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Abstract. We propose a new algorithm to solve the Implicit Factoriza-
tion Problem, which was introduced by May and Ritzenhofen at PKC’09.
In 2011, Sarkar and Maitra (IEEE TIT 57(6): 4002–4013, 2011) improved
May and Ritzenhofen’s results by making use of the technique for solv-
ing multivariate approximate common divisors problem. In this paper,
based on the observation that the desired root of the equations that
derived by Sarkar and Maitra contains large prime factors, which are
already determined by some known integers, we develop new techniques
to acquire better bounds. We show that our attack is the best among all
known attacks, and give experimental results to verify the correctness.
Additionally, for the first time, we can experimentally handle the implicit
factorization for the case of balanced RSA moduli.
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1 Introduction

The RSA cryptosystem is the most widely used public-key cryptosystem in prac-
tice, and its security is closely related to the difficulty of Integer Factorization
Problem (IFP): if IFP is solved then RSA is broken. It is conjectured that fac-
toring cannot be solved in polynomial-time without quantum computers.

In Eurocrypt’85, Rivest and Shamir [20] first studied the factoring with
known bits problem. They showed that N = pq (p, q is of the same bit size) can
be factored given 2

3 -fraction of the bits of p. In 1996, Coppersmith [2] improved
[20]’s bound to 1

2 . Note that for the above results, the unknown bits are within
one consecutive block. The case of n blocks was later considered in [7,15].

Motivated by the cold boot attack [4], in Crypto’09, Heninger and Shacham
[6] considered the case of known bits are uniformly spread over the factors p
and q, they presented a polynomial-time attack that works whenever a 0.59-
fraction of the bits of p and q is given. As a follow-up work, Henecka et al. [5]
focused on the attack scenario that allowed for error correction of secret factors,
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which called Noisy Factoring Problem. Later, Kunihiro et al. [12] discussed secret
key recovery from noisy secret key sequences with both errors and erasures.
Recently, Kunihiro and Honda [11] discussed how to recover RSA secret keys
from noisy analog data.

1.1 Implicit Factorization Problem (IFP)

The above works require the knowledge of explicitly knowing bits of secret factor.
In PKC’09, May and Ritzenhofen [18] introduced a new factoring problem with
implicit information, called Implicit Factorization Problem (IFP). Consider that
N1 = p1q1, . . . , Nk = pkqk be n-bit RSA moduli, where q1, . . . , qk are αn(α ∈
(0, 1))-bit primes: Given the implicit information that p1, . . . , pk share certain
portions of bit pattern, under what condition is it possible to factorize N1, . . . , Nk

efficiently? This problem can be applied in the area of malicious generation
of RSA moduli, i.e. the construction of backdoored RSA moduli. Besides, it
also helps to understand the complexity of the underlying factorization problem
better.

Since then, there have been many cryptanalysis results for this problem
[3,14,18,19,21–23]. Sarkar and Maitra [22] developed a new approach, they used
the idea of [10], which is for the approximate common divisor problem (ACDP),
to solve the IFP, and managed to improve the previous bounds significantly.

We now give a brief review of their method. Suppose that primes p1, . . . , pk

share certain amount of most significant bits (MSBs). First, they notice that

gcd(N1, N2 + (p1 − p2)q2, . . . , Nk + (p1 − pk)qk) = p1

Then they try to solve the simultaneous modular univariate linear equations
⎧
⎪⎨

⎪⎩

N2 + u2 ≡ 0 mod p1
...

Nk + uk ≡ 0 mod p1

(1)

for some unknown divisor p1 of known modulus N1. Note that if the root
(u(0)

2 , . . . , u
(0)
k ) = ((p1 − p2)q2, . . . , (p1 − pk)qk) is small enough, we can extract

them efficiently. In [22], Sarkar and Maitra proposed an algorithm to find the
small root of Eq. (1). Recently, Lu et al. [14] performed a more effective analysis
by making use of Cohn and Heninger’s algorithm [1].

1.2 Our Contributions

In this paper, we present a new algorithm to obtain better bounds for solving
the IFP. As far as we are aware, our attack is the best among all known attacks.

