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    Abstract  

  The taxonomy of scleractinian corals has traditionally been established based on morphol-
ogy at the “macro” scale since the time of Carl Linnaeus. Taxa described using macromor-
phology are useful for classifying the myriad of growth forms, yet new molecular and 
small-scale morphological data have challenged the natural historicity of many familiar 
groups, motivating multiple revisions at every taxonomic level. In this synthesis of sclerac-
tinian phylogenetics and systematics, we present the most current state of affairs in the fi eld 
covering both zooxanthellate and azooxanthellate taxa, focusing on the progress of our 
phylogenetic understanding of this ecologically-signifi cant clade, which today is supported 
by rich sets of molecular and morphological data. It is worth noting that when DNA 
sequence data was fi rst used to investigate coral evolution in the 1990s, there was no con-
certed effort to use phylogenetic information to delineate problematic taxa. In the last 
decade, however, the incompatibility of coral taxonomy with their evolutionary history has 
become much clearer, as molecular analyses for corals have been improved upon techni-
cally and expanded to all major scleractinian clades, shallow and deep. We describe these 
methodological developments and summarise new taxonomic revisions based on robust 
inferences of the coral tree of life. Despite these efforts, there are still unresolved sections 
of the scleractinian phylogeny, resulting in uncertain taxonomy for several taxa. We high-
light these and propose a way forward for the taxonomy of corals.  
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4.1       Introduction 

    Stony corals   belonging to the order Scleractinia (Anthozoa: 
 Hexacorallia  ) are a clade of  cnidarians   that build a  calcium   
 carbonate   skeleton in the form of  aragonite  , and are sister 
group to the non-stony  corallimorpharians   (Daly et al.  2003 ; 
Fukami et al.  2008 ; Kitahara et al.  2014 ; Lin et al.  2014 ). At 
present, Scleractinia contains 31 families, about 240 genera, 
and over 1,500 species (Cairns  1999 ,  2009 ; Appeltans et al. 
 2012 ; Huang and Roy  2015 ), including both zooxanthel-
late—hosting the  symbiotic   dinofl agallate   Symbiodinium   —
and  azooxanthellate    corals  . Zooxanthellate species typically 
inhabit shallow waters surrounding warm-subtropical and 
tropical seas and comprise the main  coral reef      framework 
builders with about 800 valid species. Azooxanthellate spe-
cies are widely distributed in the world’s oceans from shal-
low to deep waters and consist of about 700 valid species. 
Neither zooxanthellate and azooxanthellate nor shallow and 
deep species are distinguished phylogenetically and only par-
tially separated at the family level taxonomically. Due to the 
ecological and economic importance of  tropical coral   reefs—
e.g., high  species diversity   and mass fi sheries production—
zooxanthellate taxa have been the subject of a greater volume 
of research relative to azooxanthellate species. However, 
both groups have comparable  richness  , having diversifi ed 
successfully over hundreds of millions of years. Therefore in 
this chapter on coral systematics, they deserve equal atten-
tion, limited only by the amount of published data available. 

 The  coral skeleton   has been and continues to be the main 
source of  morphological characters   used in  scleractinian   
 classifi cation     . Most coral  species   are colonial, but  solitary 
corals   have evolved in at least six lineages independently 
(Barbeitos et al.  2010 ). Among  colonial species  , each  coral-
lite   (skeletal unit formed by an individual  polyp  ) within a 
colony or species may have varying characteristics depend-
ing on  growth    rate  , position in the colony and other 
environmentally- infl uenced traits. Consequently,  morpho-
logical boundaries   between species are generally obscure, 
and the task of identifying  corals   falling within and outside 
the limited pool of  systematists   has remained challenging at 
every  taxonomic level   since Linnaeus ( 1758 ) established 
  Madrepora   . 

 Fortunately, molecular phylogenetic analyses in the last 
two decades have undoubtedly advanced coral  taxonomy   by 
making large amounts of data available and inspiring the 
next generation of systematists. Understandably, the numer-
ous name changes across the entire coral  phylogeny   that 
have ensued can cause considerable confusion for coral 
researchers outside the limited circle of systematists. To 
address this apparent disarray, we track the history of  molec-
ular data   used for phylogenetic reconstruction, summarise 
the most recent phylogenetic understanding of  corals  , and 

describe recent taxonomic research at family, genus and spe-
cies levels. Finally we conclude by highlighting taxonomic 
issues that remain unresolved in the hope that research efforts 
will be refocused to stabilise all of the  problematic taxa  .  

4.2     The Rise of Molecular Phylogenetic 
Methods 

  Genetic data   have been collected from  scleractinian    corals   
since the early 1980s, but these were fi rst based on allozyme 
allelic frequencies obtained using gel electrophoresis 
(Ridgway  2005 ). Stoddart ( 1983 ,  1984 ) examined the  genetic 
diversity   of   Pocillopora damicornis    using up to ten enzymes, 
and found that  populations   from Western Australia and 
Hawaii were maintained predominantly via  asexual repro-
duction  . Willis and Ayre ( 1985 ) analysed eight enzyme loci 
from Great Barrier  Reef    Pavona cactus  to show that geneti-
cally similar colonies tended to show the same  growth    form  , 
and overall the species comprised highly clonal populations 
(Ayre and Willis  1988 ). Allozyme electrophoresis was also 
employed to clarify genetic boundaries of closely-related 
morphotypes, such as between   Montipora    species (Heyward 
and Stoddart  1985 ),  M. digitata  populations (Stobart and 
Benzie  1994 ), within the  Orbicella  (previously 
“ Montastraea ”)  annularis  species complex (Knowlton et al. 
 1992 ; van Veghel and Bak  1993 ), and among  Platygyra  mor-
phospecies (Miller and Benzie  1997 ). 

 Another early  genotyping   method was restriction frag-
ment length polymorphism (RFLP), which hybridised 
digested DNA fragments to probes for determining their 
lengths, or to genomic DNA of known species to establish 
identity. McMillan and Miller ( 1988 ) used RFLP to distin-
guish the  morphologically confusing corals  ,   Acropora    
  formosa  (=  A. muricata ) and  A. “nobilis”  (=  A. intermedia ; 
see Veron and Wallace  1984 )   . 

 The fi rst set of  scleractinian   DNA sequence data to be 
published comprised highly repetitive sequences of 118 bp 
each, otherwise known as minisatellites, cloned from 
  Acropora     muricata  and  A. latistella  (McMillan and Miller 
 1989 ). Five more species were sequenced for these repeats in 
a follow-up study, in which a  maximum parsimony analysis   
did not support most of the  morphological subgroups   
(McMillan et al.  1991 ). 

 The use of polymerase chain reaction (PCR), an essential 
technique of today, began for  corals   with the amplifi cation of 
nuclear 28S ribosomal DNA (rDNA) that was then sequenced 
for reconstructing the  phylogeny   of Anthozoa (Chen et al. 
 1995 ). This analysis included nine species of  scleractinian   
corals, and two families tested with more than one species 
each were recovered as clades. In a subsequent analysis that 
focused on Scleractinia, Veron et al. ( 1996 ) added six species 
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with improved representation from  Fungiidae   and Poritidae, 
which were found to be monophyletic. 

 At about the same time, the mitochondrial 16S rDNA was 
sequenced from 34 species to reconstruct a larger  scleractin-
ian    phylogeny   (Romano and Palumbi  1996 ,  1997 ). This 
analysis showed that all fi ve genera and nine of ten families 
for which more than one taxon were tested formed mono-
phyletic groups. However, of the seven suborders examined, 
only three—Meandriina, Poritiina and Dendrophylliina—
were recovered unambiguously as clades, although only 
Dendrophylliina remains the only monophyletic suborder to 
emerge from recent studies (e.g., Fukami et al.  2008 ; 
Arrigoni et al.  2014a ). 

