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Abstract. The aim of this work is to find large S-Boxes, typically oper-
ating on 8 bits, having both good cryptographic properties and a low
implementation cost. Such S-Boxes are suitable building-blocks in many
lightweight block ciphers since they may achieve a better security level
than designs based directly on smaller S-Boxes. We focus on S-Boxes
corresponding to three rounds of a balanced Feistel and of a balanced
MISTY structure, and generalize the recent results by Li and Wang on
the best differential uniformity and linearity offered by such a construc-
tion. Most notably, we prove that Feistel networks supersede MISTY net-
works for the construction of 8-bit permutations. Based on these results,
we also provide a particular instantiation of an 8-bit permutation with
better properties than the S-Boxes used in several ciphers, including
Robin, Fantomas or CRYPTON.

Keywords: S-Box - Feistel network - MISTY network - Lightweight
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1 Introduction

A secure block cipher must follow Shannon’s criteria and provide confusion and
diffusion [42]. In most cases, confusion is achieved with small substitution boxes
(S-Boxes) operating on parts of the state (usually bytes) in parallel, and diffusion
is achieved with linear operations mixing the state. The security of the cipher
is then strongly dependent on the cryptographic properties of the S-Boxes. For
instance, the AES uses an 8-bit S-Box based on the inversion in the finite field
with 28 elements. This S-Box has the smallest known differential probability and
linear correlation, and then allows the AES to be secure with a small number
of rounds, and to reach very good performances. However, it is not always the
best option for constrained environments. In software, an S-Box can be imple-
mented with a look-up table in memory, but this takes 256 bytes for the AES
S-Box, and there might be issues with cache-timing attacks [7]. In hardware, the
best known implementation of the AES S-Box requires 115 gates [13]; this hard-
ware description can also be used for a bit-sliced software implementation [25].

Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.
© Springer International Publishing Switzerland 2016

O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 373-393, 2016.
DOI: 10.1007/978-3-319-31301-6_22



374 A. Canteaut et al.

For some constrained environments, this cost might be too high. Therefore, the
field of lightweight cryptography has produced many alternatives with a smaller
footprint, such as TEA [47], CRYPTON [29,30], NOEKEON [16], PRESENT [11],
KATAN [17], LBLOCK [48], PRINCE [12], TWINE [44], the LS-Designs [23], or
PRIDE [2]. In particular, many of those lightweight ciphers use S-Boxes operat-
ing on 4-bit words, or even on a smaller alphabet like in [1]. But, reducing the
number of variables increases the values of the optimal differential probability
and linear correlation. Therefore, more rounds are required in order to achieve
the same resistance against differential and linear attacks.

An alternative approach when constructing a lightweight cipher consists in
using larger S-Boxes, typically operating on 8 bits like in the AES, but with a
lower implementation cost. Then, we search for S-Boxes with better implemen-
tations than the AES S-Box, at the cost of suboptimal cryptographic properties.
Finding 8-bit S-Boxes which offer such an interesting trade-off is a difficult prob-
lem: they cannot be classified like in the 4-bit case [18,27], and randomly chosen
S-Boxes have a high implementation cost [46]. Therefore, we focus on construc-
tions based on smaller S-Boxes and linear operations. This general approach
has been used in several previous constructions: CRYPTON v0.5 [29] (3-round
Feistel), CRYPTON v1.0 [30] (2-round SPN), WHIRLPOOL [5] (using five small S-
Boxes), KHAZAD [4] (3-round SPN), ICEBERG [43] (3-round SPN), ZORRO [21]
(4-round Feistel with mixing layer), and the LS-Designs [23] (3-round Feistel
and MISTY network). As in [23], we here focus on constructions with a 3-round
Feistel network, or a 3-round balanced MISTY network, because they use only
3 smaller S-Boxes, but can still provide good large S-Boxes. And we study the
respective merits of these two constructions, since this comparison is raised as
an open question in [23].

The Feistel and MISTY structures have been intensively studied in the con-
text of block cipher design, and bounds are known for the maximum expected
differential probability (MEDP) [3,32,38] and maximum expected linear poten-
tial (MELP) [3,37]. However, those results are not relevant for the construction of
S-Boxes, because they only consider the average value over all the keys, while an
S-Box is unkeyed. Therefore, the differential and linear properties of the Feistel
and MISTY constructions need to be analyzed in the unkeyed setting. Such a
study has been initiated recently by Li and Wang [28] in the case of 3 rounds of
a Feistel network. In this work, we expand the results of Li and Wang, by giving
some more general theoretical results for unkeyed Feistel and MISTY structures,
with a particular focus on the construction of 8-bit permutations. Due to the
page limitation, some of the results are not detailed here and are presented in
the full version of this paper [15] only.

Our contributions. We first explain why the usual MEDP and MELP notions are
meaningless in the unkeyed setting. In particular we exhibit a 3-round MISTY
network where there exists a differential with probability higher than the MEDP
for any fized key, but this optimal differential depends on the key. Then, Sect. 3
gives some lower bounds on the differential uniformity and linearity of any
3-round balanced MISTY structure, which involve the properties of the three
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inner S-Boxes. Similar results on 3-round Feistel networks are also detailed in
Sect. 5 of [15], which generalize the previous results from [28]. Section4 then
focuses on the construction of 8-bit permutations. Most notably, we show that
3 rounds of a Feistel network with appropriate inner S-Boxes provide better cryp-
tographic properties than any 3-round MISTY network, explaining some exper-
imental results reported in [23]. Section 5 then gives an instantiation of such an
8-bit permutation, which offers a very good trade-off between the cryptographic
properties and the implementation cost. It can be implemented efficiently in
hardware and for bit-sliced software, and has good properties for side-channel
resistant implementations with masking. In particular, this S-Box supersedes the
S-Boxes considered in many lightweight ciphers including CRYPTON, Robin and
Fantomas.