Technically, our algorithm is also to find a small root of Eq. (1). Concretely,
our improvement is based on the observation that for 2 ≤ i ≤ k, u

(0)
i contains a

large prime qi, which is already determined by Ni.
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Table 1. Comparison of our generalized bounds against previous bounds

[18] [3] [22] [14] [19] This paper

βn-bit LSBs case (β > ·) k
k−1

α - F (α, k) H(α, k) G(α, k) T (α, k)

γn-bit MSBs case (γ > ·) - k
k−1

α + 6
n

F (α, k) H(α, k) G(α, k) T (α, k)

γn-bit MSBs and βn-bit LSBs
together case (γ + β > ·)

- - F (α, k) H(α, k) G(α, k) T (α, k)

δn-bit in the Middle case (δ > ·) - 2k
k−1

α + 7
n

- - - -

1 F (α, k) =
αk2−(2α+1)k+1+

√
k2+2α2k−α2k2−2k+1

k2−3k+2

2 H(α, k) = 1 − (1 − α)
k

k−1

3 G(α, k) = k
k−1

(
α − 1 + (1 − α)

k+1
k + (k + 1)(1 − (1 − α)

1
k )(1 − α)

)

4 T (α, k) = k(1 − α)
(
1 − (1 − α)

1
k−1
)

5 The symbol “-” means that this corresponding case has not been considered.

Therefore, we separate ui into two unknown variables xi and yi i.e. ui = xiyi.
Consider the following equations

⎧
⎪⎨

⎪⎩

N2 + x2y2 ≡ 0 mod p1
...

Nk + xkyk ≡ 0 mod p1

with the root (x(0)
2 , . . . , x

(0)
k , y

(0)
2 , . . . , y

(0)
k ) = (q2, . . . , qk, p1 − p2, . . . , p1 − pk).

Then we introduce k−1 new variables zi for the prime factor pi (2 ≤ i ≤ k), and
use the equation xizi = Ni to decrease the determinant of the desired lattice.
That is the key reason why we get better results than [22].

In Fig. 1, we give the comparison with previous bounds for the case k = 2.
In Table 1, we list the comparisons between our generalized bounds and the
previous bounds.

Recently in [19], Peng et al. proposed another method for the IFP. Instead of
applying Coppersmith’s technique directly to the ACDP, Peng et al. utilized the
lattice proposed by May and Ritzenhofen [18], and tried to find the coordinate
of the desired vector which is not included in the reduced basis, namely they
introduced a method to deal with the case when the number of shared bits is
not large enough to satisfy the bound in [18].

In this paper, we also investigate Peng et al.’s method [19]. Surprisingly, we
get the same result with a different method. In Sect. 5, we give the experimental
data for our two methods.

We organize the rest of the paper as follows. In Sect. 2, we review the neces-
sary background for our approaches. In Sect. 3, based on new observations, we
present our new analysis on the IFP. In Sect. 4, we revisit Peng et al.’s method
[19]. Finally, in Sect. 5, we give the experimental data for the comparison with
previous methods.
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Fig. 1. Comparison with previous bounds on γ with respect to α: k = 2. MR Attack
denotes May and Ritzenhofen’s attack [18], SM Attack denotes Sarkar and Maitra’s
attack [22], PHXHX Attack denotes Peng et al.’s attack [19].

2 Preliminaries

2.1 Notations

Let N1 = p1q1, . . . , Nk = pkqk be n-bit RSA moduli, where q1, . . . , qk are αn(α ∈
(0, 1))-bit primes. Three cases are considered in this paper, we list them below:

– p1, . . . , pk share βn LSBs where β ∈ (0, 1);
– p1, . . . , pk share γn MSBs where γ ∈ (0, 1);
– p1, . . . , pk share γn MSBs and βn LSBs together where γ ∈ (0, 1) and β ∈

(0, 1);

For simplicity, here we consider αn, βn and γn as integers.