 Other PCR-based methods were adopted earlier on but 
these contributed little to phylogenetic reconstruction and 
have largely been discontinued owing to the fall in DNA 
 sequencing   costs in recent years. For instance, random 
amplifi ed polymorphic DNA ( RAPD  )    detected by four 
10-mer primers showed that   Favia     fragum  and   Porites      astre-
oides    underwent high levels of self- fertilisation   (Brazeau 
et al.  1998 ). Five  RAPD   primers were also used to assess 
differentiation among  populations   of   Acropora     surculosa  (= 
 A. hyacinthus ) in Guam (Romano and Richmond  2000 ). The 
four populations studied were not signifi cantly distinct from 
one another, but the eastern and western coasts of Guam 
were found to be genetically distinct when the respective 
populations were pooled. Amplifi ed fragment length poly-
morphism (AFLP) is another PCR-based tool related to the 
RFLP technique that amplifi es the restriction fragments 
which are subsequently separated by gel electrophoresis. 
This method aided in the discrimination of   Orbicella faveo-
lata    from the other two species of the  O. annularis  complex 
(Lopez and Knowlton  1997 ; Lopez et al.  1999 ). Interestingly, 
AFLP was able to detect a much greater proportion of dis-
tinct  Pavona cactus   genotypes   at Eclipse Island compared to 
allozyme genotypes (Smith et al.  1997 ), which indicated 
highly clonal populations instead (Ayre and Willis  1988 ). 

  Microsatellites  , short tandem sequence repeats of between 
two and fi ve bp, are typically used in  population   genetic stud-
ies and in tests of  species boundaries   among closely- related 
species. The fi rst coral microsatellite to be utilised was 
detected in  Orbicella franksi  and used to distinguish among 
members of the  O. annularis  complex (Lopez et al.  1999 ). 
Many taxon-specifi c sets of  microsatellite markers   were pub-
lished at the turn of the century (Maier et al.  2001 ; Le Goff 
and Rogers  2002 ; Magalon et al.  2004 ; Miller and Howard 
 2004 ; Severance et al.  2004a ; Shearer and Coffroth  2004 ), 
and continue to be developed in recent years (Davies et al. 
 2013 ; Torda et al.  2013c ; Boulay et al.  2014 ; Serrano et al. 
 2014 ; Zilberberg et al.  2014 ; Addamo et al.  2015 ; Tay et al. 
 2015 ). Unfortunately, the extreme polymorphism exhibited 
by these markers even among sibling species diminishes 

their utility for inferring phylogenies, but they continue to be 
the main workhorse for population genetic studies. 

 The fi rst multi-species evolutionary trees of Scleractinia 
were reconstructed on the basis of the mitochondrial 16S 
rDNA (Romano and Palumbi  1996 ) and nuclear 28S rDNA 
(Veron et al.  1996 )   . Shortly after, the nuclear internal tran-
scribed spacers 1 and 2 (ITS), which include the 5.8S rDNA 
between them (White et al.  1990 ), were amplifi ed and 
sequenced from the  Orbicella annularis  complex (Lopez 
and Knowlton  1997 ), as well as species from   Acropora    
(Odorico and Miller  1997 ) and   Porites    (Hunter et al.  1997 ). 
Lopez and Knowlton ( 1997 ) also obtained sequence data 
from the β-tubulin coding and intron regions, but found that 
ITS and these loci showed no diagnosable variability among 
the three  Orbicella  species. The  Acropora  species exhibited 
varying degrees of molecular separation, with only  A. longi-
cyathus  clearly distinguished from the other four studied 
species (Odorico and Miller  1997 ). However, ITS from fi ve 
species of  Porites  analysed under maximum parsimony 
appeared to resolve  evolutionary relationships   among them 
(Hunter et al.  1997 ). 

 These taxon-specifi c patterns of genetic resolution 
prompted researchers to expand on the repertoire of loci 
from both the nuclear and mitochondrial  genomes   for phylo-
genetic purposes (Severance et al.  2004b ; Concepcion et al. 
 2006 ,  2010 ; Flot et al.  2008 ; Chen et al.  2009 ). These mark-
ers, along with the primers used to amplify them, are often 
clade specifi c. Among the nuclear loci that are still in use 
today, some of the earliest to be developed include the intron 
region of the mini-collagen gene (Wang et al.  1995 ), used 
almost exclusively to investigate the evolutionary history of 
  Acropora    (Hatta et al.  1999 ; Vollmer and Palumbi  2002 ; 
Fukami et al.  2003 ; Palumbi et al.  2012 ; Suzuki and Fukami 
 2012 ). The Pax-C 46/47 intron, introduced by van Oppen 
et al. ( 2000 ,  2001 ), continues to be used for  Acropora  
  phylogenetics   (Richards et al.  2008 ,  2013 ) and taxonomi-
cally broader reconstructions (Fig.  4.1 ). The divergence of 
Pax-C intron is low among sibling species (van Oppen et al. 
 2000 ) but is much higher for more inclusive clades (van 
Oppen et al.  2001 ).

   The awareness that gene duplication (Lopez and Knowlton 
 1997 ; Odorico and Miller  1997 ) and heterozygosity (van 
Oppen et al.  2000 ) are common in nuclear loci led many to 
clone their PCR products and sequence multiple clones in 
hopes of capturing intragenomic variability. These include 
amplifi cations of the Pax-C intron (van Oppen et al.  2001 , 
 2004 ; Márquez et al.  2002 ; Richards et al.  2008 ,  2013 ), 
β-tubulin (Fukami et al.  2004b ; Stefani et al.  2008a ), ITS 
(Medina et al.  1999 ; van Oppen et al.  2000 ,  2002 ; Diekmann 
et al.  2001 ; Rodriguez-Lanetty and Hoegh-Guldberg  2002 ; 
Márquez et al.  2003 ; Chen et al.  2004 ; Vollmer and Palumbi 
 2004 ; Forsman et al.  2005 ,  2006 ,  2009 ,  2010 ,  2015 ; Wei 
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et al.  2006 ; Stefani et al.  2011 ; Kitano et al.  2013 ,  2014 ), and 
28S rDNA (Chen et al.  2000 ; Cuif et al.  2003 ; Wolstenholme 
et al.  2003 ). For regions that have not diverged considerably 
between paralogues, such as the ITS, mixed PCR products 
can be split into two dominant sequences based on phase 
reconstruction of forward and reverse chromatograms of dis-

tinct lengths (Flot and Tillier  2006 ; Flot et al.  2006 ). The 
software Champuru was developed (Flot  2007 ) and used for 
processing direct  sequencing   data from  Pocillopora  (Flot 
et al.  2008 ,  2010 ; Schmidt-Roach et al.  2013 ; Adjeroud et al. 
 2014 ) and  Stylophora  (Flot et al.  2011 ). Variable amplicons 
with no intra-individual length variation can also be resolved 

  Fig. 4.1    Maximum likelihood genus-level  phylogeny   (576 species) of 
Scleractinia based on 12 DNA markers: mitochondrial 12S rDNA, 16S 
rDNA, ATP synthase subunit 6, cytochrome c oxidase subunit I, control 
region, cytochrome b and NADH dehydrogenase subunit 5; nuclear 18S 
rDNA, 28S rDNA, histone H3, internal transcribed spacers and Pax-C 

46/47 intron. Data unavailable for Schizocyathidae, the only valid 
extant family not represented here. Branch supports not assessed in 
detail.  Colours  differentiate adjacent families and are not unique for 
any taxa, except for genera assigned  incertae sedis  that are shown in 
 black        
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statistically using SeqPHASE (Flot  2010 ). Furthermore, 
direct sequencing of ITS has been carried out following PCR 
with primers demonstrating high fi delity for a single copy 
(Takabayashi et al.  1998a ,  b ,  2003 ; Lam and Morton  2003 ; 
Benzoni et al.  2007 ,  2010 ,  2011 ,  2012a ,  b ,  2014 ; Mangubhai 
et al.  2007 ; Stefani et al.  2008b ; Knittweis et al.  2009 ; Huang 
et al.  2011 ; Benzoni and Stefani  2012 ). Nevertheless, since 
the intra-individual variability of these nuclear markers is not 
fully understood (Chen et al.  2004 ; Vollmer and Palumbi 
 2004 ), caution should be exercised even when using these 
primer sets. 