2 From Keyed Constructions to Unkeyed S-Boxes

2.1 Main Cryptographic Properties for an S-Box

In this paper, we focus on S-Boxes having the same number of input and output
bits. The resistance offered by an S-Box against differential [10] and linear [31]
cryptanalysis is quantified by the highest value in its difference table (resp. table
of linear biases, aka linear-approximation table). More precisely, these two major
security parameters are defined as follows.

Definition 1 (Differential uniformity [36]). Let F be a function from F}
into F%. For any pair of differences (a,b) in Fy, we define the set

Dp(a—b)={xeF} | Fx®a)® F(x) = b}.

The entry at position (a,b) in the difference table of F then corresponds to the
cardinality of Dp(a — b) and will be denoted by dr(a,b).
Moreover, the differential uniformity of F is

I(F) = géao?%(SF(a, b).

Obviously, the differential uniformity of an S-Box is always even, implying
that, for any F', 6(F') > 2. The functions F' for which equality holds arze named
almost perfect nonlinear (APN) functions.

Similarly, the bias of the best linear approximation of an S-Box is measured
by its linearity.

Definition 2 (Walsh transform of an S-Box). Let F' be a function from F%
into FY. The Walsh transform of F' is the function

F2 x F} — Z
(a,b) = Ap(a,b) = 3,y (— 1) F@ e,
Moreover, the linearity of F' is

L(F) = max [Ar(a.b)]
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Indeed, up to a factor 2™, the linearity corresponds to the bias of the best
linear relation between the input and output of F"

Prx[b- F(X)+a-X =1] = i(2n71 B % Z (71)b<F(z)+a'z) _ %(1 _ Ar(a, b)).

2n 2n
z€Fy

It is worth noticing that, for any fixed output mask b € FZ3, the function
a — Ap(a,b), corresponds to the Walsh transform of the n-variable Boolean
component of F:: z — b- F(z). In particular, it enjoys all properties of a discrete
Fourier transform, for instance the Parseval relation.

2.2 Constructing S-Boxes from Smaller Ones

If this paper we focus on the construction of S-Boxes using several smaller
S-Boxes. Indeed small S-Boxes are much cheaper to implement that large S-
Boxes:

— for table-based software implementations, the tables are smaller;

— for hardware implementations, the gate count is lower;

— for bit-sliced software implementation, the instructions count is lower;

— for vectorized implementation, small S-Boxes can use vector permutations.

In many cases, implementing several small S-Boxes requires less resources than
implementing a large one. Therefore, constructing S-Boxes from smaller ones
can reduce the implementation cost.

The Feistel construction is a well-known construction to build a 2n-bit permu-
tation from smaller n-bit functions, introduced in 1971 for the design of Lucifer
(which later became DES [34]). It is a good candidate for constructing large
S-Boxes from smaller ones at a reasonable implementation cost. In particular,
this construction has been used for the S-Boxes of CRYPTON v0.5 [29], ZUC [20]
(for Sp), Robin [23] and iSCREAM [22]. The MISTY construction introduced by
Matsui [32] uses a different structure, but offers a similar level of security. The
main advantage of the MISTY network is that it can offer a reduced latency
because the first two S-Boxes can be evaluated in parallel. Therefore it is a nat-
ural alternative to Feistel networks for the construction of lightweight S-Boxes,
and it has been used in the design of Fantomas [23] and SCREAM [22]. In order
to reduce the number of gates used for implementing the construction, we focus
on balanced MISTY networks, while the MISTY block cipher proposed in [33] is
unbalanced and combines an (n — 1)-bit S-Box and an (n + 1)-bit S-Box.

The two structures we study are depicted in Figs. 1 and 2. It is worth notic-
ing a major difference between the two: the function resulting from the Feistel
construction is always invertible (since one round is an involution, up to a permu-
tation of the outputs), while the function resulting from the MISTY construction
is invertible if and only if all the inner S-Boxes are invertible.
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Fig. 1. 3-round MISTY network Fig. 2. 3-round Feistel network

Analysis of Feistel and MISTY Structures. Since these two constructions
have been used for the design of many block ciphers (in particular the DES [34]
and MISTY [33], respectively), their security properties have been intensively
studied. A natural way to measure the resistance of the resulting block cipher
against differential and linear cryptanalysis is to study the probabilities of the
differentials (respectively the potentials of the linear approximations) averaged
over all keys.

Definition 3 (MEDP and MELP). Let F be a family of function from F§ into
Fy. The MEDP is the maximum probability of a differential, averaged over all
keys:

1 5FK (a, b)

b 2k 2n
KeF%

MEDP(Fg) = max

The MELP s the maximum potential of a linear approximation, averaged over
all keys:

)\Kab
MELP(Fic) = max Qk 3 ( F )

KeFk

The following theorem shows that the MEDP and MELP of a Feistel or
MISTY network can be bounded.

