a more convenient tool than intX .

Namely, from assertion (2), by identifying singletons with their elements, we
can immediately derive the following corollary.

Corollary 4. For any subset A of a goset X, we have

clX.A/ D S

a2A
clX.a/ :

Remark 12. Note that, for any x ; y 2 X, we have

y 2 clX.x/ ” ubX.y/ \ fxg ¤ ; ” x 2 ubX.y/ ” y 2 lbX.x/;

and thus also clX.x/ D lbX.x/ . Hence, by using Theorem 1, we can immediately
infer that clX.x/ D ubX �1 .x/ .

Therefore, as an immediate consequence of the above results, we can also state

Theorem 10. For any subset A of a goset X, we have

clX.A/ D S

a2A
lbX.a/ D S

a2A
ubX �1 .a/ :
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Remark 13. Hence, by using Remark 2 and Theorem 1, we can at once see that

clX.A/ D S

a2A
� .a/ D � ŒA� and clX �1 .A/ D S

a2A
� .a/ D � ŒA � :

And thus, by Theorem 6, also intX.A/ D� ŒAc � c and intX �1 .A/ D� ŒAc � c .

Now, analogously to Theorem 4, we can also easily establish the following

Theorem 11. If X is a goset, then

(1) clX.;/ D ; and intX.X / D X,
(2) clX.A/ 	 clX.B/ and intX.A/ 	 intX.B/ if A 	 B 	 X ,

(3) clX
�T

i2 I
Ai

	
	 T

i2 I
clX
�
Ai
�

and
S

i2 I
intX

�
Ai
� 	 intX

�S

i2 I
Ai

	
if Ai 	 X

for all i 2 I.

However, it is now more important to note that, analogously to Theorem 5, we
also have the following theorem which actually implies most of the properties of the
relations intX and clX .

Theorem 12. For any two subsets A and B of a goset X, we have

B 	 intX.A/ ” clX �1 .B/ 	 A :

Proof. If B 	 intX.A/, then by Definition 2, we have ubX.b/ 	 A for all b 2 B .
Hence, by Theorem 10, we can already see that clX �1 .B/ D S

b2B ubX.b/ 	 A .
The converse implication can be proved quite similarly by reversing the above

argument.

Remark 14. Recall that, by Remark 13, we have clX �1 .B/ D� ŒB � . Therefore,
by Theorem 12, the inclusion B 	 intX.A/ can also be reformulated by stating
that � ŒB � 	 A, or equivalently � ŒB � \ Ac D ; . That is, B 2 IntX.A/, or
equivalently B … ClX.Ac / by the notations of Száz [47] .

From Theorem 12, it is clear that in particular we have

Corollary 5. For any subset A of a goset X, we have

intX.A/ D ˚
x 2 X W clX �1 .x/ 	 A

�
:

Remark 15. From Theorem 12, we can also see that, for any A; B 	 X, we have

clX �1 .A/ 	 B ” A 	 intX.B/ :

This shows that the set-valued functions clX �1 and intX form a Galois connec-
tion between the poset P.X/ and itself.



Generalized Ordered Sets 561

Remark 16. Thus, by taking ˚X D intX ı clX �1 , for any A; B 	 X we can state
that

clX �1 .A/ 	 clX �1 .B/ ” A 	 ˚X.B/ :

This shows that the set-valued functions clX �1 and ˚X form a Pataki connection
between the poset P.X/ and itself. Thus, clX �1 D cl X �1 ı˚X , and ˚X is closure
operation on the poset P.X / .

Remark 17. The upper- and lower-bound Galois connection, described in
Remark 6, was first studied by Birkhoff [2, p. 122] under the name polarities.

While, the closure–interior Galois connection, described in Remark 15, has been
only considered in [61] with reference to Davey and Priestly [11, Exercise 7.18] .

5 Open and Closed Sets

Definition 3. For any goset X, the members of the families

TX D f A 	 X W A 	 intX.A/
�

and FX D f A 	 X W clX.A/ 	 A
�

are called the open and closed subsets of X, respectively.

Remark 18. Thus, by Definition 2 and Theorem 10, for any A 	 X, we have

(1) A 2 TX if and only if ubX.a/ 	 A for all a 2 A .
(2) A 2 FX if and only if lbX.a/ 	 A for all a 2 A .

Namely, by Definition 2, for any a 2 A we have a 2 intX.A/ if and only if
ubX.a/ 	 A . Moreover, by Theorem 10, we have clX.A/ D S

a2A lbX.a/ .

Remark 19. Because of Remarks 2 and 18, the members of the families TX and
FX may also be called the ascending and descending subsets of X.

Namely, for instance, by the above mentioned remarks, for any A 	 X we have
A 2 TX if and only if for any a 2 A and x 2 X, with a � x, we also have x 2 A .

Remark 20. Moreover, from Remarks 2 and 18, we can also see that
(1) TX D ˚

A 	 X W � ŒA � 	 A
�

. (2) FX D ˚
A 	 X W � ŒA � 	 A

�
.

Namely, for instance, by a basic definition on relations and Remark 2, for any
A 	 X we have � ŒA� D S

a2A � .a/ D S
a2A ubX.a/ .

By using Definition 3 and Theorem 6, we can also easily prove the following
theorem.

Theorem 13. For any goset X, we have

(1) TX D f A 	 X W Ac 2 FX
�
,

(2) FX D f A 	 X W Ac 2 TX
�
.
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Proof. If A 2 TX , then by Definition 3 we have we have A 	 intX.A/ . Hence,
by using Theorem 6, we can infer that clX.Ac/ D intX.A/c 	 Ac. Therefore, by
Definition 3, the inclusion Ac 2 FX also holds.

The converse implication can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by using Theorem 6.

Remark 21. This theorem shows that the families TX and FX are also equivalent
tools in the goset X.

By using the element-wise complementation, defined by A c D ˚
Ac W A 2 A

�

for all A 	 P .X /, Theorem 13 can also be reformulated in a more concise form.

Corollary 6. For any goset X, we have

(1) TX D F c
X ,

(2) FX D T c
X .

Now, as an immediate consequence of Remark 20, we can also state the
following theorem which can also be easily proved with the help of Definition 3
and Theorem 12.

Theorem 14. For any goset X, we have

(1) TX D FX �1 ,
(2) FX D TX �1 .

Proof. If A 2 TX , then by Definition 3, we have A 	 intX.A/ . Hence, by using
Theorem 12, we can infer that clX �1 .A/ 	 A . Therefore, A 2 FX�1 also holds.

The converse implication can be proved quite similarly by reversing the above
argument. Moreover, (2) can be derived from (1) by writing X �1 in place of X.

Remark 22. Moreover, because of Remark 14 and Theorem 13, for any A 	 X we
can also state that A 2 TX if and only if A 2 IntX.A/, and A 2 FX if and only if
Ac … ClX.A/ .

By using Definition 3 and Theorem 8, we can easily establish the following
theorem.

Theorem 15. For any subset Y of a goset X, we have

(1) TX \ P.Y / 	 TY ,
(2) FX \ P.Y / 	 FY .

Proof. Namely, if, for instance, A 2 TX \ P.Y /, then A 2 TX and A 2 P.Y / .
Therefore, A 	 intX.A/ and A 	 Y . Hence, by Theorem 8, we can already see
that A � intX.A/ \ Y 	 intY.A/, and thus A 2 TY also holds.

Moreover, by using Definition 3 and Theorems 9 and 11, we can also easily
prove the following.
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Theorem 16. For any goset X, the families TX and FX are ultratopologies [10]
(complete rings [1]) in the sense that they are closed under arbitrary unions and
intersections.

Proof. Namely, if, for instance, Ai 2 TX for all i 2 I, then Ai 	 intX.Ai/ for all
i 2 I . Hence, by using Theorems 9 and 11, we can already infer that

T

i 2 I
Ai 
 T

i 2 I
intX.Ai/ D intX

�T

i 2 I
A i

	
and

S

i 2 I
Ai 
 S

i 2 I
intX.Ai/ 
 intX

�S

i 2 I
A i

	
:

Therefore, the sets
T

i2 I Ai and
S

i2 I Ai are also in TX .

Remark 23. From the above theorem, by taking the empty subfamily of TX and
FX , we can immediately infer that f ;; X g 	 TX \ FX .

Finally, we note that the following theorem is also true

Theorem 17. For any subset A of a goset X, we have

(1)
S

TX \ P.A/ 	 intX.A/,
(2) clX.A/ 	 T

FX \ P�1.A/.

Proof. Define B D S
TX \ P.A/ . Then, we evidently have B 	 A . Moreover,

by Theorem 16, we can see that B 2 TX . Hence, by using Definition 3 and
Theorem 11, we can already infer that B 	 intX.B/ 	 intX.A/ . Therefore, (1)
is true.

Moreover, from (1), by using Theorem 12 and the fact that U 2 P�1.V / if
and only if V 	 U, we can easily see that (2) is also true.

Example 1. If, for instance, X D R and � is a relation on X such that

� .x/ D fx � 1g [ Œx; C1 Œ

for all x 2 X, then by using Remarks 2 and 18 we can easily see that TX D˚;; X
�
, and thus by Corollary 6 also FX D ˚;; X

�
.

Namely, if A 2 TX such that A ¤ ;, then there exists x 2 X such that x 2 A,
and thus by the abovementioned remarks � .x/ D ubX.x/ 	 A . Therefore,

fx � 1g [ Œ x; C1 Œ 	 A :

Hence, we can see that x � 1 2 A . Therefore, � .x � 1/ 	 A, and thus

fx � 2g [ Œ x � 1; C1 Œ 	 A :

Hence, by induction, it is clear that for any n 2 N we also have

fx � n � 1g [ Œ x � n; C1 Œ 	 A :
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Thus, by the Archimedean property of N in R, we necessarily have A D X .
Now, by using that FX D ˚;; X

�
, we can easily see that

S
FX\P�1.A/ D ; if A D ; and

S
FX\P�1.A/ D X if A ¤ ; :

Moreover, we can also easily see that, for any x ; y 2 X,

y 2 lbX.x / ” x 2 ubX.y / ” x 2� .y / ” x 2 fy � 1g [ Œ y; C 1 Œ

” x D y � 1 or y � x ” y � x or y D x C 1 ” y 2 � � 1; x � [ fx C 1g :

Therefore,

lbX.x/ D � � 1; x � [ fx C 1g :

Thus, by Theorem 10,

clX.A/ D S

a2A
lbX.a/ D S

a2A

�
� � 1; a � [ fa C 1g � :

for all A 	 X. Hence, it is clear that equality in the assertion (2) of Theorem 17
need not be true.

Remark 24. This shows that the families TX and FX are, in general, much weaker
tools in the goset X than the relations intX and clX . However, later we see that this
is not the case if X is in particular a proset.

6 Fat and Dense Sets

Note that a subset A of a goset X may be called upper bounded if ubX.A/ ¤ ; .
Therefore, in addition to Definition 3, we may also naturally introduce the
following.

Definition 4. For any goset X, the members of the families

EX D f A 	 X W intX.A/ ¤ ; � and DX D f A 	 X W clX.A/ D X
�

are called the fat and dense subsets of X, respectively.

Remark 25. Thus, by Definition 2, for any A 	 X, we have

(1) A 2 EX if and only if ubX.x/ 	 A for some x 2 X.
(2) A 2 DX if and only if ubX.x/ \ A ¤ ; for all x 2 X.
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Remark 26. Moreover, by Remark 13 and Theorem 10, we can also see that

DX D ˚
A 	 X W X D� ŒA �

� D ˚
A 	 X W X D S

a2A lbX.a/
�
:

Therefore, for any A 	 X, we have A 2 DX if and only if for any x 2 X there
exists a 2 A such that x 2 lbX.a/, i. e., x � a .

Remark 27. Because of the above two remarks, the members of the families EX

and DX may also be called the residual and cofinal subsets of X.
Namely, for instance, by Remarks 2 and 25, for any A 	 X, we have A 2 EX if

and only if there exists x 2 X such that for any y 2 X, with x � y, we have y 2 A .

By using Definition 4 and Theorem 6, we can easily prove the following.

Theorem 18. For any goset X, we have

(1) EX D ˚
A 	 X W Ac … DX

�
,

(2) DX D ˚
A 	 X W Ac … EX

�
.

Proof. If A 2 EX , then by Definition 4 we have intX.A/ ¤ ; . Hence, by
Theorem 6, we can infer that clX.Ac/ D X n intX.A/ ¤ X. Therefore, Ac … DX

also holds.
The converse implication can be proved quite similarly by reversing the above

argument. Moreover, (2) can be derived from (1) by using Theorem 6.

Remark 28. This theorem shows that the families EX and DX are also equivalent
tools in the goset X.

By using element-wise complementation, Theorem 18 can also be written in a
more concise form.

Corollary 7. For any goset X, we have

(1) EX D �
P.X / n DX

�c
,

(2) DX D �
P.X / n EX

�c
.

Moreover, concerning the families EX and DX , we can also prove the following.

Theorem 19. For any goset X, we have

(1) EX D ˚
E 	 X W 8 D 2 DX W E \ D ¤ ; �,

(2) DX D ˚
D 	 X W 8 E 2 EX W E \ D ¤ ; � .

Proof. If E 2 EX , then by Remark 25, there exists x 2 X such that ubX.x/ 	 E .
Moreover, if D 2 DX , then by Remark 25, we have ubX.x/ \ D ¤ ; . Therefore,
E \ D ¤ ; also holds.

Conversely, if E 	 X such that E \ D ¤ ; for all D 2 DX , then we can also
easily see that E 2 EX . Namely, if E … EX , then by Theorem 18 we necessarily
have E c 2 DX . Therefore, E \ E c ¤ ; which is a contradiction.

Hence, it is clear that (1) is true. Assertion (2) can be proved quite similarly.
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Now, a counterpart of Theorem 14 is not true. However, analogously to
Theorems 15 and 16, we can also state the following two theorems.

Theorem 20. For any subset Y of a goset X, we have

(1) EX \ P.Y / 	 EY ,
(2) DX \ P.Y / 	 DY .

Theorem 21. For any goset X, the families EX and DX are ascending subfamilies
of the poset P.X / such that

(1) TX n f;g 	 EX,
(2) FX \ DX 	 fX g.

From this theorem, we can immediately derive the following

Corollary 8. For any subset A of a goset X, the following assertions are true:

(1) If B 	 A for some B 2 TX n f;g, then A 2 EX .
(2) If A 2 DX, then A n B ¤ ; for all B 2 FX n fX g .

Proof. To check (2), note that if the conclusion of (2) does not hold, then there
exists B 2 FX n fX g such that A n B D ;, and thus A \ Bc D ; . Hence, by
defining C D Bc and using Theorem 13, we can already see that C 2 TX n f;g
such that A \ C D ;, and thus C 	 Ac . Therefore, by (1), Ac 2 EX , and thus by
Theorem 18, we have A … DX .

Remark 29. The converses of the above assertions need not be true. Namely, if X is
as in Example 1, then TX D f ;; X g, but EX is quite a large subfamily of P.X /.

This shows that there are cases when even the families EX and DX are better
tools in a goset X than TX and FX . However, later we shall see that this is not the
case if X is in particular a proset.

The duality and several advantages of fat and dense sets in relator spaces, over
the open and closed ones, were first revealed by the present author at a Prague
Topological Symposium in 1991 [40]. However, nobody was willing to accept this.

Remark 30. An ascending subfamily A of the poset P.X / is usually called a
stack in X. It is called proper if ; … A or equivalently A ¤ P.X / .

In particular, a stack A in X is called a filter if A; B 2 A implies A \ B 2 A .
And, A is called a grill if A [ B 2 A implies A 2 A or B 2 A . These are
usually assumed to be nonempty and proper.

Several interesting historical facts on stacks, lters, grills and nets can be found in
the works [62, 63] of Thron

Concerning the families EX and DX , we can also easily establish the following
two theorems.

Theorem 22. For any poset X, the following assertions are equivalent :

(1) EX ¤ ;,
(2) X 2 EX,
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(3) ; … DX,
(4) X ¤ ;.

Proof. To prove the equivalence of (1) and (4), note that, by Theorem 21,
assertions (1) and (2) are equivalent. Moreover, by Remark 25, assertion (2) holds
if and only there exists x 2 X such that ubX.x/ 	 X . That is, (4) holds.

Theorem 23. For any poset X, the following assertions are equivalent :

(1) ; … EX,
(2) DX ¤ ;,
(3) X 2 DX,
(4) X D � ŒX �.

Proof. To prove the equivalence of (1) and (4), note that by Remark 25 assertion
(1) holds if and only if, for any x 2 X, we have ubX.x/ 6	 ; . That is, ubX.x/ ¤ ;,
or equivalently � .x/ ¤ ; . That is, the relation � is total in the sense that its
domain is the whole X.

Remark 31. A subset B of a stack A in X is called a base of A if for each
A 2 A there exists B 2 B such that B 	 A . That is, B is a cofinal subset of the
poset A �1 D A .	�1 / D A .�/ .

Note that if B 	 P.X/, then the family

B� D clP �1 .B / D ˚
A 	 X W 9 B 2 B W B 	 A

�

is already a stack in X such that B is a base of B� .

Now, as a more important addition to Theorem 21, we can also easily prove

Theorem 24. For any goset X, the stack EX has a base B with card.B / �
card.X / .

Proof. By Remarks 25 and 31, it is clear that the family BX D ˚
ubX.x/ W x 2 X

�

is a base of EX .
Moreover, we can note that the function f , defined by f .x/ D ubX.x/ for x 2 X,

is onto BX . Hence, by the axiom of choice, the cardinality condition follows.
Namely, now f �1 is a relation of BX to X. Hence, by choosing a selection

function ' of f �1, we can see that ' is an injection of B to X.

Remark 32. Now, a corresponding property of the family DX should, in principle,
be derived from the above theorem by using either Theorem 18 or 19 .

Remark 33. The importance of the study of the cardinalities of the bases of the stack
of all fat sets in a relator space, concerning a problem of mine on paratopologically
simple relators, was first recognized by J. Deák (1994) and G. Pataki (1998). (For
the corresponding results, see Pataki [31].)
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7 Maximum, Minimum, Supremum, and Infimum

According to [48], we may also naturally introduce the following.

Definition 5. For any subset A of a goset X, the members of the sets

maxX.A/ D A \ ubX.A/ and minX.A/ D A \ lbX .A/

are called the maxima and minima of the set A in X, respectively.

Remark 34. Thus, for any subset A of a goset X, we have

(1) ubX.A/ D maxX.A/ if and only if ubX.A/ 	 A .
(2) lbX.A/ D minX.A/ if and only if lbX.A/ 	 A .

Moreover, from Definition 5, we can see that the properties of the relations maxX

and minX can be immediately derived from the results of Sect. 3.
For instance, from Theorems 1 and 2 and Corollaries 1 and 2, by using

Definition 5, we can immediately derive the following four theorems.

Theorem 25. For any subset A of a goset X, we have

(1) maxX.A/ D minX �1 .A/,
(2) maxX.A/ D minX �1 .A/.

Remark 35. This theorem shows that the relations maxX and minX are also equi-
valent tools in the goset X.

Theorem 26. If X is a goset and Y 	 X, then for any A 	 Y we have

(1) maxY.A/ D maxX.A/,
(2) minY.A/ D minX.A/.

Theorem 27. For any subset A of a goset X, we have

(1) maxX.A/ D T

a2A
A \ ubX.a/,

(2) minX.A/ D T

a2A
A \ lbX.a/.

Theorem 28. For any subset A of a goset X, we have

(1) maxX .A/ D ˚
x 2 A W A 	 lbX.x/

�
,

(2) minX .A/ D ˚
x 2 A W A 	 ubX.x/

�
.

Remark 36. By Corollary 2, for instance, we may also naturally define

ub�
X .A/ D ˚

x 2 X W A \ ubX.x/ 	 lbX.x/
�
;

and also max�
X .A/ D A \ ub�

X .A/ for all A 	 X.
Thus, for any x 2 X and A 	 X, we have x 2 ub�

X .A/ if and only if x � a
implies a � x for all a 2 A . Therefore, max�

X .A/ is just the family of all maximal
elements of A.
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The most important theorems on a poset X give some sufficient conditions in
order that the set max� .X / be nonempty. (See, for instance, [18, p. 33] and the
references of [54] .)

Now, by using Definition 5, we may also naturally introduce

Definition 6. For any subset A of a goset X, the members of the sets

supX .A/ D minX
�
ubX.A/

�
and infX .A/ D maxX

�
lbX.A/

�

are called the suprema and infima of the set A in X, respectively.

Thus, by Definition 5, we evidently have the following

Theorem 29. For any subset A of a goset X, we have

(1) supX.A/ D ubX.A/ \ lbX
�
ubX .A/

�
,

(2) infX.A/ D lbX.A/ \ ubX
�
lbX .A/

�
.

Hence, by Theorem 1, it is clear that we also have the following.

Theorem 30. For any subset A of a goset X, we have

(1) supX.A/ D infX �1 .A/,
(2) infX.A/ D supX �1 .A/.

Remark 37. This theorem shows that the relations supX and infX are also equi-
valent tools in the goset X.

However, instead of an analogue of Theorem 2, we can only prove

Theorem 31. If X is a goset and Y 	 X, then for any A 	 Y we have

(1) supX.A/ \ Y 	 supY.A/,
(2) infX.A/ \ Y 	 infY.A/.

Proof. To prove (1), by using Theorems 2, 4, and, 29 we can see that

supY.A/ D ubY.A/ \ lbY
�
ubY .A/

�

D ubX.A/ \ Y \ lbX
�
ubX .A/ \ Y

� \ ubX.A/ \ Y

D ubX.A/ \ lbX
�
ubX .A/ \ Y

� \ Y � ubX.A/ \ lbX
�
ubX .A/

� \ Y

D sup
X
.A/ \ Y:

Remark 38. In connection with inclusion (2), Tamás Glavosits, my PhD student,
showed that the corresponding equality need not be true even if X is a finite poset.

For this, he took X D f a ; b ; c ; d g, Y D X nfbg and A D Y nfag, and consid-
ered the preorder � on X generated by the relation R D f.a ; b/; .b ; c/; .b ; d/g.
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Thus, he could at once see that infY.A/ D maxY
�
lbY.A/

� D maxY
�fag� D fag,

but infX.A/ D maxX
�
lbX.A/

� D maxX
�fa ; bg� D fbg, and thus infX.A/\Y D ; .

Now, by using Theorem 29, we can also easily prove the following theorem
which shows that the relations supX and infX are, in a certain sense, better tools in
the goset X than maxX and minX .

Theorem 32. For any subset A of a goset X, we have

(1) maxX.A/ D A \ supX.A/,
(2) minX.A/ D A \ infX.A/.

Proof. To prove (2), note that by Theorem 29 and Definition 5, we have

A \ infX.A/ D A \ lbX.A/ \ ubX
�
lbX .A/

� D minX.A/ \ ubX
�
lbX .A/

�
:

Moreover, by Definition 5 and Remark 8, we have

minX.A/ 	 A 	 ubX
�
lbX .A/

�
; and so minX.A/\ ubX

�
lbX .A/

� D minX.A/ :

Remark 39. By the above theorem, for any subset A of a goset X, we have

(1) maxX.A/ D supX.A/ if and only if supX.A/ 	 A .
(2) minX.A/ D infX.A/ if and only if infX.A/ 	 A .

Moreover, by using Theorem 29, we can also easily prove the following
theorem which will make a basic theorem on supremum and infimum completeness
properties to be completely obvious.

Theorem 33. For any subset A of a goset X, we have

(1) supX.A/ D infX
�
ubX.A/

�
,

(2) infX.A/ D supX

�
lbX.A/

�
.

Proof. To prove (2), note that by Theorem 29 and Remark 8, we have

infX.A/ D ubX
�
lbX .A/

� \ lbX.A/

D ubX
�
lbX .A/

� \ lbX
�
ubX

�
lbX.A/

�� D supX

�
lbX.A/

�
:

Remark 40. Concerning our references to Remark 8 in the proofs of Theorems 32
and 33, note that the assertions

A 	 ubX
�
lbX .A/

�
and lbX.A/ D lbX

�
ubX

�
lbX.A/

��

can also be easily proved directly, by using Definition 1, without using the corres-
ponding theorems on Pataki connections.

Definition 7. A goset X is called inf-complete (sup-complete) if infX.A/ ¤ ;
.supX.A/ ¤ ;/ for all A 	 X.
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Remark 41. Quite similarly, a goset X may, for instance, be also naturally called
min-complete if minX.A/ ¤ ; for all nonvoid subset A of X.

Thus, the set Z of all integers is min-, but not inf-complete. While, the extended
real line R D R [ f�1 ; C1g is inf-, but not min-complete.

Now, as an immediate consequence of Theorem 33, we can state the following
straightforward extension of [2, Theorem 3, p. 112] .

Theorem 34. For a goset X, the following assertions are equivalent :

(1) X is inf-complete,
(2) X is sup-complete.

Remark 42. Similar equivalences of several modified inf- and sup-completeness
properties of gosets have been established in [3, 4].

Finally, we note that, by Definition 5 and Theorem 27, we evidently have

Theorem 35. For any subset A of a goset X, we have

(1) infX .A/ D ˚
x 2 lbX.A/ W lbX.A/ 	 lbX.x/

�
,

(2) supX .A/ D ˚
x 2 ubX.A/ W ubX.A/ 	 ubX.x/

�
.

Moreover, by using this theorem, we can also easily prove the following.

Theorem 36. For any subset A of a proset X, we have

(1) infX .A/ D ˚
x 2 X W lbX.x/ D lbX.A/

�
,

(2) supX .A/ D ˚
x 2 X W ubX.x/ D ubX.A/

�
.

Proof. Define

˚ .A/ D ˚
x 2 X W lbX.x/ D lbX.A/

�
:

Now, if x 2 ˚.A/, we can see that

(a) lbX.x/ 	 lbX.A/,
(b) lbX.A/ 	 lbX.x/.

From (a), since X is reflexive, and thus x � x, i. e., x 2 lbX.x/, we can infer that
x 2 lbX.A/ . Hence, by (b) and Theorem 35, we can already see that x 2 infX.A/ .
Therefore, ˚ .A/ 	 infX.A/ even if X is assumed to be only a reflexive goset.

Conversely, if x 2 infX.A/, then by Theorem 35 we also have
(c) x 2 lbX.A/, (d) lbX.A/ 	 lbX.x/ .
From (c), we can infer that x � a for all a 2 A . Hence, by using the transitivity

of X we can easily see that if y 2 lbX.x/, and thus y � x, then y � a also holds
for all a 2 A, and thus y 2 lbX.A/ . Therefore, lbX.x/ 	 lbX.A/ even if X is
assumed to be only a transitive goset. Hence, by using (d), we can already see that
lbX.x/ D lbX.A/, and thus x 2 ˚.x/ . Therefore, infX.A/ 	 ˚ .A/ even if X is
assumed to be only a transitive goset.

The above arguments show that (1) is true. Moreover, from (1) by using
Theorems 1 and 30, we can at once see that (2) is also true.
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8 Self-bounded Sets

Analogously to Definition 3, for instance, we may also naturally introduce

Definition 8. For any goset X, the members of the family

UX D f A 	 X W A � ubX.A/
�

are called the self-upper-bounded subsets of X .

Remark 43. Thus, by the corresponding definitions, for any A 	 X, we have A 2
UX if and only if x � y for all x ; y 2 A .

Therefore, A 2 UX if and only if A � A or equivalently A2 	 � . That is, by
the notations of Száz [47], we have A 2 UbX.A/ or equivalently A 2 LbX.A/ .

Because of the above remark, we evidently have the following three theorems.

Theorem 37. For any goset X, we have UX D UX �1 .

Theorem 38. For any subset Y of goset X, we have UY D UX \ P .Y / .

Theorem 39. For any goset X, we have

UX D ˚
A 	 X W 8 x ; y 2 A W fx ; yg 2 UX

�
:

Hence, it is clear that, in particular, we also have the following corollary.

Corollary 9. For any goset X, the family UX is a descending subset of the poset
P.X / such that

S
V 2 UX for any chain V in UX .

However, it is now more important to note that, by using the corresponding
definitions, we can also prove the following

Theorem 40. For any subset A of a goset X, the following assertions are equi-
valent :

(1) A 2 UX,
(2) A D maxX.A/,
(3) A 	 supX.A/,
(4) A 	 lbX.A/,
(5) A D minX.A/,
(6) A 	 infX.A/.

Proof. By Definitions 5 and 8, we evidently have

A 2 UX ” A 	 ubX.A/ ” A 	 A \ ubX.A/ ” A 	 maxX.A/ :

Hence, since maxX.A/ 	 A, it is clear that (1) and (2) are equivalent.
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Moreover, by using Definition 8 and Theorem 5, we can at once see that (1)
and (4) are also equivalent. Hence, by using the inclusion A 	 ubX

�
lbX.A/

�
and

Theorem 29, we can also easily see that

A 2 UX ” A 
 lbX.A/ ” A 
 lbX.A/\ ubX
�
lbX.A/

� ” A 
 infX.A/ :

Therefore, (1) and (6) are also equivalent. The proofs of the remaining implica-
tions are quite similar.

Remark 44. This theorem shows that, in a goset X, the family UX is just the
collection of all fixed elements of the set-valued functions maxX and minX .

Now, as some immediate consequences of Theorem 40 and Definition 6, we can
also state

Corollary 10. For any subset A of a goset X, the following assertions are
equivalent :

(1) ubX.A/ 2 UX;
(2) ubX.A/ D supX.A/;
(3) ubX.A/ 	 ubX

�
ubX.A/

�
;

(4) ubX.A/ 	 lbX
�

ubX.A/
�
.

Corollary 11. For any subset A of a goset X, the following assertions are
equivalent :

(1) lbX.A/ 2 UX;
(2) lbX.A/ D infX.A/;
(3) lbX.A/ 	 lbX

�
lbX.A/

�
;

(4) lbX.A/ 	 ubX
�

lbX.A/
�
.

However, it is now more important to note that, by using Theorem 40, we can
also easily prove the following theorem.

Theorem 41. For any goset X, we have

(1) UX D ˚
maxX.A/ W A 	 X

�
,

(2) UX D ˚
minX.A/ W A 	 X

�
.

Proof. If V 2 UX , then by Theorem 40, we have V D maxX.V / . Therefore, V is
in the family A D f maxX.A/ W A 	 X g .

Conversely, if V 2 A , then there exists A 2 A such that V D maxX.A/ .
Hence, by Definition 5, it follows that V 	 A and V 	 ubX.A/ . Now, by Theo-
rem 4, we can also see that ubX.A/ 	 ubX.V / . Therefore, V 	 ubX.V /, and thus
V 2 UX also holds.

This proves (1). Moreover, (2) can be derived from (1) by using Theorems 25
and 37.

Remark 45. This theorem shows that, in a goset X, the family UX is just the range
of the set-valued functions maxX and minX .
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By using Remark 43, we can also easily prove the following three theorems.

Theorem 42. For any goset X, the following assertions are equivalent :

(1) X is reflexive,
(2) fxg 2 UX for all x 2 X.

Theorem 43. If X is an antisymmetric goset, then for any A 2 UX we have
card .A/ � 1 .

Proof. If A 2 UX and x ; y 2 A, then by Remark 43 we have x � y and y � x .
Hence, by the assumed antisymmetry of �, it follows that x D y .

Theorem 44. If X is reflexive goset such that card .A/ � 1 for all A 2 UX, then
X is antisymmetric.

Proof. If x; y 2 X such that x � y and y � x, then by taking A D fx ; yg we
can see that A � A, and thus A 2 UX . Hence, by the assumption, it follows that
card .A/ � 1 . Therefore, we necessarily have x D y .

From the latter two theorems, by using Theorem 41, Definition 6 and Theo-
rem 32, we can immediately derive the following two theorems.

Theorem 45. If X is an antisymmetric goset, then under the notation ˚ D maxX,
minX, supX, or infX, for any A 	 X we have card

�
˚.A/

� � 1 .

Theorem 46. If X is a reflexive goset such that, under the notation ˚ D maxX,
minX, supX, or infX, for any A 	 X we have card

�
˚.A/

� � 1, then X is
antisymmetric.

Proof. Note that, if, for instance, card
�
supX.A/

� � 1 for all A 	 X, then
by Theorem 32, we also have card

�
maxX.A/

�
for all A 	 X. Hence, by using

Theorem 41, we can infer that card .A/ � 1 for all A 2 UX . Therefore, by
Theorem 44, we can state that X is antisymmetric.

Remark 46. In connection with the above results, it is worth noticing that the goset
X considered in Example 1 is reflexive, but not antisymmetric.

Namely, concerning the relation �, we can easily see that, for any x ; y 2 X, we
have both x � y and y � x if and only if x D y or x D y � 1 or y D x � 1 .

Therefore, for any A 	 X, we have A 2 UX if and only if A D ; or A D fxg
or A D f x; x � 1 g for some x 2 X .

This fact, together with TX D f ;; X g, shows that there are cases when even
the family UX is also a better tool than the family TX .

In the sequel, beside reflexivity and antisymmetry, we shall also need a further,
similarly simple and important, property of gosets.

Definition 9. A goset X will be called linear if for any x ; y 2 X, with x ¤ y, we
have either x � y or y � x .
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Remark 47. If X is a goset, then for any x ; y 2 X ,we may also write x < y if both
x � y and x ¤ y .

Therefore, if the goset X is linear, then for any x ; y 2 X, with x ¤ y, we
actually have either x < y or y < x .

Moreover, as an immediate consequence of the corresponding definitions, we can
also state the following.

Theorem 47. For a goset X, the following assertions are equivalent :

(1) X is reflexive and linear,
(2) For any x ; y 2 X, we have either x � y or y � x,
(3) maxX .A/ ¤ ; .minX .A/ ¤ ;/ for all A 	 X with 1 � card.A/ � 2.

Proof. To check the implication (3) H) (2), note that if x ; y 2 X, then A D
fx ; yg is a subset of X such that 1 � card .A/ � 2 . Therefore, if (3) holds, then
there exists z 2 X such that z 2 maxX.A/ . Hence, by Definition 5, it follows that
z 2 A and z 2 ubX.A/ . Therefore, we have either z D x or z D y . Moreover, we
have x � z and y � z . Hence, if z D x, we can see that y � x . While, if z D y,
we can see that x � y . Therefore, (2) also holds.

From this theorem, it is clear that in particular we have

Corollary 12. If X is a min-complete (max-complete) goset, then X is reflexive
and linear.

The importance of reflexive, linear, and antisymmetric gosets is also apparent
from the next two simple theorems.

Theorem 48. If X is an antisymmetric goset, then x < y implies y 6� x for all
x ; y 2 X.

Theorem 49. If X is a reflexive and linear goset, then x 6� y implies y < x for all
x ; y 2 X.

Proof. If x ; y 2 X such that x 6� y, then by Theorem 47 we have y � x . Moreover,
by the reflexivity of X, we also have x ¤ y, and hence y ¤ x . Therefore, y < x
also holds.

Remark 48. Therefore, if X is a reflexive, linear, and antisymmetric goset, then for
any x ; y 2 X ,we have

x 6� y ” x <�1 y :

Note that, analogously to the equivalences in Remarks 6 and 15, this is again a
Galois connection property.



576 Á. Száz

9 The Importance of Reflexivity and Transitivity

Several simple characterizations of reflexivity and transitivity of a goset X, in terms
of the relations ubX and lbX , and their compositions considered in Sect. 7, have
been given in [49].

Now, by using the techniques of the theory of relator spaces, we shall give some
more delicate characterizations of these properties in terms of the relations intX and
clX and the families TX and FX .

Theorem 50. For any goset X, the following assertions are equivalent :

(1) X is reflexive,
(2) x 2 ubX.x/ for all x 2 X,
(3) intX.A/ 	 A for all A 	 X,
(4) intX

�
ubX.x/

� 	 ubX.x/ for all x 2 X.

Proof. By Remark 2, it is clear that (1) and (2) are equivalent. Moreover, if A 	 X
and x 2 intX.A/, then by Definition 2 we have ubX.x/ 	 A . Hence, if (2) holds,
we can infer that x 2 A, and thus (3) also holds.

Now, since (3) trivially implies (4), it remains to show only that (4) also implies
(2). However, for this, it is enough to note only that, for any x 2 X, we have
ubX.x/ 	 ubX.x/, and hence x 2 intX

�
ubX.x/

�
by Definition 2.

From this theorem, by using Theorem 6, we can immediately derive

Corollary 13. For any goset X, the following assertions are equivalent :

(1) X is reflexive,
(3) A 	 clX.A/ for all A 	 X.

Proof. For instance, if (1) holds, then by Theorem 50, for any A 	 X, we
have intX.Ac/ 	 Ac . Hence, by using Theorem 6, we can already infer that
A 	 intX.Ac/c D clX.A/ . Therefore, (2) also holds.

From the above results, by Definition 3, it is clear that we also have

Theorem 51. If X is a reflexive goset, then

(1) TX D ˚
A 	 X W A D intX.A/

�
,

(2) FX D ˚
A 	 X W A D clX.A/

�
.

Remark 49. This theorem shows that, in a reflexive goset X, the families TX and
FX are just the collections of all fixed elements of the set-valued functions intX
and clX , respectively.

However, it is now more important to note that, in addition to Theorem 50, we
can also prove the following.
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Theorem 52. For any goset X, the following assertions are equivalent :

(1) X is transitive,
(2) ubX.x/ 2 TX for all x 2 X,
(3) intX.A/ 2 TX for all A 	 X,
(4) intX

�
ubX.x/

� 2 TX for all x 2 X,
(5) x 2 intX

�
intX

�
ubX.x/

��
for all x 2 X.

Proof. If (1) holds, then the inequality relation � in X is transitive. Therefore,
if x 2 X and y 2 ubX.x/, then by Remark 2, for any z 2 ubX.y/ we also have
z 2 ubX.x/ . Hence, we can see that ubX.y/ 	 ubX.x/, and thus by Definition 2
we have y 2 intX

�
ubX.x/

�
. This shows that ubX.x/ 	 intX

�
ubX.x/

�
, and thus by

Definition 3 we have ubX.x/ 2 TX . Therefore, (2) also holds.
Conversely, if (2) holds, then by Definition 3, for any x 2 X, we have ubX.x/ 	

intX
�
ubX.x/

�
. Therefore, by Definition 2, for any y 2 ubX.x/ we have ubX.y/ 	

ubX.x/ . Therefore, z 2 ubX.y/ implies z 2 ubX.x/ . Hence, by Remark 2, it is
clear that the inequality relation � in X is transitive, and (1) also holds.

Next, we show that (2) also implies (3). For this, note that if A 	 X and
x 2 intX.A/, then by Definition 2 we have ubX.x/ 	 A . Hence, by using
Theorem 11, we can infer that intX

�
ubX.x/

� 	 intX.A/ . Moreover, if (2) holds,
then by Definition 3 we also have ubX.x/ 	 intX

�
ubX.x/

�
. Thus, ubX.x/ 	 intX.A/

is also true. Hence, by Definition 2, it follows that x 2 intX
�
intX.A/

�
. This

shows that intX.A/ 	 intX
�
intX.A/

�
, and thus by Definition 3 we also have

intX.A/ 2 TX . Therefore, (3) also holds.
Now, since (3) trivially implies (4), it remains only to show only that (4) implies

(5), and (5) implies (2). For this, note that if (4) holds, then by Definitions
2 and 3, for any x 2 X, we have x 2 intX

�
ubX.x/

� 	 intX
�
intX

�
ubX.x/

��
.

Therefore, (5) also holds. Moreover, if (5) holds, then by Definition 2, for any
x 2 X, we have ubX.x/ � intX

�
ubX.x/

�
. Therefore, ubX.x/ 2 TX , and thus (2)

also holds.

From this theorem, by using Theorems 6 and 13, we can immediately derive

Corollary 14. For any goset X, the following assertions are equivalent :

(1) X is transitive,
(2) clX.A/ 2 FX for all A 	 X.

Now, as an immediate consequence of the above results, we can also state

Theorem 53. For a proset X, we have

(1) TX D ˚
intX.A/ W A 	 X

�
,

(2) FX D ˚
clX.A/ W A 	 X

�
.

Remark 50. This theorem shows that in a proset X, the families TX and FX are
just the ranges of the set-valued functions intX and clX , respectively.

However, it is now more important to note that, by using Theorems 50 and 52,
we can also easily prove the following.
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Theorem 54. For any goset X, the following assertions are equivalent :

(1) X is reflexive and transitive,
(2) intX.A/ D S

TX \ P.A/ for all A 	 X,
(3) clX.A/ D T

FX \ P�1.A/ for all A 	 X.

Proof. Suppose that (1) holds and A 	 X. Define

B D intX.A/ and C D
[

TX \ P.A/ :

Then, by Theorems 50 and 52, we can see that B 	 A and B 2 TX , and thus B 2
TX \ P.A/ . Therefore, B 	 S

TX \ P.A/ D C . Moreover, from Theorem 17,
we can see that C 	 B is always true. Therefore, (2) also holds.

Conversely, if (2) holds, then for any A 	 X we evidently have intX.A/ 	 A .
Thus, by Theorem 50, X is reflexive. Moreover, by Theorem 16, we can see that
intX.A/ 2 TX . Therefore, by Theorem 52, X is also transitive. Thus, (1) also
holds.

Now, to complete the proof, it remains to note only that the equivalence of (2)
and (3) is an immediate consequence of Theorems 6 and 13 .

Remark 51. This theorem shows that in a proset X the relation intX or clX and the
family TX or FX are also equivalent tools.

Now, by using Theorems 50 and 52, we can also easily prove the following.

Theorem 55. For any subset A of a proset X, we have

(1) A 2 EX if and only if B 	 A for some B 2 TX n f;g,
(2) A 2 DX if and only if A n B ¤ ; for all B 2 FX n fX g.

Proof. According to Remark 31, define B D TX n f;g and A D B�. Then, for
any A 	 X, we have A 2 A if and only if B 	 A for some B 2 B .

Now, if A 2 EX , then by Remark 25, there exists x 2 X such that ubX.x/ 	 A .
Moreover, by Theorems 50 and 52, we have x 2 ubX.x/ and ubX.x/ 2 TX , and
hence ubX.x/ 2 B . Therefore, A 2 A also holds. This shows that EX 	 A .

Moreover, from Corollary 8, we can see that A 	 EX is always true. Therefore,
(1) also holds. Now, (2) can be easily derived from (1) by using Theorems 13
and 18.

Remark 52. By Remark 31, assertion (1) means only that, in a proset X, the family
TX n f;g is also a base for the stack EX .

Beside Remark 51, this also shows that, in a proset X, the families TX and FX

are better tools than the families EX and DX .
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10 An Interior Operation and the Preorder Closure

Because of Theorems 50 and 52, in addition to the operations c, �1, and 1
mentioned in Sect. 2, we may also naturally introduce some further unary operations
on relations and thus also on gosets.

For instance, in accordance with [44, Definition 3.1], we may naturally introduce

Definition 10. For any goset X, we define a relation �ı on X such that

�ı .x/ D intX
�
ubX.x/

�

for all x 2 X. Moreover, according to a notation of Sect. 2, we write X ı D X .�ı / .

Remark 53. Thus, by the corresponding definitions, for any x ; y 2 X, we have

x �ı y ” y 2�ı .x/ ” y 2 intX
�
ubX.x/

� ” ubX.y/ 	 ubX.x/ :

Therefore, �ı is already a preorder relation on X, and thus X ı is a proset.

Moreover, as an immediate consequence of Theorems 50 and 52, we can state

Theorem 56. For any goset X, we have

(1) �ı 	 � if X is reflexive,
(2) � 	 �ı if and only if X is transitive.

Proof. To derive (2) from Theorem 52, note that for any x 2 X we have

� .x/ 	�ı .x/ ” ubX.x/ 	 intX
�
ubX.x/

� ” x 2 intX
�
intX

�
ubX.x/

��
:

From this theorem, by Remark 53, it is clear that in particular we also have

Corollary 15. For any goset X, the following assertions are equivalent :

(1) � D �ı ,
(2) X is a proset,
(3) y 2 ubX.x/ ” ubX.y/ 	 ubX.x/ for all x ; y 2 X.

Remark 54. Note that, analogously to the statements of Remarks 7 and 16,
assertion (3) is again a Pataki connection property.

Concerning assertion (3), it is also worth mentioning that � is an equivalence
relation on X if and only if it is total and, under the notation X D X .�/, for any
x ; y 2 X we have y 2 ubX.x/ if and only if ubX.x/ \ ubX.y/ ¤ ; .

Moreover, from Theorem 56, by using Remark 53 and a basic property of the
relation �1, we can also immediately derive the following.

Theorem 57. For any goset X, we have

(1) �ı 	 �1 if X is reflexive,
(2) �1 	 �ı if and only if X is transitive .

Hence, it is clear that in particular we also have the following.
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Corollary 16. For a reflexive goset X, the following assertions are equivalent :

(1) �ıD�1,
(2) X is transitive.

Remark 55. Now, analogously to Definition 10, for any goset X, we may also
naturally define a relation �� on X such that

�� .x/ D clX
�
ubX.x/

�

for all x 2 X. Moreover, now we may also naturally write X � D X .�� / .
Thus, in addition to the inclusions � 	 �� and �� 	 �, we may also naturally

investigate the inclusions �ı 	 �� and �� 	 �ı . (See [44].)

However, it now is more important to note that the generated preorder relations
can always be expressed in terms of the Pervin relations of the open sets defined by
the original relations [26, 27] .

Theorem 58. If X is a goset, then for any x 2 X, we have

�1 .x/ D T

A2TX

RA D T ˚
A 2 TX W x 2 A g :

Proof. Recall that, for any A 	 X, we have RA D A2 [ Ac�X . Therefore,

RA.x/ D A if x 2 A and RA.x/ D X if x 2 Ac :

Hence, we can easily see that x 2 RA.x/ and

�
RA ı RA

�
.x/ D RA ŒRA.x/ � D S

x2A
RA.x/ 	 RA.x/

for all x 2 X. Therefore, �X 	 RA and RA ı RA 	 RA, and thus RA is a preorder
relation on X.

Hence, by a basic theorem on preorder relations, it is clear that S D T
A2TX

RA

is also a preorder relation on X. Moreover, we can note that, for any x 2 X, we
have

S.x/ D
� T

A2TX

RA

	
.x/ D T

A2TX

RA.x/ D T ˚
A 2 TX W x 2 A g :

Furthermore, if x 2 X and y 2 �1 .x/, then by using the inclusion � 	 �1
and the transitivity of �1, we can also easily see that

ubX.y/ D�X .y/ 	 � Œ�1 .x/ � 	 �1 Œ�1 .x/� D ��1 ı �1 �
.x/ 	 �1 .x/ :
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Therefore, y 2 intX
� �1 .x/

�
. This shows that �1 .x/ 	 intX

� �1 .x/
�

and
thus �1 .x/ 2 TX . Hence, since x 2�1 .x/ also holds, we can already infer
that S.x/ 	 �1 .x/ . Therefore, S 	 �1 is also true.

On the other hand, if A 2 TX , then by Remark 18, for any x 2 A, we have
� .x/ D ubX.x/ 	 A D RA.x/ . Therefore, � 	 RA . Hence, since RA is a
preorder relation on X, we can already infer that �1	 R 1

A D RA . Therefore,
�1	 S, and thus the required assertion is also true.

Remark 56. Note that if X is a goset, then by using Theorem 16 from the above
theorem, we can also see that �1 .x/ 2 TX for all x 2 X.

From Theorem 58, we can also immediately derive the following

Corollary 17. For any goset X, the following assertions are equivalent :

(1) X is proset,
(2) � D T

A2TX
RA.

Now, according to the definitions of [21, 33], we may also have

Definition 11. A goset X is called well-chained if the inequality relation � in it
is well-chained in the sense that �1 D X 2 .

Remark 57. By using the definition of �1, the above property can be reformulated
in a detailed form that for any x ; y 2 X, with x ¤ y, there exists a finite sequence
.xi/

n
iD0 in X, with x0 D x and xn D y, such that xi�1 � xi for all i D

1; 2; : : : ; n .

Remark 58. During the long evolution of the concept of “connected”, the denition
of “chain connectedness”, and also that of “archwise connectedness”, has been
replaced by the present “modern denition of connectedness”. (See Thron [62, p. 29]
and Wilder [66].)

However, in the theory relator spaces, it has turned out that the latter, celebrated
connectedness is a particular case of well-chainedness, and well-chainedness is a
particular case of simplicity. Unfortunately, our fundamental works [20, 21, 31, 33]
on on these subjects were also strongly rejected by the leading topologists working
in the editorial boards of various mathematical journals.

In this respect, it is also worth mentioning that Császár [9] also observed
that “the concept of a connected set belongs rather to the theory of generalized
topological spaces instead of topology in the strict sense.” However, he has not
quoted our former paper [33], despite that he knew that each increasing operation
� on P.X /, with � .X / D X, can be written in the form � D intR with some
nonvoid relator R on X. (For the proof of this and some more general results, see
[41] and the references therein.)
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By using Definition 11, from Theorem 58, we can easily derive the following.

Theorem 59. For a goset X, the following assertions are equivalent :

(1) X is well-chained,
(2) TX D ˚;; X

�
,

(2) FX D ˚;; X
�
.

Proof. To see that (1) implies (2), note that, by Theorem 58, for any x 2 X, we
have

�1 .x/ D T ˚
A 2 TX W x 2 A g :

Therefore, for any A 2 TX and x 2 A, we have �1 .x/ 	 A . Moreover, if (1)
holds, then �1D X 2, and thus �1 .x/ D X for all x 2 X . Therefore, if A ¤ ;,
then A D X, and thus (2) also holds.

Remark 59. This theorem shows that, analogously to Example 1, the families TX

and FX in a well-chained goset X are also quite useless tools.

Now, in addition to Theorem 59, we can also easily prove the following.

Theorem 60. For a proset X, the following assertions are equivalent :

(1) X is well-chained,
(2) EX D fX g,
(3) DX D P.X / n f;g.

Proof. If (1) holds, then by Theorems 55 and 59, it is clear that (2) also holds.
(Note that this implication can also be easily proved by using the corresponding
definitions.)

On the other hand, if (2) holds, then by Remark 25, for any x 2 X, we
necessarily have ubX.x/ D X, and thus � .x/ D X . Therefore, �D X 2, and
thus (1) also holds.

This shows that (1) and (2) are equivalent. Moreover, by Theorem 19, it is
clear that (2) and (3) are always equivalent.

Remark 60. In [33], as a consequence of some other results, we have proved that
if X D X.R / is a relator space with R ¤ ; and card.X / > 1, then X is
paratopologically well-chained if and only if EX D fX g .

Moreover, X is paratopologically connected if and only if EX 	 DX . Therefore,
the “hyperconnectedness,” introduced by Levine [22] and studied by several further
authors, is a particular case of our paratopological connectedness.
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11 Comparisons of Inequalities

Because of the inclusion � 	 �1, it is also of some interest to prove the following.

Theorem 61. For any two gosets X1 D X .�1 / and X2 D X .�2 /, the following
assertions are equivalent :

(1) �1 	 �2,
(2) ubX 1 	 ubX 2 ,
(3) lbX1 	 lbX2 .

Proof. If (1) holds, then by Remark 2, we have ubX1 .x/ D�1 .x/ 	 �2 .x/ D
ubX2 .x/ for all x 2 X . Hence, by using Corollary 1, we can already infer that

ubX 1 .A/ D T

a2A
ubX 1 .a/ 	 T

a2A
ubX 2 .a/ D ubX 2 .A/

for all A 	 X. Therefore, (2) also holds.
Conversely, if (2) holds, then in particular, we have

ubX 1 .x/ D ubX 1

�fxg� 	 ubX 2

�fxg� D ubX 2 .x/;

and hence �1 .x/ 	 �2 .x/ for all x 2 X. Therefore, (1) also holds.
This shows that (1) and (2) are equivalent. Hence, by using Theorem 1, we can

easily see that (1) and (3) are also equivalent.

