
Test Reactive Systems
with Büchi-Automaton-Based
Temporal Requirements

Bolong Zeng and Li Tan

Abstract A reactive system is expected to interact with its environment constantly,
and its executions may be modeled as infinite words. To capture temporal require-
ments for a reactive system, Büchi automaton has been used as a formalism to model
and specify temporal patterns of infinite executions of the system. A key feature
of a Büchi automaton is its ability of accepting infinite words through its accep-
tance condition. In this paper, we propose a specification-based technique that tests a
reactive system with respect to its requirements in Büchi automaton. Our technique
selects test suites based on their relevancy to the acceptance condition of a Büchi
automaton. By focusing the testing efforts on this key element of a Büchi automaton
that is responsible for accepting infinite words, we are able to build a testing process
driven by the Büchi automaton specified temporal properties of a reactive system.
At the core of our approach are new coverage metrics for measuring how well a test
suite covers the acceptance condition of a Büchi automaton. We propose both weak
and strong variants of coverage metrics for applications that need tests of different
strengths. Each variant incorporates a model-checking-assisted algorithm that auto-
mates test case generation. Furthermore our testing technique is capable of revealing
not only bugs in a system, but also problems in its requirements. By collecting and
analyzing the information produced by a model-checking-assisted test case genera-
tion algorithm, our approach may identify inadequate requirements.We also propose
an algorithm that refines a requirement in Büchi automaton. Finally, we conduct a
thorough computational study to evaluate the performance of our proposed criteria
using cross-coverage comparison and fault sensitivity analysis. The results validate
the strength of our approach on improving the effectiveness and efficiency of testing,
with test cases generated specifically for temporal requirements.

B. Zeng · L. Tan (B)
School of Electrical Engineering and Computer Science, Washington State University,
Richland, WA 99354, USA
e-mail: litan@wsu.edu

B. Zeng
e-mail: bzeng@wsu.edu

© Springer International Publishing Switzerland 2016
T. Bouabana-Tebibel and S.H. Rubin (eds.), Theoretical Information
Reuse and Integration, Advances in Intelligent Systems and Computing 446,
DOI 10.1007/978-3-319-31311-5_2

31

32 B. Zeng and L. Tan

1 Introduction

Reactive systems refer to systems that constantly interact with their environments.
Many of high dependable systems are reactive systems: they are expected to inter-
act with their environments constantly (e.g. users, physical objects, etc.) even under
adversary conditions. Typical safety sensitive systems such as air traffic control
systems and nuclear reactor control systems all fall under the definition of reac-
tive systems [26]. As the correct functioning of reactive systems are highly critical,
engineers often deploy a mixture of Verification and Validation (V&V) techniques
to ensure their correctness. Two of the most frequently used V&V techniques for
reactive systems are testing and formal verification.

Testing examines a system by monitoring its behaviors under a fixed set of stim-
uli, and determines if the system behaves as expected. Based on a “trial and error”
ideology, testing has been an essential part of many software V&V processes. In
comparison, formal verification refers to a variety of techniques that establish the
correctness of a system with respect to a formal requirement, by establishing a math-
ematically sound proof. Formal verification techniques, particularlymodel checking,
have received much attention from research community, and they are being adopted
by the industry as a powerful tool to verify designs of safety-critical systems [15]
with an increasing presence.

Testing and formal verification are two complementary V&V techniques, each of
which has its own set of pros and cons. Compared with formal verification, testing
in general is more feasible in practice, and it may be applied to both specification
and implementation. Nevertheless, a major drawback of testing, as notably noted by
Dijkstra is that testing can only show the existence of a bug, but not its absence [2]. In
contrast, formal verification techniques such as model checking build a mathemati-
cally sound proof for the correctness of a design. Nevertheless, formal verification
falls short when it is unable to find a conclusive proof. In addition, it does not scale
nearly as well as testing, limiting its application to designs or models extracted from
implemented systems, such as in the case of software model checking.

A research theme in V&V field is how to harness the synergy of testing and
formal verification. Techniques such as model-checking-based test case generation
[11] have been proposed to utilize such a synergy. In this paper we are interested in
specification-based testing with temporal requirements. In recent years, formal ver-
ification techniques, particularly model checking, have become significantly more
popular in industrial applications (c.f. [19]). One of the consequences of the pro-
liferation of formal verification techniques is that the formal requirements are also
becoming more available. We want to take this opportunity and extend the applica-
tion of formal requirements into testing. Our objectives are two-fold: (1) improve the
effectiveness of testing by centering it around formal requirements; and (2) improve
the efficiency of testing by developing a model-checking-assisted test case generator
for our proposed test criteria.

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 33

In this paper, we extend our original work presented in [30] from both the theoret-
ical and practical aspects.We choose reactive systems as the subject of our study, and
focus on specification-based testing for reactive systems whose formal requirements
are defined in Büchi automaton. The practical importance of reactive systems in
developing safety-critical systems justifies the potential of our work. The essence of
a reactive system is its ability of performing infinite executions. A challenge in testing
a reactive system is how to specify and test these infinite behaviors.Many of previous
works on testing reactive systems (c.f. [18, 21, 24]) have been focusing on testing
finite prefixes of infinite executions. We want to develop a testing technique focusing
on features of infinite executions themselves, that is, temporal patterns exhibited by
an infinite execution of a reactive system. Particularly, we consider requirements
encoded in Büchi automaton. Büchi automaton, a type of ω-automata that accept
infinite words, has been widely used to specify linear temporal behaviors of a reac-
tive system. It is also instrumental in developing linear temporal model checkers:
other formalisms such as Linear Temporal Logic (LTL) are often first translated into
Büchi automaton, before being used in model checking.

A first-order question in specification-based testing, or any software testing for
that matter, is to measure the adequacy of a test suite. We define two coverage
metrics measuring how a test suite covers a requirement in Büchi automaton. The
metrics define how thoroughly a test suite covers the acceptance condition of a Büchi
automaton. A Büchi automaton differs from a finite automaton in its acceptance
condition, which enables the Büchi automaton to accept infinite words. By focusing
on the acceptance condition of a Büchi automaton encoding the requirement for a
reactive system, our approach centralizes testing efforts on infinite executions of the
system. Test criteria derived from these metrics can then be used in producing and
executing test suites.

To improve the efficiency of test generation, we also propose model-checking-
assisted test case generation algorithms for proposed test criteria. By utilizing the
counterexample producing capability of an off-the-shelf model checker, these algo-
rithms automate the test case generation for reactive systems with Büchi automata.
We also establish the correctness of said algorithms through mathematical proofs.

By deriving test cases from a reactive system model and its formal requirement,
our specification-based testing approach becomes a powerful tool to detect the dis-
crepancy between themodel and its requirements. In addition to debugging a reactive
system, our approach may also help in detecting the deficiency of a specification.
The latter also enables the refinement of a requirement, reducing the gap between
the semantics of the requirement and a system implementation. We propose a tech-
nique that automates the property-refinement process, by reusing the information
from model-checking-assisted test generation algorithms.

We conduct two sets of computational study to compare the effectiveness of
the proposed acceptance condition coverage criteria against other existing criteria,
including traditional test criteria such as branch coverage, as well as the other LTL
or Büchi automaton based test criteria introduced in [21, 23, 31]. The first set of

34 B. Zeng and L. Tan

computational study is to measure the cross coverage of different test criteria, that
is, how well a test suite generated for one test criterion covers another criterion. The
results provide a measurement of the effectiveness of a test criterion in comparison
with another criterion. The second set of computational study uses fault-injection
technique. Fault-injection technique is a classic method for examining the coverage
of a test suite [1]. In this study, we take a test suite generated from a specific test
criterion, and use fault-injection technique to measure its ability to spot artificially
planted errors. The measurement is an indicator for the effectiveness of the under-
lying test criterion. Both sets of computational study demonstrate the effectiveness
and efficiency of our proposed approach. For these experiments, we select sam-
ple applications from a diversified range of fields, including software engineering
(GIOP protocol for middleware construction), security (Needham-Schroeder public
key protocol), and automobile (a fuel system example).

The rest of the paper is organized as follows: Sect. 2 prepares the notations used
in the rest of the paper; Sect. 3 introduces two variants of accepting state combina-
tion coverage metrics and criteria for Büchi automata; Sect. 4 describes the model-
checking-assisted test case generation algorithms for the proposed criteria; Sect. 5
discusses the requirement refinement using the feedback from the model-checking-
assisted test case generation; Sect. 6 discusses the result of our computational study
on the performance comparison between the new criteria and other existing test
criteria; and finally Sect. 7 concludes the paper.

[Related Works] An important component of our approach is a model-checking-
assisted algorithm that utilizes the counterexample mechanism of an off-the-shelf
model checker to generate test cases. Model checkers are able to generate counterex-
amples of a model that violates a temporal formula that describes a desired property.
Taking advantage of such ability of model checkers to assist test generation has
received a significant amount of attention in recent years. One of the core problems
in model-checking-assisted test generation is how to translate test objectives into
temporal properties that can be fed to model checkers. Both [5, 9] have discussed
the usage of formal specification in software testing. Gaudel further provided an
overview for the conjunction area of testing and model checking, encouraging a
more clear and uniformed field for the “industrial actors” [6].