 Mitochondrial loci have also been popular markers in phy-
logenetic analyses. These are haploid, and thus unambiguous 
sequences can be obtained generally without  cloning  . While 
mitochondrial genes typically evolve faster than nuclear 
genes in  metazoans  ,  anthozoans   show an opposite pattern 
(van Oppen et al.  1999 ; Shearer et al.  2002 ; Fukami and 
Knowlton  2005 ; Tseng et al.  2005 ; Hellberg  2006 ; Huang 
et al.  2008 ; Chen et al.  2009 ). Therefore, these genes are more 
informative for reconstructing deep coral phylogenies. Other 
than the 16S rDNA that established widespread subordinal 
non-monophyly (Romano and Palumbi  1996 ,  1997 ; Le Goff-
Vitry et al.  2004 ), 12S rDNA, cytochrome b and cytochrome 
c oxidase subunit I ( COI  ) were purposed for  corals   relatively 
early (Medina et al.  1999 ; van Oppen et al.  1999 ; Chen and Yu 
 2000 ; Fukami et al.  2000 ) and have been used for inferring 
large  scleractinian   trees effectively (Chen et al.  2002 ; Fukami 
et al.  2004b ,  2008 ; Barbeitos et al.  2010 ; Kitahara et al.  2010b , 
 2013 ; Stolarski et al.  2011 ; Arrigoni et al.  2012 ,  2014c ; Huang 
 2012 ; Huang and Roy  2013 ,  2015 ; Marcelino et al.  2013 ; 
Curnick et al.  2015 ; Fig.  4.1 ). The gene encoding ATP syn-
thase subunit 6 is also commonly used, but primarily for 
 Acroporidae   (Fukami et al.  2000 ; Forsman et al.  2010 ). 

 Different taxa contain various intergenic regions within 
their mitochondrial  genomes  , but these may not be ortholo-
gous across species or are not amenable for alignment across 
distant clades. The noncoding intergenic region identifi ed by 
Fukami et al. ( 2004a ), for instance, was too variable to be 
aligned across all of Merulinidae (Huang et al.  2011 ) and is 
not orthologous with the intergenic region (or the putative 
control region) in   Acropora    (van Oppen et al.  2001 ; 
Wolstenholme  2004 ; Richards et al.  2008 ,  2013 ),   Montipora    
(van Oppen et al.  2004 ; Forsman et al.  2010 ),   Porites    
(Forsman et al.  2009 ) or Agariciidae (Luck et al.  2013 ; 
Pochon et al.  2015 ). These fast-evolving mitochondrial 
markers remain useful for phylogenetic studies among 
closely-related species. 

 Whole mitochondrial  genomes   have also been extremely 
important sources of data for large coral phylogenies (Medina 
et al.  2006 ; Emblem et al.  2011 ; Kayal et al.  2013 ; Lin et al. 
 2011 ,  2014 ). Nevertheless, we note that major clades appear 
to exhibit distinct patterns of  mtDNA   sequence  evolution   
that could be responsible for various topological inconsisten-

cies, such as the paraphyly of Scleractinia with respect to 
 Corallimorpharia   (Kitahara et al.  2014 ), i.e., the “naked 
coral” hypothesis (Medina et al.  2006 ). 

 On the one hand, single-gene analyses were the rule 
among the earliest studies because of the high cost of DNA 
 sequencing   and the paucity of suitable markers, primers and 
publicly available data. On the other hand, there were studies 
drawing phylogenetic inference based on more than one loci, 
including Lopez and Knowlton’s ( 1997 ) analyses of two 
nuclear genes and AFLP. Early researchers also acknowl-
edged that nuclear and mitochondrial genes evolve at differ-
ent rates and thus both should be examined, albeit as separate 
datasets (Medina et al.  1999 ; Romano and Cairns  2000 ; van 
Oppen et al.  2001 ). Sequence data were combined beginning 
with the seminal study by Fukami et al. ( 2004b ), which con-
catenated the cytochrome b and  COI   genes after passing the 
incongruence length difference test (Farris et al.  1995 ). The 
use of more than one marker for inferring species relation-
ships has become the norm in more recent studies, aided by 
a variety of nucleotide substitution  models   (Posada and 
Crandall  2001 ) and the ability to use mixed models in a mul-
tilocus partitioned-by-gene analysis (Ronquist and 
Huelsenbeck  2003 ; Stamatakis  2006 ). 

 Authors remain split between concatenating markers to 
obtain hidden support (Huang et al.  2011 ; Addamo et al. 
 2012 ; Arrigoni et al.  2012 ,  2014a ,  b ,  c ; Benzoni et al.  2012b ) 
and making separate estimations of gene trees (Benzoni et al. 
 2011 ,  2012a ,  2014 ; Gittenberger et al.  2011 ; Bongaerts et al. 
 2013 ; Kitano et al.  2013 ,  2014 ; Huang et al.  2014a ; Arrigoni 
et al.  2015 ). With more markers available for inferring phy-
logenies, combined analyses of multilocus data may be the 
way forward. Recent large-scale studies (>450 species) have 
sought to concatenate data from seven or more loci (Huang 
 2012 ; Huang and Roy  2013 ,  2015 ; Curnick et al.  2015 ; Fig. 
 4.1 ). However, different genes cannot be assumed to share 
the same evolutionary history, and the  phylogeny   recon-
structed for every gene may differ from the actual species 
history (Maddison and Knowles  2006 ). Thus, for species 
 classifi cations  , methods that use coalescent theory to jointly 
estimate gene trees and the species tree would be more 
appropriate (Liu and Pearl  2007 ; Liu  2008 ; Liu et al.  2008 ; 
Heled and Drummond  2010 ). A recent study of   Porites     cor-
als   based on the multilocus coalescence showed that the 
three branching forms found in the  Caribbean   are probably 
not distinct species (Prada et al.  2014 ). 

 These species tree methods have become especially rele-
vant with the development of high-throughput  sequencing   
technologies because it is now possible to generate ortholo-
gous sequence data in great abundance (McCormack et al. 
 2013 ). Such data can be obtained through the sequencing of 
expressed sequence tags (Philippe and Telford  2006 ), restric-
tion site associated DNA (Rubin et al.  2012 ), and probe- 
based target enrichment of nuclear ultraconserved elements 
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(Faircloth et al.  2012 ; Lemmon et al.  2012 ), among several 
others. The assembly of the complete   Acropora     digitifera  
 genome      (Shinzato et al.  2011 ) has provided a much-needed 
reference to identify and utilise orthologous regions for phy-
logenetic analyses. Indeed, we expect these new methods to 
be applied on  scleractinians   extensively in the next decade, 
sustaining the “molecular  revolution  ” (Stolarski and 
Roniewicz  2001 : 1101) of coral systematics.  

4.3      The  Phylogeny   of Scleractinia: 
Integrating Molecular 
and  Morphological Evidence   

 The origin of modern Scleractinia is not well understood. 
 Fossils   appeared abruptly in the Middle Triassic (ca. 240 Ma 
ago) already represented by a wide variety of solitary and 
colonial forms (Roniewicz and Morycowa  1993 ; Veron 
 1995    ; Stanley Jr  2003 ). From colony integration, e.g.,  phac-
eloid  ,  meandroid   and  thamnasteroid   (Wells  1956 ; Stanley Jr 
 2003 ), to the structural organisation within individual  coral-
lites  , e.g.,  septal ornamentation   and axial structures 
(Roniewicz  1989 ; Roniewicz and Stanley Jr  1998 ; Roniewicz 
and Stolarski  1999 ,  2001 ), the range of  morphological diver-
sity   observed among  Triassic fossils   is comparable to that in 
 modern scleractinians  . Moreover, the recent proposal that 
 Kilbuchophyllia  (Ordovician, ca. 450 Ma ago; Scrutton and 
Clarkson  1991 ; Scrutton  1993 ),  Numidiaphyllum  and 
 Houchangocyathus  (Permian, ca. 265–255 Ma ago; Ezaki 
 1997 ,  2000 ) were true  scleractinian    corals     , in addition to 
 molecular clock   estimates (Stolarski et al.  2011 ), suggest an 
extensive Palaeozoic evolutionary history for Scleractinia. 