From this theorem, by Definition 8, it is clear that in particular we also have

Corollary 18. For any two gosets X1 D X.�1 / and X2 D X.�2 /, with �1 	 �2,
we have UX 1 	 UX 2 .

Proof. Namely, if A 2 UX 1 , then by Definition 8 we have A 	 ubX 1 .A/ .
Moreover, by Theorem 61, now we also have ubX 1 .A/ 	 ubX 2 .A/ . Therefore,
A 	 ubX 2 .A/, and thus A 2 UX 2 also holds.

Remark 61. Note if X is a reflexive and antisymmetric goset, then by Theorems 42
and 43 we have UX D ff;gg [ ffxggx2X .

Therefore, the converse of the above corollary need not be true even if in parti-
cular X1 D X.�1 / and X2 D X.�2 / are posets.

However, by using Theorem 61, we can also easily prove the following.

Theorem 62. For any two gosets X1 D X.�1 / and X2 D X.�2 /, the following
assertions are equivalent :

(1) �1 	 �2,
(2) intX 2 	 intX 1 ,
(3) clX 1 	 clX 2 .
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Proof. If A 	 X and x 2 intX 2 .A/, then by Definition 2 we have ubX 2 .x/ 	 A .
Moreover, if (1) holds, then by Theorem 61 we also have ubX 1 .x/ 	 ubX 2 .x/ .
Therefore, ubX 1 .x/ 	 A, and thus x 2 intX 1 .A/ is also true. This, shows that
intX 2 .A/ 	 intX 1 .A/ for all A 	 X. Therefore, (2) also holds.

Moreover, if (2) holds, then by using Theorem 6 we can easily see that (3) also
holds. Therefore, we need only show that (3) also implies (1). For this, note that
if (3) holds, then in particular by Remark 12 we have

lbX 1 .x/ D clX 1
�fxg� 	 clX 2

�fxg� D lbX 2 .x/

for all x 2 X. Hence, by using Corollary 1, we can see that lbX 1 .A/ 	 lbX 2 .A/
for all A 	 X . Therefore, lbX 1 	 lbX 2 , and thus by Theorem 61 assertion (1) also
holds.

From this theorem, by Definitions 3 and 4, it is clear that we also have

Corollary 19. For any two gosets X1 D X.�1 / and X2 D X.�2 /, with �1 	 �2,
we have

(1) TX 2 	 TX 1 ,
(2) FX 2 	 FX 1 ,
(3) EX 2 	 EX 1 ,
(4) DX 1 	 DX 2 .

Proof. For instance, if A 2 DX 1 , then by Definition 4 we have X D clX 1 .A/.
Moreover, by Theorem 62, now we also have clX 1 .A/ 	 clX 2 .A/ . Therefore,
X D clX 2 .A/, and thus A 2 DX 2 also holds. Therefore, (4) is true.

Now, by using the above results and Theorems 17 and 54, we can also prove

Theorem 63. For any goset X1 D X.�1 / and proset X2 D X.�2 /, the following
assertions are equivalent :

(1) �1 	 �2,
(2) TX 2 	 TX 1 ,
(3) FX 2 	 FX 1 .

Proof. If (1) holds, then by Corollary 19 assertion (2) also holds. Conversely, if
(2) holds, then by Theorems 17 and 54 we have

intX 2 .A/ D
[

TX 2 \ P.A/ 	
[

TX 1 \ P.A/ 	 intX 1 .A/

for all A 	 X. Therefore, intX 2 	 intX 2 , and thus by Theorem 62 assertion (1)
also holds.

This shows that (1) and (2) are equivalent. Moreover, by Theorem 13, it is clear
that (2) and (3) are always equivalent.

However, concerning fat and dense sets, we can only prove the following.
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Theorem 64. For any two gosets X1 D X.�1 / and X2 D X.�2 /, the following
assertions are equivalent :

(1) EX 1 	 EX 2 ,
(2) DX2 	 DX 1 ,
(3) There exists a function ' of X to itself such that �2 ı' 	 �1,
(4) There exists a relation R of X to itself such that �2 ı R 	 �1.

Proof. By Remarks 2 and 25, for any x 2 X, we have �1 .x/ 2 EX 1 . Therefore,
if (1) holds, then we also have �1 .x/ 2 EX 2 . Hence, by using Remarks 2 and 25,
we can infer that there exists y 2 X such that �2 .y/ 	 �1 .x/ .

Hence, by the axiom of choice, it is clear that there exists a function ' of X to
itself such that �2

�
'.x/

� 	 �1 .x/, and thus .�2 ı' /.x/ 	 �1 .x/ for all
x 2 X . Therefore, (3) also holds.

On the other hand, if (3) holds, then by Remark 2 for any x 2 X, we have
ubX 2

�
'.x/

� D�2

�
'.x/

� 	 �1 .x/ D ubX 1 .x/ . Hence, by Remark 25, it is clear
that (1) also holds.

Now, since (3) trivially implies (4), and (3) follows from (4) by choosing a
selection function ' of R, it remains only to note that, by Theorem 18, assertions
(1) and (2) are also equivalent.

Finally, we note that, by using the above theorem, we can also easily prove the
following theorem whose converse seems not to be true.

Theorem 65. If X1 D X.�1 / and X2 D X.�2 / are gosets, with �1 	 �2, such
that either EX 1 	 EX 2 or DX 2 	 DX 1 , then there exists a function ' of X to
itself such that �1D �1 ı'1 .

Proof. Now, by Theorem 64, there exists a function ' of X to itself such that
�2 ı' 	 �1 . Hence, by using that �1 	 �2, we can already infer that

�1 ı' 	 �2 ı' 	 �1 	 �2; and thus �1 ı' 2 	 �2 ı ' 	 �1 :

Hence, by induction, it is clear that we actually have �1 ı' n 	 �1 for all n 2 N .
Moreover, we can also note that �1 ı ' 0 D �1 ı �X D �1 .

Hence, by using a basic theorem on relations, we can infer that

�1 ı '1 D �1 ı
1S

nD0
' n D

1S
nD0

�1 ı ' n 	
1S

nD0
�1D�1 :

Thus, since �1D�1 ı' 0 	 �1 ı'1, the required equality is also true.
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12 The Importance of the Preorder Closure
and Complementation

From the inclusion � 	 �1, by using Theorems 61 and 62 and the notation X 1 D
X .�1 /, we can immediately derive the following.

Theorem 66. For any goset X, we have

(1) ubX 	 ubX 1 ,
(2) lbX 	 lbX 1 ,
(3) intX 1 	 intX ,
(4) clX 	 clX 1 .

Moreover, by using Corollary 19, Remark 56, and Theorem 13, we can also
prove the following.

Theorem 67. For any goset X, we have

(1) TX D TX 1 ,
(2) FX D FX 1 ,
(3) EX 1 	 EX ,
(4) DX � DX 1 .

Proof. From Corollary 19, we can at once see that the inclusions (3), (4), and
TX 1 	 TX are true.

On the other hand, if A 2 TX , then by Theorem 58 we have �1 .x/ 	 A for all
x 2 A . Hence, by Remark 18, we can see that A 2 TX 1 . Therefore, TX 1 	 TX ,
and thus (1) is also true. Hence, by Theorem 13, it is clear that (2) is also true.

Remark 62. Note that if X is as in Example 1, then TX D f ;; X g, and thus by
Theorems 59 and 60, we have EX 1 D fX g. However, because of Remark 25, EX

is quite a large subfamily of P.X / . Therefore, the equalities in (3) and (4) need
not be true.

Now, by using Theorems 63 and 67 and Corollary 18, we can also prove

Theorem 68. For any two gosets X1 D X.�1/ and X2 D X.�2/, the following
assertions are equivalent :

(1) TX 2 	 TX 1 ,
(2) FX 2 	 FX 1 ,
(3) �1	 �1

2 ,
(4) �1

1 	 �1
2 .

Proof. If (1) holds, then by Theorem 67 we can see that TX 1

2
	 TX 1 also holds.

Hence, by using Theorem 63, we can already infer that (3) also holds.
Moreover, if (3) holds, then by using the corresponding properties of the

operation 1, we can also easily see that �1
1 	 �1 1

2 D�1
2 , and thus (4) also

holds.
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On the other hand, if (4) holds, then because of �1 	 �1
1 it is clear that (3)

also holds. Moreover, if (3) holds, then by using Theorem 67 and Corollary 19, we
can see that TX 2 D TX 1

2
	 TX 1 , and thus (1) also holds. Now, to complete the

proof, it remains only to note that, by Theorem 13, assertions (1) and (2) are also
equivalent.

Remark 63. From this theorem, we can at once see that, for any two gosets X1 D
X.�1/ and X2 D X.�2/, we have

TX 1 	�1 TX 2 ” X1 � X 1
2 ;

in the sense that �1	 �1
2 .

This shows that, analogously to Remarks 7 and 16, the set-valued functions T
and 1 also form a Pataki connection.

Thus, the counterparts of the corresponding parts of Remarks 8 and 16 can also
be stated. However, it would be more interesting to look for a generating Galois
connection.

Now, by Theorems 64 and 65, we can also state the following two theorems.

Theorem 69. For any goset X, the following assertions are equivalent :

(1) EX 	 EX 1 ,
(2) DX 1 	 DX ,
(3) there exists a function ' of X to itself such that �1 ı' 	 �,
(4) there exists a relation R of X to itself such that �1 ı R 	 �.

Remark 64. Note that, by Theorem 67, we may write equality in the assertions (1)
and (2) of the above theorem and also in the conditions of the following.

Theorem 70. If X is a goset, such that EX 	 EX 1 , or equivalently DX 1 	 DX,
then there exists function ' of X to itself such that � D � ı'1 .

Finally, we note that, by using the notation X c D X .�c /, we can also prove the
following particular case of [47, Theorem 4.11], which in addition to the results of
[17, 57] also shows the importance of complement relations.

Theorem 71. For any goset X, we have

(1) lbX D �
clX c

� c
,

(2) clX D �
lbX c

� c
.

Proof. By using Remarks 4 and 13, instead of Corollary 1 and Theorem 10, we can
at once see that

lb c
X.A/ D lbX.A/

c D �c ŒA � D clX c.A/

for all A 	 X. Therefore, lb c
X D clX c , and thus (1) is also true.

Now, (2) can be immediately derived from (1) by writing X c in place of X and
applying complementation.
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Remark 65. This theorem shows that the relations lbX and clX are also equivalent
tools in the goset X.

Hence, by Remarks 3 and 10, it is clear that the relations ubX and intX are also
equivalent tools in the goset X.

Remark 66. By using Theorem 1 and Corollary 3, and the corresponding proper-
ties of inversion and complementations, the assertions (1) and (2) of Theorem 71
can be reformulated in several different forms.

For instance, as an immediate consequence of Theorem 71 and Corollary 3, we
can at once state the following.

Corollary 20. For any goset X, we have

(1) lbX D intXc ıC ,
(2) intX D lbXc ıC .

Remark 67. Analogously to Theorem 10, the above results also show that, despite
Remark 2, there are cases when the relation lbX is a more convenient tool in the
goset X than ubX .

13 Some Further Results on the Basic Tools

As some converses to Theorems 3, 9, 16, and 24, we can also easily prove the
following theorems.

Theorem 72. If ˚ is a relation on P.X/ to X, for some set X, such that

˚
�S

i2 I
Ai

	
D T

i2 I
˚
�
Ai
�

for any family .Ai / i2 I subsets of X, then there exists a relation � on X such that,
under the notation X D X .�/, we have ˚ D ubX .˚ D lbX/ .

Proof. For any x ; y 2 X, define x � y if y 2 ˚.x/, where ˚.x/ D ˚
�fxg� .

Then, by Remark 2, we have ˚.x/ D ubX.x/ for all x 2 X. Hence, by using the
assumed union-reversingness of ˚ and Corollary 1, we can already see that

˚ .A/ D T

a2A
˚.a/ D T

a2A
ubX.a/ D ubX.A/

for all A 	 X. Therefore, ˚ D ubX is also true.
This proves the first statement of the theorem. The second statement can be

derived from the first one by using Theorem 1.

Theorem 73. If  is a relation on P.X/ to X, for some set X, such that


�S

i2 I
Ai

	
D S

i2 I

�
Ai
�
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for any family .Ai / i2 I subsets of X, then there exists a relation � on X such that,
under the notation X D X.�/, we have  D clX .

Proof. For any x ; y 2 X, define x � y if x 2 .y/, where .y/ D .fyg/ .
Then, by Remark 2, we have lbX.y/ D .y/ for all y 2 X. Hence, by using the
assumed union preservingness of  and Theorem 10, we can already see that

 .A/ D S

a2A
.a/ D S

a2A
lbX.a/ D clX .A/

for all A 	 X. Therefore, the required equality is also true.

From this theorem, by using Corollary 3, we can easily derive the following.

Corollary 21. If ˚ is a relation on P.X/ to X, for some set X, such that

˚
�T

i2 I
Ai

	
D T

i2 I
˚
�
Ai
�

for any family
�
Ai
�

i2 I of subsets of X, then there exists a relation � on X such
that, under the notation X D X.�/, we have ˚ D intX .

Proof. Define  D .˚ ı C /c . Then, by using the assumed intersection-
preservingness of ˚ and De Morgan’s law, we can see that  is an
union-preserving relation on P.X / to X. Therefore, by Theorem 73, there
exists a relation � on X such that in the goset X D X .�/ we have
 D clX . Hence, by using the definition of  and Corollary 3, we can see
that ˚ D �

 ı C
�c D �

clX ıC �c D intX also holds.

Theorem 74. If A is a family of subsets of a set X such that A is closed under
arbitrary unions and intersections, then there exists a preorder relation � on X
such that, under the notation X D X .�/, we have A D TX .A D FX / .

Proof. Define

� D T

A2A
RA where RA D A2 [ Ac � X :

Then, from the proof of Theorem 58, we know that � is a preorder relation on X
such that, under the notation X D X .�/, for any x 2 X we have

ubX .x/ D� .x/ D T ˚
A 2 A W x 2 A

�
:

Hence, since A is closed under arbitrary intersections, it is clear that ubX.x/ 2
A for all x 2 X. Moreover, we can also note that x 2 ubX.x/ for all x 2 X.

Therefore, if V 2 TX , that is, by Remark 18 we have ubX.x/ 	 V for all
x 2 V , then we necessarily have V D S

x2V ubX.x/ . Hence, since A is also
closed under arbitrary unions, it is clear that V 2 A . Therefore, TX 	 A .
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Conversely, if V 2 A , then for any x 2 V we have

ubX.x/ D
\˚

A 2 A W x 2 A
� 	 V :

Therefore, by Remark 18, we have V 2 TX . Thus, A 	 TX also holds.
This proves that A D TX , and thus the first statement of the theorem is true.

The second statement of the theorem can be derived from the first one by using
Theorem 14.

Remark 68. In principle, the first statement of the above theorem can also be proved
with the help of Corollary 21 . However, this proof requires an intimate connection
between interior operations and families of sets.

For this, one can note that if ˚ is a relation on P .X/ to X such that

˚ .B/ D
[ �

A \ P.B/
�

for all B 	 X, then by this definition and the assumed union property of A , we
have

(a) A D ˚
B 	 X W B D ˚.B/

�
, (b) ˚.B/ 2 A \P.B/ for all B 	 X.

Moreover, by using (b), the assumed intersection property of A and the
definition of ˚ , we can see that ˚ is union preserving.

However, it is now more important to note that, analogously to Theorem 74, we
also have the following.

Theorem 75. If A is a nonvoid stack in X, for some set X, having a base B
with card.B / � card.X /, then there exists a relation � on X such that, under the
notation X D X .�/, we have A D EX .

Proof. Since card.B / � card.X /, there exists an injective function ' of B onto
a subset Y of X. Choose B 2 B and define a relation � on X such that

� .x/ D '�1.x/ if x 2 Y and � .x/ D B if x 2 Y c:

Then, under the notation X D X .�/, we evidently have

B D ˚
ubX.x/ W x 2 X

�
:

Hence, since B is a base of A , we can already infer that

A D ˚
A 	 X W 9 x 2 X W ubX.x/ 	 A

� D EX :

Remark 69. Now, a corresponding theorem for the family DX should, in principle,
be derived from the above theorem by using either Theorem 18 or 19 .

However, it would now be even more interesting to prove a counterpart of
Theorems 74 and 75 for the family UX .
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14 Increasing Functions

Increasing functions are usually called isotone, monotone, or order-preserving in
algebra. Moreover, in [11, p. 186] even the extensive maps are called increasing.
However, we prefer to use the following terminology of analysis [38, p. 128].

Definition 12. If f is a function of one goset X to another Y , then we say that :

(1) f is increasing if u � v implies f .u/ � f .v/ for all u ; v 2 X.
(2) f is strictly increasing if u < v implies f .u/ < f .v/ for all u ; v 2 X.

Remark 70. Quite similarly, the function f may, for instance, be called decreasing
if u � v implies f .v/ � f .u/ for all u ; v 2 X.

Thus, we can note that f is a decreasing function of X to Y if and only if it is an
increasing function of X to the dual Y�1 of Y .

Therefore, the study of decreasing functions can be traced back to that of the
increasing ones. The following two obvious theorems show that almost the same is
true in connection with the strictly increasing ones.

Theorem 76. If f is an injective, increasing function of one goset X to another Y,
then f is strictly increasing.

Remark 71. Conversely, we can at once see that if f is a strictly increasing function
of an arbitrary goset X to a reflexive one Y , then f is increasing.

Moreover, we can also easily prove the following

Theorem 77. If f is a strictly increasing function of a linear goset X to an arbit-
rary one Y, then f is injective.

Proof. If u ; v 2 X such that u ¤ v, then by Remark 47 we have either u < v

or v < u . Hence, by using the strict increasingness of f , we can already infer that
either f .u/ < f .v/ or f .v/ < f .u/, and thus f .u/ ¤ f .v/ .

Now, as an immediate consequence of the above results, we can also state

Corollary 22. For a function f of a linear goset X to a reflexive one Y, the follo-
wing assertions are equivalent :

(1) f is strictly increasing,
(2) f is injective and increasing.

In this respect, the following is also worth proving.

Theorem 78. If f is a strictly increasing function of a linear goset X onto an
antisymmetric one Y, then f �1 is a strictly increasing function of Y onto X.

Proof. From Theorem 77, we know that f is injective. Hence, since f ŒX � D Y ,
we can see that f �1 is a function of Y onto X. Therefore, we need only show that
f �1 is also strictly increasing.
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For this, suppose that z ; w 2 Y such that z < w . Define u D f �1.z/ and
v D f �1.w/ . Then, u ; v 2 X such that z D f .u/ and w D f .v/ . Hence, since
z ¤ w, we can also see that u ¤ v . Moreover, by Remark 47, we have either
u < v or v < u . However, if v < u, then by the strict increasingness of f we
also have f .v/ < f .u/, and thus w < z . Hence, by using the inequality z < w and
the antisymmetry of Y , we can already infer that z D w . This contradiction proves
that u < v, and thus f �1.z/ < f �1.w/ .

Hence, by using Theorem 76 and Remark 71, we can immediately derive

Corollary 23. If f is an injective, increasing function of a reflexive, linear goset
X onto an antisymmetric one Y, then f �1 is an injective, increasing function of Y
onto X.

Analogously to [58], we shall now also use the following.

Definition 13. If ' is an unary operation on a goset X, then we say that :

(1) ' is extensive (intensive) if �X � '
�
' � �X

�
.

(2) ' is upper (lower) semi-idempotent if ' � ' 2
�
' 2 � '

�
.

Remark 72. Moreover, ' may be naturally called upper (lower) semi-involutive if
' 2 is extensive (intensive). That is, �X � ' 2 .' 2 � �X / .

Remark 73. In this respect, it is also worth noticing that ' is upper (lower)
semi-idempotent if and only if its restriction to its range is extensive (intensive).
Therefore, if ' is extensive (intensive), then ' is upper (lower) semi-idempotent.

The importance of extensive operations is also apparent from the following.

Theorem 79. If ' is a strictly increasing operation on a min-complete, antisym-
metric goset X, then ' is extensive.

Proof. If ' is not extensive, then the set A D fx 2 X W x 6� '.x/g is not void.
Thus, by the min-completeness of X, there exists a 2 minX.A/ . Hence, by the
definition of minX , we can see that a 2 A and a 2 lbX.A/ . Thus, in particular,
by the definition of A, we have a 6� '.a/ . Hence, by using Corollary 12 and
Theorem 49, we can infer that '.a/ < a . Thus, since ' is strictly increasing,
we also have '

�
'.a/

�
< '.a/ . Hence, by using Theorem 48, we can infer that

'.a/ 6� '
�
'.a/

�
. Thus, by the definition of A, we also have '.a/ 2 A . Hence, by

using that a 2 lbX.A/, we can infer that a � '.a/ . This contradiction shows that
' is extensive.

Remark 74. To feel the importance of extensive operations, it is also worth noticing
that if ' is an extensive operation on an antisymmetric goset, then each maximal
element x of X is already a fixed point of ' in the sense that '.x/ D x .

This fact has also been strongly emphasized by Brøndsted [6] . Moreover,
fixed point theorems for extensive maps (which are sometimes called expansive,
progressive, increasing, or inflationary) were also proved in [19], [11, p. 188], and
[29] .
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The following theorem shows that, in contrast to the injective, increasing
functions, the inverse of an injective, extensive operation need not be extensive.

Theorem 80. If ' is an injective, extensive operation on an antisymmetric goset
X such that X D ' ŒX � and '�1 is also extensive, then ' D �X .

Proof. By the extensivity of ' and '�1, for every x 2 X, we have x � '.x/
and '.x/ � '�1�'.x/

�
. Hence, by noticing that '�1�'.x/

� D x and using the
antisymmetry of X, we can already infer that '.x/ D x, and thus '.x/ D �X.x/ .
Therefore, the required equality is also true.

From this theorem, by using Theorems 78 and 79, we can immediately derive

Corollary 24. If ' is a strictly increasing operation on a min-complete, antisym-
metric goset X such that X D ' ŒX �, then ' D �X .

Proof. Now, from Corollary 12 and Theorem 78, we can see that '�1 is also strictly
increasing. Thus, by Theorem 79, both ' and '�1 are extensive. Therefore, by
Theorem 80, the required equality is also true.

In general, the idempotent operations are quite different from both upper and
lower semi-idempotent ones. However, we may still naturally have the following.

Definition 14. An increasing, extensive (intensive) operation is called a preclosure
(preinterior) operation. And, a lower semi-idempotent (upper semi-idempotent)
preclosure (preinterior) operation is called a closure (interior) operation.

Moreover, an extensive (intensive) lower semi-idempotent (upper semi-
idempotent) operation is called a semiclosure (semi-interior) operation. While,
an increasing and upper (lower) semi-idempotent operation is called an upper
(lower) semimodification operation.

Remark 75. Thus, ' is, for instance, an interior operation on a goset X if and only
if it is a closure operation on the dual X �1 of X.

15 Algebraic Properties of Increasing Functions

Concerning increasing functions, we can also prove the following.

Theorem 81. For a function f of one goset X to another Y, the following
assertions are equivalent :

(1) f is increasing,
(2) f Œ ubX.x/ � 	 ubY

�
f .x/

�
for all x 2 X,

(3) f Œ ubX.A/ � 	 ubY
�
f ŒA �

�
for all A 	 X.

Proof. If A 	 X and y 2 f Œ ubX.A/ �, then there exists x 2 ubX.A/ such that
y D f .x/ . Thus, for any a 2 A, we have a � x . Hence, if (1) holds, we can infer
that f .a/ � f .x/, and thus f .a/ � y . Therefore, y 2 ubY

�
f ŒA �

�
, and thus (3) also

holds.
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The remaining implications (3) H) (2) H) (1) are even more obvious.

From this theorem, by using Definition 8, we can immediately derive

Corollary 25. If f is an increasing function of one goset X to another Y, then for
any A 2 UX we have f ŒA � 2 UY .

Proof. Namely, if A 2 UX , then by Definition 8, we have A 	 ubX.A/ . Hence,
by using Theorem 81, we can infer that f ŒA � 	 f Œ ubX.A/ � 	 ubY

�
f ŒA �

�
. Thus,

by Definition 8, we also have f ŒA � 2 UY .

Moreover, by using Theorem 81, we can also prove the following.

Theorem 82. If f is an increasing function of one goset X onto another Y, then
for any B 	 Y we have

ubX
�
f �1 ŒB �

� 	 f �1 Œ ubY.B/ � :

Proof. Now, by Theorem 81 and a basic theorem on relations, we have

f
�

ubX
�
f �1 ŒB �

� � 	 ubY
�
f
�

f �1 ŒB �
� � D ubY

��
f ı f �1 � ŒB �

�
:

Moreover, by using that Y is the range of f , we can easily see that �Y 	 f ı f �1.
Hence, we can immediately infer that B 	 �

f ı f �1 � ŒB �, and thus also

ubY
��

f ı f �1 � ŒB �
� 	 ubY.B/ :

Therefore, we actually have f
�

ubX
�
f �1 ŒB �

� � 	 ubY.B/, and thus also

�
f �1ı f

� �
ubX

�
f �1 ŒB �

� � D f �1 � f
�

ubX
�
f �1 ŒB �

� � � 	 f �1 Œ ubY.B/ � :

Moreover, since X is the domain of f , we can note that �X 	 f �1ı f , and thus

ubX
�
f �1 ŒB �

� 	 �
f �1ı f

� �
ubX

�
f �1 ŒB �

� �
:

Therefore, the required inclusion is also true.

Now, as a partial converse to this theorem, we can also prove the following.

Theorem 83. If f is an injective function of one goset X to another Y such that

ubX
�
f �1 ŒB �

� 	 f �1 Œ ubY.B/ �

for all B 	 X, then f is increasing.

Proof. Now, by some basic theorems on relations, for any B 	 Y , we also have

f
�

ubX
�
f �1 ŒB �

� � 	 f
�

f �1 Œ ubY.B/ �
� D �

f ı f �1� Œ ubY.B/ � :
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Moreover, since f is a function, we also have f ı f �1 	 �X , and thus also
�
f ı

f �1� Œ ubY.B/ � 	 ubY.B/ . Therefore, we actually have

f
�

ubX
�
f �1 ŒB �

� � 	 ubY.B/ :

Hence, it is clear that, for any A 	 X, we have

f
�

ubX
��

f �1ı f
�
ŒA �

� � D f
�

ubX
�
f �1 � f ŒA �

� � � 	 ubY
�
f ŒA �

�
:

Moreover, by using that f is injective, we can note that f �1 ı f 	 �X , and thus
also

�
f �1ı f

�
ŒA � 	 A . Hence, we can infer that ubx.A/ 	 ubX

��
f �1ı f

�
ŒA �

�
,

and thus also

f Œ ubX.A/ � 	 f
�

ubX
��

f �1ı f
�
ŒA �

� �
:

Therefore, we actually have

f Œ ubX.A/ � 	 ubY
�
f ŒA �

�
:

Hence, by Theorem 81, we can already see that f is increasing.

Remark 76. Note that f is an increasing function of X to Y if and only if it is an
increasing function of X �1 to Y�1.

Therefore, in the above theorems, we may write lb in place of ub . However,
because of Theorems 29 and 4, we cannot write sup instead of ub .

Despite this, by using Theorem 81, we can also prove the following.

Theorem 84. For a function f of a reflexive goset X to an arbitrary one Y, the
following assertions are equivalent :

(1) f is increasing,
(2) f ŒmaxX.A/ � 	 ubY

�
f ŒA �

�
for all A 	 X,

(3) f ŒmaxX.A/ � 	 maxY
�
f ŒA �

�
for all A 	 X,

(4) f ŒmaxX.A/ � 	 ubY
�
f ŒA �

�
for all A 	 X with card.A/ � 2.

Proof. If (1) holds, then by Theorem 81 and a basic theorem on relations, for any
A 	 X, we have

f ŒmaxX.A/ � D f ŒA \ ubX.A/ � 	 f ŒA � \ f Œ ubX.A/ �

	 f ŒA � \ ubY
�
f ŒA �

� D maxY
�
f ŒA �

�
:

Therefore, (3) also holds even if X is not assumed to be reflexive.
Thus, since the implication (3) H) (2) H) (4) trivially hold, we need only

show that (4) also implies (1). For this, note that if u ; v 2 X such that u � v, then
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by taking A D fu ; v g and using the reflexivity of X we can see that v 2 ubX.A/,
and thus

v 2 A \ ubX.A/ D maxX.A/ :

Hence, if (4) holds, we can infer that

f .v / 2 f ŒmaxX.A/� 	 ubY
�
f ŒA �

� D ubY
�f f .u/; f .v/ g� :

Thus, in particular f .u/ � f .v/, and thus (1) also holds.

Now, as a useful consequence of this theorem, we can also easily prove

Corollary 26. If f is a function on a reflexive goset X to an arbitrary one Y such
that

f Œ supX.A/ � 	 supY

�
f ŒA �

�

for all A 	 X with card.A/ � 2, then f is already increasing.

Proof. If A is as above, then by Theorems 29 and 32 we have

f ŒmaxX.A/ � 	 f Œ supX.A/ � 	 supY

�
f ŒA �

� 	 ubY
�
f ŒA �

�
:

Therefore, by Theorem 84, the required assertion is also true.

Because of Theorems 29 and 4, a converse of this corollary is certainly not true.
However, by using Theorem 81, we can also prove the following two theorems.

Theorem 85. If f is an increasing function of one goset X to another Y, then for
any A 	 X we have

lbY
�
ubY

�
f ŒA �

�� 	 lbY . f Œ ubX.A/� / :

Proof. Now, by Theorem 81, we have f Œ ubX.A/ � 	 ubY
�
f ŒA �

�
. Hence, by using

Theorem 4, we can immediately derive the required inclusion.

Theorem 86. If f is an increasing function of one sup-complete, antisymmetric
goset X to another Y, then for any A 	 X we have

supY

�
f ŒA �

� � f
�
supX.A/

�
:

Proof. If ˛ D supX.A/, then by Theorems 29 and 45 and, and the usual
identification of singletons with their elements, we also have ˛ 2 ubX.A/, and
thus f .˛/ 2 f Œ ubX.A/� . Hence, by using Theorem 81, we can already infer that
f .˛/ 2 ubY

�
f ŒA �

�
.
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While, if ˇ D supY

�
f ŒA �

�
, then by Theorems 29 and 45, and the usual

identification of singletons with their elements, we also have ˇ 2 lbY
�
ubY

�
f ŒA �

��
.

Hence, by using that f .˛/ 2 ubY
�
f ŒA �

�
, we can already infer that ˇ � f .˛/, and

thus the required equality is also true.

By using the dual of Theorem 81 mentioned in Remark 76, we can quite similarly
prove the following theorem which can also be derived from Theorem 86 by
dualization.

Theorem 87. If f is an increasing function of one inf-complete, antisymmetric
goset X to another Y, then for any A 	 X we have

f
�
infX.A/

� � infY
�
f ŒA �

�
:

Remark 77. Note that, by Theorem 34, in the latter theorem we may also write
sup-complete instead of inf-complete.

Therefore, as an immediate consequence of Theorems 86 and 87, we can state

Corollary 27. If f is an increasing function of a sup-complete, antisymmetric goset
X to a sup-complete, transitive and antisymmetric goset Y, and A is a nonvoid
subset of X such that f

�
infX.A/

� D f
�
supX.A/

�
, then

infY
�
f ŒA �

� D f
�
infX.A/

�
and supY

�
f ŒA �

� D f
�
supX.A/

�
:

16 Topological Properties of Increasing Functions

In principle, the following theorem can be derived from the dual Theorem 81 by
using Theorem 71. However, it is now more convenient to give a direct proof.

Theorem 88. For a function f of one goset X to another Y, the following
assertions are equivalent :

(1) f is increasing,
(2) f Œ clX.A/ � 	 clY

�
f ŒA �

�
for all A 	 X,

(3) clX
�
f �1 ŒB �

� 	 f �1 ŒclY.B/� for all B 	 B 	 Y,
(4) f �1 Œ intY.B/ � 	 intX

�
f �1 ŒB �

�
for all B 	 Y.

Proof. If A 	 X and y 2 f Œ clX.A/ �, then there exists x 2 clX.A/ such that
y D f .x/ . Thus, by Definition 2, we have ubX.x/ \ A ¤ ; . Therefore, there
exists a 2 A such that a 2 ubX.x/, and thus x � a . Hence, if (1) holds, we
can infer that f .x/ � f .a/, and thus f .a/ 2 ubY

�
f .x/

� D ubY.y/ . Now, since
f .a/ 2 f ŒA � also holds, we can already see that f .a/ 2 ubY.y/ \ f ŒA �, and thus
ubY.y/ \ f ŒA � ¤ ; . Therefore, by Definition 2, we also have y 2 clY

�
f ŒA �

�
.

This shows that f Œ clX.A/ � 	 clY
�
f ŒA �

�
, and thus (2) also holds.



598 Á. Száz

While, if B 	 Y , then f �1ŒB � 	 X. Therefore, if (2) holds, then we have

f
�
clX. f

�1ŒB �/
� 	 clY

�
f
�

f �1ŒB �
� � D clY

��
f ı f �1� ŒB �

�
:

Moreover, since f is a function, we can easily see that f ı f �1 	 �Y , and thus�
f ı f �1� ŒB � 	 B . Hence, by using Theorem 11, we can infer that

clY
��

f ı f �1� ŒB �
� 	 clY.B/ :

Therefore, we actually have f
�

clX
�
f �1ŒB �

� � 	 clY.B/, and thus also

�
f �1ı f

� �
clX
�
f �1ŒB �

� � D f �1 � f
�

clX
�
f �1ŒB �

� � � 	 f �1� clY.B/
�
:

Moreover, since X is the domain of f , we can note that �X 	 f �1ı f , and thus

clX
�
f �1ŒB �

� 	 �
f �1ı f

� �
clX
�
f �1ŒB �

� �
:

Therefore, we actually have clX
�
f �1 ŒB �

� 	 f �1 Œ clY.B/ �, and thus (3) also holds.
On the other hand, if B 	 Y , then by using Theorem 6 and a basic fact on

inverse images, we can also see that

f �1 Œ intY.B/ � D f �1 � clY.B
c /c

� D f �1 � clY.B
c /
� c
:

Moreover, if (3) holds, then we can also see that clX
�
f �1 ŒB c �

� 	 f �1 Œ clY.B c / �,
and thus

f �1Œ clY.B
c /
�c 	 clX

�
f �1 ŒBc �

�c D clX
�
f �1 ŒB � c

�c D intX
�
f �1 ŒB �

�
:

This shows that f �1 Œ intY.B/ � 	 intX
�
f �1 ŒB �

�
, and thus (4) also holds.

Now, it remains to show that (4) also implies (1). For this, note that, by
Definition 2, for any x 2 X we have f .x/ 2 intY

�
ubY

�
f .x/

��
, and thus

x 2 f �1�f .x/
� 	 f �1� intY

�
ubY

�
f .x/

�� �
:

Moreover, if (4) holds, then we also have

f �1� intY
�
ubY

�
f .x/

�� � 	 intX
�
f �1 Œ ubY

�
f .x/

�
�
�
:

This shows that x 2 intX
�
f �1 Œ ubY

�
f .x/

�
�
�
, and thus by Definition 2 we have

ubX.x/ 	 f �1 Œ ubY
�
f .x/

�
� . Hence, we can already infer that

f Œ ubX.x/ � 	 f
�

f �1 Œ ubY
�
f .x/

�
� D �

f ı f �1 � Œ ubY
�
f .x/

�
� 	 ubY

�
f .x/

�
:

Therefore, by Theorem 81, assertion (1) also holds.
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From this theorem, by using Definition 3, we can immediately derive

Corollary 28. If f is an increasing function of one goset X to another Y, then

(1) B 2 TY implies f �1 ŒB� 2 TX ,
(2) B 2 FY implies f �1 ŒB� 2 FX .

Proof. If B 2 TY , then by Definition 3 we have B 	 intY.B/ . Hence, by using
Theorem 88 and the increasingness of f , we can already infer that

f �1 ŒB � 	 f �1 Œ intY.B/ � 	 intX
�
f �1 ŒB �

�
:

Therefore, by Definition 3, we also have f �1 ŒB � 2 TX .
This shows that (1) is true. Moreover, by using Theorem 13, we can easily see

that (1) and (2) are equivalent even if f is not assumed to be increasing.
For instance, if B 2 FY , then by Theorem 13, we have Bc 2 TX . Hence, if

(1) holds, we can infer f �1 ŒBc � 2 TX . Now, by using that f �1 ŒBc � D f �1 ŒB �c,
we can already see that f �1 ŒB �c 2 TX , and thus by Theorem 13 we also have
f �1 ŒB � 2 FX . Therefore, (2) also holds.

Remark 78. Moreover, if f is as in the above corollary, then by using the assertion
(2) of Theorem 88 we can immediately see that if A 	 X such that f ŒA � 2 FY ,
then f Œ clX.A/ � 	 f ŒA � . Note that this fact can also be derived from Corollary 28.

However, it is now more important to note that, in addition to the Corollary 28,
we can also prove the following.

Theorem 89. For a function f of a goset X to a proset Y, the following assertions
are equivalent :

(1) f is increasing,
(2) B 2 TY implies f �1 ŒB � 2 TX,
(3) B 2 FY implies f �1 ŒB � 2 FX.

Proof. Now, by Corollary 28 and its proof, we need actually show only that (3) also
implies (1). For this, note that if B 	 Y , then by Corollary 14 we have clY.B/ 2
FY . Hence, if (3) holds, we can infer that f �1 ŒclY.B/� 2 FX . Therefore, by
Definition 3, we have

clX
�
f �1 Œ clY.B/ �

� 	 f �1 Œ clY.B/ � :

Moreover, by Corollary 13, now we also have B 	 clY.B/, and thus also
f �1 ŒB � 	 f �1 Œ clY.B/ � . Hence, by using Theorem 11, we can infer that

clX
�
f �1 ŒB �

� 	 clX
�
f �1 Œ clY.B/ �

�
:
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This shows that

clX
�
f �1 ŒB �

� 	 f �1 Œ clY.B/ � :

Therefore, by Theorem 88, assertion (1) also holds.

Remark 79. Note that the assertion (2) of Theorem 88, and the assertions (3) of
Theorems 81 and 84, are more natural than the assertions (3) and (4) of Theorem 88
and the assertions (2) and (3) of Theorem 89.

Namely, the assertion (2) of Theorem 88, in a detailed form, means only that, for
any A 	 X, the inclusion x 2 clX..A/ implies f .x/ 2 clY.f ŒA �

�
. That is, if x is

“near” to A in X, then f .x/ is also “near” to f ŒA � in Y .
Actually, the nearness of one set to another is an even more natural concept than

that of a point to a set. Note that, according to a general definition of Száz [47],
for any two subsets A and B of a goset X, we have B 2 ClX.A/ if and only if
clX.A/ \ B ¤ ; .

Now, by using Theorem 88, we can also prove the following.

Theorem 90. If f is an increasing function of one goset X onto another Y, then

(1) A 2 DX implies f ŒA � 2 DY ,
(2) B 2 EY implies f �1 ŒB � 2 EX.

Proof. If A 2 DX , then by Definition 4 we have X D clX.A/. Hence, by using
Theorem 88 and our assumptions on f , we can already infer that

Y D f ŒX � D f Œ clX.A/ � 	 clY
�
f ŒA �

�
;

and thus Y D clY
�
f ŒA �

�
. Therefore, by Definition 4, we also have f ŒA � 2 DY .

This shows that (1) is true. Moreover, by using Theorem 19, we can easily see
that (1) and (2) are equivalent even if f is not assumed to be increasing and onto Y .

For instance, if A 2 DX and (1) holds, then f ŒA � 2 DY . Therefore, if
B 2 EY , then by Theorem 19 we have f ŒA � \ B ¤ ; . Hence, it follows that
A \ f �1 ŒB � ¤ ; . Therefore, by Theorem 19, we have f �1 ŒB � 2 EX , and thus
(2) also holds.

Remark 80. Moreover, if f is as in the above theorem, then by using the assertion
(3) of Theorem 88 we can also easily see that if B 	 Y such that f �1 ŒB � 2 DX ,
then B 2 DY . However, this fact can be more easily derived from Theorem 90.

17 Algebraic Properties of Closure Operations

Theorem 91. If ' is a closure operation on an inf-complete, antisymmetric goset
X, then for any A 	 X we have

infX
�
' ŒA �

� D '
�
infX

�
' ŒA �

��
:
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Proof. Now, by Theorem 87, we have '
�
infX.A/

� � infX
�
' ŒA �

�
. Hence, by

writing ' ŒA � in place of A, we can see that

'
�
infX

�
' ŒA �

�� � infX .' Œ ' ŒA � � / :

Moreover, by using the antisymmetry of X, we can see that ' is now idempotent.
Therefore, ' Œ ' ŒA � � D .' ı '/ ŒA � D ' 2 ŒA � D ' ŒA � . Thus, we actually have

'
�
infX

�
' ŒA �

�� � infX .' ŒA � / :

Moreover, by extensivity of ', the converse inequality is also true. Hence, by using
the antisymmetry of X, we can see that the required equality is also true.

Remark 81. It can be easily seen that an operation ' on a set X is idempotent if
and only if ' ŒX � is the family of all fixed points of ' .

Namely, ' 2 D ' if and only if ' 2.x/ D '.x/, i. e., '
�
'.x/

� D '.x/ for all
x 2 X . That is, '.x/ 2 Fix.'/ for all x 2 X, or equivalently ' ŒX � 	 Fix.'/ .
Thus, since the converse inclusion always holds, the required assertion is also true.

Therefore, by using Theorem 91, we can also prove the following.

Corollary 29. Under the conditions of Theorem 91, for any A 	 ' ŒX �, we have

infX
�
A/ D '

�
infX.A/

�
:

Proof. Now, because of the antisymmetry of X, the operation ' is idempotent.
Thus, by Remark 81, we have '.y/ D y for all y 2 ' ŒX � . Hence, by using the
assumption A 	 ' ŒX �, we can see that ' ŒA � D A . Thus, Theorem 91 gives the
required equality.

Remark 82. Note that if ' is an extensive, idempotent operation on a reflexive,
antisymmetric goset X, then ' ŒX � is also the family of all elements x of X which
are '-closed in the sense that '.x/ � x.

Therefore, if in addition to the conditions of Theorem 91, X is reflexive, then the
assertion of Corollary 29 can also be expressed by stating that the infimum of any
family of '-closed elements of X is also '-closed.

Now, instead of an analogue of Theorem 91 for supremum, we can only prove

Theorem 92. If ' is a closure operation on a sup-complete, transitive, and
antisymmetric goset X, then for any A 	 X we have

'
�
supX.A/

� D '
�
supX

�
' ŒA �

��
:

Proof. Define ˛ D supX .A/ and ˇ D supX

�
' ŒA �

�
. Then, by Theorem 86, we

have ˇ � '.˛/ . Hence, since ' is increasing, we can infer that '.ˇ/ � '
�
'.˛/

�
.

Moreover, since ' is now idempotent, we also have '
�
'.˛/

� D '.˛/ . Therefore,
'.ˇ/ � '.˛/ .

On the other hand, since ' is extensive, for any x 2 A we have x � '.x/ .
Moreover, since ˇ 2 ubX

�
' ŒA �

�
, we also have '.x/ � ˇ . Hence, by using the
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transitivity of X, we can infer that x � ˇ . Therefore, ˇ 2 ubX.A/ . Now, by using
that ˛ 2 lbX

�
ubX.A/

�
, we can see that ˛ � ˇ . Hence, by using the increasingness

of ', we can infer that '.˛/ � '.ˇ/ . Therefore, by the antisymmetry of X, we
actually have '.˛/ D '.ˇ/, and thus the required equality is also true.

From this theorem, we only get the following counterpart of Theorem 91.

Corollary 30. Under the conditions of Theorem 92, for any A 	 X, the following
assertions are equivalent :

(1) supX

�
' ŒA �

� D '
�
supX.A/

�
,

(2) supX

�
' ŒA �

� D '
�
supX

�
' ŒA �

��
.

Now, in addition to Theorems 26 and 31, we can also prove

Theorem 93. If ' is a closure operation on an inf-complete, antisymmetric goset
X and Y D ' ŒX �, then for any A 	 Y we have

infY.A/ D infX.A/ :

Proof. If ˛ D infX.A/, then by Corollary 29 we have ˛ D '.˛/, and hence
˛ 2 Y . Therefore, under the usual identification of singletons with their elements,
˛ D infX.A/ \ Y also holds.

On the other hand, by Theorem 31, we always have infX.A/ \ Y 	 infY.A/ .
Therefore, ˛ 2 infY.A/ also holds. Hence, by using Theorem 45, we can already
see that ˛ D infY.A/ is also true.

From this theorem, it is clear that in particular we also have

Corollary 31. Under the conditions of Theorem 93, the subgoset Y is also inf-
complete.

Remark 83. Hence, by Theorem 34, we can see that the subgoset Y is also sup-
complete.

Now, instead of establishing an analogue of Theorem 93 for supremum, it is
convenient to prove first some more general theorems.

Theorem 94. If ' is an idempotent operation on a goset X and Y D ' ŒX �, then
for any A 	 Y we have

ubY.A/ 	 ' Œ ubX.A/ � :

Proof. If ˇ 2 ubY.A/, then by Theorem 2 we have ˇ 2 Y and ˇ 2 ubX.A/ .
Hence, by Remark 81, we can see that ˇ D '.ˇ/, and thus ˇ 2 ' Œ ubX.A/ � .
Therefore, the required inclusion is also true.

Remark 84. By dualization, it is clear that in the above theorem we may also write
lb in place of ub .
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However, it is now more important to note that we also have the following.

Theorem 95. If ' is an extensive operation on a transitive goset X and Y D
' ŒX �, then for any A 	 Y we have

' Œ ubX.A/ � 	 ubY.A/ :

Proof. If ˇ 2 ubX.A/, then because of ˇ � '.ˇ/ and the transitivity of X, we
also have '.ˇ/ 2 ubX.A/ . Hence, since '.ˇ/ 2 Y , we can already see that '.ˇ/ 2
ubX.A/ \ Y D ubY.A/, and thus the required inclusion is also true.

Now, as an immediate consequence of the above two theorems, we can also state

Corollary 32. If ' is a semiclosure operation on a transitive, antisymmetric goset
X and Y D ' ŒX �, then for any A 	 Y we have

ubY.A/ D ' Œ ubX.A/ � :

However, it is now more important to note that, in addition to Theorem 95, we
can also prove the following.

Theorem 96. If ' is a lower semimodification operation on a transitive goset X
and Y D ' ŒX �, then for any A 	 Y we have

'
�

lbX
�
ubX.A/

� � 	 lbY
�
ubY.A/

�
:

Proof. Suppose that ˇ 2 lbX
�
ubX.A/

�
. If v 2 ubY.A/, then by Theorem 2 we

have v 2 Y and v 2 ubX.A/ . Hence, by using the assumed property of ˇ, we can
infer that ˇ � v . Now, since ' is increasing, we can also state that '.ˇ/ � '.v/ .

Moreover, since v 2 Y , we can see that there exists u 2 X such that v D '.u/ .
Hence, by using that ' is lower semi-idempotent, we can infer that

'.v/ D '
�
'.u/

� D ' 2.u/ � '.u/ D v :

Now, by using the transitivity of X, we can also see that '.ˇ/ � v . Therefore,
'.ˇ/ 2 lbX

�
ubY.A/

�
. Hence, since '.ˇ/ 2 Y also holds, we can already infer that

'.ˇ/ 2 lbY
�
ubY.A/

�
. Therefore, the required inclusion is also true.

Now, by using Theorems 95 and 96, we can also prove the following.

Theorem 97. If ' is a closure operation on a transitive goset X and Y D ' ŒA �,
then for any A 	 Y we have

' Œ supX.A/ � 	 supY.A/ :
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Proof. By Theorems 29, 95, and 96, and a basic fact on relations, we have

' Œ supX.A/ � D ' Œ ubX.A/ \ lbX
�
ubX.A/

�
�

	 ' Œ ubX.A/ � \ '
�

lbX
�
ubX.A/

� � 	 ubY.A/ \ lbY
�
ubY.A/

� D supY.A/ :

Hence, it is clear that, analogously to Corollary 31, we can also state

Corollary 33. If in addition to the conditions of Theorem 97, the goset X sup-
complete, then the subgoset Y is also sup-complete.

From Theorem 97, by using Theorem 45, we can also immediately derive the
following counterpart of Theorem 93 and Corollary 29.

Theorem 98. If ' is a closure operation on a sup-complete, transitive, and
antisymmetric goset X and Y D ' ŒA �, then for any A 	 Y we have

supY.A/ D '
�
supX.A/

�
:

18 Generalizations of Increasingness to Relator Spaces

A family R of relations on one set X to another Y is called a relator on X to Y .
And, the ordered pair .X; Y /.R / D �

.X; Y /; R
�

is called a relator space. (For
the origins, see [65], [28], [14], [39], and the references therein.)

If in particular R is a relator on X to itself, then we may simply say that R is a
relator on X. And, by identifying singletons with their elements, we may naturally
write X.R/ in place of .X ;X /.R / , since .X ; X / D ffX g; fX ; X gg D ffX gg .

Relator spaces of this simpler type are already substantial generalizations of the
various ordered sets [11] and uniform spaces [14] . However, they are insufficient
for several important purposes. (See, for instance, [15, 46] .)

A relator R on X to Y , or a relator space .X; Y/.R/ is called simple if there
exists a relation R on X to Y such that R D fRg. In this case, by identifying
singletons with their elements, we may write .X; Y/.R/ in place of .X; Y/.fRg/.

According to our former definition, a simple relator space X .R/ may be called
a goset (generalized ordered set). Moreover, by Ganter and Wille [15, p. 17], a
simple relator space

�
X ;Y

�
.R/ may be called called a formal context or context

space.
A relator R on X, or a relator space X.R/, may, for instance, be naturally

called reflexive if each member of R is a reflexive relation on X. Thus, we may
also naturally speak of preorder, tolerance, and equivalence relators.

For any family A of subsets of X, the family RA D f RA W A 2 A g is a
preorder relator on X . While, for any family D of pseudo-metrics on X, the family
RD D f B d

r W r > 0; d 2 D g is a tolerance relator on X.
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Moreover, if S is a family of partitions of X, then RS D f SA W A 2 S g is
an equivalence relator on X. Uniformities generated by such practically important
relators seem to have been investigated only by Levine [23] .

Now, according to Definition 12, a function f of one simple relator space X .R/
to another Y .S/ may be naturally called increasing if for any u ; v 2 X

u R v H) f .u/ S f .v/ :

Hence, by noticing that

u R v ” v 2 R.u/ ” .u ; v / 2 R;

and

f .u/ S f .v/ ” f .v/ 2 S
�
f .u/

� ” �
f .u/; f .v/

� 2 S;

that is,

f .u/S f .v/ ” f .v/ 2 .S ı f /.u/ ” . f � f /.u ; v / 2 S;

we can easily establish the following.

Theorem 99. For a function f of one simple relator space X .R/ to another Y .S/,
the following assertions are equivalent :

(1) f is increasing,
(2) f ı R 	 S ı f ,
(3) . f � f / ŒR � 	 S,
(4) f ı R ı f �1 	 S,
(5) R 	 . f � f /�1 Œ S �,
(6) R 	 f �1 ı S ı f .