2.2 Lattice

Consider a set of linearly independent vectors u1, . . . , uw ∈ Z
n, with w � n. The

lattice L, spanned by {u1, . . . , uw}, is the set of all integer linear combinations of
the vectors u1, . . . , uw. The number w of vectors is the dimension of the lattice.
The set u1, . . . , uw is called a basis of L. In lattices with large dimension, finding
the shortest vector is a very hard problem, however, approximations of a shortest
vector can be obtained in polynomial-time by applying the well-known LLL basis
reduction algorithm [13].

Lemma 1 (LLL [13]). Let L be a lattice of dimension w. In polynomial-time,
the LLL algorithm outputs reduced basis vectors vi, 1 � i � w that satisfy

‖ v1 ‖�‖ v2 ‖� · · · �‖ vi ‖� 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .
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We also state a useful lemma from Howgrave-Graham [9]. Let g(x1, . . . , xk) =∑
i1,...,ik

ai1,...,ikxi1
1 · · · xik

k . We define the norm of g by the Euclidean norm of its
coefficient vector: ||g||2 =

∑
i1,...,ik

a2
i1,...,ik

.

Lemma 2 (Howgrave-Graham [9]). Let g(x1, . . . , xk) ∈ Z[x1, . . . , xk] be an
integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, . . . , yk) = 0mod pm for some | y1 |� X1, . . . , | yk |� Xk and
2. ‖ g(x1X1, . . . , xkXk) ‖< pm

√
w

Then g(y1, . . . , yk) = 0 holds over the integers.

The approach we used in the rest of the paper relies on the following heuristic
assumption [7,17] for computing multivariate polynomials.

Assumption 1. The lattice-based construction in this work yields algebraically
independent polynomials, this common roots of these polynomials can be com-
puted using techniques like calculation of the resultants or finding a Gröbner
basis.

Gaussian Heuristic. For a random n-dimensional lattice L in R
n [8], the

length of the shortest vector λ1 is expected to be approximately
√

n

2πe
det(L)

1
n .

In our attack, the low-dimensional lattice we constructed is not a random
lattice, however, according to our practical experiments, the length of the first
vector of the lattice basis outputted from the L3 algorithm to that specific lat-
tice is indeed asymptotically close to the Gaussian heuristic, similarly as the
assumption says for random lattices. Moreover, the lengths of other vectors in
the basis are also asymptotically close to the Gaussian heuristic. Hence, we can
roughly estimate the sizes of the unknown coordinate of desired vector in the
reduced basis.

3 Our New Analysis for Implicit Factorization

As described in the previous section, we will use the fact the desired common
root of the target equations contains large prime factors qi (2 ≤ i ≤ k) which
are already determined by Ni to improve Sarkar-Maitra’s results.

3.1 Analysis for Two RSA Moduli: The MSBs Case

Theorem 1. Let N1 = p1q1, N2 = p2q2 be two different n-bit RSA moduli with
αn-bit q1, q2 where α ∈ (0, 1). Suppose that p1, p2 share γn MSBs where γ ∈
(0, 1). Then under Assumption 1, N1 and N2 can be factored in polynomial-
time if

γ > 2α(1 − α)
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Proof. Let p̃2 = p1 − p2. We have N1 = p1q1, N2 = p2q2 = p1q2 − p̃2q2, and
gcd(N1, N2 + p̃2q2) = p1. Then we want to recover q2, p̃2 from N1, N2. We focus
on a bivariate polynomial f(x, y) = N2 + xy with the root (x(0), y(0)) = (q2, p̃2)
modulo p1. Let X = Nα, Y = N1−α−γ , Z = N1−α be the upper bounds of
q2, p̃2, p2. In the following we will use the fact that the small root q2 is already
determined by N2 to improve Sarkar-Maitra’s results.