 The foundational studies of  evolutionary relationships   in 
the late nineteenth and early twentieth centuries relied exclu-
sively on  macromorphological skeletal characteristics   of 
 extant and extinct scleractinians  . As they are sessile or have 
restricted capacity for movement (e.g., free-living and/or 
solitary),  corals   are subjected to the environmental condi-
tions at their place of settlement. Consequently, they exhibit 
considerable  morphological plasticity  , driven in part by vari-
ous ecological factors (Foster  1979a ,  b ,  1980 ; Best et al. 
 1984 ; Hoeksema  1991 ; Budd  1993 ; Todd  2008 ). According 
to Lowenstein ( 1985 ), taxonomic research based exclusively 
on  morphology   is plagued by two major limitations. The fi rst 
arises from convergence, in which unrelated taxa resemble 
one another as a result of having adapted to living in similar 
environments, so morphological similarities are not indica-
tive of close evolutionary relationships. The second limita-
tion concerns traits that may evolve at distinct rates in 
different lineages. Not surprisingly, the small number of 
“ reliable  ”  macromorphological characters  , as indicated by 
Cairns ( 2001 ), and the uncertain impact of environmental 
variables on skeletal  morphology      have severely hampered 

attempts to infer relationships among  scleractinian   suborders 
and  families   (Romano and Cairns  2000 ; Stolarski and 
Roniewicz  2001 ; Le Goff-Vitry et al.  2004 ; Fukami et al. 
 2008 ). As such, evolutionary hypotheses based on  morpho-
logical characters   have resulted in several different  taxo-
nomic schemes   (e.g., Vaughan and Wells  1943 ; Alloiteau 
 1952 ; Wells  1956 ; Chevalier and Beauvais  1987 ; Veron 
 1995 ;    for a review of the fi rst four schemes, see Stolarski and 
Roniewicz  2001 ). Despite the long history of the subject 
(e.g., Linnaeus  1758 ; Pallas  1766 ; Forskål  1775 ; Esper  1795 ; 
Lamarck  1801 ), taxonomic and  evolutionary relationships   
within this important habitat-forming  anthozoan   order 
remain largely uncertain to date. 

 In their fi rst comprehensive and consistent scheme that 
was heavily infl uenced by the  skeletal macromorphological 
research   of Milne Edwards and Haime (e.g.,  1848a ,  b ,  c ,  d ,  e , 
 1850 ,  1851a ,  b ,  1857 ), Vaughan and Wells ( 1943 ) hierarchi-
cally ordered several characters and devised keys to genera 
centered around an evolutionary hypothesis of Scleractinia. 
Although more recent analyses have included additional and 
more detailed subcorallite  morphology  , the revised version 
of this scheme published in the  Treatise on Invertebrate 
Paleontology  (Wells  1956 ) is still widely applied (Wood 
 1983 ; Veron  1986 ,  2000 ).    The essence of Wells’ ( 1956 ) 
scheme is that fi ve  scleractinian   suborders can be distin-
guished based on characteristics of septal trabeculae and sep-
tal structure, with 33 families differentiated by wall type, 
occurrence of endotheca and type of  budding  . 

 The incorporation of subcorallite data into  scleractinian   
 classifi cation      was pioneered by Alloiteau ( 1952 ,  1957 ), who 
recognised a total of 65 families (30 with extant representa-
tives) belonging to eight suborders. These groupings were 
later revised with greater emphasis on  microstructural char-
acters   by Chevalier and Beauvais ( 1987 ), who proposed 11 
suborders embracing 55 families. However, according to 
Stolarski and Roniewicz ( 2001 : 1095), the microstructural 
criteria applied “to distinguish suborders containing only 
extinct taxa (i.e., Pachythecaliina, Distichophylliina, 
Archaeofungiina) are unclear or have not been supported by 
further research”. 

 The most recent Scleractinia-wide  classifi cation   divided 
the order into 13 suborders (7 with extant representatives) 
and 61 families (24 extant) (Veron  1995 )   . However, as 
explicitly stated by the author, it had many points of uncer-
tainty at  subordinal   and family levels. According to Budd 
et al. ( 2010 ), this evolutionary scheme had even lower reso-
lution among families and suborders than the  classifi cation   
of Wells ( 1956 ), and by that time cladistic analyses had yet 
to contribute signifi cantly to our understanding of  scleractin-
ian    evolution  . Indeed, the use of  morphological characters      to 
establish  phylogenetic relationships   within  coral families   
have proved challenging and, as a consequence, applied to 
only a small number of extant families— Fungiidae   (Cairns 
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 1984 ; Hoeksema  1989 ,  1991 ,  1993 ),  Mussidae   and 
 Siderastreidae   (Pandolfi   1992 ),  Turbinoliidae   (Cairns  1997 ), 
 Faviidae   (Johnson  1998 ),  Acroporidae   (Wallace  1999 ), 
 Dendrophylliidae   (Cairns  2001 ), Atlantic Faviidae and 
Mussidae (Budd and Smith  2005 ), and Pacifi c Faviidae 
(Huang et al.  2009 ). 

 The recent recognition that the  scleractinian   skeleton is 
biologically controlled and not easily perturbed by environ-
mental factors at the microstructural level (Janiszewska et al. 
 2011 ,  2013 ) has led to more detailed subcorallite observa-
tions (Cuif et al.  2003 ; Budd et al.  2012 ; Kitahara et al.  2012 , 
 2013 ; Arrigoni et al.  2014a ; Huang et al.  2014b ; Janiszewska 
et al.  2015 ). Indeed, greater attention has been given to previ-
ously overlooked  micromorphological and microstructural 
characters     . Specifi cally,  micromorphology   considers the 
shapes of  teeth   along the wall, septa, columella, and septal 
face granulations, while  microstructure   is concerned with the 
cross-sectional wall structure, arrangements of rapid accre-
tion centres and thickening deposits within the wall, septa, 
and columella (Cuif and Perrin  1999 ; Budd and Stolarski 
 2009 ,  2011 ). Together with improvements in our understand-
ing of skeletal ontogeny, new studies of subcorallite  mor-
phology   are shedding  light   on  evolutionary relationships   
within the order. Indeed, the fi nding that intra-fi brous organic 
matrices containing complex macromolecular assemblages 
actually control nucleation, spatial delineation and organisa-
tion of basic microstructural  skeletal   units (Lowenstam and 
Weiner  1989 ) has provided support for several  molecular 
clades   (e.g., Cuif et al.  2003 ; Benzoni et al.  2007 ; Budd and 
Stolarski  2009 ,  2011 ; Janiszewska et al.  2011 ,  2015 ; Kitahara 
et al.  2012 ,  2013 ). 