Proof. By the above argument and the corresponding definitions, it is clear that

.1/ ” 8 .u ; v / 2 R W . f � f /.u ; v / 2 S ” .3/

and

.1/ ” 8 u 2 X W 8 v 2 R.u/ W f .v/ 2 .S ı f /.u/

” 8 u 2 X W f ŒR.u/� 	 .S ı f /.u/

” 8 u 2 X W �
f ı R

�
.u/ 	 .S ı f /.u/ ” .2/ :

Moreover, if (2) holds, then by using that f ı f �1 	 �Y we can see that

f ı R ı f �1 	 S ı f ı f �1 	 S ı�Y D S;

and thus (4) also holds.
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Conversely, if (4) holds, then by using that �X 	 f �1ı f we can similarly see
that

f ı R D f ı R ı�X 	 f ı R ı f �1ı f 	 S ı f ;

and thus (2) also holds. Therefore, (2) and (4) are also equivalent.
Now, it is enough to prove only that (3) and (2) are also equivalent to (5) and

(6), respectively.
For this, it is convenient to note that if ' is a function of one set U to another

V , then because of the inclusions �U 	 '�1 ı ' and ' ı '�1 	 �V , for any
A 	 U and B 	 Y , we have

'ŒA � 	 B ” A 	 '�1ŒB �:

That is, the set functions ' and '�1 also form a Galois connection.
Namely, if, for instance, (2) holds, then for any x 2 X we have

f ŒR.x/� D . f ı R/.x/ 	 .S ı f /.x/:

Hence, by using the abovementioned fact, we can already infer that

R.x/ 	 f �1 Œ .S ı f /.x/ � D �
f �1 ı S ı f

�
.x/ :

Therefore, (6) also holds. While, if (6) holds, then by using a reverse argument,
we can quite similarly see that (2) also holds.

From Theorem 99, by using the uniform closure operation  defined by

R � D ˚
S 	 X�Y W 9 R 2 R W R 	 S

�

for any relator R on X to Y , we can immediately derive the following.

Corollary 34. For a function f of one simple relator space X .R/ to another Y .S/,
the following assertions are equivalent :

(1) f is increasing,
(2) S ı f 2 ˚ f ı R

��
,

(3) S 2 ˚. f � f /ŒR �
��

,

(4) S 2 ˚ f ı R ı f �1��
,

(5) . f � f /�1Œ S � 2 f Rg�,
(6) f �1 ı S ı f 2 f Rg�.
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Remark 85. Now, by using the notations F D f f g, R D fRg and S D fSg,
instead of (2) we may also write the more instructive inclusions

S ı F 
 �
F ı R /�;

�
S � ı F

�
� 
 �

F ı R �
�
�

;
�
S � ı F �

�
� 
 �

F � ı R �
�
�

:

The second one, whenever we think arbitrary relators in place of R and S , already
shows the -invariance of the increasingness of F with respect to those relators.

From Corollary 34, by using the following obvious extensions of the operations
�1 and ı from relations to relators, defined by

R�1 D ˚
R�1 W R 2 R

�
and S ı R D ˚

S ı R W R 2 R; S 2 S
�

for any relator R on X to Y and S on Y to Z, we can easily derive the
following generalization of [46, Definition 4.1], which is also closely related to
[60, Definition 15.1] .

Definition 15. Let .X;Y /.R / and .Z; W /.S / be relator spaces, and suppose that
� is a direct unary operation for relators. Then, for any two relators F on X to Z
and G on Y to W, we say that the pair

(1)
�
F ; G / is mildly �-increasing if

��
G �

	�1 ı S � ı F �
	� 	 R � :

(2)
�
F ; G

�
is upper �-semi-increasing if

�
S � ı F �

	� 	
�
G � ı R �

	�
:

(3)
�
F ; G

�
is lower �-semi-increasing if

��
G �

	�1 ı S �
	� 	

�
R � ı

�
F �

	�1	�
:

Remark 86. A function � of the class of all relator spaces to that of all relators is
called a direct unary operation for relators if, for any relator space .X; Y /.R /, the
value �

�
.X; Y /.R /

�
is a relator on X to Y .

In this case, trusting to the reader’s good sense to avoid confusions, we shall
simply write R � instead of R �X Y D �

�
.X; Y /.R /

�
. Thus,  is a direct, while

�1 is a non-direct unary operation for relators.
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19 Some Useful Simplifications of Definition 15

The rather difficult increasingness properties given in Definition 15 can be greatly
simplified whenever the operation � has some useful additional properties.

For instance, by using an analogue of Definition 14, we can easily establish

Theorem 100. If in addition to the assumptions of Definition 15, � is a closure
operation for relators, then

(1)
�
F ; G / is mildly �-increasing if and only if

�
G �

	�1 ı S � ı F � 	 R � :

(2)
�
F ; G

�
is upper �-semi-increasing if and only if

S � ı F � 	
�
G � ı R �

	�
:

(3)
�
F ; G

�
is lower �-semi-increasing if and only if

�
G �

	�1 ı S � 	
�
R � ı

�
F �

	�1	�
:

Remark 87. To check this, note that an operation � for relators is a closure
operation if and only if, for any two relators R and S on X to Y , we have

U � 	 V � ” U 	 V � :

That is, the set functions � and � form a Pataki connection.

Now, by calling an operation � for relators to be inversion and composition
compatible if

�
R � ��1 D �

R�1 ��
and

�
S ı R

�� D �
S � ı R

�� D �
S ı R � ��

for any relators R on X to Y and S on Y to Z, we can also easily establish

Theorem 101. If in addition to the assumptions of Definition 15, � is an inversion
and composition compatible operation for relators, then

(1)
�
F ; G / is mildly �-increasing if and only if

�
G �1ı S ı F

�� 	 R � :
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(2)
�
F ; G

�
is upper �-semi-increasing if and only if

�
S ı F

�� 	 �
G ı R

��
:

(3)
�
F ; G

�
is lower �-semi-increasing if and only if

�
G �1 ı S

�� 	 �
R ı F�1 ��

:

Remark 88. To check this, note that if � is a composition compatible operation for
relators, then for any three relators R on X to Y , S on Y to Z, and T on Z to
W, we have

�
S ı R

�� D �
S � ı R �

��
and

�
T ı S ı R

�� D �
T � ı S � ı R �

��
:

From the above theorem, it is clear that in particular we also have

Corollary 35. If in addition to the assumptions of Definition 15, � is an inversion
and composition compatible closure operation for relators, then

(1)
�
F ; G / is mildly �-increasing if and only if

G �1ı S ı F 	 R � :

(2)
�
F ; G

�
is upper �-semi-increasing if and only if

S ı F 	 �
G ı R

��
:

(3)
�
F ; G

�
is lower �-semi-increasing if and only if

G �1 ı S 	 �
R ı F�1 ��

:

Concerning inversion compatible operations, we can also prove the following.

Theorem 102. If in addition to the assumptions of Definition 15, � is an inversion
compatible operation for relators, then

(1)
�
F ; G / is mildly �-increasing with respect to the relators R and S if

and only if
�
G ; F / is mildly �-increasing with respect to the relators R�1

and S �1 .
(2)

�
F ; G / is upper �-semi-increasing with respect to the relators R and S

if and only if
�
G ; F / is lower �-semi-increasing with respect to the relators

R�1 and S �1 .
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Proof. To prove the “only if part” of (2), note that by the assumed inversion
compatibility of � and a basic inversion property of the element-wise composition
of relators, we have

��
S � ı F �

	� 	�1 D
��

S � ı F �
	�1 	�

D
��

F �
	�1 ı

�
S �

	�1 	�

D
��

F �
	�1 ı �S �1 �� 	�

;

and quite similarly

��
G � ı R �

	� 	�1 D
��
R�1 �� ı

�
G �

	�1 	�
:

Therefore, if
�
S � ı F � �� 	 �

G � ı R� � holds, then we also have

��
F �

	�1 ı �S �1 �� 	� 	
��
R�1 �� ı

�
G �

	�1 	�
:

Remark 89. Such types of arguments indicate that we actually have to keep in mind
only the definition of upper �-semi-increasingness, since the other two ones can be
easily derived from this one under some simplifying assumptions.

Remark 90. Unfortunately, Theorems 102 and 101 have only a limited range of
applicability since several important closure operations on relators are not inversion
or composition compatible.

Remark 91. However, it can be easily seen that a union-preserving operation �
for relators is inversion compatible if and only if f R�1 g� 	 �fRg� ��1

for any
relation R on X to Y .

Moreover, a closure operation � for relators is composition compatible if and
only if

S ı R � 	 �
S ı R

��
and S � ı R 	 �

S ı R
��

for any two relators R on X to Y and S on Y to Z .

Remark 92. By using the latter facts, one can more easily see that, for instance, the
uniform closure operation  is inversion and composition compatible.
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20 Some Further Important Unary Operations for Relators

In addition to the operation , the functions #, ^, and M, defined by
R # D ˚

S 	 X�Y W 8 A 	 X W 9 R 2 R W R ŒA � 	 S ŒA �
�
,

R ^ D ˚
S 	 X�Y W 8 x 2 X W 9 R 2 R W R .x/ 	 S .x/

�
,

and
R M D ˚

S � X�Y W 8 x 2 X W 9 u 2 X W 9 R 2 R W R .u/ 	 S .x/
�

for any relator R on X to Y , are also important closure operations for relators.
Thus, we evidently have R 	 R � 	 R # 	 R ^ 	 R M for any relator R on

X to Y . Moreover, if in particular X D Y , then in addition to the above inclusions
we can also easily prove that R 1 	 R � 1 	 R 1 � 	 R �, where

R 1 D ˚
R 1 W R 2 R

�
:

In addition to 1, it is also worth considering the operation @, defined by

R @ D ˚
S 	 X 2 W S 1 2 R

�

for any relator R on X. Namely, for any two relators R and S on X, we have

R 1 	 S ” R 	 S @ :

This shows that the set functions 1 and @ also form a Galois connection.
Therefore, 1 D 1 @1, and 1 @ is also closure operation for relators.

Moreover, for any relator R on X to Y , we may also naturally define

R c D ˚
R c W R 2 R

�
;

where R c D X �Y n R . Thus, for instance, we may also naturally consider the
operation ~ D c  c which seems to play the same role in order theory as the
operation  does in topology.

Unfortunately, the operations ^ and M are not inversion Compatible; therefore,
in addition to these operations we have also to consider the operations _ D ^ � 1

and O DM �1, which already have very curious properties.
For instance, the operations __ and OO coincide with the extremal closure

operations � and �, defined by

R � D ˚
ıR
��
; where ıR D

\
R;

and

R � D R if R D ˚
X�Y

�
and R � D P .X�Y / if R ¤ ˚

X�Y
�
:
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Because of the above important operations for relators, Definition 15 offers an
abundance of natural increasingness properties for relations. Moreover, from the
results of Sects. 15 and 16, one can also immediately derive several reasonable
definitions for the increasingness of relations.

However, in [58], a relation F on a goset X to a set Y has been called
increasing if the induced set-valued function F˘ is increasing. That is, u � v

implies F.u/ 	 F.v / for all u ; v 2 X. Thus, it can be easily seen that F is
increasing if and only if F �1 is ascending valued in the sense that F �1.y/ is an
ascending subset of X for all y 2 Y .

If R is a relator on X to Y , then by extending the corresponding parts of
Definitions 1 and 2 ,we may also naturally define

LbR.B/ D ˚
A 	 X W 9 R 2 R W A�B 	 R

�
and lbR.B/ D X \ LbR.B/;

and

IntR.B/ D ˚
A 	 X W 9 R 2 R W R ŒA � 	 B

�
and intR.B/ D X \ IntR.B/

for all B 	 Y . However, these relations are again not independent of each other.
Namely, by the corresponding definitions, it is clear that

A�B 	 R ” 8 a 2 A W B 	 R.a/ ” 8 a 2 A W R.a/c 	 Bc

” 8 a 2 A W Rc.a/ 	 Bc ” Rc ŒA � 	 Bc:

Therefore, we have

A 2 LbR.B/ ” A 2 IntRc.Bc/ ” A 2 �IntRcıC �
.B/ :

Hence, we can already see that

LbR D IntRcıC ; and thus also lbR D intRcıC :

These formulas, proved first in [47], establish at least as important relationship
between order and topological theories as the famous Euler formulas do between
exponential and trigonometric functions [38, p. 227] .

To see the importance of the operations # and #�=c # c, by using Pataki
connections on power sets [50], it can be shown that, for any relator R on X to Y ,
S D R #

�
S D R #� �

is the largest relator on X to Y such that IntS D IntR�
LbS D LbR

�
.

Concerning the operations ^ and �̂=c ^ c, we can quite similarly see that
S D R^ �

S D R�̂ �
is the largest relator on X to Y such that intS D intR�

lbS D lbR

�
. Moreover, if in particular R is a relator on X, then some similar

assertions holds for the families

�R D ˚
A 	 X W A 2 IntR.A/

�
and `R D ˚

A 	 X W A 2 LbR.A/
�
:
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However, if R is a relator on X, then for the families

TR D ˚
A 	 X W A 	 intR.A/

�
and LR D ˚

A 	 X W A 	 lbR.A/
�

there does not exist a largest relator S on X such that TS D TR

�
LS D LR

�
.

In the light of this and some other disadvantages of the family TR, it is rather
curious that most of the works in topology and analysis have been based on open
sets suggested by Tietze [64] and standardized by Bourbaki [5] and Kelley [18] .

Moreover, it also a striking fact that, despite the results of Pervin [34], Fletcher
and Lindgren [14], and the present author [52], topologies and their generaliza-
tions are still intensively investigated, without generalized uniformities, by a great
number of mathematicians.

The study of the various generalized topologies is mainly motivated by some
recent papers of Á. Császár. For instance, the authors of [7, 25] write that : “The
theory of generalized topological spaces, which was founded by Á. Császár, is one
of the most important developments of general topology in recent years.”

For any relator R on X to Y , we may also naturally define

ER D ˚
B 	 Y W intR.B/ ¤ ; � and ER D ˚

B 	 Y W lbR.B/ ¤ ; � :

In a relator space X.R /, the family ER of all fat sets is frequently a more
important tool than the family TR of all topologically open sets. Namely, if R is
a relator on X to Y , then it can be shown that S D R M is the largest relator on
X to Y such that ES D ER .

Moreover, if R is a relator on X to Y , then for any goset 	 , and nets x 2 X	

and y 2 Y 	 ,we may naturally define x 2 LimR .y/ if the net .x ; y/ is eventually
in each R 2 R in the sense that .x ; y/�1 ŒR � 2 E	 . Now, for any a 2 X, we may
also naturally write a 2 limR .y/ if .a/ 2 LimR .y/, where .a/ is an abbreviation
for the constant net .a/� 2	 D 	 � fag .

In a relator space .X; Y /.R /, the convergence relation LimR, suggested by
Efremović and Šwarc [13], is a much stronger tool than the proximal interior
relation IntR suggested by Smirnov [37] . If R is a relator on X to Y , then it can
be shown that S D R � is the largest relator on X to Y such that LimS D LimR .

Now, following the ideas of Császár [8], for any relator R on X to Y , we may
also naturally consider the hyperrelators

HR D ˚
IntR W R 2 R

�
and KR D ˚

LimR W R 2 R
�
:

By the corresponding definitions, it is clear that

IntR D S

R2R

IntR and LimR D T

R2R

LimR :

Therefore, the above hyperrelators are much stronger tools in the relator space
.X; Y /.R / than the relations IntR and LimR .
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For instance, a net y 2 Y 	 may be naturally called convergence Cauchy with
respect to the relator R if limR .y/ ¤ ; for all R 2 R. Hence, since

limR .y/ D T

R2R

limR .y/;

we can at once see that a convergent net is convergence Cauchy, but the converse
statement need not be true.

However, it can be shown that the net y is convergent with respect to the relator
R if and only if it convergence Cauchy with respect to the topological closure R ^
of R . (See [43].) Therefore, the two notions are in a certain sense equivalent.

The same is true in connection with the notions adherent and adherence Cauchy,
which are defined by using D	 instead of E	 . Moreover, it is also noteworthy that
a similar situation holds in connection with the concepts compact and precompact .
(See [45].)

Now, according to the ideas of Száz [59], we may also naturally consider
corelator spaces, mentioned in Sect. 2, instead of relator spaces. However, the
increasingness properties (1) and (3) considered in Definition 15 cannot be imme-
diately generalized to such spaces. Namely, in contrast to relations, the ordinary
inverse of a correlation is usually not a correlation.

Finally, we note that, in addition to the results of Sect.17, it would also be
desirable to to establish some topological properties of closure operations by
supplementing the results of Sect. 16. Moreover, it would be desirable to extend
the notion of closure operations to arbitrary relator spaces.

However, in this direction, we could only observe that a unary operation ' on a
simple relator space X.R/ is extensive if and only if ' 	 R . Moreover, ' is lower
semi-idempotent if and only if ' j' ŒX � 	 R�1 .
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13. Efremović, V.A., Švarc, A.S.: A new definition of uniform spaces. Metrization of proximity
spaces. Dokl. Acad. Nauk. SSSR 89, 393–396 (1953) [Russian]

14. Fletcher, P., Lindgren, W.F.: Quasi-Uniform Spaces. Marcel Dekker, New York (1982)
15. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)
16. Glavosits, T.: Generated preorders and equivalences. Acta Acad. Paed. Agriensis Sect. Math.

29, 95–103 (2002)
17. Graham, R.L., Knuth, D.E., Motzkin, T.S.: Complements and transitive closures. Discrete

Math. 2, 17–29 (1972)
18. Kelley, J.L.: General Topology. Van Nostrand Reinhold Company, New York (1955)
19. Kneser, H.: Eine direct Ableitung des Zornschen lemmas aus dem Auswahlaxiom. Math. Z.

53, 110–113 (1950)
20. Kurdics, J., Száz, Á.: Connected relator spaces. Publ. Math. Debrecen 40, 155–164 (1992)
21. Kurdics, J., Száz, Á.: Well-chained relator spaces. Kyungpook Math. J. 32, 263–271 (1992)
22. Levine, N.: Dense topologies. Amer. Math. Monthly 75, 847–852 (1968)
23. Levine, N.: On uniformities generated by equivalence relations. Rend. Circ. Mat. Palermo 18,

62–70 (1969)
24. Levine, N.: On Pervin’s quasi uniformity. Math. J. Okayama Univ. 14, 97–102 (1970)
25. Li, Z., Zhu, W.: Contra continuity on generalized topological spaces. Acta Math. Hungar. 138,

34–43 (2013)
26. Mala, J.: Relators generating the same generalized topology. Acta Math. Hungar. 60, 291–297

(1992)
27. Mala, J., Száz, Á.: Modifications of relators. Acta Math. Hungar. 77, 69–81 (1997)
28. Nakano, H., Nakano, K.: Connector theory. Pacific J. Math. 56, 195–213 (1975)
29. Niederle, J.: A useful fixpoint theorem. Rend. Circ. Mat. Palermo II. Ser. 47, 463–464 (1998)
30. Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)
31. Pataki, G.: Supplementary notes to the theory of simple relators. Radovi Mat. 9, 101–118

(1999)
32. Pataki, G.: On the extensions, refinements and modifications of relators. Math. Balk. 15, 155–

186 (2001)
33. Pataki, G., Száz, Á.: A unified treatment of well-chainedness and connectedness properties.

Acta Math. Acad. Paedagog. Nyházi. (N.S.) 19, 101–165 (2003)
34. Pervin, W.J.: Quasi-uniformization of topological spaces. Math. Ann. 147, 316–317 (1962)
35. Rakaczki, Cs., Száz, Á.: Semicontinuity and closedness properties of relations in relator spaces.

Mathematica (Cluj) 45, 73–92 (2003)
36. Schmidt, J.: Bieträge zur Filtertheorie II. Math. Nachr. 10, 197–232 (1953)
37. Smirnov, Y.M.: On proximity spaces. Math. Sb. 31, 543–574 (1952) [Russian]
38. Stromberg, K.R.: An Introduction to Classical Real Analysis. Wadsworth, Belmont, CA (1981)
39. Száz, Á.: Basic tools and mild continuities in relator spaces. Acta Math. Hungar. 50, 177–201

(1987)
40. Száz, Á.: The fat and dense sets are more important than the open and closed ones. Abstracts of

the Seventh Prague Topological Symposium, Institute of Mathematics Czechoslovak Academy
Science, p. 106 (1991)

41. Száz, Á.: Structures derivable from relators. Singularité 3, 14–30 (1992)
42. Száz, Á.: Refinements of relators. Tech. Rep., Inst. Math., Univ. Debrecen 76, 19 pp (1993)
43. Száz, Á.: Cauchy nets and completeness in relator spaces. Colloq. Math. Soc. János Bolyai

55, 479–489 (1993)
44. Száz, Á.: Topological characterizations of relational properties. Grazer Math. Ber. 327, 37–52

(1996)



616 Á. Száz

45. Száz, Á.: Uniformly, proximally and topologically compact relators. Math. Pannon. 8, 103–
116 (1997)

46. Száz, Á.: Somewhat continuity in a unified framework for continuities of relations. Tatra Mt.
Math. Publ. 24, 41–56 (2002)

47. Száz, Á.: Upper and lower bounds in relator spaces. Serdica Math. J. 29, 239–270 (2003)
48. Száz, Á.: Lower and upper bounds in ordered sets without axioms. Tech. Rep., Inst. Math.,

Univ. Debrecen, 11 pp. (2004/1)
49. Száz, Á.: The importance of reflexivity, transitivity, antisymmetry and totality in generalized

ordered sets. Tech. Rep., Inst. Math., Univ. Debrecen, 15 pp. (2004/2)
50. Száz, Á.: Galois-type connections on power sets and their applications to relators. Tech. Rep.,

Inst. Math., Univ. Debrecen, 328 pp. (2005/2)
51. Száz, Á.: Supremum properties of Galois-type connections. Comment. Math. Univ. Carol. 47,

569–583 (2006)
52. Száz, Á.: Minimal structures, generalized topologies, and ascending systems should not be

studied without generalized uniformities. Filomat 21, 87–97 (2007)
53. Száz, Á.: Galois type connections and closure operations on preordered sets. Acta Math. Univ.

Comen. 78, 1–21 (2009)
54. Száz, Á.: Altman type generalizations of ordering and maximality principles of Brézis,

Browder and Brønsted. Adv. Stud. Contemp. Math. (Kyungshang) 20, 595–620 (2010)
55. Száz, Á.: Galois-type connections and continuities of pairs of relations. J. Int. Math. Virt. Inst.

2, 39–66 (2012)
56. Száz, Á.: Lower semicontinuity properties of relations in relator spaces. Adv. Stud. Contemp.

Math. (Kyungshang) 23, 107–158 (2013)
57. Száz, Á.: Inclusions for compositions and box products of relations. J. Int. Math. Virt. Inst. 3

97–125 (2013)
58. Száz, Á.: Galois and Pataki connections revisited. Tech. Rep., Inst. Math., Univ. Debrecen, 20

pp. (2013/3)
59. Száz, Á.: A particular Galois connection between relations and set functions. Acta Univ.

Sapientiae Math. 6, 73–91 (2014)
60. Száz, Á.: Generalizations of Galois and Pataki connections to relator spaces. J. Int. Math. Virt.

Inst. 4, 43–75 (2014)
61. Száz, Á.: Remarks and problems at the Conference on Inequalities and Applications, Hajdús-

zoboszló, Hungary, 2014. Tech. Rep., Inst. Math., Univ. Debrecen, 12 pp. (2014/5)
62. Thron, W.J.: Topological Structures. Holt, Rinehart and Winston, New York (1966)
63. Thron, W.J.: Proximity structures and grills. Math. Ann. 206, 35–62 (1973)
64. Tietze, H.: Beiträge zur allgemeinen Topologie I. Axiome für verschiedene Fassungen des

Umgebungsbegriffs. Math. Ann. 88, 290–312 (1923)
65. Weil, A.: Sur les espaces á structure uniforme et sur la topologie générale. Actualites

Scientifiques et Industriielles, vol. 551. Herman and Cie (Paris) (1937)
66. Wilder, R.L.: Evolution of the topological concept of “connected”. Am. Math. Mon. 85, 720–

726 (1978)



Addition-Like Variational Principles
in Asymmetric Spaces

Mihai Turinici

In Honor of Constantin Carathéodory

Abstract A class of addition-like smooth variational principles in asymmetric
spaces is established, under the general directions in Yongxin and Shuzhong (J Math
Anal Appl 246:308–319, 2000). The obtained results lie in the logical segment
between Dependent Choice principle (DC) and Ekeland’s variational principle
(EVP); so, they are equivalent with both (DC) and (EVP).

1 Introduction

Let X be a nonempty set; and d W X � X ! RC WD Œ0;1Œ be a metric over it; the
couple .X; d/ will be referred to as a metric space. Further, let ' 2 F .X;R [ f1g/
be a function with

(ip-lsc-1) ' is inf-proper: infŒ'.X/� > �1 and
Dom.'/ WD fx 2 XI'.x/ < 1g ¤ ; (hence, �1 < infŒ'.X/� < 1)

(ip-lsc-2) ' is d-lsc: lim infn '.xn/ � '.x/, whenever xn
d�! x.

(Here, for each couple A;B of nonempty sets, F .A;B/ stands for the class of all
functions from A to B; when A D B, we write F .A;A/ as F .A/). The following
statement in Ekeland [13] (referred to as Ekeland’s variational principle; in short:
EVP) is our starting point.
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Theorem 1. Let these conditions hold; as well as

(d-com) X is d-complete: each d-Cauchy sequence is d-convergent.

Then, for each (starting point) u 2 Dom.'/, there exists (another point) v 2
Dom.'/, such that

(11-a) d.u; v/ � '.u/ � '.v/ (hence '.u/ � '.v/)
(11-b) d.v; x/ > '.v/ � '.x/, for all x 2 X n fvg.

This principle found some basic applications to control and optimization,
generalized differential calculus, critical point theory, and global analysis; see, in
this direction, the 1997 monograph by Hyers et al. [19, Chap. 5]. So, it cannot be
surprising that, soon after, many extensions of (EVP) were proposed. For example,
the (abstract) order one starts from the fact that, with respect to the (quasi-) order
(i.e., reflexive and transitive relation)

(q-ord) (x; y 2 X): x � y iff d.x; y/C '.y/ � '.x/

the point v 2 X appearing in the second conclusion above is maximal; so that, (EVP)
is nothing but a Zorn–Bourbaki maximal statement, in the denumerable variant of
it expressed by the 1976 Brezis–Browder ordering principle [6] (in short: BB); see
also Turinici [28]. The dimensional way of extension refers to the ambient space
(R) of '.X/ being substituted by a (topological or not) vector space. An account
of the results in this area is to be found in the 2003 monograph by Goepfert et al.
[18, Chap. 3]; however, as shown in Turinici [27], the sequential statements of this
type are all reducible to (BB) above. Further, the (pseudo) metrical one consists
in conditions imposed to the ambient metric over X being relaxed. Some basic
results in this direction were obtained in the 1996 paper by Kada et al. [20]; but,
as established in Turinici [29], all these are again deductible from (BB). Finally,
we must add to this list (cf. Turinici [30]) the 1987 smooth variational principle in
Borwein and Preiss [3] (in short: BP).

Having these precise, note that an interesting extension of (BP)—hence, of
(EVP) as well—was obtained in Yongxin and Shuzhong [33] along the asymmetric
spaces [generated by standard metrics]. A functional extension of this result to the
same setting—and practically, with the same argument—was obtained in the paper
by Farkas [15]; further enlargements of this research line (to the framework of
asymmetric spaces generated by Bakhtin metrics) have been carried out—again with
the same reasoning—by Farkas et al. [16]. Taking the preceding observations into
account, it is legitimate to ask whether the obtained results are effective (logical)
extensions of (EVP). As we shall see (in Sect. 7), the answer to this is negative;
moreover (cf. Sect. 8), all results of the quoted authors do not seem to be valid in
the genuine asymmetric setting. A way of correcting this drawback is proposed in
Sects. 4–6. The basic tools for establishing these results are the Dependent Choice
principle (discussed in Sect. 2) and some auxiliary facts involving r-asymmetric
spaces (cf. Sect. 3). Further aspects will be delineated in a separate paper.
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2 Dependent Choice Principles

Throughout this exposition, the axiomatic system in use is Zermelo–Fraenkel’s
(abbreviated: ZF), as described by Cohen [9, Chap. 2]. The notations and basic facts
to be considered in this system are more or less standard. Some important ones are
discussed below.

(A) Let X be a nonempty set. By a relation over X, we mean any nonempty part
R 	 X � X. For simplicity, we sometimes write .x; y/ 2 R as xRy. Note that R
may be regarded as a mapping between X and 2X (=the class of all subsets in X). In
fact, denote for x 2 X:

X.x;R/ D fy 2 XI xRyg (the section of R through x);

then, the desired mapping representation is .R.x/ D X.x;R/I x 2 X/. A basic
example of such object is

I D f.x; x/I x 2 Xg (the identical relation over X).

Let X be a nonempty set. By a sequence in X, we mean any mapping x 2
F .N;X/, where N D f0; 1; : : :g is the class of natural numbers. For simplicity
reasons, it will be useful to denote it as .x.n/I n � 0/ or .xnI n � 0/; moreover,
when no confusion can arise, we further simplify this notation as .x.n// or .xn/,
respectively. Also, any sequence .yn WD xi.n/I n � 0/ with

.i.n/I n � 0/ is divergent (in the sense: i.n/ ! 1 as n ! 1)

will be referred to as a subsequence of .xnI n � 0/.
(B) Remember that, an outstanding part of (ZF) is the Axiom of Choice

(abbreviated: AC); which, in a convenient manner, may be written as

(AC) For each nonempty set X, there exists a (selective) function
f W .2/X ! X, with f .Y/ 2 Y , for each Y 2 .2/X .

(Here, .2/X stands for the class of all nonempty elements in 2X). Sometimes,
when the ambient set X is endowed with denumerable-type structures, the use of
selective functions like before may be substituted by a weaker form of (AC), called
Dependent Choice principle (in short: DC). Some preliminaries are needed. Let X
be a nonempty set. For each natural number k � 1, call the map F W N.k; >/ ! X, a
k-sequence; if k � 1 is generic, we talk about a finite sequence. The following result,
referred to as the Finite Dependent Choice property (in short: (DC-fin)) is available
in the strongly reduced Zermelo–Fraenkel system (ZF-AC). Call the relation R over
X, proper when

.X.x;R/ D/R.x/ is nonempty, for each x 2 X.

Note that, in this case, R is to be viewed as a mapping between X and .2/X; the
couple .X;R/ will be then referred to as a proper relational structure. Given a 2 X,
let us say that the k-sequence F W N.k; >/ ! X (where k � 2) is .a;R/-iterative
provided the following holds:
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F.0/ D a; F.i/RF.i C 1/ [i.e., F.i C 1/ 2 R.F.i//], 8i 2 N.k � 1;>/.
Lemma 1. Let the relational structure .X;R/ be proper. Then, for each k � 2, the
following property holds (in (ZF-AC)):

(˘.k/) for each a 2 X, there exists an .a;R/-iterative k-sequence.

Proof. Clearly, ˘.2/ is true; just take b 2 R.a/ and define F W N.2;>/ ! X as
F.0/ D a, F.1/ D b. Assume that ˘.k/ is true, for some k � 2; we claim that
˘.k C 1/ is true as well. In fact, let F W N.k; >/ ! X be an .a;R/-iterative k-
sequence, assured by hypothesis. As R is proper, R.F.k � 1// is nonempty; let u
be some element of it. The map G W N.k C 1;>/ ! X introduced as

G.i/ D F.i/; i 2 N.k; >/; G.k/ D u

is an .a;R/-iterative .k C 1/-sequence; and then, we are done.

Now, it is natural to see what happens when k “tends to infinity.” At a first glance,
the following Dependent Choice principle (in short: DC) is obtainable in (ZF-AC)
from this “limit” process. Given a 2 X, let us say that the sequence .xnI n � 0/ in X
is .aIR/-iterative provided

x0 D a; xnRxnC1 (i.e., xnC1 2 R.xn/), 8n.

Proposition 1. Let the relational structure .X;R/ be proper. Then, for each a 2 X,
there is an .a;R/-iterative sequence in X.

Concerning this aspect, we stress that—from a technical perspective—the limit
process in question does not work in the strongly reduced system (ZF-AC), because
it involves an infinite choice process; whence, (DC) is not obtainable from the
axioms of the underlying system. On the other hand, this principle—proposed,
independently, by Bernays [2] and Tarski [26]—is deductible from (AC), but
not conversely (cf. Wolk [32]). Moreover, by the developments in Moskhovakis
[24, Chap. 8], and Schechter [25, Chap. 6], the reduced system (ZF-AC+DC) is
comprehensive enough so as to cover the “usual” mathematics; see also Moore [23,
Appendix 2, Table 4].

(C) A “diagonal” version of this principle may be stated as follows. Let .RnI n �
0/ be a sequence of relations on X. Given a 2 X, let us say that the sequence .xnI n �
0/ in X is .aI .RnI n � 0//-iterative provided

x0 D a; xnRnxnC1 (i.e., xnC1 2 Rn.xn/), 8n.

The following Diagonal Dependent Choice principle (in short: DDC) is effectively
needed in our future developments.

Proposition 2. Let .RnI n � 0/ be a sequence of proper relations on X. Then, for
each a 2 X, there exists at least one .aI .RnI n � 0//-iterative sequence in X.

Clearly, (DDC) includes (DC); to which it reduces when .RnI n � 0/ is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P D N � X; and let S be the (proper) relation over P introduced as
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S .i; x/ D fi C 1g � Ri.x/, .i; x/ 2 P.

It will suffice applying (DC) to .P;S / and b WD .0; a/ 2 P to get the conclusion in
the statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as the Selected Dependent Choice principle (in short: SDC).
Given the map F W N ! .2/X and the relation R over X, let us say that F is R-
chainable, provided

(8n � 0): R.x/ \ F.n C 1/ ¤ ;, 8x 2 F.n/.

Proposition 3. Let the map F W N ! .2/X and the relation R over X be such that
F is R-chainable. Then, for each a 2 F.0/ there exists a sequence .x.n/I n � 0/ in
X with the properties

x.0/ D aI x.n/ 2 F.n/; 8nI x.n/Rx.n C 1/; 8n:

As before, (SDC) H) (DC) (” (DDC)); just take .F.n/ D XI n � 0/. But the
reciprocal is also true, in the sense (DDC) H) (SDC). This follows from

Proof (Proposition 3). Let the premises of (SDC) be admitted. Define a sequence
of relations .RnI n � 0/ over X as: for each n � 0,

Rn.x/ D R.x/ \ F.n C 1/, if x 2 F.n/; Rn.x/ D fxg, if x 2 X n F.n/.

Clearly, Rn is proper, for all n � 0. So, by (DDC), it follows that, for the starting
a 2 F.0/, there exists an .aI .RnI n � 0//-iterative sequence .x.n/I n � 0/ in X.
Combining with the very definition of .RnI n � 0/ yields the desired conclusion.

In particular, when R D X � X, F is R-chainable. The corresponding variant of
(SDC) is just the Denumerable Axiom of Choice (in short (AC-N)):

Proposition 4. Let F W N ! .2/X be a function. Then, for each a 2 F.0/, there
exists a function f W N ! X with f .0/ D a and f .n/ 2 F.n/, 8n � 0.

As a consequence of the above facts,

(DC) H) (AC-N) in the strongly reduced system (ZF-AC); i.e.,
(AC-N) is deductible in the reduced system (ZF-AC+DC).

A direct verification of this is obtainable by taking P D N � X and introducing the
relation over it:

R.n; x/ D fn C 1g � F.n C 1/, .n; x/ 2 P;

we do not give details. The reciprocal of the written inclusion is not true; see, for
instance, Moskhovakis [24, Chap. 8, Sect. 8.25].

3 Asymmetric Spaces

In the following, some auxiliary facts involving extended asymmetrics and related
functional spaces will be discussed.
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(A) Remember that RC D Œ0;1Œ denotes the positive (real) half-axis.
Here, the symbol 1 has no concrete existence; because, ultimately,
RC D fx 2 RI x � 0g.

Now, let 1 be an element not belonging to R; and put

RC [ f1g D Œ0;1� (the extended positive (real) half-axis).

Before developing the specific facts to be used, we must introduce an ordering and
algebraic/topological structure over this generalized positive interval.

(A-1) Let us extend the (strict) order .</ on RC to a similar object on RC [ f1g.
Precisely, define the relation S on RC [ f1g as

S D f.a;1/I a 2 RCg [ f.t; s/ 2 RC � RCI t < sg.

It is not hard to see that

(so-1) S is irreflexive:
tS t is false, for each t 2 RC [ f1g

(so-2) S is transitive:
t1; t2; t3 2 RC [ f1g, t1S t2, t2S t3 H) t1S t3.

For simplicity, we again denote by .</ this relation S ; i.e.,

(t; s 2 RC [ f1g): tS s iff (by definition) t < s;

and call it the strict order of RC [ f1g. The associated relation .�/ on
RC [ f1g introduced as

t � s iff either t < s or t D s

is therefore reflexive, transitive, and antisymmetric; hence an order on RC [
f1g. Moreover, .�/ is total; i.e.,

(R-tot) 8t; s 2 RC [ f1g: t � s or t > s.

Finally, RC [ f1g is .�/-complete; i.e.,

(R-com) each subset A of RC [ f1g admits a supremum, sup.A/.

(A-2) Further, we introduce a convergence structure on RC [ f1g. Given a
sequence .�nI n � 0/ in RC [ f1g and an element � 2 RC [ f1g, let
us say that �n ! � (and read: .�n/ converges to �), provided

(Case � < 1): for each " > 0, there exists n."/ � 0 such that n � n."/
implies maxf0; � � "g � �n � �C "

(Case � D 1): for each ı > 0, there exists n.ı/ � 0 such that n � n.ı/
implies �n � ı.

An equivalent way of expressing this is the following. Denote, for each
sequence .�nI n � 0/ in RC [ f1g

lim infn.�n/ D supk inff�k; �kC1; : : :g,
lim supn.�n/ D infk supf�k; �kC1; : : :g
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(the inferior and superior limit of our sequence). Then, for any such
sequence .�n/ in RC [ f1g and any element � in RC [ f1g, we have

�n ! � iff lim infn.�n/ D lim supn.�n/ D �;

since the verification is immediate, we do not give details. The convergence
structure .!/ we just defined has the properties

(conv-1) (.!/ is reflexive)
(8u 2 RC [ f1g): .tn D uI n � 0/ fulfills tn ! u

(conv-2) (.!/ is hereditary)
if tn ! t, then rn ! t, for each subsequence .rn/ of .tn/;

so, it fulfills the general requirements in Kasahara [21]. This allows to
give a (sequential) characterization of continuity for functions in the classes
F .RC [f1g/ and/or F .RC [f1g� RC [f1g;RC [f1g/. For example,
we say that the function 	 W RC [ f1g ! RC [ f1g is continuous at
u 2 RC [ f1g, provided

for each sequence .tn/ in RC [f1g with tn ! u, we have 	 .tn/ ! 	 .u/.

Likewise, we say that the function� W RC [f1g�RC [f1g ! RC [f1g
is continuous at .u; v/ 2 RC [ f1g � RC [ f1g, if

for each couple of sequences .tn/ and .sn/ in RC [ f1g with tn ! u,
sn ! v, we have �.tn; sn/ ! �.u; v/.

These will be useful in the sequel.
(A-3) Under the above preliminaries, we may now introduce a basic convention.

Let .˚/ be a binary operation on RC, endowed with the properties

(bo-1) .˚/ is associative:
.t1 ˚ t2/˚ t3 D t1 ˚ .t2 ˚ t3/, for all t1; t2; t3 2 RC

(bo-2) .˚/ has 0 2 RC as a null element:
t ˚ 0 D 0˚ t D t, 8t 2 RC

(bo-3) .˚/ is first variable continuous increasing:
8s 2 RC, the map t 7! t ˚ s is continuous and increasing over RC

(bo-4) .˚/ is second variable continuous strictly increasing:
8t 2 RC, the map s 7! t ˚ s is continuous and strictly increasing
over RC;
hence, in particular, t ˚ s1 � t ˚ s2 implies s1 � s2;

we then say that .˚/ is an addition-like operation on RC. For an easy
reference, we also list the following extra conditions to be considered:

(boe-1) .˚/ is commutative: t ˚ s D s ˚ t, for each t; s 2 RC
(boe-2) .˚/ is continuous (on RC � RC):

tn ! t and sn ! s imply tn ˚ sn ! t ˚ s.

The usefulness of these conventions will become clear a bit further.
Suppose that we defined such an object. Then, if we take (by definition)
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a ˚ 1 D 1 ˚ a D 1, 8a 2 RC [ f1g
we get an extended operation over RC [ f1g; for each t; s 2 RC [ f1g,
t ˚ s will be referred to as the .˚/-sum between t and s. Moreover, one
may define the repeated .˚/-sum on RC [ f1g, according to the iterative
procedure

˚ft1; t2g D t1 ˚ t2; ˚ft1; t2; t3g D Œ˚ft1; t2g�˚ t3; . . .
˚ftiI 1 � i � n C 1g D Œ˚ftiI 1 � i � ng�˚ tnC1, 8n � 3.

This extended operation .˚/ has all properties of the initial one, with
RC [ f1g in place of RC. The assertion is immediate in case of associative
and null element property. It is also clear in case of (first and second
variable) increasing properties; we do not give details. To complete the
claim, it remains to verify that this extended operation is continuous at
infinity with respect to the first and second variable. A positive answer to
this is contained in

Proposition 5. Let .˚/ be the extended operation we just defined. Then,

(31-1) t ˚ s � maxft; sg, for all t; s 2 RC [ f1g
(31-2) .˚/ is first variable continuous at infinity: for each s 2 RC[f1g, and each

sequence .tn/ in RC [ f1g with tn ! 1, we have tn ˚ s ! 1 D 1 ˚ s
(31-3) .˚/ is second variable continuous at infinity: for each t 2 RC [ f1g, and

each sequence .sn/ in RC [ f1g with sn ! 1, we have t ˚ sn ! 1 D
t ˚ 1

(31-4) .˚/ is (globally) continuous at .1;1/: for each couple of sequences .tn/
and .sn/ in RC [ f1g with tn ! 1, sn ! 1, we have tn ˚ sn ! 1 D
1 ˚ 1.

Proof. (i): For each t; s 2 RC [ f1g, we have (by the properties of our
operation)

t ˚ s � t ˚ 0 D t; t ˚ s � 0˚ s D sI
wherefrom, the first conclusion follows.

(ii), (iii), (iv): Evident, by the above relation.

In the following, some important examples of such operations will be given.

Example 1. Let .C/ denote the (standard) addition of RC. Clearly, .C/ is associa-
tive and commutative. On the other hand, .C/ has 0 2 R as null element and is
continuous; hence, all the more, first and second variable continuous. In addition,
.C/ is first and second variable strictly increasing; hence, it is an addition-like on
RC. Finally, if we take

a C 1 D 1 C a D 1, 8a 2 RC [ f1g.

the resulting operation .C/ is an addition-like on RC [ f1g, endowed with the
commutative property. This, in particular, allows us to define the repeated addition
on RC [ f1g, according to
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Pft1; t2g D t1 C t2;
Pft1; t2; t3g D Pft1; t2g C t3; . . .PftiI 1 � i � n C 1g D PftiI n � i � ng C tnC1, 8n � 3.

In fact, some other properties of this operation are available; we do not give details.

Example 2. Let .˚/ stand for the binary operation over RC:

(t; s 2 RC): t ˚ s D t C s C ts;

referred to as multi-addition. Clearly, .˚/ is associative and commutative. On the
other hand, .C/ has 0 2 R as null element and is continuous (hence, all the more,
first and second variable continuous). In addition, .C/ is first and second variable
strictly increasing; hence, it is an addition-like on RC. To verify this, it will suffice
to consider the second variable case; i.e., the property

(8t 2 RC, 8s1; s2 2 RC): s1 < s2 implies t ˚ s1 < t ˚ s2.

Suppose that s1 < s2; then, by definition,

t C s1 < t C s2, ts1 � ts2; wherefrom t ˚ s1 < t ˚ s2;

and we are done. Finally, under the notation

R0C D�0;1Œ (i.e., R0C D fx 2 RI x > 0g) (the strict positive half-axis),

let us accept the conventions

a C 1 D 1 C a D 1, 8a 2 RC [ f1g;
a � 1 D 1 � a D 1, 8a 2 R0C [ f1g; 0 � 1 D 1 � 0 D 0.

We then get the relations

a ˚ 1 D 1 ˚ a D 1, 8a 2 RC [ f1g;

and this yields an extended multi-addition .˚/ on RC [ f1g, which is an addition-
like on RC [ f1g. In particular, we may define the repeated multi-addition on
RC [ f1g, according to the iterative procedure (see above)

˚ft1; t2g D t1 ˚ t2; ˚ft1; t2; t3g D Œ˚ft1; t2g�˚ t3; . . .
˚ftiI 1 � i � n C 1g D Œ˚ftiI n � i � ng�˚ tnC1, 8n � 3.

As before, some other properties of this operation are valid; but these will be not
effectively needed later.

Example 3. Let ./ be an addition-like operation over RC; and ˇ 2 F .RC/ be a
function endowed with the properties

ˇ is a strictly increasing continuous bijection from RC to RC.

Note that, by these conditions, one gets

(sic-bij) ˇ�1 is a strictly increasing continuous bijection from RC to RC.

In fact, the strictly increasing bijection property for ˇ�1 is clear; so, it remains to
establish that ˇ�1 is continuous, i.e., right and left continuous:
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(right-con) (8s � 0): ˇ�1.s/ D ˇ�1.sC/ WD inffˇ�1.t/I t > sg
(left-con) (8s > 0): ˇ�1.s/ D ˇ�1.s�/ WD supfˇ�1.t/I t < sg.

We shall discuss the right continuous property; the left continuous one will be
handled in a similar way. So, let s � 0 be arbitrary fixed. Assume by contradiction
that the written relation is not true:

inffˇ�1.t/I t > sg > ˇ�1.s/.

Combining with the bijection property of ˇ�1, there exists some r 2 RC such that

ˇ�1.t/ > ˇ�1.r/ > ˇ�1.s/, for all t > s.

This, along with the strictly increasing property of ˇ, gives

t > r > s, for all t > s, a contradiction

(just take any t 2�s; rŒ to verify this). Hence, the working assumption above is not
acceptable; and our assertion follows.

Having these precise, define a new operation .˚/ over RC, according to

t ˚ s D ˇ�1.ˇ.t/  ˇ.s//, t; s 2 RC.

Clearly, .˚/ is associative but not in general commutative. On the other hand, as

ˇ.0/ D 0 (hence, ˇ�1.0/ D 0),

.˚/ has 0 2 R as null element. Moreover, since both ˇ and ˇ�1 are continuous and
strictly increasing, .˚/ is first variable continuous increasing and second variable
continuous strictly increasing; hence, it is an addition-like on RC. Further, if we take

a ˚ 1 D 1 ˚ a D 1, 8a 2 RC [ f1g,

the resulting operation .˚/ on RC [ f1g is an addition-like over RC [ f1g. [The
claim follows at once by taking

ˇ.1/ D ˇ�1.1/ D 1
and noting that (the extended functions) ˇ and ˇ�1 are continuous at infinity:

ˇ.tn/ ! 1 D ˇ.1/ and ˇ�1.tn/ ! 1 D ˇ�1.1/ as tn ! 1;

we do not give details.] This, in particular, allows us to define the extended operation
.˚/ on RC [ f1g, according to

˚ft1; t2g D t1 ˚ t2; ˚ft1; t2; t3g D Œ˚ft1; t2g�˚ t3; . . .
˚ftiI 1 � i � n C 1g D Œ˚ftiI n � i � ng�˚ tnC1, 8n � 3.

Note finally that, if ˇ is the identity function of F .RC/, the associated operation
.˚/ is just the (standard) addition.

(B) Let X be a nonempty set. Call the subset Y of X, almost-singleton (in short
asingleton) provided [y1; y2 2 Y implies y1 D y2] and singleton if, in addition,
Y is nonempty; note that, in this case, Y D fyg, for some y 2 X.
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Any map g W X � X ! RC [ f1g with the property

(refle) g is reflexive (g.x; x/ D 0, 8x 2 X)

will be referred to as a (generalized) reflexive asymmetric (in short r-asymmetric) of
X; the associated structure .X; g/ will be referred to as a r-asymmetric space.

Suppose that we introduced such an object. A natural convergence and Cauchy
structure over X may be defined as below.

(B-1) We say that the sequence .xn/ in X, g-converges to x 2 X (and write: xn
g�!

x) iff g.xn; x/ ! 0 as n ! 1; that is

8ı > 0, 9p D p.ı/, 8n: (p � n H) g.xn; x/ < ı).

Then x is called a g-limit of .xn/; the set of all these will be denoted as
g � limn.xn/ [or, simply, limn.xn/ when g is understood]; if such elements
exist, we say that .xn/ is g-convergent.

Clearly, the introduced convergence .
g�!/ has the properties

(conve-1) (.
g�!/ is reflexive)

(8u 2 X): .xn D uI n � 0/ fulfills xn
g�! u

(conve-2) (.
g�!/ is hereditary)

if xn
g�! x, then yn

g�! x, for each subsequence .yn/ of .xn/;

so, it fulfills the general requirements in Kasahara [21]. Concerning some other
convergence properties to be used, the following one is of interest:

(sepa) .
g�!/ is separated (referred to as g is separated):

limn.xn/ is an asingleton, for each sequence .xnI n � 0/ in X.

In this case, note that—given the g-convergent sequence .xn/—we must have

limn.xn/ D fzg (for some z 2 X);

this will be written as limn.xn/ D z. Moreover (under the same framework)

(suf) g is sufficient: g.x; y/ D 0 implies x D y.

In fact, let u; v 2 X be such that g.u; v/ D 0. The constant sequence .xn D uI n � 0/

fulfills xn
g�! u, xn

g�! v; so that (by the separated property), u D v.

(B-2) Further, let us say that the sequence .xnI � 0/ in X is g-Cauchy, when
g.xm; xn/ ! 0 as m; n ! 1, m < n; i.e.,

8ı > 0, 9q D q.ı/, 8.m; n/: (q � m < n H) g.xm; xn/ < ı).

The class of all these will be indicated as Cauchy.X; g/; some basic
properties of it are described below:

(Cauchy-1) (inclusion of constant sequences):
8u 2 X, the constant sequence .xn D uI n � 0/ is g-Cauchy

(Cauchy-2) (the hereditary property):
.xnI n � 0/ is g-Cauchy implies .ynI n � 0/ is g-Cauchy,
for each subsequence .ynI n � 0/ of .xnI n � 0/.
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In the following, a useful property is established for the sequences in X that are
not endowed with the g-Cauchy property.

Proposition 6. Suppose that .xnI n � 0/ is a sequence in X, with

.xnI n � 0/ is not g-Cauchy.

There exist then a number � > 0 and a couple of rank-sequences .m.j/I j � 0/,
.n.j/I j � 0/, with

(32-1) j � m.j/ < n.j/, 8j � 0; hence, (m.j/ ! 1, n.j/ ! 1) as j ! 1
(32-2) d.xm.j/; xn.j// � �, 8j � 0.

Proof. By the very definition of this concept, the negation of g-Cauchy property for
.xnI n � 0/ means: there exists � > 0, such that

Rj WD f.m; n/ 2 N � NI j � m < n; d.xm; xn/ � �g ¤ ;; 8j � 0:

In this case, denote for each j � 0,

m.j/ D min Dom.Rj/, n.j/ D minRj.m.j//.