Various works have shown that traditional structural test criteria can be used as the
core standard for test generation via model checkers. For instance, Fraser et al. show
that Modified Condition/Decision Coverage (MC/DC) can be encoded in Computa-
tional Tree Logic (CTL) [3], and be used by a model checker such as NuSMV for
generating tests. The authors also evaluated different test criteria such as logic expres-
sion coverage criteria and dataflow criteria in the context of model-checking-assisted
test generation. In [11], Hong et al. expressed the dataflow criteria in CTL. All these
works presented their methods of translating one or more existing structure-based
test objectives into temporal properties in CTL or LTL.

A key feature of our work is that it is based on Büchi automaton. This enables us to
translate and encode linear temporal properties expressed in other formalisms such

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 35

as LTL. Our work further extends previous research based on LTL [22], in which the
authors proposed coverage metrics measuring how well a requirement in LTL was
covered by a test suite. In [21, 23, 31] we studied test metrics for covering states
and transitions of a Büchi automata. While these works explored specification-based
testingwithBüchi automata, theywere also limited to testing finite prefixes of infinite
words. In this paper, we focus on the acceptance condition, which allows us to test
temporal properties of infinite words.

Meanwhile, using formal specification to model requirements inspires a variety
of automatic test generation and test execution tools. For example, AGEDIS project
[8] was created as an effort to automate test generation and execution for distrib-
uted systems. Simulink Design Verifier [16] was developed as a verification and test
generation tool for Simulink. Reactis [20] is another commercial tool developed by
Reactive Systems Inc. that also accepts models in the Simulink and StateFlow mod-
eling language. It uses a guided simulation strategy that is not as exhausting as model
checking, hence avoiding the state explosion problem. In this work we developed
a model-checking-assisted test generation algorithm that works with requirements
encoded in Büchi automaton.

2 Preliminaries

2.1 Kripke Structures, Traces, and Tests

Wemodel systems asKripke structures.AKripke structure is afinite transition system
in which each state is labeled with a set of atomic propositions. Semantically atomic
propositions represent primitive properties held at a state. Definition 1 formally
defines Kripke structures.

Definition 1 (Kripke Structures) Given a set of atomic proposition A, a Kripke
structure is a tuple 〈V, v0,→,V〉, where V is the set of states, v0 ∈ V is the start
state, →⊆ V × V is the transition relation, and V : V → 2A labels each state with
a set of atomic propositions.

We write v → v′ in lieu of 〈v, v′〉 ∈→. We let a, b, . . . range over A. We denote
A¬ for the set of negated atomic propositions. Together, P = A ∪ A¬ defines the
set of literals. We let l1, l2, . . . and L1, L2, . . . range over P and 2P , respectively.

We use the following notations for sequences: let β = v0v1 . . . be a sequence,
we denote β[i] = vi for i th element of β, β[i, j] for the subsequence vi . . . v j , and
β(i) = vi . . . for the i th suffix of β. A trace τ of the Kripke structure 〈V, v0,→,V〉 is
defined as a maximal sequence of states starting with v0 and respecting the transition
relation →, i.e., τ [0] = v0 and τ [i − 1] → τ [i] for every i < |τ |. We also extend
the labeling function V to traces: V(τ) = V(τ [0])V(τ [1])

36 B. Zeng and L. Tan

Definition 2 (Lasso-Shaped Sequences) A sequence τ is lasso-shaped if it has the
form α(β)ω , where α and β are finite sequences. |β| is the repetition factor of τ . The
length of τ is a tuple 〈|α|, |β|〉.
Definition 3 (Test and Test Suite) A test is a word on 2A, where A is a set of
atomic propositions. A test suite ts is a finite set of test cases. A Kripke structure
K = 〈V, v0,→,V〉 passes a test case t if K has a trace τ such that V(τ) = t . K
passes a test suite ts if and only if it passes every test in ts.

2.2 Generalized Büchi Automata

Definition 4 A generalized Büchi automaton is a tuple 〈S, S0,Δ,F〉, in which S is
a set of states, S0 ⊆ S is the set of start states, Δ ⊆ S × S is a set of transitions, and
the acceptance condition F ⊆ 2S is a set of sets of states.

We write s → s ′ in lieu of 〈s, s ′〉 ∈ Δ. A generalized Büchi automaton is an ω-
automaton, which can accept the infinite version of regular languages. A run of a
generalized Büchi automaton B = 〈S, S0,Δ,F〉 is an infinite sequence ρ = s0s1 . . .

such that s0 ∈ S0 and si → si+1 for every i ≥ 0. We denote inf(ρ) for a set of states
that appear for infinite times on ρ. A successful run of B is a run of B such that for
every F ∈ F , inf(ρ) ∩ F �= ∅.

In this work, we extend Definition 4 using state labeling approach in [7] with one
modification: we label the state with a set of literals, instead of with a set of sets of
atomic propositions in [7]. A set of literals is a succinct representation of a set of sets
of atomic propositions: let L be a set of literals labeling state s, then semantically
s is labeled with a set of sets of atomic propositions Λ(L), where Λ(L) = {A ⊆
A | (A ⊇ (L ∩ A)) ∧ (A ∩ (L ∩ A¬) = ∅)}, that is, every set of atomic propositions
in Λ(L) must contain all the atomic propositions in L but none of its negated atomic
propositions. In the rest of the paper, we use Definition 5 for (labeled) generalized
Büchi automata (GBA).

Definition 5 A labeled generalized Büchi automaton is a tuple 〈P, S, S0,Δ,L,F〉,
in which 〈S, S0,Δ,F〉 is a generalized Büchi automaton, P is a set of literals, and
the label function L : S → 2P maps each state to a set of literals.

A GBA B = 〈A ∪ A¬, S, S0,Δ,L,F〉 accepts infinite words over the alphabet
2A. Let α be a word on 2A, B has a run ρ induced by α, written as α � ρ, if and only
if for every i < |α|, α[i] ∈ Λ(L(ρ[i])). B accepts α, written as α |= B if and only
if B has a successful run ρ such that α � ρ.

GBAs are of special interests to the model checking community. Because a GBA
is an ω-automaton, it can be used to describe temporal properties of a finite-state
reactive system, whose executions are infinite words of an ω-language. Formally,
a GBA accepts a Kripke structure K = 〈V, v0,→,V〉, denoted as K |= B, if for
every trace τ of K , V(τ) |= B. Efficient Büchi-automaton-based algorithms have

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 37

been developed for linear temporal model checking. The process of linear temporal
model checking generally consists of translating the negation of a linear temporal
logic propertyφ to aGBA B¬φ, and then checking the emptiness of the product of B¬φ

and K . If the product automaton is not empty, then a model checker usually produces
an accepting trace of the product automaton, which serves as a counterexample to
K |= φ.

3 Accepting State Combination Coverage Criteria

ABüchi automaton differs from a finite automaton in its acceptance condition, which
enables a Büchi automaton to accept infinite words. Since we are interested in testing
a reactive system, and particularly the temporal patterns of its infinite executions, we
focus on covering the acceptance condition of a Büchi automaton. In what follows,
we denote

⋃F = F0 ∪ · · · ∪ Fn−1, where F = {F0, . . . , Fn−1}.
Definition 6 (Accepting State Combination) Given a Büchi automaton B =
〈P, S, S0,Δ,L,F〉, an accepting state combination (ASC) C is a minimal set of
states such that (i) C ⊆ ⋃F ; (ii) ∀F ∈ F , F ∩ C �= ∅.
Definition 7 (Covered Accepting State Combinations) Given a GBA B =
〈P, S, S0,Δ,L,F〉, let C be one of B’s ASCs,

1. A run ρ of B covers C if ρ visits every state of C infinitely often;
2. A test t strongly covers B’s ASC C if t satisfies B and every successful run

induced by t on B covers C ;
3. A test t weakly covers B’s ASC C if at least one run induced by t on B covers C .

Intuitively, an ASC is a basic unit for the sets of acceptance states covered by
a successful run. That is, any successful run must visit every state of some ASC
infinitely often, as stated in Lemma 1.

Lemma 1 Given a Büchi automaton B = 〈P, S, S0,Δ,L,F〉, ρ is a successful run
of B if and only if ρ covers some ASC of B.

Proof

(⇒) Let in f (ρ) be the set of states visited by ρ infinitely often, and C ′ = in f (ρ) ∩
(
⋃F) be the set of acceptance states visited by ρ infinitely often. Then, C ′
satisfies the following properties: (i) C ′ ⊆ ⋃F ; and, (ii) ∀F ∈ F .(F ∩ C ′) �=
∅. (i i) is due to the assumption that ρ is a successful run of B. Note that by
Definition 6 the ASCs are all the minimal sets satisfying (i) and (ii). Therefore,
C ′ has to be a superset of some ASC say C . It follows that ρ visits every state
in C infinitely often, that is, ρ covers C .