 DNA sequences provide large numbers of  phylogeneti-
cally informative characters   that are independent of the high 
morphological variability of the  coral skeleton  . Various 
degrees of incongruence between  morphological and molec-
ular phylogenies   are seen at all  taxonomic levels  , but the 
most striking is found at the  subordinal level  . While fi ve sub-
orders are recognised in the most widely-accepted  morpho-
logical scheme   (Wells  1956 ), only three main clades at the 
deepest nodes—“basal”, “complex” and “robust”—have 
been recovered based on  molecular analyses   (Romano and 
Palumbi  1996 ; Kitahara et al.  2010b ; Stolarski et al.  2011 ; 
Huang  2012 ). Nearly every genetic locus tested to date sup-
ports these latter groupings. The 28S rDNA (Chen et al. 
 1995 ; Cuif et al.  2003 ), 16S rDNA (Romano and Palumbi 
 1996 ,  1997 ; Le Goff-Vitry et al.  2004 ; Kitahara et al.  2010a ), 
12S rDNA (Chen et al.  2002 ), combined 16S rDNA and 28S 
rDNA (Romano and Cairns  2000 ), combined cytochrome b 
and  COI  , as well as β-tubulin (Fukami et al.  2008 ) all support 
the split between the “complex” and “robust” clades. The 
sister relationship between the “basal” clade and the rest of 
Scleractinia has been recovered by 12S rDNA,  COI  , 28S 
rDNA (Kitahara et al.  2010b ; Stolarski et al.  2011 ), and most 

other mitochondrial loci (Huang  2012 ; Huang and Roy  2013 , 
 2015 ; Kitahara et al.  2014 ; Lin et al.  2014 ). To date, no  mor-
phological characters   associated with the hard skeleton have 
been found to c orrelate directly with the  molecular splits  . 
Interestingly, an examination of four “complex” and seven 
“robust”  corals   revealed that the two clades differ in embry-
onic developmental  morphology   (“prawn chip” in “com-
plex” corals), with the notable exception of the “complex” 
 Pavona decussata , which is more similar to “robust” clade 
representatives in this respect (Okubo et al.  2013 ). 
Expectedly, without any trace of soft tissue preserved, it 
would be even more challenging to position the extinct sub-
orders on the coral  phylogeny  . 

 At the family level, the picture is not very different. Most 
families composed exclusively of zooxanthellate species 
have been shown by  molecular data   to be polyphyletic 
(Fukami et al.  2004b ,  2008 ; Arrigoni et al.  2012 ). Among 
these, the most poorly understood families were  Faviidae  , 
Merulinidae, Pectiniidae and Trachyphylliidae (sensu Veron 
 2000 )   . The  Indo-Pacifi c   representatives of these taxa had 
been called the “Bigmessidae” for their extremely chaotic 
and unnatural  classifi cation   (Budd  2009 ; Huang et al.  2011 ). 
In contrast, the molecular evolutionary hypothesis posits that 
most families composed exclusively or predominantly of 
 azooxanthellate    corals   are monophyletic. Therefore, apart 
from Caryophylliidae and  Oculinidae  , molecular groupings 
of azooxanthellate taxa are broadly consistent with classical 
 taxonomy   (Kitahara et al.  2010b ; Stolarski et al.  2011 ). 

 According to our present understanding, the order 
Scleractinia comprises at least 30 clades that correspond to 
family-level groups. Among them, Gardineriidae and 
Micrabaciidae belong to the “basal” clade;  Acroporidae  , 
Agariciidae, Astrocoeniidae,  Dendrophylliidae  , 
Euphylliidae, Flabellidae, Fungiacyathidae, Guyniidae, 
Poritidae,  Siderastreidae   and  Turbinoliidae   from the “com-
plex” clade; and Anthemiphylliidae, Caryophylliidae, 
Coscinaraeidae, Deltocyathiidae, Diploastraeidae, 
 Fungiidae  , Lobophylliidae, Meandrinidae, Merulinidae, 
Montastraeidae,  Mussidae  ,  Oculinidae  , Plesiastreidae, 
Pocilloporidae and Psammocoridae represent the “robust” 
clade (Fig.  4.1 ). Genetic sampling for three families is lim-
ited or nonexistent. Rhizangiidae is represented only by the 
mitochondrial  genome   of an   Astrangia    species (Medina et al. 
 2006 ), which is closely related to   Oculina    (Huang  2012 ; 
Huang and Roy  2013 ,  2015 ). Stenocyathidae consists of 
three monotypic genera, of which only  Stenocyathus  has 
been sequenced and found nested within Caryophylliidae 
(Cuif et al.  2003 ; Kitahara et al.  2010b ; Stolarski et al.  2011 ). 
Schizocyathidae contains three monotypic genera that have 
never been sampled for  genetic data  . Among the “robust” 
 corals  ,   Madrepora    and  Heterocyathus  +  Oulastrea  appear to 
be two phylogenetically distinct lineages that cannot be 
placed in any of the above familie s.  
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4.4     New Taxonomic Revisions of Families 
and Genera 

 The abundance of taxonomic revisionary studies is increas-
ing in recent years, but the resolution of all  scleractinian   
families and genera is far from complete. A large amount of 
data and comprehensive taxonomic coverage are necessary 
to justify formal name changes following the International 
Code of Zoological Nomenclature, which have taken consid-
erable time and effort by numerous coral taxonomists. 
Consequently, the fi rst revision to jointly consider DNA 
sequence data and traditional forms of evidence such as  mor-
phology   and  reproduction   in a phylogenetic context only 
emerged more than a decade after the fi rst scleractinian 
molecular phylogenies by Romano and Palumbi ( 1996 )  and   
Veron et al. ( 1996 ). 

 The pioneering study by Wallace et al. ( 2007 ) used one 
mitochondrial (cytochome b) and one nuclear (histone 2a 
and 2b) gene to show that subgenus  Isopora , previously 
placed within   Acropora   , was suffi ciently distinct to be ele-
vated to genus within family  Acroporidae  .  Isopora  tends to 
form more than one axial  corallite   per branch, while  Acropora  
contains only a single axial corallite (Wallace et al.  2012 ). 
Reproductively,  Isopora  broods  planula larvae   and its 
 oocytes   are attached via a stalk to the mesenteries, in contrast 
to  Acropora  spp. which are broadcast spawners and have 
unstalked gonads. 

  Acroporidae   expanded further when, following the com-
prehensive reconstruction of Fukami et al. ( 2008 ), Dai and 
Horng ( 2009a ) transferred  Alveopora  from Poritidae to 
Acroporidae (see also Licuanan  2009 ). Like its new confa-
milials,  Alveopora  possesses synapticulothecal walls 
(Wallace  2012 ). Its exact phylogenetic placement is unstable 
to date, although evidence has pointed to a close relationship 
with  Astreopora  (Fukami et al.  2008 ; Kitahara et al.  2010b , 
 2014 ; Huang and Roy  2015 ; Kitano et al.  2014 ; Fig.  4.1 ). 

 Another group that underwent taxonomic changes rela-
tively early was  Siderastreidae  . Fukami et al. ( 2008 ) fi rst 
showed that the family was polyphyletic, with  Siderastrea  
placed in the “complex” clade while the rest of the family was 
deep within the “robust” clade. Furthermore, Benzoni et al. 
( 2007 ,  2010 ) found strong support to distinguish   Psammocora    
from other “robust” siderastreids and resurrected 
Psammocoridae to accommodate the genus. The most recent 
analyses indicated that  Coscinaraea ,  Craterastrea ,  Horastrea  
and  Anomastraea  constituted a monophyletic group that is 
sister to Psammocoridae, so the family Coscinaraeidae was 
proposed to contain these genera (Benzoni et al.  2012b ; see 
also Huang  2012 ; Huang and Roy  2013 ,  2015 ). 