The couple of rank-sequences .m.j/I j � 0/, .n.j/I j � 0/ fulfills the desired
properties; and then, conclusion follows.

Finally, note that (by the properties of our asymmetric) a g-convergent sequence
need not be g-Cauchy; however, X is called g-complete, when each g-Cauchy
sequence is g-convergent.

(C) Now, according to our previous conventions, we may introduce a g-closure
operator on X as follows. Let Y be a subset of X. We say that u 2 X is g-
adherent to Y , when

(adh-df) u 2 limn.xn/, for some sequence .xnI n � 0/ in Y .

The set of all such points will be called the g-closure of Y and denoted as
clg.Y/.

The basic properties of the mapping Y 7! clg.Y/ are contained in the following

Lemma 2. Under the above conventions, we have

(adh-1) (progressiveness) Y 	 clg.Y/, 8Y 2 2X,
(adh-2) (identity) ; D clg.;/, X D clg.X/,
(adh-3) (monotonicity) Y1 	 Y2 implies clg.Y1/ 	 clg.Y2/,
(adh-4) (additivity) clg.U [ V/ D clg.U/ [ clg.V/, 8U;V 2 2X.

Proof. (adh-1), (adh-2), (adh-3): Evident.
(adh-4): The right to left inclusion is clear, by the monotone property; so, it

remains to verify the left to right inclusion. Let w 2 clg.U [ V/ be arbitrary fixed:

w 2 limn.zn/, for some sequence .znI n � 0/ in U [ V .
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If the alternative below holds

for each (index) h, there exists (another index) k > h, with xk 2 U,

then a strictly ascending rank-sequence .i.n/I n � 0/ may be found, such that

w 2 limn.zi.n//, where .zi.n/I n � 0/ D sequence in U;

so, w 2 clg.U/. Otherwise (if the opposite alternative holds), we must have (by the
choice of our sequence)

there exists an index h, fulfilling: zk 2 V , for all k > h;

and this tells us that

w 2 limn.zhC1Cn/, where .zhC1CnI n � 0/ D sequence in V;

so, necessarily, w 2 clg.V/.

When Y D clg.Y/, we say that Y is g-closed; this, according to the above, may
be characterized as

if .xnI n � 0/ is a sequence in Y and xn
g�! x, then x 2 Y .

Denote, for simplicity

K .g/ D fY 2 2XI Y D clg.Y/g (the class of all g-closed subsets in X).

Some basic properties of this class are listed below. [Since the verification is
immediate, we do not give details.]

Lemma 3. Under the introduced conventions:

(clo-1) ;;X 2 K .g/
(clo-2) U;V 2 K .g/ H) U [ V 2 K .g/
(clo-3) A 	 K .g/ H) \A 2 K .g/.

A useful completion of these facts is the following. Denote

K .g; non/ = the class of all nonempty g-closed parts of X.

This class is nonvoid, because X 2 K .g; non/. Moreover, under

g is sufficient (see above),

all singletons of X belong to K .g; non/. In fact, let u 2 X be arbitrary fixed; and
put U D fug. If v 2 clg.U/, then, by definition, v 2 limn.un/, for some sequence
.unI n � 0/ of U. This yields d.u; v/ D 0, wherefrom (as g is sufficient) u D v, i.e.,
v 2 U. Summing up, we have U D clg.U/; and the claim follows.

Technically speaking, the ambient r-asymmetric structure .X; g/ must be viewed
as a (sequential) convergence space—endowed with a closure operator—and not as
a topological space. To motivate our assertion, define

T .g/ D fZ 2 2XI X n Z 2 K .g/g (the class of all g-open subsets in X).
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By the result above, the following properties of this class are available:

(open-1) ;;X 2 T .g/
(open-2) U;V 2 T .g/ H) U \ V 2 T .g/
(open-3) B 	 T .g/ H) [B 2 T .g/.

This class is therefore a topology on X, according to Bourbaki [5, Chap. I, Sect. 1].
Hence, it has an associated closure operator, introduced as: for each Y 2 2X ,

x 2 cl.g/.Y/ iff U \ Y ¤ ;, whenever U 2 T .g/ fulfills x 2 U.

However, this closure operator Y 7! cl.g/.Y/ does not coincide with the initial
closure operator Y 7! clg.Y/. An explanation of this bad property is due to the
fact that—by the very choice of g.:; :/—the closure operator Y 7! clg.Y/ does not
satisfy a condition like

(adh-5) (idempotence) clg.clg.Y// D clg.Y/, 8Y 2 2X;

so that, it cannot be viewed as a (genuine) Kuratowski closure operator [22, Chap. I,
Sect. 4]. Further aspects may be found in Engelking [14, Chap. 1, Sect. 1.2].

(D) We are now introducing a basic notion. Let ' W X ! RC [f1g be a function;
we call it g-lsc on X, provided

'.x/ � lim infn '.xn/, whenever xn
g�! x.

A useful characterization of this concept is offered by

Lemma 4. The function ' W X ! RC [ f1g is g-lsc on X iff

Œ' � t� WD fx 2 XI'.x/ � tg is g-closed, for each t 2 RC.

Proof. (i) Suppose that ' is g-lsc on X; and (given t 2 RC), let .xnI n � 0/ be a

sequence in Œ' � t� (hence, '.xn/ � t, for all n), with xn
g�! x. Then,

'.x/ � lim inf
n

'.xn/ � t:

(ii) Suppose that the property in this statement is true; and assume that xn
g�! x. If

lim infn '.xn/ D 1, we are done; so, it remains to discuss the case of

lim infn '.xn/.D supk inff'.xk/; '.xkC1/; : : :g/ < 1.

Assume by contradiction that lim infn '.xn/ < '.x/; and pick some � 2 RC with
lim infn '.xn/ < � < '.x/. By the previous relation, we must have

inff'.xk/; '.xkC1/; : : :g < �; 8k � 0:

This, by the very definition of the involved concept, tells us that there exists a
subsequence .yn WD xi.n/I n � 0/ of .xnI n � 0/, with

(yn
g�! x and) '.yn/ < �, for all n � 0.
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By the quoted property in the statement, we then have '.x/ � � < '.x/,
contradiction. Hence, our conclusion must be true.

Denote for simplicity

F .g � lsc/.X;RC [ f1g/ D f' 2 F .X;RC [ f1g/I ' is g-lscg.

A natural question is to determine whether this class is invariant to algebraic and/or
topological operations upon its functions.

(D-1) Concerning the algebraic properties of our class, let .˚/ be an addition-like
over RC [ f1g. The corresponding functional operation over F .X;RC [
f1g/ will be denoted in the same way; i.e., for  ; � 2 F .X;RC [ f1g/,
 ˚ � denotes the function in F .X;RC [ f1g/ introduced as

. ˚ �/.x/ D  .x/˚ �.x/, x 2 X.

Then, call the addition-like .˚/, g-lsc compatible when

 ; � 2 F .g�lsc/.X;RC[f1g/H) ˚� 2 F .g�lsc/.X;RC[f1g/.
As we shall see, a property of this type is possible under the regularity
conditions imposed upon our addition-like .˚/. Precisely, we have

Proposition 7. Under these conventions,

(33-1) For each � > 0 and  2 F .g � lsc/.X;RC [ f1g/, we necessarily have
� 2 F .g � lsc/.X;RC [ f1g/

(33-2) The addition-like .˚/ is g-lsc compatible (see above)
(33-3) The (standard) addition is g-lsc compatible
(33-4) The multi-addition is g-lsc compatible.

Proof. (i) Evident.
(ii) Letting  ; � 2 F .g� lsc/.X;RC [f1g/, assume that the sequence .xnI n � 0/

in X fulfills

 .xn/˚ �.xn/ � t, 8n (for some t 2 RC)

xn
g�! x, for some x 2 X;

note that, by the former of these (and definition of extended operation)

. .xn/I n � 0/ and .�.xn/I n � 0/ are sequences in RC.

The alternative

supf .xn/I n � 0g D 1 or supf�.xn/I n � 0g D 1
is impossible; for, e.g., if the former of these holds, then (by the above remark
involving finite values of our sequences)

supf .xn/I n � kg D 1, 8k � 0; whence lim supn  .xn/ D 1;

and this yields

t � lim sup
n

. .xn/˚ �.xn// � lim sup
n

. .xn// D 1 > t;



632 M. Turinici

contradiction. Hence, necessarily

supf .xn/I n � 0g < � < 1; supf�.xn/I n � 0g < ı < 1;

for some �; ı 2 RC; or, equivalently,

both sequences . .xn/I n � 0/ and .�.xn/I n � 0/ are bounded (in RC).

Denote, for k � 0

˛k D inff .xk/;  .xkC1/; : : :g, ˇk D inff�.xk/; �.xkC1/; : : :g.

Clearly, .˛kI k � 0/ and .ˇkI k � 0/ are ascending and

˛ WD limn.˛n/ D lim infn. .xn//, ˇ WD limn.ˇn/ D lim infn.�.xn//;

moreover, by the increasing properties of .˚/,

˛k ˚ ˇk �  .xk/˚ �.xk/ � t, for all k � 0.

Let m; n � 0 be a couple of ranks with m � n. From the first variable increasing
property of .˚/, we have (by the above)

˛m ˚ ˇn � ˛n ˚ ˇn � t, for all these .m; n/.

Passing to limit as n ! 1, we get (by the second variable continuous property
of our addition-like .˚/)

˛m ˚ ˇ � t, for all m;

and this, combined with the first variable continuous property of .˚/, yields

˛ ˚ ˇ � t, where ˛, ˇ have the precise meaning.

On the other hand, by the g-lsc property of our functions,

 .x/ � lim inf
n

 .xn/ D ˛; �.x/ � lim inf
n

�.xn/ D ˇ:

Combining with the above gives (by the increasing properties of .˚/)

 .x/˚ �.x/ � ˛ ˚ ˇ � tI

and conclusion follows.
(iii) The (standard) addition is an addition-like; hence, the preceding part is

applicable here.
(iv) The multi-addition is an addition-like; hence, the addition-like-type conclusion

is applicable here.
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The particular compatible properties above are obtained by means of a general
statement involving addition-like operations. For practical reasons, it would be
useful having a direct verification of them. This is provided by the following

Proposition 8. Under the precise conventions, we have:

(34-1) the addition .C/ is g-lsc compatible:
 ; � 2 F .g� lsc/.X;RC [f1g/ imply  C� 2 F .g� lsc/.X;RC [f1g/

(34-2) the multiplication .:/ is g-lsc compatible:
 ; � 2 F .g � lsc/.X;RC [ f1g/ imply
 � 2 F .g � lsc/.X;RC [ f1g/

(34-3) the multi-addition is g-lsc compatible:
 ; � 2 F .g � lsc/.X;RC [ f1g/ imply
 C �C  � 2 F .g � lsc/.X;RC [ f1g/.

Proof. (i) Letting  ; � 2 F .g � lsc/.X;RC [ f1g/, assume that the sequence

.xnI n � 0/ in Œ C � � t� (where t 2 RC) fulfills xn
g�! x, for some x 2 X;

note that, necessarily,

. .xn/I n � 0/ and .�.xn/I n � 0/ are sequences in RC.

The alternative

supf .xn/I n � 0g D 1 or supf.�.xn/I n � 0g D 1
is impossible, for, e.g., if the former of these holds, then (by the above remark
involving finite values of our sequences)

supf .xn/I n � kg D 1, 8k � 0; whence lim supn  .xn/ D 1;

and this yields

t � lim sup
n

. .xn/C �.xn// � lim sup
n

. .xn// D 1 > tI

contradiction. Hence, necessarily

supf .xn/I n � 0g < ˛� < 1; supf�.xn/I n � 0g < ˇ� < 1;

for some ˛�; ˇ� 2 RC; or, equivalently,

both sequences . .xn/I n � 0/ and .�.xn/I n � 0/ are bounded (in RC).

But then, by a two-step construction, there must be a subsequence .ynI n � 0/

of .xnI n � 0/, such that

limn. .yn// D ˛, limn.�.yn// D ˇ, for some ˛ 2 Œ0; ˛��, ˇ 2 Œ0; ˇ��;

moreover, by the very choice of our sequence, ˛ C ˇ � t. On the other hand,
by the g-lsc property of our functions,

 .x/ � lim
n
 .yn/ D ˛; �.x/ � lim

n
�.yn/ D ˇ:

Combining with the above gives  .x/C �.x/ � t; and conclusion follows.
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(ii) Letting  ; � 2 F .g� lsc/.X;RC [f1g/, assume that the sequence .xnI n � 0/

in Œ � � t� (where t 2 RC) fulfills xn
g�! x, for some x 2 X. If the alternative

below holds (effectively)

fn 2 NI .xn/ D 0g is infinite or fn 2 NI�.xn/ D 0g is infinite,

then we are done; for, e.g., if the former of these is true, the g-lsc property of
 (at x 2 X) gives

 .x/ D 0, wherefrom  .x/�.x/ D 0 � t.

It remains now to discuss the opposite alternative; clearly, without loss, it may
be written as

 .xn/ > 0 and �.xn/ > 0 (hence,  .xn/ < 1 and �.xn/ < 1), for all n.

Now, as before, if the alternative below holds (effectively)

inff .xn/I n � 0g D 0 or inff�.xn/I n � 0g D 0,

then, we are again done; for, e.g., if the former of these is true, then (by the
preceding remark about values of our sequences)

inff .xn/I n � kg D 0, 8k � 0; whence lim infn. .xn// D 0;

and then, by the g-lsc property of  , one gets

 .x/ D 0, wherefrom  .x/�.x/ D 0 � t.

In this case, we have to discuss the alternative

inff .xn/I n � 0g > ˛�; inff�.xn/I n � 0g > ˇ�;

for some ˛�; ˇ� 2 R0C. In this case, the alternative

supf .xn/I n � 0g D 1 or supf.�.xn/I n � 0g D 1
is impossible; for, e.g., if the former of these holds, then (by the above remark
involving finite values of our sequences)

supf .xn/I n � kg D 1, 8k � 0; whence lim supn. .xn// D 0;

so that, by the choice of our sequence, one gets (cf. the preceding conclusion)

t � lim sup
n

. .xn/�.xn// � lim sup
n

. .xn/ˇ�/ D 1 > t;

contradiction; hence, necessarily

supf .xn/I n � 0g < ˛�; supf�.xn/I n � 0g < ˇ�;

for some ˛�; ˇ� 2 R0C. Summing up,

both sequences . .xn/I n � 0/ and .�.xn/I n � 0/ are bounded in R0C.
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But then, by a two-step construction, there must be a subsequence .ynI n � 0/

of .xnI n � 0/, such that

limn. .yn// D ˛, limn.�.yn// D ˇ, for some ˛ 2 Œ˛�; ˛��, ˇ 2 Œˇ�; ˇ��;

moreover, by the very choice of our sequence, ˛ˇ � t. On the other hand, by
the g-lsc property of our functions,

 .x/ � lim
n
 .yn/ D ˛; �.x/ � lim

n
�.yn/ D ˇ:

Combining with the above gives  .x/�.x/ � t; and conclusion follows.
(iii) Evident.

(D-2) We are now passing to the (order and) topological properties of functions
in F .X;RC [ f1g/. Define a (pointwise) order on F .X;RC [ f1g/ as

 � � iff  .t/ � �.t/, 8t 2 RC [ f1g.

Also, for each ascending sequence . nI n � 0/ in F .X;RC [ f1g/, the
(pointwise) limit function  2 F .X;RC [ f1g/, introduced as

 .x/ D limn. n.x// D supn. n.x//, x 2 X

is well defined; for simplicity, we denote it as  D limn. n/. Call the
function ! 2 F .X;RC/, g-continuous, provided

xn
g�! x implies !.xn/ ! !.x/.

Proposition 9. Under the precise conventions,

(35-1) If . nI n � 0/ is an ascending sequence in F .g � lsc/.X;RC [ f1g/, then
 D limn. n/ belongs to F .g � lsc/.X;R [ f1g/

(35-2) If � 2 F .RC/ is increasing lsc and ! 2 F .X;RC/ is g-lsc, then the
composed function  D � ı! (i.e., . .x/ D �.!.x//I x 2 X/) belongs to
the class F .g � lsc/.X;RC/

(35-3) If � 2 F .RC/ is lsc and ! 2 F .X;RC/ is g-continuous, then the
composed function  D � ı! (i.e., . .x/ D �.!.x//I x 2 X/) belongs to
the class F .g � lsc/.X;RC/.

Proof. (i) Let . nI n � 0/ be an ascending sequence in F .g�lsc/.X;RC[f1g/;
and  D limn. n/ stand for its (pointwise) limit (see above). By the very
definition of this function, we have

Œ � t� D \fŒ n � t�I n � 0g; t 2 RCI

and this, by a previous auxiliary statement (relative to g-closed sets), yields
the desired conclusion.
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(ii) Suppose that � 2 F .RC/ is increasing lsc and ! 2 F .X;RC/ is g-lsc.
Letting t 2 RC be arbitrary fixed, denote M.t/ D fr 2 RCI�.r/ � tg; clearly,
by the increasing property of �, we derive

M.t/ is left hereditary: r 2 M.t/ H) Œ0; r� 	 M.t/.

If M.t/ D ;, then

fx 2 XI�.!.x// � tg D ;;

and we are done. Suppose now that M.t/ ¤ ;; and put � D sup.M/. If � D
1, then (by the above left hereditary property)

M.t/ D RC, whence, fx 2 XI�.!.x// � tg D X;

and conclusion follows. Assume now that � < 1. As �.:/ is lsc, we must
have � 2 M.t/; so, again by the left hereditary property, M.t/ D Œ0; ��. As a
direct consequence, we have the representation

fx 2 XI�.!.x// � tg D fx 2 XI!.x/ � �gI
and this (via !.:/ being g-lsc) appears as g-closed.

(iii) Let .xn/ be a sequence in X and x be some element of X in such a way that

xn
g�! x. By the g-continuous hypothesis about !, we have

tn ! t, where .tn WD !.xn/I n � 0/ and t WD !.x/.

On the other hand, by the lsc condition upon �, we have

�.t/ � lim inf
n

�.tn/:

This, by the introduced notations, may be written as

�.!.x// � lim inf
n

�.!.xn//I

and conclusion follows. The proof is complete.

Concerning the last property, note that the imposed hypotheses are not minimal
so as to get the written conclusion; but, for the concrete applications to be
considered, this will suffice.

(E) Let X be a nonempty set; and .e.:; :/; d.:; :// be a couple of (generalized) r-
asymmetrics over it; the triple .XI e; d/ will be then referred to as a double
r-asymmetric space. Call the couple .e; d/, admissible provided

(adm-1) .e; d/ is right semi-lsc: x 7! e.w; x/ is d-lsc, for each w 2 X
(adm-2) X is .e; d/-complete: each e-Cauchy sequence is d-convergent
(adm-3) .e; d/ is Cauchy separated:

.xn/ is e-Cauchy and (xn
e�! u, xn

d�! u, xn
e�! v) imply u D v.
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As we shall see, this is the most important condition required by our main
variational results. So, it is natural to look for concrete circumstances under
which it holds. Two basic situations of this type are described below.

(E-1) Let us say that the couple .e; d/ is KST-admissible, when

(kst-1) .e; d/ is right semi-lsc: x 7! e.w; x/ is d-lsc, for each w 2 X
(kst-2) .e; d/ is Cauchy transitive: each e-Cauchy sequence is d-Cauchy.

(This is related to the developments in Kada et al. [20]; we do not give
details.) For the moment, .e; d/ fulfills one of the three conditions appearing
in the admissible property. Concerning the remaining ones, the possibility
of reaching them is certified by the following auxiliary facts below.

Proposition 10. Let the couple of r-asymmetrics .e; d/ be KST-admissible (see
above); with, in addition

(d-com) X is d-complete: each d-Cauchy sequence in X is d-convergent
(C-sep) e is Cauchy separated:

.xn/ is e-Cauchy and (xn
e�! u, xn

e�! v) imply u D v.

Then,

(36-1) .xn/ is e-Cauchy and xn
d�! x imply xn

e�! x
(36-2) X is .e; d/-complete: each e-Cauchy sequence in X is d-convergent
(36-3) .e; d/ is Cauchy separated:

.xn/ is e-Cauchy and (xn
e�! u, xn

d�! u, xn
e�! v) imply u D v.

Hence, summing up,

(36-4) .e; d/ is KST-admissible, X is d-complete, and e is Cauchy separated imply
.e; d/ is admissible.

Proof. (i) Suppose that the e-Cauchy sequence .xn/ in X fulfills xn
d�! x, for some

x 2 X. Let � > 0 be arbitrary fixed. By the imposed e-Cauchy property,
there exists k D k.�/ � 0, such that

k � m � n implies e.xm; xn/ � �.

For the (arbitrary) fixed m � k, the map y 7! e.xm; y/ is d-lsc. So,
passing to limit as n ! 1 in the above relation yields

e.xm; x/ � �, for all ranks m � k.

This (by the arbitrariness of � > 0) tells us that xn
e�! x.

(ii) Let .xn/ be an e-Cauchy sequence in X. As .e; d/ is Cauchy transitive,
.xn/ is d-Cauchy too; and this, along with X being d-complete, assures
us that .xn/ is d-convergent.

(iii), (iv) Evident, by the involved definitions.
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(E-2) Clearly, the key condition in the preceding statement is the Cauchy
transitive one; so, it is natural asking to what extent is this available under
concrete cases. An appropriate answer to this may be given along the lines below.
Let us say that .e; d/ is YS-admissible, when

(ys-1) .e; d/ is right semi-lsc: x 7! e.w; x/ is d-lsc, for each w 2 X
(ys-2) .e; d/ is Cauchy convergence transitive:

.yn/ and .zn/ are e-Cauchy and e.yn; zn/ ! 0 imply d.yn; zn/ ! 0.

(This is related to the developments in Yongxin and Shuzhong [33]; we do not
give details.) As before, .e; d/ fulfills a condition required by the admissible
property. The possibility of reaching the remaining ones is certified by the
following (relative) auxiliary facts below.

Proposition 11. Let the couple of r-asymmetrics .e; d/ be YS-admissible (see
above); with, in addition

(d-com) X is d-complete: each d-Cauchy sequence in X is d-convergent
(eC-sep) d is e-Cauchy separated:

.xn/ is e-Cauchy and (xn
d�! u, xn

d�! v) imply u D v.

Then,

(37-1) .e; d/ is Cauchy transitive [each e-Cauchy sequence in X is d-Cauchy];
hence, .e; d/ is KST-admissible

(37-2) e is Cauchy separated:

.xn/ is e-Cauchy and (xn
e�! u, xn

e�! v) imply u D v.
Summing up, we derived that

(37-3) .e; d/ is YS-admissible, X is d-complete, and d is e-Cauchy separated imply
.e; d/ is admissible.

Proof. (i) Let .xnI n � 0/ be an e-Cauchy sequence in X; and suppose by
contradiction that .xnI n � 0/ is not d-Cauchy. By an auxiliary fact above,
there must be an � > 0 and a couple of rank-sequences .m.j/I j � 0/ and
n.j/I j � 0/, such that

j � m.j/ < n.j/, 8j; hence, (m.j/ ! 1; n.j/ ! 1) as j ! 1
d.xm.j/; xn.j// � �, for all j � 0.

Define the subsequences of .xnI n � 0/

.yj D xm.j/I j � 0/, .zj D xn.j/I j � 0/;

clearly, both these are e-Cauchy sequences—because, so is .xnI n � 0/. On the
other hand, by the underlying e-Cauchy property of our sequence .xnI n � 0/,

e.yj; zj/ D e.xm.j/; xn.j// ! 0 as j ! 1;

and this, combined with .e; d/ being Cauchy convergence transitive, gives

d.yj; zj/ D d.xm.j/; xn.j// ! 0 as j ! 1;

in contradiction with a previous relation. Hence, .xnI n � 0/ is d-Cauchy; and
the claim follows.
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(ii) Suppose that the e-Cauchy sequence .xn/ in X fulfills xn
e�! u, xn

e�! v. As

.e; d/ is Cauchy convergence transitive, we have xn
d�! u, xn

d�! v; and this,
along with d being e-Cauchy separated, yields u D v, hence the assertion.

(iii) Evident, by the above.

Concerning the last property, note that the imposed hypotheses are not minimal
so as to get the written conclusion; but, for the concrete applications to be
considered, this will suffice.

4 Main Results

Under these preliminaries, we may now pass to the questions addressed in our
introductory part.

(A) Let X be a nonempty set and .e.:; :/; d.:; :// be a couple of (generalized) r-
asymmetrics over it; the triple .XI e; d/ will be then referred to as a double
r-asymmetric space. Suppose for the moment that

(r-s-lsc) .e; d/ is right semi-lsc: x 7! e.w; x/ is d-lsc, for each w 2 X

Further, let .˚/ be an addition-like over RC; i.e.,

(adli-1) .˚/ is associative and has 0 2 RC as its null element
(adli-2) .˚/ is first variable continuously increasing and second variable

continuously strictly increasing.

Extend this operation to RC [ f1g, by means of

a ˚ 1 D 1 ˚ a D 1, 8a 2 RC [ f1g.

As precise, the new object .˚/ is an addition-like on RC [ f1g; so, in
particular

for each t 2 RC, and each sequence .sn/ in RC [ f1g with sn ! s 2
RC [ f1g, we have t ˚ sn ! t ˚ s.

Finally, let the corresponding functional operation over F .X;RC [ f1g/ be
denoted in the same way; i.e., for  ; � 2 F .X;RC [ f1g/, let  ˚� denote
the function in F .X;RC [ f1g/, introduced as

. ˚ �/.x/ D  .x/˚ �.x/, x 2 X.

Remember that, under these conditions (cf. a previous fact)

.˚/ is d-lsc compatible:
 ; � 2 F .d � lsc/.X;RC [f1g/H)  ˚� 2 F .d � lsc/.X;RC [f1g/.
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Given a sequence .�nI n � 0/ in R0C and a sequence .unI n � 0/ in X, let
us attach them a sequence .�nI n � 0/ of functions in F .X;RC [ f1g/,
according to

�n.x/ D �ne.un; x/, x 2 X, n � 0.

By the right semi-lsc property of .e; d/, any function of this type is d-
lsc. Then—with the aid of this starting sequence—let us construct another
functional sequence . nI n � 0/ in F .X;RC [ f1g/, by means of iterative
procedure

 0 D �0,  1 D  0 ˚ �1; and, in general,  nC1 D  n ˚ �nC1, n � 0.

Note that, by the same property of .e; d/, any such function is d-lsc. Moreover,
from the second variable (strict) increasing property of .˚/,
 n.x/ D  n�1.x/˚ �n.x/ �  n�1.x/˚ 0 D  n�1.x/; 8x 2 X;8n � 1:

As a consequence, . nI n � 0/ is (pointwise) ascending; so that, its
(pointwise) limit  1 D limn. n/, introduced as

 1.x/ D limn. n.x// D supf n.x/I n � 0g, x 2 X

is well defined as an element of F .X;RC [ f1g/. In addition,  1 is d-lsc;
just take an auxiliary fact into account, combined with

Œ 1 � t� D \fŒ n � t�I n � 0g; 8t 2 RC:

Having these precise, fix some function ' 2 F .X;RC [ f1g/, with:

(p-lsc-1) ' is proper: Dom.'/ WD fx 2 XI'.x/ < 1g ¤ ;;
whence 0 � infŒ'.X/� < 1

(p-lsc-2) ' is d-lsc; or, equivalently (see above):
Œ' � t� is d-closed, for each t 2 RC.

Denote, for " > 0, U 2 2X ,

U.'; "/ D fx 2 UI'.x/ � infŒ'.X/�˚ "g (hence, U.'; "/ 	 U \ Dom.'/).

Our first main result in this exposition is as follows.

Theorem 2. Let the couple .e; d/ of (generalized) r-asymmetrics over X be such
that one of the (admissible-type) conditions below holds:

(ad-1) .e; d/ is admissible
(ad-2) .e; d/ is KST-admissible, X is d-complete, and e is Cauchy separated
(ad-3) .e; d/ is YS-admissible, X is d-complete, and d is e-Cauchy separated.

In addition, let .˚/ be an addition-like on RC (hence, so is its extension .˚/ over
RC [ f1g). Finally, let .�nI n � 0/ be a sequence in R0C; and u0 2 X, " > 0,
U0 2 K .d/ be taken according to

(reg) u0 2 U0.'; �0"/ (whence, u0 2 U0 \ Dom.'/).
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Then, a sequence .unI n � 0/ in U0.'; �0"/ and an element v 2 U0.'; �0"/ may be
determined, in such a way that

(41-a) .un/ is e-Cauchy and (un
e�! v, un

d�! v)
(41-b) '.v/˚  1.v/ � '.u0/; hence, '.v/ � '.u0/ and  1.v/ < 1
(41-c) '.x/˚  1.x/ > '.v/˚  1.v/, for each x 2 U0 n fvg.

Proof. By a couple of auxiliary results exposed in a previous place, all admissible-
type conditions imposed upon .e; d/ are finally reducible to the (general) admissible
one; so, we may assume in the following that .e; d/ is admissible. There are several
steps to be passed.

Step 1. Denote for simplicity:

� D the class of all triples .t; �;T/ in X �F .d � lsc/.X;RC [f1g/�K .d/,
fulfilling t 2 T , '.t/˚ �.t/ < 1, T 	 U0.'; �0"/.

For each n � 0, let Rn stand for the relation over �, introduced as for each
.a; ˛;A/ and .b; ˇ;B/ in �,

.a; ˛;A/Rn.b; ˇ;B/ iff
b 2 A, '.b/˚ ˛.b/ � �˚ �nC1"=2nC1
(where � WD inff'.x/˚ ˛.x/I x 2 Ag),
.ˇ.x/ D ˛.x/˚ �nC1e.b; x/I x 2 X/,
B D fx 2 AI'.x/˚ ˇ.x/ � '.b/˚ ˇ.b/g.

The definition is consistent and Rn is proper on � (for each n � 0); because,
given any triple .a; ˛;A/ in �,

(copr-1) b 2 A exists, via
0 � infŒ'.X/� � � � '.a/˚ ˛.a/ < 1, � < �˚ �nC1"=2nC1

(copr-2) ˇ.:/ is d-lsc, as a .˚/-sum of two d-lsc functions (see above)
(copr-3) B is d-closed (as ' ˚ ˇ is d-lsc and A 2 K .d/), with b 2 B
(copr-4) '.b/˚ ˇ.b/ D '.b/˚ ˛.b/ � �˚ �nC1"=2nC1 < 1
(copr-5) B 	 U0.'; �0"/, because B 	 A 	 U0.'; �0"/;

hence, summing up, .b; ˇ;B/ 2 �.

Having these precise, take the triple .u0; ";U0/ like in the statement; and put

.�0.x/ D �0e.u0; x/I x 2 X/ (hence, �0 D  0),
T0 D fx 2 U0I'.x/˚ �0.x/ � '.u0/g.

Clearly, �0 is d-lsc, and T0 is d-closed; moreover,

(start-1) '.u0/˚ �0.u0/ D '.u0/ < 1 (whence, u0 2 T0)
(start-2) (8x 2 T0): '.x/ � '.x/˚ �0.x/ � '.u0/ � infŒ'.X/�˚ �0"

(which gives T0 	 U0.'; �0"/);

hence, necessarily, .u0; �0;T0/ 2 �.
By the (Diagonal) Dependent Choice principle, there exists

..un; �n;Tn/I n � 0/ = sequence in �,
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such that

.un; �n;Tn/Rn.unC1; �nC1;TnC1/; for all n:

The basic properties of this sequence are concentrated in

Proposition 12. Under the above constructions, we have:

(41-1) .�n.x/ D ˚f�ie.ui; x/I i � ngI x 2 X/ [i.e., �n D  n], for all n � 0 (where
the sequence . nI n � 0/ was already introduced)

(41-2) .TnI n � 0/ is a descending sequence of nonempty d-closed sets in X
fulfilling un 2 Tn�1 \ Tn, for all n � 0 (where, by definition, T�1 D T0)

(41-3) the sequence .'.un/˚  n.un/I n � 0/ is descending in RC; i.e.,

'.un/˚  n.un/ � '.un�1/˚  n�1.un�1/, 8n � 0

(where, by convention, u�1 D u0,  �1 D  0)

(41-4) e.un; y/ � "=2n, for each y 2 Tn and each n � 0.

Proof (Proposition 12). We shall use an inductive argument upon our (already
constructed) iterative sequence in �.

(iter-0) Let the triple .u0; �0;T0/ 2 � be introduced as before. By this very
definition, we get

�0 D  0, u0 2 T0 D T�1 \ T0;

hence, (41-1)C(41-2) hold for n D 0; further, it is clear that (41-3) holds
for n D 0. Finally, letting y 2 T0 be arbitrary fixed, we have (via �0 D  0)

'.y/˚  0.y/ � '.u0/I

This, along with T0 	 Dom.'/ and the choice of u0, gives (by the first
variable increasing property of .˚/)

infŒ'.X/�˚ �0e.u0; y/ � infŒ'.X/�˚ �0";

whence (by the second variable strictly increasing property of .˚/), (41-4)
holds too for n D 0.

(iter-1) For the moment, (41-1)�(41-4) above hold for n D 0. Starting from the
triple .u0; �0 D  0;T0/ 2 �, the next one .u1; �1;T1/ 2 � (according to
the precise relations) fulfills (via �0 D  0)

u1 2 T0, '.u1/˚  0.u1/ � L0 ˚ �1"=2
1,

where L0 D inff'.x/˚  0.x/I x 2 T0g,
.�1.x/ D  0.x/˚ �1e.u1; x/I x 2 X/,
T1 D fx 2 T0I'.x/˚ �1.x/ � '.u1/˚ �1.u1/g.

This firstly means that

�1 D  1, u1 2 T0 \ T1;
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hence, (41-1)C(41-2) hold for n D 1. Secondly, by the very definition of
T1 (and �1 D  1)

.8x 2 T1/ W '.x/˚  1.x/ � '.u1/˚  1.u1/ D '.u1/˚  0.u1/:

Since u1 2 T0, we must have

'.u1/˚  1.u1/ D '.u1/˚  0.u1/ � '.u0/ D '.u0/˚  0.u0/I
i.e., (41-3) is holding for n D 1. Finally, let y 2 T1 be arbitrary fixed;
hence, by definition, y 2 T0 and (via �1 D  1)

'.y/˚  1.y/ � '.u1/˚  1.u1/;

or equivalently (by the associative property of .˚/),
('.y/˚  0.y//˚ �1e.u1; y/ � '.u1/˚  0.u1/.

Combining with y 2 T0 (and construction of u1) gives (by the first variable
increasing property of .˚/)

L0 ˚ �1e.u1; y/ � '.u1/˚  0.u1/ � L0 ˚ �1"=2
1I

whence (from the second variable strictly increasing property), (41-4)
holds for n D 1.

(iter-2) For the moment, (41-1)�(41-4) above hold for n 2 f0; 1g. Starting from
the triple .u1; �1 D  1;T1/ 2 � as before, the next one .u2; �2;T2/ 2 �

(according to the relations above) fulfills

u2 2 T1, '.u2/˚  1.u2/ � L1 ˚ �2"=2
2,

where L1 D inff'.x/˚  1.x/I x 2 T1g,
.�2.x/ D  1.x/˚ �2e.u2; x/I x 2 X/,
T2 D fx 2 T1I'.x/˚ �2.x/ � '.u2/˚ �2.u2/g.

This firstly means that

�2 D  2 and u2 2 T1 \ T2;

hence, (41-1)C(41-2) hold for n D 2. Secondly, by the very definition of
T2 (and �2 D  2)

.8x 2 T2/ W '.x/˚  2.x/ � '.u2/˚  2.u2/ D '.u2/˚  1.u2/:

Since u2 2 T1, we must have

'.u2/˚  2.u2/ D '.u2/˚  1.u2/ � '.u1/˚  1.u1/I

i.e., (41-3) is holding for n D 2. Finally, let y 2 T2 be arbitrary fixed;
hence, by definition, y 2 T1 and (via �2 D  2)

'.y/˚  2.y/ � '.u2/˚  2.u2/;
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or, equivalently (by the associative property of .˚/)
('.y/˚  1.y//˚ �2e.u2; y/ � '.u2/˚  1.u2/.

Combining with y 2 T1 (and construction of u2), gives (by the first variable
increasing property of .˚/)

L1 ˚ �2e.u2; y/ � '.u2/˚  1.u2/ � L1 ˚ �2"=2
2I

whence (from the second variable strictly increasing property), (41-4)
holds for n D 2.
. . .

(iter-h) Assume that (41-1)�(41-4) above hold for n 2 f0; : : : ; h � 1g (where
h � 1). Starting from the triple .uh�1; �h�1 D  h�1;Th�1/ 2 � as before,
the next one .uh; �h;Th/ 2 � (according to the relations above) fulfills

uh 2 Th�1, '.uh/˚  h�1.uh/ � Lh�1 ˚ �h"=2
h,

where Lh�1 D inff'.x/˚  h�1.x/I x 2 Th�1g,
.�h.x/ D  h�1.x/˚ �he.uh; x/I x 2 X/,
Th D fx 2 Th�1I'.x/˚ �h.x/ � '.uh/˚ �h.uh/g.

This firstly means that

�h D  h and uh 2 Th�1 \ Th;

hence, (41-1)C(41-2) hold for n D h. Secondly, by the very definition of
Th (and �h D  h)

.8x 2 Th/ W '.x/˚  h.x/ � '.uh/˚  h.uh/ D '.uh/˚  h�1.uh/:

Since uh 2 Th�1, we must have

'.uh/˚  h.uh/ D '.uh/˚  h�1.uh/ � '.uh�1/˚  h�1.uh�1/I

i.e., (41-3) is holding for n D h. Finally, let y 2 Th be arbitrary fixed;
hence, by definition, y 2 Th�1 and (via �h D  h)

'.y/˚  h.y/ � '.uh/˚  h.uh/;

or equivalently (by the associative property of .˚/)
('.y/˚  h�1.y//˚ �he.uh; y/ � '.uh/˚  h�1.uh/.

Combining with y 2 Th�1 (and construction of uh) gives (by the first
variable increasing property of .˚/)

Lh�1 ˚ �he.uh; y/ � '.uh/˚  h�1.uh/ � Lh�1 ˚ �h"=2
hI

whence (from the second variable strictly increasing property), (41-4)
holds for n D h. This concludes our argument.
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Having these preliminary facts obtained, let us go further with our proof, by
passing to the following:

Step 2. From the above properties of .TnI n � 0/, we get

e.un; um/ � "=2n; whenever n � mI
which tells us that .unI n � 0/ is an e-Cauchy sequence. As X is .e; d/-

complete, un
d�! v as n ! 1, for some v 2 X. In addition, by the

d-closeness of sets in .TnI n � 0/, we derive v 2 \fTnI n � 0g; so that

e.un; v/ � "=2n, for all n (whence, un
e�! v);

and the first conclusion in our statement holds.
Step 3. Let k � 0 be arbitrary fixed. By the descending in RC property of the

sequence .'.un/˚  n.un/I n � 0/, we get

'.uk/˚  k.uk/ � '.un/˚  n.un/; 8n � k:

Let m � k be arbitrary fixed. The ascending property of our functional
sequence . nI n � 0/ gives by the above

'.uk/˚  k.uk/ � '.un/˚  m.un/; whenever n � m:

Combining with '˚ m being d-lsc gives (passing to limit as n ! 1 and
noting that '.uk/˚  k.uk/ < 1)

'.uk/˚  k.uk/ � '.v/˚ 'm.v/ (for all m � k).

By the second variable continuity of (extended operation) .˚/, we get

lim
m
.'.v/˚ 'm.v// D '.v/˚ '1.v/:

This yields (passing to limit as m ! 1 in the preceding relation)

'.uk/˚  k.uk/ � '.v/˚ '1.v/, for all k � 0.

Note that, as a direct consequence,

'1.v/ < 1; hence, '.v/˚  1.v/ < 1.

Step 4. In particular, when k D 0, we get the second conclusion in the statement.
On the other hand, let x 2 U0 n fvg be arbitrary fixed. If  1.x/ D 1, we
are done because (see above)

'.x/˚  1.x/ D 1 > '.v/˚  1.v/:
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Suppose now that

 1.x/ < 1, whence,  n.x/ < 1, 8n.

If x 2 U0 n T0, we are again done (with k D 0), in view of

'.x/˚  1.x/ � '.x/˚  0.x/ > '.u0/ � '.v/˚  1.v/:

It remains then to discuss the alternative x 2 T0. Suppose by contradiction
that

x 2 \fTnI n � 0g; i.e., x 2 Tn, for each n � 0.

By a previous auxiliary fact involving the sequence .TnI n � 0/, we have

e.un; x/ � "=2n, for all n � 0.

As a consequence, un
e�! x as n ! 1; and this, along with (un

e�! v,

un
d�! v), gives (as .e; d/ is Cauchy separated), x D v; contradiction.

Hence, necessarily,

x 2 T0 n \fTnI n � 0g D [fTi�1 n TiI i � 1g;

wherefrom, there must be some uniquely determined index k D k.x/ � 1,
such that

x 2 Tk�1 n Tk; i.e., x 2 Tk�1 and x … Tk.

By the very definition of Tk, we therefore have

'.x/˚  k.x/ > '.uk/˚  k.uk/I

and this, combined with a previous relation, gives the desired fact. The
proof is thereby complete.

Concerning the argument proposed here, we must stress that, essentially, it is the
one in Yongxin and Shuzhong [33]; so, it is natural that our main result above be
referred to as addition-like Yongxin–Shuzhong variational principle on asymmetric
spaces; in short: (YS-adli). Note that, further extensions of these facts are possible—
within the class of quasi-ordered r-asymmetric spaces—under the lines in Turinici
[30]; we shall discuss these in a separate paper.

(B) Let again X be a nonempty set and .e; d/ be a couple of (generalized) r-
asymmetrics over it; the triple .XI e; d/ will be then referred to as a double
r-asymmetric space. Suppose for the moment that

(r-s-lsc) .e; d/ is right semi-lsc: x 7! e.w; x/ is d-lsc, for each w 2 X.
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Further, let .˚/ be an addition-like over RC; i.e.,

(adli-1) .˚/ is associative and has 0 2 RC as its null element
(adli-2) .˚/ is first variable continuously increasing and second variable

continuously strictly increasing.

Extend this operation to RC [ f1g, by means of

a ˚ 1 D 1 ˚ a D 1, 8a 2 RC [ f1g;

the new object .˚/ is an addition-like over RC [ f1g (see above). Finally,
let the corresponding addition-like over F .X;RC [ f1g/ be denoted in the
same way; i.e., for  ; � 2 F .X;RC [ f1g/, let  ˚� denote the function in
F .X;RC [ f1g/
. ˚ �/.x/ D  .x/˚ �.x/, x 2 X.

Remember that, under these conditions (cf. a previous fact)

.˚/ is d-lsc compatible:
 ; � 2 F .d � lsc/.X;RC [f1g/H)  ˚� 2 F .d � lsc/.X;RC [f1g/.

Given g 2 fe; dg, call it .˚/-triangular, provided

(g-tri) g.x; z/ � g.x; y/˚ g.y; z/, 8x; y; z 2 X.

Technically speaking, the .˚/-triangular condition upon e.:; :/ and/or d.:; :/
was not effectively needed for the arguments we just described to work;
so, the variational statement above is in particular valid for such triangular
r-asymmetrics. However, when this condition is imposed upon e.:; :/, the
variational statement in question may be written in a very simple and useful
way. It is our aim in the sequel to give its corresponding form; further
particular aspects will be discussed a bit further.

To begin with, assume that

(e-tri) e is .˚/-triangular (see above).

Further, concerning the additive-like operation .˚/, we must accept the following
(extra) regularity condition:

(adli-3) .˚/ is commutative: t ˚ s D s ˚ t, 8t; s 2 RC.

A useful consequence of these facts (and the previous ones) is to be stated as
follows. For each sequence .tnI n � 0/ in RC, denote

˚ftiI i � 0g D limn tŒn�, where .tŒn� D ˚ftiI i � ngI n � 0/.

Lemma 5. Let the triple of sequences .tnI n � 0/, .anI n � 0/, and .bnI n � 0/ in
RC be such that

ti � ai ˚ bi, for all i � 0.

Then, necessarily,

˚ftn � 0g � Œ˚fanI n � 0g�˚ Œ˚fbnI n � 0g�:
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Proof. There are two parts to be passed.

(i) Let the triples .�1; ˛1; ˇ1/ and .�2; ˛2; ˇ2/ over RC be such that

�1 � ˛1 ˚ ˇ1, �2 � ˛2 ˚ ˇ2.

Then, necessarily,

�1 ˚ �2 � .˛1 ˚ ˛2/˚ .ˇ1 ˚ ˇ2/.

In fact, by the first and second variable increasing properties,

�1 ˚ �2 � .˛1 ˚ ˇ1/˚ .˛2 ˚ ˇ2/:

This, along with the associative and commutative properties of .˚/, gives us
the desired conclusion.

(ii) The case of

either ˚fanI n � 0g D 1 or ˚fbnI n � 0g D 1
is clear; so, without loss, one may assume that

˚fanI n � 0g < 1 and ˚fbnI n � 0g < 1.

By the first part, one has (according to the admitted notations)

tŒn� � Œ˚faiI i � ng�˚ Œ˚fbiI i � ng�; 8n:

From the first and second variable increasing property, we have

tŒn� � Œ˚fanI n � 0g�˚ Œ˚fbnI n � 0g�; 8n:

Passing to limit as n ! 1 yields

lim
n
.tŒn�/ � Œ˚fanI n � 0g�˚ Œ˚fbnI n � 0g�I

and conclusion follows.

Finally, denote, for each � 2 RC:

H.�/ D inf�.�/, where �.�/ D f� 2 RCI�.t ˚ s/ � �t ˚ �s;8t; s 2 RCg.

[Here, by convention, inf.;/ D 1.] The definition is therefore meaningful and
yields a function H W RC ! RC [ f1g; its basic properties are concentrated in the
following

Proposition 13. Under these conventions:

(42-1) �.t ˚ s/ � �t ˚ H.�/s, for each t; s 2 RC, and each � 2 RC
(42-2) H.0/ D 0 and � � H.�/, for each � 2 RC.
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Proof. (i) Let � 2 RC be arbitrary fixed. If H.�/ D 1, we are done; so, without
loss, assume that H.�/ < 1. By the second variable continuity condition
imposed upon .˚/, the following properties hold, for each � 2 RC
�.�/ is a (nonempty) closed subset of RC
�.�/ is right-hereditary: � 2 �.�/ H) Œ�;1Œ	 �.�/;

so that, �.�/ D ŒH.�/;1Œ. This gives the desired conclusion.
(ii) As �.0/ D RC, we must have H.0/ D 0. On the other hand, taking t D 0 in

the preceding relation gives

�s � H.�/s, for each s 2 RC;

and, from this, all is clear.

Now, for each sequence .�nI n � 0/ in RC [ f1g, denote

	 ..�n/I t/ D ˚f�itI i � 0g, t 2 RC.

Note that, by this very definition,

	 ..�n/I 0/ D 0; and (if t > 0)
	 ..�n/I t/ D 1, whenever �i D 1, for some i � 0.

We are now in position to get an appropriate answer to the posed question. Fix
some function ' 2 F .X;RC [ f1g/, with

(p-d-lsc) ' is proper, d-lsc (see above).

Remember that, for " > 0, U 2 2X , we denoted

U.'; "/ D fx 2 UI'.x/ � infŒ'.X/�˚ "g (hence, U.'; "/ 	 U \ Dom.'/).

Our second main result in this exposition is as follows:

Theorem 3. Let the couple .e; d/ of (generalized) r-asymmetrics over X be such
that one of the (admissible-type) conditions below holds:

(ad-1) .e; d/ is admissible
(ad-2) .e; d/ is KST-admissible, X is d-complete, and e is Cauchy separated
(ad-3) .e; d/ is YS-admissible, X is d-complete, and d is e-Cauchy separated.

In addition, let the commutative addition-like .˚/ be such that e is .˚/-triangular.
Finally, let .�nI n � 0/ be a sequence in R0C and u0 2 X, " > 0, U0 2 K .d/ be
taken according to

(reg) u0 2 U0.'; �0"/ (whence, u0 2 U0 \ Dom.'/).

Then, a sequence .unI n � 0/ in U0.'; �0"/ and an element v 2 U0.'; �0"/ may be
determined, in such a way that

(42-a) .un/ is e-Cauchy and (un
e�! v, un

d�! v)
(42-b) '.v/˚  1.v/ � '.u0/; hence, '.v/ � '.u0/ and  1.v/ < 1
(42-c) '.x/˚ 	 ..H.�n//I e.v; x// > '.v/, for each x 2 U0 n fvg.
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Proof. By the first main result, it follows that for u0 2 X, " > 0, U0 2 K .d/
taken as before, there exists a sequence .unI n � 0/ in U0.'; �0"/ and an element
v 2 U0.'; �0"/, with the properties

(42-aa) .un/ is e-Cauchy and (un
e�! v, un

d�! v)
(42-bb) '.v/˚  1.v/ � '.u0/; hence, '.v/ � '.u0/ and  1.v/ < 1
(42-cc) '.x/˚  1.x/ > '.v/˚  1.v/, for each x 2 U0 n fvg.

As a consequence, the first and second part in the statement are fulfilled. It
remains now to establish that, from the last conclusion above, the final part in our
statement is fulfilled too. So, let x 2 U0 n fvg be arbitrary fixed. If

either '.x/ D 1 or 	 ..H.�n//I e.v; x// D 1,

then, we are done, in view of

'.x/˚ 	 ..H.�n//I e.v; x// D 1 > '.v/:

Assume now that

'.x/ < 1 and 	 ..H.�n//I e.v; x// < 1.

From the .˚/-triangular property and the very definition of H.:/,

�ie.ui; x/ � �ie.ui; v/˚ H.�i/e.v; x/; 8i � 0:

This, along with an auxiliary fact above, gives

 1.x/ �  1.v/˚ 	 ..H.�n//I e.v; x//I

or equivalently (as .˚/ is commutative)

 1.x/ � 	 ..H.�n//I e.v; x//˚  1.v/:

Replacing in the last conclusion above gives (by the associative and second variable
strictly increasing property of .˚/)

Œ'.x/˚ 	 ..H.�n//I e.v; x//�˚  1.v/
D '.x/˚ Œ	 ..H.�n//I e.v; x//˚  1.v/�
� '.x/˚  1.x/ > '.v/˚  1.v/:

This yields (by the first variable increasing property of .˚/)

'.x/˚ 	 ..H.�n//I e.v; x// > '.v/I

and the last part of our statement follows as well. The proof is thereby complete.
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By definition, this result will be referred to as addition-like triangular Yongxin–
Shuzhong variational principle on asymmetric spaces, in short (YS-adli-tri). As
before, further extensions of these facts are possible, over the class of quasi-ordered
r-asymmetric spaces; we do not give details.

5 Standard Addition Case

As already precise in a previous place, one basic choice for the addition-like .˚/
used in our main results is .C/ (standard addition); i.e.,

(8t; s 2 RC): t ˚ s is identical with t C s.

It is our aim in the following to discuss the corresponding versions of underlying
statements with respect to such a choice. This, aside from providing us a motiva-
tional base for the developed methods, has some important practical applications.

(A) Let X be a nonempty set and .e.:; :/; d.:; :// be a couple of (generalized) r-
asymmetrics over it; the triple .XI e; d/ will be then referred to as a double
r-asymmetric space. Suppose for the moment that

(r-s-lsc) .e; d/ is right semi-lsc: x 7! e.w; x/ is d-lsc, for each w 2 X.