Theorem 1 (Feistel or MISTY, averaged over all keys, [3,32,38]). Given
S1, Sa and Ss three n-bit permutations, let p = max;0(S;)/2" and q =
max;(L£(S;)/2")2. Then the family of functions (FK) k=(K, Ko, Ks)eree defined
by 3 rounds of a Feistel or of a MISTY network with S; as inner functions
verifies

MEDP(Fk) < p® and MELP(Fk) < ¢*
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This theorem is very powerful for the construction of iterated block ciphers: it
shows that a big function with strong cryptographic properties can be built from
small functions with strong cryptographic properties. However, for the design of
an S-Box from smaller S-Boxes, it is of little use. Indeed, we are interested in
the properties of a single fixed S-Box, rather than the average properties of a
family of S-Boxes. For a fixed (a,b) the theorem proves that the average values
of 0, (a,b) and Ap, (a,b) are bounded, therefore there exists at least one key
for which the value is smaller than or equal to the average. However, it might be
that the values a,b where the maximum is reached are not the same for every
key. Therefore if we select a key so that dp, (a,b) is small for an a, b maximizing
the average probability, the maximum can be reached for another entry of the
differential table.

More strikingly, we discovered some choices of S, So, S3 such that the max-
imum differential probability of the functions in the corresponding family is
always higher than the MEDP.

Ezxample 1. We consider a MISTY structure with three identical S-Boxes:
S; =[A,7,9,6,0,1,5,B,3,E,8,2,C,D, 4,F].

We have MEDP(Fgk) < 16/256 according to Theorem 1, because 6(S;) = 4.
However, for any function in this family, there exists a differential with proba-
bility 32/256. This is not a contradiction, because the differential reaching the
maximum depends on the key.

The relevant property for the construction of an S-Box is the maximum
differential probability (respectively maximum linear potential). Therefore, we
could derive some information on this quantity for Fx for some fixed keys from
the knowledge of the average value of the maximal differential probability, i.e.,
the EMDP (resp. EMLP), which may significantly differ from the MEDP (resp.
MELP). We would like to point out that there is a confusion between the two
notions in [33]: the definition corresponds to the expected maximum differential
probability (respectively expected maximum linear potential), while the theo-
rems apply to the MEDP and MELP.

Analysis of Feistel and MISTY Structures with Fixed Key. In order
to study the properties of Feistel and MISTY structures for the construction of
lightweight S-Boxes, we must study these structures with a fixed key. Equiva-
lently, we can consider the structures without any key, because a structure with
a fixed key is equivalent to an unkeyed one with different S-Boxes. Indeed, using
an S-Box S; with round key k; is equivalent to using S} : z — S;(x + k;) as an
S-Box without any key. In the following, we always consider a key-less variant.

In a recent analysis of the fixed-key Feistel structure [28], Li and Wang derive
the best differential uniformity and linearity which can be achieved by a 3-round
Feistel cipher with a fixed key, and give examples reaching this bound. Their
main results are as follows:
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Theorem 2 (Feistel unkeyed, [28]). Let S1, Sz and S3 be three n-bit S-Bozes

and F be the 2n-bit function defined by the corresponding 3-round Feistel net-

work. Then, §(F) > 26(S2). Moreover, if Sz is not a permutation, §(F) > 2"+1,
If n =4, F satisfies §(F) > 8. If equality holds, then L(F) > 64.

3 S-Boxes Obtained from 3 Rounds of MISTY or Feistel

3.1 Our Results

In this paper, we generalize the bounds of Li and Wang [28] on Feistel structures,
and derive bounds for MISTY structures. The results are very similar for the two
structures, but for a MISTY structure, optimal results are only achieved with
non-invertible inner functions. Therefore, our work shows that Feistel structures
allow better results than MISTY structures for the design of invertible 8-bit
S-Boxes.

More precisely, we introduce two new S-Box properties dp,;, and Ly, in order
to derive our bounds: L,;, is the smallest linearity we can have for a non-trivial
component of the S-Box. Similarly, d,i, is the smallest value we can have for
the maximum maxy 6(a, b) within a row in the difference table. In particular, for
any 4-bit function S, dmin(S) > 2 and Lyin(S) > 4. Moreover, if S is a 4-bit
permutation, then iy (S) > 4 and Ly,in(S) > 8.

We first present the general lower bounds we obtain on the differential uni-
formity and linearity of 3 rounds of a Feistel and of a MISTY construction.

1. For a Feistel network with inner S-Boxes S7, Sy and Ss:
- 6(F) Z 5(82) max (§min(sl)7 6min(Sg))
— if S is not a permutation, §(F) > 2" +1,
- 1 S5 is a permutation, §(F) 2 _max  (8(5)0min(S}), 5(8i)6min (93 1))
i£2,j#4,
- ﬁ(F) Z [:(52) max (£min(51), ﬁmin(S?)))
— ifSy is a permutation, £(F) > '#1211@;; , (L(Si)Lmin(S;), L(S;)Lonin(S3 1))
i#£2,574,
2. For a MISTY network with inner S-Boxes S, So and Ss:
— 6(F) > 6(S1) max (6min (52), Omin (S3))
— if 81 is not a permutation, §(F) > 2"+1,
— if S} is a permutation, §(F) > #Iln;a;(l . (5(Si)6min(5’j), 5(Si)6min(5f1));
i#£1,j#1,0
= L(F) > max (L£(S1)Lmin(52), L(S2) Limin (1), L(S3)Lmin(51));
— if S3 is a permutation, £(F) > £(S1)Lmin(S5 ).
— if Sy is a permutation, L(F) > L(S3)Lmin(S2).
— if S; and S3 are permutations, £(F) > £(S2)Lmin(S5 ).

If n = 4 this yields for both constructions:
0(F) > 8 and L(F) > 48.