 These revisions implicated the closely-related  Fungiidae   
as two former polystomatous and attached siderastreids, 

 Coscinaraea wellsi  and  Psammocora explanulata , were 
genetically nested within the predominantly monostomatous 
and free-living Fungiidae and possessed the  fungiid   synapo-
morphy of  compound   synapticulae or  fulturae  , continuous 
buttress-like structures connecting the septa (Benzoni et al. 
 2007 ). The two rogue species were eventually transferred 
into  Cycloseris  (Benzoni et al.  2012a ).  Siderastreidae   has 
thus been split into Siderastreidae, Psammocoridae and 
Coscinaraeidae, with two species transferred into Fungiidae. 
The latter also underwent a major reclassifi cation based pri-
marily on  COI   and ITS data, which supported the elevation 
of several subgenera previously in  Fungia  to genus, includ-
ing  Cycloseris ,  Danafungia ,  Lobactis  and  Pleuractis  
(Gittenberger et al.  2011 ). Several movements between gen-
era were also proposed, such as the transfer of members of 
 Fungia (Verrillofungia)  into  Lithophyllon ,  Lithophyllon 
mokai  into  Cycloseris ,  Fungia (Danafungia) fralinae  into 
 Heliofungia , and  Fungia (Wellsofungia) granulosa  into 
 Pleuractis . Transformations of  life history   traits onto the 
molecular  phylogeny   further showed that the ability to be 
free living was lost four times and the  evolution   of multiple 
mouths occurred ten times, all independently throughout the 
evolutionary history of  Fungiidae   (Gittenberger et al.  2011 ). 

 The extreme polyphyly of the “robust” families  Faviidae  , 
Merulinidae,  Mussidae   and Pectiniidae revealed by Fukami 
et al. ( 2004b ,  2008 ), coupled with the large number of spe-
cies and genera in these taxa, posed severe challenges for 
taxonomic defi nitions of these  corals  . There was widespread 
acknowledgement that reclassifi cation was necessary 
(Fukami  2008 ; Budd  2009 ; Budd et al.  2010 ), but the 
 convergence of most  macromorphological characters   con-
ventionally used to defi ne genera and families hindered revi-
sionary work. Many molecular (Huang et al.  2009 ,  2011 ; 
Benzoni et al.  2011 ; Arrigoni et al.  2012 ; Schwartz et al. 
 2012 ) and morphological (Budd and Smith  2005 ; Budd and 
Stolarski  2009 ,  2011 ) studies identifi ed  problematic taxa   and 
highlighted  phylogenetically informative characters  —
including  molecular markers  ,  macromorphology  ,  micromor-
phology   and  microstructure  —before the fi rst  taxonomic 
monograph   was published. 

 In a massive undertaking, Budd et al. ( 2012 ) expanded 
Merulinidae to include all members of the “Bigmessidae” 
clade (XVII sensu Fukami et al.  2008 ), made up of mostly 
 Indo-Pacifi c   species from  Faviidae  , Merulinidae, Pectiniidae 
and Trachyphylliidae as defi ned by Veron ( 2000 )   . They also 
relegated Faviidae to subfamily Faviinae as a group restricted 
to the Atlantic, and synonymised Pectiniidae and 
Trachyphylliidae as Merulinidae.  Mussidae   was redefi ned to 
include Mussinae (Atlantic mussids) and Faviinae. Finally, 
Pacifi c “mussids”, the three remaining pectiniid genera, 
 Echinomorpha ,  Echinophyllia  and  Oxypora , as well as 
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 Moseleya  were placed in the new family Lobophylliidae (Dai 
and Horng  2009b ). 

 Budd et al. ( 2012 ) also proposed several modifi cations at 
the genus level. The highly polyphyletic   Favia    and 
 Montastraea  were trimmed of their  Indo-Pacifi c   and 
“Bigmessidae” members, which were accommodated by 
  Dipsastraea    and  Phymastrea  respectively, so that   Favia    now 
contains  F. fragum  and  F. gravida , while  Montastraea  only 
includes  M. cavernosa. Montastraea  and  Diploastrea  were 
also placed in their own respective families Montastraeidae 
and Diploastraeidae as appropriate for their distinctiveness. 
 Scolymia  became an Atlantic genus, so its Indo-Pacifi c con-
stituents became  Homophyllia australis  and  Parascolymia 
vitiensis . 

 More recently, Huang et al. ( 2014a ,  b ) examined 
Merulinidae more closely and found that more revisions at 
the genus level were necessary. In particular,  Astrea  was res-
urrected and a new genus  Paramontastraea  established to 
contain some species from  Phymastrea , which was syn-
onymised as  Favites. Coelastrea  was revived and a new 
genus  Paragoniastrea  described to accommodate distinct 
species previously classed in  Goniastrea .   Barabattoia    and 
  Paraclavarina    were neither genetically nor morphologically 
separated from   Dipsastraea    and   Merulina    respectively, and 
were thus synonymised. 

 Major changes to the recently-established Lobophylliidae 
are ongoing, as Arrigoni et al. ( 2014b ) considered 
 Australomussa  as a junior synonym of  Parascolymia , and 
also resurrected  Sclerophyllia  to accommodate  S. margariti-
cola  and its sister species  S.  (previously  Acanthastrea )  max-
ima  that are endemic to waters surrounding the Arabian 
peninsula (Arrigoni et al.  2015 ). 

 Several taxa thought to be closely affi liated with Pacifi c 
“faviids” and “mussids”—Merulinidae and Lobophylliidae 
respectively—are now in distant “robust” taxa. Dai and 
Horng ( 2009b ) transferred  Plesiastrea  into Plesiastreidae 
(clade XIV sensu Fukami et al.  2008 ), although only the 
move of the type species  P. versipora  has been validated 
since  P. devantieri  is in  Astrea , Merulinidae (Huang et al. 
 2014b ).  Blastomussa  was also transferred into Plesiastreidae 
(Dai and Horng  2009b ), but it has been considered  incertae 
sedis  more recently (Budd et al.  2012 ; Benzoni et al.  2014 ) 
as  Plesiastrea  is more closely related to the  azooxanthellate   
species  Cyathelia axillaris ,  Trochocyathus efateensis  and 
 Tethocyathus virgatus  (Kitahara et al.  2010b ; Benzoni et al. 
 2011 ; Huang  2012 ; Huang and Roy  2013 ,  2015 ). Furthermore, 
the closest relatives of  Blastomussa  are  Physogyra ,  Plerogyra  
and  Nemenzophyllia , all previously in the “complex” 
Euphylliidae and now  incertae sedis  (Fukami et al.  2008 ; 
Kitahara et al.  2010b ; Benzoni et al.  2014 ).  Oulastrea  is part 
of a deep-branching clade sister to  Fungiidae  , Psammocoridae 
and Coscinaraeidae (Huang  2012 ; Huang and Roy  2013 , 
 2015 ), and may revert to the family Oulastreidae (Veron 

 2013 )   . Perhaps the most enigmatic and still unresolved case 
of a former Pacifi c “faviid” is that of  Leptastrea , which has 
been consistently shown as closely related to Fungiidae 
based on different markers (Romano and Palumbi  1996 ; 
Romano and Cairns  2000 ; Fukami et al.  2008 ; Kitahara et al. 
 2010b ) despite striking differences in  morphology   between 
this genus and any of the known mushroom coral genera. 

 While the fi rst integrative taxonomic revision was per-
formed for  Acroporidae   in the “complex” clade, progress on 
other “complex” groups has been limited compared to the 
“robust”  corals  . Only recently was the fi rst comprehensive 
revision of Poritidae published. Kitano et al. ( 2014 ) analysed 
samples from all fi ve poritid genera using  COI   and ITS to 
show that   Porites    was monophyletic, but  Machadoporites  
and  Poritipora  cannot be distinguished from  Goniopora  and 
were thus synonymised. The authors also found that 
 Goniopora stutchburyi  was genetically isolated from its con-
generics but was the only sister species of  Stylaraea , and 
thus moved it into a new genus,  Bernardpora . 