Let .�nI n � 0/ be a sequence in R0C. (Sometimes, we may also impose to
this sequence a regularity condition like

limn.
P

i�n �i/ D 1; i.e.,
P

n �n D 1;

we then say that .�nI n � 0/ is a unitary sequence in R0C. But, for the moment,
this is not the case.) Further, taking a sequence .unI n � 0/ in X, let us
construct a sequence . nI n � 0/ of functions in F .X;RC [f1g/, according
to the convention

 n.x/ D P
i�n �ie.ui; x/, x 2 X, n � 0;

note that, as .C/ is d-lsc compatible (see above), any function of this type
is d-lsc. Clearly, . nI n � 0/ is pointwise ascending; hence, the (pointwise)
limit  1 D limn. n/, of it, introduced as

 1.x/ D limn. n.x// D P
i�0 �ie.ui; x/, x 2 X

is well defined as an element of F .X;RC [ f1g/. Moreover [by the remarks
above],  1 is d-lsc; just take an auxiliary fact into account, combined with

Œ 1 � t� D \fŒ n � t�I n � 0g; 8t 2 RC:

Having these precise, fix some function ' 2 F .X;RC [ f1g/, with

(p-lsc-1) ' is proper: Dom.'/ WD fx 2 XI'.x/ < 1g ¤ ;;
whence 0 � infŒ'.X/� < 1
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(p-lsc-2) ' is d-lsc; or, equivalently (see above):
Œ' � t� is d-closed, for each t 2 RC.

Denote, for " > 0, U 2 2X ,

U.'; "/ D fx 2 UI'.x/ � infŒ'.X/�C "g (hence, U.'; "/ 	 U \ Dom.'/).

The following (standard) addition-type variational result involving our data is our
starting point:

Theorem 4. Let the couple .e; d/ of (generalized) r-asymmetrics over X be such
that one of the (admissible-type) conditions below holds:

(ad-1) .e; d/ is admissible
(ad-2) .e; d/ is KST-admissible, X is d-complete, and e is Cauchy separated
(ad-3) .e; d/ is YS-admissible, X is d-complete, and d is e-Cauchy separated.

In addition, let .�nI n � 0/ be a sequence in R0C; and u0 2 X, " > 0, U0 2 K .d/
be taken according to

(reg) u0 2 U0.'; �0"/ (whence, u0 2 U0 \ Dom.'/).

Then, a sequence .unI n � 0/ in U0.'; �0"/ and an element v 2 U0.'; �0"/ may be
determined, in such a way that

(51-a) .un/ is e-Cauchy and (un
e�! v, un

d�! v)
(51-b) '.v/C  1.v/ � '.u0/; hence, '.v/ � '.u0/ and  1.v/ < 1
(51-c) '.x/C  1.x/ > '.v/C  1.v/, for each x 2 U0 n fvg.

Proof. (Sketch) It is immediately seen that, under .˚/ being identical with .C/, the
first main result applies.

As already precise, the argument proposed here is, essentially, the one in Yongxin
and Shuzhong [33]; so, it is natural that our statement above be referred to as
(standard) addition Yongxin–Shuzhong variational principle on asymmetric spaces,
in short (YS-ad). Note that, further extensions of these facts are possible—within
the class of quasi-ordered r-asymmetric spaces—under the lines in Turinici [30];
we shall discuss these in a separate paper.

(B) Let again X be a nonempty set and .e; d/ be a couple of (generalized) r-
asymmetrics over it; the triple .XI e; d/ will be then referred to as a double
r-asymmetric space. Given g 2 fe; dg, call it triangular, provided

(ad-g-tri) g.x; z/ � g.x; y/C g.y; z/, 8x; y; z 2 X.

Technically speaking, such triangular conditions were not effectively needed
for the arguments of the (standard) additive-type result above to work; so, the
variational statement in question is in particular valid for such triangular r-
asymmetrics. However, when this condition is imposed upon e, our variational
result may be written in a way that allows us direct comparisons with
Ekeland’s variational principle [13] (in short EVP). It is our aim in the sequel
to give its corresponding form; some other aspects will be discussed a bit
further.
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To begin with, assume that

(ad-e-tri) e is triangular (see above).

Let the function ' W X ! RC [ f1g be taken as

(p-lsc) ' is proper, d-lsc.

Remember that, for each " > 0, U 2 2X , we denoted

U.'; "/ D fx 2 UI'.x/ � infŒ'.X/�C "g (hence, U.'; "/ 	 U \ Dom.'/).

The following variational result (referred to as (standard) addition triangular
Yongxin–Shuzhong variational principle on asymmetric spaces, in short (YS-ad-tri))
is available:

Theorem 5. Let the couple .e; d/ of (generalized) r-asymmetrics over X be such
that one of the (admissible-type) conditions below holds:

(ad-1) .e; d/ is admissible
(ad-2) .e; d/ is KST-admissible, X is d-complete, and e is Cauchy separated
(ad-3) .e; d/ is YS-admissible, X is d-complete, and d is e-Cauchy separated.

Suppose in addition that e is triangular; and let (the starting point) u 2 Dom.'/ be
arbitrary fixed. There exists then (another point) v 2 Dom.'/, such that

(52-a) '.v/C e.u; v/ � '.u/ (hence, '.v/ � '.u/)
(52-b) '.x/C e.v; x/ > '.v/, 8x 2 X n fvg.

Note that a direct argument for proving these conclusions is available, via second
main result (YS-adli-tri). However, for simplicity reasons, it will be more convenient
for us to deduce the conclusions in question from the (standard) additive result above
(YS-ad).

Proof (Theorem 5). There are three parts to be passed.

Part 1. Denote, for simplicity u0 WD u; as well as

U0 D fx 2 XI'.x/C e.u0; x/ � '.u0/g.

Clearly, U0 is nonempty; because u0 is an element of it. Moreover, we claim that

U0 is d-closed (i.e., U0 2 K .d/).

In fact, by this very definition,

U0 D fx 2 XI!.x/ � '.u0/g, where .!.x/ D '.x/C e.u0; x/I x 2 X/.

Now, by the imposed conditions upon .e; d/ and ' (and a previous auxiliary fact),
!.:/ is d-lsc; and this, along with a level set characterization of this concept (see
above), gives the desired fact.

Part 2. Let .�nI n � 0/ be a sequence in R0C with
P

n �n D limn.
P

i�n �i/ D 1; i.e., .�nI n � 0/ is unitary;



654 M. Turinici

and take the strictly positive number " > 0 according to

'.u0/ � infŒ'.X/� � �0"; or, equivalently, u0 2 X.'; �0"/.

As u0 2 U0, we must have

u0 2 U0.'; �0"/ (whence, u0 2 U0 \ Dom.'/).

By the (standard) additive variational principle (YS-ad), there exists a sequence
.unI n � 0/ in U0.'; �0"/ and an element v 2 U0.'; �0"/, with

(52-aa) .un/ is e-Cauchy and (un
e�! v, un

d�! v)
(52-bb) '.v/C  1.v/ � '.u0/; hence, '.v/ � '.u0/ and  1.v/ < 1
(52-cc) '.x/C  1.x/ > '.v/C  1.v/, for each x 2 U0 n fvg.

In particular, as v 2 U0, one gets

e.u0; v/ � '.u0/ � '.v/I

and the first half of our statement is holding.

Part 3. Let x 2 X n fvg be arbitrary fixed. If one has that

'.x/ D 1 or e.v; x/ D 1,

we are done; so, without loss, assume in the following that

'.x/ < 1 and e.v; x/ < 1.

Two alternatives occur.

Alter 3-1. Suppose that x 2 U0 n fvg. From the second conclusion above,

e.un; v/ < 1, for all n.

This, along with the triangular condition, yields

e.un; x/ � e.un; v/ � e.v; x/; 8nI

wherefrom (by our notations)

 m.x/ �  m.v/ �
 
X

i�m

�i

!

e.v; x/; 8m:

Passing to limit as m ! 1, we therefore get

 1.x/ �  1.v/ � e.v; x/I

and this, in combination with the last conclusion above, gives us the second half of
our statement.
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Alter 3-2. Suppose that x 2 X n U0; i.e., (by the above definition)

e.u0; x/ > '.u0/ � '.x/ (in view of '.x/; e.v; x/; '.v/ < 1).

If, by absurd, the second half of our statement is false, we must have

e.v; x/ � '.v/ � '.x/ (cf. the finiteness properties above).

Taking the first conclusion of the statement into account gives (by our triangular
property of e.:; :/)

e.u0; x/ � e.u0; v/C e.v; x/ �
'.u0/ � '.v/C '.v/ � '.x/ D '.u0/ � '.x/I

in contradiction with a previous relation involving the same data. The proof is
thereby complete.

(C) According to a previous remark, these results may be given as extensions of
related ones in Yongxin and Shuzhong [33]. However, in the quoted paper,
the objective function ' is taken as an element of F .X;R [ f1g/, fulfilling:

(ge-p-lsc-1) ' is inf-proper: infŒ'.X/� > �1 and
Dom.'/ WD fx 2 XI'.x/ < 1g ¤ ;
(hence, �1 < infŒ'.X/� < 1)

(ge-p-lsc-2) ' is d-lsc on X:

lim infn '.xn/ � '.x/, whenever xn
d�! x.

But these results may be reduced to the ones we already stated. In fact, let us
consider the translated function ˚ 2 F .X;RC [ f1g/ introduced as

˚.x/ D '.x/ � infŒ'.X/�, x 2 X.

By the conditions above, it follows that

(I) ˚ is proper: Dom.˚/ WD fx 2 XI˚.x/ < 1g ¤ ;
(II) infŒ˚.X/� D 0 and ˚ is d-lsc.

Summing up, the results above are applicable to ˚ ; and from their corresponding
conclusions (in terms of ˚), we get the ones in terms of '; hence the assertion. In
particular, when

(st-m) e D d D (standard) metric on X,

the triangular statement above yields, in a direct way, Ekeland’s variational principle
[13] (in short EVP). For a different line of reasoning in establishing this fact, see
Turinici [29] and the references therein.
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6 Functional Case (Bakhtin Metrics)

In the following, a functional extension of the above result is given, within the class
of Bakhtin metrical structures.

Let X be a nonempty set. Any map g W X � X ! RC [ f1g with

(ref-su) g is reflexive sufficient (x D y iff g.x; y/ D 0)
(sym) g is symmetric (g.x; y/ D g.y; x/, 8x; y 2 X)

will be referred to as a reflexive sufficient symmetric (in short rs-symmetric) of X.
Given s � 1, let us say that g is s-triangular, provided

(s-tri) g.x; z/ � s.g.x; y/C g.y; z//, 8x; y; z 2 X.

Let B.g/ denote the class of all these; i.e.,

B.g/ D fs 2 Œ1;1ŒI g is s-triangularg;

note at this moment that

B.g/ is right-hereditary: s 2 B.g/ implies Œs;1Œ	 B.g/.

If B.g/ is nonempty, we say that g.:; :/ is a (generalized) Bakhtin metric; and the
couple .X; g/ will be called a (generalized) Bakhtin metric space. (This convention
is motivated by the fact that the study of such structures was initiated by Bakhtin
[1]; see also Czerwik [10]). Likewise, any number s 2 B.g/ will be referred to as a
Bakhtin characteristic of g.:; :/; in this case, g is also referred to as a (generalized)
s-metric.

Fix in the following a Bakhtin metric g.:; :/; and let s 2 B.g/ be some Bakhtin
characteristic of it. As g.:; :/ is in particular r-asymmetric, we may introduce a g-
convergence and g-Cauchy structure over X, under our general model. Note at this
moment that any g-convergent sequence in X is g-Cauchy too; when the reciprocal
holds too, we say that X is g-complete. Moreover,

g.:; :/ is separated: xn
g�! u and xn

g�! v imply u D v.

In fact, given a sequence .xnI n � 0/ in X like in the premise above, one has (by
symmetry and s-triangular inequality)

g.u; v/ � s.g.xn; u/C g.xn; v//; 8nI
so that, passing to limit as n ! 1, yields g.u; v/ D 0, wherefrom (by sufficiency)
u D v. [Note that—as already mentioned—the sufficiency of g.:; :/ follows from
such a property; but this is not essential to us.]

Under these preliminaries, we may now pass to the effective part of our
developments. Let in the following d W X � X ! RC [ f1g be a (generalized)
Bakhtin metric over X. (Remember that by the above developments, d is separated.)
Let also f W X � X ! RC be a (standard) r-asymmetric over X and � 2 F .RC/ be
a function with the ad hoc property

�.0/ D 0; hence, �.f .x; x// D 0, 8x 2 X.
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The mapping e W X � X ! RC introduced as

e.x; y/ D �.f .x; y//, x; y 2 X

is a (standard) r-asymmetric over X, as it can be directly seen. A natural question
to be posed is that of determining sufficient conditions under which the KST-
admissible and YS-admissible properties be transferable from .f ; d/ to .e; d/. For
technical reasons, it would be useful working with the strong version of the latter
property. Namely, given h 2 ff ; eg, let us consider the properties:

(sp-1) .h; d/ is right semi-lsc:
x 7! h.w; x/ is d-lsc, for each w 2 X

(sp-2) .h; d/ is Cauchy transitive:
.xn/ is h-Cauchy implies .xn/ is d-Cauchy

(sp-3) .h; d/ is convergence transitive:
h.xn; yn/ ! 0 implies d.xn; yn/ ! 0.

When (sp-1)C(sp-2) hold, then .h; d/ is called (as before) KST-admissible; and, if
(sp-1)C(sp-3) hold, then .h; d/ is called strongly YS-admissible.

For an appropriate answer to this, we need to assume that � 2 F .RC/ is a
Feng–Liu function; i.e.,:

(f-liu) � is increasing, lsc, and ��1.0/ D f0g.

(This convention is related to the developments in Feng and Liu [17]; we do not give
details). The following properties of this functional class will be useful for us.

Proposition 14. Let � 2 F .RC/ be a Feng–Liu function. Then:

(61-1) �.:/ is a small function, in the sense:
for each " > 0, there exists ı > 0, such that
8.t � 0/: (�.t/ < ı implies t < ")

(61-2) �.:/ is zero-convergence transitive: for each sequence .tn/ in RC, we have
�.tn/ ! 0 implies tn ! 0.

Proof. (i) Assume that � is not a small function; whence, for some " > 0,

to each ı > 0, there corresponds some tı � ", such that �.tı/ < ı.

As � is increasing, this yields

�."/ < ı, for all ı > 0;

and, therefore, �."/ D 0, contradiction; hence the claim.
(ii) Evident, by the small property of �.:/ we just established.

Concerning the transfer problem above, a useful answer to it is contained in the
following:

Proposition 15. Under the above conventions, we have:

(62-1) .f ; d/ is KST-admissible H) .e; d/ is KST-admissible
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(62-2) .f ; d/ is strongly YS-admissible H) .e; d/ is strongly YS-admissible
(62-3) f is separated H) e is separated.

Proof. (i) Suppose that .f ; d/ is right semi-lsc; and let w 2 X be arbitrary fixed.
By definition, the partial map x 7! f .w; x/ is d-lsc. This, along with the
hypotheses about �, tells us that the partial map

x 7! e.w; x/ D �.f .w; x//

is d-lsc, if one takes a previous fact into account. As w 2 X was arbitrarily
chosen, one gets that .e; d/ is right semi-lsc.

(ii) Assume that .f ; d/ is Cauchy transitive; and let .xn/ be an e-Cauchy sequence
in X. For the arbitrary fixed " > 0, let ı > 0 be the number attached by the
small property of �. Given this ı > 0, there exists some rank n.ı/ � 0, with

n.ı/ � i � j implies e.xi; xj/ D �.f .xi; xj// < ı.

But then, from the quoted property,

n.ı/ � i � j implies f .xi; xj/ < ";

which (by the arbitrariness of " > 0), means that .xn/ is f -Cauchy. By
hypothesis, .xn/ is then d-Cauchy; and this tells us that .e; d/ is Cauchy
transitive.

(iii) Suppose that .f ; d/ is convergence transitive; and let .xn/, .yn/ be a couple of
sequences in X with

e.xn; yn/ D �.f .xn; yn// ! 0 as n ! 1.

By the zero-convergence transitivity of � (see above), we must have
f .xn; yn/ ! 0 as n ! 1. Combining with the working hypothesis gives
d.xn; yn/ ! 0. As the sequences .xn/ and .yn/ were arbitrarily chosen with the
imposed property, we therefore derive that .e; d/ is convergence transitive.

(iv) Suppose that f is separated and let the sequence .xn/ in X and the points u; v 2
X be such that

xn
e�! u, xn

e�! v;

or, equivalently (by definition),

e.xn; u/ D �.f .xn; u// ! 0 and e.xn; v/ D �.f .xn; v// ! 0, as n ! 1.

Combining with the zero-convergence transitivity of �, we then have

xn
f�! u, xn

f�! v;

wherefrom (by the imposed hypothesis) u D v; which tells us that the
associated map e is necessarily separated.
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Now, by simply combining this with our (standard) addition Yongxin–Shuzhong
variational principle (YS-ad), one gets a useful functional version of it, expressed as
below. Let d.:; :/ be a (generalized) Bakhtin metric over X and f .:; :/ be a (standard)
r-asymmetric on X. Further, letting � W RC ! RC be a Feng–Liu function, define
the associated to .f ; �/ (standard) r-asymmetric

e.x; y/ D �.f .x; y//, x; y 2 X.

Given the sequence .�nI n � 0/ in R0C and the sequence .unI n � 0/ in X, let us
attach them a sequence . nI n � 0/ of functions in F .X;RC/, as

 n.x/ D P
i�n �ie.ui; x/, x 2 X, n � 0.

Let also  1 WD limn. n/ stand for their pointwise limit

 1.x/ D limn  n.x/ D P
i�0 �ie.ui; x/, x 2 X;

note that this function may belong to F .X;RC[f1g/. Finally, take some inf-proper
d-lsc function ' 2 F .X;RC [ f1g/ with

(p-lsc) ' is proper, d-lsc.

Remember that, for each " > 0, U 2 2X , we introduced the notation

U.'; "/ D fx 2 UI'.x/ � infŒ'.X/�C "g (hence, U.'; "/ 	 U \ Dom.'/).

The following statement (called the (standard) addition functional Yongxin–
Shuzhong variational principle on Bakhtin structures; in short: (YS-ad-f-Bakhtin))
is now available.

Theorem 6. Let the (generalized) Bakhtin metric d.:; :/ on X and the (standard) r-
asymmetric f .:; :/ on X be such that X is d-complete, and one of the extra conditions
below are holding

(KST-se) .f ; d/ is KST-admissible and f is separated
(s-YS) .f ; d/ is strongly YS-admissible.

In addition, let .�nI n � 0/ be a sequence in R0C and u0 2 X, " > 0, U0 2 K .d/ be
taken according to

(reg) u0 2 U0.'; �0"/ (whence, u0 2 U0 \ Dom.'/).

Finally, let � W RC ! RC be a Feng–Liu function; and let e.:; :/ stand for the
associated to .f ; �/ (standard) r-asymmetric on X. Then, a sequence .unI n � 0/ in
U0.'; �0"/ and an element v 2 U0.'; �0"/ may be determined, such that:

(61-a) .un/ is e-Cauchy and (un
e�! v, un

d�! v)
(61-b) '.v/C  1.v/ � '.u0/; hence, '.v/ � '.u0/ and  1.v/ < 1
(61-c) '.x/C  1.x/ > '.v/C  1.v/, for each x 2 U0 n fvg.

Note that further extensions of this result are possible when f .:; :/ is a generalized
r-asymmetric on X and � 2 F .RC [ f1g/ is an (extended) positive function; we
do not give details.
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A basic particular case of these developments is f D d. Precisely, let X be a
nonempty set and d W X � X ! RC be a (standard) Bakhtin metric over it, fulfilling
(in addition)

(se-lsc) d is semi-lsc: x 7! d.w; x/ is d-lsc, for each w 2 X.

Note that, in this case, the couple .d; d/ is right semi-lsc. On the other hand, .d; d/ is
trivially endowed with the Cauchy and convergence transitive properties; whence,
.d; d/ is both KST-admissible and strongly YS-admissible. Moreover, as established
in a previous place, d is separated. Further, letting � W RC ! RC be a Feng–Liu
function, define the associated to .d; �/ (standard) rs-symmetric

e.x; y/ D �.d.x; y//, x; y 2 X.

Given the sequence .�nI n � 0/ in R0C and the sequence .unI n � 0/ in X, let us
attach them a sequence . nI n � 0/ of functions in F .X;RC/, as

 n.x/ D P
i�n �ie.ui; x/, x 2 X, n � 0;

and let  1 WD limn. n/ stand for their (pointwise) limit

 1.x/ D limn  n.x/ D P
i�0 �ie.ui; x/, x 2 X;

clearly, this last function may belong to F .X;RC [ f1g/. Finally, take some
function ' 2 F .X;RC [ f1g/ with

(p-lsc) ' is proper, d-lsc (see above).

The following result (referred to as (standard) addition Yongxin–Shuzhong varia-
tional principle in Bakhtin metric spaces (in short: (YS-ad-Bakhtin)) is now holding.

Theorem 7. Let the (standard) Bakhtin metric d.:; :/ on X be such that d is semi-lsc
and X is d-complete. In addition, let .�nI n � 0/ be a sequence in R0C and u0 2 X,
" > 0, U0 2 K .d/ be taken according to

u0 2 U0.'; �0"/ (whence, u0 2 U0 \ Dom.'/).

Finally, let � W RC ! RC be a Feng–Liu function; and let e.:; :/ stand for the
associated to .d; �/ (standard) rs-symmetric on X. Then, a sequence .unI n � 0/ in
U0.'; �0"/ and an element v 2 U0.'; �0"/ may be determined, in such a way that

(62-a) .un/ is e-Cauchy and (un
e�! v, un

d�! v)
(62-b) '.v/C  1.v/ � '.u0/; hence, '.v/ � '.u0/ and  1.v/ < 1
(62-c) '.x/C  1.x/ > '.v/C  1.v/, for each x 2 U0 n fvg.

The following particular cases of this statement are to be noted.

(PC-1) Let d W X � X ! RC be a (standard) Bakhtin metric, with Bakhtin
characteristic s D s.d/ > 1; remember that d is separated. Further, let
the sequence .�nI n � 0/ of strictly positive numbers be defined as

�n D 1=snC1, n � 0; hence
P

n �n D s=.s � 1/.
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Finally, take

�.t/ D t, t 2 RC (the identical function).

The corresponding U0 D X version of (YS-ad-Bakhtin) extends a related
2011 statement in Bota et al. [4] based on the semi-lsc condition upon
d.:; :/ being substituted by the bilateral condition

(bi-cont) d.:; :/ is continuous:

xn
d�! x, yn

d�! y imply d.xn; yn/ ! d.x; y/.

Note that an equivalence between these regularity conditions upon d
cannot be reached, in general; we do not give details.

(PC-2) Suppose that d W X � X ! RC is a (standard) metric on X; clearly, d is
continuous and separated. The corresponding version of (YS-ad-Bakhtin)
extends a related 1987 statement in Borwein and Preiss [3] (in short (BP)),
to which it reduces when the Feng–Liu function � is taken as

�.t/ D tp, t 2 RC, for some p � 1.

(PC-3) A limit version of the preceding one is p D 1. So, let X be a nonempty set
and d W X �X ! RC be a (standard) metric over it. Hence, by the previous
conventions, d.:; :/ is a Bakhtin metric on X, with Bakhtin characteristic
s D 1. In particular, d.:; :/ is triangular and separated (hence, sufficient);
moreover, in view of the Lipschitz-type relations (deductible from the
triangle inequality)

jd.x; y/ � d.u; v/j � d.x; u/C d.y; v/; 8x; y; u; v 2 X;

it follows that

d.:; :/ is continuous; hence, d is semi-lsc.

An application of (YS-ad-Bakhtin) to these data is possible, under the
lines of (YS-ad-tri); and the obtained particular version of it is just
Ekeland variational principle [13] (in short EVP).

Finally, note that further extensions of our developments to quasi-ordered
structures of this type are possible, under the lines in Turinici [30]. These will be
discussed elsewhere.

7 Converse Question

By the developments above, we have the inclusions

..DDC/ ”/ .DC/ H) .YS-adli/ H) .YD-adli-tri/
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.YS-adli/ H) .YS-ad/ H) .YS-ad-tri/ H) .EVP/

.YS-adli/ H) .YS-adli-tri/ H) .YS-ad-tri/ H) .EVP/

.YS-ad/ H) .YS-ad-f-Bakhtin/ H) .YS-ad-Bakhtin/ H) .EVP/:

So, it is natural to ask whether these inclusion chains may be reversed. At a first
glance, a negative answer is highly expectable, because (DC) is “too general” with
respect to (EVP). However, the situation is exactly opposite, in the sense: (EVP)
includes (DC); and then, we closed the circle between all such principles. [Clearly,
the natural setting for solving this problem is (ZF-AC), referred to (see above) as
the strongly reduced Zermelo–Fraenkel system.] An early result of this type was
provided in 1987 by Brunner [8]; for a different answer to the same, we refer to the
1999 paper by Dodu and Morillon [12]. It is our aim in the following to show that a
further extension of this last result is possible, in the sense: (DC) is deductible from
a certain Lipschitz-bounded countable version of (EVP).

Let .X;�/ be a partially ordered structure. Remember that z 2 X is .�/-maximal
if z � w 2 X implies z D w; the class of all these will be denoted as max.X;�/. In
this case, we say that .�/ is a Zorn order when

max.X;�/ is (nonempty and) cofinal in X
(for each u 2 X, there exists v 2 max.X;�/ with u � v).

In particular, when d.:; :/ is a (standard) metric on X and ' W X ! RC is some
function, a good example of partial order on X is that introduced by the convention

x �.d;'/ y iff d.x; y/ � '.x/ � '.y/;
referred to as the Brøndsted order [7] attached to the couple .d; '/. Further, let us
say that ' is d-Lipschitz, provided

j'.x/ � '.y/j � Ld.x; y/, 8x; y 2 X, for some L > 0;

note that, any such function is uniformly continuous on X.
The following stronger variant of (EVP) enters in our discussion.

Theorem 8. Let the metric space .X; d/ and the function ' W X ! RC satisfy

(bd-com) X is d-bounded and d-complete
(d-Lip) ' is d-Lipschitz (hence, bounded)
(count) '.X/ is (at most) countable.

Then, .�.d;'// is a Zorn order.

We call this, the Lipschitz-bounded countable version of (EVP) (in short (EVP-
Lbc)). By the above developments, we thus have

(DC) H) (EVP) H) (EVP-Lbc).

The remarkable fact to be added is that this last principle yields (DC); so, it
completes the circle between all these.
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Proposition 16. We have (in the strongly reduced Zermelo–Fraenkel system)

(EVP-Lbc) H) (DC).

As a consequence of this:

(71-1) the variational principles (YS-adli), (YS-adli-tri), (YS-ad), (YS-ad-tri),
(YS-ad-f-Bakhtin), (YS-ad-Bakhtin) are all equivalent with both (DC) and
(EVP); hence, mutually equivalent.

(71-2) any maximal/variational principle (VP) with (DC) H) (VP) H) (EVP) is
equivalent with both (DC) and (EVP).

The proof of this result may be found in Turinici [31]. However, for completeness
reasons, we shall provide the argument, with certain modifications.

Proof. There are several steps to be followed.

Part 0. Let M be a nonempty set and R be a proper relation over M. Fix a 2 M;
and take some other point ˛, that does not belong to M. Put P D M [f˛g;
and let d.:; :/ stand for the discrete metric on P:

d.s; t/ D 0, if s D t; d.s; t/ D 1, if s ¤ t.

(In fact, d.:; :/ is even an ultrametric on P; but, this is not essential for us.)
Part 1. Let S .P/ stand for the class of all sequences x D .x.n/I n � 0/ with

elements in P. Denote X D fx 2 S .P/I x.0/ D ag; and let us introduce
the map

d1.x; y/ D P
n 2

�nd.x.n/; y.n//, for x D .x.n// and y D .y.n// in X.

It is not hard to see that d1 is a (standard) metric on X; moreover,

d1.x; y/ � P
n�1 2�n D 1, 8x; y 2 X; whence, X is d1-bounded.

A natural question to be discussed here is the completeness property. In
this direction, we have the following:

Lemma 6. Under the above conventions,

X is d1-complete: each d1-Cauchy sequence in X is d1-convergent.

Proof. Let .xnI n � 0/ be a sequence in X; it may be written as

.xn D .xn.0/; xn.1/; : : :/ D .a; xn.1/; : : :/I n � 0/:

Assume that

.xnI n � 0/ is d1-Cauchy or, equivalently,
8" > 0: C."/ WD fn 2 NI n � p � q H) d1.xp; xq/ < "g ¤ ;.

As a consequence, the map " 7! C."/ is increasing on R0C, in the sense:

"� < "� implies C."�/ 	 C."�/;
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so that, the map

(	 W R0C ! N): 	 ."/ WD minŒC."/�, " > 0

is decreasing on R0C:

"� < "� implies 	 ."�/ � 	 ."�/.

Let ."nI n � 0/ be a strictly descending sequence in R0C with

"n < 2
�n, for all n (hence, "n ! 0).

Denote for simplicity

m.k/ D 	 ."k/, n.k/ D m.k/C k, k � 0.

By the properties above, the map k 7! m.k/ is increasing; hence, the map k 7! n.k/
is strictly increasing. For the moment, it is clear that

xn.0/.0/ D xp.0/ D a; 8p � n.0/:

Further, by the very definition of these maps,

n.1/ � p � q H) d1.xp; xq/ < "1:

Combining with the definition of d1 gives

2�1d.xp.1/; xq.1// < "1, if n.1/ � p � q;

so that (as "1 < 2�1),

xn.1/.1/ D xp.1/, for all p � n.1/.

The procedure may continue indefinitely; it gives us, for the strictly ascending
sequence of ranks .n.i/I i � 0/, an evaluation like

xn.i/.i/ D xp.i/, for all p � n.i/ and all i � 0.

Let y D .y.i/I i � 0/ be the “diagonal” sequence .y.i/ D xn.i/.i/I i � 0/; clearly,
it is an element of X. We claim that our initial sequence .xnI n � 0/ is convergent
(modulo d1) to y. In fact, let " > 0 be arbitrary fixed; and h D h."/ be such that

2�j < ", for all j � h (possibly, since limn.2
�n/ D 0).

For each n � n.h/ (hence n � n.i/, whenever i � h), we have (by the above)

d.xn; y/ D P
i�h 2

�id.xn.i/; xn.i/.i//CP
i>h 2

�id.xn.i/; xn.i/.i//
D P

i>h 2
�id.xn.i/; xn.i/.i// � P

i>h 2
�i D 2�h < "I

and, from this, we are done.
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Part 2. Let Y stand for the class of all sequences x D .x.n/I n � 0/ in X with

(8n): x.n/; x.n C 1/ 2 M H) x.n/Rx.n C 1/.

Note that Y ¤ ;; for, given b 2 R.a/, the sequence y D .y.n/I n � 0/ in
X introduced as below

.y.0/ D a, y.1/ 2 b; y.n/ D ˛, n � 2/

is an element of it.

Lemma 7. The subset Y is d1-closed, hence, d1-complete as well.

Proof. Let .xn WD .xn.0/ D a; xn.1/; : : :/I n � 0/ be a sequence in Y and y D
.y.n/I n � 0/ be an element of X with

xn ! y (modulo d1); that is,
d1.xn; y/ WD P

i 2
�id.xn.i/; y.i// ! 0, as n ! 1.

Note that, as a direct consequence of this,

xn.i/
d�! y.i/ as n ! 1; 8i � 0:

Further, as d1 is metric, .xnI n � 0/ appears as d1-Cauchy; so, by a preceding
statement, there exists a strictly ascending sequence of ranks .n.i/I i � 0/, with

.8i � 0/ W xn.i/.i/ D xp.i/; 8p � n.i/:

In this case, the d1-limit y D .y.n/I n � 0/ of our sequence must have the form

y.i/ D xn.i/.i/, for all i � 0.

We now claim that the representation of Y gives us the desired conclusion: y 2 Y .
In fact, let i � 0 be such that y.i/; y.i C 1/ 2 M. By the previous relations,

y.i/ D xn.i/.i/ D xn.iC1/.i/ 2 MI y.i C 1/ D xn.iC1/.i C 1/ 2 M:

This, along with xn.iC1/ 2 Y yields

xn.iC1/.i/Rxn.iC1/.i C 1/; that is, y.i/Ry.i C 1/.

The argument is thereby complete.

Part 3. Now, let us note that conclusion of our statement is equivalent with
Y \ S .M/ ¤ ;. For, taking some sequence y D .y.n/I n � 0/ in this
intersection, we have y.n/; y.n C 1/ 2 M, 8n; so that, by definition,
y.n/Ry.n C 1/, 8n, whence, .y.n/I n � 0/ is .a;R/-iterative. Assume
by contradiction that this is not true:

Y \ S .M/ D ;; i.e., for each y D .y.n/I n � 0/ 2 Y ,
there exists some k D k.y/ � 1, such that y.k/ D ˛.
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As a consequence, the functions below are well defined:

g.y/ D minfk � 1I y.k/ D ˛g, '.y/ D 22�g.y/, y 2 Y .

Some basic properties of these are described in

Proposition 17. The following are valid:

(72-1) the functions g, ' are continuous on Y; precisely,

8y 2 Y;9ˇ D ˇ.y/ > 0 W z 2 Y; d1.z; y/ < ˇ H) g.z/ D g.y/; '.z/ D '.y/

(72-2) the function ' is d1-Lipschitz, in the sense:

j'.x/ � '.y/j � 4d1.x; y/; 8x; y 2 Y

(72-3) g.Y/ is countable; hence, so is '.Y/.

Proof. (i) Fix y D .y.n/I n � 0/ 2 Y , and put r D g.y/; we therefore have

r � 1; y.r/ D ˛; y.k/ 2 M;8k 2 N.r; >/:

Take some ˇ 2�0; 2�rŒ; and let z D .z.n/I n � 0/ 2 Y be such that d1.y; z/ <
ˇ. By the definition of our metric,

2�kd.y.k/; z.k// < ˇ < 2�r; 8k 2 N.r;�/I

and this yields

z.k/ D y.k/; 8k 2 N.r;�/:

In particular, we must have

(z.k/ 2 M; 8k 2 N.r; >/) and z.r/ D ˛;

so that g.z/ D r D g.y/ (whence, '.z/ D '.y/).
(ii) Let x D .x.n/I n � 0/ and y D .y.n/I n � 0/ be two points in Y . Denote for

simplicity r D g.x/, s D g.y/. If r D s, all is clear; so, it remains the opposite
case r ¤ s; without loss, one may assume that r < s. As a consequence,

x D .x.0/ D a; : : : ; x.r � 1/; ˛; : : : ; x.s � 1/; x.s/; : : :/;
y D .y.0/ D a; : : : ; y.r � 1/; y.r/; : : : y.s � 1/; ˛; : : :/:

In particular, y.r/ 2 M; hence y.r/ ¤ ˛; and then,

d1.x; y/ � 2�r � 2�r � 2�s D j2�r � 2�sj:

This gives the conclusion we need.
(iii) Evident.
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Part 4. We show that, under the introduced conventions,

for each v 2 Y , there exists y 2 Y n fvg such that d1.v; y/ � '.v/� '.y/;

or, in other words, each element of Y is non-maximal with respect to the
Brøndsted ordering attached to d1 and ':

(z;w 2 Y): z � w iff d1.z;w/ � '.z/ � '.w/.
In fact, let v D .v.n/I n � 0/ be its representation. Put g.v/ D r; hence,

r � 1I v.0/; : : : ; v.r � 1/ 2 MI v.r/ D ˛:

Note that, by the definition of Y , one gets the relations

v.i/Rv.i C 1/, whenever i � r � 2.

Take y D .y.n/I n � 0/ in Y n fvg according to

y.k/ D v.k/, 8k 2 N.r; >/; y.h/ D ˛, 8h 2 N.r C 1;</;
y.r/; y.r C 1/ 2 M; y.i/Ry.i C 1/, 8i 2 fr � 1; rg.

(The last relation is possible, by the Finite Dependent Choice property).
As a consequence of this, g.y/ D r C 2. Now, the desired relation above
becomes

d1.v; y/ � 22�r � 2�r D 3 � 2�r:

According to the representation of y 2 Y n fvg, this means

X

i�r

2�id.v.i/; y.i// � 3 � 2�r:

But then, the last relation is clear, in view of

X

i�r

2�id.v.i/; y.i// �
X

i�r

2�i D 21�r < 3 � 2�r:

Part 5. We may now pass to the final part of our argument. By the above facts,
(EVP-Lbc) is applicable to the metric space .Y; d1/ and the function ' W
Y ! RC (introduced as before). Hence, the associated Brøndsted order
.�/ (see above) is a Zorn one. As a consequence, there exists, for the
starting point (in Y)

u D .u.n/I n � 0/: u.0/ D a, u.n/ D ˛, 8n � 1,

some other point v D .v.n/I n � 0/ in Y with
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(zorn-1) u � v: d1.u; v/ � '.u/ � '.v/
(zorn-2) v is .�/-maximal: d1.v; y/ > '.v/ � '.y/, 8y 2 Y n fvg.

This, however, contradicts the preceding step and shows that
Y \ S .M/ ¤ ;. But then (by the very definition of Y), there must be
some sequence y D .y.n/I n � 0/ in M, with

y.0/ D a and y.n/Ry.n C 1/, 8n.

The proof is complete.

In particular, when the boundedness and Lipschitz properties are ignored, this
result is just the one in Dodu and Morillon [12]. Further aspects may be found in
Turinici [30].

Summing up, all variational principles in this exposition (derived from (DC))
are nothing but logical equivalents of (EVP). So, it is natural to ask whether the
remaining (sequential) ones—including the smooth variational principle in Deville
et al. [11]—are endowed as well with such a property. The answer to this is
affirmative; further aspects will be delineated elsewhere.

8 Yongxin–Shuzhong Approaches

As already precise, all smooth variational results—which the present exposition
is based on—emerge from a 2000 contribution in the area due to Yongxin and
Shuzhong [33]. So, any discussion of such statements must begin with the line of
argument provided by these authors. In the following, we shall however follow the
developments in Farkas et al. [16]; because, apart from giving the most general
result in the area, their exposition is better structured than the previous ones. [The
only intervention in authors’ text refers to numbering of certain relations; this will
help us to formulate our comments about their proof.]

(A) The concept of Bakhtin metric was already introduced; and some basic
properties of it were listed in a previous place. An interesting completion of
these refers to the so-called Cantor’s intersection theorem for the subsequent
Bakhtin metrical structure; see Bota et al. [4] for details. Let .X; d/ be a
Bakhtin metric space. For each nonempty subset Y of X, denote (as in the
standard metrical case)

diam.Y/ D supfd.u; v/I u; v 2 Yg (the diameter of Y).

Lemma 8. Let .X; d/ be a complete Bakhtin metric space and .FnI n � 0/ be a
nonincreasing sequence

F0 � F1 � F2 � : : : � Fn � : : :

of nonempty closed subsets of X, with

diam.Fn/ ! 0 as n ! 1.
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Then, necessarily,

\fFnI n � 0g contains one and only one point.

(B) Having these precise, we may now proceed to a discussion of the quoted
result. Let X be a nonempty set; and d W X � X ! RC be a Bakhtin metric
over it, endowed with the properties

(FMN-1) d is continuous and .X; d/ is complete.

Further, let f W X ! R [ f1g be an (extended) function with

(FMN-2) f is proper, lsc, bounded from below;

and � W X � X ! RC [ f1g be an (extended) positive function with

(FMN-3) �.x; x/ D 0, 8x 2 X
(FMN-4) for each couple of sequences .yn/ and .zn/ in X, we have

�.yn; zn/ ! 0 implies d.yn; zn/ ! 0

(FMN-5) for each z 2 X, the function y 7! �.y; z/ is lsc.

Let also h W RC ! RC be a function with

(FMN-6) h is continuous and nonincreasing;

and take a sequence .ın/ in R0C. For any x0 2 X and any sequence .xn/ in X
(to be constructed further), let us introduce the notation

A ŒxI m� D f .x/C h.d.x0; x//
Pm

nD0 ın�.x; xn/, x 2 X, m 2 N [ f1g.

The main authors’ result is

Theorem 9. Let the Bakhtin metric d.:; :/, the (extended) function f , and the
(extended) positive function � be taken as in (FMN-1) – (FMN-5). Further, let
h W RC ! RC be a positive function as in (FMN-6) and .ın/ be a sequence in
R0C. Finally, take x0 2 X and " > 0 according to

(FMN-7) f .x0/ � infŒf .X/�C ".

There exists then a sequence .xn/ in X and an element x" in X such that

(I) xn ! x" as n ! 1
(II) h.d.x0; x"//�.x"; xn/ � "=2nı0, for all n 2 N

(III) AŒx"I 1� � f .x0/
(IV) A ŒxI 1� > A Œx"I 1�, for each x ¤ x".

[In fact, this result has also a variant where the case of

fn 2 NI ın > 0g = finite, in the sense: there exists k 2 N, with
(ıi > 0, for 0 � i � k) and (ıj D 0, for j > k)

is being considered; but, this is not important for us.]
The proof proposed by the authors is that given below:
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Proof. Define the following set:

W .x0/ D fx 2 XIA ŒxI 0� � f .x0/g.

By the assumption (FMN-3), we have �.x0; x0/ D 0; so, x0 2 W .x0/. Therefore,
the set W .x0/ is nonempty. From the lower semicontinuity of the functions f and
�.:; x0/ and the continuity of the function h, we deduce that W .x0/ is a closed subset
of X. We can choose the element x1 2 W .x0/ such that

A Œx1I 0� � inffA ŒxI 0�I x 2 W .x0/g C "ı1=2ı0;

and consider the set

W .x1/ D fx 2 W .x0/IA ŒxI 1� � A Œx1I 0�g.

Similarly as above, we obtain that W .x1/ ¤ ; (since x1 2 W .x1/) and W .x1/ is a
nonempty closed subset of W .x0/, which means that W .x1/ is a nonempty closed
subset of X as well.

Using the method of mathematical induction, we can define a point xn�1 2
W .xn�2/ and a set W .xn�1/, such that

W .xn�1/ D fx 2 W .xn�2/IA ŒxI n � 1� � A Œxn�1I n � 2�g.

It is easy to see that W .xn�1/ ¤ ; and W .xn�1/ is a closed subset of X. We can
choose xn 2 W .xn�1/ such that

A ŒxnI n � 1� � inffA ŒxI n � 1�I x 2 W .xn�1/g C "ın=2
nı0

and consider the set

W .xn/ D fx 2 W .xn�1/IA ŒxI n� � A ŒxnI n � 1�g,

which is also a closed subset of X.
Let

(rela-1) z be an arbitrary element of W .xn/.

Then, from the definition of W .xn/, we have the inequality

A ŒzI n� � A ŒxnI n � 1�;

which means that

f .z/ Ch.d.x0; z//ın�.z; xn/C h.d.x0; z//
Pn�1

iD0 ıi�.z; xi/

� f .xn/C h.d.x0; xn//
Pn�1

iD0 ıi�.xn; xi/:

Hence, we obtain that

h.d.x0; z//ın�.z; xn/

� .f .xn/C h.d.x0; xn//
Pn�1

iD0 ıi�.xn; xi// � .f .z/C h.d.x0; z//
Pn�1

iD0 ıi�.z; xi//

� A ŒxnI n � 1� � inffA ŒxI n � 1�I x 2 W .xn�1/g � "ın=2
nı0I
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therefore

(rela-2) h.d.x0; z//�.z; xn/ � "=2nı0.

So, if n ! 1, then

(rela-3) �.z; xn/ ! 0.

Then, from (FMN-4), it follows that

(rela-4) d.z; xn/ ! 0 as n ! 1.

Therefore,

(rela-5) diam.W .xn// ! 0, whenever n ! 1
and we obtain a descending sequence .W .xn/I n � 0/ of nonempty closed subsets
of X, i.e.,

(rela-6) W .x0/ � W .x1/ � : : : � W .xn/ � : : :

such that

diam.W .xn// ! 0, whenever n ! 1.

Applying the Cantor’s intersection theorem for the set sequence .W .xn/I n 2 N/,
we conclude that there exists an x" 2 X such that (see Lemma 8)

\fW .xn/I n 2 Ng D fx"g.

We can observe that

(rela-7) z D x" satisfies (rela-2);

therefore

xn ! x" as n ! 1.

If x ¤ x", then there exists m 2 N such that

(rela-8) A ŒxI m� > A ŒxmI m � 1�.
It is clear that, if q � m, then

A ŒxmI m � 1� � A ŒxqI q � 1� � A Œx"I q � 1�.
Combining this relation with inequality (rela-8), we get the following estimation:

A ŒxI m� � A Œx"I q � 1�.
Hence, if q;m ! 1, we obtain the desired relation (IV).

Comments About the Proof:

(Com-1) The evaluation (rela-2) is a local one; because, for the (arbitrary but)
fixed element z 2 W .xn/, an (inequality) connection like

(Rela-k) h.d.x0; z//�.z; xk/ � "=2kı0
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between z and some term xk (of that sequence) is possible whenever
z 2 W .xk/. This, however, cannot hold for all k � n; i.e., a global
version of (Rela-k) like

(Rela-glo) h.d.x0; z//�.z; xk/ � "=2kı0, for all k � n

cannot hold (in general). To motivate such an assertion, it will suffice
noting that as long as z 2 W .xn/ is an (arbitrary but) fixed element and
.W .xi/I i � 0/ is a descending sequence, it is possible that

z … W .xk/, for some k > n; and then z … W .xh/ for all h � k.

Hence, for a fixed z 2 W .xn/, (Rela-glo) may be false; and, in this case,
evaluation (rela-3) is unacceptable.

(Com-2) If z 2 W .xn/ satisfies

h.d.x0; z// D 0 (not impossible, by the choice of h.:/),

then (rela-2) holds in a trivial way, because, it is retainable with

�.z; xn/= arbitrary in RC [ f1g.

But then, evidently,

(rela-2) H) (rela-3) may be not valid.

(Com-3) As a consequence, (rela-4) is unacceptable as well. This conclusion may
be also confirmed as follows. Assume, by contradiction that (rela-4) is
true. Then, we must have (as z 2 W .xn/ is arbitrary)

limn.xn/ D z, for each z 2 W .xn/;

and this, by the properties of the Bakhtin metric d, gives

diam.W .xn// D 0, wherefrom, diam.W .xk// D 0, for all k � n.

Hence, all reasoning involving Cantor’s intersection theorem is, from
now on, absolutely useless. In fact, the whole iterative procedure
becomes trivial; for, in view of preceding relations,

W .xk/ D fxng, for all k � n; whence x" D xn;

i.e., the final point x" of this process is always identical with the nth
point xn of the same; impossible, as simple examples show.

(Com-4) It follows from the preceding discussion that the main result in Farkas
et al. [16] is not in general true; this affects in a direct way all statements
of the quoted paper.

(Com-5) On the other hand, the main result in Farkas [15] is just a particular
case—obtained with the same argument—of the one due to Farkas et al.
[16], when the ambient Bakhtin metric d.:; :/ is a (standard) metric (on
X). Hence, the underlying result is also unacceptable; this affects all
statements of the quoted paper.
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(Com-6) All these proofs have as common origin the one proposed by Yongxin
and Shuzhong [33] in establishing their main result. As a consequence,
the result in question is (like before) not valid, in general.

(Com-7) The final part of argument in Bota et al. [4] is identical with the one
discussed in (Com-1); hence, it is not acceptable. However, the result
established there is ultimately correct, if one uses a direct approach,
based on the properties of Bakhtin metric d; we do not give details.

References

1. Bakhtin, I.A.: The contraction mapping principle in almost metric spaces (Russian). Funct.
Anal. (Ulianowsk Gos. Ped. Inst.) 30, 26–37 (1989)

2. Bernays, P.: A system of axiomatic set theory: part III. Infinity and enumerability analysis. J.
Symb. Logic 7, 65–89 (1942)

3. Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentia-
bility and to differentiability of convex functions. Trans. Am. Math. Soc. 303, 517–527 (1987)

4. Bota, M., Molnár, A., Varga, C.: On Ekeland’s variational principle in b-metric spaces. Fixed
Point Theory 12, 21–28 (2011)

5. Bourbaki, N.: General Topology (Chapters 1–4). Springer, Berlin (1989)
6. Brezis, H., Browder, F.E.: A general principle on ordered sets in nonlinear functional analysis.

Adv. Math. 21, 355–364 (1976)
7. Brøndsted, A.: Fixed points and partial orders. Proc. Am. Math. Soc. 60, 365–366 (1976)
8. Brunner, N.: Topologische maximalprinzipien. Z. Math. Log. Grundl. Math. 33, 135–139

(1987)
9. Cohen, P.J.: Set Theory and the Continuum Hypothesis. Benjamin, New York (1966)

10. Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1,
5–11 (1993)

11. Deville, R., Godefroy, G., Zizler, V.: A smooth variational principle with applications to
Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 111, 197–212 (1993)

12. Dodu, J., Morillon, M.: The Hahn-Banach property and the axiom of choice. Math. Log. Q.
45, 299–314 (1999)

13. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. (New Ser.) 1, 443–474
(1979)

14. Engelking, R.: General Topology. Heldermann, Berlin (1989)
15. Farkas, C.: A generalized form of Ekeland’s variational principle. An. Şt. Univ. “Ovidius”

Constanţa (Mat.) 20, 101–112 (2012)
16. Farkas, C., Molnár, A.E., Nagy, S.: A generalized variational principle in b-metric spaces. Le

Matematiche 69, 205–221 (2014)
17. Feng, Y., Liu, S.: Fixed point theorems for multi-valued contractive mappings and multi-valued

Caristi type mappings. J. Math. Anal. Appl. 317, 103–112 (2006)
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Compositional Yang-Hilbert-Type Integral
Inequalities and Operators

Bicheng Yang

In Honor of Constantin Carathéodory

Abstract By using the Real and Functional Analysis and estimating the weight
functions, we build two kinds of compositional Yang-Hilbert-type integral inequali-
ties with the best possible constant factors. The equivalent forms and the reverses are
also considered. Four kinds of compositional Yang-Hilbert-type integral operators
are defined and the related composition formulas are given.

1 Introduction

If f .x/; g.y/ � 0; f ; g 2 L2.RC/; jjf jj2; jjgjj2 > 0, then we have the following
well-known Hilbert’s integral inequality and the equivalent form, which published
in 1911 (cf. [1]):

Z 1

0

Z 1

0

f .x/g.y/

x C y
dxdy < 
jjf jj2jjgjj2; (1)

"Z 1

0

�Z 1

0

f .x/

x C y
dx

�2
dy

# 1
2

< 
jjf jj2; (2)

where the constant factor 
 is the best possible.
In 1925, by introducing a pair of conjugate exponents .p; q/ . 1p C 1

q D 1/; Hardy
et al. [2] gave extensions of (1) and (2) as follows:
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For p > 1; f .x/; g.y/ � 0; f 2 Lp.RC/; g 2 Lq.RC/; jjf jjp; jjgjjq > 0, we have
the following Hardy-Hilbert’s integral inequality and the equivalent form

Z 1

0

Z 1

0

f .x/g.y/

x C y
dxdy <




sin.
=p/
jjf jjpjjgjjq; (3)


Z 1

0

�Z 1

0

f .x/

x C y
dx

�p

dy

� 1
p

<



sin.
=p/
jjf jjp; (4)

with the best possible constant factor 

sin.
=p/ .