Moreover, L(F') > 64 unless §(F) > 32.
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For the MISTY construction with n = 4, if F' is a permutation, we obtain
tighter bounds: §(F) > 16 and L£(F) > 64. This implies that the Feistel con-
struction is more appropriate for constructing 8-bit permutations. We will also
show that all these bounds for n = 4 are tight. We now detail the results in the
case of the MISTY construction, while the results for the Feistel construction
are presented in the full version [15].

3.2 Differential Uniformity of 3 Rounds of MISTY

Our lower bound on the differential uniformity of the 3-round MISTY relies on
the evaluation of the number of solutions of some differentials for which the
input difference of one of the 3 S-Boxes is canceled (see Fig. 3 in [15]).

Proposition 1. Let S1, Sy and S3 be three n-bit S-Boxes and F be the 2n-bit
function defined by the corresponding 3-round MISTY network. Then, for all a,
b and c in F3, we have:

(i) 51(0]la,bllc) = b, (a, ) X s, (¢,b & o)

(ii) If Sy is bijective,

0 (al|0,b]|c) = ds,(a,a @ c) X ds,(a,bd c);

(ill) 551 (a7 b) X 552 (ba C) <JiF (b”a‘v C”C) < Z(;Sl (a’7 b d) X 552 (b7 C@d) X Y83 (d)
deFy
where vg,(d) is 0 if ds,(d,0) = 0 and 1 otherwise. Most notably, if Ss is
bijective,
5F(b||a7 C”C) = 651 (CL, b) X 652 (b7 C)'
Proof. Let x be the input of the MISTY network, and let z;, and g be its left
and right parts respectively.

(i) = = (z1,zR) satisfies F(zp||xg) ® F(zL||(zr ® a)) = bl|c if and only if

S3(S1(zr) ®ar) ® S3(Si(xr @ a)®ar) =bdec,
So(xr) ® S1(zr) ®xr ® Sa(xr) ® S1(zr®a) Prr =c

o {53(51(551%) ®xr)®d S3(S1(zrda)®rr) =bdec,
Si(zr) ®Si(zrr®a)=c

or equivalently
zg € Dg,(a — ¢) and z, € S1(zg) @ Dg,(c = b& ¢).

Hence, we deduce that there are exactly dg, (a, c) values of xr, and for each
of those, dg,(c,b @ ¢) values of zp,, such that x verifies the differential.
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(ii) = = (zL,zR) satisfies F(zL||xr) ® F((xr @ a)||lxr) = b||c if and only if
Sg(Sl(IR) (&) .Z‘L) S5 Sg(Sl(mR) D xp D a) =b®Pec,
Sa(xr) @ S1(zr) ®xr ® S2(xr @ a) ® S1(zr) Par Ba=c
- Si(xr) @z € Dg,(a— b c),
So(xr) ® Sa(xp Da)=adc
or equivalently,

zr € Dg,(a — a®c) and S1(zg) € 1 ® Dg,(a — bDc).

If Sy is invertible, for any fixed zp, each one of the dg,(a,b & ¢) values
defined by the second condition determines a unique value of xz. Therefore,
the number of (zr,zR) satisfying the differential is exactly dg,(a,a @ ¢) x
ds,(a,b®c).

(iii) (xp,xR) satisfies F(zr||lzr) ® F((xr ©b)||(xr ® a)) = ¢||c if and only if

S3(S1(xr) @ ar) ® S3(S1(rr @ a)®ar &b) =0,
So(xzr) ® S1(xr) ®xr @ So(zr &b) & S1(xrPa)Prrdb=c

N S3(S1(zR) @) ® S3(S1(xrPa)®ay Bb) =0,
So(xr) ® S1(xr) ® Sa2(xL ©b) D S1(rrDa)=bDc

This equivalently means that there exists some d € Fy such that

xR € Dg,(a = b®d), 2, € Ds,(b— c®d),
53(51(373) @J)L) () 53(51(33‘1{ EBCL) D xy, @b) =0,

ie.,

zg € Dg,(a = bdd), zp € Dg,(b— c® d) and S1(zr) ® x € Dg,(d — 0).
Then, for any fixed d € F} such that dg,(d,0) = 0, no pair (zr,zg) satisfies
the third condition. If dg,(d,0) > 0, then some of the values (x,xr) defined

by the first two conditions may also satisfy the third one, and if d = 0, the
third condition is always satisfied. It then follows that

35, (a,b) x 35, (b,¢) < dr(blla,clle) < Y 85, (a,b@ d) x 3s, (b, ¢ ® d) X s, (d)

deFy

where 7vg,(d) is 0 if dg,(d, 0) = 0 and 1 otherwise. Moreover, if S5 is bijective,
ds,(d,0) > 0 if and only if d = 0, implying that the two previous bounds are
equal, i.e.,

5F(b”a‘7 CHC) = 551 (aa b) X 552 (b7 C).
(]

These three particular types of differentials provide us with the following
lower bound on the differential uniformity of any 3-round MISTY network.
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Theorem 3. Let Sy, Sy and S3 be three n-bit S-Boxes and let F be the 2n-bit
function defined by the corresponding 3-round MISTY network. Then,

O0(F) > 6(S1) max (6min (S2), Omin(S3)) where dmin(S) = rn;g)l max ds(a,b).

Moreover,
— if S1 is a permutation,

§(F) > ax max (6(S:)0min(S;), 8(S1)0min(ST))

— if S is not a permutation, §(F) > 2"+1,

Proof. The result is a direct consequence of Proposition 1. We here derive the
bounds from the first item in Proposition 1; the other cases can be similarly
deduced from the other two items. Let us first consider a pair of differences
(v, B) which achieves the differential uniformity of Sy, i.e., 6(S1) = dg, (a, 5).
Then, we choose a = « and ¢ = (, and get that, for any b € F3,

r(0flev, bl|B) = 6(S1) X 055 (8,5 ® b).