(⇐) Let C be an ASC of B covered by ρ, that is, inf(ρ) ⊇ C . By Definition 6 ∀F ∈
F .F ∩ C ⊆ F ∩ inf(ρ) �= ∅. Therefore, ρ satisifies the acceptance condition
of B and hence it is one of B’s successful runs. �

38 B. Zeng and L. Tan

Algorithm 1 ASC_Gen(B = 〈P, S, S0,Δ,L,F〉)
Require: B is a GBA
Ensure: Return a set of all Accepting State Combinations C⊥ of B.
1: C⊥ = ∅; bool new = tt;
2: for each state s0 j ∈ F0, j = 1 · · · |F0| do
3: · · ·
4: for each state sn−1k ∈ Fn−1, k = 1 · · · |Fn−1| do
5: C = ⋃{s0 j }, · · · , {sn−1k }.
6: for every C ′ ∈ C⊥ do
7: if C ′ ⊆ C then
8: new = ff; break;
9: end if
10: if C ′ ⊃ C then
11: C⊥ = C⊥ − C ′
12: end if
13: end for
14: if new then
15: C⊥ = C⊥ ∪ C ; new = tt;
16: end if
17: end for
18: end for
19: return C⊥;

Algorithm 1 gives a code example that computes all the ASCs for a given GBA
B. We denote C(B) as the set of the ASCs of B. The coverage metrics are thus about
covering these ASCs. Definition 7 presents two different ways to cover an ASC, due
to the non-deterministic nature of a GBA. In the strong variant, every successful run
induced by a successful test is required to visit the ASC infinitely often; and in the
weak variant, only one successful run induced by the test is required to visit the ASC
infinitely often. By Lemma 2 the strong coverage criterion subsumes the weak one.
Users may pick and choose the type of coverage, depending on the desired strength
of testing set forth for an application.

Lemma 2 An ASC C of a Büchi automaton B is weakly covered by a test t if C is
strongly covered by t.

Proof It immediately follows from Definition 7. �

Definition 8 (Strong/Weak ASC Coverage Metric and Criterion)
Given a generalized Büchi automaton B = 〈P, S, S0,Δ,L,F〉, let C(B) be the

set of B’s ASCs, the strong (or weak) ASC coverage metric for a test suite T on B
is |δ′|

|δ| , where δ′ = {C | t strongly (or weakly) covers C}, and δ = C(B). T strongly
(or weakly) covers δ if and only if δ′ = δ.

It shall be noted that the number of all the ASCs is significantly smaller than the
number of all the possible combinations of acceptance states. The first is bounded
by O(mn) and the latter is bounded by 2m , where n = |F | is the cardinality of

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 39

F and m = |⋃F | is the number of acceptance states. By focusing on covering
ASCs instead of every combination of acceptance states, we significantly reduce the
complexity of computing our coverage metrics.

4 Model-Checking-Assisted Test Generation for Accepting
States Combination Coverage

To improve the efficiency of test case generation, we develop a model-checking-
assisted algorithm for generating test cases under proposed criteria. The algorithm
uses the counterexample capability of an off-the-shelf linear temporal model checker
to generate test cases. One of the fundamental questions in model-checking-assisted
test generation is how to specify test objectives in a formalism acceptable by a
model checker. The properties specifying test objectives are often referred to as
“trap properties” in the context of model-checking-assisted test generation. In our
case, “trap properties” are defined in the form of Büchi automaton. We synthesize
a set of “trap (Büchi) automata” from the original Büchi automaton, using graphic
transformation techniques.

Definition 9 (ASC Excluding Automaton) Given a Büchi automaton B = 〈P, S, S0,
Δ,L, F ≡ {F0, . . . , Fn−1}〉 and an ASC C , an ASC excluding (ASC-E) GBA is
BC = 〈P, Se, Se

0 ≡ S0 × {⊥},Δe,Le,F e ≡ {Fe
0 , . . . , Fe

n−1}〉, where,
1. Se = (S × (C ∪ {⊥})) − ⋃

s∈C {〈s, s〉}
2. Fe

i = {〈s, u〉 | s ∈ Fi ∧ u �= ⊥}.
3. Δe = {(〈s, u〉 → 〈s ′, u′〉) | (s → s ′) ∈ Δ ∧ (u = u′ ∨ (u = ⊥))}
4. Le(〈s, u〉) = L(s)

Intuitively speaking, for a Büchi automaton B and an ASCC , its ASC-E-GBA BC
accepts precisely B’s successful runs, except for those visiting C infinitely often. BC
does so by extending B with additional copies. To distinguish these copies, the states
of the original copy (denoted as B⊥) is indexed by the symbol⊥, whereas the states of
each additional copy (denoted as B¬s) are indexed by a state s ∈ C . B¬s inherits all the
states from B except for s, the very state indexing B (i.e. 〈s, s〉 in Definition 9(1)).
Intuitively, B¬s accepts all the successful runs of B, except for those visiting the
indexing state s. Each copy B¬s retains the transitions from B (except for, of course,
the ones associating with the indexing state s, which is not in B¬s). In addition, for
each transition of the original copy B⊥, say 〈s,⊥〉 → 〈s ′,⊥〉, we create |C | copies of
that transition, each ofwhich replaces the destination node 〈s ′,⊥〉with its counterpart
in a copy B¬t indexed by a state t ∈ C (Definition 9(3)). Formally, for each transition
〈s,⊥〉 → 〈s ′,⊥〉, we add more transitions δ = ⋃

t∈C {〈s,⊥〉 → 〈s ′, t〉}. We refer to
these new transitions as “bridging” transitions. Note that these bridging transitions go
one-wayonly, that is, they jump from the original copy B⊥ to a copy B¬t ,where t ∈ C .

40 B. Zeng and L. Tan

There are no transitions linking B¬t back to B⊥. As a final touch, only the copies
indexed by the states ofC , not the original one, retain the acceptance condition. Since
every additional copy B¬s misses its indexing state s, it implies that the indexing
state is not part of the acceptance condition of B¬s .

It follows from the construction of BC that a successful run ρ of BC must satisfy
the following conditions: (1) it starts at B⊥ (i.e. the start states Se

0 in Definition 9) and
can spend only a finite number of steps in B⊥, since B⊥ does not have an acceptance
state (Definition 9(2)); (2) at some point, ρ will make a non-deterministic choice to
take a bridging transition to one of the copies indexed by a state s ∈ C , say B¬s ,
and satisfy B¬s’s acceptance condition. Clearly ρ is also a successful run of the
original GBA B, since each state on ρ may be mapped back to a state of B, and
the acceptance condition of B¬s accepting ρ is a subset of the acceptance condition
of B. In addition, because B¬s does not have s (Definition 9(1)), ρ cannot visit s
infinitely often. Furthermore, no matter which copy the ρ jumps to, there is no way
that ρ can visit every state of C infinitely often, since there is one state of C missing
in that copy, i.e., its indexing state. It follows that a successful run ρ′ of B becomes a
successful run of its ASC-E-GBA only if ρ′ does not visit every state of C infinitely
often.

Theorem 1 Given a GBA B = 〈P, S, S0,Δ,L,F〉and an ASC C, BC = 〈P, Se, Se
0,

Δe,Le,F e〉 be the ASC-E-GBA for B and C, then a test t satisfies BC if and only if
B has a successful run ρ such that t � ρ and inf(ρ) � C.

Proof

(⇒) By Definition 9, since t satisfies BC , BC has a successful run ρ′ such that t � ρ′.
We construct a successful run ρ for B from ρ′ by projecting states in BC to B.
Assume that ρ′ = 〈s0, u0〉〈s1, u1〉 . . ., then ρ = s0s1 By Definition 9, ρ has
to be a successful run of B, since all the transitions in ρ′: 〈si , ui 〉 → 〈si+1, ui+1〉
follow the same guards as si → si+1, and the acceptance conditions in BC are
the same states in B marking with states in C . We also have Le(〈s, u〉) = L(s)
and t � ρ′, therefore t = Le(ρ′) = L(ρ). Hence, t � ρ.
Now we will prove inf(ρ) � C by showing at least one state in ASC C is
not visited by ρ infinitely often. Note that by the construction of BC every
acceptance state is resided in a copy of B indexed by a state (i.e. not ⊥).
Therefore, since ρ′ is a successful run of BC , ρ

′ must visit at least one copy of
B indexed by a state. Without loss of generality, let s be the indexing state of
a B’s copy that ρ′ visits. We denote the indexed copy as B¬s . By Definition 9
there is no outgoing transition from B¬s to other copies of B. Therefore once
ρ′ is in B¬s , it is “trapped” within B¬s and only states ρ′ may visit infinitely
often are those inside B¬s . By Definition 9 B¬s does not include a copy of state
s itself, therefore inf(ρ′) does not visit s or its indexed copies infinitely often.
That is, s /∈ inf(ρ). Note that an indexing state must be a state in ASC C by
Definition 9(1). Therefore inf(ρ) � C .