 The  azooxanthellate    corals   have lagged far behind in 
terms of revisionary work, due to much fewer taxonomists 
working on the numerous  scleractinian   lineages that contain 
them. Nevertheless,  problematic taxa   have been identifi ed 
through broad-scale phylogenetic analyses (Kitahara et al. 
 2010b ; Stolarski et al.  2011 ), and revisions have commenced. 
For instance,  Dactylotrochus cervicornis  was genetically 
nested among Agariciidae species, so Kitahara et al. ( 2012 ) 
moved it from Caryophylliidae into Agariciidae, making it 
the fi rst extant agariciid that is solitary and azooxanthellate. 
An  azooxanthellate   shallow-water agariciid,  Leptoseris trog-
lodyta , was described shortly after (Hoeksema  2012 ). 
Finally, a new family Deltocyathiidae that included nearly all 
the species of  Deltocyathus  was established for an early- 
diverging clade traditionally placed in Caryophylliidae 
(Kitahara et al.  2013 ).  

4.5      Detection of  Species Boundaries   

 Identifi cation of coral  species   has always been problematic. 
The overlap of morphological variation between and within 
colonies (i.e., between  corallites  ) obscures  species boundar-
ies  . Although species delimitation among  scleractinian    cor-
als      has been studied for many corals, data are still limited. 
The most studied coral in this respect is the  Orbicella annu-
laris  complex. This group of three species,  O. annularis ,  O. 
franksi  and   O. faveolata   , is amongst the dominant corals of 
many  Caribbean   reefs. Historically, they have been consid-
ered as one species,  O. annularis , with several morphs dis-
tributed along various environmental gradients, including 
different depths and  reef   zones (Graus and Macintyre  1976 , 
 1989 ). However, a tremendous number of studies on  mor-
phology  ,  reproduction  , ecology,  growth    rates   and genetics 
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have been carried out (Knowlton et al.  1992 ,  1997 ; van 
Veghel and Bak  1993 ,  1994 ; van Veghel  1994 ; van Veghel 
and Kahmann  1994 ; Weil and Knowlton  1994 ; van Veghel 
and Bosscher  1995 ; van Veghel et al.  1996 ; Lopez and 
Knowlton  1997 ; Szmant et al.  1997 ; Lopez et al.  1999 ; 
Medina et al.  1999 ; Manica and Carter  2000 ; Knowlton and 
Budd  2001 ; Fukami et al.  2004a ; Levitan et al.  2004 ,  2011 ), 
nearly all of which showing that the complex is not a single 
species with high morphological variation but comprises 
three separate species. 

 The research effort devoted to resolving the  Orbicella 
annularis  complex was unprecedented for  corals  , and 
remains unmatched for other taxa that are seemingly as com-
plex. Nevertheless, there have been several cases whereby 
species complexes showed varied levels of separation and no 
taxonomic action was taken. We describe some of these 
examples as follows. 

 In order to investigate  species boundaries  , crossing exper-
iments and  spawning   observations are the most precise 
approaches to test for  reproductive isolation   between species 
(Lang  1984 ). However, data from such studies are limited in 
terms of taxonomic and geographic coverage. Crosses have 
been tested for a variety of   Acropora    species and interspecifi c 
 fertilisation   observed in several combinations (Willis et al. 
 1997 ; Hatta et al.  1999 ; van Oppen et al.  2002 ; Fukami et al. 
 2003 ; Isomura et al.  2013 ). Nevertheless, interspecifi c fertili-
sation rates tend to be lower than intraspecifi c ones (Wei 
et al.  2012 ), allowing species boundaries to be defi ned (Willis 
et al.  2006 ).  Acropora  colonies with intermediate morpholo-
gies between species are generally not used for such experi-
ments and remain challenging subjects for taxonomic 
research. Species boundaries of such diffi cult morphologies 
have been explored in two instances. First, fi ve species and 
seven morphs from the  A. humilis  species group were exam-
ined by Wolstenholme ( 2004 ) for their  reproductive patterns   
and molecular  phylogeny  . The data indicated that the fi ve 
species were valid and the morphs at different stages of 
divergence from the valid species. Second, Suzuki and 
Fukami ( 2012 ) analysed the fertilisation rates and molecular 
 phylogenetic relationships   of three morphs of  A. solitaryen-
sis  and found that two morphs were actual variants of the 
species while the last one was an undescribed species. 

 The merulinid genus  Platygyra  has also been used in mul-
tiple experimental crosses due to its abundance in the  Indo- 
Pacifi c   and problematic species identities. Miller and 
Babcock ( 1997 ) performed crossing experiments and 
recorded  spawning   times to show that  reproductive isolation   
was severely limited among seven species in the Great 
Barrier  Reef  . Moreover, Miller and Benzie ( 1997 ) found that 
three species,  P. daedalea ,  P. sinensis  and  P. pini  contained 
no fi xed differences in allozyme frequencies. However, con-
trary to these results, molecular phylogenetic analysis using 
ITS sequences revealed clear genetic differences between 

 P. sinensis  and  P. pini  in Hong Kong (Lam and Morton  2003 ). 
To date,  species boundaries   among  Platygyra  species remain 
unresolved, although results have so far suggested that geo-
graphic variation in the degree of species separation is 
apparent. 

 Cryptic  diversity   within species exists in several other 
 corals  . For example, comparisons of  Mycedium elephantotus  
colonies between different localities in Taiwan revealed the 
existence of at least two reproductive groups based on tim-
ings of  gametogenesis   and  spawning  , supported by allozyme 
electrophoretic data (Dai et al.  2000 ). In fact, intraspecifi c 
differentiation was detected between co-occurring  popula-
tions   of  Cycloseris costulata  in  Indonesia   (Gittenberger and 
Hoeksema  2006 ),  P. daedalea  in Kenya (Mangubhai et al. 
 2007 ), and  Favites valenciennesi  in Japan (Fukami and 
Nomura  2009 ). Larger geographic contrasts such as between 
 Red Sea   and  Pacifi c Ocean   populations of   Dipsastraea    and 
 Stylophora  have also revealed molecular separation between 
regions (Stefani et al.  2011 ; Arrigoni et al.  2012 ; 
Keshavmurthy et al.  2013 ). However, to reach a stage where 
taxonomic revisions can be attempted, broad geographic 
sampling across the  Indo-Pacifi c   and detailed studies of 
closely-related species are necessary, such as in the case of 
species in  Astreopora  (Suzuki and Nomura  2013 ), 
 Pocillopora  (Pinzón and LaJeunesse  2010 ; Pinzón et al. 
 2012 ,  2013 ; Torda et al.  2013a ,  b ; Marti-Puig et al.  2014 ; 
Schmidt-Roach et al.  2013 ,  2014 ) and   Psammocora    (Benzoni 
et al.  2010 ; Stefani et al.  2008a ). In particular, boundaries 
among  Psammocora  species were clarifi ed through a series 
of rigorous  molecular and morphological analyses   (Stefani 
et al.  2008a ,  b ; Benzoni et al.  2007 ,  2010 ), which saw 24 
nominal species reorganised as seven valid species— P. 
albopicta ,  P. contigua ,  P. digitata ,  P. haimiana ,  P. nierstraszi , 
 P. profundacella  and  P. stellata . 

 Crossing experiments are usually performed for 
 broadcast- spawning    corals   because it is relatively easy to 
collect eggs and  sperm  , but are diffi cult to apply on species 
that brood, are gonochoric or release daughter colonies asex-
ually. Temporal  reproductive isolation   has been examined in 
some  fungiids   (Loya et al.  2009 ), but for other taxa, detailed 
 morphological analyses   with type material combined with 
molecular methods have been used to defi ne  species bound-
aries  , such as in   Pocillopora damicornis    (Schmidt-Roach 
et al.  2014 ) and   Goniopora stokesi    (Kitano et al.  2013 ). 
Considering that coral  spawning   usually occurs once a year, 
it may be prudent to use these approaches on top of crossing 
experiments. Unfortunately, the latter may be the only way 
to tell species apart as some closely-related corals may be 
indistinguishable with  morphological and molecular meth-
ods   (e.g., Forsman et al.  2009 ). 

 An important goal of species delimitation is to character-
ise  intraspecifi c morphological variation  , but  cryptic species   
that are still undergoing introgression may occur without 

M.V. Kitahara et al.