Then, we can choose for b the value which maximizes g, (3,8 @ b). This value
is always greater than or equal to Omin(S3). Similarly, we can now consider a
pair of differences («, 3) which achieves the differential uniformity of Ss, i.e.,
0(S3) = ds,(a, B). In this case, we choose ¢ = a and b = a@ 3, and get that, for
any a € [y,

0r(0)|a, (e & B)|la) = ds, (a, ) x 6(S5).

We then choose for a the value which maximizes dg, (a, o) which is always greater
than or equal to (5min(51_1) when S is a permutation.

Let us now assume that S; is not bijective. This means that there exists some
nonzero a € FY such that dg, (a,0) > 2. Then, we deduce from the first item in
Proposition 1, with b = ¢ = 0, that F(zr|lxr) ® Fx(zr ® a|lzr) = (0,0) has
s, (a,0) x 65,(0,0) > 2 x 2" = 2"+ golutions in F3". O

3.3 Linearity of 3 Rounds of MISTY

The lower bound on the linearity of a three-round MISTY structure can be
derived in a similar way. The proofs of the following results are given in [15].

Proposition 2. Let Sy, So and S3 be three n-bit S-Boxes and F the 2n-bit
function defined by the corresponding 3-round MISTY network. Then, for all a,
b and c in F3, we have:

(1) Ar(allb,0]c) = As, (b, c)As,(a ® ¢, )
(ii) Ap(allb,cllc) = As, (b, a)As,(a,c)
(iii) If Sy is bijective, Ap(al|0,b]|c) = As,(a,b @ c)As, (b D ¢, b)
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As in the differential case, the previous three linear approximations provide
us with a lower bound on the linearity of any 3-round MISTY network. This
bound involves both the linearity of the constituent S-Boxes and another quan-
tity denoted by L, computed from the table of linear biases as follows.

Definition 4 (Lpin). Let F be an n-bit S-Box. We define

Loin(F) = min max|Ap(a,b)|.
bEFT b0 a€F}

Most notably, Luin(F) > 2% and this bound is not tight when F is bijective.

Proof. By definition, Ly, (F') is the smallest linearity achieved by a component
Fp:x— b F(x) of F, when b varies in F4\{0}. Since any F} is an n-variable
Boolean function, its linearity is at least 2% with equality if and only if F is
bent [41]. Since bent functions are not balanced, none of the components of a
permutation is bent, implying that Lyin(F) > 2% when F is a permutation. 0

We then derive the following lower bound on the linearity of any 3-round
MISTY network. The proof is given in [15].
Theorem 4. Let S1, So and S3 be three n-bit S-Bozxes and let F' be the 2n-bit
function defined by the corresponding 3-round MISTY network. Then,
L(F) Z max (E(Sl)ﬁmin(SQ), £(S2)£min(51), ﬁ(Sg)ﬁmin(Sl)) .

Moreover, if Sy is a permutation, L(F) > L£(S3)Lmin(S2); if S3 is a permutation,
L(F) > E(Sl)ﬁmin(Sg_l), and if both S1 and Sz are permutations, then L(F) >
E(Sg)ﬁmin(Sg_l).

4 Application to 8-Bit S-Boxes

In this section, we investigate the cryptographic properties of 8-bit S-Boxes cor-
responding to a 3-round MISTY structure with 4-bit inner S-Boxes, with a par-
ticular focus on the case where the three inner S-Boxes are bijective, since it
corresponds to the case where the resulting function is a permutation.

4.1 Differential Uniformity

The following bound on the differential uniformity of any 3-round MISTY net-
work over F3 is a direct consequence of Theorem 3.

Corollary 1. Any 8-bit function F' corresponding to a 3-round MISTY network
satisfies 0(F) > 8.

Proof. The bound clearly holds when S; is not bijective, since we known from
Theorem 3 that 6(F') > 32 in this case. If S is bijective, then §(S1) > 4 since
APN permutations over F3 do not exist, as proved in [24, Theorem 2.3]. Obvi-
ously, any 4-bit S-Box S satisfies dmin(S) > 2, implying that

S(F) > 6(S1)0min(Ss) > 8.
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Besides this general result, we can provide some necessary conditions on the
constituent S-Boxes to achieve the previous lower bound.

Theorem 5. Let S1, So and S3 be three 4-bit S-Bozes and let F be the 8-bit
function defined by the corresponding 3-round MISTY network. Then, 6(F) = 8
implies that Sy is a permutation with 6(S1) = 4 and Se and S3 are two APN
functions. Otherwise, §(F) > 12.

Proof. Since 6(F) > 32 when S is not bijective, we only need to focus on the case
where S7 is a permutation. If any of the constituent S-Boxes S; has differential
uniformity strictly greater than 4, i.e., 6(S;) > 6, we deduce from Theorem 3
that 6(F) > 6(S;)0min(Sj) > 12. Therefore, 6(F) = 8 can be achieved only if
0(S1) =4, 6(52) <4, and §(S3) < 4. The fact that §(F) > 16 when at least one
of the S-Boxes S5 or S3 has differential uniformity 4 is proved in Lemma 1 in
the full version [15]. O

We can then prove that the lower bound in Corollary 1 is tight by exhibiting
three 4-bit S-Boxes satisfying the previous conditions which lead to a 3-round
MISTY network with differential uniformity 8.