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 41

(⇐) Let’s denote D = C − inf(ρ). Since inf(ρ) � C , D �= ∅. Let ρ = s0s1
Let sk for the last occurrence of any state in D on ρ. If ρ does not visit
any state in D, then k = 0. We randomly pick a state s ∈ D. Now we con-
struct ρ′ = 〈s0, u0〉〈s1, u1〉 . . . such that ∀i ≤ k.ui = ⊥ and ∀i > k.ui = s.
Intuitively speaking, ρ′ visits states in the copy indexed by ⊥ (denoted as
B⊥), and then jump to the copy B¬s . Note that B¬s has an (indexed) copy of
every state of B, except for s. Since sk+1sk+2 . . . does contain any state of C ,
it does not visit (an indexed copy of) s either. Clearly ρ′ is a run of BC , since
it respects the transition relation in Definition 9.
Next we will show that ρ′ also satisfies the acceptance condition of B. As
a successful run of B, ρ satisfies B’s acceptance condition, that is, ∀Fi ∈
F . inf(ρ) ∩ Fi �= ∅. Without loss of generality, we pick up Fi and show that ρ′
will visit some state inFe

i , BC ’s counterpart ofFi , infinitely often. Let s f ∈ ⋃
Fi

be a state visited by ρ infinitely often, Because there is an one-to-one mapping
between states on ρ and ρ′, ρ′ also visits 〈s f , s〉 infinitely often. ByDefinition 9,
〈s f , s〉 ∈ Fe

i . Therefore, we have ∀Fe
i ∈ F e. inf(ρ′) ∩ Fe

i �= ∅.
Finally we show t � ρ′ by noting Definition 9(4), that is, BC is labelled in the
same way as B. Therefore, if t induces ρ on B, it may also induce ρ′ on B ′.
Therefore t induces a successful run ρ′ of BC and hence it satisfies BC . �

As an example, consider a GBA in Fig. 1. The GBA represents LTL property
φ = G(¬t =⇒ ((¬p U t) ∨ G¬p)), a temporal requirement used with the GIOP
model [14] in our experimental study. φ’s semantics is explained in Sect. 6. Since
its acceptance condition {{s0, s2}} contains only one set of states, its ACSs are the
singleton set of each acceptance state, that is, {s0} and {s2}. Figure2 gives an ASC
excluding automaton B{s0} with respect to the ASC {s0}. B{s0} has two copies of B:
the original copy B⊥ and the copy indexed by s0, the only state in C = {s0}. Note
that the indexing state itself s0 (i.e. 〈s0, s0〉) and its transitions are removed from
the copy B{s0}. These are represented by the dashed circle and lines in Fig. 2. The
highlighted solid links represent bridging transitions linking from the original copy
to the copy indexed by s0. Since the only acceptance state, 〈s2, s0〉 exists in the copy
B¬s0 , a successful run of B{s0} must visit s2 (in the form of 〈s2, s0〉), not s0 (in the
form of 〈s0, s0〉), infinitely often.

Fig. 1 A general Büchi
automaton representing the
LTL property G(¬t =⇒
((¬p U t) ∨ G¬p))

42 B. Zeng and L. Tan

Fig. 2 An ASC excluding general Büchi automaton for the ASC {s0} of the GBA in Fig. 1

Algorithm 2 TestGen_SC(B = 〈P, S, S0,Δ,L,F〉, Km = 〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km satisfies B
Ensure: Return a test suite ts such that ts strongly covers every ASC of B and Km passes ts.

Return ∅ if such a test suite is not found;
1: C(B) = ASC_Gen(B);
2: for every ASC C ∈ C(B) do
3: BC = 〈P, S × Cs ∪ ∅, S0 × ∅,Δe,Le,Fe〉;
4: τ = MC_is Empty(¬BC , Km);
5: if |τ | �= 0 then
6: ts = ts ∪ {V(τ)}
7: else
8: return ∅;
9: end if
10: end for
11: return ts;

Algorithm 2 generates a test suite strongly covering all the ASCs of a Büchi
automaton B. It makes use of ASC excluding automata. For each of B’s ASCs,
Algorithm 2 constructs an ASC excluding GBA BC with respect to C . ASC_Gen
is a sub-routine computing all the ASCs for a GBA. The algorithm uses a model
checker to search for a successful run τ on the production of ¬BC and Km , and τ
is a successful run of ¬BC accepting Km . MC_is Empty refers to the emptyness
checking algorithm in an off-the-shelf linear temporal model checker. If a run exists,
it returns with a test set containing t = V(τ), which is a word accepted by ¬BC .
Consequently, t cannot be accepted by BC . Note that τ is a successful run of the
production of B and Km , therefore based on Theorem 1, for every successful run ρ
that t � ρ, inf(ρ) ⊇ C . Based on Definition 7, ts is a test suite that strongly coversC .

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 43

Theorem 2 If the test suite ts returned by Algorithm 2 is not empty, then (i) Km

passes ts and (ii) ts strongly covers all the ASCs of B.

Proof (i) For each test t ∈ ts, there is a related ASC C and MC_is Empty
(¬BC , Km)) returns a successful run τ of the product of ¬BC and Km such that
V(τ) = t . It follows that τ is also a successful run on Km , and Km shall pass t = V(τ).
Therefore, Km passes every test case in ts.

(ii) As shown in (i), for each t ∈ ts, there is a related ASC C and a successful
run τ of the production of ¬BC and Km such that V(τ) = t . We show that t strongly
covers the ASC C .

First, since τ is also a trace of Km and Km satisfies B by the precondition of
Algorithm 2, τ |= B.

Second, we will prove by contradiction that every successful run of B that is
induced by the test case t shall cover C , i.e., every state inC shall be visited infinitely
often. Suppose that it were not the case. Let ρ be a successful run of B that is induced
by t , and ρ does not cover C .

We may now construct a run ρ′ by “tracing” ρ’s states on BC as follows: since ρ
does not cover C , there must exist at least one state s ∈ C and s /∈ inf(ρ). As ρ is a
lasso-shaped trace, we label every state in the non-circular prefix of ρ with ⊥, and
every state in the circular subtrace of ρ with s. By this construction and Definition 9,
ρ′ is a successful run on BC .

Since t induces ρ, and ρ′ is obtained by adding labels to the states on ρ, t also
induces ρ′ on BC . Therefore, t shall be accepted by BC . However, we have shown
that t is accepted by ¬(BC) which is a complement of BC , and thus should have
no common words in their languages. If t can be accepted by both automata, then
t ∈ L(¬BC) ∩ L(BC) �= ∅. Therefore, every successful run of B that accepts t shall
cover C . �

Compared with constructing an ASC excluding automaton, constructing a Büchi
automaton accepting the runs weakly covering an ASC is relatively straightforward:
the new automaton may be obtained by removing from the acceptance condition the
states not in theASC, that is, replacing the acceptance conditionwithC . Definition 10
describes the process.

Definition 10 (ASC Marking Automaton) Given a GBA B = 〈P, S, S0,Δ,L,F〉
and an ASC C , BC = 〈P, S, S0,Δ,L,FC 〉 is the ASC-Marking (ASC-M) Büchi
automaton for B with respect to C , in which FC = {F ∩ C |F ∈ F}.

Clearly L(BC) ⊆ L(B), since the acceptance condition of BC is a refinement of
that of B, that is,∀F ∈ F , ∃F ′ ∈ FC , (F ′ ⊆ F ′) and∀F ′ ∈ FC , ∃F ∈ F , (F ′ ⊆ F).
Note that, FC in Definition 10 is a subset of 2C − ∅. By Definition 6, C has to be
a minimal set of states that ∀F ∈ F , F ∩ C �= ∅. Combining these two conditions,
it is straightforward

⋃FC = C . Based on Definition 4, this means that for a run to
be successful on BC , all states in C must be visited infinitely often. Therefore we

44 B. Zeng and L. Tan

rewrite the acceptance condition for BC asFC = {{s} | s ∈ C}, i.e., a set of singleton
sets of states in C . For the rest of the paper, we consider ASC-M-GBA to be defined
with the rewritten acceptance condition.

Lemma 3 Given a GBA B = 〈P, S, S0,Δ,L,F〉, let C be one of its ASCs and
BC = 〈P, S, S0,Δ,L,FC 〉 be its ASC-marking automaton for C, then ρ covers C if
and only if ρ is also a successful run of BC .