51

fi xed morphological differences throughout their  distribu-
tion  , such as in   Acropora     cytherea  and  A. hyacinthus  (Ladner 
and Palumbi  2012 ). We expect more  corals   to possess such a 
signature, but an unambiguous procedure to deal with them 
taxonomically remains to be established .  

4.6     Unresolved Taxa and the Future 
of Coral Systematics 

 Much of biology depends critically on a reliable taxonomic 
framework (Wheeler  2004 ). In modern times, such a frame-
work has been built with  molecular data   on top of traditional 
and updated  morphological evidence   that has been the main-
stay of  taxonomy  . Often, developmental, reproductive, and 
other ecological data are also gleaned for such research. 
Within the last two decades, coral biologists have developed 
a systematic phylogenetic approach that integrates these 
lines of evidence. Indeed, molecular data have been the 
major driving force in modern coral taxonomy, and together 
with the application of new techniques to explore subcoral-
lite  morphology  , new  light   is still being shed on  scleractinian   
 phylogeny  . 

 Although  morphological evidence   to support the three 
deep  molecular clades   is still scarce,  microstructural charac-
ters   such as the structure and arrangement of  rapid accretion 
deposits   and thickening deposits have proven to be phyloge-
netically informative at the family level (Budd and Stolarski 
 2011 ; Kitahara et al.  2013 ; Arrigoni et al.  2014a ). 
 Micromorphological traits   such as  shape of septal teeth  , the 
development of secondary  calcifi cation    axes   and correspond-
ing granulation on septal teeth and faces, the shape of the 
area between teeth,  fulturae   (Gill  1980 ), and others, are also 
useful for the differentiation of some genera within zooxan-
thellate  coral families   and  genera   (Benzoni et al.  2007 ; Budd 
and Stolarski  2009 ). In the same way, the delineation of pri-
marily  azooxanthellate   coral families has largely been 
resolved, with few notable exceptions including 
Caryophylliidae (Kitahara et al.  2010b ,  2012 ,  2013 ; Stolarski 
et al.  2011 ) and  Oculinidae   (Kitahara et al.  2010b ; Huang 
and Roy  2015 ). 

 While rapid improvements have been achieved in  sclerac-
tinian    systematics  , there are still unresolved taxa. In reality, 
the evolutionary positions of some families and genera, espe-
cially those still based solely on  macromorphological char-
acters   (e.g., Wells  1956 ), remain tentative. Furthermore, only 
about one-third of all scleractinian species have been exam-
ined phylogenetically (Fig.  4.1 ; Huang and Roy  2015 ), and 
for most of these species, few genetic markers have been 
used. Families that are still showing considerable uncertain-
ties in their evolutionary positions include Anthemiphylliidae, 
Astrocoeniidae, Caryophylliidae,  Oculinidae   and 
 Siderastreidae   (Benzoni et al.  2007 ; Fukami et al.  2008 ; 

Kitahara et al.  2010b ,  2012 ; Huang  2012 ; Huang and Roy 
 2013 ,  2015 ). In the case of genera, the emerging picture is 
even more concerning, as we are still unable to place many 
of them precisely on the  phylogeny  . They include 
 Anthemiphyllia ,   Astrangia   ,  Catalaphyllia ,  Cladocora , 
 Culicia, Gyrosmilia, Indophyllia ,  Leptastrea ,  Montigyra , 
 Paracyathus ,  Polycyathus ,  Simplastrea ,  Solenastrea  and 
 Stephanocyathus . Representatives of some of these genera 
are rare or restricted to remote localities and sampling them 
for  molecular analyses   poses a practical challenge. 
Nevertheless, some genera with suffi cient numbers of repre-
sentatives tested have been shown to be para- or polyphy-
letic. Among them, some of the most problematic genera are 
within the families Agariciidae ( Leptoseris  and  Pavona ), 
 Dendrophylliidae   (  Balanophyllia   ,  Cladopsammia , 
 Dendrophyllia  and  Rhizopsammia ), Caryophylliidae 
( Phyllangia  and  Rhizosmilia ), Euphylliidae ( Euphyllia  and 
 Galaxea ), Flabellidae ( Flabellum  and  Truncatofl abellum ) 
and  Oculinidae   (  Oculina   ). Unfortunately, only a few genetic 
markers have been sequenced from these genera, and most 
are only informative at higher  taxonomic levels  . 

 Endeavouring to improve our understanding of  scleractin-
ian    evolution   as a lineage and as a system, we recognise and 
consider some important future research directions. Amongst 
these, the most obvious is “the species problem in  corals  ” as 
foreshadowed by Hoffmeister ( 1926 : 151) and nowadays 
made increasingly clear by the application of molecular tech-
niques; establishing a clear and unambiguous phylogenetic 
framework must be one of the fi rst challenges to be addressed. 
Since reliable taxonomic information is essential for the 
interpretation of molecular phylogenies, institutional and 
fi nancial investments should be made toward building strong 
specimen collections and spurring rigorous taxonomic 
research. In particular, the inclusion of more material with 
broader taxon coverage and multiple sampling localities in 
future phylogenetic studies should be supported consistently 
by  in situ  images, collection of voucher specimens and fi xed 
tissue samples for deposition in accessible repositories. This 
will allow re-examination of evidence as new  molecular and 
morphological techniques   become available. Moreover, 
importance should also be accorded to existing historical ref-
erence collections, including type material of  extant and 
extinct coral taxa   for which only a morphological approach 
can be used. 

 Although coral  molecular phylogenetic studies   generally 
focus heavily on few mitochondrial or ribosomal markers, 
and whilst these have greatly improved our understanding of 
 scleractinian    phylogenetic relationships  , it is now clear that 
to achieve higher resolution and to be able to investigate all 
 taxonomic levels  , multiple genetic markers are essential 
(e.g., Dunn et al.  2008 ; Philippe et al.  2009 ; Regier et al. 
 2010 ). In the case of  corals  , a stumbling block to applying 
such multilocus  phylogenetics   is the paucity of single copy 
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nuclear markers that have been tested. To cross this hurdle, 
we must turn to high-throughput  sequencing   technologies 
for obtaining genomic or  transcriptomic   data for a range of 
corals. These methods could be used to collect near- 
exhaustive  molecular data   possibly containing phylogenetic 
signal at all levels. However, notwithstanding the progress 
expected with  phylogenomics  , we  stress   that improvement 
of techniques and better understanding of the  taxonomic sig-
nals   and  environment-induced variability of morphological 
characters      are essential for advancing the fi eld. 

 As we go forth in this new age of coral systematics, the 
gap between the state-of-the-art  classifi cation   and practical 
needs of the broader scientifi c  community   appears to be wid-
ening. Indeed, while taxonomic changes resulting from inte-
grative analyses are increasingly being published, the 
outdated but understandably more widely-accepted scheme 
is still being applied in some recent work on  corals   and their 
associates (e.g., Ho and Dai  2014 ; Tsang et al.  2014 ; Work 
and Aeby  2014 ). A lag is to be expected before the new 
framework is embraced outside the restricted circle better 
informed of the ongoing revisions. To bridge this gap more 
rapidly, we urge more active collaborations between taxono-
mists and ecologists, as well as more user-friendly literature 
such as fi eld illustrations of corals under the revised classifi -
cation (e.g., Dai and Horng  2009a ,  b ; Licuanan  2009 ). 

 Thus, apart from encouraging a new generation of taxon-
omists, molecular biologists, and paleontologists, the foment 
of multi- and interdisciplinary studies including  taxonomy  , 
ecology,  morphology  , molecular biology, palaeontology and 
oceanography, will shape future studies positively to help 
improve our understanding of  scleractinian    evolution  . This is 
indeed a welcome development in a time of major scientifi c 
interest and intense public concern due to the uncertain fate 
of coral reefs in the face of anthropogenic challenges  .     
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