First let us introduce a new variable z for p2. We multiply the polynomial
f(x, y) by a power zs for some s that has to be optimized. Additionally, we can
replace every occurence of the monomial xz by N2. Define two integers m and
t, let us look at the following collection of trivariate polynomials that all have
the root (x0, y0) modulo pt

1.

gk(x, y, z) = zsfkN
max{t−k,0}
1 for k = 0, . . . , m

For gk(x, y, z), we replace every occurrence of the monomial xz by N2 because
N2 = p2q2. Therefore, every monomial xkykzs(k ≥ s) with coefficient ak is
transformed into a monomial xk−syk with coefficient akNs

2 . And every monomial
xkykzs(k < s) with coefficient ak is transformed into a monomial ykzs−k with
coefficient akNk

2 .
To keep the lattice determinant as small as possible, we try to eliminate

the factor of N i
2 in the coefficient of diagonal entry. Since gcd(N1, N2) = 1,

we only need to multiply the corresponding polynomial with the inverse of N i
2

modulo N t
1.

Compare to Sarkar-Maitra’s lattice, the coefficient vectors gk(xX, yY, zZ) of
our lattice contain less powers of X, which decreases the determinant of the lat-
tice spanned by these vectors, however, on the other hand, the coefficient vectors
contain powers of Z, which in turn increases the determinant. Hence, there is
a trade-off and one has to optimize the parameter s subject to a minimization
of the lattice determinant. That is the key reason why we can get better result
than Sarkar-Maitra’s results.

We have to find two short vectors in lattice L. Suppose that these two vec-
tors are the coefficient vectors of two trivariate polynomial f1(xX, yY, zZ) and
f2(xX, yY, zZ). These two polynomials have the root (q2, p̃2, p2) over the inte-
gers. Then we can eliminate the variable z from these polynomials by setting
z = N2

x . Finally, we can extract the desired root (q2, p̃2) from the new two poly-
nomials if these polynomials are algebraically independent. Therefore, our attack
relies on Assumption 1.

We are able to confirm Assumption 1 by various experiments later. This
shows that our attack works very well in practice.

Now we give the details of the condition for which we can find two sufficiently
short vectors in the lattice L. The determinant of the lattice L is

det(L) = N
t(t+1)

2
1 X

(m−s)(m−s+1)
2 Y

m(m+1)
2 Z

s(s+1)
2

The dimension of the lattice is w = m + 1.
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To get two polynomials sharing the root q2, p̃2, p2, we get the condition

2
w(w−1)

4w det(L)
1
w <

pt
1√
w

Substituting the values of the det(L) and neglecting low-order terms, we obtain
the new condition

t2

2
+ α

(m − s)2

2
+ (1 − α − γ)

m2

2
+ (1 − α)

s2

2
< (1 − α)tm

Let t = τm, s = σm. The optimized values of parameters τ and σ are given by

τ = 1 − α σ = α

Plugging in this values, we finally end up with the condition

γ > 2α(1 − α)

One can refer to Fig. 1 for the comparison with previous theoretical results.

3.2 Extension to k RSA Moduli

In this section, we give an analysis for k (k > 2) RSA moduli.

Theorem 2. Let N1 = p1q1, . . . , Nk = pkqk be k different n-bit RSA moduli with
αn-bit q1, . . . , qk where α ∈ (0, 1). Suppose that p1, . . . , pk share γn MSBs where
γ ∈ (0, 1). Then under Assumption 1, N1, . . . , Nk can be factored in polynomial-
time if

γ > k(1 − α)
(
1 − (1 − α)

1
k−1

)

Proof. Let p̃i = p1 − pi. We have N1 = p1q1 and Ni = piqi = p1qi − p̃iqi

(2 ≤ i ≤ k). We have gcd(N1, N2 + p̃2q2, . . . , Nk + p̃kqk) = p1. Then we want
to recover qi, p̃i (2 ≤ i ≤ k) from N1, . . . , Nk. We construct a system of k − 1
polynomials ⎧

⎪⎨

⎪⎩

f2(x2, y2) = N2 + x2y2
...

fk(xk, yk) = Nk + xkyk

with the root (x(0)
2 , y

(0)
2 , . . . , x

(0)
k , y

(0)
k ) = (q2, p̃2, . . . , qk, p̃k) modulo p1. Using a

technique similar to that of Theorem 1, and introducing k − 1 new variables zi

for pi (2 ≤ i ≤ k), we define the following collection of trivariate polynomials.