Proof
(⇒) By the construction of FC , for every F ′ ∈ FC , there exists a F ∈ F such that
F ′ = F ∩ C . Since F ∩ C �= ∅ by Definition 6, F ′ ∩ C �= ∅. Moreover, since ρ cov-
ers C , inf(ρ) ⊇ C . Therefore, inf(ρ) ∩ F ′ �= ∅. That is, ρ is also a successful run of
BC .
(⇐) We will use contradition to show that ρ covers C . Suppose not, and let s ∈ C
be an acceptance state not visited by ρ infinitely often. Since ρ is a successful run of
BC , by the construction ofFC we have that for every F ∈ F , (F ∩ C) ∩ inf(ρ) �= ∅.
Moveover, since s /∈ inf(ρ), (F ∩ (C − {s}) ∩ inf(ρ) �= ∅. Hence F ∩ (C − {s}) �=
∅. Moreover, since C is a ASC of B, C ⊆ ⋃F and hence (C − {s}) ⊂ C ⊆ F .
Therefore, contradicting to the lemma’s condition, C cannot be a ASC of B, which
requires C to be a minimal set satisfying (i) C ⊆ ⋃F ; and, (ii) ∀F ∈ F .(F ∩ C) �=
∅. Therefore, the assumption could not be true, and hence ρ covers C . �

Algorithm 3 TestGen_WC(B = 〈P, S, S0,Δ,L,F〉, Km = 〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km satisifies B.
Ensure: Return a test suite ts such that ts weakly covers every ASC in C(B) and Km passes ts.

Return ∅ if such a test suite is not found;
1: C(B) = ASC_Gen(B);
2: for every ASC C ∈ C(B) do
3: BC = 〈P, S, S0,Δ,L,FC 〉, where FC = {{s} | s ∈ C};
4: τ = MC_is Empty(BC , Km);
5: if |τ | �= 0 then
6: ts = ts ∪ {V(τ)};
7: else
8: return ∅;
9: end if
10: end for
11: return ts;

Algorithm 3 generates tests that weakly cover the ASC C . We construct an ASC-
M-GBA BC in Algorithm 3, and then search for a successful run on the product of BC

and the system model Km . If such run τ exists, the test case t = V(τ) is then added
to ts and return as the singleton test suite. Since t ∈ L(BC) and L(BC) ⊆ L(B),
t ∈ L(B). By Definitions 10 and 7, since τ is a successful run of BC that weakly
covers C on B, therefore t is a test case that weakly covers C on B.

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 45

Theorem 3 If the test suite ts returned by Algorithm 3 is not empty, then (i) Km

passes ts and (ii) ts weakly covers all the ASCs of B.

Proof (i) For each t ∈ ts, there is a related ASC C and MC_is Empty (BC , Km))

returns a successful run of the production of BC and Km such that V(τ) = t . Since
any successful run of the production of BC and Km shall also be a trace of Km , τ
is also a trace of Km . Therefore, Km shall pass t . That is, Km passes every test case
in ts.

(ii) As shown in (i), for each t ∈ ts, there is a related ASC C and a successful
run τ of the production of BC and Km such that V(τ) = t . We show that t weakly
covers C , by showing that τ is also a successful run on B, and visits all states in C
infinitely often.

By Definition 10, the only difference bewteen BC and B is that BC has the accep-
tance condition replaced with a set of singleton sets of states in C . By Definition 6,
we have two conclusions. First, for each set FC ∈ FC , there exists a set F ∈ F
that FC ⊆ F . Second, for each set F ∈ F , there exists at least one state s ∈ C that
s ∈ F . Based on the two conclusions, we have L(BC) ⊆ L(B). Therefore τ must be
a successful run on B as well, and it covers all states in C infinitely often. �

5 ASC-Induced Property Refinement

ASC coveragemetricsmeasure the conformance of a design against a formal require-
ment in Büchi automaton. Lacking of ASC coverage may be contributed either by
bugs in the design, or by the deficiency of the requirement, or sometimes by both.We
develop an algorithm that identifies the deficiency of the requirement and refines the
requirement, using the information collected from test case generation (Algorithm3).

We consider the refinement in terms of language inclusion, that is, if the language
of an automaton B ′ is a subset of that of B, we refer to B ′ as a refinement of B ′.
Given a Kripke structure K representing a system with its requirement as GBA B,
we develop an algorithm to refine B if not every ASC of B can be weakly covered
w.r.t. K .

Given a Kripke structure Km as a system model and a GBA B = 〈P, S, S0,Δ,

L,F〉 as its requirement, the basic steps of refining B w.r.t. B are described below:

1. Identify the set of ASCs C = {C0, . . . , Cn} of B that are weakly covered w.r.t.
Km . C may be identified by Algorithm 3 during the test case generation;

2. Produce an automaton BC = 〈P, S, S0,Δ,L,FC〉, where FC = {F ∩ (
⋃ C)|F

∈ F}

46 B. Zeng and L. Tan

Algorithm 4 TestGen_RefineWC(B = 〈P, S, S0,Δ,L,F〉, Km = 〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km satisfies B.
Ensure: Return a test suite ts such that ts weakly covers all ASCs that can be covered in C⊥ and

Km passes ts. Also returns a Büchi automata with a refined acceptance condition;
1: C(B) = ASC_Gen(B);
2: for every ASC C ∈ C(B) do
3: BC = 〈P, S, S0,Δ,L,FC 〉, where FC = {{s} | s ∈ C};
4: τ = MC_is Empty(BC , Km);
5: if |τ | �= 0 then
6: ts = ts ∪ {V(τ)}
7: C = C ∪ {C}
8: end if
9: end for
10: BC = 〈P, S, S0,Δ,L,FC ≡ {F ∩ (

⋃ C) | F ∈ F}〉
11: return ts and BC ;

For example, consider a Büchi automaton B with an acceptance condition
F = {F0, F1, F2}, in which F0 = {s1, s2, s4}, F1 = {s2, s3, s4}, F2 = {s1, s3, s4}. The
ASCs for B would be C0 = {s1, s2}, C1 = {s2, s3}, C2 = {s1, s3} and C3 = {s4}.
Assume that only C0 and C2 can be weakly covered w.r.t. a system K , we can
then refine B to BC , where BC’s acceptance condition is {{s1, s2}, {s2, s3}, {s1, s3}}.

The entire process of property refinement may be automated by extending the
test generation algorithm, as described in Algorithm 4 Clearly L(BC) ⊆ L(B), since
the acceptance condition of BC is a refinement of the acceptance condition of B.
Moreover, by the construction of FC , BC contains all the ASCs of B that can be
weakly covered by some tests passed by Km . Theorem 4 states that the refined
automaton, BC , is still satisfied by Km . In other words, by refining B to BC , we
obtain a “restricted” version of the property that more closely specifies a requirement
for Km .

Theorem 4 Given a GBA B and a Kripke structure Km such that Km |= B, let BC be
the GBA returned by T estGen_Re f ineWC(B, Km), then, (i) L(BC) ⊆ L(B) and
(ii) Km |= BC .

Proof (i)By the construction of BC , it differs from B only on its acceptance condition.
Therefore, each run of BC is also a run of B. Moreover, BC’s acceptance conditionFC
is also a refinement of B’s acceptance conditionF , that is, ∀F ′ ∈ FC .∃F ∈ F .(F ′ ⊆
F) and ∀F ∈ F .∃F ′ ∈ FC .(F ′ ⊆ F). It follows that each successful of BC must also
be a successful run of B, and hence L(BC) ⊆ L(B). That is, BC is a refinement of
B in terms of language inclusion.

(ii)We then prove Km satisfies BC by contradiction. Assume it is not the case, then
there is a trace t of Km that does not induce a successful run of BC . Since Km |= B.
t induces at least one successful run of B, denoted as ρ. By the assumption ρ could
not be a successful run of BC . By Lemma 1, since ρ |= B, there has to be at least
one ASC, denoted Cρ, that is covered by ρ. By Lemma 3, ρ is also a successful run
of the ASC-marking automaton BCρ

. Therefore, MC_is Empty(BCρ
, Km) returns a

successful run, and Cρ ∈ C.

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 47

Now we will show that for every F ′ ∈ FC , (Cρ ∩ F ′) �= ∅. By the construction
of FC , there exists at least one F ∈ F such that F ′ = F ∩ (

⋃ C). By Definition 6
F ∩ Cρ �= ∅. Since Cρ ∈ C, (Cρ ∩ F ′) �= ∅.

Finally, since ρ coversCρ, inf(ρ)superseteqCρ. It follows that for every F ′ ∈ FC ,
(inf(ρ) ∩ F ′) �= ∅. That is, ρ is also a successful run of BC , which contradicts to our
assumption. Therefore, Km |= BC . �

Note that the refined BC returned by T estGen_Ref ineWC(B, Km) is not the
optimal refinement in terms of semantic equivalency. Consider the same exam-
ple mentioned above: a Büchi automaton B with an acceptance condition F =
{F0, F1, F2}, and its refinement BC , where BC’s acceptance condition is
{{s1, s2}, {s2, s3}, {s1, s3}}. Based on the given condition, only C0 = {s1, s2} and
C2 = {s1, s3} can beweakly covered for B. However, a trace that coversC1 = {s2, s3}
can also be accepted by BC , indicating that there is still space for further refinement.

We propose another alternative for ASC-induced property refinement, based
directly upon the ASC-M-GBA. Algorithm 5 describes the refining process. Intu-
itively, Algorithm 5 collects every ASC-M-GBA generated while generating test
cases towards the weak ASC coverage metric. The union of these ASC-M-GBA is
a tighter refinement than BC from Algorithm 4. Theorem 5 proves the legitimacy of
this approach.