Ezxample 2. The following 4-bit S-Boxes yield an 8-bit S-Box with differential
uniformity 8 and linearity 64 when used in a MISTY structure:

S, =[4,0,1,£,2,b,6,7,3,9,a,5,c,d, e, 8
S, =1[0,0,0,1,0,a,8,3,0,8,2,b,4,6,e,d]
S3=1[0,7,b,d,4,1,b,£,1,2,c,e,d,c,5,5]|

With Bijective Inner S-Boxes. We now focus on the case where the three
inner S-Boxes are permutations since this guarantees that the resulting MISTY
network is a permutation. We have proved that, in this case, the lowest possible
differential uniformity we can obtain is 12. Here, we refine this result and show
that the differential uniformity cannot be lower than 16. This improved bound
exploits the following lemma on the difference tables of 4-bit permutations.

Lemma 1. Let Sy, So and S3 be 4-bit permutations. Then, there exists a
nonzero difference v € F3\{0} such that at least one of the following statements
holds:

— The difference table of S1 has at least one value greater than or equal to 4 in
Column v and the difference table of So has at least one value greater than or
equal to 4 in Row ~;

— The difference table of S1 has at least one value greater than or equal to 4 in
Column v and the difference table of S3 has at least one value greater than or
equal to 4 in Row -,

— The difference table of So has at least one value greater than or equal to 4 in
Row v and the difference table of Ss has at least one value greater than or
equal to 4in Row -y.
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Proof. This result relies on an exhaustive search over the equivalence classes
defined by composition on the left and on the right by an affine transformation,
exactly as in the classification of optimal 4-bit S-Boxes in [18,27]. There are
302 equivalence classes for 4-bit permutations. From each of the classes we picked
a representative, and checked that its difference table has at least six rows defined
by some nonzero input difference a which contain a value greater than or equal
to 4. Let R(S) denote the corresponding set (of size at least six):

R(S) = {a € F3\{0} :3b € F3\{0},d5(a,b) > 4}.

Therefore, if there exists no difference v € F3\{0} satisfying one of the three
statements in the lemma, then this would mean that the three sets R(S52), R(Ss)
and R(S; ') are disjoint. In other words, we could find 18 distinct values amongst
the 15 nonzero elements in F3, which is impossible. a

We then deduce the following refined lower bound on the differential unifor-
mity of a 3-round MISTY network over F§ with inner permutations.

Theorem 6. Let S1, So and S3 be three 4-bit permutations and let F' be the 8-
bit function defined by the corresponding 3-round MISTY network. Then, §(F) >
16.

Proof. The result is a direct consequence of Proposition1 combined with the
previous lemma. Indeed, Lemma 1 guarantees the existence of a, b and ¢ such
that at least one of the three following properties holds:

— dg,(a,c) >4 and dg,(c,b® c) > 4,
— dg,(a,a®c) >4 and dg,(a,bDc) >4,
— 0g,(a,b) > 4 and g, (b, c) > 4.

In each of these three situations, Proposition 1 exhibits a differential («, ) for
F with dp(a, 5) = 16. O

4.2 Linearity

In order to apply Theorem4 to the case of 8-bit MISTY network, we need to
estimate the best linearity (and L) for 4-bit S-Boxes. It is well-known that
the lowest linearity for a 4-bit permutation is 8. But, this result still holds if the
S-Box is not bijective.

Lemma 2. Any 4-bit S-Boz S satisfies L(S) > 8.

Proof. Assume that there exists some S from F3 into Fj with £(S) < 8, i.e.,
with £(S) < 6. Then, all nonzero Boolean components of S, S; : x — ¢- S(z)
with ¢ # 0, satisfy £(S.) < 6. From the classification of all Boolean functions of
at most 5 variables by Berlekamp and Welch [6], we deduce that any S, ¢ # 0,
is affine equivalent either to x1xox3x4 + T122 + X324 OF t0 T1To + T324, because
these are the only classes of Boolean functions with linearity at most 6. Let L
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(resp. L) denote the set of all nonzero ¢ € F3 such that S, belongs to the first
(resp. second) class. Since the degree is invariant under affine transformations,
L, (resp. L) corresponds to the components with degree 4 (resp. with degree at
most 2). The sum of two components of degree at most 2 has degree at most 2,
implying that L, U{0} is a linear subspace V of F3. It follows that the projection
of S on V can be seen as a function from Fj into F$™V with linearity 4, i.e., a
bent function. It has been shown by Nyberg [35] that, if a function F' from F3
into FJ* is bent, then m < n/2. Therefore, dimV < 2. But, the sum of any two
components S, of degree 4 cannot have degree 4 since there is a single monomial
of degree 4 of 4 variables. We deduce that, if L; contains ¢ words of weight 1
(i.e., if S has t coordinates with linearity 6), then

t
#Ly > (2> +247t 1> 3,

for all 0 <t < 4, a contradiction. O

Combined with the previous lemma and with Definition 4, Theorem 4 pro-
vides the following lower bound on the linearity of a 3-round MISTY network
over F$.

Corollary 2. Any 8-bit function F corresponding to a 3-round MISTY network
satisfies L(F) > 32.

This bound is of marginal interest since, up to our best knowledge, £(S) = 32
is the lowest known linearity for an 8-bit S-Box. But, once again, the previous
lower bound can be improved when focusing on permutations. Indeed, we can
exploit that Ly (S) > 8 for any 4-bit permutation:

Lemma 3. For any 4-bit permutation S, the table of linear biases of S has at
least one value greater than or equal to 8 on every row and column.

Proof. This result is obtained by an exhaustive search over all affine equivalence
classes. The 302 representatives have been examined, and we could check the
result for each of them. O

Using that any 4-bit permutation S satisfies £(.5) > 8 and Lyin(S) > 8, we
directly deduce from Theorem 4 the following improved lower bound.