gi2,...,ik (x2, . . . , xk, y2, . . . , yk, z2, . . . , zk) = (z2 · · · zk)sf i2
2 · · · f ik

k N
max{t−i2−···−ik,0}
1

with 0 ≤ i2 + · · · + ik ≤ m (Because of the symmetric nature of the unknown
variables x2, . . . , xk, i.e., all the x2, . . . , xk have the same size, we use the same
parameter s).
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For gi2,...,ik , we replace every occurrence of the monomial xizi by Ni. We
can eliminate the factor of N j2

2 · · · N jk
k in the coefficient of diagonal entry. The

determinant of the lattice L is

det(L) = NsN
1

k∏

i=2

X
sXi
i Y

sYi
i Z

sZi
i

where

sN =
t∑

j=0

j

(
t − j + k − 2

k − 2

)

=
(

t + k − 1
k − 1

)
t

k

sX2 = · · · = sXk
=

m−s∑

j=0

j

(
m − s − j + k − 2

k − 2

)

=
(

m − s + k − 1
k − 1

)
m − s

k

sY2 = · · · = sYk
=

m∑

j=0

j

(
m − j + k − 2

k − 2

)

=
(

m + k − 1
k − 1

)
m

k

sZ2 = · · · = sZk
=

s∑

j=0

j

(
m − s + j + k − 2

k − 2

)

=
(

m + k − 1
k

)
ks − m

m
+

(
m − s − 1 + k − 1

k

)
k + m − s − 1

m − s − 1

Here Xi = Nα, Yi = N1−α−γ , Zi = N1−α are the upper bounds of qi, p̃i, pi. The
dimension of the lattice is

w = dim(L) =
m∑

j=0

(
j + k − 2

j

)

=
(

m + k − 1
m

)

To get 2k − 2 polynomials sharing the root q2, p̃2, p2, we get the condition

2
w(w−1)

4(w+4−2k) det(L)
1

w+4−2k <
pt
1√
w

Substituting the values of the det(L) and neglecting low-order terms, we obtain
the new condition

(
t + k − 1

k − 1

)
t

k
+ (k − 1)α

(
m − s + k − 1

k − 1

)
m − s

k

+ (k − 1)(1 − α − γ)
(

m + k − 1
k − 1

)
m

k
+ (k − 1)(1 − α)

(
m + k − 1

k

)
ks − m

m

+ (k − 1)(1 − α)
(

m − s − 1 + k − 1
k

)
k + m − s − 1

m − s − 1

< (1 − α)t
(

m + k − 1
m

)
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Let t = τm, s = σm, the optimized values of parameters τ and σ were given by

τ = (1 − α)
1

k−1 σ = 1 − (1 − α)
1

k−1

Plugging in this values, we finally end up with the condition

γ > k(1 − α)
(
1 − (1 − α)

1
k−1

)

One can refer to Table 1 for the comparison with previous theoretical results.

3.3 Extension to the LSBs Case.

In the following, we show a similar result in the case of p1, . . . , pk share some
MSBs and LSBs together. This also takes care of the case when only LSBs are
shared.

Theorem 3. Let N1 = p1q1, . . . , Nk = pkqk be k different n-bit RSA moduli
with αn-bit qi (α ∈ (0, 1)). Suppose that p1, · · · , pk share γn MSBs (γ ∈ (0, 1))
and βn LSBs (β ∈ (0, 1)) together. Then under Assumption 1, N1, · · · , Nk can
be factored in polynomial-time if

γ + β > k(1 − α)
(
1 − (1 − α)

1
k−1

)

Proof. Suppose that p1, . . . , pk share γn MSBs and βn LSBs together. Then we
have the following equations:

⎧
⎪⎨

⎪⎩

p2 = p1 + 2βnp̃2
...

pk = p1 + 2βnp̃k

We can write as follows

Niq1 − N1qi = 2βnp̃iq1qi for 2 ≤ i ≤ k

Then we get

(2βn)−1Niq1 − p̃iq1qi ≡ 0 mod N1 for 2 ≤ i ≤ k

Let Ai ≡ (2βn)−1Nimod N1 for 2 ≤ i ≤ k. Thus, we have
⎧
⎪⎨

⎪⎩

A2 − q2p̃2 ≡ 0 mod p1
...