Algorithm 5 TestGen_RefineWCAlt(B = 〈P, S, S0,Δ,L,F〉, Km = 〈S, s0,
→,V〉)
Require: B is a GBA, Km is a system model, and Km satisfies B.
Ensure: Return a test suite ts such that ts weakly covers all ASCs that can be covered in C⊥ and

Km passes ts. Also returns a set of Büchi automata, the union of which represents the refined
property;

1: C(B) = ASC_Gen(B);
2: SBref = ∅
3: for every ASC C ∈ C(B) do
4: BC = 〈P, S, S0,Δ,L,FC 〉, where FC = {{s} | s ∈ C};
5: τ = MC_is Empty(BC , Km);
6: if |τ | �= 0 then
7: ts = ts ∪ {V(τ)}
8: SBref = SBref ∪ BC
9: end if
10: end for
11: return ts and SBref ;

Theorem 5 Given a GBA B and a Kripke structure Km such that Km |= B, let SBre f

be the set of GBA returned by T estGen_Re f ineWC Alt (B, Km), then, (i) SBref is
a refinement of B and (ii) for any trace t of Km, there exists at least one B ′ ∈ SBref

that t |= B ′.

48 B. Zeng and L. Tan

Proof First, SBref includes eachASC-M-GBA thatwas built w.r.t one of the coverable
ASCs. Based on Definition 10, we know that each ASC-M-GBA is a refinement
of the original GBA B. Therefore it follows the union of these ASC-M-GBAs, as
represented by SBref are also a refinement of B.

For the second part, we prove by contradiction. By the condition of Algorithm 5,
Km satisfies B, i.e., every trace of Km can be accepted by B. Suppose there exists
a trace t that none of the B ′ ∈ SBref is able to accept. Since t |= B, there must exist
at least one run ρ that t � ρ and ρ is a successful run on B. By Lemma 1, ρ must
have covered at least one ASC C of B. As a result, MC_is Empty(BC , Km)) in
Algorithm 5 would not return empty, and BC would be included in SBref , and ρ is a
successful run on BC . Hence t can be accepted by BC ∈ SBref . This contradicts the
previous assumption. �

6 Experiments

6.1 Experiment Settings

To obtain a close-to-reality measurement, we select the subjects of our experiments
from a diversified range of applications. The first subject is a model of the general
Inter-ORB Protocol (GIOP) from the area of software engineering. GIOP is a key
component of the Object Management Group (OMG)’s Common Object Request
Broker Architecture (CORBA) specification [14]. The second model is a model of
the Needham-Schroeder public key protocol from the area of computer security. The
Needham-Schroeder public key protocol intends to authenticate two parties involving
with a communication channel. Finally, our third subject is a model of a fuel system
from the area of control system. Themodel is translated by Joseph [13] from a classic
fuel system example in Stateflow [17].

Each model has a set of linear temporal properties that specify behavior require-
ment for the underlying syste. We selected the most representative property for each
model to use in the experiments. For the GIOP model, the property models the
behaviors of a recipient during communication. The LTL property for the Needham-
Shroeder public-key protocol is a liveness property requiring that an initiator can
only send messages after a responder is up and running. Finally, the properties for
the fuel system checks that under abnormal conditions, the system’s fault tolerant
mechanism functions properly.

Table1provides anoverviewof themodels andproperties, showing the size of both
themodels andproperties in termsof the number of branches,ASCs, states/transitions
of the LTL property equivalent Büchi automata, and atomic propositions in the prop-
erties. All of the information in Table1 are of relevance to the diversified profiles of
test criteria we used in the experiments for the comparison, in terms of the size of
test suites generated.

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 49

Table 1 Overview of the models and properties used in the experiments

Models Branches ASCs States Transitions Atoms

GIOP 70 2 2 6 4

Needham 43 2 2 6 3

Fuel 55 3 4 21 4

For performance comparison, we select several traditional aswell as specification-
based testing criteria. Based on the coverage for outcomes of a logic expression (c.f.
[12]), branch coverage (BC) is one of themost commonly-used structural test criteria.
We include both transition and state variations of strong coverage criteria (SC/strong,
TC/strong) and weak coverage criteria (SC/weak, TC/weak) for Büchi automaton
[21, 23, 31].We also include a property-coverage criterion (PC) for Linear Temporal
Logic (LTL) [22]. In our experiment, the performances of these criteria, and twoASC
coverage criteria (ACC/stong and ACC/weak) are compared with each other.

6.2 Methodologies

To assess the performance of the proposed criteria, we perform an extended compu-
tational study using two different methodolgies: one uses the cross-coverage percent-
age as a measurement indicator, and the other adopts the fault-injection technique to
analyse the sensitivity of the test cases towards manually injected errors.

[Cross-coverage analysis] The cross-coverage measures how well a test suite gen-
erated for a test criterion covers another test criterion. The cross coverage is used
as an indicator for the semantic strength of a test criterion with respect to others. In
[28] we developed a tool to compare the effectiveness of test criteria that are used
in model-checking-assisted test case generation. This experiment uses an extension
of the tool that also supports the proposed ASC criteria. We use GOAL [25] to per-
form graph transformation required for building ASC-E-GBAs and ASC-M-GBAs.
We use SPIN [10] as the underlying model checker to assist test case generation.
Figure3 shows the workflow of model-checking-assisted test case generation under
ASC coverage criteria for Büchi automaton. More details of this procedure and an
earlier computational study that covers more traditional testing criteria can be found
in [29], with a different set of sample models.

[Fault-injection-based sensitivity analysis] Fault-injection technique (c.f. [27]) is
a classic technique used in software engineering for evaluating the sensitivity of a
quality assurance tool towards injected faults. For this part, faults are systematically
introduced into a system, and the effectiveness of a test suite is measured by its ability
of catching these artificially injected errors. More faults being caught indicates that
the underlying test criterion is more sensitive in detecting faults. The fault-injection
process is achieved by mutating relational operators (e.g. changing ≥ to <) within

50 B. Zeng and L. Tan

Fig. 3 The workflow of model-checking-assisted test case generation under ASC coverage criteria
for Büchi automaton

the system model one operator at a time. The faulty model is then used to run a test
suite generated for a test criterion. If the execution of the faulty model under a test
case exhibit different behaviors from that of the original model, then the injected
fault is caught by the test case. In another word, the test criterion is sensitive enough
to detect the fault.

6.3 Experiment Results and Analysis

Table2 shows the measurement of the test cases generated from the aforementioned
variety of coverage criteria. We note that for the branch coverage (BC, or BC/All),
tests were first specifically generated for every branch of the model. We used the
coverage information to further select two more groups of test cases. We applied an
Integer Linear Programming solver to obtain an optimal test suite that consists of
the least number of test cases and covers the maximum number of branches that can
be covered (BC/Opt.). This test suite represents the theoretical lower bound of the
number of test cases needed for covering the system model under BC. The other test
suite (BC/Grd.) is selected under a greedy algorithm. For example, if the first test case
covers branches No. 2 and 3, then test cases for the second and third branches shall no
longer be generated, and so on. The greedy algorithm represents the common practice
of selecting a near-optimal test suite, to reduce the cost of test execution. “TS Size”
in Table2 indicates the number of test cases each test suite has, and “Max./Min./Avg.
Length” specifies the length of the lasso-shaped test cases, i.e., the number of steps
in the counterexample trace produced by the model checker. Finally, “Gen. Time”
and “Exec. Time” represent the time it took to generate the traces and execute the
test cases in milliseconds, respectively.

It shall be noted that for practical purpose, we enforce a time limit for the model
checking process. This is due to the fact that SPIN suffers from “state space explosion

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 51

Table 2 Test suites overview

BC PC SC TC ACC

All Opt. Grd. Strong Weak Strong Weak Strong Weak

GIOP

TS Size 54 4 10 3 2 2 6 6 2 1

Max. Length 779 779 779 601 602 602 602 602 602 601

Min. Length 34 605 49 280 602 572 602 572 470 601

Avg. Length 405 664 534 494 602 587 602 588 536 601

Gen. Time 1087 27 51 332 0.02 3.7 0.06 13 13.4 300

Exec. Time 0.586 0.05 0.1 0.06 0.03 0.05 0.11 0.13 0.02 0.01

Needham protocol

TS Size 37 7 13 3 2 2 6 6 2 2

Max. Length 70 70 62 34 43 42 43 42 43 41

Min. Length 9 22 22 33 41 41 41 41 41 41

Avg. Length 43 51 48 34 42 42 42 41 42 41

Gen. Time 360 0.065 0.122 0.03 0.02 0.02 0.06 0.06 0.02 0.02

Exec. Time 0.335 0.063 0.118 0.03 0.02 0.02 0.06 0.06 0.02 0.02

Fuel system

TS Size 45 1 8 3 2 2 6 7 2 2

Max. Length 52,904 52,904 9261 8594 8482 538 8482 5320 9362 148

Min. Length 27 52,904 29 130 1530 254 174 192 1530 130

Avg. Length 3985 52,904 1975 4239 5006 396 4661 2003 5446 139

Gen. Time 602 0.76 0.155 0.178 600 600 780 720 300 300

Exec. Time 751 150 0.375 0.379 0.24 0.02 0.61 0.3 0.11 0.02

problem” as an explicit state model checker [7]. SPINmay run out of resources (time
and/or space) before reaching a conclusive result. Subsequently, we expect three pos-
sible outcomes of the model checking process: (1) returning with a counterexample
trace, (2) returning with an answer that there is no counterexample or (3) terminating
without returning value. For the third case, we count the time limit towards the gen-
eration time, which explains why some entries in Table2 takes significantly longer
time than the other criteria. A specific complication involved with ACC/strong is
that, as we can see from Definition 9, the construction of ASC-E-GBA essentially
produces several copies of the original automaton, and the number of copies equals
the size of the ASC plus one. Hence, when there are more than two states in the
ASC, the ASC-E-GBA becomes too large in size, as well as too complicated in its
acceptance condition. In this case, the ASC-E-GBA is too complex to be handled
by GOAL, which was unable to produce the equivalent never-claims for SPIN. For
the purpose of simplicity, we treated this situation the same as when SPIN could not
terminate with results in our experiment.