Proposition 3. Let S1, Sy and Sz be three 4-bit S-Boxes and let F' be the 8-bit
function defined by the corresponding 3-round MISTY network. If any of the three
inner S-Boxes is a permutation, then L(F) > 64. Most notably, if L(F) < 64,
then §(F') > 32.

The last statement in the previous theorem is deduced from the first item in
Theorem 3. While it shows that 3-round MISTY with £(F) < 64 would be of
little interest, we show in [15] the following theorem proving that their linearity
is at least 48.



Construction of Lightweight S-Boxes Using Feistel and MISTY Structures 387

Theorem 7. Let S1, So and S3 be three 4-bit S-Boxes and let F be the 8-bit
function defined by the corresponding 3-round MISTY network. Then L(F) > 48.

We conjecture that any MISTY network with 4-bit inner functions actually
satisfies L(F') > 64, but it seems hard to prove without a full classification of
the 4-bit functions.

5 Constructions

We now use the previous results to design concrete 8-bit invertible S-Boxes opti-
mized for lightweight implementations. We use Feistel and MISTY networks,
and select 4-bit S-Boxes S;’s with a low-cost implementation that provide good
cryptographic properties of the resulting 8-bit S-Box. Such S-Boxes have been
considered as good candidates for many lightweight constructions (e.g. the LS-
designs [23]), but their respective merits and their cryptographic properties
remained open.

We focus on implementing functions with a low gate count for hardware
implementations, and a low instruction count for bit-sliced implementations
(for table-based implementations, the table size is independent of the concrete
S-Boxes). Moreover, we focus on implementations with a small number of non-
linear gates, because non-linear gates are much harder to implement than linear
gates in some dedicated settings such as masking [40], multi-party computation,
or homomorphic encryption [1]. Bit-slicing can be used as an implementation
technique to take advantage of some platform characteristics (for instance, it
yields the fastest known implementation of AES on some Intel processors [25]),
but it can also be a design criterion. Indeed, using a bit-sliced S-Box allows
compact implementations without tables, and good performances both in soft-
ware and hardware. In addition, S-Boxes implemented in this way are eas-
ier to protect against side-channel attacks with masking. Therefore, this app-
roach is used by many lightweight designs such as SERPENT [9], NOEKEON [16],
KEccAK [8], ROBIN and FANTOMAS [23], PRIDE [2], PR@ST [26], or ASCON [19].
This makes the construction of S-Boxes with a low gate count particularly
relevant for lightweight cryptography.

Following the previous sections, the best results we can achieve for an 8-bit
invertible S-Box are:

With a MISTY network: 6(F) = 16 and L(F') = 64.
With a Feistel network: §(F) = 8 and L(F') = 64.

We can provide some examples fulfilling these bounds: Example 2 is optimal for
the MISTY construction, and an example for the Feistel construction is now
exhibited. It is worth noticing that these results explain the compared proper-
ties of the S-Boxes obtained by the simulations reported in [23]. Since Feistel
networks can reach a better security, we will mostly consider this construction.
In this case, the optimal differential uniformity can be reached only if S;, S3 are
APN, and S5 is a permutation with §(S3) = 4, as proved in Th. 9 in the full
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version [15]. Note that, in some other contexts, the MISTY construction presents
some advantages since it offers better performance in terms of throughput and
latency because the first two S-Boxes can be evaluated in parallel.

5.1 Feistel Network with Low Gate Count and Instruction Count

Rather than choosing S-Boxes Sp, So and S3 with good properties first, and
then searching for an efficient implementation of these S-Boxes (as in [13,39] for
instance), we take the opposite approach, following Ullrich et al. [45]. We build
gate descriptions of S-Boxes, and we test their cryptographic properties until we
find a good candidate. Indeed, we do not have to specify in advance the 4-bit
S-Boxes S1, Sa, S3. Instead, we look for a good implementation of a permutation
with 6(S) = 4 for Ss, a good implementation of an APN function for S; and
Ss3, and we test the properties of the resulting Feistel structure. With good
probability, this results in a Feistel network F' with §(F) = 8 and L(F') = 64.

Following Ullrich et al., we run a search oriented towards bit-sliced imple-
mentations. We consider sequences of software instructions, with instructions
AND, OR, XOR, NOT, and MOV, using at most 5 registers. This directly translates to
a hardware representation: the MOV instruction becomes a branch while the other
instructions represent the corresponding gates. There are 85 choices of instruc-
tions at each step, but we use an equivalence relation to restrict the search. For
Sy, we can directly reuse the results of [45]: they give an optimal implementa-
tion of a 4-bit permutation with §(S) = 4. For S; and S3, we implemented a
version of their algorithm, and searched for APN functions. We found that there
is no construction of an APN function with 9 or fewer instructions. There are
solutions with 10 instructions, but they have at least 6 non-linear instructions
(AND, OR), which is not efficient for a masked implementation. Finally, with 11
instructions, there are constructions of APN functions with 4 non-linear instruc-
tions, 5 XOR instructions, and 2 MOV (copy) instructions. This search requires
about 6000 core-hours of computation. The branching factor of our search is
close to 10, while Ullrich et al. report a branching factor of less than 7; this is
because we do not restrict the search to permutations (indeed, 4-bit APN func-
tions are not permutations). This results in a very efficient 8-bit S-Box with good
cryptographic properties, using 12 nonlinear gates, and 26 XORs. According to
Theorem 9 in [15] and to the following lemma, this is the optimal number of
non-linear gates.