Ak − qkp̃k ≡ 0 mod p1

Then we can construct a system of k − 1 polynomials
⎧
⎪⎨

⎪⎩

f2(x2, · · · , xk) = A2 + x2y2
...

fk(x2, · · · , xk) = Ak + xkyk

with the root (x(0)
2 , y

(0)
2 , . . . , x

(0)
k , y

(0)
k ) = (q2, p̃2, . . . , qk, p̃k) modulo p1. The rest

of the proof follows s similar technique as in the proof of Theorem 2. We omit
the details here.



Towards Optimal Bounds for Implicit Factorization Problem 471

4 Revisiting Peng et al.’s Method [19]

In [19], Peng et al. gave a new idea for IFP. In this section, we revisit Peng
et al.’s method and modify the construction of lattice which is used to solve the
homogeneous linear modulo equation. Therefore, a further improved bound on
the shared LSBs and MSBs is obtained.

Recall the method proposed by May and Ritzenhofen in [18], the lower bound
on the number of shared LSBs has been determined, which can ensure the vector
(q1, · · · , qk) is shortest in the lattice, namely the desired factorization can be
obtained by lattice basis reduction algorithm.

Peng et al. took into consideration the lattice introduced in [18] and discussed
a method which can deal with the case when the number of shared LSBs is not
enough to ensure that the desired factorization can be solved by applying reduc-
tion algorithms to the lattice. More narrowly, since (q1, · · · , qk) is in the lattice,
it can be represented as a linear combination of reduced lattice basis. Hence the
problem of finding (q1, · · · , qk) is transformed into solving a homogeneous linear
equation with unknown moduli. Peng et al. utilized the result from Herrmann
and May [7] to solve the linear modulo equation and obtain a better result.

Firstly, we recall the case of primes shared LSBs. Assume that there are k
different n-bit RSA moduli N1 = p1q1, · · · , Nk = pkqk, where p1, · · · , pk share
γn LSBs and q1, · · · , qk are αn-bit primes. The moduli can be represented as

⎧
⎪⎨

⎪⎩

N1 = (p + 2γnp̃1)q1
...

Nk = (p + 2γnp̃k)qk

Furthermore, we can get following modular equations
⎧
⎪⎨

⎪⎩

N−1
1 N2q1 − q2 ≡ 0 mod 2γn

...
N−1

1 Nkq1 − qk ≡ 0 mod 2γn

(2)

In [18], May and Ritzenhofen introduced a k-dimensional lattice L1 which is
generated by the row vectors of following matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 N−1
1 N2 N−1

1 N3 · · · N−1
1 Nk

0 2γn 0 · · · 0
0 0 2γn · · · 0
...

...
...

. . .
...

0 0 0 · · · 2γn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Since (2) holds, the vector (q1, · · · , qk) is the shortest vector in L1 with a good
probability when γ ≥ k

k−1α. Then by applying the LLL reduction algorithm to
the lattice, the vector (q1, · · · , qk) can be solved. Conversely, when γ < k

k−1α
the reduced basis (λ1, · · · , λk) doesn’t contain vector (q1, · · · , qk), nevertheless,
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we can represent the vector (q1, · · · , qk) as a linear combination of reduced basis.
Namely, there exist integers x1, x2, · · · , xk such that (q1, · · · , qk) = x1λ1 + · · · +
xkλk. Moreover, the following system of modular equations can be obtained,

⎧
⎪⎨

⎪⎩

x1l11 + x2l21 + · · · + xklk1 = q1 ≡ 0 mod q1
...

x1l1k + x2l2k + · · · + xklkk = qk ≡ 0 mod qk

(3)

where λi = (li1, li2, · · · , lik), i = 1, 2, · · · , k.
Based on the experiments, the size of the reduced basis can be roughly esti-

mated as Gaussian heuristic. We estimate the length of λi and the size of lij as
det(L2)