52 B. Zeng and L. Tan

Table 3 Cross-coverage comparison results

BC PC SC TC ACC

Strong Weak Strong Weak Strong Weak

GIOP

BC (77%) 75% 100% 100% 100% 100% 100% 100%

PC 66% (75%) 100% 100% 100% 100% 100% 100%

SC Strong 66% 75% (100%) 100% 100% 100% 100% 100%

Weak 66% 75% 100% (100%) 100% 100% 100% 100%

TC Strong 66% 75% 100% 100% (100%) 100% 100% 100%

Weak 66% 75% 100% 100% 100% (100%) 100% 100%

ACC Strong 66% 75% 100% 100% 100% 100% (100%) 100%

Weak 66% 75% 100% 100% 100% 100% 100% (50%)

Needham protocol

BC (86%) 100% 100% 100% 100% 100% 100% 100%

PC 47% (100%) 100% 100% 100% 100% 100% 100%

SC Strong 47% 100% (100%) 100% 100% 100% 100% 100%

Weak 28% 0% 0% (100%) 0% 100% 0% 100%

TC Strong 47% 100% 100% 100% (100%) 100% 100% 100%

Weak 40% 0% 0% 100% 0% (100%) 0% 100%

ACC Strong 47% 100% 100% 100% 100% 100% (100%) 100%

Weak 30% 0% 0% 100% 0% 100% 0% (100%)

Fuel system

BC (82%) 25% 75% 50% 86% 33% 67% 67%

PC 78% (100%) 50% 50% 29% 33% 67% 67%

SC Strong 75% 100% (50%) 50% 29% 33% 67% 67%

Weak 64% 25% 75% (50%) 86% 33% 67% 67%

TC Strong 75% 100% 100% 50% (29%) 33% 67% 67%

Weak 67% 25% 75% 50% 86% (33%) 67% 67%

ACC Strong 75% 100% 50% 50% 29% 33% (67%) 67%

Weak 55% 25% 75% 50% 86% 33% 67% (67%)

Table3 shows the results from the cross-coverage analysis. The number in each
cell indicates the coverage of test cases generated for the criterion on the row w.r.t.
the criterion on the column. Numbers on diagonal cells (marked with parenthe-
ses) represent the coverage of a test suite generated for the same criterion. A less-
than perfect coverage on these diagonal cells indicates any of the following causes:
(1) it indicates potential deficiency of a model and/or a requirement or (2) the model
checker could not terminate within the time limit. For instance, the test suite of the
fuel system model for ACC/weak may only reach 67% coverage upon all the ASCs
because SPIN was unable to return with a conclusive answer. As for ACC/strong for
the same model, the same percentage was caused by GOAL unable to produce the
equivalent never-claims for SPIN due to the ASC-E-GBA being too complex.

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 53

The results show that our proposed ASC coverage criteria, especially the strong
variants, have solid and competent performances. They perform on par with the other
Büchi automaton based criteria, and fall only barely behind branch coverage criterion.
It shall be noted that the test suite generated for the branch coverage criterion is much
larger than those generated for the property-based test criteria, including our ASC
criteria, indicating that the property-based criteria can potentially make testing more
effective by producing smaller and more focused test suites, as shown in Table2. A
smaller test suite, along with a good performance in cross-coverage analysis, makes
the new criteria competitive alternatives to a white-box coverage criterion such as
the branch coverage criterion.

It shall also be noted that the test suites for ASC coverage criteria, although
competent, did not achieve full branch coverage. This is because we only use one
temporal property for each model, and the property does not cover all the functional
aspects of the models. For instance, the property for the GIOP model specifies the
recipient’s behavior at “waiting” or “receiving” modes, it does not concern other
modes of operations. Therefore, the generated test suite skips some code segments,
which leads to a less-than perfect branch coverage.

This observation leads to an important feature of property-based test crite-
ria, including our ASC coverage criteria. That is, the performance of these crite-
ria are heavily influenced by the quality of underlying requirement. A thorough
requirement touching more aspects of a model may result in a test suite with bet-
ter quality. In Sect. 5 we capitalized this observation via our ASC-induced property
refinement. Alternatively, a more complete set of temporal properties that address
multiple aspects of a model could also greatly improve the performance on this part.

Last but not least, the results above also establish that ASC coverage criteria
correlate nicely with the state and transition coverage criteria. The strong variant
performs exactly the same as the state and transition coverage, while the weak variant
exhibits the results that are somewhat in between. Superfluously, an ASC being
covered indicates that the states and transitions on the path are also covered.

Such correlation proves that we are able to strip the syntax dependency away
even more thoroughly, compared with the syntax dependency that still exists for the
property coverage criterion in [22]. At the same time, an ASC is also not merely an
extension of states and transitions. The traces covering the ASC need to satisfy the
“infinite visit” condition upon the acceptance states. Hence, it comes one step closer
to the semantic essence of the temporal properties. In some cases, thismakes theASC
more challenging to cover. When it does happen, such as in the case of ACC/weak
for the fuel systemmodel, it only has 55% of coverage over the branches, lower than
both SC/weak and TC/weak. On the other hand, both ACC/strong and ACC/weak
tend to yield smaller size of test suites, while simultaneously have a better grasp on
the semantic essence. This also means the refinement process described in Sect. 5
could result in finer tuned refined GBA that other criteria are unable to produce.

Table4 shows the results of fault-injection-based sensitivity analysis. Faults are
injected by mutating relational operators in the models. The count of such operators
are specified in the parenthesis along side the name of the model at the top row of the

54 B. Zeng and L. Tan

Table 4 Injected faults detection results

Total faults GIOP (49) Needham protocol (24) Fuel system (191)

Detection
rate (%)

SAC Detection
rate (%)

SAC Detection
rate (%)

SAC

BC 76 28,776 92 1729 66 118,355

BC(Opt.) 76 3495 79 452 N/A N/A

BC(Grd.) 76 7026 88 709 66 23,939

PC 67 2212 75 136 76 16,733

SC/strong 67 1797 83 101 69 14,510

SC/weak 67 1752 25 336 54 1467

TC/strong 67 5391 83 304 69 40,530

TC/weak 67 5266 38 647 58 24,174

ACC/strong 73 1468 83 101 69 15,785

ACC/weak 67 897 25 328 44 632

table. The rest of the Table4 lists out the percentage of the faults that were detected
by the test suites we generated based on the different test coverage criteria.

We define a Sensitivity Adjusted Cost (SAC) for cost/benefit analysis:

S AC = (Total Length of the Test Suite)

(Percentage of Detected Faults)

Note that the cost of executing a test suite is in general proportional to the size of the
test suite. The SAC essentially indicates the adjusted cost of test (execution) w.r.t.
the sensitivity of the underlying test criterion, and the lower the cost is the better.

In all threemodels, the property-based criteria, including our ASC based coverage
criteria, are able to detect a good portion of the injected faults. Comparingwith branch
coverage, it is to be expected that BC would have the best detection rate due to its
code-based nature. For the fuel system model, however, some of the test cases are
excessively long that they are not executable (the longest one exceeding 50,000, see
Table2). Both the full and greedy test suites consequently can only detect two thirds
of the faults, while other test suites catch up or even surpass it with fewer and shorter
test cases, as indicated by the SAC values.

While comparing with other property-based criteria (PC, SC and TC), ACC-
generated test suites benefit from their smaller sizes, and their SAC values are either
the lowest or very close. In particular, ACC out-performs both SC and TC on the
GIOP model with both higher detection rate and much lower SAC values. While
on the other two models, ACC also at least performs on par with SC and TC with
competitive SAC values. It shows that among the GBA based criteria, ACC also
demonstrates stronger performances.

In all three models, strong variants of Büchi-automaton-based coverage criteria
outperform the related weak variants, and by a large margin in some cases (e.g.