Lemma 4. Let S be a 4-bit permutation with 6(S) < 4 or a 4-bit APN function.
Any implementation of S requires at least 4 non-linear gates.

Proof. If S can be implemented with 3 non-linear gates or less, then the algebraic
expression of the output variables is a linear combination of the input variables,
and of the 3 polynomials corresponding to the output of the 3 non-linear gates.
Therefore, there exists a linear combination of the input and output variables
that sums to a constant, i.e. £(S) = 16. According to the classification of 4-bit
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permutation in [18], any permutation with 6(S) = 4 satisfies £(5) < 12. Fur-
thermore, the classification of 4-bit APN functions [14] shows that they satisfy
L(S) = 8, which proves the lemma. O

Xo T1 X2 I3 Xo 1 X2 XT3
l l

v 0 |
J ] U

i K=

Yo Y1 Y2 Y3

Yo Y1 Y2 Y3
3.1. S1, APN function with §(S1) = 2. 3.2. Sy, permutation with §(S2) = 4.
51 =1[0,0,4,d,¢,0,0,5,8,0,7,6,5,a,2,4]  S»=1[0,8,6,d,5,f,7,c,4,e,2,3,9,1,b,a]

Fig. 3. Construction of a lightweight S-Box S with a three-round Feistel (S1,S2,51)
satisfying §(S) = 8 and L(S) = 64.

We give an example of such an implementation in Fig.3, and we compare
our results with previous designs in Table 1. In particular, we reach a better
differential uniformity than the S-Boxes used in Robin and Fantomas [23], for
a small number of extra gates. For comparing the respective merits of the S-
Boxes considered in Table 1, we use the fact that, as a simple approximation,
the number of rounds needed to reach a fixed security level against differential
attacks is proportional to 1/log(8(S5)/256), and the implementation cost per
round is proportional to the number of non-linear gates (for a bit-sliced software
implementation with masking). This allows to derive a simple implementation
cost metric for the S-Boxes presented in the last column, taking 1 for the AES,
and considering only security against differential attacks.

5.2 TUnbalanced MISTY Structure

Finally, we consider an alternative to MISTY structures as studied in this paper.
Instead of dividing the input into two halves of equal size, we consider unbalanced
networks. The idea is to split the 8 input bits in two unequal parts of 3 and 5 bits.
Thus, the MISTY network will use only 3- and 5-bit S-Boxes. The advantage of
3- and 5-bit S-Boxes is that invertible S-Boxes with § = 2 exist, contrarily to the
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case of 4-bit S-Boxes. We managed to obtain 8-bit S-Boxes S with 6(.S) = 8 using
unbalanced MISTY networks, which is better than the lower bound §(S) > 16
proved for balanced MISTY networks. However, this method uses 5-bit S-Boxes,
which are more complicated to implement than 4-bit S-Boxes.

Example 3. We consider a 3-round unbalanced MISTY structure, with 5-bit per-
mutations Sy, S3 and a 3-bit permutation S;. After S; and S3, the 3-bit xy, is
xored in the 3 MSB of xg; after Sy the 3 MSB of the 5-bit x;, are xored into xy,.
The following S-Boxes define an 8-bit S-Box with § = 8 and £ = 64:

S1 = [00,01,02, 04, 03,08, 0d, 10,05, 11, 1c, 1b, 1e, Oe, 18, 0a,
06,13,0b, 14, 1£, 1d, 0c, 15,12, 1a, 0f, 19, 07, 16, 17, 09]

Sy =[2,5,6,4,0,1,3,7]

Ss = [00,01,02,04,03,08, 10, 1c, 05, 0a, 1a,12, 11, 14, 1f, 1d,
06,15,18,0c, 16,0f, 19, 07, Oe, 13, 0d, 17, 09, 1e, 1b, Ob]

This shows that generalizing our results to the unbalanced case, especially for
the MISTY construction, may be of interest.

Table 1. Comparison of some 8-bit S-Boxes. § and L respectively denote the differential
uniformity and the linearity of the S-Box (see Sect.2.1 for the definitions), the last
column presents the relative overall implementation cost (taking 1 for the AES).

S-Box Construction Implementation | Properties
AND/OR|XOR | L | |cost
AES [13] Inversion in Fys + affine |32 83 32| 41
Whirlpool [5] Lai-Massey 36 58 56| 8[1.35
CRYPTON [29] | 3-round Feistel 49 12 64| 8|1.83
Robin [23] 3-round Feistel 12 24 64|16 |0.56
Fantomas [23] | 3-round MISTY (3/5 bits) | 11 25 6416 0.51
Unnamed [23] | Whirlpool-like 16 41 6410 |0.64
New 3-round Feistel 12 26 64| 8/0.45

6 Conclusion

Our results give a better understanding of the cryptographic properties of light-
weight S-Boxes built from smaller S-Boxes. We give a precise description of the
best security achievable with a 3-round balanced Feistel or MISTY structure
for an 8-bit S-Box, and necessary conditions to reach the bound. Interestingly,
the MISTY network cannot offer the same security as the Feistel network for
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constructing an invertible 8-bit S-Box. Using those results, we describe an 8-
bit S-Box S using only 12 non-linear gates and 26 XOR gates, with §(S) = 8
and £(S) = 64. This is the best security that can be achieved with a 3-round
Feistel or MISTY structure, and our construction uses the minimal number of
non-linear gates to reach this security. This is an improvement over previous
proposals, including the S-Boxes used in CRYPTON, Fantomas and Robin, but
further work is required to determine whether different structures can provide
better S-Boxes.
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