Definition 1. If � 2 R D .�1;1/;RC D .0;1/; k�.x; y/ is a measurable
function in R2C D RC � RC; satisfying for any t; x; y 2 RC;

k�.tx; ty/ D t��k�.x; y/; (5)

then we call k�.x; y/ as homogeneous function of degree �� in R2C:

In 1934, by introducing a general nonnegative homogeneous function k1.x; y/ of
degree -1, Hardy et al. [3] gave extensions of (3) and (4) as follows:

For p > 1; 1p C 1
q D 1;

kp D
Z 1

0

k1.u; 1/u
�1
p du 2 RC;

f .x/; g.y/ � 0; f 2 Lp.RC/; g 2 Lq.RC/; jjf jjp; jjgjjq > 0, we have the following
Hardy-Hilbert-type integral inequality and the equivalent form

Z 1

0

Z 1

0

k1.x; y/f .x/g.y/dxdy < kpjjf jjpjjgjjq; (6)


Z 1

0

�Z 1

0

k1.x; y/f .x/dx

�p

dy

� 1
p

< kpjjf jjp; (7)

where the constant factor kp is the best possible.
Some applications of Hardy-Hilbert-type inequalities are provided in [3, 4].
In 1998, by introducing an independent parameter � 2 .0; 1�; Yang [5] gave

an extension of (3) with the homogeneous kernel of degree �� as 1

.xCy/�
: In 2009,

by introducing a general nonnegative homogeneous function k�.x; y/ of degree ��
and adding another pair of conjugate exponents .r; s/ . 1r C 1

s D 1/; Yang [6] gave
extensions of (6) and (7) as follows:

For p; r > 1; � 2 RC; �.x/ D xp.1� �
r /�1;  .y/ D yq.1� �

s /�1.x; y 2 RC/;

k�.r/ D
Z 1

0

k�.u; 1/u
�
r �1du 2 RC;

f .x/; g.y/ � 0;
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f 2 Lp;�.RC/ D
(

f I jjf jjp;� D
�Z 1

0

�.x/jf .x/jpdx

� 1
p

< 1
)

;

g 2 Lq; .RC/; jjf jjp;� ; jjgjjq; > 0, we have the following Yang-Hilbert-type
integral inequality and the equivalent form

Z 1

0

Z 1

0

k�.x; y/f .x/g.y/dxdy < k�.r/jjf jjp;� jjgjjq; ; (8)


Z 1

0

y
p�
s �1

�Z 1

0

k�.x; y/f .x/dx

�p

dy

� 1
p

< k�.r/jjf jjp;� ; (9)

where the constant factor k�.r/ is the best possible.

Remark 1. When � D 1; r D q; s D p; (8) and (9) reduce respectively to (6) and (7).
Hence, Yang-Hilbert-type integral inequalities are extensions of Hardy-Hilbert-type
integral inequalities with multiparameters and a best possible constant factor.

Using (2), we may define Hilbert’s integral operator T W L2.RC/ ! L2.RC/ as
follows (cf. [7]):

For any f 2 L2.RC/; there exists a unique Tf 2 L2.RC/; satisfying

Tf .y/ D
Z 1

0

f .x/

x C y
dx.y 2 RC/:

Then by (2), we have jjTf jj2 � 
jjf jj2; namely, T is a bounded linear operator
satisfying jjTjj � 
 . Since the constant factor in (2) is the best possible, it follows
that jjTjj D 
:

About the discrete analogues of (1) and (2), in 1950, Wilhelm [8] gave a similar
operator expression. In 2002, by using the operator theory, Zhang [9] gave some
improvements of (2) and the discrete analogues. In 2006–2009, [10] considered a
new Hilbert-type operator and its applications, and [11, 12] gave some multiple
Hilbert-type operator expressions.

By using (9), we can define Yang-Hilbert-type integral operator T W Lp;'.RC/ !
Lp;'.RC/ as follows (cf. [6]):

For any f 2 Lp;�.RC/; there exists a unique Tf 2 Lp;�.RC/; satisfying

Tf .y/ D y��1
Z 1

0

f .x/

x C y
dx.y 2 RC/: (10)

Then by (9), we have jjTf jjp;� � k�.r/jjf jjp;� ; namely, T is a bounded linear operator
satisfying jjTjj � k�.r/. Since the constant factor in (9) is the best possible, we have
jjTjj D k�.r/:

Some other kinds of Yang-Hilbert-type inequalities are provided by [13–19]
On the composition of two Hilbert-type operators, the main objective is to build

a few expression formulas as

jjT1 � T2jj D jjT1jj � jjT2jj: (11)
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Recently, [20] published a composition of two discrete Hilbert-Hardy-type operators
with the particular kernels; [21] published a composition of two half-discrete
Hilbert-Hardy-type operators with the particular kernels, and [22, 23] published
some compositions of two Hardy-type integral operators with the particular kernels.
[24] provided a composition of two general Hilbert-Hardy-type integral operators.
These works are hard and interested.

By using the way of Real and Functional Analysis and estimating the weight
functions, we build two kinds of compositional Yang-Hilbert-type integral inequali-
ties with the best possible constant factors. The equivalent forms and the reverses are
also considered. Four kinds of compositional Yang-Hilbert-type integral operators
are defined and the related composition formulas such as (11) are given, which are
some extensions of the results in [22, 23] and [24].

2 General Yang-Hilbert-Type Integral Inequalities
and the Operator Expressions

First, for the needing of Sects. 3 and 5, we give a weight function and study some
general Yang-Hilbert-type integral inequalities with multiparameters and the best
constant factors, which were partly mentioned in [6]. The equivalent forms, the
reverse, the operator expressions, and a large number of particular examples are
also discussed.

2.1 A Weight Function and a Lemma

Definition 2. If � 2 R; h.t/ is a nonnegative measurable function in RC; define
the following weight function:

!.�; y/ WD y�
Z 1

0

h.xy/x��1dx.y 2 RC/: (12)

Setting t D xy in (12), we find

!.�; y/ D k.�/ WD
Z 1

0

h.t/t��1dt: (13)

Lemma 1. If p > 0.p ¤ 1/; 1p C 1
q D 1; � 2 R; k.�/ is defined by (13), both h.t/

and f .t/ are nonnegative measurable functions in RC; then, (i) for p > 1; we have
the following inequality:

J WD

Z 1

0

yp��1
�Z 1

0

h.xy/f .x/dx

�p

dy

� 1
p

� k.�/

�Z 1

0

xp.1��/�1f p.x/dx

� 1
p

I (14)
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(ii) for 0 < p < 1; we have the reverse of (14).

Proof. (i) By Hölder’s inequality with weight (cf. [25]) and (12), it follows that
Z 1

0

h.xy/f .x/dx

D
Z 1

0

h.xy/



x.1��/=q

y.1��/=p
f .x/

� 

y.1��/=p

x.1��/=q

�
dx

�

Z 1

0

h.xy/
x.1��/p=q

y1��
f p.x/dx

� 1
p

�

Z 1

0

h.xy/
y.1��/q=p

x1��
dx

� 1
q

D .!.�; y//
1
q y

1
p ��


Z 1

0

h.xy/
x.1��/.p�1/

y1��
f p.x/dx

� 1
p

: (15)

Then by (13), (12), and Fubini theorem (cf. [26]), we have

Jp � kp�1.�/
Z 1

0

Z 1

0

h.xy/
x.1��/.p�1/

y1��
f p.x/dxdy

D kp�1.�/
Z 1

0


Z 1

0

h.xy/
x.1��/.p�1/

y1��
dy

�
f p.x/dx

D kp�1.�/
Z 1

0

!.�; x/xp.1��/�1f p.x/dx: (16)

Still by (13), we obtain (14).
(ii) For 0 < p < 1; by the reverse Hölder’s inequality with weight (cf. [25]), (12)

and (13), we can obtain the reverse of ( 15) and (16). Then we find the reverse
of (14) by using (13).

The lemma is proved. ut

2.2 Two Equivalent Inequalities
with the Nonhomogeneous Kernel

Theorem 1. Suppose that p > 1; 1p C 1
q D 1; h.t/ � 0;

k.�/ D
Z 1

0

h.t/t��1dt 2 RC:

If f .x/; g.y/ � 0; satisfying

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1; 0 <

Z 1

0

yq.1��/�1gq.y/dy < 1;
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then we have the following equivalent inequalities:

I WD
Z 1

0

Z 1

0

h.xy/f .x/g.y/dxdy

< k.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (17)

J D

Z 1

0

yp��1
�Z 1

0

h.xy/f .x/dx

�p

dy

� 1
p

< k.�/

�Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (18)

where the constant factor k.�/ is the best possible.

Proof. We first proved that (15) keeps the form of strict inequality for any y 2 RC.
Otherwise, there exists a y > 0; such that (15) keeps the form of equality. Then,
there exist two constants A and B; such that they are not all zero, and (cf. [25])

A
x.1��/p=q

y1��
f p.x/ D B

y.1��/q=p

x1��
a.e. in RC:

If A D 0; then B D 0;which is impossible. Assuming that A ¤ 0; then it follows that

xp.1��/�1f p.x/ D yq.1��/ B

Ax
a.e. in RC;

which contradicts the fact that

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1;

in virtue of
R1
0

1
x dx D 1: Hence, both (15) and (16) keep the form of strict

inequalities, and then we have (18).
By Hölder’s inequality (cf. [25]), we find

I D
Z 1

0

�
y�� 1

p

Z 1

0

h.xy/f .x/dx

�
.y

1
p ��g.y//dy

� J


Z 1

0

yq.1��/�1gq.y/dy

� 1
q

: (19)

Then by (18), we have (17).
On the other hand, assuming that (17) is valid, we set

g.y/ WD yp��1
�Z 1

0

h.xy/f .x/dx

�p�1
; y 2 RC:
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Then we find

Jp D
Z 1

0

yq.1��/�1gq.y/dy:

By (16), in view of

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1;

it follows that J < 1: If J D 0; then, (18) is trivially valid; if J > 0; then by (17),
we have

0 <

Z 1

0

yq.1��/�1gq.y/dy D Jp D I

< k.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

< 1;

J D

Z 1

0

yq.1��/�1gq.y/dy

� 1
p

< k.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

;

and then (18) follows, which is equivalent to (17).
For any n 2 N D f1; 2; � � � g, we set functions fn.x/ and gn.y/ as follows:

fn.x/ WD
(

0; x 2 .0; 1/;
x�� 1

np �1
; x 2 Œ1;1/;

gn.y/ WD
(

y�C 1
nq �1

; y 2 .0; 1�;
0; y 2 .1;1/:

Then we find

Ln WD

Z 1

0

xp.1��/�1f p
n .x/dx

� 1
p

Z 1

0

yq.1��/�1gq
n.y/dy

� 1
q

D
�Z 1

1

x� 1
n �1dx

� 1
p
�Z 1

0

y
1
n �1dy

� 1
q

D n:

In view of Fubini theorem (cf. [26]), it follows that

In WD
Z 1

0

Z 1

0

h.xy/fn.x/gn.y/dxdy

D
Z 1

1

x�� 1
np �1

�Z 1

0

h.xy/y�C 1
nq �1dy

�
dx
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D
Z 1

1

x� 1
n �1

�Z x

0

h.t/t�C 1
nq �1dt

�
dx

D
Z 1

1

x� 1
n �1

�Z 1

0

h.t/t�C 1
nq �1dt C

Z x

1

h.t/t�C 1
nq �1dt

�
dx

D n
Z 1

0

h.t/t�C 1
nq �1dt C

Z 1

1

x� 1
n �1

�Z x

1

h.t/t�C 1
nq �1dt

�
dx

D n
Z 1

0

h.t/t�C 1
nq �1dt C

Z 1

1

�Z 1

t
x� 1

n �1dx

�
h.t/t�C 1

nq �1dt

D n

�Z 1

0

h.t/t�C 1
nq �1dt C

Z 1

1

h.t/t�� 1
np �1dt

�
:

If there exists a positive number k � k.�/; such that (17) is still valid when
replacing k.�/ to k; then in particular, it follows that 1n In < k 1n Ln; and

Z 1

0

h.t/t�C 1
nq �1dt C

Z 1

1

h.t/t�� 1
np �1dt < k:

Since both fh.t/t�C 1
nq �1g1

nD1.t 2 .0; 1�/ and fh.t/t�� 1
np �1g1

nD1.t 2 .1;1// are
nonnegative and increasing, then by Levi theorem (cf. [26]), it follows that

k.�/ D
Z 1

0

h.t/t��1dt C
Z 1

1

h.t/t��1dt

D lim
n!1

�Z 1

0

h.t/t�C 1
nq �1dt C

Z 1

1

h.t/t�� 1
np �1dt

�
� k;

and then k D k.�/ is the best possible constant factor of (17).
The constant factor in (18) is still the best possible. Otherwise, we would reach

a contradiction by (19) that the constant factor in (17) is not the best possible.
The theorem is proved. ut

Theorem 2. Replacing p > 1 to 0 < p < 1 in Theorem 1, we have the equivalent
reverses of (17) and (18). If there exists a constant ı0 > 0; such that for any e� 2
.� � ı0; ��; k.e�/ 2 RC; then the constant factor in the reverses of (17) and (18) is
the best possible.

Proof. By Lemma 1 and the reverse Hölder’s inequality, we have the reverses
of (17)–(19). By the same way, we can set g.y/ as Theorem 1 and prove that the
reverses of (17) and (18) are equivalent.

For any n > 2
ı0jqj .n 2 N/; we set fn.x/ and gn.y/ as Theorem 1. If there exists a

positive number k � k.�/; such that the reverse of (17) is valid when replacing k.�/
to k; then in particular, it follows that 1n In > k 1n Ln; and

Z 1

0

h.t/t�C 1
nq �1dt C

Z 1

1

h.t/t�� 1
np �1dt > k: (20)
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Since fh.t/t�� 1
np �1g1

nD1.t 2 .1;1// is still nonnegative and increasing, then by
Levi theorem, it follows that

lim
n!1

Z 1

1

h.t/t�� 1
np �1dt D

Z 1

1

h.t/t��1dt:

Since for n > 2
ı0jqj ;

0 � h.t/t�C 1
nq �1 � h.t/t.�� ı0

2 /�1.t 2 .0; 1�/;

and

0 �
Z 1

0

h.t/t.�� ı0
2 /�1dt � k.� � ı0

2
/ < 1;

then by Lebesgue dominated convergence theorem (cf. [26]), it follows that

lim
n!1

Z 1

0

h.t/t�C 1
nq �1dt D

Z 1

0

h.t/t��1dt:

In view of the above results and (20), we have

k.�/ D lim
n!1

�Z 1

0

h.t/t�C 1
nq �1dt C

Z 1

1

h.t/t�� 1
np �1dt

�
� k;

and then k D k.�/ is the best possible constant factor in the reverse of (17).
By the same way, we can prove that the constant factor in the reverse of ( 18) is

the best possible by using the reverse of (19).
The theorem is proved. ut
Assuming that h.xy/ D 0.0 < 1

y � x/; we find h.t/ D 0.t � 1/ and

k.�/ D k1.�/ WD
Z 1

0

h.t/t��1dt:

In view of Theorems 1 and 2, we have

Corollary 1. Suppose that p > 0.p ¤ 1/; 1p C 1
q D 1; h.t/ � 0; k1.�/ 2

RC; f .x/; g.y/ � 0; satisfying

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1; 0 <

Z 1

0

yq.1��/�1gq.y/dy < 1:
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(i) If p > 1; then we have the following equivalent inequalities:

Z 1

0

Z 1
y

0

h.xy/f .x/g.y/dxdy

< k1.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (21)

"Z 1

0

yp��1
 Z 1

y

0

h.xy/f .x/dx

!p

dy

# 1
p

< k1.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (22)

where the constant factor k1.�/ is the best possible.
(ii) If 0 < p < 1; then we have the equivalent reverses of (21) and ( 22). Assuming

that there exists a constant ı0 > 0; such that for any e� 2 .� � ı0; ��;

k1.e�/ 2 RC; then the constant factor in the reverses of (21) and (22) is the
best possible.

Assuming that h.xy/ D 0.0 < x � 1
y /; we find h.t/ D 0.0 < t � 1/ and

k.�/ D k2.�/ WD
Z 1

1

h.t/t��1dt:

In view of Theorems 1 and 2, we have

Corollary 2. Suppose that p > 0.p ¤ 1/; 1p C 1
q D 1; h.t/ � 0; k2.�/ 2 RC;

f .x/; g.y/ � 0; satisfying

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1; 0 <

Z 1

0

yq.1��/�1gq.y/dy < 1:

(i) If p > 1; then we have the following equivalent inequalities:
Z 1

0

Z 1
1
y

h.xy/f .x/g.y/dxdy

< k2.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (23)

"Z 1

0

yp��1
 Z 1

1
y

h.xy/f .x/dx

!p

dy

# 1
p

< k2.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (24)

where the constant factor k2.�/ is the best possible.
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(ii) If 0 < p < 1; then we have the equivalent reverses of (23) and ( 24). Assuming
that there exists a constant ı0 > 0; such that for any e� 2 .� � ı0; ��;

k2.e�/ 2 RC; then the constant factor in the reverses of (23) and (24) is the
best possible.

Remark 2. Setting By;0 WD .0;1/;By;1 WD .0; 1y /;By;2 WD . 1y ;1/.y > 0/; and
k0.�/ D k.�/; then we can reform (17), (21), and (23) as follows:

Z 1

0

Z

By;j

h.xy/f .x/g.y/dxdy

< kj.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (25)

where the constant factors kj.�/.j D 0; 1; 2/ are the best possible. Also we can
reform (18), (22), and (24) as follows:

"Z 1

0

yp��1
 Z

By;j

h.xy/f .x/dx

!p

dy

# 1
p

< kj.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (26)

where the constant factors kj.�/.j D 0; 1; 2/ are the best possible.

2.3 Two Equivalent Inequalities
with the Homogeneous Kernel

Replacing x to 1
x in the inequalities of Theorems 1 and 2, setting h.t/ as k�.1; t/;

since

h
�y

x

	
D k�

�
1;

y

x

	
D x�k�.x; y/;

also replacing f . 1x / to x2��f .x/; by simplification, we have

Theorem 3. Suppose that p > 0.p ¤ 1/; 1p C 1
q D 1; �; � 2 R; �C� D �; k�.x; y/

is a nonnegative homogeneous function of degree �� in R2C;

k�.�/ WD
Z 1

0

k�.t; 1/t
��1dt 2 RC;
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f .x/; g.y/ � 0; satisfying

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1; 0 <

Z 1

0

gq.1��/�1.y/dy < 1:

(i) If p > 1; then we have the following equivalent inequalities:

Z 1

0

Z 1

0

k�.x; y/f .x/g.y/dxdy

< k�.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (27)


Z 1

0

yp��1
�Z 1

0

k�.x; y/f .x/dx

�p

dy

� 1
p

< k�.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (28)

where the constant factor k�.�/ is the best possible.
(ii) If 0 < p < 1; then we have the equivalent reverses of (27) and ( 28). Assuming

that there exists a constant ı0 > 0; such that for any e� 2 Œ�; � C ı0/;

k�.e�/ 2 RC; then the constant factor in the reverses of (27) and (28) is the
best possible.

Proof. For p > 1, it is evident that (27) and (28) are value and equivalent. If the
constant factor k�.�/ in (27) is not the best possible, then replacing x to 1

x and f . 1x /
to x2��f .x/ in (27), setting k�.1; t/ D h.t/, we would reach a contradiction that the
constant factor k.�/.D k�.�// in (17) is not the best possible. By the same way, we
can prove that the other parts of this theorem are valid. ut

Assuming that k�.x; y/ D 0.x � y > 0/; we find k�.t; 1/ D 0.t � 1/ and

k�.�/ D k�;1.�/ WD
Z 1

0

k�.t; 1/t
��1dt:

In view of Theorem 3, we have

Corollary 3. Suppose that p > 0.p ¤ 1/; 1p C 1
q D 1; �; � 2 R; �C � D �; k�

.x; y/ is a nonnegative homogeneous function of degree �� in R2C; k�;1.�/ 2
RC; f .x/; g.y/ � 0; satisfying

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1; 0 <

Z 1

0

gq.1��/�1.y/dy < 1:
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(i) If p > 1; then we have the following equivalent inequalities:

Z 1

0

Z y

0

k�.x; y/f .x/g.y/dxdy

< k�;1.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (29)


Z 1

0

yp��1
�Z y

0

k�.x; y/f .x/dx

�p

dy

� 1
p

< k�;1.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (30)

where the constant factor k�;1.�/ is the best possible.
(ii) If 0 < p < 1; then we have the equivalent reverses of (29) and ( 30). Assuming

that there exists a constant ı0 > 0; such that for any e� 2 Œ�; � C ı0/;

k�;1.e�/ 2 RC; then the constant factor in the reverses of (29) and (30) is the
best possible.

Assuming that k�.x; y/ D 0.0 < x � y/; we find k�.t; 1/ D 0.0 < t � 1/ and

k�.�/ D k�;2.�/ WD
Z 1

1

k�.t; 1/t
��1dt:

In view of Theorem 3, we have

Corollary 4. Suppose that p > 0.p ¤ 1/; 1p C 1
q D 1; �; � 2 R; � C � D �;

k�.x; y/ is a nonnegative homogeneous function of degree �� in R2C; k�;2.�/ 2
RC; f .x/; g.y/ � 0; satisfying

0 <

Z 1

0

xp.1��/�1f p.x/dx < 1; 0 <

Z 1

0

gq.1��/�1.y/dy < 1:

(i) If p > 1; then we have the following equivalent inequalities:
Z 1

0

Z 1

y
k�.x; y/f .x/g.y/dxdy

< k�;2.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (31)


Z 1

0

yp��1
�Z 1

y
k�.x; y/f .x/dx

�p

dy

� 1
p

< k�;2.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (32)

where the constant factor k�;2.�/ is the best possible.
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(ii) If 0 < p < 1; then we have the equivalent reverses of (31) and ( 32). Assuming
that there exists a constant ı0 > 0; such that for any e� 2 Œ�; � C ı0/;

k�;2.e�/ 2 RC; then the constant factor in the reverses of (31) and (32) is the
best possible.

Remark 3. Setting Ay;0 WD .0;1/;Ay;1 WD .0; y/;Ay;2 WD .y;1/.y > 0/; and
k�;0.�/ D k�.�/; then we can reform (27), (29), and ( 31) as follows:

Z 1

0

Z

Ay;i

k�.x; y/f .x/g.y/dxdy

< k�;i.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

Z 1

0

yq.1��/�1gq.y/dy

� 1
q

; (33)

where the constant factors k�;i.�/.i D 0; 1; 2/ are the best possible. We can also
reform (28), (30), and (32) as follows:

"Z 1

0

yp��1
 Z

Ay;i

k�.x; y/f .x/dx

!p

dy

# 1
p

< k�;i.�/


Z 1

0

xp.1��/�1f p.x/dx

� 1
p

; (34)

where the constant factors k�;i.�/.i D 0; 1; 2/ are the best possible.

2.4 Operator Expressions and Some Examples on the Norms

Suppose that p > 1; 1p C 1
q D 1; �; � 2 R; � C � D �: We set the following

functions:

'.x/ WD xp.1��/�1;  .y/ WD yq.1��/�1; �.x/ WD xp.1��/�1.x; y 2 RC/;

wherefrom  1�p.y/ D yp��1: Define the following real normed linear space:

Lp;'.RC/ WD
(

f I jjf jjp;' WD
�Z 1

0

'.x/jf .x/jpdx

� 1
p

< 1
)

;

wherefrom,

Lp;�.RC/ D
(

f I jjf jjp;� WD
�Z 1

0

�.x/jf .x/jpdx

� 1
p

< 1
)

;
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Lq; .RC/ D
(

gI jjgjjq; WD
�Z 1

0

 .y/jg.y/jqdy

� 1
q

< 1
)

;

Lp; 1�p.RC/ D
(

hI jjhjjp; 1�p WD
�Z 1

0

 1�p.y/jh.y/jpdy

� 1
p

< 1
)

:

Note. For 0 < p < 1; we still use the above formal symbols in the following.

(a) In view of Remark 2, for f 2 Lp;'.RC/; setting

Hj.y/ WD
Z

By;j

h.xy/f .x/dx.y 2 RCI j D 0; 1; 2/;

by (26), we have Hj 2 Lp; 1�p.RC/ and

jjHjjjp; 1�p D
�Z 1

0

 1�p.y/Hp
j .y/dy

� 1
p

� kj.�/jjf jjp;' < 1: (35)

Definition 3. For any j D 0; 1; 2; define a general Yang-Hilbert-type integral
operators with the nonhomogeneous kernel Tj W Lp;'.RC/ ! Lp; 1�p.RC/ as
follows:

For any f 2 Lp;'.RC/; there exists a unique Tjf D Hj 2 Lp; 1�p.RC/;
satisfying for any y 2 RC; Tjf .y/ D Hj.y/:

In view of (35), it follows that

jjTjf jjp; 1�p D jjHjjjp; 1�p � kj.�/jjf jjp;' ;

and then the operator Tj is bounded satisfying

jjTjjj D sup
f .¤�/2Lp;' .RC/

jjTjf jjp; 1�p

jjf jjp;' � kj.�/:

Since the constant factor kj.�/ in (35) is the best possible, we have

jjTjjj D kj.�/: (36)

If we define the formal inner product of Tjf and g.2 Lq; .RC// as

.Tjf ; g/ WD
Z 1

0

 Z

By;j

h.xy/f .x/dx

!

g.y/dy

D
Z 1

0

Z

By;j

h.xy/f .x/g.y/dxdy;
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then we can rewrite (25) and (26) as follows:
For any j D 0; 1; 2; we have the following equivalent inequalities:

.Tjf ; g/ < jjTjjj � jjf jjp;' jjgjjq; ; (37)

jjTjf jjp; 1�p < jjTjjj � jjf jjp;' ; (38)

where the constant factor jjTjjj is the best possible.
(b) In view of Remark 3, for f 2 Lp;�.RC/; setting

Ki.y/ WD
Z

Ay;i

k�.x; y/f .x/dx.y 2 RCI i D 0; 1; 2/;

by (34), we have

jjKijjp; 1�p WD
�Z 1

0

 1�p.y/Kp
i .y/dy

� 1
p

� k�;i.�/jjf jjp;� < 1: (39)

Definition 4. For any i D 0; 1; 2; define a general Yang-Hilbert-type integral
operators with the homogeneous kerneleTi W Lp;�.RC/ ! Lp; 1�p.RC/ as follows,

For any f 2 Lp;�.RC/; there exists a uniqueeTif D Ki 2 Lp; 1�p.RC/; satisfying
for any y 2 RC;eTif .y/ D Ki.y/:

In view of (39), it follows that

jjeTif jjp; 1�p D jjKijjp; 1�p � k�;i.�/jjf jjp;� ;

and then the operatoreTi is bounded satisfying

jjeTijj D sup
f .¤�/2Lp;� .RC/

jjeTif jjp; 1�p

jjf jjp;� � k�;i.�/:

Since the constant factor k�;i.�/ in (39) is the best possible, we have

jjeTijj D k�;i.�/: (40)

If we define the formal inner product ofeTif and g.2 Lq; .RC// as follows:

.eTif ; g/ WD
Z 1

0

 Z

Ay;i

k�.x; y/f .x/dx

!

g.y/dy

D
Z 1

0

Z

Ay;i

k�.x; y/f .x/g.y/dxdy;

then we can rewrite (33) and (34) as follows.
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For any i D 0; 1; 2; we have the following equivalent inequalities:

.eTif ; g/ < jjeTijj � jjf jjp;� jjgjjq; ; (41)

jjeTif jjp; 1�p < jjeTijj � jjf jjp;� ; (42)

where the constant factor jjeTijj is the best possible.

Example 1. (a) We set

h.t/ D k�.1; t/ D 1

.1C t/�
.�; � > 0;�C � D �/:

Then we have

h.xy/ D 1

.1C xy/�
; k�.x; y/ D 1

.x C y/�

and obtain

k.�/ D k�.�/ D
Z 1

0

t��1

.1C t/�
dt D B.�; �/ 2 RC:

In view of (36) and (40), we have

jjT0jj D jjeT0jj D B.�; �/:

(b) We set

h.t/ D k�.1; t/ D ln t

t� � 1.�; � > 0;�C � D �/:

Then we have

h.xy/ D ln.xy/

.xy/� � 1 ; k�.x; y/ D ln.y=x/

y� � x�

and obtain

k.�/ D k�.�/ D
Z 1

0

.ln t/t��1

t� � 1 dt

D 1

�2

Z 1

0

.ln u/u.�=�/�1

u � 1 du

D






� sin
.�=�/

�2
2 RC:
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In view of (36) and (40), we have

jjT0jj D jjeT0jj D






� sin
.�=�/

�2
:

(c) We set

h.t/ D k�.1; t/ D j ln tjˇ
.maxf1; tg/�

.ˇ > �1; �; � > 0;�C � D �/: Then we have

h.xy/ D j ln.xy/jˇ
.maxf1; xyg/� ; k�.x; y/ D j ln.y=x/jˇ

.maxfx; yg/�

and obtain

k.�/ D k�.�/ D
Z 1

0

j ln tjˇt��1

.maxf1; tg/� dt

D
Z 1

0

.� ln t/ˇt��1dt C
Z 1

1

.ln t/ˇt��1

t�
dt

D
Z 1

0

.� ln t/ˇ.t��1 C t��1/dt D
�

1

�ˇC1
1

�ˇC1

�Z 1

0

vˇe�vdv

D
�

1

�ˇC1 C 1

�ˇC1

�
	 .ˇ C 1/ 2 RC:

In view of (36) and (40), we have

jjT0jj D jjeT0jj D
�

1

�ˇC1 C 1

�ˇC1

�
	 .ˇ C 1/:

We still can find that

jjT1jj D jjeT2jj D 1

�ˇC1 	 .ˇ C 1/;

jjT2jj D jjeT1jj D 1

�ˇC1 	 .ˇ C 1/:

(d) We set

h.t/ D k�.1; t/ D j ln tjˇ
.minf1; tg/�
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.ˇ > �1; �; � < 0;�C � D �/: Then we have

h.xy/ D j ln.xy/jˇ
.minf1; xyg/� ; k�.x; y/ D j ln.y=x/jˇ

.minfx; yg/�

and obtain

k.�/ D k�.�/ D
Z 1

0

j ln tjˇt��1

.minf1; tg/� dt

D
Z 1

0

.� ln t/ˇt��1

t�
dt C

Z 1

1

.ln t/ˇt��1dt

D
Z 1

0

.� ln t/ˇ.t���1 C t���1/dt

D



1

.��/ˇC1
1

.��/ˇC1

� Z 1

0

vˇe�vdv

D



1

.��/ˇC1 C 1

.��/ˇC1

�
	 .ˇ C 1/ 2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D



1

.��/ˇC1 C 1

.��/ˇC1

�
	 .ˇ C 1/:

We still can find that

jjT1jj D jjeT2jj D 1

.��/ˇC1 	 .ˇ C 1/;

jjT2jj D jjeT1jj D 1

.��/ˇC1 	 .ˇ C 1/:

(e) We set

h.t/ D k�.1; t/ D j ln tjˇ
1C t�

.ˇ > �1; �; � > 0;�C � D �/: Then we have

h.xy/ D j ln.xy/jˇ
1C .xy/�

; k�.x; y/ D j ln.y=x/jˇ
x� C y�

and obtain by Lebesgue term by term theorem that
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k.�/ D k�.�/ D
Z 1

0

j ln tjˇt��1

1C t�
dt

D
Z 1

0

.� ln t/ˇt��1

t� C 1
dt C

Z 1

1

.ln t/ˇt��1

t� C 1
dt

D
Z 1

0

.� ln t/ˇ.t��1 C t��1/
t� C 1

dt

D
Z 1

0

.� ln t/ˇ
1X

kD0
.�1/ktk�.t��1 C t��1/dt

D
Z 1

0

.� ln t/ˇ
1X

kD0
Œt2k� � t.2kC1/��.t��1 C t��1/dt

D
Z 1

0

.� ln t/ˇ
1X

kD0
t2k�.t��1 C t��1/.1 � t�/dt

D
1X

kD0

Z 1

0

.� ln t/ˇt2k�.t��1 C t��1/.1 � t�/dt

D
1X

kD0
.�1/k

Z 1

0

.� ln t/ˇ.tk�C��1 C tk�C��1/dt

D
1X

kD0
.�1/k



1

.k�C �/ˇC1 C 1

.k�C �/ˇC1

�
	 .ˇ C 1/ 2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D
1X

kD0
.�1/k



1

.k�C �/ˇC1 C 1

.k�C �/ˇC1

�
	 .ˇ C 1/:

We still can find that

jjT1jj D jjeT2jj D 	 .ˇ C 1/

1X

kD0
.�1/k 1

.k�C �/ˇC1 ;

jjT2jj D jjeT1jj D 	 .ˇ C 1/

1X

kD0
.�1/k 1

.k�C �/ˇC1 :

(f) We set

h.t/ D k�.t; 1/ D .minf1; tg/�
j1 � tj�C�
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. � > � minf�; �g; �C � D � < 1 � �/: Then we have

h.xy/ D .minf1; xyg/�
j1 � xyj�C� ; k�.x; y/ D .minfx; yg/�

jx � yj�C�

and obtain

k.�/ D k�.�/ D
Z 1

0

.minf1; tg/�
j1 � tj�C� t��1dt

D
Z 1

0

t�C��1

.1 � t/�C� dt C
Z 1

1

t��1

.t � 1/�C� dt

D
Z 1

0

t�C��1 C t�C��1

.1 � t/�C� dt

D B.1 � � � �; �C �/C B.1 � � � �; �C �/ 2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D B.1 � � � �; �C �/C B.1 � � � �; �C �/:

We still can find that

jjT1jj D jjeT2jj D B.1 � � � �; �C �/;

jjT2jj D jjeT1jj D B.1 � � � �; �C �/:

(g) We set

h.t/ D k�.1; t/ D .minft; 1g/�j ln tjˇ
.maxft; 1g/�C�

.� > � minf�; �g; �C � D �; ˇ > �1/: Then we have

h.xy/ D .minf1; xyg/�j ln xyjˇ
.maxf1; xyg/�C� ;

k�.x; y/ D .minfx; yg/�j ln y=xjˇ
.maxfx; yg/�C�

and obtain

k.�/ D k�.�/ D
Z 1

0

.minf1; tg/�j ln tjˇ
.maxf1; tg/�C� t��1dt

D
Z 1

0

.� ln t/ˇt�C��1dt C
Z 1

1

.ln t/ˇ
t��1

t�C� dt
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D
Z 1

0

.� ln t/ˇ.t�C��1 C t�C��1/dt

D



1

.� C �/ˇC1 C 1

.�C �/ˇC1

�
	 .ˇ C 1/ 2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D



1

.� C �/ˇC1 C 1

.�C �/ˇC1

�
	 .ˇ C 1/:

We still can find that

jjT1jj D jjeT2jj D 1

.� C �/ˇC1 	 .ˇ C 1/;

jjT2jj D jjeT1jj D 1

.�C �/ˇC1 	 .ˇ C 1/:

Example 2. (a) We set

h.t/ D k�.1; t/ D 1
Qs

kD1.maxfak; tg/�=s

.s 2 N; 0 D a0 < a1 � � � � � as < 1; �; � > 0; �C � D �/: Then we have

h.xy/ D 1
Qs

kD1.maxfak; xyg/�=s
;

k�.x; y/ D 1
Qs

kD1.maxfakx; yg/�=s
:

If for any i 2 f1; � � � ; s � 1g; � � i�
s ¤ 0; then we obtain

k.�/ D k�.�/ D
Z 1

0

1
Qs

kD1.maxfak; tg/�=s
t��1dt

D
s�1X

iD0

Z aiC1

ai

t��1dt
Qs

kD1.maxfak; tg/�=s
C
Z 1

as

t��1dt
Qs

kD1.maxfak; tg/�=s

D
s�1X

iD0

Z aiC1

ai

t�� i�
s �1dt

Qs
kDiC1 a�=s

k

C
Z 1

as

t���1dt

D a�1
�
Qs

kD1 a�=s
k

C
s�1X

iD1

a
�� i�

s
iC1 � a

�� i�
s

i

.� � i�
s /
Qs

kDiC1 a�=s
k

C a��
s

�
2 RC:
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In view of (36) and (37), we have

jjT0jj D jjeT0jj D a�1
�
Qs

kD1 a�=s
k

C
s�1X

iD1

a
�� i�

s
iC1 � a

�� i�
s

i

.� � i�
s /
Qs

kDiC1 a�=s
k

C a��
s

�
:

If there exists a i0 2 f1; � � � ; s � 1g; such that � � i0�
s D 0; then it means that the

above corresponding term

a
�� i0�

s
i0C1 � a

�� i�
s

i0

.� � i0�
s /
Qs

kDi0C1 a�=s
k

equals to
�Qs

kDi0C1 a�=s
k

	�1
ln.

ai0C1

ai0
/:

In particular, (i) if s D 1 .or as D � � � D a1/; then we find

h.t/ D k�.1; t/ D 1

.maxfa1; tg/� ;

h.xy/ D 1

.maxfa1; xyg/� ; k�.x; y/ D 1

.maxfa1x; yg/� ;

and

jjT0jj D jjeT0jj D 1

a�1

�

��
I

(ii) if s D 2; then it follows that

h.t/ D k�.1; t/ D 1

.maxfa1; tg maxfa2; tg/�=2

and

h.xy/ D 1

.maxfa1; xyg maxfa2; xyg/�=2 ;

k�.x; y/ D 1

.maxfa1x; yg maxfa2x; yg/�=2 :

We obtain for � ¤ �
2

that

jjT0jj D jjeT0jj D 1

a�=22

0

@a
�� �

2

1

�
C a

�� �
2

2 � a
�� �

2

1

� � �
2

C a
�� �

2

2

�

1

A I
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for � D �
2
;

jjT0jj D jjeT0jj D 1

a�=22



�

��
C ln.

a2
a1
/

�
:

(b) We set

h.t/ D k�.1; t/ D 1
Qs

kD1.minfak; tg/�=s

.s 2 N; 0 D a0 < a1 � � � � � as < 1; �; � < 0; �C � D �/: Then we have

h.xy/ D 1
Qs

kD1.minfak; xyg/�=s
;

k�.x; y/ D 1
Qs

kD1.minfakx; yg/�=s
:

If for any i 2 f1; � � � ; s � 1g; ��C i�
s ¤ 0; then we obtain

k.�/ D k�.�/ D
Z 1

0

1
Qs

kD1.minfak; tg/�=s
t��1dt

D
s�1X

iD0

Z aiC1

ai

t��1
Qs

kD1.minfak; tg/�=s
dt

C
Z 1

as

t��1
Qs

kD1.minfak; tg/�=s
dt

D
s�1X

iD0

Z aiC1

ai

t��C i�
s �1

Qi
kD1 a�=s

k

dt C
Z 1

as

t��1
Qs

kD1 a�=s
k

dt

D a��
1

�� C
s�1X

iD1

a
��C i�

s
iC1 � a

��C i�
s

i

.��C i�
s /
Qi

kD1 a�=s
k

C a�s
��Qs

kD1 a�=s
k

2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D a��
1

�� C
s�1X

iD1

a
��C i�

s
iC1 � a

��C i�
s

i

.��C i�
s /
Qi

kD1 a�=s
k

C a�s
��Qs

kD1 a�=s
k

:

If there exists a i0 2 f1; � � � ; s � 1g; such that ��C i0�
s D 0; then it means that

the above corresponding term

a
��C i0�

s
i0C1 � a

��C i0�
s

i0

.��C i0�
s /
Qi0

kD1 ak

equals to .
Qi0

kD1 ak/
�1 ln.

ai0C1

ai0
/:
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In particular, (i) for s D 1 .or as D � � � D a1/; we find

h.t/ D k�.1; t/ D 1

.minfa1; tg/� ;

h.xy/ D 1

.minfa1; xyg/� ; k�.x; y/ D 1

.minfa1x; yg/� ;

and

jjT0jj D jjeT0jj D a�1
.��/
��

I

(ii) for s D 2; it follows that

h.t/ D k�.1; t/ D 1

.minfa1; tg minfa2; tg/�=2

and

h.xy/ D 1

.minfa1; xyg minfa2; xyg/�=2 ;

k�.x; y/ D 1

.minfa1x; yg minfa2x; yg/�=2 :

We obtain for � ¤ �
2

that

jjT0jj D jjeT0jj D 1

a�=21

0

@a
��C �

2

1

�� C a
��C �

2

2 � a
��C �

2

1

��C �
2

C a
��C �

2

2

��

1

A I

for � D �
2
;

jjT0jj D jjeT0jj D 1

a�=21



.��/
��

C ln.
a2
a1
/

�
:

Example 3. (a) We set

h.t/ D k0.1; t/ D ln.1C �

t�
/.� > 0; 0 < � < �/:

Then we have

h.xy/ D lnŒ1C �

.xy/�
�; k0.x; y/ D lnŒ1C �.

x

y
/��
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and obtain

k.�/ D k0.�/ D
Z 1

0

t��1 ln.1C �

t�
/dt

D 1

�

Z 1

0

ln.1C �

t�
/dt�

D 1

�



t� ln.1C �

t�
/j10 �

Z 1

0

t�d ln.1C �

t�
/

�

D �

�

Z 1

0

t��1

.t�=�/C 1
dt D ��=�

�

Z 1

0

u.�=�/�1

u C 1
du

D ��=�


� sin
.�=�/
2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D ��=�


� sin
.�=�/
:

(b) We set

h.t/ D k0.1; t/ D arctan.
�

t�
/.� > 0; 0 < � < �/:

Then we have

h.xy/ D arctan.
�

.xy/�
/; k0.x; y/ D arctan �.

x

y
/�

and obtain

k.�/ D k0.�/ D
Z 1

0

t��1 arctan.
�

t�
/dt

D 1

�

Z 1

0

arctan.
�

t�
/dt�

D 1

�



t� arctan.

�

t�
/j10 �

Z 1

0

t�d arctan.
�

t�
/

�

D �

��

Z 1

0

t�C��1dt

.t2�=�2/C 1
D ��=�

2�

Z 1

0

uŒ.�C�/=.2�/��1

u C 1
du

D ��=�


2� sin
Œ.�C �/=.2�/�
D ��=�


2� cos
Œ�=.2�/�
2 RC:
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In view of (36) and (37), we have

jjT0jj D jjeT0jj D ��=�


2� cos
Œ�=.2�/�
:

(c) We set

h.t/ D k0.1; t/ D e��t� .�; �; � > 0/:

Then we have

h.xy/ D e��.xy/� ; k0.x; y/ D e��. y
x /
�

and obtain

k.�/ D k0.�/ D
Z 1

0

t��1e��t�dt

D 1

���=�

Z 1

0

e�uu
�
� �1du D 1

���=�
	 .
�

�
/ 2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D 1

���=�
	 .
�

�
/:

Example 4. (a) We set

h.t/ D k0.1; t/ D csc h.�t�/ D 2

e�t� � e��t�
.� > 0; 0 < � < �/:

We call csc h.�/ as hyperbolic cosecant function (cf. [27]). Then we have

h.xy/ D 2

e�.xy/� � e��.xy/�
; k0.x; y/ D 2

e�.
y
x /
� � e��. y

x /
�
:

By Lebesgue term-by-term integration theorem, we obtain

k.�/ D k0.�/ D
Z 1

0

2t��1dt

e�t� � e��t�
D
Z 1

0

2t��1dt

e�t� .1 � e�2�t� /

D 2

Z 1

0

t��1
1X

kD0
e�.2kC1/�t�dt D 2

1X

kD0

Z 1

0

t��1e�.2kC1/�t�dt

D 2

���=�

1X

kD0

1

.2k C 1/�=�

Z 1

0

e�uu
�
� �1du

D 2

���=�
	 .
�

�
/

1X

kD0

1

.2k C 1/�=�
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D 2

���=�
	 .
�

�
/

" 1X

kD1

1

k�=�
�

1X

kD1

1

.2k/�=�

#

D 2

���=�
.1 � 1

2�=�
/	 .

�

�
/�.
�

�
/ 2 RC;

where �. �
�
/ D P1

kD1 1

k�=�
(�.�/ is Riemann zeta function). In view of (36)

and (37), we have

jjT0jj D jjeT0jj D 2

���=�
.1 � 1

2�=�
/	 .

�

�
/�.
�

�
/:

(b) We set

h.t/ D k0.1; t/ D e��t� cot h.�t�/ D e��t� e�t� C e��t�

e�t� � e��t�

D 1C e�2�t�

e�t� � e��t�
D e��t� C e�3�t�

1 � e�2�t�
.� > 0; 0 < � < �/:

We call cot h.�/ as hyperbolic cotangent function (cf. [27]). Then we have

h.xy/ D 1C e�2�.xy/�

e�.xy/� � e��.xy/�
; k0.x; y/ D 1C e�2�. y

x /
�

e�.
y
x /
� � e��. y

x /
�
:

By Lebesgue term-by-term integration theorem, we obtain

k.�/ D k0.�/ D
Z 1

0

.e��t� C e�3�t� /t��1

1 � e�2�t�
dt

D
Z 1

0

t��1
1X

kD0
.e�.2kC1/�t� C e�.2kC3/�t� /dt

D 1

���=�

1X

kD0



1

.2k C 1/�=�
C 1

.2k C 3/�=�

� Z 1

0

e�uu
�
� �1du

D 1

���=�
	 .
�

�
/

"

2

1X

kD0

1

.2k C 1/�=�
� 1

#

D 1

���=�
	 .
�

�
/



.2 � 1

2.�=�/�1
/�.
�

�
/ � 1

�
2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D 1

���=�
	 .
�

�
/



.2 � 1

2.�=�/�1
/�.
�

�
/ � 1

�
:
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(c) We set

h.t/ D k0.1; t/ D sec h.�t�/ D 2

e�t� C e��t�
.�; �; � > 0/:

We call sec h.�/ as hyperbolic secant function (cf. [27]). Then we have

h.xy/ D 2

e�.xy/� C e��.xy/�
; k0.x; y/ D 2

e�.
y
x /
� C e��. y

x /
�
:

By Lebesgue term-by-term integration theorem, we obtain

k.�/ D k�.�/ D
Z 1

0

2t��1dt

e�t� C e��t�
D
Z 1

0

2t��1dt

e�t� .1C e�2�t� /

D 2

Z 1

0

t��1
1X

kD0
.�1/ke�.2kC1/�t�dt

D 2

Z 1

0

t��1
1X

kD0
Œe�.4kC1/�t� � e�.4kC3/�t� �dt

D 2

1X

kD0

Z 1

0

t��1Œe�.4kC1/�t� � e�.4kC3/�t� �dt

D 2

1X

kD0
.�1/k

Z 1

0

t��1e�.2kC1/�t�dt

D 2

���=�

1X

kD0

.�1/k
.2k C 1/�=�

Z 1

0

e�uu
�
� �1du

D 2

���=�
	 .
�

�
/�.
�

�
/ 2 RC;

where �. �
�
/ D P1

kD0
.�1/k

.2kC1/�=� . In view of (36) and (37), we have

jjT0jj D jjeT0jj D 2

���=�
	 .
�

�
/�.
�

�
/:

(d) We set

h.t/ D k0.1; t/ D e��t� tan h.�t�/ D e��t� e�t� � e��t�

e�t� C e��t�

D 1 � e�2�t�

e�t� C e��t�
D e��t� � e�3�t�

1C e�2�t�
.�; �; � > 0/:

We call tan h.�/ as hyperbolic tangent function (cf. [27]). Then we have

h.xy/ D 1 � e�2�.xy/�

e�.xy/� C e��.xy/�
; k0.x; y/ D 1 � e�2�. y

x /
�

e�.
y
x /
� C e��. y

x /
�
:
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By Lebesgue term-by-term integration theorem, we obtain

k.�/ D k0.�/ D
Z 1

0

.e��t� � e�3�t� /t��1

1C e�2�t�
dt

D
Z 1

0

.e��t� � e�3�t� /t��1
1X

kD0
.�1/ke�2k�t�dt

D
Z 1

0

.e��t� � e�3�t� /t��1
1X

kD0
e�4k�t� .1 � e�2�t� /dt

D
1X

kD0

Z 1

0

.e��t� � e�3�t� /t��1e�4k�t� .1 � e�2�t� /dt

D
1X

kD0
.�1/k

Z 1

0

.e�.2kC1/�t� � e�.2kC3/�t� /t��1dt

D 1

���=�

1X

kD0
.�1/k



1

.2k C 1/�=�
� 1

.2k C 3/�=�

� Z 1

0

e�uu
�
� �1du

D 1

���=�
	 .
�

�
/

"

2

1X

kD0

.�1/k
.2k C 1/�=�

� 1
#

D 1

���=�
	 .
�

�
/.2�.

�

�
/ � 1/ 2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D 1

���=�
	 .
�

�
/.2�.

�

�
/ � 1/:

Lemma 2. If C is the set of complex numbers and C1 D C [ f1g; zk 2
CnfzjRez � 0; Imz D 0g .k D 1; 2; � � � ; n/ are different points, the function f .z/
is analytic in C1 except for zi.i D 1; 2; � � � ; n/, and z D 1 is a zero point of f .z/
whose order is not less than 1, and then for ˛ 2 R; we have

Z 1

0

f .x/x˛�1dx D 2
 i

1 � e2
˛i

nX

kD1
ResŒf .z/z˛�1; zk�; (43)

where 0 < Im ln z D arg z < 2
 . In particular, if zk.k D 1; � � � ; n/ are all poles of
order 1, setting 'k.z/ D .z � zk/f .z/.'k.zk/ ¤ 0/; then

Z 1

0

f .x/x˛�1dx D 


sin
˛

nX

kD1
.�zk/

˛�1'k.zk/: (44)
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Proof. In view of the theorem (cf. [28], P. 118), we have (43). We find

1 � e2
˛i D 1 � cos 2
˛ � i sin 2
˛

D �2i sin
˛.cos
˛ C i sin
˛/

D �2iei
˛ sin
˛:

In particular, since f .z/z˛�1 D 1
z�zk

.'k.z/z˛�1/; it is obvious that

ResŒf .z/z˛�1;�ak� D zk
˛�1'k.zk/ D �ei
˛.�zk/

˛�1'k.zk/:

Then by (43), we obtain (44).
The lemma is proved. ut

Example 5. (a) We set

h.t/ D k�.1; t/ D 1
Qs

kD1.ak C t�=s/

.s 2 N; 0 < a1 < � � � < as < 1; �; � > 0; � C � D �/: Then we have the
kernels

h.xy/ D 1
Qs

kD1Œak C .xy/�=s�
;

k�.x; y/ D 1
Qs

kD1.akx�=s C y�=s/
:

For f .z/ D 1Qs
kD1.zCak/

; zk D �ak; by (44), we can find

'k.zk/ D .z C ak/
1

Qs
iD1.z C ai/

jzD�ak D
sY

jD1.j¤k/

1

aj � ak

and obtain

k.�/ D k�.�/ D
Z 1

0

t��1
Qs

kD1.ak C t�=s/
dt

D s

�

Z 1

0

u.s�=�/�1
Qs

kD1.u C ak/
du

D 
s

� sin
.s�=�/

sX

kD1
a

s�
�

k

sY

jD1.j¤k/

1

aj � ak
2 RC:
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In view of (36) and (37), we have

jjT0jj D jjeT0jj D 
s

� sin
.s�=�/

sX

kD1
a

s�
�

k

sY

jD1.j¤k/

1

aj � ak
:

In particular, (i) for s D 1; h.t/ D k�.t; 1/ D 1

a1Ct�
; we have

h.xy/ D 1

a1 C .xy/�
; k�.x; y/ D 1

a1x� C y�
;

and

jjT0jj D jjeT0jj D 


� sin
.�=�/
a
�
��1
1 I

(ii) for s D 2;

h.t/ D k�.1; t/ D 1

.a1 C t�=2/.a2 C t�=2/
;

we have

h.xy/ D 1

Œa1 C .xy/�=2�Œa2 C .xy/�=2�
;

k�.x; y/ D 1

.a1x�=2 C y�=2/.a2x�=2 C y�=2/
;

and

jjT0jj D jjeT0jj D 2


� sin
.2�=�/

1

.a2 � a1/
.a

2�
� �1
1 � a

2�
� �1
2 /:

(b) We set

h.t/ D k�.1; t/ D 1

t� C 2ct�=2 cos � C c2

.c > 0; j� j < 

2
; �; � > 0; �C � D �/: Then we have

h.xy/ D 1

.xy/� C 2c.xy/�=2 cos � C c2
;

k�.x; y/ D 1

y� C 2c.xy/�=2 cos � C c2x�
:



Compositional Yang-Hilbert-Type Integral Inequalities and Operators 707

By (44), we can find

k.�/ D k�.�/ D
Z 1

0

t��1

t� C 2ct�=2 cos � C c2
dt

D 2

�

Z 1

0

u.2�=�/�1

u2 C 2cu cos � C c2
du

D 2

�

Z 1

0

u.2�=�/�1

.u C cei� /.u C ce�i� /
du

D 2


� sin
.2�=�/



.cei� /.2�=�/�1

c.e�i� � ei� /
C .ce�i� /.2�=�/�1

c.ei� � e�i� /

�

D 2
 sin �.1 � 2�=�/
� sin
.2�=�/ sin �

c
2�
� �2 2 RC:

In view of (36) and (37), we have

jjT0jj D jjeT0jj D 2
 sin �.1 � 2�=�/
� sin
.2�=�/ sin �

c
2�
� �2:

3 First Kind of Compositional Yang-Hilbert-Type
Integral Inequalities

In this section, by using a few lemmas, we obtain two equivalent first kind of
compositional Yang-Hilbert-type integral inequalities and the reverses with the
best possible constant factors. Some corollaries are deduced. We agree on that
p > 0.p ¤ 1/; 1p C 1

q D 1; �; � 2 R; �C � D � in the following.