1
k = 2

nt(k−1)
k , hence the solution of (3) is |xi| ≈ qi

klij
≈ 2αn− nt(k−1)

k −log2k ≤
2αn− nt(k−1)

k .
Then using the Chinese Remainder Theorem, from (3) we can get the fol-

lowing homogeneous modular equation

a1x1 + a2x2 + · · · + akxk ≡ 0 mod q1q2 · · · qk (4)

where ai is an integer satisfying ai ≡ lij mod Nj for 1 ≤ j ≤ k and it can be
calculated from the lij and Nj .

For this linear modular equation, Peng et al. directly utilized the method of
Herrmann and May [7] to solve it and obtain that when

γ ≥ k

k − 1
(α − 1 + (1 − α)

k+1
k + (k + 1)(1 − (1 − α)

1
k )(1 − α)

the desired solution can be solved.
In this paper, we notice that the linear modular equation is homogeneous

which is a variant of Herrmann and May’s equation, hence we utilize the following
theorem which is proposed by Lu et al. in [16] to modify the construction of
lattice used in [19].

Theorem 4. Let N be a sufficiently large composite integer (of unknown fac-
torization) with a divisor p (p ≥ Nβ). Furthermore, let f(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a homogenous linear polynomial in n(n ≥ 2) variables.
Under Assumption 1, we can find all the solutions (y1, . . . , yn) of the equation
f(x1, . . . , xn) = 0 (mod p) with gcd(y1, . . . , yn) = 1, |y1| ≤ Nγ1 , . . . |yn| ≤
Nγn if

n∑

i=1

γi <
(
1 − (1 − β)

n
n−1 − n(1 − β)

(
1 − n−1

√
1 − β

))

The running time of the algorithm is polynomial in log N but exponential in n.

For this homogeneous linear Eq. (4) in k variables modulo q1q2 · · · qk ≈
(N1N2 · · · Nk)α, by Theorem 4 with the variables xi < (N1N2 · · · Nk)δi ≈
2kδin, i = 1, 2, · · · , k, we can solve the variables when

k∑

i=1

δi ≈ kδi ≤ 1 − (1 − α)
k

k−1 − k(1 − α)
(
1 − (1 − α)

1
k−1

)
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where δ1 ≈ δ2 ≈ · · · ≈ δk.
Hence, when

α − γ(k − 1)
k

≤ 1 − (1 − α)
k

k−1 − k(1 − α)
(
1 − (1 − α)

1
k−1

)

Namely,

γ ≥ k

k − 1

(
α − 1 + (1 − α)

k
k−1 + k(1 − (1 − α)

1
k−1 )(1 − α)

)

= k(1 − α)
(
1 − (1 − α)

1
k−1

)

the desired vector can be found out.
The above result can be easily extend to MSBs case using the technique

in [19]. Surprisingly we get the same result as Theorem 2 by modifying Peng
et al.’s technique.

5 Experimental Results

We implemented our analysis in Magma 2.20 computer algebra system on a
PC with Intel(R) Core(TM) Duo CPU(2.80 GHz, 2.16 GB RAM Windows 7).
Note that for the first time, we can experimentally handle the IFP for the case
of balanced RSA moduli. The column theo. denotes the asymptotic bound of
shared bits when the dimension is infinite and the column expt. denotes the best
experimental results for a fixed dimension of our constructed lattice. Since the
method of [22] can not deal with the case of balanced RSA moduli, we use ‘-’ to
fill the Table 2. Moreover, [19] showed that they can obtain an theoretical bound
when p and q are balanced, however, they failed to obtain the experimental
results, thus we also use ‘-’ to fill the Table 3. All of the running time of the
experiments are measured in seconds.