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 55

Needham Protocol). In theory the strong variants subsume their counterparts in weak
variants. In practice, the strong variants of the criteria unveil more subtle features of
temporal requirements, often resulting in longer test cases. These longer test cases
help find faults deeply buried in models.

7 Conclusions

Weproposed a specification-based approach for testing reactive systemswith require-
ment expressed in Büchi automata. At the core of our approach are two variants of
property coverage metrics and criteria measuring how well a test suite covers the
acceptance condition of a Büchi automaton. By covering the acceptance condition,
which is the hallmark of a Büchi automaton defining infinite words, these metrics
relate test cases to temporal patterns of infinite executions. This makes testing more
effective in debugging infinite executions of the system. To provide a complete tool
chain for requirement-based testing with Büchi automaton, we developed a test case
generation algorithm for the proposed criteria. The algorithm utilizes the counterex-
ample generation capability of an off-the-shelf model checker to automate the test
case generation.

It shall be noted that, although specification-based testing with automata has been
studied before (c.f. [4]), the specification concerned in most of these previous works
is a system design modeled in a finite automaton. In comparison, we focus on behav-
ioral requirements modeled in Büchi automaton. Moreover, existing approaches for
specification-based testing for reactive systems [18, 21, 23, 24, 31] focus on the
finite prefixes of its infinite executions. In contrast, our approach works with tempo-
ral patterns of its infinite executions. All of these make our approach more advanced
and effective in testing the temporal patterns of a reactive system.

Our approach tests the conformance of a reactive system to its requirement in
Büchi automaton. It may be used for revealing the deficiency of the system as well
as its requirement. We discussed how our approach may be used to debug and even
refine the requirement, using the information from the model-checking-assisted test
case generation. We proposed a property-refinement algorithm that automated the
process of property refinement.

To assess the effectiveness of our approach, we carried out an extended com-
putational study using two methodologies: a cross-coverage measurement among
multiple test criteria, and a fault-injection-based sensitivity analysis. Subjects for
study are selected from a diversified range of fields. First, we use a cross-coverage
metric to measure relative effectiveness of test criteria against each other. Then, we
use fault-injection technique to measure how well test suites generated from the pro-
posed criteria can detect faults planted in models. The experimental results indicate
that our criteria exhibit competent performance over existing test criteria. These cri-
teria are particularly effective at reducing the size of test suites, making testing more
targeted and efficient. For the future work, we want to extend our approach to more
complex requirements, such as those in μ-calculus.

56 B. Zeng and L. Tan

References

1. Bieman, J., Dreilinger, D., Lin, L.: Using fault injection to increase software test coverage. In:
Proceedings of Seventh International Symposium on Software Reliability Engineering, 1996,
pp. 166–174 (1996). doi:10.1109/ISSRE.1996.558776

2. Dahl, O.J., Dijkstra, E.W., Hoare, C.: Structured Programming. A.P.I.C. Studies in Data
Processing, vol. 8. Academic Press (1972)

3. Fraser, G., Gargantini, A.: An evaluation of model checkers for specification based test case
generation. In: ICST’09: Proceedings of the 2009 International Conference on Software Testing
Verification and Validation. IEEE Computer Society, Washington, DC, USA (2009)

4. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based
on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)

5. Gaudel, M.C.: Software testing based on formal specification. In: Borba, P., Cavalcanti, A.,
Sampaio,A.,Woodcock, J. (eds.) TestingTechniques in SoftwareEngineering, SecondPernam-
buco Summer School on Software Engineering, PSSE 2007, 3–7 Dec 2007, Revised Lectures.
Lecture Notes in Computer Science, vol. 6153, pp. 215–242. Springer, Berlin (2010)

6. Gaudel, M.C.: Checking models, proving programs, and testing systems. In: Gogolla, M.,
Wolff, B. (eds.) TAP 2011 Proceedings. Lecture Notes in Computer Science, vol. 6706, pp.
1–13. Springer, Berlin (2011)

7. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear
temporal logic. In: Protocol Specification Testing and Verification. Chapman & Hall (1995)

8. Hartman, A., Nagin, K.: The agedis tools for model based testing. In: ISSTA’04: Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and Analysis. ACM (2004)

9. Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J., Gheorghe, M.,
Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A.J.H., Vilkomir, S., Woodward,
M.R., Zedan, H.: Using formal specifications to support testing. ACM Comput. Surv. 41(2),
9:1–9:76 (2009)

10. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23, 279 (1997)
11. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test coverage and

generation. In: TACAS’02 (2002)
12. Jorgensen, P.C.: Software Testing: A Craftsman’s Approach, 1st edn. CRC Press Inc., Boca

Raton, FL, USA (1995)
13. Joseph, S.: Fault-Injection through Model Checking via Naive Assumptions about State

Machine Synchrony Semantics. Master’s thesis, West Virginia University, Morgantown, West
Virginia (1998)

14. Kamel, M., Leue, S.: Formalization and validation of the general inter-ORB protocol (GIOP)
using PROMELA and SPIN. Int. J. Softw. Tools Technol. Transf. (STTT) 2(4), 394–409 (2000)

15. Knight, J.: Safety critical systems: challenges and directions. In: Proceedings of the 24rd
International Conference on Software Engineering. ICSE 2002, pp. 547–550 (2002)

16. MathWorks: Simulink design verifier (2015). http://www.mathworks.com/products/
sldesignverifier/

17. MathWorks Inc.: Stateflow examples (2015). http://www.mathworks.com/help/stateflow/
examples.html

18. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems. In: Tests
and Proofs, pp. 134–151. Springer (2011)

19. Platzer, A., Quesel, J.D.: European train control system: a case study in formal verification. In:
Breitman, K., Cavalcanti, A. (eds.) Formal Methods and Software Engineering. Lecture Notes
in Computer Science, vol. 5885, pp. 246–265. Springer, Berlin (2009)

20. Reactive Systems Inc.: Testing and validation of simulink models with reactis (2010). http://
www.reactive-systems.com/

21. Tan, L.: State coverage metrics for specification-based testing with Büchi automata. In: 5th
International Conference on Tests and Proofs, Lecture Notes in Computer Science. Springer,
Zurich, Switzerland (2011)

http://dx.doi.org/10.1109/ISSRE.1996.558776
http://www.mathworks.com/products/sldesignverifier/
http://www.mathworks.com/products/sldesignverifier/
http://www.mathworks.com/help/stateflow/examples.html
http://www.mathworks.com/help/stateflow/examples.html
http://www.reactive-systems.com/
http://www.reactive-systems.com/

Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements 57

22. Tan, L., Sokolsky, O., Lee, I.: Specification-based Testing with Linear Temporal Logic. In: the
proceedings of IEEE Internation Conference on Information Reuse and Integration (IRI’04).
IEEE Society (2004)

23. Tan, L., Zeng, B.: Specification-based testing with Buchi automata: transition coverage criteria
and property refinement. In: International Conference on Information Reuse and Integration.
IEEE (2014)

24. Tretmans, J.: Model based testing with labelled transition systems. In: Formal methods and
testing, pp. 1–38. Springer (2008)

25. Tsay, Y.K., Chen, Y.F., Tsai, M.H., Wu, K.N., Chan, W.C.: GOAL: A Graphical Tool for
Manipulating Büchi Automata and Temporal Formulae. In: 13th Tools and Algorithms for the
Construction and Analysis of Systems, vol. 02, pp. 466–471. Springer (2007)

26. Yoo, J., Jee, E., Cha, S.: Formal modeling and verification of safety-critical software. IEEE
Softw. 26(3), 42–49 (2009)

27. Young, M., Pezze, M.: Software Testing and Analysis: Process, Principles and Techniques.
Wiley (2005)

28. Zeng, B., Tan, L.: Test criteria for model-checking-assisted test case generation: a computa-
tional study. In: International Conference on Information Reuse and Integration. IEEE (2012)

29. Zeng, B., Tan, L.: A unified framework for evaluating test criteria in model-checking-assisted
test case generation. Inf. Syst. Front. 16(5), 823–834 (2014)

30. Zeng, B., Tan, L.: Test reactive systems with buchi automata: acceptance condition coverage
criteria and performance evaluation. In: 2015 IEEE International Conference on Information
Reuse and Integration, IRI 2015, San Francisco, CA, USA, August 13–15, pp. 380–387 (2015)

31. Zeng, B., Tan, L.: Testingwith buchi automata: transition coveragemetrics, performance analy-
sis, and property refinement. Advances in Intelligent Systems and Computing (2015)

	Test Reactive Systems with Büchi-Automaton-Based Temporal Requirements
	1 Introduction
	2 Preliminaries
	2.1 Kripke Structures, Traces, and Tests
	2.2 Generalized Büchi Automata

	3 Accepting State Combination Coverage Criteria
	4 Model-Checking-Assisted Test Generation for Accepting States Combination Coverage
	5 ASC-Induced Property Refinement
	6 Experiments
	6.1 Experiment Settings
	6.2 Methodologies
	6.3 Experiment Results and Analysis

	7 Conclusions
	References