3.1 Some Lemmas

Lemma 3 (cf. [29], Lemma 2.2.5). Suppose that � 2 Ai.¤ ˚/ � R; k.i/� .x; y/ are
homogeneous functions of degree �� in R2C;

k.i/� .�/ WD
Z 1

0

k.i/� .u; 1/u
��1du; (45)

there exists a constant ı0 > 0; such that k.i/� .�˙ ı0/ 2 RC.i D 1; 2/: Then for any

ı 2 Œ0; ı0/; we have k.i/� .�˙ ı/ 2 RC; and

lim
ı!0C

k.i/� .�˙ ı/ D k.i/� .�/.i D 1; 2/ (46)
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Proof. We find

0 � k.i/� .�˙ ı/ D
Z 1

0

k.i/� .u; 1/u
�˙ı�1du C

Z 1

1

k.i/� .u; 1/u
�˙ı�1du

�
Z 1

0

k.i/� .u; 1/u
.��ı0/�1du C

Z 1

1

k.i/� .u; 1/u
.�Cı0/�1du

� k.i/� .� � ı0/C k.i/� .�C ı0/ < 1:

If there exists a constant � 2 .�ı0; ı0/; such that k.i/� .�C �/ D 0; then

k.i/� .u; 1/u
�C��1 D 0 a:e: in .0;1/;

namely, k.i/� .u; 1/ D 0 a.e. in .0;1/; and it follows that

k.i/� .�˙ ı0/ D
Z 1

0

k.i/� .u; 1/u
�˙ı0�1du D 0;

which contradicts the fact that k.i/� .� ˙ ı0/ 2 RC: Hence, for any ı 2 Œ0; ı0/;

k.i/� .�˙ ı/ 2 RC:
Since we find

k.i/� .u; 1/u
�˙ı�1 � g.u/ WD

(
k.i/� .u; 1/u

.��ı0/�1; u 2 .0; 1�;
k.i/� .u; 1/u

.�Cı0/�1; u 2 .1;1/;

and

0 �
Z 1

0

g.u/du D
Z 1

0

g.u/du C
Z 1

1

g.u/du

� k.i/� .� � ı0/C k.i/� .�C ı0/ < 1;

then by Lebesgue dominated convergence theorem (cf. [26]), it follows that (46)
follows.

The lemma is proved. ut
With the assumptions of Lemma 3, we set the following conditions:

Condition (i). For any � 2 A1 \ A2.¤ ˚/; there exist constants ı1 2 .0; ı0/ and
L1 > 0; such that

k.2/� .u; 1/u
��ı1 � L1.u 2 .0; 1// (47)

Condition (ii). For any � 2 .0; 1/\A1\A2.¤ ˚/; there exists a constant L2 > 0;
such that

k.2/� .u; 1/.1 � u/� � L2.u 2 .0; 1//: (48)
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Example 6. (a) For � 2 A1 D A2 D RC; ı0 > 0; the functions

k.2/� .u; 1/ D 1

.u C 1/�
;

1

u� C 1
;

ln u

u� � 1 ;
j ln ujˇ

.maxfu; 1g/� .ˇ � 0/

satisfy for using Condition (i); for � D 0; 0 < ı0 < �C �; ˇ � 0; the function

k.2/0 .u; 1/ D
�

minfu; 1g
maxfu; 1g

��
j ln ujˇ

satisfies for using Condition (i); for � D 0; �; �; � > 0; ı0 2 .0; �/; the
functions

k.2/0 .u; 1/ D ln



1C �.

1

u
/�
�
; arctan �.

1

u
/�;

and e��u� satisfy for using Condition (i). In fact, for ı1 2 .0; ı0/; we obtain

lim
u!0C

k.2/� .u; 1/u
��ı1 D 0:

In view of the continuity, k.2/� .u; 1/u
��ı1 is bounded in .0; 1/:

(b) For � 2 A1 \ A2 D .0; 1/; the function

k.2/� .u; 1/ D 1

ju � 1j�
satisfy for using Condition (ii):

Definition 5. On the assumptions of Lemma 3, define the following real function:

eFk.y/ WD
(

y��1 R1
1

k.2/� .x; y/x
�� 1

pk �1dx; y 2 .1;1/;

0; y 2 .0; 1�;

where k > maxf 1
jqjı1 ;

1
pı1

g.k 2 N/.

Setting u D x=y.y > 1/; we find

eFk.y/ D y�� 1
pk �1

Z 1
1
y

k.2/� .u; 1/u
�� 1

pk �1du

D y�� 1
pk �1

"Z 1

0

k.2/� .u; 1/u
.�� 1

pk /�1du �
Z 1

y

0

k.2/� .u; 1/u
�� 1

pk �1du

#

D y�� 1
pk �1k.2/� .� � 1

pk
/ � Fk.y/; (49)

Fk.y/ WD y�� 1
pk �1

Z 1
y

0

k.2/� .u; 1/u
�� 1

pk �1du.y 2 .1;1//:
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(a) If k.2/� .u; 1/ satisfies Condition (i) (for � 2 A1 \ A2), then by (47), we have

0 � Fk.y/ � L1y
�� 1

pk �1
Z 1

y

0

u��Cı1u�� 1
pk �1du

D L1y��ı1�1

ı1 � 1
pk

.y 2 .1;1//I

(b) if k.2/� .u; 1/ satisfies Condition (ii) (for � 2 .0; 1/ \ A1 \ A2), then by (48),
we have

0 � Fk.y/ � L2y
�� 1

pk �1
Z 1

y

0

u�� 1
pk �1

.1 � u/�
du

D L2y
��1

Z 1

0

v
�� 1

pk �1

.y � v/� dv � L2y��1

.y � 1/�
Z 1

0

v
�� 1

pk �1dv

D L2
� � 1

pk

y��1

.y � 1/� .y 2 .1;1//:

Remark 4. In view of the cases (a) and (b), there exists a large constant L > 0;

such that

(a) Fk.y/ � Ly��ı1�1.y 2 .1;1/I� 2 A1 \ A2/I
(b) Fk.y/ � L y��1

.y�1/� .y 2 .1;1/I� 2 .0; 1/ \ A1 \ A2/:

Lemma 4. On the assumptions of Lemma 3, if k.1/� .x; y/ is a symmetric function

such that for any x; y 2 RC; k.1/� .y; x/ D k.1/� .x; y/; and k.2/� .u; 1/ satisfies Condition
(i) for � 2 A1 \ A2 or Condition (ii) for � 2 .0; 1/ \ A1 \ A2, then we have

eLk WD 1

k

Z 1

1

Z 1

1

k.1/� .x; y/eFk.y/x
�� 1

qk �1dydx

D
2Y

iD1
k.i/� .�/C o.1/.k ! 1/: (50)

Proof. In view of (49), we have

eLk D 1

k

Z 1

1

Z 1

1

k.1/� .x; y/

�
y�� 1

pk �1k.2/�
�
� � 1

pk

�
� Fk.y/

�

�x�� 1
qk �1dydx D I1 � I2 � I1; (51)
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where we define

I1 WD 1

k
k.2/� .� � 1

pk
/

Z 1

1

�Z 1

1

k.1/� .x; y/y
�� 1

pk �1dy

�
x�� 1

qk �1dx;

I2 WD 1

k

Z 1

1

�Z 1

1

k.1/� .x; y/Fk.y/dy

�
x�� 1

qk �1dx:

Since k.1/� .y; x/ D k.1/� .x; y/; we obtain by Fubini theorem that (cf. [26])

Z 1

1

�Z 1

1

k.1/� .x; y/y
�� 1

pk �1dy

�
x�� 1

qk �1dx

D
Z 1

1

�Z 1

1

k.1/� .y; x/y
�� 1

pk �1dy

�
x�� 1

qk �1dx

D
Z 1

1

 Z 1
1
x

k.1/� .u; 1/u
�� 1

pk �1du

!

x� 1
k �1dx

D
Z 1

1

 Z 1

1
x

k.1/� .u; 1/u
�� 1

pk �1du

!

x� 1
k �1dx

C
Z 1

1

�Z 1

1

k.1/� .u; 1/u
�� 1

pk �1du

�
x� 1

k �1dx

D
Z 1

0

 Z 1
1
u

x� 1
k �1dx

!

k.1/� .u; 1/u
�� 1

pk �1du

C k
Z 1

1

k.1/� .u; 1/u
�� 1

pk �1du

D k

�Z 1

0

k.1/� .u; 1/u
�C 1

qk �1du C
Z 1

1

k.1/� .u; 1/u
�� 1

pk �1du

�
:

Since fk.1/� .u; 1/u
�� 1

pk �1g1
kD1 (u 2 .1;1/) is increasing, by Levi theorem

(cf. [26]), it follows that

Z 1

1

k.1/� .u; 1/u
�� 1

pk �1du !
Z 1

1

k.1/� .u; 1/u
��1du.k ! 1/:

Since 1
jqjk < ı1; then we find 1

qk > �ı1 > �ı0 and

k.1/� .u; 1/u
�C 1

qk �1 � k.1/� .u; 1/u
��ı0�1.u 2 .0; 1//;
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and

0 �
Z 1

0

k.1/� .u; 1/u
��ı0�1du

�
Z 1

0

k.1/� .u; 1/u
��ı0�1du D k.1/� .� � ı0/ < 1;

and then by Lebesgue dominated convergence theorem (cf. [26]), we have

Z 1

0

k.1/� .u; 1/u
�C 1

qk �1du !
Z 1

0

k.1/� .u; 1/u
��1du.k ! 1/:

Hence, by Lemma 3, we find

I1 D k.2/� .� � 1

pk
/

�
�Z 1

0

k.1/� .u; 1/u
�C 1

qk �1du C
Z 1

1

k.1/� .u; 1/u
�� 1

pk �1du

�

!
2Y

iD1
k.i/� .�/.k ! 1/: (52)

We estimate I2.

(a) If k.2/� .u; 1/ satisfies Condition (i) for � 2 A1 \ A2, then by Remark 4(a), we
have

0 � J2 WD
Z 1

1

�Z 1

1

k.1/� .x; y/Fk.y/dy

�
x�� 1

qk �1dx

� L
Z 1

1

�Z 1

1

k.1/� .y; x/y
��ı1�1dy

�
x�� 1

qk �1dx

D L
Z 1

1

 Z 1
1
x

k.1/� .u; 1/u
��ı1�1du

!

x�ı1� 1
qk �1dx

� L
Z 1

1

�Z 1

0

k.1/� .u; 1/u
��ı1�1du

�
x�ı1� 1

qk �1dx

D L

ı1 C 1
qk

k.1/� .� � ı1/ < 1I
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(b) if k.2/� .u; 1/ satisfies Condition (ii) for � 2 .0; 1/\A1\A2, then by Remark 4(b),
we have

0 � J2 � L
Z 1

1

�Z 1

1

k.1/� .y; x/x
�� 1

qk �1dx

�
y��1

.y � 1/� dy

D L
Z 1

1

�Z y

0

k.1/� .u; 1/u
�C 1

qk �1du

�
y�� 1

qk �1

.y � 1/� dy

� L
Z 1

0

�Z 1

0

k.1/� .u; 1/u
�C 1

qk �1du

�
v
�C 1

qk �1

.1 � v/� dv

D Lk.1/� .�C 1

qk
/B.1 � �;�C 1

qk
/ < 1:

Therefore, in view of (a) and (b), we have I2 ! 0.k ! 1/:

By (51), (52), and the above results, we have (50).
The lemma is proved. ut

3.2 Main Results

We set functions �.x/ WD xp.1��/�1;  .y/ WD yq.1��/�1.x; y 2 RC/ in the following.

Theorem 4. Suppose that (a) � 2 Ai.¤ ˚/ � R; k.i/� .x; y/ are homogeneous
functions of degree �� in R2C;

k.i/� .�/ D
Z 1

0

k.i/� .u; 1/u
��1du;

there exists a constant ı0 > 0; such that k.i/� .�˙ ı0/ 2 RC.i D 1; 2/I (b) k.1/� .x; y/
is a symmetric function; (c) if we use Condition (i), then � 2 A1 \ A2; if we use
Condition (ii), then � 2 .0; 1/ \ A1 \ A2: Then for p > 1; f .x/; g.y/ � 0; f 2
Lp;�.RC/; g 2 Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; and

F�.y/ WD
�

y��1 R1
0

k.2/� .x; y/f .x/dx; y 2 fy 2 RCI f .y/ > 0g;
0; y 2 fy 2 RCI f .y/ D 0g;

we have the following equivalent inequalities:

I WD
Z 1

0

Z 1

0

k.1/� .x; y/F�.y/g.x/dydx <
2Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; (53)

J WD

Z 1

0

xp��1
�Z 1

0

k.1/� .x; y/F�.y/dy

�p

dx

� 1
p

<

2Y

iD1
k.i/� .�/jjf jjp;� ; (54)

where the constant factor
Q2

iD1 k.i/� .�/ is the best possible.
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Proof. Since k.1/� .y; x/ D k.1/� .x; y/; by (28), we have

J D

Z 1

0

yp��1
�Z 1

0

k.1/� .y; x/F�.x/dx

�p

dy

� 1
p

D

Z 1

0

yp��1
�Z 1

0

k.1/� .x; y/F�.x/dx

�p

dy

� 1
p

� k.1/� .�/jjF�jjp;� ; (55)

jjF�jjp;� D

Z 1

0

yp.1��/�1
�

y��1
Z 1

0

k.2/� .x; y/f .x/dx

�p

dy

� 1
p

D

Z 1

0

yp��1
�Z 1

0

k.2/� .x; y/f .x/dx

�p

dy

� 1
p

< k.2/� .�/jjf jjp;� : (56)

Then (54) follows.
By Hölder’s inequality (cf. [25]), we have

I D
Z 1

0

�
x�� 1

p

Z 1

0

k.1/� .x; y/F�.y/dy

�
.x��C 1

p g.x//dx

� Jjjgjjq; : (57)

Then by (54), we have (53).
On the other hand, suppose that (53) is valid. We set

g.x/ WD xp��1
�Z 1

0

k.1/� .x; y/F�.y/dy

�p�1
.x 2 RC/;

and find jjgjjqq; D Jp: If J D 0; then (54) is trivially valid; if J D 1; then
by (57), we have jjF�jjp;' D 1; which contradicts inequality (56). Assuming that
0 < J < 1; then by (53), we have

jjgjjqq; D Jp D I <
2Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; ;

jjgjjq�1
q; D J <

2Y

iD1
k.i/� .�/jjf jjp;� ;

and we have (54), which is equivalent to (53).
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For any k > maxf 1
qı1
; 1

pı1
g.k 2 N/; we set Qf .x/ D Qg.y/ D 0.x; y 2 .0; 1�/I

Qf .x/ D x�� 1
pk �1

; Qg.y/ D y�� 1
qk �1

.x; y 2 .1;1//:

Then we haveeFk.y/ D 0.y 2 .0; 1�/I

eFk.y/ D y��1
Z 1

1

k.2/� .x; y/x
�� 1

pk �1dx

D y��1
Z 1

0

k.2/� .x; y/Qf .x/dx.y 2 .1;1//:

If there exists a positive constant K � Q2
iD1 k.i/� .�/; such that (53) is valid when

replacing
Q2

iD1 k.i/� .�/ to K; then in particular, we have

eLk D 1

k

Z 1

0

Z 1

0

k.1/� .x; y/eFk.y/Qg.x/dydx

<
1

k
KjjQf jjp;� jjQgjjq; D 1

k
K
Z 1

1

x� 1
k �1dx D K:

By (50), we find

2Y

iD1
k.i/� .�/C o.1/ DeLk < K;

and then
Q2

iD1 k.i/� .�/ � K.k ! 1/: Hence K D Q2
iD1 k.i/� .�/ is the best possible

constant factor of (53).
The constant factor in (54) is the best possible. Otherwise, if the constant factor

in (54) is not the best possible, then we would reach a contradiction by (57) that the
constant factor in (53 ) is not the best possible. ut
Theorem 5. Suppose that (a) � 2 Ai.¤ ˚/ � R; k.i/� .x; y/ are homogeneous
functions of degree �� in R2C;

k.i/� .�/ D
Z 1

0

k.i/� .u; 1/u
��1du;

there exists a constant ı0 > 0; such that k.i/� .�˙ ı0/ 2 RC.i D 1; 2/I (b) k.1/� .x; y/
is a symmetric function. Then for 0 < p < 1; f .x/; g.y/ � 0; f 2 Lp;�.RC/; g 2
Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; and

F�.y/ D
(

y��1 R1
0

k.2/� .x; y/f .x/dx; y 2 fy 2 RCI f .y/ > 0g;
0; y 2 fy 2 RCI f .y/ D 0g;

we have the equivalent reverses of (53) and (54) with the best possible constant
factor

Q2
iD1 k.i/� .�/.
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Proof. Since k.1/� .y; x/ D k.1/� .x; y/; by the reverse Hölder’s inequality, we obtain
the reverses of (55) and (56). Then we deduce to the reverse of (54). By the reverse
Hölder’s inequality (cf. [25]), we have

I D
Z 1

0

�
x�� 1

p

Z 1

0

k.1/� .x; y/F�.y/dy

�
.x��C 1

p g.x//dx � Jjjgjjq; : (58)

Then by the reverse of (54), we have the reverse of (53).
On the other hand, suppose that the reverse of (53) is valid. Setting g.x/ as

Theorem 4, we find jjgjjqq; D Jp: If J D 1; then the reverse of (54) is trivially
valid; if J D 0; then by reverse of (55), we have jjF�jjp;' D 0; which contradicts the
reverse of (56). Assuming that 0 < J < 1; then by the reverse of (53), we have

jjgjjqq; D Jp D I >
2Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; ;

jjgjjq�1
q; D J >

2Y

iD1
k.i/� .�/jjf jjp;� ;

and the reverse of (54) follows, which is equivalent to reverse of (53).
For any k > maxf 1

jqjı1 ;
1

pı1
g.k 2 N/; we set Qf .x/; Qg.y/; eF�.y/ as Theorem 4. If

there exists a positive constant K � Q2
iD1 k.i/� .�/; such that the reverse of (53 ) is

valid when replacing
Q2

iD1 k.i/� .�/ to K; then in particular, we have

eLk D 1

k

Z 1

0

Z 1

0

k.1/� .x; y/eFk.y/Qg.x/dydx

>
1

k
KjjQf jjp;� jjQgjjq; D K:

By (51) and (52), we find

2Y

iD1
k.i/� .�/C Qo.1/ D I1 �eLk > K;

and then
Q2

iD1 k.i/� .�/ � K.k ! 1/: Hence K D Q2
iD1 k.i/� .�/ is the best possible

constant factor of the reverse of (53).
By the equivalency, if the constant factor in the reverse of (54) is not the best

possible, then by (58), we would reach a contradiction that the constant factor in the
reverse of (53) is not the best possible. ut

Replacing x to 1
x in (53) and (54), setting Og.x/ WD x��2g. 1x /;b .y/ WD yq.1��/�1;

by simplification, we have
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Theorem 6. If f .x/; Og.y/ � 0; f 2 Lp;�.RC/; Og 2 L
q;b .RC/; jjf jjp;� ; jjOgjj

q;b > 0;

then for p > 1; on the assumptions of Theorem 4, we have the following equivalent
inequalities:

Z 1

0

Z 1

0

k.1/� .xy; 1/F�.y/Og.x/dydx <
2Y

iD1
k.i/� .�/jjf jjp;� jjOgjj

q;b ; (59)


Z 1

0

xp��1
�Z 1

0

k.1/� .xy; 1/F�.y/dy

�p

dx

� 1
p

<

2Y

iD1
k.i/� .�/jjf jjp;� ; (60)

where the constant factor
Q2

iD1 k.i/� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (59) and (60) with the
best possible constant factor

Q2
iD1 k.i/� .�/:

Replacing y to 1
y in (59) and (60), setting

bF�.y/ WD y��2F�.
1

y
/

D
(

y��1 R1
0

k.2/� .xy; 1/f .x/dx; y 2 fy 2 RCI f . 1y / > 0g;
0; y 2 fy 2 RCI f . 1y / D 0g;

by simplification, we have

Theorem 7. If f .x/; Og.y/ � 0; f 2 Lp;�.RC/; Og 2 L
q;b .RC/; jjf jjp;� ; jjOgjj

q;b > 0;

then for p > 1; on the assumptions of Theorem 4, we have the following equivalent
inequalities:

Z 1

0

Z 1

0

k.1/� .x; y/bF�.y/Og.x/dydx <
2Y

iD1
k.i/� .�/jjf jjp;� jjOgjj

q;b (61)


Z 1

0

xp��1
�Z 1

0

k.1/� .x; y/bF�.y/dy

�p

dx

� 1
p

<

2Y

iD1
k.i/� .�/jjf jjp;� ; (62)

where the constant factor
Q2

iD1 k.i/� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (61) and (62) with the
best possible constant factor

Q2
iD1 k.i/� .�/:

Replacing y to 1
y in (53) and (54), by simplification, we have

Theorem 8. If f .x/; g.y/ � 0; f 2 Lp;�.RC/; g 2 Lq; .RC/; jjf jjp;� ; jjgjjq; > 0;

then for p > 1; on the assumptions of Theorem 4, we have the following equivalent
inequalities:



718 B. Yang

Z 1

0

Z 1

0

k.1/� .xy; 1/bF�.y/g.x/dydx <
2Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; ; (63)


Z 1

0

xp��1
�Z 1

0

k.1/� .xy; 1/bF�.y/dy

�p

dx

� 1
p

<

2Y

iD1
k.i/� .�/jjf jjp;� ; (64)

where the constant factor
Q2

iD1 k.i/� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (63) and (64) with the
best possible constant factor

Q2
iD1 k.i/� .�/:

3.3 Some Corollaries on Theorems 4 and 5

Assuming that k.1/� .x; y/ D 0.0 < y � x/; we find k.1/� .u; 1/ D 0.u � 1/; and

k.1/� .�/ D k.1/�;1.�/ WD
Z 1

0

k.1/� .u; 1/u
��1du: (65)

By Theorems 4 and 5, we have

Corollary 5. If k.1/�;1.�/; k
.2/

� .�/ 2 RC; f .x/; g.y/ � 0; f 2 Lp;�.RC/; g 2
Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; then for p > 1; on the assumptions of Theorem 4,
we have the following equivalent inequalities:

Z 1

0

Z 1

x
k.1/� .x; y/F�.y/g.x/dydx < k.1/�;1.�/k

.2/

� .�/jjf jjp;� jjgjjq; (66)


Z 1

0

xp��1
�Z 1

x
k.1/� .x; y/F�.y/dy

�p

dx

� 1
p

< k.1/�;1.�/k
.2/

� .�/jjf jjp;� ; (67)

where the constant factor k.1/�;1.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (66) and (67) with the
best possible constant factor k.1/�;1.�/k

.2/

� .�/:

Assuming that k.1/� .x; y/ D 0.0 < x � y/; we find k.1/� .u; 1/ D 0.0 < u � 1/; and

k.1/� .�/ D k.1/�;2.�/ WD
Z 1

1

k.1/� .u; 1/u
��1du: (68)

By Theorems 4 and 5, we have

Corollary 6. If k.1/�;2.�/; k
.2/

� .�/ 2 RC; f .x/; g.y/ � 0; f 2 Lp;�.RC/; g 2
Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; then for p > 1; on the assumptions of Theorem 4,
we have the following equivalent inequalities:
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Z 1

0

Z x

0

k.1/� .x; y/F�.y/g.x/dydx < k.1/�;2.�/k
.2/

� .�/jjf jjp;� jjgjjq; (69)


Z 1

0

xp��1
�Z x

0

k.1/� .x; y/F�.y/dy

�p

dx

� 1
p

< k.1/�;2.�/k
.2/

� .�/jjf jjp;� ; (70)

where the constant factor k.1/�;2.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (69) and (70) with the
best possible constant factor k.1/�;2.�/k

.2/

� .�/:

Remark 5. For x > 0; setting Ax;0 D .0;1/;Ax;1 D .x;1/;Ax;2 D .0; x/; and k.1/�;0
.�/ WD k.1/� .�/; by Theorems 4 and 5, Corollaries 5 and 6, for p > 1; we have the
following equivalent inequalities:

Z 1

0

Z

Ax;i

k.1/� .x; y/F�.y/g.x/dydx < k.1/�;i.�/k
.2/

� .�/jjf jjp;� jjgjjq; (71)

"Z 1

0

xp��1
 Z

Ax;i

k.1/� .x; y/F�.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

� .�/jjf jjp;� ; (72)

where the constant factors k.1/�;i.�/k
.2/

� .�/ (i D 0; 1; 2) are the best possible; for
0 < p < 1; we have the equivalent reverses of (71) and (72) with the best possible
constant factors k.1/�;i.�/k

.2/

� .�/ .i D 0; 1; 2/:

If k.2/� .x; y/ D 0.y 2 RCnAx;1/; then we find k.2/� .u; 1/ D 0.u � 1/; and

k.2/� .�/ D k.2/�;1.�/ WD
Z 1

0

k.2/� .u; 1/u
��1duI

if k.2/� .x; y/ D 0.y 2 RCnAx;2/; then we find k.2/� .u; 1/ D 0.0 < u � 1/; and

k.2/� .�/ D k.2/�;2.�/ WD
Z 1

1

k.2/� .u; 1/u
��1du:

Assuming that k.2/�;0.�/ WD k.2/� .�/; setting

F�;j.y/ WD
(

y��1 R
Ax;j

k.2/� .x; y/f .x/dx; y 2 fy 2 RCI f .y/ > 0g;
0; y 2 fy 2 RCI f .y/ D 0g;

then it follows that F�;0.y/ D F�.y/: In the same way, we have
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Corollary 7. If for i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; f .x/; g.y/ � 0; f 2
Lp;�.RC/; g 2 Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; then for p > 1; on the assumptions
of Theorem 4, we have the following equivalent inequalities:

Z 1

0

Z

Ax;i

k.1/� .x; y/F�;j.y/g.x/dydx < k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� jjgjjq; ; (73)

"Z 1

0

xp��1
 Z

Ax;i

k.1/� .x; y/F�;j.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� ; (74)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (73) and (74) with the
best possible constant factor k.1/�;i.�/k

.2/

�;j.�/:

By (34), for p > 1; we still can find that

"Z 1

0

xp��1
 Z

Ax;i

k.1/� .x; y/F�;j.y/dy

!p

dx

# 1
p

� k.1/�;i.�/jjF�;jjjp;� ; (75)

jjF�;jjjp;� � k.2/�;j.�/jjf jjp;�.i; j D 0; 1; 2/; (76)

where the constant factors k.1/�;i.�/ .i D 0; 1; 2/ and k.2/�;j.�/ .j D 0; 1; 2/ are the best
possible.

Example 7. (a) We set

k.1/� .u; 1/ D 1

.maxfu; 1g/� .� 2 A1 D .0;1//;

k.2/� .u; 1/ D 1

ju � 1j� .� 2 A2 D .0; 1//:

Then k.2/� .u; 1/ satisfies for using Condition (ii) while � 2 .0; 1/ \ A1 \ A2 D
.0; 1/, and for i; j D 0; 1; 2; we obtain

k.1/�;i.�/ D .2 � i/.1C i/
1

2�
C .1 � i/2

1

�
;

k.2/�;j.�/ D 1

2
.2 � j/.1C j/B.1 � �;�/C .1 � j/2B.1 � �; �/:

(b) We set

k.1/� .u; 1/ D 1

ju � 1j� .� 2 A1 D .0; 1//;

k.2/� .u; 1/ D j ln ujˇ
.maxfu; 1g/� .ˇ � 0; � 2 A2 D .0;1//:
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Then k.2/� .u; 1/ satisfies for using Condition (i) while � 2 A1 \ A2 D .0; 1/, and
for i; j D 0; 1; 2; we obtain

k.1/�;i.�/ D .2 � i/.1C i/B.1 � �;�/C .1 � i/2B.1 � �; �/;

k.2/�;j.�/ D 1

2
.2 � j/.1C j/

	 .ˇ C 1/

�ˇC1 C .1 � j/2
	 .ˇ C 1/

�ˇC1 :

(c) We set

k.1/� .u; 1/ D 1

.maxfu; 1g/� .� 2 A1 D .0;1//;

k.2/� .u; 1/ D j ln ujˇ
.maxfu; 1g/� .ˇ � 0; � 2 A2 D .0;1//:

Then k.2/� .u; 1/ satisfies for using Condition (i) while � 2 A1 \ A2 D .0;1/,
and for i; j D 0; 1; 2; we obtain

k.1/�;i.�/ D .2 � i/.1C i/
1

2�
C .1 � i/2

1

�
;

k.2/�;j.�/ D 1

2
.2 � j/.1C j/

	 .ˇ C 1/

�ˇC1 C .1 � j/2
	 .ˇ C 1/

�ˇC1 :

(d) We set

k.1/0 .u; 1/ D
�

minfu; 1g
ju � 1j

��
.0 < � < 1/;

k.2/0 .u; 1/ D
�

minfu; 1g
maxfu; 1g

��
j ln ujˇ.ˇ � 0; � > 0/:

Then for j�j < minf�; �g; 0 < ı0 < � C �; k.2/0 .u; 1/ satisfies for using
Condition (i) while � D 0 and for i; j D 0; 1; 2; we obtain

k.1/i .�/ D 1

2
.2 � i/.1C i/B.1 � �; �C �/

C.1 � i/2.1 � �; � � �/;

k.2/j .�/ D .2 � j/.1C j/
	 .ˇ C 1/

.�C �/ˇC1 C .1 � j/2
	 .ˇ C 1/

.� � �/ˇC1 :
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3.4 Some Corollaries on Theorem 6

Assuming that k.1/� .xy; 1/ D 0.0 < 1
x � y/; then we find k.1/� .u; 1/ D 0.u � 1/; and

k.1/� .�/ D k.1/�;1.�/: By Theorem 6, we have

Corollary 8. If k.1/�;1.�/; k
.2/

� .�/ 2 RC; f .x/; Og.y/ � 0; f 2 Lp;�.RC/; Og 2
L

q;b .RC/; jjf jjp;� ; jjOgjj
q;b > 0; then for p > 1; on the assumptions of Theorem 4,

we have the following equivalent inequalities:

Z 1

0

Z 1
x

0

k.1/� .xy; 1/F�.y/Og.x/dydx < k.1/�;1.�/k
.2/

� .�/jjf jjp;� jjOgjj
q;b ; (77)

"Z 1

0

xp��1
 Z 1

x

0

k.1/� .xy; 1/F�.y/dy

!p

dx

# 1
p

< k.1/�;1.�/k
.2/

� .�/jjf jjp;� ; (78)

where the constant factor k.1/�;1.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (77) and (78) with the
best possible constant factor k.1/�;1.�/k

.2/

� .�/:

Assuming that k.1/� .xy; 1/ D 0.0 < y � 1
x /; then we find k.1/� .u; 1/ D 0.0 < u �

1/; and k.1/� .�/ D k.1/�;2.�/: By Theorem 6, we have

Corollary 9. If k.1/�;2.�/ k.2/� .�/ 2 RC; f .x/; Og.y/ � 0; f 2 Lp;�.RC/; Og 2
L

q;b .RC/; jjf jjp;� ; jjOgjj
q;b > 0; then for p > 1; on the assumptions of Theorem 4,

we have the following equivalent inequalities:

Z 1

0

Z 1
1
x

k.1/� .xy; 1/F�.y/Og.x/dydx < k.1/�;2.�/k
.2/

� .�/jjf jjp;� jjOgjj
q;b ; (79)

"Z 1

0

xp��1
 Z 1

1
x

k.1/� .xy; 1/F�.y/dy

!p

dx

# 1
p

< k.1/�;2.�/k
.2/

� .�/jjf jjp;� ; (80)

where the constant factor k.1/�;2.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (79) and (80) with the
best possible constant factor k.1/�;2.�/k

.2/

� .�/:

Remark 6. For x > 0; setting Bx;0 D .0;1/;Bx;1 D .0; 1x /;Bx;2 D . 1x ;1/; and

k.1/�;0.�/ D k.1/� .�/; by Theorem 6, Corollaries 8 and 9, for p > 1; we have the
following equivalent inequalities:

Z 1

0

Z

Bx;i

k.1/� .xy; 1/F�.y/Og.x/dydx < k.1/�;i.�/k
.2/

� .�/jjf jjp;� jjOgjj
q;b ; (81)
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"Z 1

0

xp��1
 Z

Bx;i

k.1/� .xy; 1/F�.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

� .�/jjf jjp;� ; (82)

where the constant factors k.1/�;i.�/k
.2/

� .�/ (i D 0; 1; 2) are the best possible; for
0 < p < 1; we have the equivalent reverses of (81) and (82) with the best possible
constant factors k.1/�;i.�/k

.2/

� .�/ .i D 0; 1; 2/:

If k.2/� .x; y/ D 0.y 2 RCnAx;1/; then we find k.2/� .u; 1/ D 0.u � 1/; and k.2/� .�/ D
k.2/�;1.�/I if k.2/� .x; y/ D 0.y 2 RCnAx;2/; then k.2/� .u; 1/ D 0.0 < u � 1/; k.2/� .�/ D
k.2/�;2.�/: In the same way, in view of (81) and (82), we have

Corollary 10. If for i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; f .x/; g.y/ � 0; f 2
Lp;�.RC/; g 2 Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; then for p > 1; on the assumptions
of Theorem 4, we have the following equivalent inequalities:

Z 1

0

Z

Bx;i

k.1/� .xy; 1/F�;j.y/Og.x/dydx < k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� jjOgjj
q;b ; (83)

"Z 1

0

xp��1
 Z

Bx;i

k.1/� .xy; 1/F�;j.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� ; (84)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (83) and (84) with the
best possible constant factor k.1/�;i.�/k

.2/

�;j.�/:

By (26) and (34), for p > 1; we still can find that

"Z 1

0

xp��1
 Z

Bx;i

k.1/� .xy; 1/F�;j.y/dy

!p

dx

# 1
p

� k.1/�;i.�/jjF�;jjjp;� ; (85)

jjF�;jjjp;� � k.2/�;j.�/jjf jjp;�.i; j D 0; 1; 2/; (86)

where the constant factors k.1/�;i.�/.i D 0; 1; 2/ and k.2/�;j.�/.j D 0; 1; 2/ are the best
possible.

3.5 Some Corollaries on Theorem 7

Assuming that k.1/� .x; y/ D 0.0 < y � x/; then we find k.1/� .u; 1/ D 0.u � 1/; and

k.1/� .�/ D k.1/�;1.�/: By Theorem 7, we have
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Corollary 11. If k.1/�;1.�/ 2 RC; f .x/; Og.y/ � 0; f 2 Lp;�.RC/; Og 2
L

q;b .RC/; jjf jjp;� ; jjOgjj
q;b > 0; then for p > 1; on the assumptions of Theorem 4,

we have the following equivalent inequalities:

Z 1

0

Z 1

x
k.1/� .x; y/bF�.y/Og.x/dydx < k.1/�;1.�/k

.2/

� .�/jjf jjp;� jjOgjj
q;b ; (87)


Z 1

0

xp��1
�Z 1

x
k.1/� .x; y/bF�.y/dy

�p

dx

� 1
p

< k.1/�;1.�/k
.2/

� .�/jjf jjp;� ; (88)

where the constant factor k.1/�;1.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (87) and (88) with the
best possible constant factor k.1/�;1.�/k

.2/

� .�/:

Assuming that k.1/� .x; y/D0.0 < x � y/; then we find k.1/� .u; 1/D0.0 < u � 1/;

and k.1/� .�/ D k.1/�;2.�/: By Theorem 7, we have

Corollary 12. If k.1/�;2.�/; k
.2/

� .�/ 2 RC; f .x/; Og.y/ � 0; f 2 Lp;�.RC/; Og 2
L

q;b .RC/; jjf jjp;� ; jjOgjj
q;b > 0; then for p > 1; on the assumptions of Theorem 4,

we have the following equivalent inequalities:

Z 1

0

Z x

0

k.1/� .x; y/bF�.y/Og.x/dydx < k.1/�;2.�/k
.2/

� .�/jjf jjp;� jjOgjj
q;b ; (89)


Z 1

0

xp��1
�Z x

0

k.1/� .x; y/bF�.y/dy

�p

dx

� 1
p

< k.1/�;2.�/k
.2/

� .�/jjf jjp;� ; (90)

where the constant factor k.1/�;2.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (87) and (88) with the
best possible constant factor k.1/�;2.�/k

.2/

� .�/:

Remark 7. For x > 0; setting Ax;0 D .0;1/;Ax;1 D .x;1/;Ax;2 D .0; x/; and
k.1/�;0.�/ D k.1/� .�/; by Theorem 7, Corollaries 11 and 12, for p > 1; we have the
following equivalent inequalities:

Z 1

0

Z

Ax;i

k.1/� .x; y/bF�.y/Og.x/dydx < k.1/�;i.�/k
.2/

� .�/jjf jjp;� jjOgjj
q;b ; (91)

"Z 1

0

xp��1
 Z

Ax;i

k.1/� .x; y/bF�.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

� .�/jjf jjp;� ; (92)

where the constant factors k.1/�;i.�/k
.2/

� .�/ (i D 0; 1; 2) are the best possible; for
0 < p < 1; we have the equivalent reverses of (91) and (92) with the best possible
constant factors k.1/�;i.�/k

.2/

� .�/.i D 0; 1; 2/:
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If k.2/� .xy; 1/ D 0.y 2 RCnBx;1/; then we find k.2/� .u; 1/ D 0.u � 1/; k.2/� .�/ D
k.2/�;1.�/I if k.2/� .x; y/ D 0.y 2 RCnBx;2/; then we find k.2/� .u; 1/ D 0.0 < u � 1/,

k.2/� .�/ D k.2/�;2.�/: In the same way, in view of (91) and (92), we have

Corollary 13. If for i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; f .x/; Og.y/ � 0; f 2
Lp;�.RC/; Og 2 L

q;b .RC/; jjf jjp;� ; jjgjj
q;b > 0; then for p > 1; on the assumptions

of Theorem 4, we have the following equivalent inequalities:

Z 1

0

Z

Ax;i

k.1/� .x; y/bF�;j.y/Og.x/dydx < k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� jjOgjj
q;b ; (93)

"Z 1

0

xp��1
 Z

Ax;i

k.1/� .x; y/bF�;j.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� ; (94)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (93) and (94) with the
best possible constant factor k.1/�;i.�/k

.2/

�;j.�/:

By (34) and (26), for p > 1; '.x/ D xp.1��/�1; we still can find that

"Z 1

0

xp��1
 Z

Ax;i

k.1/� .x; y/bF�;j.y/dy

!p

dx

# 1
p

� k.1/�;i.�/jjbF�;jjjp;' ; (95)

jjbF�;jjjp;' � k.2/�;j.�/jjf jjp;�.j D 0; 1; 2/; (96)

where the constant factors k.1/�;i.�/ and k.2/�;j.�/ are the best possible.

3.6 Some Corollaries on Theorem 8

Assuming that k.1/� .xy; 1/ D 0.0 < 1
x � y/; then we find k.1/� .u; 1/ D 0.u � 1/; and

k.1/� .�/ D k.1/�;1.�/: By Theorem 8, we have

Corollary 14. If k.1/�;1.�/; k
.2/

� .�/ 2 RC;f .x/; g.y/ � 0; f 2 Lp;�.RC/; g 2
Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; then for p > 1; on the assumptions of Theorem 4,
we have the following equivalent inequalities:

Z 1

0

Z 1
x

0

k.1/� .xy; 1/bF�.y/g.x/dydx < k.1/�;1.�/k
.2/

� .�/jjf jjp;� jjgjjq; ; (97)
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"Z 1

0

xp��1
 Z 1

x

0

k.1/� .xy; 1/bF�.y/dy

!p

dx

# 1
p

< k.1/�;1.�/k
.2/

� .�/jjf jjp;� ; (98)

where the constant factor k.1/�;1.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (97) and (98) with the
best possible constant factor k.1/�;1.�/k

.2/

� .�/:

Assuming that k.1/� .xy; 1/D0.0 < y � 1
x /; then we find k.1/� .u; 1/D0.0 < u � 1/;

and k.1/� .�/ D k.1/�;2.�/: By Theorem 8, we have

Corollary 15. If k.1/�;2.�/; k
.2/

� .�/ 2 RC;f .x/; g.y/ � 0; f 2 Lp;�.RC/; g 2
Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; then for p > 1; on the assumptions of Theorem 4,
we have the following equivalent inequalities:

Z 1

0

Z 1
1
x

k.1/� .xy; 1/bF�.y/G.x/dydx < k.1/�;2.�/k
.2/

� .�/jjf jjp;� jjGjjq; ; (99)

"Z 1

0

xp��1
 Z 1

1
x

k.1/� .xy; 1/bF�.y/dy

!p

dx

# 1
p

< k.1/�;2.�/k
.2/

� .�/jjf jjp;� ; (100)

where the constant factor k.1/�;2.�/k
.2/

� .�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (99) and (100) with
the best possible constant factor k.1/�;2.�/k

.2/

� .�/:

Remark 8. For x > 0; setting Bx;0 D .0;1/;Bx;1 D .0; 1x /;Bx;2 D . 1x ;1/; and

k.1/�;0.�/ D k.1/� .�/; by Theorem 8, Corollaries 14 and 15, for p > 1; we have the
following equivalent inequalities

Z 1

0

Z

Bx;i

k.1/� .xy; 1/bF�.y/g.x/dydx < k.1/�;i.�/k
.2/

� .�/jjf jjp;� jjgjjq; ; (101)

"Z 1

0

xp��1
 Z

Bx;i

k.1/� .xy; 1/bF�.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

� .�/jjf jjp;� ; (102)

where the constant factors k.1/�;i.�/k
.2/

� .�/ (i D 0; 1; 2) are the best possible; for
0 < p < 1;we have the equivalent reverses of (101) and (102) with the best possible
constant factor k.1/�;i.�/k

.2/

� .�/ (i D 0; 1; 2).

If k.2/� .xy; 1/ D 0.y 2 RCnBx;1/; then we find k.2/� .u; 1/ D 0.u � 1/; k.2/� .�/ D
k.2/�;1.�/I if k.2/� .x; y/ D 0.y 2 RCnBx;2/; then we find k.2/� .u; 1/ D 0.0 < u �
1/; k.2/� .�/ D k.2/�;2.�/: In the same way, in view of (91) and (92), we have
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Corollary 16. If for i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; f .x/; g.y/ � 0; f 2
Lp;�.RC/; g 2 Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; then for p > 1; on the assumptions
of Theorem 4, we have the following equivalent inequalities:

Z 1

0

Z

Bx;i

k.1/� .xy; 1/bF�;j.y/g.x/dydx < k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� jjgjjq; ; (103)

"Z 1

0

xp��1
 Z

Bx;i

k.1/� .xy; 1/bF�;j.y/dy

!p

dx

# 1
p

< k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� ; (104)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/ is the best possible; for 0 < p < 1; on the
assumptions of Theorem 5, we have the equivalent reverses of (103) and (104) with
the best possible constant factor k.1/�;i.�/k

.2/

�;j.�/.

By (26), for p > 1; '.x/ D xp.1��/�1; we still can find that

"Z 1

0

xp��1
 Z

Bx;i

k.1/� .xy; 1/bF�;j.y/dy

!p

dx

# 1
p

� k.1/�;i.�/jjbF�;jjjp;' ; (105)

jjbF�;jjjp;' � k.2/�;j.�/jjf jjp;�.i; j D 0; 1; 2/; (106)

where the constant factors k.1/�;i.�/.i D 0; 1; 2/ and k.2/�;j.�/.j D 0; 1; 2/ are the best
possible.

4 Related Operators and Composition Formulas

In this section, we agree on that p > 1;�; � 2 R; �C � D � 2 Ai.¤ ˚/; k.i/� .x; y/
are homogeneous functions of degree �� in R2C;

k.i/� .�/ D
Z 1

0

k.i/� .u; 1/u
��1du 2 RC.i D 1; 2/;

k.1/� .x; y/ is a symmetric function, there exists a constant ı0 > 0; such that

k.i/� .�˙ ı0/ 2 RC.i D 1; 2/ and k.2/� .u; 1/ satisfies Condition (i) for � 2 A1 \ A2
or Condition (ii) for � 2 .0; 1/ \ A1 \ A2, where,

Condition (i). For � 2 A1 \ A2.¤ ˚/; there exist constants ı1 2 .0; ı0/ and
L1 > 0; such that

k.2/� .u; 1/u
��ı1 � L1.u 2 .0; 1//:
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Condition (ii). For � 2 .0; 1/ \ A1 \ A2.¤ ˚/; there exists a constant L2 > 0;

such that

k.2/� .u; 1/.1 � u/� � L2.u 2 .0; 1//:

4.1 A Composition Formula of the Operators Related
to Corollary 7

For any i D 0; 1; 2;F 2 Lp;�.RC/; we set

h.x/ WD x��1
Z

Ax;i

k.1/� .x; y/F.y/dy.x 2 RC/:

Then by (75), we have

jjhjjp;� � k.1/�;i.�/jjFjjp;� : (107)

Definition 6. For any i D 0; 1; 2; we define an operator

T.i/1 W Lp;�.RC/ ! Lp;�.RC/

as follows:

For any F 2 Lp;�.RC/; there exists a unified expression T.i/1 F D h 2 Lp;�.RC/;
such that for any x 2 RC;T.i/1 F.x/ D h.x/:

By (107), we have

jjT.i/1 Fjjp;� � k.1/�;i.�/jjFjjp;� :

Hence T.i/1 is a bounded linear operator with

jjT.i/1 jj WD sup
F.¤�/2Lp;� .RC/

jjT.i/1 Fjjp;�
jjFjjp;� � k.1/�;i.�/:

Since the constant factor in (107) is the best possible, we have

jjT.i/1 jj D k.1/�;i.�/.i D 0; 1; 2/:

Definition 7. For any j D 0; 1; 2; we define an operator

T.j/2 W Lp;�.RC/ ! Lp;�.RC/

as follows:
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For any f 2 Lp;�.RC/; there exists a unified expression T.j/2 f D F�;j 2 Lp;�.RC/;
such that for any y 2 RC;T.j/2 f .y/ D F�;j.y/:

By (76), we have

jjT.j/2 f jjp;� D jjF�;jjjp;� � k.2/�;j.�/jjf jjp;� :

Hence T.j/2 is a bounded linear operator with

jjT.j/2 jj WD sup
f .¤�/2Lp;� .RC/

jjT.j/2 f jjp;�
jjf jjp;� � k.2/�;j.�/:

Since the constant factor in (76) is the best possible, we have

jjT.j/2 jj D k.2/�;j.�/.j D 0; 1; 2/:

Definition 8. For any i; j D 0; 1; 2; we define a compositional Yang-Hilbert-type
operator

Ti;j W Lp;�.RC/ ! Lp;�.RC/

as follows:

For any f 2 Lp;�.RC/; there exists a unified expression Ti;jf D T.i/1 F�;j 2
Lp;�.RC/; such that for any x 2 RC;

Ti;jf .x/ D T.i/1 F�;j.x/ D x��1
Z

Ax;i

k.1/� .x; y/F�;j.y/dy: (108)

It is evident that

Ti;jf D T.i/1 F�;j D T.i/1 .T
.j/
2 f / D .T.i/1 T.j/2 /f ;

and then Ti;j D T.i/1 T.j/2 : Hence, Ti;j is a composition of T.i/1 and T.j/2 ; and (cf. [30])

jjTi;jjj D jjT.i/1 T.j/2 jj � jjT.i/1 jj � jjT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/:

By (74), we have

jjTi;jf jjp;' D jjT.i/1 F�;jjjp;� � k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� :

Since the constant factor in (74) is the best possible, it follows that

Theorem 9. For any i; j D 0; 1; 2, if k.1/�;i.�/; k
.2/

�;j.�/ 2 RC, then we have

jjTi;jjj D jjT.i/1 T.j/2 jj D jjT.i/1 jj � jjT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/: (109)
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4.2 A Composition Formula of the Operators Related
to Corollary 10

For any i D 0; 1; 2;F 2 Lp;�.RC/; we set

Qh.x/ WD x��1
Z

Bx;i

k.1/� .xy; 1/F.y/dy.x 2 RC/:

Then by (85), we have

jjQhjjp;� � k.1/�;i.�/jjFjjp;� : (110)

Definition 9. For any i D 0; 1; 2; we define an operator

eT.i/1 W Lp;�.RC/ ! Lp;�.RC/

as follows:

For any F 2 Lp;�.RC/; there exists a unified expression eT.i/1 F D Qh 2 Lp;�.RC/;
such that for any x 2 RC;eT.i/1 F.x/ D Qh.x/:

By (110), we have

jjeT.i/1 Fjjp;� � k.1/�;i.�/jjFjjp;� :

Hence,eT.i/1 is a bounded linear operator with

jjeT.i/1 jj WD sup
F.¤�/2Lp;� .RC/

jjeT.i/1 Fjjp;�
jjFjjp;� � k.1/�;i.�/:

Since the constant factor in (110) is the best possible, we have

jjeT.i/1 jj D k.1/�;i.�/.i D 0; 1; 2/:

For any j D 0; 1; 2; we define T.j/2 as Definition 7 and then obtain

jjT.j/2 jj D k.2/�;j.�/:

Definition 10. For any i; j D 0; 1; 2; we define a Yang-Hilbert-type operator

eTi;j W Lp;�.RC/ ! Lp;�.RC/

as follows:
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For any f 2 Lp;�.RC/; there exists a unified expression eTi;jf D eT.i/1 F�;j 2
Lp;�.RC/; such that for any x 2 RC;

eTi;jf .x/ D eT.i/1 F�;j.x/ D x��1
Z

Bx;i

k.1/� .xy; 1/F�;j.y/dy: (111)

It is evident that

eTi;jf D eT.i/1 F�;j D eT.i/1 .T
.j/
2 f / D .eT.i/1 T.j/2 /f ;

and theneTi;j D eT.i/1 T.j/2 : Hence,eTi;j is a composition ofeT.i/1 and T.j/2 ; and

jjeTi;jjj D jjeT.i/1 T.j/2 jj � jjeT.i/1 jj � jjT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/:

By (84), we have

jjeTi;jf jjp;' D jjeT.i/1 F�;jjjp;' � k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� :

Since the constant factor in (84) is the best possible, it follows that

Theorem 10. For any i; j D 0; 1; 2; if k.1/�;i.�/; k
.2/

�;j.�/ 2 RC, then we have

jjeTi;jjj D jjeT.i/1 T.j/2 jj D jjeT.i/1 jj � jjT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/: (112)

4.3 A Composition Formula of the Operators Related
to Corollary 13

For any i D 0; 1; 2; we define T.i/1 as Definition 6 and then obtain

jjT.i/1 jj D k.1/�;i.�/:

Definition 11. For any j D 0; 1; 2; we define an operator

bT.j/2 W Lp;�.RC/ ! Lp;'.RC/

as follows:

For any f 2 Lp;�.RC/; there exists a unified expressionbT.j/2 f D bF�;j 2 Lp;'.RC/;
such that for any y 2 RC;bT.j/2 f .y/ D bF�;j.y/:

By (96), we have

jjbT.j/2 f jjp;' D jjbF�;jjjp;' � k.2/�;j.�/jjf jjp;� :
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HencebT.j/2 is a bounded linear operator with

jjbT.j/2 jj WD sup
f .¤�/2Lp;� .RC/

jjbT.j/2 f jjp;'
jjf jjp;� � k.2/�;j.�/:

Since the constant factor in (96) is the best possible, we have

jjbT.j/2 jj D k.2/�;j.�/.j D 0; 1; 2/:

Definition 12. For any i; j D 0; 1; 2; we define a compositional Yang-Hilbert-type
operator

bTi;j W Lp;�.RC/ ! Lp;�.RC/

as follows:

For any f 2 Lp;�.RC/; there exists a unified expression bTi;jf D T.i/1 bF�;j 2
Lp;�.RC/; such that for any x 2 RC;

bTi;jf .x/ D T.i/1 bF�;j.x/ D x��1
Z

Ax;i

k.1/� .x; y/bF�;j.y/dy: (113)

It is evident that

bTi;jf D T.i/1 bF�;j D T.i/1 .bT
.j/
2 f / D .T.i/1 bT

.j/
2 /f ;

and thenbTi;j D T.i/1 bT
.j/
2 : Hence,bTi;j is a composition of T.i/1 andbT.j/2 ; and (cf. [30])

jjbTi;jjj D jjT.i/1 bT.j/2 jj � jjT.i/1 jj � jjbT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/:

By (94), we have

jjbTi;jf jjp;� D jjT.i/1 bF�;jjjp;� � k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� :

Since the constant factor in (94) is the best possible, it follows that

Theorem 11. For any i; j D 0; 1; 2, if k.1/�;i.�/; k
.2/

�;j.�/ 2 RC, then we have

jjbTi;jjj D jjT.i/1 bT.j/2 jj D jjT.i/1 jj � jjbT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/: (114)



Compositional Yang-Hilbert-Type Integral Inequalities and Operators 733

4.4 A Composition Formula of the Operators Related
to Corollary 16

For any i D 0; 1; 2; we defineeT.i/1 as Definition 9, and then obtain

jjeT.i/1 jj D k.1/�;i.�/:

Also for any j D 0; 1; 2; we definebT.j/2 as Definition 11, and then obtain

jjbT.j/2 jj D k.2/�;j.�/:

Definition 13. For any i; j D 0; 1; 2; we define a compositional Yang-Hilbert-type
operator

Ti;j W Lp;�.RC/ ! Lp;�.RC/

as follows:

For any f 2 Lp;�.RC/; there exists a unified expression Ti;jf D eT.i/1 bF�;j 2
Lp;�.RC/; such that for any x 2 RC;

Ti;jf .x/ D eT.i/1 bF�;j.x/ D x��1
Z

Bx;i

k.1/� .xy; 1/bF�;j.y/dy: (115)

It is evident that

Ti;jf D eT.i/1 bF�;j D eT.i/1 .bT
.j/
2 f / D .eT.i/1 bT

.j/
2 /f ;

and then Ti;j D eT.i/1 bT
.j/
2 : Hence, Ti;j is a composition ofeT.i/1 andbT.j/2 ; and

jjTi;jjj D jjeT.i/1 bT.j/2 jj � jjeT.i/1 jj � jjbT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/:

By (104), we have

jjTi;jf jjp;� D jjeT.i/1 bF�;jjjp;� � k.1/�;i.�/k
.2/

�;j.�/jjf jjp;� :

Since the constant factor in (104) is the best possible, it follows that

Theorem 12. For any i; j D 0; 1; 2; if k.1/�;i.�/; k
.2/

�;j.�/ 2 RC, then we have

jjTi;jjj D jjeT.i/1 bT.j/2 jj D jjeT.i/1 jj � jjbT.j/2 jj D k.1/�;i.�/k
.2/

�;j.�/: (116)
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5 A Second Kind of Compositional Yang-Hilbert-Type
Integral Inequality

In this section, by introducing a few lemmas and four conditions, we obtain a second
kind of compositional Yang-Hilbert-type integral inequality with a best possible
constant factor and the reverse. Some corollaries are also deduced. We agree on that
p > 0.p ¤ 1/; 1p C 1

q D 1; �; � 2 R; �C � D � in the following.