Table 2. Theoretical and Experimental data of the number of shared MSBs in [22]
and shared MSBs in Our Method in Sect. 3

k Bitsize of (pi, qi), i.e.,

((1−α)log2Ni, αlog2Ni)

No. of shared MSBs in pi [22] No. of shared MSBs in pi (Sect. 3)

Theo. Expt. Dim Time of L3 Theo. Expt. (m,t,s) Dim Time of L3

2 (874,150) 278 289 16 1.38 257 265 (45,38,6) 46 2822.152

2 (824,200) 361 372 16 1.51 322 330 (45,36,9) 46 2075.406

2 (774,250) 439 453 16 1.78 378 390 (45,34,11) 46 1655.873

2 (724,300) 513 527 16 2.14 425 435 (45,32,13) 46 1282.422

3 (774,250) 352 375 56 51.04 304 335 (13,11,1) 105 11626.084

3 (724,300) 417 441 56 70.55 346 375 (13,11,2) 105 10060.380

3 (674,350) 480 505 56 87.18 382 420 (13,11,2) 105 14614.033

3 (624,400) 540 569 56 117.14 411 435 (13,10,3) 105 5368.806

3 (512,512) - - - - 450 460 (13,9,4) 105 2012.803
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We present some numerical values for comparisons between our method of
Sect. 3 and [22]’s method in Table 2. The running time of LLL algorithm depends
on the lattice dimension and bit-size of the entries in lattice, and the largest
coefficient of entries in lattice has a bit-size of at most t log(N1). Thus the running
time is decided by parameters m and t, that explains why the time is reduced as
p and q get more balanced. For the case k = 2, when the bitlength of q increases,
namely α increases, the optimal value of t decreases. Thus, the running time
of LLL algorithm is reduced when α increased which means p and q get more
balanced.

Table 3. Theoretical and Experimental data of the number of shared MSBs in [19]
and shared MSBs in Our Method in Sect. 4

k Bitsize of (pi, qi), i.e.,

((1−α)log2Ni, αlog2Ni)

No. of shared MSBs in pi [19] No. of shared MSBs in pi (Sect. 4)

Theo. Expt. dim Time of L3 theo. Expt. (m,t) Dim Time of L3

2 (874,150) 267 278 190 1880.10 257 265 (45,7) 46 410.095

2 (824,200) 340 357 190 1899.21 322 335 (45,9) 46 470.827

2 (774,250) 405 412 190 2814.84 378 390 (45,11) 46 918.269

2 (724,300) 461 470 190 2964.74 425 440 (45,13) 46 1175.046

3 (774,250) 311 343 220 6773.48 304 335 (13,2) 105 4539.301

3 (724,300) 356 395 220 7510.86 346 380 (13,2) 105 8685.777

3 (674,350) 395 442 220 8403.91 382 420 (13,2) 105 10133.233

3 (624,400) 428 483 220 9244.42 410 435 (13,3) 105 22733.589

3 (512,512) 476 - - - 450 490 (13,4) 105 49424.252

Note that in the practical experiments, we always found many integer equa-
tions which share desired roots over the integers when the numbers of shared
bits is greater than the listed results. It means that in the reduced basis, there
are several vectors that satisfy Howgrave-Graham’s bound. Moreover, the more
integer equations corresponding to the vectors we choose, the less time calcu-
lating Gröbner basis. For an instance, when k = 3, (m, t, s) = (13, 9, 4) and the
bitlengths of p and q are both 512-bits, we constructed a 105-dimensional lattice
and by applying the L3 algorithm to the lattice, we successfully collected 74
polynomial equations which share desired roots over the integers when q1, q2, q3
shared 460 MSBs. When we chose all of integer equations, the calculation of
Gröbner basis took 12.839 s.

Meanwhile our method of Sect. 4 is based on an improved method of [19],
we present some numerical values for comparison with these two methods in
Table 3. As it is shown, by using an improved method to solve the homogeneous
equations, we obtained an improved bound on the numbers of shared bits and
the experiments also showed this improvement. For a fixed dimension of lattice,
similarly since entries of our constructed lattice is decided by m and t, the
running time of LLL algorithm increases when t increases.

Note that the running time of the method of Sect. 3 is faster than the method
of Sect. 4 when p and q get more balanced, especially for balanced moduli. For
the unbalanced case, the method of Sect. 4 is faster.
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