5.1 Some Lemmas

Similarly, by Lemma 3, we have

Lemma 5. Suppose that � 2 A3.¤ ˚/ � R; k.3/� .x; y/ is a homogeneous function
of degree �� in R2C;

k.3/� .�/ WD
Z 1

0

k.3/� .u; 1/u
��1du; (117)

there exists a constant ı0 > 0; such that k.3/� .�˙ı0/ 2 RC: Then for any ı 2 Œ0; ı0/;
we have k.3/� .�˙ ı/ 2 RC; and

lim
ı!0C

k.3/� .�˙ ı/ D k.3/� .�/: (118)

On the assumptions of Lemmas 3 and 5, we set the following four conditions:

Condition (a). For any � 2 T3
iD1 Ai.¤ ˚/; there exist constants ı1 2 .0; ı0/ and

L1 > 0; such that

k.2/� .u; 1/u
��ı1 � L1.u 2 .0; 1//;

k.3/� .u; 1/u
�Cı1 � L1.u 2 .1;1//: (119)

Condition (b). For any � 2 T3
iD1 Ai\.0; 1/.¤ ˚/; there exists a constant L2 > 0;

such that

k.2/� .u; 1/.1 � u/� � L2.u 2 .0; 1//;
k.3/� .u; 1/.u � 1/� � L2.u 2 .1;1//: (120)

Condition (c). For any � 2 T3
iD1 Ai \ .0; 1/.¤ ˚/; there exist constants a 2

.0; �/ and L3 > 0; such that

k.1/� .u; 1/u
a � L3.u 2 .0;1//: (121)



Compositional Yang-Hilbert-Type Integral Inequalities and Operators 735

Condition (d). For any � 2 T3
iD1 Ai \ .0; 2

3
/.¤ ˚/; there exists a constant

L4 > 0; such that

k.1/� .u; 1/j1 � uj� � L4.u 2 .0;1//: (122)

Example 8. (i) For � 2 A1 D A2 D RC; 0 < ı0 < minf�; �g.�; � > 0/; the
functions

k.3/� .u; 1/ D 1

.u C 1/�
;

1

u� C 1
;

ln u

u� � 1 ;
j ln ujˇ

.maxfu; 1g/� .ˇ � 0/

satisfy for using Condition (a); for � D 0; 0 < ı0 < � � �.j�j < �/; ˇ � 0; the
function

k.3/0 .u; 1/ D
�

minfu; 1g
maxfu; 1g

��
j ln ujˇ

also satisfies for using Condition (a). In fact, for ı1 2 .0; ı0/; we obtain

lim
u!1 k.3/� .u; 1/u

�Cı1 D 0:

In view of the continuity, k.3/� .u; 1/u
�Cı1 is bounded in .1;1/:

(ii) For � 2 A1 \ A2 D .0; 1/; the function

k.3/� .u; 1/ D 1

ju � 1j�
satisfies for using Condition (b):

Definition 14. On the assumptions of Lemma 3 and Lemma 5, define the following
real functions:

eFk.y/ D
(

y��1 R1
1

k.2/� .x; y/x
�� 1

pk �1dx; y 2 .1;1/;

0; y 2 .0; 1�;

eGk.x/ WD
(

x��1 R1
1

k.3/� .x; y/y
�� 1

qk �1dy; x 2 .1;1/;

0; x 2 .0; 1�;

where k > maxf 1
jqjı1 ;

1
pı1

g.k 2 N/.

Setting u D x=y.y > 1/; we find

eFk.y/ D y�� 1
pk �1k.2/� .� � 1

pk
/ � Fk.y/;

Fk.y/ D y�� 1
pk �1

Z 1
y

0

k.2/� .u; 1/u
�� 1

pk �1du.y 2 .1;1//: (123)
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Still setting u D x=y.x > 1/; we obtain

eGk.x/ D x�� 1
qk �1

Z x

0

k.3/� .u; 1/u
�C 1

qk �1du

D x�� 1
qk �1


Z 1

0

k.3/� .u; 1/u
.�C 1

qk /�1du �
Z 1

x
k.3/� .u; 1/u

�C 1
qk �1du

�

D x�� 1
qk �1k.3/� .�C 1

qk
/ � Gk.x/;

Gk.x/ WD x�� 1
qk �1

Z 1

x
k.3/� .u; 1/u

�C 1
qk �1du.x 2 .1;1//: (124)

In the following, we use Condition (a) and Condition (b) to estimate Fk.y/
and Gk.x/:

(i) If k.2/� .u; 1/ satisfies Condition (a), then by (119 ), we have

0 � Fk.y/ � L1y
�� 1

pk �1
Z 1

y

0

u��Cı1u�� 1
pk �1du

D L1y��ı1�1

ı1 � 1
pk

.y 2 .1;1//

(ii) If k.2/� .u; 1/ satisfies Condition (b), then by (120 ), we have

0 � Fk.y/ � L2y
�� 1

pk �1
Z 1

y

0

u�� 1
pk �1

.1 � u/�
du

D L2y
��1

Z 1

0

v
�� 1

pk �1

.y � v/� dv � L2y��1

.y � 1/�
Z 1

0

v
�� 1

pk �1dv

D L2
� � 1

pk

y��1

.y � 1/� .y 2 .1;1//

(iii) If k.3/� .u; 1/ satisfies Condition (a), then by (119), we have

0 � Gk.x/ � L1x
�� 1

qk �1
Z 1

x
u���ı1u�C 1

qk �1du

D L1x��ı1�1

ı1 � 1
qk

.x 2 .1;1//
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(iv) If k.3/� .u; 1/ satisfies Condition (b), then by (120), we have

0 � Gk.x/ � L2x
�� 1

qk �1
Z 1

x

u�C 1
qk �1

.u � 1/� du

D L2x
��1

Z 1

0

v
�� 1

qk �1

.x � v/� dv � L2x��1

.x � 1/�
Z 1

0

v
�� 1

qk �1dv

D L2x��1

.� � 1
qk /.x � 1/� .x 2 .1;1//:

Remark 9. In view of the cases (i)–(iv), there exists a large constant L > 0; such that

(i) Fk.y/ � Ly��ı1�1.y 2 .1;1/I� 2 T3
iD1 Ai/

(ii) Fk.y/ � L y��1

.y�1/� .y 2 .1;1/I� 2 T3
iD1 Ai

T
.0; 1//

(iii) Gk.x/ � Lx��ı1�1.x 2 .1;1/I� 2 T3
iD1 Ai/

(iv) Gk.x/ � L x��1

.x�1/� .x 2 .1;1/I� 2 T3
iD1 Ai

T
.0; 1//

Lemma 6. On the assumptions of Lemma 3 and Lemma 5, if k.1/� .x; y/ is a symmet-

ric function and k.2/� .u; 1/.k
.3/

� .u; 1// satisfies Condition (a) for � 2 T3
iD1 Ai.¤ ˚/

or Condition (b) for � 2 \3
iD1Ai

T
.0; 1/.¤ ˚/, then we have

eLk WD 1

k

Z 1

0

Z 1

0

k.1/� .x; y/eFk.y/eGk.x/dydx

�
3Y

iD1
k.i/� .�/C o.1/.k ! 1/: (125)

Proof. In view of (123) and (124), we have

eLk D 1

k

Z 1

1

Z 1

1

k.1/� .x; y/

�
y�� 1

pk �1k.2/� .� � 1

pk
/ � Fk.y/

�

�
�

x�� 1
qk �1k.3/� .�C 1

qk
/ � Gk.x/

�
dydx

D I1 � I2 � I3 C I4; (126)

where we define

I1 WD 1

k
k.2/� .� � 1

pk
/k.3/� .�C 1

qk
/

�
Z 1

1

�Z 1

1

k.1/� .x; y/y
�� 1

pk �1dy

�
x�� 1

qk �1dx;

I2 WD 1

k
k.3/� .�C 1

qk
/

Z 1

1

�Z 1

1

k.1/� .x; y/Fk.y/dy

�
x�� 1

qk �1dx;
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I3 WD 1

k
k.2/� .� � 1

pk
/

Z 1

1

�Z 1

1

k.1/� .x; y/y
�� 1

pk �1dy

�
Gk.x/dx;

I4 WD 1

k

Z 1

1

�Z 1

1

k.1/� .x; y/Fk.y/dy

�
Gk.x/dx:

It is evident that

I1 � I2 � I3 �eLk � I1 C I4: (127)

By the proof of Lemmas 4 and 5, we find

I1 D k.2/� .� � 1

pk
/k.3/� .�C 1

qk
/

�
�Z 1

0

k.1/� .u; 1/u
�C 1

qk �1du C
Z 1

1

k.1/� .u; 1/u
�� 1

pk �1du

�

!
3Y

iD1
k.i/� .�/.k ! 1/; (128)

and I2 ! 0.k ! 1/:

We estimate I3: (i) If k.3/� .u; 1/ satisfies Condition (a), then by Remark 9(iii),
we have

0 � J3 WD
Z 1

1

�Z 1

1

k.1/� .x; y/y
�� 1

pk �1dy

�
Gk.x/dx

� L
Z 1

1

�Z 1

1

k.1/� .y; x/y
�� 1

pk �1dy

�
x��ı1�1dx

D L
Z 1

1

 Z 1
1
x

k.1/� .u; 1/u
�� 1

pk �1du

!

x�ı1� 1
pk �1dx

� L
Z 1

1

�Z 1

0

k.1/� .u; 1/u
�� 1

pk �1du

�
x�ı1� 1

pk �1dx

D L

ı1 C 1
pk

k.1/� .� � 1

pk
/ < 1I

(ii) If k.3/� .u; 1/ satisfies Condition (b), then by Remark 9(iv), we have

0 � J3 � L
Z 1

1

�Z 1

1

k.1/� .y; x/y
�� 1

pk �1dy

�
x��1

.x � 1/� dx

D L
Z 1

1

 Z 1
1
x

k.1/� .u; 1/u
�� 1

pk �1du

!
x�� 1

pk �1

.x � 1/� dx
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� L
Z 1

0

�Z 1

0

k.1/� .u; 1/u
�� 1

pk �1du

�
v
�C 1

pk �1

.1 � v/� dv

D Lk.1/� .� � 1

pk
/B.1 � �; � C 1

pk
/ < 1:

Therefore, in view of (i) and (ii), we have I3 ! 0.k ! 1/:

By (127) and the above results, (125) follows.
The lemma is proved. ut

Lemma 7. On the assumptions of Lemma 3 and Lemma 5, if k.1/� .x; y/ is a

symmetric function, k.2/� .u; 1/.k
.3/

� .u; 1// satisfies Condition (a) for � 2 T3
iD1 Ai.¤

˚/ or Condition (b) for � 2 T3
iD1 Ai

T
.0; 1/.¤ ˚/ and if both k.2/� .u; 1/ and

k.3/� .u; 1/ satisfy Condition (b), then k.1/� .u; 1/ satisfies Condition (c) for � 2
T3

iD1 Ai
T
.0; 1/.¤ ˚/ or Condition (d) for � 2 T3

iD1 Ai
T
.0; 2

3
/.¤ ˚/, then we

have the reverse of (125), namely,

eLk D 1

k

Z 1

0

Z 1

0

k.1/� .x; y/eFk.y/eGk.x/dydx

D
3Y

iD1
k.i/� .�/C o.1/.k ! 1/: (129)

Proof. By Remark 9, Condition (c) and Condition (d), we divide five cases to show
that I4 ! 0.k ! 1/:

Case (i). For Fk.y/ � Ly��ı1�1; Gk.x/ � Lx��ı1�1.y; x 2 .1;1//; we have

J4 WD
Z 1

1

�Z 1

1

k.1/� .x; y/Fk.y/dy

�
Gk.x/dx

� L2
Z 1

1

�Z 1

1

k.1/� .y; x/y
��ı1�1dy

�
x��ı1�1dx

D L2
Z 1

1

 Z 1
1
x

k.1/� .u; 1/u
��ı1�1du

!

x�2ı1�1dx

� L2
Z 1

1

�Z 1

0

k.1/� .u; 1/u
��ı1�1du

�
x�2ı1�1dx

D L2

2ı1
k.1/� .� � ı1/ < 1:



740 B. Yang

Case (ii). For Fk.y/ � Ly��ı1�1; Gk.x/ � L x��1

.x�1/� .y; x 2 .1;1//; we have

J4 � L2
Z 1

1

�Z 1

1

k.1/� .y; x/y
��ı1�1dy

�
x��1

.x � 1/� dx

D L2
Z 1

1

 Z 1
1
x

k.1/� .u; 1/u
��ı1�1du

!
x��ı1�1

.x � 1/� dx

� L2
Z 1

1

�Z 1

0

k.1/� .u; 1/u
��ı1�1du

�
x��ı1�1

.x � 1/� dx

D L2k.1/� .� � ı1/B.1 � �; � C ı1/ < 1.0 < �; � < 1/:

Case (iii). For Fk.y/ � L y��1

.y�1/� ; Gk.x/ � Lx��ı1�1.y; x 2 .1;1//; we have

J4 � L2
Z 1

1

�Z 1

1

k.1/� .y; x/x
��ı1�1dx

�
y��1

.y � 1/� dy

D L2
Z 1

1

�Z y

0

k.1/� .u; 1/u
�Cı1�1du

�
y��ı1�1

.y � 1/� dy

� L2
Z 1

1

�Z 1

0

k.1/� .u; 1/u
�Cı1�1du

�
y��ı1�1

.y � 1/� dy

D L2k.1/� .�C ı1/B.1 � �;�C ı1/ < 1:

Case (iv). For Fk.y/ � L y��1

.y�1/� ;Gk.x/ � L x��1

.x�1/� .y; x 2 .1;1//; k.1/� .u; 1/
satisfies Condition (c), we have

J4 � L2
Z 1

1


Z 1

1

x��k.1/� .
y

x
; 1/

y��1

.y � 1/� dy

�
x��1

.x � 1/� dx

� L2L3

Z 1

1


Z 1

1

x��.
y

x
/�a y��1

.y � 1/� dy

�
x��1

.x � 1/� dx

D L2L3

Z 1

1


Z 1

1

y��a�1

.y � 1/� dy

�
xa�1

.x � 1/� dx

D L2L3B.1 � �; a/B.1 � �; � � a/ < 1:

Case (v). For Fk.y/ � L y��1

.y�1/� ;Gk.x/ � L x��1

.x�1/� .y; x 2 .1;1//; k.1/� .u; 1/ satisfies
Condition (d), we have
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J4 � L2L4

Z 1

1


Z 1

1

1

jx � yj�
y��1

.y � 1/� dy

�
x��1

.x � 1/� dx

D L2L4

Z 1

1


Z x

1

1

.x � y/�
y��1

.y � 1/� dy

�
x��1

.x � 1/� dx

CL2L4

Z 1

1


Z 1

x

1

.y � x/�
y��1

.y � 1/� dy

�
x��1

.x � 1/� dx

D L2L4

Z 1

1


Z 1

y

1

.x � y/�
x��1

.x � 1/� dx

�
y��1

.y � 1/� dy

CL2L4

Z 1

1


Z 1

x

1

.y � x/�
� y��1

.y � 1/� dy

�
x��1

.x � 1/� dx

D 2L2L4

Z 1

1


Z 1

1

1

.u � 1/�
u��1

.yu � 1/� du

�
y��1

.y � 1/� dy

D 2L2L4

Z 1

1


Z 1

1

1

.u � 1/�
u��1du

.yu � 1/�=2.yu � 1/�=2
�

y��1dy

.y � 1/�

� 2L2L4

Z 1

1


Z 1

1

1

.u � 1/�
u��1du

.u � 1/�=2.y � 1/�=2
�

y��1dy

.y � 1/�

D 2L2L4


Z 1

1

y��1

.y � 1/.3�/=2 dy

�2

D 2L2L4.B.1 � 3�

2
;
�

2
//2 < 1:

Hence, in the above any case, I4 D 1
k J4 ! 0.k ! 1/:

Therefore, by (127) and (128), we have the reverse of (125), and then (129)
follows.

The lemma is proved. ut

5.2 Main Results

We set functions �.x/ WD xp.1��/�1;  .y/ WD yq.1��/�1.x; y 2 RC/ in the following.

Theorem 13. Suppose that (i) � 2 Ai.¤ ˚/ � R; k.i/� .x; y/ are homogeneous
functions of degree �� in R2C;

k.i/� .�/ D
Z 1

0

k.i/� .u; 1/u
��1du;
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there exists a constant ı0 > 0; such that k.i/� .� ˙ ı0/ 2 RC.i D 1; 2; 3/I
(ii) k.i/� .x; y/.i D 1; 3/ are symmetric functions; (iii) k.2/� .u; 1/.k

.3/

� .u; 1// satisfies
Condition (a) for � 2 T3

iD1 Ai.¤ ˚/ or Condition (b) for � 2 T3
iD1 Ai

T
.0; 1/

.¤ ˚/. Then for p > 1; f .x/; g.y/ � 0; f 2 Lp;�.RC/; g 2 Lq; .RC/; jjf jjp;� ,
jjgjjq; > 0; setting

F�.y/ D
(

y��1 R1
0

k.2/� .x; y/f .x/dx; y 2 fy 2 RCI f .y/ > 0g;
0; y 2 fy 2 RCI f .y/ D 0g;

G�.x/ WD
(

x��1 R1
0

k.3/� .x; y/g.y/dy; x 2 fx 2 RCI g.x/ > 0g;
0; x 2 fx 2 RCI g.x/ D 0g;

we have the following second kind of compositional Yang-Hilbert-type inequality:

Z 1

0

Z 1

0

k.1/� .x; y/F�.y/G�.x/dydx <
3Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; ; (130)

where the constant factor
Q3

iD1 k.i/� .�/ is the best possible.

Proof. By (56), since k.3/� .x; y/ is symmetric, we find

jjG�jjq; �

Z 1

0

xq.1��/�1
�

x��1
Z 1

0

k.3/� .x; y/g.y/dy

�q

dx

� 1
q

D

Z 1

0

xq��1
�Z 1

0

k.3/� .x; y/g.y/dy

�q

dx

� 1
q

D

Z 1

0

xq��1
�Z 1

0

k.3/� .y; x/g.y/dy

�q

dx

� 1
q

< k.3/� .�/jjgjjq; : (131)

By (53), we still have

Z 1

0

Z 1

0

k.1/� .x; y/F�.y/G�.x/dydx �
2Y

iD1
k.i/� .�/jjf jjp;� jjG�jjq; : (132)

Then by (132) and (131), we have (130).
For any k > maxf 1

qı1
; 1

pı1
g.k 2 N/; we set Qf .x/ D Qg.y/ D 0.x; y 2 .0; 1�/I Qf .x/ D

x�� 1
pk �1

; Qg.y/ D y�� 1
qk �1

.x; y 2 .1;1//: Then we haveeFk.y/ D eGk.x/ D 0.x; y 2
.0; 1�/I
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eFk.y/ D y��1
Z 1

1

k.2/� .x; y/x
�� 1

pk �1dx

D y��1
Z 1

0

k.2/� .x; y/Qf .x/dx.y 2 .1;1//;

eGk.x/ D x��1
Z 1

1

k.3/� .x; y/y
�� 1

qk �1dy

D x��1
Z 1

0

k.3/� .x; y/Qg.y/dy.x 2 .1;1//:

If there exists a positive constant K � Q3
iD1 k.i/� .�/; such that (130) is valid when

replacing
Q3

iD1 k.i/� .�/ to K; then in particular, we have

eLk D 1

k

Z 1

0

Z 1

0

k.1/� .x; y/eFk.y/eGk.x/dydx

<
1

k
KjjQf jjp;� jjQgjjq; D 1

k
K
Z 1

1

x� 1
k �1dx D K:

By (125), we find

3Y

iD1
k.i/� .�/C o.1/ �eLk < K;

and then
Q3

iD1 k.i/� .�/ � K.k ! 1/: Hence, K D Q3
iD1 k.i/� .�/ is the best possible

constant factor of (130).
The theorem is proved. ut

Theorem 14. Suppose that (i) � 2 Ai.¤ ˚/ � R; k.i/� .x; y/ are homogeneous

functions of degree �� in R2C; there exists a constant ı0 > 0; such that k.i/� .� ˙
ı0/ 2 RC.i D 1; 2; 3/I (ii) k.i/� .x; y/.i D 1; 3/ are symmetric functions; (iii)

k.2/� .u; 1/.k
.3/

� .u; 1// satisfies Condition (a) for � 2 T3
iD1 Ai.¤ ˚/ or Condition

(b) for � 2 T3
iD1 Ai

T
.0; 1/.¤ ˚/ ; (iv) if both k.2/� .u; 1/ and k.3/� .u; 1/ satisfy

Condition (b), then k.1/� .u; 1/ satisfies Condition (c) for � 2 T3
iD1 Ai \ .0; 1/.¤ ˚/

or Condition (d) for � 2 T3
iD1 Ai

T
.0; 2

3
/.¤ ˚/. Then for 0 < p < 1; f .x/; g.y/ �

0; f 2 Lp;�.RC/; g 2 Lq; .RC/; jjf jjp;� ; jjgjjq; > 0; we have the reverse of (130)

with the same best possible constant factor
Q3

iD1 k.i/� .�/:

Proof. Since k.i/� .y; x/ D k.i/� .x; y/.i D 1; 3/; by the reverse Hölder’s inequality, we
obtain the reverses of (131) and (132). Then we deduce to the reverse of (130).
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For any k > maxf 1
jqjı1 ;

1
pı1

g.k 2 N/; we set Qf .x/; Qg.y/; eF�.y/;eG�.x/ as

Theorem 13. If there exists a positive constant K � Q3
iD1 k.i/� .�/; such that the

reverse of (130) is valid when replacing
Q3

iD1 k.i/� .�/ to K; then in particular, we
have

eLk D 1

k

Z 1

0

Z 1

0

k.1/� .x; y/eFk.y/eGk.x/dydx

>
1

k
KjjQf jjp;� jjQgjjq; D 1

k
K
Z 1

1

x� 1
k �1dx D K:

By (129), we find

3Y

iD1
k.i/� .�/C o.1/ DeLk > K;

and then
Q3

iD1 k.i/� .�/ � K.k ! 1/: Hence K D Q3
iD1 k.i/� .�/ is the best possible

constant factor of the reverse of (130).
The theorem is proved. ut

5.3 Some Corollaries

By (73) and (130), for p > 1; i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; we still have

Z 1

0

Z

Ax;i

k.1/� .x; y/F�;j.y/G�.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

� .�/jjf jjp;� jjgjjq; ; (133)

where Ax;0 D .0;1/;Ax;1 D .x;1/;Ax;2 D .0; x/ (x > 0), and

F�;j.y/ D
(

y��1 R
Ax;j

k.2/� .x; y/f .x/dx; y 2 fy 2 RCI f .y/ > 0g;
0; y 2 fy 2 RCI f .y/ D 0g:

If k.3/� .x; y/ D 0.y 2 RCnAx;1/; then we find k.3/� .u; 1/ D 0.u � 1/; and

k.3/� .�/ D k.3/�;1.�/ WD
Z 1

0

k.3/� .u; 1/u
��1duI

if k.3/� .x; y/ D 0.y 2 RCnAx;2/; then we find k.3/� .u; 1/ D 0.0 < u � 1/; and

k.3/� .�/ D k.3/�;2.�/ WD
Z 1

1

k.3/� .u; 1/u
��1du:
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Assuming that k.3/�;0.�/ WD k.3/� .�/; for s D 0; 1; 2; setting

G�;s.x/ WD
(

x��1 R
Ax;s

k.3/� .x; y/g.y/dy; x 2 fx 2 RCI g.x/ > 0g;
0; x 2 fx 2 RCI g.x/ D 0g;

then it follows that G�;0.x/ D G�.x/: By (133), we have

Corollary 17. Suppose that for i; j; s D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/; k
.3/

�;s.�/ 2 RC: (i)
For p > 1; with the assumptions of Theorem 13, we have

Z 1

0

Z

Ax;i

k.1/� .x; y/F�;j.y/G�;s.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/jjf jjp;� jjgjjq; ; (134)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/ is the best possible; (ii) for
0 < p < 1; with the assumptions of Theorem 14, we have the reverse of (134)
with the best possible constant factor k.1/�;i.�/k

.2/

�;j.�/k
.3/

�;s.�/.

Replacing x to 1
x in (130) and the reverse, setting

bG�.x/ WD x��2G�.
1

x
/

D
(

x��1 R1
0

k.3/� .1; xy/g.y/dy; x 2 fx 2 RCI g. 1x / > 0g;
0; x 2 fx 2 RCI g. 1x / D 0g;

it follows that

Corollary 18. (i) For p > 1; with the assumptions of Theorem 13, we have

Z 1

0

Z 1

0

k.1/� .xy; 1/F�.y/bG�.x/dydx <
3Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; ; (135)

where the constant factor
Q3

iD1 k.i/� .�/ is still the best possible; (ii) for
0 < p < 1; with the assumptions of Theorem 14, we have the reverse of (135)
with the best possible constant factor

Q3
iD1 k.i/� .�/.

By (83) and (135), for p > 1; i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; we still have

Z 1

0

Z

Bx;i

k.1/� .xy; 1/F�;j.y/bG�.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

� .�/jjf jjp;� jjgjjq; ; (136)

where Bx;0 D .0;1/;Bx;1 D .0; 1x /;Bx;2 D . 1x ;1/.x > 0/:
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If k.3/� .xy; 1/ D 0.y 2 RCnBx;1/; then we find k.3/� .u; 1/ D 0.u � 1/; and

k.3/� .�/ D k.3/�;1.�/I if k.3/� .xy; 1/ D 0.y 2 RCnBx;2/; then we find k.3/� .u; 1/ D 0.0 <

u � 1/; and k.3/� .�/ D k.3/�;2.�/: Assuming that k.3/�;0.�/ WD k.3/� .�/; for s D 0; 1; 2;

setting

bG�;s.x/ WD
(

x��1 R
Bx;s

k.3/� .xy; 1/g.y/dy; x 2 fx 2 RCI g. 1x / > 0g;
0; x 2 fx 2 RCI g. 1x / D 0g;

then it follows that bG�;0.x/ D bG�.x/: By (136), we have

Corollary 19. Suppose that for i; j; s D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/; k
.3/

�;s.�/ 2 RC: (i)
For p > 1; with the assumptions of Theorem 13, we have

Z 1

0

Z

Bx;i

k.1/� .xy; 1/F�;j.y/bG�;s.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/jjf jjp;� jjgjjq; ; (137)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/ is the best possible; (ii) for 0 < p <
1; with the assumptions of Theorem 14, we have the reverse of (137) with the best
possible constant factor k.1/�;i.�/k

.2/

�;j.�/k
.3/

�;s.�/.

Replacing y to 1
y in (135), and the reverse, setting

bF�.y/ WD y��2F�.
1

y
/

D
(

y��1 R1
0

k.2/� .xy; 1/f .x/dx; y 2 fy 2 RCI f . 1y / > 0g;
0; y 2 fy 2 RCI f . 1y / D 0g;

it follows that

Corollary 20. (i) For p > 1; with the assumptions of Theorem 13, we have

Z 1

0

Z 1

0

k.1/� .x; y/bF�.y/bG�.x/dydx <
3Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; ; (138)

where the constant factor
Q3

iD1 k.i/� .�/ is still the best possible; (ii) for 0 < p <
1; with the assumptions of Theorem 14, we have the reverse of (138) with the
best possible constant factor

Q3
iD1 k.i/� .�/.
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By (93) and (138), for p > 1; i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; we still have

Z 1

0

Z

Ax;i

k.1/� .x; y/bF�;j.y/bG�.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

� .�/jjf jjp;� jjgjjq; : (139)

If k.3/� .xy; 1/ D 0.y 2 RCnBx;1/; then we find k.3/� .u; 1/ D 0.u � 1/; and

k.3/� .�/ D k.3/�;1.�/I if k.3/� .xy; 1/ D 0.y 2 RCnBx;2/; then we find k.3/� .u; 1/ D
0.0 < u � 1/; and k.3/� .�/ D k.3/�;2.�/: By (139), it follows that

Corollary 21. Suppose that for i; j; s D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/; k
.3/

�;s.�/ 2 RC: (i)
For p > 1; with the assumptions of Theorem 13, we have

Z 1

0

Z

Ax;i

k.1/� .x; y/bF�;j.y/bG�;s.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/jjf jjp;� jjgjjq; ; (140)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/ is still the best possible; (ii) for
0 < p < 1; with the assumptions of Theorem 14, we have the reverse of (140) with
the best possible constant factor k.1/�;i.�/k

.2/

�;j.�/k
.3/

�;s.�/.

Replacing y to 1
y in (130), and the reverse, we have

Corollary 22. (i) For p > 1; with the assumptions of Theorem 13, we have

Z 1

0

Z 1

0

k.1/� .xy; 1/bF�.y/G�.x/dydx <
3Y

iD1
k.i/� .�/jjf jjp;� jjgjjq; ; (141)

where the constant factor
Q3

iD1 k.i/� .�/ is still the best possible; (ii) for 0 < p <
1; with the assumptions of Theorem 14, we have the reverse of (141) with the
best possible constant factor

Q3
iD1 k.i/� .�/.

By (93) and (141), for p > 1; i; j D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/ 2 RC; we still have

Z 1

0

Z

Bx;i

k.1/� .xy; 1/bF�;j.y/G�.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

� .�/jjf jjp;� jjgjjq; : (142)
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If k.3/� .x; y/ D 0.y 2 RCnAx;1/; then we find k.3/� .u; 1/ D 0.u � 1/; and k.3/� .�/ D
k.3/�;1.�/I if k.3/� .x; y/ D 0.y 2 RCnAx;2/; then we find k.3/� .u; 1/ D 0.0 < u � 1/;

and k.3/� .�/ D k.3/�;2.�/: By (142), it follows that

Corollary 23. Suppose that for i; j; s D 0; 1; 2; k.1/�;i.�/; k
.2/

�;j.�/; k
.3/

�;s.�/ 2 RC: (i)
For p > 1; with the assumptions of Theorem 13, we have

Z 1

0

Z

Bx;i

k.1/� .xy; 1/bF�;j.y/G�;s.x/dydx

< k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/jjf jjp;� jjgjjq; ; (143)

where the constant factor k.1/�;i.�/k
.2/

�;j.�/k
.3/

�;s.�/ is still the best possible; (ii) for
0 < p < 1; with the assumptions of Theorem 14, we have the reverse of (143) with
the best possible constant factor k.1/�;i.�/k

.2/

�;j.�/k
.3/

�;s.�/.
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Opial Inequalities Involving Higher-Order
Partial Derivatives

Chang-Jian Zhao and Wing-Sum Cheung

In Honor of Constantin Carathéodory

Abstract In the present paper, we establish some new Opial’s type inequalities
involving higher-order partial derivatives. Our results provide new estimates on
inequalities of these type.

1 Introduction

In 1960, Opial [21] established the following integral inequality:

Theorem A. Suppose f 2 C1Œ0; h� satisfies f .0/ D f .h/ D 0 and f .x/ > 0 for all
x 2 .0; h/: Then the integral inequality

Z h

0

ˇ̌
f .x/f 0.x/

ˇ̌
dx � h

4

Z h

0

.f 0.x//2dx (1)

holds, where the constant h
4

is best possible.

The first natural extension of Opial’s inequality (1) to the case involving higher-
order derivatives x.n/.s/.n � 1/ is embodied in the following:
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Theorem B ([3]). Let x.t/ 2 C.n/Œ0; a� be such that x.i/.t/ D 0; 0 � i � n � 1

.n � 1/. Then the following inequality holds

Z a

0

ˇ̌
x.t/x.n/.t/

ˇ̌
dt � 1

2
an
Z a

0

ˇ̌
x.n/.t/

ˇ̌2
dt: (2)

Some sharp versions of (2) are the following forms established by Das [14]:

Theorem C ([14]). Let l and m be positive numbers satisfying l C m D 1 and let
x.t/ 2 C.n�1/Œ0; a� be such that x.i/.t/ D 0; 0 � i � n � 1.n � 1/. Further, let
x.n�1/.t/ be absolutely continuous, and

R a
0

ˇ̌
.x.n/.t/

ˇ̌
dt < 1: Then the following

inequality holds

Z a

0

jx.t/jl ˇˇx.n/.t/ˇˇm dt � mm

.nŠ/l
anl
Z a

0

ˇ
ˇx.n/.t/

ˇ
ˇ dt: (3)

Theorem D ([14]). Let l and m be positive numbers satisfying lCm > 1. Let x.t/ 2
C.n�1/Œ0; a� be such that x.i/.t/ D 0; 0 � i � n � 1.n � 1/. Further, let x.n�1/.t/ be

absolutely continuous, and
R a
0

ˇ
ˇ.x.n/.t/

ˇ
ˇlCm

dt < 1: Then for � D 1=.l C m/,

Z a

0

jx.t/jl ˇ̌x.n/.t/ˇ̌m dt � �mm�

�
n.1 � �/

n � �
�l.1��/

.nŠ/�lanl
Z a

0

ˇ̌
x.n/.t/

ˇ̌lCm
dt:

(4)

Opial’s inequality and its generalizations, extensions, and discretizations play a
fundamental role in the study of the existence and uniqueness problems of initial
and boundary value problems for ordinary and partial differential equations as well
as difference equations [2, 3, 7, 18, 20]. Over the years, this type of inequalities
has received considerable attention, and a large number of papers dealing with
new proofs, extensions, generalizations, variants, and discrete analogues of Opial’s
inequality have appeared in the literature [8–13, 15, 16, 19, 22]. For an extensive
survey on these inequalities, see [3, 20]. For Opial-type integral inequalities
involving high-order partial derivatives, see [1, 4–6, 14, 17].

The main purpose of the present paper is to establish some new Opial-type
inequalities involving higher-order partial derivatives. Our main results are the
following Theorems:

Theorem 1.1. Let l and p be positive numbers satisfying l C p D 1

and let x.t1; : : : ; tn/ 2 C.n1�1;:::;nn�1/.Œ0; a1� � � � � � Œ0; an�/ be such that
@�i

@t
�i
i

x.t1; : : : ; ti; : : : ; tn/jtiD0 D 0, 0 � �i � ni � 1, i D 1; : : : ; n,

@ni

@t
ni
i

�
@ni�1

@t
ni�1
i

x.t1; : : : ; ti; : : : ; tn/
	

and

@ni�1

@t
ni�1
i

�
@ni

@t
ni
i

x.t1; : : : ; ti; : : : ; tn/
	

are absolutely continuous on Œ0; a1��� � �� Œ0; an�;

and
Z a1

0

� � �
Z an

0

ˇ̌
ˇ̌ @

n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌ dt1 � � � dtn exists. Then
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Z a1

0

� � �
Z an

0

ˇ̌
ˇ̌ @

�1C���C�n

@t�1 � � � @t�n
x.t1; : : : ; tn/

ˇ̌
ˇ̌
l ˇ̌
ˇ̌ @

n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌
p

dt1 � � � dtn

� pp

Qn
iD1Œ.ni � �i/�l

nY

iD1
al.ni��i/

i

Z a1

0

� � �
Z an

0

ˇ̌
ˇ̌ @

n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌ dt1 � � � dtn:

(5)

Remark 1.1. Taking �i D 0; i D 1; : : : ; n, (5) reduces to

Z a1

0

� � �
Z an

0

jx.t1; : : : ; tn/jl
ˇ̌
ˇ
ˇ
@n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ
ˇ

p

dt1 � � � dtn

� pp

Qn
iD1.ni/l

nY

iD1
alni

i

Z a1

0

� � �
Z an

0

ˇ̌
ˇ̌ @

n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌ dt1 � � � dtn: (6)

Taking n D 2, (6) reduces to

Z a

0

Z b

0

jx.s; t/jl
ˇ̌
ˇ̌ @

nCm

@sn@tm
x.s; t/

ˇ̌
ˇ̌
p

dsdt

� pp

.nŠmŠ/l
anlbml

Z a

0

Z b

0

ˇ
ˇ̌
ˇ
@nCm

@sn@tm
x.s; t/

ˇ
ˇ̌
ˇ dsdt: (7)

Let x.s; t/ reduce to s.t/ and with suitable modifications, and then (7) becomes
the following inequality given by Das [14]:

Z a

0

jx.t/jl ˇˇx.n/.t/ˇˇm dt � mm

.nŠ/l
anl
Z a

0

ˇ
ˇx.n/.t/

ˇ
ˇ dt:

Theorem 1.2. Let l and p be positive numbers satisfying l C p > 1

and let x.t1; : : : ; tn/ 2 C.n1�1;:::;nn�1/.Œ0; a1� � � � � � Œ0; an�/ be such that
@�i

@t
�i
i

x.t1; : : : ; ti; : : : ; tn/jtiD0 D 0, 0 � �i � ni � 1, i D 1; : : : ; n,

@ni

@t
ni
i

�
@ni�1

@t
ni�1
i

x.t1; : : : ; ti; : : : ; tn/
	

and

@ni�1

@t
ni�1
i

�
@ni

@t
ni
i

x.t1; : : : ; ti; : : : ; tn/
	

are absolutely continuous on Œ0; a1��� � �� Œ0; an�,

and
Z a1

0

� � �
Z an

0

ˇ̌
ˇ̌ @

n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌
lCp

dt1 � � � dtn exists. Then

Z a1

0

� � �
Z an

0

q.t1; : : : ; tn/

ˇˇ̌
ˇ
@�1C���C�n

@t�1 � � � @t�n
x.t1; : : : ; tn/

ˇˇ̌
ˇ

l ˇ̌
ˇ̌ @

n1C���Cnn

@tn1 � � � @tnn
x.t1; : : : ; tn/

ˇˇ̌
ˇ

p

dt1 � � � dtn

� C
nY

iD1

al.ni��i/
i

Z a1

0

� � �
Z an

0

q.t1; : : : ; tn/

ˇˇ̌
ˇ
@n1C���Cnn

@tn1 � � � @tnn
x.t1; : : : ; tn/

ˇˇ̌
ˇ

lCp

dsdt; (8)
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where

C D �1Cl�pp�

�Qn
iD1.ni � �i/.1 � �/n
Qn

iD1.ni � �i � 1/
�l.1��/

1

Œ
Qn

iD1.ni � �i/Š�l
; � D 1

l C p
:

Remark 1.2. Taking n D 2; q.t1; : : : ; tn/ D 1 and �i D 0; i D 1; : : : ; n, (8)
reduces to

Z a

0

Z b

0

jx.s; t/jl
ˇ̌
ˇ̌ @

nCm

@sn@tm
x.s; t/

ˇ̌
ˇ̌
p

dsdt

� Cn;manlbml
Z a

0

Z b

0

ˇ
ˇ̌
ˇ
@nCm

@sn@tm
x.s; t/

ˇ
ˇ̌
ˇ

lCp

dsdt; (9)

where

Cn;m;l;p D � l�C1p�p

�
mn.1 � �/2

.n � �/.m � �/
�l.1��/

1

.nŠmŠ/l
; � D 1

l C p
: (10)

Let x.s; t/ reduce to s.t/ and with suitable modifications, and then (9) becomes
the following inequality:

Z a

0

jx.t/jl ˇ̌x.n/.t/ˇ̌m dt

� �mm�

�
n.1 � �/

n � �
�l.1��/

.nŠ/�lanl
Z a

0

ˇ̌
x.n/.t/

ˇ̌lCm
dt; � D 1

l C m
: (11)

This is an inequality given by Das [14].
Taking n D 1 in (11), we have

Z a

0

jx.t/jljx0.t/jmdt � mm=.lCm/

l C m
al
Z a

0

jx0.t/jmCldt: (12)

For m; l � 1 Yang [23] established the following inequality:

Z a

0

jx.t/jljx0.t/jmdt � m

l C m
al
Z a

0

jx0.t/jmCldt: (13)

Obviously, for m; l � 1, (12) is sharper than (13).



Opial Inequalities Involving Higher-Order Partial Derivatives 755

Remark 1.3. Taking n D m D 1, q.s; t/ D 1 and � D � D 0, (7) reduces to

Z a

0

Z b

0

jx.s; t/jl
ˇ
ˇ̌
ˇ
@2

@s@t
x.s; t/

ˇ
ˇ̌
ˇ

p

dsdt

� C�
1;1;l;p.ab/l

Z a

0

Z b

0

ˇ̌
ˇ̌ @

2

@s@t
x.s; t/

ˇ̌
ˇ̌
pCl

dsdt; (14)

where C�
1;1;l;p is as in (10).

Let x.s; t/ reduce to s.t/ and with suitable modifications, then (14) becomes the
following inequality:

Z a

0

jx.t/jljx0.t/jmdt � �mm�al
Z a

0

jx0.t/jmCldt; � D 1

l C m
:

This is just an inequality established by Yang [23].

2 Proof of Main Results

Proof of Theorem 1.1. From the hypotheses of the Theorem 1.1, we have for 0 �
�i � ni � 1; 0 � i � n,

ˇ̌
ˇ̌ @

�1C���C�n

@t�1 � � � @t�n
x.t1; : : : ; tn/

ˇ̌
ˇ̌

�
Qn

iD1 tni��i�1
iQn

iD1.ni � �i � 1/Š
Z t1

0

� � �
Z tn

0

ˇ̌
ˇ
ˇ
@n1C���Cnn

@�
n1
1 � � � @�nn

n
x.�1; : : : ; �n/

ˇ̌
ˇ
ˇ d�1 � � � d�n: (15)

Multiplying both sides of (15) by
ˇ̌
ˇ @

n1C���Cnn

@t
n1
1 ���@tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ
p

and integrating both sides

over ti from 0 to ai; i D 1; : : : ; n, respectively, we obtain

Z a1

0

� � �
Z an

0

ˇ̌
ˇ̌ @

�1C���C�n

@t�1 � � � @t�n
x.t1; : : : ; tn/

ˇ̌
ˇ̌
l ˇ̌
ˇ̌ @

n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌
p

dt1 � � � dtn

� 1
Qn

iD1Œl.ni � �i � 1/Š�l
Z a1

0

� � �
Z an

0

nY

iD1
tl.n��i�1/
i

ˇ̌
ˇ̌ @

n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌
p

�
( Z t1

0

� � �
Z tn

0

ˇ̌
ˇ̌ @n1C���Cnn

@�
n1
1 � � � @�nn

n
x.�1; : : : ; �n/

ˇ̌
ˇ̌ d�1 � � � d�n

) l

dt1 : : : dtn: (16)
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Now, applying Hölder’s inequality with indices 1
l and 1

p to the integral on the right
side of (16), we obtain

Z a1

0
� � �
Z an

0

ˇ
ˇ̌
ˇ
ˇ
@�1C���C�n

@t�1 � � � @t�n
x.t1; : : : ; tn/

ˇ
ˇ̌
ˇ
ˇ

l ˇˇ̌
ˇ
ˇ
@n1C���Cnn

@tn11 � � � @tnn
n

x.t1; : : : ; tn/

ˇ
ˇ̌
ˇ
ˇ

p

dt1 � � � dtn

� 1
Qn

iD1Œ.ni � �i � 1/Š�l

�
 Z a1

0
� � �
Z an

0

nY

iD1
tn��i�1
i dt1 � � � dtn

!l ( Z a1

0
� � �
Z an

0

ˇ̌
ˇ
ˇ
ˇ
@n1C���Cnn

@tn11 � � � @tnn
n

x.t1; : : : ; tn/

ˇ̌
ˇ
ˇ
ˇ

�
 Z t1

0
� � �
Z tn

0

ˇ
ˇ
ˇ
ˇ̌
@n1C���Cnn

@�
n1
1 � � � @�nn

n
x.�1; : : : ; �n/

ˇ
ˇ
ˇ
ˇ̌ d�1 � � � d�n

!l=p

dt1 � � � dtn

) p

: (17)

On the other hand, from the hypotheses of Theorem 1.1 and in view of the following
facts

@n

@t1 � � � @tn

"�Z t1

0

� � �
Z tn

0

ˇ̌
ˇ̌ @n1C���Cnn

@�
n1
1 � � � @�nn

n
x.�1; : : : ; �n/

ˇ̌
ˇ̌ d�1 � � � d�n

�l=pC1#

D 1

p

ˇ̌
ˇ
ˇ
@n1C���Cnn

@tn1
1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ
ˇ

�
 Z t1

0

� � �
Z tn

0

ˇ̌
ˇ̌ @n1C���Cnn

@�
n1
1 � � � @�nn

n
x.�1; : : : ; �n/

ˇ̌
ˇ̌ d�1 � � � d�n

!l=p

; (18)

and

 Z a1

0

� � �
Z an

0

nY

iD1
tni��i�1
i dt1 � � � dtn

!l

D
Qn

iD1 al.ni��i/
iQn

iD1Œ.ni � �i/�l
; (19)

and by (17)–(19), we have

Z a1

0

� � �
Z an

0

ˇ̌
ˇ̌ @

�1C���C�n

@t�1 � � � @t�n
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ˇ̌
ˇ̌
l ˇ̌
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x.t1; : : : ; tn/
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p
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� pp
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nY

iD1
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i

Z a1

0

� � �
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0
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n1C���Cnn
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1 � � � @tnn

n
x.t1; : : : ; tn/

ˇ̌
ˇ̌ dt1 � � � dtn:

This completes the proof.
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Proof of Theorem 1.2. From the hypotheses of Theorem 1.2, we have for 0 � �i �
ni � 1, 0 � i � n

ˇ̌
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(20)

By Hölder’s inequality with indices l C p and lCp
lCp�1 , it follows that
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;

where

D D
�

.1 � �/n
Qn

iD1.ni � �i � �/
�1��

1
Qn

iD1.ni � �i � 1/Š ; � D .l C p/�1:

Hence, in view of the nonincreasing nature of q.t1; : : : ; tn/, we have
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Now, applying Hölder’s inequality with indices lCp
l and lCp

p to the integral on the
right side, we obtain
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On the other hand, from the hypotheses of Theorem 1.2 and in view of the following
facts
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and by (21)–(23), we have
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This completes the proof.
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